|
"""Plotting module for SymPy. |
|
|
|
A plot is represented by the ``Plot`` class that contains a reference to the |
|
backend and a list of the data series to be plotted. The data series are |
|
instances of classes meant to simplify getting points and meshes from SymPy |
|
expressions. ``plot_backends`` is a dictionary with all the backends. |
|
|
|
This module gives only the essential. For all the fancy stuff use directly |
|
the backend. You can get the backend wrapper for every plot from the |
|
``_backend`` attribute. Moreover the data series classes have various useful |
|
methods like ``get_points``, ``get_meshes``, etc, that may |
|
be useful if you wish to use another plotting library. |
|
|
|
Especially if you need publication ready graphs and this module is not enough |
|
for you - just get the ``_backend`` attribute and add whatever you want |
|
directly to it. In the case of matplotlib (the common way to graph data in |
|
python) just copy ``_backend.fig`` which is the figure and ``_backend.ax`` |
|
which is the axis and work on them as you would on any other matplotlib object. |
|
|
|
Simplicity of code takes much greater importance than performance. Do not use it |
|
if you care at all about performance. A new backend instance is initialized |
|
every time you call ``show()`` and the old one is left to the garbage collector. |
|
""" |
|
|
|
|
|
from collections.abc import Callable |
|
|
|
|
|
from sympy.core.basic import Basic |
|
from sympy.core.containers import Tuple |
|
from sympy.core.expr import Expr |
|
from sympy.core.function import arity, Function |
|
from sympy.core.symbol import (Dummy, Symbol) |
|
from sympy.core.sympify import sympify |
|
from sympy.external import import_module |
|
from sympy.printing.latex import latex |
|
from sympy.utilities.exceptions import sympy_deprecation_warning |
|
from sympy.utilities.iterables import is_sequence |
|
from .experimental_lambdify import (vectorized_lambdify, lambdify) |
|
|
|
|
|
|
|
|
|
|
|
|
|
from sympy.plotting.textplot import textplot |
|
|
|
|
|
|
|
_show = True |
|
|
|
|
|
def unset_show(): |
|
""" |
|
Disable show(). For use in the tests. |
|
""" |
|
global _show |
|
_show = False |
|
|
|
def _str_or_latex(label): |
|
if isinstance(label, Basic): |
|
return latex(label, mode='inline') |
|
return str(label) |
|
|
|
|
|
|
|
|
|
|
|
|
|
class Plot: |
|
"""The central class of the plotting module. |
|
|
|
Explanation |
|
=========== |
|
|
|
For interactive work the function :func:`plot()` is better suited. |
|
|
|
This class permits the plotting of SymPy expressions using numerous |
|
backends (:external:mod:`matplotlib`, textplot, the old pyglet module for SymPy, Google |
|
charts api, etc). |
|
|
|
The figure can contain an arbitrary number of plots of SymPy expressions, |
|
lists of coordinates of points, etc. Plot has a private attribute _series that |
|
contains all data series to be plotted (expressions for lines or surfaces, |
|
lists of points, etc (all subclasses of BaseSeries)). Those data series are |
|
instances of classes not imported by ``from sympy import *``. |
|
|
|
The customization of the figure is on two levels. Global options that |
|
concern the figure as a whole (e.g. title, xlabel, scale, etc) and |
|
per-data series options (e.g. name) and aesthetics (e.g. color, point shape, |
|
line type, etc.). |
|
|
|
The difference between options and aesthetics is that an aesthetic can be |
|
a function of the coordinates (or parameters in a parametric plot). The |
|
supported values for an aesthetic are: |
|
|
|
- None (the backend uses default values) |
|
- a constant |
|
- a function of one variable (the first coordinate or parameter) |
|
- a function of two variables (the first and second coordinate or parameters) |
|
- a function of three variables (only in nonparametric 3D plots) |
|
|
|
Their implementation depends on the backend so they may not work in some |
|
backends. |
|
|
|
If the plot is parametric and the arity of the aesthetic function permits |
|
it the aesthetic is calculated over parameters and not over coordinates. |
|
If the arity does not permit calculation over parameters the calculation is |
|
done over coordinates. |
|
|
|
Only cartesian coordinates are supported for the moment, but you can use |
|
the parametric plots to plot in polar, spherical and cylindrical |
|
coordinates. |
|
|
|
The arguments for the constructor Plot must be subclasses of BaseSeries. |
|
|
|
Any global option can be specified as a keyword argument. |
|
|
|
The global options for a figure are: |
|
|
|
- title : str |
|
- xlabel : str or Symbol |
|
- ylabel : str or Symbol |
|
- zlabel : str or Symbol |
|
- legend : bool |
|
- xscale : {'linear', 'log'} |
|
- yscale : {'linear', 'log'} |
|
- axis : bool |
|
- axis_center : tuple of two floats or {'center', 'auto'} |
|
- xlim : tuple of two floats |
|
- ylim : tuple of two floats |
|
- aspect_ratio : tuple of two floats or {'auto'} |
|
- autoscale : bool |
|
- margin : float in [0, 1] |
|
- backend : {'default', 'matplotlib', 'text'} or a subclass of BaseBackend |
|
- size : optional tuple of two floats, (width, height); default: None |
|
|
|
The per data series options and aesthetics are: |
|
There are none in the base series. See below for options for subclasses. |
|
|
|
Some data series support additional aesthetics or options: |
|
|
|
:class:`~.LineOver1DRangeSeries`, :class:`~.Parametric2DLineSeries`, and |
|
:class:`~.Parametric3DLineSeries` support the following: |
|
|
|
Aesthetics: |
|
|
|
- line_color : string, or float, or function, optional |
|
Specifies the color for the plot, which depends on the backend being |
|
used. |
|
|
|
For example, if ``MatplotlibBackend`` is being used, then |
|
Matplotlib string colors are acceptable (``"red"``, ``"r"``, |
|
``"cyan"``, ``"c"``, ...). |
|
Alternatively, we can use a float number, 0 < color < 1, wrapped in a |
|
string (for example, ``line_color="0.5"``) to specify grayscale colors. |
|
Alternatively, We can specify a function returning a single |
|
float value: this will be used to apply a color-loop (for example, |
|
``line_color=lambda x: math.cos(x)``). |
|
|
|
Note that by setting line_color, it would be applied simultaneously |
|
to all the series. |
|
|
|
Options: |
|
|
|
- label : str |
|
- steps : bool |
|
- integers_only : bool |
|
|
|
:class:`~.SurfaceOver2DRangeSeries` and :class:`~.ParametricSurfaceSeries` |
|
support the following: |
|
|
|
Aesthetics: |
|
|
|
- surface_color : function which returns a float. |
|
""" |
|
|
|
def __init__(self, *args, |
|
title=None, xlabel=None, ylabel=None, zlabel=None, aspect_ratio='auto', |
|
xlim=None, ylim=None, axis_center='auto', axis=True, |
|
xscale='linear', yscale='linear', legend=False, autoscale=True, |
|
margin=0, annotations=None, markers=None, rectangles=None, |
|
fill=None, backend='default', size=None, **kwargs): |
|
super().__init__() |
|
|
|
|
|
|
|
|
|
self.title = title |
|
self.xlabel = xlabel |
|
self.ylabel = ylabel |
|
self.zlabel = zlabel |
|
self.aspect_ratio = aspect_ratio |
|
self.axis_center = axis_center |
|
self.axis = axis |
|
self.xscale = xscale |
|
self.yscale = yscale |
|
self.legend = legend |
|
self.autoscale = autoscale |
|
self.margin = margin |
|
self.annotations = annotations |
|
self.markers = markers |
|
self.rectangles = rectangles |
|
self.fill = fill |
|
|
|
|
|
|
|
self._series = [] |
|
self._series.extend(args) |
|
|
|
|
|
|
|
|
|
if isinstance(backend, str): |
|
self.backend = plot_backends[backend] |
|
elif (type(backend) == type) and issubclass(backend, BaseBackend): |
|
self.backend = backend |
|
else: |
|
raise TypeError( |
|
"backend must be either a string or a subclass of BaseBackend") |
|
|
|
is_real = \ |
|
lambda lim: all(getattr(i, 'is_real', True) for i in lim) |
|
is_finite = \ |
|
lambda lim: all(getattr(i, 'is_finite', True) for i in lim) |
|
|
|
|
|
def check_and_set(t_name, t): |
|
if t: |
|
if not is_real(t): |
|
raise ValueError( |
|
"All numbers from {}={} must be real".format(t_name, t)) |
|
if not is_finite(t): |
|
raise ValueError( |
|
"All numbers from {}={} must be finite".format(t_name, t)) |
|
setattr(self, t_name, (float(t[0]), float(t[1]))) |
|
|
|
self.xlim = None |
|
check_and_set("xlim", xlim) |
|
self.ylim = None |
|
check_and_set("ylim", ylim) |
|
self.size = None |
|
check_and_set("size", size) |
|
|
|
|
|
def show(self): |
|
|
|
if hasattr(self, '_backend'): |
|
self._backend.close() |
|
self._backend = self.backend(self) |
|
self._backend.show() |
|
|
|
def save(self, path): |
|
if hasattr(self, '_backend'): |
|
self._backend.close() |
|
self._backend = self.backend(self) |
|
self._backend.save(path) |
|
|
|
def __str__(self): |
|
series_strs = [('[%d]: ' % i) + str(s) |
|
for i, s in enumerate(self._series)] |
|
return 'Plot object containing:\n' + '\n'.join(series_strs) |
|
|
|
def __getitem__(self, index): |
|
return self._series[index] |
|
|
|
def __setitem__(self, index, *args): |
|
if len(args) == 1 and isinstance(args[0], BaseSeries): |
|
self._series[index] = args |
|
|
|
def __delitem__(self, index): |
|
del self._series[index] |
|
|
|
def append(self, arg): |
|
"""Adds an element from a plot's series to an existing plot. |
|
|
|
Examples |
|
======== |
|
|
|
Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the |
|
second plot's first series object to the first, use the |
|
``append`` method, like so: |
|
|
|
.. plot:: |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> from sympy import symbols |
|
>>> from sympy.plotting import plot |
|
>>> x = symbols('x') |
|
>>> p1 = plot(x*x, show=False) |
|
>>> p2 = plot(x, show=False) |
|
>>> p1.append(p2[0]) |
|
>>> p1 |
|
Plot object containing: |
|
[0]: cartesian line: x**2 for x over (-10.0, 10.0) |
|
