Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/__init__.py +45 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/__pycache__/curve.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/__pycache__/ellipse.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/__pycache__/entity.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/__pycache__/exceptions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/__pycache__/line.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/__pycache__/parabola.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/__pycache__/plane.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/__pycache__/point.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/__pycache__/polygon.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/__pycache__/util.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/curve.py +424 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/ellipse.py +1780 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/exceptions.py +5 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/line.py +2803 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/parabola.py +422 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/plane.py +884 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/point.py +1378 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_curve.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_ellipse.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_entity.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_geometrysets.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_line.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_parabola.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_plane.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_point.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_polygon.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_util.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/test_curve.py +120 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/test_ellipse.py +601 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/test_entity.py +120 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/test_geometrysets.py +38 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/test_line.py +852 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/test_parabola.py +143 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/test_plane.py +268 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/test_point.py +481 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/test_polygon.py +664 -0
- llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/test_util.py +151 -0
- llmeval-env/lib/python3.10/site-packages/sympy/solvers/__init__.py +71 -0
- llmeval-env/lib/python3.10/site-packages/sympy/solvers/benchmarks/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/solvers/benchmarks/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/solvers/benchmarks/__pycache__/bench_solvers.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/solvers/benchmarks/bench_solvers.py +12 -0
- llmeval-env/lib/python3.10/site-packages/sympy/solvers/bivariate.py +509 -0
- llmeval-env/lib/python3.10/site-packages/sympy/solvers/decompogen.py +126 -0
- llmeval-env/lib/python3.10/site-packages/sympy/solvers/deutils.py +273 -0
- llmeval-env/lib/python3.10/site-packages/sympy/solvers/inequalities.py +984 -0
llmeval-env/lib/python3.10/site-packages/sympy/geometry/__init__.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A geometry module for the SymPy library. This module contains all of the
|
3 |
+
entities and functions needed to construct basic geometrical data and to
|
4 |
+
perform simple informational queries.
|
5 |
+
|
6 |
+
Usage:
|
7 |
+
======
|
8 |
+
|
9 |
+
Examples
|
10 |
+
========
|
11 |
+
|
12 |
+
"""
|
13 |
+
from sympy.geometry.point import Point, Point2D, Point3D
|
14 |
+
from sympy.geometry.line import Line, Ray, Segment, Line2D, Segment2D, Ray2D, \
|
15 |
+
Line3D, Segment3D, Ray3D
|
16 |
+
from sympy.geometry.plane import Plane
|
17 |
+
from sympy.geometry.ellipse import Ellipse, Circle
|
18 |
+
from sympy.geometry.polygon import Polygon, RegularPolygon, Triangle, rad, deg
|
19 |
+
from sympy.geometry.util import are_similar, centroid, convex_hull, idiff, \
|
20 |
+
intersection, closest_points, farthest_points
|
21 |
+
from sympy.geometry.exceptions import GeometryError
|
22 |
+
from sympy.geometry.curve import Curve
|
23 |
+
from sympy.geometry.parabola import Parabola
|
24 |
+
|
25 |
+
__all__ = [
|
26 |
+
'Point', 'Point2D', 'Point3D',
|
27 |
+
|
28 |
+
'Line', 'Ray', 'Segment', 'Line2D', 'Segment2D', 'Ray2D', 'Line3D',
|
29 |
+
'Segment3D', 'Ray3D',
|
30 |
+
|
31 |
+
'Plane',
|
32 |
+
|
33 |
+
'Ellipse', 'Circle',
|
34 |
+
|
35 |
+
'Polygon', 'RegularPolygon', 'Triangle', 'rad', 'deg',
|
36 |
+
|
37 |
+
'are_similar', 'centroid', 'convex_hull', 'idiff', 'intersection',
|
38 |
+
'closest_points', 'farthest_points',
|
39 |
+
|
40 |
+
'GeometryError',
|
41 |
+
|
42 |
+
'Curve',
|
43 |
+
|
44 |
+
'Parabola',
|
45 |
+
]
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.47 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/__pycache__/curve.cpython-310.pyc
ADDED
Binary file (11.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/__pycache__/ellipse.cpython-310.pyc
ADDED
Binary file (48.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/__pycache__/entity.cpython-310.pyc
ADDED
Binary file (21.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/__pycache__/exceptions.cpython-310.pyc
ADDED
Binary file (460 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/__pycache__/line.cpython-310.pyc
ADDED
Binary file (70.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/__pycache__/parabola.cpython-310.pyc
ADDED
Binary file (11.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/__pycache__/plane.cpython-310.pyc
ADDED
Binary file (25.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/__pycache__/point.cpython-310.pyc
ADDED
Binary file (39.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/__pycache__/polygon.cpython-310.pyc
ADDED
Binary file (78 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/__pycache__/util.cpython-310.pyc
ADDED
Binary file (20.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/curve.py
ADDED
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Curves in 2-dimensional Euclidean space.
|
2 |
+
|
3 |
+
Contains
|
4 |
+
========
|
5 |
+
Curve
|
6 |
+
|
7 |
+
"""
|
8 |
+
|
9 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
10 |
+
from sympy.core import diff
|
11 |
+
from sympy.core.containers import Tuple
|
12 |
+
from sympy.core.symbol import _symbol
|
13 |
+
from sympy.geometry.entity import GeometryEntity, GeometrySet
|
14 |
+
from sympy.geometry.point import Point
|
15 |
+
from sympy.integrals import integrate
|
16 |
+
from sympy.matrices import Matrix, rot_axis3
|
17 |
+
from sympy.utilities.iterables import is_sequence
|
18 |
+
|
19 |
+
from mpmath.libmp.libmpf import prec_to_dps
|
20 |
+
|
21 |
+
|
22 |
+
class Curve(GeometrySet):
|
23 |
+
"""A curve in space.
|
24 |
+
|
25 |
+
A curve is defined by parametric functions for the coordinates, a
|
26 |
+
parameter and the lower and upper bounds for the parameter value.
|
27 |
+
|
28 |
+
Parameters
|
29 |
+
==========
|
30 |
+
|
31 |
+
function : list of functions
|
32 |
+
limits : 3-tuple
|
33 |
+
Function parameter and lower and upper bounds.
|
34 |
+
|
35 |
+
Attributes
|
36 |
+
==========
|
37 |
+
|
38 |
+
functions
|
39 |
+
parameter
|
40 |
+
limits
|
41 |
+
|
42 |
+
Raises
|
43 |
+
======
|
44 |
+
|
45 |
+
ValueError
|
46 |
+
When `functions` are specified incorrectly.
|
47 |
+
When `limits` are specified incorrectly.
|
48 |
+
|
49 |
+
Examples
|
50 |
+
========
|
51 |
+
|
52 |
+
>>> from sympy import Curve, sin, cos, interpolate
|
53 |
+
>>> from sympy.abc import t, a
|
54 |
+
>>> C = Curve((sin(t), cos(t)), (t, 0, 2))
|
55 |
+
>>> C.functions
|
56 |
+
(sin(t), cos(t))
|
57 |
+
>>> C.limits
|
58 |
+
(t, 0, 2)
|
59 |
+
>>> C.parameter
|
60 |
+
t
|
61 |
+
>>> C = Curve((t, interpolate([1, 4, 9, 16], t)), (t, 0, 1)); C
|
62 |
+
Curve((t, t**2), (t, 0, 1))
|
63 |
+
>>> C.subs(t, 4)
|
64 |
+
Point2D(4, 16)
|
65 |
+
>>> C.arbitrary_point(a)
|
66 |
+
Point2D(a, a**2)
|
67 |
+
|
68 |
+
See Also
|
69 |
+
========
|
70 |
+
|
71 |
+
sympy.core.function.Function
|
72 |
+
sympy.polys.polyfuncs.interpolate
|
73 |
+
|
74 |
+
"""
|
75 |
+
|
76 |
+
def __new__(cls, function, limits):
|
77 |
+
if not is_sequence(function) or len(function) != 2:
|
78 |
+
raise ValueError("Function argument should be (x(t), y(t)) "
|
79 |
+
"but got %s" % str(function))
|
80 |
+
if not is_sequence(limits) or len(limits) != 3:
|
81 |
+
raise ValueError("Limit argument should be (t, tmin, tmax) "
|
82 |
+
"but got %s" % str(limits))
|
83 |
+
|
84 |
+
return GeometryEntity.__new__(cls, Tuple(*function), Tuple(*limits))
|
85 |
+
|
86 |
+
def __call__(self, f):
|
87 |
+
return self.subs(self.parameter, f)
|
88 |
+
|
89 |
+
def _eval_subs(self, old, new):
|
90 |
+
if old == self.parameter:
|
91 |
+
return Point(*[f.subs(old, new) for f in self.functions])
|
92 |
+
|
93 |
+
def _eval_evalf(self, prec=15, **options):
|
94 |
+
f, (t, a, b) = self.args
|
95 |
+
dps = prec_to_dps(prec)
|
96 |
+
f = tuple([i.evalf(n=dps, **options) for i in f])
|
97 |
+
a, b = [i.evalf(n=dps, **options) for i in (a, b)]
|
98 |
+
return self.func(f, (t, a, b))
|
99 |
+
|
100 |
+
def arbitrary_point(self, parameter='t'):
|
101 |
+
"""A parameterized point on the curve.
|
102 |
+
|
103 |
+
Parameters
|
104 |
+
==========
|
105 |
+
|
106 |
+
parameter : str or Symbol, optional
|
107 |
+
Default value is 't'.
|
108 |
+
The Curve's parameter is selected with None or self.parameter
|
109 |
+
otherwise the provided symbol is used.
|
110 |
+
|
111 |
+
Returns
|
112 |
+
=======
|
113 |
+
|
114 |
+
Point :
|
115 |
+
Returns a point in parametric form.
|
116 |
+
|
117 |
+
Raises
|
118 |
+
======
|
119 |
+
|
120 |
+
ValueError
|
121 |
+
When `parameter` already appears in the functions.
|
122 |
+
|
123 |
+
Examples
|
124 |
+
========
|
125 |
+
|
126 |
+
>>> from sympy import Curve, Symbol
|
127 |
+
>>> from sympy.abc import s
|
128 |
+
>>> C = Curve([2*s, s**2], (s, 0, 2))
|
129 |
+
>>> C.arbitrary_point()
|
130 |
+
Point2D(2*t, t**2)
|
131 |
+
>>> C.arbitrary_point(C.parameter)
|
132 |
+
Point2D(2*s, s**2)
|
133 |
+
>>> C.arbitrary_point(None)
|
134 |
+
Point2D(2*s, s**2)
|
135 |
+
>>> C.arbitrary_point(Symbol('a'))
|
136 |
+
Point2D(2*a, a**2)
|
137 |
+
|
138 |
+
See Also
|
139 |
+
========
|
140 |
+
|
141 |
+
sympy.geometry.point.Point
|
142 |
+
|
143 |
+
"""
|
144 |
+
if parameter is None:
|
145 |
+
return Point(*self.functions)
|
146 |
+
|
147 |
+
tnew = _symbol(parameter, self.parameter, real=True)
|
148 |
+
t = self.parameter
|
149 |
+
if (tnew.name != t.name and
|
150 |
+
tnew.name in (f.name for f in self.free_symbols)):
|
151 |
+
raise ValueError('Symbol %s already appears in object '
|
152 |
+
'and cannot be used as a parameter.' % tnew.name)
|
153 |
+
return Point(*[w.subs(t, tnew) for w in self.functions])
|
154 |
+
|
155 |
+
@property
|
156 |
+
def free_symbols(self):
|
157 |
+
"""Return a set of symbols other than the bound symbols used to
|
158 |
+
parametrically define the Curve.
|
159 |
+
|
160 |
+
Returns
|
161 |
+
=======
|
162 |
+
|
163 |
+
set :
|
164 |
+
Set of all non-parameterized symbols.
|
165 |
+
|
166 |
+
Examples
|
167 |
+
========
|
168 |
+
|
169 |
+
>>> from sympy.abc import t, a
|
170 |
+
>>> from sympy import Curve
|
171 |
+
>>> Curve((t, t**2), (t, 0, 2)).free_symbols
|
172 |
+
set()
|
173 |
+
>>> Curve((t, t**2), (t, a, 2)).free_symbols
|
174 |
+
{a}
|
175 |
+
|
176 |
+
"""
|
177 |
+
free = set()
|
178 |
+
for a in self.functions + self.limits[1:]:
|
179 |
+
free |= a.free_symbols
|
180 |
+
free = free.difference({self.parameter})
|
181 |
+
return free
|
182 |
+
|
183 |
+
@property
|
184 |
+
def ambient_dimension(self):
|
185 |
+
"""The dimension of the curve.
|
186 |
+
|
187 |
+
Returns
|
188 |
+
=======
|
189 |
+
|
190 |
+
int :
|
191 |
+
the dimension of curve.
|
192 |
+
|
193 |
+
Examples
|
194 |
+
========
|
195 |
+
|
196 |
+
>>> from sympy.abc import t
|
197 |
+
>>> from sympy import Curve
|
198 |
+
>>> C = Curve((t, t**2), (t, 0, 2))
|
199 |
+
>>> C.ambient_dimension
|
200 |
+
2
|
201 |
+
|
202 |
+
"""
|
203 |
+
|
204 |
+
return len(self.args[0])
|
205 |
+
|
206 |
+
@property
|
207 |
+
def functions(self):
|
208 |
+
"""The functions specifying the curve.
|
209 |
+
|
210 |
+
Returns
|
211 |
+
=======
|
212 |
+
|
213 |
+
functions :
|
214 |
+
list of parameterized coordinate functions.
|
215 |
+
|
216 |
+
Examples
|
217 |
+
========
|
218 |
+
|
219 |
+
>>> from sympy.abc import t
|
220 |
+
>>> from sympy import Curve
|
221 |
+
>>> C = Curve((t, t**2), (t, 0, 2))
|
222 |
+
>>> C.functions
|
223 |
+
(t, t**2)
|
224 |
+
|
225 |
+
See Also
|
226 |
+
========
|
227 |
+
|
228 |
+
parameter
|
229 |
+
|
230 |
+
"""
|
231 |
+
return self.args[0]
|
232 |
+
|
233 |
+
@property
|
234 |
+
def limits(self):
|
235 |
+
"""The limits for the curve.
|
236 |
+
|
237 |
+
Returns
|
238 |
+
=======
|
239 |
+
|
240 |
+
limits : tuple
|
241 |
+
Contains parameter and lower and upper limits.
|
242 |
+
|
243 |
+
Examples
|
244 |
+
========
|
245 |
+
|
246 |
+
>>> from sympy.abc import t
|
247 |
+
>>> from sympy import Curve
|
248 |
+
>>> C = Curve([t, t**3], (t, -2, 2))
|
249 |
+
>>> C.limits
|
250 |
+
(t, -2, 2)
|
251 |
+
|
252 |
+
See Also
|
253 |
+
========
|
254 |
+
|
255 |
+
plot_interval
|
256 |
+
|
257 |
+
"""
|
258 |
+
return self.args[1]
|
259 |
+
|
260 |
+
@property
|
261 |
+
def parameter(self):
|
262 |
+
"""The curve function variable.
|
263 |
+
|
264 |
+
Returns
|
265 |
+
=======
|
266 |
+
|
267 |
+
Symbol :
|
268 |
+
returns a bound symbol.
|
269 |
+
|
270 |
+
Examples
|
271 |
+
========
|
272 |
+
|
273 |
+
>>> from sympy.abc import t
|
274 |
+
>>> from sympy import Curve
|
275 |
+
>>> C = Curve([t, t**2], (t, 0, 2))
|
276 |
+
>>> C.parameter
|
277 |
+
t
|
278 |
+
|
279 |
+
See Also
|
280 |
+
========
|
281 |
+
|
282 |
+
functions
|
283 |
+
|
284 |
+
"""
|
285 |
+
return self.args[1][0]
|
286 |
+
|
287 |
+
@property
|
288 |
+
def length(self):
|
289 |
+
"""The curve length.
|
290 |
+
|
291 |
+
Examples
|
292 |
+
========
|
293 |
+
|
294 |
+
>>> from sympy import Curve
|
295 |
+
>>> from sympy.abc import t
|
296 |
+
>>> Curve((t, t), (t, 0, 1)).length
|
297 |
+
sqrt(2)
|
298 |
+
|
299 |
+
"""
|
300 |
+
integrand = sqrt(sum(diff(func, self.limits[0])**2 for func in self.functions))
|
301 |
+
return integrate(integrand, self.limits)
|
302 |
+
|
303 |
+
def plot_interval(self, parameter='t'):
|
304 |
+
"""The plot interval for the default geometric plot of the curve.
|
305 |
+
|
306 |
+
Parameters
|
307 |
+
==========
|
308 |
+
|
309 |
+
parameter : str or Symbol, optional
|
310 |
+
Default value is 't';
|
311 |
+
otherwise the provided symbol is used.
|
312 |
+
|
313 |
+
Returns
|
314 |
+
=======
|
315 |
+
|
316 |
+
List :
|
317 |
+
the plot interval as below:
|
318 |
+
[parameter, lower_bound, upper_bound]
|
319 |
+
|
320 |
+
Examples
|
321 |
+
========
|
322 |
+
|
323 |
+
>>> from sympy import Curve, sin
|
324 |
+
>>> from sympy.abc import x, s
|
325 |
+
>>> Curve((x, sin(x)), (x, 1, 2)).plot_interval()
|
326 |
+
[t, 1, 2]
|
327 |
+
>>> Curve((x, sin(x)), (x, 1, 2)).plot_interval(s)
|
328 |
+
[s, 1, 2]
|
329 |
+
|
330 |
+
See Also
|
331 |
+
========
|
332 |
+
|
333 |
+
limits : Returns limits of the parameter interval
|
334 |
+
|
335 |
+
"""
|
336 |
+
t = _symbol(parameter, self.parameter, real=True)
|
337 |
+
return [t] + list(self.limits[1:])
|
338 |
+
|
339 |
+
def rotate(self, angle=0, pt=None):
|
340 |
+
"""This function is used to rotate a curve along given point ``pt`` at given angle(in radian).
|
341 |
+
|
342 |
+
Parameters
|
343 |
+
==========
|
344 |
+
|
345 |
+
angle :
|
346 |
+
the angle at which the curve will be rotated(in radian) in counterclockwise direction.
|
347 |
+
default value of angle is 0.
|
348 |
+
|
349 |
+
pt : Point
|
350 |
+
the point along which the curve will be rotated.
|
351 |
+
If no point given, the curve will be rotated around origin.
|
352 |
+
|
353 |
+
Returns
|
354 |
+
=======
|
355 |
+
|
356 |
+
Curve :
|
357 |
+
returns a curve rotated at given angle along given point.
|
358 |
+
|
359 |
+
Examples
|
360 |
+
========
|
361 |
+
|
362 |
+
>>> from sympy import Curve, pi
|
363 |
+
>>> from sympy.abc import x
|
364 |
+
>>> Curve((x, x), (x, 0, 1)).rotate(pi/2)
|
365 |
+
Curve((-x, x), (x, 0, 1))
|
366 |
+
|
367 |
+
"""
|
368 |
+
if pt:
|
369 |
+
pt = -Point(pt, dim=2)
|
370 |
+
else:
|
371 |
+
pt = Point(0,0)
|
372 |
+
rv = self.translate(*pt.args)
|
373 |
+
f = list(rv.functions)
|
374 |
+
f.append(0)
|
375 |
+
f = Matrix(1, 3, f)
|
376 |
+
f *= rot_axis3(angle)
|
377 |
+
rv = self.func(f[0, :2].tolist()[0], self.limits)
|
378 |
+
pt = -pt
|
379 |
+
return rv.translate(*pt.args)
|
380 |
+
|
381 |
+
def scale(self, x=1, y=1, pt=None):
|
382 |
+
"""Override GeometryEntity.scale since Curve is not made up of Points.
|
383 |
+
|
384 |
+
Returns
|
385 |
+
=======
|
386 |
+
|
387 |
+
Curve :
|
388 |
+
returns scaled curve.
|
389 |
+
|
390 |
+
Examples
|
391 |
+
========
|
392 |
+
|
393 |
+
>>> from sympy import Curve
|
394 |
+
>>> from sympy.abc import x
|
395 |
+
>>> Curve((x, x), (x, 0, 1)).scale(2)
|
396 |
+
Curve((2*x, x), (x, 0, 1))
|
397 |
+
|
398 |
+
"""
|
399 |
+
if pt:
|
400 |
+
pt = Point(pt, dim=2)
|
401 |
+
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
|
402 |
+
fx, fy = self.functions
|
403 |
+
return self.func((fx*x, fy*y), self.limits)
|
404 |
+
|
405 |
+
def translate(self, x=0, y=0):
|
406 |
+
"""Translate the Curve by (x, y).
|
407 |
+
|
408 |
+
Returns
|
409 |
+
=======
|
410 |
+
|
411 |
+
Curve :
|
412 |
+
returns a translated curve.
|
413 |
+
|
414 |
+
Examples
|
415 |
+
========
|
416 |
+
|
417 |
+
>>> from sympy import Curve
|
418 |
+
>>> from sympy.abc import x
|
419 |
+
>>> Curve((x, x), (x, 0, 1)).translate(1, 2)
|
420 |
+
Curve((x + 1, x + 2), (x, 0, 1))
|
421 |
+
|
422 |
+
"""
|
423 |
+
fx, fy = self.functions
|
424 |
+
return self.func((fx + x, fy + y), self.limits)
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/ellipse.py
ADDED
@@ -0,0 +1,1780 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Elliptical geometrical entities.
|
2 |
+
|
3 |
+
Contains
|
4 |
+
* Ellipse
|
5 |
+
* Circle
|
6 |
+
|
7 |
+
"""
|
8 |
+
|
9 |
+
from sympy.core.expr import Expr
|
10 |
+
from sympy.core.relational import Eq
|
11 |
+
from sympy.core import S, pi, sympify
|
12 |
+
from sympy.core.evalf import N
|
13 |
+
from sympy.core.parameters import global_parameters
|
14 |
+
from sympy.core.logic import fuzzy_bool
|
15 |
+
from sympy.core.numbers import Rational, oo
|
16 |
+
from sympy.core.sorting import ordered
|
17 |
+
from sympy.core.symbol import Dummy, uniquely_named_symbol, _symbol
|
18 |
+
from sympy.simplify import simplify, trigsimp
|
19 |
+
from sympy.functions.elementary.miscellaneous import sqrt, Max
|
20 |
+
from sympy.functions.elementary.trigonometric import cos, sin
|
21 |
+
from sympy.functions.special.elliptic_integrals import elliptic_e
|
22 |
+
from .entity import GeometryEntity, GeometrySet
|
23 |
+
from .exceptions import GeometryError
|
24 |
+
from .line import Line, Segment, Ray2D, Segment2D, Line2D, LinearEntity3D
|
25 |
+
from .point import Point, Point2D, Point3D
|
26 |
+
from .util import idiff, find
|
27 |
+
from sympy.polys import DomainError, Poly, PolynomialError
|
28 |
+
from sympy.polys.polyutils import _not_a_coeff, _nsort
|
29 |
+
from sympy.solvers import solve
|
30 |
+
from sympy.solvers.solveset import linear_coeffs
|
31 |
+
from sympy.utilities.misc import filldedent, func_name
|
32 |
+
|
33 |
+
from mpmath.libmp.libmpf import prec_to_dps
|
34 |
+
|
35 |
+
import random
|
36 |
+
|
37 |
+
x, y = [Dummy('ellipse_dummy', real=True) for i in range(2)]
|
38 |
+
|
39 |
+
|
40 |
+
class Ellipse(GeometrySet):
|
41 |
+
"""An elliptical GeometryEntity.
|
42 |
+
|
43 |
+
Parameters
|
44 |
+
==========
|
45 |
+
|
46 |
+
center : Point, optional
|
47 |
+
Default value is Point(0, 0)
|
48 |
+
hradius : number or SymPy expression, optional
|
49 |
+
vradius : number or SymPy expression, optional
|
50 |
+
eccentricity : number or SymPy expression, optional
|
51 |
+
Two of `hradius`, `vradius` and `eccentricity` must be supplied to
|
52 |
+
create an Ellipse. The third is derived from the two supplied.
|
53 |
+
|
54 |
+
Attributes
|
55 |
+
==========
|
56 |
+
|
57 |
+
center
|
58 |
+
hradius
|
59 |
+
vradius
|
60 |
+
area
|
61 |
+
circumference
|
62 |
+
eccentricity
|
63 |
+
periapsis
|
64 |
+
apoapsis
|
65 |
+
focus_distance
|
66 |
+
foci
|
67 |
+
|
68 |
+
Raises
|
69 |
+
======
|
70 |
+
|
71 |
+
GeometryError
|
72 |
+
When `hradius`, `vradius` and `eccentricity` are incorrectly supplied
|
73 |
+
as parameters.
|
74 |
+
TypeError
|
75 |
+
When `center` is not a Point.
|
76 |
+
|
77 |
+
See Also
|
78 |
+
========
|
79 |
+
|
80 |
+
Circle
|
81 |
+
|
82 |
+
Notes
|
83 |
+
-----
|
84 |
+
Constructed from a center and two radii, the first being the horizontal
|
85 |
+
radius (along the x-axis) and the second being the vertical radius (along
|
86 |
+
the y-axis).
|
87 |
+
|
88 |
+
When symbolic value for hradius and vradius are used, any calculation that
|
89 |
+
refers to the foci or the major or minor axis will assume that the ellipse
|
90 |
+
has its major radius on the x-axis. If this is not true then a manual
|
91 |
+
rotation is necessary.
|
92 |
+
|
93 |
+
Examples
|
94 |
+
========
|
95 |
+
|
96 |
+
>>> from sympy import Ellipse, Point, Rational
|
97 |
+
>>> e1 = Ellipse(Point(0, 0), 5, 1)
|
98 |
+
>>> e1.hradius, e1.vradius
|
99 |
+
(5, 1)
|
100 |
+
>>> e2 = Ellipse(Point(3, 1), hradius=3, eccentricity=Rational(4, 5))
|
101 |
+
>>> e2
|
102 |
+
Ellipse(Point2D(3, 1), 3, 9/5)
|
103 |
+
|
104 |
+
"""
|
105 |
+
|
106 |
+
def __contains__(self, o):
|
107 |
+
if isinstance(o, Point):
|
108 |
+
res = self.equation(x, y).subs({x: o.x, y: o.y})
|
109 |
+
return trigsimp(simplify(res)) is S.Zero
|
110 |
+
elif isinstance(o, Ellipse):
|
111 |
+
return self == o
|
112 |
+
return False
|
113 |
+
|
114 |
+
def __eq__(self, o):
|
115 |
+
"""Is the other GeometryEntity the same as this ellipse?"""
|
116 |
+
return isinstance(o, Ellipse) and (self.center == o.center and
|
117 |
+
self.hradius == o.hradius and
|
118 |
+
self.vradius == o.vradius)
|
119 |
+
|
120 |
+
def __hash__(self):
|
121 |
+
return super().__hash__()
|
122 |
+
|
123 |
+
def __new__(
|
124 |
+
cls, center=None, hradius=None, vradius=None, eccentricity=None, **kwargs):
|
125 |
+
|
126 |
+
hradius = sympify(hradius)
|
127 |
+
vradius = sympify(vradius)
|
128 |
+
|
129 |
+
if center is None:
|
130 |
+
center = Point(0, 0)
|
131 |
+
else:
|
132 |
+
if len(center) != 2:
|
133 |
+
raise ValueError('The center of "{}" must be a two dimensional point'.format(cls))
|
134 |
+
center = Point(center, dim=2)
|
135 |
+
|
136 |
+
if len(list(filter(lambda x: x is not None, (hradius, vradius, eccentricity)))) != 2:
|
137 |
+
raise ValueError(filldedent('''
|
138 |
+
Exactly two arguments of "hradius", "vradius", and
|
139 |
+
"eccentricity" must not be None.'''))
|
140 |
+
|
141 |
+
if eccentricity is not None:
|
142 |
+
eccentricity = sympify(eccentricity)
|
143 |
+
if eccentricity.is_negative:
|
144 |
+
raise GeometryError("Eccentricity of ellipse/circle should lie between [0, 1)")
|
145 |
+
elif hradius is None:
|
146 |
+
hradius = vradius / sqrt(1 - eccentricity**2)
|
147 |
+
elif vradius is None:
|
148 |
+
vradius = hradius * sqrt(1 - eccentricity**2)
|
149 |
+
|
150 |
+
if hradius == vradius:
|
151 |
+
return Circle(center, hradius, **kwargs)
|
152 |
+
|
153 |
+
if S.Zero in (hradius, vradius):
|
154 |
+
return Segment(Point(center[0] - hradius, center[1] - vradius), Point(center[0] + hradius, center[1] + vradius))
|
155 |
+
|
156 |
+
if hradius.is_real is False or vradius.is_real is False:
|
157 |
+
raise GeometryError("Invalid value encountered when computing hradius / vradius.")
|
158 |
+
|
159 |
+
return GeometryEntity.__new__(cls, center, hradius, vradius, **kwargs)
|
160 |
+
|
161 |
+
def _svg(self, scale_factor=1., fill_color="#66cc99"):
|
162 |
+
"""Returns SVG ellipse element for the Ellipse.
|
163 |
+
|
164 |
+
Parameters
|
165 |
+
==========
|
166 |
+
|
167 |
+
scale_factor : float
|
168 |
+
Multiplication factor for the SVG stroke-width. Default is 1.
|
169 |
+
fill_color : str, optional
|
170 |
+
Hex string for fill color. Default is "#66cc99".
|
171 |
+
"""
|
172 |
+
|
173 |
+
c = N(self.center)
|
174 |
+
h, v = N(self.hradius), N(self.vradius)
|
175 |
+
return (
|
176 |
+
'<ellipse fill="{1}" stroke="#555555" '
|
177 |
+
'stroke-width="{0}" opacity="0.6" cx="{2}" cy="{3}" rx="{4}" ry="{5}"/>'
|
178 |
+
).format(2. * scale_factor, fill_color, c.x, c.y, h, v)
|
179 |
+
|
180 |
+
@property
|
181 |
+
def ambient_dimension(self):
|
182 |
+
return 2
|
183 |
+
|
184 |
+
@property
|
185 |
+
def apoapsis(self):
|
186 |
+
"""The apoapsis of the ellipse.
|
187 |
+
|
188 |
+
The greatest distance between the focus and the contour.
|
189 |
+
|
190 |
+
Returns
|
191 |
+
=======
|
192 |
+
|
193 |
+
apoapsis : number
|
194 |
+
|
195 |
+
See Also
|
196 |
+
========
|
197 |
+
|
198 |
+
periapsis : Returns shortest distance between foci and contour
|
199 |
+
|
200 |
+
Examples
|
201 |
+
========
|
202 |
+
|
203 |
+
>>> from sympy import Point, Ellipse
|
204 |
+
>>> p1 = Point(0, 0)
|
205 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
206 |
+
>>> e1.apoapsis
|
207 |
+
2*sqrt(2) + 3
|
208 |
+
|
209 |
+
"""
|
210 |
+
return self.major * (1 + self.eccentricity)
|
211 |
+
|
212 |
+
def arbitrary_point(self, parameter='t'):
|
213 |
+
"""A parameterized point on the ellipse.
|
214 |
+
|
215 |
+
Parameters
|
216 |
+
==========
|
217 |
+
|
218 |
+
parameter : str, optional
|
219 |
+
Default value is 't'.
|
220 |
+
|
221 |
+
Returns
|
222 |
+
=======
|
223 |
+
|
224 |
+
arbitrary_point : Point
|
225 |
+
|
226 |
+
Raises
|
227 |
+
======
|
228 |
+
|
229 |
+
ValueError
|
230 |
+
When `parameter` already appears in the functions.
|
231 |
+
|
232 |
+
See Also
|
233 |
+
========
|
234 |
+
|
235 |
+
sympy.geometry.point.Point
|
236 |
+
|
237 |
+
Examples
|
238 |
+
========
|
239 |
+
|
240 |
+
>>> from sympy import Point, Ellipse
|
241 |
+
>>> e1 = Ellipse(Point(0, 0), 3, 2)
|
242 |
+
>>> e1.arbitrary_point()
|
243 |
+
Point2D(3*cos(t), 2*sin(t))
|
244 |
+
|
245 |
+
"""
|
246 |
+
t = _symbol(parameter, real=True)
|
247 |
+
if t.name in (f.name for f in self.free_symbols):
|
248 |
+
raise ValueError(filldedent('Symbol %s already appears in object '
|
249 |
+
'and cannot be used as a parameter.' % t.name))
|
250 |
+
return Point(self.center.x + self.hradius*cos(t),
|
251 |
+
self.center.y + self.vradius*sin(t))
|
252 |
+
|
253 |
+
@property
|
254 |
+
def area(self):
|
255 |
+
"""The area of the ellipse.
|
256 |
+
|
257 |
+
Returns
|
258 |
+
=======
|
259 |
+
|
260 |
+
area : number
|
261 |
+
|
262 |
+
Examples
|
263 |
+
========
|
264 |
+
|
265 |
+
>>> from sympy import Point, Ellipse
|
266 |
+
>>> p1 = Point(0, 0)
|
267 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
268 |
+
>>> e1.area
|
269 |
+
3*pi
|
270 |
+
|
271 |
+
"""
|
272 |
+
return simplify(S.Pi * self.hradius * self.vradius)
|
273 |
+
|
274 |
+
@property
|
275 |
+
def bounds(self):
|
276 |
+
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
|
277 |
+
rectangle for the geometric figure.
|
278 |
+
|
279 |
+
"""
|
280 |
+
|
281 |
+
h, v = self.hradius, self.vradius
|
282 |
+
return (self.center.x - h, self.center.y - v, self.center.x + h, self.center.y + v)
|
283 |
+
|
284 |
+
@property
|
285 |
+
def center(self):
|
286 |
+
"""The center of the ellipse.
|
287 |
+
|
288 |
+
Returns
|
289 |
+
=======
|
290 |
+
|
291 |
+
center : number
|
292 |
+
|
293 |
+
See Also
|
294 |
+
========
|
295 |
+
|
296 |
+
sympy.geometry.point.Point
|
297 |
+
|
298 |
+
Examples
|
299 |
+
========
|
300 |
+
|
301 |
+
>>> from sympy import Point, Ellipse
|
302 |
+
>>> p1 = Point(0, 0)
|
303 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
304 |
+
>>> e1.center
|
305 |
+
Point2D(0, 0)
|
306 |
+
|
307 |
+
"""
|
308 |
+
return self.args[0]
|
309 |
+
|
310 |
+
@property
|
311 |
+
def circumference(self):
|
312 |
+
"""The circumference of the ellipse.
|
313 |
+
|
314 |
+
Examples
|
315 |
+
========
|
316 |
+
|
317 |
+
>>> from sympy import Point, Ellipse
|
318 |
+
>>> p1 = Point(0, 0)
|
319 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
320 |
+
>>> e1.circumference
|
321 |
+
12*elliptic_e(8/9)
|
322 |
+
|
323 |
+
"""
|
324 |
+
if self.eccentricity == 1:
|
325 |
+
# degenerate
|
326 |
+
return 4*self.major
|
327 |
+
elif self.eccentricity == 0:
|
328 |
+
# circle
|
329 |
+
return 2*pi*self.hradius
|
330 |
+
else:
|
331 |
+
return 4*self.major*elliptic_e(self.eccentricity**2)
|
332 |
+
|
333 |
+
@property
|
334 |
+
def eccentricity(self):
|
335 |
+
"""The eccentricity of the ellipse.
|
336 |
+
|
337 |
+
Returns
|
338 |
+
=======
|
339 |
+
|
340 |
+
eccentricity : number
|
341 |
+
|
342 |
+
Examples
|
343 |
+
========
|
344 |
+
|
345 |
+
>>> from sympy import Point, Ellipse, sqrt
|
346 |
+
>>> p1 = Point(0, 0)
|
347 |
+
>>> e1 = Ellipse(p1, 3, sqrt(2))
|
348 |
+
>>> e1.eccentricity
|
349 |
+
sqrt(7)/3
|
350 |
+
|
351 |
+
"""
|
352 |
+
return self.focus_distance / self.major
|
353 |
+
|
354 |
+
def encloses_point(self, p):
|
355 |
+
"""
|
356 |
+
Return True if p is enclosed by (is inside of) self.
|
357 |
+
|
358 |
+
Notes
|
359 |
+
-----
|
360 |
+
Being on the border of self is considered False.
|
361 |
+
|
362 |
+
Parameters
|
363 |
+
==========
|
364 |
+
|
365 |
+
p : Point
|
366 |
+
|
367 |
+
Returns
|
368 |
+
=======
|
369 |
+
|
370 |
+
encloses_point : True, False or None
|
371 |
+
|
372 |
+
See Also
|
373 |
+
========
|
374 |
+
|
375 |
+
sympy.geometry.point.Point
|
376 |
+
|
377 |
+
Examples
|
378 |
+
========
|
379 |
+
|
380 |
+
>>> from sympy import Ellipse, S
|
381 |
+
>>> from sympy.abc import t
|
382 |
+
>>> e = Ellipse((0, 0), 3, 2)
|
383 |
+
>>> e.encloses_point((0, 0))
|
384 |
+
True
|
385 |
+
>>> e.encloses_point(e.arbitrary_point(t).subs(t, S.Half))
|
386 |
+
False
|
387 |
+
>>> e.encloses_point((4, 0))
|
388 |
+
False
|
389 |
+
|
390 |
+
"""
|
391 |
+
p = Point(p, dim=2)
|
392 |
+
if p in self:
|
393 |
+
return False
|
394 |
+
|
395 |
+
if len(self.foci) == 2:
|
396 |
+
# if the combined distance from the foci to p (h1 + h2) is less
|
397 |
+
# than the combined distance from the foci to the minor axis
|
398 |
+
# (which is the same as the major axis length) then p is inside
|
399 |
+
# the ellipse
|
400 |
+
h1, h2 = [f.distance(p) for f in self.foci]
|
401 |
+
test = 2*self.major - (h1 + h2)
|
402 |
+
else:
|
403 |
+
test = self.radius - self.center.distance(p)
|
404 |
+
|
405 |
+
return fuzzy_bool(test.is_positive)
|
406 |
+
|
407 |
+
def equation(self, x='x', y='y', _slope=None):
|
408 |
+
"""
|
409 |
+
Returns the equation of an ellipse aligned with the x and y axes;
|
410 |
+
when slope is given, the equation returned corresponds to an ellipse
|
411 |
+
with a major axis having that slope.
|
412 |
+
|
413 |
+
Parameters
|
414 |
+
==========
|
415 |
+
|
416 |
+
x : str, optional
|
417 |
+
Label for the x-axis. Default value is 'x'.
|
418 |
+
y : str, optional
|
419 |
+
Label for the y-axis. Default value is 'y'.
|
420 |
+
_slope : Expr, optional
|
421 |
+
The slope of the major axis. Ignored when 'None'.
|
422 |
+
|
423 |
+
Returns
|
424 |
+
=======
|
425 |
+
|
426 |
+
equation : SymPy expression
|
427 |
+
|
428 |
+
See Also
|
429 |
+
========
|
430 |
+
|
431 |
+
arbitrary_point : Returns parameterized point on ellipse
|
432 |
+
|
433 |
+
Examples
|
434 |
+
========
|
435 |
+
|
436 |
+
>>> from sympy import Point, Ellipse, pi
|
437 |
+
>>> from sympy.abc import x, y
|
438 |
+
>>> e1 = Ellipse(Point(1, 0), 3, 2)
|
439 |
+
>>> eq1 = e1.equation(x, y); eq1
|
440 |
+
y**2/4 + (x/3 - 1/3)**2 - 1
|
441 |
+
>>> eq2 = e1.equation(x, y, _slope=1); eq2
|
442 |
+
(-x + y + 1)**2/8 + (x + y - 1)**2/18 - 1
|
443 |
+
|
444 |
+
A point on e1 satisfies eq1. Let's use one on the x-axis:
|
445 |
+
|
446 |
+
>>> p1 = e1.center + Point(e1.major, 0)
|
447 |
+
>>> assert eq1.subs(x, p1.x).subs(y, p1.y) == 0
|
448 |
+
|
449 |
+
When rotated the same as the rotated ellipse, about the center
|
450 |
+
point of the ellipse, it will satisfy the rotated ellipse's
|
451 |
+
equation, too:
|
452 |
+
|
453 |
+
>>> r1 = p1.rotate(pi/4, e1.center)
|
454 |
+
>>> assert eq2.subs(x, r1.x).subs(y, r1.y) == 0
|
455 |
+
|
456 |
+
References
|
457 |
+
==========
|
458 |
+
|
459 |
+
.. [1] https://math.stackexchange.com/questions/108270/what-is-the-equation-of-an-ellipse-that-is-not-aligned-with-the-axis
|
460 |
+
.. [2] https://en.wikipedia.org/wiki/Ellipse#Shifted_ellipse
|
461 |
+
|
462 |
+
"""
|
463 |
+
|
464 |
+
x = _symbol(x, real=True)
|
465 |
+
y = _symbol(y, real=True)
|
466 |
+
|
467 |
+
dx = x - self.center.x
|
468 |
+
dy = y - self.center.y
|
469 |
+
|
470 |
+
if _slope is not None:
|
471 |
+
L = (dy - _slope*dx)**2
|
472 |
+
l = (_slope*dy + dx)**2
|
473 |
+
h = 1 + _slope**2
|
474 |
+
b = h*self.major**2
|
475 |
+
a = h*self.minor**2
|
476 |
+
return l/b + L/a - 1
|
477 |
+
|
478 |
+
else:
|
479 |
+
t1 = (dx/self.hradius)**2
|
480 |
+
t2 = (dy/self.vradius)**2
|
481 |
+
return t1 + t2 - 1
|
482 |
+
|
483 |
+
def evolute(self, x='x', y='y'):
|
484 |
+
"""The equation of evolute of the ellipse.
|
485 |
+
|
486 |
+
Parameters
|
487 |
+
==========
|
488 |
+
|
489 |
+
x : str, optional
|
490 |
+
Label for the x-axis. Default value is 'x'.
|
491 |
+
y : str, optional
|
492 |
+
Label for the y-axis. Default value is 'y'.
|
493 |
+
|
494 |
+
Returns
|
495 |
+
=======
|
496 |
+
|
497 |
+
equation : SymPy expression
|
498 |
+
|
499 |
+
Examples
|
500 |
+
========
|
501 |
+
|
502 |
+
>>> from sympy import Point, Ellipse
|
503 |
+
>>> e1 = Ellipse(Point(1, 0), 3, 2)
|
504 |
+
>>> e1.evolute()
|
505 |
+
2**(2/3)*y**(2/3) + (3*x - 3)**(2/3) - 5**(2/3)
|
506 |
+
"""
|
507 |
+
if len(self.args) != 3:
|
508 |
+
raise NotImplementedError('Evolute of arbitrary Ellipse is not supported.')
|
509 |
+
x = _symbol(x, real=True)
|
510 |
+
y = _symbol(y, real=True)
|
511 |
+
t1 = (self.hradius*(x - self.center.x))**Rational(2, 3)
|
512 |
+
t2 = (self.vradius*(y - self.center.y))**Rational(2, 3)
|
513 |
+
return t1 + t2 - (self.hradius**2 - self.vradius**2)**Rational(2, 3)
|
514 |
+
|
515 |
+
@property
|
516 |
+
def foci(self):
|
517 |
+
"""The foci of the ellipse.
|
518 |
+
|
519 |
+
Notes
|
520 |
+
-----
|
521 |
+
The foci can only be calculated if the major/minor axes are known.
|
522 |
+
|
523 |
+
Raises
|
524 |
+
======
|
525 |
+
|
526 |
+
ValueError
|
527 |
+
When the major and minor axis cannot be determined.
|
528 |
+
|
529 |
+
See Also
|
530 |
+
========
|
531 |
+
|
532 |
+
sympy.geometry.point.Point
|
533 |
+
focus_distance : Returns the distance between focus and center
|
534 |
+
|
535 |
+
Examples
|
536 |
+
========
|
537 |
+
|
538 |
+
>>> from sympy import Point, Ellipse
|
539 |
+
>>> p1 = Point(0, 0)
|
540 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
541 |
+
>>> e1.foci
|
542 |
+
(Point2D(-2*sqrt(2), 0), Point2D(2*sqrt(2), 0))
|
543 |
+
|
544 |
+
"""
|
545 |
+
c = self.center
|
546 |
+
hr, vr = self.hradius, self.vradius
|
547 |
+
if hr == vr:
|
548 |
+
return (c, c)
|
549 |
+
|
550 |
+
# calculate focus distance manually, since focus_distance calls this
|
551 |
+
# routine
|
552 |
+
fd = sqrt(self.major**2 - self.minor**2)
|
553 |
+
if hr == self.minor:
|
554 |
+
# foci on the y-axis
|
555 |
+
return (c + Point(0, -fd), c + Point(0, fd))
|
556 |
+
elif hr == self.major:
|
557 |
+
# foci on the x-axis
|
558 |
+
return (c + Point(-fd, 0), c + Point(fd, 0))
|
559 |
+
|
560 |
+
@property
|
561 |
+
def focus_distance(self):
|
562 |
+
"""The focal distance of the ellipse.
|
563 |
+
|
564 |
+
The distance between the center and one focus.
|
565 |
+
|
566 |
+
Returns
|
567 |
+
=======
|
568 |
+
|
569 |
+
focus_distance : number
|
570 |
+
|
571 |
+
See Also
|
572 |
+
========
|
573 |
+
|
574 |
+
foci
|
575 |
+
|
576 |
+
Examples
|
577 |
+
========
|
578 |
+
|
579 |
+
>>> from sympy import Point, Ellipse
|
580 |
+
>>> p1 = Point(0, 0)
|
581 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
582 |
+
>>> e1.focus_distance
|
583 |
+
2*sqrt(2)
|
584 |
+
|
585 |
+
"""
|
586 |
+
return Point.distance(self.center, self.foci[0])
|
587 |
+
|
588 |
+
@property
|
589 |
+
def hradius(self):
|
590 |
+
"""The horizontal radius of the ellipse.
|
591 |
+
|
592 |
+
Returns
|
593 |
+
=======
|
594 |
+
|
595 |
+
hradius : number
|
596 |
+
|
597 |
+
See Also
|
598 |
+
========
|
599 |
+
|
600 |
+
vradius, major, minor
|
601 |
+
|
602 |
+
Examples
|
603 |
+
========
|
604 |
+
|
605 |
+
>>> from sympy import Point, Ellipse
|
606 |
+
>>> p1 = Point(0, 0)
|
607 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
608 |
+
>>> e1.hradius
|
609 |
+
3
|
610 |
+
|
611 |
+
"""
|
612 |
+
return self.args[1]
|
613 |
+
|
614 |
+
def intersection(self, o):
|
615 |
+
"""The intersection of this ellipse and another geometrical entity
|
616 |
+
`o`.
|
617 |
+
|
618 |
+
Parameters
|
619 |
+
==========
|
620 |
+
|
621 |
+
o : GeometryEntity
|
622 |
+
|
623 |
+
Returns
|
624 |
+
=======
|
625 |
+
|
626 |
+
intersection : list of GeometryEntity objects
|
627 |
+
|
628 |
+
Notes
|
629 |
+
-----
|
630 |
+
Currently supports intersections with Point, Line, Segment, Ray,
|
631 |
+
Circle and Ellipse types.
|
632 |
+
|
633 |
+
See Also
|
634 |
+
========
|
635 |
+
|
636 |
+
sympy.geometry.entity.GeometryEntity
|
637 |
+
|
638 |
+
Examples
|
639 |
+
========
|
640 |
+
|
641 |
+
>>> from sympy import Ellipse, Point, Line
|
642 |
+
>>> e = Ellipse(Point(0, 0), 5, 7)
|
643 |
+
>>> e.intersection(Point(0, 0))
|
644 |
+
[]
|
645 |
+
>>> e.intersection(Point(5, 0))
|
646 |
+
[Point2D(5, 0)]
|
647 |
+
>>> e.intersection(Line(Point(0,0), Point(0, 1)))
|
648 |
+
[Point2D(0, -7), Point2D(0, 7)]
|
649 |
+
>>> e.intersection(Line(Point(5,0), Point(5, 1)))
|
650 |
+
[Point2D(5, 0)]
|
651 |
+
>>> e.intersection(Line(Point(6,0), Point(6, 1)))
|
652 |
+
[]
|
653 |
+
>>> e = Ellipse(Point(-1, 0), 4, 3)
|
654 |
+
>>> e.intersection(Ellipse(Point(1, 0), 4, 3))
|
655 |
+
[Point2D(0, -3*sqrt(15)/4), Point2D(0, 3*sqrt(15)/4)]
|
656 |
+
>>> e.intersection(Ellipse(Point(5, 0), 4, 3))
|
657 |
+
[Point2D(2, -3*sqrt(7)/4), Point2D(2, 3*sqrt(7)/4)]
|
658 |
+
>>> e.intersection(Ellipse(Point(100500, 0), 4, 3))
|
659 |
+
[]
|
660 |
+
>>> e.intersection(Ellipse(Point(0, 0), 3, 4))
|
661 |
+
[Point2D(3, 0), Point2D(-363/175, -48*sqrt(111)/175), Point2D(-363/175, 48*sqrt(111)/175)]
|
662 |
+
>>> e.intersection(Ellipse(Point(-1, 0), 3, 4))
|
663 |
+
[Point2D(-17/5, -12/5), Point2D(-17/5, 12/5), Point2D(7/5, -12/5), Point2D(7/5, 12/5)]
|
664 |
+
"""
|
665 |
+
# TODO: Replace solve with nonlinsolve, when nonlinsolve will be able to solve in real domain
|
666 |
+
|
667 |
+
if isinstance(o, Point):
|
668 |
+
if o in self:
|
669 |
+
return [o]
|
670 |
+
else:
|
671 |
+
return []
|
672 |
+
|
673 |
+
elif isinstance(o, (Segment2D, Ray2D)):
|
674 |
+
ellipse_equation = self.equation(x, y)
|
675 |
+
result = solve([ellipse_equation, Line(
|
676 |
+
o.points[0], o.points[1]).equation(x, y)], [x, y],
|
677 |
+
set=True)[1]
|
678 |
+
return list(ordered([Point(i) for i in result if i in o]))
|
679 |
+
|
680 |
+
elif isinstance(o, Polygon):
|
681 |
+
return o.intersection(self)
|
682 |
+
|
683 |
+
elif isinstance(o, (Ellipse, Line2D)):
|
684 |
+
if o == self:
|
685 |
+
return self
|
686 |
+
else:
|
687 |
+
ellipse_equation = self.equation(x, y)
|
688 |
+
return list(ordered([Point(i) for i in solve(
|
689 |
+
[ellipse_equation, o.equation(x, y)], [x, y],
|
690 |
+
set=True)[1]]))
|
691 |
+
elif isinstance(o, LinearEntity3D):
|
692 |
+
raise TypeError('Entity must be two dimensional, not three dimensional')
|
693 |
+
else:
|
694 |
+
raise TypeError('Intersection not handled for %s' % func_name(o))
|
695 |
+
|
696 |
+
def is_tangent(self, o):
|
697 |
+
"""Is `o` tangent to the ellipse?
|
698 |
+
|
699 |
+
Parameters
|
700 |
+
==========
|
701 |
+
|
702 |
+
o : GeometryEntity
|
703 |
+
An Ellipse, LinearEntity or Polygon
|
704 |
+
|
705 |
+
Raises
|
706 |
+
======
|
707 |
+
|
708 |
+
NotImplementedError
|
709 |
+
When the wrong type of argument is supplied.
|
710 |
+
|
711 |
+
Returns
|
712 |
+
=======
|
713 |
+
|
714 |
+
is_tangent: boolean
|
715 |
+
True if o is tangent to the ellipse, False otherwise.
|
716 |
+
|
717 |
+
See Also
|
718 |
+
========
|
719 |
+
|
720 |
+
tangent_lines
|
721 |
+
|
722 |
+
Examples
|
723 |
+
========
|
724 |
+
|
725 |
+
>>> from sympy import Point, Ellipse, Line
|
726 |
+
>>> p0, p1, p2 = Point(0, 0), Point(3, 0), Point(3, 3)
|
727 |
+
>>> e1 = Ellipse(p0, 3, 2)
|
728 |
+
>>> l1 = Line(p1, p2)
|
729 |
+
>>> e1.is_tangent(l1)
|
730 |
+
True
|
731 |
+
|
732 |
+
"""
|
733 |
+
if isinstance(o, Point2D):
|
734 |
+
return False
|
735 |
+
elif isinstance(o, Ellipse):
|
736 |
+
intersect = self.intersection(o)
|
737 |
+
if isinstance(intersect, Ellipse):
|
738 |
+
return True
|
739 |
+
elif intersect:
|
740 |
+
return all((self.tangent_lines(i)[0]).equals(o.tangent_lines(i)[0]) for i in intersect)
|
741 |
+
else:
|
742 |
+
return False
|
743 |
+
elif isinstance(o, Line2D):
|
744 |
+
hit = self.intersection(o)
|
745 |
+
if not hit:
|
746 |
+
return False
|
747 |
+
if len(hit) == 1:
|
748 |
+
return True
|
749 |
+
# might return None if it can't decide
|
750 |
+
return hit[0].equals(hit[1])
|
751 |
+
elif isinstance(o, Ray2D):
|
752 |
+
intersect = self.intersection(o)
|
753 |
+
if len(intersect) == 1:
|
754 |
+
return intersect[0] != o.source and not self.encloses_point(o.source)
|
755 |
+
else:
|
756 |
+
return False
|
757 |
+
elif isinstance(o, (Segment2D, Polygon)):
|
758 |
+
all_tangents = False
|
759 |
+
segments = o.sides if isinstance(o, Polygon) else [o]
|
760 |
+
for segment in segments:
|
761 |
+
intersect = self.intersection(segment)
|
762 |
+
if len(intersect) == 1:
|
763 |
+
if not any(intersect[0] in i for i in segment.points) \
|
764 |
+
and not any(self.encloses_point(i) for i in segment.points):
|
765 |
+
all_tangents = True
|
766 |
+
continue
|
767 |
+
else:
|
768 |
+
return False
|
769 |
+
else:
|
770 |
+
return all_tangents
|
771 |
+
return all_tangents
|
772 |
+
elif isinstance(o, (LinearEntity3D, Point3D)):
|
773 |
+
raise TypeError('Entity must be two dimensional, not three dimensional')
|
774 |
+
else:
|
775 |
+
raise TypeError('Is_tangent not handled for %s' % func_name(o))
|
776 |
+
|
777 |
+
@property
|
778 |
+
def major(self):
|
779 |
+
"""Longer axis of the ellipse (if it can be determined) else hradius.
|
780 |
+
|
781 |
+
Returns
|
782 |
+
=======
|
783 |
+
|
784 |
+
major : number or expression
|
785 |
+
|
786 |
+
See Also
|
787 |
+
========
|
788 |
+
|
789 |
+
hradius, vradius, minor
|
790 |
+
|
791 |
+
Examples
|
792 |
+
========
|
793 |
+
|
794 |
+
>>> from sympy import Point, Ellipse, Symbol
|
795 |
+
>>> p1 = Point(0, 0)
|
796 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
797 |
+
>>> e1.major
|
798 |
+
3
|
799 |
+
|
800 |
+
>>> a = Symbol('a')
|
801 |
+
>>> b = Symbol('b')
|
802 |
+
>>> Ellipse(p1, a, b).major
|
803 |
+
a
|
804 |
+
>>> Ellipse(p1, b, a).major
|
805 |
+
b
|
806 |
+
|
807 |
+
>>> m = Symbol('m')
|
808 |
+
>>> M = m + 1
|
809 |
+
>>> Ellipse(p1, m, M).major
|
810 |
+
m + 1
|
811 |
+
|
812 |
+
"""
|
813 |
+
ab = self.args[1:3]
|
814 |
+
if len(ab) == 1:
|
815 |
+
return ab[0]
|
816 |
+
a, b = ab
|
817 |
+
o = b - a < 0
|
818 |
+
if o == True:
|
819 |
+
return a
|
820 |
+
elif o == False:
|
821 |
+
return b
|
822 |
+
return self.hradius
|
823 |
+
|
824 |
+
@property
|
825 |
+
def minor(self):
|
826 |
+
"""Shorter axis of the ellipse (if it can be determined) else vradius.
|
827 |
+
|
828 |
+
Returns
|
829 |
+
=======
|
830 |
+
|
831 |
+
minor : number or expression
|
832 |
+
|
833 |
+
See Also
|
834 |
+
========
|
835 |
+
|
836 |
+
hradius, vradius, major
|
837 |
+
|
838 |
+
Examples
|
839 |
+
========
|
840 |
+
|
841 |
+
>>> from sympy import Point, Ellipse, Symbol
|
842 |
+
>>> p1 = Point(0, 0)
|
843 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
844 |
+
>>> e1.minor
|
845 |
+
1
|
846 |
+
|
847 |
+
>>> a = Symbol('a')
|
848 |
+
>>> b = Symbol('b')
|
849 |
+
>>> Ellipse(p1, a, b).minor
|
850 |
+
b
|
851 |
+
>>> Ellipse(p1, b, a).minor
|
852 |
+
a
|
853 |
+
|
854 |
+
>>> m = Symbol('m')
|
855 |
+
>>> M = m + 1
|
856 |
+
>>> Ellipse(p1, m, M).minor
|
857 |
+
m
|
858 |
+
|
859 |
+
"""
|
860 |
+
ab = self.args[1:3]
|
861 |
+
if len(ab) == 1:
|
862 |
+
return ab[0]
|
863 |
+
a, b = ab
|
864 |
+
o = a - b < 0
|
865 |
+
if o == True:
|
866 |
+
return a
|
867 |
+
elif o == False:
|
868 |
+
return b
|
869 |
+
return self.vradius
|
870 |
+
|
871 |
+
def normal_lines(self, p, prec=None):
|
872 |
+
"""Normal lines between `p` and the ellipse.
|
873 |
+
|
874 |
+
Parameters
|
875 |
+
==========
|
876 |
+
|
877 |
+
p : Point
|
878 |
+
|
879 |
+
Returns
|
880 |
+
=======
|
881 |
+
|
882 |
+
normal_lines : list with 1, 2 or 4 Lines
|
883 |
+
|
884 |
+
Examples
|
885 |
+
========
|
886 |
+
|
887 |
+
>>> from sympy import Point, Ellipse
|
888 |
+
>>> e = Ellipse((0, 0), 2, 3)
|
889 |
+
>>> c = e.center
|
890 |
+
>>> e.normal_lines(c + Point(1, 0))
|
891 |
+
[Line2D(Point2D(0, 0), Point2D(1, 0))]
|
892 |
+
>>> e.normal_lines(c)
|
893 |
+
[Line2D(Point2D(0, 0), Point2D(0, 1)), Line2D(Point2D(0, 0), Point2D(1, 0))]
|
894 |
+
|
895 |
+
Off-axis points require the solution of a quartic equation. This
|
896 |
+
often leads to very large expressions that may be of little practical
|
897 |
+
use. An approximate solution of `prec` digits can be obtained by
|
898 |
+
passing in the desired value:
|
899 |
+
|
900 |
+
>>> e.normal_lines((3, 3), prec=2)
|
901 |
+
[Line2D(Point2D(-0.81, -2.7), Point2D(0.19, -1.2)),
|
902 |
+
Line2D(Point2D(1.5, -2.0), Point2D(2.5, -2.7))]
|
903 |
+
|
904 |
+
Whereas the above solution has an operation count of 12, the exact
|
905 |
+
solution has an operation count of 2020.
|
906 |
+
"""
|
907 |
+
p = Point(p, dim=2)
|
908 |
+
|
909 |
+
# XXX change True to something like self.angle == 0 if the arbitrarily
|
910 |
+
# rotated ellipse is introduced.
|
911 |
+
# https://github.com/sympy/sympy/issues/2815)
|
912 |
+
if True:
|
913 |
+
rv = []
|
914 |
+
if p.x == self.center.x:
|
915 |
+
rv.append(Line(self.center, slope=oo))
|
916 |
+
if p.y == self.center.y:
|
917 |
+
rv.append(Line(self.center, slope=0))
|
918 |
+
if rv:
|
919 |
+
# at these special orientations of p either 1 or 2 normals
|
920 |
+
# exist and we are done
|
921 |
+
return rv
|
922 |
+
|
923 |
+
# find the 4 normal points and construct lines through them with
|
924 |
+
# the corresponding slope
|
925 |
+
eq = self.equation(x, y)
|
926 |
+
dydx = idiff(eq, y, x)
|
927 |
+
norm = -1/dydx
|
928 |
+
slope = Line(p, (x, y)).slope
|
929 |
+
seq = slope - norm
|
930 |
+
|
931 |
+
# TODO: Replace solve with solveset, when this line is tested
|
932 |
+
yis = solve(seq, y)[0]
|
933 |
+
xeq = eq.subs(y, yis).as_numer_denom()[0].expand()
|
934 |
+
if len(xeq.free_symbols) == 1:
|
935 |
+
try:
|
936 |
+
# this is so much faster, it's worth a try
|
937 |
+
xsol = Poly(xeq, x).real_roots()
|
938 |
+
except (DomainError, PolynomialError, NotImplementedError):
|
939 |
+
# TODO: Replace solve with solveset, when these lines are tested
|
940 |
+
xsol = _nsort(solve(xeq, x), separated=True)[0]
|
941 |
+
points = [Point(i, solve(eq.subs(x, i), y)[0]) for i in xsol]
|
942 |
+
else:
|
943 |
+
raise NotImplementedError(
|
944 |
+
'intersections for the general ellipse are not supported')
|
945 |
+
slopes = [norm.subs(zip((x, y), pt.args)) for pt in points]
|
946 |
+
if prec is not None:
|
947 |
+
points = [pt.n(prec) for pt in points]
|
948 |
+
slopes = [i if _not_a_coeff(i) else i.n(prec) for i in slopes]
|
949 |
+
return [Line(pt, slope=s) for pt, s in zip(points, slopes)]
|
950 |
+
|
951 |
+
@property
|
952 |
+
def periapsis(self):
|
953 |
+
"""The periapsis of the ellipse.
|
954 |
+
|
955 |
+
The shortest distance between the focus and the contour.
|
956 |
+
|
957 |
+
Returns
|
958 |
+
=======
|
959 |
+
|
960 |
+
periapsis : number
|
961 |
+
|
962 |
+
See Also
|
963 |
+
========
|
964 |
+
|
965 |
+
apoapsis : Returns greatest distance between focus and contour
|
966 |
+
|
967 |
+
Examples
|
968 |
+
========
|
969 |
+
|
970 |
+
>>> from sympy import Point, Ellipse
|
971 |
+
>>> p1 = Point(0, 0)
|
972 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
973 |
+
>>> e1.periapsis
|
974 |
+
3 - 2*sqrt(2)
|
975 |
+
|
976 |
+
"""
|
977 |
+
return self.major * (1 - self.eccentricity)
|
978 |
+
|
979 |
+
@property
|
980 |
+
def semilatus_rectum(self):
|
981 |
+
"""
|
982 |
+
Calculates the semi-latus rectum of the Ellipse.
|
983 |
+
|
984 |
+
Semi-latus rectum is defined as one half of the chord through a
|
985 |
+
focus parallel to the conic section directrix of a conic section.
|
986 |
+
|
987 |
+
Returns
|
988 |
+
=======
|
989 |
+
|
990 |
+
semilatus_rectum : number
|
991 |
+
|
992 |
+
See Also
|
993 |
+
========
|
994 |
+
|
995 |
+
apoapsis : Returns greatest distance between focus and contour
|
996 |
+
|
997 |
+
periapsis : The shortest distance between the focus and the contour
|
998 |
+
|
999 |
+
Examples
|
1000 |
+
========
|
1001 |
+
|
1002 |
+
>>> from sympy import Point, Ellipse
|
1003 |
+
>>> p1 = Point(0, 0)
|
1004 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
1005 |
+
>>> e1.semilatus_rectum
|
1006 |
+
1/3
|
1007 |
+
|
1008 |
+
References
|
1009 |
+
==========
|
1010 |
+
|
1011 |
+
.. [1] https://mathworld.wolfram.com/SemilatusRectum.html
|
1012 |
+
.. [2] https://en.wikipedia.org/wiki/Ellipse#Semi-latus_rectum
|
1013 |
+
|
1014 |
+
"""
|
1015 |
+
return self.major * (1 - self.eccentricity ** 2)
|
1016 |
+
|
1017 |
+
def auxiliary_circle(self):
|
1018 |
+
"""Returns a Circle whose diameter is the major axis of the ellipse.
|
1019 |
+
|
1020 |
+
Examples
|
1021 |
+
========
|
1022 |
+
|
1023 |
+
>>> from sympy import Ellipse, Point, symbols
|
1024 |
+
>>> c = Point(1, 2)
|
1025 |
+
>>> Ellipse(c, 8, 7).auxiliary_circle()
|
1026 |
+
Circle(Point2D(1, 2), 8)
|
1027 |
+
>>> a, b = symbols('a b')
|
1028 |
+
>>> Ellipse(c, a, b).auxiliary_circle()
|
1029 |
+
Circle(Point2D(1, 2), Max(a, b))
|
1030 |
+
"""
|
1031 |
+
return Circle(self.center, Max(self.hradius, self.vradius))
|
1032 |
+
|
1033 |
+
def director_circle(self):
|
1034 |
+
"""
|
1035 |
+
Returns a Circle consisting of all points where two perpendicular
|
1036 |
+
tangent lines to the ellipse cross each other.
|
1037 |
+
|
1038 |
+
Returns
|
1039 |
+
=======
|
1040 |
+
|
1041 |
+
Circle
|
1042 |
+
A director circle returned as a geometric object.
|
1043 |
+
|
1044 |
+
Examples
|
1045 |
+
========
|
1046 |
+
|
1047 |
+
>>> from sympy import Ellipse, Point, symbols
|
1048 |
+
>>> c = Point(3,8)
|
1049 |
+
>>> Ellipse(c, 7, 9).director_circle()
|
1050 |
+
Circle(Point2D(3, 8), sqrt(130))
|
1051 |
+
>>> a, b = symbols('a b')
|
1052 |
+
>>> Ellipse(c, a, b).director_circle()
|
1053 |
+
Circle(Point2D(3, 8), sqrt(a**2 + b**2))
|
1054 |
+
|
1055 |
+
References
|
1056 |
+
==========
|
1057 |
+
|
1058 |
+
.. [1] https://en.wikipedia.org/wiki/Director_circle
|
1059 |
+
|
1060 |
+
"""
|
1061 |
+
return Circle(self.center, sqrt(self.hradius**2 + self.vradius**2))
|
1062 |
+
|
1063 |
+
def plot_interval(self, parameter='t'):
|
1064 |
+
"""The plot interval for the default geometric plot of the Ellipse.
|
1065 |
+
|
1066 |
+
Parameters
|
1067 |
+
==========
|
1068 |
+
|
1069 |
+
parameter : str, optional
|
1070 |
+
Default value is 't'.
|
1071 |
+
|
1072 |
+
Returns
|
1073 |
+
=======
|
1074 |
+
|
1075 |
+
plot_interval : list
|
1076 |
+
[parameter, lower_bound, upper_bound]
|
1077 |
+
|
1078 |
+
Examples
|
1079 |
+
========
|
1080 |
+
|
1081 |
+
>>> from sympy import Point, Ellipse
|
1082 |
+
>>> e1 = Ellipse(Point(0, 0), 3, 2)
|
1083 |
+
>>> e1.plot_interval()
|
1084 |
+
[t, -pi, pi]
|
1085 |
+
|
1086 |
+
"""
|
1087 |
+
t = _symbol(parameter, real=True)
|
1088 |
+
return [t, -S.Pi, S.Pi]
|
1089 |
+
|
1090 |
+
def random_point(self, seed=None):
|
1091 |
+
"""A random point on the ellipse.
|
1092 |
+
|
1093 |
+
Returns
|
1094 |
+
=======
|
1095 |
+
|
1096 |
+
point : Point
|
1097 |
+
|
1098 |
+
Examples
|
1099 |
+
========
|
1100 |
+
|
1101 |
+
>>> from sympy import Point, Ellipse
|
1102 |
+
>>> e1 = Ellipse(Point(0, 0), 3, 2)
|
1103 |
+
>>> e1.random_point() # gives some random point
|
1104 |
+
Point2D(...)
|
1105 |
+
>>> p1 = e1.random_point(seed=0); p1.n(2)
|
1106 |
+
Point2D(2.1, 1.4)
|
1107 |
+
|
1108 |
+
Notes
|
1109 |
+
=====
|
1110 |
+
|
1111 |
+
When creating a random point, one may simply replace the
|
1112 |
+
parameter with a random number. When doing so, however, the
|
1113 |
+
random number should be made a Rational or else the point
|
1114 |
+
may not test as being in the ellipse:
|
1115 |
+
|
1116 |
+
>>> from sympy.abc import t
|
1117 |
+
>>> from sympy import Rational
|
1118 |
+
>>> arb = e1.arbitrary_point(t); arb
|
1119 |
+
Point2D(3*cos(t), 2*sin(t))
|
1120 |
+
>>> arb.subs(t, .1) in e1
|
1121 |
+
False
|
1122 |
+
>>> arb.subs(t, Rational(.1)) in e1
|
1123 |
+
True
|
1124 |
+
>>> arb.subs(t, Rational('.1')) in e1
|
1125 |
+
True
|
1126 |
+
|
1127 |
+
See Also
|
1128 |
+
========
|
1129 |
+
sympy.geometry.point.Point
|
1130 |
+
arbitrary_point : Returns parameterized point on ellipse
|
1131 |
+
"""
|
1132 |
+
t = _symbol('t', real=True)
|
1133 |
+
x, y = self.arbitrary_point(t).args
|
1134 |
+
# get a random value in [-1, 1) corresponding to cos(t)
|
1135 |
+
# and confirm that it will test as being in the ellipse
|
1136 |
+
if seed is not None:
|
1137 |
+
rng = random.Random(seed)
|
1138 |
+
else:
|
1139 |
+
rng = random
|
1140 |
+
# simplify this now or else the Float will turn s into a Float
|
1141 |
+
r = Rational(rng.random())
|
1142 |
+
c = 2*r - 1
|
1143 |
+
s = sqrt(1 - c**2)
|
1144 |
+
return Point(x.subs(cos(t), c), y.subs(sin(t), s))
|
1145 |
+
|
1146 |
+
def reflect(self, line):
|
1147 |
+
"""Override GeometryEntity.reflect since the radius
|
1148 |
+
is not a GeometryEntity.
|
1149 |
+
|
1150 |
+
Examples
|
1151 |
+
========
|
1152 |
+
|
1153 |
+
>>> from sympy import Circle, Line
|
1154 |
+
>>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1)))
|
1155 |
+
Circle(Point2D(1, 0), -1)
|
1156 |
+
>>> from sympy import Ellipse, Line, Point
|
1157 |
+
>>> Ellipse(Point(3, 4), 1, 3).reflect(Line(Point(0, -4), Point(5, 0)))
|
1158 |
+
Traceback (most recent call last):
|
1159 |
+
...
|
1160 |
+
NotImplementedError:
|
1161 |
+
General Ellipse is not supported but the equation of the reflected
|
1162 |
+
Ellipse is given by the zeros of: f(x, y) = (9*x/41 + 40*y/41 +
|
1163 |
+
37/41)**2 + (40*x/123 - 3*y/41 - 364/123)**2 - 1
|
1164 |
+
|
1165 |
+
Notes
|
1166 |
+
=====
|
1167 |
+
|
1168 |
+
Until the general ellipse (with no axis parallel to the x-axis) is
|
1169 |
+
supported a NotImplemented error is raised and the equation whose
|
1170 |
+
zeros define the rotated ellipse is given.
|
1171 |
+
|
1172 |
+
"""
|
1173 |
+
|
1174 |
+
if line.slope in (0, oo):
|
1175 |
+
c = self.center
|
1176 |
+
c = c.reflect(line)
|
1177 |
+
return self.func(c, -self.hradius, self.vradius)
|
1178 |
+
else:
|
1179 |
+
x, y = [uniquely_named_symbol(
|
1180 |
+
name, (self, line), modify=lambda s: '_' + s, real=True)
|
1181 |
+
for name in 'xy']
|
1182 |
+
expr = self.equation(x, y)
|
1183 |
+
p = Point(x, y).reflect(line)
|
1184 |
+
result = expr.subs(zip((x, y), p.args
|
1185 |
+
), simultaneous=True)
|
1186 |
+
raise NotImplementedError(filldedent(
|
1187 |
+
'General Ellipse is not supported but the equation '
|
1188 |
+
'of the reflected Ellipse is given by the zeros of: ' +
|
1189 |
+
"f(%s, %s) = %s" % (str(x), str(y), str(result))))
|
1190 |
+
|
1191 |
+
def rotate(self, angle=0, pt=None):
|
1192 |
+
"""Rotate ``angle`` radians counterclockwise about Point ``pt``.
|
1193 |
+
|
1194 |
+
Note: since the general ellipse is not supported, only rotations that
|
1195 |
+
are integer multiples of pi/2 are allowed.
|
1196 |
+
|
1197 |
+
Examples
|
1198 |
+
========
|
1199 |
+
|
1200 |
+
>>> from sympy import Ellipse, pi
|
1201 |
+
>>> Ellipse((1, 0), 2, 1).rotate(pi/2)
|
1202 |
+
Ellipse(Point2D(0, 1), 1, 2)
|
1203 |
+
>>> Ellipse((1, 0), 2, 1).rotate(pi)
|
1204 |
+
Ellipse(Point2D(-1, 0), 2, 1)
|
1205 |
+
"""
|
1206 |
+
if self.hradius == self.vradius:
|
1207 |
+
return self.func(self.center.rotate(angle, pt), self.hradius)
|
1208 |
+
if (angle/S.Pi).is_integer:
|
1209 |
+
return super().rotate(angle, pt)
|
1210 |
+
if (2*angle/S.Pi).is_integer:
|
1211 |
+
return self.func(self.center.rotate(angle, pt), self.vradius, self.hradius)
|
1212 |
+
# XXX see https://github.com/sympy/sympy/issues/2815 for general ellipes
|
1213 |
+
raise NotImplementedError('Only rotations of pi/2 are currently supported for Ellipse.')
|
1214 |
+
|
1215 |
+
def scale(self, x=1, y=1, pt=None):
|
1216 |
+
"""Override GeometryEntity.scale since it is the major and minor
|
1217 |
+
axes which must be scaled and they are not GeometryEntities.
|
1218 |
+
|
1219 |
+
Examples
|
1220 |
+
========
|
1221 |
+
|
1222 |
+
>>> from sympy import Ellipse
|
1223 |
+
>>> Ellipse((0, 0), 2, 1).scale(2, 4)
|
1224 |
+
Circle(Point2D(0, 0), 4)
|
1225 |
+
>>> Ellipse((0, 0), 2, 1).scale(2)
|
1226 |
+
Ellipse(Point2D(0, 0), 4, 1)
|
1227 |
+
"""
|
1228 |
+
c = self.center
|
1229 |
+
if pt:
|
1230 |
+
pt = Point(pt, dim=2)
|
1231 |
+
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
|
1232 |
+
h = self.hradius
|
1233 |
+
v = self.vradius
|
1234 |
+
return self.func(c.scale(x, y), hradius=h*x, vradius=v*y)
|
1235 |
+
|
1236 |
+
def tangent_lines(self, p):
|
1237 |
+
"""Tangent lines between `p` and the ellipse.
|
1238 |
+
|
1239 |
+
If `p` is on the ellipse, returns the tangent line through point `p`.
|
1240 |
+
Otherwise, returns the tangent line(s) from `p` to the ellipse, or
|
1241 |
+
None if no tangent line is possible (e.g., `p` inside ellipse).
|
1242 |
+
|
1243 |
+
Parameters
|
1244 |
+
==========
|
1245 |
+
|
1246 |
+
p : Point
|
1247 |
+
|
1248 |
+
Returns
|
1249 |
+
=======
|
1250 |
+
|
1251 |
+
tangent_lines : list with 1 or 2 Lines
|
1252 |
+
|
1253 |
+
Raises
|
1254 |
+
======
|
1255 |
+
|
1256 |
+
NotImplementedError
|
1257 |
+
Can only find tangent lines for a point, `p`, on the ellipse.
|
1258 |
+
|
1259 |
+
See Also
|
1260 |
+
========
|
1261 |
+
|
1262 |
+
sympy.geometry.point.Point, sympy.geometry.line.Line
|
1263 |
+
|
1264 |
+
Examples
|
1265 |
+
========
|
1266 |
+
|
1267 |
+
>>> from sympy import Point, Ellipse
|
1268 |
+
>>> e1 = Ellipse(Point(0, 0), 3, 2)
|
1269 |
+
>>> e1.tangent_lines(Point(3, 0))
|
1270 |
+
[Line2D(Point2D(3, 0), Point2D(3, -12))]
|
1271 |
+
|
1272 |
+
"""
|
1273 |
+
p = Point(p, dim=2)
|
1274 |
+
if self.encloses_point(p):
|
1275 |
+
return []
|
1276 |
+
|
1277 |
+
if p in self:
|
1278 |
+
delta = self.center - p
|
1279 |
+
rise = (self.vradius**2)*delta.x
|
1280 |
+
run = -(self.hradius**2)*delta.y
|
1281 |
+
p2 = Point(simplify(p.x + run),
|
1282 |
+
simplify(p.y + rise))
|
1283 |
+
return [Line(p, p2)]
|
1284 |
+
else:
|
1285 |
+
if len(self.foci) == 2:
|
1286 |
+
f1, f2 = self.foci
|
1287 |
+
maj = self.hradius
|
1288 |
+
test = (2*maj -
|
1289 |
+
Point.distance(f1, p) -
|
1290 |
+
Point.distance(f2, p))
|
1291 |
+
else:
|
1292 |
+
test = self.radius - Point.distance(self.center, p)
|
1293 |
+
if test.is_number and test.is_positive:
|
1294 |
+
return []
|
1295 |
+
# else p is outside the ellipse or we can't tell. In case of the
|
1296 |
+
# latter, the solutions returned will only be valid if
|
1297 |
+
# the point is not inside the ellipse; if it is, nan will result.
|
1298 |
+
eq = self.equation(x, y)
|
1299 |
+
dydx = idiff(eq, y, x)
|
1300 |
+
slope = Line(p, Point(x, y)).slope
|
1301 |
+
|
1302 |
+
# TODO: Replace solve with solveset, when this line is tested
|
1303 |
+
tangent_points = solve([slope - dydx, eq], [x, y])
|
1304 |
+
|
1305 |
+
# handle horizontal and vertical tangent lines
|
1306 |
+
if len(tangent_points) == 1:
|
1307 |
+
if tangent_points[0][
|
1308 |
+
0] == p.x or tangent_points[0][1] == p.y:
|
1309 |
+
return [Line(p, p + Point(1, 0)), Line(p, p + Point(0, 1))]
|
1310 |
+
else:
|
1311 |
+
return [Line(p, p + Point(0, 1)), Line(p, tangent_points[0])]
|
1312 |
+
|
1313 |
+
# others
|
1314 |
+
return [Line(p, tangent_points[0]), Line(p, tangent_points[1])]
|
1315 |
+
|
1316 |
+
@property
|
1317 |
+
def vradius(self):
|
1318 |
+
"""The vertical radius of the ellipse.
|
1319 |
+
|
1320 |
+
Returns
|
1321 |
+
=======
|
1322 |
+
|
1323 |
+
vradius : number
|
1324 |
+
|
1325 |
+
See Also
|
1326 |
+
========
|
1327 |
+
|
1328 |
+
hradius, major, minor
|
1329 |
+
|
1330 |
+
Examples
|
1331 |
+
========
|
1332 |
+
|
1333 |
+
>>> from sympy import Point, Ellipse
|
1334 |
+
>>> p1 = Point(0, 0)
|
1335 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
1336 |
+
>>> e1.vradius
|
1337 |
+
1
|
1338 |
+
|
1339 |
+
"""
|
1340 |
+
return self.args[2]
|
1341 |
+
|
1342 |
+
|
1343 |
+
def second_moment_of_area(self, point=None):
|
1344 |
+
"""Returns the second moment and product moment area of an ellipse.
|
1345 |
+
|
1346 |
+
Parameters
|
1347 |
+
==========
|
1348 |
+
|
1349 |
+
point : Point, two-tuple of sympifiable objects, or None(default=None)
|
1350 |
+
point is the point about which second moment of area is to be found.
|
1351 |
+
If "point=None" it will be calculated about the axis passing through the
|
1352 |
+
centroid of the ellipse.
|
1353 |
+
|
1354 |
+
Returns
|
1355 |
+
=======
|
1356 |
+
|
1357 |
+
I_xx, I_yy, I_xy : number or SymPy expression
|
1358 |
+
I_xx, I_yy are second moment of area of an ellise.
|
1359 |
+
I_xy is product moment of area of an ellipse.
|
1360 |
+
|
1361 |
+
Examples
|
1362 |
+
========
|
1363 |
+
|
1364 |
+
>>> from sympy import Point, Ellipse
|
1365 |
+
>>> p1 = Point(0, 0)
|
1366 |
+
>>> e1 = Ellipse(p1, 3, 1)
|
1367 |
+
>>> e1.second_moment_of_area()
|
1368 |
+
(3*pi/4, 27*pi/4, 0)
|
1369 |
+
|
1370 |
+
References
|
1371 |
+
==========
|
1372 |
+
|
1373 |
+
.. [1] https://en.wikipedia.org/wiki/List_of_second_moments_of_area
|
1374 |
+
|
1375 |
+
"""
|
1376 |
+
|
1377 |
+
I_xx = (S.Pi*(self.hradius)*(self.vradius**3))/4
|
1378 |
+
I_yy = (S.Pi*(self.hradius**3)*(self.vradius))/4
|
1379 |
+
I_xy = 0
|
1380 |
+
|
1381 |
+
if point is None:
|
1382 |
+
return I_xx, I_yy, I_xy
|
1383 |
+
|
1384 |
+
# parallel axis theorem
|
1385 |
+
I_xx = I_xx + self.area*((point[1] - self.center.y)**2)
|
1386 |
+
I_yy = I_yy + self.area*((point[0] - self.center.x)**2)
|
1387 |
+
I_xy = I_xy + self.area*(point[0] - self.center.x)*(point[1] - self.center.y)
|
1388 |
+
|
1389 |
+
return I_xx, I_yy, I_xy
|
1390 |
+
|
1391 |
+
|
1392 |
+
def polar_second_moment_of_area(self):
|
1393 |
+
"""Returns the polar second moment of area of an Ellipse
|
1394 |
+
|
1395 |
+
It is a constituent of the second moment of area, linked through
|
1396 |
+
the perpendicular axis theorem. While the planar second moment of
|
1397 |
+
area describes an object's resistance to deflection (bending) when
|
1398 |
+
subjected to a force applied to a plane parallel to the central
|
1399 |
+
axis, the polar second moment of area describes an object's
|
1400 |
+
resistance to deflection when subjected to a moment applied in a
|
1401 |
+
plane perpendicular to the object's central axis (i.e. parallel to
|
1402 |
+
the cross-section)
|
1403 |
+
|
1404 |
+
Examples
|
1405 |
+
========
|
1406 |
+
|
1407 |
+
>>> from sympy import symbols, Circle, Ellipse
|
1408 |
+
>>> c = Circle((5, 5), 4)
|
1409 |
+
>>> c.polar_second_moment_of_area()
|
1410 |
+
128*pi
|
1411 |
+
>>> a, b = symbols('a, b')
|
1412 |
+
>>> e = Ellipse((0, 0), a, b)
|
1413 |
+
>>> e.polar_second_moment_of_area()
|
1414 |
+
pi*a**3*b/4 + pi*a*b**3/4
|
1415 |
+
|
1416 |
+
References
|
1417 |
+
==========
|
1418 |
+
|
1419 |
+
.. [1] https://en.wikipedia.org/wiki/Polar_moment_of_inertia
|
1420 |
+
|
1421 |
+
"""
|
1422 |
+
second_moment = self.second_moment_of_area()
|
1423 |
+
return second_moment[0] + second_moment[1]
|
1424 |
+
|
1425 |
+
|
1426 |
+
def section_modulus(self, point=None):
|
1427 |
+
"""Returns a tuple with the section modulus of an ellipse
|
1428 |
+
|
1429 |
+
Section modulus is a geometric property of an ellipse defined as the
|
1430 |
+
ratio of second moment of area to the distance of the extreme end of
|
1431 |
+
the ellipse from the centroidal axis.
