Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- lm-evaluation/UNKNOWN.egg-info/PKG-INFO +11 -0
- lm-evaluation/UNKNOWN.egg-info/SOURCES.txt +8 -0
- lm-evaluation/UNKNOWN.egg-info/dependency_links.txt +1 -0
- lm-evaluation/UNKNOWN.egg-info/top_level.txt +1 -0
- lm-evaluation/examples/lm-eval-overview.ipynb +1231 -0
- lm-evaluation/examples/visualize-wandb.ipynb +168 -0
- lm-evaluation/examples/visualize-zeno.ipynb +115 -0
- lm-evaluation/lm_eval/__pycache__/__init__.cpython-310.pyc +0 -0
- lm-evaluation/lm_eval/__pycache__/__main__.cpython-310.pyc +0 -0
- lm-evaluation/lm_eval/__pycache__/evaluator.cpython-310.pyc +0 -0
- lm-evaluation/lm_eval/__pycache__/evaluator_utils.cpython-310.pyc +0 -0
- lm-evaluation/lm_eval/__pycache__/logging_utils.cpython-310.pyc +0 -0
- lm-evaluation/lm_eval/__pycache__/utils.cpython-310.pyc +0 -0
- lm-evaluation/lm_eval/caching/__pycache__/cache.cpython-310.pyc +0 -0
- lm-evaluation/lm_eval/models/__init__.py +26 -0
- lm-evaluation/lm_eval/models/__pycache__/anthropic_llms.cpython-310.pyc +0 -0
- lm-evaluation/lm_eval/models/__pycache__/dummy.cpython-310.pyc +0 -0
- lm-evaluation/lm_eval/models/__pycache__/gguf.cpython-310.pyc +0 -0
- lm-evaluation/lm_eval/models/__pycache__/huggingface.cpython-310.pyc +0 -0
- lm-evaluation/lm_eval/models/__pycache__/mamba_lm.cpython-310.pyc +0 -0
- lm-evaluation/lm_eval/models/__pycache__/nemo_lm.cpython-310.pyc +0 -0
- lm-evaluation/lm_eval/models/__pycache__/neuron_optimum.cpython-310.pyc +0 -0
- lm-evaluation/lm_eval/models/__pycache__/openai_completions.cpython-310.pyc +0 -0
- lm-evaluation/lm_eval/models/__pycache__/optimum_lm.cpython-310.pyc +0 -0
- lm-evaluation/lm_eval/models/__pycache__/textsynth.cpython-310.pyc +0 -0
- lm-evaluation/lm_eval/models/__pycache__/utils.cpython-310.pyc +0 -0
- lm-evaluation/lm_eval/models/__pycache__/vllm_causallms.cpython-310.pyc +0 -0
- lm-evaluation/lm_eval/models/anthropic_llms.py +360 -0
- lm-evaluation/lm_eval/models/dummy.py +41 -0
- lm-evaluation/lm_eval/models/gguf.py +130 -0
- lm-evaluation/lm_eval/models/huggingface.py +1243 -0
- lm-evaluation/lm_eval/models/mamba_lm.py +126 -0
- lm-evaluation/lm_eval/models/nemo_lm.py +537 -0
- lm-evaluation/lm_eval/models/neuron_optimum.py +736 -0
- lm-evaluation/lm_eval/models/openai_completions.py +481 -0
- lm-evaluation/lm_eval/models/optimum_lm.py +69 -0
- lm-evaluation/lm_eval/models/textsynth.py +171 -0
- lm-evaluation/lm_eval/models/utils.py +615 -0
- lm-evaluation/lm_eval/models/vllm_causallms.py +487 -0
- lm-evaluation/lm_eval/prompts/__init__.py +126 -0
- lm-evaluation/lm_eval/prompts/__pycache__/__init__.cpython-310.pyc +0 -0
- lm-evaluation/tests/__init__.py +0 -0
- lm-evaluation/tests/models/test_gguf.py +152 -0
- lm-evaluation/tests/models/test_huggingface.py +143 -0
- lm-evaluation/tests/models/test_neuron_optimum.py +26 -0
- lm-evaluation/tests/models/test_openvino.py +73 -0
- lm-evaluation/tests/models/test_vllm.py +51 -0
- lm-evaluation/tests/test_cli.py +43 -0
- lm-evaluation/tests/test_evaluator.py +65 -0
- lm-evaluation/tests/test_janitor.py +507 -0
lm-evaluation/UNKNOWN.egg-info/PKG-INFO
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: UNKNOWN
|
3 |
+
Version: 0.0.0
|
4 |
+
Summary: UNKNOWN
|
5 |
+
Home-page: UNKNOWN
|
6 |
+
License: UNKNOWN
|
7 |
+
Platform: UNKNOWN
|
8 |
+
License-File: LICENSE.md
|
9 |
+
|
10 |
+
UNKNOWN
|
11 |
+
|
lm-evaluation/UNKNOWN.egg-info/SOURCES.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
LICENSE.md
|
2 |
+
README.md
|
3 |
+
pyproject.toml
|
4 |
+
setup.py
|
5 |
+
UNKNOWN.egg-info/PKG-INFO
|
6 |
+
UNKNOWN.egg-info/SOURCES.txt
|
7 |
+
UNKNOWN.egg-info/dependency_links.txt
|
8 |
+
UNKNOWN.egg-info/top_level.txt
|
lm-evaluation/UNKNOWN.egg-info/dependency_links.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
lm-evaluation/UNKNOWN.egg-info/top_level.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
lm-evaluation/examples/lm-eval-overview.ipynb
ADDED
@@ -0,0 +1,1231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "Qw83KAePAhaS"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"# Releasing LM-Evaluation-Harness v0.4.0"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "markdown",
|
14 |
+
"metadata": {
|
15 |
+
"id": "Z7k2vq1iAdqr"
|
16 |
+
},
|
17 |
+
"source": [
|
18 |
+
"With the vast amount of work done in the field today, it helps to have a tool that people can use easily to share their results and use to check others to ensure reported numbers are valid. The LM Evaluation Harness is one such tool the community has used extensively. We want to continue to support the community and with that in mind, we’re excited to announce a major update on the LM Evaluation Harness to further our goal for open and accessible AI research."
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "markdown",
|
23 |
+
"metadata": {
|
24 |
+
"id": "0gDoM0AJAvEc"
|
25 |
+
},
|
26 |
+
"source": [
|
27 |
+
"Our refactor stems from our desires to make the following believed best practices easier to carry out. \n",
|
28 |
+
"\n",
|
29 |
+
"1. Never copy results from other papers\n",
|
30 |
+
"2. Always share your exact prompts\n",
|
31 |
+
"3. Always provide model outputs\n",
|
32 |
+
"4. Qualitatively review a small batch of outputs before running evaluation jobs at scale\n",
|
33 |
+
"\n",
|
34 |
+
"We also wanted to make the library a better experience to use and to contribute or design evaluations within. New features in the new release that serve this purpose include:\n",
|
35 |
+
"\n",
|
36 |
+
"1. Faster Evaluation Runtimes (accelerated data-parallel inference with HF Transformers + Accelerate, and commonly used or faster inference libraries such as vLLM and Llama-CPP)\n",
|
37 |
+
"2. Easier addition and sharing of new tasks (YAML-based task config formats, allowing single-file sharing of custom tasks)\n",
|
38 |
+
"3. More configurability, for more advanced workflows and easier operation with modifying prompts\n",
|
39 |
+
"4. Better logging of data at runtime and post-hoc"
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "markdown",
|
44 |
+
"metadata": {
|
45 |
+
"id": "nnwsOpjda_YW"
|
46 |
+
},
|
47 |
+
"source": [
|
48 |
+
"In this notebook we will be going through a short tutorial on how things work."
|
49 |
+
]
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"cell_type": "markdown",
|
53 |
+
"metadata": {
|
54 |
+
"id": "zAov81vTbL2K"
|
55 |
+
},
|
56 |
+
"source": [
|
57 |
+
"## Install LM-Eval"
|
58 |
+
]
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"cell_type": "code",
|
62 |
+
"execution_count": 1,
|
63 |
+
"metadata": {
|
64 |
+
"colab": {
|
65 |
+
"base_uri": "https://localhost:8080/"
|
66 |
+
},
|
67 |
+
"id": "8hiosGzq_qZg",
|
68 |
+
"outputId": "6ab73e5e-1f54-417e-a388-07e0d870b132"
|
69 |
+
},
|
70 |
+
"outputs": [
|
71 |
+
{
|
72 |
+
"name": "stdout",
|
73 |
+
"output_type": "stream",
|
74 |
+
"text": [
|
75 |
+
"Collecting git+https://github.com/EleutherAI/lm-evaluation-harness.git@big-refactor\n",
|
76 |
+
" Cloning https://github.com/EleutherAI/lm-evaluation-harness.git (to revision big-refactor) to /tmp/pip-req-build-tnssql5s\n",
|
77 |
+
" Running command git clone --filter=blob:none --quiet https://github.com/EleutherAI/lm-evaluation-harness.git /tmp/pip-req-build-tnssql5s\n",
|
78 |
+
" Running command git checkout -b big-refactor --track origin/big-refactor\n",
|
79 |
+
" Switched to a new branch 'big-refactor'\n",
|
80 |
+
" Branch 'big-refactor' set up to track remote branch 'big-refactor' from 'origin'.\n",
|
81 |
+
" Resolved https://github.com/EleutherAI/lm-evaluation-harness.git to commit 42f486ee49b65926a444cb0620870a39a5b4b0a8\n",
|
82 |
+
" Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
|
83 |
+
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
|
84 |
+
" Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
|
85 |
+
"Collecting accelerate>=0.21.0 (from lm-eval==1.0.0)\n",
|
86 |
+
" Downloading accelerate-0.24.1-py3-none-any.whl (261 kB)\n",
|
87 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m261.4/261.4 kB\u001b[0m \u001b[31m4.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
88 |
+
"\u001b[?25hCollecting evaluate (from lm-eval==1.0.0)\n",
|
89 |
+
" Downloading evaluate-0.4.1-py3-none-any.whl (84 kB)\n",
|
90 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.1/84.1 kB\u001b[0m \u001b[31m5.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
91 |
+
"\u001b[?25hCollecting datasets>=2.0.0 (from lm-eval==1.0.0)\n",
|
92 |
+
" Downloading datasets-2.15.0-py3-none-any.whl (521 kB)\n",
|
93 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m521.2/521.2 kB\u001b[0m \u001b[31m9.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
94 |
+
"\u001b[?25hCollecting jsonlines (from lm-eval==1.0.0)\n",
|
95 |
+
" Downloading jsonlines-4.0.0-py3-none-any.whl (8.7 kB)\n",
|
96 |
+
"Requirement already satisfied: numexpr in /usr/local/lib/python3.10/dist-packages (from lm-eval==1.0.0) (2.8.7)\n",
|
97 |
+
"Collecting peft>=0.2.0 (from lm-eval==1.0.0)\n",
|
98 |
+
" Downloading peft-0.6.2-py3-none-any.whl (174 kB)\n",
|
99 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m174.7/174.7 kB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
100 |
+
"\u001b[?25hCollecting pybind11>=2.6.2 (from lm-eval==1.0.0)\n",
|
101 |
+
" Downloading pybind11-2.11.1-py3-none-any.whl (227 kB)\n",
|
102 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m227.7/227.7 kB\u001b[0m \u001b[31m12.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
103 |
+
"\u001b[?25hCollecting pytablewriter (from lm-eval==1.0.0)\n",
|
104 |
+
" Downloading pytablewriter-1.2.0-py3-none-any.whl (111 kB)\n",
|
105 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m111.1/111.1 kB\u001b[0m \u001b[31m8.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
106 |
+
"\u001b[?25hCollecting rouge-score>=0.0.4 (from lm-eval==1.0.0)\n",
|
107 |
+
" Downloading rouge_score-0.1.2.tar.gz (17 kB)\n",
|
108 |
+
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
109 |
+
"Collecting sacrebleu>=1.5.0 (from lm-eval==1.0.0)\n",
|
110 |
+
" Downloading sacrebleu-2.3.2-py3-none-any.whl (119 kB)\n",
|
111 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m119.7/119.7 kB\u001b[0m \u001b[31m8.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
112 |
+
"\u001b[?25hRequirement already satisfied: scikit-learn>=0.24.1 in /usr/local/lib/python3.10/dist-packages (from lm-eval==1.0.0) (1.2.2)\n",
|
113 |
+
"Collecting sqlitedict (from lm-eval==1.0.0)\n",
|
114 |
+
" Downloading sqlitedict-2.1.0.tar.gz (21 kB)\n",
|
115 |
+
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
116 |
+
"Requirement already satisfied: torch>=1.8 in /usr/local/lib/python3.10/dist-packages (from lm-eval==1.0.0) (2.1.0+cu118)\n",
|
117 |
+
"Collecting tqdm-multiprocess (from lm-eval==1.0.0)\n",
|
118 |
+
" Downloading tqdm_multiprocess-0.0.11-py3-none-any.whl (9.8 kB)\n",
|
119 |
+
"Requirement already satisfied: transformers>=4.1 in /usr/local/lib/python3.10/dist-packages (from lm-eval==1.0.0) (4.35.2)\n",
|
120 |
+
"Collecting zstandard (from lm-eval==1.0.0)\n",
|
121 |
+
" Downloading zstandard-0.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.4 MB)\n",
|
122 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.4/5.4 MB\u001b[0m \u001b[31m29.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
123 |
+
"\u001b[?25hRequirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (1.23.5)\n",
|
124 |
+
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (23.2)\n",
|
125 |
+
"Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (5.9.5)\n",
|
126 |
+
"Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (6.0.1)\n",
|
127 |
+
"Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (from accelerate>=0.21.0->lm-eval==1.0.0) (0.19.4)\n",
|
128 |
+
"Requirement already satisfied: pyarrow>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (9.0.0)\n",
|
129 |
+
"Collecting pyarrow-hotfix (from datasets>=2.0.0->lm-eval==1.0.0)\n",
|
130 |
+
" Downloading pyarrow_hotfix-0.6-py3-none-any.whl (7.9 kB)\n",
|
131 |
+
"Collecting dill<0.3.8,>=0.3.0 (from datasets>=2.0.0->lm-eval==1.0.0)\n",
|
132 |
+
" Downloading dill-0.3.7-py3-none-any.whl (115 kB)\n",
|
133 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m115.3/115.3 kB\u001b[0m \u001b[31m14.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
134 |
+
"\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (1.5.3)\n",
|
135 |
+
"Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (2.31.0)\n",
|
136 |
+
"Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (4.66.1)\n",
|
137 |
+
"Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (3.4.1)\n",
|
138 |
+
"Collecting multiprocess (from datasets>=2.0.0->lm-eval==1.0.0)\n",
|
139 |
+
" Downloading multiprocess-0.70.15-py310-none-any.whl (134 kB)\n",
|
140 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m19.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
141 |
+
"\u001b[?25hRequirement already satisfied: fsspec[http]<=2023.10.0,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (2023.6.0)\n",
|
142 |
+
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets>=2.0.0->lm-eval==1.0.0) (3.8.6)\n",
|
143 |
+
"Collecting responses<0.19 (from evaluate->lm-eval==1.0.0)\n",
|
144 |
+
" Downloading responses-0.18.0-py3-none-any.whl (38 kB)\n",
|
145 |
+
"Requirement already satisfied: safetensors in /usr/local/lib/python3.10/dist-packages (from peft>=0.2.0->lm-eval==1.0.0) (0.4.0)\n",
|
146 |
+
"Requirement already satisfied: absl-py in /usr/local/lib/python3.10/dist-packages (from rouge-score>=0.0.4->lm-eval==1.0.0) (1.4.0)\n",
|
147 |
+
"Requirement already satisfied: nltk in /usr/local/lib/python3.10/dist-packages (from rouge-score>=0.0.4->lm-eval==1.0.0) (3.8.1)\n",
|
148 |
+
"Requirement already satisfied: six>=1.14.0 in /usr/local/lib/python3.10/dist-packages (from rouge-score>=0.0.4->lm-eval==1.0.0) (1.16.0)\n",
|
149 |
+
"Collecting portalocker (from sacrebleu>=1.5.0->lm-eval==1.0.0)\n",
|
150 |
+
" Downloading portalocker-2.8.2-py3-none-any.whl (17 kB)\n",
|
151 |
+
"Requirement already satisfied: regex in /usr/local/lib/python3.10/dist-packages (from sacrebleu>=1.5.0->lm-eval==1.0.0) (2023.6.3)\n",
|
152 |
+
"Requirement already satisfied: tabulate>=0.8.9 in /usr/local/lib/python3.10/dist-packages (from sacrebleu>=1.5.0->lm-eval==1.0.0) (0.9.0)\n",
|
153 |
+
"Collecting colorama (from sacrebleu>=1.5.0->lm-eval==1.0.0)\n",
|
154 |
+
" Downloading colorama-0.4.6-py2.py3-none-any.whl (25 kB)\n",
|
155 |
+
"Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages (from sacrebleu>=1.5.0->lm-eval==1.0.0) (4.9.3)\n",
|
156 |
+
"Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24.1->lm-eval==1.0.0) (1.11.3)\n",
|
157 |
+
"Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24.1->lm-eval==1.0.0) (1.3.2)\n",
|
158 |
+
"Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.24.1->lm-eval==1.0.0) (3.2.0)\n",
|
159 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm-eval==1.0.0) (3.13.1)\n",
|
160 |
+
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm-eval==1.0.0) (4.5.0)\n",
|
161 |
+
"Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm-eval==1.0.0) (1.12)\n",
|
162 |
+
"Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm-eval==1.0.0) (3.2.1)\n",
|
163 |
+
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm-eval==1.0.0) (3.1.2)\n",
|
164 |
+
"Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8->lm-eval==1.0.0) (2.1.0)\n",
|
165 |
+
"Requirement already satisfied: tokenizers<0.19,>=0.14 in /usr/local/lib/python3.10/dist-packages (from transformers>=4.1->lm-eval==1.0.0) (0.15.0)\n",
|
166 |
+
"Requirement already satisfied: attrs>=19.2.0 in /usr/local/lib/python3.10/dist-packages (from jsonlines->lm-eval==1.0.0) (23.1.0)\n",
|
167 |
+
"Requirement already satisfied: setuptools>=38.3.0 in /usr/local/lib/python3.10/dist-packages (from pytablewriter->lm-eval==1.0.0) (67.7.2)\n",
|
168 |
+
"Collecting DataProperty<2,>=1.0.1 (from pytablewriter->lm-eval==1.0.0)\n",
|
169 |
+
" Downloading DataProperty-1.0.1-py3-none-any.whl (27 kB)\n",
|
170 |
+
"Collecting mbstrdecoder<2,>=1.0.0 (from pytablewriter->lm-eval==1.0.0)\n",
|
171 |
+
" Downloading mbstrdecoder-1.1.3-py3-none-any.whl (7.8 kB)\n",
|
172 |
+
"Collecting pathvalidate<4,>=2.3.0 (from pytablewriter->lm-eval==1.0.0)\n",
|
173 |
+
" Downloading pathvalidate-3.2.0-py3-none-any.whl (23 kB)\n",
|
174 |
+
"Collecting tabledata<2,>=1.3.1 (from pytablewriter->lm-eval==1.0.0)\n",
|
175 |
+
" Downloading tabledata-1.3.3-py3-none-any.whl (11 kB)\n",
|
176 |
+
"Collecting tcolorpy<1,>=0.0.5 (from pytablewriter->lm-eval==1.0.0)\n",
|
177 |
+
" Downloading tcolorpy-0.1.4-py3-none-any.whl (7.9 kB)\n",
|
178 |
+
"Collecting typepy[datetime]<2,>=1.3.2 (from pytablewriter->lm-eval==1.0.0)\n",
|
179 |
+
" Downloading typepy-1.3.2-py3-none-any.whl (31 kB)\n",
|
180 |
+
"Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->lm-eval==1.0.0) (3.3.2)\n",
|
181 |
+
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->lm-eval==1.0.0) (6.0.4)\n",
|
182 |
+
"Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->lm-eval==1.0.0) (4.0.3)\n",
|
183 |
+
"Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->lm-eval==1.0.0) (1.9.2)\n",
|
184 |
+
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->lm-eval==1.0.0) (1.4.0)\n",
|
185 |
+
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets>=2.0.0->lm-eval==1.0.0) (1.3.1)\n",
|
186 |
+
"Requirement already satisfied: chardet<6,>=3.0.4 in /usr/local/lib/python3.10/dist-packages (from mbstrdecoder<2,>=1.0.0->pytablewriter->lm-eval==1.0.0) (5.2.0)\n",
|
187 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets>=2.0.0->lm-eval==1.0.0) (3.4)\n",
|
188 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets>=2.0.0->lm-eval==1.0.0) (2.0.7)\n",
|
189 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets>=2.0.0->lm-eval==1.0.0) (2023.7.22)\n",
|
190 |
+
"Requirement already satisfied: python-dateutil<3.0.0,>=2.8.0 in /usr/local/lib/python3.10/dist-packages (from typepy[datetime]<2,>=1.3.2->pytablewriter->lm-eval==1.0.0) (2.8.2)\n",
|
191 |
+
"Requirement already satisfied: pytz>=2018.9 in /usr/local/lib/python3.10/dist-packages (from typepy[datetime]<2,>=1.3.2->pytablewriter->lm-eval==1.0.0) (2023.3.post1)\n",
|
192 |
+
"Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.8->lm-eval==1.0.0) (2.1.3)\n",
|
193 |
+
"Requirement already satisfied: click in /usr/local/lib/python3.10/dist-packages (from nltk->rouge-score>=0.0.4->lm-eval==1.0.0) (8.1.7)\n",
|
194 |
+
"Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.8->lm-eval==1.0.0) (1.3.0)\n",
|
195 |
+
"Building wheels for collected packages: lm-eval, rouge-score, sqlitedict\n",
|
196 |
+
" Building wheel for lm-eval (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
|
197 |
+
" Created wheel for lm-eval: filename=lm_eval-1.0.0-py3-none-any.whl size=994254 sha256=88356155b19f2891981ecef948326ad6ce8ca40a6009378410ec20d0e225995a\n",
|
198 |
+
" Stored in directory: /tmp/pip-ephem-wheel-cache-9v6ye7h3/wheels/17/01/26/599c0779e9858a70a73fa8a306699b5b9a868f820c225457b0\n",
|
199 |
+
" Building wheel for rouge-score (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
200 |
+
" Created wheel for rouge-score: filename=rouge_score-0.1.2-py3-none-any.whl size=24933 sha256=6bb0d44e4881972c43ce194e7cb65233d309758cb15f0dec54590d3d2efcfc36\n",
|
201 |
+
" Stored in directory: /root/.cache/pip/wheels/5f/dd/89/461065a73be61a532ff8599a28e9beef17985c9e9c31e541b4\n",
|
202 |
+
" Building wheel for sqlitedict (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
203 |
+
" Created wheel for sqlitedict: filename=sqlitedict-2.1.0-py3-none-any.whl size=16863 sha256=5747f7dd73ddf3d8fbcebf51b5e4f718fabe1e94bccdf16d2f22a2e65ee7fdf4\n",
|
204 |
+
" Stored in directory: /root/.cache/pip/wheels/79/d6/e7/304e0e6cb2221022c26d8161f7c23cd4f259a9e41e8bbcfabd\n",
|
205 |
+
"Successfully built lm-eval rouge-score sqlitedict\n",
|
206 |
+
"Installing collected packages: sqlitedict, zstandard, tcolorpy, pybind11, pyarrow-hotfix, portalocker, pathvalidate, mbstrdecoder, jsonlines, dill, colorama, typepy, tqdm-multiprocess, sacrebleu, rouge-score, responses, multiprocess, accelerate, datasets, DataProperty, tabledata, peft, evaluate, pytablewriter, lm-eval\n",
|
207 |
+
"Successfully installed DataProperty-1.0.1 accelerate-0.24.1 colorama-0.4.6 datasets-2.15.0 dill-0.3.7 evaluate-0.4.1 jsonlines-4.0.0 lm-eval-1.0.0 mbstrdecoder-1.1.3 multiprocess-0.70.15 pathvalidate-3.2.0 peft-0.6.2 portalocker-2.8.2 pyarrow-hotfix-0.6 pybind11-2.11.1 pytablewriter-1.2.0 responses-0.18.0 rouge-score-0.1.2 sacrebleu-2.3.2 sqlitedict-2.1.0 tabledata-1.3.3 tcolorpy-0.1.4 tqdm-multiprocess-0.0.11 typepy-1.3.2 zstandard-0.22.0\n"
|
208 |
+
]
|
209 |
+
}
|
210 |
+
],
|
211 |
+
"source": [
|
212 |
+
"# Install LM-Eval\n",
|
213 |
+
"!pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@big-refactor"
|
214 |
+
]
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"cell_type": "code",
|
218 |
+
"execution_count": 2,
|
219 |
+
"metadata": {
|
220 |
+
"colab": {
|
221 |
+
"base_uri": "https://localhost:8080/",
|
222 |
+
"height": 0,
|
223 |
+
"referenced_widgets": [
|
224 |
+
"a1d3a8aa016544a78e8821c8f6199e06",
|
225 |
+
"f61ed33fad754146bdd2ac9db1ba1c48",
|
226 |
+
"bfa0af6aeff344c6845e1080a878e92e",
|
227 |
+
"fd1ad9e0367d4004aae853b91c3a7617",
|
228 |
+
"6b2d90209ec14230b3d58a74ac9b83bf",
|
229 |
+
"a73f357065d34d7baf0453ae4a8d75e2",
|
230 |
+
"46f521b73fd943c081c648fd873ebc0a",
|
231 |
+
"7c5689bc13684db8a22681f41863dddd",
|
232 |
+
"48763b6233374554ae76035c0483066f",
|
233 |
+
"4986a21eb560448fa79f4b25cde48951",
|
234 |
+
"aed3acd2f2d74003b44079c333a0698e"
|
235 |
+
]
|
236 |
+
},
|
237 |
+
"id": "uyO5MaKkZyah",
|
238 |
+
"outputId": "d46e8096-5086-4e49-967e-ea33d4a2a335"
|
239 |
+
},
|
240 |
+
"outputs": [
|
241 |
+
{
|
242 |
+
"data": {
|
243 |
+
"application/vnd.jupyter.widget-view+json": {
|
244 |
+
"model_id": "a1d3a8aa016544a78e8821c8f6199e06",
|
245 |
+
"version_major": 2,
|
246 |
+
"version_minor": 0
|
247 |
+
},
|
248 |
+
"text/plain": [
|
249 |
+
"Downloading builder script: 0%| | 0.00/5.67k [00:00<?, ?B/s]"
|
250 |
+
]
|
251 |
+
},
|
252 |
+
"metadata": {},
|
253 |
+
"output_type": "display_data"
|
254 |
+
}
|
255 |
+
],
|
256 |
+
"source": [
|
257 |
+
"from lm_eval import api"
|
258 |
+
]
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"cell_type": "markdown",
|
262 |
+
"metadata": {
|
263 |
+
"id": "8rfUeX6n_wkK"
|
264 |
+
},
|
265 |
+
"source": [
|
266 |
+
"## Create new evaluation tasks with config-based tasks\n",
|
267 |
+
"\n",
|
268 |
+
"Even within the same task, many works have reported numbers based on different choices of evaluation. Some report on the test sets, validation sets, or even subset of the training sets. Others have specialized prompts and verbalizers. We introduce YAMLs to allow users to easily make different variations. By leveraging the YAML configs to configure evaluations, the refactored LM-Eval takes the methods of the `Task` object and makes them configurable by setting the appropriate attributes in the config file. There, users can set the tasks they want by setting the name of the HF dataset (local tasks are also possible), the dataset splits used, and much more. Key configurations relating to prompting, such as `doc_to_text`, previously implemented as a method of the same name, are now configurable with jinja2 to allow high-level scripting to transform a HF dataset to text string as input to the model.\n",
|
269 |
+
"\n"
|
270 |
+
]
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"cell_type": "markdown",
|
274 |
+
"metadata": {
|
275 |
+
"id": "HYFUhhfOSJKe"
|
276 |
+
},
|
277 |
+
"source": [
|
278 |
+
"A core-feature to LM-Eval is to configure tasks with YAML configs. With configs, you can fill preset fields to easily set up a task.\n",
|
279 |
+
"\n",
|
280 |
+
"Here, we write a demo YAML config for a multiple-choice evaluation of BoolQ:"
|
281 |
+
]
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"cell_type": "code",
|
285 |
+
"execution_count": 3,
|
286 |
+
"metadata": {
|
287 |
+
"id": "bg3dGROW-V39"
|
288 |
+
},
|
289 |
+
"outputs": [],
|
290 |
+
"source": [
|
291 |
+
"YAML_boolq_string = '''\n",
|
292 |
+
"task: demo_boolq\n",
|
293 |
+
"dataset_path: super_glue\n",
|
294 |
+
"dataset_name: boolq\n",
|
295 |
+
"output_type: multiple_choice\n",
|
296 |
+
"training_split: train\n",
|
297 |
+
"validation_split: validation\n",
|
298 |
+
"doc_to_text: \"{{passage}}\\nQuestion: {{question}}?\\nAnswer:\"\n",
|
299 |
+
"doc_to_target: label\n",
|
300 |
+
"doc_to_choice: [\"no\", \"yes\"]\n",
|
301 |
+
"should_decontaminate: true\n",
|
302 |
+
"doc_to_decontamination_query: passage\n",
|
303 |
+
"metric_list:\n",
|
304 |
+
" - metric: acc\n",
|
305 |
+
"'''\n",
|
306 |
+
"with open('boolq.yaml', 'w') as f:\n",
|
307 |
+
" f.write(YAML_boolq_string)"
|
308 |
+
]
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"cell_type": "markdown",
|
312 |
+
"metadata": {},
|
313 |
+
"source": [
|
314 |
+
"And we can now run evaluation on this task, by pointing to the config file we've just created:"
|
315 |
+
]
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"cell_type": "code",
|
319 |
+
"execution_count": 4,
|
320 |
+
"metadata": {
|
321 |
+
"id": "LOUHK7PtQfq4"
|
322 |
+
},
|
323 |
+
"outputs": [
|
324 |
+
{
|
325 |
+
"name": "stdout",
|
326 |
+
"output_type": "stream",
|
327 |
+
"text": [
|
328 |
+
"2023-11-29:11:54:55,156 INFO [utils.py:160] NumExpr defaulting to 2 threads.\n",
|
329 |
+
"2023-11-29 11:54:55.942051: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
|
330 |
+
"2023-11-29 11:54:55.942108: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
|
331 |
+
"2023-11-29 11:54:55.942142: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
|
332 |
+
"2023-11-29 11:54:57.066802: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
|
333 |
+
"2023-11-29:11:55:00,954 INFO [__main__.py:132] Verbosity set to INFO\n",
|
334 |
+
"2023-11-29:11:55:11,038 WARNING [__main__.py:138] --limit SHOULD ONLY BE USED FOR TESTING.REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.\n",
|
335 |
+
"2023-11-29:11:55:11,038 INFO [__main__.py:143] Including path: ./\n",
|
336 |
+
"2023-11-29:11:55:11,046 INFO [__main__.py:205] Selected Tasks: ['demo_boolq']\n",
|
337 |
+
"2023-11-29:11:55:11,047 WARNING [evaluator.py:93] generation_kwargs specified through cli, these settings will be used over set parameters in yaml tasks.\n",
|
338 |
+
"2023-11-29:11:55:11,110 INFO [huggingface.py:120] Using device 'cuda'\n",
|
339 |
+
"config.json: 100% 571/571 [00:00<00:00, 2.87MB/s]\n",
|
340 |
+
"model.safetensors: 100% 5.68G/5.68G [00:32<00:00, 173MB/s]\n",
|
341 |
+
"tokenizer_config.json: 100% 396/396 [00:00<00:00, 2.06MB/s]\n",
|
342 |
+
"tokenizer.json: 100% 2.11M/2.11M [00:00<00:00, 11.6MB/s]\n",
|
343 |
+
"special_tokens_map.json: 100% 99.0/99.0 [00:00<00:00, 555kB/s]\n",
|
344 |
+
"2023-11-29:11:56:18,658 WARNING [task.py:614] [Task: demo_boolq] metric acc is defined, but aggregation is not. using default aggregation=mean\n",
|
345 |
+
"2023-11-29:11:56:18,658 WARNING [task.py:626] [Task: demo_boolq] metric acc is defined, but higher_is_better is not. using default higher_is_better=True\n",
|
346 |
+
"Downloading builder script: 100% 30.7k/30.7k [00:00<00:00, 59.0MB/s]\n",
|
347 |
+
"Downloading metadata: 100% 38.7k/38.7k [00:00<00:00, 651kB/s]\n",
|
348 |
+
"Downloading readme: 100% 14.8k/14.8k [00:00<00:00, 37.3MB/s]\n",
|
349 |
+
"Downloading data: 100% 4.12M/4.12M [00:00<00:00, 55.1MB/s]\n",
|
350 |
+
"Generating train split: 100% 9427/9427 [00:00<00:00, 15630.89 examples/s]\n",
|
351 |
+
"Generating validation split: 100% 3270/3270 [00:00<00:00, 20002.56 examples/s]\n",
|
352 |
+
"Generating test split: 100% 3245/3245 [00:00<00:00, 20866.19 examples/s]\n",
|
353 |
+
"2023-11-29:11:56:22,315 INFO [task.py:355] Building contexts for task on rank 0...\n",
|
354 |
+
"2023-11-29:11:56:22,322 INFO [evaluator.py:319] Running loglikelihood requests\n",
|
355 |
+
"100% 20/20 [00:04<00:00, 4.37it/s]\n",
|
356 |
+
"fatal: not a git repository (or any of the parent directories): .git\n",
|
357 |
+
"hf (pretrained=EleutherAI/pythia-2.8b), gen_kwargs: (), limit: 10.0, num_fewshot: None, batch_size: 1\n",
|
358 |
+
"| Tasks |Version|Filter|n-shot|Metric|Value| |Stderr|\n",
|
359 |
+
"|----------|-------|------|-----:|------|----:|---|-----:|\n",
|
360 |
+
"|demo_boolq|Yaml |none | 0|acc | 1|± | 0|\n",
|
361 |
+
"\n"
|
362 |
+
]
|
363 |
+
}
|
364 |
+
],
|
365 |
+
"source": [
|
366 |
+
"!lm_eval \\\n",
|
367 |
+
" --model hf \\\n",
|
368 |
+
" --model_args pretrained=EleutherAI/pythia-2.8b \\\n",
|
369 |
+
" --include_path ./ \\\n",
|
370 |
+
" --tasks demo_boolq \\\n",
|
371 |
+
" --limit 10\n"
|
372 |
+
]
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"cell_type": "markdown",
|
376 |
+
"metadata": {
|
377 |
+
"id": "LOUHK7PtQfq4"
|
378 |
+
},
|
379 |
+
"source": [
|
380 |
+
"Often, tasks are part of a larger group used to measure different capabilities. The dynamism of the field today means new dimensions of evaluation can come about which would mix and match new and older tasks alike. In LM-Eval, We can also group tasks and call that the group name to evaluate on a set of tasks easily. In this instance, let's evaluate the group `yes_or_no_tasks` which comprise of the tasks `demo_boolq` and `demo_cola`; tasks which are multiple choice tasks with options `yes` and `no` as the name suggests.\n",
|
381 |
+
"\n",
|
382 |
+
"<!-- making new groups is easier than ever, allowing user to work bottom-up by makiing individual tasks and linking them to a group or Top-Down, making a new group by listing existing tasks.\n",
|
383 |
+
"\n",
|
384 |
+
"We also show the aggregate across samples besides only showing the aggregation between subtasks. This may come in handy when certain groups want to be aggregated as a single task. -->\n",
|
385 |
+
"\n",
|
386 |
+
"\n"
|
387 |
+
]
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"cell_type": "code",
|
391 |
+
"execution_count": 5,
|
392 |
+
"metadata": {
|
393 |
+
"id": "fthNg3ywO-kA"
|
394 |
+
},
|
395 |
+
"outputs": [],
|
396 |
+
"source": [
|
397 |
+
"YAML_cola_string = '''\n",
|
398 |
+
"group: yes_or_no_tasks\n",
|
399 |
+
"task: demo_cola\n",
|
400 |
+
"dataset_path: glue\n",
|
401 |
+
"dataset_name: cola\n",
|
402 |
+
"output_type: multiple_choice\n",
|
403 |
+
"training_split: train\n",
|
404 |
+
"validation_split: validation\n",
|
405 |
+
"doc_to_text: \"{{sentence}}\\nQuestion: Does this sentence make sense?\\nAnswer:\"\n",
|
406 |
+
"doc_to_target: label\n",
|
407 |
+
"doc_to_choice: [\"no\", \"yes\"]\n",
|
408 |
+
"should_decontaminate: true\n",
|
409 |
+
"doc_to_decontamination_query: sentence\n",
|
410 |
+
"metric_list:\n",
|
411 |
+
" - metric: acc\n",
|
412 |
+
"'''\n",
|
413 |
+
"with open('cola.yaml', 'w') as f:\n",
|
414 |
+
" f.write(YAML_cola_string)"
|
415 |
+
]
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"cell_type": "code",
|
419 |
+
"execution_count": 6,
|
420 |
+
"metadata": {
|
421 |
+
"id": "XceRKCuuDtbn"
|
422 |
+
},
|
423 |
+
"outputs": [
|
424 |
+
{
|
425 |
+
"name": "stdout",
|
426 |
+
"output_type": "stream",
|
427 |
+
"text": [
|
428 |
+
"2023-11-29:11:56:33,016 INFO [utils.py:160] NumExpr defaulting to 2 threads.\n",
|
429 |
+
"2023-11-29 11:56:33.852995: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
|
430 |
+
"2023-11-29 11:56:33.853050: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
|
431 |
+
"2023-11-29 11:56:33.853087: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
|
432 |
+
"2023-11-29 11:56:35.129047: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
|
433 |
+
"2023-11-29:11:56:38,546 INFO [__main__.py:132] Verbosity set to INFO\n",
|
434 |
+
"2023-11-29:11:56:47,509 WARNING [__main__.py:138] --limit SHOULD ONLY BE USED FOR TESTING.REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.\n",
|
435 |
+
"2023-11-29:11:56:47,509 INFO [__main__.py:143] Including path: ./\n",
|
436 |
+
"2023-11-29:11:56:47,517 INFO [__main__.py:205] Selected Tasks: ['yes_or_no_tasks']\n",
|
437 |
+
"2023-11-29:11:56:47,520 WARNING [evaluator.py:93] generation_kwargs specified through cli, these settings will be used over set parameters in yaml tasks.\n",
|
438 |
+
"2023-11-29:11:56:47,550 INFO [huggingface.py:120] Using device 'cuda'\n",
|
439 |
+
"2023-11-29:11:57:08,743 WARNING [task.py:614] [Task: demo_cola] metric acc is defined, but aggregation is not. using default aggregation=mean\n",
|
440 |
+
"2023-11-29:11:57:08,743 WARNING [task.py:626] [Task: demo_cola] metric acc is defined, but higher_is_better is not. using default higher_is_better=True\n",
|
441 |
+
"Downloading builder script: 100% 28.8k/28.8k [00:00<00:00, 52.7MB/s]\n",
|
442 |
+
"Downloading metadata: 100% 28.7k/28.7k [00:00<00:00, 51.9MB/s]\n",
|
443 |
+
"Downloading readme: 100% 27.9k/27.9k [00:00<00:00, 48.0MB/s]\n",
|
444 |
+
"Downloading data: 100% 377k/377k [00:00<00:00, 12.0MB/s]\n",
|
445 |
+
"Generating train split: 100% 8551/8551 [00:00<00:00, 19744.58 examples/s]\n",
|
446 |
+
"Generating validation split: 100% 1043/1043 [00:00<00:00, 27057.01 examples/s]\n",
|
447 |
+
"Generating test split: 100% 1063/1063 [00:00<00:00, 22705.17 examples/s]\n",
|
448 |
+
"2023-11-29:11:57:11,698 INFO [task.py:355] Building contexts for task on rank 0...\n",
|
449 |
+
"2023-11-29:11:57:11,704 INFO [evaluator.py:319] Running loglikelihood requests\n",
|
450 |
+
"100% 20/20 [00:03<00:00, 5.15it/s]\n",
|
451 |
+
"fatal: not a git repository (or any of the parent directories): .git\n",
|
452 |
+
"hf (pretrained=EleutherAI/pythia-2.8b), gen_kwargs: (), limit: 10.0, num_fewshot: None, batch_size: 1\n",
|
453 |
+
"| Tasks |Version|Filter|n-shot|Metric|Value| |Stderr|\n",
|
454 |
+
"|---------------|-------|------|-----:|------|----:|---|-----:|\n",
|
455 |
+
"|yes_or_no_tasks|N/A |none | 0|acc | 0.7|± |0.1528|\n",
|
456 |
+
"| - demo_cola |Yaml |none | 0|acc | 0.7|± |0.1528|\n",
|
457 |
+
"\n",
|
458 |
+
"| Groups |Version|Filter|n-shot|Metric|Value| |Stderr|\n",
|
459 |
+
"|---------------|-------|------|-----:|------|----:|---|-----:|\n",
|
460 |
+
"|yes_or_no_tasks|N/A |none | 0|acc | 0.7|± |0.1528|\n",
|
461 |
+
"\n"
|
462 |
+
]
|
463 |
+
}
|
464 |
+
],
|
465 |
+
"source": [
|
466 |
+
"# !accelerate launch --no_python\n",
|
467 |
+
"!lm_eval \\\n",
|
468 |
+
" --model hf \\\n",
|
469 |
+
" --model_args pretrained=EleutherAI/pythia-2.8b \\\n",
|
470 |
+
" --include_path ./ \\\n",
|
471 |
+
" --tasks yes_or_no_tasks \\\n",
|
472 |
+
" --limit 10 \\\n",
|
473 |
+
" --output output/yes_or_no_tasks/ \\\n",
|
474 |
+
" --log_samples\n"
|
475 |
+
]
|
476 |
+
},
|
477 |
+
{
|
478 |
+
"cell_type": "markdown",
|
479 |
+
"metadata": {
|
480 |
+
"id": "XceRKCuuDtbn"
|
481 |
+
},
|
482 |
+
"source": [
|
483 |
+
"## Edit Prompt Templates Quickly\n",
|
484 |
+
"\n",
|
485 |
+
"The following is a yaml made to evaluate the specific subtask of `high_school_geography` from MMLU. It uses the standard prompt where the we choose the letters from the options with most likelihood as the model's prediction."
|
486 |
+
]
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"cell_type": "code",
|
490 |
+
"execution_count": 7,
|
491 |
+
"metadata": {
|
492 |
+
"id": "GTFvdt9kSlBG"
|
493 |
+
},
|
494 |
+
"outputs": [],
|
495 |
+
"source": [
|
496 |
+
"YAML_mmlu_geo_string = '''\n",
|
497 |
+
"group: mmlu\n",
|
498 |
+
"task: demo_mmlu_high_school_geography\n",
|
499 |
+
"dataset_path: cais/mmlu\n",
|
500 |
+
"dataset_name: high_school_geography\n",
|
501 |
+
"description: \"The following are multiple choice questions (with answers) about high school geography.\\n\\n\"\n",
|
502 |
+
"test_split: test\n",
|
503 |
+
"fewshot_split: dev\n",
|
504 |
+
"fewshot_config:\n",
|
505 |
+
" sampler: first_n\n",
|
506 |
+
"output_type: multiple_choice\n",
|
507 |
+
"doc_to_text: \"{{question.strip()}}\\nA. {{choices[0]}}\\nB. {{choices[1]}}\\nC. {{choices[2]}}\\nD. {{choices[3]}}\\nAnswer:\"\n",
|
508 |
+
"doc_to_choice: [\"A\", \"B\", \"C\", \"D\"]\n",
|
509 |
+
"doc_to_target: answer\n",
|
510 |
+
"metric_list:\n",
|
511 |
+
" - metric: acc\n",
|
512 |
+
" aggregation: mean\n",
|
513 |
+
" higher_is_better: true\n",
|
514 |
+
" - metric: acc_norm\n",
|
515 |
+
" aggregation: mean\n",
|
516 |
+
" higher_is_better: true\n",
|
517 |
+
"'''\n",
|
518 |
+
"with open('mmlu_high_school_geography.yaml', 'w') as f:\n",
|
519 |
+
" f.write(YAML_mmlu_geo_string)\n"
|
520 |
+
]
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"cell_type": "code",
|
524 |
+
"execution_count": 8,
|
525 |
+
"metadata": {
|
526 |
+
"id": "jyKOfCsKb-xy"
|
527 |
+
},
|
528 |
+
"outputs": [
|
529 |
+
{
|
530 |
+
"name": "stdout",
|
531 |
+
"output_type": "stream",
|
532 |
+
"text": [
|
533 |
+
"2023-11-29:11:57:23,598 INFO [utils.py:160] NumExpr defaulting to 2 threads.\n",
|
534 |
+
"2023-11-29 11:57:24.719750: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
|
535 |
+
"2023-11-29 11:57:24.719806: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
|
536 |
+
"2023-11-29 11:57:24.719847: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
|
537 |
+
"2023-11-29 11:57:26.656125: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
|
538 |
+
"2023-11-29:11:57:31,563 INFO [__main__.py:132] Verbosity set to INFO\n",
|
539 |
+
"2023-11-29:11:57:40,541 WARNING [__main__.py:138] --limit SHOULD ONLY BE USED FOR TESTING.REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.\n",
|
540 |
+
"2023-11-29:11:57:40,541 INFO [__main__.py:143] Including path: ./\n",
|
541 |
+
"2023-11-29:11:57:40,558 INFO [__main__.py:205] Selected Tasks: ['demo_mmlu_high_school_geography']\n",
|
542 |
+
"2023-11-29:11:57:40,559 WARNING [evaluator.py:93] generation_kwargs specified through cli, these settings will be used over set parameters in yaml tasks.\n",
|
543 |
+
"2023-11-29:11:57:40,589 INFO [huggingface.py:120] Using device 'cuda'\n",
|
544 |
+
"Downloading builder script: 100% 5.84k/5.84k [00:00<00:00, 17.7MB/s]\n",
|
545 |
+
"Downloading metadata: 100% 106k/106k [00:00<00:00, 892kB/s] \n",
|
546 |
+
"Downloading readme: 100% 39.7k/39.7k [00:00<00:00, 631kB/s]\n",
|
547 |
+
"Downloading data: 100% 166M/166M [00:01<00:00, 89.0MB/s]\n",
|
548 |
+
"Generating auxiliary_train split: 100% 99842/99842 [00:07<00:00, 12536.83 examples/s]\n",
|
549 |
+
"Generating test split: 100% 198/198 [00:00<00:00, 1439.20 examples/s]\n",
|
550 |
+
"Generating validation split: 100% 22/22 [00:00<00:00, 4181.76 examples/s]\n",
|
551 |
+
"Generating dev split: 100% 5/5 [00:00<00:00, 36.25 examples/s]\n",
|
552 |
+
"2023-11-29:11:58:09,798 INFO [task.py:355] Building contexts for task on rank 0...\n",
|
553 |
+
"2023-11-29:11:58:09,822 INFO [evaluator.py:319] Running loglikelihood requests\n",
|
554 |
+
"100% 40/40 [00:05<00:00, 7.86it/s]\n",
|
555 |
+
"fatal: not a git repository (or any of the parent directories): .git\n",
|
556 |
+
"hf (pretrained=EleutherAI/pythia-2.8b), gen_kwargs: (), limit: 10.0, num_fewshot: None, batch_size: 1\n",
|
557 |
+
"| Tasks |Version|Filter|n-shot| Metric |Value| |Stderr|\n",
|
558 |
+
"|-------------------------------|-------|------|-----:|--------|----:|---|-----:|\n",
|
559 |
+
"|demo_mmlu_high_school_geography|Yaml |none | 0|acc | 0.3|± |0.1528|\n",
|
560 |
+
"| | |none | 0|acc_norm| 0.3|± |0.1528|\n",
|
561 |
+
"\n"
|
562 |
+
]
|
563 |
+
}
|
564 |
+
],
|
565 |
+
"source": [
|
566 |
+
"# !accelerate launch --no_python\n",
|
567 |
+
"!lm_eval \\\n",
|
568 |
+
" --model hf \\\n",
|
569 |
+
" --model_args pretrained=EleutherAI/pythia-2.8b \\\n",
|
570 |
+
" --include_path ./ \\\n",
|
571 |
+
" --tasks demo_mmlu_high_school_geography \\\n",
|
572 |
+
" --limit 10 \\\n",
|
573 |
+
" --output output/mmlu_high_school_geography/ \\\n",
|
574 |
+
" --log_samples"
|
575 |
+
]
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"cell_type": "markdown",
|
579 |
+
"metadata": {
|
580 |
+
"id": "jyKOfCsKb-xy"
|
581 |
+
},
|
582 |
+
"source": [
|
583 |
+
"We could also evaluate this task in a different way. For example, instead of observing the loglikelihood of the letters, we can instead evaluate on the choices themselves as the continuation. This is done by simply changing `doc_to_choice` from a list of letters to the corresponding `choices` field from the HF dataset. We write `\"{{choices}}\"` so that the string field is interpreted as jinja string that acquires the list from the HF dataset directly.\n",
|
584 |
+
"\n",
|
585 |
+
"Another convenient feature here is since we're only modifying the `doc_to_choice` and the rest of config is the same as the task above, we can use the above configuration as a template by using `include: mmlu_high_school_geography.yaml` to load the config from that file. We'll need to add a unique task name as to not colide with the existing yaml config we're including. For this case we'll simply name this one `mmlu_high_school_geography_continuation`. `doc_to_text` is added here just for sake of clarity."
