peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/sympy
/polys
/domains
/complexfield.py
| """Implementation of :class:`ComplexField` class. """ | |
| from sympy.core.numbers import Float, I | |
| from sympy.polys.domains.characteristiczero import CharacteristicZero | |
| from sympy.polys.domains.field import Field | |
| from sympy.polys.domains.mpelements import MPContext | |
| from sympy.polys.domains.simpledomain import SimpleDomain | |
| from sympy.polys.polyerrors import DomainError, CoercionFailed | |
| from sympy.utilities import public | |
| class ComplexField(Field, CharacteristicZero, SimpleDomain): | |
| """Complex numbers up to the given precision. """ | |
| rep = 'CC' | |
| is_ComplexField = is_CC = True | |
| is_Exact = False | |
| is_Numerical = True | |
| has_assoc_Ring = False | |
| has_assoc_Field = True | |
| _default_precision = 53 | |
| def has_default_precision(self): | |
| return self.precision == self._default_precision | |
| def precision(self): | |
| return self._context.prec | |
| def dps(self): | |
| return self._context.dps | |
| def tolerance(self): | |
| return self._context.tolerance | |
| def __init__(self, prec=_default_precision, dps=None, tol=None): | |
| context = MPContext(prec, dps, tol, False) | |
| context._parent = self | |
| self._context = context | |
| self.dtype = context.mpc | |
| self.zero = self.dtype(0) | |
| self.one = self.dtype(1) | |
| def __eq__(self, other): | |
| return (isinstance(other, ComplexField) | |
| and self.precision == other.precision | |
| and self.tolerance == other.tolerance) | |
| def __hash__(self): | |
| return hash((self.__class__.__name__, self.dtype, self.precision, self.tolerance)) | |
| def to_sympy(self, element): | |
| """Convert ``element`` to SymPy number. """ | |
| return Float(element.real, self.dps) + I*Float(element.imag, self.dps) | |
| def from_sympy(self, expr): | |
| """Convert SymPy's number to ``dtype``. """ | |
| number = expr.evalf(n=self.dps) | |
| real, imag = number.as_real_imag() | |
| if real.is_Number and imag.is_Number: | |
| return self.dtype(real, imag) | |
| else: | |
| raise CoercionFailed("expected complex number, got %s" % expr) | |
| def from_ZZ(self, element, base): | |
| return self.dtype(element) | |
| def from_QQ(self, element, base): | |
| return self.dtype(int(element.numerator)) / int(element.denominator) | |
| def from_ZZ_python(self, element, base): | |
| return self.dtype(element) | |
| def from_QQ_python(self, element, base): | |
| return self.dtype(element.numerator) / element.denominator | |
| def from_ZZ_gmpy(self, element, base): | |
| return self.dtype(int(element)) | |
| def from_QQ_gmpy(self, element, base): | |
| return self.dtype(int(element.numerator)) / int(element.denominator) | |
| def from_GaussianIntegerRing(self, element, base): | |
| return self.dtype(int(element.x), int(element.y)) | |
| def from_GaussianRationalField(self, element, base): | |
| x = element.x | |
| y = element.y | |
| return (self.dtype(int(x.numerator)) / int(x.denominator) + | |
| self.dtype(0, int(y.numerator)) / int(y.denominator)) | |
| def from_AlgebraicField(self, element, base): | |
| return self.from_sympy(base.to_sympy(element).evalf(self.dps)) | |
| def from_RealField(self, element, base): | |
| return self.dtype(element) | |
| def from_ComplexField(self, element, base): | |
| if self == base: | |
| return element | |
| else: | |
| return self.dtype(element) | |
| def get_ring(self): | |
| """Returns a ring associated with ``self``. """ | |
| raise DomainError("there is no ring associated with %s" % self) | |
| def get_exact(self): | |
| """Returns an exact domain associated with ``self``. """ | |
| raise DomainError("there is no exact domain associated with %s" % self) | |
| def is_negative(self, element): | |
| """Returns ``False`` for any ``ComplexElement``. """ | |
| return False | |
| def is_positive(self, element): | |
| """Returns ``False`` for any ``ComplexElement``. """ | |
| return False | |
| def is_nonnegative(self, element): | |
| """Returns ``False`` for any ``ComplexElement``. """ | |
| return False | |
| def is_nonpositive(self, element): | |
| """Returns ``False`` for any ``ComplexElement``. """ | |
| return False | |
| def gcd(self, a, b): | |
| """Returns GCD of ``a`` and ``b``. """ | |
| return self.one | |
| def lcm(self, a, b): | |
| """Returns LCM of ``a`` and ``b``. """ | |
| return a*b | |
| def almosteq(self, a, b, tolerance=None): | |
| """Check if ``a`` and ``b`` are almost equal. """ | |
| return self._context.almosteq(a, b, tolerance) | |
| CC = ComplexField() | |