peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/joblib
/_dask.py
| from __future__ import print_function, division, absolute_import | |
| import asyncio | |
| import concurrent.futures | |
| import contextlib | |
| import time | |
| from uuid import uuid4 | |
| import weakref | |
| from .parallel import parallel_config | |
| from .parallel import AutoBatchingMixin, ParallelBackendBase | |
| from ._utils import ( | |
| _TracebackCapturingWrapper, | |
| _retrieve_traceback_capturing_wrapped_call | |
| ) | |
| try: | |
| import dask | |
| import distributed | |
| except ImportError: | |
| dask = None | |
| distributed = None | |
| if dask is not None and distributed is not None: | |
| from dask.utils import funcname | |
| from dask.sizeof import sizeof | |
| from dask.distributed import ( | |
| Client, | |
| as_completed, | |
| get_client, | |
| secede, | |
| rejoin, | |
| ) | |
| from distributed.utils import thread_state | |
| try: | |
| # asyncio.TimeoutError, Python3-only error thrown by recent versions of | |
| # distributed | |
| from distributed.utils import TimeoutError as _TimeoutError | |
| except ImportError: | |
| from tornado.gen import TimeoutError as _TimeoutError | |
| def is_weakrefable(obj): | |
| try: | |
| weakref.ref(obj) | |
| return True | |
| except TypeError: | |
| return False | |
| class _WeakKeyDictionary: | |
| """A variant of weakref.WeakKeyDictionary for unhashable objects. | |
| This datastructure is used to store futures for broadcasted data objects | |
| such as large numpy arrays or pandas dataframes that are not hashable and | |
| therefore cannot be used as keys of traditional python dicts. | |
| Furthermore using a dict with id(array) as key is not safe because the | |
| Python is likely to reuse id of recently collected arrays. | |
| """ | |
| def __init__(self): | |
| self._data = {} | |
| def __getitem__(self, obj): | |
| ref, val = self._data[id(obj)] | |
| if ref() is not obj: | |
| # In case of a race condition with on_destroy. | |
| raise KeyError(obj) | |
| return val | |
| def __setitem__(self, obj, value): | |
| key = id(obj) | |
| try: | |
| ref, _ = self._data[key] | |
| if ref() is not obj: | |
| # In case of race condition with on_destroy. | |
| raise KeyError(obj) | |
| except KeyError: | |
| # Insert the new entry in the mapping along with a weakref | |
| # callback to automatically delete the entry from the mapping | |
| # as soon as the object used as key is garbage collected. | |
| def on_destroy(_): | |
| del self._data[key] | |
| ref = weakref.ref(obj, on_destroy) | |
| self._data[key] = ref, value | |
| def __len__(self): | |
| return len(self._data) | |
| def clear(self): | |
| self._data.clear() | |
| def _funcname(x): | |
| try: | |
| if isinstance(x, list): | |
| x = x[0][0] | |
| except Exception: | |
| pass | |
| return funcname(x) | |
| def _make_tasks_summary(tasks): | |
| """Summarize of list of (func, args, kwargs) function calls""" | |
| unique_funcs = {func for func, args, kwargs in tasks} | |
| if len(unique_funcs) == 1: | |
| mixed = False | |
| else: | |
| mixed = True | |
| return len(tasks), mixed, _funcname(tasks) | |
| class Batch: | |
| """dask-compatible wrapper that executes a batch of tasks""" | |
| def __init__(self, tasks): | |
| # collect some metadata from the tasks to ease Batch calls | |
| # introspection when debugging | |
| self._num_tasks, self._mixed, self._funcname = _make_tasks_summary( | |
| tasks | |
| ) | |
| def __call__(self, tasks=None): | |
| results = [] | |
| with parallel_config(backend='dask'): | |
| for func, args, kwargs in tasks: | |
| results.append(func(*args, **kwargs)) | |
| return results | |
| def __repr__(self): | |
| descr = f"batch_of_{self._funcname}_{self._num_tasks}_calls" | |
| if self._mixed: | |
| descr = "mixed_" + descr | |
| return descr | |
| def _joblib_probe_task(): | |
| # Noop used by the joblib connector to probe when workers are ready. | |
