Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/FlushDenormal.h +14 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/Utils.h +10 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/functional.h +4 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/functional_base.h +329 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/functional_bfloat16.h +574 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/intrinsics.h +43 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec.h +47 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/missing_vld1_neon.h +452 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/missing_vst1_neon.h +8 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256.h +289 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_bfloat16.h +1090 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_complex_double.h +431 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_complex_float.h +468 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_double.h +432 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_float.h +565 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_float_neon.h +879 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_int.h +1540 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_qint.h +1327 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_bfloat16_vsx.h +56 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_float_vsx.h +449 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_int16_vsx.h +368 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_int32_vsx.h +298 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_qint32_vsx.h +245 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_qint8_vsx.h +396 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_quint8_vsx.h +407 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vsx_helpers.h +473 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec_base.h +1077 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec_half.h +50 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cpu/AtomicAddFloat.h +37 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cpu/CatKernel.h +12 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cpu/CopyKernel.h +12 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cpu/DistributionTemplates.h +368 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cpu/IsContiguous.h +62 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cpu/ReduceUtils.h +240 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cpu/SoftmaxKernel.h +28 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cpu/SpmmReduceKernel.h +22 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cpu/StackKernel.h +12 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cpu/mixed_data_type.h +41 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Activation.h +20 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Copy.h +10 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Distributions.h +25 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/EmbeddingBackwardKernel.cuh +22 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/IndexKernel.h +16 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Math.cuh +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/MemoryAccess.cuh +385 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/PersistentSoftmax.cuh +401 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Resize.h +61 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/ScanKernels.h +18 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Sorting.h +18 -0
- env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/SortingRadixSelect.cuh +429 -0
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/FlushDenormal.h
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/// Flush-To-Zero and Denormals-Are-Zero mode
|
2 |
+
///
|
3 |
+
/// Flush-To-Zero (FTZ) and Denormals-Are-Zero (DAZ) are modes that bypass
|
4 |
+
/// IEEE 754 methods of dealing with denormal floating-point numbers on x86-64
|
5 |
+
/// and some x86 CPUs. They result in reduced precision for values near zero,
|
6 |
+
/// but increased performance.
|
7 |
+
///
|
8 |
+
/// See https://software.intel.com/en-us/articles/x87-and-sse-floating-point-assists-in-ia-32-flush-to-zero-ftz-and-denormals-are-zero-daz
|
9 |
+
|
10 |
+
namespace at::cpu {
|
11 |
+
|
12 |
+
bool set_flush_denormal(bool on);
|
13 |
+
|
14 |
+
} // namespace at::cpu
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/Utils.h
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <c10/macros/Export.h>
|
4 |
+
|
5 |
+
namespace at::cpu {
|
6 |
+
|
7 |
+
// Detect if CPU support Vector Neural Network Instruction.
|
8 |
+
TORCH_API bool is_cpu_support_vnni();
|
9 |
+
|
10 |
+
} // namespace at::cpu
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/functional.h
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/functional_base.h>
|
4 |
+
#include <ATen/cpu/vec/functional_bfloat16.h>
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/functional_base.h
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/vec.h>
|
7 |
+
#include <c10/util/irange.h>
|
8 |
+
|
9 |
+
namespace at::vec {
|
10 |
+
|
11 |
+
// slow path
|
12 |
+
template <typename scalar_t, typename Op>
|
13 |
+
inline scalar_t vec_reduce_all(
|
14 |
+
const Op& vec_fun,
|
15 |
+
vec::Vectorized<scalar_t> acc_vec,
|
16 |
+
int64_t size) {
|
17 |
+
using Vec = vec::Vectorized<scalar_t>;
|
18 |
+
scalar_t acc_arr[Vec::size()];
|
19 |
+
acc_vec.store(acc_arr);
|
20 |
+
for (const auto i : c10::irange(1, size)) {
|
21 |
+
std::array<scalar_t, Vec::size()> acc_arr_next = {0};
|
22 |
+
acc_arr_next[0] = acc_arr[i];
|
23 |
+
Vec acc_vec_next = Vec::loadu(acc_arr_next.data());
|
24 |
+
acc_vec = vec_fun(acc_vec, acc_vec_next);
|
25 |
+
}
|
26 |
+
acc_vec.store(acc_arr);
|
27 |
+
return acc_arr[0];
|
28 |
+
}
|
29 |
+
|
30 |
+
template <typename scalar_t, typename Op>
|
31 |
+
struct VecReduceAllSIMD {
|
32 |
+
static inline scalar_t apply(const Op& vec_fun, const Vectorized<scalar_t>& acc_vec) {
|
33 |
+
return vec_reduce_all(vec_fun, acc_vec, Vectorized<scalar_t>::size());
|
34 |
+
}
|
35 |
+
};
|
36 |
+
|
37 |
+
#if defined(__GNUC__) && (__GNUC__ > 5) && !defined(_MSC_VER) && !defined(C10_MOBILE)
|
38 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
39 |
+
template <typename Op>
|
40 |
+
struct VecReduceAllSIMD<float, Op> {
|
41 |
+
static inline float apply(const Op& vec_fun, const Vectorized<float>& acc_vec) {
|
42 |
+
using Vec = Vectorized<float>;
|
43 |
+
Vec v = acc_vec;
|
44 |
+
// 128-bit shuffle
|
45 |
+
Vec v1 = _mm256_permute2f128_ps(v, v, 0x1);
|
46 |
+
v = vec_fun(v, v1);
|
47 |
+
// 64-bit shuffle
|
48 |
+
v1 = _mm256_shuffle_ps(v, v, 0x4E);
|
49 |
+
v = vec_fun(v, v1);
|
50 |
+
// 32-bit shuffle
|
51 |
+
v1 = _mm256_shuffle_ps(v, v, 0xB1);
|
52 |
+
v = vec_fun(v, v1);
|
53 |
+
return _mm256_cvtss_f32(v);
|
54 |
+
}
|
55 |
+
};
|
56 |
+
#endif // defined(CPU_CAPABILITY_AVX2)
|
57 |
+
#if defined(CPU_CAPABILITY_AVX512)
|
58 |
+
template <typename Op>
|
59 |
+
struct VecReduceAllSIMD<float, Op> {
|
60 |
+
static inline float apply(const Op& vec_fun, const Vectorized<float>& acc_vec) {
|
61 |
+
using Vec = Vectorized<float>;
|
62 |
+
Vec v = acc_vec;
|
63 |
+
// 256-bit shuffle
|
64 |
+
Vec v1 = _mm512_shuffle_f32x4(v, v, 0x4E);
|
65 |
+
v = vec_fun(v, v1);
|
66 |
+
// 128-bit shuffle
|
67 |
+
v1 = _mm512_shuffle_f32x4(v, v, 0xB1);
|
68 |
+
v = vec_fun(v, v1);
|
69 |
+
// 64-bit shuffle
|
70 |
+
v1 = _mm512_shuffle_ps(v, v, 0x4E);
|
71 |
+
v = vec_fun(v, v1);
|
72 |
+
// 32-bit shuffle
|
73 |
+
v1 = _mm512_shuffle_ps(v, v, 0xB1);
|
74 |
+
v = vec_fun(v, v1);
|
75 |
+
return _mm512_cvtss_f32(v);
|
76 |
+
}
|
77 |
+
};
|
78 |
+
#endif // defined(CPU_CAPABILITY_AVX512)
|
79 |
+
#endif // defined(__GNUC__) && (__GNUC__ > 5) && !defined(_MSC_VER) && !defined(C10_MOBILE)
|
80 |
+
|
81 |
+
template <typename scalar_t, typename Op>
|
82 |
+
inline scalar_t vec_reduce_all(const Op& vec_fun, const Vectorized<scalar_t>& acc_vec) {
|
83 |
+
return VecReduceAllSIMD<scalar_t, Op>::apply(vec_fun, acc_vec);
|
84 |
+
}
|
85 |
+
|
86 |
+
template <typename scalar_t, typename Op,
|
87 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
88 |
+
inline scalar_t reduce_all(const Op& vec_fun, const scalar_t* data, int64_t size) {
|
89 |
+
using Vec = vec::Vectorized<scalar_t>;
|
90 |
+
if (size < Vec::size())
|
91 |
+
return vec_reduce_all(vec_fun, Vec::loadu(data, size), size);
|
92 |
+
int64_t d = Vec::size();
|
93 |
+
Vec acc_vec = Vec::loadu(data);
|
94 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
95 |
+
Vec data_vec = Vec::loadu(data + d);
|
96 |
+
acc_vec = vec_fun(acc_vec, data_vec);
|
97 |
+
}
|
98 |
+
if (size - d > 0) {
|
99 |
+
Vec data_vec = Vec::loadu(data + d, size - d);
|
100 |
+
acc_vec = Vec::set(acc_vec, vec_fun(acc_vec, data_vec), size - d);
|
101 |
+
}
|
102 |
+
return vec_reduce_all(vec_fun, acc_vec);
|
103 |
+
}
|
104 |
+
|
105 |
+
// similar to reduce_all, but reduces into two outputs
|
106 |
+
template <typename scalar_t, typename Op1, typename Op2,
|
107 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
108 |
+
inline std::pair<scalar_t, scalar_t> reduce2_all(const Op1& vec_fun1, const Op2& vec_fun2,
|
109 |
+
const scalar_t* data, int64_t size) {
|
110 |
+
using Vec = vec::Vectorized<scalar_t>;
|
111 |
+
if (size < Vec::size()) {
|
112 |
+
auto loaded_data = Vec::loadu(data, size);
|
113 |
+
return std::pair<scalar_t, scalar_t>(
|
114 |
+
vec_reduce_all(vec_fun1, loaded_data, size),
|
115 |
+
vec_reduce_all(vec_fun2, loaded_data, size));
|
116 |
+
}
|
117 |
+
int64_t d = Vec::size();
|
118 |
+
Vec acc_vec1 = Vec::loadu(data);
|
119 |
+
Vec acc_vec2 = Vec::loadu(data);
|
120 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
121 |
+
Vec data_vec = Vec::loadu(data + d);
|
122 |
+
acc_vec1 = vec_fun1(acc_vec1, data_vec);
|
123 |
+
acc_vec2 = vec_fun2(acc_vec2, data_vec);
|
124 |
+
}
|
125 |
+
if (size - d > 0) {
|
126 |
+
Vec data_vec = Vec::loadu(data + d, size - d);
|
127 |
+
acc_vec1 = Vec::set(acc_vec1, vec_fun1(acc_vec1, data_vec), size - d);
|
128 |
+
acc_vec2 = Vec::set(acc_vec2, vec_fun2(acc_vec2, data_vec), size - d);
|
129 |
+
}
|
130 |
+
return std::pair<scalar_t, scalar_t>(
|
131 |
+
vec_reduce_all(vec_fun1, acc_vec1),
|
132 |
+
vec_reduce_all(vec_fun2, acc_vec2));
|
133 |
+
}
|
134 |
+
|
135 |
+
template <typename scalar_t, typename MapOp, typename ReduceOp,
|
136 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
137 |
+
inline scalar_t map_reduce_all(
|
138 |
+
const MapOp& map_fun,
|
139 |
+
const ReduceOp& red_fun,
|
140 |
+
const scalar_t* data,
|
141 |
+
int64_t size) {
|
142 |
+
using Vec = vec::Vectorized<scalar_t>;
|
143 |
+
if (size < Vec::size())
|
144 |
+
return vec_reduce_all(red_fun, map_fun(Vec::loadu(data, size)), size);
|
145 |
+
int64_t d = Vec::size();
|
146 |
+
Vec acc_vec = map_fun(Vec::loadu(data));
|
147 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
148 |
+
Vec data_vec = Vec::loadu(data + d);
|
149 |
+
data_vec = map_fun(data_vec);
|
150 |
+
acc_vec = red_fun(acc_vec, data_vec);
|
151 |
+
}
|
152 |
+
if (size - d > 0) {
|
153 |
+
Vec data_vec = Vec::loadu(data + d, size - d);
|
154 |
+
data_vec = map_fun(data_vec);
|
155 |
+
acc_vec = Vec::set(acc_vec, red_fun(acc_vec, data_vec), size - d);
|
156 |
+
}
|
157 |
+
return vec_reduce_all(red_fun, acc_vec);
|
158 |
+
}
|
159 |
+
|
160 |
+
template <typename scalar_t, typename MapOp, typename ReduceOp,
|
161 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
162 |
+
inline scalar_t map2_reduce_all(
|
163 |
+
const MapOp& map_fun,
|
164 |
+
const ReduceOp& red_fun,
|
165 |
+
const scalar_t* data,
|
166 |
+
const scalar_t* data2,
|
167 |
+
int64_t size) {
|
168 |
+
using Vec = vec::Vectorized<scalar_t>;
|
169 |
+
if (size < Vec::size()) {
|
170 |
+
Vec data_vec = Vec::loadu(data, size);
|
171 |
+
Vec data2_vec = Vec::loadu(data2, size);
|
172 |
+
data_vec = map_fun(data_vec, data2_vec);
|
173 |
+
return vec_reduce_all(red_fun, data_vec, size);
|
174 |
+
}
|
175 |
+
int64_t d = Vec::size();
|
176 |
+
Vec acc_vec = map_fun(Vec::loadu(data), Vec::loadu(data2));
|
177 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
178 |
+
Vec data_vec = Vec::loadu(data + d);
|
179 |
+
Vec data2_vec = Vec::loadu(data2 + d);
|
180 |
+
data_vec = map_fun(data_vec, data2_vec);
|
181 |
+
acc_vec = red_fun(acc_vec, data_vec);
|
182 |
+
}
|
183 |
+
if (size - d > 0) {
|
184 |
+
Vec data_vec = Vec::loadu(data + d, size - d);
|
185 |
+
Vec data2_vec = Vec::loadu(data2 + d, size - d);
|
186 |
+
data_vec = map_fun(data_vec, data2_vec);
|
187 |
+
acc_vec = Vec::set(acc_vec, red_fun(acc_vec, data_vec), size - d);
|
188 |
+
}
|
189 |
+
return vec_reduce_all(red_fun, acc_vec);
|
190 |
+
}
|
191 |
+
|
192 |
+
template <typename scalar_t, typename MapOp, typename ReduceOp,
|
193 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
194 |
+
inline scalar_t map3_reduce_all(
|
195 |
+
const MapOp& map_fun,
|
196 |
+
const ReduceOp& red_fun,
|
197 |
+
const scalar_t* data,
|
198 |
+
const scalar_t* data2,
|
199 |
+
const scalar_t* data3,
|
200 |
+
int64_t size) {
|
201 |
+
using Vec = vec::Vectorized<scalar_t>;
|
202 |
+
if (size < Vec::size()) {
|
203 |
+
Vec data_vec = Vec::loadu(data, size);
|
204 |
+
Vec data2_vec = Vec::loadu(data2, size);
|
205 |
+
Vec data3_vec = Vec::loadu(data3, size);
|
206 |
+
data_vec = map_fun(data_vec, data2_vec, data3_vec);
|
207 |
+
return vec_reduce_all(red_fun, data_vec, size);
|
208 |
+
}
|
209 |
+
|
210 |
+
int64_t d = Vec::size();
|
211 |
+
Vec acc_vec = map_fun(Vec::loadu(data), Vec::loadu(data2), Vec::loadu(data3));
|
212 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
213 |
+
Vec data_vec = Vec::loadu(data + d);
|
214 |
+
Vec data2_vec = Vec::loadu(data2 + d);
|
215 |
+
Vec data3_vec = Vec::loadu(data3 + d);
|
216 |
+
data_vec = map_fun(data_vec, data2_vec, data3_vec);
|
217 |
+
acc_vec = red_fun(acc_vec, data_vec);
|
218 |
+
}
|
219 |
+
if (size - d > 0) {
|
220 |
+
Vec data_vec = Vec::loadu(data + d, size - d);
|
221 |
+
Vec data2_vec = Vec::loadu(data2 + d, size - d);
|
222 |
+
Vec data3_vec = Vec::loadu(data3 + d, size - d);
|
223 |
+
data_vec = map_fun(data_vec, data2_vec, data3_vec);
|
224 |
+
acc_vec = Vec::set(acc_vec, red_fun(acc_vec, data_vec), size - d);
|
225 |
+
}
|
226 |
+
return vec_reduce_all(red_fun, acc_vec);
|
227 |
+
}
|
228 |
+
|
229 |
+
template <typename scalar_t, typename Op,
|
230 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
231 |
+
inline void map(
|
232 |
+
const Op& vec_fun,
|
233 |
+
scalar_t* output_data,
|
234 |
+
const scalar_t* input_data,
|
235 |
+
int64_t size) {
|
236 |
+
using Vec = vec::Vectorized<scalar_t>;
|
237 |
+
int64_t d = 0;
|
238 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
239 |
+
Vec output_vec = vec_fun(Vec::loadu(input_data + d));
|
240 |
+
output_vec.store(output_data + d);
|
241 |
+
}
|
242 |
+
if (size - d > 0) {
|
243 |
+
Vec output_vec = vec_fun(Vec::loadu(input_data + d, size - d));
|
244 |
+
output_vec.store(output_data + d, size - d);
|
245 |
+
}
|
246 |
+
}
|
247 |
+
|
248 |
+
template <typename scalar_t, typename Op,
|
249 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
250 |
+
inline void map2(
|
251 |
+
const Op& vec_fun,
|
252 |
+
scalar_t* output_data,
|
253 |
+
const scalar_t* input_data,
|
254 |
+
const scalar_t* input_data2,
|
255 |
+
int64_t size) {
|
256 |
+
using Vec = vec::Vectorized<scalar_t>;
|
257 |
+
int64_t d = 0;
|
258 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
259 |
+
Vec data_vec = Vec::loadu(input_data + d);
|
260 |
+
Vec data_vec2 = Vec::loadu(input_data2 + d);
|
261 |
+
Vec output_vec = vec_fun(data_vec, data_vec2);
|
262 |
+
output_vec.store(output_data + d);
|
263 |
+
}
|
264 |
+
if (size - d > 0) {
|
265 |
+
Vec data_vec = Vec::loadu(input_data + d, size - d);
|
266 |
+
Vec data_vec2 = Vec::loadu(input_data2 + d, size - d);
|
267 |
+
Vec output_vec = vec_fun(data_vec, data_vec2);
|
268 |
+
output_vec.store(output_data + d, size - d);
|
269 |
+
}
|
270 |
+
}
|
271 |
+
|
272 |
+
template <typename scalar_t, typename Op,
|
273 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
274 |
+
inline void map3(
|
275 |
+
const Op& vec_fun,
|
276 |
+
scalar_t* output_data,
|
277 |
+
const scalar_t* input_data1,
|
278 |
+
const scalar_t* input_data2,
|
279 |
+
const scalar_t* input_data3,
|
280 |
+
int64_t size) {
|
281 |
+
using Vec = vec::Vectorized<scalar_t>;
|
282 |
+
int64_t d = 0;
|
283 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
284 |
+
Vec data_vec1 = Vec::loadu(input_data1 + d);
|
285 |
+
Vec data_vec2 = Vec::loadu(input_data2 + d);
|
286 |
+
Vec data_vec3 = Vec::loadu(input_data3 + d);
|
287 |
+
Vec output_vec = vec_fun(data_vec1, data_vec2, data_vec3);
|
288 |
+
output_vec.store(output_data + d);
|
289 |
+
}
|
290 |
+
if (size - d > 0) {
|
291 |
+
Vec data_vec1 = Vec::loadu(input_data1 + d, size - d);
|
292 |
+
Vec data_vec2 = Vec::loadu(input_data2 + d, size - d);
|
293 |
+
Vec data_vec3 = Vec::loadu(input_data3 + d, size - d);
|
294 |
+
Vec output_vec = vec_fun(data_vec1, data_vec2, data_vec3);
|
295 |
+
output_vec.store(output_data + d, size - d);
|
296 |
+
}
|
297 |
+
}
|
298 |
+
|
299 |
+
template <typename scalar_t, typename Op,
|
300 |
+
typename std::enable_if_t<!is_reduced_floating_point_v<scalar_t>, int> = 0>
|
301 |
+
inline void map4(
|
302 |
+
const Op& vec_fun,
|
303 |
+
scalar_t* output_data,
|
304 |
+
const scalar_t* input_data1,
|
305 |
+
const scalar_t* input_data2,
|
306 |
+
const scalar_t* input_data3,
|
307 |
+
const scalar_t* input_data4,
|
308 |
+
int64_t size) {
|
309 |
+
using Vec = vec::Vectorized<scalar_t>;
|
310 |
+
int64_t d = 0;
|
311 |
+
for (; d < size - (size % Vec::size()); d += Vec::size()) {
|
312 |
+
Vec data_vec1 = Vec::loadu(input_data1 + d);
|
313 |
+
Vec data_vec2 = Vec::loadu(input_data2 + d);
|
314 |
+
Vec data_vec3 = Vec::loadu(input_data3 + d);
|
315 |
+
Vec data_vec4 = Vec::loadu(input_data4 + d);
|
316 |
+
Vec output_vec = vec_fun(data_vec1, data_vec2, data_vec3, data_vec4);
|
317 |
+
output_vec.store(output_data + d);
|
318 |
+
}
|
319 |
+
if (size - d > 0) {
|
320 |
+
Vec data_vec1 = Vec::loadu(input_data1 + d, size - d);
|
321 |
+
Vec data_vec2 = Vec::loadu(input_data2 + d, size - d);
|
322 |
+
Vec data_vec3 = Vec::loadu(input_data3 + d, size - d);
|
323 |
+
Vec data_vec4 = Vec::loadu(input_data4 + d, size - d);
|
324 |
+
Vec output_vec = vec_fun(data_vec1, data_vec2, data_vec3, data_vec4);
|
325 |
+
output_vec.store(output_data + d, size - d);
|
326 |
+
}
|
327 |
+
}
|
328 |
+
|
329 |
+
} // namespace at::vec
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/functional_bfloat16.h
ADDED
@@ -0,0 +1,574 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/vec.h>
|
7 |
+
|
8 |
+
namespace at::vec {
|
9 |
+
|
10 |
+
// BFloat16 specification
|
11 |
+
template <typename scalar_t> struct VecScalarType { using type = scalar_t; };
|
12 |
+
template <> struct VecScalarType<BFloat16> { using type = float; };
|
13 |
+
template <> struct VecScalarType<Half> { using type = float; };
|
14 |
+
|
15 |
+
// This is different from at::acc_type since we only need to specialize BFloat16
|
16 |
+
template <typename scalar_t>
|
17 |
+
using vec_scalar_t = typename VecScalarType<scalar_t>::type;
|
18 |
+
|
19 |
+
// Vector conversion between float and bfloat16/half
|
20 |
+
template <typename scalar_t,
|
21 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
22 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_to_float(const Vectorized<scalar_t>&);
|
23 |
+
|
24 |
+
template <>
|
25 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_to_float<BFloat16> (const Vectorized<BFloat16>& a) {
|
26 |
+
return convert_bfloat16_float(a);
|
27 |
+
}
|
28 |
+
|
29 |
+
template <>
|
30 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_to_float<Half> (const Vectorized<Half>& a) {
|
31 |
+
return convert_half_float(a);
|
32 |
+
}
|
33 |
+
|
34 |
+
template <typename scalar_t,
|
35 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
36 |
+
inline Vectorized<scalar_t> convert_from_float(const Vectorized<float>&, const Vectorized<float>&);
|
37 |
+
|
38 |
+
template <>
|
39 |
+
inline Vectorized<BFloat16> convert_from_float<BFloat16>(const Vectorized<float>& a, const Vectorized<float>& b) {
|
40 |
+
return convert_float_bfloat16(a, b);
|
41 |
+
}
|
42 |
+
|
43 |
+
template <>
|
44 |
+
inline Vectorized<Half> convert_from_float<Half>(const Vectorized<float>& a, const Vectorized<float>& b) {
|
45 |
+
return convert_float_half(a, b);
|
46 |
+
}
|
47 |
+
|
48 |
+
// Note that we already have specialized member of Vectorized<scalar_t> for BFloat16
|
49 |
+
// so the following functions would run smoothly:
|
50 |
+
// using Vec = Vectorized<BFloat16>;
|
51 |
+
// Vec one = Vec(BFloat16(1));
|
52 |
+
// vec::map([](Vec x) { return one / (one + x.exp()); }, y_ptr, x_ptr, N);
|
53 |
+
//
|
54 |
+
// Then why we still need to specialize "functional"?
|
55 |
+
// If we do specialization at Vectorized<> level, the above example would need 3 pairs of
|
56 |
+
// conversion of bf16->fp32/fp32->bf16, each for ".exp()", "+" and "/".
|
57 |
+
// If we do specialization at vec::map<>() level, we have only 1 pair of conversion
|
58 |
+
// of bf16->fp32/fp32->bf16, for the input and output BFloat16 vector only.
|
59 |
+
//
|
60 |
+
// The following BFloat16 functionality will only do data type conversion for input
|
61 |
+
// and output vector (reduce functionality will only convert the final scalar back to bf16).
|
62 |
+
// Compared to Vectorized<> specialization,
|
63 |
+
// 1. better performance since we have less data type conversion;
|
64 |
+
// 2. less rounding error since immediate results are kept in fp32;
|
65 |
+
// 3. accumulation done on data type of fp32.
|
66 |
+
//
|
67 |
+
// If you plan to extend this file, please ensure adding unit tests at
|
68 |
+
// aten/src/ATen/test/vec_test_all_types.cpp
|
69 |
+
//
|
70 |
+
template <typename scalar_t, typename Op,
|
71 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
72 |
+
inline scalar_t reduce_all(const Op& vec_fun, const scalar_t* data, int64_t size) {
|
73 |
+
using bVec = vec::Vectorized<scalar_t>;
|
74 |
+
using fVec = vec::Vectorized<float>;
|
75 |
+
if (size < bVec::size()) {
|
76 |
+
bVec data_bvec = bVec::loadu(data, size);
|
77 |
+
fVec data_fvec0, data_fvec1;
|
78 |
+
std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec);
|
79 |
+
if (size > fVec::size()) {
|
80 |
+
data_fvec0 = fVec::set(data_fvec0, vec_fun(data_fvec0, data_fvec1), size - fVec::size());
|
81 |
+
return vec_reduce_all<float>(vec_fun, data_fvec0, fVec::size());
|
82 |
+
} else {
|
83 |
+
return vec_reduce_all<float>(vec_fun, data_fvec0, size);
|
84 |
+
}
|
85 |
+
}
|
86 |
+
int64_t d = bVec::size();
|
87 |
+
bVec acc_bvec = bVec::loadu(data);
|
88 |
+
fVec acc_fvec0, acc_fvec1;
|
89 |
+
std::tie(acc_fvec0, acc_fvec1) = convert_to_float<scalar_t>(acc_bvec);
|
90 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
91 |
+
bVec data_bvec = bVec::loadu(data + d);
|
92 |
+
fVec data_fvec0, data_fvec1;
|
93 |
+
std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec);
|
94 |
+
acc_fvec0 = vec_fun(acc_fvec0, data_fvec0);
|
95 |
+
acc_fvec1 = vec_fun(acc_fvec1, data_fvec1);
|
96 |
+
}
|
97 |
+
if (size - d > 0) {
|
98 |
+
bVec data_bvec = bVec::loadu(data + d, size - d);
|
99 |
+
fVec data_fvec0, data_fvec1;
|
100 |
+
std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec);
|
101 |
+
if (size - d > fVec::size()) {
|
102 |
+
acc_fvec0 = vec_fun(acc_fvec0, data_fvec0);
|
103 |
+
acc_fvec1 = fVec::set(acc_fvec1, vec_fun(acc_fvec1, data_fvec1), size - d - fVec::size());
|
104 |
+
} else {
|
105 |
+
acc_fvec0 = fVec::set(acc_fvec0, vec_fun(acc_fvec0, data_fvec0), size - d);
|
106 |
+
}
|
107 |
+
}
|
108 |
+
acc_fvec0 = vec_fun(acc_fvec0, acc_fvec1);
|
109 |
+
return vec_reduce_all<float>(vec_fun, acc_fvec0);
|
110 |
+
}
|
111 |
+
|
112 |
+
template <typename scalar_t, typename Op1, typename Op2,
|
113 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
114 |
+
inline std::pair<scalar_t, scalar_t> reduce2_all(const Op1& vec_fun1, const Op2& vec_fun2,
|
115 |
+
const scalar_t* data, int64_t size) {
|
116 |
+
using bVec = vec::Vectorized<scalar_t>;
|
117 |
+
using fVec = vec::Vectorized<float>;
|
118 |
+
if (size < bVec::size()) {
|
119 |
+
bVec data_bvec = bVec::loadu(data, size);
|
120 |
+
fVec data_fvec0, data_fvec1;
|
121 |
+
std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec);
|
122 |
+
if (size > fVec::size()) {
|
123 |
+
fVec acc1_fvec = fVec::set(data_fvec0, vec_fun1(data_fvec0, data_fvec1), size - fVec::size());
|
124 |
+
fVec acc2_fvec = fVec::set(data_fvec0, vec_fun2(data_fvec0, data_fvec1), size - fVec::size());
|
125 |
+
return std::pair<scalar_t, scalar_t>(
|
126 |
+
vec_reduce_all<float>(vec_fun1, acc1_fvec, fVec::size()),
|
127 |
+
vec_reduce_all<float>(vec_fun2, acc2_fvec, fVec::size()));
|
128 |
+
} else {
|
129 |
+
return std::pair<scalar_t, scalar_t>(
|
130 |
+
vec_reduce_all<float>(vec_fun1, data_fvec0, size),
|
131 |
+
vec_reduce_all<float>(vec_fun2, data_fvec0, size));
|
132 |
+
}
|
133 |
+
}
|
134 |
+
int64_t d = bVec::size();
|
135 |
+
bVec acc_bvec = bVec::loadu(data);
|
136 |
+
fVec acc1_fvec0, acc1_fvec1;
|
137 |
+
std::tie(acc1_fvec0, acc1_fvec1) = convert_to_float<scalar_t>(acc_bvec);
|
138 |
+
fVec acc2_fvec0, acc2_fvec1;
|
139 |
+
std::tie(acc2_fvec0, acc2_fvec1) = convert_to_float<scalar_t>(acc_bvec);
|
140 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
141 |
+
bVec data_bvec = bVec::loadu(data + d);
|
142 |
+
fVec data_fvec0, data_fvec1;
|
143 |
+
std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec);
|
144 |
+
acc1_fvec0 = vec_fun1(acc1_fvec0, data_fvec0);
|
145 |
+
acc1_fvec1 = vec_fun1(acc1_fvec1, data_fvec1);
|
146 |
+
acc2_fvec0 = vec_fun2(acc2_fvec0, data_fvec0);
|
147 |
+
acc2_fvec1 = vec_fun2(acc2_fvec1, data_fvec1);
|
148 |
+
}
|
149 |
+
if (size - d > 0) {
|
150 |
+
bVec data_bvec = bVec::loadu(data + d, size - d);
|
151 |
+
fVec data_fvec0, data_fvec1;
|
152 |
+
std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec);
|
153 |
+
if (size - d > fVec::size()) {
|
154 |
+
acc1_fvec0 = vec_fun1(acc1_fvec0, data_fvec0);
|
155 |
+
acc1_fvec1 = fVec::set(acc1_fvec1, vec_fun1(acc1_fvec1, data_fvec1), size - d - fVec::size());
|
156 |
+
acc2_fvec0 = vec_fun2(acc2_fvec0, data_fvec0);
|
157 |
+
acc2_fvec1 = fVec::set(acc2_fvec1, vec_fun2(acc2_fvec1, data_fvec1), size - d - fVec::size());
|
158 |
+
} else {
|
159 |
+
acc1_fvec0 = fVec::set(acc1_fvec0, vec_fun1(acc1_fvec0, data_fvec0), size - d);
|
160 |
+
acc2_fvec0 = fVec::set(acc2_fvec0, vec_fun2(acc2_fvec0, data_fvec0), size - d);
|
161 |
+
}
|
162 |
+
}
|
163 |
+
acc1_fvec0 = vec_fun1(acc1_fvec0, acc1_fvec1);
|
164 |
+
acc2_fvec0 = vec_fun2(acc2_fvec0, acc2_fvec1);
|
165 |
+
return std::pair<scalar_t, scalar_t>(
|
166 |
+
vec_reduce_all<float>(vec_fun1, acc1_fvec0),
|
167 |
+
vec_reduce_all<float>(vec_fun2, acc2_fvec0));
|
168 |
+
}
|
169 |
+
|
170 |
+
template <typename scalar_t, typename MapOp, typename ReduceOp,
|
171 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
172 |
+
inline scalar_t map_reduce_all(
|
173 |
+
const MapOp& map_fun,
|
174 |
+
const ReduceOp& red_fun,
|
175 |
+
const scalar_t* data,
|
176 |
+
int64_t size) {
|
177 |
+
using bVec = vec::Vectorized<scalar_t>;
|
178 |
+
using fVec = vec::Vectorized<float>;
|
179 |
+
if (size < bVec::size()) {
|
180 |
+
bVec data_bvec = bVec::loadu(data, size);
|
181 |
+
fVec data_fvec0, data_fvec1;
|
182 |
+
std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec);
|
183 |
+
if (size > fVec::size()) {
|
184 |
+
data_fvec0 = map_fun(data_fvec0);
|
185 |
+
data_fvec1 = map_fun(data_fvec1);
|
186 |
+
data_fvec0 = fVec::set(data_fvec0, red_fun(data_fvec0, data_fvec1), size - fVec::size());
|
187 |
+
return vec_reduce_all<float>(red_fun, data_fvec0, fVec::size());
|
188 |
+
} else {
|
189 |
+
data_fvec0 = map_fun(data_fvec0);
|
190 |
+
return vec_reduce_all<float>(red_fun, data_fvec0, size);
|
191 |
+
}
|
192 |
+
}
|
193 |
+
int64_t d = bVec::size();
|
194 |
+
bVec acc_bvec = bVec::loadu(data);
|
195 |
+
fVec acc_fvec0, acc_fvec1;
|
196 |
+
std::tie(acc_fvec0, acc_fvec1) = convert_to_float<scalar_t>(acc_bvec);
|
197 |
+
acc_fvec0 = map_fun(acc_fvec0);
|
198 |
+
acc_fvec1 = map_fun(acc_fvec1);
|
199 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
200 |
+
bVec data_bvec = bVec::loadu(data + d);
|
201 |
+
fVec data_fvec0, data_fvec1;
|
202 |
+
std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec);
|
203 |
+
data_fvec0 = map_fun(data_fvec0);
|
204 |
+
data_fvec1 = map_fun(data_fvec1);
|
205 |
+
acc_fvec0 = red_fun(acc_fvec0, data_fvec0);
|
206 |
+
acc_fvec1 = red_fun(acc_fvec1, data_fvec1);
|
207 |
+
}
|
208 |
+
if (size - d > 0) {
|
209 |
+
bVec data_bvec = bVec::loadu(data + d, size - d);
|
210 |
+
fVec data_fvec0, data_fvec1;
|
211 |
+
std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec);
|
212 |
+
if (size - d > fVec::size()) {
|
213 |
+
data_fvec0 = map_fun(data_fvec0);
|
214 |
+
data_fvec1 = map_fun(data_fvec1);
|
215 |
+
acc_fvec0 = red_fun(acc_fvec0, data_fvec0);
|
216 |
+
acc_fvec1 = fVec::set(acc_fvec1, red_fun(acc_fvec1, data_fvec1), size - d - fVec::size());
|
217 |
+
} else {
|
218 |
+
data_fvec0 = map_fun(data_fvec0);
|
219 |
+
acc_fvec0 = fVec::set(acc_fvec0, red_fun(acc_fvec0, data_fvec0), size - d);
|
220 |
+
}
|
221 |
+
}
|
222 |
+
acc_fvec0 = red_fun(acc_fvec0, acc_fvec1);
|
223 |
+
return vec_reduce_all<float>(red_fun, acc_fvec0);
|
224 |
+
}
|
225 |
+
|
226 |
+
template <typename scalar_t, typename MapOp, typename ReduceOp,
|
227 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
228 |
+
inline scalar_t map2_reduce_all(
|
229 |
+
const MapOp& map_fun,
|
230 |
+
const ReduceOp& red_fun,
|
231 |
+
const scalar_t* data,
|
232 |
+
const scalar_t* data2,
|
233 |
+
int64_t size) {
|
234 |
+
using bVec = vec::Vectorized<scalar_t>;
|
235 |
+
using fVec = vec::Vectorized<float>;
|
236 |
+
if (size < bVec::size()) {
|
237 |
+
bVec data_bvec = bVec::loadu(data, size);
|
238 |
+
fVec data_fvec0, data_fvec1;
|
239 |
+
std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec);
|
240 |
+
bVec data2_bvec = bVec::loadu(data2, size);
|
241 |
+
fVec data2_fvec0, data2_fvec1;
|
242 |
+
std::tie(data2_fvec0, data2_fvec1) = convert_to_float<scalar_t>(data2_bvec);
|
243 |
+
if (size > fVec::size()) {
|
244 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0);
|
245 |
+
data_fvec1 = map_fun(data_fvec1, data2_fvec1);
|
246 |
+
data_fvec0 = fVec::set(data_fvec0, red_fun(data_fvec0, data_fvec1), size - fVec::size());
|
247 |
+
return vec_reduce_all<float>(red_fun, data_fvec0, fVec::size());
|
248 |
+
} else {
|
249 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0);
|
250 |
+
return vec_reduce_all<float>(red_fun, data_fvec0, size);
|
251 |
+
}
|
252 |
+
}
|
253 |
+
int64_t d = bVec::size();
|
254 |
+
bVec acc_bvec = bVec::loadu(data);
|
255 |
+
fVec acc_fvec0, acc_fvec1;
|
256 |
+
std::tie(acc_fvec0, acc_fvec1) = convert_to_float<scalar_t>(acc_bvec);
|
257 |
+
bVec acc2_bvec = bVec::loadu(data2);
|
258 |
+
fVec acc2_fvec0, acc2_fvec1;
|
259 |
+
std::tie(acc2_fvec0, acc2_fvec1) = convert_to_float<scalar_t>(acc2_bvec);
|
260 |
+
acc_fvec0 = map_fun(acc_fvec0, acc2_fvec0);
|
261 |
+
acc_fvec1 = map_fun(acc_fvec1, acc2_fvec1);
|
262 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
263 |
+
bVec data_bvec = bVec::loadu(data + d);
|
264 |
+
fVec data_fvec0, data_fvec1;
|
265 |
+
std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec);
|
266 |
+
bVec data2_bvec = bVec::loadu(data2 + d);
|
267 |
+
fVec data2_fvec0, data2_fvec1;
|
268 |
+
std::tie(data2_fvec0, data2_fvec1) = convert_to_float<scalar_t>(data2_bvec);
|
269 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0);
|
270 |
+
data_fvec1 = map_fun(data_fvec1, data2_fvec1);
|
271 |
+
acc_fvec0 = red_fun(acc_fvec0, data_fvec0);
|
272 |
+
acc_fvec1 = red_fun(acc_fvec1, data_fvec1);
|
273 |
+
}
|
274 |
+
if (size - d > 0) {
|
275 |
+
bVec data_bvec = bVec::loadu(data + d, size - d);
|
276 |
+
fVec data_fvec0, data_fvec1;
|
277 |
+
std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec);
|
278 |
+
bVec data2_bvec = bVec::loadu(data2 + d, size - d);
|
279 |
+
fVec data2_fvec0, data2_fvec1;
|
280 |
+
std::tie(data2_fvec0, data2_fvec1) = convert_to_float<scalar_t>(data2_bvec);
|
281 |
+
if (size - d > fVec::size()) {
|
282 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0);
|
283 |
+
data_fvec1 = map_fun(data_fvec1, data2_fvec1);
|
284 |
+
acc_fvec0 = red_fun(acc_fvec0, data_fvec0);
|
285 |
+
acc_fvec1 = fVec::set(acc_fvec1, red_fun(acc_fvec1, data_fvec1), size - d - fVec::size());
|
286 |
+
} else {
|
287 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0);
|
288 |
+
acc_fvec0 = fVec::set(acc_fvec0, red_fun(acc_fvec0, data_fvec0), size - d);
|
289 |
+
}
|
290 |
+
}
|
291 |
+
acc_fvec0 = red_fun(acc_fvec0, acc_fvec1);
|
292 |
+
return vec_reduce_all<float>(red_fun, acc_fvec0);
|
293 |
+
}
|
294 |
+
|
295 |
+
template <typename scalar_t, typename MapOp, typename ReduceOp,
|
296 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
297 |
+
inline scalar_t map3_reduce_all(
|
298 |
+
const MapOp& map_fun,
|
299 |
+
const ReduceOp& red_fun,
|
300 |
+
const scalar_t* data,
|
301 |
+
const scalar_t* data2,
|
302 |
+
const scalar_t* data3,
|
303 |
+
int64_t size) {
|
304 |
+
using bVec = vec::Vectorized<scalar_t>;
|
305 |
+
using fVec = vec::Vectorized<float>;
|
306 |
+
if (size < bVec::size()) {
|
307 |
+
bVec data_bvec = bVec::loadu(data, size);
|
308 |
+
fVec data_fvec0, data_fvec1;
|
309 |
+
std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec);
|
310 |
+
bVec data2_bvec = bVec::loadu(data2, size);
|
311 |
+
fVec data2_fvec0, data2_fvec1;
|
312 |
+
std::tie(data2_fvec0, data2_fvec1) = convert_to_float<scalar_t>(data2_bvec);
|
313 |
+
bVec data3_bvec = bVec::loadu(data3, size);
|
314 |
+
fVec data3_fvec0, data3_fvec1;
|
315 |
+
std::tie(data3_fvec0, data3_fvec1) = convert_to_float<scalar_t>(data3_bvec);
|
316 |
+
if (size > fVec::size()) {
|
317 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0, data3_fvec0);
|
318 |
+
data_fvec1 = map_fun(data_fvec1, data2_fvec1, data3_fvec1);
|
319 |
+
data_fvec0 = fVec::set(data_fvec0, red_fun(data_fvec0, data_fvec1), size - fVec::size());
|
320 |
+
return vec_reduce_all<float>(red_fun, data_fvec0, fVec::size());
|
321 |
+
} else {
|
322 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0, data3_fvec0);
|
323 |
+
return vec_reduce_all<float>(red_fun, data_fvec0, size);
|
324 |
+
}
|
325 |
+
}
|
326 |
+
int64_t d = bVec::size();
|
327 |
+
bVec acc_bvec = bVec::loadu(data);
|
328 |
+
fVec acc_fvec0, acc_fvec1;
|
329 |
+
std::tie(acc_fvec0, acc_fvec1) = convert_to_float<scalar_t>(acc_bvec);
|
330 |
+
bVec acc2_bvec = bVec::loadu(data2);
|
331 |
+
fVec acc2_fvec0, acc2_fvec1;
|
332 |
+
std::tie(acc2_fvec0, acc2_fvec1) = convert_to_float<scalar_t>(acc2_bvec);
|
333 |
+
bVec acc3_bvec = bVec::loadu(data3);
|
334 |
+
fVec acc3_fvec0, acc3_fvec1;
|
335 |
+
std::tie(acc3_fvec0, acc3_fvec1) = convert_to_float<scalar_t>(acc3_bvec);
|
336 |
+
acc_fvec0 = map_fun(acc_fvec0, acc2_fvec0, acc3_fvec0);
|
337 |
+
acc_fvec1 = map_fun(acc_fvec1, acc2_fvec1, acc3_fvec1);
|
338 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
339 |
+
bVec data_bvec = bVec::loadu(data + d);
|
340 |
+
fVec data_fvec0, data_fvec1;
|
341 |
+
std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec);
|
342 |
+
bVec data2_bvec = bVec::loadu(data2 + d);
|
343 |
+
fVec data2_fvec0, data2_fvec1;
|
344 |
+
std::tie(data2_fvec0, data2_fvec1) = convert_to_float<scalar_t>(data2_bvec);
|
345 |
+
bVec data3_bvec = bVec::loadu(data3 + d);
|
346 |
+
fVec data3_fvec0, data3_fvec1;
|
347 |
+
std::tie(data3_fvec0, data3_fvec1) = convert_to_float<scalar_t>(data3_bvec);
|
348 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0, data3_fvec0);
|
349 |
+
data_fvec1 = map_fun(data_fvec1, data2_fvec1, data3_fvec1);
|
350 |
+
acc_fvec0 = red_fun(acc_fvec0, data_fvec0);
|
351 |
+
acc_fvec1 = red_fun(acc_fvec1, data_fvec1);
|
352 |
+
}
|
353 |
+
if (size - d > 0) {
|
354 |
+
bVec data_bvec = bVec::loadu(data + d, size - d);
|
355 |
+
fVec data_fvec0, data_fvec1;
|
356 |
+
std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec);
|
357 |
+
bVec data2_bvec = bVec::loadu(data2 + d, size - d);
|
358 |
+
fVec data2_fvec0, data2_fvec1;
|
359 |
+
std::tie(data2_fvec0, data2_fvec1) = convert_to_float<scalar_t>(data2_bvec);
|
360 |
+
bVec data3_bvec = bVec::loadu(data3 + d, size - d);
|
361 |
+
fVec data3_fvec0, data3_fvec1;
|
362 |
+
std::tie(data3_fvec0, data3_fvec1) = convert_to_float<scalar_t>(data3_bvec);
|
363 |
+
if (size - d > fVec::size()) {
|
364 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0, data3_fvec0);
|
365 |
+
data_fvec1 = map_fun(data_fvec1, data2_fvec1, data3_fvec1);
|
366 |
+
acc_fvec0 = red_fun(acc_fvec0, data_fvec0);
|
367 |
+
acc_fvec1 = fVec::set(acc_fvec1, red_fun(acc_fvec1, data_fvec1), size - d - fVec::size());
|
368 |
+
} else {
|
369 |
+
data_fvec0 = map_fun(data_fvec0, data2_fvec0, data3_fvec0);
|
370 |
+
acc_fvec0 = fVec::set(acc_fvec0, red_fun(acc_fvec0, data_fvec0), size - d);
|
371 |
+
}
|
372 |
+
}
|
373 |
+
acc_fvec0 = red_fun(acc_fvec0, acc_fvec1);
|
374 |
+
return vec_reduce_all<float>(red_fun, acc_fvec0);
|
375 |
+
}
|
376 |
+
|
377 |
+
template <typename scalar_t, typename Op,
|
378 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
379 |
+
inline void map(
|
380 |
+
const Op& vec_fun,
|
381 |
+
scalar_t* output_data,
|
382 |
+
const scalar_t* input_data,
|
383 |
+
int64_t size) {
|
384 |
+
using bVec = vec::Vectorized<scalar_t>;
|
385 |
+
using fVec = vec::Vectorized<float>;
|
386 |
+
int64_t d = 0;
|
387 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
388 |
+
bVec data_bvec = bVec::loadu(input_data + d);
|
389 |
+
fVec data_fvec0, data_fvec1;
|
390 |
+
std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec);
|
391 |
+
fVec output_fvec0 = vec_fun(data_fvec0);
|
392 |
+
fVec output_fvec1 = vec_fun(data_fvec1);
|
393 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
394 |
+
output_bvec.store(output_data + d);
|
395 |
+
}
|
396 |
+
if (size - d > 0) {
|
397 |
+
bVec data_bvec = bVec::loadu(input_data + d, size - d);
|
398 |
+
fVec data_fvec0, data_fvec1;
|
399 |
+
std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec);
|
400 |
+
fVec output_fvec0 = vec_fun(data_fvec0);
|
401 |
+
fVec output_fvec1 = vec_fun(data_fvec1);
|
402 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
403 |
+
output_bvec.store(output_data + d, size - d);
|
404 |
+
}
|
405 |
+
}
|
406 |
+
|
407 |
+
template <typename scalar_t, typename Op,
|
408 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
409 |
+
inline void map(
|
410 |
+
const Op& vec_fun,
|
411 |
+
scalar_t* output_data,
|
412 |
+
const float* input_data,
|
413 |
+
int64_t size) {
|
414 |
+
using bVec = vec::Vectorized<scalar_t>;
|
415 |
+
using fVec = vec::Vectorized<float>;
|
416 |
+
int64_t d = 0;
|
417 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
418 |
+
fVec data_fvec0 = fVec::loadu(input_data + d);
|
419 |
+
fVec data_fvec1 = fVec::loadu(input_data + d + fVec::size());
|
420 |
+
fVec output_fvec0 = vec_fun(data_fvec0);
|
421 |
+
fVec output_fvec1 = vec_fun(data_fvec1);
|
422 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
423 |
+
output_bvec.store(output_data + d);
|
424 |
+
}
|
425 |
+
if (size - d > 0) {
|
426 |
+
fVec data_fvec0, data_fvec1;
|
427 |
+
if (size - d > fVec::size()) {
|
428 |
+
data_fvec0 = fVec::loadu(input_data + d);
|
429 |
+
data_fvec1 = fVec::loadu(input_data + d + fVec::size(), size - d - fVec::size());
|
430 |
+
} else {
|
431 |
+
// choose to align with behaviour of bVec::loadu(ptr, size),
|
432 |
+
// which leaves data_fvec1 uninitialized
|
433 |
+
data_fvec0 = fVec::loadu(input_data + d, size - d);
|
434 |
+
}
|
435 |
+
fVec output_fvec0 = vec_fun(data_fvec0);
|
436 |
+
fVec output_fvec1 = vec_fun(data_fvec1);
|
437 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
438 |
+
output_bvec.store(output_data + d, size - d);
|
439 |
+
}
|
440 |
+
}
|
441 |
+
|
442 |
+
template <typename scalar_t, typename Op,
|
443 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
444 |
+
inline void map2(
|
445 |
+
const Op& vec_fun,
|
446 |
+
scalar_t* output_data,
|
447 |
+
const scalar_t* input_data,
|
448 |
+
const scalar_t* input_data2,
|
449 |
+
int64_t size) {
|
450 |
+
using bVec = vec::Vectorized<scalar_t>;
|
451 |
+
using fVec = vec::Vectorized<float>;
|
452 |
+
int64_t d = 0;
|
453 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
454 |
+
bVec data_bvec = bVec::loadu(input_data + d);
|
455 |
+
fVec data_fvec0, data_fvec1;
|
456 |
+
std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec);
|
457 |
+
bVec data2_bvec = bVec::loadu(input_data2 + d);
|
458 |
+
fVec data2_fvec0, data2_fvec1;
|
459 |
+
std::tie(data2_fvec0, data2_fvec1) = convert_to_float<scalar_t>(data2_bvec);
|
460 |
+
fVec output_fvec0 = vec_fun(data_fvec0, data2_fvec0);
|
461 |
+
fVec output_fvec1 = vec_fun(data_fvec1, data2_fvec1);
|
462 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
463 |
+
output_bvec.store(output_data + d);
|
464 |
+
}
|
465 |
+
if (size - d > 0) {
|
466 |
+
bVec data_bvec = bVec::loadu(input_data + d, size - d);
|
467 |
+
fVec data_fvec0, data_fvec1;
|
468 |
+
std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec);
|
469 |
+
bVec data2_bvec = bVec::loadu(input_data2 + d, size - d);
|
470 |
+
fVec data2_fvec0, data2_fvec1;
|
471 |
+
std::tie(data2_fvec0, data2_fvec1) = convert_to_float<scalar_t>(data2_bvec);
|
472 |
+
fVec output_fvec0 = vec_fun(data_fvec0, data2_fvec0);
|
473 |
+
fVec output_fvec1 = vec_fun(data_fvec1, data2_fvec1);
|
474 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
475 |
+
output_bvec.store(output_data + d, size - d);
|
476 |
+
}
|
477 |
+
}
|
478 |
+
|
479 |
+
template <typename scalar_t, typename Op,
|
480 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
481 |
+
inline void map3(
|
482 |
+
const Op& vec_fun,
|
483 |
+
scalar_t* output_data,
|
484 |
+
const scalar_t* input_data1,
|
485 |
+
const scalar_t* input_data2,
|
486 |
+
const scalar_t* input_data3,
|
487 |
+
int64_t size) {
|
488 |
+
using bVec = vec::Vectorized<scalar_t>;
|
489 |
+
using fVec = vec::Vectorized<float>;
|
490 |
+
int64_t d = 0;
|
491 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
492 |
+
bVec data1_bvec = bVec::loadu(input_data1 + d);
|
493 |
+
fVec data1_fvec0, data1_fvec1;
|
494 |
+
std::tie(data1_fvec0, data1_fvec1) = convert_to_float<scalar_t>(data1_bvec);
|
495 |
+
bVec data2_bvec = bVec::loadu(input_data2 + d);
|
496 |
+
fVec data2_fvec0, data2_fvec1;
|
497 |
+
std::tie(data2_fvec0, data2_fvec1) = convert_to_float<scalar_t>(data2_bvec);
|
498 |
+
bVec data3_bvec = bVec::loadu(input_data3 + d);
|
499 |
+
fVec data3_fvec0, data3_fvec1;
|
500 |
+
std::tie(data3_fvec0, data3_fvec1) = convert_to_float<scalar_t>(data3_bvec);
|
501 |
+
fVec output_fvec0 = vec_fun(data1_fvec0, data2_fvec0, data3_fvec0);
|
502 |
+
fVec output_fvec1 = vec_fun(data1_fvec1, data2_fvec1, data3_fvec1);
|
503 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
504 |
+
output_bvec.store(output_data + d);
|
505 |
+
}
|
506 |
+
if (size - d > 0) {
|
507 |
+
bVec data1_bvec = bVec::loadu(input_data1 + d, size - d);
|
508 |
+
fVec data1_fvec0, data1_fvec1;
|
509 |
+
std::tie(data1_fvec0, data1_fvec1) = convert_to_float<scalar_t>(data1_bvec);
|
510 |
+
bVec data2_bvec = bVec::loadu(input_data2 + d, size - d);
|
511 |
+
fVec data2_fvec0, data2_fvec1;
|
512 |
+
std::tie(data2_fvec0, data2_fvec1) = convert_to_float<scalar_t>(data2_bvec);
|
513 |
+
bVec data3_bvec = bVec::loadu(input_data3 + d, size - d);
|
514 |
+
fVec data3_fvec0, data3_fvec1;
|
515 |
+
std::tie(data3_fvec0, data3_fvec1) = convert_to_float<scalar_t>(data3_bvec);
|
516 |
+
fVec output_fvec0 = vec_fun(data1_fvec0, data2_fvec0, data3_fvec0);
|
517 |
+
fVec output_fvec1 = vec_fun(data1_fvec1, data2_fvec1, data3_fvec1);
|
518 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
519 |
+
output_bvec.store(output_data + d, size - d);
|
520 |
+
}
|
521 |
+
}
|
522 |
+
|
523 |
+
template <typename scalar_t, typename Op,
|
524 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
525 |
+
inline void map4(
|
526 |
+
const Op& vec_fun,
|
527 |
+
scalar_t* output_data,
|
528 |
+
const scalar_t* input_data1,
|
529 |
+
const scalar_t* input_data2,
|
530 |
+
const scalar_t* input_data3,
|
531 |
+
const scalar_t* input_data4,
|
532 |
+
int64_t size) {
|
533 |
+
using bVec = vec::Vectorized<scalar_t>;
|
534 |
+
using fVec = vec::Vectorized<float>;
|
535 |
+
int64_t d = 0;
|
536 |
+
for (; d < size - (size % bVec::size()); d += bVec::size()) {
|
537 |
+
bVec data1_bvec = bVec::loadu(input_data1 + d);
|
538 |
+
fVec data1_fvec0, data1_fvec1;
|
539 |
+
std::tie(data1_fvec0, data1_fvec1) = convert_to_float<scalar_t>(data1_bvec);
|
540 |
+
bVec data2_bvec = bVec::loadu(input_data2 + d);
|
541 |
+
fVec data2_fvec0, data2_fvec1;
|
542 |
+
std::tie(data2_fvec0, data2_fvec1) = convert_to_float<scalar_t>(data2_bvec);
|
543 |
+
bVec data3_bvec = bVec::loadu(input_data3 + d);
|
544 |
+
fVec data3_fvec0, data3_fvec1;
|
545 |
+
std::tie(data3_fvec0, data3_fvec1) = convert_to_float<scalar_t>(data3_bvec);
|
546 |
+
bVec data4_bvec = bVec::loadu(input_data4 + d);
|
547 |
+
fVec data4_fvec0, data4_fvec1;
|
548 |
+
std::tie(data4_fvec0, data4_fvec1) = convert_to_float<scalar_t>(data4_bvec);
|
549 |
+
fVec output_fvec0 = vec_fun(data1_fvec0, data2_fvec0, data3_fvec0, data4_fvec0);
|
550 |
+
fVec output_fvec1 = vec_fun(data1_fvec1, data2_fvec1, data3_fvec1, data4_fvec1);
|
551 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
552 |
+
output_bvec.store(output_data + d);
|
553 |
+
}
|
554 |
+
if (size - d > 0) {
|
555 |
+
bVec data1_bvec = bVec::loadu(input_data1 + d, size - d);
|
556 |
+
fVec data1_fvec0, data1_fvec1;
|
557 |
+
std::tie(data1_fvec0, data1_fvec1) = convert_to_float<scalar_t>(data1_bvec);
|
558 |
+
bVec data2_bvec = bVec::loadu(input_data2 + d, size - d);
|
559 |
+
fVec data2_fvec0, data2_fvec1;
|
560 |
+
std::tie(data2_fvec0, data2_fvec1) = convert_to_float<scalar_t>(data2_bvec);
|
561 |
+
bVec data3_bvec = bVec::loadu(input_data3 + d, size - d);
|
562 |
+
fVec data3_fvec0, data3_fvec1;
|
563 |
+
std::tie(data3_fvec0, data3_fvec1) = convert_to_float<scalar_t>(data3_bvec);
|
564 |
+
bVec data4_bvec = bVec::loadu(input_data4 + d, size - d);
|
565 |
+
fVec data4_fvec0, data4_fvec1;
|
566 |
+
std::tie(data4_fvec0, data4_fvec1) = convert_to_float<scalar_t>(data4_bvec);
|
567 |
+
fVec output_fvec0 = vec_fun(data1_fvec0, data2_fvec0, data3_fvec0, data4_fvec0);
|
568 |
+
fVec output_fvec1 = vec_fun(data1_fvec1, data2_fvec1, data3_fvec1, data4_fvec1);
|
569 |
+
bVec output_bvec = convert_from_float<scalar_t>(output_fvec0, output_fvec1);
|
570 |
+
output_bvec.store(output_data + d, size - d);
|
571 |
+
}
|
572 |
+
}
|
573 |
+
|
574 |
+
} // namespace at::vec
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/intrinsics.h
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#if defined(__GNUC__) && (defined(__x86_64__) || defined(__i386__))
|
3 |
+
/* GCC or clang-compatible compiler, targeting x86/x86-64 */
|
4 |
+
#include <x86intrin.h>
|
5 |
+
#elif defined(__clang__) && (defined(__ARM_NEON__) || defined(__aarch64__))
|
6 |
+
/* Clang-compatible compiler, targeting arm neon */
|
7 |
+
#include <arm_neon.h>
|
8 |
+
#elif defined(_MSC_VER)
|
9 |
+
/* Microsoft C/C++-compatible compiler */
|
10 |
+
#include <intrin.h>
|
11 |
+
#if _MSC_VER <= 1900
|
12 |
+
#define _mm256_extract_epi64(X, Y) (_mm_extract_epi64(_mm256_extractf128_si256(X, Y >> 1), Y % 2))
|
13 |
+
#define _mm256_extract_epi32(X, Y) (_mm_extract_epi32(_mm256_extractf128_si256(X, Y >> 2), Y % 4))
|
14 |
+
#define _mm256_extract_epi16(X, Y) (_mm_extract_epi16(_mm256_extractf128_si256(X, Y >> 3), Y % 8))
|
15 |
+
#define _mm256_extract_epi8(X, Y) (_mm_extract_epi8(_mm256_extractf128_si256(X, Y >> 4), Y % 16))
|
16 |
+
#endif
|
17 |
+
#elif defined(__GNUC__) && (defined(__ARM_NEON__) || defined(__aarch64__))
|
18 |
+
/* GCC-compatible compiler, targeting ARM with NEON */
|
19 |
+
#include <arm_neon.h>
|
20 |
+
#if defined (MISSING_ARM_VLD1)
|
21 |
+
#include <ATen/cpu/vec/vec256/missing_vld1_neon.h>
|
22 |
+
#elif defined (MISSING_ARM_VST1)
|
23 |
+
#include <ATen/cpu/vec/vec256/missing_vst1_neon.h>
|
24 |
+
#endif
|
25 |
+
#elif defined(__GNUC__) && defined(__IWMMXT__)
|
26 |
+
/* GCC-compatible compiler, targeting ARM with WMMX */
|
27 |
+
#include <mmintrin.h>
|
28 |
+
#elif defined(__s390x__)
|
29 |
+
// targets Z/architecture
|
30 |
+
// we will include vecintrin later
|
31 |
+
#elif (defined(__GNUC__) || defined(__xlC__)) && \
|
32 |
+
(defined(__VEC__) || defined(__ALTIVEC__))
|
33 |
+
/* XLC or GCC-compatible compiler, targeting PowerPC with VMX/VSX */
|
34 |
+
#include <altivec.h>
|
35 |
+
/* We need to undef those tokens defined by <altivec.h> to avoid conflicts
|
36 |
+
with the C++ types. => Can still use __bool/__vector */
|
37 |
+
#undef bool
|
38 |
+
#undef vector
|
39 |
+
#undef pixel
|
40 |
+
#elif defined(__GNUC__) && defined(__SPE__)
|
41 |
+
/* GCC-compatible compiler, targeting PowerPC with SPE */
|
42 |
+
#include <spe.h>
|
43 |
+
#endif
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec.h
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#if defined(CPU_CAPABILITY_AVX512)
|
4 |
+
#include <ATen/cpu/vec/vec512/vec512.h>
|
5 |
+
#else
|
6 |
+
#include <ATen/cpu/vec/vec256/vec256.h>
|
7 |
+
#endif
|
8 |
+
|
9 |
+
namespace at::vec {
|
10 |
+
// See Note [CPU_CAPABILITY namespace]
|
11 |
+
inline namespace CPU_CAPABILITY {
|
12 |
+
|
13 |
+
inline Vectorized<bool> convert_to_bool(Vectorized<int8_t> x) {
|
14 |
+
__at_align__ bool buffer[x.size()];
|
15 |
+
x.ne(Vectorized<int8_t>(0)).store(buffer);
|
16 |
+
|
17 |
+
Vectorized<bool> ret;
|
18 |
+
static_assert(x.size() == ret.size(), "");
|
19 |
+
std::memcpy(ret, buffer, ret.size() * sizeof(bool));
|
20 |
+
return ret;
|
21 |
+
}
|
22 |
+
|
23 |
+
template <>
|
24 |
+
inline Vectorized<bool> Vectorized<bool>::loadu(const void* ptr) {
|
25 |
+
// See NOTE [Loading boolean values]
|
26 |
+
return convert_to_bool(Vectorized<int8_t>::loadu(ptr));
|
27 |
+
}
|
28 |
+
|
29 |
+
template <>
|
30 |
+
inline Vectorized<bool> Vectorized<bool>::loadu(const void* ptr, int64_t count) {
|
31 |
+
// See NOTE [Loading boolean values]
|
32 |
+
return convert_to_bool(Vectorized<int8_t>::loadu(ptr, count));
|
33 |
+
}
|
34 |
+
|
35 |
+
template <typename VT>
|
36 |
+
struct VecHoldType { using hold_type = typename VT::value_type; };
|
37 |
+
|
38 |
+
template <>
|
39 |
+
struct VecHoldType<Vectorized<BFloat16>> { using hold_type = BFloat16; };
|
40 |
+
|
41 |
+
template <>
|
42 |
+
struct VecHoldType<Vectorized<Half>> {using hold_type = Half; };
|
43 |
+
|
44 |
+
template <typename VT>
|
45 |
+
using vechold_type = typename VecHoldType<VT>::hold_type;
|
46 |
+
|
47 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/missing_vld1_neon.h
ADDED
@@ -0,0 +1,452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* Workaround for missing vld1_*_x2 and vst1_*_x2 intrinsics in gcc-7. */
|
2 |
+
|
3 |
+
__extension__ extern __inline uint8x8x2_t
|
4 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
5 |
+
vld1_u8_x2 (const uint8_t *__a)
|
6 |
+
{
|
7 |
+
uint8x8x2_t ret;
|
8 |
+
asm volatile("ld1 {%S0.8b - %T0.8b}, %1" : "=w" (ret) : "Q"(*__a));
|
9 |
+
return ret;
|
10 |
+
}
|
11 |
+
|
12 |
+
__extension__ extern __inline int8x8x2_t
|
13 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
14 |
+
vld1_s8_x2 (const int8_t *__a)
|
15 |
+
{
|
16 |
+
int8x8x2_t ret;
|
17 |
+
asm volatile("ld1 {%S0.8b - %T0.8b}, %1" : "=w" (ret) : "Q"(*__a));
|
18 |
+
return ret;
|
19 |
+
}
|
20 |
+
|
21 |
+
__extension__ extern __inline uint16x4x2_t
|
22 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
23 |
+
vld1_u16_x2 (const uint16_t *__a)
|
24 |
+
{
|
25 |
+
uint16x4x2_t ret;
|
26 |
+
asm volatile("ld1 {%S0.4h - %T0.4h}, %1" : "=w" (ret) : "Q"(*__a));
|
27 |
+
return ret;
|
28 |
+
}
|
29 |
+
|
30 |
+
__extension__ extern __inline int16x4x2_t
|
31 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
32 |
+
vld1_s16_x2 (const int16_t *__a)
|
33 |
+
{
|
34 |
+
int16x4x2_t ret;
|
35 |
+
asm volatile("ld1 {%S0.4h - %T0.4h}, %1" : "=w" (ret) : "Q"(*__a));
|
36 |
+
return ret;
|
37 |
+
}
|
38 |
+
|
39 |
+
__extension__ extern __inline uint32x2x2_t
|
40 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
41 |
+
vld1_u32_x2 (const uint32_t *__a)
|
42 |
+
{
|
43 |
+
uint32x2x2_t ret;
|
44 |
+
asm volatile("ld1 {%S0.2s - %T0.2s}, %1" : "=w" (ret) : "Q"(*__a));
|
45 |
+
return ret;
|
46 |
+
}
|
47 |
+
|
48 |
+
__extension__ extern __inline int32x2x2_t
|
49 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
50 |
+
vld1_s32_x2 (const int32_t *__a)
|
51 |
+
{
|
52 |
+
int32x2x2_t ret;
|
53 |
+
asm volatile("ld1 {%S0.2s - %T0.2s}, %1" : "=w" (ret) : "Q"(*__a));
|
54 |
+
return ret;
|
55 |
+
}
|
56 |
+
|
57 |
+
__extension__ extern __inline uint64x1x2_t
|
58 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
59 |
+
vld1_u64_x2 (const uint64_t *__a)
|
60 |
+
{
|
61 |
+
uint64x1x2_t ret;
|
62 |
+
asm volatile("ld1 {%S0.1d - %T0.1d}, %1" : "=w" (ret) : "Q"(*__a));
|
63 |
+
return ret;
|
64 |
+
}
|
65 |
+
|
66 |
+
__extension__ extern __inline int64x1x2_t
|
67 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
68 |
+
vld1_s64_x2 (const int64_t *__a)
|
69 |
+
{
|
70 |
+
int64x1x2_t ret;
|
71 |
+
__builtin_aarch64_simd_oi __o;
|
72 |
+
asm volatile("ld1 {%S0.1d - %T0.1d}, %1" : "=w" (ret) : "Q"(*__a));
|
73 |
+
return ret;
|
74 |
+
}
|
75 |
+
|
76 |
+
__extension__ extern __inline float16x4x2_t
|
77 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
78 |
+
vld1_f16_x2 (const float16_t *__a)
|
79 |
+
{
|
80 |
+
float16x4x2_t ret;
|
81 |
+
asm volatile("ld1 {%S0.4h - %T0.4h}, %1" : "=w" (ret) : "Q"(*__a));
|
82 |
+
return ret;
|
83 |
+
}
|
84 |
+
|
85 |
+
__extension__ extern __inline float32x2x2_t
|
86 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
87 |
+
vld1_f32_x2 (const float32_t *__a)
|
88 |
+
{
|
89 |
+
float32x2x2_t ret;
|
90 |
+
asm volatile("ld1 {%S0.2s - %T0.2s}, %1" : "=w" (ret) : "Q"(*__a));
|
91 |
+
return ret;
|
92 |
+
}
|
93 |
+
|
94 |
+
__extension__ extern __inline float64x1x2_t
|
95 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
96 |
+
vld1_f64_x2 (const float64_t *__a)
|
97 |
+
{
|
98 |
+
float64x1x2_t ret;
|
99 |
+
asm volatile("ld1 {%S0.1d - %T0.1d}, %1" : "=w" (ret) : "Q"(*__a));
|
100 |
+
return ret;
|
101 |
+
}
|
102 |
+
|
103 |
+
__extension__ extern __inline poly8x8x2_t
|
104 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
105 |
+
vld1_p8_x2 (const poly8_t *__a)
|
106 |
+
{
|
107 |
+
poly8x8x2_t ret;
|
108 |
+
asm volatile("ld1 {%S0.8b - %T0.8b}, %1" : "=w" (ret) : "Q"(*__a));
|
109 |
+
return ret;
|
110 |
+
}
|
111 |
+
|
112 |
+
__extension__ extern __inline poly16x4x2_t
|
113 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
114 |
+
vld1_p16_x2 (const poly16_t *__a)
|
115 |
+
{
|
116 |
+
poly16x4x2_t ret;
|
117 |
+
asm volatile("ld1 {%S0.4h - %T0.4h}, %1" : "=w" (ret) : "Q"(*__a));
|
118 |
+
return ret;
|
119 |
+
}
|
120 |
+
|
121 |
+
__extension__ extern __inline poly64x1x2_t
|
122 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
123 |
+
vld1_p64_x2 (const poly64_t *__a)
|
124 |
+
{
|
125 |
+
poly64x1x2_t ret;
|
126 |
+
asm volatile("ld1 {%S0.1d - %T0.1d}, %1" : "=w" (ret) : "Q"(*__a));
|
127 |
+
return ret;
|
128 |
+
}
|
129 |
+
|
130 |
+
__extension__ extern __inline uint8x16x2_t
|
131 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
132 |
+
vld1q_u8_x2 (const uint8_t *__a)
|
133 |
+
{
|
134 |
+
uint8x16x2_t ret;
|
135 |
+
asm volatile("ld1 {%S0.16b - %T0.16b}, %1" : "=w" (ret) : "Q"(*__a));
|
136 |
+
return ret;
|
137 |
+
}
|
138 |
+
|
139 |
+
__extension__ extern __inline int8x16x2_t
|
140 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
141 |
+
vld1q_s8_x2 (const int8_t *__a)
|
142 |
+
{
|
143 |
+
int8x16x2_t ret;
|
144 |
+
asm volatile("ld1 {%S0.16b - %T0.16b}, %1" : "=w" (ret) : "Q"(*__a));
|
145 |
+
return ret;
|
146 |
+
}
|
147 |
+
|
148 |
+
__extension__ extern __inline uint16x8x2_t
|
149 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
150 |
+
vld1q_u16_x2 (const uint16_t *__a)
|
151 |
+
{
|
152 |
+
uint16x8x2_t ret;
|
153 |
+
asm volatile("ld1 {%S0.8h - %T0.8h}, %1" : "=w" (ret) : "Q"(*__a));
|
154 |
+
return ret;
|
155 |
+
}
|
156 |
+
|
157 |
+
__extension__ extern __inline int16x8x2_t
|
158 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
159 |
+
vld1q_s16_x2 (const int16_t *__a)
|
160 |
+
{
|
161 |
+
int16x8x2_t ret;
|
162 |
+
asm volatile("ld1 {%S0.8h - %T0.8h}, %1" : "=w" (ret) : "Q"(*__a));
|
163 |
+
return ret;
|
164 |
+
}
|
165 |
+
|
166 |
+
__extension__ extern __inline uint32x4x2_t
|
167 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
168 |
+
vld1q_u32_x2 (const uint32_t *__a)
|
169 |
+
{
|
170 |
+
uint32x4x2_t ret;
|
171 |
+
asm volatile("ld1 {%S0.4s - %T0.4s}, %1" : "=w" (ret) : "Q"(*__a));
|
172 |
+
return ret;
|
173 |
+
}
|
174 |
+
|
175 |
+
__extension__ extern __inline int32x4x2_t
|
176 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
177 |
+
vld1q_s32_x2 (const int32_t *__a)
|
178 |
+
{
|
179 |
+
int32x4x2_t ret;
|
180 |
+
asm volatile("ld1 {%S0.4s - %T0.4s}, %1" : "=w" (ret) : "Q"(*__a));
|
181 |
+
return ret;
|
182 |
+
}
|
183 |
+
|
184 |
+
__extension__ extern __inline uint64x2x2_t
|
185 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
186 |
+
vld1q_u64_x2 (const uint64_t *__a)
|
187 |
+
{
|
188 |
+
uint64x2x2_t ret;
|
189 |
+
asm volatile("ld1 {%S0.2d - %T0.2d}, %1" : "=w" (ret) : "Q"(*__a));
|
190 |
+
return ret;
|
191 |
+
}
|
192 |
+
|
193 |
+
__extension__ extern __inline int64x2x2_t
|
194 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
195 |
+
vld1q_s64_x2 (const int64_t *__a)
|
196 |
+
{
|
197 |
+
int64x2x2_t ret;
|
198 |
+
asm volatile("ld1 {%S0.2d - %T0.2d}, %1" : "=w" (ret) : "Q"(*__a));
|
199 |
+
return ret;
|
200 |
+
}
|
201 |
+
|
202 |
+
__extension__ extern __inline float16x8x2_t
|
203 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
204 |
+
vld1q_f16_x2 (const float16_t *__a)
|
205 |
+
{
|
206 |
+
float16x8x2_t ret;
|
207 |
+
asm volatile("ld1 {%S0.8h - %T0.8h}, %1" : "=w" (ret) : "Q"(*__a));
|
208 |
+
return ret;
|
209 |
+
}
|
210 |
+
|
211 |
+
__extension__ extern __inline float32x4x2_t
|
212 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
213 |
+
vld1q_f32_x2 (const float32_t *__a)
|
214 |
+
{
|
215 |
+
float32x4x2_t ret;
|
216 |
+
asm volatile("ld1 {%S0.4s - %T0.4s}, %1" : "=w" (ret) : "Q"(*__a));
|
217 |
+
return ret;
|
218 |
+
}
|
219 |
+
|
220 |
+
__extension__ extern __inline float64x2x2_t
|
221 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
222 |
+
vld1q_f64_x2 (const float64_t *__a)
|
223 |
+
{
|
224 |
+
float64x2x2_t ret;
|
225 |
+
asm volatile("ld1 {%S0.2d - %T0.2d}, %1" : "=w" (ret) : "Q"(*__a));
|
226 |
+
return ret;
|
227 |
+
}
|
228 |
+
|
229 |
+
__extension__ extern __inline poly8x16x2_t
|
230 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
231 |
+
vld1q_p8_x2 (const poly8_t *__a)
|
232 |
+
{
|
233 |
+
poly8x16x2_t ret;
|
234 |
+
asm volatile("ld1 {%S0.16b - %T0.16b}, %1" : "=w" (ret) : "Q"(*__a));
|
235 |
+
return ret;
|
236 |
+
}
|
237 |
+
|
238 |
+
__extension__ extern __inline poly16x8x2_t
|
239 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
240 |
+
vld1q_p16_x2 (const poly16_t *__a)
|
241 |
+
{
|
242 |
+
poly16x8x2_t ret;
|
243 |
+
asm volatile("ld1 {%S0.8h - %T0.8h}, %1" : "=w" (ret) : "Q"(*__a));
|
244 |
+
return ret;
|
245 |
+
}
|
246 |
+
|
247 |
+
__extension__ extern __inline poly64x2x2_t
|
248 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
249 |
+
vld1q_p64_x2 (const poly64_t *__a)
|
250 |
+
{
|
251 |
+
poly64x2x2_t ret;
|
252 |
+
asm volatile("ld1 {%S0.2d - %T0.2d}, %1" : "=w" (ret) : "Q"(*__a));
|
253 |
+
return ret;
|
254 |
+
}
|
255 |
+
|
256 |
+
/* vst1x2 */
|
257 |
+
|
258 |
+
__extension__ extern __inline void
|
259 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
260 |
+
vst1_s64_x2 (int64_t * __a, int64x1x2_t val)
|
261 |
+
{
|
262 |
+
asm volatile("st1 {%S1.1d - %T1.1d}, %0" : "=Q" (*__a) : "w" (val));
|
263 |
+
}
|
264 |
+
|
265 |
+
__extension__ extern __inline void
|
266 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
267 |
+
vst1_u64_x2 (uint64_t * __a, uint64x1x2_t val)
|
268 |
+
{
|
269 |
+
asm volatile("st1 {%S1.1d - %T1.1d}, %0" : "=Q" (*__a) : "w" (val));
|
270 |
+
}
|
271 |
+
|
272 |
+
__extension__ extern __inline void
|
273 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
274 |
+
vst1_f64_x2 (float64_t * __a, float64x1x2_t val)
|
275 |
+
{
|
276 |
+
asm volatile("st1 {%S1.1d - %T1.1d}, %0" : "=Q" (*__a) : "w" (val));
|
277 |
+
}
|
278 |
+
|
279 |
+
__extension__ extern __inline void
|
280 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
281 |
+
vst1_s8_x2 (int8_t * __a, int8x8x2_t val)
|
282 |
+
{
|
283 |
+
asm volatile("st1 {%S1.8b - %T1.8b}, %0" : "=Q" (*__a) : "w" (val));
|
284 |
+
}
|
285 |
+
|
286 |
+
__extension__ extern __inline void
|
287 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
288 |
+
vst1_p8_x2 (poly8_t * __a, poly8x8x2_t val)
|
289 |
+
{
|
290 |
+
asm volatile("st1 {%S1.8b - %T1.8b}, %0" : "=Q" (*__a) : "w" (val));
|
291 |
+
}
|
292 |
+
|
293 |
+
__extension__ extern __inline void
|
294 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
295 |
+
vst1_s16_x2 (int16_t * __a, int16x4x2_t val)
|
296 |
+
{
|
297 |
+
asm volatile("st1 {%S1.4h - %T1.4h}, %0" : "=Q" (*__a) : "w" (val));
|
298 |
+
}
|
299 |
+
|
300 |
+
__extension__ extern __inline void
|
301 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
302 |
+
vst1_p16_x2 (poly16_t * __a, poly16x4x2_t val)
|
303 |
+
{
|
304 |
+
asm volatile("st1 {%S1.4h - %T1.4h}, %0" : "=Q" (*__a) : "w" (val));
|
305 |
+
}
|
306 |
+
|
307 |
+
__extension__ extern __inline void
|
308 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
309 |
+
vst1_s32_x2 (int32_t * __a, int32x2x2_t val)
|
310 |
+
{
|
311 |
+
asm volatile("st1 {%S1.2s - %T1.2s}, %0" : "=Q" (*__a) : "w" (val));
|
312 |
+
}
|
313 |
+
|
314 |
+
__extension__ extern __inline void
|
315 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
316 |
+
vst1_u8_x2 (uint8_t * __a, uint8x8x2_t val)
|
317 |
+
{
|
318 |
+
asm volatile("st1 {%S1.8b - %T1.8b}, %0" : "=Q" (*__a) : "w" (val));
|
319 |
+
}
|
320 |
+
|
321 |
+
__extension__ extern __inline void
|
322 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
323 |
+
vst1_u16_x2 (uint16_t * __a, uint16x4x2_t val)
|
324 |
+
{
|
325 |
+
asm volatile("st1 {%S1.4h - %T1.4h}, %0" : "=Q" (*__a) : "w" (val));
|
326 |
+
}
|
327 |
+
|
328 |
+
__extension__ extern __inline void
|
329 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
330 |
+
vst1_u32_x2 (uint32_t * __a, uint32x2x2_t val)
|
331 |
+
{
|
332 |
+
asm volatile("st1 {%S1.2s - %T1.2s}, %0" : "=Q" (*__a) : "w" (val));
|
333 |
+
}
|
334 |
+
|
335 |
+
__extension__ extern __inline void
|
336 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
337 |
+
vst1_f16_x2 (float16_t * __a, float16x4x2_t val)
|
338 |
+
{
|
339 |
+
asm volatile("st1 {%S1.4h - %T1.4h}, %0" : "=Q" (*__a) : "w" (val));
|
340 |
+
}
|
341 |
+
|
342 |
+
__extension__ extern __inline void
|
343 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
344 |
+
vst1_f32_x2 (float32_t * __a, float32x2x2_t val)
|
345 |
+
{
|
346 |
+
asm volatile("st1 {%S1.2s - %T1.2s}, %0" : "=Q" (*__a) : "w" (val));
|
347 |
+
}
|
348 |
+
|
349 |
+
__extension__ extern __inline void
|
350 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
351 |
+
vst1_p64_x2 (poly64_t * __a, poly64x1x2_t val)
|
352 |
+
{
|
353 |
+
asm volatile("st1 {%S1.1d - %T1.1d}, %0" : "=Q" (*__a) : "w" (val));
|
354 |
+
}
|
355 |
+
|
356 |
+
__extension__ extern __inline void
|
357 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
358 |
+
vst1q_s8_x2 (int8_t * __a, int8x16x2_t val)
|
359 |
+
{
|
360 |
+
asm volatile("st1 {%S1.16b - %T1.16b}, %0" : "=Q" (*__a) : "w" (val));
|
361 |
+
}
|
362 |
+
|
363 |
+
__extension__ extern __inline void
|
364 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
365 |
+
vst1q_p8_x2 (poly8_t * __a, poly8x16x2_t val)
|
366 |
+
{
|
367 |
+
asm volatile("st1 {%S1.16b - %T1.16b}, %0" : "=Q" (*__a) : "w" (val));
|
368 |
+
}
|
369 |
+
|
370 |
+
__extension__ extern __inline void
|
371 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
372 |
+
vst1q_s16_x2 (int16_t * __a, int16x8x2_t val)
|
373 |
+
{
|
374 |
+
asm volatile("st1 {%S1.8h - %T1.8h}, %0" : "=Q" (*__a) : "w" (val));
|
375 |
+
}
|
376 |
+
|
377 |
+
__extension__ extern __inline void
|
378 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
379 |
+
vst1q_p16_x2 (poly16_t * __a, poly16x8x2_t val)
|
380 |
+
{
|
381 |
+
asm volatile("st1 {%S1.8h - %T1.8h}, %0" : "=Q" (*__a) : "w" (val));
|
382 |
+
}
|
383 |
+
|
384 |
+
__extension__ extern __inline void
|
385 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
386 |
+
vst1q_s32_x2 (int32_t * __a, int32x4x2_t val)
|
387 |
+
{
|
388 |
+
asm volatile("st1 {%S1.4s - %T1.4s}, %0" : "=Q" (*__a) : "w" (val));
|
389 |
+
}
|
390 |
+
|
391 |
+
__extension__ extern __inline void
|
392 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
393 |
+
vst1q_s64_x2 (int64_t * __a, int64x2x2_t val)
|
394 |
+
{
|
395 |
+
asm volatile("st1 {%S1.2d - %T1.2d}, %0" : "=Q" (*__a) : "w" (val));
|
396 |
+
}
|
397 |
+
|
398 |
+
__extension__ extern __inline void
|
399 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
400 |
+
vst1q_u8_x2 (uint8_t * __a, uint8x16x2_t val)
|
401 |
+
{
|
402 |
+
asm volatile("st1 {%S1.16b - %T1.16b}, %0" : "=Q" (*__a) : "w" (val));
|
403 |
+
}
|
404 |
+
|
405 |
+
__extension__ extern __inline void
|
406 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
407 |
+
vst1q_u16_x2 (uint16_t * __a, uint16x8x2_t val)
|
408 |
+
{
|
409 |
+
asm volatile("st1 {%S1.8h - %T1.8h}, %0" : "=Q" (*__a) : "w" (val));
|
410 |
+
}
|
411 |
+
|
412 |
+
__extension__ extern __inline void
|
413 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
414 |
+
vst1q_u32_x2 (uint32_t * __a, uint32x4x2_t val)
|
415 |
+
{
|
416 |
+
asm volatile("st1 {%S1.4s - %T1.4s}, %0" : "=Q" (*__a) : "w" (val));
|
417 |
+
}
|
418 |
+
|
419 |
+
__extension__ extern __inline void
|
420 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
421 |
+
vst1q_u64_x2 (uint64_t * __a, uint64x2x2_t val)
|
422 |
+
{
|
423 |
+
asm volatile("st1 {%S1.2d - %T1.2d}, %0" : "=Q" (*__a) : "w" (val));
|
424 |
+
}
|
425 |
+
|
426 |
+
__extension__ extern __inline void
|
427 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
428 |
+
vst1q_f16_x2 (float16_t * __a, float16x8x2_t val)
|
429 |
+
{
|
430 |
+
asm volatile("st1 {%S1.8h - %T1.8h}, %0" : "=Q" (*__a) : "w" (val));
|
431 |
+
}
|
432 |
+
|
433 |
+
__extension__ extern __inline void
|
434 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
435 |
+
vst1q_f32_x2 (float32_t * __a, float32x4x2_t val)
|
436 |
+
{
|
437 |
+
asm volatile("st1 {%S1.4s - %T1.4s}, %0" : "=Q" (*__a) : "w" (val));
|
438 |
+
}
|
439 |
+
|
440 |
+
__extension__ extern __inline void
|
441 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
442 |
+
vst1q_f64_x2 (float64_t * __a, float64x2x2_t val)
|
443 |
+
{
|
444 |
+
asm volatile("st1 {%S1.2d - %T1.2d}, %0" : "=Q" (*__a) : "w" (val));
|
445 |
+
}
|
446 |
+
|
447 |
+
__extension__ extern __inline void
|
448 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
449 |
+
vst1q_p64_x2 (poly64_t * __a, poly64x2x2_t val)
|
450 |
+
{
|
451 |
+
asm volatile("st1 {%S1.2d - %T1.2d}, %0" : "=Q" (*__a) : "w" (val));
|
452 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/missing_vst1_neon.h
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* Workaround for missing vst1q_f32_x2 in gcc-8. */
|
2 |
+
|
3 |
+
__extension__ extern __inline void
|
4 |
+
__attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
|
5 |
+
vst1q_f32_x2 (float32_t * __a, float32x4x2_t val)
|
6 |
+
{
|
7 |
+
asm volatile("st1 {%S1.4s - %T1.4s}, %0" : "=Q" (*__a) : "w" (val));
|
8 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256.h
ADDED
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
|
8 |
+
#include <ATen/cpu/vec/vec_base.h>
|
9 |
+
#if !(defined(__VSX__) || defined(CPU_CAPABILITY_VSX) || defined(CPU_CAPABILITY_ZVECTOR))
|
10 |
+
#include <ATen/cpu/vec/vec256/vec256_float.h>
|
11 |
+
#include <ATen/cpu/vec/vec256/vec256_float_neon.h>
|
12 |
+
#include <ATen/cpu/vec/vec256/vec256_bfloat16.h>
|
13 |
+
#include <ATen/cpu/vec/vec256/vec256_double.h>
|
14 |
+
#include <ATen/cpu/vec/vec256/vec256_int.h>
|
15 |
+
#include <ATen/cpu/vec/vec256/vec256_qint.h>
|
16 |
+
#include <ATen/cpu/vec/vec256/vec256_complex_float.h>
|
17 |
+
#include <ATen/cpu/vec/vec256/vec256_complex_double.h>
|
18 |
+
#elif defined(__VSX__) || defined(CPU_CAPABILITY_VSX)
|
19 |
+
#include <ATen/cpu/vec/vec256/vsx/vec256_common_vsx.h>
|
20 |
+
#else
|
21 |
+
#include <ATen/cpu/vec/vec256/zarch/vec256_zarch.h>
|
22 |
+
#include <ATen/cpu/vec/vec256/vec256_bfloat16.h>
|
23 |
+
#endif
|
24 |
+
|
25 |
+
#include <algorithm>
|
26 |
+
#include <cstddef>
|
27 |
+
#include <cstdint>
|
28 |
+
#include <cstring>
|
29 |
+
#include <ostream>
|
30 |
+
|
31 |
+
namespace at::vec {
|
32 |
+
|
33 |
+
// Note [CPU_CAPABILITY namespace]
|
34 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
35 |
+
// This header, and all of its subheaders, will be compiled with
|
36 |
+
// different architecture flags for each supported set of vector
|
37 |
+
// intrinsics. So we need to make sure they aren't inadvertently
|
38 |
+
// linked together. We do this by declaring objects in an `inline
|
39 |
+
// namespace` which changes the name mangling, but can still be
|
40 |
+
// accessed as `at::vec`.
|
41 |
+
inline namespace CPU_CAPABILITY {
|
42 |
+
|
43 |
+
inline std::ostream& operator<<(std::ostream& stream, const c10::qint32& val) {
|
44 |
+
stream << val.val_;
|
45 |
+
return stream;
|
46 |
+
}
|
47 |
+
inline std::ostream& operator<<(std::ostream& stream, const c10::qint8& val) {
|
48 |
+
stream << static_cast<int>(val.val_);
|
49 |
+
return stream;
|
50 |
+
}
|
51 |
+
inline std::ostream& operator<<(std::ostream& stream, const c10::quint8& val) {
|
52 |
+
stream << static_cast<unsigned int>(val.val_);
|
53 |
+
return stream;
|
54 |
+
}
|
55 |
+
|
56 |
+
template <typename T>
|
57 |
+
std::ostream& operator<<(std::ostream& stream, const Vectorized<T>& vec) {
|
58 |
+
T buf[Vectorized<T>::size()];
|
59 |
+
vec.store(buf);
|
60 |
+
stream << "vec[";
|
61 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
62 |
+
if (i != 0) {
|
63 |
+
stream << ", ";
|
64 |
+
}
|
65 |
+
stream << buf[i];
|
66 |
+
}
|
67 |
+
stream << "]";
|
68 |
+
return stream;
|
69 |
+
}
|
70 |
+
|
71 |
+
|
72 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
73 |
+
|
74 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CAST (AVX2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
75 |
+
|
76 |
+
template<>
|
77 |
+
inline Vectorized<float> cast<float, double>(const Vectorized<double>& src) {
|
78 |
+
return _mm256_castpd_ps(src);
|
79 |
+
}
|
80 |
+
|
81 |
+
template<>
|
82 |
+
inline Vectorized<double> cast<double, float>(const Vectorized<float>& src) {
|
83 |
+
return _mm256_castps_pd(src);
|
84 |
+
}
|
85 |
+
|
86 |
+
template<>
|
87 |
+
inline Vectorized<float> cast<float, int32_t>(const Vectorized<int32_t>& src) {
|
88 |
+
return _mm256_castsi256_ps(src);
|
89 |
+
}
|
90 |
+
|
91 |
+
template<>
|
92 |
+
inline Vectorized<double> cast<double, int64_t>(const Vectorized<int64_t>& src) {
|
93 |
+
return _mm256_castsi256_pd(src);
|
94 |
+
}
|
95 |
+
|
96 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ GATHER ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
97 |
+
|
98 |
+
template<int64_t scale = 1>
|
99 |
+
std::enable_if_t<scale == 1 || scale == 2 || scale == 4 || scale == 8, Vectorized<double>>
|
100 |
+
inline gather(const double* base_addr, const Vectorized<int64_t>& vindex) {
|
101 |
+
return _mm256_i64gather_pd(base_addr, vindex, scale);
|
102 |
+
}
|
103 |
+
|
104 |
+
template<int64_t scale = 1>
|
105 |
+
std::enable_if_t<scale == 1 || scale == 2 || scale == 4 || scale == 8, Vectorized<float>>
|
106 |
+
inline gather(const float* base_addr, const Vectorized<int32_t>& vindex) {
|
107 |
+
return _mm256_i32gather_ps(base_addr, vindex, scale);
|
108 |
+
}
|
109 |
+
|
110 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ MASK GATHER ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
111 |
+
|
112 |
+
template<int64_t scale = 1>
|
113 |
+
std::enable_if_t<scale == 1 || scale == 2 || scale == 4 || scale == 8, Vectorized<double>>
|
114 |
+
inline mask_gather(const Vectorized<double>& src, const double* base_addr,
|
115 |
+
const Vectorized<int64_t>& vindex, Vectorized<double>& mask) {
|
116 |
+
return _mm256_mask_i64gather_pd(src, base_addr, vindex, mask, scale);
|
117 |
+
}
|
118 |
+
|
119 |
+
template<int64_t scale = 1>
|
120 |
+
std::enable_if_t<scale == 1 || scale == 2 || scale == 4 || scale == 8, Vectorized<float>>
|
121 |
+
inline mask_gather(const Vectorized<float>& src, const float* base_addr,
|
122 |
+
const Vectorized<int32_t>& vindex, Vectorized<float>& mask) {
|
123 |
+
return _mm256_mask_i32gather_ps(src, base_addr, vindex, mask, scale);
|
124 |
+
}
|
125 |
+
|
126 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CONVERT ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
127 |
+
|
128 |
+
// Only works for inputs in the range: [-2^51, 2^51]
|
129 |
+
// From: https://stackoverflow.com/a/41148578
|
130 |
+
template<>
|
131 |
+
Vectorized<int64_t>
|
132 |
+
inline convert_to_int_of_same_size<double>(const Vectorized<double> &src) {
|
133 |
+
auto x = _mm256_add_pd(src, _mm256_set1_pd(0x0018000000000000));
|
134 |
+
return _mm256_sub_epi64(
|
135 |
+
_mm256_castpd_si256(x),
|
136 |
+
_mm256_castpd_si256(_mm256_set1_pd(0x0018000000000000))
|
137 |
+
);
|
138 |
+
}
|
139 |
+
|
140 |
+
template<>
|
141 |
+
Vectorized<int32_t>
|
142 |
+
inline convert_to_int_of_same_size<float>(const Vectorized<float> &src) {
|
143 |
+
return _mm256_cvttps_epi32(src);
|
144 |
+
}
|
145 |
+
|
146 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ INTERLEAVE ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
147 |
+
|
148 |
+
template <>
|
149 |
+
std::pair<Vectorized<double>, Vectorized<double>>
|
150 |
+
inline interleave2<double>(const Vectorized<double>& a, const Vectorized<double>& b) {
|
151 |
+
// inputs:
|
152 |
+
// a = {a0, a1, a3, a3}
|
153 |
+
// b = {b0, b1, b2, b3}
|
154 |
+
|
155 |
+
// swap lanes:
|
156 |
+
// a_swapped = {a0, a1, b0, b1}
|
157 |
+
// b_swapped = {a2, a3, b2, b3}
|
158 |
+
auto a_swapped = _mm256_permute2f128_pd(a, b, 0b0100000); // 0, 2. 4 bits apart
|
159 |
+
auto b_swapped = _mm256_permute2f128_pd(a, b, 0b0110001); // 1, 3. 4 bits apart
|
160 |
+
|
161 |
+
// group cols crossing lanes:
|
162 |
+
// return {a0, b0, a1, b1}
|
163 |
+
// {a2, b2, a3, b3}
|
164 |
+
return std::make_pair(_mm256_permute4x64_pd(a_swapped, 0b11011000), // 0, 2, 1, 3
|
165 |
+
_mm256_permute4x64_pd(b_swapped, 0b11011000)); // 0, 2, 1, 3
|
166 |
+
}
|
167 |
+
|
168 |
+
template <>
|
169 |
+
std::pair<Vectorized<float>, Vectorized<float>>
|
170 |
+
inline interleave2<float>(const Vectorized<float>& a, const Vectorized<float>& b) {
|
171 |
+
// inputs:
|
172 |
+
// a = {a0, a1, a2, a3, a4, a5, a6, a7}
|
173 |
+
// b = {b0, b1, b2, b3, b4, b5, b6, b7}
|
174 |
+
|
175 |
+
// swap lanes:
|
176 |
+
// a_swapped = {a0, a1, a2, a3, b0, b1, b2, b3}
|
177 |
+
// b_swapped = {a4, a5, a6, a7, b4, b5, b6, b7}
|
178 |
+
// TODO: can we support caching this?
|
179 |
+
auto a_swapped = _mm256_permute2f128_ps(a, b, 0b0100000); // 0, 2. 4 bits apart
|
180 |
+
auto b_swapped = _mm256_permute2f128_ps(a, b, 0b0110001); // 1, 3. 4 bits apart
|
181 |
+
|
182 |
+
// group cols crossing lanes:
|
183 |
+
// return {a0, b0, a1, b1, a2, b2, a3, b3}
|
184 |
+
// {a4, b4, a5, b5, a6, b6, a7, b7}
|
185 |
+
const __m256i group_ctrl = _mm256_setr_epi32(0, 4, 1, 5, 2, 6, 3, 7);
|
186 |
+
return std::make_pair(_mm256_permutevar8x32_ps(a_swapped, group_ctrl),
|
187 |
+
_mm256_permutevar8x32_ps(b_swapped, group_ctrl));
|
188 |
+
}
|
189 |
+
|
190 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEINTERLEAVE ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
191 |
+
|
192 |
+
template <>
|
193 |
+
std::pair<Vectorized<double>, Vectorized<double>>
|
194 |
+
inline deinterleave2<double>(const Vectorized<double>& a, const Vectorized<double>& b) {
|
195 |
+
// inputs:
|
196 |
+
// a = {a0, b0, a1, b1}
|
197 |
+
// b = {a2, b2, a3, b3}
|
198 |
+
|
199 |
+
// group cols crossing lanes:
|
200 |
+
// a_grouped = {a0, a1, b0, b1}
|
201 |
+
// b_grouped = {a2, a3, b2, b3}
|
202 |
+
auto a_grouped = _mm256_permute4x64_pd(a, 0b11011000); // 0, 2, 1, 3
|
203 |
+
auto b_grouped = _mm256_permute4x64_pd(b, 0b11011000); // 0, 2, 1, 3
|
204 |
+
|
205 |
+
// swap lanes:
|
206 |
+
// return {a0, a1, a2, a3}
|
207 |
+
// {b0, b1, b2, b3}
|
208 |
+
return std::make_pair(_mm256_permute2f128_pd(a_grouped, b_grouped, 0b0100000), // 0, 2. 4 bits apart
|
209 |
+
_mm256_permute2f128_pd(a_grouped, b_grouped, 0b0110001)); // 1, 3. 4 bits apart
|
210 |
+
}
|
211 |
+
|
212 |
+
template <>
|
213 |
+
std::pair<Vectorized<float>, Vectorized<float>>
|
214 |
+
inline deinterleave2<float>(const Vectorized<float>& a, const Vectorized<float>& b) {
|
215 |
+
// inputs:
|
216 |
+
// a = {a0, b0, a1, b1, a2, b2, a3, b3}
|
217 |
+
// b = {a4, b4, a5, b5, a6, b6, a7, b7}
|
218 |
+
|
219 |
+
// group cols crossing lanes:
|
220 |
+
// a_grouped = {a0, a1, a2, a3, b0, b1, b2, b3}
|
221 |
+
// b_grouped = {a4, a5, a6, a7, b4, b5, b6, b7}
|
222 |
+
// TODO: can we support caching this?