|
1432 |
+
|
1433 |
+
Parameters
|
1434 |
+
==========
|
1435 |
+
|
1436 |
+
point : Point, two-tuple of sympifyable objects, or None(default=None)
|
1437 |
+
point is the point at which section modulus is to be found.
|
1438 |
+
If "point=None" section modulus will be calculated for the
|
1439 |
+
point farthest from the centroidal axis of the ellipse.
|
1440 |
+
|
1441 |
+
Returns
|
1442 |
+
=======
|
1443 |
+
|
1444 |
+
S_x, S_y: numbers or SymPy expressions
|
1445 |
+
S_x is the section modulus with respect to the x-axis
|
1446 |
+
S_y is the section modulus with respect to the y-axis
|
1447 |
+
A negative sign indicates that the section modulus is
|
1448 |
+
determined for a point below the centroidal axis.
|
1449 |
+
|
1450 |
+
Examples
|
1451 |
+
========
|
1452 |
+
|
1453 |
+
>>> from sympy import Symbol, Ellipse, Circle, Point2D
|
1454 |
+
>>> d = Symbol('d', positive=True)
|
1455 |
+
>>> c = Circle((0, 0), d/2)
|
1456 |
+
>>> c.section_modulus()
|
1457 |
+
(pi*d**3/32, pi*d**3/32)
|
1458 |
+
>>> e = Ellipse(Point2D(0, 0), 2, 4)
|
1459 |
+
>>> e.section_modulus()
|
1460 |
+
(8*pi, 4*pi)
|
1461 |
+
>>> e.section_modulus((2, 2))
|
1462 |
+
(16*pi, 4*pi)
|
1463 |
+
|
1464 |
+
References
|
1465 |
+
==========
|
1466 |
+
|
1467 |
+
.. [1] https://en.wikipedia.org/wiki/Section_modulus
|
1468 |
+
|
1469 |
+
"""
|
1470 |
+
x_c, y_c = self.center
|
1471 |
+
if point is None:
|
1472 |
+
# taking x and y as maximum distances from centroid
|
1473 |
+
x_min, y_min, x_max, y_max = self.bounds
|
1474 |
+
y = max(y_c - y_min, y_max - y_c)
|
1475 |
+
x = max(x_c - x_min, x_max - x_c)
|
1476 |
+
else:
|
1477 |
+
# taking x and y as distances of the given point from the center
|
1478 |
+
point = Point2D(point)
|
1479 |
+
y = point.y - y_c
|
1480 |
+
x = point.x - x_c
|
1481 |
+
|
1482 |
+
second_moment = self.second_moment_of_area()
|
1483 |
+
S_x = second_moment[0]/y
|
1484 |
+
S_y = second_moment[1]/x
|
1485 |
+
|
1486 |
+
return S_x, S_y
|
1487 |
+
|
1488 |
+
|
1489 |
+
class Circle(Ellipse):
|
1490 |
+
"""A circle in space.
|
1491 |
+
|
1492 |
+
Constructed simply from a center and a radius, from three
|
1493 |
+
non-collinear points, or the equation of a circle.
|
1494 |
+
|
1495 |
+
Parameters
|
1496 |
+
==========
|
1497 |
+
|
1498 |
+
center : Point
|
1499 |
+
radius : number or SymPy expression
|
1500 |
+
points : sequence of three Points
|
1501 |
+
equation : equation of a circle
|
1502 |
+
|
1503 |
+
Attributes
|
1504 |
+
==========
|
1505 |
+
|
1506 |
+
radius (synonymous with hradius, vradius, major and minor)
|
1507 |
+
circumference
|
1508 |
+
equation
|
1509 |
+
|
1510 |
+
Raises
|
1511 |
+
======
|
1512 |
+
|
1513 |
+
GeometryError
|
1514 |
+
When the given equation is not that of a circle.
|
1515 |
+
When trying to construct circle from incorrect parameters.
|
1516 |
+
|
1517 |
+
See Also
|
1518 |
+
========
|
1519 |
+
|
1520 |
+
Ellipse, sympy.geometry.point.Point
|
1521 |
+
|
1522 |
+
Examples
|
1523 |
+
========
|
1524 |
+
|
1525 |
+
>>> from sympy import Point, Circle, Eq
|
1526 |
+
>>> from sympy.abc import x, y, a, b
|
1527 |
+
|
1528 |
+
A circle constructed from a center and radius:
|
1529 |
+
|
1530 |
+
>>> c1 = Circle(Point(0, 0), 5)
|
1531 |
+
>>> c1.hradius, c1.vradius, c1.radius
|
1532 |
+
(5, 5, 5)
|
1533 |
+
|
1534 |
+
A circle constructed from three points:
|
1535 |
+
|
1536 |
+
>>> c2 = Circle(Point(0, 0), Point(1, 1), Point(1, 0))
|
1537 |
+
>>> c2.hradius, c2.vradius, c2.radius, c2.center
|
1538 |
+
(sqrt(2)/2, sqrt(2)/2, sqrt(2)/2, Point2D(1/2, 1/2))
|
1539 |
+
|
1540 |
+
A circle can be constructed from an equation in the form
|
1541 |
+
`a*x**2 + by**2 + gx + hy + c = 0`, too:
|
1542 |
+
|
1543 |
+
>>> Circle(x**2 + y**2 - 25)
|
1544 |
+
Circle(Point2D(0, 0), 5)
|
1545 |
+
|
1546 |
+
If the variables corresponding to x and y are named something
|
1547 |
+
else, their name or symbol can be supplied:
|
1548 |
+
|
1549 |
+
>>> Circle(Eq(a**2 + b**2, 25), x='a', y=b)
|
1550 |
+
Circle(Point2D(0, 0), 5)
|
1551 |
+
"""
|
1552 |
+
|
1553 |
+
def __new__(cls, *args, **kwargs):
|
1554 |
+
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
|
1555 |
+
if len(args) == 1 and isinstance(args[0], (Expr, Eq)):
|
1556 |
+
x = kwargs.get('x', 'x')
|
1557 |
+
y = kwargs.get('y', 'y')
|
1558 |
+
equation = args[0].expand()
|
1559 |
+
if isinstance(equation, Eq):
|
1560 |
+
equation = equation.lhs - equation.rhs
|
1561 |
+
x = find(x, equation)
|
1562 |
+
y = find(y, equation)
|
1563 |
+
|
1564 |
+
try:
|
1565 |
+
a, b, c, d, e = linear_coeffs(equation, x**2, y**2, x, y)
|
1566 |
+
except ValueError:
|
1567 |
+
raise GeometryError("The given equation is not that of a circle.")
|
1568 |
+
|
1569 |
+
if S.Zero in (a, b) or a != b:
|
1570 |
+
raise GeometryError("The given equation is not that of a circle.")
|
1571 |
+
|
1572 |
+
center_x = -c/a/2
|
1573 |
+
center_y = -d/b/2
|
1574 |
+
r2 = (center_x**2) + (center_y**2) - e/a
|
1575 |
+
|
1576 |
+
return Circle((center_x, center_y), sqrt(r2), evaluate=evaluate)
|
1577 |
+
|
1578 |
+
else:
|
1579 |
+
c, r = None, None
|
1580 |
+
if len(args) == 3:
|
1581 |
+
args = [Point(a, dim=2, evaluate=evaluate) for a in args]
|
1582 |
+
t = Triangle(*args)
|
1583 |
+
if not isinstance(t, Triangle):
|
1584 |
+
return t
|
1585 |
+
c = t.circumcenter
|
1586 |
+
r = t.circumradius
|
1587 |
+
elif len(args) == 2:
|
1588 |
+
# Assume (center, radius) pair
|
1589 |
+
c = Point(args[0], dim=2, evaluate=evaluate)
|
1590 |
+
r = args[1]
|
1591 |
+
# this will prohibit imaginary radius
|
1592 |
+
try:
|
1593 |
+
r = Point(r, 0, evaluate=evaluate).x
|
1594 |
+
except ValueError:
|
1595 |
+
raise GeometryError("Circle with imaginary radius is not permitted")
|
1596 |
+
|
1597 |
+
if not (c is None or r is None):
|
1598 |
+
if r == 0:
|
1599 |
+
return c
|
1600 |
+
return GeometryEntity.__new__(cls, c, r, **kwargs)
|
1601 |
+
|
1602 |
+
raise GeometryError("Circle.__new__ received unknown arguments")
|
1603 |
+
|
1604 |
+
def _eval_evalf(self, prec=15, **options):
|
1605 |
+
pt, r = self.args
|
1606 |
+
dps = prec_to_dps(prec)
|
1607 |
+
pt = pt.evalf(n=dps, **options)
|
1608 |
+
r = r.evalf(n=dps, **options)
|
1609 |
+
return self.func(pt, r, evaluate=False)
|
1610 |
+
|
1611 |
+
@property
|
1612 |
+
def circumference(self):
|
1613 |
+
"""The circumference of the circle.
|
1614 |
+
|
1615 |
+
Returns
|
1616 |
+
=======
|
1617 |
+
|
1618 |
+
circumference : number or SymPy expression
|
1619 |
+
|
1620 |
+
Examples
|
1621 |
+
========
|
1622 |
+
|
1623 |
+
>>> from sympy import Point, Circle
|
1624 |
+
>>> c1 = Circle(Point(3, 4), 6)
|
1625 |
+
>>> c1.circumference
|
1626 |
+
12*pi
|
1627 |
+
|
1628 |
+
"""
|
1629 |
+
return 2 * S.Pi * self.radius
|
1630 |
+
|
1631 |
+
def equation(self, x='x', y='y'):
|
1632 |
+
"""The equation of the circle.
|
1633 |
+
|
1634 |
+
Parameters
|
1635 |
+
==========
|
1636 |
+
|
1637 |
+
x : str or Symbol, optional
|
1638 |
+
Default value is 'x'.
|
1639 |
+
y : str or Symbol, optional
|
1640 |
+
Default value is 'y'.
|
1641 |
+
|
1642 |
+
Returns
|
1643 |
+
=======
|
1644 |
+
|
1645 |
+
equation : SymPy expression
|
1646 |
+
|
1647 |
+
Examples
|
1648 |
+
========
|
1649 |
+
|
1650 |
+
>>> from sympy import Point, Circle
|
1651 |
+
>>> c1 = Circle(Point(0, 0), 5)
|
1652 |
+
>>> c1.equation()
|
1653 |
+
x**2 + y**2 - 25
|
1654 |
+
|
1655 |
+
"""
|
1656 |
+
x = _symbol(x, real=True)
|
1657 |
+
y = _symbol(y, real=True)
|
1658 |
+
t1 = (x - self.center.x)**2
|
1659 |
+
t2 = (y - self.center.y)**2
|
1660 |
+
return t1 + t2 - self.major**2
|
1661 |
+
|
1662 |
+
def intersection(self, o):
|
1663 |
+
"""The intersection of this circle with another geometrical entity.
|
1664 |
+
|
1665 |
+
Parameters
|
1666 |
+
==========
|
1667 |
+
|
1668 |
+
o : GeometryEntity
|
1669 |
+
|
1670 |
+
Returns
|
1671 |
+
=======
|
1672 |
+
|
1673 |
+
intersection : list of GeometryEntities
|
1674 |
+
|
1675 |
+
Examples
|
1676 |
+
========
|
1677 |
+
|
1678 |
+
>>> from sympy import Point, Circle, Line, Ray
|
1679 |
+
>>> p1, p2, p3 = Point(0, 0), Point(5, 5), Point(6, 0)
|
1680 |
+
>>> p4 = Point(5, 0)
|
1681 |
+
>>> c1 = Circle(p1, 5)
|
1682 |
+
>>> c1.intersection(p2)
|
1683 |
+
[]
|
1684 |
+
>>> c1.intersection(p4)
|
1685 |
+
[Point2D(5, 0)]
|
1686 |
+
>>> c1.intersection(Ray(p1, p2))
|
1687 |
+
[Point2D(5*sqrt(2)/2, 5*sqrt(2)/2)]
|
1688 |
+
>>> c1.intersection(Line(p2, p3))
|
1689 |
+
[]
|
1690 |
+
|
1691 |
+
"""
|
1692 |
+
return Ellipse.intersection(self, o)
|
1693 |
+
|
1694 |
+
@property
|
1695 |
+
def radius(self):
|
1696 |
+
"""The radius of the circle.
|
1697 |
+
|
1698 |
+
Returns
|
1699 |
+
=======
|
1700 |
+
|
1701 |
+
radius : number or SymPy expression
|
1702 |
+
|
1703 |
+
See Also
|
1704 |
+
========
|
1705 |
+
|
1706 |
+
Ellipse.major, Ellipse.minor, Ellipse.hradius, Ellipse.vradius
|
1707 |
+
|
1708 |
+
Examples
|
1709 |
+
========
|
1710 |
+
|
1711 |
+
>>> from sympy import Point, Circle
|
1712 |
+
>>> c1 = Circle(Point(3, 4), 6)
|
1713 |
+
>>> c1.radius
|
1714 |
+
6
|
1715 |
+
|
1716 |
+
"""
|
1717 |
+
return self.args[1]
|
1718 |
+
|
1719 |
+
def reflect(self, line):
|
1720 |
+
"""Override GeometryEntity.reflect since the radius
|
1721 |
+
is not a GeometryEntity.
|
1722 |
+
|
1723 |
+
Examples
|
1724 |
+
========
|
1725 |
+
|
1726 |
+
>>> from sympy import Circle, Line
|
1727 |
+
>>> Circle((0, 1), 1).reflect(Line((0, 0), (1, 1)))
|
1728 |
+
Circle(Point2D(1, 0), -1)
|
1729 |
+
"""
|
1730 |
+
c = self.center
|
1731 |
+
c = c.reflect(line)
|
1732 |
+
return self.func(c, -self.radius)
|
1733 |
+
|
1734 |
+
def scale(self, x=1, y=1, pt=None):
|
1735 |
+
"""Override GeometryEntity.scale since the radius
|
1736 |
+
is not a GeometryEntity.
|
1737 |
+
|
1738 |
+
Examples
|
1739 |
+
========
|
1740 |
+
|
1741 |
+
>>> from sympy import Circle
|
1742 |
+
>>> Circle((0, 0), 1).scale(2, 2)
|
1743 |
+
Circle(Point2D(0, 0), 2)
|
1744 |
+
>>> Circle((0, 0), 1).scale(2, 4)
|
1745 |
+
Ellipse(Point2D(0, 0), 2, 4)
|
1746 |
+
"""
|
1747 |
+
c = self.center
|
1748 |
+
if pt:
|
1749 |
+
pt = Point(pt, dim=2)
|
1750 |
+
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
|
1751 |
+
c = c.scale(x, y)
|
1752 |
+
x, y = [abs(i) for i in (x, y)]
|
1753 |
+
if x == y:
|
1754 |
+
return self.func(c, x*self.radius)
|
1755 |
+
h = v = self.radius
|
1756 |
+
return Ellipse(c, hradius=h*x, vradius=v*y)
|
1757 |
+
|
1758 |
+
@property
|
1759 |
+
def vradius(self):
|
1760 |
+
"""
|
1761 |
+
This Ellipse property is an alias for the Circle's radius.
|
1762 |
+
|
1763 |
+
Whereas hradius, major and minor can use Ellipse's conventions,
|
1764 |
+
the vradius does not exist for a circle. It is always a positive
|
1765 |
+
value in order that the Circle, like Polygons, will have an
|
1766 |
+
area that can be positive or negative as determined by the sign
|
1767 |
+
of the hradius.
|
1768 |
+
|
1769 |
+
Examples
|
1770 |
+
========
|
1771 |
+
|
1772 |
+
>>> from sympy import Point, Circle
|
1773 |
+
>>> c1 = Circle(Point(3, 4), 6)
|
1774 |
+
>>> c1.vradius
|
1775 |
+
6
|
1776 |
+
"""
|
1777 |
+
return abs(self.radius)
|
1778 |
+
|
1779 |
+
|
1780 |
+
from .polygon import Polygon, Triangle
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/exceptions.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Geometry Errors."""
|
2 |
+
|
3 |
+
class GeometryError(ValueError):
|
4 |
+
"""An exception raised by classes in the geometry module."""
|
5 |
+
pass
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/line.py
ADDED
@@ -0,0 +1,2803 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Line-like geometrical entities.
|
2 |
+
|
3 |
+
Contains
|
4 |
+
========
|
5 |
+
LinearEntity
|
6 |
+
Line
|
7 |
+
Ray
|
8 |
+
Segment
|
9 |
+
LinearEntity2D
|
10 |
+
Line2D
|
11 |
+
Ray2D
|
12 |
+
Segment2D
|
13 |
+
LinearEntity3D
|
14 |
+
Line3D
|
15 |
+
Ray3D
|
16 |
+
Segment3D
|
17 |
+
|
18 |
+
"""
|
19 |
+
|
20 |
+
from sympy.core.containers import Tuple
|
21 |
+
from sympy.core.evalf import N
|
22 |
+
from sympy.core.expr import Expr
|
23 |
+
from sympy.core.numbers import Rational, oo, Float
|
24 |
+
from sympy.core.relational import Eq
|
25 |
+
from sympy.core.singleton import S
|
26 |
+
from sympy.core.sorting import ordered
|
27 |
+
from sympy.core.symbol import _symbol, Dummy, uniquely_named_symbol
|
28 |
+
from sympy.core.sympify import sympify
|
29 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
30 |
+
from sympy.functions.elementary.trigonometric import (_pi_coeff, acos, tan, atan2)
|
31 |
+
from .entity import GeometryEntity, GeometrySet
|
32 |
+
from .exceptions import GeometryError
|
33 |
+
from .point import Point, Point3D
|
34 |
+
from .util import find, intersection
|
35 |
+
from sympy.logic.boolalg import And
|
36 |
+
from sympy.matrices import Matrix
|
37 |
+
from sympy.sets.sets import Intersection
|
38 |
+
from sympy.simplify.simplify import simplify
|
39 |
+
from sympy.solvers.solvers import solve
|
40 |
+
from sympy.solvers.solveset import linear_coeffs
|
41 |
+
from sympy.utilities.misc import Undecidable, filldedent
|
42 |
+
|
43 |
+
|
44 |
+
import random
|
45 |
+
|
46 |
+
|
47 |
+
t, u = [Dummy('line_dummy') for i in range(2)]
|
48 |
+
|
49 |
+
|
50 |
+
class LinearEntity(GeometrySet):
|
51 |
+
"""A base class for all linear entities (Line, Ray and Segment)
|
52 |
+
in n-dimensional Euclidean space.
|
53 |
+
|
54 |
+
Attributes
|
55 |
+
==========
|
56 |
+
|
57 |
+
ambient_dimension
|
58 |
+
direction
|
59 |
+
length
|
60 |
+
p1
|
61 |
+
p2
|
62 |
+
points
|
63 |
+
|
64 |
+
Notes
|
65 |
+
=====
|
66 |
+
|
67 |
+
This is an abstract class and is not meant to be instantiated.
|
68 |
+
|
69 |
+
See Also
|
70 |
+
========
|
71 |
+
|
72 |
+
sympy.geometry.entity.GeometryEntity
|
73 |
+
|
74 |
+
"""
|
75 |
+
def __new__(cls, p1, p2=None, **kwargs):
|
76 |
+
p1, p2 = Point._normalize_dimension(p1, p2)
|
77 |
+
if p1 == p2:
|
78 |
+
# sometimes we return a single point if we are not given two unique
|
79 |
+
# points. This is done in the specific subclass
|
80 |
+
raise ValueError(
|
81 |
+
"%s.__new__ requires two unique Points." % cls.__name__)
|
82 |
+
if len(p1) != len(p2):
|
83 |
+
raise ValueError(
|
84 |
+
"%s.__new__ requires two Points of equal dimension." % cls.__name__)
|
85 |
+
|
86 |
+
return GeometryEntity.__new__(cls, p1, p2, **kwargs)
|
87 |
+
|
88 |
+
def __contains__(self, other):
|
89 |
+
"""Return a definitive answer or else raise an error if it cannot
|
90 |
+
be determined that other is on the boundaries of self."""
|
91 |
+
result = self.contains(other)
|
92 |
+
|
93 |
+
if result is not None:
|
94 |
+
return result
|
95 |
+
else:
|
96 |
+
raise Undecidable(
|
97 |
+
"Cannot decide whether '%s' contains '%s'" % (self, other))
|
98 |
+
|
99 |
+
def _span_test(self, other):
|
100 |
+
"""Test whether the point `other` lies in the positive span of `self`.
|
101 |
+
A point x is 'in front' of a point y if x.dot(y) >= 0. Return
|
102 |
+
-1 if `other` is behind `self.p1`, 0 if `other` is `self.p1` and
|
103 |
+
and 1 if `other` is in front of `self.p1`."""
|
104 |
+
if self.p1 == other:
|
105 |
+
return 0
|
106 |
+
|
107 |
+
rel_pos = other - self.p1
|
108 |
+
d = self.direction
|
109 |
+
if d.dot(rel_pos) > 0:
|
110 |
+
return 1
|
111 |
+
return -1
|
112 |
+
|
113 |
+
@property
|
114 |
+
def ambient_dimension(self):
|
115 |
+
"""A property method that returns the dimension of LinearEntity
|
116 |
+
object.
|
117 |
+
|
118 |
+
Parameters
|
119 |
+
==========
|
120 |
+
|
121 |
+
p1 : LinearEntity
|
122 |
+
|
123 |
+
Returns
|
124 |
+
=======
|
125 |
+
|
126 |
+
dimension : integer
|
127 |
+
|
128 |
+
Examples
|
129 |
+
========
|
130 |
+
|
131 |
+
>>> from sympy import Point, Line
|
132 |
+
>>> p1, p2 = Point(0, 0), Point(1, 1)
|
133 |
+
>>> l1 = Line(p1, p2)
|
134 |
+
>>> l1.ambient_dimension
|
135 |
+
2
|
136 |
+
|
137 |
+
>>> from sympy import Point, Line
|
138 |
+
>>> p1, p2 = Point(0, 0, 0), Point(1, 1, 1)
|
139 |
+
>>> l1 = Line(p1, p2)
|
140 |
+
>>> l1.ambient_dimension
|
141 |
+
3
|
142 |
+
|
143 |
+
"""
|
144 |
+
return len(self.p1)
|
145 |
+
|
146 |
+
def angle_between(l1, l2):
|
147 |
+
"""Return the non-reflex angle formed by rays emanating from
|
148 |
+
the origin with directions the same as the direction vectors
|
149 |
+
of the linear entities.
|
150 |
+
|
151 |
+
Parameters
|
152 |
+
==========
|
153 |
+
|
154 |
+
l1 : LinearEntity
|
155 |
+
l2 : LinearEntity
|
156 |
+
|
157 |
+
Returns
|
158 |
+
=======
|
159 |
+
|
160 |
+
angle : angle in radians
|
161 |
+
|
162 |
+
Notes
|
163 |
+
=====
|
164 |
+
|
165 |
+
From the dot product of vectors v1 and v2 it is known that:
|
166 |
+
|
167 |
+
``dot(v1, v2) = |v1|*|v2|*cos(A)``
|
168 |
+
|
169 |
+
where A is the angle formed between the two vectors. We can
|
170 |
+
get the directional vectors of the two lines and readily
|
171 |
+
find the angle between the two using the above formula.
|
172 |
+
|
173 |
+
See Also
|
174 |
+
========
|
175 |
+
|
176 |
+
is_perpendicular, Ray2D.closing_angle
|
177 |
+
|
178 |
+
Examples
|
179 |
+
========
|
180 |
+
|
181 |
+
>>> from sympy import Line
|
182 |
+
>>> e = Line((0, 0), (1, 0))
|
183 |
+
>>> ne = Line((0, 0), (1, 1))
|
184 |
+
>>> sw = Line((1, 1), (0, 0))
|
185 |
+
>>> ne.angle_between(e)
|
186 |
+
pi/4
|
187 |
+
>>> sw.angle_between(e)
|
188 |
+
3*pi/4
|
189 |
+
|
190 |
+
To obtain the non-obtuse angle at the intersection of lines, use
|
191 |
+
the ``smallest_angle_between`` method:
|
192 |
+
|
193 |
+
>>> sw.smallest_angle_between(e)
|
194 |
+
pi/4
|
195 |
+
|
196 |
+
>>> from sympy import Point3D, Line3D
|
197 |
+
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(-1, 2, 0)
|
198 |
+
>>> l1, l2 = Line3D(p1, p2), Line3D(p2, p3)
|
199 |
+
>>> l1.angle_between(l2)
|
200 |
+
acos(-sqrt(2)/3)
|
201 |
+
>>> l1.smallest_angle_between(l2)
|
202 |
+
acos(sqrt(2)/3)
|
203 |
+
"""
|
204 |
+
if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
|
205 |
+
raise TypeError('Must pass only LinearEntity objects')
|
206 |
+
|
207 |
+
v1, v2 = l1.direction, l2.direction
|
208 |
+
return acos(v1.dot(v2)/(abs(v1)*abs(v2)))
|
209 |
+
|
210 |
+
def smallest_angle_between(l1, l2):
|
211 |
+
"""Return the smallest angle formed at the intersection of the
|
212 |
+
lines containing the linear entities.
|
213 |
+
|
214 |
+
Parameters
|
215 |
+
==========
|
216 |
+
|
217 |
+
l1 : LinearEntity
|
218 |
+
l2 : LinearEntity
|
219 |
+
|
220 |
+
Returns
|
221 |
+
=======
|
222 |
+
|
223 |
+
angle : angle in radians
|
224 |
+
|
225 |
+
Examples
|
226 |
+
========
|
227 |
+
|
228 |
+
>>> from sympy import Point, Line
|
229 |
+
>>> p1, p2, p3 = Point(0, 0), Point(0, 4), Point(2, -2)
|
230 |
+
>>> l1, l2 = Line(p1, p2), Line(p1, p3)
|
231 |
+
>>> l1.smallest_angle_between(l2)
|
232 |
+
pi/4
|
233 |
+
|
234 |
+
See Also
|
235 |
+
========
|
236 |
+
|
237 |
+
angle_between, is_perpendicular, Ray2D.closing_angle
|
238 |
+
"""
|
239 |
+
if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
|
240 |
+
raise TypeError('Must pass only LinearEntity objects')
|
241 |
+
|
242 |
+
v1, v2 = l1.direction, l2.direction
|
243 |
+
return acos(abs(v1.dot(v2))/(abs(v1)*abs(v2)))
|
244 |
+
|
245 |
+
def arbitrary_point(self, parameter='t'):
|
246 |
+
"""A parameterized point on the Line.
|
247 |
+
|
248 |
+
Parameters
|
249 |
+
==========
|
250 |
+
|
251 |
+
parameter : str, optional
|
252 |
+
The name of the parameter which will be used for the parametric
|
253 |
+
point. The default value is 't'. When this parameter is 0, the
|
254 |
+
first point used to define the line will be returned, and when
|
255 |
+
it is 1 the second point will be returned.
|
256 |
+
|
257 |
+
Returns
|
258 |
+
=======
|
259 |
+
|
260 |
+
point : Point
|
261 |
+
|
262 |
+
Raises
|
263 |
+
======
|
264 |
+
|
265 |
+
ValueError
|
266 |
+
When ``parameter`` already appears in the Line's definition.
|
267 |
+
|
268 |
+
See Also
|
269 |
+
========
|
270 |
+
|
271 |
+
sympy.geometry.point.Point
|
272 |
+
|
273 |
+
Examples
|
274 |
+
========
|
275 |
+
|
276 |
+
>>> from sympy import Point, Line
|
277 |
+
>>> p1, p2 = Point(1, 0), Point(5, 3)
|
278 |
+
>>> l1 = Line(p1, p2)
|
279 |
+
>>> l1.arbitrary_point()
|
280 |
+
Point2D(4*t + 1, 3*t)
|
281 |
+
>>> from sympy import Point3D, Line3D
|
282 |
+
>>> p1, p2 = Point3D(1, 0, 0), Point3D(5, 3, 1)
|
283 |
+
>>> l1 = Line3D(p1, p2)
|
284 |
+
>>> l1.arbitrary_point()
|
285 |
+
Point3D(4*t + 1, 3*t, t)
|
286 |
+
|
287 |
+
"""
|
288 |
+
t = _symbol(parameter, real=True)
|
289 |
+
if t.name in (f.name for f in self.free_symbols):
|
290 |
+
raise ValueError(filldedent('''
|
291 |
+
Symbol %s already appears in object
|
292 |
+
and cannot be used as a parameter.
|
293 |
+
''' % t.name))
|
294 |
+
# multiply on the right so the variable gets
|
295 |
+
# combined with the coordinates of the point
|
296 |
+
return self.p1 + (self.p2 - self.p1)*t
|
297 |
+
|
298 |
+
@staticmethod
|
299 |
+
def are_concurrent(*lines):
|
300 |
+
"""Is a sequence of linear entities concurrent?
|
301 |
+
|
302 |
+
Two or more linear entities are concurrent if they all
|
303 |
+
intersect at a single point.
|
304 |
+
|
305 |
+
Parameters
|
306 |
+
==========
|
307 |
+
|
308 |
+
lines
|
309 |
+
A sequence of linear entities.
|
310 |
+
|
311 |
+
Returns
|
312 |
+
=======
|
313 |
+
|
314 |
+
True : if the set of linear entities intersect in one point
|
315 |
+
False : otherwise.
|
316 |
+
|
317 |
+
See Also
|
318 |
+
========
|
319 |
+
|
320 |
+
sympy.geometry.util.intersection
|
321 |
+
|
322 |
+
Examples
|
323 |
+
========
|
324 |
+
|
325 |
+
>>> from sympy import Point, Line
|
326 |
+
>>> p1, p2 = Point(0, 0), Point(3, 5)
|
327 |
+
>>> p3, p4 = Point(-2, -2), Point(0, 2)
|
328 |
+
>>> l1, l2, l3 = Line(p1, p2), Line(p1, p3), Line(p1, p4)
|
329 |
+
>>> Line.are_concurrent(l1, l2, l3)
|
330 |
+
True
|
331 |
+
>>> l4 = Line(p2, p3)
|
332 |
+
>>> Line.are_concurrent(l2, l3, l4)
|
333 |
+
False
|
334 |
+
>>> from sympy import Point3D, Line3D
|
335 |
+
>>> p1, p2 = Point3D(0, 0, 0), Point3D(3, 5, 2)
|
336 |
+
>>> p3, p4 = Point3D(-2, -2, -2), Point3D(0, 2, 1)
|
337 |
+
>>> l1, l2, l3 = Line3D(p1, p2), Line3D(p1, p3), Line3D(p1, p4)
|
338 |
+
>>> Line3D.are_concurrent(l1, l2, l3)
|
339 |
+
True
|
340 |
+
>>> l4 = Line3D(p2, p3)
|
341 |
+
>>> Line3D.are_concurrent(l2, l3, l4)
|
342 |
+
False
|
343 |
+
|
344 |
+
"""
|
345 |
+
common_points = Intersection(*lines)
|
346 |
+
if common_points.is_FiniteSet and len(common_points) == 1:
|
347 |
+
return True
|
348 |
+
return False
|
349 |
+
|
350 |
+
def contains(self, other):
|
351 |
+
"""Subclasses should implement this method and should return
|
352 |
+
True if other is on the boundaries of self;
|
353 |
+
False if not on the boundaries of self;
|
354 |
+
None if a determination cannot be made."""
|
355 |
+
raise NotImplementedError()
|
356 |
+
|
357 |
+
@property
|
358 |
+
def direction(self):
|
359 |
+
"""The direction vector of the LinearEntity.
|
360 |
+
|
361 |
+
Returns
|
362 |
+
=======
|
363 |
+
|
364 |
+
p : a Point; the ray from the origin to this point is the
|
365 |
+
direction of `self`
|
366 |
+
|
367 |
+
Examples
|
368 |
+
========
|
369 |
+
|
370 |
+
>>> from sympy import Line
|
371 |
+
>>> a, b = (1, 1), (1, 3)
|
372 |
+
>>> Line(a, b).direction
|
373 |
+
Point2D(0, 2)
|
374 |
+
>>> Line(b, a).direction
|
375 |
+
Point2D(0, -2)
|
376 |
+
|
377 |
+
This can be reported so the distance from the origin is 1:
|
378 |
+
|
379 |
+
>>> Line(b, a).direction.unit
|
380 |
+
Point2D(0, -1)
|
381 |
+
|
382 |
+
See Also
|
383 |
+
========
|
384 |
+
|
385 |
+
sympy.geometry.point.Point.unit
|
386 |
+
|
387 |
+
"""
|
388 |
+
return self.p2 - self.p1
|
389 |
+
|
390 |
+
def intersection(self, other):
|
391 |
+
"""The intersection with another geometrical entity.
|
392 |
+
|
393 |
+
Parameters
|
394 |
+
==========
|
395 |
+
|
396 |
+
o : Point or LinearEntity
|
397 |
+
|
398 |
+
Returns
|
399 |
+
=======
|
400 |
+
|
401 |
+
intersection : list of geometrical entities
|
402 |
+
|
403 |
+
See Also
|
404 |
+
========
|
405 |
+
|
406 |
+
sympy.geometry.point.Point
|
407 |
+
|
408 |
+
Examples
|
409 |
+
========
|
410 |
+
|
411 |
+
>>> from sympy import Point, Line, Segment
|
412 |
+
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(7, 7)
|
413 |
+
>>> l1 = Line(p1, p2)
|
414 |
+
>>> l1.intersection(p3)
|
415 |
+
[Point2D(7, 7)]
|
416 |
+
>>> p4, p5 = Point(5, 0), Point(0, 3)
|
417 |
+
>>> l2 = Line(p4, p5)
|
418 |
+
>>> l1.intersection(l2)
|
419 |
+
[Point2D(15/8, 15/8)]
|
420 |
+
>>> p6, p7 = Point(0, 5), Point(2, 6)
|
421 |
+
>>> s1 = Segment(p6, p7)
|
422 |
+
>>> l1.intersection(s1)
|
423 |
+
[]
|
424 |
+
>>> from sympy import Point3D, Line3D, Segment3D
|
425 |
+
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(7, 7, 7)
|
426 |
+
>>> l1 = Line3D(p1, p2)
|
427 |
+
>>> l1.intersection(p3)
|
428 |
+
[Point3D(7, 7, 7)]
|
429 |
+
>>> l1 = Line3D(Point3D(4,19,12), Point3D(5,25,17))
|
430 |
+
>>> l2 = Line3D(Point3D(-3, -15, -19), direction_ratio=[2,8,8])
|
431 |
+
>>> l1.intersection(l2)
|
432 |
+
[Point3D(1, 1, -3)]
|
433 |
+
>>> p6, p7 = Point3D(0, 5, 2), Point3D(2, 6, 3)
|
434 |
+
>>> s1 = Segment3D(p6, p7)
|
435 |
+
>>> l1.intersection(s1)
|
436 |
+
[]
|
437 |
+
|
438 |
+
"""
|
439 |
+
def intersect_parallel_rays(ray1, ray2):
|
440 |
+
if ray1.direction.dot(ray2.direction) > 0:
|
441 |
+
# rays point in the same direction
|
442 |
+
# so return the one that is "in front"
|
443 |
+
return [ray2] if ray1._span_test(ray2.p1) >= 0 else [ray1]
|
444 |
+
else:
|
445 |
+
# rays point in opposite directions
|
446 |
+
st = ray1._span_test(ray2.p1)
|
447 |
+
if st < 0:
|
448 |
+
return []
|
449 |
+
elif st == 0:
|
450 |
+
return [ray2.p1]
|
451 |
+
return [Segment(ray1.p1, ray2.p1)]
|
452 |
+
|
453 |
+
def intersect_parallel_ray_and_segment(ray, seg):
|
454 |
+
st1, st2 = ray._span_test(seg.p1), ray._span_test(seg.p2)
|
455 |
+
if st1 < 0 and st2 < 0:
|
456 |
+
return []
|
457 |
+
elif st1 >= 0 and st2 >= 0:
|
458 |
+
return [seg]
|
459 |
+
elif st1 >= 0: # st2 < 0:
|
460 |
+
return [Segment(ray.p1, seg.p1)]
|
461 |
+
else: # st1 < 0 and st2 >= 0:
|
462 |
+
return [Segment(ray.p1, seg.p2)]
|
463 |
+
|
464 |
+
def intersect_parallel_segments(seg1, seg2):
|
465 |
+
if seg1.contains(seg2):
|
466 |
+
return [seg2]
|
467 |
+
if seg2.contains(seg1):
|
468 |
+
return [seg1]
|
469 |
+
|
470 |
+
# direct the segments so they're oriented the same way
|
471 |
+
if seg1.direction.dot(seg2.direction) < 0:
|
472 |
+
seg2 = Segment(seg2.p2, seg2.p1)
|
473 |
+
# order the segments so seg1 is "behind" seg2
|
474 |
+
if seg1._span_test(seg2.p1) < 0:
|
475 |
+
seg1, seg2 = seg2, seg1
|
476 |
+
if seg2._span_test(seg1.p2) < 0:
|
477 |
+
return []
|
478 |
+
return [Segment(seg2.p1, seg1.p2)]
|
479 |
+
|
480 |
+
if not isinstance(other, GeometryEntity):
|
481 |
+
other = Point(other, dim=self.ambient_dimension)
|
482 |
+
if other.is_Point:
|
483 |
+
if self.contains(other):
|
484 |
+
return [other]
|
485 |
+
else:
|
486 |
+
return []
|
487 |
+
elif isinstance(other, LinearEntity):
|
488 |
+
# break into cases based on whether
|
489 |
+
# the lines are parallel, non-parallel intersecting, or skew
|
490 |
+
pts = Point._normalize_dimension(self.p1, self.p2, other.p1, other.p2)
|
491 |
+
rank = Point.affine_rank(*pts)
|
492 |
+
|
493 |
+
if rank == 1:
|
494 |
+
# we're collinear
|
495 |
+
if isinstance(self, Line):
|
496 |
+
return [other]
|
497 |
+
if isinstance(other, Line):
|
498 |
+
return [self]
|
499 |
+
|
500 |
+
if isinstance(self, Ray) and isinstance(other, Ray):
|
501 |
+
return intersect_parallel_rays(self, other)
|
502 |
+
if isinstance(self, Ray) and isinstance(other, Segment):
|
503 |
+
return intersect_parallel_ray_and_segment(self, other)
|
504 |
+
if isinstance(self, Segment) and isinstance(other, Ray):
|
505 |
+
return intersect_parallel_ray_and_segment(other, self)
|
506 |
+
if isinstance(self, Segment) and isinstance(other, Segment):
|
507 |
+
return intersect_parallel_segments(self, other)
|
508 |
+
elif rank == 2:
|
509 |
+
# we're in the same plane
|
510 |
+
l1 = Line(*pts[:2])
|
511 |
+
l2 = Line(*pts[2:])
|
512 |
+
|
513 |
+
# check to see if we're parallel. If we are, we can't
|
514 |
+
# be intersecting, since the collinear case was already
|
515 |
+
# handled
|
516 |
+
if l1.direction.is_scalar_multiple(l2.direction):
|
517 |
+
return []
|
518 |
+
|
519 |
+
# find the intersection as if everything were lines
|
520 |
+
# by solving the equation t*d + p1 == s*d' + p1'
|
521 |
+
m = Matrix([l1.direction, -l2.direction]).transpose()
|
522 |
+
v = Matrix([l2.p1 - l1.p1]).transpose()
|
523 |
+
|
524 |
+
# we cannot use m.solve(v) because that only works for square matrices
|
525 |
+
m_rref, pivots = m.col_insert(2, v).rref(simplify=True)
|
526 |
+
# rank == 2 ensures we have 2 pivots, but let's check anyway
|
527 |
+
if len(pivots) != 2:
|
528 |
+
raise GeometryError("Failed when solving Mx=b when M={} and b={}".format(m, v))
|
529 |
+
coeff = m_rref[0, 2]
|
530 |
+
line_intersection = l1.direction*coeff + self.p1
|
531 |
+
|
532 |
+
# if both are lines, skip a containment check
|
533 |
+
if isinstance(self, Line) and isinstance(other, Line):
|
534 |
+
return [line_intersection]
|
535 |
+
|
536 |
+
if ((isinstance(self, Line) or
|
537 |
+
self.contains(line_intersection)) and
|
538 |
+
other.contains(line_intersection)):
|
539 |
+
return [line_intersection]
|
540 |
+
if not self.atoms(Float) and not other.atoms(Float):
|
541 |
+
# if it can fail when there are no Floats then
|
542 |
+
# maybe the following parametric check should be
|
543 |
+
# done
|
544 |
+
return []
|
545 |
+
# floats may fail exact containment so check that the
|
546 |
+
# arbitrary points, when equal, both give a
|
547 |
+
# non-negative parameter when the arbitrary point
|
548 |
+
# coordinates are equated
|
549 |
+
tu = solve(self.arbitrary_point(t) - other.arbitrary_point(u),
|
550 |
+
t, u, dict=True)[0]
|
551 |
+
def ok(p, l):
|
552 |
+
if isinstance(l, Line):
|
553 |
+
# p > -oo
|
554 |
+
return True
|
555 |
+
if isinstance(l, Ray):
|
556 |
+
# p >= 0
|
557 |
+
return p.is_nonnegative
|
558 |
+
if isinstance(l, Segment):
|
559 |
+
# 0 <= p <= 1
|
560 |
+
return p.is_nonnegative and (1 - p).is_nonnegative
|
561 |
+
raise ValueError("unexpected line type")
|
562 |
+
if ok(tu[t], self) and ok(tu[u], other):
|
563 |
+
return [line_intersection]
|
564 |
+
return []
|
565 |
+
else:
|
566 |
+
# we're skew
|
567 |
+
return []
|
568 |
+
|
569 |
+
return other.intersection(self)
|
570 |
+
|
571 |
+
def is_parallel(l1, l2):
|
572 |
+
"""Are two linear entities parallel?
|
573 |
+
|
574 |
+
Parameters
|
575 |
+
==========
|
576 |
+
|
577 |
+
l1 : LinearEntity
|
578 |
+
l2 : LinearEntity
|
579 |
+
|
580 |
+
Returns
|
581 |
+
=======
|
582 |
+
|
583 |
+
True : if l1 and l2 are parallel,
|
584 |
+
False : otherwise.
|
585 |
+
|
586 |
+
See Also
|
587 |
+
========
|
588 |
+
|
589 |
+
coefficients
|
590 |
+
|
591 |
+
Examples
|
592 |
+
========
|
593 |
+
|
594 |
+
>>> from sympy import Point, Line
|
595 |
+
>>> p1, p2 = Point(0, 0), Point(1, 1)
|
596 |
+
>>> p3, p4 = Point(3, 4), Point(6, 7)
|
597 |
+
>>> l1, l2 = Line(p1, p2), Line(p3, p4)
|
598 |
+
>>> Line.is_parallel(l1, l2)
|
599 |
+
True
|
600 |
+
>>> p5 = Point(6, 6)
|
601 |
+
>>> l3 = Line(p3, p5)
|
602 |
+
>>> Line.is_parallel(l1, l3)
|
603 |
+
False
|
604 |
+
>>> from sympy import Point3D, Line3D
|
605 |
+
>>> p1, p2 = Point3D(0, 0, 0), Point3D(3, 4, 5)
|
606 |
+
>>> p3, p4 = Point3D(2, 1, 1), Point3D(8, 9, 11)
|
607 |
+
>>> l1, l2 = Line3D(p1, p2), Line3D(p3, p4)
|
608 |
+
>>> Line3D.is_parallel(l1, l2)
|
609 |
+
True
|
610 |
+
>>> p5 = Point3D(6, 6, 6)
|
611 |
+
>>> l3 = Line3D(p3, p5)
|
612 |
+
>>> Line3D.is_parallel(l1, l3)
|
613 |
+
False
|
614 |
+
|
615 |
+
"""
|
616 |
+
if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
|
617 |
+
raise TypeError('Must pass only LinearEntity objects')
|
618 |
+
|
619 |
+
return l1.direction.is_scalar_multiple(l2.direction)
|
620 |
+
|
621 |
+
def is_perpendicular(l1, l2):
|
622 |
+
"""Are two linear entities perpendicular?
|
623 |
+
|
624 |
+
Parameters
|
625 |
+
==========
|
626 |
+
|
627 |
+
l1 : LinearEntity
|
628 |
+
l2 : LinearEntity
|
629 |
+
|
630 |
+
Returns
|
631 |
+
=======
|
632 |
+
|
633 |
+
True : if l1 and l2 are perpendicular,
|
634 |
+
False : otherwise.
|
635 |
+
|
636 |
+
See Also
|
637 |
+
========
|
638 |
+
|
639 |
+
coefficients
|
640 |
+
|
641 |
+
Examples
|
642 |
+
========
|
643 |
+
|
644 |
+
>>> from sympy import Point, Line
|
645 |
+
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(-1, 1)
|
646 |
+
>>> l1, l2 = Line(p1, p2), Line(p1, p3)
|
647 |
+
>>> l1.is_perpendicular(l2)
|
648 |
+
True
|
649 |
+
>>> p4 = Point(5, 3)
|
650 |
+
>>> l3 = Line(p1, p4)
|
651 |
+
>>> l1.is_perpendicular(l3)
|
652 |
+
False
|
653 |
+
>>> from sympy import Point3D, Line3D
|
654 |
+
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(-1, 2, 0)
|
655 |
+
>>> l1, l2 = Line3D(p1, p2), Line3D(p2, p3)
|
656 |
+
>>> l1.is_perpendicular(l2)
|
657 |
+
False
|
658 |
+
>>> p4 = Point3D(5, 3, 7)
|
659 |
+
>>> l3 = Line3D(p1, p4)
|
660 |
+
>>> l1.is_perpendicular(l3)
|
661 |
+
False
|
662 |
+
|
663 |
+
"""
|
664 |
+
if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
|
665 |
+
raise TypeError('Must pass only LinearEntity objects')
|
666 |
+
|
667 |
+
return S.Zero.equals(l1.direction.dot(l2.direction))
|
668 |
+
|
669 |
+
def is_similar(self, other):
|
670 |
+
"""
|
671 |
+
Return True if self and other are contained in the same line.
|
672 |
+
|
673 |
+
Examples
|
674 |
+
========
|
675 |
+
|
676 |
+
>>> from sympy import Point, Line
|
677 |
+
>>> p1, p2, p3 = Point(0, 1), Point(3, 4), Point(2, 3)
|
678 |
+
>>> l1 = Line(p1, p2)
|
679 |
+
>>> l2 = Line(p1, p3)
|
680 |
+
>>> l1.is_similar(l2)
|
681 |
+
True
|
682 |
+
"""
|
683 |
+
l = Line(self.p1, self.p2)
|
684 |
+
return l.contains(other)
|
685 |
+
|
686 |
+
@property
|
687 |
+
def length(self):
|
688 |
+
"""
|
689 |
+
The length of the line.
|
690 |
+
|
691 |
+
Examples
|
692 |
+
========
|
693 |
+
|
694 |
+
>>> from sympy import Point, Line
|
695 |
+
>>> p1, p2 = Point(0, 0), Point(3, 5)
|
696 |
+
>>> l1 = Line(p1, p2)
|
697 |
+
>>> l1.length
|
698 |
+
oo
|
699 |
+
"""
|
700 |
+
return S.Infinity
|
701 |
+
|
702 |
+
@property
|
703 |
+
def p1(self):
|
704 |
+
"""The first defining point of a linear entity.
|
705 |
+
|
706 |
+
See Also
|
707 |
+
========
|
708 |
+
|
709 |
+
sympy.geometry.point.Point
|
710 |
+
|
711 |
+
Examples
|
712 |
+
========
|
713 |
+
|
714 |
+
>>> from sympy import Point, Line
|
715 |
+
>>> p1, p2 = Point(0, 0), Point(5, 3)
|
716 |
+
>>> l = Line(p1, p2)
|
717 |
+
>>> l.p1
|
718 |
+
Point2D(0, 0)
|
719 |
+
|
720 |
+
"""
|
721 |
+
return self.args[0]
|
722 |
+
|
723 |
+
@property
|
724 |
+
def p2(self):
|
725 |
+
"""The second defining point of a linear entity.
|
726 |
+
|
727 |
+
See Also
|
728 |
+
========
|
729 |
+
|
730 |
+
sympy.geometry.point.Point
|
731 |
+
|
732 |
+
Examples
|
733 |
+
========
|
734 |
+
|
735 |
+
>>> from sympy import Point, Line
|
736 |
+
>>> p1, p2 = Point(0, 0), Point(5, 3)
|
737 |
+
>>> l = Line(p1, p2)
|
738 |
+
>>> l.p2
|
739 |
+
Point2D(5, 3)
|
740 |
+
|
741 |
+
"""
|
742 |
+
return self.args[1]
|
743 |
+
|
744 |
+
def parallel_line(self, p):
|
745 |
+
"""Create a new Line parallel to this linear entity which passes
|
746 |
+
through the point `p`.
|
747 |
+
|
748 |
+
Parameters
|
749 |
+
==========
|
750 |
+
|
751 |
+
p : Point
|
752 |
+
|
753 |
+
Returns
|
754 |
+
=======
|
755 |
+
|
756 |
+
line : Line
|
757 |
+
|
758 |
+
See Also
|
759 |
+
========
|
760 |
+
|
761 |
+
is_parallel
|
762 |
+
|
763 |
+
Examples
|
764 |
+
========
|
765 |
+
|
766 |
+
>>> from sympy import Point, Line
|
767 |
+
>>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
|
768 |
+
>>> l1 = Line(p1, p2)
|
769 |
+
>>> l2 = l1.parallel_line(p3)
|
770 |
+
>>> p3 in l2
|
771 |
+
True
|
772 |
+
>>> l1.is_parallel(l2)
|
773 |
+
True
|
774 |
+
>>> from sympy import Point3D, Line3D
|
775 |
+
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(2, 3, 4), Point3D(-2, 2, 0)
|
776 |
+
>>> l1 = Line3D(p1, p2)
|
777 |
+
>>> l2 = l1.parallel_line(p3)
|
778 |
+
>>> p3 in l2
|
779 |
+
True
|
780 |
+
>>> l1.is_parallel(l2)
|
781 |
+
True
|
782 |
+
|
783 |
+
"""
|
784 |
+
p = Point(p, dim=self.ambient_dimension)
|
785 |
+
return Line(p, p + self.direction)
|
786 |
+
|
787 |
+
def perpendicular_line(self, p):
|
788 |
+
"""Create a new Line perpendicular to this linear entity which passes
|
789 |
+
through the point `p`.
|
790 |
+
|
791 |
+
Parameters
|
792 |
+
==========
|
793 |
+
|
794 |
+
p : Point
|
795 |
+
|
796 |
+
Returns
|
797 |
+
=======
|
798 |
+
|
799 |
+
line : Line
|
800 |
+
|
801 |
+
See Also
|
802 |
+
========
|
803 |
+
|
804 |
+
sympy.geometry.line.LinearEntity.is_perpendicular, perpendicular_segment
|
805 |
+
|
806 |
+
Examples
|
807 |
+
========
|
808 |
+
|
809 |
+
>>> from sympy import Point3D, Line3D
|
810 |
+
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(2, 3, 4), Point3D(-2, 2, 0)
|
811 |
+
>>> L = Line3D(p1, p2)
|
812 |
+
>>> P = L.perpendicular_line(p3); P
|
813 |
+
Line3D(Point3D(-2, 2, 0), Point3D(4/29, 6/29, 8/29))
|
814 |
+
>>> L.is_perpendicular(P)
|
815 |
+
True
|
816 |
+
|
817 |
+
In 3D the, the first point used to define the line is the point
|
818 |
+
through which the perpendicular was required to pass; the
|
819 |
+
second point is (arbitrarily) contained in the given line:
|
820 |
+
|
821 |
+
>>> P.p2 in L
|
822 |
+
True
|
823 |
+
"""
|
824 |
+
p = Point(p, dim=self.ambient_dimension)
|
825 |
+
if p in self:
|
826 |
+
p = p + self.direction.orthogonal_direction
|
827 |
+
return Line(p, self.projection(p))
|
828 |
+
|
829 |
+
def perpendicular_segment(self, p):
|
830 |
+
"""Create a perpendicular line segment from `p` to this line.
|
831 |
+
|
832 |
+
The endpoints of the segment are ``p`` and the closest point in
|
833 |
+
the line containing self. (If self is not a line, the point might
|
834 |
+
not be in self.)
|
835 |
+
|
836 |
+
Parameters
|
837 |
+
==========
|
838 |
+
|
839 |
+
p : Point
|
840 |
+
|
841 |
+
Returns
|
842 |
+
=======
|
843 |
+
|
844 |
+
segment : Segment
|
845 |
+
|
846 |
+
Notes
|
847 |
+
=====
|
848 |
+
|
849 |
+
Returns `p` itself if `p` is on this linear entity.
|
850 |
+
|
851 |
+
See Also
|
852 |
+
========
|
853 |
+
|
854 |
+
perpendicular_line
|
855 |
+
|
856 |
+
Examples
|
857 |
+
========
|
858 |
+
|
859 |
+
>>> from sympy import Point, Line
|
860 |
+
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 2)
|
861 |
+
>>> l1 = Line(p1, p2)
|
862 |
+
>>> s1 = l1.perpendicular_segment(p3)
|
863 |
+
>>> l1.is_perpendicular(s1)
|
864 |
+
True
|
865 |
+
>>> p3 in s1
|
866 |
+
True
|
867 |
+
>>> l1.perpendicular_segment(Point(4, 0))
|
868 |
+
Segment2D(Point2D(4, 0), Point2D(2, 2))
|
869 |
+
>>> from sympy import Point3D, Line3D
|
870 |
+
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 2, 0)
|
871 |
+
>>> l1 = Line3D(p1, p2)
|
872 |
+
>>> s1 = l1.perpendicular_segment(p3)
|
873 |
+
>>> l1.is_perpendicular(s1)
|
874 |
+
True
|
875 |
+
>>> p3 in s1
|
876 |
+
True
|
877 |
+
>>> l1.perpendicular_segment(Point3D(4, 0, 0))
|
878 |
+
Segment3D(Point3D(4, 0, 0), Point3D(4/3, 4/3, 4/3))
|
879 |
+
|
880 |
+
"""
|
881 |
+
p = Point(p, dim=self.ambient_dimension)
|
882 |
+
if p in self:
|
883 |
+
return p
|
884 |
+
l = self.perpendicular_line(p)
|
885 |
+
# The intersection should be unique, so unpack the singleton
|
886 |
+
p2, = Intersection(Line(self.p1, self.p2), l)
|
887 |
+
|
888 |
+
return Segment(p, p2)
|
889 |
+
|
890 |
+
@property
|
891 |
+
def points(self):
|
892 |
+
"""The two points used to define this linear entity.
|
893 |
+
|
894 |
+
Returns
|
895 |
+
=======
|
896 |
+
|
897 |
+
points : tuple of Points
|
898 |
+
|
899 |
+
See Also
|
900 |
+
========
|
901 |
+
|
902 |
+
sympy.geometry.point.Point
|
903 |
+
|
904 |
+
Examples
|
905 |
+
========
|
906 |
+
|
907 |
+
>>> from sympy import Point, Line
|
908 |
+
>>> p1, p2 = Point(0, 0), Point(5, 11)
|
909 |
+
>>> l1 = Line(p1, p2)
|
910 |
+
>>> l1.points
|
911 |
+
(Point2D(0, 0), Point2D(5, 11))
|
912 |
+
|
913 |
+
"""
|
914 |
+
return (self.p1, self.p2)
|
915 |
+
|
916 |
+
def projection(self, other):
|
917 |
+
"""Project a point, line, ray, or segment onto this linear entity.
|
918 |
+
|
919 |
+
Parameters
|
920 |
+
==========
|
921 |
+
|
922 |
+
other : Point or LinearEntity (Line, Ray, Segment)
|
923 |
+
|
924 |
+
Returns
|
925 |
+
=======
|
926 |
+
|
927 |
+
projection : Point or LinearEntity (Line, Ray, Segment)
|
928 |
+
The return type matches the type of the parameter ``other``.
|
929 |
+
|
930 |
+
Raises
|
931 |
+
======
|
932 |
+
|
933 |
+
GeometryError
|
934 |
+
When method is unable to perform projection.
|
935 |
+
|
936 |
+
Notes
|
937 |
+
=====
|
938 |
+
|
939 |
+
A projection involves taking the two points that define
|
940 |
+
the linear entity and projecting those points onto a
|
941 |
+
Line and then reforming the linear entity using these
|
942 |
+
projections.
|
943 |
+
A point P is projected onto a line L by finding the point
|
944 |
+
on L that is closest to P. This point is the intersection
|
945 |
+
of L and the line perpendicular to L that passes through P.
|
946 |
+
|
947 |
+
See Also
|
948 |
+
========
|
949 |
+
|
950 |
+
sympy.geometry.point.Point, perpendicular_line
|
951 |
+
|
952 |
+
Examples
|
953 |
+
========
|
954 |
+
|
955 |
+
>>> from sympy import Point, Line, Segment, Rational
|
956 |
+
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(Rational(1, 2), 0)
|
957 |
+
>>> l1 = Line(p1, p2)
|
958 |
+
>>> l1.projection(p3)
|
959 |
+
Point2D(1/4, 1/4)
|
960 |
+
>>> p4, p5 = Point(10, 0), Point(12, 1)
|
961 |
+
>>> s1 = Segment(p4, p5)
|
962 |
+
>>> l1.projection(s1)
|
963 |
+
Segment2D(Point2D(5, 5), Point2D(13/2, 13/2))
|
964 |
+
>>> p1, p2, p3 = Point(0, 0, 1), Point(1, 1, 2), Point(2, 0, 1)
|
965 |
+
>>> l1 = Line(p1, p2)
|
966 |
+
>>> l1.projection(p3)
|
967 |
+
Point3D(2/3, 2/3, 5/3)
|
968 |
+
>>> p4, p5 = Point(10, 0, 1), Point(12, 1, 3)
|
969 |
+
>>> s1 = Segment(p4, p5)
|
970 |
+
>>> l1.projection(s1)
|
971 |
+
Segment3D(Point3D(10/3, 10/3, 13/3), Point3D(5, 5, 6))
|
972 |
+
|
973 |
+
"""
|
974 |
+
if not isinstance(other, GeometryEntity):
|
975 |
+
other = Point(other, dim=self.ambient_dimension)
|
976 |
+
|
977 |
+
def proj_point(p):
|
978 |
+
return Point.project(p - self.p1, self.direction) + self.p1
|
979 |
+
|
980 |
+
if isinstance(other, Point):
|
981 |
+
return proj_point(other)
|
982 |
+
elif isinstance(other, LinearEntity):
|
983 |
+
p1, p2 = proj_point(other.p1), proj_point(other.p2)
|
984 |
+
# test to see if we're degenerate
|
985 |
+
if p1 == p2:
|
986 |
+
return p1
|
987 |
+
projected = other.__class__(p1, p2)
|
988 |
+
projected = Intersection(self, projected)
|
989 |
+
if projected.is_empty:
|
990 |
+
return projected
|
991 |
+
# if we happen to have intersected in only a point, return that
|
992 |
+
if projected.is_FiniteSet and len(projected) == 1:
|
993 |
+
# projected is a set of size 1, so unpack it in `a`
|
994 |
+
a, = projected
|
995 |
+
return a
|
996 |
+
# order args so projection is in the same direction as self
|
997 |
+
if self.direction.dot(projected.direction) < 0:
|
998 |
+
p1, p2 = projected.args
|
999 |
+
projected = projected.func(p2, p1)
|
1000 |
+
return projected
|
1001 |
+
|
1002 |
+
raise GeometryError(
|
1003 |
+
"Do not know how to project %s onto %s" % (other, self))
|
1004 |
+
|
1005 |
+
def random_point(self, seed=None):
|
1006 |
+
"""A random point on a LinearEntity.
|
1007 |
+
|
1008 |
+
Returns
|
1009 |
+
=======
|
1010 |
+
|
1011 |
+
point : Point
|
1012 |
+
|
1013 |
+
See Also
|
1014 |
+
========
|
1015 |
+
|
1016 |
+
sympy.geometry.point.Point
|
1017 |
+
|
1018 |
+
Examples
|
1019 |
+
========
|
1020 |
+
|
1021 |
+
>>> from sympy import Point, Line, Ray, Segment
|
1022 |
+
>>> p1, p2 = Point(0, 0), Point(5, 3)
|
1023 |
+
>>> line = Line(p1, p2)
|
1024 |
+
>>> r = line.random_point(seed=42) # seed value is optional
|
1025 |
+
>>> r.n(3)
|
1026 |
+
Point2D(-0.72, -0.432)
|
1027 |
+
>>> r in line
|
1028 |
+
True
|
1029 |
+
>>> Ray(p1, p2).random_point(seed=42).n(3)
|
1030 |
+
Point2D(0.72, 0.432)
|
1031 |
+
>>> Segment(p1, p2).random_point(seed=42).n(3)
|
1032 |
+
Point2D(3.2, 1.92)
|
1033 |
+
|
1034 |
+
"""
|
1035 |
+
if seed is not None:
|
1036 |
+
rng = random.Random(seed)
|
1037 |
+
else:
|
1038 |
+
rng = random
|
1039 |
+
pt = self.arbitrary_point(t)
|
1040 |
+
if isinstance(self, Ray):
|
1041 |
+
v = abs(rng.gauss(0, 1))
|
1042 |
+
elif isinstance(self, Segment):
|
1043 |
+
v = rng.random()
|
1044 |
+
elif isinstance(self, Line):
|
1045 |
+
v = rng.gauss(0, 1)
|
1046 |
+
else:
|
1047 |
+
raise NotImplementedError('unhandled line type')
|
1048 |
+
return pt.subs(t, Rational(v))
|
1049 |
+
|
1050 |
+
def bisectors(self, other):
|
1051 |
+
"""Returns the perpendicular lines which pass through the intersections
|
1052 |
+
of self and other that are in the same plane.
|
1053 |
+
|
1054 |
+
Parameters
|
1055 |
+
==========
|
1056 |
+
|
1057 |
+
line : Line3D
|
1058 |
+
|
1059 |
+
Returns
|
1060 |
+
=======
|
1061 |
+
|
1062 |
+
list: two Line instances
|
1063 |
+
|
1064 |
+
Examples
|
1065 |
+
========
|
1066 |
+
|
1067 |
+
>>> from sympy import Point3D, Line3D
|
1068 |
+
>>> r1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
|
1069 |
+
>>> r2 = Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))
|
1070 |
+
>>> r1.bisectors(r2)
|
1071 |
+
[Line3D(Point3D(0, 0, 0), Point3D(1, 1, 0)), Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))]
|
1072 |
+
|
1073 |
+
"""
|
1074 |
+
if not isinstance(other, LinearEntity):
|
1075 |
+
raise GeometryError("Expecting LinearEntity, not %s" % other)
|
1076 |
+
|
1077 |
+
l1, l2 = self, other
|
1078 |
+
|
1079 |
+
# make sure dimensions match or else a warning will rise from
|
1080 |
+
# intersection calculation
|
1081 |
+
if l1.p1.ambient_dimension != l2.p1.ambient_dimension:
|
1082 |
+
if isinstance(l1, Line2D):
|
1083 |
+
l1, l2 = l2, l1
|
1084 |
+
_, p1 = Point._normalize_dimension(l1.p1, l2.p1, on_morph='ignore')
|
1085 |
+
_, p2 = Point._normalize_dimension(l1.p2, l2.p2, on_morph='ignore')
|
1086 |
+
l2 = Line(p1, p2)
|
1087 |
+
|
1088 |
+
point = intersection(l1, l2)
|
1089 |
+
|
1090 |
+
# Three cases: Lines may intersect in a point, may be equal or may not intersect.
|
1091 |
+
if not point:
|
1092 |
+
raise GeometryError("The lines do not intersect")
|
1093 |
+
else:
|
1094 |
+
pt = point[0]
|
1095 |
+
if isinstance(pt, Line):
|
1096 |
+
# Intersection is a line because both lines are coincident
|
1097 |
+
return [self]
|
1098 |
+
|
1099 |
+
|
1100 |
+
d1 = l1.direction.unit
|
1101 |
+
d2 = l2.direction.unit
|
1102 |
+
|
1103 |
+
bis1 = Line(pt, pt + d1 + d2)
|
1104 |
+
bis2 = Line(pt, pt + d1 - d2)
|
1105 |
+
|
1106 |
+
return [bis1, bis2]
|
1107 |
+
|
1108 |
+
|
1109 |
+
class Line(LinearEntity):
|
1110 |
+
"""An infinite line in space.
|
1111 |
+
|
1112 |
+
A 2D line is declared with two distinct points, point and slope, or
|
1113 |
+
an equation. A 3D line may be defined with a point and a direction ratio.
|
1114 |
+
|
1115 |
+
Parameters
|
1116 |
+
==========
|
1117 |
+
|
1118 |
+
p1 : Point
|
1119 |
+
p2 : Point
|
1120 |
+
slope : SymPy expression
|
1121 |
+
direction_ratio : list
|
1122 |
+
equation : equation of a line
|
1123 |
+
|
1124 |
+
Notes
|
1125 |
+
=====
|
1126 |
+
|
1127 |
+
`Line` will automatically subclass to `Line2D` or `Line3D` based
|
1128 |
+
on the dimension of `p1`. The `slope` argument is only relevant
|
1129 |
+
for `Line2D` and the `direction_ratio` argument is only relevant
|
1130 |
+
for `Line3D`.
|
1131 |
+
|
1132 |
+
The order of the points will define the direction of the line
|
1133 |
+
which is used when calculating the angle between lines.
|
1134 |
+
|
1135 |
+
See Also
|
1136 |
+
========
|
1137 |
+
|
1138 |
+
sympy.geometry.point.Point
|
1139 |
+
sympy.geometry.line.Line2D
|
1140 |
+
sympy.geometry.line.Line3D
|
1141 |
+
|
1142 |
+
Examples
|
1143 |
+
========
|
1144 |
+
|
1145 |
+
>>> from sympy import Line, Segment, Point, Eq
|
1146 |
+
>>> from sympy.abc import x, y, a, b
|
1147 |
+
|
1148 |
+
>>> L = Line(Point(2,3), Point(3,5))
|
1149 |
+
>>> L
|
1150 |
+
Line2D(Point2D(2, 3), Point2D(3, 5))
|
1151 |
+
>>> L.points
|
1152 |
+
(Point2D(2, 3), Point2D(3, 5))
|
1153 |
+
>>> L.equation()
|
1154 |
+
-2*x + y + 1
|
1155 |
+
>>> L.coefficients
|
1156 |
+
(-2, 1, 1)
|
1157 |
+
|
1158 |
+
Instantiate with keyword ``slope``:
|
1159 |
+
|
1160 |
+
>>> Line(Point(0, 0), slope=0)
|
1161 |
+
Line2D(Point2D(0, 0), Point2D(1, 0))
|
1162 |
+
|
1163 |
+
Instantiate with another linear object
|
1164 |
+
|
1165 |
+
>>> s = Segment((0, 0), (0, 1))
|
1166 |
+
>>> Line(s).equation()
|
1167 |
+
x
|
1168 |
+
|
1169 |
+
The line corresponding to an equation in the for `ax + by + c = 0`,
|
1170 |
+
can be entered:
|
1171 |
+
|
1172 |
+
>>> Line(3*x + y + 18)
|
1173 |
+
Line2D(Point2D(0, -18), Point2D(1, -21))
|
1174 |
+
|
1175 |
+
If `x` or `y` has a different name, then they can be specified, too,
|
1176 |
+
as a string (to match the name) or symbol:
|
1177 |
+
|
1178 |
+
>>> Line(Eq(3*a + b, -18), x='a', y=b)
|
1179 |
+
Line2D(Point2D(0, -18), Point2D(1, -21))
|
1180 |
+
"""
|
1181 |
+
def __new__(cls, *args, **kwargs):
|
1182 |
+
if len(args) == 1 and isinstance(args[0], (Expr, Eq)):
|
1183 |
+
missing = uniquely_named_symbol('?', args)
|
1184 |
+
if not kwargs:
|
1185 |
+
x = 'x'
|
1186 |
+
y = 'y'
|
1187 |
+
else:
|
1188 |
+
x = kwargs.pop('x', missing)
|
1189 |
+
y = kwargs.pop('y', missing)
|
1190 |
+
if kwargs:
|
1191 |
+
raise ValueError('expecting only x and y as keywords')
|
1192 |
+
|
1193 |
+
equation = args[0]
|
1194 |
+
if isinstance(equation, Eq):
|
1195 |
+
equation = equation.lhs - equation.rhs
|
1196 |
+
|
1197 |
+
def find_or_missing(x):
|
1198 |
+
try:
|
1199 |
+
return find(x, equation)
|
1200 |
+
except ValueError:
|
1201 |
+
return missing
|
1202 |
+
x = find_or_missing(x)
|
1203 |
+
y = find_or_missing(y)
|
1204 |
+
|
1205 |
+
a, b, c = linear_coeffs(equation, x, y)
|
1206 |
+
|
1207 |
+
if b:
|
1208 |
+
return Line((0, -c/b), slope=-a/b)
|
1209 |
+
if a:
|
1210 |
+
return Line((-c/a, 0), slope=oo)
|
1211 |
+
|
1212 |
+
raise ValueError('not found in equation: %s' % (set('xy') - {x, y}))
|
1213 |
+
|
1214 |
+
else:
|
1215 |
+
if len(args) > 0:
|
1216 |
+
p1 = args[0]
|
1217 |
+
if len(args) > 1:
|
1218 |
+
p2 = args[1]
|
1219 |
+
else:
|
1220 |
+
p2 = None
|
1221 |
+
|
1222 |
+
if isinstance(p1, LinearEntity):
|
1223 |
+
if p2:
|
1224 |
+
raise ValueError('If p1 is a LinearEntity, p2 must be None.')
|
1225 |
+
dim = len(p1.p1)
|
1226 |
+
else:
|
1227 |
+
p1 = Point(p1)
|
1228 |
+
dim = len(p1)
|
1229 |
+
if p2 is not None or isinstance(p2, Point) and p2.ambient_dimension != dim:
|
1230 |
+
p2 = Point(p2)
|
1231 |
+
|
1232 |
+
if dim == 2:
|
1233 |
+
return Line2D(p1, p2, **kwargs)
|
1234 |
+
elif dim == 3:
|
1235 |
+
return Line3D(p1, p2, **kwargs)
|
1236 |
+
return LinearEntity.__new__(cls, p1, p2, **kwargs)
|
1237 |
+
|
1238 |
+
def contains(self, other):
|
1239 |
+
"""
|
1240 |
+
Return True if `other` is on this Line, or False otherwise.
|
1241 |
+
|
1242 |
+
Examples
|
1243 |
+
========
|
1244 |
+
|
1245 |
+
>>> from sympy import Line,Point
|
1246 |
+
>>> p1, p2 = Point(0, 1), Point(3, 4)
|
1247 |
+
>>> l = Line(p1, p2)
|
1248 |
+
>>> l.contains(p1)
|
1249 |
+
True
|
1250 |
+
>>> l.contains((0, 1))
|
1251 |
+
True
|
1252 |
+
>>> l.contains((0, 0))
|
1253 |
+
False
|
1254 |
+
>>> a = (0, 0, 0)
|
1255 |
+
>>> b = (1, 1, 1)
|
1256 |
+
>>> c = (2, 2, 2)
|
1257 |
+
>>> l1 = Line(a, b)
|
1258 |
+
>>> l2 = Line(b, a)
|
1259 |
+
>>> l1 == l2
|
1260 |
+
False
|
1261 |
+
>>> l1 in l2
|
1262 |
+
True
|
1263 |
+
|
1264 |
+
"""
|
1265 |
+
if not isinstance(other, GeometryEntity):
|
1266 |
+
other = Point(other, dim=self.ambient_dimension)
|
1267 |
+
if isinstance(other, Point):
|
1268 |
+
return Point.is_collinear(other, self.p1, self.p2)
|
1269 |
+
if isinstance(other, LinearEntity):
|
1270 |
+
return Point.is_collinear(self.p1, self.p2, other.p1, other.p2)
|
1271 |
+
return False
|
1272 |
+
|
1273 |
+
def distance(self, other):
|
1274 |
+
"""
|
1275 |
+
Finds the shortest distance between a line and a point.
|
1276 |
+
|
1277 |
+
Raises
|
1278 |
+
======
|
1279 |
+
|
1280 |
+
NotImplementedError is raised if `other` is not a Point
|
1281 |
+
|
1282 |
+
Examples
|
1283 |
+
========
|
1284 |
+
|
1285 |
+
>>> from sympy import Point, Line
|
1286 |
+
>>> p1, p2 = Point(0, 0), Point(1, 1)
|
1287 |
+
>>> s = Line(p1, p2)
|
1288 |
+
>>> s.distance(Point(-1, 1))
|
1289 |
+
sqrt(2)
|
1290 |
+
>>> s.distance((-1, 2))
|
1291 |
+
3*sqrt(2)/2
|
1292 |
+
>>> p1, p2 = Point(0, 0, 0), Point(1, 1, 1)
|
1293 |
+
>>> s = Line(p1, p2)
|
1294 |
+
>>> s.distance(Point(-1, 1, 1))
|
1295 |
+
2*sqrt(6)/3
|
1296 |
+
>>> s.distance((-1, 1, 1))
|
1297 |
+
2*sqrt(6)/3
|
1298 |
+
|
1299 |
+
"""
|
1300 |
+
if not isinstance(other, GeometryEntity):
|
1301 |
+
other = Point(other, dim=self.ambient_dimension)
|
1302 |
+
if self.contains(other):
|
1303 |
+
return S.Zero
|
1304 |
+
return self.perpendicular_segment(other).length
|
1305 |
+
|
1306 |
+
def equals(self, other):
|
1307 |
+
"""Returns True if self and other are the same mathematical entities"""
|
1308 |
+
if not isinstance(other, Line):
|
1309 |
+
return False
|
1310 |
+
return Point.is_collinear(self.p1, other.p1, self.p2, other.p2)
|
1311 |
+
|
1312 |
+
def plot_interval(self, parameter='t'):
|
1313 |
+
"""The plot interval for the default geometric plot of line. Gives
|
1314 |
+
values that will produce a line that is +/- 5 units long (where a
|
1315 |
+
unit is the distance between the two points that define the line).
|
1316 |
+
|
1317 |
+
Parameters
|
1318 |
+
==========
|
1319 |
+
|
1320 |
+
parameter : str, optional
|
1321 |
+
Default value is 't'.
|
1322 |
+
|
1323 |
+
Returns
|
1324 |
+
=======
|
1325 |
+
|
1326 |
+
plot_interval : list (plot interval)
|
1327 |
+
[parameter, lower_bound, upper_bound]
|
1328 |
+
|
1329 |
+
Examples
|
1330 |
+
========
|
1331 |
+
|
1332 |
+
>>> from sympy import Point, Line
|
1333 |
+
>>> p1, p2 = Point(0, 0), Point(5, 3)
|
1334 |
+
>>> l1 = Line(p1, p2)
|
1335 |
+
>>> l1.plot_interval()
|
1336 |
+
[t, -5, 5]
|
1337 |
+
|
1338 |
+
"""
|
1339 |
+
t = _symbol(parameter, real=True)
|
1340 |
+
return [t, -5, 5]
|
1341 |
+
|
1342 |
+
|
1343 |
+
class Ray(LinearEntity):
|
1344 |
+
"""A Ray is a semi-line in the space with a source point and a direction.
|
1345 |
+
|
1346 |
+
Parameters
|
1347 |
+
==========
|
1348 |
+
|
1349 |
+
p1 : Point
|
1350 |
+
The source of the Ray
|
1351 |
+
p2 : Point or radian value
|
1352 |
+
This point determines the direction in which the Ray propagates.
|
1353 |
+
If given as an angle it is interpreted in radians with the positive
|
1354 |
+
direction being ccw.
|
1355 |
+
|
1356 |
+
Attributes
|
1357 |
+
==========
|
1358 |
+
|
1359 |
+
source
|
1360 |
+
|
1361 |
+
See Also
|
1362 |
+
========
|
1363 |
+
|
1364 |
+
sympy.geometry.line.Ray2D
|
1365 |
+
sympy.geometry.line.Ray3D
|
1366 |
+
sympy.geometry.point.Point
|
1367 |
+
sympy.geometry.line.Line
|
1368 |
+
|
1369 |
+
Notes
|
1370 |
+
=====
|
1371 |
+
|
1372 |
+
`Ray` will automatically subclass to `Ray2D` or `Ray3D` based on the
|
1373 |
+
dimension of `p1`.
|
1374 |
+
|
1375 |
+
Examples
|
1376 |
+
========
|
1377 |
+
|
1378 |
+
>>> from sympy import Ray, Point, pi
|
1379 |
+
>>> r = Ray(Point(2, 3), Point(3, 5))
|
1380 |
+
>>> r
|
1381 |
+
Ray2D(Point2D(2, 3), Point2D(3, 5))
|
1382 |
+
>>> r.points
|
1383 |
+
(Point2D(2, 3), Point2D(3, 5))
|
1384 |
+
>>> r.source
|
1385 |
+
Point2D(2, 3)
|
1386 |
+
>>> r.xdirection
|
1387 |
+
oo
|
1388 |
+
>>> r.ydirection
|
1389 |
+
oo
|
1390 |
+
>>> r.slope
|
1391 |
+
2
|
1392 |
+
>>> Ray(Point(0, 0), angle=pi/4).slope
|
1393 |
+
1
|
1394 |
+
|
1395 |
+
"""
|
1396 |
+
def __new__(cls, p1, p2=None, **kwargs):
|
1397 |
+
p1 = Point(p1)
|
1398 |
+
if p2 is not None:
|
1399 |
+
p1, p2 = Point._normalize_dimension(p1, Point(p2))
|
1400 |
+
dim = len(p1)
|
1401 |
+
|
1402 |
+
if dim == 2:
|
1403 |
+
return Ray2D(p1, p2, **kwargs)
|
1404 |
+
elif dim == 3:
|
1405 |
+
return Ray3D(p1, p2, **kwargs)
|
1406 |
+
return LinearEntity.__new__(cls, p1, p2, **kwargs)
|
1407 |
+
|
1408 |
+
def _svg(self, scale_factor=1., fill_color="#66cc99"):
|
1409 |
+
"""Returns SVG path element for the LinearEntity.
|
1410 |
+
|
1411 |
+
Parameters
|
1412 |
+
==========
|
1413 |
+
|
1414 |
+
scale_factor : float
|
1415 |
+
Multiplication factor for the SVG stroke-width. Default is 1.
|
1416 |
+
fill_color : str, optional
|
1417 |
+
Hex string for fill color. Default is "#66cc99".
|
1418 |
+
"""
|
1419 |
+
verts = (N(self.p1), N(self.p2))
|
1420 |
+
coords = ["{},{}".format(p.x, p.y) for p in verts]
|
1421 |
+
path = "M {} L {}".format(coords[0], " L ".join(coords[1:]))
|
1422 |
+
|
1423 |
+
return (
|
1424 |
+
'<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
|
1425 |
+
'stroke-width="{0}" opacity="0.6" d="{1}" '
|
1426 |
+
'marker-start="url(#markerCircle)" marker-end="url(#markerArrow)"/>'
|
1427 |
+
).format(2.*scale_factor, path, fill_color)
|
1428 |
+
|
1429 |
+
def contains(self, other):
|
1430 |
+
"""
|
1431 |
+
Is other GeometryEntity contained in this Ray?
|
1432 |
+
|
1433 |
+
Examples
|
1434 |
+
========
|
1435 |
+
|
1436 |
+
>>> from sympy import Ray,Point,Segment
|
1437 |
+
>>> p1, p2 = Point(0, 0), Point(4, 4)
|
1438 |
+
>>> r = Ray(p1, p2)
|
1439 |
+
>>> r.contains(p1)
|
1440 |
+
True
|
1441 |
+
>>> r.contains((1, 1))
|
1442 |
+
True
|
1443 |
+
>>> r.contains((1, 3))
|
1444 |
+
False
|
1445 |
+
>>> s = Segment((1, 1), (2, 2))
|
1446 |
+
>>> r.contains(s)
|
1447 |
+
True
|
1448 |
+
>>> s = Segment((1, 2), (2, 5))
|
1449 |
+
>>> r.contains(s)
|
1450 |
+
False
|
1451 |
+
>>> r1 = Ray((2, 2), (3, 3))
|
1452 |
+
>>> r.contains(r1)
|
1453 |
+
True
|
1454 |
+
>>> r1 = Ray((2, 2), (3, 5))
|
1455 |
+
>>> r.contains(r1)
|
1456 |
+
False
|
1457 |
+
"""
|
1458 |
+
if not isinstance(other, GeometryEntity):
|
1459 |
+
other = Point(other, dim=self.ambient_dimension)
|
1460 |
+
if isinstance(other, Point):
|
1461 |
+
if Point.is_collinear(self.p1, self.p2, other):
|
1462 |
+
# if we're in the direction of the ray, our
|
1463 |
+
# direction vector dot the ray's direction vector
|
1464 |
+
# should be non-negative
|
1465 |
+
return bool((self.p2 - self.p1).dot(other - self.p1) >= S.Zero)
|
1466 |
+
return False
|
1467 |
+
elif isinstance(other, Ray):
|
1468 |
+
if Point.is_collinear(self.p1, self.p2, other.p1, other.p2):
|
1469 |
+
return bool((self.p2 - self.p1).dot(other.p2 - other.p1) > S.Zero)
|
1470 |
+
return False
|
1471 |
+
elif isinstance(other, Segment):
|
1472 |
+
return other.p1 in self and other.p2 in self
|
1473 |
+
|
1474 |
+
# No other known entity can be contained in a Ray
|
1475 |
+
return False
|
1476 |
+
|
1477 |
+
def distance(self, other):
|
1478 |
+
"""
|
1479 |
+
Finds the shortest distance between the ray and a point.
