applied-ai-018's picture
Add files using upload-large-folder tool
b33c150 verified
import textwrap
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
class ComplexRadar:
"""Create a complex radar chart with different scales for each variable
Args:
fig (`matplotlib.figure`) : A matplotlib figure object to add the axes on.
variables (`list`) : a list of variables to. plot
ranges (`list` of `tuples`): A list of ranges (min, max) for each variable
n_ring_levels (`int): Number of ordinate or ring levels to draw.
Default: 5.
show_scales (`bool`): Indicates if we the ranges for each variable are plotted.
Default: True.
format_cfg (`dict`): A dictionary with formatting configurations.
Default: None.
Returns:
`matplotlib.figure.Figure`: a radar plot.
"""
def __init__(self, fig, variables, ranges, n_ring_levels=5, show_scales=True, format_cfg=None):
self.format_cfg = format_cfg
# Calculate angles and create for each variable an axes
# Consider here the trick with having the first axes element twice (len+1)
angles = np.arange(0, 360, 360.0 / len(variables))
axes = [
fig.add_axes([0.1, 0.1, 0.9, 0.9], polar=True, label="axes{}".format(i), **self.format_cfg["axes_args"])
for i in range(len(variables) + 1)
]
# Ensure clockwise rotation (first variable at the top N)
for ax in axes:
ax.set_theta_zero_location("N")
ax.set_theta_direction(-1)
ax.set_axisbelow(True)
# Writing the ranges on each axes
for i, ax in enumerate(axes):
# Here we do the trick by repeating the first iteration
j = 0 if (i == 0 or i == 1) else i - 1
ax.set_ylim(*ranges[j])
# Set endpoint to True if you like to have values right before the last circle
grid = np.linspace(*ranges[j], num=n_ring_levels, endpoint=self.format_cfg["incl_endpoint"])
gridlabel = ["{}".format(round(x, 2)) for x in grid]
gridlabel[0] = "" # remove values from the center
lines, labels = ax.set_rgrids(
grid, labels=gridlabel, angle=angles[j], **self.format_cfg["rgrid_tick_lbls_args"]
)
ax.set_ylim(*ranges[j])
ax.spines["polar"].set_visible(False)
ax.grid(visible=False)
if show_scales is False:
ax.set_yticklabels([])
# Set all axes except the first one unvisible
for ax in axes[1:]:
ax.patch.set_visible(False)
ax.xaxis.set_visible(False)
# Setting the attributes
self.angle = np.deg2rad(np.r_[angles, angles[0]])
self.ranges = ranges
self.ax = axes[0]
self.ax1 = axes[1]
self.plot_counter = 0
# Draw (inner) circles and lines
self.ax.yaxis.grid(**self.format_cfg["rad_ln_args"])
# Draw outer circle
self.ax.spines["polar"].set(**self.format_cfg["outer_ring"])
# Draw angle lines
self.ax.xaxis.grid(**self.format_cfg["angle_ln_args"])
# ax1 is the duplicate of axes[0] (self.ax)
# Remove everything from ax1 except the plot itself
self.ax1.axis("off")
self.ax1.set_zorder(9)
# Create the outer labels for each variable
l, text = self.ax.set_thetagrids(angles, labels=variables)
# Beautify them
labels = [t.get_text() for t in self.ax.get_xticklabels()]
labels = [
"\n".join(
textwrap.wrap(
label,
self.format_cfg["theta_tick_lbls_txt_wrap"],
break_long_words=self.format_cfg["theta_tick_lbls_brk_lng_wrds"],
)
)
for label in labels
]
self.ax.set_xticklabels(labels, **self.format_cfg["theta_tick_lbls"])
for t, a in zip(self.ax.get_xticklabels(), angles):
if a == 0:
t.set_ha("center")
elif a > 0 and a < 180:
t.set_ha("left")
elif a == 180:
t.set_ha("center")
else:
t.set_ha("right")
self.ax.tick_params(axis="both", pad=self.format_cfg["theta_tick_lbls_pad"])
def _scale_data(self, data, ranges):
"""Scales data[1:] to ranges[0]"""
for d, (y1, y2) in zip(data[1:], ranges[1:]):
assert (y1 <= d <= y2) or (y2 <= d <= y1)
x1, x2 = ranges[0]
d = data[0]
sdata = [d]
for d, (y1, y2) in zip(data[1:], ranges[1:]):
sdata.append((d - y1) / (y2 - y1) * (x2 - x1) + x1)
return sdata
def plot(self, data, *args, **kwargs):
"""Plots a line"""
sdata = self._scale_data(data, self.ranges)
self.ax1.plot(self.angle, np.r_[sdata, sdata[0]], *args, **kwargs)
self.plot_counter = self.plot_counter + 1
def use_legend(self, *args, **kwargs):
"""Shows a legend"""
self.ax1.legend(*args, **kwargs)
def radar_plot(data, model_names, invert_range=[], config=None, fig=None):
"""Create a complex radar chart with different scales for each variable
Source: https://towardsdatascience.com/how-to-create-and-visualize-complex-radar-charts-f7764d0f3652
Args:
data (`List[dict]`): the results (list of metric + value pairs).