|
223 |
+
const __m256i group_ctrl = _mm256_setr_epi32(0, 2, 4, 6, 1, 3, 5, 7);
|
224 |
+
auto a_grouped = _mm256_permutevar8x32_ps(a, group_ctrl);
|
225 |
+
auto b_grouped = _mm256_permutevar8x32_ps(b, group_ctrl);
|
226 |
+
|
227 |
+
// swap lanes:
|
228 |
+
// return {a0, a1, a2, a3, a4, a5, a6, a7}
|
229 |
+
// {b0, b1, b2, b3, b4, b5, b6, b7}
|
230 |
+
return std::make_pair(_mm256_permute2f128_ps(a_grouped, b_grouped, 0b0100000), // 0, 2. 4 bits apart
|
231 |
+
_mm256_permute2f128_ps(a_grouped, b_grouped, 0b0110001)); // 1, 3. 4 bits apart
|
232 |
+
}
|
233 |
+
|
234 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ FLIP ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
235 |
+
|
236 |
+
template<>
|
237 |
+
inline Vectorized<float> flip(const Vectorized<float> & v) {
|
238 |
+
const __m256i mask_float = _mm256_set_epi32(0, 1, 2, 3, 4, 5, 6, 7);
|
239 |
+
return _mm256_permutevar8x32_ps(v, mask_float);
|
240 |
+
}
|
241 |
+
|
242 |
+
template<>
|
243 |
+
inline Vectorized<double> flip(const Vectorized<double> & v) {
|
244 |
+
return _mm256_permute4x64_pd(v, 27); // 27 == _MM_SHUFFLE(0, 1, 2, 3)
|
245 |
+
}
|
246 |
+
|
247 |
+
template<>
|
248 |
+
inline Vectorized<int64_t> flip(const Vectorized<int64_t> & v) {
|
249 |
+
return _mm256_permute4x64_epi64(v, 27); // 27 == _MM_SHUFFLE(0, 1, 2, 3)
|
250 |
+
}
|
251 |
+
|
252 |
+
template<>
|
253 |
+
inline Vectorized<int32_t> flip(const Vectorized<int32_t> & v) {
|
254 |
+
const __m256i mask_int32 = _mm256_set_epi32(0, 1, 2, 3, 4, 5, 6, 7);
|
255 |
+
return _mm256_permutevar8x32_epi32(v, mask_int32);
|
256 |
+
}
|
257 |
+
|
258 |
+
template<>
|
259 |
+
inline Vectorized<int16_t> flip(const Vectorized<int16_t> & v) {
|
260 |
+
const __m256i mask = _mm256_set_epi8(
|
261 |
+
1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14,
|
262 |
+
1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14
|
263 |
+
);
|
264 |
+
auto reversed = _mm256_shuffle_epi8(v, mask);
|
265 |
+
return _mm256_permute2x128_si256(reversed, reversed, 1);
|
266 |
+
}
|
267 |
+
|
268 |
+
inline __m256i flip8(const __m256i & v) {
|
269 |
+
const __m256i mask_int8 = _mm256_set_epi8(
|
270 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
271 |
+
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
|
272 |
+
);
|
273 |
+
auto reversed = _mm256_shuffle_epi8(v, mask_int8);
|
274 |
+
return _mm256_permute2x128_si256(reversed, reversed, 1);
|
275 |
+
}
|
276 |
+
|
277 |
+
template<>
|
278 |
+
inline Vectorized<int8_t> flip(const Vectorized<int8_t> & v) {
|
279 |
+
return flip8(v);
|
280 |
+
}
|
281 |
+
|
282 |
+
template<>
|
283 |
+
inline Vectorized<uint8_t> flip(const Vectorized<uint8_t> & v) {
|
284 |
+
return flip8(v);
|
285 |
+
}
|
286 |
+
|
287 |
+
#endif // (defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
288 |
+
|
289 |
+
}} // namepsace at::vec::CPU_CAPABILITY
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_bfloat16.h
ADDED
@@ -0,0 +1,1090 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
#include <ATen/cpu/vec/vec_base.h>
|
8 |
+
#include <c10/util/irange.h>
|
9 |
+
|
10 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
11 |
+
#include <sleef.h>
|
12 |
+
#endif
|
13 |
+
|
14 |
+
#pragma GCC diagnostic push
|
15 |
+
#pragma GCC diagnostic ignored "-Wignored-qualifiers"
|
16 |
+
|
17 |
+
namespace at::vec {
|
18 |
+
// See Note [CPU_CAPABILITY namespace]
|
19 |
+
inline namespace CPU_CAPABILITY {
|
20 |
+
|
21 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
22 |
+
|
23 |
+
// bfloat16 conversion
|
24 |
+
static inline void cvtbf16_fp32(const __m128i& a, __m256& o) {
|
25 |
+
o = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(a), 16));
|
26 |
+
}
|
27 |
+
|
28 |
+
static inline void cvtbf16_fp32(const __m256i& a, __m256& o1, __m256& o2) {
|
29 |
+
__m128i lo = _mm256_extractf128_si256(a, 0);
|
30 |
+
__m128i hi = _mm256_extractf128_si256(a, 1);
|
31 |
+
cvtbf16_fp32(lo, o1);
|
32 |
+
cvtbf16_fp32(hi, o2);
|
33 |
+
}
|
34 |
+
static inline __m256i cvtfp32_bf16(const __m256& a, const __m256& b) {
|
35 |
+
__m256i lo = _mm256_castps_si256(a);
|
36 |
+
__m256i hi = _mm256_castps_si256(b);
|
37 |
+
__m256i nan = _mm256_set1_epi32(0xffff);
|
38 |
+
__m256i mask_lo = _mm256_castps_si256(_mm256_cmp_ps(a, a, _CMP_ORD_Q));
|
39 |
+
__m256i mask_hi = _mm256_castps_si256(_mm256_cmp_ps(b, b, _CMP_ORD_Q));
|
40 |
+
__m256i ones = _mm256_set1_epi32(0x1);
|
41 |
+
__m256i vec_bias = _mm256_set1_epi32(0x7fff);
|
42 |
+
// uint32_t lsb = (input >> 16) & 1;
|
43 |
+
auto t_lo = _mm256_and_si256(_mm256_srli_epi32(lo, 16), ones);
|
44 |
+
auto t_hi = _mm256_and_si256(_mm256_srli_epi32(hi, 16), ones);
|
45 |
+
// uint32_t rounding_bias = 0x7fff + lsb;
|
46 |
+
t_lo = _mm256_add_epi32(t_lo, vec_bias);
|
47 |
+
t_hi = _mm256_add_epi32(t_hi, vec_bias);
|
48 |
+
// input += rounding_bias;
|
49 |
+
t_lo = _mm256_add_epi32(t_lo, lo);
|
50 |
+
t_hi = _mm256_add_epi32(t_hi, hi);
|
51 |
+
// input = input >> 16;
|
52 |
+
t_lo = _mm256_srli_epi32(t_lo, 16);
|
53 |
+
t_hi = _mm256_srli_epi32(t_hi, 16);
|
54 |
+
// Check NaN before converting back to bf16
|
55 |
+
t_lo = _mm256_blendv_epi8(nan, t_lo, mask_lo);
|
56 |
+
t_hi = _mm256_blendv_epi8(nan, t_hi, mask_hi);
|
57 |
+
|
58 |
+
t_lo = _mm256_packus_epi32(t_lo, t_hi); // t_hi[4-7] t_lo[4-7] t_hi[0-4] t_lo[0-4]
|
59 |
+
return _mm256_permute4x64_epi64(t_lo, 0xd8); // 11 01 10 00
|
60 |
+
}
|
61 |
+
|
62 |
+
static inline __m256i merge_compare_result(const __m256& a, const __m256& b) {
|
63 |
+
__m256i lo = _mm256_castps_si256(a);
|
64 |
+
__m256i hi = _mm256_castps_si256(b);
|
65 |
+
lo = _mm256_srli_epi32(lo, 16);
|
66 |
+
hi = _mm256_srli_epi32(hi, 16);
|
67 |
+
auto out = _mm256_packus_epi32(lo, hi);
|
68 |
+
return _mm256_permute4x64_epi64(out, 0xd8);
|
69 |
+
}
|
70 |
+
|
71 |
+
// float16 conversion
|
72 |
+
static inline void cvtfp16_fp32(const __m128i& a, __m256& o) {
|
73 |
+
o = _mm256_cvtph_ps(a);
|
74 |
+
}
|
75 |
+
|
76 |
+
static inline void cvtfp16_fp32(const __m256i& a, __m256& o1, __m256& o2) {
|
77 |
+
__m128i lo = _mm256_extractf128_si256(a, 0);
|
78 |
+
__m128i hi = _mm256_extractf128_si256(a, 1);
|
79 |
+
cvtfp16_fp32(lo, o1);
|
80 |
+
cvtfp16_fp32(hi, o2);
|
81 |
+
}
|
82 |
+
|
83 |
+
static inline __m256i cvtfp32_fp16(const __m256& a, const __m256& b) {
|
84 |
+
__m128i lo = _mm256_cvtps_ph(
|
85 |
+
a, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
86 |
+
__m128i hi = _mm256_cvtps_ph(
|
87 |
+
b, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
88 |
+
return _mm256_insertf128_si256(_mm256_castsi128_si256(lo), hi, 1);
|
89 |
+
}
|
90 |
+
|
91 |
+
// dtype conversion between float16/bfloat16 and float32
|
92 |
+
template <typename T, typename std::enable_if_t<is_reduced_floating_point_v<T>, int> = 0>
|
93 |
+
inline void cvt_to_fp32(const __m128i& a, __m256& o);
|
94 |
+
template <> inline void cvt_to_fp32<BFloat16>(const __m128i& a, __m256& o) {
|
95 |
+
cvtbf16_fp32(a, o);
|
96 |
+
};
|
97 |
+
template <> inline void cvt_to_fp32<Half>(const __m128i& a, __m256& o) {
|
98 |
+
cvtfp16_fp32(a, o);
|
99 |
+
}
|
100 |
+
|
101 |
+
template <typename T, typename std::enable_if_t<is_reduced_floating_point_v<T>, int> = 0>
|
102 |
+
inline void cvt_to_fp32(const __m256i& a, __m256& o1, __m256& o2);
|
103 |
+
template <> inline void cvt_to_fp32<BFloat16>(const __m256i& a, __m256& o1, __m256& o2) {
|
104 |
+
cvtbf16_fp32(a, o1, o2);
|
105 |
+
}
|
106 |
+
template <> inline void cvt_to_fp32<Half>(const __m256i& a, __m256& o1, __m256& o2) {
|
107 |
+
cvtfp16_fp32(a, o1, o2);
|
108 |
+
}
|
109 |
+
|
110 |
+
template <typename T, bool is_compare_op = false,
|
111 |
+
typename std::enable_if_t<is_reduced_floating_point_v<T>, int> = 0>
|
112 |
+
inline __m256i cvt_from_fp32(const __m256& a, const __m256& b);
|
113 |
+
template <> inline __m256i cvt_from_fp32<BFloat16, false>(const __m256& a, const __m256& b) {
|
114 |
+
return cvtfp32_bf16(a, b);
|
115 |
+
}
|
116 |
+
template <> inline __m256i cvt_from_fp32<BFloat16, true>(const __m256& a, const __m256& b) {
|
117 |
+
return merge_compare_result(a, b);
|
118 |
+
}
|
119 |
+
template <> inline __m256i cvt_from_fp32<Half, false>(const __m256& a, const __m256& b) {
|
120 |
+
return cvtfp32_fp16(a, b);
|
121 |
+
}
|
122 |
+
template <> inline __m256i cvt_from_fp32<Half, true>(const __m256& a, const __m256& b) {
|
123 |
+
return cvtfp32_fp16(a, b);
|
124 |
+
}
|
125 |
+
|
126 |
+
template <typename T>
|
127 |
+
class Vectorized16 {
|
128 |
+
static_assert(
|
129 |
+
is_reduced_floating_point_v<T>,
|
130 |
+
"Support only float16 and bfloat16.");
|
131 |
+
protected:
|
132 |
+
__m256i values;
|
133 |
+
public:
|
134 |
+
using value_type = uint16_t;
|
135 |
+
using size_type = int;
|
136 |
+
static constexpr size_type size() {
|
137 |
+
return 16;
|
138 |
+
}
|
139 |
+
Vectorized16() {}
|
140 |
+
Vectorized16(__m256i v) : values(v) {}
|
141 |
+
Vectorized16(T val) {
|
142 |
+
value_type uw = val.x;
|
143 |
+
values = _mm256_set1_epi16(uw);
|
144 |
+
}
|
145 |
+
Vectorized16(T val1, T val2, T val3, T val4,
|
146 |
+
T val5, T val6, T val7, T val8,
|
147 |
+
T val9, T val10, T val11, T val12,
|
148 |
+
T val13, T val14, T val15, T val16) {
|
149 |
+
values = _mm256_setr_epi16(
|
150 |
+
val1.x, val2.x, val3.x, val4.x, val5.x, val6.x, val7.x, val8.x,
|
151 |
+
val9.x, val10.x, val11.x, val12.x, val13.x, val14.x, val15.x, val16.x);
|
152 |
+
}
|
153 |
+
operator __m256i() const {
|
154 |
+
return values;
|
155 |
+
}
|
156 |
+
T& operator[](int idx) = delete;
|
157 |
+
const T& operator[](int idx) const = delete;
|
158 |
+
int zero_mask() const {
|
159 |
+
// returns an integer mask where all zero elements are translated to 1-bit and others are translated to 0-bit
|
160 |
+
__m256i cmp = _mm256_cmpeq_epi16(values, _mm256_set1_epi16(0));
|
161 |
+
return _mm256_movemask_epi8(cmp);
|
162 |
+
}
|
163 |
+
static Vectorized<T> loadu(const void* ptr, int16_t count = size()) {
|
164 |
+
if (count == size())
|
165 |
+
return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(ptr));
|
166 |
+
|
167 |
+
__at_align__ int16_t tmp_values[size()];
|
168 |
+
std::memcpy(tmp_values, ptr, count * sizeof(int16_t));
|
169 |
+
return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(tmp_values));
|
170 |
+
}
|
171 |
+
void store(void* ptr, int count = size()) const {
|
172 |
+
if (count == size()) {
|
173 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(ptr), values);
|
174 |
+
} else if (count > 0) {
|
175 |
+
__at_align__ int16_t tmp_values[size()];
|
176 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(tmp_values), values);
|
177 |
+
std::memcpy(ptr, tmp_values, count * sizeof(int16_t));
|
178 |
+
}
|
179 |
+
}
|
180 |
+
template <int64_t mask>
|
181 |
+
static Vectorized<T> blend(const Vectorized<T>& a, const Vectorized<T>& b) {
|
182 |
+
__at_align__ int16_t tmp_values[size()];
|
183 |
+
a.store(tmp_values);
|
184 |
+
if (mask & 0x01)
|
185 |
+
tmp_values[0] = _mm256_extract_epi16(b.values, 0);
|
186 |
+
if (mask & 0x02)
|
187 |
+
tmp_values[1] = _mm256_extract_epi16(b.values, 1);
|
188 |
+
if (mask & 0x04)
|
189 |
+
tmp_values[2] = _mm256_extract_epi16(b.values, 2);
|
190 |
+
if (mask & 0x08)
|
191 |
+
tmp_values[3] = _mm256_extract_epi16(b.values, 3);
|
192 |
+
if (mask & 0x10)
|
193 |
+
tmp_values[4] = _mm256_extract_epi16(b.values, 4);
|
194 |
+
if (mask & 0x20)
|
195 |
+
tmp_values[5] = _mm256_extract_epi16(b.values, 5);
|
196 |
+
if (mask & 0x40)
|
197 |
+
tmp_values[6] = _mm256_extract_epi16(b.values, 6);
|
198 |
+
if (mask & 0x80)
|
199 |
+
tmp_values[7] = _mm256_extract_epi16(b.values, 7);
|
200 |
+
if (mask & 0x100)
|
201 |
+
tmp_values[8] = _mm256_extract_epi16(b.values, 8);
|
202 |
+
if (mask & 0x200)
|
203 |
+
tmp_values[9] = _mm256_extract_epi16(b.values, 9);
|
204 |
+
if (mask & 0x400)
|
205 |
+
tmp_values[10] = _mm256_extract_epi16(b.values, 10);
|
206 |
+
if (mask & 0x800)
|
207 |
+
tmp_values[11] = _mm256_extract_epi16(b.values, 11);
|
208 |
+
if (mask & 0x1000)
|
209 |
+
tmp_values[12] = _mm256_extract_epi16(b.values, 12);
|
210 |
+
if (mask & 0x2000)
|
211 |
+
tmp_values[13] = _mm256_extract_epi16(b.values, 13);
|
212 |
+
if (mask & 0x4000)
|
213 |
+
tmp_values[14] = _mm256_extract_epi16(b.values, 14);
|
214 |
+
if (mask & 0x8000)
|
215 |
+
tmp_values[15] = _mm256_extract_epi16(b.values, 15);
|
216 |
+
return loadu(tmp_values);
|
217 |
+
}
|
218 |
+
static Vectorized<T> blendv(const Vectorized<T>& a,
|
219 |
+
const Vectorized<T>& b, const Vectorized<T>& mask) {
|
220 |
+
return _mm256_blendv_epi8(a.values, b.values, mask.values);
|
221 |
+
}
|
222 |
+
template<typename step_t>
|
223 |
+
static Vectorized<T> arange(T base = 0.f, step_t step = static_cast<step_t>(1)) {
|
224 |
+
return Vectorized<T>(
|
225 |
+
base, base + step, base + 2 * step, base + 3 * step,
|
226 |
+
base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step,
|
227 |
+
base + 8 * step, base + 9 * step, base + 10 * step, base + 11 * step,
|
228 |
+
base + 12 * step, base + 13 * step, base + 14 * step, base + 15 * step);
|
229 |
+
}
|
230 |
+
static Vectorized<T> set(const Vectorized<T>& a,
|
231 |
+
const Vectorized<T>& b, int64_t count = size()) {
|
232 |
+
switch (count) {
|
233 |
+
case 0:
|
234 |
+
return a;
|
235 |
+
case 1:
|
236 |
+
return blend<1>(a, b);
|
237 |
+
case 2:
|
238 |
+
return blend<3>(a, b);
|
239 |
+
case 3:
|
240 |
+
return blend<7>(a, b);
|
241 |
+
case 4:
|
242 |
+
return blend<15>(a, b);
|
243 |
+
case 5:
|
244 |
+
return blend<31>(a, b);
|
245 |
+
case 6:
|
246 |
+
return blend<63>(a, b);
|
247 |
+
case 7:
|
248 |
+
return blend<127>(a, b);
|
249 |
+
case 8:
|
250 |
+
return blend<255>(a, b);
|
251 |
+
case 9:
|
252 |
+
return blend<511>(a, b);
|
253 |
+
case 10:
|
254 |
+
return blend<1023>(a, b);
|
255 |
+
case 11:
|
256 |
+
return blend<2047>(a, b);
|
257 |
+
case 12:
|
258 |
+
return blend<4095>(a, b);
|
259 |
+
case 13:
|
260 |
+
return blend<8191>(a, b);
|
261 |
+
case 14:
|
262 |
+
return blend<16383>(a, b);
|
263 |
+
case 15:
|
264 |
+
return blend<32767>(a, b);
|
265 |
+
}
|
266 |
+
return b;
|
267 |
+
}
|
268 |
+
Vectorized<T> map(const __m256 (*const vop)(__m256)) const {
|
269 |
+
__m256 lo, hi;
|
270 |
+
cvt_to_fp32<T>(values, lo, hi);
|
271 |
+
const auto o1 = vop(lo);
|
272 |
+
const auto o2 = vop(hi);
|
273 |
+
return cvt_from_fp32<T>(o1, o2);
|
274 |
+
}
|
275 |
+
Vectorized<T> isnan() const {
|
276 |
+
__m256 lo, hi;
|
277 |
+
cvt_to_fp32<T>(values, lo, hi);
|
278 |
+
lo = _mm256_cmp_ps(lo, _mm256_set1_ps(0.0f), _CMP_UNORD_Q);
|
279 |
+
hi = _mm256_cmp_ps(hi, _mm256_set1_ps(0.0f), _CMP_UNORD_Q);
|
280 |
+
return merge_compare_result(lo, hi);
|
281 |
+
}
|
282 |
+
Vectorized<T> abs() const {
|
283 |
+
return _mm256_andnot_si256(_mm256_set1_epi16(0x8000), values);
|
284 |
+
}
|
285 |
+
Vectorized<T> angle() const {
|
286 |
+
__m256 lo, hi;
|
287 |
+
cvt_to_fp32<T>(values, lo, hi);
|
288 |
+
auto angle_lambda = [](__m256 values) {
|
289 |
+
const auto zero_vec = _mm256_set1_ps(0.f);
|
290 |
+
const auto nan_vec = _mm256_set1_ps(NAN);
|
291 |
+
const auto not_nan_mask = _mm256_cmp_ps(values, values, _CMP_EQ_OQ);
|
292 |
+
const auto nan_mask = _mm256_cmp_ps(not_nan_mask, zero_vec, _CMP_EQ_OQ);
|
293 |
+
const auto pi = _mm256_set1_ps(c10::pi<float>);
|
294 |
+
|
295 |
+
const auto neg_mask = _mm256_cmp_ps(values, zero_vec, _CMP_LT_OQ);
|
296 |
+
auto angle = _mm256_blendv_ps(zero_vec, pi, neg_mask);
|
297 |
+
angle = _mm256_blendv_ps(angle, nan_vec, nan_mask);
|
298 |
+
return angle;
|
299 |
+
};
|
300 |
+
auto o1 = angle_lambda(lo);
|
301 |
+
auto o2 = angle_lambda(hi);
|
302 |
+
return cvt_from_fp32<T>(o1, o2);
|
303 |
+
}
|
304 |
+
Vectorized<T> real() const {
|
305 |
+
return *this;
|
306 |
+
}
|
307 |
+
Vectorized<T> imag() const {
|
308 |
+
return _mm256_set1_epi16(0);
|
309 |
+
}
|
310 |
+
Vectorized<T> conj() const {
|
311 |
+
return *this;
|
312 |
+
}
|
313 |
+
Vectorized<T> acos() const {
|
314 |
+
return map(Sleef_acosf8_u10);
|
315 |
+
}
|
316 |
+
Vectorized<T> asin() const {
|
317 |
+
return map(Sleef_asinf8_u10);
|
318 |
+
}
|
319 |
+
Vectorized<T> atan() const {
|
320 |
+
return map(Sleef_atanf8_u10);
|
321 |
+
}
|
322 |
+
Vectorized<T> atanh() const {
|
323 |
+
return map(Sleef_atanhf8_u10);
|
324 |
+
}
|
325 |
+
Vectorized<T> atan2(const Vectorized<T> &b) const {
|
326 |
+
__m256 lo, hi;
|
327 |
+
__m256 b1, b2;
|
328 |
+
cvt_to_fp32<T>(values, lo, hi);
|
329 |
+
cvt_to_fp32<T>(b.values, b1, b2);
|
330 |
+
auto o1 = Sleef_atan2f8_u10(lo, b1);
|
331 |
+
auto o2 = Sleef_atan2f8_u10(hi, b2);
|
332 |
+
return cvt_from_fp32<T>(o1, o2);
|
333 |
+
}
|
334 |
+
Vectorized<T> copysign(const Vectorized<T> &sign) const {
|
335 |
+
// copy sign bit (0x8000) from sign and remaining bits from values
|
336 |
+
__m256i mask_value = _mm256_set1_epi32(~0x80008000);
|
337 |
+
__m256i mask_signbit = _mm256_set1_epi32(0x80008000);
|
338 |
+
return Vectorized<T>(
|
339 |
+
_mm256_or_si256(
|
340 |
+
_mm256_and_si256(values, mask_value),
|
341 |
+
_mm256_and_si256(sign, mask_signbit)));
|
342 |
+
}
|
343 |
+
Vectorized<T> erf() const {
|
344 |
+
return map(Sleef_erff8_u10);
|
345 |
+
}
|
346 |
+
Vectorized<T> erfc() const {
|
347 |
+
return map(Sleef_erfcf8_u15);
|
348 |
+
}
|
349 |
+
Vectorized<T> erfinv() const {
|
350 |
+
__m256 lo, hi;
|
351 |
+
cvt_to_fp32<T>(values, lo, hi);
|
352 |
+
__at_align__ float tmp1[size() / 2], tmp2[size() / 2];
|
353 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp1), lo);
|
354 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp2), hi);
|
355 |
+
for (int64_t i = 0; i < size() / 2; i++) {
|
356 |
+
tmp1[i] = calc_erfinv(tmp1[i]);
|
357 |
+
tmp2[i] = calc_erfinv(tmp2[i]);
|
358 |
+
}
|
359 |
+
auto o1 = _mm256_loadu_ps(tmp1);
|
360 |
+
auto o2 = _mm256_loadu_ps(tmp2);
|
361 |
+
return cvt_from_fp32<T>(o1, o2);
|
362 |
+
}
|
363 |
+
Vectorized<T> exp() const {
|
364 |
+
return map(Sleef_expf8_u10);
|
365 |
+
}
|
366 |
+
Vectorized<T> exp2() const {
|
367 |
+
return map(Sleef_exp2f8_u10);
|
368 |
+
}
|
369 |
+
Vectorized<T> expm1() const {
|
370 |
+
return map(Sleef_expm1f8_u10);
|
371 |
+
}
|
372 |
+
Vectorized<T> fmod(const Vectorized<T> & q) const {
|
373 |
+
__m256 x_lo, x_hi;
|
374 |
+
cvt_to_fp32<T>(values, x_lo, x_hi);
|
375 |
+
__m256 q_lo, q_hi;
|
376 |
+
cvt_to_fp32<T>(q.values, q_lo, q_hi);
|
377 |
+
auto o1 = Sleef_fmodf8(x_lo, q_lo);
|
378 |
+
auto o2 = Sleef_fmodf8(x_hi, q_hi);
|
379 |
+
return cvt_from_fp32<T>(o1, o2);
|
380 |
+
}
|
381 |
+
Vectorized<T> hypot(const Vectorized<T> &b) const {
|
382 |
+
__m256 lo, hi;
|
383 |
+
__m256 b1, b2;
|
384 |
+
cvt_to_fp32<T>(values, lo, hi);
|
385 |
+
cvt_to_fp32<T>(b.values, b1, b2);
|
386 |
+
auto o1 = Sleef_hypotf8_u05(lo, b1);
|
387 |
+
auto o2 = Sleef_hypotf8_u05(hi, b2);
|
388 |
+
return cvt_from_fp32<T>(o1, o2);
|
389 |
+
}
|
390 |
+
Vectorized<T> i0() const {
|
391 |
+
__m256 lo, hi;
|
392 |
+
cvt_to_fp32<T>(values, lo, hi);
|
393 |
+
__at_align__ float tmp1[size() / 2], tmp2[size() / 2];
|
394 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp1), lo);
|
395 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp2), hi);
|
396 |
+
for (int64_t i = 0; i < size() / 2; i++) {
|
397 |
+
tmp1[i] = calc_i0(tmp1[i]);
|
398 |
+
tmp2[i] = calc_i0(tmp2[i]);
|
399 |
+
}
|
400 |
+
auto o1 = _mm256_loadu_ps(tmp1);
|
401 |
+
auto o2 = _mm256_loadu_ps(tmp2);
|
402 |
+
return cvt_from_fp32<T>(o1, o2);
|
403 |
+
}
|
404 |
+
Vectorized<T> i0e() const {
|
405 |
+
__m256 lo, hi;
|
406 |
+
cvt_to_fp32<T>(values, lo, hi);
|
407 |
+
constexpr auto sz = size();
|
408 |
+
__at_align__ float tmp1[sz / 2], tmp2[sz / 2];
|
409 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp1), lo);
|
410 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp2), hi);
|
411 |
+
|
412 |
+
for (auto i = decltype(sz){0}; i < sz / 2; i++) {
|
413 |
+
tmp1[i] = calc_i0e(tmp1[i]);
|
414 |
+
tmp2[i] = calc_i0e(tmp2[i]);
|
415 |
+
}
|
416 |
+
const auto o1 = _mm256_loadu_ps(tmp1);
|
417 |
+
const auto o2 = _mm256_loadu_ps(tmp2);
|
418 |
+
return cvt_from_fp32<T>(o1, o2);
|
419 |
+
}
|
420 |
+
Vectorized<T> digamma() const {
|
421 |
+
__m256 lo, hi;
|
422 |
+
cvt_to_fp32<T>(values, lo, hi);
|
423 |
+
constexpr auto sz = size();
|
424 |
+
__at_align__ float tmp1[sz / 2], tmp2[sz / 2];
|
425 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp1), lo);
|
426 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp2), hi);
|
427 |
+
|
428 |
+
for (auto i = decltype(sz){0}; i < sz / 2; i++) {
|
429 |
+
tmp1[i] = calc_digamma(tmp1[i]);
|
430 |
+
tmp2[i] = calc_digamma(tmp2[i]);
|
431 |
+
}
|
432 |
+
const auto o1 = _mm256_loadu_ps(tmp1);
|
433 |
+
const auto o2 = _mm256_loadu_ps(tmp2);
|
434 |
+
return cvt_from_fp32<T>(o1, o2);
|
435 |
+
}
|
436 |
+
Vectorized<T> igamma(const Vectorized<T> &x) const {
|
437 |
+
__m256 lo, hi;
|
438 |
+
__m256 xlo, xhi;
|
439 |
+
cvt_to_fp32<T>(values, lo, hi);
|
440 |
+
cvt_to_fp32<T>(x.values, xlo, xhi);
|
441 |
+
__at_align__ float tmp1[size() / 2], tmp2[size() / 2];
|
442 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp1), lo);
|
443 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp2), hi);
|
444 |
+
__at_align__ float tmpx1[size() / 2], tmpx2[size() / 2];
|
445 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmpx1), xlo);
|
446 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmpx2), xhi);
|
447 |
+
for (int64_t i = 0; i < size() / 2; ++i) {
|
448 |
+
tmp1[i] = calc_igamma(tmp1[i], tmpx1[i]);
|
449 |
+
tmp2[i] = calc_igamma(tmp2[i], tmpx2[i]);
|
450 |
+
}
|
451 |
+
auto o1 = _mm256_loadu_ps(tmp1);
|
452 |
+
auto o2 = _mm256_loadu_ps(tmp2);
|
453 |
+
return cvt_from_fp32<T>(o1, o2);
|
454 |
+
}
|
455 |
+
|
456 |
+
Vectorized<T> igammac(const Vectorized<T> &x) const {
|
457 |
+
__m256 lo, hi;
|
458 |
+
__m256 xlo, xhi;
|
459 |
+
cvt_to_fp32<T>(values, lo, hi);
|
460 |
+
cvt_to_fp32<T>(x.values, xlo, xhi);
|
461 |
+
__at_align__ float tmp1[size() / 2], tmp2[size() / 2];
|
462 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp1), lo);
|
463 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp2), hi);
|
464 |
+
__at_align__ float tmpx1[size() / 2], tmpx2[size() / 2];
|
465 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmpx1), xlo);
|
466 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmpx2), xhi);
|
467 |
+
for (int64_t i = 0; i < size() / 2; ++i) {
|
468 |
+
tmp1[i] = calc_igammac(tmp1[i], tmpx1[i]);
|
469 |
+
tmp2[i] = calc_igammac(tmp2[i], tmpx2[i]);
|
470 |
+
}
|
471 |
+
auto o1 = _mm256_loadu_ps(tmp1);
|
472 |
+
auto o2 = _mm256_loadu_ps(tmp2);
|
473 |
+
return cvt_from_fp32<T>(o1, o2);
|
474 |
+
}
|
475 |
+
Vectorized<T> log() const {
|
476 |
+
return map(Sleef_logf8_u10);
|
477 |
+
}
|
478 |
+
Vectorized<T> log2() const {
|
479 |
+
return map(Sleef_log2f8_u10);
|
480 |
+
}
|
481 |
+
Vectorized<T> log10() const {
|
482 |
+
return map(Sleef_log10f8_u10);
|
483 |
+
}
|
484 |
+
Vectorized<T> log1p() const {
|
485 |
+
return map(Sleef_log1pf8_u10);
|
486 |
+
}
|
487 |
+
Vectorized<T> sin() const {
|
488 |
+
return map(Sleef_sinf8_u10);
|
489 |
+
}
|
490 |
+
Vectorized<T> sinh() const {
|
491 |
+
return map(Sleef_sinhf8_u10);
|
492 |
+
}
|
493 |
+
Vectorized<T> cos() const {
|
494 |
+
return map(Sleef_cosf8_u10);
|
495 |
+
}
|
496 |
+
Vectorized<T> cosh() const {
|
497 |
+
return map(Sleef_coshf8_u10);
|
498 |
+
}
|
499 |
+
Vectorized<T> ceil() const {
|
500 |
+
__m256 lo, hi;
|
501 |
+
cvt_to_fp32<T>(values, lo, hi);
|
502 |
+
auto o1 = _mm256_ceil_ps(lo);
|
503 |
+
auto o2 = _mm256_ceil_ps(hi);
|
504 |
+
return cvt_from_fp32<T>(o1, o2);
|
505 |
+
}
|
506 |
+
Vectorized<T> floor() const {
|
507 |
+
__m256 lo, hi;
|
508 |
+
cvt_to_fp32<T>(values, lo, hi);
|
509 |
+
auto o1 = _mm256_floor_ps(lo);
|
510 |
+
auto o2 = _mm256_floor_ps(hi);
|
511 |
+
return cvt_from_fp32<T>(o1, o2);
|
512 |
+
}
|
513 |
+
Vectorized<T> neg() const {
|
514 |
+
return _mm256_xor_si256(values, _mm256_set1_epi16(0x8000));
|
515 |
+
}
|
516 |
+
Vectorized<T> round() const {
|
517 |
+
__m256 lo, hi;
|
518 |
+
cvt_to_fp32<T>(values, lo, hi);
|
519 |
+
auto o1 = _mm256_round_ps(lo, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
520 |
+
auto o2 = _mm256_round_ps(hi, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
521 |
+
return cvt_from_fp32<T>(o1, o2);
|
522 |
+
}
|
523 |
+
Vectorized<T> tan() const {
|
524 |
+
return map(Sleef_tanf8_u10);
|
525 |
+
}
|
526 |
+
Vectorized<T> tanh() const {
|
527 |
+
return map(Sleef_tanhf8_u10);
|
528 |
+
}
|
529 |
+
Vectorized<T> trunc() const {
|
530 |
+
__m256 lo, hi;
|
531 |
+
cvt_to_fp32<T>(values, lo, hi);
|
532 |
+
auto o1 = _mm256_round_ps(lo, (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));
|
533 |
+
auto o2 = _mm256_round_ps(hi, (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));
|
534 |
+
return cvt_from_fp32<T>(o1, o2);
|
535 |
+
}
|
536 |
+
Vectorized<T> lgamma() const {
|
537 |
+
return map(Sleef_lgammaf8_u10);
|
538 |
+
}
|
539 |
+
Vectorized<T> sqrt() const {
|
540 |
+
__m256 lo, hi;
|
541 |
+
cvt_to_fp32<T>(values, lo, hi);
|
542 |
+
auto o1 = _mm256_sqrt_ps(lo);
|
543 |
+
auto o2 = _mm256_sqrt_ps(hi);
|
544 |
+
return cvt_from_fp32<T>(o1, o2);
|
545 |
+
}
|
546 |
+
Vectorized<T> reciprocal() const {
|
547 |
+
__m256 lo, hi;
|
548 |
+
cvt_to_fp32<T>(values, lo, hi);
|
549 |
+
auto ones = _mm256_set1_ps(1);
|
550 |
+
auto o1 = _mm256_div_ps(ones, lo);
|
551 |
+
auto o2 = _mm256_div_ps(ones, hi);
|
552 |
+
return cvt_from_fp32<T>(o1, o2);
|
553 |
+
}
|
554 |
+
Vectorized<T> rsqrt() const {
|
555 |
+
__m256 lo, hi;
|
556 |
+
cvt_to_fp32<T>(values, lo, hi);
|
557 |
+
auto ones = _mm256_set1_ps(1);
|
558 |
+
auto o1 = _mm256_div_ps(ones, _mm256_sqrt_ps(lo));
|
559 |
+
auto o2 = _mm256_div_ps(ones, _mm256_sqrt_ps(hi));
|
560 |
+
return cvt_from_fp32<T>(o1, o2);
|
561 |
+
}
|
562 |
+
Vectorized<T> pow(const Vectorized<T> &b) const {
|
563 |
+
__m256 lo, hi;
|
564 |
+
__m256 b1, b2;
|
565 |
+
cvt_to_fp32<T>(values, lo, hi);
|
566 |
+
cvt_to_fp32<T>(b.values, b1, b2);
|
567 |
+
auto o1 = Sleef_powf8_u10(lo, b1);
|
568 |
+
auto o2 = Sleef_powf8_u10(hi, b2);
|
569 |
+
return cvt_from_fp32<T>(o1, o2);
|
570 |
+
}
|
571 |
+
private:
|
572 |
+
template<typename Op>
|
573 |
+
Vectorized<T> inline binary_compare(const Vectorized<T>& b, Op op) const {
|
574 |
+
__m256 a_lo, a_hi;
|
575 |
+
__m256 b_lo, b_hi;
|
576 |
+
cvt_to_fp32<T>(values, a_lo, a_hi);
|
577 |
+
cvt_to_fp32<T>(b.values, b_lo, b_hi);
|
578 |
+
auto o1 = op(a_lo, b_lo);
|
579 |
+
auto o2 = op(a_hi, b_hi);
|
580 |
+
return cvt_from_fp32<T, /*is_compare_op*/true>(o1, o2);
|
581 |
+
}
|
582 |
+
|
583 |
+
public:
|
584 |
+
Vectorized<T> inline operator>(const Vectorized<T>& other) const {
|
585 |
+
return binary_compare(other, [](__m256 x, __m256 y) { return _mm256_cmp_ps(x, y, _CMP_GT_OQ); });
|
586 |
+
}
|
587 |
+
Vectorized<T> inline operator<(const Vectorized<T>& other) const {
|
588 |
+
return binary_compare(other, [](__m256 x, __m256 y) { return _mm256_cmp_ps(x, y, _CMP_LT_OQ); });
|
589 |
+
}
|
590 |
+
Vectorized<T> inline operator>=(const Vectorized<T>& other) const {
|
591 |
+
return binary_compare(other, [](__m256 x, __m256 y) { return _mm256_cmp_ps(x, y, _CMP_GE_OQ); });
|
592 |
+
}
|
593 |
+
Vectorized<T> inline operator<=(const Vectorized<T>& other) const {
|
594 |
+
return binary_compare(other, [](__m256 x, __m256 y) { return _mm256_cmp_ps(x, y, _CMP_LE_OQ); });
|
595 |
+
}
|
596 |
+
Vectorized<T> inline operator==(const Vectorized<T>& other) const {
|
597 |
+
return binary_compare(other, [](__m256 x, __m256 y) { return _mm256_cmp_ps(x, y, _CMP_EQ_OQ); });
|
598 |
+
}
|
599 |
+
Vectorized<T> inline operator!=(const Vectorized<T>& other) const {
|
600 |
+
return binary_compare(other, [](__m256 x, __m256 y) { return _mm256_cmp_ps(x, y, _CMP_NEQ_UQ); });
|
601 |
+
}
|
602 |
+
};
|
603 |
+
|
604 |
+
template<typename T, typename Op>
|
605 |
+
static inline Vectorized<T> binary_op_as_fp32(const Vectorized<T>& a, const Vectorized<T>& b, Op op) {
|
606 |
+
__m256 a_lo, a_hi;
|
607 |
+
__m256 b_lo, b_hi;
|
608 |
+
cvt_to_fp32<T>(__m256i(a), a_lo, a_hi);
|
609 |
+
cvt_to_fp32<T>(__m256i(b), b_lo, b_hi);
|
610 |
+
auto o1 = op(a_lo, b_lo);
|
611 |
+
auto o2 = op(a_hi, b_hi);
|
612 |
+
return cvt_from_fp32<T>(o1, o2);
|
613 |
+
}
|
614 |
+
|
615 |
+
template <>
|
616 |
+
class Vectorized<BFloat16>: public Vectorized16<BFloat16> {
|
617 |
+
public:
|
618 |
+
using Vectorized16::Vectorized16;
|
619 |
+
|
620 |
+
Vectorized<BFloat16> frac() const;
|
621 |
+
|
622 |
+
Vectorized<BFloat16> eq(const Vectorized<BFloat16>& other) const;
|
623 |
+
Vectorized<BFloat16> ne(const Vectorized<BFloat16>& other) const;
|
624 |
+
Vectorized<BFloat16> gt(const Vectorized<BFloat16>& other) const;
|
625 |
+
Vectorized<BFloat16> ge(const Vectorized<BFloat16>& other) const;
|
626 |
+
Vectorized<BFloat16> lt(const Vectorized<BFloat16>& other) const;
|
627 |
+
Vectorized<BFloat16> le(const Vectorized<BFloat16>& other) const;
|
628 |
+
};
|
629 |
+
|
630 |
+
Vectorized<BFloat16> inline operator+(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
631 |
+
return binary_op_as_fp32(a, b, [](const __m256& x, const __m256& y) { return _mm256_add_ps(x, y); });
|
632 |
+
}
|
633 |
+
Vectorized<BFloat16> inline operator-(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
634 |
+
return binary_op_as_fp32(a, b, [](const __m256& x, const __m256& y) { return _mm256_sub_ps(x, y); });
|
635 |
+
}
|
636 |
+
Vectorized<BFloat16> inline operator*(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
637 |
+
return binary_op_as_fp32(a, b, [](const __m256& x, const __m256& y) { return _mm256_mul_ps(x, y); });
|
638 |
+
}
|
639 |
+
Vectorized<BFloat16> inline operator/(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
640 |
+
return binary_op_as_fp32(a, b, [](const __m256& x, const __m256& y) { return _mm256_div_ps(x, y); });
|
641 |
+
}
|
642 |
+
Vectorized<BFloat16> inline operator&(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
643 |
+
return _mm256_and_si256(a, b);
|
644 |
+
}
|
645 |
+
Vectorized<BFloat16> inline operator|(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
646 |
+
return _mm256_or_si256(a, b);
|
647 |
+
}
|
648 |
+
Vectorized<BFloat16> inline operator^(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
649 |
+
return _mm256_xor_si256(a, b);
|
650 |
+
}
|
651 |
+
|
652 |
+
inline Vectorized<BFloat16> Vectorized<BFloat16>::eq(const Vectorized<BFloat16>& other) const {
|
653 |
+
return (*this == other) & Vectorized<BFloat16>(1.0f);
|
654 |
+
}
|
655 |
+
inline Vectorized<BFloat16> Vectorized<BFloat16>::ne(const Vectorized<BFloat16>& other) const {
|
656 |
+
return (*this != other) & Vectorized<BFloat16>(1.0f);
|
657 |
+
}
|
658 |
+
inline Vectorized<BFloat16> Vectorized<BFloat16>::gt(const Vectorized<BFloat16>& other) const {
|
659 |
+
return (*this > other) & Vectorized<BFloat16>(1.0f);
|
660 |
+
}
|
661 |
+
inline Vectorized<BFloat16> Vectorized<BFloat16>::ge(const Vectorized<BFloat16>& other) const {
|
662 |
+
return (*this >= other) & Vectorized<BFloat16>(1.0f);
|
663 |
+
}
|
664 |
+
inline Vectorized<BFloat16> Vectorized<BFloat16>::lt(const Vectorized<BFloat16>& other) const {
|
665 |
+
return (*this < other) & Vectorized<BFloat16>(1.0f);
|
666 |
+
}
|
667 |
+
inline Vectorized<BFloat16> Vectorized<BFloat16>::le(const Vectorized<BFloat16>& other) const {
|
668 |
+
return (*this <= other) & Vectorized<BFloat16>(1.0f);
|
669 |
+
}
|
670 |
+
|
671 |
+
// frac. Implement this here so we can use subtraction
|
672 |
+
inline Vectorized<BFloat16> Vectorized<BFloat16>::frac() const {
|
673 |
+
return *this - this->trunc();
|
674 |
+
}
|
675 |
+
|
676 |
+
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
677 |
+
// either input is a NaN.
|
678 |
+
template <>
|
679 |
+
Vectorized<BFloat16> inline maximum(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
680 |
+
__m256 a_lo, a_hi;
|
681 |
+
__m256 b_lo, b_hi;
|
682 |
+
cvtbf16_fp32(__m256i(a), a_lo, a_hi);
|
683 |
+
cvtbf16_fp32(__m256i(b), b_lo, b_hi);
|
684 |
+
auto max_lo = _mm256_max_ps(a_lo, b_lo);
|
685 |
+
auto max_hi = _mm256_max_ps(a_hi, b_hi);
|
686 |
+
auto nan_lo = _mm256_cmp_ps(a_lo, b_lo, _CMP_UNORD_Q);
|
687 |
+
auto nan_hi = _mm256_cmp_ps(a_hi, b_hi, _CMP_UNORD_Q);
|
688 |
+
// Exploit the fact that all-ones is a NaN.
|
689 |
+
auto o1 = _mm256_or_ps(max_lo, nan_lo);
|
690 |
+
auto o2 = _mm256_or_ps(max_hi, nan_hi);
|
691 |
+
return cvtfp32_bf16(o1, o2);
|
692 |
+
}
|
693 |
+
|
694 |
+
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
695 |
+
// either input is a NaN.
|
696 |
+
template <>
|
697 |
+
Vectorized<BFloat16> inline minimum(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& b) {
|
698 |
+
__m256 a_lo, a_hi;
|
699 |
+
__m256 b_lo, b_hi;
|
700 |
+
cvtbf16_fp32(__m256i(a), a_lo, a_hi);
|
701 |
+
cvtbf16_fp32(__m256i(b), b_lo, b_hi);
|
702 |
+
auto min_lo = _mm256_min_ps(a_lo, b_lo);
|
703 |
+
auto min_hi = _mm256_min_ps(a_hi, b_hi);
|
704 |
+
auto nan_lo = _mm256_cmp_ps(a_lo, b_lo, _CMP_UNORD_Q);
|
705 |
+
auto nan_hi = _mm256_cmp_ps(a_hi, b_hi, _CMP_UNORD_Q);
|
706 |
+
// Exploit the fact that all-ones is a NaN.
|
707 |
+
auto o1 = _mm256_or_ps(min_lo, nan_lo);
|
708 |
+
auto o2 = _mm256_or_ps(min_hi, nan_hi);
|
709 |
+
return cvtfp32_bf16(o1, o2);
|
710 |
+
}
|
711 |
+
|
712 |
+
template <>
|
713 |
+
Vectorized<BFloat16> inline clamp(const Vectorized<BFloat16>& a,
|
714 |
+
const Vectorized<BFloat16>& min, const Vectorized<BFloat16>& max) {
|
715 |
+
__m256 a_lo, a_hi;
|
716 |
+
__m256 min_lo, min_hi;
|
717 |
+
__m256 max_lo, max_hi;
|
718 |
+
cvtbf16_fp32(__m256i(a), a_lo, a_hi);
|
719 |
+
cvtbf16_fp32(__m256i(min), min_lo, min_hi);
|
720 |
+
cvtbf16_fp32(__m256i(max), max_lo, max_hi);
|
721 |
+
auto o1 = _mm256_min_ps(max_lo, _mm256_max_ps(min_lo, a_lo));
|
722 |
+
auto o2 = _mm256_min_ps(max_hi, _mm256_max_ps(min_hi, a_hi));
|
723 |
+
return cvtfp32_bf16(o1, o2);
|
724 |
+
}
|
725 |
+
|
726 |
+
template <>
|
727 |
+
Vectorized<BFloat16> inline clamp_max(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& max) {
|
728 |
+
__m256 a_lo, a_hi;
|
729 |
+
__m256 max_lo, max_hi;
|
730 |
+
cvtbf16_fp32(__m256i(a), a_lo, a_hi);
|
731 |
+
cvtbf16_fp32(__m256i(max), max_lo, max_hi);
|
732 |
+
auto o1 = _mm256_min_ps(max_lo, a_lo);
|
733 |
+
auto o2 = _mm256_min_ps(max_hi, a_hi);
|
734 |
+
return cvtfp32_bf16(o1, o2);
|
735 |
+
}
|
736 |
+
|
737 |
+
template <>
|
738 |
+
Vectorized<BFloat16> inline clamp_min(const Vectorized<BFloat16>& a, const Vectorized<BFloat16>& min) {
|
739 |
+
__m256 a_lo, a_hi;
|
740 |
+
__m256 min_lo, min_hi;
|
741 |
+
cvtbf16_fp32(__m256i(a), a_lo, a_hi);
|
742 |
+
cvtbf16_fp32(__m256i(min), min_lo, min_hi);
|
743 |
+
auto o1 = _mm256_max_ps(min_lo, a_lo);
|
744 |
+
auto o2 = _mm256_max_ps(min_hi, a_hi);
|
745 |
+
return cvtfp32_bf16(o1, o2);
|
746 |
+
}
|
747 |
+
|
748 |
+
template <>
|
749 |
+
inline void convert(const BFloat16* src, BFloat16* dst, int64_t n) {
|
750 |
+
int64_t i;
|
751 |
+
#pragma unroll
|
752 |
+
for (i = 0; i <= (n - Vectorized<BFloat16>::size()); i += Vectorized<BFloat16>::size()) {
|
753 |
+
auto vsrc = _mm256_loadu_si256(reinterpret_cast<__m256i*>((void*)(src + i)));
|
754 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>((void*)(dst + i)), vsrc);
|
755 |
+
}
|
756 |
+
#pragma unroll
|
757 |
+
for (; i < n; i++) {
|
758 |
+
dst[i] = src[i];
|
759 |
+
}
|
760 |
+
}
|
761 |
+
|
762 |
+
template <>
|
763 |
+
inline void convert(const float* src, BFloat16* dst, int64_t n) {
|
764 |
+
int64_t i;
|
765 |
+
for (i = 0; i + Vectorized<BFloat16>::size() <= n; i += Vectorized<BFloat16>::size()) {
|
766 |
+
__m256 a = _mm256_loadu_ps(&src[i]);
|
767 |
+
__m256 b = _mm256_loadu_ps(&src[i + 8]);
|
768 |
+
|
769 |
+
__m256i bf = cvtfp32_bf16(a, b);
|
770 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(&dst[i]), bf);
|
771 |
+
}
|
772 |
+
for (; i < n; i++) {
|
773 |
+
dst[i] = c10::convert<BFloat16>(src[i]);
|
774 |
+
}
|
775 |
+
}
|
776 |
+
|
777 |
+
template <>
|
778 |
+
inline void convert(const double* src, BFloat16* dst, int64_t n) {
|
779 |
+
auto load_float = [](const double *src) -> __m256 {
|
780 |
+
// Load one float vector from an array of doubles
|
781 |
+
__m128 a = _mm256_cvtpd_ps(_mm256_loadu_pd(src));
|
782 |
+
__m128 b = _mm256_cvtpd_ps(_mm256_loadu_pd(src + 4));
|
783 |
+
return _mm256_insertf128_ps(_mm256_castps128_ps256(a), b, 1);
|
784 |
+
};
|
785 |
+
|
786 |
+
int64_t i;
|
787 |
+
for (i = 0; i + Vectorized<BFloat16>::size() <= n; i += Vectorized<BFloat16>::size()) {
|
788 |
+
__m256 a = load_float(&src[i]);
|
789 |
+
__m256 b = load_float(&src[i + 8]);
|
790 |
+
|
791 |
+
__m256i bf = cvtfp32_bf16(a, b);
|
792 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(&dst[i]), bf);
|
793 |
+
}
|
794 |
+
for (; i < n; i++) {
|
795 |
+
dst[i] = c10::convert<BFloat16>(src[i]);
|
796 |
+
}
|
797 |
+
}
|
798 |
+
|
799 |
+
template <>
|
800 |
+
Vectorized<BFloat16> inline fmadd(const Vectorized<BFloat16>& a,
|
801 |
+
const Vectorized<BFloat16>& b, const Vectorized<BFloat16>& c) {
|
802 |
+
__m256 a_lo, a_hi;
|
803 |
+
__m256 b_lo, b_hi;
|
804 |
+
__m256 c_lo, c_hi;
|
805 |
+
cvtbf16_fp32(__m256i(a), a_lo, a_hi);
|
806 |
+
cvtbf16_fp32(__m256i(b), b_lo, b_hi);
|
807 |
+
cvtbf16_fp32(__m256i(c), c_lo, c_hi);
|
808 |
+
auto o1 = _mm256_fmadd_ps(a_lo, b_lo, c_lo);
|
809 |
+
auto o2 = _mm256_fmadd_ps(a_hi, b_hi, c_hi);
|
810 |
+
return cvtfp32_bf16(o1, o2);
|
811 |
+
}
|
812 |
+
|
813 |
+
template <>
|
814 |
+
class Vectorized<Half>: public Vectorized16<Half> {
|
815 |
+
public:
|
816 |
+
using Vectorized16::Vectorized16;
|
817 |
+
|
818 |
+
Vectorized<Half> frac() const;
|
819 |
+
|
820 |
+
Vectorized<Half> eq(const Vectorized<Half>& other) const;
|
821 |
+
Vectorized<Half> ne(const Vectorized<Half>& other) const;
|
822 |
+
Vectorized<Half> gt(const Vectorized<Half>& other) const;
|
823 |
+
Vectorized<Half> ge(const Vectorized<Half>& other) const;
|
824 |
+
Vectorized<Half> lt(const Vectorized<Half>& other) const;
|
825 |
+
Vectorized<Half> le(const Vectorized<Half>& other) const;
|
826 |
+
};
|
827 |
+
|
828 |
+
Vectorized<Half> inline operator+(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
829 |
+
return binary_op_as_fp32(a, b, [](const __m256& x, const __m256& y) { return _mm256_add_ps(x, y); });
|
830 |
+
}
|
831 |
+
Vectorized<Half> inline operator-(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
832 |
+
return binary_op_as_fp32(a, b, [](const __m256& x, const __m256& y) { return _mm256_sub_ps(x, y); });
|
833 |
+
}
|
834 |
+
Vectorized<Half> inline operator*(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
835 |
+
return binary_op_as_fp32(a, b, [](const __m256& x, const __m256& y) { return _mm256_mul_ps(x, y); });
|
836 |
+
}
|
837 |
+
Vectorized<Half> inline operator/(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
838 |
+
return binary_op_as_fp32(a, b, [](const __m256& x, const __m256& y) { return _mm256_div_ps(x, y); });
|
839 |
+
}
|
840 |
+
Vectorized<Half> inline operator&(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
841 |
+
return _mm256_and_si256(a, b);
|
842 |
+
}
|
843 |
+
Vectorized<Half> inline operator|(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
844 |
+
return _mm256_or_si256(a, b);
|
845 |
+
}
|
846 |
+
Vectorized<Half> inline operator^(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
847 |
+
return _mm256_xor_si256(a, b);
|
848 |
+
}
|
849 |
+
|
850 |
+
inline Vectorized<Half> Vectorized<Half>::eq(const Vectorized<Half>& other) const {
|
851 |
+
return (*this == other) & Vectorized<Half>(1.0f);
|
852 |
+
}
|
853 |
+
inline Vectorized<Half> Vectorized<Half>::ne(const Vectorized<Half>& other) const {
|
854 |
+
return (*this != other) & Vectorized<Half>(1.0f);
|
855 |
+
}
|
856 |
+
inline Vectorized<Half> Vectorized<Half>::gt(const Vectorized<Half>& other) const {
|
857 |
+
return (*this > other) & Vectorized<Half>(1.0f);
|
858 |
+
}
|
859 |
+
inline Vectorized<Half> Vectorized<Half>::ge(const Vectorized<Half>& other) const {
|
860 |
+
return (*this >= other) & Vectorized<Half>(1.0f);
|
861 |
+
}
|
862 |
+
inline Vectorized<Half> Vectorized<Half>::lt(const Vectorized<Half>& other) const {
|
863 |
+
return (*this < other) & Vectorized<Half>(1.0f);
|
864 |
+
}
|
865 |
+
inline Vectorized<Half> Vectorized<Half>::le(const Vectorized<Half>& other) const {
|
866 |
+
return (*this <= other) & Vectorized<Half>(1.0f);
|
867 |
+
}
|
868 |
+
|
869 |
+
// frac. Implement this here so we can use subtraction
|
870 |
+
inline Vectorized<Half> Vectorized<Half>::frac() const {
|
871 |
+
return *this - this->trunc();
|
872 |
+
}
|
873 |
+
|
874 |
+
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
875 |
+
// either input is a NaN.
|
876 |
+
template <>
|
877 |
+
Vectorized<Half> inline maximum(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
878 |
+
__m256 a_lo, a_hi;
|
879 |
+
__m256 b_lo, b_hi;
|
880 |
+
cvtfp16_fp32(__m256i(a), a_lo, a_hi);
|
881 |
+
cvtfp16_fp32(__m256i(b), b_lo, b_hi);
|
882 |
+
auto max_lo = _mm256_max_ps(a_lo, b_lo);
|
883 |
+
auto max_hi = _mm256_max_ps(a_hi, b_hi);
|
884 |
+
auto nan_lo = _mm256_cmp_ps(a_lo, b_lo, _CMP_UNORD_Q);
|
885 |
+
auto nan_hi = _mm256_cmp_ps(a_hi, b_hi, _CMP_UNORD_Q);
|
886 |
+
// Exploit the fact that all-ones is a NaN.
|
887 |
+
auto o1 = _mm256_or_ps(max_lo, nan_lo);
|
888 |
+
auto o2 = _mm256_or_ps(max_hi, nan_hi);
|
889 |
+
return cvtfp32_fp16(o1, o2);
|
890 |
+
}
|
891 |
+
|
892 |
+
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
893 |
+
// either input is a NaN.
|
894 |
+
template <>
|
895 |
+
Vectorized<Half> inline minimum(const Vectorized<Half>& a, const Vectorized<Half>& b) {
|
896 |
+
__m256 a_lo, a_hi;
|
897 |
+
__m256 b_lo, b_hi;
|
898 |
+
cvtfp16_fp32(__m256i(a), a_lo, a_hi);
|
899 |
+
cvtfp16_fp32(__m256i(b), b_lo, b_hi);
|
900 |
+
auto min_lo = _mm256_min_ps(a_lo, b_lo);
|
901 |
+
auto min_hi = _mm256_min_ps(a_hi, b_hi);
|
902 |
+
auto nan_lo = _mm256_cmp_ps(a_lo, b_lo, _CMP_UNORD_Q);
|
903 |
+
auto nan_hi = _mm256_cmp_ps(a_hi, b_hi, _CMP_UNORD_Q);
|
904 |
+
// Exploit the fact that all-ones is a NaN.
|
905 |
+
auto o1 = _mm256_or_ps(min_lo, nan_lo);
|
906 |
+
auto o2 = _mm256_or_ps(min_hi, nan_hi);
|
907 |
+
return cvtfp32_fp16(o1, o2);
|
908 |
+
}
|
909 |
+
|
910 |
+
template <>
|
911 |
+
Vectorized<Half> inline clamp(const Vectorized<Half>& a,
|
912 |
+
const Vectorized<Half>& min, const Vectorized<Half>& max) {
|
913 |
+
__m256 a_lo, a_hi;
|
914 |
+
__m256 min_lo, min_hi;
|
915 |
+
__m256 max_lo, max_hi;
|
916 |
+
cvtfp16_fp32(__m256i(a), a_lo, a_hi);
|
917 |
+
cvtfp16_fp32(__m256i(min), min_lo, min_hi);
|
918 |
+
cvtfp16_fp32(__m256i(max), max_lo, max_hi);
|
919 |
+
auto o1 = _mm256_min_ps(max_lo, _mm256_max_ps(min_lo, a_lo));
|
920 |
+
auto o2 = _mm256_min_ps(max_hi, _mm256_max_ps(min_hi, a_hi));
|
921 |
+
return cvtfp32_fp16(o1, o2);
|
922 |
+
}
|
923 |
+
|
924 |
+
template <>
|
925 |
+
Vectorized<Half> inline clamp_max(const Vectorized<Half>& a, const Vectorized<Half>& max) {
|
926 |
+
__m256 a_lo, a_hi;
|
927 |
+
__m256 max_lo, max_hi;
|
928 |
+
cvtfp16_fp32(__m256i(a), a_lo, a_hi);
|
929 |
+
cvtfp16_fp32(__m256i(max), max_lo, max_hi);
|
930 |
+
auto o1 = _mm256_min_ps(max_lo, a_lo);
|
931 |
+
auto o2 = _mm256_min_ps(max_hi, a_hi);
|
932 |
+
return cvtfp32_fp16(o1, o2);
|
933 |
+
}
|
934 |
+
|
935 |
+
template <>
|
936 |
+
Vectorized<Half> inline clamp_min(const Vectorized<Half>& a, const Vectorized<Half>& min) {
|
937 |
+
__m256 a_lo, a_hi;
|
938 |
+
__m256 min_lo, min_hi;
|
939 |
+
cvtfp16_fp32(__m256i(a), a_lo, a_hi);
|
940 |
+
cvtfp16_fp32(__m256i(min), min_lo, min_hi);
|
941 |
+
auto o1 = _mm256_max_ps(min_lo, a_lo);
|
942 |
+
auto o2 = _mm256_max_ps(min_hi, a_hi);
|
943 |
+
return cvtfp32_fp16(o1, o2);
|
944 |
+
}
|
945 |
+
|
946 |
+
template <>
|
947 |
+
inline void convert(const Half* src, Half* dst, int64_t n) {
|
948 |
+
int64_t i;
|
949 |
+
#pragma unroll
|
950 |
+
for (i = 0; i <= (n - Vectorized<Half>::size()); i += Vectorized<Half>::size()) {
|
951 |
+
auto vsrc = _mm256_loadu_si256(reinterpret_cast<__m256i*>((void*)(src + i)));
|
952 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>((void*)(dst + i)), vsrc);
|
953 |
+
}
|
954 |
+
#pragma unroll
|
955 |
+
for (; i < n; i++) {
|
956 |
+
dst[i] = src[i];
|
957 |
+
}
|
958 |
+
}
|
959 |
+
|
960 |
+
template <>
|
961 |
+
inline void convert(const float* src, Half* dst, int64_t n) {
|
962 |
+
int64_t i;
|
963 |
+
for (i = 0; i + Vectorized<Half>::size() <= n; i += Vectorized<Half>::size()) {
|
964 |
+
__m256 a = _mm256_loadu_ps(&src[i]);
|
965 |
+
__m256 b = _mm256_loadu_ps(&src[i + 8]);
|
966 |
+
|
967 |
+
__m256i c = cvtfp32_fp16(a, b);
|
968 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(&dst[i]), c);
|
969 |
+
}
|
970 |
+
for (; i < n; i++) {
|
971 |
+
dst[i] = c10::convert<Half>(src[i]);
|
972 |
+
}
|
973 |
+
}
|
974 |
+
|
975 |
+
template <>
|
976 |
+
inline void convert(const double* src, Half* dst, int64_t n) {
|
977 |
+
auto load_float = [](const double *src) -> __m256 {
|
978 |
+
// Load one float vector from an array of doubles
|
979 |
+
__m128 a = _mm256_cvtpd_ps(_mm256_loadu_pd(src));
|
980 |
+
__m128 b = _mm256_cvtpd_ps(_mm256_loadu_pd(src + 4));
|
981 |
+
return _mm256_insertf128_ps(_mm256_castps128_ps256(a), b, 1);
|
982 |
+
};
|
983 |
+
|
984 |
+
int64_t i;
|
985 |
+
for (i = 0; i + Vectorized<Half>::size() <= n; i += Vectorized<Half>::size()) {
|
986 |
+
__m256 a = load_float(&src[i]);
|
987 |
+
__m256 b = load_float(&src[i + 8]);
|
988 |
+
|
989 |
+
__m256i c = cvtfp32_fp16(a, b);
|
990 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(&dst[i]), c);
|
991 |
+
}
|
992 |
+
for (; i < n; i++) {
|
993 |
+
dst[i] = c10::convert<Half>(src[i]);
|
994 |
+
}
|
995 |
+
}
|
996 |
+
|
997 |
+
template <>
|
998 |
+
Vectorized<Half> inline fmadd(const Vectorized<Half>& a,
|
999 |
+
const Vectorized<Half>& b, const Vectorized<Half>& c) {
|
1000 |
+
__m256 a_lo, a_hi;
|
1001 |
+
__m256 b_lo, b_hi;
|
1002 |
+
__m256 c_lo, c_hi;
|
1003 |
+
cvtfp16_fp32(__m256i(a), a_lo, a_hi);
|
1004 |
+
cvtfp16_fp32(__m256i(b), b_lo, b_hi);
|
1005 |
+
cvtfp16_fp32(__m256i(c), c_lo, c_hi);
|
1006 |
+
auto o1 = _mm256_fmadd_ps(a_lo, b_lo, c_lo);
|
1007 |
+
auto o2 = _mm256_fmadd_ps(a_hi, b_hi, c_hi);
|
1008 |
+
return cvtfp32_fp16(o1, o2);
|
1009 |
+
}
|
1010 |
+
|
1011 |
+
#define CONVERT_VECTORIZED_INIT(type, name) \
|
1012 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_##name##_float(const Vectorized<type>& a) { \
|
1013 |
+
__m256 o1, o2; \
|
1014 |
+
cvt_to_fp32<type>(__m256i(a), o1, o2); \
|
1015 |
+
return std::make_tuple(o1, o2); \
|
1016 |
+
} \
|
1017 |
+
inline Vectorized<type> convert_float_##name(const Vectorized<float>& a, const Vectorized<float>& b) { \
|
1018 |
+
return cvt_from_fp32<type>(__m256(a), __m256(b)); \
|
1019 |
+
}
|
1020 |
+
CONVERT_VECTORIZED_INIT(BFloat16, bfloat16);
|
1021 |
+
CONVERT_VECTORIZED_INIT(Half, half);
|
1022 |
+
|
1023 |
+
#else // defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
1024 |
+
|
1025 |
+
#define CONVERT_NON_VECTORIZED_INIT(type, name) \
|
1026 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_##name##_float(const Vectorized<type>& a) { \
|
1027 |
+
constexpr int64_t K = Vectorized<type>::size(); \
|
1028 |
+
__at_align__ float arr[K]; \
|
1029 |
+
__at_align__ type arr2[K]; \
|
1030 |
+
a.store(arr2); \
|
1031 |
+
convert(arr2, arr, K); \
|
1032 |
+
return std::make_tuple( \
|
1033 |
+
Vectorized<float>::loadu(arr), \
|
1034 |
+
Vectorized<float>::loadu(arr + Vectorized<float>::size())); \
|
1035 |
+
} \
|
1036 |
+
inline Vectorized<type> convert_float_##name(const Vectorized<float>& a, const Vectorized<float>& b) { \
|
1037 |
+
constexpr int64_t K = Vectorized<type>::size(); \
|
1038 |
+
__at_align__ float arr[K]; \
|
1039 |
+
__at_align__ type arr2[K]; \
|
1040 |
+
a.store(arr); \
|
1041 |
+
b.store(arr + Vectorized<float>::size()); \
|
1042 |
+
convert(arr, arr2, K); \
|
1043 |
+
return Vectorized<type>::loadu(arr2); \
|
1044 |
+
}
|
1045 |
+
CONVERT_NON_VECTORIZED_INIT(BFloat16, bfloat16);
|
1046 |
+
CONVERT_NON_VECTORIZED_INIT(Half, half);
|
1047 |
+
|
1048 |
+
#endif // defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
1049 |
+
|
1050 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
1051 |
+
#define LOAD_FP32_VECTORIZED_INIT(type, name) \
|
1052 |
+
inline void load_fp32_from_##name(const type *data, Vectorized<float>& out) { \
|
1053 |
+
auto values = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data)); \
|
1054 |
+
__m256 out_values; \
|
1055 |
+
cvt_to_fp32<type>(values, out_values); \
|
1056 |
+
out = out_values; \
|
1057 |
+
} \
|
1058 |
+
\
|
1059 |
+
inline void load_fp32_from_##name(const type *data, Vectorized<float>& out1, Vectorized<float>& out2) { \
|
1060 |
+
auto vec = Vectorized<type>::loadu(data); \
|
1061 |
+
__m256 out1_values, out2_values; \
|
1062 |
+
cvt_to_fp32<type>(vec, out1_values, out2_values); \
|
1063 |
+
out1 = out1_values; \
|
1064 |
+
out2 = out2_values; \
|
1065 |
+
}
|
1066 |
+
LOAD_FP32_VECTORIZED_INIT(BFloat16, bf16);
|
1067 |
+
LOAD_FP32_VECTORIZED_INIT(Half, fp16);
|
1068 |
+
|
1069 |
+
#else // defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
1070 |
+
#define LOAD_FP32_NON_VECTORIZED_INIT(type, name) \
|
1071 |
+
inline void load_fp32_from_##name(const type *data, Vectorized<float>& out) { \
|
1072 |
+
__at_align__ float values[Vectorized<float>::size()]; \
|
1073 |
+
for (const auto k : c10::irange(Vectorized<float>::size())) { \
|
1074 |
+
values[k] = data[k]; \
|
1075 |
+
} \
|
1076 |
+
out = Vectorized<float>::loadu(values); \
|
1077 |
+
} \
|
1078 |
+
\
|
1079 |
+
inline void load_fp32_from_##name(const type *data, Vectorized<float>& out1, Vectorized<float>& out2) { \
|
1080 |
+
load_fp32_from_##name(data, out1); \
|
1081 |
+
data += Vectorized<float>::size(); \
|
1082 |
+
load_fp32_from_##name(data, out2); \
|
1083 |
+
}
|
1084 |
+
LOAD_FP32_NON_VECTORIZED_INIT(BFloat16, bf16);
|
1085 |
+
LOAD_FP32_NON_VECTORIZED_INIT(Half, fp16);
|
1086 |
+
|
1087 |
+
#endif
|
1088 |
+
}} // namsepace at::vec::CPU_CAPABILITY
|
1089 |
+
|
1090 |
+
#pragma GCC diagnostic pop
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_complex_double.h
ADDED
@@ -0,0 +1,431 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <c10/util/complex.h>
|
7 |
+
#include <c10/util/irange.h>
|
8 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
9 |
+
#include <ATen/cpu/vec/vec_base.h>
|
10 |
+
|
11 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
12 |
+
#include <sleef.h>
|
13 |
+
#endif
|
14 |
+
|
15 |
+
namespace at::vec {
|
16 |
+
// See Note [CPU_CAPABILITY namespace]
|
17 |
+
inline namespace CPU_CAPABILITY {
|
18 |
+
|
19 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
20 |
+
|
21 |
+
template <> class Vectorized<c10::complex<double>> {
|
22 |
+
private:
|
23 |
+
__m256d values;
|
24 |
+
public:
|
25 |
+
using value_type = c10::complex<double>;
|
26 |
+
using size_type = int;
|
27 |
+
static constexpr size_type size() {
|
28 |
+
return 2;
|
29 |
+
}
|
30 |
+
Vectorized() {}
|
31 |
+
Vectorized(__m256d v) : values(v) {}
|
32 |
+
Vectorized(c10::complex<double> val) {
|
33 |
+
double real_value = val.real();
|
34 |
+
double imag_value = val.imag();
|
35 |
+
values = _mm256_setr_pd(real_value, imag_value,
|
36 |
+
real_value, imag_value);
|
37 |
+
}
|
38 |
+
Vectorized(c10::complex<double> val1, c10::complex<double> val2) {
|
39 |
+
values = _mm256_setr_pd(val1.real(), val1.imag(),
|
40 |
+
val2.real(), val2.imag());
|
41 |
+
}
|
42 |
+
operator __m256d() const {
|
43 |
+
return values;
|
44 |
+
}
|
45 |
+
template <int64_t mask>
|
46 |
+
static Vectorized<c10::complex<double>> blend(const Vectorized<c10::complex<double>>& a, const Vectorized<c10::complex<double>>& b) {
|
47 |
+
// convert c10::complex<V> index mask to V index mask: xy -> xxyy
|
48 |
+
static_assert (mask > -1 && mask < 4, "Unexpected mask value");
|
49 |
+
switch (mask) {
|
50 |
+
case 0:
|
51 |
+
return a;
|
52 |
+
case 1:
|
53 |
+
return _mm256_blend_pd(a.values, b.values, 0x03);
|
54 |
+
case 2:
|
55 |
+
return _mm256_blend_pd(a.values, b.values, 0x0c);
|
56 |
+
case 3: break;
|
57 |
+
}
|
58 |
+
return b;
|
59 |
+
}
|
60 |
+
static Vectorized<c10::complex<double>> blendv(const Vectorized<c10::complex<double>>& a, const Vectorized<c10::complex<double>>& b,
|
61 |
+
const Vectorized<c10::complex<double>>& mask) {
|
62 |
+
// convert c10::complex<V> index mask to V index mask: xy -> xxyy
|
63 |
+
auto mask_ = _mm256_unpacklo_pd(mask.values, mask.values);
|
64 |
+
return _mm256_blendv_pd(a.values, b.values, mask_);
|
65 |
+
|
66 |
+
}
|
67 |
+
template<typename step_t>
|
68 |
+
static Vectorized<c10::complex<double>> arange(c10::complex<double> base = 0., step_t step = static_cast<step_t>(1)) {
|
69 |
+
return Vectorized<c10::complex<double>>(base,
|
70 |
+
base + step);
|
71 |
+
}
|
72 |
+
static Vectorized<c10::complex<double>> set(const Vectorized<c10::complex<double>>& a, const Vectorized<c10::complex<double>>& b,
|
73 |
+
int64_t count = size()) {
|
74 |
+
switch (count) {
|
75 |
+
case 0:
|
76 |
+
return a;
|
77 |
+
case 1:
|
78 |
+
return blend<1>(a, b);
|
79 |
+
}
|
80 |
+
return b;
|
81 |
+
}
|
82 |
+
static Vectorized<c10::complex<double>> loadu(const void* ptr, int64_t count = size()) {
|
83 |
+
if (count == size())
|
84 |
+
return _mm256_loadu_pd(reinterpret_cast<const double*>(ptr));
|
85 |
+
|
86 |
+
__at_align__ double tmp_values[2*size()];
|
87 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
88 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
89 |
+
// instructions while a loop would be compiled to one instruction.
|
90 |
+
for (const auto i : c10::irange(2*size())) {
|
91 |
+
tmp_values[i] = 0.0;
|
92 |
+
}
|
93 |
+
std::memcpy(
|
94 |
+
tmp_values,
|
95 |
+
reinterpret_cast<const double*>(ptr),
|
96 |
+
count * sizeof(c10::complex<double>));
|
97 |
+
return _mm256_load_pd(tmp_values);
|
98 |
+
}
|
99 |
+
void store(void* ptr, int count = size()) const {
|
100 |
+
if (count == size()) {
|
101 |
+
_mm256_storeu_pd(reinterpret_cast<double*>(ptr), values);
|
102 |
+
} else if (count > 0) {
|
103 |
+
double tmp_values[2*size()];
|
104 |
+
_mm256_storeu_pd(reinterpret_cast<double*>(tmp_values), values);
|
105 |
+
std::memcpy(ptr, tmp_values, count * sizeof(c10::complex<double>));
|
106 |
+
}
|
107 |
+
}
|
108 |
+
const c10::complex<double>& operator[](int idx) const = delete;
|
109 |
+
c10::complex<double>& operator[](int idx) = delete;
|
110 |
+
Vectorized<c10::complex<double>> map(c10::complex<double> (*const f)(const c10::complex<double> &)) const {
|
111 |
+
__at_align__ c10::complex<double> tmp[size()];
|
112 |
+
store(tmp);
|
113 |
+
for (const auto i : c10::irange(size())) {
|
114 |
+
tmp[i] = f(tmp[i]);
|
115 |
+
}
|
116 |
+
return loadu(tmp);
|
117 |
+
}
|
118 |
+
__m256d abs_2_() const {
|
119 |
+
auto val_2 = _mm256_mul_pd(values, values); // a*a b*b
|
120 |
+
return _mm256_hadd_pd(val_2, val_2); // a*a+b*b a*a+b*b
|
121 |
+
}
|
122 |
+
__m256d abs_() const {
|
123 |
+
auto real = _mm256_movedup_pd(values); // real real
|
124 |
+
// movehdup_pd does not exist...
|
125 |
+
auto imag = _mm256_permute_pd(values, 0xf); // imag imag
|
126 |
+
return Sleef_hypotd4_u05(real, imag); // abs abs
|
127 |
+
}
|
128 |
+
Vectorized<c10::complex<double>> abs() const {
|
129 |
+
const __m256d real_mask = _mm256_castsi256_pd(_mm256_setr_epi64x(0xFFFFFFFFFFFFFFFF, 0x0000000000000000,
|
130 |
+
0xFFFFFFFFFFFFFFFF, 0x0000000000000000));
|
131 |
+
return _mm256_and_pd(abs_(), real_mask); // abs 0
|
132 |
+
}
|
133 |
+
__m256d angle_() const {
|
134 |
+
//angle = atan2(b/a)
|
135 |
+
auto b_a = _mm256_permute_pd(values, 0x05); // b a
|
136 |
+
return Sleef_atan2d4_u10(values, b_a); // 90-angle angle
|
137 |
+
}
|
138 |
+
Vectorized<c10::complex<double>> angle() const {
|
139 |
+
const __m256d real_mask = _mm256_castsi256_pd(_mm256_setr_epi64x(0xFFFFFFFFFFFFFFFF, 0x0000000000000000,
|
140 |
+
0xFFFFFFFFFFFFFFFF, 0x0000000000000000));
|
141 |
+
auto angle = _mm256_permute_pd(angle_(), 0x05); // angle 90-angle
|
142 |
+
return _mm256_and_pd(angle, real_mask); // angle 0
|
143 |
+
}
|
144 |
+
Vectorized<c10::complex<double>> sgn() const {
|
145 |
+
auto abs = abs_();
|
146 |
+
auto zero = _mm256_setzero_pd();
|
147 |
+
auto mask = _mm256_cmp_pd(abs, zero, _CMP_EQ_OQ);
|
148 |
+
auto div = values / abs;
|
149 |
+
return _mm256_blendv_pd(div, zero, mask);
|
150 |
+
}
|
151 |
+
__m256d real_() const {
|
152 |
+
const __m256d real_mask = _mm256_castsi256_pd(_mm256_setr_epi64x(0xFFFFFFFFFFFFFFFF, 0x0000000000000000,
|
153 |
+
0xFFFFFFFFFFFFFFFF, 0x0000000000000000));
|
154 |
+
return _mm256_and_pd(values, real_mask);
|
155 |
+
}
|
156 |
+
Vectorized<c10::complex<double>> real() const {
|
157 |
+
return real_();
|
158 |
+
}
|
159 |
+
__m256d imag_() const {
|
160 |
+
const __m256d imag_mask = _mm256_castsi256_pd(_mm256_setr_epi64x(0x0000000000000000, 0xFFFFFFFFFFFFFFFF,
|
161 |
+
0x0000000000000000, 0xFFFFFFFFFFFFFFFF));
|
162 |
+
return _mm256_and_pd(values, imag_mask);
|
163 |
+
}
|
164 |
+
Vectorized<c10::complex<double>> imag() const {
|
165 |
+
return _mm256_permute_pd(imag_(), 0x05); //b a
|
166 |
+
}
|
167 |
+
__m256d conj_() const {
|
168 |
+
const __m256d sign_mask = _mm256_setr_pd(0.0, -0.0, 0.0, -0.0);
|
169 |
+
return _mm256_xor_pd(values, sign_mask); // a -b
|
170 |
+
}
|
171 |
+
Vectorized<c10::complex<double>> conj() const {
|
172 |
+
return conj_();
|
173 |
+
}
|
174 |
+
Vectorized<c10::complex<double>> log() const {
|
175 |
+
// Most trigonomic ops use the log() op to improve complex number performance.
|
176 |
+
return map(std::log);
|
177 |
+
}
|
178 |
+
Vectorized<c10::complex<double>> log2() const {
|
179 |
+
const __m256d log2_ = _mm256_set1_pd(std::log(2));
|
180 |
+
return _mm256_div_pd(log(), log2_);
|
181 |
+
}
|
182 |
+
Vectorized<c10::complex<double>> log10() const {
|
183 |
+
const __m256d log10_ = _mm256_set1_pd(std::log(10));
|
184 |
+
return _mm256_div_pd(log(), log10_);
|
185 |
+
}
|
186 |
+
Vectorized<c10::complex<double>> log1p() const {
|
187 |
+
return map(std::log1p);
|
188 |
+
}
|
189 |
+
Vectorized<c10::complex<double>> asin() const {
|
190 |
+
// asin(x)
|
191 |
+
// = -i*ln(iz + sqrt(1 -z^2))
|
192 |
+
// = -i*ln((ai - b) + sqrt(1 - (a + bi)*(a + bi)))
|
193 |
+
// = -i*ln((-b + ai) + sqrt(1 - (a**2 - b**2) - 2*abi))
|
194 |
+
const __m256d one = _mm256_set1_pd(1);
|
195 |
+
|
196 |
+
auto conj = conj_();
|
197 |
+
auto b_a = _mm256_permute_pd(conj, 0x05); //-b a
|
198 |
+
auto ab = _mm256_mul_pd(conj, b_a); //-ab -ab
|
199 |
+
auto im = _mm256_add_pd(ab, ab); //-2ab -2ab
|
200 |
+
|
201 |
+
auto val_2 = _mm256_mul_pd(values, values); // a*a b*b
|
202 |
+
auto re = _mm256_hsub_pd(val_2, _mm256_permute_pd(val_2, 0x05)); // a*a-b*b b*b-a*a
|
203 |
+
re = _mm256_sub_pd(one, re);
|
204 |
+
|
205 |
+
auto root = Vectorized(_mm256_blend_pd(re, im, 0x0A)).sqrt(); //sqrt(re + i*im)
|
206 |
+
auto ln = Vectorized(_mm256_add_pd(b_a, root)).log(); //ln(iz + sqrt())
|
207 |
+
return Vectorized(_mm256_permute_pd(ln.values, 0x05)).conj(); //-i*ln()
|
208 |
+
}
|
209 |
+
Vectorized<c10::complex<double>> acos() const {
|
210 |
+
// acos(x) = pi/2 - asin(x)
|
211 |
+
constexpr auto pi_2d = c10::pi<double> / 2;
|
212 |
+
const __m256d pi_2 = _mm256_setr_pd(pi_2d, 0.0, pi_2d, 0.0);
|
213 |
+
return _mm256_sub_pd(pi_2, asin());
|
214 |
+
}
|
215 |
+
Vectorized<c10::complex<double>> atan() const;
|
216 |
+
Vectorized<c10::complex<double>> atanh() const {
|
217 |
+
return map(std::atanh);
|
218 |
+
}
|
219 |
+
Vectorized<c10::complex<double>> exp() const {
|
220 |
+
//exp(a + bi)
|
221 |
+
// = exp(a)*(cos(b) + sin(b)i)
|
222 |
+
auto exp = Sleef_expd4_u10(values); //exp(a) exp(b)
|
223 |
+
exp = _mm256_blend_pd(exp, _mm256_permute_pd(exp, 0x05), 0x0A); //exp(a) exp(a)
|
224 |
+
|
225 |
+
auto sin_cos = Sleef_sincosd4_u10(values); //[sin(a), cos(a)] [sin(b), cos(b)]
|
226 |
+
auto cos_sin = _mm256_blend_pd(_mm256_permute_pd(sin_cos.y, 0x05),
|
227 |
+
sin_cos.x, 0x0A); //cos(b) sin(b)
|
228 |
+
return _mm256_mul_pd(exp, cos_sin);
|
229 |
+
}
|
230 |
+
Vectorized<c10::complex<double>> exp2() const {
|
231 |
+
// Use identity 2**x = exp(log(2) * x)
|
232 |
+
const __m256d ln_2 = _mm256_set1_pd(c10::ln_2<double>);
|
233 |
+
Vectorized<c10::complex<double>> scaled_values = _mm256_mul_pd(values, ln_2);
|
234 |
+
return scaled_values.exp();
|
235 |
+
}
|
236 |
+
Vectorized<c10::complex<double>> expm1() const {
|
237 |
+
return map(std::expm1);
|
238 |
+
}
|
239 |
+
Vectorized<c10::complex<double>> sin() const {
|
240 |
+
return map(std::sin);
|
241 |
+
}
|
242 |
+
Vectorized<c10::complex<double>> sinh() const {
|
243 |
+
return map(std::sinh);
|
244 |
+
}
|
245 |
+
Vectorized<c10::complex<double>> cos() const {
|
246 |
+
return map(std::cos);
|
247 |
+
}
|
248 |
+
Vectorized<c10::complex<double>> cosh() const {
|
249 |
+
return map(std::cosh);
|
250 |
+
}
|
251 |
+
Vectorized<c10::complex<double>> ceil() const {
|
252 |
+
return _mm256_ceil_pd(values);
|
253 |
+
}
|
254 |
+
Vectorized<c10::complex<double>> floor() const {
|
255 |
+
return _mm256_floor_pd(values);
|
256 |
+
}
|
257 |
+
Vectorized<c10::complex<double>> neg() const {
|
258 |
+
auto zero = _mm256_setzero_pd();
|
259 |
+
return _mm256_sub_pd(zero, values);
|
260 |
+
}
|
261 |
+
Vectorized<c10::complex<double>> round() const {
|
262 |
+
return _mm256_round_pd(values, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
263 |
+
}
|
264 |
+
Vectorized<c10::complex<double>> tan() const {
|
265 |
+
return map(std::tan);
|
266 |
+
}
|
267 |
+
Vectorized<c10::complex<double>> tanh() const {
|
268 |
+
return map(std::tanh);
|
269 |
+
}
|
270 |
+
Vectorized<c10::complex<double>> trunc() const {
|
271 |
+
return _mm256_round_pd(values, (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));
|
272 |
+
}
|
273 |
+
Vectorized<c10::complex<double>> sqrt() const {
|
274 |
+
return map(std::sqrt);
|
275 |
+
}
|
276 |
+
Vectorized<c10::complex<double>> reciprocal() const;
|
277 |
+
Vectorized<c10::complex<double>> rsqrt() const {
|
278 |
+
return sqrt().reciprocal();
|
279 |
+
}
|
280 |
+
Vectorized<c10::complex<double>> pow(const Vectorized<c10::complex<double>> &exp) const {
|
281 |
+
__at_align__ c10::complex<double> x_tmp[size()];
|
282 |
+
__at_align__ c10::complex<double> y_tmp[size()];
|
283 |
+
store(x_tmp);
|
284 |
+
exp.store(y_tmp);
|
285 |
+
for (const auto i : c10::irange(size())) {
|
286 |
+
x_tmp[i] = std::pow(x_tmp[i], y_tmp[i]);
|
287 |
+
}
|
288 |
+
return loadu(x_tmp);
|
289 |
+
}
|
290 |
+
// Comparison using the _CMP_**_OQ predicate.
|
291 |
+
// `O`: get false if an operand is NaN
|
292 |
+
// `Q`: do not raise if an operand is NaN
|
293 |
+
Vectorized<c10::complex<double>> operator==(const Vectorized<c10::complex<double>>& other) const {
|
294 |
+
return _mm256_cmp_pd(values, other.values, _CMP_EQ_OQ);
|
295 |
+
}
|
296 |
+
Vectorized<c10::complex<double>> operator!=(const Vectorized<c10::complex<double>>& other) const {
|
297 |
+
return _mm256_cmp_pd(values, other.values, _CMP_NEQ_UQ);
|
298 |
+
}
|
299 |
+
Vectorized<c10::complex<double>> operator<(const Vectorized<c10::complex<double>>&) const {
|
300 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
301 |
+
}
|
302 |
+
Vectorized<c10::complex<double>> operator<=(const Vectorized<c10::complex<double>>&) const {
|
303 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
304 |
+
}
|
305 |
+
Vectorized<c10::complex<double>> operator>(const Vectorized<c10::complex<double>>&) const {
|
306 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
307 |
+
}
|
308 |
+
Vectorized<c10::complex<double>> operator>=(const Vectorized<c10::complex<double>>&) const {
|
309 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
310 |
+
}
|
311 |
+
|
312 |
+
Vectorized<c10::complex<double>> eq(const Vectorized<c10::complex<double>>& other) const;
|
313 |
+
Vectorized<c10::complex<double>> ne(const Vectorized<c10::complex<double>>& other) const;
|
314 |
+
};
|
315 |
+
|
316 |
+
template <> Vectorized<c10::complex<double>> inline operator+(const Vectorized<c10::complex<double>> &a, const Vectorized<c10::complex<double>> &b) {
|
317 |
+
return _mm256_add_pd(a, b);
|
318 |
+
}
|
319 |
+
|
320 |
+
template <> Vectorized<c10::complex<double>> inline operator-(const Vectorized<c10::complex<double>> &a, const Vectorized<c10::complex<double>> &b) {
|
321 |
+
return _mm256_sub_pd(a, b);
|
322 |
+
}
|
323 |
+
|
324 |
+
template <> Vectorized<c10::complex<double>> inline operator*(const Vectorized<c10::complex<double>> &a, const Vectorized<c10::complex<double>> &b) {
|
325 |
+
//(a + bi) * (c + di) = (ac - bd) + (ad + bc)i
|
326 |
+
const __m256d sign_mask = _mm256_setr_pd(0.0, -0.0, 0.0, -0.0);
|
327 |
+
auto ac_bd = _mm256_mul_pd(a, b); //ac bd
|
328 |
+
|
329 |
+
auto d_c = _mm256_permute_pd(b, 0x05); //d c
|
330 |
+
d_c = _mm256_xor_pd(sign_mask, d_c); //d -c
|
331 |
+
auto ad_bc = _mm256_mul_pd(a, d_c); //ad -bc
|
332 |
+
|
333 |
+
auto ret = _mm256_hsub_pd(ac_bd, ad_bc); //ac - bd ad + bc
|
334 |
+
return ret;
|
335 |
+
}
|
336 |
+
|
337 |
+
template <> Vectorized<c10::complex<double>> inline operator/(const Vectorized<c10::complex<double>> &a, const Vectorized<c10::complex<double>> &b) {
|
338 |
+
//re + im*i = (a + bi) / (c + di)
|
339 |
+
auto mask = _mm256_set1_pd(-0.f);
|
340 |
+
auto fabs_cd = _mm256_andnot_pd(mask, b); // |c| |d|
|
341 |
+
auto fabs_dc = _mm256_permute_pd(fabs_cd, 0x05); // |d| |c|
|
342 |
+
auto scale = _mm256_div_pd(_mm256_set1_pd(1.0f), _mm256_max_pd(fabs_cd, fabs_dc)); // 1/sc 1/sc
|
343 |
+
auto a2 = _mm256_mul_pd(a, scale); // a/sc b/sc
|
344 |
+
auto b2 = _mm256_mul_pd(b, scale); // c/sc d/sc
|
345 |
+
auto acbd2 = _mm256_mul_pd(a2, b2);
|
346 |
+
|
347 |
+
const __m256d sign_mask = _mm256_setr_pd(-0.0, 0.0, -0.0, 0.0);
|
348 |
+
auto dc2 = _mm256_permute_pd(b2, 0x05); // d/sc c/sc
|
349 |
+
dc2 = _mm256_xor_pd(sign_mask, dc2); // -d/|c,d| c/sc
|
350 |
+
auto adbc2 = _mm256_mul_pd(a2, dc2); //-ad/sc^2 bc/sc^2
|
351 |
+
auto res2 = _mm256_hadd_pd(acbd2, adbc2); //(ac+bd)/sc^2 (bc-ad)/sc^2
|
352 |
+
|
353 |
+
// get the denominator
|
354 |
+
auto denom2 = Vectorized<c10::complex<double>>(b2).abs_2_(); // (c^2+d^2)/sc^2 (c^2+d^2)/sc^2
|
355 |
+
res2 = _mm256_div_pd(res2, denom2);
|
356 |
+
return res2;
|
357 |
+
}
|
358 |
+
|
359 |
+
// reciprocal. Implement this here so we can use multiplication.
|
360 |
+
inline Vectorized<c10::complex<double>> Vectorized<c10::complex<double>>::reciprocal() const{
|
361 |
+
//re + im*i = (a + bi) / (c + di)
|
362 |
+
//re = (ac + bd)/abs_2() = c/abs_2()
|
363 |
+
//im = (bc - ad)/abs_2() = d/abs_2()
|
364 |
+
const __m256d sign_mask = _mm256_setr_pd(0.0, -0.0, 0.0, -0.0);
|
365 |
+
auto c_d = _mm256_xor_pd(sign_mask, values); //c -d
|
366 |
+
return _mm256_div_pd(c_d, abs_2_());
|
367 |
+
}
|
368 |
+
|
369 |
+
inline Vectorized<c10::complex<double>> Vectorized<c10::complex<double>>::atan() const {
|
370 |
+
// atan(x) = i/2 * ln((i + z)/(i - z))
|
371 |
+
const __m256d i = _mm256_setr_pd(0.0, 1.0, 0.0, 1.0);
|
372 |
+
const Vectorized i_half = _mm256_setr_pd(0.0, 0.5, 0.0, 0.5);
|
373 |
+
|
374 |
+
auto sum = Vectorized(_mm256_add_pd(i, values)); // a 1+b
|
375 |
+
auto sub = Vectorized(_mm256_sub_pd(i, values)); // -a 1-b
|
376 |
+
auto ln = (sum/sub).log(); // ln((i + z)/(i - z))
|
377 |
+
return i_half*ln; // i/2*ln()
|
378 |
+
}
|
379 |
+
|
380 |
+
template <>
|
381 |
+
Vectorized<c10::complex<double>> inline maximum(const Vectorized<c10::complex<double>>& a, const Vectorized<c10::complex<double>>& b) {
|
382 |
+
auto abs_a = a.abs_2_();
|
383 |
+
auto abs_b = b.abs_2_();
|
384 |
+
auto mask = _mm256_cmp_pd(abs_a, abs_b, _CMP_LT_OQ);
|
385 |
+
auto max = _mm256_blendv_pd(a, b, mask);
|
386 |
+
// Exploit the fact that all-ones is a NaN.
|
387 |
+
auto isnan = _mm256_cmp_pd(abs_a, abs_b, _CMP_UNORD_Q);
|
388 |
+
return _mm256_or_pd(max, isnan);
|
389 |
+
}
|
390 |
+
|
391 |
+
template <>
|
392 |
+
Vectorized<c10::complex<double>> inline minimum(const Vectorized<c10::complex<double>>& a, const Vectorized<c10::complex<double>>& b) {
|
393 |
+
auto abs_a = a.abs_2_();
|
394 |
+
auto abs_b = b.abs_2_();
|
395 |
+
auto mask = _mm256_cmp_pd(abs_a, abs_b, _CMP_GT_OQ);
|
396 |
+
auto min = _mm256_blendv_pd(a, b, mask);
|
397 |
+
// Exploit the fact that all-ones is a NaN.
|
398 |
+
auto isnan = _mm256_cmp_pd(abs_a, abs_b, _CMP_UNORD_Q);
|
399 |
+
return _mm256_or_pd(min, isnan);
|
400 |
+
}
|
401 |
+
|
402 |
+
template <>
|
403 |
+
Vectorized<c10::complex<double>> inline operator&(const Vectorized<c10::complex<double>>& a, const Vectorized<c10::complex<double>>& b) {
|
404 |
+
return _mm256_and_pd(a, b);
|
405 |
+
}
|
406 |
+
|
407 |
+
template <>
|
408 |
+
Vectorized<c10::complex<double>> inline operator|(const Vectorized<c10::complex<double>>& a, const Vectorized<c10::complex<double>>& b) {
|
409 |
+
return _mm256_or_pd(a, b);
|
410 |
+
}
|
411 |
+
|
412 |
+
template <>
|
413 |
+
Vectorized<c10::complex<double>> inline operator^(const Vectorized<c10::complex<double>>& a, const Vectorized<c10::complex<double>>& b) {
|
414 |
+
return _mm256_xor_pd(a, b);
|
415 |
+
}
|
416 |
+
|
417 |
+
inline Vectorized<c10::complex<double>> Vectorized<c10::complex<double>>::eq(const Vectorized<c10::complex<double>>& other) const {
|
418 |
+
auto eq = (*this == other); // compares real and imag individually
|
419 |
+
// If both real numbers and imag numbers are equal, then the complex numbers are equal
|
420 |
+
return (eq.real() & eq.imag()) & Vectorized<c10::complex<double>>(_mm256_set1_pd(1.0));
|
421 |
+
}
|
422 |
+
|
423 |
+
inline Vectorized<c10::complex<double>> Vectorized<c10::complex<double>>::ne(const Vectorized<c10::complex<double>>& other) const {
|
424 |
+
auto ne = (*this != other); // compares real and imag individually
|
425 |
+
// If either real numbers or imag numbers are not equal, then the complex numbers are not equal
|
426 |
+
return (ne.real() | ne.imag()) & Vectorized<c10::complex<double>>(_mm256_set1_pd(1.0));
|
427 |
+
}
|
428 |
+
|
429 |
+
#endif
|
430 |
+
|
431 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_complex_float.h
ADDED
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <c10/util/complex.h>
|
7 |
+
#include <c10/util/irange.h>
|
8 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
9 |
+
#include <ATen/cpu/vec/vec_base.h>
|
10 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
11 |
+
#include <sleef.h>
|
12 |
+
#endif
|
13 |
+
|
14 |
+
namespace at::vec {
|
15 |
+
// See Note [CPU_CAPABILITY namespace]
|
16 |
+
inline namespace CPU_CAPABILITY {
|
17 |
+
|
18 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
19 |
+
|
20 |
+
template <> class Vectorized<c10::complex<float>> {
|
21 |
+
private:
|
22 |
+
__m256 values;
|
23 |
+
public:
|
24 |
+
using value_type = c10::complex<float>;
|
25 |
+
using size_type = int;
|
26 |
+
static constexpr size_type size() {
|
27 |
+
return 4;
|
28 |
+
}
|
29 |
+
Vectorized() {}
|
30 |
+
Vectorized(__m256 v) : values(v) {}
|
31 |
+
Vectorized(c10::complex<float> val) {
|
32 |
+
float real_value = val.real();
|
33 |
+
float imag_value = val.imag();
|
34 |
+
values = _mm256_setr_ps(real_value, imag_value,
|
35 |
+
real_value, imag_value,
|
36 |
+
real_value, imag_value,
|
37 |
+
real_value, imag_value
|
38 |
+
);
|
39 |
+
}
|
40 |
+
Vectorized(c10::complex<float> val1, c10::complex<float> val2, c10::complex<float> val3, c10::complex<float> val4) {
|
41 |
+
values = _mm256_setr_ps(val1.real(), val1.imag(),
|
42 |
+
val2.real(), val2.imag(),
|
43 |
+
val3.real(), val3.imag(),
|
44 |
+
val4.real(), val4.imag()
|
45 |
+
);
|
46 |
+
}
|
47 |
+
operator __m256() const {
|
48 |
+
return values;
|
49 |
+
}
|
50 |
+
template <int64_t mask>
|
51 |
+
static Vectorized<c10::complex<float>> blend(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b) {
|
52 |
+
// convert c10::complex<V> index mask to V index mask: xy -> xxyy
|
53 |
+
static_assert(mask > -1 && mask < 16, "Unexpected mask range");
|
54 |
+
switch (mask) {
|
55 |
+
case 0:
|
56 |
+
return a;
|
57 |
+
case 1:
|
58 |
+
return _mm256_blend_ps(a.values, b.values, 0x03); //b0000 0001 = b0000 0011
|
59 |
+
case 2:
|
60 |
+
return _mm256_blend_ps(a.values, b.values, 0x0C); //b0000 0010 = b0000 1100
|
61 |
+
case 3:
|
62 |
+
return _mm256_blend_ps(a.values, b.values, 0x0F); //b0000 0011 = b0000 1111
|
63 |
+
case 4:
|
64 |
+
return _mm256_blend_ps(a.values, b.values, 0x30); //b0000 0100 = b0011 0000
|
65 |
+
case 5:
|
66 |
+
return _mm256_blend_ps(a.values, b.values, 0x33); //b0000 0101 = b0011 0011
|
67 |
+
case 6:
|
68 |
+
return _mm256_blend_ps(a.values, b.values, 0x3C); //b0000 0110 = b0011 1100
|
69 |
+
case 7:
|
70 |
+
return _mm256_blend_ps(a.values, b.values, 0x3F); //b0000 0111 = b0011 1111
|
71 |
+
case 8:
|
72 |
+
return _mm256_blend_ps(a.values, b.values, 0xC0); //b0000 1000 = b1100 0000
|
73 |
+
case 9:
|
74 |
+
return _mm256_blend_ps(a.values, b.values, 0xC3); //b0000 1001 = b1100 0011
|
75 |
+
case 10:
|
76 |
+
return _mm256_blend_ps(a.values, b.values, 0xCC); //b0000 1010 = b1100 1100
|
77 |
+
case 11:
|
78 |
+
return _mm256_blend_ps(a.values, b.values, 0xCF); //b0000 1011 = b1100 1111
|
79 |
+
case 12:
|
80 |
+
return _mm256_blend_ps(a.values, b.values, 0xF0); //b0000 1100 = b1111 0000
|
81 |
+
case 13:
|
82 |
+
return _mm256_blend_ps(a.values, b.values, 0xF3); //b0000 1101 = b1111 0011
|
83 |
+
case 14:
|
84 |
+
return _mm256_blend_ps(a.values, b.values, 0xFC); //b0000 1110 = b1111 1100
|
85 |
+
default: break;
|
86 |
+
}
|
87 |
+
return b;
|
88 |
+
}
|
89 |
+
static Vectorized<c10::complex<float>> blendv(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b,
|
90 |
+
const Vectorized<c10::complex<float>>& mask) {
|
91 |
+
// convert c10::complex<V> index mask to V index mask: xy -> xxyy
|
92 |
+
auto mask_ = _mm256_unpacklo_ps(mask.values, mask.values);
|
93 |
+
return _mm256_blendv_ps(a.values, b.values, mask_);
|
94 |
+
|
95 |
+
}
|
96 |
+
template<typename step_t>
|
97 |
+
static Vectorized<c10::complex<float>> arange(c10::complex<float> base = 0., step_t step = static_cast<step_t>(1)) {
|
98 |
+
return Vectorized<c10::complex<float>>(base,
|
99 |
+
base + step,
|
100 |
+
base + c10::complex<float>(2)*step,
|
101 |
+
base + c10::complex<float>(3)*step);
|
102 |
+
}
|
103 |
+
static Vectorized<c10::complex<float>> set(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b,
|
104 |
+
int64_t count = size()) {
|
105 |
+
switch (count) {
|
106 |
+
case 0:
|
107 |
+
return a;
|
108 |
+
case 1:
|
109 |
+
return blend<1>(a, b);
|
110 |
+
case 2:
|
111 |
+
return blend<3>(a, b);
|
112 |
+
case 3:
|
113 |
+
return blend<7>(a, b);
|
114 |
+
}
|
115 |
+
return b;
|
116 |
+
}
|
117 |
+
static Vectorized<c10::complex<float>> loadu(const void* ptr, int64_t count = size()) {
|
118 |
+
if (count == size())
|
119 |
+
return _mm256_loadu_ps(reinterpret_cast<const float*>(ptr));
|
120 |
+
|
121 |
+
__at_align__ float tmp_values[2*size()];
|
122 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
123 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
124 |
+
// instructions while a loop would be compiled to one instruction.
|
125 |
+
for (const auto i : c10::irange(2*size())) {
|
126 |
+
tmp_values[i] = 0.0;
|
127 |
+
}
|
128 |
+
std::memcpy(
|
129 |
+
tmp_values,
|
130 |
+
reinterpret_cast<const float*>(ptr),
|
131 |
+
count * sizeof(c10::complex<float>));
|
132 |
+
return _mm256_load_ps(tmp_values);
|
133 |
+
}
|
134 |
+
void store(void* ptr, int count = size()) const {
|
135 |
+
if (count == size()) {
|
136 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(ptr), values);
|
137 |
+
} else if (count > 0) {
|
138 |
+
float tmp_values[2*size()];
|
139 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp_values), values);
|
140 |
+
std::memcpy(ptr, tmp_values, count * sizeof(c10::complex<float>));
|
141 |
+
}
|
142 |
+
}
|
143 |
+
const c10::complex<float>& operator[](int idx) const = delete;
|
144 |
+
c10::complex<float>& operator[](int idx) = delete;
|
145 |
+
Vectorized<c10::complex<float>> map(c10::complex<float> (*const f)(const c10::complex<float> &)) const {
|
146 |
+
__at_align__ c10::complex<float> tmp[size()];
|
147 |
+
store(tmp);
|
148 |
+
for (const auto i : c10::irange(size())) {
|
149 |
+
tmp[i] = f(tmp[i]);
|
150 |
+
}
|
151 |
+
return loadu(tmp);
|
152 |
+
}
|
153 |
+
__m256 abs_2_() const {
|
154 |
+
auto val_2 = _mm256_mul_ps(values, values); // a*a b*b
|
155 |
+
auto ret = _mm256_hadd_ps(val_2, val_2); // a*a+b*b a*a+b*b
|
156 |
+
return _mm256_permute_ps(ret, 0xD8);
|
157 |
+
}
|
158 |
+
__m256 abs_() const {
|
159 |
+
auto real = _mm256_moveldup_ps(values); // real real
|
160 |
+
auto imag = _mm256_movehdup_ps(values); // imag imag
|
161 |
+
return Sleef_hypotf8_u05(real, imag); // abs abs
|
162 |
+
}
|
163 |
+
Vectorized<c10::complex<float>> abs() const {
|
164 |
+
const __m256 real_mask = _mm256_castsi256_ps(_mm256_setr_epi32(0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000,
|
165 |
+
0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000));
|
166 |
+
return _mm256_and_ps(abs_(), real_mask); // abs 0
|
167 |
+
}
|
168 |
+
__m256 angle_() const {
|
169 |
+
//angle = atan2(b/a)
|
170 |
+
auto b_a = _mm256_permute_ps(values, 0xB1); // b a
|
171 |
+
return Sleef_atan2f8_u10(values, b_a); // 90-angle angle
|
172 |
+
}
|
173 |
+
Vectorized<c10::complex<float>> angle() const {
|
174 |
+
const __m256 real_mask = _mm256_castsi256_ps(_mm256_setr_epi32(0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000,
|
175 |
+
0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000));
|
176 |
+
auto angle = _mm256_permute_ps(angle_(), 0xB1); // angle 90-angle
|
177 |
+
return _mm256_and_ps(angle, real_mask); // angle 0
|
178 |
+
}
|
179 |
+
Vectorized<c10::complex<float>> sgn() const {
|
180 |
+
auto abs = abs_();
|
181 |
+
auto zero = _mm256_setzero_ps();
|
182 |
+
auto mask = _mm256_cmp_ps(abs, zero, _CMP_EQ_OQ);
|
183 |
+
auto div = values / abs;
|
184 |
+
return _mm256_blendv_ps(div, zero, mask);
|
185 |
+
}
|
186 |
+
__m256 real_() const {
|
187 |
+
const __m256 real_mask = _mm256_castsi256_ps(_mm256_setr_epi32(0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000,
|
188 |
+
0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000));
|
189 |
+
return _mm256_and_ps(values, real_mask);
|
190 |
+
}
|
191 |
+
Vectorized<c10::complex<float>> real() const {
|
192 |
+
return real_();
|
193 |
+
}
|
194 |
+
__m256 imag_() const {
|
195 |
+
const __m256 imag_mask = _mm256_castsi256_ps(_mm256_setr_epi32(0x00000000, 0xFFFFFFFF, 0x00000000, 0xFFFFFFFF,
|
196 |
+
0x00000000, 0xFFFFFFFF, 0x00000000, 0xFFFFFFFF));
|
197 |
+
return _mm256_and_ps(values, imag_mask);
|
198 |
+
}
|
199 |
+
Vectorized<c10::complex<float>> imag() const {
|
200 |
+
return _mm256_permute_ps(imag_(), 0xB1); //b a
|
201 |
+
}
|
202 |
+
__m256 conj_() const {
|
203 |
+
const __m256 sign_mask = _mm256_setr_ps(0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0);
|
204 |
+
return _mm256_xor_ps(values, sign_mask); // a -b
|
205 |
+
}
|
206 |
+
Vectorized<c10::complex<float>> conj() const {
|
207 |
+
return conj_();
|
208 |
+
}
|
209 |
+
Vectorized<c10::complex<float>> log() const {
|
210 |
+
// Most trigonomic ops use the log() op to improve complex number performance.
