Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- env-llmeval/lib/python3.10/site-packages/scipy/interpolate/tests/data/bug-1310.npz +3 -0
- env-llmeval/lib/python3.10/site-packages/scipy/interpolate/tests/data/estimate_gradients_hang.npy +3 -0
- env-llmeval/lib/python3.10/site-packages/scipy/interpolate/tests/data/gcvspl.npz +3 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/__pycache__/_dia.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/__pycache__/_sputils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/__pycache__/base.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/__pycache__/bsr.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/__pycache__/csr.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/__pycache__/extract.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/__pycache__/sputils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/csgraph/tests/__pycache__/test_connected_components.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/csgraph/tests/__pycache__/test_conversions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/csgraph/tests/__pycache__/test_flow.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/csgraph/tests/__pycache__/test_graph_laplacian.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/csgraph/tests/__pycache__/test_matching.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/csgraph/tests/__pycache__/test_pydata_sparse.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/csgraph/tests/__pycache__/test_reordering.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/csgraph/tests/__pycache__/test_shortest_path.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/csgraph/tests/__pycache__/test_traversal.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__init__.py +146 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/_expm_multiply.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/_interface.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/_matfuncs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/_norm.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/_special_sparse_arrays.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/_svdp.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/dsolve.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/eigen.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/interface.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/isolve.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/matfuncs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__init__.py +71 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__pycache__/_add_newdocs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/_add_newdocs.py +153 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/_superlu.cpython-310-x86_64-linux-gnu.so +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py +746 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/tests/__pycache__/test_linsolve.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/tests/test_linsolve.py +805 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/_special_sparse_arrays.py +948 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/dsolve.py +24 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/eigen.py +23 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/tests/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/scipy/sparse/tests/__pycache__/test_array_api.cpython-310.pyc +0 -0
.gitattributes
CHANGED
@@ -156,3 +156,4 @@ env-llmeval/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcheckpoint.so
|
|
156 |
env-llmeval/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcupti.so.12 filter=lfs diff=lfs merge=lfs -text
|
157 |
env-llmeval/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libnvperf_host.so filter=lfs diff=lfs merge=lfs -text
|
158 |
env-llmeval/lib/python3.10/site-packages/tokenizers/tokenizers.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
|
|
|
156 |
env-llmeval/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcupti.so.12 filter=lfs diff=lfs merge=lfs -text
|
157 |
env-llmeval/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libnvperf_host.so filter=lfs diff=lfs merge=lfs -text
|
158 |
env-llmeval/lib/python3.10/site-packages/tokenizers/tokenizers.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
159 |
+
llmeval-env/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so filter=lfs diff=lfs merge=lfs -text
|
env-llmeval/lib/python3.10/site-packages/scipy/interpolate/tests/data/bug-1310.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d6803c0b398f2704c236f1d1b9e8e5ede06bd165a0abb0f228281abbd455ae9
|
3 |
+
size 2648
|
env-llmeval/lib/python3.10/site-packages/scipy/interpolate/tests/data/estimate_gradients_hang.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:406c10857417ff5ea98d8cd28945c9d0e4f5c24f92a48ad0e8fab955bf2477f1
|
3 |
+
size 35680
|
env-llmeval/lib/python3.10/site-packages/scipy/interpolate/tests/data/gcvspl.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03ce8155a6cba0c1bf0a2441a10c228191f916dec36cb820723429811296bba8
|
3 |
+
size 3138
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (9.37 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/__pycache__/_dia.cpython-310.pyc
ADDED
Binary file (14.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/__pycache__/_sputils.cpython-310.pyc
ADDED
Binary file (12.8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/__pycache__/base.cpython-310.pyc
ADDED
Binary file (783 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/__pycache__/bsr.cpython-310.pyc
ADDED
Binary file (784 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/__pycache__/csr.cpython-310.pyc
ADDED
Binary file (685 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/__pycache__/extract.cpython-310.pyc
ADDED
Binary file (622 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/__pycache__/sputils.cpython-310.pyc
ADDED
Binary file (902 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/csgraph/tests/__pycache__/test_connected_components.cpython-310.pyc
ADDED
Binary file (3.22 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/csgraph/tests/__pycache__/test_conversions.cpython-310.pyc
ADDED
Binary file (1.74 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/csgraph/tests/__pycache__/test_flow.cpython-310.pyc
ADDED
Binary file (6.99 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/csgraph/tests/__pycache__/test_graph_laplacian.cpython-310.pyc
ADDED
Binary file (7.71 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/csgraph/tests/__pycache__/test_matching.cpython-310.pyc
ADDED
Binary file (10.4 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/csgraph/tests/__pycache__/test_pydata_sparse.cpython-310.pyc
ADDED
Binary file (3.62 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/csgraph/tests/__pycache__/test_reordering.cpython-310.pyc
ADDED
Binary file (2.93 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/csgraph/tests/__pycache__/test_shortest_path.cpython-310.pyc
ADDED
Binary file (12 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/csgraph/tests/__pycache__/test_traversal.cpython-310.pyc
ADDED
Binary file (2.27 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__init__.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Sparse linear algebra (:mod:`scipy.sparse.linalg`)
|
3 |
+
==================================================
|
4 |
+
|
5 |
+
.. currentmodule:: scipy.sparse.linalg
|
6 |
+
|
7 |
+
Abstract linear operators
|
8 |
+
-------------------------
|
9 |
+
|
10 |
+
.. autosummary::
|
11 |
+
:toctree: generated/
|
12 |
+
|
13 |
+
LinearOperator -- abstract representation of a linear operator
|
14 |
+
aslinearoperator -- convert an object to an abstract linear operator
|
15 |
+
|
16 |
+
Matrix Operations
|
17 |
+
-----------------
|
18 |
+
|
19 |
+
.. autosummary::
|
20 |
+
:toctree: generated/
|
21 |
+
|
22 |
+
inv -- compute the sparse matrix inverse
|
23 |
+
expm -- compute the sparse matrix exponential
|
24 |
+
expm_multiply -- compute the product of a matrix exponential and a matrix
|
25 |
+
matrix_power -- compute the matrix power by raising a matrix to an exponent
|
26 |
+
|
27 |
+
Matrix norms
|
28 |
+
------------
|
29 |
+
|
30 |
+
.. autosummary::
|
31 |
+
:toctree: generated/
|
32 |
+
|
33 |
+
norm -- Norm of a sparse matrix
|
34 |
+
onenormest -- Estimate the 1-norm of a sparse matrix
|
35 |
+
|
36 |
+
Solving linear problems
|
37 |
+
-----------------------
|
38 |
+
|
39 |
+
Direct methods for linear equation systems:
|
40 |
+
|
41 |
+
.. autosummary::
|
42 |
+
:toctree: generated/
|
43 |
+
|
44 |
+
spsolve -- Solve the sparse linear system Ax=b
|
45 |
+
spsolve_triangular -- Solve sparse linear system Ax=b for a triangular A.
|
46 |
+
factorized -- Pre-factorize matrix to a function solving a linear system
|
47 |
+
MatrixRankWarning -- Warning on exactly singular matrices
|
48 |
+
use_solver -- Select direct solver to use
|
49 |
+
|
50 |
+
Iterative methods for linear equation systems:
|
51 |
+
|
52 |
+
.. autosummary::
|
53 |
+
:toctree: generated/
|
54 |
+
|
55 |
+
bicg -- Use BIConjugate Gradient iteration to solve Ax = b
|
56 |
+
bicgstab -- Use BIConjugate Gradient STABilized iteration to solve Ax = b
|
57 |
+
cg -- Use Conjugate Gradient iteration to solve Ax = b
|
58 |
+
cgs -- Use Conjugate Gradient Squared iteration to solve Ax = b
|
59 |
+
gmres -- Use Generalized Minimal RESidual iteration to solve Ax = b
|
60 |
+
lgmres -- Solve a matrix equation using the LGMRES algorithm
|
61 |
+
minres -- Use MINimum RESidual iteration to solve Ax = b
|
62 |
+
qmr -- Use Quasi-Minimal Residual iteration to solve Ax = b
|
63 |
+
gcrotmk -- Solve a matrix equation using the GCROT(m,k) algorithm
|
64 |
+
tfqmr -- Use Transpose-Free Quasi-Minimal Residual iteration to solve Ax = b
|
65 |
+
|
66 |
+
Iterative methods for least-squares problems:
|
67 |
+
|
68 |
+
.. autosummary::
|
69 |
+
:toctree: generated/
|
70 |
+
|
71 |
+
lsqr -- Find the least-squares solution to a sparse linear equation system
|
72 |
+
lsmr -- Find the least-squares solution to a sparse linear equation system
|
73 |
+
|
74 |
+
Matrix factorizations
|
75 |
+
---------------------
|
76 |
+
|
77 |
+
Eigenvalue problems:
|
78 |
+
|
79 |
+
.. autosummary::
|
80 |
+
:toctree: generated/
|
81 |
+
|
82 |
+
eigs -- Find k eigenvalues and eigenvectors of the square matrix A
|
83 |
+
eigsh -- Find k eigenvalues and eigenvectors of a symmetric matrix
|
84 |
+
lobpcg -- Solve symmetric partial eigenproblems with optional preconditioning
|
85 |
+
|
86 |
+
Singular values problems:
|
87 |
+
|
88 |
+
.. autosummary::
|
89 |
+
:toctree: generated/
|
90 |
+
|
91 |
+
svds -- Compute k singular values/vectors for a sparse matrix
|
92 |
+
|
93 |
+
The `svds` function supports the following solvers:
|
94 |
+
|
95 |
+
.. toctree::
|
96 |
+
|
97 |
+
sparse.linalg.svds-arpack
|
98 |
+
sparse.linalg.svds-lobpcg
|
99 |
+
sparse.linalg.svds-propack
|
100 |
+
|
101 |
+
Complete or incomplete LU factorizations
|
102 |
+
|
103 |
+
.. autosummary::
|
104 |
+
:toctree: generated/
|
105 |
+
|
106 |
+
splu -- Compute a LU decomposition for a sparse matrix
|
107 |
+
spilu -- Compute an incomplete LU decomposition for a sparse matrix
|
108 |
+
SuperLU -- Object representing an LU factorization
|
109 |
+
|
110 |
+
Sparse arrays with structure
|
111 |
+
----------------------------
|
112 |
+
|
113 |
+
.. autosummary::
|
114 |
+
:toctree: generated/
|
115 |
+
|
116 |
+
LaplacianNd -- Laplacian on a uniform rectangular grid in ``N`` dimensions
|
117 |
+
|
118 |
+
Exceptions
|
119 |
+
----------
|
120 |
+
|
121 |
+
.. autosummary::
|
122 |
+
:toctree: generated/
|
123 |
+
|
124 |
+
ArpackNoConvergence
|
125 |
+
ArpackError
|
126 |
+
|
127 |
+
"""
|
128 |
+
|
129 |
+
from ._isolve import *
|
130 |
+
from ._dsolve import *
|
131 |
+
from ._interface import *
|
132 |
+
from ._eigen import *
|
133 |
+
from ._matfuncs import *
|
134 |
+
from ._onenormest import *
|
135 |
+
from ._norm import *
|
136 |
+
from ._expm_multiply import *
|
137 |
+
from ._special_sparse_arrays import *
|
138 |
+
|
139 |
+
# Deprecated namespaces, to be removed in v2.0.0
|
140 |
+
from . import isolve, dsolve, interface, eigen, matfuncs
|
141 |
+
|
142 |
+
__all__ = [s for s in dir() if not s.startswith('_')]
|
143 |
+
|
144 |
+
from scipy._lib._testutils import PytestTester
|
145 |
+
test = PytestTester(__name__)
|
146 |
+
del PytestTester
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (4.26 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/_expm_multiply.cpython-310.pyc
ADDED
Binary file (23.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/_interface.cpython-310.pyc
ADDED
Binary file (30 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/_matfuncs.cpython-310.pyc
ADDED
Binary file (25.5 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/_norm.cpython-310.pyc
ADDED
Binary file (5.07 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/_special_sparse_arrays.cpython-310.pyc
ADDED
Binary file (33.9 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/_svdp.cpython-310.pyc
ADDED
Binary file (9.18 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/dsolve.cpython-310.pyc
ADDED
Binary file (742 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/eigen.cpython-310.pyc
ADDED
Binary file (708 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/interface.cpython-310.pyc
ADDED
Binary file (736 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/isolve.cpython-310.pyc
ADDED
Binary file (708 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/__pycache__/matfuncs.cpython-310.pyc
ADDED
Binary file (746 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__init__.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Linear Solvers
|
3 |
+
==============
|
4 |
+
|
5 |
+
The default solver is SuperLU (included in the scipy distribution),
|
6 |
+
which can solve real or complex linear systems in both single and
|
7 |
+
double precisions. It is automatically replaced by UMFPACK, if
|
8 |
+
available. Note that UMFPACK works in double precision only, so
|
9 |
+
switch it off by::
|
10 |
+
|
11 |
+
>>> from scipy.sparse.linalg import spsolve, use_solver
|
12 |
+
>>> use_solver(useUmfpack=False)
|
13 |
+
|
14 |
+
to solve in the single precision. See also use_solver documentation.
|
15 |
+
|
16 |
+
Example session::
|
17 |
+
|
18 |
+
>>> from scipy.sparse import csc_matrix, spdiags
|
19 |
+
>>> from numpy import array
|
20 |
+
>>>
|
21 |
+
>>> print("Inverting a sparse linear system:")
|
22 |
+
>>> print("The sparse matrix (constructed from diagonals):")
|
23 |
+
>>> a = spdiags([[1, 2, 3, 4, 5], [6, 5, 8, 9, 10]], [0, 1], 5, 5)
|
24 |
+
>>> b = array([1, 2, 3, 4, 5])
|
25 |
+
>>> print("Solve: single precision complex:")
|
26 |
+
>>> use_solver( useUmfpack = False )
|
27 |
+
>>> a = a.astype('F')
|
28 |
+
>>> x = spsolve(a, b)
|
29 |
+
>>> print(x)
|
30 |
+
>>> print("Error: ", a@x-b)
|
31 |
+
>>>
|
32 |
+
>>> print("Solve: double precision complex:")
|
33 |
+
>>> use_solver( useUmfpack = True )
|
34 |
+
>>> a = a.astype('D')
|
35 |
+
>>> x = spsolve(a, b)
|
36 |
+
>>> print(x)
|
37 |
+
>>> print("Error: ", a@x-b)
|
38 |
+
>>>
|
39 |
+
>>> print("Solve: double precision:")
|
40 |
+
>>> a = a.astype('d')
|
41 |
+
>>> x = spsolve(a, b)
|
42 |
+
>>> print(x)
|
43 |
+
>>> print("Error: ", a@x-b)
|
44 |
+
>>>
|
45 |
+
>>> print("Solve: single precision:")
|
46 |
+
>>> use_solver( useUmfpack = False )
|
47 |
+
>>> a = a.astype('f')
|
48 |
+
>>> x = spsolve(a, b.astype('f'))
|
49 |
+
>>> print(x)
|
50 |
+
>>> print("Error: ", a@x-b)
|
51 |
+
|
52 |
+
"""
|
53 |
+
|
54 |
+
#import umfpack
|
55 |
+
#__doc__ = '\n\n'.join( (__doc__, umfpack.__doc__) )
|
56 |
+
#del umfpack
|
57 |
+
|
58 |
+
from .linsolve import *
|
59 |
+
from ._superlu import SuperLU
|
60 |
+
from . import _add_newdocs
|
61 |
+
from . import linsolve
|
62 |
+
|
63 |
+
__all__ = [
|
64 |
+
'MatrixRankWarning', 'SuperLU', 'factorized',
|
65 |
+
'spilu', 'splu', 'spsolve',
|
66 |
+
'spsolve_triangular', 'use_solver'
|
67 |
+
]
|
68 |
+
|
69 |
+
from scipy._lib._testutils import PytestTester
|
70 |
+
test = PytestTester(__name__)
|
71 |
+
del PytestTester
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__pycache__/_add_newdocs.cpython-310.pyc
ADDED
Binary file (3.69 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/_add_newdocs.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy.lib import add_newdoc
|
2 |
+
|
3 |
+
add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU',
|
4 |
+
"""
|
5 |
+
LU factorization of a sparse matrix.
|
6 |
+
|
7 |
+
Factorization is represented as::
|
8 |
+
|
9 |
+
Pr @ A @ Pc = L @ U
|
10 |
+
|
11 |
+
To construct these `SuperLU` objects, call the `splu` and `spilu`
|
12 |
+
functions.
|
13 |
+
|
14 |
+
Attributes
|
15 |
+
----------
|
16 |
+
shape
|
17 |
+
nnz
|
18 |
+
perm_c
|
19 |
+
perm_r
|
20 |
+
L
|
21 |
+
U
|
22 |
+
|
23 |
+
Methods
|
24 |
+
-------
|
25 |
+
solve
|
26 |
+
|
27 |
+
Notes
|
28 |
+
-----
|
29 |
+
|
30 |
+
.. versionadded:: 0.14.0
|
31 |
+
|
32 |
+
Examples
|
33 |
+
--------
|
34 |
+
The LU decomposition can be used to solve matrix equations. Consider:
|
35 |
+
|
36 |
+
>>> import numpy as np
|
37 |
+
>>> from scipy.sparse import csc_matrix
|
38 |
+
>>> from scipy.sparse.linalg import splu
|
39 |
+
>>> A = csc_matrix([[1,2,0,4], [1,0,0,1], [1,0,2,1], [2,2,1,0.]])
|
40 |
+
|
41 |
+
This can be solved for a given right-hand side:
|
42 |
+
|
43 |
+
>>> lu = splu(A)
|
44 |
+
>>> b = np.array([1, 2, 3, 4])
|
45 |
+
>>> x = lu.solve(b)
|
46 |
+
>>> A.dot(x)
|
47 |
+
array([ 1., 2., 3., 4.])
|
48 |
+
|
49 |
+
The ``lu`` object also contains an explicit representation of the
|
50 |
+
decomposition. The permutations are represented as mappings of
|
51 |
+
indices:
|
52 |
+
|
53 |
+
>>> lu.perm_r
|
54 |
+
array([2, 1, 3, 0], dtype=int32) # may vary
|
55 |
+
>>> lu.perm_c
|
56 |
+
array([0, 1, 3, 2], dtype=int32) # may vary
|
57 |
+
|
58 |
+
The L and U factors are sparse matrices in CSC format:
|
59 |
+
|
60 |
+
>>> lu.L.toarray()
|
61 |
+
array([[ 1. , 0. , 0. , 0. ], # may vary
|
62 |
+
[ 0.5, 1. , 0. , 0. ],
|
63 |
+
[ 0.5, -1. , 1. , 0. ],
|
64 |
+
[ 0.5, 1. , 0. , 1. ]])
|
65 |
+
>>> lu.U.toarray()
|
66 |
+
array([[ 2. , 2. , 0. , 1. ], # may vary
|
67 |
+
[ 0. , -1. , 1. , -0.5],
|
68 |
+
[ 0. , 0. , 5. , -1. ],
|
69 |
+
[ 0. , 0. , 0. , 2. ]])
|
70 |
+
|
71 |
+
The permutation matrices can be constructed:
|
72 |
+
|
73 |
+
>>> Pr = csc_matrix((np.ones(4), (lu.perm_r, np.arange(4))))
|
74 |
+
>>> Pc = csc_matrix((np.ones(4), (np.arange(4), lu.perm_c)))
|
75 |
+
|
76 |
+
We can reassemble the original matrix:
|
77 |
+
|
78 |
+
>>> (Pr.T @ (lu.L @ lu.U) @ Pc.T).toarray()
|
79 |
+
array([[ 1., 2., 0., 4.],
|
80 |
+
[ 1., 0., 0., 1.],
|
81 |
+
[ 1., 0., 2., 1.],
|
82 |
+
[ 2., 2., 1., 0.]])
