diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..14cf8bb5879320c3838808bea5715ac06b046fd9 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/__init__.py @@ -0,0 +1,71 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available + + +_import_structure = {"configuration_bert_generation": ["BertGenerationConfig"]} + +try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_bert_generation"] = ["BertGenerationTokenizer"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_bert_generation"] = [ + "BertGenerationDecoder", + "BertGenerationEncoder", + "BertGenerationPreTrainedModel", + "load_tf_weights_in_bert_generation", + ] + + +if TYPE_CHECKING: + from .configuration_bert_generation import BertGenerationConfig + + try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_bert_generation import BertGenerationTokenizer + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_bert_generation import ( + BertGenerationDecoder, + BertGenerationEncoder, + BertGenerationPreTrainedModel, + load_tf_weights_in_bert_generation, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fe98c2948043d034b9c0c12970270fe6b1a9114f Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/configuration_bert_generation.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/configuration_bert_generation.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dc8d0274ae7fb539bba65d956d5db67272b70654 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/configuration_bert_generation.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/modeling_bert_generation.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/modeling_bert_generation.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e1eab4755faa5ad91cc83d7e8754dd2c8b80fd7b Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/modeling_bert_generation.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/tokenization_bert_generation.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/tokenization_bert_generation.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..474b8c9d5bfbeb2087ab1db85b2beb7d4a4712ca Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/__pycache__/tokenization_bert_generation.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/configuration_bert_generation.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/configuration_bert_generation.py new file mode 100644 index 0000000000000000000000000000000000000000..841aec5c0fb7acc3fb651aa213bf4cf2e1a6a581 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/configuration_bert_generation.py @@ -0,0 +1,124 @@ +# coding=utf-8 +# Copyright 2020 The Google AI Language Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" BertGeneration model configuration""" + +from ...configuration_utils import PretrainedConfig + + +class BertGenerationConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`BertGenerationPreTrainedModel`]. It is used to + instantiate a BertGeneration model according to the specified arguments, defining the model architecture. + Instantiating a configuration with the defaults will yield a similar configuration to that of the BertGeneration + [google/bert_for_seq_generation_L-24_bbc_encoder](https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder) + architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + vocab_size (`int`, *optional*, defaults to 50358): + Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`BertGeneration`]. + hidden_size (`int`, *optional*, defaults to 1024): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 24): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 4096): + Dimensionality of the "intermediate" (often called feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + pad_token_id (`int`, *optional*, defaults to 0): + Padding token id. + bos_token_id (`int`, *optional*, defaults to 2): + Beginning of stream token id. + eos_token_id (`int`, *optional*, defaults to 1): + End of stream token id. + position_embedding_type (`str`, *optional*, defaults to `"absolute"`): + Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For + positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to + [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). + For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models + with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + + Examples: + + ```python + >>> from transformers import BertGenerationConfig, BertGenerationEncoder + + >>> # Initializing a BertGeneration config + >>> configuration = BertGenerationConfig() + + >>> # Initializing a model (with random weights) from the config + >>> model = BertGenerationEncoder(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "bert-generation" + + def __init__( + self, + vocab_size=50358, + hidden_size=1024, + num_hidden_layers=24, + num_attention_heads=16, + intermediate_size=4096, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + initializer_range=0.02, + layer_norm_eps=1e-12, + pad_token_id=0, + bos_token_id=2, + eos_token_id=1, + position_embedding_type="absolute", + use_cache=True, + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) + + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.position_embedding_type = position_embedding_type + self.use_cache = use_cache diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/modeling_bert_generation.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/modeling_bert_generation.py new file mode 100644 index 0000000000000000000000000000000000000000..b7250f6f7b926fc21102007ce34568d9276615f9 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/modeling_bert_generation.py @@ -0,0 +1,1008 @@ +# coding=utf-8 +# Copyright 2020 The Google AI Language Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch BERT model specific for generation.""" + +import math +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import CrossEntropyLoss + +from ...activations import ACT2FN +from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_bert_generation import BertGenerationConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "google/bert_for_seq_generation_L-24_bbc_encoder" +_CONFIG_FOR_DOC = "BertGenerationConfig" + + +# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->BertGeneration +class BertGenerationSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->BertGeneration +class BertGenerationSelfAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " + f"heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.position_embedding_type = position_embedding_type or getattr( + config, "position_embedding_type", "absolute" + ) + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + self.max_position_embeddings = config.max_position_embeddings + self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) + + self.is_decoder = config.is_decoder + + def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + mixed_query_layer = self.query(hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([past_key_value[0], key_layer], dim=2) + value_layer = torch.cat([past_key_value[1], value_layer], dim=2) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + use_cache = past_key_value is not None + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + + if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": + query_length, key_length = query_layer.shape[2], key_layer.shape[2] + if use_cache: + position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( + -1, 1 + ) + else: + position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) + position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) + distance = position_ids_l - position_ids_r + + positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) + positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility + + if self.position_embedding_type == "relative_key": + relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores + elif self.position_embedding_type == "relative_key_query": + relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) + relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) + attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key + + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in BertGenerationModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + + if self.is_decoder: + outputs = outputs + (past_key_value,) + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->BertGeneration +class BertGenerationAttention(nn.Module): + def __init__(self, config, position_embedding_type=None): + super().__init__() + self.self = BertGenerationSelfAttention(config, position_embedding_type=position_embedding_type) + self.output = BertGenerationSelfOutput(config) + self.pruned_heads = set() + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + self_outputs = self.self( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->BertGeneration +class BertGenerationIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->BertGeneration +class BertGenerationOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->BertGeneration +class BertGenerationLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = BertGenerationAttention(config) + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise ValueError(f"{self} should be used as a decoder model if cross attention is added") + self.crossattention = BertGenerationAttention(config, position_embedding_type="absolute") + self.intermediate = BertGenerationIntermediate(config) + self.output = BertGenerationOutput(config) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + past_key_value=self_attn_past_key_value, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" + " by setting `config.add_cross_attention=True`" + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + cross_attn_past_key_value, + output_attentions, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + outputs = (layer_output,) + outputs + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value,) + + return outputs + + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->BertGeneration +class BertEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([BertGenerationLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = False, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: + all_hidden_states = () if output_hidden_states else None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + next_decoder_cache = () if use_cache else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + past_key_value = past_key_values[i] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + + hidden_states = layer_outputs[0] + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + if output_attentions: + all_self_attentions = all_self_attentions + (layer_outputs[1],) + if self.config.add_cross_attention: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + next_decoder_cache, + all_hidden_states, + all_self_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + + +def load_tf_weights_in_bert_generation( + model, tf_hub_path, model_class, is_encoder_named_decoder=False, is_encoder=False +): + try: + import numpy as np + import tensorflow.compat.v1 as tf + import tensorflow_hub as hub + import tensorflow_text # noqa: F401 + + tf.disable_eager_execution() + except ImportError: + logger.error( + "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " + "https://www.tensorflow.org/install/ for installation instructions." + ) + raise + tf_model = hub.Module(tf_hub_path) + init = tf.global_variables_initializer() + with tf.Session() as sess: + init.run() + all_variables = tf_model.variable_map + keep_track_variables = all_variables.copy() + for key in list(all_variables.keys()): + if "global" in key: + logger.info(f"Skipping {key}...") + continue + if not is_encoder: + model_pointer = getattr(model, model_class) + else: + model_pointer = model + is_embedding = False + logger.info(f"Trying to match {key}...") + # remove start_string = "module/bert/" + sub_layers = key.split("/")[2:] + if is_encoder_named_decoder and sub_layers[0] == "encoder": + logger.info(f"Skipping encoder layer {key} for decoder") + continue + if is_encoder and sub_layers[0] == "decoder": + logger.info(f"Skipping decoder layer {key} for encoder") + continue + for i, sub_layer in enumerate(sub_layers): + if sub_layer == "embeddings": + is_embedding = True + elif sub_layer == "LayerNorm": + is_embedding = False + if "layer" in sub_layer: + model_pointer = model_pointer.layer[int(sub_layer.split("_")[-1])] + elif sub_layer in ["kernel", "gamma"]: + model_pointer = model_pointer.weight + elif sub_layer == "beta": + model_pointer = model_pointer.bias + elif sub_layer == "encdec": + model_pointer = model_pointer.crossattention.self + elif sub_layer == "encdec_output": + model_pointer = model_pointer.crossattention.output + elif is_encoder_named_decoder and sub_layer == "decoder": + model_pointer = model_pointer.encoder + else: + if sub_layer == "attention" and "encdec" in sub_layers[i + 1]: + continue + try: + model_pointer = getattr(model_pointer, sub_layer) + except AttributeError: + logger.info(f"Skipping to initialize {key} at {sub_layer}...") + raise AttributeError + + array = np.asarray(sess.run(all_variables[key])) + if not is_embedding: + logger.info(f"Transposing numpy weight of shape {array.shape} for {key}") + array = np.transpose(array) + else: + model_pointer = model_pointer.weight + + if model_pointer.shape != array.shape: + raise ValueError(f"Pointer shape {model_pointer.shape} and array shape {array.shape} mismatched") + logger.info(f"Initialize PyTorch weight {key}") + + model_pointer.data = torch.from_numpy(array.astype(np.float32)) + keep_track_variables.pop(key, None) + + logger.info(f"Weights not copied to PyTorch model: {', '.join(keep_track_variables.keys())}") + return model + + +class BertGenerationEmbeddings(nn.Module): + """Construct the embeddings from word and position embeddings.""" + + def __init__(self, config): + super().__init__() + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + # position_ids (1, len position emb) is contiguous in memory and exported when serialized + self.register_buffer( + "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False + ) + + def forward(self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0): + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + + if position_ids is None: + position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + position_embeddings = self.position_embeddings(position_ids) + + embeddings = inputs_embeds + position_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +class BertGenerationPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = BertGenerationConfig + base_model_prefix = "bert" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +BERT_GENERATION_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`BertGenerationConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +BERT_GENERATION_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and + [`PreTrainedTokenizer.encode`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare BertGeneration model transformer outputting raw hidden-states without any specific head on top.", + BERT_GENERATION_START_DOCSTRING, +) +class BertGenerationEncoder(BertGenerationPreTrainedModel): + """ + + The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of + cross-attention is added between the self-attention layers, following the architecture described in [Attention is + all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, + Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. + + This model should be used when leveraging Bert or Roberta checkpoints for the [`EncoderDecoderModel`] class as + described in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) + by Sascha Rothe, Shashi Narayan, and Aliaksei Severyn. + + To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set + to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and + `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. + """ + + def __init__(self, config): + super().__init__(config) + self.config = config + + self.embeddings = BertGenerationEmbeddings(config) + self.encoder = BertEncoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(BERT_GENERATION_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPastAndCrossAttentions, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: `1` for + tokens that are NOT MASKED, `0` for MASKED tokens. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if self.config.is_decoder: + use_cache = use_cache if use_cache is not None else self.config.use_cache + else: + use_cache = False + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + batch_size, seq_length = input_shape + device = input_ids.device if input_ids is not None else inputs_embeds.device + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if attention_mask is None: + attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask = None + if not use_cache: + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if self.config.is_decoder and encoder_hidden_states is not None: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + inputs_embeds=inputs_embeds, + past_key_values_length=past_key_values_length, + ) + + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + + if not return_dict: + return (sequence_output,) + encoder_outputs[1:] + + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=sequence_output, + past_key_values=encoder_outputs.past_key_values, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + cross_attentions=encoder_outputs.cross_attentions, + ) + + +class BertGenerationOnlyLMHead(nn.Module): + def __init__(self, config): + super().__init__() + self.decoder = nn.Linear(config.hidden_size, config.vocab_size) + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + self.decoder.bias = self.bias + + def forward(self, hidden_states): + logits = self.decoder(hidden_states) + return logits + + def _tie_weights(self): + # To tie those two weights if they get disconnected (on TPU or when the bias is resized) + self.bias = self.decoder.bias + + +@add_start_docstrings( + """BertGeneration Model with a `language modeling` head on top for CLM fine-tuning.""", + BERT_GENERATION_START_DOCSTRING, +) +class BertGenerationDecoder(BertGenerationPreTrainedModel): + _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] + + def __init__(self, config): + super().__init__(config) + + if not config.is_decoder: + logger.warning("If you want to use `BertGenerationDecoder` as a standalone, add `is_decoder=True.`") + + self.bert = BertGenerationEncoder(config) + self.lm_head = BertGenerationOnlyLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.lm_head.decoder + + def set_output_embeddings(self, new_embeddings): + self.lm_head.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(BERT_GENERATION_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: + r""" + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in + `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are + ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, BertGenerationDecoder, BertGenerationConfig + >>> import torch + + >>> tokenizer = AutoTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") + >>> config = BertGenerationConfig.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") + >>> config.is_decoder = True + >>> model = BertGenerationDecoder.from_pretrained( + ... "google/bert_for_seq_generation_L-24_bbc_encoder", config=config + ... ) + + >>> inputs = tokenizer("Hello, my dog is cute", return_token_type_ids=False, return_tensors="pt") + >>> outputs = model(**inputs) + + >>> prediction_logits = outputs.logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if labels is not None: + use_cache = False + + outputs = self.bert( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_values=past_key_values, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.lm_head(sequence_output) + + lm_loss = None + if labels is not None: + # we are doing next-token prediction; shift prediction scores and input ids by one + shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() + labels = labels[:, 1:].contiguous() + loss_fct = CrossEntropyLoss() + lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[1:] + return ((lm_loss,) + output) if lm_loss is not None else output + + return CausalLMOutputWithCrossAttentions( + loss=lm_loss, + logits=prediction_scores, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): + input_shape = input_ids.shape + # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly + if attention_mask is None: + attention_mask = input_ids.new_ones(input_shape) + + # cut decoder_input_ids if past_key_values is used + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + + return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} + + def _reorder_cache(self, past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/tokenization_bert_generation.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/tokenization_bert_generation.py new file mode 100644 index 0000000000000000000000000000000000000000..3b6298fcbd8f6e054f7fac417095b188b070f472 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/bert_generation/tokenization_bert_generation.py @@ -0,0 +1,185 @@ +# coding=utf-8 +# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Tokenization class for model BertGeneration.""" + + +import os +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple + +import sentencepiece as spm + +from ...tokenization_utils import PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": { + "bert_for_seq_generation": ( + "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" + ), + } +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"bert_for_seq_generation": 512} + + +class BertGenerationTokenizer(PreTrainedTokenizer): + """ + Construct a BertGeneration tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that + contains the vocabulary necessary to instantiate a tokenizer. + bos_token (`str`, *optional*, defaults to `""`): + The begin of sequence token. + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + sep_token (`str`, *optional*, defaults to `"<::::>"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + sp_model_kwargs (`dict`, *optional*): + Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for + SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, + to set: + + - `enable_sampling`: Enable subword regularization. + - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. + + - `nbest_size = {0,1}`: No sampling is performed. + - `nbest_size > 1`: samples from the nbest_size results. + - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) + using forward-filtering-and-backward-sampling algorithm. + + - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for + BPE-dropout. + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + prefix_tokens: List[int] = [] + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + bos_token="", + eos_token="", + unk_token="", + pad_token="", + sep_token="<::::>", + sp_model_kwargs: Optional[Dict[str, Any]] = None, + **kwargs, + ) -> None: + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + + self.vocab_file = vocab_file + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(vocab_file) + + # Add extra_ids to the special token list + super().__init__( + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + pad_token=pad_token, + sep_token=sep_token, + sp_model_kwargs=self.sp_model_kwargs, + **kwargs, + ) + + @property + def vocab_size(self): + return self.sp_model.get_piece_size() + + def get_vocab(self): + vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + def __getstate__(self): + state = self.__dict__.copy() + state["sp_model"] = None + return state + + def __setstate__(self, d): + self.__dict__ = d + + # for backward compatibility + if not hasattr(self, "sp_model_kwargs"): + self.sp_model_kwargs = {} + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(self.vocab_file) + + def _tokenize(self, text: str) -> List[str]: + """Take as input a string and return a list of strings (tokens) for words/sub-words""" + return self.sp_model.encode(text, out_type=str) + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.sp_model.piece_to_id(token) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + token = self.sp_model.IdToPiece(index) + return token + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + current_sub_tokens = [] + out_string = "" + for token in tokens: + # make sure that special tokens are not decoded using sentencepiece model + if token in self.all_special_tokens: + out_string += self.sp_model.decode(current_sub_tokens) + token + current_sub_tokens = [] + else: + current_sub_tokens.append(token) + out_string += self.sp_model.decode(current_sub_tokens) + return out_string.strip() + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + elif not os.path.isfile(self.vocab_file): + with open(out_vocab_file, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + return (out_vocab_file,) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f3c99f58e0cdbdb1b1a3e6b81a3babcc2ef5c8e2 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/bort/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/bort/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/bort/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/bort/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..50f96a8fad704d137ceb5677fe4da06b5d599478 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/bort/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/bort/__pycache__/convert_bort_original_gluonnlp_checkpoint_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/bort/__pycache__/convert_bort_original_gluonnlp_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..32bd6d15a029e80ee984743494c96638049695b1 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/bort/__pycache__/convert_bort_original_gluonnlp_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/bort/convert_bort_original_gluonnlp_checkpoint_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/bort/convert_bort_original_gluonnlp_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..5dc9a244c43c78c58e5b1076cccb82847193301b --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/bort/convert_bort_original_gluonnlp_checkpoint_to_pytorch.py @@ -0,0 +1,319 @@ +# coding=utf-8 +# Copyright 2020, The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert Bort checkpoint.""" + + +import argparse +import os + +import gluonnlp as nlp +import mxnet as mx +import numpy as np +import torch +from gluonnlp.base import get_home_dir +from gluonnlp.model.bert import BERTEncoder +from gluonnlp.model.utils import _load_vocab +from gluonnlp.vocab import Vocab +from packaging import version +from torch import nn + +from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer +from transformers.models.bert.modeling_bert import ( + BertIntermediate, + BertLayer, + BertOutput, + BertSelfAttention, + BertSelfOutput, +) +from transformers.utils import logging + + +if version.parse(nlp.__version__) != version.parse("0.8.3"): + raise Exception("requires gluonnlp == 0.8.3") + +if version.parse(mx.__version__) != version.parse("1.5.0"): + raise Exception("requires mxnet == 1.5.0") + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + +SAMPLE_TEXT = "The Nymphenburg Palace is a beautiful palace in Munich!" + + +def convert_bort_checkpoint_to_pytorch(bort_checkpoint_path: str, pytorch_dump_folder_path: str): + """ + Convert the original Bort checkpoint (based on MXNET and Gluonnlp) to our BERT structure- + """ + + # Original Bort configuration + bort_4_8_768_1024_hparams = { + "attention_cell": "multi_head", + "num_layers": 4, + "units": 1024, + "hidden_size": 768, + "max_length": 512, + "num_heads": 8, + "scaled": True, + "dropout": 0.1, + "use_residual": True, + "embed_size": 1024, + "embed_dropout": 0.1, + "word_embed": None, + "layer_norm_eps": 1e-5, + "token_type_vocab_size": 2, + } + + predefined_args = bort_4_8_768_1024_hparams + + # Let's construct the original Bort model here + # Taken from official BERT implementation, see: + # https://github.com/alexa/bort/blob/master/bort/bort.py + encoder = BERTEncoder( + attention_cell=predefined_args["attention_cell"], + num_layers=predefined_args["num_layers"], + units=predefined_args["units"], + hidden_size=predefined_args["hidden_size"], + max_length=predefined_args["max_length"], + num_heads=predefined_args["num_heads"], + scaled=predefined_args["scaled"], + dropout=predefined_args["dropout"], + output_attention=False, + output_all_encodings=False, + use_residual=predefined_args["use_residual"], + activation=predefined_args.get("activation", "gelu"), + layer_norm_eps=predefined_args.get("layer_norm_eps", None), + ) + + # Vocab information needs to be fetched first + # It's the same as RoBERTa, so RobertaTokenizer can be used later + vocab_name = "openwebtext_ccnews_stories_books_cased" + + # Specify download folder to Gluonnlp's vocab + gluon_cache_dir = os.path.join(get_home_dir(), "models") + bort_vocab = _load_vocab(vocab_name, None, gluon_cache_dir, cls=Vocab) + + original_bort = nlp.model.BERTModel( + encoder, + len(bort_vocab), + units=predefined_args["units"], + embed_size=predefined_args["embed_size"], + embed_dropout=predefined_args["embed_dropout"], + word_embed=predefined_args["word_embed"], + use_pooler=False, + use_token_type_embed=False, + token_type_vocab_size=predefined_args["token_type_vocab_size"], + use_classifier=False, + use_decoder=False, + ) + + original_bort.load_parameters(bort_checkpoint_path, cast_dtype=True, ignore_extra=True) + params = original_bort._collect_params_with_prefix() + + # Build our config 🤗 + hf_bort_config_json = { + "architectures": ["BertForMaskedLM"], + "attention_probs_dropout_prob": predefined_args["dropout"], + "hidden_act": "gelu", + "hidden_dropout_prob": predefined_args["dropout"], + "hidden_size": predefined_args["embed_size"], + "initializer_range": 0.02, + "intermediate_size": predefined_args["hidden_size"], + "layer_norm_eps": predefined_args["layer_norm_eps"], + "max_position_embeddings": predefined_args["max_length"], + "model_type": "bort", + "num_attention_heads": predefined_args["num_heads"], + "num_hidden_layers": predefined_args["num_layers"], + "pad_token_id": 1, # 2 = BERT, 1 = RoBERTa + "type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa + "vocab_size": len(bort_vocab), + } + + hf_bort_config = BertConfig.from_dict(hf_bort_config_json) + hf_bort_model = BertForMaskedLM(hf_bort_config) + hf_bort_model.eval() + + # Parameter mapping table (Gluonnlp to Transformers) + # * denotes layer index + # + # | Gluon Parameter | Transformers Parameter + # | -------------------------------------------------------------- | ---------------------- + # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` + # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` + # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` + # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` + # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` + # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` + # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` + # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` + # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` + # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` + # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` + # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` + # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` + # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` + # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` + # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` + # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` + # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` + # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` + # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` + + # Helper function to convert MXNET Arrays to PyTorch + def to_torch(mx_array) -> nn.Parameter: + return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy())) + + # Check param shapes and map new HF param back + def check_and_map_params(hf_param, gluon_param): + shape_hf = hf_param.shape + + gluon_param = to_torch(params[gluon_param]) + shape_gluon = gluon_param.shape + + assert ( + shape_hf == shape_gluon + ), f"The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers" + + return gluon_param + + hf_bort_model.bert.embeddings.word_embeddings.weight = check_and_map_params( + hf_bort_model.bert.embeddings.word_embeddings.weight, "word_embed.0.weight" + ) + hf_bort_model.bert.embeddings.position_embeddings.weight = check_and_map_params( + hf_bort_model.bert.embeddings.position_embeddings.weight, "encoder.position_weight" + ) + hf_bort_model.bert.embeddings.LayerNorm.bias = check_and_map_params( + hf_bort_model.bert.embeddings.LayerNorm.bias, "encoder.layer_norm.beta" + ) + hf_bort_model.bert.embeddings.LayerNorm.weight = check_and_map_params( + hf_bort_model.bert.embeddings.LayerNorm.weight, "encoder.layer_norm.gamma" + ) + + # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) + hf_bort_model.bert.embeddings.token_type_embeddings.weight.data = torch.zeros_like( + hf_bort_model.bert.embeddings.token_type_embeddings.weight.data + ) + + for i in range(hf_bort_config.num_hidden_layers): + layer: BertLayer = hf_bort_model.bert.encoder.layer[i] + + # self attention + self_attn: BertSelfAttention = layer.attention.self + + self_attn.key.bias.data = check_and_map_params( + self_attn.key.bias.data, f"encoder.transformer_cells.{i}.attention_cell.proj_key.bias" + ) + + self_attn.key.weight.data = check_and_map_params( + self_attn.key.weight.data, f"encoder.transformer_cells.{i}.attention_cell.proj_key.weight" + ) + self_attn.query.bias.data = check_and_map_params( + self_attn.query.bias.data, f"encoder.transformer_cells.{i}.attention_cell.proj_query.bias" + ) + self_attn.query.weight.data = check_and_map_params( + self_attn.query.weight.data, f"encoder.transformer_cells.{i}.attention_cell.proj_query.weight" + ) + self_attn.value.bias.data = check_and_map_params( + self_attn.value.bias.data, f"encoder.transformer_cells.{i}.attention_cell.proj_value.bias" + ) + self_attn.value.weight.data = check_and_map_params( + self_attn.value.weight.data, f"encoder.transformer_cells.{i}.attention_cell.proj_value.weight" + ) + + # self attention output + self_output: BertSelfOutput = layer.attention.output + + self_output.dense.bias = check_and_map_params( + self_output.dense.bias, f"encoder.transformer_cells.{i}.proj.bias" + ) + self_output.dense.weight = check_and_map_params( + self_output.dense.weight, f"encoder.transformer_cells.{i}.proj.weight" + ) + self_output.LayerNorm.bias = check_and_map_params( + self_output.LayerNorm.bias, f"encoder.transformer_cells.{i}.layer_norm.beta" + ) + self_output.LayerNorm.weight = check_and_map_params( + self_output.LayerNorm.weight, f"encoder.transformer_cells.{i}.layer_norm.gamma" + ) + + # intermediate + intermediate: BertIntermediate = layer.intermediate + + intermediate.dense.bias = check_and_map_params( + intermediate.dense.bias, f"encoder.transformer_cells.{i}.ffn.ffn_1.bias" + ) + intermediate.dense.weight = check_and_map_params( + intermediate.dense.weight, f"encoder.transformer_cells.{i}.ffn.ffn_1.weight" + ) + + # output + bert_output: BertOutput = layer.output + + bert_output.dense.bias = check_and_map_params( + bert_output.dense.bias, f"encoder.transformer_cells.{i}.ffn.ffn_2.bias" + ) + bert_output.dense.weight = check_and_map_params( + bert_output.dense.weight, f"encoder.transformer_cells.{i}.ffn.ffn_2.weight" + ) + bert_output.LayerNorm.bias = check_and_map_params( + bert_output.LayerNorm.bias, f"encoder.transformer_cells.{i}.ffn.layer_norm.beta" + ) + bert_output.LayerNorm.weight = check_and_map_params( + bert_output.LayerNorm.weight, f"encoder.transformer_cells.{i}.ffn.layer_norm.gamma" + ) + + # Save space and energy 🎄 + hf_bort_model.half() + + # Compare output of both models + tokenizer = RobertaTokenizer.from_pretrained("FacebookAI/roberta-base") + + input_ids = tokenizer.encode_plus(SAMPLE_TEXT)["input_ids"] + + # Get gluon output + gluon_input_ids = mx.nd.array([input_ids]) + output_gluon = original_bort(inputs=gluon_input_ids, token_types=[]) + + # Get Transformer output (save and reload model again) + hf_bort_model.save_pretrained(pytorch_dump_folder_path) + hf_bort_model = BertModel.from_pretrained(pytorch_dump_folder_path) + hf_bort_model.eval() + + input_ids = tokenizer.encode_plus(SAMPLE_TEXT, return_tensors="pt") + output_hf = hf_bort_model(**input_ids)[0] + + gluon_layer = output_gluon[0].asnumpy() + hf_layer = output_hf[0].detach().numpy() + + max_absolute_diff = np.max(np.abs(hf_layer - gluon_layer)).item() + success = np.allclose(gluon_layer, hf_layer, atol=1e-3) + + if success: + print("✔️ Both model do output the same tensors") + else: + print("❌ Both model do **NOT** output the same tensors") + print("Absolute difference is:", max_absolute_diff) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." + ) + args = parser.parse_args() + convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e467090cb4fbfa55ec51ec8232a54180c532ad6c --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/__init__.py @@ -0,0 +1,45 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = {"configuration_mmbt": ["MMBTConfig"]} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_mmbt"] = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] + + +if TYPE_CHECKING: + from .configuration_mmbt import MMBTConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..36b0cbbb7dc612dfba13ca633c88a25d78f5e768 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/__pycache__/configuration_mmbt.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/__pycache__/configuration_mmbt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..47cfd983f149f0c8b2d1625a3bf013899f03d871 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/__pycache__/configuration_mmbt.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/__pycache__/modeling_mmbt.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/__pycache__/modeling_mmbt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b72bec4d80ae501407aee763c2abbff1264e45de Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/__pycache__/modeling_mmbt.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/configuration_mmbt.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/configuration_mmbt.py new file mode 100644 index 0000000000000000000000000000000000000000..df5161b0927ad26279a273216d1d9ab6d465063a --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/configuration_mmbt.py @@ -0,0 +1,42 @@ +# coding=utf-8 +# Copyright (c) Facebook, Inc. and its affiliates. +# Copyright (c) HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" MMBT configuration""" + +from ....utils import logging + + +logger = logging.get_logger(__name__) + + +class MMBTConfig(object): + """ + This is the configuration class to store the configuration of a [`MMBTModel`]. It is used to instantiate a MMBT + model according to the specified arguments, defining the model architecture. + + Args: + config ([`PreTrainedConfig`]): + Config of the underlying Transformer models. Its values are copied over to use a single config. + num_labels (`int`, *optional*): + Size of final Linear layer for classification. + modal_hidden_size (`int`, *optional*, defaults to 2048): + Embedding dimension of the non-text modality encoder. + """ + + def __init__(self, config, num_labels=None, modal_hidden_size=2048): + self.