|
586 |
+
]
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"cell_type": "code",
|
590 |
+
"execution_count": 9,
|
591 |
+
"metadata": {
|
592 |
+
"id": "lqElwU54TaK-"
|
593 |
+
},
|
594 |
+
"outputs": [],
|
595 |
+
"source": [
|
596 |
+
"YAML_mmlu_geo_string = '''\n",
|
597 |
+
"include: mmlu_high_school_geography.yaml\n",
|
598 |
+
"task: demo_mmlu_high_school_geography_continuation\n",
|
599 |
+
"doc_to_text: \"{{question.strip()}}\\nA. {{choices[0]}}\\nB. {{choices[1]}}\\nC. {{choices[2]}}\\nD. {{choices[3]}}\\nAnswer:\"\n",
|
600 |
+
"doc_to_choice: \"{{choices}}\"\n",
|
601 |
+
"'''\n",
|
602 |
+
"with open('mmlu_high_school_geography_continuation.yaml', 'w') as f:\n",
|
603 |
+
" f.write(YAML_mmlu_geo_string)\n"
|
604 |
+
]
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"cell_type": "code",
|
608 |
+
"execution_count": 10,
|
609 |
+
"metadata": {
|
610 |
+
"id": "-_CVnDirdy7j"
|
611 |
+
},
|
612 |
+
"outputs": [
|
613 |
+
{
|
614 |
+
"name": "stdout",
|
615 |
+
"output_type": "stream",
|
616 |
+
"text": [
|
617 |
+
"2023-11-29:11:58:21,284 INFO [utils.py:160] NumExpr defaulting to 2 threads.\n",
|
618 |
+
"2023-11-29 11:58:22.850159: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
|
619 |
+
"2023-11-29 11:58:22.850219: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
|
620 |
+
"2023-11-29 11:58:22.850254: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
|
621 |
+
"2023-11-29 11:58:24.948103: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
|
622 |
+
"2023-11-29:11:58:28,460 INFO [__main__.py:132] Verbosity set to INFO\n",
|
623 |
+
"2023-11-29:11:58:37,935 WARNING [__main__.py:138] --limit SHOULD ONLY BE USED FOR TESTING.REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.\n",
|
624 |
+
"2023-11-29:11:58:37,935 INFO [__main__.py:143] Including path: ./\n",
|
625 |
+
"2023-11-29:11:58:37,969 INFO [__main__.py:205] Selected Tasks: ['demo_mmlu_high_school_geography_continuation']\n",
|
626 |
+
"2023-11-29:11:58:37,972 WARNING [evaluator.py:93] generation_kwargs specified through cli, these settings will be used over set parameters in yaml tasks.\n",
|
627 |
+
"2023-11-29:11:58:38,008 INFO [huggingface.py:120] Using device 'cuda'\n",
|
628 |
+
"2023-11-29:11:58:59,758 INFO [task.py:355] Building contexts for task on rank 0...\n",
|
629 |
+
"2023-11-29:11:58:59,777 INFO [evaluator.py:319] Running loglikelihood requests\n",
|
630 |
+
"100% 40/40 [00:02<00:00, 16.23it/s]\n",
|
631 |
+
"fatal: not a git repository (or any of the parent directories): .git\n",
|
632 |
+
"hf (pretrained=EleutherAI/pythia-2.8b), gen_kwargs: (), limit: 10.0, num_fewshot: None, batch_size: 1\n",
|
633 |
+
"| Tasks |Version|Filter|n-shot| Metric |Value| |Stderr|\n",
|
634 |
+
"|--------------------------------------------|-------|------|-----:|--------|----:|---|-----:|\n",
|
635 |
+
"|demo_mmlu_high_school_geography_continuation|Yaml |none | 0|acc | 0.1|± |0.1000|\n",
|
636 |
+
"| | |none | 0|acc_norm| 0.2|± |0.1333|\n",
|
637 |
+
"\n"
|
638 |
+
]
|
639 |
+
}
|
640 |
+
],
|
641 |
+
"source": [
|
642 |
+
"# !accelerate launch --no_python\n",
|
643 |
+
"!lm_eval \\\n",
|
644 |
+
" --model hf \\\n",
|
645 |
+
" --model_args pretrained=EleutherAI/pythia-2.8b \\\n",
|
646 |
+
" --include_path ./ \\\n",
|
647 |
+
" --tasks demo_mmlu_high_school_geography_continuation \\\n",
|
648 |
+
" --limit 10 \\\n",
|
649 |
+
" --output output/mmlu_high_school_geography_continuation/ \\\n",
|
650 |
+
" --log_samples\n"
|
651 |
+
]
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"cell_type": "markdown",
|
655 |
+
"metadata": {
|
656 |
+
"id": "-_CVnDirdy7j"
|
657 |
+
},
|
658 |
+
"source": [
|
659 |
+
"If we take a look at the samples, we can see that it is in fact evaluating the continuation based on the choices rather than the letters."
|
660 |
+
]
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"cell_type": "code",
|
664 |
+
"execution_count": 11,
|
665 |
+
"metadata": {
|
666 |
+
"id": "duBDqC6PAdjL"
|
667 |
+
},
|
668 |
+
"outputs": [
|
669 |
+
{
|
670 |
+
"data": {
|
671 |
+
"application/javascript": "\n ((filepath) => {{\n if (!google.colab.kernel.accessAllowed) {{\n return;\n }}\n google.colab.files.view(filepath);\n }})(\"/content/output/mmlu_high_school_geography_continuation/pretrained__EleutherAI__pythia-2.8b_demo_mmlu_high_school_geography_continuation.jsonl\")",
|
672 |
+
"text/plain": [
|
673 |
+
"<IPython.core.display.Javascript object>"
|
674 |
+
]
|
675 |
+
},
|
676 |
+
"metadata": {},
|
677 |
+
"output_type": "display_data"
|
678 |
+
}
|
679 |
+
],
|
680 |
+
"source": [
|
681 |
+
"from google.colab import files\n",
|
682 |
+
"files.view(\"output/mmlu_high_school_geography_continuation/pretrained__EleutherAI__pythia-2.8b_demo_mmlu_high_school_geography_continuation.jsonl\")\n"
|
683 |
+
]
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"cell_type": "markdown",
|
687 |
+
"metadata": {
|
688 |
+
"id": "6p0-KPwAgK5j"
|
689 |
+
},
|
690 |
+
"source": [
|
691 |
+
"## Closer Look at YAML Fields\n",
|
692 |
+
"\n",
|
693 |
+
"To prepare a task we can simply fill in a YAML config with the relevant information.\n",
|
694 |
+
"\n",
|
695 |
+
"`output_type`\n",
|
696 |
+
"The current provided evaluation types comprise of the following:\n",
|
697 |
+
"1. `loglikelihood`: Evaluates the loglikelihood of a continuation, conditioned on some input string.\n",
|
698 |
+
"2. `loglikelihood_rolling`: evaluate the loglikelihood of producing a string, conditioned on the empty string. (Used for perplexity evaluations)\n",
|
699 |
+
"3. `multiple_choice`: Evaluates loglikelihood among the a number of choices predicted by the model.\n",
|
700 |
+
"4. `greedy_until`: Model outputs greedy generation (can be configured to to use beam search and other generation-related parameters)\n",
|
701 |
+
"\n",
|
702 |
+
"The core prompt revolves around 3 fields.\n",
|
703 |
+
"1. `doc_to_text`: Denotes the prompt template that will be used as input to the model.\n",
|
704 |
+
"2. `doc_to_choice`: Available choices that will be used as continuation for the model. This is used when the `output_type` is `multiple_choice`, and otherwise can be left as `None`.\n",
|
705 |
+
"3. `doc_to_target`: When `output_type` is `multiple_choice`, this can be an index that corresponds to the correct answer, or the answer string itself (must be a subset of `doc_to_choice`). For other tasks, this is expected to be a string. You can fill this field with a feature name from the HF dataset so long as the resulting feature follows the conditioned described.\n",
|
706 |
+
"\n",
|
707 |
+
"These three fields can be expressed as strings, column names from the source dataset, or as Jinja2 templates that can use fields from the source dataset as variables.\n"
|
708 |
+
]
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"cell_type": "markdown",
|
712 |
+
"metadata": {
|
713 |
+
"id": "6p0-KPwAgK5j"
|
714 |
+
},
|
715 |
+
"source": [
|
716 |
+
"## What if Jinja is not Sufficient?\n",
|
717 |
+
"\n",
|
718 |
+
"There can be times where the Jinja2 templating language is not enough to make the prompt we had in mind. There are a few ways to circumvent this limitation:\n",
|
719 |
+
"\n",
|
720 |
+
"1. Use `!function` operator for the prompt-related fields to pass a python function that takes as input the dataset row, and will output the prompt template component.\n",
|
721 |
+
"2. Perform a transformation on the dataset beforehand."
|
722 |
+
]
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"cell_type": "markdown",
|
726 |
+
"metadata": {},
|
727 |
+
"source": [
|
728 |
+
"Below, we show an example of using `!function` to create `doc_to_text` from a python function:"
|
729 |
+
]
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"cell_type": "code",
|
733 |
+
"execution_count": 12,
|
734 |
+
"metadata": {
|
735 |
+
"colab": {
|
736 |
+
"base_uri": "https://localhost:8080/"
|
737 |
+
},
|
738 |
+
"id": "DYZ5c0JhR1lJ",
|
739 |
+
"outputId": "ca945235-fb9e-4f17-8bfa-78e7d6ec1490"
|
740 |
+
},
|
741 |
+
"outputs": [
|
742 |
+
{
|
743 |
+
"name": "stdout",
|
744 |
+
"output_type": "stream",
|
745 |
+
"text": [
|
746 |
+
"2023-11-29:11:59:08,312 INFO [utils.py:160] NumExpr defaulting to 2 threads.\n",
|
747 |
+
"2023-11-29 11:59:09.348327: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n",
|
748 |
+
"2023-11-29 11:59:09.348387: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n",
|
749 |
+
"2023-11-29 11:59:09.348421: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
|
750 |
+
"2023-11-29 11:59:10.573752: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n",
|
751 |
+
"2023-11-29:11:59:14,044 INFO [__main__.py:132] Verbosity set to INFO\n",
|
752 |
+
"2023-11-29:11:59:23,654 WARNING [__main__.py:138] --limit SHOULD ONLY BE USED FOR TESTING.REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.\n",
|
753 |
+
"2023-11-29:11:59:23,654 INFO [__main__.py:143] Including path: ./\n",
|
754 |
+
"2023-11-29:11:59:23,678 INFO [__main__.py:205] Selected Tasks: ['demo_mmlu_high_school_geography_function_prompt']\n",
|
755 |
+
"2023-11-29:11:59:23,679 WARNING [evaluator.py:93] generation_kwargs specified through cli, these settings will be used over set parameters in yaml tasks.\n",
|
756 |
+
"2023-11-29:11:59:23,708 INFO [huggingface.py:120] Using device 'cuda'\n",
|
757 |
+
"2023-11-29:11:59:44,516 INFO [task.py:355] Building contexts for task on rank 0...\n",
|
758 |
+
"2023-11-29:11:59:44,524 INFO [evaluator.py:319] Running loglikelihood requests\n",
|
759 |
+
"100% 40/40 [00:02<00:00, 15.41it/s]\n",
|
760 |
+
"fatal: not a git repository (or any of the parent directories): .git\n",
|
761 |
+
"hf (pretrained=EleutherAI/pythia-2.8b), gen_kwargs: (), limit: 10.0, num_fewshot: None, batch_size: 1\n",
|
762 |
+
"| Tasks |Version|Filter|n-shot| Metric |Value| |Stderr|\n",
|
763 |
+
"|-----------------------------------------------|-------|------|-----:|--------|----:|---|-----:|\n",
|
764 |
+
"|demo_mmlu_high_school_geography_function_prompt|Yaml |none | 0|acc | 0.1|± |0.1000|\n",
|
765 |
+
"| | |none | 0|acc_norm| 0.2|± |0.1333|\n",
|
766 |
+
"\n"
|
767 |
+
]
|
768 |
+
}
|
769 |
+
],
|
770 |
+
"source": [
|
771 |
+
"YAML_mmlu_geo_string = '''\n",
|
772 |
+
"include: mmlu_high_school_geography.yaml\n",
|
773 |
+
"task: demo_mmlu_high_school_geography_function_prompt\n",
|
774 |
+
"doc_to_text: !function utils.doc_to_text\n",
|
775 |
+
"doc_to_choice: \"{{choices}}\"\n",
|
776 |
+
"'''\n",
|
777 |
+
"with open('demo_mmlu_high_school_geography_function_prompt.yaml', 'w') as f:\n",
|
778 |
+
" f.write(YAML_mmlu_geo_string)\n",
|
779 |
+
"\n",
|
780 |
+
"DOC_TO_TEXT = '''\n",
|
781 |
+
"def doc_to_text(x):\n",
|
782 |
+
" question = x[\"question\"].strip()\n",
|
783 |
+
" choices = x[\"choices\"]\n",
|
784 |
+
" option_a = choices[0]\n",
|
785 |
+
" option_b = choices[1]\n",
|
786 |
+
" option_c = choices[2]\n",
|
787 |
+
" option_d = choices[3]\n",
|
788 |
+
" return f\"{question}\\\\nA. {option_a}\\\\nB. {option_b}\\\\nC. {option_c}\\\\nD. {option_d}\\\\nAnswer:\"\n",
|
789 |
+
"'''\n",
|
790 |
+
"with open('utils.py', 'w') as f:\n",
|
791 |
+
" f.write(DOC_TO_TEXT)\n",
|
792 |
+
"\n",
|
793 |
+
"!lm_eval \\\n",
|
794 |
+
" --model hf \\\n",
|
795 |
+
" --model_args pretrained=EleutherAI/pythia-2.8b \\\n",
|
796 |
+
" --include_path ./ \\\n",
|
797 |
+
" --tasks demo_mmlu_high_school_geography_function_prompt \\\n",
|
798 |
+
" --limit 10 \\\n",
|
799 |
+
" --output output/demo_mmlu_high_school_geography_function_prompt/ \\\n",
|
800 |
+
" --log_samples\n"
|
801 |
+
]
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"cell_type": "markdown",
|
805 |
+
"metadata": {},
|
806 |
+
"source": [
|
807 |
+
"Next, we'll also show how to do this via preprocessing the dataset as necessary using the `process_docs` config field:\n",
|
808 |
+
"\n",
|
809 |
+
"We will write a function that will modify each document in our evaluation dataset's split to add a field that is suitable for us to use in `doc_to_text`."
|
810 |
+
]
|
811 |
+
},
|
812 |
+
{
|
813 |
+
"cell_type": "code",
|
814 |
+
"execution_count": null,
|
815 |
+
"metadata": {},
|
816 |
+
"outputs": [],
|
817 |
+
"source": [
|
818 |
+
"YAML_mmlu_geo_string = '''\n",
|
819 |
+
"include: mmlu_high_school_geography.yaml\n",
|
820 |
+
"task: demo_mmlu_high_school_geography_function_prompt_2\n",
|
821 |
+
"process_docs: !function utils_process_docs.process_docs\n",
|
822 |
+
"doc_to_text: \"{{input}}\"\n",
|
823 |
+
"doc_to_choice: \"{{choices}}\"\n",
|
824 |
+
"'''\n",
|
825 |
+
"with open('demo_mmlu_high_school_geography_process_docs.yaml', 'w') as f:\n",
|
826 |
+
" f.write(YAML_mmlu_geo_string)\n",
|
827 |
+
"\n",
|
828 |
+
"DOC_TO_TEXT = '''\n",
|
829 |
+
"def process_docs(dataset):\n",
|
830 |
+
" def _process_doc(x):\n",
|
831 |
+
" question = x[\"question\"].strip()\n",
|
832 |
+
" choices = x[\"choices\"]\n",
|
833 |
+
" option_a = choices[0]\n",
|
834 |
+
" option_b = choices[1]\n",
|
835 |
+
" option_c = choices[2]\n",
|
836 |
+
" option_d = choices[3]\n",
|
837 |
+
" doc[\"input\"] = f\"{question}\\\\nA. {option_a}\\\\nB. {option_b}\\\\nC. {option_c}\\\\nD. {option_d}\\\\nAnswer:\"\n",
|
838 |
+
" return out_doc\n",
|
839 |
+
"\n",
|
840 |
+
" return dataset.map(_process_doc)\n",
|
841 |
+
"'''\n",
|
842 |
+
"\n",
|
843 |
+
"with open('utils_process_docs.py', 'w') as f:\n",
|
844 |
+
" f.write(DOC_TO_TEXT)\n",
|
845 |
+
"\n",
|
846 |
+
"!lm_eval \\\n",
|
847 |
+
" --model hf \\\n",
|
848 |
+
" --model_args pretrained=EleutherAI/pythia-2.8b \\\n",
|
849 |
+
" --include_path ./ \\\n",
|
850 |
+
" --tasks demo_mmlu_high_school_geography_function_prompt_2 \\\n",
|
851 |
+
" --limit 10 \\\n",
|
852 |
+
" --output output/demo_mmlu_high_school_geography_function_prompt_2/ \\\n",
|
853 |
+
" --log_samples\n"
|
854 |
+
]
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"cell_type": "markdown",
|
858 |
+
"metadata": {},
|
859 |
+
"source": [
|
860 |
+
"We hope that this explainer gives you a sense of what can be done with and how to work with LM-Evaluation-Harnes v0.4.0 ! \n",
|
861 |
+
"\n",
|
862 |
+
"For more information, check out our documentation pages in the `docs/` folder, and if you have questions, please raise them in GitHub issues, or in #lm-thunderdome or #release-discussion on the EleutherAI discord server."
|
863 |
+
]
|
864 |
+
}
|
865 |
+
],
|
866 |
+
"metadata": {
|
867 |
+
"accelerator": "GPU",
|
868 |
+
"colab": {
|
869 |
+
"collapsed_sections": [
|
870 |
+
"zAov81vTbL2K"
|
871 |
+
],
|
872 |
+
"gpuType": "T4",
|
873 |
+
"provenance": []
|
874 |
+
},
|
875 |
+
"kernelspec": {
|
876 |
+
"display_name": "Python 3",
|
877 |
+
"name": "python3"
|
878 |
+
},
|
879 |
+
"language_info": {
|
880 |
+
"name": "python"
|
881 |
+
},
|
882 |
+
"widgets": {
|
883 |
+
"application/vnd.jupyter.widget-state+json": {
|
884 |
+
"46f521b73fd943c081c648fd873ebc0a": {
|
885 |
+
"model_module": "@jupyter-widgets/controls",
|
886 |
+
"model_module_version": "1.5.0",
|
887 |
+
"model_name": "DescriptionStyleModel",
|
888 |
+
"state": {
|
889 |
+
"_model_module": "@jupyter-widgets/controls",
|
890 |
+
"_model_module_version": "1.5.0",
|
891 |
+
"_model_name": "DescriptionStyleModel",
|
892 |
+
"_view_count": null,
|
893 |
+
"_view_module": "@jupyter-widgets/base",
|
894 |
+
"_view_module_version": "1.2.0",
|
895 |
+
"_view_name": "StyleView",
|
896 |
+
"description_width": ""
|
897 |
+
}
|
898 |
+
},
|
899 |
+
"48763b6233374554ae76035c0483066f": {
|
900 |
+
"model_module": "@jupyter-widgets/controls",
|
901 |
+
"model_module_version": "1.5.0",
|
902 |
+
"model_name": "ProgressStyleModel",
|
903 |
+
"state": {
|
904 |
+
"_model_module": "@jupyter-widgets/controls",
|
905 |
+
"_model_module_version": "1.5.0",
|
906 |
+
"_model_name": "ProgressStyleModel",
|
907 |
+
"_view_count": null,
|
908 |
+
"_view_module": "@jupyter-widgets/base",
|
909 |
+
"_view_module_version": "1.2.0",
|
910 |
+
"_view_name": "StyleView",
|
911 |
+
"bar_color": null,
|
912 |
+
"description_width": ""
|
913 |
+
}
|
914 |
+
},
|
915 |
+
"4986a21eb560448fa79f4b25cde48951": {
|
916 |
+
"model_module": "@jupyter-widgets/base",
|
917 |
+
"model_module_version": "1.2.0",
|
918 |
+
"model_name": "LayoutModel",
|
919 |
+
"state": {
|
920 |
+
"_model_module": "@jupyter-widgets/base",
|
921 |
+
"_model_module_version": "1.2.0",
|
922 |
+
"_model_name": "LayoutModel",
|
923 |
+
"_view_count": null,
|
924 |
+
"_view_module": "@jupyter-widgets/base",
|
925 |
+
"_view_module_version": "1.2.0",
|
926 |
+
"_view_name": "LayoutView",
|
927 |
+
"align_content": null,
|
928 |
+
"align_items": null,
|
929 |
+
"align_self": null,
|
930 |
+
"border": null,
|
931 |
+
"bottom": null,
|
932 |
+
"display": null,
|
933 |
+
"flex": null,
|
934 |
+
"flex_flow": null,
|
935 |
+
"grid_area": null,
|
936 |
+
"grid_auto_columns": null,
|
937 |
+
"grid_auto_flow": null,
|
938 |
+
"grid_auto_rows": null,
|
939 |
+
"grid_column": null,
|
940 |
+
"grid_gap": null,
|
941 |
+
"grid_row": null,
|
942 |
+
"grid_template_areas": null,
|
943 |
+
"grid_template_columns": null,
|
944 |
+
"grid_template_rows": null,
|
945 |
+
"height": null,
|
946 |
+
"justify_content": null,
|
947 |
+
"justify_items": null,
|
948 |
+
"left": null,
|
949 |
+
"margin": null,
|
950 |
+
"max_height": null,
|
951 |
+
"max_width": null,
|
952 |
+
"min_height": null,
|
953 |
+
"min_width": null,
|
954 |
+
"object_fit": null,
|
955 |
+
"object_position": null,
|
956 |
+
"order": null,
|
957 |
+
"overflow": null,
|
958 |
+
"overflow_x": null,
|
959 |
+
"overflow_y": null,
|
960 |
+
"padding": null,
|
961 |
+
"right": null,
|
962 |
+
"top": null,
|
963 |
+
"visibility": null,
|
964 |
+
"width": null
|
965 |
+
}
|
966 |
+
},
|
967 |
+
"6b2d90209ec14230b3d58a74ac9b83bf": {
|
968 |
+
"model_module": "@jupyter-widgets/base",
|
969 |
+
"model_module_version": "1.2.0",
|
970 |
+
"model_name": "LayoutModel",
|
971 |
+
"state": {
|
972 |
+
"_model_module": "@jupyter-widgets/base",
|
973 |
+
"_model_module_version": "1.2.0",
|
974 |
+
"_model_name": "LayoutModel",
|
975 |
+
"_view_count": null,
|
976 |
+
"_view_module": "@jupyter-widgets/base",
|
977 |
+
"_view_module_version": "1.2.0",
|
978 |
+
"_view_name": "LayoutView",
|
979 |
+
"align_content": null,
|
980 |
+
"align_items": null,
|
981 |
+
"align_self": null,
|
982 |
+
"border": null,
|
983 |
+
"bottom": null,
|
984 |
+
"display": null,
|
985 |
+
"flex": null,
|
986 |
+
"flex_flow": null,
|
987 |
+
"grid_area": null,
|
988 |
+
"grid_auto_columns": null,
|
989 |
+
"grid_auto_flow": null,
|
990 |
+
"grid_auto_rows": null,
|
991 |
+
"grid_column": null,
|
992 |
+
"grid_gap": null,
|
993 |
+
"grid_row": null,
|
994 |
+
"grid_template_areas": null,
|
995 |
+
"grid_template_columns": null,
|
996 |
+
"grid_template_rows": null,
|
997 |
+
"height": null,
|
998 |
+
"justify_content": null,
|
999 |
+
"justify_items": null,
|
1000 |
+
"left": null,
|
1001 |
+
"margin": null,
|
1002 |
+
"max_height": null,
|
1003 |
+
"max_width": null,
|
1004 |
+
"min_height": null,
|
1005 |
+
"min_width": null,
|
1006 |
+
"object_fit": null,
|
1007 |
+
"object_position": null,
|
1008 |
+
"order": null,
|
1009 |
+
"overflow": null,
|
1010 |
+
"overflow_x": null,
|
1011 |
+
"overflow_y": null,
|
1012 |
+
"padding": null,
|
1013 |
+
"right": null,
|
1014 |
+
"top": null,
|
1015 |
+
"visibility": null,
|
1016 |
+
"width": null
|
1017 |
+
}
|
1018 |
+
},
|
1019 |
+
"7c5689bc13684db8a22681f41863dddd": {
|
1020 |
+
"model_module": "@jupyter-widgets/base",
|
1021 |
+
"model_module_version": "1.2.0",
|
1022 |
+
"model_name": "LayoutModel",
|
1023 |
+
"state": {
|
1024 |
+
"_model_module": "@jupyter-widgets/base",
|
1025 |
+
"_model_module_version": "1.2.0",
|
1026 |
+
"_model_name": "LayoutModel",
|
1027 |
+
"_view_count": null,
|
1028 |
+
"_view_module": "@jupyter-widgets/base",
|
1029 |
+
"_view_module_version": "1.2.0",
|
1030 |
+
"_view_name": "LayoutView",
|
1031 |
+
"align_content": null,
|
1032 |
+
"align_items": null,
|
1033 |
+
"align_self": null,
|
1034 |
+
"border": null,
|
1035 |
+
"bottom": null,
|
1036 |
+
"display": null,
|
1037 |
+
"flex": null,
|
1038 |
+
"flex_flow": null,
|
1039 |
+
"grid_area": null,
|
1040 |
+
"grid_auto_columns": null,
|
1041 |
+
"grid_auto_flow": null,
|
1042 |
+
"grid_auto_rows": null,
|
1043 |
+
"grid_column": null,
|
1044 |
+
"grid_gap": null,
|
1045 |
+
"grid_row": null,
|
1046 |
+
"grid_template_areas": null,
|
1047 |
+
"grid_template_columns": null,
|
1048 |
+
"grid_template_rows": null,
|
1049 |
+
"height": null,
|
1050 |
+
"justify_content": null,
|
1051 |
+
"justify_items": null,
|
1052 |
+
"left": null,
|
1053 |
+
"margin": null,
|
1054 |
+
"max_height": null,
|
1055 |
+
"max_width": null,
|
1056 |
+
"min_height": null,
|
1057 |
+
"min_width": null,
|
1058 |
+
"object_fit": null,
|
1059 |
+
"object_position": null,
|
1060 |
+
"order": null,
|
1061 |
+
"overflow": null,
|
1062 |
+
"overflow_x": null,
|
1063 |
+
"overflow_y": null,
|
1064 |
+
"padding": null,
|
1065 |
+
"right": null,
|
1066 |
+
"top": null,
|
1067 |
+
"visibility": null,
|
1068 |
+
"width": null
|
1069 |
+
}
|
1070 |
+
},
|
1071 |
+
"a1d3a8aa016544a78e8821c8f6199e06": {
|
1072 |
+
"model_module": "@jupyter-widgets/controls",
|
1073 |
+
"model_module_version": "1.5.0",
|
1074 |
+
"model_name": "HBoxModel",
|
1075 |
+
"state": {
|
1076 |
+
"_dom_classes": [],
|
1077 |
+
"_model_module": "@jupyter-widgets/controls",
|
1078 |
+
"_model_module_version": "1.5.0",
|
1079 |
+
"_model_name": "HBoxModel",
|
1080 |
+
"_view_count": null,
|
1081 |
+
"_view_module": "@jupyter-widgets/controls",
|
1082 |
+
"_view_module_version": "1.5.0",
|
1083 |
+
"_view_name": "HBoxView",
|
1084 |
+
"box_style": "",
|
1085 |
+
"children": [
|
1086 |
+
"IPY_MODEL_f61ed33fad754146bdd2ac9db1ba1c48",
|
1087 |
+
"IPY_MODEL_bfa0af6aeff344c6845e1080a878e92e",
|
1088 |
+
"IPY_MODEL_fd1ad9e0367d4004aae853b91c3a7617"
|
1089 |
+
],
|
1090 |
+
"layout": "IPY_MODEL_6b2d90209ec14230b3d58a74ac9b83bf"
|
1091 |
+
}
|
1092 |
+
},
|
1093 |
+
"a73f357065d34d7baf0453ae4a8d75e2": {
|
1094 |
+
"model_module": "@jupyter-widgets/base",
|
1095 |
+
"model_module_version": "1.2.0",
|
1096 |
+
"model_name": "LayoutModel",
|
1097 |
+
"state": {
|
1098 |
+
"_model_module": "@jupyter-widgets/base",
|
1099 |
+
"_model_module_version": "1.2.0",
|
1100 |
+
"_model_name": "LayoutModel",
|
1101 |
+
"_view_count": null,
|
1102 |
+
"_view_module": "@jupyter-widgets/base",
|
1103 |
+
"_view_module_version": "1.2.0",
|
1104 |
+
"_view_name": "LayoutView",
|
1105 |
+
"align_content": null,
|
1106 |
+
"align_items": null,
|
1107 |
+
"align_self": null,
|
1108 |
+
"border": null,
|
1109 |
+
"bottom": null,
|
1110 |
+
"display": null,
|
1111 |
+
"flex": null,
|
1112 |
+
"flex_flow": null,
|
1113 |
+
"grid_area": null,
|
1114 |
+
"grid_auto_columns": null,
|
1115 |
+
"grid_auto_flow": null,
|
1116 |
+
"grid_auto_rows": null,
|
1117 |
+
"grid_column": null,
|
1118 |
+
"grid_gap": null,
|
1119 |
+
"grid_row": null,
|
1120 |
+
"grid_template_areas": null,
|
1121 |
+
"grid_template_columns": null,
|
1122 |
+
"grid_template_rows": null,
|
1123 |
+
"height": null,
|
1124 |
+
"justify_content": null,
|
1125 |
+
"justify_items": null,
|
1126 |
+
"left": null,
|
1127 |
+
"margin": null,
|
1128 |
+
"max_height": null,
|
1129 |
+
"max_width": null,
|
1130 |
+
"min_height": null,
|
1131 |
+
"min_width": null,
|
1132 |
+
"object_fit": null,
|
1133 |
+
"object_position": null,
|
1134 |
+
"order": null,
|
1135 |
+
"overflow": null,
|
1136 |
+
"overflow_x": null,
|
1137 |
+
"overflow_y": null,
|
1138 |
+
"padding": null,
|
1139 |
+
"right": null,
|
1140 |
+
"top": null,
|
1141 |
+
"visibility": null,
|
1142 |
+
"width": null
|
1143 |
+
}
|
1144 |
+
},
|
1145 |
+
"aed3acd2f2d74003b44079c333a0698e": {
|
1146 |
+
"model_module": "@jupyter-widgets/controls",
|
1147 |
+
"model_module_version": "1.5.0",
|
1148 |
+
"model_name": "DescriptionStyleModel",
|
1149 |
+
"state": {
|
1150 |
+
"_model_module": "@jupyter-widgets/controls",
|
1151 |
+
"_model_module_version": "1.5.0",
|
1152 |
+
"_model_name": "DescriptionStyleModel",
|
1153 |
+
"_view_count": null,
|
1154 |
+
"_view_module": "@jupyter-widgets/base",
|
1155 |
+
"_view_module_version": "1.2.0",
|
1156 |
+
"_view_name": "StyleView",
|
1157 |
+
"description_width": ""
|
1158 |
+
}
|
1159 |
+
},
|
1160 |
+
"bfa0af6aeff344c6845e1080a878e92e": {
|
1161 |
+
"model_module": "@jupyter-widgets/controls",
|
1162 |
+
"model_module_version": "1.5.0",
|
1163 |
+
"model_name": "FloatProgressModel",
|
1164 |
+
"state": {
|
1165 |
+
"_dom_classes": [],
|
1166 |
+
"_model_module": "@jupyter-widgets/controls",
|
1167 |
+
"_model_module_version": "1.5.0",
|
1168 |
+
"_model_name": "FloatProgressModel",
|
1169 |
+
"_view_count": null,
|
1170 |
+
"_view_module": "@jupyter-widgets/controls",
|
1171 |
+
"_view_module_version": "1.5.0",
|
1172 |
+
"_view_name": "ProgressView",
|
1173 |
+
"bar_style": "success",
|
1174 |
+
"description": "",
|
1175 |
+
"description_tooltip": null,
|
1176 |
+
"layout": "IPY_MODEL_7c5689bc13684db8a22681f41863dddd",
|
1177 |
+
"max": 5669,
|
1178 |
+
"min": 0,
|
1179 |
+
"orientation": "horizontal",
|
1180 |
+
"style": "IPY_MODEL_48763b6233374554ae76035c0483066f",
|
1181 |
+
"value": 5669
|
1182 |
+
}
|
1183 |
+
},
|
1184 |
+
"f61ed33fad754146bdd2ac9db1ba1c48": {
|
1185 |
+
"model_module": "@jupyter-widgets/controls",
|
1186 |
+
"model_module_version": "1.5.0",
|
1187 |
+
"model_name": "HTMLModel",
|
1188 |
+
"state": {
|
1189 |
+
"_dom_classes": [],
|
1190 |
+
"_model_module": "@jupyter-widgets/controls",
|
1191 |
+
"_model_module_version": "1.5.0",
|
1192 |
+
"_model_name": "HTMLModel",
|
1193 |
+
"_view_count": null,
|
1194 |
+
"_view_module": "@jupyter-widgets/controls",
|
1195 |
+
"_view_module_version": "1.5.0",
|
1196 |
+
"_view_name": "HTMLView",
|
1197 |
+
"description": "",
|
1198 |
+
"description_tooltip": null,
|
1199 |
+
"layout": "IPY_MODEL_a73f357065d34d7baf0453ae4a8d75e2",
|
1200 |
+
"placeholder": "",
|
1201 |
+
"style": "IPY_MODEL_46f521b73fd943c081c648fd873ebc0a",
|
1202 |
+
"value": "Downloading builder script: 100%"
|
1203 |
+
}
|
1204 |
+
},
|
1205 |
+
"fd1ad9e0367d4004aae853b91c3a7617": {
|
1206 |
+
"model_module": "@jupyter-widgets/controls",
|
1207 |
+
"model_module_version": "1.5.0",
|
1208 |
+
"model_name": "HTMLModel",
|
1209 |
+
"state": {
|
1210 |
+
"_dom_classes": [],
|
1211 |
+
"_model_module": "@jupyter-widgets/controls",
|
1212 |
+
"_model_module_version": "1.5.0",
|
1213 |
+
"_model_name": "HTMLModel",
|
1214 |
+
"_view_count": null,
|
1215 |
+
"_view_module": "@jupyter-widgets/controls",
|
1216 |
+
"_view_module_version": "1.5.0",
|
1217 |
+
"_view_name": "HTMLView",
|
1218 |
+
"description": "",
|
1219 |
+
"description_tooltip": null,
|
1220 |
+
"layout": "IPY_MODEL_4986a21eb560448fa79f4b25cde48951",
|
1221 |
+
"placeholder": "",
|
1222 |
+
"style": "IPY_MODEL_aed3acd2f2d74003b44079c333a0698e",
|
1223 |
+
"value": " 5.67k/5.67k [00:00<00:00, 205kB/s]"
|
1224 |
+
}
|
1225 |
+
}
|
1226 |
+
}
|
1227 |
+
}
|
1228 |
+
},
|
1229 |
+
"nbformat": 4,
|
1230 |
+
"nbformat_minor": 0
|
1231 |
+
}
|
lm-evaluation/examples/visualize-wandb.ipynb
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "fc477b96-adee-4829-a9d7-a5eb990df358",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# Visualizing Results in Weights and Biases\n",
|
9 |
+
"\n",
|
10 |
+
"With the Weights and Biases integration, you can now spend more time extracting deeper insights into your evaluation results. The integration is designed to streamline the process of logging and visualizing experiment results using the Weights & Biases (W&B) platform.\n",
|
11 |
+
"\n",
|
12 |
+
"The integration provide functionalities\n",
|
13 |
+
"\n",
|
14 |
+
"- to automatically log the evaluation results,\n",
|
15 |
+
"- log the samples as W&B Tables for easy visualization,\n",
|
16 |
+
"- log the `results.json` file as an artifact for version control,\n",
|
17 |
+
"- log the `<task_name>_eval_samples.json` file if the samples are logged,\n",
|
18 |
+
"- generate a comprehensive report for analysis and visualization with all the important metric,\n",
|
19 |
+
"- log task and cli configs,\n",
|
20 |
+
"- and more out of the box like the command used to run the evaluation, GPU/CPU counts, timestamp, etc.\n",
|
21 |
+
"\n",
|
22 |
+
"The integration is super easy to use with the eval harness. Let's see how!"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": null,
|
28 |
+
"id": "3851439a-bff4-41f2-bf21-1b3d8704913b",
|
29 |
+
"metadata": {
|
30 |
+
"scrolled": true
|
31 |
+
},
|
32 |
+
"outputs": [],
|
33 |
+
"source": [
|
34 |
+
"# Install this project if you did not already have it.\n",
|
35 |
+
"# This is all that is needed to be installed to start using Weights and Biases\n",
|
36 |
+
"\n",
|
37 |
+
"!pip -qq install -e ..[wandb]"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"cell_type": "markdown",
|
42 |
+
"id": "8507fd7e-3b99-4a92-89fa-9eaada74ba91",
|
43 |
+
"metadata": {},
|
44 |
+
"source": [
|
45 |
+
"# Run the Eval Harness\n",
|
46 |
+
"\n",
|
47 |
+
"Run the eval harness as usual with a `wandb_args` flag. This flag is used to provide arguments for initializing a wandb run ([wandb.init](https://docs.wandb.ai/ref/python/init)) as comma separated string arguments.\n",
|
48 |
+
"\n",
|
49 |
+
"If `wandb_args` flag is used, the metrics and all other goodness will be automatically logged to Weights and Biases. In the stdout, you will find the link to the W&B run page as well as link to the generated report."
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "markdown",
|
54 |
+
"id": "eec5866e-f01e-42f8-8803-9d77472ef991",
|
55 |
+
"metadata": {},
|
56 |
+
"source": [
|
57 |
+
"## Set your API Key\n",
|
58 |
+
"\n",
|
59 |
+
"Before you can use W&B, you need to authenticate your machine with an authentication key. Visit https://wandb.ai/authorize to get one."
|
60 |
+
]
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"cell_type": "code",
|
64 |
+
"execution_count": null,
|
65 |
+
"id": "d824d163-71a9-4313-935d-f1d56397841c",
|
66 |
+
"metadata": {},
|
67 |
+
"outputs": [],
|
68 |
+
"source": [
|
69 |
+
"import wandb\n",
|
70 |
+
"\n",
|
71 |
+
"wandb.login()"
|
72 |
+
]
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"cell_type": "markdown",
|
76 |
+
"id": "124e4a34-1547-4bed-bc09-db012bacbda6",
|
77 |
+
"metadata": {},
|
78 |
+
"source": [
|
79 |
+
"> Note that if you are using command line you can simply authenticate your machine by doing `wandb login` in your terminal. For more info check out the [documentation](https://docs.wandb.ai/quickstart#2-log-in-to-wb)."
|
80 |
+
]
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"cell_type": "markdown",
|
84 |
+
"id": "abc6f6b6-179a-4aff-ada9-f380fb74df6e",
|
85 |
+
"metadata": {},
|
86 |
+
"source": [
|
87 |
+
"## Run and log to W&B"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "code",
|
92 |
+
"execution_count": null,
|
93 |
+
"id": "bd0a8130-a97b-451a-acd2-3f9885b88643",
|
94 |
+
"metadata": {},
|
95 |
+
"outputs": [],
|
96 |
+
"source": [
|
97 |
+
"!lm_eval \\\n",
|
98 |
+
" --model hf \\\n",
|
99 |
+
" --model_args pretrained=microsoft/phi-2,trust_remote_code=True \\\n",
|
100 |
+
" --tasks hellaswag,mmlu_abstract_algebra \\\n",
|
101 |
+
" --device cuda:0 \\\n",
|
102 |
+
" --batch_size 8 \\\n",
|
103 |
+
" --output_path output/phi-2 \\\n",
|
104 |
+
" --limit 10 \\\n",
|
105 |
+
" --wandb_args project=lm-eval-harness-integration \\\n",
|
106 |
+
" --log_samples"
|
107 |
+
]
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"cell_type": "markdown",
|
111 |
+
"id": "e974cabdbe70b667",
|
112 |
+
"metadata": {},
|
113 |
+
"source": ""
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "markdown",
|
117 |
+
"id": "5178ca9445b844e4",
|
118 |
+
"metadata": {},
|
119 |
+
"source": "W&B can also be initialized programmatically for use outside the CLI to parse and log the results."