|
83 |
+
""")
|
84 |
+
|
85 |
+
add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU', ('solve',
|
86 |
+
"""
|
87 |
+
solve(rhs[, trans])
|
88 |
+
|
89 |
+
Solves linear system of equations with one or several right-hand sides.
|
90 |
+
|
91 |
+
Parameters
|
92 |
+
----------
|
93 |
+
rhs : ndarray, shape (n,) or (n, k)
|
94 |
+
Right hand side(s) of equation
|
95 |
+
trans : {'N', 'T', 'H'}, optional
|
96 |
+
Type of system to solve::
|
97 |
+
|
98 |
+
'N': A @ x == rhs (default)
|
99 |
+
'T': A^T @ x == rhs
|
100 |
+
'H': A^H @ x == rhs
|
101 |
+
|
102 |
+
i.e., normal, transposed, and hermitian conjugate.
|
103 |
+
|
104 |
+
Returns
|
105 |
+
-------
|
106 |
+
x : ndarray, shape ``rhs.shape``
|
107 |
+
Solution vector(s)
|
108 |
+
"""))
|
109 |
+
|
110 |
+
add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU', ('L',
|
111 |
+
"""
|
112 |
+
Lower triangular factor with unit diagonal as a
|
113 |
+
`scipy.sparse.csc_matrix`.
|
114 |
+
|
115 |
+
.. versionadded:: 0.14.0
|
116 |
+
"""))
|
117 |
+
|
118 |
+
add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU', ('U',
|
119 |
+
"""
|
120 |
+
Upper triangular factor as a `scipy.sparse.csc_matrix`.
|
121 |
+
|
122 |
+
.. versionadded:: 0.14.0
|
123 |
+
"""))
|
124 |
+
|
125 |
+
add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU', ('shape',
|
126 |
+
"""
|
127 |
+
Shape of the original matrix as a tuple of ints.
|
128 |
+
"""))
|
129 |
+
|
130 |
+
add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU', ('nnz',
|
131 |
+
"""
|
132 |
+
Number of nonzero elements in the matrix.
|
133 |
+
"""))
|
134 |
+
|
135 |
+
add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU', ('perm_c',
|
136 |
+
"""
|
137 |
+
Permutation Pc represented as an array of indices.
|
138 |
+
|
139 |
+
The column permutation matrix can be reconstructed via:
|
140 |
+
|
141 |
+
>>> Pc = np.zeros((n, n))
|
142 |
+
>>> Pc[np.arange(n), perm_c] = 1
|
143 |
+
"""))
|
144 |
+
|
145 |
+
add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU', ('perm_r',
|
146 |
+
"""
|
147 |
+
Permutation Pr represented as an array of indices.
|
148 |
+
|
149 |
+
The row permutation matrix can be reconstructed via:
|
150 |
+
|
151 |
+
>>> Pr = np.zeros((n, n))
|
152 |
+
>>> Pr[perm_r, np.arange(n)] = 1
|
153 |
+
"""))
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/_superlu.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (379 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py
ADDED
@@ -0,0 +1,746 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from warnings import warn
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from numpy import asarray
|
5 |
+
from scipy.sparse import (issparse,
|
6 |
+
SparseEfficiencyWarning, csc_matrix, csr_matrix)
|
7 |
+
from scipy.sparse._sputils import is_pydata_spmatrix, convert_pydata_sparse_to_scipy
|
8 |
+
from scipy.linalg import LinAlgError
|
9 |
+
import copy
|
10 |
+
|
11 |
+
from . import _superlu
|
12 |
+
|
13 |
+
noScikit = False
|
14 |
+
try:
|
15 |
+
import scikits.umfpack as umfpack
|
16 |
+
except ImportError:
|
17 |
+
noScikit = True
|
18 |
+
|
19 |
+
useUmfpack = not noScikit
|
20 |
+
|
21 |
+
__all__ = ['use_solver', 'spsolve', 'splu', 'spilu', 'factorized',
|
22 |
+
'MatrixRankWarning', 'spsolve_triangular']
|
23 |
+
|
24 |
+
|
25 |
+
class MatrixRankWarning(UserWarning):
|
26 |
+
pass
|
27 |
+
|
28 |
+
|
29 |
+
def use_solver(**kwargs):
|
30 |
+
"""
|
31 |
+
Select default sparse direct solver to be used.
|
32 |
+
|
33 |
+
Parameters
|
34 |
+
----------
|
35 |
+
useUmfpack : bool, optional
|
36 |
+
Use UMFPACK [1]_, [2]_, [3]_, [4]_. over SuperLU. Has effect only
|
37 |
+
if ``scikits.umfpack`` is installed. Default: True
|
38 |
+
assumeSortedIndices : bool, optional
|
39 |
+
Allow UMFPACK to skip the step of sorting indices for a CSR/CSC matrix.
|
40 |
+
Has effect only if useUmfpack is True and ``scikits.umfpack`` is
|
41 |
+
installed. Default: False
|
42 |
+
|
43 |
+
Notes
|
44 |
+
-----
|
45 |
+
The default sparse solver is UMFPACK when available
|
46 |
+
(``scikits.umfpack`` is installed). This can be changed by passing
|
47 |
+
useUmfpack = False, which then causes the always present SuperLU
|
48 |
+
based solver to be used.
|
49 |
+
|
50 |
+
UMFPACK requires a CSR/CSC matrix to have sorted column/row indices. If
|
51 |
+
sure that the matrix fulfills this, pass ``assumeSortedIndices=True``
|
52 |
+
to gain some speed.
|
53 |
+
|
54 |
+
References
|
55 |
+
----------
|
56 |
+
.. [1] T. A. Davis, Algorithm 832: UMFPACK - an unsymmetric-pattern
|
57 |
+
multifrontal method with a column pre-ordering strategy, ACM
|
58 |
+
Trans. on Mathematical Software, 30(2), 2004, pp. 196--199.
|
59 |
+
https://dl.acm.org/doi/abs/10.1145/992200.992206
|
60 |
+
|
61 |
+
.. [2] T. A. Davis, A column pre-ordering strategy for the
|
62 |
+
unsymmetric-pattern multifrontal method, ACM Trans.
|
63 |
+
on Mathematical Software, 30(2), 2004, pp. 165--195.
|
64 |
+
https://dl.acm.org/doi/abs/10.1145/992200.992205
|
65 |
+
|
66 |
+
.. [3] T. A. Davis and I. S. Duff, A combined unifrontal/multifrontal
|
67 |
+
method for unsymmetric sparse matrices, ACM Trans. on
|
68 |
+
Mathematical Software, 25(1), 1999, pp. 1--19.
|
69 |
+
https://doi.org/10.1145/305658.287640
|
70 |
+
|
71 |
+
.. [4] T. A. Davis and I. S. Duff, An unsymmetric-pattern multifrontal
|
72 |
+
method for sparse LU factorization, SIAM J. Matrix Analysis and
|
73 |
+
Computations, 18(1), 1997, pp. 140--158.
|
74 |
+
https://doi.org/10.1137/S0895479894246905T.
|
75 |
+
|
76 |
+
Examples
|
77 |
+
--------
|
78 |
+
>>> import numpy as np
|
79 |
+
>>> from scipy.sparse.linalg import use_solver, spsolve
|
80 |
+
>>> from scipy.sparse import csc_matrix
|
81 |
+
>>> R = np.random.randn(5, 5)
|
82 |
+
>>> A = csc_matrix(R)
|
83 |
+
>>> b = np.random.randn(5)
|
84 |
+
>>> use_solver(useUmfpack=False) # enforce superLU over UMFPACK
|
85 |
+
>>> x = spsolve(A, b)
|
86 |
+
>>> np.allclose(A.dot(x), b)
|
87 |
+
True
|
88 |
+
>>> use_solver(useUmfpack=True) # reset umfPack usage to default
|
89 |
+
"""
|
90 |
+
if 'useUmfpack' in kwargs:
|
91 |
+
globals()['useUmfpack'] = kwargs['useUmfpack']
|
92 |
+
if useUmfpack and 'assumeSortedIndices' in kwargs:
|
93 |
+
umfpack.configure(assumeSortedIndices=kwargs['assumeSortedIndices'])
|
94 |
+
|
95 |
+
def _get_umf_family(A):
|
96 |
+
"""Get umfpack family string given the sparse matrix dtype."""
|
97 |
+
_families = {
|
98 |
+
(np.float64, np.int32): 'di',
|
99 |
+
(np.complex128, np.int32): 'zi',
|
100 |
+
(np.float64, np.int64): 'dl',
|
101 |
+
(np.complex128, np.int64): 'zl'
|
102 |
+
}
|
103 |
+
|
104 |
+
# A.dtype.name can only be "float64" or
|
105 |
+
# "complex128" in control flow
|
106 |
+
f_type = getattr(np, A.dtype.name)
|
107 |
+
# control flow may allow for more index
|
108 |
+
# types to get through here
|
109 |
+
i_type = getattr(np, A.indices.dtype.name)
|
110 |
+
|
111 |
+
try:
|
112 |
+
family = _families[(f_type, i_type)]
|
113 |
+
|
114 |
+
except KeyError as e:
|
115 |
+
msg = ('only float64 or complex128 matrices with int32 or int64 '
|
116 |
+
f'indices are supported! (got: matrix: {f_type}, indices: {i_type})')
|
117 |
+
raise ValueError(msg) from e
|
118 |
+
|
119 |
+
# See gh-8278. Considered converting only if
|
120 |
+
# A.shape[0]*A.shape[1] > np.iinfo(np.int32).max,
|
121 |
+
# but that didn't always fix the issue.
|
122 |
+
family = family[0] + "l"
|
123 |
+
A_new = copy.copy(A)
|
124 |
+
A_new.indptr = np.asarray(A.indptr, dtype=np.int64)
|
125 |
+
A_new.indices = np.asarray(A.indices, dtype=np.int64)
|
126 |
+
|
127 |
+
return family, A_new
|
128 |
+
|
129 |
+
def _safe_downcast_indices(A):
|
130 |
+
# check for safe downcasting
|
131 |
+
max_value = np.iinfo(np.intc).max
|
132 |
+
|
133 |
+
if A.indptr[-1] > max_value: # indptr[-1] is max b/c indptr always sorted
|
134 |
+
raise ValueError("indptr values too large for SuperLU")
|
135 |
+
|
136 |
+
if max(*A.shape) > max_value: # only check large enough arrays
|
137 |
+
if np.any(A.indices > max_value):
|
138 |
+
raise ValueError("indices values too large for SuperLU")
|
139 |
+
|
140 |
+
indices = A.indices.astype(np.intc, copy=False)
|
141 |
+
indptr = A.indptr.astype(np.intc, copy=False)
|
142 |
+
return indices, indptr
|
143 |
+
|
144 |
+
def spsolve(A, b, permc_spec=None, use_umfpack=True):
|
145 |
+
"""Solve the sparse linear system Ax=b, where b may be a vector or a matrix.
|
146 |
+
|
147 |
+
Parameters
|
148 |
+
----------
|
149 |
+
A : ndarray or sparse matrix
|
150 |
+
The square matrix A will be converted into CSC or CSR form
|
151 |
+
b : ndarray or sparse matrix
|
152 |
+
The matrix or vector representing the right hand side of the equation.
|
153 |
+
If a vector, b.shape must be (n,) or (n, 1).
|
154 |
+
permc_spec : str, optional
|
155 |
+
How to permute the columns of the matrix for sparsity preservation.
|
156 |
+
(default: 'COLAMD')
|
157 |
+
|
158 |
+
- ``NATURAL``: natural ordering.
|
159 |
+
- ``MMD_ATA``: minimum degree ordering on the structure of A^T A.
|
160 |
+
- ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A.
|
161 |
+
- ``COLAMD``: approximate minimum degree column ordering [1]_, [2]_.
|
162 |
+
|
163 |
+
use_umfpack : bool, optional
|
164 |
+
if True (default) then use UMFPACK for the solution [3]_, [4]_, [5]_,
|
165 |
+
[6]_ . This is only referenced if b is a vector and
|
166 |
+
``scikits.umfpack`` is installed.
|
167 |
+
|
168 |
+
Returns
|
169 |
+
-------
|
170 |
+
x : ndarray or sparse matrix
|
171 |
+
the solution of the sparse linear equation.
|
172 |
+
If b is a vector, then x is a vector of size A.shape[1]
|
173 |
+
If b is a matrix, then x is a matrix of size (A.shape[1], b.shape[1])
|
174 |
+
|
175 |
+
Notes
|
176 |
+
-----
|
177 |
+
For solving the matrix expression AX = B, this solver assumes the resulting
|
178 |
+
matrix X is sparse, as is often the case for very sparse inputs. If the
|
179 |
+
resulting X is dense, the construction of this sparse result will be
|
180 |
+
relatively expensive. In that case, consider converting A to a dense
|
181 |
+
matrix and using scipy.linalg.solve or its variants.
|
182 |
+
|
183 |
+
References
|
184 |
+
----------
|
185 |
+
.. [1] T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, Algorithm 836:
|
186 |
+
COLAMD, an approximate column minimum degree ordering algorithm,
|
187 |
+
ACM Trans. on Mathematical Software, 30(3), 2004, pp. 377--380.
|
188 |
+
:doi:`10.1145/1024074.1024080`
|
189 |
+
|
190 |
+
.. [2] T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, A column approximate
|
191 |
+
minimum degree ordering algorithm, ACM Trans. on Mathematical
|
192 |
+
Software, 30(3), 2004, pp. 353--376. :doi:`10.1145/1024074.1024079`
|
193 |
+
|
194 |
+
.. [3] T. A. Davis, Algorithm 832: UMFPACK - an unsymmetric-pattern
|
195 |
+
multifrontal method with a column pre-ordering strategy, ACM
|
196 |
+
Trans. on Mathematical Software, 30(2), 2004, pp. 196--199.
|
197 |
+
https://dl.acm.org/doi/abs/10.1145/992200.992206
|
198 |
+
|
199 |
+
.. [4] T. A. Davis, A column pre-ordering strategy for the
|
200 |
+
unsymmetric-pattern multifrontal method, ACM Trans.
|
201 |
+
on Mathematical Software, 30(2), 2004, pp. 165--195.
|
202 |
+
https://dl.acm.org/doi/abs/10.1145/992200.992205
|
203 |
+
|
204 |
+
.. [5] T. A. Davis and I. S. Duff, A combined unifrontal/multifrontal
|
205 |
+
method for unsymmetric sparse matrices, ACM Trans. on
|
206 |
+
Mathematical Software, 25(1), 1999, pp. 1--19.
|
207 |
+
https://doi.org/10.1145/305658.287640
|
208 |
+
|
209 |
+
.. [6] T. A. Davis and I. S. Duff, An unsymmetric-pattern multifrontal
|
210 |
+
method for sparse LU factorization, SIAM J. Matrix Analysis and
|
211 |
+
Computations, 18(1), 1997, pp. 140--158.
|
212 |
+
https://doi.org/10.1137/S0895479894246905T.
|
213 |
+
|
214 |
+
|
215 |
+
Examples
|
216 |
+
--------
|
217 |
+
>>> import numpy as np
|
218 |
+
>>> from scipy.sparse import csc_matrix
|
219 |
+
>>> from scipy.sparse.linalg import spsolve
|
220 |
+
>>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float)
|
221 |
+
>>> B = csc_matrix([[2, 0], [-1, 0], [2, 0]], dtype=float)
|
222 |
+
>>> x = spsolve(A, B)
|
223 |
+
>>> np.allclose(A.dot(x).toarray(), B.toarray())
|
224 |
+
True
|
225 |
+
"""
|
226 |
+
is_pydata_sparse = is_pydata_spmatrix(b)
|
227 |
+
pydata_sparse_cls = b.__class__ if is_pydata_sparse else None
|
228 |
+
A = convert_pydata_sparse_to_scipy(A)
|
229 |
+
b = convert_pydata_sparse_to_scipy(b)
|
230 |
+
|
231 |
+
if not (issparse(A) and A.format in ("csc", "csr")):
|
232 |
+
A = csc_matrix(A)
|
233 |
+
warn('spsolve requires A be CSC or CSR matrix format',
|
234 |
+
SparseEfficiencyWarning, stacklevel=2)
|
235 |
+
|
236 |
+
# b is a vector only if b have shape (n,) or (n, 1)
|
237 |
+
b_is_sparse = issparse(b)
|
238 |
+
if not b_is_sparse:
|
239 |
+
b = asarray(b)
|
240 |
+
b_is_vector = ((b.ndim == 1) or (b.ndim == 2 and b.shape[1] == 1))
|
241 |
+
|
242 |
+
# sum duplicates for non-canonical format
|
243 |
+
A.sum_duplicates()
|
244 |
+
A = A._asfptype() # upcast to a floating point format
|
245 |
+
result_dtype = np.promote_types(A.dtype, b.dtype)
|
246 |
+
if A.dtype != result_dtype:
|
247 |
+
A = A.astype(result_dtype)
|
248 |
+
if b.dtype != result_dtype:
|
249 |
+
b = b.astype(result_dtype)
|
250 |
+
|
251 |
+
# validate input shapes
|
252 |
+
M, N = A.shape
|
253 |
+
if (M != N):
|
254 |
+
raise ValueError(f"matrix must be square (has shape {(M, N)})")
|
255 |
+
|
256 |
+
if M != b.shape[0]:
|
257 |
+
raise ValueError(f"matrix - rhs dimension mismatch ({A.shape} - {b.shape[0]})")
|
258 |
+
|
259 |
+
use_umfpack = use_umfpack and useUmfpack
|
260 |
+
|
261 |
+
if b_is_vector and use_umfpack:
|
262 |
+
if b_is_sparse:
|
263 |
+
b_vec = b.toarray()
|
264 |
+
else:
|
265 |
+
b_vec = b
|
266 |
+
b_vec = asarray(b_vec, dtype=A.dtype).ravel()
|
267 |
+
|
268 |
+
if noScikit:
|
269 |
+
raise RuntimeError('Scikits.umfpack not installed.')
