Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/generators.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/partitions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/galois.py +611 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/group_constructs.py +61 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/group_numbers.py +118 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/homomorphisms.py +549 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/perm_groups.py +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/prufer.py +436 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/subsets.py +619 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tensor_can.py +1190 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_coset_table.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_fp_groups.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_free_groups.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_galois.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_generators.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_group_numbers.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_named_groups.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_partitions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_pc_groups.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_permutations.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_polyhedron.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_rewriting.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_schur_number.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_subsets.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_tensor_can.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_testutil.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_util.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_coset_table.py +825 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_fp_groups.py +252 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_galois.py +82 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_graycode.py +72 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_group_numbers.py +27 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_homomorphisms.py +114 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_named_groups.py +70 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_partitions.py +118 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_perm_groups.py +1243 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_polyhedron.py +105 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_prufer.py +74 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_rewriting.py +49 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_schur_number.py +55 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_subsets.py +63 -0
- llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_testutil.py +55 -0
- llmeval-env/lib/python3.10/site-packages/sympy/logic/__init__.py +12 -0
- llmeval-env/lib/python3.10/site-packages/sympy/logic/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/logic/__pycache__/boolalg.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/logic/__pycache__/inference.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/logic/algorithms/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/logic/algorithms/dpll.py +308 -0
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/generators.cpython-310.pyc
ADDED
Binary file (8.29 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/__pycache__/partitions.cpython-310.pyc
ADDED
Binary file (21.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/galois.py
ADDED
@@ -0,0 +1,611 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
Construct transitive subgroups of symmetric groups, useful in Galois theory.
|
3 |
+
|
4 |
+
Besides constructing instances of the :py:class:`~.PermutationGroup` class to
|
5 |
+
represent the transitive subgroups of $S_n$ for small $n$, this module provides
|
6 |
+
*names* for these groups.
|
7 |
+
|
8 |
+
In some applications, it may be preferable to know the name of a group,
|
9 |
+
rather than receive an instance of the :py:class:`~.PermutationGroup`
|
10 |
+
class, and then have to do extra work to determine which group it is, by
|
11 |
+
checking various properties.
|
12 |
+
|
13 |
+
Names are instances of ``Enum`` classes defined in this module. With a name in
|
14 |
+
hand, the name's ``get_perm_group`` method can then be used to retrieve a
|
15 |
+
:py:class:`~.PermutationGroup`.
|
16 |
+
|
17 |
+
The names used for groups in this module are taken from [1].
|
18 |
+
|
19 |
+
References
|
20 |
+
==========
|
21 |
+
|
22 |
+
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory*.
|
23 |
+
|
24 |
+
"""
|
25 |
+
|
26 |
+
from collections import defaultdict
|
27 |
+
from enum import Enum
|
28 |
+
import itertools
|
29 |
+
|
30 |
+
from sympy.combinatorics.named_groups import (
|
31 |
+
SymmetricGroup, AlternatingGroup, CyclicGroup, DihedralGroup,
|
32 |
+
set_symmetric_group_properties, set_alternating_group_properties,
|
33 |
+
)
|
34 |
+
from sympy.combinatorics.perm_groups import PermutationGroup
|
35 |
+
from sympy.combinatorics.permutations import Permutation
|
36 |
+
|
37 |
+
|
38 |
+
class S1TransitiveSubgroups(Enum):
|
39 |
+
"""
|
40 |
+
Names for the transitive subgroups of S1.
|
41 |
+
"""
|
42 |
+
S1 = "S1"
|
43 |
+
|
44 |
+
def get_perm_group(self):
|
45 |
+
return SymmetricGroup(1)
|
46 |
+
|
47 |
+
|
48 |
+
class S2TransitiveSubgroups(Enum):
|
49 |
+
"""
|
50 |
+
Names for the transitive subgroups of S2.
|
51 |
+
"""
|
52 |
+
S2 = "S2"
|
53 |
+
|
54 |
+
def get_perm_group(self):
|
55 |
+
return SymmetricGroup(2)
|
56 |
+
|
57 |
+
|
58 |
+
class S3TransitiveSubgroups(Enum):
|
59 |
+
"""
|
60 |
+
Names for the transitive subgroups of S3.
|
61 |
+
"""
|
62 |
+
A3 = "A3"
|
63 |
+
S3 = "S3"
|
64 |
+
|
65 |
+
def get_perm_group(self):
|
66 |
+
if self == S3TransitiveSubgroups.A3:
|
67 |
+
return AlternatingGroup(3)
|
68 |
+
elif self == S3TransitiveSubgroups.S3:
|
69 |
+
return SymmetricGroup(3)
|
70 |
+
|
71 |
+
|
72 |
+
class S4TransitiveSubgroups(Enum):
|
73 |
+
"""
|
74 |
+
Names for the transitive subgroups of S4.
|
75 |
+
"""
|
76 |
+
C4 = "C4"
|
77 |
+
V = "V"
|
78 |
+
D4 = "D4"
|
79 |
+
A4 = "A4"
|
80 |
+
S4 = "S4"
|
81 |
+
|
82 |
+
def get_perm_group(self):
|
83 |
+
if self == S4TransitiveSubgroups.C4:
|
84 |
+
return CyclicGroup(4)
|
85 |
+
elif self == S4TransitiveSubgroups.V:
|
86 |
+
return four_group()
|
87 |
+
elif self == S4TransitiveSubgroups.D4:
|
88 |
+
return DihedralGroup(4)
|
89 |
+
elif self == S4TransitiveSubgroups.A4:
|
90 |
+
return AlternatingGroup(4)
|
91 |
+
elif self == S4TransitiveSubgroups.S4:
|
92 |
+
return SymmetricGroup(4)
|
93 |
+
|
94 |
+
|
95 |
+
class S5TransitiveSubgroups(Enum):
|
96 |
+
"""
|
97 |
+
Names for the transitive subgroups of S5.
|
98 |
+
"""
|
99 |
+
C5 = "C5"
|
100 |
+
D5 = "D5"
|
101 |
+
M20 = "M20"
|
102 |
+
A5 = "A5"
|
103 |
+
S5 = "S5"
|
104 |
+
|
105 |
+
def get_perm_group(self):
|
106 |
+
if self == S5TransitiveSubgroups.C5:
|
107 |
+
return CyclicGroup(5)
|
108 |
+
elif self == S5TransitiveSubgroups.D5:
|
109 |
+
return DihedralGroup(5)
|
110 |
+
elif self == S5TransitiveSubgroups.M20:
|
111 |
+
return M20()
|
112 |
+
elif self == S5TransitiveSubgroups.A5:
|
113 |
+
return AlternatingGroup(5)
|
114 |
+
elif self == S5TransitiveSubgroups.S5:
|
115 |
+
return SymmetricGroup(5)
|
116 |
+
|
117 |
+
|
118 |
+
class S6TransitiveSubgroups(Enum):
|
119 |
+
"""
|
120 |
+
Names for the transitive subgroups of S6.
|
121 |
+
"""
|
122 |
+
C6 = "C6"
|
123 |
+
S3 = "S3"
|
124 |
+
D6 = "D6"
|
125 |
+
A4 = "A4"
|
126 |
+
G18 = "G18"
|
127 |
+
A4xC2 = "A4 x C2"
|
128 |
+
S4m = "S4-"
|
129 |
+
S4p = "S4+"
|
130 |
+
G36m = "G36-"
|
131 |
+
G36p = "G36+"
|
132 |
+
S4xC2 = "S4 x C2"
|
133 |
+
PSL2F5 = "PSL2(F5)"
|
134 |
+
G72 = "G72"
|
135 |
+
PGL2F5 = "PGL2(F5)"
|
136 |
+
A6 = "A6"
|
137 |
+
S6 = "S6"
|
138 |
+
|
139 |
+
def get_perm_group(self):
|
140 |
+
if self == S6TransitiveSubgroups.C6:
|
141 |
+
return CyclicGroup(6)
|
142 |
+
elif self == S6TransitiveSubgroups.S3:
|
143 |
+
return S3_in_S6()
|
144 |
+
elif self == S6TransitiveSubgroups.D6:
|
145 |
+
return DihedralGroup(6)
|
146 |
+
elif self == S6TransitiveSubgroups.A4:
|
147 |
+
return A4_in_S6()
|
148 |
+
elif self == S6TransitiveSubgroups.G18:
|
149 |
+
return G18()
|
150 |
+
elif self == S6TransitiveSubgroups.A4xC2:
|
151 |
+
return A4xC2()
|
152 |
+
elif self == S6TransitiveSubgroups.S4m:
|
153 |
+
return S4m()
|
154 |
+
elif self == S6TransitiveSubgroups.S4p:
|
155 |
+
return S4p()
|
156 |
+
elif self == S6TransitiveSubgroups.G36m:
|
157 |
+
return G36m()
|
158 |
+
elif self == S6TransitiveSubgroups.G36p:
|
159 |
+
return G36p()
|
160 |
+
elif self == S6TransitiveSubgroups.S4xC2:
|
161 |
+
return S4xC2()
|
162 |
+
elif self == S6TransitiveSubgroups.PSL2F5:
|
163 |
+
return PSL2F5()
|
164 |
+
elif self == S6TransitiveSubgroups.G72:
|
165 |
+
return G72()
|
166 |
+
elif self == S6TransitiveSubgroups.PGL2F5:
|
167 |
+
return PGL2F5()
|
168 |
+
elif self == S6TransitiveSubgroups.A6:
|
169 |
+
return AlternatingGroup(6)
|
170 |
+
elif self == S6TransitiveSubgroups.S6:
|
171 |
+
return SymmetricGroup(6)
|
172 |
+
|
173 |
+
|
174 |
+
def four_group():
|
175 |
+
"""
|
176 |
+
Return a representation of the Klein four-group as a transitive subgroup
|
177 |
+
of S4.
|
178 |
+
"""
|
179 |
+
return PermutationGroup(
|
180 |
+
Permutation(0, 1)(2, 3),
|
181 |
+
Permutation(0, 2)(1, 3)
|
182 |
+
)
|
183 |
+
|
184 |
+
|
185 |
+
def M20():
|
186 |
+
"""
|
187 |
+
Return a representation of the metacyclic group M20, a transitive subgroup
|
188 |
+
of S5 that is one of the possible Galois groups for polys of degree 5.
|
189 |
+
|
190 |
+
Notes
|
191 |
+
=====
|
192 |
+
|
193 |
+
See [1], Page 323.
|
194 |
+
|
195 |
+
"""
|
196 |
+
G = PermutationGroup(Permutation(0, 1, 2, 3, 4), Permutation(1, 2, 4, 3))
|
197 |
+
G._degree = 5
|
198 |
+
G._order = 20
|
199 |
+
G._is_transitive = True
|
200 |
+
G._is_sym = False
|
201 |
+
G._is_alt = False
|
202 |
+
G._is_cyclic = False
|
203 |
+
G._is_dihedral = False
|
204 |
+
return G
|
205 |
+
|
206 |
+
|
207 |
+
def S3_in_S6():
|
208 |
+
"""
|
209 |
+
Return a representation of S3 as a transitive subgroup of S6.
|
210 |
+
|
211 |
+
Notes
|
212 |
+
=====
|
213 |
+
|
214 |
+
The representation is found by viewing the group as the symmetries of a
|
215 |
+
triangular prism.
|
216 |
+
|
217 |
+
"""
|
218 |
+
G = PermutationGroup(Permutation(0, 1, 2)(3, 4, 5), Permutation(0, 3)(2, 4)(1, 5))
|
219 |
+
set_symmetric_group_properties(G, 3, 6)
|
220 |
+
return G
|
221 |
+
|
222 |
+
|
223 |
+
def A4_in_S6():
|
224 |
+
"""
|
225 |
+
Return a representation of A4 as a transitive subgroup of S6.
|
226 |
+
|
227 |
+
Notes
|
228 |
+
=====
|
229 |
+
|
230 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
231 |
+
|
232 |
+
"""
|
233 |
+
G = PermutationGroup(Permutation(0, 4, 5)(1, 3, 2), Permutation(0, 1, 2)(3, 5, 4))
|
234 |
+
set_alternating_group_properties(G, 4, 6)
|
235 |
+
return G
|
236 |
+
|
237 |
+
|
238 |
+
def S4m():
|
239 |
+
"""
|
240 |
+
Return a representation of the S4- transitive subgroup of S6.
|
241 |
+
|
242 |
+
Notes
|
243 |
+
=====
|
244 |
+
|
245 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
246 |
+
|
247 |
+
"""
|
248 |
+
G = PermutationGroup(Permutation(1, 4, 5, 3), Permutation(0, 4)(1, 5)(2, 3))
|
249 |
+
set_symmetric_group_properties(G, 4, 6)
|
250 |
+
return G
|
251 |
+
|
252 |
+
|
253 |
+
def S4p():
|
254 |
+
"""
|
255 |
+
Return a representation of the S4+ transitive subgroup of S6.
|
256 |
+
|
257 |
+
Notes
|
258 |
+
=====
|
259 |
+
|
260 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
261 |
+
|
262 |
+
"""
|
263 |
+
G = PermutationGroup(Permutation(0, 2, 4, 1)(3, 5), Permutation(0, 3)(4, 5))
|
264 |
+
set_symmetric_group_properties(G, 4, 6)
|
265 |
+
return G
|
266 |
+
|
267 |
+
|
268 |
+
def A4xC2():
|
269 |
+
"""
|
270 |
+
Return a representation of the (A4 x C2) transitive subgroup of S6.
|
271 |
+
|
272 |
+
Notes
|
273 |
+
=====
|
274 |
+
|
275 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
276 |
+
|
277 |
+
"""
|
278 |
+
return PermutationGroup(
|
279 |
+
Permutation(0, 4, 5)(1, 3, 2), Permutation(0, 1, 2)(3, 5, 4),
|
280 |
+
Permutation(5)(2, 4))
|
281 |
+
|
282 |
+
|
283 |
+
def S4xC2():
|
284 |
+
"""
|
285 |
+
Return a representation of the (S4 x C2) transitive subgroup of S6.
|
286 |
+
|
287 |
+
Notes
|
288 |
+
=====
|
289 |
+
|
290 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
291 |
+
|
292 |
+
"""
|
293 |
+
return PermutationGroup(
|
294 |
+
Permutation(1, 4, 5, 3), Permutation(0, 4)(1, 5)(2, 3),
|
295 |
+
Permutation(1, 4)(3, 5))
|
296 |
+
|
297 |
+
|
298 |
+
def G18():
|
299 |
+
"""
|
300 |
+
Return a representation of the group G18, a transitive subgroup of S6
|
301 |
+
isomorphic to the semidirect product of C3^2 with C2.
|
302 |
+
|
303 |
+
Notes
|
304 |
+
=====
|
305 |
+
|
306 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
307 |
+
|
308 |
+
"""
|
309 |
+
return PermutationGroup(
|
310 |
+
Permutation(5)(0, 1, 2), Permutation(3, 4, 5),
|
311 |
+
Permutation(0, 4)(1, 5)(2, 3))
|
312 |
+
|
313 |
+
|
314 |
+
def G36m():
|
315 |
+
"""
|
316 |
+
Return a representation of the group G36-, a transitive subgroup of S6
|
317 |
+
isomorphic to the semidirect product of C3^2 with C2^2.
|
318 |
+
|
319 |
+
Notes
|
320 |
+
=====
|
321 |
+
|
322 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
323 |
+
|
324 |
+
"""
|
325 |
+
return PermutationGroup(
|
326 |
+
Permutation(5)(0, 1, 2), Permutation(3, 4, 5),
|
327 |
+
Permutation(1, 2)(3, 5), Permutation(0, 4)(1, 5)(2, 3))
|
328 |
+
|
329 |
+
|
330 |
+
def G36p():
|
331 |
+
"""
|
332 |
+
Return a representation of the group G36+, a transitive subgroup of S6
|
333 |
+
isomorphic to the semidirect product of C3^2 with C4.
|
334 |
+
|
335 |
+
Notes
|
336 |
+
=====
|
337 |
+
|
338 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
339 |
+
|
340 |
+
"""
|
341 |
+
return PermutationGroup(
|
342 |
+
Permutation(5)(0, 1, 2), Permutation(3, 4, 5),
|
343 |
+
Permutation(0, 5, 2, 3)(1, 4))
|
344 |
+
|
345 |
+
|
346 |
+
def G72():
|
347 |
+
"""
|
348 |
+
Return a representation of the group G72, a transitive subgroup of S6
|
349 |
+
isomorphic to the semidirect product of C3^2 with D4.
|
350 |
+
|
351 |
+
Notes
|
352 |
+
=====
|
353 |
+
|
354 |
+
See [1], Page 325.
|
355 |
+
|
356 |
+
"""
|
357 |
+
return PermutationGroup(
|
358 |
+
Permutation(5)(0, 1, 2),
|
359 |
+
Permutation(0, 4, 1, 3)(2, 5), Permutation(0, 3)(1, 4)(2, 5))
|
360 |
+
|
361 |
+
|
362 |
+
def PSL2F5():
|
363 |
+
r"""
|
364 |
+
Return a representation of the group $PSL_2(\mathbb{F}_5)$, as a transitive
|
365 |
+
subgroup of S6, isomorphic to $A_5$.
|
366 |
+
|
367 |
+
Notes
|
368 |
+
=====
|
369 |
+
|
370 |
+
This was computed using :py:func:`~.find_transitive_subgroups_of_S6`.
|
371 |
+
|
372 |
+
"""
|
373 |
+
G = PermutationGroup(
|
374 |
+
Permutation(0, 4, 5)(1, 3, 2), Permutation(0, 4, 3, 1, 5))
|
375 |
+
set_alternating_group_properties(G, 5, 6)
|
376 |
+
return G
|
377 |
+
|
378 |
+
|
379 |
+
def PGL2F5():
|
380 |
+
r"""
|
381 |
+
Return a representation of the group $PGL_2(\mathbb{F}_5)$, as a transitive
|
382 |
+
subgroup of S6, isomorphic to $S_5$.
|
383 |
+
|
384 |
+
Notes
|
385 |
+
=====
|
386 |
+
|
387 |
+
See [1], Page 325.
|
388 |
+
|
389 |
+
"""
|
390 |
+
G = PermutationGroup(
|
391 |
+
Permutation(0, 1, 2, 3, 4), Permutation(0, 5)(1, 2)(3, 4))
|
392 |
+
set_symmetric_group_properties(G, 5, 6)
|
393 |
+
return G
|
394 |
+
|
395 |
+
|
396 |
+
def find_transitive_subgroups_of_S6(*targets, print_report=False):
|
397 |
+
r"""
|
398 |
+
Search for certain transitive subgroups of $S_6$.
|
399 |
+
|
400 |
+
The symmetric group $S_6$ has 16 different transitive subgroups, up to
|
401 |
+
conjugacy. Some are more easily constructed than others. For example, the
|
402 |
+
dihedral group $D_6$ is immediately found, but it is not at all obvious how
|
403 |
+
to realize $S_4$ or $S_5$ *transitively* within $S_6$.
|
404 |
+
|
405 |
+
In some cases there are well-known constructions that can be used. For
|
406 |
+
example, $S_5$ is isomorphic to $PGL_2(\mathbb{F}_5)$, which acts in a
|
407 |
+
natural way on the projective line $P^1(\mathbb{F}_5)$, a set of order 6.
|
408 |
+
|
409 |
+
In absence of such special constructions however, we can simply search for
|
410 |
+
generators. For example, transitive instances of $A_4$ and $S_4$ can be
|
411 |
+
found within $S_6$ in this way.
|
412 |
+
|
413 |
+
Once we are engaged in such searches, it may then be easier (if less
|
414 |
+
elegant) to find even those groups like $S_5$ that do have special
|
415 |
+
constructions, by mere search.
|
416 |
+
|
417 |
+
This function locates generators for transitive instances in $S_6$ of the
|
418 |
+
following subgroups:
|
419 |
+
|
420 |
+
* $A_4$
|
421 |
+
* $S_4^-$ ($S_4$ not contained within $A_6$)
|
422 |
+
* $S_4^+$ ($S_4$ contained within $A_6$)
|
423 |
+
* $A_4 \times C_2$
|
424 |
+
* $S_4 \times C_2$
|
425 |
+
* $G_{18} = C_3^2 \rtimes C_2$
|
426 |
+
* $G_{36}^- = C_3^2 \rtimes C_2^2$
|
427 |
+
* $G_{36}^+ = C_3^2 \rtimes C_4$
|
428 |
+
* $G_{72} = C_3^2 \rtimes D_4$
|
429 |
+
* $A_5$
|
430 |
+
* $S_5$
|
431 |
+
|
432 |
+
Note: Each of these groups also has a dedicated function in this module
|
433 |
+
that returns the group immediately, using generators that were found by
|
434 |
+
this search procedure.
|
435 |
+
|
436 |
+
The search procedure serves as a record of how these generators were
|
437 |
+
found. Also, due to randomness in the generation of the elements of
|
438 |
+
permutation groups, it can be called again, in order to (probably) get
|
439 |
+
different generators for the same groups.
|
440 |
+
|
441 |
+
Parameters
|
442 |
+
==========
|
443 |
+
|
444 |
+
targets : list of :py:class:`~.S6TransitiveSubgroups` values
|
445 |
+
The groups you want to find.
|
446 |
+
|
447 |
+
print_report : bool (default False)
|
448 |
+
If True, print to stdout the generators found for each group.
|
449 |
+
|
450 |
+
Returns
|
451 |
+
=======
|
452 |
+
|
453 |
+
dict
|
454 |
+
mapping each name in *targets* to the :py:class:`~.PermutationGroup`
|
455 |
+
that was found
|
456 |
+
|
457 |
+
References
|
458 |
+
==========
|
459 |
+
|
460 |
+
.. [2] https://en.wikipedia.org/wiki/Projective_linear_group#Exceptional_isomorphisms
|
461 |
+
.. [3] https://en.wikipedia.org/wiki/Automorphisms_of_the_symmetric_and_alternating_groups#PGL(2,5)
|
462 |
+
|
463 |
+
"""
|
464 |
+
def elts_by_order(G):
|
465 |
+
"""Sort the elements of a group by their order. """
|
466 |
+
elts = defaultdict(list)
|
467 |
+
for g in G.elements:
|
468 |
+
elts[g.order()].append(g)
|
469 |
+
return elts
|
470 |
+
|
471 |
+
def order_profile(G, name=None):
|
472 |
+
"""Determine how many elements a group has, of each order. """
|
473 |
+
elts = elts_by_order(G)
|
474 |
+
profile = {o:len(e) for o, e in elts.items()}
|
475 |
+
if name:
|
476 |
+
print(f'{name}: ' + ' '.join(f'{len(profile[r])}@{r}' for r in sorted(profile.keys())))
|
477 |
+
return profile
|
478 |
+
|
479 |
+
S6 = SymmetricGroup(6)
|
480 |
+
A6 = AlternatingGroup(6)
|
481 |
+
S6_by_order = elts_by_order(S6)
|
482 |
+
|
483 |
+
def search(existing_gens, needed_gen_orders, order, alt=None, profile=None, anti_profile=None):
|
484 |
+
"""
|
485 |
+
Find a transitive subgroup of S6.
|
486 |
+
|
487 |
+
Parameters
|
488 |
+
==========
|
489 |
+
|
490 |
+
existing_gens : list of Permutation
|
491 |
+
Optionally empty list of generators that must be in the group.
|
492 |
+
|
493 |
+
needed_gen_orders : list of positive int
|
494 |
+
Nonempty list of the orders of the additional generators that are
|
495 |
+
to be found.
|
496 |
+
|
497 |
+
order: int
|
498 |
+
The order of the group being sought.
|
499 |
+
|
500 |
+
alt: bool, None
|
501 |
+
If True, require the group to be contained in A6.
|
502 |
+
If False, require the group not to be contained in A6.
|
503 |
+
|
504 |
+
profile : dict
|
505 |
+
If given, the group's order profile must equal this.
|
506 |
+
|
507 |
+
anti_profile : dict
|
508 |
+
If given, the group's order profile must *not* equal this.
|
509 |
+
|
510 |
+
"""
|
511 |
+
for gens in itertools.product(*[S6_by_order[n] for n in needed_gen_orders]):
|
512 |
+
if len(set(gens)) < len(gens):
|
513 |
+
continue
|
514 |
+
G = PermutationGroup(existing_gens + list(gens))
|
515 |
+
if G.order() == order and G.is_transitive():
|
516 |
+
if alt is not None and G.is_subgroup(A6) != alt:
|
517 |
+
continue
|
518 |
+
if profile and order_profile(G) != profile:
|
519 |
+
continue
|
520 |
+
if anti_profile and order_profile(G) == anti_profile:
|
521 |
+
continue
|
522 |
+
return G
|
523 |
+
|
524 |
+
def match_known_group(G, alt=None):
|
525 |
+
needed = [g.order() for g in G.generators]
|
526 |
+
return search([], needed, G.order(), alt=alt, profile=order_profile(G))
|
527 |
+
|
528 |
+
found = {}
|
529 |
+
|
530 |
+
def finish_up(name, G):
|
531 |
+
found[name] = G
|
532 |
+
if print_report:
|
533 |
+
print("=" * 40)
|
534 |
+
print(f"{name}:")
|
535 |
+
print(G.generators)
|
536 |
+
|
537 |
+
if S6TransitiveSubgroups.A4 in targets or S6TransitiveSubgroups.A4xC2 in targets:
|
538 |
+
A4_in_S6 = match_known_group(AlternatingGroup(4))
|
539 |
+
finish_up(S6TransitiveSubgroups.A4, A4_in_S6)
|
540 |
+
|
541 |
+
if S6TransitiveSubgroups.S4m in targets or S6TransitiveSubgroups.S4xC2 in targets:
|
542 |
+
S4m_in_S6 = match_known_group(SymmetricGroup(4), alt=False)
|
543 |
+
finish_up(S6TransitiveSubgroups.S4m, S4m_in_S6)
|
544 |
+
|
545 |
+
if S6TransitiveSubgroups.S4p in targets:
|
546 |
+
S4p_in_S6 = match_known_group(SymmetricGroup(4), alt=True)
|
547 |
+
finish_up(S6TransitiveSubgroups.S4p, S4p_in_S6)
|
548 |
+
|
549 |
+
if S6TransitiveSubgroups.A4xC2 in targets:
|
550 |
+
A4xC2_in_S6 = search(A4_in_S6.generators, [2], 24, anti_profile=order_profile(SymmetricGroup(4)))
|
551 |
+
finish_up(S6TransitiveSubgroups.A4xC2, A4xC2_in_S6)
|
552 |
+
|
553 |
+
if S6TransitiveSubgroups.S4xC2 in targets:
|
554 |
+
S4xC2_in_S6 = search(S4m_in_S6.generators, [2], 48)
|
555 |
+
finish_up(S6TransitiveSubgroups.S4xC2, S4xC2_in_S6)
|
556 |
+
|
557 |
+
# For the normal factor N = C3^2 in any of the G_n subgroups, we take one
|
558 |
+
# obvious instance of C3^2 in S6:
|
559 |
+
N_gens = [Permutation(5)(0, 1, 2), Permutation(5)(3, 4, 5)]
|
560 |
+
|
561 |
+
if S6TransitiveSubgroups.G18 in targets:
|
562 |
+
G18_in_S6 = search(N_gens, [2], 18)
|
563 |
+
finish_up(S6TransitiveSubgroups.G18, G18_in_S6)
|
564 |
+
|
565 |
+
if S6TransitiveSubgroups.G36m in targets:
|
566 |
+
G36m_in_S6 = search(N_gens, [2, 2], 36, alt=False)
|
567 |
+
finish_up(S6TransitiveSubgroups.G36m, G36m_in_S6)
|
568 |
+
|
569 |
+
if S6TransitiveSubgroups.G36p in targets:
|
570 |
+
G36p_in_S6 = search(N_gens, [4], 36, alt=True)
|
571 |
+
finish_up(S6TransitiveSubgroups.G36p, G36p_in_S6)
|
572 |
+
|
573 |
+
if S6TransitiveSubgroups.G72 in targets:
|
574 |
+
G72_in_S6 = search(N_gens, [4, 2], 72)
|
575 |
+
finish_up(S6TransitiveSubgroups.G72, G72_in_S6)
|
576 |
+
|
577 |
+
# The PSL2(F5) and PGL2(F5) subgroups are isomorphic to A5 and S5, resp.
|
578 |
+
|
579 |
+
if S6TransitiveSubgroups.PSL2F5 in targets:
|
580 |
+
PSL2F5_in_S6 = match_known_group(AlternatingGroup(5))
|
581 |
+
finish_up(S6TransitiveSubgroups.PSL2F5, PSL2F5_in_S6)
|
582 |
+
|
583 |
+
if S6TransitiveSubgroups.PGL2F5 in targets:
|
584 |
+
PGL2F5_in_S6 = match_known_group(SymmetricGroup(5))
|
585 |
+
finish_up(S6TransitiveSubgroups.PGL2F5, PGL2F5_in_S6)
|
586 |
+
|
587 |
+
# There is little need to "search" for any of the groups C6, S3, D6, A6,
|
588 |
+
# or S6, since they all have obvious realizations within S6. However, we
|
589 |
+
# support them here just in case a random representation is desired.
|
590 |
+
|
591 |
+
if S6TransitiveSubgroups.C6 in targets:
|
592 |
+
C6 = match_known_group(CyclicGroup(6))
|
593 |
+
finish_up(S6TransitiveSubgroups.C6, C6)
|
594 |
+
|
595 |
+
if S6TransitiveSubgroups.S3 in targets:
|
596 |
+
S3 = match_known_group(SymmetricGroup(3))
|
597 |
+
finish_up(S6TransitiveSubgroups.S3, S3)
|
598 |
+
|
599 |
+
if S6TransitiveSubgroups.D6 in targets:
|
600 |
+
D6 = match_known_group(DihedralGroup(6))
|
601 |
+
finish_up(S6TransitiveSubgroups.D6, D6)
|
602 |
+
|
603 |
+
if S6TransitiveSubgroups.A6 in targets:
|
604 |
+
A6 = match_known_group(A6)
|
605 |
+
finish_up(S6TransitiveSubgroups.A6, A6)
|
606 |
+
|
607 |
+
if S6TransitiveSubgroups.S6 in targets:
|
608 |
+
S6 = match_known_group(S6)
|
609 |
+
finish_up(S6TransitiveSubgroups.S6, S6)
|
610 |
+
|
611 |
+
return found
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/group_constructs.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.combinatorics.perm_groups import PermutationGroup
|
2 |
+
from sympy.combinatorics.permutations import Permutation
|
3 |
+
from sympy.utilities.iterables import uniq
|
4 |
+
|
5 |
+
_af_new = Permutation._af_new
|
6 |
+
|
7 |
+
|
8 |
+
def DirectProduct(*groups):
|
9 |
+
"""
|
10 |
+
Returns the direct product of several groups as a permutation group.
|
11 |
+
|
12 |
+
Explanation
|
13 |
+
===========
|
14 |
+
|
15 |
+
This is implemented much like the __mul__ procedure for taking the direct
|
16 |
+
product of two permutation groups, but the idea of shifting the
|
17 |
+
generators is realized in the case of an arbitrary number of groups.
|
18 |
+
A call to DirectProduct(G1, G2, ..., Gn) is generally expected to be faster
|
19 |
+
than a call to G1*G2*...*Gn (and thus the need for this algorithm).
|
20 |
+
|
21 |
+
Examples
|
22 |
+
========
|
23 |
+
|
24 |
+
>>> from sympy.combinatorics.group_constructs import DirectProduct
|
25 |
+
>>> from sympy.combinatorics.named_groups import CyclicGroup
|
26 |
+
>>> C = CyclicGroup(4)
|
27 |
+
>>> G = DirectProduct(C, C, C)
|
28 |
+
>>> G.order()
|
29 |
+
64
|
30 |
+
|
31 |
+
See Also
|
32 |
+
========
|
33 |
+
|
34 |
+
sympy.combinatorics.perm_groups.PermutationGroup.__mul__
|
35 |
+
|
36 |
+
"""
|
37 |
+
degrees = []
|
38 |
+
gens_count = []
|
39 |
+
total_degree = 0
|
40 |
+
total_gens = 0
|
41 |
+
for group in groups:
|
42 |
+
current_deg = group.degree
|
43 |
+
current_num_gens = len(group.generators)
|
44 |
+
degrees.append(current_deg)
|
45 |
+
total_degree += current_deg
|
46 |
+
gens_count.append(current_num_gens)
|
47 |
+
total_gens += current_num_gens
|
48 |
+
array_gens = []
|
49 |
+
for i in range(total_gens):
|
50 |
+
array_gens.append(list(range(total_degree)))
|
51 |
+
current_gen = 0
|
52 |
+
current_deg = 0
|
53 |
+
for i in range(len(gens_count)):
|
54 |
+
for j in range(current_gen, current_gen + gens_count[i]):
|
55 |
+
gen = ((groups[i].generators)[j - current_gen]).array_form
|
56 |
+
array_gens[j][current_deg:current_deg + degrees[i]] = \
|
57 |
+
[x + current_deg for x in gen]
|
58 |
+
current_gen += gens_count[i]
|
59 |
+
current_deg += degrees[i]
|
60 |
+
perm_gens = list(uniq([_af_new(list(a)) for a in array_gens]))
|
61 |
+
return PermutationGroup(perm_gens, dups=False)
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/group_numbers.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import Integer, Pow, Mod
|
2 |
+
from sympy import factorint
|
3 |
+
|
4 |
+
|
5 |
+
def is_nilpotent_number(n):
|
6 |
+
"""
|
7 |
+
Check whether `n` is a nilpotent number. A number `n` is said to be
|
8 |
+
nilpotent if and only if every finite group of order `n` is nilpotent.
|
9 |
+
For more information see [1]_.
|
10 |
+
|
11 |
+
Examples
|
12 |
+
========
|
13 |
+
|
14 |
+
>>> from sympy.combinatorics.group_numbers import is_nilpotent_number
|
15 |
+
>>> from sympy import randprime
|
16 |
+
>>> is_nilpotent_number(21)
|
17 |
+
False
|
18 |
+
>>> is_nilpotent_number(randprime(1, 30)**12)
|
19 |
+
True
|
20 |
+
|
21 |
+
References
|
22 |
+
==========
|
23 |
+
|
24 |
+
.. [1] Pakianathan, J., Shankar, K., *Nilpotent Numbers*,
|
25 |
+
The American Mathematical Monthly, 107(7), 631-634.
|
26 |
+
|
27 |
+
|
28 |
+
"""
|
29 |
+
if n <= 0 or int(n) != n:
|
30 |
+
raise ValueError("n must be a positive integer, not %i" % n)
|
31 |
+
|
32 |
+
n = Integer(n)
|
33 |
+
prime_factors = list(factorint(n).items())
|
34 |
+
is_nilpotent = True
|
35 |
+
for p_j, a_j in prime_factors:
|
36 |
+
for p_i, a_i in prime_factors:
|
37 |
+
if any([Mod(Pow(p_i, k), p_j) == 1 for k in range(1, a_i + 1)]):
|
38 |
+
is_nilpotent = False
|
39 |
+
break
|
40 |
+
if not is_nilpotent:
|
41 |
+
break
|
42 |
+
|
43 |
+
return is_nilpotent
|
44 |
+
|
45 |
+
|
46 |
+
def is_abelian_number(n):
|
47 |
+
"""
|
48 |
+
Check whether `n` is an abelian number. A number `n` is said to be abelian
|
49 |
+
if and only if every finite group of order `n` is abelian. For more
|
50 |
+
information see [1]_.
|
51 |
+
|
52 |
+
Examples
|
53 |
+
========
|
54 |
+
|
55 |
+
>>> from sympy.combinatorics.group_numbers import is_abelian_number
|
56 |
+
>>> from sympy import randprime
|
57 |
+
>>> is_abelian_number(4)
|
58 |
+
True
|
59 |
+
>>> is_abelian_number(randprime(1, 2000)**2)
|
60 |
+
True
|
61 |
+
>>> is_abelian_number(60)
|
62 |
+
False
|
63 |
+
|
64 |
+
References
|
65 |
+
==========
|
66 |
+
|
67 |
+
.. [1] Pakianathan, J., Shankar, K., *Nilpotent Numbers*,
|
68 |
+
The American Mathematical Monthly, 107(7), 631-634.
