peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/sympy
/polys
/sqfreetools.py
"""Square-free decomposition algorithms and related tools. """ | |
from sympy.polys.densearith import ( | |
dup_neg, dmp_neg, | |
dup_sub, dmp_sub, | |
dup_mul, | |
dup_quo, dmp_quo, | |
dup_mul_ground, dmp_mul_ground) | |
from sympy.polys.densebasic import ( | |
dup_strip, | |
dup_LC, dmp_ground_LC, | |
dmp_zero_p, | |
dmp_ground, | |
dup_degree, dmp_degree, | |
dmp_raise, dmp_inject, | |
dup_convert) | |
from sympy.polys.densetools import ( | |
dup_diff, dmp_diff, dmp_diff_in, | |
dup_shift, dmp_compose, | |
dup_monic, dmp_ground_monic, | |
dup_primitive, dmp_ground_primitive) | |
from sympy.polys.euclidtools import ( | |
dup_inner_gcd, dmp_inner_gcd, | |
dup_gcd, dmp_gcd, | |
dmp_resultant) | |
from sympy.polys.galoistools import ( | |
gf_sqf_list, gf_sqf_part) | |
from sympy.polys.polyerrors import ( | |
MultivariatePolynomialError, | |
DomainError) | |
def dup_sqf_p(f, K): | |
""" | |
Return ``True`` if ``f`` is a square-free polynomial in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_sqf_p(x**2 - 2*x + 1) | |
False | |
>>> R.dup_sqf_p(x**2 - 1) | |
True | |
""" | |
if not f: | |
return True | |
else: | |
return not dup_degree(dup_gcd(f, dup_diff(f, 1, K), K)) | |
def dmp_sqf_p(f, u, K): | |
""" | |
Return ``True`` if ``f`` is a square-free polynomial in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_sqf_p(x**2 + 2*x*y + y**2) | |
False | |
>>> R.dmp_sqf_p(x**2 + y**2) | |
True | |
""" | |
if dmp_zero_p(f, u): | |
return True | |
else: | |
return not dmp_degree(dmp_gcd(f, dmp_diff(f, 1, u, K), u, K), u) | |
def dup_sqf_norm(f, K): | |
""" | |
Square-free norm of ``f`` in ``K[x]``, useful over algebraic domains. | |
Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))`` | |
is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, QQ | |
>>> from sympy import sqrt | |
>>> K = QQ.algebraic_field(sqrt(3)) | |
>>> R, x = ring("x", K) | |
>>> _, X = ring("x", QQ) | |
>>> s, f, r = R.dup_sqf_norm(x**2 - 2) | |
>>> s == 1 | |
True | |
>>> f == x**2 + K([QQ(-2), QQ(0)])*x + 1 | |
True | |
>>> r == X**4 - 10*X**2 + 1 | |
True | |
""" | |
if not K.is_Algebraic: | |
raise DomainError("ground domain must be algebraic") | |
s, g = 0, dmp_raise(K.mod.rep, 1, 0, K.dom) | |
while True: | |
h, _ = dmp_inject(f, 0, K, front=True) | |
r = dmp_resultant(g, h, 1, K.dom) | |
if dup_sqf_p(r, K.dom): | |
break | |
else: | |
f, s = dup_shift(f, -K.unit, K), s + 1 | |
return s, f, r | |
def dmp_sqf_norm(f, u, K): | |
""" | |
Square-free norm of ``f`` in ``K[X]``, useful over algebraic domains. | |
Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))`` | |
is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, QQ | |
>>> from sympy import I | |
>>> K = QQ.algebraic_field(I) | |
>>> R, x, y = ring("x,y", K) | |
>>> _, X, Y = ring("x,y", QQ) | |
>>> s, f, r = R.dmp_sqf_norm(x*y + y**2) | |
>>> s == 1 | |
True | |
>>> f == x*y + y**2 + K([QQ(-1), QQ(0)])*y | |
True | |
>>> r == X**2*Y**2 + 2*X*Y**3 + Y**4 + Y**2 | |
True | |
""" | |
if not u: | |
return dup_sqf_norm(f, K) | |
if not K.is_Algebraic: | |
raise DomainError("ground domain must be algebraic") | |
g = dmp_raise(K.mod.rep, u + 1, 0, K.dom) | |
F = dmp_raise([K.one, -K.unit], u, 0, K) | |
s = 0 | |
while True: | |
h, _ = dmp_inject(f, u, K, front=True) | |