E.g. data = [{"accuracy": 0.9, "precision":0.8},{"accuracy": 0.7, "precision":0.6}]
names (`List[dict]`): model names.
E.g. names = ["model1", "model 2", ...]
invert_range (`List[dict]`, optional): the metrics to invert (in cases when smaller is better, e.g. speed)
E.g. invert_range=["latency_in_seconds"]
config (`dict`, optional) : a specification of the formatting configurations, namely:
- rad_ln_args (`dict`, default `{"visible": True}`): The visibility of the radial (circle) lines.
- outer_ring (`dict`, default `{"visible": True}`): The visibility of the outer ring.
- angle_ln_args (`dict`, default `{"visible": True}`): The visibility of the angle lines.
- rgrid_tick_lbls_args (`dict`, default `{"fontsize": 12}`): The font size of the tick labels on the scales.
- theta_tick_lbls (`dict`, default `{"fontsize": 12}`): The font size of the variable labels on the plot.
- theta_tick_lbls_pad (`int`, default `3`): The padding of the variable labels on the plot.
- theta_tick_lbls_brk_lng_wrds (`bool`, default `True` ): Whether long words in the label are broken up or not.
- theta_tick_lbls_txt_wrap (`int`, default `15`): Text wrap for tick labels
- incl_endpoint (`bool`, default `False`): Include value endpoints on calse
- marker (`str`, default `"o"`): the shape of the marker used in the radar plot.
- markersize (`int`, default `3`): the shape of the marker used in the radar plot.
- legend_loc (`str`, default `"upper right"`): the location of the legend in the radar plot. Must be one of: 'upper left', 'upper right', 'lower left', 'lower right'.
- bbox_to_anchor (`tuple`, default `(2, 1)`: anchor for the legend.
fig (`matplotlib.figure.Figure`, optional): figure used to plot the radar plot.
Returns:
`matplotlib.figure.Figure`
"""
data = pd.DataFrame(data)
data.index = model_names
variables = data.keys()
if all(x in variables for x in invert_range) is False:
raise ValueError("All of the metrics in `invert_range` should be in the data provided.")
min_max_per_variable = data.describe().T[["min", "max"]]
min_max_per_variable["min"] = min_max_per_variable["min"] - 0.1 * (
min_max_per_variable["max"] - min_max_per_variable["min"]
)
min_max_per_variable["max"] = min_max_per_variable["max"] + 0.1 * (
min_max_per_variable["max"] - min_max_per_variable["min"]
)
ranges = list(min_max_per_variable.itertuples(index=False, name=None))
ranges = [
(max_value, min_value) if var in invert_range else (min_value, max_value)
for var, (min_value, max_value) in zip(variables, ranges)
]
format_cfg = {
"axes_args": {},
"rad_ln_args": {"visible": True},
"outer_ring": {"visible": True},
"angle_ln_args": {"visible": True},
"rgrid_tick_lbls_args": {"fontsize": 12},
"theta_tick_lbls": {"fontsize": 12},
"theta_tick_lbls_pad": 3,
"theta_tick_lbls_brk_lng_wrds": True,
"theta_tick_lbls_txt_wrap": 15,
"incl_endpoint": False,
"marker": "o",
"markersize": 3,
"legend_loc": "upper right",
"bbox_to_anchor": (2, 1),
}
if config is not None:
format_cfg.update(config)
if fig is None:
fig = plt.figure()
radar = ComplexRadar(
fig,
variables,
ranges,
n_ring_levels=3,
show_scales=True,
format_cfg=format_cfg,
)
for g in zip(data.index):
radar.plot(data.loc[g].values, label=g, marker=format_cfg["marker"], markersize=format_cfg["markersize"])
radar.use_legend(**{"loc": format_cfg["legend_loc"], "bbox_to_anchor": format_cfg["bbox_to_anchor"]})
return fig