peacock-data-public-datasets-idc-llm_eval
/
env-llmeval
/lib
/python3.10
/site-packages
/sympy
/polys
/domains
/integerring.py
"""Implementation of :class:`IntegerRing` class. """ | |
from sympy.external.gmpy import MPZ, HAS_GMPY | |
from sympy.polys.domains.groundtypes import ( | |
SymPyInteger, | |
factorial, | |
gcdex, gcd, lcm, sqrt, | |
) | |
from sympy.polys.domains.characteristiczero import CharacteristicZero | |
from sympy.polys.domains.ring import Ring | |
from sympy.polys.domains.simpledomain import SimpleDomain | |
from sympy.polys.polyerrors import CoercionFailed | |
from sympy.utilities import public | |
import math | |
class IntegerRing(Ring, CharacteristicZero, SimpleDomain): | |
r"""The domain ``ZZ`` representing the integers `\mathbb{Z}`. | |
The :py:class:`IntegerRing` class represents the ring of integers as a | |
:py:class:`~.Domain` in the domain system. :py:class:`IntegerRing` is a | |
super class of :py:class:`PythonIntegerRing` and | |
:py:class:`GMPYIntegerRing` one of which will be the implementation for | |
:ref:`ZZ` depending on whether or not ``gmpy`` or ``gmpy2`` is installed. | |
See also | |
======== | |
Domain | |
""" | |
rep = 'ZZ' | |
alias = 'ZZ' | |
dtype = MPZ | |
zero = dtype(0) | |
one = dtype(1) | |
tp = type(one) | |
is_IntegerRing = is_ZZ = True | |
is_Numerical = True | |
is_PID = True | |
has_assoc_Ring = True | |
has_assoc_Field = True | |
def __init__(self): | |
"""Allow instantiation of this domain. """ | |
def to_sympy(self, a): | |
"""Convert ``a`` to a SymPy object. """ | |
return SymPyInteger(int(a)) | |
def from_sympy(self, a): | |
"""Convert SymPy's Integer to ``dtype``. """ | |
if a.is_Integer: | |
return MPZ(a.p) | |
elif a.is_Float and int(a) == a: | |
return MPZ(int(a)) | |
else: | |
raise CoercionFailed("expected an integer, got %s" % a) | |
def get_field(self): | |
r"""Return the associated field of fractions :ref:`QQ` | |
Returns | |
======= | |
:ref:`QQ`: | |
The associated field of fractions :ref:`QQ`, a | |
:py:class:`~.Domain` representing the rational numbers | |
`\mathbb{Q}`. | |
Examples | |
======== | |
>>> from sympy import ZZ | |
>>> ZZ.get_field() | |
""" | |
from sympy.polys.domains import QQ | |
return QQ | |
def algebraic_field(self, *extension, alias=None): | |
r"""Returns an algebraic field, i.e. `\mathbb{Q}(\alpha, \ldots)`. | |
Parameters | |
========== | |
*extension : One or more :py:class:`~.Expr`. | |
Generators of the extension. These should be expressions that are | |
algebraic over `\mathbb{Q}`. | |
alias : str, :py:class:`~.Symbol`, None, optional (default=None) | |
If provided, this will be used as the alias symbol for the | |
primitive element of the returned :py:class:`~.AlgebraicField`. | |
Returns | |
======= | |
:py:class:`~.AlgebraicField` | |
A :py:class:`~.Domain` representing the algebraic field extension. | |
Examples | |
======== | |
>>> from sympy import ZZ, sqrt | |
>>> ZZ.algebraic_field(sqrt(2)) | |
QQ<sqrt(2)> | |
""" | |
return self.get_field().algebraic_field(*extension, alias=alias) | |
def from_AlgebraicField(K1, a, K0): | |
"""Convert a :py:class:`~.ANP` object to :ref:`ZZ`. | |
See :py:meth:`~.Domain.convert`. | |
""" | |
if a.is_ground: | |
return K1.convert(a.LC(), K0.dom) | |
def log(self, a, b): | |
r"""Logarithm of *a* to the base *b*. | |
Parameters | |
========== | |
a: number | |
b: number | |
Returns | |
======= | |
$\\lfloor\log(a, b)\\rfloor$: | |
Floor of the logarithm of *a* to the base *b* | |
Examples | |
======== | |
>>> from sympy import ZZ | |
>>> ZZ.log(ZZ(8), ZZ(2)) | |
3 | |
>>> ZZ.log(ZZ(9), ZZ(2)) | |
3 | |
Notes | |
===== | |
This function uses ``math.log`` which is based on ``float`` so it will | |
fail for large integer arguments. | |
""" | |
return self.dtype(math.log(int(a), b)) | |
def from_FF(K1, a, K0): | |
"""Convert ``ModularInteger(int)`` to GMPY's ``mpz``. """ | |
return MPZ(a.to_int()) | |
def from_FF_python(K1, a, K0): | |
"""Convert ``ModularInteger(int)`` to GMPY's ``mpz``. """ | |
return MPZ(a.to_int()) | |
def from_ZZ(K1, a, K0): | |
"""Convert Python's ``int`` to GMPY's ``mpz``. """ | |
return MPZ(a) | |
def from_ZZ_python(K1, a, K0): | |
"""Convert Python's ``int`` to GMPY's ``mpz``. """ | |
return MPZ(a) | |
def from_QQ(K1, a, K0): | |
"""Convert Python's ``Fraction`` to GMPY's ``mpz``. """ | |
if a.denominator == 1: | |
return MPZ(a.numerator) | |
def from_QQ_python(K1, a, K0): | |
"""Convert Python's ``Fraction`` to GMPY's ``mpz``. """ | |
if a.denominator == 1: | |
return MPZ(a.numerator) | |
def from_FF_gmpy(K1, a, K0): | |
"""Convert ``ModularInteger(mpz)`` to GMPY's ``mpz``. """ | |
return a.to_int() | |
def from_ZZ_gmpy(K1, a, K0): | |
"""Convert GMPY's ``mpz`` to GMPY's ``mpz``. """ | |
return a | |
def from_QQ_gmpy(K1, a, K0): | |
"""Convert GMPY ``mpq`` to GMPY's ``mpz``. """ | |
if a.denominator == 1: | |
return a.numerator | |
def from_RealField(K1, a, K0): | |
"""Convert mpmath's ``mpf`` to GMPY's ``mpz``. """ | |
p, q = K0.to_rational(a) | |
if q == 1: | |
return MPZ(p) | |
def from_GaussianIntegerRing(K1, a, K0): | |
if a.y == 0: | |
return a.x | |
def gcdex(self, a, b): | |
"""Compute extended GCD of ``a`` and ``b``. """ | |
h, s, t = gcdex(a, b) | |
if HAS_GMPY: | |
return s, t, h | |
else: | |
return h, s, t | |
def gcd(self, a, b): | |
"""Compute GCD of ``a`` and ``b``. """ | |
return gcd(a, b) | |
def lcm(self, a, b): | |
"""Compute LCM of ``a`` and ``b``. """ | |
return lcm(a, b) | |
def sqrt(self, a): | |
"""Compute square root of ``a``. """ | |
return sqrt(a) | |
def factorial(self, a): | |
"""Compute factorial of ``a``. """ | |
return factorial(a) | |
ZZ = IntegerRing() | |