peacock-data-public-datasets-idc-llm_eval
/
lm-evaluation
/build
/lib
/lm_eval
/tasks
/drop
/utils.py
import re | |
import string | |
import numpy as np | |
from scipy.optimize import linear_sum_assignment | |
_ARTICLES = re.compile(r"\b(a|an|the)\b", re.UNICODE) | |
def process_docs(dataset): | |
def _process(doc): | |
return { | |
"id": doc["query_id"], | |
"passage": doc["passage"], | |
"question": doc["question"], | |
"answers": get_answers(doc), | |
} | |
return dataset.map(_process) | |
def get_answers(doc): | |
def _flatten_validated_answers(validated_answers): | |
"""Flattens a dict of lists of validated answers. | |
{"number": ['1', '8'], ...} | |
-> [{"number": ['1'], ...}, {"number": ['8'], ...}] | |
""" | |
valid_answers = [] | |
for i in range(len(validated_answers["number"])): | |
valid_answers.append( | |
{ | |
"number": validated_answers["number"][i], | |
"date": validated_answers["date"][i], | |
"spans": validated_answers["spans"][i], | |
} | |
) | |
return valid_answers | |
answers = [] | |
answers_set = set() | |
candidates = [doc["answer"]] + _flatten_validated_answers(doc["validated_answers"]) | |
for candidate in candidates: | |
answer = parse_answer(candidate) | |
if answer in answers_set: | |
continue | |
answers_set.add(answer) | |
answers.append(answer) | |
return answers | |
def parse_answer(answer): | |
# NOTE: Everything is returned as a tuple for uniformity and hashability. | |
if answer["number"] != "": | |
return (str(answer["number"]),) | |
if answer["spans"] != []: | |
return tuple(answer["spans"]) | |
return ( | |
" ".join( | |
[answer["date"]["day"], answer["date"]["month"], answer["date"]["year"]] | |
).strip(), | |
) | |
def process_results(doc, results): | |
preds, golds = results, doc["answers"] | |
max_em = 0 | |
max_f1 = 0 | |
for gold_answer in golds: | |
exact_match, f1_score = get_metrics(preds, gold_answer) | |
if gold_answer[0].strip(): | |
max_em = max(max_em, exact_match) | |
max_f1 = max(max_f1, f1_score) | |
return {"em": max_em, "f1": max_f1} | |
def get_metrics(predicted, gold): | |
""" | |
Takes a predicted answer and a gold answer (that are both either a string or a list of | |
strings), and returns exact match and the DROP F1 metric for the prediction. If you are | |
writing a script for evaluating objects in memory (say, the output of predictions during | |
validation, or while training), this is the function you want to call, after using | |
:func:`answer_json_to_strings` when reading the gold answer from the released data file. | |
""" | |
predicted_bags = _answer_to_bags(predicted) | |
gold_bags = _answer_to_bags(gold) | |
if set(predicted_bags[0]) == set(gold_bags[0]) and len(predicted_bags[0]) == len( | |
gold_bags[0] | |
): | |
exact_match = 1.0 | |
else: | |
exact_match = 0.0 | |
f1_per_bag = _align_bags(predicted_bags[1], gold_bags[1]) | |
f1 = np.mean(f1_per_bag) | |
f1 = round(f1, 2) | |
return exact_match, f1 | |
def _answer_to_bags(answer): | |
if isinstance(answer, (list, tuple)): | |
raw_spans = answer | |
else: | |
raw_spans = [answer] | |
normalized_spans = [] | |
token_bags = [] | |
for raw_span in raw_spans: | |
normalized_span = _normalize(raw_span) | |
normalized_spans.append(normalized_span) | |
token_bags.append(set(normalized_span.split())) | |
return normalized_spans, token_bags | |
def _align_bags(predicted, gold): | |
""" | |
Takes gold and predicted answer sets and first finds the optimal 1-1 alignment | |
between them and gets maximum metric values over all the answers. | |
""" | |
scores = np.zeros([len(gold), len(predicted)]) | |
for gold_index, gold_item in enumerate(gold): | |
for pred_index, pred_item in enumerate(predicted): | |
if _match_numbers_if_present(gold_item, pred_item): | |
scores[gold_index, pred_index] = _compute_f1(pred_item, gold_item) | |
row_ind, col_ind = linear_sum_assignment(-scores) | |
max_scores = np.zeros([max(len(gold), len(predicted))]) | |
for row, column in zip(row_ind, col_ind): | |
max_scores[row] = max(max_scores[row], scores[row, column]) | |
return max_scores | |
def _compute_f1(predicted_bag, gold_bag): | |
intersection = len(gold_bag.intersection(predicted_bag)) | |
if not predicted_bag: | |
precision = 1.0 | |
else: | |
precision = intersection / float(len(predicted_bag)) | |
if not gold_bag: | |
recall = 1.0 | |
else: | |
recall = intersection / float(len(gold_bag)) | |
f1 = ( | |
(2 * precision * recall) / (precision + recall) | |
if not (precision == 0.0 and recall == 0.0) | |
else 0.0 | |
) | |
return f1 | |
def _match_numbers_if_present(gold_bag, predicted_bag): | |
gold_numbers = set() | |
predicted_numbers = set() | |
for word in gold_bag: | |
if _is_number(word): | |
gold_numbers.add(word) | |
for word in predicted_bag: | |
if _is_number(word): | |
predicted_numbers.add(word) | |
if (not gold_numbers) or gold_numbers.intersection(predicted_numbers): | |
return True | |
return False | |
def _is_number(text): | |
try: | |
float(text) | |
return True | |
except ValueError: | |
return False | |
def _remove_articles(text): | |
return _ARTICLES.sub(" ", text) | |
def _white_space_fix(text): | |
return " ".join(text.split()) | |
def _remove_punc(text): | |
exclude = set(string.punctuation) | |
if not _is_number(text): | |
return "".join(ch for ch in text if ch not in exclude) | |
else: | |
return text | |
def _fix_number(text): | |
return str(float(text)) if _is_number(text) else text | |
def _tokenize(text): | |
return re.split(" |-", text) | |
def _normalize(answer): | |
tokens = [ | |
_white_space_fix(_remove_articles(_fix_number(_remove_punc(token.lower())))) | |
for token in _tokenize(answer) | |
] | |
tokens = [token for token in tokens if token.strip()] | |
normalized = " ".join(tokens).strip() | |
return normalized | |