|
270 |
+
|
271 |
+
if A.dtype.char not in 'dD':
|
272 |
+
raise ValueError("convert matrix data to double, please, using"
|
273 |
+
" .astype(), or set linsolve.useUmfpack = False")
|
274 |
+
|
275 |
+
umf_family, A = _get_umf_family(A)
|
276 |
+
umf = umfpack.UmfpackContext(umf_family)
|
277 |
+
x = umf.linsolve(umfpack.UMFPACK_A, A, b_vec,
|
278 |
+
autoTranspose=True)
|
279 |
+
else:
|
280 |
+
if b_is_vector and b_is_sparse:
|
281 |
+
b = b.toarray()
|
282 |
+
b_is_sparse = False
|
283 |
+
|
284 |
+
if not b_is_sparse:
|
285 |
+
if A.format == "csc":
|
286 |
+
flag = 1 # CSC format
|
287 |
+
else:
|
288 |
+
flag = 0 # CSR format
|
289 |
+
|
290 |
+
indices = A.indices.astype(np.intc, copy=False)
|
291 |
+
indptr = A.indptr.astype(np.intc, copy=False)
|
292 |
+
options = dict(ColPerm=permc_spec)
|
293 |
+
x, info = _superlu.gssv(N, A.nnz, A.data, indices, indptr,
|
294 |
+
b, flag, options=options)
|
295 |
+
if info != 0:
|
296 |
+
warn("Matrix is exactly singular", MatrixRankWarning, stacklevel=2)
|
297 |
+
x.fill(np.nan)
|
298 |
+
if b_is_vector:
|
299 |
+
x = x.ravel()
|
300 |
+
else:
|
301 |
+
# b is sparse
|
302 |
+
Afactsolve = factorized(A)
|
303 |
+
|
304 |
+
if not (b.format == "csc" or is_pydata_spmatrix(b)):
|
305 |
+
warn('spsolve is more efficient when sparse b '
|
306 |
+
'is in the CSC matrix format',
|
307 |
+
SparseEfficiencyWarning, stacklevel=2)
|
308 |
+
b = csc_matrix(b)
|
309 |
+
|
310 |
+
# Create a sparse output matrix by repeatedly applying
|
311 |
+
# the sparse factorization to solve columns of b.
|
312 |
+
data_segs = []
|
313 |
+
row_segs = []
|
314 |
+
col_segs = []
|
315 |
+
for j in range(b.shape[1]):
|
316 |
+
# TODO: replace this with
|
317 |
+
# bj = b[:, j].toarray().ravel()
|
318 |
+
# once 1D sparse arrays are supported.
|
319 |
+
# That is a slightly faster code path.
|
320 |
+
bj = b[:, [j]].toarray().ravel()
|
321 |
+
xj = Afactsolve(bj)
|
322 |
+
w = np.flatnonzero(xj)
|
323 |
+
segment_length = w.shape[0]
|
324 |
+
row_segs.append(w)
|
325 |
+
col_segs.append(np.full(segment_length, j, dtype=int))
|
326 |
+
data_segs.append(np.asarray(xj[w], dtype=A.dtype))
|
327 |
+
sparse_data = np.concatenate(data_segs)
|
328 |
+
sparse_row = np.concatenate(row_segs)
|
329 |
+
sparse_col = np.concatenate(col_segs)
|
330 |
+
x = A.__class__((sparse_data, (sparse_row, sparse_col)),
|
331 |
+
shape=b.shape, dtype=A.dtype)
|
332 |
+
|
333 |
+
if is_pydata_sparse:
|
334 |
+
x = pydata_sparse_cls.from_scipy_sparse(x)
|
335 |
+
|
336 |
+
return x
|
337 |
+
|
338 |
+
|
339 |
+
def splu(A, permc_spec=None, diag_pivot_thresh=None,
|
340 |
+
relax=None, panel_size=None, options=dict()):
|
341 |
+
"""
|
342 |
+
Compute the LU decomposition of a sparse, square matrix.
|
343 |
+
|
344 |
+
Parameters
|
345 |
+
----------
|
346 |
+
A : sparse matrix
|
347 |
+
Sparse matrix to factorize. Most efficient when provided in CSC
|
348 |
+
format. Other formats will be converted to CSC before factorization.
|
349 |
+
permc_spec : str, optional
|
350 |
+
How to permute the columns of the matrix for sparsity preservation.
|
351 |
+
(default: 'COLAMD')
|
352 |
+
|
353 |
+
- ``NATURAL``: natural ordering.
|
354 |
+
- ``MMD_ATA``: minimum degree ordering on the structure of A^T A.
|
355 |
+
- ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A.
|
356 |
+
- ``COLAMD``: approximate minimum degree column ordering
|
357 |
+
|
358 |
+
diag_pivot_thresh : float, optional
|
359 |
+
Threshold used for a diagonal entry to be an acceptable pivot.
|
360 |
+
See SuperLU user's guide for details [1]_
|
361 |
+
relax : int, optional
|
362 |
+
Expert option for customizing the degree of relaxing supernodes.
|
363 |
+
See SuperLU user's guide for details [1]_
|
364 |
+
panel_size : int, optional
|
365 |
+
Expert option for customizing the panel size.
|
366 |
+
See SuperLU user's guide for details [1]_
|
367 |
+
options : dict, optional
|
368 |
+
Dictionary containing additional expert options to SuperLU.
|
369 |
+
See SuperLU user guide [1]_ (section 2.4 on the 'Options' argument)
|
370 |
+
for more details. For example, you can specify
|
371 |
+
``options=dict(Equil=False, IterRefine='SINGLE'))``
|
372 |
+
to turn equilibration off and perform a single iterative refinement.
|
373 |
+
|
374 |
+
Returns
|
375 |
+
-------
|
376 |
+
invA : scipy.sparse.linalg.SuperLU
|
377 |
+
Object, which has a ``solve`` method.
|
378 |
+
|
379 |
+
See also
|
380 |
+
--------
|
381 |
+
spilu : incomplete LU decomposition
|
382 |
+
|
383 |
+
Notes
|
384 |
+
-----
|
385 |
+
This function uses the SuperLU library.
|
386 |
+
|
387 |
+
References
|
388 |
+
----------
|
389 |
+
.. [1] SuperLU https://portal.nersc.gov/project/sparse/superlu/
|
390 |
+
|
391 |
+
Examples
|
392 |
+
--------
|
393 |
+
>>> import numpy as np
|
394 |
+
>>> from scipy.sparse import csc_matrix
|
395 |
+
>>> from scipy.sparse.linalg import splu
|
396 |
+
>>> A = csc_matrix([[1., 0., 0.], [5., 0., 2.], [0., -1., 0.]], dtype=float)
|
397 |
+
>>> B = splu(A)
|
398 |
+
>>> x = np.array([1., 2., 3.], dtype=float)
|
399 |
+
>>> B.solve(x)
|
400 |
+
array([ 1. , -3. , -1.5])
|
401 |
+
>>> A.dot(B.solve(x))
|
402 |
+
array([ 1., 2., 3.])
|
403 |
+
>>> B.solve(A.dot(x))
|
404 |
+
array([ 1., 2., 3.])
|
405 |
+
"""
|
406 |
+
|
407 |
+
if is_pydata_spmatrix(A):
|
408 |
+
def csc_construct_func(*a, cls=type(A)):
|
409 |
+
return cls.from_scipy_sparse(csc_matrix(*a))
|
410 |
+
A = A.to_scipy_sparse().tocsc()
|
411 |
+
else:
|
412 |
+
csc_construct_func = csc_matrix
|
413 |
+
|
414 |
+
if not (issparse(A) and A.format == "csc"):
|
415 |
+
A = csc_matrix(A)
|
416 |
+
warn('splu converted its input to CSC format',
|
417 |
+
SparseEfficiencyWarning, stacklevel=2)
|
418 |
+
|
419 |
+
# sum duplicates for non-canonical format
|
420 |
+
A.sum_duplicates()
|
421 |
+
A = A._asfptype() # upcast to a floating point format
|
422 |
+
|
423 |
+
M, N = A.shape
|
424 |
+
if (M != N):
|
425 |
+
raise ValueError("can only factor square matrices") # is this true?
|
426 |
+
|
427 |
+
indices, indptr = _safe_downcast_indices(A)
|
428 |
+
|
429 |
+
_options = dict(DiagPivotThresh=diag_pivot_thresh, ColPerm=permc_spec,
|
430 |
+
PanelSize=panel_size, Relax=relax)
|
431 |
+
if options is not None:
|
432 |
+
_options.update(options)
|
433 |
+
|
434 |
+
# Ensure that no column permutations are applied
|
435 |
+
if (_options["ColPerm"] == "NATURAL"):
|
436 |
+
_options["SymmetricMode"] = True
|
437 |
+
|
438 |
+
return _superlu.gstrf(N, A.nnz, A.data, indices, indptr,
|
439 |
+
csc_construct_func=csc_construct_func,
|
440 |
+
ilu=False, options=_options)
|
441 |
+
|
442 |
+
|
443 |
+
def spilu(A, drop_tol=None, fill_factor=None, drop_rule=None, permc_spec=None,
|
444 |
+
diag_pivot_thresh=None, relax=None, panel_size=None, options=None):
|
445 |
+
"""
|
446 |
+
Compute an incomplete LU decomposition for a sparse, square matrix.
|
447 |
+
|
448 |
+
The resulting object is an approximation to the inverse of `A`.
|
449 |
+
|
450 |
+
Parameters
|
451 |
+
----------
|
452 |
+
A : (N, N) array_like
|
453 |
+
Sparse matrix to factorize. Most efficient when provided in CSC format.
|
454 |
+
Other formats will be converted to CSC before factorization.
|
455 |
+
drop_tol : float, optional
|
456 |
+
Drop tolerance (0 <= tol <= 1) for an incomplete LU decomposition.
|
457 |
+
(default: 1e-4)
|
458 |
+
fill_factor : float, optional
|
459 |
+
Specifies the fill ratio upper bound (>= 1.0) for ILU. (default: 10)
|
460 |
+
drop_rule : str, optional
|
461 |
+
Comma-separated string of drop rules to use.
|
462 |
+
Available rules: ``basic``, ``prows``, ``column``, ``area``,
|
463 |
+
``secondary``, ``dynamic``, ``interp``. (Default: ``basic,area``)
|
464 |
+
|
465 |
+
See SuperLU documentation for details.
|
466 |
+
|
467 |
+
Remaining other options
|
468 |
+
Same as for `splu`
|
469 |
+
|
470 |
+
Returns
|
471 |
+
-------
|
472 |
+
invA_approx : scipy.sparse.linalg.SuperLU
|
473 |
+
Object, which has a ``solve`` method.
|
474 |
+
|
475 |
+
See also
|
476 |
+
--------
|
477 |
+
splu : complete LU decomposition
|
478 |
+
|
479 |
+
Notes
|
480 |
+
-----
|
481 |
+
To improve the better approximation to the inverse, you may need to
|
482 |
+
increase `fill_factor` AND decrease `drop_tol`.
|
483 |
+
|
484 |
+
This function uses the SuperLU library.
|
485 |
+
|
486 |
+
Examples
|
487 |
+
--------
|
488 |
+
>>> import numpy as np
|
489 |
+
>>> from scipy.sparse import csc_matrix
|
490 |
+
>>> from scipy.sparse.linalg import spilu
|
491 |
+
>>> A = csc_matrix([[1., 0., 0.], [5., 0., 2.], [0., -1., 0.]], dtype=float)
|
492 |
+
>>> B = spilu(A)
|
493 |
+
>>> x = np.array([1., 2., 3.], dtype=float)
|
494 |
+
>>> B.solve(x)
|
495 |
+
array([ 1. , -3. , -1.5])
|
496 |
+
>>> A.dot(B.solve(x))
|
497 |
+
array([ 1., 2., 3.])
|
498 |
+
>>> B.solve(A.dot(x))
|
499 |
+
array([ 1., 2., 3.])
|
500 |
+
"""
|
501 |
+
|
502 |
+
if is_pydata_spmatrix(A):
|
503 |
+
def csc_construct_func(*a, cls=type(A)):
|
504 |
+
return cls.from_scipy_sparse(csc_matrix(*a))
|
505 |
+
A = A.to_scipy_sparse().tocsc()
|
506 |
+
else:
|
507 |
+
csc_construct_func = csc_matrix
|
508 |
+
|
509 |
+
if not (issparse(A) and A.format == "csc"):
|
510 |
+
A = csc_matrix(A)
|
511 |
+
warn('spilu converted its input to CSC format',
|
512 |
+
SparseEfficiencyWarning, stacklevel=2)
|
513 |
+
|
514 |
+
# sum duplicates for non-canonical format
|
515 |
+
A.sum_duplicates()
|
516 |
+
A = A._asfptype() # upcast to a floating point format
|
517 |
+
|
518 |
+
M, N = A.shape
|
519 |
+
if (M != N):
|
520 |
+
raise ValueError("can only factor square matrices") # is this true?
|
521 |
+
|
522 |
+
indices, indptr = _safe_downcast_indices(A)
|
523 |
+
|
524 |
+
_options = dict(ILU_DropRule=drop_rule, ILU_DropTol=drop_tol,
|
525 |
+
ILU_FillFactor=fill_factor,
|
526 |
+
DiagPivotThresh=diag_pivot_thresh, ColPerm=permc_spec,
|
527 |
+
PanelSize=panel_size, Relax=relax)
|
528 |
+
if options is not None:
|
529 |
+
_options.update(options)
|
530 |
+
|
531 |
+
# Ensure that no column permutations are applied
|
532 |
+
if (_options["ColPerm"] == "NATURAL"):
|
533 |
+
_options["SymmetricMode"] = True
|
534 |
+
|
535 |
+
return _superlu.gstrf(N, A.nnz, A.data, indices, indptr,
|
536 |
+
csc_construct_func=csc_construct_func,
|
537 |
+
ilu=True, options=_options)
|
538 |
+
|
539 |
+
|
540 |
+
def factorized(A):
|
541 |
+
"""
|
542 |
+
Return a function for solving a sparse linear system, with A pre-factorized.
|
543 |
+
|
544 |
+
Parameters
|
545 |
+
----------
|
546 |
+
A : (N, N) array_like
|
547 |
+
Input. A in CSC format is most efficient. A CSR format matrix will
|
548 |
+
be converted to CSC before factorization.
|
549 |
+
|
550 |
+
Returns
|
551 |
+
-------
|
552 |
+
solve : callable
|
553 |
+
To solve the linear system of equations given in `A`, the `solve`
|
554 |
+
callable should be passed an ndarray of shape (N,).
|
555 |
+
|
556 |
+
Examples
|
557 |
+
--------
|
558 |
+
>>> import numpy as np
|
559 |
+
>>> from scipy.sparse.linalg import factorized
|
560 |
+
>>> from scipy.sparse import csc_matrix
|
561 |
+
>>> A = np.array([[ 3. , 2. , -1. ],
|
562 |
+
... [ 2. , -2. , 4. ],
|
563 |
+
... [-1. , 0.5, -1. ]])
|
564 |
+
>>> solve = factorized(csc_matrix(A)) # Makes LU decomposition.
|
565 |
+
>>> rhs1 = np.array([1, -2, 0])
|
566 |
+
>>> solve(rhs1) # Uses the LU factors.
|
567 |
+
array([ 1., -2., -2.])
|
568 |
+
|
569 |
+
"""
|
570 |
+
if is_pydata_spmatrix(A):
|
571 |
+
A = A.to_scipy_sparse().tocsc()
|
572 |
+
|
573 |
+
if useUmfpack:
|
574 |
+
if noScikit:
|
575 |
+
raise RuntimeError('Scikits.umfpack not installed.')
|
576 |
+
|
577 |
+
if not (issparse(A) and A.format == "csc"):
|
578 |
+
A = csc_matrix(A)
|
579 |
+
warn('splu converted its input to CSC format',
|
580 |
+
SparseEfficiencyWarning, stacklevel=2)
|
581 |
+
|
582 |
+
A = A._asfptype() # upcast to a floating point format
|
583 |
+
|
584 |
+
if A.dtype.char not in 'dD':
|
585 |
+
raise ValueError("convert matrix data to double, please, using"
|
586 |
+
" .astype(), or set linsolve.useUmfpack = False")
|
587 |
+
|
588 |
+
umf_family, A = _get_umf_family(A)
|
589 |
+
umf = umfpack.UmfpackContext(umf_family)
|
590 |
+
|
591 |
+
# Make LU decomposition.
|
592 |
+
umf.numeric(A)
|
593 |
+
|
594 |
+
def solve(b):
|
595 |
+
with np.errstate(divide="ignore", invalid="ignore"):
|
596 |
+
# Ignoring warnings with numpy >= 1.23.0, see gh-16523
|
597 |
+
result = umf.solve(umfpack.UMFPACK_A, A, b, autoTranspose=True)
|
598 |
+
|
599 |
+
return result
|
600 |
+
|
601 |
+
return solve
|
602 |
+
else:
|
603 |
+
return splu(A).solve
|
604 |
+
|
605 |
+
|
606 |
+
def spsolve_triangular(A, b, lower=True, overwrite_A=False, overwrite_b=False,
|
607 |
+
unit_diagonal=False):
|
608 |
+
"""
|
609 |
+
Solve the equation ``A x = b`` for `x`, assuming A is a triangular matrix.
|
610 |
+
|
611 |
+
Parameters
|
612 |
+
----------
|
613 |
+
A : (M, M) sparse matrix
|
614 |
+
A sparse square triangular matrix. Should be in CSR format.
|
615 |
+
b : (M,) or (M, N) array_like
|
616 |
+
Right-hand side matrix in ``A x = b``
|
617 |
+
lower : bool, optional
|
618 |
+
Whether `A` is a lower or upper triangular matrix.
|
619 |
+
Default is lower triangular matrix.
|
620 |
+
overwrite_A : bool, optional
|
621 |
+
Allow changing `A`. The indices of `A` are going to be sorted and zero
|
622 |
+
entries are going to be removed.
|
623 |
+
Enabling gives a performance gain. Default is False.
|
624 |
+
overwrite_b : bool, optional
|
625 |
+
Allow overwriting data in `b`.
|
626 |
+
Enabling gives a performance gain. Default is False.
|
627 |
+
If `overwrite_b` is True, it should be ensured that
|
628 |
+
`b` has an appropriate dtype to be able to store the result.
|
629 |
+
unit_diagonal : bool, optional
|
630 |
+
If True, diagonal elements of `a` are assumed to be 1 and will not be
|
631 |
+
referenced.
|
632 |
+
|
633 |
+
.. versionadded:: 1.4.0
|
634 |
+
|
635 |
+
Returns
|
636 |
+
-------
|
637 |
+
x : (M,) or (M, N) ndarray
|
638 |
+
Solution to the system ``A x = b``. Shape of return matches shape
|
639 |
+
of `b`.
|
640 |
+
|
641 |
+
Raises
|
642 |
+
------
|
643 |
+
LinAlgError
|
644 |
+
If `A` is singular or not triangular.
|
645 |
+
ValueError
|
646 |
+
If shape of `A` or shape of `b` do not match the requirements.
|
647 |
+
|
648 |
+
Notes
|
649 |
+
-----
|
650 |
+
.. versionadded:: 0.19.0
|
651 |
+
|
652 |
+
Examples
|
653 |
+
--------
|
654 |
+
>>> import numpy as np
|
655 |
+
>>> from scipy.sparse import csr_matrix
|
656 |
+
>>> from scipy.sparse.linalg import spsolve_triangular
|
657 |
+
>>> A = csr_matrix([[3, 0, 0], [1, -1, 0], [2, 0, 1]], dtype=float)
|
658 |
+
>>> B = np.array([[2, 0], [-1, 0], [2, 0]], dtype=float)
|
659 |
+
>>> x = spsolve_triangular(A, B)
|
660 |
+
>>> np.allclose(A.dot(x), B)
|
661 |
+
True
|
662 |
+
"""
|
663 |
+
|
664 |
+
if is_pydata_spmatrix(A):
|
665 |
+
A = A.to_scipy_sparse().tocsr()
|
666 |
+
|
667 |
+
# Check the input for correct type and format.
|
668 |
+
if not (issparse(A) and A.format == "csr"):
|
669 |
+
warn('CSR matrix format is required. Converting to CSR matrix.',
|
670 |
+
SparseEfficiencyWarning, stacklevel=2)
|
671 |
+
A = csr_matrix(A)
|
672 |
+
elif not overwrite_A:
|
673 |
+
A = A.copy()
|
674 |
+
|
675 |
+
if A.shape[0] != A.shape[1]:
|
676 |
+
raise ValueError(
|
677 |
+
f'A must be a square matrix but its shape is {A.shape}.')
|
678 |
+
|
679 |
+
# sum duplicates for non-canonical format
|
680 |
+
A.sum_duplicates()
|
681 |
+
|
682 |
+
b = np.asanyarray(b)
|
683 |
+
|
684 |
+
if b.ndim not in [1, 2]:
|
685 |
+
raise ValueError(
|
686 |
+
f'b must have 1 or 2 dims but its shape is {b.shape}.')
|
687 |
+
if A.shape[0] != b.shape[0]:
|
688 |
+
raise ValueError(
|
689 |
+
'The size of the dimensions of A must be equal to '
|
690 |
+
'the size of the first dimension of b but the shape of A is '
|
691 |
+
f'{A.shape} and the shape of b is {b.shape}.'
