peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/sympy
/plotting
/plot_implicit.py
"""Implicit plotting module for SymPy. | |
Explanation | |
=========== | |
The module implements a data series called ImplicitSeries which is used by | |
``Plot`` class to plot implicit plots for different backends. The module, | |
by default, implements plotting using interval arithmetic. It switches to a | |
fall back algorithm if the expression cannot be plotted using interval arithmetic. | |
It is also possible to specify to use the fall back algorithm for all plots. | |
Boolean combinations of expressions cannot be plotted by the fall back | |
algorithm. | |
See Also | |
======== | |
sympy.plotting.plot | |
References | |
========== | |
.. [1] Jeffrey Allen Tupper. Reliable Two-Dimensional Graphing Methods for | |
Mathematical Formulae with Two Free Variables. | |
.. [2] Jeffrey Allen Tupper. Graphing Equations with Generalized Interval | |
Arithmetic. Master's thesis. University of Toronto, 1996 | |
""" | |
from .plot import BaseSeries, Plot | |
from .experimental_lambdify import experimental_lambdify, vectorized_lambdify | |
from .intervalmath import interval | |
from sympy.core.relational import (Equality, GreaterThan, LessThan, | |
Relational, StrictLessThan, StrictGreaterThan) | |
from sympy.core.containers import Tuple | |
from sympy.core.relational import Eq | |
from sympy.core.symbol import (Dummy, Symbol) | |
from sympy.core.sympify import sympify | |
from sympy.external import import_module | |
from sympy.logic.boolalg import BooleanFunction | |
from sympy.polys.polyutils import _sort_gens | |
from sympy.utilities.decorator import doctest_depends_on | |
from sympy.utilities.iterables import flatten | |
import warnings | |
class ImplicitSeries(BaseSeries): | |
""" Representation for Implicit plot """ | |
is_implicit = True | |
def __init__(self, expr, var_start_end_x, var_start_end_y, | |
has_equality, use_interval_math, depth, nb_of_points, | |
line_color): | |
super().__init__() | |
self.expr = sympify(expr) | |
self.label = self.expr | |
self.var_x = sympify(var_start_end_x[0]) | |
self.start_x = float(var_start_end_x[1]) | |
self.end_x = float(var_start_end_x[2]) | |
self.var_y = sympify(var_start_end_y[0]) | |
self.start_y = float(var_start_end_y[1]) | |
self.end_y = float(var_start_end_y[2]) | |
self.get_points = self.get_raster | |
self.has_equality = has_equality # If the expression has equality, i.e. | |
#Eq, Greaterthan, LessThan. | |
self.nb_of_points = nb_of_points | |
self.use_interval_math = use_interval_math | |
self.depth = 4 + depth | |
self.line_color = line_color | |
def __str__(self): | |
return ('Implicit equation: %s for ' | |
'%s over %s and %s over %s') % ( | |
str(self.expr), | |
str(self.var_x), | |
str((self.start_x, self.end_x)), | |
str(self.var_y), | |
str((self.start_y, self.end_y))) | |
def get_raster(self): | |
func = experimental_lambdify((self.var_x, self.var_y), self.expr, | |
use_interval=True) | |
xinterval = interval(self.start_x, self.end_x) | |
yinterval = interval(self.start_y, self.end_y) | |
try: | |
func(xinterval, yinterval) | |
except AttributeError: | |
# XXX: AttributeError("'list' object has no attribute 'is_real'") | |
# That needs fixing somehow - we shouldn't be catching | |
# AttributeError here. | |
if self.use_interval_math: | |
warnings.warn("Adaptive meshing could not be applied to the" | |
" expression. Using uniform meshing.", stacklevel=7) | |
self.use_interval_math = False | |
if self.use_interval_math: | |