|
211 |
+
return map(std::log);
|
212 |
+
}
|
213 |
+
Vectorized<c10::complex<float>> log2() const {
|
214 |
+
const __m256 log2_ = _mm256_set1_ps(std::log(2));
|
215 |
+
return _mm256_div_ps(log(), log2_);
|
216 |
+
}
|
217 |
+
Vectorized<c10::complex<float>> log10() const {
|
218 |
+
const __m256 log10_ = _mm256_set1_ps(std::log(10));
|
219 |
+
return _mm256_div_ps(log(), log10_);
|
220 |
+
}
|
221 |
+
Vectorized<c10::complex<float>> log1p() const {
|
222 |
+
return map(std::log1p);
|
223 |
+
}
|
224 |
+
Vectorized<c10::complex<float>> asin() const {
|
225 |
+
// asin(x)
|
226 |
+
// = -i*ln(iz + sqrt(1 -z^2))
|
227 |
+
// = -i*ln((ai - b) + sqrt(1 - (a + bi)*(a + bi)))
|
228 |
+
// = -i*ln((-b + ai) + sqrt(1 - (a**2 - b**2) - 2*abi))
|
229 |
+
const __m256 one = _mm256_set1_ps(1);
|
230 |
+
|
231 |
+
auto conj = conj_();
|
232 |
+
auto b_a = _mm256_permute_ps(conj, 0xB1); //-b a
|
233 |
+
auto ab = _mm256_mul_ps(conj, b_a); //-ab -ab
|
234 |
+
auto im = _mm256_add_ps(ab, ab); //-2ab -2ab
|
235 |
+
|
236 |
+
auto val_2 = _mm256_mul_ps(values, values); // a*a b*b
|
237 |
+
auto re = _mm256_hsub_ps(val_2, _mm256_permute_ps(val_2, 0xB1)); // a*a-b*b b*b-a*a
|
238 |
+
re = _mm256_permute_ps(re, 0xD8);
|
239 |
+
re = _mm256_sub_ps(one, re);
|
240 |
+
|
241 |
+
auto root = Vectorized(_mm256_blend_ps(re, im, 0xAA)).sqrt(); //sqrt(re + i*im)
|
242 |
+
auto ln = Vectorized(_mm256_add_ps(b_a, root)).log(); //ln(iz + sqrt())
|
243 |
+
return Vectorized(_mm256_permute_ps(ln.values, 0xB1)).conj(); //-i*ln()
|
244 |
+
}
|
245 |
+
Vectorized<c10::complex<float>> acos() const {
|
246 |
+
return map(std::acos);
|
247 |
+
}
|
248 |
+
Vectorized<c10::complex<float>> atan() const;
|
249 |
+
Vectorized<c10::complex<float>> atanh() const {
|
250 |
+
return map(std::atanh);
|
251 |
+
}
|
252 |
+
Vectorized<c10::complex<float>> exp() const {
|
253 |
+
//exp(a + bi)
|
254 |
+
// = exp(a)*(cos(b) + sin(b)i)
|
255 |
+
auto exp = Sleef_expf8_u10(values); //exp(a) exp(b)
|
256 |
+
exp = _mm256_blend_ps(exp, _mm256_permute_ps(exp, 0xB1), 0xAA); //exp(a) exp(a)
|
257 |
+
|
258 |
+
auto sin_cos = Sleef_sincosf8_u10(values); //[sin(a), cos(a)] [sin(b), cos(b)]
|
259 |
+
auto cos_sin = _mm256_blend_ps(_mm256_permute_ps(sin_cos.y, 0xB1),
|
260 |
+
sin_cos.x, 0xAA); //cos(b) sin(b)
|
261 |
+
return _mm256_mul_ps(exp, cos_sin);
|
262 |
+
}
|
263 |
+
Vectorized<c10::complex<float>> exp2() const {
|
264 |
+
// Use identity 2**x = exp(log(2) * x)
|
265 |
+
const __m256 ln_2 = _mm256_set1_ps(c10::ln_2<float>);
|
266 |
+
Vectorized<c10::complex<float>> scaled_values = _mm256_mul_ps(values, ln_2);
|
267 |
+
return scaled_values.exp();
|
268 |
+
}
|
269 |
+
Vectorized<c10::complex<float>> expm1() const {
|
270 |
+
return map(std::expm1);
|
271 |
+
}
|
272 |
+
Vectorized<c10::complex<float>> sin() const {
|
273 |
+
return map(std::sin);
|
274 |
+
}
|
275 |
+
Vectorized<c10::complex<float>> sinh() const {
|
276 |
+
return map(std::sinh);
|
277 |
+
}
|
278 |
+
Vectorized<c10::complex<float>> cos() const {
|
279 |
+
return map(std::cos);
|
280 |
+
}
|
281 |
+
Vectorized<c10::complex<float>> cosh() const {
|
282 |
+
return map(std::cosh);
|
283 |
+
}
|
284 |
+
Vectorized<c10::complex<float>> ceil() const {
|
285 |
+
return _mm256_ceil_ps(values);
|
286 |
+
}
|
287 |
+
Vectorized<c10::complex<float>> floor() const {
|
288 |
+
return _mm256_floor_ps(values);
|
289 |
+
}
|
290 |
+
Vectorized<c10::complex<float>> neg() const {
|
291 |
+
auto zero = _mm256_setzero_ps();
|
292 |
+
return _mm256_sub_ps(zero, values);
|
293 |
+
}
|
294 |
+
Vectorized<c10::complex<float>> round() const {
|
295 |
+
return _mm256_round_ps(values, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
296 |
+
}
|
297 |
+
Vectorized<c10::complex<float>> tan() const {
|
298 |
+
return map(std::tan);
|
299 |
+
}
|
300 |
+
Vectorized<c10::complex<float>> tanh() const {
|
301 |
+
return map(std::tanh);
|
302 |
+
}
|
303 |
+
Vectorized<c10::complex<float>> trunc() const {
|
304 |
+
return _mm256_round_ps(values, (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));
|
305 |
+
}
|
306 |
+
Vectorized<c10::complex<float>> sqrt() const {
|
307 |
+
return map(std::sqrt);
|
308 |
+
}
|
309 |
+
Vectorized<c10::complex<float>> reciprocal() const;
|
310 |
+
Vectorized<c10::complex<float>> rsqrt() const {
|
311 |
+
return sqrt().reciprocal();
|
312 |
+
}
|
313 |
+
Vectorized<c10::complex<float>> pow(const Vectorized<c10::complex<float>> &exp) const {
|
314 |
+
__at_align__ c10::complex<float> x_tmp[size()];
|
315 |
+
__at_align__ c10::complex<float> y_tmp[size()];
|
316 |
+
store(x_tmp);
|
317 |
+
exp.store(y_tmp);
|
318 |
+
for (const auto i : c10::irange(size())) {
|
319 |
+
x_tmp[i] = std::pow(x_tmp[i], y_tmp[i]);
|
320 |
+
}
|
321 |
+
return loadu(x_tmp);
|
322 |
+
}
|
323 |
+
// Comparison using the _CMP_**_OQ predicate.
|
324 |
+
// `O`: get false if an operand is NaN
|
325 |
+
// `Q`: do not raise if an operand is NaN
|
326 |
+
Vectorized<c10::complex<float>> operator==(const Vectorized<c10::complex<float>>& other) const {
|
327 |
+
return _mm256_cmp_ps(values, other.values, _CMP_EQ_OQ);
|
328 |
+
}
|
329 |
+
Vectorized<c10::complex<float>> operator!=(const Vectorized<c10::complex<float>>& other) const {
|
330 |
+
return _mm256_cmp_ps(values, other.values, _CMP_NEQ_UQ);
|
331 |
+
}
|
332 |
+
Vectorized<c10::complex<float>> operator<(const Vectorized<c10::complex<float>>& /*other*/) const {
|
333 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
334 |
+
}
|
335 |
+
Vectorized<c10::complex<float>> operator<=(const Vectorized<c10::complex<float>>& /*other*/) const {
|
336 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
337 |
+
}
|
338 |
+
Vectorized<c10::complex<float>> operator>(const Vectorized<c10::complex<float>>& /*other*/) const {
|
339 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
340 |
+
}
|
341 |
+
Vectorized<c10::complex<float>> operator>=(const Vectorized<c10::complex<float>>& /*other*/) const {
|
342 |
+
TORCH_CHECK(false, "not supported for complex numbers");
|
343 |
+
}
|
344 |
+
|
345 |
+
Vectorized<c10::complex<float>> eq(const Vectorized<c10::complex<float>>& other) const;
|
346 |
+
Vectorized<c10::complex<float>> ne(const Vectorized<c10::complex<float>>& other) const;
|
347 |
+
};
|
348 |
+
|
349 |
+
template <> Vectorized<c10::complex<float>> inline operator+(const Vectorized<c10::complex<float>> &a, const Vectorized<c10::complex<float>> &b) {
|
350 |
+
return _mm256_add_ps(a, b);
|
351 |
+
}
|
352 |
+
|
353 |
+
template <> Vectorized<c10::complex<float>> inline operator-(const Vectorized<c10::complex<float>> &a, const Vectorized<c10::complex<float>> &b) {
|
354 |
+
return _mm256_sub_ps(a, b);
|
355 |
+
}
|
356 |
+
|
357 |
+
template <> Vectorized<c10::complex<float>> inline operator*(const Vectorized<c10::complex<float>> &a, const Vectorized<c10::complex<float>> &b) {
|
358 |
+
//(a + bi) * (c + di) = (ac - bd) + (ad + bc)i
|
359 |
+
const __m256 sign_mask = _mm256_setr_ps(0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0);
|
360 |
+
auto ac_bd = _mm256_mul_ps(a, b); //ac bd
|
361 |
+
|
362 |
+
auto d_c = _mm256_permute_ps(b, 0xB1); //d c
|
363 |
+
d_c = _mm256_xor_ps(sign_mask, d_c); //d -c
|
364 |
+
auto ad_bc = _mm256_mul_ps(a, d_c); //ad -bc
|
365 |
+
|
366 |
+
auto ret = _mm256_hsub_ps(ac_bd, ad_bc); //ac - bd ad + bc
|
367 |
+
ret = _mm256_permute_ps(ret, 0xD8);
|
368 |
+
return ret;
|
369 |
+
}
|
370 |
+
|
371 |
+
template <> Vectorized<c10::complex<float>> inline operator/(const Vectorized<c10::complex<float>> &a, const Vectorized<c10::complex<float>> &b) {
|
372 |
+
//re + im*i = (a + bi) / (c + di)
|
373 |
+
auto mask = _mm256_set1_ps(-0.f);
|
374 |
+
auto fabs_cd = _mm256_andnot_ps(mask, b); // |c| |d|
|
375 |
+
auto fabs_dc = _mm256_permute_ps(fabs_cd, 0xB1); // |d| |c|
|
376 |
+
auto scale = _mm256_rcp_ps(_mm256_max_ps(fabs_cd, fabs_dc)); // 1/sc 1/sc
|
377 |
+
auto a2 = _mm256_mul_ps(a, scale); // a/sc b/sc
|
378 |
+
auto b2 = _mm256_mul_ps(b, scale); // c/sc d/sc
|
379 |
+
auto acbd2 = _mm256_mul_ps(a2, b2);
|
380 |
+
|
381 |
+
const __m256 sign_mask = _mm256_setr_ps(-0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0);
|
382 |
+
auto dc2 = _mm256_permute_ps(b2, 0xB1); // d/sc c/sc
|
383 |
+
dc2 = _mm256_xor_ps(sign_mask, dc2); // -d/|c,d| c/sc
|
384 |
+
auto adbc2 = _mm256_mul_ps(a2, dc2); //-ad/sc^2 bc/sc^2
|
385 |
+
auto res2 = _mm256_hadd_ps(acbd2, adbc2); //(ac+bd)/sc^2 (bc-ad)/sc^2
|
386 |
+
res2 = _mm256_permute_ps(res2, 0xD8);
|
387 |
+
|
388 |
+
// get the denominator
|
389 |
+
auto denom2 = Vectorized<c10::complex<float>>(b2).abs_2_(); // (c^2+d^2)/sc^2 (c^2+d^2)/sc^2
|
390 |
+
res2 = _mm256_div_ps(res2, denom2);
|
391 |
+
return res2;
|
392 |
+
}
|
393 |
+
|
394 |
+
// reciprocal. Implement this here so we can use multiplication.
|
395 |
+
inline Vectorized<c10::complex<float>> Vectorized<c10::complex<float>>::reciprocal() const {
|
396 |
+
//re + im*i = (a + bi) / (c + di)
|
397 |
+
//re = (ac + bd)/abs_2() = c/abs_2()
|
398 |
+
//im = (bc - ad)/abs_2() = d/abs_2()
|
399 |
+
const __m256 sign_mask = _mm256_setr_ps(0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0);
|
400 |
+
auto c_d = _mm256_xor_ps(sign_mask, values); //c -d
|
401 |
+
return _mm256_div_ps(c_d, abs_2_());
|
402 |
+
}
|
403 |
+
|
404 |
+
inline Vectorized<c10::complex<float>> Vectorized<c10::complex<float>>::atan() const {
|
405 |
+
// atan(x) = i/2 * ln((i + z)/(i - z))
|
406 |
+
const __m256 i = _mm256_setr_ps(0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0);
|
407 |
+
const Vectorized i_half = _mm256_setr_ps(0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5);
|
408 |
+
|
409 |
+
auto sum = Vectorized(_mm256_add_ps(i, values)); // a 1+b
|
410 |
+
auto sub = Vectorized(_mm256_sub_ps(i, values)); // -a 1-b
|
411 |
+
auto ln = (sum/sub).log(); // ln((i + z)/(i - z))
|
412 |
+
return i_half*ln; // i/2*ln()
|
413 |
+
}
|
414 |
+
|
415 |
+
template <>
|
416 |
+
Vectorized<c10::complex<float>> inline maximum(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b) {
|
417 |
+
auto abs_a = a.abs_2_();
|
418 |
+
auto abs_b = b.abs_2_();
|
419 |
+
auto mask = _mm256_cmp_ps(abs_a, abs_b, _CMP_LT_OQ);
|
420 |
+
auto max = _mm256_blendv_ps(a, b, mask);
|
421 |
+
// Exploit the fact that all-ones is a NaN.
|
422 |
+
auto isnan = _mm256_cmp_ps(abs_a, abs_b, _CMP_UNORD_Q);
|
423 |
+
return _mm256_or_ps(max, isnan);
|
424 |
+
}
|
425 |
+
|
426 |
+
template <>
|
427 |
+
Vectorized<c10::complex<float>> inline minimum(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b) {
|
428 |
+
auto abs_a = a.abs_2_();
|
429 |
+
auto abs_b = b.abs_2_();
|
430 |
+
auto mask = _mm256_cmp_ps(abs_a, abs_b, _CMP_GT_OQ);
|
431 |
+
auto min = _mm256_blendv_ps(a, b, mask);
|
432 |
+
// Exploit the fact that all-ones is a NaN.
|
433 |
+
auto isnan = _mm256_cmp_ps(abs_a, abs_b, _CMP_UNORD_Q);
|
434 |
+
return _mm256_or_ps(min, isnan);
|
435 |
+
}
|
436 |
+
|
437 |
+
template <>
|
438 |
+
Vectorized<c10::complex<float>> inline operator&(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b) {
|
439 |
+
return _mm256_and_ps(a, b);
|
440 |
+
}
|
441 |
+
|
442 |
+
template <>
|
443 |
+
Vectorized<c10::complex<float>> inline operator|(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b) {
|
444 |
+
return _mm256_or_ps(a, b);
|
445 |
+
}
|
446 |
+
|
447 |
+
template <>
|
448 |
+
Vectorized<c10::complex<float>> inline operator^(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b) {
|
449 |
+
return _mm256_xor_ps(a, b);
|
450 |
+
}
|
451 |
+
|
452 |
+
inline Vectorized<c10::complex<float>> Vectorized<c10::complex<float>>::eq(
|
453 |
+
const Vectorized<c10::complex<float>>& other) const {
|
454 |
+
auto eq = (*this == other); // compares real and imag individually
|
455 |
+
// If both real numbers and imag numbers are equal, then the complex numbers are equal
|
456 |
+
return (eq.real() & eq.imag()) & Vectorized<c10::complex<float>>(_mm256_set1_ps(1.0f));
|
457 |
+
}
|
458 |
+
|
459 |
+
inline Vectorized<c10::complex<float>> Vectorized<c10::complex<float>>::ne(
|
460 |
+
const Vectorized<c10::complex<float>>& other) const {
|
461 |
+
auto ne = (*this != other); // compares real and imag individually
|
462 |
+
// If either real numbers or imag numbers are not equal, then the complex numbers are not equal
|
463 |
+
return (ne.real() | ne.imag()) & Vectorized<c10::complex<float>>(_mm256_set1_ps(1.0f));
|
464 |
+
}
|
465 |
+
|
466 |
+
#endif
|
467 |
+
|
468 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_double.h
ADDED
@@ -0,0 +1,432 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
#include <ATen/cpu/vec/vec_base.h>
|
8 |
+
#include <c10/util/irange.h>
|
9 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
10 |
+
#include <sleef.h>
|
11 |
+
#endif
|
12 |
+
|
13 |
+
namespace at::vec {
|
14 |
+
// See Note [CPU_CAPABILITY namespace]
|
15 |
+
inline namespace CPU_CAPABILITY {
|
16 |
+
|
17 |
+
|
18 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
19 |
+
|
20 |
+
template <> class Vectorized<double> {
|
21 |
+
private:
|
22 |
+
__m256d values;
|
23 |
+
public:
|
24 |
+
using value_type = double;
|
25 |
+
using size_type = int;
|
26 |
+
static constexpr size_type size() {
|
27 |
+
return 4;
|
28 |
+
}
|
29 |
+
Vectorized() {}
|
30 |
+
Vectorized(__m256d v) : values(v) {}
|
31 |
+
Vectorized(double val) {
|
32 |
+
values = _mm256_set1_pd(val);
|
33 |
+
}
|
34 |
+
Vectorized(double val1, double val2, double val3, double val4) {
|
35 |
+
values = _mm256_setr_pd(val1, val2, val3, val4);
|
36 |
+
}
|
37 |
+
operator __m256d() const {
|
38 |
+
return values;
|
39 |
+
}
|
40 |
+
template <int64_t mask>
|
41 |
+
static Vectorized<double> blend(const Vectorized<double>& a, const Vectorized<double>& b) {
|
42 |
+
return _mm256_blend_pd(a.values, b.values, mask);
|
43 |
+
}
|
44 |
+
static Vectorized<double> blendv(const Vectorized<double>& a, const Vectorized<double>& b,
|
45 |
+
const Vectorized<double>& mask) {
|
46 |
+
return _mm256_blendv_pd(a.values, b.values, mask.values);
|
47 |
+
}
|
48 |
+
template<typename step_t>
|
49 |
+
static Vectorized<double> arange(double base = 0., step_t step = static_cast<step_t>(1)) {
|
50 |
+
return Vectorized<double>(base, base + step, base + 2 * step, base + 3 * step);
|
51 |
+
}
|
52 |
+
static Vectorized<double> set(const Vectorized<double>& a, const Vectorized<double>& b,
|
53 |
+
int64_t count = size()) {
|
54 |
+
switch (count) {
|
55 |
+
case 0:
|
56 |
+
return a;
|
57 |
+
case 1:
|
58 |
+
return blend<1>(a, b);
|
59 |
+
case 2:
|
60 |
+
return blend<3>(a, b);
|
61 |
+
case 3:
|
62 |
+
return blend<7>(a, b);
|
63 |
+
}
|
64 |
+
return b;
|
65 |
+
}
|
66 |
+
static Vectorized<double> loadu(const void* ptr, int64_t count = size()) {
|
67 |
+
if (count == size())
|
68 |
+
return _mm256_loadu_pd(reinterpret_cast<const double*>(ptr));
|
69 |
+
|
70 |
+
|
71 |
+
__at_align__ double tmp_values[size()];
|
72 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
73 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
74 |
+
// instructions while a loop would be compiled to one instruction.
|
75 |
+
for (const auto i : c10::irange(size())) {
|
76 |
+
tmp_values[i] = 0.0;
|
77 |
+
}
|
78 |
+
std::memcpy(
|
79 |
+
tmp_values,
|
80 |
+
reinterpret_cast<const double*>(ptr),
|
81 |
+
count * sizeof(double));
|
82 |
+
return _mm256_load_pd(tmp_values);
|
83 |
+
}
|
84 |
+
void store(void* ptr, int count = size()) const {
|
85 |
+
if (count == size()) {
|
86 |
+
_mm256_storeu_pd(reinterpret_cast<double*>(ptr), values);
|
87 |
+
} else if (count > 0) {
|
88 |
+
double tmp_values[size()];
|
89 |
+
_mm256_storeu_pd(reinterpret_cast<double*>(tmp_values), values);
|
90 |
+
std::memcpy(ptr, tmp_values, count * sizeof(double));
|
91 |
+
}
|
92 |
+
}
|
93 |
+
const double& operator[](int idx) const = delete;
|
94 |
+
double& operator[](int idx) = delete;
|
95 |
+
int zero_mask() const {
|
96 |
+
// returns an integer mask where all zero elements are translated to 1-bit and others are translated to 0-bit
|
97 |
+
__m256d cmp = _mm256_cmp_pd(values, _mm256_set1_pd(0.0), _CMP_EQ_OQ);
|
98 |
+
return _mm256_movemask_pd(cmp);
|
99 |
+
}
|
100 |
+
Vectorized<double> isnan() const {
|
101 |
+
return _mm256_cmp_pd(values, _mm256_set1_pd(0.0), _CMP_UNORD_Q);
|
102 |
+
}
|
103 |
+
Vectorized<double> map(double (*const f)(double)) const {
|
104 |
+
__at_align__ double tmp[size()];
|
105 |
+
store(tmp);
|
106 |
+
for (const auto i : c10::irange(size())) {
|
107 |
+
tmp[i] = f(tmp[i]);
|
108 |
+
}
|
109 |
+
return loadu(tmp);
|
110 |
+
}
|
111 |
+
Vectorized<double> abs() const {
|
112 |
+
auto mask = _mm256_set1_pd(-0.f);
|
113 |
+
return _mm256_andnot_pd(mask, values);
|
114 |
+
}
|
115 |
+
Vectorized<double> angle() const {
|
116 |
+
const auto zero_vec = _mm256_set1_pd(0.f);
|
117 |
+
const auto nan_vec = _mm256_set1_pd(NAN);
|
118 |
+
const auto not_nan_mask = _mm256_cmp_pd(values, values, _CMP_EQ_OQ);
|
119 |
+
const auto nan_mask = _mm256_cmp_pd(not_nan_mask, zero_vec, _CMP_EQ_OQ);
|
120 |
+
const auto pi = _mm256_set1_pd(c10::pi<double>);
|
121 |
+
|
122 |
+
const auto neg_mask = _mm256_cmp_pd(values, zero_vec, _CMP_LT_OQ);
|
123 |
+
auto angle = _mm256_blendv_pd(zero_vec, pi, neg_mask);
|
124 |
+
angle = _mm256_blendv_pd(angle, nan_vec, nan_mask);
|
125 |
+
return angle;
|
126 |
+
}
|
127 |
+
Vectorized<double> real() const {
|
128 |
+
return *this;
|
129 |
+
}
|
130 |
+
Vectorized<double> imag() const {
|
131 |
+
return _mm256_set1_pd(0);
|
132 |
+
}
|
133 |
+
Vectorized<double> conj() const {
|
134 |
+
return *this;
|
135 |
+
}
|
136 |
+
Vectorized<double> acos() const {
|
137 |
+
return Vectorized<double>(Sleef_acosd4_u10(values));
|
138 |
+
}
|
139 |
+
Vectorized<double> asin() const {
|
140 |
+
return Vectorized<double>(Sleef_asind4_u10(values));
|
141 |
+
}
|
142 |
+
Vectorized<double> atan() const {
|
143 |
+
return Vectorized<double>(Sleef_atand4_u10(values));
|
144 |
+
}
|
145 |
+
Vectorized<double> atanh() const {
|
146 |
+
return Vectorized<double>(Sleef_atanhd4_u10(values));
|
147 |
+
}
|
148 |
+
Vectorized<double> atan2(const Vectorized<double> &b) const {
|
149 |
+
return Vectorized<double>(Sleef_atan2d4_u10(values, b));
|
150 |
+
}
|
151 |
+
Vectorized<double> copysign(const Vectorized<double> &sign) const {
|
152 |
+
return Vectorized<double>(Sleef_copysignd4(values, sign));
|
153 |
+
}
|
154 |
+
Vectorized<double> erf() const {
|
155 |
+
return Vectorized<double>(Sleef_erfd4_u10(values));
|
156 |
+
}
|
157 |
+
Vectorized<double> erfc() const {
|
158 |
+
return Vectorized<double>(Sleef_erfcd4_u15(values));
|
159 |
+
}
|
160 |
+
Vectorized<double> erfinv() const {
|
161 |
+
return map(calc_erfinv);
|
162 |
+
}
|
163 |
+
Vectorized<double> exp() const {
|
164 |
+
return Vectorized<double>(Sleef_expd4_u10(values));
|
165 |
+
}
|
166 |
+
Vectorized<double> exp2() const {
|
167 |
+
return Vectorized<double>(Sleef_exp2d4_u10(values));
|
168 |
+
}
|
169 |
+
Vectorized<double> expm1() const {
|
170 |
+
return Vectorized<double>(Sleef_expm1d4_u10(values));
|
171 |
+
}
|
172 |
+
Vectorized<double> fmod(const Vectorized<double>& q) const {
|
173 |
+
return Vectorized<double>(Sleef_fmodd4(values, q));
|
174 |
+
}
|
175 |
+
Vectorized<double> hypot(const Vectorized<double> &b) const {
|
176 |
+
return Vectorized<double>(Sleef_hypotd4_u05(values, b));
|
177 |
+
}
|
178 |
+
Vectorized<double> i0() const {
|
179 |
+
return map(calc_i0);
|
180 |
+
}
|
181 |
+
Vectorized<double> i0e() const {
|
182 |
+
return map(calc_i0e);
|
183 |
+
}
|
184 |
+
Vectorized<double> digamma() const {
|
185 |
+
return map(calc_digamma);
|
186 |
+
}
|
187 |
+
Vectorized<double> igamma(const Vectorized<double> &x) const {
|
188 |
+
__at_align__ double tmp[size()];
|
189 |
+
__at_align__ double tmp_x[size()];
|
190 |
+
store(tmp);
|
191 |
+
x.store(tmp_x);
|
192 |
+
for (const auto i : c10::irange(size())) {
|
193 |
+
tmp[i] = calc_igamma(tmp[i], tmp_x[i]);
|
194 |
+
}
|
195 |
+
return loadu(tmp);
|
196 |
+
}
|
197 |
+
Vectorized<double> igammac(const Vectorized<double> &x) const {
|
198 |
+
__at_align__ double tmp[size()];
|
199 |
+
__at_align__ double tmp_x[size()];
|
200 |
+
store(tmp);
|
201 |
+
x.store(tmp_x);
|
202 |
+
for (const auto i : c10::irange(size())) {
|
203 |
+
tmp[i] = calc_igammac(tmp[i], tmp_x[i]);
|
204 |
+
}
|
205 |
+
return loadu(tmp);
|
206 |
+
}
|
207 |
+
Vectorized<double> log() const {
|
208 |
+
return Vectorized<double>(Sleef_logd4_u10(values));
|
209 |
+
}
|
210 |
+
Vectorized<double> log2() const {
|
211 |
+
return Vectorized<double>(Sleef_log2d4_u10(values));
|
212 |
+
}
|
213 |
+
Vectorized<double> log10() const {
|
214 |
+
return Vectorized<double>(Sleef_log10d4_u10(values));
|
215 |
+
}
|
216 |
+
Vectorized<double> log1p() const {
|
217 |
+
return Vectorized<double>(Sleef_log1pd4_u10(values));
|
218 |
+
}
|
219 |
+
Vectorized<double> sin() const {
|
220 |
+
return Vectorized<double>(Sleef_sind4_u10(values));
|
221 |
+
}
|
222 |
+
Vectorized<double> sinh() const {
|
223 |
+
return Vectorized<double>(Sleef_sinhd4_u10(values));
|
224 |
+
}
|
225 |
+
Vectorized<double> cos() const {
|
226 |
+
return Vectorized<double>(Sleef_cosd4_u10(values));
|
227 |
+
}
|
228 |
+
Vectorized<double> cosh() const {
|
229 |
+
return Vectorized<double>(Sleef_coshd4_u10(values));
|
230 |
+
}
|
231 |
+
Vectorized<double> ceil() const {
|
232 |
+
return _mm256_ceil_pd(values);
|
233 |
+
}
|
234 |
+
Vectorized<double> floor() const {
|
235 |
+
return _mm256_floor_pd(values);
|
236 |
+
}
|
237 |
+
Vectorized<double> frac() const;
|
238 |
+
Vectorized<double> neg() const {
|
239 |
+
return _mm256_xor_pd(_mm256_set1_pd(-0.), values);
|
240 |
+
}
|
241 |
+
Vectorized<double> nextafter(const Vectorized<double> &b) const {
|
242 |
+
return Vectorized<double>(Sleef_nextafterd4(values, b));
|
243 |
+
}
|
244 |
+
Vectorized<double> round() const {
|
245 |
+
return _mm256_round_pd(values, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
246 |
+
}
|
247 |
+
Vectorized<double> tan() const {
|
248 |
+
return Vectorized<double>(Sleef_tand4_u10(values));
|
249 |
+
}
|
250 |
+
Vectorized<double> tanh() const {
|
251 |
+
return Vectorized<double>(Sleef_tanhd4_u10(values));
|
252 |
+
}
|
253 |
+
Vectorized<double> trunc() const {
|
254 |
+
return _mm256_round_pd(values, (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));
|
255 |
+
}
|
256 |
+
Vectorized<double> lgamma() const {
|
257 |
+
return Vectorized<double>(Sleef_lgammad4_u10(values));
|
258 |
+
}
|
259 |
+
Vectorized<double> sqrt() const {
|
260 |
+
return _mm256_sqrt_pd(values);
|
261 |
+
}
|
262 |
+
Vectorized<double> reciprocal() const {
|
263 |
+
return _mm256_div_pd(_mm256_set1_pd(1), values);
|
264 |
+
}
|
265 |
+
Vectorized<double> rsqrt() const {
|
266 |
+
return _mm256_div_pd(_mm256_set1_pd(1), _mm256_sqrt_pd(values));
|
267 |
+
}
|
268 |
+
Vectorized<double> pow(const Vectorized<double> &b) const {
|
269 |
+
return Vectorized<double>(Sleef_powd4_u10(values, b));
|
270 |
+
}
|
271 |
+
// Comparison using the _CMP_**_OQ predicate.
|
272 |
+
// `O`: get false if an operand is NaN
|
273 |
+
// `Q`: do not raise if an operand is NaN
|
274 |
+
Vectorized<double> operator==(const Vectorized<double>& other) const {
|
275 |
+
return _mm256_cmp_pd(values, other.values, _CMP_EQ_OQ);
|
276 |
+
}
|
277 |
+
|
278 |
+
Vectorized<double> operator!=(const Vectorized<double>& other) const {
|
279 |
+
return _mm256_cmp_pd(values, other.values, _CMP_NEQ_UQ);
|
280 |
+
}
|
281 |
+
|
282 |
+
Vectorized<double> operator<(const Vectorized<double>& other) const {
|
283 |
+
return _mm256_cmp_pd(values, other.values, _CMP_LT_OQ);
|
284 |
+
}
|
285 |
+
|
286 |
+
Vectorized<double> operator<=(const Vectorized<double>& other) const {
|
287 |
+
return _mm256_cmp_pd(values, other.values, _CMP_LE_OQ);
|
288 |
+
}
|
289 |
+
|
290 |
+
Vectorized<double> operator>(const Vectorized<double>& other) const {
|
291 |
+
return _mm256_cmp_pd(values, other.values, _CMP_GT_OQ);
|
292 |
+
}
|
293 |
+
|
294 |
+
Vectorized<double> operator>=(const Vectorized<double>& other) const {
|
295 |
+
return _mm256_cmp_pd(values, other.values, _CMP_GE_OQ);
|
296 |
+
}
|
297 |
+
|
298 |
+
Vectorized<double> eq(const Vectorized<double>& other) const;
|
299 |
+
Vectorized<double> ne(const Vectorized<double>& other) const;
|
300 |
+
Vectorized<double> lt(const Vectorized<double>& other) const;
|
301 |
+
Vectorized<double> le(const Vectorized<double>& other) const;
|
302 |
+
Vectorized<double> gt(const Vectorized<double>& other) const;
|
303 |
+
Vectorized<double> ge(const Vectorized<double>& other) const;
|
304 |
+
};
|
305 |
+
|
306 |
+
template <>
|
307 |
+
Vectorized<double> inline operator+(const Vectorized<double>& a, const Vectorized<double>& b) {
|
308 |
+
return _mm256_add_pd(a, b);
|
309 |
+
}
|
310 |
+
|
311 |
+
template <>
|
312 |
+
Vectorized<double> inline operator-(const Vectorized<double>& a, const Vectorized<double>& b) {
|
313 |
+
return _mm256_sub_pd(a, b);
|
314 |
+
}
|
315 |
+
|
316 |
+
template <>
|
317 |
+
Vectorized<double> inline operator*(const Vectorized<double>& a, const Vectorized<double>& b) {
|
318 |
+
return _mm256_mul_pd(a, b);
|
319 |
+
}
|
320 |
+
|
321 |
+
template <>
|
322 |
+
Vectorized<double> inline operator/(const Vectorized<double>& a, const Vectorized<double>& b) {
|
323 |
+
return _mm256_div_pd(a, b);
|
324 |
+
}
|
325 |
+
|
326 |
+
// frac. Implement this here so we can use subtraction.
|
327 |
+
inline Vectorized<double> Vectorized<double>::frac() const {
|
328 |
+
return *this - this->trunc();
|
329 |
+
}
|
330 |
+
|
331 |
+
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
332 |
+
// either input is a NaN.
|
333 |
+
template <>
|
334 |
+
Vectorized<double> inline maximum(const Vectorized<double>& a, const Vectorized<double>& b) {
|
335 |
+
Vectorized<double> max = _mm256_max_pd(a, b);
|
336 |
+
Vectorized<double> isnan = _mm256_cmp_pd(a, b, _CMP_UNORD_Q);
|
337 |
+
// Exploit the fact that all-ones is a NaN.
|
338 |
+
return _mm256_or_pd(max, isnan);
|
339 |
+
}
|
340 |
+
|
341 |
+
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
342 |
+
// either input is a NaN.
|
343 |
+
template <>
|
344 |
+
Vectorized<double> inline minimum(const Vectorized<double>& a, const Vectorized<double>& b) {
|
345 |
+
Vectorized<double> min = _mm256_min_pd(a, b);
|
346 |
+
Vectorized<double> isnan = _mm256_cmp_pd(a, b, _CMP_UNORD_Q);
|
347 |
+
// Exploit the fact that all-ones is a NaN.
|
348 |
+
return _mm256_or_pd(min, isnan);
|
349 |
+
}
|
350 |
+
|
351 |
+
template <>
|
352 |
+
Vectorized<double> inline clamp(const Vectorized<double>& a, const Vectorized<double>& min, const Vectorized<double>& max) {
|
353 |
+
return _mm256_min_pd(max, _mm256_max_pd(min, a));
|
354 |
+
}
|
355 |
+
|
356 |
+
template <>
|
357 |
+
Vectorized<double> inline clamp_min(const Vectorized<double>& a, const Vectorized<double>& min) {
|
358 |
+
return _mm256_max_pd(min, a);
|
359 |
+
}
|
360 |
+
|
361 |
+
template <>
|
362 |
+
Vectorized<double> inline clamp_max(const Vectorized<double>& a, const Vectorized<double>& max) {
|
363 |
+
return _mm256_min_pd(max, a);
|
364 |
+
}
|
365 |
+
|
366 |
+
template <>
|
367 |
+
Vectorized<double> inline operator&(const Vectorized<double>& a, const Vectorized<double>& b) {
|
368 |
+
return _mm256_and_pd(a, b);
|
369 |
+
}
|
370 |
+
|
371 |
+
template <>
|
372 |
+
Vectorized<double> inline operator|(const Vectorized<double>& a, const Vectorized<double>& b) {
|
373 |
+
return _mm256_or_pd(a, b);
|
374 |
+
}
|
375 |
+
|
376 |
+
template <>
|
377 |
+
Vectorized<double> inline operator^(const Vectorized<double>& a, const Vectorized<double>& b) {
|
378 |
+
return _mm256_xor_pd(a, b);
|
379 |
+
}
|
380 |
+
|
381 |
+
inline Vectorized<double> Vectorized<double>::eq(const Vectorized<double>& other) const {
|
382 |
+
return (*this == other) & Vectorized<double>(1.0);
|
383 |
+
}
|
384 |
+
|
385 |
+
inline Vectorized<double> Vectorized<double>::ne(const Vectorized<double>& other) const {
|
386 |
+
return (*this != other) & Vectorized<double>(1.0);
|
387 |
+
}
|
388 |
+
|
389 |
+
inline Vectorized<double> Vectorized<double>::gt(const Vectorized<double>& other) const {
|
390 |
+
return (*this > other) & Vectorized<double>(1.0);
|
391 |
+
}
|
392 |
+
|
393 |
+
inline Vectorized<double> Vectorized<double>::ge(const Vectorized<double>& other) const {
|
394 |
+
return (*this >= other) & Vectorized<double>(1.0);
|
395 |
+
}
|
396 |
+
|
397 |
+
inline Vectorized<double> Vectorized<double>::lt(const Vectorized<double>& other) const {
|
398 |
+
return (*this < other) & Vectorized<double>(1.0);
|
399 |
+
}
|
400 |
+
|
401 |
+
inline Vectorized<double> Vectorized<double>::le(const Vectorized<double>& other) const {
|
402 |
+
return (*this <= other) & Vectorized<double>(1.0);
|
403 |
+
}
|
404 |
+
|
405 |
+
template <>
|
406 |
+
inline void convert(const double* src, double* dst, int64_t n) {
|
407 |
+
int64_t i;
|
408 |
+
#pragma unroll
|
409 |
+
for (i = 0; i <= (n - Vectorized<double>::size()); i += Vectorized<double>::size()) {
|
410 |
+
_mm256_storeu_pd(dst + i, _mm256_loadu_pd(src + i));
|
411 |
+
}
|
412 |
+
#pragma unroll
|
413 |
+
for (; i < n; i++) {
|
414 |
+
dst[i] = src[i];
|
415 |
+
}
|
416 |
+
}
|
417 |
+
|
418 |
+
#ifdef CPU_CAPABILITY_AVX2
|
419 |
+
template <>
|
420 |
+
Vectorized<double> inline fmadd(const Vectorized<double>& a, const Vectorized<double>& b, const Vectorized<double>& c) {
|
421 |
+
return _mm256_fmadd_pd(a, b, c);
|
422 |
+
}
|
423 |
+
|
424 |
+
template <>
|
425 |
+
Vectorized<double> inline fmsub(const Vectorized<double>& a, const Vectorized<double>& b, const Vectorized<double>& c) {
|
426 |
+
return _mm256_fmsub_pd(a, b, c);
|
427 |
+
}
|
428 |
+
#endif
|
429 |
+
|
430 |
+
#endif
|
431 |
+
|
432 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_float.h
ADDED
@@ -0,0 +1,565 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
#include <ATen/cpu/vec/vec_base.h>
|
8 |
+
#include <c10/util/irange.h>
|
9 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
10 |
+
#include <sleef.h>
|
11 |
+
#endif
|
12 |
+
|
13 |
+
namespace at::vec {
|
14 |
+
// See Note [CPU_CAPABILITY namespace]
|
15 |
+
inline namespace CPU_CAPABILITY {
|
16 |
+
|
17 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
18 |
+
|
19 |
+
template <> class Vectorized<float> {
|
20 |
+
private:
|
21 |
+
__m256 values;
|
22 |
+
public:
|
23 |
+
using value_type = float;
|
24 |
+
using size_type = int;
|
25 |
+
static constexpr size_type size() {
|
26 |
+
return 8;
|
27 |
+
}
|
28 |
+
Vectorized() {}
|
29 |
+
Vectorized(__m256 v) : values(v) {}
|
30 |
+
Vectorized(float val) {
|
31 |
+
values = _mm256_set1_ps(val);
|
32 |
+
}
|
33 |
+
Vectorized(float val1, float val2, float val3, float val4,
|
34 |
+
float val5, float val6, float val7, float val8) {
|
35 |
+
values = _mm256_setr_ps(val1, val2, val3, val4, val5, val6, val7, val8);
|
36 |
+
}
|
37 |
+
operator __m256() const {
|
38 |
+
return values;
|
39 |
+
}
|
40 |
+
template <int64_t mask>
|
41 |
+
static Vectorized<float> blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
42 |
+
return _mm256_blend_ps(a.values, b.values, mask);
|
43 |
+
}
|
44 |
+
static Vectorized<float> blendv(const Vectorized<float>& a, const Vectorized<float>& b,
|
45 |
+
const Vectorized<float>& mask) {
|
46 |
+
return _mm256_blendv_ps(a.values, b.values, mask.values);
|
47 |
+
}
|
48 |
+
template<typename step_t>
|
49 |
+
static Vectorized<float> arange(float base = 0.f, step_t step = static_cast<step_t>(1)) {
|
50 |
+
return Vectorized<float>(
|
51 |
+
base, base + step, base + 2 * step, base + 3 * step,
|
52 |
+
base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step);
|
53 |
+
}
|
54 |
+
static Vectorized<float> set(const Vectorized<float>& a, const Vectorized<float>& b,
|
55 |
+
int64_t count = size()) {
|
56 |
+
switch (count) {
|
57 |
+
case 0:
|
58 |
+
return a;
|
59 |
+
case 1:
|
60 |
+
return blend<1>(a, b);
|
61 |
+
case 2:
|
62 |
+
return blend<3>(a, b);
|
63 |
+
case 3:
|
64 |
+
return blend<7>(a, b);
|
65 |
+
case 4:
|
66 |
+
return blend<15>(a, b);
|
67 |
+
case 5:
|
68 |
+
return blend<31>(a, b);
|
69 |
+
case 6:
|
70 |
+
return blend<63>(a, b);
|
71 |
+
case 7:
|
72 |
+
return blend<127>(a, b);
|
73 |
+
}
|
74 |
+
return b;
|
75 |
+
}
|
76 |
+
static Vectorized<float> loadu(const void* ptr, int64_t count = size()) {
|
77 |
+
if (count == size())
|
78 |
+
return _mm256_loadu_ps(reinterpret_cast<const float*>(ptr));
|
79 |
+
__at_align__ float tmp_values[size()];
|
80 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
81 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
82 |
+
// instructions while a loop would be compiled to one instruction.
|
83 |
+
for (const auto i : c10::irange(size())) {
|
84 |
+
tmp_values[i] = 0.0;
|
85 |
+
}
|
86 |
+
std::memcpy(
|
87 |
+
tmp_values, reinterpret_cast<const float*>(ptr), count * sizeof(float));
|
88 |
+
return _mm256_loadu_ps(tmp_values);
|
89 |
+
}
|
90 |
+
void store(void* ptr, int64_t count = size()) const {
|
91 |
+
if (count == size()) {
|
92 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(ptr), values);
|
93 |
+
} else if (count > 0) {
|
94 |
+
float tmp_values[size()];
|
95 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(tmp_values), values);
|
96 |
+
std::memcpy(ptr, tmp_values, count * sizeof(float));
|
97 |
+
}
|
98 |
+
}
|
99 |
+
const float& operator[](int idx) const = delete;
|
100 |
+
float& operator[](int idx) = delete;
|
101 |
+
int zero_mask() const {
|
102 |
+
// returns an integer mask where all zero elements are translated to 1-bit and others are translated to 0-bit
|
103 |
+
__m256 cmp = _mm256_cmp_ps(values, _mm256_set1_ps(0.0f), _CMP_EQ_OQ);
|
104 |
+
return _mm256_movemask_ps(cmp);
|
105 |
+
}
|
106 |
+
Vectorized<float> isnan() const {
|
107 |
+
return _mm256_cmp_ps(values, _mm256_set1_ps(0.0f), _CMP_UNORD_Q);
|
108 |
+
}
|
109 |
+
Vectorized<float> map(float (*const f)(float)) const {
|
110 |
+
__at_align__ float tmp[size()];
|
111 |
+
store(tmp);
|
112 |
+
for (const auto i : c10::irange(size())) {
|
113 |
+
tmp[i] = f(tmp[i]);
|
114 |
+
}
|
115 |
+
return loadu(tmp);
|
116 |
+
}
|
117 |
+
Vectorized<float> abs() const {
|
118 |
+
auto mask = _mm256_set1_ps(-0.f);
|
119 |
+
return _mm256_andnot_ps(mask, values);
|
120 |
+
}
|
121 |
+
Vectorized<float> angle() const {
|
122 |
+
const auto zero_vec = _mm256_set1_ps(0.f);
|
123 |
+
const auto nan_vec = _mm256_set1_ps(NAN);
|
124 |
+
const auto not_nan_mask = _mm256_cmp_ps(values, values, _CMP_EQ_OQ);
|
125 |
+
const auto nan_mask = _mm256_cmp_ps(not_nan_mask, zero_vec, _CMP_EQ_OQ);
|
126 |
+
const auto pi = _mm256_set1_ps(c10::pi<float>);
|
127 |
+
|
128 |
+
const auto neg_mask = _mm256_cmp_ps(values, zero_vec, _CMP_LT_OQ);
|
129 |
+
auto angle = _mm256_blendv_ps(zero_vec, pi, neg_mask);
|
130 |
+
angle = _mm256_blendv_ps(angle, nan_vec, nan_mask);
|
131 |
+
return angle;
|
132 |
+
}
|
133 |
+
Vectorized<float> real() const {
|
134 |
+
return *this;
|
135 |
+
}
|
136 |
+
Vectorized<float> imag() const {
|
137 |
+
return _mm256_set1_ps(0);
|
138 |
+
}
|
139 |
+
Vectorized<float> conj() const {
|
140 |
+
return *this;
|
141 |
+
}
|
142 |
+
Vectorized<float> acos() const {
|
143 |
+
return Vectorized<float>(Sleef_acosf8_u10(values));
|
144 |
+
}
|
145 |
+
Vectorized<float> asin() const {
|
146 |
+
return Vectorized<float>(Sleef_asinf8_u10(values));
|
147 |
+
}
|
148 |
+
Vectorized<float> atan() const {
|
149 |
+
return Vectorized<float>(Sleef_atanf8_u10(values));
|
150 |
+
}
|
151 |
+
Vectorized<float> atanh() const {
|
152 |
+
return Vectorized<float>(Sleef_atanhf8_u10(values));
|
153 |
+
}
|
154 |
+
Vectorized<float> atan2(const Vectorized<float> &b) const {
|
155 |
+
return Vectorized<float>(Sleef_atan2f8_u10(values, b));
|
156 |
+
}
|
157 |
+
Vectorized<float> copysign(const Vectorized<float> &sign) const {
|
158 |
+
return Vectorized<float>(Sleef_copysignf8(values, sign));
|
159 |
+
}
|
160 |
+
Vectorized<float> erf() const {
|
161 |
+
// constants
|
162 |
+
const auto neg_zero_vec = _mm256_set1_ps(-0.f);
|
163 |
+
const auto one_vec = _mm256_set1_ps(1.0f);
|
164 |
+
const auto p = _mm256_set1_ps(0.3275911f);
|
165 |
+
const auto p1 = _mm256_set1_ps(0.254829592f);
|
166 |
+
const auto p2 = _mm256_set1_ps(-0.284496736f);
|
167 |
+
const auto p3 = _mm256_set1_ps(1.421413741f);
|
168 |
+
const auto p4 = _mm256_set1_ps(-1.453152027f);
|
169 |
+
const auto p5 = _mm256_set1_ps(1.061405429f);
|
170 |
+
// sign(x)
|
171 |
+
auto sign_mask = _mm256_and_ps(neg_zero_vec, values);
|
172 |
+
auto abs_vec = _mm256_xor_ps(sign_mask, values);
|
173 |
+
// t = 1 / (p * abs(x) + 1)
|
174 |
+
auto tmp0 = _mm256_fmadd_ps(p, abs_vec, one_vec);
|
175 |
+
auto t = _mm256_div_ps(one_vec, tmp0);
|
176 |
+
// r = p5 * t ^ 4 + p4 * t ^ 3 + p3 * t ^ 2 + p2 * t + p1
|
177 |
+
auto tmp1 = _mm256_fmadd_ps(p5, t, p4);
|
178 |
+
auto tmp2 = _mm256_fmadd_ps(tmp1, t, p3);
|
179 |
+
auto tmp3 = _mm256_fmadd_ps(tmp2, t, p2);
|
180 |
+
auto r = _mm256_fmadd_ps(tmp3, t, p1);
|
181 |
+
// - exp(- x * x)
|
182 |
+
auto pow_2 = _mm256_mul_ps(values, values);
|
183 |
+
auto neg_pow_2 = _mm256_xor_ps(neg_zero_vec, pow_2);
|
184 |
+
// auto tmp4 = exp(neg_pow_2);
|
185 |
+
auto tmp4 = Vectorized<float>(Sleef_expf8_u10(neg_pow_2));
|
186 |
+
auto tmp5 = _mm256_xor_ps(neg_zero_vec, tmp4);
|
187 |
+
// erf(x) = sign(x) * (1 - r * t * exp(- x * x))
|
188 |
+
auto tmp6 = _mm256_mul_ps(tmp5, t);
|
189 |
+
auto tmp7 = _mm256_fmadd_ps(tmp6, r, one_vec);
|
190 |
+
return _mm256_xor_ps(sign_mask, tmp7);
|
191 |
+
}
|
192 |
+
Vectorized<float> erfc() const {
|
193 |
+
return Vectorized<float>(Sleef_erfcf8_u15(values));
|
194 |
+
}
|
195 |
+
Vectorized<float> erfinv() const {
|
196 |
+
return map(calc_erfinv);
|
197 |
+
}
|
198 |
+
Vectorized<float> exp() const {
|
199 |
+
return Vectorized<float>(Sleef_expf8_u10(values));
|
200 |
+
}
|
201 |
+
Vectorized<float> exp2() const {
|
202 |
+
return Vectorized<float>(Sleef_exp2f8_u10(values));
|
203 |
+
}
|
204 |
+
Vectorized<float> expm1() const {
|
205 |
+
return Vectorized<float>(Sleef_expm1f8_u10(values));
|
206 |
+
}
|
207 |
+
Vectorized<float> fmod(const Vectorized<float>& q) const {
|
208 |
+
return Vectorized<float>(Sleef_fmodf8(values, q));
|
209 |
+
}
|
210 |
+
Vectorized<float> log() const {
|
211 |
+
return Vectorized<float>(Sleef_logf8_u10(values));
|
212 |
+
}
|
213 |
+
Vectorized<float> log2() const {
|
214 |
+
return Vectorized<float>(Sleef_log2f8_u10(values));
|
215 |
+
}
|
216 |
+
Vectorized<float> log10() const {
|
217 |
+
return Vectorized<float>(Sleef_log10f8_u10(values));
|
218 |
+
}
|
219 |
+
Vectorized<float> log1p() const {
|
220 |
+
return Vectorized<float>(Sleef_log1pf8_u10(values));
|
221 |
+
}
|
222 |
+
Vectorized<float> frac() const;
|
223 |
+
Vectorized<float> sin() const {
|
224 |
+
return Vectorized<float>(Sleef_sinf8_u35(values));
|
225 |
+
}
|
226 |
+
Vectorized<float> sinh() const {
|
227 |
+
return Vectorized<float>(Sleef_sinhf8_u10(values));
|
228 |
+
}
|
229 |
+
Vectorized<float> cos() const {
|
230 |
+
return Vectorized<float>(Sleef_cosf8_u35(values));
|
231 |
+
}
|
232 |
+
Vectorized<float> cosh() const {
|
233 |
+
return Vectorized<float>(Sleef_coshf8_u10(values));
|
234 |
+
}
|
235 |
+
Vectorized<float> ceil() const {
|
236 |
+
return _mm256_ceil_ps(values);
|
237 |
+
}
|
238 |
+
Vectorized<float> floor() const {
|
239 |
+
return _mm256_floor_ps(values);
|
240 |
+
}
|
241 |
+
Vectorized<float> hypot(const Vectorized<float> &b) const {
|
242 |
+
return Vectorized<float>(Sleef_hypotf8_u05(values, b));
|
243 |
+
}
|
244 |
+
Vectorized<float> i0() const {
|
245 |
+
return map(calc_i0);
|
246 |
+
}
|
247 |
+
Vectorized<float> i0e() const {
|
248 |
+
return map(calc_i0e);
|
249 |
+
}
|
250 |
+
Vectorized<float> digamma() const {
|
251 |
+
return map(calc_digamma);
|
252 |
+
}
|
253 |
+
Vectorized<float> igamma(const Vectorized<float> &x) const {
|
254 |
+
__at_align__ float tmp[size()];
|
255 |
+
__at_align__ float tmp_x[size()];
|
256 |
+
store(tmp);
|
257 |
+
x.store(tmp_x);
|
258 |
+
for (const auto i : c10::irange(size())) {
|
259 |
+
tmp[i] = calc_igamma(tmp[i], tmp_x[i]);
|
260 |
+
}
|
261 |
+
return loadu(tmp);
|
262 |
+
}
|
263 |
+
Vectorized<float> igammac(const Vectorized<float> &x) const {
|
264 |
+
__at_align__ float tmp[size()];
|
265 |
+
__at_align__ float tmp_x[size()];
|
266 |
+
store(tmp);
|
267 |
+
x.store(tmp_x);
|
268 |
+
for (const auto i : c10::irange(size())) {
|
269 |
+
tmp[i] = calc_igammac(tmp[i], tmp_x[i]);
|
270 |
+
}
|
271 |
+
return loadu(tmp);
|
272 |
+
}
|
273 |
+
Vectorized<float> neg() const {
|
274 |
+
return _mm256_xor_ps(_mm256_set1_ps(-0.f), values);
|
275 |
+
}
|
276 |
+
Vectorized<float> nextafter(const Vectorized<float> &b) const {
|
277 |
+
return Vectorized<float>(Sleef_nextafterf8(values, b));
|
278 |
+
}
|
279 |
+
Vectorized<float> round() const {
|
280 |
+
return _mm256_round_ps(values, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
281 |
+
}
|
282 |
+
Vectorized<float> tan() const {
|
283 |
+
return Vectorized<float>(Sleef_tanf8_u10(values));
|
284 |
+
}
|
285 |
+
Vectorized<float> tanh() const {
|
286 |
+
return Vectorized<float>(Sleef_tanhf8_u10(values));
|
287 |
+
}
|
288 |
+
Vectorized<float> trunc() const {
|
289 |
+
return _mm256_round_ps(values, (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));
|
290 |
+
}
|
291 |
+
Vectorized<float> lgamma() const {
|
292 |
+
return Vectorized<float>(Sleef_lgammaf8_u10(values));
|
293 |
+
}
|
294 |
+
Vectorized<float> sqrt() const {
|
295 |
+
return _mm256_sqrt_ps(values);
|
296 |
+
}
|
297 |
+
Vectorized<float> reciprocal() const {
|
298 |
+
return _mm256_div_ps(_mm256_set1_ps(1), values);
|
299 |
+
}
|
300 |
+
Vectorized<float> rsqrt() const {
|
301 |
+
return _mm256_div_ps(_mm256_set1_ps(1), _mm256_sqrt_ps(values));
|
302 |
+
}
|
303 |
+
Vectorized<float> pow(const Vectorized<float> &b) const {
|
304 |
+
return Vectorized<float>(Sleef_powf8_u10(values, b));
|
305 |
+
}
|
306 |
+
// Comparison using the _CMP_**_OQ predicate.
|
307 |
+
// `O`: get false if an operand is NaN
|
308 |
+
// `Q`: do not raise if an operand is NaN
|
309 |
+
Vectorized<float> operator==(const Vectorized<float>& other) const {
|
310 |
+
return _mm256_cmp_ps(values, other.values, _CMP_EQ_OQ);
|
311 |
+
}
|
312 |
+
|
313 |
+
Vectorized<float> operator!=(const Vectorized<float>& other) const {
|
314 |
+
return _mm256_cmp_ps(values, other.values, _CMP_NEQ_UQ);
|
315 |
+
}
|
316 |
+
|
317 |
+
Vectorized<float> operator<(const Vectorized<float>& other) const {
|
318 |
+
return _mm256_cmp_ps(values, other.values, _CMP_LT_OQ);
|
319 |
+
}
|
320 |
+
|
321 |
+
Vectorized<float> operator<=(const Vectorized<float>& other) const {
|
322 |
+
return _mm256_cmp_ps(values, other.values, _CMP_LE_OQ);
|
323 |
+
}
|
324 |
+
|
325 |
+
Vectorized<float> operator>(const Vectorized<float>& other) const {
|
326 |
+
return _mm256_cmp_ps(values, other.values, _CMP_GT_OQ);
|
327 |
+
}
|
328 |
+
|
329 |
+
Vectorized<float> operator>=(const Vectorized<float>& other) const {
|
330 |
+
return _mm256_cmp_ps(values, other.values, _CMP_GE_OQ);
|
331 |
+
}
|
332 |
+
|
333 |
+
Vectorized<float> eq(const Vectorized<float>& other) const;
|
334 |
+
Vectorized<float> ne(const Vectorized<float>& other) const;
|
335 |
+
Vectorized<float> gt(const Vectorized<float>& other) const;
|
336 |
+
Vectorized<float> ge(const Vectorized<float>& other) const;
|
337 |
+
Vectorized<float> lt(const Vectorized<float>& other) const;
|
338 |
+
Vectorized<float> le(const Vectorized<float>& other) const;
|
339 |
+
};
|
340 |
+
|
341 |
+
template <>
|
342 |
+
Vectorized<float> inline operator+(const Vectorized<float>& a, const Vectorized<float>& b) {
|
343 |
+
return _mm256_add_ps(a, b);
|
344 |
+
}
|
345 |
+
|
346 |
+
template <>
|
347 |
+
Vectorized<float> inline operator-(const Vectorized<float>& a, const Vectorized<float>& b) {
|
348 |
+
return _mm256_sub_ps(a, b);
|
349 |
+
}
|
350 |
+
|
351 |
+
template <>
|
352 |
+
Vectorized<float> inline operator*(const Vectorized<float>& a, const Vectorized<float>& b) {
|
353 |
+
return _mm256_mul_ps(a, b);
|
354 |
+
}
|
355 |
+
|
356 |
+
template <>
|
357 |
+
Vectorized<float> inline operator/(const Vectorized<float>& a, const Vectorized<float>& b) {
|
358 |
+
return _mm256_div_ps(a, b);
|
359 |
+
}
|
360 |
+
|
361 |
+
// frac. Implement this here so we can use subtraction
|
362 |
+
inline Vectorized<float> Vectorized<float>::frac() const {
|
363 |
+
return *this - this->trunc();
|
364 |
+
}
|
365 |
+
|
366 |
+
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
367 |
+
// either input is a NaN.
|
368 |
+
template <>
|
369 |
+
Vectorized<float> inline maximum(const Vectorized<float>& a, const Vectorized<float>& b) {
|
370 |
+
Vectorized<float> max = _mm256_max_ps(a, b);
|
371 |
+
Vectorized<float> isnan = _mm256_cmp_ps(a, b, _CMP_UNORD_Q);
|
372 |
+
// Exploit the fact that all-ones is a NaN.
|
373 |
+
return _mm256_or_ps(max, isnan);
|
374 |
+
}
|
375 |
+
|
376 |
+
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
377 |
+
// either input is a NaN.
|
378 |
+
template <>
|
379 |
+
Vectorized<float> inline minimum(const Vectorized<float>& a, const Vectorized<float>& b) {
|
380 |
+
Vectorized<float> min = _mm256_min_ps(a, b);
|
381 |
+
Vectorized<float> isnan = _mm256_cmp_ps(a, b, _CMP_UNORD_Q);
|
382 |
+
// Exploit the fact that all-ones is a NaN.
|
383 |
+
return _mm256_or_ps(min, isnan);
|
384 |
+
}
|
385 |
+
|
386 |
+
template <>
|
387 |
+
Vectorized<float> inline clamp(const Vectorized<float>& a, const Vectorized<float>& min, const Vectorized<float>& max) {
|
388 |
+
return _mm256_min_ps(max, _mm256_max_ps(min, a));
|
389 |
+
}
|
390 |
+
|
391 |
+
template <>
|
392 |
+
Vectorized<float> inline clamp_max(const Vectorized<float>& a, const Vectorized<float>& max) {
|
393 |
+
return _mm256_min_ps(max, a);
|
394 |
+
}
|
395 |
+
|
396 |
+
template <>
|
397 |
+
Vectorized<float> inline clamp_min(const Vectorized<float>& a, const Vectorized<float>& min) {
|
398 |
+
return _mm256_max_ps(min, a);
|
399 |
+
}
|
400 |
+
|
401 |
+
template <>
|
402 |
+
Vectorized<float> inline operator&(const Vectorized<float>& a, const Vectorized<float>& b) {
|
403 |
+
return _mm256_and_ps(a, b);
|
404 |
+
}
|
405 |
+
|
406 |
+
template <>
|
407 |
+
Vectorized<float> inline operator|(const Vectorized<float>& a, const Vectorized<float>& b) {
|
408 |
+
return _mm256_or_ps(a, b);
|
409 |
+
}
|
410 |
+
|
411 |
+
template <>
|
412 |
+
Vectorized<float> inline operator^(const Vectorized<float>& a, const Vectorized<float>& b) {
|
413 |
+
return _mm256_xor_ps(a, b);
|
414 |
+
}
|
415 |
+
|
416 |
+
inline Vectorized<float> Vectorized<float>::eq(const Vectorized<float>& other) const {
|
417 |
+
return (*this == other) & Vectorized<float>(1.0f);
|
418 |
+
}
|
419 |
+
|
420 |
+
inline Vectorized<float> Vectorized<float>::ne(const Vectorized<float>& other) const {
|
421 |
+
return (*this != other) & Vectorized<float>(1.0f);
|
422 |
+
}
|
423 |
+
|
424 |
+
inline Vectorized<float> Vectorized<float>::gt(const Vectorized<float>& other) const {
|
425 |
+
return (*this > other) & Vectorized<float>(1.0f);
|
426 |
+
}
|
427 |
+
|
428 |
+
inline Vectorized<float> Vectorized<float>::ge(const Vectorized<float>& other) const {
|
429 |
+
return (*this >= other) & Vectorized<float>(1.0f);
|
430 |
+
}
|
431 |
+
|
432 |
+
inline Vectorized<float> Vectorized<float>::lt(const Vectorized<float>& other) const {
|
433 |
+
return (*this < other) & Vectorized<float>(1.0f);
|
434 |
+
}
|
435 |
+
|
436 |
+
inline Vectorized<float> Vectorized<float>::le(const Vectorized<float>& other) const {
|
437 |
+
return (*this <= other) & Vectorized<float>(1.0f);
|
438 |
+
}
|
439 |
+
|
440 |
+
template <>
|
441 |
+
inline void convert(const float* src, float* dst, int64_t n) {
|
442 |
+
int64_t i;
|
443 |
+
#pragma unroll
|
444 |
+
for (i = 0; i <= (n - Vectorized<float>::size()); i += Vectorized<float>::size()) {
|
445 |
+
_mm256_storeu_ps(dst + i, _mm256_loadu_ps(src + i));
|
446 |
+
}
|
447 |
+
#pragma unroll
|
448 |
+
for (; i < n; i++) {
|
449 |
+
dst[i] = src[i];
|
450 |
+
}
|
451 |
+
}
|
452 |
+
|
453 |
+
|
454 |
+
template <>
|
455 |
+
Vectorized<float> inline fmadd(const Vectorized<float>& a, const Vectorized<float>& b, const Vectorized<float>& c) {
|
456 |
+
return _mm256_fmadd_ps(a, b, c);
|
457 |
+
}
|
458 |
+
|
459 |
+
template <>
|
460 |
+
Vectorized<float> inline fmsub(const Vectorized<float>& a, const Vectorized<float>& b, const Vectorized<float>& c) {
|
461 |
+
return _mm256_fmsub_ps(a, b, c);
|
462 |
+
}
|
463 |
+
|
464 |
+
// Used by Inductor CPP codegen
|
465 |
+
template<>
|
466 |
+
inline void transpose_mxn<float, 8, 8>(
|
467 |
+
const float* src,
|
468 |
+
int64_t ld_src,
|
469 |
+
float* dst,
|
470 |
+
int64_t ld_dst) {
|
471 |
+
// load from src to registers
|
472 |
+
// a: a0 a1 a2 a3 a4 a5 a6 a7
|
473 |
+
// b: b0 b1 b2 b3 b4 b5 b6 b7
|
474 |
+
// c: c0 c1 c2 c3 c4 c5 c6 c7
|
475 |
+
// d: d0 d1 d2 d3 d4 d5 d6 d7
|
476 |
+
// e: e0 e1 e2 e3 e4 e5 e6 e7
|
477 |
+
// f: f0 f1 f2 f3 f4 f5 f6 f7
|
478 |
+
// g: g0 g1 g2 g3 g4 g5 g6 g7
|
479 |
+
// h: h0 h1 h2 h3 h4 h5 h6 h7
|
480 |
+
__m256 a = _mm256_loadu_ps(&src[0 * ld_src]);
|
481 |
+
__m256 b = _mm256_loadu_ps(&src[1 * ld_src]);
|
482 |
+
__m256 c = _mm256_loadu_ps(&src[2 * ld_src]);
|
483 |
+
__m256 d = _mm256_loadu_ps(&src[3 * ld_src]);
|
484 |
+
__m256 e = _mm256_loadu_ps(&src[4 * ld_src]);
|
485 |
+
__m256 f = _mm256_loadu_ps(&src[5 * ld_src]);
|
486 |
+
__m256 g = _mm256_loadu_ps(&src[6 * ld_src]);
|
487 |
+
__m256 h = _mm256_loadu_ps(&src[7 * ld_src]);
|
488 |
+
|
489 |
+
__m256 ta, tb, tc, td, te, tf, tg, th;
|
490 |
+
// unpacking and interleaving 32-bit elements
|
491 |
+
// a0 b0 a1 b1 a4 b4 a5 b5
|
492 |
+
// a2 b2 a3 b3 a6 b6 a7 b7
|
493 |
+
// c0 d0 c1 d1 ...
|
494 |
+
// c2 d2 c3 d3 ...
|
495 |
+
// e0 f0 e1 f1 ...
|
496 |
+
// e2 f2 e3 f3 ...
|
497 |
+
// g0 h0 g1 h1 ...
|
498 |
+
// g2 h2 g3 h3 ...
|
499 |
+
ta = _mm256_unpacklo_ps(a, b);
|
500 |
+
tb = _mm256_unpackhi_ps(a, b);
|
501 |
+
tc = _mm256_unpacklo_ps(c, d);
|
502 |
+
td = _mm256_unpackhi_ps(c, d);
|
503 |
+
te = _mm256_unpacklo_ps(e, f);
|
504 |
+
tf = _mm256_unpackhi_ps(e, f);
|
505 |
+
tg = _mm256_unpacklo_ps(g, h);
|
506 |
+
th = _mm256_unpackhi_ps(g, h);
|
507 |
+
|
508 |
+
// unpacking and interleaving 64-bit elements
|
509 |
+
// a0 b0 c0 d0 a4 b4 c4 d4
|
510 |
+
// a1 b1 c1 d1 ...
|
511 |
+
// a2 b2 c2 d2 ...
|
512 |
+
// a3 b3 c3 d3 ...
|
513 |
+
// e0 f0 g0 h0 e4 f4 g4 h4
|
514 |
+
// e1 f1 g1 h1 ...
|
515 |
+
// e2 f2 g2 h2 ...
|
516 |
+
// e3 f3 g3 h3 ...
|
517 |
+
a = _mm256_castpd_ps(
|
518 |
+
_mm256_unpacklo_pd(_mm256_castps_pd(ta), _mm256_castps_pd(tc)));
|
519 |
+
b = _mm256_castpd_ps(
|
520 |
+
_mm256_unpackhi_pd(_mm256_castps_pd(ta), _mm256_castps_pd(tc)));
|
521 |
+
c = _mm256_castpd_ps(
|
522 |
+
_mm256_unpacklo_pd(_mm256_castps_pd(tb), _mm256_castps_pd(td)));
|
523 |
+
d = _mm256_castpd_ps(
|
524 |
+
_mm256_unpackhi_pd(_mm256_castps_pd(tb), _mm256_castps_pd(td)));
|
525 |
+
e = _mm256_castpd_ps(
|
526 |
+
_mm256_unpacklo_pd(_mm256_castps_pd(te), _mm256_castps_pd(tg)));
|
527 |
+
f = _mm256_castpd_ps(
|
528 |
+
_mm256_unpackhi_pd(_mm256_castps_pd(te), _mm256_castps_pd(tg)));
|
529 |
+
g = _mm256_castpd_ps(
|
530 |
+
_mm256_unpacklo_pd(_mm256_castps_pd(tf), _mm256_castps_pd(th)));
|
531 |
+
h = _mm256_castpd_ps(
|
532 |
+
_mm256_unpackhi_pd(_mm256_castps_pd(tf), _mm256_castps_pd(th)));
|
533 |
+
|
534 |
+
// shuffle 128-bits (composed of 4 32-bit elements)
|
535 |
+
// a0 b0 c0 d0 e0 f0 g0 h0
|
536 |
+
// a1 b1 c1 d1 ...
|
537 |
+
// a2 b2 c2 d2 ...
|
538 |
+
// a3 b3 c3 d3 ...
|
539 |
+
// a4 b4 c4 d4 ...
|
540 |
+
// a5 b5 c5 d5 ...
|
541 |
+
// a6 b6 c6 d6 ...
|
542 |
+
// a7 b7 c7 d7 ...
|
543 |
+
ta = _mm256_permute2f128_ps(a, e, 0x20);
|
544 |
+
tb = _mm256_permute2f128_ps(b, f, 0x20);
|
545 |
+
tc = _mm256_permute2f128_ps(c, g, 0x20);
|
546 |
+
td = _mm256_permute2f128_ps(d, h, 0x20);
|
547 |
+
te = _mm256_permute2f128_ps(a, e, 0x31);
|
548 |
+
tf = _mm256_permute2f128_ps(b, f, 0x31);
|
549 |
+
tg = _mm256_permute2f128_ps(c, g, 0x31);
|
550 |
+
th = _mm256_permute2f128_ps(d, h, 0x31);
|
551 |
+
|
552 |
+
// store from registers to dst
|
553 |
+
_mm256_storeu_ps(&dst[0 * ld_dst], ta);
|
554 |
+
_mm256_storeu_ps(&dst[1 * ld_dst], tb);
|
555 |
+
_mm256_storeu_ps(&dst[2 * ld_dst], tc);
|
556 |
+
_mm256_storeu_ps(&dst[3 * ld_dst], td);
|
557 |
+
_mm256_storeu_ps(&dst[4 * ld_dst], te);
|
558 |
+
_mm256_storeu_ps(&dst[5 * ld_dst], tf);
|
559 |
+
_mm256_storeu_ps(&dst[6 * ld_dst], tg);
|
560 |
+
_mm256_storeu_ps(&dst[7 * ld_dst], th);
|
561 |
+
}
|
562 |
+
|
563 |
+
#endif
|
564 |
+
|
565 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_float_neon.h
ADDED
@@ -0,0 +1,879 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
#include <ATen/cpu/vec/vec_base.h>
|
8 |
+
#include <c10/util/irange.h>
|
9 |
+
|
10 |
+
#if defined(__aarch64__) && defined(AT_BUILD_ARM_VEC256_WITH_SLEEF)
|
11 |
+
#include <sleef.h>
|
12 |
+
#endif
|
13 |
+
|
14 |
+
// Sleef offers vectorized versions of some transcedentals
|
15 |
+
// such as sin, cos, tan etc..
|
16 |
+
// However for now opting for STL, since we are not building
|
17 |
+
// with Sleef for mobile yet.
|
18 |
+
|
19 |
+
namespace at::vec {
|
20 |
+
// See Note [CPU_CAPABILITY namespace]
|
21 |
+
inline namespace CPU_CAPABILITY {
|
22 |
+
|
23 |
+
// Right now contains only aarch64 implementation.
|
24 |
+
// Due to follow two reasons aarch32 is not currently supported.
|
25 |
+
// 1. Due to difference in ISA been aarch32 and aarch64, intrinsics
|
26 |
+
// that work for aarch64 dont work for aarch32.
|
27 |
+
// 2. Android NDK r21 has problems with compiling aarch32.
|
28 |
+
// Clang seg faults.
|
29 |
+
// https://github.com/android/ndk/issues/1248
|
30 |
+
// https://bugs.llvm.org/show_bug.cgi?id=45824
|
31 |
+
// Most likely we will do aarch32 support with inline asm.
|
32 |
+
#if defined(__aarch64__)
|
33 |
+
|
34 |
+
#ifdef __BIG_ENDIAN__
|
35 |
+
#error "Big endian is not supported."
|
36 |
+
#endif
|
37 |
+
|
38 |
+
#if defined(AT_BUILD_ARM_VEC256_WITH_SLEEF)
|
39 |
+
#define USE_SLEEF(sleef_code, non_sleef_code) sleef_code
|
40 |
+
#else
|
41 |
+
#define USE_SLEEF(sleef_code, non_sleef_code) non_sleef_code
|
42 |
+
#endif
|
43 |
+
|
44 |
+
template<int index, bool mask_val>
|
45 |
+
struct BlendRegs {
|
46 |
+
static float32x4_t impl(
|
47 |
+
const float32x4_t& a, const float32x4_t& b, float32x4_t& res);
|
48 |
+
};
|
49 |
+
|
50 |
+
template<int index>
|
51 |
+
struct BlendRegs<index, true>{
|
52 |
+
static float32x4_t impl(
|
53 |
+
const float32x4_t& a, const float32x4_t& b, float32x4_t& res) {
|
54 |
+
return vsetq_lane_f32(vgetq_lane_f32(b, index), res, index);
|
55 |
+
}
|
56 |
+
};
|
57 |
+
|
58 |
+
template<int index>
|
59 |
+
struct BlendRegs<index, false>{
|
60 |
+
static float32x4_t impl(
|
61 |
+
const float32x4_t& a, const float32x4_t& b, float32x4_t& res) {
|
62 |
+
return vsetq_lane_f32(vgetq_lane_f32(a, index), res, index);
|
63 |
+
}
|
64 |
+
};
|
65 |
+
|
66 |
+
template <> class Vectorized<float> {
|
67 |
+
private:
|
68 |
+
float32x4x2_t values;
|
69 |
+
public:
|
70 |
+
using value_type = float;
|
71 |
+
using size_type = int;
|
72 |
+
static constexpr size_type size() {
|
73 |
+
return 8;
|
74 |
+
}
|
75 |
+
Vectorized() {}
|
76 |
+
Vectorized(float32x4x2_t v) : values(v) {}
|
77 |
+
Vectorized(float val) : values{vdupq_n_f32(val), vdupq_n_f32(val) } {}
|
78 |
+
Vectorized(float val0, float val1, float val2, float val3,
|
79 |
+
float val4, float val5, float val6, float val7) :
|
80 |
+
values{val0, val1, val2, val3, val4, val5, val6, val7} {}
|
81 |
+
Vectorized(float32x4_t val0, float32x4_t val1) : values{val0, val1} {}
|
82 |
+
operator float32x4x2_t() const {
|
83 |
+
return values;
|
84 |
+
}
|
85 |
+
template <int64_t mask>
|
86 |
+
static Vectorized<float> blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
87 |
+
Vectorized<float> vec;
|
88 |
+
// 0.
|
89 |
+
vec.values.val[0] =
|
90 |
+
BlendRegs<0, (mask & 0x01)!=0>::impl(
|
91 |
+
a.values.val[0], b.values.val[0], vec.values.val[0]);
|
92 |
+
vec.values.val[0] =
|
93 |
+
BlendRegs<1, (mask & 0x02)!=0>::impl(
|
94 |
+
a.values.val[0], b.values.val[0], vec.values.val[0]);
|
95 |
+
vec.values.val[0] =
|
96 |
+
BlendRegs<2, (mask & 0x04)!=0>::impl(
|
97 |
+
a.values.val[0], b.values.val[0], vec.values.val[0]);
|
98 |
+
vec.values.val[0] =
|
99 |
+
BlendRegs<3, (mask & 0x08)!=0>::impl(
|
100 |
+
a.values.val[0], b.values.val[0], vec.values.val[0]);
|
101 |
+
// 1.
|
102 |
+
vec.values.val[1] =
|
103 |
+
BlendRegs<0, (mask & 0x10)!=0>::impl(
|
104 |
+
a.values.val[1], b.values.val[1], vec.values.val[1]);
|
105 |
+
vec.values.val[1] =
|
106 |
+
BlendRegs<1, (mask & 0x20)!=0>::impl(
|
107 |
+
a.values.val[1], b.values.val[1], vec.values.val[1]);
|
108 |
+
vec.values.val[1] =
|
109 |
+
BlendRegs<2, (mask & 0x40)!=0>::impl(
|
110 |
+
a.values.val[1], b.values.val[1], vec.values.val[1]);
|
111 |
+
vec.values.val[1] =
|
112 |
+
BlendRegs<3, (mask & 0x80)!=0>::impl(
|
113 |
+
a.values.val[1], b.values.val[1], vec.values.val[1]);
|
114 |
+
return vec;
|
115 |
+
}
|
116 |
+
static Vectorized<float> blendv(const Vectorized<float>& a, const Vectorized<float>& b,
|
117 |
+
const Vectorized<float>& mask) {
|
118 |
+
// TODO
|
119 |
+
// NB: This requires that each value, i.e., each uint value,
|
120 |
+
// of the mask either all be zeros or all be 1s.
|
121 |
+
// We perhaps need some kind of an assert?
|
122 |
+
// But that will affect performance.
|
123 |
+
Vectorized<float> vec(mask.values);
|
124 |
+
vec.values.val[0] = vbslq_f32(
|
125 |
+
vreinterpretq_u32_f32(vec.values.val[0]),
|
126 |
+
b.values.val[0],
|
127 |
+
a.values.val[0]);
|
128 |
+
vec.values.val[1] = vbslq_f32(
|
129 |
+
vreinterpretq_u32_f32(vec.values.val[1]),
|
130 |
+
b.values.val[1],
|
131 |
+
a.values.val[1]);
|
132 |
+
return vec;
|
133 |
+
}
|
134 |
+
template<typename step_t>
|
135 |
+
static Vectorized<float> arange(float base = 0.f, step_t step = static_cast<step_t>(1)) {
|
136 |
+
const Vectorized<float> base_vec(base);
|
137 |
+
const Vectorized<float> step_vec(step);
|
138 |
+
const Vectorized<float> step_sizes(0, 1, 2, 3, 4, 5, 6, 7);
|
139 |
+
return fmadd(step_sizes, step_vec, base_vec);
|
140 |
+
}
|
141 |
+
static Vectorized<float> set(const Vectorized<float>& a, const Vectorized<float>& b,
|
142 |
+
int64_t count = size()) {
|
143 |
+
switch (count) {
|
144 |
+
case 0:
|
145 |
+
return a;
|
146 |
+
case 1:
|
147 |
+
{
|
148 |
+
Vectorized<float> vec;
|
149 |
+
static uint32x4_t mask_low = {0xFFFFFFFF, 0x0, 0x0, 0x0};
|
150 |
+
vec.values.val[0] = vreinterpretq_f32_u32(mask_low);
|
151 |
+
vec.values.val[1] = a.values.val[1];
|
152 |
+
vec.values.val[0] = vbslq_f32(
|
153 |
+
vreinterpretq_u32_f32(vec.values.val[0]),
|
154 |
+
b.values.val[0],
|
155 |
+
a.values.val[0]);
|
156 |
+
return vec;
|
157 |
+
}
|
158 |
+
case 2:
|
159 |
+
{
|
160 |
+
Vectorized<float> vec;
|
161 |
+
static uint32x4_t mask_low = {0xFFFFFFFF, 0xFFFFFFFF, 0x0, 0x0};
|
162 |
+
vec.values.val[0] = vreinterpretq_f32_u32(mask_low);
|
163 |
+
vec.values.val[1] = a.values.val[1];
|
164 |
+
vec.values.val[0] = vbslq_f32(
|
165 |
+
vreinterpretq_u32_f32(vec.values.val[0]),
|
166 |
+
b.values.val[0],
|
167 |
+
a.values.val[0]);
|
168 |
+
return vec;
|
169 |
+
}
|
170 |
+
case 3:
|
171 |
+
{
|
172 |
+
Vectorized<float> vec;
|
173 |
+
static uint32x4_t mask_low = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0};
|
174 |
+
vec.values.val[0] = vreinterpretq_f32_u32(mask_low);
|
175 |
+
vec.values.val[1] = a.values.val[1];
|
176 |
+
vec.values.val[0] = vbslq_f32(
|
177 |
+
vreinterpretq_u32_f32(vec.values.val[0]),
|
178 |
+
b.values.val[0],
|
179 |
+
a.values.val[0]);
|
180 |
+
return vec;
|
181 |
+
}
|
182 |
+
case 4:
|
183 |
+
return Vectorized<float>(b.values.val[0], a.values.val[1]);
|
184 |
+
case 5:
|
185 |
+
{
|
186 |
+
Vectorized<float> vec;
|
187 |
+
static uint32x4_t mask_high = {0xFFFFFFFF, 0x0, 0x0, 0x0};
|
188 |
+
vec.values.val[0] = b.values.val[0];
|
189 |
+
vec.values.val[1] = vreinterpretq_f32_u32(mask_high);
|
190 |
+
vec.values.val[1] = vbslq_f32(
|
191 |
+
vreinterpretq_u32_f32(vec.values.val[1]),
|
192 |
+
b.values.val[1],
|
193 |
+
a.values.val[1]);
|
194 |
+
return vec;
|
195 |
+
}
|
196 |
+
case 6:
|
197 |
+
{
|
198 |
+
Vectorized<float> vec;
|
199 |
+
static uint32x4_t mask_high = {0xFFFFFFFF, 0xFFFFFFFF, 0x0, 0x0};
|
200 |
+
vec.values.val[0] = b.values.val[0];
|
201 |
+
vec.values.val[1] = vreinterpretq_f32_u32(mask_high);
|
202 |
+
vec.values.val[1] = vbslq_f32(
|
203 |
+
vreinterpretq_u32_f32(vec.values.val[1]),
|
204 |
+
b.values.val[1],
|
205 |
+
a.values.val[1]);
|
206 |
+
return vec;
|
207 |
+
}
|
208 |
+
case 7:
|
209 |
+
{
|
210 |
+
Vectorized<float> vec;
|
211 |
+
static uint32x4_t mask_high = {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0};
|
212 |
+
vec.values.val[0] = b.values.val[0];
|
213 |
+
vec.values.val[1] = vreinterpretq_f32_u32(mask_high);
|
214 |
+
vec.values.val[1] = vbslq_f32(
|
215 |
+
vreinterpretq_u32_f32(vec.values.val[1]),
|
216 |
+
b.values.val[1],
|
217 |
+
a.values.val[1]);
|
218 |
+
return vec;
|
219 |
+
}
|
220 |
+
}
|
221 |
+
return b;
|
222 |
+
}
|
223 |
+
static Vectorized<float> loadu(const void* ptr, int64_t count = size()) {
|
224 |
+
if (count == size()) {
|
225 |
+
return vld1q_f32_x2(reinterpret_cast<const float*>(ptr));
|
226 |
+
}
|
227 |
+
else if (count == (size() >> 1)) {
|
228 |
+
Vectorized<float> res;
|
229 |
+
res.values.val[0] = vld1q_f32(reinterpret_cast<const float*>(ptr));
|
230 |
+
res.values.val[1] = vdupq_n_f32(0.f);
|
231 |
+
return res;
|
232 |
+
}
|
233 |
+
else {
|
234 |
+
__at_align__ float tmp_values[size()];
|
235 |
+
for (const auto i : c10::irange(size())) {
|
236 |
+
tmp_values[i] = 0.0;
|
237 |
+
}
|
238 |
+
std::memcpy(
|
239 |
+
tmp_values,
|
240 |
+
reinterpret_cast<const float*>(ptr),
|
241 |
+
count * sizeof(float));
|
242 |
+
return vld1q_f32_x2(reinterpret_cast<const float*>(tmp_values));
|
243 |
+
}
|
244 |
+
}
|
245 |
+
void store(void* ptr, int64_t count = size()) const {
|
246 |
+
if (count == size()) {
|
247 |
+
vst1q_f32_x2(reinterpret_cast<float*>(ptr), values);
|
248 |
+
}
|
249 |
+
else if (count == (size() >> 1)) {
|
250 |
+
vst1q_f32(reinterpret_cast<float*>(ptr), values.val[0]);
|
251 |
+
}
|
252 |
+
else {
|
253 |
+
float tmp_values[size()];
|
254 |
+
vst1q_f32_x2(reinterpret_cast<float*>(tmp_values), values);
|
255 |
+
std::memcpy(ptr, tmp_values, count * sizeof(float));
|
256 |
+
}
|
257 |
+
}
|
258 |
+
inline const float32x4_t& get_low() const {
|
259 |
+
return values.val[0];
|
260 |
+
}
|
261 |
+
inline float32x4_t& get_low() {
|
262 |
+
return values.val[0];
|
263 |
+
}
|
264 |
+
inline const float32x4_t& get_high() const {
|
265 |
+
return values.val[1];
|
266 |
+
}
|
267 |
+
inline float32x4_t& get_high() {
|
268 |
+
return values.val[1];
|
269 |
+
}
|
270 |
+
// Very slow implementation of indexing.
|
271 |
+
// Only required because vec256_qint refers to this.
|
272 |
+
// Once we specialize that implementation for ARM
|
273 |
+
// this should be removed. TODO (kimishpatel)
|
274 |
+
float operator[](int idx) const {
|
275 |
+
__at_align__ float tmp[size()];
|
276 |
+
store(tmp);
|
277 |
+
return tmp[idx];
|
278 |
+
}
|
279 |
+
float operator[](int idx) {
|
280 |
+
__at_align__ float tmp[size()];
|
281 |
+
store(tmp);
|
282 |
+
return tmp[idx];
|
283 |
+
}
|
284 |
+
// For boolean version where we want to if any 1/all zero
|
285 |
+
// etc. can be done faster in a different way.
|
286 |
+
int zero_mask() const {
|
287 |
+
__at_align__ float tmp[size()];
|
288 |
+
store(tmp);
|
289 |
+
int mask = 0;
|
290 |
+
for (int i = 0; i < size(); ++ i) {
|
291 |
+
if (tmp[i] == 0.f) {
|
292 |
+
mask |= (1 << i);
|
293 |
+
}
|
294 |
+
}
|
295 |
+
return mask;
|
296 |
+
}
|
297 |
+
Vectorized<float> isnan() const {
|
298 |
+
__at_align__ float tmp[size()];
|
299 |
+
__at_align__ float res[size()];
|
300 |
+
store(tmp);
|
301 |
+
for (const auto i : c10::irange(size())) {
|
302 |
+
if (_isnan(tmp[i])) {
|
303 |
+
std::memset(static_cast<void*>(&res[i]), 0xFF, sizeof(float));
|
304 |
+
} else {
|
305 |
+
std::memset(static_cast<void*>(&res[i]), 0, sizeof(float));
|
306 |
+
}
|
307 |
+
}
|
308 |
+
return loadu(res);
|
309 |
+
};
|
310 |
+
Vectorized<float> map(float (*const f)(float)) const {
|
311 |
+
__at_align__ float tmp[size()];
|
312 |
+
store(tmp);
|
313 |
+
for (const auto i : c10::irange(size())) {
|
314 |
+
tmp[i] = f(tmp[i]);
|
315 |
+
}
|
316 |
+
return loadu(tmp);
|
317 |
+
}
|
318 |
+
Vectorized<float> abs() const {
|
319 |
+
return Vectorized<float>(vabsq_f32(values.val[0]), vabsq_f32(values.val[1]));
|
320 |
+
}
|
321 |
+
Vectorized<float> angle() const {
|
322 |
+
auto zero = Vectorized<float>(0);
|
323 |
+
auto pi = Vectorized<float>(c10::pi<float>);
|
324 |
+
auto tmp = blendv(zero, pi, *this < zero);
|
325 |
+
return blendv(tmp, *this, isnan());
|
326 |
+
}
|
327 |
+
Vectorized<float> real() const {
|
328 |
+
return *this;
|
329 |
+
}
|
330 |
+
Vectorized<float> imag() const {
|
331 |
+
return Vectorized<float>(0.f);
|
332 |
+
}
|
333 |
+
Vectorized<float> conj() const {
|
334 |
+
return *this;
|
335 |
+
}
|
336 |
+
Vectorized<float> acos() const {
|
337 |
+
return USE_SLEEF(
|
338 |
+
Vectorized<float>(Sleef_acosf4_u10(values.val[0]), Sleef_acosf4_u10(values.val[1])),
|
339 |
+
map(std::acos)
|
340 |
+
);
|
341 |
+
}
|
342 |
+
Vectorized<float> asin() const {
|
343 |
+
return USE_SLEEF(
|
344 |
+
Vectorized<float>(Sleef_asinf4_u10(values.val[0]), Sleef_asinf4_u10(values.val[1])),
|
345 |
+
map(std::asin)
|
346 |
+
);
|
347 |
+
}
|
348 |
+
Vectorized<float> atan() const {
|
349 |
+
return USE_SLEEF(
|
350 |
+
Vectorized<float>(Sleef_atanf4_u10(values.val[0]), Sleef_atanf4_u10(values.val[1])),
|
351 |
+
map(std::atan)
|
352 |
+
);
|
353 |
+
}
|
354 |
+
Vectorized<float> atanh() const {
|
355 |
+
return USE_SLEEF(
|
356 |
+
Vectorized<float>(Sleef_atanhf4_u10(values.val[0]), Sleef_atanhf4_u10(values.val[1])),
|
357 |
+
map(std::atanh)
|
358 |
+
);
|
359 |
+
}
|
360 |
+
Vectorized<float> atan2(const Vectorized<float> &exp) const {
|
361 |
+
USE_SLEEF(
|
362 |
+
{
|
363 |
+
return Vectorized<float>(Sleef_atan2f4_u10(values.val[0], exp.values.val[0]),
|
364 |
+
Sleef_atan2f4_u10(values.val[1], exp.values.val[1]));
|
365 |
+
},
|
366 |
+
{
|
367 |
+
__at_align__ float tmp[size()];
|
368 |
+
__at_align__ float tmp_exp[size()];
|
369 |
+
store(tmp);
|
370 |
+
exp.store(tmp_exp);
|
371 |
+
for (const auto i : c10::irange(size())) {
|
372 |
+
tmp[i] = std::atan2(tmp[i], tmp_exp[i]);
|
373 |
+
}
|
374 |
+
return loadu(tmp);
|
375 |
+
}
|
376 |
+
)
|
377 |
+
}
|
378 |
+
Vectorized<float> copysign(const Vectorized<float> &sign) const {
|
379 |
+
USE_SLEEF(
|
380 |
+
{
|
381 |
+
return Vectorized<float>(Sleef_copysignf4(values.val[0], sign.values.val[0]),
|
382 |
+
Sleef_copysignf4(values.val[1], sign.values.val[1]));
|
383 |
+
},
|
384 |
+
{
|
385 |
+
__at_align__ float tmp[size()];
|
386 |
+
__at_align__ float tmp_sign[size()];
|
387 |
+
store(tmp);
|
388 |
+
sign.store(tmp_sign);
|
389 |
+
for (size_type i = 0; i < size(); i++) {
|
390 |
+
tmp[i] = std::copysign(tmp[i], tmp_sign[i]);
|
391 |
+
}
|
392 |
+
return loadu(tmp);
|
393 |
+
}
|
394 |
+
)
|
395 |
+
}
|
396 |
+
Vectorized<float> erf() const;
|
397 |
+
Vectorized<float> erfc() const {
|
398 |
+
return USE_SLEEF(
|
399 |
+
Vectorized<float>(Sleef_erfcf4_u15(values.val[0]), Sleef_erfcf4_u15(values.val[1])),
|
400 |
+
map(std::erfc)
|
401 |
+
);
|
402 |
+
}
|
403 |
+
Vectorized<float> erfinv() const {
|
404 |
+
return map(calc_erfinv);
|
405 |
+
}
|
406 |
+
Vectorized<float> exp() const {
|
407 |
+
return USE_SLEEF(
|
408 |
+
Vectorized<float>(Sleef_expf4_u10(values.val[0]), Sleef_expf4_u10(values.val[1])),
|
409 |
+
map(std::exp)
|
410 |
+
);
|
411 |
+
}
|
412 |
+
Vectorized<float> exp2() const {
|
413 |
+
return USE_SLEEF(
|
414 |
+
Vectorized<float>(Sleef_exp2f4_u10(values.val[0]), Sleef_exp2f4_u10(values.val[1])),
|
415 |
+
map(std::exp2)
|
416 |
+
);
|
417 |
+
}
|
418 |
+
Vectorized<float> expm1() const {
|
419 |
+
return USE_SLEEF(
|
420 |
+
Vectorized<float>(Sleef_expm1f4_u10(values.val[0]), Sleef_expm1f4_u10(values.val[1])),
|
421 |
+
map(std::expm1)
|
422 |
+
);
|
423 |
+
}
|
424 |
+
Vectorized<float> fmod(const Vectorized<float>& q) const {
|
425 |
+
USE_SLEEF(
|
426 |
+
{
|
427 |
+
return Vectorized<float>(Sleef_fmodf4(values.val[0], q.values.val[0]),
|
428 |
+
Sleef_fmodf4(values.val[1], q.values.val[1]));
|
429 |
+
},
|
430 |
+
{
|
431 |
+
__at_align__ float tmp[size()];
|
432 |
+
__at_align__ float tmp_q[size()];
|
433 |
+
store(tmp);
|
434 |
+
q.store(tmp_q);
|
435 |
+
for (const auto i : c10::irange(size())) {
|
436 |
+
tmp[i] = std::fmod(tmp[i], tmp_q[i]);
|
437 |
+
}
|
438 |
+
return loadu(tmp);
|
439 |
+
}
|
440 |
+
)
|
441 |
+
}
|
442 |
+
Vectorized<float> hypot(const Vectorized<float> &b) const {
|
443 |
+
USE_SLEEF(
|
444 |
+
{
|
445 |
+
return Vectorized<float>(Sleef_hypotf4_u05(values.val[0], b.values.val[0]),
|
446 |
+
Sleef_hypotf4_u05(values.val[1], b.values.val[1]));
|
447 |
+
},
|
448 |
+
{
|
449 |
+
__at_align__ float tmp[size()];
|
450 |
+
__at_align__ float tmp_b[size()];
|
451 |
+
store(tmp);
|
452 |
+
b.store(tmp_b);
|
453 |
+
for (const auto i : c10::irange(size())) {
|
454 |
+
tmp[i] = std::hypot(tmp[i], tmp_b[i]);
|
455 |
+
}
|
456 |
+
return loadu(tmp);
|
457 |
+
}
|
458 |
+
)
|
459 |
+
}
|
460 |
+
Vectorized<float> i0() const {
|
461 |
+
return map(calc_i0);
|
462 |
+
}
|
463 |
+
Vectorized<float> i0e() const {
|
464 |
+
return map(calc_i0e);
|
465 |
+
}
|
466 |
+
Vectorized<float> digamma() const {
|
467 |
+
return map(calc_digamma);
|
468 |
+
}
|
469 |
+
Vectorized<float> igamma(const Vectorized<float> &x) const {
|
470 |
+
__at_align__ float tmp[size()];
|
471 |
+
__at_align__ float tmp_x[size()];
|
472 |
+
store(tmp);
|
473 |
+
x.store(tmp_x);
|
474 |
+
for (const auto i : c10::irange(size())) {
|
475 |
+
tmp[i] = calc_igamma(tmp[i], tmp_x[i]);
|
476 |
+
}
|
477 |
+
return loadu(tmp);
|
478 |
+
}
|
479 |
+
Vectorized<float> igammac(const Vectorized<float> &x) const {
|
480 |
+
__at_align__ float tmp[size()];
|
481 |
+
__at_align__ float tmp_x[size()];
|
482 |
+
store(tmp);
|
483 |
+
x.store(tmp_x);
|
484 |
+
for (const auto i : c10::irange(size())) {
|
485 |
+
tmp[i] = calc_igammac(tmp[i], tmp_x[i]);
|
486 |
+
}
|
487 |
+
return loadu(tmp);
|
488 |
+
}
|
489 |
+
Vectorized<float> log() const {
|
490 |
+
return USE_SLEEF(
|
491 |
+
Vectorized<float>(Sleef_logf4_u10(values.val[0]), Sleef_logf4_u10(values.val[1])),
|
492 |
+
map(std::log)
|
493 |
+
);
|
494 |
+
}
|
495 |
+
Vectorized<float> log10() const {
|
496 |
+
return USE_SLEEF(
|
497 |
+
Vectorized<float>(Sleef_log10f4_u10(values.val[0]), Sleef_log10f4_u10(values.val[1])),
|
498 |
+
map(std::log10)
|
499 |
+
);
|
500 |
+
}
|
501 |
+
Vectorized<float> log1p() const {
|
502 |
+
return USE_SLEEF(
|
503 |
+
Vectorized<float>(Sleef_log1pf4_u10(values.val[0]), Sleef_log1pf4_u10(values.val[1])),
|
504 |
+
map(std::log1p)
|
505 |
+
);
|
506 |
+
}
|
507 |
+
Vectorized<float> log2() const {
|
508 |
+
return USE_SLEEF(
|
509 |
+
Vectorized<float>(Sleef_log2f4_u10(values.val[0]), Sleef_log2f4_u10(values.val[1])),
|
510 |
+
map(std::log2)
|
511 |
+
);
|
512 |
+
}
|
513 |
+
Vectorized<float> nextafter(const Vectorized<float> &b) const {
|
514 |
+
USE_SLEEF(
|
515 |
+
{
|
516 |
+
return Vectorized<float>(Sleef_nextafterf4(values.val[0], b.values.val[0]),
|
517 |
+
Sleef_nextafterf4(values.val[1], b.values.val[1]));
|
518 |
+
},
|
519 |
+
{
|
520 |
+
__at_align__ float tmp[size()];
|
521 |
+
__at_align__ float tmp_b[size()];
|
522 |
+
store(tmp);
|
523 |
+
b.store(tmp_b);
|
524 |
+
for (const auto i : c10::irange(size())) {
|
525 |
+
tmp[i] = std::nextafter(tmp[i], tmp_b[i]);
|
526 |
+
}
|
527 |
+
return loadu(tmp);
|
528 |
+
}
|
529 |
+
)
|
530 |
+
}
|
531 |
+
Vectorized<float> frac() const;
|
532 |
+
Vectorized<float> sin() const {
|
533 |
+
return USE_SLEEF(
|
534 |
+
Vectorized<float>(Sleef_sinf4_u10(values.val[0]), Sleef_sinf4_u10(values.val[1])),
|
535 |
+
map(std::sin)
|
536 |
+
);
|
537 |
+
}
|
538 |
+
Vectorized<float> sinh() const {
|
539 |
+
return USE_SLEEF(
|
540 |
+
Vectorized<float>(Sleef_sinhf4_u10(values.val[0]), Sleef_sinhf4_u10(values.val[1])),
|
541 |
+
map(std::sinh)
|
542 |
+
);
|
543 |
+
}
|
544 |
+
Vectorized<float> cos() const {
|
545 |
+
return USE_SLEEF(
|
546 |
+
Vectorized<float>(Sleef_cosf4_u10(values.val[0]), Sleef_cosf4_u10(values.val[1])),
|
547 |
+
map(std::cos)
|
548 |
+
);
|
549 |
+
}
|
550 |
+
Vectorized<float> cosh() const {
|
551 |
+
return USE_SLEEF(
|
552 |
+
Vectorized<float>(Sleef_coshf4_u10(values.val[0]), Sleef_coshf4_u10(values.val[1])),
|
553 |
+
map(std::cosh)
|
554 |
+
);
|
555 |
+
}
|
556 |
+
Vectorized<float> ceil() const {
|
557 |
+
return map(at::native::ceil_impl);
|
558 |
+
}
|
559 |
+
Vectorized<float> floor() const {
|
560 |
+
return map(at::native::floor_impl);
|
561 |
+
}
|
562 |
+
Vectorized<float> neg() const {
|
563 |
+
return Vectorized<float>(
|
564 |
+
vnegq_f32(values.val[0]),
|
565 |
+
vnegq_f32(values.val[1]));
|
566 |
+
}
|
567 |
+
Vectorized<float> round() const {
|
568 |
+
// We do not use std::round because we would like to round midway numbers to the nearest even integer.