|
69 |
+
|
70 |
+
|
71 |
+
"""
|
72 |
+
if n <= 0 or int(n) != n:
|
73 |
+
raise ValueError("n must be a positive integer, not %i" % n)
|
74 |
+
|
75 |
+
n = Integer(n)
|
76 |
+
if not is_nilpotent_number(n):
|
77 |
+
return False
|
78 |
+
|
79 |
+
prime_factors = list(factorint(n).items())
|
80 |
+
is_abelian = all(a_i < 3 for p_i, a_i in prime_factors)
|
81 |
+
return is_abelian
|
82 |
+
|
83 |
+
|
84 |
+
def is_cyclic_number(n):
|
85 |
+
"""
|
86 |
+
Check whether `n` is a cyclic number. A number `n` is said to be cyclic
|
87 |
+
if and only if every finite group of order `n` is cyclic. For more
|
88 |
+
information see [1]_.
|
89 |
+
|
90 |
+
Examples
|
91 |
+
========
|
92 |
+
|
93 |
+
>>> from sympy.combinatorics.group_numbers import is_cyclic_number
|
94 |
+
>>> from sympy import randprime
|
95 |
+
>>> is_cyclic_number(15)
|
96 |
+
True
|
97 |
+
>>> is_cyclic_number(randprime(1, 2000)**2)
|
98 |
+
False
|
99 |
+
>>> is_cyclic_number(4)
|
100 |
+
False
|
101 |
+
|
102 |
+
References
|
103 |
+
==========
|
104 |
+
|
105 |
+
.. [1] Pakianathan, J., Shankar, K., *Nilpotent Numbers*,
|
106 |
+
The American Mathematical Monthly, 107(7), 631-634.
|
107 |
+
|
108 |
+
"""
|
109 |
+
if n <= 0 or int(n) != n:
|
110 |
+
raise ValueError("n must be a positive integer, not %i" % n)
|
111 |
+
|
112 |
+
n = Integer(n)
|
113 |
+
if not is_nilpotent_number(n):
|
114 |
+
return False
|
115 |
+
|
116 |
+
prime_factors = list(factorint(n).items())
|
117 |
+
is_cyclic = all(a_i < 2 for p_i, a_i in prime_factors)
|
118 |
+
return is_cyclic
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/homomorphisms.py
ADDED
@@ -0,0 +1,549 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
from sympy.combinatorics.fp_groups import FpGroup, FpSubgroup, simplify_presentation
|
3 |
+
from sympy.combinatorics.free_groups import FreeGroup
|
4 |
+
from sympy.combinatorics.perm_groups import PermutationGroup
|
5 |
+
from sympy.core.numbers import igcd
|
6 |
+
from sympy.ntheory.factor_ import totient
|
7 |
+
from sympy.core.singleton import S
|
8 |
+
|
9 |
+
class GroupHomomorphism:
|
10 |
+
'''
|
11 |
+
A class representing group homomorphisms. Instantiate using `homomorphism()`.
|
12 |
+
|
13 |
+
References
|
14 |
+
==========
|
15 |
+
|
16 |
+
.. [1] Holt, D., Eick, B. and O'Brien, E. (2005). Handbook of computational group theory.
|
17 |
+
|
18 |
+
'''
|
19 |
+
|
20 |
+
def __init__(self, domain, codomain, images):
|
21 |
+
self.domain = domain
|
22 |
+
self.codomain = codomain
|
23 |
+
self.images = images
|
24 |
+
self._inverses = None
|
25 |
+
self._kernel = None
|
26 |
+
self._image = None
|
27 |
+
|
28 |
+
def _invs(self):
|
29 |
+
'''
|
30 |
+
Return a dictionary with `{gen: inverse}` where `gen` is a rewriting
|
31 |
+
generator of `codomain` (e.g. strong generator for permutation groups)
|
32 |
+
and `inverse` is an element of its preimage
|
33 |
+
|
34 |
+
'''
|
35 |
+
image = self.image()
|
36 |
+
inverses = {}
|
37 |
+
for k in list(self.images.keys()):
|
38 |
+
v = self.images[k]
|
39 |
+
if not (v in inverses
|
40 |
+
or v.is_identity):
|
41 |
+
inverses[v] = k
|
42 |
+
if isinstance(self.codomain, PermutationGroup):
|
43 |
+
gens = image.strong_gens
|
44 |
+
else:
|
45 |
+
gens = image.generators
|
46 |
+
for g in gens:
|
47 |
+
if g in inverses or g.is_identity:
|
48 |
+
continue
|
49 |
+
w = self.domain.identity
|
50 |
+
if isinstance(self.codomain, PermutationGroup):
|
51 |
+
parts = image._strong_gens_slp[g][::-1]
|
52 |
+
else:
|
53 |
+
parts = g
|
54 |
+
for s in parts:
|
55 |
+
if s in inverses:
|
56 |
+
w = w*inverses[s]
|
57 |
+
else:
|
58 |
+
w = w*inverses[s**-1]**-1
|
59 |
+
inverses[g] = w
|
60 |
+
|
61 |
+
return inverses
|
62 |
+
|
63 |
+
def invert(self, g):
|
64 |
+
'''
|
65 |
+
Return an element of the preimage of ``g`` or of each element
|
66 |
+
of ``g`` if ``g`` is a list.
|
67 |
+
|
68 |
+
Explanation
|
69 |
+
===========
|
70 |
+
|
71 |
+
If the codomain is an FpGroup, the inverse for equal
|
72 |
+
elements might not always be the same unless the FpGroup's
|
73 |
+
rewriting system is confluent. However, making a system
|
74 |
+
confluent can be time-consuming. If it's important, try
|
75 |
+
`self.codomain.make_confluent()` first.
|
76 |
+
|
77 |
+
'''
|
78 |
+
from sympy.combinatorics import Permutation
|
79 |
+
from sympy.combinatorics.free_groups import FreeGroupElement
|
80 |
+
if isinstance(g, (Permutation, FreeGroupElement)):
|
81 |
+
if isinstance(self.codomain, FpGroup):
|
82 |
+
g = self.codomain.reduce(g)
|
83 |
+
if self._inverses is None:
|
84 |
+
self._inverses = self._invs()
|
85 |
+
image = self.image()
|
86 |
+
w = self.domain.identity
|
87 |
+
if isinstance(self.codomain, PermutationGroup):
|
88 |
+
gens = image.generator_product(g)[::-1]
|
89 |
+
else:
|
90 |
+
gens = g
|
91 |
+
# the following can't be "for s in gens:"
|
92 |
+
# because that would be equivalent to
|
93 |
+
# "for s in gens.array_form:" when g is
|
94 |
+
# a FreeGroupElement. On the other hand,
|
95 |
+
# when you call gens by index, the generator
|
96 |
+
# (or inverse) at position i is returned.
|
97 |
+
for i in range(len(gens)):
|
98 |
+
s = gens[i]
|
99 |
+
if s.is_identity:
|
100 |
+
continue
|
101 |
+
if s in self._inverses:
|
102 |
+
w = w*self._inverses[s]
|
103 |
+
else:
|
104 |
+
w = w*self._inverses[s**-1]**-1
|
105 |
+
return w
|
106 |
+
elif isinstance(g, list):
|
107 |
+
return [self.invert(e) for e in g]
|
108 |
+
|
109 |
+
def kernel(self):
|
110 |
+
'''
|
111 |
+
Compute the kernel of `self`.
|
112 |
+
|
113 |
+
'''
|
114 |
+
if self._kernel is None:
|
115 |
+
self._kernel = self._compute_kernel()
|
116 |
+
return self._kernel
|
117 |
+
|
118 |
+
def _compute_kernel(self):
|
119 |
+
G = self.domain
|
120 |
+
G_order = G.order()
|
121 |
+
if G_order is S.Infinity:
|
122 |
+
raise NotImplementedError(
|
123 |
+
"Kernel computation is not implemented for infinite groups")
|
124 |
+
gens = []
|
125 |
+
if isinstance(G, PermutationGroup):
|
126 |
+
K = PermutationGroup(G.identity)
|
127 |
+
else:
|
128 |
+
K = FpSubgroup(G, gens, normal=True)
|
129 |
+
i = self.image().order()
|
130 |
+
while K.order()*i != G_order:
|
131 |
+
r = G.random()
|
132 |
+
k = r*self.invert(self(r))**-1
|
133 |
+
if k not in K:
|
134 |
+
gens.append(k)
|
135 |
+
if isinstance(G, PermutationGroup):
|
136 |
+
K = PermutationGroup(gens)
|
137 |
+
else:
|
138 |
+
K = FpSubgroup(G, gens, normal=True)
|
139 |
+
return K
|
140 |
+
|
141 |
+
def image(self):
|
142 |
+
'''
|
143 |
+
Compute the image of `self`.
|
144 |
+
|
145 |
+
'''
|
146 |
+
if self._image is None:
|
147 |
+
values = list(set(self.images.values()))
|
148 |
+
if isinstance(self.codomain, PermutationGroup):
|
149 |
+
self._image = self.codomain.subgroup(values)
|
150 |
+
else:
|
151 |
+
self._image = FpSubgroup(self.codomain, values)
|
152 |
+
return self._image
|
153 |
+
|
154 |
+
def _apply(self, elem):
|
155 |
+
'''
|
156 |
+
Apply `self` to `elem`.
|
157 |
+
|
158 |
+
'''
|
159 |
+
if elem not in self.domain:
|
160 |
+
if isinstance(elem, (list, tuple)):
|
161 |
+
return [self._apply(e) for e in elem]
|
162 |
+
raise ValueError("The supplied element does not belong to the domain")
|
163 |
+
if elem.is_identity:
|
164 |
+
return self.codomain.identity
|
165 |
+
else:
|
166 |
+
images = self.images
|
167 |
+
value = self.codomain.identity
|
168 |
+
if isinstance(self.domain, PermutationGroup):
|
169 |
+
gens = self.domain.generator_product(elem, original=True)
|
170 |
+
for g in gens:
|
171 |
+
if g in self.images:
|
172 |
+
value = images[g]*value
|
173 |
+
else:
|
174 |
+
value = images[g**-1]**-1*value
|
175 |
+
else:
|
176 |
+
i = 0
|
177 |
+
for _, p in elem.array_form:
|
178 |
+
if p < 0:
|
179 |
+
g = elem[i]**-1
|
180 |
+
else:
|
181 |
+
g = elem[i]
|
182 |
+
value = value*images[g]**p
|
183 |
+
i += abs(p)
|
184 |
+
return value
|
185 |
+
|
186 |
+
def __call__(self, elem):
|
187 |
+
return self._apply(elem)
|
188 |
+
|
189 |
+
def is_injective(self):
|
190 |
+
'''
|
191 |
+
Check if the homomorphism is injective
|
192 |
+
|
193 |
+
'''
|
194 |
+
return self.kernel().order() == 1
|
195 |
+
|
196 |
+
def is_surjective(self):
|
197 |
+
'''
|
198 |
+
Check if the homomorphism is surjective
|
199 |
+
|
200 |
+
'''
|
201 |
+
im = self.image().order()
|
202 |
+
oth = self.codomain.order()
|
203 |
+
if im is S.Infinity and oth is S.Infinity:
|
204 |
+
return None
|
205 |
+
else:
|
206 |
+
return im == oth
|
207 |
+
|
208 |
+
def is_isomorphism(self):
|
209 |
+
'''
|
210 |
+
Check if `self` is an isomorphism.
|
211 |
+
|
212 |
+
'''
|
213 |
+
return self.is_injective() and self.is_surjective()
|
214 |
+
|
215 |
+
def is_trivial(self):
|
216 |
+
'''
|
217 |
+
Check is `self` is a trivial homomorphism, i.e. all elements
|
218 |
+
are mapped to the identity.
|
219 |
+
|
220 |
+
'''
|
221 |
+
return self.image().order() == 1
|
222 |
+
|
223 |
+
def compose(self, other):
|
224 |
+
'''
|
225 |
+
Return the composition of `self` and `other`, i.e.
|
226 |
+
the homomorphism phi such that for all g in the domain
|
227 |
+
of `other`, phi(g) = self(other(g))
|
228 |
+
|
229 |
+
'''
|
230 |
+
if not other.image().is_subgroup(self.domain):
|
231 |
+
raise ValueError("The image of `other` must be a subgroup of "
|
232 |
+
"the domain of `self`")
|
233 |
+
images = {g: self(other(g)) for g in other.images}
|
234 |
+
return GroupHomomorphism(other.domain, self.codomain, images)
|
235 |
+
|
236 |
+
def restrict_to(self, H):
|
237 |
+
'''
|
238 |
+
Return the restriction of the homomorphism to the subgroup `H`
|
239 |
+
of the domain.
|
240 |
+
|
241 |
+
'''
|
242 |
+
if not isinstance(H, PermutationGroup) or not H.is_subgroup(self.domain):
|
243 |
+
raise ValueError("Given H is not a subgroup of the domain")
|
244 |
+
domain = H
|
245 |
+
images = {g: self(g) for g in H.generators}
|
246 |
+
return GroupHomomorphism(domain, self.codomain, images)
|
247 |
+
|
248 |
+
def invert_subgroup(self, H):
|
249 |
+
'''
|
250 |
+
Return the subgroup of the domain that is the inverse image
|
251 |
+
of the subgroup ``H`` of the homomorphism image
|
252 |
+
|
253 |
+
'''
|
254 |
+
if not H.is_subgroup(self.image()):
|
255 |
+
raise ValueError("Given H is not a subgroup of the image")
|
256 |
+
gens = []
|
257 |
+
P = PermutationGroup(self.image().identity)
|
258 |
+
for h in H.generators:
|
259 |
+
h_i = self.invert(h)
|
260 |
+
if h_i not in P:
|
261 |
+
gens.append(h_i)
|
262 |
+
P = PermutationGroup(gens)
|
263 |
+
for k in self.kernel().generators:
|
264 |
+
if k*h_i not in P:
|
265 |
+
gens.append(k*h_i)
|
266 |
+
P = PermutationGroup(gens)
|
267 |
+
return P
|
268 |
+
|
269 |
+
def homomorphism(domain, codomain, gens, images=(), check=True):
|
270 |
+
'''
|
271 |
+
Create (if possible) a group homomorphism from the group ``domain``
|
272 |
+
to the group ``codomain`` defined by the images of the domain's
|
273 |
+
generators ``gens``. ``gens`` and ``images`` can be either lists or tuples
|
274 |
+
of equal sizes. If ``gens`` is a proper subset of the group's generators,
|
275 |
+
the unspecified generators will be mapped to the identity. If the
|
276 |
+
images are not specified, a trivial homomorphism will be created.
|
277 |
+
|
278 |
+
If the given images of the generators do not define a homomorphism,
|
279 |
+
an exception is raised.
|
280 |
+
|
281 |
+
If ``check`` is ``False``, do not check whether the given images actually
|
282 |
+
define a homomorphism.
|
283 |
+
|
284 |
+
'''
|
285 |
+
if not isinstance(domain, (PermutationGroup, FpGroup, FreeGroup)):
|
286 |
+
raise TypeError("The domain must be a group")
|
287 |
+
if not isinstance(codomain, (PermutationGroup, FpGroup, FreeGroup)):
|
288 |
+
raise TypeError("The codomain must be a group")
|
289 |
+
|
290 |
+
generators = domain.generators
|
291 |
+
if not all(g in generators for g in gens):
|
292 |
+
raise ValueError("The supplied generators must be a subset of the domain's generators")
|
293 |
+
if not all(g in codomain for g in images):
|
294 |
+
raise ValueError("The images must be elements of the codomain")
|
295 |
+
|
296 |
+
if images and len(images) != len(gens):
|
297 |
+
raise ValueError("The number of images must be equal to the number of generators")
|
298 |
+
|
299 |
+
gens = list(gens)
|
300 |
+
images = list(images)
|
301 |
+
|
302 |
+
images.extend([codomain.identity]*(len(generators)-len(images)))
|
303 |
+
gens.extend([g for g in generators if g not in gens])
|
304 |
+
images = dict(zip(gens,images))
|
305 |
+
|
306 |
+
if check and not _check_homomorphism(domain, codomain, images):
|
307 |
+
raise ValueError("The given images do not define a homomorphism")
|
308 |
+
return GroupHomomorphism(domain, codomain, images)
|
309 |
+
|
310 |
+
def _check_homomorphism(domain, codomain, images):
|
311 |
+
"""
|
312 |
+
Check that a given mapping of generators to images defines a homomorphism.
|
313 |
+
|
314 |
+
Parameters
|
315 |
+
==========
|
316 |
+
domain : PermutationGroup, FpGroup, FreeGroup
|
317 |
+
codomain : PermutationGroup, FpGroup, FreeGroup
|
318 |
+
images : dict
|
319 |
+
The set of keys must be equal to domain.generators.
|
320 |
+
The values must be elements of the codomain.
|
321 |
+
|
322 |
+
"""
|
323 |
+
pres = domain if hasattr(domain, 'relators') else domain.presentation()
|
324 |
+
rels = pres.relators
|
325 |
+
gens = pres.generators
|
326 |
+
symbols = [g.ext_rep[0] for g in gens]
|
327 |
+
symbols_to_domain_generators = dict(zip(symbols, domain.generators))
|
328 |
+
identity = codomain.identity
|
329 |
+
|
330 |
+
def _image(r):
|
331 |
+
w = identity
|
332 |
+
for symbol, power in r.array_form:
|
333 |
+
g = symbols_to_domain_generators[symbol]
|
334 |
+
w *= images[g]**power
|
335 |
+
return w
|
336 |
+
|
337 |
+
for r in rels:
|
338 |
+
if isinstance(codomain, FpGroup):
|
339 |
+
s = codomain.equals(_image(r), identity)
|
340 |
+
if s is None:
|
341 |
+
# only try to make the rewriting system
|
342 |
+
# confluent when it can't determine the
|
343 |
+
# truth of equality otherwise
|
344 |
+
success = codomain.make_confluent()
|
345 |
+
s = codomain.equals(_image(r), identity)
|
346 |
+
if s is None and not success:
|
347 |
+
raise RuntimeError("Can't determine if the images "
|
348 |
+
"define a homomorphism. Try increasing "
|
349 |
+
"the maximum number of rewriting rules "
|
350 |
+
"(group._rewriting_system.set_max(new_value); "
|
351 |
+
"the current value is stored in group._rewriting"
|
352 |
+
"_system.maxeqns)")
|
353 |
+
else:
|
354 |
+
s = _image(r).is_identity
|
355 |
+
if not s:
|
356 |
+
return False
|
357 |
+
return True
|
358 |
+
|
359 |
+
def orbit_homomorphism(group, omega):
|
360 |
+
'''
|
361 |
+
Return the homomorphism induced by the action of the permutation
|
362 |
+
group ``group`` on the set ``omega`` that is closed under the action.
|
363 |
+
|
364 |
+
'''
|
365 |
+
from sympy.combinatorics import Permutation
|
366 |
+
from sympy.combinatorics.named_groups import SymmetricGroup
|
367 |
+
codomain = SymmetricGroup(len(omega))
|
368 |
+
identity = codomain.identity
|
369 |
+
omega = list(omega)
|
370 |
+
images = {g: identity*Permutation([omega.index(o^g) for o in omega]) for g in group.generators}
|
371 |
+
group._schreier_sims(base=omega)
|
372 |
+
H = GroupHomomorphism(group, codomain, images)
|
373 |
+
if len(group.basic_stabilizers) > len(omega):
|
374 |
+
H._kernel = group.basic_stabilizers[len(omega)]
|
375 |
+
else:
|
376 |
+
H._kernel = PermutationGroup([group.identity])
|
377 |
+
return H
|
378 |
+
|
379 |
+
def block_homomorphism(group, blocks):
|
380 |
+
'''
|
381 |
+
Return the homomorphism induced by the action of the permutation
|
382 |
+
group ``group`` on the block system ``blocks``. The latter should be
|
383 |
+
of the same form as returned by the ``minimal_block`` method for
|
384 |
+
permutation groups, namely a list of length ``group.degree`` where
|
385 |
+
the i-th entry is a representative of the block i belongs to.
|
386 |
+
|
387 |
+
'''
|
388 |
+
from sympy.combinatorics import Permutation
|
389 |
+
from sympy.combinatorics.named_groups import SymmetricGroup
|
390 |
+
|
391 |
+
n = len(blocks)
|
392 |
+
|
393 |
+
# number the blocks; m is the total number,
|
394 |
+
# b is such that b[i] is the number of the block i belongs to,
|
395 |
+
# p is the list of length m such that p[i] is the representative
|
396 |
+
# of the i-th block
|
397 |
+
m = 0
|
398 |
+
p = []
|
399 |
+
b = [None]*n
|
400 |
+
for i in range(n):
|
401 |
+
if blocks[i] == i:
|
402 |
+
p.append(i)
|
403 |
+
b[i] = m
|
404 |
+
m += 1
|
405 |
+
for i in range(n):
|
406 |
+
b[i] = b[blocks[i]]
|
407 |
+
|
408 |
+
codomain = SymmetricGroup(m)
|
409 |
+
# the list corresponding to the identity permutation in codomain
|
410 |
+
identity = range(m)
|
411 |
+
images = {g: Permutation([b[p[i]^g] for i in identity]) for g in group.generators}
|
412 |
+
H = GroupHomomorphism(group, codomain, images)
|
413 |
+
return H
|
414 |
+
|
415 |
+
def group_isomorphism(G, H, isomorphism=True):
|
416 |
+
'''
|
417 |
+
Compute an isomorphism between 2 given groups.
|
418 |
+
|
419 |
+
Parameters
|
420 |
+
==========
|
421 |
+
|
422 |
+
G : A finite ``FpGroup`` or a ``PermutationGroup``.
|
423 |
+
First group.
|
424 |
+
|
425 |
+
H : A finite ``FpGroup`` or a ``PermutationGroup``
|
426 |
+
Second group.
|
427 |
+
|
428 |
+
isomorphism : bool
|
429 |
+
This is used to avoid the computation of homomorphism
|
430 |
+
when the user only wants to check if there exists
|
431 |
+
an isomorphism between the groups.
|
432 |
+
|
433 |
+
Returns
|
434 |
+
=======
|
435 |
+
|
436 |
+
If isomorphism = False -- Returns a boolean.
|
437 |
+
If isomorphism = True -- Returns a boolean and an isomorphism between `G` and `H`.
|
438 |
+
|
439 |
+
Examples
|
440 |
+
========
|
441 |
+
|
442 |
+
>>> from sympy.combinatorics import free_group, Permutation
|
443 |
+
>>> from sympy.combinatorics.perm_groups import PermutationGroup
|
444 |
+
>>> from sympy.combinatorics.fp_groups import FpGroup
|
445 |
+
>>> from sympy.combinatorics.homomorphisms import group_isomorphism
|
446 |
+
>>> from sympy.combinatorics.named_groups import DihedralGroup, AlternatingGroup
|
447 |
+
|
448 |
+
>>> D = DihedralGroup(8)
|
449 |
+
>>> p = Permutation(0, 1, 2, 3, 4, 5, 6, 7)
|
450 |
+
>>> P = PermutationGroup(p)
|
451 |
+
>>> group_isomorphism(D, P)
|
452 |
+
(False, None)
|
453 |
+
|
454 |
+
>>> F, a, b = free_group("a, b")
|
455 |
+
>>> G = FpGroup(F, [a**3, b**3, (a*b)**2])
|
456 |
+
>>> H = AlternatingGroup(4)
|
457 |
+
>>> (check, T) = group_isomorphism(G, H)
|
458 |
+
>>> check
|
459 |
+
True
|
460 |
+
>>> T(b*a*b**-1*a**-1*b**-1)
|
461 |
+
(0 2 3)
|
462 |
+
|
463 |
+
Notes
|
464 |
+
=====
|
465 |
+
|
466 |
+
Uses the approach suggested by Robert Tarjan to compute the isomorphism between two groups.
|
467 |
+
First, the generators of ``G`` are mapped to the elements of ``H`` and
|
468 |
+
we check if the mapping induces an isomorphism.
|
469 |
+
|
470 |
+
'''
|
471 |
+
if not isinstance(G, (PermutationGroup, FpGroup)):
|
472 |
+
raise TypeError("The group must be a PermutationGroup or an FpGroup")
|
473 |
+
if not isinstance(H, (PermutationGroup, FpGroup)):
|
474 |
+
raise TypeError("The group must be a PermutationGroup or an FpGroup")
|
475 |
+
|
476 |
+
if isinstance(G, FpGroup) and isinstance(H, FpGroup):
|
477 |
+
G = simplify_presentation(G)
|
478 |
+
H = simplify_presentation(H)
|
479 |
+
# Two infinite FpGroups with the same generators are isomorphic
|
480 |
+
# when the relators are same but are ordered differently.
|
481 |
+
if G.generators == H.generators and (G.relators).sort() == (H.relators).sort():
|
482 |
+
if not isomorphism:
|
483 |
+
return True
|
484 |
+
return (True, homomorphism(G, H, G.generators, H.generators))
|
485 |
+
|
486 |
+
# `_H` is the permutation group isomorphic to `H`.
|
487 |
+
_H = H
|
488 |
+
g_order = G.order()
|
489 |
+
h_order = H.order()
|
490 |
+
|
491 |
+
if g_order is S.Infinity:
|
492 |
+
raise NotImplementedError("Isomorphism methods are not implemented for infinite groups.")
|
493 |
+
|
494 |
+
if isinstance(H, FpGroup):
|
495 |
+
if h_order is S.Infinity:
|
496 |
+
raise NotImplementedError("Isomorphism methods are not implemented for infinite groups.")
|
497 |
+
_H, h_isomorphism = H._to_perm_group()
|
498 |
+
|
499 |
+
if (g_order != h_order) or (G.is_abelian != H.is_abelian):
|
500 |
+
if not isomorphism:
|
501 |
+
return False
|
502 |
+
return (False, None)
|
503 |
+
|
504 |
+
if not isomorphism:
|
505 |
+
# Two groups of the same cyclic numbered order
|
506 |
+
# are isomorphic to each other.
|
507 |
+
n = g_order
|
508 |
+
if (igcd(n, totient(n))) == 1:
|
509 |
+
return True
|
510 |
+
|
511 |
+
# Match the generators of `G` with subsets of `_H`
|
512 |
+
gens = list(G.generators)
|
513 |
+
for subset in itertools.permutations(_H, len(gens)):
|
514 |
+
images = list(subset)
|
515 |
+
images.extend([_H.identity]*(len(G.generators)-len(images)))
|
516 |
+
_images = dict(zip(gens,images))
|
517 |
+
if _check_homomorphism(G, _H, _images):
|
518 |
+
if isinstance(H, FpGroup):
|
519 |
+
images = h_isomorphism.invert(images)
|
520 |
+
T = homomorphism(G, H, G.generators, images, check=False)
|
521 |
+
if T.is_isomorphism():
|
522 |
+
# It is a valid isomorphism
|
523 |
+
if not isomorphism:
|
524 |
+
return True
|
525 |
+
return (True, T)
|
526 |
+
|
527 |
+
if not isomorphism:
|
528 |
+
return False
|
529 |
+
return (False, None)
|
530 |
+
|
531 |
+
def is_isomorphic(G, H):
|
532 |
+
'''
|
533 |
+
Check if the groups are isomorphic to each other
|
534 |
+
|
535 |
+
Parameters
|
536 |
+
==========
|
537 |
+
|
538 |
+
G : A finite ``FpGroup`` or a ``PermutationGroup``
|
539 |
+
First group.
|
540 |
+
|
541 |
+
H : A finite ``FpGroup`` or a ``PermutationGroup``
|
542 |
+
Second group.
|
543 |
+
|
544 |
+
Returns
|
545 |
+
=======
|
546 |
+
|
547 |
+
boolean
|
548 |
+
'''
|
549 |
+
return group_isomorphism(G, H, isomorphism=False)
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/perm_groups.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/prufer.py
ADDED
@@ -0,0 +1,436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import Basic
|
2 |
+
from sympy.core.containers import Tuple
|
3 |
+
from sympy.tensor.array import Array
|
4 |
+
from sympy.core.sympify import _sympify
|
5 |
+
from sympy.utilities.iterables import flatten, iterable
|
6 |
+
from sympy.utilities.misc import as_int
|
7 |
+
|
8 |
+
from collections import defaultdict
|
9 |
+
|
10 |
+
|
11 |
+
class Prufer(Basic):
|
12 |
+
"""
|
13 |
+
The Prufer correspondence is an algorithm that describes the
|
14 |
+
bijection between labeled trees and the Prufer code. A Prufer
|
15 |
+
code of a labeled tree is unique up to isomorphism and has
|
16 |
+
a length of n - 2.
|
17 |
+
|
18 |
+
Prufer sequences were first used by Heinz Prufer to give a
|
19 |
+
proof of Cayley's formula.
|
20 |
+
|
21 |
+
References
|
22 |
+
==========
|
23 |
+
|
24 |
+
.. [1] https://mathworld.wolfram.com/LabeledTree.html
|
25 |
+
|
26 |
+
"""
|
27 |
+
_prufer_repr = None
|
28 |
+
_tree_repr = None
|
29 |
+
_nodes = None
|
30 |
+
_rank = None
|
31 |
+
|
32 |
+
@property
|
33 |
+
def prufer_repr(self):
|
34 |
+
"""Returns Prufer sequence for the Prufer object.
|
35 |
+
|
36 |
+
This sequence is found by removing the highest numbered vertex,
|
37 |
+
recording the node it was attached to, and continuing until only
|
38 |
+
two vertices remain. The Prufer sequence is the list of recorded nodes.
|
39 |
+
|
40 |
+
Examples
|
41 |
+
========
|
42 |
+
|
43 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
44 |
+
>>> Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]).prufer_repr
|
45 |
+
[3, 3, 3, 4]
|
46 |
+
>>> Prufer([1, 0, 0]).prufer_repr
|
47 |
+
[1, 0, 0]
|
48 |
+
|
49 |
+
See Also
|
50 |
+
========
|
51 |
+
|
52 |
+
to_prufer
|
53 |
+
|
54 |
+
"""
|
55 |
+
if self._prufer_repr is None:
|
56 |
+
self._prufer_repr = self.to_prufer(self._tree_repr[:], self.nodes)
|
57 |
+
return self._prufer_repr
|
58 |
+
|
59 |
+
@property
|
60 |
+
def tree_repr(self):
|
61 |
+
"""Returns the tree representation of the Prufer object.
|
62 |
+
|
63 |
+
Examples
|
64 |
+
========
|
65 |
+
|
66 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
67 |
+
>>> Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]).tree_repr
|
68 |
+
[[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]
|
69 |
+
>>> Prufer([1, 0, 0]).tree_repr
|
70 |
+
[[1, 2], [0, 1], [0, 3], [0, 4]]
|
71 |
+
|
72 |
+
See Also
|
73 |
+
========
|
74 |
+
|
75 |
+
to_tree
|
76 |
+
|
77 |
+
"""
|
78 |
+
if self._tree_repr is None:
|
79 |
+
self._tree_repr = self.to_tree(self._prufer_repr[:])
|
80 |
+
return self._tree_repr
|
81 |
+
|
82 |
+
@property
|
83 |
+
def nodes(self):
|
84 |
+
"""Returns the number of nodes in the tree.
|
85 |
+
|
86 |
+
Examples
|
87 |
+
========
|
88 |
+
|
89 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
90 |
+
>>> Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]]).nodes
|
91 |
+
6
|
92 |
+
>>> Prufer([1, 0, 0]).nodes
|
93 |
+
5
|
94 |
+
|
95 |
+
"""
|
96 |
+
return self._nodes
|
97 |
+
|
98 |
+
@property
|
99 |
+
def rank(self):
|
100 |
+
"""Returns the rank of the Prufer sequence.
|
101 |
+
|
102 |
+
Examples
|
103 |
+
========
|
104 |
+
|
105 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
106 |
+
>>> p = Prufer([[0, 3], [1, 3], [2, 3], [3, 4], [4, 5]])
|
107 |
+
>>> p.rank
|
108 |
+
778
|
109 |
+
>>> p.next(1).rank
|
110 |
+
779
|
111 |
+
>>> p.prev().rank
|
112 |
+
777
|
113 |
+
|
114 |
+
See Also
|
115 |
+
========
|
116 |
+
|
117 |
+
prufer_rank, next, prev, size
|
118 |
+
|
119 |
+
"""
|
120 |
+
if self._rank is None:
|
121 |
+
self._rank = self.prufer_rank()
|
122 |
+
return self._rank
|
123 |
+
|
124 |
+
@property
|
125 |
+
def size(self):
|
126 |
+
"""Return the number of possible trees of this Prufer object.
|
127 |
+
|
128 |
+
Examples
|
129 |
+
========
|
130 |
+
|
131 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
132 |
+
>>> Prufer([0]*4).size == Prufer([6]*4).size == 1296
|
133 |
+
True
|
134 |
+
|
135 |
+
See Also
|
136 |
+
========
|
137 |
+
|
138 |
+
prufer_rank, rank, next, prev
|
139 |
+
|
140 |
+
"""
|
141 |
+
return self.prev(self.rank).prev().rank + 1
|
142 |
+
|
143 |
+
@staticmethod
|
144 |
+
def to_prufer(tree, n):
|
145 |
+
"""Return the Prufer sequence for a tree given as a list of edges where
|
146 |
+
``n`` is the number of nodes in the tree.
|
147 |
+
|
148 |
+
Examples
|
149 |
+
========
|
150 |
+
|
151 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
152 |
+
>>> a = Prufer([[0, 1], [0, 2], [0, 3]])
|
153 |
+
>>> a.prufer_repr
|
154 |
+
[0, 0]
|
155 |
+
>>> Prufer.to_prufer([[0, 1], [0, 2], [0, 3]], 4)
|
156 |
+
[0, 0]
|
157 |
+
|
158 |
+
See Also
|
159 |
+
========
|
160 |
+
prufer_repr: returns Prufer sequence of a Prufer object.
|
161 |
+
|
162 |
+
"""
|
163 |
+
d = defaultdict(int)
|
164 |
+
L = []
|
165 |
+
for edge in tree:
|
166 |
+
# Increment the value of the corresponding
|
167 |
+
# node in the degree list as we encounter an
|
168 |
+
# edge involving it.
|
169 |
+
d[edge[0]] += 1
|
170 |
+
d[edge[1]] += 1
|
171 |
+
for i in range(n - 2):
|
172 |
+
# find the smallest leaf
|
173 |
+
for x in range(n):
|
174 |
+
if d[x] == 1:
|
175 |
+
break
|
176 |
+
# find the node it was connected to
|
177 |
+
y = None
|
178 |
+
for edge in tree:
|
179 |
+
if x == edge[0]:
|
180 |
+
y = edge[1]
|
181 |
+
elif x == edge[1]:
|
182 |
+
y = edge[0]
|
183 |
+
if y is not None:
|
184 |
+
break
|
185 |
+
# record and update
|
186 |
+
L.append(y)
|
187 |
+
for j in (x, y):
|
188 |
+
d[j] -= 1
|
189 |
+
if not d[j]:
|
190 |
+
d.pop(j)
|
191 |
+
tree.remove(edge)
|
192 |
+
return L
|
193 |
+
|
194 |
+
@staticmethod
|
195 |
+
def to_tree(prufer):
|
196 |
+
"""Return the tree (as a list of edges) of the given Prufer sequence.
|
197 |
+
|
198 |
+
Examples
|
199 |
+
========
|
200 |
+
|
201 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
202 |
+
>>> a = Prufer([0, 2], 4)
|
203 |
+
>>> a.tree_repr
|
204 |
+
[[0, 1], [0, 2], [2, 3]]
|
205 |
+
>>> Prufer.to_tree([0, 2])
|
206 |
+
[[0, 1], [0, 2], [2, 3]]
|
207 |
+
|
208 |
+
References
|
209 |
+
==========
|
210 |
+
|
211 |
+
.. [1] https://hamberg.no/erlend/posts/2010-11-06-prufer-sequence-compact-tree-representation.html
|
212 |
+
|
213 |
+
See Also
|
214 |
+
========
|
215 |
+
tree_repr: returns tree representation of a Prufer object.