r = dmp_resultant(g, h, u + 1, K.dom) | |
if dmp_sqf_p(r, u, K.dom): | |
break | |
else: | |
f, s = dmp_compose(f, F, u, K), s + 1 | |
return s, f, r | |
def dmp_norm(f, u, K): | |
""" | |
Norm of ``f`` in ``K[X1, ..., Xn]``, often not square-free. | |
""" | |
if not K.is_Algebraic: | |
raise DomainError("ground domain must be algebraic") | |
g = dmp_raise(K.mod.rep, u + 1, 0, K.dom) | |
h, _ = dmp_inject(f, u, K, front=True) | |
return dmp_resultant(g, h, u + 1, K.dom) | |
def dup_gf_sqf_part(f, K): | |
"""Compute square-free part of ``f`` in ``GF(p)[x]``. """ | |
f = dup_convert(f, K, K.dom) | |
g = gf_sqf_part(f, K.mod, K.dom) | |
return dup_convert(g, K.dom, K) | |
def dmp_gf_sqf_part(f, u, K): | |
"""Compute square-free part of ``f`` in ``GF(p)[X]``. """ | |
raise NotImplementedError('multivariate polynomials over finite fields') | |
def dup_sqf_part(f, K): | |
""" | |
Returns square-free part of a polynomial in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_sqf_part(x**3 - 3*x - 2) | |
x**2 - x - 2 | |
""" | |
if K.is_FiniteField: | |
return dup_gf_sqf_part(f, K) | |
if not f: | |
return f | |
if K.is_negative(dup_LC(f, K)): | |
f = dup_neg(f, K) | |
gcd = dup_gcd(f, dup_diff(f, 1, K), K) | |
sqf = dup_quo(f, gcd, K) | |
if K.is_Field: | |
return dup_monic(sqf, K) | |
else: | |
return dup_primitive(sqf, K)[1] | |
def dmp_sqf_part(f, u, K): | |
""" | |
Returns square-free part of a polynomial in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_sqf_part(x**3 + 2*x**2*y + x*y**2) | |
x**2 + x*y | |
""" | |
if not u: | |
return dup_sqf_part(f, K) | |
if K.is_FiniteField: | |
return dmp_gf_sqf_part(f, u, K) | |
if dmp_zero_p(f, u): | |
return f | |
if K.is_negative(dmp_ground_LC(f, u, K)): | |
f = dmp_neg(f, u, K) | |
gcd = f | |
for i in range(u+1): | |
gcd = dmp_gcd(gcd, dmp_diff_in(f, 1, i, u, K), u, K) | |
sqf = dmp_quo(f, gcd, u, K) | |
if K.is_Field: | |
return dmp_ground_monic(sqf, u, K) | |
else: | |
return dmp_ground_primitive(sqf, u, K)[1] | |
def dup_gf_sqf_list(f, K, all=False): | |
"""Compute square-free decomposition of ``f`` in ``GF(p)[x]``. """ | |
f = dup_convert(f, K, K.dom) | |
coeff, factors = gf_sqf_list(f, K.mod, K.dom, all=all) | |
for i, (f, k) in enumerate(factors): | |
factors[i] = (dup_convert(f, K.dom, K), k) | |
return K.convert(coeff, K.dom), factors | |
def dmp_gf_sqf_list(f, u, K, all=False): | |
"""Compute square-free decomposition of ``f`` in ``GF(p)[X]``. """ | |
raise NotImplementedError('multivariate polynomials over finite fields') | |
def dup_sqf_list(f, K, all=False): | |
""" | |
Return square-free decomposition of a polynomial in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16 | |
>>> R.dup_sqf_list(f) | |
(2, [(x + 1, 2), (x + 2, 3)]) | |
>>> R.dup_sqf_list(f, all=True) | |
(2, [(1, 1), (x + 1, 2), (x + 2, 3)]) | |
""" | |
if K.is_FiniteField: | |
return dup_gf_sqf_list(f, K, all=all) | |
if K.is_Field: | |
coeff = dup_LC(f, K) | |
f = dup_monic(f, K) | |
else: | |
coeff, f = dup_primitive(f, K) | |
if K.is_negative(dup_LC(f, K)): | |
f = dup_neg(f, K) | |
coeff = -coeff | |
if dup_degree(f) <= 0: | |
return coeff, [] | |
result, i = [], 1 | |
h = dup_diff(f, 1, K) | |
g, p, q = dup_inner_gcd(f, h, K) | |
while True: | |
d = dup_diff(p, 1, K) | |
h = dup_sub(q, d, K) | |
if not h: | |
result.append((p, i)) | |
break | |