|
569 |
+
return map(at::native::round_impl);
|
570 |
+
}
|
571 |
+
Vectorized<float> tan() const {
|
572 |
+
return USE_SLEEF(
|
573 |
+
Vectorized<float>(Sleef_tanf4_u10(values.val[0]), Sleef_tanf4_u10(values.val[1])),
|
574 |
+
map(std::tan)
|
575 |
+
);
|
576 |
+
}
|
577 |
+
Vectorized<float> tanh() const {
|
578 |
+
return USE_SLEEF(
|
579 |
+
Vectorized<float>(Sleef_tanhf4_u10(values.val[0]), Sleef_tanhf4_u10(values.val[1])),
|
580 |
+
map(std::tanh)
|
581 |
+
);
|
582 |
+
}
|
583 |
+
Vectorized<float> trunc() const {
|
584 |
+
float32x4_t r0 = vrndq_f32(values.val[0]);
|
585 |
+
float32x4_t r1 = vrndq_f32(values.val[1]);
|
586 |
+
return Vectorized<float>(r0, r1);
|
587 |
+
}
|
588 |
+
Vectorized<float> lgamma() const {
|
589 |
+
return USE_SLEEF(
|
590 |
+
Vectorized<float>(Sleef_lgammaf4_u10(values.val[0]), Sleef_lgammaf4_u10(values.val[1])),
|
591 |
+
map(std::lgamma)
|
592 |
+
);
|
593 |
+
}
|
594 |
+
Vectorized<float> sqrt() const {
|
595 |
+
return Vectorized<float>(
|
596 |
+
vsqrtq_f32(values.val[0]),
|
597 |
+
vsqrtq_f32(values.val[1]));
|
598 |
+
}
|
599 |
+
Vectorized<float> reciprocal() const {
|
600 |
+
auto r0 = vdivq_f32(vdupq_n_f32(1.0f), values.val[0]);
|
601 |
+
auto r1 = vdivq_f32(vdupq_n_f32(1.0f), values.val[1]);
|
602 |
+
return Vectorized<float>(r0, r1);
|
603 |
+
}
|
604 |
+
Vectorized<float> rsqrt() const {
|
605 |
+
return this->sqrt().reciprocal();
|
606 |
+
}
|
607 |
+
Vectorized<float> pow(const Vectorized<float> &exp) const {
|
608 |
+
USE_SLEEF(
|
609 |
+
{
|
610 |
+
return Vectorized<float>(Sleef_powf4_u10(values.val[0], exp.values.val[0]),
|
611 |
+
Sleef_powf4_u10(values.val[1], exp.values.val[1]));
|
612 |
+
},
|
613 |
+
{
|
614 |
+
__at_align__ float tmp[size()];
|
615 |
+
__at_align__ float tmp_exp[size()];
|
616 |
+
store(tmp);
|
617 |
+
exp.store(tmp_exp);
|
618 |
+
for (const auto i : c10::irange(size())) {
|
619 |
+
tmp[i] = std::pow(tmp[i], tmp_exp[i]);
|
620 |
+
}
|
621 |
+
return loadu(tmp);
|
622 |
+
}
|
623 |
+
)
|
624 |
+
}
|
625 |
+
Vectorized<float> operator==(const Vectorized<float>& other) const {
|
626 |
+
float32x4_t r0 =
|
627 |
+
vreinterpretq_f32_u32(vceqq_f32(values.val[0], other.values.val[0]));
|
628 |
+
float32x4_t r1 =
|
629 |
+
vreinterpretq_f32_u32(vceqq_f32(values.val[1], other.values.val[1]));
|
630 |
+
return Vectorized<float>(r0, r1);
|
631 |
+
}
|
632 |
+
|
633 |
+
Vectorized<float> operator!=(const Vectorized<float>& other) const {
|
634 |
+
float32x4_t r0 = vreinterpretq_f32_u32(
|
635 |
+
vmvnq_u32(vceqq_f32(values.val[0], other.values.val[0])));
|
636 |
+
float32x4_t r1 = vreinterpretq_f32_u32(
|
637 |
+
vmvnq_u32(vceqq_f32(values.val[1], other.values.val[1])));
|
638 |
+
return Vectorized<float>(r0, r1);
|
639 |
+
}
|
640 |
+
|
641 |
+
Vectorized<float> operator<(const Vectorized<float>& other) const {
|
642 |
+
float32x4_t r0 =
|
643 |
+
vreinterpretq_f32_u32(vcltq_f32(values.val[0], other.values.val[0]));
|
644 |
+
float32x4_t r1 =
|
645 |
+
vreinterpretq_f32_u32(vcltq_f32(values.val[1], other.values.val[1]));
|
646 |
+
return Vectorized<float>(r0, r1);
|
647 |
+
}
|
648 |
+
|
649 |
+
Vectorized<float> operator<=(const Vectorized<float>& other) const {
|
650 |
+
float32x4_t r0 =
|
651 |
+
vreinterpretq_f32_u32(vcleq_f32(values.val[0], other.values.val[0]));
|
652 |
+
float32x4_t r1 =
|
653 |
+
vreinterpretq_f32_u32(vcleq_f32(values.val[1], other.values.val[1]));
|
654 |
+
return Vectorized<float>(r0, r1);
|
655 |
+
}
|
656 |
+
|
657 |
+
Vectorized<float> operator>(const Vectorized<float>& other) const {
|
658 |
+
float32x4_t r0 =
|
659 |
+
vreinterpretq_f32_u32(vcgtq_f32(values.val[0], other.values.val[0]));
|
660 |
+
float32x4_t r1 =
|
661 |
+
vreinterpretq_f32_u32(vcgtq_f32(values.val[1], other.values.val[1]));
|
662 |
+
return Vectorized<float>(r0, r1);
|
663 |
+
}
|
664 |
+
|
665 |
+
Vectorized<float> operator>=(const Vectorized<float>& other) const {
|
666 |
+
float32x4_t r0 =
|
667 |
+
vreinterpretq_f32_u32(vcgeq_f32(values.val[0], other.values.val[0]));
|
668 |
+
float32x4_t r1 =
|
669 |
+
vreinterpretq_f32_u32(vcgeq_f32(values.val[1], other.values.val[1]));
|
670 |
+
return Vectorized<float>(r0, r1);
|
671 |
+
}
|
672 |
+
|
673 |
+
Vectorized<float> eq(const Vectorized<float>& other) const;
|
674 |
+
Vectorized<float> ne(const Vectorized<float>& other) const;
|
675 |
+
Vectorized<float> gt(const Vectorized<float>& other) const;
|
676 |
+
Vectorized<float> ge(const Vectorized<float>& other) const;
|
677 |
+
Vectorized<float> lt(const Vectorized<float>& other) const;
|
678 |
+
Vectorized<float> le(const Vectorized<float>& other) const;
|
679 |
+
};
|
680 |
+
|
681 |
+
template <>
|
682 |
+
Vectorized<float> inline operator+(const Vectorized<float>& a, const Vectorized<float>& b) {
|
683 |
+
float32x4_t r0 = vaddq_f32(a.get_low(), b.get_low());
|
684 |
+
float32x4_t r1 = vaddq_f32(a.get_high(), b.get_high());
|
685 |
+
return Vectorized<float>(r0, r1);
|
686 |
+
}
|
687 |
+
|
688 |
+
template <>
|
689 |
+
Vectorized<float> inline operator-(const Vectorized<float>& a, const Vectorized<float>& b) {
|
690 |
+
float32x4_t r0 = vsubq_f32(a.get_low(), b.get_low());
|
691 |
+
float32x4_t r1 = vsubq_f32(a.get_high(), b.get_high());
|
692 |
+
return Vectorized<float>(r0, r1);
|
693 |
+
}
|
694 |
+
|
695 |
+
template <>
|
696 |
+
Vectorized<float> inline operator*(const Vectorized<float>& a, const Vectorized<float>& b) {
|
697 |
+
float32x4_t r0 = vmulq_f32(a.get_low(), b.get_low());
|
698 |
+
float32x4_t r1 = vmulq_f32(a.get_high(), b.get_high());
|
699 |
+
return Vectorized<float>(r0, r1);
|
700 |
+
}
|
701 |
+
|
702 |
+
template <>
|
703 |
+
Vectorized<float> inline operator/(const Vectorized<float>& a, const Vectorized<float>& b) {
|
704 |
+
float32x4_t r0 = vdivq_f32(a.get_low(), b.get_low());
|
705 |
+
float32x4_t r1 = vdivq_f32(a.get_high(), b.get_high());
|
706 |
+
return Vectorized<float>(r0, r1);
|
707 |
+
}
|
708 |
+
|
709 |
+
// frac. Implement this here so we can use subtraction
|
710 |
+
inline Vectorized<float> Vectorized<float>::frac() const {
|
711 |
+
return *this - this->trunc();
|
712 |
+
}
|
713 |
+
|
714 |
+
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
715 |
+
// either input is a NaN.
|
716 |
+
template <>
|
717 |
+
Vectorized<float> inline maximum(const Vectorized<float>& a, const Vectorized<float>& b) {
|
718 |
+
float32x4_t r0 = vmaxq_f32(a.get_low(), b.get_low());
|
719 |
+
float32x4_t r1 = vmaxq_f32(a.get_high(), b.get_high());
|
720 |
+
return Vectorized<float>(r0, r1);
|
721 |
+
}
|
722 |
+
|
723 |
+
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
724 |
+
// either input is a NaN.
|
725 |
+
template <>
|
726 |
+
Vectorized<float> inline minimum(const Vectorized<float>& a, const Vectorized<float>& b) {
|
727 |
+
float32x4_t r0 = vminq_f32(a.get_low(), b.get_low());
|
728 |
+
float32x4_t r1 = vminq_f32(a.get_high(), b.get_high());
|
729 |
+
return Vectorized<float>(r0, r1);
|
730 |
+
}
|
731 |
+
|
732 |
+
template <>
|
733 |
+
Vectorized<float> inline clamp(const Vectorized<float>& a, const Vectorized<float>& min, const Vectorized<float>& max) {
|
734 |
+
return minimum(max, maximum(min, a));
|
735 |
+
}
|
736 |
+
|
737 |
+
template <>
|
738 |
+
Vectorized<float> inline clamp_max(const Vectorized<float>& a, const Vectorized<float>& max) {
|
739 |
+
return minimum(max, a);
|
740 |
+
}
|
741 |
+
|
742 |
+
template <>
|
743 |
+
Vectorized<float> inline clamp_min(const Vectorized<float>& a, const Vectorized<float>& min) {
|
744 |
+
return maximum(min, a);
|
745 |
+
}
|
746 |
+
|
747 |
+
template <>
|
748 |
+
Vectorized<float> inline operator&(const Vectorized<float>& a, const Vectorized<float>& b) {
|
749 |
+
float32x4_t r0 = vreinterpretq_f32_u32(vandq_u32(
|
750 |
+
vreinterpretq_u32_f32(a.get_low()),
|
751 |
+
vreinterpretq_u32_f32(b.get_low())));
|
752 |
+
float32x4_t r1 = vreinterpretq_f32_u32(vandq_u32(
|
753 |
+
vreinterpretq_u32_f32(a.get_high()),
|
754 |
+
vreinterpretq_u32_f32(b.get_high())));
|
755 |
+
return Vectorized<float>(r0, r1);
|
756 |
+
}
|
757 |
+
|
758 |
+
template <>
|
759 |
+
Vectorized<float> inline operator|(const Vectorized<float>& a, const Vectorized<float>& b) {
|
760 |
+
float32x4_t r0 = vreinterpretq_f32_u32(vorrq_u32(
|
761 |
+
vreinterpretq_u32_f32(a.get_low()),
|
762 |
+
vreinterpretq_u32_f32(b.get_low())));
|
763 |
+
float32x4_t r1 = vreinterpretq_f32_u32(vorrq_u32(
|
764 |
+
vreinterpretq_u32_f32(a.get_high()),
|
765 |
+
vreinterpretq_u32_f32(b.get_high())));
|
766 |
+
return Vectorized<float>(r0, r1);
|
767 |
+
}
|
768 |
+
|
769 |
+
template <>
|
770 |
+
Vectorized<float> inline operator^(const Vectorized<float>& a, const Vectorized<float>& b) {
|
771 |
+
float32x4_t r0 = vreinterpretq_f32_u32(veorq_u32(
|
772 |
+
vreinterpretq_u32_f32(a.get_low()),
|
773 |
+
vreinterpretq_u32_f32(b.get_low())));
|
774 |
+
float32x4_t r1 = vreinterpretq_f32_u32(veorq_u32(
|
775 |
+
vreinterpretq_u32_f32(a.get_high()),
|
776 |
+
vreinterpretq_u32_f32(b.get_high())));
|
777 |
+
return Vectorized<float>(r0, r1);
|
778 |
+
}
|
779 |
+
|
780 |
+
inline Vectorized<float> Vectorized<float>::eq(const Vectorized<float>& other) const {
|
781 |
+
return (*this == other) & Vectorized<float>(1.0f);
|
782 |
+
}
|
783 |
+
|
784 |
+
inline Vectorized<float> Vectorized<float>::ne(const Vectorized<float>& other) const {
|
785 |
+
return (*this != other) & Vectorized<float>(1.0f);
|
786 |
+
}
|
787 |
+
|
788 |
+
inline Vectorized<float> Vectorized<float>::gt(const Vectorized<float>& other) const {
|
789 |
+
return (*this > other) & Vectorized<float>(1.0f);
|
790 |
+
}
|
791 |
+
|
792 |
+
inline Vectorized<float> Vectorized<float>::ge(const Vectorized<float>& other) const {
|
793 |
+
return (*this >= other) & Vectorized<float>(1.0f);
|
794 |
+
}
|
795 |
+
|
796 |
+
inline Vectorized<float> Vectorized<float>::lt(const Vectorized<float>& other) const {
|
797 |
+
return (*this < other) & Vectorized<float>(1.0f);
|
798 |
+
}
|
799 |
+
|
800 |
+
inline Vectorized<float> Vectorized<float>::le(const Vectorized<float>& other) const {
|
801 |
+
return (*this <= other) & Vectorized<float>(1.0f);
|
802 |
+
}
|
803 |
+
|
804 |
+
template <>
|
805 |
+
inline void convert(const float* src, int32_t* dst, int64_t n) {
|
806 |
+
int64_t i;
|
807 |
+
#pragma unroll
|
808 |
+
for (i = 0; i <= (n - Vectorized<float>::size()); i += Vectorized<float>::size()) {
|
809 |
+
vst1q_s32(dst + i, vcvtq_s32_f32(vld1q_f32(src + i)));
|
810 |
+
vst1q_s32(dst + i + 4, vcvtq_s32_f32(vld1q_f32(src + i + 4)));
|
811 |
+
}
|
812 |
+
#pragma unroll
|
813 |
+
for (; i < n; i++) {
|
814 |
+
dst[i] = static_cast<int32_t>(src[i]);
|
815 |
+
}
|
816 |
+
}
|
817 |
+
|
818 |
+
template <>
|
819 |
+
inline void convert(const int32_t* src, float* dst, int64_t n) {
|
820 |
+
int64_t i;
|
821 |
+
#pragma unroll
|
822 |
+
for (i = 0; i <= (n - Vectorized<float>::size()); i += Vectorized<float>::size()) {
|
823 |
+
vst1q_f32(dst + i, vcvtq_f32_s32(vld1q_s32(src + i)));
|
824 |
+
vst1q_f32(dst + i + 4, vcvtq_f32_s32(vld1q_s32(src + i + 4)));
|
825 |
+
}
|
826 |
+
#pragma unroll
|
827 |
+
for (; i < n; i++) {
|
828 |
+
dst[i] = static_cast<float>(src[i]);
|
829 |
+
}
|
830 |
+
}
|
831 |
+
|
832 |
+
template <>
|
833 |
+
Vectorized<float> inline fmadd(const Vectorized<float>& a, const Vectorized<float>& b, const Vectorized<float>& c) {
|
834 |
+
float32x4_t r0 = vfmaq_f32(c.get_low(), a.get_low(), b.get_low());
|
835 |
+
float32x4_t r1 = vfmaq_f32(c.get_high(), a.get_high(), b.get_high());
|
836 |
+
return Vectorized<float>(r0, r1);
|
837 |
+
}
|
838 |
+
|
839 |
+
template <>
|
840 |
+
Vectorized<float> inline fmsub(const Vectorized<float>& a, const Vectorized<float>& b, const Vectorized<float>& c) {
|
841 |
+
float32x4_t r0 = vfmsq_f32(c.get_low(), a.get_low(), b.get_low());
|
842 |
+
float32x4_t r1 = vfmsq_f32(c.get_high(), a.get_high(), b.get_high());
|
843 |
+
return Vectorized<float>(r0, r1);
|
844 |
+
}
|
845 |
+
|
846 |
+
inline Vectorized<float> Vectorized<float>::erf() const{
|
847 |
+
// constants
|
848 |
+
const Vectorized<float> neg_zero_vec(-0.f);
|
849 |
+
const Vectorized<float> one_vec(1.0f);
|
850 |
+
const Vectorized<float> p(0.3275911f);
|
851 |
+
const Vectorized<float> p1(0.254829592f);
|
852 |
+
const Vectorized<float> p2(-0.284496736f);
|
853 |
+
const Vectorized<float> p3(1.421413741f);
|
854 |
+
const Vectorized<float> p4(-1.453152027f);
|
855 |
+
const Vectorized<float> p5(1.061405429f);
|
856 |
+
// sign(x)
|
857 |
+
auto sign_mask = neg_zero_vec & *this;
|
858 |
+
auto abs_vec = this->abs();
|
859 |
+
// t = 1 / (p * abs(x) + 1)
|
860 |
+
auto tmp0 = fmadd(p, abs_vec, one_vec);
|
861 |
+
auto t = one_vec / tmp0;
|
862 |
+
// r = p5 * t ^ 4 + p4 * t ^ 3 + p3 * t ^ 2 + p2 * t + p1
|
863 |
+
auto tmp1 = fmadd(p5, t, p4);
|
864 |
+
auto tmp2 = fmadd(tmp1, t, p3);
|
865 |
+
auto tmp3 = fmadd(tmp2, t, p2);
|
866 |
+
auto r = fmadd(tmp3, t, p1);
|
867 |
+
// - exp(- x * x)
|
868 |
+
auto pow_2 = (*this) * (*this);
|
869 |
+
auto neg_pow_2 = pow_2 ^ neg_zero_vec;
|
870 |
+
auto tmp4 = neg_pow_2.map(std::exp); // This can be swapped for a faster implementation of exp.
|
871 |
+
auto tmp5 = tmp4 ^ neg_zero_vec;
|
872 |
+
// erf(x) = sign(x) * (1 - r * t * exp(- x * x))
|
873 |
+
auto tmp6 = t * tmp5;
|
874 |
+
auto tmp7 = fmadd(tmp6, r, one_vec);
|
875 |
+
return tmp7 ^ sign_mask;
|
876 |
+
}
|
877 |
+
#endif /* defined(aarch64) */
|
878 |
+
|
879 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_int.h
ADDED
@@ -0,0 +1,1540 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
#include <ATen/cpu/vec/vec_base.h>
|
8 |
+
#include <c10/macros/Macros.h>
|
9 |
+
#include <c10/util/irange.h>
|
10 |
+
|
11 |
+
namespace at::vec {
|
12 |
+
inline namespace CPU_CAPABILITY {
|
13 |
+
|
14 |
+
#ifdef CPU_CAPABILITY_AVX2
|
15 |
+
|
16 |
+
struct Vectorizedi {
|
17 |
+
protected:
|
18 |
+
__m256i values;
|
19 |
+
|
20 |
+
static inline __m256i invert(const __m256i& v) {
|
21 |
+
const auto ones = _mm256_set1_epi64x(-1);
|
22 |
+
return _mm256_xor_si256(ones, v);
|
23 |
+
}
|
24 |
+
public:
|
25 |
+
Vectorizedi() {}
|
26 |
+
Vectorizedi(__m256i v) : values(v) {}
|
27 |
+
operator __m256i() const {
|
28 |
+
return values;
|
29 |
+
}
|
30 |
+
};
|
31 |
+
|
32 |
+
#else
|
33 |
+
|
34 |
+
struct Vectorizedi {}; // dummy definition to make Vectorizedi always defined
|
35 |
+
|
36 |
+
#endif // CPU_CAPABILITY_AVX2
|
37 |
+
|
38 |
+
#ifdef CPU_CAPABILITY_AVX2
|
39 |
+
|
40 |
+
template <>
|
41 |
+
class Vectorized<int64_t> : public Vectorizedi {
|
42 |
+
private:
|
43 |
+
static const Vectorized<int64_t> ones;
|
44 |
+
public:
|
45 |
+
using value_type = int64_t;
|
46 |
+
using size_type = int;
|
47 |
+
static constexpr size_type size() {
|
48 |
+
return 4;
|
49 |
+
}
|
50 |
+
using Vectorizedi::Vectorizedi;
|
51 |
+
Vectorized() {}
|
52 |
+
Vectorized(int64_t v) { values = _mm256_set1_epi64x(v); }
|
53 |
+
Vectorized(int64_t val1, int64_t val2, int64_t val3, int64_t val4) {
|
54 |
+
values = _mm256_setr_epi64x(val1, val2, val3, val4);
|
55 |
+
}
|
56 |
+
template <int64_t mask>
|
57 |
+
static Vectorized<int64_t> blend(Vectorized<int64_t> a, Vectorized<int64_t> b) {
|
58 |
+
__at_align__ int64_t tmp_values[size()];
|
59 |
+
a.store(tmp_values);
|
60 |
+
if (mask & 0x01)
|
61 |
+
tmp_values[0] = _mm256_extract_epi64(b.values, 0);
|
62 |
+
if (mask & 0x02)
|
63 |
+
tmp_values[1] = _mm256_extract_epi64(b.values, 1);
|
64 |
+
if (mask & 0x04)
|
65 |
+
tmp_values[2] = _mm256_extract_epi64(b.values, 2);
|
66 |
+
if (mask & 0x08)
|
67 |
+
tmp_values[3] = _mm256_extract_epi64(b.values, 3);
|
68 |
+
return loadu(tmp_values);
|
69 |
+
}
|
70 |
+
static Vectorized<int64_t> blendv(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b,
|
71 |
+
const Vectorized<int64_t>& mask) {
|
72 |
+
return _mm256_blendv_epi8(a.values, b.values, mask.values);
|
73 |
+
}
|
74 |
+
template <typename step_t>
|
75 |
+
static Vectorized<int64_t> arange(int64_t base = 0, step_t step = static_cast<step_t>(1)) {
|
76 |
+
return Vectorized<int64_t>(base, base + step, base + 2 * step, base + 3 * step);
|
77 |
+
}
|
78 |
+
static Vectorized<int64_t>
|
79 |
+
set(Vectorized<int64_t> a, Vectorized<int64_t> b, int64_t count = size()) {
|
80 |
+
switch (count) {
|
81 |
+
case 0:
|
82 |
+
return a;
|
83 |
+
case 1:
|
84 |
+
return blend<1>(a, b);
|
85 |
+
case 2:
|
86 |
+
return blend<3>(a, b);
|
87 |
+
case 3:
|
88 |
+
return blend<7>(a, b);
|
89 |
+
}
|
90 |
+
return b;
|
91 |
+
}
|
92 |
+
static Vectorized<int64_t> loadu(const void* ptr) {
|
93 |
+
return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(ptr));
|
94 |
+
}
|
95 |
+
static Vectorized<int64_t> loadu(const void* ptr, int64_t count) {
|
96 |
+
__at_align__ int64_t tmp_values[size()];
|
97 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
98 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
99 |
+
// instructions while a loop would be compiled to one instruction.
|
100 |
+
for (const auto i : c10::irange(size())) {
|
101 |
+
tmp_values[i] = 0;
|
102 |
+
}
|
103 |
+
std::memcpy(tmp_values, ptr, count * sizeof(int64_t));
|
104 |
+
return loadu(tmp_values);
|
105 |
+
}
|
106 |
+
void store(void* ptr, int count = size()) const {
|
107 |
+
if (count == size()) {
|
108 |
+
// ptr need not to be aligned here. See
|
109 |
+
// https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions/intrinsics-for-load-and-store-operations-1/mm256-storeu-si256.html
|
110 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(ptr), values);
|
111 |
+
} else if (count > 0) {
|
112 |
+
__at_align__ int64_t tmp_values[size()];
|
113 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(tmp_values), values);
|
114 |
+
std::memcpy(ptr, tmp_values, count * sizeof(int64_t));
|
115 |
+
}
|
116 |
+
}
|
117 |
+
const int64_t& operator[](int idx) const = delete;
|
118 |
+
int64_t& operator[](int idx) = delete;
|
119 |
+
Vectorized<int64_t> abs() const {
|
120 |
+
auto zero = _mm256_set1_epi64x(0);
|
121 |
+
auto is_larger = _mm256_cmpgt_epi64(zero, values);
|
122 |
+
auto inverse = _mm256_xor_si256(values, is_larger);
|
123 |
+
return _mm256_sub_epi64(inverse, is_larger);
|
124 |
+
}
|
125 |
+
Vectorized<int64_t> real() const {
|
126 |
+
return *this;
|
127 |
+
}
|
128 |
+
Vectorized<int64_t> imag() const {
|
129 |
+
return _mm256_set1_epi64x(0);
|
130 |
+
}
|
131 |
+
Vectorized<int64_t> conj() const {
|
132 |
+
return *this;
|
133 |
+
}
|
134 |
+
Vectorized<int64_t> neg() const;
|
135 |
+
Vectorized<int64_t> operator==(const Vectorized<int64_t>& other) const {
|
136 |
+
return _mm256_cmpeq_epi64(values, other.values);
|
137 |
+
}
|
138 |
+
Vectorized<int64_t> operator!=(const Vectorized<int64_t>& other) const {
|
139 |
+
return invert(_mm256_cmpeq_epi64(values, other.values));
|
140 |
+
}
|
141 |
+
Vectorized<int64_t> operator<(const Vectorized<int64_t>& other) const {
|
142 |
+
return _mm256_cmpgt_epi64(other.values, values);
|
143 |
+
}
|
144 |
+
Vectorized<int64_t> operator<=(const Vectorized<int64_t>& other) const {
|
145 |
+
return invert(_mm256_cmpgt_epi64(values, other.values));
|
146 |
+
}
|
147 |
+
Vectorized<int64_t> operator>(const Vectorized<int64_t>& other) const {
|
148 |
+
return _mm256_cmpgt_epi64(values, other.values);
|
149 |
+
}
|
150 |
+
Vectorized<int64_t> operator>=(const Vectorized<int64_t>& other) const {
|
151 |
+
return invert(_mm256_cmpgt_epi64(other.values, values));
|
152 |
+
}
|
153 |
+
|
154 |
+
Vectorized<int64_t> eq(const Vectorized<int64_t>& other) const;
|
155 |
+
Vectorized<int64_t> ne(const Vectorized<int64_t>& other) const;
|
156 |
+
Vectorized<int64_t> gt(const Vectorized<int64_t>& other) const;
|
157 |
+
Vectorized<int64_t> ge(const Vectorized<int64_t>& other) const;
|
158 |
+
Vectorized<int64_t> lt(const Vectorized<int64_t>& other) const;
|
159 |
+
Vectorized<int64_t> le(const Vectorized<int64_t>& other) const;
|
160 |
+
};
|
161 |
+
|
162 |
+
template <>
|
163 |
+
class Vectorized<int32_t> : public Vectorizedi {
|
164 |
+
private:
|
165 |
+
static const Vectorized<int32_t> ones;
|
166 |
+
public:
|
167 |
+
using value_type = int32_t;
|
168 |
+
static constexpr int size() {
|
169 |
+
return 8;
|
170 |
+
}
|
171 |
+
using Vectorizedi::Vectorizedi;
|
172 |
+
Vectorized() {}
|
173 |
+
Vectorized(int32_t v) { values = _mm256_set1_epi32(v); }
|
174 |
+
Vectorized(int32_t val1, int32_t val2, int32_t val3, int32_t val4,
|
175 |
+
int32_t val5, int32_t val6, int32_t val7, int32_t val8) {
|
176 |
+
values = _mm256_setr_epi32(val1, val2, val3, val4, val5, val6, val7, val8);
|
177 |
+
}
|
178 |
+
template <int64_t mask>
|
179 |
+
static Vectorized<int32_t> blend(Vectorized<int32_t> a, Vectorized<int32_t> b) {
|
180 |
+
return _mm256_blend_epi32(a, b, mask);
|
181 |
+
}
|
182 |
+
static Vectorized<int32_t> blendv(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b,
|
183 |
+
const Vectorized<int32_t>& mask) {
|
184 |
+
return _mm256_blendv_epi8(a.values, b.values, mask.values);
|
185 |
+
}
|
186 |
+
template <typename step_t>
|
187 |
+
static Vectorized<int32_t> arange(int32_t base = 0, step_t step = static_cast<step_t>(1)) {
|
188 |
+
return Vectorized<int32_t>(
|
189 |
+
base, base + step, base + 2 * step, base + 3 * step,
|
190 |
+
base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step);
|
191 |
+
}
|
192 |
+
static Vectorized<int32_t>
|
193 |
+
set(Vectorized<int32_t> a, Vectorized<int32_t> b, int32_t count = size()) {
|
194 |
+
switch (count) {
|
195 |
+
case 0:
|
196 |
+
return a;
|
197 |
+
case 1:
|
198 |
+
return blend<1>(a, b);
|
199 |
+
case 2:
|
200 |
+
return blend<3>(a, b);
|
201 |
+
case 3:
|
202 |
+
return blend<7>(a, b);
|
203 |
+
case 4:
|
204 |
+
return blend<15>(a, b);
|
205 |
+
case 5:
|
206 |
+
return blend<31>(a, b);
|
207 |
+
case 6:
|
208 |
+
return blend<63>(a, b);
|
209 |
+
case 7:
|
210 |
+
return blend<127>(a, b);
|
211 |
+
}
|
212 |
+
return b;
|
213 |
+
}
|
214 |
+
static Vectorized<int32_t> loadu(const void* ptr) {
|
215 |
+
return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(ptr));
|
216 |
+
}
|
217 |
+
static Vectorized<int32_t> loadu(const void* ptr, int32_t count) {
|
218 |
+
__at_align__ int32_t tmp_values[size()];
|
219 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
220 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
221 |
+
// instructions while a loop would be compiled to one instruction.
|
222 |
+
for (const auto i : c10::irange(size())) {
|
223 |
+
tmp_values[i] = 0;
|
224 |
+
}
|
225 |
+
std::memcpy(tmp_values, ptr, count * sizeof(int32_t));
|
226 |
+
return loadu(tmp_values);
|
227 |
+
}
|
228 |
+
void store(void* ptr, int count = size()) const {
|
229 |
+
if (count == size()) {
|
230 |
+
// ptr need not to be aligned here. See
|
231 |
+
// https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions/intrinsics-for-load-and-store-operations-1/mm256-storeu-si256.html
|
232 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(ptr), values);
|
233 |
+
} else if (count > 0) {
|
234 |
+
__at_align__ int32_t tmp_values[size()];
|
235 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(tmp_values), values);
|
236 |
+
std::memcpy(ptr, tmp_values, count * sizeof(int32_t));
|
237 |
+
}
|
238 |
+
}
|
239 |
+
const int32_t& operator[](int idx) const = delete;
|
240 |
+
int32_t& operator[](int idx) = delete;
|
241 |
+
Vectorized<int32_t> abs() const {
|
242 |
+
return _mm256_abs_epi32(values);
|
243 |
+
}
|
244 |
+
Vectorized<int32_t> real() const {
|
245 |
+
return *this;
|
246 |
+
}
|
247 |
+
Vectorized<int32_t> imag() const {
|
248 |
+
return _mm256_set1_epi32(0);
|
249 |
+
}
|
250 |
+
Vectorized<int32_t> conj() const {
|
251 |
+
return *this;
|
252 |
+
}
|
253 |
+
Vectorized<int32_t> neg() const;
|
254 |
+
Vectorized<int32_t> operator==(const Vectorized<int32_t>& other) const {
|
255 |
+
return _mm256_cmpeq_epi32(values, other.values);
|
256 |
+
}
|
257 |
+
Vectorized<int32_t> operator!=(const Vectorized<int32_t>& other) const {
|
258 |
+
return invert(_mm256_cmpeq_epi32(values, other.values));
|
259 |
+
}
|
260 |
+
Vectorized<int32_t> operator<(const Vectorized<int32_t>& other) const {
|
261 |
+
return _mm256_cmpgt_epi32(other.values, values);
|
262 |
+
}
|
263 |
+
Vectorized<int32_t> operator<=(const Vectorized<int32_t>& other) const {
|
264 |
+
return invert(_mm256_cmpgt_epi32(values, other.values));
|
265 |
+
}
|
266 |
+
Vectorized<int32_t> operator>(const Vectorized<int32_t>& other) const {
|
267 |
+
return _mm256_cmpgt_epi32(values, other.values);
|
268 |
+
}
|
269 |
+
Vectorized<int32_t> operator>=(const Vectorized<int32_t>& other) const {
|
270 |
+
return invert(_mm256_cmpgt_epi32(other.values, values));
|
271 |
+
}
|
272 |
+
Vectorized<int32_t> eq(const Vectorized<int32_t>& other) const;
|
273 |
+
Vectorized<int32_t> ne(const Vectorized<int32_t>& other) const;
|
274 |
+
Vectorized<int32_t> gt(const Vectorized<int32_t>& other) const;
|
275 |
+
Vectorized<int32_t> ge(const Vectorized<int32_t>& other) const;
|
276 |
+
Vectorized<int32_t> lt(const Vectorized<int32_t>& other) const;
|
277 |
+
Vectorized<int32_t> le(const Vectorized<int32_t>& other) const;
|
278 |
+
};
|
279 |
+
|
280 |
+
template <>
|
281 |
+
inline void convert(const int32_t *src, float *dst, int64_t n) {
|
282 |
+
int64_t i;
|
283 |
+
// int32_t and float have same size
|
284 |
+
#ifndef _MSC_VER
|
285 |
+
# pragma unroll
|
286 |
+
#endif
|
287 |
+
for (i = 0; i <= (n - Vectorized<int32_t>::size()); i += Vectorized<int32_t>::size()) {
|
288 |
+
auto input_vec = _mm256_loadu_si256(reinterpret_cast<const __m256i*>(src + i));
|
289 |
+
auto output_vec = _mm256_cvtepi32_ps(input_vec);
|
290 |
+
_mm256_storeu_ps(reinterpret_cast<float*>(dst + i), output_vec);
|
291 |
+
}
|
292 |
+
#ifndef _MSC_VER
|
293 |
+
# pragma unroll
|
294 |
+
#endif
|
295 |
+
for (; i < n; i++) {
|
296 |
+
dst[i] = static_cast<float>(src[i]);
|
297 |
+
}
|
298 |
+
}
|
299 |
+
|
300 |
+
template <>
|
301 |
+
inline void convert(const int32_t *src, double *dst, int64_t n) {
|
302 |
+
int64_t i;
|
303 |
+
// int32_t has half the size of double
|
304 |
+
#ifndef _MSC_VER
|
305 |
+
# pragma unroll
|
306 |
+
#endif
|
307 |
+
for (i = 0; i <= (n - Vectorized<double>::size()); i += Vectorized<double>::size()) {
|
308 |
+
auto input_128_vec = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src + i));
|
309 |
+
auto output_vec = _mm256_cvtepi32_pd(input_128_vec);
|
310 |
+
_mm256_storeu_pd(reinterpret_cast<double*>(dst + i), output_vec);
|
311 |
+
}
|
312 |
+
#ifndef _MSC_VER
|
313 |
+
# pragma unroll
|
314 |
+
#endif
|
315 |
+
for (; i < n; i++) {
|
316 |
+
dst[i] = static_cast<double>(src[i]);
|
317 |
+
}
|
318 |
+
}
|
319 |
+
|
320 |
+
template <>
|
321 |
+
class Vectorized<int16_t> : public Vectorizedi {
|
322 |
+
private:
|
323 |
+
static const Vectorized<int16_t> ones;
|
324 |
+
public:
|
325 |
+
using value_type = int16_t;
|
326 |
+
static constexpr int size() {
|
327 |
+
return 16;
|
328 |
+
}
|
329 |
+
using Vectorizedi::Vectorizedi;
|
330 |
+
Vectorized() {}
|
331 |
+
Vectorized(int16_t v) { values = _mm256_set1_epi16(v); }
|
332 |
+
Vectorized(int16_t val1, int16_t val2, int16_t val3, int16_t val4,
|
333 |
+
int16_t val5, int16_t val6, int16_t val7, int16_t val8,
|
334 |
+
int16_t val9, int16_t val10, int16_t val11, int16_t val12,
|
335 |
+
int16_t val13, int16_t val14, int16_t val15, int16_t val16) {
|
336 |
+
values = _mm256_setr_epi16(val1, val2, val3, val4, val5, val6, val7, val8,
|
337 |
+
val9, val10, val11, val12, val13, val14, val15, val16);
|
338 |
+
}
|
339 |
+
template <int64_t mask>
|
340 |
+
static Vectorized<int16_t> blend(Vectorized<int16_t> a, Vectorized<int16_t> b) {
|
341 |
+
__at_align__ int16_t tmp_values[size()];
|
342 |
+
a.store(tmp_values);
|
343 |
+
if (mask & 0x01)
|
344 |
+
tmp_values[0] = _mm256_extract_epi16(b.values, 0);
|
345 |
+
if (mask & 0x02)
|
346 |
+
tmp_values[1] = _mm256_extract_epi16(b.values, 1);
|
347 |
+
if (mask & 0x04)
|
348 |
+
tmp_values[2] = _mm256_extract_epi16(b.values, 2);
|
349 |
+
if (mask & 0x08)
|
350 |
+
tmp_values[3] = _mm256_extract_epi16(b.values, 3);
|
351 |
+
if (mask & 0x10)
|
352 |
+
tmp_values[4] = _mm256_extract_epi16(b.values, 4);
|
353 |
+
if (mask & 0x20)
|
354 |
+
tmp_values[5] = _mm256_extract_epi16(b.values, 5);
|
355 |
+
if (mask & 0x40)
|
356 |
+
tmp_values[6] = _mm256_extract_epi16(b.values, 6);
|
357 |
+
if (mask & 0x80)
|
358 |
+
tmp_values[7] = _mm256_extract_epi16(b.values, 7);
|
359 |
+
if (mask & 0x100)
|
360 |
+
tmp_values[8] = _mm256_extract_epi16(b.values, 8);
|
361 |
+
if (mask & 0x200)
|
362 |
+
tmp_values[9] = _mm256_extract_epi16(b.values, 9);
|
363 |
+
if (mask & 0x400)
|
364 |
+
tmp_values[10] = _mm256_extract_epi16(b.values, 10);
|
365 |
+
if (mask & 0x800)
|
366 |
+
tmp_values[11] = _mm256_extract_epi16(b.values, 11);
|
367 |
+
if (mask & 0x1000)
|
368 |
+
tmp_values[12] = _mm256_extract_epi16(b.values, 12);
|
369 |
+
if (mask & 0x2000)
|
370 |
+
tmp_values[13] = _mm256_extract_epi16(b.values, 13);
|
371 |
+
if (mask & 0x4000)
|
372 |
+
tmp_values[14] = _mm256_extract_epi16(b.values, 14);
|
373 |
+
if (mask & 0x8000)
|
374 |
+
tmp_values[15] = _mm256_extract_epi16(b.values, 15);
|
375 |
+
return loadu(tmp_values);
|
376 |
+
}
|
377 |
+
static Vectorized<int16_t> blendv(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b,
|
378 |
+
const Vectorized<int16_t>& mask) {
|
379 |
+
return _mm256_blendv_epi8(a.values, b.values, mask.values);
|
380 |
+
}
|
381 |
+
template <typename step_t>
|
382 |
+
static Vectorized<int16_t> arange(int16_t base = 0, step_t step = static_cast<step_t>(1)) {
|
383 |
+
return Vectorized<int16_t>(
|
384 |
+
base, base + step, base + 2 * step, base + 3 * step,
|
385 |
+
base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step,
|
386 |
+
base + 8 * step, base + 9 * step, base + 10 * step, base + 11 * step,
|
387 |
+
base + 12 * step, base + 13 * step, base + 14 * step, base + 15 * step);
|
388 |
+
}
|
389 |
+
static Vectorized<int16_t>
|
390 |
+
set(Vectorized<int16_t> a, Vectorized<int16_t> b, int16_t count = size()) {
|
391 |
+
switch (count) {
|
392 |
+
case 0:
|
393 |
+
return a;
|
394 |
+
case 1:
|
395 |
+
return blend<1>(a, b);
|
396 |
+
case 2:
|
397 |
+
return blend<3>(a, b);
|
398 |
+
case 3:
|
399 |
+
return blend<7>(a, b);
|
400 |
+
case 4:
|
401 |
+
return blend<15>(a, b);
|
402 |
+
case 5:
|
403 |
+
return blend<31>(a, b);
|
404 |
+
case 6:
|
405 |
+
return blend<63>(a, b);
|
406 |
+
case 7:
|
407 |
+
return blend<127>(a, b);
|
408 |
+
case 8:
|
409 |
+
return blend<255>(a, b);
|
410 |
+
case 9:
|
411 |
+
return blend<511>(a, b);
|
412 |
+
case 10:
|
413 |
+
return blend<1023>(a, b);
|
414 |
+
case 11:
|
415 |
+
return blend<2047>(a, b);
|
416 |
+
case 12:
|
417 |
+
return blend<4095>(a, b);
|
418 |
+
case 13:
|
419 |
+
return blend<8191>(a, b);
|
420 |
+
case 14:
|
421 |
+
return blend<16383>(a, b);
|
422 |
+
case 15:
|
423 |
+
return blend<32767>(a, b);
|
424 |
+
}
|
425 |
+
return b;
|
426 |
+
}
|
427 |
+
static Vectorized<int16_t> loadu(const void* ptr) {
|
428 |
+
return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(ptr));
|
429 |
+
}
|
430 |
+
static Vectorized<int16_t> loadu(const void* ptr, int16_t count) {
|
431 |
+
__at_align__ int16_t tmp_values[size()];
|
432 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
433 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
434 |
+
// instructions while a loop would be compiled to one instruction.
|
435 |
+
for (const auto i : c10::irange(size())) {
|
436 |
+
tmp_values[i] = 0;
|
437 |
+
}
|
438 |
+
std::memcpy(tmp_values, ptr, count * sizeof(int16_t));
|
439 |
+
return loadu(tmp_values);
|
440 |
+
}
|
441 |
+
void store(void* ptr, int count = size()) const {
|
442 |
+
if (count == size()) {
|
443 |
+
// ptr need not to be aligned here. See
|
444 |
+
// https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions/intrinsics-for-load-and-store-operations-1/mm256-storeu-si256.html
|
445 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(ptr), values);
|
446 |
+
} else if (count > 0) {
|
447 |
+
__at_align__ int16_t tmp_values[size()];
|
448 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(tmp_values), values);
|
449 |
+
std::memcpy(ptr, tmp_values, count * sizeof(int16_t));
|
450 |
+
}
|
451 |
+
}
|
452 |
+
const int16_t& operator[](int idx) const = delete;
|
453 |
+
int16_t& operator[](int idx) = delete;
|
454 |
+
Vectorized<int16_t> abs() const {
|
455 |
+
return _mm256_abs_epi16(values);
|
456 |
+
}
|
457 |
+
Vectorized<int16_t> real() const {
|
458 |
+
return *this;
|
459 |
+
}
|
460 |
+
Vectorized<int16_t> imag() const {
|
461 |
+
return _mm256_set1_epi16(0);
|
462 |
+
}
|
463 |
+
Vectorized<int16_t> conj() const {
|
464 |
+
return *this;
|
465 |
+
}
|
466 |
+
Vectorized<int16_t> neg() const;
|
467 |
+
Vectorized<int16_t> operator==(const Vectorized<int16_t>& other) const {
|
468 |
+
return _mm256_cmpeq_epi16(values, other.values);
|
469 |
+
}
|
470 |
+
Vectorized<int16_t> operator!=(const Vectorized<int16_t>& other) const {
|
471 |
+
return invert(_mm256_cmpeq_epi16(values, other.values));
|
472 |
+
}
|
473 |
+
Vectorized<int16_t> operator<(const Vectorized<int16_t>& other) const {
|
474 |
+
return _mm256_cmpgt_epi16(other.values, values);
|
475 |
+
}
|
476 |
+
Vectorized<int16_t> operator<=(const Vectorized<int16_t>& other) const {
|
477 |
+
return invert(_mm256_cmpgt_epi16(values, other.values));
|
478 |
+
}
|
479 |
+
Vectorized<int16_t> operator>(const Vectorized<int16_t>& other) const {
|
480 |
+
return _mm256_cmpgt_epi16(values, other.values);
|
481 |
+
}
|
482 |
+
Vectorized<int16_t> operator>=(const Vectorized<int16_t>& other) const {
|
483 |
+
return invert(_mm256_cmpgt_epi16(other.values, values));
|
484 |
+
}
|
485 |
+
|
486 |
+
Vectorized<int16_t> eq(const Vectorized<int16_t>& other) const;
|
487 |
+
Vectorized<int16_t> ne(const Vectorized<int16_t>& other) const;
|
488 |
+
Vectorized<int16_t> gt(const Vectorized<int16_t>& other) const;
|
489 |
+
Vectorized<int16_t> ge(const Vectorized<int16_t>& other) const;
|
490 |
+
Vectorized<int16_t> lt(const Vectorized<int16_t>& other) const;
|
491 |
+
Vectorized<int16_t> le(const Vectorized<int16_t>& other) const;
|
492 |
+
};
|
493 |
+
|
494 |
+
template <typename T>
|
495 |
+
class Vectorized8 : public Vectorizedi {
|
496 |
+
static_assert(
|
497 |
+
std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value,
|
498 |
+
"Only int8_t/uint8_t are supported");
|
499 |
+
protected:
|
500 |
+
static const Vectorized<T> ones;
|
501 |
+
public:
|
502 |
+
using value_type = T;
|
503 |
+
static constexpr int size() {
|
504 |
+
return 32;
|
505 |
+
}
|
506 |
+
using Vectorizedi::Vectorizedi;
|
507 |
+
Vectorized8() {}
|
508 |
+
Vectorized8(T v) { values = _mm256_set1_epi8(v); }
|
509 |
+
Vectorized8(T val1, T val2, T val3, T val4,
|
510 |
+
T val5, T val6, T val7, T val8,
|
511 |
+
T val9, T val10, T val11, T val12,
|
512 |
+
T val13, T val14, T val15, T val16,
|
513 |
+
T val17, T val18, T val19, T val20,
|
514 |
+
T val21, T val22, T val23, T val24,
|
515 |
+
T val25, T val26, T val27, T val28,
|
516 |
+
T val29, T val30, T val31, T val32) {
|
517 |
+
values = _mm256_setr_epi8(val1, val2, val3, val4, val5, val6, val7, val8,
|
518 |
+
val9, val10, val11, val12, val13, val14, val15, val16,
|
519 |
+
val17, val18, val19, val20, val21, val22, val23, val24,
|
520 |
+
val25, val26, val27, val28, val29, val30, val31, val32);
|
521 |
+
}
|
522 |
+
template <int64_t mask>
|
523 |
+
static Vectorized<T> blend(Vectorized<T> a, Vectorized<T> b) {
|
524 |
+
__at_align__ T tmp_values[size()];
|
525 |
+
a.store(tmp_values);
|
526 |
+
if (mask & 0x01)
|
527 |
+
tmp_values[0] = _mm256_extract_epi8(b.values, 0);
|
528 |
+
if (mask & 0x02)
|
529 |
+
tmp_values[1] = _mm256_extract_epi8(b.values, 1);
|
530 |
+
if (mask & 0x04)
|
531 |
+
tmp_values[2] = _mm256_extract_epi8(b.values, 2);
|
532 |
+
if (mask & 0x08)
|
533 |
+
tmp_values[3] = _mm256_extract_epi8(b.values, 3);
|
534 |
+
if (mask & 0x10)
|
535 |
+
tmp_values[4] = _mm256_extract_epi8(b.values, 4);
|
536 |
+
if (mask & 0x20)
|
537 |
+
tmp_values[5] = _mm256_extract_epi8(b.values, 5);
|
538 |
+
if (mask & 0x40)
|
539 |
+
tmp_values[6] = _mm256_extract_epi8(b.values, 6);
|
540 |
+
if (mask & 0x80)
|
541 |
+
tmp_values[7] = _mm256_extract_epi8(b.values, 7);
|
542 |
+
if (mask & 0x100)
|
543 |
+
tmp_values[8] = _mm256_extract_epi8(b.values, 8);
|
544 |
+
if (mask & 0x200)
|
545 |
+
tmp_values[9] = _mm256_extract_epi8(b.values, 9);
|
546 |
+
if (mask & 0x400)
|
547 |
+
tmp_values[10] = _mm256_extract_epi8(b.values, 10);
|
548 |
+
if (mask & 0x800)
|
549 |
+
tmp_values[11] = _mm256_extract_epi8(b.values, 11);
|
550 |
+
if (mask & 0x1000)
|
551 |
+
tmp_values[12] = _mm256_extract_epi8(b.values, 12);
|
552 |
+
if (mask & 0x2000)
|
553 |
+
tmp_values[13] = _mm256_extract_epi8(b.values, 13);
|
554 |
+
if (mask & 0x4000)
|
555 |
+
tmp_values[14] = _mm256_extract_epi8(b.values, 14);
|
556 |
+
if (mask & 0x8000)
|
557 |
+
tmp_values[15] = _mm256_extract_epi8(b.values, 15);
|
558 |
+
if (mask & 0x010000)
|
559 |
+
tmp_values[16] = _mm256_extract_epi8(b.values, 16);
|
560 |
+
if (mask & 0x020000)
|
561 |
+
tmp_values[17] = _mm256_extract_epi8(b.values, 17);
|
562 |
+
if (mask & 0x040000)
|
563 |
+
tmp_values[18] = _mm256_extract_epi8(b.values, 18);
|
564 |
+
if (mask & 0x080000)
|
565 |
+
tmp_values[19] = _mm256_extract_epi8(b.values, 19);
|
566 |
+
if (mask & 0x100000)
|
567 |
+
tmp_values[20] = _mm256_extract_epi8(b.values, 20);
|
568 |
+
if (mask & 0x200000)
|
569 |
+
tmp_values[21] = _mm256_extract_epi8(b.values, 21);
|
570 |
+
if (mask & 0x400000)
|
571 |
+
tmp_values[22] = _mm256_extract_epi8(b.values, 22);
|
572 |
+
if (mask & 0x800000)
|
573 |
+
tmp_values[23] = _mm256_extract_epi8(b.values, 23);
|
574 |
+
if (mask & 0x1000000)
|
575 |
+
tmp_values[24] = _mm256_extract_epi8(b.values, 24);
|
576 |
+
if (mask & 0x2000000)
|
577 |
+
tmp_values[25] = _mm256_extract_epi8(b.values, 25);
|
578 |
+
if (mask & 0x4000000)
|
579 |
+
tmp_values[26] = _mm256_extract_epi8(b.values, 26);
|
580 |
+
if (mask & 0x8000000)
|
581 |
+
tmp_values[27] = _mm256_extract_epi8(b.values, 27);
|
582 |
+
if (mask & 0x10000000)
|
583 |
+
tmp_values[28] = _mm256_extract_epi8(b.values, 28);
|
584 |
+
if (mask & 0x20000000)
|
585 |
+
tmp_values[29] = _mm256_extract_epi8(b.values, 29);
|
586 |
+
if (mask & 0x40000000)
|
587 |
+
tmp_values[30] = _mm256_extract_epi8(b.values, 30);
|
588 |
+
if (mask & 0x80000000)
|
589 |
+
tmp_values[31] = _mm256_extract_epi8(b.values, 31);
|
590 |
+
return loadu(tmp_values);
|
591 |
+
}
|
592 |
+
static Vectorized<T> blendv(const Vectorized<T>& a, const Vectorized<T>& b,
|
593 |
+
const Vectorized<T>& mask) {
|
594 |
+
return _mm256_blendv_epi8(a.values, b.values, mask.values);
|
595 |
+
}
|
596 |
+
template <typename step_t>
|
597 |
+
static Vectorized<T> arange(T base = 0, step_t step = static_cast<step_t>(1)) {
|
598 |
+
return Vectorized<T>(
|
599 |
+
base, base + step, base + 2 * step, base + 3 * step,
|
600 |
+
base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step,
|
601 |
+
base + 8 * step, base + 9 * step, base + 10 * step, base + 11 * step,
|
602 |
+
base + 12 * step, base + 13 * step, base + 14 * step, base + 15 * step,
|
603 |
+
base + 16 * step, base + 17 * step, base + 18 * step, base + 19 * step,
|
604 |
+
base + 20 * step, base + 21 * step, base + 22 * step, base + 23 * step,
|
605 |
+
base + 24 * step, base + 25 * step, base + 26 * step, base + 27 * step,
|
606 |
+
base + 28 * step, base + 29 * step, base + 30 * step, base + 31 * step);
|
607 |
+
}
|
608 |
+
static Vectorized<T>
|
609 |
+
set(Vectorized<T> a, Vectorized<T> b, T count = size()) {
|
610 |
+
switch (count) {
|
611 |
+
case 0:
|
612 |
+
return a;
|
613 |
+
case 1:
|
614 |
+
return blend<0x1>(a, b);
|
615 |
+
case 2:
|
616 |
+
return blend<0x3>(a, b);
|
617 |
+
case 3:
|
618 |
+
return blend<0x7>(a, b);
|
619 |
+
case 4:
|
620 |
+
return blend<0xF>(a, b);
|
621 |
+
case 5:
|
622 |
+
return blend<0x1F>(a, b);
|
623 |
+
case 6:
|
624 |
+
return blend<0x3F>(a, b);
|
625 |
+
case 7:
|
626 |
+
return blend<0x7F>(a, b);
|
627 |
+
case 8:
|
628 |
+
return blend<0xFF>(a, b);
|
629 |
+
case 9:
|
630 |
+
return blend<0x1FF>(a, b);
|
631 |
+
case 10:
|
632 |
+
return blend<0x3FF>(a, b);
|
633 |
+
case 11:
|
634 |
+
return blend<0x7FF>(a, b);
|
635 |
+
case 12:
|
636 |
+
return blend<0xFFF>(a, b);
|
637 |
+
case 13:
|
638 |
+
return blend<0x1FFF>(a, b);
|
639 |
+
case 14:
|
640 |
+
return blend<0x3FFF>(a, b);
|
641 |
+
case 15:
|
642 |
+
return blend<0x7FFF>(a, b);
|
643 |
+
case 16:
|
644 |
+
return blend<0xFFFF>(a, b);
|
645 |
+
case 17:
|
646 |
+
return blend<0x1FFFF>(a, b);
|
647 |
+
case 18:
|
648 |
+
return blend<0x3FFFF>(a, b);
|
649 |
+
case 19:
|
650 |
+
return blend<0x7FFFF>(a, b);
|
651 |
+
case 20:
|
652 |
+
return blend<0xFFFFF>(a, b);
|
653 |
+
case 21:
|
654 |
+
return blend<0x1FFFFF>(a, b);
|
655 |
+
case 22:
|
656 |
+
return blend<0x3FFFFF>(a, b);
|
657 |
+
case 23:
|
658 |
+
return blend<0x7FFFFF>(a, b);
|
659 |
+
case 24:
|
660 |
+
return blend<0xFFFFFF>(a, b);
|
661 |
+
case 25:
|
662 |
+
return blend<0x1FFFFFF>(a, b);
|
663 |
+
case 26:
|
664 |
+
return blend<0x3FFFFFF>(a, b);
|
665 |
+
case 27:
|
666 |
+
return blend<0x7FFFFFF>(a, b);
|
667 |
+
case 28:
|
668 |
+
return blend<0xFFFFFFF>(a, b);
|
669 |
+
case 29:
|
670 |
+
return blend<0x1FFFFFFF>(a, b);
|
671 |
+
case 30:
|
672 |
+
return blend<0x3FFFFFFF>(a, b);
|
673 |
+
case 31:
|
674 |
+
return blend<0x7FFFFFFF>(a, b);
|
675 |
+
}
|
676 |
+
return b;
|
677 |
+
}
|
678 |
+
static Vectorized<T> loadu(const void* ptr) {
|
679 |
+
return _mm256_loadu_si256(reinterpret_cast<const __m256i*>(ptr));
|
680 |
+
}
|
681 |
+
static Vectorized<T> loadu_one_fourth(const void* ptr) {
|
682 |
+
// Fast path if only load element number of 8.
|
683 |
+
// Note: We didn't merge it as fast path of loadu(const void* ptr, T count),
|
684 |
+
// Because loadu(const void* ptr, T count) requires zero initialization for upper 128 bits.
|
685 |
+
// However, by using _mm256_castsi128_si256, the upper 128 bits of the result are undefined.
|
686 |
+
// TODO<leslie> We can use _mm256_zextsi128_si256 in the furture,
|
687 |
+
// since gcc 9.3 doesn't support it now.
|
688 |
+
__m128i input_128 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(ptr));
|
689 |
+
return _mm256_castsi128_si256(input_128);
|
690 |
+
}
|
691 |
+
static Vectorized<T> loadu(const void* ptr, T count) {
|
692 |
+
__at_align__ T tmp_values[size()];
|
693 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
694 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
695 |
+
// instructions while a loop would be compiled to one instruction.
|
696 |
+
for (const auto i : c10::irange(size())) {
|
697 |
+
tmp_values[i] = 0;
|
698 |
+
}
|
699 |
+
std::memcpy(tmp_values, ptr, count * sizeof(T));
|
700 |
+
return loadu(tmp_values);
|
701 |
+
}
|
702 |
+
void store(void* ptr, int count = size()) const {
|
703 |
+
if (count == size()) {
|
704 |
+
// ptr need not to be aligned here. See
|
705 |
+
// https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions/intrinsics-for-load-and-store-operations-1/mm256-storeu-si256.html
|
706 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(ptr), values);
|
707 |
+
} else if (count > 0) {
|
708 |
+
if (count == 8) {
|
709 |
+
// Fast path if only store element number of 8
|
710 |
+
_mm_storel_epi64(reinterpret_cast<__m128i*>(ptr), _mm256_castsi256_si128(values));
|
711 |
+
} else {
|
712 |
+
__at_align__ T tmp_values[size()];
|
713 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(tmp_values), values);
|
714 |
+
std::memcpy(ptr, tmp_values, count * sizeof(T));
|
715 |
+
}
|
716 |
+
}
|
717 |
+
}
|
718 |
+
const T& operator[](int idx) const = delete;
|
719 |
+
T& operator[](int idx) = delete;
|
720 |
+
Vectorized<T> real() const {
|
721 |
+
return *this;
|
722 |
+
}
|
723 |
+
Vectorized<T> imag() const {
|
724 |
+
return _mm256_set1_epi8(0);
|
725 |
+
}
|
726 |
+
Vectorized<T> conj() const {
|
727 |
+
return *this;
|
728 |
+
}
|
729 |
+
};
|
730 |
+
|
731 |
+
template<>
|
732 |
+
class Vectorized<int8_t>: public Vectorized8<int8_t> {
|
733 |
+
public:
|
734 |
+
using Vectorized8::Vectorized8;
|
735 |
+
|
736 |
+
Vectorized<int8_t> neg() const;
|
737 |
+
|
738 |
+
Vectorized<int8_t> abs() const {
|
739 |
+
return _mm256_abs_epi8(values);
|
740 |
+
}
|
741 |
+
|
742 |
+
Vectorized<int8_t> operator==(const Vectorized<int8_t>& other) const {
|
743 |
+
return _mm256_cmpeq_epi8(values, other.values);
|
744 |
+
}
|
745 |
+
Vectorized<int8_t> operator!=(const Vectorized<int8_t>& other) const {
|
746 |
+
return invert(_mm256_cmpeq_epi8(values, other.values));
|
747 |
+
}
|
748 |
+
Vectorized<int8_t> operator<(const Vectorized<int8_t>& other) const {
|
749 |
+
return _mm256_cmpgt_epi8(other.values, values);
|
750 |
+
}
|
751 |
+
Vectorized<int8_t> operator<=(const Vectorized<int8_t>& other) const {
|
752 |
+
return invert(_mm256_cmpgt_epi8(values, other.values));
|
753 |
+
}
|
754 |
+
Vectorized<int8_t> operator>(const Vectorized<int8_t>& other) const {
|
755 |
+
return other < *this;
|
756 |
+
}
|
757 |
+
Vectorized<int8_t> operator>=(const Vectorized<int8_t>& other) const {
|
758 |
+
return other <= *this;
|
759 |
+
}
|
760 |
+
|
761 |
+
Vectorized<int8_t> eq(const Vectorized<int8_t>& other) const;
|
762 |
+
Vectorized<int8_t> ne(const Vectorized<int8_t>& other) const;
|
763 |
+
Vectorized<int8_t> gt(const Vectorized<int8_t>& other) const;
|
764 |
+
Vectorized<int8_t> ge(const Vectorized<int8_t>& other) const;
|
765 |
+
Vectorized<int8_t> lt(const Vectorized<int8_t>& other) const;
|
766 |
+
Vectorized<int8_t> le(const Vectorized<int8_t>& other) const;
|
767 |
+
};
|
768 |
+
|
769 |
+
template<>
|
770 |
+
class Vectorized<uint8_t>: public Vectorized8<uint8_t> {
|
771 |
+
public:
|
772 |
+
using Vectorized8::Vectorized8;
|
773 |
+
|
774 |
+
Vectorized<uint8_t> neg() const;
|
775 |
+
|
776 |
+
Vectorized<uint8_t> abs() const {
|
777 |
+
return *this;
|
778 |
+
}
|
779 |
+
|
780 |
+
Vectorized<uint8_t> operator==(const Vectorized<uint8_t>& other) const {
|
781 |
+
return _mm256_cmpeq_epi8(values, other.values);
|
782 |
+
}
|
783 |
+
Vectorized<uint8_t> operator!=(const Vectorized<uint8_t>& other) const {
|
784 |
+
return invert(_mm256_cmpeq_epi8(values, other.values));
|
785 |
+
}
|
786 |
+
Vectorized<uint8_t> operator<(const Vectorized<uint8_t>& other) const {
|
787 |
+
__m256i max = _mm256_max_epu8(values, other.values);
|
788 |
+
return invert(_mm256_cmpeq_epi8(max, values));
|
789 |
+
}
|
790 |
+
Vectorized<uint8_t> operator<=(const Vectorized<uint8_t>& other) const {
|
791 |
+
__m256i max = _mm256_max_epu8(values, other.values);
|
792 |
+
return _mm256_cmpeq_epi8(max, other.values);
|
793 |
+
}
|
794 |
+
Vectorized<uint8_t> operator>(const Vectorized<uint8_t>& other) const {
|
795 |
+
return other < *this;
|
796 |
+
}
|
797 |
+
Vectorized<uint8_t> operator>=(const Vectorized<uint8_t>& other) const {
|
798 |
+
return other <= *this;
|
799 |
+
}
|
800 |
+
|
801 |
+
Vectorized<uint8_t> eq(const Vectorized<uint8_t>& other) const;
|
802 |
+
Vectorized<uint8_t> ne(const Vectorized<uint8_t>& other) const;
|
803 |
+
Vectorized<uint8_t> gt(const Vectorized<uint8_t>& other) const;
|
804 |
+
Vectorized<uint8_t> ge(const Vectorized<uint8_t>& other) const;
|
805 |
+
Vectorized<uint8_t> lt(const Vectorized<uint8_t>& other) const;
|
806 |
+
Vectorized<uint8_t> le(const Vectorized<uint8_t>& other) const;
|
807 |
+
};
|
808 |
+
|
809 |
+
template <>
|
810 |
+
Vectorized<int64_t> inline operator+(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
811 |
+
return _mm256_add_epi64(a, b);
|
812 |
+
}
|
813 |
+
|
814 |
+
template <>
|
815 |
+
Vectorized<int32_t> inline operator+(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
816 |
+
return _mm256_add_epi32(a, b);
|
817 |
+
}
|
818 |
+
|
819 |
+
template <>
|
820 |
+
Vectorized<int16_t> inline operator+(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
821 |
+
return _mm256_add_epi16(a, b);
|
822 |
+
}
|
823 |
+
|
824 |
+
template <>
|
825 |
+
Vectorized<int8_t> inline operator+(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
826 |
+
return _mm256_add_epi8(a, b);
|
827 |
+
}
|
828 |
+
|
829 |
+
template <>
|
830 |
+
Vectorized<uint8_t> inline operator+(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
831 |
+
return _mm256_add_epi8(a, b);
|
832 |
+
}
|
833 |
+
|
834 |
+
template <>
|
835 |
+
Vectorized<int64_t> inline operator-(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
836 |
+
return _mm256_sub_epi64(a, b);
|
837 |
+
}
|
838 |
+
|
839 |
+
template <>
|
840 |
+
Vectorized<int32_t> inline operator-(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
841 |
+
return _mm256_sub_epi32(a, b);
|
842 |
+
}
|
843 |
+
|
844 |
+
template <>
|
845 |
+
Vectorized<int16_t> inline operator-(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
846 |
+
return _mm256_sub_epi16(a, b);
|
847 |
+
}
|
848 |
+
|
849 |
+
template <>
|
850 |
+
Vectorized<int8_t> inline operator-(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
851 |
+
return _mm256_sub_epi8(a, b);
|
852 |
+
}
|
853 |
+
|
854 |
+
template <>
|
855 |
+
Vectorized<uint8_t> inline operator-(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
856 |
+
return _mm256_sub_epi8(a, b);
|
857 |
+
}
|
858 |
+
|
859 |
+
// Negation. Defined here so we can utilize operator-
|
860 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::neg() const {
|
861 |
+
return Vectorized<int64_t>(0) - *this;
|
862 |
+
}
|
863 |
+
|
864 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::neg() const {
|
865 |
+
return Vectorized<int32_t>(0) - *this;
|
866 |
+
}
|
867 |
+
|
868 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::neg() const {
|
869 |
+
return Vectorized<int16_t>(0) - *this;
|
870 |
+
}
|
871 |
+
|
872 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::neg() const {
|
873 |
+
return Vectorized<int8_t>(0) - *this;
|
874 |
+
}
|
875 |
+
|
876 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::neg() const {
|
877 |
+
return Vectorized<uint8_t>(0) - *this;
|
878 |
+
}
|
879 |
+
|
880 |
+
// Emulate operations with no native 64-bit support in avx,
|
881 |
+
// by extracting each element, performing the operation pointwise,
|
882 |
+
// then combining the results into a vector.
|
883 |
+
template <typename op_t>
|
884 |
+
Vectorized<int64_t> inline emulate(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b, const op_t& op) {
|
885 |
+
int64_t a0 = _mm256_extract_epi64(a, 0);
|
886 |
+
int64_t a1 = _mm256_extract_epi64(a, 1);
|
887 |
+
int64_t a2 = _mm256_extract_epi64(a, 2);
|
888 |
+
int64_t a3 = _mm256_extract_epi64(a, 3);
|
889 |
+
|
890 |
+
int64_t b0 = _mm256_extract_epi64(b, 0);
|
891 |
+
int64_t b1 = _mm256_extract_epi64(b, 1);
|
892 |
+
int64_t b2 = _mm256_extract_epi64(b, 2);
|
893 |
+
int64_t b3 = _mm256_extract_epi64(b, 3);
|
894 |
+
|
895 |
+
int64_t c0 = op(a0, b0);
|
896 |
+
int64_t c1 = op(a1, b1);
|
897 |
+
int64_t c2 = op(a2, b2);
|
898 |
+
int64_t c3 = op(a3, b3);
|
899 |
+
|
900 |
+
return _mm256_set_epi64x(c3, c2, c1, c0);
|
901 |
+
}
|
902 |
+
|
903 |
+
template <typename op_t>
|
904 |
+
Vectorized<int64_t> inline emulate(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b, const Vectorized<int64_t>& c, const op_t& op) {
|
905 |
+
int64_t a0 = _mm256_extract_epi64(a, 0);
|
906 |
+
int64_t a1 = _mm256_extract_epi64(a, 1);
|
907 |
+
int64_t a2 = _mm256_extract_epi64(a, 2);
|
908 |
+
int64_t a3 = _mm256_extract_epi64(a, 3);
|
909 |
+
|
910 |
+
int64_t b0 = _mm256_extract_epi64(b, 0);
|
911 |
+
int64_t b1 = _mm256_extract_epi64(b, 1);
|
912 |
+
int64_t b2 = _mm256_extract_epi64(b, 2);
|
913 |
+
int64_t b3 = _mm256_extract_epi64(b, 3);
|
914 |
+
|
915 |
+
int64_t c0 = _mm256_extract_epi64(c, 0);
|
916 |
+
int64_t c1 = _mm256_extract_epi64(c, 1);
|
917 |
+
int64_t c2 = _mm256_extract_epi64(c, 2);
|
918 |
+
int64_t c3 = _mm256_extract_epi64(c, 3);
|
919 |
+
|
920 |
+
int64_t d0 = op(a0, b0, c0);
|
921 |
+
int64_t d1 = op(a1, b1, c1);
|
922 |
+
int64_t d2 = op(a2, b2, c2);
|
923 |
+
int64_t d3 = op(a3, b3, c3);
|
924 |
+
|
925 |
+
return _mm256_set_epi64x(d3, d2, d1, d0);
|
926 |
+
}
|
927 |
+
|
928 |
+
// AVX2 has no intrinsic for int64_t multiply so it needs to be emulated
|
929 |
+
// This could be implemented more efficiently using epi32 instructions
|
930 |
+
// This is also technically avx compatible, but then we'll need AVX
|
931 |
+
// code for add as well.
|
932 |
+
// Note: intentionally ignores undefined behavior like (-lowest * -1).
|
933 |
+
template <>
|
934 |
+
Vectorized<int64_t> inline operator*(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
935 |
+
return emulate(a, b, [](int64_t a_point, int64_t b_point) __ubsan_ignore_undefined__ {return a_point * b_point;});
|
936 |
+
}
|
937 |
+
|
938 |
+
template <>
|
939 |
+
Vectorized<int32_t> inline operator*(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
940 |
+
return _mm256_mullo_epi32(a, b);
|
941 |
+
}
|
942 |
+
|
943 |
+
template <>
|
944 |
+
Vectorized<int16_t> inline operator*(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
945 |
+
return _mm256_mullo_epi16(a, b);
|
946 |
+
}
|
947 |
+
|
948 |
+
template <typename T, typename Op>
|
949 |
+
Vectorized<T> inline int_elementwise_binary_256(const Vectorized<T>& a, const Vectorized<T>& b, Op op) {
|
950 |
+
T values_a[Vectorized<T>::size()];
|
951 |
+
T values_b[Vectorized<T>::size()];
|
952 |
+
a.store(values_a);
|
953 |
+
b.store(values_b);
|
954 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
955 |
+
values_a[i] = op(values_a[i], values_b[i]);
|
956 |
+
}
|
957 |
+
return Vectorized<T>::loadu(values_a);
|
958 |
+
}
|
959 |
+
|
960 |
+
template <>
|
961 |
+
Vectorized<int8_t> inline operator*(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
962 |
+
// We don't have an instruction for multiplying int8_t
|
963 |
+
return int_elementwise_binary_256(a, b, std::multiplies<int8_t>());
|
964 |
+
}
|
965 |
+
|
966 |
+
template <>
|
967 |
+
Vectorized<uint8_t> inline operator*(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
968 |
+
// We don't have an instruction for multiplying uint8_t
|
969 |
+
return int_elementwise_binary_256(a, b, std::multiplies<uint8_t>());
|
970 |
+
}
|
971 |
+
|
972 |
+
template <>
|
973 |
+
Vectorized<int64_t> inline minimum(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
974 |
+
return emulate(a, b, [](int64_t a_point, int64_t b_point) {return std::min(a_point, b_point);});
|
975 |
+
}
|
976 |
+
|
977 |
+
template <>
|
978 |
+
Vectorized<int32_t> inline minimum(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
979 |
+
return _mm256_min_epi32(a, b);
|
980 |
+
}
|
981 |
+
|
982 |
+
template <>
|
983 |
+
Vectorized<int16_t> inline minimum(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
984 |
+
return _mm256_min_epi16(a, b);
|
985 |
+
}
|
986 |
+
|
987 |
+
template <>
|
988 |
+
Vectorized<int8_t> inline minimum(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
989 |
+
return _mm256_min_epi8(a, b);
|
990 |
+
}
|
991 |
+
|
992 |
+
template <>
|
993 |
+
Vectorized<uint8_t> inline minimum(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
994 |
+
return _mm256_min_epu8(a, b);
|
995 |
+
}
|
996 |
+
|
997 |
+
template <>
|
998 |
+
Vectorized<int64_t> inline maximum(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
999 |
+
return emulate(a, b, [](int64_t a_point, int64_t b_point) {return std::max(a_point, b_point);});
|
1000 |
+
}
|
1001 |
+
|
1002 |
+
template <>
|
1003 |
+
Vectorized<int32_t> inline maximum(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
1004 |
+
return _mm256_max_epi32(a, b);
|
1005 |
+
}
|
1006 |
+
|
1007 |
+
template <>
|
1008 |
+
Vectorized<int16_t> inline maximum(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
1009 |
+
return _mm256_max_epi16(a, b);
|
1010 |
+
}
|
1011 |
+
|
1012 |
+
template <>
|
1013 |
+
Vectorized<int8_t> inline maximum(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
1014 |
+
return _mm256_max_epi8(a, b);
|
1015 |
+
}
|
1016 |
+
|
1017 |
+
template <>
|
1018 |
+
Vectorized<uint8_t> inline maximum(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
1019 |
+
return _mm256_max_epu8(a, b);
|
1020 |
+
}
|
1021 |
+
|
1022 |
+
template <>
|
1023 |
+
Vectorized<int64_t> inline clamp(const Vectorized<int64_t>& a, const Vectorized<int64_t>& min_val, const Vectorized<int64_t>& max_val) {
|
1024 |
+
return emulate(a, min_val, max_val, [](int64_t a_point, int64_t min_point, int64_t max_point) {return std::min(max_point, std::max(a_point, min_point));});
|
1025 |
+
}
|
1026 |
+
|
1027 |
+
template <>
|
1028 |
+
Vectorized<int32_t> inline clamp(const Vectorized<int32_t>& a, const Vectorized<int32_t>& min_val, const Vectorized<int32_t>& max_val) {
|
1029 |
+
return _mm256_min_epi32(max_val, _mm256_max_epi32(a, min_val));
|
1030 |
+
}
|
1031 |
+
|
1032 |
+
template <>
|
1033 |
+
Vectorized<int16_t> inline clamp(const Vectorized<int16_t>& a, const Vectorized<int16_t>& min_val, const Vectorized<int16_t>& max_val) {
|
1034 |
+
return _mm256_min_epi16(max_val, _mm256_max_epi16(a, min_val));
|
1035 |
+
}
|
1036 |
+
|
1037 |
+
template <>
|
1038 |
+
Vectorized<int8_t> inline clamp(const Vectorized<int8_t>& a, const Vectorized<int8_t>& min_val, const Vectorized<int8_t>& max_val) {
|
1039 |
+
return _mm256_min_epi8(max_val, _mm256_max_epi8(a, min_val));
|
1040 |
+
}
|
1041 |
+
|
1042 |
+
template <>
|
1043 |
+
Vectorized<uint8_t> inline clamp(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& min_val, const Vectorized<uint8_t>& max_val) {
|
1044 |
+
return _mm256_min_epu8(max_val, _mm256_max_epu8(a, min_val));
|
1045 |
+
}
|
1046 |
+
|
1047 |
+
template <>
|
1048 |
+
Vectorized<int64_t> inline clamp_max(const Vectorized<int64_t>& a, const Vectorized<int64_t>& max_val) {
|
1049 |
+
return emulate(a, max_val, [](int64_t a_point, int64_t max_point) {return std::min(max_point, a_point);});
|
1050 |
+
}
|
1051 |
+
|
1052 |
+
template <>
|
1053 |
+
Vectorized<int32_t> inline clamp_max(const Vectorized<int32_t>& a, const Vectorized<int32_t>& max_val) {
|
1054 |
+
return _mm256_min_epi32(max_val, a);
|
1055 |
+
}
|
1056 |
+
|
1057 |
+
template <>
|
1058 |
+
Vectorized<int16_t> inline clamp_max(const Vectorized<int16_t>& a, const Vectorized<int16_t>& max_val) {
|
1059 |
+
return _mm256_min_epi16(max_val, a);
|
1060 |
+
}
|
1061 |
+
|
1062 |
+
template <>
|
1063 |
+
Vectorized<int8_t> inline clamp_max(const Vectorized<int8_t>& a, const Vectorized<int8_t>& max_val) {
|
1064 |
+
return _mm256_min_epi8(max_val, a);
|
1065 |
+
}
|
1066 |
+
|
1067 |
+
template <>
|
1068 |
+
Vectorized<uint8_t> inline clamp_max(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& max_val) {
|
1069 |
+
return _mm256_min_epu8(max_val, a);
|
1070 |
+
}
|
1071 |
+
|
1072 |
+
template <>
|
1073 |
+
Vectorized<int64_t> inline clamp_min(const Vectorized<int64_t>& a, const Vectorized<int64_t>& min_val) {
|
1074 |
+
return emulate(a, min_val, [](int64_t a_point, int64_t min_point) {return std::max(min_point, a_point);});
|
1075 |
+
}
|
1076 |
+
|
1077 |
+
template <>
|
1078 |
+
Vectorized<int32_t> inline clamp_min(const Vectorized<int32_t>& a, const Vectorized<int32_t>& min_val) {
|
1079 |
+
return _mm256_max_epi32(min_val, a);
|
1080 |
+
}
|
1081 |
+
|
1082 |
+
template <>
|
1083 |
+
Vectorized<int16_t> inline clamp_min(const Vectorized<int16_t>& a, const Vectorized<int16_t>& min_val) {
|
1084 |
+
return _mm256_max_epi16(min_val, a);
|
1085 |
+
}
|
1086 |
+
|
1087 |
+
template <>
|
1088 |
+
Vectorized<int8_t> inline clamp_min(const Vectorized<int8_t>& a, const Vectorized<int8_t>& min_val) {
|
1089 |
+
return _mm256_max_epi8(min_val, a);
|
1090 |
+
}
|
1091 |
+
|
1092 |
+
template <>
|
1093 |
+
Vectorized<uint8_t> inline clamp_min(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& min_val) {
|
1094 |
+
return _mm256_max_epu8(min_val, a);
|
1095 |
+
}
|
1096 |
+
|
1097 |
+
template<typename T>
|
1098 |
+
Vectorized<int32_t> inline convert_to_int32(const T* ptr) {
|
1099 |
+
return Vectorized<int32_t>::loadu(ptr);
|
1100 |
+
}
|
1101 |
+
|
1102 |
+
template<>
|
1103 |
+
Vectorized<int32_t> inline convert_to_int32<int8_t>(const int8_t* ptr) {
|
1104 |
+
return _mm256_cvtepi8_epi32(_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ptr)));
|
1105 |
+
}
|
1106 |
+
|
1107 |
+
template<>
|
1108 |
+
Vectorized<int32_t> inline convert_to_int32<uint8_t>(const uint8_t* ptr) {
|
1109 |
+
return _mm256_cvtepu8_epi32(_mm_loadl_epi64(reinterpret_cast<const __m128i*>(ptr)));
|
1110 |
+
}
|
1111 |
+
|
1112 |
+
template <>
|
1113 |
+
Vectorized<int64_t> inline operator/(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
1114 |
+
return int_elementwise_binary_256(a, b, std::divides<int64_t>());
|
1115 |
+
}
|
1116 |
+
template <>
|
1117 |
+
Vectorized<int32_t> inline operator/(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
1118 |
+
return int_elementwise_binary_256(a, b, std::divides<int32_t>());
|
1119 |
+
}
|
1120 |
+
template <>
|
1121 |
+
Vectorized<int16_t> inline operator/(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
1122 |
+
return int_elementwise_binary_256(a, b, std::divides<int16_t>());
|
1123 |
+
}
|
1124 |
+
template <>
|
1125 |
+
Vectorized<int8_t> inline operator/(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
1126 |
+
return int_elementwise_binary_256(a, b, std::divides<int8_t>());
|
1127 |
+
}
|
1128 |
+
template <>
|
1129 |
+
Vectorized<uint8_t> inline operator/(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
1130 |
+
return int_elementwise_binary_256(a, b, std::divides<uint8_t>());
|
1131 |
+
}
|
1132 |
+
|
1133 |
+
template<class T, typename std::enable_if_t<std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
1134 |
+
inline Vectorized<T> operator&(const Vectorized<T>& a, const Vectorized<T>& b) {
|
1135 |
+
return _mm256_and_si256(a, b);
|
1136 |
+
}
|
1137 |
+
template<class T, typename std::enable_if_t<std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
1138 |
+
inline Vectorized<T> operator|(const Vectorized<T>& a, const Vectorized<T>& b) {
|
1139 |
+
return _mm256_or_si256(a, b);
|
1140 |
+
}
|
1141 |
+
template<class T, typename std::enable_if_t<std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
1142 |
+
inline Vectorized<T> operator^(const Vectorized<T>& a, const Vectorized<T>& b) {
|
1143 |
+
return _mm256_xor_si256(a, b);
|
1144 |
+
}
|
1145 |
+
template<class T, typename std::enable_if_t<std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
1146 |
+
inline Vectorized<T> operator~(const Vectorized<T>& a) {
|
1147 |
+
return _mm256_xor_si256(a, _mm256_set1_epi32(-1));
|
1148 |
+
}
|
1149 |
+
|
1150 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::eq(const Vectorized<int64_t>& other) const {
|
1151 |
+
return (*this == other) & Vectorized<int64_t>(1);
|
1152 |
+
}
|
1153 |
+
|
1154 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::ne(const Vectorized<int64_t>& other) const {
|
1155 |
+
return (*this != other) & Vectorized<int64_t>(1);
|
1156 |
+
}
|
1157 |
+
|
1158 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::gt(const Vectorized<int64_t>& other) const {
|
1159 |
+
return (*this > other) & Vectorized<int64_t>(1);
|
1160 |
+
}
|
1161 |
+
|
1162 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::ge(const Vectorized<int64_t>& other) const {
|
1163 |
+
return (*this >= other) & Vectorized<int64_t>(1);
|
1164 |
+
}
|
1165 |
+
|
1166 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::lt(const Vectorized<int64_t>& other) const {
|
1167 |
+
return (*this < other) & Vectorized<int64_t>(1);
|
1168 |
+
}
|
1169 |
+
|
1170 |
+
inline Vectorized<int64_t> Vectorized<int64_t>::le(const Vectorized<int64_t>& other) const {
|
1171 |
+
return (*this <= other) & Vectorized<int64_t>(1);
|
1172 |
+
}
|
1173 |
+
|
1174 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::eq(const Vectorized<int32_t>& other) const {
|
1175 |
+
return (*this == other) & Vectorized<int32_t>(1);
|
1176 |
+
}
|
1177 |
+
|
1178 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::ne(const Vectorized<int32_t>& other) const {
|
1179 |
+
return (*this != other) & Vectorized<int32_t>(1);
|
1180 |
+
}
|
1181 |
+
|
1182 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::gt(const Vectorized<int32_t>& other) const {
|
1183 |
+
return (*this > other) & Vectorized<int32_t>(1);
|
1184 |
+
}
|
1185 |
+
|
1186 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::ge(const Vectorized<int32_t>& other) const {
|
1187 |
+
return (*this >= other) & Vectorized<int32_t>(1);
|
1188 |
+
}
|
1189 |
+
|
1190 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::lt(const Vectorized<int32_t>& other) const {
|
1191 |
+
return (*this < other) & Vectorized<int32_t>(1);
|
1192 |
+
}
|
1193 |
+
|
1194 |
+
inline Vectorized<int32_t> Vectorized<int32_t>::le(const Vectorized<int32_t>& other) const {
|
1195 |
+
return (*this <= other) & Vectorized<int32_t>(1);
|
1196 |
+
}
|
1197 |
+
|
1198 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::eq(const Vectorized<int16_t>& other) const {
|
1199 |
+
return (*this == other) & Vectorized<int16_t>(1);
|
1200 |
+
}
|
1201 |
+
|
1202 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::ne(const Vectorized<int16_t>& other) const {
|
1203 |
+
return (*this != other) & Vectorized<int16_t>(1);
|
1204 |
+
}
|
1205 |
+
|
1206 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::gt(const Vectorized<int16_t>& other) const {
|
1207 |
+
return (*this > other) & Vectorized<int16_t>(1);
|
1208 |
+
}
|
1209 |
+
|
1210 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::ge(const Vectorized<int16_t>& other) const {
|
1211 |
+
return (*this >= other) & Vectorized<int16_t>(1);
|
1212 |
+
}
|
1213 |
+
|
1214 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::lt(const Vectorized<int16_t>& other) const {
|
1215 |
+
return (*this < other) & Vectorized<int16_t>(1);
|
1216 |
+
}
|
1217 |
+
|
1218 |
+
inline Vectorized<int16_t> Vectorized<int16_t>::le(const Vectorized<int16_t>& other) const {
|
1219 |
+
return (*this <= other) & Vectorized<int16_t>(1);
|
1220 |
+
}
|
1221 |
+
|
1222 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::eq(const Vectorized<int8_t>& other) const {
|
1223 |
+
return (*this == other) & Vectorized<int8_t>(1);
|
1224 |
+
}
|
1225 |
+
|
1226 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::ne(const Vectorized<int8_t>& other) const {
|
1227 |
+
return (*this != other) & Vectorized<int8_t>(1);
|
1228 |
+
}
|
1229 |
+
|
1230 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::gt(const Vectorized<int8_t>& other) const {
|
1231 |
+
return (*this > other) & Vectorized<int8_t>(1);
|
1232 |
+
}
|
1233 |
+
|
1234 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::ge(const Vectorized<int8_t>& other) const {
|
1235 |
+
return (*this >= other) & Vectorized<int8_t>(1);
|
1236 |
+
}
|
1237 |
+
|
1238 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::lt(const Vectorized<int8_t>& other) const {
|
1239 |
+
return (*this < other) & Vectorized<int8_t>(1);
|
1240 |
+
}
|
1241 |
+
|
1242 |
+
inline Vectorized<int8_t> Vectorized<int8_t>::le(const Vectorized<int8_t>& other) const {
|
1243 |
+
return (*this <= other) & Vectorized<int8_t>(1);
|
1244 |
+
}
|
1245 |
+
|
1246 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::eq(const Vectorized<uint8_t>& other) const {
|
1247 |
+
return (*this == other) & Vectorized<uint8_t>(1);
|
1248 |
+
}
|
1249 |
+
|
1250 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::ne(const Vectorized<uint8_t>& other) const {
|
1251 |
+
return (*this != other) & Vectorized<uint8_t>(1);
|
1252 |
+
}
|
1253 |
+
|
1254 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::gt(const Vectorized<uint8_t>& other) const {
|
1255 |
+
return (*this > other) & Vectorized<uint8_t>(1);
|
1256 |
+
}
|
1257 |
+
|
1258 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::ge(const Vectorized<uint8_t>& other) const {
|
1259 |
+
return (*this >= other) & Vectorized<uint8_t>(1);
|
1260 |
+
}
|
1261 |
+
|
1262 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::lt(const Vectorized<uint8_t>& other) const {
|
1263 |
+
return (*this < other) & Vectorized<uint8_t>(1);
|
1264 |
+
}
|
1265 |
+
|
1266 |
+
inline Vectorized<uint8_t> Vectorized<uint8_t>::le(const Vectorized<uint8_t>& other) const {
|
1267 |
+
return (*this <= other) & Vectorized<uint8_t>(1);
|
1268 |
+
}
|
1269 |
+
|
1270 |
+
template <bool left_shift>
|
1271 |
+
Vectorized<int16_t> inline shift_256_16(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
1272 |
+
// No vector instruction for shifting int16_t, so emulating it instead.
|
1273 |
+
|
1274 |
+
// Control masks for shuffle operation, treating 256 bits as an
|
1275 |
+
// array of 16-bit elements, and considering pairs of neighboring
|
1276 |
+
// elements. Specifially, a mask named "ctl_M_N" (M,N in [0,1], and
|
1277 |
+
// M!=N) is set so that shuffle will move element with index M from
|
1278 |
+
// input pair into element with index N in output pair, and element
|
1279 |
+
// with index M in output pair will be set to all 0s.
|
1280 |
+
__m256i ctl_0_1 = _mm256_set_epi8(29, 28, 0x80, 0x80, 25, 24, 0x80, 0x80,
|
1281 |
+
21, 20, 0x80, 0x80, 17, 16, 0x80, 0x80,
|
1282 |
+
13, 12, 0x80, 0x80, 9, 8, 0x80, 0x80,
|
1283 |
+
5, 4, 0x80, 0x80, 1, 0, 0x80, 0x80);
|
1284 |
+
__m256i ctl_1_0 = _mm256_set_epi8(0x80, 0x80, 31, 30, 0x80, 0x80, 27, 26,
|
1285 |
+
0x80, 0x80, 23, 22, 0x80, 0x80, 19, 18,
|
1286 |
+
0x80, 0x80, 15, 14, 0x80, 0x80, 11, 10,
|
1287 |
+
0x80, 0x80, 7, 6, 0x80, 0x80, 3, 2);
|
1288 |
+
|
1289 |
+
// Masks for bitwise and operation, treating 256 bits as an array of
|
1290 |
+
// 16-bit elements, and considering them in pairs of neighboring
|
1291 |
+
// elements. A mask named "keep_M" (M in [0,1]) is set so that
|
1292 |
+
// bitwise and will copy element with index M from input pair into
|
1293 |
+
// element with the same index in output pair, while the other
|
1294 |
+
// element in output pair will be set to all 0s.
|
1295 |
+
__m256i keep_0 = _mm256_set1_epi32(0xFFFF);
|
1296 |
+
__m256i keep_1 = _mm256_set1_epi32(0xFFFF0000);
|
1297 |
+
|
1298 |
+
// Take each 16-bit element with idx%2==0 from input array to be
|
1299 |
+
// shifted and extend it to 32 bits so that 0s are added to the
|
1300 |
+
// right. Then, perform shifting on this 32-bit number. Upper 16
|
1301 |
+
// bits will be proper result of shifting original 16-bit number, so
|
1302 |
+
// write them to result array, into the same position from which
|
1303 |
+
// corresponding input element is taken. Also, make sure that
|
1304 |
+
// result array elements with idx%2!=0 are set to all 0s.
|
1305 |
+
//
|
1306 |
+
// Note that number of bits to shift for is extended to 32 bits by
|
1307 |
+
// adding 0s to the left. That means this number is not properly
|
1308 |
+
// sign-extended for negative values. However, number of bits to
|
1309 |
+
// shift is treated as an unsigned integer by respective shift
|
1310 |
+
// intrinsics anyway so if negative then either with or without
|
1311 |
+
// proper sign extension, it will be interpreted as a number greater
|
1312 |
+
// than 32, and the shifting result will be the same.
|
1313 |
+
__m256i a0 = _mm256_shuffle_epi8(a, ctl_0_1);
|
1314 |
+
__m256i b0 = _mm256_and_si256(b, keep_0);
|
1315 |
+
__m256i c0;
|
1316 |
+
if (left_shift)
|
1317 |
+
c0 = _mm256_sllv_epi32(a0, b0);
|
1318 |
+
else
|
1319 |
+
c0 = _mm256_srav_epi32(a0, b0);
|
1320 |
+
c0 = _mm256_shuffle_epi8(c0, ctl_1_0);
|
1321 |
+
|
1322 |
+
// Peform shifting the same way for input array elements with
|
1323 |
+
// idx%2==1.
|
1324 |
+
__m256i a1 = _mm256_and_si256(a, keep_1);
|
1325 |
+
__m256i b1 = _mm256_shuffle_epi8(b, ctl_1_0);
|
1326 |
+
__m256i c1;
|
1327 |
+
if (left_shift)
|
1328 |
+
c1 = _mm256_sllv_epi32(a1, b1);
|
1329 |
+
else
|
1330 |
+
c1 = _mm256_srav_epi32(a1, b1);
|
1331 |
+
c1 = _mm256_and_si256(c1, keep_1);
|
1332 |
+
|
1333 |
+
// Merge partial results into the final result.
|
1334 |
+
__m256i c = _mm256_or_si256(c0, c1);
|
1335 |
+
|
1336 |
+
return c;
|
1337 |
+
}
|
1338 |
+
|
1339 |
+
template <bool left_shift, typename T, typename std::enable_if_t<std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value, int> = 0>
|
1340 |
+
Vectorized<T> inline shift_256_8(const Vectorized<T>& a, const Vectorized<T>& b) {
|
1341 |
+
// No vector instruction for shifting int8_t/uint8_t, so emulating
|
1342 |
+
// it instead.
|
1343 |
+
|
1344 |
+
// Control masks for shuffle operation, treating 256 bits as an
|
1345 |
+
// array of 8-bit elements, and considering quadruples of
|
1346 |
+
// neighboring elements. Specifially, a mask named "ctl_M_N" (M,N
|
1347 |
+
// in [0,1,2,3], and M!=N) is set so that shuffle will move element
|
1348 |
+
// with index M from input quadruple into element with index N in
|
1349 |
+
// output quadruple, and other elements in output quadruple will be
|
1350 |
+
// set to all 0s.
|
1351 |
+
__m256i ctl_0_3 = _mm256_set_epi8(28, 0x80, 0x80, 0x80, 24, 0x80, 0x80, 0x80,
|
1352 |
+
20, 0x80, 0x80, 0x80, 16, 0x80, 0x80, 0x80,
|
1353 |
+
12, 0x80, 0x80, 0x80, 8, 0x80, 0x80, 0x80,
|
1354 |
+
4, 0x80, 0x80, 0x80, 0, 0x80, 0x80, 0x80);
|
1355 |
+
__m256i ctl_1_0 = _mm256_set_epi8(0x80, 0x80, 0x80, 29, 0x80, 0x80, 0x80, 25,
|
1356 |
+
0x80, 0x80, 0x80, 21, 0x80, 0x80, 0x80, 17,
|
1357 |
+
0x80, 0x80, 0x80, 13, 0x80, 0x80, 0x80, 9,
|
1358 |
+
0x80, 0x80, 0x80, 5, 0x80, 0x80, 0x80, 1);
|
1359 |
+
__m256i ctl_1_3 = _mm256_set_epi8(29, 0x80, 0x80, 0x80, 25, 0x80, 0x80, 0x80,
|
1360 |
+
21, 0x80, 0x80, 0x80, 17, 0x80, 0x80, 0x80,
|
1361 |
+
13, 0x80, 0x80, 0x80, 9, 0x80, 0x80, 0x80,
|
1362 |
+
5, 0x80, 0x80, 0x80, 1, 0x80, 0x80, 0x80);
|
1363 |
+
__m256i ctl_2_0 = _mm256_set_epi8(0x80, 0x80, 0x80, 30, 0x80, 0x80, 0x80, 26,
|
1364 |
+
0x80, 0x80, 0x80, 22, 0x80, 0x80, 0x80, 18,
|
1365 |
+
0x80, 0x80, 0x80, 14, 0x80, 0x80, 0x80, 10,
|
1366 |
+
0x80, 0x80, 0x80, 6, 0x80, 0x80, 0x80, 2);
|
1367 |
+
__m256i ctl_2_3 = _mm256_set_epi8(30, 0x80, 0x80, 0x80, 26, 0x80, 0x80, 0x80,
|
1368 |
+
22, 0x80, 0x80, 0x80, 18, 0x80, 0x80, 0x80,
|
1369 |
+
14, 0x80, 0x80, 0x80, 10, 0x80, 0x80, 0x80,
|
1370 |
+
6, 0x80, 0x80, 0x80, 2, 0x80, 0x80, 0x80);
|
1371 |
+
__m256i ctl_3_0 = _mm256_set_epi8(0x80, 0x80, 0x80, 31, 0x80, 0x80, 0x80, 27,
|
1372 |
+
0x80, 0x80, 0x80, 23, 0x80, 0x80, 0x80, 19,
|
1373 |
+
0x80, 0x80, 0x80, 15, 0x80, 0x80, 0x80, 11,
|
1374 |
+
0x80, 0x80, 0x80, 7, 0x80, 0x80, 0x80, 3);
|
1375 |
+
__m256i ctl_3_1 = _mm256_set_epi8(0x80, 0x80, 31, 0x80, 0x80, 0x80, 27, 0x80,
|
1376 |
+
0x80, 0x80, 23, 0x80, 0x80, 0x80, 19, 0x80,
|
1377 |
+
0x80, 0x80, 15, 0x80, 0x80, 0x80, 11, 0x80,
|
1378 |
+
0x80, 0x80, 7, 0x80, 0x80, 0x80, 3, 0x80);
|
1379 |
+
__m256i ctl_3_2 = _mm256_set_epi8(0x80, 31, 0x80, 0x80, 0x80, 27, 0x80, 0x80,
|
1380 |
+
0x80, 23, 0x80, 0x80, 0x80, 19, 0x80, 0x80,
|
1381 |
+
0x80, 15, 0x80, 0x80, 0x80, 11, 0x80, 0x80,
|
1382 |
+
0x80, 7, 0x80, 0x80, 0x80, 3, 0x80, 0x80);
|
1383 |
+
|
1384 |
+
// Masks for bitwise and operation, treating 256 bits as an array of
|
1385 |
+
// 8-bit elements, and considering them in quadruples of neighboring
|
1386 |
+
// elements. A mask named "keep_M" (M in [0,1,2,3]) is set so that
|
1387 |
+
// bitwise and will copy element with index M from input quadruple
|
1388 |
+
// into element with the same index in output quadruple, while the
|
1389 |
+
// other elements in output quadruple will be set to all 0s.
|
1390 |
+
__m256i keep_0 = _mm256_set1_epi32(0xFF);
|
1391 |
+
__m256i keep_3 = _mm256_set1_epi32(0xFF000000);
|
1392 |
+
|
1393 |
+
// Take each 8-bit element with idx%4==0 from input array to be
|
1394 |
+
// shifted and extend it to 32 bits so that 0s are added to the
|
1395 |
+
// right. Then, perform shifting on this 32-bit number. Upper 8
|
1396 |
+
// bits will be proper result of shifting original 8-bit number, so
|
1397 |
+
// write them to result array, into the same position from which
|
1398 |
+
// corresponding input element is taken. Also, make sure that
|
1399 |
+
// result array elements with idx%4!=0 are set to all 0s.
|
1400 |
+
//
|
1401 |
+
// Note that number of bits to shift for is extended to 32 bits by
|
1402 |
+
// adding 0s to the left. That means this number is not properly
|
1403 |
+
// sign-extended for negative values. However, number of bits to
|
1404 |
+
// shift is treated as an unsigned integer by respective shift
|
1405 |
+
// intrinsics anyway so if negative then either with or without
|
1406 |
+
// proper sign extension, it will be interpreted as a number greater
|
1407 |
+
// than 32, and the shifting result will be the same.
|
1408 |
+
__m256i a0 = _mm256_shuffle_epi8(a, ctl_0_3);
|
1409 |
+
__m256i b0 = _mm256_and_si256(b, keep_0);
|
1410 |
+
__m256i c0;
|
1411 |
+
if (left_shift)
|
1412 |
+
c0 = _mm256_sllv_epi32(a0, b0);
|
1413 |
+
else
|
1414 |
+
if constexpr (std::is_same_v<T, int8_t>)
|
1415 |
+
c0 = _mm256_srav_epi32(a0, b0);
|
1416 |
+
else
|
1417 |
+
c0 = _mm256_srlv_epi32(a0, b0);
|
1418 |
+
c0 = _mm256_shuffle_epi8(c0, ctl_3_0);
|
1419 |
+
|
1420 |
+
// Peform shifting the same way for input array elements with
|
1421 |
+
// idx%4==1.
|
1422 |
+
__m256i a1 = _mm256_shuffle_epi8(a, ctl_1_3);
|
1423 |
+
__m256i b1 = _mm256_shuffle_epi8(b, ctl_1_0);
|
1424 |
+
__m256i c1;
|
1425 |
+
if (left_shift)
|
1426 |
+
c1 = _mm256_sllv_epi32(a1, b1);
|
1427 |
+
else
|
1428 |
+
if constexpr (std::is_same_v<T, int8_t>)
|
1429 |
+
c1 = _mm256_srav_epi32(a1, b1);
|
1430 |
+
else
|
1431 |
+
c1 = _mm256_srlv_epi32(a1, b1);
|
1432 |
+
c1 = _mm256_shuffle_epi8(c1, ctl_3_1);
|
1433 |
+
|
1434 |
+
// Peform shifting the same way for input array elements with
|
1435 |
+
// idx%4==2.
|
1436 |
+
__m256i a2 = _mm256_shuffle_epi8(a, ctl_2_3);
|
1437 |
+
__m256i b2 = _mm256_shuffle_epi8(b, ctl_2_0);
|
1438 |
+
__m256i c2;
|
1439 |
+
if (left_shift)
|
1440 |
+
c2 = _mm256_sllv_epi32(a2, b2);
|
1441 |
+
else
|
1442 |
+
if constexpr (std::is_same_v<T, int8_t>)
|
1443 |
+
c2 = _mm256_srav_epi32(a2, b2);
|
1444 |
+
else
|
1445 |
+
c2 = _mm256_srlv_epi32(a2, b2);
|
1446 |
+
c2 = _mm256_shuffle_epi8(c2, ctl_3_2);
|
1447 |
+
|
1448 |
+
// Peform shifting the same way for input array elements with
|
1449 |
+
// idx%4==3.
|
1450 |
+
__m256i a3 = _mm256_and_si256(a, keep_3);
|
1451 |
+
__m256i b3 = _mm256_shuffle_epi8(b, ctl_3_0);
|
1452 |
+
__m256i c3;
|
1453 |
+
if (left_shift)
|
1454 |
+
c3 = _mm256_sllv_epi32(a3, b3);
|
1455 |
+
else
|
1456 |
+
if constexpr (std::is_same_v<T, int8_t>)
|
1457 |
+
c3 = _mm256_srav_epi32(a3, b3);
|
1458 |
+
else
|
1459 |
+
c3 = _mm256_srlv_epi32(a3, b3);
|
1460 |
+
c3 = _mm256_and_si256(c3, keep_3);
|
1461 |
+
|
1462 |
+
// Merge partial results into the final result.
|
1463 |
+
__m256i c01 = _mm256_or_si256(c0, c1);
|
1464 |
+
__m256i c23 = _mm256_or_si256(c2, c3);
|
1465 |
+
__m256i c = _mm256_or_si256(c01, c23);
|
1466 |
+
|
1467 |
+
return c;
|
1468 |
+
}
|
1469 |
+
|
1470 |
+
template <>
|
1471 |
+
Vectorized<int64_t> inline operator<<(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
1472 |
+
return _mm256_sllv_epi64(a, b);
|
1473 |
+
}
|
1474 |
+
|
1475 |
+
template <>
|
1476 |
+
Vectorized<int32_t> inline operator<<(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
1477 |
+
return _mm256_sllv_epi32(a, b);
|
1478 |
+
}
|
1479 |
+
|
1480 |
+
template <>
|
1481 |
+
Vectorized<int16_t> inline operator<<(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
1482 |
+
return shift_256_16<true>(a, b);
|
1483 |
+
}
|
1484 |
+
|
1485 |
+
template <>
|
1486 |
+
Vectorized<int8_t> inline operator<<(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
1487 |
+
return shift_256_8<true>(a, b);
|
1488 |
+
}
|
1489 |
+
|
1490 |
+
template <>
|
1491 |
+
Vectorized<uint8_t> inline operator<<(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
1492 |
+
return shift_256_8<true>(a, b);
|
1493 |
+
}
|
1494 |
+
|
1495 |
+
template <>
|
1496 |
+
Vectorized<int64_t> inline operator>>(const Vectorized<int64_t>& a, const Vectorized<int64_t>& b) {
|
1497 |
+
// No vector instruction for right arithmetic shifting int64_t, so emulating it
|
1498 |
+
// instead.
|
1499 |
+
|
1500 |
+
// Clamp the shift values such that shift values < 0 and > 64 are changed to 64
|
1501 |
+
// which results in -1 for negative input and 0 for non-negative input.
|
1502 |
+
__m256i zero = _mm256_set1_epi64x(0);
|
1503 |
+
__m256i max_shift = _mm256_set1_epi64x(64);
|
1504 |
+
__m256i mask = _mm256_or_si256(_mm256_cmpgt_epi64(zero, b), _mm256_cmpgt_epi64(b, max_shift));
|
1505 |
+
__m256i shift = _mm256_blendv_epi8(b, max_shift, mask);
|
1506 |
+
// Shift the number logically to the right, thus filling the most
|
1507 |
+
// significant bits with 0s. Then, replace these bits with the sign
|
1508 |
+
// bit.
|
1509 |
+
__m256i sign_bits = _mm256_cmpgt_epi64(zero, a);
|
1510 |
+
__m256i sign_shift = _mm256_sub_epi64(max_shift, shift);
|
1511 |
+
__m256i sign_ext = _mm256_sllv_epi64(sign_bits, sign_shift);
|
1512 |
+
__m256i c = _mm256_srlv_epi64(a, shift);
|
1513 |
+
c = _mm256_or_si256(c, sign_ext);
|
1514 |
+
|
1515 |
+
return c;
|
1516 |
+
}
|
1517 |
+
|
1518 |
+
template <>
|
1519 |
+
Vectorized<int32_t> inline operator>>(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
1520 |
+
return _mm256_srav_epi32(a, b);
|
1521 |
+
}
|
1522 |
+
|
1523 |
+
template <>
|
1524 |
+
Vectorized<int16_t> inline operator>>(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
1525 |
+
return shift_256_16<false>(a, b);
|
1526 |
+
}
|
1527 |
+
|
1528 |
+
template <>
|
1529 |
+
Vectorized<int8_t> inline operator>>(const Vectorized<int8_t>& a, const Vectorized<int8_t>& b) {
|
1530 |
+
return shift_256_8<false>(a, b);
|
1531 |
+
}
|
1532 |
+
|
1533 |
+
template <>
|
1534 |
+
Vectorized<uint8_t> inline operator>>(const Vectorized<uint8_t>& a, const Vectorized<uint8_t>& b) {
|
1535 |
+
return shift_256_8<false>(a, b);
|
1536 |
+
}
|
1537 |
+
|
1538 |
+
#endif
|
1539 |
+
|
1540 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vec256_qint.h
ADDED
@@ -0,0 +1,1327 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
|
6 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
7 |
+
#include <ATen/cpu/vec/vec_base.h>
|
8 |
+
#include <ATen/native/quantized/AffineQuantizerBase.h>
|
9 |
+
|
10 |
+
#include <c10/util/irange.h>
|
11 |
+
#include <c10/util/qint32.h>
|
12 |
+
#include <c10/util/qint8.h>
|
13 |
+
#include <c10/util/quint8.h>
|
14 |
+
|
15 |
+
#include <array>
|
16 |
+
#include <cmath>
|
17 |
+
|
18 |
+
// This file defines Vectorized<> for the quantized types.
|
19 |
+
//
|
20 |
+
//
|
21 |
+
// Currently, we simply use these classes as efficient converters between
|
22 |
+
// the quantized types and Vectorized<float>, usually in bandwidth-bound cases
|
23 |
+
// where doing the arithmetic in full-precision is acceptable (e.g.
|
24 |
+
// elementwise operators).
|
25 |
+
//
|
26 |
+
//
|
27 |
+
// Conversions are as follows:
|
28 |
+
// Vectorized<qint8> -> 4x Vectorized<float>
|
29 |
+
// Vectorized<quint8> -> 4x Vectorized<float>
|
30 |
+
// Vectorized<qint32> -> 1x Vectorized<float>
|
31 |
+
//
|
32 |
+
// The size of the returned float vector is specified by the special
|
33 |
+
// constexpr function float_num_vecs. The type of the value returned
|
34 |
+
// from dequantize (and expected as an argument to quantize) is
|
35 |
+
// specified by float_vec_return_type.
|
36 |
+
//
|
37 |
+
// When writing kernels with these vectors, it is expected that floating-
|
38 |
+
// point operations will be carried out in a loop over Vectorized<T>::float_num_vecs
|
39 |
+
// iterations.