__dict__ = config.__dict__ + self.modal_hidden_size = modal_hidden_size + if num_labels: + self.num_labels = num_labels diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/modeling_mmbt.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/modeling_mmbt.py new file mode 100644 index 0000000000000000000000000000000000000000..8dc450ce8f6c13346f30e7da045a927a1186e089 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/mmbt/modeling_mmbt.py @@ -0,0 +1,408 @@ +# coding=utf-8 +# Copyright (c) Facebook, Inc. and its affiliates. +# Copyright (c) HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch MMBT model.""" + + +import torch +from torch import nn +from torch.nn import CrossEntropyLoss, MSELoss + +from ....modeling_outputs import BaseModelOutputWithPooling, SequenceClassifierOutput +from ....modeling_utils import ModuleUtilsMixin +from ....utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "MMBTConfig" + + +class ModalEmbeddings(nn.Module): + """Generic Modal Embeddings which takes in an encoder, and a transformer embedding.""" + + def __init__(self, config, encoder, embeddings): + super().__init__() + self.config = config + self.encoder = encoder + self.proj_embeddings = nn.Linear(config.modal_hidden_size, config.hidden_size) + self.position_embeddings = embeddings.position_embeddings + self.token_type_embeddings = embeddings.token_type_embeddings + self.word_embeddings = embeddings.word_embeddings + self.LayerNorm = embeddings.LayerNorm + self.dropout = nn.Dropout(p=config.hidden_dropout_prob) + + def forward(self, input_modal, start_token=None, end_token=None, position_ids=None, token_type_ids=None): + token_embeddings = self.proj_embeddings(self.encoder(input_modal)) + seq_length = token_embeddings.size(1) + + if start_token is not None: + start_token_embeds = self.word_embeddings(start_token) + seq_length += 1 + token_embeddings = torch.cat([start_token_embeds.unsqueeze(1), token_embeddings], dim=1) + + if end_token is not None: + end_token_embeds = self.word_embeddings(end_token) + seq_length += 1 + token_embeddings = torch.cat([token_embeddings, end_token_embeds.unsqueeze(1)], dim=1) + + if position_ids is None: + position_ids = torch.arange(seq_length, dtype=torch.long, device=input_modal.device) + position_ids = position_ids.unsqueeze(0).expand(input_modal.size(0), seq_length) + + if token_type_ids is None: + token_type_ids = torch.zeros( + (input_modal.size(0), seq_length), dtype=torch.long, device=input_modal.device + ) + + position_embeddings = self.position_embeddings(position_ids) + token_type_embeddings = self.token_type_embeddings(token_type_ids) + embeddings = token_embeddings + position_embeddings + token_type_embeddings + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +MMBT_START_DOCSTRING = r""" + MMBT model was proposed in [Supervised Multimodal Bitransformers for Classifying Images and + Text](https://github.com/facebookresearch/mmbt) by Douwe Kiela, Suvrat Bhooshan, Hamed Firooz, Davide Testuggine. + It's a supervised multimodal bitransformer model that fuses information from text and other image encoders, and + obtain state-of-the-art performance on various multimodal classification benchmark tasks. + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`MMBTConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. + transformer (`nn.Module`): A text transformer that is used by MMBT. + It should have embeddings, encoder, and pooler attributes. + encoder (`nn.Module`): Encoder for the second modality. + It should take in a batch of modal inputs and return k, n dimension embeddings. +""" + +MMBT_INPUTS_DOCSTRING = r""" + Args: + input_modal (`torch.FloatTensor` of shape `(batch_size, ***)`): + The other modality data. It will be the shape that the encoder for that type expects. e.g. With an Image + Encoder, the shape would be (batch_size, channels, height, width) + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. It does not expect [CLS] token to be added as it's + appended to the end of other modality embeddings. Indices can be obtained using [`AutoTokenizer`]. See + [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + modal_start_tokens (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Optional start token to be added to Other Modality Embedding. [CLS] Most commonly used for classification + tasks. + modal_end_tokens (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Optional end token to be added to Other Modality Embedding. [SEP] Most commonly used. + attention_mask (*optional*) `torch.FloatTensor` of shape `(batch_size, sequence_length)`: + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (*optional*) `torch.LongTensor` of shape `(batch_size, sequence_length)`: + Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, + 1]`: + + - 0 corresponds to a *sentence A* token, + - 1 corresponds to a *sentence B* token. + + [What are token type IDs?](../glossary#token-type-ids) + modal_token_type_ids (*optional*) `torch.LongTensor` of shape `(batch_size, modal_sequence_length)`: + Segment token indices to indicate different portions of the non-text modality. The embeddings from these + tokens will be summed with the respective token embeddings for the non-text modality. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + modal_position_ids (`torch.LongTensor` of shape `(batch_size, modal_sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings for the non-text modality. + Selected in the range `[0, config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, embedding_dim)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if + the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in + the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare MMBT Model outputting raw hidden-states without any specific head on top.", + MMBT_START_DOCSTRING, +) +class MMBTModel(nn.Module, ModuleUtilsMixin): + def __init__(self, config, transformer, encoder): + super().__init__() + self.config = config + self.transformer = transformer + self.modal_encoder = ModalEmbeddings(config, encoder, transformer.embeddings) + + @add_start_docstrings_to_model_forward(MMBT_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_modal, + input_ids=None, + modal_start_tokens=None, + modal_end_tokens=None, + attention_mask=None, + token_type_ids=None, + modal_token_type_ids=None, + position_ids=None, + modal_position_ids=None, + head_mask=None, + inputs_embeds=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + r""" + Returns: + + Examples: + + ```python + # For example purposes. Not runnable. + transformer = BertModel.from_pretrained("google-bert/bert-base-uncased") + encoder = ImageEncoder(args) + mmbt = MMBTModel(config, transformer, encoder) + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_txt_shape = input_ids.size() + elif inputs_embeds is not None: + input_txt_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + modal_embeddings = self.modal_encoder( + input_modal, + start_token=modal_start_tokens, + end_token=modal_end_tokens, + position_ids=modal_position_ids, + token_type_ids=modal_token_type_ids, + ) + + input_modal_shape = modal_embeddings.size()[:-1] + + if token_type_ids is None: + token_type_ids = torch.ones(input_txt_shape, dtype=torch.long, device=device) + + txt_embeddings = self.transformer.embeddings( + input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds + ) + + embedding_output = torch.cat([modal_embeddings, txt_embeddings], 1) + + input_shape = embedding_output.size()[:-1] + + if attention_mask is None: + attention_mask = torch.ones(input_shape, device=device) + else: + attention_mask = torch.cat( + [torch.ones(input_modal_shape, device=device, dtype=torch.long), attention_mask], dim=1 + ) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones(input_shape, device=device) + else: + encoder_attention_mask = torch.cat( + [torch.ones(input_modal_shape, device=device), encoder_attention_mask], dim=1 + ) + + extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + encoder_outputs = self.transformer.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = encoder_outputs[0] + pooled_output = self.transformer.pooler(sequence_output) + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + +@add_start_docstrings( + """ + MMBT Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) + """, + MMBT_START_DOCSTRING, + MMBT_INPUTS_DOCSTRING, +) +class MMBTForClassification(nn.Module): + r""" + **labels**: (*optional*) `torch.LongTensor` of shape `(batch_size,)`: + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + + Returns: *Tuple* comprising various elements depending on the configuration (config) and inputs: **loss**: + (*optional*, returned when `labels` is provided) `torch.FloatTensor` of shape `(1,)`: Classification (or + regression if config.num_labels==1) loss. **logits**: + `torch.FloatTensor` of shape `(batch_size, config.num_labels)` Classification (or regression if + config.num_labels==1) scores (before SoftMax). + **hidden_states**: (*optional*, returned when `output_hidden_states=True`) list of `torch.FloatTensor` (one for + the output of each layer + the output of the embeddings) of shape `(batch_size, sequence_length, hidden_size)`: + Hidden-states of the model at the output of each layer plus the initial embedding outputs. **attentions**: + (*optional*, returned when `output_attentions=True`) list of `torch.FloatTensor` (one for each layer) of shape + `(batch_size, num_heads, sequence_length, sequence_length)`: Attentions weights after the attention softmax, used + to compute the weighted average in the self-attention heads. + + Examples: + + ```python + # For example purposes. Not runnable. + transformer = BertModel.from_pretrained("google-bert/bert-base-uncased") + encoder = ImageEncoder(args) + model = MMBTForClassification(config, transformer, encoder) + outputs = model(input_modal, input_ids, labels=labels) + loss, logits = outputs[:2] + ```""" + + def __init__(self, config, transformer, encoder): + super().__init__() + self.num_labels = config.num_labels + + self.mmbt = MMBTModel(config, transformer, encoder) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + def forward( + self, + input_modal, + input_ids=None, + modal_start_tokens=None, + modal_end_tokens=None, + attention_mask=None, + token_type_ids=None, + modal_token_type_ids=None, + position_ids=None, + modal_position_ids=None, + head_mask=None, + inputs_embeds=None, + labels=None, + return_dict=None, + ): + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.mmbt( + input_modal=input_modal, + input_ids=input_ids, + modal_start_tokens=modal_start_tokens, + modal_end_tokens=modal_end_tokens, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + modal_token_type_ids=modal_token_type_ids, + position_ids=position_ids, + modal_position_ids=modal_position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + if self.num_labels == 1: + # We are doing regression + loss_fct = MSELoss() + loss = loss_fct(logits.view(-1), labels.view(-1)) + else: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..446c9f076d31347c496300f432908d56895f7e67 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__init__.py @@ -0,0 +1,95 @@ +# Copyright 2023 EleutherAI and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ....utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_sentencepiece_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = { + "configuration_open_llama": ["OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "OpenLlamaConfig"], +} + +try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_open_llama"] = ["LlamaTokenizer"] + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_open_llama_fast"] = ["LlamaTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_open_llama"] = [ + "OpenLlamaForCausalLM", + "OpenLlamaModel", + "OpenLlamaPreTrainedModel", + "OpenLlamaForSequenceClassification", + ] + + +if TYPE_CHECKING: + from .configuration_open_llama import OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, OpenLlamaConfig + + try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from transformers import LlamaTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from transformers import LlamaTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_open_llama import ( + OpenLlamaForCausalLM, + OpenLlamaForSequenceClassification, + OpenLlamaModel, + OpenLlamaPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fb26271ad6dfb2a41a8edf9565979e183197f3a8 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/configuration_open_llama.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/configuration_open_llama.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7fa1e8c521cbd38c7bb2a0dec67326a4a819ca09 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/configuration_open_llama.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/modeling_open_llama.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/modeling_open_llama.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cf82c02a997c4bb1eb2aeb0e7ec42352dde59e7d Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/__pycache__/modeling_open_llama.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/configuration_open_llama.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/configuration_open_llama.py new file mode 100644 index 0000000000000000000000000000000000000000..5786abac850dd379e96f3725a63ecd39a1a3947a --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/configuration_open_llama.py @@ -0,0 +1,168 @@ +# coding=utf-8 +# Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Open-Llama model configuration""" + +from ....configuration_utils import PretrainedConfig +from ....utils import logging + + +logger = logging.get_logger(__name__) + +OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", +} + + +class OpenLlamaConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`OpenLlamaModel`]. It is used to instantiate an + Open-Llama model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the + [s-JoL/Open-Llama-V1](https://huggingface.co/s-JoL/Open-Llama-V1). + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 32000): + Vocabulary size of the Open-Llama model. Defines the number of different tokens that can be represented by + the `inputs_ids` passed when calling [`OpenLlamaModel`] + hidden_size (`int`, *optional*, defaults to 4096): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 11008): + Dimension of the MLP representations. + num_hidden_layers (`int`, *optional*, defaults to 32): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 32): + Number of attention heads for each attention layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + max_position_embeddings (`int`, *optional*, defaults to 2048): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + rms_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the rms normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + tie_word_embeddings(`bool`, *optional*, defaults to `False`): + Whether to tie weight embeddings + rope_scaling (`Dict`, *optional*): + Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling + strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is + `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update + `max_position_embeddings` to the expected new maximum. See the following thread for more information on how + these scaling strategies behave: + https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an + experimental feature, subject to breaking API changes in future versions. + + Example: + + ```python + >>> from transformers import OpenLlamaModel, OpenLlamaConfig + + >>> # Initializing a Open-Llama open_llama-7b style configuration + >>> configuration = OpenLlamaConfig() + + >>> # Initializing a model from the open_llama-7b style configuration + >>> model = OpenLlamaModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "open-llama" + + def __init__( + self, + vocab_size=100000, + hidden_size=4096, + intermediate_size=11008, + num_hidden_layers=32, + num_attention_heads=32, + hidden_act="silu", + max_position_embeddings=2048, + initializer_range=0.02, + rms_norm_eps=1e-6, + use_cache=True, + pad_token_id=0, + bos_token_id=1, + eos_token_id=2, + tie_word_embeddings=False, + use_memory_efficient_attention=True, + hidden_dropout_prob=0.1, + attention_dropout_prob=0.1, + use_stable_embedding=True, + shared_input_output_embedding=True, + rope_scaling=None, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.rms_norm_eps = rms_norm_eps + self.use_cache = use_cache + self.use_memory_efficient_attention = kwargs.pop( + "use_memorry_efficient_attention", use_memory_efficient_attention + ) + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_dropout_prob = attention_dropout_prob + self.use_stable_embedding = use_stable_embedding + self.shared_input_output_embedding = shared_input_output_embedding + self.rope_scaling = rope_scaling + self._rope_scaling_validation() + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) + + # Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation + def _rope_scaling_validation(self): + """ + Validate the `rope_scaling` configuration. + """ + if self.rope_scaling is None: + return + + if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: + raise ValueError( + "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " + f"got {self.rope_scaling}" + ) + rope_scaling_type = self.rope_scaling.get("type", None) + rope_scaling_factor = self.rope_scaling.get("factor", None) + if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: + raise ValueError( + f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" + ) + if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: + raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}") diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/modeling_open_llama.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/modeling_open_llama.py new file mode 100644 index 0000000000000000000000000000000000000000..71c42447cd2bbe25827455ad76d05695f75ab532 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/open_llama/modeling_open_llama.py @@ -0,0 +1,968 @@ +# coding=utf-8 +# Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch Open-Llama model.""" +import math +from typing import List, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ....activations import ACT2FN +from ....modeling_attn_mask_utils import _prepare_4d_causal_attention_mask +from ....modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast +from ....modeling_utils import PreTrainedModel +from ....utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings +from .configuration_open_llama import OpenLlamaConfig + + +logger = logging.get_logger(__name__) + +try: + from xformers import ops as xops +except ImportError: + xops = None + + +_CONFIG_FOR_DOC = "OpenLlamaConfig" + + +# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->OpenLlama +class OpenLlamaRMSNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + OpenLlamaRMSNorm is equivalent to T5LayerNorm + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + return self.weight * hidden_states.to(input_dtype) + + +# Copied from transformers.models.mistral.modeling_mistral.MistralRotaryEmbedding with Mistral->OpenLlama +class OpenLlamaRotaryEmbedding(nn.Module): + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): + super().__init__() + + self.dim = dim + self.max_position_embeddings = max_position_embeddings + self.base = base + inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + # Build here to make `torch.jit.trace` work. + self._set_cos_sin_cache( + seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() + ) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + def forward(self, x, seq_len=None): + # x: [bs, num_attention_heads, seq_len, head_size] + if seq_len > self.max_seq_len_cached: + self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) + + return ( + self.cos_cached[:seq_len].to(dtype=x.dtype), + self.sin_cached[:seq_len].to(dtype=x.dtype), + ) + + +# Copied from transformers.models.falcon.modeling_falcon.FalconLinearScalingRotaryEmbedding with Falcon->OpenLlama +class OpenLlamaLinearScalingRotaryEmbedding(OpenLlamaRotaryEmbedding): + """OpenLlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" + + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) + t = t / self.scaling_factor + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + +# Copied from transformers.models.falcon.modeling_falcon.FalconDynamicNTKScalingRotaryEmbedding with Falcon->OpenLlama +class OpenLlamaDynamicNTKScalingRotaryEmbedding(OpenLlamaRotaryEmbedding): + """OpenLlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" + + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + + if seq_len > self.max_position_embeddings: + base = self.base * ( + (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) + ) ** (self.dim / (self.dim - 2)) + inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb +def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): + """Applies Rotary Position Embedding to the query and key tensors. + + Args: + q (`torch.Tensor`): The query tensor. + k (`torch.Tensor`): The key tensor. + cos (`torch.Tensor`): The cosine part of the rotary embedding. + sin (`torch.Tensor`): The sine part of the rotary embedding. + position_ids (`torch.Tensor`): + The position indices of the tokens corresponding to the query and key tensors. For example, this can be + used to pass offsetted position ids when working with a KV-cache. + unsqueeze_dim (`int`, *optional*, defaults to 1): + The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and + sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note + that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and + k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes + cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have + the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. + Returns: + `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. + """ + cos = cos[position_ids].unsqueeze(unsqueeze_dim) + sin = sin[position_ids].unsqueeze(unsqueeze_dim) + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + + +class OpenLlamaMLP(nn.Module): + def __init__( + self, + hidden_size: int, + intermediate_size: int, + hidden_act: str, + dropout_prob: float, + ): + super().__init__() + self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) + self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False) + self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) + self.act_fn = ACT2FN[hidden_act] + self.dropout = nn.Dropout(dropout_prob) + + def forward(self, x): + out = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) + return self.dropout(out) + + +class OpenLlamaAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config: OpenLlamaConfig): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.hidden_size // self.num_heads + self.max_position_embeddings = config.max_position_embeddings + self.dropout_prob = config.attention_dropout_prob + + if (self.head_dim * self.num_heads) != self.hidden_size: + raise ValueError( + f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" + f" and `num_heads`: {self.num_heads})." + ) + self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) + self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) + self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) + self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) + self._init_rope() + + # Copied from transformers.models.llama.modeling_llama.LlamaAttention._init_rope with Llama->OpenLlama + def _init_rope(self): + if self.config.rope_scaling is None: + self.rotary_emb = OpenLlamaRotaryEmbedding( + self.head_dim, + max_position_embeddings=self.max_position_embeddings, + base=self.rope_theta, + ) + else: + scaling_type = self.config.rope_scaling["type"] + scaling_factor = self.config.rope_scaling["factor"] + if scaling_type == "linear": + self.rotary_emb = OpenLlamaLinearScalingRotaryEmbedding( + self.head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + ) + elif scaling_type == "dynamic": + self.rotary_emb = OpenLlamaDynamicNTKScalingRotaryEmbedding( + self.head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + ) + else: + raise ValueError(f"Unknown RoPE scaling type {scaling_type}") + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: bool = False, + use_cache: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value[0].shape[-2] + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + # [bsz, nh, t, hd] + + if past_key_value is not None: + # reuse k, v, self_attention + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + + past_key_value = (key_states, value_states) if use_cache else None + + if self.config.use_memory_efficient_attention and xops is not None and self.training: + attn_weights = None + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.transpose(1, 2) + attn_output = xops.memory_efficient_attention( + query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask(), p=self.dropout_prob + ) + else: + attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + + if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights + attention_mask + attn_weights = torch.max( + attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device) + ) + + # upcast attention to fp32 + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2) + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) + + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + +class OpenLlamaDecoderLayer(nn.Module): + def __init__(self, config: OpenLlamaConfig): + super().__init__() + self.hidden_size = config.hidden_size + self.self_attn = OpenLlamaAttention(config=config) + self.mlp = OpenLlamaMLP( + hidden_size=self.hidden_size, + intermediate_size=config.intermediate_size, + hidden_act=config.hidden_act, + dropout_prob=config.hidden_dropout_prob, + ) + self.input_layernorm = OpenLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.post_attention_layernorm = OpenLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + """ + + residual = hidden_states + + hidden_states = self.input_layernorm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +OPEN_LLAMA_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`OpenLlamaConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + "The bare Open-Llama Model outputting raw hidden-states without any specific head on top.", + OPEN_LLAMA_START_DOCSTRING, +) +class OpenLlamaPreTrainedModel(PreTrainedModel): + config_class = OpenLlamaConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["OpenLlamaDecoderLayer"] + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + if self.config.use_stable_embedding: + torch.nn.init.xavier_normal_(module.weight.data) + else: + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +OPEN_LLAMA_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape + `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape + `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Open-Llama Model outputting raw hidden-states without any specific head on top.", + OPEN_LLAMA_START_DOCSTRING, +) +class OpenLlamaModel(OpenLlamaPreTrainedModel): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`OpenLlamaDecoderLayer`] + + Args: + config: OpenLlamaConfig + """ + + def __init__(self, config: OpenLlamaConfig): + super().__init__(config) + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) + if config.use_stable_embedding: + self.embed_layer_norm = nn.LayerNorm(config.hidden_size) + else: + self.embed_layer_norm = None + self.layers = nn.ModuleList([OpenLlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)]) + self.norm = OpenLlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + @add_start_docstrings_to_model_forward(OPEN_LLAMA_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + batch_size, seq_length = input_ids.shape + elif inputs_embeds is not None: + batch_size, seq_length, _ = inputs_embeds.shape + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + seq_length_with_past = seq_length + past_key_values_length = 0 + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + if past_key_values is not None: + past_key_values_length = past_key_values[0][0].shape[2] + seq_length_with_past = seq_length_with_past + past_key_values_length + + if position_ids is None: + device = input_ids.device if input_ids is not None else inputs_embeds.device + position_ids = torch.arange( + past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device + ) + position_ids = position_ids.unsqueeze(0) + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + if self.embed_layer_norm: + inputs_embeds = self.embed_layer_norm(inputs_embeds) + # embed positions + if self.config.use_memory_efficient_attention and self.training: + attention_mask = None + elif attention_mask is None: + attention_mask = torch.ones( + (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device + ) + + input_shape = (batch_size, seq_length) + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, input_shape, inputs_embeds, past_key_values_length + ) + + hidden_states = inputs_embeds + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + next_decoder_cache = () if use_cache else None + + for idx, decoder_layer in enumerate(self.layers): + if output_hidden_states: + all_hidden_states += (hidden_states,) + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + attention_mask, + position_ids, + None, + output_attentions, + None, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + if not return_dict: + return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + +class OpenLlamaForCausalLM(OpenLlamaPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.model = OpenLlamaModel(config) + if config.shared_input_output_embedding: + self.lm_head = None + else: + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + + @add_start_docstrings_to_model_forward(OPEN_LLAMA_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, OpenLlamaForCausalLM + + >>> model = OpenLlamaForCausalLM.from_pretrained("openlm-research/open_llama_7b") + >>> tokenizer = AutoTokenizer.from_pretrained("openlm-research/open_llama_7b") + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + if self.config.shared_input_output_embedding: + logits = torch.einsum( + "blh,vh->blv", hidden_states.to(self.model.embed_tokens.weight.device), self.model.embed_tokens.weight + ) + else: + logits = self.lm_head(hidden_states) + + loss = None + if labels is not None: + # move labels to correct device to enable model parallelism + labels = labels.to(logits.device) + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs + ): + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + } + ) + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + +@add_start_docstrings( + """ + The LLaMa Model transformer with a sequence classification head on top (linear layer). + + [`OpenLlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal + models (e.g. GPT-2) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + OPEN_LLAMA_START_DOCSTRING, +) +class OpenLlamaForSequenceClassification(OpenLlamaPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.model = OpenLlamaModel(config) + self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + @add_start_docstrings_to_model_forward(OPEN_LLAMA_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.model( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size = input_ids.shape[0] + else: + batch_size = inputs_embeds.shape[0] + + if self.config.pad_token_id is None and batch_size != 1: + raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility + sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 + sequence_lengths = sequence_lengths % input_ids.shape[-1] + sequence_lengths = sequence_lengths.to(logits.device) + else: + sequence_lengths = -1 + + pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] + + loss = None + if labels is not None: + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(pooled_logits, labels) + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..dba5e14594e16c19fc1a269a92e968fec35afc26 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__init__.py @@ -0,0 +1,73 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available + + +_import_structure = { + "configuration_retribert": ["RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RetriBertConfig"], + "tokenization_retribert": ["RetriBertTokenizer"], +} + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_retribert_fast"] = ["RetriBertTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_retribert"] = [ + "RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST", + "RetriBertModel", + "RetriBertPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_retribert import RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RetriBertConfig + from .tokenization_retribert import RetriBertTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_retribert_fast import RetriBertTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_retribert import ( + RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST, + RetriBertModel, + RetriBertPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/configuration_retribert.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/configuration_retribert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..602396b634e499f978017f3f6ffe0696c35eb779 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/configuration_retribert.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/modeling_retribert.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/modeling_retribert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e33128e35d93bd4814f0488f536c8516b9b0c5a7 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/modeling_retribert.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/tokenization_retribert.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/tokenization_retribert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8705498770fa70958d5bed5bdbe2910d646f4860 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/tokenization_retribert.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/tokenization_retribert_fast.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/tokenization_retribert_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2d035c3d82fd0fe3936683b29c4d6020e8d2548b Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/__pycache__/tokenization_retribert_fast.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/configuration_retribert.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/configuration_retribert.py new file mode 100644 index 0000000000000000000000000000000000000000..3861b9c90f33ef385526ef256123721adc993116 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/configuration_retribert.py @@ -0,0 +1,112 @@ +# coding=utf-8 +# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" RetriBERT model configuration""" + +from ....configuration_utils import PretrainedConfig +from ....utils import logging + + +logger = logging.get_logger(__name__) + +# TODO: upload to AWS +RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "yjernite/retribert-base-uncased": ( + "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" + ), +} + + +class RetriBertConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`RetriBertModel`]. It is used to instantiate a + RetriBertModel model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the RetriBERT + [yjernite/retribert-base-uncased](https://huggingface.co/yjernite/retribert-base-uncased) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the RetriBERT model. Defines the number of different tokens that can be represented by + the `inputs_ids` passed when calling [`RetriBertModel`] + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_size (`int`, *optional*, defaults to 2): + The vocabulary size of the *token_type_ids* passed into [`BertModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + share_encoders (`bool`, *optional*, defaults to `True`): + Whether or not to use the same Bert-type encoder for the queries and document + projection_dim (`int`, *optional*, defaults to 128): + Final dimension of the query and document representation after projection + """ + + model_type = "retribert" + + def __init__( + self, + vocab_size=30522, + hidden_size=768, + num_hidden_layers=8, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + type_vocab_size=2, + initializer_range=0.02, + layer_norm_eps=1e-12, + share_encoders=True, + projection_dim=128, + pad_token_id=0, + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, **kwargs) + + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.type_vocab_size = type_vocab_size + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.share_encoders = share_encoders + self.projection_dim = projection_dim diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/modeling_retribert.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/modeling_retribert.py new file mode 100644 index 0000000000000000000000000000000000000000..00d47bce5121d4fafd81ee3fe88b408e87ec8e40 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/modeling_retribert.py @@ -0,0 +1,220 @@ +# coding=utf-8 +# Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +RetriBERT model +""" + + +import math +from typing import Optional + +import torch +import torch.utils.checkpoint as checkpoint +from torch import nn + +from ....modeling_utils import PreTrainedModel +from ....utils import add_start_docstrings, logging +from ...bert.modeling_bert import BertModel +from .configuration_retribert import RetriBertConfig + + +logger = logging.get_logger(__name__) + +RETRIBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "yjernite/retribert-base-uncased", + # See all RetriBert models at https://huggingface.co/models?filter=retribert +] + + +# INTERFACE FOR ENCODER AND TASK SPECIFIC MODEL # +class RetriBertPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = RetriBertConfig + load_tf_weights = None + base_model_prefix = "retribert" + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +RETRIBERT_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`RetriBertConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + """Bert Based model to embed queries or document for document retrieval.""", + RETRIBERT_START_DOCSTRING, +) +class RetriBertModel(RetriBertPreTrainedModel): + def __init__(self, config: RetriBertConfig) -> None: + super().