|
from sympy.core.numbers import igcd, mod_inverse |
|
from sympy.core.power import integer_nthroot |
|
from sympy.ntheory.residue_ntheory import _sqrt_mod_prime_power |
|
from sympy.ntheory import isprime |
|
from math import log, sqrt |
|
import random |
|
|
|
rgen = random.Random() |
|
|
|
class SievePolynomial: |
|
def __init__(self, modified_coeff=(), a=None, b=None): |
|
"""This class denotes the seive polynomial. |
|
If ``g(x) = (a*x + b)**2 - N``. `g(x)` can be expanded |
|
to ``a*x**2 + 2*a*b*x + b**2 - N``, so the coefficient |
|
is stored in the form `[a**2, 2*a*b, b**2 - N]`. This |
|
ensures faster `eval` method because we dont have to |
|
perform `a**2, 2*a*b, b**2` every time we call the |
|
`eval` method. As multiplication is more expensive |
|
than addition, by using modified_coefficient we get |
|
a faster seiving process. |
|
|
|
Parameters |
|
========== |
|
|
|
modified_coeff : modified_coefficient of sieve polynomial |
|
a : parameter of the sieve polynomial |
|
b : parameter of the sieve polynomial |
|
""" |
|
self.modified_coeff = modified_coeff |
|
self.a = a |
|
self.b = b |
|
|
|
def eval(self, x): |
|
""" |
|
Compute the value of the sieve polynomial at point x. |
|
|
|
Parameters |
|
========== |
|
|
|
x : Integer parameter for sieve polynomial |
|
""" |
|
ans = 0 |
|
for coeff in self.modified_coeff: |
|
ans *= x |
|
ans += coeff |
|
return ans |
|
|
|
|
|
class FactorBaseElem: |
|
"""This class stores an element of the `factor_base`. |
|
""" |
|
def __init__(self, prime, tmem_p, log_p): |
|
""" |
|
Initialization of factor_base_elem. |
|
|
|
Parameters |
|
========== |
|
|
|
prime : prime number of the factor_base |
|
tmem_p : Integer square root of x**2 = n mod prime |
|
log_p : Compute Natural Logarithm of the prime |
|
""" |
|
self.prime = prime |
|
self.tmem_p = tmem_p |
|
self.log_p = log_p |
|
self.soln1 = None |
|
self.soln2 = None |
|
self.a_inv = None |
|
self.b_ainv = None |
|
|
|
|
|
def _generate_factor_base(prime_bound, n): |
|
"""Generate `factor_base` for Quadratic Sieve. The `factor_base` |
|
consists of all the points whose ``legendre_symbol(n, p) == 1`` |
|
and ``p < num_primes``. Along with the prime `factor_base` also stores |
|
natural logarithm of prime and the residue n modulo p. |
|
It also returns the of primes numbers in the `factor_base` which are |
|
close to 1000 and 5000. |
|
|
|
Parameters |
|
========== |
|
|
|
prime_bound : upper prime bound of the factor_base |
|
n : integer to be factored |
|
""" |
|
from sympy.ntheory.generate import sieve |
|
factor_base = [] |
|
idx_1000, idx_5000 = None, None |
|
for prime in sieve.primerange(1, prime_bound): |
|
if pow(n, (prime - 1) // 2, prime) == 1: |
|
if prime > 1000 and idx_1000 is None: |
|
idx_1000 = len(factor_base) - 1 |
|
if prime > 5000 and idx_5000 is None: |
|
idx_5000 = len(factor_base) - 1 |
|
residue = _sqrt_mod_prime_power(n, prime, 1)[0] |
|
log_p = round(log(prime)*2**10) |
|
factor_base.append(FactorBaseElem(prime, residue, log_p)) |
|
return idx_1000, idx_5000, factor_base |
|
|
|
|
|
def _initialize_first_polynomial(N, M, factor_base, idx_1000, idx_5000, seed=None): |
|
"""This step is the initialization of the 1st sieve polynomial. |
|
Here `a` is selected as a product of several primes of the factor_base |
|
such that `a` is about to ``sqrt(2*N) / M``. Other initial values of |