|
40 |
+
|
41 |
+
namespace at::vec {
|
42 |
+
inline namespace CPU_CAPABILITY {
|
43 |
+
|
44 |
+
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
45 |
+
|
46 |
+
struct Vectorizedqi {
|
47 |
+
protected:
|
48 |
+
__m256i vals __attribute__((aligned(64)));
|
49 |
+
|
50 |
+
public:
|
51 |
+
Vectorizedqi() {}
|
52 |
+
Vectorizedqi(__m256i v) : vals(v) {}
|
53 |
+
operator __m256i() const {
|
54 |
+
return vals;
|
55 |
+
}
|
56 |
+
};
|
57 |
+
|
58 |
+
template <typename T>
|
59 |
+
__m256i pack_saturate_and_clamp(
|
60 |
+
__m256i first,
|
61 |
+
__m256i second,
|
62 |
+
T min_val,
|
63 |
+
T max_val);
|
64 |
+
|
65 |
+
template <>
|
66 |
+
inline __m256i pack_saturate_and_clamp<int32_t>(
|
67 |
+
__m256i /*first*/,
|
68 |
+
__m256i /*second*/,
|
69 |
+
int32_t /*min_val*/,
|
70 |
+
int32_t /*max_val*/) {
|
71 |
+
// This function is for linkage only, will not be used
|
72 |
+
AT_ERROR("pack_saturate_and_clamp<int32_t> is not supported");
|
73 |
+
}
|
74 |
+
|
75 |
+
template <>
|
76 |
+
inline __m256i pack_saturate_and_clamp<int8_t>(
|
77 |
+
__m256i first,
|
78 |
+
__m256i second,
|
79 |
+
int8_t min_val,
|
80 |
+
int8_t max_val) {
|
81 |
+
__m256i packed_and_sat = _mm256_packs_epi16(first, second);
|
82 |
+
return _mm256_max_epi8(
|
83 |
+
_mm256_set1_epi8(min_val),
|
84 |
+
_mm256_min_epi8(packed_and_sat, _mm256_set1_epi8(max_val)));
|
85 |
+
}
|
86 |
+
|
87 |
+
template <>
|
88 |
+
inline __m256i pack_saturate_and_clamp<uint8_t>(
|
89 |
+
__m256i first,
|
90 |
+
__m256i second,
|
91 |
+
uint8_t min_val,
|
92 |
+
uint8_t max_val) {
|
93 |
+
__m256i packed_and_sat = _mm256_packus_epi16(first, second);
|
94 |
+
return _mm256_max_epu8(
|
95 |
+
_mm256_set1_epi8(min_val),
|
96 |
+
_mm256_min_epu8(packed_and_sat, _mm256_set1_epi8(max_val)));
|
97 |
+
}
|
98 |
+
|
99 |
+
inline Vectorized<float> convert_uint8_to_float(at::vec::Vectorized<uint8_t> src) {
|
100 |
+
// Note: this function only convert inputs number of elements equal to at::vec::Vectorized<float>.size()
|
101 |
+
// Only handle first 64 bits
|
102 |
+
__m128i input_128 = _mm256_castsi256_si128(src);
|
103 |
+
// Convert from 8*uint8 to 8*int32
|
104 |
+
__m256i input_256_int32 = _mm256_cvtepu8_epi32(input_128);
|
105 |
+
// Convert from 8*int32 to 8*float
|
106 |
+
return _mm256_cvtepi32_ps(input_256_int32);
|
107 |
+
}
|
108 |
+
|
109 |
+
inline Vectorized<uint8_t> convert_float_to_uint8(at::vec::Vectorized<float> src) {
|
110 |
+
// Convert from float32 to int32 with truncation
|
111 |
+
__m256i x_values_int32 = _mm256_cvttps_epi32(src);
|
112 |
+
|
113 |
+
// Convert from int32 to int16 using signed saturation
|
114 |
+
__m256i xy_packed_v = _mm256_packs_epi32(x_values_int32, x_values_int32);
|
115 |
+
|
116 |
+
constexpr auto min_val = std::numeric_limits<uint8_t>::min();
|
117 |
+
constexpr auto max_val = std::numeric_limits<uint8_t>::max();
|
118 |
+
|
119 |
+
// Convert from int16 to uint8 using unsigned saturation
|
120 |
+
__m256i xyzw_clamped_v = pack_saturate_and_clamp<uint8_t>(
|
121 |
+
xy_packed_v, xy_packed_v, min_val, max_val);
|
122 |
+
__m256i permute_mask_v =
|
123 |
+
_mm256_set_epi32(0x07, 0x03, 0x06, 0x02, 0x05, 0x01, 0x04, 0x00);
|
124 |
+
return _mm256_permutevar8x32_epi32(xyzw_clamped_v, permute_mask_v);
|
125 |
+
}
|
126 |
+
|
127 |
+
template <typename T>
|
128 |
+
inline void __attribute__((always_inline)) QuantizeAvx2(
|
129 |
+
const float* src,
|
130 |
+
T* dst,
|
131 |
+
int len,
|
132 |
+
float inverse_scale,
|
133 |
+
int64_t zero_point) {
|
134 |
+
constexpr int VLEN = 8;
|
135 |
+
constexpr auto min_val = std::numeric_limits<T>::min();
|
136 |
+
constexpr auto max_val = std::numeric_limits<T>::max();
|
137 |
+
const __m256i min_v = _mm256_set1_epi32(min_val);
|
138 |
+
const __m256i max_v = _mm256_set1_epi32(max_val);
|
139 |
+
// This is the largest int32 value < int32_max exactly representable in float
|
140 |
+
constexpr int32_t int32_float_max_val =
|
141 |
+
std::numeric_limits<int32_t>::max() - 127;
|
142 |
+
int i = 0;
|
143 |
+
__m256 inverse_scale_v = _mm256_set1_ps(inverse_scale);
|
144 |
+
// clang-format off
|
145 |
+
static const __m256i shuffle_mask_v = _mm256_set_epi8(
|
146 |
+
0xff, 0xff, 0xff, 0xff,
|
147 |
+
0xff, 0xff, 0xff, 0xff,
|
148 |
+
0xff, 0xff, 0xff, 0xff,
|
149 |
+
0x0c, 0x08, 0x04, 0x00,
|
150 |
+
0xff, 0xff, 0xff, 0xff,
|
151 |
+
0xff, 0xff, 0xff, 0xff,
|
152 |
+
0xff, 0xff, 0xff, 0xff,
|
153 |
+
0x0c, 0x08, 0x04, 0x00);
|
154 |
+
// clang-format on
|
155 |
+
__m256i permute_mask_v =
|
156 |
+
_mm256_set_epi32(0x07, 0x03, 0x06, 0x02, 0x05, 0x01, 0x04, 0x00);
|
157 |
+
__m256i permute_mask_l8_v =
|
158 |
+
_mm256_set_epi32(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00);
|
159 |
+
int len_aligned = len / (VLEN * 4) * (VLEN * 4);
|
160 |
+
for (; i < len_aligned; i += 4 * VLEN) {
|
161 |
+
// x
|
162 |
+
__m256 x_vals = _mm256_load_ps(src + i);
|
163 |
+
__m256 x_transformed_v = _mm256_mul_ps(x_vals, inverse_scale_v);
|
164 |
+
// If the floating point value is greater than int32_max,
|
165 |
+
// _mm256_cvtps_epi32 converts them to -ve. Clip at int32_float_max_val to
|
166 |
+
// Clip at int32_float_max_val to avoid this.
|
167 |
+
x_transformed_v =
|
168 |
+
_mm256_min_ps(x_transformed_v, _mm256_set1_ps(int32_float_max_val));
|
169 |
+
// y
|
170 |
+
__m256 y_vals = _mm256_load_ps(src + i + VLEN);
|
171 |
+
__m256 y_transformed_v = _mm256_mul_ps(y_vals, inverse_scale_v);
|
172 |
+
y_transformed_v =
|
173 |
+
_mm256_min_ps(y_transformed_v, _mm256_set1_ps(int32_float_max_val));
|
174 |
+
// z
|
175 |
+
__m256 z_vals = _mm256_load_ps(src + i + 2 * VLEN);
|
176 |
+
__m256 z_transformed_v = _mm256_mul_ps(z_vals, inverse_scale_v);
|
177 |
+
z_transformed_v =
|
178 |
+
_mm256_min_ps(z_transformed_v, _mm256_set1_ps(int32_float_max_val));
|
179 |
+
// w
|
180 |
+
__m256 w_vals = _mm256_load_ps(src + i + 3 * VLEN);
|
181 |
+
__m256 w_transformed_v = _mm256_mul_ps(w_vals, inverse_scale_v);
|
182 |
+
w_transformed_v =
|
183 |
+
_mm256_min_ps(w_transformed_v, _mm256_set1_ps(int32_float_max_val));
|
184 |
+
|
185 |
+
__m256i x_rounded_v = _mm256_cvtps_epi32(x_transformed_v);
|
186 |
+
__m256i y_rounded_v = _mm256_cvtps_epi32(y_transformed_v);
|
187 |
+
__m256i z_rounded_v = _mm256_cvtps_epi32(z_transformed_v);
|
188 |
+
__m256i w_rounded_v = _mm256_cvtps_epi32(w_transformed_v);
|
189 |
+
|
190 |
+
// add zero point
|
191 |
+
x_rounded_v = _mm256_add_epi32(x_rounded_v, _mm256_set1_epi32(zero_point));
|
192 |
+
y_rounded_v = _mm256_add_epi32(y_rounded_v, _mm256_set1_epi32(zero_point));
|
193 |
+
z_rounded_v = _mm256_add_epi32(z_rounded_v, _mm256_set1_epi32(zero_point));
|
194 |
+
w_rounded_v = _mm256_add_epi32(w_rounded_v, _mm256_set1_epi32(zero_point));
|
195 |
+
|
196 |
+
__m256i xy_packed_v = _mm256_packs_epi32(x_rounded_v, y_rounded_v);
|
197 |
+
__m256i zw_packed_v = _mm256_packs_epi32(z_rounded_v, w_rounded_v);
|
198 |
+
__m256i xyzw_clamped_v =
|
199 |
+
pack_saturate_and_clamp<T>(xy_packed_v, zw_packed_v, min_val, max_val);
|
200 |
+
|
201 |
+
xyzw_clamped_v =
|
202 |
+
_mm256_permutevar8x32_epi32(xyzw_clamped_v, permute_mask_v);
|
203 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(dst + i), xyzw_clamped_v);
|
204 |
+
}
|
205 |
+
|
206 |
+
// Additional 8-lane AVX2 version to take advantage when len is smaller
|
207 |
+
// based on fbgemm::QuantizeAvx2 (https://github.com/pytorch/FBGEMM)
|
208 |
+
for (; i < len / VLEN * VLEN; i += VLEN) {
|
209 |
+
__m256 x_vals = _mm256_load_ps(src + i);
|
210 |
+
__m256 x_transformed_v = _mm256_mul_ps(x_vals, inverse_scale_v);
|
211 |
+
x_transformed_v =
|
212 |
+
_mm256_min_ps(x_transformed_v, _mm256_set1_ps(int32_float_max_val));
|
213 |
+
__m256i x_rounded_v = _mm256_cvtps_epi32(x_transformed_v);
|
214 |
+
x_rounded_v = _mm256_add_epi32(x_rounded_v, _mm256_set1_epi32(zero_point));
|
215 |
+
__m256i x_clipped_v =
|
216 |
+
_mm256_max_epi32(min_v, _mm256_min_epi32(max_v, x_rounded_v));
|
217 |
+
|
218 |
+
x_clipped_v = _mm256_shuffle_epi8(x_clipped_v, shuffle_mask_v);
|
219 |
+
x_clipped_v = _mm256_permutevar8x32_epi32(x_clipped_v, permute_mask_l8_v);
|
220 |
+
_mm_storel_epi64(
|
221 |
+
reinterpret_cast<__m128i*>(dst + i),
|
222 |
+
_mm256_castsi256_si128(x_clipped_v));
|
223 |
+
}
|
224 |
+
|
225 |
+
for (; i < len; ++i) {
|
226 |
+
float transformed = src[i] * inverse_scale;
|
227 |
+
|
228 |
+
// Not exactly the same behavior as the vectorized code.
|
229 |
+
// The vectorized code above always rounds to even in halfway cases
|
230 |
+
// (https://software.intel.com/en-us/node/523819), but std::nearbyint
|
231 |
+
// does the same only when the current rounding mode is FE_TONEAREST.
|
232 |
+
// However, in practice, this should not be a problem because most cases
|
233 |
+
// use the default rounding mode FE_TONEAREST.
|
234 |
+
// Note that we cannot implement the same behavior as the vectorized code
|
235 |
+
// using std::round because it does rounding away from zero in halfway
|
236 |
+
// cases.
|
237 |
+
transformed = zero_point + std::nearbyint(transformed);
|
238 |
+
float clipped =
|
239 |
+
std::min(std::max(transformed, float(min_val)), float(max_val));
|
240 |
+
dst[i] = clipped;
|
241 |
+
}
|
242 |
+
}
|
243 |
+
|
244 |
+
template<>
|
245 |
+
struct Vectorized<c10::qint32> : public Vectorizedqi {
|
246 |
+
using size_type = int;
|
247 |
+
static constexpr size_type size() {
|
248 |
+
return 8;
|
249 |
+
}
|
250 |
+
|
251 |
+
static constexpr int float_num_vecs() {
|
252 |
+
return 1;
|
253 |
+
}
|
254 |
+
|
255 |
+
static constexpr int int_num_vecs() {
|
256 |
+
return 1;
|
257 |
+
}
|
258 |
+
|
259 |
+
using float_vec_return_type = std::array<Vectorized<float>, 1>;
|
260 |
+
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 1>;
|
261 |
+
using value_type = c10::qint32::underlying;
|
262 |
+
|
263 |
+
public:
|
264 |
+
using Vectorizedqi::Vectorizedqi;
|
265 |
+
Vectorized() {}
|
266 |
+
|
267 |
+
Vectorized(__m256i vals_) { vals = vals_;}
|
268 |
+
|
269 |
+
// Broadcast constructor
|
270 |
+
Vectorized(const c10::qint32& val) {
|
271 |
+
value_type uw = val.val_;
|
272 |
+
vals = _mm256_set1_epi32(uw);
|
273 |
+
}
|
274 |
+
|
275 |
+
void store(void* ptr, int count = size()) const {
|
276 |
+
if (count != size()) {
|
277 |
+
memcpy(ptr, &vals, count * sizeof(value_type));
|
278 |
+
} else {
|
279 |
+
_mm256_storeu_si256((__m256i*)ptr, vals);
|
280 |
+
}
|
281 |
+
}
|
282 |
+
|
283 |
+
static Vectorized<c10::qint32> loadu(const void* ptr) {
|
284 |
+
return Vectorized<c10::qint32>(ptr);
|
285 |
+
}
|
286 |
+
|
287 |
+
static Vectorized<c10::qint32> loadu(const void* ptr, int64_t count) {
|
288 |
+
__at_align__ value_type tmp_values[size()];
|
289 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
290 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
291 |
+
// instructions while a loop would be compiled to one instruction.
|
292 |
+
for (const auto i : c10::irange(size())) {
|
293 |
+
tmp_values[i] = 0;
|
294 |
+
}
|
295 |
+
std::memcpy(
|
296 |
+
tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
297 |
+
return _mm256_loadu_si256((const __m256i*)tmp_values);
|
298 |
+
}
|
299 |
+
|
300 |
+
float_vec_return_type dequantize(
|
301 |
+
Vectorized<float> scale,
|
302 |
+
Vectorized<float> /*zero_point*/,
|
303 |
+
Vectorized<float> scale_zp_premul) const {
|
304 |
+
__m256 float_vals = _mm256_cvtepi32_ps(vals);
|
305 |
+
return {vec::fmadd(scale, Vectorized<float>(float_vals), scale_zp_premul)};
|
306 |
+
}
|
307 |
+
|
308 |
+
float_vec_return_type dequantize(
|
309 |
+
Vectorized<float> scale,
|
310 |
+
Vectorized<float> zero_point) const {
|
311 |
+
__m256 float_vals = _mm256_cvtepi32_ps(vals);
|
312 |
+
return {(Vectorized<float>(float_vals) - zero_point) * scale};
|
313 |
+
}
|
314 |
+
|
315 |
+
static Vectorized<c10::qint32> quantize(
|
316 |
+
const float_vec_return_type& rhs,
|
317 |
+
float scale,
|
318 |
+
int32_t zero_point,
|
319 |
+
float /*inverse_scale*/) {
|
320 |
+
Vectorized<c10::qint32> retval;
|
321 |
+
auto rhs_data = (__m256)rhs[0];
|
322 |
+
at::native::quantize_vec<c10::qint32, /*precision=*/32>(
|
323 |
+
scale, zero_point, (float*)&rhs_data, (c10::qint32*)&retval.vals, 8);
|
324 |
+
return retval;
|
325 |
+
}
|
326 |
+
|
327 |
+
Vectorized<c10::qint32> maximum(Vectorized<c10::qint32> b) const {
|
328 |
+
return _mm256_max_epi32(vals, b.vals);
|
329 |
+
}
|
330 |
+
|
331 |
+
Vectorized<c10::qint32> minimum(Vectorized<c10::qint32> b) const {
|
332 |
+
return _mm256_min_epi32(vals, b.vals);
|
333 |
+
}
|
334 |
+
|
335 |
+
Vectorized<c10::qint32> relu(Vectorized<c10::qint32> zero_point) const {
|
336 |
+
return maximum(zero_point);
|
337 |
+
}
|
338 |
+
|
339 |
+
Vectorized<c10::qint32> relu6(
|
340 |
+
Vectorized<c10::qint32> zero_point,
|
341 |
+
Vectorized<c10::qint32> q_six) {
|
342 |
+
return _mm256_min_epi32(
|
343 |
+
_mm256_max_epi32(vals, zero_point.vals), q_six.vals);
|
344 |
+
}
|
345 |
+
|
346 |
+
int_vec_return_type widening_subtract(Vectorized<c10::qint32> b) const {
|
347 |
+
return {_mm256_sub_epi32(vals, b)};
|
348 |
+
}
|
349 |
+
|
350 |
+
static Vectorized<c10::qint32> requantize_from_int(
|
351 |
+
const int_vec_return_type& inp,
|
352 |
+
float multiplier,
|
353 |
+
int32_t zero_point) {
|
354 |
+
__m256 multiplier_v = _mm256_set1_ps(multiplier);
|
355 |
+
__m256i zero_point_v = _mm256_set1_epi32(zero_point);
|
356 |
+
|
357 |
+
__m256 scaled = _mm256_mul_ps(_mm256_cvtepi32_ps(inp[0]), multiplier_v);
|
358 |
+
__m256i rounded = _mm256_cvtps_epi32(scaled);
|
359 |
+
return _mm256_add_epi32(rounded, zero_point_v);
|
360 |
+
}
|
361 |
+
|
362 |
+
private:
|
363 |
+
// Load from memory constructor
|
364 |
+
Vectorized(const void* ptr) {
|
365 |
+
vals = _mm256_loadu_si256((const __m256i*)ptr);
|
366 |
+
}
|
367 |
+
};
|
368 |
+
|
369 |
+
template <>
|
370 |
+
Vectorized<c10::qint32> inline maximum(const Vectorized<c10::qint32>& a, const Vectorized<c10::qint32>& b) {
|
371 |
+
return a.maximum(b);
|
372 |
+
}
|
373 |
+
|
374 |
+
template <>
|
375 |
+
Vectorized<c10::qint32> inline operator*(
|
376 |
+
const Vectorized<c10::qint32>& a,
|
377 |
+
const Vectorized<c10::qint32>& b) {
|
378 |
+
return _mm256_mullo_epi32(a, b);
|
379 |
+
}
|
380 |
+
|
381 |
+
template <>
|
382 |
+
Vectorized<c10::qint32> inline operator+(
|
383 |
+
const Vectorized<c10::qint32>& a,
|
384 |
+
const Vectorized<c10::qint32>& b) {
|
385 |
+
return _mm256_add_epi32(a, b);
|
386 |
+
}
|
387 |
+
|
388 |
+
/*
|
389 |
+
* Convert values from int32 back to int8/uint8
|
390 |
+
*/
|
391 |
+
template <typename T>
|
392 |
+
__m256i RequantizeAvx2(
|
393 |
+
const std::array<Vectorized<c10::qint32>, 4>& inp,
|
394 |
+
__m256 multiplier,
|
395 |
+
__m256i zp) {
|
396 |
+
static_assert(
|
397 |
+
std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value,
|
398 |
+
"Only int8_t/uint8_t are supported");
|
399 |
+
constexpr auto min_val = std::numeric_limits<T>::min();
|
400 |
+
constexpr auto max_val = std::numeric_limits<T>::max();
|
401 |
+
__m256i permute_mask_v =
|
402 |
+
_mm256_set_epi32(0x07, 0x03, 0x06, 0x02, 0x05, 0x01, 0x04, 0x00);
|
403 |
+
__m256 x_scaled_v = _mm256_mul_ps(_mm256_cvtepi32_ps(inp[0]), multiplier);
|
404 |
+
__m256 y_scaled_v = _mm256_mul_ps(_mm256_cvtepi32_ps(inp[1]), multiplier);
|
405 |
+
__m256 z_scaled_v = _mm256_mul_ps(_mm256_cvtepi32_ps(inp[2]), multiplier);
|
406 |
+
__m256 w_scaled_v = _mm256_mul_ps(_mm256_cvtepi32_ps(inp[3]), multiplier);
|
407 |
+
|
408 |
+
__m256i x_rounded_v = _mm256_cvtps_epi32(x_scaled_v);
|
409 |
+
__m256i y_rounded_v = _mm256_cvtps_epi32(y_scaled_v);
|
410 |
+
__m256i z_rounded_v = _mm256_cvtps_epi32(z_scaled_v);
|
411 |
+
__m256i w_rounded_v = _mm256_cvtps_epi32(w_scaled_v);
|
412 |
+
|
413 |
+
/* Add zero point */
|
414 |
+
__m256i x_v = _mm256_add_epi32(x_rounded_v, zp);
|
415 |
+
__m256i y_v = _mm256_add_epi32(y_rounded_v, zp);
|
416 |
+
__m256i z_v = _mm256_add_epi32(z_rounded_v, zp);
|
417 |
+
__m256i w_v = _mm256_add_epi32(w_rounded_v, zp);
|
418 |
+
|
419 |
+
/* Pack to int16_t and saturate */
|
420 |
+
__m256i xy_packed_v = _mm256_packs_epi32(x_v, y_v);
|
421 |
+
__m256i zw_packed_v = _mm256_packs_epi32(z_v, w_v);
|
422 |
+
|
423 |
+
__m256i xyzw_clamped_v =
|
424 |
+
pack_saturate_and_clamp<T>(xy_packed_v, zw_packed_v, min_val, max_val);
|
425 |
+
|
426 |
+
/*
|
427 |
+
* xyzw_clamped_v has results in the following layout so we need to
|
428 |
+
* permute: x0-3 y0-3 z0-3 w0-3 x4-7 y4-7 z4-7 w4-7
|
429 |
+
*/
|
430 |
+
xyzw_clamped_v = _mm256_permutevar8x32_epi32(xyzw_clamped_v, permute_mask_v);
|
431 |
+
return xyzw_clamped_v;
|
432 |
+
}
|
433 |
+
|
434 |
+
template<>
|
435 |
+
struct Vectorized<c10::qint8> : public Vectorizedqi {
|
436 |
+
static constexpr int size() {
|
437 |
+
return 32;
|
438 |
+
}
|
439 |
+
|
440 |
+
static constexpr int float_num_vecs() {
|
441 |
+
return 4;
|
442 |
+
}
|
443 |
+
|
444 |
+
static constexpr int int_num_vecs() {
|
445 |
+
return 4;
|
446 |
+
}
|
447 |
+
|
448 |
+
using float_vec_return_type = std::array<Vectorized<float>, 4>;
|
449 |
+
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 4>;
|
450 |
+
using value_type = typename c10::qint8::underlying;
|
451 |
+
|
452 |
+
public:
|
453 |
+
using Vectorizedqi::Vectorizedqi;
|
454 |
+
|
455 |
+
Vectorized() {}
|
456 |
+
Vectorized(__m256i vals_) { vals = vals_;}
|
457 |
+
|
458 |
+
// Broadcast constructor
|
459 |
+
Vectorized(const c10::qint8& val) {
|
460 |
+
value_type uw = val.val_;
|
461 |
+
vals = _mm256_set1_epi8(uw);
|
462 |
+
}
|
463 |
+
|
464 |
+
// This is needed because the compiler emits awful code for the default
|
465 |
+
// constructor for moving the enum
|
466 |
+
// NOLINTNEXTLINE(clang-diagnostic-deprecated-copy)
|
467 |
+
C10_CLANG_DIAGNOSTIC_PUSH()
|
468 |
+
#if C10_CLANG_HAS_WARNING("-Wdeprecated-copy")
|
469 |
+
C10_CLANG_DIAGNOSTIC_IGNORE("-Wdeprecated-copy")
|
470 |
+
#endif
|
471 |
+
Vectorized(const Vectorized<c10::qint8>& other) : Vectorizedqi(other.vals) { }
|
472 |
+
C10_CLANG_DIAGNOSTIC_POP()
|
473 |
+
|
474 |
+
void store(void* ptr, int count = size()) const {
|
475 |
+
if (count != size()) {
|
476 |
+
memcpy(ptr, &vals, count * sizeof(value_type));
|
477 |
+
} else {
|
478 |
+
_mm256_storeu_si256((__m256i*)ptr, vals);
|
479 |
+
}
|
480 |
+
}
|
481 |
+
|
482 |
+
static Vectorized<c10::qint8> loadu(const void* ptr) {
|
483 |
+
return Vectorized<c10::qint8>(ptr);
|
484 |
+
}
|
485 |
+
|
486 |
+
static Vectorized<c10::qint8> loadu(const void* ptr, int64_t count) {
|
487 |
+
__at_align__ value_type tmp_values[size()];
|
488 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
489 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
490 |
+
// instructions while a loop would be compiled to one instruction.
|
491 |
+
for (const auto i : c10::irange(size())) {
|
492 |
+
tmp_values[i] = 0;
|
493 |
+
}
|
494 |
+
std::memcpy(
|
495 |
+
tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
496 |
+
return _mm256_loadu_si256((const __m256i*)tmp_values);
|
497 |
+
}
|
498 |
+
|
499 |
+
private:
|
500 |
+
__m256i cvtepi8_epi32(__m128i epi8_vals) const {
|
501 |
+
return _mm256_cvtepi8_epi32(epi8_vals);
|
502 |
+
}
|
503 |
+
|
504 |
+
public:
|
505 |
+
float_vec_return_type dequantize(
|
506 |
+
Vectorized<float> scale,
|
507 |
+
Vectorized<float> /*zero_point*/,
|
508 |
+
Vectorized<float> scale_neg_zp_premul) const {
|
509 |
+
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
|
510 |
+
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
|
511 |
+
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
|
512 |
+
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
|
513 |
+
|
514 |
+
__m256 float_val0 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val0));
|
515 |
+
__m256 float_val1 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val1));
|
516 |
+
__m256 float_val2 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val2));
|
517 |
+
__m256 float_val3 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val3));
|
518 |
+
|
519 |
+
auto val0 =
|
520 |
+
vec::fmadd(scale, Vectorized<float>(float_val0), scale_neg_zp_premul);
|
521 |
+
auto val1 =
|
522 |
+
vec::fmadd(scale, Vectorized<float>(float_val1), scale_neg_zp_premul);
|
523 |
+
auto val2 =
|
524 |
+
vec::fmadd(scale, Vectorized<float>(float_val2), scale_neg_zp_premul);
|
525 |
+
auto val3 =
|
526 |
+
vec::fmadd(scale, Vectorized<float>(float_val3), scale_neg_zp_premul);
|
527 |
+
return {val0, val1, val2, val3};
|
528 |
+
}
|
529 |
+
|
530 |
+
float_vec_return_type dequantize(
|
531 |
+
Vectorized<float> scale,
|
532 |
+
Vectorized<float> zero_point) const {
|
533 |
+
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
|
534 |
+
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
|
535 |
+
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
|
536 |
+
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
|
537 |
+
|
538 |
+
__m256 float_val0 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val0));
|
539 |
+
__m256 float_val1 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val1));
|
540 |
+
__m256 float_val2 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val2));
|
541 |
+
__m256 float_val3 = _mm256_cvtepi32_ps(cvtepi8_epi32(int_val3));
|
542 |
+
|
543 |
+
auto val0 = (Vectorized<float>(float_val0) - zero_point) * scale;
|
544 |
+
auto val1 = (Vectorized<float>(float_val1) - zero_point) * scale;
|
545 |
+
auto val2 = (Vectorized<float>(float_val2) - zero_point) * scale;
|
546 |
+
auto val3 = (Vectorized<float>(float_val3) - zero_point) * scale;
|
547 |
+
return {val0, val1, val2, val3};
|
548 |
+
}
|
549 |
+
|
550 |
+
static Vectorized<c10::qint8> quantize(
|
551 |
+
const float_vec_return_type& rhs,
|
552 |
+
float /*scale*/,
|
553 |
+
int32_t zero_point,
|
554 |
+
float inverse_scale) {
|
555 |
+
auto* rhs_data = (float*)rhs.data();
|
556 |
+
int8_t quantized_values[32];
|
557 |
+
QuantizeAvx2<value_type>(
|
558 |
+
rhs_data, quantized_values, 32, inverse_scale, zero_point);
|
559 |
+
return Vectorized<c10::qint8>::loadu(quantized_values);
|
560 |
+
}
|
561 |
+
|
562 |
+
Vectorized<c10::qint8> maximum(Vectorized<c10::qint8> b) const {
|
563 |
+
return _mm256_max_epi8(vals, b.vals);
|
564 |
+
}
|
565 |
+
|
566 |
+
Vectorized<c10::qint8> minimum(Vectorized<c10::qint8> b) const {
|
567 |
+
return _mm256_min_epi8(vals, b.vals);
|
568 |
+
}
|
569 |
+
|
570 |
+
Vectorized<c10::qint8> relu(Vectorized<c10::qint8> zero_point) const {
|
571 |
+
return maximum(zero_point);
|
572 |
+
}
|
573 |
+
|
574 |
+
Vectorized<c10::qint8> relu6(
|
575 |
+
Vectorized<c10::qint8> zero_point,
|
576 |
+
Vectorized<c10::qint8> q_six) {
|
577 |
+
return _mm256_min_epi8(
|
578 |
+
_mm256_max_epi8(vals, zero_point.vals), q_six.vals);
|
579 |
+
}
|
580 |
+
|
581 |
+
int_vec_return_type widening_subtract(Vectorized<c10::qint8> b) const {
|
582 |
+
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
|
583 |
+
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
|
584 |
+
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
|
585 |
+
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
|
586 |
+
|
587 |
+
__m256i int32_val0 = cvtepi8_epi32(int_val0);
|
588 |
+
__m256i int32_val1 = cvtepi8_epi32(int_val1);
|
589 |
+
__m256i int32_val2 = cvtepi8_epi32(int_val2);
|
590 |
+
__m256i int32_val3 = cvtepi8_epi32(int_val3);
|
591 |
+
|
592 |
+
__m128i int_b0 = _mm_set1_epi64x(_mm256_extract_epi64(b, 0));
|
593 |
+
__m128i int_b1 = _mm_set1_epi64x(_mm256_extract_epi64(b, 1));
|
594 |
+
__m128i int_b2 = _mm_set1_epi64x(_mm256_extract_epi64(b, 2));
|
595 |
+
__m128i int_b3 = _mm_set1_epi64x(_mm256_extract_epi64(b, 3));
|
596 |
+
|
597 |
+
__m256i int32_b0 = cvtepi8_epi32(int_b0);
|
598 |
+
__m256i int32_b1 = cvtepi8_epi32(int_b1);
|
599 |
+
__m256i int32_b2 = cvtepi8_epi32(int_b2);
|
600 |
+
__m256i int32_b3 = cvtepi8_epi32(int_b3);
|
601 |
+
|
602 |
+
__m256i res_0 = _mm256_sub_epi32(int32_val0, int32_b0);
|
603 |
+
__m256i res_1 = _mm256_sub_epi32(int32_val1, int32_b1);
|
604 |
+
__m256i res_2 = _mm256_sub_epi32(int32_val2, int32_b2);
|
605 |
+
__m256i res_3 = _mm256_sub_epi32(int32_val3, int32_b3);
|
606 |
+
|
607 |
+
return {Vectorized<c10::qint32>(res_0),
|
608 |
+
Vectorized<c10::qint32>(res_1),
|
609 |
+
Vectorized<c10::qint32>(res_2),
|
610 |
+
Vectorized<c10::qint32>(res_3)};
|
611 |
+
}
|
612 |
+
|
613 |
+
static Vectorized<c10::qint8> requantize_from_int(
|
614 |
+
const int_vec_return_type& inp,
|
615 |
+
float multiplier,
|
616 |
+
int32_t zero_point) {
|
617 |
+
__m256 multiplier_v = _mm256_set1_ps(multiplier);
|
618 |
+
__m256i zero_point_v = _mm256_set1_epi32(zero_point);
|
619 |
+
return RequantizeAvx2<value_type>(inp, multiplier_v, zero_point_v);
|
620 |
+
}
|
621 |
+
|
622 |
+
private:
|
623 |
+
// Load from memory constructor
|
624 |
+
Vectorized(const void* ptr) {
|
625 |
+
vals = _mm256_loadu_si256((const __m256i*)ptr);
|
626 |
+
}
|
627 |
+
};
|
628 |
+
|
629 |
+
template <>
|
630 |
+
Vectorized<c10::qint8> inline maximum(const Vectorized<c10::qint8>& a, const Vectorized<c10::qint8>& b) {
|
631 |
+
return a.maximum(b);
|
632 |
+
}
|
633 |
+
|
634 |
+
template<>
|
635 |
+
struct Vectorized<c10::quint8> : public Vectorizedqi {
|
636 |
+
static constexpr int size() {
|
637 |
+
return 32;
|
638 |
+
}
|
639 |
+
|
640 |
+
static constexpr int float_num_vecs() {
|
641 |
+
return 4;
|
642 |
+
}
|
643 |
+
|
644 |
+
static constexpr int int_num_vecs() {
|
645 |
+
return 4;
|
646 |
+
}
|
647 |
+
|
648 |
+
using float_vec_return_type = std::array<Vectorized<float>, 4>;
|
649 |
+
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 4>;
|
650 |
+
using value_type = typename c10::quint8::underlying;
|
651 |
+
|
652 |
+
public:
|
653 |
+
using Vectorizedqi::Vectorizedqi;
|
654 |
+
Vectorized() {}
|
655 |
+
|
656 |
+
Vectorized(__m256i vals_) { vals = vals_;}
|
657 |
+
|
658 |
+
// Broadcast constructor
|
659 |
+
Vectorized(const c10::quint8& val) {
|
660 |
+
value_type uw = val.val_;
|
661 |
+
vals = _mm256_set1_epi8(uw);
|
662 |
+
}
|
663 |
+
|
664 |
+
// NOLINTNEXTLINE(clang-diagnostic-deprecated-copy)
|
665 |
+
C10_CLANG_DIAGNOSTIC_PUSH()
|
666 |
+
#if C10_CLANG_HAS_WARNING("-Wdeprecated-copy")
|
667 |
+
C10_CLANG_DIAGNOSTIC_IGNORE("-Wdeprecated-copy")
|
668 |
+
#endif
|
669 |
+
Vectorized(const Vectorized<c10::quint8>& other) : Vectorizedqi(other.vals) { }
|
670 |
+
C10_CLANG_DIAGNOSTIC_POP()
|
671 |
+
|
672 |
+
void store(void* ptr, int count = size()) const {
|
673 |
+
if (count != size()) {
|
674 |
+
memcpy(ptr, &vals, count * sizeof(value_type));
|
675 |
+
} else {
|
676 |
+
_mm256_storeu_si256((__m256i*)ptr, vals);
|
677 |
+
}
|
678 |
+
}
|
679 |
+
|
680 |
+
static Vectorized<c10::quint8> loadu(const void* ptr) {
|
681 |
+
return Vectorized<c10::quint8>(ptr);
|
682 |
+
}
|
683 |
+
|
684 |
+
static Vectorized<c10::quint8> loadu(const void* ptr, int64_t count) {
|
685 |
+
__at_align__ value_type tmp_values[size()];
|
686 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
687 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
688 |
+
// instructions while a loop would be compiled to one instruction.
|
689 |
+
for (const auto i : c10::irange(size())) {
|
690 |
+
tmp_values[i] = 0;
|
691 |
+
}
|
692 |
+
std::memcpy(
|
693 |
+
tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
694 |
+
return _mm256_loadu_si256((const __m256i*)tmp_values);
|
695 |
+
}
|
696 |
+
|
697 |
+
private:
|
698 |
+
__m256i cvtepu8_epi32(__m128i epu8_vals) const {
|
699 |
+
return _mm256_cvtepu8_epi32(epu8_vals);
|
700 |
+
}
|
701 |
+
|
702 |
+
public:
|
703 |
+
float_vec_return_type dequantize(
|
704 |
+
Vectorized<float> scale,
|
705 |
+
Vectorized<float> /*zero_point*/,
|
706 |
+
Vectorized<float> scale_zp_premul) const {
|
707 |
+
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
|
708 |
+
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
|
709 |
+
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
|
710 |
+
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
|
711 |
+
|
712 |
+
__m256 float_val0 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val0));
|
713 |
+
__m256 float_val1 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val1));
|
714 |
+
__m256 float_val2 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val2));
|
715 |
+
__m256 float_val3 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val3));
|
716 |
+
|
717 |
+
auto val0 =
|
718 |
+
vec::fmadd(scale, Vectorized<float>(float_val0), scale_zp_premul);
|
719 |
+
auto val1 =
|
720 |
+
vec::fmadd(scale, Vectorized<float>(float_val1), scale_zp_premul);
|
721 |
+
auto val2 =
|
722 |
+
vec::fmadd(scale, Vectorized<float>(float_val2), scale_zp_premul);
|
723 |
+
auto val3 =
|
724 |
+
vec::fmadd(scale, Vectorized<float>(float_val3), scale_zp_premul);
|
725 |
+
return {val0, val1, val2, val3};
|
726 |
+
}
|
727 |
+
|
728 |
+
float_vec_return_type dequantize(
|
729 |
+
Vectorized<float> scale,
|
730 |
+
Vectorized<float> zero_point) const {
|
731 |
+
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
|
732 |
+
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
|
733 |
+
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
|
734 |
+
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
|
735 |
+
|
736 |
+
__m256 float_val0 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val0));
|
737 |
+
__m256 float_val1 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val1));
|
738 |
+
__m256 float_val2 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val2));
|
739 |
+
__m256 float_val3 = _mm256_cvtepi32_ps(cvtepu8_epi32(int_val3));
|
740 |
+
|
741 |
+
auto val0 = (Vectorized<float>(float_val0) - zero_point) * scale;
|
742 |
+
auto val1 = (Vectorized<float>(float_val1) - zero_point) * scale;
|
743 |
+
auto val2 = (Vectorized<float>(float_val2) - zero_point) * scale;
|
744 |
+
auto val3 = (Vectorized<float>(float_val3) - zero_point) * scale;
|
745 |
+
return {val0, val1, val2, val3};
|
746 |
+
}
|
747 |
+
|
748 |
+
static Vectorized<c10::quint8> quantize(
|
749 |
+
const float_vec_return_type& rhs,
|
750 |
+
float /*scale*/,
|
751 |
+
int32_t zero_point,
|
752 |
+
float inverse_scale) {
|
753 |
+
auto* rhs_data = (float*)rhs.data();
|
754 |
+
uint8_t quantized_values[32];
|
755 |
+
QuantizeAvx2<value_type>(
|
756 |
+
rhs_data, quantized_values, 32, inverse_scale, zero_point);
|
757 |
+
return Vectorized<c10::quint8>::loadu(quantized_values);
|
758 |
+
}
|
759 |
+
|
760 |
+
Vectorized<c10::quint8> maximum(Vectorized<c10::quint8> b) const {
|
761 |
+
return _mm256_max_epu8(vals, b.vals);
|
762 |
+
}
|
763 |
+
|
764 |
+
Vectorized<c10::quint8> minimum(Vectorized<c10::quint8> b) const {
|
765 |
+
return _mm256_min_epu8(vals, b.vals);
|
766 |
+
}
|
767 |
+
|
768 |
+
Vectorized<c10::quint8> relu(Vectorized<c10::quint8> zero_point) const {
|
769 |
+
return maximum(zero_point);
|
770 |
+
}
|
771 |
+
|
772 |
+
Vectorized<c10::quint8> relu6(
|
773 |
+
Vectorized<c10::quint8> zero_point,
|
774 |
+
Vectorized<c10::quint8> q_six) {
|
775 |
+
return _mm256_min_epu8(
|
776 |
+
_mm256_max_epu8(vals, zero_point.vals), q_six.vals);
|
777 |
+
}
|
778 |
+
|
779 |
+
int_vec_return_type widening_subtract(Vectorized<c10::quint8> b) const {
|
780 |
+
__m128i int_val0 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 0));
|
781 |
+
__m128i int_val1 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 1));
|
782 |
+
__m128i int_val2 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 2));
|
783 |
+
__m128i int_val3 = _mm_set1_epi64x(_mm256_extract_epi64(vals, 3));
|
784 |
+
|
785 |
+
__m256i int32_val0 = cvtepu8_epi32(int_val0);
|
786 |
+
__m256i int32_val1 = cvtepu8_epi32(int_val1);
|
787 |
+
__m256i int32_val2 = cvtepu8_epi32(int_val2);
|
788 |
+
__m256i int32_val3 = cvtepu8_epi32(int_val3);
|
789 |
+
|
790 |
+
__m128i int_b0 = _mm_set1_epi64x(_mm256_extract_epi64(b, 0));
|
791 |
+
__m128i int_b1 = _mm_set1_epi64x(_mm256_extract_epi64(b, 1));
|
792 |
+
__m128i int_b2 = _mm_set1_epi64x(_mm256_extract_epi64(b, 2));
|
793 |
+
__m128i int_b3 = _mm_set1_epi64x(_mm256_extract_epi64(b, 3));
|
794 |
+
|
795 |
+
__m256i int32_b0 = cvtepu8_epi32(int_b0);
|
796 |
+
__m256i int32_b1 = cvtepu8_epi32(int_b1);
|
797 |
+
__m256i int32_b2 = cvtepu8_epi32(int_b2);
|
798 |
+
__m256i int32_b3 = cvtepu8_epi32(int_b3);
|
799 |
+
|
800 |
+
__m256i res_0 = _mm256_sub_epi32(int32_val0, int32_b0);
|
801 |
+
__m256i res_1 = _mm256_sub_epi32(int32_val1, int32_b1);
|
802 |
+
__m256i res_2 = _mm256_sub_epi32(int32_val2, int32_b2);
|
803 |
+
__m256i res_3 = _mm256_sub_epi32(int32_val3, int32_b3);
|
804 |
+
return {Vectorized<c10::qint32>(res_0),
|
805 |
+
Vectorized<c10::qint32>(res_1),
|
806 |
+
Vectorized<c10::qint32>(res_2),
|
807 |
+
Vectorized<c10::qint32>(res_3)};
|
808 |
+
}
|
809 |
+
|
810 |
+
static Vectorized<c10::quint8> requantize_from_int(
|
811 |
+
const int_vec_return_type& inp,
|
812 |
+
float multiplier,
|
813 |
+
int32_t zero_point) {
|
814 |
+
__m256 multiplier_v = _mm256_set1_ps(multiplier);
|
815 |
+
__m256i zero_point_v = _mm256_set1_epi32(zero_point);
|
816 |
+
return RequantizeAvx2<value_type>(inp, multiplier_v, zero_point_v);
|
817 |
+
}
|
818 |
+
|
819 |
+
private:
|
820 |
+
|
821 |
+
// Load from memory constructor
|
822 |
+
Vectorized(const void* ptr) {
|
823 |
+
vals = _mm256_loadu_si256((const __m256i*)ptr);
|
824 |
+
}
|
825 |
+
};
|
826 |
+
|
827 |
+
template <>
|
828 |
+
Vectorized<c10::quint8> inline maximum(const Vectorized<c10::quint8>& a, const Vectorized<c10::quint8>& b) {
|
829 |
+
return a.maximum(b);
|
830 |
+
}
|
831 |
+
|
832 |
+
#else
|
833 |
+
|
834 |
+
// NOTE: These are low-performance implementations that we fall back on
|
835 |
+
// if we are not building with AVX2. This may not be an issue, because
|
836 |
+
// currently for quantization we assume the user has at least AVX512
|
837 |
+
// installed, so these can simply act as a reference implementation.
|
838 |
+
//
|
839 |
+
// If in the future we relax this requirement (AVX2+), we should probably
|
840 |
+
// revisit these implementations
|
841 |
+
|
842 |
+
template <
|
843 |
+
typename T,
|
844 |
+
typename float_vec_return_type_,
|
845 |
+
typename int_vec_return_type_,
|
846 |
+
int size_>
|
847 |
+
struct VectorizedQuantizedConverter {
|
848 |
+
static constexpr int size() {
|
849 |
+
return size_;
|
850 |
+
}
|
851 |
+
|
852 |
+
static constexpr int float_num_vecs() {
|
853 |
+
return size() / 8;
|
854 |
+
}
|
855 |
+
|
856 |
+
static constexpr int int_num_vecs() {
|
857 |
+
return size() / 8;
|
858 |
+
}
|
859 |
+
|
860 |
+
using float_vec_return_type = float_vec_return_type_;
|
861 |
+
using int_vec_return_type = int_vec_return_type_;
|
862 |
+
|
863 |
+
using value_type = typename T::underlying;
|
864 |
+
std::array<value_type, size_> vals;
|
865 |
+
|
866 |
+
VectorizedQuantizedConverter(T val) {
|
867 |
+
for (const auto i : c10::irange(size())) {
|
868 |
+
vals[i] = val.val_;
|
869 |
+
}
|
870 |
+
}
|
871 |
+
|
872 |
+
VectorizedQuantizedConverter(const void* ptr) {
|
873 |
+
memcpy(vals.data(), ptr, sizeof(value_type) * size());
|
874 |
+
}
|
875 |
+
|
876 |
+
void store(void* ptr, int count = size()) const {
|
877 |
+
memcpy(ptr, vals.data(), count * sizeof(value_type));
|
878 |
+
}
|
879 |
+
|
880 |
+
float_vec_return_type dequantize(
|
881 |
+
Vectorized<float> scale,
|
882 |
+
Vectorized<float> zero_point,
|
883 |
+
Vectorized<float> /*scale_zp_premul*/) const {
|
884 |
+
float_vec_return_type rv;
|
885 |
+
for (const auto i : c10::irange(float_num_vecs())) {
|
886 |
+
float tmp_vals[8];
|
887 |
+
for (const auto j : c10::irange(8)) {
|
888 |
+
tmp_vals[j] = at::native::dequantize_val<T>(
|
889 |
+
scale[j], zero_point[j], T(vals[8 * i + j]));
|
890 |
+
}
|
891 |
+
rv[i] = Vectorized<float>(tmp_vals[0],
|
892 |
+
tmp_vals[1],
|
893 |
+
tmp_vals[2],
|
894 |
+
tmp_vals[3],
|
895 |
+
tmp_vals[4],
|
896 |
+
tmp_vals[5],
|
897 |
+
tmp_vals[6],
|
898 |
+
tmp_vals[7]);
|
899 |
+
}
|
900 |
+
return rv;
|
901 |
+
}
|
902 |
+
|
903 |
+
float_vec_return_type dequantize(
|
904 |
+
Vectorized<float> scale,
|
905 |
+
Vectorized<float> zero_point) const {
|
906 |
+
Vectorized<float> scale_zp_premul;
|
907 |
+
return dequantize(scale, zero_point, scale_zp_premul);
|
908 |
+
}
|
909 |
+
|
910 |
+
protected:
|
911 |
+
VectorizedQuantizedConverter() {}
|
912 |
+
};
|
913 |
+
|
914 |
+
template <>
|
915 |
+
struct Vectorized<c10::qint32> : public VectorizedQuantizedConverter<
|
916 |
+
c10::qint32,
|
917 |
+
std::array<Vectorized<float>, 1>,
|
918 |
+
std::array<Vectorized<c10::qint32>, 1>,
|
919 |
+
8> {
|
920 |
+
Vectorized()
|
921 |
+
: VectorizedQuantizedConverter<
|
922 |
+
c10::qint32,
|
923 |
+
std::array<Vectorized<float>, 1>,
|
924 |
+
std::array<Vectorized<c10::qint32>, 1>,
|
925 |
+
8>() {}
|
926 |
+
Vectorized(c10::qint32 val)
|
927 |
+
: VectorizedQuantizedConverter<
|
928 |
+
c10::qint32,
|
929 |
+
std::array<Vectorized<float>, 1>,
|
930 |
+
std::array<Vectorized<c10::qint32>, 1>,
|
931 |
+
8>(val) {}
|
932 |
+
Vectorized(const void* ptr)
|
933 |
+
: VectorizedQuantizedConverter<
|
934 |
+
c10::qint32,
|
935 |
+
std::array<Vectorized<float>, 1>,
|
936 |
+
std::array<Vectorized<c10::qint32>, 1>,
|
937 |
+
8>(ptr) {}
|
938 |
+
|
939 |
+
static Vectorized<c10::qint32> loadu(const void* ptr) {
|
940 |
+
return Vectorized<c10::qint32>(ptr);
|
941 |
+
}
|
942 |
+
|
943 |
+
static Vectorized<c10::qint32> loadu(const void* ptr, int64_t count) {
|
944 |
+
__at_align__ value_type tmp_values[size()];
|
945 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
946 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
947 |
+
// instructions while a loop would be compiled to one instruction.
|
948 |
+
for (const auto i : c10::irange(size())) {
|
949 |
+
tmp_values[i] = 0;
|
950 |
+
}
|
951 |
+
std::memcpy(
|
952 |
+
tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
953 |
+
return Vectorized<c10::qint32>(tmp_values);
|
954 |
+
}
|
955 |
+
|
956 |
+
static Vectorized<c10::qint32> quantize(
|
957 |
+
const float_vec_return_type& rhs,
|
958 |
+
float scale,
|
959 |
+
int32_t zero_point,
|
960 |
+
float /*inverse_scale*/) {
|
961 |
+
std::array<value_type, size()> qvals;
|
962 |
+
std::array<float, float_num_vecs() * 8> float_vals;
|
963 |
+
|
964 |
+
for (const auto i : c10::irange(float_num_vecs())) {
|
965 |
+
rhs[i].store(&float_vals[i * 8], 8);
|
966 |
+
}
|
967 |
+
|
968 |
+
at::native::quantize_vec<c10::qint32, /*precision=*/32>(
|
969 |
+
scale,
|
970 |
+
zero_point,
|
971 |
+
float_vals.data(),
|
972 |
+
(c10::qint32*)qvals.data(),
|
973 |
+
8 * float_num_vecs());
|
974 |
+
|
975 |
+
return Vectorized<c10::qint32>::loadu(qvals.data());
|
976 |
+
}
|
977 |
+
|
978 |
+
Vectorized<c10::qint32> maximum(Vectorized<c10::qint32> b) const {
|
979 |
+
Vectorized<c10::qint32> retval;
|
980 |
+
for (const auto i : c10::irange(size())) {
|
981 |
+
retval.vals[i] = std::max<value_type>(vals[i], b.vals[i]);
|
982 |
+
}
|
983 |
+
return retval;
|
984 |
+
}
|
985 |
+
|
986 |
+
Vectorized<c10::qint32> minimum(Vectorized<c10::qint32> b) const {
|
987 |
+
Vectorized<c10::qint32> retval;
|
988 |
+
for (const auto i : c10::irange(size())) {
|
989 |
+
retval.vals[i] = std::min<value_type>(vals[i], b.vals[i]);
|
990 |
+
}
|
991 |
+
return retval;
|
992 |
+
}
|
993 |
+
|
994 |
+
Vectorized<c10::qint32> relu(Vectorized<c10::qint32> zero_point) const {
|
995 |
+
return maximum(zero_point);
|
996 |
+
}
|
997 |
+
|
998 |
+
|
999 |
+
Vectorized<c10::qint32> relu6(
|
1000 |
+
Vectorized<c10::qint32> zero_point,
|
1001 |
+
Vectorized<c10::qint32> q_six) {
|
1002 |
+
Vectorized<c10::qint32> retval;
|
1003 |
+
for (const auto i : c10::irange(size())) {
|
1004 |
+
retval.vals[i] = std::min<value_type>(
|
1005 |
+
std::max<value_type>(vals[i], zero_point.vals[i]), q_six.vals[i]);
|
1006 |
+
}
|
1007 |
+
return retval;
|
1008 |
+
}
|
1009 |
+
|
1010 |
+
int_vec_return_type widening_subtract(Vectorized<c10::qint32> b) const {
|
1011 |
+
int_vec_return_type retval;
|
1012 |
+
for (const auto i : c10::irange(size())) {
|
1013 |
+
retval[0].vals[i] = vals[i] - b.vals[i];
|
1014 |
+
}
|
1015 |
+
return retval;
|
1016 |
+
}
|
1017 |
+
|
1018 |
+
static Vectorized<c10::qint32> requantize_from_int(
|
1019 |
+
const int_vec_return_type& inp,
|
1020 |
+
float multiplier,
|
1021 |
+
int32_t zero_point) {
|
1022 |
+
Vectorized<c10::qint32> retval;
|
1023 |
+
for (const auto i : c10::irange(size())) {
|
1024 |
+
retval.vals[i] =
|
1025 |
+
std::nearbyint(static_cast<float>(inp[0].vals[i]) * multiplier) +
|
1026 |
+
zero_point;
|
1027 |
+
}
|
1028 |
+
return retval;
|
1029 |
+
}
|
1030 |
+
};
|
1031 |
+
|
1032 |
+
template <>
|
1033 |
+
Vectorized<c10::qint32> inline maximum(const Vectorized<c10::qint32>& a, const Vectorized<c10::qint32>& b) {
|
1034 |
+
return a.maximum(b);
|
1035 |
+
}
|
1036 |
+
|
1037 |
+
template <>
|
1038 |
+
Vectorized<c10::qint32> inline operator*(
|
1039 |
+
const Vectorized<c10::qint32>& a,
|
1040 |
+
const Vectorized<c10::qint32>& b) {
|
1041 |
+
Vectorized<c10::qint32> retval;
|
1042 |
+
for (const auto i : c10::irange(std::decay_t<decltype(a)>::size())) {
|
1043 |
+
retval.vals[i] = a.vals[i] * b.vals[i];
|
1044 |
+
}
|
1045 |
+
return retval;
|
1046 |
+
}
|
1047 |
+
|
1048 |
+
template <>
|
1049 |
+
Vectorized<c10::qint32> inline operator+(
|
1050 |
+
const Vectorized<c10::qint32>& a,
|
1051 |
+
const Vectorized<c10::qint32>& b) {
|
1052 |
+
Vectorized<c10::qint32> retval;
|
1053 |
+
for (const auto i : c10::irange(std::decay_t<decltype(a)>::size())) {
|
1054 |
+
retval.vals[i] = a.vals[i] + b.vals[i];
|
1055 |
+
}
|
1056 |
+
return retval;
|
1057 |
+
}
|
1058 |
+
|
1059 |
+
template <>
|
1060 |
+
struct Vectorized<c10::qint8> : public VectorizedQuantizedConverter<
|
1061 |
+
c10::qint8,
|
1062 |
+
std::array<Vectorized<float>, 4>,
|
1063 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1064 |
+
32> {
|
1065 |
+
Vectorized()
|
1066 |
+
: VectorizedQuantizedConverter<
|
1067 |
+
c10::qint8,
|
1068 |
+
std::array<Vectorized<float>, 4>,
|
1069 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1070 |
+
32>() {}
|
1071 |
+
Vectorized(c10::qint8 val)
|
1072 |
+
: VectorizedQuantizedConverter<
|
1073 |
+
c10::qint8,
|
1074 |
+
std::array<Vectorized<float>, 4>,
|
1075 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1076 |
+
32>(val) {}
|
1077 |
+
Vectorized(const void* ptr)
|
1078 |
+
: VectorizedQuantizedConverter<
|
1079 |
+
c10::qint8,
|
1080 |
+
std::array<Vectorized<float>, 4>,
|
1081 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1082 |
+
32>(ptr) {}
|
1083 |
+
|
1084 |
+
static Vectorized<c10::qint8> loadu(const void* ptr) {
|
1085 |
+
return Vectorized<c10::qint8>(ptr);
|
1086 |
+
}
|
1087 |
+
|
1088 |
+
static Vectorized<c10::qint8> loadu(const void* ptr, int64_t count) {
|
1089 |
+
__at_align__ value_type tmp_values[size()];
|
1090 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
1091 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
1092 |
+
// instructions while a loop would be compiled to one instruction.
|
1093 |
+
for (const auto i : c10::irange(size())) {
|
1094 |
+
tmp_values[i] = 0;
|
1095 |
+
}
|
1096 |
+
std::memcpy(
|
1097 |
+
tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
1098 |
+
return Vectorized<c10::qint8>(tmp_values);
|
1099 |
+
}
|
1100 |
+
|
1101 |
+
static Vectorized<c10::qint8> quantize(
|
1102 |
+
const float_vec_return_type& rhs,
|
1103 |
+
float scale,
|
1104 |
+
int32_t zero_point,
|
1105 |
+
float /*inverse_scale*/) {
|
1106 |
+
std::array<value_type, size()> qvals;
|
1107 |
+
std::array<float, float_num_vecs() * 8> float_vals;
|
1108 |
+
|
1109 |
+
for (const auto i : c10::irange(float_num_vecs())) {
|
1110 |
+
rhs[i].store(&float_vals[i * 8], 8);
|
1111 |
+
}
|
1112 |
+
|
1113 |
+
at::native::quantize_vec<c10::qint8>(
|
1114 |
+
scale,
|
1115 |
+
zero_point,
|
1116 |
+
float_vals.data(),
|
1117 |
+
(c10::qint8*)qvals.data(),
|
1118 |
+
8 * float_num_vecs());
|
1119 |
+
|
1120 |
+
return Vectorized<c10::qint8>::loadu(qvals.data());
|
1121 |
+
}
|
1122 |
+
|
1123 |
+
Vectorized<c10::qint8> maximum(Vectorized<c10::qint8> b) const {
|
1124 |
+
Vectorized<c10::qint8> retval;
|
1125 |
+
for (const auto i : c10::irange(size())) {
|
1126 |
+
retval.vals[i] = std::max<value_type>(vals[i], b.vals[i]);
|
1127 |
+
}
|
1128 |
+
return retval;
|
1129 |
+
}
|
1130 |
+
|
1131 |
+
Vectorized<c10::qint8> minimum(Vectorized<c10::qint8> b) const {
|
1132 |
+
Vectorized<c10::qint8> retval;
|
1133 |
+
for (const auto i : c10::irange(size())) {
|
1134 |
+
retval.vals[i] = std::min<value_type>(vals[i], b.vals[i]);
|
1135 |
+
}
|
1136 |
+
return retval;
|
1137 |
+
}
|
1138 |
+
|
1139 |
+
Vectorized<c10::qint8> relu(Vectorized<c10::qint8> zero_point) const {
|
1140 |
+
return maximum(zero_point);
|
1141 |
+
}
|
1142 |
+
|
1143 |
+
Vectorized<c10::qint8> relu6(
|
1144 |
+
Vectorized<c10::qint8> zero_point,
|
1145 |
+
Vectorized<c10::qint8> q_six) {
|
1146 |
+
Vectorized<c10::qint8> retval;
|
1147 |
+
for (const auto i : c10::irange(size())) {
|
1148 |
+
retval.vals[i] = std::min<value_type>(
|
1149 |
+
std::max<value_type>(vals[i], zero_point.vals[i]), q_six.vals[i]);
|
1150 |
+
}
|
1151 |
+
return retval;
|
1152 |
+
}
|
1153 |
+
|
1154 |
+
int_vec_return_type widening_subtract(Vectorized<c10::qint8> b) const {
|
1155 |
+
int_vec_return_type retval;
|
1156 |
+
constexpr int elem_per_int_vec = size() / int_num_vecs();
|
1157 |
+
for (const auto i : c10::irange(int_num_vecs())) {
|
1158 |
+
for (const auto j : c10::irange(elem_per_int_vec)) {
|
1159 |
+
retval[i].vals[j] =
|
1160 |
+
static_cast<int32_t>(vals[i * elem_per_int_vec + j]) -
|
1161 |
+
static_cast<int32_t>(b.vals[i * elem_per_int_vec + j]);
|
1162 |
+
}
|
1163 |
+
}
|
1164 |
+
return retval;
|
1165 |
+
}
|
1166 |
+
static Vectorized<c10::qint8> requantize_from_int(
|
1167 |
+
const int_vec_return_type& inp,
|
1168 |
+
float multiplier,
|
1169 |
+
int32_t zero_point) {
|
1170 |
+
constexpr int elem_per_int_vec = size() / int_num_vecs();
|
1171 |
+
constexpr auto min_val = std::numeric_limits<value_type>::min();
|
1172 |
+
constexpr auto max_val = std::numeric_limits<value_type>::max();
|
1173 |
+
Vectorized<c10::qint8> retval;
|
1174 |
+
for (const auto i : c10::irange(int_num_vecs())) {
|
1175 |
+
for (const auto j : c10::irange(elem_per_int_vec)) {
|
1176 |
+
int32_t rounded =
|
1177 |
+
std::nearbyint(static_cast<float>(inp[i].vals[j]) * multiplier) +
|
1178 |
+
zero_point;
|
1179 |
+
retval.vals[i * elem_per_int_vec + j] =
|
1180 |
+
std::min<int32_t>(std::max<int32_t>(rounded, min_val), max_val);
|
1181 |
+
}
|
1182 |
+
}
|
1183 |
+
return retval;
|
1184 |
+
}
|
1185 |
+
};
|
1186 |
+
|
1187 |
+
template <>
|
1188 |
+
Vectorized<c10::qint8> inline maximum(const Vectorized<c10::qint8>& a, const Vectorized<c10::qint8>& b) {
|
1189 |
+
return a.maximum(b);
|
1190 |
+
}
|
1191 |
+
|
1192 |
+
template <>
|
1193 |
+
struct Vectorized<c10::quint8> : public VectorizedQuantizedConverter<
|
1194 |
+
c10::quint8,
|
1195 |
+
std::array<Vectorized<float>, 4>,
|
1196 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1197 |
+
32> {
|
1198 |
+
Vectorized()
|
1199 |
+
: VectorizedQuantizedConverter<
|
1200 |
+
c10::quint8,
|
1201 |
+
std::array<Vectorized<float>, 4>,
|
1202 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1203 |
+
32>() {}
|
1204 |
+
Vectorized(c10::quint8 val)
|
1205 |
+
: VectorizedQuantizedConverter<
|
1206 |
+
c10::quint8,
|
1207 |
+
std::array<Vectorized<float>, 4>,
|
1208 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1209 |
+
32>(val) {}
|
1210 |
+
Vectorized(const void* ptr)
|
1211 |
+
: VectorizedQuantizedConverter<
|
1212 |
+
c10::quint8,
|
1213 |
+
std::array<Vectorized<float>, 4>,
|
1214 |
+
std::array<Vectorized<c10::qint32>, 4>,
|
1215 |
+
32>(ptr) {}
|
1216 |
+
|
1217 |
+
static Vectorized<c10::quint8> loadu(const void* ptr) {
|
1218 |
+
return Vectorized<c10::quint8>(ptr);
|
1219 |
+
}
|
1220 |
+
|
1221 |
+
static Vectorized<c10::quint8> loadu(const void* ptr, int64_t count) {
|
1222 |
+
__at_align__ value_type tmp_values[size()];
|
1223 |
+
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
|
1224 |
+
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
|
1225 |
+
// instructions while a loop would be compiled to one instruction.
|
1226 |
+
for (const auto i : c10::irange(size())) {
|
1227 |
+
tmp_values[i] = 0;
|
1228 |
+
}
|
1229 |
+
std::memcpy(
|
1230 |
+
tmp_values, reinterpret_cast<const value_type*>(ptr), count * sizeof(value_type));
|
1231 |
+
return Vectorized<c10::quint8>(tmp_values);
|
1232 |
+
}
|
1233 |
+
|
1234 |
+
static Vectorized<c10::quint8> quantize(
|
1235 |
+
const float_vec_return_type& rhs,
|
1236 |
+
float scale,
|
1237 |
+
int32_t zero_point,
|
1238 |
+
float /*inverse_scale*/) {
|
1239 |
+
std::array<value_type, size()> qvals;
|
1240 |
+
std::array<float, float_num_vecs() * 8> float_vals;
|
1241 |
+
|
1242 |
+
for (const auto i : c10::irange(float_num_vecs())) {
|
1243 |
+
rhs[i].store(&float_vals[i * 8], 8);
|
1244 |
+
}
|
1245 |
+
|
1246 |
+
at::native::quantize_vec<c10::quint8>(
|
1247 |
+
scale,
|
1248 |
+
zero_point,
|
1249 |
+
float_vals.data(),
|
1250 |
+
(c10::quint8*)qvals.data(),
|
1251 |
+
8 * float_num_vecs());
|
1252 |
+
|
1253 |
+
return Vectorized<c10::quint8>::loadu(qvals.data());
|
1254 |
+
}
|
1255 |
+
|
1256 |
+
Vectorized<c10::quint8> maximum(Vectorized<c10::quint8> b) const {
|
1257 |
+
Vectorized<c10::quint8> retval;
|
1258 |
+
for (const auto i : c10::irange(size())) {
|
1259 |
+
retval.vals[i] = std::max<value_type>(vals[i], b.vals[i]);
|
1260 |
+
}
|
1261 |
+
return retval;
|
1262 |
+
}
|
1263 |
+
|
1264 |
+
Vectorized<c10::quint8> minimum(Vectorized<c10::quint8> b) const {
|
1265 |
+
Vectorized<c10::quint8> retval;
|
1266 |
+
for (const auto i : c10::irange(size())) {
|
1267 |
+
retval.vals[i] = std::min<value_type>(vals[i], b.vals[i]);
|
1268 |
+
}
|
1269 |
+
return retval;
|
1270 |
+
}
|
1271 |
+
|
1272 |
+
Vectorized<c10::quint8> relu(Vectorized<c10::quint8> zero_point) const {
|
1273 |
+
return maximum(zero_point);
|
1274 |
+
}
|
1275 |
+
|
1276 |
+
|
1277 |
+
Vectorized<c10::quint8> relu6(
|
1278 |
+
Vectorized<c10::quint8> zero_point,
|
1279 |
+
Vectorized<c10::quint8> q_six) {
|
1280 |
+
Vectorized<c10::quint8> retval;
|
1281 |
+
for (const auto i : c10::irange(size())) {
|
1282 |
+
retval.vals[i] = std::min<value_type>(
|
1283 |
+
std::max<value_type>(vals[i], zero_point.vals[i]), q_six.vals[i]);
|
1284 |
+
}
|
1285 |
+
return retval;
|
1286 |
+
}
|
1287 |
+
|
1288 |
+
int_vec_return_type widening_subtract(Vectorized<c10::quint8> b) const {
|
1289 |
+
int_vec_return_type retval;
|
1290 |
+
constexpr int elem_per_int_vec = size() / int_num_vecs();
|
1291 |
+
for (const auto i : c10::irange(int_num_vecs())) {
|
1292 |
+
for (const auto j : c10::irange(elem_per_int_vec)) {
|
1293 |
+
retval[i].vals[j] =
|
1294 |
+
static_cast<int32_t>(vals[i * elem_per_int_vec + j]) -
|
1295 |
+
static_cast<int32_t>(b.vals[i * elem_per_int_vec + j]);
|
1296 |
+
}
|
1297 |
+
}
|
1298 |
+
return retval;
|
1299 |
+
}
|
1300 |
+
static Vectorized<c10::quint8> requantize_from_int(
|
1301 |
+
const int_vec_return_type& inp,
|
1302 |
+
float multiplier,
|
1303 |
+
int32_t zero_point) {
|
1304 |
+
constexpr int elem_per_int_vec = size() / int_num_vecs();
|
1305 |
+
constexpr auto min_val = std::numeric_limits<value_type>::min();
|
1306 |
+
constexpr auto max_val = std::numeric_limits<value_type>::max();
|
1307 |
+
Vectorized<c10::quint8> retval;
|
1308 |
+
for (const auto i : c10::irange(int_num_vecs())) {
|
1309 |
+
for (const auto j : c10::irange(elem_per_int_vec)) {
|
1310 |
+
int32_t rounded =
|
1311 |
+
std::nearbyint(static_cast<float>(inp[i].vals[j]) * multiplier) +
|
1312 |
+
zero_point;
|
1313 |
+
retval.vals[i * elem_per_int_vec + j] =
|
1314 |
+
std::min<int32_t>(std::max<int32_t>(rounded, min_val), max_val);
|
1315 |
+
}
|
1316 |
+
}
|
1317 |
+
return retval;
|
1318 |
+
}
|
1319 |
+
};
|
1320 |
+
|
1321 |
+
template <>
|
1322 |
+
Vectorized<c10::quint8> inline maximum(const Vectorized<c10::quint8>& a, const Vectorized<c10::quint8>& b) {
|
1323 |
+
return a.maximum(b);
|
1324 |
+
}
|
1325 |
+
|
1326 |
+
#endif // if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
|
1327 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_bfloat16_vsx.h
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
4 |
+
#include <ATen/cpu/vec/vec256/vsx/vsx_helpers.h>
|
5 |
+
#include <ATen/cpu/vec/vec_base.h>
|
6 |
+
#include <c10/util/irange.h>
|
7 |
+
|
8 |
+
namespace at {
|
9 |
+
namespace vec {
|
10 |
+
// See Note [CPU_CAPABILITY namespace]
|
11 |
+
inline namespace CPU_CAPABILITY {
|
12 |
+
|
13 |
+
inline std::tuple<Vectorized<float>, Vectorized<float>> convert_bfloat16_float(
|
14 |
+
const Vectorized<BFloat16>& a) {
|
15 |
+
constexpr int64_t K = Vectorized<BFloat16>::size();
|
16 |
+
__at_align__ float arr[K];
|
17 |
+
__at_align__ BFloat16 arr2[K];
|
18 |
+
a.store(arr2);
|
19 |
+
convert(arr2, arr, K);
|
20 |
+
return std::make_tuple(
|
21 |
+
Vectorized<float>::loadu(arr),
|
22 |
+
Vectorized<float>::loadu(arr + Vectorized<float>::size()));
|
23 |
+
}
|
24 |
+
|
25 |
+
inline Vectorized<BFloat16> convert_float_bfloat16(
|
26 |
+
const Vectorized<float>& a,
|
27 |
+
const Vectorized<float>& b) {
|
28 |
+
constexpr int64_t K = Vectorized<BFloat16>::size();
|
29 |
+
__at_align__ float arr[K];
|
30 |
+
__at_align__ BFloat16 arr2[K];
|
31 |
+
a.store(arr);
|
32 |
+
b.store(arr + Vectorized<float>::size());
|
33 |
+
convert(arr, arr2, K);
|
34 |
+
return Vectorized<BFloat16>::loadu(arr2);
|
35 |
+
}
|
36 |
+
|
37 |
+
inline void load_fp32_from_bf16(const c10::BFloat16* data, Vectorized<float>& out) {
|
38 |
+
__at_align__ float values[Vectorized<float>::size()];
|
39 |
+
for (const auto k : c10::irange(Vectorized<float>::size())) {
|
40 |
+
values[k] = data[k];
|
41 |
+
}
|
42 |
+
out = Vectorized<float>::loadu(values);
|
43 |
+
}
|
44 |
+
|
45 |
+
inline void load_fp32_from_bf16(
|
46 |
+
const c10::BFloat16* data,
|
47 |
+
Vectorized<float>& out1,
|
48 |
+
Vectorized<float>& out2) {
|
49 |
+
load_fp32_from_bf16(data, out1);
|
50 |
+
data += Vectorized<float>::size();
|
51 |
+
load_fp32_from_bf16(data, out2);
|
52 |
+
}
|
53 |
+
|
54 |
+
} // namespace
|
55 |
+
} // namespace vec
|
56 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_float_vsx.h
ADDED
@@ -0,0 +1,449 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
4 |
+
#include <ATen/cpu/vec/vec_base.h>
|
5 |
+
#include <ATen/cpu/vec/vec256/vsx/vsx_helpers.h>
|
6 |
+
#include <sleef.h>
|
7 |
+
namespace at {
|
8 |
+
namespace vec {
|
9 |
+
// See Note [CPU_CAPABILITY namespace]
|
10 |
+
|
11 |
+
inline namespace CPU_CAPABILITY {
|
12 |
+
|
13 |
+
template <>
|
14 |
+
class Vectorized<float> {
|
15 |
+
private:
|
16 |
+
union {
|
17 |
+
struct {
|
18 |
+
vfloat32 _vec0;
|
19 |
+
vfloat32 _vec1;
|
20 |
+
};
|
21 |
+
struct {
|
22 |
+
vbool32 _vecb0;
|
23 |
+
vbool32 _vecb1;
|
24 |
+
};
|
25 |
+
|
26 |
+
} __attribute__((__may_alias__));
|
27 |
+
|
28 |
+
public:
|
29 |
+
using value_type = float;
|
30 |
+
using vec_internal_type = vfloat32;
|
31 |
+
using vec_internal_mask_type = vbool32;
|
32 |
+
using size_type = int;
|
33 |
+
|
34 |
+
static constexpr size_type size() {
|
35 |
+
return 8;
|
36 |
+
}
|
37 |
+
Vectorized() {}
|
38 |
+
|
39 |
+
C10_ALWAYS_INLINE Vectorized(vfloat32 v) : _vec0{v}, _vec1{v} {}
|
40 |
+
C10_ALWAYS_INLINE Vectorized(vbool32 vmask) : _vecb0{vmask}, _vecb1{vmask} {}
|
41 |
+
C10_ALWAYS_INLINE Vectorized(vfloat32 v1, vfloat32 v2) : _vec0{v1}, _vec1{v2} {}
|
42 |
+
C10_ALWAYS_INLINE Vectorized(vbool32 v1, vbool32 v2) : _vecb0{v1}, _vecb1{v2} {}
|
43 |
+
C10_ALWAYS_INLINE Vectorized(float scalar)
|
44 |
+
: _vec0{vec_splats(scalar)}, _vec1{vec_splats(scalar)} {}
|
45 |
+
C10_ALWAYS_INLINE Vectorized(
|
46 |
+
float scalar1,
|
47 |
+
float scalar2,
|
48 |
+
float scalar3,
|
49 |
+
float scalar4,
|
50 |
+
float scalar5,
|
51 |
+
float scalar6,
|
52 |
+
float scalar7,
|
53 |
+
float scalar8)
|
54 |
+
: _vec0{vfloat32{scalar1, scalar2, scalar3, scalar4}},
|
55 |
+
_vec1{vfloat32{scalar5, scalar6, scalar7, scalar8}} {}
|
56 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec0() const {
|
57 |
+
return _vec0;
|
58 |
+
}
|
59 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec1() const {
|
60 |
+
return _vec1;
|
61 |
+
}
|
62 |
+
|
63 |
+
template <int64_t mask>
|
64 |
+
static std::enable_if_t<blendChoice(mask) == 0, Vectorized<float>> C10_ALWAYS_INLINE
|
65 |
+
blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
66 |
+
return a;
|
67 |
+
}
|
68 |
+
|
69 |
+
template <int64_t mask>
|
70 |
+
static std::enable_if_t<blendChoice(mask) == 1, Vectorized<float>> C10_ALWAYS_INLINE
|
71 |
+
blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
72 |
+
return b;
|
73 |
+
}
|
74 |
+
|
75 |
+
template <int64_t mask>
|
76 |
+
static std::enable_if_t<blendChoice(mask) == 2, Vectorized<float>> C10_ALWAYS_INLINE
|
77 |
+
blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
78 |
+
return {b._vec0, a._vec1};
|
79 |
+
}
|
80 |
+
|
81 |
+
template <int64_t mask>
|
82 |
+
static std::enable_if_t<blendChoice(mask) == 3, Vectorized<float>> C10_ALWAYS_INLINE
|
83 |
+
blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
84 |
+
return {a._vec0, b._vec1};
|
85 |
+
}
|
86 |
+
|
87 |
+
template <int64_t mask>
|
88 |
+
static std::enable_if_t<blendChoice(mask) == 4, Vectorized<float>> C10_ALWAYS_INLINE
|
89 |
+
blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
90 |
+
const vbool32 mask_1st = VsxMask1(mask);
|
91 |
+
return {(vfloat32)vec_sel(a._vec0, b._vec0, mask_1st), a._vec1};
|
92 |
+
}
|
93 |
+
|
94 |
+
template <int64_t mask>
|
95 |
+
static std::enable_if_t<blendChoice(mask) == 5, Vectorized<float>> C10_ALWAYS_INLINE
|
96 |
+
blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
97 |
+
const vbool32 mask_1st = VsxMask1(mask);
|
98 |
+
return {(vfloat32)vec_sel(a._vec0, b._vec0, mask_1st), b._vec1};
|
99 |
+
}
|
100 |
+
|
101 |
+
template <int64_t mask>
|
102 |
+
static std::enable_if_t<blendChoice(mask) == 6, Vectorized<float>> C10_ALWAYS_INLINE
|
103 |
+
blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
104 |
+
const vbool32 mask_2nd = VsxMask2(mask);
|
105 |
+
// generated masks
|
106 |
+
return {a._vec0, (vfloat32)vec_sel(a._vec1, b._vec1, mask_2nd)};
|
107 |
+
}
|
108 |
+
|
109 |
+
template <int64_t mask>
|
110 |
+
static std::enable_if_t<blendChoice(mask) == 7, Vectorized<float>> C10_ALWAYS_INLINE
|
111 |
+
blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
112 |
+
const vbool32 mask_2nd = VsxMask2(mask);
|
113 |
+
// generated masks
|
114 |
+
return {b._vec0, (vfloat32)vec_sel(a._vec1, b._vec1, mask_2nd)};
|
115 |
+
}
|
116 |
+
|
117 |
+
template <int64_t mask>
|
118 |
+
static std::enable_if_t<blendChoice(mask) == 8, Vectorized<float>> C10_ALWAYS_INLINE
|
119 |
+
blend(const Vectorized<float>& a, const Vectorized<float>& b) {
|
120 |
+
const vbool32 mask_1st = VsxMask1(mask);
|
121 |
+
const vbool32 mask_2nd = VsxMask2(mask);
|
122 |
+
return {
|
123 |
+
(vfloat32)vec_sel(a._vec0, b._vec0, mask_1st),
|
124 |
+
(vfloat32)vec_sel(a._vec1, b._vec1, mask_2nd)};
|
125 |
+
}
|
126 |
+
|
127 |
+
static Vectorized<float> C10_ALWAYS_INLINE blendv(
|
128 |
+
const Vectorized<float>& a,
|
129 |
+
const Vectorized<float>& b,
|
130 |
+
const Vectorized<float>& mask) {
|
131 |
+
// the mask used here returned by comparision of vec256
|
132 |
+
// assuming this we can use the same mask directly with vec_sel
|
133 |
+
return {
|
134 |
+
vec_sel(a._vec0, b._vec0, mask._vecb0),
|
135 |
+
vec_sel(a._vec1, b._vec1, mask._vecb1)};
|
136 |
+
}
|
137 |
+
|
138 |
+
template <typename step_t>
|
139 |
+
static Vectorized<float> arange(float base = 0.f, step_t step = static_cast<step_t>(1)) {
|
140 |
+
return Vectorized<float>(
|
141 |
+
base,
|
142 |
+
base + step,
|
143 |
+
base + 2 * step,
|
144 |
+
base + 3 * step,
|
145 |
+
base + 4 * step,
|
146 |
+
base + 5 * step,
|
147 |
+
base + 6 * step,
|
148 |
+
base + 7 * step);
|
149 |
+
}
|
150 |
+
static Vectorized<float> set(
|
151 |
+
const Vectorized<float>& a,
|
152 |
+
const Vectorized<float>& b,
|
153 |
+
size_t count = size()) {
|
154 |
+
switch (count) {
|
155 |
+
case 0:
|
156 |
+
return a;
|
157 |
+
case 1:
|
158 |
+
return blend<1>(a, b);
|
159 |
+
case 2:
|
160 |
+
return blend<3>(a, b);
|
161 |
+
case 3:
|
162 |
+
return blend<7>(a, b);
|
163 |
+
case 4:
|
164 |
+
return blend<15>(a, b);
|
165 |
+
case 5:
|
166 |
+
return blend<31>(a, b);
|
167 |
+
case 6:
|
168 |
+
return blend<63>(a, b);
|
169 |
+
case 7:
|
170 |
+
return blend<127>(a, b);
|
171 |
+
}
|
172 |
+
|
173 |
+
return b;
|
174 |
+
}
|
175 |
+
static Vectorized<value_type> C10_ALWAYS_INLINE
|
176 |
+
loadu(const void* ptr, int count = size()) {
|
177 |
+
if (count == size()) {
|
178 |
+
return {
|
179 |
+
vec_vsx_ld(offset0, reinterpret_cast<const value_type*>(ptr)),
|
180 |
+
vec_vsx_ld(offset16, reinterpret_cast<const value_type*>(ptr))};
|
181 |
+
}
|
182 |
+
|
183 |
+
__at_align__ value_type tmp_values[size()] = {};
|
184 |
+
std::memcpy(tmp_values, ptr, std::min(count, size()) * sizeof(value_type));
|
185 |
+
|
186 |
+
return {vec_vsx_ld(offset0, tmp_values), vec_vsx_ld(offset16, tmp_values)};
|
187 |
+
}
|
188 |
+
void C10_ALWAYS_INLINE store(void* ptr, int count = size()) const {
|
189 |
+
if (count == size()) {
|
190 |
+
vec_vsx_st(_vec0, offset0, reinterpret_cast<value_type*>(ptr));
|
191 |
+
vec_vsx_st(_vec1, offset16, reinterpret_cast<value_type*>(ptr));
|
192 |
+
} else if (count > 0) {
|
193 |
+
__at_align__ value_type tmp_values[size()];
|
194 |
+
vec_vsx_st(_vec0, offset0, tmp_values);
|
195 |
+
vec_vsx_st(_vec1, offset16, tmp_values);
|
196 |
+
std::memcpy(
|
197 |
+
ptr, tmp_values, std::min(count, size()) * sizeof(value_type));
|
198 |
+
}
|
199 |
+
}
|
200 |
+
|
201 |
+
const float& operator[](int idx) const = delete;
|
202 |
+
float& operator[](int idx) = delete;
|
203 |
+
|
204 |
+
Vectorized<float> map(float (*const f)(float)) const {
|
205 |
+
Vectorized<float> ret;
|
206 |
+
for (int i = 0; i < size() / 2; i++) {
|
207 |
+
ret._vec0[i] = f(_vec0[i]);
|
208 |
+
}
|
209 |
+
for (int i = 0; i < size() / 2; i++) {
|
210 |
+
ret._vec1[i] = f(_vec1[i]);
|
211 |
+
}
|
212 |
+
return ret;
|
213 |
+
}
|
214 |
+
|
215 |
+
Vectorized<float> mapbi(float (*const f)(float, float), const Vectorized<float>& other)
|
216 |
+
const {
|
217 |
+
Vectorized<float> ret;
|
218 |
+
for (int i = 0; i < size() / 2; i++) {
|
219 |
+
ret._vec0[i] = f(_vec0[i], other._vec0[i]);
|
220 |
+
}
|
221 |
+
for (int i = 0; i < size() / 2; i++) {
|
222 |
+
ret._vec1[i] = f(_vec1[i], other._vec1[i]);
|
223 |
+
}
|
224 |
+
return ret;
|
225 |
+
}
|
226 |
+
|
227 |
+
Vectorized<float> _nor() const {
|
228 |
+
return {vec_nor(_vec0, _vec0), vec_nor(_vec1, _vec1)};
|
229 |
+
}
|
230 |
+
|
231 |
+
Vectorized<float> isnan() const {
|
232 |
+
auto x = *this;
|
233 |
+
auto ret = (x == x);
|
234 |
+
return ret._nor();
|
235 |
+
}
|
236 |
+
|
237 |
+
Vectorized<float> _isinf() const {
|
238 |
+
auto x = *this;
|
239 |
+
return (x == v_inf) | (x == v_minus_inf);
|
240 |
+
}
|
241 |
+
|
242 |
+
int zero_mask() const {
|
243 |
+
// returns an integer mask where all zero elements are translated to 1-bit
|
244 |
+
// and others are translated to 0-bit
|
245 |
+
//__m256 cmp = _mm256_cmp_ps(values, _mm256_set1_ps(0.0f), _CMP_EQ_OQ);
|
246 |
+
auto cmp = (*this == zero);
|
247 |
+
// return _mm256_movemask_ps(cmp);
|
248 |
+
// possible simulation //mask= lvsl ( 0 ) vbpermq( vec, mask <<5)
|
249 |
+
vuint64 result0 = vec_vbpermq((vuint8)cmp._vecb0, mask_zero_bits);
|
250 |
+
vuint64 result1 = vec_vbpermq((vuint8)cmp._vecb1, mask_zero_bits);
|
251 |
+
return (result0[1] >> 12 | (result1[1] >> 8));
|
252 |
+
}
|
253 |
+
|
254 |
+
Vectorized<float> C10_ALWAYS_INLINE abs() const {
|
255 |
+
return {vec_abs(_vec0), vec_abs(_vec1)};
|
256 |
+
}
|
257 |
+
|
258 |
+
Vectorized<float> C10_ALWAYS_INLINE acos() const {
|
259 |
+
return {Sleef_acosf4_u10(_vec0), Sleef_acosf4_u10(_vec1)};
|
260 |
+
}
|
261 |
+
Vectorized<float> C10_ALWAYS_INLINE asin() const {
|
262 |
+
return {Sleef_asinf4_u10(_vec0), Sleef_asinf4_u10(_vec1)};
|
263 |
+
}
|
264 |
+
Vectorized<float> atan() const {
|
265 |
+
return {Sleef_atanf4_u10(_vec0), Sleef_atanf4_u10(_vec1)};
|
266 |
+
}
|
267 |
+
Vectorized<float> atanh() const {
|
268 |
+
return {Sleef_atanhf4_u10(_vec0), Sleef_atanhf4_u10(_vec1)};
|
269 |
+
}
|
270 |
+
Vectorized<float> atan2(const Vectorized<float>& b) const {
|
271 |
+
return {Sleef_atan2f4_u10(_vec0, b._vec0), Sleef_atan2f4_u10(_vec1, b._vec1)};
|
272 |
+
}
|
273 |
+
Vectorized<float> copysign(const Vectorized<float> &sign) const {
|
274 |
+
return {Sleef_copysignf4(_vec0, sign._vec0), Sleef_copysignf4(_vec1, sign._vec1)};
|
275 |
+
}
|
276 |
+
Vectorized<float> lgamma() const {
|
277 |
+
return {Sleef_lgammaf4_u10(_vec0), Sleef_lgammaf4_u10(_vec1)};
|
278 |
+
}
|
279 |
+
Vectorized<float> erf() const {
|
280 |
+
return {Sleef_erff4_u10(_vec0), Sleef_erff4_u10(_vec1)};
|
281 |
+
}
|
282 |
+
|
283 |
+
Vectorized<float> erfc() const {
|
284 |
+
return {Sleef_erfcf4_u15(_vec0), Sleef_erfcf4_u15(_vec1)};
|
285 |
+
}
|
286 |
+
|
287 |
+
Vectorized<float> erfinv() const {
|
288 |
+
return map(calc_erfinv);
|
289 |
+
}
|
290 |
+
|
291 |
+
Vectorized<float> angle() const {
|
292 |
+
auto tmp = blendv(
|
293 |
+
Vectorized<float>(0), Vectorized<float>(c10::pi<float>), *this < Vectorized<float>(0));
|
294 |
+
return blendv(tmp, *this, isnan());
|
295 |
+
}
|
296 |
+
Vectorized<float> real() const {
|
297 |
+
return *this;
|
298 |
+
}
|
299 |
+
Vectorized<float> imag() const {
|
300 |
+
return Vectorized<float>{0};
|
301 |
+
}
|
302 |
+
Vectorized<float> conj() const {
|
303 |
+
return *this;
|
304 |
+
}
|
305 |
+
|
306 |
+
Vectorized<float> C10_ALWAYS_INLINE exp() const {
|
307 |
+
return {Sleef_expf4_u10(_vec0), Sleef_expf4_u10(_vec1)};
|
308 |
+
}
|
309 |
+
Vectorized<float> C10_ALWAYS_INLINE exp2() const {
|
310 |
+
return {Sleef_exp2f4_u10(_vec0), Sleef_exp2f4_u10(_vec1)};
|
311 |
+
}
|
312 |
+
Vectorized<float> expm1() const {
|
313 |
+
return {Sleef_expm1f4_u10(_vec0), Sleef_expm1f4_u10(_vec1)};
|
314 |
+
}
|
315 |
+
|
316 |
+
Vectorized<float> C10_ALWAYS_INLINE log() const {
|
317 |
+
return {Sleef_logf4_u10(_vec0), Sleef_logf4_u10(_vec1)};
|
318 |
+
}
|
319 |
+
Vectorized<float> C10_ALWAYS_INLINE log10() const {
|
320 |
+
return {Sleef_log10f4_u10(_vec0), Sleef_log10f4_u10(_vec1)};
|
321 |
+
}
|
322 |
+
Vectorized<float> C10_ALWAYS_INLINE log1p() const {
|
323 |
+
return {Sleef_log1pf4_u10(_vec0), Sleef_log1pf4_u10(_vec1)};
|
324 |
+
}
|
325 |
+
Vectorized<float> C10_ALWAYS_INLINE log2() const {
|
326 |
+
return {Sleef_log2f4_u10(_vec0), Sleef_log2f4_u10(_vec1)};
|
327 |
+
}
|
328 |
+
Vectorized<float> C10_ALWAYS_INLINE ceil() const {
|
329 |
+
return {vec_ceil(_vec0), vec_ceil(_vec1)};
|
330 |
+
}
|
331 |
+
Vectorized<float> C10_ALWAYS_INLINE cos() const {
|
332 |
+
return {Sleef_cosf4_u10(_vec0), Sleef_cosf4_u10(_vec1)};
|
333 |
+
}
|
334 |
+
Vectorized<float> C10_ALWAYS_INLINE cosh() const {
|
335 |
+
return {Sleef_coshf4_u10(_vec0), Sleef_coshf4_u10(_vec1)};
|
336 |
+
}
|
337 |
+
Vectorized<float> C10_ALWAYS_INLINE floor() const {
|
338 |
+
return {vec_floor(_vec0), vec_floor(_vec1)};
|
339 |
+
}
|
340 |
+
Vectorized<float> C10_ALWAYS_INLINE neg() const {
|
341 |
+
return {vec_neg(_vec0), vec_neg(_vec1)};
|
342 |
+
}
|
343 |
+
|
344 |
+
Vectorized<float> C10_ALWAYS_INLINE round() const {
|
345 |
+
return {vec_round(_vec0), vec_round(_vec1)};
|
346 |
+
}
|
347 |
+
Vectorized<float> C10_ALWAYS_INLINE sin() const {
|
348 |
+
return {Sleef_sinf4_u10(_vec0), Sleef_sinf4_u10(_vec1)};
|
349 |
+
}
|
350 |
+
Vectorized<float> C10_ALWAYS_INLINE sinh() const {
|
351 |
+
return {Sleef_sinhf4_u10(_vec0), Sleef_sinhf4_u10(_vec1)};
|
352 |
+
}
|
353 |
+
Vectorized<float> C10_ALWAYS_INLINE tan() const {
|
354 |
+
return {Sleef_tanf4_u10(_vec0), Sleef_tanf4_u10(_vec1)};
|
355 |
+
}
|
356 |
+
Vectorized<float> C10_ALWAYS_INLINE tanh() const {
|
357 |
+
return {Sleef_tanhf4_u10(_vec0), Sleef_tanhf4_u10(_vec1)};
|
358 |
+
}
|
359 |
+
Vectorized<float> C10_ALWAYS_INLINE trunc() const {
|
360 |
+
return {vec_trunc(_vec0), vec_trunc(_vec1)};
|
361 |
+
}
|
362 |
+
|
363 |
+
Vectorized<float> C10_ALWAYS_INLINE frac() const {
|
364 |
+
return *this - trunc();
|
365 |
+
}
|
366 |
+
|
367 |
+
Vectorized<float> C10_ALWAYS_INLINE sqrt() const {
|
368 |
+
return {vec_sqrt(_vec0), vec_sqrt(_vec1)};
|
369 |
+
}
|
370 |
+
Vectorized<float> C10_ALWAYS_INLINE reciprocal() const {
|
371 |
+
return Vectorized<float>(one) / (*this);
|
372 |
+
}
|
373 |
+
Vectorized<float> C10_ALWAYS_INLINE rsqrt() const {
|
374 |
+
return sqrt().reciprocal();
|
375 |
+
}
|
376 |
+
|
377 |
+
Vectorized<float> C10_ALWAYS_INLINE pow(const Vectorized<float>& exp) const {
|
378 |
+
return {Sleef_powf4_u10(_vec0, exp._vec0), Sleef_powf4_u10(_vec1, exp._vec1)};
|
379 |
+
}
|
380 |
+
|
381 |
+
Vectorized<float> fmod(const Vectorized<float>& b) const {
|
382 |
+
return {Sleef_fmodf4(_vec0, b._vec0),Sleef_fmodf4(_vec1, b._vec1)};
|
383 |
+
}
|
384 |
+
|
385 |
+
Vectorized<float> hypot(const Vectorized<float>& b) const {
|
386 |
+
return {Sleef_hypotf4_u05(_vec0, b._vec0), Sleef_hypotf4_u05(_vec1, b._vec1)};
|
387 |
+
}
|
388 |
+
|
389 |
+
Vectorized<float> nextafter(const Vectorized<float>& b) const {
|
390 |
+
return {Sleef_nextafterf4(_vec0, b._vec0), Sleef_nextafterf4(_vec1, b._vec1)};
|
391 |
+
}
|
392 |
+
|
393 |
+
Vectorized<float> igamma(const Vectorized<float>& x) const {
|
394 |
+
return mapbi(calc_igamma, x);
|
395 |
+
}
|
396 |
+
|
397 |
+
Vectorized<float> igammac(const Vectorized<float>& x) const {
|
398 |
+
return mapbi(calc_igammac, x);
|
399 |
+
}
|
400 |
+
|
401 |
+
Vectorized<float> i0() const {
|
402 |
+
return map(calc_i0);
|
403 |
+
}
|
404 |
+
|
405 |
+
Vectorized<float> i0e() const {
|
406 |
+
return map(calc_i0e);
|
407 |
+
}
|
408 |
+
|
409 |
+
Vectorized<float> digamma() const {
|
410 |
+
return map(calc_digamma);
|
411 |
+
}
|
412 |
+
|
413 |
+
DEFINE_MEMBER_OP(operator==, float, vec_cmpeq)
|
414 |
+
DEFINE_MEMBER_OP(operator!=, float, vec_cmpne)
|
415 |
+
DEFINE_MEMBER_OP(operator<, float, vec_cmplt)
|
416 |
+
DEFINE_MEMBER_OP(operator<=, float, vec_cmple)
|
417 |
+
DEFINE_MEMBER_OP(operator>, float, vec_cmpgt)
|
418 |
+
DEFINE_MEMBER_OP(operator>=, float, vec_cmpge)
|
419 |
+
DEFINE_MEMBER_OP_AND_ONE(eq, float, vec_cmpeq)
|
420 |
+
DEFINE_MEMBER_OP_AND_ONE(ne, float, vec_cmpne)
|
421 |
+
DEFINE_MEMBER_OP_AND_ONE(lt, float, vec_cmplt)
|
422 |
+
DEFINE_MEMBER_OP_AND_ONE(le, float, vec_cmple)
|
423 |
+
DEFINE_MEMBER_OP_AND_ONE(gt, float, vec_cmpgt)
|
424 |
+
DEFINE_MEMBER_OP_AND_ONE(ge, float, vec_cmpge)
|
425 |
+
DEFINE_MEMBER_OP(operator+, float, vec_add)
|
426 |
+
DEFINE_MEMBER_OP(operator-, float, vec_sub)
|
427 |
+
DEFINE_MEMBER_OP(operator*, float, vec_mul)
|
428 |
+
DEFINE_MEMBER_OP(operator/, float, vec_div)
|
429 |
+
DEFINE_MEMBER_OP(maximum, float, vec_max_nan2)
|
430 |
+
DEFINE_MEMBER_OP(minimum, float, vec_min_nan2)
|
431 |
+
DEFINE_MEMBER_OP(operator&, float, vec_and)
|
432 |
+
DEFINE_MEMBER_OP(operator|, float, vec_or)
|
433 |
+
DEFINE_MEMBER_OP(operator^, float, vec_xor)
|
434 |
+
DEFINE_MEMBER_TERNARY_OP(madd, float, vec_madd)
|
435 |
+
};
|
436 |
+
|
437 |
+
template <>
|
438 |
+
Vectorized<float> inline maximum(const Vectorized<float>& a, const Vectorized<float>& b) {
|
439 |
+
return a.maximum(b);
|
440 |
+
}
|
441 |
+
|
442 |
+
template <>
|
443 |
+
Vectorized<float> inline minimum(const Vectorized<float>& a, const Vectorized<float>& b) {
|
444 |
+
return a.minimum(b);
|
445 |
+
}
|
446 |
+
|
447 |
+
} // namespace
|
448 |
+
} // namespace vec
|
449 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_int16_vsx.h
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
4 |
+
#include <ATen/cpu/vec/vec_base.h>
|
5 |
+
#include <ATen/cpu/vec/vec256/vsx/vsx_helpers.h>
|
6 |
+
namespace at {
|
7 |
+
namespace vec {
|
8 |
+
// See Note [CPU_CAPABILITY namespace]
|
9 |
+
inline namespace CPU_CAPABILITY {
|
10 |
+
|
11 |
+
template <>
|
12 |
+
class Vectorized<int16_t> {
|
13 |
+
private:
|
14 |
+
union {
|
15 |
+
struct {
|
16 |
+
vint16 _vec0;
|
17 |
+
vint16 _vec1;
|
18 |
+
};
|
19 |
+
struct {
|
20 |
+
vbool16 _vecb0;
|
21 |
+
vbool16 _vecb1;
|
22 |
+
};
|
23 |
+
|
24 |
+
} __attribute__((__may_alias__));
|
25 |
+
|
26 |
+
public:
|
27 |
+
using value_type = int16_t;
|
28 |
+
using vec_internal_type = vint16;
|
29 |
+
using vec_internal_mask_type = vbool16;
|
30 |
+
using size_type = int;
|
31 |
+
static constexpr size_type size() {
|
32 |
+
return 16;
|
33 |
+
}
|
34 |
+
Vectorized() {}
|
35 |
+
C10_ALWAYS_INLINE Vectorized(vint16 v) : _vec0{v}, _vec1{v} {}
|
36 |
+
C10_ALWAYS_INLINE Vectorized(vbool16 vmask) : _vecb0{vmask}, _vecb1{vmask} {}
|
37 |
+
C10_ALWAYS_INLINE Vectorized(vint16 v1, vint16 v2) : _vec0{v1}, _vec1{v2} {}
|
38 |
+
C10_ALWAYS_INLINE Vectorized(vbool16 v1, vbool16 v2) : _vecb0{v1}, _vecb1{v2} {}
|
39 |
+
C10_ALWAYS_INLINE Vectorized(int16_t scalar)
|
40 |
+
: _vec0{vec_splats(scalar)}, _vec1{vec_splats(scalar)} {}
|
41 |
+
|
42 |
+
C10_ALWAYS_INLINE Vectorized(
|
43 |
+
int16_t scalar1,
|
44 |
+
int16_t scalar2,
|
45 |
+
int16_t scalar3,
|
46 |
+
int16_t scalar4,
|
47 |
+
int16_t scalar5,
|
48 |
+
int16_t scalar6,
|
49 |
+
int16_t scalar7,
|
50 |
+
int16_t scalar8,
|
51 |
+
int16_t scalar9,
|
52 |
+
int16_t scalar10,
|
53 |
+
int16_t scalar11,
|
54 |
+
int16_t scalar12,
|
55 |
+
int16_t scalar13,
|
56 |
+
int16_t scalar14,
|
57 |
+
int16_t scalar15,
|
58 |
+
int16_t scalar16)
|
59 |
+
: _vec0{vint16{
|
60 |
+
scalar1,
|
61 |
+
scalar2,
|
62 |
+
scalar3,
|
63 |
+
scalar4,
|
64 |
+
scalar5,
|
65 |
+
scalar6,
|
66 |
+
scalar7,
|
67 |
+
scalar8}},
|
68 |
+
_vec1{vint16{
|
69 |
+
scalar9,
|
70 |
+
scalar10,
|
71 |
+
scalar11,
|
72 |
+
scalar12,
|
73 |
+
scalar13,
|
74 |
+
scalar14,
|
75 |
+
scalar15,
|
76 |
+
scalar16}} {}
|
77 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec0() const {
|
78 |
+
return _vec0;
|
79 |
+
}
|
80 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec1() const {
|
81 |
+
return _vec1;
|
82 |
+
}
|
83 |
+
|
84 |
+
template <uint64_t mask>
|
85 |
+
static std::enable_if_t<mask == 0, Vectorized<int16_t>> C10_ALWAYS_INLINE
|
86 |
+
blend(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
87 |
+
return a;
|
88 |
+
}
|
89 |
+
|
90 |
+
template <uint64_t mask>
|
91 |
+
static std::enable_if_t<(mask & 65535) == 65535, Vectorized<int16_t>>
|
92 |
+
C10_ALWAYS_INLINE blend(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
93 |
+
return b;
|
94 |
+
}
|
95 |
+
|
96 |
+
template <uint64_t mask>
|
97 |
+
static std::enable_if_t<mask == 255, Vectorized<int16_t>> C10_ALWAYS_INLINE
|
98 |
+
blend(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
99 |
+
return {b._vec0, a._vec1};
|
100 |
+
}
|
101 |
+
|
102 |
+
template <uint64_t mask>
|
103 |
+
static std::enable_if_t<(mask > 0 && mask < 255), Vectorized<int16_t>>
|
104 |
+
C10_ALWAYS_INLINE blend(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
105 |
+
constexpr int16_t g0 = (mask & 1) * 0xffff;
|
106 |
+
constexpr int16_t g1 = ((mask & 2) >> 1) * 0xffff;
|
107 |
+
constexpr int16_t g2 = ((mask & 4) >> 2) * 0xffff;
|
108 |
+
constexpr int16_t g3 = ((mask & 8) >> 3) * 0xffff;
|
109 |
+
constexpr int16_t g4 = ((mask & 16) >> 4) * 0xffff;
|
110 |
+
constexpr int16_t g5 = ((mask & 32) >> 5) * 0xffff;
|
111 |
+
constexpr int16_t g6 = ((mask & 64) >> 6) * 0xffff;
|
112 |
+
constexpr int16_t g7 = ((mask & 128) >> 7) * 0xffff;
|
113 |
+
const vint16 mask_1st = vint16{g0, g1, g2, g3, g4, g5, g6, g7};
|
114 |
+
|
115 |
+
return {(vint16)vec_sel(a._vec0, b._vec0, (vbool16)mask_1st), a._vec1};
|
116 |
+
}
|
117 |
+
|
118 |
+
template <uint64_t mask>
|
119 |
+
static std::enable_if_t<
|
120 |
+
(mask > 255 && (mask & 65535) != 65535 && ((mask & 255) == 255)),
|
121 |
+
Vectorized<int16_t>>
|
122 |
+
C10_ALWAYS_INLINE blend(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
123 |
+
constexpr int16_t g0_2 = (mask & 1) * 0xffff;
|
124 |
+
constexpr int16_t g1_2 = ((mask & 2) >> 1) * 0xffff;
|
125 |
+
constexpr int16_t g2_2 = ((mask & 4) >> 2) * 0xffff;
|
126 |
+
constexpr int16_t g3_2 = ((mask & 8) >> 3) * 0xffff;
|
127 |
+
constexpr int16_t g4_2 = ((mask & 16) >> 4) * 0xffff;
|
128 |
+
constexpr int16_t g5_2 = ((mask & 32) >> 5) * 0xffff;
|
129 |
+
constexpr int16_t g6_2 = ((mask & 64) >> 6) * 0xffff;
|
130 |
+
constexpr int16_t g7_2 = ((mask & 128) >> 7) * 0xffff;
|
131 |
+
|
132 |
+
const vint16 mask_2nd =
|
133 |
+
vint16{g0_2, g1_2, g2_2, g3_2, g4_2, g5_2, g6_2, g7_2};
|
134 |
+
// generated masks
|
135 |
+
return {b._vec0, (vint16)vec_sel(a._vec1, b._vec1, (vbool16)mask_2nd)};
|
136 |
+
}
|
137 |
+
|
138 |
+
template <uint64_t mask>
|
139 |
+
static std::enable_if_t<
|
140 |
+
(mask > 255 && ((mask & 65535) != 65535) && ((mask & 255) == 0)),
|
141 |
+
Vectorized<int16_t>>
|
142 |
+
C10_ALWAYS_INLINE blend(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
143 |
+
constexpr int16_t mask2 = (mask & 65535) >> 16;
|
144 |
+
constexpr int16_t g0_2 = (mask & 1) * 0xffff;
|
145 |
+
constexpr int16_t g1_2 = ((mask & 2) >> 1) * 0xffff;
|
146 |
+
constexpr int16_t g2_2 = ((mask & 4) >> 2) * 0xffff;
|
147 |
+
constexpr int16_t g3_2 = ((mask & 8) >> 3) * 0xffff;
|
148 |
+
constexpr int16_t g4_2 = ((mask & 16) >> 4) * 0xffff;
|
149 |
+
constexpr int16_t g5_2 = ((mask & 32) >> 5) * 0xffff;
|
150 |
+
constexpr int16_t g6_2 = ((mask & 64) >> 6) * 0xffff;
|
151 |
+
constexpr int16_t g7_2 = ((mask & 128) >> 7) * 0xffff;
|
152 |
+
|
153 |
+
const vint16 mask_2nd =
|
154 |
+
vint16{g0_2, g1_2, g2_2, g3_2, g4_2, g5_2, g6_2, g7_2};
|
155 |
+
// generated masks
|
156 |
+
return {a, (vint16)vec_sel(a._vec1, b._vec1, (vbool16)mask_2nd)};
|
157 |
+
}
|
158 |
+
|
159 |
+
template <uint64_t mask>
|
160 |
+
static std::enable_if_t<
|
161 |
+
(mask > 255 && ((mask & 65535) != 65535) && ((mask & 255) != 0) &&
|
162 |
+
((mask & 255) != 255)),
|
163 |
+
Vectorized<int16_t>>
|
164 |
+
C10_ALWAYS_INLINE blend(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
165 |
+
constexpr int16_t g0 = (mask & 1) * 0xffff;
|
166 |
+
constexpr int16_t g1 = ((mask & 2) >> 1) * 0xffff;
|
167 |
+
constexpr int16_t g2 = ((mask & 4) >> 2) * 0xffff;
|
168 |
+
constexpr int16_t g3 = ((mask & 8) >> 3) * 0xffff;
|
169 |
+
constexpr int16_t g4 = ((mask & 16) >> 4) * 0xffff;
|
170 |
+
constexpr int16_t g5 = ((mask & 32) >> 5) * 0xffff;
|
171 |
+
constexpr int16_t g6 = ((mask & 64) >> 6) * 0xffff;
|
172 |
+
constexpr int16_t g7 = ((mask & 128) >> 7) * 0xffff;
|
173 |
+
constexpr int16_t mask2 = (mask & 65535) >> 16;
|
174 |
+
constexpr int16_t g0_2 = (mask & 1) * 0xffff;
|
175 |
+
constexpr int16_t g1_2 = ((mask & 2) >> 1) * 0xffff;
|
176 |
+
constexpr int16_t g2_2 = ((mask & 4) >> 2) * 0xffff;
|
177 |
+
constexpr int16_t g3_2 = ((mask & 8) >> 3) * 0xffff;
|
178 |
+
constexpr int16_t g4_2 = ((mask & 16) >> 4) * 0xffff;
|
179 |
+
constexpr int16_t g5_2 = ((mask & 32) >> 5) * 0xffff;
|
180 |
+
constexpr int16_t g6_2 = ((mask & 64) >> 6) * 0xffff;
|
181 |
+
constexpr int16_t g7_2 = ((mask & 128) >> 7) * 0xffff;
|
182 |
+
|
183 |
+
const vint16 mask_1st = vint16{g0, g1, g2, g3, g4, g5, g6, g7};
|
184 |
+
const vint16 mask_2nd =
|
185 |
+
vint16{g0_2, g1_2, g2_2, g3_2, g4_2, g5_2, g6_2, g7_2};
|
186 |
+
// generated masks
|
187 |
+
return {
|
188 |
+
(vint16)vec_sel(a._vec0, b._vec0, (vbool16)mask_1st),
|
189 |
+
(vint16)vec_sel(a._vec1, b._vec1, (vbool16)mask_2nd)};
|
190 |
+
}
|
191 |
+
|
192 |
+
static Vectorized<int16_t> C10_ALWAYS_INLINE blendv(
|
193 |
+
const Vectorized<int16_t>& a,
|
194 |
+
const Vectorized<int16_t>& b,
|
195 |
+
const Vectorized<int16_t>& mask) {
|
196 |
+
// the mask used here returned by comparision of vec256
|
197 |
+
// assuming this we can use the same mask directly with vec_sel
|
198 |
+
// warning intel style mask will not work properly
|
199 |
+
return {
|
200 |
+
vec_sel(a._vec0, b._vec0, mask._vecb0),
|
201 |
+
vec_sel(a._vec1, b._vec1, mask._vecb1)};
|
202 |
+
}
|
203 |
+
|
204 |
+
template <typename step_t>
|
205 |
+
static Vectorized<int16_t> arange(int16_t base = 0, step_t step = static_cast<step_t>(1)) {
|
206 |
+
return Vectorized<int16_t>(
|
207 |
+
base,
|
208 |
+
base + step,
|
209 |
+
base + 2 * step,
|
210 |
+
base + 3 * step,
|
211 |
+
base + 4 * step,
|
212 |
+
base + 5 * step,
|
213 |
+
base + 6 * step,
|
214 |
+
base + 7 * step,
|
215 |
+
base + 8 * step,
|
216 |
+
base + 9 * step,
|
217 |
+
base + 10 * step,
|
218 |
+
base + 11 * step,
|
219 |
+
base + 12 * step,
|
220 |
+
base + 13 * step,
|
221 |
+
base + 14 * step,
|
222 |
+
base + 15 * step);
|
223 |
+
}
|
224 |
+
static Vectorized<int16_t> set(
|
225 |
+
const Vectorized<int16_t>& a,
|
226 |
+
const Vectorized<int16_t>& b,
|
227 |
+
size_t count = size()) {
|
228 |
+
switch (count) {
|
229 |
+
case 0:
|
230 |
+
return a;
|
231 |
+
case 1:
|
232 |
+
return blend<1>(a, b);
|
233 |
+
case 2:
|
234 |
+
return blend<3>(a, b);
|
235 |
+
case 3:
|
236 |
+
return blend<7>(a, b);
|
237 |
+
case 4:
|
238 |
+
return blend<15>(a, b);
|
239 |
+
case 5:
|
240 |
+
return blend<31>(a, b);
|
241 |
+
case 6:
|
242 |
+
return blend<63>(a, b);
|
243 |
+
case 7:
|
244 |
+
return blend<127>(a, b);
|
245 |
+
case 8:
|
246 |
+
return blend<255>(a, b);
|
247 |
+
case 9:
|
248 |
+
return blend<511>(a, b);
|
249 |
+
case 10:
|
250 |
+
return blend<1023>(a, b);
|
251 |
+
case 11:
|
252 |
+
return blend<2047>(a, b);
|
253 |
+
case 12:
|
254 |
+
return blend<4095>(a, b);
|
255 |
+
case 13:
|
256 |
+
return blend<8191>(a, b);
|
257 |
+
case 14:
|
258 |
+
return blend<16383>(a, b);
|
259 |
+
case 15:
|
260 |
+
return blend<32767>(a, b);
|
261 |
+
}
|
262 |
+
return b;
|
263 |
+
}
|
264 |
+
static Vectorized<value_type> C10_ALWAYS_INLINE
|
265 |
+
loadu(const void* ptr, int count = size()) {
|
266 |
+
if (count == size()) {
|
267 |
+
return {
|
268 |
+
vec_vsx_ld(offset0, reinterpret_cast<const value_type*>(ptr)),