__init__(config) + self.projection_dim = config.projection_dim + + self.bert_query = BertModel(config) + self.bert_doc = None if config.share_encoders else BertModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.project_query = nn.Linear(config.hidden_size, config.projection_dim, bias=False) + self.project_doc = nn.Linear(config.hidden_size, config.projection_dim, bias=False) + + self.ce_loss = nn.CrossEntropyLoss(reduction="mean") + + # Initialize weights and apply final processing + self.post_init() + + def embed_sentences_checkpointed( + self, + input_ids, + attention_mask, + sent_encoder, + checkpoint_batch_size=-1, + ): + # reproduces BERT forward pass with checkpointing + if checkpoint_batch_size < 0 or input_ids.shape[0] < checkpoint_batch_size: + return sent_encoder(input_ids, attention_mask=attention_mask)[1] + else: + # prepare implicit variables + device = input_ids.device + input_shape = input_ids.size() + token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) + head_mask = [None] * sent_encoder.config.num_hidden_layers + extended_attention_mask: torch.Tensor = sent_encoder.get_extended_attention_mask( + attention_mask, input_shape + ) + + # define function for checkpointing + def partial_encode(*inputs): + encoder_outputs = sent_encoder.encoder( + inputs[0], + attention_mask=inputs[1], + head_mask=head_mask, + ) + sequence_output = encoder_outputs[0] + pooled_output = sent_encoder.pooler(sequence_output) + return pooled_output + + # run embedding layer on everything at once + embedding_output = sent_encoder.embeddings( + input_ids=input_ids, position_ids=None, token_type_ids=token_type_ids, inputs_embeds=None + ) + # run encoding and pooling on one mini-batch at a time + pooled_output_list = [] + for b in range(math.ceil(input_ids.shape[0] / checkpoint_batch_size)): + b_embedding_output = embedding_output[b * checkpoint_batch_size : (b + 1) * checkpoint_batch_size] + b_attention_mask = extended_attention_mask[b * checkpoint_batch_size : (b + 1) * checkpoint_batch_size] + pooled_output = checkpoint.checkpoint(partial_encode, b_embedding_output, b_attention_mask) + pooled_output_list.append(pooled_output) + return torch.cat(pooled_output_list, dim=0) + + def embed_questions( + self, + input_ids, + attention_mask=None, + checkpoint_batch_size=-1, + ): + q_reps = self.embed_sentences_checkpointed( + input_ids, + attention_mask, + self.bert_query, + checkpoint_batch_size, + ) + return self.project_query(q_reps) + + def embed_answers( + self, + input_ids, + attention_mask=None, + checkpoint_batch_size=-1, + ): + a_reps = self.embed_sentences_checkpointed( + input_ids, + attention_mask, + self.bert_query if self.bert_doc is None else self.bert_doc, + checkpoint_batch_size, + ) + return self.project_doc(a_reps) + + def forward( + self, + input_ids_query: torch.LongTensor, + attention_mask_query: Optional[torch.FloatTensor], + input_ids_doc: torch.LongTensor, + attention_mask_doc: Optional[torch.FloatTensor], + checkpoint_batch_size: int = -1, + ) -> torch.FloatTensor: + r""" + Args: + input_ids_query (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary for the queries in a batch. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask_query (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + input_ids_doc (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary for the documents in a batch. + attention_mask_doc (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on documents padding token indices. + checkpoint_batch_size (`int`, *optional*, defaults to `-1`): + If greater than 0, uses gradient checkpointing to only compute sequence representation on + `checkpoint_batch_size` examples at a time on the GPU. All query representations are still compared to + all document representations in the batch. + + Return: + `torch.FloatTensor``: The bidirectional cross-entropy loss obtained while trying to match each query to its + corresponding document and each document to its corresponding query in the batch + """ + device = input_ids_query.device + q_reps = self.embed_questions(input_ids_query, attention_mask_query, checkpoint_batch_size) + a_reps = self.embed_answers(input_ids_doc, attention_mask_doc, checkpoint_batch_size) + compare_scores = torch.mm(q_reps, a_reps.t()) + loss_qa = self.ce_loss(compare_scores, torch.arange(compare_scores.shape[1]).to(device)) + loss_aq = self.ce_loss(compare_scores.t(), torch.arange(compare_scores.shape[0]).to(device)) + loss = (loss_qa + loss_aq) / 2 + return loss diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/tokenization_retribert.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/tokenization_retribert.py new file mode 100644 index 0000000000000000000000000000000000000000..d0904e3c931e40264cef08c252834976cb92255a --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/tokenization_retribert.py @@ -0,0 +1,537 @@ +# coding=utf-8 +# Copyright 2018 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for RetriBERT.""" + +import collections +import os +import unicodedata +from typing import List, Optional, Tuple + +from ....tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace +from ....utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": { + "yjernite/retribert-base-uncased": ( + "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" + ), + } +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { + "yjernite/retribert-base-uncased": 512, +} + + +PRETRAINED_INIT_CONFIGURATION = { + "yjernite/retribert-base-uncased": {"do_lower_case": True}, +} + + +# Copied from transformers.models.bert.tokenization_bert.load_vocab +def load_vocab(vocab_file): + """Loads a vocabulary file into a dictionary.""" + vocab = collections.OrderedDict() + with open(vocab_file, "r", encoding="utf-8") as reader: + tokens = reader.readlines() + for index, token in enumerate(tokens): + token = token.rstrip("\n") + vocab[token] = index + return vocab + + +# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize +def whitespace_tokenize(text): + """Runs basic whitespace cleaning and splitting on a piece of text.""" + text = text.strip() + if not text: + return [] + tokens = text.split() + return tokens + + +class RetriBertTokenizer(PreTrainedTokenizer): + r""" + Constructs a RetriBERT tokenizer. + + [`RetriBertTokenizer`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation splitting + and wordpiece. + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer + to: this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + do_basic_tokenize (`bool`, *optional*, defaults to `True`): + Whether or not to do basic tokenization before WordPiece. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION + model_input_names = ["input_ids", "attention_mask"] + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.__init__ + def __init__( + self, + vocab_file, + do_lower_case=True, + do_basic_tokenize=True, + never_split=None, + unk_token="[UNK]", + sep_token="[SEP]", + pad_token="[PAD]", + cls_token="[CLS]", + mask_token="[MASK]", + tokenize_chinese_chars=True, + strip_accents=None, + **kwargs, + ): + if not os.path.isfile(vocab_file): + raise ValueError( + f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" + " model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" + ) + self.vocab = load_vocab(vocab_file) + self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) + self.do_basic_tokenize = do_basic_tokenize + if do_basic_tokenize: + self.basic_tokenizer = BasicTokenizer( + do_lower_case=do_lower_case, + never_split=never_split, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + ) + + self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) + + super().__init__( + do_lower_case=do_lower_case, + do_basic_tokenize=do_basic_tokenize, + never_split=never_split, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + **kwargs, + ) + + @property + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.do_lower_case + def do_lower_case(self): + return self.basic_tokenizer.do_lower_case + + @property + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.vocab_size + def vocab_size(self): + return len(self.vocab) + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_vocab + def get_vocab(self): + return dict(self.vocab, **self.added_tokens_encoder) + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._tokenize + def _tokenize(self, text, split_special_tokens=False): + split_tokens = [] + if self.do_basic_tokenize: + for token in self.basic_tokenizer.tokenize( + text, never_split=self.all_special_tokens if not split_special_tokens else None + ): + # If the token is part of the never_split set + if token in self.basic_tokenizer.never_split: + split_tokens.append(token) + else: + split_tokens += self.wordpiece_tokenizer.tokenize(token) + else: + split_tokens = self.wordpiece_tokenizer.tokenize(text) + return split_tokens + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_token_to_id + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.vocab.get(token, self.vocab.get(self.unk_token)) + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_id_to_token + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.ids_to_tokens.get(index, self.unk_token) + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.convert_tokens_to_string + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + out_string = " ".join(tokens).replace(" ##", "").strip() + return out_string + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A BERT sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences: `[CLS] A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + token_ids_1 + sep + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is not None: + return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1] + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence + pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.save_vocabulary + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + index = 0 + if os.path.isdir(save_directory): + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + else: + vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory + with open(vocab_file, "w", encoding="utf-8") as writer: + for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." + " Please check that the vocabulary is not corrupted!" + ) + index = token_index + writer.write(token + "\n") + index += 1 + return (vocab_file,) + + +# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer +class BasicTokenizer(object): + """ + Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). + + Args: + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + do_split_on_punc (`bool`, *optional*, defaults to `True`): + In some instances we want to skip the basic punctuation splitting so that later tokenization can capture + the full context of the words, such as contractions. + """ + + def __init__( + self, + do_lower_case=True, + never_split=None, + tokenize_chinese_chars=True, + strip_accents=None, + do_split_on_punc=True, + ): + if never_split is None: + never_split = [] + self.do_lower_case = do_lower_case + self.never_split = set(never_split) + self.tokenize_chinese_chars = tokenize_chinese_chars + self.strip_accents = strip_accents + self.do_split_on_punc = do_split_on_punc + + def tokenize(self, text, never_split=None): + """ + Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. + + Args: + never_split (`List[str]`, *optional*) + Kept for backward compatibility purposes. Now implemented directly at the base class level (see + [`PreTrainedTokenizer.tokenize`]) List of token not to split. + """ + # union() returns a new set by concatenating the two sets. + never_split = self.never_split.union(set(never_split)) if never_split else self.never_split + text = self._clean_text(text) + + # This was added on November 1st, 2018 for the multilingual and Chinese + # models. This is also applied to the English models now, but it doesn't + # matter since the English models were not trained on any Chinese data + # and generally don't have any Chinese data in them (there are Chinese + # characters in the vocabulary because Wikipedia does have some Chinese + # words in the English Wikipedia.). + if self.tokenize_chinese_chars: + text = self._tokenize_chinese_chars(text) + # prevents treating the same character with different unicode codepoints as different characters + unicode_normalized_text = unicodedata.normalize("NFC", text) + orig_tokens = whitespace_tokenize(unicode_normalized_text) + split_tokens = [] + for token in orig_tokens: + if token not in never_split: + if self.do_lower_case: + token = token.lower() + if self.strip_accents is not False: + token = self._run_strip_accents(token) + elif self.strip_accents: + token = self._run_strip_accents(token) + split_tokens.extend(self._run_split_on_punc(token, never_split)) + + output_tokens = whitespace_tokenize(" ".join(split_tokens)) + return output_tokens + + def _run_strip_accents(self, text): + """Strips accents from a piece of text.""" + text = unicodedata.normalize("NFD", text) + output = [] + for char in text: + cat = unicodedata.category(char) + if cat == "Mn": + continue + output.append(char) + return "".join(output) + + def _run_split_on_punc(self, text, never_split=None): + """Splits punctuation on a piece of text.""" + if not self.do_split_on_punc or (never_split is not None and text in never_split): + return [text] + chars = list(text) + i = 0 + start_new_word = True + output = [] + while i < len(chars): + char = chars[i] + if _is_punctuation(char): + output.append([char]) + start_new_word = True + else: + if start_new_word: + output.append([]) + start_new_word = False + output[-1].append(char) + i += 1 + + return ["".join(x) for x in output] + + def _tokenize_chinese_chars(self, text): + """Adds whitespace around any CJK character.""" + output = [] + for char in text: + cp = ord(char) + if self._is_chinese_char(cp): + output.append(" ") + output.append(char) + output.append(" ") + else: + output.append(char) + return "".join(output) + + def _is_chinese_char(self, cp): + """Checks whether CP is the codepoint of a CJK character.""" + # This defines a "chinese character" as anything in the CJK Unicode block: + # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) + # + # Note that the CJK Unicode block is NOT all Japanese and Korean characters, + # despite its name. The modern Korean Hangul alphabet is a different block, + # as is Japanese Hiragana and Katakana. Those alphabets are used to write + # space-separated words, so they are not treated specially and handled + # like the all of the other languages. + if ( + (cp >= 0x4E00 and cp <= 0x9FFF) + or (cp >= 0x3400 and cp <= 0x4DBF) # + or (cp >= 0x20000 and cp <= 0x2A6DF) # + or (cp >= 0x2A700 and cp <= 0x2B73F) # + or (cp >= 0x2B740 and cp <= 0x2B81F) # + or (cp >= 0x2B820 and cp <= 0x2CEAF) # + or (cp >= 0xF900 and cp <= 0xFAFF) + or (cp >= 0x2F800 and cp <= 0x2FA1F) # + ): # + return True + + return False + + def _clean_text(self, text): + """Performs invalid character removal and whitespace cleanup on text.""" + output = [] + for char in text: + cp = ord(char) + if cp == 0 or cp == 0xFFFD or _is_control(char): + continue + if _is_whitespace(char): + output.append(" ") + else: + output.append(char) + return "".join(output) + + +# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer +class WordpieceTokenizer(object): + """Runs WordPiece tokenization.""" + + def __init__(self, vocab, unk_token, max_input_chars_per_word=100): + self.vocab = vocab + self.unk_token = unk_token + self.max_input_chars_per_word = max_input_chars_per_word + + def tokenize(self, text): + """ + Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform + tokenization using the given vocabulary. + + For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. + + Args: + text: A single token or whitespace separated tokens. This should have + already been passed through *BasicTokenizer*. + + Returns: + A list of wordpiece tokens. + """ + + output_tokens = [] + for token in whitespace_tokenize(text): + chars = list(token) + if len(chars) > self.max_input_chars_per_word: + output_tokens.append(self.unk_token) + continue + + is_bad = False + start = 0 + sub_tokens = [] + while start < len(chars): + end = len(chars) + cur_substr = None + while start < end: + substr = "".join(chars[start:end]) + if start > 0: + substr = "##" + substr + if substr in self.vocab: + cur_substr = substr + break + end -= 1 + if cur_substr is None: + is_bad = True + break + sub_tokens.append(cur_substr) + start = end + + if is_bad: + output_tokens.append(self.unk_token) + else: + output_tokens.extend(sub_tokens) + return output_tokens diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/tokenization_retribert_fast.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/tokenization_retribert_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..07f7964b9f3f8e1da0f6b54494e28ba09df192a1 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/retribert/tokenization_retribert_fast.py @@ -0,0 +1,205 @@ +# coding=utf-8 +# Copyright 2018 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for RetriBERT.""" + +import json +from typing import List, Optional, Tuple + +from tokenizers import normalizers + +from ....tokenization_utils_fast import PreTrainedTokenizerFast +from ....utils import logging +from .tokenization_retribert import RetriBertTokenizer + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": { + "yjernite/retribert-base-uncased": ( + "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" + ), + }, + "tokenizer_file": { + "yjernite/retribert-base-uncased": ( + "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" + ), + }, +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { + "yjernite/retribert-base-uncased": 512, +} + + +PRETRAINED_INIT_CONFIGURATION = { + "yjernite/retribert-base-uncased": {"do_lower_case": True}, +} + + +class RetriBertTokenizerFast(PreTrainedTokenizerFast): + r""" + Construct a "fast" RetriBERT tokenizer (backed by HuggingFace's *tokenizers* library). + + [`RetriBertTokenizerFast`] is identical to [`BertTokenizerFast`] and runs end-to-end tokenization: punctuation + splitting and wordpiece. + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + clean_text (`bool`, *optional*, defaults to `True`): + Whether or not to clean the text before tokenization by removing any control characters and replacing all + whitespaces by the classic one. + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this + issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + wordpieces_prefix (`str`, *optional*, defaults to `"##"`): + The prefix for subwords. + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION + slow_tokenizer_class = RetriBertTokenizer + model_input_names = ["input_ids", "attention_mask"] + + # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.__init__ + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + do_lower_case=True, + unk_token="[UNK]", + sep_token="[SEP]", + pad_token="[PAD]", + cls_token="[CLS]", + mask_token="[MASK]", + tokenize_chinese_chars=True, + strip_accents=None, + **kwargs, + ): + super().__init__( + vocab_file, + tokenizer_file=tokenizer_file, + do_lower_case=do_lower_case, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + **kwargs, + ) + + normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) + if ( + normalizer_state.get("lowercase", do_lower_case) != do_lower_case + or normalizer_state.get("strip_accents", strip_accents) != strip_accents + or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars + ): + normalizer_class = getattr(normalizers, normalizer_state.pop("type")) + normalizer_state["lowercase"] = do_lower_case + normalizer_state["strip_accents"] = strip_accents + normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars + self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state) + + self.do_lower_case = do_lower_case + + # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.build_inputs_with_special_tokens + def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A BERT sequence has the following format: + + - single sequence: `[CLS] X [SEP]` + - pair of sequences: `[CLS] A [SEP] B [SEP]` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + + if token_ids_1 is not None: + output += token_ids_1 + [self.sep_token_id] + + return output + + # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.create_token_type_ids_from_sequences + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence + pair mask has the following format: + + ``` + 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 + | first sequence | second sequence | + ``` + + If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + + # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.save_vocabulary + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + files = self._tokenizer.model.save(save_directory, name=filename_prefix) + return tuple(files) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/tapex/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/tapex/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..82bbacd15b0d00509972e16ac406005ee97370f7 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/tapex/__init__.py @@ -0,0 +1,29 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ....utils import _LazyModule + + +_import_structure = {"tokenization_tapex": ["TapexTokenizer"]} + + +if TYPE_CHECKING: + from .tokenization_tapex import TapexTokenizer + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/tapex/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/tapex/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1655e28a6eeba24b9aad46a4d1babab1dc7c6c9d Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/tapex/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/tapex/__pycache__/tokenization_tapex.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/tapex/__pycache__/tokenization_tapex.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..283fc1290f8190fa35dd3309a48312a6299231e8 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/tapex/__pycache__/tokenization_tapex.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/tapex/tokenization_tapex.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/tapex/tokenization_tapex.py new file mode 100644 index 0000000000000000000000000000000000000000..a5ee093c56bd2680ca480713674a40bdc68483a6 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/tapex/tokenization_tapex.py @@ -0,0 +1,1487 @@ +# coding=utf-8 +# Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for TAPEX.""" + +import json +import os +import random +from functools import lru_cache +from typing import Dict, List, Optional, Tuple, Union + +import regex as re + +from ....file_utils import ExplicitEnum, PaddingStrategy, TensorType, add_end_docstrings, is_pandas_available +from ....tokenization_utils import AddedToken, PreTrainedTokenizer +from ....tokenization_utils_base import ENCODE_KWARGS_DOCSTRING, BatchEncoding, TextInput, TruncationStrategy +from ....utils import logging + + +if is_pandas_available(): + import pandas as pd + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} + +PRETRAINED_VOCAB_FILES_MAP = { + "vocab_file": { + "microsoft/tapex-base": "https://huggingface.co/microsoft/tapex-base/resolve/main/vocab.json", + }, + "merges_file": { + "microsoft/tapex-base": "https://huggingface.co/microsoft/tapex-base/resolve/main/merges.txt", + }, +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { + "microsoft/tapex-base": 512, +} + +PRETRAINED_INIT_CONFIGURATION = { + "microsoft/tapex-base": {"do_lower_case": True}, +} + + +class TapexTruncationStrategy(ExplicitEnum): + """ + Possible values for the `truncation` argument in [`~TapasTokenizer.__call__`]. Useful for tab-completion in an IDE. + """ + + DROP_ROWS_TO_FIT = "drop_rows_to_fit" + + +TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" + add_special_tokens (`bool`, *optional*, defaults to `True`): + Whether or not to encode the sequences with the special tokens relative to their model. + padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`): + Activates and controls padding. Accepts the following values: + + - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single + sequence if provided). + - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum + acceptable input length for the model if that argument is not provided. + - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different + lengths). + truncation (`bool`, `str`, [`TapexTruncationStrategy`] or [`~tokenization_utils_base.TruncationStrategy`], + *optional*, defaults to `False`): + + Activates and controls truncation. Accepts the following values: + + - `'drop_rows_to_fit'`: Truncate to a maximum length specified with the argument `max_length` or to the + maximum acceptable input length for the model if that argument is not provided. This will truncate + row by row, removing rows from the table. + - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or + to the maximum acceptable input length for the model if that argument is not provided. This will + truncate token by token, removing a token from the longest sequence in the pair if a pair of + sequences (or a batch of pairs) is provided. + - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the + maximum acceptable input length for the model if that argument is not provided. This will only + truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. + - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the + maximum acceptable input length for the model if that argument is not provided. This will only + truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. + - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths + greater than the model maximum admissible input size). + max_length (`int`, *optional*): + Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to + `None`, this will use the predefined model maximum length if a maximum length is required by one of the + truncation/padding parameters. If the model has no specific maximum input length (like XLNet) + truncation/padding to a maximum length will be deactivated. + stride (`int`, *optional*, defaults to 0): + If set to a number along with `max_length`, the overflowing tokens returned when + `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence + returned to provide some overlap between truncated and overflowing sequences. The value of this + argument defines the number of overlapping tokens. + pad_to_multiple_of (`int`, *optional*): + If set will pad the sequence to a multiple of the provided value. This is especially useful to enable + the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). + return_tensors (`str` or [`~file_utils.TensorType`], *optional*): + If set, will return tensors instead of list of python integers. Acceptable values are: + + - `'tf'`: Return TensorFlow `tf.constant` objects. + - `'pt'`: Return PyTorch `torch.Tensor` objects. + - `'np'`: Return Numpy `np.ndarray` objects. +""" + + +@lru_cache() +def bytes_to_unicode(): + """ + Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control + characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # + of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset + you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe + vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. + """ + bs = ( + list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) + ) + cs = bs[:] + n = 0 + for b in range(2**8): + if b not in bs: + bs.append(b) + cs.append(2**8 + n) + n += 1 + cs = [chr(n) for n in cs] + return dict(zip(bs, cs)) + + +def get_pairs(word): + """ + Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length + strings). + """ + pairs = set() + prev_char = word[0] + for char in word[1:]: + pairs.add((prev_char, char)) + prev_char = char + return pairs + + +class IndexedRowTableLinearize: + """ + FORMAT: col: col1 | col2 | col 3 row 1 : val1 | val2 | val3 row 2 : ... + """ + + def process_table(self, table_content: Dict): + """ + Given a table, TableLinearize aims at converting it into a flatten sequence with special symbols. + """ + assert "header" in table_content and "rows" in table_content, self.PROMPT_MESSAGE + # process header + table_str = self.process_header(table_content["header"]) + " " + # process rows + for i, row_example in enumerate(table_content["rows"]): + # NOTE: the row should start from row 1 instead of 0 + table_str += self.process_row(row_example, row_index=i + 1) + " " + return table_str.strip() + + def process_header(self, headers: List): + """ + Given a list of headers, TableLinearize aims at converting it into a flatten sequence with special symbols. + """ + return "col : " + " | ".join(headers) + + def process_row(self, row: List, row_index: int): + """ + Given a row, TableLinearize aims at converting it into a flatten sequence with special symbols. + """ + row_str = "" + row_cell_values = [] + for cell_value in row: + if isinstance(cell_value, int): + row_cell_values.append(str(cell_value)) + else: + row_cell_values.append(cell_value) + row_str += " | ".join(row_cell_values) + return "row " + str(row_index) + " : " + row_str + + +class TapexTokenizer(PreTrainedTokenizer): + r""" + Construct a TAPEX tokenizer. Based on byte-level Byte-Pair-Encoding (BPE). + + This tokenizer can be used to flatten one or more table(s) and concatenate them with one or more related sentences + to be used by TAPEX models. The format that the TAPEX tokenizer creates is the following: + + sentence col: col1 | col2 | col 3 row 1 : val1 | val2 | val3 row 2 : ... + + The tokenizer supports a single table + single query, a single table and multiple queries (in which case the table + will be duplicated for every query), a single query and multiple tables (in which case the query will be duplicated + for every table), and multiple tables and queries. In other words, you can provide a batch of tables + questions to + the tokenizer for instance to prepare them for the model. + + Tokenization itself is based on the BPE algorithm. It is identical to the one used by BART, RoBERTa and GPT-2. + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + merges_file (`str`): + Path to the merges file. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + errors (`str`, *optional*, defaults to `"replace"`): + Paradigm to follow when decoding bytes to UTF-8. See + [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + add_prefix_space (`bool`, *optional*, defaults to `False`): + Whether or not to add an initial space to the input. This allows to treat the leading word just as any + other word. (BART tokenizer detect beginning of words by the preceding space). + max_cell_length (`int`, *optional*, defaults to 15): + Maximum number of characters per cell when linearizing a table. If this number is exceeded, truncation + takes place. + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + merges_file, + do_lower_case=True, + errors="replace", + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + add_prefix_space=False, + max_cell_length=15, + **kwargs, + ): + bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token + eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token + sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token + cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token + unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token + pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token + + # Mask token behave like a normal word, i.e. include the space before it + mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token + + with open(vocab_file, encoding="utf-8") as vocab_handle: + self.encoder = json.load(vocab_handle) + self.decoder = {v: k for k, v in self.encoder.items()} + self.errors = errors # how to handle errors in decoding + self.byte_encoder = bytes_to_unicode() + self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} + with open(merges_file, encoding="utf-8") as merges_handle: + bpe_merges = merges_handle.read().split("\n")[1:-1] + bpe_merges = [tuple(merge.split()) for merge in bpe_merges] + self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) + self.cache = {} + self.add_prefix_space = add_prefix_space + self.do_lower_case = do_lower_case + + # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions + self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") + + # additional properties + + super().__init__( + vocab_file=vocab_file, + merges_file=merges_file, + do_lower_case=do_lower_case, + errors=errors, + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + cls_token=cls_token, + pad_token=pad_token, + mask_token=mask_token, + add_prefix_space=add_prefix_space, + max_cell_length=max_cell_length, + **kwargs, + ) + + self.max_cell_length = max_cell_length + self.table_linearize = IndexedRowTableLinearize() + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. A TAPEX sequence has the following format: + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + sep + token_ids_1 + sep + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Args: + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is None: + return [1] + ([0] * len(token_ids_0)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Args: + Create a mask from the two sequences passed to be used in a sequence-pair classification task. TAPEX does not: + make use of token type ids, therefore a list of zeros is returned. + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + Returns: + `List[int]`: List of zeros. + """ + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): + add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) + if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): + text = " " + text + return (text, kwargs) + + @property + def vocab_size(self): + return len(self.encoder) + + def get_vocab(self): + return dict(self.encoder, **self.added_tokens_encoder) + + def bpe(self, token): + if token in self.cache: + return self.cache[token] + word = tuple(token) + pairs = get_pairs(word) + + if not pairs: + return token + + while True: + bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) + if bigram not in self.bpe_ranks: + break + first, second = bigram + new_word = [] + i = 0 + while i < len(word): + try: + j = word.index(first, i) + except ValueError: + new_word.extend(word[i:]) + break + else: + new_word.extend(word[i:j]) + i = j + + if word[i] == first and i < len(word) - 1 and word[i + 1] == second: + new_word.append(first + second) + i += 2 + else: + new_word.append(word[i]) + i += 1 + new_word = tuple(new_word) + word = new_word + if len(word) == 1: + break + else: + pairs = get_pairs(word) + word = " ".join(word) + self.cache[token] = word + return word + + def _tokenize(self, text): + """Tokenize a string.""" + bpe_tokens = [] + for token in re.findall(self.pat, text): + token = "".join( + self.byte_encoder[b] for b in token.encode("utf-8") + ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) + bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) + return bpe_tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.encoder.get(token, self.encoder.get(self.unk_token)) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.decoder.get(index) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + text = "".join(tokens) + text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) + return text + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + merge_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] + ) + + with open(vocab_file, "w", encoding="utf-8") as f: + f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") + + index = 0 + with open(merge_file, "w", encoding="utf-8") as writer: + writer.write("#version: 0.2\n") + for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." + " Please check that the tokenizer is not corrupted!" + ) + index = token_index + writer.write(" ".join(bpe_tokens) + "\n") + index += 1 + + return vocab_file, merge_file + + @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) + def __call__( + self, + table: Union["pd.DataFrame", List["pd.DataFrame"]] = None, + query: Optional[Union[TextInput, List[TextInput]]] = None, + answer: Union[str, List[str]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TruncationStrategy] = None, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + """ + Main method to tokenize and prepare for the model one or several table-sequence pair(s). + + Args: + table (`pd.DataFrame`, `List[pd.DataFrame]`): + Table(s) containing tabular data. + query (`str` or `List[str]`, *optional*): + Sentence or batch of sentences related to one or more table(s) to be encoded. Note that the number of + sentences must match the number of tables. + answer (`str` or `List[str]`, *optional*): + Optionally, the corresponding answer to the questions as supervision. + """ + + if table is not None: + return self.source_call_func( + table=table, + query=query, + answer=answer, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + elif answer is not None: + return self.target_call_func( + answer=answer, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + else: + raise ValueError("You need to provide either a `table` or an `answer`.") + + def source_call_func( + self, + table: Union["pd.DataFrame", List["pd.DataFrame"]], + query: Optional[Union[TextInput, List[TextInput]]] = None, + answer: Union[str, List[str]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TruncationStrategy] = None, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + # Input type checking for clearer error + valid_table = False + valid_query = False + + # Check that table have a valid type + if isinstance(table, pd.DataFrame): + valid_table = True + elif isinstance(table, (list, tuple)) and isinstance(table[0], pd.DataFrame): + valid_table = True + + # Check that query have a valid type + if query is None or isinstance(query, str): + valid_query = True + elif isinstance(query, (list, tuple)): + if len(query) == 0 or isinstance(query[0], str): + valid_query = True + + if not valid_table: + raise ValueError( + "table input must of type `pd.DataFrame` (single example), `List[pd.DataFrame]` (batch of examples). " + ) + if not valid_query: + raise ValueError("query input must of type `str` (single example), `List[str]` (batch of examples). ") + is_batched = isinstance(table, (list, tuple)) or isinstance(query, (list, tuple)) + + if is_batched: + return self.batch_encode_plus( + table=table, + query=query, + answer=answer, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + else: + return self.encode_plus( + table=table, + query=query, + answer=answer, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + + @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) + def batch_encode_plus( + self, + table: Union["pd.DataFrame", List["pd.DataFrame"]], + query: Optional[List[TextInput]] = None, + answer: List[str] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str] = None, + max_length: Optional[int] = None, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + """ + + + This method is deprecated, `__call__` should be used instead. + + + """ + # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' + padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( + padding=padding, + truncation=truncation, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + verbose=verbose, + **kwargs, + ) + + return self._batch_encode_plus( + table=table, + query=query, + answer=answer, + add_special_tokens=add_special_tokens, + padding_strategy=padding_strategy, + truncation_strategy=truncation_strategy, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + + def _batch_encode_plus( + self, + table: Union["pd.DataFrame", List["pd.DataFrame"]], + query: Optional[List[TextInput]] = None, + answer: Optional[List[str]] = None, + add_special_tokens: bool = True, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + if return_offsets_mapping: + raise NotImplementedError( + "return_offset_mapping is not available when using Python tokenizers. " + "To use this feature, change your tokenizer to one deriving from " + "transformers.PreTrainedTokenizerFast." + ) + + if isinstance(table, pd.DataFrame) and