return self._get_raster_interval(func) | |
else: | |
return self._get_meshes_grid() | |
def _get_raster_interval(self, func): | |
""" Uses interval math to adaptively mesh and obtain the plot""" | |
k = self.depth | |
interval_list = [] | |
#Create initial 32 divisions | |
np = import_module('numpy') | |
xsample = np.linspace(self.start_x, self.end_x, 33) | |
ysample = np.linspace(self.start_y, self.end_y, 33) | |
#Add a small jitter so that there are no false positives for equality. | |
# Ex: y==x becomes True for x interval(1, 2) and y interval(1, 2) | |
#which will draw a rectangle. | |
jitterx = (np.random.rand( | |
len(xsample)) * 2 - 1) * (self.end_x - self.start_x) / 2**20 | |
jittery = (np.random.rand( | |
len(ysample)) * 2 - 1) * (self.end_y - self.start_y) / 2**20 | |
xsample += jitterx | |
ysample += jittery | |
xinter = [interval(x1, x2) for x1, x2 in zip(xsample[:-1], | |
xsample[1:])] | |
yinter = [interval(y1, y2) for y1, y2 in zip(ysample[:-1], | |
ysample[1:])] | |
interval_list = [[x, y] for x in xinter for y in yinter] | |
plot_list = [] | |
#recursive call refinepixels which subdivides the intervals which are | |
#neither True nor False according to the expression. | |
def refine_pixels(interval_list): | |
""" Evaluates the intervals and subdivides the interval if the | |
expression is partially satisfied.""" | |
temp_interval_list = [] | |
plot_list = [] | |
for intervals in interval_list: | |
#Convert the array indices to x and y values | |
intervalx = intervals[0] | |
intervaly = intervals[1] | |
func_eval = func(intervalx, intervaly) | |
#The expression is valid in the interval. Change the contour | |
#array values to 1. | |
if func_eval[1] is False or func_eval[0] is False: | |
pass | |
elif func_eval == (True, True): | |
plot_list.append([intervalx, intervaly]) | |
elif func_eval[1] is None or func_eval[0] is None: | |
#Subdivide | |
avgx = intervalx.mid | |
avgy = intervaly.mid | |
a = interval(intervalx.start, avgx) | |
b = interval(avgx, intervalx.end) | |
c = interval(intervaly.start, avgy) | |
d = interval(avgy, intervaly.end) | |
temp_interval_list.append([a, c]) | |
temp_interval_list.append([a, d]) | |
temp_interval_list.append([b, c]) | |
temp_interval_list.append([b, d]) | |
return temp_interval_list, plot_list | |
while k >= 0 and len(interval_list): | |
interval_list, plot_list_temp = refine_pixels(interval_list) | |
plot_list.extend(plot_list_temp) | |
k = k - 1 | |
#Check whether the expression represents an equality | |
#If it represents an equality, then none of the intervals | |
#would have satisfied the expression due to floating point | |
#differences. Add all the undecided values to the plot. | |
if self.has_equality: | |
for intervals in interval_list: | |
intervalx = intervals[0] | |
intervaly = intervals[1] | |
func_eval = func(intervalx, intervaly) | |
if func_eval[1] and func_eval[0] is not False: | |
plot_list.append([intervalx, intervaly]) | |
return plot_list, 'fill' | |
def _get_meshes_grid(self): | |
"""Generates the mesh for generating a contour. | |
In the case of equality, ``contour`` function of matplotlib can | |
be used. In other cases, matplotlib's ``contourf`` is used. | |
""" | |
equal = False | |
if isinstance(self.expr, Equality): | |
expr = self.expr.lhs - self.expr.rhs | |
equal = True | |
elif isinstance(self.expr, (GreaterThan, StrictGreaterThan)): | |
expr = self.expr.lhs - self.expr.rhs | |
elif isinstance(self.expr, (LessThan, StrictLessThan)): | |
expr = self.expr.rhs - self.expr.lhs | |