|
692 |
+
)
|
693 |
+
|
694 |
+
# Init x as (a copy of) b.
|
695 |
+
x_dtype = np.result_type(A.data, b, np.float64)
|
696 |
+
if overwrite_b:
|
697 |
+
if np.can_cast(b.dtype, x_dtype, casting='same_kind'):
|
698 |
+
x = b
|
699 |
+
else:
|
700 |
+
raise ValueError(
|
701 |
+
f'Cannot overwrite b (dtype {b.dtype}) with result '
|
702 |
+
f'of type {x_dtype}.'
|
703 |
+
)
|
704 |
+
else:
|
705 |
+
x = b.astype(x_dtype, copy=True)
|
706 |
+
|
707 |
+
# Choose forward or backward order.
|
708 |
+
if lower:
|
709 |
+
row_indices = range(len(b))
|
710 |
+
else:
|
711 |
+
row_indices = range(len(b) - 1, -1, -1)
|
712 |
+
|
713 |
+
# Fill x iteratively.
|
714 |
+
for i in row_indices:
|
715 |
+
|
716 |
+
# Get indices for i-th row.
|
717 |
+
indptr_start = A.indptr[i]
|
718 |
+
indptr_stop = A.indptr[i + 1]
|
719 |
+
|
720 |
+
if lower:
|
721 |
+
A_diagonal_index_row_i = indptr_stop - 1
|
722 |
+
A_off_diagonal_indices_row_i = slice(indptr_start, indptr_stop - 1)
|
723 |
+
else:
|
724 |
+
A_diagonal_index_row_i = indptr_start
|
725 |
+
A_off_diagonal_indices_row_i = slice(indptr_start + 1, indptr_stop)
|
726 |
+
|
727 |
+
# Check regularity and triangularity of A.
|
728 |
+
if not unit_diagonal and (indptr_stop <= indptr_start
|
729 |
+
or A.indices[A_diagonal_index_row_i] < i):
|
730 |
+
raise LinAlgError(
|
731 |
+
f'A is singular: diagonal {i} is zero.')
|
732 |
+
if not unit_diagonal and A.indices[A_diagonal_index_row_i] > i:
|
733 |
+
raise LinAlgError(
|
734 |
+
'A is not triangular: A[{}, {}] is nonzero.'
|
735 |
+
''.format(i, A.indices[A_diagonal_index_row_i]))
|
736 |
+
|
737 |
+
# Incorporate off-diagonal entries.
|
738 |
+
A_column_indices_in_row_i = A.indices[A_off_diagonal_indices_row_i]
|
739 |
+
A_values_in_row_i = A.data[A_off_diagonal_indices_row_i]
|
740 |
+
x[i] -= np.dot(x[A_column_indices_in_row_i].T, A_values_in_row_i)
|
741 |
+
|
742 |
+
# Compute i-th entry of x.
|
743 |
+
if not unit_diagonal:
|
744 |
+
x[i] /= A.data[A_diagonal_index_row_i]
|
745 |
+
|
746 |
+
return x
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (198 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/tests/__pycache__/test_linsolve.cpython-310.pyc
ADDED
Binary file (26 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/tests/test_linsolve.py
ADDED
@@ -0,0 +1,805 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import threading
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
from numpy import array, finfo, arange, eye, all, unique, ones, dot
|
6 |
+
import numpy.random as random
|
7 |
+
from numpy.testing import (
|
8 |
+
assert_array_almost_equal, assert_almost_equal,
|
9 |
+
assert_equal, assert_array_equal, assert_, assert_allclose,
|
10 |
+
assert_warns, suppress_warnings)
|
11 |
+
import pytest
|
12 |
+
from pytest import raises as assert_raises
|
13 |
+
|
14 |
+
import scipy.linalg
|
15 |
+
from scipy.linalg import norm, inv
|
16 |
+
from scipy.sparse import (spdiags, SparseEfficiencyWarning, csc_matrix,
|
17 |
+
csr_matrix, identity, issparse, dok_matrix, lil_matrix, bsr_matrix)
|
18 |
+
from scipy.sparse.linalg import SuperLU
|
19 |
+
from scipy.sparse.linalg._dsolve import (spsolve, use_solver, splu, spilu,
|
20 |
+
MatrixRankWarning, _superlu, spsolve_triangular, factorized)
|
21 |
+
import scipy.sparse
|
22 |
+
|
23 |
+
from scipy._lib._testutils import check_free_memory
|
24 |
+
from scipy._lib._util import ComplexWarning
|
25 |
+
|
26 |
+
|
27 |
+
sup_sparse_efficiency = suppress_warnings()
|
28 |
+
sup_sparse_efficiency.filter(SparseEfficiencyWarning)
|
29 |
+
|
30 |
+
# scikits.umfpack is not a SciPy dependency but it is optionally used in
|
31 |
+
# dsolve, so check whether it's available
|
32 |
+
try:
|
33 |
+
import scikits.umfpack as umfpack
|
34 |
+
has_umfpack = True
|
35 |
+
except ImportError:
|
36 |
+
has_umfpack = False
|
37 |
+
|
38 |
+
def toarray(a):
|
39 |
+
if issparse(a):
|
40 |
+
return a.toarray()
|
41 |
+
else:
|
42 |
+
return a
|
43 |
+
|
44 |
+
|
45 |
+
def setup_bug_8278():
|
46 |
+
N = 2 ** 6
|
47 |
+
h = 1/N
|
48 |
+
Ah1D = scipy.sparse.diags([-1, 2, -1], [-1, 0, 1],
|
49 |
+
shape=(N-1, N-1))/(h**2)
|
50 |
+
eyeN = scipy.sparse.eye(N - 1)
|
51 |
+
A = (scipy.sparse.kron(eyeN, scipy.sparse.kron(eyeN, Ah1D))
|
52 |
+
+ scipy.sparse.kron(eyeN, scipy.sparse.kron(Ah1D, eyeN))
|
53 |
+
+ scipy.sparse.kron(Ah1D, scipy.sparse.kron(eyeN, eyeN)))
|
54 |
+
b = np.random.rand((N-1)**3)
|
55 |
+
return A, b
|
56 |
+
|
57 |
+
|
58 |
+
class TestFactorized:
|
59 |
+
def setup_method(self):
|
60 |
+
n = 5
|
61 |
+
d = arange(n) + 1
|
62 |
+
self.n = n
|
63 |
+
self.A = spdiags((d, 2*d, d[::-1]), (-3, 0, 5), n, n).tocsc()
|
64 |
+
random.seed(1234)
|
65 |
+
|
66 |
+
def _check_singular(self):
|
67 |
+
A = csc_matrix((5,5), dtype='d')
|
68 |
+
b = ones(5)
|
69 |
+
assert_array_almost_equal(0. * b, factorized(A)(b))
|
70 |
+
|
71 |
+
def _check_non_singular(self):
|
72 |
+
# Make a diagonal dominant, to make sure it is not singular
|
73 |
+
n = 5
|
74 |
+
a = csc_matrix(random.rand(n, n))
|
75 |
+
b = ones(n)
|
76 |
+
|
77 |
+
expected = splu(a).solve(b)
|
78 |
+
assert_array_almost_equal(factorized(a)(b), expected)
|
79 |
+
|
80 |
+
def test_singular_without_umfpack(self):
|
81 |
+
use_solver(useUmfpack=False)
|
82 |
+
with assert_raises(RuntimeError, match="Factor is exactly singular"):
|
83 |
+
self._check_singular()
|
84 |
+
|
85 |
+
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
|
86 |
+
def test_singular_with_umfpack(self):
|
87 |
+
use_solver(useUmfpack=True)
|
88 |
+
with suppress_warnings() as sup:
|
89 |
+
sup.filter(RuntimeWarning, "divide by zero encountered in double_scalars")
|
90 |
+
assert_warns(umfpack.UmfpackWarning, self._check_singular)
|
91 |
+
|
92 |
+
def test_non_singular_without_umfpack(self):
|
93 |
+
use_solver(useUmfpack=False)
|
94 |
+
self._check_non_singular()
|
95 |
+
|
96 |
+
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
|
97 |
+
def test_non_singular_with_umfpack(self):
|
98 |
+
use_solver(useUmfpack=True)
|
99 |
+
self._check_non_singular()
|
100 |
+
|
101 |
+
def test_cannot_factorize_nonsquare_matrix_without_umfpack(self):
|
102 |
+
use_solver(useUmfpack=False)
|
103 |
+
msg = "can only factor square matrices"
|
104 |
+
with assert_raises(ValueError, match=msg):
|
105 |
+
factorized(self.A[:, :4])
|
106 |
+
|
107 |
+
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
|
108 |
+
def test_factorizes_nonsquare_matrix_with_umfpack(self):
|
109 |
+
use_solver(useUmfpack=True)
|
110 |
+
# does not raise
|
111 |
+
factorized(self.A[:,:4])
|
112 |
+
|
113 |
+
def test_call_with_incorrectly_sized_matrix_without_umfpack(self):
|
114 |
+
use_solver(useUmfpack=False)
|
115 |
+
solve = factorized(self.A)
|
116 |
+
b = random.rand(4)
|
117 |
+
B = random.rand(4, 3)
|
118 |
+
BB = random.rand(self.n, 3, 9)
|
119 |
+
|
120 |
+
with assert_raises(ValueError, match="is of incompatible size"):
|
121 |
+
solve(b)
|
122 |
+
with assert_raises(ValueError, match="is of incompatible size"):
|
123 |
+
solve(B)
|
124 |
+
with assert_raises(ValueError,
|
125 |
+
match="object too deep for desired array"):
|
126 |
+
solve(BB)
|
127 |
+
|
128 |
+
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
|
129 |
+
def test_call_with_incorrectly_sized_matrix_with_umfpack(self):
|
130 |
+
use_solver(useUmfpack=True)
|
131 |
+
solve = factorized(self.A)
|
132 |
+
b = random.rand(4)
|
133 |
+
B = random.rand(4, 3)
|
134 |
+
BB = random.rand(self.n, 3, 9)
|
135 |
+
|
136 |
+
# does not raise
|
137 |
+
solve(b)
|
138 |
+
msg = "object too deep for desired array"
|
139 |
+
with assert_raises(ValueError, match=msg):
|
140 |
+
solve(B)
|
141 |
+
with assert_raises(ValueError, match=msg):
|
142 |
+
solve(BB)
|
143 |
+
|
144 |
+
def test_call_with_cast_to_complex_without_umfpack(self):
|
145 |
+
use_solver(useUmfpack=False)
|
146 |
+
solve = factorized(self.A)
|
147 |
+
b = random.rand(4)
|
148 |
+
for t in [np.complex64, np.complex128]:
|
149 |
+
with assert_raises(TypeError, match="Cannot cast array data"):
|
150 |
+
solve(b.astype(t))
|
151 |
+
|
152 |
+
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
|
153 |
+
def test_call_with_cast_to_complex_with_umfpack(self):
|
154 |
+
use_solver(useUmfpack=True)
|
155 |
+
solve = factorized(self.A)
|
156 |
+
b = random.rand(4)
|
157 |
+
for t in [np.complex64, np.complex128]:
|
158 |
+
assert_warns(ComplexWarning, solve, b.astype(t))
|
159 |
+
|
160 |
+
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
|
161 |
+
def test_assume_sorted_indices_flag(self):
|
162 |
+
# a sparse matrix with unsorted indices
|
163 |
+
unsorted_inds = np.array([2, 0, 1, 0])
|
164 |
+
data = np.array([10, 16, 5, 0.4])
|
165 |
+
indptr = np.array([0, 1, 2, 4])
|
166 |
+
A = csc_matrix((data, unsorted_inds, indptr), (3, 3))
|
167 |
+
b = ones(3)
|
168 |
+
|
169 |
+
# should raise when incorrectly assuming indices are sorted
|
170 |
+
use_solver(useUmfpack=True, assumeSortedIndices=True)
|
171 |
+
with assert_raises(RuntimeError,
|
172 |
+
match="UMFPACK_ERROR_invalid_matrix"):
|
173 |
+
factorized(A)
|
174 |
+
|
175 |
+
# should sort indices and succeed when not assuming indices are sorted
|
176 |
+
use_solver(useUmfpack=True, assumeSortedIndices=False)
|
177 |
+
expected = splu(A.copy()).solve(b)
|
178 |
+
|
179 |
+
assert_equal(A.has_sorted_indices, 0)
|
180 |
+
assert_array_almost_equal(factorized(A)(b), expected)
|
181 |
+
|
182 |
+
@pytest.mark.slow
|
183 |
+
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
|
184 |
+
def test_bug_8278(self):
|
185 |
+
check_free_memory(8000)
|
186 |
+
use_solver(useUmfpack=True)
|
187 |
+
A, b = setup_bug_8278()
|
188 |
+
A = A.tocsc()
|
189 |
+
f = factorized(A)
|
190 |
+
x = f(b)
|
191 |
+
assert_array_almost_equal(A @ x, b)
|
192 |
+
|
193 |
+
|
194 |
+
class TestLinsolve:
|
195 |
+
def setup_method(self):
|
196 |
+
use_solver(useUmfpack=False)
|
197 |
+
|
198 |
+
def test_singular(self):
|
199 |
+
A = csc_matrix((5,5), dtype='d')
|
200 |
+
b = array([1, 2, 3, 4, 5],dtype='d')
|
201 |
+
with suppress_warnings() as sup:
|
202 |
+
sup.filter(MatrixRankWarning, "Matrix is exactly singular")
|
203 |
+
x = spsolve(A, b)
|
204 |
+
assert_(not np.isfinite(x).any())
|
205 |
+
|
206 |
+
def test_singular_gh_3312(self):
|
207 |
+
# "Bad" test case that leads SuperLU to call LAPACK with invalid
|
208 |
+
# arguments. Check that it fails moderately gracefully.
|
209 |
+
ij = np.array([(17, 0), (17, 6), (17, 12), (10, 13)], dtype=np.int32)
|
210 |
+
v = np.array([0.284213, 0.94933781, 0.15767017, 0.38797296])
|
211 |
+
A = csc_matrix((v, ij.T), shape=(20, 20))
|
212 |
+
b = np.arange(20)
|
213 |
+
|
214 |
+
try:
|
215 |
+
# should either raise a runtime error or return value
|
216 |
+
# appropriate for singular input (which yields the warning)
|
217 |
+
with suppress_warnings() as sup:
|
218 |
+
sup.filter(MatrixRankWarning, "Matrix is exactly singular")
|
219 |
+
x = spsolve(A, b)
|
220 |
+
assert not np.isfinite(x).any()
|
221 |
+
except RuntimeError:
|
222 |
+
pass
|
223 |
+
|
224 |
+
@pytest.mark.parametrize('format', ['csc', 'csr'])
|
225 |
+
@pytest.mark.parametrize('idx_dtype', [np.int32, np.int64])
|
226 |
+
def test_twodiags(self, format: str, idx_dtype: np.dtype):
|
227 |
+
A = spdiags([[1, 2, 3, 4, 5], [6, 5, 8, 9, 10]], [0, 1], 5, 5,
|
228 |
+
format=format)
|
229 |
+
b = array([1, 2, 3, 4, 5])
|
230 |
+
|
231 |
+
# condition number of A
|
232 |
+
cond_A = norm(A.toarray(), 2) * norm(inv(A.toarray()), 2)
|
233 |
+
|
234 |
+
for t in ['f','d','F','D']:
|
235 |
+
eps = finfo(t).eps # floating point epsilon
|
236 |
+
b = b.astype(t)
|
237 |
+
Asp = A.astype(t)
|
238 |
+
Asp.indices = Asp.indices.astype(idx_dtype, copy=False)
|
239 |
+
Asp.indptr = Asp.indptr.astype(idx_dtype, copy=False)
|
240 |
+
|
241 |
+
x = spsolve(Asp, b)
|
242 |
+
assert_(norm(b - Asp@x) < 10 * cond_A * eps)
|
243 |
+
|
244 |
+
def test_bvector_smoketest(self):
|
245 |
+
Adense = array([[0., 1., 1.],
|
246 |
+
[1., 0., 1.],
|
247 |
+
[0., 0., 1.]])
|
248 |
+
As = csc_matrix(Adense)
|
249 |
+
random.seed(1234)
|
250 |
+
x = random.randn(3)
|
251 |
+
b = As@x
|
252 |
+
x2 = spsolve(As, b)
|
253 |
+
|
254 |
+
assert_array_almost_equal(x, x2)
|
255 |
+
|
256 |
+
def test_bmatrix_smoketest(self):
|
257 |
+
Adense = array([[0., 1., 1.],
|
258 |
+
[1., 0., 1.],
|
259 |
+
[0., 0., 1.]])
|
260 |
+
As = csc_matrix(Adense)
|
261 |
+
random.seed(1234)
|
262 |
+
x = random.randn(3, 4)
|
263 |
+
Bdense = As.dot(x)
|
264 |
+
Bs = csc_matrix(Bdense)
|
265 |
+
x2 = spsolve(As, Bs)
|
266 |
+
assert_array_almost_equal(x, x2.toarray())
|
267 |
+
|
268 |
+
@sup_sparse_efficiency
|
269 |
+
def test_non_square(self):
|
270 |
+
# A is not square.
|
271 |
+
A = ones((3, 4))
|
272 |
+
b = ones((4, 1))
|
273 |
+
assert_raises(ValueError, spsolve, A, b)
|
274 |
+
# A2 and b2 have incompatible shapes.
|
275 |
+
A2 = csc_matrix(eye(3))
|
276 |
+
b2 = array([1.0, 2.0])
|
277 |
+
assert_raises(ValueError, spsolve, A2, b2)
|
278 |
+
|
279 |
+
@sup_sparse_efficiency
|
280 |
+
def test_example_comparison(self):
|
281 |
+
row = array([0,0,1,2,2,2])
|
282 |
+
col = array([0,2,2,0,1,2])
|
283 |
+
data = array([1,2,3,-4,5,6])
|
284 |
+
sM = csr_matrix((data,(row,col)), shape=(3,3), dtype=float)
|
285 |
+
M = sM.toarray()
|
286 |
+
|
287 |
+
row = array([0,0,1,1,0,0])
|
288 |
+
col = array([0,2,1,1,0,0])
|
289 |
+
data = array([1,1,1,1,1,1])
|
290 |
+
sN = csr_matrix((data, (row,col)), shape=(3,3), dtype=float)
|
291 |
+
N = sN.toarray()
|
292 |
+
|
293 |
+
sX = spsolve(sM, sN)
|
294 |
+
X = scipy.linalg.solve(M, N)
|
295 |
+
|
296 |
+
assert_array_almost_equal(X, sX.toarray())
|
297 |
+
|
298 |
+
@sup_sparse_efficiency
|
299 |
+
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
|
300 |
+
def test_shape_compatibility(self):
|
301 |
+
use_solver(useUmfpack=True)
|
302 |
+
A = csc_matrix([[1., 0], [0, 2]])
|
303 |
+
bs = [
|
304 |
+
[1, 6],
|
305 |
+
array([1, 6]),
|
306 |
+
[[1], [6]],
|
307 |
+
array([[1], [6]]),
|
308 |
+
csc_matrix([[1], [6]]),
|
309 |
+
csr_matrix([[1], [6]]),
|
310 |
+
dok_matrix([[1], [6]]),
|
311 |
+
bsr_matrix([[1], [6]]),
|
312 |
+
array([[1., 2., 3.], [6., 8., 10.]]),
|
313 |
+
csc_matrix([[1., 2., 3.], [6., 8., 10.]]),
|
314 |
+
csr_matrix([[1., 2., 3.], [6., 8., 10.]]),
|
315 |
+
dok_matrix([[1., 2., 3.], [6., 8., 10.]]),
|
316 |
+
bsr_matrix([[1., 2., 3.], [6., 8., 10.]]),
|
317 |
+
]
|
318 |
+
|
319 |
+
for b in bs:
|
320 |
+
x = np.linalg.solve(A.toarray(), toarray(b))
|
321 |
+
for spmattype in [csc_matrix, csr_matrix, dok_matrix, lil_matrix]:
|
322 |
+
x1 = spsolve(spmattype(A), b, use_umfpack=True)
|
323 |
+
x2 = spsolve(spmattype(A), b, use_umfpack=False)
|
324 |
+
|
325 |
+
# check solution
|
326 |
+
if x.ndim == 2 and x.shape[1] == 1:
|
327 |
+
# interprets also these as "vectors"
|
328 |
+
x = x.ravel()
|
329 |
+
|
330 |
+
assert_array_almost_equal(toarray(x1), x,
|
331 |
+
err_msg=repr((b, spmattype, 1)))
|
332 |
+
assert_array_almost_equal(toarray(x2), x,
|
333 |
+
err_msg=repr((b, spmattype, 2)))
|
334 |
+
|
335 |
+
# dense vs. sparse output ("vectors" are always dense)
|
336 |
+
if issparse(b) and x.ndim > 1:
|
337 |
+
assert_(issparse(x1), repr((b, spmattype, 1)))
|
338 |
+
assert_(issparse(x2), repr((b, spmattype, 2)))
|
339 |
+
else:
|
340 |
+
assert_(isinstance(x1, np.ndarray), repr((b, spmattype, 1)))
|
341 |
+
assert_(isinstance(x2, np.ndarray), repr((b, spmattype, 2)))
|
342 |
+
|
343 |
+
# check output shape
|
344 |
+
if x.ndim == 1:
|
345 |
+
# "vector"
|
346 |
+
assert_equal(x1.shape, (A.shape[1],))
|
347 |
+
assert_equal(x2.shape, (A.shape[1],))
|
348 |
+
else:
|
349 |
+
# "matrix"
|
350 |
+
assert_equal(x1.shape, x.shape)
|
351 |
+
assert_equal(x2.shape, x.shape)
|
352 |
+
|
353 |
+
A = csc_matrix((3, 3))
|
354 |
+
b = csc_matrix((1, 3))
|
355 |
+
assert_raises(ValueError, spsolve, A, b)
|
356 |
+
|
357 |
+
@sup_sparse_efficiency
|
358 |
+
def test_ndarray_support(self):
|
359 |
+
A = array([[1., 2.], [2., 0.]])
