|
try: |
|
from ctypes import c_float, c_int, c_double |
|
except ImportError: |
|
pass |
|
|
|
import pyglet.gl as pgl |
|
from sympy.core import S |
|
|
|
|
|
def get_model_matrix(array_type=c_float, glGetMethod=pgl.glGetFloatv): |
|
""" |
|
Returns the current modelview matrix. |
|
""" |
|
m = (array_type*16)() |
|
glGetMethod(pgl.GL_MODELVIEW_MATRIX, m) |
|
return m |
|
|
|
|
|
def get_projection_matrix(array_type=c_float, glGetMethod=pgl.glGetFloatv): |
|
""" |
|
Returns the current modelview matrix. |
|
""" |
|
m = (array_type*16)() |
|
glGetMethod(pgl.GL_PROJECTION_MATRIX, m) |
|
return m |
|
|
|
|
|
def get_viewport(): |
|
""" |
|
Returns the current viewport. |
|
""" |
|
m = (c_int*4)() |
|
pgl.glGetIntegerv(pgl.GL_VIEWPORT, m) |
|
return m |
|
|
|
|
|
def get_direction_vectors(): |
|
m = get_model_matrix() |
|
return ((m[0], m[4], m[8]), |
|
(m[1], m[5], m[9]), |
|
(m[2], m[6], m[10])) |
|
|
|
|
|
def get_view_direction_vectors(): |
|
m = get_model_matrix() |
|
return ((m[0], m[1], m[2]), |
|
(m[4], m[5], m[6]), |
|
(m[8], m[9], m[10])) |
|
|
|
|
|
def get_basis_vectors(): |
|
return ((1, 0, 0), (0, 1, 0), (0, 0, 1)) |
|
|
|
|
|
def screen_to_model(x, y, z): |
|
m = get_model_matrix(c_double, pgl.glGetDoublev) |
|
p = get_projection_matrix(c_double, pgl.glGetDoublev) |
|
w = get_viewport() |
|
mx, my, mz = c_double(), c_double(), c_double() |
|
pgl.gluUnProject(x, y, z, m, p, w, mx, my, mz) |
|
return float(mx.value), float(my.value), float(mz.value) |
|
|
|
|
|
def model_to_screen(x, y, z): |
|
m = get_model_matrix(c_double, pgl.glGetDoublev) |
|
p = get_projection_matrix(c_double, pgl.glGetDoublev) |
|
w = get_viewport() |
|
mx, my, mz = c_double(), c_double(), c_double() |
|
pgl.gluProject(x, y, z, m, p, w, mx, my, mz) |
|
return float(mx.value), float(my.value), float(mz.value) |
|
|
|
|
|
def vec_subs(a, b): |
|
return tuple(a[i] - b[i] for i in range(len(a))) |
|
|
|
|
|
def billboard_matrix(): |
|
""" |
|
Removes rotational components of |
|
current matrix so that primitives |
|
are always drawn facing the viewer. |
|
|
|
|1|0|0|x| |
|
|0|1|0|x| |
|
|0|0|1|x| (x means left unchanged) |
|
|x|x|x|x| |
|
""" |
|
m = get_model_matrix() |
|
|
|
m[0] = 1 |
|
m[1] = 0 |
|
m[2] = 0 |
|
m[4] = 0 |
|
m[5] = 1 |
|
m[6] = 0 |
|
m[8] = 0 |
|
m[9] = 0 |
|
m[10] = 1 |
|
pgl.glLoadMatrixf(m) |
|
|
|
|
|
def create_bounds(): |
|
return [[S.Infinity, S.NegativeInfinity, 0], |
|
[S.Infinity, S.NegativeInfinity, 0], |
|
[S.Infinity, S.NegativeInfinity, 0]] |
|
|
|
|
|
def update_bounds(b, v): |
|
if v is None: |
|
return |
|
for axis in range(3): |
|
b[axis][0] = min([b[axis][0], v[axis]]) |
|
b[axis][1] = max([b[axis][1], v[axis]]) |
|
|
|
|
|
def interpolate(a_min, a_max, a_ratio): |
|
return a_min + a_ratio * (a_max - a_min) |
|
|
|
|
|
def rinterpolate(a_min, a_max, a_value): |
|
a_range = a_max - a_min |
|
if a_max == a_min: |
|
a_range = 1.0 |
|
return (a_value - a_min) / float(a_range) |
|
|
|
|
|
def interpolate_color(color1, color2, ratio): |
|
return tuple(interpolate(color1[i], color2[i], ratio) for i in range(3)) |
|
|
|
|
|
def scale_value(v, v_min, v_len): |
|
return (v - v_min) / v_len |
|
|
|
|
|
def scale_value_list(flist): |
|
v_min, v_max = min(flist), max(flist) |
|
v_len = v_max - v_min |
|
return [scale_value(f, v_min, v_len) for f in flist] |
|
|
|
|
|
def strided_range(r_min, r_max, stride, max_steps=50): |
|
o_min, o_max = r_min, r_max |
|
if abs(r_min - r_max) < 0.001: |
|
return [] |
|
try: |
|
range(int(r_min - r_max)) |
|
except (TypeError, OverflowError): |
|
return [] |
|
if r_min > r_max: |
|
raise ValueError("r_min cannot be greater than r_max") |
|
r_min_s = (r_min % stride) |
|
r_max_s = stride - (r_max % stride) |
|
if abs(r_max_s - stride) < 0.001: |
|
r_max_s = 0.0 |
|
r_min -= r_min_s |
|
r_max += r_max_s |
|
r_steps = int((r_max - r_min)/stride) |
|
if max_steps and r_steps > max_steps: |
|
return strided_range(o_min, o_max, stride*2) |
|
return [r_min] + [r_min + e*stride for e in range(1, r_steps + 1)] + [r_max] |
|
|
|
|
|
def parse_option_string(s): |
|
if not isinstance(s, str): |
|
return None |
|
options = {} |
|
for token in s.split(';'): |
|
pieces = token.split('=') |
|
if len(pieces) == 1: |
|
option, value = pieces[0], "" |
|
elif len(pieces) == 2: |
|
option, value = pieces |
|
else: |
|
raise ValueError("Plot option string '%s' is malformed." % (s)) |
|
options[option.strip()] = value.strip() |
|
return options |
|
|
|
|
|
def dot_product(v1, v2): |
|
return sum(v1[i]*v2[i] for i in range(3)) |
|
|
|
|
|
def vec_sub(v1, v2): |
|
return tuple(v1[i] - v2[i] for i in range(3)) |
|
|
|
|
|
def vec_mag(v): |
|
return sum(v[i]**2 for i in range(3))**(0.5) |
|
|