applied-ai-018's picture
Add files using upload-large-folder tool
b33c150 verified
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Access datasets."""
import filecmp
import importlib
import inspect
import json
import os
import re
import shutil
import time
from dataclasses import dataclass
from pathlib import Path
from typing import List, Optional, Tuple, Type, Union
from urllib.parse import urlparse
from datasets import DownloadConfig, DownloadMode
from datasets.builder import DatasetBuilder
from datasets.packaged_modules import _EXTENSION_TO_MODULE, _hash_python_lines
from datasets.utils.filelock import FileLock
from datasets.utils.version import Version
from . import SCRIPTS_VERSION, config
from .module import EvaluationModule
from .utils.file_utils import (
cached_path,
head_hf_s3,
hf_hub_url,
init_hf_modules,
is_relative_path,
relative_to_absolute_path,
url_or_path_join,
)
from .utils.logging import get_logger
logger = get_logger(__name__)
ALL_ALLOWED_EXTENSIONS = list(_EXTENSION_TO_MODULE.keys()) + ["zip"]
def init_dynamic_modules(
name: str = config.MODULE_NAME_FOR_DYNAMIC_MODULES, hf_modules_cache: Optional[Union[Path, str]] = None
):
"""
Create a module with name `name` in which you can add dynamic modules
such as metrics or datasets. The module can be imported using its name.
The module is created in the HF_MODULE_CACHE directory by default (~/.cache/huggingface/modules) but it can
be overriden by specifying a path to another directory in `hf_modules_cache`.
"""
hf_modules_cache = init_hf_modules(hf_modules_cache)
dynamic_modules_path = os.path.join(hf_modules_cache, name)
os.makedirs(dynamic_modules_path, exist_ok=True)
if not os.path.exists(os.path.join(dynamic_modules_path, "__init__.py")):
with open(os.path.join(dynamic_modules_path, "__init__.py"), "w"):
pass
return dynamic_modules_path
def import_main_class(module_path) -> Optional[Union[Type[DatasetBuilder], Type[EvaluationModule]]]:
"""Import a module at module_path and return its main class, a Metric by default"""
module = importlib.import_module(module_path)
main_cls_type = EvaluationModule
# Find the main class in our imported module
module_main_cls = None
for name, obj in module.__dict__.items():
if isinstance(obj, type) and issubclass(obj, main_cls_type):
if inspect.isabstract(obj):
continue
module_main_cls = obj
break
return module_main_cls
def files_to_hash(file_paths: List[str]) -> str:
"""
Convert a list of scripts or text files provided in file_paths into a hashed filename in a repeatable way.
"""
# List all python files in directories if directories are supplied as part of external imports
to_use_files: List[Union[Path, str]] = []
for file_path in file_paths:
if os.path.isdir(file_path):
to_use_files.extend(list(Path(file_path).rglob("*.[pP][yY]")))
else:
to_use_files.append(file_path)
# Get the code from all these files
lines = []
for file_path in to_use_files:
with open(file_path, encoding="utf-8") as f:
lines.extend(f.readlines())
return _hash_python_lines(lines)
def convert_github_url(url_path: str) -> Tuple[str, Optional[str]]:
"""Convert a link to a file on a github repo in a link to the raw github object."""
parsed = urlparse(url_path)
sub_directory = None
if parsed.scheme in ("http", "https", "s3") and parsed.netloc == "github.com":
if "blob" in url_path:
if not url_path.endswith(".py"):
raise ValueError(f"External import from github at {url_path} should point to a file ending with '.py'")
url_path = url_path.replace("blob", "raw") # Point to the raw file
else:
# Parse github url to point to zip
github_path = parsed.path[1:]
repo_info, branch = github_path.split("/tree/") if "/tree/" in github_path else (github_path, "master")
repo_owner, repo_name = repo_info.split("/")
url_path = f"https://github.com/{repo_owner}/{repo_name}/archive/{branch}.zip"
sub_directory = f"{repo_name}-{branch}"
return url_path, sub_directory
def increase_load_count(name: str, resource_type: str):
"""Update the download count of a dataset or metric."""
if not config.HF_EVALUATE_OFFLINE and config.HF_UPDATE_DOWNLOAD_COUNTS:
try:
head_hf_s3(name, filename=name + ".py", dataset=(resource_type == "dataset"))
except Exception:
pass
def get_imports(file_path: str) -> Tuple[str, str, str, str]:
"""Find whether we should import or clone additional files for a given processing script.