|
360 |
+
x = array([[1., 1.], [0.5, -0.5]])
|
361 |
+
b = array([[2., 0.], [2., 2.]])
|
362 |
+
|
363 |
+
assert_array_almost_equal(x, spsolve(A, b))
|
364 |
+
|
365 |
+
def test_gssv_badinput(self):
|
366 |
+
N = 10
|
367 |
+
d = arange(N) + 1.0
|
368 |
+
A = spdiags((d, 2*d, d[::-1]), (-3, 0, 5), N, N)
|
369 |
+
|
370 |
+
for spmatrix in (csc_matrix, csr_matrix):
|
371 |
+
A = spmatrix(A)
|
372 |
+
b = np.arange(N)
|
373 |
+
|
374 |
+
def not_c_contig(x):
|
375 |
+
return x.repeat(2)[::2]
|
376 |
+
|
377 |
+
def not_1dim(x):
|
378 |
+
return x[:,None]
|
379 |
+
|
380 |
+
def bad_type(x):
|
381 |
+
return x.astype(bool)
|
382 |
+
|
383 |
+
def too_short(x):
|
384 |
+
return x[:-1]
|
385 |
+
|
386 |
+
badops = [not_c_contig, not_1dim, bad_type, too_short]
|
387 |
+
|
388 |
+
for badop in badops:
|
389 |
+
msg = f"{spmatrix!r} {badop!r}"
|
390 |
+
# Not C-contiguous
|
391 |
+
assert_raises((ValueError, TypeError), _superlu.gssv,
|
392 |
+
N, A.nnz, badop(A.data), A.indices, A.indptr,
|
393 |
+
b, int(spmatrix == csc_matrix), err_msg=msg)
|
394 |
+
assert_raises((ValueError, TypeError), _superlu.gssv,
|
395 |
+
N, A.nnz, A.data, badop(A.indices), A.indptr,
|
396 |
+
b, int(spmatrix == csc_matrix), err_msg=msg)
|
397 |
+
assert_raises((ValueError, TypeError), _superlu.gssv,
|
398 |
+
N, A.nnz, A.data, A.indices, badop(A.indptr),
|
399 |
+
b, int(spmatrix == csc_matrix), err_msg=msg)
|
400 |
+
|
401 |
+
def test_sparsity_preservation(self):
|
402 |
+
ident = csc_matrix([
|
403 |
+
[1, 0, 0],
|
404 |
+
[0, 1, 0],
|
405 |
+
[0, 0, 1]])
|
406 |
+
b = csc_matrix([
|
407 |
+
[0, 1],
|
408 |
+
[1, 0],
|
409 |
+
[0, 0]])
|
410 |
+
x = spsolve(ident, b)
|
411 |
+
assert_equal(ident.nnz, 3)
|
412 |
+
assert_equal(b.nnz, 2)
|
413 |
+
assert_equal(x.nnz, 2)
|
414 |
+
assert_allclose(x.A, b.A, atol=1e-12, rtol=1e-12)
|
415 |
+
|
416 |
+
def test_dtype_cast(self):
|
417 |
+
A_real = scipy.sparse.csr_matrix([[1, 2, 0],
|
418 |
+
[0, 0, 3],
|
419 |
+
[4, 0, 5]])
|
420 |
+
A_complex = scipy.sparse.csr_matrix([[1, 2, 0],
|
421 |
+
[0, 0, 3],
|
422 |
+
[4, 0, 5 + 1j]])
|
423 |
+
b_real = np.array([1,1,1])
|
424 |
+
b_complex = np.array([1,1,1]) + 1j*np.array([1,1,1])
|
425 |
+
x = spsolve(A_real, b_real)
|
426 |
+
assert_(np.issubdtype(x.dtype, np.floating))
|
427 |
+
x = spsolve(A_real, b_complex)
|
428 |
+
assert_(np.issubdtype(x.dtype, np.complexfloating))
|
429 |
+
x = spsolve(A_complex, b_real)
|
430 |
+
assert_(np.issubdtype(x.dtype, np.complexfloating))
|
431 |
+
x = spsolve(A_complex, b_complex)
|
432 |
+
assert_(np.issubdtype(x.dtype, np.complexfloating))
|
433 |
+
|
434 |
+
@pytest.mark.slow
|
435 |
+
@pytest.mark.skipif(not has_umfpack, reason="umfpack not available")
|
436 |
+
def test_bug_8278(self):
|
437 |
+
check_free_memory(8000)
|
438 |
+
use_solver(useUmfpack=True)
|
439 |
+
A, b = setup_bug_8278()
|
440 |
+
x = spsolve(A, b)
|
441 |
+
assert_array_almost_equal(A @ x, b)
|
442 |
+
|
443 |
+
|
444 |
+
class TestSplu:
|
445 |
+
def setup_method(self):
|
446 |
+
use_solver(useUmfpack=False)
|
447 |
+
n = 40
|
448 |
+
d = arange(n) + 1
|
449 |
+
self.n = n
|
450 |
+
self.A = spdiags((d, 2*d, d[::-1]), (-3, 0, 5), n, n, format='csc')
|
451 |
+
random.seed(1234)
|
452 |
+
|
453 |
+
def _smoketest(self, spxlu, check, dtype, idx_dtype):
|
454 |
+
if np.issubdtype(dtype, np.complexfloating):
|
455 |
+
A = self.A + 1j*self.A.T
|
456 |
+
else:
|
457 |
+
A = self.A
|
458 |
+
|
459 |
+
A = A.astype(dtype)
|
460 |
+
A.indices = A.indices.astype(idx_dtype, copy=False)
|
461 |
+
A.indptr = A.indptr.astype(idx_dtype, copy=False)
|
462 |
+
lu = spxlu(A)
|
463 |
+
|
464 |
+
rng = random.RandomState(1234)
|
465 |
+
|
466 |
+
# Input shapes
|
467 |
+
for k in [None, 1, 2, self.n, self.n+2]:
|
468 |
+
msg = f"k={k!r}"
|
469 |
+
|
470 |
+
if k is None:
|
471 |
+
b = rng.rand(self.n)
|
472 |
+
else:
|
473 |
+
b = rng.rand(self.n, k)
|
474 |
+
|
475 |
+
if np.issubdtype(dtype, np.complexfloating):
|
476 |
+
b = b + 1j*rng.rand(*b.shape)
|
477 |
+
b = b.astype(dtype)
|
478 |
+
|
479 |
+
x = lu.solve(b)
|
480 |
+
check(A, b, x, msg)
|
481 |
+
|
482 |
+
x = lu.solve(b, 'T')
|
483 |
+
check(A.T, b, x, msg)
|
484 |
+
|
485 |
+
x = lu.solve(b, 'H')
|
486 |
+
check(A.T.conj(), b, x, msg)
|
487 |
+
|
488 |
+
@sup_sparse_efficiency
|
489 |
+
def test_splu_smoketest(self):
|
490 |
+
self._internal_test_splu_smoketest()
|
491 |
+
|
492 |
+
def _internal_test_splu_smoketest(self):
|
493 |
+
# Check that splu works at all
|
494 |
+
def check(A, b, x, msg=""):
|
495 |
+
eps = np.finfo(A.dtype).eps
|
496 |
+
r = A @ x
|
497 |
+
assert_(abs(r - b).max() < 1e3*eps, msg)
|
498 |
+
|
499 |
+
for dtype in [np.float32, np.float64, np.complex64, np.complex128]:
|
500 |
+
for idx_dtype in [np.int32, np.int64]:
|
501 |
+
self._smoketest(splu, check, dtype, idx_dtype)
|
502 |
+
|
503 |
+
@sup_sparse_efficiency
|
504 |
+
def test_spilu_smoketest(self):
|
505 |
+
self._internal_test_spilu_smoketest()
|
506 |
+
|
507 |
+
def _internal_test_spilu_smoketest(self):
|
508 |
+
errors = []
|
509 |
+
|
510 |
+
def check(A, b, x, msg=""):
|
511 |
+
r = A @ x
|
512 |
+
err = abs(r - b).max()
|
513 |
+
assert_(err < 1e-2, msg)
|
514 |
+
if b.dtype in (np.float64, np.complex128):
|
515 |
+
errors.append(err)
|
516 |
+
|
517 |
+
for dtype in [np.float32, np.float64, np.complex64, np.complex128]:
|
518 |
+
for idx_dtype in [np.int32, np.int64]:
|
519 |
+
self._smoketest(spilu, check, dtype, idx_dtype)
|
520 |
+
|
521 |
+
assert_(max(errors) > 1e-5)
|
522 |
+
|
523 |
+
@sup_sparse_efficiency
|
524 |
+
def test_spilu_drop_rule(self):
|
525 |
+
# Test passing in the drop_rule argument to spilu.
|
526 |
+
A = identity(2)
|
527 |
+
|
528 |
+
rules = [
|
529 |
+
b'basic,area'.decode('ascii'), # unicode
|
530 |
+
b'basic,area', # ascii
|
531 |
+
[b'basic', b'area'.decode('ascii')]
|
532 |
+
]
|
533 |
+
for rule in rules:
|
534 |
+
# Argument should be accepted
|
535 |
+
assert_(isinstance(spilu(A, drop_rule=rule), SuperLU))
|
536 |
+
|
537 |
+
def test_splu_nnz0(self):
|
538 |
+
A = csc_matrix((5,5), dtype='d')
|
539 |
+
assert_raises(RuntimeError, splu, A)
|
540 |
+
|
541 |
+
def test_spilu_nnz0(self):
|
542 |
+
A = csc_matrix((5,5), dtype='d')
|
543 |
+
assert_raises(RuntimeError, spilu, A)
|
544 |
+
|
545 |
+
def test_splu_basic(self):
|
546 |
+
# Test basic splu functionality.
|
547 |
+
n = 30
|
548 |
+
rng = random.RandomState(12)
|
549 |
+
a = rng.rand(n, n)
|
550 |
+
a[a < 0.95] = 0
|
551 |
+
# First test with a singular matrix
|
552 |
+
a[:, 0] = 0
|
553 |
+
a_ = csc_matrix(a)
|
554 |
+
# Matrix is exactly singular
|
555 |
+
assert_raises(RuntimeError, splu, a_)
|
556 |
+
|
557 |
+
# Make a diagonal dominant, to make sure it is not singular
|
558 |
+
a += 4*eye(n)
|
559 |
+
a_ = csc_matrix(a)
|
560 |
+
lu = splu(a_)
|
561 |
+
b = ones(n)
|
562 |
+
x = lu.solve(b)
|
563 |
+
assert_almost_equal(dot(a, x), b)
|
564 |
+
|
565 |
+
def test_splu_perm(self):
|
566 |
+
# Test the permutation vectors exposed by splu.
|
567 |
+
n = 30
|
568 |
+
a = random.random((n, n))
|
569 |
+
a[a < 0.95] = 0
|
570 |
+
# Make a diagonal dominant, to make sure it is not singular
|
571 |
+
a += 4*eye(n)
|
572 |
+
a_ = csc_matrix(a)
|
573 |
+
lu = splu(a_)
|
574 |
+
# Check that the permutation indices do belong to [0, n-1].
|
575 |
+
for perm in (lu.perm_r, lu.perm_c):
|
576 |
+
assert_(all(perm > -1))
|
577 |
+
assert_(all(perm < n))
|
578 |
+
assert_equal(len(unique(perm)), len(perm))
|
579 |
+
|
580 |
+
# Now make a symmetric, and test that the two permutation vectors are
|
581 |
+
# the same
|
582 |
+
# Note: a += a.T relies on undefined behavior.
|
583 |
+
a = a + a.T
|
584 |
+
a_ = csc_matrix(a)
|
585 |
+
lu = splu(a_)
|
586 |
+
assert_array_equal(lu.perm_r, lu.perm_c)
|
587 |
+
|
588 |
+
@pytest.mark.parametrize("splu_fun, rtol", [(splu, 1e-7), (spilu, 1e-1)])
|
589 |
+
def test_natural_permc(self, splu_fun, rtol):
|
590 |
+
# Test that the "NATURAL" permc_spec does not permute the matrix
|
591 |
+
np.random.seed(42)
|
592 |
+
n = 500
|
593 |
+
p = 0.01
|
594 |
+
A = scipy.sparse.random(n, n, p)
|
595 |
+
x = np.random.rand(n)
|
596 |
+
# Make A diagonal dominant to make sure it is not singular
|
597 |
+
A += (n+1)*scipy.sparse.identity(n)
|
598 |
+
A_ = csc_matrix(A)
|
599 |
+
b = A_ @ x
|
600 |
+
|
601 |
+
# without permc_spec, permutation is not identity
|
602 |
+
lu = splu_fun(A_)
|
603 |
+
assert_(np.any(lu.perm_c != np.arange(n)))
|
604 |
+
|
605 |
+
# with permc_spec="NATURAL", permutation is identity
|
606 |
+
lu = splu_fun(A_, permc_spec="NATURAL")
|
607 |
+
assert_array_equal(lu.perm_c, np.arange(n))
|
608 |
+
|
609 |
+
# Also, lu decomposition is valid
|
610 |
+
x2 = lu.solve(b)
|
611 |
+
assert_allclose(x, x2, rtol=rtol)
|
612 |
+
|
613 |
+
@pytest.mark.skipif(not hasattr(sys, 'getrefcount'), reason="no sys.getrefcount")
|
614 |
+
def test_lu_refcount(self):
|
615 |
+
# Test that we are keeping track of the reference count with splu.
|
616 |
+
n = 30
|
617 |
+
a = random.random((n, n))
|
618 |
+
a[a < 0.95] = 0
|
619 |
+
# Make a diagonal dominant, to make sure it is not singular
|
620 |
+
a += 4*eye(n)
|
621 |
+
a_ = csc_matrix(a)
|
622 |
+
lu = splu(a_)
|
623 |
+
|
624 |
+
# And now test that we don't have a refcount bug
|
625 |
+
rc = sys.getrefcount(lu)
|
626 |
+
for attr in ('perm_r', 'perm_c'):
|
627 |
+
perm = getattr(lu, attr)
|
628 |
+
assert_equal(sys.getrefcount(lu), rc + 1)
|
629 |
+
del perm
|
630 |
+
assert_equal(sys.getrefcount(lu), rc)
|
631 |
+
|
632 |
+
def test_bad_inputs(self):
|
633 |
+
A = self.A.tocsc()
|
634 |
+
|
635 |
+
assert_raises(ValueError, splu, A[:,:4])
|
636 |
+
assert_raises(ValueError, spilu, A[:,:4])
|
637 |
+
|
638 |
+
for lu in [splu(A), spilu(A)]:
|
639 |
+
b = random.rand(42)
|
640 |
+
B = random.rand(42, 3)
|
641 |
+
BB = random.rand(self.n, 3, 9)
|
642 |
+
assert_raises(ValueError, lu.solve, b)
|
643 |
+
assert_raises(ValueError, lu.solve, B)
|
644 |
+
assert_raises(ValueError, lu.solve, BB)
|
645 |
+
assert_raises(TypeError, lu.solve,
|
646 |
+
b.astype(np.complex64))
|
647 |
+
assert_raises(TypeError, lu.solve,
|
648 |
+
b.astype(np.complex128))
|
649 |
+
|
650 |
+
@sup_sparse_efficiency
|
651 |
+
def test_superlu_dlamch_i386_nan(self):
|
652 |
+
# SuperLU 4.3 calls some functions returning floats without
|
653 |
+
# declaring them. On i386@linux call convention, this fails to
|
654 |
+
# clear floating point registers after call. As a result, NaN
|
655 |
+
# can appear in the next floating point operation made.
|
656 |
+
#
|
657 |
+
# Here's a test case that triggered the issue.
|
658 |
+
n = 8
|
659 |
+
d = np.arange(n) + 1
|
660 |
+
A = spdiags((d, 2*d, d[::-1]), (-3, 0, 5), n, n)
|
661 |
+
A = A.astype(np.float32)
|
662 |
+
spilu(A)
|
663 |
+
A = A + 1j*A
|
664 |
+
B = A.A
|
665 |
+
assert_(not np.isnan(B).any())
|
666 |
+
|
667 |
+
@sup_sparse_efficiency
|
668 |
+
def test_lu_attr(self):
|
669 |
+
|
670 |
+
def check(dtype, complex_2=False):
|
671 |
+
A = self.A.astype(dtype)
|
672 |
+
|
673 |
+
if complex_2:
|
674 |
+
A = A + 1j*A.T
|
675 |
+
|
676 |
+
n = A.shape[0]
|
677 |
+
lu = splu(A)
|
678 |
+
|
679 |
+
# Check that the decomposition is as advertised
|
680 |
+
|
681 |
+
Pc = np.zeros((n, n))
|
682 |
+
Pc[np.arange(n), lu.perm_c] = 1
|
683 |
+
|
684 |
+
Pr = np.zeros((n, n))
|
685 |
+
Pr[lu.perm_r, np.arange(n)] = 1
|
686 |
+
|
687 |
+
Ad = A.toarray()
|
688 |
+
lhs = Pr.dot(Ad).dot(Pc)
|
689 |
+
rhs = (lu.L @ lu.U).toarray()
|
690 |
+
|
691 |
+
eps = np.finfo(dtype).eps
|
692 |
+
|
693 |
+
assert_allclose(lhs, rhs, atol=100*eps)
|
694 |
+
|
695 |
+
check(np.float32)
|
696 |
+
check(np.float64)
|
697 |
+
check(np.complex64)
|
698 |
+
check(np.complex128)
|
699 |
+
check(np.complex64, True)
|
700 |
+
check(np.complex128, True)
|
701 |
+
|
702 |
+
@pytest.mark.slow
|
703 |
+
@sup_sparse_efficiency
|
704 |
+
def test_threads_parallel(self):
|
705 |
+
oks = []
|
706 |
+
|
707 |
+
def worker():
|
708 |
+
try:
|
709 |
+
self.test_splu_basic()
|
710 |
+
self._internal_test_splu_smoketest()
|
711 |
+
self._internal_test_spilu_smoketest()
|
712 |
+
oks.append(True)
|
713 |
+
except Exception:
|
714 |
+
pass
|
715 |
+
|
716 |
+
threads = [threading.Thread(target=worker)
|
717 |
+
for k in range(20)]
|
718 |
+
for t in threads:
|
719 |
+
t.start()
|
720 |
+
for t in threads:
|
721 |
+
t.join()
|
722 |
+
|
723 |
+
assert_equal(len(oks), 20)
|
724 |
+
|
725 |
+
|
726 |
+
class TestSpsolveTriangular:
|
727 |
+
def setup_method(self):
|
728 |
+
use_solver(useUmfpack=False)
|
729 |
+
|
730 |
+
def test_zero_diagonal(self):
|
731 |
+
n = 5
|
732 |
+
rng = np.random.default_rng(43876432987)
|
733 |
+
A = rng.standard_normal((n, n))
|
734 |
+
b = np.arange(n)
|
735 |
+
A = scipy.sparse.tril(A, k=0, format='csr')
|
736 |
+
|
737 |
+
x = spsolve_triangular(A, b, unit_diagonal=True, lower=True)
|
738 |
+
|
739 |
+
A.setdiag(1)
|
740 |
+
assert_allclose(A.dot(x), b)
|
741 |
+
|
742 |
+
# Regression test from gh-15199
|
743 |
+
A = np.array([[0, 0, 0], [1, 0, 0], [1, 1, 0]], dtype=np.float64)
|
744 |
+
b = np.array([1., 2., 3.])