isinstance(query, (list, tuple)): + # single table, many queries case + # duplicate table for every query + table = [table] * len(query) + if isinstance(table, (list, tuple)) and isinstance(query, str): + # many tables, single query case + # duplicate query for every table + query = [query] * len(table) + + batch_outputs = self._batch_prepare_for_model( + table=table, + query=query, + answer=answer, + add_special_tokens=add_special_tokens, + padding_strategy=padding_strategy, + truncation_strategy=truncation_strategy, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + return_token_type_ids=return_token_type_ids, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_length=return_length, + return_tensors=return_tensors, + verbose=verbose, + ) + + return BatchEncoding(batch_outputs) + + @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) + def _batch_prepare_for_model( + self, + table: Union["pd.DataFrame", List["pd.DataFrame"]], + query: Optional[Union[TextInput, List[TextInput]]] = None, + answer: Optional[Union[str, List[str]]] = None, + add_special_tokens: bool = True, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[str] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_length: bool = False, + verbose: bool = True, + ) -> BatchEncoding: + """ + This method adds special tokens, truncates sequences if overflowing while taking into account the special + tokens and manages a moving window (with user defined stride) for overflowing tokens. + """ + batch_outputs = {} + if answer is None: + answer = [None] * len(table) + for _table, _query, _answer in zip(table, query, answer): + text = self.prepare_table_query( + _table, _query, _answer, truncation_strategy=truncation_strategy, max_length=max_length + ) + + if self.do_lower_case: + text = text.lower() + + tokens = self.tokenize(text) + outputs = self.prepare_for_model( + ids=self.convert_tokens_to_ids(tokens), + add_special_tokens=add_special_tokens, + padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterwards + truncation=truncation_strategy.value, + max_length=max_length, + stride=stride, + pad_to_multiple_of=None, # we pad in batch afterwards + return_attention_mask=False, # we pad in batch afterwards + return_token_type_ids=return_token_type_ids, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_length=return_length, + return_tensors=None, # We convert the whole batch to tensors at the end + prepend_batch_axis=False, + verbose=verbose, + ) + + for key, value in outputs.items(): + if key not in batch_outputs: + batch_outputs[key] = [] + batch_outputs[key].append(value) + + batch_outputs = self.pad( + batch_outputs, + padding=padding_strategy.value, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + ) + + batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) + + return batch_outputs + + @add_end_docstrings(ENCODE_KWARGS_DOCSTRING) + def encode( + self, + table: "pd.DataFrame", + query: Optional[TextInput] = None, + answer: Optional[str] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TruncationStrategy, TapexTruncationStrategy] = None, + max_length: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + **kwargs, + ) -> List[int]: + """ + Prepare a table, a string and possible answer for the model. This method does not return token type IDs, + attention masks, etc. which are necessary for the model to work correctly. Use this method if you want to build + your processing on your own, otherwise refer to `__call__`. + """ + encoded_inputs = self.encode_plus( + table, + query=query, + answer=answer, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + return_tensors=return_tensors, + **kwargs, + ) + + return encoded_inputs["input_ids"] + + @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPEX_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) + def encode_plus( + self, + table: "pd.DataFrame", + query: Optional[TextInput] = None, + answer: Optional[str] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str] = None, + max_length: Optional[int] = None, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' + padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( + padding=padding, + truncation=truncation, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + verbose=verbose, + **kwargs, + ) + + return self._encode_plus( + table=table, + query=query, + answer=answer, + add_special_tokens=add_special_tokens, + padding_strategy=padding_strategy, + truncation_strategy=truncation_strategy, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + + def _encode_plus( + self, + table: "pd.DataFrame", + query: Optional[TextInput] = None, + answer: Optional[str] = None, + add_special_tokens: bool = True, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + if return_offsets_mapping: + raise NotImplementedError( + "return_offset_mapping is not available when using Python tokenizers. " + "To use this feature, change your tokenizer to one deriving from " + "transformers.PreTrainedTokenizerFast. " + "More information on available tokenizers at " + "https://github.com/huggingface/transformers/pull/2674" + ) + + text = self.prepare_table_query( + table, query, answer, truncation_strategy=truncation_strategy, max_length=max_length + ) + + # if necessary, perform lower case + if self.do_lower_case: + text = text.lower() + + tokens = self.tokenize(text) + + return self.prepare_for_model( + ids=self.convert_tokens_to_ids(tokens), + add_special_tokens=add_special_tokens, + padding=padding_strategy.value, + truncation=truncation_strategy.value, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + prepend_batch_axis=True, + return_attention_mask=return_attention_mask, + return_token_type_ids=return_token_type_ids, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_length=return_length, + verbose=verbose, + ) + + def target_call_func( + self, + answer: Union[str, List[str]], + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TruncationStrategy] = None, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + """ + The method tokenizes and prepares the answer label for the model. + + Args: + answer (`str` or `List[str]`): + Corresponding answer supervision to the queries for training the model. + """ + is_batched = isinstance(answer, (list, tuple)) + + if is_batched: + return self.target_batch_encode_plus( + answer=answer, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + else: + return self.target_encode_plus( + answer=answer, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + + def target_batch_encode_plus( + self, + answer: List[str], + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str] = None, + max_length: Optional[int] = None, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + """ + Prepare answer strings for the model. + + Args: + answer `List[str]`: + Corresponding answer supervision to the queries for training the model. + """ + # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' + padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( + padding=padding, + truncation=truncation, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + verbose=verbose, + **kwargs, + ) + + return self._target_batch_encode_plus( + answer=answer, + add_special_tokens=add_special_tokens, + padding_strategy=padding_strategy, + truncation_strategy=truncation_strategy, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + + def _target_batch_encode_plus( + self, + answer: List[str], + add_special_tokens: bool = True, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + batch_outputs = {} + for text in answer: + if self.do_lower_case: + text = text.lower() + + tokens = self.tokenize(text) + outputs = self.prepare_for_model( + ids=self.convert_tokens_to_ids(tokens), + add_special_tokens=add_special_tokens, + padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterwards + truncation=truncation_strategy.value, + max_length=max_length, + stride=stride, + pad_to_multiple_of=None, # we pad in batch afterwards + return_attention_mask=False, # we pad in batch afterwards + return_token_type_ids=return_token_type_ids, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_length=return_length, + return_tensors=None, # We convert the whole batch to tensors at the end + prepend_batch_axis=False, + verbose=verbose, + ) + + for key, value in outputs.items(): + if key not in batch_outputs: + batch_outputs[key] = [] + batch_outputs[key].append(value) + + batch_outputs = self.pad( + batch_outputs, + padding=padding_strategy.value, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + ) + + batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) + + return BatchEncoding(batch_outputs) + + def target_encode( + self, + answer: str, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TruncationStrategy, TapexTruncationStrategy] = None, + max_length: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + **kwargs, + ) -> List[int]: + """ + Prepare the answer string for the model. This method does not return token type IDs, attention masks, etc. + which are necessary for the model to work correctly. Use this method if you want to build your processing on + your own, otherwise refer to `__call__`. + + Args: + answer `str`: + Corresponding answer supervision to the queries for training the model + """ + encoded_outputs = self.target_encode_plus( + answer=answer, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + return_tensors=return_tensors, + **kwargs, + ) + + return encoded_outputs["input_ids"] + + def target_encode_plus( + self, + answer: str, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str] = None, + max_length: Optional[int] = None, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + """ + Prepare a answer string for the model. + + Args: + answer `str`: + Corresponding answer supervision to the queries for training the model. + """ + # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' + padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( + padding=padding, + truncation=truncation, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + verbose=verbose, + **kwargs, + ) + + return self._target_encode_plus( + answer=answer, + add_special_tokens=add_special_tokens, + padding_strategy=padding_strategy, + truncation_strategy=truncation_strategy, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + + def _target_encode_plus( + self, + answer: str, + add_special_tokens: bool = True, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + if return_offsets_mapping: + raise NotImplementedError( + "return_offset_mapping is not available when using Python tokenizers. " + "To use this feature, change your tokenizer to one deriving from " + "transformers.PreTrainedTokenizerFast. " + "More information on available tokenizers at " + "https://github.com/huggingface/transformers/pull/2674" + ) + + text = answer + + # if necessary, perform lower case + if self.do_lower_case: + text = text.lower() + + tokens = self.tokenize(text) + + return self.prepare_for_model( + ids=self.convert_tokens_to_ids(tokens), + add_special_tokens=add_special_tokens, + padding=padding_strategy.value, + truncation=truncation_strategy.value, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + prepend_batch_axis=True, + return_attention_mask=return_attention_mask, + return_token_type_ids=return_token_type_ids, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_length=return_length, + verbose=verbose, + ) + + def prepare_table_query( + self, + table, + query, + answer=None, + truncation_strategy=Union[str, TruncationStrategy, TapexTruncationStrategy], + max_length=None, + ): + """ + This method can be used to linearize a table and add a corresponding query. + + Optionally, it also handles truncation of the table (cells). + + An answer can be provided for more precise truncation. + """ + if not table.empty: + # step 1: create table dictionary + table_content = {"header": list(table.columns), "rows": [list(row.values) for i, row in table.iterrows()]} + + # step 2: modify table internally + # always truncate table cells based on self.max_cell_length + # optionally truncate rows if truncation_strategy is set to it + self.truncate_table_cells(table_content, query, answer) + if truncation_strategy == TapexTruncationStrategy.DROP_ROWS_TO_FIT: + self.truncate_table_rows(table_content, query, answer, max_length=max_length) + + # step 3: linearize table + linear_table = self.table_linearize.process_table(table_content) + else: + linear_table = "" + + if linear_table == "": + logger.warning( + "You provide an empty table, or all cells contain much tokens (e.g., >= 1024 tokens). " + + f"Please carefully check the corresponding table with the query : {query}." + ) + if query == "": + logger.warning("You provide nothing to query with respect to the table.") + # step 4: concatenate query with linear_table + separator = " " if query and linear_table else "" + joint_input = (query + separator + linear_table) if query else linear_table + + return joint_input + + def truncate_table_cells(self, table_content: Dict, question: str, answer: List): + # TODO (Qian): is it possible to revert the original cell if it is in the final answer? + cell_mapping = {} + for row in table_content["rows"]: + for i, cell in enumerate(row): + truncate_cell = self.truncate_cell(cell) + if truncate_cell is not None: + cell_mapping[cell] = truncate_cell + row[i] = truncate_cell + + # modify the answer list + if answer is not None: + for i, case in enumerate(answer): + if case in cell_mapping.keys(): + answer[i] = cell_mapping[case] + + def truncate_cell(self, cell_value): + # do not process on these cases + if isinstance(cell_value, int) or isinstance(cell_value, float): + return cell_value + if cell_value.strip() != "": + try_tokens = self.tokenize(cell_value) + if len(try_tokens) >= self.max_cell_length: + retain_tokens = try_tokens[: self.max_cell_length] + retain_cell_value = self.convert_tokens_to_string(retain_tokens) + return retain_cell_value + else: + return None + else: + return cell_value + + def truncate_table_rows( + self, table_content: Dict, question: str, answer: Optional[Union[str, List[str]]] = None, max_length=None + ): + """ + Args: + table_content: + {"header": xxx, "rows": xxx, "id" (Optionally): xxx} + + question: + natural language sentence + + answer: + if for training, is the supervision; otherwise will be empty + """ + delete_ratio, remain_token_len = self.estimate_delete_ratio(table_content, question, max_length) + # randomly delete unrelated rows + self.delete_unrelated_rows(table_content, question, answer, delete_ratio) + # guarantee the result < max_length + maximum_keep_rows = 0 + for ind, row_example in enumerate(table_content["rows"]): + value_string = self.table_linearize.process_row(row_example, ind + 1) + value_token_len = len(self.tokenize(value_string)) + # over the size limit, and take action + if value_token_len > remain_token_len: + break + remain_token_len -= value_token_len + maximum_keep_rows += 1 + del table_content["rows"][maximum_keep_rows:] + + def estimate_delete_ratio(self, table_content: Dict, question: str, max_length=None): + if "header" not in table_content or "rows" not in table_content: + raise ValueError("The table content should contain both 'header' and 'rows' keys.") + # calculate the tokens of header, special tokens will only be pre-prepended into question + question_tokens = self.tokenize(question, add_special_tokens=True) + # calculate the tokens of header + header_string = self.table_linearize.process_header(table_content["header"]) + header_tokens = self.tokenize(header_string, add_special_tokens=False) + # split all cell values into tokens and see how many can be accommodated + used_token_len = len(question_tokens) + len(header_tokens) + # remaining token space for rows + remain_token_len = max_length - used_token_len + + value_string = "" + for _, row_example in enumerate(table_content["rows"]): + # use a general index to roughly estimate the overall token len + value_string += self.table_linearize.process_row(row_example, 100) + " " + value_token_len = len(self.tokenize(value_string)) + + if value_token_len < remain_token_len: + # no row will be deleted + return 0.0, remain_token_len + else: + # calc a roughly delete rate + return 1.0 - remain_token_len / value_token_len, remain_token_len + + def delete_unrelated_rows(self, table_content: Dict, question: str, answer: List, delete_ratio: float): + """ + The argument answer is used only during training. + """ + truncated_unrelated_indices = [] + related_indices = [] + if answer is None or len(answer) == 0: + answer_set = set() + else: + answer_set = {ans_ex.lower() for ans_ex in answer} + # add question key words into answer set + if question is not None: + answer_set.update(question.split()) + question_set = set(question.strip("?!.,").split(" ")) + row_max_len = len(table_content["rows"]) + for _row_idx, row in enumerate(table_content["rows"]): + lower_row = {str(cell).lower() for cell in row} + if len(lower_row & answer_set) == 0 and len(lower_row & question_set) == 0: + truncated_unrelated_indices.append(_row_idx) + else: + # add neighbours to preserve information aggressively + related_indices.extend([_row_idx - 2, _row_idx - 1, _row_idx, _row_idx + 1, _row_idx + 2]) + + # remove the neighbours + truncated_unrelated_indices = [ + _row_idx for _row_idx in truncated_unrelated_indices if _row_idx not in related_indices + ] + # select some cases to drop + drop_items = min(len(truncated_unrelated_indices), int(len(table_content["rows"]) * delete_ratio)) + drop_row_indices = random.choices(truncated_unrelated_indices, k=drop_items) + + for _row_idx in reversed(range(row_max_len)): + if _row_idx in drop_row_indices: + del table_content["rows"][_row_idx] + + # only when the drop ratio is too large, logging for warning. + if "id" in table_content and len(drop_row_indices) > 0: + logger.warning("Delete {:.2f} rows in table {}".format(len(drop_row_indices), table_content["id"])) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..b7af1bb48cb7d6a495611b0dadfc910779262813 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__init__.py @@ -0,0 +1,63 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = { + "configuration_trajectory_transformer": [ + "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", + "TrajectoryTransformerConfig", + ], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_trajectory_transformer"] = [ + "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", + "TrajectoryTransformerModel", + "TrajectoryTransformerPreTrainedModel", + "load_tf_weights_in_trajectory_transformer", + ] + + +if TYPE_CHECKING: + from .configuration_trajectory_transformer import ( + TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, + TrajectoryTransformerConfig, + ) + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_trajectory_transformer import ( + TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, + TrajectoryTransformerModel, + TrajectoryTransformerPreTrainedModel, + load_tf_weights_in_trajectory_transformer, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..31e428ab9bc5f0e961154245cf15b9994ea7d8b9 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__pycache__/configuration_trajectory_transformer.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__pycache__/configuration_trajectory_transformer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..250699aa495ab3c4690e2c6c9a822c8369fb2762 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__pycache__/configuration_trajectory_transformer.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__pycache__/convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__pycache__/convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e9c5eb2ab090a0bdbafb637f329e602121706bc4 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__pycache__/convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__pycache__/modeling_trajectory_transformer.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__pycache__/modeling_trajectory_transformer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fefbf72d367e37c1db30e32dbd6fc055f94ee051 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/__pycache__/modeling_trajectory_transformer.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/configuration_trajectory_transformer.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/configuration_trajectory_transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..cfad075c6ae848fd56001615747103baedb4c591 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/configuration_trajectory_transformer.py @@ -0,0 +1,159 @@ +# coding=utf-8 +# Copyright 2022 The Trajectory Transformers paper authors and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TrajectoryTransformer model configuration""" + +from ....configuration_utils import PretrainedConfig +from ....utils import logging + + +logger = logging.get_logger(__name__) + +TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( + "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" + ), + # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer +} + + +class TrajectoryTransformerConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`TrajectoryTransformerModel`]. It is used to + instantiate an TrajectoryTransformer model according to the specified arguments, defining the model architecture. + Instantiating a configuration with the defaults will yield a similar configuration to that of the + TrajectoryTransformer + [CarlCochet/trajectory-transformer-halfcheetah-medium-v2](https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2) + architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 100): + Vocabulary size of the TrajectoryTransformer model. Defines the number of different tokens that can be + represented by the `trajectories` passed when calling [`TrajectoryTransformerModel`] + action_weight (`int`, *optional*, defaults to 5): + Weight of the action in the loss function + reward_weight (`int`, *optional*, defaults to 1): + Weight of the reward in the loss function + value_weight (`int`, *optional*, defaults to 1): + Weight of the value in the loss function + block_size (`int`, *optional*, defaults to 249): + Size of the blocks in the trajectory transformer. + action_dim (`int`, *optional*, defaults to 6): + Dimension of the action space. + observation_dim (`int`, *optional*, defaults to 17): + Dimension of the observation space. + transition_dim (`int`, *optional*, defaults to 25): + Dimension of the transition space. + n_layer (`int`, *optional*, defaults to 4): + Number of hidden layers in the Transformer encoder. + n_head (`int`, *optional*, defaults to 4): + Number of attention heads for each attention layer in the Transformer encoder. + n_embd (`int`, *optional*, defaults to 128): + Dimensionality of the embeddings and hidden states. + resid_pdrop (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + embd_pdrop (`int`, *optional*, defaults to 0.1): + The dropout ratio for the embeddings. + attn_pdrop (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"selu"` and `"gelu_new"` are supported. + max_position_embeddings (`int`, *optional*, defaults to 512): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + kaiming_initializer_range (`float, *optional*, defaults to 1): + A coefficient scaling the negative slope of the kaiming initializer rectifier for EinLinear layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + Example: + + ```python + >>> from transformers import TrajectoryTransformerConfig, TrajectoryTransformerModel + + >>> # Initializing a TrajectoryTransformer CarlCochet/trajectory-transformer-halfcheetah-medium-v2 style configuration + >>> configuration = TrajectoryTransformerConfig() + + >>> # Initializing a model (with random weights) from the CarlCochet/trajectory-transformer-halfcheetah-medium-v2 style configuration + >>> model = TrajectoryTransformerModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "trajectory_transformer" + keys_to_ignore_at_inference = ["past_key_values"] + attribute_map = { + "hidden_size": "n_embd", + "num_attention_heads": "n_head", + "num_hidden_layers": "n_layer", + } + + def __init__( + self, + vocab_size=100, + action_weight=5, + reward_weight=1, + value_weight=1, + block_size=249, + action_dim=6, + observation_dim=17, + transition_dim=25, + n_layer=4, + n_head=4, + n_embd=128, + embd_pdrop=0.1, + attn_pdrop=0.1, + resid_pdrop=0.1, + learning_rate=0.0006, + max_position_embeddings=512, + initializer_range=0.02, + layer_norm_eps=1e-12, + kaiming_initializer_range=1, + use_cache=True, + pad_token_id=1, + bos_token_id=50256, + eos_token_id=50256, + **kwargs, + ): + self.vocab_size = vocab_size + self.action_weight = action_weight + self.reward_weight = reward_weight + self.value_weight = value_weight + self.max_position_embeddings = max_position_embeddings + self.block_size = block_size + self.action_dim = action_dim + self.observation_dim = observation_dim + self.transition_dim = transition_dim + self.learning_rate = learning_rate + self.n_layer = n_layer + self.n_head = n_head + self.n_embd = n_embd + self.embd_pdrop = embd_pdrop + self.attn_pdrop = attn_pdrop + self.resid_pdrop = resid_pdrop + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.kaiming_initializer_range = kaiming_initializer_range + self.use_cache = use_cache + super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..622552fa78360826fc976d6f1d8c97fcc74a8a38 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch.py @@ -0,0 +1,70 @@ +# coding=utf-8 +# Copyright 2022 The Trajectory Transformers paper authors and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TrajectoryTransformer pytorch checkpoint conversion""" + +import torch +import trajectory.utils as utils + +from transformers import TrajectoryTransformerModel + + +class Parser(utils.Parser): + dataset: str = "halfcheetah-medium-expert-v2" + config: str = "config.offline" + + +def convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch(logbase, dataset, loadpath, epoch, device): + """Converting Sequential blocks to ModuleList""" + + gpt, gpt_epoch = utils.load_model(logbase, dataset, loadpath, epoch=epoch, device=device) + trajectory_transformer = TrajectoryTransformerModel(gpt.config) + + trajectory_transformer.tok_emb.load_state_dict(gpt.tok_emb.state_dict()) + trajectory_transformer.pos_emb = gpt.pos_emb + trajectory_transformer.drop.load_state_dict(gpt.drop.state_dict()) + trajectory_transformer.ln_f.load_state_dict(gpt.ln_f.state_dict()) + trajectory_transformer.head.load_state_dict(gpt.head.state_dict()) + + for i, block in enumerate(gpt.blocks): + trajectory_transformer.blocks[i].ln1.load_state_dict(gpt.blocks[i].ln1.state_dict()) + trajectory_transformer.blocks[i].ln2.load_state_dict(gpt.blocks[i].ln2.state_dict()) + trajectory_transformer.blocks[i].attn.load_state_dict(gpt.blocks[i].attn.state_dict()) + + trajectory_transformer.blocks[i].l1.load_state_dict(gpt.blocks[i].mlp[0].state_dict()) + trajectory_transformer.blocks[i].act.load_state_dict(gpt.blocks[i].mlp[1].state_dict()) + trajectory_transformer.blocks[i].l2.load_state_dict(gpt.blocks[i].mlp[2].state_dict()) + trajectory_transformer.blocks[i].drop.load_state_dict(gpt.blocks[i].mlp[3].state_dict()) + + torch.save(trajectory_transformer.state_dict(), "pytorch_model.bin") + + +if __name__ == "__main__": + """ + To run this script you will need to install the original repository to run the original model. You can find it + here: https://github.com/jannerm/trajectory-transformer From this repository code you can also download the + original pytorch checkpoints. + + Run with the command: + + ```sh + >>> python convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch.py --dataset + ... --gpt_loadpath + ``` + """ + + args = Parser().parse_args("plan") + convert_trajectory_transformer_original_pytorch_checkpoint_to_pytorch( + args.logbase, args.dataset, args.gpt_loadpath, args.gpt_epoch, args.device + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/modeling_trajectory_transformer.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/modeling_trajectory_transformer.py new file mode 100644 index 0000000000000000000000000000000000000000..40c08e4d1d441ae6f30414eacea4423eae5de378 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/trajectory_transformer/modeling_trajectory_transformer.py @@ -0,0 +1,608 @@ +# coding=utf-8 +# Copyright 2022 The Trajectory Transformers paper authors and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch TrajectoryTransformer model.""" + +import math +import os +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import numpy as np +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import functional as F + +from ....modeling_utils import PreTrainedModel +from ....utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_trajectory_transformer import TrajectoryTransformerConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "CarlCochet/trajectory-transformer-halfcheetah-medium-v2" +_CONFIG_FOR_DOC = "TrajectoryTransformerConfig" + +TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "CarlCochet/trajectory-transformer-halfcheetah-medium-v2", + # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer +] + + +def load_tf_weights_in_trajectory_transformer(model, config, tf_checkpoint_path): + """Load tf checkpoints in a pytorch model.""" + try: + import re + + import numpy as np + import tensorflow as tf + except ImportError: + logger.error( + "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " + "https://www.tensorflow.org/install/ for installation instructions." + ) + raise + tf_path = os.path.abspath(tf_checkpoint_path) + logger.info(f"Converting TensorFlow checkpoint from {tf_path}") + # Load weights from TF model + init_vars = tf.train.list_variables(tf_path) + names = [] + arrays = [] + for name, shape in init_vars: + logger.info(f"Loading TF weight {name} with shape {shape}") + array = tf.train.load_variable(tf_path, name) + names.append(name) + arrays.append(array) + + for name, array in zip(names, arrays): + name = name.split("/") + # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v + # which are not required for using pretrained model + if any( + n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] + for n in name + ): + logger.info(f"Skipping {'/'.join(name)}") + continue + pointer = model + for m_name in name: + if re.fullmatch(r"[A-Za-z]+_\d+", m_name): + scope_names = re.split(r"_(\d+)", m_name) + else: + scope_names = [m_name] + if scope_names[0] == "kernel" or scope_names[0] == "gamma": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "output_bias" or scope_names[0] == "beta": + pointer = getattr(pointer, "bias") + elif scope_names[0] == "output_weights": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "squad": + pointer = getattr(pointer, "classifier") + else: + try: + pointer = getattr(pointer, scope_names[0]) + except AttributeError: + logger.info(f"Skipping {'/'.join(name)}") + continue + if len(scope_names) >= 2: + num = int(scope_names[1]) + pointer = pointer[num] + if m_name[-11:] == "_embeddings": + pointer = getattr(pointer, "weight") + elif m_name == "kernel": + array = np.transpose(array) + try: + if pointer.shape != array.shape: + raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") + except AssertionError as e: + e.args += (pointer.shape, array.shape) + raise + logger.info(f"Initialize PyTorch weight {name}") + pointer.data = torch.from_numpy(array) + return model + + +@dataclass +class TrajectoryTransformerOutput(ModelOutput): + """ + Base class for model's outputs that also contains a pooling of the last hidden states. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Language modeling loss. + logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + past_key_values (`Tuple[Tuple[torch.Tensor]]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of length `config.n_layers`, containing tuples of tensors of shape `(batch_size, num_heads, + sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the + attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer + plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. GPT2Attentions weights after the attention softmax, used to compute the weighted average + in the self-attention heads. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +class TrajectoryTransformerPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = TrajectoryTransformerConfig + load_tf_weights = load_tf_weights_in_trajectory_transformer + base_model_prefix = "trajectory_transformer" + main_input_name = "trajectories" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + if isinstance(module, (nn.Linear, nn.Embedding)): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if isinstance(module, nn.Linear) and module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + elif isinstance(module, EinLinear): + for i in range(module.n_models): + nn.init.kaiming_uniform_(module.weight[i], a=math.sqrt(5) / self.config.kaiming_initializer_range) + if module.bias is not None: + fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight[i]) + bound = (1 / math.sqrt(fan_in)) * self.config.initializer_range + nn.init.uniform_(module.bias[i], -bound, bound) + + +TRAJECTORY_TRANSFORMER_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use + it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`TrajectoryTransformerConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +TRAJECTORY_TRANSFORMER_INPUTS_DOCSTRING = r""" + Args: + trajectories (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Batch of trajectories, where a trajectory is a sequence of states, actions and rewards. + past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`, *optional*): + Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see + `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have + their past given to this model should not be passed as `input_ids` as they have already been computed. + targets (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Desired targets used to compute the loss. + attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class EinLinear(nn.Module): + def __init__(self, n_models, in_features, out_features, bias): + super().__init__() + self.n_models = n_models + self.out_features = out_features + self.in_features = in_features + self.weight = nn.Parameter(torch.Tensor(n_models, out_features, in_features)) + if bias: + self.bias = nn.Parameter(torch.Tensor(n_models, out_features)) + else: + self.register_parameter("bias", None) + + def reset_parameters(self): + for i in range(self.n_models): + nn.init.kaiming_uniform_(self.weight[i], a=math.sqrt(5)) + if self.bias is not None: + fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight[i]) + bound = 1 / math.sqrt(fan_in) + nn.init.uniform_(self.bias[i], -bound, bound) + + def forward(self, input): + """ + Args: + input (`torch.FloatTensor` of shape `(B, n_models, input_dim)`): + The input to the layer. + """ + # [ batch_size x n_models x output_dim ] + output = torch.einsum("eoi,bei->beo", self.weight, input) + if self.bias is not None: + raise RuntimeError() + return output + + +class CausalSelfAttention(nn.Module): + def __init__(self, config): + super().__init__() + + if config.n_embd % config.n_head != 0: + raise ValueError(f"n_head ({config.n_head}) should be a divisor of n_embd ({config.n_embd})") + + # key, query, value projections for all heads + self.key = nn.Linear(config.n_embd, config.n_embd) + self.query = nn.Linear(config.n_embd, config.n_embd) + self.value = nn.Linear(config.n_embd, config.n_embd) + + # regularization + self.attn_drop = nn.Dropout(config.attn_pdrop) + self.resid_drop = nn.Dropout(config.resid_pdrop) + + # output projection + self.proj = nn.Linear(config.n_embd, config.n_embd) + + # causal mask to ensure that attention is only applied to the left in the input sequence + self.register_buffer( + "mask", + torch.tril(torch.ones(config.block_size, config.block_size)).view( + 1, 1, config.block_size, config.block_size + ), + persistent=False, + ) + + # mask previous value estimates + joined_dim = config.observation_dim + config.action_dim + 2 + self.mask.squeeze()[:, joined_dim - 1 :: joined_dim] = 0 + + self.n_head = config.n_head + + def forward( + self, + hidden_states: Optional[Tuple[torch.FloatTensor]], + layer_past: Optional[Tuple[torch.Tensor]] = None, + use_cache: Optional[bool] = False, + output_attentions: Optional[bool] = False, + ): + batch_size, sequence_length, embedding_dim = hidden_states.size() + + # calculate query, key, values for all heads in batch and move head forward to be the batch dim + # [ batch_size x n_heads x sequence_length x head_dim ] + key = ( + self.key(hidden_states) + .view(batch_size, sequence_length, self.n_head, embedding_dim // self.n_head) + .transpose(1, 2) + ) + query = ( + self.query(hidden_states) + .view(batch_size, sequence_length, self.n_head, embedding_dim // self.n_head) + .transpose(1, 2) + ) + value = ( + self.value(hidden_states) + .view(batch_size, sequence_length, self.n_head, embedding_dim // self.n_head) + .transpose(1, 2) + ) + + if layer_past is not None: + past_key, past_value = layer_past + key = torch.cat((past_key, key), dim=-2) + value = torch.cat((past_value, value), dim=-2) + + if use_cache is True: + present = (key, value) + else: + present = None + + # causal self-attention + # [ batch_size x n_heads x sequence_length x sequence_length ] + attn_weights = (torch.matmul(query, key.transpose(-2, -1))) * (1.0 / math.sqrt(key.size(-1))) + attn_weights = attn_weights.masked_fill( + self.mask[:, :, :sequence_length, :sequence_length] == 0, torch.finfo(attn_weights.dtype).min + ) + attn_weights = F.softmax(attn_weights, dim=-1) + self._attn_map = attn_weights.clone() + attn_weights = self.attn_drop(attn_weights) + + output = torch.matmul(attn_weights, value) + # [ batch_size x sequence_length x embedding_dim ] + # re-assemble all head outputs side by side + output = output.transpose(1, 2).contiguous().view(batch_size, sequence_length, embedding_dim) + + # output projection + output = self.resid_drop(self.proj(output)) + + outputs = (output, present) + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +class Block(nn.Module): + def __init__(self, config): + super().__init__() + self.ln1 = nn.LayerNorm(config.n_embd) + self.ln2 = nn.LayerNorm(config.n_embd) + self.attn = CausalSelfAttention(config) + + # MLP + self.l1 = nn.Linear(config.n_embd, 4 * config.n_embd) + self.act = nn.GELU() + self.l2 = nn.Linear(4 * config.n_embd, config.n_embd) + self.drop = nn.Dropout(config.resid_pdrop) + + def forward( + self, + hidden_states: Optional[Tuple[torch.FloatTensor]], + layer_past: Optional[Tuple[torch.Tensor]] = None, + use_cache: Optional[bool] = False, + output_attentions: Optional[bool] = False, + ): + residual = hidden_states + hidden_states = self.ln1(hidden_states) + + attn_outputs = self.attn( + hidden_states, layer_past=layer_past, use_cache=use_cache, output_attentions=output_attentions + ) + attn_output = attn_outputs[0] + outputs = attn_outputs[1:] + hidden_states = attn_output + residual + + residual = hidden_states + hidden_states = self.ln2(hidden_states) + hidden_states = self.l1(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.l2(hidden_states) + hidden_states = residual + self.drop(hidden_states) + + if use_cache: + outputs = (hidden_states,) + outputs + else: + outputs = (hidden_states,) + outputs[1:] + + return outputs + + +@add_start_docstrings( + "The bare TrajectoryTransformer Model transformer outputting raw hidden-states without any specific head on top.", + TRAJECTORY_TRANSFORMER_START_DOCSTRING, +) +class TrajectoryTransformerModel(TrajectoryTransformerPreTrainedModel): + """the full GPT language model, with a context size of block_size""" + + def __init__(self, config): + super().