|
216 |
+
|
217 |
+
"""
|
218 |
+
tree = []
|
219 |
+
last = []
|
220 |
+
n = len(prufer) + 2
|
221 |
+
d = defaultdict(lambda: 1)
|
222 |
+
for p in prufer:
|
223 |
+
d[p] += 1
|
224 |
+
for i in prufer:
|
225 |
+
for j in range(n):
|
226 |
+
# find the smallest leaf (degree = 1)
|
227 |
+
if d[j] == 1:
|
228 |
+
break
|
229 |
+
# (i, j) is the new edge that we append to the tree
|
230 |
+
# and remove from the degree dictionary
|
231 |
+
d[i] -= 1
|
232 |
+
d[j] -= 1
|
233 |
+
tree.append(sorted([i, j]))
|
234 |
+
last = [i for i in range(n) if d[i] == 1] or [0, 1]
|
235 |
+
tree.append(last)
|
236 |
+
|
237 |
+
return tree
|
238 |
+
|
239 |
+
@staticmethod
|
240 |
+
def edges(*runs):
|
241 |
+
"""Return a list of edges and the number of nodes from the given runs
|
242 |
+
that connect nodes in an integer-labelled tree.
|
243 |
+
|
244 |
+
All node numbers will be shifted so that the minimum node is 0. It is
|
245 |
+
not a problem if edges are repeated in the runs; only unique edges are
|
246 |
+
returned. There is no assumption made about what the range of the node
|
247 |
+
labels should be, but all nodes from the smallest through the largest
|
248 |
+
must be present.
|
249 |
+
|
250 |
+
Examples
|
251 |
+
========
|
252 |
+
|
253 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
254 |
+
>>> Prufer.edges([1, 2, 3], [2, 4, 5]) # a T
|
255 |
+
([[0, 1], [1, 2], [1, 3], [3, 4]], 5)
|
256 |
+
|
257 |
+
Duplicate edges are removed:
|
258 |
+
|
259 |
+
>>> Prufer.edges([0, 1, 2, 3], [1, 4, 5], [1, 4, 6]) # a K
|
260 |
+
([[0, 1], [1, 2], [1, 4], [2, 3], [4, 5], [4, 6]], 7)
|
261 |
+
|
262 |
+
"""
|
263 |
+
e = set()
|
264 |
+
nmin = runs[0][0]
|
265 |
+
for r in runs:
|
266 |
+
for i in range(len(r) - 1):
|
267 |
+
a, b = r[i: i + 2]
|
268 |
+
if b < a:
|
269 |
+
a, b = b, a
|
270 |
+
e.add((a, b))
|
271 |
+
rv = []
|
272 |
+
got = set()
|
273 |
+
nmin = nmax = None
|
274 |
+
for ei in e:
|
275 |
+
for i in ei:
|
276 |
+
got.add(i)
|
277 |
+
nmin = min(ei[0], nmin) if nmin is not None else ei[0]
|
278 |
+
nmax = max(ei[1], nmax) if nmax is not None else ei[1]
|
279 |
+
rv.append(list(ei))
|
280 |
+
missing = set(range(nmin, nmax + 1)) - got
|
281 |
+
if missing:
|
282 |
+
missing = [i + nmin for i in missing]
|
283 |
+
if len(missing) == 1:
|
284 |
+
msg = 'Node %s is missing.' % missing.pop()
|
285 |
+
else:
|
286 |
+
msg = 'Nodes %s are missing.' % sorted(missing)
|
287 |
+
raise ValueError(msg)
|
288 |
+
if nmin != 0:
|
289 |
+
for i, ei in enumerate(rv):
|
290 |
+
rv[i] = [n - nmin for n in ei]
|
291 |
+
nmax -= nmin
|
292 |
+
return sorted(rv), nmax + 1
|
293 |
+
|
294 |
+
def prufer_rank(self):
|
295 |
+
"""Computes the rank of a Prufer sequence.
|
296 |
+
|
297 |
+
Examples
|
298 |
+
========
|
299 |
+
|
300 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
301 |
+
>>> a = Prufer([[0, 1], [0, 2], [0, 3]])
|
302 |
+
>>> a.prufer_rank()
|
303 |
+
0
|
304 |
+
|
305 |
+
See Also
|
306 |
+
========
|
307 |
+
|
308 |
+
rank, next, prev, size
|
309 |
+
|
310 |
+
"""
|
311 |
+
r = 0
|
312 |
+
p = 1
|
313 |
+
for i in range(self.nodes - 3, -1, -1):
|
314 |
+
r += p*self.prufer_repr[i]
|
315 |
+
p *= self.nodes
|
316 |
+
return r
|
317 |
+
|
318 |
+
@classmethod
|
319 |
+
def unrank(self, rank, n):
|
320 |
+
"""Finds the unranked Prufer sequence.
|
321 |
+
|
322 |
+
Examples
|
323 |
+
========
|
324 |
+
|
325 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
326 |
+
>>> Prufer.unrank(0, 4)
|
327 |
+
Prufer([0, 0])
|
328 |
+
|
329 |
+
"""
|
330 |
+
n, rank = as_int(n), as_int(rank)
|
331 |
+
L = defaultdict(int)
|
332 |
+
for i in range(n - 3, -1, -1):
|
333 |
+
L[i] = rank % n
|
334 |
+
rank = (rank - L[i])//n
|
335 |
+
return Prufer([L[i] for i in range(len(L))])
|
336 |
+
|
337 |
+
def __new__(cls, *args, **kw_args):
|
338 |
+
"""The constructor for the Prufer object.
|
339 |
+
|
340 |
+
Examples
|
341 |
+
========
|
342 |
+
|
343 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
344 |
+
|
345 |
+
A Prufer object can be constructed from a list of edges:
|
346 |
+
|
347 |
+
>>> a = Prufer([[0, 1], [0, 2], [0, 3]])
|
348 |
+
>>> a.prufer_repr
|
349 |
+
[0, 0]
|
350 |
+
|
351 |
+
If the number of nodes is given, no checking of the nodes will
|
352 |
+
be performed; it will be assumed that nodes 0 through n - 1 are
|
353 |
+
present:
|
354 |
+
|
355 |
+
>>> Prufer([[0, 1], [0, 2], [0, 3]], 4)
|
356 |
+
Prufer([[0, 1], [0, 2], [0, 3]], 4)
|
357 |
+
|
358 |
+
A Prufer object can be constructed from a Prufer sequence:
|
359 |
+
|
360 |
+
>>> b = Prufer([1, 3])
|
361 |
+
>>> b.tree_repr
|
362 |
+
[[0, 1], [1, 3], [2, 3]]
|
363 |
+
|
364 |
+
"""
|
365 |
+
arg0 = Array(args[0]) if args[0] else Tuple()
|
366 |
+
args = (arg0,) + tuple(_sympify(arg) for arg in args[1:])
|
367 |
+
ret_obj = Basic.__new__(cls, *args, **kw_args)
|
368 |
+
args = [list(args[0])]
|
369 |
+
if args[0] and iterable(args[0][0]):
|
370 |
+
if not args[0][0]:
|
371 |
+
raise ValueError(
|
372 |
+
'Prufer expects at least one edge in the tree.')
|
373 |
+
if len(args) > 1:
|
374 |
+
nnodes = args[1]
|
375 |
+
else:
|
376 |
+
nodes = set(flatten(args[0]))
|
377 |
+
nnodes = max(nodes) + 1
|
378 |
+
if nnodes != len(nodes):
|
379 |
+
missing = set(range(nnodes)) - nodes
|
380 |
+
if len(missing) == 1:
|
381 |
+
msg = 'Node %s is missing.' % missing.pop()
|
382 |
+
else:
|
383 |
+
msg = 'Nodes %s are missing.' % sorted(missing)
|
384 |
+
raise ValueError(msg)
|
385 |
+
ret_obj._tree_repr = [list(i) for i in args[0]]
|
386 |
+
ret_obj._nodes = nnodes
|
387 |
+
else:
|
388 |
+
ret_obj._prufer_repr = args[0]
|
389 |
+
ret_obj._nodes = len(ret_obj._prufer_repr) + 2
|
390 |
+
return ret_obj
|
391 |
+
|
392 |
+
def next(self, delta=1):
|
393 |
+
"""Generates the Prufer sequence that is delta beyond the current one.
|
394 |
+
|
395 |
+
Examples
|
396 |
+
========
|
397 |
+
|
398 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
399 |
+
>>> a = Prufer([[0, 1], [0, 2], [0, 3]])
|
400 |
+
>>> b = a.next(1) # == a.next()
|
401 |
+
>>> b.tree_repr
|
402 |
+
[[0, 2], [0, 1], [1, 3]]
|
403 |
+
>>> b.rank
|
404 |
+
1
|
405 |
+
|
406 |
+
See Also
|
407 |
+
========
|
408 |
+
|
409 |
+
prufer_rank, rank, prev, size
|
410 |
+
|
411 |
+
"""
|
412 |
+
return Prufer.unrank(self.rank + delta, self.nodes)
|
413 |
+
|
414 |
+
def prev(self, delta=1):
|
415 |
+
"""Generates the Prufer sequence that is -delta before the current one.
|
416 |
+
|
417 |
+
Examples
|
418 |
+
========
|
419 |
+
|
420 |
+
>>> from sympy.combinatorics.prufer import Prufer
|
421 |
+
>>> a = Prufer([[0, 1], [1, 2], [2, 3], [1, 4]])
|
422 |
+
>>> a.rank
|
423 |
+
36
|
424 |
+
>>> b = a.prev()
|
425 |
+
>>> b
|
426 |
+
Prufer([1, 2, 0])
|
427 |
+
>>> b.rank
|
428 |
+
35
|
429 |
+
|
430 |
+
See Also
|
431 |
+
========
|
432 |
+
|
433 |
+
prufer_rank, rank, next, size
|
434 |
+
|
435 |
+
"""
|
436 |
+
return Prufer.unrank(self.rank -delta, self.nodes)
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/subsets.py
ADDED
@@ -0,0 +1,619 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import combinations
|
2 |
+
|
3 |
+
from sympy.combinatorics.graycode import GrayCode
|
4 |
+
|
5 |
+
|
6 |
+
class Subset():
|
7 |
+
"""
|
8 |
+
Represents a basic subset object.
|
9 |
+
|
10 |
+
Explanation
|
11 |
+
===========
|
12 |
+
|
13 |
+
We generate subsets using essentially two techniques,
|
14 |
+
binary enumeration and lexicographic enumeration.
|
15 |
+
The Subset class takes two arguments, the first one
|
16 |
+
describes the initial subset to consider and the second
|
17 |
+
describes the superset.
|
18 |
+
|
19 |
+
Examples
|
20 |
+
========
|
21 |
+
|
22 |
+
>>> from sympy.combinatorics import Subset
|
23 |
+
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
|
24 |
+
>>> a.next_binary().subset
|
25 |
+
['b']
|
26 |
+
>>> a.prev_binary().subset
|
27 |
+
['c']
|
28 |
+
"""
|
29 |
+
|
30 |
+
_rank_binary = None
|
31 |
+
_rank_lex = None
|
32 |
+
_rank_graycode = None
|
33 |
+
_subset = None
|
34 |
+
_superset = None
|
35 |
+
|
36 |
+
def __new__(cls, subset, superset):
|
37 |
+
"""
|
38 |
+
Default constructor.
|
39 |
+
|
40 |
+
It takes the ``subset`` and its ``superset`` as its parameters.
|
41 |
+
|
42 |
+
Examples
|
43 |
+
========
|
44 |
+
|
45 |
+
>>> from sympy.combinatorics import Subset
|
46 |
+
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
|
47 |
+
>>> a.subset
|
48 |
+
['c', 'd']
|
49 |
+
>>> a.superset
|
50 |
+
['a', 'b', 'c', 'd']
|
51 |
+
>>> a.size
|
52 |
+
2
|
53 |
+
"""
|
54 |
+
if len(subset) > len(superset):
|
55 |
+
raise ValueError('Invalid arguments have been provided. The '
|
56 |
+
'superset must be larger than the subset.')
|
57 |
+
for elem in subset:
|
58 |
+
if elem not in superset:
|
59 |
+
raise ValueError('The superset provided is invalid as it does '
|
60 |
+
'not contain the element {}'.format(elem))
|
61 |
+
obj = object.__new__(cls)
|
62 |
+
obj._subset = subset
|
63 |
+
obj._superset = superset
|
64 |
+
return obj
|
65 |
+
|
66 |
+
def __eq__(self, other):
|
67 |
+
"""Return a boolean indicating whether a == b on the basis of
|
68 |
+
whether both objects are of the class Subset and if the values
|
69 |
+
of the subset and superset attributes are the same.
|
70 |
+
"""
|
71 |
+
if not isinstance(other, Subset):
|
72 |
+
return NotImplemented
|
73 |
+
return self.subset == other.subset and self.superset == other.superset
|
74 |
+
|
75 |
+
def iterate_binary(self, k):
|
76 |
+
"""
|
77 |
+
This is a helper function. It iterates over the
|
78 |
+
binary subsets by ``k`` steps. This variable can be
|
79 |
+
both positive or negative.
|
80 |
+
|
81 |
+
Examples
|
82 |
+
========
|
83 |
+
|
84 |
+
>>> from sympy.combinatorics import Subset
|
85 |
+
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
|
86 |
+
>>> a.iterate_binary(-2).subset
|
87 |
+
['d']
|
88 |
+
>>> a = Subset(['a', 'b', 'c'], ['a', 'b', 'c', 'd'])
|
89 |
+
>>> a.iterate_binary(2).subset
|
90 |
+
[]
|
91 |
+
|
92 |
+
See Also
|
93 |
+
========
|
94 |
+
|
95 |
+
next_binary, prev_binary
|
96 |
+
"""
|
97 |
+
bin_list = Subset.bitlist_from_subset(self.subset, self.superset)
|
98 |
+
n = (int(''.join(bin_list), 2) + k) % 2**self.superset_size
|
99 |
+
bits = bin(n)[2:].rjust(self.superset_size, '0')
|
100 |
+
return Subset.subset_from_bitlist(self.superset, bits)
|
101 |
+
|
102 |
+
def next_binary(self):
|
103 |
+
"""
|
104 |
+
Generates the next binary ordered subset.
|
105 |
+
|
106 |
+
Examples
|
107 |
+
========
|
108 |
+
|
109 |
+
>>> from sympy.combinatorics import Subset
|
110 |
+
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
|
111 |
+
>>> a.next_binary().subset
|
112 |
+
['b']
|
113 |
+
>>> a = Subset(['a', 'b', 'c', 'd'], ['a', 'b', 'c', 'd'])
|
114 |
+
>>> a.next_binary().subset
|
115 |
+
[]
|
116 |
+
|
117 |
+
See Also
|
118 |
+
========
|
119 |
+
|
120 |
+
prev_binary, iterate_binary
|
121 |
+
"""
|
122 |
+
return self.iterate_binary(1)
|
123 |
+
|
124 |
+
def prev_binary(self):
|
125 |
+
"""
|
126 |
+
Generates the previous binary ordered subset.
|
127 |
+
|
128 |
+
Examples
|
129 |
+
========
|
130 |
+
|
131 |
+
>>> from sympy.combinatorics import Subset
|
132 |
+
>>> a = Subset([], ['a', 'b', 'c', 'd'])
|
133 |
+
>>> a.prev_binary().subset
|
134 |
+
['a', 'b', 'c', 'd']
|
135 |
+
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
|
136 |
+
>>> a.prev_binary().subset
|
137 |
+
['c']
|
138 |
+
|
139 |
+
See Also
|
140 |
+
========
|
141 |
+
|
142 |
+
next_binary, iterate_binary
|
143 |
+
"""
|
144 |
+
return self.iterate_binary(-1)
|
145 |
+
|
146 |
+
def next_lexicographic(self):
|
147 |
+
"""
|
148 |
+
Generates the next lexicographically ordered subset.
|
149 |
+
|
150 |
+
Examples
|
151 |
+
========
|
152 |
+
|
153 |
+
>>> from sympy.combinatorics import Subset
|
154 |
+
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
|
155 |
+
>>> a.next_lexicographic().subset
|
156 |
+
['d']
|
157 |
+
>>> a = Subset(['d'], ['a', 'b', 'c', 'd'])
|
158 |
+
>>> a.next_lexicographic().subset
|
159 |
+
[]
|
160 |
+
|
161 |
+
See Also
|
162 |
+
========
|
163 |
+
|
164 |
+
prev_lexicographic
|
165 |
+
"""
|
166 |
+
i = self.superset_size - 1
|
167 |
+
indices = Subset.subset_indices(self.subset, self.superset)
|
168 |
+
|
169 |
+
if i in indices:
|
170 |
+
if i - 1 in indices:
|
171 |
+
indices.remove(i - 1)
|
172 |
+
else:
|
173 |
+
indices.remove(i)
|
174 |
+
i = i - 1
|
175 |
+
while i >= 0 and i not in indices:
|
176 |
+
i = i - 1
|
177 |
+
if i >= 0:
|
178 |
+
indices.remove(i)
|
179 |
+
indices.append(i+1)
|
180 |
+
else:
|
181 |
+
while i not in indices and i >= 0:
|
182 |
+
i = i - 1
|
183 |
+
indices.append(i + 1)
|
184 |
+
|
185 |
+
ret_set = []
|
186 |
+
super_set = self.superset
|
187 |
+
for i in indices:
|
188 |
+
ret_set.append(super_set[i])
|
189 |
+
return Subset(ret_set, super_set)
|
190 |
+
|
191 |
+
def prev_lexicographic(self):
|
192 |
+
"""
|
193 |
+
Generates the previous lexicographically ordered subset.
|
194 |
+
|
195 |
+
Examples
|
196 |
+
========
|
197 |
+
|
198 |
+
>>> from sympy.combinatorics import Subset
|
199 |
+
>>> a = Subset([], ['a', 'b', 'c', 'd'])
|
200 |
+
>>> a.prev_lexicographic().subset
|
201 |
+
['d']
|
202 |
+
>>> a = Subset(['c','d'], ['a', 'b', 'c', 'd'])
|
203 |
+
>>> a.prev_lexicographic().subset
|
204 |
+
['c']
|
205 |
+
|
206 |
+
See Also
|
207 |
+
========
|
208 |
+
|
209 |
+
next_lexicographic
|
210 |
+
"""
|
211 |
+
i = self.superset_size - 1
|
212 |
+
indices = Subset.subset_indices(self.subset, self.superset)
|
213 |
+
|
214 |
+
while i >= 0 and i not in indices:
|
215 |
+
i = i - 1
|
216 |
+
|
217 |
+
if i == 0 or i - 1 in indices:
|
218 |
+
indices.remove(i)
|
219 |
+
else:
|
220 |
+
if i >= 0:
|
221 |
+
indices.remove(i)
|
222 |
+
indices.append(i - 1)
|
223 |
+
indices.append(self.superset_size - 1)
|
224 |
+
|
225 |
+
ret_set = []
|
226 |
+
super_set = self.superset
|
227 |
+
for i in indices:
|
228 |
+
ret_set.append(super_set[i])
|
229 |
+
return Subset(ret_set, super_set)
|
230 |
+
|
231 |
+
def iterate_graycode(self, k):
|
232 |
+
"""
|
233 |
+
Helper function used for prev_gray and next_gray.
|
234 |
+
It performs ``k`` step overs to get the respective Gray codes.
|
235 |
+
|
236 |
+
Examples
|
237 |
+
========
|
238 |
+
|
239 |
+
>>> from sympy.combinatorics import Subset
|
240 |
+
>>> a = Subset([1, 2, 3], [1, 2, 3, 4])
|
241 |
+
>>> a.iterate_graycode(3).subset
|
242 |
+
[1, 4]
|
243 |
+
>>> a.iterate_graycode(-2).subset
|
244 |
+
[1, 2, 4]
|
245 |
+
|
246 |
+
See Also
|
247 |
+
========
|
248 |
+
|
249 |
+
next_gray, prev_gray
|
250 |
+
"""
|
251 |
+
unranked_code = GrayCode.unrank(self.superset_size,
|
252 |
+
(self.rank_gray + k) % self.cardinality)
|
253 |
+
return Subset.subset_from_bitlist(self.superset,
|
254 |
+
unranked_code)
|
255 |
+
|
256 |
+
def next_gray(self):
|
257 |
+
"""
|
258 |
+
Generates the next Gray code ordered subset.
|
259 |
+
|
260 |
+
Examples
|
261 |
+
========
|
262 |
+
|
263 |
+
>>> from sympy.combinatorics import Subset
|
264 |
+
>>> a = Subset([1, 2, 3], [1, 2, 3, 4])
|
265 |
+
>>> a.next_gray().subset
|
266 |
+
[1, 3]
|
267 |
+
|
268 |
+
See Also
|
269 |
+
========
|
270 |
+
|
271 |
+
iterate_graycode, prev_gray
|
272 |
+
"""
|
273 |
+
return self.iterate_graycode(1)
|
274 |
+
|
275 |
+
def prev_gray(self):
|
276 |
+
"""
|
277 |
+
Generates the previous Gray code ordered subset.
|
278 |
+
|
279 |
+
Examples
|
280 |
+
========
|
281 |
+
|
282 |
+
>>> from sympy.combinatorics import Subset
|
283 |
+
>>> a = Subset([2, 3, 4], [1, 2, 3, 4, 5])
|
284 |
+
>>> a.prev_gray().subset
|
285 |
+
[2, 3, 4, 5]
|
286 |
+
|
287 |
+
See Also
|
288 |
+
========
|
289 |
+
|
290 |
+
iterate_graycode, next_gray
|
291 |
+
"""
|
292 |
+
return self.iterate_graycode(-1)
|
293 |
+
|
294 |
+
@property
|
295 |
+
def rank_binary(self):
|
296 |
+
"""
|
297 |
+
Computes the binary ordered rank.
|
298 |
+
|
299 |
+
Examples
|
300 |
+
========
|
301 |
+
|
302 |
+
>>> from sympy.combinatorics import Subset
|
303 |
+
>>> a = Subset([], ['a','b','c','d'])
|
304 |
+
>>> a.rank_binary
|
305 |
+
0
|
306 |
+
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
|
307 |
+
>>> a.rank_binary
|
308 |
+
3
|
309 |
+
|
310 |
+
See Also
|
311 |
+
========
|
312 |
+
|
313 |
+
iterate_binary, unrank_binary
|
314 |
+
"""
|
315 |
+
if self._rank_binary is None:
|
316 |
+
self._rank_binary = int("".join(
|
317 |
+
Subset.bitlist_from_subset(self.subset,
|
318 |
+
self.superset)), 2)
|
319 |
+
return self._rank_binary
|
320 |
+
|
321 |
+
@property
|
322 |
+
def rank_lexicographic(self):
|
323 |
+
"""
|
324 |
+
Computes the lexicographic ranking of the subset.
|
325 |
+
|
326 |
+
Examples
|
327 |
+
========
|
328 |
+
|
329 |
+
>>> from sympy.combinatorics import Subset
|
330 |
+
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
|
331 |
+
>>> a.rank_lexicographic
|
332 |
+
14
|
333 |
+
>>> a = Subset([2, 4, 5], [1, 2, 3, 4, 5, 6])
|
334 |
+
>>> a.rank_lexicographic
|
335 |
+
43
|
336 |
+
"""
|
337 |
+
if self._rank_lex is None:
|
338 |
+
def _ranklex(self, subset_index, i, n):
|
339 |
+
if subset_index == [] or i > n:
|
340 |
+
return 0
|
341 |
+
if i in subset_index:
|
342 |
+
subset_index.remove(i)
|
343 |
+
return 1 + _ranklex(self, subset_index, i + 1, n)
|
344 |
+
return 2**(n - i - 1) + _ranklex(self, subset_index, i + 1, n)
|
345 |
+
indices = Subset.subset_indices(self.subset, self.superset)
|
346 |
+
self._rank_lex = _ranklex(self, indices, 0, self.superset_size)
|
347 |
+
return self._rank_lex
|
348 |
+
|
349 |
+
@property
|
350 |
+
def rank_gray(self):
|
351 |
+
"""
|
352 |
+
Computes the Gray code ranking of the subset.
|
353 |
+
|
354 |
+
Examples
|
355 |
+
========
|
356 |
+
|
357 |
+
>>> from sympy.combinatorics import Subset
|
358 |
+
>>> a = Subset(['c','d'], ['a','b','c','d'])
|
359 |
+
>>> a.rank_gray
|
360 |
+
2
|
361 |
+
>>> a = Subset([2, 4, 5], [1, 2, 3, 4, 5, 6])
|
362 |
+
>>> a.rank_gray
|
363 |
+
27
|
364 |
+
|
365 |
+
See Also
|
366 |
+
========
|
367 |
+
|
368 |
+
iterate_graycode, unrank_gray
|
369 |
+
"""
|
370 |
+
if self._rank_graycode is None:
|
371 |
+
bits = Subset.bitlist_from_subset(self.subset, self.superset)
|
372 |
+
self._rank_graycode = GrayCode(len(bits), start=bits).rank
|
373 |
+
return self._rank_graycode
|
374 |
+
|
375 |
+
@property
|
376 |
+
def subset(self):
|
377 |
+
"""
|
378 |
+
Gets the subset represented by the current instance.
|
379 |
+
|
380 |
+
Examples
|
381 |
+
========
|
382 |
+
|
383 |
+
>>> from sympy.combinatorics import Subset
|
384 |
+
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
|
385 |
+
>>> a.subset
|
386 |
+
['c', 'd']
|
387 |
+
|
388 |
+
See Also
|
389 |
+
========
|
390 |
+
|
391 |
+
superset, size, superset_size, cardinality
|
392 |
+
"""
|
393 |
+
return self._subset
|
394 |
+
|
395 |
+
@property
|
396 |
+
def size(self):
|
397 |
+
"""
|
398 |
+
Gets the size of the subset.
|
399 |
+
|
400 |
+
Examples
|
401 |
+
========
|
402 |
+
|
403 |
+
>>> from sympy.combinatorics import Subset
|
404 |
+
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
|
405 |
+
>>> a.size
|
406 |
+
2
|
407 |
+
|
408 |
+
See Also
|
409 |
+
========
|
410 |
+
|
411 |
+
subset, superset, superset_size, cardinality
|
412 |
+
"""
|
413 |
+
return len(self.subset)
|
414 |
+
|
415 |
+
@property
|
416 |
+
def superset(self):
|
417 |
+
"""
|
418 |
+
Gets the superset of the subset.
|
419 |
+
|
420 |
+
Examples
|
421 |
+
========
|
422 |
+
|
423 |
+
>>> from sympy.combinatorics import Subset
|
424 |
+
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
|
425 |
+
>>> a.superset
|
426 |
+
['a', 'b', 'c', 'd']
|
427 |
+
|
428 |
+
See Also
|
429 |
+
========
|
430 |
+
|
431 |
+
subset, size, superset_size, cardinality
|
432 |
+
"""
|
433 |
+
return self._superset
|
434 |
+
|
435 |
+
@property
|
436 |
+
def superset_size(self):
|
437 |
+
"""
|
438 |
+
Returns the size of the superset.
|
439 |
+
|
440 |
+
Examples
|
441 |
+
========
|
442 |
+
|
443 |
+
>>> from sympy.combinatorics import Subset
|
444 |
+
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
|
445 |
+
>>> a.superset_size
|
446 |
+
4
|
447 |
+
|
448 |
+
See Also
|
449 |
+
========
|
450 |
+
|
451 |
+
subset, superset, size, cardinality
|
452 |
+
"""
|
453 |
+
return len(self.superset)
|
454 |
+
|
455 |
+
@property
|
456 |
+
def cardinality(self):
|
457 |
+
"""
|
458 |
+
Returns the number of all possible subsets.
|
459 |
+
|
460 |
+
Examples
|
461 |
+
========
|
462 |
+
|
463 |
+
>>> from sympy.combinatorics import Subset
|
464 |
+
>>> a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
|
465 |
+
>>> a.cardinality
|
466 |
+
16
|
467 |
+
|
468 |
+
See Also
|
469 |
+
========
|
470 |
+
|
471 |
+
subset, superset, size, superset_size
|
472 |
+
"""
|
473 |
+
return 2**(self.superset_size)
|
474 |
+
|
475 |
+
@classmethod
|
476 |
+
def subset_from_bitlist(self, super_set, bitlist):
|
477 |
+
"""
|
478 |
+
Gets the subset defined by the bitlist.
|
479 |
+
|
480 |
+
Examples
|
481 |
+
========
|
482 |
+
|
483 |
+
>>> from sympy.combinatorics import Subset
|
484 |
+
>>> Subset.subset_from_bitlist(['a', 'b', 'c', 'd'], '0011').subset
|
485 |
+
['c', 'd']
|
486 |
+
|
487 |
+
See Also
|
488 |
+
========
|
489 |
+
|
490 |
+
bitlist_from_subset
|
491 |
+
"""
|
492 |
+
if len(super_set) != len(bitlist):
|
493 |
+
raise ValueError("The sizes of the lists are not equal")
|
494 |
+
ret_set = []
|
495 |
+
for i in range(len(bitlist)):
|
496 |
+
if bitlist[i] == '1':
|
497 |
+
ret_set.append(super_set[i])
|
498 |
+
return Subset(ret_set, super_set)
|
499 |
+
|
500 |
+
@classmethod
|
501 |
+
def bitlist_from_subset(self, subset, superset):
|
502 |
+
"""
|
503 |
+
Gets the bitlist corresponding to a subset.
|
504 |
+
|
505 |
+
Examples
|
506 |
+
========
|
507 |
+
|
508 |
+
>>> from sympy.combinatorics import Subset
|
509 |
+
>>> Subset.bitlist_from_subset(['c', 'd'], ['a', 'b', 'c', 'd'])
|
510 |
+
'0011'
|
511 |
+
|
512 |
+
See Also
|
513 |
+
========
|
514 |
+
|
515 |
+
subset_from_bitlist
|
516 |
+
"""
|
517 |
+
bitlist = ['0'] * len(superset)
|
518 |
+
if isinstance(subset, Subset):
|
519 |
+
subset = subset.subset
|
520 |
+
for i in Subset.subset_indices(subset, superset):
|
521 |
+
bitlist[i] = '1'
|
522 |
+
return ''.join(bitlist)
|
523 |
+
|
524 |
+
@classmethod
|
525 |
+
def unrank_binary(self, rank, superset):
|
526 |
+
"""
|
527 |
+
Gets the binary ordered subset of the specified rank.
|
528 |
+
|
529 |
+
Examples
|
530 |
+
========
|
531 |
+
|
532 |
+
>>> from sympy.combinatorics import Subset
|
533 |
+
>>> Subset.unrank_binary(4, ['a', 'b', 'c', 'd']).subset
|
534 |
+
['b']
|
535 |
+
|
536 |
+
See Also
|
537 |
+
========
|
538 |
+
|
539 |
+
iterate_binary, rank_binary
|
540 |
+
"""
|
541 |
+
bits = bin(rank)[2:].rjust(len(superset), '0')
|
542 |
+
return Subset.subset_from_bitlist(superset, bits)
|
543 |
+
|
544 |
+
@classmethod
|
545 |
+
def unrank_gray(self, rank, superset):
|
546 |
+
"""
|
547 |
+
Gets the Gray code ordered subset of the specified rank.
|
548 |
+
|
549 |
+
Examples
|
550 |
+
========
|
551 |
+
|
552 |
+
>>> from sympy.combinatorics import Subset
|
553 |
+
>>> Subset.unrank_gray(4, ['a', 'b', 'c']).subset
|
554 |
+
['a', 'b']
|
555 |
+
>>> Subset.unrank_gray(0, ['a', 'b', 'c']).subset
|
556 |
+
[]
|
557 |
+
|
558 |
+
See Also
|
559 |
+
========
|
560 |
+
|
561 |
+
iterate_graycode, rank_gray
|
562 |
+
"""
|
563 |
+
graycode_bitlist = GrayCode.unrank(len(superset), rank)
|
564 |
+
return Subset.subset_from_bitlist(superset, graycode_bitlist)
|
565 |
+
|
566 |
+
@classmethod
|
567 |
+
def subset_indices(self, subset, superset):
|
568 |
+
"""Return indices of subset in superset in a list; the list is empty
|
569 |
+
if all elements of ``subset`` are not in ``superset``.
|
570 |
+
|
571 |
+
Examples
|
572 |
+
========
|
573 |
+
|
574 |
+
>>> from sympy.combinatorics import Subset
|
575 |
+
>>> superset = [1, 3, 2, 5, 4]
|
576 |
+
>>> Subset.subset_indices([3, 2, 1], superset)
|
577 |
+
[1, 2, 0]
|
578 |
+
>>> Subset.subset_indices([1, 6], superset)
|
579 |
+
[]
|
580 |
+
>>> Subset.subset_indices([], superset)
|
581 |
+
[]
|
582 |
+
|
583 |
+
"""
|
584 |
+
a, b = superset, subset
|
585 |
+
sb = set(b)
|
586 |
+
d = {}
|
587 |
+
for i, ai in enumerate(a):
|
588 |
+
if ai in sb:
|
589 |
+
d[ai] = i
|
590 |
+
sb.remove(ai)
|
591 |
+
if not sb:
|
592 |
+
break
|
593 |
+
else:
|
594 |
+
return []
|
595 |
+
return [d[bi] for bi in b]
|
596 |
+
|
597 |
+
|
598 |
+
def ksubsets(superset, k):
|
599 |
+
"""
|
600 |
+
Finds the subsets of size ``k`` in lexicographic order.
|
601 |
+
|
602 |
+
This uses the itertools generator.
|
603 |
+
|
604 |
+
Examples
|
605 |
+
========
|
606 |
+
|
607 |
+
>>> from sympy.combinatorics.subsets import ksubsets
|
608 |
+
>>> list(ksubsets([1, 2, 3], 2))
|
609 |
+
[(1, 2), (1, 3), (2, 3)]
|
610 |
+
>>> list(ksubsets([1, 2, 3, 4, 5], 2))
|
611 |
+
[(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), \
|
612 |
+
(2, 5), (3, 4), (3, 5), (4, 5)]
|
613 |
+
|
614 |
+
See Also
|
615 |
+
========
|
616 |
+
|
617 |
+
Subset
|
618 |
+
"""
|
619 |
+
return combinations(superset, k)
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tensor_can.py
ADDED
@@ -0,0 +1,1190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.combinatorics.permutations import Permutation, _af_rmul, \
|
2 |
+
_af_invert, _af_new
|
3 |
+
from sympy.combinatorics.perm_groups import PermutationGroup, _orbit, \
|
4 |
+
_orbit_transversal
|
5 |
+
from sympy.combinatorics.util import _distribute_gens_by_base, \
|
6 |
+
_orbits_transversals_from_bsgs
|
7 |
+
|
8 |
+
"""
|
9 |
+
References for tensor canonicalization:
|
10 |
+
|
11 |
+
[1] R. Portugal "Algorithmic simplification of tensor expressions",
|
12 |
+
J. Phys. A 32 (1999) 7779-7789
|
13 |
+
|
14 |
+
[2] R. Portugal, B.F. Svaiter "Group-theoretic Approach for Symbolic
|
15 |
+
Tensor Manipulation: I. Free Indices"
|
16 |
+
arXiv:math-ph/0107031v1
|
17 |
+
|
18 |
+
[3] L.R.U. Manssur, R. Portugal "Group-theoretic Approach for Symbolic
|
19 |
+
Tensor Manipulation: II. Dummy Indices"
|
20 |
+
arXiv:math-ph/0107032v1
|
21 |
+
|
22 |
+
[4] xperm.c part of XPerm written by J. M. Martin-Garcia
|
23 |
+
http://www.xact.es/index.html
|
24 |
+
"""
|
25 |
+
|
26 |
+
|
27 |
+
def dummy_sgs(dummies, sym, n):
|
28 |
+
"""
|
29 |
+
Return the strong generators for dummy indices.
|
30 |
+
|
31 |
+
Parameters
|
32 |
+
==========
|
33 |
+
|
34 |
+
dummies : List of dummy indices.
|
35 |
+
`dummies[2k], dummies[2k+1]` are paired indices.
|
36 |
+
In base form, the dummy indices are always in
|
37 |
+
consecutive positions.