g, p, q = dup_inner_gcd(p, h, K) | |
if all or dup_degree(g) > 0: | |
result.append((g, i)) | |
i += 1 | |
return coeff, result | |
def dup_sqf_list_include(f, K, all=False): | |
""" | |
Return square-free decomposition of a polynomial in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16 | |
>>> R.dup_sqf_list_include(f) | |
[(2, 1), (x + 1, 2), (x + 2, 3)] | |
>>> R.dup_sqf_list_include(f, all=True) | |
[(2, 1), (x + 1, 2), (x + 2, 3)] | |
""" | |
coeff, factors = dup_sqf_list(f, K, all=all) | |
if factors and factors[0][1] == 1: | |
g = dup_mul_ground(factors[0][0], coeff, K) | |
return [(g, 1)] + factors[1:] | |
else: | |
g = dup_strip([coeff]) | |
return [(g, 1)] + factors | |
def dmp_sqf_list(f, u, K, all=False): | |
""" | |
Return square-free decomposition of a polynomial in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> f = x**5 + 2*x**4*y + x**3*y**2 | |
>>> R.dmp_sqf_list(f) | |
(1, [(x + y, 2), (x, 3)]) | |
>>> R.dmp_sqf_list(f, all=True) | |
(1, [(1, 1), (x + y, 2), (x, 3)]) | |
""" | |
if not u: | |
return dup_sqf_list(f, K, all=all) | |
if K.is_FiniteField: | |
return dmp_gf_sqf_list(f, u, K, all=all) | |
if K.is_Field: | |
coeff = dmp_ground_LC(f, u, K) | |
f = dmp_ground_monic(f, u, K) | |
else: | |
coeff, f = dmp_ground_primitive(f, u, K) | |
if K.is_negative(dmp_ground_LC(f, u, K)): | |
f = dmp_neg(f, u, K) | |
coeff = -coeff | |
if dmp_degree(f, u) <= 0: | |
return coeff, [] | |
result, i = [], 1 | |
h = dmp_diff(f, 1, u, K) | |
g, p, q = dmp_inner_gcd(f, h, u, K) | |
while True: | |
d = dmp_diff(p, 1, u, K) | |
h = dmp_sub(q, d, u, K) | |
if dmp_zero_p(h, u): | |
result.append((p, i)) | |
break | |
g, p, q = dmp_inner_gcd(p, h, u, K) | |
if all or dmp_degree(g, u) > 0: | |
result.append((g, i)) | |
i += 1 | |
return coeff, result | |
def dmp_sqf_list_include(f, u, K, all=False): | |
""" | |
Return square-free decomposition of a polynomial in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> f = x**5 + 2*x**4*y + x**3*y**2 | |
>>> R.dmp_sqf_list_include(f) | |
[(1, 1), (x + y, 2), (x, 3)] | |
>>> R.dmp_sqf_list_include(f, all=True) | |
[(1, 1), (x + y, 2), (x, 3)] | |
""" | |
if not u: | |
return dup_sqf_list_include(f, K, all=all) | |
coeff, factors = dmp_sqf_list(f, u, K, all=all) | |
if factors and factors[0][1] == 1: | |
g = dmp_mul_ground(factors[0][0], coeff, u, K) | |
return [(g, 1)] + factors[1:] | |
else: | |
g = dmp_ground(coeff, u) | |
return [(g, 1)] + factors | |
def dup_gff_list(f, K): | |
""" | |
Compute greatest factorial factorization of ``f`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_gff_list(x**5 + 2*x**4 - x**3 - 2*x**2) | |
[(x, 1), (x + 2, 4)] | |
""" | |
if not f: | |
raise ValueError("greatest factorial factorization doesn't exist for a zero polynomial") | |
f = dup_monic(f, K) | |
if not dup_degree(f): | |
return [] | |
else: | |
g = dup_gcd(f, dup_shift(f, K.one, K), K) | |
H = dup_gff_list(g, K) | |
for i, (h, k) in enumerate(H): | |
g = dup_mul(g, dup_shift(h, -K(k), K), K) | |
H[i] = (h, k + 1) | |
f = dup_quo(f, g, K) | |
if not dup_degree(f): | |
return H | |
else: | |
return [(f, 1)] + H | |
def dmp_gff_list(f, u, K): | |
""" | |
Compute greatest factorial factorization of ``f`` in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
""" | |
if not u: | |
return dup_gff_list(f, K) | |
else: | |
raise MultivariatePolynomialError(f) | |