__init__(config) + + # input embedding stem (+1 for stop token) + self.tok_emb = nn.Embedding(config.vocab_size * config.transition_dim + 1, config.n_embd) + + self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) + self.drop = nn.Dropout(config.embd_pdrop) + # transformer + self.blocks = nn.ModuleList([Block(config) for _ in range(config.n_layer)]) + # decoder head + self.ln_f = nn.LayerNorm(config.n_embd) + self.head = EinLinear(config.transition_dim, config.n_embd, config.vocab_size + 1, bias=False) + + self.vocab_size = config.vocab_size + self.stop_token = config.vocab_size * config.transition_dim + self.block_size = config.block_size + + self.observation_dim = config.observation_dim + self.action_dim = config.action_dim + self.transition_dim = config.transition_dim + self.embedding_dim = config.n_embd + + self.action_weight = config.action_weight + self.reward_weight = config.reward_weight + self.value_weight = config.value_weight + + self.gradient_checkpointing = False + + self.post_init() + + def get_block_size(self): + return self.block_size + + def offset_tokens(self, trajectories): + _, sequence_length = trajectories.shape + + n_states = int(np.ceil(sequence_length / self.transition_dim)) + + offsets = torch.arange(self.transition_dim) * self.vocab_size + offsets = offsets.repeat(n_states).to(trajectories.device) + + offset_trajectories = trajectories + offsets[:sequence_length] + offset_trajectories[trajectories == self.vocab_size] = self.stop_token + return offset_trajectories + + def pad_to_full_observation(self, hidden_states): + batch_size, sequence_length, _ = hidden_states.shape + + n_pad = (self.transition_dim - sequence_length % self.transition_dim) % self.transition_dim + padding = torch.zeros(batch_size, n_pad, self.embedding_dim, device=hidden_states.device) + + # [ batch_size x padded_sequence_length' x embedding_dim ] + hidden_states_pad = torch.cat([hidden_states, padding], dim=1) + hidden_states_pad = hidden_states_pad.view(-1, self.transition_dim, self.embedding_dim) + + return hidden_states_pad, n_pad + + @add_start_docstrings_to_model_forward( + TRAJECTORY_TRANSFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length") + ) + @replace_return_docstrings(output_type=TrajectoryTransformerOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + trajectories: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + targets: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], TrajectoryTransformerOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import TrajectoryTransformerModel + >>> import torch + + >>> model = TrajectoryTransformerModel.from_pretrained( + ... "CarlCochet/trajectory-transformer-halfcheetah-medium-v2" + ... ) + >>> model.to(device) + >>> model.eval() + + >>> observations_dim, action_dim, batch_size = 17, 6, 256 + >>> seq_length = observations_dim + action_dim + 1 + + >>> trajectories = torch.LongTensor([np.random.permutation(self.seq_length) for _ in range(batch_size)]).to( + ... device + ... ) + >>> targets = torch.LongTensor([np.random.permutation(self.seq_length) for _ in range(batch_size)]).to(device) + + >>> outputs = model( + ... trajectories, + ... targets=targets, + ... use_cache=True, + ... output_attentions=True, + ... output_hidden_states=True, + ... return_dict=True, + ... ) + ``` + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + if past_key_values is None: + past_key_values = tuple([None] * len(self.blocks)) + + batch_size, sequence_length = trajectories.size() + + if sequence_length > self.block_size: + raise ValueError("Cannot forward, model block size is exhausted.") + + offset_trajectories = self.offset_tokens(trajectories) + # [ batch_size x sequence_length x embedding_dim ] + # forward the GPT model + token_embeddings = self.tok_emb(offset_trajectories) # each index maps to a (learnable) vector + position_embeddings = self.pos_emb[:, :sequence_length, :] # each position maps to a (learnable) vector + + hidden_states = self.drop(token_embeddings + position_embeddings) + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + presents = () if use_cache else None + all_self_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + + for i, (block, layer_past) in enumerate(zip(self.blocks, past_key_values)): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + outputs = self._gradient_checkpointing_func( + block.__call__, + hidden_states, + layer_past, + use_cache, + output_attentions, + ) + else: + outputs = block(hidden_states, layer_past, use_cache, output_attentions) + + hidden_states = outputs[0] + if use_cache is True: + presents = presents + (outputs[1],) + + if output_attentions: + all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) + + # [ batch_size x sequence_length x embedding_dim ] + hidden_state = self.ln_f(hidden_states) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + hidden_states_pad, n_pad = self.pad_to_full_observation(hidden_state) + + logits = self.head(hidden_states_pad) + logits = logits.reshape(batch_size, sequence_length + n_pad, self.vocab_size + 1) + logits = logits[:, :sequence_length] + + # if we are given some desired targets also calculate the loss + if targets is not None: + loss = F.cross_entropy(logits.reshape(-1, logits.size(-1)), targets.view(-1), reduction="none") + if self.action_weight != 1 or self.reward_weight != 1 or self.value_weight != 1: + # make weights + n_states = int(np.ceil(sequence_length / self.transition_dim)) + weights = torch.cat( + [ + torch.ones(self.observation_dim, device=trajectories.device), + torch.ones(self.action_dim, device=trajectories.device) * self.action_weight, + torch.ones(1, device=trajectories.device) * self.reward_weight, + torch.ones(1, device=trajectories.device) * self.value_weight, + ] + ) + weights = weights.repeat(n_states) + weights = weights[1:].repeat(batch_size, 1) + loss = loss * weights.view(-1) + loss = (loss * attention_mask.view(-1)).mean() + else: + loss = None + + if not return_dict: + return tuple(v for v in [loss, logits, presents, all_hidden_states, all_self_attentions] if v is not None) + + return TrajectoryTransformerOutput( + loss=loss, + logits=logits, + past_key_values=presents, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..f3674e19665ca74e1e6ee3ac92ca812e54580007 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__init__.py @@ -0,0 +1,97 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available + + +_import_structure = { + "configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"], + "tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_transfo_xl"] = [ + "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", + "AdaptiveEmbedding", + "TransfoXLForSequenceClassification", + "TransfoXLLMHeadModel", + "TransfoXLModel", + "TransfoXLPreTrainedModel", + "load_tf_weights_in_transfo_xl", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_transfo_xl"] = [ + "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFAdaptiveEmbedding", + "TFTransfoXLForSequenceClassification", + "TFTransfoXLLMHeadModel", + "TFTransfoXLMainLayer", + "TFTransfoXLModel", + "TFTransfoXLPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig + from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_transfo_xl import ( + TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, + AdaptiveEmbedding, + TransfoXLForSequenceClassification, + TransfoXLLMHeadModel, + TransfoXLModel, + TransfoXLPreTrainedModel, + load_tf_weights_in_transfo_xl, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_transfo_xl import ( + TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, + TFAdaptiveEmbedding, + TFTransfoXLForSequenceClassification, + TFTransfoXLLMHeadModel, + TFTransfoXLMainLayer, + TFTransfoXLModel, + TFTransfoXLPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1392cbf1b7a19ee9c0626413edffab9266af3a69 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/configuration_transfo_xl.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/configuration_transfo_xl.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ef1e758e0698cff477e65eb29d3f58ba7241101b Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/configuration_transfo_xl.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/convert_transfo_xl_original_tf_checkpoint_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/convert_transfo_xl_original_tf_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..679c223e3bd726f2baba7fa21b88a94179d3e6b5 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/convert_transfo_xl_original_tf_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_tf_transfo_xl.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_tf_transfo_xl.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a00406085a4607e1d8af9dee3bb289d3c735f702 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_tf_transfo_xl.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_tf_transfo_xl_utilities.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_tf_transfo_xl_utilities.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..95d1e7e9b10544851f669992fd37dee2c6089f94 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_tf_transfo_xl_utilities.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_transfo_xl.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_transfo_xl.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fc8f6b6a52ed42af3264d68284aed70f8ff53ecc Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_transfo_xl.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_transfo_xl_utilities.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_transfo_xl_utilities.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..df30fb4f64fdb351d66bcbf21b1dc4803e454ac6 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/modeling_transfo_xl_utilities.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/tokenization_transfo_xl.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/tokenization_transfo_xl.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b578e0e9834a9da59075bffbf3cf1f0408a42568 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/__pycache__/tokenization_transfo_xl.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/configuration_transfo_xl.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/configuration_transfo_xl.py new file mode 100644 index 0000000000000000000000000000000000000000..f7d5f2f87fb1ade361a6867f5505789d934e6ba4 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/configuration_transfo_xl.py @@ -0,0 +1,190 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Transformer XL configuration""" + +from ....configuration_utils import PretrainedConfig +from ....utils import logging + + +logger = logging.get_logger(__name__) + +TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "transfo-xl/transfo-xl-wt103": "https://huggingface.co/transfo-xl/transfo-xl-wt103/resolve/main/config.json", +} + + +class TransfoXLConfig(PretrainedConfig): + """ + This is the configuration class to store the configuration of a [`TransfoXLModel`] or a [`TFTransfoXLModel`]. It is + used to instantiate a Transformer-XL model according to the specified arguments, defining the model architecture. + Instantiating a configuration with the defaults will yield a similar configuration to that of the TransfoXL + [transfo-xl/transfo-xl-wt103](https://huggingface.co/transfo-xl/transfo-xl-wt103) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + vocab_size (`int`, *optional*, defaults to 267735): + Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`TransfoXLModel`] or [`TFTransfoXLModel`]. + cutoffs (`List[int]`, *optional*, defaults to `[20000, 40000, 200000]`): + Cutoffs for the adaptive softmax. + d_model (`int`, *optional*, defaults to 1024): + Dimensionality of the model's hidden states. + d_embed (`int`, *optional*, defaults to 1024): + Dimensionality of the embeddings + n_head (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + d_head (`int`, *optional*, defaults to 64): + Dimensionality of the model's heads. + d_inner (`int`, *optional*, defaults to 4096): + Inner dimension in FF + div_val (`int`, *optional*, defaults to 4): + Divident value for adapative input and softmax + pre_lnorm (`boolean`, *optional*, defaults to `False`): + Whether or not to apply LayerNorm to the input instead of the output in the blocks. + n_layer (`int`, *optional*, defaults to 18): + Number of hidden layers in the Transformer encoder. + mem_len (`int`, *optional*, defaults to 1600): + Length of the retained previous heads. + clamp_len (`int`, *optional*, defaults to 1000): + Use the same pos embeddings after clamp_len. + same_length (`boolean`, *optional*, defaults to `True`): + Whether or not to use the same attn length for all tokens + proj_share_all_but_first (`boolean`, *optional*, defaults to `True`): + True to share all but first projs, False not to share. + attn_type (`int`, *optional*, defaults to 0): + Attention type. 0 for Transformer-XL, 1 for Shaw et al, 2 for Vaswani et al, 3 for Al Rfou et al. + sample_softmax (`int`, *optional*, defaults to -1): + Number of samples in the sampled softmax. + adaptive (`boolean`, *optional*, defaults to `True`): + Whether or not to use adaptive softmax. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + dropatt (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + untie_r (`boolean`, *optional*, defaults to `True`): + Whether ot not to untie relative position biases. + init (`str`, *optional*, defaults to `"normal"`): + Parameter initializer to use. + init_range (`float`, *optional*, defaults to 0.01): + Parameters initialized by U(-init_range, init_range). + proj_init_std (`float`, *optional*, defaults to 0.01): + Parameters initialized by N(0, init_std) + init_std (`float`, *optional*, defaults to 0.02): + Parameters initialized by N(0, init_std) + layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): + The epsilon to use in the layer normalization layers + eos_token_id (`int`, *optional*, defaults to 0): + End of stream token id. + + Examples: + + ```python + >>> from transformers import TransfoXLConfig, TransfoXLModel + + >>> # Initializing a Transformer XL configuration + >>> configuration = TransfoXLConfig() + + >>> # Initializing a model (with random weights) from the configuration + >>> model = TransfoXLModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "transfo-xl" + keys_to_ignore_at_inference = ["mems"] + attribute_map = { + "n_token": "vocab_size", + "hidden_size": "d_model", + "num_attention_heads": "n_head", + "num_hidden_layers": "n_layer", + } + + def __init__( + self, + vocab_size=267735, + cutoffs=[20000, 40000, 200000], + d_model=1024, + d_embed=1024, + n_head=16, + d_head=64, + d_inner=4096, + div_val=4, + pre_lnorm=False, + n_layer=18, + mem_len=1600, + clamp_len=1000, + same_length=True, + proj_share_all_but_first=True, + attn_type=0, + sample_softmax=-1, + adaptive=True, + dropout=0.1, + dropatt=0.0, + untie_r=True, + init="normal", + init_range=0.01, + proj_init_std=0.01, + init_std=0.02, + layer_norm_epsilon=1e-5, + eos_token_id=0, + **kwargs, + ): + self.vocab_size = vocab_size + self.cutoffs = [] + self.cutoffs.extend(cutoffs) + if proj_share_all_but_first: + self.tie_projs = [False] + [True] * len(self.cutoffs) + else: + self.tie_projs = [False] + [False] * len(self.cutoffs) + self.d_model = d_model + self.d_embed = d_embed + self.d_head = d_head + self.d_inner = d_inner + self.div_val = div_val + self.pre_lnorm = pre_lnorm + self.n_layer = n_layer + self.n_head = n_head + self.mem_len = mem_len + self.same_length = same_length + self.attn_type = attn_type + self.clamp_len = clamp_len + self.sample_softmax = sample_softmax + self.adaptive = adaptive + self.dropout = dropout + self.dropatt = dropatt + self.untie_r = untie_r + self.init = init + self.init_range = init_range + self.proj_init_std = proj_init_std + self.init_std = init_std + self.layer_norm_epsilon = layer_norm_epsilon + super().__init__(eos_token_id=eos_token_id, **kwargs) + + @property + def max_position_embeddings(self): + # Message copied from Transformer-XL documentation + logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") + return -1 + + @max_position_embeddings.setter + def max_position_embeddings(self, value): + # Message copied from Transformer-XL documentation + raise NotImplementedError( + f"The model {self.model_type} is one of the few models that has no sequence length limit." + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/convert_transfo_xl_original_tf_checkpoint_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/convert_transfo_xl_original_tf_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..d2693ac333b84b08769eb15a13a26dcf1a547267 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/convert_transfo_xl_original_tf_checkpoint_to_pytorch.py @@ -0,0 +1,121 @@ +# coding=utf-8 +# Copyright 2018 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert Transformer XL checkpoint and datasets.""" + + +import argparse +import os +import pickle +import sys + +import torch + +from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl +from transformers.models.deprecated.transfo_xl import tokenization_transfo_xl as data_utils +from transformers.models.deprecated.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES +from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging + + +logging.set_verbosity_info() + +# We do this to be able to load python 2 datasets pickles +# See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 +data_utils.Vocab = data_utils.TransfoXLTokenizer +data_utils.Corpus = data_utils.TransfoXLCorpus +sys.modules["data_utils"] = data_utils +sys.modules["vocabulary"] = data_utils + + +def convert_transfo_xl_checkpoint_to_pytorch( + tf_checkpoint_path, transfo_xl_config_file, pytorch_dump_folder_path, transfo_xl_dataset_file +): + if transfo_xl_dataset_file: + # Convert a pre-processed corpus (see original TensorFlow repo) + with open(transfo_xl_dataset_file, "rb") as fp: + corpus = pickle.load(fp, encoding="latin1") + # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) + pytorch_vocab_dump_path = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] + print(f"Save vocabulary to {pytorch_vocab_dump_path}") + corpus_vocab_dict = corpus.vocab.__dict__ + torch.save(corpus_vocab_dict, pytorch_vocab_dump_path) + + corpus_dict_no_vocab = corpus.__dict__ + corpus_dict_no_vocab.pop("vocab", None) + pytorch_dataset_dump_path = pytorch_dump_folder_path + "/" + CORPUS_NAME + print(f"Save dataset to {pytorch_dataset_dump_path}") + torch.save(corpus_dict_no_vocab, pytorch_dataset_dump_path) + + if tf_checkpoint_path: + # Convert a pre-trained TensorFlow model + config_path = os.path.abspath(transfo_xl_config_file) + tf_path = os.path.abspath(tf_checkpoint_path) + + print(f"Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.") + # Initialise PyTorch model + if transfo_xl_config_file == "": + config = TransfoXLConfig() + else: + config = TransfoXLConfig.from_json_file(transfo_xl_config_file) + print(f"Building PyTorch model from configuration: {config}") + model = TransfoXLLMHeadModel(config) + + model = load_tf_weights_in_transfo_xl(model, config, tf_path) + # Save pytorch-model + pytorch_weights_dump_path = os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME) + pytorch_config_dump_path = os.path.join(pytorch_dump_folder_path, CONFIG_NAME) + print(f"Save PyTorch model to {os.path.abspath(pytorch_weights_dump_path)}") + torch.save(model.state_dict(), pytorch_weights_dump_path) + print(f"Save configuration file to {os.path.abspath(pytorch_config_dump_path)}") + with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: + f.write(config.to_json_string()) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument( + "--pytorch_dump_folder_path", + default=None, + type=str, + required=True, + help="Path to the folder to store the PyTorch model or dataset/vocab.", + ) + parser.add_argument( + "--tf_checkpoint_path", + default="", + type=str, + help="An optional path to a TensorFlow checkpoint path to be converted.", + ) + parser.add_argument( + "--transfo_xl_config_file", + default="", + type=str, + help=( + "An optional config json file corresponding to the pre-trained BERT model. \n" + "This specifies the model architecture." + ), + ) + parser.add_argument( + "--transfo_xl_dataset_file", + default="", + type=str, + help="An optional dataset file to be converted in a vocabulary.", + ) + args = parser.parse_args() + convert_transfo_xl_checkpoint_to_pytorch( + args.tf_checkpoint_path, + args.transfo_xl_config_file, + args.pytorch_dump_folder_path, + args.transfo_xl_dataset_file, + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py new file mode 100644 index 0000000000000000000000000000000000000000..ab2725df0c4dcf5563e4379d79af426a0e7e99ed --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl.py @@ -0,0 +1,1124 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" + TF 2.0 Transformer XL model. +""" + +from __future__ import annotations + +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ....modeling_tf_utils import ( + TFModelInputType, + TFPreTrainedModel, + TFSequenceClassificationLoss, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ....tf_utils import shape_list, stable_softmax +from ....utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, +) +from .configuration_transfo_xl import TransfoXLConfig +from .modeling_tf_transfo_xl_utilities import TFAdaptiveSoftmaxMask + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "transfo-xl/transfo-xl-wt103" +_CONFIG_FOR_DOC = "TransfoXLConfig" + +TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "transfo-xl/transfo-xl-wt103", + # See all Transformer XL models at https://huggingface.co/models?filter=transfo-xl +] + + +class TFPositionalEmbedding(keras.layers.Layer): + def __init__(self, demb, **kwargs): + super().__init__(**kwargs) + + self.inv_freq = 1 / (10000 ** (tf.range(0, demb, 2.0) / demb)) + + def call(self, pos_seq, bsz=None): + self.inv_freq = tf.cast(self.inv_freq, dtype=pos_seq.dtype) + sinusoid_inp = tf.einsum("i,j->ij", pos_seq, self.inv_freq) + pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1) + + if bsz is not None: + return tf.tile(pos_emb[:, None, :], [1, bsz, 1]) + else: + return pos_emb[:, None, :] + + +class TFPositionwiseFF(keras.layers.Layer): + def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, layer_norm_epsilon=1e-5, init_std=0.02, **kwargs): + super().__init__(**kwargs) + + self.d_model = d_model + self.d_inner = d_inner + self.dropout = dropout + + self.layer_1 = keras.layers.Dense( + d_inner, kernel_initializer=get_initializer(init_std), activation=tf.nn.relu, name="CoreNet_._0" + ) + self.drop_1 = keras.layers.Dropout(dropout) + self.layer_2 = keras.layers.Dense(d_model, kernel_initializer=get_initializer(init_std), name="CoreNet_._3") + self.drop_2 = keras.layers.Dropout(dropout) + + self.layer_norm = keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layer_norm") + + self.pre_lnorm = pre_lnorm + + def call(self, inp, training=False): + if self.pre_lnorm: + # layer normalization + positionwise feed-forward + core_out = self.layer_norm(inp) + core_out = self.layer_1(core_out) + core_out = self.drop_1(core_out, training=training) + core_out = self.layer_2(core_out) + core_out = self.drop_2(core_out, training=training) + + # residual connection + output = core_out + inp + else: + # positionwise feed-forward + core_out = self.layer_1(inp) + core_out = self.drop_1(core_out, training=training) + core_out = self.layer_2(core_out) + core_out = self.drop_2(core_out, training=training) + + # residual connection + layer normalization + output = self.layer_norm(inp + core_out) + + return output + + +class TFRelPartialLearnableMultiHeadAttn(keras.layers.Layer): + def __init__( + self, + n_head, + d_model, + d_head, + dropout, + dropatt=0.0, + pre_lnorm=False, + r_r_bias=None, + r_w_bias=None, + layer_norm_epsilon=1e-5, + init_std=0.02, + output_attentions=False, + **kwargs, + ): + super().__init__(**kwargs) + + self.n_head = n_head + self.d_model = d_model + self.d_head = d_head + self.dropout = dropout + self.output_attentions = output_attentions + + self.qkv_net = keras.layers.Dense( + 3 * n_head * d_head, kernel_initializer=get_initializer(init_std), use_bias=False, name="qkv_net" + ) + + self.drop = keras.layers.Dropout(dropout) + self.dropatt = keras.layers.Dropout(dropatt) + self.o_net = keras.layers.Dense( + d_model, kernel_initializer=get_initializer(init_std), use_bias=False, name="o_net" + ) + + self.layer_norm = keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layer_norm") + + self.scale = 1 / (d_head**0.5) + + self.pre_lnorm = pre_lnorm + + if r_r_bias is not None and r_w_bias is not None: # Biases are shared + self.r_r_bias = r_r_bias + self.r_w_bias = r_w_bias + else: + self.r_r_bias = None + self.r_w_bias = None + + self.r_net = keras.layers.Dense( + self.n_head * self.d_head, kernel_initializer=get_initializer(init_std), use_bias=False, name="r_net" + ) + + def build(self, input_shape): + if self.r_r_bias is None or self.r_w_bias is None: # Biases are not shared + self.r_r_bias = self.add_weight( + shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias" + ) + self.r_w_bias = self.add_weight( + shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias" + ) + super().build(input_shape) + + def _rel_shift(self, x): + x_size = shape_list(x) + + x = tf.pad(x, [[0, 0], [1, 0], [0, 0], [0, 0]]) + x = tf.reshape(x, [x_size[1] + 1, x_size[0], x_size[2], x_size[3]]) + x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1]) + x = tf.reshape(x, x_size) + + return x + + def call(self, w, r, attn_mask, mems, head_mask, output_attentions, training=False): + qlen, rlen, bsz = shape_list(w)[0], shape_list(r)[0], shape_list(w)[1] + + if mems is not None: + mems = tf.cast(mems, dtype=w.dtype) + cat = tf.concat([mems, w], 0) + if self.pre_lnorm: + w_heads = self.qkv_net(self.layer_norm(cat)) + else: + w_heads = self.qkv_net(cat) + r_head_k = self.r_net(r) + + w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, axis=-1) + w_head_q = w_head_q[-qlen:] + else: + if self.pre_lnorm: + w_heads = self.qkv_net(self.layer_norm(w)) + else: + w_heads = self.qkv_net(w) + r_head_k = self.r_net(r) + + w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, axis=-1) + + klen = shape_list(w_head_k)[0] + + w_head_q = tf.reshape(w_head_q, (qlen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head + w_head_k = tf.reshape(w_head_k, (klen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head + w_head_v = tf.reshape(w_head_v, (klen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head + + r_head_k = tf.reshape(r_head_k, (rlen, self.n_head, self.d_head)) # qlen x n_head x d_head + + # compute attention score + rw_head_q = w_head_q + self.r_w_bias # qlen x bsz x n_head x d_head + AC = tf.einsum("ibnd,jbnd->ijbn", rw_head_q, w_head_k) # qlen x klen x bsz x n_head + + rr_head_q = w_head_q + self.r_r_bias + BD = tf.einsum("ibnd,jnd->ijbn", rr_head_q, r_head_k) # qlen x klen x bsz x n_head + BD = self._rel_shift(BD) + + # [qlen x klen x bsz x n_head] + attn_score = AC + BD + attn_score = attn_score * self.scale + + # compute attention probability + if attn_mask is not None: + attn_mask_t = attn_mask[:, :, None, None] + attn_mask_t = tf.cast(attn_mask_t, dtype=attn_score.dtype) + attn_score = attn_score * (1.0 - attn_mask_t) - 1e30 * attn_mask_t + + # [qlen x klen x bsz x n_head] + attn_prob = stable_softmax(attn_score, axis=1) + attn_prob = self.dropatt(attn_prob, training=training) + + # Mask heads if we want to + if head_mask is not None: + attn_prob = attn_prob * head_mask + + # compute attention vector + attn_vec = tf.einsum("ijbn,jbnd->ibnd", attn_prob, w_head_v) + + # [qlen x bsz x n_head x d_head] + attn_vec_sizes = shape_list(attn_vec) + attn_vec = tf.reshape(attn_vec, (attn_vec_sizes[0], attn_vec_sizes[1], self.n_head * self.d_head)) + + # linear projection + attn_out = self.o_net(attn_vec) + attn_out = self.drop(attn_out, training=training) + + if self.pre_lnorm: + # residual connection + outputs = [w + attn_out] + else: + # residual connection + layer normalization + outputs = [self.layer_norm(w + attn_out)] + + if output_attentions: + outputs.append(attn_prob) + + return outputs + + +class TFRelPartialLearnableDecoderLayer(keras.layers.Layer): + def __init__( + self, + n_head, + d_model, + d_head, + d_inner, + dropout, + dropatt=0.0, + pre_lnorm=False, + r_w_bias=None, + r_r_bias=None, + layer_norm_epsilon=1e-5, + init_std=0.02, + output_attentions=False, + **kwargs, + ): + super().__init__(**kwargs) + + self.dec_attn = TFRelPartialLearnableMultiHeadAttn( + n_head, + d_model, + d_head, + dropout, + dropatt=dropatt, + pre_lnorm=pre_lnorm, + r_w_bias=r_w_bias, + r_r_bias=r_r_bias, + init_std=init_std, + layer_norm_epsilon=layer_norm_epsilon, + output_attentions=output_attentions, + name="dec_attn", + ) + self.pos_ff = TFPositionwiseFF( + d_model, + d_inner, + dropout, + pre_lnorm=pre_lnorm, + init_std=init_std, + layer_norm_epsilon=layer_norm_epsilon, + name="pos_ff", + ) + + def call(self, dec_inp, r, dec_attn_mask, mems, head_mask, output_attentions, training=False): + attn_outputs = self.dec_attn(dec_inp, r, dec_attn_mask, mems, head_mask, output_attentions, training=training) + ff_output = self.pos_ff(attn_outputs[0], training=training) + + outputs = [ff_output] + attn_outputs[1:] + + return outputs + + +class TFTransfoEmbeddings(keras.layers.Layer): + def __init__(self, vocab_size, emb_size, init_std, **kwargs): + super().__init__(**kwargs) + + self.vocab_size = vocab_size + self.emb_size = emb_size + self.init_std = init_std + + def build(self, input_shape): + self.weight = self.add_weight( + shape=(self.vocab_size, self.emb_size), + initializer=get_initializer(self.init_std), + name="embeddings", + ) + + super().build(input_shape) + + def call(self, inputs): + return tf.gather(self.weight, inputs) + + +class TFAdaptiveEmbedding(keras.layers.Layer): + def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, init_std=0.02, sample_softmax=False, **kwargs): + super().__init__(**kwargs) + + self.n_token = n_token + self.d_embed = d_embed + self.init_std = init_std + + self.cutoffs = cutoffs + [n_token] + self.div_val = div_val + self.d_proj = d_proj + + self.emb_scale = d_proj**0.5 + + self.cutoff_ends = [0] + self.cutoffs + + self.emb_layers = [] + self.emb_projs = [] + + if div_val == 1: + raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint + else: + for i in range(len(self.cutoffs)): + l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] + d_emb_i = d_embed // (div_val**i) + self.emb_layers.append( + TFTransfoEmbeddings( + r_idx - l_idx, + d_emb_i, + init_std, + name=f"emb_layers_._{i}", + ) + ) + + def build(self, input_shape): + for i in range(len(self.cutoffs)): + d_emb_i = self.d_embed // (self.div_val**i) + self.emb_projs.append( + self.add_weight( + shape=(d_emb_i, self.d_proj), + initializer=get_initializer(self.init_std), + trainable=True, + name=f"emb_projs_._{i}", + ) + ) + + super().build(input_shape) + + def call(self, inp): + if self.div_val == 1: + raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint + else: + inp_flat = tf.reshape(inp, (-1,)) + emb_flat = tf.zeros([shape_list(inp_flat)[0], self.d_proj]) + for i in range(len(self.cutoffs)): + l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] + + mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx) + + inp_i = tf.boolean_mask(inp_flat, mask_i) - l_idx + emb_i = self.emb_layers[i](inp_i) + emb_i = tf.einsum("id,de->ie", emb_i, self.emb_projs[i]) + + mask_idx = tf.where(mask_i) + scatter = tf.scatter_nd(mask_idx, emb_i, shape_list(emb_flat)) + emb_flat = tf.cast(emb_flat, dtype=scatter.dtype) + emb_flat += scatter + + embed_shape = shape_list(inp) + [self.d_proj] + embed = tf.reshape(emb_flat, embed_shape) + + embed *= self.emb_scale + + return embed + + +@keras_serializable +class TFTransfoXLMainLayer(keras.layers.Layer): + config_class = TransfoXLConfig + + def __init__(self, config, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.output_hidden_states = config.output_hidden_states + self.output_attentions = config.output_attentions + self.return_dict = config.use_return_dict + + self.n_token = config.vocab_size + + self.d_embed = config.d_embed + self.d_model = config.d_model + self.n_head = config.n_head + self.d_head = config.d_head + self.untie_r = config.untie_r + + self.word_emb = TFAdaptiveEmbedding( + config.vocab_size, + config.d_embed, + config.d_model, + config.cutoffs, + div_val=config.div_val, + init_std=config.init_std, + name="word_emb", + ) + + self.drop = keras.layers.Dropout(config.dropout) + + self.n_layer = config.n_layer + self.mem_len = config.mem_len + self.attn_type = config.attn_type + + self.layers = [] + if config.attn_type == 0: # the default attention + for i in range(config.n_layer): + self.layers.append( + TFRelPartialLearnableDecoderLayer( + config.n_head, + config.d_model, + config.d_head, + config.d_inner, + config.dropout, + dropatt=config.dropatt, + pre_lnorm=config.pre_lnorm, + r_w_bias=None if self.untie_r else self.r_w_bias, + r_r_bias=None if self.untie_r else self.r_r_bias, + layer_norm_epsilon=config.layer_norm_epsilon, + init_std=config.init_std, + output_attentions=self.output_attentions, + name=f"layers_._{i}", + ) + ) + else: # learnable embeddings and absolute embeddings + raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint + + self.same_length = config.same_length + self.clamp_len = config.clamp_len + + if self.attn_type == 0: # default attention + self.pos_emb = TFPositionalEmbedding(self.d_model, name="pos_emb") + else: # learnable embeddings and absolute embeddings + raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint + + def build(self, input_shape): + if not self.untie_r: + self.r_w_bias = self.add_weight( + shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias" + ) + self.r_r_bias = self.add_weight( + shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias" + ) + super().build(input_shape) + + def get_input_embeddings(self): + return self.word_emb + + def set_input_embeddings(self, value): + raise NotImplementedError + + def backward_compatible(self): + self.sample_softmax = -1 + + def reset_memory_length(self, mem_len): + self.mem_len = mem_len + + def _prune_heads(self, heads): + raise NotImplementedError + + def init_mems(self, bsz): + if self.mem_len > 0: + mems = [] + for i in range(self.n_layer): + empty = tf.zeros([self.mem_len, bsz, self.d_model]) + mems.append(empty) + + return mems + else: + return None + + def _update_mems(self, hids, mems, mlen, qlen): + # does not deal with None + if mems is None: + return None + + # mems is not None + assert len(hids) == len(mems), "len(hids) != len(mems)" + + # There are `mlen + qlen` steps that can be cached into mems + new_mems = [] + end_idx = mlen + tf.math.maximum(0, qlen) + beg_idx = tf.math.maximum(0, end_idx - tf.convert_to_tensor(self.mem_len)) + for i in range(len(hids)): + mems[i] = tf.cast(mems[i], dtype=hids[i].dtype) + cat = tf.concat([mems[i], hids[i]], axis=0) + tf.stop_gradient(cat) + new_mems.append(cat[beg_idx:end_idx]) + + return new_mems + + @unpack_inputs + def call( + self, + input_ids: TFModelInputType | None = None, + mems: List[tf.Tensor] | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: bool = False, + ): + # the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library + # so we transpose here from shape [bsz, len] to shape [len, bsz] + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_ids = tf.transpose(input_ids, perm=(1, 0)) + qlen, bsz = shape_list(input_ids) + elif inputs_embeds is not None: + inputs_embeds = tf.transpose(inputs_embeds, perm=(1, 0, 2)) + qlen, bsz = shape_list(inputs_embeds)[:2] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if mems is None: + mems = self.init_mems(bsz) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer) + # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head] + if head_mask is not None: + raise NotImplementedError + else: + head_mask = [None] * self.n_layer + + if inputs_embeds is not None: + word_emb = inputs_embeds + else: + word_emb = self.word_emb(input_ids) + + mlen = shape_list(mems[0])[0] if mems is not None else 0 + klen = mlen + qlen + + # Compute decoder attention mask + all_ones = tf.ones([qlen, klen], dtype=tf.int32) + upper_mask = 1 - tf.linalg.band_part(tf.ones([qlen, klen], dtype=tf.int32), -1, mlen) + if self.same_length: + mask_len = klen - self.mem_len + mask_shift_len = qlen - tf.nn.relu(mask_len) # Lazy clamping of negatives to zero + + # Use an indicator variable instead of a conditional to keep the compiler happy + lower_mask = tf.linalg.band_part(all_ones, -1, 0) - ( + tf.linalg.band_part(all_ones, mask_shift_len - 1, 0) * tf.cast(mask_shift_len != 0, tf.int32) + ) + dec_attn_mask = upper_mask + lower_mask + else: + dec_attn_mask = upper_mask + + hids = [] + attentions = [] if output_attentions else None + if self.attn_type == 0: # default + pos_seq = tf.range(klen - 1, -1, -1.0) + if self.clamp_len > 0: + pos_seq = tf.minimum(pos_seq, self.clamp_len) + pos_emb = self.pos_emb(pos_seq) + + core_out = self.drop(word_emb, training=training) + pos_emb = self.drop(pos_emb, training=training) + + for i, layer in enumerate(self.layers): + hids.append(core_out) + mems_i = None if mems is None else mems[i] + layer_outputs = layer( + core_out, + pos_emb, + dec_attn_mask, + mems_i, + head_mask[i], + output_attentions, + training=training, + ) + core_out = layer_outputs[0] + if output_attentions: + attentions.append(layer_outputs[1]) + else: # learnable embeddings and absolute embeddings + raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint + + core_out = self.drop(core_out, training=training) + + new_mems = self._update_mems(hids, mems, mlen, qlen) + + # We transpose back here to shape [bsz, len, hidden_dim] + core_out = tf.transpose(core_out, perm=(1, 0, 2)) + + if output_hidden_states: + # Transpose to library standard shape [bsz, len, hidden_dim] and add last layer + hids = tuple(tf.transpose(t, perm=(1, 0, 2)) for t in hids) + hids = hids + (core_out,) + else: + hids = None + if output_attentions: + # Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len] + attentions = tuple(tf.transpose(t, perm=(2, 3, 0, 1)) for t in attentions) + + if not return_dict: + return tuple(v for v in [core_out, new_mems, hids, attentions] if v is not None) + + return TFTransfoXLModelOutput( + last_hidden_state=core_out, + mems=new_mems, + hidden_states=hids, + attentions=attentions, + ) + + +class TFTransfoXLPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = TransfoXLConfig + base_model_prefix = "transformer" + + +@dataclass +class