|
""" |
|
Handlers for predicates related to set membership: integer, rational, etc. |
|
""" |
|
|
|
from sympy.assumptions import Q, ask |
|
from sympy.core import Add, Basic, Expr, Mul, Pow, S |
|
from sympy.core.numbers import (AlgebraicNumber, ComplexInfinity, Exp1, Float, |
|
GoldenRatio, ImaginaryUnit, Infinity, Integer, NaN, NegativeInfinity, |
|
Number, NumberSymbol, Pi, pi, Rational, TribonacciConstant, E) |
|
from sympy.core.logic import fuzzy_bool |
|
from sympy.functions import (Abs, acos, acot, asin, atan, cos, cot, exp, im, |
|
log, re, sin, tan) |
|
from sympy.core.numbers import I |
|
from sympy.core.relational import Eq |
|
from sympy.functions.elementary.complexes import conjugate |
|
from sympy.matrices import Determinant, MatrixBase, Trace |
|
from sympy.matrices.expressions.matexpr import MatrixElement |
|
|
|
from sympy.multipledispatch import MDNotImplementedError |
|
|
|
from .common import test_closed_group |
|
from ..predicates.sets import (IntegerPredicate, RationalPredicate, |
|
IrrationalPredicate, RealPredicate, ExtendedRealPredicate, |
|
HermitianPredicate, ComplexPredicate, ImaginaryPredicate, |
|
AntihermitianPredicate, AlgebraicPredicate) |
|
|
|
|
|
|
|
|
|
def _IntegerPredicate_number(expr, assumptions): |
|
|
|
try: |
|
i = int(expr.round()) |
|
if not (expr - i).equals(0): |
|
raise TypeError |
|
return True |
|
except TypeError: |
|
return False |
|
|
|
@IntegerPredicate.register_many(int, Integer) |
|
def _(expr, assumptions): |
|
return True |
|
|
|
@IntegerPredicate.register_many(Exp1, GoldenRatio, ImaginaryUnit, Infinity, |
|
NegativeInfinity, Pi, Rational, TribonacciConstant) |
|
def _(expr, assumptions): |
|
return False |
|
|
|
@IntegerPredicate.register(Expr) |
|
def _(expr, assumptions): |
|
ret = expr.is_integer |
|
if ret is None: |
|
raise MDNotImplementedError |
|
return ret |
|
|
|
@IntegerPredicate.register_many(Add, Pow) |
|
def _(expr, assumptions): |
|
""" |
|
* Integer + Integer -> Integer |
|
* Integer + !Integer -> !Integer |
|
* !Integer + !Integer -> ? |
|
""" |
|
if expr.is_number: |
|
return _IntegerPredicate_number(expr, assumptions) |
|
return test_closed_group(expr, assumptions, Q.integer) |
|
|
|
@IntegerPredicate.register(Mul) |
|
def _(expr, assumptions): |
|
""" |
|
* Integer*Integer -> Integer |
|
* Integer*Irrational -> !Integer |
|
* Odd/Even -> !Integer |
|
* Integer*Rational -> ? |
|
""" |
|
if expr.is_number: |
|
return _IntegerPredicate_number(expr, assumptions) |
|
_output = True |
|
for arg in expr.args: |
|
if not ask(Q.integer(arg), assumptions): |
|
if arg.is_Rational: |
|
if arg.q == 2: |
|
return ask(Q.even(2*expr), assumptions) |
|
if ~(arg.q & 1): |
|
return None |
|
elif ask(Q.irrational(arg), assumptions): |
|
if _output: |
|
_output = False |
|
else: |
|
return |
|
else: |
|
return |
|
|
|
return _output |
|
|
|
@IntegerPredicate.register(Abs) |
|
def _(expr, assumptions): |
|
return ask(Q.integer(expr.args[0]), assumptions) |
|
|
|
@IntegerPredicate.register_many(Determinant, MatrixElement, Trace) |