|
269 |
+
vec_vsx_ld(offset16, reinterpret_cast<const value_type*>(ptr))};
|
270 |
+
}
|
271 |
+
|
272 |
+
__at_align__ value_type tmp_values[size()] = {};
|
273 |
+
std::memcpy(tmp_values, ptr, std::min(count, size()) * sizeof(value_type));
|
274 |
+
|
275 |
+
return {vec_vsx_ld(offset0, tmp_values), vec_vsx_ld(offset16, tmp_values)};
|
276 |
+
}
|
277 |
+
void C10_ALWAYS_INLINE store(void* ptr, int count = size()) const {
|
278 |
+
if (count == size()) {
|
279 |
+
vec_vsx_st(_vec0, offset0, reinterpret_cast<value_type*>(ptr));
|
280 |
+
vec_vsx_st(_vec1, offset16, reinterpret_cast<value_type*>(ptr));
|
281 |
+
} else if (count > 0) {
|
282 |
+
__at_align__ value_type tmp_values[size()];
|
283 |
+
vec_vsx_st(_vec0, offset0, tmp_values);
|
284 |
+
vec_vsx_st(_vec1, offset16, tmp_values);
|
285 |
+
std::memcpy(ptr, tmp_values, std::min(count, size()) * sizeof(value_type));
|
286 |
+
}
|
287 |
+
}
|
288 |
+
const int16_t& operator[](int idx) const = delete;
|
289 |
+
int16_t& operator[](int idx) = delete;
|
290 |
+
|
291 |
+
Vectorized<int16_t> angle() const {
|
292 |
+
return blendv(
|
293 |
+
Vectorized<int16_t>(0), Vectorized<int16_t>(c10::pi<int16_t>), *this < Vectorized<int16_t>(0));
|
294 |
+
}
|
295 |
+
Vectorized<int16_t> real() const {
|
296 |
+
return *this;
|
297 |
+
}
|
298 |
+
Vectorized<int16_t> imag() const {
|
299 |
+
return Vectorized<int16_t>{0};
|
300 |
+
}
|
301 |
+
Vectorized<int16_t> conj() const {
|
302 |
+
return *this;
|
303 |
+
}
|
304 |
+
|
305 |
+
Vectorized<int16_t> C10_ALWAYS_INLINE abs() const {
|
306 |
+
return {vec_abs(_vec0), vec_abs(_vec1)};
|
307 |
+
}
|
308 |
+
|
309 |
+
Vectorized<int16_t> C10_ALWAYS_INLINE neg() const {
|
310 |
+
return {vec_neg(_vec0), vec_neg(_vec1)};
|
311 |
+
}
|
312 |
+
|
313 |
+
DEFINE_MEMBER_UNARY_OP(operator~, int16_t, vec_not)
|
314 |
+
DEFINE_MEMBER_OP(operator==, int16_t, vec_cmpeq)
|
315 |
+
DEFINE_MEMBER_OP(operator!=, int16_t, vec_cmpne)
|
316 |
+
DEFINE_MEMBER_OP(operator<, int16_t, vec_cmplt)
|
317 |
+
DEFINE_MEMBER_OP(operator<=, int16_t, vec_cmple)
|
318 |
+
DEFINE_MEMBER_OP(operator>, int16_t, vec_cmpgt)
|
319 |
+
DEFINE_MEMBER_OP(operator>=, int16_t, vec_cmpge)
|
320 |
+
DEFINE_MEMBER_OP_AND_ONE(eq, int16_t, vec_cmpeq)
|
321 |
+
DEFINE_MEMBER_OP_AND_ONE(ne, int16_t, vec_cmpne)
|
322 |
+
DEFINE_MEMBER_OP_AND_ONE(lt, int16_t, vec_cmplt)
|
323 |
+
DEFINE_MEMBER_OP_AND_ONE(le, int16_t, vec_cmple)
|
324 |
+
DEFINE_MEMBER_OP_AND_ONE(gt, int16_t, vec_cmpgt)
|
325 |
+
DEFINE_MEMBER_OP_AND_ONE(ge, int16_t, vec_cmpge)
|
326 |
+
DEFINE_MEMBER_OP(operator+, int16_t, vec_add)
|
327 |
+
DEFINE_MEMBER_OP(operator-, int16_t, vec_sub)
|
328 |
+
DEFINE_MEMBER_OP(operator*, int16_t, vec_mul)
|
329 |
+
DEFINE_MEMBER_EMULATE_BINARY_OP(operator/, int16_t, /)
|
330 |
+
DEFINE_MEMBER_OP(maximum, int16_t, vec_max)
|
331 |
+
DEFINE_MEMBER_OP(minimum, int16_t, vec_min)
|
332 |
+
DEFINE_MEMBER_OP(operator&, int16_t, vec_and)
|
333 |
+
DEFINE_MEMBER_OP(operator|, int16_t, vec_or)
|
334 |
+
DEFINE_MEMBER_OP(operator^, int16_t, vec_xor)
|
335 |
+
};
|
336 |
+
|
337 |
+
template <>
|
338 |
+
Vectorized<int16_t> inline operator<<(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
339 |
+
vuint16 shift_vec0 = reinterpret_cast<vuint16>(b.vec0());
|
340 |
+
vuint16 shift_vec1 = reinterpret_cast<vuint16>(b.vec1());
|
341 |
+
return Vectorized<int16_t>{vec_sl(a.vec0(), shift_vec0), vec_sl(a.vec1(), shift_vec1)};
|
342 |
+
}
|
343 |
+
|
344 |
+
template <>
|
345 |
+
Vectorized<int16_t> inline operator>>(const Vectorized<int16_t>& a, const Vectorized<int16_t>& b) {
|
346 |
+
vuint16 shift_vec0 = reinterpret_cast<vuint16>(b.vec0());
|
347 |
+
vuint16 shift_vec1 = reinterpret_cast<vuint16>(b.vec1()) ;
|
348 |
+
return Vectorized<int16_t>{vec_sr(a.vec0(), shift_vec0), vec_sr(a.vec1(), shift_vec1)};
|
349 |
+
}
|
350 |
+
|
351 |
+
template <>
|
352 |
+
Vectorized<int16_t> inline maximum(
|
353 |
+
const Vectorized<int16_t>& a,
|
354 |
+
const Vectorized<int16_t>& b) {
|
355 |
+
return a.maximum(b);
|
356 |
+
}
|
357 |
+
|
358 |
+
template <>
|
359 |
+
Vectorized<int16_t> inline minimum(
|
360 |
+
const Vectorized<int16_t>& a,
|
361 |
+
const Vectorized<int16_t>& b) {
|
362 |
+
return a.minimum(b);
|
363 |
+
}
|
364 |
+
|
365 |
+
|
366 |
+
} // namespace
|
367 |
+
} // namespace vec
|
368 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_int32_vsx.h
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
4 |
+
#include <ATen/cpu/vec/vec_base.h>
|
5 |
+
#include <ATen/cpu/vec/vec256/vsx/vsx_helpers.h>
|
6 |
+
namespace at {
|
7 |
+
namespace vec {
|
8 |
+
// See Note [CPU_CAPABILITY namespace]
|
9 |
+
inline namespace CPU_CAPABILITY {
|
10 |
+
|
11 |
+
template <>
|
12 |
+
class Vectorized<int32_t> {
|
13 |
+
private:
|
14 |
+
union {
|
15 |
+
struct {
|
16 |
+
vint32 _vec0;
|
17 |
+
vint32 _vec1;
|
18 |
+
};
|
19 |
+
struct {
|
20 |
+
vbool32 _vecb0;
|
21 |
+
vbool32 _vecb1;
|
22 |
+
};
|
23 |
+
|
24 |
+
} __attribute__((__may_alias__));
|
25 |
+
|
26 |
+
public:
|
27 |
+
using value_type = int32_t;
|
28 |
+
using vec_internal_type = vint32;
|
29 |
+
using vec_internal_mask_type = vbool32;
|
30 |
+
using size_type = int;
|
31 |
+
static constexpr size_type size() {
|
32 |
+
return 8;
|
33 |
+
}
|
34 |
+
Vectorized() {}
|
35 |
+
C10_ALWAYS_INLINE Vectorized(vint32 v) : _vec0{v}, _vec1{v} {}
|
36 |
+
C10_ALWAYS_INLINE Vectorized(vbool32 vmask) : _vecb0{vmask}, _vecb1{vmask} {}
|
37 |
+
C10_ALWAYS_INLINE Vectorized(vint32 v1, vint32 v2) : _vec0{v1}, _vec1{v2} {}
|
38 |
+
C10_ALWAYS_INLINE Vectorized(vbool32 v1, vbool32 v2) : _vecb0{v1}, _vecb1{v2} {}
|
39 |
+
C10_ALWAYS_INLINE Vectorized(int32_t scalar)
|
40 |
+
: _vec0{vec_splats(scalar)}, _vec1{vec_splats(scalar)} {}
|
41 |
+
C10_ALWAYS_INLINE Vectorized(
|
42 |
+
int32_t scalar1,
|
43 |
+
int32_t scalar2,
|
44 |
+
int32_t scalar3,
|
45 |
+
int32_t scalar4,
|
46 |
+
int32_t scalar5,
|
47 |
+
int32_t scalar6,
|
48 |
+
int32_t scalar7,
|
49 |
+
int32_t scalar8)
|
50 |
+
: _vec0{vint32{scalar1, scalar2, scalar3, scalar4}},
|
51 |
+
_vec1{vint32{scalar5, scalar6, scalar7, scalar8}} {}
|
52 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec0() const {
|
53 |
+
return _vec0;
|
54 |
+
}
|
55 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec1() const {
|
56 |
+
return _vec1;
|
57 |
+
}
|
58 |
+
|
59 |
+
template <uint64_t mask>
|
60 |
+
static std::enable_if_t<mask == 0, Vectorized<int32_t>> C10_ALWAYS_INLINE
|
61 |
+
blend(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
62 |
+
return a;
|
63 |
+
}
|
64 |
+
|
65 |
+
template <uint64_t mask>
|
66 |
+
static std::enable_if_t<(mask & 255) == 255, Vectorized<int32_t>> C10_ALWAYS_INLINE
|
67 |
+
blend(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
68 |
+
return b;
|
69 |
+
}
|
70 |
+
|
71 |
+
template <uint64_t mask>
|
72 |
+
static std::enable_if_t<mask == 15, Vectorized<int32_t>> C10_ALWAYS_INLINE
|
73 |
+
blend(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
74 |
+
return {b._vec0, a._vec1};
|
75 |
+
}
|
76 |
+
|
77 |
+
template <uint64_t mask>
|
78 |
+
static std::enable_if_t<(mask > 0 && mask < 15), Vectorized<int32_t>>
|
79 |
+
C10_ALWAYS_INLINE blend(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
80 |
+
constexpr uint32_t g0 = (mask & 1) * 0xffffffff;
|
81 |
+
constexpr uint32_t g1 = ((mask & 2) >> 1) * 0xffffffff;
|
82 |
+
constexpr uint32_t g2 = ((mask & 4) >> 2) * 0xffffffff;
|
83 |
+
constexpr uint32_t g3 = ((mask & 8) >> 3) * 0xffffffff;
|
84 |
+
const vbool32 mask_1st = (vbool32){g0, g1, g2, g3};
|
85 |
+
|
86 |
+
return {(vint32)vec_sel(a._vec0, b._vec0, (vbool32)mask_1st), a._vec1};
|
87 |
+
}
|
88 |
+
|
89 |
+
template <uint64_t mask>
|
90 |
+
static std::enable_if_t<
|
91 |
+
(mask > 15 && (mask & 255) != 255 && ((mask & 15) == 15)),
|
92 |
+
Vectorized<int32_t>>
|
93 |
+
C10_ALWAYS_INLINE blend(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
94 |
+
constexpr uint32_t mask2 = (mask & 255) >> 4;
|
95 |
+
constexpr uint32_t g0_2 = (mask2 & 1) * 0xffffffff;
|
96 |
+
constexpr uint32_t g1_2 = ((mask2 & 2) >> 1) * 0xffffffff;
|
97 |
+
constexpr uint32_t g2_2 = ((mask2 & 4) >> 2) * 0xffffffff;
|
98 |
+
constexpr uint32_t g3_2 = ((mask2 & 8) >> 3) * 0xffffffff;
|
99 |
+
|
100 |
+
const vbool32 mask_2nd = (vbool32){g0_2, g1_2, g2_2, g3_2};
|
101 |
+
// generated masks
|
102 |
+
return {b._vec0, (vint32)vec_sel(a._vec1, b._vec1, (vbool32)mask_2nd)};
|
103 |
+
}
|
104 |
+
|
105 |
+
template <uint64_t mask>
|
106 |
+
static std::enable_if_t<
|
107 |
+
(mask > 15 && ((mask & 255) != 255) && ((mask & 15) == 0)),
|
108 |
+
Vectorized<int32_t>>
|
109 |
+
C10_ALWAYS_INLINE blend(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
110 |
+
constexpr uint32_t mask2 = (mask & 255) >> 4;
|
111 |
+
constexpr uint32_t g0_2 = (mask2 & 1) * 0xffffffff;
|
112 |
+
constexpr uint32_t g1_2 = ((mask2 & 2) >> 1) * 0xffffffff;
|
113 |
+
constexpr uint32_t g2_2 = ((mask2 & 4) >> 2) * 0xffffffff;
|
114 |
+
constexpr uint32_t g3_2 = ((mask2 & 8) >> 3) * 0xffffffff;
|
115 |
+
|
116 |
+
const vbool32 mask_2nd = (vbool32){g0_2, g1_2, g2_2, g3_2};
|
117 |
+
// generated masks
|
118 |
+
return {a, (vint32)vec_sel(a._vec1, b._vec1, (vbool32)mask_2nd)};
|
119 |
+
}
|
120 |
+
|
121 |
+
template <uint64_t mask>
|
122 |
+
static std::enable_if_t<
|
123 |
+
(mask > 15 && ((mask & 255) != 255) && ((mask & 15) != 0) &&
|
124 |
+
((mask & 15) != 15)),
|
125 |
+
Vectorized<int32_t>>
|
126 |
+
C10_ALWAYS_INLINE blend(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
127 |
+
constexpr uint32_t g0 = (mask & 1) * 0xffffffff;
|
128 |
+
constexpr uint32_t g1 = ((mask & 2) >> 1) * 0xffffffff;
|
129 |
+
constexpr uint32_t g2 = ((mask & 4) >> 2) * 0xffffffff;
|
130 |
+
constexpr uint32_t g3 = ((mask & 8) >> 3) * 0xffffffff;
|
131 |
+
constexpr uint32_t mask2 = (mask & 255) >> 4;
|
132 |
+
constexpr uint32_t g0_2 = (mask2 & 1) * 0xffffffff;
|
133 |
+
constexpr uint32_t g1_2 = ((mask2 & 2) >> 1) * 0xffffffff;
|
134 |
+
constexpr uint32_t g2_2 = ((mask2 & 4) >> 2) * 0xffffffff;
|
135 |
+
constexpr uint32_t g3_2 = ((mask2 & 8) >> 3) * 0xffffffff;
|
136 |
+
|
137 |
+
const vbool32 mask_1st = (vbool32){g0, g1, g2, g3};
|
138 |
+
const vbool32 mask_2nd = (vbool32){g0_2, g1_2, g2_2, g3_2};
|
139 |
+
// generated masks
|
140 |
+
return {
|
141 |
+
(vint32)vec_sel(a._vec0, b._vec0, (vbool32)mask_1st),
|
142 |
+
(vint32)vec_sel(a._vec1, b._vec1, (vbool32)mask_2nd)};
|
143 |
+
}
|
144 |
+
|
145 |
+
static Vectorized<int32_t> C10_ALWAYS_INLINE blendv(
|
146 |
+
const Vectorized<int32_t>& a,
|
147 |
+
const Vectorized<int32_t>& b,
|
148 |
+
const Vectorized<int32_t>& mask) {
|
149 |
+
// the mask used here returned by comparision of vec256
|
150 |
+
// assuming this we can use the same mask directly with vec_sel
|
151 |
+
// warning intel style mask will not work properly
|
152 |
+
return {
|
153 |
+
vec_sel(a._vec0, b._vec0, mask._vecb0),
|
154 |
+
vec_sel(a._vec1, b._vec1, mask._vecb1)};
|
155 |
+
}
|
156 |
+
|
157 |
+
template <typename step_t>
|
158 |
+
static Vectorized<int32_t> arange(int32_t base = 0.f, step_t step = static_cast<step_t>(1)) {
|
159 |
+
return Vectorized<int32_t>(
|
160 |
+
base,
|
161 |
+
base + step,
|
162 |
+
base + 2 * step,
|
163 |
+
base + 3 * step,
|
164 |
+
base + 4 * step,
|
165 |
+
base + 5 * step,
|
166 |
+
base + 6 * step,
|
167 |
+
base + 7 * step);
|
168 |
+
}
|
169 |
+
static Vectorized<int32_t> set(
|
170 |
+
const Vectorized<int32_t>& a,
|
171 |
+
const Vectorized<int32_t>& b,
|
172 |
+
size_t count = size()) {
|
173 |
+
switch (count) {
|
174 |
+
case 0:
|
175 |
+
return a;
|
176 |
+
case 1:
|
177 |
+
return blend<1>(a, b);
|
178 |
+
case 2:
|
179 |
+
return blend<3>(a, b);
|
180 |
+
case 3:
|
181 |
+
return blend<7>(a, b);
|
182 |
+
case 4:
|
183 |
+
return blend<15>(a, b);
|
184 |
+
case 5:
|
185 |
+
return blend<31>(a, b);
|
186 |
+
case 6:
|
187 |
+
return blend<63>(a, b);
|
188 |
+
case 7:
|
189 |
+
return blend<127>(a, b);
|
190 |
+
}
|
191 |
+
|
192 |
+
return b;
|
193 |
+
}
|
194 |
+
static Vectorized<value_type> C10_ALWAYS_INLINE
|
195 |
+
loadu(const void* ptr, int count = size()) {
|
196 |
+
if (count == size()) {
|
197 |
+
return {
|
198 |
+
vec_vsx_ld(offset0, reinterpret_cast<const value_type*>(ptr)),
|
199 |
+
vec_vsx_ld(offset16, reinterpret_cast<const value_type*>(ptr))};
|
200 |
+
}
|
201 |
+
|
202 |
+
__at_align__ value_type tmp_values[size()] = {};
|
203 |
+
std::memcpy(tmp_values, ptr, std::min(count, size()) * sizeof(value_type));
|
204 |
+
|
205 |
+
return {vec_vsx_ld(offset0, tmp_values), vec_vsx_ld(offset16, tmp_values)};
|
206 |
+
}
|
207 |
+
void C10_ALWAYS_INLINE store(void* ptr, int count = size()) const {
|
208 |
+
if (count == size()) {
|
209 |
+
vec_vsx_st(_vec0, offset0, reinterpret_cast<value_type*>(ptr));
|
210 |
+
vec_vsx_st(_vec1, offset16, reinterpret_cast<value_type*>(ptr));
|
211 |
+
} else if (count > 0) {
|
212 |
+
__at_align__ value_type tmp_values[size()];
|
213 |
+
vec_vsx_st(_vec0, offset0, tmp_values);
|
214 |
+
vec_vsx_st(_vec1, offset16, tmp_values);
|
215 |
+
std::memcpy(
|
216 |
+
ptr, tmp_values, std::min(count, size()) * sizeof(value_type));
|
217 |
+
}
|
218 |
+
}
|
219 |
+
const int32_t& operator[](int idx) const = delete;
|
220 |
+
int32_t& operator[](int idx) = delete;
|
221 |
+
|
222 |
+
Vectorized<int32_t> angle() const {
|
223 |
+
return blendv(
|
224 |
+
Vectorized<int32_t>(0), Vectorized<int32_t>(c10::pi<int32_t>), *this < Vectorized<int32_t>(0));
|
225 |
+
}
|
226 |
+
Vectorized<int32_t> real() const {
|
227 |
+
return *this;
|
228 |
+
}
|
229 |
+
Vectorized<int32_t> imag() const {
|
230 |
+
return Vectorized<int32_t>{0};
|
231 |
+
}
|
232 |
+
Vectorized<int32_t> conj() const {
|
233 |
+
return *this;
|
234 |
+
}
|
235 |
+
|
236 |
+
Vectorized<int32_t> C10_ALWAYS_INLINE abs() const {
|
237 |
+
return {vec_abs(_vec0), vec_abs(_vec1)};
|
238 |
+
}
|
239 |
+
|
240 |
+
Vectorized<int32_t> C10_ALWAYS_INLINE neg() const {
|
241 |
+
return {vec_neg(_vec0), vec_neg(_vec1)};
|
242 |
+
}
|
243 |
+
|
244 |
+
DEFINE_MEMBER_UNARY_OP(operator~, int32_t, vec_not)
|
245 |
+
DEFINE_MEMBER_OP(operator==, int32_t, vec_cmpeq)
|
246 |
+
DEFINE_MEMBER_OP(operator!=, int32_t, vec_cmpne)
|
247 |
+
DEFINE_MEMBER_OP(operator<, int32_t, vec_cmplt)
|
248 |
+
DEFINE_MEMBER_OP(operator<=, int32_t, vec_cmple)
|
249 |
+
DEFINE_MEMBER_OP(operator>, int32_t, vec_cmpgt)
|
250 |
+
DEFINE_MEMBER_OP(operator>=, int32_t, vec_cmpge)
|
251 |
+
DEFINE_MEMBER_OP_AND_ONE(eq, int32_t, vec_cmpeq)
|
252 |
+
DEFINE_MEMBER_OP_AND_ONE(ne, int32_t, vec_cmpne)
|
253 |
+
DEFINE_MEMBER_OP_AND_ONE(lt, int32_t, vec_cmplt)
|
254 |
+
DEFINE_MEMBER_OP_AND_ONE(le, int32_t, vec_cmple)
|
255 |
+
DEFINE_MEMBER_OP_AND_ONE(gt, int32_t, vec_cmpgt)
|
256 |
+
DEFINE_MEMBER_OP_AND_ONE(ge, int32_t, vec_cmpge)
|
257 |
+
DEFINE_MEMBER_OP(operator+, int32_t, vec_add)
|
258 |
+
DEFINE_MEMBER_OP(operator-, int32_t, vec_sub)
|
259 |
+
DEFINE_MEMBER_OP(operator*, int32_t, vec_mul)
|
260 |
+
DEFINE_MEMBER_EMULATE_BINARY_OP(operator/, int32_t, /)
|
261 |
+
DEFINE_MEMBER_OP(maximum, int32_t, vec_max)
|
262 |
+
DEFINE_MEMBER_OP(minimum, int32_t, vec_min)
|
263 |
+
DEFINE_MEMBER_OP(operator&, int32_t, vec_and)
|
264 |
+
DEFINE_MEMBER_OP(operator|, int32_t, vec_or)
|
265 |
+
DEFINE_MEMBER_OP(operator^, int32_t, vec_xor)
|
266 |
+
};
|
267 |
+
|
268 |
+
template <>
|
269 |
+
Vectorized<int32_t> inline operator<<(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
270 |
+
vuint32 shift_vec0 = reinterpret_cast<vuint32>(b.vec0());
|
271 |
+
vuint32 shift_vec1 = reinterpret_cast<vuint32>(b.vec1()) ;
|
272 |
+
return Vectorized<int32_t>{vec_sl(a.vec0(), shift_vec0), vec_sl(a.vec1(), shift_vec1)};
|
273 |
+
}
|
274 |
+
|
275 |
+
template <>
|
276 |
+
Vectorized<int32_t> inline operator>>(const Vectorized<int32_t>& a, const Vectorized<int32_t>& b) {
|
277 |
+
vuint32 shift_vec0 = reinterpret_cast<vuint32>(b.vec0());
|
278 |
+
vuint32 shift_vec1 = reinterpret_cast<vuint32>(b.vec1()) ;
|
279 |
+
return Vectorized<int32_t>{vec_sr(a.vec0(), shift_vec0), vec_sr(a.vec1(), shift_vec1)};
|
280 |
+
}
|
281 |
+
|
282 |
+
template <>
|
283 |
+
Vectorized<int32_t> inline maximum(
|
284 |
+
const Vectorized<int32_t>& a,
|
285 |
+
const Vectorized<int32_t>& b) {
|
286 |
+
return a.maximum(b);
|
287 |
+
}
|
288 |
+
|
289 |
+
template <>
|
290 |
+
Vectorized<int32_t> inline minimum(
|
291 |
+
const Vectorized<int32_t>& a,
|
292 |
+
const Vectorized<int32_t>& b) {
|
293 |
+
return a.minimum(b);
|
294 |
+
}
|
295 |
+
|
296 |
+
} // namespace
|
297 |
+
} // namespace vec
|
298 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_qint32_vsx.h
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
4 |
+
#include <ATen/cpu/vec/vec_base.h>
|
5 |
+
#include <ATen/cpu/vec/vec256/vsx/vsx_helpers.h>
|
6 |
+
#include <c10/util/qint32.h>
|
7 |
+
#include <array>
|
8 |
+
|
9 |
+
// This file defines Vectorized<> for the quantized types.
|
10 |
+
//
|
11 |
+
//
|
12 |
+
// Currently, we simply use these classes as efficient converters between
|
13 |
+
// the quantized types and Vectorized<float>, usually in bandwidth-bound cases
|
14 |
+
// where doing the arithmetic in full-precision is acceptable (e.g.
|
15 |
+
// elementwise operators).
|
16 |
+
//
|
17 |
+
//
|
18 |
+
// Conversions are as follows:
|
19 |
+
// Vectorized<qint32> -> 1x Vectorized<float>
|
20 |
+
//
|
21 |
+
// The size of the returned float vector is specified by the special
|
22 |
+
// constexpr function float_num_vecs. The type of the value returned
|
23 |
+
// from dequantize (and expected as an argument to quantize) is
|
24 |
+
// specified by float_vec_return_type.
|
25 |
+
//
|
26 |
+
// When writing kernels with these vectors, it is expected that floating-
|
27 |
+
// point operations will be carried out in a loop over Vectorized<T>::float_num_vecs
|
28 |
+
// iterations.
|
29 |
+
|
30 |
+
namespace at {
|
31 |
+
namespace vec {
|
32 |
+
inline namespace CPU_CAPABILITY {
|
33 |
+
|
34 |
+
template <>
|
35 |
+
struct Vectorized<c10::qint32> {
|
36 |
+
private:
|
37 |
+
union {
|
38 |
+
struct {
|
39 |
+
vint32 _vec0;
|
40 |
+
vint32 _vec1;
|
41 |
+
};
|
42 |
+
struct {
|
43 |
+
vbool32 _vecb0;
|
44 |
+
vbool32 _vecb1;
|
45 |
+
};
|
46 |
+
|
47 |
+
} __attribute__((__may_alias__));
|
48 |
+
|
49 |
+
public:
|
50 |
+
Vectorized() {}
|
51 |
+
|
52 |
+
using size_type = int;
|
53 |
+
static constexpr size_type size() {
|
54 |
+
return 8;
|
55 |
+
}
|
56 |
+
|
57 |
+
static constexpr size_t float_num_vecs() {
|
58 |
+
return 1;
|
59 |
+
}
|
60 |
+
static constexpr int int_num_vecs() {
|
61 |
+
return 1;
|
62 |
+
}
|
63 |
+
using float_vec_return_type = std::array<Vectorized<float>, 1>;
|
64 |
+
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 1>;
|
65 |
+
using value_type = c10::qint32::underlying;
|
66 |
+
using vec_internal_type = vint32;
|
67 |
+
using vec_internal_mask_type = vbool32;
|
68 |
+
C10_ALWAYS_INLINE Vectorized(vint32 v) : _vec0{v}, _vec1{v} {}
|
69 |
+
C10_ALWAYS_INLINE Vectorized(vbool32 vmask) : _vecb0{vmask}, _vecb1{vmask} {}
|
70 |
+
C10_ALWAYS_INLINE Vectorized(vint32 v1, vint32 v2) : _vec0{v1}, _vec1{v2} {}
|
71 |
+
C10_ALWAYS_INLINE Vectorized(vbool32 v1, vbool32 v2) : _vecb0{v1}, _vecb1{v2} {}
|
72 |
+
|
73 |
+
Vectorized(const c10::qint32& val)
|
74 |
+
: _vec0(vec_splats(val.val_)), _vec1(vec_splats(val.val_)) {}
|
75 |
+
|
76 |
+
static Vectorized<c10::qint32> C10_ALWAYS_INLINE
|
77 |
+
loadu(const void* ptr, int count = size()) {
|
78 |
+
if (count == size()) {
|
79 |
+
return {
|
80 |
+
vec_vsx_ld(offset0, reinterpret_cast<const value_type*>(ptr)),
|
81 |
+
vec_vsx_ld(offset16, reinterpret_cast<const value_type*>(ptr))};
|
82 |
+
}
|
83 |
+
|
84 |
+
__at_align__ value_type tmp_values[size()] = {};
|
85 |
+
std::memcpy(tmp_values, ptr, std::min(count, size()) * sizeof(value_type));
|
86 |
+
|
87 |
+
return {vec_vsx_ld(offset0, tmp_values), vec_vsx_ld(offset16, tmp_values)};
|
88 |
+
}
|
89 |
+
void C10_ALWAYS_INLINE store(void* ptr, int count = size()) const {
|
90 |
+
if (count == size()) {
|
91 |
+
vec_vsx_st(_vec0, offset0, reinterpret_cast<value_type*>(ptr));
|
92 |
+
vec_vsx_st(_vec1, offset16, reinterpret_cast<value_type*>(ptr));
|
93 |
+
} else if (count > 0) {
|
94 |
+
__at_align__ value_type tmp_values[size()];
|
95 |
+
vec_vsx_st(_vec0, offset0, tmp_values);
|
96 |
+
vec_vsx_st(_vec1, offset16, tmp_values);
|
97 |
+
std::memcpy(
|
98 |
+
ptr, tmp_values, std::min(count, size()) * sizeof(value_type));
|
99 |
+
}
|
100 |
+
}
|
101 |
+
|
102 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec0() const {
|
103 |
+
return _vec0;
|
104 |
+
}
|
105 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec1() const {
|
106 |
+
return _vec1;
|
107 |
+
}
|
108 |
+
|
109 |
+
float_vec_return_type dequantize(
|
110 |
+
Vectorized<float> scale,
|
111 |
+
Vectorized<float> zero_point,
|
112 |
+
Vectorized<float> scale_zp_premul) const {
|
113 |
+
vfloat32 float_vals0 = vec_float(_vec0);
|
114 |
+
vfloat32 float_vals1 = vec_float(_vec1);
|
115 |
+
vfloat32 scale_vec0 = scale.vec0();
|
116 |
+
vfloat32 scale_vec1 = scale.vec1();
|
117 |
+
vfloat32 scale_zp_premul0 = scale_zp_premul.vec0();
|
118 |
+
vfloat32 scale_zp_premul1 = scale_zp_premul.vec1();
|
119 |
+
return {Vectorized<float>{
|
120 |
+
vec_madd(scale_vec0, float_vals0, scale_zp_premul0),
|
121 |
+
vec_madd(scale_vec1, float_vals1, scale_zp_premul1)}};
|
122 |
+
}
|
123 |
+
|
124 |
+
float_vec_return_type dequantize(
|
125 |
+
Vectorized<float> scale,
|
126 |
+
Vectorized<float> zero_point) const {
|
127 |
+
vfloat32 float_vals0 = vec_float(_vec0);
|
128 |
+
vfloat32 float_vals1 = vec_float(_vec1);
|
129 |
+
vfloat32 scale_vec0 = scale.vec0();
|
130 |
+
vfloat32 scale_vec1 = scale.vec1();
|
131 |
+
vfloat32 zero_point0 = zero_point.vec0();
|
132 |
+
vfloat32 zero_point1 = zero_point.vec1();
|
133 |
+
return {Vectorized<float>{
|
134 |
+
(float_vals0 - zero_point0) * scale_vec0,
|
135 |
+
(float_vals1 - zero_point1) * scale_vec1}};
|
136 |
+
}
|
137 |
+
|
138 |
+
static Vectorized<c10::qint32> quantize(
|
139 |
+
const float_vec_return_type& rhs,
|
140 |
+
float scale,
|
141 |
+
int32_t zero_point,
|
142 |
+
float inverse_scale) {
|
143 |
+
Vectorized<c10::qint32> retval;
|
144 |
+
|
145 |
+
const vint32 vmin = vec_splats(std::numeric_limits<value_type>::min());
|
146 |
+
const vint32 vmax = vec_splats(std::numeric_limits<value_type>::max());
|
147 |
+
vfloat32 inverse_scale_v = vec_splats(inverse_scale);
|
148 |
+
vfloat32 vec_zero_point = vec_splats((float)(zero_point));
|
149 |
+
Vectorized<float> vf0 = rhs[0];
|
150 |
+
|
151 |
+
vfloat32 vecf0 = vf0.vec0();
|
152 |
+
vfloat32 vecf1 = vf0.vec1();
|
153 |
+
vecf0 = vec_mul(vecf0, inverse_scale_v);
|
154 |
+
vecf1 = vec_mul(vecf1, inverse_scale_v);
|
155 |
+
vecf0 = vec_add(vec_rint(vecf0), vec_zero_point);
|
156 |
+
vecf1 = vec_add(vec_rint(vecf1), vec_zero_point);
|
157 |
+
vint32 veci0 = vec_signed(vecf0);
|
158 |
+
vint32 veci1 = vec_signed(vecf1);
|
159 |
+
|
160 |
+
veci0 = vec_max(veci0, vmin);
|
161 |
+
veci1 = vec_max(veci1, vmin);
|
162 |
+
veci0 = vec_min(veci0, vmax);
|
163 |
+
veci1 = vec_min(veci1, vmax);
|
164 |
+
|
165 |
+
return {veci0, veci1};
|
166 |
+
}
|
167 |
+
|
168 |
+
Vectorized<c10::qint32> relu(Vectorized<c10::qint32> zero_point) const {
|
169 |
+
return {vec_max(_vec0, zero_point._vec0), vec_max(_vec1, zero_point._vec1)};
|
170 |
+
}
|
171 |
+
|
172 |
+
Vectorized<c10::qint32> relu6(
|
173 |
+
Vectorized<c10::qint32> zero_point,
|
174 |
+
Vectorized<c10::qint32> q_six) const {
|
175 |
+
vint32 max0 = vec_max(_vec0, zero_point._vec0);
|
176 |
+
vint32 max1 = vec_max(_vec1, zero_point._vec1);
|
177 |
+
return {vec_min(max0, q_six._vec0), vec_min(max1, q_six._vec1)};
|
178 |
+
}
|
179 |
+
|
180 |
+
int_vec_return_type widening_subtract(Vectorized<c10::qint32> b) const {
|
181 |
+
return {*this - b};
|
182 |
+
}
|
183 |
+
|
184 |
+
static Vectorized<c10::qint32> requantize_from_int(
|
185 |
+
const int_vec_return_type& inp,
|
186 |
+
float multiplier,
|
187 |
+
int32_t zero_point) {
|
188 |
+
const vint32 vmin = vec_splats(std::numeric_limits<value_type>::min());
|
189 |
+
const vint32 vmax = vec_splats(std::numeric_limits<value_type>::max());
|
190 |
+
vfloat32 vec_mult = vec_splats(multiplier);
|
191 |
+
vint32 vec_zero_point = vec_splats(zero_point);
|
192 |
+
Vectorized<c10::qint32> vi = inp[0];
|
193 |
+
vfloat32 vecf0 = vec_float(vi.vec0());
|
194 |
+
vfloat32 vecf1 = vec_float(vi.vec1());
|
195 |
+
|
196 |
+
vecf0 = vec_mul(vecf0, vec_mult);
|
197 |
+
vecf1 = vec_mul(vecf1, vec_mult);
|
198 |
+
|
199 |
+
vecf0 = vec_rint(vecf0);
|
200 |
+
vecf1 = vec_rint(vecf1);
|
201 |
+
|
202 |
+
vint32 veci0 = vec_add(vec_signed(vecf0),vec_zero_point);
|
203 |
+
vint32 veci1 = vec_add(vec_signed(vecf1),vec_zero_point);
|
204 |
+
|
205 |
+
veci0 = vec_max(veci0, vmin);
|
206 |
+
veci1 = vec_max(veci1, vmin);
|
207 |
+
veci0 = vec_min(veci0, vmax);
|
208 |
+
veci1 = vec_min(veci1, vmax);
|
209 |
+
|
210 |
+
return {veci0, veci1};
|
211 |
+
}
|
212 |
+
|
213 |
+
DEFINE_MEMBER_OP(operator==, c10::qint32, vec_cmpeq)
|
214 |
+
DEFINE_MEMBER_OP(operator!=, c10::qint32, vec_cmpne)
|
215 |
+
DEFINE_MEMBER_OP(operator<, c10::qint32, vec_cmplt)
|
216 |
+
DEFINE_MEMBER_OP(operator<=, c10::qint32, vec_cmple)
|
217 |
+
DEFINE_MEMBER_OP(operator>, c10::qint32, vec_cmpgt)
|
218 |
+
DEFINE_MEMBER_OP(operator>=, c10::qint32, vec_cmpge)
|
219 |
+
DEFINE_MEMBER_OP(operator+, c10::qint32, vec_add)
|
220 |
+
DEFINE_MEMBER_OP(operator-, c10::qint32, vec_sub)
|
221 |
+
DEFINE_MEMBER_OP(operator*, c10::qint32, vec_mul)
|
222 |
+
DEFINE_MEMBER_EMULATE_BINARY_OP(operator/, c10::qint32, /)
|
223 |
+
DEFINE_MEMBER_OP(maximum, c10::qint32, vec_max)
|
224 |
+
DEFINE_MEMBER_OP(minimum, c10::qint32, vec_min)
|
225 |
+
DEFINE_MEMBER_OP(operator&, c10::qint32, vec_and)
|
226 |
+
DEFINE_MEMBER_OP(operator|, c10::qint32, vec_or)
|
227 |
+
DEFINE_MEMBER_OP(operator^, c10::qint32, vec_xor)
|
228 |
+
};
|
229 |
+
|
230 |
+
template <>
|
231 |
+
Vectorized<c10::qint32> inline maximum(
|
232 |
+
const Vectorized<c10::qint32>& a,
|
233 |
+
const Vectorized<c10::qint32>& b) {
|
234 |
+
return a.maximum(b);
|
235 |
+
}
|
236 |
+
|
237 |
+
template <>
|
238 |
+
Vectorized<c10::qint32> inline minimum(
|
239 |
+
const Vectorized<c10::qint32>& a,
|
240 |
+
const Vectorized<c10::qint32>& b) {
|
241 |
+
return a.minimum(b);
|
242 |
+
}
|
243 |
+
} // namespace
|
244 |
+
} // namespace vec
|
245 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_qint8_vsx.h
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
4 |
+
#include <ATen/cpu/vec/vec_base.h>
|
5 |
+
#include <ATen/cpu/vec/vec256/vsx/vsx_helpers.h>
|
6 |
+
#include <c10/util/qint8.h>
|
7 |
+
#include <array>
|
8 |
+
|
9 |
+
// This file defines Vectorized<> for the quantized types.
|
10 |
+
//
|
11 |
+
//
|
12 |
+
// Currently, we simply use these classes as efficient converters between
|
13 |
+
// the quantized types and Vectorized<float>, usually in bandwidth-bound cases
|
14 |
+
// where doing the arithmetic in full-precision is acceptable (e.g.
|
15 |
+
// elementwise operators).
|
16 |
+
//
|
17 |
+
//
|
18 |
+
// Conversions are as follows:
|
19 |
+
// Vectorized<qint8> -> 4x Vectorized<float>
|
20 |
+
//
|
21 |
+
// The size of the returned float vector is specified by the special
|
22 |
+
// constexpr function float_num_vecs. The type of the value returned
|
23 |
+
// from dequantize (and expected as an argument to quantize) is
|
24 |
+
// specified by float_vec_return_type.
|
25 |
+
//
|
26 |
+
// When writing kernels with these vectors, it is expected that floating-
|
27 |
+
// point operations will be carried out in a loop over Vectorized<T>::float_num_vecs
|
28 |
+
// iterations.
|
29 |
+
|
30 |
+
namespace at {
|
31 |
+
namespace vec {
|
32 |
+
inline namespace CPU_CAPABILITY {
|
33 |
+
|
34 |
+
template <>
|
35 |
+
struct Vectorized<c10::qint8> {
|
36 |
+
private:
|
37 |
+
union {
|
38 |
+
struct {
|
39 |
+
vint8 _vec0;
|
40 |
+
vint8 _vec1;
|
41 |
+
};
|
42 |
+
struct {
|
43 |
+
vbool8 _vecb0;
|
44 |
+
vbool8 _vecb1;
|
45 |
+
};
|
46 |
+
|
47 |
+
} __attribute__((__may_alias__));
|
48 |
+
|
49 |
+
public:
|
50 |
+
Vectorized() {}
|
51 |
+
using size_type = int;
|
52 |
+
static constexpr size_type size() {
|
53 |
+
return 32;
|
54 |
+
}
|
55 |
+
|
56 |
+
static constexpr size_t float_num_vecs() {
|
57 |
+
return 4;
|
58 |
+
}
|
59 |
+
static constexpr int int_num_vecs() {
|
60 |
+
return 4;
|
61 |
+
}
|
62 |
+
using float_vec_return_type = std::array<Vectorized<float>, 4>;
|
63 |
+
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 4>;
|
64 |
+
using value_type = typename c10::qint8::underlying;
|
65 |
+
using vec_internal_type = vint8;
|
66 |
+
using vec_internal_mask_type = vbool8;
|
67 |
+
// Broadcast constructor
|
68 |
+
C10_ALWAYS_INLINE Vectorized(const c10::qint8& val)
|
69 |
+
: _vec0{vec_splats(val.val_)}, _vec1{vec_splats(val.val_)} {}
|
70 |
+
|
71 |
+
C10_ALWAYS_INLINE Vectorized(const Vectorized<c10::qint8>& other)
|
72 |
+
: _vec0{other._vec0}, _vec1(other._vec1) {}
|
73 |
+
|
74 |
+
C10_ALWAYS_INLINE Vectorized(vint8 v) : _vec0{v}, _vec1{v} {}
|
75 |
+
C10_ALWAYS_INLINE Vectorized(vbool8 vmask) : _vecb0{vmask}, _vecb1{vmask} {}
|
76 |
+
C10_ALWAYS_INLINE Vectorized(vint8 v1, vint8 v2) : _vec0{v1}, _vec1{v2} {}
|
77 |
+
C10_ALWAYS_INLINE Vectorized(vbool8 v1, vbool8 v2) : _vecb0{v1}, _vecb1{v2} {}
|
78 |
+
|
79 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec0() const {
|
80 |
+
return _vec0;
|
81 |
+
}
|
82 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec1() const {
|
83 |
+
return _vec1;
|
84 |
+
}
|
85 |
+
|
86 |
+
static C10_ALWAYS_INLINE Vectorized<c10::qint8> loadu(
|
87 |
+
const void* ptr,
|
88 |
+
int count = size()) {
|
89 |
+
if (count == size()) {
|
90 |
+
return {
|
91 |
+
vec_vsx_ld(offset0, reinterpret_cast<const vint8*>(ptr)),
|
92 |
+
vec_vsx_ld(offset16, reinterpret_cast<const vint8*>(ptr))};
|
93 |
+
}
|
94 |
+
__at_align__ value_type tmp_values[size()];
|
95 |
+
std::memcpy(tmp_values, ptr, std::min(count, size()) * sizeof(value_type));
|
96 |
+
return {vec_vsx_ld(offset0, tmp_values), vec_vsx_ld(offset16, tmp_values)};
|
97 |
+
}
|
98 |
+
void C10_ALWAYS_INLINE store(void* ptr, int count = size()) const {
|
99 |
+
if (count == size()) {
|
100 |
+
vec_vsx_st(_vec0, offset0, reinterpret_cast<value_type*>(ptr));
|
101 |
+
vec_vsx_st(_vec1, offset16, reinterpret_cast<value_type*>(ptr));
|
102 |
+
} else if (count > 0) {
|
103 |
+
__at_align__ value_type tmp_values[size()];
|
104 |
+
vec_vsx_st(_vec0, offset0, tmp_values);
|
105 |
+
vec_vsx_st(_vec1, offset16, tmp_values);
|
106 |
+
std::memcpy(
|
107 |
+
ptr, tmp_values, std::min(count, size()) * sizeof(value_type));
|
108 |
+
}
|
109 |
+
}
|
110 |
+
|
111 |
+
public:
|
112 |
+
float_vec_return_type C10_ALWAYS_INLINE dequantize(
|
113 |
+
Vectorized<float> scale,
|
114 |
+
Vectorized<float> zero_point,
|
115 |
+
Vectorized<float> scale_zp_premul) const {
|
116 |
+
vint16 vecshi0 = vec_unpackh(_vec0);
|
117 |
+
vint16 vecshi1 = vec_unpackl(_vec0);
|
118 |
+
|
119 |
+
vint16 vecshi2 = vec_unpackh(_vec1);
|
120 |
+
vint16 vecshi3 = vec_unpackl(_vec1);
|
121 |
+
|
122 |
+
vint32 veci0 = vec_unpackh(vecshi0);
|
123 |
+
vint32 veci1 = vec_unpackl(vecshi0);
|
124 |
+
|
125 |
+
vint32 veci2 = vec_unpackh(vecshi1);
|
126 |
+
vint32 veci3 = vec_unpackl(vecshi1);
|
127 |
+
|
128 |
+
vint32 veci4 = vec_unpackh(vecshi2);
|
129 |
+
vint32 veci5 = vec_unpackl(vecshi2);
|
130 |
+
|
131 |
+
vint32 veci6 = vec_unpackh(vecshi3);
|
132 |
+
vint32 veci7 = vec_unpackl(vecshi3);
|
133 |
+
|
134 |
+
vfloat32 vecf0_0 = vec_float(veci0);
|
135 |
+
vfloat32 vecf1_0 = vec_float(veci1);
|
136 |
+
|
137 |
+
vfloat32 vecf0_1 = vec_float(veci2);
|
138 |
+
vfloat32 vecf1_1 = vec_float(veci3);
|
139 |
+
|
140 |
+
vfloat32 vecf0_2 = vec_float(veci4);
|
141 |
+
vfloat32 vecf1_2 = vec_float(veci5);
|
142 |
+
|
143 |
+
vfloat32 vecf0_3 = vec_float(veci6);
|
144 |
+
vfloat32 vecf1_3 = vec_float(veci7);
|
145 |
+
vfloat32 scale_vec0 = scale.vec0();
|
146 |
+
vfloat32 scale_vec1 = scale.vec1();
|
147 |
+
vfloat32 scale_zp_premul0 = scale_zp_premul.vec0();
|
148 |
+
vfloat32 scale_zp_premul1 = scale_zp_premul.vec1();
|
149 |
+
return {
|
150 |
+
Vectorized<float>{
|
151 |
+
vec_madd(scale_vec0, vecf0_0, scale_zp_premul0),
|
152 |
+
vec_madd(scale_vec1, vecf1_0, scale_zp_premul1)},
|
153 |
+
Vectorized<float>{
|
154 |
+
vec_madd(scale_vec0, vecf0_1, scale_zp_premul0),
|
155 |
+
vec_madd(scale_vec1, vecf1_1, scale_zp_premul1)},
|
156 |
+
Vectorized<float>{
|
157 |
+
vec_madd(scale_vec0, vecf0_2, scale_zp_premul0),
|
158 |
+
vec_madd(scale_vec1, vecf1_2, scale_zp_premul1)},
|
159 |
+
Vectorized<float>{
|
160 |
+
vec_madd(scale_vec0, vecf0_3, scale_zp_premul0),
|
161 |
+
vec_madd(scale_vec1, vecf1_3, scale_zp_premul1)}};
|
162 |
+
}
|
163 |
+
|
164 |
+
static Vectorized<c10::qint8> quantize(
|
165 |
+
const float_vec_return_type& rhs,
|
166 |
+
float scale,
|
167 |
+
int32_t zero_point,
|
168 |
+
float inverse_scale) {
|
169 |
+
// constexpr int32_t min_val = std::numeric_limits<value_type>::min();
|
170 |
+
// constexpr int32_t max_val = std::numeric_limits<value_type>::max();
|
171 |
+
|
172 |
+
vfloat32 inverse_scale_v = vec_splats(inverse_scale);
|
173 |
+
vfloat32 vec_zero_point = vec_splats((float)zero_point);
|
174 |
+
// vint32 vmin = vec_splats(min_val);
|
175 |
+
// vint32 vmax = vec_splats(max_val);
|
176 |
+
|
177 |
+
Vectorized<float> vf0 = rhs[0];
|
178 |
+
Vectorized<float> vf1 = rhs[1];
|
179 |
+
Vectorized<float> vf2 = rhs[2];
|
180 |
+
Vectorized<float> vf3 = rhs[3];
|
181 |
+
vfloat32 vecf0 = vf0.vec0();
|
182 |
+
vfloat32 vecf1 = vf0.vec1();
|
183 |
+
vfloat32 vecf2 = vf1.vec0();
|
184 |
+
vfloat32 vecf3 = vf1.vec1();
|
185 |
+
|
186 |
+
vfloat32 vecf4 = vf2.vec0();
|
187 |
+
vfloat32 vecf5 = vf2.vec1();
|
188 |
+
vfloat32 vecf6 = vf3.vec0();
|
189 |
+
vfloat32 vecf7 = vf3.vec1();
|
190 |
+
|
191 |
+
vecf0 = vec_mul(vecf0, inverse_scale_v);
|
192 |
+
vecf1 = vec_mul(vecf1, inverse_scale_v);
|
193 |
+
vecf2 = vec_mul(vecf2, inverse_scale_v);
|
194 |
+
vecf3 = vec_mul(vecf3, inverse_scale_v);
|
195 |
+
|
196 |
+
vecf4 = vec_mul(vecf4, inverse_scale_v);
|
197 |
+
vecf5 = vec_mul(vecf5, inverse_scale_v);
|
198 |
+
vecf6 = vec_mul(vecf6, inverse_scale_v);
|
199 |
+
vecf7 = vec_mul(vecf7, inverse_scale_v);
|
200 |
+
|
201 |
+
vecf0 = vec_add(vec_rint(vecf0), vec_zero_point);
|
202 |
+
vecf1 = vec_add(vec_rint(vecf1), vec_zero_point);
|
203 |
+
vecf2 = vec_add(vec_rint(vecf2), vec_zero_point);
|
204 |
+
vecf3 = vec_add(vec_rint(vecf3), vec_zero_point);
|
205 |
+
|
206 |
+
vecf4 = vec_add(vec_rint(vecf4), vec_zero_point);
|
207 |
+
vecf5 = vec_add(vec_rint(vecf5), vec_zero_point);
|
208 |
+
vecf6 = vec_add(vec_rint(vecf6), vec_zero_point);
|
209 |
+
vecf7 = vec_add(vec_rint(vecf7), vec_zero_point);
|
210 |
+
|
211 |
+
vint32 veci0 = vec_signed(vecf0);
|
212 |
+
vint32 veci1 = vec_signed(vecf1);
|
213 |
+
vint32 veci2 = vec_signed(vecf2);
|
214 |
+
vint32 veci3 = vec_signed(vecf3);
|
215 |
+
|
216 |
+
vint32 veci4 = vec_signed(vecf4);
|
217 |
+
vint32 veci5 = vec_signed(vecf5);
|
218 |
+
vint32 veci6 = vec_signed(vecf6);
|
219 |
+
vint32 veci7 = vec_signed(vecf7);
|
220 |
+
|
221 |
+
// veci0 = vec_min(vmax, vec_max( vmin, vecf0)) ;
|
222 |
+
// veci1 = vec_min(vmax, vec_max( vmin, vecf1)) ;
|
223 |
+
// veci2 = vec_min(vmax, vec_max( vmin, vecf2)) ;
|
224 |
+
// veci3 = vec_min(vmax, vec_max( vmin, vecf3)) ;
|
225 |
+
|
226 |
+
// veci4 = vec_min(vmax, vec_max( vmin, vecf4)) ;
|
227 |
+
// veci5 = vec_min(vmax, vec_max( vmin, vecf5)) ;
|
228 |
+
// veci6 = vec_min(vmax, vec_max( vmin, vecf6)) ;
|
229 |
+
// veci7 = vec_min(vmax, vec_max( vmin, vecf7)) ;
|
230 |
+
// vec_packs CLAMP already
|
231 |
+
vint16 vecshi0 = vec_packs(veci0, veci1);
|
232 |
+
vint16 vecshi1 = vec_packs(veci2, veci3);
|
233 |
+
vint16 vecshi2 = vec_packs(veci4, veci5);
|
234 |
+
vint16 vecshi3 = vec_packs(veci6, veci7);
|
235 |
+
|
236 |
+
vint8 vec0 = vec_packs(vecshi0, vecshi1);
|
237 |
+
vint8 vec1 = vec_packs(vecshi2, vecshi3);
|
238 |
+
|
239 |
+
return {vec0, vec1};
|
240 |
+
}
|
241 |
+
|
242 |
+
Vectorized<c10::qint8> C10_ALWAYS_INLINE relu(Vectorized<c10::qint8> zero_point) const {
|
243 |
+
return {vec_max(_vec0, zero_point._vec0), vec_max(_vec1, zero_point._vec1)};
|
244 |
+
}
|
245 |
+
|
246 |
+
Vectorized<c10::qint8> C10_ALWAYS_INLINE
|
247 |
+
relu6(Vectorized<c10::qint8> zero_point, Vectorized<c10::qint8> q_six) const {
|
248 |
+
vint8 max0 = vec_max(_vec0, zero_point._vec0);
|
249 |
+
vint8 max1 = vec_max(_vec1, zero_point._vec1);
|
250 |
+
return {vec_min(max0, q_six._vec0), vec_min(max1, q_six._vec1)};
|
251 |
+
}
|
252 |
+
|
253 |
+
int_vec_return_type widening_subtract(Vectorized<c10::qint8> b) const {
|
254 |
+
vint16 vecshi0 = vec_unpackh(_vec0);
|
255 |
+
vint16 vecBshi0 = vec_unpackh(b._vec0);
|
256 |
+
vint16 vecshi1 = vec_unpackl(_vec0);
|
257 |
+
vint16 vecBshi1 = vec_unpackl(b._vec0);
|
258 |
+
|
259 |
+
vint16 vecshi2 = vec_unpackh(_vec1);
|
260 |
+
vint16 vecBshi2 = vec_unpackh(b._vec1);
|
261 |
+
vint16 vecshi3 = vec_unpackl(_vec1);
|
262 |
+
vint16 vecBshi3 = vec_unpackl(b._vec1);
|
263 |
+
|
264 |
+
vint32 veci0 = vec_unpackh(vecshi0);
|
265 |
+
vint32 vecBi0 = vec_unpackh(vecBshi0);
|
266 |
+
vint32 veci1 = vec_unpackl(vecshi0);
|
267 |
+
vint32 vecBi1 = vec_unpackl(vecBshi0);
|
268 |
+
|
269 |
+
vint32 veci2 = vec_unpackh(vecshi1);
|
270 |
+
vint32 vecBi2 = vec_unpackh(vecBshi1);
|
271 |
+
vint32 veci3 = vec_unpackl(vecshi1);
|
272 |
+
vint32 vecBi3 = vec_unpackl(vecBshi1);
|
273 |
+
|
274 |
+
vint32 veci4 = vec_unpackh(vecshi2);
|
275 |
+
vint32 vecBi4 = vec_unpackh(vecBshi2);
|
276 |
+
vint32 veci5 = vec_unpackl(vecshi2);
|
277 |
+
vint32 vecBi5 = vec_unpackl(vecBshi2);
|
278 |
+
|
279 |
+
vint32 veci6 = vec_unpackh(vecshi3);
|
280 |
+
vint32 vecBi6 = vec_unpackh(vecBshi3);
|
281 |
+
vint32 veci7 = vec_unpackl(vecshi3);
|
282 |
+
vint32 vecBi7 = vec_unpackl(vecBshi3);
|
283 |
+
|
284 |
+
return {
|
285 |
+
Vectorized<c10::qint32>(veci0 - vecBi0, veci1 - vecBi1),
|
286 |
+
Vectorized<c10::qint32>(veci2 - vecBi2, veci3 - vecBi3),
|
287 |
+
Vectorized<c10::qint32>(veci4 - vecBi4, veci5 - vecBi5),
|
288 |
+
Vectorized<c10::qint32>(veci6 - vecBi6, veci7 - vecBi7)};
|
289 |
+
}
|
290 |
+
|
291 |
+
static Vectorized<c10::qint8> requantize_from_int(
|
292 |
+
const int_vec_return_type& inp,
|
293 |
+
float multiplier,
|
294 |
+
int32_t zero_point) {
|
295 |
+
vfloat32 vec_multiplier = vec_splats(multiplier);
|
296 |
+
vint32 vec_zero_point = vec_splats(zero_point);
|
297 |
+
|
298 |
+
Vectorized<c10::qint32> vi0 = inp[0];
|
299 |
+
Vectorized<c10::qint32> vi1 = inp[1];
|
300 |
+
Vectorized<c10::qint32> vi2 = inp[2];
|
301 |
+
Vectorized<c10::qint32> vi3 = inp[3];
|
302 |
+
|
303 |
+
vfloat32 vecf0 = vec_float(vi0.vec0());
|
304 |
+
vfloat32 vecf1 = vec_float(vi0.vec1());
|
305 |
+
vfloat32 vecf2 = vec_float(vi1.vec0());
|
306 |
+
vfloat32 vecf3 = vec_float(vi1.vec1());
|
307 |
+
|
308 |
+
vfloat32 vecf4 = vec_float(vi2.vec0());
|
309 |
+
vfloat32 vecf5 = vec_float(vi2.vec1());
|
310 |
+
vfloat32 vecf6 = vec_float(vi3.vec0());
|
311 |
+
vfloat32 vecf7 = vec_float(vi3.vec1());
|
312 |
+
|
313 |
+
vecf0 = vec_mul(vecf0, vec_multiplier);
|
314 |
+
vecf1 = vec_mul(vecf1, vec_multiplier);
|
315 |
+
vecf2 = vec_mul(vecf2, vec_multiplier);
|
316 |
+
vecf3 = vec_mul(vecf3, vec_multiplier);
|
317 |
+
|
318 |
+
vecf4 = vec_mul(vecf4, vec_multiplier);
|
319 |
+
vecf5 = vec_mul(vecf5, vec_multiplier);
|
320 |
+
vecf6 = vec_mul(vecf6, vec_multiplier);
|
321 |
+
vecf7 = vec_mul(vecf7, vec_multiplier);
|
322 |
+
|
323 |
+
vecf0 = vec_rint(vecf0);
|
324 |
+
vecf1 = vec_rint(vecf1);
|
325 |
+
vecf2 = vec_rint(vecf2);
|
326 |
+
vecf3 = vec_rint(vecf3);
|
327 |
+
|
328 |
+
vecf4 = vec_rint(vecf4);
|
329 |
+
vecf5 = vec_rint(vecf5);
|
330 |
+
vecf6 = vec_rint(vecf6);
|
331 |
+
vecf7 = vec_rint(vecf7);
|
332 |
+
|
333 |
+
vint32 veci0 = vec_signed(vecf0);
|
334 |
+
vint32 veci1 = vec_signed(vecf1);
|
335 |
+
vint32 veci2 = vec_signed(vecf2);
|
336 |
+
vint32 veci3 = vec_signed(vecf3);
|
337 |
+
|
338 |
+
vint32 veci4 = vec_signed(vecf4);
|
339 |
+
vint32 veci5 = vec_signed(vecf5);
|
340 |
+
vint32 veci6 = vec_signed(vecf6);
|
341 |
+
vint32 veci7 = vec_signed(vecf7);
|
342 |
+
|
343 |
+
veci0 = vec_add(veci0, vec_zero_point);
|
344 |
+
veci1 = vec_add(veci1, vec_zero_point);
|
345 |
+
veci2 = vec_add(veci2, vec_zero_point);
|
346 |
+
veci3 = vec_add(veci3, vec_zero_point);
|
347 |
+
|
348 |
+
veci4 = vec_add(veci4, vec_zero_point);
|
349 |
+
veci5 = vec_add(veci5, vec_zero_point);
|
350 |
+
veci6 = vec_add(veci6, vec_zero_point);
|
351 |
+
veci7 = vec_add(veci7, vec_zero_point);
|
352 |
+
|
353 |
+
vint16 vecshi0 = vec_packs(veci0, veci1);
|
354 |
+
vint16 vecshi1 = vec_packs(veci2, veci3);
|
355 |
+
vint16 vecshi2 = vec_packs(veci4, veci5);
|
356 |
+
vint16 vecshi3 = vec_packs(veci6, veci7);
|
357 |
+
|
358 |
+
vint8 vec0 = vec_packs(vecshi0, vecshi1);
|
359 |
+
vint8 vec1 = vec_packs(vecshi2, vecshi3);
|
360 |
+
|
361 |
+
return {vec0, vec1};
|
362 |
+
}
|
363 |
+
|
364 |
+
DEFINE_MEMBER_OP(operator==, c10::qint8, vec_cmpeq)
|
365 |
+
DEFINE_MEMBER_OP(operator!=, c10::qint8, vec_cmpne)
|
366 |
+
DEFINE_MEMBER_OP(operator<, c10::qint8, vec_cmplt)
|
367 |
+
DEFINE_MEMBER_OP(operator<=, c10::qint8, vec_cmple)
|
368 |
+
DEFINE_MEMBER_OP(operator>, c10::qint8, vec_cmpgt)
|
369 |
+
DEFINE_MEMBER_OP(operator>=, c10::qint8, vec_cmpge)
|
370 |
+
DEFINE_MEMBER_OP(operator+, c10::qint8, vec_add)
|
371 |
+
DEFINE_MEMBER_OP(operator-, c10::qint8, vec_sub)
|
372 |
+
DEFINE_MEMBER_OP(operator*, c10::qint8, vec_mul)
|
373 |
+
DEFINE_MEMBER_EMULATE_BINARY_OP(operator/, c10::qint8, /)
|
374 |
+
DEFINE_MEMBER_OP(maximum, c10::qint8, vec_max)
|
375 |
+
DEFINE_MEMBER_OP(minimum, c10::qint8, vec_min)
|
376 |
+
DEFINE_MEMBER_OP(operator&, c10::qint8, vec_and)
|
377 |
+
DEFINE_MEMBER_OP(operator|, c10::qint8, vec_or)
|
378 |
+
DEFINE_MEMBER_OP(operator^, c10::qint8, vec_xor)
|
379 |
+
};
|
380 |
+
|
381 |
+
template <>
|
382 |
+
Vectorized<c10::qint8> inline maximum(
|
383 |
+
const Vectorized<c10::qint8>& a,
|
384 |
+
const Vectorized<c10::qint8>& b) {
|
385 |
+
return a.maximum(b);
|
386 |
+
}
|
387 |
+
|
388 |
+
template <>
|
389 |
+
Vectorized<c10::qint8> inline minimum(
|
390 |
+
const Vectorized<c10::qint8>& a,
|
391 |
+
const Vectorized<c10::qint8>& b) {
|
392 |
+
return a.minimum(b);
|
393 |
+
}
|
394 |
+
} // namespace
|
395 |
+
} // namespace vec
|
396 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vec256_quint8_vsx.h
ADDED
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
4 |
+
#include <ATen/cpu/vec/vec_base.h>
|
5 |
+
#include <ATen/cpu/vec/vec256/vsx/vsx_helpers.h>
|
6 |
+
|
7 |
+
#include <c10/util/irange.h>
|
8 |
+
#include <c10/util/quint8.h>
|
9 |
+
#include <array>
|
10 |
+
|
11 |
+
// This file defines Vectorized<> for the quantized types.
|
12 |
+
//
|
13 |
+
//
|
14 |
+
// Currently, we simply use these classes as efficient converters between
|
15 |
+
// the quantized types and Vectorized<float>, usually in bandwidth-bound cases
|
16 |
+
// where doing the arithmetic in full-precision is acceptable (e.g.
|
17 |
+
// elementwise operators).
|
18 |
+
//
|
19 |
+
//
|
20 |
+
// Conversions are as follows:
|
21 |
+
// Vectorized<quint8> -> 4x Vectorized<float>
|
22 |
+
//
|
23 |
+
// The size of the returned float vector is specified by the special
|
24 |
+
// constexpr function float_num_vecs. The type of the value returned
|
25 |
+
// from dequantize (and expected as an argument to quantize) is
|
26 |
+
// specified by float_vec_return_type.
|
27 |
+
//
|
28 |
+
// When writing kernels with these vectors, it is expected that floating-
|
29 |
+
// point operations will be carried out in a loop over Vectorized<T>::float_num_vecs
|
30 |
+
// iterations.
|
31 |
+
|
32 |
+
namespace at {
|
33 |
+
namespace vec {
|
34 |
+
inline namespace CPU_CAPABILITY {
|
35 |
+
|
36 |
+
const vint16 mask_unsigned = vec_splats((short int)0xFF);
|
37 |
+
template <>
|
38 |
+
struct Vectorized<c10::quint8> {
|
39 |
+
private:
|
40 |
+
union {
|
41 |
+
struct {
|
42 |
+
vuint8 _vec0;
|
43 |
+
vuint8 _vec1;
|
44 |
+
};
|
45 |
+
struct {
|
46 |
+
vbool8 _vecb0;
|
47 |
+
vbool8 _vecb1;
|
48 |
+
};
|
49 |
+
|
50 |
+
} __attribute__((__may_alias__));
|
51 |
+
|
52 |
+
public:
|
53 |
+
Vectorized() {}
|
54 |
+
using size_type = int;
|
55 |
+
static constexpr size_type size() {
|
56 |
+
return 32;
|
57 |
+
}
|
58 |
+
|
59 |
+
static constexpr size_t float_num_vecs() {
|
60 |
+
return 4;
|
61 |
+
}
|
62 |
+
static constexpr int int_num_vecs() {
|
63 |
+
return 4;
|
64 |
+
}
|
65 |
+
using float_vec_return_type = std::array<Vectorized<float>, 4>;
|
66 |
+
using int_vec_return_type = std::array<Vectorized<c10::qint32>, 4>;
|
67 |
+
using value_type = typename c10::quint8::underlying;
|
68 |
+
using vec_internal_type = vuint8;
|
69 |
+
using vec_internal_mask_type = vbool8;
|
70 |
+
// Broadcast constructor
|
71 |
+
C10_ALWAYS_INLINE Vectorized(const c10::quint8& val)
|
72 |
+
: _vec0(vec_splats(val.val_)), _vec1(vec_splats(val.val_)) {}
|
73 |
+
|
74 |
+
C10_ALWAYS_INLINE Vectorized(const Vectorized<c10::quint8>& other)
|
75 |
+
: _vec0{other._vec0}, _vec1(other._vec1) {}
|
76 |
+
|
77 |
+
C10_ALWAYS_INLINE Vectorized(vuint8 v) : _vec0{v}, _vec1{v} {}
|
78 |
+
C10_ALWAYS_INLINE Vectorized(vbool8 vmask) : _vecb0{vmask}, _vecb1{vmask} {}
|
79 |
+
C10_ALWAYS_INLINE Vectorized(vuint8 v1, vuint8 v2) : _vec0{v1}, _vec1{v2} {}
|
80 |
+
C10_ALWAYS_INLINE Vectorized(vbool8 v1, vbool8 v2) : _vecb0{v1}, _vecb1{v2} {}
|
81 |
+
|
82 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec0() const {
|
83 |
+
return _vec0;
|
84 |
+
}
|
85 |
+
C10_ALWAYS_INLINE const vec_internal_type& vec1() const {
|
86 |
+
return _vec1;
|
87 |
+
}
|
88 |
+
|
89 |
+
static C10_ALWAYS_INLINE Vectorized<c10::quint8> loadu(
|
90 |
+
const void* ptr,
|
91 |
+
int count = size()) {
|
92 |
+
if (count == size()) {
|
93 |
+
return {
|
94 |
+
vec_vsx_ld(offset0, reinterpret_cast<const value_type*>(ptr)),
|
95 |
+
vec_vsx_ld(offset16, reinterpret_cast<const value_type*>(ptr))};
|
96 |
+
}
|
97 |
+
__at_align__ value_type tmp_values[size()];
|
98 |
+
std::memcpy(tmp_values, ptr, std::min(count, size()) * sizeof(value_type));
|
99 |
+
return {vec_vsx_ld(offset0, tmp_values), vec_vsx_ld(offset16, tmp_values)};
|
100 |
+
}
|
101 |
+
void C10_ALWAYS_INLINE store(void* ptr, int count = size()) const {
|
102 |
+
if (count == size()) {
|
103 |
+
vec_vsx_st(_vec0, offset0, reinterpret_cast<value_type*>(ptr));
|
104 |
+
vec_vsx_st(_vec1, offset16, reinterpret_cast<value_type*>(ptr));
|
105 |
+
} else if (count > 0) {
|
106 |
+
__at_align__ value_type tmp_values[size()];
|
107 |
+
vec_vsx_st(_vec0, offset0, tmp_values);
|
108 |
+
vec_vsx_st(_vec1, offset16, tmp_values);
|
109 |
+
std::memcpy(
|
110 |
+
ptr, tmp_values, std::min(count, size()) * sizeof(value_type));
|
111 |
+
}
|
112 |
+
}
|
113 |
+
|
114 |
+
public:
|
115 |
+
float_vec_return_type C10_ALWAYS_INLINE dequantize(
|
116 |
+
Vectorized<float> scale,
|
117 |
+
Vectorized<float> zero_point,
|
118 |
+
Vectorized<float> scale_zp_premul) const {
|
119 |
+
// unpacking unsigned as signed
|
120 |
+
vint16 vecshi0 = vec_unpackh((vint8)_vec0);
|
121 |
+
vint16 vecshi1 = vec_unpackl((vint8)_vec0);
|
122 |
+
|
123 |
+
vint16 vecshi2 = vec_unpackh((vint8)_vec1);
|
124 |
+
vint16 vecshi3 = vec_unpackl((vint8)_vec1);
|
125 |
+
|
126 |
+
// signed -> unsigned
|
127 |
+
vecshi0 = vec_and(vecshi0, mask_unsigned);
|
128 |
+
vecshi1 = vec_and(vecshi1, mask_unsigned);
|
129 |
+
|
130 |
+
vecshi2 = vec_and(vecshi2, mask_unsigned);
|
131 |
+
vecshi3 = vec_and(vecshi3, mask_unsigned);
|
132 |
+
|
133 |
+
vint32 veci0 = vec_unpackh(vecshi0);
|
134 |
+
vint32 veci1 = vec_unpackl(vecshi0);
|
135 |
+
|
136 |
+
vint32 veci2 = vec_unpackh(vecshi1);
|
137 |
+
vint32 veci3 = vec_unpackl(vecshi1);
|
138 |
+
|
139 |
+
vint32 veci4 = vec_unpackh(vecshi2);
|
140 |
+
vint32 veci5 = vec_unpackl(vecshi2);
|
141 |
+
|
142 |
+
vint32 veci6 = vec_unpackh(vecshi3);
|
143 |
+
vint32 veci7 = vec_unpackl(vecshi3);
|
144 |
+
|
145 |
+
vfloat32 vecf0_0 = vec_float(veci0);
|
146 |
+
vfloat32 vecf1_0 = vec_float(veci1);
|
147 |
+
|
148 |
+
vfloat32 vecf0_1 = vec_float(veci2);
|
149 |
+
vfloat32 vecf1_1 = vec_float(veci3);
|
150 |
+
|
151 |
+
vfloat32 vecf0_2 = vec_float(veci4);
|
152 |
+
vfloat32 vecf1_2 = vec_float(veci5);
|
153 |
+
|
154 |
+
vfloat32 vecf0_3 = vec_float(veci6);
|
155 |
+
vfloat32 vecf1_3 = vec_float(veci7);
|
156 |
+
vfloat32 scale_vec0 = scale.vec0();
|
157 |
+
vfloat32 scale_vec1 = scale.vec1();
|
158 |
+
vfloat32 scale_zp_premul0 = scale_zp_premul.vec0();
|
159 |
+
vfloat32 scale_zp_premul1 = scale_zp_premul.vec1();
|
160 |
+
return {
|
161 |
+
Vectorized<float>{
|
162 |
+
vec_madd(scale_vec0, vecf0_0, scale_zp_premul0),
|
163 |
+
vec_madd(scale_vec1, vecf1_0, scale_zp_premul1)},
|
164 |
+
Vectorized<float>{
|
165 |
+
vec_madd(scale_vec0, vecf0_1, scale_zp_premul0),
|
166 |
+
vec_madd(scale_vec1, vecf1_1, scale_zp_premul1)},
|
167 |
+
Vectorized<float>{
|
168 |
+
vec_madd(scale_vec0, vecf0_2, scale_zp_premul0),
|
169 |
+
vec_madd(scale_vec1, vecf1_2, scale_zp_premul1)},
|
170 |
+
Vectorized<float>{
|
171 |
+
vec_madd(scale_vec0, vecf0_3, scale_zp_premul0),
|
172 |
+
vec_madd(scale_vec1, vecf1_3, scale_zp_premul1)}};
|
173 |
+
}
|
174 |
+
|
175 |
+
static Vectorized<c10::quint8> quantize(
|
176 |
+
const float_vec_return_type& rhs,
|
177 |
+
float scale,
|
178 |
+
int32_t zero_point,
|
179 |
+
float inverse_scale) {
|
180 |
+
// constexpr int32_t min_val = std::numeric_limits<value_type>::min();
|
181 |
+
// constexpr int32_t max_val = std::numeric_limits<value_type>::max();
|
182 |
+
|
183 |
+
vfloat32 vec_inverse = vec_splats(inverse_scale);
|
184 |
+
vfloat32 vec_zero_point = vec_splats((float)zero_point);
|
185 |
+
// vuint32 vmin = vec_splats(min_val);
|
186 |
+
// vuint32 vmax = vec_splats(max_val);
|
187 |
+
Vectorized<float> vf0 = rhs[0];
|
188 |
+
Vectorized<float> vf1 = rhs[1];
|
189 |
+
Vectorized<float> vf2 = rhs[2];
|
190 |
+
Vectorized<float> vf3 = rhs[3];
|
191 |
+
vfloat32 vecf0 = vf0.vec0();
|
192 |
+
vfloat32 vecf1 = vf0.vec1();
|
193 |
+
vfloat32 vecf2 = vf1.vec0();
|
194 |
+
vfloat32 vecf3 = vf1.vec1();
|
195 |
+
|
196 |
+
vfloat32 vecf4 = vf2.vec0();
|
197 |
+
vfloat32 vecf5 = vf2.vec1();
|
198 |
+
vfloat32 vecf6 = vf3.vec0();
|
199 |
+
vfloat32 vecf7 = vf3.vec1();
|
200 |
+
|
201 |
+
vecf0 = vec_mul(vecf0, vec_inverse);
|
202 |
+
vecf1 = vec_mul(vecf1, vec_inverse);
|
203 |
+
vecf2 = vec_mul(vecf2, vec_inverse);
|
204 |
+
vecf3 = vec_mul(vecf3, vec_inverse);
|
205 |
+
|
206 |
+
vecf4 = vec_mul(vecf4, vec_inverse);
|
207 |
+
vecf5 = vec_mul(vecf5, vec_inverse);
|
208 |
+
vecf6 = vec_mul(vecf6, vec_inverse);
|
209 |
+
vecf7 = vec_mul(vecf7, vec_inverse);
|
210 |
+
|
211 |
+
vecf0 = vec_add(vec_rint(vecf0), vec_zero_point);
|
212 |
+
vecf1 = vec_add(vec_rint(vecf1), vec_zero_point);
|
213 |
+
vecf2 = vec_add(vec_rint(vecf2), vec_zero_point);
|
214 |
+
vecf3 = vec_add(vec_rint(vecf3), vec_zero_point);
|
215 |
+
|
216 |
+
vecf4 = vec_add(vec_rint(vecf4), vec_zero_point);
|
217 |
+
vecf5 = vec_add(vec_rint(vecf5), vec_zero_point);
|
218 |
+
vecf6 = vec_add(vec_rint(vecf6), vec_zero_point);
|
219 |
+
vecf7 = vec_add(vec_rint(vecf7), vec_zero_point);
|
220 |
+
|
221 |
+
vint32 veci0 = vec_signed(vecf0);
|
222 |
+
vint32 veci1 = vec_signed(vecf1);
|
223 |
+
vint32 veci2 = vec_signed(vecf2);
|
224 |
+
vint32 veci3 = vec_signed(vecf3);
|
225 |
+
|
226 |
+
vint32 veci4 = vec_signed(vecf4);
|
227 |
+
vint32 veci5 = vec_signed(vecf5);
|
228 |
+
vint32 veci6 = vec_signed(vecf6);
|
229 |
+
vint32 veci7 = vec_signed(vecf7);
|
230 |
+
|
231 |
+
vint16 vecshi0 = vec_packs(veci0, veci1);
|
232 |
+
vint16 vecshi1 = vec_packs(veci2, veci3);
|
233 |
+
vint16 vecshi2 = vec_packs(veci4, veci5);
|
234 |
+
vint16 vecshi3 = vec_packs(veci6, veci7);
|
235 |
+
|
236 |
+
vuint8 vec0 = vec_packsu(vecshi0, vecshi1);
|
237 |
+
vuint8 vec1 = vec_packsu(vecshi2, vecshi3);
|
238 |
+
|
239 |
+
return {vec0, vec1};
|
240 |
+
}
|
241 |
+
|
242 |
+
Vectorized<c10::quint8> C10_ALWAYS_INLINE relu(Vectorized<c10::quint8> zero_point) const {
|
243 |
+
return {vec_max(_vec0, zero_point._vec0), vec_max(_vec1, zero_point._vec1)};
|
244 |
+
}
|
245 |
+
|
246 |
+
Vectorized<c10::quint8> C10_ALWAYS_INLINE
|
247 |
+
relu6(Vectorized<c10::quint8> zero_point, Vectorized<c10::quint8> q_six) const {
|
248 |
+
vuint8 max0 = vec_max(_vec0, zero_point._vec0);
|
249 |
+
vuint8 max1 = vec_max(_vec1, zero_point._vec1);
|
250 |
+
return {vec_min(max0, q_six._vec0), vec_min(max1, q_six._vec1)};
|
251 |
+
}
|
252 |
+
|
253 |
+
int_vec_return_type widening_subtract(Vectorized<c10::quint8> b) const {
|
254 |
+
vint16 vecshi0 = vec_unpackh((vint8)_vec0);
|
255 |
+
vint16 vecBshi0 = vec_unpackh((vint8)b._vec0);
|
256 |
+
vint16 vecshi1 = vec_unpackl((vint8)_vec0);
|
257 |
+
vint16 vecBshi1 = vec_unpackl((vint8)b._vec0);
|
258 |
+
|
259 |
+
vint16 vecshi2 = vec_unpackh((vint8)_vec1);
|
260 |
+
vint16 vecBshi2 = vec_unpackh((vint8)b._vec1);
|
261 |
+
vint16 vecshi3 = vec_unpackl((vint8)_vec1);
|
262 |
+
vint16 vecBshi3 = vec_unpackl((vint8)b._vec1);
|
263 |
+
|
264 |
+
vecshi0 = vec_and(vecshi0, mask_unsigned);
|
265 |
+
vecBshi0 = vec_and(vecBshi0, mask_unsigned);
|
266 |
+
vecshi1 = vec_and(vecshi1, mask_unsigned);
|
267 |
+
vecBshi1 = vec_and(vecBshi1, mask_unsigned);
|
268 |
+
|
269 |
+
vecshi2 = vec_and(vecshi2, mask_unsigned);
|
270 |
+
vecBshi2 = vec_and(vecBshi2, mask_unsigned);
|
271 |
+
vecshi3 = vec_and(vecshi3, mask_unsigned);
|
272 |
+
vecBshi3 = vec_and(vecBshi3, mask_unsigned);
|
273 |
+
|
274 |
+
vint32 veci0 = vec_unpackh(vecshi0);
|
275 |
+
vint32 vecBi0 = vec_unpackh(vecBshi0);
|
276 |
+
vint32 veci1 = vec_unpackl(vecshi0);
|
277 |
+
vint32 vecBi1 = vec_unpackl(vecBshi0);
|
278 |
+
|
279 |
+
vint32 veci2 = vec_unpackh(vecshi1);
|
280 |
+
vint32 vecBi2 = vec_unpackh(vecBshi1);
|
281 |
+
vint32 veci3 = vec_unpackl(vecshi1);
|
282 |
+
vint32 vecBi3 = vec_unpackl(vecBshi1);
|
283 |
+
|
284 |
+
vint32 veci4 = vec_unpackh(vecshi2);
|
285 |
+
vint32 vecBi4 = vec_unpackh(vecBshi2);
|
286 |
+
vint32 veci5 = vec_unpackl(vecshi2);
|
287 |
+
vint32 vecBi5 = vec_unpackl(vecBshi2);
|
288 |
+
|
289 |
+
vint32 veci6 = vec_unpackh(vecshi3);
|
290 |
+
vint32 vecBi6 = vec_unpackh(vecBshi3);
|
291 |
+
vint32 veci7 = vec_unpackl(vecshi3);
|
292 |
+
vint32 vecBi7 = vec_unpackl(vecBshi3);
|
293 |
+
|
294 |
+
return {
|
295 |
+
Vectorized<c10::qint32>(veci0 - vecBi0, veci1 - vecBi1),
|
296 |
+
Vectorized<c10::qint32>(veci2 - vecBi2, veci3 - vecBi3),
|
297 |
+
Vectorized<c10::qint32>(veci4 - vecBi4, veci5 - vecBi5),
|
298 |
+
Vectorized<c10::qint32>(veci6 - vecBi6, veci7 - vecBi7)};
|
299 |
+
}
|
300 |
+
|
301 |
+
static Vectorized<c10::quint8> requantize_from_int(
|
302 |
+
const int_vec_return_type& inp,
|
303 |
+
float multiplier,
|
304 |
+
int32_t zero_point) {
|
305 |
+
vfloat32 vec_multiplier = vec_splats(multiplier);
|
306 |
+
vint32 vec_zero_point = vec_splats(zero_point);
|
307 |
+
|
308 |
+
Vectorized<c10::qint32> vi0 = inp[0];
|
309 |
+
Vectorized<c10::qint32> vi1 = inp[1];
|
310 |
+
Vectorized<c10::qint32> vi2 = inp[2];
|
311 |
+
Vectorized<c10::qint32> vi3 = inp[3];
|
312 |
+
|
313 |
+
vfloat32 vecf0 = vec_float(vi0.vec0());
|
314 |
+
vfloat32 vecf1 = vec_float(vi0.vec1());
|
315 |
+
vfloat32 vecf2 = vec_float(vi1.vec0());
|
316 |
+
vfloat32 vecf3 = vec_float(vi1.vec1());
|
317 |
+
|
318 |
+
vfloat32 vecf4 = vec_float(vi2.vec0());
|
319 |
+
vfloat32 vecf5 = vec_float(vi2.vec1());
|
320 |
+
vfloat32 vecf6 = vec_float(vi3.vec0());
|
321 |
+
vfloat32 vecf7 = vec_float(vi3.vec1());
|
322 |
+
|
323 |
+
vecf0 = vec_mul(vecf0, vec_multiplier);
|
324 |
+
vecf1 = vec_mul(vecf1, vec_multiplier);
|
325 |
+
vecf2 = vec_mul(vecf2, vec_multiplier);
|
326 |
+
vecf3 = vec_mul(vecf3, vec_multiplier);
|
327 |
+
|
328 |
+
vecf4 = vec_mul(vecf4, vec_multiplier);
|
329 |
+
vecf5 = vec_mul(vecf5, vec_multiplier);
|
330 |
+
vecf6 = vec_mul(vecf6, vec_multiplier);
|
331 |
+
vecf7 = vec_mul(vecf7, vec_multiplier);
|
332 |
+
|
333 |
+
vecf0 = vec_rint(vecf0);
|
334 |
+
vecf1 = vec_rint(vecf1);
|
335 |
+
vecf2 = vec_rint(vecf2);
|
336 |
+
vecf3 = vec_rint(vecf3);
|
337 |
+
|
338 |
+
vecf4 = vec_rint(vecf4);
|
339 |
+
vecf5 = vec_rint(vecf5);
|
340 |
+
vecf6 = vec_rint(vecf6);
|
341 |
+
vecf7 = vec_rint(vecf7);
|
342 |
+
|
343 |
+
vint32 veci0 = vec_signed(vecf0);
|
344 |
+
vint32 veci1 = vec_signed(vecf1);
|
345 |
+
vint32 veci2 = vec_signed(vecf2);
|
346 |
+
vint32 veci3 = vec_signed(vecf3);
|
347 |
+
|
348 |
+
vint32 veci4 = vec_signed(vecf4);
|
349 |
+
vint32 veci5 = vec_signed(vecf5);
|
350 |
+
vint32 veci6 = vec_signed(vecf6);
|
351 |
+
vint32 veci7 = vec_signed(vecf7);
|
352 |
+
|
353 |
+
veci0 = vec_add(veci0, vec_zero_point);
|
354 |
+
veci1 = vec_add(veci1, vec_zero_point);
|
355 |
+
veci2 = vec_add(veci2, vec_zero_point);
|
356 |
+
veci3 = vec_add(veci3, vec_zero_point);
|
357 |
+
|
358 |
+
veci4 = vec_add(veci4, vec_zero_point);
|
359 |
+
veci5 = vec_add(veci5, vec_zero_point);
|
360 |
+
veci6 = vec_add(veci6, vec_zero_point);
|
361 |
+
veci7 = vec_add(veci7, vec_zero_point);
|
362 |
+
|
363 |
+
vint16 vecshi0 = vec_packs(veci0, veci1);
|
364 |
+
vint16 vecshi1 = vec_packs(veci2, veci3);
|
365 |
+
vint16 vecshi2 = vec_packs(veci4, veci5);
|
366 |
+
vint16 vecshi3 = vec_packs(veci6, veci7);
|
367 |
+
|
368 |
+
vuint8 vec0 = vec_packsu(vecshi0, vecshi1);
|
369 |
+
vuint8 vec1 = vec_packsu(vecshi2, vecshi3);
|
370 |
+
|
371 |
+
return {vec0, vec1};
|
372 |
+
}
|
373 |
+
|
374 |
+
DEFINE_MEMBER_OP(operator==, c10::quint8, vec_cmpeq)
|
375 |
+
DEFINE_MEMBER_OP(operator!=, c10::quint8, vec_cmpne)
|
376 |
+
DEFINE_MEMBER_OP(operator<, c10::quint8, vec_cmplt)
|
377 |
+
DEFINE_MEMBER_OP(operator<=, c10::quint8, vec_cmple)
|
378 |
+
DEFINE_MEMBER_OP(operator>, c10::quint8, vec_cmpgt)
|
379 |
+
DEFINE_MEMBER_OP(operator>=, c10::quint8, vec_cmpge)
|
380 |
+
DEFINE_MEMBER_OP(operator+, c10::quint8, vec_add)
|
381 |
+
DEFINE_MEMBER_OP(operator-, c10::quint8, vec_sub)
|
382 |
+
DEFINE_MEMBER_OP(operator*, c10::quint8, vec_mul)
|
383 |
+
DEFINE_MEMBER_EMULATE_BINARY_OP(operator/, c10::quint8, /)
|
384 |
+
DEFINE_MEMBER_OP(maximum, c10::quint8, vec_max)
|
385 |
+
DEFINE_MEMBER_OP(minimum, c10::quint8, vec_min)
|
386 |
+
DEFINE_MEMBER_OP(operator&, c10::quint8, vec_and)
|
387 |
+
DEFINE_MEMBER_OP(operator|, c10::quint8, vec_or)
|
388 |
+
DEFINE_MEMBER_OP(operator^, c10::quint8, vec_xor)
|
389 |
+
};
|
390 |
+
|
391 |
+
template <>
|
392 |
+
Vectorized<c10::quint8> inline maximum(
|
393 |
+
const Vectorized<c10::quint8>& a,
|
394 |
+
const Vectorized<c10::quint8>& b) {
|
395 |
+
return a.maximum(b);
|
396 |
+
}
|
397 |
+
|
398 |
+
template <>
|
399 |
+
Vectorized<c10::quint8> inline minimum(
|
400 |
+
const Vectorized<c10::quint8>& a,
|
401 |
+
const Vectorized<c10::quint8>& b) {
|
402 |
+
return a.minimum(b);
|
403 |
+
}
|
404 |
+
|
405 |
+
} // namespace
|
406 |
+
} // namespace vec
|
407 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec256/vsx/vsx_helpers.h
ADDED
@@ -0,0 +1,473 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <cstdint>
|
3 |
+
#include <c10/macros/Macros.h>
|
4 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
5 |
+
|
6 |
+
#if defined(__clang__)
|
7 |
+
typedef __vector __bool char vbool8;
|
8 |
+
typedef __vector __bool short vbool16;
|
9 |
+
typedef __vector __bool int vbool32;
|
10 |
+
typedef __vector __bool long long vbool64;
|
11 |
+
using vint8 = __attribute__((vector_size(16))) signed char;
|
12 |
+
using vint16 = __attribute__((vector_size(16))) signed short;
|
13 |
+
using vint32 = __attribute__((vector_size(16))) signed int;
|
14 |
+
using vint64 = __attribute__((vector_size(16))) signed long long;
|
15 |
+
using vuint8 = __attribute__((vector_size(16))) unsigned char;
|
16 |
+
using vuint16 = __attribute__((vector_size(16))) unsigned short;
|
17 |
+
using vuint32 = __attribute__((vector_size(16))) unsigned int;
|
18 |
+
using vuint64 = __attribute__((vector_size(16))) unsigned long long;
|
19 |
+
using vfloat32 = __attribute__((vector_size(16))) float;
|
20 |
+
using vfloat64 = __attribute__((vector_size(16))) double;
|
21 |
+
#else
|
22 |
+
using vbool8 = __attribute__((altivec(vector__))) __attribute__((altivec(bool__))) char;
|
23 |
+
using vbool16 = __attribute__((altivec(vector__))) __attribute__((altivec(bool__))) short;
|
24 |
+
using vbool32 = __attribute__((altivec(vector__))) __attribute__((altivec(bool__))) int;
|
25 |
+
using vbool64 = __attribute__((altivec(vector__))) __attribute__((altivec(bool__))) long long;
|
26 |
+
using vint8 = __attribute__((altivec(vector__))) signed char;
|
27 |
+
using vint16 = __attribute__((altivec(vector__))) signed short;
|
28 |
+
using vint32 = __attribute__((altivec(vector__))) signed int;
|
29 |
+
using vint64 = __attribute__((altivec(vector__))) signed long long;
|
30 |
+
using vuint8 = __attribute__((altivec(vector__))) unsigned char;
|
31 |
+
using vuint16 = __attribute__((altivec(vector__))) unsigned short;
|
32 |
+
using vuint32 = __attribute__((altivec(vector__))) unsigned int;
|
33 |
+
using vuint64 = __attribute__((altivec(vector__))) unsigned long long;
|
34 |
+
using vfloat32 = __attribute__((altivec(vector__))) float;
|
35 |
+
using vfloat64 = __attribute__((altivec(vector__))) double;
|
36 |
+
#endif
|
37 |
+
|
38 |
+
#if !defined(vec_float)
|
39 |
+
C10_ALWAYS_INLINE vfloat32 vec_float(const vint32& vec_in) {
|
40 |
+
vfloat32 vec_out;
|
41 |
+
__asm__("xvcvsxwsp %x0,%x1" : "=wf"(vec_out) : "wa"(vec_in));
|
42 |
+
return vec_out;
|
43 |
+
}
|
44 |
+
#endif
|
45 |
+
|
46 |
+
#if !defined(vec_signed)
|
47 |
+
C10_ALWAYS_INLINE vint32 vec_signed(const vfloat32& vec_in) {
|
48 |
+
vint32 vec_out;
|
49 |
+
__asm__("xvcvspsxws %x0,%x1" : "=wa"(vec_out) : "wf"(vec_in));
|
50 |
+
return vec_out;
|
51 |
+
}
|
52 |
+
|
53 |
+
C10_ALWAYS_INLINE vint64 vec_signed(const vfloat64& vec_in) {
|
54 |
+
vint64 vec_out;
|
55 |
+
__asm__("xvcvdpsxds %x0,%x1" : "=wa"(vec_out) : "wd"(vec_in));
|
56 |
+
return vec_out;
|
57 |
+
}
|
58 |
+
#endif
|
59 |
+
|
60 |
+
#if !defined(vec_neg)
|
61 |
+
C10_ALWAYS_INLINE vfloat32 vec_neg(const vfloat32& vec_in) {
|
62 |
+
vfloat32 vec_out;
|
63 |
+
__asm__("xvnegsp %x0,%x1" : "=wf"(vec_out) : "wf"(vec_in));
|
64 |
+
return vec_out;
|
65 |
+
}
|
66 |
+
|
67 |
+
C10_ALWAYS_INLINE vfloat64 vec_neg(const vfloat64& vec_in) {
|
68 |
+
vfloat64 vec_out;
|
69 |
+
__asm__("xvnegdp %x0,%x1" : "=wd"(vec_out) : "wd"(vec_in));
|
70 |
+
return vec_out;
|
71 |
+
}
|
72 |
+
|
73 |
+
C10_ALWAYS_INLINE vint16 vec_neg(const vint16& vec_in) {
|
74 |
+
vint16 vint0 = {0, 0, 0, 0 ,0, 0, 0, 0};
|
75 |
+
return vec_vsubuhm(vint0, vec_in);
|
76 |
+
}
|
77 |
+
|
78 |
+
C10_ALWAYS_INLINE vint32 vec_neg(const vint32& vec_in) {
|
79 |
+
vint32 vint0 = {0, 0, 0, 0};
|
80 |
+
return vec_vsubuwm(vint0, vec_in);
|
81 |
+
}
|
82 |
+
|
83 |
+
C10_ALWAYS_INLINE vint64 vec_neg(const vint64& vec_in) {
|
84 |
+
return -vec_in;
|
85 |
+
}
|
86 |
+
#endif
|
87 |
+
|
88 |
+
#if !defined(vec_sldw)
|
89 |
+
template <unsigned int C>
|
90 |
+
C10_ALWAYS_INLINE vfloat32
|
91 |
+
vec_sldw_aux(const vfloat32& vec_in0, const vfloat32& vec_in1) {
|
92 |
+
vfloat32 vec_out;
|
93 |
+
__asm("xxsldwi %x0, %x1, %x2, %3 "
|
94 |
+
: "=wa"(vec_out)
|
95 |
+
: "wa"(vec_in0), "wa"(vec_in1), "I"(C));
|
96 |
+
return vec_out;
|
97 |
+
}
|
98 |
+
|
99 |
+
#define vec_sldw(a, b, c) vec_sldw_aux<c>(a, b)
|
100 |
+
#endif
|
101 |
+
|
102 |
+
#define vec_not(a) vec_nor(a, a)
|
103 |
+
#if defined(__clang__) && !defined(vec_splats)
|
104 |
+
C10_ALWAYS_INLINE vint64 vec_splats(const int64_t& a) {
|
105 |
+
return vec_splats(a);
|
106 |
+
}
|
107 |
+
#endif
|
108 |
+
// Vectorized min/max which return a if any operand is nan
|
109 |
+
template <class T>
|
110 |
+
C10_ALWAYS_INLINE T vec_min_nan(const T& a, const T& b) {
|
111 |
+
return vec_min(a, b);
|
112 |
+
}
|
113 |
+
template <class T>
|
114 |
+
C10_ALWAYS_INLINE T vec_max_nan(const T& a, const T& b) {
|
115 |
+
return vec_max(a, b);
|
116 |
+
}
|
117 |
+
|
118 |
+
// Specializations for float/double taken from Eigen
|
119 |
+
template<>
|
120 |
+
C10_ALWAYS_INLINE vfloat32 vec_min_nan<vfloat32>(const vfloat32& a, const vfloat32& b)
|
121 |
+
{
|
122 |
+
// NOTE: about 10% slower than vec_min, but consistent with std::min and SSE regarding NaN
|
123 |
+
vfloat32 ret;
|
124 |
+
__asm__ ("xvcmpgesp %x0,%x1,%x2\n\txxsel %x0,%x1,%x2,%x0" : "=&wa" (ret) : "wa" (a), "wa" (b));
|
125 |
+
return ret;
|
126 |
+
}
|
127 |
+
// Specializations for float/double taken from Eigen
|
128 |
+
template<>
|
129 |
+
C10_ALWAYS_INLINE vfloat32 vec_max_nan<vfloat32>(const vfloat32& a, const vfloat32& b)
|
130 |
+
{
|
131 |
+
// NOTE: about 10% slower than vec_max, but consistent with std::min and SSE regarding NaN
|
132 |
+
vfloat32 ret;
|
133 |
+
__asm__ ("xvcmpgtsp %x0,%x2,%x1\n\txxsel %x0,%x1,%x2,%x0" : "=&wa" (ret) : "wa" (a), "wa" (b));
|
134 |
+
return ret;
|
135 |
+
}
|
136 |
+
|
137 |
+
template<>
|
138 |
+
C10_ALWAYS_INLINE vfloat64 vec_min_nan<vfloat64>(const vfloat64& a, const vfloat64& b)
|
139 |
+
{
|
140 |
+
// NOTE: about 10% slower than vec_min, but consistent with std::min and SSE regarding NaN
|
141 |
+
vfloat64 ret;
|
142 |
+
__asm__ ("xvcmpgedp %x0,%x1,%x2\n\txxsel %x0,%x1,%x2,%x0" : "=&wa" (ret) : "wa" (a), "wa" (b));
|
143 |
+
return ret;
|
144 |
+
}
|
145 |
+
template<>
|
146 |
+
C10_ALWAYS_INLINE vfloat64 vec_max_nan<vfloat64>(const vfloat64& a, const vfloat64& b)
|
147 |
+
{
|
148 |
+
// NOTE: about 10% slower than vec_max, but consistent with std::max and SSE regarding NaN
|
149 |
+
vfloat64 ret;
|
150 |
+
__asm__ ("xvcmpgtdp %x0,%x2,%x1\n\txxsel %x0,%x1,%x2,%x0" : "=&wa" (ret) : "wa" (a), "wa" (b));
|
151 |
+
return ret;
|
152 |
+
}
|
153 |
+
|
154 |
+
// Vectorizes min/max function which returns nan if any side is nan
|
155 |
+
#define C10_VSX_VEC_NAN_PROPAG(name, type, btype, func) \
|
156 |
+
C10_ALWAYS_INLINE type name(const type& a, const type& b) { \
|
157 |
+
type tmp = func(a, b); \
|
158 |
+
btype nan_a = vec_cmpne(a, a); \
|
159 |
+
btype nan_b = vec_cmpne(b, b); \
|
160 |
+
tmp = vec_sel(tmp, a, nan_a); \
|
161 |
+
return vec_sel(tmp, b, nan_b); \
|
162 |
+
}
|
163 |
+
|
164 |
+
C10_VSX_VEC_NAN_PROPAG(vec_min_nan2, vfloat32, vbool32, vec_min)
|
165 |
+
C10_VSX_VEC_NAN_PROPAG(vec_max_nan2, vfloat32, vbool32, vec_max)
|
166 |
+
C10_VSX_VEC_NAN_PROPAG(vec_min_nan2, vfloat64, vbool64, vec_min)
|
167 |
+
C10_VSX_VEC_NAN_PROPAG(vec_max_nan2, vfloat64, vbool64, vec_max)
|
168 |
+
|
169 |
+
#undef C10_VSX_VEC_NAN_PROPAG
|
170 |
+
|
171 |
+
#define DEFINE_MEMBER_UNARY_OP(op, op_type, func) \
|
172 |
+
Vectorized<op_type> C10_ALWAYS_INLINE op() const { \
|
173 |
+
return Vectorized<op_type>{func(_vec0), func(_vec1)}; \
|
174 |
+
}
|
175 |
+
|
176 |
+
#define DEFINE_MEMBER_OP(op, op_type, func) \
|
177 |
+
Vectorized<op_type> C10_ALWAYS_INLINE op(const Vectorized<op_type>& other) const { \
|
178 |
+
return Vectorized<op_type>{ \
|
179 |
+
func(_vec0, other._vec0), func(_vec1, other._vec1)}; \
|
180 |
+
}
|
181 |
+
|
182 |
+
#define DEFINE_MEMBER_BITWISE_OP(op, op_type, func) \
|
183 |
+
Vectorized<op_type> C10_ALWAYS_INLINE op(const Vectorized<op_type>& other) const { \
|
184 |
+
return Vectorized<op_type>{ \
|
185 |
+
func(_vecb0, other._vecb0), func(_vecb1, other._vecb1)}; \
|
186 |
+
}
|
187 |
+
|
188 |
+
#define DEFINE_MEMBER_TERNARY_OP(op, op_type, func) \
|
189 |
+
Vectorized<op_type> C10_ALWAYS_INLINE op( \
|
190 |
+
const Vectorized<op_type>& b, const Vectorized<op_type>& c) const { \
|
191 |
+
return Vectorized<op_type>{ \
|
192 |
+
func(_vec0, b._vec0, c._vec0), func(_vec1, b._vec1, c._vec1)}; \
|
193 |
+
}
|
194 |
+
|
195 |
+
#define DEFINE_MEMBER_EMULATE_BINARY_OP(op, op_type, binary_op) \
|
196 |
+
Vectorized<op_type> C10_ALWAYS_INLINE op(const Vectorized<op_type>& b) const { \
|
197 |
+
Vectorized<op_type>::vec_internal_type ret_0; \
|
198 |
+
Vectorized<op_type>::vec_internal_type ret_1; \
|
199 |
+
for (int i = 0; i < Vectorized<op_type>::size() / 2; i++) { \
|
200 |
+
ret_0[i] = _vec0[i] binary_op b._vec0[i]; \
|
201 |
+
ret_1[i] = _vec1[i] binary_op b._vec1[i]; \
|
202 |
+
} \
|
203 |
+
return Vectorized<op_type>{ret_0, ret_1}; \
|
204 |
+
}
|
205 |
+
|
206 |
+
|
207 |
+
#define DEFINE_MEMBER_OP_AND_ONE(op, op_type, func) \
|
208 |
+
Vectorized<op_type> C10_ALWAYS_INLINE op(const Vectorized<op_type>& other) const { \
|
209 |
+
using vvtype = Vectorized<op_type>::vec_internal_type; \
|
210 |
+
const vvtype v_one = vec_splats(static_cast<op_type>(1.0)); \
|
211 |
+
vvtype ret0 = (vvtype)func(_vec0, other._vec0); \
|
212 |
+
vvtype ret1 = (vvtype)func(_vec1, other._vec1); \
|
213 |
+
return Vectorized<op_type>{vec_and(ret0, v_one), vec_and(ret1, v_one)}; \
|
214 |
+
}
|
215 |
+
|
216 |
+
#define DEFINE_CLAMP_FUNCS(operand_type) \
|
217 |
+
template <> \
|
218 |
+
Vectorized<operand_type> C10_ALWAYS_INLINE clamp( \
|
219 |
+
const Vectorized<operand_type>& a, \
|
220 |
+
const Vectorized<operand_type>& min, \
|
221 |
+
const Vectorized<operand_type>& max) { \
|
222 |
+
return Vectorized<operand_type>{ \
|
223 |
+
vec_min_nan(vec_max_nan(a.vec0(), min.vec0()), max.vec0()), \
|
224 |
+
vec_min_nan(vec_max_nan(a.vec1(), min.vec1()), max.vec1())}; \
|
225 |
+
} \
|
226 |
+
template <> \
|
227 |
+
Vectorized<operand_type> C10_ALWAYS_INLINE clamp_min( \
|
228 |
+
const Vectorized<operand_type>& a, const Vectorized<operand_type>& min) { \
|
229 |
+
return Vectorized<operand_type>{ \
|
230 |
+
vec_max_nan(a.vec0(), min.vec0()), \
|
231 |
+
vec_max_nan(a.vec1(), min.vec1())}; \
|
232 |
+
} \
|
233 |
+
template <> \
|
234 |
+
Vectorized<operand_type> C10_ALWAYS_INLINE clamp_max( \
|
235 |
+
const Vectorized<operand_type>& a, const Vectorized<operand_type>& max) { \
|
236 |
+
return Vectorized<operand_type>{ \
|
237 |
+
vec_min_nan(a.vec0(), max.vec0()), \
|
238 |
+
vec_min_nan(a.vec1(), max.vec1())}; \
|
239 |
+
}
|
240 |
+
|
241 |
+
#define DEFINE_REINTERPRET_CAST_FUNCS( \
|
242 |
+
first_type, cast_type, cast_inner_vector_type) \
|
243 |
+
template <> \
|
244 |
+
C10_ALWAYS_INLINE Vectorized<cast_type> cast<cast_type, first_type>( \
|
245 |
+
const Vectorized<first_type>& src) { \
|
246 |
+
return Vectorized<cast_type>{(cast_inner_vector_type)src.vec0(), \
|
247 |
+
(cast_inner_vector_type)src.vec1()}; \
|
248 |
+
}
|
249 |
+
|
250 |
+
#define DEFINE_REINTERPRET_CAST_TO_ALL_FUNCS(first_type) \
|
251 |
+
DEFINE_REINTERPRET_CAST_FUNCS(first_type, double, vfloat64) \
|
252 |
+
DEFINE_REINTERPRET_CAST_FUNCS(first_type, float, vfloat32) \
|
253 |
+
DEFINE_REINTERPRET_CAST_FUNCS(first_type, int64_t, vint64) \
|
254 |
+
DEFINE_REINTERPRET_CAST_FUNCS(first_type, int32_t, vint32) \
|
255 |
+
DEFINE_REINTERPRET_CAST_FUNCS(first_type, int16_t, vint16)
|
256 |
+
|
257 |
+
// it can be used to emulate blend faster
|
258 |
+
constexpr int blendChoice(uint32_t mask, uint32_t half1 = 0xF, uint32_t half2 = 0xF0) {
|
259 |
+
uint32_t none = 0;
|
260 |
+
uint32_t both = half1 | half2;
|
261 |
+
// clamp it between 0 and both
|
262 |
+
mask = mask & both;
|
263 |
+
// return (a._vec0, a._vec1)
|
264 |
+
if (mask == none) return 0;
|
265 |
+
// return (b._vec0,b._vec1)
|
266 |
+
else if (mask == both)
|
267 |
+
return 1;
|
268 |
+
// return (b._vec0,a._vec1)
|
269 |
+
else if (mask == half1)
|
270 |
+
return 2;
|
271 |
+
// return (a._vec0,b._vec1)
|
272 |
+
else if (mask == half2)
|
273 |
+
return 3;
|
274 |
+
// return (*_vec0,a._vec1)
|
275 |
+
else if (mask > 0 && mask < half1)
|
276 |
+
return 4;
|
277 |
+
// return (*_vec0,b._vec1)
|
278 |
+
else if ((mask & half2) == half2)
|
279 |
+
return 5;
|
280 |
+
// return (a._vec0,*_vec1)
|
281 |
+
else if ((mask & half1) == 0 && mask > half1)
|
282 |
+
return 6;
|
283 |
+
// return (b._vec0,*_vec1)
|
284 |
+
else if ((mask & half1) == half1 && mask > half1)
|
285 |
+
return 7;
|
286 |
+
// return (*_vec0,*_vec1)
|
287 |
+
return 8;
|
288 |
+
}
|
289 |
+
|
290 |
+
// it can be used to emulate blend faster
|
291 |
+
constexpr int blendChoiceDbl(uint32_t mask) {
|
292 |
+
// clamp it 0 and 0xF
|
293 |
+
return blendChoice(mask, 0x3, 0xC);
|
294 |
+
}
|
295 |
+
|
296 |
+
constexpr vbool32 VsxMask1(uint32_t mask) {
|
297 |
+
uint32_t g0 = (mask & 1) * 0xffffffff;
|
298 |
+
uint32_t g1 = ((mask & 2) >> 1) * 0xffffffff;
|
299 |
+
uint32_t g2 = ((mask & 4) >> 2) * 0xffffffff;
|
300 |
+
uint32_t g3 = ((mask & 8) >> 3) * 0xffffffff;
|
301 |
+
return (vbool32){g0, g1, g2, g3};
|
302 |
+
}
|
303 |
+
|
304 |
+
constexpr vbool32 VsxMask2(uint32_t mask) {
|
305 |
+
uint32_t mask2 = (mask & 0xFF) >> 4;
|
306 |
+
return VsxMask1(mask2);
|
307 |
+
}
|
308 |
+
|
309 |
+
constexpr vbool64 VsxDblMask1(uint32_t mask) {
|
310 |
+
uint64_t g0 = (mask & 1) * 0xffffffffffffffff;
|
311 |
+
uint64_t g1 = ((mask & 2) >> 1) * 0xffffffffffffffff;
|
312 |
+
return (vbool64){g0, g1};
|
313 |
+
}
|
314 |
+
|
315 |
+
constexpr vbool64 VsxDblMask2(uint32_t mask) {
|
316 |
+
uint32_t mask2 = (mask & 0xF) >> 2;
|
317 |
+
return VsxDblMask1(mask2);
|
318 |
+
}
|
319 |
+
|
320 |
+
constexpr int maskForComplex(uint32_t mask) {
|
321 |
+
mask = mask & 0xF;
|
322 |
+
int complex_mask = 0;
|
323 |
+
if (mask & 1) complex_mask |= 3;
|
324 |
+
if (mask & 2) complex_mask |= (3 << 2);
|
325 |
+
if (mask & 4) complex_mask |= (3 << 4);
|
326 |
+
if (mask & 8) complex_mask |= (3 << 6);
|
327 |
+
return complex_mask;
|
328 |
+
}
|
329 |
+
|
330 |
+
constexpr int maskForComplexDbl(uint32_t mask) {
|
331 |
+
mask = mask & 0x3;
|
332 |
+
int complex_mask = 0;
|
333 |
+
if (mask & 1) complex_mask |= 3;
|
334 |
+
if (mask & 2) complex_mask |= (3 << 2);
|
335 |
+
return complex_mask;
|
336 |
+
}
|
337 |
+
|
338 |
+
constexpr int blendChoiceComplex(uint32_t mask) {
|
339 |
+
return blendChoice(maskForComplex(mask));
|
340 |
+
}
|
341 |
+
|
342 |
+
constexpr int blendChoiceComplexDbl(uint32_t mask) {
|
343 |
+
return blendChoiceDbl(maskForComplexDbl(mask));
|
344 |
+
}
|
345 |
+
|
346 |
+
constexpr vbool32 VsxComplexMask1(uint32_t mask) {
|
347 |
+
return VsxMask1(maskForComplex(mask));
|
348 |
+
}
|
349 |
+
|
350 |
+
constexpr vbool32 VsxComplexMask2(uint32_t mask) {
|
351 |
+
uint32_t mask2 = (mask & 0xF) >> 2;
|
352 |
+
return VsxMask1(maskForComplex(mask2));
|
353 |
+
}
|
354 |
+
|
355 |
+
constexpr vbool64 VsxComplexDblMask1(uint32_t mask) { return VsxDblMask1(mask); }
|
356 |
+
|
357 |
+
constexpr vbool64 VsxComplexDblMask2(uint32_t mask) {
|
358 |
+
uint32_t mask2 = (mask & 0xF) >> 2;
|
359 |
+
return VsxDblMask1(mask2);
|
360 |
+
}
|
361 |
+
|
362 |
+
// constants
|
363 |
+
namespace at {
|
364 |
+
namespace vec {
|
365 |
+
// See Note [CPU_CAPABILITY namespace]
|
366 |
+
inline namespace CPU_CAPABILITY {
|
367 |
+
//
|
368 |
+
constexpr int offset0 = 0;
|
369 |
+
constexpr int offset16 = 16;
|
370 |
+
|
371 |
+
// #Constants
|
372 |
+
const vuint8 mask_zero_bits = vuint8{128, 128, 128, 128, 128, 128, 128, 128,
|
373 |
+
128, 128, 128, 128, 96, 64, 32, 0};
|
374 |
+
|
375 |
+
const vuint8 swap_mask =
|
376 |
+
vuint8{4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11};
|
377 |
+
|
378 |
+
const vint32 v0x7f = vec_splats(0x7f);
|
379 |
+
const vint32 vi_0 = vec_splats((int)(0));
|
380 |
+
const vint32 vi_1 = vec_splats((int)1);
|
381 |
+
const vint32 vi_2 = vec_splats((int)2);
|
382 |
+
const vint32 vi_4 = vec_splats((int)4);
|
383 |
+
const vint32 vi_inv1 = vec_splats((int)~1);
|
384 |
+
const vuint32 vu_29 = vec_splats(29u);
|
385 |
+
const vuint32 vu_23 = vec_splats(23u);
|
386 |
+
|
387 |
+
const vbool32 inv_mant_mask = (vbool32)vec_splats((unsigned int)~0xff800000);
|
388 |
+
const vbool32 sign_mask = (vbool32)vec_splats((int)0x80000000);
|
389 |
+
const vbool32 real_mask = vbool32{0xFFFFFFFF, 0x0, 0xFFFFFFFF, 0x0};
|
390 |
+
const vbool32 imag_mask = vbool32{0x0, 0xFFFFFFFF, 0x0, 0xFFFFFFFF};
|
391 |
+
const vbool32 isign_mask = vbool32{0x0, 0x80000000, 0x0, 0x80000000};
|
392 |
+
const vbool32 rsign_mask = vbool32{0x80000000, 0x0, 0x80000000, 0x0};
|
393 |
+
|
394 |
+
const vbool64 vd_imag_mask = vbool64{0x0, 0xFFFFFFFFFFFFFFFF};
|
395 |
+
const vbool64 vd_real_mask = vbool64{0xFFFFFFFFFFFFFFFF, 0x0};
|
396 |
+
const vbool64 vd_isign_mask = vbool64{0x0, 0x8000000000000000};
|
397 |
+
const vbool64 vd_rsign_mask = vbool64{0x8000000000000000, 0x0};
|
398 |
+
|
399 |
+
const vfloat32 zero = vec_splats(0.f);
|
400 |
+
const vfloat32 half = vec_splats(0.5f);
|
401 |
+
const vfloat32 one = vec_splats(1.f);
|
402 |
+
const vfloat32 two = vec_splats(2.0f);
|
403 |
+
const vfloat32 _4div_pi = vec_splats(1.27323954473516f);
|
404 |
+
const vfloat32 v_inf = (vfloat32)vec_splats(0x7f800000u);
|
405 |
+
const vfloat32 v_minus_inf = vfloat32{ 0xff800000u, 0xff800000u, 0xff800000u, 0xff800000u };
|
406 |
+
const vfloat32 v_nan = (vfloat32)vec_splats(0x7fffffff);
|
407 |
+
const vfloat32 log10e_inv = vec_splats(0.43429448190325176f);
|
408 |
+
const vfloat32 log2e_inv = vec_splats(1.4426950408889634f);
|
409 |
+
const vfloat32 log2eB_inv = vec_splats(1.442695036924675f);
|
410 |
+
const vfloat32 cephes_SQRTHF = vec_splats(0.707106781186547524f);
|
411 |
+
const vfloat32 coscof_p0 = vec_splats(2.443315711809948E-005f);
|
412 |
+
const vfloat32 coscof_p1 = vec_splats(-1.388731625493765E-003f);
|
413 |
+
const vfloat32 coscof_p2 = vec_splats(4.166664568298827E-002f);
|
414 |
+
const vfloat32 exp_hi = vec_splats(104.f);
|
415 |
+
const vfloat32 exp_lo = vec_splats(-104.f);
|
416 |
+
const vfloat32 exp_p0 = vec_splats(0.000198527617612853646278381f);
|
417 |
+
const vfloat32 exp_p1 = vec_splats((0.00139304355252534151077271f));
|
418 |
+
const vfloat32 exp_p2 = vec_splats(0.00833336077630519866943359f);
|
419 |
+
const vfloat32 exp_p3 = vec_splats(0.0416664853692054748535156f);
|
420 |
+
const vfloat32 exp_p4 = vec_splats(0.166666671633720397949219f);
|
421 |
+
const vfloat32 exp_p5 = vec_splats(0.5f);
|
422 |
+
const vfloat32 log_p0 = vec_splats(7.0376836292E-2f);
|
423 |
+
const vfloat32 log_p1 = vec_splats(-1.1514610310E-1f);
|
424 |
+
const vfloat32 log_p2 = vec_splats(1.1676998740E-1f);
|
425 |
+
const vfloat32 log_p3 = vec_splats(-1.2420140846E-1f);
|
426 |
+
const vfloat32 log_p4 = vec_splats(+1.4249322787E-1f);
|
427 |
+
const vfloat32 log_p5 = vec_splats(-1.6668057665E-1f);
|
428 |
+
const vfloat32 log_p6 = vec_splats(+2.0000714765E-1f);
|
429 |
+
const vfloat32 log_p7 = vec_splats(-2.4999993993E-1f);
|
430 |
+
const vfloat32 log_p8 = vec_splats(+3.3333331174E-1f);
|
431 |
+
const vfloat32 log_q1 = vec_splats(-2.12194440e-4f);
|
432 |
+
const vfloat32 log_q2 = vec_splats(0.693359375f);
|
433 |
+
const vfloat32 max_logf = vec_splats(88.02969187150841f);
|
434 |
+
const vfloat32 max_numf = vec_splats(1.7014117331926442990585209174225846272e38f);
|
435 |
+
const vfloat32 min_inf = (vfloat32)vec_splats(0xff800000u);
|
436 |
+
const vfloat32 min_norm_pos = (vfloat32)vec_splats(0x0800000u);
|
437 |
+
const vfloat32 minus_cephes_dp1 = vec_splats(-0.78515625f);
|
438 |
+
const vfloat32 minus_cephes_dp2 = vec_splats(-2.4187564849853515625e-4f);
|
439 |
+
const vfloat32 minus_cephes_dp3 = vec_splats(-3.77489497744594108e-8f);
|
440 |
+
const vfloat32 negln2f_hi = vec_splats(-0.693145751953125f);
|
441 |
+
const vfloat32 negln2f_lo = vec_splats(-1.428606765330187045e-06f);
|
442 |
+
const vfloat32 p0 = vec_splats(2.03721912945E-4f);
|
443 |
+
const vfloat32 p1 = vec_splats(8.33028376239E-3f);
|
444 |
+
const vfloat32 p2 = vec_splats(1.66667160211E-1f);
|
445 |
+
const vfloat32 sincof_p0 = vec_splats(-1.9515295891E-4f);
|
446 |
+
const vfloat32 sincof_p1 = vec_splats(8.3321608736E-3f);
|
447 |
+
const vfloat32 sincof_p2 = vec_splats(-1.6666654611E-1f);
|
448 |
+
const vfloat32 tanh_0p625 = vec_splats(0.625f);
|
449 |
+
const vfloat32 tanh_half_max = vec_splats(44.014845935754205f);
|
450 |
+
const vfloat32 tanh_p0 = vec_splats(-5.70498872745E-3f);
|
451 |
+
const vfloat32 tanh_p1 = vec_splats(2.06390887954E-2f);
|
452 |
+
const vfloat32 tanh_p2 = vec_splats(-5.37397155531E-2f);
|
453 |
+
const vfloat32 tanh_p3 = vec_splats(1.33314422036E-1f);
|
454 |
+
const vfloat32 tanh_p4 = vec_splats(-3.33332819422E-1f);
|
455 |
+
const vfloat32 vcheck = vec_splats((float)(1LL << 24));
|
456 |
+
const vfloat32 imag_one = vfloat32{0.f, 1.f, 0.f, 1.f};
|
457 |
+
const vfloat32 imag_half = vfloat32{0.f, 0.5f, 0.f, 0.5f};
|
458 |
+
const vfloat32 sqrt2_2 = vfloat32{0.70710676908493042f, 0.70710676908493042,
|
459 |
+
0.70710676908493042, 0.70710676908493042};
|
460 |
+
const vfloat32 pi_2 = vfloat32{M_PI / 2, 0.0, M_PI / 2, 0.0};
|
461 |
+
const vfloat32 vf_89 = vfloat32{89.f, 89.f, 89.f, 89.f};
|
462 |
+
const vfloat64 vd_one = vec_splats(1.0);
|
463 |
+
const vfloat64 vd_zero = vec_splats(0.0);
|
464 |
+
const vfloat64 vd_log10e_inv = vec_splats(0.43429448190325176);
|
465 |
+
const vfloat64 vd_log2e_inv = vec_splats(1.4426950408889634);
|
466 |
+
const vfloat64 vd_imag_one = vfloat64{0.0, 1.0};
|
467 |
+
const vfloat64 vd_imag_half = vfloat64{0.0, 0.5};
|
468 |
+
const vfloat64 vd_sqrt2_2 = vfloat64{0.70710678118654757, 0.70710678118654757};
|
469 |
+
const vfloat64 vd_pi_2 = vfloat64{M_PI / 2.0, 0.0};
|
470 |
+
|
471 |
+
} // namespace
|
472 |
+
} // namespace vec
|
473 |
+
} // namespace at
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec_base.h
ADDED
@@ -0,0 +1,1077 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
|
4 |
+
// See Note [Do not compile initializers with AVX]
|
5 |
+
//
|
6 |
+
// Note [Do not compile initializers with AVX]
|
7 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
8 |
+
// If you define a static initializer in this file, the initialization will use
|
9 |
+
// AVX instructions because these object files are compiled with AVX enabled.