TFTransfoXLModelOutput(ModelOutput): + """ + Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). + + Args: + last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + mems (`List[tf.Tensor]` of length `config.n_layers`): + Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` + input) to speed up sequential decoding. The token ids which have their past given to this model should not + be passed as input ids as they have already been computed. + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + last_hidden_state: tf.Tensor = None + mems: List[tf.Tensor] = None + hidden_states: Tuple[tf.Tensor] | None = None + attentions: Tuple[tf.Tensor] | None = None + + +@dataclass +class TFTransfoXLLMHeadModelOutput(ModelOutput): + """ + Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). + + Args: + losses (`tf.Tensor` of shape *(batch_size, sequence_length-1)*, *optional*, returned when `labels` is provided): + Language modeling losses (not reduced). + prediction_scores (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token after SoftMax). + mems (`List[tf.Tensor]` of length `config.n_layers`): + Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` + input) to speed up sequential decoding. The token ids which have their past given to this model should not + be passed as input ids as they have already been computed. + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + prediction_scores: tf.Tensor = None + mems: List[tf.Tensor] = None + hidden_states: Tuple[tf.Tensor] | None = None + attentions: Tuple[tf.Tensor] | None = None + + +@dataclass +class TFTransfoXLSequenceClassifierOutputWithPast(ModelOutput): + """ + Base class for outputs of sentence classification models. + + Args: + loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Classification (or regression if config.num_labels==1) loss. + logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): + Classification (or regression if config.num_labels==1) scores (before SoftMax). + mems (`List[tf.Tensor]` of length `config.n_layers`): + Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` + input) to speed up sequential decoding. The token ids which have their past given to this model should not + be passed as input ids as they have already been computed. + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: tf.Tensor | None = None + logits: tf.Tensor = None + mems: List[tf.Tensor] = None + hidden_states: Tuple[tf.Tensor] | None = None + attentions: Tuple[tf.Tensor] | None = None + + +TRANSFO_XL_START_DOCSTRING = r""" + + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Parameters: + config ([`TransfoXLConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +TRANSFO_XL_INPUTS_DOCSTRING = r""" + Args: + input_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and + [`PreTrainedTokenizer.encode`] for details. + + [What are input IDs?](../glossary#input-ids) + mems (`List[tf.Tensor]` of length `config.n_layers`): + Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see + `mems` output below). Can be used to speed up sequential decoding. The token ids which have their mems + given to this model should not be passed as `input_ids` as they have already been computed. + head_mask (`tf.Tensor` or `Numpy array` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + inputs_embeds (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@add_start_docstrings( + "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", + TRANSFO_XL_START_DOCSTRING, +) +class TFTransfoXLModel(TFTransfoXLPreTrainedModel): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.transformer = TFTransfoXLMainLayer(config, name="transformer") + + @unpack_inputs + @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFTransfoXLModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + mems: List[tf.Tensor] | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: bool | None = None, + output_hidden_states: bool | None = None, + return_dict: bool | None = None, + training: bool = False, + ) -> TFTransfoXLModelOutput | Tuple[tf.Tensor]: + outputs = self.transformer( + input_ids=input_ids, + mems=mems, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + +@add_start_docstrings( + """ + The Transformer-XL Model with a language modeling head on top (adaptive softmax with weights tied to the adaptive + input embeddings) + """, + TRANSFO_XL_START_DOCSTRING, +) +class TFTransfoXLLMHeadModel(TFTransfoXLPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.transformer = TFTransfoXLMainLayer(config, name="transformer") + self.sample_softmax = config.sample_softmax + assert self.sample_softmax <= 0, ( + "Sampling from the softmax is not implemented yet. Please look at issue: #3310:" + " https://github.com/huggingface/transformers/issues/3310" + ) + + self.crit = TFAdaptiveSoftmaxMask( + config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val, name="crit" + ) + + def _resize_token_embeddings(self, new_num_tokens): + raise NotImplementedError() + + def get_output_embeddings(self): + """Double-check if you are using adaptive softmax.""" + if len(self.crit.out_layers) > 0: + return self.crit.out_layers[-1] + return None + + def reset_memory_length(self, mem_len): + self.transformer.reset_memory_length(mem_len) + + def init_mems(self, bsz): + return self.transformer.init_mems(bsz) + + @unpack_inputs + @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFTransfoXLLMHeadModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + mems: List[tf.Tensor] | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: bool | None = None, + output_hidden_states: bool | None = None, + return_dict: bool | None = None, + labels: np.ndarray | tf.Tensor | None = None, + training: bool = False, + ) -> TFTransfoXLLMHeadModelOutput | Tuple[tf.Tensor]: + if input_ids is not None: + bsz, tgt_len = shape_list(input_ids)[:2] + else: + bsz, tgt_len = shape_list(inputs_embeds)[:2] + + transformer_outputs = self.transformer( + input_ids, + mems, + head_mask, + inputs_embeds, + output_attentions, + output_hidden_states, + return_dict, + training=training, + ) + + last_hidden = transformer_outputs[0] + pred_hid = last_hidden[:, -tgt_len:] + + softmax_output = self.crit(pred_hid, labels, training=training) + prediction_scores = softmax_output if labels is None else () + + if not return_dict: + return (prediction_scores,) + transformer_outputs[1:] + + return TFTransfoXLLMHeadModelOutput( + prediction_scores=prediction_scores, + mems=transformer_outputs.mems, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **model_kwargs): + inputs = {} + + # if past is defined in model kwargs then use it for faster decoding + if past_key_values: + input_ids = tf.expand_dims(input_ids[:, -1], axis=-1) + else: + input_ids = input_ids + + return inputs + + # Adapted from the torch tie_weights function + def tf_to_pt_weight_rename(self, tf_weight): + if self.config.tie_word_embeddings and "crit.out_layers" in tf_weight: + return tf_weight, tf_weight.replace("crit.out_layers", "transformer.word_emb.emb_layers") + elif self.config.tie_projs and "crit.out_projs" in tf_weight: + for i, tie_proj in enumerate(self.config.tie_projs): + if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed: + # self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0] + return tf_weight, tf_weight.replace(f"crit.out_projs.{i}", "transformer.word_emb.emb_projs.0") + elif tie_proj and self.config.div_val != 1: + # self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i] + return tf_weight, tf_weight.replace("crit.out_projs", "transformer.word_emb.emb_projs") + else: + return (tf_weight,) + + +@add_start_docstrings( + """ + The Transfo XL Model transformer with a sequence classification head on top (linear layer). + + [`TFTransfoXLForSequenceClassification`] uses the last token in order to do the classification, as other causal + models (e.g. GPT-1,GPT-2) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + TRANSFO_XL_START_DOCSTRING, +) +class TFTransfoXLForSequenceClassification(TFTransfoXLPreTrainedModel, TFSequenceClassificationLoss): + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + self.score = keras.layers.Dense( + config.num_labels, + kernel_initializer=get_initializer(config.init_range), + name="score", + use_bias=False, + ) + self.transformer = TFTransfoXLMainLayer(config, name="transformer") + + def get_output_embeddings(self): + # Remove after transformers v4.32. Fix this model's `test_model_common_attributes` test too. + logger.warning( + "Sequence classification models do not have output embeddings. `.get_output_embeddings` will be removed " + "in transformers v4.32." + ) + return self.transformer.word_emb + + @unpack_inputs + @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFTransfoXLSequenceClassifierOutputWithPast, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType | None = None, + mems: List[tf.Tensor] | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[Tuple, TFTransfoXLSequenceClassifierOutputWithPast]: + r""" + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., + config.vocab_size - 1]`. + """ + transformer_outputs = self.transformer( + input_ids=input_ids, + mems=mems, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + in_logits = None + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + sequence_lengths = ( + tf.argmax(tf.cast(tf.math.equal(input_ids, self.config.pad_token_id), input_ids.dtype), axis=-1) + - 1 + ) + sequence_lengths = tf.where(sequence_lengths >= 0, sequence_lengths, input_ids.shape[-1] - 1) + in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1) + else: + sequence_lengths = -1 + logger.warning( + f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " + "unexpected if using padding tokens in conjunction with `inputs_embeds.`" + ) + loss = None + + if labels is not None: + if input_ids is not None: + batch_size, sequence_length = shape_list(input_ids)[:2] + else: + batch_size, sequence_length = shape_list(inputs_embeds)[:2] + assert ( + self.config.pad_token_id is not None or batch_size == 1 + ), "Cannot handle batch sizes > 1 if no padding token is defined." + + if not tf.is_tensor(sequence_lengths): + in_logits = logits[0:batch_size, sequence_lengths] + + loss = self.hf_compute_loss(tf.reshape(labels, [-1, 1]), tf.reshape(in_logits, [-1, self.num_labels])) + + pooled_logits = in_logits if in_logits is not None else logits + + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TFTransfoXLSequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + mems=transformer_outputs.mems, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl_utilities.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl_utilities.py new file mode 100644 index 0000000000000000000000000000000000000000..ed1488d5595cb8f36eb540992fb4ca46534a60fb --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_tf_transfo_xl_utilities.py @@ -0,0 +1,179 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" + A TF 2.0 Adaptive Softmax for Transformer XL model. +""" + + +import tensorflow as tf + +from ....modeling_tf_utils import keras +from ....tf_utils import shape_list + + +class TFAdaptiveSoftmaxMask(keras.layers.Layer): + def __init__(self, vocab_size, d_embed, d_proj, cutoffs, div_val=1, keep_order=False, **kwargs): + super().__init__(**kwargs) + + self.vocab_size = vocab_size + self.d_embed = d_embed + self.d_proj = d_proj + + self.cutoffs = cutoffs + [vocab_size] + self.cutoff_ends = [0] + self.cutoffs + self.div_val = div_val + + self.shortlist_size = self.cutoffs[0] + self.n_clusters = len(self.cutoffs) - 1 + self.head_size = self.shortlist_size + self.n_clusters + self.keep_order = keep_order + + self.out_layers = [] + self.out_projs = [] + + def build(self, input_shape): + if self.n_clusters > 0: + self.cluster_weight = self.add_weight( + shape=(self.n_clusters, self.d_embed), initializer="zeros", trainable=True, name="cluster_weight" + ) + self.cluster_bias = self.add_weight( + shape=(self.n_clusters,), initializer="zeros", trainable=True, name="cluster_bias" + ) + + if self.div_val == 1: + for i in range(len(self.cutoffs)): + if self.d_proj != self.d_embed: + weight = self.add_weight( + shape=(self.d_embed, self.d_proj), + initializer="zeros", + trainable=True, + name=f"out_projs_._{i}", + ) + self.out_projs.append(weight) + else: + self.out_projs.append(None) + weight = self.add_weight( + shape=(self.vocab_size, self.d_embed), + initializer="zeros", + trainable=True, + name=f"out_layers_._{i}_._weight", + ) + bias = self.add_weight( + shape=(self.vocab_size,), + initializer="zeros", + trainable=True, + name=f"out_layers_._{i}_._bias", + ) + self.out_layers.append((weight, bias)) + else: + for i in range(len(self.cutoffs)): + l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] + d_emb_i = self.d_embed // (self.div_val**i) + + weight = self.add_weight( + shape=(d_emb_i, self.d_proj), initializer="zeros", trainable=True, name=f"out_projs_._{i}" + ) + self.out_projs.append(weight) + weight = self.add_weight( + shape=(r_idx - l_idx, d_emb_i), + initializer="zeros", + trainable=True, + name=f"out_layers_._{i}_._weight", + ) + bias = self.add_weight( + shape=(r_idx - l_idx,), + initializer="zeros", + trainable=True, + name=f"out_layers_._{i}_._bias", + ) + self.out_layers.append((weight, bias)) + super().build(input_shape) + + @staticmethod + def _logit(x, W, b, proj=None): + y = x + if proj is not None: + y = tf.einsum("ibd,ed->ibe", y, proj) + return tf.einsum("ibd,nd->ibn", y, W) + b + + @staticmethod + def _gather_logprob(logprob, target): + lp_size = shape_list(logprob) + r = tf.range(lp_size[0], dtype=target.dtype) + idx = tf.stack([r, target], 1) + return tf.gather_nd(logprob, idx) + + def call(self, hidden, target, return_mean=True, training=False): + head_logprob = 0 + if self.n_clusters == 0: + output = self._logit(hidden, self.out_layers[0][0], self.out_layers[0][1], self.out_projs[0]) + if target is not None: + loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output) + out = tf.nn.log_softmax(output, axis=-1) + else: + hidden_sizes = shape_list(hidden) + out = [] + loss = tf.zeros(hidden_sizes[:2]) + for i in range(len(self.cutoffs)): + l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] + if target is not None: + mask = (target >= l_idx) & (target < r_idx) + mask_idx = tf.where(mask) + cur_target = tf.boolean_mask(target, mask) - l_idx + + if self.div_val == 1: + cur_W = self.out_layers[0][0][l_idx:r_idx] + cur_b = self.out_layers[0][1][l_idx:r_idx] + else: + cur_W = self.out_layers[i][0] + cur_b = self.out_layers[i][1] + + if i == 0: + cur_W = tf.concat([cur_W, self.cluster_weight], 0) + cur_b = tf.concat([cur_b, self.cluster_bias], 0) + + head_logit = self._logit(hidden, cur_W, cur_b, self.out_projs[0]) + head_logprob = tf.nn.log_softmax(head_logit) + out.append(head_logprob[..., : self.cutoffs[0]]) + if target is not None: + cur_head_logprob = tf.boolean_mask(head_logprob, mask) + cur_logprob = self._gather_logprob(cur_head_logprob, cur_target) + else: + tail_logit = self._logit(hidden, cur_W, cur_b, self.out_projs[i]) + tail_logprob = tf.nn.log_softmax(tail_logit) + cluster_prob_idx = self.cutoffs[0] + i - 1 # No probability for the head cluster + logprob_i = head_logprob[..., cluster_prob_idx, None] + tail_logprob + out.append(logprob_i) + if target is not None: + cur_head_logprob = tf.boolean_mask(head_logprob, mask) + cur_tail_logprob = tf.boolean_mask(tail_logprob, mask) + cur_logprob = self._gather_logprob(cur_tail_logprob, cur_target) + cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] + if target is not None: + loss += tf.scatter_nd(mask_idx, -cur_logprob, shape_list(loss)) + out = tf.concat(out, axis=-1) + + if target is not None: + if return_mean: + loss = tf.reduce_mean(loss) + # Add the training-time loss value to the layer using `self.add_loss()`. + self.add_loss(loss) + + # Log the loss as a metric (we could log arbitrary metrics, + # including different metrics for training and inference. + self.add_metric(loss, name=self.name, aggregation="mean" if return_mean else "") + + return out diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_transfo_xl.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_transfo_xl.py new file mode 100644 index 0000000000000000000000000000000000000000..1b8f222f508a35f0c19c6120ee9c355794e392a0 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_transfo_xl.py @@ -0,0 +1,1297 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" + PyTorch Transformer XL model. Adapted from https://github.com/kimiyoung/transformer-xl. In particular + https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py +""" +import warnings +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import torch +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ....modeling_utils import PreTrainedModel +from ....utils import ( + ModelOutput, + add_code_sample_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, +) +from .configuration_transfo_xl import TransfoXLConfig +from .modeling_transfo_xl_utilities import ProjectedAdaptiveLogSoftmax + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "transfo-xl/transfo-xl-wt103" +_CONFIG_FOR_DOC = "TransfoXLConfig" + +TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "transfo-xl/transfo-xl-wt103", + # See all Transformer XL models at https://huggingface.co/models?filter=transfo-xl +] + + +def build_tf_to_pytorch_map(model, config): + """ + A map of modules from TF to PyTorch. This time I use a map to keep the PyTorch model as identical to the original + PyTorch model as possible. + """ + tf_to_pt_map = {} + + if hasattr(model, "transformer"): + # We are loading in a TransfoXLLMHeadModel => we will load also the Adaptive Softmax + tf_to_pt_map.update( + { + "transformer/adaptive_softmax/cutoff_0/cluster_W": model.crit.cluster_weight, + "transformer/adaptive_softmax/cutoff_0/cluster_b": model.crit.cluster_bias, + } + ) + for i, (out_l, proj_l, tie_proj) in enumerate( + zip(model.crit.out_layers, model.crit.out_projs, config.tie_projs) + ): + layer_str = f"transformer/adaptive_softmax/cutoff_{i}/" + if config.tie_word_embeddings: + tf_to_pt_map.update({layer_str + "b": out_l.bias}) + else: + raise NotImplementedError + # I don't think this is implemented in the TF code + tf_to_pt_map.update({layer_str + "lookup_table": out_l.weight, layer_str + "b": out_l.bias}) + if not tie_proj: + tf_to_pt_map.update({layer_str + "proj": proj_l}) + # Now load the rest of the transformer + model = model.transformer + + # Embeddings + for i, (embed_l, proj_l) in enumerate(zip(model.word_emb.emb_layers, model.word_emb.emb_projs)): + layer_str = f"transformer/adaptive_embed/cutoff_{i}/" + tf_to_pt_map.update({layer_str + "lookup_table": embed_l.weight, layer_str + "proj_W": proj_l}) + + # Transformer blocks + for i, b in enumerate(model.layers): + layer_str = f"transformer/layer_{i}/" + tf_to_pt_map.update( + { + layer_str + "rel_attn/LayerNorm/gamma": b.dec_attn.layer_norm.weight, + layer_str + "rel_attn/LayerNorm/beta": b.dec_attn.layer_norm.bias, + layer_str + "rel_attn/o/kernel": b.dec_attn.o_net.weight, + layer_str + "rel_attn/qkv/kernel": b.dec_attn.qkv_net.weight, + layer_str + "rel_attn/r/kernel": b.dec_attn.r_net.weight, + layer_str + "ff/LayerNorm/gamma": b.pos_ff.layer_norm.weight, + layer_str + "ff/LayerNorm/beta": b.pos_ff.layer_norm.bias, + layer_str + "ff/layer_1/kernel": b.pos_ff.CoreNet[0].weight, + layer_str + "ff/layer_1/bias": b.pos_ff.CoreNet[0].bias, + layer_str + "ff/layer_2/kernel": b.pos_ff.CoreNet[3].weight, + layer_str + "ff/layer_2/bias": b.pos_ff.CoreNet[3].bias, + } + ) + + # Relative positioning biases + if config.untie_r: + r_r_list = [] + r_w_list = [] + for b in model.layers: + r_r_list.append(b.dec_attn.r_r_bias) + r_w_list.append(b.dec_attn.r_w_bias) + else: + r_r_list = [model.r_r_bias] + r_w_list = [model.r_w_bias] + tf_to_pt_map.update({"transformer/r_r_bias": r_r_list, "transformer/r_w_bias": r_w_list}) + return tf_to_pt_map + + +def load_tf_weights_in_transfo_xl(model, config, tf_path): + """Load tf checkpoints in a pytorch model""" + try: + import numpy as np + import tensorflow as tf + except ImportError: + logger.error( + "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " + "https://www.tensorflow.org/install/ for installation instructions." + ) + raise + # Build TF to PyTorch weights loading map + tf_to_pt_map = build_tf_to_pytorch_map(model, config) + + # Load weights from TF model + init_vars = tf.train.list_variables(tf_path) + tf_weights = {} + for name, shape in init_vars: + logger.info(f"Loading TF weight {name} with shape {shape}") + array = tf.train.load_variable(tf_path, name) + tf_weights[name] = array + + for name, pointer in tf_to_pt_map.items(): + assert name in tf_weights + array = tf_weights[name] + # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v + # which are not required for using pretrained model + if "kernel" in name or "proj" in name: + array = np.transpose(array) + if ("r_r_bias" in name or "r_w_bias" in name) and len(pointer) > 1: + # Here we will split the TF weights + assert len(pointer) == array.shape[0] + for i, p_i in enumerate(pointer): + arr_i = array[i, ...] + try: + assert p_i.shape == arr_i.shape + except AssertionError as e: + e.args += (p_i.shape, arr_i.shape) + raise + logger.info(f"Initialize PyTorch weight {name} for layer {i}") + p_i.data = torch.from_numpy(arr_i) + else: + try: + assert ( + pointer.shape == array.shape + ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" + except AssertionError as e: + e.args += (pointer.shape, array.shape) + raise + logger.info(f"Initialize PyTorch weight {name}") + pointer.data = torch.from_numpy(array) + tf_weights.pop(name, None) + tf_weights.pop(name + "/Adam", None) + tf_weights.pop(name + "/Adam_1", None) + + logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}") + return model + + +class PositionalEmbedding(nn.Module): + def __init__(self, demb): + super().__init__() + + self.demb = demb + + inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb)) + self.register_buffer("inv_freq", inv_freq) + + def forward(self, pos_seq, bsz=None): + sinusoid_inp = torch.outer(pos_seq, self.inv_freq) + pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1) + + if bsz is not None: + return pos_emb[:, None, :].expand(-1, bsz, -1) + else: + return pos_emb[:, None, :] + + +class PositionwiseFF(nn.Module): + def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, layer_norm_epsilon=1e-5): + super().__init__() + + self.d_model = d_model + self.d_inner = d_inner + self.dropout = dropout + + self.CoreNet = nn.Sequential( + nn.Linear(d_model, d_inner), + nn.ReLU(inplace=True), + nn.Dropout(dropout), + nn.Linear(d_inner, d_model), + nn.Dropout(dropout), + ) + + self.layer_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon) + + self.pre_lnorm = pre_lnorm + + def forward(self, inp): + if self.pre_lnorm: + # layer normalization + positionwise feed-forward + core_out = self.CoreNet(self.layer_norm(inp)) + + # residual connection + output = core_out + inp + else: + # positionwise feed-forward + core_out = self.CoreNet(inp) + + # residual connection + layer normalization + output = self.layer_norm(inp + core_out) + + return output + + +class RelPartialLearnableMultiHeadAttn(nn.Module): + def __init__( + self, + n_head, + d_model, + d_head, + dropout, + dropatt=0, + pre_lnorm=False, + r_r_bias=None, + r_w_bias=None, + layer_norm_epsilon=1e-5, + ): + super().__init__() + + self.n_head = n_head + self.d_model = d_model + self.d_head = d_head + self.dropout = dropout + + self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False) + + self.drop = nn.Dropout(dropout) + self.dropatt = nn.Dropout(dropatt) + self.o_net = nn.Linear(n_head * d_head, d_model, bias=False) + + self.layer_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon) + + self.scale = 1 / (d_head**0.5) + + self.pre_lnorm = pre_lnorm + + if r_r_bias is None or r_w_bias is None: # Biases are not shared + self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) + self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) + else: + self.r_r_bias = r_r_bias + self.r_w_bias = r_w_bias + + self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False) + + def _rel_shift(self, x): + zero_pad_shape = (x.size(0), 1) + x.size()[2:] + zero_pad = torch.zeros(zero_pad_shape, device=x.device, dtype=x.dtype) + x_padded = torch.cat([zero_pad, x], dim=1) + + x_padded_shape = (x.size(1) + 1, x.size(0)) + x.size()[2:] + x_padded = x_padded.view(*x_padded_shape) + + x = x_padded[1:].view_as(x) + + return x + + def forward(self, w, r, attn_mask=None, mems=None, head_mask=None, output_attentions=False): + qlen, rlen, bsz = w.size(0), r.size(0), w.size(1) + + if mems is not None: + cat = torch.cat([mems, w], 0) + if self.pre_lnorm: + w_heads = self.qkv_net(self.layer_norm(cat)) + else: + w_heads = self.qkv_net(cat) + r_head_k = self.r_net(r) + + w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1) + w_head_q = w_head_q[-qlen:] + else: + if self.pre_lnorm: + w_heads = self.qkv_net(self.layer_norm(w)) + else: + w_heads = self.qkv_net(w) + r_head_k = self.r_net(r) + + w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1) + + klen = w_head_k.size(0) + + w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head + w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head + w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head + + r_head_k = r_head_k.view(rlen, self.n_head, self.d_head) # qlen x n_head x d_head + + # compute attention score + rw_head_q = w_head_q + self.r_w_bias # qlen x bsz x n_head x d_head + AC = torch.einsum("ibnd,jbnd->ijbn", (rw_head_q, w_head_k)) # qlen x klen x bsz x n_head + + rr_head_q = w_head_q + self.r_r_bias + BD = torch.einsum("ibnd,jnd->ijbn", (rr_head_q, r_head_k)) # qlen x klen x bsz x n_head + BD = self._rel_shift(BD) + + # [qlen x klen x bsz x n_head] + attn_score = AC + BD + attn_score.mul_(self.scale) + + mask_value = torch.finfo(attn_score.dtype).min + + # compute attention probability + if attn_mask is not None and torch.sum(attn_mask).item(): + attn_mask = attn_mask == 1 # Switch to bool + if attn_mask.dim() == 2: + attn_score = ( + attn_score.float().masked_fill(attn_mask[None, :, :, None], mask_value).type_as(attn_score) + ) + elif attn_mask.dim() == 3: + attn_score = attn_score.float().masked_fill(attn_mask[:, :, :, None], mask_value).type_as(attn_score) + + # [qlen x klen x bsz x n_head] + attn_prob = nn.functional.softmax(attn_score, dim=1) + attn_prob = self.dropatt(attn_prob) + + # Mask heads if we want to + if head_mask is not None: + attn_prob = attn_prob * head_mask + + # compute attention vector + attn_vec = torch.einsum("ijbn,jbnd->ibnd", (attn_prob, w_head_v)) + + # [qlen x bsz x n_head x d_head] + attn_vec = attn_vec.contiguous().view(attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head) + + # linear projection + attn_out = self.o_net(attn_vec) + attn_out = self.drop(attn_out) + + if self.pre_lnorm: + # residual connection + outputs = [w + attn_out] + else: + # residual connection + layer normalization + outputs = [self.layer_norm(w + attn_out)] + + if output_attentions: + outputs.append(attn_prob) + + return outputs + + +class RelPartialLearnableDecoderLayer(nn.Module): + def __init__(self, n_head, d_model, d_head, d_inner, dropout, layer_norm_epsilon=1e-5, **kwargs): + super().__init__() + + self.dec_attn = RelPartialLearnableMultiHeadAttn( + n_head, d_model, d_head, dropout, layer_norm_epsilon=layer_norm_epsilon, **kwargs + ) + self.pos_ff = PositionwiseFF( + d_model, d_inner, dropout, pre_lnorm=kwargs.get("pre_lnorm"), layer_norm_epsilon=layer_norm_epsilon + ) + + def forward(self, dec_inp, r, dec_attn_mask=None, mems=None, head_mask=None, output_attentions=False): + attn_outputs = self.dec_attn( + dec_inp, + r, + attn_mask=dec_attn_mask, + mems=mems, + head_mask=head_mask, + output_attentions=output_attentions, + ) + ff_output = self.pos_ff(attn_outputs[0]) + + outputs = [ff_output] + attn_outputs[1:] + + return outputs + + +class AdaptiveEmbedding(nn.Module): + def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, sample_softmax=False): + super().__init__() + + self.n_token = n_token + self.d_embed = d_embed + + self.cutoffs = cutoffs + [n_token] + self.div_val = div_val + self.d_proj = d_proj + + self.emb_scale = d_proj**0.5 + + self.cutoff_ends = [0] + self.cutoffs + + self.emb_layers = nn.ModuleList() + self.emb_projs = nn.ParameterList() + if div_val == 1: + self.emb_layers.append(nn.Embedding(n_token, d_embed, sparse=sample_softmax > 0)) + if d_proj != d_embed: + self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed))) + else: + for i in range(len(self.cutoffs)): + l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] + d_emb_i = d_embed // (div_val**i) + self.emb_layers.append(nn.Embedding(r_idx - l_idx, d_emb_i)) + self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i))) + + def forward(self, inp): + if self.div_val == 1: + embed = self.emb_layers[0](inp) + if self.d_proj != self.d_embed: + embed = nn.functional.linear(embed, self.emb_projs[0]) + else: + param = next(self.parameters()) + inp_flat = inp.view(-1) + emb_flat = torch.zeros([inp_flat.size(0), self.d_proj], dtype=param.dtype, device=param.device) + for i in range(len(self.cutoffs)): + l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] + + mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx) + indices_i = mask_i.nonzero().squeeze() + + if indices_i.numel() == 0: + continue + + inp_i = inp_flat.index_select(0, indices_i) - l_idx + emb_i = self.emb_layers[i](inp_i) + emb_i = nn.functional.linear(emb_i, self.emb_projs[i]) + + emb_flat.index_copy_(0, indices_i, emb_i) + + embed_shape = inp.size() + (self.d_proj,) + embed = emb_flat.view(embed_shape) + + embed.mul_(self.emb_scale) + + return embed + + +class TransfoXLPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = TransfoXLConfig + load_tf_weights = load_tf_weights_in_transfo_xl + base_model_prefix = "transformer" + + def _init_weight(self, weight): + if self.config.init == "uniform": + nn.init.uniform_(weight, -self.config.init_range, self.config.init_range) + elif self.config.init == "normal": + nn.init.normal_(weight, 0.0, self.config.init_std) + + def _init_bias(self, bias): + nn.init.constant_(bias, 0.0) + + def _init_weights(self, m): + """Initialize the weights.""" + classname = m.__class__.__name__ + if classname.find("Linear") != -1: + if hasattr(m, "weight") and m.weight is not None: + self._init_weight(m.weight) + if hasattr(m, "bias") and m.bias is not None: + self._init_bias(m.bias) + elif classname.find("AdaptiveEmbedding") != -1: + if hasattr(m, "emb_projs"): + for i in range(len(m.emb_projs)): + if m.emb_projs[i] is not None: + nn.init.normal_(m.emb_projs[i], 0.0, self.config.proj_init_std) + elif classname.find("Embedding") != -1: + if hasattr(m, "weight"): + self._init_weight(m.weight) + elif classname.find("ProjectedAdaptiveLogSoftmax") != -1: + if hasattr(m, "cluster_weight") and m.cluster_weight is not None: + self._init_weight(m.cluster_weight) + if hasattr(m, "cluster_bias") and m.cluster_bias is not None: + self._init_bias(m.cluster_bias) + if hasattr(m, "out_projs"): + for i in range(len(m.out_projs)): + if m.out_projs[i] is not None: + nn.init.normal_(m.out_projs[i], 0.0, self.config.proj_init_std) + elif classname.find("LayerNorm") != -1: + if hasattr(m, "weight"): + nn.init.normal_(m.weight, 1.0, self.config.init_std) + if hasattr(m, "bias") and m.bias is not None: + self._init_bias(m.bias) + else: + if hasattr(m, "r_emb"): + self._init_weight(m.r_emb) + if hasattr(m, "r_w_bias"): + self._init_weight(m.r_w_bias) + if hasattr(m, "r_r_bias"): + self._init_weight(m.r_r_bias) + if hasattr(m, "r_bias"): + self._init_bias(m.r_bias) + + def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, layer: Optional[int] = -1): + """ + Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size. Take care of tying + weights embeddings afterwards if the model class has a *tie_weights()* method. + + Arguments: + new_num_tokens: (*optional*) int: + New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at + the end. Reducing the size will remove vectors from the end. If not provided or None: does nothing and + just returns a pointer to the input tokens `torch.nn.Embeddings` Module of the model. + layer: (*optional*) int: + Layer of the *AdaptiveEmbedding* where the resizing should be done. Per default the last layer will be + resized. Be aware that when resizing other than the last layer, you have to ensure that the new + token(s) in the tokenizer are at the corresponding position. + + Return: `torch.nn.Embeddings` Pointer to the input tokens Embeddings Module of the model + """ + base_model = getattr(self, self.base_model_prefix, self) # get the base model if needed + + if new_num_tokens is None: + return self.get_input_embeddings() + + new_num_tokens_layer, layer = self._get_new_num_tokens_layer(new_num_tokens, layer) + assert new_num_tokens_layer > 0, "The size of the new embedding layer cannot be 0 or less" + model_embeds = base_model._resize_token_embeddings(new_num_tokens_layer, layer) + + # Update base model and current model config + self.config.vocab_size = new_num_tokens + base_model.vocab_size = new_num_tokens + base_model.n_token = new_num_tokens + + new_embedding_shapes = self._get_embedding_shapes() + self._resize_cutoffs(new_num_tokens, new_num_tokens_layer, new_embedding_shapes, layer) + + # Tie weights again if needed + self.tie_weights() + + return model_embeds + + def _get_new_num_tokens_layer(self, new_num_tokens, layer): + embeddings = self.get_input_embeddings() + if layer == -1: + layer = len(embeddings.emb_layers) - 1 + assert 0 <= layer <= len(embeddings.emb_layers) - 1 + + new_num_tokens_layer = ( + new_num_tokens + - sum([emb.weight.shape[0] for emb in embeddings.emb_layers[:layer]]) + - sum([emb.weight.shape[0] for emb in embeddings.emb_layers[layer + 1 :]]) + ) + return new_num_tokens_layer, layer + + def _get_embedding_shapes(self): + embeddings = self.get_input_embeddings() + return [emb.weight.shape[0] for emb in embeddings.emb_layers] + + def _resize_token_embeddings(self, new_num_tokens, layer=-1): + embeddings = self.get_input_embeddings() + if new_num_tokens is None: + return embeddings + new_embeddings_layer = self._get_resized_embeddings(embeddings.emb_layers[layer], new_num_tokens) + embeddings.emb_layers[layer] = new_embeddings_layer + + self.set_input_embeddings(embeddings) + + return self.get_input_embeddings() + + def _resize_cutoffs(self, new_num_tokens, new_emb_size, new_embedding_shapes, layer): + embeddings = self.get_input_embeddings() + + for i in range(layer, len(embeddings.cutoffs)): + embeddings.cutoffs[i] = sum(new_embedding_shapes[: i + 1]) + + embeddings.cutoff_ends = [0] + embeddings.cutoffs + embeddings.n_token = new_num_tokens + + self.config.cutoffs = embeddings.cutoffs[:-1] + + return embeddings.cutoffs + + +@dataclass +class TransfoXLModelOutput(ModelOutput): + """ + Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + mems (`List[torch.FloatTensor]` of length `config.n_layers`): + Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` + input) to speed up sequential decoding. The token ids which have their past given to this model should not + be passed as input ids as they have already been computed. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + last_hidden_state: torch.FloatTensor + mems: List[torch.FloatTensor] = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class TransfoXLSequenceClassifierOutputWithPast(ModelOutput): + """ + Base class for outputs of sentence classification models. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Classification (or regression if config.num_labels==1) loss. + logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): + Classification (or regression if config.num_labels==1) scores (before SoftMax). + mems (`List[torch.FloatTensor]` of length `config.n_layers`): + Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` + input) to speed up sequential decoding. The token ids which have their past given to this model should not + be passed as input ids as they have already been computed. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + mems: List[torch.FloatTensor] = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class TransfoXLLMHeadModelOutput(ModelOutput): + """ + Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). + + Args: + losses (`torch.FloatTensor` of shape *(batch_size, sequence_length-1)*, *optional*, returned when `labels` is provided): + Language modeling losses (not reduced). + prediction_scores (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token after SoftMax). + mems (`List[torch.FloatTensor]` of length `config.n_layers`): + Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` + input) to speed up sequential decoding. The token ids which have their past given to this model should not + be passed as input ids as they have already been computed. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + loss (`torch.FloatTensor` of shape `()`, *optional*, returned when `labels` is provided) + Reduced language modeling loss. + """ + + losses: Optional[torch.FloatTensor] = None + prediction_scores: torch.FloatTensor = None + mems: List[torch.FloatTensor] = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + loss: Optional[torch.FloatTensor] = None + + @property + def logits(self): + # prediction scores are the output of the adaptive softmax, see + # the file `modeling_transfo_xl_utilities`. Since the adaptive + # softmax returns the log softmax value, `self.prediction_scores` + # are strictly speaking not exactly `logits`, but behave the same + # way logits do. + return self.prediction_scores + + +TRANSFO_XL_START_DOCSTRING = r""" + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`TransfoXLConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +TRANSFO_XL_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + mems (`List[torch.FloatTensor]` of length `config.n_layers`): + Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see + `mems` output below). Can be used to speed up sequential decoding. The token ids which have their mems + given to this model should not be passed as `input_ids` as they have already been computed. + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", + TRANSFO_XL_START_DOCSTRING, +) +class TransfoXLModel(TransfoXLPreTrainedModel): + def __init__(self, config): + super().