[1]: cartesian line: x for x over (-10.0, 10.0) |
|
>>> p1.show() |
|
|
|
See Also |
|
======== |
|
|
|
extend |
|
|
|
""" |
|
if isinstance(arg, BaseSeries): |
|
self._series.append(arg) |
|
else: |
|
raise TypeError('Must specify element of plot to append.') |
|
|
|
def extend(self, arg): |
|
"""Adds all series from another plot. |
|
|
|
Examples |
|
======== |
|
|
|
Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the |
|
second plot to the first, use the ``extend`` method, like so: |
|
|
|
.. plot:: |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> from sympy import symbols |
|
>>> from sympy.plotting import plot |
|
>>> x = symbols('x') |
|
>>> p1 = plot(x**2, show=False) |
|
>>> p2 = plot(x, -x, show=False) |
|
>>> p1.extend(p2) |
|
>>> p1 |
|
Plot object containing: |
|
[0]: cartesian line: x**2 for x over (-10.0, 10.0) |
|
[1]: cartesian line: x for x over (-10.0, 10.0) |
|
[2]: cartesian line: -x for x over (-10.0, 10.0) |
|
>>> p1.show() |
|
|
|
""" |
|
if isinstance(arg, Plot): |
|
self._series.extend(arg._series) |
|
elif is_sequence(arg): |
|
self._series.extend(arg) |
|
else: |
|
raise TypeError('Expecting Plot or sequence of BaseSeries') |
|
|
|
|
|
class PlotGrid: |
|
"""This class helps to plot subplots from already created SymPy plots |
|
in a single figure. |
|
|
|
Examples |
|
======== |
|
|
|
.. plot:: |
|
:context: close-figs |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> from sympy import symbols |
|
>>> from sympy.plotting import plot, plot3d, PlotGrid |
|
>>> x, y = symbols('x, y') |
|
>>> p1 = plot(x, x**2, x**3, (x, -5, 5)) |
|
>>> p2 = plot((x**2, (x, -6, 6)), (x, (x, -5, 5))) |
|
>>> p3 = plot(x**3, (x, -5, 5)) |
|
>>> p4 = plot3d(x*y, (x, -5, 5), (y, -5, 5)) |
|
|
|
Plotting vertically in a single line: |
|
|
|
.. plot:: |
|
:context: close-figs |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> PlotGrid(2, 1, p1, p2) |
|
PlotGrid object containing: |
|
Plot[0]:Plot object containing: |
|
[0]: cartesian line: x for x over (-5.0, 5.0) |
|
[1]: cartesian line: x**2 for x over (-5.0, 5.0) |
|
[2]: cartesian line: x**3 for x over (-5.0, 5.0) |
|
Plot[1]:Plot object containing: |
|
[0]: cartesian line: x**2 for x over (-6.0, 6.0) |
|
[1]: cartesian line: x for x over (-5.0, 5.0) |
|
|
|
Plotting horizontally in a single line: |
|
|
|
.. plot:: |
|
:context: close-figs |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> PlotGrid(1, 3, p2, p3, p4) |
|
PlotGrid object containing: |
|
Plot[0]:Plot object containing: |
|
[0]: cartesian line: x**2 for x over (-6.0, 6.0) |
|
[1]: cartesian line: x for x over (-5.0, 5.0) |
|
Plot[1]:Plot object containing: |
|
[0]: cartesian line: x**3 for x over (-5.0, 5.0) |
|
Plot[2]:Plot object containing: |
|
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) |
|
|
|
Plotting in a grid form: |
|
|
|
.. plot:: |
|
:context: close-figs |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> PlotGrid(2, 2, p1, p2, p3, p4) |
|
PlotGrid object containing: |
|
Plot[0]:Plot object containing: |
|
[0]: cartesian line: x for x over (-5.0, 5.0) |
|
[1]: cartesian line: x**2 for x over (-5.0, 5.0) |
|
[2]: cartesian line: x**3 for x over (-5.0, 5.0) |
|
Plot[1]:Plot object containing: |
|
[0]: cartesian line: x**2 for x over (-6.0, 6.0) |
|
[1]: cartesian line: x for x over (-5.0, 5.0) |
|
Plot[2]:Plot object containing: |
|
[0]: cartesian line: x**3 for x over (-5.0, 5.0) |
|
Plot[3]:Plot object containing: |
|
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) |
|
|
|
""" |
|
def __init__(self, nrows, ncolumns, *args, show=True, size=None, **kwargs): |
|
""" |
|
Parameters |
|
========== |
|
|
|
nrows : |
|
The number of rows that should be in the grid of the |
|
required subplot. |
|
ncolumns : |
|
The number of columns that should be in the grid |
|
of the required subplot. |
|
|
|
nrows and ncolumns together define the required grid. |
|
|
|
Arguments |
|
========= |
|
|
|
A list of predefined plot objects entered in a row-wise sequence |
|
i.e. plot objects which are to be in the top row of the required |
|
grid are written first, then the second row objects and so on |
|
|
|
Keyword arguments |
|
================= |
|
|
|
show : Boolean |
|
The default value is set to ``True``. Set show to ``False`` and |
|
the function will not display the subplot. The returned instance |
|
of the ``PlotGrid`` class can then be used to save or display the |
|
plot by calling the ``save()`` and ``show()`` methods |
|
respectively. |
|
size : (float, float), optional |
|
A tuple in the form (width, height) in inches to specify the size of |
|
the overall figure. The default value is set to ``None``, meaning |
|
the size will be set by the default backend. |
|
""" |
|
self.nrows = nrows |
|
self.ncolumns = ncolumns |
|
self._series = [] |
|
self.args = args |
|
for arg in args: |
|
self._series.append(arg._series) |
|
self.backend = DefaultBackend |
|
self.size = size |
|
if show: |
|
self.show() |
|
|
|
def show(self): |
|
if hasattr(self, '_backend'): |
|
self._backend.close() |
|
self._backend = self.backend(self) |
|
self._backend.show() |
|
|
|
def save(self, path): |
|
if hasattr(self, '_backend'): |
|
self._backend.close() |
|
self._backend = self.backend(self) |
|
self._backend.save(path) |
|
|
|
def __str__(self): |
|
plot_strs = [('Plot[%d]:' % i) + str(plot) |
|
for i, plot in enumerate(self.args)] |
|
|
|
return 'PlotGrid object containing:\n' + '\n'.join(plot_strs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BaseSeries: |
|
"""Base class for the data objects containing stuff to be plotted. |
|
|
|
Explanation |
|
=========== |
|
|
|
The backend should check if it supports the data series that is given. |
|
(e.g. TextBackend supports only LineOver1DRangeSeries). |
|
It is the backend responsibility to know how to use the class of |
|
data series that is given. |
|
|
|
Some data series classes are grouped (using a class attribute like is_2Dline) |
|
according to the api they present (based only on convention). The backend is |
|
not obliged to use that api (e.g. LineOver1DRangeSeries belongs to the |
|
is_2Dline group and presents the get_points method, but the |
|
TextBackend does not use the get_points method). |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
is_2Dline = False |
|
|
|
|
|
|
|
|
|
|
|
is_3Dline = False |
|
|
|
|
|
|
|
|
|
|
|
is_3Dsurface = False |
|
|
|
|
|
|
|
|
|
is_contour = False |
|
|
|
|
|
|
|
|
|
is_implicit = False |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
is_parametric = False |
|
|
|
|
|
|
|
|
|
def __init__(self): |
|
super().__init__() |
|
|
|
@property |
|
def is_3D(self): |
|
flags3D = [ |
|
self.is_3Dline, |
|
self.is_3Dsurface |
|
] |
|
return any(flags3D) |
|
|
|
@property |
|
def is_line(self): |
|
flagslines = [ |
|
self.is_2Dline, |
|
self.is_3Dline |
|
] |
|
return any(flagslines) |
|
|
|
|
|
|
|
class Line2DBaseSeries(BaseSeries): |
|
"""A base class for 2D lines. |
|
|
|
- adding the label, steps and only_integers options |
|
- making is_2Dline true |
|
- defining get_segments and get_color_array |
|
""" |
|
|
|
is_2Dline = True |
|
|
|
_dim = 2 |
|
|
|
def __init__(self): |
|
super().__init__() |
|
self.label = None |
|
self.steps = False |
|
self.only_integers = False |
|
self.line_color = None |
|
|
|
def get_data(self): |
|
""" Return lists of coordinates for plotting the line. |
|
|
|
Returns |
|
======= |
|
x : list |
|
List of x-coordinates |
|
|
|
y : list |
|
List of y-coordinates |
|
|
|
z : list |
|
List of z-coordinates in case of Parametric3DLineSeries |
|
""" |
|
np = import_module('numpy') |
|
points = self.get_points() |
|
if self.steps is True: |
|
if len(points) == 2: |
|
x = np.array((points[0], points[0])).T.flatten()[1:] |
|
y = np.array((points[1], points[1])).T.flatten()[:-1] |
|
points = (x, y) |
|
else: |
|
x = np.repeat(points[0], 3)[2:] |
|
y = np.repeat(points[1], 3)[:-2] |
|
z = np.repeat(points[2], 3)[1:-1] |
|
points = (x, y, z) |
|
return points |
|
|
|
def get_segments(self): |
|
sympy_deprecation_warning( |
|
""" |
|
The Line2DBaseSeries.get_segments() method is deprecated. |
|
|
|
Instead, use the MatplotlibBackend.get_segments() method, or use |
|
The get_points() or get_data() methods. |
|
""", |
|
deprecated_since_version="1.9", |
|
active_deprecations_target="deprecated-get-segments") |
|
|
|
np = import_module('numpy') |
|
points = type(self).get_data(self) |
|
points = np.ma.array(points).T.reshape(-1, 1, self._dim) |
|
return np.ma.concatenate([points[:-1], points[1:]], axis=1) |
|
|
|
def get_color_array(self): |
|
np = import_module('numpy') |
|
c = self.line_color |
|
if hasattr(c, '__call__'): |
|
f = np.vectorize(c) |
|
nargs = arity(c) |
|
if nargs == 1 and self.is_parametric: |
|
x = self.get_parameter_points() |
|
return f(centers_of_segments(x)) |
|
else: |
|
variables = list(map(centers_of_segments, self.get_points())) |
|
if nargs == 1: |
|
return f(variables[0]) |
|
elif nargs == 2: |
|
return f(*variables[:2]) |
|
else: |
|
return f(*variables) |
|
else: |
|
return c*np.ones(self.nb_of_points) |
|
|
|
|
|
class List2DSeries(Line2DBaseSeries): |
|
"""Representation for a line consisting of list of points.""" |
|
|
|
def __init__(self, list_x, list_y): |
|
np = import_module('numpy') |
|
super().__init__() |
|
self.list_x = np.array(list_x) |
|
self.list_y = np.array(list_y) |
|
self.label = 'list' |
|
|
|
def __str__(self): |
|
return 'list plot' |
|
|
|
def get_points(self): |
|
return (self.list_x, self.list_y) |
|
|
|
|
|
class LineOver1DRangeSeries(Line2DBaseSeries): |
|
"""Representation for a line consisting of a SymPy expression over a range.""" |
|
|
|
def __init__(self, expr, var_start_end, **kwargs): |
|
super().__init__() |
|
self.expr = sympify(expr) |
|
self.label = kwargs.get('label', None) or self.expr |
|