|
factor_base elem are also initialized which includes a_inv, b_ainv, soln1, |
|
soln2 which are used when the sieve polynomial is changed. The b_ainv |
|
is required for fast polynomial change as we do not have to calculate |
|
`2*b*mod_inverse(a, prime)` every time. |
|
We also ensure that the `factor_base` primes which make `a` are between |
|
1000 and 5000. |
|
|
|
Parameters |
|
========== |
|
|
|
N : Number to be factored |
|
M : sieve interval |
|
factor_base : factor_base primes |
|
idx_1000 : index of prime number in the factor_base near 1000 |
|
idx_5000 : index of prime number in the factor_base near to 5000 |
|
seed : Generate pseudoprime numbers |
|
""" |
|
if seed is not None: |
|
rgen.seed(seed) |
|
approx_val = sqrt(2*N) / M |
|
|
|
|
|
|
|
|
|
best_a, best_q, best_ratio = None, None, None |
|
start = 0 if idx_1000 is None else idx_1000 |
|
end = len(factor_base) - 1 if idx_5000 is None else idx_5000 |
|
for _ in range(50): |
|
a = 1 |
|
q = [] |
|
while(a < approx_val): |
|
rand_p = 0 |
|
while(rand_p == 0 or rand_p in q): |
|
rand_p = rgen.randint(start, end) |
|
p = factor_base[rand_p].prime |
|
a *= p |
|
q.append(rand_p) |
|
ratio = a / approx_val |
|
if best_ratio is None or abs(ratio - 1) < abs(best_ratio - 1): |
|
best_q = q |
|
best_a = a |
|
best_ratio = ratio |
|
|
|
a = best_a |
|
q = best_q |
|
|
|
B = [] |
|
for idx, val in enumerate(q): |
|
q_l = factor_base[val].prime |
|
gamma = factor_base[val].tmem_p * mod_inverse(a // q_l, q_l) % q_l |
|
if gamma > q_l / 2: |
|
gamma = q_l - gamma |
|
B.append(a//q_l*gamma) |
|
|
|
b = sum(B) |
|
g = SievePolynomial([a*a, 2*a*b, b*b - N], a, b) |
|
|
|
for fb in factor_base: |
|
if a % fb.prime == 0: |
|
continue |
|
fb.a_inv = mod_inverse(a, fb.prime) |
|
fb.b_ainv = [2*b_elem*fb.a_inv % fb.prime for b_elem in B] |
|
fb.soln1 = (fb.a_inv*(fb.tmem_p - b)) % fb.prime |
|
fb.soln2 = (fb.a_inv*(-fb.tmem_p - b)) % fb.prime |
|
return g, B |
|
|
|
|
|
def _initialize_ith_poly(N, factor_base, i, g, B): |
|
"""Initialization stage of ith poly. After we finish sieving 1`st polynomial |
|
here we quickly change to the next polynomial from which we will again |
|
start sieving. Suppose we generated ith sieve polynomial and now we |
|
want to generate (i + 1)th polynomial, where ``1 <= i <= 2**(j - 1) - 1`` |
|
where `j` is the number of prime factors of the coefficient `a` |
|
then this function can be used to go to the next polynomial. If |
|
``i = 2**(j - 1) - 1`` then go to _initialize_first_polynomial stage. |
|
|
|
Parameters |
|
========== |
|
|
|
N : number to be factored |
|
factor_base : factor_base primes |
|
i : integer denoting ith polynomial |
|
g : (i - 1)th polynomial |
|
B : array that stores a//q_l*gamma |
|
""" |
|
from sympy.functions.elementary.integers import ceiling |
|
v = 1 |
|
j = i |
|
while(j % 2 == 0): |
|
v += 1 |
|
j //= 2 |
|
if ceiling(i / (2**v)) % 2 == 1: |
|
neg_pow = -1 |
|
else: |
|
neg_pow = 1 |
|
b = g.b + 2*neg_pow*B[v - 1] |
|
a = g.a |
|
g = SievePolynomial([a*a, 2*a*b, b*b - N], a, b) |
|
for fb in factor_base: |
|
if a % fb.prime == 0: |
|
continue |
|
fb.soln1 = (fb.soln1 - neg_pow*fb.b_ainv[v - 1]) % fb.prime |
|
fb.soln2 = (fb.soln2 - neg_pow*fb.b_ainv[v - 1]) % fb.prime |
|
|
|
return g |
|
|
|
|
|
def _gen_sieve_array(M, factor_base): |
|
"""Sieve Stage of the Quadratic Sieve. For every prime in the factor_base |
