|
""" |
|
Continuous Random Variables Module |
|
|
|
See Also |
|
======== |
|
sympy.stats.crv_types |
|
sympy.stats.rv |
|
sympy.stats.frv |
|
""" |
|
|
|
|
|
from sympy.core.basic import Basic |
|
from sympy.core.cache import cacheit |
|
from sympy.core.function import Lambda, PoleError |
|
from sympy.core.numbers import (I, nan, oo) |
|
from sympy.core.relational import (Eq, Ne) |
|
from sympy.core.singleton import S |
|
from sympy.core.symbol import (Dummy, symbols) |
|
from sympy.core.sympify import _sympify, sympify |
|
from sympy.functions.combinatorial.factorials import factorial |
|
from sympy.functions.elementary.exponential import exp |
|
from sympy.functions.elementary.piecewise import Piecewise |
|
from sympy.functions.special.delta_functions import DiracDelta |
|
from sympy.integrals.integrals import (Integral, integrate) |
|
from sympy.logic.boolalg import (And, Or) |
|
from sympy.polys.polyerrors import PolynomialError |
|
from sympy.polys.polytools import poly |
|
from sympy.series.series import series |
|
from sympy.sets.sets import (FiniteSet, Intersection, Interval, Union) |
|
from sympy.solvers.solveset import solveset |
|
from sympy.solvers.inequalities import reduce_rational_inequalities |
|
from sympy.stats.rv import (RandomDomain, SingleDomain, ConditionalDomain, is_random, |
|
ProductDomain, PSpace, SinglePSpace, random_symbols, NamedArgsMixin, Distribution) |
|
|
|
|
|
class ContinuousDomain(RandomDomain): |
|
""" |
|
A domain with continuous support |
|
|
|
Represented using symbols and Intervals. |
|
""" |
|
is_Continuous = True |
|
|
|
def as_boolean(self): |
|
raise NotImplementedError("Not Implemented for generic Domains") |
|
|
|
|
|
class SingleContinuousDomain(ContinuousDomain, SingleDomain): |
|
""" |
|
A univariate domain with continuous support |
|
|
|
Represented using a single symbol and interval. |
|
""" |
|
def compute_expectation(self, expr, variables=None, **kwargs): |
|
if variables is None: |
|
variables = self.symbols |
|
if not variables: |
|
return expr |
|
if frozenset(variables) != frozenset(self.symbols): |
|
raise ValueError("Values should be equal") |
|
|
|
return Integral(expr, (self.symbol, self.set), **kwargs) |
|
|
|
def as_boolean(self): |
|
return self.set.as_relational(self.symbol) |
|
|
|
|
|
class ProductContinuousDomain(ProductDomain, ContinuousDomain): |
|
""" |
|
A collection of independent domains with continuous support |
|
""" |
|
|
|
def compute_expectation(self, expr, variables=None, **kwargs): |
|
if variables is None: |
|
variables = self.symbols |
|
for domain in self.domains: |
|
domain_vars = frozenset(variables) & frozenset(domain.symbols) |
|
if domain_vars: |
|
expr = domain.compute_expectation(expr, domain_vars, **kwargs) |
|
return expr |
|
|
|
def as_boolean(self): |
|
return And(*[domain.as_boolean() for domain in self.domains]) |
|
|
|
|
|
class ConditionalContinuousDomain(ContinuousDomain, ConditionalDomain): |
|
""" |
|
A domain with continuous support that has been further restricted by a |
|
condition such as $x > 3$. |
|
""" |
|
|
|
def compute_expectation(self, expr, variables=None, **kwargs): |
|
if variables is None: |
|
variables = self.symbols |
|
if not variables: |
|
return expr |
|
|
|
fullintgrl = self.fulldomain.compute_expectation(expr, variables) |
|
|
|
integrand, limits = fullintgrl.function, list(fullintgrl.limits) |
|
|
|
conditions = [self.condition] |
|
while conditions: |
|
cond = conditions.pop() |
|
if cond.is_Boolean: |
|
if isinstance(cond, And): |
|