self.var = sympify(var_start_end[0]) |
|
self.start = float(var_start_end[1]) |
|
self.end = float(var_start_end[2]) |
|
self.nb_of_points = kwargs.get('nb_of_points', 300) |
|
self.adaptive = kwargs.get('adaptive', True) |
|
self.depth = kwargs.get('depth', 12) |
|
self.line_color = kwargs.get('line_color', None) |
|
self.xscale = kwargs.get('xscale', 'linear') |
|
|
|
def __str__(self): |
|
return 'cartesian line: %s for %s over %s' % ( |
|
str(self.expr), str(self.var), str((self.start, self.end))) |
|
|
|
def get_points(self): |
|
""" Return lists of coordinates for plotting. Depending on the |
|
``adaptive`` option, this function will either use an adaptive algorithm |
|
or it will uniformly sample the expression over the provided range. |
|
|
|
Returns |
|
======= |
|
x : list |
|
List of x-coordinates |
|
|
|
y : list |
|
List of y-coordinates |
|
|
|
|
|
Explanation |
|
=========== |
|
|
|
The adaptive sampling is done by recursively checking if three |
|
points are almost collinear. If they are not collinear, then more |
|
points are added between those points. |
|
|
|
References |
|
========== |
|
|
|
.. [1] Adaptive polygonal approximation of parametric curves, |
|
Luiz Henrique de Figueiredo. |
|
|
|
""" |
|
if self.only_integers or not self.adaptive: |
|
return self._uniform_sampling() |
|
else: |
|
f = lambdify([self.var], self.expr) |
|
x_coords = [] |
|
y_coords = [] |
|
np = import_module('numpy') |
|
def sample(p, q, depth): |
|
""" Samples recursively if three points are almost collinear. |
|
For depth < 6, points are added irrespective of whether they |
|
satisfy the collinearity condition or not. The maximum depth |
|
allowed is 12. |
|
""" |
|
|
|
random = 0.45 + np.random.rand() * 0.1 |
|
if self.xscale == 'log': |
|
xnew = 10**(np.log10(p[0]) + random * (np.log10(q[0]) - |
|
np.log10(p[0]))) |
|
else: |
|
xnew = p[0] + random * (q[0] - p[0]) |
|
ynew = f(xnew) |
|
new_point = np.array([xnew, ynew]) |
|
|
|
|
|
if depth > self.depth: |
|
x_coords.append(q[0]) |
|
y_coords.append(q[1]) |
|
|
|
|
|
|
|
elif depth < 6: |
|
sample(p, new_point, depth + 1) |
|
sample(new_point, q, depth + 1) |
|
|
|
|
|
|
|
|
|
elif p[1] is None and q[1] is None: |
|
if self.xscale == 'log': |
|
xarray = np.logspace(p[0], q[0], 10) |
|
else: |
|
xarray = np.linspace(p[0], q[0], 10) |
|
yarray = list(map(f, xarray)) |
|
if not all(y is None for y in yarray): |
|
for i in range(len(yarray) - 1): |
|
if not (yarray[i] is None and yarray[i + 1] is None): |
|
sample([xarray[i], yarray[i]], |
|
[xarray[i + 1], yarray[i + 1]], depth + 1) |
|
|
|
|
|
|
|
elif (p[1] is None or q[1] is None or new_point[1] is None |
|
or not flat(p, new_point, q)): |
|
sample(p, new_point, depth + 1) |
|
sample(new_point, q, depth + 1) |
|
else: |
|
x_coords.append(q[0]) |
|
y_coords.append(q[1]) |
|
|
|
f_start = f(self.start) |
|
f_end = f(self.end) |
|
x_coords.append(self.start) |
|
y_coords.append(f_start) |
|
sample(np.array([self.start, f_start]), |
|
np.array([self.end, f_end]), 0) |
|
|
|
return (x_coords, y_coords) |
|
|
|
def _uniform_sampling(self): |
|
np = import_module('numpy') |
|
if self.only_integers is True: |
|
if self.xscale == 'log': |
|
list_x = np.logspace(int(self.start), int(self.end), |
|
num=int(self.end) - int(self.start) + 1) |
|
else: |
|
list_x = np.linspace(int(self.start), int(self.end), |
|
num=int(self.end) - int(self.start) + 1) |
|
else: |
|
if self.xscale == 'log': |
|
list_x = np.logspace(self.start, self.end, num=self.nb_of_points) |
|
else: |
|
list_x = np.linspace(self.start, self.end, num=self.nb_of_points) |
|
f = vectorized_lambdify([self.var], self.expr) |
|
list_y = f(list_x) |
|
return (list_x, list_y) |
|
|
|
|
|
class Parametric2DLineSeries(Line2DBaseSeries): |
|
"""Representation for a line consisting of two parametric SymPy expressions |
|
over a range.""" |
|
|
|
is_parametric = True |
|
|
|
def __init__(self, expr_x, expr_y, var_start_end, **kwargs): |
|
super().__init__() |
|
self.expr_x = sympify(expr_x) |
|
self.expr_y = sympify(expr_y) |
|
self.label = kwargs.get('label', None) or \ |
|
Tuple(self.expr_x, self.expr_y) |
|
self.var = sympify(var_start_end[0]) |
|
self.start = float(var_start_end[1]) |
|
self.end = float(var_start_end[2]) |
|
self.nb_of_points = kwargs.get('nb_of_points', 300) |
|
self.adaptive = kwargs.get('adaptive', True) |
|
self.depth = kwargs.get('depth', 12) |
|
self.line_color = kwargs.get('line_color', None) |
|
|
|
def __str__(self): |
|
return 'parametric cartesian line: (%s, %s) for %s over %s' % ( |
|
str(self.expr_x), str(self.expr_y), str(self.var), |
|
str((self.start, self.end))) |
|
|
|
def get_parameter_points(self): |
|
np = import_module('numpy') |
|
return np.linspace(self.start, self.end, num=self.nb_of_points) |
|
|
|
def _uniform_sampling(self): |
|
param = self.get_parameter_points() |
|
fx = vectorized_lambdify([self.var], self.expr_x) |
|
fy = vectorized_lambdify([self.var], self.expr_y) |
|
list_x = fx(param) |
|
list_y = fy(param) |
|
return (list_x, list_y) |
|
|
|
def get_points(self): |
|
""" Return lists of coordinates for plotting. Depending on the |
|
``adaptive`` option, this function will either use an adaptive algorithm |
|
or it will uniformly sample the expression over the provided range. |
|
|
|
Returns |
|
======= |
|
x : list |
|
List of x-coordinates |
|
|
|
y : list |
|
List of y-coordinates |
|
|
|
|
|
Explanation |
|
=========== |
|
|
|
The adaptive sampling is done by recursively checking if three |
|
points are almost collinear. If they are not collinear, then more |
|
points are added between those points. |
|
|
|
References |
|
========== |
|
|
|
.. [1] Adaptive polygonal approximation of parametric curves, |
|
Luiz Henrique de Figueiredo. |
|
|
|
""" |
|
if not self.adaptive: |
|
return self._uniform_sampling() |
|
|
|
f_x = lambdify([self.var], self.expr_x) |
|
f_y = lambdify([self.var], self.expr_y) |
|
x_coords = [] |
|
y_coords = [] |
|
|
|
def sample(param_p, param_q, p, q, depth): |
|
""" Samples recursively if three points are almost collinear. |
|
For depth < 6, points are added irrespective of whether they |
|
satisfy the collinearity condition or not. The maximum depth |
|
allowed is 12. |
|
""" |
|
|
|
np = import_module('numpy') |
|
random = 0.45 + np.random.rand() * 0.1 |
|
param_new = param_p + random * (param_q - param_p) |
|
xnew = f_x(param_new) |
|
ynew = f_y(param_new) |
|
new_point = np.array([xnew, ynew]) |
|
|
|
|
|
if depth > self.depth: |
|
x_coords.append(q[0]) |
|
y_coords.append(q[1]) |
|
|
|
|
|
|
|
elif depth < 6: |
|
sample(param_p, param_new, p, new_point, depth + 1) |
|
sample(param_new, param_q, new_point, q, depth + 1) |
|
|
|
|
|
|
|
|
|
elif ((p[0] is None and q[1] is None) or |
|
(p[1] is None and q[1] is None)): |
|
param_array = np.linspace(param_p, param_q, 10) |
|
x_array = list(map(f_x, param_array)) |
|
y_array = list(map(f_y, param_array)) |
|
if not all(x is None and y is None |
|
for x, y in zip(x_array, y_array)): |
|
for i in range(len(y_array) - 1): |
|
if ((x_array[i] is not None and y_array[i] is not None) or |
|
(x_array[i + 1] is not None and y_array[i + 1] is not None)): |
|
point_a = [x_array[i], y_array[i]] |
|
point_b = [x_array[i + 1], y_array[i + 1]] |
|
sample(param_array[i], param_array[i], point_a, |
|
point_b, depth + 1) |
|
|
|
|
|
|
|
elif (p[0] is None or p[1] is None |
|
or q[1] is None or q[0] is None |
|
or not flat(p, new_point, q)): |
|
sample(param_p, param_new, p, new_point, depth + 1) |
|
sample(param_new, param_q, new_point, q, depth + 1) |
|
else: |
|
x_coords.append(q[0]) |
|
y_coords.append(q[1]) |
|
|
|
f_start_x = f_x(self.start) |
|
f_start_y = f_y(self.start) |
|
start = [f_start_x, f_start_y] |
|
f_end_x = f_x(self.end) |
|
f_end_y = f_y(self.end) |
|
end = [f_end_x, f_end_y] |
|
x_coords.append(f_start_x) |
|
y_coords.append(f_start_y) |
|
sample(self.start, self.end, start, end, 0) |
|
|
|
return x_coords, y_coords |
|
|
|
|
|
|
|
class Line3DBaseSeries(Line2DBaseSeries): |
|
"""A base class for 3D lines. |
|
|
|
Most of the stuff is derived from Line2DBaseSeries.""" |
|
|
|
is_2Dline = False |
|
is_3Dline = True |
|
_dim = 3 |
|
|
|
def __init__(self): |
|
super().__init__() |
|
|
|
|
|
class Parametric3DLineSeries(Line3DBaseSeries): |
|
"""Representation for a 3D line consisting of three parametric SymPy |
|
expressions and a range.""" |
|
|
|
is_parametric = True |
|
|
|
def __init__(self, expr_x, expr_y, expr_z, var_start_end, **kwargs): |
|
super().__init__() |
|
self.expr_x = sympify(expr_x) |
|
self.expr_y = sympify(expr_y) |
|
self.expr_z = sympify(expr_z) |
|
self.label = kwargs.get('label', None) or \ |
|
Tuple(self.expr_x, self.expr_y) |
|
self.var = sympify(var_start_end[0]) |
|
self.start = float(var_start_end[1]) |
|
self.end = float(var_start_end[2]) |
|
self.nb_of_points = kwargs.get('nb_of_points', 300) |
|
self.line_color = kwargs.get('line_color', None) |
|
self._xlim = None |
|
self._ylim = None |
|
self._zlim = None |
|
|
|
def __str__(self): |
|
return '3D parametric cartesian line: (%s, %s, %s) for %s over %s' % ( |
|
str(self.expr_x), str(self.expr_y), str(self.expr_z), |
|
str(self.var), str((self.start, self.end))) |
|
|
|
def get_parameter_points(self): |
|
np = import_module('numpy') |
|
return np.linspace(self.start, self.end, num=self.nb_of_points) |
|
|
|
def get_points(self): |
|
np = import_module('numpy') |
|
param = self.get_parameter_points() |
|
fx = vectorized_lambdify([self.var], self.expr_x) |
|
fy = vectorized_lambdify([self.var], self.expr_y) |
|
fz = vectorized_lambdify([self.var], self.expr_z) |
|
|
|
list_x = fx(param) |
|
list_y = fy(param) |
|
list_z = fz(param) |
|
|
|
list_x = np.array(list_x, dtype=np.float64) |
|
list_y = np.array(list_y, dtype=np.float64) |
|
list_z = np.array(list_z, dtype=np.float64) |