__init__(config) + + self.n_token = config.vocab_size + + self.d_embed = config.d_embed + self.d_model = config.d_model + self.n_head = config.n_head + self.d_head = config.d_head + + self.word_emb = AdaptiveEmbedding( + config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val + ) + + self.drop = nn.Dropout(config.dropout) + + self.n_layer = config.n_layer + self.mem_len = config.mem_len + self.attn_type = config.attn_type + + if not config.untie_r: + self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) + self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) + + self.layers = nn.ModuleList() + if config.attn_type == 0: # the default attention + for i in range(config.n_layer): + self.layers.append( + RelPartialLearnableDecoderLayer( + config.n_head, + config.d_model, + config.d_head, + config.d_inner, + config.dropout, + dropatt=config.dropatt, + pre_lnorm=config.pre_lnorm, + r_w_bias=None if config.untie_r else self.r_w_bias, + r_r_bias=None if config.untie_r else self.r_r_bias, + layer_norm_epsilon=config.layer_norm_epsilon, + ) + ) + else: # learnable embeddings and absolute embeddings are not used in our pretrained checkpoints + raise NotImplementedError # Removed them to avoid maintaining dead code + + self.same_length = config.same_length + self.clamp_len = config.clamp_len + + if self.attn_type == 0: # default attention + self.pos_emb = PositionalEmbedding(self.d_model) + else: # learnable embeddings and absolute embeddings + raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.word_emb + + def set_input_embeddings(self, new_embeddings): + self.word_emb = new_embeddings + + def backward_compatible(self): + self.sample_softmax = -1 + + def reset_memory_length(self, mem_len): + self.mem_len = mem_len + + def _prune_heads(self, heads): + logger.info("Head pruning is not implemented for Transformer-XL model") + pass + + def init_mems(self, bsz): + if self.mem_len > 0: + mems = [] + param = next(self.parameters()) + for i in range(self.n_layer): + empty = torch.zeros(self.mem_len, bsz, self.config.d_model, dtype=param.dtype, device=param.device) + mems.append(empty) + + return mems + else: + return None + + def _update_mems(self, hids, mems, mlen, qlen): + # does not deal with None + if mems is None: + return None + + # mems is not None + assert len(hids) == len(mems), "len(hids) != len(mems)" + + # There are `mlen + qlen` steps that can be cached into mems + with torch.no_grad(): + new_mems = [] + end_idx = mlen + max(0, qlen) + beg_idx = max(0, end_idx - self.mem_len) + for i in range(len(hids)): + cat = torch.cat([mems[i], hids[i]], dim=0) + new_mems.append(cat[beg_idx:end_idx].detach()) + + return new_mems + + @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TransfoXLModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + mems: Optional[List[torch.FloatTensor]] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TransfoXLModelOutput]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library + # so we transpose here from shape [bsz, len] to shape [len, bsz] + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_ids = input_ids.transpose(0, 1).contiguous() + qlen, bsz = input_ids.size() + elif inputs_embeds is not None: + inputs_embeds = inputs_embeds.transpose(0, 1).contiguous() + qlen, bsz = inputs_embeds.shape[0], inputs_embeds.shape[1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if mems is None: + mems = self.init_mems(bsz) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer) + # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head] + if head_mask is not None: + if head_mask.dim() == 1: + head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0) + head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1) + elif head_mask.dim() == 2: + head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1) + head_mask = head_mask.to( + dtype=next(self.parameters()).dtype + ) # switch to float if need + fp16 compatibility + else: + head_mask = [None] * self.n_layer + + if inputs_embeds is not None: + word_emb = inputs_embeds + else: + word_emb = self.word_emb(input_ids) + + mlen = mems[0].size(0) if mems is not None else 0 + klen = mlen + qlen + if self.same_length: + all_ones = word_emb.new_ones((qlen, klen), dtype=torch.bool) + mask_len = klen - self.mem_len + if mask_len > 0: + mask_shift_len = qlen - mask_len + else: + mask_shift_len = qlen + dec_attn_mask = (torch.triu(all_ones, 1 + mlen) + torch.tril(all_ones, -mask_shift_len))[:, :, None] # -1 + else: + dec_attn_mask = torch.triu(word_emb.new_ones((qlen, klen), dtype=torch.bool), diagonal=1 + mlen)[ + :, :, None + ] + + hids = [] + attentions = [] if output_attentions else None + if self.attn_type == 0: # default + pos_seq = torch.arange(klen - 1, -1, -1.0, device=word_emb.device, dtype=torch.int64).type_as( + dtype=word_emb.dtype + ) + if self.clamp_len > 0: + pos_seq.clamp_(max=self.clamp_len) + pos_emb = self.pos_emb(pos_seq) + + core_out = self.drop(word_emb) + pos_emb = self.drop(pos_emb) + + for i, layer in enumerate(self.layers): + hids.append(core_out) + mems_i = None if mems is None else mems[i] + layer_outputs = layer( + core_out, + pos_emb, + dec_attn_mask=dec_attn_mask, + mems=mems_i, + head_mask=head_mask[i], + output_attentions=output_attentions, + ) + core_out = layer_outputs[0] + if output_attentions: + attentions.append(layer_outputs[1]) + else: # learnable embeddings and absolute embeddings + raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint + + core_out = self.drop(core_out) + + new_mems = self._update_mems(hids, mems, mlen, qlen) + + if output_hidden_states: + # Add last layer and transpose to library standard shape [bsz, len, hidden_dim] + hids.append(core_out) + hids = tuple(t.transpose(0, 1).contiguous() for t in hids) + else: + hids = None + if output_attentions: + # Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len] + attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions) + # We transpose back here to shape [bsz, len, hidden_dim] + core_out = core_out.transpose(0, 1).contiguous() + + if not return_dict: + return tuple(v for v in [core_out, new_mems, hids, attentions] if v is not None) + + return TransfoXLModelOutput( + last_hidden_state=core_out, + mems=new_mems, + hidden_states=hids, + attentions=attentions, + ) + + +@add_start_docstrings( + """ + The Transformer-XL Model with a language modeling head on top (adaptive softmax with weights tied to the adaptive + input embeddings) + """, + TRANSFO_XL_START_DOCSTRING, +) +class TransfoXLLMHeadModel(TransfoXLPreTrainedModel): + _tied_weights_keys = [r"crit\.out_projs\.\d+", r"crit\.out_layers\.\d+\.weight"] + + def __init__(self, config): + super().__init__(config) + self.transformer = TransfoXLModel(config) + self.sample_softmax = config.sample_softmax + self.trainer_compatible = getattr(config, "trainer_compatible", False) + + if not self.trainer_compatible: + warnings.warn( + "The output of TransfoXL will be updated in v5 to support a single loss as first argument. In order " + "to use that updated output, please specify `trainer_compatible=True` as your configuration" + " attribute.", + DeprecationWarning, + ) + + assert self.sample_softmax <= 0, ( + "Sampling from the softmax is not implemented yet. Please look at issue: #3310:" + " https://github.com/huggingface/transformers/issues/3310" + ) + + self.crit = ProjectedAdaptiveLogSoftmax( + config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val + ) + + # Initialize weights and apply final processing + self.post_init() + + def tie_weights(self): + """ + Run this to be sure output and input (adaptive) softmax weights are tied + """ + + if self.config.tie_word_embeddings: + for i in range(len(self.crit.out_layers)): + self._tie_or_clone_weights(self.crit.out_layers[i], self.transformer.word_emb.emb_layers[i]) + if self.config.tie_projs: + for i, tie_proj in enumerate(self.config.tie_projs): + if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed: + if self.config.torchscript: + self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[0].clone()) + else: + self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0] + elif tie_proj and self.config.div_val != 1: + if self.config.torchscript: + self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[i].clone()) + else: + self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i] + + def reset_memory_length(self, mem_len): + self.transformer.reset_memory_length(mem_len) + + def init_mems(self, bsz): + return self.transformer.init_mems(bsz) + + @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TransfoXLLMHeadModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + mems: Optional[List[torch.FloatTensor]] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TransfoXLLMHeadModelOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set + `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` + are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if input_ids is not None: + bsz, tgt_len = input_ids.size(0), input_ids.size(1) + elif inputs_embeds is not None: + bsz, tgt_len = inputs_embeds.size(0), inputs_embeds.size(1) + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + transformer_outputs = self.transformer( + input_ids, + mems=mems, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden = transformer_outputs[0] + pred_hid = last_hidden[:, -tgt_len:] + + if labels is not None: + # Prevents all labels being -100 and throwing an error + # when backwarding the loss + miss_valid_label = labels[0, 1:].sum() == (labels.size(1) - 1) * -100 + if miss_valid_label: + # Sets an token, just to prevent loss from being NaN + labels[0, 1] = self.config.eos_token_id + + softmax_output = self.crit(pred_hid, labels) + prediction_scores = softmax_output.view(bsz, tgt_len, -1) if labels is None else () + + if labels is not None: + losses = softmax_output.view(bsz, tgt_len - 1) + # Avoids from incorporating padding (-100) tokens into loss value + loss = losses[losses != 0].mean() + else: + losses, loss = None, None + + if not return_dict: + if self.trainer_compatible: + output = (prediction_scores, losses) if losses is not None else (prediction_scores,) + output += transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + else: + output = (prediction_scores, *transformer_outputs[1:]) + output = ((losses,) + output) if losses is not None else output + return (output + (loss,)) if loss is not None else output + + return TransfoXLLMHeadModelOutput( + loss=loss, + prediction_scores=prediction_scores, + losses=losses, + mems=transformer_outputs.mems, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) + + def get_output_embeddings(self): + """Double-check if you are using adaptive softmax.""" + if self.sample_softmax > 0: + return self.out_layer + else: + return self.crit.out_layers[-1] + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **model_kwargs): + inputs = {} + + # if past is defined in model kwargs then use it for faster decoding + if past_key_values: + inputs["mems"] = past_key_values + inputs["input_ids"] = input_ids[:, -1].unsqueeze(-1) + else: + inputs["input_ids"] = input_ids + + return inputs + + def _resize_cutoffs(self, new_num_tokens, new_emb_size, new_embedding_shapes, layer): + new_cutoffs = super()._resize_cutoffs(new_num_tokens, new_emb_size, new_embedding_shapes, layer) + + self.crit.cutoffs = new_cutoffs + self.crit.cutoff_ends = [0] + new_cutoffs + self.crit.n_token = new_num_tokens + + @staticmethod + def _reorder_cache(mems: List[torch.Tensor], beam_idx: torch.Tensor) -> List[torch.Tensor]: + """ + This function is used to re-order the `mems` cache if [`~PreTrainedModel.beam_search`] or + [`~PreTrainedModel.beam_sample`] is called. This is required to match `mems` with the correct beam_idx at every + generation step. + """ + return [layer_past.index_select(1, beam_idx.to(layer_past.device)) for layer_past in mems] + + +@add_start_docstrings( + """ + The Transformer-XL Model transformer with a sequence classification head on top (linear layer). + + [`TransfoXLForSequenceClassification`] uses the last token in order to do the classification, as other causal + models (e.g. GPT-1) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + TRANSFO_XL_START_DOCSTRING, +) +class TransfoXLForSequenceClassification(TransfoXLPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.transformer = TransfoXLModel(config) + self.score = nn.Linear(config.d_embed, self.num_labels, bias=False) + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TransfoXLSequenceClassifierOutputWithPast, + config_class=_CONFIG_FOR_DOC, + ) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + mems: Optional[List[torch.FloatTensor]] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TransfoXLSequenceClassifierOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.transformer( + input_ids, + mems=mems, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size, sequence_length = input_ids.shape[:2] + else: + batch_size, sequence_length = inputs_embeds.shape[:2] + + assert ( + self.config.pad_token_id is not None or batch_size == 1 + ), "Cannot handle batch sizes > 1 if no padding token is defined." + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility + sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 + sequence_lengths = sequence_lengths % input_ids.shape[-1] + sequence_lengths = sequence_lengths.to(logits.device) + else: + sequence_lengths = -1 + logger.warning( + f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " + "unexpected if using padding tokens in conjunction with `inputs_embeds.`" + ) + + pooled_logits = logits[range(batch_size), sequence_lengths] + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(pooled_logits, labels) + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return TransfoXLSequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + mems=transformer_outputs.mems, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_transfo_xl_utilities.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_transfo_xl_utilities.py new file mode 100644 index 0000000000000000000000000000000000000000..addf2a08372bc00a377ab7410d977c31fb1d48eb --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/modeling_transfo_xl_utilities.py @@ -0,0 +1,252 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" + Utilities for PyTorch Transformer XL model. Directly adapted from https://github.com/kimiyoung/transformer-xl. +""" + + +import torch +from torch import nn + + +# CUDA_MAJOR = int(torch.version.cuda.split('.')[0]) +# CUDA_MINOR = int(torch.version.cuda.split('.')[1]) + + +class ProjectedAdaptiveLogSoftmax(nn.Module): + def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, keep_order=False): + super().__init__() + + self.n_token = n_token + self.d_embed = d_embed + self.d_proj = d_proj + + self.cutoffs = cutoffs + [n_token] + self.cutoff_ends = [0] + self.cutoffs + self.div_val = div_val + + self.shortlist_size = self.cutoffs[0] + self.n_clusters = len(self.cutoffs) - 1 + self.head_size = self.shortlist_size + self.n_clusters + + if self.n_clusters > 0: + self.cluster_weight = nn.Parameter(torch.zeros(self.n_clusters, self.d_embed)) + self.cluster_bias = nn.Parameter(torch.zeros(self.n_clusters)) + + self.out_layers = nn.ModuleList() + self.out_projs = nn.ParameterList() + + if div_val == 1: + for i in range(len(self.cutoffs)): + if d_proj != d_embed: + self.out_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed))) + else: + self.out_projs.append(None) + + self.out_layers.append(nn.Linear(d_embed, n_token)) + else: + for i in range(len(self.cutoffs)): + l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] + d_emb_i = d_embed // (div_val**i) + + self.out_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i))) + + self.out_layers.append(nn.Linear(d_emb_i, r_idx - l_idx)) + + self.keep_order = keep_order + + def _compute_logit(self, hidden, weight, bias, proj): + if proj is None: + logit = nn.functional.linear(hidden, weight, bias=bias) + else: + # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: + proj_hid = nn.functional.linear(hidden, proj.t().contiguous()) + logit = nn.functional.linear(proj_hid, weight, bias=bias) + # else: + # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) + # if bias is not None: + # logit = logit + bias + + return logit + + def forward(self, hidden, labels=None, keep_order=False): + """ + Params: + hidden :: [len*bsz x d_proj] + labels :: [len*bsz] + + Return: + if labels is None: out :: [len*bsz x n_tokens] log probabilities of tokens over the vocabulary else: out :: + [(len-1)*bsz] Negative log likelihood. We could replace this implementation by the native PyTorch one if + theirs had an option to set bias on all clusters in the native one. here: + https://github.com/pytorch/pytorch/blob/dbe6a7a9ff1a364a8706bf5df58a1ca96d2fd9da/torch/nn/modules/adaptive.py#L138 + """ + + if labels is not None: + # Shift so that tokens < n predict n + hidden = hidden[..., :-1, :].contiguous() + labels = labels[..., 1:].contiguous() + hidden = hidden.view(-1, hidden.size(-1)) + labels = labels.view(-1) + if hidden.size(0) != labels.size(0): + raise RuntimeError("Input and labels should have the same size in the batch dimension.") + else: + hidden = hidden.view(-1, hidden.size(-1)) + + if self.n_clusters == 0: + logit = self._compute_logit(hidden, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0]) + if labels is not None: + mask = labels != -100 + out = torch.zeros_like(labels, dtype=hidden.dtype, device=hidden.device) + out[mask] = ( + -nn.functional.log_softmax(logit, dim=-1)[mask].gather(1, labels[mask].unsqueeze(1)).squeeze(1) + ) + else: + out = nn.functional.log_softmax(logit, dim=-1) + else: + # construct weights and biases + weights, biases = [], [] + for i in range(len(self.cutoffs)): + if self.div_val == 1: + l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] + weight_i = self.out_layers[0].weight[l_idx:r_idx] + bias_i = self.out_layers[0].bias[l_idx:r_idx] + else: + weight_i = self.out_layers[i].weight + bias_i = self.out_layers[i].bias + + if i == 0: + weight_i = torch.cat([weight_i, self.cluster_weight], dim=0) + bias_i = torch.cat([bias_i, self.cluster_bias], dim=0) + + weights.append(weight_i) + biases.append(bias_i) + + head_weight, head_bias, head_proj = weights[0], biases[0], self.out_projs[0] + + head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj) + head_logprob = nn.functional.log_softmax(head_logit, dim=1) + + if labels is None: + out = hidden.new_empty((head_logit.size(0), self.n_token)) + else: + out = torch.zeros_like(labels, dtype=hidden.dtype, device=hidden.device) + + offset = 0 + cutoff_values = [0] + self.cutoffs + for i in range(len(cutoff_values) - 1): + l_idx, r_idx = cutoff_values[i], cutoff_values[i + 1] + + if labels is not None: + mask_i = (labels >= l_idx) & (labels < r_idx) + indices_i = mask_i.nonzero().squeeze() + + if indices_i.numel() == 0: + continue + + target_i = labels.index_select(0, indices_i) - l_idx + head_logprob_i = head_logprob.index_select(0, indices_i) + hidden_i = hidden.index_select(0, indices_i) + else: + hidden_i = hidden + + if i == 0: + if labels is not None: + logprob_i = head_logprob_i.gather(1, target_i[:, None]).squeeze(1) + else: + out[:, : self.cutoffs[0]] = head_logprob[:, : self.cutoffs[0]] + else: + weight_i, bias_i, proj_i = weights[i], biases[i], self.out_projs[i] + + tail_logit_i = self._compute_logit(hidden_i, weight_i, bias_i, proj_i) + tail_logprob_i = nn.functional.log_softmax(tail_logit_i, dim=1) + cluster_prob_idx = self.cutoffs[0] + i - 1 # No probability for the head cluster + if labels is not None: + logprob_i = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( + 1, target_i[:, None] + ).squeeze(1) + else: + logprob_i = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i + out[:, l_idx:r_idx] = logprob_i + + if labels is not None: + if (hasattr(self, "keep_order") and self.keep_order) or keep_order: + out.index_copy_(0, indices_i, -logprob_i) + else: + out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) + offset += logprob_i.size(0) + + return out + + def log_prob(self, hidden): + r""" + Computes log probabilities for all \\(n\_classes\\) From: + https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/adaptive.p + + Args: + hidden (Tensor): a minibatch of example + + Returns: + log-probabilities of for each class \\(c\\) in range \\(0 <= c <= n\_classes\\), where \\(n\_classes\\) is + a parameter passed to `AdaptiveLogSoftmaxWithLoss` constructor. Shape: + + - Input: \\((N, in\_features)\\) + - Output: \\((N, n\_classes)\\) + """ + if self.n_clusters == 0: + logit = self._compute_logit(hidden, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0]) + return nn.functional.log_softmax(logit, dim=-1) + else: + # construct weights and biases + weights, biases = [], [] + for i in range(len(self.cutoffs)): + if self.div_val == 1: + l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] + weight_i = self.out_layers[0].weight[l_idx:r_idx] + bias_i = self.out_layers[0].bias[l_idx:r_idx] + else: + weight_i = self.out_layers[i].weight + bias_i = self.out_layers[i].bias + + if i == 0: + weight_i = torch.cat([weight_i, self.cluster_weight], dim=0) + bias_i = torch.cat([bias_i, self.cluster_bias], dim=0) + + weights.append(weight_i) + biases.append(bias_i) + + head_weight, head_bias, head_proj = weights[0], biases[0], self.out_projs[0] + head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj) + + out = hidden.new_empty((head_logit.size(0), self.n_token)) + head_logprob = nn.functional.log_softmax(head_logit, dim=1) + + cutoff_values = [0] + self.cutoffs + for i in range(len(cutoff_values) - 1): + start_idx, stop_idx = cutoff_values[i], cutoff_values[i + 1] + + if i == 0: + out[:, : self.cutoffs[0]] = head_logprob[:, : self.cutoffs[0]] + else: + weight_i, bias_i, proj_i = weights[i], biases[i], self.out_projs[i] + + tail_logit_i = self._compute_logit(hidden, weight_i, bias_i, proj_i) + tail_logprob_i = nn.functional.log_softmax(tail_logit_i, dim=1) + + logprob_i = head_logprob[:, -i] + tail_logprob_i + out[:, start_idx, stop_idx] = logprob_i + + return out diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/tokenization_transfo_xl.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/tokenization_transfo_xl.py new file mode 100644 index 0000000000000000000000000000000000000000..12d360076fba4f4bf069a365c62d7dc9629812ce --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/transfo_xl/tokenization_transfo_xl.py @@ -0,0 +1,830 @@ +# coding=utf-8 +# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. +# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" + Tokenization classes for Transformer XL model. Adapted from https://github.com/kimiyoung/transformer-xl. +""" + + +import glob +import os +import pickle +import re +from collections import Counter, OrderedDict +from typing import List, Optional, Tuple + +import numpy as np + +from ....tokenization_utils import PreTrainedTokenizer +from ....utils import ( + cached_file, + is_sacremoses_available, + is_torch_available, + logging, + requires_backends, + strtobool, + torch_only_method, +) + + +if is_sacremoses_available(): + import sacremoses as sm + + +if is_torch_available(): + import torch + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = { + "pretrained_vocab_file": "vocab.pkl", + "pretrained_vocab_file_torch": "vocab.bin", + "vocab_file": "vocab.txt", +} + +PRETRAINED_VOCAB_FILES_MAP = { + "pretrained_vocab_file": { + "transfo-xl/transfo-xl-wt103": "https://huggingface.co/transfo-xl/transfo-xl-wt103/resolve/main/vocab.pkl", + } +} + +PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { + "transfo-xl/transfo-xl-wt103": None, +} + +PRETRAINED_CORPUS_ARCHIVE_MAP = { + "transfo-xl/transfo-xl-wt103": "https://huggingface.co/transfo-xl/transfo-xl-wt103/resolve/main/corpus.bin", +} +CORPUS_NAME = "corpus.bin" + +MATCH_NUMBERS = r"(?<=\d)[,.](?=\d)", r" @\g<0>@ " +DETOKENIZE_NUMBERS = [(r" @\,@ ", r","), (r" @\.@ ", r".")] + + +def tokenize_numbers(text_array: List[str]) -> List[str]: + """ + Splits large comma-separated numbers and floating point values. This is done by replacing commas with ' @,@ ' and + dots with ' @.@ '. + + Args: + text_array: An already tokenized text as list. + + Returns: + A list of strings with tokenized numbers. + + Example: + + ```python + >>> tokenize_numbers(["$", "5,000", "1.73", "m"]) + ['$', '5', '@,@', '000', '1', '@.@', '73', 'm'] + ```""" + tokenized = [] + for i in range(len(text_array)): + reg, sub = MATCH_NUMBERS + replaced = re.sub(reg, sub, text_array[i]).split() + tokenized.extend(replaced) + + return tokenized + + +def detokenize_numbers(text: str) -> str: + """ + Inverts the operation of *tokenize_numbers*. This is replacing ' @,@ ' and ' @.@' by ',' and '.'. + + Args: + text: A string where the number should be detokenized. + + Returns: + A detokenized string. + + Example: + + ```python + >>> detokenize_numbers("$ 5 @,@ 000 1 @.@ 73 m") + '$ 5,000 1.73 m' + ```""" + for reg, sub in DETOKENIZE_NUMBERS: + text = re.sub(reg, sub, text) + return text + + +class TransfoXLTokenizer(PreTrainedTokenizer): + """ + Construct a Transformer-XL tokenizer adapted from Vocab class in [the original + code](https://github.com/kimiyoung/transformer-xl). The Transformer-XL tokenizer is a word-level tokenizer (no + sub-word tokenization). + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + special (`List[str]`, *optional*): + A list of special tokens (to be treated by the original implementation of this tokenizer). + min_freq (`int`, *optional*, defaults to 0): + The minimum number of times a token has to be present in order to be kept in the vocabulary (otherwise it + will be mapped to `unk_token`). + max_size (`int`, *optional*): + The maximum size of the vocabulary. If left unset, it will default to the size of the vocabulary found + after excluding the tokens according to the `min_freq` rule. + lower_case (`bool`, *optional*, defaults to `False`): + Whether or not to lowercase the input when tokenizing. + delimiter (`str`, *optional*): + The delimiter used between tokens. + vocab_file (`str`, *optional*): + File containing the vocabulary (from the original implementation). + pretrained_vocab_file (`str`, *optional*): + File containing the vocabulary as saved with the `save_pretrained()` method. + never_split (`List[str]`, *optional*): + List of tokens that should never be split. If no list is specified, will simply use the existing special + tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + additional_special_tokens (`List[str]`, *optional*, defaults to `['']`): + A list of additional special tokens (for the HuggingFace functionality). + language (`str`, *optional*, defaults to `"en"`): + The language of this tokenizer (used for mose preprocessing). + """ + + vocab_files_names = VOCAB_FILES_NAMES + pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP + max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES + model_input_names = ["input_ids"] + + def __init__( + self, + special=None, + min_freq=0, + max_size=None, + lower_case=False, + delimiter=None, + vocab_file=None, + pretrained_vocab_file: str = None, + never_split=None, + unk_token="", + eos_token="", + additional_special_tokens=[""], + language="en", + **kwargs, + ): + logger.error( + "`TransfoXL` was deprecated due to security issues linked to `pickle.load` in `TransfoXLTokenizer`. " + "See more details on this model's documentation page: " + "`https://github.com/huggingface/transformers/blob/main/docs/source/en/model_doc/transfo-xl.md`." + ) + + requires_backends(self, "sacremoses") + if special is None: + special = [] + self.counter = Counter() + self.special = special + self.min_freq = min_freq + self.max_size = max_size + self.lower_case = lower_case + self.delimiter = delimiter + self.vocab_file = vocab_file + self.punctuation_symbols = '!"#$%&()*+,-./\\:;<=>?@[\\]^_`{|}~' + self.punction_without_space_before_pattern = re.compile(rf"[^\s][{self.punctuation_symbols}]") + self.punctuation_with_space_around_pattern = self._compile_space_around_punctuation_pattern() + self.language = language + self.moses_punct_normalizer = sm.MosesPunctNormalizer(language) + self.moses_tokenizer = sm.MosesTokenizer(language) + self.moses_detokenizer = sm.MosesDetokenizer(language) + self.idx2sym = [] + self.sym2idx = OrderedDict() + # This try... catch... is not beautiful but honestly this tokenizer was not made to be used + # in a library like ours, at all. + try: + vocab_dict = None + if pretrained_vocab_file is not None: + # Priority on pickle files (support PyTorch and TF) + if not strtobool(os.environ.get("TRUST_REMOTE_CODE", "False")): + raise ValueError( + "This part uses `pickle.load` which is insecure and will execute arbitrary code that is " + "potentially malicious. It's recommended to never unpickle data that could have come from an " + "untrusted source, or that could have been tampered with. If you already verified the pickle " + "data and decided to use it, you can set the environment variable " + "`TRUST_REMOTE_CODE` to `True` to allow it." + ) + with open(pretrained_vocab_file, "rb") as f: + vocab_dict = pickle.load(f) + + # Loading a torch-saved transfo-xl vocab dict with pickle results in an integer + # Entering this if statement means that we tried to load a torch-saved file with pickle, and we failed. + # We therefore load it with torch, if it's available. + if isinstance(vocab_dict, int): + if not is_torch_available(): + raise ImportError( + "Not trying to load dict with PyTorch as you need to install pytorch to load " + "from a PyTorch pretrained vocabulary, " + "or activate it with environment variables USE_TORCH=1 and USE_TF=0." + ) + vocab_dict = torch.load(pretrained_vocab_file) + + if vocab_dict is not None: + for key, value in vocab_dict.items(): + if key not in self.__dict__ or key in ["sym2idx", "idx2sym"]: + self.__dict__[key] = value + elif vocab_file is not None: + self.build_vocab() + + except Exception as e: + raise ValueError( + f"Unable to parse file {pretrained_vocab_file}. Unknown format. " + "If you tried to load a model saved through TransfoXLTokenizerFast, " + "please note they are not compatible." + ) from e + + if vocab_file is not None: + self.build_vocab() + + super().__init__( + special=special, + min_freq=min_freq, + max_size=max_size, + lower_case=lower_case, + delimiter=delimiter, + vocab_file=vocab_file, + pretrained_vocab_file=pretrained_vocab_file, + never_split=never_split, + unk_token=unk_token, + eos_token=eos_token, + additional_special_tokens=additional_special_tokens, + language=language, + **kwargs, + ) + + # these are not required to initialize the parent class as only used when tokenizing. + if never_split is None: + never_split = self.all_special_tokens + self.never_split = never_split + + @property + def do_lower_case(self): + return self.lower_case + + def _compile_space_around_punctuation_pattern(self): + look_ahead_for_special_token = f"(?=[{self.punctuation_symbols}])" + look_ahead_to_match_all_except_space = r"(?=[^\s])" + return re.compile(r"" + look_ahead_for_special_token + look_ahead_to_match_all_except_space) + + def count_file(self, path, verbose=False, add_eos=False): + if verbose: + logger.info(f"counting file {path} ...") + assert os.path.exists(path), f"Input file {path} not found" + + sents = [] + with open(path, "r", encoding="utf-8") as f: + for idx, line in enumerate(f): + if verbose and idx > 0 and idx % 500000 == 0: + logger.info(f" line {idx}") + symbols = self.tokenize(line, add_eos=add_eos) + self.counter.update(symbols) + sents.append(symbols) + + return sents + + def count_sents(self, sents, verbose=False): + """ + sents : a list of sentences, each a list of tokenized symbols + """ + if verbose: + logger.info(f"counting {len(sents)} sents ...") + for idx, symbols in enumerate(sents): + if verbose and idx > 0 and idx % 500000 == 0: + logger.info(f" line {idx}") + self.counter.update(symbols) + + def _build_from_file(self, vocab_file): + self.idx2sym = [] + self.sym2idx = OrderedDict() + + with open(vocab_file, "r", encoding="utf-8") as f: + for line in f: + symb = line.strip().split()[0] + self.add_symbol(symb) + if "" in self.sym2idx: + self.unk_idx = self.sym2idx[""] + elif "" in self.sym2idx: + self.unk_idx = self.sym2idx[""] + else: + raise ValueError("Token not in vocabulary and no token in vocabulary for replacement.") + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if os.path.isdir(save_directory): + vocab_file = os.path.join( + save_directory, + (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["pretrained_vocab_file"], + ) + else: + vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory + with open(vocab_file, "wb") as f: + pickle.dump(self.__dict__, f) + return (vocab_file,) + + def build_vocab(self): + if self.vocab_file: + logger.info(f"building vocab from {self.vocab_file}") + self._build_from_file(self.vocab_file) + logger.info(f"Final vocab size {len(self.sym2idx)}") + else: + logger.info(f"building vocab with min_freq={self.min_freq}, max_size={self.max_size}") + self.idx2sym = [] + self.sym2idx = OrderedDict() + + for sym in self.special: + self.add_special(sym) + + for sym, cnt in self.counter.most_common(self.max_size): + if cnt < self.min_freq: + break + self.add_symbol(sym) + + logger.info(f"Final vocab size {len(self.sym2idx)} from {len(self.counter)} unique tokens") + + @torch_only_method + def encode_file(self, path, ordered=False, verbose=False, add_eos=True, add_double_eos=False): + if verbose: + logger.info(f"encoding file {path} ...") + assert os.path.exists(path), f"Output file {path} not found" + encoded = [] + with open(path, "r", encoding="utf-8") as f: + for idx, line in enumerate(f): + if verbose and idx > 0 and idx % 500000 == 0: + logger.info(f" line {idx}") + symbols = self.tokenize(line, add_eos=add_eos, add_double_eos=add_double_eos) + encoded.append(self.convert_to_tensor(symbols)) + + if ordered: + encoded = torch.cat(encoded) + + return encoded + + @torch_only_method + def encode_sents(self, sents, ordered=False, verbose=False): + if verbose: + logger.info(f"encoding {len(sents)} sents ...") + encoded = [] + for idx, symbols in enumerate(sents): + if verbose and idx > 0 and idx % 500000 == 0: + logger.info(f" line {idx}") + encoded.append(self.convert_to_tensor(symbols)) + + if ordered: + encoded = torch.cat(encoded) + + return encoded + + def add_special(self, sym): + if sym not in self.sym2idx: + self.idx2sym.append(sym) + self.sym2idx[sym] = len(self.idx2sym) - 1 + setattr(self, f"{sym.strip('<>')}_idx", self.sym2idx[sym]) + + def add_symbol(self, sym): + if sym not in self.sym2idx: + self.idx2sym.append(sym) + self.sym2idx[sym] = len(self.idx2sym) - 1 + + def move_added_token(self, token: str, target_idx: int): + """ + Moves an added token to a specific position in the vocab. This method should be used when resizing an embedding + layer other than the last one in the `AdaptiveEmbedding` in order to move the token in the tokenizer from the + default position (at the very end) to the desired one. + + Args: + token: The token to move to a specific position in the vocab. + target_idx: The position where the token should be moved to. + """ + assert token in self.added_tokens_encoder, "Token which should be moved has to be an added token" + assert token not in self.idx2sym, "Token which should be moved is already in vocab" + + # Insert sym into vocab + self.idx2sym.insert(target_idx, token) + self.sym2idx[token] = target_idx + + # Shift following indices in sym2idx + for idx in range(target_idx + 1, len(self.idx2sym)): + current_sym = self.idx2sym[idx] + self.sym2idx[current_sym] = idx + + # Delete token from added_tokens + old_index = self._added_tokens_encoder.pop(token) + self._added_tokens_decoder.pop(old_index) + + def moses_punct_norm(self, text): + return self.moses_punct_normalizer.normalize(text) + + def moses_tokenize(self, text): + return self.moses_tokenizer.tokenize( + text, aggressive_dash_splits=True, return_str=False, escape=False, protected_patterns=self.never_split + ) + + def moses_pipeline(self, text: str) -> List[str]: + """ + Does basic tokenization using [`sacremoses.MosesPunctNormalizer`] and [`sacremoses.MosesTokenizer`] with + *aggressive_dash_splits=True* (see [`sacremoses.tokenize.MosesTokenizer.tokenize`]). Additionally, large + comma-separated numbers and floating point values are split. E.g. "23,000 people are 1.80m tall" -> "23 @,@ 000 + people are 1 @.@ 80m tall" + + Args: + text: Text to be tokenize + + Returns: + A list of tokenized string + + Example: + + ```python + >>> tokenizer = TransfoXLTokenizer.from_pretrained("transfo-xl/transfo-xl-wt103") + >>> tokenizer.moses_pipeline("23,000 people are 1.80 m tall") + ['23', '@,@', '000', 'people', 'are', '1', '@.