|
def _(expr, assumptions): |
|
return ask(Q.integer_elements(expr.args[0]), assumptions) |
|
|
|
|
|
|
|
|
|
@RationalPredicate.register(Rational) |
|
def _(expr, assumptions): |
|
return True |
|
|
|
@RationalPredicate.register(Float) |
|
def _(expr, assumptions): |
|
return None |
|
|
|
@RationalPredicate.register_many(Exp1, GoldenRatio, ImaginaryUnit, Infinity, |
|
NegativeInfinity, Pi, TribonacciConstant) |
|
def _(expr, assumptions): |
|
return False |
|
|
|
@RationalPredicate.register(Expr) |
|
def _(expr, assumptions): |
|
ret = expr.is_rational |
|
if ret is None: |
|
raise MDNotImplementedError |
|
return ret |
|
|
|
@RationalPredicate.register_many(Add, Mul) |
|
def _(expr, assumptions): |
|
""" |
|
* Rational + Rational -> Rational |
|
* Rational + !Rational -> !Rational |
|
* !Rational + !Rational -> ? |
|
""" |
|
if expr.is_number: |
|
if expr.as_real_imag()[1]: |
|
return False |
|
return test_closed_group(expr, assumptions, Q.rational) |
|
|
|
@RationalPredicate.register(Pow) |
|
def _(expr, assumptions): |
|
""" |
|
* Rational ** Integer -> Rational |
|
* Irrational ** Rational -> Irrational |
|
* Rational ** Irrational -> ? |
|
""" |
|
if expr.base == E: |
|
x = expr.exp |
|
if ask(Q.rational(x), assumptions): |
|
return ask(~Q.nonzero(x), assumptions) |
|
return |
|
|
|
if ask(Q.integer(expr.exp), assumptions): |
|
return ask(Q.rational(expr.base), assumptions) |
|
elif ask(Q.rational(expr.exp), assumptions): |
|
if ask(Q.prime(expr.base), assumptions): |
|
return False |
|
|
|
@RationalPredicate.register_many(asin, atan, cos, sin, tan) |
|
def _(expr, assumptions): |
|
x = expr.args[0] |
|
if ask(Q.rational(x), assumptions): |
|
return ask(~Q.nonzero(x), assumptions) |
|
|
|
@RationalPredicate.register(exp) |
|
def _(expr, assumptions): |
|
x = expr.exp |
|
if ask(Q.rational(x), assumptions): |
|
return ask(~Q.nonzero(x), assumptions) |
|
|
|
@RationalPredicate.register_many(acot, cot) |
|
def _(expr, assumptions): |
|
x = expr.args[0] |
|
if ask(Q.rational(x), assumptions): |
|
return False |
|
|
|
@RationalPredicate.register_many(acos, log) |
|
def _(expr, assumptions): |
|
x = expr.args[0] |
|
if ask(Q.rational(x), assumptions): |
|
return ask(~Q.nonzero(x - 1), assumptions) |
|
|
|
|
|
|
|
|
|
@IrrationalPredicate.register(Expr) |
|
def _(expr, assumptions): |
|
ret = expr.is_irrational |
|
if ret is None: |
|
raise MDNotImplementedError |
|
return ret |
|
|
|
@IrrationalPredicate.register(Basic) |
|
def _(expr, assumptions): |
|
_real = ask(Q.real(expr), assumptions) |
|
if _real: |
|
_rational = ask(Q.rational(expr), assumptions) |
|
if _rational is None: |
|
return None |
|
return not _rational |
|
else: |
|
return _real |
|
|
|
|
|
|
|
|
|
def _RealPredicate_number(expr, assumptions): |
|
|
|
|
|
i = expr.as_real_imag()[1].evalf(2) |
|
if i._prec != 1: |
|
return not i |
|
|
|
|
|
|
|
@RealPredicate.register_many(Abs, Exp1, Float, GoldenRatio, im, Pi, Rational, |
|
re, TribonacciConstant) |
|
def _(expr, assumptions): |
|
return True |