|
|
|
list_x = np.ma.masked_invalid(list_x) |
|
list_y = np.ma.masked_invalid(list_y) |
|
list_z = np.ma.masked_invalid(list_z) |
|
|
|
self._xlim = (np.amin(list_x), np.amax(list_x)) |
|
self._ylim = (np.amin(list_y), np.amax(list_y)) |
|
self._zlim = (np.amin(list_z), np.amax(list_z)) |
|
return list_x, list_y, list_z |
|
|
|
|
|
|
|
class SurfaceBaseSeries(BaseSeries): |
|
"""A base class for 3D surfaces.""" |
|
|
|
is_3Dsurface = True |
|
|
|
def __init__(self): |
|
super().__init__() |
|
self.surface_color = None |
|
|
|
def get_color_array(self): |
|
np = import_module('numpy') |
|
c = self.surface_color |
|
if isinstance(c, Callable): |
|
f = np.vectorize(c) |
|
nargs = arity(c) |
|
if self.is_parametric: |
|
variables = list(map(centers_of_faces, self.get_parameter_meshes())) |
|
if nargs == 1: |
|
return f(variables[0]) |
|
elif nargs == 2: |
|
return f(*variables) |
|
variables = list(map(centers_of_faces, self.get_meshes())) |
|
if nargs == 1: |
|
return f(variables[0]) |
|
elif nargs == 2: |
|
return f(*variables[:2]) |
|
else: |
|
return f(*variables) |
|
else: |
|
if isinstance(self, SurfaceOver2DRangeSeries): |
|
return c*np.ones(min(self.nb_of_points_x, self.nb_of_points_y)) |
|
else: |
|
return c*np.ones(min(self.nb_of_points_u, self.nb_of_points_v)) |
|
|
|
|
|
class SurfaceOver2DRangeSeries(SurfaceBaseSeries): |
|
"""Representation for a 3D surface consisting of a SymPy expression and 2D |
|
range.""" |
|
def __init__(self, expr, var_start_end_x, var_start_end_y, **kwargs): |
|
super().__init__() |
|
self.expr = sympify(expr) |
|
self.var_x = sympify(var_start_end_x[0]) |
|
self.start_x = float(var_start_end_x[1]) |
|
self.end_x = float(var_start_end_x[2]) |
|
self.var_y = sympify(var_start_end_y[0]) |
|
self.start_y = float(var_start_end_y[1]) |
|
self.end_y = float(var_start_end_y[2]) |
|
self.nb_of_points_x = kwargs.get('nb_of_points_x', 50) |
|
self.nb_of_points_y = kwargs.get('nb_of_points_y', 50) |
|
self.surface_color = kwargs.get('surface_color', None) |
|
|
|
self._xlim = (self.start_x, self.end_x) |
|
self._ylim = (self.start_y, self.end_y) |
|
|
|
def __str__(self): |
|
return ('cartesian surface: %s for' |
|
' %s over %s and %s over %s') % ( |
|
str(self.expr), |
|
str(self.var_x), |
|
str((self.start_x, self.end_x)), |
|
str(self.var_y), |
|
str((self.start_y, self.end_y))) |
|
|
|
def get_meshes(self): |
|
np = import_module('numpy') |
|
mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x, |
|
num=self.nb_of_points_x), |
|
np.linspace(self.start_y, self.end_y, |
|
num=self.nb_of_points_y)) |
|
f = vectorized_lambdify((self.var_x, self.var_y), self.expr) |
|
mesh_z = f(mesh_x, mesh_y) |
|
mesh_z = np.array(mesh_z, dtype=np.float64) |
|
mesh_z = np.ma.masked_invalid(mesh_z) |
|
self._zlim = (np.amin(mesh_z), np.amax(mesh_z)) |
|
return mesh_x, mesh_y, mesh_z |
|
|
|
|
|
class ParametricSurfaceSeries(SurfaceBaseSeries): |
|
"""Representation for a 3D surface consisting of three parametric SymPy |
|
expressions and a range.""" |
|
|
|
is_parametric = True |
|
|
|
def __init__( |
|
self, expr_x, expr_y, expr_z, var_start_end_u, var_start_end_v, |
|
**kwargs): |
|
super().__init__() |
|
self.expr_x = sympify(expr_x) |
|
self.expr_y = sympify(expr_y) |
|
self.expr_z = sympify(expr_z) |
|
self.var_u = sympify(var_start_end_u[0]) |
|
self.start_u = float(var_start_end_u[1]) |
|
self.end_u = float(var_start_end_u[2]) |
|
self.var_v = sympify(var_start_end_v[0]) |
|
self.start_v = float(var_start_end_v[1]) |
|
self.end_v = float(var_start_end_v[2]) |
|
self.nb_of_points_u = kwargs.get('nb_of_points_u', 50) |
|
self.nb_of_points_v = kwargs.get('nb_of_points_v', 50) |
|
self.surface_color = kwargs.get('surface_color', None) |
|
|
|
def __str__(self): |
|
return ('parametric cartesian surface: (%s, %s, %s) for' |
|
' %s over %s and %s over %s') % ( |
|
str(self.expr_x), |
|
str(self.expr_y), |
|
str(self.expr_z), |
|
str(self.var_u), |
|
str((self.start_u, self.end_u)), |
|
str(self.var_v), |
|
str((self.start_v, self.end_v))) |
|
|
|
def get_parameter_meshes(self): |
|
np = import_module('numpy') |
|
return np.meshgrid(np.linspace(self.start_u, self.end_u, |
|
num=self.nb_of_points_u), |
|
np.linspace(self.start_v, self.end_v, |
|
num=self.nb_of_points_v)) |
|
|
|
def get_meshes(self): |
|
np = import_module('numpy') |
|
|
|
mesh_u, mesh_v = self.get_parameter_meshes() |
|
fx = vectorized_lambdify((self.var_u, self.var_v), self.expr_x) |
|
fy = vectorized_lambdify((self.var_u, self.var_v), self.expr_y) |
|
fz = vectorized_lambdify((self.var_u, self.var_v), self.expr_z) |
|
|
|
mesh_x = fx(mesh_u, mesh_v) |
|
mesh_y = fy(mesh_u, mesh_v) |
|
mesh_z = fz(mesh_u, mesh_v) |
|
|
|
mesh_x = np.array(mesh_x, dtype=np.float64) |
|
mesh_y = np.array(mesh_y, dtype=np.float64) |
|
mesh_z = np.array(mesh_z, dtype=np.float64) |
|
|
|
mesh_x = np.ma.masked_invalid(mesh_x) |
|
mesh_y = np.ma.masked_invalid(mesh_y) |
|
mesh_z = np.ma.masked_invalid(mesh_z) |
|
|
|
self._xlim = (np.amin(mesh_x), np.amax(mesh_x)) |
|
self._ylim = (np.amin(mesh_y), np.amax(mesh_y)) |
|
self._zlim = (np.amin(mesh_z), np.amax(mesh_z)) |
|
|
|
return mesh_x, mesh_y, mesh_z |
|
|
|
|
|
|
|
class ContourSeries(BaseSeries): |
|
"""Representation for a contour plot.""" |
|
|
|
|
|
|
|
is_contour = True |
|
|
|
def __init__(self, expr, var_start_end_x, var_start_end_y): |
|
super().__init__() |
|
self.nb_of_points_x = 50 |
|
self.nb_of_points_y = 50 |
|
self.expr = sympify(expr) |
|
self.var_x = sympify(var_start_end_x[0]) |
|
self.start_x = float(var_start_end_x[1]) |
|
self.end_x = float(var_start_end_x[2]) |
|
self.var_y = sympify(var_start_end_y[0]) |
|
self.start_y = float(var_start_end_y[1]) |
|
self.end_y = float(var_start_end_y[2]) |
|
|
|
self.get_points = self.get_meshes |
|
|
|
self._xlim = (self.start_x, self.end_x) |
|
self._ylim = (self.start_y, self.end_y) |
|
|
|
def __str__(self): |
|
return ('contour: %s for ' |
|
'%s over %s and %s over %s') % ( |
|
str(self.expr), |
|
str(self.var_x), |
|
str((self.start_x, self.end_x)), |
|
str(self.var_y), |
|
str((self.start_y, self.end_y))) |
|
|
|
def get_meshes(self): |
|
np = import_module('numpy') |
|
mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x, |
|
num=self.nb_of_points_x), |
|
np.linspace(self.start_y, self.end_y, |
|
num=self.nb_of_points_y)) |
|
f = vectorized_lambdify((self.var_x, self.var_y), self.expr) |
|
return (mesh_x, mesh_y, f(mesh_x, mesh_y)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
class BaseBackend: |
|
"""Base class for all backends. A backend represents the plotting library, |
|
which implements the necessary functionalities in order to use SymPy |
|
plotting functions. |
|
|
|
How the plotting module works: |
|
|
|
1. Whenever a plotting function is called, the provided expressions are |
|
processed and a list of instances of the :class:`BaseSeries` class is |
|
created, containing the necessary information to plot the expressions |
|
(e.g. the expression, ranges, series name, ...). Eventually, these |
|
objects will generate the numerical data to be plotted. |
|
2. A :class:`~.Plot` object is instantiated, which stores the list of |
|
series and the main attributes of the plot (e.g. axis labels, title, ...). |
|
3. When the ``show`` command is executed, a new backend is instantiated, |
|
which loops through each series object to generate and plot the |
|
numerical data. The backend is also going to set the axis labels, title, |
|
..., according to the values stored in the Plot instance. |
|
|
|
The backend should check if it supports the data series that it is given |
|
(e.g. :class:`TextBackend` supports only :class:`LineOver1DRangeSeries`). |
|
|
|
It is the backend responsibility to know how to use the class of data series |
|
that it's given. Note that the current implementation of the ``*Series`` |
|
classes is "matplotlib-centric": the numerical data returned by the |
|
``get_points`` and ``get_meshes`` methods is meant to be used directly by |
|
Matplotlib. Therefore, the new backend will have to pre-process the |
|
numerical data to make it compatible with the chosen plotting library. |
|
Keep in mind that future SymPy versions may improve the ``*Series`` classes |
|
in order to return numerical data "non-matplotlib-centric", hence if you code |
|
a new backend you have the responsibility to check if its working on each |
|
SymPy release. |
|
|
|
Please explore the :class:`MatplotlibBackend` source code to understand how a |
|
backend should be coded. |
|
|
|
Methods |
|
======= |
|
|
|
In order to be used by SymPy plotting functions, a backend must implement |
|
the following methods: |
|
|
|
* show(self): used to loop over the data series, generate the numerical |
|
data, plot it and set the axis labels, title, ... |
|
* save(self, path): used to save the current plot to the specified file |
|
path. |
|
* close(self): used to close the current plot backend (note: some plotting |
|
library does not support this functionality. In that case, just raise a |
|
warning). |
|
|
|
See also |
|
======== |
|
|
|
MatplotlibBackend |
|
""" |
|
def __init__(self, parent): |
|
super().__init__() |
|
self.parent = parent |
|
|
|
def show(self): |
|
raise NotImplementedError |
|
|
|
def save(self, path): |
|
raise NotImplementedError |
|
|
|
def close(self): |
|
raise NotImplementedError |
|
|
|
|
|
|
|
|
|
class MatplotlibBackend(BaseBackend): |
|
""" This class implements the functionalities to use Matplotlib with SymPy |
|
plotting functions. |
|
""" |
|
def __init__(self, parent): |
|
super().__init__(parent) |
|
self.matplotlib = import_module('matplotlib', |
|
import_kwargs={'fromlist': ['pyplot', 'cm', 'collections']}, |
|
min_module_version='1.1.0', catch=(RuntimeError,)) |
|
self.plt = self.matplotlib.pyplot |
