|
from itertools import zip_longest |
|
|
|
import transformers.data.metrics.squad_metrics as squad_metrics |
|
|
|
|
|
def doc_to_text(doc): |
|
|
|
|
|
doc_text = doc["story"] + "\n\n" |
|
for q, a in zip_longest( |
|
doc["questions"]["input_text"], doc["answers"]["input_text"][:-1] |
|
): |
|
question = f"Q: {q}\n\n" |
|
answer = f"A: {a}\n\n" if a is not None else "A:" |
|
doc_text += question + answer |
|
return doc_text |
|
|
|
|
|
def doc_to_target(doc): |
|
turn_id = len(doc["questions"]["input_text"]) |
|
|
|
answers = [] |
|
answer_forturn = doc["answers"]["input_text"][turn_id - 1] |
|
answers.append(answer_forturn) |
|
|
|
additional_answers = doc.get("additional_answers") |
|
if additional_answers: |
|
for key in additional_answers: |
|
additional_answer_for_turn = additional_answers[key]["input_text"][ |
|
turn_id - 1 |
|
] |
|
if additional_answer_for_turn.lower() not in map(str.lower, answers): |
|
answers.append(additional_answer_for_turn) |
|
return answers |
|
|
|
|
|
def em(gold_list, pred): |
|
|
|
em_sum = 0.0 |
|
if len(gold_list) > 1: |
|
for i in range(len(gold_list)): |
|
gold_answers = gold_list[0:i] + gold_list[i + 1 :] |
|
|
|
em_sum += max(squad_metrics.compute_exact(a, pred) for a in gold_answers) |
|
else: |
|
em_sum += max(squad_metrics.compute_exact(a, pred) for a in gold_list) |
|
|
|
return em_sum / max(1, len(gold_list)) |
|
|
|
|
|
def compute_scores(gold_list, pred): |
|
|
|
|
|
f1_sum = 0.0 |
|
em_sum = 0.0 |
|
if len(gold_list) > 1: |
|
for i in range(len(gold_list)): |
|
gold_answers = gold_list[0:i] + gold_list[i + 1 :] |
|
|
|
em_sum += max(squad_metrics.compute_exact(a, pred) for a in gold_answers) |
|
f1_sum += max(squad_metrics.compute_f1(a, pred) for a in gold_answers) |
|
else: |
|
em_sum += max(squad_metrics.compute_exact(a, pred) for a in gold_list) |
|
f1_sum += max(squad_metrics.compute_f1(a, pred) for a in gold_list) |
|
|
|
return { |
|
"em": em_sum / max(1, len(gold_list)), |
|
"f1": f1_sum / max(1, len(gold_list)), |
|
} |
|
|
|
|
|
def process_results(doc, results): |
|
gold_list = doc_to_target(doc) |
|
pred = results[0].strip().split("\n")[0] |
|
|
|
scores = compute_scores(gold_list, pred) |
|
return scores |
|
|