|
10 |
+
// We need to avoid non-trivial global data in these architecture specific files
|
11 |
+
// because there's no way to guard the global initializers with CPU capability
|
12 |
+
// detection.
|
13 |
+
//
|
14 |
+
// See https://github.com/pytorch/pytorch/issues/37577 for an instance
|
15 |
+
// of this bug in the past.
|
16 |
+
|
17 |
+
#include <array>
|
18 |
+
#include <algorithm>
|
19 |
+
#include <cassert>
|
20 |
+
#include <cstring>
|
21 |
+
#include <functional>
|
22 |
+
#include <cmath>
|
23 |
+
#include <type_traits>
|
24 |
+
#include <climits>
|
25 |
+
|
26 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
27 |
+
#include <ATen/native/Math.h>
|
28 |
+
#include <ATen/NumericUtils.h>
|
29 |
+
#include <c10/util/C++17.h>
|
30 |
+
#include <c10/util/Half.h>
|
31 |
+
#include <c10/util/BFloat16.h>
|
32 |
+
#include <c10/util/BFloat16-math.h>
|
33 |
+
#include <c10/util/copysign.h>
|
34 |
+
#include <c10/util/math_compat.h>
|
35 |
+
#include <ATen/native/cpu/zmath.h>
|
36 |
+
#include <c10/util/TypeCast.h>
|
37 |
+
#include <c10/macros/Macros.h>
|
38 |
+
#include <c10/util/irange.h>
|
39 |
+
#include <c10/util/Load.h>
|
40 |
+
|
41 |
+
// These macros helped us unify vec_base.h
|
42 |
+
#ifdef CPU_CAPABILITY_AVX512
|
43 |
+
#if defined(__GNUC__)
|
44 |
+
#define __at_align__ __attribute__((aligned(64)))
|
45 |
+
#elif defined(_WIN32)
|
46 |
+
#define __at_align__ __declspec(align(64))
|
47 |
+
#else
|
48 |
+
#define __at_align__
|
49 |
+
#endif
|
50 |
+
#define VECTOR_WIDTH 64
|
51 |
+
#define int_vector __m512i
|
52 |
+
#else // CPU_CAPABILITY_AVX512
|
53 |
+
#if defined(__GNUC__)
|
54 |
+
#define __at_align__ __attribute__((aligned(32)))
|
55 |
+
#elif defined(_WIN32)
|
56 |
+
#define __at_align__ __declspec(align(32))
|
57 |
+
#else
|
58 |
+
#define __at_align__
|
59 |
+
#endif
|
60 |
+
#define VECTOR_WIDTH 32
|
61 |
+
#define int_vector __m256i
|
62 |
+
#endif // CPU_CAPABILITY_AVX512
|
63 |
+
|
64 |
+
namespace at::vec {
|
65 |
+
// See Note [CPU_CAPABILITY namespace]
|
66 |
+
inline namespace CPU_CAPABILITY {
|
67 |
+
// at::Half and at::BFloat16 should be treated as floating point
|
68 |
+
template <typename T>
|
69 |
+
struct is_floating_point:
|
70 |
+
std::integral_constant<bool,
|
71 |
+
std::is_floating_point<T>::value ||
|
72 |
+
std::is_same<T, at::Half>::value ||
|
73 |
+
std::is_same<T, at::BFloat16>::value> {
|
74 |
+
};
|
75 |
+
|
76 |
+
template<typename T>
|
77 |
+
constexpr bool is_floating_point_v = is_floating_point<T>::value;
|
78 |
+
|
79 |
+
template <typename T>
|
80 |
+
struct is_reduced_floating_point:
|
81 |
+
std::integral_constant<bool,
|
82 |
+
std::is_same<T, at::Half>::value ||
|
83 |
+
std::is_same<T, at::BFloat16>::value> {
|
84 |
+
};
|
85 |
+
|
86 |
+
template <typename T>
|
87 |
+
constexpr bool is_reduced_floating_point_v = is_reduced_floating_point<T>::value;
|
88 |
+
|
89 |
+
template<size_t n> struct int_of_size;
|
90 |
+
|
91 |
+
#define DEFINE_INT_OF_SIZE(int_t) \
|
92 |
+
template<> struct int_of_size<sizeof(int_t)> { using type = int_t; }
|
93 |
+
|
94 |
+
DEFINE_INT_OF_SIZE(int64_t);
|
95 |
+
DEFINE_INT_OF_SIZE(int32_t);
|
96 |
+
DEFINE_INT_OF_SIZE(int16_t);
|
97 |
+
DEFINE_INT_OF_SIZE(int8_t);
|
98 |
+
|
99 |
+
#undef DEFINE_INT_OF_SIZE
|
100 |
+
|
101 |
+
template <typename T>
|
102 |
+
using int_same_size_t = typename int_of_size<sizeof(T)>::type;
|
103 |
+
|
104 |
+
// NOTE: If you specialize on a type, you must define all operations!
|
105 |
+
|
106 |
+
// emulates Vectorized types
|
107 |
+
#if defined(__s390x__)
|
108 |
+
template <class T, class TEMP=void>
|
109 |
+
#else
|
110 |
+
template <class T>
|
111 |
+
#endif
|
112 |
+
struct Vectorized {
|
113 |
+
private:
|
114 |
+
__at_align__ T values[VECTOR_WIDTH / sizeof(T)];
|
115 |
+
public:
|
116 |
+
using value_type = T;
|
117 |
+
using size_type = int;
|
118 |
+
// Note [constexpr static function to avoid odr-usage compiler bug]
|
119 |
+
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
120 |
+
// Why, you might ask, is size defined to be a static constexpr function,
|
121 |
+
// rather than a more ordinary 'static constexpr int size;' variable?
|
122 |
+
// The problem lies within ODR rules for static constexpr members versus
|
123 |
+
// static constexpr functions. First, recall that this class (along with all
|
124 |
+
// of its derivations) live in an anonymous namespace: they are intended to be
|
125 |
+
// *completely* inlined at their use-sites, because we need to compile it
|
126 |
+
// multiple times for different instruction sets.
|
127 |
+
//
|
128 |
+
// Because of this constraint, we CANNOT provide a single definition for
|
129 |
+
// any static members in this class; since we want to compile the class
|
130 |
+
// multiple times, there wouldn't actually be any good place to put the
|
131 |
+
// definition. Now here is the problem: if we ODR-use a static constexpr
|
132 |
+
// member, we are *obligated* to provide a definition. Without the
|
133 |
+
// definition, you get a compile error like:
|
134 |
+
//
|
135 |
+
// relocation R_X86_64_PC32 against undefined symbol
|
136 |
+
// `_ZN2at6vec25612_GLOBAL__N_16VectorizedIdE4sizeE' can not be used when making
|
137 |
+
// a shared object; recompile with -fPIC
|
138 |
+
//
|
139 |
+
// If this were C++17, we could replace a static constexpr variable with
|
140 |
+
// an inline variable which doesn't require one definition. But we are not
|
141 |
+
// C++17. So the next best thing is to replace the member with a static
|
142 |
+
// constexpr (and therefore inline) function, which does not require ODR
|
143 |
+
// either.
|
144 |
+
//
|
145 |
+
// Also, technically according to the C++ standard, we don't have to define
|
146 |
+
// a constexpr variable if we never odr-use it. But it seems that some
|
147 |
+
// versions GCC/Clang have buggy determinations on whether or not an
|
148 |
+
// identifier is odr-used or not, and in any case it's hard to tell if
|
149 |
+
// a variable is odr-used or not. So best to just cut the problem at the root.
|
150 |
+
static constexpr size_type size() {
|
151 |
+
return VECTOR_WIDTH / sizeof(T);
|
152 |
+
}
|
153 |
+
Vectorized() : values{static_cast<T>(0)} {}
|
154 |
+
Vectorized(T val) {
|
155 |
+
for (int i = 0; i != size(); i++) {
|
156 |
+
values[i] = val;
|
157 |
+
}
|
158 |
+
}
|
159 |
+
template<typename... Args,
|
160 |
+
typename = std::enable_if_t<(sizeof...(Args) == size())>>
|
161 |
+
Vectorized(Args... vals) : values{vals...}{
|
162 |
+
}
|
163 |
+
// This also implies const T& operator[](int idx) const
|
164 |
+
inline operator const T*() const {
|
165 |
+
return values;
|
166 |
+
}
|
167 |
+
// This also implies T& operator[](int idx)
|
168 |
+
inline operator T*() {
|
169 |
+
return values;
|
170 |
+
}
|
171 |
+
// Return the values as char* for type punning
|
172 |
+
auto as_bytes() const -> const char* {
|
173 |
+
return reinterpret_cast<const char*>(values);
|
174 |
+
}
|
175 |
+
template <int64_t mask_>
|
176 |
+
static Vectorized<T> blend(const Vectorized<T>& a, const Vectorized<T>& b) {
|
177 |
+
int64_t mask = mask_;
|
178 |
+
Vectorized vector;
|
179 |
+
for (const auto i : c10::irange(size())) {
|
180 |
+
if (mask & 0x01) {
|
181 |
+
vector[i] = b[i];
|
182 |
+
} else {
|
183 |
+
vector[i] = a[i];
|
184 |
+
}
|
185 |
+
mask = mask >> 1;
|
186 |
+
}
|
187 |
+
return vector;
|
188 |
+
}
|
189 |
+
static Vectorized<T> blendv(const Vectorized<T>& a, const Vectorized<T>& b,
|
190 |
+
const Vectorized<T>& mask) {
|
191 |
+
Vectorized vector;
|
192 |
+
int_same_size_t<T> buffer[size()];
|
193 |
+
mask.store(buffer);
|
194 |
+
for (const auto i : c10::irange(size())) {
|
195 |
+
if (buffer[i] & 0x01)
|
196 |
+
{
|
197 |
+
vector[i] = b[i];
|
198 |
+
} else {
|
199 |
+
vector[i] = a[i];
|
200 |
+
}
|
201 |
+
}
|
202 |
+
return vector;
|
203 |
+
}
|
204 |
+
template<typename step_t> // step sometimes requires a higher precision type (e.g., T=int, step_t=double)
|
205 |
+
static Vectorized<T> arange(T base = static_cast<T>(0), step_t step = static_cast<step_t>(1)) {
|
206 |
+
Vectorized vector;
|
207 |
+
for (const auto i : c10::irange(size())) {
|
208 |
+
vector.values[i] = base + i * step;
|
209 |
+
}
|
210 |
+
return vector;
|
211 |
+
}
|
212 |
+
static Vectorized<T> set(const Vectorized<T>& a, const Vectorized<T>& b, int64_t count = size()) {
|
213 |
+
Vectorized vector;
|
214 |
+
for (const auto i : c10::irange(size())) {
|
215 |
+
if (i < count) {
|
216 |
+
vector[i] = b[i];
|
217 |
+
} else {
|
218 |
+
vector[i] = a[i];
|
219 |
+
}
|
220 |
+
}
|
221 |
+
return vector;
|
222 |
+
}
|
223 |
+
static Vectorized<T> loadu(const void* ptr) {
|
224 |
+
Vectorized vector;
|
225 |
+
std::memcpy(vector.values, ptr, VECTOR_WIDTH);
|
226 |
+
return vector;
|
227 |
+
}
|
228 |
+
static Vectorized<T> loadu(const void* ptr, int64_t count) {
|
229 |
+
Vectorized vector;
|
230 |
+
std::memcpy(vector.values, ptr, count * sizeof(T));
|
231 |
+
return vector;
|
232 |
+
}
|
233 |
+
void store(void* ptr, int count = size()) const {
|
234 |
+
std::memcpy(ptr, values, count * sizeof(T));
|
235 |
+
}
|
236 |
+
int zero_mask() const {
|
237 |
+
// returns an integer mask where all zero elements are translated to 1-bit and others are translated to 0-bit
|
238 |
+
int mask = 0;
|
239 |
+
for (int i = 0; i < size(); ++ i) {
|
240 |
+
if (values[i] == static_cast<T>(0)) {
|
241 |
+
mask |= (1 << i);
|
242 |
+
}
|
243 |
+
}
|
244 |
+
return mask;
|
245 |
+
}
|
246 |
+
Vectorized<T> isnan() const {
|
247 |
+
Vectorized<T> vector;
|
248 |
+
for (int64_t i = 0; i != size(); i++) {
|
249 |
+
if (_isnan(values[i])) {
|
250 |
+
std::memset(static_cast<void*>(vector.values + i), 0xFF, sizeof(T));
|
251 |
+
} else {
|
252 |
+
std::memset(static_cast<void*>(vector.values + i), 0, sizeof(T));
|
253 |
+
}
|
254 |
+
}
|
255 |
+
return vector;
|
256 |
+
}
|
257 |
+
Vectorized<T> map(T (*const f)(T)) const {
|
258 |
+
Vectorized<T> ret;
|
259 |
+
for (int64_t i = 0; i != size(); i++) {
|
260 |
+
ret[i] = f(values[i]);
|
261 |
+
}
|
262 |
+
return ret;
|
263 |
+
}
|
264 |
+
Vectorized<T> map(T (*const f)(const T &)) const {
|
265 |
+
Vectorized<T> ret;
|
266 |
+
for (int64_t i = 0; i != size(); i++) {
|
267 |
+
ret[i] = f(values[i]);
|
268 |
+
}
|
269 |
+
return ret;
|
270 |
+
}
|
271 |
+
template <typename other_t_abs = T,
|
272 |
+
typename std::enable_if<!is_floating_point_v<other_t_abs> && !c10::is_complex<other_t_abs>::value, int>::type = 0>
|
273 |
+
Vectorized<T> abs() const {
|
274 |
+
// other_t_abs is for SFINAE and clarity. Make sure it is not changed.
|
275 |
+
static_assert(std::is_same<other_t_abs, T>::value, "other_t_abs must be T");
|
276 |
+
return map([](T x) -> T { return x < static_cast<T>(0) ? -x : x; });
|
277 |
+
}
|
278 |
+
template <typename float_t_abs = T,
|
279 |
+
typename std::enable_if<is_floating_point_v<float_t_abs>, int>::type = 0>
|
280 |
+
Vectorized<T> abs() const {
|
281 |
+
// float_t_abs is for SFINAE and clarity. Make sure it is not changed.
|
282 |
+
static_assert(std::is_same<float_t_abs, T>::value, "float_t_abs must be T");
|
283 |
+
// Specifically deal with floating-point because the generic code above won't handle -0.0 (which should result in
|
284 |
+
// 0.0) properly.
|
285 |
+
return map([](T x) -> T { return std::abs(x); });
|
286 |
+
}
|
287 |
+
template <typename complex_t_abs = T,
|
288 |
+
typename std::enable_if<c10::is_complex<complex_t_abs>::value, int>::type = 0>
|
289 |
+
Vectorized<T> abs() const {
|
290 |
+
// complex_t_abs is for SFINAE and clarity. Make sure it is not changed.
|
291 |
+
static_assert(std::is_same<complex_t_abs, T>::value, "complex_t_abs must be T");
|
292 |
+
// Specifically map() does not perform the type conversion needed by abs.
|
293 |
+
return map([](T x) { return static_cast<T>(std::abs(x)); });
|
294 |
+
}
|
295 |
+
|
296 |
+
template <typename other_t_sgn = T,
|
297 |
+
typename std::enable_if<c10::is_complex<other_t_sgn>::value, int>::type = 0>
|
298 |
+
Vectorized<T> sgn() const {
|
299 |
+
return map(at::native::sgn_impl);
|
300 |
+
}
|
301 |
+
|
302 |
+
template <typename other_t_angle = T,
|
303 |
+
typename std::enable_if<!c10::is_complex<other_t_angle>::value, int>::type = 0>
|
304 |
+
Vectorized<T> angle() const {
|
305 |
+
// other_t_angle is for SFINAE and clarity. Make sure it is not changed.
|
306 |
+
static_assert(std::is_same<other_t_angle, T>::value, "other_t_angle must be T");
|
307 |
+
return map(at::native::angle_impl<T>); // compiler is unable to resolve the overload without <T>
|
308 |
+
}
|
309 |
+
template <typename complex_t_angle = T,
|
310 |
+
typename std::enable_if<c10::is_complex<complex_t_angle>::value, int>::type = 0>
|
311 |
+
Vectorized<T> angle() const {
|
312 |
+
// complex_t_angle is for SFINAE and clarity. Make sure it is not changed.
|
313 |
+
static_assert(std::is_same<complex_t_angle, T>::value, "complex_t_angle must be T");
|
314 |
+
return map([](T x) { return static_cast<T>(std::arg(x)); });
|
315 |
+
}
|
316 |
+
template <typename other_t_real = T,
|
317 |
+
typename std::enable_if<!c10::is_complex<other_t_real>::value, int>::type = 0>
|
318 |
+
Vectorized<T> real() const {
|
319 |
+
// other_t_real is for SFINAE and clarity. Make sure it is not changed.
|
320 |
+
static_assert(std::is_same<other_t_real, T>::value, "other_t_real must be T");
|
321 |
+
return *this;
|
322 |
+
}
|
323 |
+
template <typename complex_t_real = T,
|
324 |
+
typename std::enable_if<c10::is_complex<complex_t_real>::value, int>::type = 0>
|
325 |
+
Vectorized<T> real() const {
|
326 |
+
// complex_t_real is for SFINAE and clarity. Make sure it is not changed.
|
327 |
+
static_assert(std::is_same<complex_t_real, T>::value, "complex_t_real must be T");
|
328 |
+
return map([](T x) { return static_cast<T>(x.real()); });
|
329 |
+
}
|
330 |
+
template <typename other_t_imag = T,
|
331 |
+
typename std::enable_if<!c10::is_complex<other_t_imag>::value, int>::type = 0>
|
332 |
+
Vectorized<T> imag() const {
|
333 |
+
// other_t_imag is for SFINAE and clarity. Make sure it is not changed.
|
334 |
+
static_assert(std::is_same<other_t_imag, T>::value, "other_t_imag must be T");
|
335 |
+
return Vectorized(0);
|
336 |
+
}
|
337 |
+
template <typename complex_t_imag = T,
|
338 |
+
typename std::enable_if<c10::is_complex<complex_t_imag>::value, int>::type = 0>
|
339 |
+
Vectorized<T> imag() const {
|
340 |
+
// complex_t_imag is for SFINAE and clarity. Make sure it is not changed.
|
341 |
+
static_assert(std::is_same<complex_t_imag, T>::value, "complex_t_imag must be T");
|
342 |
+
return map([](T x) { return static_cast<T>(x.imag()); });
|
343 |
+
}
|
344 |
+
template <typename other_t_conj = T,
|
345 |
+
typename std::enable_if<!c10::is_complex<other_t_conj>::value, int>::type = 0>
|
346 |
+
Vectorized<T> conj() const {
|
347 |
+
// other_t_conj is for SFINAE and clarity. Make sure it is not changed.
|
348 |
+
static_assert(std::is_same<other_t_conj, T>::value, "other_t_conj must be T");
|
349 |
+
return *this;
|
350 |
+
}
|
351 |
+
template <typename complex_t_conj = T,
|
352 |
+
typename std::enable_if<c10::is_complex<complex_t_conj>::value, int>::type = 0>
|
353 |
+
Vectorized<T> conj() const {
|
354 |
+
// complex_t_conj is for SFINAE and clarity. Make sure it is not changed.
|
355 |
+
static_assert(std::is_same<complex_t_conj, T>::value, "complex_t_conj must be T");
|
356 |
+
return map([](T x) { return static_cast<T>(std::conj(x)); });
|
357 |
+
}
|
358 |
+
Vectorized<T> acos() const {
|
359 |
+
return map(std::acos);
|
360 |
+
}
|
361 |
+
Vectorized<T> asin() const {
|
362 |
+
return map(std::asin);
|
363 |
+
}
|
364 |
+
Vectorized<T> atan() const {
|
365 |
+
return map(std::atan);
|
366 |
+
}
|
367 |
+
Vectorized<T> atanh() const {
|
368 |
+
return map(std::atanh);
|
369 |
+
}
|
370 |
+
Vectorized<T> atan2(const Vectorized<T> &exp) const {
|
371 |
+
Vectorized<T> ret;
|
372 |
+
for (const auto i : c10::irange(size())) {
|
373 |
+
ret[i] = std::atan2(values[i], exp[i]);
|
374 |
+
}
|
375 |
+
return ret;
|
376 |
+
}
|
377 |
+
template <
|
378 |
+
typename U = T,
|
379 |
+
typename std::enable_if_t<is_floating_point_v<U>, int> = 0>
|
380 |
+
Vectorized<T> copysign(const Vectorized<T> &sign) const {
|
381 |
+
Vectorized<T> ret;
|
382 |
+
for (size_type i = 0; i < size(); i++) {
|
383 |
+
ret[i] = c10::copysign(values[i], sign[i]);
|
384 |
+
}
|
385 |
+
return ret;
|
386 |
+
}
|
387 |
+
Vectorized<T> erf() const {
|
388 |
+
return map(std::erf);
|
389 |
+
}
|
390 |
+
Vectorized<T> erfc() const {
|
391 |
+
return map(std::erfc);
|
392 |
+
}
|
393 |
+
Vectorized<T> erfinv() const {
|
394 |
+
return map(calc_erfinv);
|
395 |
+
}
|
396 |
+
Vectorized<T> exp() const {
|
397 |
+
return map(std::exp);
|
398 |
+
}
|
399 |
+
Vectorized<T> exp2() const {
|
400 |
+
return map(exp2_impl);
|
401 |
+
}
|
402 |
+
Vectorized<T> expm1() const {
|
403 |
+
return map(std::expm1);
|
404 |
+
}
|
405 |
+
Vectorized<T> frac() const {
|
406 |
+
return *this - this->trunc();
|
407 |
+
}
|
408 |
+
template <
|
409 |
+
typename U = T,
|
410 |
+
typename std::enable_if_t<is_floating_point_v<U>, int> = 0>
|
411 |
+
Vectorized<T> fmod(const Vectorized<T>& q) const {
|
412 |
+
// U is for SFINAE purposes only. Make sure it is not changed.
|
413 |
+
static_assert(std::is_same<U, T>::value, "U must be T");
|
414 |
+
Vectorized<T> ret;
|
415 |
+
for (const auto i : c10::irange(size())) {
|
416 |
+
ret[i] = std::fmod(values[i], q[i]);
|
417 |
+
}
|
418 |
+
return ret;
|
419 |
+
}
|
420 |
+
Vectorized<T> log() const {
|
421 |
+
return map(std::log);
|
422 |
+
}
|
423 |
+
Vectorized<T> log10() const {
|
424 |
+
return map(std::log10);
|
425 |
+
}
|
426 |
+
Vectorized<T> log1p() const {
|
427 |
+
return map(std::log1p);
|
428 |
+
}
|
429 |
+
template <typename other_t_log2 = T,
|
430 |
+
typename std::enable_if<!c10::is_complex<other_t_log2>::value, int>::type = 0>
|
431 |
+
Vectorized<T> log2() const {
|
432 |
+
// other_t_log2 is for SFINAE and clarity. Make sure it is not changed.
|
433 |
+
static_assert(std::is_same<other_t_log2, T>::value, "other_t_log2 must be T");
|
434 |
+
return map(std::log2);
|
435 |
+
}
|
436 |
+
template <typename complex_t_log2 = T,
|
437 |
+
typename std::enable_if<c10::is_complex<complex_t_log2>::value, int>::type = 0>
|
438 |
+
Vectorized<T> log2() const {
|
439 |
+
// complex_t_log2 is for SFINAE and clarity. Make sure it is not changed.
|
440 |
+
static_assert(std::is_same<complex_t_log2, T>::value, "complex_t_log2 must be T");
|
441 |
+
const T log_2 = T(std::log(2.0));
|
442 |
+
return Vectorized(map(std::log))/Vectorized(log_2);
|
443 |
+
}
|
444 |
+
Vectorized<T> ceil() const {
|
445 |
+
return map(at::native::ceil_impl);
|
446 |
+
}
|
447 |
+
Vectorized<T> cos() const {
|
448 |
+
return map(std::cos);
|
449 |
+
}
|
450 |
+
Vectorized<T> cosh() const {
|
451 |
+
return map(std::cosh);
|
452 |
+
}
|
453 |
+
Vectorized<T> floor() const {
|
454 |
+
return map(at::native::floor_impl);
|
455 |
+
}
|
456 |
+
Vectorized<T> hypot(const Vectorized<T> &b) const {
|
457 |
+
Vectorized<T> ret;
|
458 |
+
for (const auto i : c10::irange(size())) {
|
459 |
+
ret[i] = std::hypot(values[i], b[i]);
|
460 |
+
}
|
461 |
+
return ret;
|
462 |
+
}
|
463 |
+
Vectorized<T> i0() const {
|
464 |
+
return map(calc_i0);
|
465 |
+
}
|
466 |
+
Vectorized<T> i0e() const {
|
467 |
+
return map(calc_i0e);
|
468 |
+
}
|
469 |
+
Vectorized<T> digamma() const {
|
470 |
+
return map(calc_digamma);
|
471 |
+
}
|
472 |
+
Vectorized<T> igamma(const Vectorized<T> &x) const {
|
473 |
+
Vectorized<T> ret;
|
474 |
+
for (const auto i : c10::irange(size())) {
|
475 |
+
ret[i] = calc_igamma(values[i], x[i]);
|
476 |
+
}
|
477 |
+
return ret;
|
478 |
+
}
|
479 |
+
Vectorized<T> igammac(const Vectorized<T> &x) const {
|
480 |
+
Vectorized<T> ret;
|
481 |
+
for (const auto i : c10::irange(size())) {
|
482 |
+
ret[i] = calc_igammac(values[i], x[i]);
|
483 |
+
}
|
484 |
+
return ret;
|
485 |
+
}
|
486 |
+
Vectorized<T> neg() const {
|
487 |
+
// NB: the trailing return type is needed because we need to coerce the
|
488 |
+
// return value back to T in the case of unary operator- incuring a
|
489 |
+
// promotion
|
490 |
+
return map([](T x) -> T { return -x; });
|
491 |
+
}
|
492 |
+
Vectorized<T> nextafter(const Vectorized<T> &b) const {
|
493 |
+
Vectorized<T> ret;
|
494 |
+
for (const auto i : c10::irange(size())) {
|
495 |
+
ret[i] = std::nextafter(values[i], b[i]);
|
496 |
+
}
|
497 |
+
return ret;
|
498 |
+
}
|
499 |
+
Vectorized<T> round() const {
|
500 |
+
// We do not use std::round because we would like to round midway numbers to the nearest even integer.
|
501 |
+
return map(at::native::round_impl);
|
502 |
+
}
|
503 |
+
Vectorized<T> sin() const {
|
504 |
+
return map(std::sin);
|
505 |
+
}
|
506 |
+
Vectorized<T> sinh() const {
|
507 |
+
return map(std::sinh);
|
508 |
+
}
|
509 |
+
Vectorized<T> tan() const {
|
510 |
+
return map(std::tan);
|
511 |
+
}
|
512 |
+
Vectorized<T> tanh() const {
|
513 |
+
return map(std::tanh);
|
514 |
+
}
|
515 |
+
Vectorized<T> trunc() const {
|
516 |
+
return map(at::native::trunc_impl);
|
517 |
+
}
|
518 |
+
Vectorized<T> lgamma() const {
|
519 |
+
return map(std::lgamma);
|
520 |
+
}
|
521 |
+
Vectorized<T> sqrt() const {
|
522 |
+
return map(std::sqrt);
|
523 |
+
}
|
524 |
+
Vectorized<T> reciprocal() const {
|
525 |
+
return map([](T x) { return (T)(1) / x; });
|
526 |
+
}
|
527 |
+
Vectorized<T> rsqrt() const {
|
528 |
+
return map([](T x) { return (T)1 / std::sqrt(x); });
|
529 |
+
}
|
530 |
+
Vectorized<T> pow(const Vectorized<T> &exp) const {
|
531 |
+
Vectorized<T> ret;
|
532 |
+
for (const auto i : c10::irange(size())) {
|
533 |
+
ret[i] = std::pow(values[i], exp[i]);
|
534 |
+
}
|
535 |
+
return ret;
|
536 |
+
}
|
537 |
+
private:
|
538 |
+
template <typename Op>
|
539 |
+
inline Vectorized<T> binary_pred(const Vectorized<T>& other, Op op) const {
|
540 |
+
// All bits are set to 1 if the pred is true, otherwise 0.
|
541 |
+
Vectorized<T> vector;
|
542 |
+
for (int64_t i = 0; i != size(); i++) {
|
543 |
+
if (op(values[i], other.values[i])) {
|
544 |
+
std::memset(static_cast<void*>(vector.values + i), 0xFF, sizeof(T));
|
545 |
+
} else {
|
546 |
+
std::memset(static_cast<void*>(vector.values + i), 0, sizeof(T));
|
547 |
+
}
|
548 |
+
}
|
549 |
+
return vector;
|
550 |
+
}
|
551 |
+
|
552 |
+
public:
|
553 |
+
Vectorized<T> operator==(const Vectorized<T>& other) const { return binary_pred(other, std::equal_to<T>()); }
|
554 |
+
Vectorized<T> operator!=(const Vectorized<T>& other) const { return binary_pred(other, std::not_equal_to<T>()); }
|
555 |
+
Vectorized<T> operator>=(const Vectorized<T>& other) const { return binary_pred(other, std::greater_equal<T>()); }
|
556 |
+
Vectorized<T> operator<=(const Vectorized<T>& other) const { return binary_pred(other, std::less_equal<T>()); }
|
557 |
+
Vectorized<T> operator>(const Vectorized<T>& other) const { return binary_pred(other, std::greater<T>()); }
|
558 |
+
Vectorized<T> operator<(const Vectorized<T>& other) const { return binary_pred(other, std::less<T>()); }
|
559 |
+
|
560 |
+
private:
|
561 |
+
template <typename Op>
|
562 |
+
inline Vectorized<T> binary_pred_bool(const Vectorized<T>& other, Op op) const {
|
563 |
+
// 1 if the pred is true, otherwise 0.
|
564 |
+
Vectorized<T> vector;
|
565 |
+
for (int i = 0; i != size(); ++ i) {
|
566 |
+
vector[i] = static_cast<T>(op(values[i], other.values[i]));
|
567 |
+
}
|
568 |
+
return vector;
|
569 |
+
}
|
570 |
+
|
571 |
+
public:
|
572 |
+
Vectorized<T> eq(const Vectorized<T>& other) const { return binary_pred_bool(other, std::equal_to<T>()); }
|
573 |
+
Vectorized<T> ne(const Vectorized<T>& other) const { return binary_pred_bool(other, std::not_equal_to<T>()); }
|
574 |
+
Vectorized<T> gt(const Vectorized<T>& other) const { return binary_pred_bool(other, std::greater<T>()); }
|
575 |
+
Vectorized<T> ge(const Vectorized<T>& other) const { return binary_pred_bool(other, std::greater_equal<T>()); }
|
576 |
+
Vectorized<T> lt(const Vectorized<T>& other) const { return binary_pred_bool(other, std::less<T>()); }
|
577 |
+
Vectorized<T> le(const Vectorized<T>& other) const { return binary_pred_bool(other, std::less_equal<T>()); }
|
578 |
+
};
|
579 |
+
|
580 |
+
template <class T> Vectorized<T> inline operator+(const Vectorized<T> &a, const Vectorized<T> &b) {
|
581 |
+
Vectorized<T> c;
|
582 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
583 |
+
c[i] = a[i] + b[i];
|
584 |
+
}
|
585 |
+
return c;
|
586 |
+
}
|
587 |
+
|
588 |
+
template <class T> Vectorized<T> inline operator-(const Vectorized<T> &a, const Vectorized<T> &b) {
|
589 |
+
Vectorized<T> c;
|
590 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
591 |
+
c[i] = a[i] - b[i];
|
592 |
+
}
|
593 |
+
return c;
|
594 |
+
}
|
595 |
+
|
596 |
+
template <class T> Vectorized<T> inline operator*(const Vectorized<T> &a, const Vectorized<T> &b) {
|
597 |
+
Vectorized<T> c;
|
598 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
599 |
+
c[i] = a[i] * b[i];
|
600 |
+
}
|
601 |
+
return c;
|
602 |
+
}
|
603 |
+
|
604 |
+
template <class T> Vectorized<T> inline operator/(const Vectorized<T> &a, const Vectorized<T> &b) __ubsan_ignore_float_divide_by_zero__ {
|
605 |
+
Vectorized<T> c;
|
606 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
607 |
+
c[i] = a[i] / b[i];
|
608 |
+
}
|
609 |
+
return c;
|
610 |
+
}
|
611 |
+
|
612 |
+
template <class T> Vectorized<T> inline operator||(
|
613 |
+
const Vectorized<T> &a, const Vectorized<T> &b) {
|
614 |
+
Vectorized<T> c;
|
615 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
616 |
+
c[i] = a[i] || b[i];
|
617 |
+
}
|
618 |
+
return c;
|
619 |
+
}
|
620 |
+
|
621 |
+
// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
|
622 |
+
// either input is a NaN.
|
623 |
+
template <class T,
|
624 |
+
typename std::enable_if<!c10::is_complex<T>::value, int>::type = 0>
|
625 |
+
Vectorized<T> inline maximum(const Vectorized<T> &a, const Vectorized<T> &b) {
|
626 |
+
Vectorized<T> c;
|
627 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
628 |
+
c[i] = (a[i] > b[i]) ? a[i] : b[i];
|
629 |
+
if (_isnan(a[i])) {
|
630 |
+
// If either input is NaN, propagate a NaN.
|
631 |
+
// NOTE: The case where b[i] was NaN is handled correctly by the naive
|
632 |
+
// ternary operator above.
|
633 |
+
c[i] = a[i];
|
634 |
+
}
|
635 |
+
}
|
636 |
+
return c;
|
637 |
+
}
|
638 |
+
|
639 |
+
template <class T,
|
640 |
+
typename std::enable_if<c10::is_complex<T>::value, int>::type = 0>
|
641 |
+
Vectorized<T> inline maximum(const Vectorized<T> &a, const Vectorized<T> &b) {
|
642 |
+
Vectorized<T> c;
|
643 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
644 |
+
c[i] = (std::abs(a[i]) > std::abs(b[i])) ? a[i] : b[i];
|
645 |
+
if (_isnan(a[i])) {
|
646 |
+
// If either input is NaN, propagate a NaN.
|
647 |
+
// NOTE: The case where b[i] was NaN is handled correctly by the naive
|
648 |
+
// ternary operator above.
|
649 |
+
c[i] = a[i];
|
650 |
+
}
|
651 |
+
}
|
652 |
+
return c;
|
653 |
+
}
|
654 |
+
|
655 |
+
// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
|
656 |
+
// either input is a NaN.
|
657 |
+
template <class T,
|
658 |
+
typename std::enable_if<!c10::is_complex<T>::value, int>::type = 0>
|
659 |
+
Vectorized<T> inline minimum(const Vectorized<T> &a, const Vectorized<T> &b) {
|
660 |
+
Vectorized<T> c;
|
661 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
662 |
+
c[i] = (a[i] < b[i]) ? a[i] : b[i];
|
663 |
+
if (_isnan(a[i])) {
|
664 |
+
// If either input is NaN, propagate a NaN.
|
665 |
+
// NOTE: The case where b[i] was NaN is handled correctly by the naive
|
666 |
+
// ternary operator above.
|
667 |
+
c[i] = a[i];
|
668 |
+
}
|
669 |
+
}
|
670 |
+
return c;
|
671 |
+
}
|
672 |
+
|
673 |
+
template <class T,
|
674 |
+
typename std::enable_if<c10::is_complex<T>::value, int>::type = 0>
|
675 |
+
Vectorized<T> inline minimum(const Vectorized<T> &a, const Vectorized<T> &b) {
|
676 |
+
Vectorized<T> c;
|
677 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
678 |
+
c[i] = (std::abs(a[i]) < std::abs(b[i])) ? a[i] : b[i];
|
679 |
+
if (_isnan(a[i])) {
|
680 |
+
// If either input is NaN, propagate a NaN.
|
681 |
+
// NOTE: The case where b[i] was NaN is handled correctly by the naive
|
682 |
+
// ternary operator above.
|
683 |
+
c[i] = a[i];
|
684 |
+
}
|
685 |
+
}
|
686 |
+
return c;
|
687 |
+
}
|
688 |
+
|
689 |
+
template <class T,
|
690 |
+
typename std::enable_if<!c10::is_complex<T>::value, int>::type = 0>
|
691 |
+
Vectorized<T> inline clamp(const Vectorized<T> &a, const Vectorized<T> &min_vec, const Vectorized<T> &max_vec) {
|
692 |
+
Vectorized<T> c;
|
693 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
694 |
+
c[i] = std::min(std::max(a[i], min_vec[i]), max_vec[i]);
|
695 |
+
}
|
696 |
+
return c;
|
697 |
+
}
|
698 |
+
|
699 |
+
template <class T,
|
700 |
+
typename std::enable_if<!c10::is_complex<T>::value, int>::type = 0>
|
701 |
+
Vectorized<T> inline clamp_max(const Vectorized<T> &a, const Vectorized<T> &max_vec) {
|
702 |
+
Vectorized<T> c;
|
703 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
704 |
+
c[i] = a[i] > max_vec[i] ? max_vec[i] : a[i];
|
705 |
+
}
|
706 |
+
return c;
|
707 |
+
}
|
708 |
+
|
709 |
+
template <class T,
|
710 |
+
typename std::enable_if<!c10::is_complex<T>::value, int>::type = 0>
|
711 |
+
Vectorized<T> inline clamp_min(const Vectorized<T> &a, const Vectorized<T> &min_vec) {
|
712 |
+
Vectorized<T> c;
|
713 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
714 |
+
c[i] = a[i] < min_vec[i] ? min_vec[i] : a[i];
|
715 |
+
}
|
716 |
+
return c;
|
717 |
+
}
|
718 |
+
|
719 |
+
struct Vectorizedi;
|
720 |
+
|
721 |
+
#if defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_AVX512)
|
722 |
+
template <class T, typename Op>
|
723 |
+
static inline Vectorized<T> bitwise_binary_op(const Vectorized<T> &a, const Vectorized<T> &b, Op op) {
|
724 |
+
int_vector buffer;
|
725 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
726 |
+
int_vector a_buffer = _mm256_load_si256(reinterpret_cast<const int_vector*>((const T*)a));
|
727 |
+
int_vector b_buffer = _mm256_load_si256(reinterpret_cast<const int_vector*>((const T*)b));
|
728 |
+
#elif defined(CPU_CAPABILITY_AVX512)
|
729 |
+
int_vector a_buffer = _mm512_load_si512(reinterpret_cast<const int_vector*>((const T*)a));
|
730 |
+
int_vector b_buffer = _mm512_load_si512(reinterpret_cast<const int_vector*>((const T*)b));
|
731 |
+
#endif
|
732 |
+
buffer = op(a_buffer, b_buffer);
|
733 |
+
__at_align__ T results[Vectorized<T>::size()];
|
734 |
+
|
735 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
736 |
+
_mm256_store_si256(reinterpret_cast<int_vector*>(results), buffer);
|
737 |
+
#elif defined(CPU_CAPABILITY_AVX512)
|
738 |
+
_mm512_store_si512(reinterpret_cast<int_vector*>(results), buffer);
|
739 |
+
#endif
|
740 |
+
return Vectorized<T>::loadu(results);
|
741 |
+
}
|
742 |
+
|
743 |
+
template<class T, typename std::enable_if_t<!std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
744 |
+
inline Vectorized<T> operator&(const Vectorized<T>& a, const Vectorized<T>& b) {
|
745 |
+
// We enclose _mm512_and_si512 or _mm256_and_si256 with lambda because it is always_inline
|
746 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
747 |
+
return bitwise_binary_op(a, b, [](int_vector a, int_vector b) { return _mm256_and_si256(a, b); });
|
748 |
+
#elif defined(CPU_CAPABILITY_AVX512)
|
749 |
+
return bitwise_binary_op(a, b, [](int_vector a, int_vector b) { return _mm512_and_si512(a, b); });
|
750 |
+
#endif
|
751 |
+
}
|
752 |
+
template<class T, typename std::enable_if_t<!std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
753 |
+
inline Vectorized<T> operator|(const Vectorized<T>& a, const Vectorized<T>& b) {
|
754 |
+
// We enclose _mm512_or_si512 or _mm256_or_si256 with lambda because it is always_inline
|
755 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
756 |
+
return bitwise_binary_op(a, b, [](int_vector a, int_vector b) { return _mm256_or_si256(a, b); });
|
757 |
+
#elif defined(CPU_CAPABILITY_AVX512)
|
758 |
+
return bitwise_binary_op(a, b, [](int_vector a, int_vector b) { return _mm512_or_si512(a, b); });
|
759 |
+
#endif
|
760 |
+
}
|
761 |
+
template<class T, typename std::enable_if_t<!std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
762 |
+
inline Vectorized<T> operator^(const Vectorized<T>& a, const Vectorized<T>& b) {
|
763 |
+
// We enclose _mm512_xor_si512 or _mm256_xor_si256 with lambda because it is always_inline
|
764 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
765 |
+
return bitwise_binary_op(a, b, [](int_vector a, int_vector b) { return _mm256_xor_si256(a, b); });
|
766 |
+
#elif defined(CPU_CAPABILITY_AVX512)
|
767 |
+
return bitwise_binary_op(a, b, [](int_vector a, int_vector b) { return _mm512_xor_si512(a, b); });
|
768 |
+
#endif
|
769 |
+
}
|
770 |
+
|
771 |
+
#else
|
772 |
+
|
773 |
+
template <typename T>
|
774 |
+
auto load(char const* data) -> T {
|
775 |
+
T ret;
|
776 |
+
std::memcpy(&ret, data, sizeof(ret));
|
777 |
+
return ret;
|
778 |
+
}
|
779 |
+
|
780 |
+
template<class T, typename Op>
|
781 |
+
static inline Vectorized<T> bitwise_binary_op(const Vectorized<T> &a, const Vectorized<T> &b, Op op) {
|
782 |
+
static constexpr uint32_t element_no = VECTOR_WIDTH / sizeof(intmax_t);
|
783 |
+
__at_align__ intmax_t buffer[element_no];
|
784 |
+
static_assert(VECTOR_WIDTH % sizeof(intmax_t) == 0, "VECTOR_WIDTH not a multiple of sizeof(intmax_t)");
|
785 |
+
static_assert(sizeof(buffer) == sizeof(Vectorized<T>), "sizeof(buffer) must match sizeof(Vectorized<T>)");
|
786 |
+
// We should be using memcpy in order to respect the strict aliasing rule
|
787 |
+
// see: https://github.com/pytorch/pytorch/issues/66119
|
788 |
+
// Using char* is defined in the C11 standard 6.5 Expression paragraph 7
|
789 |
+
// (http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf)
|
790 |
+
const auto* a_data = a.as_bytes();
|
791 |
+
const auto* b_data = b.as_bytes();
|
792 |
+
// load each intmax_t chunk and process; increase pointers by sizeof(intmax_t)
|
793 |
+
for (auto& out : buffer) {
|
794 |
+
out = op(load<intmax_t>(a_data), load<intmax_t>(b_data));
|
795 |
+
a_data += sizeof(intmax_t);
|
796 |
+
b_data += sizeof(intmax_t);
|
797 |
+
}
|
798 |
+
assert(a_data == a.as_bytes() + sizeof(a));
|
799 |
+
assert(b_data == b.as_bytes() + sizeof(b));
|
800 |
+
return Vectorized<T>::loadu(buffer);
|
801 |
+
}
|
802 |
+
|
803 |
+
template<class T, typename std::enable_if_t<!std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
804 |
+
inline Vectorized<T> operator&(const Vectorized<T>& a, const Vectorized<T>& b) {
|
805 |
+
return bitwise_binary_op(a, b, std::bit_and<intmax_t>());
|
806 |
+
}
|
807 |
+
template<class T, typename std::enable_if_t<!std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
808 |
+
inline Vectorized<T> operator|(const Vectorized<T>& a, const Vectorized<T>& b) {
|
809 |
+
return bitwise_binary_op(a, b, std::bit_or<intmax_t>());
|
810 |
+
}
|
811 |
+
template<class T, typename std::enable_if_t<!std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
812 |
+
inline Vectorized<T> operator^(const Vectorized<T>& a, const Vectorized<T>& b) {
|
813 |
+
return bitwise_binary_op(a, b, std::bit_xor<intmax_t>());
|
814 |
+
}
|
815 |
+
|
816 |
+
#endif // defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_AVX512)
|
817 |
+
|
818 |
+
template<class T, typename std::enable_if_t<!std::is_base_of<Vectorizedi, Vectorized<T>>::value, int> = 0>
|
819 |
+
inline Vectorized<T> operator~(const Vectorized<T>& a) {
|
820 |
+
Vectorized<T> ones; // All bits are 1
|
821 |
+
memset((T*) ones, 0xFF, VECTOR_WIDTH);
|
822 |
+
return a ^ ones;
|
823 |
+
}
|
824 |
+
|
825 |
+
template <class T> Vectorized<T> inline operator<<(const Vectorized<T> &a, const Vectorized<T> &b) {
|
826 |
+
constexpr T max_shift = sizeof(T) * CHAR_BIT;
|
827 |
+
Vectorized<T> c;
|
828 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
829 |
+
T shift = b[i];
|
830 |
+
if ((static_cast<std::make_signed_t<T>>(shift) < 0) || (shift >= max_shift)) {
|
831 |
+
c[i] = 0;
|
832 |
+
} else {
|
833 |
+
c[i] = static_cast<std::make_unsigned_t<T>>(a[i]) << shift;
|
834 |
+
}
|
835 |
+
}
|
836 |
+
return c;
|
837 |
+
}
|
838 |
+
|
839 |
+
template <class T> Vectorized<T> inline operator>>(const Vectorized<T> &a, const Vectorized<T> &b) {
|
840 |
+
// right shift value to retain sign bit for signed and no bits for unsigned
|
841 |
+
constexpr T max_shift = sizeof(T) * CHAR_BIT - std::is_signed_v<T>;
|
842 |
+
Vectorized<T> c;
|
843 |
+
for (int i = 0; i != Vectorized<T>::size(); i++) {
|
844 |
+
T shift = b[i];
|
845 |
+
if ((static_cast<std::make_signed_t<T>>(shift) < 0) || (shift >= max_shift)) {
|
846 |
+
c[i] = a[i] >> max_shift;
|
847 |
+
} else {
|
848 |
+
c[i] = a[i] >> shift;
|
849 |
+
}
|
850 |
+
}
|
851 |
+
return c;
|
852 |
+
}
|
853 |
+
|
854 |
+
template <typename T>
|
855 |
+
inline Vectorized<T>& operator += (Vectorized<T>& a, const Vectorized<T>& b) {
|
856 |
+
a = a + b;
|
857 |
+
return a;
|
858 |
+
}
|
859 |
+
template <typename T>
|
860 |
+
inline Vectorized<T>& operator -= (Vectorized<T>& a, const Vectorized<T>& b) {
|
861 |
+
a = a - b;
|
862 |
+
return a;
|
863 |
+
}
|
864 |
+
template <typename T>
|
865 |
+
inline Vectorized<T>& operator /= (Vectorized<T>& a, const Vectorized<T>& b) {
|
866 |
+
a = a / b;
|
867 |
+
return a;
|
868 |
+
}
|
869 |
+
template <typename T>
|
870 |
+
inline Vectorized<T>& operator %= (Vectorized<T>& a, const Vectorized<T>& b) {
|
871 |
+
a = a % b;
|
872 |
+
return a;
|
873 |
+
}
|
874 |
+
template <typename T>
|
875 |
+
inline Vectorized<T>& operator *= (Vectorized<T>& a, const Vectorized<T>& b) {
|
876 |
+
a = a * b;
|
877 |
+
return a;
|
878 |
+
}
|
879 |
+
|
880 |
+
template <typename T>
|
881 |
+
inline Vectorized<T>& operator <<= (Vectorized<T>& a, const Vectorized<T>& b) {
|
882 |
+
a = a << b;
|
883 |
+
return a;
|
884 |
+
}
|
885 |
+
|
886 |
+
template <typename T>
|
887 |
+
inline Vectorized<T>& operator >>= (Vectorized<T>& a, const Vectorized<T>& b) {
|
888 |
+
a = a >> b;
|
889 |
+
return a;
|
890 |
+
}
|
891 |
+
|
892 |
+
template <typename T>
|
893 |
+
inline Vectorized<T> fmadd(const Vectorized<T>& a, const Vectorized<T>& b, const Vectorized<T>& c) {
|
894 |
+
return a * b + c;
|
895 |
+
}
|
896 |
+
|
897 |
+
template <typename T>
|
898 |
+
inline Vectorized<T> fmsub(const Vectorized<T>& a, const Vectorized<T>& b, const Vectorized<T>& c) {
|
899 |
+
return a * b - c;
|
900 |
+
}
|
901 |
+
|
902 |
+
template <int64_t scale = 1, typename T = void>
|
903 |
+
std::enable_if_t<scale == 1 || scale == 2 || scale == 4 || scale == 8, Vectorized<T>>
|
904 |
+
inline gather(T const* base_addr, const Vectorized<int_same_size_t<T>>& vindex) {
|
905 |
+
static constexpr int size = Vectorized<T>::size();
|
906 |
+
int_same_size_t<T> index_arr[size];
|
907 |
+
vindex.store(static_cast<void*>(index_arr));
|
908 |
+
T buffer[size];
|
909 |
+
for (const auto i : c10::irange(size)) {
|
910 |
+
buffer[i] = base_addr[index_arr[i] * scale / sizeof(T)];
|
911 |
+
}
|
912 |
+
return Vectorized<T>::loadu(static_cast<void*>(buffer));
|
913 |
+
}
|
914 |
+
|
915 |
+
template <int64_t scale = 1, typename T = void>
|
916 |
+
std::enable_if_t<scale == 1 || scale == 2 || scale == 4 || scale == 8, Vectorized<T>>
|
917 |
+
inline mask_gather(const Vectorized<T>& src, T const* base_addr,
|
918 |
+
const Vectorized<int_same_size_t<T>>& vindex, Vectorized<T>& mask) {
|
919 |
+
static constexpr int size = Vectorized<T>::size();
|
920 |
+
T src_arr[size];
|
921 |
+
int_same_size_t<T> mask_arr[size]; // use int type so we can logical and
|
922 |
+
int_same_size_t<T> index_arr[size];
|
923 |
+
src.store(static_cast<void*>(src_arr));
|
924 |
+
mask.store(static_cast<void*>(mask_arr));
|
925 |
+
vindex.store(static_cast<void*>(index_arr));
|
926 |
+
T buffer[size];
|
927 |
+
for (const auto i : c10::irange(size)) {
|
928 |
+
if (mask_arr[i] & 0x01) { // check highest bit
|
929 |
+
buffer[i] = base_addr[index_arr[i] * scale / sizeof(T)];
|
930 |
+
} else {
|
931 |
+
buffer[i] = src_arr[i];
|
932 |
+
}
|
933 |
+
}
|
934 |
+
mask = Vectorized<T>(); // "zero out" mask
|
935 |
+
return Vectorized<T>::loadu(static_cast<void*>(buffer));
|
936 |
+
}
|
937 |
+
|
938 |
+
// Cast a given vector to another type without changing the bits representation.
|
939 |
+
// So a Vectorized<double> of 512 bits containing all ones can be cast to a
|
940 |
+
// Vectorized<int64_t> of 512 bits containing all ones (i.e., eight negative 1s).
|
941 |
+
// A Vec<double> of 256 bits containing all ones can be cast to a
|
942 |
+
// Vec<int64_t> of 256 bits containing all ones (i.e., four negative 1s).
|
943 |
+
// There is a struct here because we don't have static_if and I can't
|
944 |
+
// partially specialize a templated function.
|
945 |
+
template<typename dst_t, typename src_t>
|
946 |
+
struct CastImpl {
|
947 |
+
static inline Vectorized<dst_t> apply(const Vectorized<src_t>& src) {
|
948 |
+
src_t src_arr[Vectorized<src_t>::size()];
|
949 |
+
src.store(static_cast<void*>(src_arr));
|
950 |
+
return Vectorized<dst_t>::loadu(static_cast<const void*>(src_arr));
|
951 |
+
}
|
952 |
+
};
|
953 |
+
|
954 |
+
template<typename scalar_t>
|
955 |
+
struct CastImpl<scalar_t, scalar_t> {
|
956 |
+
static inline Vectorized<scalar_t> apply(const Vectorized<scalar_t>& src) {
|
957 |
+
return src;
|
958 |
+
}
|
959 |
+
};
|
960 |
+
|
961 |
+
template<typename dst_t, typename src_t>
|
962 |
+
inline Vectorized<dst_t> cast(const Vectorized<src_t>& src) {
|
963 |
+
return CastImpl<dst_t, src_t>::apply(src);
|
964 |
+
}
|
965 |
+
|
966 |
+
template <typename T, typename IntType = int_same_size_t<T>>
|
967 |
+
inline Vectorized<IntType> convert_to_int_of_same_size(const Vectorized<T>& src) {
|
968 |
+
static_assert(sizeof(T) == sizeof(IntType));
|
969 |
+
static constexpr int size = Vectorized<T>::size();
|
970 |
+
|
971 |
+
std::array<T, size> src_arr;
|
972 |
+
src.store(static_cast<void*>(src_arr.data()));
|
973 |
+
std::array<IntType, size> buffer;
|
974 |
+
std::transform(src_arr.cbegin(), src_arr.cend(), buffer.begin(),
|
975 |
+
[](const T& x) { return static_cast<IntType>(x); });
|
976 |
+
return Vectorized<IntType>::loadu(static_cast<const void*>(buffer.data()));
|
977 |
+
}
|
978 |
+
|
979 |
+
// Example inputs for AVX512:
|
980 |
+
// a Vectorized<float> = {a0, b0, a1, b1, a2, b2, a3, b3, a4, b4, a5, b5, a6, b6, a7, b7}
|
981 |
+
// b Vectorized<float> = {a8, b8, a9, b9, a10, b10, a11, b11, a12, b12, a13, b13, a14, b14, a15, b15}
|
982 |
+
// returns:
|
983 |
+
// Vectorized<float> = {a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15}
|
984 |
+
// Vectorized<float> = {b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15}
|
985 |
+
// Example inputs for AVX2: a Vectorized<float> = {a0, b0, a1, b1, a2, b2, a3, b3}
|
986 |
+
// b Vectorized<float> = {a4, b4, a5, b5, a6, b6, a7, b7}
|
987 |
+
// returns: Vectorized<float> = {a0, a1, a2, a3, a4, a5, a6, a7}
|
988 |
+
// Vectorized<float> = {b0, b1, b2, b3, b4, b5, b6, b7}
|
989 |
+
template <typename T>
|
990 |
+
inline std::enable_if_t<Vectorized<T>::size() % 2 == 0, std::pair<Vectorized<T>, Vectorized<T>>>
|
991 |
+
deinterleave2(const Vectorized<T>& a, const Vectorized<T>& b) {
|
992 |
+
static constexpr int size = Vectorized<T>::size();
|
993 |
+
static constexpr int half_size = size / 2;
|
994 |
+
T a_arr[size];
|
995 |
+
T b_arr[size];
|
996 |
+
T buffer1[size];
|
997 |
+
T buffer2[size];
|
998 |
+
a.store(static_cast<void*>(a_arr));
|
999 |
+
b.store(static_cast<void*>(b_arr));
|
1000 |
+
for (const auto i : c10::irange(half_size)) {
|
1001 |
+
buffer1[i] = a_arr[i * 2];
|
1002 |
+
buffer1[half_size + i] = b_arr[i * 2];
|
1003 |
+
buffer2[i] = a_arr[i * 2 + 1];
|
1004 |
+
buffer2[half_size + i] = b_arr[i * 2 + 1];
|
1005 |
+
}
|
1006 |
+
return std::make_pair(Vectorized<T>::loadu(static_cast<void*>(buffer1)),
|
1007 |
+
Vectorized<T>::loadu(static_cast<void*>(buffer2)));
|
1008 |
+
}
|
1009 |
+
|
1010 |
+
// inverse operation of deinterleave2
|
1011 |
+
// Example inputs for AVX512:
|
1012 |
+
// a Vectorized<float> = {a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15}
|
1013 |
+
// b Vectorized<float> = {b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15}
|
1014 |
+
// returns, for AVX512:
|
1015 |
+
// Vectorized<float> = {a0, b0, a1, b1, a2, b2, a3, b3, a4, b4, a5, b5, a6, b6, a7, b7}
|
1016 |
+
// Vectorized<float> = {a8, b8, a9, b9, a10, b10, a11, b11, a12, b12, a13, b13, a14, b14, a15, b15}
|
1017 |
+
// Example inputs for AVX2 : a Vectorized<float> = {a0, a1, a2, a3, a4, a5, a6, a7}
|
1018 |
+
// b Vectorized<float> = {b0, b1, b2, b3, b4, b5, b6, b7}
|
1019 |
+
// returns: Vectorized<float> = {a0, b0, a1, b1, a2, b2, a3, b3}
|
1020 |
+
// Vectorized<float> = {a4, b4, a5, b5, a6, b6, a7, b7}
|
1021 |
+
template <typename T>
|
1022 |
+
inline std::enable_if_t<Vectorized<T>::size() % 2 == 0, std::pair<Vectorized<T>, Vectorized<T>>>
|
1023 |
+
interleave2(const Vectorized<T>& a, const Vectorized<T>& b) {
|
1024 |
+
static constexpr int size = Vectorized<T>::size();
|
1025 |
+
static constexpr int half_size = size / 2;
|
1026 |
+
T a_arr[size];
|
1027 |
+
T b_arr[size];
|
1028 |
+
T buffer1[size];
|
1029 |
+
T buffer2[size];
|
1030 |
+
a.store(static_cast<void*>(a_arr));
|
1031 |
+
b.store(static_cast<void*>(b_arr));
|
1032 |
+
for (const auto i : c10::irange(half_size)) {
|
1033 |
+
buffer1[i * 2] = a_arr[i];
|
1034 |
+
buffer1[i * 2 + 1] = b_arr[i];
|
1035 |
+
buffer2[i * 2] = a_arr[half_size + i];
|
1036 |
+
buffer2[i * 2 + 1] = b_arr[half_size + i];
|
1037 |
+
}
|
1038 |
+
return std::make_pair(Vectorized<T>::loadu(static_cast<void*>(buffer1)),
|
1039 |
+
Vectorized<T>::loadu(static_cast<void*>(buffer2)));
|
1040 |
+
}
|
1041 |
+
|
1042 |
+
template <typename src_T, typename dst_T>
|
1043 |
+
inline void convert(const src_T *src, dst_T *dst, int64_t n) {
|
1044 |
+
#ifndef _MSC_VER
|
1045 |
+
# pragma unroll
|
1046 |
+
#endif
|
1047 |
+
for (C10_UNUSED const auto i : c10::irange(n)) {
|
1048 |
+
*dst = c10::convert<dst_T>(c10::load(src));
|
1049 |
+
src++;
|
1050 |
+
dst++;
|
1051 |
+
}
|
1052 |
+
}
|
1053 |
+
|
1054 |
+
template <typename T>
|
1055 |
+
inline Vectorized<T> flip(const Vectorized<T> & data) {
|
1056 |
+
static constexpr int size = Vectorized<T>::size();
|
1057 |
+
T output[size];
|
1058 |
+
T buffer[size];
|
1059 |
+
data.store(static_cast<void*>(buffer));
|
1060 |
+
for (const auto i : c10::irange(size)) {
|
1061 |
+
output[i] = buffer[size - i - 1];
|
1062 |
+
}
|
1063 |
+
return Vectorized<T>::loadu(static_cast<void*>(output));
|
1064 |
+
}
|
1065 |
+
|
1066 |
+
// Transpose the `src` buffer of type `T` and size (M,N) into the `dst` buffer. `ld_src` is the leading
|
1067 |
+
// dimension of `src` and `ld_dst` is the leading dimension of `dst`.
|
1068 |
+
template <typename T, int M, int N>
|
1069 |
+
inline void transpose_mxn(const T* src, int64_t ld_src, T* dst, int64_t ld_dst) {
|
1070 |
+
for (int i = 0; i < M; i++) {
|
1071 |
+
for (int j = 0; j < N; j++) {
|
1072 |
+
dst[j*ld_dst + i] = src[i*ld_src + j];
|
1073 |
+
}
|
1074 |
+
}
|
1075 |
+
}
|
1076 |
+
|
1077 |
+
}} // namespace at::vec::CPU_CAPABILITY
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/cpu/vec/vec_half.h
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/cpu/vec/intrinsics.h>
|
4 |
+
|
5 |
+
namespace at::vec {
|
6 |
+
// See Note [CPU_CAPABILITY namespace]
|
7 |
+
inline namespace CPU_CAPABILITY {
|
8 |
+
|
9 |
+
#if (defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_AVX512)) && \
|
10 |
+
!defined(__APPLE__)
|
11 |
+
static inline uint16_t float2half_scalar(float val) {
|
12 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
13 |
+
#if defined(_MSC_VER)
|
14 |
+
__m256 v = _mm256_set1_ps(val);
|
15 |
+
__m128i o =
|
16 |
+
_mm256_cvtps_ph(v, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
17 |
+
return static_cast<std::uint16_t>(_mm_cvtsi128_si32(o));
|
18 |
+
#else
|
19 |
+
return _cvtss_sh(val, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
|
20 |
+
#endif
|
21 |
+
#elif defined(CPU_CAPABILITY_AVX512)
|
22 |
+
__m512 v = _mm512_set1_ps(val);
|
23 |
+
__m256i o =
|
24 |
+
_mm512_cvtps_ph(v, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
|
25 |
+
return static_cast<std::uint16_t>(
|
26 |
+
_mm_cvtsi128_si32(_mm256_castsi256_si128(o)));
|
27 |
+
#endif
|
28 |
+
}
|
29 |
+
|
30 |
+
static inline float half2float_scalar(uint16_t val) {
|
31 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
32 |
+
#if defined(_MSC_VER)
|
33 |
+
__m128i v = _mm_cvtsi32_si128(val);
|
34 |
+
__m256 o = _mm256_cvtph_ps(v);
|
35 |
+
return _mm256_cvtss_f32(o);
|
36 |
+
#else
|
37 |
+
return _cvtsh_ss(val);
|
38 |
+
#endif
|
39 |
+
#elif defined(CPU_CAPABILITY_AVX512)
|
40 |
+
__m256i v =
|
41 |
+
_mm256_setr_epi16(val, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
|
42 |
+
__m512 o = _mm512_cvtph_ps(v);
|
43 |
+
return _mm512_cvtss_f32(o);
|
44 |
+
#endif
|
45 |
+
}
|
46 |
+
|
47 |
+
#endif
|
48 |
+
|
49 |
+
} // namespace CPU_CAPABILITY
|
50 |
+
} // namespace at::vec
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cpu/AtomicAddFloat.h
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#ifndef ATOMIC_ADD_FLOAT
|
2 |
+
#define ATOMIC_ADD_FLOAT
|
3 |
+
|
4 |
+
#if (defined(__x86_64__) || defined(__i386__) || defined(__aarch64__))
|
5 |
+
#include <ATen/native/cpu/Intrinsics.h>
|
6 |
+
#else
|
7 |
+
#define _mm_pause()
|
8 |
+
#endif
|
9 |
+
|
10 |
+
#include <atomic>
|
11 |
+
|
12 |
+
static inline void cpu_atomic_add_float(float* dst, float fvalue)
|
13 |
+
{
|
14 |
+
typedef union {
|
15 |
+
unsigned intV;
|
16 |
+
float floatV;
|
17 |
+
} uf32_t;
|
18 |
+
|
19 |
+
uf32_t new_value, old_value;
|
20 |
+
std::atomic<unsigned>* dst_intV = (std::atomic<unsigned>*)(dst);
|
21 |
+
|
22 |
+
old_value.floatV = *dst;
|
23 |
+
new_value.floatV = old_value.floatV + fvalue;
|
24 |
+
|
25 |
+
unsigned* old_intV = (unsigned*)(&old_value.intV);
|
26 |
+
while (!std::atomic_compare_exchange_strong(dst_intV, old_intV, new_value.intV)) {
|
27 |
+
#ifdef __aarch64__
|
28 |
+
__asm__ __volatile__("yield;" : : : "memory");
|
29 |
+
#else
|
30 |
+
_mm_pause();
|
31 |
+
#endif
|
32 |
+
old_value.floatV = *dst;
|
33 |
+
new_value.floatV = old_value.floatV + fvalue;
|
34 |
+
}
|
35 |
+
}
|
36 |
+
|
37 |
+
#endif
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cpu/CatKernel.h
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
#include <ATen/native/DispatchStub.h>
|
5 |
+
#include <ATen/core/IListRef.h>
|
6 |
+
|
7 |
+
namespace at { namespace native {
|
8 |
+
|
9 |
+
using cat_serial_fn = void(*)(const Tensor &, const MaterializedITensorListRef&, int64_t);
|
10 |
+
DECLARE_DISPATCH(cat_serial_fn, cat_serial_stub);
|
11 |
+
|
12 |
+
}} // namespace at::native
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cpu/CopyKernel.h
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
namespace at {
|
4 |
+
struct TensorIteratorBase;
|
5 |
+
|
6 |
+
namespace native {
|
7 |
+
inline namespace CPU_CAPABILITY {
|
8 |
+
|
9 |
+
void direct_copy_kernel(TensorIteratorBase &iter);
|
10 |
+
void copy_kernel(TensorIterator& iter, bool /*non_blocking*/);
|
11 |
+
|
12 |
+
}}} // namespace at::native::CPU_CAPABILITY
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cpu/DistributionTemplates.h
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/CPUApplyUtils.h>
|
4 |
+
#include <ATen/Dispatch.h>
|
5 |
+
#include <ATen/ExpandBase.h>
|
6 |
+
#include <ATen/core/DistributionsHelper.h>
|
7 |
+
#include <ATen/native/TensorIterator.h>
|
8 |
+
#include <ATen/native/cpu/Loops.h>
|
9 |
+
#include <limits>
|
10 |
+
#include <mutex>
|
11 |
+
|
12 |
+
#ifdef CPU_CAPABILITY_AVX2
|
13 |
+
#include <ATen/native/cpu/avx_mathfun.h>
|
14 |
+
#include <c10/util/irange.h>
|
15 |
+
#endif
|
16 |
+
|
17 |
+
|
18 |
+
namespace at {
|
19 |
+
namespace native {
|
20 |
+
namespace templates {
|
21 |
+
namespace cpu {
|
22 |
+
namespace {
|
23 |
+
|
24 |
+
// ==================================================== Random ========================================================
|
25 |
+
|
26 |
+
template<typename RNG>
|
27 |
+
void random_from_to_kernel(TensorIteratorBase& iter, uint64_t range, int64_t base, RNG generator) {
|
28 |
+
AT_DISPATCH_ALL_TYPES_AND3(at::ScalarType::Bool, at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "random_from_to_kernel_cpu", [&] {
|
29 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
30 |
+
cpu_serial_kernel(iter, [range, base, generator]() -> scalar_t {
|
31 |
+
uniform_int_from_to_distribution<scalar_t> random(range, base);
|
32 |
+
return random(generator);
|
33 |
+
});
|
34 |
+
});
|
35 |
+
}
|
36 |
+
|
37 |
+
// This is the special kernel to handle single specific case:
|
38 |
+
// from(inclusive) = std::numeric_limits<int64_t>::lowest()
|
39 |
+
// to(exclusive) = None (= std::numeric_limits<int64_t>::max() + 1)
|
40 |
+
template<typename RNG>
|
41 |
+
void random_full_64_bits_range_kernel(TensorIteratorBase& iter, RNG generator) {
|
42 |
+
AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::BFloat16, iter.dtype(), "random_full_64_bits_range_kernel_cpu", [&] {
|
43 |
+
if constexpr (std::is_same<scalar_t, int64_t>::value ||
|
44 |
+
std::is_same<scalar_t, double>::value ||
|
45 |
+
std::is_same<scalar_t, float>::value ||
|
46 |
+
std::is_same<scalar_t, at::BFloat16>::value) {
|
47 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
48 |
+
cpu_serial_kernel(iter, [generator]() -> scalar_t {
|
49 |
+
uniform_int_full_range_distribution<scalar_t> random;
|
50 |
+
return random(generator);
|
51 |
+
});
|
52 |
+
} else {
|
53 |
+
TORCH_CHECK(false, "random_full_64_bits_range_kernel_cpu handles only int64, double, float and bfloat16");
|
54 |
+
}
|
55 |
+
});
|
56 |
+
}
|
57 |
+
|
58 |
+
template<typename RNG>
|
59 |
+
struct RandomFromToKernel {
|
60 |
+
void operator()(TensorIteratorBase& iter, uint64_t range, int64_t base, c10::optional<Generator> gen) {
|
61 |
+
random_from_to_kernel(iter, range, base, check_generator<RNG>(gen));
|
62 |
+
}
|
63 |
+
void operator()(TensorIteratorBase& iter, c10::optional<Generator> gen) {
|
64 |
+
random_full_64_bits_range_kernel(iter, check_generator<RNG>(gen));
|
65 |
+
}
|
66 |
+
};
|
67 |
+
|
68 |
+
template<typename RNG>
|
69 |
+
void random_kernel(TensorIteratorBase& iter, RNG generator) {
|
70 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
71 |
+
AT_DISPATCH_ALL_TYPES_AND3(at::ScalarType::Half, at::ScalarType::BFloat16, at::ScalarType::Bool, iter.dtype(), "random_kernel_cpu", [&] {
|
72 |
+
cpu_serial_kernel(iter, [generator]() -> scalar_t {
|
73 |
+
uniform_int_distribution<scalar_t> random;
|
74 |
+
return random(generator);
|
75 |
+
});
|
76 |
+
});
|
77 |
+
}
|
78 |
+
|
79 |
+
template<typename RNG>
|
80 |
+
struct RandomKernel {
|
81 |
+
void operator()(TensorIteratorBase& iter, c10::optional<Generator> gen) {
|
82 |
+
random_kernel(iter, check_generator<RNG>(gen));
|
83 |
+
}
|
84 |
+
};
|
85 |
+
|
86 |
+
// ==================================================== Normal ========================================================
|
87 |
+
|
88 |
+
#ifdef CPU_CAPABILITY_AVX2
|
89 |
+
static void normal_fill_16_AVX2(float *data,
|
90 |
+
const __m256* two_pi,
|
91 |
+
const __m256* one,
|
92 |
+
const __m256* minus_two,
|
93 |
+
const __m256* mean,
|
94 |
+
const __m256* std_v) {
|
95 |
+
const __m256 u1 = _mm256_sub_ps(*one, _mm256_loadu_ps(data));
|
96 |
+
const __m256 u2 = _mm256_loadu_ps(data + 8);
|
97 |
+
// sincos256_ps and log256_ps are from avx_mathfun.h
|
98 |
+
const __m256 radius = _mm256_sqrt_ps(_mm256_mul_ps(*minus_two, log256_ps(u1)));
|
99 |
+
const __m256 theta = _mm256_mul_ps(*two_pi, u2);
|
100 |
+
__m256 sintheta, costheta;
|
101 |
+
sincos256_ps(theta, &sintheta, &costheta);
|
102 |
+
const __m256 n1 = _mm256_mul_ps(radius, costheta);
|
103 |
+
const __m256 n2 = _mm256_mul_ps(radius, sintheta);
|
104 |
+
_mm256_storeu_ps(data, _mm256_fmadd_ps(n1, *std_v, *mean));
|
105 |
+
_mm256_storeu_ps(data + 8, _mm256_fmadd_ps(n2, *std_v, *mean));
|
106 |
+
}
|
107 |
+
|
108 |
+
template<typename RNG>
|
109 |
+
void normal_fill_AVX2(const TensorBase &self, const float mean, const float std, RNG generator) {
|
110 |
+
float *data = self.data_ptr<float>();
|
111 |
+
auto size = self.numel();
|
112 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
113 |
+
for (const auto i : c10::irange(size)) {
|
114 |
+
at::uniform_real_distribution<float> uniform(0, 1);
|
115 |
+
data[i] = uniform(generator);
|
116 |
+
}
|
117 |
+
const __m256 two_pi = _mm256_set1_ps(2.0f * c10::pi<double>);
|
118 |
+
const __m256 one = _mm256_set1_ps(1.0f);
|
119 |
+
const __m256 minus_two = _mm256_set1_ps(-2.0f);
|
120 |
+
const __m256 mean_v = _mm256_set1_ps(mean);
|
121 |
+
const __m256 std_v = _mm256_set1_ps(std);
|
122 |
+
|
123 |
+
for (int64_t i = 0; i < size - 15; i += 16) {
|
124 |
+
normal_fill_16_AVX2(data + i, &two_pi, &one, &minus_two, &mean_v, &std_v);
|
125 |
+
}
|
126 |
+
|
127 |
+
if (size % 16 != 0) {
|
128 |
+
// Recompute the last 16 values.
|
129 |
+
data = data + size - 16;
|
130 |
+
for (const auto i : c10::irange(16)) {
|
131 |
+
at::uniform_real_distribution<float> uniform(0, 1);
|
132 |
+
data[i] = uniform(generator);
|
133 |
+
}
|
134 |
+
normal_fill_16_AVX2(data, &two_pi, &one, &minus_two, &mean_v, &std_v);
|
135 |
+
}
|
136 |
+
}
|
137 |
+
#endif
|
138 |
+
|
139 |
+
template <typename scalar_t>
|
140 |
+
static void normal_fill_16(scalar_t *data, const scalar_t mean, const scalar_t std) {
|
141 |
+
for (const auto j : c10::irange(8)) {
|
142 |
+
const scalar_t u1 = 1 - data[j]; // [0, 1) -> (0, 1] for log.
|
143 |
+
const scalar_t u2 = data[j + 8];
|
144 |
+
const scalar_t radius = std::sqrt(-2 * std::log(u1));
|
145 |
+
const scalar_t theta = 2.0f * c10::pi<double> * u2;
|
146 |
+
data[j] = radius * std::cos(theta) * std + mean;
|
147 |
+
data[j + 8] = radius * std::sin(theta) * std + mean;
|
148 |
+
}
|
149 |
+
}
|
150 |
+
|
151 |
+
template <typename scalar_t, typename RNG>
|
152 |
+
void normal_fill(const TensorBase &self, const scalar_t mean, const scalar_t std, RNG generator) {
|
153 |
+
scalar_t *data = self.data_ptr<scalar_t>();
|
154 |
+
auto size = self.numel();
|
155 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
156 |
+
for (const auto i : c10::irange(size)) {
|
157 |
+
at::uniform_real_distribution<scalar_t> uniform(0, 1);
|
158 |
+
data[i] = uniform(generator);
|
159 |
+
}
|
160 |
+
|
161 |
+
for (int64_t i = 0; i < size - 15; i += 16) {
|
162 |
+
normal_fill_16<scalar_t>(data + i, mean, std);
|
163 |
+
}
|
164 |
+
if (size % 16 != 0) {
|
165 |
+
// Recompute the last 16 values.
