peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/torchgen
/api
/structured.py
from typing import List, Union | |
from torchgen.api import cpp | |
from torchgen.api.types import ( | |
ArgName, | |
ArrayRefCType, | |
BaseCType, | |
Binding, | |
ConstRefCType, | |
dimnameListT, | |
intArrayRefT, | |
iOptTensorListRefT, | |
iTensorListRefT, | |
NamedCType, | |
OptionalCType, | |
optionalIntArrayRefT, | |
optionalScalarRefT, | |
optionalTensorRefT, | |
scalarT, | |
tensorT, | |
) | |
from torchgen.model import ( | |
Argument, | |
BaseTy, | |
BaseType, | |
ListType, | |
NativeFunctionsGroup, | |
OptionalType, | |
SelfArgument, | |
TensorOptionsArguments, | |
Type, | |
) | |
from torchgen.utils import assert_never | |
# This file describes the translation of JIT schema to the structured functions API. | |
# This is similar to native API, but a number of historical problems with native | |
# API have been fixed. | |
# Translation of types occurring in JIT arguments to a C++ argument type. | |
# NB: For now, mutable doesn't do anything; but it could if we make | |
# some more nominal types | |
def argumenttype_type(t: Type, *, mutable: bool, binds: ArgName) -> NamedCType: | |
# If it's a value type, do the value type translation | |
# NB: structured kernels ALWAYS have symint off, since they involve actual | |
# kernels that require real ints. The one exception is the | |
# CompositeExplicitAutograd and the meta function (which could | |
# hypothetically be SymInt), but for simplicity we plan for these to just | |
# be handled in Python | |
r = cpp.valuetype_type(t, symint=False, binds=binds) | |
if r is not None: | |
return r | |
if isinstance(t, BaseType): | |
if t.name == BaseTy.Tensor: | |
return NamedCType(binds, ConstRefCType(BaseCType(tensorT))) | |
elif t.name == BaseTy.Scalar: | |
return NamedCType(binds, ConstRefCType(BaseCType(scalarT))) | |
else: | |
raise AssertionError(f"base type should have been value type {t}") | |
elif isinstance(t, OptionalType): | |
if t.elem == BaseType(BaseTy.Tensor): | |
return NamedCType(binds, BaseCType(optionalTensorRefT)) | |
elif t.elem == BaseType(BaseTy.Scalar): | |
return NamedCType(binds, BaseCType(optionalScalarRefT)) | |
elif isinstance(t.elem, ListType) and str(t.elem.elem) == "int": | |
return NamedCType(binds, BaseCType(optionalIntArrayRefT)) | |
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds) | |
return NamedCType(binds, OptionalCType(elem.type)) | |
elif isinstance(t, ListType): | |
if t.elem == BaseType(BaseTy.Tensor): | |
return NamedCType(binds, ConstRefCType(BaseCType(iTensorListRefT))) | |
elif t.elem == OptionalType(BaseType(BaseTy.Tensor)): | |
return NamedCType(binds, BaseCType(iOptTensorListRefT)) | |
# TODO: delete these special cases; see torchgen.api.cpp--these | |
# must be changed in tandem, but there are problems; see | |
# https://github.com/pytorch/pytorch/pull/51485 | |
elif str(t.elem) == "int": | |
return NamedCType(binds, BaseCType(intArrayRefT)) | |
elif str(t.elem) == "Dimname": | |
return NamedCType(binds, BaseCType(dimnameListT)) | |
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds) | |
return NamedCType(binds, ArrayRefCType(elem.type)) | |
else: | |
raise AssertionError(f"unrecognized type {repr(t)}") | |
def argument_type(a: Argument, *, binds: ArgName) -> NamedCType: | |
return argumenttype_type(a.type, mutable=a.is_write, binds=binds) | |
# returns_type intentionally omitted, because structured kernels never "return"; | |
# instead, they always indirectly report their outputs (in the case of a meta | |
# function, by calling set_output; in the case of an impl function, by writing | |
# directly into the provided out argument). | |
# Structured kernels are never defaulted | |
def argument(a: Union[Argument, SelfArgument, TensorOptionsArguments]) -> List[Binding]: | |
if isinstance(a, Argument): | |
return [ | |
Binding( | |
nctype=argument_type(a, binds=a.name), | |
name=a.name, | |
default=None, | |
argument=a, | |
) | |
] | |
elif isinstance(a, SelfArgument): | |
return argument(a.argument) | |
elif isinstance(a, TensorOptionsArguments): | |
raise AssertionError("structured kernels don't support TensorOptions yet") | |
else: | |
assert_never(a) | |
def impl_arguments(g: NativeFunctionsGroup) -> List[Binding]: | |
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = [] | |
if g.out.precomputed: | |
# A list of parameters for the impl function with | |
# certain parameters replaced with precomputed counterparts | |
# as specified in native_functions.yaml. | |
non_out_args_replaced: List[ | |
Union[Argument, TensorOptionsArguments, SelfArgument] | |
] = [] | |
for a in g.out.func.arguments.non_out: | |
if isinstance(a, Argument) and a.name in g.out.precomputed.replace: | |
# If a is in precompute.replace, append the parameters | |
# that should replace it onto non_out_args_replaced. | |
for replacement in g.out.precomputed.replace[a.name]: | |
non_out_args_replaced.append(replacement) | |
else: | |
# If not, push a as it is. | |
non_out_args_replaced.append(a) | |
args.extend(non_out_args_replaced) | |
# g.out.precomputed.add is the list of parameters that are added | |
# without replacement after the non out args and just before the out args | |
args.extend(g.out.precomputed.add) | |
else: | |
args.extend(g.out.func.arguments.non_out) | |
args.extend(g.out.func.arguments.out) | |
return [r for arg in args for r in argument(arg)] | |
def meta_arguments(g: NativeFunctionsGroup) -> List[Binding]: | |
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = [] | |
args.extend(g.functional.func.arguments.non_out) | |
return [r for arg in args for r in argument(arg)] | |
def out_arguments(g: NativeFunctionsGroup) -> List[Binding]: | |
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = [] | |
args.extend(g.out.func.arguments.out) | |
return [r for arg in args for r in argument(arg)] | |