And list the import.
We allow:
- library dependencies,
- local dependencies and
- external dependencies whose url is specified with a comment starting from "# From:' followed by the raw url to a file, an archive or a github repository.
external dependencies will be downloaded (and extracted if needed in the dataset folder).
We also add an `__init__.py` to each sub-folder of a downloaded folder so the user can import from them in the script.
Note that only direct import in the dataset processing script will be handled
We don't recursively explore the additional import to download further files.
Example::
import tensorflow
import .c4_utils
import .clicr.dataset-code.build_json_dataset # From: https://raw.githubusercontent.com/clips/clicr/master/dataset-code/build_json_dataset
"""
lines = []
with open(file_path, encoding="utf-8") as f:
lines.extend(f.readlines())
logger.debug(f"Checking {file_path} for additional imports.")
imports: List[Tuple[str, str, str, Optional[str]]] = []
is_in_docstring = False
for line in lines:
docstr_start_match = re.findall(r'[\s\S]*?"""[\s\S]*?', line)
if len(docstr_start_match) == 1:
# flip True <=> False only if doctstring
# starts at line without finishing
is_in_docstring = not is_in_docstring
if is_in_docstring:
# import statements in doctstrings should
# not be added as required dependencies
continue
match = re.match(r"^import\s+(\.?)([^\s\.]+)[^#\r\n]*(?:#\s+From:\s+)?([^\r\n]*)", line, flags=re.MULTILINE)
if match is None:
match = re.match(
r"^from\s+(\.?)([^\s\.]+)(?:[^\s]*)\s+import\s+[^#\r\n]*(?:#\s+From:\s+)?([^\r\n]*)",
line,
flags=re.MULTILINE,
)
if match is None:
continue
if match.group(1):
# The import starts with a '.', we will download the relevant file
if any(imp[1] == match.group(2) for imp in imports):
# We already have this import
continue
if match.group(3):
# The import has a comment with 'From:', we'll retrieve it from the given url
url_path = match.group(3)
url_path, sub_directory = convert_github_url(url_path)
imports.append(("external", match.group(2), url_path, sub_directory))
elif match.group(2):
# The import should be at the same place as the file
imports.append(("internal", match.group(2), match.group(2), None))
else:
if match.group(3):
# The import has a comment with `From: git+https:...`, asks user to pip install from git.
url_path = match.group(3)
imports.append(("library", match.group(2), url_path, None))
else:
imports.append(("library", match.group(2), match.group(2), None))
return imports
def _download_additional_modules(
name: str, base_path: str, imports: Tuple[str, str, str, str], download_config: Optional[DownloadConfig]
) -> List[Tuple[str, str]]:
"""
Download additional module for a module <name>.py at URL (or local path) <base_path>/<name>.py
The imports must have been parsed first using ``get_imports``.
If some modules need to be installed with pip, an error is raised showing how to install them.
This function return the list of downloaded modules as tuples (import_name, module_file_path).
The downloaded modules can then be moved into an importable directory with ``_copy_script_and_other_resources_in_importable_dir``.
"""
local_imports = []
library_imports = []
download_config = download_config.copy()
if download_config.download_desc is None:
download_config.download_desc = "Downloading extra modules"
for import_type, import_name, import_path, sub_directory in imports:
if import_type == "library":
library_imports.append((import_name, import_path)) # Import from a library
continue
if import_name == name:
raise ValueError(
f"Error in the {name} script, importing relative {import_name} module "
f"but {import_name} is the name of the script. "
f"Please change relative import {import_name} to another name and add a '# From: URL_OR_PATH' "
f"comment pointing to the original relative import file path."