|
that does not divide the coefficient `a` we add log_p over the sieve_array |
|
such that ``-M <= soln1 + i*p <= M`` and ``-M <= soln2 + i*p <= M`` where `i` |
|
is an integer. When p = 2 then log_p is only added using |
|
``-M <= soln1 + i*p <= M``. |
|
|
|
Parameters |
|
========== |
|
|
|
M : sieve interval |
|
factor_base : factor_base primes |
|
""" |
|
sieve_array = [0]*(2*M + 1) |
|
for factor in factor_base: |
|
if factor.soln1 is None: |
|
continue |
|
for idx in range((M + factor.soln1) % factor.prime, 2*M, factor.prime): |
|
sieve_array[idx] += factor.log_p |
|
if factor.prime == 2: |
|
continue |
|
|
|
for idx in range((M + factor.soln2) % factor.prime, 2*M, factor.prime): |
|
sieve_array[idx] += factor.log_p |
|
return sieve_array |
|
|
|
|
|
def _check_smoothness(num, factor_base): |
|
"""Here we check that if `num` is a smooth number or not. If `a` is a smooth |
|
number then it returns a vector of prime exponents modulo 2. For example |
|
if a = 2 * 5**2 * 7**3 and the factor base contains {2, 3, 5, 7} then |
|
`a` is a smooth number and this function returns ([1, 0, 0, 1], True). If |
|
`a` is a partial relation which means that `a` a has one prime factor |
|
greater than the `factor_base` then it returns `(a, False)` which denotes `a` |
|
is a partial relation. |
|
|
|
Parameters |
|
========== |
|
|
|
a : integer whose smootheness is to be checked |
|
factor_base : factor_base primes |
|
""" |
|
vec = [] |
|
if num < 0: |
|
vec.append(1) |
|
num *= -1 |
|
else: |
|
vec.append(0) |
|
|
|
for factor in factor_base: |
|
if num % factor.prime != 0: |
|
vec.append(0) |
|
continue |
|
factor_exp = 0 |
|
while num % factor.prime == 0: |
|
factor_exp += 1 |
|
num //= factor.prime |
|
vec.append(factor_exp % 2) |
|
if num == 1: |
|
return vec, True |
|
if isprime(num): |
|
return num, False |
|
return None, None |
|
|
|
|
|
def _trial_division_stage(N, M, factor_base, sieve_array, sieve_poly, partial_relations, ERROR_TERM): |
|
"""Trial division stage. Here we trial divide the values generetated |
|
by sieve_poly in the sieve interval and if it is a smooth number then |
|
it is stored in `smooth_relations`. Moreover, if we find two partial relations |
|
with same large prime then they are combined to form a smooth relation. |
|
First we iterate over sieve array and look for values which are greater |
|
than accumulated_val, as these values have a high chance of being smooth |
|
number. Then using these values we find smooth relations. |
|
In general, let ``t**2 = u*p modN`` and ``r**2 = v*p modN`` be two partial relations |
|
with the same large prime p. Then they can be combined ``(t*r/p)**2 = u*v modN`` |
|
to form a smooth relation. |
|
|
|
Parameters |
|
========== |
|
|
|
N : Number to be factored |
|
M : sieve interval |
|
factor_base : factor_base primes |
|
sieve_array : stores log_p values |
|
sieve_poly : polynomial from which we find smooth relations |
|
partial_relations : stores partial relations with one large prime |
|
ERROR_TERM : error term for accumulated_val |
|
""" |
|
sqrt_n = sqrt(float(N)) |
|
accumulated_val = log(M * sqrt_n)*2**10 - ERROR_TERM |
|
smooth_relations = [] |
|
proper_factor = set() |
|
partial_relation_upper_bound = 128*factor_base[-1].prime |
|
for idx, val in enumerate(sieve_array): |
|
if val < accumulated_val: |