|
166 |
+
data = data + size - 16;
|
167 |
+
for (const auto i : c10::irange(16)) {
|
168 |
+
at::uniform_real_distribution<scalar_t> uniform(0, 1);
|
169 |
+
data[i] = uniform(generator);
|
170 |
+
}
|
171 |
+
normal_fill_16<scalar_t>(data, mean, std);
|
172 |
+
}
|
173 |
+
}
|
174 |
+
|
175 |
+
template<typename RNG>
|
176 |
+
void normal_kernel(const TensorBase &self, double mean, double std, RNG generator) {
|
177 |
+
auto size = self.numel();
|
178 |
+
if (self.scalar_type() == ScalarType::Float && size >= 16 && self.is_contiguous()) {
|
179 |
+
#ifdef CPU_CAPABILITY_AVX2
|
180 |
+
normal_fill_AVX2(self, static_cast<float>(mean), static_cast<float>(std), generator);
|
181 |
+
#else
|
182 |
+
normal_fill(self, static_cast<float>(mean), static_cast<float>(std), generator);
|
183 |
+
#endif
|
184 |
+
} else {
|
185 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, self.scalar_type(), "normal_kernel_cpu", [&] {
|
186 |
+
if (size >= 16 && self.is_contiguous()) {
|
187 |
+
normal_fill<scalar_t>(self, static_cast<scalar_t>(mean), static_cast<scalar_t>(std), generator);
|
188 |
+
} else {
|
189 |
+
auto iter = TensorIterator::borrowing_nullary_op(self);
|
190 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
191 |
+
cpu_serial_kernel(iter, [mean, std, generator]() -> scalar_t {
|
192 |
+
at::normal_distribution<double> normal(mean, std);
|
193 |
+
return static_cast<scalar_t>(normal(generator));
|
194 |
+
});
|
195 |
+
}
|
196 |
+
});
|
197 |
+
}
|
198 |
+
}
|
199 |
+
|
200 |
+
template<typename RNG>
|
201 |
+
struct NormalKernel {
|
202 |
+
void operator()(Tensor& self, double mean, double std, c10::optional<Generator> gen) {
|
203 |
+
normal_kernel(self, mean, std, check_generator<RNG>(gen));
|
204 |
+
}
|
205 |
+
};
|
206 |
+
|
207 |
+
// ==================================================== Uniform =======================================================
|
208 |
+
|
209 |
+
template<typename RNG>
|
210 |
+
void uniform_kernel(TensorIteratorBase& iter, double from_, double to_, RNG generator) {
|
211 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, iter.dtype(), "uniform_kernel_cpu", [&]() {
|
212 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
213 |
+
auto from = static_cast<scalar_t>(from_);
|
214 |
+
auto to = static_cast<scalar_t>(to_);
|
215 |
+
at::uniform_real_distribution<scalar_t> uniform(from, to);
|
216 |
+
cpu_serial_kernel(iter, [&uniform, generator]() -> scalar_t {
|
217 |
+
return static_cast<scalar_t>(uniform(generator));
|
218 |
+
});
|
219 |
+
});
|
220 |
+
}
|
221 |
+
|
222 |
+
template<typename RNG>
|
223 |
+
struct UniformKernel {
|
224 |
+
void operator()(TensorIteratorBase& iter, double from, double to, c10::optional<Generator> gen) {
|
225 |
+
uniform_kernel(iter, from, to, check_generator<RNG>(gen));
|
226 |
+
}
|
227 |
+
};
|
228 |
+
|
229 |
+
// ==================================================== Cauchy ========================================================
|
230 |
+
|
231 |
+
template<typename RNG>
|
232 |
+
void cauchy_kernel(TensorIteratorBase& iter, double median, double sigma, RNG generator) {
|
233 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, iter.dtype(), "cauchy_cpu", [&]() {
|
234 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
235 |
+
at::cauchy_distribution<double> cauchy(median, sigma);
|
236 |
+
cpu_serial_kernel(iter, [&cauchy, generator]() -> scalar_t {
|
237 |
+
return static_cast<scalar_t>(cauchy(generator));
|
238 |
+
});
|
239 |
+
});
|
240 |
+
}
|
241 |
+
|
242 |
+
template<typename RNG>
|
243 |
+
struct CauchyKernel {
|
244 |
+
void operator()(TensorIteratorBase& iter, double median, double sigma, c10::optional<Generator> gen) {
|
245 |
+
cauchy_kernel(iter, median, sigma, check_generator<RNG>(gen));
|
246 |
+
}
|
247 |
+
};
|
248 |
+
|
249 |
+
// ================================================== LogNormal =======================================================
|
250 |
+
|
251 |
+
template<typename RNG>
|
252 |
+
void log_normal_kernel(TensorIteratorBase& iter, double mean, double std, RNG generator) {
|
253 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "log_normal_cpu", [&]() {
|
254 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
255 |
+
at::lognormal_distribution<double> logNormal(mean, std);
|
256 |
+
cpu_serial_kernel(iter, [&logNormal, generator]() -> scalar_t {
|
257 |
+
return static_cast<scalar_t>(logNormal(generator));
|
258 |
+
});
|
259 |
+
});
|
260 |
+
}
|
261 |
+
|
262 |
+
template<typename RNG>
|
263 |
+
struct LogNormalKernel {
|
264 |
+
void operator()(TensorIteratorBase& iter, double mean, double std, c10::optional<Generator> gen) {
|
265 |
+
log_normal_kernel(iter, mean, std, check_generator<RNG>(gen));
|
266 |
+
}
|
267 |
+
};
|
268 |
+
|
269 |
+
// =================================================== Geometric ======================================================
|
270 |
+
|
271 |
+
template<typename RNG>
|
272 |
+
void geometric_kernel(TensorIteratorBase& iter, double p, RNG generator) {
|
273 |
+
AT_DISPATCH_ALL_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "geometric_cpu", [&]() {
|
274 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
275 |
+
at::geometric_distribution<double> geometric(p);
|
276 |
+
cpu_serial_kernel(iter, [&geometric, generator]() -> scalar_t {
|
277 |
+
return static_cast<scalar_t>(geometric(generator));
|
278 |
+
});
|
279 |
+
});
|
280 |
+
}
|
281 |
+
|
282 |
+
template<typename RNG>
|
283 |
+
struct GeometricKernel {
|
284 |
+
void operator()(TensorIteratorBase& iter, double p, c10::optional<Generator> gen) {
|
285 |
+
geometric_kernel(iter, p, check_generator<RNG>(gen));
|
286 |
+
}
|
287 |
+
};
|
288 |
+
|
289 |
+
// ================================================== Exponential =====================================================
|
290 |
+
|
291 |
+
template<typename RNG>
|
292 |
+
void exponential_kernel(TensorIteratorBase& iter, double lambda, RNG generator) {
|
293 |
+
TORCH_CHECK(isFloatingType(iter.dtype()), "Exponential distribution is a continuous probability distribution. dtype must be a floating point but you specified ", iter.dtype());
|
294 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "exponential_cpu", [&]() {
|
295 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
296 |
+
at::exponential_distribution<double> exponential(lambda);
|
297 |
+
cpu_serial_kernel(iter, [&exponential, generator]() -> scalar_t {
|
298 |
+
return static_cast<scalar_t>(exponential(generator));
|
299 |
+
});
|
300 |
+
});
|
301 |
+
}
|
302 |
+
|
303 |
+
template<typename RNG>
|
304 |
+
struct ExponentialKernel {
|
305 |
+
void operator()(TensorIteratorBase& iter, double lambda, c10::optional<Generator> gen) {
|
306 |
+
exponential_kernel(iter, lambda, check_generator<RNG>(gen));
|
307 |
+
}
|
308 |
+
};
|
309 |
+
|
310 |
+
// ================================================== Bernoulli =======================================================
|
311 |
+
|
312 |
+
template<typename RNG>
|
313 |
+
void bernoulli_kernel(const TensorBase &self, const TensorBase &p_, RNG generator) {
|
314 |
+
AT_DISPATCH_ALL_TYPES_AND3(at::ScalarType::Bool, at::ScalarType::BFloat16, at::ScalarType::Half,
|
315 |
+
self.scalar_type(), "bernoulli_tensor_cpu_self_", [&] {
|
316 |
+
// See Note [Acquire lock when using random generators]
|
317 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
318 |
+
using self_t = scalar_t;
|
319 |
+
auto p_cpu = p_.to(kCPU);
|
320 |
+
auto p = expand_inplace(self, p_cpu);
|
321 |
+
auto iter = TensorIteratorConfig()
|
322 |
+
.add_output(self)
|
323 |
+
.add_input(*p)
|
324 |
+
.check_all_same_dtype(false)
|
325 |
+
.build();
|
326 |
+
if (p->scalar_type() == kDouble) {
|
327 |
+
cpu_serial_kernel(iter, [&](const double p_val) -> self_t {
|
328 |
+
at::bernoulli_distribution<double> bernoulli(p_val);
|
329 |
+
return static_cast<self_t>(bernoulli(generator));
|
330 |
+
});
|
331 |
+
} else {
|
332 |
+
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::BFloat16, at::ScalarType::Half,
|
333 |
+
p->scalar_type(), "bernoulli_tensor_cpu_p_", [&] {
|
334 |
+
using p_t = scalar_t;
|
335 |
+
cpu_serial_kernel(iter, [&](const p_t p_val) -> self_t {
|
336 |
+
at::bernoulli_distribution<float> bernoulli(p_val);
|
337 |
+
return static_cast<self_t>(bernoulli(generator));
|
338 |
+
});
|
339 |
+
});
|
340 |
+
}
|
341 |
+
});
|
342 |
+
}
|
343 |
+
|
344 |
+
template<typename RNG>
|
345 |
+
void bernoulli_kernel(const TensorBase &self, double p, RNG generator) {
|
346 |
+
AT_DISPATCH_ALL_TYPES_AND3(at::ScalarType::Bool, at::ScalarType::BFloat16, at::ScalarType::Half,
|
347 |
+
self.scalar_type(), "bernoulli_scalar_cpu_", [&] {
|
348 |
+
// See Note [Acquire lock when using random generators]
|
349 |
+
std::lock_guard<std::mutex> lock(generator->mutex_);
|
350 |
+
auto iter = TensorIterator::borrowing_nullary_op(self);
|
351 |
+
cpu_serial_kernel(iter, [p, generator]() -> scalar_t {
|
352 |
+
at::bernoulli_distribution<double> bernoulli(p);
|
353 |
+
return static_cast<scalar_t>(bernoulli(generator));
|
354 |
+
});
|
355 |
+
});
|
356 |
+
}
|
357 |
+
|
358 |
+
template<typename RNG>
|
359 |
+
struct BernoulliKernel {
|
360 |
+
void operator()(const TensorBase &self, double p, c10::optional<Generator> gen) {
|
361 |
+
bernoulli_kernel(self, p, check_generator<RNG>(gen));
|
362 |
+
}
|
363 |
+
void operator()(const TensorBase &self, const TensorBase &p_, c10::optional<Generator> gen) {
|
364 |
+
bernoulli_kernel(self, p_, check_generator<RNG>(gen));
|
365 |
+
}
|
366 |
+
};
|
367 |
+
|
368 |
+
}}}}}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cpu/IsContiguous.h
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
namespace at { namespace native { inline namespace CPU_CAPABILITY {
|
4 |
+
|
5 |
+
// n: number of function arguments (arity)
|
6 |
+
// traits: function_traits (see FunctionTraits.h)
|
7 |
+
// s: index of scalar argument or -1
|
8 |
+
template <int n, int stride_index, typename traits, int s=-1>
|
9 |
+
struct IsContiguous {
|
10 |
+
static bool eval(const int64_t* strides) {
|
11 |
+
using type = typename traits::template arg<n - 1>::type;
|
12 |
+
return strides[stride_index] == (s == n ? 0 : sizeof(type)) &&
|
13 |
+
IsContiguous<n - 1, stride_index - 1, traits, s>::eval(strides);
|
14 |
+
}
|
15 |
+
};
|
16 |
+
|
17 |
+
// will be called when there is an output exists
|
18 |
+
template <typename traits, int s>
|
19 |
+
struct IsContiguous<0, 0, traits, s> {
|
20 |
+
static bool eval(const int64_t* strides) {
|
21 |
+
return strides[0] == sizeof(typename traits::result_type);
|
22 |
+
}
|
23 |
+
};
|
24 |
+
|
25 |
+
// will be called when there is no output
|
26 |
+
template <typename traits, int s>
|
27 |
+
struct IsContiguous<0, -1, traits, s> {
|
28 |
+
static bool eval(const int64_t* /*strides*/) {
|
29 |
+
return true;
|
30 |
+
}
|
31 |
+
};
|
32 |
+
|
33 |
+
// output and all inputs are contiguous
|
34 |
+
template <typename traits,
|
35 |
+
typename std::enable_if<std::is_void<typename traits::result_type>::value>::type* = nullptr>
|
36 |
+
static inline bool is_contiguous(const int64_t* strides) {
|
37 |
+
return IsContiguous<traits::arity, traits::arity - 1, traits>::eval(strides);
|
38 |
+
}
|
39 |
+
|
40 |
+
template <typename traits,
|
41 |
+
typename std::enable_if<!std::is_void<typename traits::result_type>::value>::type* = nullptr>
|
42 |
+
static inline bool is_contiguous(const int64_t* strides) {
|
43 |
+
return IsContiguous<traits::arity, traits::arity, traits>::eval(strides);
|
44 |
+
}
|
45 |
+
|
46 |
+
// input at `s` is scalar (stride 0); output and other inputs are contiguous
|
47 |
+
// NB: output is typically at strides[0] so first input corresponds to s=1
|
48 |
+
template <typename traits, int s,
|
49 |
+
typename std::enable_if<std::is_void<typename traits::result_type>::value>::type* = nullptr>
|
50 |
+
static inline bool is_contiguous_scalar(const int64_t* strides) {
|
51 |
+
static_assert(s > 0 && s <= traits::arity, "scalar argument index out of bounds");
|
52 |
+
return IsContiguous<traits::arity, traits::arity - 1, traits, s>::eval(strides);
|
53 |
+
}
|
54 |
+
|
55 |
+
template <typename traits, int s,
|
56 |
+
typename std::enable_if<!std::is_void<typename traits::result_type>::value>::type* = nullptr>
|
57 |
+
static inline bool is_contiguous_scalar(const int64_t* strides) {
|
58 |
+
static_assert(s > 0 && s <= traits::arity, "scalar argument index out of bounds");
|
59 |
+
return IsContiguous<traits::arity, traits::arity, traits, s>::eval(strides);
|
60 |
+
}
|
61 |
+
|
62 |
+
}}}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cpu/ReduceUtils.h
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/Parallel.h>
|
4 |
+
#include <ATen/NumericUtils.h>
|
5 |
+
#include <ATen/cpu/vec/vec.h>
|
6 |
+
#include <ATen/cpu/vec/functional.h>
|
7 |
+
#include <ATen/native/ReductionType.h>
|
8 |
+
#include <c10/util/irange.h>
|
9 |
+
#include <ATen/OpMathType.h>
|
10 |
+
#include <ATen/native/cpu/utils.h>
|
11 |
+
#include <ATen/OpMathType.h>
|
12 |
+
|
13 |
+
namespace at::native {
|
14 |
+
inline namespace CPU_CAPABILITY {
|
15 |
+
|
16 |
+
using namespace vec;
|
17 |
+
|
18 |
+
#define AT_DISPATCH_REDUCTION_TYPES(op, ...) \
|
19 |
+
[&] { \
|
20 |
+
switch (op) { \
|
21 |
+
case ReductionType::SUM: { \
|
22 |
+
static constexpr auto reduce = ReductionType::SUM; \
|
23 |
+
return __VA_ARGS__(); \
|
24 |
+
} \
|
25 |
+
case ReductionType::MEAN: { \
|
26 |
+
static constexpr auto reduce = ReductionType::MEAN; \
|
27 |
+
return __VA_ARGS__(); \
|
28 |
+
} \
|
29 |
+
case ReductionType::MIN: { \
|
30 |
+
static constexpr auto reduce = ReductionType::MIN; \
|
31 |
+
return __VA_ARGS__(); \
|
32 |
+
} \
|
33 |
+
case ReductionType::MAX: { \
|
34 |
+
static constexpr auto reduce = ReductionType::MAX; \
|
35 |
+
return __VA_ARGS__(); \
|
36 |
+
} \
|
37 |
+
case ReductionType::PROD: { \
|
38 |
+
static constexpr auto reduce = ReductionType::PROD; \
|
39 |
+
return __VA_ARGS__(); \
|
40 |
+
} \
|
41 |
+
} \
|
42 |
+
}()
|
43 |
+
|
44 |
+
template <typename scalar_t, ReductionType reduce>
|
45 |
+
inline vec_scalar_t<scalar_t> init_value() {
|
46 |
+
using acc_t = vec_scalar_t<scalar_t>;
|
47 |
+
acc_t val;
|
48 |
+
if (reduce == ReductionType::SUM ||
|
49 |
+
reduce == ReductionType::MEAN) {
|
50 |
+
val = static_cast<acc_t>(0);
|
51 |
+
} else if (reduce == ReductionType::PROD) {
|
52 |
+
val = static_cast<acc_t>(1);
|
53 |
+
} else if (reduce == ReductionType::MAX) {
|
54 |
+
val = -std::numeric_limits<acc_t>::infinity();
|
55 |
+
} else {
|
56 |
+
TORCH_INTERNAL_ASSERT(reduce == ReductionType::MIN);
|
57 |
+
val = std::numeric_limits<acc_t>::infinity();
|
58 |
+
}
|
59 |
+
return val;
|
60 |
+
}
|
61 |
+
|
62 |
+
template <typename scalar_t, ReductionType reduce>
|
63 |
+
inline vec_scalar_t<scalar_t> init_value(const c10::optional<Scalar>& initial) {
|
64 |
+
using acc_t = vec_scalar_t<scalar_t>;
|
65 |
+
if (initial.has_value()) {
|
66 |
+
return initial.value().to<acc_t>();
|
67 |
+
} else {
|
68 |
+
return init_value<scalar_t, reduce>();
|
69 |
+
}
|
70 |
+
}
|
71 |
+
|
72 |
+
template <typename scalar_t>
|
73 |
+
inline void init(scalar_t* out, int64_t size, const vec_scalar_t<scalar_t>& val) {
|
74 |
+
using Vec = Vectorized<vec_scalar_t<scalar_t>>;
|
75 |
+
map<scalar_t>(
|
76 |
+
[val](Vec x) { return Vec(val); },
|
77 |
+
out,
|
78 |
+
out,
|
79 |
+
size);
|
80 |
+
}
|
81 |
+
|
82 |
+
template <typename scalar_t, ReductionType reduce>
|
83 |
+
inline void init(scalar_t* out, int64_t size, const c10::optional<Scalar>& initial) {
|
84 |
+
using acc_t = vec_scalar_t<scalar_t>;
|
85 |
+
acc_t val = init_value<scalar_t, reduce>(initial);
|
86 |
+
init(out, size, val);
|
87 |
+
}
|
88 |
+
|
89 |
+
// overload with `include_self`, used by scatter_reduce
|
90 |
+
template <typename scalar_t, ReductionType reduce>
|
91 |
+
inline void init(scalar_t* out, int64_t size, bool include_self = false) {
|
92 |
+
using acc_t = vec_scalar_t<scalar_t>;
|
93 |
+
if (!include_self) {
|
94 |
+
acc_t val = init_value<scalar_t, reduce>();
|
95 |
+
init(out, size, val);
|
96 |
+
}
|
97 |
+
}
|
98 |
+
|
99 |
+
template <typename scalar_t, ReductionType reduce>
|
100 |
+
inline void _init(scalar_t* self_ptr, at::opmath_type<scalar_t>* buffer_ptr, int64_t size, bool include_self) {
|
101 |
+
if (!include_self) {
|
102 |
+
init<at::opmath_type<scalar_t>, reduce>(buffer_ptr, size, include_self);
|
103 |
+
} else {
|
104 |
+
vec::convert(self_ptr, buffer_ptr, size);
|
105 |
+
}
|
106 |
+
}
|
107 |
+
|
108 |
+
template <typename scalar_t>
|
109 |
+
inline typename std::enable_if<!std::is_same<scalar_t, Vec2>::value, scalar_t>::type
|
110 |
+
_max(const scalar_t& x, const scalar_t& y) {
|
111 |
+
return at::_isnan(y) ? y : std::max(x, y);
|
112 |
+
}
|
113 |
+
|
114 |
+
template <typename scalar_t>
|
115 |
+
inline Vectorized<scalar_t> _max(const Vectorized<scalar_t>& x, const Vectorized<scalar_t>& y) {
|
116 |
+
// vec::maximum propagates NaN
|
117 |
+
return vec::maximum(x, y);
|
118 |
+
}
|
119 |
+
|
120 |
+
template <typename vec_t>
|
121 |
+
inline typename std::enable_if<std::is_same<vec_t, Vec2>::value, Vec2>::type
|
122 |
+
_max(const vec_t& x, const vec_t& y) {
|
123 |
+
// vec::maximum propagates NaN
|
124 |
+
return maximum(x, y);
|
125 |
+
}
|
126 |
+
|
127 |
+
template <typename scalar_t>
|
128 |
+
inline typename std::enable_if<!std::is_same<scalar_t, Vec2>::value, scalar_t>::type
|
129 |
+
_min(const scalar_t& x, const scalar_t& y) {
|
130 |
+
return at::_isnan(y) ? y : std::min(x, y);
|
131 |
+
}
|
132 |
+
|
133 |
+
template <typename scalar_t>
|
134 |
+
inline Vectorized<scalar_t> _min(const Vectorized<scalar_t>& x, const Vectorized<scalar_t>& y) {
|
135 |
+
// vec::minimum propagates NaN
|
136 |
+
return vec::minimum(x, y);
|
137 |
+
}
|
138 |
+
|
139 |
+
template <typename vec_t>
|
140 |
+
inline typename std::enable_if<std::is_same<vec_t, Vec2>::value, Vec2>::type
|
141 |
+
_min(const vec_t& x, const vec_t& y) {
|
142 |
+
// vec::minimum propagates NaN
|
143 |
+
return minimum(x, y);
|
144 |
+
}
|
145 |
+
|
146 |
+
template <typename scalar_t, typename accumut, typename Op,
|
147 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
148 |
+
inline void map_acc(
|
149 |
+
const Op& vec_fun,
|
150 |
+
accumut* output_data,
|
151 |
+
const accumut* input_data,
|
152 |
+
const scalar_t* input_data2,
|
153 |
+
int64_t size) {
|
154 |
+
using Vec = vec::Vectorized<scalar_t>;
|
155 |
+
using aVec = vec::Vectorized<accumut>;
|
156 |
+
int64_t d = 0;
|
157 |
+
constexpr int64_t kVecSize = Vec::size();
|
158 |
+
constexpr int64_t kaVecSize = aVec::size();
|
159 |
+
for (d = 0; d < size - (size % kVecSize); d += kVecSize) {
|
160 |
+
Vec data2_vec = Vec::loadu(input_data2 + d);
|
161 |
+
aVec data2_avec0, data2_avec1;
|
162 |
+
std::tie(data2_avec0, data2_avec1) = convert_to_float<scalar_t>(data2_vec);
|
163 |
+
aVec input_vec0 = aVec::loadu(input_data + d);
|
164 |
+
aVec input_vec1 = aVec::loadu(input_data + d + kaVecSize);
|
165 |
+
vec_fun(input_vec0, data2_avec0).store(output_data + d);
|
166 |
+
vec_fun(input_vec1, data2_avec1).store(output_data + d + kaVecSize);
|
167 |
+
}
|
168 |
+
if (size - d > 0) {
|
169 |
+
int64_t tail_size = size - d;
|
170 |
+
Vec data2_vec = Vec::loadu(input_data2 + d, tail_size);
|
171 |
+
aVec data2_avec0, data2_avec1;
|
172 |
+
std::tie(data2_avec0, data2_avec1) = convert_to_float<scalar_t>(data2_vec);
|
173 |
+
if (tail_size > kaVecSize) {
|
174 |
+
aVec input_vec0 = aVec::loadu(input_data + d);
|
175 |
+
aVec input_vec1 = aVec::loadu(input_data + d + kaVecSize, tail_size - kaVecSize);
|
176 |
+
vec_fun(input_vec0, data2_avec0).store(output_data + d);
|
177 |
+
vec_fun(input_vec1, data2_avec1).store(output_data + d + kaVecSize, tail_size - kaVecSize);
|
178 |
+
} else {
|
179 |
+
aVec input_vec0 = aVec::loadu(input_data + d, tail_size);
|
180 |
+
vec_fun(input_vec0, data2_avec0).store(output_data + d, tail_size);
|
181 |
+
}
|
182 |
+
}
|
183 |
+
}
|
184 |
+
|
185 |
+
// for Max and Min, propagate NaN:
|
186 |
+
template <typename T, ReductionType reduce>
|
187 |
+
inline T update(const T& x, const T& y) {
|
188 |
+
if (reduce == ReductionType::SUM ||
|
189 |
+
reduce == ReductionType::MEAN) {
|
190 |
+
return x + y;
|
191 |
+
} else if (reduce == ReductionType::PROD) {
|
192 |
+
return x * y;
|
193 |
+
} else if (reduce == ReductionType::MAX) {
|
194 |
+
return _max(x, y);
|
195 |
+
} else {
|
196 |
+
TORCH_INTERNAL_ASSERT(reduce == ReductionType::MIN);
|
197 |
+
return _min(x, y);
|
198 |
+
}
|
199 |
+
}
|
200 |
+
|
201 |
+
template <typename scalar_t, ReductionType reduce>
|
202 |
+
inline void update(scalar_t* out, scalar_t* data, int64_t K) {
|
203 |
+
using Vec = vec::Vectorized<vec_scalar_t<scalar_t>>;
|
204 |
+
map2<scalar_t>(
|
205 |
+
[](Vec x, Vec y) { return update<Vec, reduce>(x, y); },
|
206 |
+
out,
|
207 |
+
out,
|
208 |
+
data,
|
209 |
+
K);
|
210 |
+
}
|
211 |
+
|
212 |
+
template <typename scalar_t, ReductionType reduce,
|
213 |
+
typename std::enable_if_t<is_reduced_floating_point_v<scalar_t>, int> = 0>
|
214 |
+
inline void update(at::opmath_type<scalar_t>* out, scalar_t* data, int64_t K) {
|
215 |
+
using opmath_t = at::opmath_type<scalar_t>;
|
216 |
+
using Vec = vec::Vectorized<opmath_t>;
|
217 |
+
map_acc<scalar_t, opmath_t>(
|
218 |
+
[](Vec x, Vec y) { return update<Vec, reduce>(x, y); },
|
219 |
+
out,
|
220 |
+
out,
|
221 |
+
data,
|
222 |
+
K);
|
223 |
+
}
|
224 |
+
|
225 |
+
template <typename scalar_t, ReductionType reduce>
|
226 |
+
inline void write(scalar_t* out, int64_t count, int64_t K) {
|
227 |
+
using Vec = vec::Vectorized<vec_scalar_t<scalar_t>>;
|
228 |
+
if (reduce == ReductionType::MEAN) {
|
229 |
+
if (count > 0) {
|
230 |
+
vec::map<scalar_t>(
|
231 |
+
[count](Vec x) { return x / Vec(count); },
|
232 |
+
out,
|
233 |
+
out,
|
234 |
+
K);
|
235 |
+
}
|
236 |
+
}
|
237 |
+
}
|
238 |
+
|
239 |
+
} // namespace CPU_CAPABILITY
|
240 |
+
} // namespace at::native
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cpu/SoftmaxKernel.h
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/native/DispatchStub.h>
|
4 |
+
#include <cstdint>
|
5 |
+
|
6 |
+
namespace at {
|
7 |
+
class Tensor;
|
8 |
+
|
9 |
+
namespace native {
|
10 |
+
|
11 |
+
using forward_fn = void (*)(const Tensor&, const Tensor&);
|
12 |
+
using backward_fn = void(*)(const Tensor &, const Tensor &, const Tensor&);
|
13 |
+
|
14 |
+
DECLARE_DISPATCH(forward_fn, softmax_lastdim_kernel);
|
15 |
+
DECLARE_DISPATCH(forward_fn, log_softmax_lastdim_kernel);
|
16 |
+
DECLARE_DISPATCH(backward_fn, softmax_backward_lastdim_kernel);
|
17 |
+
DECLARE_DISPATCH(backward_fn, log_softmax_backward_lastdim_kernel);
|
18 |
+
|
19 |
+
using forward_fn_with_dim = void(*)(const Tensor &, const Tensor &, const int64_t);
|
20 |
+
using backward_fn_with_dim =
|
21 |
+
void (*)(const Tensor&, const Tensor&, const Tensor&, const int64_t);
|
22 |
+
|
23 |
+
DECLARE_DISPATCH(forward_fn_with_dim, softmax_kernel);
|
24 |
+
DECLARE_DISPATCH(forward_fn_with_dim, log_softmax_kernel);
|
25 |
+
DECLARE_DISPATCH(backward_fn_with_dim, softmax_backward_kernel);
|
26 |
+
DECLARE_DISPATCH(backward_fn_with_dim, log_softmax_backward_kernel);
|
27 |
+
}
|
28 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cpu/SpmmReduceKernel.h
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
#include <ATen/native/DispatchStub.h>
|
5 |
+
#include <ATen/native/ReductionType.h>
|
6 |
+
|
7 |
+
namespace at::native {
|
8 |
+
|
9 |
+
using spmm_reduce_fn = void(*)(const Tensor&, const Tensor&, const Tensor&, const Tensor&, const Tensor&, ReductionType op);
|
10 |
+
using spmm_reduce_arg_fn = void(*)(const Tensor&, const Tensor&, const Tensor&, const Tensor&, const Tensor&, const Tensor&, ReductionType op);
|
11 |
+
using spmm_reduce_backward_input_fn = void(*)(const Tensor&, const Tensor&, const Tensor&, const Tensor&, const Tensor&, const Tensor&, ReductionType op);
|
12 |
+
using spmm_reduce_backward_input_arg_fn = void(*)(const Tensor&, const Tensor&, const Tensor&, const Tensor&, const Tensor&, ReductionType op);
|
13 |
+
using spmm_reduce_backward_other_fn = void(*)(const Tensor&, const Tensor&, const Tensor&, const Tensor&, const Tensor&, const Tensor&, const Tensor&, ReductionType op);
|
14 |
+
|
15 |
+
DECLARE_DISPATCH(spmm_reduce_fn, spmm_reduce_stub);
|
16 |
+
DECLARE_DISPATCH(spmm_reduce_arg_fn, spmm_reduce_arg_stub);
|
17 |
+
DECLARE_DISPATCH(spmm_reduce_backward_input_fn, spmm_reduce_backward_input_stub);
|
18 |
+
DECLARE_DISPATCH(spmm_reduce_backward_input_arg_fn, spmm_reduce_backward_input_arg_stub);
|
19 |
+
DECLARE_DISPATCH(spmm_reduce_backward_other_fn, spmm_reduce_backward_other_stub);
|
20 |
+
DECLARE_DISPATCH(spmm_reduce_backward_input_arg_fn, spmm_reduce_backward_other_arg_stub);
|
21 |
+
|
22 |
+
} // at::native
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cpu/StackKernel.h
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright 2004-present Facebook. All Rights Reserved.
|
2 |
+
#pragma once
|
3 |
+
|
4 |
+
#include <ATen/core/Tensor.h>
|
5 |
+
#include <ATen/native/DispatchStub.h>
|
6 |
+
|
7 |
+
namespace at { namespace native {
|
8 |
+
|
9 |
+
using stack_serial_fn = void(*)(Tensor &, TensorList, int64_t);
|
10 |
+
DECLARE_DISPATCH(stack_serial_fn, stack_serial_stub);
|
11 |
+
|
12 |
+
}} // namespace at::native
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cpu/mixed_data_type.h
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/core/Tensor.h>
|
4 |
+
|
5 |
+
namespace at { namespace native {
|
6 |
+
|
7 |
+
inline ScalarType first_type() {
|
8 |
+
return ScalarType::Undefined;
|
9 |
+
}
|
10 |
+
|
11 |
+
template <typename... Args>
|
12 |
+
inline ScalarType first_type(const Tensor& arg, const Args&... parameters) {
|
13 |
+
return arg.defined() ? arg.scalar_type() : first_type(parameters...);
|
14 |
+
}
|
15 |
+
|
16 |
+
template <typename... Args>
|
17 |
+
inline bool is_mixed_type(const Tensor& input, const Args&... parameters) {
|
18 |
+
const auto parameter_type = first_type(parameters...);
|
19 |
+
return ((parameter_type != ScalarType::Undefined) &&
|
20 |
+
(parameter_type != input.scalar_type()));
|
21 |
+
}
|
22 |
+
|
23 |
+
// currently on CPU, mixed data type is only supported
|
24 |
+
// when input is 'BFloat16' or 'Half' and parameters are 'Float'
|
25 |
+
inline void check_mixed_data_type(const Tensor& input) {
|
26 |
+
TORCH_CHECK(at::isReducedFloatingType(input.scalar_type()),
|
27 |
+
"mixed dtype (CPU): all inputs must share same datatype.");
|
28 |
+
}
|
29 |
+
|
30 |
+
template <typename... Args>
|
31 |
+
inline void check_mixed_data_type(const Tensor& input, const Tensor& parameter, const Args&... parameters) {
|
32 |
+
TORCH_CHECK(!parameter.defined() || parameter.scalar_type() == ScalarType::Float,
|
33 |
+
"mixed dtype (CPU): expect parameter to have scalar type of Float");
|
34 |
+
check_mixed_data_type(input, parameters...);
|
35 |
+
}
|
36 |
+
|
37 |
+
inline ScalarType param_scalar_type(const Tensor& t, bool is_mixed_type) {
|
38 |
+
return is_mixed_type ? ScalarType::Float : t.scalar_type();
|
39 |
+
}
|
40 |
+
|
41 |
+
}} // namespace at::native
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Activation.h
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/native/Activation.h>
|
3 |
+
#include <cstdint>
|
4 |
+
|
5 |
+
namespace at {
|
6 |
+
struct TensorIteratorBase;
|
7 |
+
class TensorBase;
|
8 |
+
}
|
9 |
+
|
10 |
+
namespace at { namespace native {
|
11 |
+
|
12 |
+
void launch_glu_backward_kernel(const TensorIteratorBase& iter,
|
13 |
+
int64_t gI_stride, int64_t I_stride);
|
14 |
+
|
15 |
+
void launch_log_sigmoid_forward_kernel(TensorIteratorBase& iter);
|
16 |
+
|
17 |
+
void GeluCUDAKernelImpl(TensorIteratorBase& it, GeluType approximate);
|
18 |
+
void GeluBackwardCUDAKernelImpl(TensorIteratorBase& it, GeluType approximate);
|
19 |
+
|
20 |
+
}} // namespace at::native
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Copy.h
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
namespace at {
|
4 |
+
struct TensorIteratorBase;
|
5 |
+
|
6 |
+
namespace native {
|
7 |
+
|
8 |
+
void direct_copy_kernel_cuda(TensorIteratorBase &iter);
|
9 |
+
|
10 |
+
}} // namespace at::native
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Distributions.h
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
namespace at {
|
4 |
+
struct CUDAGeneratorImpl;
|
5 |
+
struct TensorIteratorBase;
|
6 |
+
class TensorBase;
|
7 |
+
|
8 |
+
namespace native {
|
9 |
+
|
10 |
+
void launch_poisson_cuda_kernel(
|
11 |
+
const TensorBase &ret, const TensorBase &lambda, CUDAGeneratorImpl *gen);
|
12 |
+
|
13 |
+
void launch_gamma_kernel(
|
14 |
+
const TensorBase &ret, const TensorBase &alpha, CUDAGeneratorImpl *gen);
|
15 |
+
|
16 |
+
void launch_binomial_cuda_kernel(
|
17 |
+
TensorIteratorBase &iter, CUDAGeneratorImpl *gen);
|
18 |
+
|
19 |
+
void launch_dirichlet_kernel(TensorIteratorBase &iter);
|
20 |
+
|
21 |
+
void launch_standard_gamma_grad_kernel(TensorIteratorBase &iter);
|
22 |
+
|
23 |
+
void launch_dirichlet_grad_kernel(TensorIteratorBase &iter);
|
24 |
+
|
25 |
+
}} // namespace at::native
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/EmbeddingBackwardKernel.cuh
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <ATen/core/Tensor.h>
|
3 |
+
#include <ATen/cuda/Atomic.cuh>
|
4 |
+
#include <ATen/cuda/CUDAContext.h>
|
5 |
+
#include <ATen/TensorUtils.h>
|
6 |
+
|
7 |
+
namespace at {
|
8 |
+
namespace native {
|
9 |
+
|
10 |
+
Tensor embedding_backward_cuda_kernel(
|
11 |
+
const Tensor &grad,
|
12 |
+
const Tensor &orig_indices,
|
13 |
+
const Tensor &sorted_indices,
|
14 |
+
const Tensor &count,
|
15 |
+
int64_t num_weights,
|
16 |
+
int padding_idx = -1,
|
17 |
+
bool mode_mean = false,
|
18 |
+
const Tensor &offset2bag = Tensor(),
|
19 |
+
const Tensor &bag_size = Tensor(),
|
20 |
+
const Tensor &per_sample_weights = Tensor());
|
21 |
+
|
22 |
+
}}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/IndexKernel.h
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <c10/core/ScalarType.h>
|
3 |
+
#include <cstdint>
|
4 |
+
|
5 |
+
namespace at {
|
6 |
+
struct TensorIteratorBase;
|
7 |
+
class TensorBase;
|
8 |
+
}
|
9 |
+
|
10 |
+
namespace at {
|
11 |
+
namespace native {
|
12 |
+
/// @param maskPrefixSum[in,out]
|
13 |
+
void launch_masked_scatter_kernel(
|
14 |
+
const TensorBase &self, const TensorBase &mask,
|
15 |
+
const TensorBase &maskPrefixSum, const TensorBase &source);
|
16 |
+
}}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Math.cuh
ADDED
The diff for this file is too large to render.
See raw diff
|
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/MemoryAccess.cuh
ADDED
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <cstdint>
|
4 |
+
#include <type_traits>
|
5 |
+
#include <c10/core/DynamicCast.h>
|
6 |
+
#include <c10/util/Exception.h>
|
7 |
+
#include <c10/util/TypeCast.h>
|
8 |
+
#include <c10/macros/Macros.h>
|
9 |
+
#include <ATen/core/Array.h>
|
10 |
+
#include <ATen/detail/FunctionTraits.h>
|
11 |
+
#include <ATen/cuda/detail/OffsetCalculator.cuh>
|
12 |
+
#include <ATen/native/cuda/thread_constants.h>
|
13 |
+
|
14 |
+
#include <thrust/tuple.h>
|
15 |
+
|
16 |
+
// References:
|
17 |
+
// https://devblogs.nvidia.com/cuda-pro-tip-increase-performance-with-vectorized-memory-access/
|
18 |
+
|
19 |
+
namespace at { namespace native { namespace memory {
|
20 |
+
|
21 |
+
namespace detail {
|
22 |
+
|
23 |
+
// What does the `static_unroll` do?
|
24 |
+
//
|
25 |
+
// We want to do something like:
|
26 |
+
//
|
27 |
+
// using args_t = typename traits::ArgsTuple;
|
28 |
+
// args_t args;
|
29 |
+
// #pragma unroll
|
30 |
+
// for (int i = 0; i < traits::arity; i++) {
|
31 |
+
// std::get<i>(args) = ....
|
32 |
+
// }
|
33 |
+
//
|
34 |
+
// but unfortunately the above code does not work because
|
35 |
+
// the template argument has to be a compile time constant
|
36 |
+
// so `static_unroll` is created to simulate `#pragma unroll`
|
37 |
+
// using template metaprogramming.
|
38 |
+
|
39 |
+
template<template<int i> typename func, int end, int current=0>
|
40 |
+
struct static_unroll {
|
41 |
+
template<typename... Args>
|
42 |
+
static inline C10_HOST_DEVICE void with_args(Args&&... args) {
|
43 |
+
func<current>::apply(std::forward<Args>(args)...);
|
44 |
+
static_unroll<func, end, current+1>::with_args(args...);
|
45 |
+
}
|
46 |
+
};
|
47 |
+
|
48 |
+
template<template<int i> typename func, int end>
|
49 |
+
struct static_unroll<func, end, end> {
|
50 |
+
template<typename... Args>
|
51 |
+
static inline C10_HOST_DEVICE void with_args(Args... args) {}
|
52 |
+
};
|
53 |
+
|
54 |
+
// helper structs to be used with static_unroll to load arguments
|
55 |
+
// one by one
|
56 |
+
|
57 |
+
template<int arg_index>
|
58 |
+
struct vectorized_load_helper {
|
59 |
+
template <typename args_t, typename policy_t>
|
60 |
+
static __device__ void apply(policy_t &self, args_t *args, int idx) {
|
61 |
+
using arg_t = std::tuple_element_t<arg_index, args_t>;
|
62 |
+
// `data` hold the data_ptr for tensors [output, input0, input1, ...], so we
|
63 |
+
// need a +1 offset to get the input
|
64 |
+
auto ptr = reinterpret_cast<arg_t *>(self.data[arg_index + 1]) + block_work_size() * idx;
|
65 |
+
auto args_accessor = [&args] __device__ (int thread_unroll_idx) -> arg_t & { return std::get<arg_index>(args[thread_unroll_idx]); };
|
66 |
+
self.load_single_arg(args_accessor, ptr);
|
67 |
+
}
|
68 |
+
};
|
69 |
+
|
70 |
+
template<int arg_index>
|
71 |
+
struct unroll_load_helper {
|
72 |
+
template <typename args_t, typename policy_t, typename offset_t, typename loader_t>
|
73 |
+
static __device__ void apply(policy_t &self, args_t *args, offset_t offset, loader_t loader, int j, int num_outputs) {
|
74 |
+
using arg_t = std::tuple_element_t<arg_index, args_t>;
|
75 |
+
// `data` hold the data_ptr for tensors [output, input0, input1, ...], so we
|
76 |
+
// need a +1 offset to get the input
|
77 |
+
std::get<arg_index>(args[j]) = loader.template load<arg_t>(self.data[arg_index + num_outputs], offset[arg_index], arg_index);
|
78 |
+
}
|
79 |
+
};
|
80 |
+
|
81 |
+
template <int current>
|
82 |
+
struct multi_outputs_store_helper {
|
83 |
+
template<int ntensors, int num_outputs, typename ...Args>
|
84 |
+
C10_HOST_DEVICE static void apply(
|
85 |
+
at::detail::Array<char*, ntensors> data,
|
86 |
+
at::detail::Array<uint32_t, num_outputs> offsets,
|
87 |
+
thrust::tuple<Args...> ret) {
|
88 |
+
using T = typename thrust::tuple_element<current, thrust::tuple<Args...>>::type;
|
89 |
+
T *to = reinterpret_cast<T *>(data[current]) + offsets[current];
|
90 |
+
*to = thrust::get<current>(ret);
|
91 |
+
}
|
92 |
+
};
|
93 |
+
|
94 |
+
} // namespace detail
|
95 |
+
|
96 |
+
struct LoadWithoutCast {
|
97 |
+
template<typename scalar_t>
|
98 |
+
__device__ scalar_t load(char *base_ptr, uint32_t offset, int arg) {
|
99 |
+
return c10::load(reinterpret_cast<scalar_t *>(base_ptr) + offset);
|
100 |
+
}
|
101 |
+
};
|
102 |
+
|
103 |
+
template <int N>
|
104 |
+
struct LoadWithCast {
|
105 |
+
using array_t = at::detail::Array<at::ScalarType, std::max<int>(N, 1)>;
|
106 |
+
using size_array_t = at::detail::Array<uint32_t, std::max<int>(N, 1)>;
|
107 |
+
|
108 |
+
array_t dtypes;
|
109 |
+
size_array_t element_sizes;
|
110 |
+
|
111 |
+
LoadWithCast(const TensorIteratorBase& iter) {
|
112 |
+
assert(iter.ninputs() == N);
|
113 |
+
#pragma unroll
|
114 |
+
for (auto i = 0; i < N; ++i) {
|
115 |
+
this->dtypes[i] = iter.dtype(i + iter.noutputs());
|
116 |
+
element_sizes[i] = c10::elementSize(iter.dtype(i + iter.noutputs()));
|
117 |
+
}
|
118 |
+
}
|
119 |
+
|
120 |
+
template<typename scalar_t>
|
121 |
+
__device__ scalar_t load(char *base_ptr, uint32_t offset, int arg) {
|
122 |
+
void *ptr = base_ptr + element_sizes[arg] * offset;
|
123 |
+
return c10::fetch_and_cast<scalar_t>(dtypes[arg], ptr);
|
124 |
+
}
|
125 |
+
};
|
126 |
+
|
127 |
+
struct StoreWithoutCast {
|
128 |
+
template<typename scalar_t>
|
129 |
+
__device__ void store(scalar_t value, char *base_ptr, uint32_t offset, int arg = 0) {
|
130 |
+
*(reinterpret_cast<scalar_t *>(base_ptr) + offset) = value;
|
131 |
+
}
|
132 |
+
};
|
133 |
+
|
134 |
+
template <int N = 1>
|
135 |
+
struct StoreWithCast {
|
136 |
+
using array_t = at::detail::Array<at::ScalarType, std::max<int>(N, 1)>;
|
137 |
+
using size_array_t = at::detail::Array<uint32_t, std::max<int>(N, 1)>;
|
138 |
+
|
139 |
+
array_t dtypes;
|
140 |
+
size_array_t element_sizes;
|
141 |
+
|
142 |
+
StoreWithCast(const TensorIteratorBase& iter) {
|
143 |
+
assert(iter.noutputs() == N);
|
144 |
+
#pragma unroll
|
145 |
+
for (auto i = 0; i < N; ++i) {
|
146 |
+
this->dtypes[i] = iter.dtype(i);
|
147 |
+
element_sizes[i] = c10::elementSize(iter.dtype(i));
|
148 |
+
}
|
149 |
+
}
|
150 |
+
|
151 |
+
template<typename scalar_t>
|
152 |
+
__device__ void store(scalar_t value, char *base_ptr, uint32_t offset, int arg = 0) {
|
153 |
+
void *ptr = base_ptr + element_sizes[arg] * offset;
|
154 |
+
c10::cast_and_store<scalar_t>(dtypes[arg], ptr, value);
|
155 |
+
}
|
156 |
+
};
|
157 |
+
|
158 |
+
// aligned vector generates vectorized load/store on CUDA
|
159 |
+
template<typename scalar_t, int vec_size>
|
160 |
+
struct alignas(sizeof(scalar_t) * vec_size) aligned_vector {
|
161 |
+
scalar_t val[vec_size];
|
162 |
+
};
|
163 |
+
|
164 |
+
template <int vec_size, typename scalar_t>
|
165 |
+
__device__ aligned_vector<scalar_t, vec_size> load_vector(const scalar_t *base_ptr, uint32_t offset) {
|
166 |
+
using vec_t = aligned_vector<scalar_t, vec_size>;
|
167 |
+
auto *from = reinterpret_cast<const vec_t *>(base_ptr);
|
168 |
+
return from[offset];
|
169 |
+
}
|
170 |
+
|
171 |
+
template <int vec_size>
|
172 |
+
__device__ aligned_vector<bool, vec_size> load_vector(const bool *base_ptr, uint32_t offset) {
|
173 |
+
// See NOTE [Loading boolean values]
|
174 |
+
auto tmp = load_vector<vec_size>(reinterpret_cast<const uint8_t*>(base_ptr), offset);
|
175 |
+
aligned_vector<bool, vec_size> ret;
|
176 |
+
for (int i = 0; i < vec_size; ++i) {
|
177 |
+
ret.val[i] = bool(tmp.val[i]);
|
178 |
+
}
|
179 |
+
return ret;
|
180 |
+
}
|
181 |
+
|
182 |
+
namespace policies {
|
183 |
+
|
184 |
+
// Assumption:
|
185 |
+
// all tensors are contiguous, that is: stride == sizeof(type) for all tensors
|
186 |
+
template<typename data_t, typename inp_calc_t, typename out_calc_t, typename loader_t, typename storer_t, int num_outputs = 1>
|
187 |
+
struct unroll {
|
188 |
+
|
189 |
+
data_t data;
|
190 |
+
int remaining;
|
191 |
+
inp_calc_t input_offset_calculator;
|
192 |
+
out_calc_t output_offset_calculator;
|
193 |
+
loader_t loader;
|
194 |
+
storer_t storer;
|
195 |
+
|
196 |
+
__device__ unroll(data_t data, int remaining, inp_calc_t ic, out_calc_t oc, loader_t l, storer_t s):
|
197 |
+
data(data), remaining(remaining), input_offset_calculator(ic), output_offset_calculator(oc), loader(l), storer(s) {}
|
198 |
+
|
199 |
+
__device__ inline bool check_inbounds(int thread_work_elem) {
|
200 |
+
return ((threadIdx.x + thread_work_elem*num_threads()) < remaining);
|
201 |
+
}
|
202 |
+
|
203 |
+
template<typename args_t>
|
204 |
+
__device__ inline void load(args_t *args, int idx) {
|
205 |
+
constexpr int arity = std::tuple_size<args_t>::value;
|
206 |
+
int thread_idx = threadIdx.x;
|
207 |
+
#pragma unroll
|
208 |
+
for (int i = 0; i < thread_work_size(); i++) {
|
209 |
+
if (thread_idx >= remaining) {
|
210 |
+
return;
|
211 |
+
}
|
212 |
+
int linear_idx = thread_idx + block_work_size() * idx;
|
213 |
+
auto offset = input_offset_calculator.get(linear_idx);
|
214 |
+
detail::static_unroll<detail::unroll_load_helper, arity>::with_args(*this, args, offset, loader, i, num_outputs);
|
215 |
+
thread_idx += num_threads();
|
216 |
+
}
|
217 |
+
}
|
218 |
+
|
219 |
+
template<typename scalar_t>
|
220 |
+
__device__ inline void store(scalar_t *from, int idx) {
|
221 |
+
int thread_idx = threadIdx.x;
|
222 |
+
scalar_t *to = reinterpret_cast<scalar_t *>(data[0]) + block_work_size() * idx;
|
223 |
+
#pragma unroll
|
224 |
+
for (int i = 0; i < thread_work_size(); i++) {
|
225 |
+
if (thread_idx >= remaining) {
|
226 |
+
return;
|
227 |
+
}
|
228 |
+
int linear_idx = thread_idx + block_work_size() * idx;
|
229 |
+
int offset = output_offset_calculator.get(linear_idx)[0];
|
230 |
+
storer.store(from[i], data[0], offset);
|
231 |
+
thread_idx += num_threads();
|
232 |
+
}
|
233 |
+
}
|
234 |
+
};
|
235 |
+
|
236 |
+
// Assumption:
|
237 |
+
// all tensors are contiguous, that is: stride == sizeof(type) for all tensors
|
238 |
+
// Note:
|
239 |
+
// Functions in vectorized policy does not do boundary check. It assumes the whole block
|
240 |
+
// has its job to do. So the reminders should be handled by the caller manually.
|
241 |
+
template <int vec_size, typename data_t> // vec_size: number of scalars, can be 1, 2, or 4.
|
242 |
+
struct vectorized {
|
243 |
+
|
244 |
+
static_assert(thread_work_size() % vec_size == 0, "The workload per thread must be a multiple of vec_size");
|
245 |
+
static constexpr int loop_size = thread_work_size() / vec_size;
|
246 |
+
|
247 |
+
data_t data;
|
248 |
+
|
249 |
+
__device__ vectorized(data_t data) : data(data) {}
|
250 |
+
|
251 |
+
__device__ inline constexpr bool check_inbounds(int thread_work_elem) {
|
252 |
+
return true;
|
253 |
+
}
|
254 |
+
|
255 |
+
template<typename accessor_t, typename scalar_t>
|
256 |
+
__device__ inline void load_single_arg(accessor_t to, scalar_t *from) {
|
257 |
+
int thread_idx = threadIdx.x;
|
258 |
+
#pragma unroll
|
259 |
+
for (int i = 0; i < loop_size; i++) {
|
260 |
+
int index = thread_idx + i * num_threads();
|
261 |
+
auto v = load_vector<vec_size>(from, index);
|
262 |
+
#pragma unroll
|
263 |
+
for (int j = 0; j < vec_size; j++) {
|
264 |
+
to(vec_size * i + j) = v.val[j];
|
265 |
+
}
|
266 |
+
}
|
267 |
+
}
|
268 |
+
|
269 |
+
template<typename args_t>
|
270 |
+
__device__ inline void load(args_t *args, int idx) {
|
271 |
+
constexpr int arity = std::tuple_size<args_t>::value;
|
272 |
+
detail::static_unroll<detail::vectorized_load_helper, arity>::with_args(*this, args, idx);
|
273 |
+
}
|
274 |
+
|
275 |
+
template<typename scalar_t>
|
276 |
+
__device__ inline void store(scalar_t *from, int idx) {
|
277 |
+
using vec_t = aligned_vector<scalar_t, vec_size>;
|
278 |
+
scalar_t *to = reinterpret_cast<scalar_t *>(data[0]) + block_work_size() * idx;
|
279 |
+
vec_t *to_ = reinterpret_cast<vec_t *>(to);
|
280 |
+
int thread_idx = threadIdx.x;
|
281 |
+
#pragma unroll
|
282 |
+
for (int i = 0; i < loop_size; i++) {
|
283 |
+
int index = thread_idx + i * num_threads();
|
284 |
+
vec_t v;
|
285 |
+
for (int j = 0; j < vec_size; j++) {
|
286 |
+
v.val[j] = from[vec_size * i + j];
|
287 |
+
}
|
288 |
+
to_[index] = v;
|
289 |
+
}
|
290 |
+
}
|
291 |
+
};
|
292 |
+
|
293 |
+
template <typename data_t, typename inp_calc_t, typename out_calc_t, int num_outputs>
|
294 |
+
struct multi_outputs_unroll {
|
295 |
+
//multi_outputs_unroll struct members and check_inbounds and load methods are copypasted from unroll struct
|
296 |
+
//we don't use inheritance because of compiler bug in cuda 10.2+
|
297 |
+
data_t data;
|
298 |
+
int remaining;
|
299 |
+
inp_calc_t input_offset_calculator;
|
300 |
+
out_calc_t output_offset_calculator;
|
301 |
+
LoadWithoutCast loader;
|
302 |
+
StoreWithoutCast storer;
|
303 |
+
|
304 |
+
__device__ multi_outputs_unroll(data_t data, int remaining, inp_calc_t ic, out_calc_t oc):
|
305 |
+
data(data), remaining(remaining), input_offset_calculator(ic), output_offset_calculator(oc) {}
|
306 |
+
|
307 |
+
__device__ inline bool check_inbounds(int thread_work_elem) {
|
308 |
+
return ((threadIdx.x + thread_work_elem*num_threads()) < remaining);
|
309 |
+
}
|
310 |
+
|
311 |
+
template<typename args_t>
|
312 |
+
__device__ inline void load(args_t *args, int idx) {
|
313 |
+
constexpr int arity = std::tuple_size<args_t>::value;
|
314 |
+
int thread_idx = threadIdx.x;
|
315 |
+
#pragma unroll
|
316 |
+
for (int i = 0; i < thread_work_size(); i++) {
|
317 |
+
if (thread_idx >= remaining) {
|
318 |
+
return;
|
319 |
+
}
|
320 |
+
int linear_idx = thread_idx + block_work_size() * idx;
|
321 |
+
auto offset = input_offset_calculator.get(linear_idx);
|
322 |
+
detail::static_unroll<detail::unroll_load_helper, arity>::with_args(*this, args, offset, loader, i, num_outputs);
|
323 |
+
thread_idx += num_threads();
|
324 |
+
}
|
325 |
+
}
|
326 |
+
|
327 |
+
|
328 |
+
template <typename return_t>
|
329 |
+
__device__ inline void store(return_t *from, int idx) {
|
330 |
+
int thread_idx = threadIdx.x;
|
331 |
+
#pragma unroll
|
332 |
+
for (int i = 0; i < thread_work_size(); i++) {
|
333 |
+
if (thread_idx >= this->remaining) {
|
334 |
+
return;
|
335 |
+
}
|
336 |
+
int linear_idx = thread_idx + block_work_size() * idx;
|
337 |
+
auto offsets = this->output_offset_calculator.get(linear_idx);
|
338 |
+
memory::detail::static_unroll<detail::multi_outputs_store_helper, num_outputs>::with_args(this->data, offsets, from[i]);
|
339 |
+
thread_idx += num_threads();
|
340 |
+
}
|
341 |
+
}
|
342 |
+
};
|
343 |
+
|
344 |
+
} // namespace policies
|
345 |
+
|
346 |
+
// This is only used in host, but we will wrap this into some templates
|
347 |
+
// which is C10_HOST_DEVICE, so we have to make this C10_HOST_DEVICE
|
348 |
+
// in order to compile
|
349 |
+
template<typename scalar_t>
|
350 |
+
inline C10_HOST_DEVICE int can_vectorize_up_to(char *pointer) {
|
351 |
+
uint64_t address = reinterpret_cast<uint64_t>(pointer);
|
352 |
+
constexpr int vec2_alignment = std::alignment_of<aligned_vector<scalar_t, 2>>::value;
|
353 |
+
constexpr int vec4_alignment = std::alignment_of<aligned_vector<scalar_t, 4>>::value;
|
354 |
+
if (address % vec4_alignment == 0) {
|
355 |
+
return 4;
|
356 |
+
} else if (address % vec2_alignment == 0) {
|
357 |
+
return 2;
|
358 |
+
}
|
359 |
+
return 1;
|
360 |
+
}
|
361 |
+
|
362 |
+
template<int i>
|
363 |
+
struct can_vectorize_up_to_helper {
|
364 |
+
template <typename array_t, typename traits>
|
365 |
+
static C10_HOST_DEVICE void apply(int &result, array_t pointers, traits _) {
|
366 |
+
using arg_t = typename traits::template arg<i>::type;
|
367 |
+
// `pointers` hold the data_ptr for tensors [output, input0, input1, ...], so we
|
368 |
+
// need a +1 offset to get the input
|
369 |
+
result = std::min<int>(result, can_vectorize_up_to<arg_t>(pointers[i + 1]));
|
370 |
+
}
|
371 |
+
};
|
372 |
+
|
373 |
+
template<typename func_t, typename array_t>
|
374 |
+
inline int can_vectorize_up_to(array_t pointers) {
|
375 |
+
using traits = function_traits<func_t>;
|
376 |
+
using return_t = typename traits::result_type;
|
377 |
+
constexpr int arity = traits::arity;
|
378 |
+
int result = can_vectorize_up_to<return_t>(pointers[0]);
|
379 |
+
// We need to get the type for each argument of `func_t`, this can only
|
380 |
+
// be done at compile time.
|
381 |
+
detail::static_unroll<can_vectorize_up_to_helper, arity>::with_args(result, pointers, traits());
|
382 |
+
return result;
|
383 |
+
}
|
384 |
+
|
385 |
+
}}} // namespace at::native::memory
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/PersistentSoftmax.cuh
ADDED
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <cfloat>
|
4 |
+
#include <limits>
|
5 |
+
#include <stdint.h>
|
6 |
+
#include <cuda_fp16.h>
|
7 |
+
#include <c10/macros/Macros.h>
|
8 |
+
|
9 |
+
#include <ATen/cuda/DeviceUtils.cuh>
|
10 |
+
|
11 |
+
namespace {
|
12 |
+
|
13 |
+
int log2_ceil(int value) {
|
14 |
+
int log2_value = 0;
|
15 |
+
while ((1 << log2_value) < value) ++log2_value;
|
16 |
+
return log2_value;
|
17 |
+
}
|
18 |
+
|
19 |
+
template<typename T>
|
20 |
+
struct Add {
|
21 |
+
__device__ __forceinline__ T operator()(T a, T b) const {
|
22 |
+
return a + b;
|
23 |
+
}
|
24 |
+
};
|
25 |
+
|
26 |
+
template<typename T>
|
27 |
+
struct Max {
|
28 |
+
__device__ __forceinline__ T operator()(T a, T b) const {
|
29 |
+
return a < b ? b : a;
|
30 |
+
}
|
31 |
+
};
|
32 |
+
|
33 |
+
template <typename acc_t, int WARP_BATCH, int WARP_SIZE, template<typename> class ReduceOp>
|
34 |
+
__device__ __forceinline__ void warp_reduce(acc_t* sum) {
|
35 |
+
ReduceOp<acc_t> r;
|
36 |
+
#pragma unroll
|
37 |
+
for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2) {
|
38 |
+
#pragma unroll
|
39 |
+
for (int i = 0; i < WARP_BATCH; ++i) {
|
40 |
+
acc_t b = WARP_SHFL_XOR(sum[i], offset, WARP_SIZE);
|
41 |
+
sum[i] = r(sum[i], b);
|
42 |
+
}
|
43 |
+
}
|
44 |
+
}
|
45 |
+
|
46 |
+
// The softmax_warp_* methods perform softmax forward and backward propagation on samples spanning the fast dimension.
|
47 |
+
// Each sample contains element_count scalar elements. element_count can be any integer value <= 1024.
|
48 |
+
// The template arguments have the following meaning:
|
49 |
+
// One "WARP" works on one "BATCH". One "BATCH" contains "WARP_BATCH" samples.
|
50 |
+
// WARP_BATCH is equal to 1 when element_count is large, and > 1 when element_count is small.
|
51 |
+
// A "WARP" contains "C10_WARPS_SIZE" threads, these treads are guaranteed to belong to the same warp.
|
52 |
+
// This is important because it means only __shfl_ instructions are required for reductions.
|
53 |
+
// Note that this means WARP_SIZE must be a power of two and <= architecture warp size.
|
54 |
+
// CUDA warp size is 32 for all existing GPU architectures, but there is no guarantee this will not change for future arch.
|
55 |
+
// ROCm warp size is 64 for all currently ROCm-supported GPU architectures, but this may change for future archs.
|
56 |
+
// is_log_softmax is a flag indicating whether SoftMax or LogSoftMax should be computed.
|
57 |
+
// is_masked is a flag indicating whether SoftMax or MaskedSoftMax should be computed.
|
58 |
+
// The template can be instantiated with any floating point type for the type arguments input_t, output_t and acc_t.
|
59 |
+
// This allows SoftMax to be fused with a cast immediately following the SoftMax.
|
60 |
+
// The mask should have the same shape as input, with a boolean indicate if the value is masked.
|
61 |
+
// The head_chunk_size is only used for transformer mask softmax, equals to H * D * D.
|
62 |
+
// For instance:
|
63 |
+
// input_t=half, acc_t=float, output_t=half => read half tensor, float accumulators, write half tensor.
|
64 |
+
// input_t=half, acc_t=float, output_t=float => read half tensor, float accumulators, write float tensor.
|
65 |
+
// input_t_float, acc_t=float, output_t=half => read float tensor, float accumulators, write half tensor.
|
66 |
+
|
67 |
+
template <typename input_t, typename output_t, typename acc_t, int log2_elements, bool is_log_softmax, bool is_masked>
|
68 |
+
__global__ void softmax_warp_forward(output_t *dst, const input_t *src, int batch_size, int stride, int element_count, const bool *mask = nullptr, const int head_chunk_size = -1, bool is_transformer_mask = false)
|
69 |
+
{
|
70 |
+
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and warp_size of method warp_softmax_forward_kernel.
|
71 |
+
constexpr int next_power_of_two = 1 << log2_elements;
|
72 |
+
constexpr int WARP_SIZE = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
|
73 |
+
constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE;
|
74 |
+
constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1;
|
75 |
+
|
76 |
+
int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * WARP_BATCH;
|
77 |
+
|
78 |
+
// batch_size might not be a multiple of WARP_BATCH. Check how
|
79 |
+
// many batches have to computed within this WARP.
|
80 |
+
int local_batches = batch_size - first_batch;
|
81 |
+
if (local_batches > WARP_BATCH)
|
82 |
+
local_batches = WARP_BATCH;
|
83 |
+
|
84 |
+
// there might be multiple batches per warp. compute the index within the batch
|
85 |
+
int local_idx = threadIdx.x;
|
86 |
+
int idx_offset = first_batch * stride + local_idx;
|
87 |
+
|
88 |
+
src += idx_offset;
|
89 |
+
dst += idx_offset;
|
90 |
+
|
91 |
+
if (is_transformer_mask) {
|
92 |
+
mask += ((first_batch * stride) / head_chunk_size) * stride + local_idx;
|
93 |
+
} else {
|
94 |
+
mask += idx_offset;
|
95 |
+
}
|
96 |
+
// The nested loops over WARP_BATCH and then WARP_ITERATIONS can be simplified to one loop,
|
97 |
+
// but I think doing so would obfuscate the logic of the algorithm, thus I chose to keep
|
98 |
+
// the nested loops.
|
99 |
+
// This should have no impact on performance because the loops are unrolled anyway.
|
100 |
+
|
101 |
+
// load data from global memory
|
102 |
+
acc_t elements[WARP_BATCH][WARP_ITERATIONS];
|
103 |
+
for (int i = 0; i < WARP_BATCH; ++i) {
|
104 |
+
int batch_element_count = (i >= local_batches) ? 0 : element_count;
|
105 |
+
for (int it = 0; it < WARP_ITERATIONS; ++it) {
|
106 |
+
int element_index = local_idx + it * WARP_SIZE;
|
107 |
+
if (element_index < batch_element_count) {
|
108 |
+
elements[i][it] = src[i*element_count+it*WARP_SIZE];
|
109 |
+
} else {
|
110 |
+
elements[i][it] = -std::numeric_limits<acc_t>::infinity();
|
111 |
+
}
|
112 |
+
}
|
113 |
+
}
|
114 |
+
|
115 |
+
// compute max_value
|
116 |
+
acc_t max_value[WARP_BATCH];
|
117 |
+
#pragma unroll
|
118 |
+
for (int i = 0; i < WARP_BATCH; ++i) {
|
119 |
+
int batch_element_count = (i >= local_batches) ? 0 : element_count;
|
120 |
+
bool is_meaningful_max = false;
|
121 |
+
max_value[i] = elements[i][0];
|
122 |
+
#pragma unroll
|
123 |
+
for (int it = 0; it < WARP_ITERATIONS; ++it) {
|
124 |
+
if (is_masked) {
|
125 |
+
int idx = it*WARP_SIZE;
|
126 |
+
if ((idx + local_idx) < batch_element_count) {
|
127 |
+
if (!is_transformer_mask) {
|
128 |
+
idx += i*element_count;
|
129 |
+
}
|
130 |
+
if (!mask[idx]) {
|
131 |
+
max_value[i] = (is_meaningful_max && max_value[i] > elements[i][it]) ? max_value[i] : elements[i][it];
|
132 |
+
is_meaningful_max = true;
|
133 |
+
}
|
134 |
+
}
|
135 |
+
} else {
|
136 |
+
max_value[i] = max_value[i] > elements[i][it] ? max_value[i] : elements[i][it];
|
137 |
+
}
|
138 |
+
}
|
139 |
+
if (is_masked) {
|
140 |
+
if (!is_meaningful_max) {
|
141 |
+
max_value[i] = -std::numeric_limits<acc_t>::infinity();
|
142 |
+
}
|
143 |
+
}
|
144 |
+
}
|
145 |
+
warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Max>(max_value);
|
146 |
+
|
147 |
+
acc_t sum[WARP_BATCH] { 0.0f };
|
148 |
+
#pragma unroll
|
149 |
+
for (int i = 0; i < WARP_BATCH; ++i) {
|
150 |
+
int batch_element_count = (i >= local_batches) ? 0 : element_count;
|
151 |
+
#pragma unroll
|
152 |
+
for (int it = 0; it < WARP_ITERATIONS; ++it) {
|
153 |
+
if (!is_masked) {
|
154 |
+
if (is_log_softmax) {
|
155 |
+
sum[i] += std::exp(elements[i][it] - max_value[i]);
|
156 |
+
} else {
|
157 |
+
elements[i][it] = std::exp(elements[i][it] - max_value[i]);
|
158 |
+
sum[i] += elements[i][it];
|
159 |
+
}
|
160 |
+
} else {
|
161 |
+
int idx = it*WARP_SIZE;
|
162 |
+
bool valid = (idx + local_idx) < batch_element_count;
|
163 |
+
if (!is_transformer_mask) {
|
164 |
+
idx += i*element_count;
|
165 |
+
}
|
166 |
+
if (valid) {
|
167 |
+
if (!mask[idx]) {
|
168 |
+
if (is_log_softmax) {
|
169 |
+
sum[i] += std::exp(elements[i][it] - max_value[i]);
|
170 |
+
} else {
|
171 |
+
elements[i][it] = std::exp(elements[i][it] - max_value[i]);
|
172 |
+
sum[i] += elements[i][it];
|
173 |
+
}
|
174 |
+
} else {
|
175 |
+
if (!is_log_softmax) {
|
176 |
+
// Masked values are treated as -infinity, and std::exp(-infinity) is 0.
|
177 |
+
elements[i][it] = 0;
|
178 |
+
}
|
179 |
+
}
|
180 |
+
} else {
|
181 |
+
if (!is_log_softmax) {
|
182 |
+
elements[i][it] = 0.;
|
183 |
+
}
|
184 |
+
}
|
185 |
+
}
|
186 |
+
}
|
187 |
+
}
|
188 |
+
warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Add>(sum);
|
189 |
+
|
190 |
+
// store result
|
191 |
+
#pragma unroll
|
192 |
+
for (int i = 0; i < WARP_BATCH; ++i) {
|
193 |
+
if (i >= local_batches)
|
194 |
+
break;
|
195 |
+
if (is_log_softmax) sum[i] = std::log(sum[i]);
|
196 |
+
#pragma unroll
|
197 |
+
for (int it = 0; it < WARP_ITERATIONS; ++it) {
|
198 |
+
int element_index = local_idx + it * WARP_SIZE;
|
199 |
+
if (element_index < element_count) {
|
200 |
+
if (is_log_softmax) {
|
201 |
+
dst[i*element_count+it*WARP_SIZE] = elements[i][it] - max_value[i] - sum[i];
|
202 |
+
} else if (sum[i] == 0) {
|
203 |
+
dst[i*element_count+it*WARP_SIZE] = std::numeric_limits<acc_t>::quiet_NaN();
|
204 |
+
} else {
|
205 |
+
dst[i*element_count+it*WARP_SIZE] = elements[i][it] / sum[i];
|
206 |
+
}
|
207 |
+
} else {
|
208 |
+
break;
|
209 |
+
}
|
210 |
+
}
|
211 |
+
}
|
212 |
+
}
|
213 |
+
|
214 |
+
template <typename input_t, typename output_t, typename acc_t, int log2_elements, bool is_log_softmax, bool is_masked>
|
215 |
+
__global__ void softmax_warp_backward(output_t *gradInput, const input_t *grad, const input_t *output, int batch_size, int stride, int element_count, const bool *mask = nullptr)
|
216 |
+
{
|
217 |
+
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and warp_size of method warp_softmax_backward_kernel.
|
218 |
+
constexpr int next_power_of_two = 1 << log2_elements;
|
219 |
+
constexpr int WARP_SIZE = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
|
220 |
+
constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE;
|
221 |
+
constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1;
|
222 |
+
|
223 |
+
int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * WARP_BATCH;
|
224 |
+
|
225 |
+
// batch_size might not be a multiple of WARP_BATCH. Check how
|
226 |
+
// many batches have to computed within this WARP.
|
227 |
+
int local_batches = batch_size - first_batch;
|
228 |
+
if (local_batches > WARP_BATCH)
|
229 |
+
local_batches = WARP_BATCH;
|
230 |
+
|
231 |
+
// there might be multiple batches per warp. compute the index within the batch
|
232 |
+
int local_idx = threadIdx.x % WARP_SIZE;
|
233 |
+
|
234 |
+
// the first element to process by the current thread
|
235 |
+
int thread_offset = first_batch * stride + local_idx;
|
236 |
+
grad += thread_offset;
|
237 |
+
output += thread_offset;
|
238 |
+
gradInput += thread_offset;
|
239 |
+
if (is_masked) {
|
240 |
+
mask += thread_offset;
|
241 |
+
}
|
242 |
+
|
243 |
+
// The nested loops over WARP_BATCH and then WARP_ITERATIONS can be simplified to one loop,
|
244 |
+
// but I think doing so would obfuscate the logic of the algorithm, thus I chose to keep
|
245 |
+
// the nested loops.
|
246 |
+
// This should have no impact on performance because the loops are unrolled anyway.
|
247 |
+
|
248 |
+
// load data from global memory
|
249 |
+
acc_t grad_reg[WARP_BATCH][WARP_ITERATIONS];
|
250 |
+
acc_t output_reg[WARP_BATCH][WARP_ITERATIONS];
|
251 |
+
for (int i = 0; i < WARP_BATCH; ++i) {
|
252 |
+
int batch_element_count = (i >= local_batches) ? 0 : element_count;
|
253 |
+
for (int it = 0; it < WARP_ITERATIONS; ++it) {
|
254 |
+
int element_index = local_idx + it * WARP_SIZE;
|
255 |
+
if (element_index < batch_element_count) {
|
256 |
+
grad_reg[i][it] = grad[i*element_count+it*WARP_SIZE];
|
257 |
+
output_reg[i][it] = output[i*element_count+it*WARP_SIZE];
|
258 |
+
} else {
|
259 |
+
grad_reg[i][it] = acc_t(0);
|
260 |
+
output_reg[i][it] = acc_t(0);
|
261 |
+
}
|
262 |
+
}
|
263 |
+
}
|
264 |
+
|
265 |
+
acc_t sum[WARP_BATCH] { 0.0f };
|
266 |
+
#pragma unroll
|
267 |
+
for (int i = 0; i < WARP_BATCH; ++i) {
|
268 |
+
#pragma unroll
|
269 |
+
for (int it = 0; it < WARP_ITERATIONS; ++it) {
|
270 |
+
if (!is_masked || !mask[i*element_count+it*WARP_SIZE]) {
|
271 |
+
sum[i] += grad_reg[i][it];
|
272 |
+
}
|
273 |
+
}
|
274 |
+
}
|
275 |
+
warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Add>(sum);
|
276 |
+
|
277 |
+
// store result
|
278 |
+
#pragma unroll
|
279 |
+
for (int i = 0; i < WARP_BATCH; ++i) {
|
280 |
+
if (i >= local_batches)
|
281 |
+
break;
|
282 |
+
#pragma unroll
|
283 |
+
for (int it = 0; it < WARP_ITERATIONS; ++it) {
|
284 |
+
int element_index = local_idx + it * WARP_SIZE;
|
285 |
+
if (element_index < element_count) {
|
286 |
+
if (is_masked && mask[i*element_count+it*WARP_SIZE]) {
|
287 |
+
gradInput[i*element_count+it*WARP_SIZE] = 0;
|
288 |
+
}
|
289 |
+
// compute gradients
|
290 |
+
else if (is_log_softmax) {
|
291 |
+
gradInput[i*element_count+it*WARP_SIZE] = (grad_reg[i][it] - std::exp(output_reg[i][it]) * sum[i]);
|
292 |
+
} else {
|
293 |
+
gradInput[i*element_count+it*WARP_SIZE] = (grad_reg[i][it] - output_reg[i][it] * sum[i]);
|
294 |
+
}
|
295 |
+
}
|
296 |
+
}
|
297 |
+
}
|
298 |
+
}
|
299 |
+
|
300 |
+
} // end of anonymous namespace
|
301 |
+
|
302 |
+
template<typename input_t, typename output_t, typename acc_t, bool is_log_softmax, bool is_masked>
|
303 |
+
void dispatch_softmax_forward(output_t *dst, const input_t *src, int softmax_elements, int softmax_elements_stride, int batch_count, const bool *mask = nullptr, int chunk_size = -1, bool is_transformer_mask = false)
|
304 |
+
{
|
305 |
+
TORCH_INTERNAL_ASSERT( softmax_elements >= 0 && softmax_elements <= 1024 );
|
306 |
+
if (softmax_elements == 0) {
|
307 |
+
return;
|
308 |
+
} else {
|
309 |
+
int log2_elements = log2_ceil(softmax_elements);
|
310 |
+
const int next_power_of_two = 1 << log2_elements;
|
311 |
+
|
312 |
+
// This value must match the WARP_SIZE constexpr value computed inside softmax_warp_forward.
|
313 |
+
int warp_size = at::cuda::warp_size();
|
314 |
+
warp_size = (next_power_of_two < warp_size) ? next_power_of_two : warp_size;
|
315 |
+
|
316 |
+
// This value must match the WARP_BATCH constexpr value computed inside softmax_warp_forward.
|
317 |
+
int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1;
|
318 |
+
|
319 |
+
// use 128 threads per block to maximimize gpu utilization
|
320 |
+
constexpr int threads_per_block = 128;
|
321 |
+
|
322 |
+
int warps_per_block = (threads_per_block / warp_size);
|
323 |
+
int batches_per_block = warps_per_block * batches_per_warp;
|
324 |
+
int blocks = (batch_count + batches_per_block - 1) / batches_per_block;
|
325 |
+
dim3 threads(warp_size, warps_per_block, 1);
|
326 |
+
// Launch code would be more elegant if C++ supported FOR CONSTEXPR
|
327 |
+
switch (log2_elements) {
|
328 |
+
#define LAUNCH_SOFTMAX_WARP_FORWARD(L2E) case L2E: \
|
329 |
+
softmax_warp_forward<input_t, output_t, acc_t, L2E, is_log_softmax, is_masked> \
|
330 |
+
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, \
|
331 |
+
src, batch_count, softmax_elements_stride, softmax_elements, mask, chunk_size, is_transformer_mask); \
|
332 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK(); \
|
333 |
+
break;
|
334 |
+
|
335 |
+
LAUNCH_SOFTMAX_WARP_FORWARD(0); // 1
|
336 |
+
LAUNCH_SOFTMAX_WARP_FORWARD(1); // 2
|
337 |
+
LAUNCH_SOFTMAX_WARP_FORWARD(2); // 4
|
338 |
+
LAUNCH_SOFTMAX_WARP_FORWARD(3); // 8
|
339 |
+
LAUNCH_SOFTMAX_WARP_FORWARD(4); // 16
|
340 |
+
LAUNCH_SOFTMAX_WARP_FORWARD(5); // 32
|
341 |
+
LAUNCH_SOFTMAX_WARP_FORWARD(6); // 64
|
342 |
+
LAUNCH_SOFTMAX_WARP_FORWARD(7); // 128
|
343 |
+
LAUNCH_SOFTMAX_WARP_FORWARD(8); // 256
|
344 |
+
LAUNCH_SOFTMAX_WARP_FORWARD(9); // 512
|
345 |
+
LAUNCH_SOFTMAX_WARP_FORWARD(10); ; // 1024
|
346 |
+
default:
|
347 |
+
break;
|
348 |
+
}
|
349 |
+
}
|
350 |
+
}
|
351 |
+
|
352 |
+
template<typename input_t, typename output_t, typename acc_t, bool is_log_softmax, bool is_masked>
|
353 |
+
void dispatch_softmax_backward(output_t *grad_input, const input_t *grad, const input_t *output, int softmax_elements, int softmax_elements_stride, int batch_count, const bool *mask = nullptr)
|
354 |
+
{
|
355 |
+
TORCH_INTERNAL_ASSERT( softmax_elements >= 0 && softmax_elements <= 1024 );
|
356 |
+
if (softmax_elements == 0) {
|
357 |
+
return;
|
358 |
+
} else {
|
359 |
+
int log2_elements = log2_ceil(softmax_elements);
|
360 |
+
const int next_power_of_two = 1 << log2_elements;
|
361 |
+
|
362 |
+
// This value must match the WARP_SIZE constexpr value computed inside softmax_warp_backward.
|
363 |
+
int warp_size = at::cuda::warp_size();
|
364 |
+
warp_size = (next_power_of_two < warp_size) ? next_power_of_two : warp_size;
|
365 |
+
|
366 |
+
// This value must match the WARP_BATCH constexpr value computed inside softmax_warp_backward.
|
367 |
+
int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1;
|
368 |
+
|
369 |
+
// use 128 threads per block to maximimize gpu utilization
|
370 |
+
constexpr int threads_per_block = 128;
|
371 |
+
|
372 |
+
int warps_per_block = (threads_per_block / warp_size);
|
373 |
+
int batches_per_block = warps_per_block * batches_per_warp;
|
374 |
+
int blocks = (batch_count + batches_per_block - 1) / batches_per_block;
|
375 |
+
dim3 threads(warp_size, warps_per_block, 1);
|
376 |
+
// Launch code would be more elegant if C++ supported FOR CONSTEXPR
|
377 |
+
switch (log2_elements) {
|
378 |
+
#define LAUNCH_SOFTMAX_WARP_BACKWARD(L2E) case L2E: \
|
379 |
+
softmax_warp_backward<input_t, output_t, acc_t, L2E, is_log_softmax, is_masked> \
|
380 |
+
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>> \
|
381 |
+
(grad_input, grad, output, batch_count, softmax_elements_stride, \
|
382 |
+
softmax_elements, mask); \
|
383 |
+
C10_CUDA_KERNEL_LAUNCH_CHECK(); \
|
384 |
+
break;
|
385 |
+
|
386 |
+
LAUNCH_SOFTMAX_WARP_BACKWARD(0); // 1
|
387 |
+
LAUNCH_SOFTMAX_WARP_BACKWARD(1); // 2
|
388 |
+
LAUNCH_SOFTMAX_WARP_BACKWARD(2); // 4
|
389 |
+
LAUNCH_SOFTMAX_WARP_BACKWARD(3); // 8
|
390 |
+
LAUNCH_SOFTMAX_WARP_BACKWARD(4); // 16
|
391 |
+
LAUNCH_SOFTMAX_WARP_BACKWARD(5); // 32
|
392 |
+
LAUNCH_SOFTMAX_WARP_BACKWARD(6); // 64
|
393 |
+
LAUNCH_SOFTMAX_WARP_BACKWARD(7); // 128
|
394 |
+
LAUNCH_SOFTMAX_WARP_BACKWARD(8); // 256
|
395 |
+
LAUNCH_SOFTMAX_WARP_BACKWARD(9); // 512
|
396 |
+
LAUNCH_SOFTMAX_WARP_BACKWARD(10); // 1024
|
397 |
+
default:
|
398 |
+
break;
|
399 |
+
}
|
400 |
+
}
|
401 |
+
}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Resize.h
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <ATen/EmptyTensor.h>
|
4 |
+
#include <ATen/native/ResizeCommon.h>
|
5 |
+
|
6 |
+
#include <c10/cuda/CUDAGuard.h>
|
7 |
+
|
8 |
+
namespace at { namespace native {
|
9 |
+
|
10 |
+
TORCH_CUDA_CPP_API void resize_bytes_cuda(StorageImpl* storage, size_t size_bytes);
|
11 |
+
|
12 |
+
static inline void maybe_resize_storage_cuda(TensorImpl* self, size_t new_size_bytes) {
|
13 |
+
// It does not make sense to try to resize a storage
|
14 |
+
// to hold 0 elements, and this can break
|
15 |
+
// if storage_offset is positive but
|
16 |
+
// new_size is 0, so just bail in that case
|
17 |
+
// (same comment is in Resize.h)
|
18 |
+
if (self->numel() == 0) {
|
19 |
+
return;
|
20 |
+
}
|
21 |
+
|
22 |
+
const Storage &storage = self->unsafe_storage();
|
23 |
+
TORCH_CHECK(storage, "Tensor: invalid null storage");
|
24 |
+
if (new_size_bytes > storage.nbytes()) {
|
25 |
+
resize_bytes_cuda(storage.unsafeGetStorageImpl(), new_size_bytes);
|
26 |
+
}
|
27 |
+
}
|
28 |
+
|
29 |
+
inline TensorImpl* resize_impl_cuda_(
|
30 |
+
TensorImpl* self,
|
31 |
+
IntArrayRef size,
|
32 |
+
at::OptionalIntArrayRef stride,
|
33 |
+
bool device_guard = true) {
|
34 |
+
if (self->sizes() == size && (!stride || self->strides() == stride)) {
|
35 |
+
return self;
|
36 |
+
}
|
37 |
+
|
38 |
+
// NB: We don't need to hold the device guard when calling from TH
|
39 |
+
cuda::OptionalCUDAGuard guard;
|
40 |
+
if (device_guard) {
|
41 |
+
guard.set_index(self->storage().device().index());
|
42 |
+
}
|
43 |
+
|
44 |
+
const auto itemsize = self->dtype().itemsize();
|
45 |
+
const auto storage_offset = self->storage_offset();
|
46 |
+
size_t storage_size = 1;
|
47 |
+
if (stride) {
|
48 |
+
self->set_sizes_and_strides(size, *stride);
|
49 |
+
storage_size = at::detail::computeStorageNbytes(
|
50 |
+
size, *stride, itemsize, storage_offset);
|
51 |
+
} else {
|
52 |
+
self->set_sizes_contiguous(size);
|
53 |
+
storage_size = at::detail::computeStorageNbytesContiguous(
|
54 |
+
size, itemsize, storage_offset);
|
55 |
+
}
|
56 |
+
maybe_resize_storage_cuda(self, storage_size);
|
57 |
+
|
58 |
+
return self;
|
59 |
+
}
|
60 |
+
|
61 |
+
}}
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/ScanKernels.h
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <cstdint>
|
3 |
+
|
4 |
+
namespace at {
|
5 |
+
class TensorBase;
|
6 |
+
|
7 |
+
namespace native {
|
8 |
+
|
9 |
+
// NOTE: these functions require output tensors to be contiguous
|
10 |
+
void launch_cummax_cuda_kernel(const TensorBase& self, const TensorBase& values,
|
11 |
+
const TensorBase& indices, int64_t dim);
|
12 |
+
void launch_cummin_cuda_kernel(const TensorBase& self, const TensorBase& values,
|
13 |
+
const TensorBase& indices, int64_t dim);
|
14 |
+
void launch_logcumsumexp_cuda_kernel(const TensorBase& result, const TensorBase& self, int64_t dim);
|
15 |
+
void launch_cumsum_cuda_kernel(const TensorBase& result, const TensorBase& self, int64_t dim);
|
16 |
+
void launch_cumprod_cuda_kernel(const TensorBase& result, const TensorBase& self, int64_t dim);
|
17 |
+
|
18 |
+
}} // namespace at::native
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/Sorting.h
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
#include <cstdint>
|
3 |
+
|
4 |
+
namespace at {
|
5 |
+
class TensorBase;
|
6 |
+
}
|
7 |
+
|
8 |
+
namespace at {
|
9 |
+
namespace native {
|
10 |
+
|
11 |
+
void launch_kthvalue_kernel(
|
12 |
+
const TensorBase &values, const TensorBase &indices,
|
13 |
+
const TensorBase &self, int64_t dim, int64_t k);
|
14 |
+
void launch_median_kernel(
|
15 |
+
const TensorBase &vals, const TensorBase &inds,
|
16 |
+
const TensorBase &in, int64_t dim, bool ignore_nan);
|
17 |
+
|
18 |
+
}} // namespace at::native
|
env-llmeval/lib/python3.10/site-packages/torch/include/ATen/native/cuda/SortingRadixSelect.cuh
ADDED
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <ATen/ceil_div.h>
|
2 |
+
#include <ATen/cuda/Atomic.cuh>
|
3 |
+
#include <ATen/cuda/DeviceUtils.cuh>
|
4 |
+
#include <ATen/cuda/AsmUtils.cuh>
|
5 |
+
#include <c10/macros/Macros.h>
|
6 |
+
|
7 |
+
namespace at {
|
8 |
+
namespace native {
|
9 |
+
|
10 |
+
template <typename scalar_t>
|
11 |
+
struct TopKTypeConfig {};
|
12 |
+
|
13 |
+
template <>
|
14 |
+
struct TopKTypeConfig<float> {
|
15 |
+
typedef uint32_t RadixType;
|
16 |
+
|
17 |
+
// Converts a float to an integer representation with the same
|
18 |
+
// sorting; i.e., for floats f1, f2:
|
19 |
+
// if f1 < f2 then convert(f1) < convert(f2)
|
20 |
+
// We use this to enable radix selection of floating-point values.
|
21 |
+
// This also gives a relative order for NaNs, but that's ok, as they
|
22 |
+
// will all be adjacent
|
23 |
+
// neg inf: signbit=1 exp=ff fraction=0 --> radix = 0 00 ff..
|
24 |
+
// pos inf: signbit=0 exp=ff fraction=0 --> radix = 1 ff 00..
|
25 |
+
// pos nan: signbit=0 exp=ff fraction>0 --> radix = 1 ff x>0
|
26 |
+
// neg nan: signbit=1 exp=ff fraction>0 --> radix = 0 00 x<ff...
|
27 |
+
static inline __device__ RadixType convert(float v) {
|
28 |
+
RadixType x = __float_as_int(v);
|
29 |
+
RadixType mask = (x & 0x80000000) ? 0xffffffff : 0x80000000;
|
30 |
+
|
31 |
+
return (v == v) ? (x ^ mask) : 0xffffffff;
|
32 |
+
}
|
33 |
+
|
34 |
+
static inline __device__ float deconvert(RadixType v) {
|
35 |
+
RadixType mask = (v & 0x80000000) ? 0x80000000 : 0xffffffff;
|
36 |
+
|
37 |
+
return __int_as_float(v ^ mask);
|
38 |
+
}
|
39 |
+
};
|
40 |
+
|
41 |
+
template <>
|
42 |
+
struct TopKTypeConfig<uint8_t> {
|
43 |
+
typedef uint32_t RadixType;
|
44 |
+
|
45 |
+
static inline __device__ RadixType convert(uint8_t v) {
|
46 |
+
return v;
|
47 |
+
}
|
48 |
+
|
49 |
+
static inline __device__ uint8_t deconvert(RadixType v) {
|
50 |
+
return v;
|
51 |
+
}
|
52 |
+
};
|
53 |
+
|
54 |
+
template <>
|
55 |
+
struct TopKTypeConfig<int8_t> {
|
56 |
+
typedef uint32_t RadixType;
|
57 |
+
|
58 |
+
static inline __device__ RadixType convert(int8_t v) {
|
59 |
+
return 128u + v;
|
60 |
+
}
|
61 |
+
|
62 |
+
static inline __device__ int8_t deconvert(RadixType v) {
|
63 |
+
return v - 128;
|
64 |
+
}
|
65 |
+
};
|
66 |
+
|
67 |
+
template <>
|
68 |
+
struct TopKTypeConfig<int16_t> {
|
69 |
+
typedef uint32_t RadixType;
|
70 |
+
|
71 |
+
static inline __device__ RadixType convert(int16_t v) {
|
72 |
+
static_assert(sizeof(short) == 2, "");
|
73 |
+
return 32768u + v;
|
74 |
+
}
|
75 |
+
|
76 |
+
static inline __device__ int16_t deconvert(RadixType v) {
|
77 |
+
return v - 32768;
|
78 |
+
}
|
79 |
+
};
|
80 |
+
|
81 |
+
template <>
|
82 |
+
struct TopKTypeConfig<int32_t> {
|
83 |
+
typedef uint32_t RadixType;
|
84 |
+
|
85 |
+
static inline __device__ RadixType convert(int32_t v) {
|
86 |
+
static_assert(sizeof(int) == 4, "");
|
87 |
+
return 2147483648u + v;
|
88 |
+
}
|
89 |
+
|
90 |
+
static inline __device__ int32_t deconvert(RadixType v) {
|
91 |
+
return v - 2147483648u;
|
92 |
+
}
|
93 |
+
};
|
94 |
+
|
95 |
+
template <>
|
96 |
+
struct TopKTypeConfig<int64_t> {
|
97 |
+
typedef uint64_t RadixType;
|
98 |
+
|
99 |
+
static inline __device__ RadixType convert(int64_t v) {
|
100 |
+
static_assert(sizeof(int64_t) == 8, "");
|
101 |
+
return 9223372036854775808ull + v;
|
102 |
+
}
|
103 |
+
|
104 |
+
static inline __device__ int64_t deconvert(RadixType v) {
|
105 |
+
return v - 9223372036854775808ull;
|
106 |
+
}
|
107 |
+
};
|
108 |
+
|
109 |
+
template <>
|
110 |
+
struct TopKTypeConfig<double> {
|
111 |
+
typedef uint64_t RadixType;
|
112 |
+
|
113 |
+
static inline __device__ RadixType convert(double v) {
|
114 |
+
RadixType x = __double_as_longlong(v);
|
115 |
+
RadixType mask = -((x >> 63)) | 0x8000000000000000;
|
116 |
+
return (v == v) ? (x ^ mask) : 0xffffffffffffffff;
|
117 |
+
}
|
118 |
+
|
119 |
+
static inline __device__ double deconvert(RadixType v) {
|
120 |
+
RadixType mask = ((v >> 63) - 1) | 0x8000000000000000;
|
121 |
+
return __longlong_as_double(v ^ mask);
|
122 |
+
}
|
123 |
+
};
|
124 |
+
|
125 |
+
template <>
|
126 |
+
struct TopKTypeConfig<at::Half> {
|
127 |
+
typedef uint32_t RadixType;
|
128 |
+
|
129 |
+
static inline __device__ RadixType convert(at::Half v) {
|
130 |
+
#if defined(__CUDA_ARCH__) || defined(USE_ROCM)
|
131 |
+
RadixType x = __half_as_ushort(v);
|
132 |
+
RadixType mask = (x & 0x00008000) ? 0x0000ffff : 0x00008000;
|
133 |
+
return (v == v) ? (x ^ mask) : 0xffff;
|
134 |
+
#else
|
135 |
+
CUDA_KERNEL_ASSERT(false);
|
136 |
+
return 0u;
|
137 |
+
#endif
|
138 |
+
}
|
139 |
+
|
140 |
+
static inline __device__ at::Half deconvert(RadixType v) {
|
141 |
+
#if defined(__CUDA_ARCH__) || defined(USE_ROCM)
|
142 |
+
RadixType mask = (v & 0x00008000) ? 0x00008000 : 0x0000ffff;
|
143 |
+
return __ushort_as_half(v ^ mask);
|
144 |
+
#else
|
145 |
+
CUDA_KERNEL_ASSERT(false);
|
146 |
+
return static_cast<at::Half>(0);
|
147 |
+
#endif
|
148 |
+
}
|
149 |
+
};
|
150 |
+
|
151 |
+
template <>
|
152 |
+
struct TopKTypeConfig<at::BFloat16> {
|
153 |
+
typedef uint32_t RadixType;
|
154 |
+
|
155 |
+
static inline __device__ RadixType convert(at::BFloat16 v) {
|
156 |
+
RadixType x = v.x;
|
157 |
+
RadixType mask = (x & 0x00008000) ? 0x0000ffff : 0x00008000;
|
158 |
+
return (v == v) ? (x ^ mask) : 0xffff;
|
159 |
+
}
|
160 |
+
|
161 |
+
static inline __device__ at::BFloat16 deconvert(RadixType v) {
|
162 |
+
RadixType mask = (v & 0x00008000) ? 0x00008000 : 0x0000ffff;
|
163 |
+
at::BFloat16 r;
|
164 |
+
r.x = (v ^ mask);
|
165 |
+
return r;
|
166 |
+
}
|
167 |
+
};
|
168 |
+
|
169 |
+
// This function counts the distribution of all input values in a
|
170 |
+
// slice we are selecting by radix digit at `radixDigitPos`, but only
|
171 |
+
// those that pass the filter `((v & desiredMask) == desired)`.
|
172 |
+
// This produces and broadcasts the seen counts for a single block only.
|
173 |
+
// `smem` must have at least `RadixSize` elements.
|
174 |
+
template <
|
175 |
+
typename scalar_t,
|
176 |
+
typename bitwise_t,
|
177 |
+
typename index_t,
|
178 |
+
typename CountType,
|
179 |
+
int RadixSize,
|
180 |
+
int RadixBits>
|
181 |
+
__device__ void countRadixUsingMask(
|
182 |
+
CountType counts[RadixSize],
|
183 |
+
CountType* smem,
|
184 |
+
bitwise_t desired,
|
185 |
+
bitwise_t desiredMask,
|
186 |
+
int radixDigitPos,
|
187 |
+
index_t sliceSize,
|
188 |
+
index_t withinSliceStride,
|
189 |
+
scalar_t* data) {
|
190 |
+
// Clear out per-thread counts from a previous round
|
191 |
+
#pragma unroll
|
192 |
+
for (int i = 0; i < RadixSize; ++i) {
|
193 |
+
counts[i] = 0;
|
194 |
+
}
|
195 |
+
|
196 |
+
if (threadIdx.x < RadixSize) {
|
197 |
+
smem[threadIdx.x] = 0;
|
198 |
+
}
|
199 |
+
__syncthreads();
|
200 |
+
|
201 |
+
// Scan over all the data. Upon a read, the warp will accumulate
|
202 |
+
// counts per each digit in the radix using warp voting.
|
203 |
+
#if !defined(USE_ROCM)
|
204 |
+
// Must be called outside of loop to ensure all threads participate
|
205 |
+
unsigned mask = WARP_BALLOT(threadIdx.x < sliceSize);
|
206 |
+
#endif
|
207 |
+
for (index_t i = threadIdx.x; i < sliceSize;) {
|
208 |
+
bitwise_t val =
|
209 |
+
TopKTypeConfig<scalar_t>::convert(doLdg(&data[i * withinSliceStride]));
|
210 |
+
|
211 |
+
bool hasVal = ((val & desiredMask) == desired);
|
212 |
+
bitwise_t digitInRadix = at::cuda::Bitfield<bitwise_t>::getBitfield(
|
213 |
+
val, radixDigitPos, RadixBits);
|
214 |
+
|
215 |
+
#pragma unroll
|
216 |
+
for (uint32_t j = 0; j < RadixSize; ++j) {
|
217 |
+
bool vote = hasVal && (digitInRadix == j);
|
218 |
+
#if defined(USE_ROCM)
|
219 |
+
counts[j] += __popcll(WARP_BALLOT(vote));
|
220 |
+
#else
|
221 |
+
counts[j] += __popc(WARP_BALLOT(vote, mask));
|
222 |
+
#endif
|
223 |
+
}
|
224 |
+
i += blockDim.x;
|
225 |
+
#if !defined(USE_ROCM)
|
226 |
+
mask = WARP_BALLOT(i < sliceSize, mask);
|
227 |
+
#endif
|
228 |
+
}
|
229 |
+
|
230 |
+
// Now, for each warp, sum values
|
231 |
+
if (at::cuda::getLaneId() == 0) {
|
232 |
+
#pragma unroll
|
233 |
+
for (uint32_t i = 0; i < RadixSize; ++i) {
|
234 |
+
gpuAtomicAddNoReturn(&smem[i], counts[i]);
|
235 |
+
}
|
236 |
+
}
|
237 |
+
|
238 |
+
__syncthreads();
|
239 |
+
|
240 |
+
// For each thread, read in the total counts
|
241 |
+
#pragma unroll
|
242 |
+
for (uint32_t i = 0; i < RadixSize; ++i) {
|
243 |
+
counts[i] = smem[i];
|
244 |
+
}
|
245 |
+
|
246 |
+
__syncthreads();
|
247 |
+
}
|
248 |
+
|
249 |
+
// Over what radix we are selecting values
|
250 |
+
constexpr int RADIX_BITS = 2; // digits are base-(2 ^ RADIX_BITS)
|
251 |
+
constexpr int RADIX_SIZE = 4; // 2 ^ RADIX_BITS
|
252 |
+
constexpr int RADIX_MASK = (RADIX_SIZE - 1);
|
253 |
+
|
254 |
+
// This finds the unique value `v` that matches the pattern
|
255 |
+
// ((v & desired) == desiredMask) in our sorted int format
|
256 |
+
template <typename scalar_t, typename bitwise_t, typename index_t>
|
257 |
+
__device__ scalar_t findPattern(
|
258 |
+
scalar_t* smem,
|
259 |
+
scalar_t* data,
|
260 |
+
index_t sliceSize,
|
261 |
+
index_t withinSliceStride,
|
262 |
+
bitwise_t desired,
|
263 |
+
bitwise_t desiredMask) {
|
264 |
+
if (threadIdx.x < 2) {
|
265 |
+
smem[threadIdx.x] = static_cast<scalar_t>(0);
|
266 |
+
}
|
267 |
+
__syncthreads();
|
268 |
+
|
269 |
+
// All threads participate in the loop, in order to sync on the flag
|
270 |
+
index_t numIterations =
|
271 |
+
round_up(sliceSize, static_cast<index_t>(blockDim.x));
|
272 |
+
for (index_t i = threadIdx.x; i < numIterations; i += blockDim.x) {
|
273 |
+
bool inRange = (i < sliceSize);
|
274 |
+
scalar_t v = inRange ? doLdg(&data[i * withinSliceStride])
|
275 |
+
: static_cast<scalar_t>(0);
|
276 |
+
|
277 |
+
if (inRange &&
|
278 |
+
((TopKTypeConfig<scalar_t>::convert(v) & desiredMask) == desired)) {
|
279 |
+
// There should not be conflicts if we are using findPattern,
|
280 |
+
// since the result is unique
|
281 |
+
smem[0] = static_cast<scalar_t>(1);
|
282 |
+
smem[1] = v; // can't use val as the flag, since it could be 0
|
283 |
+
}
|
284 |
+
|
285 |
+
__syncthreads();
|
286 |
+
|
287 |
+
scalar_t found = smem[0];
|
288 |
+
scalar_t val = smem[1];
|
289 |
+
|
290 |
+
__syncthreads();
|
291 |
+
|
292 |
+
// Check to see if a thread found the value
|
293 |
+
if (found != static_cast<scalar_t>(0)) {
|
294 |
+
// all threads return this value
|
295 |
+
return val;
|
296 |
+
}
|
297 |
+
}
|
298 |
+
|
299 |
+
// should not get here
|
300 |
+
CUDA_KERNEL_ASSERT(false);
|
301 |
+
return static_cast<scalar_t>(0);
|
302 |
+
}
|
303 |
+
|
304 |
+
// Returns the top-Kth element found in the data using radix selection
|
305 |
+
template <typename scalar_t, typename bitwise_t, typename index_t>
|
306 |
+
__device__ void radixSelect(
|
307 |
+
scalar_t* data,
|
308 |
+
index_t k,
|
309 |
+
bool largest,
|
310 |
+
index_t sliceSize,
|
311 |
+
index_t withinSliceStride,
|
312 |
+
int* smem,
|
313 |
+
scalar_t* topK) {
|
314 |
+
// Per-thread buckets into which we accumulate digit counts in our
|
315 |
+
// radix
|
316 |
+
int counts[RADIX_SIZE];
|
317 |
+
|
318 |
+
// We only consider elements x such that (x & desiredMask) == desired
|
319 |
+
// Initially, we consider all elements of the array, so the above
|
320 |
+
// statement is true regardless of input.
|
321 |
+
bitwise_t desired = 0;
|
322 |
+
bitwise_t desiredMask = 0;
|
323 |
+
|
324 |
+
// We are looking for the top kToFind-th element when iterating over
|
325 |
+
// digits; this count gets reduced by elimination when counting
|
326 |
+
// successive digits
|
327 |
+
int kToFind = k;
|
328 |
+
|
329 |
+
// We start at the most significant digit in our radix, scanning
|
330 |
+
// through to the least significant digit
|
331 |
+
for (int digitPos = sizeof(scalar_t) * 8 - RADIX_BITS; digitPos >= 0;
|
332 |
+
digitPos -= RADIX_BITS) {
|
333 |
+
// Count radix distribution for the current position and reduce
|
334 |
+
// across all threads
|
335 |
+
countRadixUsingMask<
|
336 |
+
scalar_t,
|
337 |
+
bitwise_t,
|
338 |
+
index_t,
|
339 |
+
int,
|
340 |
+
RADIX_SIZE,
|
341 |
+
RADIX_BITS>(
|
342 |
+
counts,
|
343 |
+
smem,
|
344 |
+
desired,
|
345 |
+
desiredMask,
|
346 |
+
digitPos,
|
347 |
+
sliceSize,
|
348 |
+
withinSliceStride,
|
349 |
+
data);
|
350 |
+
|
351 |
+
auto found_unique = [&](int i, int count) -> bool {
|
352 |
+
/* All threads have the same value in counts here, so all */
|
353 |
+
/* threads will return from the function. */
|
354 |
+
if (count == 1 && kToFind == 1) {
|
355 |
+
/* There is a unique answer. */
|
356 |
+
desired = at::cuda::Bitfield<bitwise_t>::setBitfield(
|
357 |
+
desired, i, digitPos, RADIX_BITS);
|
358 |
+
desiredMask = at::cuda::Bitfield<bitwise_t>::setBitfield(
|
359 |
+
desiredMask, RADIX_MASK, digitPos, RADIX_BITS);
|
360 |
+
|
361 |
+
/* The answer is now the unique element v such that: */
|
362 |
+
/* (v & desiredMask) == desired */
|
363 |
+
/* However, we do not yet know what the actual element is. We */
|
364 |
+
/* need to perform a search through the data to find the */
|
365 |
+
/* element that matches this pattern. */
|
366 |
+
*topK = findPattern<scalar_t, bitwise_t, index_t>(
|
367 |
+
(scalar_t*)smem,
|
368 |
+
data,
|
369 |
+
sliceSize,
|
370 |
+
withinSliceStride,
|
371 |
+
desired,
|
372 |
+
desiredMask);
|
373 |
+
return true;
|
374 |
+
}
|
375 |
+
return false;
|
376 |
+
};
|
377 |
+
auto found_non_unique = [&](int i, int count) -> bool {
|
378 |
+
if (count >= kToFind) {
|
379 |
+
desired =
|
380 |
+
at::cuda::Bitfield<bitwise_t>::setBitfield(
|
381 |
+
desired, i, digitPos, RADIX_BITS);
|
382 |
+
desiredMask = at::cuda::Bitfield<bitwise_t>::setBitfield(
|
383 |
+
desiredMask, RADIX_MASK, digitPos, RADIX_BITS);
|
384 |
+
|
385 |
+
/* The top-Kth element v must now be one such that: */
|
386 |
+
/* (v & desiredMask == desired) */
|
387 |
+
/* but we haven't narrowed it down; we must check the next */
|
388 |
+
/* least-significant digit */
|
389 |
+
return true;
|
390 |
+
}
|
391 |
+
kToFind -= count;
|
392 |
+
return false; // continue the loop
|
393 |
+
};
|
394 |
+
|
395 |
+
// All threads participate in the comparisons below to know the
|
396 |
+
// final result
|
397 |
+
if (largest) {
|
398 |
+
// Process in descending order
|
399 |
+
#pragma unroll
|
400 |
+
for (int i = RADIX_SIZE - 1; i >= 0; --i) {
|
401 |
+
int count = counts[i];
|
402 |
+
if (found_unique(i, count)) {
|
403 |
+
return;
|
404 |
+
}
|
405 |
+
if (found_non_unique(i, count)) {
|
406 |
+
break;
|
407 |
+
}
|
408 |
+
}
|
409 |
+
} else {
|
410 |
+
// Process in ascending order
|
411 |
+
#pragma unroll
|
412 |
+
for (int i = 0; i < RADIX_SIZE; ++i) {
|
413 |
+
int count = counts[i];
|
414 |
+
if (found_unique(i, count)) {
|
415 |
+
return;
|
416 |
+
}
|
417 |
+
if (found_non_unique(i, count)) {
|
418 |
+
break;
|
419 |
+
}
|
420 |
+
}
|
421 |
+
}
|
422 |
+
} // end digitPos for
|
423 |
+
|
424 |
+
// There is no unique result, but there is a non-unique result
|
425 |
+
// matching `desired` exactly
|
426 |
+
*topK = TopKTypeConfig<scalar_t>::deconvert(desired);
|
427 |
+
}
|
428 |
+
} // namespace native
|
429 |
+
} // namespace at
|