|
|
|
@RealPredicate.register_many(ImaginaryUnit, Infinity, NegativeInfinity) |
|
def _(expr, assumptions): |
|
return False |
|
|
|
@RealPredicate.register(Expr) |
|
def _(expr, assumptions): |
|
ret = expr.is_real |
|
if ret is None: |
|
raise MDNotImplementedError |
|
return ret |
|
|
|
@RealPredicate.register(Add) |
|
def _(expr, assumptions): |
|
""" |
|
* Real + Real -> Real |
|
* Real + (Complex & !Real) -> !Real |
|
""" |
|
if expr.is_number: |
|
return _RealPredicate_number(expr, assumptions) |
|
return test_closed_group(expr, assumptions, Q.real) |
|
|
|
@RealPredicate.register(Mul) |
|
def _(expr, assumptions): |
|
""" |
|
* Real*Real -> Real |
|
* Real*Imaginary -> !Real |
|
* Imaginary*Imaginary -> Real |
|
""" |
|
if expr.is_number: |
|
return _RealPredicate_number(expr, assumptions) |
|
result = True |
|
for arg in expr.args: |
|
if ask(Q.real(arg), assumptions): |
|
pass |
|
elif ask(Q.imaginary(arg), assumptions): |
|
result = result ^ True |
|
else: |
|
break |
|
else: |
|
return result |
|
|
|
@RealPredicate.register(Pow) |
|
def _(expr, assumptions): |
|
""" |
|
* Real**Integer -> Real |
|
* Positive**Real -> Real |
|
* Real**(Integer/Even) -> Real if base is nonnegative |
|
* Real**(Integer/Odd) -> Real |
|
* Imaginary**(Integer/Even) -> Real |
|
* Imaginary**(Integer/Odd) -> not Real |
|
* Imaginary**Real -> ? since Real could be 0 (giving real) |
|
or 1 (giving imaginary) |
|
* b**Imaginary -> Real if log(b) is imaginary and b != 0 |
|
and exponent != integer multiple of |
|
I*pi/log(b) |
|
* Real**Real -> ? e.g. sqrt(-1) is imaginary and |
|
sqrt(2) is not |
|
""" |
|
if expr.is_number: |
|
return _RealPredicate_number(expr, assumptions) |
|
|
|
if expr.base == E: |
|
return ask( |
|
Q.integer(expr.exp/I/pi) | Q.real(expr.exp), assumptions |
|
) |
|
|
|
if expr.base.func == exp or (expr.base.is_Pow and expr.base.base == E): |
|
if ask(Q.imaginary(expr.base.exp), assumptions): |
|
if ask(Q.imaginary(expr.exp), assumptions): |
|
return True |
|
|
|
|
|
|
|
|
|
i = expr.base.exp/I/pi |
|
if ask(Q.integer(2*i), assumptions): |
|
return ask(Q.real((S.NegativeOne**i)**expr.exp), assumptions) |
|
return |
|
|
|
if ask(Q.imaginary(expr.base), assumptions): |
|
if ask(Q.integer(expr.exp), assumptions): |
|
odd = ask(Q.odd(expr.exp), assumptions) |
|
if odd is not None: |
|
return not odd |
|
return |
|
|
|
if ask(Q.imaginary(expr.exp), assumptions): |
|
imlog = ask(Q.imaginary(log(expr.base)), assumptions) |
|
if imlog is not None: |
|
|
|
|
|
return imlog |
|
|
|
if ask(Q.real(expr.base), assumptions): |
|
if ask(Q.real(expr.exp), assumptions): |
|
if expr.exp.is_Rational and \ |
|
ask(Q.even(expr.exp.q), assumptions): |
|
return ask(Q.positive(expr.base), assumptions) |
|
elif ask(Q.integer(expr.exp), assumptions): |
|
return True |
|
elif ask(Q.positive(expr.base), assumptions): |
|
return True |
|
elif ask(Q.negative(expr.base), assumptions): |
|
return False |
|
|
|
@RealPredicate.register_many(cos, sin) |
|
def _(expr, assumptions): |
|