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"execution_count": null,
|
124 |
+
"id": "c6a421b2cf3ddac5",
|
125 |
+
"metadata": {},
|
126 |
+
"outputs": [],
|
127 |
+
"source": [
|
128 |
+
"import lm_eval\n",
|
129 |
+
"from lm_eval.logging_utils import WandbLogger\n",
|
130 |
+
"\n",
|
131 |
+
"results = lm_eval.simple_evaluate(\n",
|
132 |
+
" model=\"hf\",\n",
|
133 |
+
" model_args=\"pretrained=microsoft/phi-2,trust_remote_code=True\",\n",
|
134 |
+
" tasks=\"hellaswag,mmlu_abstract_algebra\",\n",
|
135 |
+
" log_samples=True,\n",
|
136 |
+
")\n",
|
137 |
+
"\n",
|
138 |
+
"wandb_logger = WandbLogger(\n",
|
139 |
+
" project=\"lm-eval-harness-integration\", job_type=\"eval\"\n",
|
140 |
+
") # or empty if wandb.init(...) already called before\n",
|
141 |
+
"wandb_logger.post_init(results)\n",
|
142 |
+
"wandb_logger.log_eval_result()\n",
|
143 |
+
"wandb_logger.log_eval_samples(results[\"samples\"]) # if log_samples"
|
144 |
+
]
|
145 |
+
}
|
146 |
+
],
|
147 |
+
"metadata": {
|
148 |
+
"kernelspec": {
|
149 |
+
"display_name": "Python 3 (ipykernel)",
|
150 |
+
"language": "python",
|
151 |
+
"name": "python3"
|
152 |
+
},
|
153 |
+
"language_info": {
|
154 |
+
"codemirror_mode": {
|
155 |
+
"name": "ipython",
|
156 |
+
"version": 3
|
157 |
+
},
|
158 |
+
"file_extension": ".py",
|
159 |
+
"mimetype": "text/x-python",
|
160 |
+
"name": "python",
|
161 |
+
"nbconvert_exporter": "python",
|
162 |
+
"pygments_lexer": "ipython3",
|
163 |
+
"version": "3.10.12"
|
164 |
+
}
|
165 |
+
},
|
166 |
+
"nbformat": 4,
|
167 |
+
"nbformat_minor": 5
|
168 |
+
}
|
lm-evaluation/examples/visualize-zeno.ipynb
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# Visualizing Results in Zeno\n",
|
8 |
+
"\n",
|
9 |
+
"Benchmarking your models is the first step towards making sure your model performs well.\n",
|
10 |
+
"However, looking at the data behind the benchmark, slicing the data into subsets, and comparing models on individual instances can help you even more in evaluating and quantifying the behavior of your AI system.\n",
|
11 |
+
"\n",
|
12 |
+
"All of this can be done in [Zeno](https://zenoml.com)!\n",
|
13 |
+
"Zeno is super easy to use with the eval harness, let's explore how you can easily upload and visualize your eval results.\n"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": null,
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [],
|
21 |
+
"source": [
|
22 |
+
"# Install this project if you did not already do that. This is all that needs to be installed for you to be able to visualize your data in Zeno!\n",
|
23 |
+
"!pip install -e ..\n",
|
24 |
+
"!pip install -e ..[zeno]"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "markdown",
|
29 |
+
"metadata": {},
|
30 |
+
"source": [
|
31 |
+
"# Run the Eval Harness\n",
|
32 |
+
"\n",
|
33 |
+
"To visualize the results, run the eval harness with the `log_samples` and `output_path` flags. We expect `output_path` to contain multiple folders that represent individual model names. You can thus run your evaluation on any number of tasks and models and upload all of the results as projects on Zeno.\n"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": null,
|
39 |
+
"metadata": {},
|
40 |
+
"outputs": [],
|
41 |
+
"source": [
|
42 |
+
"!lm_eval \\\n",
|
43 |
+
" --model hf \\\n",
|
44 |
+
" --model_args pretrained=EleutherAI/gpt-neo-2.7B \\\n",
|
45 |
+
" --tasks hellaswag,wikitext \\\n",
|
46 |
+
" --batch_size 8 \\\n",
|
47 |
+
" --device mps \\\n",
|
48 |
+
" --log_samples \\\n",
|
49 |
+
" --output_path output/gpt-neo-2.7B \\\n",
|
50 |
+
" --limit 10"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "markdown",
|
55 |
+
"metadata": {},
|
56 |
+
"source": [
|
57 |
+
"# Set your API Key\n",
|
58 |
+
"\n",
|
59 |
+
"This is so you can be authenticated with Zeno.\n",
|
60 |
+
"If you don't already have a Zeno account, first create an account on [Zeno Hub](https://hub.zenoml.com).\n",
|
61 |
+
"After logging in to Zeno Hub, generate your API key by clicking on your profile at the bottom left to navigate to your account page.\n"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"cell_type": "code",
|
66 |
+
"execution_count": null,
|
67 |
+
"metadata": {},
|
68 |
+
"outputs": [],
|
69 |
+
"source": [
|
70 |
+
"%env ZENO_API_KEY=YOUR_API_KEY"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "markdown",
|
75 |
+
"metadata": {},
|
76 |
+
"source": [
|
77 |
+
"# Visualize Eval Results\n",
|
78 |
+
"\n",
|
79 |
+
"You can now use the `zeno_visualize` script to upload the results to Zeno.\n",
|
80 |
+
"\n",
|
81 |
+
"This will use all subfolders in `data_path` as different models and upload all tasks within these model folders to Zeno. If you run the eval harness on multiple tasks, the `project_name` will be used as a prefix and one project will be created per task.\n"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "code",
|
86 |
+
"execution_count": null,
|
87 |
+
"metadata": {},
|
88 |
+
"outputs": [],
|
89 |
+
"source": [
|
90 |
+
"!python ../scripts/zeno_visualize.py --data_path output --project_name \"Zeno Upload Test\""
|
91 |
+
]
|
92 |
+
}
|
93 |
+
],
|
94 |
+
"metadata": {
|
95 |
+
"kernelspec": {
|
96 |
+
"display_name": "zeno_projects",
|
97 |
+
"language": "python",
|
98 |
+
"name": "python3"
|
99 |
+
},
|
100 |
+
"language_info": {
|
101 |
+
"codemirror_mode": {
|
102 |
+
"name": "ipython",
|
103 |
+
"version": 3
|
104 |
+
},
|
105 |
+
"file_extension": ".py",
|
106 |
+
"mimetype": "text/x-python",
|
107 |
+
"name": "python",
|
108 |
+
"nbconvert_exporter": "python",
|
109 |
+
"pygments_lexer": "ipython3",
|
110 |
+
"version": "3.10.11"
|
111 |
+
}
|
112 |
+
},
|
113 |
+
"nbformat": 4,
|
114 |
+
"nbformat_minor": 2
|
115 |
+
}
|
lm-evaluation/lm_eval/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (221 Bytes). View file
|
|
lm-evaluation/lm_eval/__pycache__/__main__.cpython-310.pyc
ADDED
Binary file (10.6 kB). View file
|
|
lm-evaluation/lm_eval/__pycache__/evaluator.cpython-310.pyc
ADDED
Binary file (14 kB). View file
|
|
lm-evaluation/lm_eval/__pycache__/evaluator_utils.cpython-310.pyc
ADDED
Binary file (9.77 kB). View file
|
|
lm-evaluation/lm_eval/__pycache__/logging_utils.cpython-310.pyc
ADDED
Binary file (14.7 kB). View file
|
|
lm-evaluation/lm_eval/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (11.2 kB). View file
|
|
lm-evaluation/lm_eval/caching/__pycache__/cache.cpython-310.pyc
ADDED
Binary file (1.6 kB). View file
|
|
lm-evaluation/lm_eval/models/__init__.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from . import (
|
2 |
+
anthropic_llms,
|
3 |
+
dummy,
|
4 |
+
gguf,
|
5 |
+
huggingface,
|
6 |
+
mamba_lm,
|
7 |
+
nemo_lm,
|
8 |
+
neuron_optimum,
|
9 |
+
openai_completions,
|
10 |
+
optimum_lm,
|
11 |
+
textsynth,
|
12 |
+
vllm_causallms,
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
# TODO: implement __all__
|
17 |
+
|
18 |
+
|
19 |
+
try:
|
20 |
+
# enable hf hub transfer if available
|
21 |
+
import hf_transfer # type: ignore # noqa
|
22 |
+
import huggingface_hub.constants # type: ignore
|
23 |
+
|
24 |
+
huggingface_hub.constants.HF_HUB_ENABLE_HF_TRANSFER = True
|
25 |
+
except ImportError:
|
26 |
+
pass
|
lm-evaluation/lm_eval/models/__pycache__/anthropic_llms.cpython-310.pyc
ADDED
Binary file (10.2 kB). View file
|
|
lm-evaluation/lm_eval/models/__pycache__/dummy.cpython-310.pyc
ADDED
Binary file (1.58 kB). View file
|
|
lm-evaluation/lm_eval/models/__pycache__/gguf.cpython-310.pyc
ADDED
Binary file (4.1 kB). View file
|
|
lm-evaluation/lm_eval/models/__pycache__/huggingface.cpython-310.pyc
ADDED
Binary file (25.9 kB). View file
|
|
lm-evaluation/lm_eval/models/__pycache__/mamba_lm.cpython-310.pyc
ADDED
Binary file (3.69 kB). View file
|
|
lm-evaluation/lm_eval/models/__pycache__/nemo_lm.cpython-310.pyc
ADDED
Binary file (13.6 kB). View file
|
|
lm-evaluation/lm_eval/models/__pycache__/neuron_optimum.cpython-310.pyc
ADDED
Binary file (18.3 kB). View file
|
|
lm-evaluation/lm_eval/models/__pycache__/openai_completions.cpython-310.pyc
ADDED
Binary file (14.3 kB). View file
|
|
lm-evaluation/lm_eval/models/__pycache__/optimum_lm.cpython-310.pyc
ADDED
Binary file (2.01 kB). View file
|
|
lm-evaluation/lm_eval/models/__pycache__/textsynth.cpython-310.pyc
ADDED
Binary file (5.23 kB). View file
|
|
lm-evaluation/lm_eval/models/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (20 kB). View file
|
|
lm-evaluation/lm_eval/models/__pycache__/vllm_causallms.cpython-310.pyc
ADDED
Binary file (12.7 kB). View file
|
|
lm-evaluation/lm_eval/models/anthropic_llms.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, List, Tuple
|
2 |
+
|
3 |
+
from tqdm import tqdm
|
4 |
+
|
5 |
+
from lm_eval import utils
|
6 |
+
from lm_eval.api.model import LM
|
7 |
+
from lm_eval.api.registry import register_model
|
8 |
+
from lm_eval.models.utils import retry_on_specific_exceptions
|
9 |
+
|
10 |
+
|
11 |
+
eval_logger = utils.eval_logger
|
12 |
+
|
13 |
+
|
14 |
+
def anthropic_completion(
|
15 |
+
client, #: anthropic.Anthropic,
|
16 |
+
model: str,
|
17 |
+
prompt: str,
|
18 |
+
max_tokens_to_sample: int,
|
19 |
+
temperature: float,
|
20 |
+
stop: List[str],
|
21 |
+
**kwargs: Any,
|
22 |
+
) -> str:
|
23 |
+
"""Wrapper function around the Anthropic completion API client with exponential back-off
|
24 |
+
in case of RateLimitError.
|
25 |
+
|
26 |
+
params:
|
27 |
+
client: anthropic.Anthropic
|
28 |
+
Anthropic API client
|
29 |
+
model: str
|
30 |
+
Anthropic model e.g. 'claude-instant-v1', 'claude-2'
|
31 |
+
prompt: str
|
32 |
+
Prompt to feed to the model
|
33 |
+
max_tokens_to_sample: int
|
34 |
+
Maximum number of tokens to sample from the model
|
35 |
+
temperature: float
|
36 |
+
Sampling temperature
|
37 |
+
stop: List[str]
|
38 |
+
List of stop sequences
|
39 |
+
kwargs: Any
|
40 |
+
Additional model_args to pass to the API client
|
41 |
+
"""
|
42 |
+
|
43 |
+
try:
|
44 |
+
import anthropic
|
45 |
+
except ModuleNotFoundError:
|
46 |
+
raise Exception(
|
47 |
+
"attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
|
48 |
+
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
|
49 |
+
)
|
50 |
+
|
51 |
+
def _exception_callback(e: Exception, sleep_time: float) -> None:
|
52 |
+
eval_logger.warning(
|
53 |
+
f"RateLimitError occurred: {e.__cause__}\n Retrying in {sleep_time} seconds"
|
54 |
+
)
|
55 |
+
|
56 |
+
@retry_on_specific_exceptions(
|
57 |
+
on_exceptions=[anthropic.RateLimitError],
|
58 |
+
max_retries=None, # retry forever, consider changing
|
59 |
+
on_exception_callback=_exception_callback,
|
60 |
+
)
|
61 |
+
def completion():
|
62 |
+
response = client.completions.create(
|
63 |
+
prompt=f"{anthropic.HUMAN_PROMPT} {prompt}{anthropic.AI_PROMPT}",
|
64 |
+
model=model,
|
65 |
+
# NOTE: Claude really likes to do CoT, and overly aggressive stop sequences
|
66 |
+
# (e.g. gsm8k's ":") may truncate a lot of the input.
|
67 |
+
stop_sequences=[anthropic.HUMAN_PROMPT] + stop,
|
68 |
+
max_tokens_to_sample=max_tokens_to_sample,
|
69 |
+
temperature=temperature,
|
70 |
+
**kwargs,
|
71 |
+
)
|
72 |
+
return response.completion
|
73 |
+
|
74 |
+
return completion()
|
75 |
+
|
76 |
+
|
77 |
+
def anthropic_chat(
|
78 |
+
client, #: anthropic.Anthropic,
|
79 |
+
model: str,
|
80 |
+
prompt: str,
|
81 |
+
max_tokens: int,
|
82 |
+
temperature: float,
|
83 |
+
stop: List[str],
|
84 |
+
**kwargs: Any,
|
85 |
+
) -> str:
|
86 |
+
"""Wrapper function around the Anthropic completion API client with exponential back-off
|
87 |
+
in case of RateLimitError.
|
88 |
+
|
89 |
+
params:
|
90 |
+
client: anthropic.Anthropic
|
91 |
+
Anthropic API client
|
92 |
+
model: str
|
93 |
+
Anthropic model e.g. 'claude-3-opus-20240229', 'claude-3-sonnet-20240229'
|
94 |
+
prompt: str
|
95 |
+
Prompt to feed to the model
|
96 |
+
max_tokens: int
|
97 |
+
Maximum number of tokens to sample from the model
|
98 |
+
temperature: float
|
99 |
+
Sampling temperature
|
100 |
+
stop: List[str]
|
101 |
+
List of stop sequences
|
102 |
+
kwargs: Any
|
103 |
+
Additional model_args to pass to the API client
|
104 |
+
"""
|
105 |
+
|
106 |
+
try:
|
107 |
+
import anthropic
|
108 |
+
except ModuleNotFoundError:
|
109 |
+
raise Exception(
|
110 |
+
"attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
|
111 |
+
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
|
112 |
+
)
|
113 |
+
|
114 |
+
def _exception_callback(e: Exception, sleep_time: float) -> None:
|
115 |
+
eval_logger.warning(
|
116 |
+
f"RateLimitError occurred: {e.__cause__}\n Retrying in {sleep_time} seconds"
|
117 |
+
)
|
118 |
+
|
119 |
+
@retry_on_specific_exceptions(
|
120 |
+
on_exceptions=[
|
121 |
+
anthropic.RateLimitError,
|
122 |
+
anthropic.APIConnectionError,
|
123 |
+
anthropic.APIStatusError,
|
124 |
+
],
|
125 |
+
max_retries=None, # retry forever, consider changing
|
126 |
+
on_exception_callback=_exception_callback,
|
127 |
+
)
|
128 |
+
def messages():
|
129 |
+
response = client.messages.create(
|
130 |
+
model=model,
|
131 |
+
max_tokens=max_tokens,
|
132 |
+
temperature=temperature,
|
133 |
+
messages=[{"role": "user", "content": f"{prompt}"}],
|
134 |
+
**kwargs,
|
135 |
+
)
|
136 |
+
return response.content[0].text
|
137 |
+
|
138 |
+
return messages()
|
139 |
+
|
140 |
+
|
141 |
+
@register_model("anthropic")
|
142 |
+
class AnthropicLM(LM):
|
143 |
+
REQ_CHUNK_SIZE = 20 # TODO: not used
|
144 |
+
|
145 |
+
def __init__(
|
146 |
+
self,
|
147 |
+
batch_size: int = 1,
|
148 |
+
model: str = "claude-2.0",
|
149 |
+
max_tokens_to_sample: int = 256,
|
150 |
+
temperature: float = 0, # defaults to 1
|
151 |
+
**kwargs, # top_p, top_k, etc.
|
152 |
+
) -> None:
|
153 |
+
"""Anthropic API wrapper.
|
154 |
+
|
155 |
+
:param model: str
|
156 |
+
Anthropic model e.g. 'claude-instant-v1', 'claude-2'
|
157 |
+
:param max_tokens_to_sample: int
|
158 |
+
Maximum number of tokens to sample from the model
|
159 |
+
:param temperature: float
|
160 |
+
Sampling temperature
|
161 |
+
:param kwargs: Any
|
162 |
+
Additional model_args to pass to the API client
|
163 |
+
"""
|
164 |
+
super().__init__()
|
165 |
+
|
166 |
+
try:
|
167 |
+
import anthropic
|
168 |
+
except ModuleNotFoundError:
|
169 |
+
raise Exception(
|
170 |
+
"attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
|
171 |
+
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
|
172 |
+
)
|
173 |
+
|
174 |
+
self.model = model
|
175 |
+
# defaults to os.environ.get("ANTHROPIC_API_KEY")
|
176 |
+
self.client = anthropic.Anthropic()
|
177 |
+
self.temperature = temperature
|
178 |
+
self.max_tokens_to_sample = max_tokens_to_sample
|
179 |
+
self.tokenizer = self.client.get_tokenizer()
|
180 |
+
self.kwargs = kwargs
|
181 |
+
|
182 |
+
@property
|
183 |
+
def eot_token_id(self):
|
184 |
+
# Not sure but anthropic.HUMAN_PROMPT ?
|
185 |
+
raise NotImplementedError("No idea about anthropic tokenization.")
|
186 |
+
|
187 |
+
@property
|
188 |
+
def max_length(self) -> int:
|
189 |
+
return 2048
|
190 |
+
|
191 |
+
@property
|
192 |
+
def max_gen_toks(self) -> int:
|
193 |
+
return self.max_tokens_to_sample
|
194 |
+
|
195 |
+
@property
|
196 |
+
def batch_size(self):
|
197 |
+
# Isn't used because we override _loglikelihood_tokens
|
198 |
+
raise NotImplementedError("No support for logits.")
|
199 |
+
|
200 |
+
@property
|
201 |
+
def device(self):
|
202 |
+
# Isn't used because we override _loglikelihood_tokens
|
203 |
+
raise NotImplementedError("No support for logits.")
|
204 |
+
|
205 |
+
def tok_encode(self, string: str) -> List[int]:
|
206 |
+
return self.tokenizer.encode(string).ids
|
207 |
+
|
208 |
+
def tok_decode(self, tokens: List[int]) -> str:
|
209 |
+
return self.tokenizer.decode(tokens)
|
210 |
+
|
211 |
+
def _loglikelihood_tokens(self, requests, disable_tqdm: bool = False):
|
212 |
+
raise NotImplementedError("No support for logits.")
|
213 |
+
|
214 |
+
def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]:
|
215 |
+
try:
|
216 |
+
import anthropic
|
217 |
+
except ModuleNotFoundError:
|
218 |
+
raise Exception(
|
219 |
+
"attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
|
220 |
+
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
|
221 |
+
)
|
222 |
+
|
223 |
+
if not requests:
|
224 |
+
return []
|
225 |
+
|
226 |
+
_requests: List[Tuple[str, dict]] = [req.args for req in requests]
|
227 |
+
|
228 |
+
res = []
|
229 |
+
for request in tqdm(_requests, disable=disable_tqdm):
|
230 |
+
try:
|
231 |
+
inp = request[0]
|
232 |
+
request_args = request[1]
|
233 |
+
# generation_kwargs
|
234 |
+
until = request_args.get("until")
|
235 |
+
max_gen_toks = request_args.get("max_gen_toks", self.max_length)
|
236 |
+
temperature = request_args.get("temperature", self.temperature)
|
237 |
+
response = anthropic_completion(
|
238 |
+
client=self.client,
|
239 |
+
model=self.model,
|
240 |
+
prompt=inp,
|
241 |
+
max_tokens_to_sample=max_gen_toks,
|
242 |
+
temperature=temperature, # TODO: implement non-greedy sampling for Anthropic
|
243 |
+
stop=until, # type: ignore
|
244 |
+
**self.kwargs,
|
245 |
+
)
|
246 |
+
res.append(response)
|
247 |
+
|
248 |
+
self.cache_hook.add_partial("generate_until", request, response)
|
249 |
+
except anthropic.APIConnectionError as e: # type: ignore # noqa: F821
|
250 |
+
eval_logger.critical(f"Server unreachable: {e.__cause__}")
|
251 |
+
break
|
252 |
+
except anthropic.APIStatusError as e: # type: ignore # noqa: F821
|
253 |
+
eval_logger.critical(f"API error {e.status_code}: {e.message}")
|
254 |
+
break
|
255 |
+
|
256 |
+
return res
|
257 |
+
|
258 |
+
def _model_call(self, inps):
|
259 |
+
# Isn't used because we override _loglikelihood_tokens
|
260 |
+
raise NotImplementedError()
|
261 |
+
|
262 |
+
def _model_generate(self, context, max_length, eos_token_id):
|
263 |
+
# Isn't used because we override generate_until
|
264 |
+
raise NotImplementedError()
|
265 |
+
|
266 |
+
def loglikelihood(self, requests, disable_tqdm: bool = False):
|
267 |
+
raise NotImplementedError("No support for logits.")
|
268 |
+
|
269 |
+
def loglikelihood_rolling(self, requests, disable_tqdm: bool = False):
|
270 |
+
raise NotImplementedError("No support for logits.")
|
271 |
+
|
272 |
+
|
273 |
+
@register_model("anthropic-chat", "anthropic-chat-completions")
|
274 |
+
class AnthropicChatLM(AnthropicLM):
|
275 |
+
REQ_CHUNK_SIZE = 20 # TODO: not used
|
276 |
+
|
277 |
+
def __init__(
|
278 |
+
self,
|
279 |
+
model: str,
|
280 |
+
batch_size: int = 1,
|
281 |
+
max_tokens: int = 256,
|
282 |
+
temperature: float = 0, # defaults to 1
|
283 |
+
**kwargs, # top_p, top_k, etc.
|
284 |
+
) -> None:
|
285 |
+
"""Anthropic API wrapper.
|
286 |
+
|
287 |
+
:param model: str
|
288 |
+
Anthropic model e.g. 'claude-3-opus-20240229', 'claude-3-sonnet-20240229'
|
289 |
+
:param max_tokens: int
|
290 |
+
Maximum number of tokens to sample from the model
|
291 |
+
:param temperature: float
|
292 |
+
Sampling temperature
|
293 |
+
:param kwargs: Any
|
294 |
+
Additional model_args to pass to the API client
|
295 |
+
"""
|
296 |
+
super().__init__()
|
297 |
+
|
298 |
+
try:
|
299 |
+
import anthropic
|
300 |
+
except ModuleNotFoundError:
|
301 |
+
raise Exception(
|
302 |
+
"attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
|
303 |
+
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
|
304 |
+
)
|
305 |
+
|
306 |
+
self.model = model
|
307 |
+
# defaults to os.environ.get("ANTHROPIC_API_KEY")
|
308 |
+
self.client = anthropic.Anthropic()
|
309 |
+
self.temperature = temperature
|
310 |
+
self.max_token = max_tokens
|
311 |
+
self.tokenizer = self.client.get_tokenizer()
|
312 |
+
self.kwargs = kwargs
|
313 |
+
|
314 |
+
@property
|
315 |
+
def max_gen_toks(self) -> int:
|
316 |
+
return self.max_tokens
|
317 |
+
|
318 |
+
def generate_until(self, requests) -> List[str]:
|
319 |
+
try:
|
320 |
+
import anthropic
|
321 |
+
except ModuleNotFoundError:
|
322 |
+
raise Exception(
|
323 |
+
"attempted to use 'anthropic' LM type, but package `anthropic` is not installed. \
|
324 |
+
please install anthropic via `pip install 'lm-eval[anthropic]'` or `pip install -e '.[anthropic]'`",
|
325 |
+
)
|
326 |
+
|
327 |
+
if not requests:
|
328 |
+
return []
|
329 |
+
|
330 |
+
_requests: List[Tuple[str, dict]] = [req.args for req in requests]
|
331 |
+
|
332 |
+
res = []
|
333 |
+
for request in tqdm(_requests):
|
334 |
+
try:
|
335 |
+
inp = request[0]
|
336 |
+
request_args = request[1]
|
337 |
+
# generation_kwargs
|
338 |
+
until = request_args.get("until")
|
339 |
+
max_tokens = request_args.get("max_gen_toks", self.max_length)
|
340 |
+
temperature = request_args.get("temperature", self.temperature)
|
341 |
+
response = anthropic_chat(
|
342 |
+
client=self.client,
|
343 |
+
model=self.model,
|
344 |
+
prompt=inp,
|
345 |
+
max_tokens=max_tokens,
|
346 |
+
temperature=temperature, # TODO: implement non-greedy sampling for Anthropic
|
347 |
+
stop=until, # type: ignore
|
348 |
+
**self.kwargs,
|
349 |
+
)
|
350 |
+
res.append(response)
|
351 |
+
|
352 |
+
self.cache_hook.add_partial("generate_until", request, response)
|
353 |
+
except anthropic.APIConnectionError as e: # type: ignore # noqa: F821
|
354 |
+
eval_logger.critical(f"Server unreachable: {e.__cause__}")
|
355 |
+
break
|
356 |
+
except anthropic.APIStatusError as e: # type: ignore # noqa: F821
|
357 |
+
eval_logger.critical(f"API error {e.status_code}: {e.message}")
|
358 |
+
break
|
359 |
+
|
360 |
+
return res
|
lm-evaluation/lm_eval/models/dummy.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
|
3 |
+
from tqdm import tqdm
|
4 |
+
|
5 |
+
from lm_eval.api.model import LM
|
6 |
+
from lm_eval.api.registry import register_model
|
7 |
+
|
8 |
+
|
9 |
+
@register_model("dummy")
|
10 |
+
class DummyLM(LM):
|
11 |
+
def __init__(self) -> None:
|
12 |
+
super().__init__()
|
13 |
+
|
14 |
+
@classmethod
|
15 |
+
def create_from_arg_string(cls, arg_string, additional_config=None):
|
16 |
+
return cls()
|
17 |
+
|
18 |
+
def loglikelihood(self, requests, disable_tqdm: bool = False):
|
19 |
+
res = []
|
20 |
+
|
21 |
+
for _ in tqdm(requests, disable=disable_tqdm):
|
22 |
+
res.append((-random.random(), False))
|
23 |
+
|
24 |
+
return res
|
25 |
+
|
26 |
+
def generate_until(self, requests, disable_tqdm: bool = False):
|
27 |
+
res = []
|
28 |
+
|
29 |
+
for ctx, _ in tqdm(requests, disable=disable_tqdm):
|
30 |
+
res.append("lol")
|
31 |
+
assert ctx.strip() != ""
|
32 |
+
|
33 |
+
return res
|
34 |
+
|
35 |
+
def loglikelihood_rolling(self, requests, disable_tqdm: bool = False):
|
36 |
+
res = []
|
37 |
+
|
38 |
+
for _ in tqdm(requests, disable=disable_tqdm):
|
39 |
+
res.append(-random.random())
|
40 |
+
|
41 |
+
return res
|
lm-evaluation/lm_eval/models/gguf.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import time
|
3 |
+
|
4 |
+
import requests
|
5 |
+
from requests.exceptions import RequestException
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
from lm_eval.api.model import LM
|
9 |
+
from lm_eval.api.registry import register_model
|
10 |
+
|
11 |
+
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
|
15 |
+
def get_result(logprobs, context_length):
|
16 |
+
is_greedy = True
|
17 |
+
offsets = logprobs["text_offset"]
|
18 |
+
tokens = logprobs["tokens"]
|
19 |
+
tokens_logprobs = logprobs["token_logprobs"]
|
20 |
+
|
21 |
+
idx = 0
|
22 |
+
while offsets[idx] < context_length:
|
23 |
+
idx += 1
|
24 |
+
continuation_logprobs = sum(tokens_logprobs[idx:-1])
|
25 |
+
for i in range(idx, len(tokens)):
|
26 |
+
token = tokens[i]
|
27 |
+
top_tokens = logprobs["top_logprobs"][i]
|
28 |
+
top_token = max(top_tokens.keys(), key=lambda x: top_tokens[x])
|
29 |
+
if top_token != token:
|
30 |
+
is_greedy = False
|
31 |
+
break
|
32 |
+
|
33 |
+
return continuation_logprobs, is_greedy
|
34 |
+
|
35 |
+
|
36 |
+
@register_model("gguf", "ggml")
|
37 |
+
class GGUFLM(LM):
|
38 |
+
def __init__(self, base_url=None, max_length=2048, **kwargs):
|
39 |
+
super().__init__()
|
40 |
+
self.base_url = base_url
|
41 |
+
assert self.base_url, "must pass `base_url` to use GGUF LM!"
|
42 |
+
self.logprobs = 10
|
43 |
+
self.temperature = 0.0
|
44 |
+
self.max_length = max_length
|
45 |
+
|
46 |
+
def gguf_completion(
|
47 |
+
self, context, continuation=None, stop=None, retries=3, delay=5, **kwargs
|
48 |
+
):
|
49 |
+
for _ in range(retries):
|
50 |
+
try:
|
51 |
+
prompt = context
|
52 |
+
request = {
|
53 |
+
"prompt": prompt,
|
54 |
+
"logprobs": self.logprobs,
|
55 |
+
"temperature": self.temperature,
|
56 |
+
}
|
57 |
+
if continuation:
|
58 |
+
prompt += continuation
|
59 |
+
request.update({"prompt": prompt, "max_tokens": 1, "echo": True})
|
60 |
+
if stop is not None:
|
61 |
+
request["stop"] = stop
|
62 |
+
response = requests.post(
|
63 |
+
f"{self.base_url}/v1/completions", json=request
|
64 |
+
)
|
65 |
+
response.raise_for_status()
|
66 |
+
return response.json()
|
67 |
+
except RequestException as e:
|
68 |
+
logger.error(f"RequestException: {e}")
|
69 |
+
time.sleep(delay) # wait before retrying
|
70 |
+
else:
|
71 |
+
raise Exception(f"Failed to get a valid response after {retries} retries.")
|
72 |
+
|
73 |
+
def loglikelihood(self, requests, disable_tqdm: bool = False):
|
74 |
+
if not requests:
|
75 |
+
return []
|
76 |
+
res = []
|
77 |
+
for context, continuation in tqdm(
|
78 |
+
[req.args for req in requests], disable=disable_tqdm
|
79 |
+
):
|
80 |
+
response = self.gguf_completion(context=context, continuation=continuation)
|
81 |
+
if response and "choices" in response and response["choices"]:
|
82 |
+
choice = response["choices"][0]
|
83 |
+
logprobs = choice.get("logprobs")
|
84 |
+
if (
|
85 |
+
logprobs
|
86 |
+
and "token_logprobs" in logprobs
|
87 |
+
and logprobs["token_logprobs"]
|
88 |
+
):
|
89 |
+
logprob, is_greedy = get_result(logprobs, len(context))
|
90 |
+
res.append((logprob, is_greedy))
|
91 |
+
else:
|
92 |
+
logger.warning(
|
93 |
+
"Invalid logprobs data. Expected 'logprobs' to contain 'token_logprobs' list."
|
94 |
+
)
|
95 |
+
else:
|
96 |
+
logger.error(
|
97 |
+
f"Invalid response for loglikelihood. Response: {response}"
|
98 |
+
)
|
99 |
+
assert False
|
100 |
+
return res
|
101 |
+
|
102 |
+
def generate_until(self, requests, disable_tqdm: bool = False):
|
103 |
+
if not requests:
|
104 |
+
return []
|
105 |
+
|
106 |
+
res = []
|
107 |
+
for request in tqdm([req.args for req in requests], disable=disable_tqdm):
|
108 |
+
inp = request[0]
|
109 |
+
request_args = request[1]
|
110 |
+
until = request_args.get("until", ["</s>"])
|
111 |
+
response = self.gguf_completion(context=inp, stop=until)
|
112 |
+
if response and "choices" in response and response["choices"]:
|
113 |
+
choice = response["choices"][0]
|
114 |
+
if "text" in choice:
|
115 |
+
generated_text = choice["text"].strip()
|
116 |
+
res.append(generated_text)
|
117 |
+
else:
|
118 |
+
logger.error(
|
119 |
+
f"Invalid response for greedy_until. Response: {response}"
|
120 |
+
)
|
121 |
+
res.append(None) # Add default value in case of error
|
122 |
+
else:
|
123 |
+
logger.error(f"Invalid response for greedy_until. Response: {response}")
|
124 |
+
res.append(None) # Add default value in case of error
|
125 |
+
return res
|
126 |
+
|
127 |
+
def loglikelihood_rolling(self, requests, disable_tqdm: bool = False):
|
128 |
+
raise NotImplementedError(
|
129 |
+
"loglikelihood_rolling not yet supported for GGUF models"
|
130 |
+
)
|
lm-evaluation/lm_eval/models/huggingface.py
ADDED
@@ -0,0 +1,1243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import os
|
3 |
+
from datetime import timedelta
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import List, Literal, Optional, Tuple, Union
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import transformers
|
10 |
+
from accelerate import (
|
11 |
+
Accelerator,
|
12 |
+
DistributedType,
|
13 |
+
InitProcessGroupKwargs,
|
14 |
+
find_executable_batch_size,
|
15 |
+
)
|
16 |
+
from packaging import version
|
17 |
+
from peft import PeftModel
|
18 |
+
from peft import __version__ as PEFT_VERSION
|
19 |
+
from tqdm import tqdm
|
20 |
+
from transformers.models.auto.modeling_auto import (
|
21 |
+
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
|
22 |
+
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
|
23 |
+
)
|
24 |
+
|
25 |
+
from lm_eval import utils
|
26 |
+
from lm_eval.api.instance import Instance
|
27 |
+
from lm_eval.api.model import TemplateLM
|
28 |
+
from lm_eval.api.registry import register_model
|
29 |
+
from lm_eval.models.utils import (
|
30 |
+
Collator,
|
31 |
+
clear_torch_cache,
|
32 |
+
get_dtype,
|
33 |
+
pad_and_concat,
|
34 |
+
stop_sequences_criteria,
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
eval_logger = utils.eval_logger
|
39 |
+
|
40 |
+
|
41 |
+
def _get_accelerate_args(
|
42 |
+
device_map_option: Optional[str] = "auto",
|
43 |
+
max_memory_per_gpu: Optional[Union[int, str]] = None,
|
44 |
+
max_cpu_memory: Optional[Union[int, str]] = None,
|
45 |
+
offload_folder: Optional[str] = "./offload",
|
46 |
+
) -> dict:
|
47 |
+
"""Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
|
48 |
+
max_memory = {}
|
49 |
+
if max_memory_per_gpu is not None:
|
50 |
+
max_memory_per_gpu_map = {
|
51 |
+
device_idx: max_memory_per_gpu
|
52 |
+
for device_idx in range(torch.cuda.device_count())
|
53 |
+
}
|
54 |
+
max_memory.update(max_memory_per_gpu_map)
|
55 |
+
if max_cpu_memory is not None:
|
56 |
+
max_memory["cpu"] = max_cpu_memory
|
57 |
+
|
58 |
+
args = {}
|
59 |
+
if max_memory:
|
60 |
+
args["max_memory"] = max_memory
|
61 |
+
args["device_map"] = device_map_option
|
62 |
+
args["offload_folder"] = offload_folder
|
63 |
+
return args
|
64 |
+
|
65 |
+
|
66 |
+
@register_model("hf-auto", "hf", "huggingface")
|
67 |
+
class HFLM(TemplateLM):
|
68 |
+
"""
|
69 |
+
An abstracted Huggingface model class. Enables usage with both models of
|
70 |
+
`transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.
|
71 |
+
|
72 |
+
Supports data-parallel multi-GPU with HF Accelerate.
|
73 |
+
"""
|
74 |
+
|
75 |
+
AUTO_MODEL_CLASS = None
|
76 |
+
_DEFAULT_MAX_LENGTH = 2048
|
77 |
+
|
78 |
+
def __init__(
|
79 |
+
self,
|
80 |
+
pretrained: Optional[Union[str, transformers.PreTrainedModel]] = "gpt2",
|
81 |
+
backend: Optional[Literal["default", "causal", "seq2seq"]] = "default",
|
82 |
+
# override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq)
|
83 |
+
revision: Optional[str] = "main",
|
84 |
+
subfolder: Optional[str] = None,
|
85 |
+
tokenizer: Optional[
|
86 |
+
Union[
|
87 |
+
str,
|
88 |
+
transformers.PreTrainedTokenizer,
|
89 |
+
transformers.PreTrainedTokenizerFast,
|
90 |
+
]
|
91 |
+
] = None,
|
92 |
+
truncation: Optional[bool] = False,
|
93 |
+
logits_cache: bool = True,
|
94 |
+
max_length: Optional[int] = None,
|
95 |
+
device: Optional[str] = "cuda",
|
96 |
+
dtype: Optional[Union[str, torch.dtype]] = "auto",
|
97 |
+
batch_size: Optional[Union[int, str]] = 1,
|
98 |
+
max_batch_size: Optional[int] = 64,
|
99 |
+
trust_remote_code: Optional[bool] = False,
|
100 |
+
use_fast_tokenizer: Optional[bool] = True,
|
101 |
+
add_bos_token: Optional[bool] = False,
|
102 |
+
prefix_token_id: Optional[int] = None,
|
103 |
+
# arguments used for splitting a model across GPUs naively.
|
104 |
+
# only used if `parallelize=True`.
|
105 |
+
parallelize: Optional[bool] = False,
|
106 |
+
device_map_option: Optional[str] = "auto",
|
107 |
+
max_memory_per_gpu: Optional[Union[int, str]] = None,
|
108 |
+
max_cpu_memory: Optional[Union[int, str]] = None,
|
109 |
+
offload_folder: Optional[Union[str, os.PathLike]] = "./offload",
|
110 |
+
# PEFT and quantization options
|
111 |
+
peft: Optional[str] = None,
|
112 |
+
autogptq: Optional[Union[bool, str]] = False,
|
113 |
+
**kwargs,
|
114 |
+
) -> None:
|
115 |
+
super().__init__()
|
116 |
+
|
117 |
+
# optionally: take in an already-initialized transformers.PreTrainedModel
|
118 |
+
if not isinstance(pretrained, str):
|
119 |
+
eval_logger.warning(
|
120 |
+
"`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way."
|
121 |
+
)
|
122 |
+
assert not parallelize, "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`"
|
123 |
+
self._model = pretrained
|
124 |
+
self._device = self._model.device
|
125 |
+
self._config = self._model.config
|
126 |
+
gpus = 0
|
127 |
+
|
128 |
+
if tokenizer:
|
129 |
+
assert isinstance(
|
130 |
+
tokenizer, transformers.PreTrainedTokenizer
|
131 |
+
) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
|
132 |
+
self.tokenizer = tokenizer
|
133 |
+
else:
|
134 |
+
# Get tokenizer
|
135 |
+
model_name = self._model.name_or_path
|
136 |
+
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
|
137 |
+
model_name,
|
138 |
+
revision=revision,
|
139 |
+
trust_remote_code=trust_remote_code,
|
140 |
+
use_fast=use_fast_tokenizer,
|
141 |
+
)
|
142 |
+
|
143 |
+
else:
|
144 |
+
assert isinstance(device, str)
|
145 |
+
assert isinstance(pretrained, str)
|
146 |
+
assert isinstance(batch_size, (int, str))
|
147 |
+
|
148 |
+
gpus = torch.cuda.device_count()
|
149 |
+
accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52))
|
150 |
+
accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs])
|
151 |
+
if accelerator.num_processes > 1:
|
152 |
+
self.accelerator = accelerator
|
153 |
+
|
154 |
+
if not (parallelize or accelerator.num_processes > 1):
|
155 |
+
# use user-passed device
|
156 |
+
device_list = set(
|
157 |
+
["cuda", "cpu"]
|
158 |
+
+ [f"cuda:{i}" for i in range(torch.cuda.device_count())]
|
159 |
+
+ ["mps", "mps:0"]
|
160 |
+
)
|
161 |
+
if device and device in device_list:
|
162 |
+
self._device = torch.device(device)
|
163 |
+
eval_logger.info(f"Using device '{device}'")
|
164 |
+
if device in ("mps", "mps:0") and version.parse(
|
165 |
+
torch.__version__
|
166 |
+
) < version.parse("2.1"):
|
167 |
+
raise RuntimeError(
|
168 |
+
f"mps requires torch >= 2.1. You have {torch.__version__}"
|
169 |
+
)
|
170 |
+
else:
|
171 |
+
eval_logger.info("Device not specified")
|
172 |
+
eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
|
173 |
+
self._device = (
|
174 |
+
torch.device("cuda")
|
175 |
+
if torch.cuda.is_available()
|
176 |
+
else torch.device("cpu")
|
177 |
+
)
|
178 |
+
else:
|
179 |
+
if device != "cuda":
|
180 |
+
eval_logger.info(
|
181 |
+
f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
|
182 |
+
)
|
183 |
+
# TODO: include in warning that `load_in_8bit` etc. affect this too
|
184 |
+
self._device = torch.device(device)
|
185 |
+
|
186 |
+
# TODO: update this to be less of a hack once subfolder is fixed in HF
|
187 |
+
revision = revision + ("/" + subfolder if subfolder is not None else "")
|
188 |
+
|
189 |
+
self._get_config(
|
190 |
+
pretrained,
|
191 |
+
revision=revision,
|
192 |
+
trust_remote_code=trust_remote_code,
|
193 |
+
)
|
194 |
+
|
195 |
+
# determine which of 'causal' and 'seq2seq' backends to use
|
196 |
+
self._get_backend(
|
197 |
+
config=self.config, backend=backend, trust_remote_code=trust_remote_code
|
198 |
+
)
|
199 |
+
|
200 |
+
# if we passed `pretrained` as a string, initialize our model now
|
201 |
+
if isinstance(pretrained, str):
|
202 |
+
self._create_model(
|
203 |
+
pretrained=pretrained,
|
204 |
+
revision=revision,
|
205 |
+
dtype=dtype,
|
206 |
+
trust_remote_code=trust_remote_code,
|
207 |
+
parallelize=parallelize,
|
208 |
+
device_map_option=device_map_option,
|
209 |
+
max_memory_per_gpu=max_memory_per_gpu,
|
210 |
+
max_cpu_memory=max_cpu_memory,
|
211 |
+
offload_folder=offload_folder,
|
212 |
+
peft=peft,
|
213 |
+
autogptq=autogptq,
|
214 |
+
**kwargs,
|
215 |
+
)
|
216 |
+
|
217 |
+
# access self._model through self.model property outside this method
|
218 |
+
if isinstance(self.model, torch.nn.Module):
|
219 |
+
self.model.eval()
|
220 |
+
self.model.tie_weights()
|
221 |
+
|
222 |
+
if isinstance(pretrained, str) and (gpus >= 1 or str(self.device) == "mps"):
|
223 |
+
# TODO: can remove this whole snippet except in the mps case, perhaps?
|
224 |
+
if not (parallelize or autogptq or hasattr(self, "accelerator")):
|
225 |
+
# place model onto device requested manually,
|
226 |
+
# if not using HF Accelerate or device_map
|
227 |
+
# or any other option that preloads model onto device
|
228 |
+
try:
|
229 |
+
self.model.to(self.device)
|
230 |
+
except ValueError:
|
231 |
+
eval_logger.debug(
|
232 |
+
"Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
|
233 |
+
)
|
234 |
+
|
235 |
+
self._create_tokenizer(
|
236 |
+
pretrained,
|
237 |
+
tokenizer,
|
238 |
+
revision=revision,
|
239 |
+
trust_remote_code=trust_remote_code,
|
240 |
+
use_fast_tokenizer=use_fast_tokenizer,
|
241 |
+
)
|
242 |
+
|
243 |
+
self.truncation = truncation
|
244 |
+
self.logits_cache = logits_cache
|
245 |
+
self.vocab_size = self.tokenizer.vocab_size
|
246 |
+
# select (or create) a pad token to use
|
247 |
+
if self.tokenizer.pad_token:
|
248 |
+
pass
|
249 |
+
elif self.tokenizer.unk_token:
|
250 |
+
self.tokenizer.pad_token_id = self.tokenizer.unk_token_id
|
251 |
+
elif self.tokenizer.eos_token:
|
252 |
+
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
253 |
+
else:
|
254 |
+
if getattr(self.config, "model_type", None) == "qwen":
|
255 |
+
# Qwen's trust_remote_code tokenizer does not allow for adding special tokens
|
256 |
+
self.tokenizer.pad_token = "<|endoftext|>"
|
257 |
+
elif (
|
258 |
+
self.tokenizer.__class__.__name__ == "RWKVWorldTokenizer"
|
259 |
+
or self.tokenizer.__class__.__name__ == "Rwkv5Tokenizer"
|
260 |
+
):
|
261 |
+
# The RWKV world tokenizer, does not allow for adding special tokens / setting the pad token (which is set as 0)
|
262 |
+
# The additional tokenizer name check is needed, as there exists rwkv4 models with neox tokenizer
|
263 |
+
# ---
|
264 |
+
# Note that the world tokenizer class name, might change in the future for the final huggingface merge
|
265 |
+
# https://github.com/huggingface/transformers/pull/26963
|
266 |
+
assert self.tokenizer.pad_token_id == 0
|
267 |
+
else:
|
268 |
+
self.tokenizer.add_special_tokens({"pad_token": "<|pad|>"})
|
269 |
+
|
270 |
+
# TODO: override this for Gemma
|
271 |
+
self.add_bos_token = add_bos_token
|
272 |
+
if getattr(self.config, "model_type", None) == "gemma":
|
273 |
+
self.add_bos_token = True
|
274 |
+
eval_logger.info(
|
275 |
+
f"Model type is '{self.config.model_type}', a BOS token will be used as Gemma underperforms without it."
|
276 |
+
)
|
277 |
+
|
278 |
+
self._max_length = max_length
|
279 |
+
|
280 |
+
self.batch_schedule = 1
|
281 |
+
self.batch_sizes = {}
|
282 |
+
self.max_batch_size = max_batch_size
|
283 |
+
|
284 |
+
if str(batch_size).startswith("auto"):
|
285 |
+
batch_size = batch_size.split(":")
|
286 |
+
self.batch_size_per_gpu = batch_size[0]
|
287 |
+
self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
|
288 |
+
else:
|
289 |
+
self.batch_size_per_gpu = int(batch_size)
|
290 |
+
|
291 |
+
if isinstance(pretrained, str):
|
292 |
+
# multigpu data-parallel support when launched with accelerate
|
293 |
+
if gpus > 1:
|
294 |
+
if parallelize:
|
295 |
+
if accelerator.num_processes > 1:
|
296 |
+
raise RuntimeError(
|
297 |
+
"Attempted to use both a HF Accelerate `device_map` and to launch via `accelerate launch`. If this is the case, please either remove `parallelize=True` from --model_args or launch outside of the Accelerate launcher."
|
298 |
+
)
|
299 |
+
else:
|
300 |
+
pass
|
301 |
+
elif accelerator.num_processes == 1:
|
302 |
+
# if we aren't launching via accelerate, ditch
|
303 |
+
self._rank = 0
|
304 |
+
self._world_size = 1
|
305 |
+
else:
|
306 |
+
if gpus > accelerator.num_processes:
|
307 |
+
eval_logger.warning(
|
308 |
+
"WARNING: The number of total system GPUs does not match the number of spawned processes. "
|
309 |
+
"If you would like to use data parallelism, please launch the script "
|
310 |
+
"with 'accelerate launch *script*'. "
|
311 |
+
f"Current run will proceed with {accelerator.num_processes} devices."
|
312 |
+
)
|
313 |
+
assert (
|
314 |
+
accelerator.distributed_type
|
315 |
+
in [
|
316 |
+
DistributedType.FSDP,
|
317 |
+
DistributedType.MULTI_GPU,
|
318 |
+
]
|
319 |
+
), "Unsupported distributed type provided. Only DDP and FSDP are supported."
|
320 |
+
if accelerator.distributed_type == DistributedType.FSDP:
|
321 |
+
self._model = accelerator.prepare(self.model)
|
322 |
+
else:
|
323 |
+
self._model = accelerator.prepare_model(
|
324 |
+
self.model, evaluation_mode=True
|
325 |
+
)
|
326 |
+
self._device = torch.device(
|
327 |
+
f"cuda:{accelerator.local_process_index}"
|
328 |
+
)
|
329 |
+
self.accelerator = accelerator
|
330 |
+
|
331 |
+
if self.accelerator.is_local_main_process:
|
332 |
+
eval_logger.info(f"Using {gpus} devices with data parallelism")
|
333 |
+
|
334 |
+
self._rank = self.accelerator.local_process_index
|
335 |
+
self._world_size = self.accelerator.num_processes
|
336 |
+
else:
|
337 |
+
# if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
|
338 |
+
eval_logger.warning(
|
339 |
+
"Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
|
340 |
+
)
|
341 |
+
self._rank = 0
|
342 |
+
self._world_size = 1
|
343 |
+
|
344 |
+
self.custom_prefix_token_id = prefix_token_id
|
345 |
+
if prefix_token_id is not None:
|
346 |
+
eval_logger.info(
|
347 |
+
f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
|
348 |
+
)
|
349 |
+
|
350 |
+
@property
|
351 |
+
def config(self):
|
352 |
+
# return the associated transformers.AutoConfig for the given pretrained model.
|
353 |
+
return self._config
|
354 |
+
|
355 |
+
@property
|
356 |
+
def model(self):
|
357 |
+
# returns the model, unwrapping it if using Accelerate
|
358 |
+
if hasattr(self, "accelerator"):
|
359 |
+
return self.accelerator.unwrap_model(self._model)
|
360 |
+
else:
|
361 |
+
return self._model
|
362 |
+
|
363 |
+
@property
|
364 |
+
def eot_token_id(self):
|
365 |
+
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
|
366 |
+
return self.tokenizer.eos_token_id
|
367 |
+
|
368 |
+
@property
|
369 |
+
def prefix_token_id(self):
|
370 |
+
# it is used as prefix for loglikelihood
|
371 |
+
if self.custom_prefix_token_id is not None:
|
372 |
+
return self.custom_prefix_token_id
|
373 |
+
if self.tokenizer.bos_token_id is not None:
|
374 |
+
return self.tokenizer.bos_token_id
|
375 |
+
return self.tokenizer.eos_token_id
|
376 |
+
|
377 |
+
@property
|
378 |
+
def max_length(self):
|
379 |
+
if self._max_length: # if max length manually set, return it
|
380 |
+
return self._max_length
|
381 |
+
seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
|
382 |
+
for attr in seqlen_config_attrs:
|
383 |
+
if hasattr(self.model.config, attr):
|
384 |
+
return getattr(self.model.config, attr)
|
385 |
+
if hasattr(self.tokenizer, "model_max_length"):
|
386 |
+
if self.tokenizer.model_max_length == 1000000000000000019884624838656:
|
387 |
+
return self._DEFAULT_MAX_LENGTH
|
388 |
+
return self.tokenizer.model_max_length
|
389 |
+
return self._DEFAULT_MAX_LENGTH
|
390 |
+
|
391 |
+
@property
|
392 |
+
def max_gen_toks(self) -> int:
|
393 |
+
return 256
|
394 |
+
|
395 |
+
@property
|
396 |
+
def batch_size(self):
|
397 |
+
return self.batch_size_per_gpu
|
398 |
+
|
399 |
+
@property
|
400 |
+
def device(self):
|
401 |
+
return self._device
|
402 |
+
|
403 |
+
@property
|
404 |
+
def rank(self):
|
405 |
+
return self._rank
|
406 |
+
|
407 |
+
@property
|
408 |
+
def world_size(self):
|
409 |
+
return self._world_size
|
410 |
+
|
411 |
+
def _get_backend(
|
412 |
+
self,
|
413 |
+
config: Union[transformers.PretrainedConfig, transformers.AutoConfig],
|
414 |
+
backend: Optional[Literal["default", "causal", "seq2seq"]] = "default",
|
415 |
+
trust_remote_code: Optional[bool] = False,
|
416 |
+
) -> None:
|
417 |
+
"""
|
418 |
+
Helper method during initialization.
|
419 |
+
Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder))
|
420 |
+
model type to be used.