)
if import_type == "internal":
url_or_filename = url_or_path_join(base_path, import_path + ".py")
elif import_type == "external":
url_or_filename = import_path
else:
raise ValueError("Wrong import_type")
local_import_path = cached_path(
url_or_filename,
download_config=download_config,
)
if sub_directory is not None:
local_import_path = os.path.join(local_import_path, sub_directory)
local_imports.append((import_name, local_import_path))
# Check library imports
needs_to_be_installed = set()
for library_import_name, library_import_path in library_imports:
try:
lib = importlib.import_module(library_import_name) # noqa F841
except ImportError:
library_import_name = "scikit-learn" if library_import_name == "sklearn" else library_import_name
needs_to_be_installed.add((library_import_name, library_import_path))
if needs_to_be_installed:
raise ImportError(
f"To be able to use {name}, you need to install the following dependencies"
f"{[lib_name for lib_name, lib_path in needs_to_be_installed]} using 'pip install "
f"{' '.join([lib_path for lib_name, lib_path in needs_to_be_installed])}' for instance'"
)
return local_imports
def _copy_script_and_other_resources_in_importable_dir(
name: str,
importable_directory_path: str,
subdirectory_name: str,
original_local_path: str,
local_imports: List[Tuple[str, str]],
additional_files: List[Tuple[str, str]],
download_mode: Optional[DownloadMode],
) -> str:
"""Copy a script and its required imports to an importable directory
Args:
name (str): name of the resource to load
importable_directory_path (str): path to the loadable folder in the dynamic modules directory
subdirectory_name (str): name of the subdirectory in importable_directory_path in which to place the script
original_local_path (str): local path to the resource script
local_imports (List[Tuple[str, str]]): list of (destination_filename, import_file_to_copy)
additional_files (List[Tuple[str, str]]): list of (destination_filename, additional_file_to_copy)
download_mode (Optional[DownloadMode]): download mode
Return:
importable_local_file: path to an importable module with importlib.import_module
"""
# Define a directory with a unique name in our dataset or metric folder
# path is: ./datasets|metrics/dataset|metric_name/hash_from_code/script.py
# we use a hash as subdirectory_name to be able to have multiple versions of a dataset/metric processing file together
importable_subdirectory = os.path.join(importable_directory_path, subdirectory_name)
importable_local_file = os.path.join(importable_subdirectory, name + ".py")
# Prevent parallel disk operations
lock_path = importable_directory_path + ".lock"
with FileLock(lock_path):
# Create main dataset/metrics folder if needed
if download_mode == DownloadMode.FORCE_REDOWNLOAD and os.path.exists(importable_directory_path):
shutil.rmtree(importable_directory_path)
os.makedirs(importable_directory_path, exist_ok=True)
# add an __init__ file to the main dataset folder if needed
init_file_path = os.path.join(importable_directory_path, "__init__.py")
if not os.path.exists(init_file_path):
with open(init_file_path, "w"):
pass
# Create hash dataset folder if needed
os.makedirs(importable_subdirectory, exist_ok=True)
# add an __init__ file to the hash dataset folder if needed
init_file_path = os.path.join(importable_subdirectory, "__init__.py")
if not os.path.exists(init_file_path):
with open(init_file_path, "w"):
pass
# Copy dataset.py file in hash folder if needed
if not os.path.exists(importable_local_file):
shutil.copyfile(original_local_path, importable_local_file)
# Record metadata associating original dataset path with local unique folder
meta_path = importable_local_file.split(".py")[0] + ".json"
if not os.path.exists(meta_path):
meta = {"original file path": original_local_path, "local file path": importable_local_file}