if ask(Q.real(expr.args[0]), assumptions): |
|
return True |
|
|
|
@RealPredicate.register(exp) |
|
def _(expr, assumptions): |
|
return ask( |
|
Q.integer(expr.exp/I/pi) | Q.real(expr.exp), assumptions |
|
) |
|
|
|
@RealPredicate.register(log) |
|
def _(expr, assumptions): |
|
return ask(Q.positive(expr.args[0]), assumptions) |
|
|
|
@RealPredicate.register_many(Determinant, MatrixElement, Trace) |
|
def _(expr, assumptions): |
|
return ask(Q.real_elements(expr.args[0]), assumptions) |
|
|
|
|
|
|
|
|
|
@ExtendedRealPredicate.register(object) |
|
def _(expr, assumptions): |
|
return ask(Q.negative_infinite(expr) |
|
| Q.negative(expr) |
|
| Q.zero(expr) |
|
| Q.positive(expr) |
|
| Q.positive_infinite(expr), |
|
assumptions) |
|
|
|
@ExtendedRealPredicate.register_many(Infinity, NegativeInfinity) |
|
def _(expr, assumptions): |
|
return True |
|
|
|
@ExtendedRealPredicate.register_many(Add, Mul, Pow) |
|
def _(expr, assumptions): |
|
return test_closed_group(expr, assumptions, Q.extended_real) |
|
|
|
|
|
|
|
|
|
@HermitianPredicate.register(object) |
|
def _(expr, assumptions): |
|
if isinstance(expr, MatrixBase): |
|
return None |
|
return ask(Q.real(expr), assumptions) |
|
|
|
@HermitianPredicate.register(Add) |
|
def _(expr, assumptions): |
|
""" |
|
* Hermitian + Hermitian -> Hermitian |
|
* Hermitian + !Hermitian -> !Hermitian |
|
""" |
|
if expr.is_number: |
|
raise MDNotImplementedError |
|
return test_closed_group(expr, assumptions, Q.hermitian) |
|
|
|
@HermitianPredicate.register(Mul) |
|
def _(expr, assumptions): |
|
""" |
|
As long as there is at most only one noncommutative term: |
|
|
|
* Hermitian*Hermitian -> Hermitian |
|
* Hermitian*Antihermitian -> !Hermitian |
|
* Antihermitian*Antihermitian -> Hermitian |
|
""" |
|
if expr.is_number: |
|
raise MDNotImplementedError |
|
nccount = 0 |
|
result = True |
|
for arg in expr.args: |
|
if ask(Q.antihermitian(arg), assumptions): |
|
result = result ^ True |
|
elif not ask(Q.hermitian(arg), assumptions): |
|
break |
|
if ask(~Q.commutative(arg), assumptions): |
|
nccount += 1 |
|
if nccount > 1: |
|
break |
|
else: |
|
return result |
|
|
|
@HermitianPredicate.register(Pow) |
|
def _(expr, assumptions): |
|
""" |
|
* Hermitian**Integer -> Hermitian |
|
""" |
|
if expr.is_number: |
|
raise MDNotImplementedError |
|
if expr.base == E: |
|
if ask(Q.hermitian(expr.exp), assumptions): |
|
return True |
|
raise MDNotImplementedError |
|
if ask(Q.hermitian(expr.base), assumptions): |
|
if ask(Q.integer(expr.exp), assumptions): |
|
return True |
|
raise MDNotImplementedError |
|
|
|
@HermitianPredicate.register_many(cos, sin) |
|
def _(expr, assumptions): |
|
if ask(Q.hermitian(expr.args[0]), assumptions): |
|
return True |
|
raise MDNotImplementedError |
|
|
|
@HermitianPredicate.register(exp) |
|
def _(expr, assumptions): |
|
if ask(Q.hermitian(expr.exp), assumptions): |
|
return True |
|
raise MDNotImplementedError |
|
|
|
@HermitianPredicate.register(MatrixBase) |
|
def _(mat, assumptions): |
|
rows, cols = mat.shape |
|
ret_val = True |