conditions.extend(cond.args) |
|
elif isinstance(cond, Or): |
|
raise NotImplementedError("Or not implemented here") |
|
elif cond.is_Relational: |
|
if cond.is_Equality: |
|
|
|
integrand *= DiracDelta(cond.lhs - cond.rhs) |
|
else: |
|
symbols = cond.free_symbols & set(self.symbols) |
|
if len(symbols) != 1: |
|
raise NotImplementedError( |
|
"Multivariate Inequalities not yet implemented") |
|
|
|
symbol = symbols.pop() |
|
|
|
for i, limit in enumerate(limits): |
|
if limit[0] == symbol: |
|
|
|
cintvl = reduce_rational_inequalities_wrap( |
|
cond, symbol) |
|
|
|
lintvl = Interval(limit[1], limit[2]) |
|
|
|
intvl = cintvl.intersect(lintvl) |
|
|
|
limits[i] = (symbol, intvl.left, intvl.right) |
|
else: |
|
raise TypeError( |
|
"Condition %s is not a relational or Boolean" % cond) |
|
|
|
return Integral(integrand, *limits, **kwargs) |
|
|
|
def as_boolean(self): |
|
return And(self.fulldomain.as_boolean(), self.condition) |
|
|
|
@property |
|
def set(self): |
|
if len(self.symbols) == 1: |
|
return (self.fulldomain.set & reduce_rational_inequalities_wrap( |
|
self.condition, tuple(self.symbols)[0])) |
|
else: |
|
raise NotImplementedError( |
|
"Set of Conditional Domain not Implemented") |
|
|
|
|
|
class ContinuousDistribution(Distribution): |
|
def __call__(self, *args): |
|
return self.pdf(*args) |
|
|
|
|
|
class SingleContinuousDistribution(ContinuousDistribution, NamedArgsMixin): |
|
""" Continuous distribution of a single variable. |
|
|
|
Explanation |
|
=========== |
|
|
|
Serves as superclass for Normal/Exponential/UniformDistribution etc.... |
|
|
|
Represented by parameters for each of the specific classes. E.g |
|
NormalDistribution is represented by a mean and standard deviation. |
|
|
|
Provides methods for pdf, cdf, and sampling. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.stats.crv_types.* |
|
""" |
|
|
|
set = Interval(-oo, oo) |
|
|
|
def __new__(cls, *args): |
|
args = list(map(sympify, args)) |
|
return Basic.__new__(cls, *args) |
|
|
|
@staticmethod |
|
def check(*args): |
|
pass |
|
|
|
@cacheit |
|
def compute_cdf(self, **kwargs): |
|
""" Compute the CDF from the PDF. |
|
|
|
Returns a Lambda. |
|
""" |
|
x, z = symbols('x, z', real=True, cls=Dummy) |
|
left_bound = self.set.start |
|
|
|
|
|
pdf = self.pdf(x) |
|
cdf = integrate(pdf.doit(), (x, left_bound, z), **kwargs) |
|
|
|
cdf = Piecewise((cdf, z >= left_bound), (0, True)) |
|
return Lambda(z, cdf) |
|
|
|
def _cdf(self, x): |
|
return None |
|
|
|
def cdf(self, x, **kwargs): |
|
""" Cumulative density function """ |
|
if len(kwargs) == 0: |
|
cdf = self._cdf(x) |
|
if cdf is not None: |
|
return cdf |
|
return self.compute_cdf(**kwargs)(x) |
|
|
|
@cacheit |
|
def compute_characteristic_function(self, **kwargs): |
|
""" Compute the characteristic function from the PDF. |
|
|
|
Returns a Lambda. |
|
""" |
|
x, t = symbols('x, t', real=True, cls=Dummy) |
|
pdf = self.pdf(x) |
|
cf = integrate(exp(I*t*x)*pdf, (x, self.set)) |
|
return Lambda(t, cf) |
|
|
|
def _characteristic_function(self, t): |
|
return None |
|
|
|
def characteristic_function(self, t, **kwargs): |
|
""" Characteristic function """ |
|
if len(kwargs) == 0: |
|
cf = self._characteristic_function(t) |
|
if cf is not None: |
|
return cf |
|
return self.compute_characteristic_function(**kwargs)(t) |
|
|
|
@cacheit |
|
def compute_moment_generating_function(self, **kwargs): |
|
""" Compute the moment generating function from the PDF. |
|
|
|
Returns a Lambda. |
|
""" |
|
x, t = symbols('x, t', real=True, cls=Dummy) |