# the filename is *.py in our case, so better rename to filenam.json instead of filename.py.json
with open(meta_path, "w", encoding="utf-8") as meta_file:
json.dump(meta, meta_file)
# Copy all the additional imports
for import_name, import_path in local_imports:
if os.path.isfile(import_path):
full_path_local_import = os.path.join(importable_subdirectory, import_name + ".py")
if not os.path.exists(full_path_local_import):
shutil.copyfile(import_path, full_path_local_import)
elif os.path.isdir(import_path):
full_path_local_import = os.path.join(importable_subdirectory, import_name)
if not os.path.exists(full_path_local_import):
shutil.copytree(import_path, full_path_local_import)
else:
raise OSError(f"Error with local import at {import_path}")
# Copy aditional files like dataset infos file if needed
for file_name, original_path in additional_files:
destination_additional_path = os.path.join(importable_subdirectory, file_name)
if not os.path.exists(destination_additional_path) or not filecmp.cmp(
original_path, destination_additional_path
):
shutil.copyfile(original_path, destination_additional_path)
return importable_local_file
def _create_importable_file(
local_path: str,
local_imports: List[Tuple[str, str]],
additional_files: List[Tuple[str, str]],
dynamic_modules_path: str,
module_namespace: str,
name: str,
download_mode: DownloadMode,
) -> Tuple[str, str]:
importable_directory_path = os.path.join(dynamic_modules_path, module_namespace, name.replace("/", "--"))
Path(importable_directory_path).mkdir(parents=True, exist_ok=True)
(Path(importable_directory_path).parent / "__init__.py").touch(exist_ok=True)
hash = files_to_hash([local_path] + [loc[1] for loc in local_imports])
importable_local_file = _copy_script_and_other_resources_in_importable_dir(
name=name.split("/")[-1],
importable_directory_path=importable_directory_path,
subdirectory_name=hash,
original_local_path=local_path,
local_imports=local_imports,
additional_files=additional_files,
download_mode=download_mode,
)
logger.debug(f"Created importable dataset file at {importable_local_file}")
module_path = ".".join(
[os.path.basename(dynamic_modules_path), module_namespace, name.replace("/", "--"), hash, name.split("/")[-1]]
)
return module_path, hash
@dataclass
class ImportableModule:
module_path: str
hash: str
class _EvaluationModuleFactory:
def get_module(self) -> ImportableModule:
raise NotImplementedError
class LocalEvaluationModuleFactory(_EvaluationModuleFactory):
"""Get the module of a local metric. The metric script is loaded from a local script."""
def __init__(
self,
path: str,
module_type: str = "metrics",
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[DownloadMode] = None,
dynamic_modules_path: Optional[str] = None,
):
self.path = path
self.module_type = module_type
self.name = Path(path).stem
self.download_config = download_config or DownloadConfig()
self.download_mode = download_mode
self.dynamic_modules_path = dynamic_modules_path
def get_module(self) -> ImportableModule:
# get script and other files
imports = get_imports(self.path)
local_imports = _download_additional_modules(
name=self.name,
base_path=str(Path(self.path).parent),
imports=imports,
download_config=self.download_config,
)
# copy the script and the files in an importable directory
dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules()
module_path, hash = _create_importable_file(
local_path=self.path,
local_imports=local_imports,
additional_files=[],
dynamic_modules_path=dynamic_modules_path,
module_namespace=self.module_type,
name=self.name,
download_mode=self.download_mode,
)
# make the new module to be noticed by the import system
importlib.invalidate_caches()
return ImportableModule(module_path, hash)
class HubEvaluationModuleFactory(_EvaluationModuleFactory):
"""Get the module of a metric from a metric repository on the Hub."""