|
continue |
|
x = idx - M |
|
v = sieve_poly.eval(x) |
|
vec, is_smooth = _check_smoothness(v, factor_base) |
|
if is_smooth is None: |
|
continue |
|
u = sieve_poly.a*x + sieve_poly.b |
|
|
|
|
|
if is_smooth is False: |
|
large_prime = vec |
|
|
|
if large_prime > partial_relation_upper_bound: |
|
continue |
|
if large_prime not in partial_relations: |
|
partial_relations[large_prime] = (u, v) |
|
continue |
|
else: |
|
u_prev, v_prev = partial_relations[large_prime] |
|
partial_relations.pop(large_prime) |
|
try: |
|
large_prime_inv = mod_inverse(large_prime, N) |
|
except ValueError: |
|
proper_factor.add(large_prime) |
|
continue |
|
u = u*u_prev*large_prime_inv |
|
v = v*v_prev // (large_prime*large_prime) |
|
vec, is_smooth = _check_smoothness(v, factor_base) |
|
|
|
smooth_relations.append((u, v, vec)) |
|
return smooth_relations, proper_factor |
|
|
|
|
|
|
|
def _build_matrix(smooth_relations): |
|
"""Build a 2D matrix from smooth relations. |
|
|
|
Parameters |
|
========== |
|
|
|
smooth_relations : Stores smooth relations |
|
""" |
|
matrix = [] |
|
for s_relation in smooth_relations: |
|
matrix.append(s_relation[2]) |
|
return matrix |
|
|
|
|
|
def _gauss_mod_2(A): |
|
"""Fast gaussian reduction for modulo 2 matrix. |
|
|
|
Parameters |
|
========== |
|
|
|
A : Matrix |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.ntheory.qs import _gauss_mod_2 |
|
>>> _gauss_mod_2([[0, 1, 1], [1, 0, 1], [0, 1, 0], [1, 1, 1]]) |
|
([[[1, 0, 1], 3]], |
|
[True, True, True, False], |
|
[[0, 1, 0], [1, 0, 0], [0, 0, 1], [1, 0, 1]]) |
|
|
|
Reference |
|
========== |
|
|
|
.. [1] A fast algorithm for gaussian elimination over GF(2) and |
|
its implementation on the GAPP. Cetin K.Koc, Sarath N.Arachchige""" |
|
import copy |
|
matrix = copy.deepcopy(A) |
|
row = len(matrix) |
|
col = len(matrix[0]) |
|
mark = [False]*row |
|
for c in range(col): |
|
for r in range(row): |
|
if matrix[r][c] == 1: |
|
break |
|
mark[r] = True |
|
for c1 in range(col): |
|
if c1 == c: |
|
continue |
|
if matrix[r][c1] == 1: |
|
for r2 in range(row): |
|
matrix[r2][c1] = (matrix[r2][c1] + matrix[r2][c]) % 2 |
|
dependent_row = [] |
|
for idx, val in enumerate(mark): |
|
if val == False: |
|
dependent_row.append([matrix[idx], idx]) |
|
return dependent_row, mark, matrix |
|
|
|
|
|
def _find_factor(dependent_rows, mark, gauss_matrix, index, smooth_relations, N): |
|
"""Finds proper factor of N. Here, transform the dependent rows as a |
|
combination of independent rows of the gauss_matrix to form the desired |
|
relation of the form ``X**2 = Y**2 modN``. After obtaining the desired relation |
|
we obtain a proper factor of N by `gcd(X - Y, N)`. |
|
|
|
Parameters |
|
========== |
|
|
|
dependent_rows : denoted dependent rows in the reduced matrix form |
|
mark : boolean array to denoted dependent and independent rows |
|
gauss_matrix : Reduced form of the smooth relations matrix |
|
index : denoted the index of the dependent_rows |
|
smooth_relations : Smooth relations vectors matrix |
|
N : Number to be factored |
|
""" |
|
idx_in_smooth = dependent_rows[index][1] |
|
independent_u = [smooth_relations[idx_in_smooth][0]] |
|
independent_v = [smooth_relations[idx_in_smooth][1]] |
|
dept_row = dependent_rows[index][0] |
|
|
|
for idx, val in enumerate(dept_row): |
|
if val == 1: |
|
for row in range(len(gauss_matrix)): |