|
for i in range(rows): |
|
for j in range(i, cols): |
|
cond = fuzzy_bool(Eq(mat[i, j], conjugate(mat[j, i]))) |
|
if cond is None: |
|
ret_val = None |
|
if cond == False: |
|
return False |
|
if ret_val is None: |
|
raise MDNotImplementedError |
|
return ret_val |
|
|
|
|
|
|
|
|
|
@ComplexPredicate.register_many(Abs, cos, exp, im, ImaginaryUnit, log, Number, |
|
NumberSymbol, re, sin) |
|
def _(expr, assumptions): |
|
return True |
|
|
|
@ComplexPredicate.register_many(Infinity, NegativeInfinity) |
|
def _(expr, assumptions): |
|
return False |
|
|
|
@ComplexPredicate.register(Expr) |
|
def _(expr, assumptions): |
|
ret = expr.is_complex |
|
if ret is None: |
|
raise MDNotImplementedError |
|
return ret |
|
|
|
@ComplexPredicate.register_many(Add, Mul) |
|
def _(expr, assumptions): |
|
return test_closed_group(expr, assumptions, Q.complex) |
|
|
|
@ComplexPredicate.register(Pow) |
|
def _(expr, assumptions): |
|
if expr.base == E: |
|
return True |
|
return test_closed_group(expr, assumptions, Q.complex) |
|
|
|
@ComplexPredicate.register_many(Determinant, MatrixElement, Trace) |
|
def _(expr, assumptions): |
|
return ask(Q.complex_elements(expr.args[0]), assumptions) |
|
|
|
@ComplexPredicate.register(NaN) |
|
def _(expr, assumptions): |
|
return None |
|
|
|
|
|
|
|
|
|
def _Imaginary_number(expr, assumptions): |
|
|
|
|
|
r = expr.as_real_imag()[0].evalf(2) |
|
if r._prec != 1: |
|
return not r |
|
|
|
|
|
|
|
@ImaginaryPredicate.register(ImaginaryUnit) |
|
def _(expr, assumptions): |
|
return True |
|
|
|
@ImaginaryPredicate.register(Expr) |
|
def _(expr, assumptions): |
|
ret = expr.is_imaginary |
|
if ret is None: |
|
raise MDNotImplementedError |
|
return ret |
|
|
|
@ImaginaryPredicate.register(Add) |
|
def _(expr, assumptions): |
|
""" |
|
* Imaginary + Imaginary -> Imaginary |
|
* Imaginary + Complex -> ? |
|
* Imaginary + Real -> !Imaginary |
|
""" |
|
if expr.is_number: |
|
return _Imaginary_number(expr, assumptions) |
|
|
|
reals = 0 |
|
for arg in expr.args: |
|
if ask(Q.imaginary(arg), assumptions): |
|
pass |
|
elif ask(Q.real(arg), assumptions): |
|
reals += 1 |
|
else: |
|
break |
|
else: |
|
if reals == 0: |
|
return True |
|
if reals in (1, len(expr.args)): |
|
|
|
return False |
|
|
|
@ImaginaryPredicate.register(Mul) |
|
def _(expr, assumptions): |
|
""" |
|
* Real*Imaginary -> Imaginary |
|
* Imaginary*Imaginary -> Real |
|
""" |
|
if expr.is_number: |
|
return _Imaginary_number(expr, assumptions) |
|
result = False |
|
reals = 0 |
|
for arg in expr.args: |
|
if ask(Q.imaginary(arg), assumptions): |
|
result = result ^ True |
|
elif not ask(Q.real(arg), assumptions): |
|
break |
|
else: |
|
if reals == len(expr.args): |
|
return False |
|
return result |
|
|
|
@ImaginaryPredicate.register(Pow) |
|
def _(expr, assumptions): |
|
""" |
|
* Imaginary**Odd -> Imaginary |
|
* Imaginary**Even -> Real |
|
* b**Imaginary -> !Imaginary if exponent is an integer |
|
multiple of I*pi/log(b) |
|
* Imaginary**Real -> ? |
|
* Positive**Real -> Real |
|