|
1480 |
+
|
1481 |
+
Raises
|
1482 |
+
======
|
1483 |
+
|
1484 |
+
NotImplementedError is raised if `other` is not a Point
|
1485 |
+
|
1486 |
+
Examples
|
1487 |
+
========
|
1488 |
+
|
1489 |
+
>>> from sympy import Point, Ray
|
1490 |
+
>>> p1, p2 = Point(0, 0), Point(1, 1)
|
1491 |
+
>>> s = Ray(p1, p2)
|
1492 |
+
>>> s.distance(Point(-1, -1))
|
1493 |
+
sqrt(2)
|
1494 |
+
>>> s.distance((-1, 2))
|
1495 |
+
3*sqrt(2)/2
|
1496 |
+
>>> p1, p2 = Point(0, 0, 0), Point(1, 1, 2)
|
1497 |
+
>>> s = Ray(p1, p2)
|
1498 |
+
>>> s
|
1499 |
+
Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 2))
|
1500 |
+
>>> s.distance(Point(-1, -1, 2))
|
1501 |
+
4*sqrt(3)/3
|
1502 |
+
>>> s.distance((-1, -1, 2))
|
1503 |
+
4*sqrt(3)/3
|
1504 |
+
|
1505 |
+
"""
|
1506 |
+
if not isinstance(other, GeometryEntity):
|
1507 |
+
other = Point(other, dim=self.ambient_dimension)
|
1508 |
+
if self.contains(other):
|
1509 |
+
return S.Zero
|
1510 |
+
|
1511 |
+
proj = Line(self.p1, self.p2).projection(other)
|
1512 |
+
if self.contains(proj):
|
1513 |
+
return abs(other - proj)
|
1514 |
+
else:
|
1515 |
+
return abs(other - self.source)
|
1516 |
+
|
1517 |
+
def equals(self, other):
|
1518 |
+
"""Returns True if self and other are the same mathematical entities"""
|
1519 |
+
if not isinstance(other, Ray):
|
1520 |
+
return False
|
1521 |
+
return self.source == other.source and other.p2 in self
|
1522 |
+
|
1523 |
+
def plot_interval(self, parameter='t'):
|
1524 |
+
"""The plot interval for the default geometric plot of the Ray. Gives
|
1525 |
+
values that will produce a ray that is 10 units long (where a unit is
|
1526 |
+
the distance between the two points that define the ray).
|
1527 |
+
|
1528 |
+
Parameters
|
1529 |
+
==========
|
1530 |
+
|
1531 |
+
parameter : str, optional
|
1532 |
+
Default value is 't'.
|
1533 |
+
|
1534 |
+
Returns
|
1535 |
+
=======
|
1536 |
+
|
1537 |
+
plot_interval : list
|
1538 |
+
[parameter, lower_bound, upper_bound]
|
1539 |
+
|
1540 |
+
Examples
|
1541 |
+
========
|
1542 |
+
|
1543 |
+
>>> from sympy import Ray, pi
|
1544 |
+
>>> r = Ray((0, 0), angle=pi/4)
|
1545 |
+
>>> r.plot_interval()
|
1546 |
+
[t, 0, 10]
|
1547 |
+
|
1548 |
+
"""
|
1549 |
+
t = _symbol(parameter, real=True)
|
1550 |
+
return [t, 0, 10]
|
1551 |
+
|
1552 |
+
@property
|
1553 |
+
def source(self):
|
1554 |
+
"""The point from which the ray emanates.
|
1555 |
+
|
1556 |
+
See Also
|
1557 |
+
========
|
1558 |
+
|
1559 |
+
sympy.geometry.point.Point
|
1560 |
+
|
1561 |
+
Examples
|
1562 |
+
========
|
1563 |
+
|
1564 |
+
>>> from sympy import Point, Ray
|
1565 |
+
>>> p1, p2 = Point(0, 0), Point(4, 1)
|
1566 |
+
>>> r1 = Ray(p1, p2)
|
1567 |
+
>>> r1.source
|
1568 |
+
Point2D(0, 0)
|
1569 |
+
>>> p1, p2 = Point(0, 0, 0), Point(4, 1, 5)
|
1570 |
+
>>> r1 = Ray(p2, p1)
|
1571 |
+
>>> r1.source
|
1572 |
+
Point3D(4, 1, 5)
|
1573 |
+
|
1574 |
+
"""
|
1575 |
+
return self.p1
|
1576 |
+
|
1577 |
+
|
1578 |
+
class Segment(LinearEntity):
|
1579 |
+
"""A line segment in space.
|
1580 |
+
|
1581 |
+
Parameters
|
1582 |
+
==========
|
1583 |
+
|
1584 |
+
p1 : Point
|
1585 |
+
p2 : Point
|
1586 |
+
|
1587 |
+
Attributes
|
1588 |
+
==========
|
1589 |
+
|
1590 |
+
length : number or SymPy expression
|
1591 |
+
midpoint : Point
|
1592 |
+
|
1593 |
+
See Also
|
1594 |
+
========
|
1595 |
+
|
1596 |
+
sympy.geometry.line.Segment2D
|
1597 |
+
sympy.geometry.line.Segment3D
|
1598 |
+
sympy.geometry.point.Point
|
1599 |
+
sympy.geometry.line.Line
|
1600 |
+
|
1601 |
+
Notes
|
1602 |
+
=====
|
1603 |
+
|
1604 |
+
If 2D or 3D points are used to define `Segment`, it will
|
1605 |
+
be automatically subclassed to `Segment2D` or `Segment3D`.
|
1606 |
+
|
1607 |
+
Examples
|
1608 |
+
========
|
1609 |
+
|
1610 |
+
>>> from sympy import Point, Segment
|
1611 |
+
>>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts
|
1612 |
+
Segment2D(Point2D(1, 0), Point2D(1, 1))
|
1613 |
+
>>> s = Segment(Point(4, 3), Point(1, 1))
|
1614 |
+
>>> s.points
|
1615 |
+
(Point2D(4, 3), Point2D(1, 1))
|
1616 |
+
>>> s.slope
|
1617 |
+
2/3
|
1618 |
+
>>> s.length
|
1619 |
+
sqrt(13)
|
1620 |
+
>>> s.midpoint
|
1621 |
+
Point2D(5/2, 2)
|
1622 |
+
>>> Segment((1, 0, 0), (1, 1, 1)) # tuples are interpreted as pts
|
1623 |
+
Segment3D(Point3D(1, 0, 0), Point3D(1, 1, 1))
|
1624 |
+
>>> s = Segment(Point(4, 3, 9), Point(1, 1, 7)); s
|
1625 |
+
Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7))
|
1626 |
+
>>> s.points
|
1627 |
+
(Point3D(4, 3, 9), Point3D(1, 1, 7))
|
1628 |
+
>>> s.length
|
1629 |
+
sqrt(17)
|
1630 |
+
>>> s.midpoint
|
1631 |
+
Point3D(5/2, 2, 8)
|
1632 |
+
|
1633 |
+
"""
|
1634 |
+
def __new__(cls, p1, p2, **kwargs):
|
1635 |
+
p1, p2 = Point._normalize_dimension(Point(p1), Point(p2))
|
1636 |
+
dim = len(p1)
|
1637 |
+
|
1638 |
+
if dim == 2:
|
1639 |
+
return Segment2D(p1, p2, **kwargs)
|
1640 |
+
elif dim == 3:
|
1641 |
+
return Segment3D(p1, p2, **kwargs)
|
1642 |
+
return LinearEntity.__new__(cls, p1, p2, **kwargs)
|
1643 |
+
|
1644 |
+
def contains(self, other):
|
1645 |
+
"""
|
1646 |
+
Is the other GeometryEntity contained within this Segment?
|
1647 |
+
|
1648 |
+
Examples
|
1649 |
+
========
|
1650 |
+
|
1651 |
+
>>> from sympy import Point, Segment
|
1652 |
+
>>> p1, p2 = Point(0, 1), Point(3, 4)
|
1653 |
+
>>> s = Segment(p1, p2)
|
1654 |
+
>>> s2 = Segment(p2, p1)
|
1655 |
+
>>> s.contains(s2)
|
1656 |
+
True
|
1657 |
+
>>> from sympy import Point3D, Segment3D
|
1658 |
+
>>> p1, p2 = Point3D(0, 1, 1), Point3D(3, 4, 5)
|
1659 |
+
>>> s = Segment3D(p1, p2)
|
1660 |
+
>>> s2 = Segment3D(p2, p1)
|
1661 |
+
>>> s.contains(s2)
|
1662 |
+
True
|
1663 |
+
>>> s.contains((p1 + p2)/2)
|
1664 |
+
True
|
1665 |
+
"""
|
1666 |
+
if not isinstance(other, GeometryEntity):
|
1667 |
+
other = Point(other, dim=self.ambient_dimension)
|
1668 |
+
if isinstance(other, Point):
|
1669 |
+
if Point.is_collinear(other, self.p1, self.p2):
|
1670 |
+
if isinstance(self, Segment2D):
|
1671 |
+
# if it is collinear and is in the bounding box of the
|
1672 |
+
# segment then it must be on the segment
|
1673 |
+
vert = (1/self.slope).equals(0)
|
1674 |
+
if vert is False:
|
1675 |
+
isin = (self.p1.x - other.x)*(self.p2.x - other.x) <= 0
|
1676 |
+
if isin in (True, False):
|
1677 |
+
return isin
|
1678 |
+
if vert is True:
|
1679 |
+
isin = (self.p1.y - other.y)*(self.p2.y - other.y) <= 0
|
1680 |
+
if isin in (True, False):
|
1681 |
+
return isin
|
1682 |
+
# use the triangle inequality
|
1683 |
+
d1, d2 = other - self.p1, other - self.p2
|
1684 |
+
d = self.p2 - self.p1
|
1685 |
+
# without the call to simplify, SymPy cannot tell that an expression
|
1686 |
+
# like (a+b)*(a/2+b/2) is always non-negative. If it cannot be
|
1687 |
+
# determined, raise an Undecidable error
|
1688 |
+
try:
|
1689 |
+
# the triangle inequality says that |d1|+|d2| >= |d| and is strict
|
1690 |
+
# only if other lies in the line segment
|
1691 |
+
return bool(simplify(Eq(abs(d1) + abs(d2) - abs(d), 0)))
|
1692 |
+
except TypeError:
|
1693 |
+
raise Undecidable("Cannot determine if {} is in {}".format(other, self))
|
1694 |
+
if isinstance(other, Segment):
|
1695 |
+
return other.p1 in self and other.p2 in self
|
1696 |
+
|
1697 |
+
return False
|
1698 |
+
|
1699 |
+
def equals(self, other):
|
1700 |
+
"""Returns True if self and other are the same mathematical entities"""
|
1701 |
+
return isinstance(other, self.func) and list(
|
1702 |
+
ordered(self.args)) == list(ordered(other.args))
|
1703 |
+
|
1704 |
+
def distance(self, other):
|
1705 |
+
"""
|
1706 |
+
Finds the shortest distance between a line segment and a point.
|
1707 |
+
|
1708 |
+
Raises
|
1709 |
+
======
|
1710 |
+
|
1711 |
+
NotImplementedError is raised if `other` is not a Point
|
1712 |
+
|
1713 |
+
Examples
|
1714 |
+
========
|
1715 |
+
|
1716 |
+
>>> from sympy import Point, Segment
|
1717 |
+
>>> p1, p2 = Point(0, 1), Point(3, 4)
|
1718 |
+
>>> s = Segment(p1, p2)
|
1719 |
+
>>> s.distance(Point(10, 15))
|
1720 |
+
sqrt(170)
|
1721 |
+
>>> s.distance((0, 12))
|
1722 |
+
sqrt(73)
|
1723 |
+
>>> from sympy import Point3D, Segment3D
|
1724 |
+
>>> p1, p2 = Point3D(0, 0, 3), Point3D(1, 1, 4)
|
1725 |
+
>>> s = Segment3D(p1, p2)
|
1726 |
+
>>> s.distance(Point3D(10, 15, 12))
|
1727 |
+
sqrt(341)
|
1728 |
+
>>> s.distance((10, 15, 12))
|
1729 |
+
sqrt(341)
|
1730 |
+
"""
|
1731 |
+
if not isinstance(other, GeometryEntity):
|
1732 |
+
other = Point(other, dim=self.ambient_dimension)
|
1733 |
+
if isinstance(other, Point):
|
1734 |
+
vp1 = other - self.p1
|
1735 |
+
vp2 = other - self.p2
|
1736 |
+
|
1737 |
+
dot_prod_sign_1 = self.direction.dot(vp1) >= 0
|
1738 |
+
dot_prod_sign_2 = self.direction.dot(vp2) <= 0
|
1739 |
+
if dot_prod_sign_1 and dot_prod_sign_2:
|
1740 |
+
return Line(self.p1, self.p2).distance(other)
|
1741 |
+
if dot_prod_sign_1 and not dot_prod_sign_2:
|
1742 |
+
return abs(vp2)
|
1743 |
+
if not dot_prod_sign_1 and dot_prod_sign_2:
|
1744 |
+
return abs(vp1)
|
1745 |
+
raise NotImplementedError()
|
1746 |
+
|
1747 |
+
@property
|
1748 |
+
def length(self):
|
1749 |
+
"""The length of the line segment.
|
1750 |
+
|
1751 |
+
See Also
|
1752 |
+
========
|
1753 |
+
|
1754 |
+
sympy.geometry.point.Point.distance
|
1755 |
+
|
1756 |
+
Examples
|
1757 |
+
========
|
1758 |
+
|
1759 |
+
>>> from sympy import Point, Segment
|
1760 |
+
>>> p1, p2 = Point(0, 0), Point(4, 3)
|
1761 |
+
>>> s1 = Segment(p1, p2)
|
1762 |
+
>>> s1.length
|
1763 |
+
5
|
1764 |
+
>>> from sympy import Point3D, Segment3D
|
1765 |
+
>>> p1, p2 = Point3D(0, 0, 0), Point3D(4, 3, 3)
|
1766 |
+
>>> s1 = Segment3D(p1, p2)
|
1767 |
+
>>> s1.length
|
1768 |
+
sqrt(34)
|
1769 |
+
|
1770 |
+
"""
|
1771 |
+
return Point.distance(self.p1, self.p2)
|
1772 |
+
|
1773 |
+
@property
|
1774 |
+
def midpoint(self):
|
1775 |
+
"""The midpoint of the line segment.
|
1776 |
+
|
1777 |
+
See Also
|
1778 |
+
========
|
1779 |
+
|
1780 |
+
sympy.geometry.point.Point.midpoint
|
1781 |
+
|
1782 |
+
Examples
|
1783 |
+
========
|
1784 |
+
|
1785 |
+
>>> from sympy import Point, Segment
|
1786 |
+
>>> p1, p2 = Point(0, 0), Point(4, 3)
|
1787 |
+
>>> s1 = Segment(p1, p2)
|
1788 |
+
>>> s1.midpoint
|
1789 |
+
Point2D(2, 3/2)
|
1790 |
+
>>> from sympy import Point3D, Segment3D
|
1791 |
+
>>> p1, p2 = Point3D(0, 0, 0), Point3D(4, 3, 3)
|
1792 |
+
>>> s1 = Segment3D(p1, p2)
|
1793 |
+
>>> s1.midpoint
|
1794 |
+
Point3D(2, 3/2, 3/2)
|
1795 |
+
|
1796 |
+
"""
|
1797 |
+
return Point.midpoint(self.p1, self.p2)
|
1798 |
+
|
1799 |
+
def perpendicular_bisector(self, p=None):
|
1800 |
+
"""The perpendicular bisector of this segment.
|
1801 |
+
|
1802 |
+
If no point is specified or the point specified is not on the
|
1803 |
+
bisector then the bisector is returned as a Line. Otherwise a
|
1804 |
+
Segment is returned that joins the point specified and the
|
1805 |
+
intersection of the bisector and the segment.
|
1806 |
+
|
1807 |
+
Parameters
|
1808 |
+
==========
|
1809 |
+
|
1810 |
+
p : Point
|
1811 |
+
|
1812 |
+
Returns
|
1813 |
+
=======
|
1814 |
+
|
1815 |
+
bisector : Line or Segment
|
1816 |
+
|
1817 |
+
See Also
|
1818 |
+
========
|
1819 |
+
|
1820 |
+
LinearEntity.perpendicular_segment
|
1821 |
+
|
1822 |
+
Examples
|
1823 |
+
========
|
1824 |
+
|
1825 |
+
>>> from sympy import Point, Segment
|
1826 |
+
>>> p1, p2, p3 = Point(0, 0), Point(6, 6), Point(5, 1)
|
1827 |
+
>>> s1 = Segment(p1, p2)
|
1828 |
+
>>> s1.perpendicular_bisector()
|
1829 |
+
Line2D(Point2D(3, 3), Point2D(-3, 9))
|
1830 |
+
|
1831 |
+
>>> s1.perpendicular_bisector(p3)
|
1832 |
+
Segment2D(Point2D(5, 1), Point2D(3, 3))
|
1833 |
+
|
1834 |
+
"""
|
1835 |
+
l = self.perpendicular_line(self.midpoint)
|
1836 |
+
if p is not None:
|
1837 |
+
p2 = Point(p, dim=self.ambient_dimension)
|
1838 |
+
if p2 in l:
|
1839 |
+
return Segment(p2, self.midpoint)
|
1840 |
+
return l
|
1841 |
+
|
1842 |
+
def plot_interval(self, parameter='t'):
|
1843 |
+
"""The plot interval for the default geometric plot of the Segment gives
|
1844 |
+
values that will produce the full segment in a plot.
|
1845 |
+
|
1846 |
+
Parameters
|
1847 |
+
==========
|
1848 |
+
|
1849 |
+
parameter : str, optional
|
1850 |
+
Default value is 't'.
|
1851 |
+
|
1852 |
+
Returns
|
1853 |
+
=======
|
1854 |
+
|
1855 |
+
plot_interval : list
|
1856 |
+
[parameter, lower_bound, upper_bound]
|
1857 |
+
|
1858 |
+
Examples
|
1859 |
+
========
|
1860 |
+
|
1861 |
+
>>> from sympy import Point, Segment
|
1862 |
+
>>> p1, p2 = Point(0, 0), Point(5, 3)
|
1863 |
+
>>> s1 = Segment(p1, p2)
|
1864 |
+
>>> s1.plot_interval()
|
1865 |
+
[t, 0, 1]
|
1866 |
+
|
1867 |
+
"""
|
1868 |
+
t = _symbol(parameter, real=True)
|
1869 |
+
return [t, 0, 1]
|
1870 |
+
|
1871 |
+
|
1872 |
+
class LinearEntity2D(LinearEntity):
|
1873 |
+
"""A base class for all linear entities (line, ray and segment)
|
1874 |
+
in a 2-dimensional Euclidean space.
|
1875 |
+
|
1876 |
+
Attributes
|
1877 |
+
==========
|
1878 |
+
|
1879 |
+
p1
|
1880 |
+
p2
|
1881 |
+
coefficients
|
1882 |
+
slope
|
1883 |
+
points
|
1884 |
+
|
1885 |
+
Notes
|
1886 |
+
=====
|
1887 |
+
|
1888 |
+
This is an abstract class and is not meant to be instantiated.
|
1889 |
+
|
1890 |
+
See Also
|
1891 |
+
========
|
1892 |
+
|
1893 |
+
sympy.geometry.entity.GeometryEntity
|
1894 |
+
|
1895 |
+
"""
|
1896 |
+
@property
|
1897 |
+
def bounds(self):
|
1898 |
+
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
|
1899 |
+
rectangle for the geometric figure.
|
1900 |
+
|
1901 |
+
"""
|
1902 |
+
verts = self.points
|
1903 |
+
xs = [p.x for p in verts]
|
1904 |
+
ys = [p.y for p in verts]
|
1905 |
+
return (min(xs), min(ys), max(xs), max(ys))
|
1906 |
+
|
1907 |
+
def perpendicular_line(self, p):
|
1908 |
+
"""Create a new Line perpendicular to this linear entity which passes
|
1909 |
+
through the point `p`.
|
1910 |
+
|
1911 |
+
Parameters
|
1912 |
+
==========
|
1913 |
+
|
1914 |
+
p : Point
|
1915 |
+
|
1916 |
+
Returns
|
1917 |
+
=======
|
1918 |
+
|
1919 |
+
line : Line
|
1920 |
+
|
1921 |
+
See Also
|
1922 |
+
========
|
1923 |
+
|
1924 |
+
sympy.geometry.line.LinearEntity.is_perpendicular, perpendicular_segment
|
1925 |
+
|
1926 |
+
Examples
|
1927 |
+
========
|
1928 |
+
|
1929 |
+
>>> from sympy import Point, Line
|
1930 |
+
>>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
|
1931 |
+
>>> L = Line(p1, p2)
|
1932 |
+
>>> P = L.perpendicular_line(p3); P
|
1933 |
+
Line2D(Point2D(-2, 2), Point2D(-5, 4))
|
1934 |
+
>>> L.is_perpendicular(P)
|
1935 |
+
True
|
1936 |
+
|
1937 |
+
In 2D, the first point of the perpendicular line is the
|
1938 |
+
point through which was required to pass; the second
|
1939 |
+
point is arbitrarily chosen. To get a line that explicitly
|
1940 |
+
uses a point in the line, create a line from the perpendicular
|
1941 |
+
segment from the line to the point:
|
1942 |
+
|
1943 |
+
>>> Line(L.perpendicular_segment(p3))
|
1944 |
+
Line2D(Point2D(-2, 2), Point2D(4/13, 6/13))
|
1945 |
+
"""
|
1946 |
+
p = Point(p, dim=self.ambient_dimension)
|
1947 |
+
# any two lines in R^2 intersect, so blindly making
|
1948 |
+
# a line through p in an orthogonal direction will work
|
1949 |
+
# and is faster than finding the projection point as in 3D
|
1950 |
+
return Line(p, p + self.direction.orthogonal_direction)
|
1951 |
+
|
1952 |
+
@property
|
1953 |
+
def slope(self):
|
1954 |
+
"""The slope of this linear entity, or infinity if vertical.
|
1955 |
+
|
1956 |
+
Returns
|
1957 |
+
=======
|
1958 |
+
|
1959 |
+
slope : number or SymPy expression
|
1960 |
+
|
1961 |
+
See Also
|
1962 |
+
========
|
1963 |
+
|
1964 |
+
coefficients
|
1965 |
+
|
1966 |
+
Examples
|
1967 |
+
========
|
1968 |
+
|
1969 |
+
>>> from sympy import Point, Line
|
1970 |
+
>>> p1, p2 = Point(0, 0), Point(3, 5)
|
1971 |
+
>>> l1 = Line(p1, p2)
|
1972 |
+
>>> l1.slope
|
1973 |
+
5/3
|
1974 |
+
|
1975 |
+
>>> p3 = Point(0, 4)
|
1976 |
+
>>> l2 = Line(p1, p3)
|
1977 |
+
>>> l2.slope
|
1978 |
+
oo
|
1979 |
+
|
1980 |
+
"""
|
1981 |
+
d1, d2 = (self.p1 - self.p2).args
|
1982 |
+
if d1 == 0:
|
1983 |
+
return S.Infinity
|
1984 |
+
return simplify(d2/d1)
|
1985 |
+
|
1986 |
+
|
1987 |
+
class Line2D(LinearEntity2D, Line):
|
1988 |
+
"""An infinite line in space 2D.
|
1989 |
+
|
1990 |
+
A line is declared with two distinct points or a point and slope
|
1991 |
+
as defined using keyword `slope`.
|
1992 |
+
|
1993 |
+
Parameters
|
1994 |
+
==========
|
1995 |
+
|
1996 |
+
p1 : Point
|
1997 |
+
pt : Point
|
1998 |
+
slope : SymPy expression
|
1999 |
+
|
2000 |
+
See Also
|
2001 |
+
========
|
2002 |
+
|
2003 |
+
sympy.geometry.point.Point
|
2004 |
+
|
2005 |
+
Examples
|
2006 |
+
========
|
2007 |
+
|
2008 |
+
>>> from sympy import Line, Segment, Point
|
2009 |
+
>>> L = Line(Point(2,3), Point(3,5))
|
2010 |
+
>>> L
|
2011 |
+
Line2D(Point2D(2, 3), Point2D(3, 5))
|
2012 |
+
>>> L.points
|
2013 |
+
(Point2D(2, 3), Point2D(3, 5))
|
2014 |
+
>>> L.equation()
|
2015 |
+
-2*x + y + 1
|
2016 |
+
>>> L.coefficients
|
2017 |
+
(-2, 1, 1)
|
2018 |
+
|
2019 |
+
Instantiate with keyword ``slope``:
|
2020 |
+
|
2021 |
+
>>> Line(Point(0, 0), slope=0)
|
2022 |
+
Line2D(Point2D(0, 0), Point2D(1, 0))
|
2023 |
+
|
2024 |
+
Instantiate with another linear object
|
2025 |
+
|
2026 |
+
>>> s = Segment((0, 0), (0, 1))
|
2027 |
+
>>> Line(s).equation()
|
2028 |
+
x
|
2029 |
+
"""
|
2030 |
+
def __new__(cls, p1, pt=None, slope=None, **kwargs):
|
2031 |
+
if isinstance(p1, LinearEntity):
|
2032 |
+
if pt is not None:
|
2033 |
+
raise ValueError('When p1 is a LinearEntity, pt should be None')
|
2034 |
+
p1, pt = Point._normalize_dimension(*p1.args, dim=2)
|
2035 |
+
else:
|
2036 |
+
p1 = Point(p1, dim=2)
|
2037 |
+
if pt is not None and slope is None:
|
2038 |
+
try:
|
2039 |
+
p2 = Point(pt, dim=2)
|
2040 |
+
except (NotImplementedError, TypeError, ValueError):
|
2041 |
+
raise ValueError(filldedent('''
|
2042 |
+
The 2nd argument was not a valid Point.
|
2043 |
+
If it was a slope, enter it with keyword "slope".
|
2044 |
+
'''))
|
2045 |
+
elif slope is not None and pt is None:
|
2046 |
+
slope = sympify(slope)
|
2047 |
+
if slope.is_finite is False:
|
2048 |
+
# when infinite slope, don't change x
|
2049 |
+
dx = 0
|
2050 |
+
dy = 1
|
2051 |
+
else:
|
2052 |
+
# go over 1 up slope
|
2053 |
+
dx = 1
|
2054 |
+
dy = slope
|
2055 |
+
# XXX avoiding simplification by adding to coords directly
|
2056 |
+
p2 = Point(p1.x + dx, p1.y + dy, evaluate=False)
|
2057 |
+
else:
|
2058 |
+
raise ValueError('A 2nd Point or keyword "slope" must be used.')
|
2059 |
+
return LinearEntity2D.__new__(cls, p1, p2, **kwargs)
|
2060 |
+
|
2061 |
+
def _svg(self, scale_factor=1., fill_color="#66cc99"):
|
2062 |
+
"""Returns SVG path element for the LinearEntity.
|
2063 |
+
|
2064 |
+
Parameters
|
2065 |
+
==========
|
2066 |
+
|
2067 |
+
scale_factor : float
|
2068 |
+
Multiplication factor for the SVG stroke-width. Default is 1.
|
2069 |
+
fill_color : str, optional
|
2070 |
+
Hex string for fill color. Default is "#66cc99".
|
2071 |
+
"""
|
2072 |
+
verts = (N(self.p1), N(self.p2))
|
2073 |
+
coords = ["{},{}".format(p.x, p.y) for p in verts]
|
2074 |
+
path = "M {} L {}".format(coords[0], " L ".join(coords[1:]))
|
2075 |
+
|
2076 |
+
return (
|
2077 |
+
'<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
|
2078 |
+
'stroke-width="{0}" opacity="0.6" d="{1}" '
|
2079 |
+
'marker-start="url(#markerReverseArrow)" marker-end="url(#markerArrow)"/>'
|
2080 |
+
).format(2.*scale_factor, path, fill_color)
|
2081 |
+
|
2082 |
+
@property
|
2083 |
+
def coefficients(self):
|
2084 |
+
"""The coefficients (`a`, `b`, `c`) for `ax + by + c = 0`.
|
2085 |
+
|
2086 |
+
See Also
|
2087 |
+
========
|
2088 |
+
|
2089 |
+
sympy.geometry.line.Line2D.equation
|
2090 |
+
|
2091 |
+
Examples
|
2092 |
+
========
|
2093 |
+
|
2094 |
+
>>> from sympy import Point, Line
|
2095 |
+
>>> from sympy.abc import x, y
|
2096 |
+
>>> p1, p2 = Point(0, 0), Point(5, 3)
|
2097 |
+
>>> l = Line(p1, p2)
|
2098 |
+
>>> l.coefficients
|
2099 |
+
(-3, 5, 0)
|
2100 |
+
|
2101 |
+
>>> p3 = Point(x, y)
|
2102 |
+
>>> l2 = Line(p1, p3)
|
2103 |
+
>>> l2.coefficients
|
2104 |
+
(-y, x, 0)
|
2105 |
+
|
2106 |
+
"""
|
2107 |
+
p1, p2 = self.points
|
2108 |
+
if p1.x == p2.x:
|
2109 |
+
return (S.One, S.Zero, -p1.x)
|
2110 |
+
elif p1.y == p2.y:
|
2111 |
+
return (S.Zero, S.One, -p1.y)
|
2112 |
+
return tuple([simplify(i) for i in
|
2113 |
+
(self.p1.y - self.p2.y,
|
2114 |
+
self.p2.x - self.p1.x,
|
2115 |
+
self.p1.x*self.p2.y - self.p1.y*self.p2.x)])
|
2116 |
+
|
2117 |
+
def equation(self, x='x', y='y'):
|
2118 |
+
"""The equation of the line: ax + by + c.
|
2119 |
+
|
2120 |
+
Parameters
|
2121 |
+
==========
|
2122 |
+
|
2123 |
+
x : str, optional
|
2124 |
+
The name to use for the x-axis, default value is 'x'.
|
2125 |
+
y : str, optional
|
2126 |
+
The name to use for the y-axis, default value is 'y'.
|
2127 |
+
|
2128 |
+
Returns
|
2129 |
+
=======
|
2130 |
+
|
2131 |
+
equation : SymPy expression
|
2132 |
+
|
2133 |
+
See Also
|
2134 |
+
========
|
2135 |
+
|
2136 |
+
sympy.geometry.line.Line2D.coefficients
|
2137 |
+
|
2138 |
+
Examples
|
2139 |
+
========
|
2140 |
+
|
2141 |
+
>>> from sympy import Point, Line
|
2142 |
+
>>> p1, p2 = Point(1, 0), Point(5, 3)
|
2143 |
+
>>> l1 = Line(p1, p2)
|
2144 |
+
>>> l1.equation()
|
2145 |
+
-3*x + 4*y + 3
|
2146 |
+
|
2147 |
+
"""
|
2148 |
+
x = _symbol(x, real=True)
|
2149 |
+
y = _symbol(y, real=True)
|
2150 |
+
p1, p2 = self.points
|
2151 |
+
if p1.x == p2.x:
|
2152 |
+
return x - p1.x
|
2153 |
+
elif p1.y == p2.y:
|
2154 |
+
return y - p1.y
|
2155 |
+
|
2156 |
+
a, b, c = self.coefficients
|
2157 |
+
return a*x + b*y + c
|
2158 |
+
|
2159 |
+
|
2160 |
+
class Ray2D(LinearEntity2D, Ray):
|
2161 |
+
"""
|
2162 |
+
A Ray is a semi-line in the space with a source point and a direction.
|
2163 |
+
|
2164 |
+
Parameters
|
2165 |
+
==========
|
2166 |
+
|
2167 |
+
p1 : Point
|
2168 |
+
The source of the Ray
|
2169 |
+
p2 : Point or radian value
|
2170 |
+
This point determines the direction in which the Ray propagates.
|
2171 |
+
If given as an angle it is interpreted in radians with the positive
|
2172 |
+
direction being ccw.
|
2173 |
+
|
2174 |
+
Attributes
|
2175 |
+
==========
|
2176 |
+
|
2177 |
+
source
|
2178 |
+
xdirection
|
2179 |
+
ydirection
|
2180 |
+
|
2181 |
+
See Also
|
2182 |
+
========
|
2183 |
+
|
2184 |
+
sympy.geometry.point.Point, Line
|
2185 |
+
|
2186 |
+
Examples
|
2187 |
+
========
|
2188 |
+
|
2189 |
+
>>> from sympy import Point, pi, Ray
|
2190 |
+
>>> r = Ray(Point(2, 3), Point(3, 5))
|
2191 |
+
>>> r
|
2192 |
+
Ray2D(Point2D(2, 3), Point2D(3, 5))
|
2193 |
+
>>> r.points
|
2194 |
+
(Point2D(2, 3), Point2D(3, 5))
|
2195 |
+
>>> r.source
|
2196 |
+
Point2D(2, 3)
|
2197 |
+
>>> r.xdirection
|
2198 |
+
oo
|
2199 |
+
>>> r.ydirection
|
2200 |
+
oo
|
2201 |
+
>>> r.slope
|
2202 |
+
2
|
2203 |
+
>>> Ray(Point(0, 0), angle=pi/4).slope
|
2204 |
+
1
|
2205 |
+
|
2206 |
+
"""
|
2207 |
+
def __new__(cls, p1, pt=None, angle=None, **kwargs):
|
2208 |
+
p1 = Point(p1, dim=2)
|
2209 |
+
if pt is not None and angle is None:
|
2210 |
+
try:
|
2211 |
+
p2 = Point(pt, dim=2)
|
2212 |
+
except (NotImplementedError, TypeError, ValueError):
|
2213 |
+
raise ValueError(filldedent('''
|
2214 |
+
The 2nd argument was not a valid Point; if
|
2215 |
+
it was meant to be an angle it should be
|
2216 |
+
given with keyword "angle".'''))
|
2217 |
+
if p1 == p2:
|
2218 |
+
raise ValueError('A Ray requires two distinct points.')
|
2219 |
+
elif angle is not None and pt is None:
|
2220 |
+
# we need to know if the angle is an odd multiple of pi/2
|
2221 |
+
angle = sympify(angle)
|
2222 |
+
c = _pi_coeff(angle)
|
2223 |
+
p2 = None
|
2224 |
+
if c is not None:
|
2225 |
+
if c.is_Rational:
|
2226 |
+
if c.q == 2:
|
2227 |
+
if c.p == 1:
|
2228 |
+
p2 = p1 + Point(0, 1)
|
2229 |
+
elif c.p == 3:
|
2230 |
+
p2 = p1 + Point(0, -1)
|
2231 |
+
elif c.q == 1:
|
2232 |
+
if c.p == 0:
|
2233 |
+
p2 = p1 + Point(1, 0)
|
2234 |
+
elif c.p == 1:
|
2235 |
+
p2 = p1 + Point(-1, 0)
|
2236 |
+
if p2 is None:
|
2237 |
+
c *= S.Pi
|
2238 |
+
else:
|
2239 |
+
c = angle % (2*S.Pi)
|
2240 |
+
if not p2:
|
2241 |
+
m = 2*c/S.Pi
|
2242 |
+
left = And(1 < m, m < 3) # is it in quadrant 2 or 3?
|
2243 |
+
x = Piecewise((-1, left), (Piecewise((0, Eq(m % 1, 0)), (1, True)), True))
|
2244 |
+
y = Piecewise((-tan(c), left), (Piecewise((1, Eq(m, 1)), (-1, Eq(m, 3)), (tan(c), True)), True))
|
2245 |
+
p2 = p1 + Point(x, y)
|
2246 |
+
else:
|
2247 |
+
raise ValueError('A 2nd point or keyword "angle" must be used.')
|
2248 |
+
|
2249 |
+
return LinearEntity2D.__new__(cls, p1, p2, **kwargs)
|
2250 |
+
|
2251 |
+
@property
|
2252 |
+
def xdirection(self):
|
2253 |
+
"""The x direction of the ray.
|
2254 |
+
|
2255 |
+
Positive infinity if the ray points in the positive x direction,
|
2256 |
+
negative infinity if the ray points in the negative x direction,
|
2257 |
+
or 0 if the ray is vertical.
|
2258 |
+
|
2259 |
+
See Also
|
2260 |
+
========
|
2261 |
+
|
2262 |
+
ydirection
|
2263 |
+
|
2264 |
+
Examples
|
2265 |
+
========
|
2266 |
+
|
2267 |
+
>>> from sympy import Point, Ray
|
2268 |
+
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, -1)
|
2269 |
+
>>> r1, r2 = Ray(p1, p2), Ray(p1, p3)
|
2270 |
+
>>> r1.xdirection
|
2271 |
+
oo
|
2272 |
+
>>> r2.xdirection
|
2273 |
+
0
|
2274 |
+
|
2275 |
+
"""
|
2276 |
+
if self.p1.x < self.p2.x:
|
2277 |
+
return S.Infinity
|
2278 |
+
elif self.p1.x == self.p2.x:
|
2279 |
+
return S.Zero
|
2280 |
+
else:
|
2281 |
+
return S.NegativeInfinity
|
2282 |
+
|
2283 |
+
@property
|
2284 |
+
def ydirection(self):
|
2285 |
+
"""The y direction of the ray.
|
2286 |
+
|
2287 |
+
Positive infinity if the ray points in the positive y direction,
|
2288 |
+
negative infinity if the ray points in the negative y direction,
|
2289 |
+
or 0 if the ray is horizontal.
|
2290 |
+
|
2291 |
+
See Also
|
2292 |
+
========
|
2293 |
+
|
2294 |
+
xdirection
|
2295 |
+
|
2296 |
+
Examples
|
2297 |
+
========
|
2298 |
+
|
2299 |
+
>>> from sympy import Point, Ray
|
2300 |
+
>>> p1, p2, p3 = Point(0, 0), Point(-1, -1), Point(-1, 0)
|
2301 |
+
>>> r1, r2 = Ray(p1, p2), Ray(p1, p3)
|
2302 |
+
>>> r1.ydirection
|
2303 |
+
-oo
|
2304 |
+
>>> r2.ydirection
|
2305 |
+
0
|
2306 |
+
|
2307 |
+
"""
|
2308 |
+
if self.p1.y < self.p2.y:
|
2309 |
+
return S.Infinity
|
2310 |
+
elif self.p1.y == self.p2.y:
|
2311 |
+
return S.Zero
|
2312 |
+
else:
|
2313 |
+
return S.NegativeInfinity
|
2314 |
+
|
2315 |
+
def closing_angle(r1, r2):
|
2316 |
+
"""Return the angle by which r2 must be rotated so it faces the same
|
2317 |
+
direction as r1.
|
2318 |
+
|
2319 |
+
Parameters
|
2320 |
+
==========
|
2321 |
+
|
2322 |
+
r1 : Ray2D
|
2323 |
+
r2 : Ray2D
|
2324 |
+
|
2325 |
+
Returns
|
2326 |
+
=======
|
2327 |
+
|
2328 |
+
angle : angle in radians (ccw angle is positive)
|
2329 |
+
|
2330 |
+
See Also
|
2331 |
+
========
|
2332 |
+
|
2333 |
+
LinearEntity.angle_between
|
2334 |
+
|
2335 |
+
Examples
|
2336 |
+
========
|
2337 |
+
|
2338 |
+
>>> from sympy import Ray, pi
|
2339 |
+
>>> r1 = Ray((0, 0), (1, 0))
|
2340 |
+
>>> r2 = r1.rotate(-pi/2)
|
2341 |
+
>>> angle = r1.closing_angle(r2); angle
|
2342 |
+
pi/2
|
2343 |
+
>>> r2.rotate(angle).direction.unit == r1.direction.unit
|
2344 |
+
True
|
2345 |
+
>>> r2.closing_angle(r1)
|
2346 |
+
-pi/2
|
2347 |
+
"""
|
2348 |
+
if not all(isinstance(r, Ray2D) for r in (r1, r2)):
|
2349 |
+
# although the direction property is defined for
|
2350 |
+
# all linear entities, only the Ray is truly a
|
2351 |
+
# directed object
|
2352 |
+
raise TypeError('Both arguments must be Ray2D objects.')
|
2353 |
+
|
2354 |
+
a1 = atan2(*list(reversed(r1.direction.args)))
|
2355 |
+
a2 = atan2(*list(reversed(r2.direction.args)))
|
2356 |
+
if a1*a2 < 0:
|
2357 |
+
a1 = 2*S.Pi + a1 if a1 < 0 else a1
|
2358 |
+
a2 = 2*S.Pi + a2 if a2 < 0 else a2
|
2359 |
+
return a1 - a2
|
2360 |
+
|
2361 |
+
|
2362 |
+
class Segment2D(LinearEntity2D, Segment):
|
2363 |
+
"""A line segment in 2D space.
|
2364 |
+
|
2365 |
+
Parameters
|
2366 |
+
==========
|
2367 |
+
|
2368 |
+
p1 : Point
|
2369 |
+
p2 : Point
|
2370 |
+
|
2371 |
+
Attributes
|
2372 |
+
==========
|
2373 |
+
|
2374 |
+
length : number or SymPy expression
|
2375 |
+
midpoint : Point
|
2376 |
+
|
2377 |
+
See Also
|
2378 |
+
========
|
2379 |
+
|
2380 |
+
sympy.geometry.point.Point, Line
|
2381 |
+
|
2382 |
+
Examples
|
2383 |
+
========
|
2384 |
+
|
2385 |
+
>>> from sympy import Point, Segment
|
2386 |
+
>>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts
|
2387 |
+
Segment2D(Point2D(1, 0), Point2D(1, 1))
|
2388 |
+
>>> s = Segment(Point(4, 3), Point(1, 1)); s
|
2389 |
+
Segment2D(Point2D(4, 3), Point2D(1, 1))
|
2390 |
+
>>> s.points
|
2391 |
+
(Point2D(4, 3), Point2D(1, 1))
|
2392 |
+
>>> s.slope
|
2393 |
+
2/3
|
2394 |
+
>>> s.length
|
2395 |
+
sqrt(13)
|
2396 |
+
>>> s.midpoint
|
2397 |
+
Point2D(5/2, 2)
|
2398 |
+
|
2399 |
+
"""
|
2400 |
+
def __new__(cls, p1, p2, **kwargs):
|
2401 |
+
p1 = Point(p1, dim=2)
|
2402 |
+
p2 = Point(p2, dim=2)
|
2403 |
+
|
2404 |
+
if p1 == p2:
|
2405 |
+
return p1
|
2406 |
+
|
2407 |
+
return LinearEntity2D.__new__(cls, p1, p2, **kwargs)
|
2408 |
+
|
2409 |
+
def _svg(self, scale_factor=1., fill_color="#66cc99"):
|
2410 |
+
"""Returns SVG path element for the LinearEntity.
|
2411 |
+
|
2412 |
+
Parameters
|
2413 |
+
==========
|
2414 |
+
|
2415 |
+
scale_factor : float
|
2416 |
+
Multiplication factor for the SVG stroke-width. Default is 1.
|
2417 |
+
fill_color : str, optional
|
2418 |
+
Hex string for fill color. Default is "#66cc99".
|
2419 |
+
"""
|
2420 |
+
verts = (N(self.p1), N(self.p2))
|
2421 |
+
coords = ["{},{}".format(p.x, p.y) for p in verts]
|
2422 |
+
path = "M {} L {}".format(coords[0], " L ".join(coords[1:]))
|
2423 |
+
return (
|
2424 |
+
'<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
|
2425 |
+
'stroke-width="{0}" opacity="0.6" d="{1}" />'
|
2426 |
+
).format(2.*scale_factor, path, fill_color)
|
2427 |
+
|
2428 |
+
|
2429 |
+
class LinearEntity3D(LinearEntity):
|
2430 |
+
"""An base class for all linear entities (line, ray and segment)
|
2431 |
+
in a 3-dimensional Euclidean space.
|
2432 |
+
|
2433 |
+
Attributes
|
2434 |
+
==========
|
2435 |
+
|
2436 |
+
p1
|
2437 |
+
p2
|
2438 |
+
direction_ratio
|
2439 |
+
direction_cosine
|
2440 |
+
points
|
2441 |
+
|
2442 |
+
Notes
|
2443 |
+
=====
|
2444 |
+
|
2445 |
+
This is a base class and is not meant to be instantiated.
|
2446 |
+
"""
|
2447 |
+
def __new__(cls, p1, p2, **kwargs):
|
2448 |
+
p1 = Point3D(p1, dim=3)
|
2449 |
+
p2 = Point3D(p2, dim=3)
|
2450 |
+
if p1 == p2:
|
2451 |
+
# if it makes sense to return a Point, handle in subclass
|
2452 |
+
raise ValueError(
|
2453 |
+
"%s.__new__ requires two unique Points." % cls.__name__)
|
2454 |
+
|
2455 |
+
return GeometryEntity.__new__(cls, p1, p2, **kwargs)
|
2456 |
+
|
2457 |
+
ambient_dimension = 3
|
2458 |
+
|
2459 |
+
@property
|
2460 |
+
def direction_ratio(self):
|
2461 |
+
"""The direction ratio of a given line in 3D.
|
2462 |
+
|
2463 |
+
See Also
|
2464 |
+
========
|
2465 |
+
|
2466 |
+
sympy.geometry.line.Line3D.equation
|
2467 |
+
|
2468 |
+
Examples
|
2469 |
+
========
|
2470 |
+
|
2471 |
+
>>> from sympy import Point3D, Line3D
|
2472 |
+
>>> p1, p2 = Point3D(0, 0, 0), Point3D(5, 3, 1)
|
2473 |
+
>>> l = Line3D(p1, p2)
|
2474 |
+
>>> l.direction_ratio
|
2475 |
+
[5, 3, 1]
|
2476 |
+
"""
|
2477 |
+
p1, p2 = self.points
|
2478 |
+
return p1.direction_ratio(p2)
|
2479 |
+
|
2480 |
+
@property
|
2481 |
+
def direction_cosine(self):
|
2482 |
+
"""The normalized direction ratio of a given line in 3D.
|
2483 |
+
|
2484 |
+
See Also
|
2485 |
+
========
|
2486 |
+
|
2487 |
+
sympy.geometry.line.Line3D.equation
|
2488 |
+
|
2489 |
+
Examples
|
2490 |
+
========
|
2491 |
+
|
2492 |
+
>>> from sympy import Point3D, Line3D
|
2493 |
+
>>> p1, p2 = Point3D(0, 0, 0), Point3D(5, 3, 1)
|
2494 |
+
>>> l = Line3D(p1, p2)
|
2495 |
+
>>> l.direction_cosine
|
2496 |
+
[sqrt(35)/7, 3*sqrt(35)/35, sqrt(35)/35]
|
2497 |
+
>>> sum(i**2 for i in _)
|
2498 |
+
1
|
2499 |
+
"""
|
2500 |
+
p1, p2 = self.points
|
2501 |
+
return p1.direction_cosine(p2)
|
2502 |
+
|
2503 |
+
|
2504 |
+
class Line3D(LinearEntity3D, Line):
|
2505 |
+
"""An infinite 3D line in space.
|
2506 |
+
|
2507 |
+
A line is declared with two distinct points or a point and direction_ratio
|
2508 |
+
as defined using keyword `direction_ratio`.
|
2509 |
+
|
2510 |
+
Parameters
|
2511 |
+
==========
|
2512 |
+
|
2513 |
+
p1 : Point3D
|
2514 |
+
pt : Point3D
|
2515 |
+
direction_ratio : list
|
2516 |
+
|
2517 |
+
See Also
|
2518 |
+
========
|
2519 |
+
|
2520 |
+
sympy.geometry.point.Point3D
|
2521 |
+
sympy.geometry.line.Line
|
2522 |
+
sympy.geometry.line.Line2D
|
2523 |
+
|
2524 |
+
Examples
|
2525 |
+
========
|
2526 |
+
|
2527 |
+
>>> from sympy import Line3D, Point3D
|
2528 |
+
>>> L = Line3D(Point3D(2, 3, 4), Point3D(3, 5, 1))
|
2529 |
+
>>> L
|
2530 |
+
Line3D(Point3D(2, 3, 4), Point3D(3, 5, 1))
|
2531 |
+
>>> L.points
|
2532 |
+
(Point3D(2, 3, 4), Point3D(3, 5, 1))
|
2533 |
+
"""
|
2534 |
+
def __new__(cls, p1, pt=None, direction_ratio=(), **kwargs):
|
2535 |
+
if isinstance(p1, LinearEntity3D):
|
2536 |
+
if pt is not None:
|
2537 |
+
raise ValueError('if p1 is a LinearEntity, pt must be None.')
|
2538 |
+
p1, pt = p1.args
|
2539 |
+
else:
|
2540 |
+
p1 = Point(p1, dim=3)
|
2541 |
+
if pt is not None and len(direction_ratio) == 0:
|
2542 |
+
pt = Point(pt, dim=3)
|
2543 |
+
elif len(direction_ratio) == 3 and pt is None:
|
2544 |
+
pt = Point3D(p1.x + direction_ratio[0], p1.y + direction_ratio[1],
|
2545 |
+
p1.z + direction_ratio[2])
|
2546 |
+
else:
|
2547 |
+
raise ValueError('A 2nd Point or keyword "direction_ratio" must '
|
2548 |
+
'be used.')
|
2549 |
+
|
2550 |
+
return LinearEntity3D.__new__(cls, p1, pt, **kwargs)
|
2551 |
+
|
2552 |
+
def equation(self, x='x', y='y', z='z'):
|
2553 |
+
"""Return the equations that define the line in 3D.
|
2554 |
+
|
2555 |
+
Parameters
|
2556 |
+
==========
|
2557 |
+
|
2558 |
+
x : str, optional
|
2559 |
+
The name to use for the x-axis, default value is 'x'.
|
2560 |
+
y : str, optional
|
2561 |
+
The name to use for the y-axis, default value is 'y'.
|
2562 |
+
z : str, optional
|
2563 |
+
The name to use for the z-axis, default value is 'z'.
|
2564 |
+
|
2565 |
+
Returns
|
2566 |
+
=======
|
2567 |
+
|
2568 |
+
equation : Tuple of simultaneous equations
|
2569 |
+
|
2570 |
+
Examples
|
2571 |
+
========
|
2572 |
+
|
2573 |
+
>>> from sympy import Point3D, Line3D, solve
|
2574 |
+
>>> from sympy.abc import x, y, z
|
2575 |
+
>>> p1, p2 = Point3D(1, 0, 0), Point3D(5, 3, 0)
|
2576 |
+
>>> l1 = Line3D(p1, p2)
|
2577 |
+
>>> eq = l1.equation(x, y, z); eq
|
2578 |
+
(-3*x + 4*y + 3, z)
|
2579 |
+
>>> solve(eq.subs(z, 0), (x, y, z))
|
2580 |
+
{x: 4*y/3 + 1}
|
2581 |
+
"""
|
2582 |
+
x, y, z, k = [_symbol(i, real=True) for i in (x, y, z, 'k')]
|
2583 |
+
p1, p2 = self.points
|
2584 |
+
d1, d2, d3 = p1.direction_ratio(p2)
|
2585 |
+
x1, y1, z1 = p1
|
2586 |
+
eqs = [-d1*k + x - x1, -d2*k + y - y1, -d3*k + z - z1]
|
2587 |
+
# eliminate k from equations by solving first eq with k for k
|
2588 |
+
for i, e in enumerate(eqs):
|
2589 |
+
if e.has(k):
|
2590 |
+
kk = solve(eqs[i], k)[0]
|
2591 |
+
eqs.pop(i)
|
2592 |
+
break
|
2593 |
+
return Tuple(*[i.subs(k, kk).as_numer_denom()[0] for i in eqs])
|
2594 |
+
|
2595 |
+
|
2596 |
+
class Ray3D(LinearEntity3D, Ray):
|
2597 |
+
"""
|
2598 |
+
A Ray is a semi-line in the space with a source point and a direction.
|
2599 |
+
|
2600 |
+
Parameters
|
2601 |
+
==========
|
2602 |
+
|
2603 |
+
p1 : Point3D
|
2604 |
+
The source of the Ray
|
2605 |
+
p2 : Point or a direction vector
|
2606 |
+
direction_ratio: Determines the direction in which the Ray propagates.
|
2607 |
+
|
2608 |
+
|
2609 |
+
Attributes
|
2610 |
+
==========
|
2611 |
+
|
2612 |
+
source
|
2613 |
+
xdirection
|
2614 |
+
ydirection
|
2615 |
+
zdirection
|
2616 |
+
|
2617 |
+
See Also
|
2618 |
+
========
|
2619 |
+
|
2620 |
+
sympy.geometry.point.Point3D, Line3D
|
2621 |
+
|
2622 |
+
|
2623 |
+
Examples
|
2624 |
+
========
|
2625 |
+
|
2626 |
+
>>> from sympy import Point3D, Ray3D
|
2627 |
+
>>> r = Ray3D(Point3D(2, 3, 4), Point3D(3, 5, 0))
|
2628 |
+
>>> r
|
2629 |
+
Ray3D(Point3D(2, 3, 4), Point3D(3, 5, 0))
|
2630 |
+
>>> r.points
|
2631 |
+
(Point3D(2, 3, 4), Point3D(3, 5, 0))
|
2632 |
+
>>> r.source
|
2633 |
+
Point3D(2, 3, 4)
|
2634 |
+
>>> r.xdirection
|
2635 |
+
oo
|
2636 |
+
>>> r.ydirection
|
2637 |
+
oo
|
2638 |
+
>>> r.direction_ratio
|
2639 |
+
[1, 2, -4]
|
2640 |
+
|
2641 |
+
"""
|
2642 |
+
def __new__(cls, p1, pt=None, direction_ratio=(), **kwargs):
|
2643 |
+
if isinstance(p1, LinearEntity3D):
|
2644 |
+
if pt is not None:
|
2645 |
+
raise ValueError('If p1 is a LinearEntity, pt must be None')
|
2646 |
+
p1, pt = p1.args
|
2647 |
+
else:
|
2648 |
+
p1 = Point(p1, dim=3)
|
2649 |
+
if pt is not None and len(direction_ratio) == 0:
|
2650 |
+
pt = Point(pt, dim=3)
|
2651 |
+
elif len(direction_ratio) == 3 and pt is None:
|
2652 |
+
pt = Point3D(p1.x + direction_ratio[0], p1.y + direction_ratio[1],
|
2653 |
+
p1.z + direction_ratio[2])
|
2654 |
+
else:
|
2655 |
+
raise ValueError(filldedent('''
|
2656 |
+
A 2nd Point or keyword "direction_ratio" must be used.
|
2657 |
+
'''))
|
2658 |
+
|
2659 |
+
return LinearEntity3D.__new__(cls, p1, pt, **kwargs)
|
2660 |
+
|
2661 |
+
@property
|
2662 |
+
def xdirection(self):
|
2663 |
+
"""The x direction of the ray.
|
2664 |
+
|
2665 |
+
Positive infinity if the ray points in the positive x direction,
|
2666 |
+
negative infinity if the ray points in the negative x direction,
|
2667 |
+
or 0 if the ray is vertical.
|
2668 |
+
|
2669 |
+
See Also
|
2670 |
+
========
|
2671 |
+
|
2672 |
+
ydirection
|
2673 |
+
|
2674 |
+
Examples
|
2675 |
+
========
|
2676 |
+
|
2677 |
+
>>> from sympy import Point3D, Ray3D
|
2678 |
+
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, -1, 0)
|
2679 |
+
>>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
|
2680 |
+
>>> r1.xdirection
|
2681 |
+
oo
|
2682 |
+
>>> r2.xdirection
|
2683 |
+
0
|
2684 |
+
|
2685 |
+
"""
|
2686 |
+
if self.p1.x < self.p2.x:
|
2687 |
+
return S.Infinity
|
2688 |
+
elif self.p1.x == self.p2.x:
|
2689 |
+
return S.Zero
|
2690 |
+
else:
|
2691 |
+
return S.NegativeInfinity
|
2692 |
+
|
2693 |
+
@property
|
2694 |
+
def ydirection(self):
|
2695 |
+
"""The y direction of the ray.
|
2696 |
+
|
2697 |
+
Positive infinity if the ray points in the positive y direction,
|
2698 |
+
negative infinity if the ray points in the negative y direction,
|
2699 |
+
or 0 if the ray is horizontal.
|
2700 |
+
|
2701 |
+
See Also
|
2702 |
+
========
|
2703 |
+
|
2704 |
+
xdirection
|
2705 |
+
|
2706 |
+
Examples
|
2707 |
+
========
|
2708 |
+
|
2709 |
+
>>> from sympy import Point3D, Ray3D
|
2710 |
+
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(-1, -1, -1), Point3D(-1, 0, 0)
|
2711 |
+
>>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
|
2712 |
+
>>> r1.ydirection
|
2713 |
+
-oo
|
2714 |
+
>>> r2.ydirection
|
2715 |
+
0
|
2716 |
+
|
2717 |
+
"""
|
2718 |
+
if self.p1.y < self.p2.y:
|
2719 |
+
return S.Infinity
|
2720 |
+
elif self.p1.y == self.p2.y:
|
2721 |
+
return S.Zero
|
2722 |
+
else:
|
2723 |
+
return S.NegativeInfinity
|
2724 |
+
|
2725 |
+
@property
|
2726 |
+
def zdirection(self):
|
2727 |
+
"""The z direction of the ray.
|
2728 |
+
|
2729 |
+
Positive infinity if the ray points in the positive z direction,
|
2730 |
+
negative infinity if the ray points in the negative z direction,
|
2731 |
+
or 0 if the ray is horizontal.
|
2732 |
+
|
2733 |
+
See Also
|
2734 |
+
========
|
2735 |
+
|
2736 |
+
xdirection
|
2737 |
+
|
2738 |
+
Examples
|
2739 |
+
========
|
2740 |
+
|
2741 |
+
>>> from sympy import Point3D, Ray3D
|
2742 |
+
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(-1, -1, -1), Point3D(-1, 0, 0)
|
2743 |
+
>>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
|
2744 |
+
>>> r1.ydirection
|
2745 |
+
-oo
|
2746 |
+
>>> r2.ydirection
|
2747 |
+
0
|
2748 |
+
>>> r2.zdirection
|
2749 |
+
0
|
2750 |
+
|
2751 |
+
"""
|
2752 |
+
if self.p1.z < self.p2.z:
|
2753 |
+
return S.Infinity
|
2754 |
+
elif self.p1.z == self.p2.z:
|
2755 |
+
return S.Zero
|
2756 |
+
else:
|
2757 |
+
return S.NegativeInfinity
|
2758 |
+
|
2759 |
+
|
2760 |
+
class Segment3D(LinearEntity3D, Segment):
|
2761 |
+
"""A line segment in a 3D space.
|
2762 |
+
|
2763 |
+
Parameters
|
2764 |
+
==========
|
2765 |
+
|
2766 |
+
p1 : Point3D
|
2767 |
+
p2 : Point3D
|
2768 |
+
|
2769 |
+
Attributes
|
2770 |
+
==========
|
2771 |
+
|
2772 |
+
length : number or SymPy expression
|
2773 |
+
midpoint : Point3D
|
2774 |
+
|
2775 |
+
See Also
|
2776 |
+
========
|
2777 |
+
|
2778 |
+
sympy.geometry.point.Point3D, Line3D
|
2779 |
+
|
2780 |
+
Examples
|
2781 |
+
========
|
2782 |
+
|
2783 |
+
>>> from sympy import Point3D, Segment3D
|
2784 |
+
>>> Segment3D((1, 0, 0), (1, 1, 1)) # tuples are interpreted as pts
|
2785 |
+
Segment3D(Point3D(1, 0, 0), Point3D(1, 1, 1))
|
2786 |
+
>>> s = Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7)); s
|
2787 |
+
Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7))
|
2788 |
+
>>> s.points
|
2789 |
+
(Point3D(4, 3, 9), Point3D(1, 1, 7))
|
2790 |
+
>>> s.length
|
2791 |
+
sqrt(17)
|
2792 |
+
>>> s.midpoint
|
2793 |
+
Point3D(5/2, 2, 8)
|
2794 |
+
|
2795 |
+
"""
|
2796 |
+
def __new__(cls, p1, p2, **kwargs):
|
2797 |
+
p1 = Point(p1, dim=3)
|
2798 |
+
p2 = Point(p2, dim=3)
|
2799 |
+
|
2800 |
+
if p1 == p2:
|
2801 |
+
return p1
|
2802 |
+
|
2803 |
+
return LinearEntity3D.__new__(cls, p1, p2, **kwargs)
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/parabola.py
ADDED
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Parabolic geometrical entity.
|
2 |
+
|
3 |
+
Contains
|
4 |
+
* Parabola
|
5 |
+
|
6 |
+
"""
|
7 |
+
|
8 |
+
from sympy.core import S
|
9 |
+
from sympy.core.sorting import ordered
|
10 |
+
from sympy.core.symbol import _symbol, symbols
|
11 |
+
from sympy.geometry.entity import GeometryEntity, GeometrySet
|
12 |
+
from sympy.geometry.point import Point, Point2D
|
13 |
+
from sympy.geometry.line import Line, Line2D, Ray2D, Segment2D, LinearEntity3D
|
14 |
+
from sympy.geometry.ellipse import Ellipse
|
15 |
+
from sympy.functions import sign
|
16 |
+
from sympy.simplify import simplify
|
17 |
+
from sympy.solvers.solvers import solve
|
18 |
+
|
19 |
+
|
20 |
+
class Parabola(GeometrySet):
|
21 |
+
"""A parabolic GeometryEntity.
|
22 |
+
|
23 |
+
A parabola is declared with a point, that is called 'focus', and
|
24 |
+
a line, that is called 'directrix'.
|
25 |
+
Only vertical or horizontal parabolas are currently supported.
|
26 |
+
|
27 |
+
Parameters
|
28 |
+
==========
|
29 |
+
|
30 |
+
focus : Point
|
31 |
+
Default value is Point(0, 0)
|
32 |
+
directrix : Line
|
33 |
+
|
34 |
+
Attributes
|
35 |
+
==========
|
36 |
+
|
37 |
+
focus
|
38 |
+
directrix
|
39 |
+
axis of symmetry
|
40 |
+
focal length
|
41 |
+
p parameter
|
42 |
+
vertex
|
43 |
+
eccentricity
|
44 |
+
|
45 |
+
Raises
|
46 |
+
======
|
47 |
+
ValueError
|
48 |
+
When `focus` is not a two dimensional point.
|
49 |
+
When `focus` is a point of directrix.
|
50 |
+
NotImplementedError
|
51 |
+
When `directrix` is neither horizontal nor vertical.
|
52 |
+
|
53 |
+
Examples
|
54 |
+
========
|
55 |
+
|
56 |
+
>>> from sympy import Parabola, Point, Line
|
57 |
+
>>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7,8)))
|
58 |
+
>>> p1.focus
|
59 |
+
Point2D(0, 0)
|
60 |
+
>>> p1.directrix
|
61 |
+
Line2D(Point2D(5, 8), Point2D(7, 8))
|
62 |
+
|
63 |
+
"""
|
64 |
+
|
65 |
+
def __new__(cls, focus=None, directrix=None, **kwargs):
|
66 |
+
|
67 |
+
if focus:
|
68 |
+
focus = Point(focus, dim=2)
|
69 |
+
else:
|
70 |
+
focus = Point(0, 0)
|
71 |
+
|
72 |
+
directrix = Line(directrix)
|
73 |
+
|
74 |
+
if directrix.contains(focus):
|
75 |
+
raise ValueError('The focus must not be a point of directrix')
|
76 |
+
|
77 |
+
return GeometryEntity.__new__(cls, focus, directrix, **kwargs)
|
78 |
+
|
79 |
+
@property
|
80 |
+
def ambient_dimension(self):
|
81 |
+
"""Returns the ambient dimension of parabola.
|
82 |
+
|
83 |
+
Returns
|
84 |
+
=======
|
85 |
+
|
86 |
+
ambient_dimension : integer
|
87 |
+
|
88 |
+
Examples
|
89 |
+
========
|
90 |
+
|
91 |
+
>>> from sympy import Parabola, Point, Line
|
92 |
+
>>> f1 = Point(0, 0)
|
93 |
+
>>> p1 = Parabola(f1, Line(Point(5, 8), Point(7, 8)))
|
94 |
+
>>> p1.ambient_dimension
|
95 |
+
2
|
96 |
+
|
97 |
+
"""
|
98 |
+
return 2
|
99 |
+
|
100 |
+
@property
|
101 |
+
def axis_of_symmetry(self):
|
102 |
+
"""Return the axis of symmetry of the parabola: a line
|
103 |
+
perpendicular to the directrix passing through the focus.
|
104 |
+
|
105 |
+
Returns
|
106 |
+
=======
|
107 |
+
|
108 |
+
axis_of_symmetry : Line
|
109 |
+
|
110 |
+
See Also
|
111 |
+
========
|
112 |
+
|
113 |
+
sympy.geometry.line.Line
|
114 |
+
|
115 |
+
Examples
|
116 |
+
========
|
117 |
+
|
118 |
+
>>> from sympy import Parabola, Point, Line
|
119 |
+
>>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8)))
|
120 |
+
>>> p1.axis_of_symmetry
|
121 |
+
Line2D(Point2D(0, 0), Point2D(0, 1))
|
122 |
+
|
123 |
+
"""
|
124 |
+
return self.directrix.perpendicular_line(self.focus)
|
125 |
+
|
126 |
+
@property
|
127 |
+
def directrix(self):
|
128 |
+
"""The directrix of the parabola.
|
129 |
+
|
130 |
+
Returns
|
131 |
+
=======
|
132 |
+
|
133 |
+
directrix : Line
|
134 |
+
|
135 |
+
See Also
|
136 |
+
========
|
137 |
+
|
138 |
+
sympy.geometry.line.Line
|
139 |
+
|
140 |
+
Examples
|
141 |
+
========
|
142 |
+
|
143 |
+
>>> from sympy import Parabola, Point, Line
|
144 |
+
>>> l1 = Line(Point(5, 8), Point(7, 8))
|
145 |
+
>>> p1 = Parabola(Point(0, 0), l1)
|
146 |
+
>>> p1.directrix
|
147 |
+
Line2D(Point2D(5, 8), Point2D(7, 8))
|
148 |
+
|
149 |
+
"""
|
150 |
+
return self.args[1]
|
151 |
+
|
152 |
+
@property
|
153 |
+
def eccentricity(self):
|
154 |
+
"""The eccentricity of the parabola.
|
155 |
+
|
156 |
+
Returns
|
157 |
+
=======
|
158 |
+
|
159 |
+
eccentricity : number
|
160 |
+
|
161 |
+
A parabola may also be characterized as a conic section with an
|
162 |
+
eccentricity of 1. As a consequence of this, all parabolas are
|
163 |
+
similar, meaning that while they can be different sizes,
|
164 |
+
they are all the same shape.
|
165 |
+
|
166 |
+
See Also
|
167 |
+
========
|
168 |
+
|
169 |
+
https://en.wikipedia.org/wiki/Parabola
|
170 |
+
|
171 |
+
|
172 |
+
Examples
|
173 |
+
========
|
174 |
+
|
175 |
+
>>> from sympy import Parabola, Point, Line
|
176 |
+
>>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8)))
|
177 |
+
>>> p1.eccentricity
|
178 |
+
1
|
179 |
+
|
180 |
+
Notes
|
181 |
+
-----
|
182 |
+
The eccentricity for every Parabola is 1 by definition.
|
183 |
+
|
184 |
+
"""
|
185 |
+
return S.One
|
186 |
+
|
187 |
+
def equation(self, x='x', y='y'):
|
188 |
+
"""The equation of the parabola.
|
189 |
+
|
190 |
+
Parameters
|
191 |
+
==========
|
192 |
+
x : str, optional
|
193 |
+
Label for the x-axis. Default value is 'x'.
|
194 |
+
y : str, optional
|
195 |
+
Label for the y-axis. Default value is 'y'.
|
196 |
+
|
197 |
+
Returns
|
198 |
+
=======
|
199 |
+
equation : SymPy expression
|
200 |
+
|
201 |
+
Examples
|
202 |
+
========
|
203 |
+
|
204 |
+
>>> from sympy import Parabola, Point, Line
|
205 |
+
>>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8)))
|
206 |
+
>>> p1.equation()
|
207 |
+
-x**2 - 16*y + 64
|
208 |
+
>>> p1.equation('f')
|
209 |
+
-f**2 - 16*y + 64
|
210 |
+
>>> p1.equation(y='z')
|
211 |
+
-x**2 - 16*z + 64
|
212 |
+
|
213 |
+
"""
|
214 |
+
x = _symbol(x, real=True)
|
215 |
+
y = _symbol(y, real=True)
|
216 |
+
|
217 |
+
m = self.directrix.slope
|
218 |
+
if m is S.Infinity:
|
219 |
+
t1 = 4 * (self.p_parameter) * (x - self.vertex.x)
|
220 |
+
t2 = (y - self.vertex.y)**2
|
221 |
+
elif m == 0:
|
222 |
+
t1 = 4 * (self.p_parameter) * (y - self.vertex.y)
|
223 |
+
t2 = (x - self.vertex.x)**2
|
224 |
+
else:
|
225 |
+
a, b = self.focus
|
226 |
+
c, d = self.directrix.coefficients[:2]
|
227 |
+
t1 = (x - a)**2 + (y - b)**2
|
228 |
+
t2 = self.directrix.equation(x, y)**2/(c**2 + d**2)
|
229 |
+
return t1 - t2
|
230 |
+
|
231 |
+
@property
|
232 |
+
def focal_length(self):
|
233 |
+
"""The focal length of the parabola.
|
234 |
+
|
235 |
+
Returns
|
236 |
+
=======
|
237 |
+
|
238 |
+
focal_lenght : number or symbolic expression
|
239 |
+
|
240 |
+
Notes
|
241 |
+
=====
|
242 |
+
|
243 |
+
The distance between the vertex and the focus
|
244 |
+
(or the vertex and directrix), measured along the axis
|
245 |
+
of symmetry, is the "focal length".
|
246 |
+
|
247 |
+
See Also
|
248 |
+
========
|
249 |
+
|
250 |
+
https://en.wikipedia.org/wiki/Parabola
|
251 |
+
|
252 |
+
Examples
|
253 |
+
========
|
254 |
+
|
255 |
+
>>> from sympy import Parabola, Point, Line
|
256 |
+
>>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8)))
|
257 |
+
>>> p1.focal_length
|
258 |
+
4
|
259 |
+
|
260 |
+
"""
|
261 |
+
distance = self.directrix.distance(self.focus)
|
262 |
+
focal_length = distance/2
|
263 |
+
|
264 |
+
return focal_length
|
265 |
+
|
266 |
+
@property
|
267 |
+
def focus(self):
|
268 |
+
"""The focus of the parabola.
|
269 |
+
|
270 |
+
Returns
|
271 |
+
=======
|
272 |
+
|
273 |
+
focus : Point
|
274 |
+
|
275 |
+
See Also
|
276 |
+
========
|
277 |
+
|
278 |
+
sympy.geometry.point.Point
|
279 |
+
|
280 |
+
Examples
|
281 |
+
========
|
282 |
+
|
283 |
+
>>> from sympy import Parabola, Point, Line
|
284 |
+
>>> f1 = Point(0, 0)
|
285 |
+
>>> p1 = Parabola(f1, Line(Point(5, 8), Point(7, 8)))
|
286 |
+
>>> p1.focus
|
287 |
+
Point2D(0, 0)
|
288 |
+
|
289 |
+
"""
|
290 |
+
return self.args[0]
|
291 |
+
|
292 |
+
def intersection(self, o):
|
293 |
+
"""The intersection of the parabola and another geometrical entity `o`.
|
294 |
+
|
295 |
+
Parameters
|
296 |
+
==========
|
297 |
+
|
298 |
+
o : GeometryEntity, LinearEntity
|
299 |
+
|
300 |
+
Returns
|
301 |
+
=======
|
302 |
+
|
303 |
+
intersection : list of GeometryEntity objects
|
304 |
+
|
305 |
+
Examples
|
306 |
+
========
|
307 |
+
|
308 |
+
>>> from sympy import Parabola, Point, Ellipse, Line, Segment
|
309 |
+
>>> p1 = Point(0,0)
|
310 |
+
>>> l1 = Line(Point(1, -2), Point(-1,-2))
|
311 |
+
>>> parabola1 = Parabola(p1, l1)
|
312 |
+
>>> parabola1.intersection(Ellipse(Point(0, 0), 2, 5))
|
313 |
+
[Point2D(-2, 0), Point2D(2, 0)]
|
314 |
+
>>> parabola1.intersection(Line(Point(-7, 3), Point(12, 3)))
|
315 |
+
[Point2D(-4, 3), Point2D(4, 3)]
|
316 |
+
>>> parabola1.intersection(Segment((-12, -65), (14, -68)))
|
317 |
+
[]
|
318 |
+
|
319 |
+
"""
|
320 |
+
x, y = symbols('x y', real=True)
|
321 |
+
parabola_eq = self.equation()
|
322 |
+
if isinstance(o, Parabola):
|
323 |
+
if o in self:
|
324 |
+
return [o]
|
325 |
+
else:
|
326 |
+
return list(ordered([Point(i) for i in solve(
|
327 |
+
[parabola_eq, o.equation()], [x, y], set=True)[1]]))
|
328 |
+
elif isinstance(o, Point2D):
|
329 |
+
if simplify(parabola_eq.subs([(x, o._args[0]), (y, o._args[1])])) == 0:
|
330 |
+
return [o]
|
331 |
+
else:
|
332 |
+
return []
|
333 |
+
elif isinstance(o, (Segment2D, Ray2D)):
|
334 |
+
result = solve([parabola_eq,
|
335 |
+
Line2D(o.points[0], o.points[1]).equation()],
|
336 |
+
[x, y], set=True)[1]
|
337 |
+
return list(ordered([Point2D(i) for i in result if i in o]))
|
338 |
+
elif isinstance(o, (Line2D, Ellipse)):
|
339 |
+
return list(ordered([Point2D(i) for i in solve(
|
340 |
+
[parabola_eq, o.equation()], [x, y], set=True)[1]]))
|
341 |
+
elif isinstance(o, LinearEntity3D):
|
342 |
+
raise TypeError('Entity must be two dimensional, not three dimensional')
|
343 |
+
else:
|
344 |
+
raise TypeError('Wrong type of argument were put')
|
345 |
+
|
346 |
+
@property
|
347 |
+
def p_parameter(self):
|
348 |
+
"""P is a parameter of parabola.
|
349 |
+
|
350 |
+
Returns
|
351 |
+
=======
|
352 |
+
|
353 |
+
p : number or symbolic expression
|
354 |
+
|
355 |
+
Notes
|
356 |
+
=====
|
357 |
+
|
358 |
+
The absolute value of p is the focal length. The sign on p tells
|
359 |
+
which way the parabola faces. Vertical parabolas that open up
|
360 |
+
and horizontal that open right, give a positive value for p.
|
361 |
+
Vertical parabolas that open down and horizontal that open left,
|
362 |
+
give a negative value for p.
|
363 |
+
|
364 |
+
|
365 |
+
See Also
|
366 |
+
========
|
367 |
+
|
368 |
+
https://www.sparknotes.com/math/precalc/conicsections/section2/
|
369 |
+
|
370 |
+
Examples
|
371 |
+
========
|
372 |
+
|
373 |
+
>>> from sympy import Parabola, Point, Line
|
374 |
+
>>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8)))
|
375 |
+
>>> p1.p_parameter
|
376 |
+
-4
|
377 |
+
|
378 |
+
"""
|
379 |
+
m = self.directrix.slope
|
380 |
+
if m is S.Infinity:
|
381 |
+
x = self.directrix.coefficients[2]
|
382 |
+
p = sign(self.focus.args[0] + x)
|
383 |
+
elif m == 0:
|
384 |
+
y = self.directrix.coefficients[2]
|
385 |
+
p = sign(self.focus.args[1] + y)
|
386 |
+
else:
|
387 |
+
d = self.directrix.projection(self.focus)
|
388 |
+
p = sign(self.focus.x - d.x)
|
389 |
+
return p * self.focal_length
|
390 |
+
|
391 |
+
@property
|
392 |
+
def vertex(self):
|
393 |
+
"""The vertex of the parabola.
|
394 |
+
|
395 |
+
Returns
|
396 |
+
=======
|
397 |
+
|
398 |
+
vertex : Point
|
399 |
+
|
400 |
+
See Also
|
401 |
+
========
|
402 |
+
|
403 |
+
sympy.geometry.point.Point
|
404 |
+
|
405 |
+
Examples
|
406 |
+
========
|
407 |
+
|
408 |
+
>>> from sympy import Parabola, Point, Line
|
409 |
+
>>> p1 = Parabola(Point(0, 0), Line(Point(5, 8), Point(7, 8)))
|
410 |
+
>>> p1.vertex
|
411 |
+
Point2D(0, 4)
|
412 |
+
|
413 |
+
"""
|
414 |
+
focus = self.focus
|
415 |
+
m = self.directrix.slope
|
416 |
+
if m is S.Infinity:
|
417 |
+
vertex = Point(focus.args[0] - self.p_parameter, focus.args[1])
|
418 |
+
elif m == 0:
|
419 |
+
vertex = Point(focus.args[0], focus.args[1] - self.p_parameter)
|
420 |
+
else:
|
421 |
+
vertex = self.axis_of_symmetry.intersection(self)[0]
|
422 |
+
return vertex
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/plane.py
ADDED
@@ -0,0 +1,884 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Geometrical Planes.
|
2 |
+
|
3 |
+
Contains
|
4 |
+
========
|
5 |
+
Plane
|
6 |
+
|
7 |
+
"""
|
8 |
+
|
9 |
+
from sympy.core import Dummy, Rational, S, Symbol
|
10 |
+
from sympy.core.symbol import _symbol
|
11 |
+
from sympy.functions.elementary.trigonometric import cos, sin, acos, asin, sqrt
|
12 |
+
from .entity import GeometryEntity
|
13 |
+
from .line import (Line, Ray, Segment, Line3D, LinearEntity, LinearEntity3D,
|
14 |
+
Ray3D, Segment3D)
|
15 |
+
from .point import Point, Point3D
|
16 |
+
from sympy.matrices import Matrix
|
17 |
+
from sympy.polys.polytools import cancel
|
18 |
+
from sympy.solvers import solve, linsolve
|
19 |
+
from sympy.utilities.iterables import uniq, is_sequence
|
20 |
+
from sympy.utilities.misc import filldedent, func_name, Undecidable
|
21 |
+
|
22 |
+
from mpmath.libmp.libmpf import prec_to_dps
|
23 |
+
|
24 |
+
import random
|
25 |
+
|
26 |
+
|
27 |
+
x, y, z, t = [Dummy('plane_dummy') for i in range(4)]
|
28 |
+
|
29 |
+
|
30 |
+
class Plane(GeometryEntity):
|
31 |
+
"""
|
32 |
+
A plane is a flat, two-dimensional surface. A plane is the two-dimensional
|
33 |
+
analogue of a point (zero-dimensions), a line (one-dimension) and a solid
|
34 |
+
(three-dimensions). A plane can generally be constructed by two types of
|
35 |
+
inputs. They are three non-collinear points and a point and the plane's
|
36 |
+
normal vector.
|
37 |
+
|
38 |
+
Attributes
|
39 |
+
==========
|
40 |
+
|
41 |
+
p1
|
42 |
+
normal_vector
|
43 |
+
|
44 |
+
Examples
|
45 |
+
========
|
46 |
+
|
47 |
+
>>> from sympy import Plane, Point3D
|
48 |
+
>>> Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2))
|
49 |
+
Plane(Point3D(1, 1, 1), (-1, 2, -1))
|
50 |
+
>>> Plane((1, 1, 1), (2, 3, 4), (2, 2, 2))
|
51 |
+
Plane(Point3D(1, 1, 1), (-1, 2, -1))
|
52 |
+
>>> Plane(Point3D(1, 1, 1), normal_vector=(1,4,7))
|
53 |
+
Plane(Point3D(1, 1, 1), (1, 4, 7))
|
54 |
+
|
55 |
+
"""
|
56 |
+
def __new__(cls, p1, a=None, b=None, **kwargs):
|
57 |
+
p1 = Point3D(p1, dim=3)
|
58 |
+
if a and b:
|
59 |
+
p2 = Point(a, dim=3)
|
60 |
+
p3 = Point(b, dim=3)
|
61 |
+
if Point3D.are_collinear(p1, p2, p3):
|
62 |
+
raise ValueError('Enter three non-collinear points')
|
63 |
+
a = p1.direction_ratio(p2)
|
64 |
+
b = p1.direction_ratio(p3)
|
65 |
+
normal_vector = tuple(Matrix(a).cross(Matrix(b)))
|
66 |
+
else:
|
67 |
+
a = kwargs.pop('normal_vector', a)
|
68 |
+
evaluate = kwargs.get('evaluate', True)
|
69 |
+
if is_sequence(a) and len(a) == 3:
|
70 |
+
normal_vector = Point3D(a).args if evaluate else a
|
71 |
+
else:
|
72 |
+
raise ValueError(filldedent('''
|
73 |
+
Either provide 3 3D points or a point with a
|
74 |
+
normal vector expressed as a sequence of length 3'''))
|
75 |
+
if all(coord.is_zero for coord in normal_vector):
|
76 |
+
raise ValueError('Normal vector cannot be zero vector')
|
77 |
+
return GeometryEntity.__new__(cls, p1, normal_vector, **kwargs)
|
78 |
+
|
79 |
+
def __contains__(self, o):
|
80 |
+
k = self.equation(x, y, z)
|
81 |
+
if isinstance(o, (LinearEntity, LinearEntity3D)):
|
82 |
+
d = Point3D(o.arbitrary_point(t))
|
83 |
+
e = k.subs([(x, d.x), (y, d.y), (z, d.z)])
|
84 |
+
return e.equals(0)
|
85 |
+
try:
|
86 |
+
o = Point(o, dim=3, strict=True)
|
87 |
+
d = k.xreplace(dict(zip((x, y, z), o.args)))
|
88 |
+
return d.equals(0)
|
89 |
+
except TypeError:
|
90 |
+
return False
|
91 |
+
|
92 |
+
def _eval_evalf(self, prec=15, **options):
|
93 |
+
pt, tup = self.args
|
94 |
+
dps = prec_to_dps(prec)
|
95 |
+
pt = pt.evalf(n=dps, **options)
|
96 |
+
tup = tuple([i.evalf(n=dps, **options) for i in tup])
|
97 |
+
return self.func(pt, normal_vector=tup, evaluate=False)
|
98 |
+
|
99 |
+
def angle_between(self, o):
|
100 |
+
"""Angle between the plane and other geometric entity.
|
101 |
+
|
102 |
+
Parameters
|
103 |
+
==========
|
104 |
+
|
105 |
+
LinearEntity3D, Plane.