|
421 |
+
"""
|
422 |
+
assert backend in ["default", "causal", "seq2seq"]
|
423 |
+
|
424 |
+
if backend != "default":
|
425 |
+
# if we've settled on non-default backend, use that manually
|
426 |
+
if backend == "causal":
|
427 |
+
self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
|
428 |
+
elif backend == "seq2seq":
|
429 |
+
self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
|
430 |
+
eval_logger.info(
|
431 |
+
f"Overrode HF model backend type, and using type '{backend}'"
|
432 |
+
)
|
433 |
+
else:
|
434 |
+
# determine and use the default HF backend for this model, based on its config + metadata.
|
435 |
+
if (
|
436 |
+
getattr(config, "model_type")
|
437 |
+
in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
|
438 |
+
):
|
439 |
+
# first check if model type is listed under seq2seq models, since some
|
440 |
+
# models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
|
441 |
+
# these special cases should be treated as seq2seq models.
|
442 |
+
self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
|
443 |
+
elif (
|
444 |
+
getattr(self.config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
|
445 |
+
):
|
446 |
+
self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
|
447 |
+
else:
|
448 |
+
if not trust_remote_code:
|
449 |
+
eval_logger.warning(
|
450 |
+
"HF model type is neither marked as CausalLM or Seq2SeqLM. \
|
451 |
+
This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
|
452 |
+
)
|
453 |
+
# if model type is neither in HF transformers causal or seq2seq model registries
|
454 |
+
# then we default to AutoModelForCausalLM
|
455 |
+
self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
|
456 |
+
|
457 |
+
assert self.AUTO_MODEL_CLASS in [
|
458 |
+
transformers.AutoModelForCausalLM,
|
459 |
+
transformers.AutoModelForSeq2SeqLM,
|
460 |
+
]
|
461 |
+
return None
|
462 |
+
|
463 |
+
def _get_config(
|
464 |
+
self,
|
465 |
+
pretrained: str,
|
466 |
+
revision: str = "main",
|
467 |
+
trust_remote_code: bool = False,
|
468 |
+
) -> None:
|
469 |
+
self._config = transformers.AutoConfig.from_pretrained(
|
470 |
+
pretrained,
|
471 |
+
revision=revision,
|
472 |
+
trust_remote_code=trust_remote_code,
|
473 |
+
)
|
474 |
+
|
475 |
+
def _create_model(
|
476 |
+
self,
|
477 |
+
pretrained: str,
|
478 |
+
revision: Optional[str] = "main",
|
479 |
+
dtype: Optional[Union[str, torch.dtype]] = "auto",
|
480 |
+
trust_remote_code: Optional[bool] = False,
|
481 |
+
# arguments used for splitting a model across GPUs naively.
|
482 |
+
# only used if `parallelize=True`.
|
483 |
+
# (accelerate naive PP (device_map) options)
|
484 |
+
parallelize: Optional[bool] = False,
|
485 |
+
device_map_option: Optional[str] = "auto",
|
486 |
+
max_memory_per_gpu: Optional[Union[int, str]] = None,
|
487 |
+
max_cpu_memory: Optional[Union[int, str]] = None,
|
488 |
+
offload_folder: Optional[str] = "./offload",
|
489 |
+
# PEFT and quantization options
|
490 |
+
peft: Optional[str] = None,
|
491 |
+
autogptq: Optional[Union[bool, str]] = False,
|
492 |
+
**kwargs,
|
493 |
+
) -> None:
|
494 |
+
"""
|
495 |
+
Initializes an HF or HF-compatible PreTrainedModel from scratch
|
496 |
+
inside HFLM, using the kwargs passed into self.__init__().
|
497 |
+
|
498 |
+
Also handles functionality such as AutoGPTQ usage and PEFT wrapping.
|
499 |
+
|
500 |
+
For future similar extensions to AutoGPTQ that are not core to HF's ecosystem,
|
501 |
+
(such as PyTorch models that are nearly, but not quite, fully mirroring
|
502 |
+
HF's public interface relied on in this HFLM class)
|
503 |
+
please consider subclassing HFLM and overriding this and other methods as needed.
|
504 |
+
"""
|
505 |
+
|
506 |
+
model_kwargs = kwargs if kwargs else {}
|
507 |
+
|
508 |
+
if parallelize:
|
509 |
+
model_kwargs.update(
|
510 |
+
_get_accelerate_args(
|
511 |
+
device_map_option, # TODO: phase out device_map_option?
|
512 |
+
max_memory_per_gpu,
|
513 |
+
max_cpu_memory,
|
514 |
+
offload_folder,
|
515 |
+
)
|
516 |
+
)
|
517 |
+
elif "device_map" not in model_kwargs:
|
518 |
+
# set a device_map to initialize model on the right GPU.
|
519 |
+
# this is needed because it seems that the default behavior
|
520 |
+
# for quantized models now seems to be device_map="auto"
|
521 |
+
# which breaks data-parallel mode.
|
522 |
+
if hasattr(self, "accelerator"):
|
523 |
+
model_kwargs.update(
|
524 |
+
{"device_map": {"": f"cuda:{self.accelerator.local_process_index}"}}
|
525 |
+
)
|
526 |
+
else:
|
527 |
+
model_kwargs.update({"device_map": {"": str(self.device)}})
|
528 |
+
|
529 |
+
if not autogptq:
|
530 |
+
if model_kwargs.get("load_in_4bit", None):
|
531 |
+
assert (
|
532 |
+
transformers.__version__ >= "4.30.0"
|
533 |
+
), "load_in_4bit requires transformers >= 4.30.0"
|
534 |
+
if transformers.__version__ >= "4.30.0":
|
535 |
+
if model_kwargs.get("load_in_4bit", None):
|
536 |
+
if model_kwargs.get("bnb_4bit_compute_dtype", None):
|
537 |
+
model_kwargs["bnb_4bit_compute_dtype"] = get_dtype(
|
538 |
+
model_kwargs["bnb_4bit_compute_dtype"]
|
539 |
+
)
|
540 |
+
self._model = self.AUTO_MODEL_CLASS.from_pretrained(
|
541 |
+
pretrained,
|
542 |
+
revision=revision,
|
543 |
+
torch_dtype=get_dtype(dtype),
|
544 |
+
trust_remote_code=trust_remote_code,
|
545 |
+
**model_kwargs,
|
546 |
+
)
|
547 |
+
else:
|
548 |
+
try:
|
549 |
+
from auto_gptq import AutoGPTQForCausalLM
|
550 |
+
except ModuleNotFoundError:
|
551 |
+
raise Exception(
|
552 |
+
"Tried to load auto_gptq, but auto-gptq is not installed ",
|
553 |
+
"please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
|
554 |
+
)
|
555 |
+
|
556 |
+
self._model = AutoGPTQForCausalLM.from_quantized(
|
557 |
+
pretrained,
|
558 |
+
trust_remote_code=trust_remote_code,
|
559 |
+
model_basename=None if autogptq is True else Path(autogptq).stem,
|
560 |
+
use_safetensors=True
|
561 |
+
if autogptq is True
|
562 |
+
else autogptq.endswith(".safetensors"),
|
563 |
+
**model_kwargs,
|
564 |
+
)
|
565 |
+
|
566 |
+
if peft:
|
567 |
+
if model_kwargs.get("load_in_4bit", None):
|
568 |
+
if version.parse(PEFT_VERSION) < version.parse("0.4.0"):
|
569 |
+
raise AssertionError("load_in_4bit requires peft >= 0.4.0")
|
570 |
+
self._model = PeftModel.from_pretrained(
|
571 |
+
self._model, peft, revision=revision
|
572 |
+
)
|
573 |
+
|
574 |
+
return None
|
575 |
+
|
576 |
+
def _create_tokenizer(
|
577 |
+
self,
|
578 |
+
pretrained: Union[str, transformers.PreTrainedModel],
|
579 |
+
tokenizer: Optional[
|
580 |
+
Union[
|
581 |
+
str,
|
582 |
+
transformers.PreTrainedTokenizer,
|
583 |
+
transformers.PreTrainedTokenizerFast,
|
584 |
+
]
|
585 |
+
],
|
586 |
+
revision: Optional[str] = "main",
|
587 |
+
trust_remote_code: Optional[bool] = False,
|
588 |
+
use_fast_tokenizer: Optional[bool] = True,
|
589 |
+
) -> None:
|
590 |
+
"""
|
591 |
+
Helper method during initialization.
|
592 |
+
|
593 |
+
Create a tokenizer object corresponding to the correct
|
594 |
+
tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
|
595 |
+
"""
|
596 |
+
|
597 |
+
if tokenizer:
|
598 |
+
if isinstance(tokenizer, str):
|
599 |
+
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
|
600 |
+
tokenizer,
|
601 |
+
revision=revision,
|
602 |
+
trust_remote_code=trust_remote_code,
|
603 |
+
use_fast=use_fast_tokenizer,
|
604 |
+
)
|
605 |
+
else:
|
606 |
+
assert isinstance(
|
607 |
+
tokenizer, transformers.PreTrainedTokenizer
|
608 |
+
) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
|
609 |
+
self.tokenizer = tokenizer
|
610 |
+
else:
|
611 |
+
# Get tokenizer based on 'pretrained'
|
612 |
+
if isinstance(pretrained, str):
|
613 |
+
model_name = pretrained
|
614 |
+
else:
|
615 |
+
# get the HF hub name via accessor on model
|
616 |
+
model_name = self.model.name_or_path
|
617 |
+
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
|
618 |
+
model_name,
|
619 |
+
revision=revision,
|
620 |
+
trust_remote_code=trust_remote_code,
|
621 |
+
use_fast=use_fast_tokenizer,
|
622 |
+
)
|
623 |
+
return None
|
624 |
+
|
625 |
+
def _detect_batch_size(self, requests=None, pos: int = 0):
|
626 |
+
if requests:
|
627 |
+
_, context_enc, continuation_enc = requests[pos]
|
628 |
+
max_length = len(
|
629 |
+
(context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
|
630 |
+
)
|
631 |
+
max_context_enc = len(context_enc[-(self.max_length + 1) :])
|
632 |
+
max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
|
633 |
+
else:
|
634 |
+
max_length = self.max_length
|
635 |
+
|
636 |
+
# if OOM, then halves batch_size and tries again
|
637 |
+
@find_executable_batch_size(starting_batch_size=self.max_batch_size)
|
638 |
+
def forward_batch(batch_size):
|
639 |
+
if self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
|
640 |
+
length = max(max_context_enc, max_cont_enc)
|
641 |
+
batched_conts = torch.ones(
|
642 |
+
(batch_size, length), device=self.device
|
643 |
+
).long()
|
644 |
+
test_batch = torch.ones((batch_size, length), device=self.device).long()
|
645 |
+
call_kwargs = {
|
646 |
+
"attn_mask": test_batch,
|
647 |
+
"labels": batched_conts,
|
648 |
+
}
|
649 |
+
else:
|
650 |
+
call_kwargs = {}
|
651 |
+
test_batch = torch.ones(
|
652 |
+
(batch_size, max_length), device=self.device
|
653 |
+
).long()
|
654 |
+
for _ in range(5):
|
655 |
+
out = F.log_softmax(self._model_call(test_batch, **call_kwargs), dim=-1) # noqa: F841
|
656 |
+
|
657 |
+
return batch_size
|
658 |
+
|
659 |
+
try:
|
660 |
+
batch_size = forward_batch()
|
661 |
+
except RuntimeError as e:
|
662 |
+
if "No executable batch size found" in str(e):
|
663 |
+
batch_size = 1
|
664 |
+
else:
|
665 |
+
raise
|
666 |
+
|
667 |
+
if self.world_size > 1:
|
668 |
+
# if multi-GPU, always take minimum over all selected batch sizes
|
669 |
+
max_rnk_bs = torch.tensor([batch_size], device=self.device)
|
670 |
+
gathered = (
|
671 |
+
self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
|
672 |
+
)
|
673 |
+
batch_size = min(gathered)
|
674 |
+
clear_torch_cache()
|
675 |
+
return batch_size
|
676 |
+
|
677 |
+
clear_torch_cache()
|
678 |
+
return batch_size
|
679 |
+
|
680 |
+
def tok_encode(
|
681 |
+
self, string: str, left_truncate_len=None, add_special_tokens=None
|
682 |
+
) -> List[int]:
|
683 |
+
""" """
|
684 |
+
# default for None - empty dict, use predefined tokenizer param
|
685 |
+
# used for all models except for CausalLM or predefined value
|
686 |
+
special_tokens_kwargs = {}
|
687 |
+
|
688 |
+
# by default for CausalLM - false or self.add_bos_token is set
|
689 |
+
if add_special_tokens is None:
|
690 |
+
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
|
691 |
+
special_tokens_kwargs = {
|
692 |
+
"add_special_tokens": False or self.add_bos_token
|
693 |
+
}
|
694 |
+
# otherwise the method explicitly defines the value
|
695 |
+
else:
|
696 |
+
special_tokens_kwargs = {"add_special_tokens": add_special_tokens}
|
697 |
+
|
698 |
+
encoding = self.tokenizer.encode(string, **special_tokens_kwargs)
|
699 |
+
|
700 |
+
# left-truncate the encoded context to be at most `left_truncate_len` tokens long
|
701 |
+
if left_truncate_len:
|
702 |
+
encoding = encoding[-left_truncate_len:]
|
703 |
+
|
704 |
+
return encoding
|
705 |
+
|
706 |
+
def tok_batch_encode(
|
707 |
+
self,
|
708 |
+
strings: List[str],
|
709 |
+
padding_side: str = "left",
|
710 |
+
left_truncate_len: int = None,
|
711 |
+
truncation: bool = False,
|
712 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
713 |
+
# encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
|
714 |
+
old_padding_side = self.tokenizer.padding_side
|
715 |
+
self.tokenizer.padding_side = padding_side
|
716 |
+
|
717 |
+
add_special_tokens = {}
|
718 |
+
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
|
719 |
+
add_special_tokens = {"add_special_tokens": False or self.add_bos_token}
|
720 |
+
|
721 |
+
encoding = self.tokenizer(
|
722 |
+
strings,
|
723 |
+
truncation=truncation,
|
724 |
+
padding="longest",
|
725 |
+
return_tensors="pt",
|
726 |
+
**add_special_tokens,
|
727 |
+
)
|
728 |
+
if left_truncate_len:
|
729 |
+
encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
|
730 |
+
encoding["attention_mask"] = encoding["attention_mask"][
|
731 |
+
:, -left_truncate_len:
|
732 |
+
]
|
733 |
+
self.tokenizer.padding_side = old_padding_side
|
734 |
+
|
735 |
+
return encoding["input_ids"], encoding["attention_mask"]
|
736 |
+
|
737 |
+
def tok_decode(self, tokens, skip_special_tokens=True):
|
738 |
+
return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
|
739 |
+
|
740 |
+
def _model_call(self, inps, attn_mask=None, labels=None):
|
741 |
+
"""
|
742 |
+
:param inps: torch.Tensor
|
743 |
+
A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
|
744 |
+
[batch, sequence_ctx]. the size of sequence may vary from call to call
|
745 |
+
:param attn_mask: torch.Tensor, optional
|
746 |
+
A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
|
747 |
+
(and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
|
748 |
+
:param labels: torch.Tensor, optional
|
749 |
+
A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
|
750 |
+
(and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
|
751 |
+
:return
|
752 |
+
A torch tensor of shape [batch, sequence, vocab] with the
|
753 |
+
logits returned from the model's decoder
|
754 |
+
"""
|
755 |
+
with torch.no_grad():
|
756 |
+
if attn_mask is not None or labels is not None:
|
757 |
+
assert attn_mask is not None and labels is not None
|
758 |
+
assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
|
759 |
+
return self.model(
|
760 |
+
input_ids=inps, attention_mask=attn_mask, labels=labels
|
761 |
+
).logits
|
762 |
+
else:
|
763 |
+
assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
|
764 |
+
return self.model(inps).logits
|
765 |
+
|
766 |
+
def _model_generate(self, context, max_length, stop, **generation_kwargs):
|
767 |
+
# temperature = 0.0 if not set
|
768 |
+
# if do_sample is false and temp==0.0:
|
769 |
+
# remove temperature, as do_sample=False takes care of this
|
770 |
+
# and we don't want a warning from HF
|
771 |
+
generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
|
772 |
+
do_sample = generation_kwargs.get("do_sample", None)
|
773 |
+
|
774 |
+
# The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
|
775 |
+
if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
|
776 |
+
generation_kwargs["do_sample"] = do_sample = False
|
777 |
+
|
778 |
+
if do_sample is False and generation_kwargs.get("temperature") == 0.0:
|
779 |
+
generation_kwargs.pop("temperature")
|
780 |
+
# build stopping criteria
|
781 |
+
stopping_criteria = stop_sequences_criteria(
|
782 |
+
self.tokenizer, stop, context.shape[1], context.shape[0]
|
783 |
+
)
|
784 |
+
return self.model.generate(
|
785 |
+
input_ids=context,
|
786 |
+
max_length=max_length,
|
787 |
+
stopping_criteria=stopping_criteria,
|
788 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
789 |
+
use_cache=True,
|
790 |
+
**generation_kwargs,
|
791 |
+
)
|
792 |
+
|
793 |
+
def _select_cont_toks(
|
794 |
+
self, logits: torch.Tensor, contlen: int = None, inplen: int = None
|
795 |
+
) -> torch.Tensor:
|
796 |
+
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
|
797 |
+
assert (
|
798 |
+
contlen and inplen
|
799 |
+
), "Must pass input len and cont. len to select scored logits for causal LM"
|
800 |
+
# discard right-padding.
|
801 |
+
# also discard the input/context tokens. we'll only score continuations.
|
802 |
+
logits = logits[inplen - contlen : inplen]
|
803 |
+
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
|
804 |
+
assert (
|
805 |
+
contlen and not inplen
|
806 |
+
), "Selecting scored logits for Seq2SeqLM requires only cont. len"
|
807 |
+
# only discard right-padding.
|
808 |
+
# the logits input to this fn only contain decoder-side tokens.
|
809 |
+
logits = logits[:contlen]
|
810 |
+
|
811 |
+
return logits
|
812 |
+
|
813 |
+
def loglikelihood_rolling(
|
814 |
+
self, requests: List[Instance], disable_tqdm: bool = False
|
815 |
+
) -> List[float]:
|
816 |
+
loglikelihoods = []
|
817 |
+
|
818 |
+
adaptive_batch_size = None
|
819 |
+
if self.batch_size == "auto":
|
820 |
+
# using rolling window with maximum context
|
821 |
+
print("Passed argument batch_size = auto. Detecting largest batch size")
|
822 |
+
batch_size = self._detect_batch_size()
|
823 |
+
print(f"Determined Largest batch size: {batch_size}")
|
824 |
+
adaptive_batch_size = batch_size
|
825 |
+
|
826 |
+
for (string,) in tqdm(
|
827 |
+
[req.args for req in requests], disable=(disable_tqdm or (self.rank != 0))
|
828 |
+
):
|
829 |
+
rolling_token_windows = list(
|
830 |
+
map(
|
831 |
+
utils.make_disjoint_window,
|
832 |
+
utils.get_rolling_token_windows(
|
833 |
+
token_list=self.tok_encode(string),
|
834 |
+
prefix_token=self.prefix_token_id,
|
835 |
+
max_seq_len=self.max_length,
|
836 |
+
context_len=1,
|
837 |
+
),
|
838 |
+
)
|
839 |
+
)
|
840 |
+
|
841 |
+
# TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
|
842 |
+
rolling_token_windows = [(None,) + x for x in rolling_token_windows]
|
843 |
+
|
844 |
+
pad_amnt = 0
|
845 |
+
if self.world_size > 1:
|
846 |
+
# We pad out the external document-level iterator so the inner iterator doesn't hang
|
847 |
+
mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
|
848 |
+
gathered = (
|
849 |
+
self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
|
850 |
+
)
|
851 |
+
|
852 |
+
pad_amnt = max(gathered) - gathered[self.rank]
|
853 |
+
if pad_amnt > 0:
|
854 |
+
rolling_token_windows += pad_amnt * [rolling_token_windows[0]]
|
855 |
+
|
856 |
+
string_nll = self._loglikelihood_tokens(
|
857 |
+
requests=rolling_token_windows,
|
858 |
+
disable_tqdm=True,
|
859 |
+
override_bs=adaptive_batch_size,
|
860 |
+
)
|
861 |
+
|
862 |
+
if (self.world_size > 1) and (pad_amnt > 0):
|
863 |
+
string_nll = [x[0] for x in string_nll[:-pad_amnt]]
|
864 |
+
else:
|
865 |
+
# discard is_greedy
|
866 |
+
string_nll = [x[0] for x in string_nll]
|
867 |
+
|
868 |
+
string_nll = sum(string_nll)
|
869 |
+
loglikelihoods.append(string_nll)
|
870 |
+
|
871 |
+
return loglikelihoods
|
872 |
+
|
873 |
+
def _batch_scheduler(self, pos, n_reordered_requests):
|
874 |
+
sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
|
875 |
+
if sched in self.batch_sizes:
|
876 |
+
return self.batch_sizes[sched]
|
877 |
+
if (len(self.batch_sizes) > 1) and (
|
878 |
+
self.batch_sizes[sched - 1] == self.max_batch_size
|
879 |
+
):
|
880 |
+
# if previous batch size is already maximal, skip recomputation
|
881 |
+
self.batch_sizes[sched] = self.max_batch_size
|
882 |
+
return self.batch_sizes[sched]
|
883 |
+
print(
|
884 |
+
f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
|
885 |
+
)
|
886 |
+
self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
|
887 |
+
print(f"Determined largest batch size: {self.batch_sizes[sched]}")
|
888 |
+
return self.batch_sizes[sched]
|
889 |
+
|
890 |
+
def _loglikelihood_tokens(
|
891 |
+
self,
|
892 |
+
requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
|
893 |
+
disable_tqdm: bool = False,
|
894 |
+
override_bs: int = None,
|
895 |
+
) -> List[Tuple[float, bool]]:
|
896 |
+
# TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
|
897 |
+
res = []
|
898 |
+
|
899 |
+
def _collate(req: Tuple[Tuple[str, str], List[int], List[int]]):
|
900 |
+
"""Defines the key for the sorted method"""
|
901 |
+
# the negative sign on len(toks) sorts descending - this has a few advantages:
|
902 |
+
# - time estimates will always be over not underestimates, which is more useful for planning
|
903 |
+
# - to know the size of a batch when going through the list, you know the first one is always the batch
|
904 |
+
# padded context length. this is useful to simplify the batching logic and more importantly to make
|
905 |
+
# automatic adaptive batches much much easier to implement
|
906 |
+
# - any OOMs will happen right away rather than near the end
|
907 |
+
|
908 |
+
toks = req[1] + req[2]
|
909 |
+
return -len(toks), tuple(toks)
|
910 |
+
|
911 |
+
def _lookup_one_token_cont(req: Tuple[Tuple[str, str], List[int], List[int]]):
|
912 |
+
"""Defines the key to group and lookup one-token continuations"""
|
913 |
+
# Use with group_by="contexts" (optional)"
|
914 |
+
# allows for the creation of a lookup, so we can reuse logits in case of one-token continuations.
|
915 |
+
# speeds up some multiple-choice tasks proportionally to the number of choices.
|
916 |
+
# groups requests by context+continuation[:-1] and infer on one request/group.
|
917 |
+
return req[-2] + req[-1][:-1]
|
918 |
+
|
919 |
+
re_ord = Collator(
|
920 |
+
requests,
|
921 |
+
sort_fn=_collate,
|
922 |
+
group_by="contexts"
|
923 |
+
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
|
924 |
+
and self.logits_cache
|
925 |
+
else None,
|
926 |
+
group_fn=_lookup_one_token_cont,
|
927 |
+
)
|
928 |
+
|
929 |
+
# automatic (variable) batch size detection for vectorization
|
930 |
+
# pull longest context sample from request
|
931 |
+
n_reordered_requests = len(re_ord)
|
932 |
+
batch_size = (
|
933 |
+
self.batch_size
|
934 |
+
if self.batch_size != "auto"
|
935 |
+
else override_bs
|
936 |
+
if override_bs is not None
|
937 |
+
else 0
|
938 |
+
)
|
939 |
+
batch_fn = (
|
940 |
+
self._batch_scheduler
|
941 |
+
if self.batch_size == "auto"
|
942 |
+
and n_reordered_requests > 0
|
943 |
+
and not override_bs
|
944 |
+
else None
|
945 |
+
)
|
946 |
+
|
947 |
+
chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn)
|
948 |
+
pbar = tqdm(
|
949 |
+
total=len(requests),
|
950 |
+
disable=(disable_tqdm or (self.rank != 0)),
|
951 |
+
desc="Running loglikelihood requests",
|
952 |
+
)
|
953 |
+
for chunk in chunks:
|
954 |
+
inps = []
|
955 |
+
cont_toks_list = []
|
956 |
+
inplens = []
|
957 |
+
|
958 |
+
conts = []
|
959 |
+
encoder_attns = []
|
960 |
+
|
961 |
+
padding_len_inp = None
|
962 |
+
padding_len_cont = None
|
963 |
+
# because vectorizing is annoying, we first convert each (context, continuation) pair to padded
|
964 |
+
# tensors, then we pack them together into a batch, call the model, and then pick it all apart
|
965 |
+
# again because vectorizing is annoying
|
966 |
+
|
967 |
+
for _, context_enc, continuation_enc in chunk:
|
968 |
+
# sanity check
|
969 |
+
assert len(context_enc) > 0
|
970 |
+
assert len(continuation_enc) > 0
|
971 |
+
assert len(continuation_enc) <= self.max_length
|
972 |
+
|
973 |
+
# how this all works (illustrated on a causal decoder-only setup):
|
974 |
+
# CTX CONT
|
975 |
+
# inp 0 1 2 3|4 5 6 7 8 9 <- last token is deleted by inp[:, :-1]
|
976 |
+
# model \ \
|
977 |
+
# logits 1 2 3|4 5 6 7 8 9 <- the ctx half gets tossed out by the
|
978 |
+
# cont_toks 4 5 6 7 8 9 [:, -len(continuation_enc):, :self.vocab_size] slice
|
979 |
+
|
980 |
+
# when too long to fit in context, truncate from the left
|
981 |
+
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
|
982 |
+
inp = torch.tensor(
|
983 |
+
(context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
|
984 |
+
dtype=torch.long,
|
985 |
+
device=self.device,
|
986 |
+
)
|
987 |
+
(inplen,) = inp.shape
|
988 |
+
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
|
989 |
+
inp = torch.tensor(
|
990 |
+
(context_enc)[-self.max_length :],
|
991 |
+
dtype=torch.long,
|
992 |
+
device=self.device,
|
993 |
+
)
|
994 |
+
(inplen,) = inp.shape
|
995 |
+
|
996 |
+
# build encoder attn masks
|
997 |
+
encoder_attns.append(torch.ones_like(inp))
|
998 |
+
|
999 |
+
cont = torch.tensor(
|
1000 |
+
(continuation_enc)[-self.max_length :],
|
1001 |
+
# TODO: left-shift these?
|
1002 |
+
# TODO: our code assumes we never end up truncating conts for either model type
|
1003 |
+
dtype=torch.long,
|
1004 |
+
device=self.device,
|
1005 |
+
)
|
1006 |
+
(contlen,) = cont.shape
|
1007 |
+
|
1008 |
+
conts.append(cont)
|
1009 |
+
|
1010 |
+
padding_len_cont = (
|
1011 |
+
max(padding_len_cont, contlen)
|
1012 |
+
if padding_len_cont is not None
|
1013 |
+
else contlen
|
1014 |
+
)
|
1015 |
+
|
1016 |
+
padding_len_inp = (
|
1017 |
+
max(padding_len_inp, inplen)
|
1018 |
+
if padding_len_inp is not None
|
1019 |
+
else inplen
|
1020 |
+
)
|
1021 |
+
|
1022 |
+
inps.append(inp) # [1, inp_length]
|
1023 |
+
cont_toks_list.append(continuation_enc)
|
1024 |
+
inplens.append(inplen)
|
1025 |
+
|
1026 |
+
# create encoder attn mask and batched conts, if seq2seq
|
1027 |
+
call_kwargs = {}
|
1028 |
+
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
|
1029 |
+
batched_inps = pad_and_concat(
|
1030 |
+
padding_len_inp, inps, padding_side="right"
|
1031 |
+
) # [batch, padding_len_inp]
|
1032 |
+
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
|
1033 |
+
# TODO: left-pad encoder inps and mask?
|
1034 |
+
batched_inps = pad_and_concat(
|
1035 |
+
padding_len_inp, inps
|
1036 |
+
) # [batch, padding_len_inp]
|
1037 |
+
batched_conts = pad_and_concat(
|
1038 |
+
padding_len_cont, conts
|
1039 |
+
) # [batch, padding_len_cont]
|
1040 |
+
batched_encoder_mask = pad_and_concat(
|
1041 |
+
padding_len_inp, encoder_attns
|
1042 |
+
) # [batch, padding_len_inp]
|
1043 |
+
call_kwargs = {
|
1044 |
+
"attn_mask": batched_encoder_mask,
|
1045 |
+
"labels": batched_conts,
|
1046 |
+
}
|
1047 |
+
|
1048 |
+
multi_logits = F.log_softmax(
|
1049 |
+
self._model_call(batched_inps, **call_kwargs), dim=-1
|
1050 |
+
) # [batch, padding_length (inp or cont), vocab]
|
1051 |
+
|
1052 |
+
for (request_str, ctx_tokens, _), logits, inplen, cont_toks in zip(
|
1053 |
+
chunk, multi_logits, inplens, cont_toks_list
|
1054 |
+
):
|
1055 |
+
# Slice to original seq length
|
1056 |
+
contlen = len(cont_toks)
|
1057 |
+
# take only logits in the continuation
|
1058 |
+
# (discard context toks if decoder-only ; discard right-padding)
|
1059 |
+
# also discards + checks for "virtual tokens" in the causal LM's input window
|
1060 |
+
# from prompt/prefix tuning tokens, if applicable
|
1061 |
+
ctx_len = (
|
1062 |
+
inplen + (logits.shape[0] - padding_len_inp)
|
1063 |
+
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
|
1064 |
+
else None
|
1065 |
+
)
|
1066 |
+
logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
|
1067 |
+
logits = logits.unsqueeze(0) # [1, seq, vocab]
|
1068 |
+
|
1069 |
+
# Check if per-token argmax is exactly equal to continuation
|
1070 |
+
greedy_tokens = logits.argmax(dim=-1)
|
1071 |
+
|
1072 |
+
# check for one-token continuation cache hits.
|
1073 |
+
# noop in case group_by != "contexts" or no cache hit and returns the
|
1074 |
+
# original args. Otherwise, expands the logits batch dimension and yields each
|
1075 |
+
# batch along with matching continuation tokens and prompt strings.
|
1076 |
+
# logits -> [1, seq, vocab]
|
1077 |
+
for request_str, cont_toks, logits in re_ord.get_cache(
|
1078 |
+
req_str=request_str,
|
1079 |
+
cxt_toks=ctx_tokens,
|
1080 |
+
cont_toks=cont_toks,
|
1081 |
+
logits=logits,
|
1082 |
+
):
|
1083 |
+
cont_toks = torch.tensor(
|
1084 |
+
cont_toks, dtype=torch.long, device=self.device
|
1085 |
+
).unsqueeze(0) # [1, seq]
|
1086 |
+
max_equal = (greedy_tokens == cont_toks).all()
|
1087 |
+
|
1088 |
+
# Obtain log-probs at the corresponding continuation token indices
|
1089 |
+
# last_token_slice = logits[:, -1, :].squeeze(0).tolist()
|
1090 |
+
logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
|
1091 |
+
-1
|
1092 |
+
) # [1, seq]
|
1093 |
+
|
1094 |
+
# Answer: (log prob, is-exact-match)
|
1095 |
+
answer = (float(logits.sum()), bool(max_equal))
|
1096 |
+
|
1097 |
+
res.append(answer)
|
1098 |
+
|
1099 |
+
self.cache_hook.add_partial("loglikelihood", request_str, answer)
|
1100 |
+
pbar.update(1)
|
1101 |
+
|
1102 |
+
pbar.close()
|
1103 |
+
|
1104 |
+
return re_ord.get_original(res)
|
1105 |
+
|
1106 |
+
def generate_until(
|
1107 |
+
self, requests: List[Instance], disable_tqdm: bool = False
|
1108 |
+
) -> List[str]:
|
1109 |
+
res = []
|
1110 |
+
|
1111 |
+
def _collate(req: Tuple[str, dict]):
|
1112 |
+
"""Defines the key for the sorted method"""
|
1113 |
+
# the negative sign on len(toks) sorts descending - this has a few advantages:
|
1114 |
+
# - time estimates will always be over not underestimates, which is more useful for planning
|
1115 |
+
# - to know the size of a batch when going through the list, you know the first one is always the batch
|
1116 |
+
# padded context length. this is useful to simplify the batching logic and more importantly to make
|
1117 |
+
# automatic adaptive batches much much easier to implement
|
1118 |
+
# - any OOMs will happen right away rather than near the end
|
1119 |
+
toks = self.tok_encode(req[0])
|
1120 |
+
return -len(toks), req[0]
|
1121 |
+
|
1122 |
+
pbar = tqdm(
|
1123 |
+
total=len(requests),
|
1124 |
+
disable=(disable_tqdm or (self.rank != 0)),
|
1125 |
+
desc="Running generate_until requests",
|
1126 |
+
)
|
1127 |
+
adaptive_batch_size = None
|
1128 |
+
if self.batch_size == "auto":
|
1129 |
+
# using rolling window with maximum context
|
1130 |
+
print("Passed argument batch_size = auto. Detecting largest batch size")
|
1131 |
+
batch_size = self._detect_batch_size()
|
1132 |
+
print(f"Determined Largest batch size: {batch_size}")
|
1133 |
+
adaptive_batch_size = batch_size
|
1134 |
+
# for each different set of kwargs, we execute all requests, by batch.
|
1135 |
+
batch_size = (
|
1136 |
+
self.batch_size
|
1137 |
+
if self.batch_size != "auto"
|
1138 |
+
else adaptive_batch_size
|
1139 |
+
if adaptive_batch_size is not None
|
1140 |
+
else 0
|
1141 |
+
)
|
1142 |
+
batch_fn = (
|
1143 |
+
self._batch_scheduler
|
1144 |
+
if self.batch_size == "auto" and not adaptive_batch_size
|
1145 |
+
else None
|
1146 |
+
)
|
1147 |
+
|
1148 |
+
# we group requests by their generation_kwargs,
|
1149 |
+
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
|
1150 |
+
# in the same batch.
|
1151 |
+
# group_fn=lambda x: x[1] -> x=(context, gen_kwargs)
|
1152 |
+
re_ords = Collator(
|
1153 |
+
[reg.args for reg in requests],
|
1154 |
+
sort_fn=_collate,
|
1155 |
+
group_by="gen_kwargs",
|
1156 |
+
group_fn=lambda x: x[1],
|
1157 |
+
)
|
1158 |
+
chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn)
|
1159 |
+
for chunk in chunks:
|
1160 |
+
contexts, all_gen_kwargs = zip(*chunk)
|
1161 |
+
# we assume all gen kwargs in the batch are the same
|
1162 |
+
# this is safe to assume because the `grouper` object ensures it.
|
1163 |
+
gen_kwargs = all_gen_kwargs[0]
|
1164 |
+
# unpack our keyword arguments.
|
1165 |
+
until = None
|
1166 |
+
if isinstance(gen_kwargs, dict):
|
1167 |
+
kwargs = copy.deepcopy(gen_kwargs) # edge case for repeats > 1
|
1168 |
+
if "until" in kwargs.keys():
|
1169 |
+
until = kwargs.pop("until")
|
1170 |
+
if isinstance(until, str):
|
1171 |
+
until = [until]
|
1172 |
+
elif not isinstance(until, list):
|
1173 |
+
raise ValueError(
|
1174 |
+
f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
|
1175 |
+
)
|
1176 |
+
else:
|
1177 |
+
raise ValueError(
|
1178 |
+
f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
|
1179 |
+
)
|
1180 |
+
# add EOS token to stop sequences
|
1181 |
+
eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False)
|
1182 |
+
if not until:
|
1183 |
+
until = [eos]
|
1184 |
+
else:
|
1185 |
+
until.append(eos)
|
1186 |
+
if "max_gen_toks" in kwargs.keys():
|
1187 |
+
max_gen_toks = kwargs.pop("max_gen_toks")
|
1188 |
+
else:
|
1189 |
+
max_gen_toks = self.max_gen_toks
|
1190 |
+
|
1191 |
+
# set the max length in tokens of inputs ("context_enc")
|
1192 |
+
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
|
1193 |
+
# max len for inputs = max length, minus room to generate the max new tokens
|
1194 |
+
max_ctx_len = self.max_length - max_gen_toks
|
1195 |
+
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
|
1196 |
+
# max len for inputs = encoder's whole max_length
|
1197 |
+
max_ctx_len = self.max_length
|
1198 |
+
|
1199 |
+
# encode, pad, and truncate contexts for this batch
|
1200 |
+
context_enc, attn_masks = self.tok_batch_encode(
|
1201 |
+
contexts,
|
1202 |
+
left_truncate_len=max_ctx_len,
|
1203 |
+
truncation=self.truncation,
|
1204 |
+
)
|
1205 |
+
context_enc = context_enc.to(self.device)
|
1206 |
+
attn_masks = attn_masks.to(self.device)
|
1207 |
+
|
1208 |
+
if "max_length" not in kwargs:
|
1209 |
+
kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
|
1210 |
+
|
1211 |
+
# perform batched generation
|
1212 |
+
cont = self._model_generate(
|
1213 |
+
context=context_enc,
|
1214 |
+
attention_mask=attn_masks,
|
1215 |
+
stop=until,
|
1216 |
+
**kwargs,
|
1217 |
+
)
|
1218 |
+
|
1219 |
+
cont_toks_list = cont.tolist()
|
1220 |
+
for cont_toks, context in zip(cont_toks_list, contexts):
|
1221 |
+
# discard context + left-padding toks if using causal decoder-only LM
|
1222 |
+
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
|
1223 |
+
cont_toks = cont_toks[context_enc.shape[1] :]
|
1224 |
+
|
1225 |
+
s = self.tok_decode(cont_toks)
|
1226 |
+
|
1227 |
+
# use secondary stop seqs to cut off should-have-been-stopped content post-hoc
|
1228 |
+
for term in until:
|
1229 |
+
if len(term) > 0:
|
1230 |
+
# ignore '' separator,
|
1231 |
+
# for seq2seq case where self.tok_decode(self.eot_token_id) = ''
|
1232 |
+
s = s.split(term)[0]
|
1233 |
+
|
1234 |
+
res.append(s)
|
1235 |
+
|
1236 |
+
self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
|
1237 |
+
pbar.update(1)
|
1238 |
+
# reorder this group of results back to original unsorted form
|
1239 |
+
res = re_ords.get_original(res)
|
1240 |
+
|
1241 |
+
pbar.close()
|
1242 |
+
|
1243 |
+
return res
|
lm-evaluation/lm_eval/models/mamba_lm.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
import lm_eval.models.utils
|
6 |
+
from lm_eval.api.registry import register_model
|
7 |
+
from lm_eval.models.huggingface import HFLM
|
8 |
+
|
9 |
+
|
10 |
+
@register_model("mamba_ssm")
|
11 |
+
class MambaLMWrapper(HFLM):
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
pretrained="state-spaces/mamba-130m",
|
15 |
+
**kwargs,
|
16 |
+
) -> None:
|
17 |
+
"""
|
18 |
+
Mamba (via the `mamba_ssm` package) supports the following args:
|
19 |
+
```
|
20 |
+
d_model: int,
|
21 |
+
n_layer: int,
|
22 |
+
vocab_size: int,
|
23 |
+
initializer_cfg=None,
|
24 |
+
pad_vocab_size_multiple: int = 1,
|
25 |
+
ssm_cfg=None,
|
26 |
+
norm_epsilon: float = 1e-5,
|
27 |
+
rms_norm: bool = False,
|
28 |
+
initializer_cfg=None,
|
29 |
+
fused_add_norm=False,
|
30 |
+
residual_in_fp32=False,
|
31 |
+
```
|
32 |
+
|
33 |
+
See https://github.com/state-spaces/mamba/blob/main/mamba_ssm/models/mixer_seq_simple.py#L175 for more info.
|
34 |
+
The above can all be passed via `--model_args` or to this __init__() directly
|
35 |
+
but we recommend placing many of these within the config.json file uploaded alongside your
|
36 |
+
Mamba model to the HF Hub instead.
|
37 |
+
All other HuggingFace from_pretrained() kwargs
|
38 |
+
such as those related to
|
39 |
+
`parallelize=True`, PEFT, autoGPTQ,
|
40 |
+
or any sub-configurations of these advanced args,
|
41 |
+
are unsupported by the `mamba_ssm` package.
|
42 |
+
|
43 |
+
The HFLM arguments
|
44 |
+
|
45 |
+
`backend`, `tokenizer`, `truncation`, `max_length`,
|
46 |
+
`device`, `dtype`, `batch_size`, `max_batch_size`, `trust_remote_code`, `use_fast_tokenizer`
|
47 |
+
|
48 |
+
Are all supported by Mamba where they do not conflict
|
49 |
+
with Mamba-specific restrictions such as causal LMs only.