|
self.cm = self.matplotlib.cm |
|
self.LineCollection = self.matplotlib.collections.LineCollection |
|
aspect = getattr(self.parent, 'aspect_ratio', 'auto') |
|
if aspect != 'auto': |
|
aspect = float(aspect[1]) / aspect[0] |
|
|
|
if isinstance(self.parent, Plot): |
|
nrows, ncolumns = 1, 1 |
|
series_list = [self.parent._series] |
|
elif isinstance(self.parent, PlotGrid): |
|
nrows, ncolumns = self.parent.nrows, self.parent.ncolumns |
|
series_list = self.parent._series |
|
|
|
self.ax = [] |
|
self.fig = self.plt.figure(figsize=parent.size) |
|
|
|
for i, series in enumerate(series_list): |
|
are_3D = [s.is_3D for s in series] |
|
|
|
if any(are_3D) and not all(are_3D): |
|
raise ValueError('The matplotlib backend cannot mix 2D and 3D.') |
|
elif all(are_3D): |
|
|
|
|
|
mpl_toolkits = import_module('mpl_toolkits', |
|
import_kwargs={'fromlist': ['mplot3d']}) |
|
self.ax.append(self.fig.add_subplot(nrows, ncolumns, i + 1, projection='3d', aspect=aspect)) |
|
|
|
elif not any(are_3D): |
|
self.ax.append(self.fig.add_subplot(nrows, ncolumns, i + 1, aspect=aspect)) |
|
self.ax[i].spines['left'].set_position('zero') |
|
self.ax[i].spines['right'].set_color('none') |
|
self.ax[i].spines['bottom'].set_position('zero') |
|
self.ax[i].spines['top'].set_color('none') |
|
self.ax[i].xaxis.set_ticks_position('bottom') |
|
self.ax[i].yaxis.set_ticks_position('left') |
|
|
|
@staticmethod |
|
def get_segments(x, y, z=None): |
|
""" Convert two list of coordinates to a list of segments to be used |
|
with Matplotlib's :external:class:`~matplotlib.collections.LineCollection`. |
|
|
|
Parameters |
|
========== |
|
x : list |
|
List of x-coordinates |
|
|
|
y : list |
|
List of y-coordinates |
|
|
|
z : list |
|
List of z-coordinates for a 3D line. |
|
""" |
|
np = import_module('numpy') |
|
if z is not None: |
|
dim = 3 |
|
points = (x, y, z) |
|
else: |
|
dim = 2 |
|
points = (x, y) |
|
points = np.ma.array(points).T.reshape(-1, 1, dim) |
|
return np.ma.concatenate([points[:-1], points[1:]], axis=1) |
|
|
|
def _process_series(self, series, ax, parent): |
|
np = import_module('numpy') |
|
mpl_toolkits = import_module( |
|
'mpl_toolkits', import_kwargs={'fromlist': ['mplot3d']}) |
|
|
|
|
|
|
|
xlims, ylims, zlims = [], [], [] |
|
|
|
for s in series: |
|
|
|
if s.is_2Dline: |
|
x, y = s.get_data() |
|
if (isinstance(s.line_color, (int, float)) or |
|
callable(s.line_color)): |
|
segments = self.get_segments(x, y) |
|
collection = self.LineCollection(segments) |
|
collection.set_array(s.get_color_array()) |
|
ax.add_collection(collection) |
|
else: |
|
lbl = _str_or_latex(s.label) |
|
line, = ax.plot(x, y, label=lbl, color=s.line_color) |
|
elif s.is_contour: |
|
ax.contour(*s.get_meshes()) |
|
elif s.is_3Dline: |
|
x, y, z = s.get_data() |
|
if (isinstance(s.line_color, (int, float)) or |
|
callable(s.line_color)): |
|
art3d = mpl_toolkits.mplot3d.art3d |
|
segments = self.get_segments(x, y, z) |
|
collection = art3d.Line3DCollection(segments) |
|
collection.set_array(s.get_color_array()) |
|
ax.add_collection(collection) |
|
else: |
|
lbl = _str_or_latex(s.label) |
|
ax.plot(x, y, z, label=lbl, color=s.line_color) |
|
|
|
xlims.append(s._xlim) |
|
ylims.append(s._ylim) |
|
zlims.append(s._zlim) |
|
elif s.is_3Dsurface: |
|
x, y, z = s.get_meshes() |
|
collection = ax.plot_surface(x, y, z, |
|
cmap=getattr(self.cm, 'viridis', self.cm.jet), |
|
rstride=1, cstride=1, linewidth=0.1) |
|
if isinstance(s.surface_color, (float, int, Callable)): |
|
color_array = s.get_color_array() |
|
color_array = color_array.reshape(color_array.size) |
|
collection.set_array(color_array) |
|
else: |
|
collection.set_color(s.surface_color) |
|
|
|
xlims.append(s._xlim) |
|
ylims.append(s._ylim) |
|
zlims.append(s._zlim) |
|
elif s.is_implicit: |
|
points = s.get_raster() |
|
if len(points) == 2: |
|
|
|
x, y = _matplotlib_list(points[0]) |
|
ax.fill(x, y, facecolor=s.line_color, edgecolor='None') |
|
else: |
|
|
|
|
|
|
|
ListedColormap = self.matplotlib.colors.ListedColormap |
|
colormap = ListedColormap(["white", s.line_color]) |
|
xarray, yarray, zarray, plot_type = points |
|
if plot_type == 'contour': |
|
ax.contour(xarray, yarray, zarray, cmap=colormap) |
|
else: |
|
ax.contourf(xarray, yarray, zarray, cmap=colormap) |
|
else: |
|
raise NotImplementedError( |
|
'{} is not supported in the SymPy plotting module ' |
|
'with matplotlib backend. Please report this issue.' |
|
.format(ax)) |
|
|
|
Axes3D = mpl_toolkits.mplot3d.Axes3D |
|
if not isinstance(ax, Axes3D): |
|
ax.autoscale_view( |
|
scalex=ax.get_autoscalex_on(), |
|
scaley=ax.get_autoscaley_on()) |
|
else: |
|
|
|
|
|
if xlims: |
|
xlims = np.array(xlims) |
|
xlim = (np.amin(xlims[:, 0]), np.amax(xlims[:, 1])) |
|
ax.set_xlim(xlim) |
|
else: |
|
ax.set_xlim([0, 1]) |
|
|
|
if ylims: |
|
ylims = np.array(ylims) |
|
ylim = (np.amin(ylims[:, 0]), np.amax(ylims[:, 1])) |
|
ax.set_ylim(ylim) |
|
else: |
|
ax.set_ylim([0, 1]) |
|
|
|
if zlims: |
|
zlims = np.array(zlims) |
|
zlim = (np.amin(zlims[:, 0]), np.amax(zlims[:, 1])) |
|
ax.set_zlim(zlim) |
|
else: |
|
ax.set_zlim([0, 1]) |
|
|
|
|
|
|
|
|
|
if parent.xscale and not isinstance(ax, Axes3D): |
|
ax.set_xscale(parent.xscale) |
|
if parent.yscale and not isinstance(ax, Axes3D): |
|
ax.set_yscale(parent.yscale) |
|
if not isinstance(ax, Axes3D) or self.matplotlib.__version__ >= '1.2.0': |
|
ax.set_autoscale_on(parent.autoscale) |
|
if parent.axis_center: |
|
val = parent.axis_center |
|
if isinstance(ax, Axes3D): |
|
pass |
|
elif val == 'center': |
|
ax.spines['left'].set_position('center') |
|
ax.spines['bottom'].set_position('center') |
|
elif val == 'auto': |
|
xl, xh = ax.get_xlim() |
|
yl, yh = ax.get_ylim() |
|
pos_left = ('data', 0) if xl*xh <= 0 else 'center' |
|
pos_bottom = ('data', 0) if yl*yh <= 0 else 'center' |
|
ax.spines['left'].set_position(pos_left) |
|
ax.spines['bottom'].set_position(pos_bottom) |
|
else: |
|
ax.spines['left'].set_position(('data', val[0])) |
|
ax.spines['bottom'].set_position(('data', val[1])) |
|
if not parent.axis: |
|
ax.set_axis_off() |
|
if parent.legend: |
|
if ax.legend(): |
|
ax.legend_.set_visible(parent.legend) |
|
if parent.margin: |
|
ax.set_xmargin(parent.margin) |
|
ax.set_ymargin(parent.margin) |
|
if parent.title: |
|
ax.set_title(parent.title) |
|
if parent.xlabel: |
|
xlbl = _str_or_latex(parent.xlabel) |
|
ax.set_xlabel(xlbl, position=(1, 0)) |
|
if parent.ylabel: |
|
ylbl = _str_or_latex(parent.ylabel) |
|
ax.set_ylabel(ylbl, position=(0, 1)) |
|
if isinstance(ax, Axes3D) and parent.zlabel: |
|
zlbl = _str_or_latex(parent.zlabel) |
|
ax.set_zlabel(zlbl, position=(0, 1)) |
|
if parent.annotations: |
|
for a in parent.annotations: |
|
ax.annotate(**a) |
|
if parent.markers: |
|
for marker in parent.markers: |
|
|
|
|
|
m = marker.copy() |
|
args = m.pop('args') |
|
ax.plot(*args, **m) |
|
if parent.rectangles: |
|
for r in parent.rectangles: |
|
rect = self.matplotlib.patches.Rectangle(**r) |
|
ax.add_patch(rect) |
|
if parent.fill: |
|
ax.fill_between(**parent.fill) |
|
|
|
|
|
|
|
if parent.xlim: |
|
ax.set_xlim(parent.xlim) |
|
if parent.ylim: |
|
ax.set_ylim(parent.ylim) |
|
|
|
|
|
def process_series(self): |
|
""" |
|
Iterates over every ``Plot`` object and further calls |
|
_process_series() |
|
""" |
|
parent = self.parent |
|
if isinstance(parent, Plot): |
|
series_list = [parent._series] |
|
else: |
|
series_list = parent._series |
|
|
|
for i, (series, ax) in enumerate(zip(series_list, self.ax)): |
|
if isinstance(self.parent, PlotGrid): |
|
parent = self.parent.args[i] |
|
self._process_series(series, ax, parent) |
|
|
|
def show(self): |
|
self.process_series() |
|
|
|
|
|
|
|
if _show: |
|
self.fig.tight_layout() |
|
self.plt.show() |
|
else: |
|
self.close() |
|
|
|
def save(self, path): |
|
self.process_series() |
|
self.fig.savefig(path) |
|
|
|
def close(self): |
|
self.plt.close(self.fig) |
|
|
|
|
|
class TextBackend(BaseBackend): |
|
def __init__(self, parent): |
|
super().__init__(parent) |
|
|
|
def show(self): |
|
if not _show: |
|
return |
|
if len(self.parent._series) != 1: |
|
raise ValueError( |
|
'The TextBackend supports only one graph per Plot.') |
|
elif not isinstance(self.parent._series[0], LineOver1DRangeSeries): |
|
raise ValueError( |
|
'The TextBackend supports only expressions over a 1D range') |
|
else: |
|
ser = self.parent._series[0] |
|
textplot(ser.expr, ser.start, ser.end) |
|
|
|
def close(self): |
|
pass |
|
|
|
|
|
class DefaultBackend(BaseBackend): |
|
def __new__(cls, parent): |
|
matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,)) |
|
if matplotlib: |
|
return MatplotlibBackend(parent) |
|
else: |
|
return TextBackend(parent) |
|
|
|
|
|
plot_backends = { |
|
'matplotlib': MatplotlibBackend, |
|
'text': TextBackend, |
|
'default': DefaultBackend |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
def centers_of_segments(array): |
|
np = import_module('numpy') |
|
return np.mean(np.vstack((array[:-1], array[1:])), 0) |
|
|
|
|
|
def centers_of_faces(array): |
|
np = import_module('numpy') |
|
return np.mean(np.dstack((array[:-1, :-1], |
|
array[1:, :-1], |
|
array[:-1, 1:], |
|
array[:-1, :-1], |
|
)), 2) |
|
|
|
|
|
def flat(x, y, z, eps=1e-3): |
|
"""Checks whether three points are almost collinear""" |
|
np = import_module('numpy') |
|
|
|
|
|
|
|
|
|
vector_a = (x - y).astype(np.float64) |
|
vector_b = (z - y).astype(np.float64) |
|
dot_product = np.dot(vector_a, vector_b) |
|
vector_a_norm = np.linalg.norm(vector_a) |
|
vector_b_norm = np.linalg.norm(vector_b) |
|
cos_theta = dot_product / (vector_a_norm * vector_b_norm) |
|
return abs(cos_theta + 1) < eps |
|
|
|
|
|
def _matplotlib_list(interval_list): |
|
""" |
|
Returns lists for matplotlib ``fill`` command from a list of bounding |
|
rectangular intervals |