|
pdf = self.pdf(x) |
|
mgf = integrate(exp(t * x) * pdf, (x, self.set)) |
|
return Lambda(t, mgf) |
|
|
|
def _moment_generating_function(self, t): |
|
return None |
|
|
|
def moment_generating_function(self, t, **kwargs): |
|
""" Moment generating function """ |
|
if not kwargs: |
|
mgf = self._moment_generating_function(t) |
|
if mgf is not None: |
|
return mgf |
|
return self.compute_moment_generating_function(**kwargs)(t) |
|
|
|
def expectation(self, expr, var, evaluate=True, **kwargs): |
|
""" Expectation of expression over distribution """ |
|
if evaluate: |
|
try: |
|
p = poly(expr, var) |
|
if p.is_zero: |
|
return S.Zero |
|
t = Dummy('t', real=True) |
|
mgf = self._moment_generating_function(t) |
|
if mgf is None: |
|
return integrate(expr * self.pdf(var), (var, self.set), **kwargs) |
|
deg = p.degree() |
|
taylor = poly(series(mgf, t, 0, deg + 1).removeO(), t) |
|
result = 0 |
|
for k in range(deg+1): |
|
result += p.coeff_monomial(var ** k) * taylor.coeff_monomial(t ** k) * factorial(k) |
|
return result |
|
except PolynomialError: |
|
return integrate(expr * self.pdf(var), (var, self.set), **kwargs) |
|
else: |
|
return Integral(expr * self.pdf(var), (var, self.set), **kwargs) |
|
|
|
@cacheit |
|
def compute_quantile(self, **kwargs): |
|
""" Compute the Quantile from the PDF. |
|
|
|
Returns a Lambda. |
|
""" |
|
x, p = symbols('x, p', real=True, cls=Dummy) |
|
left_bound = self.set.start |
|
|
|
pdf = self.pdf(x) |
|
cdf = integrate(pdf, (x, left_bound, x), **kwargs) |
|
quantile = solveset(cdf - p, x, self.set) |
|
return Lambda(p, Piecewise((quantile, (p >= 0) & (p <= 1) ), (nan, True))) |
|
|
|
def _quantile(self, x): |
|
return None |
|
|
|
def quantile(self, x, **kwargs): |
|
""" Cumulative density function """ |
|
if len(kwargs) == 0: |
|
quantile = self._quantile(x) |
|
if quantile is not None: |
|
return quantile |
|
return self.compute_quantile(**kwargs)(x) |
|
|
|
|
|
class ContinuousPSpace(PSpace): |
|
""" Continuous Probability Space |
|
|
|
Represents the likelihood of an event space defined over a continuum. |
|
|
|
Represented with a ContinuousDomain and a PDF (Lambda-Like) |
|
""" |
|
|
|
is_Continuous = True |
|
is_real = True |
|
|
|
@property |
|
def pdf(self): |
|
return self.density(*self.domain.symbols) |
|
|
|
def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs): |
|
if rvs is None: |
|
rvs = self.values |
|
else: |
|
rvs = frozenset(rvs) |
|
|
|
expr = expr.xreplace({rv: rv.symbol for rv in rvs}) |
|
|
|
domain_symbols = frozenset(rv.symbol for rv in rvs) |
|
|
|
return self.domain.compute_expectation(self.pdf * expr, |
|
domain_symbols, **kwargs) |
|
|
|
def compute_density(self, expr, **kwargs): |
|
|
|
if expr in self.values: |
|
|
|
randomsymbols = tuple(set(self.values) - frozenset([expr])) |
|
symbols = tuple(rs.symbol for rs in randomsymbols) |
|
pdf = self.domain.compute_expectation(self.pdf, symbols, **kwargs) |
|
return Lambda(expr.symbol, pdf) |
|
|
|
z = Dummy('z', real=True) |
|
return Lambda(z, self.compute_expectation(DiracDelta(expr - z), **kwargs)) |
|
|
|
@cacheit |
|
def compute_cdf(self, expr, **kwargs): |
|
if not self.domain.set.is_Interval: |
|
raise ValueError( |
|
"CDF not well defined on multivariate expressions") |
|
|
|
d = self.compute_density(expr, **kwargs) |
|
x, z = symbols('x, z', real=True, cls=Dummy) |
|
left_bound = self.domain.set.start |
|
|
|
|
|
cdf = integrate(d(x), (x, left_bound, z), **kwargs) |
|
|
|
cdf = Piecewise((cdf, z >= left_bound), (0, True)) |
|
return Lambda(z, cdf) |