|
50 |
+
"""
|
51 |
+
|
52 |
+
if "backend" in kwargs:
|
53 |
+
# mamba currently only supports causal models
|
54 |
+
assert kwargs["backend"] == "causal"
|
55 |
+
|
56 |
+
super().__init__(
|
57 |
+
pretrained=pretrained,
|
58 |
+
# set appropriate defaults for tokenizer, max length, etc
|
59 |
+
backend=kwargs.pop("backend", "causal"),
|
60 |
+
tokenizer=kwargs.pop("tokenizer", "EleutherAI/gpt-neox-20b"),
|
61 |
+
max_length=kwargs.pop("max_length", 2048),
|
62 |
+
**kwargs,
|
63 |
+
)
|
64 |
+
|
65 |
+
def _get_config(
|
66 |
+
self,
|
67 |
+
pretrained: str,
|
68 |
+
**kwargs,
|
69 |
+
) -> None:
|
70 |
+
try:
|
71 |
+
from mamba_ssm.utils.hf import load_config_hf # noqa: F811
|
72 |
+
except ModuleNotFoundError:
|
73 |
+
raise Exception(
|
74 |
+
"attempted to use 'mamba_ssm' LM type, but package `mamba_ssm` is not installed. \
|
75 |
+
please install mamba via `pip install lm-eval[mamba]` or `pip install -e .[mamba]`",
|
76 |
+
)
|
77 |
+
|
78 |
+
self._config = load_config_hf(pretrained)
|
79 |
+
|
80 |
+
def _create_model(
|
81 |
+
self,
|
82 |
+
pretrained: str,
|
83 |
+
dtype: Optional[Union[str, torch.dtype]] = "float16",
|
84 |
+
# no `parallelize=True` options
|
85 |
+
# no PEFT and quantization options
|
86 |
+
# Mamba does not support arbitrary HF from_pretrained() args
|
87 |
+
**kwargs,
|
88 |
+
) -> None:
|
89 |
+
try:
|
90 |
+
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel # noqa: F811
|
91 |
+
except ModuleNotFoundError:
|
92 |
+
raise Exception(
|
93 |
+
"attempted to use 'mamba_ssm' LM type, but package `mamba_ssm` is not installed. \
|
94 |
+
please install mamba via `pip install lm-eval[mamba]` or `pip install -e .[mamba]`",
|
95 |
+
)
|
96 |
+
|
97 |
+
self._model = MambaLMHeadModel.from_pretrained(
|
98 |
+
pretrained,
|
99 |
+
device=self._device,
|
100 |
+
dtype=torch.float16
|
101 |
+
if dtype == "auto"
|
102 |
+
else lm_eval.models.utils.get_dtype(dtype),
|
103 |
+
)
|
104 |
+
|
105 |
+
def _model_generate(self, context, max_length, stop, **generation_kwargs):
|
106 |
+
for key in ("do_sample", "attention_mask"):
|
107 |
+
if key in generation_kwargs:
|
108 |
+
generation_kwargs.pop(key)
|
109 |
+
|
110 |
+
# mamba's custom GenerationMixin currently does not support
|
111 |
+
# passing stopping criteria.
|
112 |
+
# for the time being, we simply generate to max length,
|
113 |
+
# then truncate (equivalent result)
|
114 |
+
# -- this should be revisited to speed up generation
|
115 |
+
# stopping_criteria = stop_sequences_criteria(
|
116 |
+
# self.tokenizer, stop, 1, context.shape[0]
|
117 |
+
# )
|
118 |
+
|
119 |
+
return self.model.generate(
|
120 |
+
input_ids=context,
|
121 |
+
max_length=max_length,
|
122 |
+
# stopping_criteria=stopping_criteria,
|
123 |
+
# pad_token_id=self.tokenizer.pad_token_id,
|
124 |
+
# use_cache=True,
|
125 |
+
**generation_kwargs,
|
126 |
+
)
|
lm-evaluation/lm_eval/models/nemo_lm.py
ADDED
@@ -0,0 +1,537 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import importlib
|
16 |
+
import pathlib
|
17 |
+
from copy import deepcopy
|
18 |
+
from typing import List, Literal
|
19 |
+
|
20 |
+
import filelock
|
21 |
+
import numpy as np
|
22 |
+
import torch
|
23 |
+
from tqdm import tqdm
|
24 |
+
|
25 |
+
from lm_eval.api.instance import Instance
|
26 |
+
from lm_eval.api.model import LM
|
27 |
+
from lm_eval.api.registry import register_model
|
28 |
+
from lm_eval.models.utils import Collator
|
29 |
+
from lm_eval.utils import (
|
30 |
+
eval_logger,
|
31 |
+
get_rolling_token_windows,
|
32 |
+
make_disjoint_window,
|
33 |
+
simple_parse_args_string,
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
def _patch_pretrained_cfg(
|
38 |
+
pretrained_cfg, trainer, tensor_model_parallel_size, pipeline_model_parallel_size
|
39 |
+
):
|
40 |
+
try:
|
41 |
+
import omegaconf
|
42 |
+
except ModuleNotFoundError:
|
43 |
+
raise Exception(
|
44 |
+
"Attempted to use 'nemo_lm' model type, but package `nemo` is not installed"
|
45 |
+
"Please install nemo following the instructions in the README: either with a NVIDIA PyTorch or NeMo container, "
|
46 |
+
"or installing nemo following https://github.com/NVIDIA/NeMo.",
|
47 |
+
)
|
48 |
+
|
49 |
+
omegaconf.OmegaConf.set_struct(pretrained_cfg, True)
|
50 |
+
with omegaconf.open_dict(pretrained_cfg):
|
51 |
+
attributes_to_update = {
|
52 |
+
"sequence_parallel": False,
|
53 |
+
"activations_checkpoint_granularity": None,
|
54 |
+
"activations_checkpoint_method": None,
|
55 |
+
"precision": trainer.precision,
|
56 |
+
"global_batch_size": None,
|
57 |
+
"tensor_model_parallel_size": tensor_model_parallel_size,
|
58 |
+
"pipeline_model_parallel_size": pipeline_model_parallel_size,
|
59 |
+
"apply_rope_fusion": False,
|
60 |
+
}
|
61 |
+
for name, value in attributes_to_update.items():
|
62 |
+
if hasattr(pretrained_cfg, name):
|
63 |
+
pretrained_cfg[name] = value
|
64 |
+
return pretrained_cfg
|
65 |
+
|
66 |
+
|
67 |
+
def _get_target_from_class(target_class) -> str:
|
68 |
+
return f"{target_class.__module__}.{target_class.__name__}"
|
69 |
+
|
70 |
+
|
71 |
+
def load_model(
|
72 |
+
model_path: str,
|
73 |
+
trainer,
|
74 |
+
tensor_model_parallel_size: int,
|
75 |
+
pipeline_model_parallel_size: int,
|
76 |
+
) -> torch.nn.Module:
|
77 |
+
try:
|
78 |
+
from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import (
|
79 |
+
MegatronGPTModel,
|
80 |
+
)
|
81 |
+
from nemo.collections.nlp.parts.nlp_overrides import NLPSaveRestoreConnector
|
82 |
+
except ModuleNotFoundError:
|
83 |
+
raise Exception(
|
84 |
+
"Attempted to use 'nemo_lm' model type, but package `nemo` is not installed"
|
85 |
+
"Please install nemo following the instructions in the README: either with a NVIDIA PyTorch or NeMo container, "
|
86 |
+
"or installing nemo following https://github.com/NVIDIA/NeMo.",
|
87 |
+
)
|
88 |
+
model_path = pathlib.Path(model_path)
|
89 |
+
|
90 |
+
save_restore_connector = NLPSaveRestoreConnector()
|
91 |
+
if model_path.is_dir():
|
92 |
+
save_restore_connector.model_extracted_dir = model_path.as_posix()
|
93 |
+
pretrained_cfg = save_restore_connector.restore_from(
|
94 |
+
None, model_path.as_posix(), return_config=True, trainer=trainer
|
95 |
+
)
|
96 |
+
if not hasattr(pretrained_cfg, "target"):
|
97 |
+
pretrained_cfg["target"] = _get_target_from_class(MegatronGPTModel)
|
98 |
+
|
99 |
+
pretrained_cfg = _patch_pretrained_cfg(
|
100 |
+
pretrained_cfg,
|
101 |
+
trainer,
|
102 |
+
tensor_model_parallel_size=tensor_model_parallel_size,
|
103 |
+
pipeline_model_parallel_size=pipeline_model_parallel_size,
|
104 |
+
)
|
105 |
+
|
106 |
+
model_to_load_path = model_path
|
107 |
+
override_config = pretrained_cfg
|
108 |
+
|
109 |
+
module_name, class_name = override_config.target.rsplit(".", 1)
|
110 |
+
model_class = getattr(importlib.import_module(module_name), class_name)
|
111 |
+
|
112 |
+
# monkeypatch _build_tokenizer method to be process-safe
|
113 |
+
tokenizer_lock = filelock.FileLock(f"/tmp/{model_path.name}.tokenizer.lock")
|
114 |
+
|
115 |
+
def _synced_build_tokenizer(self):
|
116 |
+
with tokenizer_lock:
|
117 |
+
self._original_build_tokenizer()
|
118 |
+
|
119 |
+
model_class._original_build_tokenizer = model_class._build_tokenizer
|
120 |
+
model_class._build_tokenizer = _synced_build_tokenizer
|
121 |
+
|
122 |
+
model = model_class.restore_from(
|
123 |
+
restore_path=model_to_load_path.as_posix(),
|
124 |
+
trainer=trainer,
|
125 |
+
override_config_path=override_config,
|
126 |
+
save_restore_connector=save_restore_connector,
|
127 |
+
map_location=f"cuda:{trainer.local_rank}",
|
128 |
+
)
|
129 |
+
|
130 |
+
model.freeze()
|
131 |
+
model.training = False
|
132 |
+
try:
|
133 |
+
# Have to turn off activations_checkpoint_method for inference
|
134 |
+
model.model.language_model.encoder.activations_checkpoint_method = None
|
135 |
+
except AttributeError:
|
136 |
+
pass
|
137 |
+
return model
|
138 |
+
|
139 |
+
|
140 |
+
def setup_distributed_environment(trainer):
|
141 |
+
try:
|
142 |
+
from nemo.utils.app_state import AppState
|
143 |
+
except ModuleNotFoundError:
|
144 |
+
raise Exception(
|
145 |
+
"Attempted to use 'nemo_lm' model type, but package `nemo` is not installed"
|
146 |
+
"Please install nemo following the instructions in the README: either with a NVIDIA PyTorch or NeMo container, "
|
147 |
+
"or installing nemo following https://github.com/NVIDIA/NeMo.",
|
148 |
+
)
|
149 |
+
|
150 |
+
def dummy():
|
151 |
+
return
|
152 |
+
|
153 |
+
if trainer.strategy.launcher is not None:
|
154 |
+
trainer.strategy.launcher.launch(dummy, trainer=trainer)
|
155 |
+
trainer.strategy.setup_environment()
|
156 |
+
|
157 |
+
app_state = AppState()
|
158 |
+
|
159 |
+
return app_state
|
160 |
+
|
161 |
+
|
162 |
+
@register_model("nemo_lm")
|
163 |
+
class NeMoLM(LM):
|
164 |
+
def __init__(
|
165 |
+
self,
|
166 |
+
path: str,
|
167 |
+
max_length: int = 4096,
|
168 |
+
batch_size: int = 1,
|
169 |
+
max_gen_toks: int = 256,
|
170 |
+
devices: int = 1,
|
171 |
+
num_nodes: int = 1,
|
172 |
+
tensor_model_parallel_size: int = 1,
|
173 |
+
pipeline_model_parallel_size: int = 1,
|
174 |
+
precision: Literal[
|
175 |
+
"16-mixed",
|
176 |
+
"bf16-mixed",
|
177 |
+
"32-true",
|
178 |
+
"64-true",
|
179 |
+
64,
|
180 |
+
32,
|
181 |
+
16,
|
182 |
+
"64",
|
183 |
+
"32",
|
184 |
+
"16",
|
185 |
+
"bf16",
|
186 |
+
] = "bf16",
|
187 |
+
**kwargs,
|
188 |
+
):
|
189 |
+
try:
|
190 |
+
from nemo.collections.nlp.modules.common.text_generation_utils import (
|
191 |
+
generate,
|
192 |
+
)
|
193 |
+
from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy
|
194 |
+
from pytorch_lightning.trainer.trainer import Trainer
|
195 |
+
|
196 |
+
self.generate = generate
|
197 |
+
except ModuleNotFoundError:
|
198 |
+
raise Exception(
|
199 |
+
"Attempted to use 'nemo_lm' model type, but package `nemo` is not installed"
|
200 |
+
"Please install nemo following the instructions in the README: either with a NVIDIA PyTorch or NeMo container, "
|
201 |
+
"or installing nemo following https://github.com/NVIDIA/NeMo.",
|
202 |
+
)
|
203 |
+
|
204 |
+
super().__init__()
|
205 |
+
|
206 |
+
if (
|
207 |
+
tensor_model_parallel_size == 1
|
208 |
+
and pipeline_model_parallel_size == 1
|
209 |
+
and devices > 1
|
210 |
+
):
|
211 |
+
eval_logger.info(
|
212 |
+
f"The number of data replicas for evaluation is {devices}."
|
213 |
+
)
|
214 |
+
eval_logger.info(f"The total number of devices is {devices}.")
|
215 |
+
eval_logger.info(
|
216 |
+
"No tensor parallelism or pipeline parallelism is applied."
|
217 |
+
)
|
218 |
+
|
219 |
+
elif tensor_model_parallel_size * pipeline_model_parallel_size == devices:
|
220 |
+
eval_logger.info(
|
221 |
+
f"Setting tensor parallelism to {tensor_model_parallel_size} and pipeline parallelism to {pipeline_model_parallel_size}."
|
222 |
+
)
|
223 |
+
eval_logger.info(f"The total number of devices is {devices}.")
|
224 |
+
eval_logger.info("No data parallelism is applied.")
|
225 |
+
|
226 |
+
else:
|
227 |
+
raise ValueError(
|
228 |
+
"Please set the product of tensor_model_parallel_size and pipeline_model_parallel_size"
|
229 |
+
"equal to the specified number of devices."
|
230 |
+
)
|
231 |
+
|
232 |
+
if num_nodes > 1:
|
233 |
+
raise ValueError(
|
234 |
+
"A number of nodes greater than 1 is not supported yet. Please set num_nodes as 1."
|
235 |
+
)
|
236 |
+
|
237 |
+
trainer = Trainer(
|
238 |
+
strategy=NLPDDPStrategy(),
|
239 |
+
devices=devices,
|
240 |
+
accelerator="gpu",
|
241 |
+
num_nodes=num_nodes,
|
242 |
+
precision=precision,
|
243 |
+
logger=False,
|
244 |
+
enable_checkpointing=False,
|
245 |
+
use_distributed_sampler=False,
|
246 |
+
)
|
247 |
+
# Modify the following flags only for data replication
|
248 |
+
if (
|
249 |
+
tensor_model_parallel_size == 1
|
250 |
+
and pipeline_model_parallel_size == 1
|
251 |
+
and devices > 1
|
252 |
+
):
|
253 |
+
self._device = torch.device(f"cuda:{trainer.global_rank}")
|
254 |
+
self._rank = trainer.global_rank
|
255 |
+
self._world_size = trainer.world_size
|
256 |
+
self.model = load_model(
|
257 |
+
path,
|
258 |
+
trainer,
|
259 |
+
tensor_model_parallel_size=tensor_model_parallel_size,
|
260 |
+
pipeline_model_parallel_size=pipeline_model_parallel_size,
|
261 |
+
).cuda()
|
262 |
+
self.tokenizer = self.model.tokenizer
|
263 |
+
self.app_state = setup_distributed_environment(trainer)
|
264 |
+
|
265 |
+
self._max_length = max_length
|
266 |
+
self._batch_size = int(batch_size)
|
267 |
+
self._max_gen_toks = max_gen_toks
|
268 |
+
|
269 |
+
@classmethod
|
270 |
+
def create_from_arg_string(cls, arg_string, additional_config=None):
|
271 |
+
args = simple_parse_args_string(arg_string)
|
272 |
+
if additional_config:
|
273 |
+
args["batch_size"] = additional_config.get("batch_size", 1)
|
274 |
+
|
275 |
+
return cls(**args)
|
276 |
+
|
277 |
+
@property
|
278 |
+
def eot_token_id(self):
|
279 |
+
try:
|
280 |
+
return self.tokenizer.eos_id
|
281 |
+
except AttributeError:
|
282 |
+
return None
|
283 |
+
|
284 |
+
@property
|
285 |
+
def max_length(self):
|
286 |
+
return self._max_length
|
287 |
+
|
288 |
+
@property
|
289 |
+
def max_gen_toks(self):
|
290 |
+
return self._max_gen_toks
|
291 |
+
|
292 |
+
@property
|
293 |
+
def batch_size(self):
|
294 |
+
return self._batch_size
|
295 |
+
|
296 |
+
@property
|
297 |
+
def device(self):
|
298 |
+
return self._device
|
299 |
+
|
300 |
+
@property
|
301 |
+
def rank(self):
|
302 |
+
return self._rank
|
303 |
+
|
304 |
+
@property
|
305 |
+
def world_size(self):
|
306 |
+
return self._world_size
|
307 |
+
|
308 |
+
@property
|
309 |
+
def accelerator(self):
|
310 |
+
return self._Accelerator(self.world_size)
|
311 |
+
|
312 |
+
class _Accelerator:
|
313 |
+
def __init__(self, world_size):
|
314 |
+
self.world_size = world_size
|
315 |
+
|
316 |
+
def wait_for_everyone(self):
|
317 |
+
torch.distributed.barrier()
|
318 |
+
|
319 |
+
def gather(self, local_tensor):
|
320 |
+
gathered_tensors = [
|
321 |
+
torch.zeros(1, dtype=local_tensor.dtype).cuda()
|
322 |
+
for _ in range(self.world_size)
|
323 |
+
]
|
324 |
+
torch.distributed.all_gather(gathered_tensors, local_tensor)
|
325 |
+
return torch.cat(gathered_tensors)
|
326 |
+
|
327 |
+
def tok_encode(self, string: str):
|
328 |
+
return self.tokenizer.text_to_ids(string)
|
329 |
+
|
330 |
+
def tok_decode(self, tokens):
|
331 |
+
return self.tokenizer.ids_to_text(tokens)
|
332 |
+
|
333 |
+
def _encode_pair(self, context, continuation):
|
334 |
+
n_spaces = len(context) - len(context.rstrip())
|
335 |
+
if n_spaces > 0:
|
336 |
+
continuation = context[-n_spaces:] + continuation
|
337 |
+
context = context[:-n_spaces]
|
338 |
+
whole_enc = self.tok_encode(context + continuation)
|
339 |
+
context_enc = self.tok_encode(context)
|
340 |
+
context_enc_len = len(context_enc)
|
341 |
+
continuation_enc = whole_enc[context_enc_len:]
|
342 |
+
return context_enc, continuation_enc
|
343 |
+
|
344 |
+
def loglikelihood(self, requests):
|
345 |
+
new_reqs = []
|
346 |
+
for context, continuation in [req.args for req in requests]:
|
347 |
+
if context == "":
|
348 |
+
# end of text as context
|
349 |
+
context_enc, continuation_enc = (
|
350 |
+
[self.eot_token_id],
|
351 |
+
self.tok_encode(continuation),
|
352 |
+
)
|
353 |
+
else:
|
354 |
+
context_enc, continuation_enc = self._encode_pair(context, continuation)
|
355 |
+
|
356 |
+
new_reqs.append(((context, continuation), context_enc, continuation_enc))
|
357 |
+
|
358 |
+
return self._loglikelihood_tokens(new_reqs)
|
359 |
+
|
360 |
+
def loglikelihood_rolling(
|
361 |
+
self, requests: List[Instance], disable_tqdm: bool = False
|
362 |
+
) -> List[float]:
|
363 |
+
loglikelihoods = []
|
364 |
+
|
365 |
+
for (string,) in tqdm([req.args for req in requests], disable=disable_tqdm):
|
366 |
+
rolling_token_windows = list(
|
367 |
+
map(
|
368 |
+
make_disjoint_window,
|
369 |
+
get_rolling_token_windows(
|
370 |
+
token_list=self.tok_encode(string),
|
371 |
+
prefix_token=self.eot_token_id,
|
372 |
+
max_seq_len=self.max_length - 1,
|
373 |
+
context_len=1,
|
374 |
+
),
|
375 |
+
)
|
376 |
+
)
|
377 |
+
|
378 |
+
rolling_token_windows = [(None,) + x for x in rolling_token_windows]
|
379 |
+
|
380 |
+
string_nll = self._loglikelihood_tokens(
|
381 |
+
rolling_token_windows,
|
382 |
+
)
|
383 |
+
|
384 |
+
# discard is_greedy
|
385 |
+
string_nll = [x[0] for x in string_nll]
|
386 |
+
|
387 |
+
string_nll = sum(string_nll)
|
388 |
+
loglikelihoods.append(string_nll)
|
389 |
+
return loglikelihoods
|
390 |
+
|
391 |
+
def _loglikelihood_tokens(self, requests, disable_tqdm=False):
|
392 |
+
res = []
|
393 |
+
|
394 |
+
def _collate(x):
|
395 |
+
toks = x[1] + x[2]
|
396 |
+
return -len(toks), tuple(toks)
|
397 |
+
|
398 |
+
re_ord = Collator(requests, sort_fn=_collate)
|
399 |
+
chunks = re_ord.get_batched(n=self.batch_size, batch_fn=None)
|
400 |
+
pbar = tqdm(
|
401 |
+
total=len(requests),
|
402 |
+
disable=(disable_tqdm or (self.rank != 0)),
|
403 |
+
desc="Running loglikelihood requests",
|
404 |
+
)
|
405 |
+
for chunk in chunks:
|
406 |
+
inps = []
|
407 |
+
ctxlens = []
|
408 |
+
contlens = []
|
409 |
+
|
410 |
+
for _, context_enc, continuation_enc in chunk:
|
411 |
+
# Leave one token for generation. Tokens_to_generate = 0 breaks NeMo.
|
412 |
+
inp = (context_enc + continuation_enc)[-(self.max_length - 1) :]
|
413 |
+
|
414 |
+
ctxlen = len(context_enc) - max(
|
415 |
+
0, len(context_enc) + len(continuation_enc) - (self.max_length - 1)
|
416 |
+
)
|
417 |
+
ctxlens.append(ctxlen)
|
418 |
+
contlens.append(len(continuation_enc))
|
419 |
+
|
420 |
+
inps.append(self.tok_decode(inp))
|
421 |
+
|
422 |
+
output = self.generate(
|
423 |
+
self.model,
|
424 |
+
inputs=inps,
|
425 |
+
tokens_to_generate=1,
|
426 |
+
min_tokens_to_generate=1,
|
427 |
+
compute_logprob=True,
|
428 |
+
all_probs=True,
|
429 |
+
)
|
430 |
+
|
431 |
+
batch_token_ids = np.asarray(output["token_ids"])[:, :-1]
|
432 |
+
batch_logprobs = output["logprob"][:, :-1]
|
433 |
+
batch_full_logprob = output["full_logprob"][:, :-1, :]
|
434 |
+
|
435 |
+
# Compute greedy tokens for entire batch rather than calling it with proper ctxlen for each sample.
|
436 |
+
# Additional tokens for each sample will be trimmed later.
|
437 |
+
min_ctxlen = min(ctxlens)
|
438 |
+
|
439 |
+
# Use min_ctxlen-1 instead of min_ctxlen since full_logprobs are not returns for the first token.
|
440 |
+
batch_greedy_tokens = (
|
441 |
+
torch.argmax(batch_full_logprob[:, min_ctxlen - 1 :, :], -1)
|
442 |
+
.cpu()
|
443 |
+
.numpy()
|
444 |
+
)
|
445 |
+
|
446 |
+
for token_ids, greedy_tokens, logprobs, ctxlen, contlen, (
|
447 |
+
cache_key,
|
448 |
+
_,
|
449 |
+
_,
|
450 |
+
) in zip(
|
451 |
+
batch_token_ids,
|
452 |
+
batch_greedy_tokens,
|
453 |
+
batch_logprobs,
|
454 |
+
ctxlens,
|
455 |
+
contlens,
|
456 |
+
chunk,
|
457 |
+
):
|
458 |
+
# Trim at contlen since shorter contexts in a batch will have more than one token generated.
|
459 |
+
# Use ctxlen-1 instead of ctxlen same as for full_logprob in batch_greedy_tokens calculation
|
460 |
+
logprobs = (logprobs[ctxlen - 1 :])[:contlen]
|
461 |
+
logprob = sum(logprobs).tolist()
|
462 |
+
|
463 |
+
continuation_tokens = (token_ids[ctxlen:])[:contlen]
|
464 |
+
len_diff = ctxlen - min_ctxlen
|
465 |
+
is_greedy = continuation_tokens == (greedy_tokens[len_diff:])[:contlen]
|
466 |
+
if not isinstance(is_greedy, bool):
|
467 |
+
is_greedy = is_greedy.all()
|
468 |
+
answer = (logprob, is_greedy)
|
469 |
+
|
470 |
+
if cache_key is not None:
|
471 |
+
self.cache_hook.add_partial("loglikelihood", cache_key, answer)
|
472 |
+
|
473 |
+
res.append(answer)
|
474 |
+
pbar.update(1)
|
475 |
+
|
476 |
+
pbar.close()
|
477 |
+
|
478 |
+
return re_ord.get_original(res)
|
479 |
+
|
480 |
+
def generate_until(self, requests):
|
481 |
+
if not requests:
|
482 |
+
return []
|
483 |
+
res = []
|
484 |
+
|
485 |
+
def get_until(req_args):
|
486 |
+
until = req_args.get("until", [])
|
487 |
+
until = deepcopy(until) # prevent from modifying req_args for cache_key
|
488 |
+
if self.eot_token_id not in until:
|
489 |
+
until.append(self.eot_token_id)
|
490 |
+
return until
|
491 |
+
|
492 |
+
def _collate(x):
|
493 |
+
toks = self.tok_encode(x[0])
|
494 |
+
return len(toks), x[0]
|
495 |
+
|
496 |
+
re_ords = Collator(
|
497 |
+
[reg.args for reg in requests], sort_fn=_collate, group_by="gen_kwargs"
|
498 |
+
)
|
499 |
+
chunks = re_ords.get_batched(n=self.batch_size, batch_fn=None)
|
500 |
+
for chunk in chunks:
|
501 |
+
contexts, all_gen_kwargs = zip(*chunk)
|
502 |
+
# we assume all gen kwargs in the batch are the same
|
503 |
+
# this is safe to assume because the `grouper` object ensures it.
|
504 |
+
req_args = all_gen_kwargs[0]
|
505 |
+
# unpack our keyword arguments.
|
506 |
+
until = get_until(req_args)
|
507 |
+
max_gen_toks = req_args.get("max_gen_toks", self.max_gen_toks)
|
508 |
+
|
509 |
+
remaining_length = self.max_length - max_gen_toks
|
510 |
+
contexts = []
|
511 |
+
for context, _ in chunk:
|
512 |
+
encoded_context = self.tok_encode(context)
|
513 |
+
encoded_context = encoded_context[-remaining_length:]
|
514 |
+
contexts.append(self.tok_decode(encoded_context))
|
515 |
+
|
516 |
+
output = self.generate(
|
517 |
+
self.model,
|
518 |
+
inputs=contexts,
|
519 |
+
tokens_to_generate=max_gen_toks,
|
520 |
+
end_strings=until,
|
521 |
+
greedy=True,
|
522 |
+
)
|
523 |
+
|
524 |
+
answers = output["sentences"]
|
525 |
+
|
526 |
+
continuations = []
|
527 |
+
for context, answer in zip(contexts, answers):
|
528 |
+
continuations.append(answer[len(context) :])
|
529 |
+
|
530 |
+
for term in until:
|
531 |
+
continuations = [answer.split(term)[0] for answer in continuations]
|
532 |
+
|
533 |
+
for request, answer in zip(chunk, continuations):
|
534 |
+
self.cache_hook.add_partial("greedy_until", request, answer)
|
535 |
+
res.append(answer)
|
536 |
+
|
537 |
+
return re_ords.get_original(res)
|
lm-evaluation/lm_eval/models/neuron_optimum.py
ADDED
@@ -0,0 +1,736 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import subprocess
|
5 |
+
from collections import defaultdict
|
6 |
+
from typing import List, Optional, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import transformers
|
11 |
+
from packaging import version
|
12 |
+
from tqdm import tqdm
|
13 |
+
from transformers import GenerationConfig
|
14 |
+
from transformers.generation import StoppingCriteriaList
|
15 |
+
|
16 |
+
import lm_eval.models.utils
|
17 |
+
from lm_eval import utils
|
18 |
+
from lm_eval.api.model import TemplateLM
|
19 |
+
from lm_eval.api.registry import register_model
|
20 |
+
from lm_eval.models.utils import stop_sequences_criteria
|
21 |
+
|
22 |
+
|
23 |
+
try:
|
24 |
+
NEURON_AVAILABLE = True
|
25 |
+
from optimum.neuron import NeuronModelForCausalLM
|
26 |
+
from optimum.neuron.generation import TokenSelector
|
27 |
+
from optimum.neuron.version import __version__ as optimum_neuron_version
|
28 |
+
except ImportError:
|
29 |
+
NeuronModelForCausalLM = object
|
30 |
+
NEURON_AVAILABLE = False
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.getLogger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
def get_nc_count() -> Union[int, None]:
|
37 |
+
"""Returns the number of neuron cores on the current instance."""
|
38 |
+
try:
|
39 |
+
cmd = "neuron-ls --json-output"
|
40 |
+
result = subprocess.run(cmd, shell=True, capture_output=True)
|
41 |
+
print(f"inferring nc_count from `neuron-ls` {result.stdout}")
|
42 |
+
json_output = json.loads(result.stdout)
|
43 |
+
count = sum([x["nc_count"] for x in json_output])
|
44 |
+
print(f"nc_count={count}")
|
45 |
+
return count
|
46 |
+
except Exception:
|
47 |
+
return None
|
48 |
+
|
49 |
+
|
50 |
+
def wrap_constant_batch_size(func):
|
51 |
+
def _decorator(self, input_ids):
|
52 |
+
"""input_ids a 2D array with batch_size on dim=0
|
53 |
+
|
54 |
+
makes sure the func runs with self.batch_size
|
55 |
+
"""
|
56 |
+
# access a from TestSample
|
57 |
+
batch_size = input_ids.shape[0]
|
58 |
+
|
59 |
+
if batch_size < self.batch_size:
|
60 |
+
# handle the event of input_ids.shape[0] != batch_size
|
61 |
+
# Neuron cores expect constant batch_size
|
62 |
+
input_ids = torch.concat(
|
63 |
+
(
|
64 |
+
input_ids,
|
65 |
+
# add missing_batch_size dummy
|
66 |
+
torch.zeros(
|
67 |
+
[self.batch_size - batch_size, *input_ids.size()[1:]],
|
68 |
+
dtype=input_ids.dtype,
|
69 |
+
device=input_ids.device,
|
70 |
+
),
|
71 |
+
),
|
72 |
+
dim=0,
|
73 |
+
)
|
74 |
+
elif batch_size > self.batch_size:
|
75 |
+
raise ValueError(
|
76 |
+
f"The specified batch_size ({batch_size}) exceeds the model static batch size ({self.batch_size})"
|
77 |
+
)
|
78 |
+
# return the forward pass that requires constant batch size
|
79 |
+
return func(self, input_ids)[:batch_size]
|
80 |
+
|
81 |
+
return _decorator
|
82 |
+
|
83 |
+
|
84 |
+
class CustomNeuronModelForCausalLM(NeuronModelForCausalLM):
|
85 |
+
"""NeuronModelForCausalLM with `stopping_criteria` in `generate`"""
|
86 |
+
|
87 |
+
def generate(
|
88 |
+
self,
|
89 |
+
input_ids: torch.Tensor,
|
90 |
+
attention_mask: Optional[torch.Tensor] = None,
|
91 |
+
stopping_criteria: Optional["StoppingCriteriaList"] = None,
|
92 |
+
generation_config: Optional["GenerationConfig"] = None,
|
93 |
+
**kwargs,
|
94 |
+
) -> torch.LongTensor:
|
95 |
+
r"""
|
96 |
+
A streamlined generate() method overriding the transformers.GenerationMixin.generate() method.
|
97 |
+
|
98 |
+
This method uses the same logits processors/warpers and stopping criteria as the transformers library
|
99 |
+
`generate()` method but restricts the generation to greedy search and sampling.
|
100 |
+
|
101 |
+
It does not support transformers `generate()` advanced options.
|
102 |
+
|
103 |
+
Please refer to https://huggingface.co/docs/transformers/en/main_classes/text_generation#transformers.GenerationMixin.generate
|
104 |
+
for details on generation configuration.
|
105 |
+
|
106 |
+
Parameters:
|
107 |
+
input_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`):
|
108 |
+
The sequence used as a prompt for the generation.
|
109 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
110 |
+
Mask to avoid performing attention on padding token indices.
|
111 |
+
generation_config (`~transformers.generation.GenerationConfig`, *optional*):
|
112 |
+
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
|
113 |
+
passed to generate matching the attributes of `generation_config` will override them. If
|
114 |
+
`generation_config` is not provided, default will be used, which had the following loading
|
115 |
+
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
|
116 |
+
configuration. Please note that unspecified parameters will inherit [`~transformers.generation.GenerationConfig`]'s
|
117 |
+
default values, whose documentation should be checked to parameterize generation.
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
`torch.Tensor`: A `torch.FloatTensor`.
|
121 |
+
"""
|
122 |
+
# The actual generation configuration is a combination of config and parameters
|
123 |
+
generation_config = copy.deepcopy(
|
124 |
+
self.generation_config if generation_config is None else generation_config
|
125 |
+
)
|
126 |
+
model_kwargs = generation_config.update(
|
127 |
+
**kwargs
|
128 |
+
) # All unused kwargs must be model kwargs
|
129 |
+
# Check model kwargs are actually used by either prepare_inputs_for_generation or forward
|
130 |
+
self._validate_model_kwargs(model_kwargs)
|
131 |
+
|
132 |
+
# Instantiate a TokenSelector for the specified configuration
|
133 |
+
selector = TokenSelector.create(
|
134 |
+
input_ids, generation_config, self, self.max_length
|
135 |
+
)
|
136 |
+
selector.stopping_criteria.append(stopping_criteria)
|
137 |
+
# Verify that the inputs are compatible with the model static input dimensions
|
138 |
+
batch_size, sequence_length = input_ids.shape
|
139 |
+
if sequence_length > self.max_length:
|
140 |
+
raise ValueError(
|
141 |
+
f"The input sequence length ({sequence_length}) exceeds the model static sequence length ({self.max_length})"
|
142 |
+
)
|
143 |
+
padded_input_ids = input_ids
|
144 |
+
padded_attention_mask = attention_mask
|
145 |
+
if batch_size > self.batch_size:
|
146 |
+
raise ValueError(
|
147 |
+
f"The specified batch_size ({batch_size}) exceeds the model static batch size ({self.batch_size})"
|
148 |
+
)
|
149 |
+
elif batch_size < self.batch_size:
|
150 |
+
logger.warning(
|
151 |
+
"Inputs will be padded to match the model static batch size. This will increase latency."
|
152 |
+
)
|
153 |
+
padding_shape = [self.batch_size - batch_size, sequence_length]
|
154 |
+
padding = torch.full(
|
155 |
+
padding_shape, fill_value=self.config.eos_token_id, dtype=torch.int64
|
156 |
+
)
|
157 |
+
padded_input_ids = torch.cat([input_ids, padding])
|
158 |
+
if attention_mask is not None:
|
159 |
+
padding = torch.zeros(padding_shape, dtype=torch.int64)
|
160 |
+
padded_attention_mask = torch.cat([attention_mask, padding])
|
161 |
+
# Drop the current generation context and clear the Key/Value cache
|
162 |
+
self.reset_generation()
|
163 |
+
|
164 |
+
output_ids = self.generate_tokens(
|
165 |
+
padded_input_ids,
|
166 |
+
selector,
|
167 |
+
batch_size,
|
168 |
+
attention_mask=padded_attention_mask,
|
169 |
+
**model_kwargs,
|
170 |
+
)
|
171 |
+
return output_ids[:batch_size, :]
|
172 |
+
|
173 |
+
|
174 |
+
@register_model("neuronx")
|
175 |
+
class NEURON_HF(TemplateLM):
|
176 |
+
"""
|
177 |
+
Enables usage with on AWS Neuron
|
178 |
+
using the HuggingFace Transformers + Transformers neuronx library.
|
179 |
+
Tested with neuron 2.17.0
|
180 |
+
"""
|
181 |
+
|
182 |
+
_DEFAULT_MAX_LENGTH = 2048
|
183 |
+
|
184 |
+
def __init__(
|
185 |
+
self,
|
186 |
+
pretrained: Optional[str] = "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
187 |
+
revision: Optional[str] = "main",
|
188 |
+
tp_degree: Optional[int] = None,
|
189 |
+
subfolder: Optional[str] = None,
|
190 |
+
tokenizer: Optional[str] = None,
|
191 |
+
truncation: Optional[bool] = False,
|
192 |
+
max_length: Optional[int] = None,
|
193 |
+
dtype: Optional[Union[str, torch.dtype]] = "auto",
|
194 |
+
batch_size: Optional[int] = 1,
|
195 |
+
low_cpu_mem_usage: Optional[bool] = True,
|
196 |
+
trust_remote_code: Optional[bool] = False,
|
197 |
+
use_fast_tokenizer: Optional[bool] = True,
|
198 |
+
add_bos_token: Optional[bool] = False,
|
199 |
+
) -> None:
|
200 |
+
if not NEURON_AVAILABLE:
|
201 |
+
raise Exception(
|
202 |
+
"Tried to load neuron model, but neuron is not installed ",
|
203 |
+
"please install neuron via pip install transformers-neuron ",
|
204 |
+
"also make sure you are running on an AWS inf2 instance",
|
205 |
+
)
|
206 |
+
if version.parse(optimum_neuron_version) != version.parse("0.0.17"):
|
207 |
+
logger.warning(
|
208 |
+
'`optimum-neuron` model requires `pip install "optimum[neuronx]>=0.0.17" '
|
209 |
+
"preferably using the Hugging Face Neuron Deep Learning AMI (Ubuntu 22.04) "
|
210 |
+
"https://aws.amazon.com/marketplace/pp/prodview-gr3e6yiscria2 "
|
211 |
+
f"You are using optimum-neuron={optimum_neuron_version}"
|
212 |
+
)
|
213 |
+
super().__init__()
|
214 |
+
|
215 |
+
assert isinstance(pretrained, str)
|
216 |
+
assert isinstance(batch_size, (int, str))
|
217 |
+
|
218 |
+
self.batch_size_per_gpu = int(batch_size)
|
219 |
+
batch_size = int(batch_size)
|
220 |
+
if tp_degree is None:
|
221 |
+
# execute `neuron-ls --json-output | jq '.[0].nc_count'``
|
222 |
+
# to get the number of neuron cores on your instance
|
223 |
+
tp_degree = get_nc_count()
|
224 |
+
|
225 |
+
assert isinstance(tp_degree, int), (
|
226 |
+
f"model_args must include tp_degree. tp_degree must be set to an integer,"
|
227 |
+
f" but is tp_degree=`{tp_degree}` with type=`{type(tp_degree)}`."
|
228 |
+
"Set it to number of neuron cores on your instance."
|
229 |
+
" For inf2.xlarge and inf2.8xlarge, set it to `2`."
|
230 |
+
" For inf2.24xlarge, set it to `12`."
|
231 |
+
" For inf2.48xlarge, set it to `24`."
|
232 |
+
)
|
233 |
+
|
234 |
+
# TODO: update this to be less of a hack once subfolder is fixed in HF
|
235 |
+
revision = revision + ("/" + subfolder if subfolder is not None else "")
|
236 |
+
|
237 |
+
self._config = transformers.AutoConfig.from_pretrained(
|
238 |
+
pretrained,
|
239 |
+
revision=revision,
|
240 |
+
trust_remote_code=trust_remote_code,
|
241 |
+
)
|
242 |
+
torch_dtype = lm_eval.models.utils.get_dtype(dtype)
|
243 |
+
|
244 |
+
assert torch_dtype in [
|
245 |
+
torch.float16,
|
246 |
+
torch.bfloat16,
|
247 |
+
], "Only float16 and bfloat16 are supported"
|
248 |
+
|
249 |
+
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
|
250 |
+
pretrained if tokenizer is None else tokenizer,
|
251 |
+
revision=revision,
|
252 |
+
trust_remote_code=trust_remote_code,
|
253 |
+
use_fast=use_fast_tokenizer,
|
254 |
+
)
|
255 |
+
|
256 |
+
# Neuron specific code
|
257 |
+
if torch_dtype == torch.float16:
|
258 |
+
self.amp_dtype = "f16"
|
259 |
+
elif torch_dtype == torch.bfloat16:
|
260 |
+
self.amp_dtype = "bf16"
|
261 |
+
elif torch_dtype == torch.float32:
|
262 |
+
self.amp_dtype = "f32"
|
263 |
+
else:
|
264 |
+
raise NotImplementedError("Only float16 and bfloat16 are implemented.")
|
265 |
+
|
266 |
+
compiler_args = {"num_cores": tp_degree, "auto_cast_type": self.amp_dtype}
|
267 |
+
input_shapes = {
|
268 |
+
"batch_size": batch_size,
|
269 |
+
"sequence_length": self._DEFAULT_MAX_LENGTH,
|
270 |
+
}
|
271 |
+
|
272 |
+
print(
|
273 |
+
f"{'='*20} \n loading model to neuron with"
|
274 |
+
f" {compiler_args}, {input_shapes}..."
|
275 |
+
)
|
276 |
+
self.model = CustomNeuronModelForCausalLM.from_pretrained(
|
277 |
+
pretrained,
|
278 |
+
revision=revision,
|
279 |
+
trust_remote_code=trust_remote_code,
|
280 |
+
low_cpu_mem_usage=low_cpu_mem_usage,
|
281 |
+
export=True,
|
282 |
+
**compiler_args,
|
283 |
+
**input_shapes,
|
284 |
+
)
|
285 |
+
print(f"SUCCESS: neuron model compiled. \n {'='*20}")
|
286 |
+
|
287 |
+
self.truncation = truncation
|
288 |
+
|
289 |
+
self.vocab_size = self.tokenizer.vocab_size
|
290 |
+
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
|
291 |
+
self.add_bos_token = self.add_bos_token
|
292 |
+
|
293 |
+
self._max_length = max_length
|
294 |
+
|
295 |
+
self.batch_schedule = 1
|
296 |
+
self.batch_sizes = {}
|
297 |
+
|
298 |
+
@property
|
299 |
+
def config(self):
|
300 |
+
# return the associated transformers.AutoConfig for the given pretrained model.
|
301 |
+
return self._config
|
302 |
+
|
303 |
+
@property
|
304 |
+
def eot_token_id(self):
|
305 |
+
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
|
306 |
+
return self.tokenizer.eos_token_id
|
307 |
+
|
308 |
+
@property
|
309 |
+
def prefix_token_id(self):
|
310 |
+
# it is used as prefix for loglikelihood
|
311 |
+
return self.tokenizer.bos_token_id or self.tokenizer.eos_token_id
|
312 |
+
|
313 |
+
@property
|
314 |
+
def max_length(self):
|
315 |
+
if self._max_length: # if max length manually set, return it
|
316 |
+
return self._max_length
|
317 |
+
seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
|
318 |
+
for attr in seqlen_config_attrs:
|
319 |
+
if hasattr(self.model.config, attr):
|
320 |
+
return getattr(self.model.config, attr)
|
321 |
+
if hasattr(self.tokenizer, "model_max_length"):
|
322 |
+
if self.tokenizer.model_max_length == 1000000000000000019884624838656:
|
323 |
+
return self._DEFAULT_MAX_LENGTH
|
324 |
+
return self.tokenizer.model_max_length
|
325 |
+
return self._DEFAULT_MAX_LENGTH
|
326 |
+
|
327 |
+
@property
|
328 |
+
def max_gen_toks(self) -> int:
|
329 |
+
return 256
|
330 |
+
|
331 |
+
@property
|
332 |
+
def batch_size(self):
|
333 |
+
return self.batch_size_per_gpu
|
334 |
+
|
335 |
+
@property
|
336 |
+
def device(self):
|
337 |
+
"""device are neuron cores, but the created tensors are on CPU."""
|
338 |
+
return "cpu"
|
339 |
+
|
340 |
+
@property
|
341 |
+
def rank(self):
|
342 |
+
return 0
|
343 |
+
|
344 |
+
@property
|
345 |
+
def world_size(self):
|
346 |
+
return 1
|
347 |
+
|
348 |
+
def tok_encode(self, string: str, left_truncate_len=None, add_special_tokens=None):
|
349 |
+
""" """
|
350 |
+
if add_special_tokens is None:
|
351 |
+
add_special_tokens = False or self.add_bos_token
|
352 |
+
|
353 |
+
encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
|
354 |
+
|
355 |
+
# left-truncate the encoded context to be at most `left_truncate_len` tokens long
|
356 |
+
if left_truncate_len:
|
357 |
+
encoding = encoding[-left_truncate_len:]
|
358 |
+
|
359 |
+
return encoding
|
360 |
+
|
361 |
+
def tok_batch_encode(
|
362 |
+
self,
|
363 |
+
strings: List[str],
|
364 |
+
padding_side: str = "left",
|
365 |
+
left_truncate_len: int = None,
|
366 |
+
truncation: bool = False,
|
367 |
+
):
|
368 |
+
# encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
|
369 |
+
old_padding_side = self.tokenizer.padding_side
|
370 |
+
self.tokenizer.padding_side = padding_side
|
371 |
+
|
372 |
+
add_special_tokens = False or self.add_bos_token
|
373 |
+
|
374 |
+
encoding = self.tokenizer(
|
375 |
+
strings,
|
376 |
+
truncation=truncation,
|
377 |
+
padding="longest",
|
378 |
+
return_tensors="pt",
|
379 |
+
add_special_tokens=add_special_tokens,
|
380 |
+
)
|
381 |
+
if left_truncate_len:
|
382 |
+
encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
|
383 |
+
encoding["attention_mask"] = encoding["attention_mask"][
|
384 |
+
:, -left_truncate_len:
|
385 |
+
]
|
386 |
+
self.tokenizer.padding_side = old_padding_side
|
387 |
+
|
388 |
+
return encoding["input_ids"], encoding["attention_mask"]
|
389 |
+
|
390 |
+
def tok_decode(self, tokens):
|
391 |
+
return self.tokenizer.decode(tokens)
|
392 |
+
|
393 |
+
@wrap_constant_batch_size
|
394 |
+
def _model_call(self, input_ids: torch.Tensor):
|
395 |
+
"""
|
396 |
+
get logits for the entire sequence
|
397 |
+
|
398 |
+
:param input_ids: torch.Tensor
|
399 |
+
A torch tensor of shape [batch, sequence_cont]
|
400 |
+
the size of sequence may vary from call to call
|
401 |
+
:return
|
402 |
+
A torch tensor of shape [batch, sequence, vocab] with the
|
403 |
+
logits returned from the model's decoder-lm head
|
404 |
+
"""
|
405 |
+
_, sequence_length = input_ids.shape
|
406 |
+
|
407 |
+
with torch.inference_mode():
|
408 |
+
cache_ids = torch.arange(0, sequence_length, dtype=torch.int32).split(1)
|
409 |
+
input_ids_split = input_ids.split(1, dim=1)
|
410 |
+
|
411 |
+
return torch.concat(
|
412 |
+
[
|
413 |
+
self.model.forward(
|
414 |
+
input_ids=input_id, cache_ids=cache_id, return_dict=False
|
415 |
+
)[0]
|
416 |
+
for input_id, cache_id in zip(input_ids_split, cache_ids)
|
417 |
+
],
|
418 |
+
dim=1,
|
419 |
+
)
|
420 |
+
|
421 |
+
def _model_generate(self, context, max_length, stop, **generation_kwargs):
|
422 |
+
# we require users to pass do_sample=True explicitly
|
423 |
+
# for non-greedy gen. This should be reevaluated when considering beam search.
|
424 |
+
|
425 |
+
with torch.inference_mode():
|
426 |
+
if "do_sample" not in generation_kwargs.keys():
|
427 |
+
generation_kwargs["do_sample"] = False
|
428 |
+
|
429 |
+
stopping_criteria = stop_sequences_criteria(
|
430 |
+
self.tokenizer,
|
431 |
+
stop + [self.tokenizer.decode([self.config.eos_token_id])],
|
432 |
+
1,
|
433 |
+
context.shape[0],
|
434 |
+
)
|
435 |
+
|
436 |
+
return self.model.generate(
|
437 |
+
input_ids=context,
|
438 |
+
max_length=max_length,
|
439 |
+
stopping_criteria=stopping_criteria,
|
440 |
+
pad_token_id=self.eot_token_id,
|
441 |
+
use_cache=True,
|
442 |
+
**generation_kwargs,
|
443 |
+
)
|
444 |
+
|
445 |
+
def _select_cont_toks(self, logits, contlen=None, inplen=None):
|
446 |
+
assert (
|
447 |
+
contlen and inplen
|
448 |
+
), "Must pass input len and cont. len to select scored logits for causal LM"
|
449 |
+
# discard right-padding.
|
450 |
+
# also discard the input/context tokens. we'll only score continuations.
|
451 |
+
logits = logits[inplen - contlen : inplen]
|
452 |
+
|
453 |
+
return logits
|
454 |
+
|
455 |
+
def loglikelihood_rolling(self, requests, disable_tqdm: bool = False):
|
456 |
+
loglikelihoods = []
|
457 |
+
|
458 |
+
adaptive_batch_size = None
|
459 |
+
|
460 |
+
for (string,) in tqdm(
|
461 |
+
[req.args for req in requests], disable=(disable_tqdm or (self.rank != 0))
|
462 |
+
):
|
463 |
+
rolling_token_windows = list(
|
464 |
+
map(
|
465 |
+
utils.make_disjoint_window,
|
466 |
+
utils.get_rolling_token_windows(
|
467 |
+
token_list=self.tok_encode(string),
|
468 |
+
prefix_token=self.prefix_token_id,
|
469 |
+
max_seq_len=self.max_length,
|
470 |
+
context_len=1,
|
471 |
+
),
|
472 |
+
)
|
473 |
+
)
|
474 |
+
|
475 |
+
# TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
|
476 |
+
rolling_token_windows = [(None,) + x for x in rolling_token_windows]
|
477 |
+
|
478 |
+
pad_amnt = 0
|
479 |
+
if self.world_size > 1:
|
480 |
+
# We pad out the external document-level iterator so the inner iterator doesn't hang
|
481 |
+
mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
|
482 |
+
gathered = (
|
483 |
+
self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
|
484 |
+
)
|
485 |
+
|
486 |
+
pad_amnt = max(gathered) - gathered[self.rank]
|
487 |
+
if pad_amnt > 0:
|
488 |
+
rolling_token_windows += pad_amnt * [rolling_token_windows[0]]
|
489 |
+
|
490 |
+
string_nll = self._loglikelihood_tokens(
|
491 |
+
rolling_token_windows,
|
492 |
+
disable_tqdm=True,
|
493 |
+
override_bs=adaptive_batch_size,
|
494 |
+
)
|
495 |
+
|
496 |
+
if (self.world_size > 1) and (pad_amnt > 0):
|
497 |
+
string_nll = [x[0] for x in string_nll[:-pad_amnt]]
|
498 |
+
else:
|
499 |
+
# discard is_greedy
|
500 |
+
string_nll = [x[0] for x in string_nll]
|
501 |
+
|
502 |
+
string_nll = sum(string_nll)
|
503 |
+
loglikelihoods.append(string_nll)
|
504 |
+
|
505 |
+
return loglikelihoods
|
506 |
+
|
507 |
+
def _loglikelihood_tokens(
|
508 |
+
self, requests, disable_tqdm: bool = False, override_bs=None
|
509 |
+
):
|
510 |
+
# TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
|
511 |
+
res = []
|
512 |
+
|
513 |
+
def _collate(x):
|
514 |
+
# the negative sign on len(toks) sorts descending - this has a few advantages:
|
515 |
+
# - time estimates will always be over not underestimates, which is more useful for planning
|
516 |
+
# - to know the size of a batch when going through the list, you know the first one is always the batch
|
517 |
+
# padded context length. this is useful to simplify the batching logic and more importantly to make
|
518 |
+
# automatic adaptive batches much much easier to implement
|
519 |
+
# - any OOMs will happen right away rather than near the end
|
520 |
+
|
521 |
+
toks = x[1] + x[2]
|
522 |
+
return -len(toks), tuple(toks)
|
523 |
+
|
524 |
+
re_ord = utils.Reorderer(requests, _collate)
|
525 |
+
|
526 |
+
n_reordered_requests = len(re_ord.get_reordered()) # noqa
|
527 |
+
# automatic (variable) batch size detection for vectorization
|
528 |
+
# pull longest context sample from request
|
529 |
+
|
530 |
+
chunks = lm_eval.models.utils.chunks(
|
531 |
+
re_ord.get_reordered(),
|
532 |
+
n=self.batch_size,
|
533 |
+
fn=None,
|
534 |
+
)
|
535 |
+
|
536 |
+
for chunk in tqdm(chunks, disable=(disable_tqdm or (self.rank != 0))):
|
537 |
+
inps = []
|
538 |
+
cont_toks_list = []
|
539 |
+
inplens = []
|
540 |
+
|
541 |
+
conts = [] # noqa
|
542 |
+
encoder_attns = [] # noqa
|
543 |
+
|
544 |
+
padding_len_inp = None
|
545 |
+
padding_len_cont = None # noqa
|
546 |
+
# because vectorizing is annoying, we first convert each (context, continuation) pair to padded
|
547 |
+
# tensors, then we pack them together into a batch, call the model, and then pick it all apart
|
548 |
+
# again because vectorizing is annoying
|
549 |
+
|
550 |
+
for _, context_enc, continuation_enc in chunk:
|
551 |
+
# sanity check
|
552 |
+
assert len(context_enc) > 0
|
553 |
+
assert len(continuation_enc) > 0
|
554 |
+
assert len(continuation_enc) <= self.max_length
|
555 |
+
|
556 |
+
# how this all works (illustrated on a causal decoder-only setup):
|
557 |
+
# CTX CONT
|
558 |
+
# inp 0 1 2 3|4 5 6 7 8 9 <- last token is deleted by inp[:, :-1]
|
559 |
+
# model \ \
|
560 |
+
# logits 1 2 3|4 5 6 7 8 9 <- the ctx half gets tossed out by the
|
561 |
+
# cont_toks 4 5 6 7 8 9 [:, -len(continuation_enc):, :self.vocab_size] slice
|
562 |
+
|
563 |
+
# when too long to fit in context, truncate from the left
|
564 |
+
inp = torch.tensor(
|
565 |
+
(context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
|
566 |
+
dtype=torch.long,
|
567 |
+
device=self.device,
|
568 |
+
)
|
569 |
+
(inplen,) = inp.shape
|
570 |
+
|
571 |
+
padding_len_inp = (
|
572 |
+
max(padding_len_inp, inplen)
|
573 |
+
if padding_len_inp is not None
|
574 |
+
else inplen
|
575 |
+
)
|
576 |
+
|
577 |
+
inps.append(inp) # [1, inp_length]
|
578 |
+
cont_toks_list.append(continuation_enc)
|
579 |
+
inplens.append(inplen)
|
580 |
+
|
581 |
+
# create encoder attn mask and batched conts, if seq2seq
|
582 |
+
call_kwargs = {}
|
583 |
+
batched_inps = lm_eval.models.utils.pad_and_concat(
|
584 |
+
padding_len_inp, inps, padding_side="right"
|
585 |
+
) # [batch, padding_len_inp]
|
586 |
+
|
587 |
+
multi_logits = F.log_softmax(
|
588 |
+
self._model_call(batched_inps, **call_kwargs), dim=-1
|
589 |
+
) # [batch, padding_length (inp or cont), vocab]
|
590 |
+
|
591 |
+
for (cache_key, _, _), logits, inplen, cont_toks in zip(
|
592 |
+
chunk, multi_logits, inplens, cont_toks_list
|
593 |
+
):
|
594 |
+
# Slice to original seq length
|
595 |
+
contlen = len(cont_toks)
|
596 |
+
# take only logits in the continuation
|
597 |
+
# (discard context toks if decoder-only ; discard right-padding)
|
598 |
+
# also discards + checks for "virtual tokens" in the causal LM's input window
|
599 |
+
# from prompt/prefix tuning tokens, if applicable
|
600 |
+
ctx_len = inplen + (logits.shape[0] - padding_len_inp)
|
601 |
+
logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
|
602 |
+
logits = logits.unsqueeze(0) # [1, seq, vocab]
|
603 |
+
|
604 |
+
# Check if per-token argmax is exactly equal to continuation
|
605 |
+
greedy_tokens = logits.argmax(dim=-1)
|
606 |
+
cont_toks = torch.tensor(
|
607 |
+
cont_toks, dtype=torch.long, device=self.device
|
608 |
+
).unsqueeze(0) # [1, seq]
|
609 |
+
max_equal = (greedy_tokens == cont_toks).all()
|
610 |
+
|
611 |
+
# Obtain log-probs at the corresponding continuation token indices
|
612 |
+
# last_token_slice = logits[:, -1, :].squeeze(0).tolist()
|
613 |
+
logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
|
614 |
+
-1
|
615 |
+
) # [1, seq]
|
616 |
+
|
617 |
+
# Answer: (log prob, is-exact-match)
|
618 |
+
answer = (float(logits.sum()), bool(max_equal))
|
619 |
+
|
620 |
+
res.append(answer)
|
621 |
+
|
622 |
+
self.cache_hook.add_partial("loglikelihood", cache_key, answer)
|
623 |
+
|
624 |
+
return re_ord.get_original(res)
|
625 |
+
|
626 |
+
def generate_until(self, requests, disable_tqdm: bool = False):
|
627 |
+
res = defaultdict(list)
|
628 |
+
re_ords = {}
|
629 |
+
|
630 |
+
def _collate(x):
|
631 |
+
# the negative sign on len(toks) sorts descending - this has a few advantages:
|
632 |
+
# - time estimates will always be over not underestimates, which is more useful for planning
|
633 |
+
# - to know the size of a batch when going through the list, you know the first one is always the batch
|
634 |
+
# padded context length. this is useful to simplify the batching logic and more importantly to make
|
635 |
+
# automatic adaptive batches much much easier to implement
|
636 |
+
# - any OOMs will happen right away rather than near the end
|
637 |
+
toks = self.tok_encode(x[0])
|
638 |
+
return -len(toks), x[0]