|
745 |
+
with suppress_warnings() as sup:
|
746 |
+
sup.filter(SparseEfficiencyWarning, "CSR matrix format is")
|
747 |
+
spsolve_triangular(A, b, unit_diagonal=True)
|
748 |
+
|
749 |
+
def test_singular(self):
|
750 |
+
n = 5
|
751 |
+
A = csr_matrix((n, n))
|
752 |
+
b = np.arange(n)
|
753 |
+
for lower in (True, False):
|
754 |
+
assert_raises(scipy.linalg.LinAlgError,
|
755 |
+
spsolve_triangular, A, b, lower=lower)
|
756 |
+
|
757 |
+
@sup_sparse_efficiency
|
758 |
+
def test_bad_shape(self):
|
759 |
+
# A is not square.
|
760 |
+
A = np.zeros((3, 4))
|
761 |
+
b = ones((4, 1))
|
762 |
+
assert_raises(ValueError, spsolve_triangular, A, b)
|
763 |
+
# A2 and b2 have incompatible shapes.
|
764 |
+
A2 = csr_matrix(eye(3))
|
765 |
+
b2 = array([1.0, 2.0])
|
766 |
+
assert_raises(ValueError, spsolve_triangular, A2, b2)
|
767 |
+
|
768 |
+
@sup_sparse_efficiency
|
769 |
+
def test_input_types(self):
|
770 |
+
A = array([[1., 0.], [1., 2.]])
|
771 |
+
b = array([[2., 0.], [2., 2.]])
|
772 |
+
for matrix_type in (array, csc_matrix, csr_matrix):
|
773 |
+
x = spsolve_triangular(matrix_type(A), b, lower=True)
|
774 |
+
assert_array_almost_equal(A.dot(x), b)
|
775 |
+
|
776 |
+
@pytest.mark.slow
|
777 |
+
@pytest.mark.timeout(120) # prerelease_deps_coverage_64bit_blas job
|
778 |
+
@sup_sparse_efficiency
|
779 |
+
def test_random(self):
|
780 |
+
def random_triangle_matrix(n, lower=True):
|
781 |
+
A = scipy.sparse.random(n, n, density=0.1, format='coo')
|
782 |
+
if lower:
|
783 |
+
A = scipy.sparse.tril(A)
|
784 |
+
else:
|
785 |
+
A = scipy.sparse.triu(A)
|
786 |
+
A = A.tocsr(copy=False)
|
787 |
+
for i in range(n):
|
788 |
+
A[i, i] = np.random.rand() + 1
|
789 |
+
return A
|
790 |
+
|
791 |
+
np.random.seed(1234)
|
792 |
+
for lower in (True, False):
|
793 |
+
for n in (10, 10**2, 10**3):
|
794 |
+
A = random_triangle_matrix(n, lower=lower)
|
795 |
+
for m in (1, 10):
|
796 |
+
for b in (np.random.rand(n, m),
|
797 |
+
np.random.randint(-9, 9, (n, m)),
|
798 |
+
np.random.randint(-9, 9, (n, m)) +
|
799 |
+
np.random.randint(-9, 9, (n, m)) * 1j):
|
800 |
+
x = spsolve_triangular(A, b, lower=lower)
|
801 |
+
assert_array_almost_equal(A.dot(x), b)
|
802 |
+
x = spsolve_triangular(A, b, lower=lower,
|
803 |
+
unit_diagonal=True)
|
804 |
+
A.setdiag(1)
|
805 |
+
assert_array_almost_equal(A.dot(x), b)
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/_special_sparse_arrays.py
ADDED
@@ -0,0 +1,948 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from scipy.sparse.linalg import LinearOperator
|
3 |
+
from scipy.sparse import kron, eye, dia_array
|
4 |
+
|
5 |
+
__all__ = ['LaplacianNd']
|
6 |
+
# Sakurai and Mikota classes are intended for tests and benchmarks
|
7 |
+
# and explicitly not included in the public API of this module.
|
8 |
+
|
9 |
+
|
10 |
+
class LaplacianNd(LinearOperator):
|
11 |
+
"""
|
12 |
+
The grid Laplacian in ``N`` dimensions and its eigenvalues/eigenvectors.
|
13 |
+
|
14 |
+
Construct Laplacian on a uniform rectangular grid in `N` dimensions
|
15 |
+
and output its eigenvalues and eigenvectors.
|
16 |
+
The Laplacian ``L`` is square, negative definite, real symmetric array
|
17 |
+
with signed integer entries and zeros otherwise.
|
18 |
+
|
19 |
+
Parameters
|
20 |
+
----------
|
21 |
+
grid_shape : tuple
|
22 |
+
A tuple of integers of length ``N`` (corresponding to the dimension of
|
23 |
+
the Lapacian), where each entry gives the size of that dimension. The
|
24 |
+
Laplacian matrix is square of the size ``np.prod(grid_shape)``.
|
25 |
+
boundary_conditions : {'neumann', 'dirichlet', 'periodic'}, optional
|
26 |
+
The type of the boundary conditions on the boundaries of the grid.
|
27 |
+
Valid values are ``'dirichlet'`` or ``'neumann'``(default) or
|
28 |
+
``'periodic'``.
|
29 |
+
dtype : dtype
|
30 |
+
Numerical type of the array. Default is ``np.int8``.
|
31 |
+
|
32 |
+
Methods
|
33 |
+
-------
|
34 |
+
toarray()
|
35 |
+
Construct a dense array from Laplacian data
|
36 |
+
tosparse()
|
37 |
+
Construct a sparse array from Laplacian data
|
38 |
+
eigenvalues(m=None)
|
39 |
+
Construct a 1D array of `m` largest (smallest in absolute value)
|
40 |
+
eigenvalues of the Laplacian matrix in ascending order.
|
41 |
+
eigenvectors(m=None):
|
42 |
+
Construct the array with columns made of `m` eigenvectors (``float``)
|
43 |
+
of the ``Nd`` Laplacian corresponding to the `m` ordered eigenvalues.
|
44 |
+
|
45 |
+
.. versionadded:: 1.12.0
|
46 |
+
|
47 |
+
Notes
|
48 |
+
-----
|
49 |
+
Compared to the MATLAB/Octave implementation [1] of 1-, 2-, and 3-D
|
50 |
+
Laplacian, this code allows the arbitrary N-D case and the matrix-free
|
51 |
+
callable option, but is currently limited to pure Dirichlet, Neumann or
|
52 |
+
Periodic boundary conditions only.
|
53 |
+
|
54 |
+
The Laplacian matrix of a graph (`scipy.sparse.csgraph.laplacian`) of a
|
55 |
+
rectangular grid corresponds to the negative Laplacian with the Neumann
|
56 |
+
conditions, i.e., ``boundary_conditions = 'neumann'``.
|
57 |
+
|
58 |
+
All eigenvalues and eigenvectors of the discrete Laplacian operator for
|
59 |
+
an ``N``-dimensional regular grid of shape `grid_shape` with the grid
|
60 |
+
step size ``h=1`` are analytically known [2].
|
61 |
+
|
62 |
+
References
|
63 |
+
----------
|
64 |
+
.. [1] https://github.com/lobpcg/blopex/blob/master/blopex_\
|
65 |
+
tools/matlab/laplacian/laplacian.m
|
66 |
+
.. [2] "Eigenvalues and eigenvectors of the second derivative", Wikipedia
|
67 |
+
https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors_\
|
68 |
+
of_the_second_derivative
|
69 |
+
|
70 |
+
Examples
|
71 |
+
--------
|
72 |
+
>>> import numpy as np
|
73 |
+
>>> from scipy.sparse.linalg import LaplacianNd
|
74 |
+
>>> from scipy.sparse import diags, csgraph
|
75 |
+
>>> from scipy.linalg import eigvalsh
|
76 |
+
|
77 |
+
The one-dimensional Laplacian demonstrated below for pure Neumann boundary
|
78 |
+
conditions on a regular grid with ``n=6`` grid points is exactly the
|
79 |
+
negative graph Laplacian for the undirected linear graph with ``n``
|
80 |
+
vertices using the sparse adjacency matrix ``G`` represented by the
|
81 |
+
famous tri-diagonal matrix:
|
82 |
+
|
83 |
+
>>> n = 6
|
84 |
+
>>> G = diags(np.ones(n - 1), 1, format='csr')
|
85 |
+
>>> Lf = csgraph.laplacian(G, symmetrized=True, form='function')
|
86 |
+
>>> grid_shape = (n, )
|
87 |
+
>>> lap = LaplacianNd(grid_shape, boundary_conditions='neumann')
|
88 |
+
>>> np.array_equal(lap.matmat(np.eye(n)), -Lf(np.eye(n)))
|
89 |
+
True
|
90 |
+
|
91 |
+
Since all matrix entries of the Laplacian are integers, ``'int8'`` is
|
92 |
+
the default dtype for storing matrix representations.
|
93 |
+
|
94 |
+
>>> lap.tosparse()
|
95 |
+
<6x6 sparse array of type '<class 'numpy.int8'>'
|
96 |
+
with 16 stored elements (3 diagonals) in DIAgonal format>
|
97 |
+
>>> lap.toarray()
|
98 |
+
array([[-1, 1, 0, 0, 0, 0],
|
99 |
+
[ 1, -2, 1, 0, 0, 0],
|
100 |
+
[ 0, 1, -2, 1, 0, 0],
|
101 |
+
[ 0, 0, 1, -2, 1, 0],
|
102 |
+
[ 0, 0, 0, 1, -2, 1],
|
103 |
+
[ 0, 0, 0, 0, 1, -1]], dtype=int8)
|
104 |
+
>>> np.array_equal(lap.matmat(np.eye(n)), lap.toarray())
|
105 |
+
True
|
106 |
+
>>> np.array_equal(lap.tosparse().toarray(), lap.toarray())
|
107 |
+
True
|
108 |
+
|
109 |
+
Any number of extreme eigenvalues and/or eigenvectors can be computed.
|
110 |
+
|
111 |
+
>>> lap = LaplacianNd(grid_shape, boundary_conditions='periodic')
|
112 |
+
>>> lap.eigenvalues()
|
113 |
+
array([-4., -3., -3., -1., -1., 0.])
|
114 |
+
>>> lap.eigenvalues()[-2:]
|
115 |
+
array([-1., 0.])
|
116 |
+
>>> lap.eigenvalues(2)
|
117 |
+
array([-1., 0.])
|
118 |
+
>>> lap.eigenvectors(1)
|
119 |
+
array([[0.40824829],
|
120 |
+
[0.40824829],
|
121 |
+
[0.40824829],
|
122 |
+
[0.40824829],
|
123 |
+
[0.40824829],
|
124 |
+
[0.40824829]])
|
125 |
+
>>> lap.eigenvectors(2)
|
126 |
+
array([[ 0.5 , 0.40824829],
|
127 |
+
[ 0. , 0.40824829],
|
128 |
+
[-0.5 , 0.40824829],
|
129 |
+
[-0.5 , 0.40824829],
|
130 |
+
[ 0. , 0.40824829],
|
131 |
+
[ 0.5 , 0.40824829]])
|
132 |
+
>>> lap.eigenvectors()
|
133 |
+
array([[ 0.40824829, 0.28867513, 0.28867513, 0.5 , 0.5 ,
|
134 |
+
0.40824829],
|
135 |
+
[-0.40824829, -0.57735027, -0.57735027, 0. , 0. ,
|
136 |
+
0.40824829],
|
137 |
+
[ 0.40824829, 0.28867513, 0.28867513, -0.5 , -0.5 ,
|
138 |
+
0.40824829],
|
139 |
+
[-0.40824829, 0.28867513, 0.28867513, -0.5 , -0.5 ,
|
140 |
+
0.40824829],
|
141 |
+
[ 0.40824829, -0.57735027, -0.57735027, 0. , 0. ,
|
142 |
+
0.40824829],
|
143 |
+
[-0.40824829, 0.28867513, 0.28867513, 0.5 , 0.5 ,
|
144 |
+
0.40824829]])
|
145 |
+
|
146 |
+
The two-dimensional Laplacian is illustrated on a regular grid with
|
147 |
+
``grid_shape = (2, 3)`` points in each dimension.
|
148 |
+
|
149 |
+
>>> grid_shape = (2, 3)
|
150 |
+
>>> n = np.prod(grid_shape)
|
151 |
+
|
152 |
+
Numeration of grid points is as follows:
|
153 |
+
|
154 |
+
>>> np.arange(n).reshape(grid_shape + (-1,))
|
155 |
+
array([[[0],
|
156 |
+
[1],
|
157 |
+
[2]],
|
158 |
+
<BLANKLINE>
|
159 |
+
[[3],
|
160 |
+
[4],
|
161 |
+
[5]]])
|
162 |
+
|
163 |
+
Each of the boundary conditions ``'dirichlet'``, ``'periodic'``, and
|
164 |
+
``'neumann'`` is illustrated separately; with ``'dirichlet'``
|
165 |
+
|
166 |
+
>>> lap = LaplacianNd(grid_shape, boundary_conditions='dirichlet')
|
167 |
+
>>> lap.tosparse()
|
168 |
+
<6x6 sparse array of type '<class 'numpy.int8'>'
|
169 |
+
with 20 stored elements in Compressed Sparse Row format>
|
170 |
+
>>> lap.toarray()
|
171 |
+
array([[-4, 1, 0, 1, 0, 0],
|
172 |
+
[ 1, -4, 1, 0, 1, 0],
|
173 |
+
[ 0, 1, -4, 0, 0, 1],
|
174 |
+
[ 1, 0, 0, -4, 1, 0],
|
175 |
+
[ 0, 1, 0, 1, -4, 1],
|
176 |
+
[ 0, 0, 1, 0, 1, -4]], dtype=int8)
|
177 |
+
>>> np.array_equal(lap.matmat(np.eye(n)), lap.toarray())
|
178 |
+
True
|
179 |
+
>>> np.array_equal(lap.tosparse().toarray(), lap.toarray())
|
180 |
+
True
|
181 |
+
>>> lap.eigenvalues()
|
182 |
+
array([-6.41421356, -5. , -4.41421356, -3.58578644, -3. ,
|
183 |
+
-1.58578644])
|
184 |
+
>>> eigvals = eigvalsh(lap.toarray().astype(np.float64))
|
185 |
+
>>> np.allclose(lap.eigenvalues(), eigvals)
|
186 |
+
True
|
187 |
+
>>> np.allclose(lap.toarray() @ lap.eigenvectors(),
|
188 |
+
... lap.eigenvectors() @ np.diag(lap.eigenvalues()))
|
189 |
+
True
|
190 |
+
|
191 |
+
with ``'periodic'``
|
192 |
+
|
193 |
+
>>> lap = LaplacianNd(grid_shape, boundary_conditions='periodic')
|
194 |
+
>>> lap.tosparse()
|
195 |
+
<6x6 sparse array of type '<class 'numpy.int8'>'
|
196 |
+
with 24 stored elements in Compressed Sparse Row format>
|
197 |
+
>>> lap.toarray()
|
198 |
+
array([[-4, 1, 1, 2, 0, 0],
|
199 |
+
[ 1, -4, 1, 0, 2, 0],
|
200 |
+
[ 1, 1, -4, 0, 0, 2],
|
201 |
+
[ 2, 0, 0, -4, 1, 1],
|
202 |
+
[ 0, 2, 0, 1, -4, 1],
|
203 |
+
[ 0, 0, 2, 1, 1, -4]], dtype=int8)
|
204 |
+
>>> np.array_equal(lap.matmat(np.eye(n)), lap.toarray())
|
205 |
+
True
|
206 |
+
>>> np.array_equal(lap.tosparse().toarray(), lap.toarray())
|
207 |
+
True
|
208 |
+
>>> lap.eigenvalues()
|
209 |
+
array([-7., -7., -4., -3., -3., 0.])
|
210 |
+
>>> eigvals = eigvalsh(lap.toarray().astype(np.float64))
|
211 |
+
>>> np.allclose(lap.eigenvalues(), eigvals)
|
212 |
+
True
|
213 |
+
>>> np.allclose(lap.toarray() @ lap.eigenvectors(),
|
214 |
+
... lap.eigenvectors() @ np.diag(lap.eigenvalues()))
|
215 |
+
True
|
216 |
+
|
217 |
+
and with ``'neumann'``
|
218 |
+
|
219 |
+
>>> lap = LaplacianNd(grid_shape, boundary_conditions='neumann')
|
220 |
+
>>> lap.tosparse()
|
221 |
+
<6x6 sparse array of type '<class 'numpy.int8'>'
|
222 |
+
with 20 stored elements in Compressed Sparse Row format>
|
223 |
+
>>> lap.toarray()
|
224 |
+
array([[-2, 1, 0, 1, 0, 0],
|
225 |
+
[ 1, -3, 1, 0, 1, 0],
|
226 |
+
[ 0, 1, -2, 0, 0, 1],
|
227 |
+
[ 1, 0, 0, -2, 1, 0],
|
228 |
+
[ 0, 1, 0, 1, -3, 1],
|
229 |
+
[ 0, 0, 1, 0, 1, -2]])
|
230 |
+
>>> np.array_equal(lap.matmat(np.eye(n)), lap.toarray())
|
231 |
+
True
|
232 |
+
>>> np.array_equal(lap.tosparse().toarray(), lap.toarray())
|
233 |
+
True
|
234 |
+
>>> lap.eigenvalues()
|
235 |
+
array([-5., -3., -3., -2., -1., 0.])
