peacock-data-public-datasets-idc-llm_eval
/
lm-evaluation
/build
/lib
/lm_eval
/tasks
/qasper
/utils.py
from functools import partial | |
from datasets import Dataset | |
def process_docs(dataset, set_answer_type="bool"): | |
FEATURES = ["title", "abstract", "question", "answer", "answer_type"] | |
def _categorise_answer(answer_blob): | |
if answer_blob["unanswerable"]: | |
answer = "unanswerable" | |
answer_type = "unanswerable" | |
return answer, answer_type | |
elif answer_blob["yes_no"]: | |
answer = "yes" | |
answer_type = "bool" | |
return answer, answer_type | |
elif answer_blob["free_form_answer"]: | |
answer = answer_blob["free_form_answer"] | |
answer_type = "free form answer" | |
return answer, answer_type | |
elif answer_blob["extractive_spans"]: | |
answer = answer_blob["extractive_spans"] | |
answer_type = "extractive_spans" | |
return answer, answer_type | |
elif answer_blob["yes_no"] is False: | |
answer = "no" | |
answer_type = "bool" | |
return answer, answer_type | |
def _flatten(doc): | |
"""Given a `doc`, flatten it out so that each JSON blob | |
contains exactly one question and one answer. Logic taken from | |
the reference implementation available at | |
https://github.com/allenai/qasper-led-baseline/blob/main/scripts/evaluator.py | |
""" | |
obs_list = { | |
"title": [], | |
"abstract": [], | |
"question": [], | |
"answer": [], | |
"answer_type": [], | |
} | |
title = doc.pop("title") | |
abstract = doc.pop("abstract") | |
for question, answer_list in zip(doc["qas"]["question"], doc["qas"]["answers"]): | |
for answer_blob in answer_list["answer"]: | |
answer, answer_type = _categorise_answer(answer_blob) | |
if answer_type == set_answer_type: | |
obs_list["title"].append(title) | |
obs_list["abstract"].append(abstract) | |
obs_list["question"].append(question) | |
obs_list["answer_type"].append(answer_type) | |
if isinstance(answer, list): | |
answer = ", ".join(answer) | |
obs_list["answer"].append(answer) | |
return obs_list | |
dataset = dataset.map( | |
_flatten, | |
remove_columns=[key for key in dataset.features.keys() if key not in FEATURES], | |
) | |
new_dataset = {} | |
for key in dataset.features.keys(): | |
new_dataset[key] = [x for row in dataset[key] for x in row] | |
return Dataset.from_dict(new_dataset) | |
process_docs_bool = partial(process_docs, set_answer_type="bool") | |
process_docs_freeform = partial(process_docs, set_answer_type="free form answer") | |