|
639 |
+
|
640 |
+
# we group requests by their generation_kwargs,
|
641 |
+
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
|
642 |
+
# in the same batch.
|
643 |
+
grouper = lm_eval.models.utils.Grouper(requests, lambda x: str(x.args[1]))
|
644 |
+
for key, reqs in grouper.get_grouped().items():
|
645 |
+
# within each set of reqs for given kwargs, we reorder by token length, descending.
|
646 |
+
re_ords[key] = utils.Reorderer([req.args for req in reqs], _collate)
|
647 |
+
|
648 |
+
pbar = tqdm(total=len(requests), disable=(disable_tqdm or (self.rank != 0)))
|
649 |
+
|
650 |
+
# for each different set of kwargs, we execute all requests, by batch.
|
651 |
+
for key, re_ord in re_ords.items():
|
652 |
+
chunks = lm_eval.models.utils.chunks(
|
653 |
+
re_ord.get_reordered(), n=self.batch_size
|
654 |
+
)
|
655 |
+
for chunk in tqdm(chunks, disable=self.rank != 0):
|
656 |
+
contexts, all_gen_kwargs = zip(*chunk)
|
657 |
+
# we assume all gen kwargs in the batch are the same
|
658 |
+
# this is safe to assume because the `grouper` object ensures it.
|
659 |
+
gen_kwargs = all_gen_kwargs[0]
|
660 |
+
# unpack our keyword arguments.
|
661 |
+
until = None
|
662 |
+
if isinstance(gen_kwargs, dict):
|
663 |
+
kwargs = copy.deepcopy(gen_kwargs) # edge case for repeats > 1
|
664 |
+
if "until" in kwargs.keys():
|
665 |
+
until = kwargs.pop("until")
|
666 |
+
if isinstance(until, str):
|
667 |
+
until = [until]
|
668 |
+
elif not isinstance(until, list):
|
669 |
+
raise ValueError(
|
670 |
+
f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
|
671 |
+
)
|
672 |
+
else:
|
673 |
+
raise ValueError(
|
674 |
+
f"Expected `kwargs` to be of type `dict` but got {kwargs}"
|
675 |
+
)
|
676 |
+
# add EOS token to stop sequences
|
677 |
+
eos = self.tok_decode(self.eot_token_id)
|
678 |
+
if not until:
|
679 |
+
until = [eos]
|
680 |
+
else:
|
681 |
+
until.append(eos)
|
682 |
+
if "max_gen_toks" in kwargs.keys():
|
683 |
+
max_gen_toks = kwargs.pop("max_gen_toks")
|
684 |
+
else:
|
685 |
+
max_gen_toks = self.max_gen_toks
|
686 |
+
# first stop sequence is used to halt generation upon encountering
|
687 |
+
primary_until = [until[0]]
|
688 |
+
|
689 |
+
max_ctx_len = self.max_length - max_gen_toks
|
690 |
+
|
691 |
+
# encode, pad, and truncate contexts for this batch
|
692 |
+
context_enc, attn_masks = self.tok_batch_encode(
|
693 |
+
contexts,
|
694 |
+
left_truncate_len=max_ctx_len,
|
695 |
+
truncation=self.truncation,
|
696 |
+
)
|
697 |
+
context_enc = context_enc.to(self.device)
|
698 |
+
attn_masks = attn_masks.to(self.device)
|
699 |
+
|
700 |
+
if "max_length" not in kwargs:
|
701 |
+
kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
|
702 |
+
|
703 |
+
# perform batched generation
|
704 |
+
cont = self._model_generate(
|
705 |
+
context=context_enc,
|
706 |
+
attention_mask=attn_masks,
|
707 |
+
stop=primary_until,
|
708 |
+
**kwargs,
|
709 |
+
)
|
710 |
+
|
711 |
+
cont_toks_list = cont.tolist()
|
712 |
+
for cont_toks, context in zip(cont_toks_list, contexts):
|
713 |
+
# discard context + left-padding toks if using causal decoder-only LM
|
714 |
+
cont_toks = cont_toks[context_enc.shape[1] :]
|
715 |
+
|
716 |
+
s = self.tok_decode(cont_toks)
|
717 |
+
|
718 |
+
# use secondary stop seqs to cut off should-have-been-stopped content post-hoc
|
719 |
+
for term in until:
|
720 |
+
if len(term) > 0:
|
721 |
+
# ignore '' separator,
|
722 |
+
# for seq2seq case where self.tok_decode(self.eot_token_id) = ''
|
723 |
+
s = s.split(term)[0]
|
724 |
+
|
725 |
+
res[key].append(s)
|
726 |
+
|
727 |
+
self.cache_hook.add_partial(
|
728 |
+
"generate_until", (context, gen_kwargs), s
|
729 |
+
)
|
730 |
+
pbar.update(1)
|
731 |
+
# reorder this group of results back to original unsorted form
|
732 |
+
res[key] = re_ord.get_original(res[key])
|
733 |
+
|
734 |
+
pbar.close()
|
735 |
+
|
736 |
+
return grouper.get_original(res)
|
lm-evaluation/lm_eval/models/openai_completions.py
ADDED
@@ -0,0 +1,481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import os
|
3 |
+
from collections import defaultdict
|
4 |
+
from importlib.util import find_spec
|
5 |
+
from typing import List, Literal, Optional, Tuple
|
6 |
+
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
import lm_eval.models.utils
|
10 |
+
from lm_eval import utils
|
11 |
+
from lm_eval.api.model import LM, TemplateLM
|
12 |
+
from lm_eval.api.registry import register_model
|
13 |
+
from lm_eval.models.utils import retry_on_specific_exceptions
|
14 |
+
from lm_eval.utils import eval_logger
|
15 |
+
|
16 |
+
|
17 |
+
def get_result(response, ctxlen: int) -> Tuple[float, bool]:
|
18 |
+
"""Process results from OpenAI API response.
|
19 |
+
|
20 |
+
:param response: dict
|
21 |
+
OpenAI API Response
|
22 |
+
:param ctxlen: int
|
23 |
+
Length of context (so we can slice them away and only keep the predictions)
|
24 |
+
:return:
|
25 |
+
continuation_logprobs: np.array
|
26 |
+
Log probabilities of continuation tokens
|
27 |
+
is_greedy: bool
|
28 |
+
whether argmax matches given continuation exactly
|
29 |
+
"""
|
30 |
+
is_greedy = True
|
31 |
+
logprobs = response.logprobs.token_logprobs
|
32 |
+
continuation_logprobs = sum(logprobs[ctxlen:])
|
33 |
+
|
34 |
+
for i in range(ctxlen, len(response.logprobs.token_logprobs)):
|
35 |
+
token = response.logprobs.token_logprobs[i]
|
36 |
+
top_tokens = response.logprobs.top_logprobs[i]
|
37 |
+
top_token = max(top_tokens.keys(), key=lambda x: top_tokens[x])
|
38 |
+
if top_token != token:
|
39 |
+
is_greedy = False
|
40 |
+
break
|
41 |
+
|
42 |
+
return continuation_logprobs, is_greedy
|
43 |
+
|
44 |
+
|
45 |
+
def oa_completion(client, chat: bool = False, **kwargs):
|
46 |
+
"""Query OpenAI API for completion.
|
47 |
+
|
48 |
+
Retry with back-off until they respond
|
49 |
+
"""
|
50 |
+
if not find_spec("openai") or not find_spec("tiktoken"):
|
51 |
+
raise Exception(
|
52 |
+
"attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. "
|
53 |
+
"Please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`"
|
54 |
+
)
|
55 |
+
else:
|
56 |
+
import openai
|
57 |
+
|
58 |
+
def _exception_callback(e: Exception, sleep_time: float) -> None:
|
59 |
+
import traceback
|
60 |
+
|
61 |
+
traceback.print_exc()
|
62 |
+
|
63 |
+
@retry_on_specific_exceptions(
|
64 |
+
on_exceptions=[openai.OpenAIError],
|
65 |
+
max_retries=None, # retry forever, consider changing
|
66 |
+
on_exception_callback=_exception_callback,
|
67 |
+
)
|
68 |
+
def completion():
|
69 |
+
if chat:
|
70 |
+
return client.chat.completions.create(**kwargs)
|
71 |
+
else:
|
72 |
+
return client.completions.create(**kwargs)
|
73 |
+
|
74 |
+
return completion()
|
75 |
+
|
76 |
+
|
77 |
+
@register_model("openai-completions", "local-completions")
|
78 |
+
class OpenaiCompletionsLM(TemplateLM):
|
79 |
+
_DEFAULT_MAX_LENGTH = 2048
|
80 |
+
|
81 |
+
def __init__(
|
82 |
+
self,
|
83 |
+
model: str,
|
84 |
+
base_url: str = None,
|
85 |
+
tokenizer: Optional[str] = None,
|
86 |
+
tokenizer_backend: Literal["tiktoken", "huggingface"] = "tiktoken",
|
87 |
+
truncate: bool = False,
|
88 |
+
max_gen_toks: int = 256,
|
89 |
+
batch_size: int = 1,
|
90 |
+
seed: int = 1234,
|
91 |
+
max_length: Optional[int] = None,
|
92 |
+
) -> None:
|
93 |
+
"""
|
94 |
+
|
95 |
+
:param engine: str
|
96 |
+
OpenAI API engine (e.g. gpt-3.5-turbo-instruct)
|
97 |
+
:param truncate: bool
|
98 |
+
Truncate input if too long (if False and input is too long, throw error)
|
99 |
+
"""
|
100 |
+
super().__init__()
|
101 |
+
self.seed = seed
|
102 |
+
try:
|
103 |
+
import openai # noqa: E401
|
104 |
+
import tiktoken
|
105 |
+
except ModuleNotFoundError:
|
106 |
+
raise Exception(
|
107 |
+
"attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. \
|
108 |
+
please install these via `pip install lm-eval[openai]` or `pip install -e .\"[openai]\"`",
|
109 |
+
)
|
110 |
+
self.model = model
|
111 |
+
self.base_url = base_url
|
112 |
+
self.tokenizer_backend = tokenizer_backend
|
113 |
+
self.truncate = truncate
|
114 |
+
self._batch_size = int(batch_size)
|
115 |
+
self._max_gen_toks = max_gen_toks
|
116 |
+
self._max_length = max_length
|
117 |
+
|
118 |
+
# if we have a local model, use HF tokenizer over tiktoken
|
119 |
+
if self.tokenizer_backend == "huggingface":
|
120 |
+
import transformers # noqa: E401
|
121 |
+
|
122 |
+
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
|
123 |
+
tokenizer if tokenizer else self.model
|
124 |
+
)
|
125 |
+
self.vocab_size = self.tokenizer.vocab
|
126 |
+
self.end_of_text_token_id = self.tokenizer.eos_token
|
127 |
+
elif self.tokenizer_backend == "tiktoken":
|
128 |
+
if self.base_url:
|
129 |
+
eval_logger.warning(
|
130 |
+
f"Passed `base_url={self.base_url}` but using Tiktoken tokenizer backend. "
|
131 |
+
"Pass `tokenizer_backend=huggingface` and provide the HF tokenizer name if your model does not use Tiktoken."
|
132 |
+
)
|
133 |
+
|
134 |
+
self.tokenizer = tiktoken.encoding_for_model(self.model)
|
135 |
+
self.vocab_size = self.tokenizer.n_vocab
|
136 |
+
self.end_of_text_token_id = self.tokenizer.eot_token
|
137 |
+
else:
|
138 |
+
raise ValueError(
|
139 |
+
f"Expected tokenizer_backend to be one of ['tiktoken', 'huggingface'] but got {self.tokenizer_backend}"
|
140 |
+
)
|
141 |
+
|
142 |
+
# Read from environment variable OPENAI_API_KEY
|
143 |
+
# Set to EMPTY for local
|
144 |
+
openai.api_key = os.environ["OPENAI_API_KEY"]
|
145 |
+
if self.base_url:
|
146 |
+
self.client = openai.OpenAI(base_url=self.base_url)
|
147 |
+
else:
|
148 |
+
self.client = openai.OpenAI()
|
149 |
+
|
150 |
+
@property
|
151 |
+
def eot_token_id(self):
|
152 |
+
return self.end_of_text_token_id
|
153 |
+
|
154 |
+
@property
|
155 |
+
def max_length(self) -> int:
|
156 |
+
if self._max_length:
|
157 |
+
return self._max_length
|
158 |
+
else:
|
159 |
+
return self._DEFAULT_MAX_LENGTH
|
160 |
+
|
161 |
+
@property
|
162 |
+
def max_gen_toks(self) -> int:
|
163 |
+
return self._max_gen_toks
|
164 |
+
|
165 |
+
@property
|
166 |
+
def batch_size(self) -> int:
|
167 |
+
return self._batch_size
|
168 |
+
|
169 |
+
@property
|
170 |
+
def device(self):
|
171 |
+
# Isn't used because we override _loglikelihood_tokens
|
172 |
+
raise NotImplementedError()
|
173 |
+
|
174 |
+
def tok_encode(self, string: str, **kwargs) -> List[int]:
|
175 |
+
return self.tokenizer.encode(string)
|
176 |
+
|
177 |
+
def tok_decode(self, tokens: List[int]) -> str:
|
178 |
+
return self.tokenizer.decode(tokens)
|
179 |
+
|
180 |
+
def _loglikelihood_tokens(
|
181 |
+
self, requests, disable_tqdm: bool = False
|
182 |
+
) -> List[Tuple[float, bool]]:
|
183 |
+
res = []
|
184 |
+
|
185 |
+
def _collate(x):
|
186 |
+
# this doesn't efficiently handle last-token differences yet, but those are kinda annoying because
|
187 |
+
# it's not guaranteed that the 100 or so logprobs we get to see actually contain all the continuations
|
188 |
+
# we care about, and so we need some kind of backup for when it isn't
|
189 |
+
toks = x[1] + x[2]
|
190 |
+
return -len(toks), tuple(toks)
|
191 |
+
|
192 |
+
re_ord = utils.Reorderer(requests, _collate)
|
193 |
+
|
194 |
+
for chunk in tqdm(
|
195 |
+
list(lm_eval.models.utils.chunks(re_ord.get_reordered(), self.batch_size)),
|
196 |
+
disable=disable_tqdm,
|
197 |
+
):
|
198 |
+
inps = []
|
199 |
+
ctxlens = []
|
200 |
+
for cache_key, context_enc, continuation_enc in chunk:
|
201 |
+
# max_length+1 because the API takes up to 2049 tokens, including the first context token
|
202 |
+
inp = (context_enc + continuation_enc)[-(self.max_length + 1) :]
|
203 |
+
# TODO: the logic is much simpler if we just look at the length of continuation tokens
|
204 |
+
ctxlen = len(context_enc) - max(
|
205 |
+
0, len(context_enc) + len(continuation_enc) - (self.max_length + 1)
|
206 |
+
)
|
207 |
+
|
208 |
+
inps.append(inp)
|
209 |
+
ctxlens.append(ctxlen)
|
210 |
+
|
211 |
+
response = oa_completion(
|
212 |
+
client=self.client,
|
213 |
+
model=self.model,
|
214 |
+
prompt=inps,
|
215 |
+
echo=True,
|
216 |
+
max_tokens=0,
|
217 |
+
temperature=0.0,
|
218 |
+
logprobs=10,
|
219 |
+
seed=self.seed,
|
220 |
+
)
|
221 |
+
|
222 |
+
for resp, ctxlen, (cache_key, context_enc, continuation_enc) in zip(
|
223 |
+
response.choices, ctxlens, chunk
|
224 |
+
):
|
225 |
+
answer = get_result(resp, ctxlen)
|
226 |
+
|
227 |
+
res.append(answer)
|
228 |
+
|
229 |
+
# partial caching
|
230 |
+
if cache_key is not None:
|
231 |
+
self.cache_hook.add_partial("loglikelihood", cache_key, answer)
|
232 |
+
return re_ord.get_original(res)
|
233 |
+
|
234 |
+
def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]:
|
235 |
+
if not requests:
|
236 |
+
return []
|
237 |
+
res = []
|
238 |
+
requests = [req.args for req in requests]
|
239 |
+
|
240 |
+
def _collate(x):
|
241 |
+
toks = self.tok_encode(x[0])
|
242 |
+
return len(toks), x[0]
|
243 |
+
|
244 |
+
re_ord = utils.Reorderer(requests, _collate)
|
245 |
+
|
246 |
+
def sameuntil_chunks(xs, size):
|
247 |
+
ret = []
|
248 |
+
lastuntil = xs[0][1]
|
249 |
+
for x in xs:
|
250 |
+
if len(ret) >= size or x[1] != lastuntil:
|
251 |
+
yield ret, lastuntil
|
252 |
+
ret = []
|
253 |
+
lastuntil = x[1]
|
254 |
+
ret.append(x)
|
255 |
+
|
256 |
+
if ret:
|
257 |
+
yield ret, lastuntil
|
258 |
+
|
259 |
+
# todo: more intelligent batching for heterogeneous `until`
|
260 |
+
for chunk, request_args in tqdm(
|
261 |
+
list(sameuntil_chunks(re_ord.get_reordered(), self.batch_size)),
|
262 |
+
disable=disable_tqdm,
|
263 |
+
):
|
264 |
+
inps = []
|
265 |
+
self._max_gen_toks = request_args.get("max_gen_toks", self.max_gen_toks)
|
266 |
+
for context, _ in chunk:
|
267 |
+
context_enc = self.tok_encode(context)
|
268 |
+
inp = context_enc[-(self.max_length - self.max_gen_toks) :]
|
269 |
+
inps.append(inp)
|
270 |
+
|
271 |
+
until = request_args.get("until", ["<|endoftext|>"])
|
272 |
+
request_args["temperature"] = request_args.get("temperature", 0)
|
273 |
+
|
274 |
+
response = oa_completion(
|
275 |
+
client=self.client,
|
276 |
+
model=self.model,
|
277 |
+
prompt=inps,
|
278 |
+
max_tokens=self.max_gen_toks,
|
279 |
+
stop=until,
|
280 |
+
seed=self.seed,
|
281 |
+
**{
|
282 |
+
k: v
|
283 |
+
for k, v in request_args.items()
|
284 |
+
if k not in {"do_sample", "max_gen_toks", "until"}
|
285 |
+
},
|
286 |
+
)
|
287 |
+
for resp, (context, args_) in zip(response.choices, chunk):
|
288 |
+
s = getattr(resp, "text")
|
289 |
+
|
290 |
+
until_ = until
|
291 |
+
|
292 |
+
for term in until_:
|
293 |
+
if len(term) > 0:
|
294 |
+
s = s.split(term)[0]
|
295 |
+
|
296 |
+
# partial caching
|
297 |
+
self.cache_hook.add_partial(
|
298 |
+
"generate_until", (context, {"until": until_}), s
|
299 |
+
)
|
300 |
+
|
301 |
+
res.append(s)
|
302 |
+
return re_ord.get_original(res)
|
303 |
+
|
304 |
+
def _model_call(self, inps):
|
305 |
+
# Isn't used because we override _loglikelihood_tokens
|
306 |
+
raise NotImplementedError()
|
307 |
+
|
308 |
+
def _model_generate(self, context, max_length, eos_token_id):
|
309 |
+
# Isn't used because we override generate_until
|
310 |
+
raise NotImplementedError()
|
311 |
+
|
312 |
+
def loglikelihood_rolling(
|
313 |
+
self, requests, disable_tqdm: bool = False
|
314 |
+
) -> List[float]:
|
315 |
+
loglikelihoods = []
|
316 |
+
|
317 |
+
for (string,) in tqdm([req.args for req in requests], disable=disable_tqdm):
|
318 |
+
rolling_token_windows = list(
|
319 |
+
map(
|
320 |
+
utils.make_disjoint_window,
|
321 |
+
utils.get_rolling_token_windows(
|
322 |
+
token_list=self.tok_encode(string),
|
323 |
+
prefix_token=self.eot_token_id,
|
324 |
+
max_seq_len=self.max_length,
|
325 |
+
context_len=1,
|
326 |
+
),
|
327 |
+
)
|
328 |
+
)
|
329 |
+
|
330 |
+
# TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
|
331 |
+
rolling_token_windows = [(None,) + x for x in rolling_token_windows]
|
332 |
+
|
333 |
+
string_nll = self._loglikelihood_tokens(
|
334 |
+
rolling_token_windows,
|
335 |
+
disable_tqdm=True,
|
336 |
+
)
|
337 |
+
|
338 |
+
# discard is_greedy
|
339 |
+
string_nll = [x[0] for x in string_nll]
|
340 |
+
|
341 |
+
string_nll = sum(string_nll)
|
342 |
+
loglikelihoods.append(string_nll)
|
343 |
+
return loglikelihoods
|
344 |
+
|
345 |
+
|
346 |
+
@register_model("openai-chat-completions", "local-chat-completions")
|
347 |
+
class OpenaiChatCompletionsLM(LM):
|
348 |
+
def __init__(
|
349 |
+
self,
|
350 |
+
model: str = "gpt-3.5-turbo", # GPT model or Local model using HuggingFace model paths
|
351 |
+
base_url: str = None,
|
352 |
+
truncate: bool = False,
|
353 |
+
**kwargs,
|
354 |
+
) -> None:
|
355 |
+
"""
|
356 |
+
|
357 |
+
:param model: str
|
358 |
+
Implements an OpenAI-style chat completion API for
|
359 |
+
accessing both OpenAI OR locally-hosted models using
|
360 |
+
HuggingFace Tokenizer
|
361 |
+
OpenAI API model (e.g. gpt-3.5-turbo)
|
362 |
+
using the **gen_kwargs passed on init
|
363 |
+
:param truncate: bool
|
364 |
+
Truncate input if too long (if False and input is too long, throw error)
|
365 |
+
"""
|
366 |
+
super().__init__()
|
367 |
+
try:
|
368 |
+
import openai # noqa: E401
|
369 |
+
except ModuleNotFoundError:
|
370 |
+
raise Exception(
|
371 |
+
"attempted to use 'openai' LM type, but package `openai` or `tiktoken` are not installed. \
|
372 |
+
please install these via `pip install lm-eval[openai]` or `pip install -e .[openai]`",
|
373 |
+
)
|
374 |
+
self.model = model
|
375 |
+
self.base_url = base_url
|
376 |
+
self.truncate = truncate
|
377 |
+
|
378 |
+
# Read from environment variable OPENAI_API_KEY
|
379 |
+
# Set to EMPTY for local
|
380 |
+
if self.base_url:
|
381 |
+
self.client = openai.OpenAI(base_url=self.base_url)
|
382 |
+
else:
|
383 |
+
self.client = openai.OpenAI() # openai.AsyncOpenAI()
|
384 |
+
|
385 |
+
@property
|
386 |
+
def max_length(self) -> int:
|
387 |
+
# Note: the OpenAI API supports up to 2049 tokens, with the first token being the first input token
|
388 |
+
return 2048
|
389 |
+
|
390 |
+
@property
|
391 |
+
def max_gen_toks(self) -> int:
|
392 |
+
return 256
|
393 |
+
|
394 |
+
@property
|
395 |
+
def batch_size(self):
|
396 |
+
# Isn't used because we override _loglikelihood_tokens
|
397 |
+
raise NotImplementedError()
|
398 |
+
|
399 |
+
@property
|
400 |
+
def device(self):
|
401 |
+
# Isn't used because we override _loglikelihood_tokens
|
402 |
+
raise NotImplementedError()
|
403 |
+
|
404 |
+
def generate_until(self, requests, disable_tqdm: bool = False) -> List[str]:
|
405 |
+
res = defaultdict(list)
|
406 |
+
re_ords = {}
|
407 |
+
|
408 |
+
# we group requests by their generation_kwargs,
|
409 |
+
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
|
410 |
+
# in the same batch.
|
411 |
+
grouper = lm_eval.models.utils.Grouper(requests, lambda x: str(x.args[1]))
|
412 |
+
for key, reqs in grouper.get_grouped().items():
|
413 |
+
# within each set of reqs for given kwargs, we reorder by token length, descending.
|
414 |
+
re_ords[key] = utils.Reorderer(
|
415 |
+
[req.args for req in reqs], lambda x: (-len(x[0]), x[0])
|
416 |
+
)
|
417 |
+
|
418 |
+
pbar = tqdm(total=len(requests), disable=(disable_tqdm or (self.rank != 0)))
|
419 |
+
for key, re_ord in re_ords.items():
|
420 |
+
# n needs to be 1 because messages in
|
421 |
+
# chat completion are not batch but
|
422 |
+
# is regarded as a single conversation.
|
423 |
+
chunks = lm_eval.models.utils.chunks(re_ord.get_reordered(), n=1)
|
424 |
+
for chunk in chunks:
|
425 |
+
contexts, all_gen_kwargs = zip(*chunk)
|
426 |
+
inps = [{"role": "user", "content": context} for context in contexts]
|
427 |
+
|
428 |
+
gen_kwargs = all_gen_kwargs[0]
|
429 |
+
until = None
|
430 |
+
if isinstance(kwargs := copy.deepcopy(gen_kwargs), dict):
|
431 |
+
if "do_sample" in kwargs.keys():
|
432 |
+
kwargs.pop("do_sample")
|
433 |
+
if "until" in kwargs.keys():
|
434 |
+
until = kwargs.pop("until")
|
435 |
+
if isinstance(until, str):
|
436 |
+
until = [kwargs]
|
437 |
+
elif not isinstance(until, list):
|
438 |
+
raise ValueError(
|
439 |
+
f"Expected repr(kwargs['until']) to be of type Union[str, list] but got {until}"
|
440 |
+
)
|
441 |
+
kwargs["stop"] = until
|
442 |
+
kwargs["max_tokens"] = kwargs.pop("max_gen_toks", self.max_gen_toks)
|
443 |
+
else:
|
444 |
+
raise ValueError(
|
445 |
+
f"Expected repr(kwargs) to be of type repr(dict) but got {kwargs}"
|
446 |
+
)
|
447 |
+
|
448 |
+
response = oa_completion(
|
449 |
+
client=self.client,
|
450 |
+
chat=True,
|
451 |
+
messages=inps,
|
452 |
+
model=self.model,
|
453 |
+
**kwargs,
|
454 |
+
)
|
455 |
+
|
456 |
+
for resp, (context, args_) in zip(response.choices, chunk):
|
457 |
+
s = resp.message.content
|
458 |
+
|
459 |
+
if until is not None:
|
460 |
+
for term in until:
|
461 |
+
if len(term) > 0:
|
462 |
+
s = s.split(term)[0]
|
463 |
+
|
464 |
+
res[key].append(s)
|
465 |
+
|
466 |
+
self.cache_hook.add_partial(
|
467 |
+
"generate_until", (context, {"until": until}), s
|
468 |
+
)
|
469 |
+
pbar.update(1)
|
470 |
+
# reorder this group of results back to original unsorted form
|
471 |
+
res[key] = re_ord.get_original(res[key])
|
472 |
+
|
473 |
+
pbar.close()
|
474 |
+
|
475 |
+
return grouper.get_original(res)
|
476 |
+
|
477 |
+
def loglikelihood(self, requests, disable_tqdm: bool = False):
|
478 |
+
raise NotImplementedError("No support for logits.")
|
479 |
+
|
480 |
+
def loglikelihood_rolling(self, requests, disable_tqdm: bool = False):
|
481 |
+
raise NotImplementedError("No support for logits.")
|
lm-evaluation/lm_eval/models/optimum_lm.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from importlib.util import find_spec
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
from lm_eval.api.registry import register_model
|
5 |
+
from lm_eval.models.huggingface import HFLM
|
6 |
+
|
7 |
+
|
8 |
+
@register_model("openvino")
|
9 |
+
class OptimumLM(HFLM):
|
10 |
+
"""
|
11 |
+
Optimum Intel provides a simple interface to optimize Transformer models and convert them to \
|
12 |
+
OpenVINO™ Intermediate Representation (IR) format to accelerate end-to-end pipelines on \
|
13 |
+
Intel® architectures using OpenVINO™ runtime.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
device="cpu",
|
19 |
+
**kwargs,
|
20 |
+
) -> None:
|
21 |
+
if "backend" in kwargs:
|
22 |
+
# optimum currently only supports causal models
|
23 |
+
assert (
|
24 |
+
kwargs["backend"] == "causal"
|
25 |
+
), "Currently, only OVModelForCausalLM is supported."
|
26 |
+
|
27 |
+
self.openvino_device = device
|
28 |
+
|
29 |
+
super().__init__(
|
30 |
+
device=self.openvino_device,
|
31 |
+
backend=kwargs.pop("backend", "causal"),
|
32 |
+
**kwargs,
|
33 |
+
)
|
34 |
+
|
35 |
+
def _create_model(
|
36 |
+
self,
|
37 |
+
pretrained: str,
|
38 |
+
revision="main",
|
39 |
+
dtype="auto",
|
40 |
+
trust_remote_code=False,
|
41 |
+
**kwargs,
|
42 |
+
) -> None:
|
43 |
+
if not find_spec("optimum"):
|
44 |
+
raise Exception(
|
45 |
+
"package `optimum` is not installed. Please install it via `pip install optimum[openvino]`"
|
46 |
+
)
|
47 |
+
else:
|
48 |
+
from optimum.intel.openvino import OVModelForCausalLM
|
49 |
+
|
50 |
+
model_kwargs = kwargs if kwargs else {}
|
51 |
+
model_file = Path(pretrained) / "openvino_model.xml"
|
52 |
+
if model_file.exists():
|
53 |
+
export = False
|
54 |
+
else:
|
55 |
+
export = True
|
56 |
+
kwargs["ov_config"] = {
|
57 |
+
"PERFORMANCE_HINT": "LATENCY",
|
58 |
+
"NUM_STREAMS": "1",
|
59 |
+
"CACHE_DIR": "",
|
60 |
+
}
|
61 |
+
|
62 |
+
self._model = OVModelForCausalLM.from_pretrained(
|
63 |
+
pretrained,
|
64 |
+
revision=revision,
|
65 |
+
trust_remote_code=trust_remote_code,
|
66 |
+
export=export,
|
67 |
+
device=self.openvino_device.upper(),
|
68 |
+
**model_kwargs,
|
69 |
+
)
|
lm-evaluation/lm_eval/models/textsynth.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" TextSynth API
|
2 |
+
Implementation provided by Fabrice Bellard:
|
3 |
+
https://github.com/EleutherAI/lm-evaluation-harness/issues/295
|
4 |
+
|
5 |
+
In order to use the API, you must have a valid TextSynth account and
|
6 |
+
enough credits.
|
7 |
+
|
8 |
+
Example usage:
|
9 |
+
|
10 |
+
python main.py --model textsynth --model_args engine=gptj_6B --no_cache --tasks piqa
|
11 |
+
|
12 |
+
Homepage: https://textsynth.com/index.html
|
13 |
+
"""
|
14 |
+
import logging
|
15 |
+
import os
|
16 |
+
|
17 |
+
import requests as _requests
|
18 |
+
from tqdm import tqdm
|
19 |
+
|
20 |
+
from lm_eval.api.model import LM
|
21 |
+
from lm_eval.api.registry import register_model
|
22 |
+
from lm_eval.models.utils import retry_on_specific_exceptions
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.getLogger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
def textsynth_completion(**kwargs):
|
29 |
+
"""Query TextSynth API for completion.
|
30 |
+
Retry with back-off until they respond.
|
31 |
+
"""
|
32 |
+
|
33 |
+
def _exception_callback(e: Exception, sleep_time: float) -> None:
|
34 |
+
import traceback
|
35 |
+
|
36 |
+
traceback.print_exc()
|
37 |
+
|
38 |
+
@retry_on_specific_exceptions(
|
39 |
+
on_exceptions=[_requests.exceptions.RequestException],
|
40 |
+
max_retries=None, # retry forever, consider changing
|
41 |
+
on_exception_callback=_exception_callback,
|
42 |
+
)
|
43 |
+
def completion():
|
44 |
+
return _requests.post(**kwargs)
|
45 |
+
|
46 |
+
return completion()
|
47 |
+
|
48 |
+
|
49 |
+
@register_model("textsynth")
|
50 |
+
class TextSynthLM(LM):
|
51 |
+
def __init__(self, engine, truncate: bool = False, **kwargs) -> None:
|
52 |
+
"""
|
53 |
+
:param engine: str
|
54 |
+
TextSynth API engine (e.g. `gptj_6B`)
|
55 |
+
:param truncate: bool
|
56 |
+
Truncate input if too long (if False and input is too long, throw error)
|
57 |
+
"""
|
58 |
+
super().__init__()
|
59 |
+
|
60 |
+
self.engine = engine
|
61 |
+
self.truncate = truncate
|
62 |
+
self.api_url = "https://api.textsynth.com"
|
63 |
+
# Read from environment variable TEXTSYNTH_API_SECRET_KEY
|
64 |
+
self.api_key = os.environ["TEXTSYNTH_API_SECRET_KEY"]
|
65 |
+
|
66 |
+
@property
|
67 |
+
def eot_token_id(self):
|
68 |
+
# Isn't used because we override loglikelihood, loglikelihood_rolling and generate_until
|
69 |
+
raise NotImplementedError()
|
70 |
+
|
71 |
+
@property
|
72 |
+
def max_length(self) -> int:
|
73 |
+
# NOTE: Turn on truncation to avoid errors on long inputs.
|
74 |
+
return 2048
|
75 |
+
|
76 |
+
@property
|
77 |
+
def max_gen_toks(self) -> int:
|
78 |
+
return 256
|
79 |
+
|
80 |
+
@property
|
81 |
+
def batch_size(self):
|
82 |
+
# Isn't used because we override loglikelihood, loglikelihood_rolling and generate_until
|
83 |
+
raise NotImplementedError()
|
84 |
+
|
85 |
+
@property
|
86 |
+
def device(self):
|
87 |
+
# Isn't used because we override loglikelihood, loglikelihood_rolling and generate_until
|
88 |
+
raise NotImplementedError()
|
89 |
+
|
90 |
+
def tok_encode(self, string: str):
|
91 |
+
# Isn't used because we override loglikelihood, loglikelihood_rolling and generate_until
|
92 |
+
raise NotImplementedError()
|
93 |
+
|
94 |
+
def tok_decode(self, tokens):
|
95 |
+
# Isn't used because we override loglikelihood, loglikelihood_rolling and generate_until
|
96 |
+
raise NotImplementedError()
|
97 |
+
|
98 |
+
def loglikelihood(self, requests, disable_tqdm: bool = False):
|
99 |
+
res = []
|
100 |
+
for context, continuation in tqdm(requests, disable=disable_tqdm):
|
101 |
+
response = textsynth_completion(
|
102 |
+
url=self.api_url + "/v1/engines/" + self.engine + "/logprob",
|
103 |
+
headers={"Authorization": "Bearer " + self.api_key},
|
104 |
+
json={"context": context, "continuation": continuation},
|
105 |
+
)
|
106 |
+
resp = response.json()
|
107 |
+
if "logprob" in resp:
|
108 |
+
logprob = resp["logprob"]
|
109 |
+
is_greedy = resp["is_greedy"]
|
110 |
+
res.append((logprob, is_greedy))
|
111 |
+
|
112 |
+
self.cache_hook.add_partial(
|
113 |
+
"loglikelihood", (context, continuation), (logprob, is_greedy)
|
114 |
+
)
|
115 |
+
else:
|
116 |
+
logger.error(
|
117 |
+
f"The following response does not contain `logprobs`. Got:\n{resp}"
|
118 |
+
)
|
119 |
+
assert False
|
120 |
+
return res
|
121 |
+
|
122 |
+
def loglikelihood_rolling(self, requests, disable_tqdm: bool = False):
|
123 |
+
# TODO: The TextSynth API does not support tokenized inputs so we cannot
|
124 |
+
# manually partition long contexts into smaller rolling windows as
|
125 |
+
# done for other models derived from `BaseLM`. Override this method
|
126 |
+
# with a windowing scheme that works for direct string inputs.
|
127 |
+
raise NotImplementedError(
|
128 |
+
"`loglikelihood_rolling` is currently not supported due to lack of "
|
129 |
+
"input tokenization support from TextSynth."
|
130 |
+
)
|
131 |
+
|
132 |
+
def generate_until(self, requests, disable_tqdm: bool = False):
|
133 |
+
if not requests:
|
134 |
+
return []
|
135 |
+
|
136 |
+
res = []
|
137 |
+
for request in tqdm(requests, disable=disable_tqdm):
|
138 |
+
inp = request[0]
|
139 |
+
request_args = request[1]
|
140 |
+
until = request_args["until"]
|
141 |
+
response = textsynth_completion(
|
142 |
+
url=self.api_url + "/v1/engines/" + self.engine + "/completions",
|
143 |
+
headers={"Authorization": "Bearer " + self.api_key},
|
144 |
+
json={
|
145 |
+
"prompt": inp,
|
146 |
+
"max_tokens": self.max_gen_toks,
|
147 |
+
"top_k": 1,
|
148 |
+
"stop": until,
|
149 |
+
},
|
150 |
+
)
|
151 |
+
resp = response.json()
|
152 |
+
if "text" in resp:
|
153 |
+
s = resp["text"]
|
154 |
+
res.append(s)
|
155 |
+
|
156 |
+
self.cache_hook.add_partial("generate_until", (inp, request_args), s)
|
157 |
+
else:
|
158 |
+
logger.error(
|
159 |
+
"The following response does not contain generated `text`. "
|
160 |
+
"Got:\n{resp}"
|
161 |
+
)
|
162 |
+
assert False
|
163 |
+
return res
|
164 |
+
|
165 |
+
def _model_call(self, inps):
|
166 |
+
# Isn't used because we override _loglikelihood_tokens
|
167 |
+
raise NotImplementedError()
|
168 |
+
|
169 |
+
def _model_generate(self, context, max_length, eos_token_id):
|
170 |
+
# Isn't used because we override generate_until
|
171 |
+
raise NotImplementedError()
|
lm-evaluation/lm_eval/models/utils.py
ADDED
@@ -0,0 +1,615 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import collections
|
2 |
+
import fnmatch
|
3 |
+
import gc
|
4 |
+
import itertools
|
5 |
+
import time
|
6 |
+
from functools import wraps
|
7 |
+
from typing import (
|
8 |
+
Any,
|
9 |
+
Callable,
|
10 |
+
Dict,
|
11 |
+
Iterable,
|
12 |
+
Iterator,
|
13 |
+
List,
|
14 |
+
Literal,
|
15 |
+
Optional,
|
16 |
+
Tuple,
|
17 |
+
Type,
|
18 |
+
Union,
|
19 |
+
)
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import transformers
|
23 |
+
|
24 |
+
from lm_eval.utils import eval_logger
|
25 |
+
|
26 |
+
|
27 |
+
def chunks(iter, n: int = 0, fn=None):
|
28 |
+
"""
|
29 |
+
Divides an iterable into chunks of specified size or based on a given function.
|
30 |
+
Useful for batching
|
31 |
+
|
32 |
+
Parameters:
|
33 |
+
- iter: The input iterable to be divided into chunks.
|
34 |
+
- n: An integer representing the size of each chunk. Default is 0.
|
35 |
+
- fn: A function that takes the current index and the iterable as arguments and returns the size of the chunk. Default is None.