|
38 |
+
sym : symmetry under interchange of contracted dummies::
|
39 |
+
* None no symmetry
|
40 |
+
* 0 commuting
|
41 |
+
* 1 anticommuting
|
42 |
+
|
43 |
+
n : number of indices
|
44 |
+
|
45 |
+
Examples
|
46 |
+
========
|
47 |
+
|
48 |
+
>>> from sympy.combinatorics.tensor_can import dummy_sgs
|
49 |
+
>>> dummy_sgs(list(range(2, 8)), 0, 8)
|
50 |
+
[[0, 1, 3, 2, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 5, 4, 6, 7, 8, 9],
|
51 |
+
[0, 1, 2, 3, 4, 5, 7, 6, 8, 9], [0, 1, 4, 5, 2, 3, 6, 7, 8, 9],
|
52 |
+
[0, 1, 2, 3, 6, 7, 4, 5, 8, 9]]
|
53 |
+
"""
|
54 |
+
if len(dummies) > n:
|
55 |
+
raise ValueError("List too large")
|
56 |
+
res = []
|
57 |
+
# exchange of contravariant and covariant indices
|
58 |
+
if sym is not None:
|
59 |
+
for j in dummies[::2]:
|
60 |
+
a = list(range(n + 2))
|
61 |
+
if sym == 1:
|
62 |
+
a[n] = n + 1
|
63 |
+
a[n + 1] = n
|
64 |
+
a[j], a[j + 1] = a[j + 1], a[j]
|
65 |
+
res.append(a)
|
66 |
+
# rename dummy indices
|
67 |
+
for j in dummies[:-3:2]:
|
68 |
+
a = list(range(n + 2))
|
69 |
+
a[j:j + 4] = a[j + 2], a[j + 3], a[j], a[j + 1]
|
70 |
+
res.append(a)
|
71 |
+
return res
|
72 |
+
|
73 |
+
|
74 |
+
def _min_dummies(dummies, sym, indices):
|
75 |
+
"""
|
76 |
+
Return list of minima of the orbits of indices in group of dummies.
|
77 |
+
See ``double_coset_can_rep`` for the description of ``dummies`` and ``sym``.
|
78 |
+
``indices`` is the initial list of dummy indices.
|
79 |
+
|
80 |
+
Examples
|
81 |
+
========
|
82 |
+
|
83 |
+
>>> from sympy.combinatorics.tensor_can import _min_dummies
|
84 |
+
>>> _min_dummies([list(range(2, 8))], [0], list(range(10)))
|
85 |
+
[0, 1, 2, 2, 2, 2, 2, 2, 8, 9]
|
86 |
+
"""
|
87 |
+
num_types = len(sym)
|
88 |
+
m = [min(dx) if dx else None for dx in dummies]
|
89 |
+
res = indices[:]
|
90 |
+
for i in range(num_types):
|
91 |
+
for c, i in enumerate(indices):
|
92 |
+
for j in range(num_types):
|
93 |
+
if i in dummies[j]:
|
94 |
+
res[c] = m[j]
|
95 |
+
break
|
96 |
+
return res
|
97 |
+
|
98 |
+
|
99 |
+
def _trace_S(s, j, b, S_cosets):
|
100 |
+
"""
|
101 |
+
Return the representative h satisfying s[h[b]] == j
|
102 |
+
|
103 |
+
If there is not such a representative return None
|
104 |
+
"""
|
105 |
+
for h in S_cosets[b]:
|
106 |
+
if s[h[b]] == j:
|
107 |
+
return h
|
108 |
+
return None
|
109 |
+
|
110 |
+
|
111 |
+
def _trace_D(gj, p_i, Dxtrav):
|
112 |
+
"""
|
113 |
+
Return the representative h satisfying h[gj] == p_i
|
114 |
+
|
115 |
+
If there is not such a representative return None
|
116 |
+
"""
|
117 |
+
for h in Dxtrav:
|
118 |
+
if h[gj] == p_i:
|
119 |
+
return h
|
120 |
+
return None
|
121 |
+
|
122 |
+
|
123 |
+
def _dumx_remove(dumx, dumx_flat, p0):
|
124 |
+
"""
|
125 |
+
remove p0 from dumx
|
126 |
+
"""
|
127 |
+
res = []
|
128 |
+
for dx in dumx:
|
129 |
+
if p0 not in dx:
|
130 |
+
res.append(dx)
|
131 |
+
continue
|
132 |
+
k = dx.index(p0)
|
133 |
+
if k % 2 == 0:
|
134 |
+
p0_paired = dx[k + 1]
|
135 |
+
else:
|
136 |
+
p0_paired = dx[k - 1]
|
137 |
+
dx.remove(p0)
|
138 |
+
dx.remove(p0_paired)
|
139 |
+
dumx_flat.remove(p0)
|
140 |
+
dumx_flat.remove(p0_paired)
|
141 |
+
res.append(dx)
|
142 |
+
|
143 |
+
|
144 |
+
def transversal2coset(size, base, transversal):
|
145 |
+
a = []
|
146 |
+
j = 0
|
147 |
+
for i in range(size):
|
148 |
+
if i in base:
|
149 |
+
a.append(sorted(transversal[j].values()))
|
150 |
+
j += 1
|
151 |
+
else:
|
152 |
+
a.append([list(range(size))])
|
153 |
+
j = len(a) - 1
|
154 |
+
while a[j] == [list(range(size))]:
|
155 |
+
j -= 1
|
156 |
+
return a[:j + 1]
|
157 |
+
|
158 |
+
|
159 |
+
def double_coset_can_rep(dummies, sym, b_S, sgens, S_transversals, g):
|
160 |
+
r"""
|
161 |
+
Butler-Portugal algorithm for tensor canonicalization with dummy indices.
|
162 |
+
|
163 |
+
Parameters
|
164 |
+
==========
|
165 |
+
|
166 |
+
dummies
|
167 |
+
list of lists of dummy indices,
|
168 |
+
one list for each type of index;
|
169 |
+
the dummy indices are put in order contravariant, covariant
|
170 |
+
[d0, -d0, d1, -d1, ...].
|
171 |
+
|
172 |
+
sym
|
173 |
+
list of the symmetries of the index metric for each type.
|
174 |
+
|
175 |
+
possible symmetries of the metrics
|
176 |
+
* 0 symmetric
|
177 |
+
* 1 antisymmetric
|
178 |
+
* None no symmetry
|
179 |
+
|
180 |
+
b_S
|
181 |
+
base of a minimal slot symmetry BSGS.
|
182 |
+
|
183 |
+
sgens
|
184 |
+
generators of the slot symmetry BSGS.
|
185 |
+
|
186 |
+
S_transversals
|
187 |
+
transversals for the slot BSGS.
|
188 |
+
|
189 |
+
g
|
190 |
+
permutation representing the tensor.
|
191 |
+
|
192 |
+
Returns
|
193 |
+
=======
|
194 |
+
|
195 |
+
Return 0 if the tensor is zero, else return the array form of
|
196 |
+
the permutation representing the canonical form of the tensor.
|
197 |
+
|
198 |
+
Notes
|
199 |
+
=====
|
200 |
+
|
201 |
+
A tensor with dummy indices can be represented in a number
|
202 |
+
of equivalent ways which typically grows exponentially with
|
203 |
+
the number of indices. To be able to establish if two tensors
|
204 |
+
with many indices are equal becomes computationally very slow
|
205 |
+
in absence of an efficient algorithm.
|
206 |
+
|
207 |
+
The Butler-Portugal algorithm [3] is an efficient algorithm to
|
208 |
+
put tensors in canonical form, solving the above problem.
|
209 |
+
|
210 |
+
Portugal observed that a tensor can be represented by a permutation,
|
211 |
+
and that the class of tensors equivalent to it under slot and dummy
|
212 |
+
symmetries is equivalent to the double coset `D*g*S`
|
213 |
+
(Note: in this documentation we use the conventions for multiplication
|
214 |
+
of permutations p, q with (p*q)(i) = p[q[i]] which is opposite
|
215 |
+
to the one used in the Permutation class)
|
216 |
+
|
217 |
+
Using the algorithm by Butler to find a representative of the
|
218 |
+
double coset one can find a canonical form for the tensor.
|
219 |
+
|
220 |
+
To see this correspondence,
|
221 |
+
let `g` be a permutation in array form; a tensor with indices `ind`
|
222 |
+
(the indices including both the contravariant and the covariant ones)
|
223 |
+
can be written as
|
224 |
+
|
225 |
+
`t = T(ind[g[0]], \dots, ind[g[n-1]])`,
|
226 |
+
|
227 |
+
where `n = len(ind)`;
|
228 |
+
`g` has size `n + 2`, the last two indices for the sign of the tensor
|
229 |
+
(trick introduced in [4]).
|
230 |
+
|
231 |
+
A slot symmetry transformation `s` is a permutation acting on the slots
|
232 |
+
`t \rightarrow T(ind[(g*s)[0]], \dots, ind[(g*s)[n-1]])`
|
233 |
+
|
234 |
+
A dummy symmetry transformation acts on `ind`
|
235 |
+
`t \rightarrow T(ind[(d*g)[0]], \dots, ind[(d*g)[n-1]])`
|
236 |
+
|
237 |
+
Being interested only in the transformations of the tensor under
|
238 |
+
these symmetries, one can represent the tensor by `g`, which transforms
|
239 |
+
as
|
240 |
+
|
241 |
+
`g -> d*g*s`, so it belongs to the coset `D*g*S`, or in other words
|
242 |
+
to the set of all permutations allowed by the slot and dummy symmetries.
|
243 |
+
|
244 |
+
Let us explain the conventions by an example.
|
245 |
+
|
246 |
+
Given a tensor `T^{d3 d2 d1}{}_{d1 d2 d3}` with the slot symmetries
|
247 |
+
`T^{a0 a1 a2 a3 a4 a5} = -T^{a2 a1 a0 a3 a4 a5}`
|
248 |
+
|
249 |
+
`T^{a0 a1 a2 a3 a4 a5} = -T^{a4 a1 a2 a3 a0 a5}`
|
250 |
+
|
251 |
+
and symmetric metric, find the tensor equivalent to it which
|
252 |
+
is the lowest under the ordering of indices:
|
253 |
+
lexicographic ordering `d1, d2, d3` and then contravariant
|
254 |
+
before covariant index; that is the canonical form of the tensor.
|
255 |
+
|
256 |
+
The canonical form is `-T^{d1 d2 d3}{}_{d1 d2 d3}`
|
257 |
+
obtained using `T^{a0 a1 a2 a3 a4 a5} = -T^{a2 a1 a0 a3 a4 a5}`.
|
258 |
+
|
259 |
+
To convert this problem in the input for this function,
|
260 |
+
use the following ordering of the index names
|
261 |
+
(- for covariant for short) `d1, -d1, d2, -d2, d3, -d3`
|
262 |
+
|
263 |
+
`T^{d3 d2 d1}{}_{d1 d2 d3}` corresponds to `g = [4, 2, 0, 1, 3, 5, 6, 7]`
|
264 |
+
where the last two indices are for the sign
|
265 |
+
|
266 |
+
`sgens = [Permutation(0, 2)(6, 7), Permutation(0, 4)(6, 7)]`
|
267 |
+
|
268 |
+
sgens[0] is the slot symmetry `-(0, 2)`
|
269 |
+
`T^{a0 a1 a2 a3 a4 a5} = -T^{a2 a1 a0 a3 a4 a5}`
|
270 |
+
|
271 |
+
sgens[1] is the slot symmetry `-(0, 4)`
|
272 |
+
`T^{a0 a1 a2 a3 a4 a5} = -T^{a4 a1 a2 a3 a0 a5}`
|
273 |
+
|
274 |
+
The dummy symmetry group D is generated by the strong base generators
|
275 |
+
`[(0, 1), (2, 3), (4, 5), (0, 2)(1, 3), (0, 4)(1, 5)]`
|
276 |
+
where the first three interchange covariant and contravariant
|
277 |
+
positions of the same index (d1 <-> -d1) and the last two interchange
|
278 |
+
the dummy indices themselves (d1 <-> d2).
|
279 |
+
|
280 |
+
The dummy symmetry acts from the left
|
281 |
+
`d = [1, 0, 2, 3, 4, 5, 6, 7]` exchange `d1 \leftrightarrow -d1`
|
282 |
+
`T^{d3 d2 d1}{}_{d1 d2 d3} == T^{d3 d2}{}_{d1}{}^{d1}{}_{d2 d3}`
|
283 |
+
|
284 |
+
`g=[4, 2, 0, 1, 3, 5, 6, 7] -> [4, 2, 1, 0, 3, 5, 6, 7] = _af_rmul(d, g)`
|
285 |
+
which differs from `_af_rmul(g, d)`.
|
286 |
+
|
287 |
+
The slot symmetry acts from the right
|
288 |
+
`s = [2, 1, 0, 3, 4, 5, 7, 6]` exchanges slots 0 and 2 and changes sign
|
289 |
+
`T^{d3 d2 d1}{}_{d1 d2 d3} == -T^{d1 d2 d3}{}_{d1 d2 d3}`
|
290 |
+
|
291 |
+
`g=[4,2,0,1,3,5,6,7] -> [0, 2, 4, 1, 3, 5, 7, 6] = _af_rmul(g, s)`
|
292 |
+
|
293 |
+
Example in which the tensor is zero, same slot symmetries as above:
|
294 |
+
`T^{d2}{}_{d1 d3}{}^{d1 d3}{}_{d2}`
|
295 |
+
|
296 |
+
`= -T^{d3}{}_{d1 d3}{}^{d1 d2}{}_{d2}` under slot symmetry `-(0,4)`;
|
297 |
+
|
298 |
+
`= T_{d3 d1}{}^{d3}{}^{d1 d2}{}_{d2}` under slot symmetry `-(0,2)`;
|
299 |
+
|
300 |
+
`= T^{d3}{}_{d1 d3}{}^{d1 d2}{}_{d2}` symmetric metric;
|
301 |
+
|
302 |
+
`= 0` since two of these lines have tensors differ only for the sign.
|
303 |
+
|
304 |
+
The double coset D*g*S consists of permutations `h = d*g*s` corresponding
|
305 |
+
to equivalent tensors; if there are two `h` which are the same apart
|
306 |
+
from the sign, return zero; otherwise
|
307 |
+
choose as representative the tensor with indices
|
308 |
+
ordered lexicographically according to `[d1, -d1, d2, -d2, d3, -d3]`
|
309 |
+
that is ``rep = min(D*g*S) = min([d*g*s for d in D for s in S])``
|
310 |
+
|
311 |
+
The indices are fixed one by one; first choose the lowest index
|
312 |
+
for slot 0, then the lowest remaining index for slot 1, etc.
|
313 |
+
Doing this one obtains a chain of stabilizers
|
314 |
+
|
315 |
+
`S \rightarrow S_{b0} \rightarrow S_{b0,b1} \rightarrow \dots` and
|
316 |
+
`D \rightarrow D_{p0} \rightarrow D_{p0,p1} \rightarrow \dots`
|
317 |
+
|
318 |
+
where ``[b0, b1, ...] = range(b)`` is a base of the symmetric group;
|
319 |
+
the strong base `b_S` of S is an ordered sublist of it;
|
320 |
+
therefore it is sufficient to compute once the
|
321 |
+
strong base generators of S using the Schreier-Sims algorithm;
|
322 |
+
the stabilizers of the strong base generators are the
|
323 |
+
strong base generators of the stabilizer subgroup.
|
324 |
+
|
325 |
+
``dbase = [p0, p1, ...]`` is not in general in lexicographic order,
|
326 |
+
so that one must recompute the strong base generators each time;
|
327 |
+
however this is trivial, there is no need to use the Schreier-Sims
|
328 |
+
algorithm for D.
|
329 |
+
|
330 |
+
The algorithm keeps a TAB of elements `(s_i, d_i, h_i)`
|
331 |
+
where `h_i = d_i \times g \times s_i` satisfying `h_i[j] = p_j` for `0 \le j < i`
|
332 |
+
starting from `s_0 = id, d_0 = id, h_0 = g`.
|
333 |
+
|
334 |
+
The equations `h_0[0] = p_0, h_1[1] = p_1, \dots` are solved in this order,
|
335 |
+
choosing each time the lowest possible value of p_i
|
336 |
+
|
337 |
+
For `j < i`
|
338 |
+
`d_i*g*s_i*S_{b_0, \dots, b_{i-1}}*b_j = D_{p_0, \dots, p_{i-1}}*p_j`
|
339 |
+
so that for dx in `D_{p_0,\dots,p_{i-1}}` and sx in
|
340 |
+
`S_{base[0], \dots, base[i-1]}` one has `dx*d_i*g*s_i*sx*b_j = p_j`
|
341 |
+
|
342 |
+
Search for dx, sx such that this equation holds for `j = i`;
|
343 |
+
it can be written as `s_i*sx*b_j = J, dx*d_i*g*J = p_j`
|
344 |
+
`sx*b_j = s_i**-1*J; sx = trace(s_i**-1, S_{b_0,...,b_{i-1}})`
|
345 |
+
`dx**-1*p_j = d_i*g*J; dx = trace(d_i*g*J, D_{p_0,...,p_{i-1}})`
|
346 |
+
|
347 |
+
`s_{i+1} = s_i*trace(s_i**-1*J, S_{b_0,...,b_{i-1}})`
|
348 |
+
`d_{i+1} = trace(d_i*g*J, D_{p_0,...,p_{i-1}})**-1*d_i`
|
349 |
+
`h_{i+1}*b_i = d_{i+1}*g*s_{i+1}*b_i = p_i`
|
350 |
+
|
351 |
+
`h_n*b_j = p_j` for all j, so that `h_n` is the solution.
|
352 |
+
|
353 |
+
Add the found `(s, d, h)` to TAB1.
|
354 |
+
|
355 |
+
At the end of the iteration sort TAB1 with respect to the `h`;
|
356 |
+
if there are two consecutive `h` in TAB1 which differ only for the
|
357 |
+
sign, the tensor is zero, so return 0;
|
358 |
+
if there are two consecutive `h` which are equal, keep only one.
|
359 |
+
|
360 |
+
Then stabilize the slot generators under `i` and the dummy generators
|
361 |
+
under `p_i`.
|
362 |
+
|
363 |
+
Assign `TAB = TAB1` at the end of the iteration step.
|
364 |
+
|
365 |
+
At the end `TAB` contains a unique `(s, d, h)`, since all the slots
|
366 |
+
of the tensor `h` have been fixed to have the minimum value according
|
367 |
+
to the symmetries. The algorithm returns `h`.
|
368 |
+
|
369 |
+
It is important that the slot BSGS has lexicographic minimal base,
|
370 |
+
otherwise there is an `i` which does not belong to the slot base
|
371 |
+
for which `p_i` is fixed by the dummy symmetry only, while `i`
|
372 |
+
is not invariant from the slot stabilizer, so `p_i` is not in
|
373 |
+
general the minimal value.
|
374 |
+
|
375 |
+
This algorithm differs slightly from the original algorithm [3]:
|
376 |
+
the canonical form is minimal lexicographically, and
|
377 |
+
the BSGS has minimal base under lexicographic order.
|
378 |
+
Equal tensors `h` are eliminated from TAB.
|
379 |
+
|
380 |
+
|
381 |
+
Examples
|
382 |
+
========
|
383 |
+
|
384 |
+
>>> from sympy.combinatorics.permutations import Permutation
|
385 |
+
>>> from sympy.combinatorics.tensor_can import double_coset_can_rep, get_transversals
|
386 |
+
>>> gens = [Permutation(x) for x in [[2, 1, 0, 3, 4, 5, 7, 6], [4, 1, 2, 3, 0, 5, 7, 6]]]
|
387 |
+
>>> base = [0, 2]
|
388 |
+
>>> g = Permutation([4, 2, 0, 1, 3, 5, 6, 7])
|
389 |
+
>>> transversals = get_transversals(base, gens)
|
390 |
+
>>> double_coset_can_rep([list(range(6))], [0], base, gens, transversals, g)
|
391 |
+
[0, 1, 2, 3, 4, 5, 7, 6]
|
392 |
+
|
393 |
+
>>> g = Permutation([4, 1, 3, 0, 5, 2, 6, 7])
|
394 |
+
>>> double_coset_can_rep([list(range(6))], [0], base, gens, transversals, g)
|
395 |
+
0
|
396 |
+
"""
|
397 |
+
size = g.size
|
398 |
+
g = g.array_form
|
399 |
+
num_dummies = size - 2
|
400 |
+
indices = list(range(num_dummies))
|
401 |
+
all_metrics_with_sym = not any(_ is None for _ in sym)
|
402 |
+
num_types = len(sym)
|
403 |
+
dumx = dummies[:]
|
404 |
+
dumx_flat = []
|
405 |
+
for dx in dumx:
|
406 |
+
dumx_flat.extend(dx)
|
407 |
+
b_S = b_S[:]
|
408 |
+
sgensx = [h._array_form for h in sgens]
|
409 |
+
if b_S:
|
410 |
+
S_transversals = transversal2coset(size, b_S, S_transversals)
|
411 |
+
# strong generating set for D
|
412 |
+
dsgsx = []
|
413 |
+
for i in range(num_types):
|
414 |
+
dsgsx.extend(dummy_sgs(dumx[i], sym[i], num_dummies))
|
415 |
+
idn = list(range(size))
|
416 |
+
# TAB = list of entries (s, d, h) where h = _af_rmuln(d,g,s)
|
417 |
+
# for short, in the following d*g*s means _af_rmuln(d,g,s)
|
418 |
+
TAB = [(idn, idn, g)]
|
419 |
+
for i in range(size - 2):
|
420 |
+
b = i
|
421 |
+
testb = b in b_S and sgensx
|
422 |
+
if testb:
|
423 |
+
sgensx1 = [_af_new(_) for _ in sgensx]
|
424 |
+
deltab = _orbit(size, sgensx1, b)
|
425 |
+
else:
|
426 |
+
deltab = {b}
|
427 |
+
# p1 = min(IMAGES) = min(Union D_p*h*deltab for h in TAB)
|
428 |
+
if all_metrics_with_sym:
|
429 |
+
md = _min_dummies(dumx, sym, indices)
|
430 |
+
else:
|
431 |
+
md = [min(_orbit(size, [_af_new(
|
432 |
+
ddx) for ddx in dsgsx], ii)) for ii in range(size - 2)]
|
433 |
+
|
434 |
+
p_i = min([min([md[h[x]] for x in deltab]) for s, d, h in TAB])
|
435 |
+
dsgsx1 = [_af_new(_) for _ in dsgsx]
|
436 |
+
Dxtrav = _orbit_transversal(size, dsgsx1, p_i, False, af=True) \
|
437 |
+
if dsgsx else None
|
438 |
+
if Dxtrav:
|
439 |
+
Dxtrav = [_af_invert(x) for x in Dxtrav]
|
440 |
+
# compute the orbit of p_i
|
441 |
+
for ii in range(num_types):
|
442 |
+
if p_i in dumx[ii]:
|
443 |
+
# the orbit is made by all the indices in dum[ii]
|
444 |
+
if sym[ii] is not None:
|
445 |
+
deltap = dumx[ii]
|
446 |
+
else:
|
447 |
+
# the orbit is made by all the even indices if p_i
|
448 |
+
# is even, by all the odd indices if p_i is odd
|
449 |
+
p_i_index = dumx[ii].index(p_i) % 2
|
450 |
+
deltap = dumx[ii][p_i_index::2]
|
451 |
+
break
|
452 |
+
else:
|
453 |
+
deltap = [p_i]
|
454 |
+
TAB1 = []
|
455 |
+
while TAB:
|
456 |
+
s, d, h = TAB.pop()
|
457 |
+
if min([md[h[x]] for x in deltab]) != p_i:
|
458 |
+
continue
|
459 |
+
deltab1 = [x for x in deltab if md[h[x]] == p_i]
|
460 |
+
# NEXT = s*deltab1 intersection (d*g)**-1*deltap
|
461 |
+
dg = _af_rmul(d, g)
|
462 |
+
dginv = _af_invert(dg)
|
463 |
+
sdeltab = [s[x] for x in deltab1]
|
464 |
+
gdeltap = [dginv[x] for x in deltap]
|
465 |
+
NEXT = [x for x in sdeltab if x in gdeltap]
|
466 |
+
# d, s satisfy
|
467 |
+
# d*g*s*base[i-1] = p_{i-1}; using the stabilizers
|
468 |
+
# d*g*s*S_{base[0],...,base[i-1]}*base[i-1] =
|
469 |
+
# D_{p_0,...,p_{i-1}}*p_{i-1}
|
470 |
+
# so that to find d1, s1 satisfying d1*g*s1*b = p_i
|
471 |
+
# one can look for dx in D_{p_0,...,p_{i-1}} and
|
472 |
+
# sx in S_{base[0],...,base[i-1]}
|
473 |
+
# d1 = dx*d; s1 = s*sx
|
474 |
+
# d1*g*s1*b = dx*d*g*s*sx*b = p_i
|
475 |
+
for j in NEXT:
|
476 |
+
if testb:
|
477 |
+
# solve s1*b = j with s1 = s*sx for some element sx
|
478 |
+
# of the stabilizer of ..., base[i-1]
|
479 |
+
# sx*b = s**-1*j; sx = _trace_S(s, j,...)
|
480 |
+
# s1 = s*trace_S(s**-1*j,...)
|
481 |
+
s1 = _trace_S(s, j, b, S_transversals)
|
482 |
+
if not s1:
|
483 |
+
continue
|
484 |
+
else:
|
485 |
+
s1 = [s[ix] for ix in s1]
|
486 |
+
else:
|
487 |
+
s1 = s
|
488 |
+
# assert s1[b] == j # invariant
|
489 |
+
# solve d1*g*j = p_i with d1 = dx*d for some element dg
|
490 |
+
# of the stabilizer of ..., p_{i-1}
|
491 |
+
# dx**-1*p_i = d*g*j; dx**-1 = trace_D(d*g*j,...)
|
492 |
+
# d1 = trace_D(d*g*j,...)**-1*d
|
493 |
+
# to save an inversion in the inner loop; notice we did
|
494 |
+
# Dxtrav = [perm_af_invert(x) for x in Dxtrav] out of the loop
|
495 |
+
if Dxtrav:
|
496 |
+
d1 = _trace_D(dg[j], p_i, Dxtrav)
|
497 |
+
if not d1:
|
498 |
+
continue
|
499 |
+
else:
|
500 |
+
if p_i != dg[j]:
|
501 |
+
continue
|
502 |
+
d1 = idn
|
503 |
+
assert d1[dg[j]] == p_i # invariant
|
504 |
+
d1 = [d1[ix] for ix in d]
|
505 |
+
h1 = [d1[g[ix]] for ix in s1]
|
506 |
+
# assert h1[b] == p_i # invariant
|
507 |
+
TAB1.append((s1, d1, h1))
|
508 |
+
|
509 |
+
# if TAB contains equal permutations, keep only one of them;
|
510 |
+
# if TAB contains equal permutations up to the sign, return 0
|
511 |
+
TAB1.sort(key=lambda x: x[-1])
|
512 |
+
prev = [0] * size
|
513 |
+
while TAB1:
|
514 |
+
s, d, h = TAB1.pop()
|
515 |
+
if h[:-2] == prev[:-2]:
|
516 |
+
if h[-1] != prev[-1]:
|
517 |
+
return 0
|
518 |
+
else:
|
519 |
+
TAB.append((s, d, h))
|
520 |
+
prev = h
|
521 |
+
|
522 |
+
# stabilize the SGS
|
523 |
+
sgensx = [h for h in sgensx if h[b] == b]
|
524 |
+
if b in b_S:
|
525 |
+
b_S.remove(b)
|
526 |
+
_dumx_remove(dumx, dumx_flat, p_i)
|
527 |
+
dsgsx = []
|
528 |
+
for i in range(num_types):
|
529 |
+
dsgsx.extend(dummy_sgs(dumx[i], sym[i], num_dummies))
|
530 |
+
return TAB[0][-1]
|
531 |
+
|
532 |
+
|
533 |
+
def canonical_free(base, gens, g, num_free):
|
534 |
+
"""
|
535 |
+
Canonicalization of a tensor with respect to free indices
|
536 |
+
choosing the minimum with respect to lexicographical ordering
|
537 |
+
in the free indices.
|
538 |
+
|
539 |
+
Explanation
|
540 |
+
===========
|
541 |
+
|
542 |
+
``base``, ``gens`` BSGS for slot permutation group
|
543 |
+
``g`` permutation representing the tensor
|
544 |
+
``num_free`` number of free indices
|
545 |
+
The indices must be ordered with first the free indices
|
546 |
+
|
547 |
+
See explanation in double_coset_can_rep
|
548 |
+
The algorithm is a variation of the one given in [2].
|
549 |
+
|
550 |
+
Examples
|
551 |
+
========
|
552 |
+
|
553 |
+
>>> from sympy.combinatorics import Permutation
|
554 |
+
>>> from sympy.combinatorics.tensor_can import canonical_free
|
555 |
+
>>> gens = [[1, 0, 2, 3, 5, 4], [2, 3, 0, 1, 4, 5],[0, 1, 3, 2, 5, 4]]
|
556 |
+
>>> gens = [Permutation(h) for h in gens]
|
557 |
+
>>> base = [0, 2]
|
558 |
+
>>> g = Permutation([2, 1, 0, 3, 4, 5])
|
559 |
+
>>> canonical_free(base, gens, g, 4)
|
560 |
+
[0, 3, 1, 2, 5, 4]
|
561 |
+
|
562 |
+
Consider the product of Riemann tensors
|
563 |
+
``T = R^{a}_{d0}^{d1,d2}*R_{d2,d1}^{d0,b}``
|
564 |
+
The order of the indices is ``[a, b, d0, -d0, d1, -d1, d2, -d2]``
|
565 |
+
The permutation corresponding to the tensor is
|
566 |
+
``g = [0, 3, 4, 6, 7, 5, 2, 1, 8, 9]``
|
567 |
+
|
568 |
+
In particular ``a`` is position ``0``, ``b`` is in position ``9``.
|
569 |
+
Use the slot symmetries to get `T` is a form which is the minimal
|
570 |
+
in lexicographic order in the free indices ``a`` and ``b``, e.g.
|
571 |
+
``-R^{a}_{d0}^{d1,d2}*R^{b,d0}_{d2,d1}`` corresponding to
|
572 |
+
``[0, 3, 4, 6, 1, 2, 7, 5, 9, 8]``
|
573 |
+
|
574 |
+
>>> from sympy.combinatorics.tensor_can import riemann_bsgs, tensor_gens
|
575 |
+
>>> base, gens = riemann_bsgs
|
576 |
+
>>> size, sbase, sgens = tensor_gens(base, gens, [[], []], 0)
|
577 |
+
>>> g = Permutation([0, 3, 4, 6, 7, 5, 2, 1, 8, 9])
|
578 |
+
>>> canonical_free(sbase, [Permutation(h) for h in sgens], g, 2)
|
579 |
+
[0, 3, 4, 6, 1, 2, 7, 5, 9, 8]
|
580 |
+
"""
|
581 |
+
g = g.array_form
|
582 |
+
size = len(g)
|
583 |
+
if not base:
|
584 |
+
return g[:]
|
585 |
+
|
586 |
+
transversals = get_transversals(base, gens)
|
587 |
+
for x in sorted(g[:-2]):
|
588 |
+
if x not in base:
|
589 |
+
base.append(x)
|
590 |
+
h = g
|
591 |
+
for i, transv in enumerate(transversals):
|
592 |
+
h_i = [size]*num_free
|
593 |
+
# find the element s in transversals[i] such that
|
594 |
+
# _af_rmul(h, s) has its free elements with the lowest position in h
|
595 |
+
s = None
|
596 |
+
for sk in transv.values():
|
597 |
+
h1 = _af_rmul(h, sk)
|
598 |
+
hi = [h1.index(ix) for ix in range(num_free)]
|
599 |
+
if hi < h_i:
|
600 |
+
h_i = hi
|
601 |
+
s = sk
|
602 |
+
if s:
|
603 |
+
h = _af_rmul(h, s)
|
604 |
+
return h
|
605 |
+
|
606 |
+
|
607 |
+
def _get_map_slots(size, fixed_slots):
|
608 |
+
res = list(range(size))
|
609 |
+
pos = 0
|
610 |
+
for i in range(size):
|
611 |
+
if i in fixed_slots:
|
612 |
+
continue
|
613 |
+
res[i] = pos
|
614 |
+
pos += 1
|
615 |
+
return res
|
616 |
+
|
617 |
+
|
618 |
+
def _lift_sgens(size, fixed_slots, free, s):
|
619 |
+
a = []
|
620 |
+
j = k = 0
|
621 |
+
fd = list(zip(fixed_slots, free))
|
622 |
+
fd = [y for x, y in sorted(fd)]
|
623 |
+
num_free = len(free)
|
624 |
+
for i in range(size):
|
625 |
+
if i in fixed_slots:
|
626 |
+
a.append(fd[k])
|
627 |
+
k += 1
|
628 |
+
else:
|
629 |
+
a.append(s[j] + num_free)
|
630 |
+
j += 1
|
631 |
+
return a
|
632 |
+
|
633 |
+
|
634 |
+
def canonicalize(g, dummies, msym, *v):
|
635 |
+
"""
|
636 |
+
canonicalize tensor formed by tensors
|
637 |
+
|
638 |
+
Parameters
|
639 |
+
==========
|
640 |
+
|
641 |
+
g : permutation representing the tensor
|
642 |
+
|
643 |
+
dummies : list representing the dummy indices
|
644 |
+
it can be a list of dummy indices of the same type
|
645 |
+
or a list of lists of dummy indices, one list for each
|
646 |
+
type of index;
|
647 |
+
the dummy indices must come after the free indices,
|
648 |
+
and put in order contravariant, covariant
|
649 |
+
[d0, -d0, d1,-d1,...]
|
650 |
+
|
651 |
+
msym : symmetry of the metric(s)
|
652 |
+
it can be an integer or a list;
|
653 |
+
in the first case it is the symmetry of the dummy index metric;
|
654 |
+
in the second case it is the list of the symmetries of the
|
655 |
+
index metric for each type
|
656 |
+
|
657 |
+
v : list, (base_i, gens_i, n_i, sym_i) for tensors of type `i`
|
658 |
+
|
659 |
+
base_i, gens_i : BSGS for tensors of this type.
|
660 |
+
The BSGS should have minimal base under lexicographic ordering;
|
661 |
+
if not, an attempt is made do get the minimal BSGS;
|
662 |
+
in case of failure,
|
663 |
+
canonicalize_naive is used, which is much slower.
|
664 |
+
|
665 |
+
n_i : number of tensors of type `i`.
|
666 |
+
|
667 |
+
sym_i : symmetry under exchange of component tensors of type `i`.
|
668 |
+
|
669 |
+
Both for msym and sym_i the cases are
|
670 |
+
* None no symmetry
|
671 |
+
* 0 commuting
|
672 |
+
* 1 anticommuting
|
673 |
+
|
674 |
+
Returns
|
675 |
+
=======
|
676 |
+
|
677 |
+
0 if the tensor is zero, else return the array form of
|
678 |
+
the permutation representing the canonical form of the tensor.
|
679 |
+
|
680 |
+
Algorithm
|
681 |
+
=========
|
682 |
+
|
683 |
+
First one uses canonical_free to get the minimum tensor under
|
684 |
+
lexicographic order, using only the slot symmetries.
|
685 |
+
If the component tensors have not minimal BSGS, it is attempted
|
686 |
+
to find it; if the attempt fails canonicalize_naive
|
687 |
+
is used instead.
|
688 |
+
|
689 |
+
Compute the residual slot symmetry keeping fixed the free indices
|
690 |
+
using tensor_gens(base, gens, list_free_indices, sym).
|
691 |
+
|
692 |
+
Reduce the problem eliminating the free indices.
|
693 |
+
|
694 |
+
Then use double_coset_can_rep and lift back the result reintroducing
|
695 |
+
the free indices.