|
""" |
|
xlist = [] |
|
ylist = [] |
|
if len(interval_list): |
|
for intervals in interval_list: |
|
intervalx = intervals[0] |
|
intervaly = intervals[1] |
|
xlist.extend([intervalx.start, intervalx.start, |
|
intervalx.end, intervalx.end, None]) |
|
ylist.extend([intervaly.start, intervaly.end, |
|
intervaly.end, intervaly.start, None]) |
|
else: |
|
|
|
xlist.extend((None, None, None, None)) |
|
ylist.extend((None, None, None, None)) |
|
return xlist, ylist |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def plot(*args, show=True, **kwargs): |
|
"""Plots a function of a single variable as a curve. |
|
|
|
Parameters |
|
========== |
|
|
|
args : |
|
The first argument is the expression representing the function |
|
of single variable to be plotted. |
|
|
|
The last argument is a 3-tuple denoting the range of the free |
|
variable. e.g. ``(x, 0, 5)`` |
|
|
|
Typical usage examples are in the following: |
|
|
|
- Plotting a single expression with a single range. |
|
``plot(expr, range, **kwargs)`` |
|
- Plotting a single expression with the default range (-10, 10). |
|
``plot(expr, **kwargs)`` |
|
- Plotting multiple expressions with a single range. |
|
``plot(expr1, expr2, ..., range, **kwargs)`` |
|
- Plotting multiple expressions with multiple ranges. |
|
``plot((expr1, range1), (expr2, range2), ..., **kwargs)`` |
|
|
|
It is best practice to specify range explicitly because default |
|
range may change in the future if a more advanced default range |
|
detection algorithm is implemented. |
|
|
|
show : bool, optional |
|
The default value is set to ``True``. Set show to ``False`` and |
|
the function will not display the plot. The returned instance of |
|
the ``Plot`` class can then be used to save or display the plot |
|
by calling the ``save()`` and ``show()`` methods respectively. |
|
|
|
line_color : string, or float, or function, optional |
|
Specifies the color for the plot. |
|
See ``Plot`` to see how to set color for the plots. |
|
Note that by setting ``line_color``, it would be applied simultaneously |
|
to all the series. |
|
|
|
title : str, optional |
|
Title of the plot. It is set to the latex representation of |
|
the expression, if the plot has only one expression. |
|
|
|
label : str, optional |
|
The label of the expression in the plot. It will be used when |
|
called with ``legend``. Default is the name of the expression. |
|
e.g. ``sin(x)`` |
|
|
|
xlabel : str or expression, optional |
|
Label for the x-axis. |
|
|
|
ylabel : str or expression, optional |
|
Label for the y-axis. |
|
|
|
xscale : 'linear' or 'log', optional |
|
Sets the scaling of the x-axis. |
|
|
|
yscale : 'linear' or 'log', optional |
|
Sets the scaling of the y-axis. |
|
|
|
axis_center : (float, float), optional |
|
Tuple of two floats denoting the coordinates of the center or |
|
{'center', 'auto'} |
|
|
|
xlim : (float, float), optional |
|
Denotes the x-axis limits, ``(min, max)```. |
|
|
|
ylim : (float, float), optional |
|
Denotes the y-axis limits, ``(min, max)```. |
|
|
|
annotations : list, optional |
|
A list of dictionaries specifying the type of annotation |
|
required. The keys in the dictionary should be equivalent |
|
to the arguments of the :external:mod:`matplotlib`'s |
|
:external:meth:`~matplotlib.axes.Axes.annotate` method. |
|
|
|
markers : list, optional |
|
A list of dictionaries specifying the type the markers required. |
|
The keys in the dictionary should be equivalent to the arguments |
|
of the :external:mod:`matplotlib`'s :external:func:`~matplotlib.pyplot.plot()` function |
|
along with the marker related keyworded arguments. |
|
|
|
rectangles : list, optional |
|
A list of dictionaries specifying the dimensions of the |
|
rectangles to be plotted. The keys in the dictionary should be |
|
equivalent to the arguments of the :external:mod:`matplotlib`'s |
|
:external:class:`~matplotlib.patches.Rectangle` class. |
|
|
|
fill : dict, optional |
|
A dictionary specifying the type of color filling required in |
|
the plot. The keys in the dictionary should be equivalent to the |
|
arguments of the :external:mod:`matplotlib`'s |
|
:external:meth:`~matplotlib.axes.Axes.fill_between` method. |
|
|
|
adaptive : bool, optional |
|
The default value is set to ``True``. Set adaptive to ``False`` |
|
and specify ``nb_of_points`` if uniform sampling is required. |
|
|
|
The plotting uses an adaptive algorithm which samples |
|
recursively to accurately plot. The adaptive algorithm uses a |
|
random point near the midpoint of two points that has to be |
|
further sampled. Hence the same plots can appear slightly |
|
different. |
|
|
|
depth : int, optional |
|
Recursion depth of the adaptive algorithm. A depth of value |
|
`n` samples a maximum of `2^{n}` points. |
|
|
|
If the ``adaptive`` flag is set to ``False``, this will be |
|
ignored. |
|
|
|
nb_of_points : int, optional |
|
Used when the ``adaptive`` is set to ``False``. The function |
|
is uniformly sampled at ``nb_of_points`` number of points. |
|
|
|
If the ``adaptive`` flag is set to ``True``, this will be |
|
ignored. |
|
|
|
size : (float, float), optional |
|
A tuple in the form (width, height) in inches to specify the size of |
|
the overall figure. The default value is set to ``None``, meaning |
|
the size will be set by the default backend. |
|
|
|
Examples |
|
======== |
|
|
|
.. plot:: |
|
:context: close-figs |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> from sympy import symbols |
|
>>> from sympy.plotting import plot |
|
>>> x = symbols('x') |
|
|
|
Single Plot |
|
|
|
.. plot:: |
|
:context: close-figs |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> plot(x**2, (x, -5, 5)) |
|
Plot object containing: |
|
[0]: cartesian line: x**2 for x over (-5.0, 5.0) |
|
|
|
Multiple plots with single range. |
|
|
|
.. plot:: |
|
:context: close-figs |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> plot(x, x**2, x**3, (x, -5, 5)) |
|
Plot object containing: |
|
[0]: cartesian line: x for x over (-5.0, 5.0) |
|
[1]: cartesian line: x**2 for x over (-5.0, 5.0) |
|
[2]: cartesian line: x**3 for x over (-5.0, 5.0) |
|
|
|
Multiple plots with different ranges. |
|
|
|
.. plot:: |
|
:context: close-figs |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> plot((x**2, (x, -6, 6)), (x, (x, -5, 5))) |
|
Plot object containing: |
|
[0]: cartesian line: x**2 for x over (-6.0, 6.0) |
|
[1]: cartesian line: x for x over (-5.0, 5.0) |
|
|
|
No adaptive sampling. |
|
|
|
.. plot:: |
|
:context: close-figs |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> plot(x**2, adaptive=False, nb_of_points=400) |
|
Plot object containing: |
|
[0]: cartesian line: x**2 for x over (-10.0, 10.0) |
|
|
|
See Also |
|
======== |
|
|
|
Plot, LineOver1DRangeSeries |
|
|
|
""" |
|
args = list(map(sympify, args)) |
|
free = set() |
|
for a in args: |
|
if isinstance(a, Expr): |
|
free |= a.free_symbols |
|
if len(free) > 1: |
|
raise ValueError( |
|
'The same variable should be used in all ' |
|
'univariate expressions being plotted.') |
|
x = free.pop() if free else Symbol('x') |
|
kwargs.setdefault('xlabel', x) |
|
kwargs.setdefault('ylabel', Function('f')(x)) |
|
series = [] |
|
plot_expr = check_arguments(args, 1, 1) |
|
series = [LineOver1DRangeSeries(*arg, **kwargs) for arg in plot_expr] |
|
|
|
plots = Plot(*series, **kwargs) |
|
if show: |
|
plots.show() |
|
return plots |
|
|
|
|
|
def plot_parametric(*args, show=True, **kwargs): |
|
""" |
|
Plots a 2D parametric curve. |
|
|
|
Parameters |
|
========== |
|
|
|
args |
|
Common specifications are: |
|
|
|
- Plotting a single parametric curve with a range |
|
``plot_parametric((expr_x, expr_y), range)`` |
|
- Plotting multiple parametric curves with the same range |
|
``plot_parametric((expr_x, expr_y), ..., range)`` |
|
- Plotting multiple parametric curves with different ranges |
|
``plot_parametric((expr_x, expr_y, range), ...)`` |
|
|
|
``expr_x`` is the expression representing $x$ component of the |
|
parametric function. |
|
|
|
``expr_y`` is the expression representing $y$ component of the |
|
parametric function. |
|
|
|
``range`` is a 3-tuple denoting the parameter symbol, start and |
|
stop. For example, ``(u, 0, 5)``. |
|
|
|
If the range is not specified, then a default range of (-10, 10) |
|
is used. |
|
|
|
However, if the arguments are specified as |
|
``(expr_x, expr_y, range), ...``, you must specify the ranges |
|
for each expressions manually. |
|
|
|
Default range may change in the future if a more advanced |
|
algorithm is implemented. |
|
|
|
adaptive : bool, optional |
|
Specifies whether to use the adaptive sampling or not. |
|
|
|
The default value is set to ``True``. Set adaptive to ``False`` |
|
and specify ``nb_of_points`` if uniform sampling is required. |
|
|
|
depth : int, optional |
|
The recursion depth of the adaptive algorithm. A depth of |
|
value $n$ samples a maximum of $2^n$ points. |
|
|
|
nb_of_points : int, optional |
|
Used when the ``adaptive`` flag is set to ``False``. |
|
|
|
Specifies the number of the points used for the uniform |
|
sampling. |
|
|
|
line_color : string, or float, or function, optional |
|
Specifies the color for the plot. |
|
See ``Plot`` to see how to set color for the plots. |
|
Note that by setting ``line_color``, it would be applied simultaneously |
|
to all the series. |
|
|
|
label : str, optional |
|
The label of the expression in the plot. It will be used when |
|
called with ``legend``. Default is the name of the expression. |
|
e.g. ``sin(x)`` |
|
|
|
xlabel : str, optional |
|
Label for the x-axis. |
|
|
|
ylabel : str, optional |
|
Label for the y-axis. |
|
|
|
xscale : 'linear' or 'log', optional |
|
Sets the scaling of the x-axis. |
|
|
|
yscale : 'linear' or 'log', optional |
|
Sets the scaling of the y-axis. |