|
|
|
@cacheit |
|
def compute_characteristic_function(self, expr, **kwargs): |
|
if not self.domain.set.is_Interval: |
|
raise NotImplementedError("Characteristic function of multivariate expressions not implemented") |
|
|
|
d = self.compute_density(expr, **kwargs) |
|
x, t = symbols('x, t', real=True, cls=Dummy) |
|
cf = integrate(exp(I*t*x)*d(x), (x, -oo, oo), **kwargs) |
|
return Lambda(t, cf) |
|
|
|
@cacheit |
|
def compute_moment_generating_function(self, expr, **kwargs): |
|
if not self.domain.set.is_Interval: |
|
raise NotImplementedError("Moment generating function of multivariate expressions not implemented") |
|
|
|
d = self.compute_density(expr, **kwargs) |
|
x, t = symbols('x, t', real=True, cls=Dummy) |
|
mgf = integrate(exp(t * x) * d(x), (x, -oo, oo), **kwargs) |
|
return Lambda(t, mgf) |
|
|
|
@cacheit |
|
def compute_quantile(self, expr, **kwargs): |
|
if not self.domain.set.is_Interval: |
|
raise ValueError( |
|
"Quantile not well defined on multivariate expressions") |
|
|
|
d = self.compute_cdf(expr, **kwargs) |
|
x = Dummy('x', real=True) |
|
p = Dummy('p', positive=True) |
|
|
|
quantile = solveset(d(x) - p, x, self.set) |
|
|
|
return Lambda(p, quantile) |
|
|
|
def probability(self, condition, **kwargs): |
|
z = Dummy('z', real=True) |
|
cond_inv = False |
|
if isinstance(condition, Ne): |
|
condition = Eq(condition.args[0], condition.args[1]) |
|
cond_inv = True |
|
|
|
try: |
|
domain = self.where(condition) |
|
rv = [rv for rv in self.values if rv.symbol == domain.symbol][0] |
|
|
|
pdf = self.compute_density(rv, **kwargs) |
|
|
|
if domain.set is S.EmptySet or isinstance(domain.set, FiniteSet): |
|
return S.Zero if not cond_inv else S.One |
|
if isinstance(domain.set, Union): |
|
return sum( |
|
Integral(pdf(z), (z, subset), **kwargs) for subset in |
|
domain.set.args if isinstance(subset, Interval)) |
|
|
|
return Integral(pdf(z), (z, domain.set), **kwargs) |
|
|
|
|
|
|
|
except NotImplementedError: |
|
from sympy.stats.rv import density |
|
expr = condition.lhs - condition.rhs |
|
if not is_random(expr): |
|
dens = self.density |
|
comp = condition.rhs |
|
else: |
|
dens = density(expr, **kwargs) |
|
comp = 0 |
|
if not isinstance(dens, ContinuousDistribution): |
|
from sympy.stats.crv_types import ContinuousDistributionHandmade |
|
dens = ContinuousDistributionHandmade(dens, set=self.domain.set) |
|
|
|
space = SingleContinuousPSpace(z, dens) |
|
result = space.probability(condition.__class__(space.value, comp)) |
|
return result if not cond_inv else S.One - result |
|
|
|
def where(self, condition): |
|
rvs = frozenset(random_symbols(condition)) |
|
if not (len(rvs) == 1 and rvs.issubset(self.values)): |
|
raise NotImplementedError( |
|
"Multiple continuous random variables not supported") |
|
rv = tuple(rvs)[0] |
|
interval = reduce_rational_inequalities_wrap(condition, rv) |
|
interval = interval.intersect(self.domain.set) |
|
return SingleContinuousDomain(rv.symbol, interval) |
|
|
|
def conditional_space(self, condition, normalize=True, **kwargs): |
|
condition = condition.xreplace({rv: rv.symbol for rv in self.values}) |
|
domain = ConditionalContinuousDomain(self.domain, condition) |
|
if normalize: |
|
|
|
|
|
|
|
|
|
|
|
replacement = {rv: Dummy(str(rv)) for rv in self.symbols} |
|
norm = domain.compute_expectation(self.pdf, **kwargs) |
|
pdf = self.pdf / norm.xreplace(replacement) |
|
|
|
|
|
density = Lambda(tuple(domain.symbols), pdf) |
|
|
|
return ContinuousPSpace(domain, density) |
|
|
|
|
|
