|
""" |
|
Known facts in assumptions module. |
|
|
|
This module defines the facts between unary predicates in ``get_known_facts()``, |
|
and supports functions to generate the contents in |
|
``sympy.assumptions.ask_generated`` file. |
|
""" |
|
|
|
from sympy.assumptions.ask import Q |
|
from sympy.assumptions.assume import AppliedPredicate |
|
from sympy.core.cache import cacheit |
|
from sympy.core.symbol import Symbol |
|
from sympy.logic.boolalg import (to_cnf, And, Not, Implies, Equivalent, |
|
Exclusive,) |
|
from sympy.logic.inference import satisfiable |
|
|
|
|
|
@cacheit |
|
def get_composite_predicates(): |
|
|
|
|
|
return { |
|
Q.real : Q.negative | Q.zero | Q.positive, |
|
Q.integer : Q.even | Q.odd, |
|
Q.nonpositive : Q.negative | Q.zero, |
|
Q.nonzero : Q.negative | Q.positive, |
|
Q.nonnegative : Q.zero | Q.positive, |
|
Q.extended_real : Q.negative_infinite | Q.negative | Q.zero | Q.positive | Q.positive_infinite, |
|
Q.extended_positive: Q.positive | Q.positive_infinite, |
|
Q.extended_negative: Q.negative | Q.negative_infinite, |
|
Q.extended_nonzero: Q.negative_infinite | Q.negative | Q.positive | Q.positive_infinite, |
|
Q.extended_nonpositive: Q.negative_infinite | Q.negative | Q.zero, |
|
Q.extended_nonnegative: Q.zero | Q.positive | Q.positive_infinite, |
|
Q.complex : Q.algebraic | Q.transcendental |
|
} |
|
|
|
|
|
@cacheit |
|
def get_known_facts(x=None): |
|
""" |
|
Facts between unary predicates. |
|
|
|
Parameters |
|
========== |
|
|
|
x : Symbol, optional |
|
Placeholder symbol for unary facts. Default is ``Symbol('x')``. |
|
|
|
Returns |
|
======= |
|
|
|
fact : Known facts in conjugated normal form. |
|
|
|
""" |
|
if x is None: |
|
x = Symbol('x') |
|
|
|
fact = And( |
|
|
|
Exclusive(Q.negative_infinite(x), Q.negative(x), Q.zero(x), |
|
Q.positive(x), Q.positive_infinite(x)), |
|
|
|
|
|
Exclusive(Q.real(x), Q.imaginary(x)), |
|
Implies(Q.real(x) | Q.imaginary(x), Q.complex(x)), |
|
|
|
|
|
Exclusive(Q.transcendental(x), Q.algebraic(x)), |
|
Equivalent(Q.real(x), Q.rational(x) | Q.irrational(x)), |
|
Exclusive(Q.irrational(x), Q.rational(x)), |
|
Implies(Q.rational(x), Q.algebraic(x)), |
|
|
|
|
|
Exclusive(Q.even(x), Q.odd(x)), |
|
Implies(Q.integer(x), Q.rational(x)), |
|
Implies(Q.zero(x), Q.even(x)), |
|
Exclusive(Q.composite(x), Q.prime(x)), |
|
Implies(Q.composite(x) | Q.prime(x), Q.integer(x) & Q.positive(x)), |
|
Implies(Q.even(x) & Q.positive(x) & ~Q.prime(x), Q.composite(x)), |
|
|
|
|
|
Implies(Q.real(x), Q.hermitian(x)), |
|
Implies(Q.imaginary(x), Q.antihermitian(x)), |
|
Implies(Q.zero(x), Q.hermitian(x) | Q.antihermitian(x)), |
|
|
|
|
|
Exclusive(Q.infinite(x), Q.finite(x)), |
|
Implies(Q.complex(x), Q.finite(x)), |
|
Implies(Q.negative_infinite(x) | Q.positive_infinite(x), Q.infinite(x)), |
|
|
|
|
|
Implies(Q.finite(x) | Q.infinite(x), Q.commutative(x)), |
|
|
|
|
|
Implies(Q.orthogonal(x), Q.positive_definite(x)), |
|
Implies(Q.orthogonal(x), Q.unitary(x)), |
|
Implies(Q.unitary(x) & Q.real_elements(x), Q.orthogonal(x)), |
|
Implies(Q.unitary(x), Q.normal(x)), |
|
Implies(Q.unitary(x), Q.invertible(x)), |
|
Implies(Q.normal(x), Q.square(x)), |
|
Implies(Q.diagonal(x), Q.normal(x)), |
|
Implies(Q.positive_definite(x), Q.invertible(x)), |
|
Implies(Q.diagonal(x), Q.upper_triangular(x)), |
|
Implies(Q.diagonal(x), Q.lower_triangular(x)), |
|
Implies(Q.lower_triangular(x), Q.triangular(x)), |
|
Implies(Q.upper_triangular(x), Q.triangular(x)), |