else: | |
raise NotImplementedError("The expression is not supported for " | |
"plotting in uniform meshed plot.") | |
np = import_module('numpy') | |
xarray = np.linspace(self.start_x, self.end_x, self.nb_of_points) | |
yarray = np.linspace(self.start_y, self.end_y, self.nb_of_points) | |
x_grid, y_grid = np.meshgrid(xarray, yarray) | |
func = vectorized_lambdify((self.var_x, self.var_y), expr) | |
z_grid = func(x_grid, y_grid) | |
z_grid[np.ma.where(z_grid < 0)] = -1 | |
z_grid[np.ma.where(z_grid > 0)] = 1 | |
if equal: | |
return xarray, yarray, z_grid, 'contour' | |
else: | |
return xarray, yarray, z_grid, 'contourf' | |
def plot_implicit(expr, x_var=None, y_var=None, adaptive=True, depth=0, | |
points=300, line_color="blue", show=True, **kwargs): | |
"""A plot function to plot implicit equations / inequalities. | |
Arguments | |
========= | |
- expr : The equation / inequality that is to be plotted. | |
- x_var (optional) : symbol to plot on x-axis or tuple giving symbol | |
and range as ``(symbol, xmin, xmax)`` | |
- y_var (optional) : symbol to plot on y-axis or tuple giving symbol | |
and range as ``(symbol, ymin, ymax)`` | |
If neither ``x_var`` nor ``y_var`` are given then the free symbols in the | |
expression will be assigned in the order they are sorted. | |
The following keyword arguments can also be used: | |
- ``adaptive`` Boolean. The default value is set to True. It has to be | |
set to False if you want to use a mesh grid. | |
- ``depth`` integer. The depth of recursion for adaptive mesh grid. | |
Default value is 0. Takes value in the range (0, 4). | |
- ``points`` integer. The number of points if adaptive mesh grid is not | |
used. Default value is 300. | |
- ``show`` Boolean. Default value is True. If set to False, the plot will | |
not be shown. See ``Plot`` for further information. | |
- ``title`` string. The title for the plot. | |
- ``xlabel`` string. The label for the x-axis | |
- ``ylabel`` string. The label for the y-axis | |
Aesthetics options: | |
- ``line_color``: float or string. Specifies the color for the plot. | |
See ``Plot`` to see how to set color for the plots. | |
Default value is "Blue" | |
plot_implicit, by default, uses interval arithmetic to plot functions. If | |
the expression cannot be plotted using interval arithmetic, it defaults to | |
a generating a contour using a mesh grid of fixed number of points. By | |
setting adaptive to False, you can force plot_implicit to use the mesh | |
grid. The mesh grid method can be effective when adaptive plotting using | |
interval arithmetic, fails to plot with small line width. | |
Examples | |
======== | |
Plot expressions: | |
.. plot:: | |
:context: reset | |
:format: doctest | |
:include-source: True | |
>>> from sympy import plot_implicit, symbols, Eq, And | |
>>> x, y = symbols('x y') | |
Without any ranges for the symbols in the expression: | |
.. plot:: | |
:context: close-figs | |
:format: doctest | |
:include-source: True | |
>>> p1 = plot_implicit(Eq(x**2 + y**2, 5)) | |
With the range for the symbols: | |
.. plot:: | |
:context: close-figs | |
:format: doctest | |
:include-source: True | |
>>> p2 = plot_implicit( | |
... Eq(x**2 + y**2, 3), (x, -3, 3), (y, -3, 3)) | |
With depth of recursion as argument: | |
.. plot:: | |
:context: close-figs | |
:format: doctest | |
:include-source: True | |
>>> p3 = plot_implicit( | |
... Eq(x**2 + y**2, 5), (x, -4, 4), (y, -4, 4), depth = 2) | |
Using mesh grid and not using adaptive meshing: | |
.. plot:: | |