* Negative**Integer -> Real |
|
* Negative**(Integer/2) -> Imaginary |
|
* Negative**Real -> not Imaginary if exponent is not Rational |
|
""" |
|
if expr.is_number: |
|
return _Imaginary_number(expr, assumptions) |
|
|
|
if expr.base == E: |
|
a = expr.exp/I/pi |
|
return ask(Q.integer(2*a) & ~Q.integer(a), assumptions) |
|
|
|
if expr.base.func == exp or (expr.base.is_Pow and expr.base.base == E): |
|
if ask(Q.imaginary(expr.base.exp), assumptions): |
|
if ask(Q.imaginary(expr.exp), assumptions): |
|
return False |
|
i = expr.base.exp/I/pi |
|
if ask(Q.integer(2*i), assumptions): |
|
return ask(Q.imaginary((S.NegativeOne**i)**expr.exp), assumptions) |
|
|
|
if ask(Q.imaginary(expr.base), assumptions): |
|
if ask(Q.integer(expr.exp), assumptions): |
|
odd = ask(Q.odd(expr.exp), assumptions) |
|
if odd is not None: |
|
return odd |
|
return |
|
|
|
if ask(Q.imaginary(expr.exp), assumptions): |
|
imlog = ask(Q.imaginary(log(expr.base)), assumptions) |
|
if imlog is not None: |
|
|
|
return False |
|
|
|
if ask(Q.real(expr.base) & Q.real(expr.exp), assumptions): |
|
if ask(Q.positive(expr.base), assumptions): |
|
return False |
|
else: |
|
rat = ask(Q.rational(expr.exp), assumptions) |
|
if not rat: |
|
return rat |
|
if ask(Q.integer(expr.exp), assumptions): |
|
return False |
|
else: |
|
half = ask(Q.integer(2*expr.exp), assumptions) |
|
if half: |
|
return ask(Q.negative(expr.base), assumptions) |
|
return half |
|
|
|
@ImaginaryPredicate.register(log) |
|
def _(expr, assumptions): |
|
if ask(Q.real(expr.args[0]), assumptions): |
|
if ask(Q.positive(expr.args[0]), assumptions): |
|
return False |
|
return |
|
|
|
|
|
|
|
|
|
if expr.args[0].func == exp or (expr.args[0].is_Pow and expr.args[0].base == E): |
|
if expr.args[0].exp in [I, -I]: |
|
return True |
|
im = ask(Q.imaginary(expr.args[0]), assumptions) |
|
if im is False: |
|
return False |
|
|
|
@ImaginaryPredicate.register(exp) |
|
def _(expr, assumptions): |
|
a = expr.exp/I/pi |
|
return ask(Q.integer(2*a) & ~Q.integer(a), assumptions) |
|
|
|
@ImaginaryPredicate.register_many(Number, NumberSymbol) |
|
def _(expr, assumptions): |
|
return not (expr.as_real_imag()[1] == 0) |
|
|
|
@ImaginaryPredicate.register(NaN) |
|
def _(expr, assumptions): |
|
return None |
|
|
|
|
|
|
|
|
|
@AntihermitianPredicate.register(object) |
|
def _(expr, assumptions): |
|
if isinstance(expr, MatrixBase): |
|
return None |
|
if ask(Q.zero(expr), assumptions): |
|
return True |
|
return ask(Q.imaginary(expr), assumptions) |
|
|
|
@AntihermitianPredicate.register(Add) |
|
def _(expr, assumptions): |
|
""" |
|
* Antihermitian + Antihermitian -> Antihermitian |
|
* Antihermitian + !Antihermitian -> !Antihermitian |
|
""" |
|
if expr.is_number: |
|
raise MDNotImplementedError |
|
return test_closed_group(expr, assumptions, Q.antihermitian) |
|
|
|
@AntihermitianPredicate.register(Mul) |
|
def _(expr, assumptions): |
|
""" |
|
As long as there is at most only one noncommutative term: |
|
|
|
* Hermitian*Hermitian -> !Antihermitian |
|