|
106 |
+
|
107 |
+
Returns
|
108 |
+
=======
|
109 |
+
|
110 |
+
angle : angle in radians
|
111 |
+
|
112 |
+
Notes
|
113 |
+
=====
|
114 |
+
|
115 |
+
This method accepts only 3D entities as it's parameter, but if you want
|
116 |
+
to calculate the angle between a 2D entity and a plane you should
|
117 |
+
first convert to a 3D entity by projecting onto a desired plane and
|
118 |
+
then proceed to calculate the angle.
|
119 |
+
|
120 |
+
Examples
|
121 |
+
========
|
122 |
+
|
123 |
+
>>> from sympy import Point3D, Line3D, Plane
|
124 |
+
>>> a = Plane(Point3D(1, 2, 2), normal_vector=(1, 2, 3))
|
125 |
+
>>> b = Line3D(Point3D(1, 3, 4), Point3D(2, 2, 2))
|
126 |
+
>>> a.angle_between(b)
|
127 |
+
-asin(sqrt(21)/6)
|
128 |
+
|
129 |
+
"""
|
130 |
+
if isinstance(o, LinearEntity3D):
|
131 |
+
a = Matrix(self.normal_vector)
|
132 |
+
b = Matrix(o.direction_ratio)
|
133 |
+
c = a.dot(b)
|
134 |
+
d = sqrt(sum([i**2 for i in self.normal_vector]))
|
135 |
+
e = sqrt(sum([i**2 for i in o.direction_ratio]))
|
136 |
+
return asin(c/(d*e))
|
137 |
+
if isinstance(o, Plane):
|
138 |
+
a = Matrix(self.normal_vector)
|
139 |
+
b = Matrix(o.normal_vector)
|
140 |
+
c = a.dot(b)
|
141 |
+
d = sqrt(sum([i**2 for i in self.normal_vector]))
|
142 |
+
e = sqrt(sum([i**2 for i in o.normal_vector]))
|
143 |
+
return acos(c/(d*e))
|
144 |
+
|
145 |
+
|
146 |
+
def arbitrary_point(self, u=None, v=None):
|
147 |
+
""" Returns an arbitrary point on the Plane. If given two
|
148 |
+
parameters, the point ranges over the entire plane. If given 1
|
149 |
+
or no parameters, returns a point with one parameter which,
|
150 |
+
when varying from 0 to 2*pi, moves the point in a circle of
|
151 |
+
radius 1 about p1 of the Plane.
|
152 |
+
|
153 |
+
Examples
|
154 |
+
========
|
155 |
+
|
156 |
+
>>> from sympy import Plane, Ray
|
157 |
+
>>> from sympy.abc import u, v, t, r
|
158 |
+
>>> p = Plane((1, 1, 1), normal_vector=(1, 0, 0))
|
159 |
+
>>> p.arbitrary_point(u, v)
|
160 |
+
Point3D(1, u + 1, v + 1)
|
161 |
+
>>> p.arbitrary_point(t)
|
162 |
+
Point3D(1, cos(t) + 1, sin(t) + 1)
|
163 |
+
|
164 |
+
While arbitrary values of u and v can move the point anywhere in
|
165 |
+
the plane, the single-parameter point can be used to construct a
|
166 |
+
ray whose arbitrary point can be located at angle t and radius
|
167 |
+
r from p.p1:
|
168 |
+
|
169 |
+
>>> Ray(p.p1, _).arbitrary_point(r)
|
170 |
+
Point3D(1, r*cos(t) + 1, r*sin(t) + 1)
|
171 |
+
|
172 |
+
Returns
|
173 |
+
=======
|
174 |
+
|
175 |
+
Point3D
|
176 |
+
|
177 |
+
"""
|
178 |
+
circle = v is None
|
179 |
+
if circle:
|
180 |
+
u = _symbol(u or 't', real=True)
|
181 |
+
else:
|
182 |
+
u = _symbol(u or 'u', real=True)
|
183 |
+
v = _symbol(v or 'v', real=True)
|
184 |
+
x, y, z = self.normal_vector
|
185 |
+
a, b, c = self.p1.args
|
186 |
+
# x1, y1, z1 is a nonzero vector parallel to the plane
|
187 |
+
if x.is_zero and y.is_zero:
|
188 |
+
x1, y1, z1 = S.One, S.Zero, S.Zero
|
189 |
+
else:
|
190 |
+
x1, y1, z1 = -y, x, S.Zero
|
191 |
+
# x2, y2, z2 is also parallel to the plane, and orthogonal to x1, y1, z1
|
192 |
+
x2, y2, z2 = tuple(Matrix((x, y, z)).cross(Matrix((x1, y1, z1))))
|
193 |
+
if circle:
|
194 |
+
x1, y1, z1 = (w/sqrt(x1**2 + y1**2 + z1**2) for w in (x1, y1, z1))
|
195 |
+
x2, y2, z2 = (w/sqrt(x2**2 + y2**2 + z2**2) for w in (x2, y2, z2))
|
196 |
+
p = Point3D(a + x1*cos(u) + x2*sin(u), \
|
197 |
+
b + y1*cos(u) + y2*sin(u), \
|
198 |
+
c + z1*cos(u) + z2*sin(u))
|
199 |
+
else:
|
200 |
+
p = Point3D(a + x1*u + x2*v, b + y1*u + y2*v, c + z1*u + z2*v)
|
201 |
+
return p
|
202 |
+
|
203 |
+
|
204 |
+
@staticmethod
|
205 |
+
def are_concurrent(*planes):
|
206 |
+
"""Is a sequence of Planes concurrent?
|
207 |
+
|
208 |
+
Two or more Planes are concurrent if their intersections
|
209 |
+
are a common line.
|
210 |
+
|
211 |
+
Parameters
|
212 |
+
==========
|
213 |
+
|
214 |
+
planes: list
|
215 |
+
|
216 |
+
Returns
|
217 |
+
=======
|
218 |
+
|
219 |
+
Boolean
|
220 |
+
|
221 |
+
Examples
|
222 |
+
========
|
223 |
+
|
224 |
+
>>> from sympy import Plane, Point3D
|
225 |
+
>>> a = Plane(Point3D(5, 0, 0), normal_vector=(1, -1, 1))
|
226 |
+
>>> b = Plane(Point3D(0, -2, 0), normal_vector=(3, 1, 1))
|
227 |
+
>>> c = Plane(Point3D(0, -1, 0), normal_vector=(5, -1, 9))
|
228 |
+
>>> Plane.are_concurrent(a, b)
|
229 |
+
True
|
230 |
+
>>> Plane.are_concurrent(a, b, c)
|
231 |
+
False
|
232 |
+
|
233 |
+
"""
|
234 |
+
planes = list(uniq(planes))
|
235 |
+
for i in planes:
|
236 |
+
if not isinstance(i, Plane):
|
237 |
+
raise ValueError('All objects should be Planes but got %s' % i.func)
|
238 |
+
if len(planes) < 2:
|
239 |
+
return False
|
240 |
+
planes = list(planes)
|
241 |
+
first = planes.pop(0)
|
242 |
+
sol = first.intersection(planes[0])
|
243 |
+
if sol == []:
|
244 |
+
return False
|
245 |
+
else:
|
246 |
+
line = sol[0]
|
247 |
+
for i in planes[1:]:
|
248 |
+
l = first.intersection(i)
|
249 |
+
if not l or l[0] not in line:
|
250 |
+
return False
|
251 |
+
return True
|
252 |
+
|
253 |
+
|
254 |
+
def distance(self, o):
|
255 |
+
"""Distance between the plane and another geometric entity.
|
256 |
+
|
257 |
+
Parameters
|
258 |
+
==========
|
259 |
+
|
260 |
+
Point3D, LinearEntity3D, Plane.
|
261 |
+
|
262 |
+
Returns
|
263 |
+
=======
|
264 |
+
|
265 |
+
distance
|
266 |
+
|
267 |
+
Notes
|
268 |
+
=====
|
269 |
+
|
270 |
+
This method accepts only 3D entities as it's parameter, but if you want
|
271 |
+
to calculate the distance between a 2D entity and a plane you should
|
272 |
+
first convert to a 3D entity by projecting onto a desired plane and
|
273 |
+
then proceed to calculate the distance.
|
274 |
+
|
275 |
+
Examples
|
276 |
+
========
|
277 |
+
|
278 |
+
>>> from sympy import Point3D, Line3D, Plane
|
279 |
+
>>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 1, 1))
|
280 |
+
>>> b = Point3D(1, 2, 3)
|
281 |
+
>>> a.distance(b)
|
282 |
+
sqrt(3)
|
283 |
+
>>> c = Line3D(Point3D(2, 3, 1), Point3D(1, 2, 2))
|
284 |
+
>>> a.distance(c)
|
285 |
+
0
|
286 |
+
|
287 |
+
"""
|
288 |
+
if self.intersection(o) != []:
|
289 |
+
return S.Zero
|
290 |
+
|
291 |
+
if isinstance(o, (Segment3D, Ray3D)):
|
292 |
+
a, b = o.p1, o.p2
|
293 |
+
pi, = self.intersection(Line3D(a, b))
|
294 |
+
if pi in o:
|
295 |
+
return self.distance(pi)
|
296 |
+
elif a in Segment3D(pi, b):
|
297 |
+
return self.distance(a)
|
298 |
+
else:
|
299 |
+
assert isinstance(o, Segment3D) is True
|
300 |
+
return self.distance(b)
|
301 |
+
|
302 |
+
# following code handles `Point3D`, `LinearEntity3D`, `Plane`
|
303 |
+
a = o if isinstance(o, Point3D) else o.p1
|
304 |
+
n = Point3D(self.normal_vector).unit
|
305 |
+
d = (a - self.p1).dot(n)
|
306 |
+
return abs(d)
|
307 |
+
|
308 |
+
|
309 |
+
def equals(self, o):
|
310 |
+
"""
|
311 |
+
Returns True if self and o are the same mathematical entities.
|
312 |
+
|
313 |
+
Examples
|
314 |
+
========
|
315 |
+
|
316 |
+
>>> from sympy import Plane, Point3D
|
317 |
+
>>> a = Plane(Point3D(1, 2, 3), normal_vector=(1, 1, 1))
|
318 |
+
>>> b = Plane(Point3D(1, 2, 3), normal_vector=(2, 2, 2))
|
319 |
+
>>> c = Plane(Point3D(1, 2, 3), normal_vector=(-1, 4, 6))
|
320 |
+
>>> a.equals(a)
|
321 |
+
True
|
322 |
+
>>> a.equals(b)
|
323 |
+
True
|
324 |
+
>>> a.equals(c)
|
325 |
+
False
|
326 |
+
"""
|
327 |
+
if isinstance(o, Plane):
|
328 |
+
a = self.equation()
|
329 |
+
b = o.equation()
|
330 |
+
return cancel(a/b).is_constant()
|
331 |
+
else:
|
332 |
+
return False
|
333 |
+
|
334 |
+
|
335 |
+
def equation(self, x=None, y=None, z=None):
|
336 |
+
"""The equation of the Plane.
|
337 |
+
|
338 |
+
Examples
|
339 |
+
========
|
340 |
+
|
341 |
+
>>> from sympy import Point3D, Plane
|
342 |
+
>>> a = Plane(Point3D(1, 1, 2), Point3D(2, 4, 7), Point3D(3, 5, 1))
|
343 |
+
>>> a.equation()
|
344 |
+
-23*x + 11*y - 2*z + 16
|
345 |
+
>>> a = Plane(Point3D(1, 4, 2), normal_vector=(6, 6, 6))
|
346 |
+
>>> a.equation()
|
347 |
+
6*x + 6*y + 6*z - 42
|
348 |
+
|
349 |
+
"""
|
350 |
+
x, y, z = [i if i else Symbol(j, real=True) for i, j in zip((x, y, z), 'xyz')]
|
351 |
+
a = Point3D(x, y, z)
|
352 |
+
b = self.p1.direction_ratio(a)
|
353 |
+
c = self.normal_vector
|
354 |
+
return (sum(i*j for i, j in zip(b, c)))
|
355 |
+
|
356 |
+
|
357 |
+
def intersection(self, o):
|
358 |
+
""" The intersection with other geometrical entity.
|
359 |
+
|
360 |
+
Parameters
|
361 |
+
==========
|
362 |
+
|
363 |
+
Point, Point3D, LinearEntity, LinearEntity3D, Plane
|
364 |
+
|
365 |
+
Returns
|
366 |
+
=======
|
367 |
+
|
368 |
+
List
|
369 |
+
|
370 |
+
Examples
|
371 |
+
========
|
372 |
+
|
373 |
+
>>> from sympy import Point3D, Line3D, Plane
|
374 |
+
>>> a = Plane(Point3D(1, 2, 3), normal_vector=(1, 1, 1))
|
375 |
+
>>> b = Point3D(1, 2, 3)
|
376 |
+
>>> a.intersection(b)
|
377 |
+
[Point3D(1, 2, 3)]
|
378 |
+
>>> c = Line3D(Point3D(1, 4, 7), Point3D(2, 2, 2))
|
379 |
+
>>> a.intersection(c)
|
380 |
+
[Point3D(2, 2, 2)]
|
381 |
+
>>> d = Plane(Point3D(6, 0, 0), normal_vector=(2, -5, 3))
|
382 |
+
>>> e = Plane(Point3D(2, 0, 0), normal_vector=(3, 4, -3))
|
383 |
+
>>> d.intersection(e)
|
384 |
+
[Line3D(Point3D(78/23, -24/23, 0), Point3D(147/23, 321/23, 23))]
|
385 |
+
|
386 |
+
"""
|
387 |
+
if not isinstance(o, GeometryEntity):
|
388 |
+
o = Point(o, dim=3)
|
389 |
+
if isinstance(o, Point):
|
390 |
+
if o in self:
|
391 |
+
return [o]
|
392 |
+
else:
|
393 |
+
return []
|
394 |
+
if isinstance(o, (LinearEntity, LinearEntity3D)):
|
395 |
+
# recast to 3D
|
396 |
+
p1, p2 = o.p1, o.p2
|
397 |
+
if isinstance(o, Segment):
|
398 |
+
o = Segment3D(p1, p2)
|
399 |
+
elif isinstance(o, Ray):
|
400 |
+
o = Ray3D(p1, p2)
|
401 |
+
elif isinstance(o, Line):
|
402 |
+
o = Line3D(p1, p2)
|
403 |
+
else:
|
404 |
+
raise ValueError('unhandled linear entity: %s' % o.func)
|
405 |
+
if o in self:
|
406 |
+
return [o]
|
407 |
+
else:
|
408 |
+
a = Point3D(o.arbitrary_point(t))
|
409 |
+
p1, n = self.p1, Point3D(self.normal_vector)
|
410 |
+
|
411 |
+
# TODO: Replace solve with solveset, when this line is tested
|
412 |
+
c = solve((a - p1).dot(n), t)
|
413 |
+
if not c:
|
414 |
+
return []
|
415 |
+
else:
|
416 |
+
c = [i for i in c if i.is_real is not False]
|
417 |
+
if len(c) > 1:
|
418 |
+
c = [i for i in c if i.is_real]
|
419 |
+
if len(c) != 1:
|
420 |
+
raise Undecidable("not sure which point is real")
|
421 |
+
p = a.subs(t, c[0])
|
422 |
+
if p not in o:
|
423 |
+
return [] # e.g. a segment might not intersect a plane
|
424 |
+
return [p]
|
425 |
+
if isinstance(o, Plane):
|
426 |
+
if self.equals(o):
|
427 |
+
return [self]
|
428 |
+
if self.is_parallel(o):
|
429 |
+
return []
|
430 |
+
else:
|
431 |
+
x, y, z = map(Dummy, 'xyz')
|
432 |
+
a, b = Matrix([self.normal_vector]), Matrix([o.normal_vector])
|
433 |
+
c = list(a.cross(b))
|
434 |
+
d = self.equation(x, y, z)
|
435 |
+
e = o.equation(x, y, z)
|
436 |
+
result = list(linsolve([d, e], x, y, z))[0]
|
437 |
+
for i in (x, y, z): result = result.subs(i, 0)
|
438 |
+
return [Line3D(Point3D(result), direction_ratio=c)]
|
439 |
+
|
440 |
+
|
441 |
+
def is_coplanar(self, o):
|
442 |
+
""" Returns True if `o` is coplanar with self, else False.
|
443 |
+
|
444 |
+
Examples
|
445 |
+
========
|
446 |
+
|
447 |
+
>>> from sympy import Plane
|
448 |
+
>>> o = (0, 0, 0)
|
449 |
+
>>> p = Plane(o, (1, 1, 1))
|
450 |
+
>>> p2 = Plane(o, (2, 2, 2))
|
451 |
+
>>> p == p2
|
452 |
+
False
|
453 |
+
>>> p.is_coplanar(p2)
|
454 |
+
True
|
455 |
+
"""
|
456 |
+
if isinstance(o, Plane):
|
457 |
+
return not cancel(self.equation(x, y, z)/o.equation(x, y, z)).has(x, y, z)
|
458 |
+
if isinstance(o, Point3D):
|
459 |
+
return o in self
|
460 |
+
elif isinstance(o, LinearEntity3D):
|
461 |
+
return all(i in self for i in self)
|
462 |
+
elif isinstance(o, GeometryEntity): # XXX should only be handling 2D objects now
|
463 |
+
return all(i == 0 for i in self.normal_vector[:2])
|
464 |
+
|
465 |
+
|
466 |
+
def is_parallel(self, l):
|
467 |
+
"""Is the given geometric entity parallel to the plane?
|
468 |
+
|
469 |
+
Parameters
|
470 |
+
==========
|
471 |
+
|
472 |
+
LinearEntity3D or Plane
|
473 |
+
|
474 |
+
Returns
|
475 |
+
=======
|
476 |
+
|
477 |
+
Boolean
|
478 |
+
|
479 |
+
Examples
|
480 |
+
========
|
481 |
+
|
482 |
+
>>> from sympy import Plane, Point3D
|
483 |
+
>>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6))
|
484 |
+
>>> b = Plane(Point3D(3,1,3), normal_vector=(4, 8, 12))
|
485 |
+
>>> a.is_parallel(b)
|
486 |
+
True
|
487 |
+
|
488 |
+
"""
|
489 |
+
if isinstance(l, LinearEntity3D):
|
490 |
+
a = l.direction_ratio
|
491 |
+
b = self.normal_vector
|
492 |
+
c = sum([i*j for i, j in zip(a, b)])
|
493 |
+
if c == 0:
|
494 |
+
return True
|
495 |
+
else:
|
496 |
+
return False
|
497 |
+
elif isinstance(l, Plane):
|
498 |
+
a = Matrix(l.normal_vector)
|
499 |
+
b = Matrix(self.normal_vector)
|
500 |
+
if a.cross(b).is_zero_matrix:
|
501 |
+
return True
|
502 |
+
else:
|
503 |
+
return False
|
504 |
+
|
505 |
+
|
506 |
+
def is_perpendicular(self, l):
|
507 |
+
"""Is the given geometric entity perpendicualar to the given plane?
|
508 |
+
|
509 |
+
Parameters
|
510 |
+
==========
|
511 |
+
|
512 |
+
LinearEntity3D or Plane
|
513 |
+
|
514 |
+
Returns
|
515 |
+
=======
|
516 |
+
|
517 |
+
Boolean
|
518 |
+
|
519 |
+
Examples
|
520 |
+
========
|
521 |
+
|
522 |
+
>>> from sympy import Plane, Point3D
|
523 |
+
>>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6))
|
524 |
+
>>> b = Plane(Point3D(2, 2, 2), normal_vector=(-1, 2, -1))
|
525 |
+
>>> a.is_perpendicular(b)
|
526 |
+
True
|
527 |
+
|
528 |
+
"""
|
529 |
+
if isinstance(l, LinearEntity3D):
|
530 |
+
a = Matrix(l.direction_ratio)
|
531 |
+
b = Matrix(self.normal_vector)
|
532 |
+
if a.cross(b).is_zero_matrix:
|
533 |
+
return True
|
534 |
+
else:
|
535 |
+
return False
|
536 |
+
elif isinstance(l, Plane):
|
537 |
+
a = Matrix(l.normal_vector)
|
538 |
+
b = Matrix(self.normal_vector)
|
539 |
+
if a.dot(b) == 0:
|
540 |
+
return True
|
541 |
+
else:
|
542 |
+
return False
|
543 |
+
else:
|
544 |
+
return False
|
545 |
+
|
546 |
+
@property
|
547 |
+
def normal_vector(self):
|
548 |
+
"""Normal vector of the given plane.
|
549 |
+
|
550 |
+
Examples
|
551 |
+
========
|
552 |
+
|
553 |
+
>>> from sympy import Point3D, Plane
|
554 |
+
>>> a = Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2))
|
555 |
+
>>> a.normal_vector
|
556 |
+
(-1, 2, -1)
|
557 |
+
>>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 4, 7))
|
558 |
+
>>> a.normal_vector
|
559 |
+
(1, 4, 7)
|
560 |
+
|
561 |
+
"""
|
562 |
+
return self.args[1]
|
563 |
+
|
564 |
+
@property
|
565 |
+
def p1(self):
|
566 |
+
"""The only defining point of the plane. Others can be obtained from the
|
567 |
+
arbitrary_point method.
|
568 |
+
|
569 |
+
See Also
|
570 |
+
========
|
571 |
+
|
572 |
+
sympy.geometry.point.Point3D
|
573 |
+
|
574 |
+
Examples
|
575 |
+
========
|
576 |
+
|
577 |
+
>>> from sympy import Point3D, Plane
|
578 |
+
>>> a = Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2))
|
579 |
+
>>> a.p1
|
580 |
+
Point3D(1, 1, 1)
|
581 |
+
|
582 |
+
"""
|
583 |
+
return self.args[0]
|
584 |
+
|
585 |
+
def parallel_plane(self, pt):
|
586 |
+
"""
|
587 |
+
Plane parallel to the given plane and passing through the point pt.
|
588 |
+
|
589 |
+
Parameters
|
590 |
+
==========
|
591 |
+
|
592 |
+
pt: Point3D
|
593 |
+
|
594 |
+
Returns
|
595 |
+
=======
|
596 |
+
|
597 |
+
Plane
|
598 |
+
|
599 |
+
Examples
|
600 |
+
========
|
601 |
+
|
602 |
+
>>> from sympy import Plane, Point3D
|
603 |
+
>>> a = Plane(Point3D(1, 4, 6), normal_vector=(2, 4, 6))
|
604 |
+
>>> a.parallel_plane(Point3D(2, 3, 5))
|
605 |
+
Plane(Point3D(2, 3, 5), (2, 4, 6))
|
606 |
+
|
607 |
+
"""
|
608 |
+
a = self.normal_vector
|
609 |
+
return Plane(pt, normal_vector=a)
|
610 |
+
|
611 |
+
def perpendicular_line(self, pt):
|
612 |
+
"""A line perpendicular to the given plane.
|
613 |
+
|
614 |
+
Parameters
|
615 |
+
==========
|
616 |
+
|
617 |
+
pt: Point3D
|
618 |
+
|
619 |
+
Returns
|
620 |
+
=======
|
621 |
+
|
622 |
+
Line3D
|
623 |
+
|
624 |
+
Examples
|
625 |
+
========
|
626 |
+
|
627 |
+
>>> from sympy import Plane, Point3D
|
628 |
+
>>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6))
|
629 |
+
>>> a.perpendicular_line(Point3D(9, 8, 7))
|
630 |
+
Line3D(Point3D(9, 8, 7), Point3D(11, 12, 13))
|
631 |
+
|
632 |
+
"""
|
633 |
+
a = self.normal_vector
|
634 |
+
return Line3D(pt, direction_ratio=a)
|
635 |
+
|
636 |
+
def perpendicular_plane(self, *pts):
|
637 |
+
"""
|
638 |
+
Return a perpendicular passing through the given points. If the
|
639 |
+
direction ratio between the points is the same as the Plane's normal
|
640 |
+
vector then, to select from the infinite number of possible planes,
|
641 |
+
a third point will be chosen on the z-axis (or the y-axis
|
642 |
+
if the normal vector is already parallel to the z-axis). If less than
|
643 |
+
two points are given they will be supplied as follows: if no point is
|
644 |
+
given then pt1 will be self.p1; if a second point is not given it will
|
645 |
+
be a point through pt1 on a line parallel to the z-axis (if the normal
|
646 |
+
is not already the z-axis, otherwise on the line parallel to the
|
647 |
+
y-axis).
|
648 |
+
|
649 |
+
Parameters
|
650 |
+
==========
|
651 |
+
|
652 |
+
pts: 0, 1 or 2 Point3D
|
653 |
+
|
654 |
+
Returns
|
655 |
+
=======
|
656 |
+
|
657 |
+
Plane
|
658 |
+
|
659 |
+
Examples
|
660 |
+
========
|
661 |
+
|
662 |
+
>>> from sympy import Plane, Point3D
|
663 |
+
>>> a, b = Point3D(0, 0, 0), Point3D(0, 1, 0)
|
664 |
+
>>> Z = (0, 0, 1)
|
665 |
+
>>> p = Plane(a, normal_vector=Z)
|
666 |
+
>>> p.perpendicular_plane(a, b)
|
667 |
+
Plane(Point3D(0, 0, 0), (1, 0, 0))
|
668 |
+
"""
|
669 |
+
if len(pts) > 2:
|
670 |
+
raise ValueError('No more than 2 pts should be provided.')
|
671 |
+
|
672 |
+
pts = list(pts)
|
673 |
+
if len(pts) == 0:
|
674 |
+
pts.append(self.p1)
|
675 |
+
if len(pts) == 1:
|
676 |
+
x, y, z = self.normal_vector
|
677 |
+
if x == y == 0:
|
678 |
+
dir = (0, 1, 0)
|
679 |
+
else:
|
680 |
+
dir = (0, 0, 1)
|
681 |
+
pts.append(pts[0] + Point3D(*dir))
|
682 |
+
|
683 |
+
p1, p2 = [Point(i, dim=3) for i in pts]
|
684 |
+
l = Line3D(p1, p2)
|
685 |
+
n = Line3D(p1, direction_ratio=self.normal_vector)
|
686 |
+
if l in n: # XXX should an error be raised instead?
|
687 |
+
# there are infinitely many perpendicular planes;
|
688 |
+
x, y, z = self.normal_vector
|
689 |
+
if x == y == 0:
|
690 |
+
# the z axis is the normal so pick a pt on the y-axis
|
691 |
+
p3 = Point3D(0, 1, 0) # case 1
|
692 |
+
else:
|
693 |
+
# else pick a pt on the z axis
|
694 |
+
p3 = Point3D(0, 0, 1) # case 2
|
695 |
+
# in case that point is already given, move it a bit
|
696 |
+
if p3 in l:
|
697 |
+
p3 *= 2 # case 3
|
698 |
+
else:
|
699 |
+
p3 = p1 + Point3D(*self.normal_vector) # case 4
|
700 |
+
return Plane(p1, p2, p3)
|
701 |
+
|
702 |
+
def projection_line(self, line):
|
703 |
+
"""Project the given line onto the plane through the normal plane
|
704 |
+
containing the line.
|
705 |
+
|
706 |
+
Parameters
|
707 |
+
==========
|
708 |
+
|
709 |
+
LinearEntity or LinearEntity3D
|
710 |
+
|
711 |
+
Returns
|
712 |
+
=======
|
713 |
+
|
714 |
+
Point3D, Line3D, Ray3D or Segment3D
|
715 |
+
|
716 |
+
Notes
|
717 |
+
=====
|
718 |
+
|
719 |
+
For the interaction between 2D and 3D lines(segments, rays), you should
|
720 |
+
convert the line to 3D by using this method. For example for finding the
|
721 |
+
intersection between a 2D and a 3D line, convert the 2D line to a 3D line
|
722 |
+
by projecting it on a required plane and then proceed to find the
|
723 |
+
intersection between those lines.
|
724 |
+
|
725 |
+
Examples
|
726 |
+
========
|
727 |
+
|
728 |
+
>>> from sympy import Plane, Line, Line3D, Point3D
|
729 |
+
>>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 1, 1))
|
730 |
+
>>> b = Line(Point3D(1, 1), Point3D(2, 2))
|
731 |
+
>>> a.projection_line(b)
|
732 |
+
Line3D(Point3D(4/3, 4/3, 1/3), Point3D(5/3, 5/3, -1/3))
|
733 |
+
>>> c = Line3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
|
734 |
+
>>> a.projection_line(c)
|
735 |
+
Point3D(1, 1, 1)
|
736 |
+
|
737 |
+
"""
|
738 |
+
if not isinstance(line, (LinearEntity, LinearEntity3D)):
|
739 |
+
raise NotImplementedError('Enter a linear entity only')
|
740 |
+
a, b = self.projection(line.p1), self.projection(line.p2)
|
741 |
+
if a == b:
|
742 |
+
# projection does not imply intersection so for
|
743 |
+
# this case (line parallel to plane's normal) we
|
744 |
+
# return the projection point
|
745 |
+
return a
|
746 |
+
if isinstance(line, (Line, Line3D)):
|
747 |
+
return Line3D(a, b)
|
748 |
+
if isinstance(line, (Ray, Ray3D)):
|
749 |
+
return Ray3D(a, b)
|
750 |
+
if isinstance(line, (Segment, Segment3D)):
|
751 |
+
return Segment3D(a, b)
|
752 |
+
|
753 |
+
def projection(self, pt):
|
754 |
+
"""Project the given point onto the plane along the plane normal.
|
755 |
+
|
756 |
+
Parameters
|
757 |
+
==========
|
758 |
+
|
759 |
+
Point or Point3D
|
760 |
+
|
761 |
+
Returns
|
762 |
+
=======
|
763 |
+
|
764 |
+
Point3D
|
765 |
+
|
766 |
+
Examples
|
767 |
+
========
|
768 |
+
|
769 |
+
>>> from sympy import Plane, Point3D
|
770 |
+
>>> A = Plane(Point3D(1, 1, 2), normal_vector=(1, 1, 1))
|
771 |
+
|
772 |
+
The projection is along the normal vector direction, not the z
|
773 |
+
axis, so (1, 1) does not project to (1, 1, 2) on the plane A:
|
774 |
+
|
775 |
+
>>> b = Point3D(1, 1)
|
776 |
+
>>> A.projection(b)
|
777 |
+
Point3D(5/3, 5/3, 2/3)
|
778 |
+
>>> _ in A
|
779 |
+
True
|
780 |
+
|
781 |
+
But the point (1, 1, 2) projects to (1, 1) on the XY-plane:
|
782 |
+
|
783 |
+
>>> XY = Plane((0, 0, 0), (0, 0, 1))
|
784 |
+
>>> XY.projection((1, 1, 2))
|
785 |
+
Point3D(1, 1, 0)
|
786 |
+
"""
|
787 |
+
rv = Point(pt, dim=3)
|
788 |
+
if rv in self:
|
789 |
+
return rv
|
790 |
+
return self.intersection(Line3D(rv, rv + Point3D(self.normal_vector)))[0]
|
791 |
+
|
792 |
+
def random_point(self, seed=None):
|
793 |
+
""" Returns a random point on the Plane.
|
794 |
+
|
795 |
+
Returns
|
796 |
+
=======
|
797 |
+
|
798 |
+
Point3D
|
799 |
+
|
800 |
+
Examples
|
801 |
+
========
|
802 |
+
|
803 |
+
>>> from sympy import Plane
|
804 |
+
>>> p = Plane((1, 0, 0), normal_vector=(0, 1, 0))
|
805 |
+
>>> r = p.random_point(seed=42) # seed value is optional
|
806 |
+
>>> r.n(3)
|
807 |
+
Point3D(2.29, 0, -1.35)
|
808 |
+
|
809 |
+
The random point can be moved to lie on the circle of radius
|
810 |
+
1 centered on p1:
|
811 |
+
|
812 |
+
>>> c = p.p1 + (r - p.p1).unit
|
813 |
+
>>> c.distance(p.p1).equals(1)
|
814 |
+
True
|
815 |
+
"""
|
816 |
+
if seed is not None:
|
817 |
+
rng = random.Random(seed)
|
818 |
+
else:
|
819 |
+
rng = random
|
820 |
+
params = {
|
821 |
+
x: 2*Rational(rng.gauss(0, 1)) - 1,
|
822 |
+
y: 2*Rational(rng.gauss(0, 1)) - 1}
|
823 |
+
return self.arbitrary_point(x, y).subs(params)
|
824 |
+
|
825 |
+
def parameter_value(self, other, u, v=None):
|
826 |
+
"""Return the parameter(s) corresponding to the given point.
|
827 |
+
|
828 |
+
Examples
|
829 |
+
========
|
830 |
+
|
831 |
+
>>> from sympy import pi, Plane
|
832 |
+
>>> from sympy.abc import t, u, v
|
833 |
+
>>> p = Plane((2, 0, 0), (0, 0, 1), (0, 1, 0))
|
834 |
+
|
835 |
+
By default, the parameter value returned defines a point
|
836 |
+
that is a distance of 1 from the Plane's p1 value and
|
837 |
+
in line with the given point:
|
838 |
+
|
839 |
+
>>> on_circle = p.arbitrary_point(t).subs(t, pi/4)
|
840 |
+
>>> on_circle.distance(p.p1)
|
841 |
+
1
|
842 |
+
>>> p.parameter_value(on_circle, t)
|
843 |
+
{t: pi/4}
|
844 |
+
|
845 |
+
Moving the point twice as far from p1 does not change
|
846 |
+
the parameter value:
|
847 |
+
|
848 |
+
>>> off_circle = p.p1 + (on_circle - p.p1)*2
|
849 |
+
>>> off_circle.distance(p.p1)
|
850 |
+
2
|
851 |
+
>>> p.parameter_value(off_circle, t)
|
852 |
+
{t: pi/4}
|
853 |
+
|
854 |
+
If the 2-value parameter is desired, supply the two
|
855 |
+
parameter symbols and a replacement dictionary will
|
856 |
+
be returned:
|
857 |
+
|
858 |
+
>>> p.parameter_value(on_circle, u, v)
|
859 |
+
{u: sqrt(10)/10, v: sqrt(10)/30}
|
860 |
+
>>> p.parameter_value(off_circle, u, v)
|
861 |
+
{u: sqrt(10)/5, v: sqrt(10)/15}
|
862 |
+
"""
|
863 |
+
if not isinstance(other, GeometryEntity):
|
864 |
+
other = Point(other, dim=self.ambient_dimension)
|
865 |
+
if not isinstance(other, Point):
|
866 |
+
raise ValueError("other must be a point")
|
867 |
+
if other == self.p1:
|
868 |
+
return other
|
869 |
+
if isinstance(u, Symbol) and v is None:
|
870 |
+
delta = self.arbitrary_point(u) - self.p1
|
871 |
+
eq = delta - (other - self.p1).unit
|
872 |
+
sol = solve(eq, u, dict=True)
|
873 |
+
elif isinstance(u, Symbol) and isinstance(v, Symbol):
|
874 |
+
pt = self.arbitrary_point(u, v)
|
875 |
+
sol = solve(pt - other, (u, v), dict=True)
|
876 |
+
else:
|
877 |
+
raise ValueError('expecting 1 or 2 symbols')
|
878 |
+
if not sol:
|
879 |
+
raise ValueError("Given point is not on %s" % func_name(self))
|
880 |
+
return sol[0] # {t: tval} or {u: uval, v: vval}
|
881 |
+
|
882 |
+
@property
|
883 |
+
def ambient_dimension(self):
|
884 |
+
return self.p1.ambient_dimension
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/point.py
ADDED
@@ -0,0 +1,1378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Geometrical Points.
|
2 |
+
|
3 |
+
Contains
|
4 |
+
========
|
5 |
+
Point
|
6 |
+
Point2D
|
7 |
+
Point3D
|
8 |
+
|
9 |
+
When methods of Point require 1 or more points as arguments, they
|
10 |
+
can be passed as a sequence of coordinates or Points:
|
11 |
+
|
12 |
+
>>> from sympy import Point
|
13 |
+
>>> Point(1, 1).is_collinear((2, 2), (3, 4))
|
14 |
+
False
|
15 |
+
>>> Point(1, 1).is_collinear(Point(2, 2), Point(3, 4))
|
16 |
+
False
|
17 |
+
|
18 |
+
"""
|
19 |
+
|
20 |
+
import warnings
|
21 |
+
|
22 |
+
from sympy.core import S, sympify, Expr
|
23 |
+
from sympy.core.add import Add
|
24 |
+
from sympy.core.containers import Tuple
|
25 |
+
from sympy.core.numbers import Float
|
26 |
+
from sympy.core.parameters import global_parameters
|
27 |
+
from sympy.simplify import nsimplify, simplify
|
28 |
+
from sympy.geometry.exceptions import GeometryError
|
29 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
30 |
+
from sympy.functions.elementary.complexes import im
|
31 |
+
from sympy.functions.elementary.trigonometric import cos, sin
|
32 |
+
from sympy.matrices import Matrix
|
33 |
+
from sympy.matrices.expressions import Transpose
|
34 |
+
from sympy.utilities.iterables import uniq, is_sequence
|
35 |
+
from sympy.utilities.misc import filldedent, func_name, Undecidable
|
36 |
+
|
37 |
+
from .entity import GeometryEntity
|
38 |
+
|
39 |
+
from mpmath.libmp.libmpf import prec_to_dps
|
40 |
+
|
41 |
+
|
42 |
+
class Point(GeometryEntity):
|
43 |
+
"""A point in a n-dimensional Euclidean space.
|
44 |
+
|
45 |
+
Parameters
|
46 |
+
==========
|
47 |
+
|
48 |
+
coords : sequence of n-coordinate values. In the special
|
49 |
+
case where n=2 or 3, a Point2D or Point3D will be created
|
50 |
+
as appropriate.
|
51 |
+
evaluate : if `True` (default), all floats are turn into
|
52 |
+
exact types.
|
53 |
+
dim : number of coordinates the point should have. If coordinates
|
54 |
+
are unspecified, they are padded with zeros.
|
55 |
+
on_morph : indicates what should happen when the number of
|
56 |
+
coordinates of a point need to be changed by adding or
|
57 |
+
removing zeros. Possible values are `'warn'`, `'error'`, or
|
58 |
+
`ignore` (default). No warning or error is given when `*args`
|
59 |
+
is empty and `dim` is given. An error is always raised when
|
60 |
+
trying to remove nonzero coordinates.
|
61 |
+
|
62 |
+
|
63 |
+
Attributes
|
64 |
+
==========
|
65 |
+
|
66 |
+
length
|
67 |
+
origin: A `Point` representing the origin of the
|
68 |
+
appropriately-dimensioned space.
|
69 |
+
|
70 |
+
Raises
|
71 |
+
======
|
72 |
+
|
73 |
+
TypeError : When instantiating with anything but a Point or sequence
|
74 |
+
ValueError : when instantiating with a sequence with length < 2 or
|
75 |
+
when trying to reduce dimensions if keyword `on_morph='error'` is
|
76 |
+
set.
|
77 |
+
|
78 |
+
See Also
|
79 |
+
========
|
80 |
+
|
81 |
+
sympy.geometry.line.Segment : Connects two Points
|
82 |
+
|
83 |
+
Examples
|
84 |
+
========
|
85 |
+
|
86 |
+
>>> from sympy import Point
|
87 |
+
>>> from sympy.abc import x
|
88 |
+
>>> Point(1, 2, 3)
|
89 |
+
Point3D(1, 2, 3)
|
90 |
+
>>> Point([1, 2])
|
91 |
+
Point2D(1, 2)
|
92 |
+
>>> Point(0, x)
|
93 |
+
Point2D(0, x)
|
94 |
+
>>> Point(dim=4)
|
95 |
+
Point(0, 0, 0, 0)
|
96 |
+
|
97 |
+
Floats are automatically converted to Rational unless the
|
98 |
+
evaluate flag is False:
|
99 |
+
|
100 |
+
>>> Point(0.5, 0.25)
|
101 |
+
Point2D(1/2, 1/4)
|
102 |
+
>>> Point(0.5, 0.25, evaluate=False)
|
103 |
+
Point2D(0.5, 0.25)
|
104 |
+
|
105 |
+
"""
|
106 |
+
|
107 |
+
is_Point = True
|
108 |
+
|
109 |
+
def __new__(cls, *args, **kwargs):
|
110 |
+
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
|
111 |
+
on_morph = kwargs.get('on_morph', 'ignore')
|
112 |
+
|
113 |
+
# unpack into coords
|
114 |
+
coords = args[0] if len(args) == 1 else args
|
115 |
+
|
116 |
+
# check args and handle quickly handle Point instances
|
117 |
+
if isinstance(coords, Point):
|
118 |
+
# even if we're mutating the dimension of a point, we
|
119 |
+
# don't reevaluate its coordinates
|
120 |
+
evaluate = False
|
121 |
+
if len(coords) == kwargs.get('dim', len(coords)):
|
122 |
+
return coords
|
123 |
+
|
124 |
+
if not is_sequence(coords):
|
125 |
+
raise TypeError(filldedent('''
|
126 |
+
Expecting sequence of coordinates, not `{}`'''
|
127 |
+
.format(func_name(coords))))
|
128 |
+
# A point where only `dim` is specified is initialized
|
129 |
+
# to zeros.
|
130 |
+
if len(coords) == 0 and kwargs.get('dim', None):
|
131 |
+
coords = (S.Zero,)*kwargs.get('dim')
|
132 |
+
|
133 |
+
coords = Tuple(*coords)
|
134 |
+
dim = kwargs.get('dim', len(coords))
|
135 |
+
|
136 |
+
if len(coords) < 2:
|
137 |
+
raise ValueError(filldedent('''
|
138 |
+
Point requires 2 or more coordinates or
|
139 |
+
keyword `dim` > 1.'''))
|
140 |
+
if len(coords) != dim:
|
141 |
+
message = ("Dimension of {} needs to be changed "
|
142 |
+
"from {} to {}.").format(coords, len(coords), dim)
|
143 |
+
if on_morph == 'ignore':
|
144 |
+
pass
|
145 |
+
elif on_morph == "error":
|
146 |
+
raise ValueError(message)
|
147 |
+
elif on_morph == 'warn':
|
148 |
+
warnings.warn(message, stacklevel=2)
|
149 |
+
else:
|
150 |
+
raise ValueError(filldedent('''
|
151 |
+
on_morph value should be 'error',
|
152 |
+
'warn' or 'ignore'.'''))
|
153 |
+
if any(coords[dim:]):
|
154 |
+
raise ValueError('Nonzero coordinates cannot be removed.')
|
155 |
+
if any(a.is_number and im(a).is_zero is False for a in coords):
|
156 |
+
raise ValueError('Imaginary coordinates are not permitted.')
|
157 |
+
if not all(isinstance(a, Expr) for a in coords):
|
158 |
+
raise TypeError('Coordinates must be valid SymPy expressions.')
|
159 |
+
|
160 |
+
# pad with zeros appropriately
|
161 |
+
coords = coords[:dim] + (S.Zero,)*(dim - len(coords))
|
162 |
+
|
163 |
+
# Turn any Floats into rationals and simplify
|
164 |
+
# any expressions before we instantiate
|
165 |
+
if evaluate:
|
166 |
+
coords = coords.xreplace({
|
167 |
+
f: simplify(nsimplify(f, rational=True))
|
168 |
+
for f in coords.atoms(Float)})
|
169 |
+
|
170 |
+
# return 2D or 3D instances
|
171 |
+
if len(coords) == 2:
|
172 |
+
kwargs['_nocheck'] = True
|
173 |
+
return Point2D(*coords, **kwargs)
|
174 |
+
elif len(coords) == 3:
|
175 |
+
kwargs['_nocheck'] = True
|
176 |
+
return Point3D(*coords, **kwargs)
|
177 |
+
|
178 |
+
# the general Point
|
179 |
+
return GeometryEntity.__new__(cls, *coords)
|
180 |
+
|
181 |
+
def __abs__(self):
|
182 |
+
"""Returns the distance between this point and the origin."""
|
183 |
+
origin = Point([0]*len(self))
|
184 |
+
return Point.distance(origin, self)
|
185 |
+
|
186 |
+
def __add__(self, other):
|
187 |
+
"""Add other to self by incrementing self's coordinates by
|
188 |
+
those of other.
|
189 |
+
|
190 |
+
Notes
|
191 |
+
=====
|
192 |
+
|
193 |
+
>>> from sympy import Point
|
194 |
+
|
195 |
+
When sequences of coordinates are passed to Point methods, they
|
196 |
+
are converted to a Point internally. This __add__ method does
|
197 |
+
not do that so if floating point values are used, a floating
|
198 |
+
point result (in terms of SymPy Floats) will be returned.
|
199 |
+
|
200 |
+
>>> Point(1, 2) + (.1, .2)
|
201 |
+
Point2D(1.1, 2.2)
|
202 |
+
|
203 |
+
If this is not desired, the `translate` method can be used or
|
204 |
+
another Point can be added:
|
205 |
+
|
206 |
+
>>> Point(1, 2).translate(.1, .2)
|
207 |
+
Point2D(11/10, 11/5)
|
208 |
+
>>> Point(1, 2) + Point(.1, .2)
|
209 |
+
Point2D(11/10, 11/5)
|
210 |
+
|
211 |
+
See Also
|
212 |
+
========
|
213 |
+
|
214 |
+
sympy.geometry.point.Point.translate
|
215 |
+
|
216 |
+
"""
|
217 |
+
try:
|
218 |
+
s, o = Point._normalize_dimension(self, Point(other, evaluate=False))
|
219 |
+
except TypeError:
|
220 |
+
raise GeometryError("Don't know how to add {} and a Point object".format(other))
|
221 |
+
|
222 |
+
coords = [simplify(a + b) for a, b in zip(s, o)]
|
223 |
+
return Point(coords, evaluate=False)
|
224 |
+
|
225 |
+
def __contains__(self, item):
|
226 |
+
return item in self.args
|
227 |
+
|
228 |
+
def __truediv__(self, divisor):
|
229 |
+
"""Divide point's coordinates by a factor."""
|
230 |
+
divisor = sympify(divisor)
|
231 |
+
coords = [simplify(x/divisor) for x in self.args]
|
232 |
+
return Point(coords, evaluate=False)
|
233 |
+
|
234 |
+
def __eq__(self, other):
|
235 |
+
if not isinstance(other, Point) or len(self.args) != len(other.args):
|
236 |
+
return False
|
237 |
+
return self.args == other.args
|
238 |
+
|
239 |
+
def __getitem__(self, key):
|
240 |
+
return self.args[key]
|
241 |
+
|
242 |
+
def __hash__(self):
|
243 |
+
return hash(self.args)
|
244 |
+
|
245 |
+
def __iter__(self):
|
246 |
+
return self.args.__iter__()
|
247 |
+
|
248 |
+
def __len__(self):
|
249 |
+
return len(self.args)
|
250 |
+
|
251 |
+
def __mul__(self, factor):
|
252 |
+
"""Multiply point's coordinates by a factor.
|
253 |
+
|
254 |
+
Notes
|
255 |
+
=====
|
256 |
+
|
257 |
+
>>> from sympy import Point
|
258 |
+
|
259 |
+
When multiplying a Point by a floating point number,
|
260 |
+
the coordinates of the Point will be changed to Floats:
|
261 |
+
|
262 |
+
>>> Point(1, 2)*0.1
|
263 |
+
Point2D(0.1, 0.2)
|
264 |
+
|
265 |
+
If this is not desired, the `scale` method can be used or
|
266 |
+
else only multiply or divide by integers:
|
267 |
+
|
268 |
+
>>> Point(1, 2).scale(1.1, 1.1)
|
269 |
+
Point2D(11/10, 11/5)
|
270 |
+
>>> Point(1, 2)*11/10
|
271 |
+
Point2D(11/10, 11/5)
|
272 |
+
|
273 |
+
See Also
|
274 |
+
========
|
275 |
+
|
276 |
+
sympy.geometry.point.Point.scale
|
277 |
+
"""
|
278 |
+
factor = sympify(factor)
|
279 |
+
coords = [simplify(x*factor) for x in self.args]
|
280 |
+
return Point(coords, evaluate=False)
|
281 |
+
|
282 |
+
def __rmul__(self, factor):
|
283 |
+
"""Multiply a factor by point's coordinates."""
|
284 |
+
return self.__mul__(factor)
|
285 |
+
|
286 |
+
def __neg__(self):
|
287 |
+
"""Negate the point."""
|
288 |
+
coords = [-x for x in self.args]
|
289 |
+
return Point(coords, evaluate=False)
|
290 |
+
|
291 |
+
def __sub__(self, other):
|
292 |
+
"""Subtract two points, or subtract a factor from this point's
|
293 |
+
coordinates."""
|
294 |
+
return self + [-x for x in other]
|
295 |
+
|
296 |
+
@classmethod
|
297 |
+
def _normalize_dimension(cls, *points, **kwargs):
|
298 |
+
"""Ensure that points have the same dimension.
|
299 |
+
By default `on_morph='warn'` is passed to the
|
300 |
+
`Point` constructor."""
|
301 |
+
# if we have a built-in ambient dimension, use it
|
302 |
+
dim = getattr(cls, '_ambient_dimension', None)
|
303 |
+
# override if we specified it
|
304 |
+
dim = kwargs.get('dim', dim)
|
305 |
+
# if no dim was given, use the highest dimensional point
|
306 |
+
if dim is None:
|
307 |
+
dim = max(i.ambient_dimension for i in points)
|
308 |
+
if all(i.ambient_dimension == dim for i in points):
|
309 |
+
return list(points)
|
310 |
+
kwargs['dim'] = dim
|
311 |
+
kwargs['on_morph'] = kwargs.get('on_morph', 'warn')
|
312 |
+
return [Point(i, **kwargs) for i in points]
|
313 |
+
|
314 |
+
@staticmethod
|
315 |
+
def affine_rank(*args):
|
316 |
+
"""The affine rank of a set of points is the dimension
|
317 |
+
of the smallest affine space containing all the points.
|
318 |
+
For example, if the points lie on a line (and are not all
|
319 |
+
the same) their affine rank is 1. If the points lie on a plane
|
320 |
+
but not a line, their affine rank is 2. By convention, the empty
|
321 |
+
set has affine rank -1."""
|
322 |
+
|
323 |
+
if len(args) == 0:
|
324 |
+
return -1
|
325 |
+
# make sure we're genuinely points
|
326 |
+
# and translate every point to the origin
|
327 |
+
points = Point._normalize_dimension(*[Point(i) for i in args])
|
328 |
+
origin = points[0]
|
329 |
+
points = [i - origin for i in points[1:]]
|
330 |
+
|
331 |
+
m = Matrix([i.args for i in points])
|
332 |
+
# XXX fragile -- what is a better way?
|
333 |
+
return m.rank(iszerofunc = lambda x:
|
334 |
+
abs(x.n(2)) < 1e-12 if x.is_number else x.is_zero)
|
335 |
+
|
336 |
+
@property
|
337 |
+
def ambient_dimension(self):
|
338 |
+
"""Number of components this point has."""
|
339 |
+
return getattr(self, '_ambient_dimension', len(self))
|
340 |
+
|
341 |
+
@classmethod
|
342 |
+
def are_coplanar(cls, *points):
|
343 |
+
"""Return True if there exists a plane in which all the points
|
344 |
+
lie. A trivial True value is returned if `len(points) < 3` or
|
345 |
+
all Points are 2-dimensional.
|
346 |
+
|
347 |
+
Parameters
|
348 |
+
==========
|
349 |
+
|
350 |
+
A set of points
|
351 |
+
|
352 |
+
Raises
|
353 |
+
======
|
354 |
+
|
355 |
+
ValueError : if less than 3 unique points are given
|
356 |
+
|
357 |
+
Returns
|
358 |
+
=======
|
359 |
+
|
360 |
+
boolean
|
361 |
+
|
362 |
+
Examples
|
363 |
+
========
|
364 |
+
|
365 |
+
>>> from sympy import Point3D
|
366 |
+
>>> p1 = Point3D(1, 2, 2)
|
367 |
+
>>> p2 = Point3D(2, 7, 2)
|
368 |
+
>>> p3 = Point3D(0, 0, 2)
|
369 |
+
>>> p4 = Point3D(1, 1, 2)
|
370 |
+
>>> Point3D.are_coplanar(p1, p2, p3, p4)
|
371 |
+
True
|
372 |
+
>>> p5 = Point3D(0, 1, 3)
|
373 |
+
>>> Point3D.are_coplanar(p1, p2, p3, p5)
|
374 |
+
False
|
375 |
+
|
376 |
+
"""
|
377 |
+
if len(points) <= 1:
|
378 |
+
return True
|
379 |
+
|
380 |
+
points = cls._normalize_dimension(*[Point(i) for i in points])
|
381 |
+
# quick exit if we are in 2D
|
382 |
+
if points[0].ambient_dimension == 2:
|
383 |
+
return True
|
384 |
+
points = list(uniq(points))
|
385 |
+
return Point.affine_rank(*points) <= 2
|
386 |
+
|
387 |
+
def distance(self, other):
|
388 |
+
"""The Euclidean distance between self and another GeometricEntity.
|
389 |
+
|
390 |
+
Returns
|
391 |
+
=======
|
392 |
+
|
393 |
+
distance : number or symbolic expression.
|
394 |
+
|
395 |
+
Raises
|
396 |
+
======
|
397 |
+
|
398 |
+
TypeError : if other is not recognized as a GeometricEntity or is a
|
399 |
+
GeometricEntity for which distance is not defined.
|
400 |
+
|
401 |
+
See Also
|
402 |
+
========
|
403 |
+
|
404 |
+
sympy.geometry.line.Segment.length
|
405 |
+
sympy.geometry.point.Point.taxicab_distance
|
406 |
+
|
407 |
+
Examples
|
408 |
+
========
|
409 |
+
|
410 |
+
>>> from sympy import Point, Line
|
411 |
+
>>> p1, p2 = Point(1, 1), Point(4, 5)
|
412 |
+
>>> l = Line((3, 1), (2, 2))
|
413 |
+
>>> p1.distance(p2)
|
414 |
+
5
|
415 |
+
>>> p1.distance(l)
|
416 |
+
sqrt(2)
|
417 |
+
|
418 |
+
The computed distance may be symbolic, too:
|
419 |
+
|
420 |
+
>>> from sympy.abc import x, y
|
421 |
+
>>> p3 = Point(x, y)
|
422 |
+
>>> p3.distance((0, 0))
|
423 |
+
sqrt(x**2 + y**2)
|
424 |
+
|
425 |
+
"""
|
426 |
+
if not isinstance(other, GeometryEntity):
|
427 |
+
try:
|
428 |
+
other = Point(other, dim=self.ambient_dimension)
|
429 |
+
except TypeError:
|
430 |
+
raise TypeError("not recognized as a GeometricEntity: %s" % type(other))
|
431 |
+
if isinstance(other, Point):
|
432 |
+
s, p = Point._normalize_dimension(self, Point(other))
|
433 |
+
return sqrt(Add(*((a - b)**2 for a, b in zip(s, p))))
|
434 |
+
distance = getattr(other, 'distance', None)
|
435 |
+
if distance is None:
|
436 |
+
raise TypeError("distance between Point and %s is not defined" % type(other))
|
437 |
+
return distance(self)
|
438 |
+
|
439 |
+
def dot(self, p):
|
440 |
+
"""Return dot product of self with another Point."""
|
441 |
+
if not is_sequence(p):
|
442 |
+
p = Point(p) # raise the error via Point
|
443 |
+
return Add(*(a*b for a, b in zip(self, p)))
|
444 |
+
|
445 |
+
def equals(self, other):
|
446 |
+
"""Returns whether the coordinates of self and other agree."""
|
447 |
+
# a point is equal to another point if all its components are equal
|
448 |
+
if not isinstance(other, Point) or len(self) != len(other):
|
449 |
+
return False
|
450 |
+
return all(a.equals(b) for a, b in zip(self, other))
|
451 |
+
|
452 |
+
def _eval_evalf(self, prec=15, **options):
|
453 |
+
"""Evaluate the coordinates of the point.
|
454 |
+
|
455 |
+
This method will, where possible, create and return a new Point
|
456 |
+
where the coordinates are evaluated as floating point numbers to
|
457 |
+
the precision indicated (default=15).
|
458 |
+
|
459 |
+
Parameters
|
460 |
+
==========
|
461 |
+
|
462 |
+
prec : int
|
463 |
+
|
464 |
+
Returns
|
465 |
+
=======
|
466 |
+
|
467 |
+
point : Point
|
468 |
+
|
469 |
+
Examples
|
470 |
+
========
|
471 |
+
|
472 |
+
>>> from sympy import Point, Rational
|
473 |
+
>>> p1 = Point(Rational(1, 2), Rational(3, 2))
|
474 |
+
>>> p1
|
475 |
+
Point2D(1/2, 3/2)
|
476 |
+
>>> p1.evalf()
|
477 |
+
Point2D(0.5, 1.5)
|
478 |
+
|
479 |
+
"""
|
480 |
+
dps = prec_to_dps(prec)
|
481 |
+
coords = [x.evalf(n=dps, **options) for x in self.args]
|
482 |
+
return Point(*coords, evaluate=False)
|
483 |
+
|
484 |
+
def intersection(self, other):
|
485 |
+
"""The intersection between this point and another GeometryEntity.
|
486 |
+
|
487 |
+
Parameters
|
488 |
+
==========
|
489 |
+
|
490 |
+
other : GeometryEntity or sequence of coordinates
|
491 |
+
|
492 |
+
Returns
|
493 |
+
=======
|
494 |
+
|
495 |
+
intersection : list of Points
|
496 |
+
|
497 |
+
Notes
|
498 |
+
=====
|
499 |
+
|
500 |
+
The return value will either be an empty list if there is no
|
501 |
+
intersection, otherwise it will contain this point.
|
502 |
+
|
503 |
+
Examples
|
504 |
+
========
|
505 |
+
|
506 |
+
>>> from sympy import Point
|
507 |
+
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 0)
|
508 |
+
>>> p1.intersection(p2)
|
509 |
+
[]
|
510 |
+
>>> p1.intersection(p3)
|
511 |
+
[Point2D(0, 0)]
|
512 |
+
|
513 |
+
"""
|
514 |
+
if not isinstance(other, GeometryEntity):
|
515 |
+
other = Point(other)
|
516 |
+
if isinstance(other, Point):
|
517 |
+
if self == other:
|
518 |
+
return [self]
|
519 |
+
p1, p2 = Point._normalize_dimension(self, other)
|
520 |
+
if p1 == self and p1 == p2:
|
521 |
+
return [self]
|
522 |
+
return []
|
523 |
+
return other.intersection(self)
|
524 |
+
|
525 |
+
def is_collinear(self, *args):
|
526 |
+
"""Returns `True` if there exists a line
|
527 |
+
that contains `self` and `points`. Returns `False` otherwise.
|
528 |
+
A trivially True value is returned if no points are given.
|
529 |
+
|
530 |
+
Parameters
|
531 |
+
==========
|
532 |
+
|
533 |
+
args : sequence of Points
|
534 |
+
|
535 |
+
Returns
|
536 |
+
=======
|
537 |
+
|
538 |
+
is_collinear : boolean
|
539 |
+
|
540 |
+
See Also
|
541 |
+
========
|
542 |
+
|
543 |
+
sympy.geometry.line.Line
|
544 |
+
|
545 |
+
Examples
|
546 |
+
========
|
547 |
+
|
548 |
+
>>> from sympy import Point
|
549 |
+
>>> from sympy.abc import x
|
550 |
+
>>> p1, p2 = Point(0, 0), Point(1, 1)
|
551 |
+
>>> p3, p4, p5 = Point(2, 2), Point(x, x), Point(1, 2)
|
552 |
+
>>> Point.is_collinear(p1, p2, p3, p4)
|
553 |
+
True
|
554 |
+
>>> Point.is_collinear(p1, p2, p3, p5)
|
555 |
+
False
|
556 |
+
|
557 |
+
"""
|
558 |
+
points = (self,) + args
|
559 |
+
points = Point._normalize_dimension(*[Point(i) for i in points])
|
560 |
+
points = list(uniq(points))
|
561 |
+
return Point.affine_rank(*points) <= 1
|
562 |
+
|
563 |
+
def is_concyclic(self, *args):
|
564 |
+
"""Do `self` and the given sequence of points lie in a circle?
|
565 |
+
|
566 |
+
Returns True if the set of points are concyclic and
|
567 |
+
False otherwise. A trivial value of True is returned
|
568 |
+
if there are fewer than 2 other points.
|
569 |
+
|
570 |
+
Parameters
|
571 |
+
==========
|
572 |
+
|
573 |
+
args : sequence of Points
|
574 |
+
|
575 |
+
Returns
|
576 |
+
=======
|
577 |
+
|
578 |
+
is_concyclic : boolean
|
579 |
+
|
580 |
+
|
581 |
+
Examples
|
582 |
+
========
|
583 |
+
|
584 |
+
>>> from sympy import Point
|
585 |
+
|
586 |
+
Define 4 points that are on the unit circle:
|
587 |
+
|
588 |
+
>>> p1, p2, p3, p4 = Point(1, 0), (0, 1), (-1, 0), (0, -1)
|
589 |
+
|
590 |
+
>>> p1.is_concyclic() == p1.is_concyclic(p2, p3, p4) == True
|
591 |
+
True
|
592 |
+
|
593 |
+
Define a point not on that circle:
|
594 |
+
|
595 |
+
>>> p = Point(1, 1)
|
596 |
+
|
597 |
+
>>> p.is_concyclic(p1, p2, p3)
|
598 |
+
False
|
599 |
+
|
600 |
+
"""
|
601 |
+
points = (self,) + args
|
602 |
+
points = Point._normalize_dimension(*[Point(i) for i in points])
|
603 |
+
points = list(uniq(points))
|
604 |
+
if not Point.affine_rank(*points) <= 2:
|
605 |
+
return False
|
606 |
+
origin = points[0]
|
607 |
+
points = [p - origin for p in points]
|
608 |
+
# points are concyclic if they are coplanar and
|
609 |
+
# there is a point c so that ||p_i-c|| == ||p_j-c|| for all
|
610 |
+
# i and j. Rearranging this equation gives us the following
|
611 |
+
# condition: the matrix `mat` must not a pivot in the last
|
612 |
+
# column.
|
613 |
+
mat = Matrix([list(i) + [i.dot(i)] for i in points])
|
614 |
+
rref, pivots = mat.rref()
|
615 |
+
if len(origin) not in pivots:
|
616 |
+
return True
|
617 |
+
return False
|
618 |
+
|
619 |
+
@property
|
620 |
+
def is_nonzero(self):
|
621 |
+
"""True if any coordinate is nonzero, False if every coordinate is zero,
|
622 |
+
and None if it cannot be determined."""
|
623 |
+
is_zero = self.is_zero
|
624 |
+
if is_zero is None:
|
625 |
+
return None
|
626 |
+
return not is_zero
|
627 |
+
|
628 |
+
def is_scalar_multiple(self, p):
|
629 |
+
"""Returns whether each coordinate of `self` is a scalar
|
630 |
+
multiple of the corresponding coordinate in point p.
|
631 |
+
"""
|
632 |
+
s, o = Point._normalize_dimension(self, Point(p))
|
633 |
+
# 2d points happen a lot, so optimize this function call
|
634 |
+
if s.ambient_dimension == 2:
|
635 |
+
(x1, y1), (x2, y2) = s.args, o.args
|
636 |
+
rv = (x1*y2 - x2*y1).equals(0)
|
637 |
+
if rv is None:
|
638 |
+
raise Undecidable(filldedent(
|
639 |
+
'''Cannot determine if %s is a scalar multiple of
|
640 |
+
%s''' % (s, o)))
|
641 |
+
|
642 |
+
# if the vectors p1 and p2 are linearly dependent, then they must
|
643 |
+
# be scalar multiples of each other
|
644 |
+
m = Matrix([s.args, o.args])
|
645 |
+
return m.rank() < 2
|
646 |
+
|
647 |
+
@property
|
648 |
+
def is_zero(self):
|
649 |
+
"""True if every coordinate is zero, False if any coordinate is not zero,
|
650 |
+
and None if it cannot be determined."""
|
651 |
+
nonzero = [x.is_nonzero for x in self.args]
|
652 |
+
if any(nonzero):
|
653 |
+
return False
|
654 |
+
if any(x is None for x in nonzero):
|
655 |
+
return None
|
656 |
+
return True
|
657 |
+
|
658 |
+
@property
|
659 |
+
def length(self):
|
660 |
+
"""
|
661 |
+
Treating a Point as a Line, this returns 0 for the length of a Point.
|
662 |
+
|
663 |
+
Examples
|
664 |
+
========
|
665 |
+
|
666 |
+
>>> from sympy import Point
|
667 |
+
>>> p = Point(0, 1)
|
668 |
+
>>> p.length
|
669 |
+
0
|
670 |
+
"""
|
671 |
+
return S.Zero
|
672 |
+
|
673 |
+
def midpoint(self, p):
|
674 |
+
"""The midpoint between self and point p.
|
675 |
+
|
676 |
+
Parameters
|
677 |
+
==========
|
678 |
+
|
679 |
+
p : Point
|
680 |
+
|
681 |
+
Returns
|
682 |
+
=======
|
683 |
+
|
684 |
+
midpoint : Point
|
685 |
+
|
686 |
+
See Also
|
687 |
+
========
|
688 |
+
|
689 |
+
sympy.geometry.line.Segment.midpoint
|
690 |
+
|
691 |
+
Examples
|
692 |
+
========
|
693 |
+
|
694 |
+
>>> from sympy import Point
|
695 |
+
>>> p1, p2 = Point(1, 1), Point(13, 5)
|
696 |
+
>>> p1.midpoint(p2)
|
697 |
+
Point2D(7, 3)
|
698 |
+
|
699 |
+
"""
|
700 |
+
s, p = Point._normalize_dimension(self, Point(p))
|
701 |
+
return Point([simplify((a + b)*S.Half) for a, b in zip(s, p)])
|
702 |
+
|
703 |
+
@property
|
704 |
+
def origin(self):
|
705 |
+
"""A point of all zeros of the same ambient dimension
|
706 |
+
as the current point"""
|
707 |
+
return Point([0]*len(self), evaluate=False)
|
708 |
+
|
709 |
+
@property
|
710 |
+
def orthogonal_direction(self):
|
711 |
+
"""Returns a non-zero point that is orthogonal to the
|
712 |
+
line containing `self` and the origin.
|
713 |
+
|
714 |
+
Examples
|
715 |
+
========
|
716 |
+
|
717 |
+
>>> from sympy import Line, Point
|
718 |
+
>>> a = Point(1, 2, 3)
|
719 |
+
>>> a.orthogonal_direction
|
720 |
+
Point3D(-2, 1, 0)
|
721 |
+
>>> b = _
|
722 |
+
>>> Line(b, b.origin).is_perpendicular(Line(a, a.origin))
|
723 |
+
True
|
724 |
+
"""
|
725 |
+
dim = self.ambient_dimension
|
726 |
+
# if a coordinate is zero, we can put a 1 there and zeros elsewhere
|
727 |
+
if self[0].is_zero:
|
728 |
+
return Point([1] + (dim - 1)*[0])
|
729 |
+
if self[1].is_zero:
|
730 |
+
return Point([0,1] + (dim - 2)*[0])
|
731 |
+
# if the first two coordinates aren't zero, we can create a non-zero
|
732 |
+
# orthogonal vector by swapping them, negating one, and padding with zeros
|
733 |
+
return Point([-self[1], self[0]] + (dim - 2)*[0])
|
734 |
+
|
735 |
+
@staticmethod
|
736 |
+
def project(a, b):
|
737 |
+
"""Project the point `a` onto the line between the origin
|
738 |
+
and point `b` along the normal direction.
|
739 |
+
|
740 |
+
Parameters
|
741 |
+
==========
|
742 |
+
|
743 |
+
a : Point
|
744 |
+
b : Point
|
745 |
+
|
746 |
+
Returns
|
747 |
+
=======
|
748 |
+
|
749 |
+
p : Point
|
750 |
+
|
751 |
+
See Also
|
752 |
+
========
|
753 |
+
|
754 |
+
sympy.geometry.line.LinearEntity.projection
|
755 |
+
|
756 |
+
Examples
|
757 |
+
========
|
758 |
+
|
759 |
+
>>> from sympy import Line, Point
|
760 |
+
>>> a = Point(1, 2)
|
761 |
+
>>> b = Point(2, 5)
|
762 |
+
>>> z = a.origin
|
763 |
+
>>> p = Point.project(a, b)
|
764 |
+
>>> Line(p, a).is_perpendicular(Line(p, b))
|
765 |
+
True
|
766 |
+
>>> Point.is_collinear(z, p, b)
|
767 |
+
True
|
768 |
+
"""
|
769 |
+
a, b = Point._normalize_dimension(Point(a), Point(b))
|
770 |
+
if b.is_zero:
|
771 |
+
raise ValueError("Cannot project to the zero vector.")
|
772 |
+
return b*(a.dot(b) / b.dot(b))
|
773 |
+
|
774 |
+
def taxicab_distance(self, p):
|
775 |
+
"""The Taxicab Distance from self to point p.
|
776 |
+
|
777 |
+
Returns the sum of the horizontal and vertical distances to point p.
|
778 |
+
|
779 |
+
Parameters
|
780 |
+
==========
|
781 |
+
|
782 |
+
p : Point
|
783 |
+
|
784 |
+
Returns
|
785 |
+
=======
|
786 |
+
|
787 |
+
taxicab_distance : The sum of the horizontal
|
788 |
+
and vertical distances to point p.
|
789 |
+
|
790 |
+
See Also
|
791 |
+
========
|
792 |
+
|
793 |
+
sympy.geometry.point.Point.distance
|
794 |
+
|
795 |
+
Examples
|
796 |
+
========
|
797 |
+
|
798 |
+
>>> from sympy import Point
|
799 |
+
>>> p1, p2 = Point(1, 1), Point(4, 5)
|
800 |
+
>>> p1.taxicab_distance(p2)
|
801 |
+
7
|
802 |
+
|
803 |
+
"""
|
804 |
+
s, p = Point._normalize_dimension(self, Point(p))
|
805 |
+
return Add(*(abs(a - b) for a, b in zip(s, p)))
|
806 |
+
|
807 |
+
def canberra_distance(self, p):
|
808 |
+
"""The Canberra Distance from self to point p.
|
809 |
+
|
810 |
+
Returns the weighted sum of horizontal and vertical distances to
|
811 |
+
point p.
|
812 |
+
|
813 |
+
Parameters
|
814 |
+
==========
|
815 |
+
|
816 |
+
p : Point
|
817 |
+
|
818 |
+
Returns
|
819 |
+
=======
|
820 |
+
|
821 |
+
canberra_distance : The weighted sum of horizontal and vertical
|
822 |
+
distances to point p. The weight used is the sum of absolute values
|
823 |
+
of the coordinates.
|
824 |
+
|
825 |
+
Examples
|
826 |
+
========
|
827 |
+
|
828 |
+
>>> from sympy import Point
|
829 |
+
>>> p1, p2 = Point(1, 1), Point(3, 3)
|
830 |
+
>>> p1.canberra_distance(p2)
|
831 |
+
1
|
832 |
+
>>> p1, p2 = Point(0, 0), Point(3, 3)
|
833 |
+
>>> p1.canberra_distance(p2)
|
834 |
+
2
|
835 |
+
|
836 |
+
Raises
|
837 |
+
======
|
838 |
+
|
839 |
+
ValueError when both vectors are zero.
|
840 |
+
|
841 |
+
See Also
|
842 |
+
========
|
843 |
+
|
844 |
+
sympy.geometry.point.Point.distance
|
845 |
+
|
846 |
+
"""
|
847 |
+
|
848 |
+
s, p = Point._normalize_dimension(self, Point(p))
|
849 |
+
if self.is_zero and p.is_zero:
|
850 |
+
raise ValueError("Cannot project to the zero vector.")
|
851 |
+
return Add(*((abs(a - b)/(abs(a) + abs(b))) for a, b in zip(s, p)))
|
852 |
+
|
853 |
+
@property
|
854 |
+
def unit(self):
|
855 |
+
"""Return the Point that is in the same direction as `self`
|
856 |
+
and a distance of 1 from the origin"""
|
857 |
+
return self / abs(self)
|
858 |
+
|
859 |
+
|
860 |
+
class Point2D(Point):
|
861 |
+
"""A point in a 2-dimensional Euclidean space.
|
862 |
+
|
863 |
+
Parameters
|
864 |
+
==========
|
865 |
+
|
866 |
+
coords
|
867 |
+
A sequence of 2 coordinate values.
|
868 |
+
|
869 |
+
Attributes
|
870 |
+
==========
|
871 |
+
|
872 |
+
x
|
873 |
+
y
|
874 |
+
length
|
875 |
+
|
876 |
+
Raises
|
877 |
+
======
|
878 |
+
|
879 |
+
TypeError
|
880 |
+
When trying to add or subtract points with different dimensions.
|
881 |
+
When trying to create a point with more than two dimensions.
|
882 |
+
When `intersection` is called with object other than a Point.
|
883 |
+
|
884 |
+
See Also
|
885 |
+
========
|
886 |
+
|
887 |
+
sympy.geometry.line.Segment : Connects two Points
|
888 |
+
|
889 |
+
Examples
|
890 |
+
========
|
891 |
+
|
892 |
+
>>> from sympy import Point2D
|
893 |
+
>>> from sympy.abc import x
|
894 |
+
>>> Point2D(1, 2)
|
895 |
+
Point2D(1, 2)
|
896 |
+
>>> Point2D([1, 2])
|
897 |
+
Point2D(1, 2)
|
898 |
+
>>> Point2D(0, x)
|
899 |
+
Point2D(0, x)
|
900 |
+
|
901 |
+
Floats are automatically converted to Rational unless the
|
902 |
+
evaluate flag is False:
|
903 |
+
|
904 |
+
>>> Point2D(0.5, 0.25)
|
905 |
+
Point2D(1/2, 1/4)
|
906 |
+
>>> Point2D(0.5, 0.25, evaluate=False)
|
907 |
+
Point2D(0.5, 0.25)
|
908 |
+
|
909 |
+
"""
|
910 |
+
|
911 |
+
_ambient_dimension = 2
|
912 |
+
|
913 |
+
def __new__(cls, *args, _nocheck=False, **kwargs):
|
914 |
+
if not _nocheck:
|
915 |
+
kwargs['dim'] = 2
|
916 |
+
args = Point(*args, **kwargs)
|
917 |
+
return GeometryEntity.__new__(cls, *args)
|
918 |
+
|
919 |
+
def __contains__(self, item):
|
920 |
+
return item == self
|
921 |
+
|
922 |
+
@property
|
923 |
+
def bounds(self):
|
924 |
+
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
|
925 |
+
rectangle for the geometric figure.
|
926 |
+
|
927 |
+
"""
|
928 |
+
|
929 |
+
return (self.x, self.y, self.x, self.y)
|
930 |
+
|
931 |
+
def rotate(self, angle, pt=None):
|
932 |
+
"""Rotate ``angle`` radians counterclockwise about Point ``pt``.
|
933 |
+
|
934 |
+
See Also
|
935 |
+
========
|
936 |
+
|
937 |
+
translate, scale
|
938 |
+
|
939 |
+
Examples
|
940 |
+
========
|
941 |
+
|
942 |
+
>>> from sympy import Point2D, pi
|
943 |
+
>>> t = Point2D(1, 0)
|
944 |
+
>>> t.rotate(pi/2)
|
945 |
+
Point2D(0, 1)
|
946 |
+
>>> t.rotate(pi/2, (2, 0))
|
947 |
+
Point2D(2, -1)
|
948 |
+
|
949 |
+
"""
|
950 |
+
c = cos(angle)
|
951 |
+
s = sin(angle)
|
952 |
+
|
953 |
+
rv = self
|
954 |
+
if pt is not None:
|
955 |
+
pt = Point(pt, dim=2)
|
956 |
+
rv -= pt
|
957 |
+
x, y = rv.args
|
958 |
+
rv = Point(c*x - s*y, s*x + c*y)
|
959 |
+
if pt is not None:
|
960 |
+
rv += pt
|
961 |
+
return rv
|
962 |
+
|
963 |
+
def scale(self, x=1, y=1, pt=None):
|
964 |
+
"""Scale the coordinates of the Point by multiplying by
|
965 |
+
``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) --
|
966 |
+
and then adding ``pt`` back again (i.e. ``pt`` is the point of
|
967 |
+
reference for the scaling).
|
968 |
+
|
969 |
+
See Also
|
970 |
+
========
|
971 |
+
|
972 |
+
rotate, translate
|
973 |
+
|
974 |
+
Examples
|
975 |
+
========
|
976 |
+
|
977 |
+
>>> from sympy import Point2D
|
978 |
+
>>> t = Point2D(1, 1)
|
979 |
+
>>> t.scale(2)
|
980 |
+
Point2D(2, 1)
|
981 |
+
>>> t.scale(2, 2)
|
982 |
+
Point2D(2, 2)
|
983 |
+
|
984 |
+
"""
|
985 |
+
if pt:
|
986 |
+
pt = Point(pt, dim=2)
|
987 |
+
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
|
988 |
+
return Point(self.x*x, self.y*y)
|
989 |
+
|
990 |
+
def transform(self, matrix):
|
991 |
+
"""Return the point after applying the transformation described
|
992 |
+
by the 3x3 Matrix, ``matrix``.
|
993 |
+
|
994 |
+
See Also
|
995 |
+
========
|
996 |
+
sympy.geometry.point.Point2D.rotate
|
997 |
+
sympy.geometry.point.Point2D.scale
|
998 |
+
sympy.geometry.point.Point2D.translate
|
999 |
+
"""
|
1000 |
+
if not (matrix.is_Matrix and matrix.shape == (3, 3)):
|
1001 |
+
raise ValueError("matrix must be a 3x3 matrix")
|
1002 |
+
x, y = self.args
|
1003 |
+
return Point(*(Matrix(1, 3, [x, y, 1])*matrix).tolist()[0][:2])
|
1004 |
+
|
1005 |
+
def translate(self, x=0, y=0):
|
1006 |
+
"""Shift the Point by adding x and y to the coordinates of the Point.
|
1007 |
+
|
1008 |
+
See Also
|
1009 |
+
========
|
1010 |
+
|
1011 |
+
sympy.geometry.point.Point2D.rotate, scale
|
1012 |
+
|
1013 |
+
Examples
|
1014 |
+
========
|
1015 |
+
|
1016 |
+
>>> from sympy import Point2D
|
1017 |
+
>>> t = Point2D(0, 1)
|
1018 |
+
>>> t.translate(2)
|
1019 |
+
Point2D(2, 1)
|
1020 |
+
>>> t.translate(2, 2)
|
1021 |
+
Point2D(2, 3)
|
1022 |
+
>>> t + Point2D(2, 2)
|
1023 |
+
Point2D(2, 3)
|
1024 |
+
|
1025 |
+
"""
|
1026 |
+
return Point(self.x + x, self.y + y)
|
1027 |
+
|
1028 |
+
@property
|
1029 |
+
def coordinates(self):
|
1030 |
+
"""
|
1031 |
+
Returns the two coordinates of the Point.
|
1032 |
+
|
1033 |
+
Examples
|
1034 |
+
========
|
1035 |
+
|
1036 |
+
>>> from sympy import Point2D
|
1037 |
+
>>> p = Point2D(0, 1)
|
1038 |
+
>>> p.coordinates
|
1039 |
+
(0, 1)
|
1040 |
+
"""
|
1041 |
+
return self.args
|
1042 |
+
|
1043 |
+
@property
|
1044 |
+
def x(self):
|
1045 |
+
"""
|
1046 |
+
Returns the X coordinate of the Point.
|
1047 |
+
|
1048 |
+
Examples
|
1049 |
+
========
|
1050 |
+
|
1051 |
+
>>> from sympy import Point2D
|
1052 |
+
>>> p = Point2D(0, 1)
|
1053 |
+
>>> p.x
|
1054 |
+
0
|
1055 |
+
"""
|
1056 |
+
return self.args[0]
|
1057 |
+
|
1058 |
+
@property
|
1059 |
+
def y(self):
|
1060 |
+
"""
|
1061 |
+
Returns the Y coordinate of the Point.
|
1062 |
+
|
1063 |
+
Examples
|
1064 |
+
========
|
1065 |
+
|
1066 |
+
>>> from sympy import Point2D
|
1067 |
+
>>> p = Point2D(0, 1)
|
1068 |
+
>>> p.y
|
1069 |
+
1
|
1070 |
+
"""
|
1071 |
+
return self.args[1]
|
1072 |
+
|
1073 |
+
class Point3D(Point):
|
1074 |
+
"""A point in a 3-dimensional Euclidean space.
|
1075 |
+
|
1076 |
+
Parameters
|
1077 |
+
==========
|
1078 |
+
|
1079 |
+
coords
|
1080 |
+
A sequence of 3 coordinate values.
|
1081 |
+
|
1082 |
+
Attributes
|
1083 |
+
==========
|
1084 |
+
|
1085 |
+
x
|
1086 |
+
y
|
1087 |
+
z
|
1088 |
+
length
|
1089 |
+
|
1090 |
+
Raises
|
1091 |
+
======
|
1092 |
+
|
1093 |
+
TypeError
|
1094 |
+
When trying to add or subtract points with different dimensions.
|
1095 |
+
When `intersection` is called with object other than a Point.
|
1096 |
+
|
1097 |
+
Examples
|
1098 |
+
========
|
1099 |
+
|
1100 |
+
>>> from sympy import Point3D
|
1101 |
+
>>> from sympy.abc import x
|
1102 |
+
>>> Point3D(1, 2, 3)
|
1103 |
+
Point3D(1, 2, 3)
|
1104 |
+
>>> Point3D([1, 2, 3])
|
1105 |
+
Point3D(1, 2, 3)
|
1106 |
+
>>> Point3D(0, x, 3)
|
1107 |
+
Point3D(0, x, 3)
|
1108 |
+
|
1109 |
+
Floats are automatically converted to Rational unless the
|
1110 |
+
evaluate flag is False:
|
1111 |
+
|
1112 |
+
>>> Point3D(0.5, 0.25, 2)
|
1113 |
+
Point3D(1/2, 1/4, 2)
|
1114 |
+
>>> Point3D(0.5, 0.25, 3, evaluate=False)
|
1115 |
+
Point3D(0.5, 0.25, 3)
|
1116 |
+
|
1117 |
+
"""
|
1118 |
+
|
1119 |
+
_ambient_dimension = 3
|
1120 |
+
|
1121 |
+
def __new__(cls, *args, _nocheck=False, **kwargs):
|
1122 |
+
if not _nocheck:
|
1123 |
+
kwargs['dim'] = 3
|
1124 |
+
args = Point(*args, **kwargs)
|
1125 |
+
return GeometryEntity.__new__(cls, *args)
|
1126 |
+
|
1127 |
+
def __contains__(self, item):
|
1128 |
+
return item == self
|
1129 |
+
|
1130 |
+
@staticmethod
|
1131 |
+
def are_collinear(*points):
|
1132 |
+
"""Is a sequence of points collinear?