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
An iterator that yields chunks of the input iterable.
|
39 |
+
|
40 |
+
Example usage:
|
41 |
+
```
|
42 |
+
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
43 |
+
for chunk in chunks(data, 3):
|
44 |
+
print(chunk)
|
45 |
+
```
|
46 |
+
Output:
|
47 |
+
```
|
48 |
+
[1, 2, 3]
|
49 |
+
[4, 5, 6]
|
50 |
+
[7, 8, 9]
|
51 |
+
[10]
|
52 |
+
```
|
53 |
+
"""
|
54 |
+
arr = []
|
55 |
+
for i, x in enumerate(iter):
|
56 |
+
arr.append(x)
|
57 |
+
if len(arr) == (fn(i, iter) if fn else n):
|
58 |
+
yield arr
|
59 |
+
arr = []
|
60 |
+
|
61 |
+
if arr:
|
62 |
+
yield arr
|
63 |
+
|
64 |
+
|
65 |
+
class MultiChoice:
|
66 |
+
def __init__(self, choices) -> None:
|
67 |
+
self.choices = choices
|
68 |
+
|
69 |
+
# Simple wildcard support (linux filename patterns)
|
70 |
+
def __contains__(self, values) -> bool:
|
71 |
+
for value in values.split(","):
|
72 |
+
if len(fnmatch.filter(self.choices, value)) == 0:
|
73 |
+
eval_logger.info("Available tasks to choose:")
|
74 |
+
for choice in self.choices:
|
75 |
+
eval_logger.info(f" - {choice}")
|
76 |
+
raise ValueError("'{}' is not in task list".format(value))
|
77 |
+
return True
|
78 |
+
|
79 |
+
def __iter__(self) -> Iterator:
|
80 |
+
for choice in self.choices:
|
81 |
+
yield choice
|
82 |
+
|
83 |
+
|
84 |
+
class Grouper:
|
85 |
+
"""
|
86 |
+
takes an array `arr` and function `fn` and returns a dictionary
|
87 |
+
with keys fn(ob) for each ob in `arr` and with values `self.arr[key]` a list of all
|
88 |
+
objects in `arr` satisfying `key == fn(ob)`.
|
89 |
+
"""
|
90 |
+
|
91 |
+
def __init__(self, arr, fn) -> None:
|
92 |
+
# self.orig_arr = arr
|
93 |
+
self.size = len(arr)
|
94 |
+
arr = list(enumerate(arr))
|
95 |
+
|
96 |
+
def group_return_dict(arr, fn):
|
97 |
+
res = collections.defaultdict(list)
|
98 |
+
|
99 |
+
for ob in arr:
|
100 |
+
res[fn(ob)].append(ob)
|
101 |
+
return res
|
102 |
+
|
103 |
+
arr = group_return_dict(arr, lambda x: fn(x[1]))
|
104 |
+
|
105 |
+
# self.arr has format Dict[Tuple[int, <entry from orig. arr>]]
|
106 |
+
self.arr = arr
|
107 |
+
self._grouped = None
|
108 |
+
|
109 |
+
def get_grouped(self):
|
110 |
+
# return the contents but not indices for our grouped dict.
|
111 |
+
if self._grouped:
|
112 |
+
return self._grouped
|
113 |
+
grouped = {}
|
114 |
+
for key in self.arr.keys():
|
115 |
+
# drop the index from each element of self.arr
|
116 |
+
grouped[key] = [y[1] for y in self.arr[key]]
|
117 |
+
self._grouped = grouped
|
118 |
+
return grouped
|
119 |
+
|
120 |
+
def get_original(self, grouped_dict):
|
121 |
+
# take in a grouped dictionary with e.g. results for each key listed
|
122 |
+
# in the same order as the instances in `self.arr`, and
|
123 |
+
# return the results in the same (single list) order as `self.orig_arr`.
|
124 |
+
res = [None] * self.size
|
125 |
+
cov = [False] * self.size
|
126 |
+
# orig = [None] * self.size
|
127 |
+
|
128 |
+
assert grouped_dict.keys() == self.arr.keys()
|
129 |
+
|
130 |
+
for key in grouped_dict.keys():
|
131 |
+
for (ind, _), v in zip(self.arr[key], grouped_dict[key]):
|
132 |
+
res[ind] = v
|
133 |
+
cov[ind] = True
|
134 |
+
# orig[ind] = _
|
135 |
+
|
136 |
+
assert all(cov)
|
137 |
+
# assert orig == self.orig_arr
|
138 |
+
|
139 |
+
return res
|
140 |
+
|
141 |
+
|
142 |
+
def pad_and_concat(
|
143 |
+
max_length: int,
|
144 |
+
tensors: List[torch.Tensor],
|
145 |
+
padding_side: Literal["right", "left"] = "right",
|
146 |
+
):
|
147 |
+
"""
|
148 |
+
Method for padding a list of tensors given the maximum tensor
|
149 |
+
length in the batch. Used for batching inputs and continuations in
|
150 |
+
seq2seq models.
|
151 |
+
"""
|
152 |
+
assert (
|
153 |
+
padding_side == "left" or padding_side == "right"
|
154 |
+
), f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'"
|
155 |
+
|
156 |
+
for i, tensor in enumerate(tensors):
|
157 |
+
if len(tensor.shape) == 2:
|
158 |
+
tensor = tensor.squeeze(0) # squeeze, in case passed [1, seq] size
|
159 |
+
tensor_len = tensor.shape[0]
|
160 |
+
if tensor_len < max_length:
|
161 |
+
if padding_side == "right":
|
162 |
+
# right-pad
|
163 |
+
tensors[i] = torch.cat(
|
164 |
+
[
|
165 |
+
tensor, # [seq]
|
166 |
+
torch.zeros(
|
167 |
+
max_length - tensor_len,
|
168 |
+
dtype=torch.long,
|
169 |
+
device=tensor.device,
|
170 |
+
), # [padding_length - seq]
|
171 |
+
],
|
172 |
+
dim=0,
|
173 |
+
).unsqueeze(0)
|
174 |
+
else:
|
175 |
+
# left-pad
|
176 |
+
tensors[i] = torch.cat(
|
177 |
+
[
|
178 |
+
torch.zeros(
|
179 |
+
max_length - tensor_len,
|
180 |
+
dtype=torch.long,
|
181 |
+
device=tensor.device,
|
182 |
+
), # [padding_length - seq]
|
183 |
+
tensor, # [seq]
|
184 |
+
],
|
185 |
+
dim=0,
|
186 |
+
).unsqueeze(0)
|
187 |
+
else:
|
188 |
+
tensors[i] = tensor.unsqueeze(0)
|
189 |
+
|
190 |
+
return torch.cat(tensors, dim=0)
|
191 |
+
|
192 |
+
|
193 |
+
def clear_torch_cache() -> None:
|
194 |
+
gc.collect()
|
195 |
+
torch.cuda.empty_cache()
|
196 |
+
|
197 |
+
|
198 |
+
def get_dtype(dtype: Union[str, torch.dtype]) -> torch.dtype:
|
199 |
+
"""Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
|
200 |
+
if isinstance(dtype, str) and dtype != "auto":
|
201 |
+
# Convert `str` args torch dtype: `float16` -> `torch.float16`
|
202 |
+
_torch_dtype = getattr(torch, dtype)
|
203 |
+
else:
|
204 |
+
_torch_dtype = dtype
|
205 |
+
return _torch_dtype
|
206 |
+
|
207 |
+
|
208 |
+
class MultiTokenEOSCriteria(transformers.StoppingCriteria):
|
209 |
+
"""Criteria to stop on the specified multi-token sequence."""
|
210 |
+
|
211 |
+
def __init__(
|
212 |
+
self,
|
213 |
+
sequence: str,
|
214 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
215 |
+
initial_decoder_input_length: int,
|
216 |
+
batch_size: int,
|
217 |
+
) -> None:
|
218 |
+
self.initial_decoder_input_length = initial_decoder_input_length
|
219 |
+
self.done_tracker = [False] * batch_size
|
220 |
+
self.sequence = sequence
|
221 |
+
self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False)
|
222 |
+
# print(sequence, self.sequence_ids)
|
223 |
+
# we look back for 2 more tokens than it takes to encode our stop sequence
|
224 |
+
# because tokenizers suck, and a model might generate `['\n', '\n']` but our `sequence` is `['\n\n']`
|
225 |
+
# and we don't want to mistakenly not stop a generation because our
|
226 |
+
# (string) stop sequence was output in a different tokenization
|
227 |
+
|
228 |
+
# NOTE: there is a minor danger that this will end up looking back 2 tokens into the past, into the inputs to the model,
|
229 |
+
# and stopping generation immediately as a result. With only 2 extra tokens of lookback, this risk is minimized
|
230 |
+
# Additionally, in lookback_ids_batch we should prevent ever looking back into the inputs as described.
|
231 |
+
self.sequence_id_len = len(self.sequence_ids) + 2
|
232 |
+
self.tokenizer = tokenizer
|
233 |
+
|
234 |
+
def __call__(self, input_ids, scores, **kwargs) -> bool:
|
235 |
+
# For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence
|
236 |
+
lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :]
|
237 |
+
|
238 |
+
lookback_ids_batch = lookback_ids_batch[:, -self.sequence_id_len :]
|
239 |
+
|
240 |
+
lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch)
|
241 |
+
|
242 |
+
for i, done in enumerate(self.done_tracker):
|
243 |
+
if not done:
|
244 |
+
self.done_tracker[i] = self.sequence in lookback_tokens_batch[i]
|
245 |
+
return False not in self.done_tracker
|
246 |
+
|
247 |
+
|
248 |
+
def stop_sequences_criteria(
|
249 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
250 |
+
stop_sequences: List[str],
|
251 |
+
initial_decoder_input_length: int,
|
252 |
+
batch_size: int,
|
253 |
+
) -> transformers.StoppingCriteriaList:
|
254 |
+
return transformers.StoppingCriteriaList(
|
255 |
+
[
|
256 |
+
*[
|
257 |
+
MultiTokenEOSCriteria(
|
258 |
+
sequence, tokenizer, initial_decoder_input_length, batch_size
|
259 |
+
)
|
260 |
+
for sequence in stop_sequences
|
261 |
+
],
|
262 |
+
]
|
263 |
+
)
|
264 |
+
|
265 |
+
|
266 |
+
def undistribute(iterable):
|
267 |
+
"""
|
268 |
+
Undoes https://more-itertools.readthedocs.io/en/stable/api.html#more_itertools.distribute .
|
269 |
+
|
270 |
+
Re-interleaves results that have been split using more_itertools.distribute:
|
271 |
+
>>> group_1, group_2 = distribute(2, [1, 2, 3, 4, 5, 6])
|
272 |
+
>>> list(group_1)
|
273 |
+
[1, 3, 5]
|
274 |
+
>>> list(group_2)
|
275 |
+
[2, 4, 6]
|
276 |
+
>>> undistribute([group_1, group_2])
|
277 |
+
[1, 2, 3, 4, 5, 6]
|
278 |
+
|
279 |
+
Handles non-uniform component lengths:
|
280 |
+
|
281 |
+
>>> children = distribute(3, [1, 2, 3, 4, 5, 6, 7])
|
282 |
+
>>> [list(c) for c in children]
|
283 |
+
[[1, 4, 7], [2, 5], [3, 6]]
|
284 |
+
>>> undistribute(children)
|
285 |
+
[1, 2, 3, 4, 5, 6, 7]
|
286 |
+
|
287 |
+
Also handles when some iterables are empty:
|
288 |
+
|
289 |
+
>>> children = distribute(5, [1, 2, 3])
|
290 |
+
>>> [list(c) for c in children]
|
291 |
+
[[1], [2], [3], [], []]
|
292 |
+
>>> undistribute(children)
|
293 |
+
[1, 2, 3]
|
294 |
+
|
295 |
+
"""
|
296 |
+
|
297 |
+
return [
|
298 |
+
x
|
299 |
+
for x in itertools.chain.from_iterable(
|
300 |
+
itertools.zip_longest(*[list(x) for x in iterable])
|
301 |
+
)
|
302 |
+
if x is not None
|
303 |
+
]
|
304 |
+
|
305 |
+
|
306 |
+
def retry_on_specific_exceptions(
|
307 |
+
on_exceptions: List[Type[Exception]],
|
308 |
+
max_retries: Optional[int] = None,
|
309 |
+
backoff_time: float = 3.0,
|
310 |
+
backoff_multiplier: float = 1.5,
|
311 |
+
on_exception_callback: Optional[Callable[[Exception, float], Any]] = None,
|
312 |
+
):
|
313 |
+
"""Retry on an LLM Provider's rate limit error with exponential backoff
|
314 |
+
For example, to use for OpenAI, do the following:
|
315 |
+
```
|
316 |
+
from openai import RateLimitError
|
317 |
+
|
318 |
+
# Recommend specifying max_retries to avoid infinite loops!
|
319 |
+
@retry_on_specific_exceptions([RateLimitError], max_retries=3)
|
320 |
+
def completion(...):
|
321 |
+
# Wrap OpenAI completion function here
|
322 |
+
...
|
323 |
+
```
|
324 |
+
"""
|
325 |
+
|
326 |
+
def decorator(func: Callable):
|
327 |
+
@wraps(func)
|
328 |
+
def wrapper(*args, **kwargs):
|
329 |
+
sleep_time = backoff_time
|
330 |
+
attempt = 0
|
331 |
+
while max_retries is None or attempt < max_retries:
|
332 |
+
try:
|
333 |
+
return func(*args, **kwargs)
|
334 |
+
except tuple(on_exceptions) as e:
|
335 |
+
if on_exception_callback is not None:
|
336 |
+
on_exception_callback(e, sleep_time)
|
337 |
+
time.sleep(sleep_time)
|
338 |
+
sleep_time *= backoff_multiplier
|
339 |
+
attempt += 1
|
340 |
+
|
341 |
+
return wrapper
|
342 |
+
|
343 |
+
return decorator
|
344 |
+
|
345 |
+
|
346 |
+
class Collator:
|
347 |
+
"""
|
348 |
+
A class for reordering and batching elements of an array.
|
349 |
+
|
350 |
+
This class allows for sorting an array based on a provided sorting function, grouping elements based on a grouping function, and generating batches from the sorted and grouped data.
|
351 |
+
|
352 |
+
Objects of this class have the group_by attribute which determines the method for grouping
|
353 |
+
the data while batching it. Three options include "gen_kwargs", "contexts", or None:
|
354 |
+
If group_by == "gen_kwargs" then requests will be grouped by gen_kwargs
|
355 |
+
If group_by == "contexts" then requests will be grouped by context + cont[:-1]
|
356 |
+
If None then requests will just be reordered by length descending.
|
357 |
+
"""
|
358 |
+
|
359 |
+
def __init__(
|
360 |
+
self,
|
361 |
+
arr: List,
|
362 |
+
sort_fn: Callable = lambda x: x,
|
363 |
+
group_fn: Callable = lambda x: x[1],
|
364 |
+
group_by: Union[Literal["gen_kwargs", "contexts"], None] = None,
|
365 |
+
) -> None:
|
366 |
+
self._group_by = group_by
|
367 |
+
# 0 indices are enumerated indices. Apply functions to original arr.
|
368 |
+
self._sort_fn = lambda x: sort_fn(x[1])
|
369 |
+
self._group_fn = lambda x: group_fn(x[1])
|
370 |
+
self._reorder_indices: List = []
|
371 |
+
self._size = len(arr)
|
372 |
+
self._arr_with_indices: Union[Dict, Tuple[Tuple[int, Any], ...]] = tuple(
|
373 |
+
enumerate(arr)
|
374 |
+
) # [indices, (arr)]
|
375 |
+
if self._group_by == "contexts":
|
376 |
+
self._group_by_context()
|
377 |
+
elif self._group_by == "gen_kwargs":
|
378 |
+
self._group_by_index()
|
379 |
+
|
380 |
+
def _group_by_index(self) -> None:
|
381 |
+
"""Group the elements of a list based on their indices."""
|
382 |
+
self._arr_with_indices = self.group(
|
383 |
+
self._arr_with_indices, fn=self._group_fn, group_by="gen_kwargs"
|
384 |
+
)
|
385 |
+
|
386 |
+
def _group_by_context(self) -> None:
|
387 |
+
"""Group the array with indices by context."""
|
388 |
+
self._arr_with_indices = self.group(
|
389 |
+
self._arr_with_indices, fn=self._group_fn, group_by="contexts"
|
390 |
+
)
|
391 |
+
|
392 |
+
def get_batched(self, n: int = 1, batch_fn: Optional[Callable] = None) -> Iterator:
|
393 |
+
"""
|
394 |
+
Generates and yields batches from the reordered array. The method of grouping and batching
|
395 |
+
depends on the parameter `group_by`.
|
396 |
+
If `group_by` is set to "gen_kwargs", it will batch the
|
397 |
+
re-ordered values with same gen_kwargs for each batch.
|
398 |
+
If `group_by` is "contexts", it caches the requests by context before batching.
|
399 |
+
If `group_by` is neither "gen_kwargs" nor "contexts", it yields the reordered array
|
400 |
+
|
401 |
+
Parameters:
|
402 |
+
- n (int): The size of each batch. Defaults to 1.
|
403 |
+
- batch_fn ([Callable[[int, Iterable], int]] | None): A function to determine the size of
|
404 |
+
each batch. Optional, defaults to None.
|
405 |
+
|
406 |
+
Returns:
|
407 |
+
Iterator: An iterator over batches of reordered elements grouped as per the `group_by`
|
408 |
+
attribute.
|
409 |
+
|
410 |
+
Yields:
|
411 |
+
List of batched elements according to the `group_by` attribute.
|
412 |
+
"""
|
413 |
+
if self._group_by == "gen_kwargs":
|
414 |
+
for (
|
415 |
+
key,
|
416 |
+
values,
|
417 |
+
) in self._arr_with_indices.items(): # type: ignore
|
418 |
+
values = self._reorder(values)
|
419 |
+
batch = self.get_chunks(values, n=n, fn=batch_fn)
|
420 |
+
yield from batch
|
421 |
+
elif self._group_by == "contexts":
|
422 |
+
# Get one sample from each key
|
423 |
+
values = self._reorder(
|
424 |
+
[value[0] for value in self._arr_with_indices.values()]
|
425 |
+
)
|
426 |
+
batch = self.get_chunks(values, n=n, fn=batch_fn)
|
427 |
+
yield from batch
|
428 |
+
else:
|
429 |
+
values = self._reorder(self._arr_with_indices) # type: ignore
|
430 |
+
batch = self.get_chunks(values, n=n, fn=batch_fn)
|
431 |
+
yield from batch
|
432 |
+
|
433 |
+
def get_cache(
|
434 |
+
self,
|
435 |
+
req_str: Tuple[str, str] = None,
|
436 |
+
cxt_toks: List[int] = None,
|
437 |
+
cont_toks: List[int] = None,
|
438 |
+
logits: torch.Tensor = None,
|
439 |
+
) -> Iterator[Tuple[Tuple[str, str], List[int], torch.Tensor]]:
|
440 |
+
"""
|
441 |
+
Retrieves cached single-token continuations and their associated arguments, updating indices as necessary.
|
442 |
+
|
443 |
+
The behavior of this function varies depending on how the `group_by` attribute is set:
|
444 |
+
|
445 |
+
- When `group_by` is "contexts":
|
446 |
+
The function identifies single-token continuations by checking for keys that equate to
|
447 |
+
[context+continuation][-1] and logs the indices for re-ordering.
|
448 |
+
In this mode, this function can work in two scenarios:
|
449 |
+
|
450 |
+
1. Cache Hit - Single Match:
|
451 |
+
If a single matching context-continuation pair is found in the cache,
|
452 |
+
the function yields the original arguments.
|
453 |
+
|
454 |
+
2. Cache Hit - Multiple Matches:
|
455 |
+
If multiple matching context-continuation pairs are found in the cache,
|
456 |
+
the function expands the logits batch dimension to match the number of cache hits.
|
457 |
+
It updates the original requests and continuation tokens.
|
458 |
+
|
459 |
+
- When `group_by` is not set to "contexts":
|
460 |
+
This method yields the original arguments, logits and continuation tokens,
|
461 |
+
without checking for one-token continuations.
|
462 |
+
|
463 |
+
Parameters:
|
464 |
+
- req_str (tuple[str, str]): Original strings used for CachingLM.
|
465 |
+
- cxt_toks (list[int]): Full context tokens used for lookup.
|
466 |
+
- cont_toks (list[int]): Continuation tokens for which logits were generated.
|
467 |
+
- logits (torch.Tensor [1, seq_length, vocab_size]): Logits generated by the model given context and continuation keys.
|
468 |
+
|
469 |
+
Yields:
|
470 |
+
- Iterator:
|
471 |
+
- req_str (tuple[str, str]): strings used for CachingLM.
|
472 |
+
- cont_toks (list[int]) : continuation tokens.
|
473 |
+
- logits (torch.Tensor [1, seq_length, vocab_size]): The original logits (repeated cache hit times)
|
474 |
+
"""
|
475 |
+
if self._group_by == "contexts":
|
476 |
+
cache_hit: List[
|
477 |
+
Tuple[int, Tuple[Tuple[str, str], List[int], List[int]]]
|
478 |
+
] = self._arr_with_indices.pop(tuple(cxt_toks + cont_toks[:-1]))
|
479 |
+
if (cache_size := len(cache_hit)) == 1:
|
480 |
+
self._reorder_indices.extend(x[0] for x in cache_hit)
|
481 |
+
yield req_str, cont_toks, logits
|
482 |
+
else:
|
483 |
+
# If we have matching requests then expand the batch dimension (no-op) and
|
484 |
+
# yield each along with its corresponding args.
|
485 |
+
multilogits = logits.expand(cache_size, -1, -1).chunk(cache_size)
|
486 |
+
indices, req_str, cont_toks = zip(
|
487 |
+
*[(x[0], x[1][0], x[-1][-1]) for x in cache_hit]
|
488 |
+
)
|
489 |
+
self._reorder_indices.extend(indices)
|
490 |
+
for c_key, cont_tok, logit in zip(req_str, cont_toks, multilogits):
|
491 |
+
yield c_key, cont_tok, logit
|
492 |
+
else:
|
493 |
+
yield req_str, cont_toks, logits
|
494 |
+
|
495 |
+
def _reorder(self, arr: Union[List, Tuple[Tuple[int, Any], ...]]) -> Iterator:
|
496 |
+
"""
|
497 |
+
Reorders the elements in the array based on the sorting function.
|
498 |
+
|
499 |
+
Parameters:
|
500 |
+
- arr (list | tuple[tuple[int, Any], ...]]): The array or iterable to be reordered.
|
501 |
+
|
502 |
+
Yields:
|
503 |
+
Iterator
|
504 |
+
"""
|
505 |
+
arr = sorted(arr, key=self._sort_fn)
|
506 |
+
if not self._group_by == "contexts":
|
507 |
+
# If grouped by contexts then indices will be set in get_cache()
|
508 |
+
self._reorder_indices.extend([x[0] for x in arr])
|
509 |
+
yield from [x[1] for x in arr]
|
510 |
+
|
511 |
+
def get_original(self, newarr: List) -> List:
|
512 |
+
"""
|
513 |
+
Restores the original order of elements from the reordered list.
|
514 |
+
|
515 |
+
Parameters:
|
516 |
+
- newarr (list): The reordered array.
|
517 |
+
|
518 |
+
Returns:
|
519 |
+
list: The array with elements restored to their original order.
|
520 |
+
"""
|
521 |
+
res = [None] * self._size
|
522 |
+
cov = [False] * self._size
|
523 |
+
|
524 |
+
for ind, v in zip(self._reorder_indices, newarr):
|
525 |
+
res[ind] = v
|
526 |
+
cov[ind] = True
|
527 |
+
|
528 |
+
assert all(cov)
|
529 |
+
|
530 |
+
return res
|
531 |
+
|
532 |
+
def __len__(self):
|
533 |
+
return self._size
|
534 |
+
|
535 |
+
@staticmethod
|
536 |
+
def group(
|
537 |
+
arr: Iterable,
|
538 |
+
fn: Callable,
|
539 |
+
group_by: Literal["gen_kwargs", "contexts"] = "gen_kwargs",
|
540 |
+
) -> dict:
|
541 |
+
"""
|
542 |
+
Groups elements of an iterable based on a provided function.
|
543 |
+
|
544 |
+
|
545 |
+
The `group_by` parameter determines the method of grouping.
|
546 |
+
If `group_by` is "contexts", the elements are grouped by [context + cont][:-1].
|
547 |
+
If `group_by` is "gen_kwargs", the elements are grouped based on the gen_kwargs dict.
|
548 |
+
|
549 |
+
Parameters:
|
550 |
+
- arr (Iterable): The iterable to be grouped.
|
551 |
+
- fn (Callable): The function to determine the grouping.
|
552 |
+
- values (bool): If True, returns the values of the group. Defaults to False.
|
553 |
+
|
554 |
+
Returns:
|
555 |
+
Iterator: An iterable of grouped elements.
|
556 |
+
"""
|
557 |
+
res = collections.defaultdict(list)
|
558 |
+
for ob in arr:
|
559 |
+
# where ob == [context + cont]
|
560 |
+
if group_by == "contexts":
|
561 |
+
res[tuple(fn(ob))].append(ob)
|
562 |
+
else:
|
563 |
+
try:
|
564 |
+
hashable_dict = tuple(
|
565 |
+
(
|
566 |
+
key,
|
567 |
+
tuple(value)
|
568 |
+
if isinstance(value, collections.abc.Iterable)
|
569 |
+
else value,
|
570 |
+
)
|
571 |
+
for key, value in sorted(fn(ob).items())
|
572 |
+
)
|
573 |
+
res[hashable_dict].append(ob)
|
574 |
+
except (TypeError, AttributeError):
|
575 |
+
res[tuple(fn(ob))].append(ob)
|
576 |
+
return res
|
577 |
+
|
578 |
+
@staticmethod
|
579 |
+
def get_chunks(_iter, n: int = 0, fn=None):
|
580 |
+
"""
|
581 |
+
Divides an iterable into chunks of specified size or based on a given function.
|
582 |
+
Useful for batching
|
583 |
+
|
584 |
+
Parameters:
|
585 |
+
- iter: The input iterable to be divided into chunks.
|
586 |
+
- n: An integer representing the size of each chunk. Default is 0.
|
587 |
+
- fn: A function that takes the current index and the iterable as arguments and returns the size of the chunk. Default is None.
|
588 |
+
|
589 |
+
Returns:
|
590 |
+
An iterator that yields chunks of the input iterable.
|
591 |
+
|
592 |
+
Example usage:
|
593 |
+
```
|
594 |
+
data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
595 |
+
for chunk in chunks(data, 3):
|
596 |
+
print(chunk)
|
597 |
+
```
|
598 |
+
Output:
|
599 |
+
```
|
600 |
+
[1, 2, 3]
|
601 |
+
[4, 5, 6]
|
602 |
+
[7, 8, 9]
|
603 |
+
[10]
|
604 |
+
```
|
605 |
+
"""
|
606 |
+
arr = []
|
607 |
+
_iter = tuple(_iter)
|
608 |
+
for i, x in enumerate(_iter):
|
609 |
+
arr.append(x)
|
610 |
+
if len(arr) == (fn(i, _iter) if fn else n):
|
611 |
+
yield arr
|
612 |
+
arr = []
|
613 |
+
|
614 |
+
if arr:
|
615 |
+
yield arr
|
lm-evaluation/lm_eval/models/vllm_causallms.py
ADDED
@@ -0,0 +1,487 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
from importlib.metadata import version
|
3 |
+
from importlib.util import find_spec
|
4 |
+
from typing import List, Literal, Optional, Tuple, Union
|
5 |
+
|
6 |
+
from more_itertools import distribute
|
7 |
+
from packaging.version import parse as parse_version
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
from lm_eval.api.instance import Instance
|
11 |
+
from lm_eval.api.model import TemplateLM
|
12 |
+
from lm_eval.api.registry import register_model
|
13 |
+
from lm_eval.models.utils import Collator, undistribute
|
14 |
+
from lm_eval.utils import (
|
15 |
+
eval_logger,
|
16 |
+
get_rolling_token_windows,
|
17 |
+
make_disjoint_window,
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
try:
|
22 |
+
import ray
|
23 |
+
from vllm import LLM, SamplingParams
|
24 |
+
from vllm.transformers_utils.tokenizer import get_tokenizer
|
25 |
+
except ModuleNotFoundError:
|
26 |
+
pass
|
27 |
+
|
28 |
+
eval_logger = eval_logger
|
29 |
+
|
30 |
+
|
31 |
+
@register_model("vllm")
|
32 |
+
class VLLM(TemplateLM):
|
33 |
+
_DEFAULT_MAX_LENGTH = 2048
|
34 |
+
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
pretrained="gpt2",
|
38 |
+
dtype: Literal["float16", "bfloat16", "float32", "auto"] = "auto",
|
39 |
+
revision: Optional[str] = None,
|
40 |
+
trust_remote_code: Optional[bool] = False,
|
41 |
+
tokenizer: Optional[str] = None,
|
42 |
+
tokenizer_mode: Literal["auto", "slow"] = "auto",
|
43 |
+
tokenizer_revision: Optional[str] = None,
|
44 |
+
add_bos_token: Optional[bool] = False,
|
45 |
+
prefix_token_id: Optional[int] = None,
|
46 |
+
tensor_parallel_size: int = 1,
|
47 |
+
quantization: Optional[str] = None,
|
48 |
+
max_gen_toks: int = 256,
|
49 |
+
swap_space: int = 4,
|
50 |
+
batch_size: Union[str, int] = 1,
|
51 |
+
max_batch_size=None,
|
52 |
+
max_length: int = None,
|
53 |
+
max_model_len: int = None,
|
54 |
+
seed: int = 1234,
|
55 |
+
gpu_memory_utilization: float = 0.9,
|
56 |
+
device: str = "cuda",
|
57 |
+
data_parallel_size: int = 1,
|
58 |
+
**kwargs,
|
59 |
+
):
|
60 |
+
super().__init__()
|
61 |
+
|
62 |
+
if not find_spec("vllm"):
|
63 |
+
raise Exception(
|
64 |
+
"attempted to use 'vllm' LM type, but package `vllm` is not installed. "
|
65 |
+
"Please install vllm via `pip install lm-eval[vllm]` or `pip install -e .[vllm]`"
|
66 |
+
)
|
67 |
+
|
68 |
+
assert "cuda" in device or device is None, "vLLM only supports CUDA"
|
69 |
+
assert (
|
70 |
+
max_length is None or max_model_len is None
|
71 |
+
), "Either max_length or max_model_len may be provided, but not both"
|
72 |
+
|
73 |
+
self._max_length = max_model_len if max_model_len is not None else max_length
|
74 |
+
self.tensor_parallel_size = int(tensor_parallel_size)
|
75 |
+
self.data_parallel_size = int(data_parallel_size)
|
76 |
+
self.model_args = {
|
77 |
+
"model": pretrained,
|
78 |
+
"gpu_memory_utilization": float(gpu_memory_utilization),
|
79 |
+
"revision": revision,
|
80 |
+
"dtype": dtype,
|
81 |
+
"tokenizer": tokenizer,
|
82 |
+
"tokenizer_mode": tokenizer_mode,
|
83 |
+
"tokenizer_revision": tokenizer_revision,
|
84 |
+
"trust_remote_code": trust_remote_code,
|
85 |
+
"tensor_parallel_size": int(tensor_parallel_size),
|
86 |
+
"max_model_len": int(self._max_length) if self._max_length else None,
|
87 |
+
"swap_space": int(swap_space),
|
88 |
+
"quantization": quantization,
|
89 |
+
"seed": int(seed),
|
90 |
+
}
|
91 |
+
self.model_args.update(kwargs)
|
92 |
+
self.batch_size = (
|
93 |
+
"auto"
|
94 |
+
if isinstance(batch_size, str) and "auto" in batch_size
|
95 |
+
else batch_size
|
96 |
+
)
|
97 |
+
if self.data_parallel_size <= 1:
|
98 |
+
self.model = LLM(**self.model_args)
|
99 |
+
else:
|
100 |
+
assert parse_version(version("vllm")) < parse_version(
|
101 |
+
"0.3.3"
|
102 |
+
), "data_parallel is only compatible with vllm < v0.3.3."
|
103 |
+
eval_logger.warning(
|
104 |
+
"You might experience occasional issues with model weight downloading when data_parallel is in use. To ensure stable performance, run with data_parallel_size=1 until the weights are downloaded and cached."
|
105 |
+
)
|
106 |
+
self.model_args["worker_use_ray"] = True
|
107 |
+
self.batch_size = "auto"
|
108 |
+
eval_logger.info("Manual batching is not compatible with data parallelism.")
|
109 |
+
|
110 |
+
from transformers import AutoConfig
|
111 |
+
|
112 |
+
self._config = AutoConfig.from_pretrained(
|
113 |
+
pretrained, trust_remote_code=trust_remote_code, revision=revision
|
114 |
+
)
|
115 |
+
self.tokenizer = get_tokenizer(
|
116 |
+
tokenizer if tokenizer else pretrained,
|
117 |
+
tokenizer_mode=tokenizer_mode,
|
118 |
+
trust_remote_code=trust_remote_code,
|
119 |
+
tokenizer_revision=tokenizer_revision,
|
120 |
+
)
|
121 |
+
self.add_bos_token = add_bos_token
|
122 |
+
self.custom_prefix_token_id = prefix_token_id
|
123 |
+
if prefix_token_id is not None:
|
124 |
+
eval_logger.info(
|
125 |
+
f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
|
126 |
+
)
|
127 |
+
|
128 |
+
self._max_gen_toks = max_gen_toks
|
129 |
+
|
130 |
+
@property
|
131 |
+
def eot_token_id(self):
|
132 |
+
# we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
|
133 |
+
return self.tokenizer.eos_token_id
|
134 |
+
|
135 |
+
@property
|
136 |
+
def prefix_token_id(self):
|
137 |
+
# it is used as prefix for loglikelihood
|
138 |
+
if self.custom_prefix_token_id is not None:
|
139 |
+
return self.custom_prefix_token_id
|
140 |
+
if self.tokenizer.bos_token_id is not None:
|
141 |
+
return self.tokenizer.bos_token_id
|
142 |
+
return self.tokenizer.eos_token_id
|
143 |
+
|
144 |
+
@property
|
145 |
+
def max_length(self):
|
146 |
+
if self._max_length: # if max length manually set, return it
|
147 |
+
return self._max_length
|
148 |
+
if self.data_parallel_size <= 1:
|
149 |
+
return self.model.llm_engine.model_config.max_model_len
|
150 |
+
else:
|
151 |
+
seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
|
152 |
+
for attr in seqlen_config_attrs:
|
153 |
+
if hasattr(self._config, attr):
|
154 |
+
return getattr(self._config, attr)
|
155 |
+
if hasattr(self.tokenizer, "model_max_length"):
|
156 |
+
if self.tokenizer.model_max_length == 1000000000000000019884624838656:
|
157 |
+
return self._DEFAULT_MAX_LENGTH
|
158 |
+
return self.tokenizer.model_max_length
|
159 |
+
return self._DEFAULT_MAX_LENGTH
|
160 |
+
|
161 |
+
@property
|
162 |
+
def max_gen_toks(self):
|
163 |
+
return self._max_gen_toks
|
164 |
+
|
165 |
+
def tok_encode(
|
166 |
+
self,
|
167 |
+
string: str,
|
168 |
+
left_truncate_len=None,
|
169 |
+
add_special_tokens=None,
|
170 |
+
truncation=False,
|
171 |
+
):
|
172 |
+
""" """
|
173 |
+
if not add_special_tokens:
|
174 |
+
add_special_tokens = False or self.add_bos_token
|
175 |
+
encoding = self.tokenizer.encode(
|
176 |
+
string, add_special_tokens=add_special_tokens, truncation=truncation
|
177 |
+
)
|
178 |
+
|
179 |
+
# left-truncate the encoded context to be at most `left_truncate_len` tokens long
|
180 |
+
if left_truncate_len:
|
181 |
+
encoding = encoding[-left_truncate_len:]
|
182 |
+
|
183 |
+
return encoding
|
184 |
+
|
185 |
+
def _model_generate(
|
186 |
+
self,
|
187 |
+
requests: List[List[int]] = None,
|
188 |
+
generate: bool = False,
|
189 |
+
max_tokens: int = None,
|
190 |
+
stop: Optional[List[str]] = None,
|
191 |
+
**kwargs,
|
192 |
+
):
|
193 |
+
if generate:
|
194 |
+
kwargs = self.modify_gen_kwargs(kwargs)
|
195 |
+
sampling_params = SamplingParams(max_tokens=max_tokens, stop=stop, **kwargs)
|
196 |
+
else:
|
197 |
+
sampling_params = SamplingParams(
|
198 |
+
temperature=0, prompt_logprobs=1, max_tokens=1
|
199 |
+
)
|
200 |
+
if self.data_parallel_size > 1:
|
201 |
+
# vLLM hangs if tensor_parallel > 1 and resources are set in ray.remote
|
202 |
+
# also seems to only work with decorator and not with ray.remote() fn
|
203 |
+
# see https://github.com/vllm-project/vllm/issues/973
|
204 |
+
# note: this has changed on 0.3.3, and it only works now if num_gpus are set.
|
205 |
+
# but then tensor_parallel breaks
|
206 |
+
@ray.remote
|
207 |
+
def run_inference_one_model(
|
208 |
+
model_args: dict, sampling_params, requests: List[List[int]]
|
209 |
+
):
|
210 |
+
llm = LLM(**model_args)
|
211 |
+
return llm.generate(
|
212 |
+
prompt_token_ids=requests, sampling_params=sampling_params
|
213 |
+
)
|
214 |
+
|
215 |
+
# dispatch requests to all self.data_parallel_size workers, in interleaved fashion
|
216 |
+
# interleaved important to balance context lengths across workers
|
217 |
+
requests = [list(x) for x in distribute(self.data_parallel_size, requests)]
|
218 |
+
inputs = ((self.model_args, sampling_params, req) for req in requests)
|
219 |
+
object_refs = [run_inference_one_model.remote(*x) for x in inputs]
|
220 |
+
results = ray.get(object_refs)
|
221 |
+
# Invoke ray.shutdown() to prevent hang-ups if subsequent calls required.
|
222 |
+
ray.shutdown()
|
223 |
+
# flatten results
|
224 |
+
return undistribute(results)
|
225 |
+
|
226 |
+
outputs = self.model.generate(
|
227 |
+
prompt_token_ids=requests,
|
228 |
+
sampling_params=sampling_params,
|
229 |
+
use_tqdm=True if self.batch_size == "auto" else False,
|
230 |
+
)
|
231 |
+
return outputs
|
232 |
+
|
233 |
+
def loglikelihood_rolling(
|
234 |
+
self, requests: List[Instance], disable_tqdm: bool = False
|
235 |
+
) -> List[float]:
|
236 |
+
loglikelihoods = []
|
237 |
+
|
238 |
+
for (string,) in tqdm([req.args for req in requests], disable=disable_tqdm):
|
239 |
+
rolling_token_windows = list(
|
240 |
+
map(
|
241 |
+
make_disjoint_window,
|
242 |
+
get_rolling_token_windows(
|
243 |
+
token_list=self.tok_encode(string),
|
244 |
+
prefix_token=self.eot_token_id,
|
245 |
+
max_seq_len=self.max_length - 1,
|
246 |
+
context_len=1,
|
247 |
+
),
|
248 |
+
)
|
249 |
+
)
|
250 |
+
|
251 |
+
rolling_token_windows = [(None,) + x for x in rolling_token_windows]
|
252 |
+
|
253 |
+
string_nll = self._loglikelihood_tokens(
|
254 |
+
rolling_token_windows,
|
255 |
+
)
|
256 |
+
|
257 |
+
# discard is_greedy
|
258 |
+
string_nll = [x[0] for x in string_nll]
|
259 |
+
|
260 |
+
string_nll = sum(string_nll)
|
261 |
+
loglikelihoods.append(string_nll)
|
262 |
+
return loglikelihoods
|
263 |
+
|
264 |
+
def generate_until(
|
265 |
+
self, requests: List[Instance], disable_tqdm: bool = False
|
266 |
+
) -> List[str]:
|
267 |
+
res = []
|
268 |
+
|
269 |
+
# batch tokenize contexts
|
270 |
+
context, all_gen_kwargs = zip(*(req.args for req in requests))
|
271 |
+
context_encoding = self.tokenizer(context, add_special_tokens=False).input_ids
|
272 |
+
requests = [
|
273 |
+
((a, b), c) for a, b, c in zip(context, context_encoding, all_gen_kwargs)
|
274 |
+
]
|
275 |
+
|
276 |
+
def _collate_gen(_requests):
|
277 |
+
# the negative sign on len(toks) sorts descending - this has a few advantages:
|
278 |
+
# - time estimates will always be over not underestimates, which is more useful for planning
|
279 |
+
# - to know the size of a batch when going through the list, you know the first one is always the batch
|
280 |
+
# padded context length. this is useful to simplify the batching logic and more importantly to make
|
281 |
+
# automatic adaptive batches much much easier to implement
|
282 |
+
# - any OOMs will happen right away rather than near the end
|
283 |
+
return -len(_requests[0][1]), _requests[0][0]
|
284 |
+
|
285 |
+
# we group requests by their generation_kwargs,
|
286 |
+
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
|
287 |
+
# in the same batch.
|
288 |
+
re_ords = Collator(requests, _collate_gen, group_by="gen_kwargs")
|
289 |
+
chunks = re_ords.get_batched(
|
290 |
+
n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
|
291 |
+
)
|
292 |
+
|
293 |
+
pbar = tqdm(
|
294 |
+
total=len(requests),
|
295 |
+
disable=(disable_tqdm or (self.rank != 0)),
|
296 |
+
desc="Running generate_until requests",
|
297 |
+
)
|
298 |
+
# for each different set of kwargs, we execute all requests, by batch.
|
299 |
+
for chunk in chunks:
|
300 |
+
context_and_encoding, all_gen_kwargs = zip(*chunk)
|
301 |
+
context, context_encoding = zip(*context_and_encoding)
|
302 |
+
# we assume all gen kwargs in the batch are the same
|
303 |
+
# this is safe to assume because the `grouper` object ensures it.
|
304 |
+
gen_kwargs = all_gen_kwargs[0]
|
305 |
+
# unpack our keyword arguments.
|
306 |
+
until = None
|
307 |
+
if isinstance(gen_kwargs, dict):
|
308 |
+
kwargs = copy.deepcopy(gen_kwargs) # edge case for repeats > 1
|
309 |
+
if "until" in kwargs.keys():
|
310 |
+
until = kwargs.pop("until")
|
311 |
+
if isinstance(until, str):
|
312 |
+
until = [until]
|
313 |
+
elif not isinstance(until, list):
|
314 |
+
raise ValueError(
|
315 |
+
f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
|
316 |
+
)
|
317 |
+
else:
|
318 |
+
raise ValueError(
|
319 |
+
f"Expected `kwargs` to be of type `dict` but got {gen_kwargs}"
|
320 |
+
)
|
321 |
+
# add EOS token to stop sequences
|
322 |
+
eos = self.tokenizer.decode(self.eot_token_id)
|
323 |
+
if not until:
|
324 |
+
until = [eos]
|
325 |
+
else:
|
326 |
+
until.append(eos)
|
327 |
+
if "max_gen_toks" in kwargs.keys():
|
328 |
+
max_gen_toks = kwargs.pop("max_gen_toks")
|
329 |
+
else:
|
330 |
+
max_gen_toks = self.max_gen_toks
|
331 |
+
|
332 |
+
# set the max length in tokens of inputs ("context_enc")
|
333 |
+
# max len for inputs = max length, minus room to generate the max new tokens
|
334 |
+
max_ctx_len = self.max_length - max_gen_toks
|
335 |
+
context_encoding = [x[-max_ctx_len:] for x in context_encoding]
|
336 |
+
|
337 |
+
# perform batched generation
|
338 |
+
cont = self._model_generate(
|
339 |
+
requests=context_encoding,
|
340 |
+
generate=True,
|
341 |
+
max_tokens=max_gen_toks,
|
342 |
+
stop=until,
|
343 |
+
**kwargs,
|
344 |
+
)
|
345 |
+
|
346 |
+
# cache generations
|
347 |
+
for output, context in zip(cont, context):
|
348 |
+
generated_text = output.outputs[0].text
|
349 |
+
res.append(generated_text)
|
350 |
+
self.cache_hook.add_partial(
|
351 |
+
"generate_until", (context, gen_kwargs), generated_text
|
352 |
+
)
|
353 |
+
pbar.update(1)
|
354 |
+
|
355 |
+
pbar.close()
|
356 |
+
# reorder all group of results back to original unsorted form
|
357 |
+
return re_ords.get_original(res)
|
358 |
+
|
359 |
+
def _loglikelihood_tokens(
|
360 |
+
self,
|
361 |
+
requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
|
362 |
+
disable_tqdm: bool = False,
|
363 |
+
) -> List[Tuple[float, bool]]:
|
364 |
+
res = []
|
365 |
+
|
366 |
+
def _collate(x):
|
367 |
+
toks = x[1] + x[2]
|
368 |
+
return -len(toks), tuple(toks)
|
369 |
+
|
370 |
+
# Reorder requests by length and batch
|
371 |
+
re_ord = Collator(requests, sort_fn=_collate)
|
372 |
+
chunks = re_ord.get_batched(
|
373 |
+
n=int(self.batch_size) if self.batch_size != "auto" else 0, batch_fn=None
|
374 |
+
)
|
375 |
+
|
376 |
+
pbar = tqdm(
|
377 |
+
total=len(requests),
|
378 |
+
disable=disable_tqdm,
|
379 |
+
desc="Running loglikelihood requests",
|
380 |
+
)
|
381 |
+
for chunk in chunks:
|
382 |
+
inputs = []
|
383 |
+
ctxlens = []
|
384 |
+
for cache_key, context_enc, continuation_enc in chunk:
|
385 |
+
inp = (context_enc + continuation_enc)[-(self.max_length) :]
|
386 |
+
ctxlen = len(context_enc) - max(
|
387 |
+
0, len(context_enc) + len(continuation_enc) - (self.max_length)
|
388 |
+
)
|
389 |
+
|
390 |
+
inputs.append(inp)
|
391 |
+
ctxlens.append(ctxlen)
|
392 |
+
|
393 |
+
outputs = self._model_generate(requests=inputs, generate=False)
|
394 |
+
|
395 |
+
for output, ctxlen, (cache_key, _, _), inp in zip(
|
396 |
+
outputs, ctxlens, chunk, inputs
|
397 |
+
):
|
398 |
+
answer = self._parse_logprobs(
|
399 |
+
tokens=inp,
|
400 |
+
outputs=output,
|
401 |
+
ctxlen=ctxlen,
|
402 |
+
)
|
403 |
+
|
404 |
+
res.append(answer)
|
405 |
+
|
406 |
+
# partial caching
|
407 |
+
if cache_key is not None:
|
408 |
+
self.cache_hook.add_partial("loglikelihood", cache_key, answer)
|
409 |
+
pbar.update(1)
|
410 |
+
pbar.close()
|
411 |
+
return re_ord.get_original(res)
|
412 |
+
|
413 |
+
@staticmethod
|
414 |
+
def _parse_logprobs(tokens: List, outputs, ctxlen: int) -> Tuple[float, bool]:
|
415 |
+
"""Process logprobs and tokens.