|
236 |
+
>>> eigvals = eigvalsh(lap.toarray().astype(np.float64))
|
237 |
+
>>> np.allclose(lap.eigenvalues(), eigvals)
|
238 |
+
True
|
239 |
+
>>> np.allclose(lap.toarray() @ lap.eigenvectors(),
|
240 |
+
... lap.eigenvectors() @ np.diag(lap.eigenvalues()))
|
241 |
+
True
|
242 |
+
|
243 |
+
"""
|
244 |
+
|
245 |
+
def __init__(self, grid_shape, *,
|
246 |
+
boundary_conditions='neumann',
|
247 |
+
dtype=np.int8):
|
248 |
+
|
249 |
+
if boundary_conditions not in ('dirichlet', 'neumann', 'periodic'):
|
250 |
+
raise ValueError(
|
251 |
+
f"Unknown value {boundary_conditions!r} is given for "
|
252 |
+
"'boundary_conditions' parameter. The valid options are "
|
253 |
+
"'dirichlet', 'periodic', and 'neumann' (default)."
|
254 |
+
)
|
255 |
+
|
256 |
+
self.grid_shape = grid_shape
|
257 |
+
self.boundary_conditions = boundary_conditions
|
258 |
+
# LaplacianNd folds all dimensions in `grid_shape` into a single one
|
259 |
+
N = np.prod(grid_shape)
|
260 |
+
super().__init__(dtype=dtype, shape=(N, N))
|
261 |
+
|
262 |
+
def _eigenvalue_ordering(self, m):
|
263 |
+
"""Compute `m` largest eigenvalues in each of the ``N`` directions,
|
264 |
+
i.e., up to ``m * N`` total, order them and return `m` largest.
|
265 |
+
"""
|
266 |
+
grid_shape = self.grid_shape
|
267 |
+
if m is None:
|
268 |
+
indices = np.indices(grid_shape)
|
269 |
+
Leig = np.zeros(grid_shape)
|
270 |
+
else:
|
271 |
+
grid_shape_min = min(grid_shape,
|
272 |
+
tuple(np.ones_like(grid_shape) * m))
|
273 |
+
indices = np.indices(grid_shape_min)
|
274 |
+
Leig = np.zeros(grid_shape_min)
|
275 |
+
|
276 |
+
for j, n in zip(indices, grid_shape):
|
277 |
+
if self.boundary_conditions == 'dirichlet':
|
278 |
+
Leig += -4 * np.sin(np.pi * (j + 1) / (2 * (n + 1))) ** 2
|
279 |
+
elif self.boundary_conditions == 'neumann':
|
280 |
+
Leig += -4 * np.sin(np.pi * j / (2 * n)) ** 2
|
281 |
+
else: # boundary_conditions == 'periodic'
|
282 |
+
Leig += -4 * np.sin(np.pi * np.floor((j + 1) / 2) / n) ** 2
|
283 |
+
|
284 |
+
Leig_ravel = Leig.ravel()
|
285 |
+
ind = np.argsort(Leig_ravel)
|
286 |
+
eigenvalues = Leig_ravel[ind]
|
287 |
+
if m is not None:
|
288 |
+
eigenvalues = eigenvalues[-m:]
|
289 |
+
ind = ind[-m:]
|
290 |
+
|
291 |
+
return eigenvalues, ind
|
292 |
+
|
293 |
+
def eigenvalues(self, m=None):
|
294 |
+
"""Return the requested number of eigenvalues.
|
295 |
+
|
296 |
+
Parameters
|
297 |
+
----------
|
298 |
+
m : int, optional
|
299 |
+
The positive number of smallest eigenvalues to return.
|
300 |
+
If not provided, then all eigenvalues will be returned.
|
301 |
+
|
302 |
+
Returns
|
303 |
+
-------
|
304 |
+
eigenvalues : float array
|
305 |
+
The requested `m` smallest or all eigenvalues, in ascending order.
|
306 |
+
"""
|
307 |
+
eigenvalues, _ = self._eigenvalue_ordering(m)
|
308 |
+
return eigenvalues
|
309 |
+
|
310 |
+
def _ev1d(self, j, n):
|
311 |
+
"""Return 1 eigenvector in 1d with index `j`
|
312 |
+
and number of grid points `n` where ``j < n``.
|
313 |
+
"""
|
314 |
+
if self.boundary_conditions == 'dirichlet':
|
315 |
+
i = np.pi * (np.arange(n) + 1) / (n + 1)
|
316 |
+
ev = np.sqrt(2. / (n + 1.)) * np.sin(i * (j + 1))
|
317 |
+
elif self.boundary_conditions == 'neumann':
|
318 |
+
i = np.pi * (np.arange(n) + 0.5) / n
|
319 |
+
ev = np.sqrt((1. if j == 0 else 2.) / n) * np.cos(i * j)
|
320 |
+
else: # boundary_conditions == 'periodic'
|
321 |
+
if j == 0:
|
322 |
+
ev = np.sqrt(1. / n) * np.ones(n)
|
323 |
+
elif j + 1 == n and n % 2 == 0:
|
324 |
+
ev = np.sqrt(1. / n) * np.tile([1, -1], n//2)
|
325 |
+
else:
|
326 |
+
i = 2. * np.pi * (np.arange(n) + 0.5) / n
|
327 |
+
ev = np.sqrt(2. / n) * np.cos(i * np.floor((j + 1) / 2))
|
328 |
+
# make small values exact zeros correcting round-off errors
|
329 |
+
# due to symmetry of eigenvectors the exact 0. is correct
|
330 |
+
ev[np.abs(ev) < np.finfo(np.float64).eps] = 0.
|
331 |
+
return ev
|
332 |
+
|
333 |
+
def _one_eve(self, k):
|
334 |
+
"""Return 1 eigenvector in Nd with multi-index `j`
|
335 |
+
as a tensor product of the corresponding 1d eigenvectors.
|
336 |
+
"""
|
337 |
+
phi = [self._ev1d(j, n) for j, n in zip(k, self.grid_shape)]
|
338 |
+
result = phi[0]
|
339 |
+
for phi in phi[1:]:
|
340 |
+
result = np.tensordot(result, phi, axes=0)
|
341 |
+
return np.asarray(result).ravel()
|
342 |
+
|
343 |
+
def eigenvectors(self, m=None):
|
344 |
+
"""Return the requested number of eigenvectors for ordered eigenvalues.
|
345 |
+
|
346 |
+
Parameters
|
347 |
+
----------
|
348 |
+
m : int, optional
|
349 |
+
The positive number of eigenvectors to return. If not provided,
|
350 |
+
then all eigenvectors will be returned.
|
351 |
+
|
352 |
+
Returns
|
353 |
+
-------
|
354 |
+
eigenvectors : float array
|
355 |
+
An array with columns made of the requested `m` or all eigenvectors.
|
356 |
+
The columns are ordered according to the `m` ordered eigenvalues.
|
357 |
+
"""
|
358 |
+
_, ind = self._eigenvalue_ordering(m)
|
359 |
+
if m is None:
|
360 |
+
grid_shape_min = self.grid_shape
|
361 |
+
else:
|
362 |
+
grid_shape_min = min(self.grid_shape,
|
363 |
+
tuple(np.ones_like(self.grid_shape) * m))
|
364 |
+
|
365 |
+
N_indices = np.unravel_index(ind, grid_shape_min)
|
366 |
+
N_indices = [tuple(x) for x in zip(*N_indices)]
|
367 |
+
eigenvectors_list = [self._one_eve(k) for k in N_indices]
|
368 |
+
return np.column_stack(eigenvectors_list)
|
369 |
+
|
370 |
+
def toarray(self):
|
371 |
+
"""
|
372 |
+
Converts the Laplacian data to a dense array.
|
373 |
+
|
374 |
+
Returns
|
375 |
+
-------
|
376 |
+
L : ndarray
|
377 |
+
The shape is ``(N, N)`` where ``N = np.prod(grid_shape)``.
|
378 |
+
|
379 |
+
"""
|
380 |
+
grid_shape = self.grid_shape
|
381 |
+
n = np.prod(grid_shape)
|
382 |
+
L = np.zeros([n, n], dtype=np.int8)
|
383 |
+
# Scratch arrays
|
384 |
+
L_i = np.empty_like(L)
|
385 |
+
Ltemp = np.empty_like(L)
|
386 |
+
|
387 |
+
for ind, dim in enumerate(grid_shape):
|
388 |
+
# Start zeroing out L_i
|
389 |
+
L_i[:] = 0
|
390 |
+
# Allocate the top left corner with the kernel of L_i
|
391 |
+
# Einsum returns writable view of arrays
|
392 |
+
np.einsum("ii->i", L_i[:dim, :dim])[:] = -2
|
393 |
+
np.einsum("ii->i", L_i[: dim - 1, 1:dim])[:] = 1
|
394 |
+
np.einsum("ii->i", L_i[1:dim, : dim - 1])[:] = 1
|
395 |
+
|
396 |
+
if self.boundary_conditions == 'neumann':
|
397 |
+
L_i[0, 0] = -1
|
398 |
+
L_i[dim - 1, dim - 1] = -1
|
399 |
+
elif self.boundary_conditions == 'periodic':
|
400 |
+
if dim > 1:
|
401 |
+
L_i[0, dim - 1] += 1
|
402 |
+
L_i[dim - 1, 0] += 1
|
403 |
+
else:
|
404 |
+
L_i[0, 0] += 1
|
405 |
+
|
406 |
+
# kron is too slow for large matrices hence the next two tricks
|
407 |
+
# 1- kron(eye, mat) is block_diag(mat, mat, ...)
|
408 |
+
# 2- kron(mat, eye) can be performed by 4d stride trick
|
409 |
+
|
410 |
+
# 1-
|
411 |
+
new_dim = dim
|
412 |
+
# for block_diag we tile the top left portion on the diagonal
|
413 |
+
if ind > 0:
|
414 |
+
tiles = np.prod(grid_shape[:ind])
|
415 |
+
for j in range(1, tiles):
|
416 |
+
L_i[j*dim:(j+1)*dim, j*dim:(j+1)*dim] = L_i[:dim, :dim]
|
417 |
+
new_dim += dim
|
418 |
+
# 2-
|
419 |
+
# we need the keep L_i, but reset the array
|
420 |
+
Ltemp[:new_dim, :new_dim] = L_i[:new_dim, :new_dim]
|
421 |
+
tiles = int(np.prod(grid_shape[ind+1:]))
|
422 |
+
# Zero out the top left, the rest is already 0
|
423 |
+
L_i[:new_dim, :new_dim] = 0
|
424 |
+
idx = [x for x in range(tiles)]
|
425 |
+
L_i.reshape(
|
426 |
+
(new_dim, tiles,
|
427 |
+
new_dim, tiles)
|
428 |
+
)[:, idx, :, idx] = Ltemp[:new_dim, :new_dim]
|
429 |
+
|
430 |
+
L += L_i
|
431 |
+
|
432 |
+
return L.astype(self.dtype)
|
433 |
+
|
434 |
+
def tosparse(self):
|
435 |
+
"""
|
436 |
+
Constructs a sparse array from the Laplacian data. The returned sparse
|
437 |
+
array format is dependent on the selected boundary conditions.
|
438 |
+
|
439 |
+
Returns
|
440 |
+
-------
|
441 |
+
L : scipy.sparse.sparray
|
442 |
+
The shape is ``(N, N)`` where ``N = np.prod(grid_shape)``.
|
443 |
+
|
444 |
+
"""
|
445 |
+
N = len(self.grid_shape)
|
446 |
+
p = np.prod(self.grid_shape)
|
447 |
+
L = dia_array((p, p), dtype=np.int8)
|
448 |
+
|
449 |
+
for i in range(N):
|
450 |
+
dim = self.grid_shape[i]
|
451 |
+
data = np.ones([3, dim], dtype=np.int8)
|
452 |
+
data[1, :] *= -2
|
453 |
+
|
454 |
+
if self.boundary_conditions == 'neumann':
|
455 |
+
data[1, 0] = -1
|
456 |
+
data[1, -1] = -1
|
457 |
+
|
458 |
+
L_i = dia_array((data, [-1, 0, 1]), shape=(dim, dim),
|
459 |
+
dtype=np.int8
|
460 |
+
)
|
461 |
+
|
462 |
+
if self.boundary_conditions == 'periodic':
|
463 |
+
t = dia_array((dim, dim), dtype=np.int8)
|
464 |
+
t.setdiag([1], k=-dim+1)
|
465 |
+
t.setdiag([1], k=dim-1)
|
466 |
+
L_i += t
|
467 |
+
|
468 |
+
for j in range(i):
|
469 |
+
L_i = kron(eye(self.grid_shape[j], dtype=np.int8), L_i)
|
470 |
+
for j in range(i + 1, N):
|
471 |
+
L_i = kron(L_i, eye(self.grid_shape[j], dtype=np.int8))
|
472 |
+
L += L_i
|
473 |
+
return L.astype(self.dtype)
|
474 |
+
|
475 |
+
def _matvec(self, x):
|
476 |
+
grid_shape = self.grid_shape
|
477 |
+
N = len(grid_shape)
|
478 |
+
X = x.reshape(grid_shape + (-1,))
|
479 |
+
Y = -2 * N * X
|
480 |
+
for i in range(N):
|
481 |
+
Y += np.roll(X, 1, axis=i)
|
482 |
+
Y += np.roll(X, -1, axis=i)
|
483 |
+
if self.boundary_conditions in ('neumann', 'dirichlet'):
|
484 |
+
Y[(slice(None),)*i + (0,) + (slice(None),)*(N-i-1)
|
485 |
+
] -= np.roll(X, 1, axis=i)[
|
486 |
+
(slice(None),) * i + (0,) + (slice(None),) * (N-i-1)
|
487 |
+
]
|
488 |
+
Y[
|
489 |
+
(slice(None),) * i + (-1,) + (slice(None),) * (N-i-1)
|
490 |
+
] -= np.roll(X, -1, axis=i)[
|
491 |
+
(slice(None),) * i + (-1,) + (slice(None),) * (N-i-1)
|
492 |
+
]
|
493 |
+
|
494 |
+
if self.boundary_conditions == 'neumann':
|
495 |
+
Y[
|
496 |
+
(slice(None),) * i + (0,) + (slice(None),) * (N-i-1)
|
497 |
+
] += np.roll(X, 0, axis=i)[
|
498 |
+
(slice(None),) * i + (0,) + (slice(None),) * (N-i-1)
|
499 |
+
]
|
500 |
+
Y[
|
501 |
+
(slice(None),) * i + (-1,) + (slice(None),) * (N-i-1)
|
502 |
+
] += np.roll(X, 0, axis=i)[
|
503 |
+
(slice(None),) * i + (-1,) + (slice(None),) * (N-i-1)
|
504 |
+
]
|
505 |
+
|
506 |
+
return Y.reshape(-1, X.shape[-1])
|
507 |
+
|
508 |
+
def _matmat(self, x):
|
509 |
+
return self._matvec(x)
|
510 |
+
|
511 |
+
def _adjoint(self):
|
512 |
+
return self
|
513 |
+
|
514 |
+
def _transpose(self):
|
515 |
+
return self
|
516 |
+
|
517 |
+
|
518 |
+
class Sakurai(LinearOperator):
|
519 |
+
"""
|
520 |
+
Construct a Sakurai matrix in various formats and its eigenvalues.
|
521 |
+
|
522 |
+
Constructs the "Sakurai" matrix motivated by reference [1]_:
|
523 |
+
square real symmetric positive definite and 5-diagonal
|
524 |
+
with the main digonal ``[5, 6, 6, ..., 6, 6, 5], the ``+1`` and ``-1``
|
525 |
+
diagonals filled with ``-4``, and the ``+2`` and ``-2`` diagonals
|
526 |
+
made of ``1``. Its eigenvalues are analytically known to be
|
527 |
+
``16. * np.power(np.cos(0.5 * k * np.pi / (n + 1)), 4)``.
|
528 |
+
The matrix gets ill-conditioned with its size growing.
|
529 |
+
It is useful for testing and benchmarking sparse eigenvalue solvers
|
530 |
+
especially those taking advantage of its banded 5-diagonal structure.
|
531 |
+
See the notes below for details.
|
532 |
+
|
533 |
+
Parameters
|
534 |
+
----------
|
535 |
+
n : int
|
536 |
+
The size of the matrix.
|
537 |
+
dtype : dtype
|
538 |
+
Numerical type of the array. Default is ``np.int8``.
|
539 |
+
|
540 |
+
Methods
|
541 |
+
-------
|
542 |
+
toarray()
|
543 |
+
Construct a dense array from Laplacian data
|
544 |
+
tosparse()
|
545 |
+
Construct a sparse array from Laplacian data
|
546 |
+
tobanded()
|
547 |
+
The Sakurai matrix in the format for banded symmetric matrices,
|
548 |
+
i.e., (3, n) ndarray with 3 upper diagonals
|
549 |
+
placing the main diagonal at the bottom.
|
550 |
+
eigenvalues
|
551 |
+
All eigenvalues of the Sakurai matrix ordered ascending.
|
552 |
+
|
553 |
+
Notes
|
554 |
+
-----
|
555 |
+
Reference [1]_ introduces a generalized eigenproblem for the matrix pair
|
556 |
+
`A` and `B` where `A` is the identity so we turn it into an eigenproblem
|
557 |
+
just for the matrix `B` that this function outputs in various formats
|
558 |
+
together with its eigenvalues.
|
559 |
+
|
560 |
+
.. versionadded:: 1.12.0
|
561 |
+
|
562 |
+
References
|
563 |
+
----------
|
564 |
+
.. [1] T. Sakurai, H. Tadano, Y. Inadomi, and U. Nagashima,
|
565 |
+
"A moment-based method for large-scale generalized
|
566 |
+
eigenvalue problems",
|
567 |
+
Appl. Num. Anal. Comp. Math. Vol. 1 No. 2 (2004).
|
568 |
+
|
569 |
+
Examples
|
570 |
+
--------
|
571 |
+
>>> import numpy as np
|
572 |
+
>>> from scipy.sparse.linalg._special_sparse_arrays import Sakurai
|
573 |
+
>>> from scipy.linalg import eig_banded
|
574 |
+
>>> n = 6
|
575 |
+
>>> sak = Sakurai(n)
|
576 |
+
|
577 |
+
Since all matrix entries are small integers, ``'int8'`` is
|
578 |
+
the default dtype for storing matrix representations.
|
579 |
+
|
580 |
+
>>> sak.toarray()
|
581 |
+
array([[ 5, -4, 1, 0, 0, 0],
|
582 |
+
[-4, 6, -4, 1, 0, 0],
|
583 |
+
[ 1, -4, 6, -4, 1, 0],
|
584 |
+
[ 0, 1, -4, 6, -4, 1],
|
585 |
+
[ 0, 0, 1, -4, 6, -4],
|
586 |
+
[ 0, 0, 0, 1, -4, 5]], dtype=int8)
|
587 |
+
>>> sak.tobanded()
|
588 |
+
array([[ 1, 1, 1, 1, 1, 1],
|
589 |
+
[-4, -4, -4, -4, -4, -4],
|
590 |
+
[ 5, 6, 6, 6, 6, 5]], dtype=int8)
|
591 |
+
>>> sak.tosparse()
|
592 |
+
<6x6 sparse matrix of type '<class 'numpy.int8'>'
|
593 |
+
with 24 stored elements (5 diagonals) in DIAgonal format>
|
594 |
+
>>> np.array_equal(sak.dot(np.eye(n)), sak.tosparse().toarray())
|
595 |
+
True
|
596 |
+
>>> sak.eigenvalues()
|
597 |
+
array([0.03922866, 0.56703972, 2.41789479, 5.97822974,
|
598 |
+
10.54287655, 14.45473055])
|
599 |
+
>>> sak.eigenvalues(2)
|
600 |
+
array([0.03922866, 0.56703972])
|
601 |
+
|
602 |
+
The banded form can be used in scipy functions for banded matrices, e.g.,
|
603 |
+
|
604 |
+
>>> e = eig_banded(sak.tobanded(), eigvals_only=True)
|
605 |
+
>>> np.allclose(sak.eigenvalues, e, atol= n * n * n * np.finfo(float).eps)
|
606 |
+
True
|
607 |
+
|
608 |
+
"""
|
609 |
+
def __init__(self, n, dtype=np.int8):
|
610 |
+
self.n = n
|
611 |
+
self.dtype = dtype
|
612 |
+
shape = (n, n)
|
613 |
+
super().__init__(dtype, shape)
|
614 |
+
|
615 |
+
def eigenvalues(self, m=None):
|
616 |
+
"""Return the requested number of eigenvalues.