|
1133 |
+
|
1134 |
+
Test whether or not a set of points are collinear. Returns True if
|
1135 |
+
the set of points are collinear, or False otherwise.
|
1136 |
+
|
1137 |
+
Parameters
|
1138 |
+
==========
|
1139 |
+
|
1140 |
+
points : sequence of Point
|
1141 |
+
|
1142 |
+
Returns
|
1143 |
+
=======
|
1144 |
+
|
1145 |
+
are_collinear : boolean
|
1146 |
+
|
1147 |
+
See Also
|
1148 |
+
========
|
1149 |
+
|
1150 |
+
sympy.geometry.line.Line3D
|
1151 |
+
|
1152 |
+
Examples
|
1153 |
+
========
|
1154 |
+
|
1155 |
+
>>> from sympy import Point3D
|
1156 |
+
>>> from sympy.abc import x
|
1157 |
+
>>> p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1)
|
1158 |
+
>>> p3, p4, p5 = Point3D(2, 2, 2), Point3D(x, x, x), Point3D(1, 2, 6)
|
1159 |
+
>>> Point3D.are_collinear(p1, p2, p3, p4)
|
1160 |
+
True
|
1161 |
+
>>> Point3D.are_collinear(p1, p2, p3, p5)
|
1162 |
+
False
|
1163 |
+
"""
|
1164 |
+
return Point.is_collinear(*points)
|
1165 |
+
|
1166 |
+
def direction_cosine(self, point):
|
1167 |
+
"""
|
1168 |
+
Gives the direction cosine between 2 points
|
1169 |
+
|
1170 |
+
Parameters
|
1171 |
+
==========
|
1172 |
+
|
1173 |
+
p : Point3D
|
1174 |
+
|
1175 |
+
Returns
|
1176 |
+
=======
|
1177 |
+
|
1178 |
+
list
|
1179 |
+
|
1180 |
+
Examples
|
1181 |
+
========
|
1182 |
+
|
1183 |
+
>>> from sympy import Point3D
|
1184 |
+
>>> p1 = Point3D(1, 2, 3)
|
1185 |
+
>>> p1.direction_cosine(Point3D(2, 3, 5))
|
1186 |
+
[sqrt(6)/6, sqrt(6)/6, sqrt(6)/3]
|
1187 |
+
"""
|
1188 |
+
a = self.direction_ratio(point)
|
1189 |
+
b = sqrt(Add(*(i**2 for i in a)))
|
1190 |
+
return [(point.x - self.x) / b,(point.y - self.y) / b,
|
1191 |
+
(point.z - self.z) / b]
|
1192 |
+
|
1193 |
+
def direction_ratio(self, point):
|
1194 |
+
"""
|
1195 |
+
Gives the direction ratio between 2 points
|
1196 |
+
|
1197 |
+
Parameters
|
1198 |
+
==========
|
1199 |
+
|
1200 |
+
p : Point3D
|
1201 |
+
|
1202 |
+
Returns
|
1203 |
+
=======
|
1204 |
+
|
1205 |
+
list
|
1206 |
+
|
1207 |
+
Examples
|
1208 |
+
========
|
1209 |
+
|
1210 |
+
>>> from sympy import Point3D
|
1211 |
+
>>> p1 = Point3D(1, 2, 3)
|
1212 |
+
>>> p1.direction_ratio(Point3D(2, 3, 5))
|
1213 |
+
[1, 1, 2]
|
1214 |
+
"""
|
1215 |
+
return [(point.x - self.x),(point.y - self.y),(point.z - self.z)]
|
1216 |
+
|
1217 |
+
def intersection(self, other):
|
1218 |
+
"""The intersection between this point and another GeometryEntity.
|
1219 |
+
|
1220 |
+
Parameters
|
1221 |
+
==========
|
1222 |
+
|
1223 |
+
other : GeometryEntity or sequence of coordinates
|
1224 |
+
|
1225 |
+
Returns
|
1226 |
+
=======
|
1227 |
+
|
1228 |
+
intersection : list of Points
|
1229 |
+
|
1230 |
+
Notes
|
1231 |
+
=====
|
1232 |
+
|
1233 |
+
The return value will either be an empty list if there is no
|
1234 |
+
intersection, otherwise it will contain this point.
|
1235 |
+
|
1236 |
+
Examples
|
1237 |
+
========
|
1238 |
+
|
1239 |
+
>>> from sympy import Point3D
|
1240 |
+
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 0, 0)
|
1241 |
+
>>> p1.intersection(p2)
|
1242 |
+
[]
|
1243 |
+
>>> p1.intersection(p3)
|
1244 |
+
[Point3D(0, 0, 0)]
|
1245 |
+
|
1246 |
+
"""
|
1247 |
+
if not isinstance(other, GeometryEntity):
|
1248 |
+
other = Point(other, dim=3)
|
1249 |
+
if isinstance(other, Point3D):
|
1250 |
+
if self == other:
|
1251 |
+
return [self]
|
1252 |
+
return []
|
1253 |
+
return other.intersection(self)
|
1254 |
+
|
1255 |
+
def scale(self, x=1, y=1, z=1, pt=None):
|
1256 |
+
"""Scale the coordinates of the Point by multiplying by
|
1257 |
+
``x`` and ``y`` after subtracting ``pt`` -- default is (0, 0) --
|
1258 |
+
and then adding ``pt`` back again (i.e. ``pt`` is the point of
|
1259 |
+
reference for the scaling).
|
1260 |
+
|
1261 |
+
See Also
|
1262 |
+
========
|
1263 |
+
|
1264 |
+
translate
|
1265 |
+
|
1266 |
+
Examples
|
1267 |
+
========
|
1268 |
+
|
1269 |
+
>>> from sympy import Point3D
|
1270 |
+
>>> t = Point3D(1, 1, 1)
|
1271 |
+
>>> t.scale(2)
|
1272 |
+
Point3D(2, 1, 1)
|
1273 |
+
>>> t.scale(2, 2)
|
1274 |
+
Point3D(2, 2, 1)
|
1275 |
+
|
1276 |
+
"""
|
1277 |
+
if pt:
|
1278 |
+
pt = Point3D(pt)
|
1279 |
+
return self.translate(*(-pt).args).scale(x, y, z).translate(*pt.args)
|
1280 |
+
return Point3D(self.x*x, self.y*y, self.z*z)
|
1281 |
+
|
1282 |
+
def transform(self, matrix):
|
1283 |
+
"""Return the point after applying the transformation described
|
1284 |
+
by the 4x4 Matrix, ``matrix``.
|
1285 |
+
|
1286 |
+
See Also
|
1287 |
+
========
|
1288 |
+
sympy.geometry.point.Point3D.scale
|
1289 |
+
sympy.geometry.point.Point3D.translate
|
1290 |
+
"""
|
1291 |
+
if not (matrix.is_Matrix and matrix.shape == (4, 4)):
|
1292 |
+
raise ValueError("matrix must be a 4x4 matrix")
|
1293 |
+
x, y, z = self.args
|
1294 |
+
m = Transpose(matrix)
|
1295 |
+
return Point3D(*(Matrix(1, 4, [x, y, z, 1])*m).tolist()[0][:3])
|
1296 |
+
|
1297 |
+
def translate(self, x=0, y=0, z=0):
|
1298 |
+
"""Shift the Point by adding x and y to the coordinates of the Point.
|
1299 |
+
|
1300 |
+
See Also
|
1301 |
+
========
|
1302 |
+
|
1303 |
+
scale
|
1304 |
+
|
1305 |
+
Examples
|
1306 |
+
========
|
1307 |
+
|
1308 |
+
>>> from sympy import Point3D
|
1309 |
+
>>> t = Point3D(0, 1, 1)
|
1310 |
+
>>> t.translate(2)
|
1311 |
+
Point3D(2, 1, 1)
|
1312 |
+
>>> t.translate(2, 2)
|
1313 |
+
Point3D(2, 3, 1)
|
1314 |
+
>>> t + Point3D(2, 2, 2)
|
1315 |
+
Point3D(2, 3, 3)
|
1316 |
+
|
1317 |
+
"""
|
1318 |
+
return Point3D(self.x + x, self.y + y, self.z + z)
|
1319 |
+
|
1320 |
+
@property
|
1321 |
+
def coordinates(self):
|
1322 |
+
"""
|
1323 |
+
Returns the three coordinates of the Point.
|
1324 |
+
|
1325 |
+
Examples
|
1326 |
+
========
|
1327 |
+
|
1328 |
+
>>> from sympy import Point3D
|
1329 |
+
>>> p = Point3D(0, 1, 2)
|
1330 |
+
>>> p.coordinates
|
1331 |
+
(0, 1, 2)
|
1332 |
+
"""
|
1333 |
+
return self.args
|
1334 |
+
|
1335 |
+
@property
|
1336 |
+
def x(self):
|
1337 |
+
"""
|
1338 |
+
Returns the X coordinate of the Point.
|
1339 |
+
|
1340 |
+
Examples
|
1341 |
+
========
|
1342 |
+
|
1343 |
+
>>> from sympy import Point3D
|
1344 |
+
>>> p = Point3D(0, 1, 3)
|
1345 |
+
>>> p.x
|
1346 |
+
0
|
1347 |
+
"""
|
1348 |
+
return self.args[0]
|
1349 |
+
|
1350 |
+
@property
|
1351 |
+
def y(self):
|
1352 |
+
"""
|
1353 |
+
Returns the Y coordinate of the Point.
|
1354 |
+
|
1355 |
+
Examples
|
1356 |
+
========
|
1357 |
+
|
1358 |
+
>>> from sympy import Point3D
|
1359 |
+
>>> p = Point3D(0, 1, 2)
|
1360 |
+
>>> p.y
|
1361 |
+
1
|
1362 |
+
"""
|
1363 |
+
return self.args[1]
|
1364 |
+
|
1365 |
+
@property
|
1366 |
+
def z(self):
|
1367 |
+
"""
|
1368 |
+
Returns the Z coordinate of the Point.
|
1369 |
+
|
1370 |
+
Examples
|
1371 |
+
========
|
1372 |
+
|
1373 |
+
>>> from sympy import Point3D
|
1374 |
+
>>> p = Point3D(0, 1, 1)
|
1375 |
+
>>> p.z
|
1376 |
+
1
|
1377 |
+
"""
|
1378 |
+
return self.args[2]
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (193 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_curve.cpython-310.pyc
ADDED
Binary file (5.26 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_ellipse.cpython-310.pyc
ADDED
Binary file (23.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_entity.cpython-310.pyc
ADDED
Binary file (4.42 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_geometrysets.cpython-310.pyc
ADDED
Binary file (1.62 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_line.cpython-310.pyc
ADDED
Binary file (31.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_parabola.cpython-310.pyc
ADDED
Binary file (5.35 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_plane.cpython-310.pyc
ADDED
Binary file (9.58 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_point.cpython-310.pyc
ADDED
Binary file (15.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_polygon.cpython-310.pyc
ADDED
Binary file (22.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/__pycache__/test_util.cpython-310.pyc
ADDED
Binary file (6.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/test_curve.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.containers import Tuple
|
2 |
+
from sympy.core.numbers import (Rational, pi)
|
3 |
+
from sympy.core.singleton import S
|
4 |
+
from sympy.core.symbol import (Symbol, symbols)
|
5 |
+
from sympy.functions.elementary.hyperbolic import asinh
|
6 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
7 |
+
from sympy.geometry import Curve, Line, Point, Ellipse, Ray, Segment, Circle, Polygon, RegularPolygon
|
8 |
+
from sympy.testing.pytest import raises, slow
|
9 |
+
|
10 |
+
|
11 |
+
def test_curve():
|
12 |
+
x = Symbol('x', real=True)
|
13 |
+
s = Symbol('s')
|
14 |
+
z = Symbol('z')
|
15 |
+
|
16 |
+
# this curve is independent of the indicated parameter
|
17 |
+
c = Curve([2*s, s**2], (z, 0, 2))
|
18 |
+
|
19 |
+
assert c.parameter == z
|
20 |
+
assert c.functions == (2*s, s**2)
|
21 |
+
assert c.arbitrary_point() == Point(2*s, s**2)
|
22 |
+
assert c.arbitrary_point(z) == Point(2*s, s**2)
|
23 |
+
|
24 |
+
# this is how it is normally used
|
25 |
+
c = Curve([2*s, s**2], (s, 0, 2))
|
26 |
+
|
27 |
+
assert c.parameter == s
|
28 |
+
assert c.functions == (2*s, s**2)
|
29 |
+
t = Symbol('t')
|
30 |
+
# the t returned as assumptions
|
31 |
+
assert c.arbitrary_point() != Point(2*t, t**2)
|
32 |
+
t = Symbol('t', real=True)
|
33 |
+
# now t has the same assumptions so the test passes
|
34 |
+
assert c.arbitrary_point() == Point(2*t, t**2)
|
35 |
+
assert c.arbitrary_point(z) == Point(2*z, z**2)
|
36 |
+
assert c.arbitrary_point(c.parameter) == Point(2*s, s**2)
|
37 |
+
assert c.arbitrary_point(None) == Point(2*s, s**2)
|
38 |
+
assert c.plot_interval() == [t, 0, 2]
|
39 |
+
assert c.plot_interval(z) == [z, 0, 2]
|
40 |
+
|
41 |
+
assert Curve([x, x], (x, 0, 1)).rotate(pi/2) == Curve([-x, x], (x, 0, 1))
|
42 |
+
assert Curve([x, x], (x, 0, 1)).rotate(pi/2, (1, 2)).scale(2, 3).translate(
|
43 |
+
1, 3).arbitrary_point(s) == \
|
44 |
+
Line((0, 0), (1, 1)).rotate(pi/2, (1, 2)).scale(2, 3).translate(
|
45 |
+
1, 3).arbitrary_point(s) == \
|
46 |
+
Point(-2*s + 7, 3*s + 6)
|
47 |
+
|
48 |
+
raises(ValueError, lambda: Curve((s), (s, 1, 2)))
|
49 |
+
raises(ValueError, lambda: Curve((x, x * 2), (1, x)))
|
50 |
+
|
51 |
+
raises(ValueError, lambda: Curve((s, s + t), (s, 1, 2)).arbitrary_point())
|
52 |
+
raises(ValueError, lambda: Curve((s, s + t), (t, 1, 2)).arbitrary_point(s))
|
53 |
+
|
54 |
+
|
55 |
+
@slow
|
56 |
+
def test_free_symbols():
|
57 |
+
a, b, c, d, e, f, s = symbols('a:f,s')
|
58 |
+
assert Point(a, b).free_symbols == {a, b}
|
59 |
+
assert Line((a, b), (c, d)).free_symbols == {a, b, c, d}
|
60 |
+
assert Ray((a, b), (c, d)).free_symbols == {a, b, c, d}
|
61 |
+
assert Ray((a, b), angle=c).free_symbols == {a, b, c}
|
62 |
+
assert Segment((a, b), (c, d)).free_symbols == {a, b, c, d}
|
63 |
+
assert Line((a, b), slope=c).free_symbols == {a, b, c}
|
64 |
+
assert Curve((a*s, b*s), (s, c, d)).free_symbols == {a, b, c, d}
|
65 |
+
assert Ellipse((a, b), c, d).free_symbols == {a, b, c, d}
|
66 |
+
assert Ellipse((a, b), c, eccentricity=d).free_symbols == \
|
67 |
+
{a, b, c, d}
|
68 |
+
assert Ellipse((a, b), vradius=c, eccentricity=d).free_symbols == \
|
69 |
+
{a, b, c, d}
|
70 |
+
assert Circle((a, b), c).free_symbols == {a, b, c}
|
71 |
+
assert Circle((a, b), (c, d), (e, f)).free_symbols == \
|
72 |
+
{e, d, c, b, f, a}
|
73 |
+
assert Polygon((a, b), (c, d), (e, f)).free_symbols == \
|
74 |
+
{e, b, d, f, a, c}
|
75 |
+
assert RegularPolygon((a, b), c, d, e).free_symbols == {e, a, b, c, d}
|
76 |
+
|
77 |
+
|
78 |
+
def test_transform():
|
79 |
+
x = Symbol('x', real=True)
|
80 |
+
y = Symbol('y', real=True)
|
81 |
+
c = Curve((x, x**2), (x, 0, 1))
|
82 |
+
cout = Curve((2*x - 4, 3*x**2 - 10), (x, 0, 1))
|
83 |
+
pts = [Point(0, 0), Point(S.Half, Rational(1, 4)), Point(1, 1)]
|
84 |
+
pts_out = [Point(-4, -10), Point(-3, Rational(-37, 4)), Point(-2, -7)]
|
85 |
+
|
86 |
+
assert c.scale(2, 3, (4, 5)) == cout
|
87 |
+
assert [c.subs(x, xi/2) for xi in Tuple(0, 1, 2)] == pts
|
88 |
+
assert [cout.subs(x, xi/2) for xi in Tuple(0, 1, 2)] == pts_out
|
89 |
+
assert Curve((x + y, 3*x), (x, 0, 1)).subs(y, S.Half) == \
|
90 |
+
Curve((x + S.Half, 3*x), (x, 0, 1))
|
91 |
+
assert Curve((x, 3*x), (x, 0, 1)).translate(4, 5) == \
|
92 |
+
Curve((x + 4, 3*x + 5), (x, 0, 1))
|
93 |
+
|
94 |
+
|
95 |
+
def test_length():
|
96 |
+
t = Symbol('t', real=True)
|
97 |
+
|
98 |
+
c1 = Curve((t, 0), (t, 0, 1))
|
99 |
+
assert c1.length == 1
|
100 |
+
|
101 |
+
c2 = Curve((t, t), (t, 0, 1))
|
102 |
+
assert c2.length == sqrt(2)
|
103 |
+
|
104 |
+
c3 = Curve((t ** 2, t), (t, 2, 5))
|
105 |
+
assert c3.length == -sqrt(17) - asinh(4) / 4 + asinh(10) / 4 + 5 * sqrt(101) / 2
|
106 |
+
|
107 |
+
|
108 |
+
def test_parameter_value():
|
109 |
+
t = Symbol('t')
|
110 |
+
C = Curve([2*t, t**2], (t, 0, 2))
|
111 |
+
assert C.parameter_value((2, 1), t) == {t: 1}
|
112 |
+
raises(ValueError, lambda: C.parameter_value((2, 0), t))
|
113 |
+
|
114 |
+
|
115 |
+
def test_issue_17997():
|
116 |
+
t, s = symbols('t s')
|
117 |
+
c = Curve((t, t**2), (t, 0, 10))
|
118 |
+
p = Curve([2*s, s**2], (s, 0, 2))
|
119 |
+
assert c(2) == Point(2, 4)
|
120 |
+
assert p(1) == Point(2, 1)
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/test_ellipse.py
ADDED
@@ -0,0 +1,601 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import expand
|
2 |
+
from sympy.core.numbers import (Rational, oo, pi)
|
3 |
+
from sympy.core.relational import Eq
|
4 |
+
from sympy.core.singleton import S
|
5 |
+
from sympy.core.symbol import (Symbol, symbols)
|
6 |
+
from sympy.functions.elementary.complexes import Abs
|
7 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
8 |
+
from sympy.functions.elementary.trigonometric import sec
|
9 |
+
from sympy.geometry.line import Segment2D
|
10 |
+
from sympy.geometry.point import Point2D
|
11 |
+
from sympy.geometry import (Circle, Ellipse, GeometryError, Line, Point,
|
12 |
+
Polygon, Ray, RegularPolygon, Segment,
|
13 |
+
Triangle, intersection)
|
14 |
+
from sympy.testing.pytest import raises, slow
|
15 |
+
from sympy.integrals.integrals import integrate
|
16 |
+
from sympy.functions.special.elliptic_integrals import elliptic_e
|
17 |
+
from sympy.functions.elementary.miscellaneous import Max
|
18 |
+
|
19 |
+
|
20 |
+
def test_ellipse_equation_using_slope():
|
21 |
+
from sympy.abc import x, y
|
22 |
+
|
23 |
+
e1 = Ellipse(Point(1, 0), 3, 2)
|
24 |
+
assert str(e1.equation(_slope=1)) == str((-x + y + 1)**2/8 + (x + y - 1)**2/18 - 1)
|
25 |
+
|
26 |
+
e2 = Ellipse(Point(0, 0), 4, 1)
|
27 |
+
assert str(e2.equation(_slope=1)) == str((-x + y)**2/2 + (x + y)**2/32 - 1)
|
28 |
+
|
29 |
+
e3 = Ellipse(Point(1, 5), 6, 2)
|
30 |
+
assert str(e3.equation(_slope=2)) == str((-2*x + y - 3)**2/20 + (x + 2*y - 11)**2/180 - 1)
|
31 |
+
|
32 |
+
|
33 |
+
def test_object_from_equation():
|
34 |
+
from sympy.abc import x, y, a, b, c, d, e
|
35 |
+
assert Circle(x**2 + y**2 + 3*x + 4*y - 8) == Circle(Point2D(S(-3) / 2, -2), sqrt(57) / 2)
|
36 |
+
assert Circle(x**2 + y**2 + 6*x + 8*y + 25) == Circle(Point2D(-3, -4), 0)
|
37 |
+
assert Circle(a**2 + b**2 + 6*a + 8*b + 25, x='a', y='b') == Circle(Point2D(-3, -4), 0)
|
38 |
+
assert Circle(x**2 + y**2 - 25) == Circle(Point2D(0, 0), 5)
|
39 |
+
assert Circle(x**2 + y**2) == Circle(Point2D(0, 0), 0)
|
40 |
+
assert Circle(a**2 + b**2, x='a', y='b') == Circle(Point2D(0, 0), 0)
|
41 |
+
assert Circle(x**2 + y**2 + 6*x + 8) == Circle(Point2D(-3, 0), 1)
|
42 |
+
assert Circle(x**2 + y**2 + 6*y + 8) == Circle(Point2D(0, -3), 1)
|
43 |
+
assert Circle((x - 1)**2 + y**2 - 9) == Circle(Point2D(1, 0), 3)
|
44 |
+
assert Circle(6*(x**2) + 6*(y**2) + 6*x + 8*y - 25) == Circle(Point2D(Rational(-1, 2), Rational(-2, 3)), 5*sqrt(7)/6)
|
45 |
+
assert Circle(Eq(a**2 + b**2, 25), x='a', y=b) == Circle(Point2D(0, 0), 5)
|
46 |
+
raises(GeometryError, lambda: Circle(x**2 + y**2 + 3*x + 4*y + 26))
|
47 |
+
raises(GeometryError, lambda: Circle(x**2 + y**2 + 25))
|
48 |
+
raises(GeometryError, lambda: Circle(a**2 + b**2 + 25, x='a', y='b'))
|
49 |
+
raises(GeometryError, lambda: Circle(x**2 + 6*y + 8))
|
50 |
+
raises(GeometryError, lambda: Circle(6*(x ** 2) + 4*(y**2) + 6*x + 8*y + 25))
|
51 |
+
raises(ValueError, lambda: Circle(a**2 + b**2 + 3*a + 4*b - 8))
|
52 |
+
# .equation() adds 'real=True' assumption; '==' would fail if assumptions differed
|
53 |
+
x, y = symbols('x y', real=True)
|
54 |
+
eq = a*x**2 + a*y**2 + c*x + d*y + e
|
55 |
+
assert expand(Circle(eq).equation()*a) == eq
|
56 |
+
|
57 |
+
|
58 |
+
@slow
|
59 |
+
def test_ellipse_geom():
|
60 |
+
x = Symbol('x', real=True)
|
61 |
+
y = Symbol('y', real=True)
|
62 |
+
t = Symbol('t', real=True)
|
63 |
+
y1 = Symbol('y1', real=True)
|
64 |
+
half = S.Half
|
65 |
+
p1 = Point(0, 0)
|
66 |
+
p2 = Point(1, 1)
|
67 |
+
p4 = Point(0, 1)
|
68 |
+
|
69 |
+
e1 = Ellipse(p1, 1, 1)
|
70 |
+
e2 = Ellipse(p2, half, 1)
|
71 |
+
e3 = Ellipse(p1, y1, y1)
|
72 |
+
c1 = Circle(p1, 1)
|
73 |
+
c2 = Circle(p2, 1)
|
74 |
+
c3 = Circle(Point(sqrt(2), sqrt(2)), 1)
|
75 |
+
l1 = Line(p1, p2)
|
76 |
+
|
77 |
+
# Test creation with three points
|
78 |
+
cen, rad = Point(3*half, 2), 5*half
|
79 |
+
assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad)
|
80 |
+
assert Circle(Point(0, 0), Point(1, 1), Point(2, 2)) == Segment2D(Point2D(0, 0), Point2D(2, 2))
|
81 |
+
|
82 |
+
raises(ValueError, lambda: Ellipse(None, None, None, 1))
|
83 |
+
raises(ValueError, lambda: Ellipse())
|
84 |
+
raises(GeometryError, lambda: Circle(Point(0, 0)))
|
85 |
+
raises(GeometryError, lambda: Circle(Symbol('x')*Symbol('y')))
|
86 |
+
|
87 |
+
# Basic Stuff
|
88 |
+
assert Ellipse(None, 1, 1).center == Point(0, 0)
|
89 |
+
assert e1 == c1
|
90 |
+
assert e1 != e2
|
91 |
+
assert e1 != l1
|
92 |
+
assert p4 in e1
|
93 |
+
assert e1 in e1
|
94 |
+
assert e2 in e2
|
95 |
+
assert 1 not in e2
|
96 |
+
assert p2 not in e2
|
97 |
+
assert e1.area == pi
|
98 |
+
assert e2.area == pi/2
|
99 |
+
assert e3.area == pi*y1*abs(y1)
|
100 |
+
assert c1.area == e1.area
|
101 |
+
assert c1.circumference == e1.circumference
|
102 |
+
assert e3.circumference == 2*pi*y1
|
103 |
+
assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi]
|
104 |
+
assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi]
|
105 |
+
|
106 |
+
assert c1.minor == 1
|
107 |
+
assert c1.major == 1
|
108 |
+
assert c1.hradius == 1
|
109 |
+
assert c1.vradius == 1
|
110 |
+
|
111 |
+
assert Ellipse((1, 1), 0, 0) == Point(1, 1)
|
112 |
+
assert Ellipse((1, 1), 1, 0) == Segment(Point(0, 1), Point(2, 1))
|
113 |
+
assert Ellipse((1, 1), 0, 1) == Segment(Point(1, 0), Point(1, 2))
|
114 |
+
|
115 |
+
# Private Functions
|
116 |
+
assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1)))
|
117 |
+
assert c1 in e1
|
118 |
+
assert (Line(p1, p2) in e1) is False
|
119 |
+
assert e1.__cmp__(e1) == 0
|
120 |
+
assert e1.__cmp__(Point(0, 0)) > 0
|
121 |
+
|
122 |
+
# Encloses
|
123 |
+
assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True
|
124 |
+
assert e1.encloses(Line(p1, p2)) is False
|
125 |
+
assert e1.encloses(Ray(p1, p2)) is False
|
126 |
+
assert e1.encloses(e1) is False
|
127 |
+
assert e1.encloses(
|
128 |
+
Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True
|
129 |
+
assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True
|
130 |
+
assert e1.encloses(RegularPolygon(p1, 5, 3)) is False
|
131 |
+
assert e1.encloses(RegularPolygon(p2, 5, 3)) is False
|
132 |
+
|
133 |
+
assert e2.arbitrary_point() in e2
|
134 |
+
raises(ValueError, lambda: Ellipse(Point(x, y), 1, 1).arbitrary_point(parameter='x'))
|
135 |
+
|
136 |
+
# Foci
|
137 |
+
f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
|
138 |
+
ef = Ellipse(Point(0, 0), 4, 2)
|
139 |
+
assert ef.foci in [(f1, f2), (f2, f1)]
|
140 |
+
|
141 |
+
# Tangents
|
142 |
+
v = sqrt(2) / 2
|
143 |
+
p1_1 = Point(v, v)
|
144 |
+
p1_2 = p2 + Point(half, 0)
|
145 |
+
p1_3 = p2 + Point(0, 1)
|
146 |
+
assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
|
147 |
+
assert e2.tangent_lines(p1_2) == [Line(Point(Rational(3, 2), 1), Point(Rational(3, 2), S.Half))]
|
148 |
+
assert e2.tangent_lines(p1_3) == [Line(Point(1, 2), Point(Rational(5, 4), 2))]
|
149 |
+
assert c1.tangent_lines(p1_1) != [Line(p1_1, Point(0, sqrt(2)))]
|
150 |
+
assert c1.tangent_lines(p1) == []
|
151 |
+
assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
|
152 |
+
assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
|
153 |
+
assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
|
154 |
+
assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False
|
155 |
+
assert c1.is_tangent(e1) is True
|
156 |
+
assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True
|
157 |
+
assert c1.is_tangent(
|
158 |
+
Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is True
|
159 |
+
assert c1.is_tangent(
|
160 |
+
Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False
|
161 |
+
assert Circle(Point(5, 5), 3).is_tangent(Circle(Point(0, 5), 1)) is False
|
162 |
+
|
163 |
+
assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \
|
164 |
+
[Line(Point(0, 0), Point(Rational(77, 25), Rational(132, 25))),
|
165 |
+
Line(Point(0, 0), Point(Rational(33, 5), Rational(22, 5)))]
|
166 |
+
assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \
|
167 |
+
[Line(Point(3, 4), Point(4, 4)), Line(Point(3, 4), Point(3, 5))]
|
168 |
+
assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \
|
169 |
+
[Line(Point(3, 3), Point(4, 3)), Line(Point(3, 3), Point(3, 4))]
|
170 |
+
assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \
|
171 |
+
[Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))),
|
172 |
+
Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ]
|
173 |
+
assert Circle(Point(5, 5), 5).tangent_lines(Point(4, 0)) == \
|
174 |
+
[Line(Point(4, 0), Point(Rational(40, 13), Rational(5, 13))),
|
175 |
+
Line(Point(4, 0), Point(5, 0))]
|
176 |
+
assert Circle(Point(5, 5), 5).tangent_lines(Point(0, 6)) == \
|
177 |
+
[Line(Point(0, 6), Point(0, 7)),
|
178 |
+
Line(Point(0, 6), Point(Rational(5, 13), Rational(90, 13)))]
|
179 |
+
|
180 |
+
# for numerical calculations, we shouldn't demand exact equality,
|
181 |
+
# so only test up to the desired precision
|
182 |
+
def lines_close(l1, l2, prec):
|
183 |
+
""" tests whether l1 and 12 are within 10**(-prec)
|
184 |
+
of each other """
|
185 |
+
return abs(l1.p1 - l2.p1) < 10**(-prec) and abs(l1.p2 - l2.p2) < 10**(-prec)
|
186 |
+
def line_list_close(ll1, ll2, prec):
|
187 |
+
return all(lines_close(l1, l2, prec) for l1, l2 in zip(ll1, ll2))
|
188 |
+
|
189 |
+
e = Ellipse(Point(0, 0), 2, 1)
|
190 |
+
assert e.normal_lines(Point(0, 0)) == \
|
191 |
+
[Line(Point(0, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))]
|
192 |
+
assert e.normal_lines(Point(1, 0)) == \
|
193 |
+
[Line(Point(0, 0), Point(1, 0))]
|
194 |
+
assert e.normal_lines((0, 1)) == \
|
195 |
+
[Line(Point(0, 0), Point(0, 1))]
|
196 |
+
assert line_list_close(e.normal_lines(Point(1, 1), 2), [
|
197 |
+
Line(Point(Rational(-51, 26), Rational(-1, 5)), Point(Rational(-25, 26), Rational(17, 83))),
|
198 |
+
Line(Point(Rational(28, 29), Rational(-7, 8)), Point(Rational(57, 29), Rational(-9, 2)))], 2)
|
199 |
+
# test the failure of Poly.intervals and checks a point on the boundary
|
200 |
+
p = Point(sqrt(3), S.Half)
|
201 |
+
assert p in e
|
202 |
+
assert line_list_close(e.normal_lines(p, 2), [
|
203 |
+
Line(Point(Rational(-341, 171), Rational(-1, 13)), Point(Rational(-170, 171), Rational(5, 64))),
|
204 |
+
Line(Point(Rational(26, 15), Rational(-1, 2)), Point(Rational(41, 15), Rational(-43, 26)))], 2)
|
205 |
+
# be sure to use the slope that isn't undefined on boundary
|
206 |
+
e = Ellipse((0, 0), 2, 2*sqrt(3)/3)
|
207 |
+
assert line_list_close(e.normal_lines((1, 1), 2), [
|
208 |
+
Line(Point(Rational(-64, 33), Rational(-20, 71)), Point(Rational(-31, 33), Rational(2, 13))),
|
209 |
+
Line(Point(1, -1), Point(2, -4))], 2)
|
210 |
+
# general ellipse fails except under certain conditions
|
211 |
+
e = Ellipse((0, 0), x, 1)
|
212 |
+
assert e.normal_lines((x + 1, 0)) == [Line(Point(0, 0), Point(1, 0))]
|
213 |
+
raises(NotImplementedError, lambda: e.normal_lines((x + 1, 1)))
|
214 |
+
# Properties
|
215 |
+
major = 3
|
216 |
+
minor = 1
|
217 |
+
e4 = Ellipse(p2, minor, major)
|
218 |
+
assert e4.focus_distance == sqrt(major**2 - minor**2)
|
219 |
+
ecc = e4.focus_distance / major
|
220 |
+
assert e4.eccentricity == ecc
|
221 |
+
assert e4.periapsis == major*(1 - ecc)
|
222 |
+
assert e4.apoapsis == major*(1 + ecc)
|
223 |
+
assert e4.semilatus_rectum == major*(1 - ecc ** 2)
|
224 |
+
# independent of orientation
|
225 |
+
e4 = Ellipse(p2, major, minor)
|
226 |
+
assert e4.focus_distance == sqrt(major**2 - minor**2)
|
227 |
+
ecc = e4.focus_distance / major
|
228 |
+
assert e4.eccentricity == ecc
|
229 |
+
assert e4.periapsis == major*(1 - ecc)
|
230 |
+
assert e4.apoapsis == major*(1 + ecc)
|
231 |
+
|
232 |
+
# Intersection
|
233 |
+
l1 = Line(Point(1, -5), Point(1, 5))
|
234 |
+
l2 = Line(Point(-5, -1), Point(5, -1))
|
235 |
+
l3 = Line(Point(-1, -1), Point(1, 1))
|
236 |
+
l4 = Line(Point(-10, 0), Point(0, 10))
|
237 |
+
pts_c1_l3 = [Point(sqrt(2)/2, sqrt(2)/2), Point(-sqrt(2)/2, -sqrt(2)/2)]
|
238 |
+
|
239 |
+
assert intersection(e2, l4) == []
|
240 |
+
assert intersection(c1, Point(1, 0)) == [Point(1, 0)]
|
241 |
+
assert intersection(c1, l1) == [Point(1, 0)]
|
242 |
+
assert intersection(c1, l2) == [Point(0, -1)]
|
243 |
+
assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]]
|
244 |
+
assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)]
|
245 |
+
assert intersection(c1, c3) == [Point(sqrt(2)/2, sqrt(2)/2)]
|
246 |
+
assert e1.intersection(l1) == [Point(1, 0)]
|
247 |
+
assert e2.intersection(l4) == []
|
248 |
+
assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)]
|
249 |
+
assert e1.intersection(Circle(Point(5, 0), 1)) == []
|
250 |
+
assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)]
|
251 |
+
assert e1.intersection(Ellipse(Point(5, 0), 1, 1)) == []
|
252 |
+
assert e1.intersection(Point(2, 0)) == []
|
253 |
+
assert e1.intersection(e1) == e1
|
254 |
+
assert intersection(Ellipse(Point(0, 0), 2, 1), Ellipse(Point(3, 0), 1, 2)) == [Point(2, 0)]
|
255 |
+
assert intersection(Circle(Point(0, 0), 2), Circle(Point(3, 0), 1)) == [Point(2, 0)]
|
256 |
+
assert intersection(Circle(Point(0, 0), 2), Circle(Point(7, 0), 1)) == []
|
257 |
+
assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 1, 0.2)) == [Point(5, 0)]
|
258 |
+
assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 0.999, 0.2)) == []
|
259 |
+
assert Circle((0, 0), S.Half).intersection(
|
260 |
+
Triangle((-1, 0), (1, 0), (0, 1))) == [
|
261 |
+
Point(Rational(-1, 2), 0), Point(S.Half, 0)]
|
262 |
+
raises(TypeError, lambda: intersection(e2, Line((0, 0, 0), (0, 0, 1))))
|
263 |
+
raises(TypeError, lambda: intersection(e2, Rational(12)))
|
264 |
+
raises(TypeError, lambda: Ellipse.intersection(e2, 1))
|
265 |
+
# some special case intersections
|
266 |
+
csmall = Circle(p1, 3)
|
267 |
+
cbig = Circle(p1, 5)
|
268 |
+
cout = Circle(Point(5, 5), 1)
|
269 |
+
# one circle inside of another
|
270 |
+
assert csmall.intersection(cbig) == []
|
271 |
+
# separate circles
|
272 |
+
assert csmall.intersection(cout) == []
|
273 |
+
# coincident circles
|
274 |
+
assert csmall.intersection(csmall) == csmall
|
275 |
+
|
276 |
+
v = sqrt(2)
|
277 |
+
t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0))
|
278 |
+
points = intersection(t1, c1)
|
279 |
+
assert len(points) == 4
|
280 |
+
assert Point(0, 1) in points
|
281 |
+
assert Point(0, -1) in points
|
282 |
+
assert Point(v/2, v/2) in points
|
283 |
+
assert Point(v/2, -v/2) in points
|
284 |
+
|
285 |
+
circ = Circle(Point(0, 0), 5)
|
286 |
+
elip = Ellipse(Point(0, 0), 5, 20)
|
287 |
+
assert intersection(circ, elip) in \
|
288 |
+
[[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]]
|
289 |
+
assert elip.tangent_lines(Point(0, 0)) == []
|
290 |
+
elip = Ellipse(Point(0, 0), 3, 2)
|
291 |
+
assert elip.tangent_lines(Point(3, 0)) == \
|
292 |
+
[Line(Point(3, 0), Point(3, -12))]
|
293 |
+
|
294 |
+
e1 = Ellipse(Point(0, 0), 5, 10)
|
295 |
+
e2 = Ellipse(Point(2, 1), 4, 8)
|
296 |
+
a = Rational(53, 17)
|
297 |
+
c = 2*sqrt(3991)/17
|
298 |
+
ans = [Point(a - c/8, a/2 + c), Point(a + c/8, a/2 - c)]
|
299 |
+
assert e1.intersection(e2) == ans
|
300 |
+
e2 = Ellipse(Point(x, y), 4, 8)
|
301 |
+
c = sqrt(3991)
|
302 |
+
ans = [Point(-c/68 + a, c*Rational(2, 17) + a/2), Point(c/68 + a, c*Rational(-2, 17) + a/2)]
|
303 |
+
assert [p.subs({x: 2, y:1}) for p in e1.intersection(e2)] == ans
|
304 |
+
|
305 |
+
# Combinations of above
|
306 |
+
assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0])
|
307 |
+
|
308 |
+
e = Ellipse((1, 2), 3, 2)
|
309 |
+
assert e.tangent_lines(Point(10, 0)) == \
|
310 |
+
[Line(Point(10, 0), Point(1, 0)),
|
311 |
+
Line(Point(10, 0), Point(Rational(14, 5), Rational(18, 5)))]
|
312 |
+
|
313 |
+
# encloses_point
|
314 |
+
e = Ellipse((0, 0), 1, 2)
|
315 |
+
assert e.encloses_point(e.center)
|
316 |
+
assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
|
317 |
+
assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
|
318 |
+
assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
|
319 |
+
assert e.encloses_point(
|
320 |
+
e.center + Point(e.hradius + Rational(1, 10), 0)) is False
|
321 |
+
e = Ellipse((0, 0), 2, 1)
|
322 |
+
assert e.encloses_point(e.center)
|
323 |
+
assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
|
324 |
+
assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
|
325 |
+
assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
|
326 |
+
assert e.encloses_point(
|
327 |
+
e.center + Point(e.hradius + Rational(1, 10), 0)) is False
|
328 |
+
assert c1.encloses_point(Point(1, 0)) is False
|
329 |
+
assert c1.encloses_point(Point(0.3, 0.4)) is True
|
330 |
+
|
331 |
+
assert e.scale(2, 3) == Ellipse((0, 0), 4, 3)
|
332 |
+
assert e.scale(3, 6) == Ellipse((0, 0), 6, 6)
|
333 |
+
assert e.rotate(pi) == e
|
334 |
+
assert e.rotate(pi, (1, 2)) == Ellipse(Point(2, 4), 2, 1)
|
335 |
+
raises(NotImplementedError, lambda: e.rotate(pi/3))
|
336 |
+
|
337 |
+
# Circle rotation tests (Issue #11743)
|
338 |
+
# Link - https://github.com/sympy/sympy/issues/11743
|
339 |
+
cir = Circle(Point(1, 0), 1)
|
340 |
+
assert cir.rotate(pi/2) == Circle(Point(0, 1), 1)
|
341 |
+
assert cir.rotate(pi/3) == Circle(Point(S.Half, sqrt(3)/2), 1)
|
342 |
+
assert cir.rotate(pi/3, Point(1, 0)) == Circle(Point(1, 0), 1)
|
343 |
+
assert cir.rotate(pi/3, Point(0, 1)) == Circle(Point(S.Half + sqrt(3)/2, S.Half + sqrt(3)/2), 1)
|
344 |
+
|
345 |
+
|
346 |
+
def test_construction():
|
347 |
+
e1 = Ellipse(hradius=2, vradius=1, eccentricity=None)
|
348 |
+
assert e1.eccentricity == sqrt(3)/2
|
349 |
+
|
350 |
+
e2 = Ellipse(hradius=2, vradius=None, eccentricity=sqrt(3)/2)
|
351 |
+
assert e2.vradius == 1
|
352 |
+
|
353 |
+
e3 = Ellipse(hradius=None, vradius=1, eccentricity=sqrt(3)/2)
|
354 |
+
assert e3.hradius == 2
|
355 |
+
|
356 |
+
# filter(None, iterator) filters out anything falsey, including 0
|
357 |
+
# eccentricity would be filtered out in this case and the constructor would throw an error
|
358 |
+
e4 = Ellipse(Point(0, 0), hradius=1, eccentricity=0)
|
359 |
+
assert e4.vradius == 1
|
360 |
+
|
361 |
+
#tests for eccentricity > 1
|
362 |
+
raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity = S(3)/2))
|
363 |
+
raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity=sec(5)))
|
364 |
+
raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity=S.Pi-S(2)))
|
365 |
+
|
366 |
+
#tests for eccentricity = 1
|
367 |
+
#if vradius is not defined
|
368 |
+
assert Ellipse(None, 1, None, 1).length == 2
|
369 |
+
#if hradius is not defined
|
370 |
+
raises(GeometryError, lambda: Ellipse(None, None, 1, eccentricity = 1))
|
371 |
+
|
372 |
+
#tests for eccentricity < 0
|
373 |
+
raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity = -3))
|
374 |
+
raises(GeometryError, lambda: Ellipse(Point(3, 1), hradius=3, eccentricity = -0.5))
|
375 |
+
|
376 |
+
def test_ellipse_random_point():
|
377 |
+
y1 = Symbol('y1', real=True)
|
378 |
+
e3 = Ellipse(Point(0, 0), y1, y1)
|
379 |
+
rx, ry = Symbol('rx'), Symbol('ry')
|
380 |
+
for ind in range(0, 5):
|
381 |
+
r = e3.random_point()
|
382 |
+
# substitution should give zero*y1**2
|
383 |
+
assert e3.equation(rx, ry).subs(zip((rx, ry), r.args)).equals(0)
|
384 |
+
# test for the case with seed
|
385 |
+
r = e3.random_point(seed=1)
|
386 |
+
assert e3.equation(rx, ry).subs(zip((rx, ry), r.args)).equals(0)
|
387 |
+
|
388 |
+
|
389 |
+
def test_repr():
|
390 |
+
assert repr(Circle((0, 1), 2)) == 'Circle(Point2D(0, 1), 2)'
|
391 |
+
|
392 |
+
|
393 |
+
def test_transform():
|
394 |
+
c = Circle((1, 1), 2)
|
395 |
+
assert c.scale(-1) == Circle((-1, 1), 2)
|
396 |
+
assert c.scale(y=-1) == Circle((1, -1), 2)
|
397 |
+
assert c.scale(2) == Ellipse((2, 1), 4, 2)
|
398 |
+
|
399 |
+
assert Ellipse((0, 0), 2, 3).scale(2, 3, (4, 5)) == \
|
400 |
+
Ellipse(Point(-4, -10), 4, 9)
|
401 |
+
assert Circle((0, 0), 2).scale(2, 3, (4, 5)) == \
|
402 |
+
Ellipse(Point(-4, -10), 4, 6)
|
403 |
+
assert Ellipse((0, 0), 2, 3).scale(3, 3, (4, 5)) == \
|
404 |
+
Ellipse(Point(-8, -10), 6, 9)
|
405 |
+
assert Circle((0, 0), 2).scale(3, 3, (4, 5)) == \
|
406 |
+
Circle(Point(-8, -10), 6)
|
407 |
+
assert Circle(Point(-8, -10), 6).scale(Rational(1, 3), Rational(1, 3), (4, 5)) == \
|
408 |
+
Circle((0, 0), 2)
|
409 |
+
assert Circle((0, 0), 2).translate(4, 5) == \
|
410 |
+
Circle((4, 5), 2)
|
411 |
+
assert Circle((0, 0), 2).scale(3, 3) == \
|
412 |
+
Circle((0, 0), 6)
|
413 |
+
|
414 |
+
|
415 |
+
def test_bounds():
|
416 |
+
e1 = Ellipse(Point(0, 0), 3, 5)
|
417 |
+
e2 = Ellipse(Point(2, -2), 7, 7)
|
418 |
+
c1 = Circle(Point(2, -2), 7)
|
419 |
+
c2 = Circle(Point(-2, 0), Point(0, 2), Point(2, 0))
|
420 |
+
assert e1.bounds == (-3, -5, 3, 5)
|
421 |
+
assert e2.bounds == (-5, -9, 9, 5)
|
422 |
+
assert c1.bounds == (-5, -9, 9, 5)
|
423 |
+
assert c2.bounds == (-2, -2, 2, 2)
|
424 |
+
|
425 |
+
|
426 |
+
def test_reflect():
|
427 |
+
b = Symbol('b')
|
428 |
+
m = Symbol('m')
|
429 |
+
l = Line((0, b), slope=m)
|
430 |
+
t1 = Triangle((0, 0), (1, 0), (2, 3))
|
431 |
+
assert t1.area == -t1.reflect(l).area
|
432 |
+
e = Ellipse((1, 0), 1, 2)
|
433 |
+
assert e.area == -e.reflect(Line((1, 0), slope=0)).area
|
434 |
+
assert e.area == -e.reflect(Line((1, 0), slope=oo)).area
|
435 |
+
raises(NotImplementedError, lambda: e.reflect(Line((1, 0), slope=m)))
|
436 |
+
assert Circle((0, 1), 1).reflect(Line((0, 0), (1, 1))) == Circle(Point2D(1, 0), -1)
|
437 |
+
|
438 |
+
|
439 |
+
def test_is_tangent():
|
440 |
+
e1 = Ellipse(Point(0, 0), 3, 5)
|
441 |
+
c1 = Circle(Point(2, -2), 7)
|
442 |
+
assert e1.is_tangent(Point(0, 0)) is False
|
443 |
+
assert e1.is_tangent(Point(3, 0)) is False
|
444 |
+
assert e1.is_tangent(e1) is True
|
445 |
+
assert e1.is_tangent(Ellipse((0, 0), 1, 2)) is False
|
446 |
+
assert e1.is_tangent(Ellipse((0, 0), 3, 2)) is True
|
447 |
+
assert c1.is_tangent(Ellipse((2, -2), 7, 1)) is True
|
448 |
+
assert c1.is_tangent(Circle((11, -2), 2)) is True
|
449 |
+
assert c1.is_tangent(Circle((7, -2), 2)) is True
|
450 |
+
assert c1.is_tangent(Ray((-5, -2), (-15, -20))) is False
|
451 |
+
assert c1.is_tangent(Ray((-3, -2), (-15, -20))) is False
|
452 |
+
assert c1.is_tangent(Ray((-3, -22), (15, 20))) is False
|
453 |
+
assert c1.is_tangent(Ray((9, 20), (9, -20))) is True
|
454 |
+
assert e1.is_tangent(Segment((2, 2), (-7, 7))) is False
|
455 |
+
assert e1.is_tangent(Segment((0, 0), (1, 2))) is False
|
456 |
+
assert c1.is_tangent(Segment((0, 0), (-5, -2))) is False
|
457 |
+
assert e1.is_tangent(Segment((3, 0), (12, 12))) is False
|
458 |
+
assert e1.is_tangent(Segment((12, 12), (3, 0))) is False
|
459 |
+
assert e1.is_tangent(Segment((-3, 0), (3, 0))) is False
|
460 |
+
assert e1.is_tangent(Segment((-3, 5), (3, 5))) is True
|
461 |
+
assert e1.is_tangent(Line((10, 0), (10, 10))) is False
|
462 |
+
assert e1.is_tangent(Line((0, 0), (1, 1))) is False
|
463 |
+
assert e1.is_tangent(Line((-3, 0), (-2.99, -0.001))) is False
|
464 |
+
assert e1.is_tangent(Line((-3, 0), (-3, 1))) is True
|
465 |
+
assert e1.is_tangent(Polygon((0, 0), (5, 5), (5, -5))) is False
|
466 |
+
assert e1.is_tangent(Polygon((-100, -50), (-40, -334), (-70, -52))) is False
|
467 |
+
assert e1.is_tangent(Polygon((-3, 0), (3, 0), (0, 1))) is False
|
468 |
+
assert e1.is_tangent(Polygon((-3, 0), (3, 0), (0, 5))) is False
|
469 |
+
assert e1.is_tangent(Polygon((-3, 0), (0, -5), (3, 0), (0, 5))) is False
|
470 |
+
assert e1.is_tangent(Polygon((-3, -5), (-3, 5), (3, 5), (3, -5))) is True
|
471 |
+
assert c1.is_tangent(Polygon((-3, -5), (-3, 5), (3, 5), (3, -5))) is False
|
472 |
+
assert e1.is_tangent(Polygon((0, 0), (3, 0), (7, 7), (0, 5))) is False
|
473 |
+
assert e1.is_tangent(Polygon((3, 12), (3, -12), (6, 5))) is True
|
474 |
+
assert e1.is_tangent(Polygon((3, 12), (3, -12), (0, -5), (0, 5))) is False
|
475 |
+
assert e1.is_tangent(Polygon((3, 0), (5, 7), (6, -5))) is False
|
476 |
+
raises(TypeError, lambda: e1.is_tangent(Point(0, 0, 0)))
|
477 |
+
raises(TypeError, lambda: e1.is_tangent(Rational(5)))
|
478 |
+
|
479 |
+
|
480 |
+
def test_parameter_value():
|
481 |
+
t = Symbol('t')
|
482 |
+
e = Ellipse(Point(0, 0), 3, 5)
|
483 |
+
assert e.parameter_value((3, 0), t) == {t: 0}
|
484 |
+
raises(ValueError, lambda: e.parameter_value((4, 0), t))
|
485 |
+
|
486 |
+
|
487 |
+
@slow
|
488 |
+
def test_second_moment_of_area():
|
489 |
+
x, y = symbols('x, y')
|
490 |
+
e = Ellipse(Point(0, 0), 5, 4)
|
491 |
+
I_yy = 2*4*integrate(sqrt(25 - x**2)*x**2, (x, -5, 5))/5
|
492 |
+
I_xx = 2*5*integrate(sqrt(16 - y**2)*y**2, (y, -4, 4))/4
|
493 |
+
Y = 3*sqrt(1 - x**2/5**2)
|
494 |
+
I_xy = integrate(integrate(y, (y, -Y, Y))*x, (x, -5, 5))
|
495 |
+
assert I_yy == e.second_moment_of_area()[1]
|
496 |
+
assert I_xx == e.second_moment_of_area()[0]
|
497 |
+
assert I_xy == e.second_moment_of_area()[2]
|
498 |
+
#checking for other point
|
499 |
+
t1 = e.second_moment_of_area(Point(6,5))
|
500 |
+
t2 = (580*pi, 845*pi, 600*pi)
|
501 |
+
assert t1==t2
|
502 |
+
|
503 |
+
|
504 |
+
def test_section_modulus_and_polar_second_moment_of_area():
|
505 |
+
d = Symbol('d', positive=True)
|
506 |
+
c = Circle((3, 7), 8)
|
507 |
+
assert c.polar_second_moment_of_area() == 2048*pi
|
508 |
+
assert c.section_modulus() == (128*pi, 128*pi)
|
509 |
+
c = Circle((2, 9), d/2)
|
510 |
+
assert c.polar_second_moment_of_area() == pi*d**3*Abs(d)/64 + pi*d*Abs(d)**3/64
|
511 |
+
assert c.section_modulus() == (pi*d**3/S(32), pi*d**3/S(32))
|
512 |
+
|
513 |
+
a, b = symbols('a, b', positive=True)
|
514 |
+
e = Ellipse((4, 6), a, b)
|
515 |
+
assert e.section_modulus() == (pi*a*b**2/S(4), pi*a**2*b/S(4))
|
516 |
+
assert e.polar_second_moment_of_area() == pi*a**3*b/S(4) + pi*a*b**3/S(4)
|
517 |
+
e = e.rotate(pi/2) # no change in polar and section modulus
|
518 |
+
assert e.section_modulus() == (pi*a**2*b/S(4), pi*a*b**2/S(4))
|
519 |
+
assert e.polar_second_moment_of_area() == pi*a**3*b/S(4) + pi*a*b**3/S(4)
|
520 |
+
|
521 |
+
e = Ellipse((a, b), 2, 6)
|
522 |
+
assert e.section_modulus() == (18*pi, 6*pi)
|
523 |
+
assert e.polar_second_moment_of_area() == 120*pi
|
524 |
+
|
525 |
+
e = Ellipse(Point(0, 0), 2, 2)
|
526 |
+
assert e.section_modulus() == (2*pi, 2*pi)
|
527 |
+
assert e.section_modulus(Point(2, 2)) == (2*pi, 2*pi)
|
528 |
+
assert e.section_modulus((2, 2)) == (2*pi, 2*pi)
|
529 |
+
|
530 |
+
|
531 |
+
def test_circumference():
|
532 |
+
M = Symbol('M')
|
533 |
+
m = Symbol('m')
|
534 |
+
assert Ellipse(Point(0, 0), M, m).circumference == 4 * M * elliptic_e((M ** 2 - m ** 2) / M**2)
|
535 |
+
|
536 |
+
assert Ellipse(Point(0, 0), 5, 4).circumference == 20 * elliptic_e(S(9) / 25)
|
537 |
+
|
538 |
+
# circle
|
539 |
+
assert Ellipse(None, 1, None, 0).circumference == 2*pi
|
540 |
+
|
541 |
+
# test numerically
|
542 |
+
assert abs(Ellipse(None, hradius=5, vradius=3).circumference.evalf(16) - 25.52699886339813) < 1e-10
|
543 |
+
|
544 |
+
|
545 |
+
def test_issue_15259():
|
546 |
+
assert Circle((1, 2), 0) == Point(1, 2)
|
547 |
+
|
548 |
+
|
549 |
+
def test_issue_15797_equals():
|
550 |
+
Ri = 0.024127189424130748
|
551 |
+
Ci = (0.0864931002830291, 0.0819863295239654)
|
552 |
+
A = Point(0, 0.0578591400998346)
|
553 |
+
c = Circle(Ci, Ri) # evaluated
|
554 |
+
assert c.is_tangent(c.tangent_lines(A)[0]) == True
|
555 |
+
assert c.center.x.is_Rational
|
556 |
+
assert c.center.y.is_Rational
|
557 |
+
assert c.radius.is_Rational
|
558 |
+
u = Circle(Ci, Ri, evaluate=False) # unevaluated
|
559 |
+
assert u.center.x.is_Float
|
560 |
+
assert u.center.y.is_Float
|
561 |
+
assert u.radius.is_Float
|
562 |
+
|
563 |
+
|
564 |
+
def test_auxiliary_circle():
|
565 |
+
x, y, a, b = symbols('x y a b')
|
566 |
+
e = Ellipse((x, y), a, b)
|
567 |
+
# the general result
|
568 |
+
assert e.auxiliary_circle() == Circle((x, y), Max(a, b))
|
569 |
+
# a special case where Ellipse is a Circle
|
570 |
+
assert Circle((3, 4), 8).auxiliary_circle() == Circle((3, 4), 8)
|
571 |
+
|
572 |
+
|
573 |
+
def test_director_circle():
|
574 |
+
x, y, a, b = symbols('x y a b')
|
575 |
+
e = Ellipse((x, y), a, b)
|
576 |
+
# the general result
|
577 |
+
assert e.director_circle() == Circle((x, y), sqrt(a**2 + b**2))
|
578 |
+
# a special case where Ellipse is a Circle
|
579 |
+
assert Circle((3, 4), 8).director_circle() == Circle((3, 4), 8*sqrt(2))
|
580 |
+
|
581 |
+
|
582 |
+
def test_evolute():
|
583 |
+
#ellipse centered at h,k
|
584 |
+
x, y, h, k = symbols('x y h k',real = True)
|
585 |
+
a, b = symbols('a b')
|
586 |
+
e = Ellipse(Point(h, k), a, b)
|
587 |
+
t1 = (e.hradius*(x - e.center.x))**Rational(2, 3)
|
588 |
+
t2 = (e.vradius*(y - e.center.y))**Rational(2, 3)
|
589 |
+
E = t1 + t2 - (e.hradius**2 - e.vradius**2)**Rational(2, 3)
|
590 |
+
assert e.evolute() == E
|
591 |
+
#Numerical Example
|
592 |
+
e = Ellipse(Point(1, 1), 6, 3)
|
593 |
+
t1 = (6*(x - 1))**Rational(2, 3)
|
594 |
+
t2 = (3*(y - 1))**Rational(2, 3)
|
595 |
+
E = t1 + t2 - (27)**Rational(2, 3)
|
596 |
+
assert e.evolute() == E
|
597 |
+
|
598 |
+
|
599 |
+
def test_svg():
|
600 |
+
e1 = Ellipse(Point(1, 0), 3, 2)
|
601 |
+
assert e1._svg(2, "#FFAAFF") == '<ellipse fill="#FFAAFF" stroke="#555555" stroke-width="4.0" opacity="0.6" cx="1.00000000000000" cy="0" rx="3.00000000000000" ry="2.00000000000000"/>'
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/test_entity.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import (Rational, pi)
|
2 |
+
from sympy.core.singleton import S
|
3 |
+
from sympy.core.symbol import Symbol
|
4 |
+
from sympy.geometry import (Circle, Ellipse, Point, Line, Parabola,
|
5 |
+
Polygon, Ray, RegularPolygon, Segment, Triangle, Plane, Curve)
|
6 |
+
from sympy.geometry.entity import scale, GeometryEntity
|
7 |
+
from sympy.testing.pytest import raises
|
8 |
+
|
9 |
+
|
10 |
+
def test_entity():
|
11 |
+
x = Symbol('x', real=True)
|
12 |
+
y = Symbol('y', real=True)
|
13 |
+
|
14 |
+
assert GeometryEntity(x, y) in GeometryEntity(x, y)
|
15 |
+
raises(NotImplementedError, lambda: Point(0, 0) in GeometryEntity(x, y))
|
16 |
+
|
17 |
+
assert GeometryEntity(x, y) == GeometryEntity(x, y)
|
18 |
+
assert GeometryEntity(x, y).equals(GeometryEntity(x, y))
|
19 |
+
|
20 |
+
c = Circle((0, 0), 5)
|
21 |
+
assert GeometryEntity.encloses(c, Point(0, 0))
|
22 |
+
assert GeometryEntity.encloses(c, Segment((0, 0), (1, 1)))
|
23 |
+
assert GeometryEntity.encloses(c, Line((0, 0), (1, 1))) is False
|
24 |
+
assert GeometryEntity.encloses(c, Circle((0, 0), 4))
|
25 |
+
assert GeometryEntity.encloses(c, Polygon(Point(0, 0), Point(1, 0), Point(0, 1)))
|
26 |
+
assert GeometryEntity.encloses(c, RegularPolygon(Point(8, 8), 1, 3)) is False
|
27 |
+
|
28 |
+
|
29 |
+
def test_svg():
|
30 |
+
a = Symbol('a')
|
31 |
+
b = Symbol('b')
|
32 |
+
d = Symbol('d')
|
33 |
+
|
34 |
+
entity = Circle(Point(a, b), d)
|
35 |
+
assert entity._repr_svg_() is None
|
36 |
+
|
37 |
+
entity = Circle(Point(0, 0), S.Infinity)
|
38 |
+
assert entity._repr_svg_() is None
|
39 |
+
|
40 |
+
|
41 |
+
def test_subs():
|
42 |
+
x = Symbol('x', real=True)
|
43 |
+
y = Symbol('y', real=True)
|
44 |
+
p = Point(x, 2)
|
45 |
+
q = Point(1, 1)
|
46 |
+
r = Point(3, 4)
|
47 |
+
for o in [p,
|
48 |
+
Segment(p, q),
|
49 |
+
Ray(p, q),
|
50 |
+
Line(p, q),
|
51 |
+
Triangle(p, q, r),
|
52 |
+
RegularPolygon(p, 3, 6),
|
53 |
+
Polygon(p, q, r, Point(5, 4)),
|
54 |
+
Circle(p, 3),
|
55 |
+
Ellipse(p, 3, 4)]:
|
56 |
+
assert 'y' in str(o.subs(x, y))
|
57 |
+
assert p.subs({x: 1}) == Point(1, 2)
|
58 |
+
assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4)
|
59 |
+
assert Point(1, 2).subs((1, 2), Point(3, 4)) == Point(3, 4)
|
60 |
+
assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4)
|
61 |
+
assert Point(1, 2).subs({(1, 2)}) == Point(2, 2)
|
62 |
+
raises(ValueError, lambda: Point(1, 2).subs(1))
|
63 |
+
raises(ValueError, lambda: Point(1, 1).subs((Point(1, 1), Point(1,
|
64 |
+
2)), 1, 2))
|
65 |
+
|
66 |
+
|
67 |
+
def test_transform():
|
68 |
+
assert scale(1, 2, (3, 4)).tolist() == \
|
69 |
+
[[1, 0, 0], [0, 2, 0], [0, -4, 1]]
|
70 |
+
|
71 |
+
|
72 |
+
def test_reflect_entity_overrides():
|
73 |
+
x = Symbol('x', real=True)
|
74 |
+
y = Symbol('y', real=True)
|
75 |
+
b = Symbol('b')
|
76 |
+
m = Symbol('m')
|
77 |
+
l = Line((0, b), slope=m)
|
78 |
+
p = Point(x, y)
|
79 |
+
r = p.reflect(l)
|
80 |
+
c = Circle((x, y), 3)
|
81 |
+
cr = c.reflect(l)
|
82 |
+
assert cr == Circle(r, -3)
|
83 |
+
assert c.area == -cr.area
|
84 |
+
|
85 |
+
pent = RegularPolygon((1, 2), 1, 5)
|
86 |
+
slope = S.ComplexInfinity
|
87 |
+
while slope is S.ComplexInfinity:
|
88 |
+
slope = Rational(*(x._random()/2).as_real_imag())
|
89 |
+
l = Line(pent.vertices[1], slope=slope)
|
90 |
+
rpent = pent.reflect(l)
|
91 |
+
assert rpent.center == pent.center.reflect(l)
|
92 |
+
rvert = [i.reflect(l) for i in pent.vertices]
|
93 |
+
for v in rpent.vertices:
|
94 |
+
for i in range(len(rvert)):
|
95 |
+
ri = rvert[i]
|
96 |
+
if ri.equals(v):
|
97 |
+
rvert.remove(ri)
|
98 |
+
break
|
99 |
+
assert not rvert
|
100 |
+
assert pent.area.equals(-rpent.area)
|
101 |
+
|
102 |
+
|
103 |
+
def test_geometry_EvalfMixin():
|
104 |
+
x = pi
|
105 |
+
t = Symbol('t')
|
106 |
+
for g in [
|
107 |
+
Point(x, x),
|
108 |
+
Plane(Point(0, x, 0), (0, 0, x)),
|
109 |
+
Curve((x*t, x), (t, 0, x)),
|
110 |
+
Ellipse((x, x), x, -x),
|
111 |
+
Circle((x, x), x),
|
112 |
+
Line((0, x), (x, 0)),
|
113 |
+
Segment((0, x), (x, 0)),
|
114 |
+
Ray((0, x), (x, 0)),
|
115 |
+
Parabola((0, x), Line((-x, 0), (x, 0))),
|
116 |
+
Polygon((0, 0), (0, x), (x, 0), (x, x)),
|
117 |
+
RegularPolygon((0, x), x, 4, x),
|
118 |
+
Triangle((0, 0), (x, 0), (x, x)),
|
119 |
+
]:
|
120 |
+
assert str(g).replace('pi', '3.1') == str(g.n(2))
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/test_geometrysets.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import Rational
|
2 |
+
from sympy.core.singleton import S
|
3 |
+
from sympy.geometry import Circle, Line, Point, Polygon, Segment
|
4 |
+
from sympy.sets import FiniteSet, Union, Intersection, EmptySet
|
5 |
+
|
6 |
+
|
7 |
+
def test_booleans():
|
8 |
+
""" test basic unions and intersections """
|
9 |
+
half = S.Half
|
10 |
+
|
11 |
+
p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
|
12 |
+
p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)])
|
13 |
+
l1 = Line(Point(0,0), Point(1,1))
|
14 |
+
l2 = Line(Point(half, half), Point(5,5))
|
15 |
+
l3 = Line(p2, p3)
|
16 |
+
l4 = Line(p3, p4)
|
17 |
+
poly1 = Polygon(p1, p2, p3, p4)
|
18 |
+
poly2 = Polygon(p5, p6, p7)
|
19 |
+
poly3 = Polygon(p1, p2, p5)
|
20 |
+
assert Union(l1, l2).equals(l1)
|
21 |
+
assert Intersection(l1, l2).equals(l1)
|
22 |
+
assert Intersection(l1, l4) == FiniteSet(Point(1,1))
|
23 |
+
assert Intersection(Union(l1, l4), l3) == FiniteSet(Point(Rational(-1, 3), Rational(-1, 3)), Point(5, 1))
|
24 |
+
assert Intersection(l1, FiniteSet(Point(7,-7))) == EmptySet
|
25 |
+
assert Intersection(Circle(Point(0,0), 3), Line(p1,p2)) == FiniteSet(Point(-3,0), Point(3,0))
|
26 |
+
assert Intersection(l1, FiniteSet(p1)) == FiniteSet(p1)
|
27 |
+
assert Union(l1, FiniteSet(p1)) == l1
|
28 |
+
|
29 |
+
fs = FiniteSet(Point(Rational(1, 3), 1), Point(Rational(2, 3), 0), Point(Rational(9, 5), Rational(1, 5)), Point(Rational(7, 3), 1))
|
30 |
+
# test the intersection of polygons
|
31 |
+
assert Intersection(poly1, poly2) == fs
|
32 |
+
# make sure if we union polygons with subsets, the subsets go away
|
33 |
+
assert Union(poly1, poly2, fs) == Union(poly1, poly2)
|
34 |
+
# make sure that if we union with a FiniteSet that isn't a subset,
|
35 |
+
# that the points in the intersection stop being listed
|
36 |
+
assert Union(poly1, FiniteSet(Point(0,0), Point(3,5))) == Union(poly1, FiniteSet(Point(3,5)))
|
37 |
+
# intersect two polygons that share an edge
|
38 |
+
assert Intersection(poly1, poly3) == Union(FiniteSet(Point(Rational(3, 2), 1), Point(2, 1)), Segment(Point(0, 0), Point(1, 0)))
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/test_line.py
ADDED
@@ -0,0 +1,852 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import (Float, Rational, oo, pi)
|
2 |
+
from sympy.core.relational import Eq
|
3 |
+
from sympy.core.singleton import S
|
4 |
+
from sympy.core.symbol import (Symbol, symbols)
|
5 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
6 |
+
from sympy.functions.elementary.trigonometric import (acos, cos, sin)
|
7 |
+
from sympy.sets import EmptySet
|
8 |
+
from sympy.simplify.simplify import simplify
|
9 |
+
from sympy.functions.elementary.trigonometric import tan
|
10 |
+
from sympy.geometry import (Circle, GeometryError, Line, Point, Ray,
|
11 |
+
Segment, Triangle, intersection, Point3D, Line3D, Ray3D, Segment3D,
|
12 |
+
Point2D, Line2D)
|
13 |
+
from sympy.geometry.line import Undecidable
|
14 |
+
from sympy.geometry.polygon import _asa as asa
|
15 |
+
from sympy.utilities.iterables import cartes
|
16 |
+
from sympy.testing.pytest import raises, warns
|
17 |
+
|
18 |
+
|
19 |
+
x = Symbol('x', real=True)
|
20 |
+
y = Symbol('y', real=True)
|
21 |
+
z = Symbol('z', real=True)
|
22 |
+
k = Symbol('k', real=True)
|
23 |
+
x1 = Symbol('x1', real=True)
|
24 |
+
y1 = Symbol('y1', real=True)
|
25 |
+
t = Symbol('t', real=True)
|
26 |
+
a, b = symbols('a,b', real=True)
|
27 |
+
m = symbols('m', real=True)
|
28 |
+
|
29 |
+
|
30 |
+
def test_object_from_equation():
|
31 |
+
from sympy.abc import x, y, a, b
|
32 |
+
assert Line(3*x + y + 18) == Line2D(Point2D(0, -18), Point2D(1, -21))
|
33 |
+
assert Line(3*x + 5 * y + 1) == Line2D(
|
34 |
+
Point2D(0, Rational(-1, 5)), Point2D(1, Rational(-4, 5)))
|
35 |
+
assert Line(3*a + b + 18, x="a", y="b") == Line2D(
|
36 |
+
Point2D(0, -18), Point2D(1, -21))
|
37 |
+
assert Line(3*x + y) == Line2D(Point2D(0, 0), Point2D(1, -3))
|
38 |
+
assert Line(x + y) == Line2D(Point2D(0, 0), Point2D(1, -1))
|
39 |
+
assert Line(Eq(3*a + b, -18), x="a", y=b) == Line2D(
|
40 |
+
Point2D(0, -18), Point2D(1, -21))
|
41 |
+
# issue 22361
|
42 |
+
assert Line(x - 1) == Line2D(Point2D(1, 0), Point2D(1, 1))
|
43 |
+
assert Line(2*x - 2, y=x) == Line2D(Point2D(0, 1), Point2D(1, 1))
|
44 |
+
assert Line(y) == Line2D(Point2D(0, 0), Point2D(1, 0))
|
45 |
+
assert Line(2*y, x=y) == Line2D(Point2D(0, 0), Point2D(0, 1))
|
46 |
+
assert Line(y, x=y) == Line2D(Point2D(0, 0), Point2D(0, 1))
|
47 |
+
raises(ValueError, lambda: Line(x / y))
|
48 |
+
raises(ValueError, lambda: Line(a / b, x='a', y='b'))
|
49 |
+
raises(ValueError, lambda: Line(y / x))
|
50 |
+
raises(ValueError, lambda: Line(b / a, x='a', y='b'))
|
51 |
+
raises(ValueError, lambda: Line((x + 1)**2 + y))
|
52 |
+
|
53 |
+
|
54 |
+
def feq(a, b):
|
55 |
+
"""Test if two floating point values are 'equal'."""
|
56 |
+
t_float = Float("1.0E-10")
|
57 |
+
return -t_float < a - b < t_float
|
58 |
+
|
59 |
+
|
60 |
+
def test_angle_between():
|
61 |
+
a = Point(1, 2, 3, 4)
|
62 |
+
b = a.orthogonal_direction
|
63 |
+
o = a.origin
|
64 |
+
assert feq(Line.angle_between(Line(Point(0, 0), Point(1, 1)),
|
65 |
+
Line(Point(0, 0), Point(5, 0))).evalf(), pi.evalf() / 4)
|
66 |
+
assert Line(a, o).angle_between(Line(b, o)) == pi / 2
|
67 |
+
z = Point3D(0, 0, 0)
|
68 |
+
assert Line3D.angle_between(Line3D(z, Point3D(1, 1, 1)),
|
69 |
+
Line3D(z, Point3D(5, 0, 0))) == acos(sqrt(3) / 3)
|
70 |
+
# direction of points is used to determine angle
|
71 |
+
assert Line3D.angle_between(Line3D(z, Point3D(1, 1, 1)),
|
72 |
+
Line3D(Point3D(5, 0, 0), z)) == acos(-sqrt(3) / 3)
|
73 |
+
|
74 |
+
|
75 |
+
def test_closing_angle():
|
76 |
+
a = Ray((0, 0), angle=0)
|
77 |
+
b = Ray((1, 2), angle=pi/2)
|
78 |
+
assert a.closing_angle(b) == -pi/2
|
79 |
+
assert b.closing_angle(a) == pi/2
|
80 |
+
assert a.closing_angle(a) == 0
|
81 |
+
|
82 |
+
|
83 |
+
def test_smallest_angle():
|
84 |
+
a = Line(Point(1, 1), Point(1, 2))
|
85 |
+
b = Line(Point(1, 1),Point(2, 3))
|
86 |
+
assert a.smallest_angle_between(b) == acos(2*sqrt(5)/5)
|
87 |
+
|
88 |
+
|
89 |
+
def test_svg():
|
90 |
+
a = Line(Point(1, 1),Point(1, 2))
|
91 |
+
assert a._svg() == '<path fill-rule="evenodd" fill="#66cc99" stroke="#555555" stroke-width="2.0" opacity="0.6" d="M 1.00000000000000,1.00000000000000 L 1.00000000000000,2.00000000000000" marker-start="url(#markerReverseArrow)" marker-end="url(#markerArrow)"/>'
|
92 |
+
a = Segment(Point(1, 0),Point(1, 1))
|
93 |
+
assert a._svg() == '<path fill-rule="evenodd" fill="#66cc99" stroke="#555555" stroke-width="2.0" opacity="0.6" d="M 1.00000000000000,0 L 1.00000000000000,1.00000000000000" />'
|
94 |
+
a = Ray(Point(2, 3), Point(3, 5))
|
95 |
+
assert a._svg() == '<path fill-rule="evenodd" fill="#66cc99" stroke="#555555" stroke-width="2.0" opacity="0.6" d="M 2.00000000000000,3.00000000000000 L 3.00000000000000,5.00000000000000" marker-start="url(#markerCircle)" marker-end="url(#markerArrow)"/>'
|
96 |
+
|
97 |
+
|
98 |
+
def test_arbitrary_point():
|
99 |
+
l1 = Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
|
100 |
+
l2 = Line(Point(x1, x1), Point(y1, y1))
|
101 |
+
assert l2.arbitrary_point() in l2
|
102 |
+
assert Ray((1, 1), angle=pi / 4).arbitrary_point() == \
|
103 |
+
Point(t + 1, t + 1)
|
104 |
+
assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t)
|
105 |
+
assert l1.perpendicular_segment(l1.arbitrary_point()) == l1.arbitrary_point()
|
106 |
+
assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]).arbitrary_point() == \
|
107 |
+
Point3D(t + 1, 2 * t + 1, 3 * t + 1)
|
108 |
+
assert Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).midpoint == \
|
109 |
+
Point3D(S.Half, S.Half, S.Half)
|
110 |
+
assert Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1)).length == sqrt(3) * sqrt((x1 - y1) ** 2)
|
111 |
+
assert Segment3D((1, 1, 1), (2, 3, 4)).arbitrary_point() == \
|
112 |
+
Point3D(t + 1, 2 * t + 1, 3 * t + 1)
|
113 |
+
raises(ValueError, (lambda: Line((x, 1), (2, 3)).arbitrary_point(x)))
|
114 |
+
|
115 |
+
|
116 |
+
def test_are_concurrent_2d():
|
117 |
+
l1 = Line(Point(0, 0), Point(1, 1))
|
118 |
+
l2 = Line(Point(x1, x1), Point(x1, 1 + x1))
|
119 |
+
assert Line.are_concurrent(l1) is False
|
120 |
+
assert Line.are_concurrent(l1, l2)
|
121 |
+
assert Line.are_concurrent(l1, l1, l1, l2)
|
122 |
+
assert Line.are_concurrent(l1, l2, Line(Point(5, x1), Point(Rational(-3, 5), x1)))
|
123 |
+
assert Line.are_concurrent(l1, Line(Point(0, 0), Point(-x1, x1)), l2) is False
|
124 |
+
|
125 |
+
|
126 |
+
def test_are_concurrent_3d():
|
127 |
+
p1 = Point3D(0, 0, 0)
|
128 |
+
l1 = Line(p1, Point3D(1, 1, 1))
|
129 |
+
parallel_1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
|
130 |
+
parallel_2 = Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))
|
131 |
+
assert Line3D.are_concurrent(l1) is False
|
132 |
+
assert Line3D.are_concurrent(l1, Line(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False
|
133 |
+
assert Line3D.are_concurrent(l1, Line3D(p1, Point3D(x1, x1, x1)),
|
134 |
+
Line(Point3D(x1, x1, x1), Point3D(x1, 1 + x1, 1))) is True
|
135 |
+
assert Line3D.are_concurrent(parallel_1, parallel_2) is False
|
136 |
+
|
137 |
+
|
138 |
+
def test_arguments():
|
139 |
+
"""Functions accepting `Point` objects in `geometry`
|
140 |
+
should also accept tuples, lists, and generators and
|
141 |
+
automatically convert them to points."""
|
142 |
+
from sympy.utilities.iterables import subsets
|
143 |
+
|
144 |
+
singles2d = ((1, 2), [1, 3], Point(1, 5))
|
145 |
+
doubles2d = subsets(singles2d, 2)
|
146 |
+
l2d = Line(Point2D(1, 2), Point2D(2, 3))
|
147 |
+
singles3d = ((1, 2, 3), [1, 2, 4], Point(1, 2, 6))
|
148 |
+
doubles3d = subsets(singles3d, 2)
|
149 |
+
l3d = Line(Point3D(1, 2, 3), Point3D(1, 1, 2))
|
150 |
+
singles4d = ((1, 2, 3, 4), [1, 2, 3, 5], Point(1, 2, 3, 7))
|
151 |
+
doubles4d = subsets(singles4d, 2)
|
152 |
+
l4d = Line(Point(1, 2, 3, 4), Point(2, 2, 2, 2))
|
153 |
+
# test 2D
|
154 |
+
test_single = ['contains', 'distance', 'equals', 'parallel_line', 'perpendicular_line', 'perpendicular_segment',
|
155 |
+
'projection', 'intersection']
|
156 |
+
for p in doubles2d:
|
157 |
+
Line2D(*p)
|
158 |
+
for func in test_single:
|
159 |
+
for p in singles2d:
|
160 |
+
getattr(l2d, func)(p)
|
161 |
+
# test 3D
|
162 |
+
for p in doubles3d:
|
163 |
+
Line3D(*p)
|
164 |
+
for func in test_single:
|
165 |
+
for p in singles3d:
|
166 |
+
getattr(l3d, func)(p)
|
167 |
+
# test 4D
|
168 |
+
for p in doubles4d:
|
169 |
+
Line(*p)
|
170 |
+
for func in test_single:
|
171 |
+
for p in singles4d:
|
172 |
+
getattr(l4d, func)(p)
|
173 |
+
|
174 |
+
|
175 |
+
def test_basic_properties_2d():
|
176 |
+
p1 = Point(0, 0)
|
177 |
+
p2 = Point(1, 1)
|
178 |
+
p10 = Point(2000, 2000)
|
179 |
+
p_r3 = Ray(p1, p2).random_point()
|
180 |
+
p_r4 = Ray(p2, p1).random_point()
|
181 |
+
|
182 |
+
l1 = Line(p1, p2)
|
183 |
+
l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
|
184 |
+
l4 = Line(p1, Point(1, 0))
|
185 |
+
|
186 |
+
r1 = Ray(p1, Point(0, 1))
|
187 |
+
r2 = Ray(Point(0, 1), p1)
|
188 |
+
|
189 |
+
s1 = Segment(p1, p10)
|
190 |
+
p_s1 = s1.random_point()
|
191 |
+
|
192 |
+
assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
|
193 |
+
assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
|
194 |
+
assert Line((1, 1), slope=oo).bounds == (1, 1, 1, 2)
|
195 |
+
assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
|
196 |
+
assert Line(p1, p2).scale(2, 1) == Line(p1, Point(2, 1))
|
197 |
+
assert Line(p1, p2) == Line(p1, p2)
|
198 |
+
assert Line(p1, p2) != Line(p2, p1)
|
199 |
+
assert l1 != Line(Point(x1, x1), Point(y1, y1))
|
200 |
+
assert l1 != l3
|
201 |
+
assert Line(p1, p10) != Line(p10, p1)
|
202 |
+
assert Line(p1, p10) != p1
|
203 |
+
assert p1 in l1 # is p1 on the line l1?