|
|
|
axis_center : (float, float), optional |
|
Tuple of two floats denoting the coordinates of the center or |
|
{'center', 'auto'} |
|
|
|
xlim : (float, float), optional |
|
Denotes the x-axis limits, ``(min, max)```. |
|
|
|
ylim : (float, float), optional |
|
Denotes the y-axis limits, ``(min, max)```. |
|
|
|
size : (float, float), optional |
|
A tuple in the form (width, height) in inches to specify the size of |
|
the overall figure. The default value is set to ``None``, meaning |
|
the size will be set by the default backend. |
|
|
|
Examples |
|
======== |
|
|
|
.. plot:: |
|
:context: reset |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> from sympy import plot_parametric, symbols, cos, sin |
|
>>> u = symbols('u') |
|
|
|
A parametric plot with a single expression: |
|
|
|
.. plot:: |
|
:context: close-figs |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> plot_parametric((cos(u), sin(u)), (u, -5, 5)) |
|
Plot object containing: |
|
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0) |
|
|
|
A parametric plot with multiple expressions with the same range: |
|
|
|
.. plot:: |
|
:context: close-figs |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> plot_parametric((cos(u), sin(u)), (u, cos(u)), (u, -10, 10)) |
|
Plot object containing: |
|
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-10.0, 10.0) |
|
[1]: parametric cartesian line: (u, cos(u)) for u over (-10.0, 10.0) |
|
|
|
A parametric plot with multiple expressions with different ranges |
|
for each curve: |
|
|
|
.. plot:: |
|
:context: close-figs |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> plot_parametric((cos(u), sin(u), (u, -5, 5)), |
|
... (cos(u), u, (u, -5, 5))) |
|
Plot object containing: |
|
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0) |
|
[1]: parametric cartesian line: (cos(u), u) for u over (-5.0, 5.0) |
|
|
|
Notes |
|
===== |
|
|
|
The plotting uses an adaptive algorithm which samples recursively to |
|
accurately plot the curve. The adaptive algorithm uses a random point |
|
near the midpoint of two points that has to be further sampled. |
|
Hence, repeating the same plot command can give slightly different |
|
results because of the random sampling. |
|
|
|
If there are multiple plots, then the same optional arguments are |
|
applied to all the plots drawn in the same canvas. If you want to |
|
set these options separately, you can index the returned ``Plot`` |
|
object and set it. |
|
|
|
For example, when you specify ``line_color`` once, it would be |
|
applied simultaneously to both series. |
|
|
|
.. plot:: |
|
:context: close-figs |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> from sympy import pi |
|
>>> expr1 = (u, cos(2*pi*u)/2 + 1/2) |
|
>>> expr2 = (u, sin(2*pi*u)/2 + 1/2) |
|
>>> p = plot_parametric(expr1, expr2, (u, 0, 1), line_color='blue') |
|
|
|
If you want to specify the line color for the specific series, you |
|
should index each item and apply the property manually. |
|
|
|
.. plot:: |
|
:context: close-figs |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> p[0].line_color = 'red' |
|
>>> p.show() |
|
|
|
See Also |
|
======== |
|
|
|
Plot, Parametric2DLineSeries |
|
""" |
|
args = list(map(sympify, args)) |
|
series = [] |
|
plot_expr = check_arguments(args, 2, 1) |
|
series = [Parametric2DLineSeries(*arg, **kwargs) for arg in plot_expr] |
|
plots = Plot(*series, **kwargs) |
|
if show: |
|
plots.show() |
|
return plots |
|
|
|
|
|
def plot3d_parametric_line(*args, show=True, **kwargs): |
|
""" |
|
Plots a 3D parametric line plot. |
|
|
|
Usage |
|
===== |
|
|
|
Single plot: |
|
|
|
``plot3d_parametric_line(expr_x, expr_y, expr_z, range, **kwargs)`` |
|
|
|
If the range is not specified, then a default range of (-10, 10) is used. |
|
|
|
Multiple plots. |
|
|
|
``plot3d_parametric_line((expr_x, expr_y, expr_z, range), ..., **kwargs)`` |
|
|
|
Ranges have to be specified for every expression. |
|
|
|
Default range may change in the future if a more advanced default range |
|
detection algorithm is implemented. |
|
|
|
Arguments |
|
========= |
|
|
|
expr_x : Expression representing the function along x. |
|
|
|
expr_y : Expression representing the function along y. |
|
|
|
expr_z : Expression representing the function along z. |
|
|
|
range : (:class:`~.Symbol`, float, float) |
|
A 3-tuple denoting the range of the parameter variable, e.g., (u, 0, 5). |
|
|
|
Keyword Arguments |
|
================= |
|
|
|
Arguments for ``Parametric3DLineSeries`` class. |
|
|
|
nb_of_points : The range is uniformly sampled at ``nb_of_points`` |
|
number of points. |
|
|
|
Aesthetics: |
|
|
|
line_color : string, or float, or function, optional |
|
Specifies the color for the plot. |
|
See ``Plot`` to see how to set color for the plots. |
|
Note that by setting ``line_color``, it would be applied simultaneously |
|
to all the series. |
|
|
|
label : str |
|
The label to the plot. It will be used when called with ``legend=True`` |
|
to denote the function with the given label in the plot. |
|
|
|
If there are multiple plots, then the same series arguments are applied to |
|
all the plots. If you want to set these options separately, you can index |
|
the returned ``Plot`` object and set it. |
|
|
|
Arguments for ``Plot`` class. |
|
|
|
title : str |
|
Title of the plot. |
|
|
|
size : (float, float), optional |
|
A tuple in the form (width, height) in inches to specify the size of |
|
the overall figure. The default value is set to ``None``, meaning |
|
the size will be set by the default backend. |
|
|
|
Examples |
|
======== |
|
|
|
.. plot:: |
|
:context: reset |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> from sympy import symbols, cos, sin |
|
>>> from sympy.plotting import plot3d_parametric_line |
|
>>> u = symbols('u') |
|
|
|
Single plot. |
|
|
|
.. plot:: |
|
:context: close-figs |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> plot3d_parametric_line(cos(u), sin(u), u, (u, -5, 5)) |
|
Plot object containing: |
|
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0) |
|
|
|
|
|
Multiple plots. |
|
|
|
.. plot:: |
|
:context: close-figs |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> plot3d_parametric_line((cos(u), sin(u), u, (u, -5, 5)), |
|
... (sin(u), u**2, u, (u, -5, 5))) |
|
Plot object containing: |
|
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0) |
|
[1]: 3D parametric cartesian line: (sin(u), u**2, u) for u over (-5.0, 5.0) |
|
|
|
|
|
See Also |
|
======== |
|
|
|
Plot, Parametric3DLineSeries |
|
|
|
""" |
|
args = list(map(sympify, args)) |
|
series = [] |
|
plot_expr = check_arguments(args, 3, 1) |
|
series = [Parametric3DLineSeries(*arg, **kwargs) for arg in plot_expr] |
|
kwargs.setdefault("xlabel", "x") |
|
kwargs.setdefault("ylabel", "y") |
|
kwargs.setdefault("zlabel", "z") |
|
plots = Plot(*series, **kwargs) |
|
if show: |
|
plots.show() |
|
return plots |
|
|
|
|
|
def plot3d(*args, show=True, **kwargs): |
|
""" |
|
Plots a 3D surface plot. |
|
|
|
Usage |
|
===== |
|
|
|
Single plot |
|
|
|
``plot3d(expr, range_x, range_y, **kwargs)`` |
|
|
|
If the ranges are not specified, then a default range of (-10, 10) is used. |
|
|
|
Multiple plot with the same range. |
|
|
|
``plot3d(expr1, expr2, range_x, range_y, **kwargs)`` |
|
|
|
If the ranges are not specified, then a default range of (-10, 10) is used. |
|
|
|
Multiple plots with different ranges. |
|
|
|
``plot3d((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)`` |
|
|
|
Ranges have to be specified for every expression. |
|
|
|
Default range may change in the future if a more advanced default range |
|
detection algorithm is implemented. |
|
|
|
Arguments |
|
========= |
|
|
|
expr : Expression representing the function along x. |
|
|
|
range_x : (:class:`~.Symbol`, float, float) |
|
A 3-tuple denoting the range of the x variable, e.g. (x, 0, 5). |
|
|
|
range_y : (:class:`~.Symbol`, float, float) |
|
A 3-tuple denoting the range of the y variable, e.g. (y, 0, 5). |
|
|
|
Keyword Arguments |
|
================= |
|
|
|
Arguments for ``SurfaceOver2DRangeSeries`` class: |
|
|
|
nb_of_points_x : int |
|
The x range is sampled uniformly at ``nb_of_points_x`` of points. |
|
|
|
nb_of_points_y : int |
|
The y range is sampled uniformly at ``nb_of_points_y`` of points. |
|
|
|
Aesthetics: |
|
|
|
surface_color : Function which returns a float |
|
Specifies the color for the surface of the plot. |
|
See :class:`~.Plot` for more details. |
|
|
|
If there are multiple plots, then the same series arguments are applied to |
|
all the plots. If you want to set these options separately, you can index |
|
the returned ``Plot`` object and set it. |
|
|
|
Arguments for ``Plot`` class: |
|
|
|
title : str |
|
Title of the plot. |
|
|
|
size : (float, float), optional |
|
A tuple in the form (width, height) in inches to specify the size of the |
|
overall figure. The default value is set to ``None``, meaning the size will |
|
be set by the default backend. |
|
|
|
Examples |
|
======== |
|
|
|
.. plot:: |
|
:context: reset |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> from sympy import symbols |
|
>>> from sympy.plotting import plot3d |
|
>>> x, y = symbols('x y') |
|
|
|
Single plot |
|
|
|
.. plot:: |
|
:context: close-figs |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> plot3d(x*y, (x, -5, 5), (y, -5, 5)) |
|
Plot object containing: |
|
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) |
|
|
|
|
|
Multiple plots with same range |
|
|
|
.. plot:: |
|
:context: close-figs |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> plot3d(x*y, -x*y, (x, -5, 5), (y, -5, 5)) |
|
Plot object containing: |
|
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) |
|
[1]: cartesian surface: -x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) |