|
if gauss_matrix[row][idx] == 1 and mark[row] == True: |
|
independent_u.append(smooth_relations[row][0]) |
|
independent_v.append(smooth_relations[row][1]) |
|
break |
|
|
|
u = 1 |
|
v = 1 |
|
for i in independent_u: |
|
u *= i |
|
for i in independent_v: |
|
v *= i |
|
|
|
v = integer_nthroot(v, 2)[0] |
|
return igcd(u - v, N) |
|
|
|
|
|
def qs(N, prime_bound, M, ERROR_TERM=25, seed=1234): |
|
"""Performs factorization using Self-Initializing Quadratic Sieve. |
|
In SIQS, let N be a number to be factored, and this N should not be a |
|
perfect power. If we find two integers such that ``X**2 = Y**2 modN`` and |
|
``X != +-Y modN``, then `gcd(X + Y, N)` will reveal a proper factor of N. |
|
In order to find these integers X and Y we try to find relations of form |
|
t**2 = u modN where u is a product of small primes. If we have enough of |
|
these relations then we can form ``(t1*t2...ti)**2 = u1*u2...ui modN`` such that |
|
the right hand side is a square, thus we found a relation of ``X**2 = Y**2 modN``. |
|
|
|
Here, several optimizations are done like using multiple polynomials for |
|
sieving, fast changing between polynomials and using partial relations. |
|
The use of partial relations can speeds up the factoring by 2 times. |
|
|
|
Parameters |
|
========== |
|
|
|
N : Number to be Factored |
|
prime_bound : upper bound for primes in the factor base |
|
M : Sieve Interval |
|
ERROR_TERM : Error term for checking smoothness |
|
threshold : Extra smooth relations for factorization |
|
seed : generate pseudo prime numbers |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.ntheory import qs |
|
>>> qs(25645121643901801, 2000, 10000) |
|
{5394769, 4753701529} |
|
>>> qs(9804659461513846513, 2000, 10000) |
|
{4641991, 2112166839943} |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://pdfs.semanticscholar.org/5c52/8a975c1405bd35c65993abf5a4edb667c1db.pdf |
|
.. [2] https://www.rieselprime.de/ziki/Self-initializing_quadratic_sieve |
|
""" |
|
ERROR_TERM*=2**10 |
|
rgen.seed(seed) |
|
idx_1000, idx_5000, factor_base = _generate_factor_base(prime_bound, N) |
|
smooth_relations = [] |
|
ith_poly = 0 |
|
partial_relations = {} |
|
proper_factor = set() |
|
threshold = 5*len(factor_base) // 100 |
|
while True: |
|
if ith_poly == 0: |
|
ith_sieve_poly, B_array = _initialize_first_polynomial(N, M, factor_base, idx_1000, idx_5000) |
|
else: |
|
ith_sieve_poly = _initialize_ith_poly(N, factor_base, ith_poly, ith_sieve_poly, B_array) |
|
ith_poly += 1 |
|
if ith_poly >= 2**(len(B_array) - 1): |
|
ith_poly = 0 |
|
sieve_array = _gen_sieve_array(M, factor_base) |
|
s_rel, p_f = _trial_division_stage(N, M, factor_base, sieve_array, ith_sieve_poly, partial_relations, ERROR_TERM) |
|
smooth_relations += s_rel |
|
proper_factor |= p_f |
|
if len(smooth_relations) >= len(factor_base) + threshold: |
|
break |
|
matrix = _build_matrix(smooth_relations) |
|
dependent_row, mark, gauss_matrix = _gauss_mod_2(matrix) |
|
N_copy = N |
|
for index in range(len(dependent_row)): |
|
factor = _find_factor(dependent_row, mark, gauss_matrix, index, smooth_relations, N) |
|
if factor > 1 and factor < N: |
|
proper_factor.add(factor) |
|
while(N_copy % factor == 0): |
|
N_copy //= factor |
|
if isprime(N_copy): |
|
proper_factor.add(N_copy) |
|
break |
|
if(N_copy == 1): |
|
break |
|
return proper_factor |
|
|