| pass | |
| class DaskDistributedBackend(AutoBatchingMixin, ParallelBackendBase): | |
| MIN_IDEAL_BATCH_DURATION = 0.2 | |
| MAX_IDEAL_BATCH_DURATION = 1.0 | |
| supports_retrieve_callback = True | |
| default_n_jobs = -1 | |
| def __init__(self, scheduler_host=None, scatter=None, | |
| client=None, loop=None, wait_for_workers_timeout=10, | |
| **submit_kwargs): | |
| super().__init__() | |
| if distributed is None: | |
| msg = ("You are trying to use 'dask' as a joblib parallel backend " | |
| "but dask is not installed. Please install dask " | |
| "to fix this error.") | |
| raise ValueError(msg) | |
| if client is None: | |
| if scheduler_host: | |
| client = Client(scheduler_host, loop=loop, | |
| set_as_default=False) | |
| else: | |
| try: | |
| client = get_client() | |
| except ValueError as e: | |
| msg = ("To use Joblib with Dask first create a Dask Client" | |
| "\n\n" | |
| " from dask.distributed import Client\n" | |
| " client = Client()\n" | |
| "or\n" | |
| " client = Client('scheduler-address:8786')") | |
| raise ValueError(msg) from e | |
| self.client = client | |
| if scatter is not None and not isinstance(scatter, (list, tuple)): | |
| raise TypeError("scatter must be a list/tuple, got " | |
| "`%s`" % type(scatter).__name__) | |
| if scatter is not None and len(scatter) > 0: | |
| # Keep a reference to the scattered data to keep the ids the same | |
| self._scatter = list(scatter) | |
| scattered = self.client.scatter(scatter, broadcast=True) | |
| self.data_futures = {id(x): f for x, f in zip(scatter, scattered)} | |
| else: | |
| self._scatter = [] | |
| self.data_futures = {} | |
| self.wait_for_workers_timeout = wait_for_workers_timeout | |
| self.submit_kwargs = submit_kwargs | |
| self.waiting_futures = as_completed( | |
| [], | |
| loop=client.loop, | |
| with_results=True, | |
| raise_errors=False | |
| ) | |
| self._results = {} | |
| self._callbacks = {} | |
| async def _collect(self): | |
| while self._continue: | |
| async for future, result in self.waiting_futures: | |
| cf_future = self._results.pop(future) | |
| callback = self._callbacks.pop(future) | |
| if future.status == "error": | |
| typ, exc, tb = result | |
| cf_future.set_exception(exc) | |
| else: | |
| cf_future.set_result(result) | |
| callback(result) | |
| await asyncio.sleep(0.01) | |
| def __reduce__(self): | |
| return (DaskDistributedBackend, ()) | |
| def get_nested_backend(self): | |
| return DaskDistributedBackend(client=self.client), -1 | |
| def configure(self, n_jobs=1, parallel=None, **backend_args): | |
| self.parallel = parallel | |
| return self.effective_n_jobs(n_jobs) | |
| def start_call(self): | |
| self._continue = True | |
| self.client.loop.add_callback(self._collect) | |
| self.call_data_futures = _WeakKeyDictionary() | |
| def stop_call(self): | |
| # The explicit call to clear is required to break a cycling reference | |
| # to the futures. | |
| self._continue = False | |
| # wait for the future collection routine (self._backend._collect) to | |
| # finish in order to limit asyncio warnings due to aborting _collect | |
| # during a following backend termination call | |
| time.sleep(0.01) | |
| self.call_data_futures.clear() | |
| def effective_n_jobs(self, n_jobs): | |
| effective_n_jobs = sum(self.client.ncores().values()) | |
| if effective_n_jobs != 0 or not self.wait_for_workers_timeout: | |
| return effective_n_jobs | |
| # If there is no worker, schedule a probe task to wait for the workers | |
| # to come up and be available. If the dask cluster is in adaptive mode | |
| # task might cause the cluster to provision some workers. | |
| try: | |
| self.client.submit(_joblib_probe_task).result( | |
| timeout=self.wait_for_workers_timeout | |
| ) | |
| except _TimeoutError as e: | |
| error_msg = ( | |
| "DaskDistributedBackend has no worker after {} seconds. " | |