|
696 |
+
|
697 |
+
Examples
|
698 |
+
========
|
699 |
+
|
700 |
+
one type of index with commuting metric;
|
701 |
+
|
702 |
+
`A_{a b}` and `B_{a b}` antisymmetric and commuting
|
703 |
+
|
704 |
+
`T = A_{d0 d1} * B^{d0}{}_{d2} * B^{d2 d1}`
|
705 |
+
|
706 |
+
`ord = [d0,-d0,d1,-d1,d2,-d2]` order of the indices
|
707 |
+
|
708 |
+
g = [1, 3, 0, 5, 4, 2, 6, 7]
|
709 |
+
|
710 |
+
`T_c = 0`
|
711 |
+
|
712 |
+
>>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, canonicalize, bsgs_direct_product
|
713 |
+
>>> from sympy.combinatorics import Permutation
|
714 |
+
>>> base2a, gens2a = get_symmetric_group_sgs(2, 1)
|
715 |
+
>>> t0 = (base2a, gens2a, 1, 0)
|
716 |
+
>>> t1 = (base2a, gens2a, 2, 0)
|
717 |
+
>>> g = Permutation([1, 3, 0, 5, 4, 2, 6, 7])
|
718 |
+
>>> canonicalize(g, range(6), 0, t0, t1)
|
719 |
+
0
|
720 |
+
|
721 |
+
same as above, but with `B_{a b}` anticommuting
|
722 |
+
|
723 |
+
`T_c = -A^{d0 d1} * B_{d0}{}^{d2} * B_{d1 d2}`
|
724 |
+
|
725 |
+
can = [0,2,1,4,3,5,7,6]
|
726 |
+
|
727 |
+
>>> t1 = (base2a, gens2a, 2, 1)
|
728 |
+
>>> canonicalize(g, range(6), 0, t0, t1)
|
729 |
+
[0, 2, 1, 4, 3, 5, 7, 6]
|
730 |
+
|
731 |
+
two types of indices `[a,b,c,d,e,f]` and `[m,n]`, in this order,
|
732 |
+
both with commuting metric
|
733 |
+
|
734 |
+
`f^{a b c}` antisymmetric, commuting
|
735 |
+
|
736 |
+
`A_{m a}` no symmetry, commuting
|
737 |
+
|
738 |
+
`T = f^c{}_{d a} * f^f{}_{e b} * A_m{}^d * A^{m b} * A_n{}^a * A^{n e}`
|
739 |
+
|
740 |
+
ord = [c,f,a,-a,b,-b,d,-d,e,-e,m,-m,n,-n]
|
741 |
+
|
742 |
+
g = [0,7,3, 1,9,5, 11,6, 10,4, 13,2, 12,8, 14,15]
|
743 |
+
|
744 |
+
The canonical tensor is
|
745 |
+
`T_c = -f^{c a b} * f^{f d e} * A^m{}_a * A_{m d} * A^n{}_b * A_{n e}`
|
746 |
+
|
747 |
+
can = [0,2,4, 1,6,8, 10,3, 11,7, 12,5, 13,9, 15,14]
|
748 |
+
|
749 |
+
>>> base_f, gens_f = get_symmetric_group_sgs(3, 1)
|
750 |
+
>>> base1, gens1 = get_symmetric_group_sgs(1)
|
751 |
+
>>> base_A, gens_A = bsgs_direct_product(base1, gens1, base1, gens1)
|
752 |
+
>>> t0 = (base_f, gens_f, 2, 0)
|
753 |
+
>>> t1 = (base_A, gens_A, 4, 0)
|
754 |
+
>>> dummies = [range(2, 10), range(10, 14)]
|
755 |
+
>>> g = Permutation([0, 7, 3, 1, 9, 5, 11, 6, 10, 4, 13, 2, 12, 8, 14, 15])
|
756 |
+
>>> canonicalize(g, dummies, [0, 0], t0, t1)
|
757 |
+
[0, 2, 4, 1, 6, 8, 10, 3, 11, 7, 12, 5, 13, 9, 15, 14]
|
758 |
+
"""
|
759 |
+
from sympy.combinatorics.testutil import canonicalize_naive
|
760 |
+
if not isinstance(msym, list):
|
761 |
+
if msym not in (0, 1, None):
|
762 |
+
raise ValueError('msym must be 0, 1 or None')
|
763 |
+
num_types = 1
|
764 |
+
else:
|
765 |
+
num_types = len(msym)
|
766 |
+
if not all(msymx in (0, 1, None) for msymx in msym):
|
767 |
+
raise ValueError('msym entries must be 0, 1 or None')
|
768 |
+
if len(dummies) != num_types:
|
769 |
+
raise ValueError(
|
770 |
+
'dummies and msym must have the same number of elements')
|
771 |
+
size = g.size
|
772 |
+
num_tensors = 0
|
773 |
+
v1 = []
|
774 |
+
for base_i, gens_i, n_i, sym_i in v:
|
775 |
+
# check that the BSGS is minimal;
|
776 |
+
# this property is used in double_coset_can_rep;
|
777 |
+
# if it is not minimal use canonicalize_naive
|
778 |
+
if not _is_minimal_bsgs(base_i, gens_i):
|
779 |
+
mbsgs = get_minimal_bsgs(base_i, gens_i)
|
780 |
+
if not mbsgs:
|
781 |
+
can = canonicalize_naive(g, dummies, msym, *v)
|
782 |
+
return can
|
783 |
+
base_i, gens_i = mbsgs
|
784 |
+
v1.append((base_i, gens_i, [[]] * n_i, sym_i))
|
785 |
+
num_tensors += n_i
|
786 |
+
|
787 |
+
if num_types == 1 and not isinstance(msym, list):
|
788 |
+
dummies = [dummies]
|
789 |
+
msym = [msym]
|
790 |
+
flat_dummies = []
|
791 |
+
for dumx in dummies:
|
792 |
+
flat_dummies.extend(dumx)
|
793 |
+
|
794 |
+
if flat_dummies and flat_dummies != list(range(flat_dummies[0], flat_dummies[-1] + 1)):
|
795 |
+
raise ValueError('dummies is not valid')
|
796 |
+
|
797 |
+
# slot symmetry of the tensor
|
798 |
+
size1, sbase, sgens = gens_products(*v1)
|
799 |
+
if size != size1:
|
800 |
+
raise ValueError(
|
801 |
+
'g has size %d, generators have size %d' % (size, size1))
|
802 |
+
free = [i for i in range(size - 2) if i not in flat_dummies]
|
803 |
+
num_free = len(free)
|
804 |
+
|
805 |
+
# g1 minimal tensor under slot symmetry
|
806 |
+
g1 = canonical_free(sbase, sgens, g, num_free)
|
807 |
+
if not flat_dummies:
|
808 |
+
return g1
|
809 |
+
# save the sign of g1
|
810 |
+
sign = 0 if g1[-1] == size - 1 else 1
|
811 |
+
|
812 |
+
# the free indices are kept fixed.
|
813 |
+
# Determine free_i, the list of slots of tensors which are fixed
|
814 |
+
# since they are occupied by free indices, which are fixed.
|
815 |
+
start = 0
|
816 |
+
for i, (base_i, gens_i, n_i, sym_i) in enumerate(v):
|
817 |
+
free_i = []
|
818 |
+
len_tens = gens_i[0].size - 2
|
819 |
+
# for each component tensor get a list od fixed islots
|
820 |
+
for j in range(n_i):
|
821 |
+
# get the elements corresponding to the component tensor
|
822 |
+
h = g1[start:(start + len_tens)]
|
823 |
+
fr = []
|
824 |
+
# get the positions of the fixed elements in h
|
825 |
+
for k in free:
|
826 |
+
if k in h:
|
827 |
+
fr.append(h.index(k))
|
828 |
+
free_i.append(fr)
|
829 |
+
start += len_tens
|
830 |
+
v1[i] = (base_i, gens_i, free_i, sym_i)
|
831 |
+
# BSGS of the tensor with fixed free indices
|
832 |
+
# if tensor_gens fails in gens_product, use canonicalize_naive
|
833 |
+
size, sbase, sgens = gens_products(*v1)
|
834 |
+
|
835 |
+
# reduce the permutations getting rid of the free indices
|
836 |
+
pos_free = [g1.index(x) for x in range(num_free)]
|
837 |
+
size_red = size - num_free
|
838 |
+
g1_red = [x - num_free for x in g1 if x in flat_dummies]
|
839 |
+
if sign:
|
840 |
+
g1_red.extend([size_red - 1, size_red - 2])
|
841 |
+
else:
|
842 |
+
g1_red.extend([size_red - 2, size_red - 1])
|
843 |
+
map_slots = _get_map_slots(size, pos_free)
|
844 |
+
sbase_red = [map_slots[i] for i in sbase if i not in pos_free]
|
845 |
+
sgens_red = [_af_new([map_slots[i] for i in y._array_form if i not in pos_free]) for y in sgens]
|
846 |
+
dummies_red = [[x - num_free for x in y] for y in dummies]
|
847 |
+
transv_red = get_transversals(sbase_red, sgens_red)
|
848 |
+
g1_red = _af_new(g1_red)
|
849 |
+
g2 = double_coset_can_rep(
|
850 |
+
dummies_red, msym, sbase_red, sgens_red, transv_red, g1_red)
|
851 |
+
if g2 == 0:
|
852 |
+
return 0
|
853 |
+
# lift to the case with the free indices
|
854 |
+
g3 = _lift_sgens(size, pos_free, free, g2)
|
855 |
+
return g3
|
856 |
+
|
857 |
+
|
858 |
+
def perm_af_direct_product(gens1, gens2, signed=True):
|
859 |
+
"""
|
860 |
+
Direct products of the generators gens1 and gens2.
|
861 |
+
|
862 |
+
Examples
|
863 |
+
========
|
864 |
+
|
865 |
+
>>> from sympy.combinatorics.tensor_can import perm_af_direct_product
|
866 |
+
>>> gens1 = [[1, 0, 2, 3], [0, 1, 3, 2]]
|
867 |
+
>>> gens2 = [[1, 0]]
|
868 |
+
>>> perm_af_direct_product(gens1, gens2, False)
|
869 |
+
[[1, 0, 2, 3, 4, 5], [0, 1, 3, 2, 4, 5], [0, 1, 2, 3, 5, 4]]
|
870 |
+
>>> gens1 = [[1, 0, 2, 3, 5, 4], [0, 1, 3, 2, 4, 5]]
|
871 |
+
>>> gens2 = [[1, 0, 2, 3]]
|
872 |
+
>>> perm_af_direct_product(gens1, gens2, True)
|
873 |
+
[[1, 0, 2, 3, 4, 5, 7, 6], [0, 1, 3, 2, 4, 5, 6, 7], [0, 1, 2, 3, 5, 4, 6, 7]]
|
874 |
+
"""
|
875 |
+
gens1 = [list(x) for x in gens1]
|
876 |
+
gens2 = [list(x) for x in gens2]
|
877 |
+
s = 2 if signed else 0
|
878 |
+
n1 = len(gens1[0]) - s
|
879 |
+
n2 = len(gens2[0]) - s
|
880 |
+
start = list(range(n1))
|
881 |
+
end = list(range(n1, n1 + n2))
|
882 |
+
if signed:
|
883 |
+
gens1 = [gen[:-2] + end + [gen[-2] + n2, gen[-1] + n2]
|
884 |
+
for gen in gens1]
|
885 |
+
gens2 = [start + [x + n1 for x in gen] for gen in gens2]
|
886 |
+
else:
|
887 |
+
gens1 = [gen + end for gen in gens1]
|
888 |
+
gens2 = [start + [x + n1 for x in gen] for gen in gens2]
|
889 |
+
|
890 |
+
res = gens1 + gens2
|
891 |
+
|
892 |
+
return res
|
893 |
+
|
894 |
+
|
895 |
+
def bsgs_direct_product(base1, gens1, base2, gens2, signed=True):
|
896 |
+
"""
|
897 |
+
Direct product of two BSGS.
|
898 |
+
|
899 |
+
Parameters
|
900 |
+
==========
|
901 |
+
|
902 |
+
base1 : base of the first BSGS.
|
903 |
+
|
904 |
+
gens1 : strong generating sequence of the first BSGS.
|
905 |
+
|
906 |
+
base2, gens2 : similarly for the second BSGS.
|
907 |
+
|
908 |
+
signed : flag for signed permutations.
|
909 |
+
|
910 |
+
Examples
|
911 |
+
========
|
912 |
+
|
913 |
+
>>> from sympy.combinatorics.tensor_can import (get_symmetric_group_sgs, bsgs_direct_product)
|
914 |
+
>>> base1, gens1 = get_symmetric_group_sgs(1)
|
915 |
+
>>> base2, gens2 = get_symmetric_group_sgs(2)
|
916 |
+
>>> bsgs_direct_product(base1, gens1, base2, gens2)
|
917 |
+
([1], [(4)(1 2)])
|
918 |
+
"""
|
919 |
+
s = 2 if signed else 0
|
920 |
+
n1 = gens1[0].size - s
|
921 |
+
base = list(base1)
|
922 |
+
base += [x + n1 for x in base2]
|
923 |
+
gens1 = [h._array_form for h in gens1]
|
924 |
+
gens2 = [h._array_form for h in gens2]
|
925 |
+
gens = perm_af_direct_product(gens1, gens2, signed)
|
926 |
+
size = len(gens[0])
|
927 |
+
id_af = list(range(size))
|
928 |
+
gens = [h for h in gens if h != id_af]
|
929 |
+
if not gens:
|
930 |
+
gens = [id_af]
|
931 |
+
return base, [_af_new(h) for h in gens]
|
932 |
+
|
933 |
+
|
934 |
+
def get_symmetric_group_sgs(n, antisym=False):
|
935 |
+
"""
|
936 |
+
Return base, gens of the minimal BSGS for (anti)symmetric tensor
|
937 |
+
|
938 |
+
Parameters
|
939 |
+
==========
|
940 |
+
|
941 |
+
n : rank of the tensor
|
942 |
+
antisym : bool
|
943 |
+
``antisym = False`` symmetric tensor
|
944 |
+
``antisym = True`` antisymmetric tensor
|
945 |
+
|
946 |
+
Examples
|
947 |
+
========
|
948 |
+
|
949 |
+
>>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs
|
950 |
+
>>> get_symmetric_group_sgs(3)
|
951 |
+
([0, 1], [(4)(0 1), (4)(1 2)])
|
952 |
+
"""
|
953 |
+
if n == 1:
|
954 |
+
return [], [_af_new(list(range(3)))]
|
955 |
+
gens = [Permutation(n - 1)(i, i + 1)._array_form for i in range(n - 1)]
|
956 |
+
if antisym == 0:
|
957 |
+
gens = [x + [n, n + 1] for x in gens]
|
958 |
+
else:
|
959 |
+
gens = [x + [n + 1, n] for x in gens]
|
960 |
+
base = list(range(n - 1))
|
961 |
+
return base, [_af_new(h) for h in gens]
|
962 |
+
|
963 |
+
riemann_bsgs = [0, 2], [Permutation(0, 1)(4, 5), Permutation(2, 3)(4, 5),
|
964 |
+
Permutation(5)(0, 2)(1, 3)]
|
965 |
+
|
966 |
+
|
967 |
+
def get_transversals(base, gens):
|
968 |
+
"""
|
969 |
+
Return transversals for the group with BSGS base, gens
|
970 |
+
"""
|
971 |
+
if not base:
|
972 |
+
return []
|
973 |
+
stabs = _distribute_gens_by_base(base, gens)
|
974 |
+
orbits, transversals = _orbits_transversals_from_bsgs(base, stabs)
|
975 |
+
transversals = [{x: h._array_form for x, h in y.items()} for y in
|
976 |
+
transversals]
|
977 |
+
return transversals
|
978 |
+
|
979 |
+
|
980 |
+
def _is_minimal_bsgs(base, gens):
|
981 |
+
"""
|
982 |
+
Check if the BSGS has minimal base under lexigographic order.
|
983 |
+
|
984 |
+
base, gens BSGS
|
985 |
+
|
986 |
+
Examples
|
987 |
+
========
|
988 |
+
|
989 |
+
>>> from sympy.combinatorics import Permutation
|
990 |
+
>>> from sympy.combinatorics.tensor_can import riemann_bsgs, _is_minimal_bsgs
|
991 |
+
>>> _is_minimal_bsgs(*riemann_bsgs)
|
992 |
+
True
|
993 |
+
>>> riemann_bsgs1 = ([2, 0], ([Permutation(5)(0, 1)(4, 5), Permutation(5)(0, 2)(1, 3)]))
|
994 |
+
>>> _is_minimal_bsgs(*riemann_bsgs1)
|
995 |
+
False
|
996 |
+
"""
|
997 |
+
base1 = []
|
998 |
+
sgs1 = gens[:]
|
999 |
+
size = gens[0].size
|
1000 |
+
for i in range(size):
|
1001 |
+
if not all(h._array_form[i] == i for h in sgs1):
|
1002 |
+
base1.append(i)
|
1003 |
+
sgs1 = [h for h in sgs1 if h._array_form[i] == i]
|
1004 |
+
return base1 == base
|
1005 |
+
|
1006 |
+
|
1007 |
+
def get_minimal_bsgs(base, gens):
|
1008 |
+
"""
|
1009 |
+
Compute a minimal GSGS
|
1010 |
+
|
1011 |
+
base, gens BSGS
|
1012 |
+
|
1013 |
+
If base, gens is a minimal BSGS return it; else return a minimal BSGS
|
1014 |
+
if it fails in finding one, it returns None
|
1015 |
+
|
1016 |
+
TODO: use baseswap in the case in which if it fails in finding a
|
1017 |
+
minimal BSGS
|
1018 |
+
|
1019 |
+
Examples
|
1020 |
+
========
|
1021 |
+
|
1022 |
+
>>> from sympy.combinatorics import Permutation
|
1023 |
+
>>> from sympy.combinatorics.tensor_can import get_minimal_bsgs
|
1024 |
+
>>> riemann_bsgs1 = ([2, 0], ([Permutation(5)(0, 1)(4, 5), Permutation(5)(0, 2)(1, 3)]))
|
1025 |
+
>>> get_minimal_bsgs(*riemann_bsgs1)
|
1026 |
+
([0, 2], [(0 1)(4 5), (5)(0 2)(1 3), (2 3)(4 5)])
|
1027 |
+
"""
|
1028 |
+
G = PermutationGroup(gens)
|
1029 |
+
base, gens = G.schreier_sims_incremental()
|
1030 |
+
if not _is_minimal_bsgs(base, gens):
|
1031 |
+
return None
|
1032 |
+
return base, gens
|
1033 |
+
|
1034 |
+
|
1035 |
+
def tensor_gens(base, gens, list_free_indices, sym=0):
|
1036 |
+
"""
|
1037 |
+
Returns size, res_base, res_gens BSGS for n tensors of the
|
1038 |
+
same type.
|
1039 |
+
|
1040 |
+
Explanation
|
1041 |
+
===========
|
1042 |
+
|
1043 |
+
base, gens BSGS for tensors of this type
|
1044 |
+
list_free_indices list of the slots occupied by fixed indices
|
1045 |
+
for each of the tensors
|
1046 |
+
|
1047 |
+
sym symmetry under commutation of two tensors
|
1048 |
+
sym None no symmetry
|
1049 |
+
sym 0 commuting
|
1050 |
+
sym 1 anticommuting
|
1051 |
+
|
1052 |
+
Examples
|
1053 |
+
========
|
1054 |
+
|
1055 |
+
>>> from sympy.combinatorics.tensor_can import tensor_gens, get_symmetric_group_sgs
|
1056 |
+
|
1057 |
+
two symmetric tensors with 3 indices without free indices
|
1058 |
+
|
1059 |
+
>>> base, gens = get_symmetric_group_sgs(3)
|
1060 |
+
>>> tensor_gens(base, gens, [[], []])
|
1061 |
+
(8, [0, 1, 3, 4], [(7)(0 1), (7)(1 2), (7)(3 4), (7)(4 5), (7)(0 3)(1 4)(2 5)])
|
1062 |
+
|
1063 |
+
two symmetric tensors with 3 indices with free indices in slot 1 and 0
|
1064 |
+
|
1065 |
+
>>> tensor_gens(base, gens, [[1], [0]])
|
1066 |
+
(8, [0, 4], [(7)(0 2), (7)(4 5)])
|
1067 |
+
|
1068 |
+
four symmetric tensors with 3 indices, two of which with free indices
|
1069 |
+
|
1070 |
+
"""
|
1071 |
+
def _get_bsgs(G, base, gens, free_indices):
|
1072 |
+
"""
|
1073 |
+
return the BSGS for G.pointwise_stabilizer(free_indices)
|
1074 |
+
"""
|
1075 |
+
if not free_indices:
|
1076 |
+
return base[:], gens[:]
|
1077 |
+
else:
|
1078 |
+
H = G.pointwise_stabilizer(free_indices)
|
1079 |
+
base, sgs = H.schreier_sims_incremental()
|
1080 |
+
return base, sgs
|
1081 |
+
|
1082 |
+
# if not base there is no slot symmetry for the component tensors
|
1083 |
+
# if list_free_indices.count([]) < 2 there is no commutation symmetry
|
1084 |
+
# so there is no resulting slot symmetry
|
1085 |
+
if not base and list_free_indices.count([]) < 2:
|
1086 |
+
n = len(list_free_indices)
|
1087 |
+
size = gens[0].size
|
1088 |
+
size = n * (size - 2) + 2
|
1089 |
+
return size, [], [_af_new(list(range(size)))]
|
1090 |
+
|
1091 |
+
# if any(list_free_indices) one needs to compute the pointwise
|
1092 |
+
# stabilizer, so G is needed
|
1093 |
+
if any(list_free_indices):
|
1094 |
+
G = PermutationGroup(gens)
|
1095 |
+
else:
|
1096 |
+
G = None
|
1097 |
+
|
1098 |
+
# no_free list of lists of indices for component tensors without fixed
|
1099 |
+
# indices
|
1100 |
+
no_free = []
|
1101 |
+
size = gens[0].size
|
1102 |
+
id_af = list(range(size))
|
1103 |
+
num_indices = size - 2
|
1104 |
+
if not list_free_indices[0]:
|
1105 |
+
no_free.append(list(range(num_indices)))
|
1106 |
+
res_base, res_gens = _get_bsgs(G, base, gens, list_free_indices[0])
|
1107 |
+
for i in range(1, len(list_free_indices)):
|
1108 |
+
base1, gens1 = _get_bsgs(G, base, gens, list_free_indices[i])
|
1109 |
+
res_base, res_gens = bsgs_direct_product(res_base, res_gens,
|
1110 |
+
base1, gens1, 1)
|
1111 |
+
if not list_free_indices[i]:
|
1112 |
+
no_free.append(list(range(size - 2, size - 2 + num_indices)))
|
1113 |
+
size += num_indices
|
1114 |
+
nr = size - 2
|
1115 |
+
res_gens = [h for h in res_gens if h._array_form != id_af]
|
1116 |
+
# if sym there are no commuting tensors stop here
|
1117 |
+
if sym is None or not no_free:
|
1118 |
+
if not res_gens:
|
1119 |
+
res_gens = [_af_new(id_af)]
|
1120 |
+
return size, res_base, res_gens
|
1121 |
+
|
1122 |
+
# if the component tensors have moinimal BSGS, so is their direct
|
1123 |
+
# product P; the slot symmetry group is S = P*C, where C is the group
|
1124 |
+
# to (anti)commute the component tensors with no free indices
|
1125 |
+
# a stabilizer has the property S_i = P_i*C_i;
|
1126 |
+
# the BSGS of P*C has SGS_P + SGS_C and the base is
|
1127 |
+
# the ordered union of the bases of P and C.
|
1128 |
+
# If P has minimal BSGS, so has S with this base.
|
1129 |
+
base_comm = []
|
1130 |
+
for i in range(len(no_free) - 1):
|
1131 |
+
ind1 = no_free[i]
|
1132 |
+
ind2 = no_free[i + 1]
|
1133 |
+
a = list(range(ind1[0]))
|
1134 |
+
a.extend(ind2)
|
1135 |
+
a.extend(ind1)
|
1136 |
+
base_comm.append(ind1[0])
|
1137 |
+
a.extend(list(range(ind2[-1] + 1, nr)))
|
1138 |
+
if sym == 0:
|
1139 |
+
a.extend([nr, nr + 1])
|
1140 |
+
else:
|
1141 |
+
a.extend([nr + 1, nr])
|
1142 |
+
res_gens.append(_af_new(a))
|
1143 |
+
res_base = list(res_base)
|
1144 |
+
# each base is ordered; order the union of the two bases
|
1145 |
+
for i in base_comm:
|
1146 |
+
if i not in res_base:
|
1147 |
+
res_base.append(i)
|
1148 |
+
res_base.sort()
|
1149 |
+
if not res_gens:
|
1150 |
+
res_gens = [_af_new(id_af)]
|
1151 |
+
|
1152 |
+
return size, res_base, res_gens
|
1153 |
+
|
1154 |
+
|
1155 |
+
def gens_products(*v):
|
1156 |
+
"""
|
1157 |
+
Returns size, res_base, res_gens BSGS for n tensors of different types.
|
1158 |
+
|
1159 |
+
Explanation
|
1160 |
+
===========
|
1161 |
+
|
1162 |
+
v is a sequence of (base_i, gens_i, free_i, sym_i)
|
1163 |
+
where
|
1164 |
+
base_i, gens_i BSGS of tensor of type `i`
|
1165 |
+
free_i list of the fixed slots for each of the tensors
|
1166 |
+
of type `i`; if there are `n_i` tensors of type `i`
|
1167 |
+
and none of them have fixed slots, `free = [[]]*n_i`
|
1168 |
+
sym 0 (1) if the tensors of type `i` (anti)commute among themselves
|
1169 |
+
|
1170 |
+
Examples
|
1171 |
+
========
|
1172 |
+
|
1173 |
+
>>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, gens_products
|
1174 |
+
>>> base, gens = get_symmetric_group_sgs(2)
|
1175 |
+
>>> gens_products((base, gens, [[], []], 0))
|
1176 |
+
(6, [0, 2], [(5)(0 1), (5)(2 3), (5)(0 2)(1 3)])
|
1177 |
+
>>> gens_products((base, gens, [[1], []], 0))
|
1178 |
+
(6, [2], [(5)(2 3)])
|
1179 |
+
"""
|
1180 |
+
res_size, res_base, res_gens = tensor_gens(*v[0])
|
1181 |
+
for i in range(1, len(v)):
|
1182 |
+
size, base, gens = tensor_gens(*v[i])
|
1183 |
+
res_base, res_gens = bsgs_direct_product(res_base, res_gens, base,
|
1184 |
+
gens, 1)
|
1185 |
+
res_size = res_gens[0].size
|
1186 |
+
id_af = list(range(res_size))
|
1187 |
+
res_gens = [h for h in res_gens if h != id_af]
|
1188 |
+
if not res_gens:
|
1189 |
+
res_gens = [id_af]
|
1190 |
+
return res_size, res_base, res_gens
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (198 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_coset_table.cpython-310.pyc
ADDED
Binary file (28.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_fp_groups.cpython-310.pyc
ADDED
Binary file (9.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_free_groups.cpython-310.pyc
ADDED
Binary file (8.11 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_galois.cpython-310.pyc
ADDED
Binary file (2.35 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_generators.cpython-310.pyc
ADDED
Binary file (3.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_group_numbers.cpython-310.pyc
ADDED
Binary file (1.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_named_groups.cpython-310.pyc
ADDED
Binary file (2.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_partitions.cpython-310.pyc
ADDED
Binary file (5.28 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_pc_groups.cpython-310.pyc
ADDED
Binary file (2.24 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_permutations.cpython-310.pyc
ADDED
Binary file (21.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_polyhedron.cpython-310.pyc
ADDED
Binary file (4.45 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_rewriting.cpython-310.pyc
ADDED
Binary file (1.92 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_schur_number.cpython-310.pyc
ADDED
Binary file (2.25 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_subsets.cpython-310.pyc
ADDED
Binary file (2.71 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_tensor_can.cpython-310.pyc
ADDED
Binary file (15.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_testutil.cpython-310.pyc
ADDED
Binary file (2.02 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/__pycache__/test_util.cpython-310.pyc
ADDED
Binary file (4.13 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_coset_table.py
ADDED
@@ -0,0 +1,825 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.combinatorics.fp_groups import FpGroup
|
2 |
+
from sympy.combinatorics.coset_table import (CosetTable,
|
3 |
+
coset_enumeration_r, coset_enumeration_c)
|
4 |
+
from sympy.combinatorics.coset_table import modified_coset_enumeration_r
|
5 |
+
from sympy.combinatorics.free_groups import free_group
|
6 |
+
|
7 |
+
from sympy.testing.pytest import slow
|
8 |
+
|
9 |
+
"""
|
10 |
+
References
|
11 |
+
==========
|
12 |
+
|
13 |
+
[1] Holt, D., Eick, B., O'Brien, E.
|
14 |
+
"Handbook of Computational Group Theory"
|
15 |
+
|
16 |
+
[2] John J. Cannon; Lucien A. Dimino; George Havas; Jane M. Watson
|
17 |
+
Mathematics of Computation, Vol. 27, No. 123. (Jul., 1973), pp. 463-490.
|
18 |
+
"Implementation and Analysis of the Todd-Coxeter Algorithm"
|
19 |
+
|
20 |
+
"""
|
21 |
+
|
22 |
+
def test_scan_1():
|
23 |
+
# Example 5.1 from [1]
|
24 |
+
F, x, y = free_group("x, y")
|
25 |
+
f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
|
26 |
+
c = CosetTable(f, [x])
|
27 |
+
|
28 |
+
c.scan_and_fill(0, x)
|
29 |
+
assert c.table == [[0, 0, None, None]]
|
30 |
+
assert c.p == [0]
|
31 |
+
assert c.n == 1
|
32 |
+
assert c.omega == [0]
|
33 |
+
|
34 |
+
c.scan_and_fill(0, x**3)
|
35 |
+
assert c.table == [[0, 0, None, None]]
|
36 |
+
assert c.p == [0]
|
37 |
+
assert c.n == 1
|
38 |
+
assert c.omega == [0]
|
39 |
+
|
40 |
+
c.scan_and_fill(0, y**3)
|
41 |
+
assert c.table == [[0, 0, 1, 2], [None, None, 2, 0], [None, None, 0, 1]]
|
42 |
+
assert c.p == [0, 1, 2]
|
43 |
+
assert c.n == 3
|
44 |
+
assert c.omega == [0, 1, 2]
|
45 |
+
|
46 |
+
c.scan_and_fill(0, x**-1*y**-1*x*y)
|
47 |
+
assert c.table == [[0, 0, 1, 2], [None, None, 2, 0], [2, 2, 0, 1]]
|
48 |
+
assert c.p == [0, 1, 2]
|
49 |
+
assert c.n == 3
|
50 |
+
assert c.omega == [0, 1, 2]
|
51 |
+
|
52 |
+
c.scan_and_fill(1, x**3)
|
53 |
+
assert c.table == [[0, 0, 1, 2], [3, 4, 2, 0], [2, 2, 0, 1], \
|
54 |
+
[4, 1, None, None], [1, 3, None, None]]
|
55 |
+
assert c.p == [0, 1, 2, 3, 4]
|
56 |
+
assert c.n == 5
|
57 |
+
assert c.omega == [0, 1, 2, 3, 4]
|
58 |
+
|
59 |
+
c.scan_and_fill(1, y**3)
|
60 |
+
assert c.table == [[0, 0, 1, 2], [3, 4, 2, 0], [2, 2, 0, 1], \
|
61 |
+
[4, 1, None, None], [1, 3, None, None]]
|
62 |
+
assert c.p == [0, 1, 2, 3, 4]
|
63 |
+
assert c.n == 5
|
64 |
+
assert c.omega == [0, 1, 2, 3, 4]
|
65 |
+
|
66 |
+
c.scan_and_fill(1, x**-1*y**-1*x*y)
|
67 |
+
assert c.table == [[0, 0, 1, 2], [1, 1, 2, 0], [2, 2, 0, 1], \
|
68 |
+
[None, 1, None, None], [1, 3, None, None]]
|
69 |
+
assert c.p == [0, 1, 2, 1, 1]
|
70 |
+
assert c.n == 3
|
71 |
+
assert c.omega == [0, 1, 2]
|
72 |
+
|
73 |
+
# Example 5.2 from [1]
|
74 |
+
f = FpGroup(F, [x**2, y**3, (x*y)**3])
|
75 |
+
c = CosetTable(f, [x*y])
|
76 |
+
|
77 |
+
c.scan_and_fill(0, x*y)
|
78 |
+
assert c.table == [[1, None, None, 1], [None, 0, 0, None]]
|
79 |
+
assert c.p == [0, 1]
|
80 |
+
assert c.n == 2
|
81 |
+
assert c.omega == [0, 1]
|
82 |
+
|
83 |
+
c.scan_and_fill(0, x**2)
|
84 |
+
assert c.table == [[1, 1, None, 1], [0, 0, 0, None]]
|
85 |
+
assert c.p == [0, 1]
|
86 |
+
assert c.n == 2
|
87 |
+
assert c.omega == [0, 1]
|
88 |
+
|
89 |
+
c.scan_and_fill(0, y**3)
|
90 |
+
assert c.table == [[1, 1, 2, 1], [0, 0, 0, 2], [None, None, 1, 0]]
|
91 |
+
assert c.p == [0, 1, 2]
|
92 |
+
assert c.n == 3
|
93 |
+
assert c.omega == [0, 1, 2]
|
94 |
+
|
95 |
+
c.scan_and_fill(0, (x*y)**3)
|
96 |
+
assert c.table == [[1, 1, 2, 1], [0, 0, 0, 2], [None, None, 1, 0]]
|
97 |
+
assert c.p == [0, 1, 2]
|
98 |
+
assert c.n == 3
|
99 |
+
assert c.omega == [0, 1, 2]
|
100 |
+
|
101 |
+
c.scan_and_fill(1, x**2)
|
102 |
+
assert c.table == [[1, 1, 2, 1], [0, 0, 0, 2], [None, None, 1, 0]]
|
103 |
+
assert c.p == [0, 1, 2]
|
104 |
+
assert c.n == 3
|
105 |
+
assert c.omega == [0, 1, 2]
|
106 |
+
|
107 |
+
c.scan_and_fill(1, y**3)
|
108 |
+
assert c.table == [[1, 1, 2, 1], [0, 0, 0, 2], [None, None, 1, 0]]
|
109 |
+
assert c.p == [0, 1, 2]
|
110 |
+
assert c.n == 3
|
111 |
+
assert c.omega == [0, 1, 2]
|
112 |
+
|
113 |
+
c.scan_and_fill(1, (x*y)**3)
|
114 |
+
assert c.table == [[1, 1, 2, 1], [0, 0, 0, 2], [3, 4, 1, 0], [None, 2, 4, None], [2, None, None, 3]]
|
115 |
+
assert c.p == [0, 1, 2, 3, 4]
|
116 |
+
assert c.n == 5
|
117 |
+
assert c.omega == [0, 1, 2, 3, 4]
|
118 |
+
|
119 |
+
c.scan_and_fill(2, x**2)
|
120 |
+
assert c.table == [[1, 1, 2, 1], [0, 0, 0, 2], [3, 3, 1, 0], [2, 2, 3, 3], [2, None, None, 3]]
|
121 |
+
assert c.p == [0, 1, 2, 3, 3]
|
122 |
+
assert c.n == 4
|
123 |
+
assert c.omega == [0, 1, 2, 3]
|
124 |
+
|
125 |
+
|
126 |
+
@slow
|
127 |
+
def test_coset_enumeration():