|
|
|
|
|
Multiple plots with different ranges. |
|
|
|
.. plot:: |
|
:context: close-figs |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> plot3d((x**2 + y**2, (x, -5, 5), (y, -5, 5)), |
|
... (x*y, (x, -3, 3), (y, -3, 3))) |
|
Plot object containing: |
|
[0]: cartesian surface: x**2 + y**2 for x over (-5.0, 5.0) and y over (-5.0, 5.0) |
|
[1]: cartesian surface: x*y for x over (-3.0, 3.0) and y over (-3.0, 3.0) |
|
|
|
|
|
See Also |
|
======== |
|
|
|
Plot, SurfaceOver2DRangeSeries |
|
|
|
""" |
|
|
|
args = list(map(sympify, args)) |
|
series = [] |
|
plot_expr = check_arguments(args, 1, 2) |
|
series = [SurfaceOver2DRangeSeries(*arg, **kwargs) for arg in plot_expr] |
|
kwargs.setdefault("xlabel", series[0].var_x) |
|
kwargs.setdefault("ylabel", series[0].var_y) |
|
kwargs.setdefault("zlabel", Function('f')(series[0].var_x, series[0].var_y)) |
|
plots = Plot(*series, **kwargs) |
|
if show: |
|
plots.show() |
|
return plots |
|
|
|
|
|
def plot3d_parametric_surface(*args, show=True, **kwargs): |
|
""" |
|
Plots a 3D parametric surface plot. |
|
|
|
Explanation |
|
=========== |
|
|
|
Single plot. |
|
|
|
``plot3d_parametric_surface(expr_x, expr_y, expr_z, range_u, range_v, **kwargs)`` |
|
|
|
If the ranges is not specified, then a default range of (-10, 10) is used. |
|
|
|
Multiple plots. |
|
|
|
``plot3d_parametric_surface((expr_x, expr_y, expr_z, range_u, range_v), ..., **kwargs)`` |
|
|
|
Ranges have to be specified for every expression. |
|
|
|
Default range may change in the future if a more advanced default range |
|
detection algorithm is implemented. |
|
|
|
Arguments |
|
========= |
|
|
|
expr_x : Expression representing the function along ``x``. |
|
|
|
expr_y : Expression representing the function along ``y``. |
|
|
|
expr_z : Expression representing the function along ``z``. |
|
|
|
range_u : (:class:`~.Symbol`, float, float) |
|
A 3-tuple denoting the range of the u variable, e.g. (u, 0, 5). |
|
|
|
range_v : (:class:`~.Symbol`, float, float) |
|
A 3-tuple denoting the range of the v variable, e.g. (v, 0, 5). |
|
|
|
Keyword Arguments |
|
================= |
|
|
|
Arguments for ``ParametricSurfaceSeries`` class: |
|
|
|
nb_of_points_u : int |
|
The ``u`` range is sampled uniformly at ``nb_of_points_v`` of points |
|
|
|
nb_of_points_y : int |
|
The ``v`` range is sampled uniformly at ``nb_of_points_y`` of points |
|
|
|
Aesthetics: |
|
|
|
surface_color : Function which returns a float |
|
Specifies the color for the surface of the plot. See |
|
:class:`~Plot` for more details. |
|
|
|
If there are multiple plots, then the same series arguments are applied for |
|
all the plots. If you want to set these options separately, you can index |
|
the returned ``Plot`` object and set it. |
|
|
|
|
|
Arguments for ``Plot`` class: |
|
|
|
title : str |
|
Title of the plot. |
|
|
|
size : (float, float), optional |
|
A tuple in the form (width, height) in inches to specify the size of the |
|
overall figure. The default value is set to ``None``, meaning the size will |
|
be set by the default backend. |
|
|
|
Examples |
|
======== |
|
|
|
.. plot:: |
|
:context: reset |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> from sympy import symbols, cos, sin |
|
>>> from sympy.plotting import plot3d_parametric_surface |
|
>>> u, v = symbols('u v') |
|
|
|
Single plot. |
|
|
|
.. plot:: |
|
:context: close-figs |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> plot3d_parametric_surface(cos(u + v), sin(u - v), u - v, |
|
... (u, -5, 5), (v, -5, 5)) |
|
Plot object containing: |
|
[0]: parametric cartesian surface: (cos(u + v), sin(u - v), u - v) for u over (-5.0, 5.0) and v over (-5.0, 5.0) |
|
|
|
|
|
See Also |
|
======== |
|
|
|
Plot, ParametricSurfaceSeries |
|
|
|
""" |
|
|
|
args = list(map(sympify, args)) |
|
series = [] |
|
plot_expr = check_arguments(args, 3, 2) |
|
series = [ParametricSurfaceSeries(*arg, **kwargs) for arg in plot_expr] |
|
kwargs.setdefault("xlabel", "x") |
|
kwargs.setdefault("ylabel", "y") |
|
kwargs.setdefault("zlabel", "z") |
|
plots = Plot(*series, **kwargs) |
|
if show: |
|
plots.show() |
|
return plots |
|
|
|
def plot_contour(*args, show=True, **kwargs): |
|
""" |
|
Draws contour plot of a function |
|
|
|
Usage |
|
===== |
|
|
|
Single plot |
|
|
|
``plot_contour(expr, range_x, range_y, **kwargs)`` |
|
|
|
If the ranges are not specified, then a default range of (-10, 10) is used. |
|
|
|
Multiple plot with the same range. |
|
|
|
``plot_contour(expr1, expr2, range_x, range_y, **kwargs)`` |
|
|
|
If the ranges are not specified, then a default range of (-10, 10) is used. |
|
|
|
Multiple plots with different ranges. |
|
|
|
``plot_contour((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)`` |
|
|
|
Ranges have to be specified for every expression. |
|
|
|
Default range may change in the future if a more advanced default range |
|
detection algorithm is implemented. |
|
|
|
Arguments |
|
========= |
|
|
|
expr : Expression representing the function along x. |
|
|
|
range_x : (:class:`Symbol`, float, float) |
|
A 3-tuple denoting the range of the x variable, e.g. (x, 0, 5). |
|
|
|
range_y : (:class:`Symbol`, float, float) |
|
A 3-tuple denoting the range of the y variable, e.g. (y, 0, 5). |
|
|
|
Keyword Arguments |
|
================= |
|
|
|
Arguments for ``ContourSeries`` class: |
|
|
|
nb_of_points_x : int |
|
The x range is sampled uniformly at ``nb_of_points_x`` of points. |
|
|
|
nb_of_points_y : int |
|
The y range is sampled uniformly at ``nb_of_points_y`` of points. |
|
|
|
Aesthetics: |
|
|
|
surface_color : Function which returns a float |
|
Specifies the color for the surface of the plot. See |
|
:class:`sympy.plotting.Plot` for more details. |
|
|
|
If there are multiple plots, then the same series arguments are applied to |
|
all the plots. If you want to set these options separately, you can index |
|
the returned ``Plot`` object and set it. |
|
|
|
Arguments for ``Plot`` class: |
|
|
|
title : str |
|
Title of the plot. |
|
|
|
size : (float, float), optional |
|
A tuple in the form (width, height) in inches to specify the size of |
|
the overall figure. The default value is set to ``None``, meaning |
|
the size will be set by the default backend. |
|
|
|
See Also |
|
======== |
|
|
|
Plot, ContourSeries |
|
|
|
""" |
|
|
|
args = list(map(sympify, args)) |
|
plot_expr = check_arguments(args, 1, 2) |
|
series = [ContourSeries(*arg) for arg in plot_expr] |
|
plot_contours = Plot(*series, **kwargs) |
|
if len(plot_expr[0].free_symbols) > 2: |
|
raise ValueError('Contour Plot cannot Plot for more than two variables.') |
|
if show: |
|
plot_contours.show() |
|
return plot_contours |
|
|
|
def check_arguments(args, expr_len, nb_of_free_symbols): |
|
""" |
|
Checks the arguments and converts into tuples of the |
|
form (exprs, ranges). |
|
|
|
Examples |
|
======== |
|
|
|
.. plot:: |
|
:context: reset |
|
:format: doctest |
|
:include-source: True |
|
|
|
>>> from sympy import cos, sin, symbols |
|
>>> from sympy.plotting.plot import check_arguments |
|
>>> x = symbols('x') |
|
>>> check_arguments([cos(x), sin(x)], 2, 1) |
|
[(cos(x), sin(x), (x, -10, 10))] |
|
|
|
>>> check_arguments([x, x**2], 1, 1) |
|
[(x, (x, -10, 10)), (x**2, (x, -10, 10))] |
|
""" |
|
if not args: |
|
return [] |
|
if expr_len > 1 and isinstance(args[0], Expr): |
|
|
|
|
|
|
|
if len(args) < expr_len: |
|
raise ValueError("len(args) should not be less than expr_len") |
|
for i in range(len(args)): |
|
if isinstance(args[i], Tuple): |
|
break |
|
else: |
|
i = len(args) + 1 |
|
|
|
exprs = Tuple(*args[:i]) |
|
free_symbols = list(set().union(*[e.free_symbols for e in exprs])) |
|
if len(args) == expr_len + nb_of_free_symbols: |
|
|
|
plots = [exprs + Tuple(*args[expr_len:])] |
|
else: |
|
default_range = Tuple(-10, 10) |
|
ranges = [] |
|
for symbol in free_symbols: |
|
ranges.append(Tuple(symbol) + default_range) |
|
|
|
for i in range(len(free_symbols) - nb_of_free_symbols): |
|
ranges.append(Tuple(Dummy()) + default_range) |
|
plots = [exprs + Tuple(*ranges)] |
|
return plots |
|
|
|
if isinstance(args[0], Expr) or (isinstance(args[0], Tuple) and |
|
len(args[0]) == expr_len and |
|
expr_len != 3): |
|
|
|
|
|
|
|
for i in range(len(args)): |
|
if isinstance(args[i], Tuple) and len(args[i]) != expr_len: |
|
break |
|
if not isinstance(args[i], Tuple): |
|
args[i] = Tuple(args[i]) |
|
else: |
|
i = len(args) + 1 |
|
|
|
exprs = args[:i] |
|
assert all(isinstance(e, Expr) for expr in exprs for e in expr) |
|
free_symbols = list(set().union(*[e.free_symbols for expr in exprs |
|
for e in expr])) |
|
|
|
if len(free_symbols) > nb_of_free_symbols: |
|
raise ValueError("The number of free_symbols in the expression " |
|
"is greater than %d" % nb_of_free_symbols) |
|
if len(args) == i + nb_of_free_symbols and isinstance(args[i], Tuple): |
|
ranges = Tuple(*list(args[ |
|
i:i + nb_of_free_symbols])) |
|
plots = [expr + ranges for expr in exprs] |
|
return plots |
|
else: |
|
|
|
default_range = Tuple(-10, 10) |
|
ranges = [] |
|
for symbol in free_symbols: |
|
ranges.append(Tuple(symbol) + default_range) |
|
|
|
for i in range(nb_of_free_symbols - len(free_symbols)): |
|
ranges.append(Tuple(Dummy()) + default_range) |
|
ranges = Tuple(*ranges) |
|
plots = [expr + ranges for expr in exprs] |
|
return plots |
|
|
|
elif isinstance(args[0], Tuple) and len(args[0]) == expr_len + nb_of_free_symbols: |
|
|
|
for arg in args: |
|
for i in range(expr_len): |
|
if not isinstance(arg[i], Expr): |
|
raise ValueError("Expected an expression, given %s" % |
|
str(arg[i])) |
|
for i in range(nb_of_free_symbols): |
|
if not len(arg[i + expr_len]) == 3: |
|
raise ValueError("The ranges should be a tuple of " |
|
"length 3, got %s" % str(arg[i + expr_len])) |
|
return args |
|
|