|
204 |
+
assert p1 not in l3
|
205 |
+
assert s1 in Line(p1, p10)
|
206 |
+
assert Ray(Point(0, 0), Point(0, 1)) in Ray(Point(0, 0), Point(0, 2))
|
207 |
+
assert Ray(Point(0, 0), Point(0, 2)) in Ray(Point(0, 0), Point(0, 1))
|
208 |
+
assert Ray(Point(0, 0), Point(0, 2)).xdirection == S.Zero
|
209 |
+
assert Ray(Point(0, 0), Point(1, 2)).xdirection == S.Infinity
|
210 |
+
assert Ray(Point(0, 0), Point(-1, 2)).xdirection == S.NegativeInfinity
|
211 |
+
assert Ray(Point(0, 0), Point(2, 0)).ydirection == S.Zero
|
212 |
+
assert Ray(Point(0, 0), Point(2, 2)).ydirection == S.Infinity
|
213 |
+
assert Ray(Point(0, 0), Point(2, -2)).ydirection == S.NegativeInfinity
|
214 |
+
assert (r1 in s1) is False
|
215 |
+
assert Segment(p1, p2) in s1
|
216 |
+
assert Ray(Point(x1, x1), Point(x1, 1 + x1)) != Ray(p1, Point(-1, 5))
|
217 |
+
assert Segment(p1, p2).midpoint == Point(S.Half, S.Half)
|
218 |
+
assert Segment(p1, Point(-x1, x1)).length == sqrt(2 * (x1 ** 2))
|
219 |
+
|
220 |
+
assert l1.slope == 1
|
221 |
+
assert l3.slope is oo
|
222 |
+
assert l4.slope == 0
|
223 |
+
assert Line(p1, Point(0, 1)).slope is oo
|
224 |
+
assert Line(r1.source, r1.random_point()).slope == r1.slope
|
225 |
+
assert Line(r2.source, r2.random_point()).slope == r2.slope
|
226 |
+
assert Segment(Point(0, -1), Segment(p1, Point(0, 1)).random_point()).slope == Segment(p1, Point(0, 1)).slope
|
227 |
+
|
228 |
+
assert l4.coefficients == (0, 1, 0)
|
229 |
+
assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)
|
230 |
+
assert Line(p1, Point(0, 1)).coefficients == (1, 0, 0)
|
231 |
+
# issue 7963
|
232 |
+
r = Ray((0, 0), angle=x)
|
233 |
+
assert r.subs(x, 3 * pi / 4) == Ray((0, 0), (-1, 1))
|
234 |
+
assert r.subs(x, 5 * pi / 4) == Ray((0, 0), (-1, -1))
|
235 |
+
assert r.subs(x, -pi / 4) == Ray((0, 0), (1, -1))
|
236 |
+
assert r.subs(x, pi / 2) == Ray((0, 0), (0, 1))
|
237 |
+
assert r.subs(x, -pi / 2) == Ray((0, 0), (0, -1))
|
238 |
+
|
239 |
+
for ind in range(0, 5):
|
240 |
+
assert l3.random_point() in l3
|
241 |
+
|
242 |
+
assert p_r3.x >= p1.x and p_r3.y >= p1.y
|
243 |
+
assert p_r4.x <= p2.x and p_r4.y <= p2.y
|
244 |
+
assert p1.x <= p_s1.x <= p10.x and p1.y <= p_s1.y <= p10.y
|
245 |
+
assert hash(s1) != hash(Segment(p10, p1))
|
246 |
+
|
247 |
+
assert s1.plot_interval() == [t, 0, 1]
|
248 |
+
assert Line(p1, p10).plot_interval() == [t, -5, 5]
|
249 |
+
assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 10]
|
250 |
+
|
251 |
+
|
252 |
+
def test_basic_properties_3d():
|
253 |
+
p1 = Point3D(0, 0, 0)
|
254 |
+
p2 = Point3D(1, 1, 1)
|
255 |
+
p3 = Point3D(x1, x1, x1)
|
256 |
+
p5 = Point3D(x1, 1 + x1, 1)
|
257 |
+
|
258 |
+
l1 = Line3D(p1, p2)
|
259 |
+
l3 = Line3D(p3, p5)
|
260 |
+
|
261 |
+
r1 = Ray3D(p1, Point3D(-1, 5, 0))
|
262 |
+
r3 = Ray3D(p1, p2)
|
263 |
+
|
264 |
+
s1 = Segment3D(p1, p2)
|
265 |
+
|
266 |
+
assert Line3D((1, 1, 1), direction_ratio=[2, 3, 4]) == Line3D(Point3D(1, 1, 1), Point3D(3, 4, 5))
|
267 |
+
assert Line3D((1, 1, 1), direction_ratio=[1, 5, 7]) == Line3D(Point3D(1, 1, 1), Point3D(2, 6, 8))
|
268 |
+
assert Line3D((1, 1, 1), direction_ratio=[1, 2, 3]) == Line3D(Point3D(1, 1, 1), Point3D(2, 3, 4))
|
269 |
+
assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).direction_cosine == [1, 0, 0]
|
270 |
+
assert Line3D(Line3D(p1, Point3D(0, 1, 0))) == Line3D(p1, Point3D(0, 1, 0))
|
271 |
+
assert Ray3D(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))) == Ray3D(p1, Point3D(1, 0, 0))
|
272 |
+
assert Line3D(p1, p2) != Line3D(p2, p1)
|
273 |
+
assert l1 != l3
|
274 |
+
assert l1 != Line3D(p3, Point3D(y1, y1, y1))
|
275 |
+
assert r3 != r1
|
276 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1)) in Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2))
|
277 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)) in Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
|
278 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)).xdirection == S.Infinity
|
279 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)).ydirection == S.Infinity
|
280 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 2)).zdirection == S.Infinity
|
281 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(-2, 2, 2)).xdirection == S.NegativeInfinity
|
282 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(2, -2, 2)).ydirection == S.NegativeInfinity
|
283 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, -2)).zdirection == S.NegativeInfinity
|
284 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(0, 2, 2)).xdirection == S.Zero
|
285 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 0, 2)).ydirection == S.Zero
|
286 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(2, 2, 0)).zdirection == S.Zero
|
287 |
+
assert p1 in l1
|
288 |
+
assert p1 not in l3
|
289 |
+
|
290 |
+
assert l1.direction_ratio == [1, 1, 1]
|
291 |
+
|
292 |
+
assert s1.midpoint == Point3D(S.Half, S.Half, S.Half)
|
293 |
+
# Test zdirection
|
294 |
+
assert Ray3D(p1, Point3D(0, 0, -1)).zdirection is S.NegativeInfinity
|
295 |
+
|
296 |
+
|
297 |
+
def test_contains():
|
298 |
+
p1 = Point(0, 0)
|
299 |
+
|
300 |
+
r = Ray(p1, Point(4, 4))
|
301 |
+
r1 = Ray3D(p1, Point3D(0, 0, -1))
|
302 |
+
r2 = Ray3D(p1, Point3D(0, 1, 0))
|
303 |
+
r3 = Ray3D(p1, Point3D(0, 0, 1))
|
304 |
+
|
305 |
+
l = Line(Point(0, 1), Point(3, 4))
|
306 |
+
# Segment contains
|
307 |
+
assert Point(0, (a + b) / 2) in Segment((0, a), (0, b))
|
308 |
+
assert Point((a + b) / 2, 0) in Segment((a, 0), (b, 0))
|
309 |
+
assert Point3D(0, 1, 0) in Segment3D((0, 1, 0), (0, 1, 0))
|
310 |
+
assert Point3D(1, 0, 0) in Segment3D((1, 0, 0), (1, 0, 0))
|
311 |
+
assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains([]) is True
|
312 |
+
assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains(
|
313 |
+
Segment3D(Point3D(2, 2, 2), Point3D(3, 2, 2))) is False
|
314 |
+
# Line contains
|
315 |
+
assert l.contains(Point(0, 1)) is True
|
316 |
+
assert l.contains((0, 1)) is True
|
317 |
+
assert l.contains((0, 0)) is False
|
318 |
+
# Ray contains
|
319 |
+
assert r.contains(p1) is True
|
320 |
+
assert r.contains((1, 1)) is True
|
321 |
+
assert r.contains((1, 3)) is False
|
322 |
+
assert r.contains(Segment((1, 1), (2, 2))) is True
|
323 |
+
assert r.contains(Segment((1, 2), (2, 5))) is False
|
324 |
+
assert r.contains(Ray((2, 2), (3, 3))) is True
|
325 |
+
assert r.contains(Ray((2, 2), (3, 5))) is False
|
326 |
+
assert r1.contains(Segment3D(p1, Point3D(0, 0, -10))) is True
|
327 |
+
assert r1.contains(Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))) is False
|
328 |
+
assert r2.contains(Point3D(0, 0, 0)) is True
|
329 |
+
assert r3.contains(Point3D(0, 0, 0)) is True
|
330 |
+
assert Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0)).contains([]) is False
|
331 |
+
assert Line3D((0, 0, 0), (x, y, z)).contains((2 * x, 2 * y, 2 * z))
|
332 |
+
with warns(UserWarning, test_stacklevel=False):
|
333 |
+
assert Line3D(p1, Point3D(0, 1, 0)).contains(Point(1.0, 1.0)) is False
|
334 |
+
|
335 |
+
with warns(UserWarning, test_stacklevel=False):
|
336 |
+
assert r3.contains(Point(1.0, 1.0)) is False
|
337 |
+
|
338 |
+
|
339 |
+
def test_contains_nonreal_symbols():
|
340 |
+
u, v, w, z = symbols('u, v, w, z')
|
341 |
+
l = Segment(Point(u, w), Point(v, z))
|
342 |
+
p = Point(u*Rational(2, 3) + v/3, w*Rational(2, 3) + z/3)
|
343 |
+
assert l.contains(p)
|
344 |
+
|
345 |
+
|
346 |
+
def test_distance_2d():
|
347 |
+
p1 = Point(0, 0)
|
348 |
+
p2 = Point(1, 1)
|
349 |
+
half = S.Half
|
350 |
+
|
351 |
+
s1 = Segment(Point(0, 0), Point(1, 1))
|
352 |
+
s2 = Segment(Point(half, half), Point(1, 0))
|
353 |
+
|
354 |
+
r = Ray(p1, p2)
|
355 |
+
|
356 |
+
assert s1.distance(Point(0, 0)) == 0
|
357 |
+
assert s1.distance((0, 0)) == 0
|
358 |
+
assert s2.distance(Point(0, 0)) == 2 ** half / 2
|
359 |
+
assert s2.distance(Point(Rational(3) / 2, Rational(3) / 2)) == 2 ** half
|
360 |
+
assert Line(p1, p2).distance(Point(-1, 1)) == sqrt(2)
|
361 |
+
assert Line(p1, p2).distance(Point(1, -1)) == sqrt(2)
|
362 |
+
assert Line(p1, p2).distance(Point(2, 2)) == 0
|
363 |
+
assert Line(p1, p2).distance((-1, 1)) == sqrt(2)
|
364 |
+
assert Line((0, 0), (0, 1)).distance(p1) == 0
|
365 |
+
assert Line((0, 0), (0, 1)).distance(p2) == 1
|
366 |
+
assert Line((0, 0), (1, 0)).distance(p1) == 0
|
367 |
+
assert Line((0, 0), (1, 0)).distance(p2) == 1
|
368 |
+
assert r.distance(Point(-1, -1)) == sqrt(2)
|
369 |
+
assert r.distance(Point(1, 1)) == 0
|
370 |
+
assert r.distance(Point(-1, 1)) == sqrt(2)
|
371 |
+
assert Ray((1, 1), (2, 2)).distance(Point(1.5, 3)) == 3 * sqrt(2) / 4
|
372 |
+
assert r.distance((1, 1)) == 0
|
373 |
+
|
374 |
+
|
375 |
+
def test_dimension_normalization():
|
376 |
+
with warns(UserWarning, test_stacklevel=False):
|
377 |
+
assert Ray((1, 1), (2, 1, 2)) == Ray((1, 1, 0), (2, 1, 2))
|
378 |
+
|
379 |
+
|
380 |
+
def test_distance_3d():
|
381 |
+
p1, p2 = Point3D(0, 0, 0), Point3D(1, 1, 1)
|
382 |
+
p3 = Point3D(Rational(3) / 2, Rational(3) / 2, Rational(3) / 2)
|
383 |
+
|
384 |
+
s1 = Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
|
385 |
+
s2 = Segment3D(Point3D(S.Half, S.Half, S.Half), Point3D(1, 0, 1))
|
386 |
+
|
387 |
+
r = Ray3D(p1, p2)
|
388 |
+
|
389 |
+
assert s1.distance(p1) == 0
|
390 |
+
assert s2.distance(p1) == sqrt(3) / 2
|
391 |
+
assert s2.distance(p3) == 2 * sqrt(6) / 3
|
392 |
+
assert s1.distance((0, 0, 0)) == 0
|
393 |
+
assert s2.distance((0, 0, 0)) == sqrt(3) / 2
|
394 |
+
assert s1.distance(p1) == 0
|
395 |
+
assert s2.distance(p1) == sqrt(3) / 2
|
396 |
+
assert s2.distance(p3) == 2 * sqrt(6) / 3
|
397 |
+
assert s1.distance((0, 0, 0)) == 0
|
398 |
+
assert s2.distance((0, 0, 0)) == sqrt(3) / 2
|
399 |
+
# Line to point
|
400 |
+
assert Line3D(p1, p2).distance(Point3D(-1, 1, 1)) == 2 * sqrt(6) / 3
|
401 |
+
assert Line3D(p1, p2).distance(Point3D(1, -1, 1)) == 2 * sqrt(6) / 3
|
402 |
+
assert Line3D(p1, p2).distance(Point3D(2, 2, 2)) == 0
|
403 |
+
assert Line3D(p1, p2).distance((2, 2, 2)) == 0
|
404 |
+
assert Line3D(p1, p2).distance((1, -1, 1)) == 2 * sqrt(6) / 3
|
405 |
+
assert Line3D((0, 0, 0), (0, 1, 0)).distance(p1) == 0
|
406 |
+
assert Line3D((0, 0, 0), (0, 1, 0)).distance(p2) == sqrt(2)
|
407 |
+
assert Line3D((0, 0, 0), (1, 0, 0)).distance(p1) == 0
|
408 |
+
assert Line3D((0, 0, 0), (1, 0, 0)).distance(p2) == sqrt(2)
|
409 |
+
# Ray to point
|
410 |
+
assert r.distance(Point3D(-1, -1, -1)) == sqrt(3)
|
411 |
+
assert r.distance(Point3D(1, 1, 1)) == 0
|
412 |
+
assert r.distance((-1, -1, -1)) == sqrt(3)
|
413 |
+
assert r.distance((1, 1, 1)) == 0
|
414 |
+
assert Ray3D((0, 0, 0), (1, 1, 2)).distance((-1, -1, 2)) == 4 * sqrt(3) / 3
|
415 |
+
assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, -3, -1)) == Rational(9) / 2
|
416 |
+
assert Ray3D((1, 1, 1), (2, 2, 2)).distance(Point3D(1.5, 3, 1)) == sqrt(78) / 6
|
417 |
+
|
418 |
+
|
419 |
+
def test_equals():
|
420 |
+
p1 = Point(0, 0)
|
421 |
+
p2 = Point(1, 1)
|
422 |
+
|
423 |
+
l1 = Line(p1, p2)
|
424 |
+
l2 = Line((0, 5), slope=m)
|
425 |
+
l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
|
426 |
+
|
427 |
+
assert l1.perpendicular_line(p1.args).equals(Line(Point(0, 0), Point(1, -1)))
|
428 |
+
assert l1.perpendicular_line(p1).equals(Line(Point(0, 0), Point(1, -1)))
|
429 |
+
assert Line(Point(x1, x1), Point(y1, y1)).parallel_line(Point(-x1, x1)). \
|
430 |
+
equals(Line(Point(-x1, x1), Point(-y1, 2 * x1 - y1)))
|
431 |
+
assert l3.parallel_line(p1.args).equals(Line(Point(0, 0), Point(0, -1)))
|
432 |
+
assert l3.parallel_line(p1).equals(Line(Point(0, 0), Point(0, -1)))
|
433 |
+
assert (l2.distance(Point(2, 3)) - 2 * abs(m + 1) / sqrt(m ** 2 + 1)).equals(0)
|
434 |
+
assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
|
435 |
+
assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(Point3D(-5, 0, 0), Point3D(-1, 0, 0))) is True
|
436 |
+
assert Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).equals(Line3D(p1, Point3D(0, 1, 0))) is False
|
437 |
+
assert Ray3D(p1, Point3D(0, 0, -1)).equals(Point(1.0, 1.0)) is False
|
438 |
+
assert Ray3D(p1, Point3D(0, 0, -1)).equals(Ray3D(p1, Point3D(0, 0, -1))) is True
|
439 |
+
assert Line3D((0, 0), (t, t)).perpendicular_line(Point(0, 1, 0)).equals(
|
440 |
+
Line3D(Point3D(0, 1, 0), Point3D(S.Half, S.Half, 0)))
|
441 |
+
assert Line3D((0, 0), (t, t)).perpendicular_segment(Point(0, 1, 0)).equals(Segment3D((0, 1), (S.Half, S.Half)))
|
442 |
+
assert Line3D(p1, Point3D(0, 1, 0)).equals(Point(1.0, 1.0)) is False
|
443 |
+
|
444 |
+
|
445 |
+
def test_equation():
|
446 |
+
p1 = Point(0, 0)
|
447 |
+
p2 = Point(1, 1)
|
448 |
+
l1 = Line(p1, p2)
|
449 |
+
l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
|
450 |
+
|
451 |
+
assert simplify(l1.equation()) in (x - y, y - x)
|
452 |
+
assert simplify(l3.equation()) in (x - x1, x1 - x)
|
453 |
+
assert simplify(l1.equation()) in (x - y, y - x)
|
454 |
+
assert simplify(l3.equation()) in (x - x1, x1 - x)
|
455 |
+
|
456 |
+
assert Line(p1, Point(1, 0)).equation(x=x, y=y) == y
|
457 |
+
assert Line(p1, Point(0, 1)).equation() == x
|
458 |
+
assert Line(Point(2, 0), Point(2, 1)).equation() == x - 2
|
459 |
+
assert Line(p2, Point(2, 1)).equation() == y - 1
|
460 |
+
|
461 |
+
assert Line3D(Point(x1, x1, x1), Point(y1, y1, y1)
|
462 |
+
).equation() == (-x + y, -x + z)
|
463 |
+
assert Line3D(Point(1, 2, 3), Point(2, 3, 4)
|
464 |
+
).equation() == (-x + y - 1, -x + z - 2)
|
465 |
+
assert Line3D(Point(1, 2, 3), Point(1, 3, 4)
|
466 |
+
).equation() == (x - 1, -y + z - 1)
|
467 |
+
assert Line3D(Point(1, 2, 3), Point(2, 2, 4)
|
468 |
+
).equation() == (y - 2, -x + z - 2)
|
469 |
+
assert Line3D(Point(1, 2, 3), Point(2, 3, 3)
|
470 |
+
).equation() == (-x + y - 1, z - 3)
|
471 |
+
assert Line3D(Point(1, 2, 3), Point(1, 2, 4)
|
472 |
+
).equation() == (x - 1, y - 2)
|
473 |
+
assert Line3D(Point(1, 2, 3), Point(1, 3, 3)
|
474 |
+
).equation() == (x - 1, z - 3)
|
475 |
+
assert Line3D(Point(1, 2, 3), Point(2, 2, 3)
|
476 |
+
).equation() == (y - 2, z - 3)
|
477 |
+
|
478 |
+
|
479 |
+
def test_intersection_2d():
|
480 |
+
p1 = Point(0, 0)
|
481 |
+
p2 = Point(1, 1)
|
482 |
+
p3 = Point(x1, x1)
|
483 |
+
p4 = Point(y1, y1)
|
484 |
+
|
485 |
+
l1 = Line(p1, p2)
|
486 |
+
l3 = Line(Point(0, 0), Point(3, 4))
|
487 |
+
|
488 |
+
r1 = Ray(Point(1, 1), Point(2, 2))
|
489 |
+
r2 = Ray(Point(0, 0), Point(3, 4))
|
490 |
+
r4 = Ray(p1, p2)
|
491 |
+
r6 = Ray(Point(0, 1), Point(1, 2))
|
492 |
+
r7 = Ray(Point(0.5, 0.5), Point(1, 1))
|
493 |
+
|
494 |
+
s1 = Segment(p1, p2)
|
495 |
+
s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
|
496 |
+
s3 = Segment(Point(0, 0), Point(3, 4))
|
497 |
+
|
498 |
+
assert intersection(l1, p1) == [p1]
|
499 |
+
assert intersection(l1, Point(x1, 1 + x1)) == []
|
500 |
+
assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]]
|
501 |
+
assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == []
|
502 |
+
assert intersection(l3, l3) == [l3]
|
503 |
+
assert intersection(l3, r2) == [r2]
|
504 |
+
assert intersection(l3, s3) == [s3]
|
505 |
+
assert intersection(s3, l3) == [s3]
|
506 |
+
assert intersection(Segment(Point(-10, 10), Point(10, 10)), Segment(Point(-5, -5), Point(-5, 5))) == []
|
507 |
+
assert intersection(r2, l3) == [r2]
|
508 |
+
assert intersection(r1, Ray(Point(2, 2), Point(0, 0))) == [Segment(Point(1, 1), Point(2, 2))]
|
509 |
+
assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)]
|
510 |
+
assert intersection(r1, Segment(Point(0, 0), Point(2, 2))) == [Segment(Point(1, 1), Point(2, 2))]
|
511 |
+
|
512 |
+
assert r4.intersection(s2) == [s2]
|
513 |
+
assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
|
514 |
+
assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
|
515 |
+
assert r4.intersection(Ray(p2, p1)) == [s1]
|
516 |
+
assert Ray(p2, p1).intersection(r6) == []
|
517 |
+
assert r4.intersection(r7) == r7.intersection(r4) == [r7]
|
518 |
+
assert Ray3D((0, 0), (3, 0)).intersection(Ray3D((1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
|
519 |
+
assert Ray3D((1, 0), (3, 0)).intersection(Ray3D((0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
|
520 |
+
assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \
|
521 |
+
[Segment(Point(0, 0), Point(0, 1))]
|
522 |
+
|
523 |
+
assert Segment3D((0, 0), (3, 0)).intersection(
|
524 |
+
Segment3D((1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))]
|
525 |
+
assert Segment3D((1, 0), (2, 0)).intersection(
|
526 |
+
Segment3D((0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))]
|
527 |
+
assert Segment3D((0, 0), (3, 0)).intersection(
|
528 |
+
Segment3D((3, 0), (4, 0))) == [Point3D((3, 0))]
|
529 |
+
assert Segment3D((0, 0), (3, 0)).intersection(
|
530 |
+
Segment3D((2, 0), (5, 0))) == [Segment3D((2, 0), (3, 0))]
|
531 |
+
assert Segment3D((0, 0), (3, 0)).intersection(
|
532 |
+
Segment3D((-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))]
|
533 |
+
assert Segment3D((0, 0), (3, 0)).intersection(
|
534 |
+
Segment3D((-2, 0), (0, 0))) == [Point3D(0, 0)]
|
535 |
+
assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)]
|
536 |
+
assert s1.intersection(Segment(Point(0.5, 0.5), Point(1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)]
|
537 |
+
assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
|
538 |
+
assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
|
539 |
+
assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
|
540 |
+
assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == []
|
541 |
+
assert s1.intersection(s2) == [s2]
|
542 |
+
assert s2.intersection(s1) == [s2]
|
543 |
+
|
544 |
+
assert asa(120, 8, 52) == \
|
545 |
+
Triangle(
|
546 |
+
Point(0, 0),
|
547 |
+
Point(8, 0),
|
548 |
+
Point(-4 * cos(19 * pi / 90) / sin(2 * pi / 45),
|
549 |
+
4 * sqrt(3) * cos(19 * pi / 90) / sin(2 * pi / 45)))
|
550 |
+
assert Line((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
|
551 |
+
assert Line((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
|
552 |
+
assert Ray((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
|
553 |
+
assert Ray((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
|
554 |
+
assert Ray((0, 0), (10, 10)).contains(Segment((1, 1), (2, 2))) is True
|
555 |
+
assert Segment((1, 1), (2, 2)) in Line((0, 0), (10, 10))
|
556 |
+
assert s1.intersection(Ray((1, 1), (4, 4))) == [Point(1, 1)]
|
557 |
+
|
558 |
+
# This test is disabled because it hangs after rref changes which simplify
|
559 |
+
# intermediate results and return a different representation from when the
|
560 |
+
# test was written.
|
561 |
+
# # 16628 - this should be fast
|
562 |
+
# p0 = Point2D(Rational(249, 5), Rational(497999, 10000))
|
563 |
+
# p1 = Point2D((-58977084786*sqrt(405639795226) + 2030690077184193 +
|
564 |
+
# 20112207807*sqrt(630547164901) + 99600*sqrt(255775022850776494562626))
|
565 |
+
# /(2000*sqrt(255775022850776494562626) + 1991998000*sqrt(405639795226)
|
566 |
+
# + 1991998000*sqrt(630547164901) + 1622561172902000),
|
567 |
+
# (-498000*sqrt(255775022850776494562626) - 995999*sqrt(630547164901) +
|
568 |
+
# 90004251917891999 +
|
569 |
+
# 496005510002*sqrt(405639795226))/(10000*sqrt(255775022850776494562626)
|
570 |
+
# + 9959990000*sqrt(405639795226) + 9959990000*sqrt(630547164901) +
|
571 |
+
# 8112805864510000))
|
572 |
+
# p2 = Point2D(Rational(497, 10), Rational(-497, 10))
|
573 |
+
# p3 = Point2D(Rational(-497, 10), Rational(-497, 10))
|
574 |
+
# l = Line(p0, p1)
|
575 |
+
# s = Segment(p2, p3)
|
576 |
+
# n = (-52673223862*sqrt(405639795226) - 15764156209307469 -
|
577 |
+
# 9803028531*sqrt(630547164901) +
|
578 |
+
# 33200*sqrt(255775022850776494562626))
|
579 |
+
# d = sqrt(405639795226) + 315274080450 + 498000*sqrt(
|
580 |
+
# 630547164901) + sqrt(255775022850776494562626)
|
581 |
+
# assert intersection(l, s) == [
|
582 |
+
# Point2D(n/d*Rational(3, 2000), Rational(-497, 10))]
|
583 |
+
|
584 |
+
|
585 |
+
def test_line_intersection():
|
586 |
+
# see also test_issue_11238 in test_matrices.py
|
587 |
+
x0 = tan(pi*Rational(13, 45))
|
588 |
+
x1 = sqrt(3)
|
589 |
+
x2 = x0**2
|
590 |
+
x, y = [8*x0/(x0 + x1), (24*x0 - 8*x1*x2)/(x2 - 3)]
|
591 |
+
assert Line(Point(0, 0), Point(1, -sqrt(3))).contains(Point(x, y)) is True
|
592 |
+
|
593 |
+
|
594 |
+
def test_intersection_3d():
|
595 |
+
p1 = Point3D(0, 0, 0)
|
596 |
+
p2 = Point3D(1, 1, 1)
|
597 |
+
|
598 |
+
l1 = Line3D(p1, p2)
|
599 |
+
l2 = Line3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
|
600 |
+
|
601 |
+
r1 = Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
|
602 |
+
r2 = Ray3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
|
603 |
+
|
604 |
+
s1 = Segment3D(Point3D(0, 0, 0), Point3D(3, 4, 0))
|
605 |
+
|
606 |
+
assert intersection(l1, p1) == [p1]
|
607 |
+
assert intersection(l1, Point3D(x1, 1 + x1, 1)) == []
|
608 |
+
assert intersection(l1, l1.parallel_line(p1)) == [Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1))]
|
609 |
+
assert intersection(l2, r2) == [r2]
|
610 |
+
assert intersection(l2, s1) == [s1]
|
611 |
+
assert intersection(r2, l2) == [r2]
|
612 |
+
assert intersection(r1, Ray3D(Point3D(1, 1, 1), Point3D(-1, -1, -1))) == [Point3D(1, 1, 1)]
|
613 |
+
assert intersection(r1, Segment3D(Point3D(0, 0, 0), Point3D(2, 2, 2))) == [
|
614 |
+
Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))]
|
615 |
+
assert intersection(Ray3D(Point3D(1, 0, 0), Point3D(-1, 0, 0)), Ray3D(Point3D(0, 1, 0), Point3D(0, -1, 0))) \
|
616 |
+
== [Point3D(0, 0, 0)]
|
617 |
+
assert intersection(r1, Ray3D(Point3D(2, 2, 2), Point3D(0, 0, 0))) == \
|
618 |
+
[Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))]
|
619 |
+
assert intersection(s1, r2) == [s1]
|
620 |
+
|
621 |
+
assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).intersection(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) == \
|
622 |
+
[Point3D(2, 2, 1)]
|
623 |
+
assert Line3D((0, 1, 2), (0, 2, 3)).intersection(Line3D((0, 1, 2), (0, 1, 1))) == [Point3D(0, 1, 2)]
|
624 |
+
assert Line3D((0, 0), (t, t)).intersection(Line3D((0, 1), (t, t))) == \
|
625 |
+
[Point3D(t, t)]
|
626 |
+
|
627 |
+
assert Ray3D(Point3D(0, 0, 0), Point3D(0, 4, 0)).intersection(Ray3D(Point3D(0, 1, 1), Point3D(0, -1, 1))) == []
|
628 |
+
|
629 |
+
|
630 |
+
def test_is_parallel():
|
631 |
+
p1 = Point3D(0, 0, 0)
|
632 |
+
p2 = Point3D(1, 1, 1)
|
633 |
+
p3 = Point3D(x1, x1, x1)
|
634 |
+
|
635 |
+
l2 = Line(Point(x1, x1), Point(y1, y1))
|
636 |
+
l2_1 = Line(Point(x1, x1), Point(x1, 1 + x1))
|
637 |
+
|
638 |
+
assert Line.is_parallel(Line(Point(0, 0), Point(1, 1)), l2)
|
639 |
+
assert Line.is_parallel(l2, Line(Point(x1, x1), Point(x1, 1 + x1))) is False
|
640 |
+
assert Line.is_parallel(l2, l2.parallel_line(Point(-x1, x1)))
|
641 |
+
assert Line.is_parallel(l2_1, l2_1.parallel_line(Point(0, 0)))
|
642 |
+
assert Line3D(p1, p2).is_parallel(Line3D(p1, p2)) # same as in 2D
|
643 |
+
assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False
|
644 |
+
assert Line3D(p1, p2).parallel_line(p3) == Line3D(Point3D(x1, x1, x1),
|
645 |
+
Point3D(x1 + 1, x1 + 1, x1 + 1))
|
646 |
+
assert Line3D(p1, p2).parallel_line(p3.args) == \
|
647 |
+
Line3D(Point3D(x1, x1, x1), Point3D(x1 + 1, x1 + 1, x1 + 1))
|
648 |
+
assert Line3D(Point3D(4, 0, 1), Point3D(0, 4, 1)).is_parallel(Line3D(Point3D(0, 0, 1), Point3D(4, 4, 1))) is False
|
649 |
+
|
650 |
+
|
651 |
+
def test_is_perpendicular():
|
652 |
+
p1 = Point(0, 0)
|
653 |
+
p2 = Point(1, 1)
|
654 |
+
|
655 |
+
l1 = Line(p1, p2)
|
656 |
+
l2 = Line(Point(x1, x1), Point(y1, y1))
|
657 |
+
l1_1 = Line(p1, Point(-x1, x1))
|
658 |
+
# 2D
|
659 |
+
assert Line.is_perpendicular(l1, l1_1)
|
660 |
+
assert Line.is_perpendicular(l1, l2) is False
|
661 |
+
p = l1.random_point()
|
662 |
+
assert l1.perpendicular_segment(p) == p
|
663 |
+
# 3D
|
664 |
+
assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)),
|
665 |
+
Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is True
|
666 |
+
assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)),
|
667 |
+
Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))) is False
|
668 |
+
assert Line3D.is_perpendicular(Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)),
|
669 |
+
Line3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1))) is False
|
670 |
+
|
671 |
+
|
672 |
+
def test_is_similar():
|
673 |
+
p1 = Point(2000, 2000)
|
674 |
+
p2 = p1.scale(2, 2)
|
675 |
+
|
676 |
+
r1 = Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0))
|
677 |
+
r2 = Ray(Point(0, 0), Point(0, 1))
|
678 |
+
|
679 |
+
s1 = Segment(Point(0, 0), p1)
|
680 |
+
|
681 |
+
assert s1.is_similar(Segment(p1, p2))
|
682 |
+
assert s1.is_similar(r2) is False
|
683 |
+
assert r1.is_similar(Line3D(Point3D(1, 1, 1), Point3D(1, 0, 0))) is True
|
684 |
+
assert r1.is_similar(Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))) is False
|
685 |
+
|
686 |
+
|
687 |
+
def test_length():
|
688 |
+
s2 = Segment3D(Point3D(x1, x1, x1), Point3D(y1, y1, y1))
|
689 |
+
assert Line(Point(0, 0), Point(1, 1)).length is oo
|
690 |
+
assert s2.length == sqrt(3) * sqrt((x1 - y1) ** 2)
|
691 |
+
assert Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).length is oo
|
692 |
+
|
693 |
+
|
694 |
+
def test_projection():
|
695 |
+
p1 = Point(0, 0)
|
696 |
+
p2 = Point3D(0, 0, 0)
|
697 |
+
p3 = Point(-x1, x1)
|
698 |
+
|
699 |
+
l1 = Line(p1, Point(1, 1))
|
700 |
+
l2 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
|
701 |
+
l3 = Line3D(p2, Point3D(1, 1, 1))
|
702 |
+
|
703 |
+
r1 = Ray(Point(1, 1), Point(2, 2))
|
704 |
+
|
705 |
+
s1 = Segment(Point2D(0, 0), Point2D(0, 1))
|
706 |
+
s2 = Segment(Point2D(1, 0), Point2D(2, 1/2))
|
707 |
+
|
708 |
+
assert Line(Point(x1, x1), Point(y1, y1)).projection(Point(y1, y1)) == Point(y1, y1)
|
709 |
+
assert Line(Point(x1, x1), Point(x1, 1 + x1)).projection(Point(1, 1)) == Point(x1, 1)
|
710 |
+
assert Segment(Point(-2, 2), Point(0, 4)).projection(r1) == Segment(Point(-1, 3), Point(0, 4))
|
711 |
+
assert Segment(Point(0, 4), Point(-2, 2)).projection(r1) == Segment(Point(0, 4), Point(-1, 3))
|
712 |
+
assert s2.projection(s1) == EmptySet
|
713 |
+
assert l1.projection(p3) == p1
|
714 |
+
assert l1.projection(Ray(p1, Point(-1, 5))) == Ray(Point(0, 0), Point(2, 2))
|
715 |
+
assert l1.projection(Ray(p1, Point(-1, 1))) == p1
|
716 |
+
assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1)
|
717 |
+
assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2))
|
718 |
+
assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2))
|
719 |
+
assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1)
|
720 |
+
assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2))
|
721 |
+
assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2))
|
722 |
+
|
723 |
+
assert l3.projection(Ray3D(p2, Point3D(-1, 5, 0))) == Ray3D(Point3D(0, 0, 0), Point3D(Rational(4, 3), Rational(4, 3), Rational(4, 3)))
|
724 |
+
assert l3.projection(Ray3D(p2, Point3D(-1, 1, 1))) == Ray3D(Point3D(0, 0, 0), Point3D(Rational(1, 3), Rational(1, 3), Rational(1, 3)))
|
725 |
+
assert l2.projection(Point3D(5, 5, 0)) == Point3D(5, 0)
|
726 |
+
assert l2.projection(Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))).equals(l2)
|
727 |
+
|
728 |
+
|
729 |
+
def test_perpendicular_line():
|
730 |
+
# 3d - requires a particular orthogonal to be selected
|
731 |
+
p1, p2, p3 = Point(0, 0, 0), Point(2, 3, 4), Point(-2, 2, 0)
|
732 |
+
l = Line(p1, p2)
|
733 |
+
p = l.perpendicular_line(p3)
|
734 |
+
assert p.p1 == p3
|
735 |
+
assert p.p2 in l
|
736 |
+
# 2d - does not require special selection
|
737 |
+
p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
|
738 |
+
l = Line(p1, p2)
|
739 |
+
p = l.perpendicular_line(p3)
|
740 |
+
assert p.p1 == p3
|
741 |
+
# p is directed from l to p3
|
742 |
+
assert p.direction.unit == (p3 - l.projection(p3)).unit
|
743 |
+
|
744 |
+
|
745 |
+
def test_perpendicular_bisector():
|
746 |
+
s1 = Segment(Point(0, 0), Point(1, 1))
|
747 |
+
aline = Line(Point(S.Half, S.Half), Point(Rational(3, 2), Rational(-1, 2)))
|
748 |
+
on_line = Segment(Point(S.Half, S.Half), Point(Rational(3, 2), Rational(-1, 2))).midpoint
|
749 |
+
|
750 |
+
assert s1.perpendicular_bisector().equals(aline)
|
751 |
+
assert s1.perpendicular_bisector(on_line).equals(Segment(s1.midpoint, on_line))
|
752 |
+
assert s1.perpendicular_bisector(on_line + (1, 0)).equals(aline)
|
753 |
+
|
754 |
+
|
755 |
+
def test_raises():
|
756 |
+
d, e = symbols('a,b', real=True)
|
757 |
+
s = Segment((d, 0), (e, 0))
|
758 |
+
|
759 |
+
raises(TypeError, lambda: Line((1, 1), 1))
|
760 |
+
raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0)))
|
761 |
+
raises(Undecidable, lambda: Point(2 * d, 0) in s)
|
762 |
+
raises(ValueError, lambda: Ray3D(Point(1.0, 1.0)))
|
763 |
+
raises(ValueError, lambda: Line3D(Point3D(0, 0, 0), Point3D(0, 0, 0)))
|
764 |
+
raises(TypeError, lambda: Line3D((1, 1), 1))
|
765 |
+
raises(ValueError, lambda: Line3D(Point3D(0, 0, 0)))
|
766 |
+
raises(TypeError, lambda: Ray((1, 1), 1))
|
767 |
+
raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0))
|
768 |
+
.projection(Circle(Point(0, 0), 1)))
|
769 |
+
|
770 |
+
|
771 |
+
def test_ray_generation():
|
772 |
+
assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2))
|
773 |
+
assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2))
|
774 |
+
assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0))
|
775 |
+
assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2))
|
776 |
+
assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2))
|
777 |
+
assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2))
|
778 |
+
assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
|
779 |
+
assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1))
|
780 |
+
assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1))
|
781 |
+
assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
|
782 |
+
assert Ray((1, 1), angle=4.05 * pi) == Ray(Point(1, 1),
|
783 |
+
Point(2, -sqrt(5) * sqrt(2 * sqrt(5) + 10) / 4 - sqrt(
|
784 |
+
2 * sqrt(5) + 10) / 4 + 2 + sqrt(5)))
|
785 |
+
assert Ray((1, 1), angle=4.02 * pi) == Ray(Point(1, 1),
|
786 |
+
Point(2, 1 + tan(4.02 * pi)))
|
787 |
+
assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + tan(5)))
|
788 |
+
|
789 |
+
assert Ray3D((1, 1, 1), direction_ratio=[4, 4, 4]) == Ray3D(Point3D(1, 1, 1), Point3D(5, 5, 5))
|
790 |
+
assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]) == Ray3D(Point3D(1, 1, 1), Point3D(2, 3, 4))
|
791 |
+
assert Ray3D((1, 1, 1), direction_ratio=[1, 1, 1]) == Ray3D(Point3D(1, 1, 1), Point3D(2, 2, 2))
|
792 |
+
|
793 |
+
|
794 |
+
def test_issue_7814():
|
795 |
+
circle = Circle(Point(x, 0), y)
|
796 |
+
line = Line(Point(k, z), slope=0)
|
797 |
+
_s = sqrt((y - z)*(y + z))
|
798 |
+
assert line.intersection(circle) == [Point2D(x + _s, z), Point2D(x - _s, z)]
|
799 |
+
|
800 |
+
|
801 |
+
def test_issue_2941():
|
802 |
+
def _check():
|
803 |
+
for f, g in cartes(*[(Line, Ray, Segment)] * 2):
|
804 |
+
l1 = f(a, b)
|
805 |
+
l2 = g(c, d)
|
806 |
+
assert l1.intersection(l2) == l2.intersection(l1)
|
807 |
+
# intersect at end point
|
808 |
+
c, d = (-2, -2), (-2, 0)
|
809 |
+
a, b = (0, 0), (1, 1)
|
810 |
+
_check()
|
811 |
+
# midline intersection
|
812 |
+
c, d = (-2, -3), (-2, 0)
|
813 |
+
_check()
|
814 |
+
|
815 |
+
|
816 |
+
def test_parameter_value():
|
817 |
+
t = Symbol('t')
|
818 |
+
p1, p2 = Point(0, 1), Point(5, 6)
|
819 |
+
l = Line(p1, p2)
|
820 |
+
assert l.parameter_value((5, 6), t) == {t: 1}
|
821 |
+
raises(ValueError, lambda: l.parameter_value((0, 0), t))
|
822 |
+
|
823 |
+
|
824 |
+
def test_bisectors():
|
825 |
+
r1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
|
826 |
+
r2 = Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))
|
827 |
+
bisections = r1.bisectors(r2)
|
828 |
+
assert bisections == [Line3D(Point3D(0, 0, 0), Point3D(1, 1, 0)),
|
829 |
+
Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))]
|
830 |
+
ans = [Line3D(Point3D(0, 0, 0), Point3D(1, 0, 1)),
|
831 |
+
Line3D(Point3D(0, 0, 0), Point3D(-1, 0, 1))]
|
832 |
+
l1 = (0, 0, 0), (0, 0, 1)
|
833 |
+
l2 = (0, 0), (1, 0)
|
834 |
+
for a, b in cartes((Line, Segment, Ray), repeat=2):
|
835 |
+
assert a(*l1).bisectors(b(*l2)) == ans
|
836 |
+
|
837 |
+
|
838 |
+
def test_issue_8615():
|
839 |
+
a = Line3D(Point3D(6, 5, 0), Point3D(6, -6, 0))
|
840 |
+
b = Line3D(Point3D(6, -1, 19/10), Point3D(6, -1, 0))
|
841 |
+
assert a.intersection(b) == [Point3D(6, -1, 0)]
|
842 |
+
|
843 |
+
|
844 |
+
def test_issue_12598():
|
845 |
+
r1 = Ray(Point(0, 1), Point(0.98, 0.79).n(2))
|
846 |
+
r2 = Ray(Point(0, 0), Point(0.71, 0.71).n(2))
|
847 |
+
assert str(r1.intersection(r2)[0]) == 'Point2D(0.82, 0.82)'
|
848 |
+
l1 = Line((0, 0), (1, 1))
|
849 |
+
l2 = Segment((-1, 1), (0, -1)).n(2)
|
850 |
+
assert str(l1.intersection(l2)[0]) == 'Point2D(-0.33, -0.33)'
|
851 |
+
l2 = Segment((-1, 1), (-1/2, 1/2)).n(2)
|
852 |
+
assert not l1.intersection(l2)
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/test_parabola.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import (Rational, oo)
|
2 |
+
from sympy.core.singleton import S
|
3 |
+
from sympy.core.symbol import symbols
|
4 |
+
from sympy.functions.elementary.complexes import sign
|
5 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
6 |
+
from sympy.geometry.ellipse import (Circle, Ellipse)
|
7 |
+
from sympy.geometry.line import (Line, Ray2D, Segment2D)
|
8 |
+
from sympy.geometry.parabola import Parabola
|
9 |
+
from sympy.geometry.point import (Point, Point2D)
|
10 |
+
from sympy.testing.pytest import raises
|
11 |
+
|
12 |
+
from sympy.abc import x, y
|
13 |
+
|
14 |
+
def test_parabola_geom():
|
15 |
+
a, b = symbols('a b')
|
16 |
+
p1 = Point(0, 0)
|
17 |
+
p2 = Point(3, 7)
|
18 |
+
p3 = Point(0, 4)
|
19 |
+
p4 = Point(6, 0)
|
20 |
+
p5 = Point(a, a)
|
21 |
+
d1 = Line(Point(4, 0), Point(4, 9))
|
22 |
+
d2 = Line(Point(7, 6), Point(3, 6))
|
23 |
+
d3 = Line(Point(4, 0), slope=oo)
|
24 |
+
d4 = Line(Point(7, 6), slope=0)
|
25 |
+
d5 = Line(Point(b, a), slope=oo)
|
26 |
+
d6 = Line(Point(a, b), slope=0)
|
27 |
+
|
28 |
+
half = S.Half
|
29 |
+
|
30 |
+
pa1 = Parabola(None, d2)
|
31 |
+
pa2 = Parabola(directrix=d1)
|
32 |
+
pa3 = Parabola(p1, d1)
|
33 |
+
pa4 = Parabola(p2, d2)
|
34 |
+
pa5 = Parabola(p2, d4)
|
35 |
+
pa6 = Parabola(p3, d2)
|
36 |
+
pa7 = Parabola(p2, d1)
|
37 |
+
pa8 = Parabola(p4, d1)
|
38 |
+
pa9 = Parabola(p4, d3)
|
39 |
+
pa10 = Parabola(p5, d5)
|
40 |
+
pa11 = Parabola(p5, d6)
|
41 |
+
d = Line(Point(3, 7), Point(2, 9))
|
42 |
+
pa12 = Parabola(Point(7, 8), d)
|
43 |
+
pa12r = Parabola(Point(7, 8).reflect(d), d)
|
44 |
+
|
45 |
+
raises(ValueError, lambda:
|
46 |
+
Parabola(Point(7, 8, 9), Line(Point(6, 7), Point(7, 7))))
|
47 |
+
raises(ValueError, lambda:
|
48 |
+
Parabola(Point(0, 2), Line(Point(7, 2), Point(6, 2))))
|
49 |
+
raises(ValueError, lambda: Parabola(Point(7, 8), Point(3, 8)))
|
50 |
+
|
51 |
+
# Basic Stuff
|
52 |
+
assert pa1.focus == Point(0, 0)
|
53 |
+
assert pa1.ambient_dimension == S(2)
|
54 |
+
assert pa2 == pa3
|
55 |
+
assert pa4 != pa7
|
56 |
+
assert pa6 != pa7
|
57 |
+
assert pa6.focus == Point2D(0, 4)
|
58 |
+
assert pa6.focal_length == 1
|
59 |
+
assert pa6.p_parameter == -1
|
60 |
+
assert pa6.vertex == Point2D(0, 5)
|
61 |
+
assert pa6.eccentricity == 1
|
62 |
+
assert pa7.focus == Point2D(3, 7)
|
63 |
+
assert pa7.focal_length == half
|
64 |
+
assert pa7.p_parameter == -half
|
65 |
+
assert pa7.vertex == Point2D(7*half, 7)
|
66 |
+
assert pa4.focal_length == half
|
67 |
+
assert pa4.p_parameter == half
|
68 |
+
assert pa4.vertex == Point2D(3, 13*half)
|
69 |
+
assert pa8.focal_length == 1
|
70 |
+
assert pa8.p_parameter == 1
|
71 |
+
assert pa8.vertex == Point2D(5, 0)
|
72 |
+
assert pa4.focal_length == pa5.focal_length
|
73 |
+
assert pa4.p_parameter == pa5.p_parameter
|
74 |
+
assert pa4.vertex == pa5.vertex
|
75 |
+
assert pa4.equation() == pa5.equation()
|
76 |
+
assert pa8.focal_length == pa9.focal_length
|
77 |
+
assert pa8.p_parameter == pa9.p_parameter
|
78 |
+
assert pa8.vertex == pa9.vertex
|
79 |
+
assert pa8.equation() == pa9.equation()
|
80 |
+
assert pa10.focal_length == pa11.focal_length == sqrt((a - b) ** 2) / 2 # if a, b real == abs(a - b)/2
|
81 |
+
assert pa11.vertex == Point(*pa10.vertex[::-1]) == Point(a,
|
82 |
+
a - sqrt((a - b)**2)*sign(a - b)/2) # change axis x->y, y->x on pa10
|
83 |
+
aos = pa12.axis_of_symmetry
|
84 |
+
assert aos == Line(Point(7, 8), Point(5, 7))
|
85 |
+
assert pa12.directrix == Line(Point(3, 7), Point(2, 9))
|
86 |
+
assert pa12.directrix.angle_between(aos) == S.Pi/2
|
87 |
+
assert pa12.eccentricity == 1
|
88 |
+
assert pa12.equation(x, y) == (x - 7)**2 + (y - 8)**2 - (-2*x - y + 13)**2/5
|
89 |
+
assert pa12.focal_length == 9*sqrt(5)/10
|
90 |
+
assert pa12.focus == Point(7, 8)
|
91 |
+
assert pa12.p_parameter == 9*sqrt(5)/10
|
92 |
+
assert pa12.vertex == Point2D(S(26)/5, S(71)/10)
|
93 |
+
assert pa12r.focal_length == 9*sqrt(5)/10
|
94 |
+
assert pa12r.focus == Point(-S(1)/5, S(22)/5)
|
95 |
+
assert pa12r.p_parameter == -9*sqrt(5)/10
|
96 |
+
assert pa12r.vertex == Point(S(8)/5, S(53)/10)
|
97 |
+
|
98 |
+
|
99 |
+
def test_parabola_intersection():
|
100 |
+
l1 = Line(Point(1, -2), Point(-1,-2))
|
101 |
+
l2 = Line(Point(1, 2), Point(-1,2))
|
102 |
+
l3 = Line(Point(1, 0), Point(-1,0))
|
103 |
+
|
104 |
+
p1 = Point(0,0)
|
105 |
+
p2 = Point(0, -2)
|
106 |
+
p3 = Point(120, -12)
|
107 |
+
parabola1 = Parabola(p1, l1)
|
108 |
+
|
109 |
+
# parabola with parabola
|
110 |
+
assert parabola1.intersection(parabola1) == [parabola1]
|
111 |
+
assert parabola1.intersection(Parabola(p1, l2)) == [Point2D(-2, 0), Point2D(2, 0)]
|
112 |
+
assert parabola1.intersection(Parabola(p2, l3)) == [Point2D(0, -1)]
|
113 |
+
assert parabola1.intersection(Parabola(Point(16, 0), l1)) == [Point2D(8, 15)]
|
114 |
+
assert parabola1.intersection(Parabola(Point(0, 16), l1)) == [Point2D(-6, 8), Point2D(6, 8)]
|
115 |
+
assert parabola1.intersection(Parabola(p3, l3)) == []
|
116 |
+
# parabola with point
|
117 |
+
assert parabola1.intersection(p1) == []
|
118 |
+
assert parabola1.intersection(Point2D(0, -1)) == [Point2D(0, -1)]
|
119 |
+
assert parabola1.intersection(Point2D(4, 3)) == [Point2D(4, 3)]
|
120 |
+
# parabola with line
|
121 |
+
assert parabola1.intersection(Line(Point2D(-7, 3), Point(12, 3))) == [Point2D(-4, 3), Point2D(4, 3)]
|
122 |
+
assert parabola1.intersection(Line(Point(-4, -1), Point(4, -1))) == [Point(0, -1)]
|
123 |
+
assert parabola1.intersection(Line(Point(2, 0), Point(0, -2))) == [Point2D(2, 0)]
|
124 |
+
raises(TypeError, lambda: parabola1.intersection(Line(Point(0, 0, 0), Point(1, 1, 1))))
|
125 |
+
# parabola with segment
|
126 |
+
assert parabola1.intersection(Segment2D((-4, -5), (4, 3))) == [Point2D(0, -1), Point2D(4, 3)]
|
127 |
+
assert parabola1.intersection(Segment2D((0, -5), (0, 6))) == [Point2D(0, -1)]
|
128 |
+
assert parabola1.intersection(Segment2D((-12, -65), (14, -68))) == []
|
129 |
+
# parabola with ray
|
130 |
+
assert parabola1.intersection(Ray2D((-4, -5), (4, 3))) == [Point2D(0, -1), Point2D(4, 3)]
|
131 |
+
assert parabola1.intersection(Ray2D((0, 7), (1, 14))) == [Point2D(14 + 2*sqrt(57), 105 + 14*sqrt(57))]
|
132 |
+
assert parabola1.intersection(Ray2D((0, 7), (0, 14))) == []
|
133 |
+
# parabola with ellipse/circle
|
134 |
+
assert parabola1.intersection(Circle(p1, 2)) == [Point2D(-2, 0), Point2D(2, 0)]
|
135 |
+
assert parabola1.intersection(Circle(p2, 1)) == [Point2D(0, -1)]
|
136 |
+
assert parabola1.intersection(Ellipse(p2, 2, 1)) == [Point2D(0, -1)]
|
137 |
+
assert parabola1.intersection(Ellipse(Point(0, 19), 5, 7)) == []
|
138 |
+
assert parabola1.intersection(Ellipse((0, 3), 12, 4)) == [
|
139 |
+
Point2D(0, -1),
|
140 |
+
Point2D(-4*sqrt(17)/3, Rational(59, 9)),
|
141 |
+
Point2D(4*sqrt(17)/3, Rational(59, 9))]
|
142 |
+
# parabola with unsupported type
|
143 |
+
raises(TypeError, lambda: parabola1.intersection(2))
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/test_plane.py
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import (Rational, pi)
|
2 |
+
from sympy.core.singleton import S
|
3 |
+
from sympy.core.symbol import (Dummy, symbols)
|
4 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
5 |
+
from sympy.functions.elementary.trigonometric import (asin, cos, sin)
|
6 |
+
from sympy.geometry import Line, Point, Ray, Segment, Point3D, Line3D, Ray3D, Segment3D, Plane, Circle
|
7 |
+
from sympy.geometry.util import are_coplanar
|
8 |
+
from sympy.testing.pytest import raises
|
9 |
+
|
10 |
+
|
11 |
+
def test_plane():
|
12 |
+
x, y, z, u, v = symbols('x y z u v', real=True)
|
13 |
+
p1 = Point3D(0, 0, 0)
|
14 |
+
p2 = Point3D(1, 1, 1)
|
15 |
+
p3 = Point3D(1, 2, 3)
|
16 |
+
pl3 = Plane(p1, p2, p3)
|
17 |
+
pl4 = Plane(p1, normal_vector=(1, 1, 1))
|
18 |
+
pl4b = Plane(p1, p2)
|
19 |
+
pl5 = Plane(p3, normal_vector=(1, 2, 3))
|
20 |
+
pl6 = Plane(Point3D(2, 3, 7), normal_vector=(2, 2, 2))
|
21 |
+
pl7 = Plane(Point3D(1, -5, -6), normal_vector=(1, -2, 1))
|
22 |
+
pl8 = Plane(p1, normal_vector=(0, 0, 1))
|
23 |
+
pl9 = Plane(p1, normal_vector=(0, 12, 0))
|
24 |
+
pl10 = Plane(p1, normal_vector=(-2, 0, 0))
|
25 |
+
pl11 = Plane(p2, normal_vector=(0, 0, 1))
|
26 |
+
l1 = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
|
27 |
+
l2 = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
|
28 |
+
l3 = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))
|
29 |
+
|
30 |
+
raises(ValueError, lambda: Plane(p1, p1, p1))
|
31 |
+
|
32 |
+
assert Plane(p1, p2, p3) != Plane(p1, p3, p2)
|
33 |
+
assert Plane(p1, p2, p3).is_coplanar(Plane(p1, p3, p2))
|
34 |
+
assert Plane(p1, p2, p3).is_coplanar(p1)
|
35 |
+
assert Plane(p1, p2, p3).is_coplanar(Circle(p1, 1)) is False
|
36 |
+
assert Plane(p1, normal_vector=(0, 0, 1)).is_coplanar(Circle(p1, 1))
|
37 |
+
|
38 |
+
assert pl3 == Plane(Point3D(0, 0, 0), normal_vector=(1, -2, 1))
|
39 |
+
assert pl3 != pl4
|
40 |
+
assert pl4 == pl4b
|
41 |
+
assert pl5 == Plane(Point3D(1, 2, 3), normal_vector=(1, 2, 3))
|
42 |
+
|
43 |
+
assert pl5.equation(x, y, z) == x + 2*y + 3*z - 14
|
44 |
+
assert pl3.equation(x, y, z) == x - 2*y + z
|
45 |
+
|
46 |
+
assert pl3.p1 == p1
|
47 |
+
assert pl4.p1 == p1
|
48 |
+
assert pl5.p1 == p3
|
49 |
+
|
50 |
+
assert pl4.normal_vector == (1, 1, 1)
|
51 |
+
assert pl5.normal_vector == (1, 2, 3)
|
52 |
+
|
53 |
+
assert p1 in pl3
|
54 |
+
assert p1 in pl4
|
55 |
+
assert p3 in pl5
|
56 |
+
|
57 |
+
assert pl3.projection(Point(0, 0)) == p1
|
58 |
+
p = pl3.projection(Point3D(1, 1, 0))
|
59 |
+
assert p == Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6))
|
60 |
+
assert p in pl3
|
61 |
+
|
62 |
+
l = pl3.projection_line(Line(Point(0, 0), Point(1, 1)))
|
63 |
+
assert l == Line3D(Point3D(0, 0, 0), Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6)))
|
64 |
+
assert l in pl3
|
65 |
+
# get a segment that does not intersect the plane which is also
|
66 |
+
# parallel to pl3's normal veector
|
67 |
+
t = Dummy()
|
68 |
+
r = pl3.random_point()
|
69 |
+
a = pl3.perpendicular_line(r).arbitrary_point(t)
|
70 |
+
s = Segment3D(a.subs(t, 1), a.subs(t, 2))
|
71 |
+
assert s.p1 not in pl3 and s.p2 not in pl3
|
72 |
+
assert pl3.projection_line(s).equals(r)
|
73 |
+
assert pl3.projection_line(Segment(Point(1, 0), Point(1, 1))) == \
|
74 |
+
Segment3D(Point3D(Rational(5, 6), Rational(1, 3), Rational(-1, 6)), Point3D(Rational(7, 6), Rational(2, 3), Rational(1, 6)))
|
75 |
+
assert pl6.projection_line(Ray(Point(1, 0), Point(1, 1))) == \
|
76 |
+
Ray3D(Point3D(Rational(14, 3), Rational(11, 3), Rational(11, 3)), Point3D(Rational(13, 3), Rational(13, 3), Rational(10, 3)))
|
77 |
+
assert pl3.perpendicular_line(r.args) == pl3.perpendicular_line(r)
|
78 |
+
|
79 |
+
assert pl3.is_parallel(pl6) is False
|
80 |
+
assert pl4.is_parallel(pl6)
|
81 |
+
assert pl3.is_parallel(Line(p1, p2))
|
82 |
+
assert pl6.is_parallel(l1) is False
|
83 |
+
|
84 |
+
assert pl3.is_perpendicular(pl6)
|
85 |
+
assert pl4.is_perpendicular(pl7)
|
86 |
+
assert pl6.is_perpendicular(pl7)
|
87 |
+
assert pl6.is_perpendicular(pl4) is False
|
88 |
+
assert pl6.is_perpendicular(l1) is False
|
89 |
+
assert pl6.is_perpendicular(Line((0, 0, 0), (1, 1, 1)))
|
90 |
+
assert pl6.is_perpendicular((1, 1)) is False
|
91 |
+
|
92 |
+
assert pl6.distance(pl6.arbitrary_point(u, v)) == 0
|
93 |
+
assert pl7.distance(pl7.arbitrary_point(u, v)) == 0
|
94 |
+
assert pl6.distance(pl6.arbitrary_point(t)) == 0
|
95 |
+
assert pl7.distance(pl7.arbitrary_point(t)) == 0
|
96 |
+
assert pl6.p1.distance(pl6.arbitrary_point(t)).simplify() == 1
|
97 |
+
assert pl7.p1.distance(pl7.arbitrary_point(t)).simplify() == 1
|
98 |
+
assert pl3.arbitrary_point(t) == Point3D(-sqrt(30)*sin(t)/30 + \
|
99 |
+
2*sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/15 + sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/6)
|
100 |
+
assert pl3.arbitrary_point(u, v) == Point3D(2*u - v, u + 2*v, 5*v)
|
101 |
+
|
102 |
+
assert pl7.distance(Point3D(1, 3, 5)) == 5*sqrt(6)/6
|
103 |
+
assert pl6.distance(Point3D(0, 0, 0)) == 4*sqrt(3)
|
104 |
+
assert pl6.distance(pl6.p1) == 0
|
105 |
+
assert pl7.distance(pl6) == 0
|
106 |
+
assert pl7.distance(l1) == 0
|
107 |
+
assert pl6.distance(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == \
|
108 |
+
pl6.distance(Point3D(1, 3, 4)) == 4*sqrt(3)/3
|
109 |
+
assert pl6.distance(Segment3D(Point3D(1, 3, 4), Point3D(0, 3, 7))) == \
|
110 |
+
pl6.distance(Point3D(0, 3, 7)) == 2*sqrt(3)/3
|
111 |
+
assert pl6.distance(Segment3D(Point3D(0, 3, 7), Point3D(-1, 3, 10))) == 0
|
112 |
+
assert pl6.distance(Segment3D(Point3D(-1, 3, 10), Point3D(-2, 3, 13))) == 0
|
113 |
+
assert pl6.distance(Segment3D(Point3D(-2, 3, 13), Point3D(-3, 3, 16))) == \
|
114 |
+
pl6.distance(Point3D(-2, 3, 13)) == 2*sqrt(3)/3
|
115 |
+
assert pl6.distance(Plane(Point3D(5, 5, 5), normal_vector=(8, 8, 8))) == sqrt(3)
|
116 |
+
assert pl6.distance(Ray3D(Point3D(1, 3, 4), direction_ratio=[1, 0, -3])) == 4*sqrt(3)/3
|
117 |
+
assert pl6.distance(Ray3D(Point3D(2, 3, 1), direction_ratio=[-1, 0, 3])) == 0
|
118 |
+
|
119 |
+
|
120 |
+
assert pl6.angle_between(pl3) == pi/2
|
121 |
+
assert pl6.angle_between(pl6) == 0
|
122 |
+
assert pl6.angle_between(pl4) == 0
|
123 |
+
assert pl7.angle_between(Line3D(Point3D(2, 3, 5), Point3D(2, 4, 6))) == \
|
124 |
+
-asin(sqrt(3)/6)
|
125 |
+
assert pl6.angle_between(Ray3D(Point3D(2, 4, 1), Point3D(6, 5, 3))) == \
|
126 |
+
asin(sqrt(7)/3)
|
127 |
+
assert pl7.angle_between(Segment3D(Point3D(5, 6, 1), Point3D(1, 2, 4))) == \
|
128 |
+
asin(7*sqrt(246)/246)
|
129 |
+
|
130 |
+
assert are_coplanar(l1, l2, l3) is False
|
131 |
+
assert are_coplanar(l1) is False
|
132 |
+
assert are_coplanar(Point3D(2, 7, 2), Point3D(0, 0, 2),
|
133 |
+
Point3D(1, 1, 2), Point3D(1, 2, 2))
|
134 |
+
assert are_coplanar(Plane(p1, p2, p3), Plane(p1, p3, p2))
|
135 |
+
assert Plane.are_concurrent(pl3, pl4, pl5) is False
|
136 |
+
assert Plane.are_concurrent(pl6) is False
|
137 |
+
raises(ValueError, lambda: Plane.are_concurrent(Point3D(0, 0, 0)))
|
138 |
+
raises(ValueError, lambda: Plane((1, 2, 3), normal_vector=(0, 0, 0)))
|
139 |
+
|
140 |
+
assert pl3.parallel_plane(Point3D(1, 2, 5)) == Plane(Point3D(1, 2, 5), \
|
141 |
+
normal_vector=(1, -2, 1))
|
142 |
+
|
143 |
+
# perpendicular_plane
|
144 |
+
p = Plane((0, 0, 0), (1, 0, 0))
|
145 |
+
# default
|
146 |
+
assert p.perpendicular_plane() == Plane(Point3D(0, 0, 0), (0, 1, 0))
|
147 |
+
# 1 pt
|
148 |
+
assert p.perpendicular_plane(Point3D(1, 0, 1)) == \
|
149 |
+
Plane(Point3D(1, 0, 1), (0, 1, 0))
|
150 |
+
# pts as tuples
|
151 |
+
assert p.perpendicular_plane((1, 0, 1), (1, 1, 1)) == \
|
152 |
+
Plane(Point3D(1, 0, 1), (0, 0, -1))
|
153 |
+
# more than two planes
|
154 |
+
raises(ValueError, lambda: p.perpendicular_plane((1, 0, 1), (1, 1, 1), (1, 1, 0)))
|
155 |
+
|
156 |
+
a, b = Point3D(0, 0, 0), Point3D(0, 1, 0)
|
157 |
+
Z = (0, 0, 1)
|
158 |
+
p = Plane(a, normal_vector=Z)
|
159 |
+
# case 4
|
160 |
+
assert p.perpendicular_plane(a, b) == Plane(a, (1, 0, 0))
|
161 |
+
n = Point3D(*Z)
|
162 |
+
# case 1
|
163 |
+
assert p.perpendicular_plane(a, n) == Plane(a, (-1, 0, 0))
|
164 |
+
# case 2
|
165 |
+
assert Plane(a, normal_vector=b.args).perpendicular_plane(a, a + b) == \
|
166 |
+
Plane(Point3D(0, 0, 0), (1, 0, 0))
|
167 |
+
# case 1&3
|
168 |
+
assert Plane(b, normal_vector=Z).perpendicular_plane(b, b + n) == \
|
169 |
+
Plane(Point3D(0, 1, 0), (-1, 0, 0))
|
170 |
+
# case 2&3
|
171 |
+
assert Plane(b, normal_vector=b.args).perpendicular_plane(n, n + b) == \
|
172 |
+
Plane(Point3D(0, 0, 1), (1, 0, 0))
|
173 |
+
|
174 |
+
p = Plane(a, normal_vector=(0, 0, 1))
|
175 |
+
assert p.perpendicular_plane() == Plane(a, normal_vector=(1, 0, 0))
|
176 |
+
|
177 |
+
assert pl6.intersection(pl6) == [pl6]
|
178 |
+
assert pl4.intersection(pl4.p1) == [pl4.p1]
|
179 |
+
assert pl3.intersection(pl6) == [
|
180 |
+
Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6))]
|
181 |
+
assert pl3.intersection(Line3D(Point3D(1,2,4), Point3D(4,4,2))) == [
|
182 |
+
Point3D(2, Rational(8, 3), Rational(10, 3))]
|
183 |
+
assert pl3.intersection(Plane(Point3D(6, 0, 0), normal_vector=(2, -5, 3))
|
184 |
+
) == [Line3D(Point3D(-24, -12, 0), Point3D(-25, -13, -1))]
|
185 |
+
assert pl6.intersection(Ray3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == [
|
186 |
+
Point3D(-1, 3, 10)]
|
187 |
+
assert pl6.intersection(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == []
|
188 |
+
assert pl7.intersection(Line(Point(2, 3), Point(4, 2))) == [
|
189 |
+
Point3D(Rational(13, 2), Rational(3, 4), 0)]
|
190 |
+
r = Ray(Point(2, 3), Point(4, 2))
|
191 |
+
assert Plane((1,2,0), normal_vector=(0,0,1)).intersection(r) == [
|
192 |
+
Ray3D(Point(2, 3), Point(4, 2))]
|
193 |
+
assert pl9.intersection(pl8) == [Line3D(Point3D(0, 0, 0), Point3D(12, 0, 0))]
|
194 |
+
assert pl10.intersection(pl11) == [Line3D(Point3D(0, 0, 1), Point3D(0, 2, 1))]
|
195 |
+
assert pl4.intersection(pl8) == [Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))]
|
196 |
+
assert pl11.intersection(pl8) == []
|
197 |
+
assert pl9.intersection(pl11) == [Line3D(Point3D(0, 0, 1), Point3D(12, 0, 1))]
|
198 |
+
assert pl9.intersection(pl4) == [Line3D(Point3D(0, 0, 0), Point3D(12, 0, -12))]
|
199 |
+
assert pl3.random_point() in pl3
|
200 |
+
assert pl3.random_point(seed=1) in pl3
|
201 |
+
|
202 |
+
# test geometrical entity using equals
|
203 |
+
assert pl4.intersection(pl4.p1)[0].equals(pl4.p1)
|
204 |
+
assert pl3.intersection(pl6)[0].equals(Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6)))
|
205 |
+
pl8 = Plane((1, 2, 0), normal_vector=(0, 0, 1))
|
206 |
+
assert pl8.intersection(Line3D(p1, (1, 12, 0)))[0].equals(Line((0, 0, 0), (0.1, 1.2, 0)))
|
207 |
+
assert pl8.intersection(Ray3D(p1, (1, 12, 0)))[0].equals(Ray((0, 0, 0), (1, 12, 0)))
|
208 |
+
assert pl8.intersection(Segment3D(p1, (21, 1, 0)))[0].equals(Segment3D(p1, (21, 1, 0)))
|
209 |
+
assert pl8.intersection(Plane(p1, normal_vector=(0, 0, 112)))[0].equals(pl8)
|
210 |
+
assert pl8.intersection(Plane(p1, normal_vector=(0, 12, 0)))[0].equals(
|
211 |
+
Line3D(p1, direction_ratio=(112 * pi, 0, 0)))
|
212 |
+
assert pl8.intersection(Plane(p1, normal_vector=(11, 0, 1)))[0].equals(
|
213 |
+
Line3D(p1, direction_ratio=(0, -11, 0)))
|
214 |
+
assert pl8.intersection(Plane(p1, normal_vector=(1, 0, 11)))[0].equals(
|
215 |
+
Line3D(p1, direction_ratio=(0, 11, 0)))
|
216 |
+
assert pl8.intersection(Plane(p1, normal_vector=(-1, -1, -11)))[0].equals(
|
217 |
+
Line3D(p1, direction_ratio=(1, -1, 0)))
|
218 |
+
assert pl3.random_point() in pl3
|
219 |
+
assert len(pl8.intersection(Ray3D(Point3D(0, 2, 3), Point3D(1, 0, 3)))) == 0
|
220 |
+
# check if two plane are equals
|
221 |
+
assert pl6.intersection(pl6)[0].equals(pl6)
|
222 |
+
assert pl8.equals(Plane(p1, normal_vector=(0, 12, 0))) is False
|
223 |
+
assert pl8.equals(pl8)
|
224 |
+
assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12)))
|
225 |
+
assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12*sqrt(3))))
|
226 |
+
assert pl8.equals(p1) is False
|
227 |
+
|
228 |
+
# issue 8570
|
229 |
+
l2 = Line3D(Point3D(Rational(50000004459633, 5000000000000),
|
230 |
+
Rational(-891926590718643, 1000000000000000),
|
231 |
+
Rational(231800966893633, 100000000000000)),
|
232 |
+
Point3D(Rational(50000004459633, 50000000000000),
|
233 |
+
Rational(-222981647679771, 250000000000000),
|
234 |
+
Rational(231800966893633, 100000000000000)))
|
235 |
+
|
236 |
+
p2 = Plane(Point3D(Rational(402775636372767, 100000000000000),
|
237 |
+
Rational(-97224357654973, 100000000000000),
|
238 |
+
Rational(216793600814789, 100000000000000)),
|
239 |
+
(-S('9.00000087501922'), -S('4.81170658872543e-13'),
|
240 |
+
S('0.0')))
|
241 |
+
|
242 |
+
assert str([i.n(2) for i in p2.intersection(l2)]) == \
|
243 |
+
'[Point3D(4.0, -0.89, 2.3)]'
|
244 |
+
|
245 |
+
|
246 |
+
def test_dimension_normalization():
|
247 |
+
A = Plane(Point3D(1, 1, 2), normal_vector=(1, 1, 1))
|
248 |
+
b = Point(1, 1)
|
249 |
+
assert A.projection(b) == Point(Rational(5, 3), Rational(5, 3), Rational(2, 3))
|
250 |
+
|
251 |
+
a, b = Point(0, 0), Point3D(0, 1)
|
252 |
+
Z = (0, 0, 1)
|
253 |
+
p = Plane(a, normal_vector=Z)
|
254 |
+
assert p.perpendicular_plane(a, b) == Plane(Point3D(0, 0, 0), (1, 0, 0))
|
255 |
+
assert Plane((1, 2, 1), (2, 1, 0), (3, 1, 2)
|
256 |
+
).intersection((2, 1)) == [Point(2, 1, 0)]
|
257 |
+
|
258 |
+
|
259 |
+
def test_parameter_value():
|
260 |
+
t, u, v = symbols("t, u v")
|
261 |
+
p1, p2, p3 = Point(0, 0, 0), Point(0, 0, 1), Point(0, 1, 0)
|
262 |
+
p = Plane(p1, p2, p3)
|
263 |
+
assert p.parameter_value((0, -3, 2), t) == {t: asin(2*sqrt(13)/13)}
|
264 |
+
assert p.parameter_value((0, -3, 2), u, v) == {u: 3, v: 2}
|
265 |
+
assert p.parameter_value(p1, t) == p1
|
266 |
+
raises(ValueError, lambda: p.parameter_value((1, 0, 0), t))
|
267 |
+
raises(ValueError, lambda: p.parameter_value(Line(Point(0, 0), Point(1, 1)), t))
|
268 |
+
raises(ValueError, lambda: p.parameter_value((0, -3, 2), t, 1))
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/test_point.py
ADDED
@@ -0,0 +1,481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.basic import Basic
|
2 |
+
from sympy.core.numbers import (I, Rational, pi)
|
3 |
+
from sympy.core.parameters import evaluate
|
4 |
+
from sympy.core.singleton import S
|
5 |
+
from sympy.core.symbol import Symbol
|
6 |
+
from sympy.core.sympify import sympify
|
7 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
8 |
+
from sympy.geometry import Line, Point, Point2D, Point3D, Line3D, Plane
|
9 |
+
from sympy.geometry.entity import rotate, scale, translate, GeometryEntity
|
10 |
+
from sympy.matrices import Matrix
|
11 |
+
from sympy.utilities.iterables import subsets, permutations, cartes
|
12 |
+
from sympy.utilities.misc import Undecidable
|
13 |
+
from sympy.testing.pytest import raises, warns
|
14 |
+
|
15 |
+
|
16 |
+
def test_point():
|
17 |
+
x = Symbol('x', real=True)
|
18 |
+
y = Symbol('y', real=True)
|
19 |
+
x1 = Symbol('x1', real=True)
|
20 |
+
x2 = Symbol('x2', real=True)
|
21 |
+
y1 = Symbol('y1', real=True)
|
22 |
+
y2 = Symbol('y2', real=True)
|
23 |
+
half = S.Half
|
24 |
+
p1 = Point(x1, x2)
|
25 |
+
p2 = Point(y1, y2)
|
26 |
+
p3 = Point(0, 0)
|
27 |
+
p4 = Point(1, 1)
|
28 |
+
p5 = Point(0, 1)
|
29 |
+
line = Line(Point(1, 0), slope=1)
|
30 |
+
|
31 |
+
assert p1 in p1
|
32 |
+
assert p1 not in p2
|
33 |
+
assert p2.y == y2
|
34 |
+
assert (p3 + p4) == p4
|
35 |
+
assert (p2 - p1) == Point(y1 - x1, y2 - x2)
|
36 |
+
assert -p2 == Point(-y1, -y2)
|
37 |
+
raises(TypeError, lambda: Point(1))
|
38 |
+
raises(ValueError, lambda: Point([1]))
|
39 |
+
raises(ValueError, lambda: Point(3, I))
|
40 |
+
raises(ValueError, lambda: Point(2*I, I))
|
41 |
+
raises(ValueError, lambda: Point(3 + I, I))
|
42 |
+
|
43 |
+
assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
|
44 |
+
assert Point.midpoint(p3, p4) == Point(half, half)
|
45 |
+
assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2)
|
46 |
+
assert Point.midpoint(p2, p2) == p2
|
47 |
+
assert p2.midpoint(p2) == p2
|
48 |
+
assert p1.origin == Point(0, 0)
|
49 |
+
|
50 |
+
assert Point.distance(p3, p4) == sqrt(2)
|
51 |
+
assert Point.distance(p1, p1) == 0
|
52 |
+
assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2)
|
53 |
+
raises(TypeError, lambda: Point.distance(p1, 0))
|
54 |
+
raises(TypeError, lambda: Point.distance(p1, GeometryEntity()))
|
55 |
+
|
56 |
+
# distance should be symmetric
|
57 |
+
assert p1.distance(line) == line.distance(p1)
|
58 |
+
assert p4.distance(line) == line.distance(p4)
|
59 |
+
|
60 |
+
assert Point.taxicab_distance(p4, p3) == 2
|
61 |
+
|
62 |
+
assert Point.canberra_distance(p4, p5) == 1
|
63 |
+
raises(ValueError, lambda: Point.canberra_distance(p3, p3))
|
64 |
+
|
65 |
+
p1_1 = Point(x1, x1)
|
66 |
+
p1_2 = Point(y2, y2)
|
67 |
+
p1_3 = Point(x1 + 1, x1)
|
68 |
+
assert Point.is_collinear(p3)
|
69 |
+
|
70 |
+
with warns(UserWarning, test_stacklevel=False):
|
71 |
+
assert Point.is_collinear(p3, Point(p3, dim=4))
|
72 |
+
assert p3.is_collinear()
|
73 |
+
assert Point.is_collinear(p3, p4)
|
74 |
+
assert Point.is_collinear(p3, p4, p1_1, p1_2)
|
75 |
+
assert Point.is_collinear(p3, p4, p1_1, p1_3) is False
|
76 |
+
assert Point.is_collinear(p3, p3, p4, p5) is False
|
77 |
+
|
78 |
+
raises(TypeError, lambda: Point.is_collinear(line))
|
79 |
+
raises(TypeError, lambda: p1_1.is_collinear(line))
|
80 |
+
|
81 |
+
assert p3.intersection(Point(0, 0)) == [p3]
|
82 |
+
assert p3.intersection(p4) == []
|
83 |
+
assert p3.intersection(line) == []
|
84 |
+
with warns(UserWarning, test_stacklevel=False):
|
85 |
+
assert Point.intersection(Point(0, 0, 0), Point(0, 0)) == [Point(0, 0, 0)]
|
86 |
+
|
87 |
+
x_pos = Symbol('x', positive=True)
|
88 |
+
p2_1 = Point(x_pos, 0)
|
89 |
+
p2_2 = Point(0, x_pos)
|
90 |
+
p2_3 = Point(-x_pos, 0)
|
91 |
+
p2_4 = Point(0, -x_pos)
|
92 |
+
p2_5 = Point(x_pos, 5)
|
93 |
+
assert Point.is_concyclic(p2_1)
|
94 |
+
assert Point.is_concyclic(p2_1, p2_2)
|
95 |
+
assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4)
|
96 |
+
for pts in permutations((p2_1, p2_2, p2_3, p2_5)):
|
97 |
+
assert Point.is_concyclic(*pts) is False
|
98 |
+
assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False
|
99 |
+
assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False
|
100 |
+
assert Point.is_concyclic(Point(0, 0, 0, 0), Point(1, 0, 0, 0), Point(1, 1, 0, 0), Point(1, 1, 1, 0)) is False
|
101 |
+
|
102 |
+
assert p1.is_scalar_multiple(p1)
|
103 |
+
assert p1.is_scalar_multiple(2*p1)
|
104 |
+
assert not p1.is_scalar_multiple(p2)
|
105 |
+
assert Point.is_scalar_multiple(Point(1, 1), (-1, -1))
|
106 |
+
assert Point.is_scalar_multiple(Point(0, 0), (0, -1))
|
107 |
+
# test when is_scalar_multiple can't be determined
|
108 |
+
raises(Undecidable, lambda: Point.is_scalar_multiple(Point(sympify("x1%y1"), sympify("x2%y2")), Point(0, 1)))
|
109 |
+
|
110 |
+
assert Point(0, 1).orthogonal_direction == Point(1, 0)
|
111 |
+
assert Point(1, 0).orthogonal_direction == Point(0, 1)
|
112 |
+
|
113 |
+
assert p1.is_zero is None
|
114 |
+
assert p3.is_zero
|
115 |
+
assert p4.is_zero is False
|
116 |
+
assert p1.is_nonzero is None
|
117 |
+
assert p3.is_nonzero is False
|
118 |
+
assert p4.is_nonzero
|
119 |
+
|
120 |
+
assert p4.scale(2, 3) == Point(2, 3)
|
121 |
+
assert p3.scale(2, 3) == p3
|
122 |
+
|
123 |
+
assert p4.rotate(pi, Point(0.5, 0.5)) == p3
|
124 |
+
assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2)
|
125 |
+
assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2)
|
126 |
+
|
127 |
+
assert p4 * 5 == Point(5, 5)
|
128 |
+
assert p4 / 5 == Point(0.2, 0.2)
|
129 |
+
assert 5 * p4 == Point(5, 5)
|
130 |
+
|
131 |
+
raises(ValueError, lambda: Point(0, 0) + 10)
|
132 |
+
|
133 |
+
# Point differences should be simplified
|
134 |
+
assert Point(x*(x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1)
|
135 |
+
|
136 |
+
a, b = S.Half, Rational(1, 3)
|
137 |
+
assert Point(a, b).evalf(2) == \
|
138 |
+
Point(a.n(2), b.n(2), evaluate=False)
|
139 |
+
raises(ValueError, lambda: Point(1, 2) + 1)
|
140 |
+
|
141 |
+
# test project
|
142 |
+
assert Point.project((0, 1), (1, 0)) == Point(0, 0)
|
143 |
+
assert Point.project((1, 1), (1, 0)) == Point(1, 0)
|
144 |
+
raises(ValueError, lambda: Point.project(p1, Point(0, 0)))
|
145 |
+
|
146 |
+
# test transformations
|
147 |
+
p = Point(1, 0)
|
148 |
+
assert p.rotate(pi/2) == Point(0, 1)
|
149 |
+
assert p.rotate(pi/2, p) == p
|
150 |
+
p = Point(1, 1)
|
151 |
+
assert p.scale(2, 3) == Point(2, 3)
|
152 |
+
assert p.translate(1, 2) == Point(2, 3)
|
153 |
+
assert p.translate(1) == Point(2, 1)
|
154 |
+
assert p.translate(y=1) == Point(1, 2)
|
155 |
+
assert p.translate(*p.args) == Point(2, 2)
|
156 |
+
|
157 |
+
# Check invalid input for transform
|
158 |
+
raises(ValueError, lambda: p3.transform(p3))
|
159 |
+
raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))
|
160 |
+
|
161 |
+
# test __contains__
|
162 |
+
assert 0 in Point(0, 0, 0, 0)
|
163 |
+
assert 1 not in Point(0, 0, 0, 0)
|
164 |
+
|
165 |
+
# test affine_rank
|
166 |
+
assert Point.affine_rank() == -1
|
167 |
+
|
168 |
+
|
169 |
+
def test_point3D():
|
170 |
+
x = Symbol('x', real=True)
|
171 |
+
y = Symbol('y', real=True)
|
172 |
+
x1 = Symbol('x1', real=True)
|
173 |
+
x2 = Symbol('x2', real=True)
|
174 |
+
x3 = Symbol('x3', real=True)
|
175 |
+
y1 = Symbol('y1', real=True)
|
176 |
+
y2 = Symbol('y2', real=True)
|
177 |
+
y3 = Symbol('y3', real=True)
|
178 |
+
half = S.Half
|
179 |
+
p1 = Point3D(x1, x2, x3)
|
180 |
+
p2 = Point3D(y1, y2, y3)
|
181 |
+
p3 = Point3D(0, 0, 0)
|
182 |
+
p4 = Point3D(1, 1, 1)
|
183 |
+
p5 = Point3D(0, 1, 2)
|
184 |
+
|
185 |
+
assert p1 in p1
|
186 |
+
assert p1 not in p2
|
187 |
+
assert p2.y == y2
|
188 |
+
assert (p3 + p4) == p4
|
189 |
+
assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3)
|
190 |
+
assert -p2 == Point3D(-y1, -y2, -y3)
|
191 |
+
|
192 |
+
assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3))
|
193 |
+
assert Point3D.midpoint(p3, p4) == Point3D(half, half, half)
|
194 |
+
assert Point3D.midpoint(p1, p4) == Point3D(half + half*x1, half + half*x2,
|
195 |
+
half + half*x3)
|
196 |
+
assert Point3D.midpoint(p2, p2) == p2
|
197 |
+
assert p2.midpoint(p2) == p2
|
198 |
+
|
199 |
+
assert Point3D.distance(p3, p4) == sqrt(3)
|
200 |
+
assert Point3D.distance(p1, p1) == 0
|
201 |
+
assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2)
|
202 |
+
|
203 |
+
p1_1 = Point3D(x1, x1, x1)
|
204 |
+
p1_2 = Point3D(y2, y2, y2)
|
205 |
+
p1_3 = Point3D(x1 + 1, x1, x1)
|
206 |
+
Point3D.are_collinear(p3)
|
207 |
+
assert Point3D.are_collinear(p3, p4)
|
208 |
+
assert Point3D.are_collinear(p3, p4, p1_1, p1_2)
|
209 |
+
assert Point3D.are_collinear(p3, p4, p1_1, p1_3) is False
|
210 |
+
assert Point3D.are_collinear(p3, p3, p4, p5) is False
|
211 |
+
|
212 |
+
assert p3.intersection(Point3D(0, 0, 0)) == [p3]
|
213 |
+
assert p3.intersection(p4) == []
|
214 |
+
|
215 |
+
|
216 |
+
assert p4 * 5 == Point3D(5, 5, 5)
|
217 |
+
assert p4 / 5 == Point3D(0.2, 0.2, 0.2)
|
218 |
+
assert 5 * p4 == Point3D(5, 5, 5)
|
219 |
+
|
220 |
+
raises(ValueError, lambda: Point3D(0, 0, 0) + 10)
|
221 |
+
|
222 |
+
# Test coordinate properties
|
223 |
+
assert p1.coordinates == (x1, x2, x3)
|
224 |
+
assert p2.coordinates == (y1, y2, y3)
|
225 |
+
assert p3.coordinates == (0, 0, 0)
|
226 |
+
assert p4.coordinates == (1, 1, 1)
|
227 |
+
assert p5.coordinates == (0, 1, 2)
|
228 |
+
assert p5.x == 0
|
229 |
+
assert p5.y == 1
|
230 |
+
assert p5.z == 2
|
231 |
+
|
232 |
+
# Point differences should be simplified
|
233 |
+
assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \
|
234 |
+
Point3D(0, -1, 1)
|
235 |
+
|
236 |
+
a, b, c = S.Half, Rational(1, 3), Rational(1, 4)
|
237 |
+
assert Point3D(a, b, c).evalf(2) == \
|
238 |
+
Point(a.n(2), b.n(2), c.n(2), evaluate=False)
|
239 |
+
raises(ValueError, lambda: Point3D(1, 2, 3) + 1)
|
240 |
+
|
241 |
+
# test transformations
|
242 |
+
p = Point3D(1, 1, 1)
|
243 |
+
assert p.scale(2, 3) == Point3D(2, 3, 1)
|
244 |
+
assert p.translate(1, 2) == Point3D(2, 3, 1)
|
245 |
+
assert p.translate(1) == Point3D(2, 1, 1)
|
246 |
+
assert p.translate(z=1) == Point3D(1, 1, 2)
|
247 |
+
assert p.translate(*p.args) == Point3D(2, 2, 2)
|
248 |
+
|
249 |
+
# Test __new__
|
250 |
+
assert Point3D(0.1, 0.2, evaluate=False, on_morph='ignore').args[0].is_Float
|
251 |
+
|
252 |
+
# Test length property returns correctly
|
253 |
+
assert p.length == 0
|
254 |
+
assert p1_1.length == 0
|
255 |
+
assert p1_2.length == 0
|
256 |
+
|
257 |
+
# Test are_colinear type error
|
258 |
+
raises(TypeError, lambda: Point3D.are_collinear(p, x))
|
259 |
+
|
260 |
+
# Test are_coplanar
|
261 |
+
assert Point.are_coplanar()
|
262 |
+
assert Point.are_coplanar((1, 2, 0), (1, 2, 0), (1, 3, 0))
|
263 |
+
assert Point.are_coplanar((1, 2, 0), (1, 2, 3))
|
264 |
+
with warns(UserWarning, test_stacklevel=False):
|
265 |
+
raises(ValueError, lambda: Point2D.are_coplanar((1, 2), (1, 2, 3)))
|
266 |
+
assert Point3D.are_coplanar((1, 2, 0), (1, 2, 3))
|
267 |
+
assert Point.are_coplanar((0, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 1)) is False
|
268 |
+
planar2 = Point3D(1, -1, 1)
|
269 |
+
planar3 = Point3D(-1, 1, 1)
|
270 |
+
assert Point3D.are_coplanar(p, planar2, planar3) == True
|
271 |
+
assert Point3D.are_coplanar(p, planar2, planar3, p3) == False
|
272 |
+
assert Point.are_coplanar(p, planar2)
|
273 |
+
planar2 = Point3D(1, 1, 2)
|
274 |
+
planar3 = Point3D(1, 1, 3)
|
275 |
+
assert Point3D.are_coplanar(p, planar2, planar3) # line, not plane
|
276 |
+
plane = Plane((1, 2, 1), (2, 1, 0), (3, 1, 2))
|
277 |
+
assert Point.are_coplanar(*[plane.projection(((-1)**i, i)) for i in range(4)])
|
278 |
+
|
279 |
+
# all 2D points are coplanar
|
280 |
+
assert Point.are_coplanar(Point(x, y), Point(x, x + y), Point(y, x + 2)) is True
|
281 |
+
|
282 |
+
# Test Intersection
|
283 |
+
assert planar2.intersection(Line3D(p, planar3)) == [Point3D(1, 1, 2)]
|
284 |
+
|
285 |
+
# Test Scale
|
286 |
+
assert planar2.scale(1, 1, 1) == planar2
|
287 |
+
assert planar2.scale(2, 2, 2, planar3) == Point3D(1, 1, 1)
|
288 |
+
assert planar2.scale(1, 1, 1, p3) == planar2
|
289 |
+
|
290 |
+
# Test Transform
|
291 |
+
identity = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
|
292 |
+
assert p.transform(identity) == p
|
293 |
+
trans = Matrix([[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 0, 1]])
|
294 |
+
assert p.transform(trans) == Point3D(2, 2, 2)
|
295 |
+
raises(ValueError, lambda: p.transform(p))
|
296 |
+
raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]])))
|
297 |
+
|
298 |
+
# Test Equals
|
299 |
+
assert p.equals(x1) == False
|
300 |
+
|
301 |
+
# Test __sub__
|
302 |
+
p_4d = Point(0, 0, 0, 1)
|
303 |
+
with warns(UserWarning, test_stacklevel=False):
|
304 |
+
assert p - p_4d == Point(1, 1, 1, -1)
|
305 |
+
p_4d3d = Point(0, 0, 1, 0)
|
306 |
+
with warns(UserWarning, test_stacklevel=False):
|
307 |
+
assert p - p_4d3d == Point(1, 1, 0, 0)
|
308 |
+
|
309 |
+
|
310 |
+
def test_Point2D():
|
311 |
+
|
312 |
+
# Test Distance
|
313 |
+
p1 = Point2D(1, 5)
|
314 |
+
p2 = Point2D(4, 2.5)
|
315 |
+
p3 = (6, 3)
|
316 |
+
assert p1.distance(p2) == sqrt(61)/2
|
317 |
+
assert p2.distance(p3) == sqrt(17)/2
|
318 |
+
|
319 |
+
# Test coordinates
|
320 |
+
assert p1.x == 1
|
321 |
+
assert p1.y == 5
|
322 |
+
assert p2.x == 4
|
323 |
+
assert p2.y == S(5)/2
|
324 |
+
assert p1.coordinates == (1, 5)
|
325 |
+
assert p2.coordinates == (4, S(5)/2)
|
326 |
+
|
327 |
+
# test bounds
|
328 |
+
assert p1.bounds == (1, 5, 1, 5)
|
329 |
+
|
330 |
+
def test_issue_9214():
|
331 |
+
p1 = Point3D(4, -2, 6)
|
332 |
+
p2 = Point3D(1, 2, 3)
|
333 |
+
p3 = Point3D(7, 2, 3)
|
334 |
+
|
335 |
+
assert Point3D.are_collinear(p1, p2, p3) is False
|
336 |
+
|
337 |
+
|
338 |
+
def test_issue_11617():
|
339 |
+
p1 = Point3D(1,0,2)
|
340 |
+
p2 = Point2D(2,0)
|
341 |
+
|
342 |
+
with warns(UserWarning, test_stacklevel=False):
|
343 |
+
assert p1.distance(p2) == sqrt(5)
|
344 |
+
|
345 |
+
|
346 |
+
def test_transform():
|
347 |
+
p = Point(1, 1)
|
348 |
+
assert p.transform(rotate(pi/2)) == Point(-1, 1)
|
349 |
+
assert p.transform(scale(3, 2)) == Point(3, 2)
|
350 |
+
assert p.transform(translate(1, 2)) == Point(2, 3)
|
351 |
+
assert Point(1, 1).scale(2, 3, (4, 5)) == \
|
352 |
+
Point(-2, -7)
|
353 |
+
assert Point(1, 1).translate(4, 5) == \
|
354 |
+
Point(5, 6)
|
355 |
+
|
356 |
+
|
357 |
+
def test_concyclic_doctest_bug():
|
358 |
+
p1, p2 = Point(-1, 0), Point(1, 0)
|
359 |
+
p3, p4 = Point(0, 1), Point(-1, 2)
|
360 |
+
assert Point.is_concyclic(p1, p2, p3)
|
361 |
+
assert not Point.is_concyclic(p1, p2, p3, p4)
|
362 |
+
|
363 |
+
|
364 |
+
def test_arguments():
|
365 |
+
"""Functions accepting `Point` objects in `geometry`
|
366 |
+
should also accept tuples and lists and
|
367 |
+
automatically convert them to points."""