|
128 |
+
# this test function contains the combined tests for the two strategies
|
129 |
+
# i.e. HLT and Felsch strategies.
|
130 |
+
|
131 |
+
# Example 5.1 from [1]
|
132 |
+
F, x, y = free_group("x, y")
|
133 |
+
f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
|
134 |
+
C_r = coset_enumeration_r(f, [x])
|
135 |
+
C_r.compress(); C_r.standardize()
|
136 |
+
C_c = coset_enumeration_c(f, [x])
|
137 |
+
C_c.compress(); C_c.standardize()
|
138 |
+
table1 = [[0, 0, 1, 2], [1, 1, 2, 0], [2, 2, 0, 1]]
|
139 |
+
assert C_r.table == table1
|
140 |
+
assert C_c.table == table1
|
141 |
+
|
142 |
+
# E1 from [2] Pg. 474
|
143 |
+
F, r, s, t = free_group("r, s, t")
|
144 |
+
E1 = FpGroup(F, [t**-1*r*t*r**-2, r**-1*s*r*s**-2, s**-1*t*s*t**-2])
|
145 |
+
C_r = coset_enumeration_r(E1, [])
|
146 |
+
C_r.compress()
|
147 |
+
C_c = coset_enumeration_c(E1, [])
|
148 |
+
C_c.compress()
|
149 |
+
table2 = [[0, 0, 0, 0, 0, 0]]
|
150 |
+
assert C_r.table == table2
|
151 |
+
# test for issue #11449
|
152 |
+
assert C_c.table == table2
|
153 |
+
|
154 |
+
# Cox group from [2] Pg. 474
|
155 |
+
F, a, b = free_group("a, b")
|
156 |
+
Cox = FpGroup(F, [a**6, b**6, (a*b)**2, (a**2*b**2)**2, (a**3*b**3)**5])
|
157 |
+
C_r = coset_enumeration_r(Cox, [a])
|
158 |
+
C_r.compress(); C_r.standardize()
|
159 |
+
C_c = coset_enumeration_c(Cox, [a])
|
160 |
+
C_c.compress(); C_c.standardize()
|
161 |
+
table3 = [[0, 0, 1, 2],
|
162 |
+
[2, 3, 4, 0],
|
163 |
+
[5, 1, 0, 6],
|
164 |
+
[1, 7, 8, 9],
|
165 |
+
[9, 10, 11, 1],
|
166 |
+
[12, 2, 9, 13],
|
167 |
+
[14, 9, 2, 11],
|
168 |
+
[3, 12, 15, 16],
|
169 |
+
[16, 17, 18, 3],
|
170 |
+
[6, 4, 3, 5],
|
171 |
+
[4, 19, 20, 21],
|
172 |
+
[21, 22, 6, 4],
|
173 |
+
[7, 5, 23, 24],
|
174 |
+
[25, 23, 5, 18],
|
175 |
+
[19, 6, 22, 26],
|
176 |
+
[24, 27, 28, 7],
|
177 |
+
[29, 8, 7, 30],
|
178 |
+
[8, 31, 32, 33],
|
179 |
+
[33, 34, 13, 8],
|
180 |
+
[10, 14, 35, 35],
|
181 |
+
[35, 36, 37, 10],
|
182 |
+
[30, 11, 10, 29],
|
183 |
+
[11, 38, 39, 14],
|
184 |
+
[13, 39, 38, 12],
|
185 |
+
[40, 15, 12, 41],
|
186 |
+
[42, 13, 34, 43],
|
187 |
+
[44, 35, 14, 45],
|
188 |
+
[15, 46, 47, 34],
|
189 |
+
[34, 48, 49, 15],
|
190 |
+
[50, 16, 21, 51],
|
191 |
+
[52, 21, 16, 49],
|
192 |
+
[17, 50, 53, 54],
|
193 |
+
[54, 55, 56, 17],
|
194 |
+
[41, 18, 17, 40],
|
195 |
+
[18, 28, 27, 25],
|
196 |
+
[26, 20, 19, 19],
|
197 |
+
[20, 57, 58, 59],
|
198 |
+
[59, 60, 51, 20],
|
199 |
+
[22, 52, 61, 23],
|
200 |
+
[23, 62, 63, 22],
|
201 |
+
[64, 24, 33, 65],
|
202 |
+
[48, 33, 24, 61],
|
203 |
+
[62, 25, 54, 66],
|
204 |
+
[67, 54, 25, 68],
|
205 |
+
[57, 26, 59, 69],
|
206 |
+
[70, 59, 26, 63],
|
207 |
+
[27, 64, 71, 72],
|
208 |
+
[72, 73, 68, 27],
|
209 |
+
[28, 41, 74, 75],
|
210 |
+
[75, 76, 30, 28],
|
211 |
+
[31, 29, 77, 78],
|
212 |
+
[79, 77, 29, 37],
|
213 |
+
[38, 30, 76, 80],
|
214 |
+
[78, 81, 82, 31],
|
215 |
+
[43, 32, 31, 42],
|
216 |
+
[32, 83, 84, 85],
|
217 |
+
[85, 86, 65, 32],
|
218 |
+
[36, 44, 87, 88],
|
219 |
+
[88, 89, 90, 36],
|
220 |
+
[45, 37, 36, 44],
|
221 |
+
[37, 82, 81, 79],
|
222 |
+
[80, 74, 41, 38],
|
223 |
+
[39, 42, 91, 92],
|
224 |
+
[92, 93, 45, 39],
|
225 |
+
[46, 40, 94, 95],
|
226 |
+
[96, 94, 40, 56],
|
227 |
+
[97, 91, 42, 82],
|
228 |
+
[83, 43, 98, 99],
|
229 |
+
[100, 98, 43, 47],
|
230 |
+
[101, 87, 44, 90],
|
231 |
+
[82, 45, 93, 97],
|
232 |
+
[95, 102, 103, 46],
|
233 |
+
[104, 47, 46, 105],
|
234 |
+
[47, 106, 107, 100],
|
235 |
+
[61, 108, 109, 48],
|
236 |
+
[105, 49, 48, 104],
|
237 |
+
[49, 110, 111, 52],
|
238 |
+
[51, 111, 110, 50],
|
239 |
+
[112, 53, 50, 113],
|
240 |
+
[114, 51, 60, 115],
|
241 |
+
[116, 61, 52, 117],
|
242 |
+
[53, 118, 119, 60],
|
243 |
+
[60, 70, 66, 53],
|
244 |
+
[55, 67, 120, 121],
|
245 |
+
[121, 122, 123, 55],
|
246 |
+
[113, 56, 55, 112],
|
247 |
+
[56, 103, 102, 96],
|
248 |
+
[69, 124, 125, 57],
|
249 |
+
[115, 58, 57, 114],
|
250 |
+
[58, 126, 127, 128],
|
251 |
+
[128, 128, 69, 58],
|
252 |
+
[66, 129, 130, 62],
|
253 |
+
[117, 63, 62, 116],
|
254 |
+
[63, 125, 124, 70],
|
255 |
+
[65, 109, 108, 64],
|
256 |
+
[131, 71, 64, 132],
|
257 |
+
[133, 65, 86, 134],
|
258 |
+
[135, 66, 70, 136],
|
259 |
+
[68, 130, 129, 67],
|
260 |
+
[137, 120, 67, 138],
|
261 |
+
[132, 68, 73, 131],
|
262 |
+
[139, 69, 128, 140],
|
263 |
+
[71, 141, 142, 86],
|
264 |
+
[86, 143, 144, 71],
|
265 |
+
[145, 72, 75, 146],
|
266 |
+
[147, 75, 72, 144],
|
267 |
+
[73, 145, 148, 120],
|
268 |
+
[120, 149, 150, 73],
|
269 |
+
[74, 151, 152, 94],
|
270 |
+
[94, 153, 146, 74],
|
271 |
+
[76, 147, 154, 77],
|
272 |
+
[77, 155, 156, 76],
|
273 |
+
[157, 78, 85, 158],
|
274 |
+
[143, 85, 78, 154],
|
275 |
+
[155, 79, 88, 159],
|
276 |
+
[160, 88, 79, 161],
|
277 |
+
[151, 80, 92, 162],
|
278 |
+
[163, 92, 80, 156],
|
279 |
+
[81, 157, 164, 165],
|
280 |
+
[165, 166, 161, 81],
|
281 |
+
[99, 107, 106, 83],
|
282 |
+
[134, 84, 83, 133],
|
283 |
+
[84, 167, 168, 169],
|
284 |
+
[169, 170, 158, 84],
|
285 |
+
[87, 171, 172, 93],
|
286 |
+
[93, 163, 159, 87],
|
287 |
+
[89, 160, 173, 174],
|
288 |
+
[174, 175, 176, 89],
|
289 |
+
[90, 90, 89, 101],
|
290 |
+
[91, 177, 178, 98],
|
291 |
+
[98, 179, 162, 91],
|
292 |
+
[180, 95, 100, 181],
|
293 |
+
[179, 100, 95, 152],
|
294 |
+
[153, 96, 121, 148],
|
295 |
+
[182, 121, 96, 183],
|
296 |
+
[177, 97, 165, 184],
|
297 |
+
[185, 165, 97, 172],
|
298 |
+
[186, 99, 169, 187],
|
299 |
+
[188, 169, 99, 178],
|
300 |
+
[171, 101, 174, 189],
|
301 |
+
[190, 174, 101, 176],
|
302 |
+
[102, 180, 191, 192],
|
303 |
+
[192, 193, 183, 102],
|
304 |
+
[103, 113, 194, 195],
|
305 |
+
[195, 196, 105, 103],
|
306 |
+
[106, 104, 197, 198],
|
307 |
+
[199, 197, 104, 109],
|
308 |
+
[110, 105, 196, 200],
|
309 |
+
[198, 201, 133, 106],
|
310 |
+
[107, 186, 202, 203],
|
311 |
+
[203, 204, 181, 107],
|
312 |
+
[108, 116, 205, 206],
|
313 |
+
[206, 207, 132, 108],
|
314 |
+
[109, 133, 201, 199],
|
315 |
+
[200, 194, 113, 110],
|
316 |
+
[111, 114, 208, 209],
|
317 |
+
[209, 210, 117, 111],
|
318 |
+
[118, 112, 211, 212],
|
319 |
+
[213, 211, 112, 123],
|
320 |
+
[214, 208, 114, 125],
|
321 |
+
[126, 115, 215, 216],
|
322 |
+
[217, 215, 115, 119],
|
323 |
+
[218, 205, 116, 130],
|
324 |
+
[125, 117, 210, 214],
|
325 |
+
[212, 219, 220, 118],
|
326 |
+
[136, 119, 118, 135],
|
327 |
+
[119, 221, 222, 217],
|
328 |
+
[122, 182, 223, 224],
|
329 |
+
[224, 225, 226, 122],
|
330 |
+
[138, 123, 122, 137],
|
331 |
+
[123, 220, 219, 213],
|
332 |
+
[124, 139, 227, 228],
|
333 |
+
[228, 229, 136, 124],
|
334 |
+
[216, 222, 221, 126],
|
335 |
+
[140, 127, 126, 139],
|
336 |
+
[127, 230, 231, 232],
|
337 |
+
[232, 233, 140, 127],
|
338 |
+
[129, 135, 234, 235],
|
339 |
+
[235, 236, 138, 129],
|
340 |
+
[130, 132, 207, 218],
|
341 |
+
[141, 131, 237, 238],
|
342 |
+
[239, 237, 131, 150],
|
343 |
+
[167, 134, 240, 241],
|
344 |
+
[242, 240, 134, 142],
|
345 |
+
[243, 234, 135, 220],
|
346 |
+
[221, 136, 229, 244],
|
347 |
+
[149, 137, 245, 246],
|
348 |
+
[247, 245, 137, 226],
|
349 |
+
[220, 138, 236, 243],
|
350 |
+
[244, 227, 139, 221],
|
351 |
+
[230, 140, 233, 248],
|
352 |
+
[238, 249, 250, 141],
|
353 |
+
[251, 142, 141, 252],
|
354 |
+
[142, 253, 254, 242],
|
355 |
+
[154, 255, 256, 143],
|
356 |
+
[252, 144, 143, 251],
|
357 |
+
[144, 257, 258, 147],
|
358 |
+
[146, 258, 257, 145],
|
359 |
+
[259, 148, 145, 260],
|
360 |
+
[261, 146, 153, 262],
|
361 |
+
[263, 154, 147, 264],
|
362 |
+
[148, 265, 266, 153],
|
363 |
+
[246, 267, 268, 149],
|
364 |
+
[260, 150, 149, 259],
|
365 |
+
[150, 250, 249, 239],
|
366 |
+
[162, 269, 270, 151],
|
367 |
+
[262, 152, 151, 261],
|
368 |
+
[152, 271, 272, 179],
|
369 |
+
[159, 273, 274, 155],
|
370 |
+
[264, 156, 155, 263],
|
371 |
+
[156, 270, 269, 163],
|
372 |
+
[158, 256, 255, 157],
|
373 |
+
[275, 164, 157, 276],
|
374 |
+
[277, 158, 170, 278],
|
375 |
+
[279, 159, 163, 280],
|
376 |
+
[161, 274, 273, 160],
|
377 |
+
[281, 173, 160, 282],
|
378 |
+
[276, 161, 166, 275],
|
379 |
+
[283, 162, 179, 284],
|
380 |
+
[164, 285, 286, 170],
|
381 |
+
[170, 188, 184, 164],
|
382 |
+
[166, 185, 189, 173],
|
383 |
+
[173, 287, 288, 166],
|
384 |
+
[241, 254, 253, 167],
|
385 |
+
[278, 168, 167, 277],
|
386 |
+
[168, 289, 290, 291],
|
387 |
+
[291, 292, 187, 168],
|
388 |
+
[189, 293, 294, 171],
|
389 |
+
[280, 172, 171, 279],
|
390 |
+
[172, 295, 296, 185],
|
391 |
+
[175, 190, 297, 297],
|
392 |
+
[297, 298, 299, 175],
|
393 |
+
[282, 176, 175, 281],
|
394 |
+
[176, 294, 293, 190],
|
395 |
+
[184, 296, 295, 177],
|
396 |
+
[284, 178, 177, 283],
|
397 |
+
[178, 300, 301, 188],
|
398 |
+
[181, 272, 271, 180],
|
399 |
+
[302, 191, 180, 303],
|
400 |
+
[304, 181, 204, 305],
|
401 |
+
[183, 266, 265, 182],
|
402 |
+
[306, 223, 182, 307],
|
403 |
+
[303, 183, 193, 302],
|
404 |
+
[308, 184, 188, 309],
|
405 |
+
[310, 189, 185, 311],
|
406 |
+
[187, 301, 300, 186],
|
407 |
+
[305, 202, 186, 304],
|
408 |
+
[312, 187, 292, 313],
|
409 |
+
[314, 297, 190, 315],
|
410 |
+
[191, 316, 317, 204],
|
411 |
+
[204, 318, 319, 191],
|
412 |
+
[320, 192, 195, 321],
|
413 |
+
[322, 195, 192, 319],
|
414 |
+
[193, 320, 323, 223],
|
415 |
+
[223, 324, 325, 193],
|
416 |
+
[194, 326, 327, 211],
|
417 |
+
[211, 328, 321, 194],
|
418 |
+
[196, 322, 329, 197],
|
419 |
+
[197, 330, 331, 196],
|
420 |
+
[332, 198, 203, 333],
|
421 |
+
[318, 203, 198, 329],
|
422 |
+
[330, 199, 206, 334],
|
423 |
+
[335, 206, 199, 336],
|
424 |
+
[326, 200, 209, 337],
|
425 |
+
[338, 209, 200, 331],
|
426 |
+
[201, 332, 339, 240],
|
427 |
+
[240, 340, 336, 201],
|
428 |
+
[202, 341, 342, 292],
|
429 |
+
[292, 343, 333, 202],
|
430 |
+
[205, 344, 345, 210],
|
431 |
+
[210, 338, 334, 205],
|
432 |
+
[207, 335, 346, 237],
|
433 |
+
[237, 347, 348, 207],
|
434 |
+
[208, 349, 350, 215],
|
435 |
+
[215, 351, 337, 208],
|
436 |
+
[352, 212, 217, 353],
|
437 |
+
[351, 217, 212, 327],
|
438 |
+
[328, 213, 224, 323],
|
439 |
+
[354, 224, 213, 355],
|
440 |
+
[349, 214, 228, 356],
|
441 |
+
[357, 228, 214, 345],
|
442 |
+
[358, 216, 232, 359],
|
443 |
+
[360, 232, 216, 350],
|
444 |
+
[344, 218, 235, 361],
|
445 |
+
[362, 235, 218, 348],
|
446 |
+
[219, 352, 363, 364],
|
447 |
+
[364, 365, 355, 219],
|
448 |
+
[222, 358, 366, 367],
|
449 |
+
[367, 368, 353, 222],
|
450 |
+
[225, 354, 369, 370],
|
451 |
+
[370, 371, 372, 225],
|
452 |
+
[307, 226, 225, 306],
|
453 |
+
[226, 268, 267, 247],
|
454 |
+
[227, 373, 374, 233],
|
455 |
+
[233, 360, 356, 227],
|
456 |
+
[229, 357, 361, 234],
|
457 |
+
[234, 375, 376, 229],
|
458 |
+
[248, 231, 230, 230],
|
459 |
+
[231, 377, 378, 379],
|
460 |
+
[379, 380, 359, 231],
|
461 |
+
[236, 362, 381, 245],
|
462 |
+
[245, 382, 383, 236],
|
463 |
+
[384, 238, 242, 385],
|
464 |
+
[340, 242, 238, 346],
|
465 |
+
[347, 239, 246, 381],
|
466 |
+
[386, 246, 239, 387],
|
467 |
+
[388, 241, 291, 389],
|
468 |
+
[343, 291, 241, 339],
|
469 |
+
[375, 243, 364, 390],
|
470 |
+
[391, 364, 243, 383],
|
471 |
+
[373, 244, 367, 392],
|
472 |
+
[393, 367, 244, 376],
|
473 |
+
[382, 247, 370, 394],
|
474 |
+
[395, 370, 247, 396],
|
475 |
+
[377, 248, 379, 397],
|
476 |
+
[398, 379, 248, 374],
|
477 |
+
[249, 384, 399, 400],
|
478 |
+
[400, 401, 387, 249],
|
479 |
+
[250, 260, 402, 403],
|
480 |
+
[403, 404, 252, 250],
|
481 |
+
[253, 251, 405, 406],
|
482 |
+
[407, 405, 251, 256],
|
483 |
+
[257, 252, 404, 408],
|
484 |
+
[406, 409, 277, 253],
|
485 |
+
[254, 388, 410, 411],
|
486 |
+
[411, 412, 385, 254],
|
487 |
+
[255, 263, 413, 414],
|
488 |
+
[414, 415, 276, 255],
|
489 |
+
[256, 277, 409, 407],
|
490 |
+
[408, 402, 260, 257],
|
491 |
+
[258, 261, 416, 417],
|
492 |
+
[417, 418, 264, 258],
|
493 |
+
[265, 259, 419, 420],
|
494 |
+
[421, 419, 259, 268],
|
495 |
+
[422, 416, 261, 270],
|
496 |
+
[271, 262, 423, 424],
|
497 |
+
[425, 423, 262, 266],
|
498 |
+
[426, 413, 263, 274],
|
499 |
+
[270, 264, 418, 422],
|
500 |
+
[420, 427, 307, 265],
|
501 |
+
[266, 303, 428, 425],
|
502 |
+
[267, 386, 429, 430],
|
503 |
+
[430, 431, 396, 267],
|
504 |
+
[268, 307, 427, 421],
|
505 |
+
[269, 283, 432, 433],
|
506 |
+
[433, 434, 280, 269],
|
507 |
+
[424, 428, 303, 271],
|
508 |
+
[272, 304, 435, 436],
|
509 |
+
[436, 437, 284, 272],
|
510 |
+
[273, 279, 438, 439],
|
511 |
+
[439, 440, 282, 273],
|
512 |
+
[274, 276, 415, 426],
|
513 |
+
[285, 275, 441, 442],
|
514 |
+
[443, 441, 275, 288],
|
515 |
+
[289, 278, 444, 445],
|
516 |
+
[446, 444, 278, 286],
|
517 |
+
[447, 438, 279, 294],
|
518 |
+
[295, 280, 434, 448],
|
519 |
+
[287, 281, 449, 450],
|
520 |
+
[451, 449, 281, 299],
|
521 |
+
[294, 282, 440, 447],
|
522 |
+
[448, 432, 283, 295],
|
523 |
+
[300, 284, 437, 452],
|
524 |
+
[442, 453, 454, 285],
|
525 |
+
[309, 286, 285, 308],
|
526 |
+
[286, 455, 456, 446],
|
527 |
+
[450, 457, 458, 287],
|
528 |
+
[311, 288, 287, 310],
|
529 |
+
[288, 454, 453, 443],
|
530 |
+
[445, 456, 455, 289],
|
531 |
+
[313, 290, 289, 312],
|
532 |
+
[290, 459, 460, 461],
|
533 |
+
[461, 462, 389, 290],
|
534 |
+
[293, 310, 463, 464],
|
535 |
+
[464, 465, 315, 293],
|
536 |
+
[296, 308, 466, 467],
|
537 |
+
[467, 468, 311, 296],
|
538 |
+
[298, 314, 469, 470],
|
539 |
+
[470, 471, 472, 298],
|
540 |
+
[315, 299, 298, 314],
|
541 |
+
[299, 458, 457, 451],
|
542 |
+
[452, 435, 304, 300],
|
543 |
+
[301, 312, 473, 474],
|
544 |
+
[474, 475, 309, 301],
|
545 |
+
[316, 302, 476, 477],
|
546 |
+
[478, 476, 302, 325],
|
547 |
+
[341, 305, 479, 480],
|
548 |
+
[481, 479, 305, 317],
|
549 |
+
[324, 306, 482, 483],
|
550 |
+
[484, 482, 306, 372],
|
551 |
+
[485, 466, 308, 454],
|
552 |
+
[455, 309, 475, 486],
|
553 |
+
[487, 463, 310, 458],
|
554 |
+
[454, 311, 468, 485],
|
555 |
+
[486, 473, 312, 455],
|
556 |
+
[459, 313, 488, 489],
|
557 |
+
[490, 488, 313, 342],
|
558 |
+
[491, 469, 314, 472],
|
559 |
+
[458, 315, 465, 487],
|
560 |
+
[477, 492, 485, 316],
|
561 |
+
[463, 317, 316, 468],
|
562 |
+
[317, 487, 493, 481],
|
563 |
+
[329, 447, 464, 318],
|
564 |
+
[468, 319, 318, 463],
|
565 |
+
[319, 467, 448, 322],
|
566 |
+
[321, 448, 467, 320],
|
567 |
+
[475, 323, 320, 466],
|
568 |
+
[432, 321, 328, 437],
|
569 |
+
[438, 329, 322, 434],
|
570 |
+
[323, 474, 452, 328],
|
571 |
+
[483, 494, 486, 324],
|
572 |
+
[466, 325, 324, 475],
|
573 |
+
[325, 485, 492, 478],
|
574 |
+
[337, 422, 433, 326],
|
575 |
+
[437, 327, 326, 432],
|
576 |
+
[327, 436, 424, 351],
|
577 |
+
[334, 426, 439, 330],
|
578 |
+
[434, 331, 330, 438],
|
579 |
+
[331, 433, 422, 338],
|
580 |
+
[333, 464, 447, 332],
|
581 |
+
[449, 339, 332, 440],
|
582 |
+
[465, 333, 343, 469],
|
583 |
+
[413, 334, 338, 418],
|
584 |
+
[336, 439, 426, 335],
|
585 |
+
[441, 346, 335, 415],
|
586 |
+
[440, 336, 340, 449],
|
587 |
+
[416, 337, 351, 423],
|
588 |
+
[339, 451, 470, 343],
|
589 |
+
[346, 443, 450, 340],
|
590 |
+
[480, 493, 487, 341],
|
591 |
+
[469, 342, 341, 465],
|
592 |
+
[342, 491, 495, 490],
|
593 |
+
[361, 407, 414, 344],
|
594 |
+
[418, 345, 344, 413],
|
595 |
+
[345, 417, 408, 357],
|
596 |
+
[381, 446, 442, 347],
|
597 |
+
[415, 348, 347, 441],
|
598 |
+
[348, 414, 407, 362],
|
599 |
+
[356, 408, 417, 349],
|
600 |
+
[423, 350, 349, 416],
|
601 |
+
[350, 425, 420, 360],
|
602 |
+
[353, 424, 436, 352],
|
603 |
+
[479, 363, 352, 435],
|
604 |
+
[428, 353, 368, 476],
|
605 |
+
[355, 452, 474, 354],
|
606 |
+
[488, 369, 354, 473],
|
607 |
+
[435, 355, 365, 479],
|
608 |
+
[402, 356, 360, 419],
|
609 |
+
[405, 361, 357, 404],
|
610 |
+
[359, 420, 425, 358],
|
611 |
+
[476, 366, 358, 428],
|
612 |
+
[427, 359, 380, 482],
|
613 |
+
[444, 381, 362, 409],
|
614 |
+
[363, 481, 477, 368],
|
615 |
+
[368, 393, 390, 363],
|
616 |
+
[365, 391, 394, 369],
|
617 |
+
[369, 490, 480, 365],
|
618 |
+
[366, 478, 483, 380],
|
619 |
+
[380, 398, 392, 366],
|
620 |
+
[371, 395, 496, 497],
|
621 |
+
[497, 498, 489, 371],
|
622 |
+
[473, 372, 371, 488],
|
623 |
+
[372, 486, 494, 484],
|
624 |
+
[392, 400, 403, 373],
|
625 |
+
[419, 374, 373, 402],
|
626 |
+
[374, 421, 430, 398],
|
627 |
+
[390, 411, 406, 375],
|
628 |
+
[404, 376, 375, 405],
|
629 |
+
[376, 403, 400, 393],
|
630 |
+
[397, 430, 421, 377],
|
631 |
+
[482, 378, 377, 427],
|
632 |
+
[378, 484, 497, 499],
|
633 |
+
[499, 499, 397, 378],
|
634 |
+
[394, 461, 445, 382],
|
635 |
+
[409, 383, 382, 444],
|
636 |
+
[383, 406, 411, 391],
|
637 |
+
[385, 450, 443, 384],
|
638 |
+
[492, 399, 384, 453],
|
639 |
+
[457, 385, 412, 493],
|
640 |
+
[387, 442, 446, 386],
|
641 |
+
[494, 429, 386, 456],
|
642 |
+
[453, 387, 401, 492],
|
643 |
+
[389, 470, 451, 388],
|
644 |
+
[493, 410, 388, 457],
|
645 |
+
[471, 389, 462, 495],
|
646 |
+
[412, 390, 393, 399],
|
647 |
+
[462, 394, 391, 410],
|
648 |
+
[401, 392, 398, 429],
|
649 |
+
[396, 445, 461, 395],
|
650 |
+
[498, 496, 395, 460],
|
651 |
+
[456, 396, 431, 494],
|
652 |
+
[431, 397, 499, 496],
|
653 |
+
[399, 477, 481, 412],
|
654 |
+
[429, 483, 478, 401],
|
655 |
+
[410, 480, 490, 462],
|
656 |
+
[496, 497, 484, 431],
|
657 |
+
[489, 495, 491, 459],
|
658 |
+
[495, 460, 459, 471],
|
659 |
+
[460, 489, 498, 498],
|
660 |
+
[472, 472, 471, 491]]
|
661 |
+
|
662 |
+
assert C_r.table == table3
|
663 |
+
assert C_c.table == table3
|
664 |
+
|
665 |
+
# Group denoted by B2,4 from [2] Pg. 474
|
666 |
+
F, a, b = free_group("a, b")
|
667 |
+
B_2_4 = FpGroup(F, [a**4, b**4, (a*b)**4, (a**-1*b)**4, (a**2*b)**4, \
|
668 |
+
(a*b**2)**4, (a**2*b**2)**4, (a**-1*b*a*b)**4, (a*b**-1*a*b)**4])
|
669 |
+
C_r = coset_enumeration_r(B_2_4, [a])
|
670 |
+
C_c = coset_enumeration_c(B_2_4, [a])
|
671 |
+
index_r = 0
|
672 |
+
for i in range(len(C_r.p)):
|
673 |
+
if C_r.p[i] == i:
|
674 |
+
index_r += 1
|
675 |
+
assert index_r == 1024
|
676 |
+
|
677 |
+
index_c = 0
|
678 |
+
for i in range(len(C_c.p)):
|
679 |
+
if C_c.p[i] == i:
|
680 |
+
index_c += 1
|
681 |
+
assert index_c == 1024
|
682 |
+
|
683 |
+
# trivial Macdonald group G(2,2) from [2] Pg. 480
|
684 |
+
M = FpGroup(F, [b**-1*a**-1*b*a*b**-1*a*b*a**-2, a**-1*b**-1*a*b*a**-1*b*a*b**-2])
|
685 |
+
C_r = coset_enumeration_r(M, [a])
|
686 |
+
C_r.compress(); C_r.standardize()
|
687 |
+
C_c = coset_enumeration_c(M, [a])
|
688 |
+
C_c.compress(); C_c.standardize()
|
689 |
+
table4 = [[0, 0, 0, 0]]
|
690 |
+
assert C_r.table == table4
|
691 |
+
assert C_c.table == table4
|
692 |
+
|
693 |
+
|
694 |
+
def test_look_ahead():
|
695 |
+
# Section 3.2 [Test Example] Example (d) from [2]
|
696 |
+
F, a, b, c = free_group("a, b, c")
|
697 |
+
f = FpGroup(F, [a**11, b**5, c**4, (a*c)**3, b**2*c**-1*b**-1*c, a**4*b**-1*a**-1*b])
|
698 |
+
H = [c, b, c**2]
|
699 |
+
table0 = [[1, 2, 0, 0, 0, 0],
|
700 |
+
[3, 0, 4, 5, 6, 7],
|
701 |
+
[0, 8, 9, 10, 11, 12],
|
702 |
+
[5, 1, 10, 13, 14, 15],
|
703 |
+
[16, 5, 16, 1, 17, 18],
|
704 |
+
[4, 3, 1, 8, 19, 20],
|
705 |
+
[12, 21, 22, 23, 24, 1],
|
706 |
+
[25, 26, 27, 28, 1, 24],
|
707 |
+
[2, 10, 5, 16, 22, 28],
|
708 |
+
[10, 13, 13, 2, 29, 30]]
|
709 |
+
CosetTable.max_stack_size = 10
|
710 |
+
C_c = coset_enumeration_c(f, H)
|
711 |
+
C_c.compress(); C_c.standardize()
|
712 |
+
assert C_c.table[: 10] == table0
|
713 |
+
|
714 |
+
def test_modified_methods():
|
715 |
+
'''
|
716 |
+
Tests for modified coset table methods.
|
717 |
+
Example 5.7 from [1] Holt, D., Eick, B., O'Brien
|
718 |
+
"Handbook of Computational Group Theory".
|
719 |
+
|
720 |
+
'''
|
721 |
+
F, x, y = free_group("x, y")
|
722 |
+
f = FpGroup(F, [x**3, y**5, (x*y)**2])
|
723 |
+
H = [x*y, x**-1*y**-1*x*y*x]
|
724 |
+
C = CosetTable(f, H)
|
725 |
+
C.modified_define(0, x)
|
726 |
+
identity = C._grp.identity
|
727 |
+
a_0 = C._grp.generators[0]
|
728 |
+
a_1 = C._grp.generators[1]
|
729 |
+
|
730 |
+
assert C.P == [[identity, None, None, None],
|
731 |
+
[None, identity, None, None]]
|
732 |
+
assert C.table == [[1, None, None, None],
|
733 |
+
[None, 0, None, None]]
|
734 |
+
|
735 |
+
C.modified_define(1, x)
|
736 |
+
assert C.table == [[1, None, None, None],
|
737 |
+
[2, 0, None, None],
|
738 |
+
[None, 1, None, None]]
|
739 |
+
assert C.P == [[identity, None, None, None],
|
740 |
+
[identity, identity, None, None],
|
741 |
+
[None, identity, None, None]]
|
742 |
+
|
743 |
+
C.modified_scan(0, x**3, C._grp.identity, fill=False)
|
744 |
+
assert C.P == [[identity, identity, None, None],
|
745 |
+
[identity, identity, None, None],
|
746 |
+
[identity, identity, None, None]]
|
747 |
+
assert C.table == [[1, 2, None, None],
|
748 |
+
[2, 0, None, None],
|
749 |
+
[0, 1, None, None]]
|
750 |
+
|
751 |
+
C.modified_scan(0, x*y, C._grp.generators[0], fill=False)
|
752 |
+
assert C.P == [[identity, identity, None, a_0**-1],
|
753 |
+
[identity, identity, a_0, None],
|
754 |
+
[identity, identity, None, None]]
|
755 |
+
assert C.table == [[1, 2, None, 1],
|
756 |
+
[2, 0, 0, None],
|
757 |
+
[0, 1, None, None]]
|
758 |
+
|
759 |
+
C.modified_define(2, y**-1)
|
760 |
+
assert C.table == [[1, 2, None, 1],
|
761 |
+
[2, 0, 0, None],
|
762 |
+
[0, 1, None, 3],
|
763 |
+
[None, None, 2, None]]
|
764 |
+
assert C.P == [[identity, identity, None, a_0**-1],
|
765 |
+
[identity, identity, a_0, None],
|
766 |
+
[identity, identity, None, identity],
|
767 |
+
[None, None, identity, None]]
|
768 |
+
|
769 |
+
C.modified_scan(0, x**-1*y**-1*x*y*x, C._grp.generators[1])
|
770 |
+
assert C.table == [[1, 2, None, 1],
|
771 |
+
[2, 0, 0, None],
|
772 |
+
[0, 1, None, 3],
|
773 |
+
[3, 3, 2, None]]
|
774 |
+
assert C.P == [[identity, identity, None, a_0**-1],
|
775 |
+
[identity, identity, a_0, None],
|
776 |
+
[identity, identity, None, identity],
|
777 |
+
[a_1, a_1**-1, identity, None]]
|
778 |
+
|
779 |
+
C.modified_scan(2, (x*y)**2, C._grp.identity)
|
780 |
+
assert C.table == [[1, 2, 3, 1],
|
781 |
+
[2, 0, 0, None],
|
782 |
+
[0, 1, None, 3],
|
783 |
+
[3, 3, 2, 0]]
|
784 |
+
assert C.P == [[identity, identity, a_1**-1, a_0**-1],
|
785 |
+
[identity, identity, a_0, None],
|
786 |
+
[identity, identity, None, identity],
|
787 |
+
[a_1, a_1**-1, identity, a_1]]
|
788 |
+
|
789 |
+
C.modified_define(2, y)
|
790 |
+
assert C.table == [[1, 2, 3, 1],
|
791 |
+
[2, 0, 0, None],
|
792 |
+
[0, 1, 4, 3],
|
793 |
+
[3, 3, 2, 0],
|
794 |
+
[None, None, None, 2]]
|
795 |
+
assert C.P == [[identity, identity, a_1**-1, a_0**-1],
|
796 |
+
[identity, identity, a_0, None],
|
797 |
+
[identity, identity, identity, identity],
|
798 |
+
[a_1, a_1**-1, identity, a_1],
|
799 |
+
[None, None, None, identity]]
|
800 |
+
|
801 |
+
C.modified_scan(0, y**5, C._grp.identity)
|
802 |
+
assert C.table == [[1, 2, 3, 1], [2, 0, 0, 4], [0, 1, 4, 3], [3, 3, 2, 0], [None, None, 1, 2]]
|
803 |
+
assert C.P == [[identity, identity, a_1**-1, a_0**-1],
|
804 |
+
[identity, identity, a_0, a_0*a_1**-1],
|
805 |
+
[identity, identity, identity, identity],
|
806 |
+
[a_1, a_1**-1, identity, a_1],
|
807 |
+
[None, None, a_1*a_0**-1, identity]]
|
808 |
+
|
809 |
+
C.modified_scan(1, (x*y)**2, C._grp.identity)
|
810 |
+
assert C.table == [[1, 2, 3, 1],
|
811 |
+
[2, 0, 0, 4],
|
812 |
+
[0, 1, 4, 3],
|
813 |
+
[3, 3, 2, 0],
|
814 |
+
[4, 4, 1, 2]]
|
815 |
+
assert C.P == [[identity, identity, a_1**-1, a_0**-1],
|
816 |
+
[identity, identity, a_0, a_0*a_1**-1],
|
817 |
+
[identity, identity, identity, identity],
|
818 |
+
[a_1, a_1**-1, identity, a_1],
|
819 |
+
[a_0*a_1**-1, a_1*a_0**-1, a_1*a_0**-1, identity]]
|
820 |
+
|
821 |
+
# Modified coset enumeration test
|
822 |
+
f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y])
|
823 |
+
C = coset_enumeration_r(f, [x])
|
824 |
+
C_m = modified_coset_enumeration_r(f, [x])
|
825 |
+
assert C_m.table == C.table
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_fp_groups.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.singleton import S
|
2 |
+
from sympy.combinatorics.fp_groups import (FpGroup, low_index_subgroups,
|
3 |
+
reidemeister_presentation, FpSubgroup,
|
4 |
+
simplify_presentation)
|
5 |
+
from sympy.combinatorics.free_groups import (free_group, FreeGroup)
|
6 |
+
|
7 |
+
from sympy.testing.pytest import slow
|
8 |
+
|
9 |
+
"""
|
10 |
+
References
|
11 |
+
==========
|
12 |
+
|
13 |
+
[1] Holt, D., Eick, B., O'Brien, E.
