peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/sympy
/polys
/domains
/expressiondomain.py
| """Implementation of :class:`ExpressionDomain` class. """ | |
| from sympy.core import sympify, SympifyError | |
| from sympy.polys.domains.characteristiczero import CharacteristicZero | |
| from sympy.polys.domains.field import Field | |
| from sympy.polys.domains.simpledomain import SimpleDomain | |
| from sympy.polys.polyutils import PicklableWithSlots | |
| from sympy.utilities import public | |
| eflags = {"deep": False, "mul": True, "power_exp": False, "power_base": False, | |
| "basic": False, "multinomial": False, "log": False} | |
| class ExpressionDomain(Field, CharacteristicZero, SimpleDomain): | |
| """A class for arbitrary expressions. """ | |
| is_SymbolicDomain = is_EX = True | |
| class Expression(PicklableWithSlots): | |
| """An arbitrary expression. """ | |
| __slots__ = ('ex',) | |
| def __init__(self, ex): | |
| if not isinstance(ex, self.__class__): | |
| self.ex = sympify(ex) | |
| else: | |
| self.ex = ex.ex | |
| def __repr__(f): | |
| return 'EX(%s)' % repr(f.ex) | |
| def __str__(f): | |
| return 'EX(%s)' % str(f.ex) | |
| def __hash__(self): | |
| return hash((self.__class__.__name__, self.ex)) | |
| def as_expr(f): | |
| return f.ex | |
| def numer(f): | |
| return f.__class__(f.ex.as_numer_denom()[0]) | |
| def denom(f): | |
| return f.__class__(f.ex.as_numer_denom()[1]) | |
| def simplify(f, ex): | |
| return f.__class__(ex.cancel().expand(**eflags)) | |
| def __abs__(f): | |
| return f.__class__(abs(f.ex)) | |
| def __neg__(f): | |
| return f.__class__(-f.ex) | |
| def _to_ex(f, g): | |
| try: | |
| return f.__class__(g) | |
| except SympifyError: | |
| return None | |
| def __add__(f, g): | |
| g = f._to_ex(g) | |
| if g is None: | |
| return NotImplemented | |
| elif g == EX.zero: | |
| return f | |
| elif f == EX.zero: | |
| return g | |
| else: | |
| return f.simplify(f.ex + g.ex) | |
| def __radd__(f, g): | |
| return f.simplify(f.__class__(g).ex + f.ex) | |
| def __sub__(f, g): | |
| g = f._to_ex(g) | |
| if g is None: | |
| return NotImplemented | |
| elif g == EX.zero: | |
| return f | |
| elif f == EX.zero: | |
| return -g | |
| else: | |
| return f.simplify(f.ex - g.ex) | |
| def __rsub__(f, g): | |
| return f.simplify(f.__class__(g).ex - f.ex) | |
| def __mul__(f, g): | |
| g = f._to_ex(g) | |
| if g is None: | |
| return NotImplemented | |
| if EX.zero in (f, g): | |
| return EX.zero | |
| elif f.ex.is_Number and g.ex.is_Number: | |
| return f.__class__(f.ex*g.ex) | |
| return f.simplify(f.ex*g.ex) | |
| def __rmul__(f, g): | |
| return f.simplify(f.__class__(g).ex*f.ex) | |
| def __pow__(f, n): | |
| n = f._to_ex(n) | |
| if n is not None: | |
| return f.simplify(f.ex**n.ex) | |
| else: | |
| return NotImplemented | |
| def __truediv__(f, g): | |
| g = f._to_ex(g) | |
| if g is not None: | |
| return f.simplify(f.ex/g.ex) | |
| else: | |
| return NotImplemented | |
| def __rtruediv__(f, g): | |
| return f.simplify(f.__class__(g).ex/f.ex) | |
| def __eq__(f, g): | |
| return f.ex == f.__class__(g).ex | |
| def __ne__(f, g): | |
| return not f == g | |
| def __bool__(f): | |
| return not f.ex.is_zero | |
| def gcd(f, g): | |