|
Implies(Q.triangular(x), Q.upper_triangular(x) | Q.lower_triangular(x)), |
|
Implies(Q.upper_triangular(x) & Q.lower_triangular(x), Q.diagonal(x)), |
|
Implies(Q.diagonal(x), Q.symmetric(x)), |
|
Implies(Q.unit_triangular(x), Q.triangular(x)), |
|
Implies(Q.invertible(x), Q.fullrank(x)), |
|
Implies(Q.invertible(x), Q.square(x)), |
|
Implies(Q.symmetric(x), Q.square(x)), |
|
Implies(Q.fullrank(x) & Q.square(x), Q.invertible(x)), |
|
Equivalent(Q.invertible(x), ~Q.singular(x)), |
|
Implies(Q.integer_elements(x), Q.real_elements(x)), |
|
Implies(Q.real_elements(x), Q.complex_elements(x)), |
|
) |
|
return fact |
|
|
|
|
|
def generate_known_facts_dict(keys, fact): |
|
""" |
|
Computes and returns a dictionary which contains the relations between |
|
unary predicates. |
|
|
|
Each key is a predicate, and item is two groups of predicates. |
|
First group contains the predicates which are implied by the key, and |
|
second group contains the predicates which are rejected by the key. |
|
|
|
All predicates in *keys* and *fact* must be unary and have same placeholder |
|
symbol. |
|
|
|
Parameters |
|
========== |
|
|
|
keys : list of AppliedPredicate instances. |
|
|
|
fact : Fact between predicates in conjugated normal form. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Q, And, Implies |
|
>>> from sympy.assumptions.facts import generate_known_facts_dict |
|
>>> from sympy.abc import x |
|
>>> keys = [Q.even(x), Q.odd(x), Q.zero(x)] |
|
>>> fact = And(Implies(Q.even(x), ~Q.odd(x)), |
|
... Implies(Q.zero(x), Q.even(x))) |
|
>>> generate_known_facts_dict(keys, fact) |
|
{Q.even: ({Q.even}, {Q.odd}), |
|
Q.odd: ({Q.odd}, {Q.even, Q.zero}), |
|
Q.zero: ({Q.even, Q.zero}, {Q.odd})} |
|
""" |
|
fact_cnf = to_cnf(fact) |
|
mapping = single_fact_lookup(keys, fact_cnf) |
|
|
|
ret = {} |
|
for key, value in mapping.items(): |
|
implied = set() |
|
rejected = set() |
|
for expr in value: |
|
if isinstance(expr, AppliedPredicate): |
|
implied.add(expr.function) |
|
elif isinstance(expr, Not): |
|
pred = expr.args[0] |
|
rejected.add(pred.function) |
|
ret[key.function] = (implied, rejected) |
|
return ret |
|
|
|
|
|
@cacheit |
|
def get_known_facts_keys(): |
|
""" |
|
Return every unary predicates registered to ``Q``. |
|
|
|
This function is used to generate the keys for |
|
``generate_known_facts_dict``. |
|
|
|
""" |
|
exclude = set() |
|
for pred in [Q.eq, Q.ne, Q.gt, Q.lt, Q.ge, Q.le]: |
|
|
|
exclude.add(pred) |
|
|
|
result = [] |
|
for attr in Q.__class__.__dict__: |
|
if attr.startswith('__'): |
|
continue |
|
pred = getattr(Q, attr) |
|
if pred in exclude: |
|
continue |
|
result.append(pred) |
|
return result |
|
|
|
|
|
def single_fact_lookup(known_facts_keys, known_facts_cnf): |
|
|
|
mapping = {} |
|
for key in known_facts_keys: |
|
mapping[key] = {key} |
|
for other_key in known_facts_keys: |
|
if other_key != key: |
|
if ask_full_inference(other_key, key, known_facts_cnf): |
|
mapping[key].add(other_key) |
|
if ask_full_inference(~other_key, key, known_facts_cnf): |
|
mapping[key].add(~other_key) |
|
return mapping |
|
|
|
|
|
def ask_full_inference(proposition, assumptions, known_facts_cnf): |
|
""" |
|
Method for inferring properties about objects. |
|
|
|
""" |
|
if not satisfiable(And(known_facts_cnf, assumptions, proposition)): |
|
return False |
|
if not satisfiable(And(known_facts_cnf, assumptions, Not(proposition))): |
|
return True |
|
return None |
|
|