def __init__(
self,
name: str,
module_type: str = "metrics",
revision: Optional[Union[str, Version]] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[DownloadMode] = None,
dynamic_modules_path: Optional[str] = None,
):
self.name = name
self.module_type = module_type
self.revision = revision
self.download_config = download_config or DownloadConfig()
self.download_mode = download_mode
self.dynamic_modules_path = dynamic_modules_path
assert self.name.count("/") == 1
increase_load_count(name, resource_type="metric")
def download_loading_script(self, revision) -> str:
file_path = hf_hub_url(path=self.name, name=self.name.split("/")[1] + ".py", revision=revision)
download_config = self.download_config.copy()
if download_config.download_desc is None:
download_config.download_desc = "Downloading builder script"
return cached_path(file_path, download_config=download_config)
def get_module(self) -> ImportableModule:
revision = self.revision or os.getenv("HF_SCRIPTS_VERSION", SCRIPTS_VERSION)
if re.match(r"\d*\.\d*\.\d*", revision): # revision is version number (three digits separated by full stops)
revision = "v" + revision # tagging convention on evaluate repository starts with v
# get script and other files
try:
local_path = self.download_loading_script(revision)
except FileNotFoundError as err:
# if there is no file found with current revision tag try to load main
if self.revision is None and os.getenv("HF_SCRIPTS_VERSION", SCRIPTS_VERSION) != "main":
revision = "main"
local_path = self.download_loading_script(revision)
else:
raise err
imports = get_imports(local_path)
local_imports = _download_additional_modules(
name=self.name,
base_path=hf_hub_url(path=self.name, name="", revision=revision),
imports=imports,
download_config=self.download_config,
)
# copy the script and the files in an importable directory
dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules()
module_path, hash = _create_importable_file(
local_path=local_path,
local_imports=local_imports,
additional_files=[],
dynamic_modules_path=dynamic_modules_path,
module_namespace=self.module_type,
name=self.name,
download_mode=self.download_mode,
)
# make the new module to be noticed by the import system
importlib.invalidate_caches()
return ImportableModule(module_path, hash)
class CachedEvaluationModuleFactory(_EvaluationModuleFactory):
"""
Get the module of a metric that has been loaded once already and cached.
The script that is loaded from the cache is the most recent one with a matching name.
"""
def __init__(
self,
name: str,
module_type: str = "metrics",
dynamic_modules_path: Optional[str] = None,
):
self.name = name
self.module_type = module_type
self.dynamic_modules_path = dynamic_modules_path
assert self.name.count("/") == 0
def get_module(self) -> ImportableModule:
dynamic_modules_path = self.dynamic_modules_path if self.dynamic_modules_path else init_dynamic_modules()
importable_directory_path = os.path.join(dynamic_modules_path, self.module_type, self.name)
hashes = (
[h for h in os.listdir(importable_directory_path) if len(h) == 64]
if os.path.isdir(importable_directory_path)
else None
)
if not hashes:
raise FileNotFoundError(f"Metric {self.name} is not cached in {dynamic_modules_path}")
# get most recent
def _get_modification_time(module_hash):
return (
(Path(importable_directory_path) / module_hash / (self.name.split("--")[-1] + ".py")).stat().st_mtime
)
hash = sorted(hashes, key=_get_modification_time)[-1]
logger.warning(
f"Using the latest cached version of the module from {os.path.join(importable_directory_path, hash)} "
f"(last modified on {time.ctime(_get_modification_time(hash))}) since it "
f"couldn't be found locally at {self.name}, or remotely on the Hugging Face Hub."
)
# make the new module to be noticed by the import system
module_path = ".".join(
[os.path.basename(dynamic_modules_path), self.module_type, self.name, hash, self.name.split("--")[-1]]
)
importlib.invalidate_caches()
return ImportableModule(module_path, hash)
def evaluation_module_factory(
path: str,
module_type: Optional[str] = None,
revision: Optional[Union[str, Version]] = None,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[DownloadMode] = None,
force_local_path: Optional[str] = None,
dynamic_modules_path: Optional[str] = None,
**download_kwargs,
) -> ImportableModule:
"""
Download/extract/cache a metric module.
Metrics codes are cached inside the the dynamic modules cache to allow easy import (avoid ugly sys.path tweaks).
Args:
path (str): Path or name of the metric script.