| "Make sure that workers are started and can properly connect " | |
| "to the scheduler and increase the joblib/dask connection " | |
| "timeout with:\n\n" | |
| "parallel_config(backend='dask', wait_for_workers_timeout={})" | |
| ).format(self.wait_for_workers_timeout, | |
| max(10, 2 * self.wait_for_workers_timeout)) | |
| raise TimeoutError(error_msg) from e | |
| return sum(self.client.ncores().values()) | |
| async def _to_func_args(self, func): | |
| itemgetters = dict() | |
| # Futures that are dynamically generated during a single call to | |
| # Parallel.__call__. | |
| call_data_futures = getattr(self, 'call_data_futures', None) | |
| async def maybe_to_futures(args): | |
| out = [] | |
| for arg in args: | |
| arg_id = id(arg) | |
| if arg_id in itemgetters: | |
| out.append(itemgetters[arg_id]) | |
| continue | |
| f = self.data_futures.get(arg_id, None) | |
| if f is None and call_data_futures is not None: | |
| try: | |
| f = await call_data_futures[arg] | |
| except KeyError: | |
| pass | |
| if f is None: | |
| if is_weakrefable(arg) and sizeof(arg) > 1e3: | |
| # Automatically scatter large objects to some of | |
| # the workers to avoid duplicated data transfers. | |
| # Rely on automated inter-worker data stealing if | |
| # more workers need to reuse this data | |
| # concurrently. | |
| # set hash=False - nested scatter calls (i.e | |
| # calling client.scatter inside a dask worker) | |
| # using hash=True often raise CancelledError, | |
| # see dask/distributed#3703 | |
| _coro = self.client.scatter( | |
| arg, | |
| asynchronous=True, | |
| hash=False | |
| ) | |
| # Centralize the scattering of identical arguments | |
| # between concurrent apply_async callbacks by | |
| # exposing the running coroutine in | |
| # call_data_futures before it completes. | |
| t = asyncio.Task(_coro) | |
| call_data_futures[arg] = t | |
| f = await t | |
| if f is not None: | |
| out.append(f) | |
| else: | |
| out.append(arg) | |
| return out | |
| tasks = [] | |
| for f, args, kwargs in func.items: | |
| args = list(await maybe_to_futures(args)) | |
| kwargs = dict(zip(kwargs.keys(), | |
| await maybe_to_futures(kwargs.values()))) | |
| tasks.append((f, args, kwargs)) | |
| return (Batch(tasks), tasks) | |
| def apply_async(self, func, callback=None): | |
| cf_future = concurrent.futures.Future() | |
| cf_future.get = cf_future.result # achieve AsyncResult API | |
| async def f(func, callback): | |
| batch, tasks = await self._to_func_args(func) | |
| key = f'{repr(batch)}-{uuid4().hex}' | |
| dask_future = self.client.submit( | |
| _TracebackCapturingWrapper(batch), | |
| tasks=tasks, | |
| key=key, | |
| **self.submit_kwargs | |
| ) | |
| self.waiting_futures.add(dask_future) | |
| self._callbacks[dask_future] = callback | |
| self._results[dask_future] = cf_future | |
| self.client.loop.add_callback(f, func, callback) | |
| return cf_future | |
| def retrieve_result_callback(self, out): | |
| return _retrieve_traceback_capturing_wrapped_call(out) | |
| def abort_everything(self, ensure_ready=True): | |
| """ Tell the client to cancel any task submitted via this instance | |
| joblib.Parallel will never access those results | |
| """ | |
| with self.waiting_futures.lock: | |
| self.waiting_futures.futures.clear() | |
| while not self.waiting_futures.queue.empty(): | |
| self.waiting_futures.queue.get() | |
| def retrieval_context(self): | |
| """Override ParallelBackendBase.retrieval_context to avoid deadlocks. | |
| This removes thread from the worker's thread pool (using 'secede'). | |
| Seceding avoids deadlock in nested parallelism settings. | |
| """ | |
| # See 'joblib.Parallel.__call__' and 'joblib.Parallel.retrieve' for how | |
| # this is used. | |
| if hasattr(thread_state, 'execution_state'): | |
| # we are in a worker. Secede to avoid deadlock. | |
| secede() | |
| yield | |
| if hasattr(thread_state, 'execution_state'): | |
| rejoin() | |