| from sympy.polys import gcd | |
| return f.__class__(gcd(f.ex, f.__class__(g).ex)) | |
| def lcm(f, g): | |
| from sympy.polys import lcm | |
| return f.__class__(lcm(f.ex, f.__class__(g).ex)) | |
| dtype = Expression | |
| zero = Expression(0) | |
| one = Expression(1) | |
| rep = 'EX' | |
| has_assoc_Ring = False | |
| has_assoc_Field = True | |
| def __init__(self): | |
| pass | |
| def to_sympy(self, a): | |
| """Convert ``a`` to a SymPy object. """ | |
| return a.as_expr() | |
| def from_sympy(self, a): | |
| """Convert SymPy's expression to ``dtype``. """ | |
| return self.dtype(a) | |
| def from_ZZ(K1, a, K0): | |
| """Convert a Python ``int`` object to ``dtype``. """ | |
| return K1(K0.to_sympy(a)) | |
| def from_ZZ_python(K1, a, K0): | |
| """Convert a Python ``int`` object to ``dtype``. """ | |
| return K1(K0.to_sympy(a)) | |
| def from_QQ(K1, a, K0): | |
| """Convert a Python ``Fraction`` object to ``dtype``. """ | |
| return K1(K0.to_sympy(a)) | |
| def from_QQ_python(K1, a, K0): | |
| """Convert a Python ``Fraction`` object to ``dtype``. """ | |
| return K1(K0.to_sympy(a)) | |
| def from_ZZ_gmpy(K1, a, K0): | |
| """Convert a GMPY ``mpz`` object to ``dtype``. """ | |
| return K1(K0.to_sympy(a)) | |
| def from_QQ_gmpy(K1, a, K0): | |
| """Convert a GMPY ``mpq`` object to ``dtype``. """ | |
| return K1(K0.to_sympy(a)) | |
| def from_GaussianIntegerRing(K1, a, K0): | |
| """Convert a ``GaussianRational`` object to ``dtype``. """ | |
| return K1(K0.to_sympy(a)) | |
| def from_GaussianRationalField(K1, a, K0): | |
| """Convert a ``GaussianRational`` object to ``dtype``. """ | |
| return K1(K0.to_sympy(a)) | |
| def from_RealField(K1, a, K0): | |
| """Convert a mpmath ``mpf`` object to ``dtype``. """ | |
| return K1(K0.to_sympy(a)) | |
| def from_PolynomialRing(K1, a, K0): | |
| """Convert a ``DMP`` object to ``dtype``. """ | |
| return K1(K0.to_sympy(a)) | |
| def from_FractionField(K1, a, K0): | |
| """Convert a ``DMF`` object to ``dtype``. """ | |
| return K1(K0.to_sympy(a)) | |
| def from_ExpressionDomain(K1, a, K0): | |
| """Convert a ``EX`` object to ``dtype``. """ | |
| return a | |
| def get_ring(self): | |
| """Returns a ring associated with ``self``. """ | |
| return self # XXX: EX is not a ring but we don't have much choice here. | |
| def get_field(self): | |
| """Returns a field associated with ``self``. """ | |
| return self | |
| def is_positive(self, a): | |
| """Returns True if ``a`` is positive. """ | |
| return a.ex.as_coeff_mul()[0].is_positive | |
| def is_negative(self, a): | |
| """Returns True if ``a`` is negative. """ | |
| return a.ex.could_extract_minus_sign() | |
| def is_nonpositive(self, a): | |
| """Returns True if ``a`` is non-positive. """ | |
| return a.ex.as_coeff_mul()[0].is_nonpositive | |
| def is_nonnegative(self, a): | |
| """Returns True if ``a`` is non-negative. """ | |
| return a.ex.as_coeff_mul()[0].is_nonnegative | |
| def numer(self, a): | |
| """Returns numerator of ``a``. """ | |
| return a.numer() | |
| def denom(self, a): | |
| """Returns denominator of ``a``. """ | |
| return a.denom() | |
| def gcd(self, a, b): | |
| return self(1) | |
| def lcm(self, a, b): | |
| return a.lcm(b) | |
| EX = ExpressionDomain() | |