|
14 |
+
"Handbook of Computational Group Theory"
|
15 |
+
|
16 |
+
[2] John J. Cannon; Lucien A. Dimino; George Havas; Jane M. Watson
|
17 |
+
Mathematics of Computation, Vol. 27, No. 123. (Jul., 1973), pp. 463-490.
|
18 |
+
"Implementation and Analysis of the Todd-Coxeter Algorithm"
|
19 |
+
|
20 |
+
[3] PROC. SECOND INTERNAT. CONF. THEORY OF GROUPS, CANBERRA 1973,
|
21 |
+
pp. 347-356. "A Reidemeister-Schreier program" by George Havas.
|
22 |
+
http://staff.itee.uq.edu.au/havas/1973cdhw.pdf
|
23 |
+
|
24 |
+
"""
|
25 |
+
|
26 |
+
def test_low_index_subgroups():
|
27 |
+
F, x, y = free_group("x, y")
|
28 |
+
|
29 |
+
# Example 5.10 from [1] Pg. 194
|
30 |
+
f = FpGroup(F, [x**2, y**3, (x*y)**4])
|
31 |
+
L = low_index_subgroups(f, 4)
|
32 |
+
t1 = [[[0, 0, 0, 0]],
|
33 |
+
[[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 3, 3]],
|
34 |
+
[[0, 0, 1, 2], [2, 2, 2, 0], [1, 1, 0, 1]],
|
35 |
+
[[1, 1, 0, 0], [0, 0, 1, 1]]]
|
36 |
+
for i in range(len(t1)):
|
37 |
+
assert L[i].table == t1[i]
|
38 |
+
|
39 |
+
f = FpGroup(F, [x**2, y**3, (x*y)**7])
|
40 |
+
L = low_index_subgroups(f, 15)
|
41 |
+
t2 = [[[0, 0, 0, 0]],
|
42 |
+
[[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5],
|
43 |
+
[4, 4, 5, 3], [6, 6, 3, 4], [5, 5, 6, 6]],
|
44 |
+
[[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5],
|
45 |
+
[6, 6, 5, 3], [5, 5, 3, 4], [4, 4, 6, 6]],
|
46 |
+
[[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5],
|
47 |
+
[6, 6, 5, 3], [7, 7, 3, 4], [4, 4, 8, 9], [5, 5, 10, 11],
|
48 |
+
[11, 11, 9, 6], [9, 9, 6, 8], [12, 12, 11, 7], [8, 8, 7, 10],
|
49 |
+
[10, 10, 13, 14], [14, 14, 14, 12], [13, 13, 12, 13]],
|
50 |
+
[[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5],
|
51 |
+
[6, 6, 5, 3], [7, 7, 3, 4], [4, 4, 8, 9], [5, 5, 10, 11],
|
52 |
+
[11, 11, 9, 6], [12, 12, 6, 8], [10, 10, 11, 7], [8, 8, 7, 10],
|
53 |
+
[9, 9, 13, 14], [14, 14, 14, 12], [13, 13, 12, 13]],
|
54 |
+
[[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5],
|
55 |
+
[6, 6, 5, 3], [7, 7, 3, 4], [4, 4, 8, 9], [5, 5, 10, 11],
|
56 |
+
[11, 11, 9, 6], [12, 12, 6, 8], [13, 13, 11, 7], [8, 8, 7, 10],
|
57 |
+
[9, 9, 12, 12], [10, 10, 13, 13]],
|
58 |
+
[[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 3, 3], [2, 2, 5, 6]
|
59 |
+
, [7, 7, 6, 4], [8, 8, 4, 5], [5, 5, 8, 9], [6, 6, 9, 7],
|
60 |
+
[10, 10, 7, 8], [9, 9, 11, 12], [11, 11, 12, 10], [13, 13, 10, 11],
|
61 |
+
[12, 12, 13, 13]],
|
62 |
+
[[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 3, 3], [2, 2, 5, 6]
|
63 |
+
, [7, 7, 6, 4], [8, 8, 4, 5], [5, 5, 8, 9], [6, 6, 9, 7],
|
64 |
+
[10, 10, 7, 8], [9, 9, 11, 12], [13, 13, 12, 10], [12, 12, 10, 11],
|
65 |
+
[11, 11, 13, 13]],
|
66 |
+
[[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 4, 4]
|
67 |
+
, [7, 7, 6, 3], [8, 8, 3, 5], [5, 5, 8, 9], [6, 6, 9, 7],
|
68 |
+
[10, 10, 7, 8], [9, 9, 11, 12], [13, 13, 12, 10], [12, 12, 10, 11],
|
69 |
+
[11, 11, 13, 13]],
|
70 |
+
[[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
|
71 |
+
, [5, 5, 6, 3], [9, 9, 3, 5], [10, 10, 8, 4], [8, 8, 4, 7],
|
72 |
+
[6, 6, 10, 11], [7, 7, 11, 9], [12, 12, 9, 10], [11, 11, 13, 14],
|
73 |
+
[14, 14, 14, 12], [13, 13, 12, 13]],
|
74 |
+
[[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
|
75 |
+
, [6, 6, 6, 3], [5, 5, 3, 5], [8, 8, 8, 4], [7, 7, 4, 7]],
|
76 |
+
[[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
|
77 |
+
, [9, 9, 6, 3], [6, 6, 3, 5], [10, 10, 8, 4], [11, 11, 4, 7],
|
78 |
+
[5, 5, 10, 12], [7, 7, 12, 9], [8, 8, 11, 11], [13, 13, 9, 10],
|
79 |
+
[12, 12, 13, 13]],
|
80 |
+
[[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
|
81 |
+
, [9, 9, 6, 3], [6, 6, 3, 5], [10, 10, 8, 4], [11, 11, 4, 7],
|
82 |
+
[5, 5, 12, 11], [7, 7, 10, 10], [8, 8, 9, 12], [13, 13, 11, 9],
|
83 |
+
[12, 12, 13, 13]],
|
84 |
+
[[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
|
85 |
+
, [9, 9, 6, 3], [10, 10, 3, 5], [7, 7, 8, 4], [11, 11, 4, 7],
|
86 |
+
[5, 5, 9, 9], [6, 6, 11, 12], [8, 8, 12, 10], [13, 13, 10, 11],
|
87 |
+
[12, 12, 13, 13]],
|
88 |
+
[[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
|
89 |
+
, [9, 9, 6, 3], [10, 10, 3, 5], [7, 7, 8, 4], [11, 11, 4, 7],
|
90 |
+
[5, 5, 12, 11], [6, 6, 10, 10], [8, 8, 9, 12], [13, 13, 11, 9],
|
91 |
+
[12, 12, 13, 13]],
|
92 |
+
[[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
|
93 |
+
, [9, 9, 6, 3], [10, 10, 3, 5], [11, 11, 8, 4], [12, 12, 4, 7],
|
94 |
+
[5, 5, 9, 9], [6, 6, 12, 13], [7, 7, 11, 11], [8, 8, 13, 10],
|
95 |
+
[13, 13, 10, 12]],
|
96 |
+
[[1, 1, 0, 0], [0, 0, 2, 3], [4, 4, 3, 1], [5, 5, 1, 2], [2, 2, 4, 4]
|
97 |
+
, [3, 3, 6, 7], [7, 7, 7, 5], [6, 6, 5, 6]]]
|
98 |
+
for i in range(len(t2)):
|
99 |
+
assert L[i].table == t2[i]
|
100 |
+
|
101 |
+
f = FpGroup(F, [x**2, y**3, (x*y)**7])
|
102 |
+
L = low_index_subgroups(f, 10, [x])
|
103 |
+
t3 = [[[0, 0, 0, 0]],
|
104 |
+
[[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5], [4, 4, 5, 3],
|
105 |
+
[6, 6, 3, 4], [5, 5, 6, 6]],
|
106 |
+
[[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5], [6, 6, 5, 3],
|
107 |
+
[5, 5, 3, 4], [4, 4, 6, 6]],
|
108 |
+
[[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8],
|
109 |
+
[6, 6, 6, 3], [5, 5, 3, 5], [8, 8, 8, 4], [7, 7, 4, 7]]]
|
110 |
+
for i in range(len(t3)):
|
111 |
+
assert L[i].table == t3[i]
|
112 |
+
|
113 |
+
|
114 |
+
def test_subgroup_presentations():
|
115 |
+
F, x, y = free_group("x, y")
|
116 |
+
f = FpGroup(F, [x**3, y**5, (x*y)**2])
|
117 |
+
H = [x*y, x**-1*y**-1*x*y*x]
|
118 |
+
p1 = reidemeister_presentation(f, H)
|
119 |
+
assert str(p1) == "((y_1, y_2), (y_1**2, y_2**3, y_2*y_1*y_2*y_1*y_2*y_1))"
|
120 |
+
|
121 |
+
H = f.subgroup(H)
|
122 |
+
assert (H.generators, H.relators) == p1
|
123 |
+
|
124 |
+
f = FpGroup(F, [x**3, y**3, (x*y)**3])
|
125 |
+
H = [x*y, x*y**-1]
|
126 |
+
p2 = reidemeister_presentation(f, H)
|
127 |
+
assert str(p2) == "((x_0, y_0), (x_0**3, y_0**3, x_0*y_0*x_0*y_0*x_0*y_0))"
|
128 |
+
|
129 |
+
f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3])
|
130 |
+
H = [x]
|
131 |
+
p3 = reidemeister_presentation(f, H)
|
132 |
+
assert str(p3) == "((x_0,), (x_0**4,))"
|
133 |
+
|
134 |
+
f = FpGroup(F, [x**3*y**-3, (x*y)**3, (x*y**-1)**2])
|
135 |
+
H = [x]
|
136 |
+
p4 = reidemeister_presentation(f, H)
|
137 |
+
assert str(p4) == "((x_0,), (x_0**6,))"
|
138 |
+
|
139 |
+
# this presentation can be improved, the most simplified form
|
140 |
+
# of presentation is <a, b | a^11, b^2, (a*b)^3, (a^4*b*a^-5*b)^2>
|
141 |
+
# See [2] Pg 474 group PSL_2(11)
|
142 |
+
# This is the group PSL_2(11)
|
143 |
+
F, a, b, c = free_group("a, b, c")
|
144 |
+
f = FpGroup(F, [a**11, b**5, c**4, (b*c**2)**2, (a*b*c)**3, (a**4*c**2)**3, b**2*c**-1*b**-1*c, a**4*b**-1*a**-1*b])
|
145 |
+
H = [a, b, c**2]
|
146 |
+
gens, rels = reidemeister_presentation(f, H)
|
147 |
+
assert str(gens) == "(b_1, c_3)"
|
148 |
+
assert len(rels) == 18
|
149 |
+
|
150 |
+
|
151 |
+
@slow
|
152 |
+
def test_order():
|
153 |
+
F, x, y = free_group("x, y")
|
154 |
+
f = FpGroup(F, [x**4, y**2, x*y*x**-1*y])
|
155 |
+
assert f.order() == 8
|
156 |
+
|
157 |
+
f = FpGroup(F, [x*y*x**-1*y**-1, y**2])
|
158 |
+
assert f.order() is S.Infinity
|
159 |
+
|
160 |
+
F, a, b, c = free_group("a, b, c")
|
161 |
+
f = FpGroup(F, [a**250, b**2, c*b*c**-1*b, c**4, c**-1*a**-1*c*a, a**-1*b**-1*a*b])
|
162 |
+
assert f.order() == 2000
|
163 |
+
|
164 |
+
F, x = free_group("x")
|
165 |
+
f = FpGroup(F, [])
|
166 |
+
assert f.order() is S.Infinity
|
167 |
+
|
168 |
+
f = FpGroup(free_group('')[0], [])
|
169 |
+
assert f.order() == 1
|
170 |
+
|
171 |
+
def test_fp_subgroup():
|
172 |
+
def _test_subgroup(K, T, S):
|
173 |
+
_gens = T(K.generators)
|
174 |
+
assert all(elem in S for elem in _gens)
|
175 |
+
assert T.is_injective()
|
176 |
+
assert T.image().order() == S.order()
|
177 |
+
F, x, y = free_group("x, y")
|
178 |
+
f = FpGroup(F, [x**4, y**2, x*y*x**-1*y])
|
179 |
+
S = FpSubgroup(f, [x*y])
|
180 |
+
assert (x*y)**-3 in S
|
181 |
+
K, T = f.subgroup([x*y], homomorphism=True)
|
182 |
+
assert T(K.generators) == [y*x**-1]
|
183 |
+
_test_subgroup(K, T, S)
|
184 |
+
|
185 |
+
S = FpSubgroup(f, [x**-1*y*x])
|
186 |
+
assert x**-1*y**4*x in S
|
187 |
+
assert x**-1*y**4*x**2 not in S
|
188 |
+
K, T = f.subgroup([x**-1*y*x], homomorphism=True)
|
189 |
+
assert T(K.generators[0]**3) == y**3
|
190 |
+
_test_subgroup(K, T, S)
|
191 |
+
|
192 |
+
f = FpGroup(F, [x**3, y**5, (x*y)**2])
|
193 |
+
H = [x*y, x**-1*y**-1*x*y*x]
|
194 |
+
K, T = f.subgroup(H, homomorphism=True)
|
195 |
+
S = FpSubgroup(f, H)
|
196 |
+
_test_subgroup(K, T, S)
|
197 |
+
|
198 |
+
def test_permutation_methods():
|
199 |
+
F, x, y = free_group("x, y")
|
200 |
+
# DihedralGroup(8)
|
201 |
+
G = FpGroup(F, [x**2, y**8, x*y*x**-1*y])
|
202 |
+
T = G._to_perm_group()[1]
|
203 |
+
assert T.is_isomorphism()
|
204 |
+
assert G.center() == [y**4]
|
205 |
+
|
206 |
+
# DiheadralGroup(4)
|
207 |
+
G = FpGroup(F, [x**2, y**4, x*y*x**-1*y])
|
208 |
+
S = FpSubgroup(G, G.normal_closure([x]))
|
209 |
+
assert x in S
|
210 |
+
assert y**-1*x*y in S
|
211 |
+
|
212 |
+
# Z_5xZ_4
|
213 |
+
G = FpGroup(F, [x*y*x**-1*y**-1, y**5, x**4])
|
214 |
+
assert G.is_abelian
|
215 |
+
assert G.is_solvable
|
216 |
+
|
217 |
+
# AlternatingGroup(5)
|
218 |
+
G = FpGroup(F, [x**3, y**2, (x*y)**5])
|
219 |
+
assert not G.is_solvable
|
220 |
+
|
221 |
+
# AlternatingGroup(4)
|
222 |
+
G = FpGroup(F, [x**3, y**2, (x*y)**3])
|
223 |
+
assert len(G.derived_series()) == 3
|
224 |
+
S = FpSubgroup(G, G.derived_subgroup())
|
225 |
+
assert S.order() == 4
|
226 |
+
|
227 |
+
|
228 |
+
def test_simplify_presentation():
|
229 |
+
# ref #16083
|
230 |
+
G = simplify_presentation(FpGroup(FreeGroup([]), []))
|
231 |
+
assert not G.generators
|
232 |
+
assert not G.relators
|
233 |
+
|
234 |
+
|
235 |
+
def test_cyclic():
|
236 |
+
F, x, y = free_group("x, y")
|
237 |
+
f = FpGroup(F, [x*y, x**-1*y**-1*x*y*x])
|
238 |
+
assert f.is_cyclic
|
239 |
+
f = FpGroup(F, [x*y, x*y**-1])
|
240 |
+
assert f.is_cyclic
|
241 |
+
f = FpGroup(F, [x**4, y**2, x*y*x**-1*y])
|
242 |
+
assert not f.is_cyclic
|
243 |
+
|
244 |
+
|
245 |
+
def test_abelian_invariants():
|
246 |
+
F, x, y = free_group("x, y")
|
247 |
+
f = FpGroup(F, [x*y, x**-1*y**-1*x*y*x])
|
248 |
+
assert f.abelian_invariants() == []
|
249 |
+
f = FpGroup(F, [x*y, x*y**-1])
|
250 |
+
assert f.abelian_invariants() == [2]
|
251 |
+
f = FpGroup(F, [x**4, y**2, x*y*x**-1*y])
|
252 |
+
assert f.abelian_invariants() == [2, 4]
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_galois.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Test groups defined by the galois module. """
|
2 |
+
|
3 |
+
from sympy.combinatorics.galois import (
|
4 |
+
S4TransitiveSubgroups, S5TransitiveSubgroups, S6TransitiveSubgroups,
|
5 |
+
find_transitive_subgroups_of_S6,
|
6 |
+
)
|
7 |
+
from sympy.combinatorics.homomorphisms import is_isomorphic
|
8 |
+
from sympy.combinatorics.named_groups import (
|
9 |
+
SymmetricGroup, AlternatingGroup, CyclicGroup,
|
10 |
+
)
|
11 |
+
|
12 |
+
|
13 |
+
def test_four_group():
|
14 |
+
G = S4TransitiveSubgroups.V.get_perm_group()
|
15 |
+
A4 = AlternatingGroup(4)
|
16 |
+
assert G.is_subgroup(A4)
|
17 |
+
assert G.degree == 4
|
18 |
+
assert G.is_transitive()
|
19 |
+
assert G.order() == 4
|
20 |
+
assert not G.is_cyclic
|
21 |
+
|
22 |
+
|
23 |
+
def test_M20():
|
24 |
+
G = S5TransitiveSubgroups.M20.get_perm_group()
|
25 |
+
S5 = SymmetricGroup(5)
|
26 |
+
A5 = AlternatingGroup(5)
|
27 |
+
assert G.is_subgroup(S5)
|
28 |
+
assert not G.is_subgroup(A5)
|
29 |
+
assert G.degree == 5
|
30 |
+
assert G.is_transitive()
|
31 |
+
assert G.order() == 20
|
32 |
+
|
33 |
+
|
34 |
+
# Setting this True means that for each of the transitive subgroups of S6,
|
35 |
+
# we run a test not only on the fixed representation, but also on one freshly
|
36 |
+
# generated by the search procedure.
|
37 |
+
INCLUDE_SEARCH_REPS = False
|
38 |
+
S6_randomized = {}
|
39 |
+
if INCLUDE_SEARCH_REPS:
|
40 |
+
S6_randomized = find_transitive_subgroups_of_S6(*list(S6TransitiveSubgroups))
|
41 |
+
|
42 |
+
|
43 |
+
def get_versions_of_S6_subgroup(name):
|
44 |
+
vers = [name.get_perm_group()]
|
45 |
+
if INCLUDE_SEARCH_REPS:
|
46 |
+
vers.append(S6_randomized[name])
|
47 |
+
return vers
|
48 |
+
|
49 |
+
|
50 |
+
def test_S6_transitive_subgroups():
|
51 |
+
"""
|
52 |
+
Test enough characteristics to distinguish all 16 transitive subgroups.
|
53 |
+
"""
|
54 |
+
ts = S6TransitiveSubgroups
|
55 |
+
A6 = AlternatingGroup(6)
|
56 |
+
for name, alt, order, is_isom, not_isom in [
|
57 |
+
(ts.C6, False, 6, CyclicGroup(6), None),
|
58 |
+
(ts.S3, False, 6, SymmetricGroup(3), None),
|
59 |
+
(ts.D6, False, 12, None, None),
|
60 |
+
(ts.A4, True, 12, None, None),
|
61 |
+
(ts.G18, False, 18, None, None),
|
62 |
+
(ts.A4xC2, False, 24, None, SymmetricGroup(4)),
|
63 |
+
(ts.S4m, False, 24, SymmetricGroup(4), None),
|
64 |
+
(ts.S4p, True, 24, None, None),
|
65 |
+
(ts.G36m, False, 36, None, None),
|
66 |
+
(ts.G36p, True, 36, None, None),
|
67 |
+
(ts.S4xC2, False, 48, None, None),
|
68 |
+
(ts.PSL2F5, True, 60, None, None),
|
69 |
+
(ts.G72, False, 72, None, None),
|
70 |
+
(ts.PGL2F5, False, 120, None, None),
|
71 |
+
(ts.A6, True, 360, None, None),
|
72 |
+
(ts.S6, False, 720, None, None),
|
73 |
+
]:
|
74 |
+
for G in get_versions_of_S6_subgroup(name):
|
75 |
+
assert G.is_transitive()
|
76 |
+
assert G.degree == 6
|
77 |
+
assert G.is_subgroup(A6) is alt
|
78 |
+
assert G.order() == order
|
79 |
+
if is_isom:
|
80 |
+
assert is_isomorphic(G, is_isom)
|
81 |
+
if not_isom:
|
82 |
+
assert not is_isomorphic(G, not_isom)
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_graycode.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.combinatorics.graycode import (GrayCode, bin_to_gray,
|
2 |
+
random_bitstring, get_subset_from_bitstring, graycode_subsets,
|
3 |
+
gray_to_bin)
|
4 |
+
from sympy.testing.pytest import raises
|
5 |
+
|
6 |
+
def test_graycode():
|
7 |
+
g = GrayCode(2)
|
8 |
+
got = []
|
9 |
+
for i in g.generate_gray():
|
10 |
+
if i.startswith('0'):
|
11 |
+
g.skip()
|
12 |
+
got.append(i)
|
13 |
+
assert got == '00 11 10'.split()
|
14 |
+
a = GrayCode(6)
|
15 |
+
assert a.current == '0'*6
|
16 |
+
assert a.rank == 0
|
17 |
+
assert len(list(a.generate_gray())) == 64
|
18 |
+
codes = ['011001', '011011', '011010',
|
19 |
+
'011110', '011111', '011101', '011100', '010100', '010101', '010111',
|
20 |
+
'010110', '010010', '010011', '010001', '010000', '110000', '110001',
|
21 |
+
'110011', '110010', '110110', '110111', '110101', '110100', '111100',
|
22 |
+
'111101', '111111', '111110', '111010', '111011', '111001', '111000',
|
23 |
+
'101000', '101001', '101011', '101010', '101110', '101111', '101101',
|
24 |
+
'101100', '100100', '100101', '100111', '100110', '100010', '100011',
|
25 |
+
'100001', '100000']
|
26 |
+
assert list(a.generate_gray(start='011001')) == codes
|
27 |
+
assert list(
|
28 |
+
a.generate_gray(rank=GrayCode(6, start='011001').rank)) == codes
|
29 |
+
assert a.next().current == '000001'
|
30 |
+
assert a.next(2).current == '000011'
|
31 |
+
assert a.next(-1).current == '100000'
|
32 |
+
|
33 |
+
a = GrayCode(5, start='10010')
|
34 |
+
assert a.rank == 28
|
35 |
+
a = GrayCode(6, start='101000')
|
36 |
+
assert a.rank == 48
|
37 |
+
|
38 |
+
assert GrayCode(6, rank=4).current == '000110'
|
39 |
+
assert GrayCode(6, rank=4).rank == 4
|
40 |
+
assert [GrayCode(4, start=s).rank for s in
|
41 |
+
GrayCode(4).generate_gray()] == [0, 1, 2, 3, 4, 5, 6, 7, 8,
|
42 |
+
9, 10, 11, 12, 13, 14, 15]
|
43 |
+
a = GrayCode(15, rank=15)
|
44 |
+
assert a.current == '000000000001000'
|
45 |
+
|
46 |
+
assert bin_to_gray('111') == '100'
|
47 |
+
|
48 |
+
a = random_bitstring(5)
|
49 |
+
assert type(a) is str
|
50 |
+
assert len(a) == 5
|
51 |
+
assert all(i in ['0', '1'] for i in a)
|
52 |
+
|
53 |
+
assert get_subset_from_bitstring(
|
54 |
+
['a', 'b', 'c', 'd'], '0011') == ['c', 'd']
|
55 |
+
assert get_subset_from_bitstring('abcd', '1001') == ['a', 'd']
|
56 |
+
assert list(graycode_subsets(['a', 'b', 'c'])) == \
|
57 |
+
[[], ['c'], ['b', 'c'], ['b'], ['a', 'b'], ['a', 'b', 'c'],
|
58 |
+
['a', 'c'], ['a']]
|
59 |
+
|
60 |
+
raises(ValueError, lambda: GrayCode(0))
|
61 |
+
raises(ValueError, lambda: GrayCode(2.2))
|
62 |
+
raises(ValueError, lambda: GrayCode(2, start=[1, 1, 0]))
|
63 |
+
raises(ValueError, lambda: GrayCode(2, rank=2.5))
|
64 |
+
raises(ValueError, lambda: get_subset_from_bitstring(['c', 'a', 'c'], '1100'))
|
65 |
+
raises(ValueError, lambda: list(GrayCode(3).generate_gray(start="1111")))
|
66 |
+
|
67 |
+
|
68 |
+
def test_live_issue_117():
|
69 |
+
assert bin_to_gray('0100') == '0110'
|
70 |
+
assert bin_to_gray('0101') == '0111'
|
71 |
+
for bits in ('0100', '0101'):
|
72 |
+
assert gray_to_bin(bin_to_gray(bits)) == bits
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_group_numbers.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.combinatorics.group_numbers import (is_nilpotent_number,
|
2 |
+
is_abelian_number, is_cyclic_number)
|
3 |
+
from sympy.testing.pytest import raises
|
4 |
+
from sympy import randprime
|
5 |
+
|
6 |
+
|
7 |
+
def test_is_nilpotent_number():
|
8 |
+
assert is_nilpotent_number(21) == False
|
9 |
+
assert is_nilpotent_number(randprime(1, 30)**12) == True
|
10 |
+
raises(ValueError, lambda: is_nilpotent_number(-5))
|
11 |
+
|
12 |
+
|
13 |
+
def test_is_abelian_number():
|
14 |
+
assert is_abelian_number(4) == True
|
15 |
+
assert is_abelian_number(randprime(1, 2000)**2) == True
|
16 |
+
assert is_abelian_number(randprime(1000, 100000)) == True
|
17 |
+
assert is_abelian_number(60) == False
|
18 |
+
assert is_abelian_number(24) == False
|
19 |
+
raises(ValueError, lambda: is_abelian_number(-5))
|
20 |
+
|
21 |
+
|
22 |
+
def test_is_cyclic_number():
|
23 |
+
assert is_cyclic_number(15) == True
|
24 |
+
assert is_cyclic_number(randprime(1, 2000)**2) == False
|
25 |
+
assert is_cyclic_number(randprime(1000, 100000)) == True
|
26 |
+
assert is_cyclic_number(4) == False
|
27 |
+
raises(ValueError, lambda: is_cyclic_number(-5))
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_homomorphisms.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.combinatorics import Permutation
|
2 |
+
from sympy.combinatorics.perm_groups import PermutationGroup
|
3 |
+
from sympy.combinatorics.homomorphisms import homomorphism, group_isomorphism, is_isomorphic
|
4 |
+
from sympy.combinatorics.free_groups import free_group
|
5 |
+
from sympy.combinatorics.fp_groups import FpGroup
|
6 |
+
from sympy.combinatorics.named_groups import AlternatingGroup, DihedralGroup, CyclicGroup
|
7 |
+
from sympy.testing.pytest import raises
|
8 |
+
|
9 |
+
def test_homomorphism():
|
10 |
+
# FpGroup -> PermutationGroup
|
11 |
+
F, a, b = free_group("a, b")
|
12 |
+
G = FpGroup(F, [a**3, b**3, (a*b)**2])
|
13 |
+
|
14 |
+
c = Permutation(3)(0, 1, 2)
|
15 |
+
d = Permutation(3)(1, 2, 3)
|
16 |
+
A = AlternatingGroup(4)
|
17 |
+
T = homomorphism(G, A, [a, b], [c, d])
|
18 |
+
assert T(a*b**2*a**-1) == c*d**2*c**-1
|
19 |
+
assert T.is_isomorphism()
|
20 |
+
assert T(T.invert(Permutation(3)(0, 2, 3))) == Permutation(3)(0, 2, 3)
|
21 |
+
|
22 |
+
T = homomorphism(G, AlternatingGroup(4), G.generators)
|
23 |
+
assert T.is_trivial()
|
24 |
+
assert T.kernel().order() == G.order()
|
25 |
+
|
26 |
+
E, e = free_group("e")
|
27 |
+
G = FpGroup(E, [e**8])
|
28 |
+
P = PermutationGroup([Permutation(0, 1, 2, 3), Permutation(0, 2)])
|
29 |
+
T = homomorphism(G, P, [e], [Permutation(0, 1, 2, 3)])
|
30 |
+
assert T.image().order() == 4
|
31 |
+
assert T(T.invert(Permutation(0, 2)(1, 3))) == Permutation(0, 2)(1, 3)
|
32 |
+
|
33 |
+
T = homomorphism(E, AlternatingGroup(4), E.generators, [c])
|
34 |
+
assert T.invert(c**2) == e**-1 #order(c) == 3 so c**2 == c**-1
|
35 |
+
|
36 |
+
# FreeGroup -> FreeGroup
|
37 |
+
T = homomorphism(F, E, [a], [e])
|
38 |
+
assert T(a**-2*b**4*a**2).is_identity
|
39 |
+
|
40 |
+
# FreeGroup -> FpGroup
|
41 |
+
G = FpGroup(F, [a*b*a**-1*b**-1])
|
42 |
+
T = homomorphism(F, G, F.generators, G.generators)
|
43 |
+
assert T.invert(a**-1*b**-1*a**2) == a*b**-1
|
44 |
+
|
45 |
+
# PermutationGroup -> PermutationGroup
|
46 |
+
D = DihedralGroup(8)
|
47 |
+
p = Permutation(0, 1, 2, 3, 4, 5, 6, 7)
|
48 |
+
P = PermutationGroup(p)
|
49 |
+
T = homomorphism(P, D, [p], [p])
|
50 |
+
assert T.is_injective()
|
51 |
+
assert not T.is_isomorphism()
|
52 |
+
assert T.invert(p**3) == p**3
|
53 |
+
|
54 |
+
T2 = homomorphism(F, P, [F.generators[0]], P.generators)
|
55 |
+
T = T.compose(T2)
|
56 |
+
assert T.domain == F
|
57 |
+
assert T.codomain == D
|
58 |
+
assert T(a*b) == p
|
59 |
+
|
60 |
+
D3 = DihedralGroup(3)
|
61 |
+
T = homomorphism(D3, D3, D3.generators, D3.generators)
|
62 |
+
assert T.is_isomorphism()
|
63 |
+
|
64 |
+
|
65 |
+
def test_isomorphisms():
|
66 |
+
|
67 |
+
F, a, b = free_group("a, b")
|
68 |
+
E, c, d = free_group("c, d")
|
69 |
+
# Infinite groups with differently ordered relators.
|
70 |
+
G = FpGroup(F, [a**2, b**3])
|
71 |
+
H = FpGroup(F, [b**3, a**2])
|
72 |
+
assert is_isomorphic(G, H)
|
73 |
+
|
74 |
+
# Trivial Case
|
75 |
+
# FpGroup -> FpGroup
|
76 |
+
H = FpGroup(F, [a**3, b**3, (a*b)**2])
|
77 |
+
F, c, d = free_group("c, d")
|
78 |
+
G = FpGroup(F, [c**3, d**3, (c*d)**2])
|
79 |
+
check, T = group_isomorphism(G, H)
|
80 |
+
assert check
|
81 |
+
assert T(c**3*d**2) == a**3*b**2
|
82 |
+
|
83 |
+
# FpGroup -> PermutationGroup
|
84 |
+
# FpGroup is converted to the equivalent isomorphic group.
|
85 |
+
F, a, b = free_group("a, b")
|
86 |
+
G = FpGroup(F, [a**3, b**3, (a*b)**2])
|
87 |
+
H = AlternatingGroup(4)
|
88 |
+
check, T = group_isomorphism(G, H)
|
89 |
+
assert check
|
90 |
+
assert T(b*a*b**-1*a**-1*b**-1) == Permutation(0, 2, 3)
|
91 |
+
assert T(b*a*b*a**-1*b**-1) == Permutation(0, 3, 2)
|
92 |
+
|
93 |
+
# PermutationGroup -> PermutationGroup
|
94 |
+
D = DihedralGroup(8)
|
95 |
+
p = Permutation(0, 1, 2, 3, 4, 5, 6, 7)
|
96 |
+
P = PermutationGroup(p)
|
97 |
+
assert not is_isomorphic(D, P)
|
98 |
+
|
99 |
+
A = CyclicGroup(5)
|
100 |
+
B = CyclicGroup(7)
|
101 |
+
assert not is_isomorphic(A, B)