|
368 |
+
|
369 |
+
singles2d = ((1,2), [1,2], Point(1,2))
|
370 |
+
singles2d2 = ((1,3), [1,3], Point(1,3))
|
371 |
+
doubles2d = cartes(singles2d, singles2d2)
|
372 |
+
p2d = Point2D(1,2)
|
373 |
+
singles3d = ((1,2,3), [1,2,3], Point(1,2,3))
|
374 |
+
doubles3d = subsets(singles3d, 2)
|
375 |
+
p3d = Point3D(1,2,3)
|
376 |
+
singles4d = ((1,2,3,4), [1,2,3,4], Point(1,2,3,4))
|
377 |
+
doubles4d = subsets(singles4d, 2)
|
378 |
+
p4d = Point(1,2,3,4)
|
379 |
+
|
380 |
+
# test 2D
|
381 |
+
test_single = ['distance', 'is_scalar_multiple', 'taxicab_distance', 'midpoint', 'intersection', 'dot', 'equals', '__add__', '__sub__']
|
382 |
+
test_double = ['is_concyclic', 'is_collinear']
|
383 |
+
for p in singles2d:
|
384 |
+
Point2D(p)
|
385 |
+
for func in test_single:
|
386 |
+
for p in singles2d:
|
387 |
+
getattr(p2d, func)(p)
|
388 |
+
for func in test_double:
|
389 |
+
for p in doubles2d:
|
390 |
+
getattr(p2d, func)(*p)
|
391 |
+
|
392 |
+
# test 3D
|
393 |
+
test_double = ['is_collinear']
|
394 |
+
for p in singles3d:
|
395 |
+
Point3D(p)
|
396 |
+
for func in test_single:
|
397 |
+
for p in singles3d:
|
398 |
+
getattr(p3d, func)(p)
|
399 |
+
for func in test_double:
|
400 |
+
for p in doubles3d:
|
401 |
+
getattr(p3d, func)(*p)
|
402 |
+
|
403 |
+
# test 4D
|
404 |
+
test_double = ['is_collinear']
|
405 |
+
for p in singles4d:
|
406 |
+
Point(p)
|
407 |
+
for func in test_single:
|
408 |
+
for p in singles4d:
|
409 |
+
getattr(p4d, func)(p)
|
410 |
+
for func in test_double:
|
411 |
+
for p in doubles4d:
|
412 |
+
getattr(p4d, func)(*p)
|
413 |
+
|
414 |
+
# test evaluate=False for ops
|
415 |
+
x = Symbol('x')
|
416 |
+
a = Point(0, 1)
|
417 |
+
assert a + (0.1, x) == Point(0.1, 1 + x, evaluate=False)
|
418 |
+
a = Point(0, 1)
|
419 |
+
assert a/10.0 == Point(0, 0.1, evaluate=False)
|
420 |
+
a = Point(0, 1)
|
421 |
+
assert a*10.0 == Point(0.0, 10.0, evaluate=False)
|
422 |
+
|
423 |
+
# test evaluate=False when changing dimensions
|
424 |
+
u = Point(.1, .2, evaluate=False)
|
425 |
+
u4 = Point(u, dim=4, on_morph='ignore')
|
426 |
+
assert u4.args == (.1, .2, 0, 0)
|
427 |
+
assert all(i.is_Float for i in u4.args[:2])
|
428 |
+
# and even when *not* changing dimensions
|
429 |
+
assert all(i.is_Float for i in Point(u).args)
|
430 |
+
|
431 |
+
# never raise error if creating an origin
|
432 |
+
assert Point(dim=3, on_morph='error')
|
433 |
+
|
434 |
+
# raise error with unmatched dimension
|
435 |
+
raises(ValueError, lambda: Point(1, 1, dim=3, on_morph='error'))
|
436 |
+
# test unknown on_morph
|
437 |
+
raises(ValueError, lambda: Point(1, 1, dim=3, on_morph='unknown'))
|
438 |
+
# test invalid expressions
|
439 |
+
raises(TypeError, lambda: Point(Basic(), Basic()))
|
440 |
+
|
441 |
+
def test_unit():
|
442 |
+
assert Point(1, 1).unit == Point(sqrt(2)/2, sqrt(2)/2)
|
443 |
+
|
444 |
+
|
445 |
+
def test_dot():
|
446 |
+
raises(TypeError, lambda: Point(1, 2).dot(Line((0, 0), (1, 1))))
|
447 |
+
|
448 |
+
|
449 |
+
def test__normalize_dimension():
|
450 |
+
assert Point._normalize_dimension(Point(1, 2), Point(3, 4)) == [
|
451 |
+
Point(1, 2), Point(3, 4)]
|
452 |
+
assert Point._normalize_dimension(
|
453 |
+
Point(1, 2), Point(3, 4, 0), on_morph='ignore') == [
|
454 |
+
Point(1, 2, 0), Point(3, 4, 0)]
|
455 |
+
|
456 |
+
|
457 |
+
def test_issue_22684():
|
458 |
+
# Used to give an error
|
459 |
+
with evaluate(False):
|
460 |
+
Point(1, 2)
|
461 |
+
|
462 |
+
|
463 |
+
def test_direction_cosine():
|
464 |
+
p1 = Point3D(0, 0, 0)
|
465 |
+
p2 = Point3D(1, 1, 1)
|
466 |
+
|
467 |
+
assert p1.direction_cosine(Point3D(1, 0, 0)) == [1, 0, 0]
|
468 |
+
assert p1.direction_cosine(Point3D(0, 1, 0)) == [0, 1, 0]
|
469 |
+
assert p1.direction_cosine(Point3D(0, 0, pi)) == [0, 0, 1]
|
470 |
+
|
471 |
+
assert p1.direction_cosine(Point3D(5, 0, 0)) == [1, 0, 0]
|
472 |
+
assert p1.direction_cosine(Point3D(0, sqrt(3), 0)) == [0, 1, 0]
|
473 |
+
assert p1.direction_cosine(Point3D(0, 0, 5)) == [0, 0, 1]
|
474 |
+
|
475 |
+
assert p1.direction_cosine(Point3D(2.4, 2.4, 0)) == [sqrt(2)/2, sqrt(2)/2, 0]
|
476 |
+
assert p1.direction_cosine(Point3D(1, 1, 1)) == [sqrt(3) / 3, sqrt(3) / 3, sqrt(3) / 3]
|
477 |
+
assert p1.direction_cosine(Point3D(-12, 0 -15)) == [-4*sqrt(41)/41, -5*sqrt(41)/41, 0]
|
478 |
+
|
479 |
+
assert p2.direction_cosine(Point3D(0, 0, 0)) == [-sqrt(3) / 3, -sqrt(3) / 3, -sqrt(3) / 3]
|
480 |
+
assert p2.direction_cosine(Point3D(1, 1, 12)) == [0, 0, 1]
|
481 |
+
assert p2.direction_cosine(Point3D(12, 1, 12)) == [sqrt(2) / 2, 0, sqrt(2) / 2]
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/test_polygon.py
ADDED
@@ -0,0 +1,664 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import (Float, Rational, oo, pi)
|
2 |
+
from sympy.core.singleton import S
|
3 |
+
from sympy.core.symbol import (Symbol, symbols)
|
4 |
+
from sympy.functions.elementary.complexes import Abs
|
5 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
6 |
+
from sympy.functions.elementary.trigonometric import (acos, cos, sin)
|
7 |
+
from sympy.functions.elementary.trigonometric import tan
|
8 |
+
from sympy.geometry import (Circle, Ellipse, GeometryError, Point, Point2D,
|
9 |
+
Polygon, Ray, RegularPolygon, Segment, Triangle,
|
10 |
+
are_similar, convex_hull, intersection, Line, Ray2D)
|
11 |
+
from sympy.testing.pytest import raises, slow, warns
|
12 |
+
from sympy.core.random import verify_numerically
|
13 |
+
from sympy.geometry.polygon import rad, deg
|
14 |
+
from sympy.integrals.integrals import integrate
|
15 |
+
|
16 |
+
|
17 |
+
def feq(a, b):
|
18 |
+
"""Test if two floating point values are 'equal'."""
|
19 |
+
t_float = Float("1.0E-10")
|
20 |
+
return -t_float < a - b < t_float
|
21 |
+
|
22 |
+
@slow
|
23 |
+
def test_polygon():
|
24 |
+
x = Symbol('x', real=True)
|
25 |
+
y = Symbol('y', real=True)
|
26 |
+
q = Symbol('q', real=True)
|
27 |
+
u = Symbol('u', real=True)
|
28 |
+
v = Symbol('v', real=True)
|
29 |
+
w = Symbol('w', real=True)
|
30 |
+
x1 = Symbol('x1', real=True)
|
31 |
+
half = S.Half
|
32 |
+
a, b, c = Point(0, 0), Point(2, 0), Point(3, 3)
|
33 |
+
t = Triangle(a, b, c)
|
34 |
+
assert Polygon(Point(0, 0)) == Point(0, 0)
|
35 |
+
assert Polygon(a, Point(1, 0), b, c) == t
|
36 |
+
assert Polygon(Point(1, 0), b, c, a) == t
|
37 |
+
assert Polygon(b, c, a, Point(1, 0)) == t
|
38 |
+
# 2 "remove folded" tests
|
39 |
+
assert Polygon(a, Point(3, 0), b, c) == t
|
40 |
+
assert Polygon(a, b, Point(3, -1), b, c) == t
|
41 |
+
# remove multiple collinear points
|
42 |
+
assert Polygon(Point(-4, 15), Point(-11, 15), Point(-15, 15),
|
43 |
+
Point(-15, 33/5), Point(-15, -87/10), Point(-15, -15),
|
44 |
+
Point(-42/5, -15), Point(-2, -15), Point(7, -15), Point(15, -15),
|
45 |
+
Point(15, -3), Point(15, 10), Point(15, 15)) == \
|
46 |
+
Polygon(Point(-15, -15), Point(15, -15), Point(15, 15), Point(-15, 15))
|
47 |
+
|
48 |
+
p1 = Polygon(
|
49 |
+
Point(0, 0), Point(3, -1),
|
50 |
+
Point(6, 0), Point(4, 5),
|
51 |
+
Point(2, 3), Point(0, 3))
|
52 |
+
p2 = Polygon(
|
53 |
+
Point(6, 0), Point(3, -1),
|
54 |
+
Point(0, 0), Point(0, 3),
|
55 |
+
Point(2, 3), Point(4, 5))
|
56 |
+
p3 = Polygon(
|
57 |
+
Point(0, 0), Point(3, 0),
|
58 |
+
Point(5, 2), Point(4, 4))
|
59 |
+
p4 = Polygon(
|
60 |
+
Point(0, 0), Point(4, 4),
|
61 |
+
Point(5, 2), Point(3, 0))
|
62 |
+
p5 = Polygon(
|
63 |
+
Point(0, 0), Point(4, 4),
|
64 |
+
Point(0, 4))
|
65 |
+
p6 = Polygon(
|
66 |
+
Point(-11, 1), Point(-9, 6.6),
|
67 |
+
Point(-4, -3), Point(-8.4, -8.7))
|
68 |
+
p7 = Polygon(
|
69 |
+
Point(x, y), Point(q, u),
|
70 |
+
Point(v, w))
|
71 |
+
p8 = Polygon(
|
72 |
+
Point(x, y), Point(v, w),
|
73 |
+
Point(q, u))
|
74 |
+
p9 = Polygon(
|
75 |
+
Point(0, 0), Point(4, 4),
|
76 |
+
Point(3, 0), Point(5, 2))
|
77 |
+
p10 = Polygon(
|
78 |
+
Point(0, 2), Point(2, 2),
|
79 |
+
Point(0, 0), Point(2, 0))
|
80 |
+
p11 = Polygon(Point(0, 0), 1, n=3)
|
81 |
+
p12 = Polygon(Point(0, 0), 1, 0, n=3)
|
82 |
+
|
83 |
+
r = Ray(Point(-9, 6.6), Point(-9, 5.5))
|
84 |
+
#
|
85 |
+
# General polygon
|
86 |
+
#
|
87 |
+
assert p1 == p2
|
88 |
+
assert len(p1.args) == 6
|
89 |
+
assert len(p1.sides) == 6
|
90 |
+
assert p1.perimeter == 5 + 2*sqrt(10) + sqrt(29) + sqrt(8)
|
91 |
+
assert p1.area == 22
|
92 |
+
assert not p1.is_convex()
|
93 |
+
assert Polygon((-1, 1), (2, -1), (2, 1), (-1, -1), (3, 0)
|
94 |
+
).is_convex() is False
|
95 |
+
# ensure convex for both CW and CCW point specification
|
96 |
+
assert p3.is_convex()
|
97 |
+
assert p4.is_convex()
|
98 |
+
dict5 = p5.angles
|
99 |
+
assert dict5[Point(0, 0)] == pi / 4
|
100 |
+
assert dict5[Point(0, 4)] == pi / 2
|
101 |
+
assert p5.encloses_point(Point(x, y)) is None
|
102 |
+
assert p5.encloses_point(Point(1, 3))
|
103 |
+
assert p5.encloses_point(Point(0, 0)) is False
|
104 |
+
assert p5.encloses_point(Point(4, 0)) is False
|
105 |
+
assert p1.encloses(Circle(Point(2.5, 2.5), 5)) is False
|
106 |
+
assert p1.encloses(Ellipse(Point(2.5, 2), 5, 6)) is False
|
107 |
+
assert p5.plot_interval('x') == [x, 0, 1]
|
108 |
+
assert p5.distance(
|
109 |
+
Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2)
|
110 |
+
assert p5.distance(
|
111 |
+
Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4
|
112 |
+
with warns(UserWarning, \
|
113 |
+
match="Polygons may intersect producing erroneous output"):
|
114 |
+
Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance(
|
115 |
+
Polygon(Point(0, 0), Point(0, 1), Point(1, 1)))
|
116 |
+
assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4)))
|
117 |
+
assert hash(p1) == hash(p2)
|
118 |
+
assert hash(p7) == hash(p8)
|
119 |
+
assert hash(p3) != hash(p9)
|
120 |
+
assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0))
|
121 |
+
assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5
|
122 |
+
assert p5 != Point(0, 4)
|
123 |
+
assert Point(0, 1) in p5
|
124 |
+
assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == \
|
125 |
+
Point(0, 0)
|
126 |
+
raises(ValueError, lambda: Polygon(
|
127 |
+
Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point('x'))
|
128 |
+
assert p6.intersection(r) == [Point(-9, Rational(-84, 13)), Point(-9, Rational(33, 5))]
|
129 |
+
assert p10.area == 0
|
130 |
+
assert p11 == RegularPolygon(Point(0, 0), 1, 3, 0)
|
131 |
+
assert p11 == p12
|
132 |
+
assert p11.vertices[0] == Point(1, 0)
|
133 |
+
assert p11.args[0] == Point(0, 0)
|
134 |
+
p11.spin(pi/2)
|
135 |
+
assert p11.vertices[0] == Point(0, 1)
|
136 |
+
#
|
137 |
+
# Regular polygon
|
138 |
+
#
|
139 |
+
p1 = RegularPolygon(Point(0, 0), 10, 5)
|
140 |
+
p2 = RegularPolygon(Point(0, 0), 5, 5)
|
141 |
+
raises(GeometryError, lambda: RegularPolygon(Point(0, 0), Point(0,
|
142 |
+
1), Point(1, 1)))
|
143 |
+
raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2))
|
144 |
+
raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5))
|
145 |
+
|
146 |
+
assert p1 != p2
|
147 |
+
assert p1.interior_angle == pi*Rational(3, 5)
|
148 |
+
assert p1.exterior_angle == pi*Rational(2, 5)
|
149 |
+
assert p2.apothem == 5*cos(pi/5)
|
150 |
+
assert p2.circumcenter == p1.circumcenter == Point(0, 0)
|
151 |
+
assert p1.circumradius == p1.radius == 10
|
152 |
+
assert p2.circumcircle == Circle(Point(0, 0), 5)
|
153 |
+
assert p2.incircle == Circle(Point(0, 0), p2.apothem)
|
154 |
+
assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4)
|
155 |
+
p2.spin(pi / 10)
|
156 |
+
dict1 = p2.angles
|
157 |
+
assert dict1[Point(0, 5)] == 3 * pi / 5
|
158 |
+
assert p1.is_convex()
|
159 |
+
assert p1.rotation == 0
|
160 |
+
assert p1.encloses_point(Point(0, 0))
|
161 |
+
assert p1.encloses_point(Point(11, 0)) is False
|
162 |
+
assert p2.encloses_point(Point(0, 4.9))
|
163 |
+
p1.spin(pi/3)
|
164 |
+
assert p1.rotation == pi/3
|
165 |
+
assert p1.vertices[0] == Point(5, 5*sqrt(3))
|
166 |
+
for var in p1.args:
|
167 |
+
if isinstance(var, Point):
|
168 |
+
assert var == Point(0, 0)
|
169 |
+
else:
|
170 |
+
assert var in (5, 10, pi / 3)
|
171 |
+
assert p1 != Point(0, 0)
|
172 |
+
assert p1 != p5
|
173 |
+
|
174 |
+
# while spin works in place (notice that rotation is 2pi/3 below)
|
175 |
+
# rotate returns a new object
|
176 |
+
p1_old = p1
|
177 |
+
assert p1.rotate(pi/3) == RegularPolygon(Point(0, 0), 10, 5, pi*Rational(2, 3))
|
178 |
+
assert p1 == p1_old
|
179 |
+
|
180 |
+
assert p1.area == (-250*sqrt(5) + 1250)/(4*tan(pi/5))
|
181 |
+
assert p1.length == 20*sqrt(-sqrt(5)/8 + Rational(5, 8))
|
182 |
+
assert p1.scale(2, 2) == \
|
183 |
+
RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation)
|
184 |
+
assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \
|
185 |
+
Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3))
|
186 |
+
|
187 |
+
assert repr(p1) == str(p1)
|
188 |
+
|
189 |
+
#
|
190 |
+
# Angles
|
191 |
+
#
|
192 |
+
angles = p4.angles
|
193 |
+
assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
|
194 |
+
assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
|
195 |
+
assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
|
196 |
+
assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))
|
197 |
+
|
198 |
+
angles = p3.angles
|
199 |
+
assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
|
200 |
+
assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
|
201 |
+
assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
|
202 |
+
assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))
|
203 |
+
|
204 |
+
#
|
205 |
+
# Triangle
|
206 |
+
#
|
207 |
+
p1 = Point(0, 0)
|
208 |
+
p2 = Point(5, 0)
|
209 |
+
p3 = Point(0, 5)
|
210 |
+
t1 = Triangle(p1, p2, p3)
|
211 |
+
t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4))))
|
212 |
+
t3 = Triangle(p1, Point(x1, 0), Point(0, x1))
|
213 |
+
s1 = t1.sides
|
214 |
+
assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2)
|
215 |
+
raises(GeometryError, lambda: Triangle(Point(0, 0)))
|
216 |
+
|
217 |
+
# Basic stuff
|
218 |
+
assert Triangle(p1, p1, p1) == p1
|
219 |
+
assert Triangle(p2, p2*2, p2*3) == Segment(p2, p2*3)
|
220 |
+
assert t1.area == Rational(25, 2)
|
221 |
+
assert t1.is_right()
|
222 |
+
assert t2.is_right() is False
|
223 |
+
assert t3.is_right()
|
224 |
+
assert p1 in t1
|
225 |
+
assert t1.sides[0] in t1
|
226 |
+
assert Segment((0, 0), (1, 0)) in t1
|
227 |
+
assert Point(5, 5) not in t2
|
228 |
+
assert t1.is_convex()
|
229 |
+
assert feq(t1.angles[p1].evalf(), pi.evalf()/2)
|
230 |
+
|
231 |
+
assert t1.is_equilateral() is False
|
232 |
+
assert t2.is_equilateral()
|
233 |
+
assert t3.is_equilateral() is False
|
234 |
+
assert are_similar(t1, t2) is False
|
235 |
+
assert are_similar(t1, t3)
|
236 |
+
assert are_similar(t2, t3) is False
|
237 |
+
assert t1.is_similar(Point(0, 0)) is False
|
238 |
+
assert t1.is_similar(t2) is False
|
239 |
+
|
240 |
+
# Bisectors
|
241 |
+
bisectors = t1.bisectors()
|
242 |
+
assert bisectors[p1] == Segment(
|
243 |
+
p1, Point(Rational(5, 2), Rational(5, 2)))
|
244 |
+
assert t2.bisectors()[p2] == Segment(
|
245 |
+
Point(5, 0), Point(Rational(5, 4), 5*sqrt(3)/4))
|
246 |
+
p4 = Point(0, x1)
|
247 |
+
assert t3.bisectors()[p4] == Segment(p4, Point(x1*(sqrt(2) - 1), 0))
|
248 |
+
ic = (250 - 125*sqrt(2))/50
|
249 |
+
assert t1.incenter == Point(ic, ic)
|
250 |
+
|
251 |
+
# Inradius
|
252 |
+
assert t1.inradius == t1.incircle.radius == 5 - 5*sqrt(2)/2
|
253 |
+
assert t2.inradius == t2.incircle.radius == 5*sqrt(3)/6
|
254 |
+
assert t3.inradius == t3.incircle.radius == x1**2/((2 + sqrt(2))*Abs(x1))
|
255 |
+
|
256 |
+
# Exradius
|
257 |
+
assert t1.exradii[t1.sides[2]] == 5*sqrt(2)/2
|
258 |
+
|
259 |
+
# Excenters
|
260 |
+
assert t1.excenters[t1.sides[2]] == Point2D(25*sqrt(2), -5*sqrt(2)/2)
|
261 |
+
|
262 |
+
# Circumcircle
|
263 |
+
assert t1.circumcircle.center == Point(2.5, 2.5)
|
264 |
+
|
265 |
+
# Medians + Centroid
|
266 |
+
m = t1.medians
|
267 |
+
assert t1.centroid == Point(Rational(5, 3), Rational(5, 3))
|
268 |
+
assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
|
269 |
+
assert t3.medians[p1] == Segment(p1, Point(x1/2, x1/2))
|
270 |
+
assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid]
|
271 |
+
assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5))
|
272 |
+
|
273 |
+
# Nine-point circle
|
274 |
+
assert t1.nine_point_circle == Circle(Point(2.5, 0),
|
275 |
+
Point(0, 2.5), Point(2.5, 2.5))
|
276 |
+
assert t1.nine_point_circle == Circle(Point(0, 0),
|
277 |
+
Point(0, 2.5), Point(2.5, 2.5))
|
278 |
+
|
279 |
+
# Perpendicular
|
280 |
+
altitudes = t1.altitudes
|
281 |
+
assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
|
282 |
+
assert altitudes[p2].equals(s1[0])
|
283 |
+
assert altitudes[p3] == s1[2]
|
284 |
+
assert t1.orthocenter == p1
|
285 |
+
t = S('''Triangle(
|
286 |
+
Point(100080156402737/5000000000000, 79782624633431/500000000000),
|
287 |
+
Point(39223884078253/2000000000000, 156345163124289/1000000000000),
|
288 |
+
Point(31241359188437/1250000000000, 338338270939941/1000000000000000))''')
|
289 |
+
assert t.orthocenter == S('''Point(-780660869050599840216997'''
|
290 |
+
'''79471538701955848721853/80368430960602242240789074233100000000000000,'''
|
291 |
+
'''20151573611150265741278060334545897615974257/16073686192120448448157'''
|
292 |
+
'''8148466200000000000)''')
|
293 |
+
|
294 |
+
# Ensure
|
295 |
+
assert len(intersection(*bisectors.values())) == 1
|
296 |
+
assert len(intersection(*altitudes.values())) == 1
|
297 |
+
assert len(intersection(*m.values())) == 1
|
298 |
+
|
299 |
+
# Distance
|
300 |
+
p1 = Polygon(
|
301 |
+
Point(0, 0), Point(1, 0),
|
302 |
+
Point(1, 1), Point(0, 1))
|
303 |
+
p2 = Polygon(
|
304 |
+
Point(0, Rational(5)/4), Point(1, Rational(5)/4),
|
305 |
+
Point(1, Rational(9)/4), Point(0, Rational(9)/4))
|
306 |
+
p3 = Polygon(
|
307 |
+
Point(1, 2), Point(2, 2),
|
308 |
+
Point(2, 1))
|
309 |
+
p4 = Polygon(
|
310 |
+
Point(1, 1), Point(Rational(6)/5, 1),
|
311 |
+
Point(1, Rational(6)/5))
|
312 |
+
pt1 = Point(half, half)
|
313 |
+
pt2 = Point(1, 1)
|
314 |
+
|
315 |
+
'''Polygon to Point'''
|
316 |
+
assert p1.distance(pt1) == half
|
317 |
+
assert p1.distance(pt2) == 0
|
318 |
+
assert p2.distance(pt1) == Rational(3)/4
|
319 |
+
assert p3.distance(pt2) == sqrt(2)/2
|
320 |
+
|
321 |
+
'''Polygon to Polygon'''
|
322 |
+
# p1.distance(p2) emits a warning
|
323 |
+
with warns(UserWarning, \
|
324 |
+
match="Polygons may intersect producing erroneous output"):
|
325 |
+
assert p1.distance(p2) == half/2
|
326 |
+
|
327 |
+
assert p1.distance(p3) == sqrt(2)/2
|
328 |
+
|
329 |
+
# p3.distance(p4) emits a warning
|
330 |
+
with warns(UserWarning, \
|
331 |
+
match="Polygons may intersect producing erroneous output"):
|
332 |
+
assert p3.distance(p4) == (sqrt(2)/2 - sqrt(Rational(2)/25)/2)
|
333 |
+
|
334 |
+
|
335 |
+
def test_convex_hull():
|
336 |
+
p = [Point(-5, -1), Point(-2, 1), Point(-2, -1), Point(-1, -3), \
|
337 |
+
Point(0, 0), Point(1, 1), Point(2, 2), Point(2, -1), Point(3, 1), \
|
338 |
+
Point(4, -1), Point(6, 2)]
|
339 |
+
ch = Polygon(p[0], p[3], p[9], p[10], p[6], p[1])
|
340 |
+
#test handling of duplicate points
|
341 |
+
p.append(p[3])
|
342 |
+
|
343 |
+
#more than 3 collinear points
|
344 |
+
another_p = [Point(-45, -85), Point(-45, 85), Point(-45, 26), \
|
345 |
+
Point(-45, -24)]
|
346 |
+
ch2 = Segment(another_p[0], another_p[1])
|
347 |
+
|
348 |
+
assert convex_hull(*another_p) == ch2
|
349 |
+
assert convex_hull(*p) == ch
|
350 |
+
assert convex_hull(p[0]) == p[0]
|
351 |
+
assert convex_hull(p[0], p[1]) == Segment(p[0], p[1])
|
352 |
+
|
353 |
+
# no unique points
|
354 |
+
assert convex_hull(*[p[-1]]*3) == p[-1]
|
355 |
+
|
356 |
+
# collection of items
|
357 |
+
assert convex_hull(*[Point(0, 0), \
|
358 |
+
Segment(Point(1, 0), Point(1, 1)), \
|
359 |
+
RegularPolygon(Point(2, 0), 2, 4)]) == \
|
360 |
+
Polygon(Point(0, 0), Point(2, -2), Point(4, 0), Point(2, 2))
|
361 |
+
|
362 |
+
|
363 |
+
def test_encloses():
|
364 |
+
# square with a dimpled left side
|
365 |
+
s = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1), \
|
366 |
+
Point(S.Half, S.Half))
|
367 |
+
# the following is True if the polygon isn't treated as closing on itself
|
368 |
+
assert s.encloses(Point(0, S.Half)) is False
|
369 |
+
assert s.encloses(Point(S.Half, S.Half)) is False # it's a vertex
|
370 |
+
assert s.encloses(Point(Rational(3, 4), S.Half)) is True
|
371 |
+
|
372 |
+
|
373 |
+
def test_triangle_kwargs():
|
374 |
+
assert Triangle(sss=(3, 4, 5)) == \
|
375 |
+
Triangle(Point(0, 0), Point(3, 0), Point(3, 4))
|
376 |
+
assert Triangle(asa=(30, 2, 30)) == \
|
377 |
+
Triangle(Point(0, 0), Point(2, 0), Point(1, sqrt(3)/3))
|
378 |
+
assert Triangle(sas=(1, 45, 2)) == \
|
379 |
+
Triangle(Point(0, 0), Point(2, 0), Point(sqrt(2)/2, sqrt(2)/2))
|
380 |
+
assert Triangle(sss=(1, 2, 5)) is None
|
381 |
+
assert deg(rad(180)) == 180
|
382 |
+
|
383 |
+
|
384 |
+
def test_transform():
|
385 |
+
pts = [Point(0, 0), Point(S.Half, Rational(1, 4)), Point(1, 1)]
|
386 |
+
pts_out = [Point(-4, -10), Point(-3, Rational(-37, 4)), Point(-2, -7)]
|
387 |
+
assert Triangle(*pts).scale(2, 3, (4, 5)) == Triangle(*pts_out)
|
388 |
+
assert RegularPolygon((0, 0), 1, 4).scale(2, 3, (4, 5)) == \
|
389 |
+
Polygon(Point(-2, -10), Point(-4, -7), Point(-6, -10), Point(-4, -13))
|
390 |
+
# Checks for symmetric scaling
|
391 |
+
assert RegularPolygon((0, 0), 1, 4).scale(2, 2) == \
|
392 |
+
RegularPolygon(Point2D(0, 0), 2, 4, 0)
|
393 |
+
|
394 |
+
def test_reflect():
|
395 |
+
x = Symbol('x', real=True)
|
396 |
+
y = Symbol('y', real=True)
|
397 |
+
b = Symbol('b')
|
398 |
+
m = Symbol('m')
|
399 |
+
l = Line((0, b), slope=m)
|
400 |
+
p = Point(x, y)
|
401 |
+
r = p.reflect(l)
|
402 |
+
dp = l.perpendicular_segment(p).length
|
403 |
+
dr = l.perpendicular_segment(r).length
|
404 |
+
|
405 |
+
assert verify_numerically(dp, dr)
|
406 |
+
|
407 |
+
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) \
|
408 |
+
== Triangle(Point(5, 0), Point(4, 0), Point(4, 2))
|
409 |
+
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) \
|
410 |
+
== Triangle(Point(-1, 0), Point(-2, 0), Point(-2, 2))
|
411 |
+
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) \
|
412 |
+
== Triangle(Point(1, 6), Point(2, 6), Point(2, 4))
|
413 |
+
assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) \
|
414 |
+
== Triangle(Point(1, 0), Point(2, 0), Point(2, -2))
|
415 |
+
|
416 |
+
def test_bisectors():
|
417 |
+
p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
|
418 |
+
p = Polygon(Point(0, 0), Point(2, 0), Point(1, 1), Point(0, 3))
|
419 |
+
q = Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(-1, 5))
|
420 |
+
poly = Polygon(Point(3, 4), Point(0, 0), Point(8, 7), Point(-1, 1), Point(19, -19))
|
421 |
+
t = Triangle(p1, p2, p3)
|
422 |
+
assert t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1))
|
423 |
+
assert p.bisectors()[Point2D(0, 3)] == Ray2D(Point2D(0, 3), \
|
424 |
+
Point2D(sin(acos(2*sqrt(5)/5)/2), 3 - cos(acos(2*sqrt(5)/5)/2)))
|
425 |
+
assert q.bisectors()[Point2D(-1, 5)] == \
|
426 |
+
Ray2D(Point2D(-1, 5), Point2D(-1 + sqrt(29)*(5*sin(acos(9*sqrt(145)/145)/2) + \
|
427 |
+
2*cos(acos(9*sqrt(145)/145)/2))/29, sqrt(29)*(-5*cos(acos(9*sqrt(145)/145)/2) + \
|
428 |
+
2*sin(acos(9*sqrt(145)/145)/2))/29 + 5))
|
429 |
+
assert poly.bisectors()[Point2D(-1, 1)] == Ray2D(Point2D(-1, 1), \
|
430 |
+
Point2D(-1 + sin(acos(sqrt(26)/26)/2 + pi/4), 1 - sin(-acos(sqrt(26)/26)/2 + pi/4)))
|
431 |
+
|
432 |
+
def test_incenter():
|
433 |
+
assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).incenter \
|
434 |
+
== Point(1 - sqrt(2)/2, 1 - sqrt(2)/2)
|
435 |
+
|
436 |
+
def test_inradius():
|
437 |
+
assert Triangle(Point(0, 0), Point(4, 0), Point(0, 3)).inradius == 1
|
438 |
+
|
439 |
+
def test_incircle():
|
440 |
+
assert Triangle(Point(0, 0), Point(2, 0), Point(0, 2)).incircle \
|
441 |
+
== Circle(Point(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2))
|
442 |
+
|
443 |
+
def test_exradii():
|
444 |
+
t = Triangle(Point(0, 0), Point(6, 0), Point(0, 2))
|
445 |
+
assert t.exradii[t.sides[2]] == (-2 + sqrt(10))
|
446 |
+
|
447 |
+
def test_medians():
|
448 |
+
t = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
|
449 |
+
assert t.medians[Point(0, 0)] == Segment(Point(0, 0), Point(S.Half, S.Half))
|
450 |
+
|
451 |
+
def test_medial():
|
452 |
+
assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).medial \
|
453 |
+
== Triangle(Point(S.Half, 0), Point(S.Half, S.Half), Point(0, S.Half))
|
454 |
+
|
455 |
+
def test_nine_point_circle():
|
456 |
+
assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).nine_point_circle \
|
457 |
+
== Circle(Point2D(Rational(1, 4), Rational(1, 4)), sqrt(2)/4)
|
458 |
+
|
459 |
+
def test_eulerline():
|
460 |
+
assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).eulerline \
|
461 |
+
== Line(Point2D(0, 0), Point2D(S.Half, S.Half))
|
462 |
+
assert Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3))).eulerline \
|
463 |
+
== Point2D(5, 5*sqrt(3)/3)
|
464 |
+
assert Triangle(Point(4, -6), Point(4, -1), Point(-3, 3)).eulerline \
|
465 |
+
== Line(Point2D(Rational(64, 7), 3), Point2D(Rational(-29, 14), Rational(-7, 2)))
|
466 |
+
|
467 |
+
def test_intersection():
|
468 |
+
poly1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1))
|
469 |
+
poly2 = Polygon(Point(0, 1), Point(-5, 0),
|
470 |
+
Point(0, -4), Point(0, Rational(1, 5)),
|
471 |
+
Point(S.Half, -0.1), Point(1, 0), Point(0, 1))
|
472 |
+
|
473 |
+
assert poly1.intersection(poly2) == [Point2D(Rational(1, 3), 0),
|
474 |
+
Segment(Point(0, Rational(1, 5)), Point(0, 0)),
|
475 |
+
Segment(Point(1, 0), Point(0, 1))]
|
476 |
+
assert poly2.intersection(poly1) == [Point(Rational(1, 3), 0),
|
477 |
+
Segment(Point(0, 0), Point(0, Rational(1, 5))),
|
478 |
+
Segment(Point(1, 0), Point(0, 1))]
|
479 |
+
assert poly1.intersection(Point(0, 0)) == [Point(0, 0)]
|
480 |
+
assert poly1.intersection(Point(-12, -43)) == []
|
481 |
+
assert poly2.intersection(Line((-12, 0), (12, 0))) == [Point(-5, 0),
|
482 |
+
Point(0, 0), Point(Rational(1, 3), 0), Point(1, 0)]
|
483 |
+
assert poly2.intersection(Line((-12, 12), (12, 12))) == []
|
484 |
+
assert poly2.intersection(Ray((-3, 4), (1, 0))) == [Segment(Point(1, 0),
|
485 |
+
Point(0, 1))]
|
486 |
+
assert poly2.intersection(Circle((0, -1), 1)) == [Point(0, -2),
|
487 |
+
Point(0, 0)]
|
488 |
+
assert poly1.intersection(poly1) == [Segment(Point(0, 0), Point(1, 0)),
|
489 |
+
Segment(Point(0, 1), Point(0, 0)), Segment(Point(1, 0), Point(0, 1))]
|
490 |
+
assert poly2.intersection(poly2) == [Segment(Point(-5, 0), Point(0, -4)),
|
491 |
+
Segment(Point(0, -4), Point(0, Rational(1, 5))),
|
492 |
+
Segment(Point(0, Rational(1, 5)), Point(S.Half, Rational(-1, 10))),
|
493 |
+
Segment(Point(0, 1), Point(-5, 0)),
|
494 |
+
Segment(Point(S.Half, Rational(-1, 10)), Point(1, 0)),
|
495 |
+
Segment(Point(1, 0), Point(0, 1))]
|
496 |
+
assert poly2.intersection(Triangle(Point(0, 1), Point(1, 0), Point(-1, 1))) \
|
497 |
+
== [Point(Rational(-5, 7), Rational(6, 7)), Segment(Point2D(0, 1), Point(1, 0))]
|
498 |
+
assert poly1.intersection(RegularPolygon((-12, -15), 3, 3)) == []
|
499 |
+
|
500 |
+
|
501 |
+
def test_parameter_value():
|
502 |
+
t = Symbol('t')
|
503 |
+
sq = Polygon((0, 0), (0, 1), (1, 1), (1, 0))
|
504 |
+
assert sq.parameter_value((0.5, 1), t) == {t: Rational(3, 8)}
|
505 |
+
q = Polygon((0, 0), (2, 1), (2, 4), (4, 0))
|
506 |
+
assert q.parameter_value((4, 0), t) == {t: -6 + 3*sqrt(5)} # ~= 0.708
|
507 |
+
|
508 |
+
raises(ValueError, lambda: sq.parameter_value((5, 6), t))
|
509 |
+
raises(ValueError, lambda: sq.parameter_value(Circle(Point(0, 0), 1), t))
|
510 |
+
|
511 |
+
|
512 |
+
def test_issue_12966():
|
513 |
+
poly = Polygon(Point(0, 0), Point(0, 10), Point(5, 10), Point(5, 5),
|
514 |
+
Point(10, 5), Point(10, 0))
|
515 |
+
t = Symbol('t')
|
516 |
+
pt = poly.arbitrary_point(t)
|
517 |
+
DELTA = 5/poly.perimeter
|
518 |
+
assert [pt.subs(t, DELTA*i) for i in range(int(1/DELTA))] == [
|
519 |
+
Point(0, 0), Point(0, 5), Point(0, 10), Point(5, 10),
|
520 |
+
Point(5, 5), Point(10, 5), Point(10, 0), Point(5, 0)]
|
521 |
+
|
522 |
+
|
523 |
+
def test_second_moment_of_area():
|
524 |
+
x, y = symbols('x, y')
|
525 |
+
# triangle
|
526 |
+
p1, p2, p3 = [(0, 0), (4, 0), (0, 2)]
|
527 |
+
p = (0, 0)
|
528 |
+
# equation of hypotenuse
|
529 |
+
eq_y = (1-x/4)*2
|
530 |
+
I_yy = integrate((x**2) * (integrate(1, (y, 0, eq_y))), (x, 0, 4))
|
531 |
+
I_xx = integrate(1 * (integrate(y**2, (y, 0, eq_y))), (x, 0, 4))
|
532 |
+
I_xy = integrate(x * (integrate(y, (y, 0, eq_y))), (x, 0, 4))
|
533 |
+
|
534 |
+
triangle = Polygon(p1, p2, p3)
|
535 |
+
|
536 |
+
assert (I_xx - triangle.second_moment_of_area(p)[0]) == 0
|
537 |
+
assert (I_yy - triangle.second_moment_of_area(p)[1]) == 0
|
538 |
+
assert (I_xy - triangle.second_moment_of_area(p)[2]) == 0
|
539 |
+
|
540 |
+
# rectangle
|
541 |
+
p1, p2, p3, p4=[(0, 0), (4, 0), (4, 2), (0, 2)]
|
542 |
+
I_yy = integrate((x**2) * integrate(1, (y, 0, 2)), (x, 0, 4))
|
543 |
+
I_xx = integrate(1 * integrate(y**2, (y, 0, 2)), (x, 0, 4))
|
544 |
+
I_xy = integrate(x * integrate(y, (y, 0, 2)), (x, 0, 4))
|
545 |
+
|
546 |
+
rectangle = Polygon(p1, p2, p3, p4)
|
547 |
+
|
548 |
+
assert (I_xx - rectangle.second_moment_of_area(p)[0]) == 0
|
549 |
+
assert (I_yy - rectangle.second_moment_of_area(p)[1]) == 0
|
550 |
+
assert (I_xy - rectangle.second_moment_of_area(p)[2]) == 0
|
551 |
+
|
552 |
+
|
553 |
+
r = RegularPolygon(Point(0, 0), 5, 3)
|
554 |
+
assert r.second_moment_of_area() == (1875*sqrt(3)/S(32), 1875*sqrt(3)/S(32), 0)
|
555 |
+
|
556 |
+
|
557 |
+
def test_first_moment():
|
558 |
+
a, b = symbols('a, b', positive=True)
|
559 |
+
# rectangle
|
560 |
+
p1 = Polygon((0, 0), (a, 0), (a, b), (0, b))
|
561 |
+
assert p1.first_moment_of_area() == (a*b**2/8, a**2*b/8)
|
562 |
+
assert p1.first_moment_of_area((a/3, b/4)) == (-3*a*b**2/32, -a**2*b/9)
|
563 |
+
|
564 |
+
p1 = Polygon((0, 0), (40, 0), (40, 30), (0, 30))
|
565 |
+
assert p1.first_moment_of_area() == (4500, 6000)
|
566 |
+
|
567 |
+
# triangle
|
568 |
+
p2 = Polygon((0, 0), (a, 0), (a/2, b))
|
569 |
+
assert p2.first_moment_of_area() == (4*a*b**2/81, a**2*b/24)
|
570 |
+
assert p2.first_moment_of_area((a/8, b/6)) == (-25*a*b**2/648, -5*a**2*b/768)
|
571 |
+
|
572 |
+
p2 = Polygon((0, 0), (12, 0), (12, 30))
|
573 |
+
assert p2.first_moment_of_area() == (S(1600)/3, -S(640)/3)
|
574 |
+
|
575 |
+
|
576 |
+
def test_section_modulus_and_polar_second_moment_of_area():
|
577 |
+
a, b = symbols('a, b', positive=True)
|
578 |
+
x, y = symbols('x, y')
|
579 |
+
rectangle = Polygon((0, b), (0, 0), (a, 0), (a, b))
|
580 |
+
assert rectangle.section_modulus(Point(x, y)) == (a*b**3/12/(-b/2 + y), a**3*b/12/(-a/2 + x))
|
581 |
+
assert rectangle.polar_second_moment_of_area() == a**3*b/12 + a*b**3/12
|
582 |
+
|
583 |
+
convex = RegularPolygon((0, 0), 1, 6)
|
584 |
+
assert convex.section_modulus() == (Rational(5, 8), sqrt(3)*Rational(5, 16))
|
585 |
+
assert convex.polar_second_moment_of_area() == 5*sqrt(3)/S(8)
|
586 |
+
|
587 |
+
concave = Polygon((0, 0), (1, 8), (3, 4), (4, 6), (7, 1))
|
588 |
+
assert concave.section_modulus() == (Rational(-6371, 429), Rational(-9778, 519))
|
589 |
+
assert concave.polar_second_moment_of_area() == Rational(-38669, 252)
|
590 |
+
|
591 |
+
|
592 |
+
def test_cut_section():
|
593 |
+
# concave polygon
|
594 |
+
p = Polygon((-1, -1), (1, Rational(5, 2)), (2, 1), (3, Rational(5, 2)), (4, 2), (5, 3), (-1, 3))
|
595 |
+
l = Line((0, 0), (Rational(9, 2), 3))
|
596 |
+
p1 = p.cut_section(l)[0]
|
597 |
+
p2 = p.cut_section(l)[1]
|
598 |
+
assert p1 == Polygon(
|
599 |
+
Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(1, Rational(5, 2)), Point2D(Rational(24, 13), Rational(16, 13)),
|
600 |
+
Point2D(Rational(12, 5), Rational(8, 5)), Point2D(3, Rational(5, 2)), Point2D(Rational(24, 7), Rational(16, 7)),
|
601 |
+
Point2D(Rational(9, 2), 3), Point2D(-1, 3), Point2D(-1, Rational(-2, 3)))
|
602 |
+
assert p2 == Polygon(Point2D(-1, -1), Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(Rational(24, 13), Rational(16, 13)),
|
603 |
+
Point2D(2, 1), Point2D(Rational(12, 5), Rational(8, 5)), Point2D(Rational(24, 7), Rational(16, 7)), Point2D(4, 2), Point2D(5, 3),
|
604 |
+
Point2D(Rational(9, 2), 3), Point2D(-1, Rational(-2, 3)))
|
605 |
+
|
606 |
+
# convex polygon
|
607 |
+
p = RegularPolygon(Point2D(0, 0), 6, 6)
|
608 |
+
s = p.cut_section(Line((0, 0), slope=1))
|
609 |
+
assert s[0] == Polygon(Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9), Point2D(3, 3*sqrt(3)),
|
610 |
+
Point2D(-3, 3*sqrt(3)), Point2D(-6, 0), Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3)))
|
611 |
+
assert s[1] == Polygon(Point2D(6, 0), Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9),
|
612 |
+
Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3)), Point2D(-3, -3*sqrt(3)), Point2D(3, -3*sqrt(3)))
|
613 |
+
|
614 |
+
# case where line does not intersects but coincides with the edge of polygon
|
615 |
+
a, b = 20, 10
|
616 |
+
t1, t2, t3, t4 = [(0, b), (0, 0), (a, 0), (a, b)]
|
617 |
+
p = Polygon(t1, t2, t3, t4)
|
618 |
+
p1, p2 = p.cut_section(Line((0, b), slope=0))
|
619 |
+
assert p1 == None
|
620 |
+
assert p2 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10))
|
621 |
+
|
622 |
+
p3, p4 = p.cut_section(Line((0, 0), slope=0))
|
623 |
+
assert p3 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10))
|
624 |
+
assert p4 == None
|
625 |
+
|
626 |
+
# case where the line does not intersect with a polygon at all
|
627 |
+
raises(ValueError, lambda: p.cut_section(Line((0, a), slope=0)))
|
628 |
+
|
629 |
+
def test_type_of_triangle():
|
630 |
+
# Isoceles triangle
|
631 |
+
p1 = Polygon(Point(0, 0), Point(5, 0), Point(2, 4))
|
632 |
+
assert p1.is_isosceles() == True
|
633 |
+
assert p1.is_scalene() == False
|
634 |
+
assert p1.is_equilateral() == False
|
635 |
+
|
636 |
+
# Scalene triangle
|
637 |
+
p2 = Polygon (Point(0, 0), Point(0, 2), Point(4, 0))
|
638 |
+
assert p2.is_isosceles() == False
|
639 |
+
assert p2.is_scalene() == True
|
640 |
+
assert p2.is_equilateral() == False
|
641 |
+
|
642 |
+
# Equilateral triagle
|
643 |
+
p3 = Polygon(Point(0, 0), Point(6, 0), Point(3, sqrt(27)))
|
644 |
+
assert p3.is_isosceles() == True
|
645 |
+
assert p3.is_scalene() == False
|
646 |
+
assert p3.is_equilateral() == True
|
647 |
+
|
648 |
+
def test_do_poly_distance():
|
649 |
+
# Non-intersecting polygons
|
650 |
+
square1 = Polygon (Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
|
651 |
+
triangle1 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
|
652 |
+
assert square1._do_poly_distance(triangle1) == sqrt(2)/2
|
653 |
+
|
654 |
+
# Polygons which sides intersect
|
655 |
+
square2 = Polygon(Point(1, 0), Point(2, 0), Point(2, 1), Point(1, 1))
|
656 |
+
with warns(UserWarning, \
|
657 |
+
match="Polygons may intersect producing erroneous output", test_stacklevel=False):
|
658 |
+
assert square1._do_poly_distance(square2) == 0
|
659 |
+
|
660 |
+
# Polygons which bodies intersect
|
661 |
+
triangle2 = Polygon(Point(0, -1), Point(2, -1), Point(S.Half, S.Half))
|
662 |
+
with warns(UserWarning, \
|
663 |
+
match="Polygons may intersect producing erroneous output", test_stacklevel=False):
|
664 |
+
assert triangle2._do_poly_distance(square1) == 0
|
llmeval-env/lib/python3.10/site-packages/sympy/geometry/tests/test_util.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.function import (Derivative, Function)
|
2 |
+
from sympy.core.singleton import S
|
3 |
+
from sympy.core.symbol import Symbol
|
4 |
+
from sympy.functions import exp, cos, sin, tan, cosh, sinh
|
5 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
6 |
+
from sympy.geometry import Point, Point2D, Line, Polygon, Segment, convex_hull,\
|
7 |
+
intersection, centroid, Point3D, Line3D
|
8 |
+
from sympy.geometry.util import idiff, closest_points, farthest_points, _ordered_points, are_coplanar
|
9 |
+
from sympy.solvers.solvers import solve
|
10 |
+
from sympy.testing.pytest import raises
|
11 |
+
|
12 |
+
|
13 |
+
def test_idiff():
|
14 |
+
x = Symbol('x', real=True)
|
15 |
+
y = Symbol('y', real=True)
|
16 |
+
t = Symbol('t', real=True)
|
17 |
+
f = Function('f')
|
18 |
+
g = Function('g')
|
19 |
+
# the use of idiff in ellipse also provides coverage
|
20 |
+
circ = x**2 + y**2 - 4
|
21 |
+
ans = -3*x*(x**2/y**2 + 1)/y**3
|
22 |
+
assert ans == idiff(circ, y, x, 3), idiff(circ, y, x, 3)
|
23 |
+
assert ans == idiff(circ, [y], x, 3)
|
24 |
+
assert idiff(circ, y, x, 3) == ans
|
25 |
+
explicit = 12*x/sqrt(-x**2 + 4)**5
|
26 |
+
assert ans.subs(y, solve(circ, y)[0]).equals(explicit)
|
27 |
+
assert True in [sol.diff(x, 3).equals(explicit) for sol in solve(circ, y)]
|
28 |
+
assert idiff(x + t + y, [y, t], x) == -Derivative(t, x) - 1
|
29 |
+
assert idiff(f(x) * exp(f(x)) - x * exp(x), f(x), x) == (x + 1)*exp(x)*exp(-f(x))/(f(x) + 1)
|
30 |
+
assert idiff(f(x) - y * exp(x), [f(x), y], x) == (y + Derivative(y, x))*exp(x)
|
31 |
+
assert idiff(f(x) - y * exp(x), [y, f(x)], x) == -y + Derivative(f(x), x)*exp(-x)
|
32 |
+
assert idiff(f(x) - g(x), [f(x), g(x)], x) == Derivative(g(x), x)
|
33 |
+
# this should be fast
|
34 |
+
fxy = y - (-10*(-sin(x) + 1/x)**2 + tan(x)**2 + 2*cosh(x/10))
|
35 |
+
assert idiff(fxy, y, x) == -20*sin(x)*cos(x) + 2*tan(x)**3 + \
|
36 |
+
2*tan(x) + sinh(x/10)/5 + 20*cos(x)/x - 20*sin(x)/x**2 + 20/x**3
|
37 |
+
|
38 |
+
|
39 |
+
def test_intersection():
|
40 |
+
assert intersection(Point(0, 0)) == []
|
41 |
+
raises(TypeError, lambda: intersection(Point(0, 0), 3))
|
42 |
+
assert intersection(
|
43 |
+
Segment((0, 0), (2, 0)),
|
44 |
+
Segment((-1, 0), (1, 0)),
|
45 |
+
Line((0, 0), (0, 1)), pairwise=True) == [
|
46 |
+
Point(0, 0), Segment((0, 0), (1, 0))]
|
47 |
+
assert intersection(
|
48 |
+
Line((0, 0), (0, 1)),
|
49 |
+
Segment((0, 0), (2, 0)),
|
50 |
+
Segment((-1, 0), (1, 0)), pairwise=True) == [
|
51 |
+
Point(0, 0), Segment((0, 0), (1, 0))]
|
52 |
+
assert intersection(
|
53 |
+
Line((0, 0), (0, 1)),
|
54 |
+
Segment((0, 0), (2, 0)),
|
55 |
+
Segment((-1, 0), (1, 0)),
|
56 |
+
Line((0, 0), slope=1), pairwise=True) == [
|
57 |
+
Point(0, 0), Segment((0, 0), (1, 0))]
|
58 |
+
|
59 |
+
|
60 |
+
def test_convex_hull():
|
61 |
+
raises(TypeError, lambda: convex_hull(Point(0, 0), 3))
|
62 |
+
points = [(1, -1), (1, -2), (3, -1), (-5, -2), (15, -4)]
|
63 |
+
assert convex_hull(*points, **{"polygon": False}) == (
|
64 |
+
[Point2D(-5, -2), Point2D(1, -1), Point2D(3, -1), Point2D(15, -4)],
|
65 |
+
[Point2D(-5, -2), Point2D(15, -4)])
|
66 |
+
|
67 |
+
|
68 |
+
def test_centroid():
|
69 |
+
p = Polygon((0, 0), (10, 0), (10, 10))
|
70 |
+
q = p.translate(0, 20)
|
71 |
+
assert centroid(p, q) == Point(20, 40)/3
|
72 |
+
p = Segment((0, 0), (2, 0))
|
73 |
+
q = Segment((0, 0), (2, 2))
|
74 |
+
assert centroid(p, q) == Point(1, -sqrt(2) + 2)
|
75 |
+
assert centroid(Point(0, 0), Point(2, 0)) == Point(2, 0)/2
|
76 |
+
assert centroid(Point(0, 0), Point(0, 0), Point(2, 0)) == Point(2, 0)/3
|
77 |
+
|
78 |
+
|
79 |
+
def test_farthest_points_closest_points():
|
80 |
+
from sympy.core.random import randint
|
81 |
+
from sympy.utilities.iterables import subsets
|
82 |
+
|
83 |
+
for how in (min, max):
|
84 |
+
if how == min:
|
85 |
+
func = closest_points
|
86 |
+
else:
|
87 |
+
func = farthest_points
|
88 |
+
|
89 |
+
raises(ValueError, lambda: func(Point2D(0, 0), Point2D(0, 0)))
|
90 |
+
|
91 |
+
# 3rd pt dx is close and pt is closer to 1st pt
|
92 |
+
p1 = [Point2D(0, 0), Point2D(3, 0), Point2D(1, 1)]
|
93 |
+
# 3rd pt dx is close and pt is closer to 2nd pt
|
94 |
+
p2 = [Point2D(0, 0), Point2D(3, 0), Point2D(2, 1)]
|
95 |
+
# 3rd pt dx is close and but pt is not closer
|
96 |
+
p3 = [Point2D(0, 0), Point2D(3, 0), Point2D(1, 10)]
|
97 |
+
# 3rd pt dx is not closer and it's closer to 2nd pt
|
98 |
+
p4 = [Point2D(0, 0), Point2D(3, 0), Point2D(4, 0)]
|
99 |
+
# 3rd pt dx is not closer and it's closer to 1st pt
|
100 |
+
p5 = [Point2D(0, 0), Point2D(3, 0), Point2D(-1, 0)]
|
101 |
+
# duplicate point doesn't affect outcome
|
102 |
+
dup = [Point2D(0, 0), Point2D(3, 0), Point2D(3, 0), Point2D(-1, 0)]
|
103 |
+
# symbolic
|
104 |
+
x = Symbol('x', positive=True)
|
105 |
+
s = [Point2D(a) for a in ((x, 1), (x + 3, 2), (x + 2, 2))]
|
106 |
+
|
107 |
+
for points in (p1, p2, p3, p4, p5, dup, s):
|
108 |
+
d = how(i.distance(j) for i, j in subsets(set(points), 2))
|
109 |
+
ans = a, b = list(func(*points))[0]
|
110 |
+
assert a.distance(b) == d
|
111 |
+
assert ans == _ordered_points(ans)
|
112 |
+
|
113 |
+
# if the following ever fails, the above tests were not sufficient
|
114 |
+
# and the logical error in the routine should be fixed
|
115 |
+
points = set()
|
116 |
+
while len(points) != 7:
|
117 |
+
points.add(Point2D(randint(1, 100), randint(1, 100)))
|
118 |
+
points = list(points)
|
119 |
+
d = how(i.distance(j) for i, j in subsets(points, 2))
|
120 |
+
ans = a, b = list(func(*points))[0]
|
121 |
+
assert a.distance(b) == d
|
122 |
+
assert ans == _ordered_points(ans)
|
123 |
+
|
124 |
+
# equidistant points
|
125 |
+
a, b, c = (
|
126 |
+
Point2D(0, 0), Point2D(1, 0), Point2D(S.Half, sqrt(3)/2))
|
127 |
+
ans = {_ordered_points((i, j))
|
128 |
+
for i, j in subsets((a, b, c), 2)}
|
129 |
+
assert closest_points(b, c, a) == ans
|
130 |
+
assert farthest_points(b, c, a) == ans
|
131 |
+
|
132 |
+
# unique to farthest
|
133 |
+
points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)]
|
134 |
+
assert farthest_points(*points) == {
|
135 |
+
(Point2D(-5, 2), Point2D(15, 4))}
|
136 |
+
points = [(1, -1), (1, -2), (3, -1), (-5, -2), (15, -4)]
|
137 |
+
assert farthest_points(*points) == {
|
138 |
+
(Point2D(-5, -2), Point2D(15, -4))}
|
139 |
+
assert farthest_points((1, 1), (0, 0)) == {
|
140 |
+
(Point2D(0, 0), Point2D(1, 1))}
|
141 |
+
raises(ValueError, lambda: farthest_points((1, 1)))
|
142 |
+
|
143 |
+
|
144 |
+
def test_are_coplanar():
|
145 |
+
a = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
|
146 |
+
b = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
|
147 |
+
c = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))
|
148 |
+
d = Line(Point2D(0, 3), Point2D(1, 5))
|
149 |
+
|
150 |
+
assert are_coplanar(a, b, c) == False
|
151 |
+
assert are_coplanar(a, d) == False
|
llmeval-env/lib/python3.10/site-packages/sympy/solvers/__init__.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A module for solving all kinds of equations.
|
2 |
+
|
3 |
+
Examples
|
4 |
+
========
|
5 |
+
|
6 |
+
>>> from sympy.solvers import solve
|
7 |
+
>>> from sympy.abc import x
|
8 |
+
>>> solve(x**5+5*x**4+10*x**3+10*x**2+5*x+1,x)
|
9 |
+
[-1]
|
10 |
+
"""
|
11 |
+
from sympy.core.assumptions import check_assumptions, failing_assumptions
|
12 |
+
|
13 |
+
from .solvers import solve, solve_linear_system, solve_linear_system_LU, \
|
14 |
+
solve_undetermined_coeffs, nsolve, solve_linear, checksol, \
|
15 |
+
det_quick, inv_quick
|
16 |
+
|
17 |
+
from .diophantine import diophantine
|
18 |
+
|
19 |
+
from .recurr import rsolve, rsolve_poly, rsolve_ratio, rsolve_hyper
|
20 |
+
|
21 |
+
from .ode import checkodesol, classify_ode, dsolve, \
|
22 |
+
homogeneous_order
|
23 |
+
|
24 |
+
from .polysys import solve_poly_system, solve_triangulated
|
25 |
+
|
26 |
+
from .pde import pde_separate, pde_separate_add, pde_separate_mul, \
|
27 |
+
pdsolve, classify_pde, checkpdesol
|
28 |
+
|
29 |
+
from .deutils import ode_order
|
30 |
+
|
31 |
+
from .inequalities import reduce_inequalities, reduce_abs_inequality, \
|
32 |
+
reduce_abs_inequalities, solve_poly_inequality, solve_rational_inequalities, solve_univariate_inequality
|
33 |
+
|
34 |
+
from .decompogen import decompogen
|
35 |
+
|
36 |
+
from .solveset import solveset, linsolve, linear_eq_to_matrix, nonlinsolve, substitution
|
37 |
+
|
38 |
+
# This is here instead of sympy/sets/__init__.py to avoid circular import issues
|
39 |
+
from ..core.singleton import S
|
40 |
+
Complexes = S.Complexes
|
41 |
+
|
42 |
+
__all__ = [
|
43 |
+
'solve', 'solve_linear_system', 'solve_linear_system_LU',
|
44 |
+
'solve_undetermined_coeffs', 'nsolve', 'solve_linear', 'checksol',
|
45 |
+
'det_quick', 'inv_quick', 'check_assumptions', 'failing_assumptions',
|
46 |
+
|
47 |
+
'diophantine',
|
48 |
+
|
49 |
+
'rsolve', 'rsolve_poly', 'rsolve_ratio', 'rsolve_hyper',
|
50 |
+
|
51 |
+
'checkodesol', 'classify_ode', 'dsolve', 'homogeneous_order',
|
52 |
+
|
53 |
+
'solve_poly_system', 'solve_triangulated',
|
54 |
+
|
55 |
+
'pde_separate', 'pde_separate_add', 'pde_separate_mul', 'pdsolve',
|
56 |
+
'classify_pde', 'checkpdesol',
|
57 |
+
|
58 |
+
'ode_order',
|
59 |
+
|
60 |
+
'reduce_inequalities', 'reduce_abs_inequality', 'reduce_abs_inequalities',
|
61 |
+
'solve_poly_inequality', 'solve_rational_inequalities',
|
62 |
+
'solve_univariate_inequality',
|
63 |
+
|
64 |
+
'decompogen',
|
65 |
+
|
66 |
+
'solveset', 'linsolve', 'linear_eq_to_matrix', 'nonlinsolve',
|
67 |
+
'substitution',
|
68 |
+
|
69 |
+
# This is here instead of sympy/sets/__init__.py to avoid circular import issues
|
70 |
+
'Complexes',
|
71 |
+
]
|
llmeval-env/lib/python3.10/site-packages/sympy/solvers/benchmarks/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/sympy/solvers/benchmarks/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (197 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/solvers/benchmarks/__pycache__/bench_solvers.cpython-310.pyc
ADDED
Binary file (737 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/solvers/benchmarks/bench_solvers.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.symbol import Symbol
|
2 |
+
from sympy.matrices.dense import (eye, zeros)
|
3 |
+
from sympy.solvers.solvers import solve_linear_system
|
4 |
+
|
5 |
+
N = 8
|
6 |
+
M = zeros(N, N + 1)
|
7 |
+
M[:, :N] = eye(N)
|
8 |
+
S = [Symbol('A%i' % i) for i in range(N)]
|
9 |
+
|
10 |
+
|
11 |
+
def timeit_linsolve_trivial():
|
12 |
+
solve_linear_system(M, *S)
|
llmeval-env/lib/python3.10/site-packages/sympy/solvers/bivariate.py
ADDED
@@ -0,0 +1,509 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.add import Add
|
2 |
+
from sympy.core.exprtools import factor_terms
|
3 |
+
from sympy.core.function import expand_log, _mexpand
|
4 |
+
from sympy.core.power import Pow
|
5 |
+
from sympy.core.singleton import S
|
6 |
+
from sympy.core.sorting import ordered
|
7 |
+
from sympy.core.symbol import Dummy
|
8 |
+
from sympy.functions.elementary.exponential import (LambertW, exp, log)
|
9 |
+
from sympy.functions.elementary.miscellaneous import root
|
10 |
+
from sympy.polys.polyroots import roots
|
11 |
+
from sympy.polys.polytools import Poly, factor
|
12 |
+
from sympy.simplify.simplify import separatevars
|
13 |
+
from sympy.simplify.radsimp import collect
|
14 |
+
from sympy.simplify.simplify import powsimp
|
15 |
+
from sympy.solvers.solvers import solve, _invert
|
16 |
+
from sympy.utilities.iterables import uniq
|
17 |
+
|
18 |
+
|
19 |
+
def _filtered_gens(poly, symbol):
|
20 |
+
"""process the generators of ``poly``, returning the set of generators that
|
21 |
+
have ``symbol``. If there are two generators that are inverses of each other,
|
22 |
+
prefer the one that has no denominator.
|
23 |
+
|
24 |
+
Examples
|
25 |
+
========
|
26 |
+
|
27 |
+
>>> from sympy.solvers.bivariate import _filtered_gens
|
28 |
+
>>> from sympy import Poly, exp
|
29 |
+
>>> from sympy.abc import x
|
30 |
+
>>> _filtered_gens(Poly(x + 1/x + exp(x)), x)
|
31 |
+
{x, exp(x)}
|
32 |
+
|
33 |
+
"""
|
34 |
+
# TODO it would be good to pick the smallest divisible power
|
35 |
+
# instead of the base for something like x**4 + x**2 -->
|
36 |
+
# return x**2 not x
|
37 |
+
gens = {g for g in poly.gens if symbol in g.free_symbols}
|
38 |
+
for g in list(gens):
|
39 |
+
ag = 1/g
|
40 |
+
if g in gens and ag in gens:
|
41 |
+
if ag.as_numer_denom()[1] is not S.One:
|
42 |
+
g = ag
|
43 |
+
gens.remove(g)
|
44 |
+
return gens
|
45 |
+
|
46 |
+
|
47 |
+
def _mostfunc(lhs, func, X=None):
|
48 |
+
"""Returns the term in lhs which contains the most of the
|
49 |
+
func-type things e.g. log(log(x)) wins over log(x) if both terms appear.
|
50 |
+
|
51 |
+
``func`` can be a function (exp, log, etc...) or any other SymPy object,
|
52 |
+
like Pow.
|
53 |
+
|
54 |
+
If ``X`` is not ``None``, then the function returns the term composed with the
|
55 |
+
most ``func`` having the specified variable.
|
56 |
+
|
57 |
+
Examples
|
58 |
+
========
|
59 |
+
|
60 |
+
>>> from sympy.solvers.bivariate import _mostfunc
|
61 |
+
>>> from sympy import exp
|
62 |
+
>>> from sympy.abc import x, y
|
63 |
+
>>> _mostfunc(exp(x) + exp(exp(x) + 2), exp)
|
64 |
+
exp(exp(x) + 2)
|
65 |
+
>>> _mostfunc(exp(x) + exp(exp(y) + 2), exp)
|
66 |
+
exp(exp(y) + 2)
|
67 |
+
>>> _mostfunc(exp(x) + exp(exp(y) + 2), exp, x)
|
68 |
+
exp(x)
|
69 |
+
>>> _mostfunc(x, exp, x) is None
|
70 |
+
True
|
71 |
+
>>> _mostfunc(exp(x) + exp(x*y), exp, x)
|
72 |
+
exp(x)
|
73 |
+
"""
|
74 |
+
fterms = [tmp for tmp in lhs.atoms(func) if (not X or
|
75 |
+
X.is_Symbol and X in tmp.free_symbols or
|
76 |
+
not X.is_Symbol and tmp.has(X))]
|
77 |
+
if len(fterms) == 1:
|
78 |
+
return fterms[0]
|
79 |
+
elif fterms:
|
80 |
+
return max(list(ordered(fterms)), key=lambda x: x.count(func))
|
81 |
+
return None
|
82 |
+
|
83 |
+
|
84 |
+
def _linab(arg, symbol):
|
85 |
+
"""Return ``a, b, X`` assuming ``arg`` can be written as ``a*X + b``
|
86 |
+
where ``X`` is a symbol-dependent factor and ``a`` and ``b`` are
|
87 |
+
independent of ``symbol``.
|
88 |
+
|
89 |
+
Examples
|
90 |
+
========
|
91 |
+
|
92 |
+
>>> from sympy.solvers.bivariate import _linab
|
93 |
+
>>> from sympy.abc import x, y
|
94 |
+
>>> from sympy import exp, S
|
95 |
+
>>> _linab(S(2), x)
|
96 |
+
(2, 0, 1)
|
97 |
+
>>> _linab(2*x, x)
|
98 |
+
(2, 0, x)
|
99 |
+
>>> _linab(y + y*x + 2*x, x)
|
100 |
+
(y + 2, y, x)
|
101 |
+
>>> _linab(3 + 2*exp(x), x)
|
102 |
+
(2, 3, exp(x))
|
103 |
+
"""
|
104 |
+
arg = factor_terms(arg.expand())
|
105 |
+
ind, dep = arg.as_independent(symbol)
|
106 |
+
if arg.is_Mul and dep.is_Add:
|
107 |
+
a, b, x = _linab(dep, symbol)
|
108 |
+
return ind*a, ind*b, x
|
109 |
+
if not arg.is_Add:
|
110 |
+
b = 0
|
111 |
+
a, x = ind, dep
|
112 |
+
else:
|
113 |
+
b = ind
|
114 |
+
a, x = separatevars(dep).as_independent(symbol, as_Add=False)
|
115 |
+
if x.could_extract_minus_sign():
|
116 |
+
a = -a
|
117 |
+
x = -x
|
118 |
+
return a, b, x
|
119 |
+
|
120 |
+
|
121 |
+
def _lambert(eq, x):
|
122 |
+
"""
|
123 |
+
Given an expression assumed to be in the form
|
124 |
+
``F(X, a..f) = a*log(b*X + c) + d*X + f = 0``
|
125 |
+
where X = g(x) and x = g^-1(X), return the Lambert solution,
|
126 |
+
``x = g^-1(-c/b + (a/d)*W(d/(a*b)*exp(c*d/a/b)*exp(-f/a)))``.
|
127 |
+
"""
|
128 |
+
eq = _mexpand(expand_log(eq))
|
129 |
+
mainlog = _mostfunc(eq, log, x)
|
130 |
+
if not mainlog:
|
131 |
+
return [] # violated assumptions
|
132 |
+
other = eq.subs(mainlog, 0)
|
133 |
+
if isinstance(-other, log):
|
134 |
+
eq = (eq - other).subs(mainlog, mainlog.args[0])
|
135 |
+
mainlog = mainlog.args[0]
|
136 |
+
if not isinstance(mainlog, log):
|
137 |
+
return [] # violated assumptions
|
138 |
+
other = -(-other).args[0]
|
139 |
+
eq += other
|
140 |
+
if x not in other.free_symbols:
|
141 |
+
return [] # violated assumptions
|
142 |
+
d, f, X2 = _linab(other, x)
|
143 |
+
logterm = collect(eq - other, mainlog)
|
144 |
+
a = logterm.as_coefficient(mainlog)
|
145 |
+
if a is None or x in a.free_symbols:
|
146 |
+
return [] # violated assumptions
|
147 |
+
logarg = mainlog.args[0]
|
148 |
+
b, c, X1 = _linab(logarg, x)
|
149 |
+
if X1 != X2:
|
150 |
+
return [] # violated assumptions
|
151 |
+
|
152 |
+
# invert the generator X1 so we have x(u)
|
153 |
+
u = Dummy('rhs')
|
154 |
+
xusolns = solve(X1 - u, x)
|
155 |
+
|
156 |
+
# There are infinitely many branches for LambertW
|
157 |
+
# but only branches for k = -1 and 0 might be real. The k = 0
|
158 |
+
# branch is real and the k = -1 branch is real if the LambertW argumen
|
159 |
+
# in in range [-1/e, 0]. Since `solve` does not return infinite
|
160 |
+
# solutions we will only include the -1 branch if it tests as real.
|
161 |
+
# Otherwise, inclusion of any LambertW in the solution indicates to
|
162 |
+
# the user that there are imaginary solutions corresponding to
|
163 |
+
# different k values.
|
164 |
+
lambert_real_branches = [-1, 0]
|
165 |
+
sol = []
|
166 |
+
|
167 |
+
# solution of the given Lambert equation is like
|
168 |
+
# sol = -c/b + (a/d)*LambertW(arg, k),
|
169 |
+
# where arg = d/(a*b)*exp((c*d-b*f)/a/b) and k in lambert_real_branches.
|
170 |
+
# Instead of considering the single arg, `d/(a*b)*exp((c*d-b*f)/a/b)`,
|
171 |
+
# the individual `p` roots obtained when writing `exp((c*d-b*f)/a/b)`
|
172 |
+
# as `exp(A/p) = exp(A)**(1/p)`, where `p` is an Integer, are used.
|
173 |
+
|
174 |
+
# calculating args for LambertW
|
175 |
+
num, den = ((c*d-b*f)/a/b).as_numer_denom()
|
176 |
+
p, den = den.as_coeff_Mul()
|
177 |
+
e = exp(num/den)
|
178 |
+
t = Dummy('t')
|
179 |
+
args = [d/(a*b)*t for t in roots(t**p - e, t).keys()]
|
180 |
+
|
181 |
+
# calculating solutions from args
|
182 |
+
for arg in args:
|
183 |
+
for k in lambert_real_branches:
|
184 |
+
w = LambertW(arg, k)
|
185 |
+
if k and not w.is_real:
|
186 |
+
continue
|
187 |
+
rhs = -c/b + (a/d)*w
|
188 |
+
|
189 |
+
sol.extend(xu.subs(u, rhs) for xu in xusolns)
|
190 |
+
return sol
|
191 |
+
|
192 |
+
|
193 |
+
def _solve_lambert(f, symbol, gens):
|
194 |
+
"""Return solution to ``f`` if it is a Lambert-type expression
|
195 |
+
else raise NotImplementedError.
|
196 |
+
|
197 |
+
For ``f(X, a..f) = a*log(b*X + c) + d*X - f = 0`` the solution
|
198 |
+
for ``X`` is ``X = -c/b + (a/d)*W(d/(a*b)*exp(c*d/a/b)*exp(f/a))``.