|
416 |
+
|
417 |
+
:param tokens: list
|
418 |
+
Input tokens (potentially left-truncated)
|
419 |
+
:param outputs: RequestOutput
|
420 |
+
Contains prompt_logprobs
|
421 |
+
:param ctxlen: int
|
422 |
+
Length of context (so we can slice them away and only keep the predictions)
|
423 |
+
:return:
|
424 |
+
continuation_logprobs: float
|
425 |
+
Log probabilities of continuation tokens
|
426 |
+
is_greedy: bool
|
427 |
+
Whether argmax matches given continuation exactly
|
428 |
+
"""
|
429 |
+
|
430 |
+
# The first entry of prompt_logprobs is None because the model has no previous tokens to condition on.
|
431 |
+
continuation_logprobs_dicts = outputs.prompt_logprobs
|
432 |
+
|
433 |
+
def coerce_logprob_to_num(logprob):
|
434 |
+
# vLLM changed the return type of logprobs from float
|
435 |
+
# to a Logprob object storing the float value + extra data
|
436 |
+
# (https://github.com/vllm-project/vllm/pull/3065).
|
437 |
+
# If we are dealing with vllm's Logprob object, return
|
438 |
+
# the logprob value stored as an attribute. Otherwise,
|
439 |
+
# return the object itself (which should be a float
|
440 |
+
# for older versions of vLLM).
|
441 |
+
return getattr(logprob, "logprob", logprob)
|
442 |
+
|
443 |
+
continuation_logprobs_dicts = [
|
444 |
+
{
|
445 |
+
token: coerce_logprob_to_num(logprob)
|
446 |
+
for token, logprob in logprob_dict.items()
|
447 |
+
}
|
448 |
+
if logprob_dict is not None
|
449 |
+
else None
|
450 |
+
for logprob_dict in continuation_logprobs_dicts
|
451 |
+
]
|
452 |
+
|
453 |
+
# Calculate continuation_logprobs
|
454 |
+
# assume ctxlen always >= 1
|
455 |
+
continuation_logprobs = sum(
|
456 |
+
logprob_dict.get(token)
|
457 |
+
for token, logprob_dict in zip(
|
458 |
+
tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
|
459 |
+
)
|
460 |
+
)
|
461 |
+
|
462 |
+
# Determine if is_greedy
|
463 |
+
is_greedy = True
|
464 |
+
for token, logprob_dict in zip(
|
465 |
+
tokens[ctxlen:], continuation_logprobs_dicts[ctxlen:]
|
466 |
+
):
|
467 |
+
# Get the token with the maximum log probability from the logprob_dict
|
468 |
+
if logprob_dict: # Ensure the logprob_dict is not None
|
469 |
+
top_token = max(logprob_dict, key=logprob_dict.get)
|
470 |
+
if top_token != token:
|
471 |
+
is_greedy = False
|
472 |
+
break
|
473 |
+
|
474 |
+
return continuation_logprobs, is_greedy
|
475 |
+
|
476 |
+
@staticmethod
|
477 |
+
def modify_gen_kwargs(kwargs: dict) -> dict:
|
478 |
+
# sampling_params
|
479 |
+
do_sample = kwargs.pop("do_sample", None)
|
480 |
+
if do_sample is False or "temperature" not in kwargs:
|
481 |
+
kwargs["temperature"] = 0.0
|
482 |
+
# hf defaults
|
483 |
+
kwargs["skip_special_tokens"] = kwargs.get("skip_special_tokens", False)
|
484 |
+
kwargs["spaces_between_special_tokens"] = kwargs.get(
|
485 |
+
"spaces_between_special_tokens", False
|
486 |
+
)
|
487 |
+
return kwargs
|
lm-evaluation/lm_eval/prompts/__init__.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import ast
|
2 |
+
import os
|
3 |
+
from typing import Dict
|
4 |
+
|
5 |
+
from lm_eval import utils
|
6 |
+
from lm_eval.utils import eval_logger
|
7 |
+
|
8 |
+
|
9 |
+
# Prompt library.
|
10 |
+
# Stores prompts in a dictionary indexed by 2 levels:
|
11 |
+
# prompt category name, and prompt name.
|
12 |
+
# This allows us to access prompts
|
13 |
+
PROMPT_REGISTRY: Dict[str, Dict[str, str]] = {
|
14 |
+
"qa-basic": {
|
15 |
+
"question-newline-answer": "Question: {{question}}\nAnswer:",
|
16 |
+
"q-newline-a": "Q: {{question}}\nA:",
|
17 |
+
},
|
18 |
+
}
|
19 |
+
|
20 |
+
|
21 |
+
def get_prompt(prompt_id: str, dataset_name: str = None, subset_name: str = None):
|
22 |
+
# unpack prompt name
|
23 |
+
category_name, prompt_name = prompt_id.split(":")
|
24 |
+
if subset_name is None:
|
25 |
+
dataset_full_name = dataset_name
|
26 |
+
else:
|
27 |
+
dataset_full_name = f"{dataset_name}-{subset_name}"
|
28 |
+
eval_logger.info(f"Loading prompt from {category_name} for {dataset_full_name}")
|
29 |
+
if category_name == "promptsource":
|
30 |
+
try:
|
31 |
+
from promptsource.templates import DatasetTemplates
|
32 |
+
except ModuleNotFoundError:
|
33 |
+
raise Exception(
|
34 |
+
"Tried to load a Promptsource template, but promptsource is not installed ",
|
35 |
+
"please install promptsource via pip install lm-eval[promptsource] or pip install -e .[promptsource]",
|
36 |
+
)
|
37 |
+
try:
|
38 |
+
if subset_name is None:
|
39 |
+
prompts = DatasetTemplates(dataset_name=dataset_name)
|
40 |
+
else:
|
41 |
+
prompts = DatasetTemplates(
|
42 |
+
dataset_name=dataset_name, subset_name=subset_name
|
43 |
+
)
|
44 |
+
except Exception:
|
45 |
+
raise ValueError(f"{dataset_name} and {subset_name} not found")
|
46 |
+
if prompt_name in prompts.all_template_names:
|
47 |
+
return prompts[prompt_name]
|
48 |
+
else:
|
49 |
+
raise ValueError(
|
50 |
+
f"{prompt_name} not in prompt list {prompts.all_template_names}"
|
51 |
+
)
|
52 |
+
elif ".yaml" in category_name:
|
53 |
+
import yaml
|
54 |
+
|
55 |
+
with open(category_name, "rb") as file:
|
56 |
+
prompt_yaml_file = yaml.full_load(file)
|
57 |
+
|
58 |
+
prompt_string = prompt_yaml_file["prompts"][prompt_name]
|
59 |
+
return PromptString(prompt_string)
|
60 |
+
else:
|
61 |
+
try:
|
62 |
+
return PROMPT_REGISTRY[category_name][prompt_name]
|
63 |
+
except Exception:
|
64 |
+
raise ValueError(
|
65 |
+
f"expected only a single `:` as separator between \
|
66 |
+
prompt category and name, but got `{prompt_id}` instead"
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
def load_prompt_list(
|
71 |
+
use_prompt: str, dataset_name=None, subset_name=None, yaml_path=None, **kwargs
|
72 |
+
):
|
73 |
+
category_name, prompt_name = use_prompt.split(":")
|
74 |
+
|
75 |
+
if category_name == "promptsource":
|
76 |
+
from promptsource.templates import DatasetTemplates
|
77 |
+
|
78 |
+
if subset_name is None:
|
79 |
+
prompts = DatasetTemplates(dataset_name=dataset_name)
|
80 |
+
else:
|
81 |
+
prompts = DatasetTemplates(
|
82 |
+
dataset_name=dataset_name, subset_name=subset_name
|
83 |
+
)
|
84 |
+
|
85 |
+
prompt_list = utils.pattern_match(prompt_name, prompts.all_template_names)
|
86 |
+
|
87 |
+
elif ".yaml" in category_name:
|
88 |
+
import yaml
|
89 |
+
|
90 |
+
if yaml_path is not None:
|
91 |
+
category_name = os.path.realpath(os.path.join(yaml_path, category_name))
|
92 |
+
|
93 |
+
with open(category_name, "rb") as file:
|
94 |
+
prompt_yaml_file = yaml.full_load(file)
|
95 |
+
|
96 |
+
prompt_list = utils.pattern_match(
|
97 |
+
prompt_name, prompt_yaml_file["prompts"].keys()
|
98 |
+
)
|
99 |
+
|
100 |
+
# category_name, *prompt_name = use_prompt.split(":")
|
101 |
+
# TODO allow to multiple prompt naming
|
102 |
+
# if len(prompt_name) > 1:
|
103 |
+
# prompt_list = []
|
104 |
+
# for prompt in prompt_name:
|
105 |
+
# prompt_list.append(utils.pattern_match(prompt_name, prompts.all_template_names))
|
106 |
+
# else:
|
107 |
+
# prompt_list = utils.pattern_match(prompt_name, prompts.all_template_names)
|
108 |
+
return [":".join([category_name, prompt]) for prompt in prompt_list]
|
109 |
+
|
110 |
+
|
111 |
+
class PromptString:
|
112 |
+
def __init__(self, prompt_string):
|
113 |
+
self.prompt_string = prompt_string
|
114 |
+
|
115 |
+
def apply(self, doc):
|
116 |
+
doc_to_text = self.prompt_string["doc_to_text"]
|
117 |
+
doc_to_target = self.prompt_string["doc_to_target"]
|
118 |
+
|
119 |
+
# TODO need a way to process doc_to_choice
|
120 |
+
if "doc_to_choice" in self.prompt_string:
|
121 |
+
raise Exception("Not yet implemented to accept doc_to_choice")
|
122 |
+
|
123 |
+
text_string = utils.apply_template(doc_to_text, doc)
|
124 |
+
target_string = utils.apply_template(doc_to_target, doc)
|
125 |
+
|
126 |
+
return [text_string, target_string]
|
lm-evaluation/lm_eval/prompts/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (3.22 kB). View file
|
|
lm-evaluation/tests/__init__.py
ADDED
File without changes
|
lm-evaluation/tests/models/test_gguf.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import pickle
|
5 |
+
import unittest
|
6 |
+
from unittest.mock import patch
|
7 |
+
|
8 |
+
from lm_eval.api.instance import Instance
|
9 |
+
from lm_eval.models.gguf import GGUFLM
|
10 |
+
|
11 |
+
|
12 |
+
base_url = "https://matthoffner-ggml-llm-api.hf.space"
|
13 |
+
|
14 |
+
|
15 |
+
def gguf_completion_mock(base_url=None, **kwargs):
|
16 |
+
# Generate a hash from the parameters
|
17 |
+
hash_kwargs = {"base_url": base_url, **kwargs}
|
18 |
+
hash = hashlib.sha256(
|
19 |
+
json.dumps(hash_kwargs, sort_keys=True).encode("utf-8")
|
20 |
+
).hexdigest()
|
21 |
+
|
22 |
+
fname = f"./tests/testdata/gguf_test_{hash}.pkl"
|
23 |
+
|
24 |
+
if os.path.exists(fname):
|
25 |
+
with open(fname, "rb") as fh:
|
26 |
+
return pickle.load(fh)
|
27 |
+
else:
|
28 |
+
print("The file does not exist, attempting to write...")
|
29 |
+
if "stop" in kwargs:
|
30 |
+
result = {
|
31 |
+
"choices": [
|
32 |
+
{
|
33 |
+
"text": f"generated text until {kwargs['stop']}",
|
34 |
+
"logprobs": {"token_logprobs": [-1.2345], "text_offset": 0},
|
35 |
+
"finish_reason": "length",
|
36 |
+
}
|
37 |
+
]
|
38 |
+
}
|
39 |
+
else:
|
40 |
+
# generated with # curl -X 'POST' 'http://localhost:8000/v1/completions' -H 'accept: application/json' -H 'Content-Type: application/json' -d '{"prompt": "string", "logprobs": 10, "temperature": 0.0, "max_tokens": 1, "echo": true}'
|
41 |
+
result = {
|
42 |
+
"id": "cmpl-4023976b-bc6a-43b0-a5a9-629f4216c7f3",
|
43 |
+
"object": "text_completion",
|
44 |
+
"created": 1700511361,
|
45 |
+
"model": "../llama-2-7b.Q8_0.gguf",
|
46 |
+
"choices": [
|
47 |
+
{
|
48 |
+
"text": "string(",
|
49 |
+
"index": 0,
|
50 |
+
"logprobs": {
|
51 |
+
"text_offset": [0, 7],
|
52 |
+
"token_logprobs": [None, -1.033263319857306],
|
53 |
+
"tokens": [" string", "("],
|
54 |
+
"top_logprobs": [
|
55 |
+
None,
|
56 |
+
{
|
57 |
+
"(": -1.033263319857306,
|
58 |
+
"[]": -2.6530743779017394,
|
59 |
+
".": -3.0377145947291324,
|
60 |
+
"\n": -3.0399156750513976,
|
61 |
+
"_": -3.510376089937872,
|
62 |
+
" =": -3.6957918347193663,
|
63 |
+
",": -3.9309459866358702,
|
64 |
+
" of": -4.2834550083949035,
|
65 |
+
'("': -4.322762841112799,
|
66 |
+
"()": -4.426229113466925,
|
67 |
+
},
|
68 |
+
],
|
69 |
+
},
|
70 |
+
"finish_reason": "length",
|
71 |
+
}
|
72 |
+
],
|
73 |
+
"usage": {
|
74 |
+
"prompt_tokens": 2,
|
75 |
+
"completion_tokens": 1,
|
76 |
+
"total_tokens": 3,
|
77 |
+
},
|
78 |
+
}
|
79 |
+
|
80 |
+
try:
|
81 |
+
os.makedirs(os.path.dirname(fname), exist_ok=True)
|
82 |
+
print("Writing file at", fname)
|
83 |
+
with open(fname, "wb") as fh:
|
84 |
+
pickle.dump(result, fh)
|
85 |
+
print("File written successfully")
|
86 |
+
except Exception as e:
|
87 |
+
print("File writing failed:", e)
|
88 |
+
|
89 |
+
return result
|
90 |
+
|
91 |
+
|
92 |
+
class GGUFLMTest(unittest.TestCase):
|
93 |
+
@patch(
|
94 |
+
"lm_eval.models.gguf.GGUFLM.gguf_completion", side_effect=gguf_completion_mock
|
95 |
+
)
|
96 |
+
def test_loglikelihood(self, gguf_completion_mock):
|
97 |
+
lm = GGUFLM(base_url)
|
98 |
+
|
99 |
+
# Test loglikelihood
|
100 |
+
requests = [
|
101 |
+
Instance(
|
102 |
+
request_type="loglikelihood",
|
103 |
+
doc=args,
|
104 |
+
arguments=args,
|
105 |
+
idx=i,
|
106 |
+
)
|
107 |
+
for i, args in enumerate([("str", "ing"), ("str", "ing")])
|
108 |
+
]
|
109 |
+
res = lm.loglikelihood(requests)
|
110 |
+
|
111 |
+
# Assert the loglikelihood response is correct
|
112 |
+
expected_res = [(logprob, True) for logprob in [0, 0]]
|
113 |
+
self.assertEqual(res, expected_res)
|
114 |
+
|
115 |
+
@patch(
|
116 |
+
"lm_eval.models.gguf.GGUFLM.gguf_completion", side_effect=gguf_completion_mock
|
117 |
+
)
|
118 |
+
def test_generate_until(self, gguf_completion_mock):
|
119 |
+
lm = GGUFLM(base_url)
|
120 |
+
|
121 |
+
# Test generate_until
|
122 |
+
requests = [
|
123 |
+
Instance(
|
124 |
+
request_type="generate_until",
|
125 |
+
doc={"input": doc},
|
126 |
+
arguments=(doc, {"until": stop}),
|
127 |
+
idx=i,
|
128 |
+
)
|
129 |
+
for i, (doc, stop) in enumerate([("input1", "stop1"), ("input2", "stop2")])
|
130 |
+
]
|
131 |
+
|
132 |
+
res = lm.generate_until(requests)
|
133 |
+
|
134 |
+
# Assert the generate_until response is correct
|
135 |
+
expected_res = ["generated text until stop1", "generated text until stop2"]
|
136 |
+
self.assertEqual(res, expected_res)
|
137 |
+
|
138 |
+
# @patch('lm_eval.models.gguf.GGUFLM.gguf_completion', side_effect=gguf_completion_mock)
|
139 |
+
# def test_loglikelihood_rolling(self, gguf_completion_mock):
|
140 |
+
# lm = GGUFLM(base_url)
|
141 |
+
|
142 |
+
# # Test loglikelihood_rolling
|
143 |
+
# requests = ["input1", "input2"]
|
144 |
+
# res = lm.loglikelihood_rolling(requests)
|
145 |
+
|
146 |
+
# # Assert the loglikelihood_rolling response is correct
|
147 |
+
# expected_res = [(-1.2345, True), (-1.2345, True)]
|
148 |
+
# self.assertEqual(res, expected_res)
|
149 |
+
|
150 |
+
|
151 |
+
if __name__ == "__main__":
|
152 |
+
unittest.main()
|
lm-evaluation/tests/models/test_huggingface.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import sys
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
|
9 |
+
import lm_eval.tasks as tasks
|
10 |
+
from lm_eval.api.instance import Instance
|
11 |
+
from lm_eval.models.huggingface import HFLM
|
12 |
+
|
13 |
+
|
14 |
+
task_manager = tasks.TaskManager()
|
15 |
+
|
16 |
+
|
17 |
+
class Test_HFLM:
|
18 |
+
torch.use_deterministic_algorithms(True)
|
19 |
+
task_list = task_manager.load_task_or_group(["arc_easy", "gsm8k", "wikitext"])
|
20 |
+
version_minor = sys.version_info.minor
|
21 |
+
multiple_choice_task = task_list["arc_easy"] # type: ignore
|
22 |
+
multiple_choice_task.build_all_requests(limit=10, rank=0, world_size=1)
|
23 |
+
MULTIPLE_CH: list[Instance] = multiple_choice_task.instances
|
24 |
+
generate_until_task = task_list["gsm8k"] # type: ignore
|
25 |
+
generate_until_task._config.generation_kwargs["max_gen_toks"] = 10
|
26 |
+
generate_until_task.build_all_requests(limit=10, rank=0, world_size=1)
|
27 |
+
generate_until: list[Instance] = generate_until_task.instances
|
28 |
+
rolling_task = task_list["wikitext"] # type: ignore
|
29 |
+
rolling_task.build_all_requests(limit=10, rank=0, world_size=1)
|
30 |
+
ROLLING: list[Instance] = rolling_task.instances
|
31 |
+
|
32 |
+
MULTIPLE_CH_RES = [
|
33 |
+
-41.902435302734375,
|
34 |
+
-42.939308166503906,
|
35 |
+
-33.914180755615234,
|
36 |
+
-37.07139205932617,
|
37 |
+
-22.95258331298828,
|
38 |
+
-20.342208862304688,
|
39 |
+
-14.818366050720215,
|
40 |
+
-27.942853927612305,
|
41 |
+
-15.80704116821289,
|
42 |
+
-15.936427116394043,
|
43 |
+
-13.052018165588379,
|
44 |
+
-18.04828453063965,
|
45 |
+
-13.345029830932617,
|
46 |
+
-13.366025924682617,
|
47 |
+
-12.127134323120117,
|
48 |
+
-11.872495651245117,
|
49 |
+
-47.10598373413086,
|
50 |
+
-47.76410675048828,
|
51 |
+
-36.4406852722168,
|
52 |
+
-50.0289421081543,
|
53 |
+
-16.72093963623047,
|
54 |
+
-18.535587310791016,
|
55 |
+
-26.46993637084961,
|
56 |
+
-20.355995178222656,
|
57 |
+
-17.757919311523438,
|
58 |
+
-21.80595588684082,
|
59 |
+
-33.1990852355957,
|
60 |
+
-39.28636932373047,
|
61 |
+
-14.759679794311523,
|
62 |
+
-16.753942489624023,
|
63 |
+
-11.486852645874023,
|
64 |
+
-15.42177677154541,
|
65 |
+
-13.15798282623291,
|
66 |
+
-15.887393951416016,
|
67 |
+
-15.28614616394043,
|
68 |
+
-12.339089393615723,
|
69 |
+
-44.59441375732422,
|
70 |
+
-55.40888214111328,
|
71 |
+
-52.70050811767578,
|
72 |
+
-56.25089645385742,
|
73 |
+
]
|
74 |
+
generate_until_RES = [
|
75 |
+
" The average of $2.50 each is $",
|
76 |
+
" A robe takes 2 bolts of blue fiber and half",
|
77 |
+
" $50,000 in repairs.\n\nQuestion",
|
78 |
+
" He runs 1 sprint 3 times a week.",
|
79 |
+
" They feed each of her chickens three cups of mixed",
|
80 |
+
" The price of the glasses is $5, but",
|
81 |
+
" The total percentage of students who said they like to",
|
82 |
+
" Carla is downloading a 200 GB file. Normally",
|
83 |
+
" John drives for 3 hours at a speed of 60",
|
84 |
+
" Eliza sells 4 tickets to 5 friends so she",
|
85 |
+
]
|
86 |
+
ROLLING_RES = [
|
87 |
+
-3603.6328125,
|
88 |
+
-19779.23974609375,
|
89 |
+
-8834.16455078125,
|
90 |
+
-27967.591796875,
|
91 |
+
-7636.794982910156,
|
92 |
+
-9491.93505859375,
|
93 |
+
-41043.4248046875,
|
94 |
+
-8397.689819335938,
|
95 |
+
-45969.47155761719,
|
96 |
+
-7158.90625,
|
97 |
+
]
|
98 |
+
LM = HFLM(pretrained="EleutherAI/pythia-70m", device="cpu", dtype="float32")
|
99 |
+
|
100 |
+
def test_logliklihood(self) -> None:
|
101 |
+
res = self.LM.loglikelihood(self.MULTIPLE_CH)
|
102 |
+
_RES, _res = self.MULTIPLE_CH_RES, [r[0] for r in res]
|
103 |
+
# log samples to CI
|
104 |
+
dir_path = Path("test_logs")
|
105 |
+
dir_path.mkdir(parents=True, exist_ok=True)
|
106 |
+
|
107 |
+
file_path = dir_path / f"outputs_log_{self.version_minor}.txt"
|
108 |
+
file_path = file_path.resolve()
|
109 |
+
with open(file_path, "w") as f:
|
110 |
+
f.write("\n".join(str(x) for x in _res))
|
111 |
+
assert np.allclose(_res, _RES, atol=1e-2)
|
112 |
+
# check indices for Multiple Choice
|
113 |
+
argmax_RES, argmax_res = (
|
114 |
+
np.argmax(np.array(_RES).reshape(-1, 4), axis=1),
|
115 |
+
np.argmax(np.array(_res).reshape(-1, 4), axis=1),
|
116 |
+
)
|
117 |
+
assert (argmax_RES == argmax_res).all()
|
118 |
+
|
119 |
+
def test_generate_until(self) -> None:
|
120 |
+
res = self.LM.generate_until(self.generate_until)
|
121 |
+
assert res == self.generate_until_RES
|
122 |
+
|
123 |
+
def test_logliklihood_rolling(self) -> None:
|
124 |
+
res = self.LM.loglikelihood_rolling(self.ROLLING)
|
125 |
+
assert np.allclose(res, self.ROLLING_RES, atol=1e-1)
|
126 |
+
|
127 |
+
def test_toc_encode(self) -> None:
|
128 |
+
res = self.LM.tok_encode("foo bar")
|
129 |
+
assert res == [12110, 2534]
|
130 |
+
|
131 |
+
def test_toc_decode(self) -> None:
|
132 |
+
res = self.LM.tok_decode([12110, 2534])
|
133 |
+
assert res == "foo bar"
|
134 |
+
|
135 |
+
def test_batch_encode(self) -> None:
|
136 |
+
res = self.LM.tok_batch_encode(["foo bar", "bar foo"])[0].tolist()
|
137 |
+
assert res == [[12110, 2534], [2009, 17374]]
|
138 |
+
|
139 |
+
def test_model_generate(self) -> None:
|
140 |
+
context = self.LM.tok_batch_encode(["foo bar"])[0]
|
141 |
+
res = self.LM._model_generate(context, max_length=10, stop=["\n\n"])
|
142 |
+
res = self.LM.tok_decode(res[0])
|
143 |
+
assert res == "foo bar\n<bazhang>!info bar"
|
lm-evaluation/tests/models/test_neuron_optimum.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from lm_eval.models.neuron_optimum import wrap_constant_batch_size
|
5 |
+
|
6 |
+
|
7 |
+
def test_wrap_constant_batch_size():
|
8 |
+
class Tester:
|
9 |
+
def __init__(self, batch_size):
|
10 |
+
self.batch_size = batch_size
|
11 |
+
|
12 |
+
@wrap_constant_batch_size
|
13 |
+
def test_constant_batch_size(self, inputs):
|
14 |
+
assert len(inputs) == self.batch_size
|
15 |
+
return inputs
|
16 |
+
|
17 |
+
batch_size_test = 8
|
18 |
+
for i in range(1, batch_size_test + 1):
|
19 |
+
tensor = torch.ones([i, 2, 2])
|
20 |
+
out = Tester(batch_size=batch_size_test).test_constant_batch_size(tensor)
|
21 |
+
torch.testing.assert_allclose(out, tensor)
|
22 |
+
|
23 |
+
with pytest.raises(ValueError):
|
24 |
+
Tester(batch_size=batch_size_test).test_constant_batch_size(
|
25 |
+
torch.ones([batch_size_test + 1, 2, 2])
|
26 |
+
)
|
lm-evaluation/tests/models/test_openvino.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import tempfile
|
3 |
+
|
4 |
+
import pytest
|
5 |
+
from optimum.intel import OVModelForCausalLM
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
|
8 |
+
import lm_eval.evaluator as evaluator
|
9 |
+
from lm_eval.api.registry import get_model
|
10 |
+
|
11 |
+
|
12 |
+
SUPPORTED_ARCHITECTURES_TASKS = {
|
13 |
+
"facebook/opt-125m": "lambada_openai",
|
14 |
+
"hf-internal-testing/tiny-random-gpt2": "wikitext",
|
15 |
+
}
|
16 |
+
|
17 |
+
|
18 |
+
@pytest.mark.parametrize("model_id,task", SUPPORTED_ARCHITECTURES_TASKS.items())
|
19 |
+
def test_evaluator(model_id, task):
|
20 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
21 |
+
model = OVModelForCausalLM.from_pretrained(
|
22 |
+
model_id, export=True, use_cache=True
|
23 |
+
)
|
24 |
+
model.save_pretrained(tmpdirname)
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
26 |
+
tokenizer.save_pretrained(tmpdirname)
|
27 |
+
|
28 |
+
lm = get_model("openvino").create_from_arg_string(
|
29 |
+
f"pretrained={tmpdirname}",
|
30 |
+
{
|
31 |
+
"batch_size": 1,
|
32 |
+
"device": "cpu",
|
33 |
+
},
|
34 |
+
)
|
35 |
+
|
36 |
+
def ll_fn(reqs):
|
37 |
+
for ctx, cont in [req.args for req in reqs]:
|
38 |
+
if len(ctx) == 0:
|
39 |
+
continue
|
40 |
+
# space convention
|
41 |
+
assert ctx[-1] != " "
|
42 |
+
assert cont[0] == " " or ctx[-1] == "\n"
|
43 |
+
|
44 |
+
res = []
|
45 |
+
|
46 |
+
random.seed(42)
|
47 |
+
for _ in reqs:
|
48 |
+
res.append((-random.random(), False))
|
49 |
+
|
50 |
+
return res
|
51 |
+
|
52 |
+
def ll_perp_fn(reqs):
|
53 |
+
for (string,) in [req.args for req in reqs]:
|
54 |
+
assert isinstance(string, str)
|
55 |
+
|
56 |
+
res = []
|
57 |
+
random.seed(42)
|
58 |
+
for _ in reqs:
|
59 |
+
res.append(-random.random())
|
60 |
+
|
61 |
+
return res
|
62 |
+
|
63 |
+
lm.loglikelihood = ll_fn
|
64 |
+
lm.loglikelihood_rolling = ll_perp_fn
|
65 |
+
|
66 |
+
limit = 10
|
67 |
+
evaluator.simple_evaluate(
|
68 |
+
model=lm,
|
69 |
+
tasks=[task],
|
70 |
+
num_fewshot=0,
|
71 |
+
limit=limit,
|
72 |
+
bootstrap_iters=10,
|
73 |
+
)
|
lm-evaluation/tests/models/test_vllm.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
import torch
|
5 |
+
|
6 |
+
import lm_eval.tasks as tasks
|
7 |
+
from lm_eval.api.instance import Instance
|
8 |
+
|
9 |
+
|
10 |
+
task_manager = tasks.TaskManager()
|
11 |
+
|
12 |
+
|
13 |
+
@pytest.mark.skip(reason="requires CUDA")
|
14 |
+
class TEST_VLLM:
|
15 |
+
vllm = pytest.importorskip("vllm")
|
16 |
+
try:
|
17 |
+
from lm_eval.models.vllm_causallms import VLLM
|
18 |
+
|
19 |
+
LM = VLLM(pretrained="EleutherAI/pythia-70m")
|
20 |
+
except ModuleNotFoundError:
|
21 |
+
pass
|
22 |
+
torch.use_deterministic_algorithms(True)
|
23 |
+
task_list = task_manager.load_task_or_group(["arc_easy", "gsm8k", "wikitext"])
|
24 |
+
multiple_choice_task = task_list["arc_easy"] # type: ignore
|
25 |
+
multiple_choice_task.build_all_requests(limit=10, rank=0, world_size=1)
|
26 |
+
MULTIPLE_CH: List[Instance] = multiple_choice_task.instances
|
27 |
+
generate_until_task = task_list["gsm8k"] # type: ignore
|
28 |
+
generate_until_task._config.generation_kwargs["max_gen_toks"] = 10
|
29 |
+
generate_until_task.build_all_requests(limit=10, rank=0, world_size=1)
|
30 |
+
generate_until: List[Instance] = generate_until_task.instances
|
31 |
+
rolling_task = task_list["wikitext"] # type: ignore
|
32 |
+
rolling_task.build_all_requests(limit=10, rank=0, world_size=1)
|
33 |
+
ROLLING: List[Instance] = rolling_task.instances
|
34 |
+
|
35 |
+
# TODO: make proper tests
|
36 |
+
def test_logliklihood(self) -> None:
|
37 |
+
res = self.LM.loglikelihood(self.MULTIPLE_CH)
|
38 |
+
assert len(res) == len(self.MULTIPLE_CH)
|
39 |
+
for x in res:
|
40 |
+
assert isinstance(x[0], float)
|
41 |
+
|
42 |
+
def test_generate_until(self) -> None:
|
43 |
+
res = self.LM.generate_until(self.generate_until)
|
44 |
+
assert len(res) == len(self.generate_until)
|
45 |
+
for x in res:
|
46 |
+
assert isinstance(x, str)
|
47 |
+
|
48 |
+
def test_logliklihood_rolling(self) -> None:
|
49 |
+
res = self.LM.loglikelihood_rolling(self.ROLLING)
|
50 |
+
for x in res:
|
51 |
+
assert isinstance(x, float)
|
lm-evaluation/tests/test_cli.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
|
5 |
+
import lm_eval.__main__
|
6 |
+
|
7 |
+
|
8 |
+
def test_cli_parse_error():
|
9 |
+
"""
|
10 |
+
Assert error raised if cli args argument doesn't have type
|
11 |
+
"""
|
12 |
+
with pytest.raises(ValueError):
|
13 |
+
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
|
14 |
+
parser.add_argument(
|
15 |
+
"--model", "-m", type=str, default="hf", help="Name of model e.g. `hf`"
|
16 |
+
)
|
17 |
+
parser.add_argument(
|
18 |
+
"--tasks",
|
19 |
+
"-t",
|
20 |
+
default=None,
|
21 |
+
metavar="task1,task2",
|
22 |
+
help="To get full list of tasks, use the command lm-eval --tasks list",
|
23 |
+
)
|
24 |
+
lm_eval.__main__.check_argument_types(parser)
|
25 |
+
|
26 |
+
|
27 |
+
def test_cli_parse_no_error():
|
28 |
+
"""
|
29 |
+
Assert typed arguments are parsed correctly
|
30 |
+
"""
|
31 |
+
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
|
32 |
+
parser.add_argument(
|
33 |
+
"--model", "-m", type=str, default="hf", help="Name of model e.g. `hf`"
|
34 |
+
)
|
35 |
+
parser.add_argument(
|
36 |
+
"--tasks",
|
37 |
+
"-t",
|
38 |
+
type=str,
|
39 |
+
default=None,
|
40 |
+
metavar="task1,task2",
|
41 |
+
help="To get full list of tasks, use the command lm-eval --tasks list",
|
42 |
+
)
|
43 |
+
lm_eval.__main__.check_argument_types(parser)
|
lm-evaluation/tests/test_evaluator.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import lm_eval.base as base
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
# import lm_eval.models as models
|
7 |
+
import lm_eval.api as api
|
8 |
+
import lm_eval.evaluator as evaluator
|
9 |
+
from lm_eval import tasks
|
10 |
+
|
11 |
+
|
12 |
+
# TODO: more fine grained unit tests rather than this big honking integration
|
13 |
+
# test once we break evaluator into smaller, more manageable pieces
|
14 |
+
|
15 |
+
|
16 |
+
@pytest.mark.parametrize(
|
17 |
+
"task_name,limit,model,model_args",
|
18 |
+
[
|
19 |
+
(
|
20 |
+
["arc_easy"],
|
21 |
+
10,
|
22 |
+
"hf",
|
23 |
+
"pretrained=EleutherAI/pythia-160m,dtype=float32,device=cpu",
|
24 |
+
)
|
25 |
+
],
|
26 |
+
)
|
27 |
+
def test_evaluator(task_name: List[str], limit: int, model: str, model_args: str):
|
28 |
+
task_name = task_name
|
29 |
+
limit = 10
|
30 |
+
|
31 |
+
e1 = evaluator.simple_evaluate(
|
32 |
+
model=model,
|
33 |
+
tasks=task_name,
|
34 |
+
limit=limit,
|
35 |
+
model_args=model_args,
|
36 |
+
)
|
37 |
+
assert e1 is not None
|
38 |
+
|
39 |
+
lm = api.registry.get_model(model).create_from_arg_string(
|
40 |
+
model_args,
|
41 |
+
{
|
42 |
+
"batch_size": None,
|
43 |
+
"max_batch_size": None,
|
44 |
+
"device": None,
|
45 |
+
},
|
46 |
+
)
|
47 |
+
task_manager = tasks.TaskManager()
|
48 |
+
task_dict = tasks.get_task_dict(task_name, task_manager)
|
49 |
+
|
50 |
+
e2 = evaluator.evaluate(
|
51 |
+
lm=lm,
|
52 |
+
task_dict=task_dict,
|
53 |
+
limit=limit,
|
54 |
+
)
|
55 |
+
|
56 |
+
assert e2 is not None
|
57 |
+
# check that caching is working
|
58 |
+
|
59 |
+
def r(x):
|
60 |
+
return x["results"]["arc_easy"]
|
61 |
+
|
62 |
+
assert all(
|
63 |
+
x == y
|
64 |
+
for x, y in zip([y for _, y in r(e1).items()], [y for _, y in r(e2).items()])
|
65 |
+
)
|
lm-evaluation/tests/test_janitor.py
ADDED
@@ -0,0 +1,507 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
|
3 |
+
from lm_eval.decontamination.janitor import (
|
4 |
+
Janitor,
|
5 |
+
form_ngrams,
|
6 |
+
split_indices,
|
7 |
+
word_ngrams,
|
8 |
+
word_ngrams_indices,
|
9 |
+
)
|
10 |
+
|
11 |
+
|
12 |
+
def simple_ngram(sequence, n):
|
13 |
+
ngrams = list()
|
14 |
+
ngram = []
|
15 |
+
for x in sequence:
|
16 |
+
ngram.append(x)
|
17 |
+
if len(ngram) == n:
|
18 |
+
ngrams.append(tuple(ngram))
|
19 |
+
ngram = ngram[1:]
|
20 |
+
|
21 |
+
return ngrams
|
22 |
+
|
23 |
+
|
24 |
+
def test_form_ngrams():
|
25 |
+
sequence = (
|
26 |
+
"Hello my name is Bob, I like eating pizza, chicken, chips and ice cream. Maybe I should eat some"
|
27 |
+
" more salad but it's so booooring. I just... like eating pizza, chicken, chips and ice cream so much."
|
28 |
+
)
|
29 |
+
|
30 |
+
n_values = [1, 2, 3, 5, 13]
|
31 |
+
for n in n_values:
|
32 |
+
comparison = simple_ngram(sequence, n)
|
33 |
+
result_to_test = list(form_ngrams(iter(sequence), n))
|
34 |
+
assert len(comparison) == len(result_to_test)
|
35 |
+
assert comparison == result_to_test
|
36 |
+
|
37 |
+
|
38 |
+
def test_word_ngrams():
|
39 |
+
sequence = (
|
40 |
+
"Hello my name is Bob, I like eating pizza, chicken, chips and ice cream. Maybe I should eat some"
|
41 |
+
" more salad but it's so booooring. I just... like eating pizza, chicken, chips and ice cream so much."
|
42 |
+
)
|
43 |
+
|
44 |
+
words = sequence.split()
|
45 |
+
|
46 |
+
n_values = [1, 2, 3, 5, 13]
|
47 |
+
for n in n_values:
|
48 |
+
comparison = simple_ngram(words, n)
|
49 |
+
comparison = [" ".join(ngram) for ngram in comparison]
|
50 |
+
result_to_test = list(word_ngrams(sequence, n))
|
51 |
+
assert len(comparison) == len(result_to_test)
|
52 |
+
assert result_to_test == comparison
|
53 |
+
|
54 |
+
|
55 |
+
def test_split_indices():
|
56 |
+
sequence = (
|
57 |
+
"Hello my name is Bob, I like eating pizza, chicken, chips and ice cream. Maybe I should eat some"
|
58 |
+
" more salad but it's so booooring. I just... like eating pizza, chicken, chips and ice cream so much."
|
59 |
+
)
|
60 |
+
|
61 |
+
comparison = []
|
62 |
+
current_word = ""
|
63 |
+
for i, c in enumerate(sequence):
|
64 |
+
if c != " ":
|
65 |
+
current_word += c
|
66 |
+
else:
|
67 |
+
if current_word:
|
68 |
+
comparison.append((current_word, (i - len(current_word), i - 1)))
|
69 |
+
current_word = ""
|
70 |
+
|
71 |
+
if current_word:
|
72 |
+
comparison.append(
|
73 |
+
(current_word, (len(sequence) - len(current_word), len(sequence) - 1))
|
74 |
+
)
|
75 |
+
current_word = ""
|
76 |
+
|
77 |
+
result_to_test = list(split_indices(sequence))
|
78 |
+
assert len(comparison) == len(result_to_test)
|
79 |
+
assert comparison == result_to_test
|
80 |
+
|
81 |
+
|
82 |
+
def test_word_ngrams_indices():
|
83 |
+
sequence = (
|
84 |
+
"Hello my name is Bob, I like eating pizza, chicken, chips and ice cream. Maybe I should eat some"
|
85 |
+
" more salad but it's so booooring. I just... like eating pizza, chicken, chips and ice cream so much."
|
86 |
+
)
|
87 |
+
|
88 |
+
n_values = [1, 2, 3, 5, 13]
|
89 |
+
|
90 |
+
for n in n_values:
|
91 |
+
ngrams = [" ".join(ngram) for ngram in simple_ngram(sequence.split(), n)]
|
92 |
+
tracker = defaultdict(int)
|
93 |
+
comparison = []
|
94 |
+
for ngram in ngrams:
|
95 |
+
while True:
|
96 |
+
start = sequence.find(ngram, tracker[ngram])
|
97 |
+
assert start != -1 # testing the test
|
98 |
+
|
99 |
+
end = start + len(ngram) - 1
|
100 |
+
tracker[ngram] = end + 1
|
101 |
+
|
102 |
+
# ignore partial word matches
|
103 |
+
if (start != 0 and sequence[start - 1] != " ") or (
|
104 |
+
end != len(sequence) - 1 and sequence[end + 1] != " "
|
105 |
+
):
|
106 |
+
pass
|
107 |
+
else:
|
108 |
+
break
|
109 |
+
|
110 |
+
comparison.append((ngram, (start, end)))
|
111 |
+
|
112 |
+
result_to_test = list(word_ngrams_indices(sequence, n))
|
113 |
+
assert len(result_to_test) == len(comparison)
|
114 |
+
assert result_to_test == comparison
|
115 |
+
|
116 |
+
|
117 |
+
# Assumptions from GPT3 Paper:
|
118 |
+
# the 200 characters to remove include punctuation and is actually a half-window
|
119 |
+
|
120 |
+
|
121 |
+
# All tests below initially test without any registered contaminants, expecting the same sequence back.
|
122 |
+
def test_janitor1():
|
123 |
+
# First test using a 1gram and expected the first block before the filth to have some remaining
|
124 |
+
# characters, but the second block should be completely removed.
|
125 |
+
|
126 |
+
sequence = (
|
127 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
128 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
129 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
130 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
131 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
132 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
133 |
+
"FILTH. "
|
134 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
135 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
136 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
137 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
138 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
139 |
+
)
|
140 |
+
|
141 |
+
filth = "filth"
|
142 |
+
|
143 |
+
expected_result = (
|
144 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
145 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
146 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
147 |
+
"This is a @line #containing "
|
148 |
+
)
|
149 |
+
|
150 |
+
janitor = Janitor(
|
151 |
+
ngram_n=1, window_to_remove=200, too_dirty_cutoff=10, minimum_slice_length=200
|
152 |
+
)
|
153 |
+
result = janitor.clean_python(sequence)
|
154 |
+
result = "".join(result)
|
155 |
+
assert result == sequence
|
156 |
+
|
157 |
+
janitor.register_contaminant(filth)
|
158 |
+
assert janitor.dirt_ngrams == {filth}
|
159 |
+
|
160 |
+
result = janitor.clean_python(sequence)
|
161 |
+
result = "".join(result)
|
162 |
+
assert result == expected_result
|
163 |
+
|
164 |
+
|
165 |
+
def test_janitor2():
|
166 |
+
# Second test using a 1gram and expected the first block before the filth to have some remaining
|
167 |
+
# characters, and the second block is longer then 200 characters so should also have some remaining.
|
168 |
+
|
169 |
+
sequence = (
|
170 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
171 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
172 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
173 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
174 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
175 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
176 |
+
"FILTH. "
|
177 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
178 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
179 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
180 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
181 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
182 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
183 |
+
)
|
184 |
+
|
185 |
+
filth = "filth"
|
186 |
+
|
187 |
+
expected_result = (
|
188 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
189 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
190 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
191 |
+
"This is a @line #containing "
|
192 |
+
" characters, 76 to be exact. "
|
193 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
194 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
195 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
196 |
+
)
|
197 |
+
|
198 |
+
janitor = Janitor(
|
199 |
+
ngram_n=1, window_to_remove=200, too_dirty_cutoff=10, minimum_slice_length=200
|
200 |
+
)
|
201 |
+
result = janitor.clean_python(sequence)
|
202 |
+
result = "".join(result)
|
203 |
+
assert result == sequence
|
204 |
+
|
205 |
+
janitor.register_contaminant(filth)
|
206 |
+
assert janitor.dirt_ngrams == {filth}
|
207 |
+
|
208 |
+
result = janitor.clean_python(sequence)
|
209 |
+
result = "".join(result)
|
210 |
+
assert result == expected_result
|
211 |
+
|
212 |
+
|
213 |
+
def test_janitor3():
|
214 |
+
# Same test as above but with a 6gram.
|
215 |
+
|
216 |
+
sequence = (
|
217 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
218 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
219 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
220 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
221 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
222 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
223 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
224 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
225 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
226 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
227 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
228 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
229 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
230 |
+
)
|
231 |
+
|
232 |
+
filth = "filth lots of dirty filthy filth"
|
233 |
+
|
234 |
+
expected_result = (
|
235 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
236 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
237 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
238 |
+
"This is a @line #containing "
|
239 |
+
" characters, 76 to be exact. "
|
240 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
241 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
242 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
243 |
+
)
|
244 |
+
|
245 |
+
janitor = Janitor(
|
246 |
+
ngram_n=6, window_to_remove=200, too_dirty_cutoff=10, minimum_slice_length=200
|
247 |
+
)
|
248 |
+
result = janitor.clean_python(sequence)
|
249 |
+
result = "".join(result)
|
250 |
+
assert result == sequence
|
251 |
+
|
252 |
+
janitor.register_contaminant(filth)
|
253 |
+
assert janitor.dirt_ngrams == {filth}
|
254 |
+
|
255 |
+
result = janitor.clean_python(sequence)
|
256 |
+
result = "".join(result)
|
257 |
+
assert result == expected_result
|
258 |
+
|
259 |
+
|
260 |
+
def test_janitor4():
|
261 |
+
# This test adds another block to that from the previous. The middle block should be entirely
|
262 |
+
# removed as the 200 characters are removed from each side.
|
263 |
+
|
264 |
+
sequence = (
|
265 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
266 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
267 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
268 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
269 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
270 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
271 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
272 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
273 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
274 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
275 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
276 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
277 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
278 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
279 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
280 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
281 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
282 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
283 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
284 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
285 |
+
)
|
286 |
+
|
287 |
+
filth = "filth lots of dirty filthy filth"
|
288 |
+
|
289 |
+
expected_result = (
|
290 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
291 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
292 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
293 |
+
"This is a @line #containing "
|
294 |
+
" characters, 76 to be exact. "
|
295 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
296 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
297 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
298 |
+
)
|
299 |
+
|
300 |
+
janitor = Janitor(
|
301 |
+
ngram_n=6, window_to_remove=200, too_dirty_cutoff=10, minimum_slice_length=200
|
302 |
+
)
|
303 |
+
result = janitor.clean_python(sequence)
|
304 |
+
result = "".join(result)
|
305 |
+
assert result == sequence
|
306 |
+
|
307 |
+
janitor.register_contaminant(filth)
|
308 |
+
assert janitor.dirt_ngrams == {filth}
|
309 |
+
|
310 |
+
result = janitor.clean_python(sequence)
|
311 |
+
result = "".join(result)
|
312 |
+
assert result == expected_result
|
313 |
+
|
314 |
+
|
315 |
+
def test_janitor5():
|
316 |
+
# Same as above but using multiple different filth 6grams.
|
317 |
+
|
318 |
+
sequence = (
|
319 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
320 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
321 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
322 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
323 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
324 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
325 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
326 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
327 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
328 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
329 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
330 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
331 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
332 |
+
"FILTH. lots of filtHy dirty FIlTh "
|
333 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
334 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
335 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
336 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
337 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
338 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
339 |
+
)
|
340 |
+
|
341 |
+
filths = ["filth lots of dirty filthy filth", "filth lots of filthy dirty filth"]
|
342 |
+
|
343 |
+
expected_result = (
|
344 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
345 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
346 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
347 |
+
"This is a @line #containing "
|
348 |
+
" characters, 76 to be exact. "
|
349 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
350 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
351 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
352 |
+
)
|
353 |
+
|
354 |
+
janitor = Janitor(
|
355 |
+
ngram_n=6, window_to_remove=200, too_dirty_cutoff=10, minimum_slice_length=200
|
356 |
+
)
|
357 |
+
result = janitor.clean_python(sequence)
|
358 |
+
result = "".join(result)
|
359 |
+
assert result == sequence
|
360 |
+
|
361 |
+
for filth in filths:
|
362 |
+
janitor.register_contaminant(filth)
|
363 |
+
assert janitor.dirt_ngrams == set(filths)
|
364 |
+
|
365 |
+
result = janitor.clean_python(sequence)
|
366 |
+
result = "".join(result)
|
367 |
+
assert result == expected_result
|
368 |
+
|
369 |
+
|
370 |
+
def test_janitor6():
|
371 |
+
# Same as above but now we add 10 filths and expect the same result, the following test does 11.
|
372 |
+
|
373 |
+
sequence = (
|
374 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
375 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
376 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
377 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
378 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
379 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
380 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
381 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
382 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
383 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
384 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
385 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
386 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
387 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
388 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
389 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
390 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
391 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
392 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
393 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
394 |
+
"FILTH. lots of filtHy dirty FIlTh "
|
395 |
+
"FILTH. lots of filtHy dirty FIlTh "
|
396 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
397 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
398 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
399 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
400 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
401 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
402 |
+
)
|
403 |
+
|
404 |
+
filths = ["filth lots of dirty filthy filth", "filth lots of filthy dirty filth"]
|
405 |
+
|
406 |
+
expected_result = (
|
407 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
408 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
409 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
410 |
+
"This is a @line #containing "
|
411 |
+
" characters, 76 to be exact. "
|
412 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
413 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
414 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
415 |
+
)
|
416 |
+
|
417 |
+
janitor = Janitor(
|
418 |
+
ngram_n=6, window_to_remove=200, too_dirty_cutoff=10, minimum_slice_length=200
|
419 |
+
)
|
420 |
+
result = janitor.clean_python(sequence)
|
421 |
+
result = "".join(result)
|
422 |
+
assert result == sequence
|
423 |
+
|
424 |
+
for filth in filths:
|
425 |
+
janitor.register_contaminant(filth)
|
426 |
+
assert janitor.dirt_ngrams == set(filths)
|
427 |
+
|
428 |
+
result = janitor.clean_python(sequence)
|
429 |
+
result = "".join(result)
|
430 |
+
assert result == expected_result
|
431 |
+
|
432 |
+
|
433 |
+
def test_janitor7():
|
434 |
+
# Same as above but now we add 9 filths and expect the same result, the following test does 10.
|
435 |
+
|
436 |
+
sequence = (
|
437 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
438 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
439 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
440 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
441 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
442 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
443 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
444 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
445 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
446 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
447 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
448 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
449 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
450 |
+
"FILTH. lots of dirty filtHy FIlTh "
|
451 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
452 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
453 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
454 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
455 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
456 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
457 |
+
"FILTH. lots of filtHy dirty FIlTh "
|
458 |
+
"FILTH. lots of filtHy dirty FIlTh "
|
459 |
+
"FILTH. lots of filtHy dirty FIlTh "
|
460 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
461 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
462 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
463 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
464 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
465 |
+
"This is a @line #containing a certain number of characters, 76 to be exact. "
|
466 |
+
)
|
467 |
+
|
468 |
+
filths = ["filth lots of dirty filthy filth", "filth lots of filthy dirty filth"]
|
469 |
+
|
470 |
+
expected_result = ""
|
471 |
+
|
472 |
+
janitor = Janitor(
|
473 |
+
ngram_n=6, window_to_remove=200, too_dirty_cutoff=10, minimum_slice_length=200
|
474 |
+
)
|
475 |
+
result = janitor.clean_python(sequence)
|
476 |
+
result = "".join(result)
|
477 |
+
assert result == sequence
|
478 |
+
|
479 |
+
for filth in filths:
|
480 |
+
janitor.register_contaminant(filth)
|
481 |
+
assert janitor.dirt_ngrams == set(filths)
|
482 |
+
|
483 |
+
result = janitor.clean_python(sequence)
|
484 |
+
result = "".join(result)
|
485 |
+
assert result == expected_result
|
486 |
+
|
487 |
+
|
488 |
+
def test_janitor8():
|
489 |
+
# This will test the save and load contams
|
490 |
+
pass
|
491 |
+
# source = """ ,, I'm a very !dirty,, ,, dirty boy. Clean me daddy. \n\nhe he he hehe heh. lastword """ * 2
|
492 |
+
# contaminant = "dirty boy. Clean he he"
|
493 |
+
|
494 |
+
# jan = Janitor(ngram_n=3)
|
495 |
+
# jan.register_contaminant(contaminant)
|
496 |
+
# cleaned = " ".join(jan.clean(source))
|
497 |
+
# for contam in jan.dirt_ngrams:
|
498 |
+
# assert contam not in cleaned, contam
|
499 |
+
|
500 |
+
# filename = "data/saved_contam"
|
501 |
+
# jan.save_contamination_ngrams(filename)
|
502 |
+
|
503 |
+
# jan = Janitor(ngram_n=3)
|
504 |
+
# jan.load_contamination_ngrams(filename)
|
505 |
+
# cleaned = " ".join(jan.clean(source))
|
506 |
+
# for contam in jan.dirt_ngrams:
|
507 |
+
# assert contam not in cleaned, contam
|