|
import logging |
|
from typing import Callable, Dict |
|
|
|
import evaluate as hf_evaluate |
|
|
|
from lm_eval.api.model import LM |
|
|
|
|
|
eval_logger = logging.getLogger("lm-eval") |
|
|
|
MODEL_REGISTRY = {} |
|
|
|
|
|
def register_model(*names): |
|
|
|
|
|
|
|
def decorate(cls): |
|
for name in names: |
|
assert issubclass( |
|
cls, LM |
|
), f"Model '{name}' ({cls.__name__}) must extend LM class" |
|
|
|
assert ( |
|
name not in MODEL_REGISTRY |
|
), f"Model named '{name}' conflicts with existing model! Please register with a non-conflicting alias instead." |
|
|
|
MODEL_REGISTRY[name] = cls |
|
return cls |
|
|
|
return decorate |
|
|
|
|
|
def get_model(model_name): |
|
try: |
|
return MODEL_REGISTRY[model_name] |
|
except KeyError: |
|
raise ValueError( |
|
f"Attempted to load model '{model_name}', but no model for this name found! Supported model names: {', '.join(MODEL_REGISTRY.keys())}" |
|
) |
|
|
|
|
|
TASK_REGISTRY = {} |
|
GROUP_REGISTRY = {} |
|
ALL_TASKS = set() |
|
func2task_index = {} |
|
|
|
|
|
def register_task(name): |
|
def decorate(fn): |
|
assert ( |
|
name not in TASK_REGISTRY |
|
), f"task named '{name}' conflicts with existing registered task!" |
|
|
|
TASK_REGISTRY[name] = fn |
|
ALL_TASKS.add(name) |
|
func2task_index[fn.__name__] = name |
|
return fn |
|
|
|
return decorate |
|
|
|
|
|
def register_group(name): |
|
def decorate(fn): |
|
func_name = func2task_index[fn.__name__] |
|
if name in GROUP_REGISTRY: |
|
GROUP_REGISTRY[name].append(func_name) |
|
else: |
|
GROUP_REGISTRY[name] = [func_name] |
|
ALL_TASKS.add(name) |
|
return fn |
|
|
|
return decorate |
|
|
|
|
|
OUTPUT_TYPE_REGISTRY = {} |
|
METRIC_REGISTRY = {} |
|
METRIC_AGGREGATION_REGISTRY = {} |
|
AGGREGATION_REGISTRY: Dict[str, Callable[[], Dict[str, Callable]]] = {} |
|
HIGHER_IS_BETTER_REGISTRY = {} |
|
|
|
DEFAULT_METRIC_REGISTRY = { |
|
"loglikelihood": [ |
|
"perplexity", |
|
"acc", |
|
], |
|
"loglikelihood_rolling": ["word_perplexity", "byte_perplexity", "bits_per_byte"], |
|
"multiple_choice": ["acc", "acc_norm"], |
|
"generate_until": ["exact_match"], |
|
} |
|
|
|
|
|
def register_metric(**args): |
|
|
|
def decorate(fn): |
|
assert "metric" in args |
|
name = args["metric"] |
|
|
|
for key, registry in [ |
|
("metric", METRIC_REGISTRY), |
|
("higher_is_better", HIGHER_IS_BETTER_REGISTRY), |
|
("aggregation", METRIC_AGGREGATION_REGISTRY), |
|
]: |
|
if key in args: |
|
value = args[key] |
|
assert ( |
|
value not in registry |
|
), f"{key} named '{value}' conflicts with existing registered {key}!" |
|
|
|
if key == "metric": |
|
registry[name] = fn |
|
elif key == "aggregation": |
|
registry[name] = AGGREGATION_REGISTRY[value] |
|
else: |
|
registry[name] = value |
|
|
|
return fn |
|
|
|
return decorate |
|
|
|
|
|
def get_metric(name: str, hf_evaluate_metric=False) -> Callable: |
|
if not hf_evaluate_metric: |
|
if name in METRIC_REGISTRY: |
|
return METRIC_REGISTRY[name] |
|
else: |
|
eval_logger.warning( |
|
f"Could not find registered metric '{name}' in lm-eval, searching in HF Evaluate library..." |
|
) |
|
|
|
try: |
|
metric_object = hf_evaluate.load(name) |
|
return metric_object.compute |
|
except Exception: |
|
eval_logger.error( |
|
f"{name} not found in the evaluate library! Please check https://huggingface.co/evaluate-metric", |
|
) |
|
|
|
|
|
def register_aggregation(name: str): |
|
def decorate(fn): |
|
assert ( |
|
name not in AGGREGATION_REGISTRY |
|
), f"aggregation named '{name}' conflicts with existing registered aggregation!" |
|
|
|
AGGREGATION_REGISTRY[name] = fn |
|
return fn |
|
|
|
return decorate |
|
|
|
|
|
def get_aggregation(name: str) -> Callable[[], Dict[str, Callable]]: |
|
try: |
|
return AGGREGATION_REGISTRY[name] |
|
except KeyError: |
|
eval_logger.warning(f"{name} not a registered aggregation metric!") |
|
|
|
|
|
def get_metric_aggregation(name: str) -> Callable[[], Dict[str, Callable]]: |
|
try: |
|
return METRIC_AGGREGATION_REGISTRY[name] |
|
except KeyError: |
|
eval_logger.warning(f"{name} metric is not assigned a default aggregation!") |
|
|
|
|
|
def is_higher_better(metric_name) -> bool: |
|
try: |
|
return HIGHER_IS_BETTER_REGISTRY[metric_name] |
|
except KeyError: |
|
eval_logger.warning( |
|
f"higher_is_better not specified for metric '{metric_name}'!" |
|
) |
|
|