|
199 |
+
There are a variety of forms for `f(X, a..f)` as enumerated below:
|
200 |
+
|
201 |
+
1a1)
|
202 |
+
if B**B = R for R not in [0, 1] (since those cases would already
|
203 |
+
be solved before getting here) then log of both sides gives
|
204 |
+
log(B) + log(log(B)) = log(log(R)) and
|
205 |
+
X = log(B), a = 1, b = 1, c = 0, d = 1, f = log(log(R))
|
206 |
+
1a2)
|
207 |
+
if B*(b*log(B) + c)**a = R then log of both sides gives
|
208 |
+
log(B) + a*log(b*log(B) + c) = log(R) and
|
209 |
+
X = log(B), d=1, f=log(R)
|
210 |
+
1b)
|
211 |
+
if a*log(b*B + c) + d*B = R and
|
212 |
+
X = B, f = R
|
213 |
+
2a)
|
214 |
+
if (b*B + c)*exp(d*B + g) = R then log of both sides gives
|
215 |
+
log(b*B + c) + d*B + g = log(R) and
|
216 |
+
X = B, a = 1, f = log(R) - g
|
217 |
+
2b)
|
218 |
+
if g*exp(d*B + h) - b*B = c then the log form is
|
219 |
+
log(g) + d*B + h - log(b*B + c) = 0 and
|
220 |
+
X = B, a = -1, f = -h - log(g)
|
221 |
+
3)
|
222 |
+
if d*p**(a*B + g) - b*B = c then the log form is
|
223 |
+
log(d) + (a*B + g)*log(p) - log(b*B + c) = 0 and
|
224 |
+
X = B, a = -1, d = a*log(p), f = -log(d) - g*log(p)
|
225 |
+
"""
|
226 |
+
|
227 |
+
def _solve_even_degree_expr(expr, t, symbol):
|
228 |
+
"""Return the unique solutions of equations derived from
|
229 |
+
``expr`` by replacing ``t`` with ``+/- symbol``.
|
230 |
+
|
231 |
+
Parameters
|
232 |
+
==========
|
233 |
+
|
234 |
+
expr : Expr
|
235 |
+
The expression which includes a dummy variable t to be
|
236 |
+
replaced with +symbol and -symbol.
|
237 |
+
|
238 |
+
symbol : Symbol
|
239 |
+
The symbol for which a solution is being sought.
|
240 |
+
|
241 |
+
Returns
|
242 |
+
=======
|
243 |
+
|
244 |
+
List of unique solution of the two equations generated by
|
245 |
+
replacing ``t`` with positive and negative ``symbol``.
|
246 |
+
|
247 |
+
Notes
|
248 |
+
=====
|
249 |
+
|
250 |
+
If ``expr = 2*log(t) + x/2` then solutions for
|
251 |
+
``2*log(x) + x/2 = 0`` and ``2*log(-x) + x/2 = 0`` are
|
252 |
+
returned by this function. Though this may seem
|
253 |
+
counter-intuitive, one must note that the ``expr`` being
|
254 |
+
solved here has been derived from a different expression. For
|
255 |
+
an expression like ``eq = x**2*g(x) = 1``, if we take the
|
256 |
+
log of both sides we obtain ``log(x**2) + log(g(x)) = 0``. If
|
257 |
+
x is positive then this simplifies to
|
258 |
+
``2*log(x) + log(g(x)) = 0``; the Lambert-solving routines will
|
259 |
+
return solutions for this, but we must also consider the
|
260 |
+
solutions for ``2*log(-x) + log(g(x))`` since those must also
|
261 |
+
be a solution of ``eq`` which has the same value when the ``x``
|
262 |
+
in ``x**2`` is negated. If `g(x)` does not have even powers of
|
263 |
+
symbol then we do not want to replace the ``x`` there with
|
264 |
+
``-x``. So the role of the ``t`` in the expression received by
|
265 |
+
this function is to mark where ``+/-x`` should be inserted
|
266 |
+
before obtaining the Lambert solutions.
|
267 |
+
|
268 |
+
"""
|
269 |
+
nlhs, plhs = [
|
270 |
+
expr.xreplace({t: sgn*symbol}) for sgn in (-1, 1)]
|
271 |
+
sols = _solve_lambert(nlhs, symbol, gens)
|
272 |
+
if plhs != nlhs:
|
273 |
+
sols.extend(_solve_lambert(plhs, symbol, gens))
|
274 |
+
# uniq is needed for a case like
|
275 |
+
# 2*log(t) - log(-z**2) + log(z + log(x) + log(z))
|
276 |
+
# where substituting t with +/-x gives all the same solution;
|
277 |
+
# uniq, rather than list(set()), is used to maintain canonical
|
278 |
+
# order
|
279 |
+
return list(uniq(sols))
|
280 |
+
|
281 |
+
nrhs, lhs = f.as_independent(symbol, as_Add=True)
|
282 |
+
rhs = -nrhs
|
283 |
+
|
284 |
+
lamcheck = [tmp for tmp in gens
|
285 |
+
if (tmp.func in [exp, log] or
|
286 |
+
(tmp.is_Pow and symbol in tmp.exp.free_symbols))]
|
287 |
+
if not lamcheck:
|
288 |
+
raise NotImplementedError()
|
289 |
+
|
290 |
+
if lhs.is_Add or lhs.is_Mul:
|
291 |
+
# replacing all even_degrees of symbol with dummy variable t
|
292 |
+
# since these will need special handling; non-Add/Mul do not
|
293 |
+
# need this handling
|
294 |
+
t = Dummy('t', **symbol.assumptions0)
|
295 |
+
lhs = lhs.replace(
|
296 |
+
lambda i: # find symbol**even
|
297 |
+
i.is_Pow and i.base == symbol and i.exp.is_even,
|
298 |
+
lambda i: # replace t**even
|
299 |
+
t**i.exp)
|
300 |
+
|
301 |
+
if lhs.is_Add and lhs.has(t):
|
302 |
+
t_indep = lhs.subs(t, 0)
|
303 |
+
t_term = lhs - t_indep
|
304 |
+
_rhs = rhs - t_indep
|
305 |
+
if not t_term.is_Add and _rhs and not (
|
306 |
+
t_term.has(S.ComplexInfinity, S.NaN)):
|
307 |
+
eq = expand_log(log(t_term) - log(_rhs))
|
308 |
+
return _solve_even_degree_expr(eq, t, symbol)
|
309 |
+
elif lhs.is_Mul and rhs:
|
310 |
+
# this needs to happen whether t is present or not
|
311 |
+
lhs = expand_log(log(lhs), force=True)
|
312 |
+
rhs = log(rhs)
|
313 |
+
if lhs.has(t) and lhs.is_Add:
|
314 |
+
# it expanded from Mul to Add
|
315 |
+
eq = lhs - rhs
|
316 |
+
return _solve_even_degree_expr(eq, t, symbol)
|
317 |
+
|
318 |
+
# restore symbol in lhs
|
319 |
+
lhs = lhs.xreplace({t: symbol})
|
320 |
+
|
321 |
+
lhs = powsimp(factor(lhs, deep=True))
|
322 |
+
|
323 |
+
# make sure we have inverted as completely as possible
|
324 |
+
r = Dummy()
|
325 |
+
i, lhs = _invert(lhs - r, symbol)
|
326 |
+
rhs = i.xreplace({r: rhs})
|
327 |
+
|
328 |
+
# For the first forms:
|
329 |
+
#
|
330 |
+
# 1a1) B**B = R will arrive here as B*log(B) = log(R)
|
331 |
+
# lhs is Mul so take log of both sides:
|
332 |
+
# log(B) + log(log(B)) = log(log(R))
|
333 |
+
# 1a2) B*(b*log(B) + c)**a = R will arrive unchanged so
|
334 |
+
# lhs is Mul, so take log of both sides:
|
335 |
+
# log(B) + a*log(b*log(B) + c) = log(R)
|
336 |
+
# 1b) d*log(a*B + b) + c*B = R will arrive unchanged so
|
337 |
+
# lhs is Add, so isolate c*B and expand log of both sides:
|
338 |
+
# log(c) + log(B) = log(R - d*log(a*B + b))
|
339 |
+
|
340 |
+
soln = []
|
341 |
+
if not soln:
|
342 |
+
mainlog = _mostfunc(lhs, log, symbol)
|
343 |
+
if mainlog:
|
344 |
+
if lhs.is_Mul and rhs != 0:
|
345 |
+
soln = _lambert(log(lhs) - log(rhs), symbol)
|
346 |
+
elif lhs.is_Add:
|
347 |
+
other = lhs.subs(mainlog, 0)
|
348 |
+
if other and not other.is_Add and [
|
349 |
+
tmp for tmp in other.atoms(Pow)
|
350 |
+
if symbol in tmp.free_symbols]:
|
351 |
+
if not rhs:
|
352 |
+
diff = log(other) - log(other - lhs)
|
353 |
+
else:
|
354 |
+
diff = log(lhs - other) - log(rhs - other)
|
355 |
+
soln = _lambert(expand_log(diff), symbol)
|
356 |
+
else:
|
357 |
+
#it's ready to go
|
358 |
+
soln = _lambert(lhs - rhs, symbol)
|
359 |
+
|
360 |
+
# For the next forms,
|
361 |
+
#
|
362 |
+
# collect on main exp
|
363 |
+
# 2a) (b*B + c)*exp(d*B + g) = R
|
364 |
+
# lhs is mul, so take log of both sides:
|
365 |
+
# log(b*B + c) + d*B = log(R) - g
|
366 |
+
# 2b) g*exp(d*B + h) - b*B = R
|
367 |
+
# lhs is add, so add b*B to both sides,
|
368 |
+
# take the log of both sides and rearrange to give
|
369 |
+
# log(R + b*B) - d*B = log(g) + h
|
370 |
+
|
371 |
+
if not soln:
|
372 |
+
mainexp = _mostfunc(lhs, exp, symbol)
|
373 |
+
if mainexp:
|
374 |
+
lhs = collect(lhs, mainexp)
|
375 |
+
if lhs.is_Mul and rhs != 0:
|
376 |
+
soln = _lambert(expand_log(log(lhs) - log(rhs)), symbol)
|
377 |
+
elif lhs.is_Add:
|
378 |
+
# move all but mainexp-containing term to rhs
|
379 |
+
other = lhs.subs(mainexp, 0)
|
380 |
+
mainterm = lhs - other
|
381 |
+
rhs = rhs - other
|
382 |
+
if (mainterm.could_extract_minus_sign() and
|
383 |
+
rhs.could_extract_minus_sign()):
|
384 |
+
mainterm *= -1
|
385 |
+
rhs *= -1
|
386 |
+
diff = log(mainterm) - log(rhs)
|
387 |
+
soln = _lambert(expand_log(diff), symbol)
|
388 |
+
|
389 |
+
# For the last form:
|
390 |
+
#
|
391 |
+
# 3) d*p**(a*B + g) - b*B = c
|
392 |
+
# collect on main pow, add b*B to both sides,
|
393 |
+
# take log of both sides and rearrange to give
|
394 |
+
# a*B*log(p) - log(b*B + c) = -log(d) - g*log(p)
|
395 |
+
if not soln:
|
396 |
+
mainpow = _mostfunc(lhs, Pow, symbol)
|
397 |
+
if mainpow and symbol in mainpow.exp.free_symbols:
|
398 |
+
lhs = collect(lhs, mainpow)
|
399 |
+
if lhs.is_Mul and rhs != 0:
|
400 |
+
# b*B = 0
|
401 |
+
soln = _lambert(expand_log(log(lhs) - log(rhs)), symbol)
|
402 |
+
elif lhs.is_Add:
|
403 |
+
# move all but mainpow-containing term to rhs
|
404 |
+
other = lhs.subs(mainpow, 0)
|
405 |
+
mainterm = lhs - other
|
406 |
+
rhs = rhs - other
|
407 |
+
diff = log(mainterm) - log(rhs)
|
408 |
+
soln = _lambert(expand_log(diff), symbol)
|
409 |
+
|
410 |
+
if not soln:
|
411 |
+
raise NotImplementedError('%s does not appear to have a solution in '
|
412 |
+
'terms of LambertW' % f)
|
413 |
+
|
414 |
+
return list(ordered(soln))
|
415 |
+
|
416 |
+
|
417 |
+
def bivariate_type(f, x, y, *, first=True):
|
418 |
+
"""Given an expression, f, 3 tests will be done to see what type
|
419 |
+
of composite bivariate it might be, options for u(x, y) are::
|
420 |
+
|
421 |
+
x*y
|
422 |
+
x+y
|
423 |
+
x*y+x
|
424 |
+
x*y+y
|
425 |
+
|
426 |
+
If it matches one of these types, ``u(x, y)``, ``P(u)`` and dummy
|
427 |
+
variable ``u`` will be returned. Solving ``P(u)`` for ``u`` and
|
428 |
+
equating the solutions to ``u(x, y)`` and then solving for ``x`` or
|
429 |
+
``y`` is equivalent to solving the original expression for ``x`` or
|
430 |
+
``y``. If ``x`` and ``y`` represent two functions in the same
|
431 |
+
variable, e.g. ``x = g(t)`` and ``y = h(t)``, then if ``u(x, y) - p``
|
432 |
+
can be solved for ``t`` then these represent the solutions to
|
433 |
+
``P(u) = 0`` when ``p`` are the solutions of ``P(u) = 0``.
|
434 |
+
|
435 |
+
Only positive values of ``u`` are considered.
|
436 |
+
|
437 |
+
Examples
|
438 |
+
========
|
439 |
+
|
440 |
+
>>> from sympy import solve
|
441 |
+
>>> from sympy.solvers.bivariate import bivariate_type
|
442 |
+
>>> from sympy.abc import x, y
|
443 |
+
>>> eq = (x**2 - 3).subs(x, x + y)
|
444 |
+
>>> bivariate_type(eq, x, y)
|
445 |
+
(x + y, _u**2 - 3, _u)
|
446 |
+
>>> uxy, pu, u = _
|
447 |
+
>>> usol = solve(pu, u); usol
|
448 |
+
[sqrt(3)]
|
449 |
+
>>> [solve(uxy - s) for s in solve(pu, u)]
|
450 |
+
[[{x: -y + sqrt(3)}]]
|
451 |
+
>>> all(eq.subs(s).equals(0) for sol in _ for s in sol)
|
452 |
+
True
|
453 |
+
|
454 |
+
"""
|
455 |
+
|
456 |
+
u = Dummy('u', positive=True)
|
457 |
+
|
458 |
+
if first:
|
459 |
+
p = Poly(f, x, y)
|
460 |
+
f = p.as_expr()
|
461 |
+
_x = Dummy()
|
462 |
+
_y = Dummy()
|
463 |
+
rv = bivariate_type(Poly(f.subs({x: _x, y: _y}), _x, _y), _x, _y, first=False)
|
464 |
+
if rv:
|
465 |
+
reps = {_x: x, _y: y}
|
466 |
+
return rv[0].xreplace(reps), rv[1].xreplace(reps), rv[2]
|
467 |
+
return
|
468 |
+
|
469 |
+
p = f
|
470 |
+
f = p.as_expr()
|
471 |
+
|
472 |
+
# f(x*y)
|
473 |
+
args = Add.make_args(p.as_expr())
|
474 |
+
new = []
|
475 |
+
for a in args:
|
476 |
+
a = _mexpand(a.subs(x, u/y))
|
477 |
+
free = a.free_symbols
|
478 |
+
if x in free or y in free:
|
479 |
+
break
|
480 |
+
new.append(a)
|
481 |
+
else:
|
482 |
+
return x*y, Add(*new), u
|
483 |
+
|
484 |
+
def ok(f, v, c):
|
485 |
+
new = _mexpand(f.subs(v, c))
|
486 |
+
free = new.free_symbols
|
487 |
+
return None if (x in free or y in free) else new
|
488 |
+
|
489 |
+
# f(a*x + b*y)
|
490 |
+
new = []
|
491 |
+
d = p.degree(x)
|
492 |
+
if p.degree(y) == d:
|
493 |
+
a = root(p.coeff_monomial(x**d), d)
|
494 |
+
b = root(p.coeff_monomial(y**d), d)
|
495 |
+
new = ok(f, x, (u - b*y)/a)
|
496 |
+
if new is not None:
|
497 |
+
return a*x + b*y, new, u
|
498 |
+
|
499 |
+
# f(a*x*y + b*y)
|
500 |
+
new = []
|
501 |
+
d = p.degree(x)
|
502 |
+
if p.degree(y) == d:
|
503 |
+
for itry in range(2):
|
504 |
+
a = root(p.coeff_monomial(x**d*y**d), d)
|
505 |
+
b = root(p.coeff_monomial(y**d), d)
|
506 |
+
new = ok(f, x, (u - b*y)/a/y)
|
507 |
+
if new is not None:
|
508 |
+
return a*x*y + b*y, new, u
|
509 |
+
x, y = y, x
|
llmeval-env/lib/python3.10/site-packages/sympy/solvers/decompogen.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import (Function, Pow, sympify, Expr)
|
2 |
+
from sympy.core.relational import Relational
|
3 |
+
from sympy.core.singleton import S
|
4 |
+
from sympy.polys import Poly, decompose
|
5 |
+
from sympy.utilities.misc import func_name
|
6 |
+
from sympy.functions.elementary.miscellaneous import Min, Max
|
7 |
+
|
8 |
+
|
9 |
+
def decompogen(f, symbol):
|
10 |
+
"""
|
11 |
+
Computes General functional decomposition of ``f``.
|
12 |
+
Given an expression ``f``, returns a list ``[f_1, f_2, ..., f_n]``,
|
13 |
+
where::
|
14 |
+
f = f_1 o f_2 o ... f_n = f_1(f_2(... f_n))
|
15 |
+
|
16 |
+
Note: This is a General decomposition function. It also decomposes
|
17 |
+
Polynomials. For only Polynomial decomposition see ``decompose`` in polys.
|
18 |
+
|
19 |
+
Examples
|
20 |
+
========
|
21 |
+
|
22 |
+
>>> from sympy.abc import x
|
23 |
+
>>> from sympy import decompogen, sqrt, sin, cos
|
24 |
+
>>> decompogen(sin(cos(x)), x)
|
25 |
+
[sin(x), cos(x)]
|
26 |
+
>>> decompogen(sin(x)**2 + sin(x) + 1, x)
|
27 |
+
[x**2 + x + 1, sin(x)]
|
28 |
+
>>> decompogen(sqrt(6*x**2 - 5), x)
|
29 |
+
[sqrt(x), 6*x**2 - 5]
|
30 |
+
>>> decompogen(sin(sqrt(cos(x**2 + 1))), x)
|
31 |
+
[sin(x), sqrt(x), cos(x), x**2 + 1]
|
32 |
+
>>> decompogen(x**4 + 2*x**3 - x - 1, x)
|
33 |
+
[x**2 - x - 1, x**2 + x]
|
34 |
+
|
35 |
+
"""
|
36 |
+
f = sympify(f)
|
37 |
+
if not isinstance(f, Expr) or isinstance(f, Relational):
|
38 |
+
raise TypeError('expecting Expr but got: `%s`' % func_name(f))
|
39 |
+
if symbol not in f.free_symbols:
|
40 |
+
return [f]
|
41 |
+
|
42 |
+
|
43 |
+
# ===== Simple Functions ===== #
|
44 |
+
if isinstance(f, (Function, Pow)):
|
45 |
+
if f.is_Pow and f.base == S.Exp1:
|
46 |
+
arg = f.exp
|
47 |
+
else:
|
48 |
+
arg = f.args[0]
|
49 |
+
if arg == symbol:
|
50 |
+
return [f]
|
51 |
+
return [f.subs(arg, symbol)] + decompogen(arg, symbol)
|
52 |
+
|
53 |
+
# ===== Min/Max Functions ===== #
|
54 |
+
if isinstance(f, (Min, Max)):
|
55 |
+
args = list(f.args)
|
56 |
+
d0 = None
|
57 |
+
for i, a in enumerate(args):
|
58 |
+
if not a.has_free(symbol):
|
59 |
+
continue
|
60 |
+
d = decompogen(a, symbol)
|
61 |
+
if len(d) == 1:
|
62 |
+
d = [symbol] + d
|
63 |
+
if d0 is None:
|
64 |
+
d0 = d[1:]
|
65 |
+
elif d[1:] != d0:
|
66 |
+
# decomposition is not the same for each arg:
|
67 |
+
# mark as having no decomposition
|
68 |
+
d = [symbol]
|
69 |
+
break
|
70 |
+
args[i] = d[0]
|
71 |
+
if d[0] == symbol:
|
72 |
+
return [f]
|
73 |
+
return [f.func(*args)] + d0
|
74 |
+
|
75 |
+
# ===== Convert to Polynomial ===== #
|
76 |
+
fp = Poly(f)
|
77 |
+
gens = list(filter(lambda x: symbol in x.free_symbols, fp.gens))
|
78 |
+
|
79 |
+
if len(gens) == 1 and gens[0] != symbol:
|
80 |
+
f1 = f.subs(gens[0], symbol)
|
81 |
+
f2 = gens[0]
|
82 |
+
return [f1] + decompogen(f2, symbol)
|
83 |
+
|
84 |
+
# ===== Polynomial decompose() ====== #
|
85 |
+
try:
|
86 |
+
return decompose(f)
|
87 |
+
except ValueError:
|
88 |
+
return [f]
|
89 |
+
|
90 |
+
|
91 |
+
def compogen(g_s, symbol):
|
92 |
+
"""
|
93 |
+
Returns the composition of functions.
|
94 |
+
Given a list of functions ``g_s``, returns their composition ``f``,
|
95 |
+
where:
|
96 |
+
f = g_1 o g_2 o .. o g_n
|
97 |
+
|
98 |
+
Note: This is a General composition function. It also composes Polynomials.
|
99 |
+
For only Polynomial composition see ``compose`` in polys.
|
100 |
+
|
101 |
+
Examples
|
102 |
+
========
|
103 |
+
|
104 |
+
>>> from sympy.solvers.decompogen import compogen
|
105 |
+
>>> from sympy.abc import x
|
106 |
+
>>> from sympy import sqrt, sin, cos
|
107 |
+
>>> compogen([sin(x), cos(x)], x)
|
108 |
+
sin(cos(x))
|
109 |
+
>>> compogen([x**2 + x + 1, sin(x)], x)
|
110 |
+
sin(x)**2 + sin(x) + 1
|
111 |
+
>>> compogen([sqrt(x), 6*x**2 - 5], x)
|
112 |
+
sqrt(6*x**2 - 5)
|
113 |
+
>>> compogen([sin(x), sqrt(x), cos(x), x**2 + 1], x)
|
114 |
+
sin(sqrt(cos(x**2 + 1)))
|
115 |
+
>>> compogen([x**2 - x - 1, x**2 + x], x)
|
116 |
+
-x**2 - x + (x**2 + x)**2 - 1
|
117 |
+
"""
|
118 |
+
if len(g_s) == 1:
|
119 |
+
return g_s[0]
|
120 |
+
|
121 |
+
foo = g_s[0].subs(symbol, g_s[1])
|
122 |
+
|
123 |
+
if len(g_s) == 2:
|
124 |
+
return foo
|
125 |
+
|
126 |
+
return compogen([foo] + g_s[2:], symbol)
|
llmeval-env/lib/python3.10/site-packages/sympy/solvers/deutils.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utility functions for classifying and solving
|
2 |
+
ordinary and partial differential equations.
|
3 |
+
|
4 |
+
Contains
|
5 |
+
========
|
6 |
+
_preprocess
|
7 |
+
ode_order
|
8 |
+
_desolve
|
9 |
+
|
10 |
+
"""
|
11 |
+
from sympy.core import Pow
|
12 |
+
from sympy.core.function import Derivative, AppliedUndef
|
13 |
+
from sympy.core.relational import Equality
|
14 |
+
from sympy.core.symbol import Wild
|
15 |
+
|
16 |
+
def _preprocess(expr, func=None, hint='_Integral'):
|
17 |
+
"""Prepare expr for solving by making sure that differentiation
|
18 |
+
is done so that only func remains in unevaluated derivatives and
|
19 |
+
(if hint does not end with _Integral) that doit is applied to all
|
20 |
+
other derivatives. If hint is None, do not do any differentiation.
|
21 |
+
(Currently this may cause some simple differential equations to
|
22 |
+
fail.)
|
23 |
+
|
24 |
+
In case func is None, an attempt will be made to autodetect the
|
25 |
+
function to be solved for.
|
26 |
+
|
27 |
+
>>> from sympy.solvers.deutils import _preprocess
|
28 |
+
>>> from sympy import Derivative, Function
|
29 |
+
>>> from sympy.abc import x, y, z
|
30 |
+
>>> f, g = map(Function, 'fg')
|
31 |
+
|
32 |
+
If f(x)**p == 0 and p>0 then we can solve for f(x)=0
|
33 |
+
>>> _preprocess((f(x).diff(x)-4)**5, f(x))
|
34 |
+
(Derivative(f(x), x) - 4, f(x))
|
35 |
+
|
36 |
+
Apply doit to derivatives that contain more than the function
|
37 |
+
of interest:
|
38 |
+
|
39 |
+
>>> _preprocess(Derivative(f(x) + x, x))
|
40 |
+
(Derivative(f(x), x) + 1, f(x))
|
41 |
+
|
42 |
+
Do others if the differentiation variable(s) intersect with those
|
43 |
+
of the function of interest or contain the function of interest:
|
44 |
+
|
45 |
+
>>> _preprocess(Derivative(g(x), y, z), f(y))
|
46 |
+
(0, f(y))
|
47 |
+
>>> _preprocess(Derivative(f(y), z), f(y))
|
48 |
+
(0, f(y))
|
49 |
+
|
50 |
+
Do others if the hint does not end in '_Integral' (the default
|
51 |
+
assumes that it does):
|
52 |
+
|
53 |
+
>>> _preprocess(Derivative(g(x), y), f(x))
|
54 |
+
(Derivative(g(x), y), f(x))
|
55 |
+
>>> _preprocess(Derivative(f(x), y), f(x), hint='')
|
56 |
+
(0, f(x))
|
57 |
+
|
58 |
+
Do not do any derivatives if hint is None:
|
59 |
+
|
60 |
+
>>> eq = Derivative(f(x) + 1, x) + Derivative(f(x), y)
|
61 |
+
>>> _preprocess(eq, f(x), hint=None)
|
62 |
+
(Derivative(f(x) + 1, x) + Derivative(f(x), y), f(x))
|
63 |
+
|
64 |
+
If it's not clear what the function of interest is, it must be given:
|
65 |
+
|
66 |
+
>>> eq = Derivative(f(x) + g(x), x)
|
67 |
+
>>> _preprocess(eq, g(x))
|
68 |
+
(Derivative(f(x), x) + Derivative(g(x), x), g(x))
|
69 |
+
>>> try: _preprocess(eq)
|
70 |
+
... except ValueError: print("A ValueError was raised.")
|
71 |
+
A ValueError was raised.
|
72 |
+
|
73 |
+
"""
|
74 |
+
if isinstance(expr, Pow):
|
75 |
+
# if f(x)**p=0 then f(x)=0 (p>0)
|
76 |
+
if (expr.exp).is_positive:
|
77 |
+
expr = expr.base
|
78 |
+
derivs = expr.atoms(Derivative)
|
79 |
+
if not func:
|
80 |
+
funcs = set().union(*[d.atoms(AppliedUndef) for d in derivs])
|
81 |
+
if len(funcs) != 1:
|
82 |
+
raise ValueError('The function cannot be '
|
83 |
+
'automatically detected for %s.' % expr)
|
84 |
+
func = funcs.pop()
|
85 |
+
fvars = set(func.args)
|
86 |
+
if hint is None:
|
87 |
+
return expr, func
|
88 |
+
reps = [(d, d.doit()) for d in derivs if not hint.endswith('_Integral') or
|
89 |
+
d.has(func) or set(d.variables) & fvars]
|
90 |
+
eq = expr.subs(reps)
|
91 |
+
return eq, func
|
92 |
+
|
93 |
+
|
94 |
+
def ode_order(expr, func):
|
95 |
+
"""
|
96 |
+
Returns the order of a given differential
|
97 |
+
equation with respect to func.
|
98 |
+
|
99 |
+
This function is implemented recursively.
|
100 |
+
|
101 |
+
Examples
|
102 |
+
========
|
103 |
+
|
104 |
+
>>> from sympy import Function
|
105 |
+
>>> from sympy.solvers.deutils import ode_order
|
106 |
+
>>> from sympy.abc import x
|
107 |
+
>>> f, g = map(Function, ['f', 'g'])
|
108 |
+
>>> ode_order(f(x).diff(x, 2) + f(x).diff(x)**2 +
|
109 |
+
... f(x).diff(x), f(x))
|
110 |
+
2
|
111 |
+
>>> ode_order(f(x).diff(x, 2) + g(x).diff(x, 3), f(x))
|
112 |
+
2
|
113 |
+
>>> ode_order(f(x).diff(x, 2) + g(x).diff(x, 3), g(x))
|
114 |
+
3
|
115 |
+
|
116 |
+
"""
|
117 |
+
a = Wild('a', exclude=[func])
|
118 |
+
if expr.match(a):
|
119 |
+
return 0
|
120 |
+
|
121 |
+
if isinstance(expr, Derivative):
|
122 |
+
if expr.args[0] == func:
|
123 |
+
return len(expr.variables)
|
124 |
+
else:
|
125 |
+
args = expr.args[0].args
|
126 |
+
rv = len(expr.variables)
|
127 |
+
if args:
|
128 |
+
rv += max(ode_order(_, func) for _ in args)
|
129 |
+
return rv
|
130 |
+
else:
|
131 |
+
return max(ode_order(_, func) for _ in expr.args) if expr.args else 0
|
132 |
+
|
133 |
+
|
134 |
+
def _desolve(eq, func=None, hint="default", ics=None, simplify=True, *, prep=True, **kwargs):
|
135 |
+
"""This is a helper function to dsolve and pdsolve in the ode
|
136 |
+
and pde modules.
|
137 |
+
|
138 |
+
If the hint provided to the function is "default", then a dict with
|
139 |
+
the following keys are returned
|
140 |
+
|
141 |
+
'func' - It provides the function for which the differential equation
|
142 |
+
has to be solved. This is useful when the expression has
|
143 |
+
more than one function in it.
|
144 |
+
|
145 |
+
'default' - The default key as returned by classifier functions in ode
|
146 |
+
and pde.py
|
147 |
+
|
148 |
+
'hint' - The hint given by the user for which the differential equation
|
149 |
+
is to be solved. If the hint given by the user is 'default',
|
150 |
+
then the value of 'hint' and 'default' is the same.
|
151 |
+
|
152 |
+
'order' - The order of the function as returned by ode_order
|
153 |
+
|
154 |
+
'match' - It returns the match as given by the classifier functions, for
|
155 |
+
the default hint.
|
156 |
+
|
157 |
+
If the hint provided to the function is not "default" and is not in
|
158 |
+
('all', 'all_Integral', 'best'), then a dict with the above mentioned keys
|
159 |
+
is returned along with the keys which are returned when dict in
|
160 |
+
classify_ode or classify_pde is set True
|
161 |
+
|
162 |
+
If the hint given is in ('all', 'all_Integral', 'best'), then this function
|
163 |
+
returns a nested dict, with the keys, being the set of classified hints
|
164 |
+
returned by classifier functions, and the values being the dict of form
|
165 |
+
as mentioned above.
|
166 |
+
|
167 |
+
Key 'eq' is a common key to all the above mentioned hints which returns an
|
168 |
+
expression if eq given by user is an Equality.
|
169 |
+
|
170 |
+
See Also
|
171 |
+
========
|
172 |
+
classify_ode(ode.py)
|
173 |
+
classify_pde(pde.py)
|
174 |
+
"""
|
175 |
+
if isinstance(eq, Equality):
|
176 |
+
eq = eq.lhs - eq.rhs
|
177 |
+
|
178 |
+
# preprocess the equation and find func if not given
|
179 |
+
if prep or func is None:
|
180 |
+
eq, func = _preprocess(eq, func)
|
181 |
+
prep = False
|
182 |
+
|
183 |
+
# type is an argument passed by the solve functions in ode and pde.py
|
184 |
+
# that identifies whether the function caller is an ordinary
|
185 |
+
# or partial differential equation. Accordingly corresponding
|
186 |
+
# changes are made in the function.
|
187 |
+
type = kwargs.get('type', None)
|
188 |
+
xi = kwargs.get('xi')
|
189 |
+
eta = kwargs.get('eta')
|
190 |
+
x0 = kwargs.get('x0', 0)
|
191 |
+
terms = kwargs.get('n')
|
192 |
+
|
193 |
+
if type == 'ode':
|
194 |
+
from sympy.solvers.ode import classify_ode, allhints
|
195 |
+
classifier = classify_ode
|
196 |
+
string = 'ODE '
|
197 |
+
dummy = ''
|
198 |
+
|
199 |
+
elif type == 'pde':
|
200 |
+
from sympy.solvers.pde import classify_pde, allhints
|
201 |
+
classifier = classify_pde
|
202 |
+
string = 'PDE '
|
203 |
+
dummy = 'p'
|
204 |
+
|
205 |
+
# Magic that should only be used internally. Prevents classify_ode from
|
206 |
+
# being called more than it needs to be by passing its results through
|
207 |
+
# recursive calls.
|
208 |
+
if kwargs.get('classify', True):
|
209 |
+
hints = classifier(eq, func, dict=True, ics=ics, xi=xi, eta=eta,
|
210 |
+
n=terms, x0=x0, hint=hint, prep=prep)
|
211 |
+
|
212 |
+
else:
|
213 |
+
# Here is what all this means:
|
214 |
+
#
|
215 |
+
# hint: The hint method given to _desolve() by the user.
|
216 |
+
# hints: The dictionary of hints that match the DE, along with other
|
217 |
+
# information (including the internal pass-through magic).
|
218 |
+
# default: The default hint to return, the first hint from allhints
|
219 |
+
# that matches the hint; obtained from classify_ode().
|
220 |
+
# match: Dictionary containing the match dictionary for each hint
|
221 |
+
# (the parts of the DE for solving). When going through the
|
222 |
+
# hints in "all", this holds the match string for the current
|
223 |
+
# hint.
|
224 |
+
# order: The order of the DE, as determined by ode_order().
|
225 |
+
hints = kwargs.get('hint',
|
226 |
+
{'default': hint,
|
227 |
+
hint: kwargs['match'],
|
228 |
+
'order': kwargs['order']})
|
229 |
+
if not hints['default']:
|
230 |
+
# classify_ode will set hints['default'] to None if no hints match.
|
231 |
+
if hint not in allhints and hint != 'default':
|
232 |
+
raise ValueError("Hint not recognized: " + hint)
|
233 |
+
elif hint not in hints['ordered_hints'] and hint != 'default':
|
234 |
+
raise ValueError(string + str(eq) + " does not match hint " + hint)
|
235 |
+
# If dsolve can't solve the purely algebraic equation then dsolve will raise
|
236 |
+
# ValueError
|
237 |
+
elif hints['order'] == 0:
|
238 |
+
raise ValueError(
|
239 |
+
str(eq) + " is not a solvable differential equation in " + str(func))
|
240 |
+
else:
|
241 |
+
raise NotImplementedError(dummy + "solve" + ": Cannot solve " + str(eq))
|
242 |
+
if hint == 'default':
|
243 |
+
return _desolve(eq, func, ics=ics, hint=hints['default'], simplify=simplify,
|
244 |
+
prep=prep, x0=x0, classify=False, order=hints['order'],
|
245 |
+
match=hints[hints['default']], xi=xi, eta=eta, n=terms, type=type)
|
246 |
+
elif hint in ('all', 'all_Integral', 'best'):
|
247 |
+
retdict = {}
|
248 |
+
gethints = set(hints) - {'order', 'default', 'ordered_hints'}
|
249 |
+
if hint == 'all_Integral':
|
250 |
+
for i in hints:
|
251 |
+
if i.endswith('_Integral'):
|
252 |
+
gethints.remove(i[:-len('_Integral')])
|
253 |
+
# special cases
|
254 |
+
for k in ["1st_homogeneous_coeff_best", "1st_power_series",
|
255 |
+
"lie_group", "2nd_power_series_ordinary", "2nd_power_series_regular"]:
|
256 |
+
if k in gethints:
|
257 |
+
gethints.remove(k)
|
258 |
+
for i in gethints:
|
259 |
+
sol = _desolve(eq, func, ics=ics, hint=i, x0=x0, simplify=simplify, prep=prep,
|
260 |
+
classify=False, n=terms, order=hints['order'], match=hints[i], type=type)
|
261 |
+
retdict[i] = sol
|
262 |
+
retdict['all'] = True
|
263 |
+
retdict['eq'] = eq
|
264 |
+
return retdict
|
265 |
+
elif hint not in allhints: # and hint not in ('default', 'ordered_hints'):
|
266 |
+
raise ValueError("Hint not recognized: " + hint)
|
267 |
+
elif hint not in hints:
|
268 |
+
raise ValueError(string + str(eq) + " does not match hint " + hint)
|
269 |
+
else:
|
270 |
+
# Key added to identify the hint needed to solve the equation
|
271 |
+
hints['hint'] = hint
|
272 |
+
hints.update({'func': func, 'eq': eq})
|
273 |
+
return hints
|
llmeval-env/lib/python3.10/site-packages/sympy/solvers/inequalities.py
ADDED
@@ -0,0 +1,984 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tools for solving inequalities and systems of inequalities. """
|
2 |
+
import itertools
|
3 |
+
|
4 |
+
from sympy.calculus.util import (continuous_domain, periodicity,
|
5 |
+
function_range)
|
6 |
+
from sympy.core import Symbol, Dummy, sympify
|
7 |
+
from sympy.core.exprtools import factor_terms
|
8 |
+
from sympy.core.relational import Relational, Eq, Ge, Lt
|
9 |
+
from sympy.sets.sets import Interval, FiniteSet, Union, Intersection
|
10 |
+
from sympy.core.singleton import S
|
11 |
+
from sympy.core.function import expand_mul
|
12 |
+
from sympy.functions.elementary.complexes import im, Abs
|
13 |
+
from sympy.logic import And
|
14 |
+
from sympy.polys import Poly, PolynomialError, parallel_poly_from_expr
|
15 |
+
from sympy.polys.polyutils import _nsort
|
16 |
+
from sympy.solvers.solveset import solvify, solveset
|
17 |
+
from sympy.utilities.iterables import sift, iterable
|
18 |
+
from sympy.utilities.misc import filldedent
|
19 |
+
|
20 |
+
|
21 |
+
def solve_poly_inequality(poly, rel):
|
22 |
+
"""Solve a polynomial inequality with rational coefficients.
|
23 |
+
|
24 |
+
Examples
|
25 |
+
========
|
26 |
+
|
27 |
+
>>> from sympy import solve_poly_inequality, Poly
|
28 |
+
>>> from sympy.abc import x
|
29 |
+
|
30 |
+
>>> solve_poly_inequality(Poly(x, x, domain='ZZ'), '==')
|
31 |
+
[{0}]
|
32 |
+
|
33 |
+
>>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '!=')
|
34 |
+
[Interval.open(-oo, -1), Interval.open(-1, 1), Interval.open(1, oo)]
|
35 |
+
|
36 |
+
>>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '==')
|
37 |
+
[{-1}, {1}]
|
38 |
+
|
39 |
+
See Also
|
40 |
+
========
|
41 |
+
solve_poly_inequalities
|
42 |
+
"""
|
43 |
+
if not isinstance(poly, Poly):
|
44 |
+
raise ValueError(
|
45 |
+
'For efficiency reasons, `poly` should be a Poly instance')
|
46 |
+
if poly.as_expr().is_number:
|
47 |
+
t = Relational(poly.as_expr(), 0, rel)
|
48 |
+
if t is S.true:
|
49 |
+
return [S.Reals]
|
50 |
+
elif t is S.false:
|
51 |
+
return [S.EmptySet]
|
52 |
+
else:
|
53 |
+
raise NotImplementedError(
|
54 |
+
"could not determine truth value of %s" % t)
|
55 |
+
|
56 |
+
reals, intervals = poly.real_roots(multiple=False), []
|
57 |
+
|
58 |
+
if rel == '==':
|
59 |
+
for root, _ in reals:
|
60 |
+
interval = Interval(root, root)
|
61 |
+
intervals.append(interval)
|
62 |
+
elif rel == '!=':
|
63 |
+
left = S.NegativeInfinity
|
64 |
+
|
65 |
+
for right, _ in reals + [(S.Infinity, 1)]:
|
66 |
+
interval = Interval(left, right, True, True)
|
67 |
+
intervals.append(interval)
|
68 |
+
left = right
|
69 |
+
else:
|
70 |
+
if poly.LC() > 0:
|
71 |
+
sign = +1
|
72 |
+
else:
|
73 |
+
sign = -1
|
74 |
+
|
75 |
+
eq_sign, equal = None, False
|
76 |
+
|
77 |
+
if rel == '>':
|
78 |
+
eq_sign = +1
|
79 |
+
elif rel == '<':
|
80 |
+
eq_sign = -1
|
81 |
+
elif rel == '>=':
|
82 |
+
eq_sign, equal = +1, True
|
83 |
+
elif rel == '<=':
|
84 |
+
eq_sign, equal = -1, True
|
85 |
+
else:
|
86 |
+
raise ValueError("'%s' is not a valid relation" % rel)
|
87 |
+
|
88 |
+
right, right_open = S.Infinity, True
|
89 |
+
|
90 |
+
for left, multiplicity in reversed(reals):
|
91 |
+
if multiplicity % 2:
|
92 |
+
if sign == eq_sign:
|
93 |
+
intervals.insert(
|
94 |
+
0, Interval(left, right, not equal, right_open))
|
95 |
+
|
96 |
+
sign, right, right_open = -sign, left, not equal
|
97 |
+
else:
|
98 |
+
if sign == eq_sign and not equal:
|
99 |
+
intervals.insert(
|
100 |
+
0, Interval(left, right, True, right_open))
|
101 |
+
right, right_open = left, True
|
102 |
+
elif sign != eq_sign and equal:
|
103 |
+
intervals.insert(0, Interval(left, left))
|
104 |
+
|
105 |
+
if sign == eq_sign:
|
106 |
+
intervals.insert(
|
107 |
+
0, Interval(S.NegativeInfinity, right, True, right_open))
|
108 |
+
|
109 |
+
return intervals
|
110 |
+
|
111 |
+
|
112 |
+
def solve_poly_inequalities(polys):
|
113 |
+
"""Solve polynomial inequalities with rational coefficients.
|
114 |
+
|
115 |
+
Examples
|
116 |
+
========
|
117 |
+
|
118 |
+
>>> from sympy import Poly
|
119 |
+
>>> from sympy.solvers.inequalities import solve_poly_inequalities
|
120 |
+
>>> from sympy.abc import x
|
121 |
+
>>> solve_poly_inequalities(((
|
122 |
+
... Poly(x**2 - 3), ">"), (
|
123 |
+
... Poly(-x**2 + 1), ">")))
|
124 |
+
Union(Interval.open(-oo, -sqrt(3)), Interval.open(-1, 1), Interval.open(sqrt(3), oo))
|
125 |
+
"""
|
126 |
+
return Union(*[s for p in polys for s in solve_poly_inequality(*p)])
|
127 |
+
|
128 |
+
|
129 |
+
def solve_rational_inequalities(eqs):
|
130 |
+
"""Solve a system of rational inequalities with rational coefficients.
|
131 |
+
|
132 |
+
Examples
|
133 |
+
========
|
134 |
+
|
135 |
+
>>> from sympy.abc import x
|
136 |
+
>>> from sympy import solve_rational_inequalities, Poly
|
137 |
+
|
138 |
+
>>> solve_rational_inequalities([[
|
139 |
+
... ((Poly(-x + 1), Poly(1, x)), '>='),
|
140 |
+
... ((Poly(-x + 1), Poly(1, x)), '<=')]])
|
141 |
+
{1}
|
142 |
+
|
143 |
+
>>> solve_rational_inequalities([[
|
144 |
+
... ((Poly(x), Poly(1, x)), '!='),
|
145 |
+
... ((Poly(-x + 1), Poly(1, x)), '>=')]])
|
146 |
+
Union(Interval.open(-oo, 0), Interval.Lopen(0, 1))
|
147 |
+
|
148 |
+
See Also
|
149 |
+
========
|
150 |
+
solve_poly_inequality
|
151 |
+
"""
|
152 |
+
result = S.EmptySet
|
153 |
+
|
154 |
+
for _eqs in eqs:
|
155 |
+
if not _eqs:
|
156 |
+
continue
|
157 |
+
|
158 |
+
global_intervals = [Interval(S.NegativeInfinity, S.Infinity)]
|
159 |
+
|
160 |
+
for (numer, denom), rel in _eqs:
|
161 |
+
numer_intervals = solve_poly_inequality(numer*denom, rel)
|
162 |
+
denom_intervals = solve_poly_inequality(denom, '==')
|
163 |
+
|
164 |
+
intervals = []
|
165 |
+
|
166 |
+
for numer_interval, global_interval in itertools.product(
|
167 |
+
numer_intervals, global_intervals):
|
168 |
+
interval = numer_interval.intersect(global_interval)
|
169 |
+
|
170 |
+
if interval is not S.EmptySet:
|
171 |
+
intervals.append(interval)
|
172 |
+
|
173 |
+
global_intervals = intervals
|
174 |
+
|
175 |
+
intervals = []
|
176 |
+
|
177 |
+
for global_interval in global_intervals:
|
178 |
+
for denom_interval in denom_intervals:
|
179 |
+
global_interval -= denom_interval
|
180 |
+
|
181 |
+
if global_interval is not S.EmptySet:
|
182 |
+
intervals.append(global_interval)
|
183 |
+
|
184 |
+
global_intervals = intervals
|
185 |
+
|
186 |
+
if not global_intervals:
|
187 |
+
break
|
188 |
+
|
189 |
+
for interval in global_intervals:
|
190 |
+
result = result.union(interval)
|
191 |
+
|
192 |
+
return result
|
193 |
+
|
194 |
+
|
195 |
+
def reduce_rational_inequalities(exprs, gen, relational=True):
|
196 |
+
"""Reduce a system of rational inequalities with rational coefficients.
|
197 |
+
|
198 |
+
Examples
|
199 |
+
========
|
200 |
+
|
201 |
+
>>> from sympy import Symbol
|
202 |
+
>>> from sympy.solvers.inequalities import reduce_rational_inequalities
|
203 |
+
|
204 |
+
>>> x = Symbol('x', real=True)
|
205 |
+
|
206 |
+
>>> reduce_rational_inequalities([[x**2 <= 0]], x)
|
207 |
+
Eq(x, 0)
|
208 |
+
|
209 |
+
>>> reduce_rational_inequalities([[x + 2 > 0]], x)
|
210 |
+
-2 < x
|
211 |
+
>>> reduce_rational_inequalities([[(x + 2, ">")]], x)
|
212 |
+
-2 < x
|
213 |
+
>>> reduce_rational_inequalities([[x + 2]], x)
|
214 |
+
Eq(x, -2)
|
215 |
+
|
216 |
+
This function find the non-infinite solution set so if the unknown symbol
|
217 |
+
is declared as extended real rather than real then the result may include
|
218 |
+
finiteness conditions:
|
219 |
+
|
220 |
+
>>> y = Symbol('y', extended_real=True)
|
221 |
+
>>> reduce_rational_inequalities([[y + 2 > 0]], y)
|
222 |
+
(-2 < y) & (y < oo)
|
223 |
+
"""
|
224 |
+
exact = True
|
225 |
+
eqs = []
|
226 |
+
solution = S.Reals if exprs else S.EmptySet
|
227 |
+
for _exprs in exprs:
|
228 |
+
_eqs = []
|
229 |
+
|
230 |
+
for expr in _exprs:
|
231 |
+
if isinstance(expr, tuple):
|
232 |
+
expr, rel = expr
|
233 |
+
else:
|
234 |
+
if expr.is_Relational:
|
235 |
+
expr, rel = expr.lhs - expr.rhs, expr.rel_op
|
236 |
+
else:
|
237 |
+
expr, rel = expr, '=='
|
238 |
+
|
239 |
+
if expr is S.true:
|
240 |
+
numer, denom, rel = S.Zero, S.One, '=='
|
241 |
+
elif expr is S.false:
|
242 |
+
numer, denom, rel = S.One, S.One, '=='
|
243 |
+
else:
|
244 |
+
numer, denom = expr.together().as_numer_denom()
|
245 |
+
|
246 |
+
try:
|
247 |
+
(numer, denom), opt = parallel_poly_from_expr(
|
248 |
+
(numer, denom), gen)
|
249 |
+
except PolynomialError:
|
250 |
+
raise PolynomialError(filldedent('''
|
251 |
+
only polynomials and rational functions are
|
252 |
+
supported in this context.
|
253 |
+
'''))
|
254 |
+
|
255 |
+
if not opt.domain.is_Exact:
|
256 |
+
numer, denom, exact = numer.to_exact(), denom.to_exact(), False
|
257 |
+
|
258 |
+
domain = opt.domain.get_exact()
|
259 |
+
|
260 |
+
if not (domain.is_ZZ or domain.is_QQ):
|
261 |
+
expr = numer/denom
|
262 |
+
expr = Relational(expr, 0, rel)
|
263 |
+
solution &= solve_univariate_inequality(expr, gen, relational=False)
|
264 |
+
else:
|
265 |
+
_eqs.append(((numer, denom), rel))
|
266 |
+
|
267 |
+
if _eqs:
|
268 |
+
eqs.append(_eqs)
|
269 |
+
|
270 |
+
if eqs:
|
271 |
+
solution &= solve_rational_inequalities(eqs)
|
272 |
+
exclude = solve_rational_inequalities([[((d, d.one), '==')
|
273 |
+
for i in eqs for ((n, d), _) in i if d.has(gen)]])
|
274 |
+
solution -= exclude
|
275 |
+
|
276 |
+
if not exact and solution:
|
277 |
+
solution = solution.evalf()
|
278 |
+
|
279 |
+
if relational:
|
280 |
+
solution = solution.as_relational(gen)
|
281 |
+
|
282 |
+
return solution
|
283 |
+
|
284 |
+
|
285 |
+
def reduce_abs_inequality(expr, rel, gen):
|
286 |
+
"""Reduce an inequality with nested absolute values.
|
287 |
+
|
288 |
+
Examples
|
289 |
+
========
|
290 |
+
|
291 |
+
>>> from sympy import reduce_abs_inequality, Abs, Symbol
|
292 |
+
>>> x = Symbol('x', real=True)
|
293 |
+
|
294 |
+
>>> reduce_abs_inequality(Abs(x - 5) - 3, '<', x)
|
295 |
+
(2 < x) & (x < 8)
|
296 |
+
|
297 |
+
>>> reduce_abs_inequality(Abs(x + 2)*3 - 13, '<', x)
|
298 |
+
(-19/3 < x) & (x < 7/3)
|
299 |
+
|
300 |
+
See Also
|
301 |
+
========
|
302 |
+
|
303 |
+
reduce_abs_inequalities
|
304 |
+
"""
|
305 |
+
if gen.is_extended_real is False:
|
306 |
+
raise TypeError(filldedent('''
|
307 |
+
Cannot solve inequalities with absolute values containing
|
308 |
+
non-real variables.
|
309 |
+
'''))
|
310 |
+
|
311 |
+
def _bottom_up_scan(expr):
|
312 |
+
exprs = []
|
313 |
+
|
314 |
+
if expr.is_Add or expr.is_Mul:
|
315 |
+
op = expr.func
|
316 |
+
|
317 |
+
for arg in expr.args:
|
318 |
+
_exprs = _bottom_up_scan(arg)
|
319 |
+
|
320 |
+
if not exprs:
|
321 |
+
exprs = _exprs
|
322 |
+
else:
|
323 |
+
exprs = [(op(expr, _expr), conds + _conds) for (expr, conds), (_expr, _conds) in
|
324 |
+
itertools.product(exprs, _exprs)]
|
325 |
+
elif expr.is_Pow:
|
326 |
+
n = expr.exp
|
327 |
+
if not n.is_Integer:
|
328 |
+
raise ValueError("Only Integer Powers are allowed on Abs.")
|
329 |
+
|
330 |
+
exprs.extend((expr**n, conds) for expr, conds in _bottom_up_scan(expr.base))
|
331 |
+
elif isinstance(expr, Abs):
|
332 |
+
_exprs = _bottom_up_scan(expr.args[0])
|
333 |
+
|
334 |
+
for expr, conds in _exprs:
|
335 |
+
exprs.append(( expr, conds + [Ge(expr, 0)]))
|
336 |
+
exprs.append((-expr, conds + [Lt(expr, 0)]))
|
337 |
+
else:
|
338 |
+
exprs = [(expr, [])]
|
339 |
+
|
340 |
+
return exprs
|
341 |
+
|
342 |
+
mapping = {'<': '>', '<=': '>='}
|
343 |
+
inequalities = []
|
344 |
+
|
345 |
+
for expr, conds in _bottom_up_scan(expr):
|
346 |
+
if rel not in mapping.keys():
|
347 |
+
expr = Relational( expr, 0, rel)
|
348 |
+
else:
|
349 |
+
expr = Relational(-expr, 0, mapping[rel])
|
350 |
+
|
351 |
+
inequalities.append([expr] + conds)
|
352 |
+
|
353 |
+
return reduce_rational_inequalities(inequalities, gen)
|
354 |
+
|
355 |
+
|
356 |
+
def reduce_abs_inequalities(exprs, gen):
|
357 |
+
"""Reduce a system of inequalities with nested absolute values.
|
358 |
+
|
359 |
+
Examples
|
360 |
+
========
|
361 |
+
|
362 |
+
>>> from sympy import reduce_abs_inequalities, Abs, Symbol
|
363 |
+
>>> x = Symbol('x', extended_real=True)
|
364 |
+
|
365 |
+
>>> reduce_abs_inequalities([(Abs(3*x - 5) - 7, '<'),
|
366 |
+
... (Abs(x + 25) - 13, '>')], x)
|
367 |
+
(-2/3 < x) & (x < 4) & (((-oo < x) & (x < -38)) | ((-12 < x) & (x < oo)))
|
368 |
+
|
369 |
+
>>> reduce_abs_inequalities([(Abs(x - 4) + Abs(3*x - 5) - 7, '<')], x)
|
370 |
+
(1/2 < x) & (x < 4)
|
371 |
+
|
372 |
+
See Also
|
373 |
+
========
|
374 |
+
|
375 |
+
reduce_abs_inequality
|
376 |
+
"""
|
377 |
+
return And(*[ reduce_abs_inequality(expr, rel, gen)
|
378 |
+
for expr, rel in exprs ])
|
379 |
+
|
380 |
+
|
381 |
+
def solve_univariate_inequality(expr, gen, relational=True, domain=S.Reals, continuous=False):
|
382 |
+
"""Solves a real univariate inequality.
|
383 |
+
|
384 |
+
Parameters
|
385 |
+
==========
|
386 |
+
|
387 |
+
expr : Relational
|
388 |
+
The target inequality
|
389 |
+
gen : Symbol
|
390 |
+
The variable for which the inequality is solved
|
391 |
+
relational : bool
|
392 |
+
A Relational type output is expected or not
|
393 |
+
domain : Set
|
394 |
+
The domain over which the equation is solved
|
395 |
+
continuous: bool
|
396 |
+
True if expr is known to be continuous over the given domain
|
397 |
+
(and so continuous_domain() does not need to be called on it)
|
398 |
+
|
399 |
+
Raises
|
400 |
+
======
|
401 |
+
|
402 |
+
NotImplementedError
|
403 |
+
The solution of the inequality cannot be determined due to limitation
|
404 |
+
in :func:`sympy.solvers.solveset.solvify`.
|
405 |
+
|
406 |
+
Notes
|
407 |
+
=====
|
408 |
+
|
409 |
+
Currently, we cannot solve all the inequalities due to limitations in
|
410 |
+
:func:`sympy.solvers.solveset.solvify`. Also, the solution returned for trigonometric inequalities
|
411 |
+
are restricted in its periodic interval.
|
412 |
+
|
413 |
+
See Also
|
414 |
+
========
|
415 |
+
|
416 |
+
sympy.solvers.solveset.solvify: solver returning solveset solutions with solve's output API
|
417 |
+
|
418 |
+
Examples
|
419 |
+
========
|
420 |
+
|
421 |
+
>>> from sympy import solve_univariate_inequality, Symbol, sin, Interval, S
|
422 |
+
>>> x = Symbol('x')
|
423 |
+
|
424 |
+
>>> solve_univariate_inequality(x**2 >= 4, x)
|
425 |
+
((2 <= x) & (x < oo)) | ((-oo < x) & (x <= -2))
|
426 |
+
|
427 |
+
>>> solve_univariate_inequality(x**2 >= 4, x, relational=False)
|
428 |
+
Union(Interval(-oo, -2), Interval(2, oo))
|
429 |
+
|
430 |
+
>>> domain = Interval(0, S.Infinity)
|
431 |
+
>>> solve_univariate_inequality(x**2 >= 4, x, False, domain)
|
432 |
+
Interval(2, oo)
|
433 |
+
|
434 |
+
>>> solve_univariate_inequality(sin(x) > 0, x, relational=False)
|
435 |
+
Interval.open(0, pi)
|
436 |
+
|
437 |
+
"""
|
438 |
+
from sympy.solvers.solvers import denoms
|
439 |
+
|
440 |
+
if domain.is_subset(S.Reals) is False:
|
441 |
+
raise NotImplementedError(filldedent('''
|
442 |
+
Inequalities in the complex domain are
|
443 |
+
not supported. Try the real domain by
|
444 |
+
setting domain=S.Reals'''))
|
445 |
+
elif domain is not S.Reals:
|
446 |
+
rv = solve_univariate_inequality(
|
447 |
+
expr, gen, relational=False, continuous=continuous).intersection(domain)
|
448 |
+
if relational:
|
449 |
+
rv = rv.as_relational(gen)
|
450 |
+
return rv
|
451 |
+
else:
|
452 |
+
pass # continue with attempt to solve in Real domain
|
453 |
+
|
454 |
+
# This keeps the function independent of the assumptions about `gen`.
|
455 |
+
# `solveset` makes sure this function is called only when the domain is
|
456 |
+
# real.
|
457 |
+
_gen = gen
|
458 |
+
_domain = domain
|
459 |
+
if gen.is_extended_real is False:
|
460 |
+
rv = S.EmptySet
|
461 |
+
return rv if not relational else rv.as_relational(_gen)
|
462 |
+
elif gen.is_extended_real is None:
|
463 |
+
gen = Dummy('gen', extended_real=True)
|
464 |
+
try:
|
465 |
+
expr = expr.xreplace({_gen: gen})
|
466 |
+
except TypeError:
|
467 |
+
raise TypeError(filldedent('''
|
468 |
+
When gen is real, the relational has a complex part
|
469 |
+
which leads to an invalid comparison like I < 0.
|
470 |
+
'''))
|
471 |
+
|
472 |
+
rv = None
|
473 |
+
|
474 |
+
if expr is S.true:
|
475 |
+
rv = domain
|
476 |
+
|
477 |
+
elif expr is S.false:
|
478 |
+
rv = S.EmptySet
|
479 |
+
|
480 |
+
else:
|
481 |
+
e = expr.lhs - expr.rhs
|
482 |
+
period = periodicity(e, gen)
|
483 |
+
if period == S.Zero:
|
484 |
+
e = expand_mul(e)
|
485 |
+
const = expr.func(e, 0)
|
486 |
+
if const is S.true:
|
487 |
+
rv = domain
|
488 |
+
elif const is S.false:
|
489 |
+
rv = S.EmptySet
|
490 |
+
elif period is not None:
|
491 |
+
frange = function_range(e, gen, domain)
|
492 |
+
|
493 |
+
rel = expr.rel_op
|
494 |
+
if rel in ('<', '<='):
|
495 |
+
if expr.func(frange.sup, 0):
|
496 |
+
rv = domain
|
497 |
+
elif not expr.func(frange.inf, 0):
|
498 |
+
rv = S.EmptySet
|
499 |
+
|
500 |
+
elif rel in ('>', '>='):
|
501 |
+
if expr.func(frange.inf, 0):
|
502 |
+
rv = domain
|
503 |
+
elif not expr.func(frange.sup, 0):
|
504 |
+
rv = S.EmptySet
|
505 |
+
|
506 |
+
inf, sup = domain.inf, domain.sup
|
507 |
+
if sup - inf is S.Infinity:
|
508 |
+
domain = Interval(0, period, False, True).intersect(_domain)
|
509 |
+
_domain = domain
|
510 |
+
|
511 |
+
if rv is None:
|
512 |
+
n, d = e.as_numer_denom()
|
513 |
+
try:
|
514 |
+
if gen not in n.free_symbols and len(e.free_symbols) > 1:
|
515 |
+
raise ValueError
|
516 |
+
# this might raise ValueError on its own
|
517 |
+
# or it might give None...
|
518 |
+
solns = solvify(e, gen, domain)
|
519 |
+
if solns is None:
|
520 |
+
# in which case we raise ValueError
|
521 |
+
raise ValueError
|
522 |
+
except (ValueError, NotImplementedError):
|
523 |
+
# replace gen with generic x since it's
|
524 |
+
# univariate anyway
|
525 |
+
raise NotImplementedError(filldedent('''
|
526 |
+
The inequality, %s, cannot be solved using
|
527 |
+
solve_univariate_inequality.
|
528 |
+
''' % expr.subs(gen, Symbol('x'))))
|
529 |
+
|
530 |
+
expanded_e = expand_mul(e)
|
531 |
+
def valid(x):
|
532 |
+
# this is used to see if gen=x satisfies the
|
533 |
+
# relational by substituting it into the
|
534 |
+
# expanded form and testing against 0, e.g.
|
535 |
+
# if expr = x*(x + 1) < 2 then e = x*(x + 1) - 2
|
536 |
+
# and expanded_e = x**2 + x - 2; the test is
|
537 |
+
# whether a given value of x satisfies
|
538 |
+
# x**2 + x - 2 < 0
|
539 |
+
#
|
540 |
+
# expanded_e, expr and gen used from enclosing scope
|
541 |
+
v = expanded_e.subs(gen, expand_mul(x))
|
542 |
+
try:
|
543 |
+
r = expr.func(v, 0)
|
544 |
+
except TypeError:
|
545 |
+
r = S.false
|
546 |
+
if r in (S.true, S.false):
|
547 |
+
return r
|
548 |
+
if v.is_extended_real is False:
|
549 |
+
return S.false
|
550 |
+
else:
|
551 |
+
v = v.n(2)
|
552 |
+
if v.is_comparable:
|
553 |
+
return expr.func(v, 0)
|
554 |
+
# not comparable or couldn't be evaluated
|
555 |
+
raise NotImplementedError(
|
556 |
+
'relationship did not evaluate: %s' % r)
|
557 |
+
|
558 |
+
singularities = []
|
559 |
+
for d in denoms(expr, gen):
|
560 |
+
singularities.extend(solvify(d, gen, domain))
|
561 |
+
if not continuous:
|
562 |
+
domain = continuous_domain(expanded_e, gen, domain)
|
563 |
+
|
564 |
+
include_x = '=' in expr.rel_op and expr.rel_op != '!='
|
565 |
+
|
566 |
+
try:
|
567 |
+
discontinuities = set(domain.boundary -
|
568 |
+
FiniteSet(domain.inf, domain.sup))
|
569 |
+
# remove points that are not between inf and sup of domain
|
570 |
+
critical_points = FiniteSet(*(solns + singularities + list(
|
571 |
+
discontinuities))).intersection(
|
572 |
+
Interval(domain.inf, domain.sup,
|
573 |
+
domain.inf not in domain, domain.sup not in domain))
|
574 |
+
if all(r.is_number for r in critical_points):
|
575 |
+
reals = _nsort(critical_points, separated=True)[0]
|
576 |
+
else:
|
577 |
+
sifted = sift(critical_points, lambda x: x.is_extended_real)
|
578 |
+
if sifted[None]:
|
579 |
+
# there were some roots that weren't known
|
580 |
+
# to be real
|
581 |
+
raise NotImplementedError
|
582 |
+
try:
|
583 |
+
reals = sifted[True]
|
584 |
+
if len(reals) > 1:
|
585 |
+
reals = sorted(reals)
|
586 |
+
except TypeError:
|
587 |
+
raise NotImplementedError
|
588 |
+
except NotImplementedError:
|
589 |
+
raise NotImplementedError('sorting of these roots is not supported')
|
590 |
+
|
591 |
+
# If expr contains imaginary coefficients, only take real
|
592 |
+
# values of x for which the imaginary part is 0
|
593 |
+
make_real = S.Reals
|
594 |
+
if im(expanded_e) != S.Zero:
|
595 |
+
check = True
|
596 |
+
im_sol = FiniteSet()
|
597 |
+
try:
|
598 |
+
a = solveset(im(expanded_e), gen, domain)
|
599 |
+
if not isinstance(a, Interval):
|
600 |
+
for z in a:
|
601 |
+
if z not in singularities and valid(z) and z.is_extended_real:
|
602 |
+
im_sol += FiniteSet(z)
|
603 |
+
else:
|
604 |
+
start, end = a.inf, a.sup
|
605 |
+
for z in _nsort(critical_points + FiniteSet(end)):
|
606 |
+
valid_start = valid(start)
|
607 |
+
if start != end:
|
608 |
+
valid_z = valid(z)
|
609 |
+
pt = _pt(start, z)
|
610 |
+
if pt not in singularities and pt.is_extended_real and valid(pt):
|
611 |
+
if valid_start and valid_z:
|
612 |
+
im_sol += Interval(start, z)
|
613 |
+
elif valid_start:
|
614 |
+
im_sol += Interval.Ropen(start, z)
|
615 |
+
elif valid_z:
|
616 |
+
im_sol += Interval.Lopen(start, z)
|
617 |
+
else:
|
618 |
+
im_sol += Interval.open(start, z)
|
619 |
+
start = z
|
620 |
+
for s in singularities:
|
621 |
+
im_sol -= FiniteSet(s)
|
622 |
+
except (TypeError):
|
623 |
+
im_sol = S.Reals
|
624 |
+
check = False
|
625 |
+
|
626 |
+
if im_sol is S.EmptySet:
|
627 |
+
raise ValueError(filldedent('''
|
628 |
+
%s contains imaginary parts which cannot be
|
629 |
+
made 0 for any value of %s satisfying the
|
630 |
+
inequality, leading to relations like I < 0.
|
631 |
+
''' % (expr.subs(gen, _gen), _gen)))
|
632 |
+
|
633 |
+
make_real = make_real.intersect(im_sol)
|
634 |
+
|
635 |
+
sol_sets = [S.EmptySet]
|
636 |
+
|
637 |
+
start = domain.inf
|
638 |
+
if start in domain and valid(start) and start.is_finite:
|
639 |
+
sol_sets.append(FiniteSet(start))
|
640 |
+
|
641 |
+
for x in reals:
|
642 |
+
end = x
|
643 |
+
|
644 |
+
if valid(_pt(start, end)):
|
645 |
+
sol_sets.append(Interval(start, end, True, True))
|
646 |
+
|
647 |
+
if x in singularities:
|
648 |
+
singularities.remove(x)
|
649 |
+
else:
|
650 |
+
if x in discontinuities:
|
651 |
+
discontinuities.remove(x)
|
652 |
+
_valid = valid(x)
|
653 |
+
else: # it's a solution
|
654 |
+
_valid = include_x
|
655 |
+
if _valid:
|
656 |
+
sol_sets.append(FiniteSet(x))
|
657 |
+
|
658 |
+
start = end
|
659 |
+
|
660 |
+
end = domain.sup
|
661 |
+
if end in domain and valid(end) and end.is_finite:
|
662 |
+
sol_sets.append(FiniteSet(end))
|
663 |
+
|
664 |
+
if valid(_pt(start, end)):
|
665 |
+
sol_sets.append(Interval.open(start, end))
|
666 |
+
|
667 |
+
if im(expanded_e) != S.Zero and check:
|
668 |
+
rv = (make_real).intersect(_domain)
|
669 |
+
else:
|
670 |
+
rv = Intersection(
|
671 |
+
(Union(*sol_sets)), make_real, _domain).subs(gen, _gen)
|
672 |
+
|
673 |
+
return rv if not relational else rv.as_relational(_gen)
|
674 |
+
|
675 |
+
|
676 |
+
def _pt(start, end):
|
677 |
+
"""Return a point between start and end"""
|
678 |
+
if not start.is_infinite and not end.is_infinite:
|
679 |
+
pt = (start + end)/2
|
680 |
+
elif start.is_infinite and end.is_infinite:
|
681 |
+
pt = S.Zero
|
682 |
+
else:
|
683 |
+
if (start.is_infinite and start.is_extended_positive is None or
|
684 |
+
end.is_infinite and end.is_extended_positive is None):
|
685 |
+
raise ValueError('cannot proceed with unsigned infinite values')
|
686 |
+
if (end.is_infinite and end.is_extended_negative or
|
687 |
+
start.is_infinite and start.is_extended_positive):
|
688 |
+
start, end = end, start
|
689 |
+
# if possible, use a multiple of self which has
|
690 |
+
# better behavior when checking assumptions than
|
691 |
+
# an expression obtained by adding or subtracting 1
|
692 |
+
if end.is_infinite:
|
693 |
+
if start.is_extended_positive:
|
694 |
+
pt = start*2
|
695 |
+
elif start.is_extended_negative:
|
696 |
+
pt = start*S.Half
|
697 |
+
else:
|
698 |
+
pt = start + 1
|
699 |
+
elif start.is_infinite:
|
700 |
+
if end.is_extended_positive:
|
701 |
+
pt = end*S.Half
|
702 |
+
elif end.is_extended_negative:
|
703 |
+
pt = end*2
|
704 |
+
else:
|
705 |
+
pt = end - 1
|
706 |
+
return pt
|
707 |
+
|
708 |
+
|
709 |
+
def _solve_inequality(ie, s, linear=False):
|
710 |
+
"""Return the inequality with s isolated on the left, if possible.
|
711 |
+
If the relationship is non-linear, a solution involving And or Or
|
712 |
+
may be returned. False or True are returned if the relationship
|
713 |
+
is never True or always True, respectively.
|
714 |
+
|
715 |
+
If `linear` is True (default is False) an `s`-dependent expression
|
716 |
+
will be isolated on the left, if possible
|
717 |
+
but it will not be solved for `s` unless the expression is linear
|
718 |
+
in `s`. Furthermore, only "safe" operations which do not change the
|
719 |
+
sense of the relationship are applied: no division by an unsigned
|
720 |
+
value is attempted unless the relationship involves Eq or Ne and
|
721 |
+
no division by a value not known to be nonzero is ever attempted.
|
722 |
+
|
723 |
+
Examples
|
724 |
+
========
|
725 |
+
|
726 |
+
>>> from sympy import Eq, Symbol
|
727 |
+
>>> from sympy.solvers.inequalities import _solve_inequality as f
|
728 |
+
>>> from sympy.abc import x, y
|
729 |
+
|
730 |
+
For linear expressions, the symbol can be isolated:
|
731 |
+
|
732 |
+
>>> f(x - 2 < 0, x)
|
733 |
+
x < 2
|
734 |
+
>>> f(-x - 6 < x, x)
|
735 |
+
x > -3
|
736 |
+
|
737 |
+
Sometimes nonlinear relationships will be False
|
738 |
+
|
739 |
+
>>> f(x**2 + 4 < 0, x)
|
740 |
+
False
|
741 |
+
|
742 |
+
Or they may involve more than one region of values:
|
743 |
+
|
744 |
+
>>> f(x**2 - 4 < 0, x)
|
745 |
+
(-2 < x) & (x < 2)
|
746 |
+
|
747 |
+
To restrict the solution to a relational, set linear=True
|
748 |
+
and only the x-dependent portion will be isolated on the left:
|
749 |
+
|
750 |
+
>>> f(x**2 - 4 < 0, x, linear=True)
|
751 |
+
x**2 < 4
|
752 |
+
|
753 |
+
Division of only nonzero quantities is allowed, so x cannot
|
754 |
+
be isolated by dividing by y:
|
755 |
+
|
756 |
+
>>> y.is_nonzero is None # it is unknown whether it is 0 or not
|
757 |
+
True
|
758 |
+
>>> f(x*y < 1, x)
|
759 |
+
x*y < 1
|
760 |
+
|
761 |
+
And while an equality (or inequality) still holds after dividing by a
|
762 |
+
non-zero quantity
|
763 |
+
|
764 |
+
>>> nz = Symbol('nz', nonzero=True)
|
765 |
+
>>> f(Eq(x*nz, 1), x)
|
766 |
+
Eq(x, 1/nz)
|
767 |
+
|
768 |
+
the sign must be known for other inequalities involving > or <:
|
769 |
+
|
770 |
+
>>> f(x*nz <= 1, x)
|
771 |
+
nz*x <= 1
|
772 |
+
>>> p = Symbol('p', positive=True)
|
773 |
+
>>> f(x*p <= 1, x)
|
774 |
+
x <= 1/p
|
775 |
+
|
776 |
+
When there are denominators in the original expression that
|
777 |
+
are removed by expansion, conditions for them will be returned
|
778 |
+
as part of the result:
|
779 |
+
|
780 |
+
>>> f(x < x*(2/x - 1), x)
|
781 |
+
(x < 1) & Ne(x, 0)
|
782 |
+
"""
|
783 |
+
from sympy.solvers.solvers import denoms
|
784 |
+
if s not in ie.free_symbols:
|
785 |
+
return ie
|
786 |
+
if ie.rhs == s:
|
787 |
+
ie = ie.reversed
|
788 |
+
if ie.lhs == s and s not in ie.rhs.free_symbols:
|
789 |
+
return ie
|
790 |
+
|
791 |
+
def classify(ie, s, i):
|
792 |
+
# return True or False if ie evaluates when substituting s with
|
793 |
+
# i else None (if unevaluated) or NaN (when there is an error
|
794 |
+
# in evaluating)
|
795 |
+
try:
|
796 |
+
v = ie.subs(s, i)
|
797 |
+
if v is S.NaN:
|
798 |
+
return v
|
799 |
+
elif v not in (True, False):
|
800 |
+
return
|
801 |
+
return v
|
802 |
+
except TypeError:
|
803 |
+
return S.NaN
|
804 |
+
|
805 |
+
rv = None
|
806 |
+
oo = S.Infinity
|
807 |
+
expr = ie.lhs - ie.rhs
|
808 |
+
try:
|
809 |
+
p = Poly(expr, s)
|
810 |
+
if p.degree() == 0:
|
811 |
+
rv = ie.func(p.as_expr(), 0)
|
812 |
+
elif not linear and p.degree() > 1:
|
813 |
+
# handle in except clause
|
814 |
+
raise NotImplementedError
|
815 |
+
except (PolynomialError, NotImplementedError):
|
816 |
+
if not linear:
|
817 |
+
try:
|
818 |
+
rv = reduce_rational_inequalities([[ie]], s)
|
819 |
+
except PolynomialError:
|
820 |
+
rv = solve_univariate_inequality(ie, s)
|
821 |
+
# remove restrictions wrt +/-oo that may have been
|
822 |
+
# applied when using sets to simplify the relationship
|
823 |
+
okoo = classify(ie, s, oo)
|
824 |
+
if okoo is S.true and classify(rv, s, oo) is S.false:
|
825 |
+
rv = rv.subs(s < oo, True)
|
826 |
+
oknoo = classify(ie, s, -oo)
|
827 |
+
if (oknoo is S.true and
|
828 |
+
classify(rv, s, -oo) is S.false):
|
829 |
+
rv = rv.subs(-oo < s, True)
|
830 |
+
rv = rv.subs(s > -oo, True)
|
831 |
+
if rv is S.true:
|
832 |
+
rv = (s <= oo) if okoo is S.true else (s < oo)
|
833 |
+
if oknoo is not S.true:
|
834 |
+
rv = And(-oo < s, rv)
|
835 |
+
else:
|
836 |
+
p = Poly(expr)
|
837 |
+
|
838 |
+
conds = []
|
839 |
+
if rv is None:
|
840 |
+
e = p.as_expr() # this is in expanded form
|
841 |
+
# Do a safe inversion of e, moving non-s terms
|
842 |
+
# to the rhs and dividing by a nonzero factor if
|
843 |
+
# the relational is Eq/Ne; for other relationals
|
844 |
+
# the sign must also be positive or negative
|
845 |
+
rhs = 0
|
846 |
+
b, ax = e.as_independent(s, as_Add=True)
|
847 |
+
e -= b
|
848 |
+
rhs -= b
|
849 |
+
ef = factor_terms(e)
|
850 |
+
a, e = ef.as_independent(s, as_Add=False)
|
851 |
+
if (a.is_zero != False or # don't divide by potential 0
|
852 |
+
a.is_negative ==
|
853 |
+
a.is_positive is None and # if sign is not known then
|
854 |
+
ie.rel_op not in ('!=', '==')): # reject if not Eq/Ne
|
855 |
+
e = ef
|
856 |
+
a = S.One
|
857 |
+
rhs /= a
|
858 |
+
if a.is_positive:
|
859 |
+
rv = ie.func(e, rhs)
|
860 |
+
else:
|
861 |
+
rv = ie.reversed.func(e, rhs)
|
862 |
+
|
863 |
+
# return conditions under which the value is
|
864 |
+
# valid, too.
|
865 |
+
beginning_denoms = denoms(ie.lhs) | denoms(ie.rhs)
|
866 |
+
current_denoms = denoms(rv)
|
867 |
+
for d in beginning_denoms - current_denoms:
|
868 |
+
c = _solve_inequality(Eq(d, 0), s, linear=linear)
|
869 |
+
if isinstance(c, Eq) and c.lhs == s:
|
870 |
+
if classify(rv, s, c.rhs) is S.true:
|
871 |
+
# rv is permitting this value but it shouldn't
|
872 |
+
conds.append(~c)
|
873 |
+
for i in (-oo, oo):
|
874 |
+
if (classify(rv, s, i) is S.true and
|
875 |
+
classify(ie, s, i) is not S.true):
|
876 |
+
conds.append(s < i if i is oo else i < s)
|
877 |
+
|
878 |
+
conds.append(rv)
|
879 |
+
return And(*conds)
|
880 |
+
|
881 |
+
|
882 |
+
def _reduce_inequalities(inequalities, symbols):
|
883 |
+
# helper for reduce_inequalities
|
884 |
+
|
885 |
+
poly_part, abs_part = {}, {}
|
886 |
+
other = []
|
887 |
+
|
888 |
+
for inequality in inequalities:
|
889 |
+
|
890 |
+
expr, rel = inequality.lhs, inequality.rel_op # rhs is 0
|
891 |
+
|
892 |
+
# check for gens using atoms which is more strict than free_symbols to
|
893 |
+
# guard against EX domain which won't be handled by
|
894 |
+
# reduce_rational_inequalities
|
895 |
+
gens = expr.atoms(Symbol)
|
896 |
+
|
897 |
+
if len(gens) == 1:
|
898 |
+
gen = gens.pop()
|
899 |
+
else:
|
900 |
+
common = expr.free_symbols & symbols
|
901 |
+
if len(common) == 1:
|
902 |
+
gen = common.pop()
|
903 |
+
other.append(_solve_inequality(Relational(expr, 0, rel), gen))
|
904 |
+
continue
|
905 |
+
else:
|
906 |
+
raise NotImplementedError(filldedent('''
|
907 |
+
inequality has more than one symbol of interest.
|
908 |
+
'''))
|
909 |
+
|
910 |
+
if expr.is_polynomial(gen):
|
911 |
+
poly_part.setdefault(gen, []).append((expr, rel))
|
912 |
+
else:
|
913 |
+
components = expr.find(lambda u:
|
914 |
+
u.has(gen) and (
|
915 |
+
u.is_Function or u.is_Pow and not u.exp.is_Integer))
|
916 |
+
if components and all(isinstance(i, Abs) for i in components):
|
917 |
+
abs_part.setdefault(gen, []).append((expr, rel))
|
918 |
+
else:
|
919 |
+
other.append(_solve_inequality(Relational(expr, 0, rel), gen))
|
920 |
+
|
921 |
+
poly_reduced = [reduce_rational_inequalities([exprs], gen) for gen, exprs in poly_part.items()]
|
922 |
+
abs_reduced = [reduce_abs_inequalities(exprs, gen) for gen, exprs in abs_part.items()]
|
923 |
+
|
924 |
+
return And(*(poly_reduced + abs_reduced + other))
|
925 |
+
|
926 |
+
|
927 |
+
def reduce_inequalities(inequalities, symbols=[]):
|
928 |
+
"""Reduce a system of inequalities with rational coefficients.
|
929 |
+
|
930 |
+
Examples
|
931 |
+
========
|
932 |
+
|
933 |
+
>>> from sympy.abc import x, y
|
934 |
+
>>> from sympy import reduce_inequalities
|
935 |
+
|
936 |
+
>>> reduce_inequalities(0 <= x + 3, [])
|
937 |
+
(-3 <= x) & (x < oo)
|
938 |
+
|
939 |
+
>>> reduce_inequalities(0 <= x + y*2 - 1, [x])
|
940 |
+
(x < oo) & (x >= 1 - 2*y)
|
941 |
+
"""
|
942 |
+
if not iterable(inequalities):
|
943 |
+
inequalities = [inequalities]
|
944 |
+
inequalities = [sympify(i) for i in inequalities]
|
945 |
+
|
946 |
+
gens = set().union(*[i.free_symbols for i in inequalities])
|
947 |
+
|
948 |
+
if not iterable(symbols):
|
949 |
+
symbols = [symbols]
|
950 |
+
symbols = (set(symbols) or gens) & gens
|
951 |
+
if any(i.is_extended_real is False for i in symbols):
|
952 |
+
raise TypeError(filldedent('''
|
953 |
+
inequalities cannot contain symbols that are not real.
|
954 |
+
'''))
|
955 |
+
|
956 |
+
# make vanilla symbol real
|
957 |
+
recast = {i: Dummy(i.name, extended_real=True)
|
958 |
+
for i in gens if i.is_extended_real is None}
|
959 |
+
inequalities = [i.xreplace(recast) for i in inequalities]
|
960 |
+
symbols = {i.xreplace(recast) for i in symbols}
|
961 |
+
|
962 |
+
# prefilter
|
963 |
+
keep = []
|
964 |
+
for i in inequalities:
|
965 |
+
if isinstance(i, Relational):
|
966 |
+
i = i.func(i.lhs.as_expr() - i.rhs.as_expr(), 0)
|
967 |
+
elif i not in (True, False):
|
968 |
+
i = Eq(i, 0)
|
969 |
+
if i == True:
|
970 |
+
continue
|
971 |
+
elif i == False:
|
972 |
+
return S.false
|
973 |
+
if i.lhs.is_number:
|
974 |
+
raise NotImplementedError(
|
975 |
+
"could not determine truth value of %s" % i)
|
976 |
+
keep.append(i)
|
977 |
+
inequalities = keep
|
978 |
+
del keep
|
979 |
+
|
980 |
+
# solve system
|
981 |
+
rv = _reduce_inequalities(inequalities, symbols)
|
982 |
+
|
983 |
+
# restore original symbols and return
|
984 |
+
return rv.xreplace({v: k for k, v in recast.items()})
|