- if ``path`` is a local metric script or a directory containing a local metric script (if the script has the same name as the directory):
-> load the module from the metric script
e.g. ``'./metrics/accuracy'`` or ``'./metrics/accuracy/accuracy.py'``.
- if ``path`` is a metric on the Hugging Face Hub (ex: `glue`, `squad`)
-> load the module from the metric script in the github repository at huggingface/datasets
e.g. ``'accuracy'`` or ``'rouge'``.
revision (Optional ``Union[str, datasets.Version]``):
If specified, the module will be loaded from the datasets repository at this version.
By default:
- it is set to the local version of the lib.
- it will also try to load it from the master branch if it's not available at the local version of the lib.
Specifying a version that is different from your local version of the lib might cause compatibility issues.
download_config (:class:`DownloadConfig`, optional): Specific download configuration parameters.
download_mode (:class:`DownloadMode`, default ``REUSE_DATASET_IF_EXISTS``): Download/generate mode.
force_local_path (Optional str): Optional path to a local path to download and prepare the script to.
Used to inspect or modify the script folder.
dynamic_modules_path (Optional str, defaults to HF_MODULES_CACHE / "datasets_modules", i.e. ~/.cache/huggingface/modules/datasets_modules):
Optional path to the directory in which the dynamic modules are saved. It must have been initialized with :obj:`init_dynamic_modules`.
By default the datasets and metrics are stored inside the `datasets_modules` module.
download_kwargs: optional attributes for DownloadConfig() which will override the attributes in download_config if supplied.
Returns:
ImportableModule
"""
if download_config is None:
download_config = DownloadConfig(**download_kwargs)
download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
download_config.extract_compressed_file = True
download_config.force_extract = True
filename = list(filter(lambda x: x, path.replace(os.sep, "/").split("/")))[-1]
if not filename.endswith(".py"):
filename = filename + ".py"
combined_path = os.path.join(path, filename)
# Try locally
if path.endswith(filename):
if os.path.isfile(path):
return LocalEvaluationModuleFactory(
path, download_mode=download_mode, dynamic_modules_path=dynamic_modules_path
).get_module()
else:
raise FileNotFoundError(f"Couldn't find a metric script at {relative_to_absolute_path(path)}")
elif os.path.isfile(combined_path):
return LocalEvaluationModuleFactory(
combined_path, download_mode=download_mode, dynamic_modules_path=dynamic_modules_path
).get_module()
elif is_relative_path(path) and path.count("/") <= 1 and not force_local_path:
try:
# load a canonical evaluation module from hub
if path.count("/") == 0:
# if no type provided look through all possible modules
if module_type is None:
for current_type in ["metric", "comparison", "measurement"]:
try:
return HubEvaluationModuleFactory(
f"evaluate-{current_type}/{path}",
revision=revision,
download_config=download_config,
download_mode=download_mode,
dynamic_modules_path=dynamic_modules_path,
).get_module()
except ConnectionError:
pass
raise FileNotFoundError
# if module_type provided load specific module_type
else:
return HubEvaluationModuleFactory(
f"evaluate-{module_type}/{path}",
revision=revision,
download_config=download_config,
download_mode=download_mode,
dynamic_modules_path=dynamic_modules_path,
).get_module()
# load community evaluation module from hub
elif path.count("/") == 1:
return HubEvaluationModuleFactory(
path,
revision=revision,
download_config=download_config,
download_mode=download_mode,
dynamic_modules_path=dynamic_modules_path,
).get_module()
except Exception as e1: # noqa: all the attempts failed, before raising the error we should check if the module is already cached.