* Hermitian*Antihermitian -> Antihermitian |
|
* Antihermitian*Antihermitian -> !Antihermitian |
|
""" |
|
if expr.is_number: |
|
raise MDNotImplementedError |
|
nccount = 0 |
|
result = False |
|
for arg in expr.args: |
|
if ask(Q.antihermitian(arg), assumptions): |
|
result = result ^ True |
|
elif not ask(Q.hermitian(arg), assumptions): |
|
break |
|
if ask(~Q.commutative(arg), assumptions): |
|
nccount += 1 |
|
if nccount > 1: |
|
break |
|
else: |
|
return result |
|
|
|
@AntihermitianPredicate.register(Pow) |
|
def _(expr, assumptions): |
|
""" |
|
* Hermitian**Integer -> !Antihermitian |
|
* Antihermitian**Even -> !Antihermitian |
|
* Antihermitian**Odd -> Antihermitian |
|
""" |
|
if expr.is_number: |
|
raise MDNotImplementedError |
|
if ask(Q.hermitian(expr.base), assumptions): |
|
if ask(Q.integer(expr.exp), assumptions): |
|
return False |
|
elif ask(Q.antihermitian(expr.base), assumptions): |
|
if ask(Q.even(expr.exp), assumptions): |
|
return False |
|
elif ask(Q.odd(expr.exp), assumptions): |
|
return True |
|
raise MDNotImplementedError |
|
|
|
@AntihermitianPredicate.register(MatrixBase) |
|
def _(mat, assumptions): |
|
rows, cols = mat.shape |
|
ret_val = True |
|
for i in range(rows): |
|
for j in range(i, cols): |
|
cond = fuzzy_bool(Eq(mat[i, j], -conjugate(mat[j, i]))) |
|
if cond is None: |
|
ret_val = None |
|
if cond == False: |
|
return False |
|
if ret_val is None: |
|
raise MDNotImplementedError |
|
return ret_val |
|
|
|
|
|
|
|
|
|
@AlgebraicPredicate.register_many(AlgebraicNumber, Float, GoldenRatio, |
|
ImaginaryUnit, TribonacciConstant) |
|
def _(expr, assumptions): |
|
return True |
|
|
|
@AlgebraicPredicate.register_many(ComplexInfinity, Exp1, Infinity, |
|
NegativeInfinity, Pi) |
|
def _(expr, assumptions): |
|
return False |
|
|
|
@AlgebraicPredicate.register_many(Add, Mul) |
|
def _(expr, assumptions): |
|
return test_closed_group(expr, assumptions, Q.algebraic) |
|
|
|
@AlgebraicPredicate.register(Pow) |
|
def _(expr, assumptions): |
|
if expr.base == E: |
|
if ask(Q.algebraic(expr.exp), assumptions): |
|
return ask(~Q.nonzero(expr.exp), assumptions) |
|
return |
|
return expr.exp.is_Rational and ask(Q.algebraic(expr.base), assumptions) |
|
|
|
@AlgebraicPredicate.register(Rational) |
|
def _(expr, assumptions): |
|
return expr.q != 0 |
|
|
|
@AlgebraicPredicate.register_many(asin, atan, cos, sin, tan) |
|
def _(expr, assumptions): |
|
x = expr.args[0] |
|
if ask(Q.algebraic(x), assumptions): |
|
return ask(~Q.nonzero(x), assumptions) |
|
|
|
@AlgebraicPredicate.register(exp) |
|
def _(expr, assumptions): |
|
x = expr.exp |
|
if ask(Q.algebraic(x), assumptions): |
|
return ask(~Q.nonzero(x), assumptions) |
|
|
|
@AlgebraicPredicate.register_many(acot, cot) |
|
def _(expr, assumptions): |
|
x = expr.args[0] |
|
if ask(Q.algebraic(x), assumptions): |
|
return False |
|
|
|
@AlgebraicPredicate.register_many(acos, log) |
|
def _(expr, assumptions): |
|
x = expr.args[0] |
|
if ask(Q.algebraic(x), assumptions): |
|
return ask(~Q.nonzero(x - 1), assumptions) |
|
|