@', '80', 'm', 'tall'] + ```""" + text = self.moses_punct_norm(text) + text = self.moses_tokenize(text) + text = tokenize_numbers(text) + return text + + def _convert_id_to_token(self, idx): + """Converts an id in a token (BPE) using the vocab.""" + assert 0 <= idx < len(self), f"Index {idx} out of vocabulary range" + return self.idx2sym[idx] + + def _convert_token_to_id(self, sym): + """Converts a token (str) in an id using the vocab.""" + if sym in self.sym2idx: + return self.sym2idx[sym] + else: + # logger.info(f'encounter unk {sym}') + # assert '' not in sym + if hasattr(self, "unk_idx"): + return self.sym2idx.get(sym, self.unk_idx) + # Backward compatibility with pre-trained models + elif "" in self.sym2idx: + return self.sym2idx[""] + elif "" in self.sym2idx: + return self.sym2idx[""] + else: + raise ValueError("Token not in vocabulary and no token in vocabulary for replacement.") + + def convert_tokens_to_string(self, tokens): + """ + Converts a sequence of tokens (string) in a single string. Additionally, the split numbers are converted back + into it's original form. + """ + out_string = self.moses_detokenizer.detokenize(tokens) + return detokenize_numbers(out_string).strip() + + @torch_only_method + def convert_to_tensor(self, symbols): + return torch.LongTensor(self.convert_tokens_to_ids(symbols)) + + @property + def vocab_size(self): + return len(self.idx2sym) + + def get_vocab(self): + vocab = self.sym2idx.copy() + vocab.update(self.added_tokens_encoder) + return vocab + + def _tokenize(self, line, add_eos=False, add_double_eos=False): + line = line.strip() + # convert to lower case + if self.lower_case: + line = line.lower() + + # empty delimiter '' will evaluate False + if self.delimiter == "": + symbols = line + else: + symbols = self.moses_pipeline(line) + + if add_double_eos: # lm1b + return [""] + symbols + [""] + elif add_eos: + return symbols + [""] + else: + return symbols + + +class LMOrderedIterator(object): + def __init__(self, data, bsz, bptt, device="cpu", ext_len=None): + """ + data -- LongTensor -- the LongTensor is strictly ordered + """ + self.bsz = bsz + self.bptt = bptt + self.ext_len = ext_len if ext_len is not None else 0 + + self.device = device + + # Work out how cleanly we can divide the dataset into bsz parts. + self.n_step = data.size(0) // bsz + + # Trim off any extra elements that wouldn't cleanly fit (remainders). + data = data.narrow(0, 0, self.n_step * bsz) + + # Evenly divide the data across the bsz batches. + self.data = data.view(bsz, -1).t().contiguous().to(device) + + # Number of mini-batches + self.n_batch = (self.n_step + self.bptt - 1) // self.bptt + + def get_batch(self, i, bptt=None): + if bptt is None: + bptt = self.bptt + seq_len = min(bptt, self.data.size(0) - 1 - i) + + end_idx = i + seq_len + beg_idx = max(0, i - self.ext_len) + + data = self.data[beg_idx:end_idx] + target = self.data[i + 1 : i + 1 + seq_len] + + data_out = data.transpose(0, 1).contiguous().to(self.device) + target_out = target.transpose(0, 1).contiguous().to(self.device) + + return data_out, target_out, seq_len + + def get_fixlen_iter(self, start=0): + for i in range(start, self.data.size(0) - 1, self.bptt): + yield self.get_batch(i) + + def get_varlen_iter(self, start=0, std=5, min_len=5, max_deviation=3): + max_len = self.bptt + max_deviation * std + i = start + while True: + bptt = self.bptt if np.random.random() < 0.95 else self.bptt / 2.0 + bptt = min(max_len, max(min_len, int(np.random.normal(bptt, std)))) + data, target, seq_len = self.get_batch(i, bptt) + i += seq_len + yield data, target, seq_len + if i >= self.data.size(0) - 2: + break + + def __iter__(self): + return self.get_fixlen_iter() + + +class LMShuffledIterator(object): + def __init__(self, data, bsz, bptt, device="cpu", ext_len=None, shuffle=False): + """ + data -- list[LongTensor] -- there is no order among the LongTensors + """ + self.data = data + + self.bsz = bsz + self.bptt = bptt + self.ext_len = ext_len if ext_len is not None else 0 + + self.device = device + self.shuffle = shuffle + + def get_sent_stream(self): + # index iterator + epoch_indices = np.random.permutation(len(self.data)) if self.shuffle else np.array(range(len(self.data))) + + # sentence iterator + for idx in epoch_indices: + yield self.data[idx] + + @torch_only_method + def stream_iterator(self, sent_stream): + # streams for each data in the batch + streams = [None] * self.bsz + + data = torch.LongTensor(self.bptt, self.bsz) + target = torch.LongTensor(self.bptt, self.bsz) + + n_retain = 0 + + while True: + # data : [n_retain+bptt x bsz] + # target : [bptt x bsz] + data[n_retain:].fill_(-1) + target.fill_(-1) + + valid_batch = True + + for i in range(self.bsz): + n_filled = 0 + try: + while n_filled < self.bptt: + if streams[i] is None or len(streams[i]) <= 1: + streams[i] = next(sent_stream) + # number of new tokens to fill in + n_new = min(len(streams[i]) - 1, self.bptt - n_filled) + # first n_retain tokens are retained from last batch + data[n_retain + n_filled : n_retain + n_filled + n_new, i] = streams[i][:n_new] + target[n_filled : n_filled + n_new, i] = streams[i][1 : n_new + 1] + streams[i] = streams[i][n_new:] + n_filled += n_new + except StopIteration: + valid_batch = False + break + + if not valid_batch: + return + + data_out = data.transpose(0, 1).contiguous().to(self.device) + target_out = target.transpose(0, 1).contiguous().to(self.device) + + yield data_out, target_out, self.bptt + + n_retain = min(data.size(0), self.ext_len) + if n_retain > 0: + data[:n_retain] = data[-n_retain:] + data.resize_(n_retain + self.bptt, data.size(1)) + + def __iter__(self): + # sent_stream is an iterator + sent_stream = self.get_sent_stream() + + for batch in self.stream_iterator(sent_stream): + yield batch + + +class LMMultiFileIterator(LMShuffledIterator): + def __init__(self, paths, vocab, bsz, bptt, device="cpu", ext_len=None, shuffle=False): + self.paths = paths + self.vocab = vocab + + self.bsz = bsz + self.bptt = bptt + self.ext_len = ext_len if ext_len is not None else 0 + + self.device = device + self.shuffle = shuffle + + def get_sent_stream(self, path): + sents = self.vocab.encode_file(path, add_double_eos=True) + if self.shuffle: + np.random.shuffle(sents) + sent_stream = iter(sents) + + return sent_stream + + def __iter__(self): + if self.shuffle: + np.random.shuffle(self.paths) + + for path in self.paths: + # sent_stream is an iterator + sent_stream = self.get_sent_stream(path) + for batch in self.stream_iterator(sent_stream): + yield batch + + +class TransfoXLCorpus(object): + @classmethod + @torch_only_method + def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs): + """ + Instantiate a pre-processed corpus. + """ + vocab = TransfoXLTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) + is_local = os.path.isdir(pretrained_model_name_or_path) + # redirect to the cache, if necessary + try: + resolved_corpus_file = cached_file(pretrained_model_name_or_path, CORPUS_NAME, cache_dir=cache_dir) + except EnvironmentError: + logger.error( + f"Corpus '{pretrained_model_name_or_path}' was not found in corpus list" + f" ({', '.join(PRETRAINED_CORPUS_ARCHIVE_MAP.keys())}. We assumed '{pretrained_model_name_or_path}'" + f" was a path or url but couldn't find files {CORPUS_NAME} at this path or url." + ) + return None + if is_local: + logger.info(f"loading corpus file {resolved_corpus_file}") + else: + logger.info(f"loading corpus file {CORPUS_NAME} from cache at {resolved_corpus_file}") + + # Instantiate tokenizer. + corpus = cls(*inputs, **kwargs) + corpus_dict = torch.load(resolved_corpus_file) + for key, value in corpus_dict.items(): + corpus.__dict__[key] = value + corpus.vocab = vocab + if corpus.train is not None: + corpus.train = torch.tensor(corpus.train, dtype=torch.long) + if corpus.valid is not None: + corpus.valid = torch.tensor(corpus.valid, dtype=torch.long) + if corpus.test is not None: + corpus.test = torch.tensor(corpus.test, dtype=torch.long) + return corpus + + def __init__(self, *args, **kwargs): + self.vocab = TransfoXLTokenizer(*args, **kwargs) + self.dataset = None + self.train = None + self.valid = None + self.test = None + + def build_corpus(self, path, dataset): + self.dataset = dataset + + if self.dataset in ["ptb", "wt2", "enwik8", "text8"]: + self.vocab.count_file(os.path.join(path, "train.txt")) + self.vocab.count_file(os.path.join(path, "valid.txt")) + self.vocab.count_file(os.path.join(path, "test.txt")) + elif self.dataset == "wt103": + self.vocab.count_file(os.path.join(path, "train.txt")) + elif self.dataset == "lm1b": + train_path_pattern = os.path.join( + path, + "1-billion-word-language-modeling-benchmark-r13output", + "training-monolingual.tokenized.shuffled", + "news.en-*", + ) + train_paths = glob.glob(train_path_pattern) + # the vocab will load from file when build_vocab() is called + + self.vocab.build_vocab() + + if self.dataset in ["ptb", "wt2", "wt103"]: + self.train = self.vocab.encode_file(os.path.join(path, "train.txt"), ordered=True) + self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=True) + self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=True) + elif self.dataset in ["enwik8", "text8"]: + self.train = self.vocab.encode_file(os.path.join(path, "train.txt"), ordered=True, add_eos=False) + self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=True, add_eos=False) + self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=True, add_eos=False) + elif self.dataset == "lm1b": + self.train = train_paths + self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=False, add_double_eos=True) + self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=False, add_double_eos=True) + + def get_iterator(self, split, *args, **kwargs): + if split == "train": + if self.dataset in ["ptb", "wt2", "wt103", "enwik8", "text8"]: + data_iter = LMOrderedIterator(self.train, *args, **kwargs) + elif self.dataset == "lm1b": + kwargs["shuffle"] = True + data_iter = LMMultiFileIterator(self.train, self.vocab, *args, **kwargs) + elif split in ["valid", "test"]: + data = self.valid if split == "valid" else self.test + if self.dataset in ["ptb", "wt2", "wt103", "enwik8", "text8"]: + data_iter = LMOrderedIterator(data, *args, **kwargs) + elif self.dataset == "lm1b": + data_iter = LMShuffledIterator(data, *args, **kwargs) + else: + data_iter = None + raise ValueError(f"Split not recognized: {split}") + + return data_iter + + +@torch_only_method +def get_lm_corpus(datadir, dataset): + fn = os.path.join(datadir, "cache.pt") + fn_pickle = os.path.join(datadir, "cache.pkl") + if os.path.exists(fn): + logger.info("Loading cached dataset...") + corpus = torch.load(fn_pickle) + elif os.path.exists(fn): + logger.info("Loading cached dataset from pickle...") + if not strtobool(os.environ.get("TRUST_REMOTE_CODE", "False")): + raise ValueError( + "This part uses `pickle.load` which is insecure and will execute arbitrary code that is potentially " + "malicious. It's recommended to never unpickle data that could have come from an untrusted source, or " + "that could have been tampered with. If you already verified the pickle data and decided to use it, " + "you can set the environment variable `TRUST_REMOTE_CODE` to `True` to allow it." + ) + with open(fn, "rb") as fp: + corpus = pickle.load(fp) + else: + logger.info(f"Producing dataset {dataset}...") + kwargs = {} + if dataset in ["wt103", "wt2"]: + kwargs["special"] = [""] + kwargs["lower_case"] = False + elif dataset == "ptb": + kwargs["special"] = [""] + kwargs["lower_case"] = True + elif dataset == "lm1b": + kwargs["special"] = [] + kwargs["lower_case"] = False + kwargs["vocab_file"] = os.path.join(datadir, "1b_word_vocab.txt") + elif dataset in ["enwik8", "text8"]: + pass + + corpus = TransfoXLCorpus(datadir, dataset, **kwargs) + torch.save(corpus, fn) + + return corpus diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/__init__.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..2db730984ffa031458589f1cc6c6c1944eba0e91 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/__init__.py @@ -0,0 +1,54 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available + + +_import_structure = {"configuration_van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"]} + + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_van"] = [ + "VAN_PRETRAINED_MODEL_ARCHIVE_LIST", + "VanForImageClassification", + "VanModel", + "VanPreTrainedModel", + ] + +if TYPE_CHECKING: + from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_van import ( + VAN_PRETRAINED_MODEL_ARCHIVE_LIST, + VanForImageClassification, + VanModel, + VanPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4e63a72165709de76b6aaf4c2997f4204a418ba0 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/__pycache__/configuration_van.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/__pycache__/configuration_van.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1c6c9dab3f0f0d1af16d01a23e09f64a57cdb769 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/__pycache__/configuration_van.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/__pycache__/convert_van_to_pytorch.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/__pycache__/convert_van_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c89f9553c3a5eb1deb189556d4eca8be2a79242d Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/__pycache__/convert_van_to_pytorch.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/__pycache__/modeling_van.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/__pycache__/modeling_van.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2b5945589e1895e7ea97af3f57b80868bfe4d3d5 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/__pycache__/modeling_van.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/configuration_van.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/configuration_van.py new file mode 100644 index 0000000000000000000000000000000000000000..85f228193c450e4cbb8a5c992176a75daef1010f --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/configuration_van.py @@ -0,0 +1,113 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" VAN model configuration""" + +from ....configuration_utils import PretrainedConfig +from ....utils import logging + + +logger = logging.get_logger(__name__) + +VAN_PRETRAINED_CONFIG_ARCHIVE_MAP = { + "Visual-Attention-Network/van-base": ( + "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" + ), +} + + +class VanConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`VanModel`]. It is used to instantiate a VAN model + according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the VAN + [Visual-Attention-Network/van-base](https://huggingface.co/Visual-Attention-Network/van-base) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + image_size (`int`, *optional*, defaults to 224): + The size (resolution) of each image. + num_channels (`int`, *optional*, defaults to 3): + The number of input channels. + patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3, 3]`): + Patch size to use in each stage's embedding layer. + strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`): + Stride size to use in each stage's embedding layer to downsample the input. + hidden_sizes (`List[int]`, *optional*, defaults to `[64, 128, 320, 512]`): + Dimensionality (hidden size) at each stage. + depths (`List[int]`, *optional*, defaults to `[3, 3, 12, 3]`): + Depth (number of layers) for each stage. + mlp_ratios (`List[int]`, *optional*, defaults to `[8, 8, 4, 4]`): + The expansion ratio for mlp layer at each stage. + hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in each layer. If string, `"gelu"`, `"relu"`, + `"selu"` and `"gelu_new"` are supported. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the layer normalization layers. + layer_scale_init_value (`float`, *optional*, defaults to 0.01): + The initial value for layer scaling. + drop_path_rate (`float`, *optional*, defaults to 0.0): + The dropout probability for stochastic depth. + dropout_rate (`float`, *optional*, defaults to 0.0): + The dropout probability for dropout. + + Example: + ```python + >>> from transformers import VanModel, VanConfig + + >>> # Initializing a VAN van-base style configuration + >>> configuration = VanConfig() + >>> # Initializing a model from the van-base style configuration + >>> model = VanModel(configuration) + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "van" + + def __init__( + self, + image_size=224, + num_channels=3, + patch_sizes=[7, 3, 3, 3], + strides=[4, 2, 2, 2], + hidden_sizes=[64, 128, 320, 512], + depths=[3, 3, 12, 3], + mlp_ratios=[8, 8, 4, 4], + hidden_act="gelu", + initializer_range=0.02, + layer_norm_eps=1e-6, + layer_scale_init_value=1e-2, + drop_path_rate=0.0, + dropout_rate=0.0, + **kwargs, + ): + super().__init__(**kwargs) + self.image_size = image_size + self.num_channels = num_channels + self.patch_sizes = patch_sizes + self.strides = strides + self.hidden_sizes = hidden_sizes + self.depths = depths + self.mlp_ratios = mlp_ratios + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + self.layer_scale_init_value = layer_scale_init_value + self.drop_path_rate = drop_path_rate + self.dropout_rate = dropout_rate diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/convert_van_to_pytorch.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/convert_van_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..20492e42be2043d50e39b7573fc4e9fca05c7d32 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/convert_van_to_pytorch.py @@ -0,0 +1,291 @@ +# coding=utf-8 +# Copyright 2022 BNRist (Tsinghua University), TKLNDST (Nankai University) and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert VAN checkpoints from the original repository. + +URL: https://github.com/Visual-Attention-Network/VAN-Classification""" + + +import argparse +import json +import sys +from dataclasses import dataclass, field +from functools import partial +from pathlib import Path +from typing import List + +import torch +import torch.nn as nn +from huggingface_hub import cached_download, hf_hub_download +from torch import Tensor + +from transformers import AutoImageProcessor, VanConfig, VanForImageClassification +from transformers.models.deprecated.van.modeling_van import VanLayerScaling +from transformers.utils import logging + + +logging.set_verbosity_info() +logger = logging.get_logger(__name__) + + +@dataclass +class Tracker: + module: nn.Module + traced: List[nn.Module] = field(default_factory=list) + handles: list = field(default_factory=list) + + def _forward_hook(self, m, inputs: Tensor, outputs: Tensor): + has_not_submodules = len(list(m.modules())) == 1 or isinstance(m, nn.Conv2d) or isinstance(m, nn.BatchNorm2d) + if has_not_submodules: + if not isinstance(m, VanLayerScaling): + self.traced.append(m) + + def __call__(self, x: Tensor): + for m in self.module.modules(): + self.handles.append(m.register_forward_hook(self._forward_hook)) + self.module(x) + [x.remove() for x in self.handles] + return self + + @property + def parametrized(self): + # check the len of the state_dict keys to see if we have learnable params + return list(filter(lambda x: len(list(x.state_dict().keys())) > 0, self.traced)) + + +@dataclass +class ModuleTransfer: + src: nn.Module + dest: nn.Module + verbose: int = 0 + src_skip: List = field(default_factory=list) + dest_skip: List = field(default_factory=list) + + def __call__(self, x: Tensor): + """ + Transfer the weights of `self.src` to `self.dest` by performing a forward pass using `x` as input. Under the + hood we tracked all the operations in both modules. + """ + dest_traced = Tracker(self.dest)(x).parametrized + src_traced = Tracker(self.src)(x).parametrized + + src_traced = list(filter(lambda x: type(x) not in self.src_skip, src_traced)) + dest_traced = list(filter(lambda x: type(x) not in self.dest_skip, dest_traced)) + + if len(dest_traced) != len(src_traced): + raise Exception( + f"Numbers of operations are different. Source module has {len(src_traced)} operations while" + f" destination module has {len(dest_traced)}." + ) + + for dest_m, src_m in zip(dest_traced, src_traced): + dest_m.load_state_dict(src_m.state_dict()) + if self.verbose == 1: + print(f"Transfered from={src_m} to={dest_m}") + + +def copy_parameters(from_model: nn.Module, our_model: nn.Module) -> nn.Module: + # nn.Parameter cannot be tracked by the Tracker, thus we need to manually convert them + from_state_dict = from_model.state_dict() + our_state_dict = our_model.state_dict() + config = our_model.config + all_keys = [] + for stage_idx in range(len(config.hidden_sizes)): + for block_id in range(config.depths[stage_idx]): + from_key = f"block{stage_idx + 1}.{block_id}.layer_scale_1" + to_key = f"van.encoder.stages.{stage_idx}.layers.{block_id}.attention_scaling.weight" + + all_keys.append((from_key, to_key)) + from_key = f"block{stage_idx + 1}.{block_id}.layer_scale_2" + to_key = f"van.encoder.stages.{stage_idx}.layers.{block_id}.mlp_scaling.weight" + + all_keys.append((from_key, to_key)) + + for from_key, to_key in all_keys: + our_state_dict[to_key] = from_state_dict.pop(from_key) + + our_model.load_state_dict(our_state_dict) + return our_model + + +def convert_weight_and_push( + name: str, + config: VanConfig, + checkpoint: str, + from_model: nn.Module, + save_directory: Path, + push_to_hub: bool = True, +): + print(f"Downloading weights for {name}...") + checkpoint_path = cached_download(checkpoint) + print(f"Converting {name}...") + from_state_dict = torch.load(checkpoint_path)["state_dict"] + from_model.load_state_dict(from_state_dict) + from_model.eval() + with torch.no_grad(): + our_model = VanForImageClassification(config).eval() + module_transfer = ModuleTransfer(src=from_model, dest=our_model) + x = torch.randn((1, 3, 224, 224)) + module_transfer(x) + our_model = copy_parameters(from_model, our_model) + + if not torch.allclose(from_model(x), our_model(x).logits): + raise ValueError("The model logits don't match the original one.") + + checkpoint_name = name + print(checkpoint_name) + + if push_to_hub: + our_model.push_to_hub( + repo_path_or_name=save_directory / checkpoint_name, + commit_message="Add model", + use_temp_dir=True, + ) + + # we can use the convnext one + image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k") + image_processor.push_to_hub( + repo_path_or_name=save_directory / checkpoint_name, + commit_message="Add image processor", + use_temp_dir=True, + ) + + print(f"Pushed {checkpoint_name}") + + +def convert_weights_and_push(save_directory: Path, model_name: str = None, push_to_hub: bool = True): + filename = "imagenet-1k-id2label.json" + num_labels = 1000 + + repo_id = "huggingface/label-files" + num_labels = num_labels + id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) + id2label = {int(k): v for k, v in id2label.items()} + + id2label = id2label + label2id = {v: k for k, v in id2label.items()} + + ImageNetPreTrainedConfig = partial(VanConfig, num_labels=num_labels, id2label=id2label, label2id=label2id) + + names_to_config = { + "van-tiny": ImageNetPreTrainedConfig( + hidden_sizes=[32, 64, 160, 256], + depths=[3, 3, 5, 2], + mlp_ratios=[8, 8, 4, 4], + ), + "van-small": ImageNetPreTrainedConfig( + hidden_sizes=[64, 128, 320, 512], + depths=[2, 2, 4, 2], + mlp_ratios=[8, 8, 4, 4], + ), + "van-base": ImageNetPreTrainedConfig( + hidden_sizes=[64, 128, 320, 512], + depths=[3, 3, 12, 3], + mlp_ratios=[8, 8, 4, 4], + ), + "van-large": ImageNetPreTrainedConfig( + hidden_sizes=[64, 128, 320, 512], + depths=[3, 5, 27, 3], + mlp_ratios=[8, 8, 4, 4], + ), + } + + names_to_original_models = { + "van-tiny": van_tiny, + "van-small": van_small, + "van-base": van_base, + "van-large": van_large, + } + + names_to_original_checkpoints = { + "van-tiny": ( + "https://huggingface.co/Visual-Attention-Network/VAN-Tiny-original/resolve/main/van_tiny_754.pth.tar" + ), + "van-small": ( + "https://huggingface.co/Visual-Attention-Network/VAN-Small-original/resolve/main/van_small_811.pth.tar" + ), + "van-base": ( + "https://huggingface.co/Visual-Attention-Network/VAN-Base-original/resolve/main/van_base_828.pth.tar" + ), + "van-large": ( + "https://huggingface.co/Visual-Attention-Network/VAN-Large-original/resolve/main/van_large_839.pth.tar" + ), + } + + if model_name: + convert_weight_and_push( + model_name, + names_to_config[model_name], + checkpoint=names_to_original_checkpoints[model_name], + from_model=names_to_original_models[model_name](), + save_directory=save_directory, + push_to_hub=push_to_hub, + ) + else: + for model_name, config in names_to_config.items(): + convert_weight_and_push( + model_name, + config, + checkpoint=names_to_original_checkpoints[model_name], + from_model=names_to_original_models[model_name](), + save_directory=save_directory, + push_to_hub=push_to_hub, + ) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--model-name", + default=None, + type=str, + help=( + "The name of the model you wish to convert, it must be one of the supported resnet* architecture," + " currently: van-tiny/small/base/large. If `None`, all of them will the converted." + ), + ) + parser.add_argument( + "--pytorch_dump_folder_path", + default=None, + type=Path, + required=True, + help="Path to the output PyTorch model directory.", + ) + parser.add_argument( + "--van_dir", + required=True, + type=Path, + help=( + "A path to VAN's original implementation directory. You can download from here:" + " https://github.com/Visual-Attention-Network/VAN-Classification" + ), + ) + parser.add_argument( + "--push_to_hub", + default=True, + type=bool, + required=False, + help="If True, push model and image processor to the hub.", + ) + + args = parser.parse_args() + pytorch_dump_folder_path: Path = args.pytorch_dump_folder_path + pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) + van_dir = args.van_dir + # append the path to the parents to maskformer dir + sys.path.append(str(van_dir.parent)) + from van.models.van import van_base, van_large, van_small, van_tiny + + convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/modeling_van.py b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/modeling_van.py new file mode 100644 index 0000000000000000000000000000000000000000..e0f88467e1e75b6fed5db090c6090360ceb55c08 --- /dev/null +++ b/env-llmeval/lib/python3.10/site-packages/transformers/models/deprecated/van/modeling_van.py @@ -0,0 +1,543 @@ +# coding=utf-8 +# Copyright 2022 BNRist (Tsinghua University), TKLNDST (Nankai University) and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch Visual Attention Network (VAN) model.""" + +import math +from collections import OrderedDict +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ....activations import ACT2FN +from ....modeling_outputs import ( + BaseModelOutputWithNoAttention, + BaseModelOutputWithPoolingAndNoAttention, + ImageClassifierOutputWithNoAttention, +) +from ....modeling_utils import PreTrainedModel +from ....utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_van import VanConfig + + +logger = logging.get_logger(__name__) + +# General docstring +_CONFIG_FOR_DOC = "VanConfig" + +# Base docstring +_CHECKPOINT_FOR_DOC = "Visual-Attention-Network/van-base" +_EXPECTED_OUTPUT_SHAPE = [1, 512, 7, 7] + +# Image classification docstring +_IMAGE_CLASS_CHECKPOINT = "Visual-Attention-Network/van-base" +_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" + +VAN_PRETRAINED_MODEL_ARCHIVE_LIST = [ + "Visual-Attention-Network/van-base", + # See all VAN models at https://huggingface.co/models?filter=van +] + + +# Copied from transformers.models.convnext.modeling_convnext.drop_path +def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: + """ + Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). + + Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, + however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... + See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the + layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the + argument. + """ + if drop_prob == 0.0 or not training: + return input + keep_prob = 1 - drop_prob + shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets + random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) + random_tensor.floor_() # binarize + output = input.div(keep_prob) * random_tensor + return output + + +# Copied from transformers.models.convnext.modeling_convnext.ConvNextDropPath with ConvNext->Van +class VanDropPath(nn.Module): + """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" + + def __init__(self, drop_prob: Optional[float] = None) -> None: + super().__init__() + self.drop_prob = drop_prob + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + return drop_path(hidden_states, self.drop_prob, self.training) + + def extra_repr(self) -> str: + return "p={}".format(self.drop_prob) + + +class VanOverlappingPatchEmbedder(nn.Module): + """ + Downsamples the input using a patchify operation with a `stride` of 4 by default making adjacent windows overlap by + half of the area. From [PVTv2: Improved Baselines with Pyramid Vision + Transformer](https://arxiv.org/abs/2106.13797). + """ + + def __init__(self, in_channels: int, hidden_size: int, patch_size: int = 7, stride: int = 4): + super().__init__() + self.convolution = nn.Conv2d( + in_channels, hidden_size, kernel_size=patch_size, stride=stride, padding=patch_size // 2 + ) + self.normalization = nn.BatchNorm2d(hidden_size) + + def forward(self, input: torch.Tensor) -> torch.Tensor: + hidden_state = self.convolution(input) + hidden_state = self.normalization(hidden_state) + return hidden_state + + +class VanMlpLayer(nn.Module): + """ + MLP with depth-wise convolution, from [PVTv2: Improved Baselines with Pyramid Vision + Transformer](https://arxiv.org/abs/2106.13797). + """ + + def __init__( + self, + in_channels: int, + hidden_size: int, + out_channels: int, + hidden_act: str = "gelu", + dropout_rate: float = 0.5, + ): + super().__init__() + self.in_dense = nn.Conv2d(in_channels, hidden_size, kernel_size=1) + self.depth_wise = nn.Conv2d(hidden_size, hidden_size, kernel_size=3, padding=1, groups=hidden_size) + self.activation = ACT2FN[hidden_act] + self.dropout1 = nn.Dropout(dropout_rate) + self.out_dense = nn.Conv2d(hidden_size, out_channels, kernel_size=1) + self.dropout2 = nn.Dropout(dropout_rate) + + def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: + hidden_state = self.in_dense(hidden_state) + hidden_state = self.depth_wise(hidden_state) + hidden_state = self.activation(hidden_state) + hidden_state = self.dropout1(hidden_state) + hidden_state = self.out_dense(hidden_state) + hidden_state = self.dropout2(hidden_state) + return hidden_state + + +class VanLargeKernelAttention(nn.Module): + """ + Basic Large Kernel Attention (LKA). + """ + + def __init__(self, hidden_size: int): + super().__init__() + self.depth_wise = nn.Conv2d(hidden_size, hidden_size, kernel_size=5, padding=2, groups=hidden_size) + self.depth_wise_dilated = nn.Conv2d( + hidden_size, hidden_size, kernel_size=7, dilation=3, padding=9, groups=hidden_size + ) + self.point_wise = nn.Conv2d(hidden_size, hidden_size, kernel_size=1) + + def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: + hidden_state = self.depth_wise(hidden_state) + hidden_state = self.depth_wise_dilated(hidden_state) + hidden_state = self.point_wise(hidden_state) + return hidden_state + + +class VanLargeKernelAttentionLayer(nn.Module): + """ + Computes attention using Large Kernel Attention (LKA) and attends the input. + """ + + def __init__(self, hidden_size: int): + super().__init__() + self.attention = VanLargeKernelAttention(hidden_size) + + def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: + attention = self.attention(hidden_state) + attended = hidden_state * attention + return attended + + +class VanSpatialAttentionLayer(nn.Module): + """ + Van spatial attention layer composed by projection (via conv) -> act -> Large Kernel Attention (LKA) attention -> + projection (via conv) + residual connection. + """ + + def __init__(self, hidden_size: int, hidden_act: str = "gelu"): + super().__init__() + self.pre_projection = nn.Sequential( + OrderedDict( + [ + ("conv", nn.Conv2d(hidden_size, hidden_size, kernel_size=1)), + ("act", ACT2FN[hidden_act]), + ] + ) + ) + self.attention_layer = VanLargeKernelAttentionLayer(hidden_size) + self.post_projection = nn.Conv2d(hidden_size, hidden_size, kernel_size=1) + + def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: + residual = hidden_state + hidden_state = self.pre_projection(hidden_state) + hidden_state = self.attention_layer(hidden_state) + hidden_state = self.post_projection(hidden_state) + hidden_state = hidden_state + residual + return hidden_state + + +class VanLayerScaling(nn.Module): + """ + Scales the inputs by a learnable parameter initialized by `initial_value`. + """ + + def __init__(self, hidden_size: int, initial_value: float = 1e-2): + super().__init__() + self.weight = nn.Parameter(initial_value * torch.ones((hidden_size)), requires_grad=True) + + def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: + # unsqueezing for broadcasting + hidden_state = self.weight.unsqueeze(-1).unsqueeze(-1) * hidden_state + return hidden_state + + +class VanLayer(nn.Module): + """ + Van layer composed by normalization layers, large kernel attention (LKA) and a multi layer perceptron (MLP). + """ + + def __init__( + self, + config: VanConfig, + hidden_size: int, + mlp_ratio: int = 4, + drop_path_rate: float = 0.5, + ): + super().__init__() + self.drop_path = VanDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() + self.pre_normomalization = nn.BatchNorm2d(hidden_size) + self.attention = VanSpatialAttentionLayer(hidden_size, config.hidden_act) + self.attention_scaling = VanLayerScaling(hidden_size, config.layer_scale_init_value) + self.post_normalization = nn.BatchNorm2d(hidden_size) + self.mlp = VanMlpLayer( + hidden_size, hidden_size * mlp_ratio, hidden_size, config.hidden_act, config.dropout_rate + ) + self.mlp_scaling = VanLayerScaling(hidden_size, config.layer_scale_init_value) + + def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: + residual = hidden_state + # attention + hidden_state = self.pre_normomalization(hidden_state) + hidden_state = self.attention(hidden_state) + hidden_state = self.attention_scaling(hidden_state) + hidden_state = self.drop_path(hidden_state) + # residual connection + hidden_state = residual + hidden_state + residual = hidden_state + # mlp + hidden_state = self.post_normalization(hidden_state) + hidden_state = self.mlp(hidden_state) + hidden_state = self.mlp_scaling(hidden_state) + hidden_state = self.drop_path(hidden_state) + # residual connection + hidden_state = residual + hidden_state + return hidden_state + + +class VanStage(nn.Module): + """ + VanStage, consisting of multiple layers. + """ + + def __init__( + self, + config: VanConfig, + in_channels: int, + hidden_size: int, + patch_size: int, + stride: int, + depth: int, + mlp_ratio: int = 4, + drop_path_rate: float = 0.0, + ): + super().__init__() + self.embeddings = VanOverlappingPatchEmbedder(in_channels, hidden_size, patch_size, stride) + self.layers = nn.Sequential( + *[ + VanLayer( + config, + hidden_size, + mlp_ratio=mlp_ratio, + drop_path_rate=drop_path_rate, + ) + for _ in range(depth) + ] + ) + self.normalization = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) + + def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: + hidden_state = self.embeddings(hidden_state) + hidden_state = self.layers(hidden_state) + # rearrange b c h w -> b (h w) c + batch_size, hidden_size, height, width = hidden_state.shape + hidden_state = hidden_state.flatten(2).transpose(1, 2) + hidden_state = self.normalization(hidden_state) + # rearrange b (h w) c- > b c h w + hidden_state = hidden_state.view(batch_size, height, width, hidden_size).permute(0, 3, 1, 2) + return hidden_state + + +class VanEncoder(nn.Module): + """ + VanEncoder, consisting of multiple stages. + """ + + def __init__(self, config: VanConfig): + super().__init__() + self.stages = nn.ModuleList([]) + patch_sizes = config.patch_sizes + strides = config.strides + hidden_sizes = config.hidden_sizes + depths = config.depths + mlp_ratios = config.mlp_ratios + drop_path_rates = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] + + for num_stage, (patch_size, stride, hidden_size, depth, mlp_expantion, drop_path_rate) in enumerate( + zip(patch_sizes, strides, hidden_sizes, depths, mlp_ratios, drop_path_rates) + ): + is_first_stage = num_stage == 0 + in_channels = hidden_sizes[num_stage - 1] + if is_first_stage: + in_channels = config.num_channels + self.stages.append( + VanStage( + config, + in_channels, + hidden_size, + patch_size=patch_size, + stride=stride, + depth=depth, + mlp_ratio=mlp_expantion, + drop_path_rate=drop_path_rate, + ) + ) + + def forward( + self, + hidden_state: torch.Tensor, + output_hidden_states: Optional[bool] = False, + return_dict: Optional[bool] = True, + ) -> Union[Tuple, BaseModelOutputWithNoAttention]: + all_hidden_states = () if output_hidden_states else None + + for _, stage_module in enumerate(self.stages): + hidden_state = stage_module(hidden_state) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_state,) + + if not return_dict: + return tuple(v for v in [hidden_state, all_hidden_states] if v is not None) + + return BaseModelOutputWithNoAttention(last_hidden_state=hidden_state, hidden_states=all_hidden_states) + + +class VanPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = VanConfig + base_model_prefix = "van" + main_input_name = "pixel_values" + supports_gradient_checkpointing = True + + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + nn.init.trunc_normal_(module.weight, std=self.config.initializer_range) + if isinstance(module, nn.Linear) and module.bias is not None: + nn.init.constant_(module.bias, 0) + elif isinstance(module, nn.LayerNorm): + nn.init.constant_(module.bias, 0) + nn.init.constant_(module.weight, 1.0) + elif isinstance(module, nn.Conv2d): + fan_out = module.kernel_size[0] * module.kernel_size[1] * module.out_channels + fan_out //= module.groups + module.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) + if module.bias is not None: + module.bias.data.zero_() + + +VAN_START_DOCSTRING = r""" + This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it + as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and + behavior. + + Parameters: + config ([`VanConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +VAN_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See + [`ConvNextImageProcessor.__call__`] for details. + + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all stages. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare VAN model outputting raw features without any specific head on top. Note, VAN does not have an embedding" + " layer.", + VAN_START_DOCSTRING, +) +class VanModel(VanPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.config = config + self.encoder = VanEncoder(config) + # final layernorm layer + self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps) + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(VAN_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=BaseModelOutputWithPoolingAndNoAttention, + config_class=_CONFIG_FOR_DOC, + modality="vision", + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, + pixel_values: Optional[torch.FloatTensor], + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]: + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + encoder_outputs = self.encoder( + pixel_values, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + last_hidden_state = encoder_outputs[0] + # global average pooling, n c w h -> n c + pooled_output = last_hidden_state.mean(dim=[-2, -1]) + + if not return_dict: + return (last_hidden_state, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPoolingAndNoAttention( + last_hidden_state=last_hidden_state, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + ) + + +@add_start_docstrings( + """ + VAN Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for + ImageNet. + """, + VAN_START_DOCSTRING, +) +class VanForImageClassification(VanPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.van = VanModel(config) + # Classifier head + self.classifier = ( + nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(VAN_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_IMAGE_CLASS_CHECKPOINT, + output_type=ImageClassifierOutputWithNoAttention, + config_class=_CONFIG_FOR_DOC, + expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, + ) + def forward( + self, + pixel_values: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the image classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.van(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) + + pooled_output = outputs.pooler_output if return_dict else outputs[1] + + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.config.num_labels == 1: + self.config.problem_type = "regression" + elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.config.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states) diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/__init__.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c0a825dc74043fd2991cc03e7e543c3defaed14d Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/__init__.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/configuration_mobilevit.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/configuration_mobilevit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..faccf30b588c7d2ef999da0de4d1981053372848 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/configuration_mobilevit.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/feature_extraction_mobilevit.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/feature_extraction_mobilevit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0217be49a925a159f14a34f61c023e892905635b Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/feature_extraction_mobilevit.cpython-310.pyc differ diff --git a/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/modeling_mobilevit.cpython-310.pyc b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/modeling_mobilevit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7f9f7b70080ba98528739c5f5c6eecb2fdfcc3d0 Binary files /dev/null and b/env-llmeval/lib/python3.10/site-packages/transformers/models/mobilevit/__pycache__/modeling_mobilevit.cpython-310.pyc differ