# if it's a canonical module we need to check if it's any of the types
if path.count("/") == 0:
for current_type in ["metric", "comparison", "measurement"]:
try:
return CachedEvaluationModuleFactory(
f"evaluate-{current_type}--{path}", dynamic_modules_path=dynamic_modules_path
).get_module()
except Exception as e2: # noqa: if it's not in the cache, then it doesn't exist.
pass
# if it's a community module we just need to check on path
elif path.count("/") == 1:
try:
return CachedEvaluationModuleFactory(
path.replace("/", "--"), dynamic_modules_path=dynamic_modules_path
).get_module()
except Exception as e2: # noqa: if it's not in the cache, then it doesn't exist.
pass
if not isinstance(e1, (ConnectionError, FileNotFoundError)):
raise e1 from None
raise FileNotFoundError(
f"Couldn't find a module script at {relative_to_absolute_path(combined_path)}. "
f"Module '{path}' doesn't exist on the Hugging Face Hub either."
) from None
else:
raise FileNotFoundError(f"Couldn't find a module script at {relative_to_absolute_path(combined_path)}.")
def load(
path: str,
config_name: Optional[str] = None,
module_type: Optional[str] = None,
process_id: int = 0,
num_process: int = 1,
cache_dir: Optional[str] = None,
experiment_id: Optional[str] = None,
keep_in_memory: bool = False,
download_config: Optional[DownloadConfig] = None,
download_mode: Optional[DownloadMode] = None,
revision: Optional[Union[str, Version]] = None,
**init_kwargs,
) -> EvaluationModule:
"""Load a [`~evaluate.EvaluationModule`].
Args:
path (`str`):
Path to the evaluation processing script with the evaluation builder. Can be either:
- a local path to processing script or the directory containing the script (if the script has the same name as the directory),
e.g. `'./metrics/rouge'` or `'./metrics/rouge/rouge.py'`
- a evaluation module identifier on the HuggingFace evaluate repo e.g. `'rouge'` or `'bleu'` that are in either `'metrics/'`,
`'comparisons/'`, or `'measurements/'` depending on the provided `module_type`
config_name (`str`, *optional*):
Selecting a configuration for the metric (e.g. the GLUE metric has a configuration for each subset).
module_type (`str`, default `'metric'`):
Type of evaluation module, can be one of `'metric'`, `'comparison'`, or `'measurement'`.
process_id (`int`, *optional*):
For distributed evaluation: id of the process.
num_process (`int`, *optional*):
For distributed evaluation: total number of processes.
cache_dir (`str`, *optional*):
Path to store the temporary predictions and references (default to `~/.cache/huggingface/evaluate/`).
experiment_id (`str`):
A specific experiment id. This is used if several distributed evaluations share the same file system.
This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1).
keep_in_memory (`bool`):
Whether to store the temporary results in memory (defaults to `False`).
download_config ([`~evaluate.DownloadConfig`], *optional*):
Specific download configuration parameters.
download_mode ([`DownloadMode`], defaults to `REUSE_DATASET_IF_EXISTS`):
Download/generate mode.
revision (`Union[str, evaluate.Version]`, *optional*):
If specified, the module will be loaded from the datasets repository
at this version. By default it is set to the local version of the lib. Specifying a version that is different from
your local version of the lib might cause compatibility issues.
Returns:
[`evaluate.EvaluationModule`]
Example:
```py
>>> from evaluate import load
>>> accuracy = load("accuracy")
```
"""
download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
evaluation_module = evaluation_module_factory(
path, module_type=module_type, revision=revision, download_config=download_config, download_mode=download_mode
)
evaluation_cls = import_main_class(evaluation_module.module_path)
evaluation_instance = evaluation_cls(
config_name=config_name,
process_id=process_id,
num_process=num_process,
cache_dir=cache_dir,
keep_in_memory=keep_in_memory,
experiment_id=experiment_id,
hash=evaluation_module.hash,
**init_kwargs,
)
if module_type and module_type != evaluation_instance.module_type:
raise TypeError(
f"No module of module type '{module_type}' not found for '{path}' locally, or on the Hugging Face Hub. Found module of module type '{evaluation_instance.module_type}' instead."
)
# Download and prepare resources for the metric
evaluation_instance.download_and_prepare(download_config=download_config)
return evaluation_instance