|
617 |
+
|
618 |
+
Parameters
|
619 |
+
----------
|
620 |
+
m : int, optional
|
621 |
+
The positive number of smallest eigenvalues to return.
|
622 |
+
If not provided, then all eigenvalues will be returned.
|
623 |
+
|
624 |
+
Returns
|
625 |
+
-------
|
626 |
+
eigenvalues : `np.float64` array
|
627 |
+
The requested `m` smallest or all eigenvalues, in ascending order.
|
628 |
+
"""
|
629 |
+
if m is None:
|
630 |
+
m = self.n
|
631 |
+
k = np.arange(self.n + 1 -m, self.n + 1)
|
632 |
+
return np.flip(16. * np.power(np.cos(0.5 * k * np.pi / (self.n + 1)), 4))
|
633 |
+
|
634 |
+
def tobanded(self):
|
635 |
+
"""
|
636 |
+
Construct the Sakurai matrix as a banded array.
|
637 |
+
"""
|
638 |
+
d0 = np.r_[5, 6 * np.ones(self.n - 2, dtype=self.dtype), 5]
|
639 |
+
d1 = -4 * np.ones(self.n, dtype=self.dtype)
|
640 |
+
d2 = np.ones(self.n, dtype=self.dtype)
|
641 |
+
return np.array([d2, d1, d0]).astype(self.dtype)
|
642 |
+
|
643 |
+
def tosparse(self):
|
644 |
+
"""
|
645 |
+
Construct the Sakurai matrix is a sparse format.
|
646 |
+
"""
|
647 |
+
from scipy.sparse import spdiags
|
648 |
+
d = self.tobanded()
|
649 |
+
# the banded format has the main diagonal at the bottom
|
650 |
+
# `spdiags` has no `dtype` parameter so inherits dtype from banded
|
651 |
+
return spdiags([d[0], d[1], d[2], d[1], d[0]], [-2, -1, 0, 1, 2],
|
652 |
+
self.n, self.n)
|
653 |
+
|
654 |
+
def toarray(self):
|
655 |
+
return self.tosparse().toarray()
|
656 |
+
|
657 |
+
def _matvec(self, x):
|
658 |
+
"""
|
659 |
+
Construct matrix-free callable banded-matrix-vector multiplication by
|
660 |
+
the Sakurai matrix without constructing or storing the matrix itself
|
661 |
+
using the knowledge of its entries and the 5-diagonal format.
|
662 |
+
"""
|
663 |
+
x = x.reshape(self.n, -1)
|
664 |
+
result_dtype = np.promote_types(x.dtype, self.dtype)
|
665 |
+
sx = np.zeros_like(x, dtype=result_dtype)
|
666 |
+
sx[0, :] = 5 * x[0, :] - 4 * x[1, :] + x[2, :]
|
667 |
+
sx[-1, :] = 5 * x[-1, :] - 4 * x[-2, :] + x[-3, :]
|
668 |
+
sx[1: -1, :] = (6 * x[1: -1, :] - 4 * (x[:-2, :] + x[2:, :])
|
669 |
+
+ np.pad(x[:-3, :], ((1, 0), (0, 0)))
|
670 |
+
+ np.pad(x[3:, :], ((0, 1), (0, 0))))
|
671 |
+
return sx
|
672 |
+
|
673 |
+
def _matmat(self, x):
|
674 |
+
"""
|
675 |
+
Construct matrix-free callable matrix-matrix multiplication by
|
676 |
+
the Sakurai matrix without constructing or storing the matrix itself
|
677 |
+
by reusing the ``_matvec(x)`` that supports both 1D and 2D arrays ``x``.
|
678 |
+
"""
|
679 |
+
return self._matvec(x)
|
680 |
+
|
681 |
+
def _adjoint(self):
|
682 |
+
return self
|
683 |
+
|
684 |
+
def _transpose(self):
|
685 |
+
return self
|
686 |
+
|
687 |
+
|
688 |
+
class MikotaM(LinearOperator):
|
689 |
+
"""
|
690 |
+
Construct a mass matrix in various formats of Mikota pair.
|
691 |
+
|
692 |
+
The mass matrix `M` is square real diagonal
|
693 |
+
positive definite with entries that are reciprocal to integers.
|
694 |
+
|
695 |
+
Parameters
|
696 |
+
----------
|
697 |
+
shape : tuple of int
|
698 |
+
The shape of the matrix.
|
699 |
+
dtype : dtype
|
700 |
+
Numerical type of the array. Default is ``np.float64``.
|
701 |
+
|
702 |
+
Methods
|
703 |
+
-------
|
704 |
+
toarray()
|
705 |
+
Construct a dense array from Mikota data
|
706 |
+
tosparse()
|
707 |
+
Construct a sparse array from Mikota data
|
708 |
+
tobanded()
|
709 |
+
The format for banded symmetric matrices,
|
710 |
+
i.e., (1, n) ndarray with the main diagonal.
|
711 |
+
"""
|
712 |
+
def __init__(self, shape, dtype=np.float64):
|
713 |
+
self.shape = shape
|
714 |
+
self.dtype = dtype
|
715 |
+
super().__init__(dtype, shape)
|
716 |
+
|
717 |
+
def _diag(self):
|
718 |
+
# The matrix is constructed from its diagonal 1 / [1, ..., N+1];
|
719 |
+
# compute in a function to avoid duplicated code & storage footprint
|
720 |
+
return (1. / np.arange(1, self.shape[0] + 1)).astype(self.dtype)
|
721 |
+
|
722 |
+
def tobanded(self):
|
723 |
+
return self._diag()
|
724 |
+
|
725 |
+
def tosparse(self):
|
726 |
+
from scipy.sparse import diags
|
727 |
+
return diags([self._diag()], [0], shape=self.shape, dtype=self.dtype)
|
728 |
+
|
729 |
+
def toarray(self):
|
730 |
+
return np.diag(self._diag()).astype(self.dtype)
|
731 |
+
|
732 |
+
def _matvec(self, x):
|
733 |
+
"""
|
734 |
+
Construct matrix-free callable banded-matrix-vector multiplication by
|
735 |
+
the Mikota mass matrix without constructing or storing the matrix itself
|
736 |
+
using the knowledge of its entries and the diagonal format.
|
737 |
+
"""
|
738 |
+
x = x.reshape(self.shape[0], -1)
|
739 |
+
return self._diag()[:, np.newaxis] * x
|
740 |
+
|
741 |
+
def _matmat(self, x):
|
742 |
+
"""
|
743 |
+
Construct matrix-free callable matrix-matrix multiplication by
|
744 |
+
the Mikota mass matrix without constructing or storing the matrix itself
|
745 |
+
by reusing the ``_matvec(x)`` that supports both 1D and 2D arrays ``x``.
|
746 |
+
"""
|
747 |
+
return self._matvec(x)
|
748 |
+
|
749 |
+
def _adjoint(self):
|
750 |
+
return self
|
751 |
+
|
752 |
+
def _transpose(self):
|
753 |
+
return self
|
754 |
+
|
755 |
+
|
756 |
+
class MikotaK(LinearOperator):
|
757 |
+
"""
|
758 |
+
Construct a stiffness matrix in various formats of Mikota pair.
|
759 |
+
|
760 |
+
The stiffness matrix `K` is square real tri-diagonal symmetric
|
761 |
+
positive definite with integer entries.
|
762 |
+
|
763 |
+
Parameters
|
764 |
+
----------
|
765 |
+
shape : tuple of int
|
766 |
+
The shape of the matrix.
|
767 |
+
dtype : dtype
|
768 |
+
Numerical type of the array. Default is ``np.int32``.
|
769 |
+
|
770 |
+
Methods
|
771 |
+
-------
|
772 |
+
toarray()
|
773 |
+
Construct a dense array from Mikota data
|
774 |
+
tosparse()
|
775 |
+
Construct a sparse array from Mikota data
|
776 |
+
tobanded()
|
777 |
+
The format for banded symmetric matrices,
|
778 |
+
i.e., (2, n) ndarray with 2 upper diagonals
|
779 |
+
placing the main diagonal at the bottom.
|
780 |
+
"""
|
781 |
+
def __init__(self, shape, dtype=np.int32):
|
782 |
+
self.shape = shape
|
783 |
+
self.dtype = dtype
|
784 |
+
super().__init__(dtype, shape)
|
785 |
+
# The matrix is constructed from its diagonals;
|
786 |
+
# we precompute these to avoid duplicating the computation
|
787 |
+
n = shape[0]
|
788 |
+
self._diag0 = np.arange(2 * n - 1, 0, -2, dtype=self.dtype)
|
789 |
+
self._diag1 = - np.arange(n - 1, 0, -1, dtype=self.dtype)
|
790 |
+
|
791 |
+
def tobanded(self):
|
792 |
+
return np.array([np.pad(self._diag1, (1, 0), 'constant'), self._diag0])
|
793 |
+
|
794 |
+
def tosparse(self):
|
795 |
+
from scipy.sparse import diags
|
796 |
+
return diags([self._diag1, self._diag0, self._diag1], [-1, 0, 1],
|
797 |
+
shape=self.shape, dtype=self.dtype)
|
798 |
+
|
799 |
+
def toarray(self):
|
800 |
+
return self.tosparse().toarray()
|
801 |
+
|
802 |
+
def _matvec(self, x):
|
803 |
+
"""
|
804 |
+
Construct matrix-free callable banded-matrix-vector multiplication by
|
805 |
+
the Mikota stiffness matrix without constructing or storing the matrix
|
806 |
+
itself using the knowledge of its entries and the 3-diagonal format.
|
807 |
+
"""
|
808 |
+
x = x.reshape(self.shape[0], -1)
|
809 |
+
result_dtype = np.promote_types(x.dtype, self.dtype)
|
810 |
+
kx = np.zeros_like(x, dtype=result_dtype)
|
811 |
+
d1 = self._diag1
|
812 |
+
d0 = self._diag0
|
813 |
+
kx[0, :] = d0[0] * x[0, :] + d1[0] * x[1, :]
|
814 |
+
kx[-1, :] = d1[-1] * x[-2, :] + d0[-1] * x[-1, :]
|
815 |
+
kx[1: -1, :] = (d1[:-1, None] * x[: -2, :]
|
816 |
+
+ d0[1: -1, None] * x[1: -1, :]
|
817 |
+
+ d1[1:, None] * x[2:, :])
|
818 |
+
return kx
|
819 |
+
|
820 |
+
def _matmat(self, x):
|
821 |
+
"""
|
822 |
+
Construct matrix-free callable matrix-matrix multiplication by
|
823 |
+
the Stiffness mass matrix without constructing or storing the matrix itself
|
824 |
+
by reusing the ``_matvec(x)`` that supports both 1D and 2D arrays ``x``.
|
825 |
+
"""
|
826 |
+
return self._matvec(x)
|
827 |
+
|
828 |
+
def _adjoint(self):
|
829 |
+
return self
|
830 |
+
|
831 |
+
def _transpose(self):
|
832 |
+
return self
|
833 |
+
|
834 |
+
|
835 |
+
class MikotaPair:
|
836 |
+
"""
|
837 |
+
Construct the Mikota pair of matrices in various formats and
|
838 |
+
eigenvalues of the generalized eigenproblem with them.
|
839 |
+
|
840 |
+
The Mikota pair of matrices [1, 2]_ models a vibration problem
|
841 |
+
of a linear mass-spring system with the ends attached where
|
842 |
+
the stiffness of the springs and the masses increase along
|
843 |
+
the system length such that vibration frequencies are subsequent
|
844 |
+
integers 1, 2, ..., `n` where `n` is the number of the masses. Thus,
|
845 |
+
eigenvalues of the generalized eigenvalue problem for
|
846 |
+
the matrix pair `K` and `M` where `K` is he system stiffness matrix
|
847 |
+
and `M` is the system mass matrix are the squares of the integers,
|
848 |
+
i.e., 1, 4, 9, ..., ``n * n``.
|
849 |
+
|
850 |
+
The stiffness matrix `K` is square real tri-diagonal symmetric
|
851 |
+
positive definite. The mass matrix `M` is diagonal with diagonal
|
852 |
+
entries 1, 1/2, 1/3, ...., ``1/n``. Both matrices get
|
853 |
+
ill-conditioned with `n` growing.
|
854 |
+
|
855 |
+
Parameters
|
856 |
+
----------
|
857 |
+
n : int
|
858 |
+
The size of the matrices of the Mikota pair.
|
859 |
+
dtype : dtype
|
860 |
+
Numerical type of the array. Default is ``np.float64``.
|
861 |
+
|
862 |
+
Attributes
|
863 |
+
----------
|
864 |
+
eigenvalues : 1D ndarray, ``np.uint64``
|
865 |
+
All eigenvalues of the Mikota pair ordered ascending.
|
866 |
+
|
867 |
+
Methods
|
868 |
+
-------
|
869 |
+
MikotaK()
|
870 |
+
A `LinearOperator` custom object for the stiffness matrix.
|
871 |
+
MikotaM()
|
872 |
+
A `LinearOperator` custom object for the mass matrix.
|
873 |
+
|
874 |
+
.. versionadded:: 1.12.0
|
875 |
+
|
876 |
+
References
|
877 |
+
----------
|
878 |
+
.. [1] J. Mikota, "Frequency tuning of chain structure multibody oscillators
|
879 |
+
to place the natural frequencies at omega1 and N-1 integer multiples
|
880 |
+
omega2,..., omegaN", Z. Angew. Math. Mech. 81 (2001), S2, S201-S202.
|
881 |
+
Appl. Num. Anal. Comp. Math. Vol. 1 No. 2 (2004).
|
882 |
+
.. [2] Peter C. Muller and Metin Gurgoze,
|
883 |
+
"Natural frequencies of a multi-degree-of-freedom vibration system",
|
884 |
+
Proc. Appl. Math. Mech. 6, 319-320 (2006).
|
885 |
+
http://dx.doi.org/10.1002/pamm.200610141.
|
886 |
+
|
887 |
+
Examples
|
888 |
+
--------
|
889 |
+
>>> import numpy as np
|
890 |
+
>>> from scipy.sparse.linalg._special_sparse_arrays import MikotaPair
|
891 |
+
>>> n = 6
|
892 |
+
>>> mik = MikotaPair(n)
|
893 |
+
>>> mik_k = mik.k
|
894 |
+
>>> mik_m = mik.m
|
895 |
+
>>> mik_k.toarray()
|
896 |
+
array([[11., -5., 0., 0., 0., 0.],
|
897 |
+
[-5., 9., -4., 0., 0., 0.],
|
898 |
+
[ 0., -4., 7., -3., 0., 0.],
|
899 |
+
[ 0., 0., -3., 5., -2., 0.],
|
900 |
+
[ 0., 0., 0., -2., 3., -1.],
|
901 |
+
[ 0., 0., 0., 0., -1., 1.]])
|
902 |
+
>>> mik_k.tobanded()
|
903 |
+
array([[ 0., -5., -4., -3., -2., -1.],
|
904 |
+
[11., 9., 7., 5., 3., 1.]])
|
905 |
+
>>> mik_m.tobanded()
|
906 |
+
array([1. , 0.5 , 0.33333333, 0.25 , 0.2 ,
|
907 |
+
0.16666667])
|
908 |
+
>>> mik_k.tosparse()
|
909 |
+
<6x6 sparse matrix of type '<class 'numpy.float64'>'
|
910 |
+
with 16 stored elements (3 diagonals) in DIAgonal format>
|
911 |
+
>>> mik_m.tosparse()
|
912 |
+
<6x6 sparse matrix of type '<class 'numpy.float64'>'
|
913 |
+
with 6 stored elements (1 diagonals) in DIAgonal format>
|
914 |
+
>>> np.array_equal(mik_k(np.eye(n)), mik_k.toarray())
|
915 |
+
True
|
916 |
+
>>> np.array_equal(mik_m(np.eye(n)), mik_m.toarray())
|
917 |
+
True
|
918 |
+
>>> mik.eigenvalues()
|
919 |
+
array([ 1, 4, 9, 16, 25, 36])
|
920 |
+
>>> mik.eigenvalues(2)
|
921 |
+
array([ 1, 4])
|
922 |
+
|
923 |
+
"""
|
924 |
+
def __init__(self, n, dtype=np.float64):
|
925 |
+
self.n = n
|
926 |
+
self.dtype = dtype
|
927 |
+
self.shape = (n, n)
|
928 |
+
self.m = MikotaM(self.shape, self.dtype)
|
929 |
+
self.k = MikotaK(self.shape, self.dtype)
|
930 |
+
|
931 |
+
def eigenvalues(self, m=None):
|
932 |
+
"""Return the requested number of eigenvalues.
|
933 |
+
|
934 |
+
Parameters
|
935 |
+
----------
|
936 |
+
m : int, optional
|
937 |
+
The positive number of smallest eigenvalues to return.
|
938 |
+
If not provided, then all eigenvalues will be returned.
|
939 |
+
|
940 |
+
Returns
|
941 |
+
-------
|
942 |
+
eigenvalues : `np.uint64` array
|
943 |
+
The requested `m` smallest or all eigenvalues, in ascending order.
|
944 |
+
"""
|
945 |
+
if m is None:
|
946 |
+
m = self.n
|
947 |
+
arange_plus1 = np.arange(1, m + 1, dtype=np.uint64)
|
948 |
+
return arange_plus1 * arange_plus1
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/dsolve.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.sparse.linalg` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
|
8 |
+
__all__ = [ # noqa: F822
|
9 |
+
'MatrixRankWarning', 'SuperLU', 'factorized',
|
10 |
+
'spilu', 'splu', 'spsolve',
|
11 |
+
'spsolve_triangular', 'use_solver', 'linsolve', 'test'
|
12 |
+
]
|
13 |
+
|
14 |
+
dsolve_modules = ['linsolve']
|
15 |
+
|
16 |
+
|
17 |
+
def __dir__():
|
18 |
+
return __all__
|
19 |
+
|
20 |
+
|
21 |
+
def __getattr__(name):
|
22 |
+
return _sub_module_deprecation(sub_package="sparse.linalg", module="dsolve",
|
23 |
+
private_modules=["_dsolve"], all=__all__,
|
24 |
+
attribute=name)
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/linalg/eigen.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.sparse.linalg` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
|
8 |
+
__all__ = [ # noqa: F822
|
9 |
+
'ArpackError', 'ArpackNoConvergence', 'ArpackError',
|
10 |
+
'eigs', 'eigsh', 'lobpcg', 'svds', 'arpack', 'test'
|
11 |
+
]
|
12 |
+
|
13 |
+
eigen_modules = ['arpack']
|
14 |
+
|
15 |
+
|
16 |
+
def __dir__():
|
17 |
+
return __all__
|
18 |
+
|
19 |
+
|
20 |
+
def __getattr__(name):
|
21 |
+
return _sub_module_deprecation(sub_package="sparse.linalg", module="eigen",
|
22 |
+
private_modules=["_eigen"], all=__all__,
|
23 |
+
attribute=name)
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/tests/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (183 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/scipy/sparse/tests/__pycache__/test_array_api.cpython-310.pyc
ADDED
Binary file (15.1 kB). View file
|
|