peacock-data-public-datasets-idc-llm_eval
/
lm-evaluation
/lm_eval
/decontamination
/decontaminate.py
import collections | |
import glob | |
import json | |
import os | |
import pickle | |
import random | |
import time | |
from .archiver import ZStdTextReader | |
from .janitor import Janitor, word_ngrams | |
# Was used for testing the evaluator decoupled from the full logic below | |
def get_train_overlap_stub(docs: dict, ngrams_path: str, ngrams_n_size: str): | |
simulated_overlap = 0.1 | |
contaminated = int(len(docs) * simulated_overlap) | |
return random.sample(range(len(docs)), contaminated) | |
# Returns a dictionary containing all overlapping documents in each | |
# task. In the standard use case, an overlap occurs when any of the 13-grams | |
# found in the task document exist in the training set documents. | |
# | |
# To generate 13-grams for the pile see scripts/clean_training_data. The final output of these | |
# scripts are an info.json file containing the n_gram_size (13) and a bunch of "ngrams_{x}.bkt.txt.sorted.zst" | |
# files. These should exist in the "ngrams_path" provided to this function. | |
# Algorithm: | |
# 1. Build lookups for each dataset {ngram: list(document_ids)} | |
# 2. Merge into an overall lookup {ngram: [(task_name, task_set, doc_ids),]} | |
# 3. Full scan the 13-grams from the training set against the merged lookup, | |
# saving matches in the "duplicates" dictionary {(task_name, task_set): set(doc_ids)} | |
# 4. Strip the task_set from the dictionary keys and return | |
# | |
# We cache the task+set lookups as well as the overlaps. | |
def get_train_overlap(docs_by_task_set: dict, ngrams_path: str, limit: int) -> dict: | |
# return get_train_overlap_stub(docs, ngrams_path, ngrams_n_size) | |
info_dict_path = os.path.join(ngrams_path, "info.json") | |
info_dict = json.load(open(info_dict_path, "r", encoding="utf-8")) | |
ngrams_n_size = info_dict["ngram_size"] | |
janitor = Janitor() | |
# Build lookup for each dataset first in case we use different task combinations later | |
print("Building Lookups...") | |
start = time.perf_counter() | |
def get_overlaps_dump_path(task_name, task_set, ngrams_n_size, limit) -> str: | |
return f"data/{task_name}/{task_set}_{ngrams_n_size}grams_limit{limit}.overlaps" | |
lookups = {} | |
duplicates = {} # (task_name, task_set): set(doc_ids)} | |
sets_to_decontaminate = len(docs_by_task_set.keys()) | |
for (task_name, task_set), docs in docs_by_task_set.items(): | |
if not os.path.exists(f"data/{task_name}"): | |
os.mkdir(f"data/{task_name}") | |
# Check if we've decontaminated this combination before | |
overlaps_dump_path = get_overlaps_dump_path( | |
task_name, task_set, ngrams_n_size, limit | |
) | |
if os.path.exists(overlaps_dump_path): | |
duplicates[(task_name, task_set)] = pickle.load( | |
open(overlaps_dump_path, "rb") | |
) | |
sets_to_decontaminate -= 1 | |
continue | |
else: | |
duplicates[(task_name, task_set)] = set() | |
# Build/load the task lookup {ngram: set(documents)}. | |
task_set_lookup_path = ( | |
f"data/{task_name}/{task_set}_{ngrams_n_size}grams_limit{limit}.lookup" | |
) | |
if os.path.exists(task_set_lookup_path): | |
print(f"{task_set_lookup_path} available, loading...") | |
lookups[(task_name, task_set)] = pickle.load( | |
open(task_set_lookup_path, "rb") | |
) | |
else: | |
print(f"{task_set_lookup_path} not available, building...") | |
lookup = collections.defaultdict(set) | |
for doc_id, document in enumerate(docs): | |
ngrams = word_ngrams(janitor.normalize_string(document), ngrams_n_size) | |
for ngram in ngrams: | |
lookup[ngram].add(doc_id) | |
pickle.dump(lookup, open(task_set_lookup_path, "wb")) | |
lookups[(task_name, task_set)] = lookup | |
elapsed = time.perf_counter() - start | |
print(f"Building lookups took {elapsed:0.5f} seconds.") | |
matched_ngrams = [] | |
if sets_to_decontaminate > 0: | |
print("Merging lookups...") | |
start = time.perf_counter() | |
merged_lookup = collections.defaultdict(list) | |
for (task_name, task_set), lookup in lookups.items(): | |
for ngram, doc_ids in lookup.items(): | |
merged_lookup[ngram].append((task_name, task_set, doc_ids)) | |
elapsed = time.perf_counter() - start | |
print(f"Merging lookups took {elapsed:0.5f} seconds.") | |
print(f"{ngrams_n_size} grams files found in {ngrams_path}:") | |
files = glob.glob(os.path.join(ngrams_path, "*.sorted.zst")) | |
print(files) | |
for file in files: | |
start = time.perf_counter() | |
print(f"Scanning {file}") | |
reader = ZStdTextReader(file) | |
total_ngrams = 0 | |
unique_ngrams = 0 | |
matching_unique = 0 | |
non_matching_unique = 0 | |
current_ngram = "" | |
for line in reader.read_tqdm(): # Scan training set ngrams file | |
total_ngrams += 1 | |
[ngram, document_id] = line.rsplit(" ", 1) | |
if ( | |
ngram != current_ngram | |
): # Only need to match the ngram once in training set | |
unique_ngrams += 1 | |
current_ngram = ngram | |
if ngram in merged_lookup: | |
matched_ngrams.append(ngram) # For logging | |
matching_unique += 1 | |
for task_name, task_set, doc_ids in merged_lookup[ngram]: | |
task_doc_set = duplicates[(task_name, task_set)] | |
for doc_id in doc_ids: # Record contamination across all relevant task/set combos | |
task_doc_set.add(doc_id) | |
del merged_lookup[ngram] # No point matching again | |
else: | |
non_matching_unique += 1 | |
print(f"Total Ngrams: {total_ngrams}") | |
print(f"Unique Ngrams: {unique_ngrams}") | |
print(f"Unique Matching: {matching_unique}") | |
print(f"Unique Non Matching: {non_matching_unique}") | |
print("Matched ngrams:") | |
for ngram in matched_ngrams: | |
print(ngram) | |
elapsed = time.perf_counter() - start | |
print(f"Read took {elapsed:0.5f} seconds.") | |
print(f"Speed: {(os.path.getsize(file)/1000000.0)/elapsed}MB/second") | |
print(duplicates) | |
# Dump overlaps separately | |
for (task_name, task_set), doc_ids in duplicates.items(): | |
overlaps_dump_path = get_overlaps_dump_path( | |
task_name, task_set, ngrams_n_size, limit | |
) | |
pickle.dump(doc_ids, open(overlaps_dump_path, "wb")) | |
# Strip task set and return | |
return {task_name: doc_ids for (task_name, task_set), doc_ids in duplicates.items()} | |