class SingleContinuousPSpace(ContinuousPSpace, SinglePSpace): |
|
""" |
|
A continuous probability space over a single univariate variable. |
|
|
|
These consist of a Symbol and a SingleContinuousDistribution |
|
|
|
This class is normally accessed through the various random variable |
|
functions, Normal, Exponential, Uniform, etc.... |
|
""" |
|
|
|
@property |
|
def set(self): |
|
return self.distribution.set |
|
|
|
@property |
|
def domain(self): |
|
return SingleContinuousDomain(sympify(self.symbol), self.set) |
|
|
|
def sample(self, size=(), library='scipy', seed=None): |
|
""" |
|
Internal sample method. |
|
|
|
Returns dictionary mapping RandomSymbol to realization value. |
|
""" |
|
return {self.value: self.distribution.sample(size, library=library, seed=seed)} |
|
|
|
def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs): |
|
rvs = rvs or (self.value,) |
|
if self.value not in rvs: |
|
return expr |
|
|
|
expr = _sympify(expr) |
|
expr = expr.xreplace({rv: rv.symbol for rv in rvs}) |
|
|
|
x = self.value.symbol |
|
try: |
|
return self.distribution.expectation(expr, x, evaluate=evaluate, **kwargs) |
|
except PoleError: |
|
return Integral(expr * self.pdf, (x, self.set), **kwargs) |
|
|
|
def compute_cdf(self, expr, **kwargs): |
|
if expr == self.value: |
|
z = Dummy("z", real=True) |
|
return Lambda(z, self.distribution.cdf(z, **kwargs)) |
|
else: |
|
return ContinuousPSpace.compute_cdf(self, expr, **kwargs) |
|
|
|
def compute_characteristic_function(self, expr, **kwargs): |
|
if expr == self.value: |
|
t = Dummy("t", real=True) |
|
return Lambda(t, self.distribution.characteristic_function(t, **kwargs)) |
|
else: |
|
return ContinuousPSpace.compute_characteristic_function(self, expr, **kwargs) |
|
|
|
def compute_moment_generating_function(self, expr, **kwargs): |
|
if expr == self.value: |
|
t = Dummy("t", real=True) |
|
return Lambda(t, self.distribution.moment_generating_function(t, **kwargs)) |
|
else: |
|
return ContinuousPSpace.compute_moment_generating_function(self, expr, **kwargs) |
|
|
|
def compute_density(self, expr, **kwargs): |
|
|
|
if expr == self.value: |
|
return self.density |
|
y = Dummy('y', real=True) |
|
|
|
gs = solveset(expr - y, self.value, S.Reals) |
|
|
|
if isinstance(gs, Intersection) and S.Reals in gs.args: |
|
gs = list(gs.args[1]) |
|
|
|
if not gs: |
|
raise ValueError("Can not solve %s for %s"%(expr, self.value)) |
|
fx = self.compute_density(self.value) |
|
fy = sum(fx(g) * abs(g.diff(y)) for g in gs) |
|
return Lambda(y, fy) |
|
|
|
def compute_quantile(self, expr, **kwargs): |
|
|
|
if expr == self.value: |
|
p = Dummy("p", real=True) |
|
return Lambda(p, self.distribution.quantile(p, **kwargs)) |
|
else: |
|
return ContinuousPSpace.compute_quantile(self, expr, **kwargs) |
|
|
|
def _reduce_inequalities(conditions, var, **kwargs): |
|
try: |
|
return reduce_rational_inequalities(conditions, var, **kwargs) |
|
except PolynomialError: |
|
raise ValueError("Reduction of condition failed %s\n" % conditions[0]) |
|
|
|
|
|
def reduce_rational_inequalities_wrap(condition, var): |
|
if condition.is_Relational: |
|
return _reduce_inequalities([[condition]], var, relational=False) |
|
if isinstance(condition, Or): |
|
return Union(*[_reduce_inequalities([[arg]], var, relational=False) |
|
for arg in condition.args]) |
|
if isinstance(condition, And): |
|
intervals = [_reduce_inequalities([[arg]], var, relational=False) |
|
for arg in condition.args] |
|
I = intervals[0] |
|
for i in intervals: |
|
I = I.intersect(i) |
|
return I |
|
|