:context: close-figs | |
:format: doctest | |
:include-source: True | |
>>> p4 = plot_implicit( | |
... Eq(x**2 + y**2, 5), (x, -5, 5), (y, -2, 2), | |
... adaptive=False) | |
Using mesh grid without using adaptive meshing with number of points | |
specified: | |
.. plot:: | |
:context: close-figs | |
:format: doctest | |
:include-source: True | |
>>> p5 = plot_implicit( | |
... Eq(x**2 + y**2, 5), (x, -5, 5), (y, -2, 2), | |
... adaptive=False, points=400) | |
Plotting regions: | |
.. plot:: | |
:context: close-figs | |
:format: doctest | |
:include-source: True | |
>>> p6 = plot_implicit(y > x**2) | |
Plotting Using boolean conjunctions: | |
.. plot:: | |
:context: close-figs | |
:format: doctest | |
:include-source: True | |
>>> p7 = plot_implicit(And(y > x, y > -x)) | |
When plotting an expression with a single variable (y - 1, for example), | |
specify the x or the y variable explicitly: | |
.. plot:: | |
:context: close-figs | |
:format: doctest | |
:include-source: True | |
>>> p8 = plot_implicit(y - 1, y_var=y) | |
>>> p9 = plot_implicit(x - 1, x_var=x) | |
""" | |
has_equality = False # Represents whether the expression contains an Equality, | |
#GreaterThan or LessThan | |
def arg_expand(bool_expr): | |
""" | |
Recursively expands the arguments of an Boolean Function | |
""" | |
for arg in bool_expr.args: | |
if isinstance(arg, BooleanFunction): | |
arg_expand(arg) | |
elif isinstance(arg, Relational): | |
arg_list.append(arg) | |
arg_list = [] | |
if isinstance(expr, BooleanFunction): | |
arg_expand(expr) | |
#Check whether there is an equality in the expression provided. | |
if any(isinstance(e, (Equality, GreaterThan, LessThan)) | |
for e in arg_list): | |
has_equality = True | |
elif not isinstance(expr, Relational): | |
expr = Eq(expr, 0) | |
has_equality = True | |
elif isinstance(expr, (Equality, GreaterThan, LessThan)): | |
has_equality = True | |
xyvar = [i for i in (x_var, y_var) if i is not None] | |
free_symbols = expr.free_symbols | |
range_symbols = Tuple(*flatten(xyvar)).free_symbols | |
undeclared = free_symbols - range_symbols | |
if len(free_symbols & range_symbols) > 2: | |
raise NotImplementedError("Implicit plotting is not implemented for " | |
"more than 2 variables") | |
#Create default ranges if the range is not provided. | |
default_range = Tuple(-5, 5) | |
def _range_tuple(s): | |
if isinstance(s, Symbol): | |
return Tuple(s) + default_range | |
if len(s) == 3: | |
return Tuple(*s) | |
raise ValueError('symbol or `(symbol, min, max)` expected but got %s' % s) | |
if len(xyvar) == 0: | |
xyvar = list(_sort_gens(free_symbols)) | |
var_start_end_x = _range_tuple(xyvar[0]) | |
x = var_start_end_x[0] | |
if len(xyvar) != 2: | |
if x in undeclared or not undeclared: | |
xyvar.append(Dummy('f(%s)' % x.name)) | |
else: | |
xyvar.append(undeclared.pop()) | |
var_start_end_y = _range_tuple(xyvar[1]) | |
#Check whether the depth is greater than 4 or less than 0. | |
if depth > 4: | |
depth = 4 | |
elif depth < 0: | |
depth = 0 | |
series_argument = ImplicitSeries(expr, var_start_end_x, var_start_end_y, | |
has_equality, adaptive, depth, | |
points, line_color) | |
#set the x and y limits | |
kwargs['xlim'] = tuple(float(x) for x in var_start_end_x[1:]) | |
kwargs['ylim'] = tuple(float(y) for y in var_start_end_y[1:]) | |
# set the x and y labels | |
kwargs.setdefault('xlabel', var_start_end_x[0]) | |
kwargs.setdefault('ylabel', var_start_end_y[0]) | |
p = Plot(series_argument, **kwargs) | |
if show: | |
p.show() | |
return p | |