|
102 |
+
|
103 |
+
# Two groups of the same prime order are isomorphic to each other.
|
104 |
+
G = FpGroup(F, [a, b**5])
|
105 |
+
H = CyclicGroup(5)
|
106 |
+
assert G.order() == H.order()
|
107 |
+
assert is_isomorphic(G, H)
|
108 |
+
|
109 |
+
|
110 |
+
def test_check_homomorphism():
|
111 |
+
a = Permutation(1,2,3,4)
|
112 |
+
b = Permutation(1,3)
|
113 |
+
G = PermutationGroup([a, b])
|
114 |
+
raises(ValueError, lambda: homomorphism(G, G, [a], [a]))
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_named_groups.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.combinatorics.named_groups import (SymmetricGroup, CyclicGroup,
|
2 |
+
DihedralGroup, AlternatingGroup,
|
3 |
+
AbelianGroup, RubikGroup)
|
4 |
+
from sympy.testing.pytest import raises
|
5 |
+
|
6 |
+
|
7 |
+
def test_SymmetricGroup():
|
8 |
+
G = SymmetricGroup(5)
|
9 |
+
elements = list(G.generate())
|
10 |
+
assert (G.generators[0]).size == 5
|
11 |
+
assert len(elements) == 120
|
12 |
+
assert G.is_solvable is False
|
13 |
+
assert G.is_abelian is False
|
14 |
+
assert G.is_nilpotent is False
|
15 |
+
assert G.is_transitive() is True
|
16 |
+
H = SymmetricGroup(1)
|
17 |
+
assert H.order() == 1
|
18 |
+
L = SymmetricGroup(2)
|
19 |
+
assert L.order() == 2
|
20 |
+
|
21 |
+
|
22 |
+
def test_CyclicGroup():
|
23 |
+
G = CyclicGroup(10)
|
24 |
+
elements = list(G.generate())
|
25 |
+
assert len(elements) == 10
|
26 |
+
assert (G.derived_subgroup()).order() == 1
|
27 |
+
assert G.is_abelian is True
|
28 |
+
assert G.is_solvable is True
|
29 |
+
assert G.is_nilpotent is True
|
30 |
+
H = CyclicGroup(1)
|
31 |
+
assert H.order() == 1
|
32 |
+
L = CyclicGroup(2)
|
33 |
+
assert L.order() == 2
|
34 |
+
|
35 |
+
|
36 |
+
def test_DihedralGroup():
|
37 |
+
G = DihedralGroup(6)
|
38 |
+
elements = list(G.generate())
|
39 |
+
assert len(elements) == 12
|
40 |
+
assert G.is_transitive() is True
|
41 |
+
assert G.is_abelian is False
|
42 |
+
assert G.is_solvable is True
|
43 |
+
assert G.is_nilpotent is False
|
44 |
+
H = DihedralGroup(1)
|
45 |
+
assert H.order() == 2
|
46 |
+
L = DihedralGroup(2)
|
47 |
+
assert L.order() == 4
|
48 |
+
assert L.is_abelian is True
|
49 |
+
assert L.is_nilpotent is True
|
50 |
+
|
51 |
+
|
52 |
+
def test_AlternatingGroup():
|
53 |
+
G = AlternatingGroup(5)
|
54 |
+
elements = list(G.generate())
|
55 |
+
assert len(elements) == 60
|
56 |
+
assert [perm.is_even for perm in elements] == [True]*60
|
57 |
+
H = AlternatingGroup(1)
|
58 |
+
assert H.order() == 1
|
59 |
+
L = AlternatingGroup(2)
|
60 |
+
assert L.order() == 1
|
61 |
+
|
62 |
+
|
63 |
+
def test_AbelianGroup():
|
64 |
+
A = AbelianGroup(3, 3, 3)
|
65 |
+
assert A.order() == 27
|
66 |
+
assert A.is_abelian is True
|
67 |
+
|
68 |
+
|
69 |
+
def test_RubikGroup():
|
70 |
+
raises(ValueError, lambda: RubikGroup(1))
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_partitions.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.sorting import ordered, default_sort_key
|
2 |
+
from sympy.combinatorics.partitions import (Partition, IntegerPartition,
|
3 |
+
RGS_enum, RGS_unrank, RGS_rank,
|
4 |
+
random_integer_partition)
|
5 |
+
from sympy.testing.pytest import raises
|
6 |
+
from sympy.utilities.iterables import partitions
|
7 |
+
from sympy.sets.sets import Set, FiniteSet
|
8 |
+
|
9 |
+
|
10 |
+
def test_partition_constructor():
|
11 |
+
raises(ValueError, lambda: Partition([1, 1, 2]))
|
12 |
+
raises(ValueError, lambda: Partition([1, 2, 3], [2, 3, 4]))
|
13 |
+
raises(ValueError, lambda: Partition(1, 2, 3))
|
14 |
+
raises(ValueError, lambda: Partition(*list(range(3))))
|
15 |
+
|
16 |
+
assert Partition([1, 2, 3], [4, 5]) == Partition([4, 5], [1, 2, 3])
|
17 |
+
assert Partition({1, 2, 3}, {4, 5}) == Partition([1, 2, 3], [4, 5])
|
18 |
+
|
19 |
+
a = FiniteSet(1, 2, 3)
|
20 |
+
b = FiniteSet(4, 5)
|
21 |
+
assert Partition(a, b) == Partition([1, 2, 3], [4, 5])
|
22 |
+
assert Partition({a, b}) == Partition(FiniteSet(a, b))
|
23 |
+
assert Partition({a, b}) != Partition(a, b)
|
24 |
+
|
25 |
+
def test_partition():
|
26 |
+
from sympy.abc import x
|
27 |
+
|
28 |
+
a = Partition([1, 2, 3], [4])
|
29 |
+
b = Partition([1, 2], [3, 4])
|
30 |
+
c = Partition([x])
|
31 |
+
l = [a, b, c]
|
32 |
+
l.sort(key=default_sort_key)
|
33 |
+
assert l == [c, a, b]
|
34 |
+
l.sort(key=lambda w: default_sort_key(w, order='rev-lex'))
|
35 |
+
assert l == [c, a, b]
|
36 |
+
|
37 |
+
assert (a == b) is False
|
38 |
+
assert a <= b
|
39 |
+
assert (a > b) is False
|
40 |
+
assert a != b
|
41 |
+
assert a < b
|
42 |
+
|
43 |
+
assert (a + 2).partition == [[1, 2], [3, 4]]
|
44 |
+
assert (b - 1).partition == [[1, 2, 4], [3]]
|
45 |
+
|
46 |
+
assert (a - 1).partition == [[1, 2, 3, 4]]
|
47 |
+
assert (a + 1).partition == [[1, 2, 4], [3]]
|
48 |
+
assert (b + 1).partition == [[1, 2], [3], [4]]
|
49 |
+
|
50 |
+
assert a.rank == 1
|
51 |
+
assert b.rank == 3
|
52 |
+
|
53 |
+
assert a.RGS == (0, 0, 0, 1)
|
54 |
+
assert b.RGS == (0, 0, 1, 1)
|
55 |
+
|
56 |
+
|
57 |
+
def test_integer_partition():
|
58 |
+
# no zeros in partition
|
59 |
+
raises(ValueError, lambda: IntegerPartition(list(range(3))))
|
60 |
+
# check fails since 1 + 2 != 100
|
61 |
+
raises(ValueError, lambda: IntegerPartition(100, list(range(1, 3))))
|
62 |
+
a = IntegerPartition(8, [1, 3, 4])
|
63 |
+
b = a.next_lex()
|
64 |
+
c = IntegerPartition([1, 3, 4])
|
65 |
+
d = IntegerPartition(8, {1: 3, 3: 1, 2: 1})
|
66 |
+
assert a == c
|
67 |
+
assert a.integer == d.integer
|
68 |
+
assert a.conjugate == [3, 2, 2, 1]
|
69 |
+
assert (a == b) is False
|
70 |
+
assert a <= b
|
71 |
+
assert (a > b) is False
|
72 |
+
assert a != b
|
73 |
+
|
74 |
+
for i in range(1, 11):
|
75 |
+
next = set()
|
76 |
+
prev = set()
|
77 |
+
a = IntegerPartition([i])
|
78 |
+
ans = {IntegerPartition(p) for p in partitions(i)}
|
79 |
+
n = len(ans)
|
80 |
+
for j in range(n):
|
81 |
+
next.add(a)
|
82 |
+
a = a.next_lex()
|
83 |
+
IntegerPartition(i, a.partition) # check it by giving i
|
84 |
+
for j in range(n):
|
85 |
+
prev.add(a)
|
86 |
+
a = a.prev_lex()
|
87 |
+
IntegerPartition(i, a.partition) # check it by giving i
|
88 |
+
assert next == ans
|
89 |
+
assert prev == ans
|
90 |
+
|
91 |
+
assert IntegerPartition([1, 2, 3]).as_ferrers() == '###\n##\n#'
|
92 |
+
assert IntegerPartition([1, 1, 3]).as_ferrers('o') == 'ooo\no\no'
|
93 |
+
assert str(IntegerPartition([1, 1, 3])) == '[3, 1, 1]'
|
94 |
+
assert IntegerPartition([1, 1, 3]).partition == [3, 1, 1]
|
95 |
+
|
96 |
+
raises(ValueError, lambda: random_integer_partition(-1))
|
97 |
+
assert random_integer_partition(1) == [1]
|
98 |
+
assert random_integer_partition(10, seed=[1, 3, 2, 1, 5, 1]
|
99 |
+
) == [5, 2, 1, 1, 1]
|
100 |
+
|
101 |
+
|
102 |
+
def test_rgs():
|
103 |
+
raises(ValueError, lambda: RGS_unrank(-1, 3))
|
104 |
+
raises(ValueError, lambda: RGS_unrank(3, 0))
|
105 |
+
raises(ValueError, lambda: RGS_unrank(10, 1))
|
106 |
+
|
107 |
+
raises(ValueError, lambda: Partition.from_rgs(list(range(3)), list(range(2))))
|
108 |
+
raises(ValueError, lambda: Partition.from_rgs(list(range(1, 3)), list(range(2))))
|
109 |
+
assert RGS_enum(-1) == 0
|
110 |
+
assert RGS_enum(1) == 1
|
111 |
+
assert RGS_unrank(7, 5) == [0, 0, 1, 0, 2]
|
112 |
+
assert RGS_unrank(23, 14) == [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2]
|
113 |
+
assert RGS_rank(RGS_unrank(40, 100)) == 40
|
114 |
+
|
115 |
+
def test_ordered_partition_9608():
|
116 |
+
a = Partition([1, 2, 3], [4])
|
117 |
+
b = Partition([1, 2], [3, 4])
|
118 |
+
assert list(ordered([a,b], Set._infimum_key))
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_perm_groups.py
ADDED
@@ -0,0 +1,1243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.containers import Tuple
|
2 |
+
from sympy.combinatorics.generators import rubik_cube_generators
|
3 |
+
from sympy.combinatorics.homomorphisms import is_isomorphic
|
4 |
+
from sympy.combinatorics.named_groups import SymmetricGroup, CyclicGroup,\
|
5 |
+
DihedralGroup, AlternatingGroup, AbelianGroup, RubikGroup
|
6 |
+
from sympy.combinatorics.perm_groups import (PermutationGroup,
|
7 |
+
_orbit_transversal, Coset, SymmetricPermutationGroup)
|
8 |
+
from sympy.combinatorics.permutations import Permutation
|
9 |
+
from sympy.combinatorics.polyhedron import tetrahedron as Tetra, cube
|
10 |
+
from sympy.combinatorics.testutil import _verify_bsgs, _verify_centralizer,\
|
11 |
+
_verify_normal_closure
|
12 |
+
from sympy.testing.pytest import skip, XFAIL, slow
|
13 |
+
|
14 |
+
rmul = Permutation.rmul
|
15 |
+
|
16 |
+
|
17 |
+
def test_has():
|
18 |
+
a = Permutation([1, 0])
|
19 |
+
G = PermutationGroup([a])
|
20 |
+
assert G.is_abelian
|
21 |
+
a = Permutation([2, 0, 1])
|
22 |
+
b = Permutation([2, 1, 0])
|
23 |
+
G = PermutationGroup([a, b])
|
24 |
+
assert not G.is_abelian
|
25 |
+
|
26 |
+
G = PermutationGroup([a])
|
27 |
+
assert G.has(a)
|
28 |
+
assert not G.has(b)
|
29 |
+
|
30 |
+
a = Permutation([2, 0, 1, 3, 4, 5])
|
31 |
+
b = Permutation([0, 2, 1, 3, 4])
|
32 |
+
assert PermutationGroup(a, b).degree == \
|
33 |
+
PermutationGroup(a, b).degree == 6
|
34 |
+
|
35 |
+
g = PermutationGroup(Permutation(0, 2, 1))
|
36 |
+
assert Tuple(1, g).has(g)
|
37 |
+
|
38 |
+
|
39 |
+
def test_generate():
|
40 |
+
a = Permutation([1, 0])
|
41 |
+
g = list(PermutationGroup([a]).generate())
|
42 |
+
assert g == [Permutation([0, 1]), Permutation([1, 0])]
|
43 |
+
assert len(list(PermutationGroup(Permutation((0, 1))).generate())) == 1
|
44 |
+
g = PermutationGroup([a]).generate(method='dimino')
|
45 |
+
assert list(g) == [Permutation([0, 1]), Permutation([1, 0])]
|
46 |
+
a = Permutation([2, 0, 1])
|
47 |
+
b = Permutation([2, 1, 0])
|
48 |
+
G = PermutationGroup([a, b])
|
49 |
+
g = G.generate()
|
50 |
+
v1 = [p.array_form for p in list(g)]
|
51 |
+
v1.sort()
|
52 |
+
assert v1 == [[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0,
|
53 |
+
1], [2, 1, 0]]
|
54 |
+
v2 = list(G.generate(method='dimino', af=True))
|
55 |
+
assert v1 == sorted(v2)
|
56 |
+
a = Permutation([2, 0, 1, 3, 4, 5])
|
57 |
+
b = Permutation([2, 1, 3, 4, 5, 0])
|
58 |
+
g = PermutationGroup([a, b]).generate(af=True)
|
59 |
+
assert len(list(g)) == 360
|
60 |
+
|
61 |
+
|
62 |
+
def test_order():
|
63 |
+
a = Permutation([2, 0, 1, 3, 4, 5, 6, 7, 8, 9])
|
64 |
+
b = Permutation([2, 1, 3, 4, 5, 6, 7, 8, 9, 0])
|
65 |
+
g = PermutationGroup([a, b])
|
66 |
+
assert g.order() == 1814400
|
67 |
+
assert PermutationGroup().order() == 1
|
68 |
+
|
69 |
+
|
70 |
+
def test_equality():
|
71 |
+
p_1 = Permutation(0, 1, 3)
|
72 |
+
p_2 = Permutation(0, 2, 3)
|
73 |
+
p_3 = Permutation(0, 1, 2)
|
74 |
+
p_4 = Permutation(0, 1, 3)
|
75 |
+
g_1 = PermutationGroup(p_1, p_2)
|
76 |
+
g_2 = PermutationGroup(p_3, p_4)
|
77 |
+
g_3 = PermutationGroup(p_2, p_1)
|
78 |
+
g_4 = PermutationGroup(p_1, p_2)
|
79 |
+
|
80 |
+
assert g_1 != g_2
|
81 |
+
assert g_1.generators != g_2.generators
|
82 |
+
assert g_1.equals(g_2)
|
83 |
+
assert g_1 != g_3
|
84 |
+
assert g_1.equals(g_3)
|
85 |
+
assert g_1 == g_4
|
86 |
+
|
87 |
+
|
88 |
+
def test_stabilizer():
|
89 |
+
S = SymmetricGroup(2)
|
90 |
+
H = S.stabilizer(0)
|
91 |
+
assert H.generators == [Permutation(1)]
|
92 |
+
a = Permutation([2, 0, 1, 3, 4, 5])
|
93 |
+
b = Permutation([2, 1, 3, 4, 5, 0])
|
94 |
+
G = PermutationGroup([a, b])
|
95 |
+
G0 = G.stabilizer(0)
|
96 |
+
assert G0.order() == 60
|
97 |
+
|
98 |
+
gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]]
|
99 |
+
gens = [Permutation(p) for p in gens_cube]
|
100 |
+
G = PermutationGroup(gens)
|
101 |
+
G2 = G.stabilizer(2)
|
102 |
+
assert G2.order() == 6
|
103 |
+
G2_1 = G2.stabilizer(1)
|
104 |
+
v = list(G2_1.generate(af=True))
|
105 |
+
assert v == [[0, 1, 2, 3, 4, 5, 6, 7], [3, 1, 2, 0, 7, 5, 6, 4]]
|
106 |
+
|
107 |
+
gens = (
|
108 |
+
(1, 2, 0, 4, 5, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19),
|
109 |
+
(0, 1, 2, 3, 4, 5, 19, 6, 8, 9, 10, 11, 12, 13, 14,
|
110 |
+
15, 16, 7, 17, 18),
|
111 |
+
(0, 1, 2, 3, 4, 5, 6, 7, 9, 18, 16, 11, 12, 13, 14, 15, 8, 17, 10, 19))
|
112 |
+
gens = [Permutation(p) for p in gens]
|
113 |
+
G = PermutationGroup(gens)
|
114 |
+
G2 = G.stabilizer(2)
|
115 |
+
assert G2.order() == 181440
|
116 |
+
S = SymmetricGroup(3)
|
117 |
+
assert [G.order() for G in S.basic_stabilizers] == [6, 2]
|
118 |
+
|
119 |
+
|
120 |
+
def test_center():
|
121 |
+
# the center of the dihedral group D_n is of order 2 for even n
|
122 |
+
for i in (4, 6, 10):
|
123 |
+
D = DihedralGroup(i)
|
124 |
+
assert (D.center()).order() == 2
|
125 |
+
# the center of the dihedral group D_n is of order 1 for odd n>2
|
126 |
+
for i in (3, 5, 7):
|
127 |
+
D = DihedralGroup(i)
|
128 |
+
assert (D.center()).order() == 1
|
129 |
+
# the center of an abelian group is the group itself
|
130 |
+
for i in (2, 3, 5):
|
131 |
+
for j in (1, 5, 7):
|
132 |
+
for k in (1, 1, 11):
|
133 |
+
G = AbelianGroup(i, j, k)
|
134 |
+
assert G.center().is_subgroup(G)
|
135 |
+
# the center of a nonabelian simple group is trivial
|
136 |
+
for i in(1, 5, 9):
|
137 |
+
A = AlternatingGroup(i)
|
138 |
+
assert (A.center()).order() == 1
|
139 |
+
# brute-force verifications
|
140 |
+
D = DihedralGroup(5)
|
141 |
+
A = AlternatingGroup(3)
|
142 |
+
C = CyclicGroup(4)
|
143 |
+
G.is_subgroup(D*A*C)
|
144 |
+
assert _verify_centralizer(G, G)
|
145 |
+
|
146 |
+
|
147 |
+
def test_centralizer():
|
148 |
+
# the centralizer of the trivial group is the entire group
|
149 |
+
S = SymmetricGroup(2)
|
150 |
+
assert S.centralizer(Permutation(list(range(2)))).is_subgroup(S)
|
151 |
+
A = AlternatingGroup(5)
|
152 |
+
assert A.centralizer(Permutation(list(range(5)))).is_subgroup(A)
|
153 |
+
# a centralizer in the trivial group is the trivial group itself
|
154 |
+
triv = PermutationGroup([Permutation([0, 1, 2, 3])])
|
155 |
+
D = DihedralGroup(4)
|
156 |
+
assert triv.centralizer(D).is_subgroup(triv)
|
157 |
+
# brute-force verifications for centralizers of groups
|
158 |
+
for i in (4, 5, 6):
|
159 |
+
S = SymmetricGroup(i)
|
160 |
+
A = AlternatingGroup(i)
|
161 |
+
C = CyclicGroup(i)
|
162 |
+
D = DihedralGroup(i)
|
163 |
+
for gp in (S, A, C, D):
|
164 |
+
for gp2 in (S, A, C, D):
|
165 |
+
if not gp2.is_subgroup(gp):
|
166 |
+
assert _verify_centralizer(gp, gp2)
|
167 |
+
# verify the centralizer for all elements of several groups
|
168 |
+
S = SymmetricGroup(5)
|
169 |
+
elements = list(S.generate_dimino())
|
170 |
+
for element in elements:
|
171 |
+
assert _verify_centralizer(S, element)
|
172 |
+
A = AlternatingGroup(5)
|
173 |
+
elements = list(A.generate_dimino())
|
174 |
+
for element in elements:
|
175 |
+
assert _verify_centralizer(A, element)
|
176 |
+
D = DihedralGroup(7)
|
177 |
+
elements = list(D.generate_dimino())
|
178 |
+
for element in elements:
|
179 |
+
assert _verify_centralizer(D, element)
|
180 |
+
# verify centralizers of small groups within small groups
|
181 |
+
small = []
|
182 |
+
for i in (1, 2, 3):
|
183 |
+
small.append(SymmetricGroup(i))
|
184 |
+
small.append(AlternatingGroup(i))
|
185 |
+
small.append(DihedralGroup(i))
|
186 |
+
small.append(CyclicGroup(i))
|
187 |
+
for gp in small:
|
188 |
+
for gp2 in small:
|
189 |
+
if gp.degree == gp2.degree:
|
190 |
+
assert _verify_centralizer(gp, gp2)
|
191 |
+
|
192 |
+
|
193 |
+
def test_coset_rank():
|
194 |
+
gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]]
|
195 |
+
gens = [Permutation(p) for p in gens_cube]
|
196 |
+
G = PermutationGroup(gens)
|
197 |
+
i = 0
|
198 |
+
for h in G.generate(af=True):
|
199 |
+
rk = G.coset_rank(h)
|
200 |
+
assert rk == i
|
201 |
+
h1 = G.coset_unrank(rk, af=True)
|
202 |
+
assert h == h1
|
203 |
+
i += 1
|
204 |
+
assert G.coset_unrank(48) is None
|
205 |
+
assert G.coset_unrank(G.coset_rank(gens[0])) == gens[0]
|
206 |
+
|
207 |
+
|
208 |
+
def test_coset_factor():
|
209 |
+
a = Permutation([0, 2, 1])
|
210 |
+
G = PermutationGroup([a])
|
211 |
+
c = Permutation([2, 1, 0])
|
212 |
+
assert not G.coset_factor(c)
|
213 |
+
assert G.coset_rank(c) is None
|
214 |
+
|
215 |
+
a = Permutation([2, 0, 1, 3, 4, 5])
|
216 |
+
b = Permutation([2, 1, 3, 4, 5, 0])
|
217 |
+
g = PermutationGroup([a, b])
|
218 |
+
assert g.order() == 360
|
219 |
+
d = Permutation([1, 0, 2, 3, 4, 5])
|
220 |
+
assert not g.coset_factor(d.array_form)
|
221 |
+
assert not g.contains(d)
|
222 |
+
assert Permutation(2) in G
|
223 |
+
c = Permutation([1, 0, 2, 3, 5, 4])
|
224 |
+
v = g.coset_factor(c, True)
|
225 |
+
tr = g.basic_transversals
|
226 |
+
p = Permutation.rmul(*[tr[i][v[i]] for i in range(len(g.base))])
|
227 |
+
assert p == c
|
228 |
+
v = g.coset_factor(c)
|
229 |
+
p = Permutation.rmul(*v)
|
230 |
+
assert p == c
|
231 |
+
assert g.contains(c)
|
232 |
+
G = PermutationGroup([Permutation([2, 1, 0])])
|
233 |
+
p = Permutation([1, 0, 2])
|
234 |
+
assert G.coset_factor(p) == []
|
235 |
+
|
236 |
+
|
237 |
+
def test_orbits():
|
238 |
+
a = Permutation([2, 0, 1])
|
239 |
+
b = Permutation([2, 1, 0])
|
240 |
+
g = PermutationGroup([a, b])
|
241 |
+
assert g.orbit(0) == {0, 1, 2}
|
242 |
+
assert g.orbits() == [{0, 1, 2}]
|
243 |
+
assert g.is_transitive() and g.is_transitive(strict=False)
|
244 |
+
assert g.orbit_transversal(0) == \
|
245 |
+
[Permutation(
|
246 |
+
[0, 1, 2]), Permutation([2, 0, 1]), Permutation([1, 2, 0])]
|
247 |
+
assert g.orbit_transversal(0, True) == \
|
248 |
+
[(0, Permutation([0, 1, 2])), (2, Permutation([2, 0, 1])),
|
249 |
+
(1, Permutation([1, 2, 0]))]
|
250 |
+
|
251 |
+
G = DihedralGroup(6)
|
252 |
+
transversal, slps = _orbit_transversal(G.degree, G.generators, 0, True, slp=True)
|
253 |
+
for i, t in transversal:
|
254 |
+
slp = slps[i]
|
255 |
+
w = G.identity
|
256 |
+
for s in slp:
|
257 |
+
w = G.generators[s]*w
|
258 |
+
assert w == t
|
259 |
+
|
260 |
+
a = Permutation(list(range(1, 100)) + [0])
|
261 |
+
G = PermutationGroup([a])
|
262 |
+
assert [min(o) for o in G.orbits()] == [0]
|
263 |
+
G = PermutationGroup(rubik_cube_generators())
|
264 |
+
assert [min(o) for o in G.orbits()] == [0, 1]
|
265 |
+
assert not G.is_transitive() and not G.is_transitive(strict=False)
|
266 |
+
G = PermutationGroup([Permutation(0, 1, 3), Permutation(3)(0, 1)])
|
267 |
+
assert not G.is_transitive() and G.is_transitive(strict=False)
|
268 |
+
assert PermutationGroup(
|
269 |
+
Permutation(3)).is_transitive(strict=False) is False
|
270 |
+
|
271 |
+
|
272 |
+
def test_is_normal():
|
273 |
+
gens_s5 = [Permutation(p) for p in [[1, 2, 3, 4, 0], [2, 1, 4, 0, 3]]]
|
274 |
+
G1 = PermutationGroup(gens_s5)
|
275 |
+
assert G1.order() == 120
|
276 |
+
gens_a5 = [Permutation(p) for p in [[1, 0, 3, 2, 4], [2, 1, 4, 3, 0]]]
|
277 |
+
G2 = PermutationGroup(gens_a5)
|
278 |
+
assert G2.order() == 60
|
279 |
+
assert G2.is_normal(G1)
|
280 |
+
gens3 = [Permutation(p) for p in [[2, 1, 3, 0, 4], [1, 2, 0, 3, 4]]]
|
281 |
+
G3 = PermutationGroup(gens3)
|
282 |
+
assert not G3.is_normal(G1)
|
283 |
+
assert G3.order() == 12
|
284 |
+
G4 = G1.normal_closure(G3.generators)
|
285 |
+
assert G4.order() == 60
|
286 |
+
gens5 = [Permutation(p) for p in [[1, 2, 3, 0, 4], [1, 2, 0, 3, 4]]]
|
287 |
+
G5 = PermutationGroup(gens5)
|
288 |
+
assert G5.order() == 24
|
289 |
+
G6 = G1.normal_closure(G5.generators)
|
290 |
+
assert G6.order() == 120
|
291 |
+
assert G1.is_subgroup(G6)
|
292 |
+
assert not G1.is_subgroup(G4)
|
293 |
+
assert G2.is_subgroup(G4)
|
294 |
+
I5 = PermutationGroup(Permutation(4))
|
295 |
+
assert I5.is_normal(G5)
|
296 |
+
assert I5.is_normal(G6, strict=False)
|
297 |
+
p1 = Permutation([1, 0, 2, 3, 4])
|
298 |
+
p2 = Permutation([0, 1, 2, 4, 3])
|
299 |
+
p3 = Permutation([3, 4, 2, 1, 0])
|
300 |
+
id_ = Permutation([0, 1, 2, 3, 4])
|
301 |
+
H = PermutationGroup([p1, p3])
|
302 |
+
H_n1 = PermutationGroup([p1, p2])
|
303 |
+
H_n2_1 = PermutationGroup(p1)
|
304 |
+
H_n2_2 = PermutationGroup(p2)
|
305 |
+
H_id = PermutationGroup(id_)
|
306 |
+
assert H_n1.is_normal(H)
|
307 |
+
assert H_n2_1.is_normal(H_n1)
|
308 |
+
assert H_n2_2.is_normal(H_n1)
|
309 |
+
assert H_id.is_normal(H_n2_1)
|
310 |
+
assert H_id.is_normal(H_n1)
|
311 |
+
assert H_id.is_normal(H)
|
312 |
+
assert not H_n2_1.is_normal(H)
|
313 |
+
assert not H_n2_2.is_normal(H)
|
314 |
+
|
315 |
+
|
316 |
+
def test_eq():
|
317 |
+
a = [[1, 2, 0, 3, 4, 5], [1, 0, 2, 3, 4, 5], [2, 1, 0, 3, 4, 5], [
|
318 |
+
1, 2, 0, 3, 4, 5]]
|
319 |
+
a = [Permutation(p) for p in a + [[1, 2, 3, 4, 5, 0]]]
|
320 |
+
g = Permutation([1, 2, 3, 4, 5, 0])
|
321 |
+
G1, G2, G3 = [PermutationGroup(x) for x in [a[:2], a[2:4], [g, g**2]]]
|
322 |
+
assert G1.order() == G2.order() == G3.order() == 6
|
323 |
+
assert G1.is_subgroup(G2)
|
324 |
+
assert not G1.is_subgroup(G3)
|
325 |
+
G4 = PermutationGroup([Permutation([0, 1])])
|
326 |
+
assert not G1.is_subgroup(G4)
|
327 |
+
assert G4.is_subgroup(G1, 0)
|
328 |
+
assert PermutationGroup(g, g).is_subgroup(PermutationGroup(g))
|
329 |
+
assert SymmetricGroup(3).is_subgroup(SymmetricGroup(4), 0)
|
330 |
+
assert SymmetricGroup(3).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0)
|
331 |
+
assert not CyclicGroup(5).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0)
|
332 |
+
assert CyclicGroup(3).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0)
|
333 |
+
|
334 |
+
|
335 |
+
def test_derived_subgroup():
|
336 |
+
a = Permutation([1, 0, 2, 4, 3])
|
337 |
+
b = Permutation([0, 1, 3, 2, 4])
|
338 |
+
G = PermutationGroup([a, b])
|
339 |
+
C = G.derived_subgroup()
|
340 |
+
assert C.order() == 3
|
341 |
+
assert C.is_normal(G)
|
342 |
+
assert C.is_subgroup(G, 0)
|
343 |
+
assert not G.is_subgroup(C, 0)
|
344 |
+
gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]]
|
345 |
+
gens = [Permutation(p) for p in gens_cube]
|
346 |
+
G = PermutationGroup(gens)
|
347 |
+
C = G.derived_subgroup()
|
348 |
+
assert C.order() == 12
|
349 |
+
|
350 |
+
|
351 |
+
def test_is_solvable():
|
352 |
+
a = Permutation([1, 2, 0])
|
353 |
+
b = Permutation([1, 0, 2])
|
354 |
+
G = PermutationGroup([a, b])
|
355 |
+
assert G.is_solvable
|
356 |
+
G = PermutationGroup([a])
|
357 |
+
assert G.is_solvable
|
358 |
+
a = Permutation([1, 2, 3, 4, 0])
|
359 |
+
b = Permutation([1, 0, 2, 3, 4])
|
360 |
+
G = PermutationGroup([a, b])
|
361 |
+
assert not G.is_solvable
|
362 |
+
P = SymmetricGroup(10)
|
363 |
+
S = P.sylow_subgroup(3)
|
364 |
+
assert S.is_solvable
|
365 |
+
|
366 |
+
def test_rubik1():
|
367 |
+
gens = rubik_cube_generators()
|
368 |
+
gens1 = [gens[-1]] + [p**2 for p in gens[1:]]
|
369 |
+
G1 = PermutationGroup(gens1)
|
370 |
+
assert G1.order() == 19508428800
|
371 |
+
gens2 = [p**2 for p in gens]
|
372 |
+
G2 = PermutationGroup(gens2)
|
373 |
+
assert G2.order() == 663552
|
374 |
+
assert G2.is_subgroup(G1, 0)
|
375 |
+
C1 = G1.derived_subgroup()
|
376 |
+
assert C1.order() == 4877107200
|
377 |
+
assert C1.is_subgroup(G1, 0)
|
378 |
+
assert not G2.is_subgroup(C1, 0)
|
379 |
+
|
380 |
+
G = RubikGroup(2)
|
381 |
+
assert G.order() == 3674160
|
382 |
+
|
383 |
+
|
384 |
+
@XFAIL
|
385 |
+
def test_rubik():
|
386 |
+
skip('takes too much time')
|
387 |
+
G = PermutationGroup(rubik_cube_generators())
|
388 |
+
assert G.order() == 43252003274489856000
|
389 |
+
G1 = PermutationGroup(G[:3])
|
390 |
+
assert G1.order() == 170659735142400
|
391 |
+
assert not G1.is_normal(G)
|
392 |
+
G2 = G.normal_closure(G1.generators)
|
393 |
+
assert G2.is_subgroup(G)
|
394 |
+
|
395 |
+
|
396 |
+
def test_direct_product():
|
397 |
+
C = CyclicGroup(4)
|
398 |
+
D = DihedralGroup(4)
|
399 |
+
G = C*C*C
|
400 |
+
assert G.order() == 64
|
401 |
+
assert G.degree == 12
|
402 |
+
assert len(G.orbits()) == 3
|
403 |
+
assert G.is_abelian is True
|
404 |
+
H = D*C
|
405 |
+
assert H.order() == 32
|
406 |
+
assert H.is_abelian is False
|
407 |
+
|
408 |
+
|
409 |
+
def test_orbit_rep():
|
410 |
+
G = DihedralGroup(6)
|
411 |
+
assert G.orbit_rep(1, 3) in [Permutation([2, 3, 4, 5, 0, 1]),
|
412 |
+
Permutation([4, 3, 2, 1, 0, 5])]
|
413 |
+
H = CyclicGroup(4)*G
|
414 |
+
assert H.orbit_rep(1, 5) is False
|
415 |
+
|
416 |
+
|
417 |
+
def test_schreier_vector():
|
418 |
+
G = CyclicGroup(50)
|
419 |
+
v = [0]*50
|
420 |
+
v[23] = -1
|
421 |
+
assert G.schreier_vector(23) == v
|
422 |
+
H = DihedralGroup(8)
|
423 |
+
assert H.schreier_vector(2) == [0, 1, -1, 0, 0, 1, 0, 0]
|
424 |
+
L = SymmetricGroup(4)
|
425 |
+
assert L.schreier_vector(1) == [1, -1, 0, 0]
|
426 |
+
|
427 |
+
|
428 |
+
def test_random_pr():
|
429 |
+
D = DihedralGroup(6)
|
430 |
+
r = 11
|
431 |
+
n = 3
|
432 |
+
_random_prec_n = {}
|
433 |
+
_random_prec_n[0] = {'s': 7, 't': 3, 'x': 2, 'e': -1}
|
434 |
+
_random_prec_n[1] = {'s': 5, 't': 5, 'x': 1, 'e': -1}
|
435 |
+
_random_prec_n[2] = {'s': 3, 't': 4, 'x': 2, 'e': 1}
|
436 |
+
D._random_pr_init(r, n, _random_prec_n=_random_prec_n)
|
437 |
+
assert D._random_gens[11] == [0, 1, 2, 3, 4, 5]
|
438 |
+
_random_prec = {'s': 2, 't': 9, 'x': 1, 'e': -1}
|
439 |
+
assert D.random_pr(_random_prec=_random_prec) == \
|
440 |
+
Permutation([0, 5, 4, 3, 2, 1])
|
441 |
+
|
442 |
+
|
443 |
+
def test_is_alt_sym():
|
444 |
+
G = DihedralGroup(10)
|
445 |
+
assert G.is_alt_sym() is False
|
446 |
+
assert G._eval_is_alt_sym_naive() is False
|
447 |
+
assert G._eval_is_alt_sym_naive(only_alt=True) is False
|
448 |
+
assert G._eval_is_alt_sym_naive(only_sym=True) is False
|
449 |
+
|
450 |
+
S = SymmetricGroup(10)
|
451 |
+
assert S._eval_is_alt_sym_naive() is True
|
452 |
+
assert S._eval_is_alt_sym_naive(only_alt=True) is False
|
453 |
+
assert S._eval_is_alt_sym_naive(only_sym=True) is True
|
454 |
+
|
455 |
+
N_eps = 10
|
456 |
+
_random_prec = {'N_eps': N_eps,
|
457 |
+
0: Permutation([[2], [1, 4], [0, 6, 7, 8, 9, 3, 5]]),
|
458 |
+
1: Permutation([[1, 8, 7, 6, 3, 5, 2, 9], [0, 4]]),
|
459 |
+
2: Permutation([[5, 8], [4, 7], [0, 1, 2, 3, 6, 9]]),
|
460 |
+
3: Permutation([[3], [0, 8, 2, 7, 4, 1, 6, 9, 5]]),
|
461 |
+
4: Permutation([[8], [4, 7, 9], [3, 6], [0, 5, 1, 2]]),
|
462 |
+
5: Permutation([[6], [0, 2, 4, 5, 1, 8, 3, 9, 7]]),
|
463 |
+
6: Permutation([[6, 9, 8], [4, 5], [1, 3, 7], [0, 2]]),
|
464 |
+
7: Permutation([[4], [0, 2, 9, 1, 3, 8, 6, 5, 7]]),
|
465 |
+
8: Permutation([[1, 5, 6, 3], [0, 2, 7, 8, 4, 9]]),
|
466 |
+
9: Permutation([[8], [6, 7], [2, 3, 4, 5], [0, 1, 9]])}
|
467 |
+
assert S.is_alt_sym(_random_prec=_random_prec) is True
|
468 |
+
|
469 |
+
A = AlternatingGroup(10)
|
470 |
+
assert A._eval_is_alt_sym_naive() is True
|
471 |
+
assert A._eval_is_alt_sym_naive(only_alt=True) is True
|
472 |
+
assert A._eval_is_alt_sym_naive(only_sym=True) is False
|
473 |
+
|
474 |
+
_random_prec = {'N_eps': N_eps,
|
475 |
+
0: Permutation([[1, 6, 4, 2, 7, 8, 5, 9, 3], [0]]),
|
476 |
+
1: Permutation([[1], [0, 5, 8, 4, 9, 2, 3, 6, 7]]),
|
477 |
+
2: Permutation([[1, 9, 8, 3, 2, 5], [0, 6, 7, 4]]),
|
478 |
+
3: Permutation([[6, 8, 9], [4, 5], [1, 3, 7, 2], [0]]),
|
479 |
+
4: Permutation([[8], [5], [4], [2, 6, 9, 3], [1], [0, 7]]),
|
480 |
+
5: Permutation([[3, 6], [0, 8, 1, 7, 5, 9, 4, 2]]),
|
481 |
+
6: Permutation([[5], [2, 9], [1, 8, 3], [0, 4, 7, 6]]),
|
482 |
+
7: Permutation([[1, 8, 4, 7, 2, 3], [0, 6, 9, 5]]),
|
483 |
+
8: Permutation([[5, 8, 7], [3], [1, 4, 2, 6], [0, 9]]),
|
484 |
+
9: Permutation([[4, 9, 6], [3, 8], [1, 2], [0, 5, 7]])}
|
485 |
+
assert A.is_alt_sym(_random_prec=_random_prec) is False
|
486 |
+
|
487 |
+
G = PermutationGroup(
|
488 |
+
Permutation(1, 3, size=8)(0, 2, 4, 6),
|
489 |
+
Permutation(5, 7, size=8)(0, 2, 4, 6))
|
490 |
+
assert G.is_alt_sym() is False
|
491 |
+
|
492 |
+
# Tests for monte-carlo c_n parameter setting, and which guarantees
|
493 |
+
# to give False.
|
494 |
+
G = DihedralGroup(10)
|
495 |
+
assert G._eval_is_alt_sym_monte_carlo() is False
|
496 |
+
G = DihedralGroup(20)
|
497 |
+
assert G._eval_is_alt_sym_monte_carlo() is False
|
498 |
+
|
499 |
+
# A dry-running test to check if it looks up for the updated cache.
|
500 |
+
G = DihedralGroup(6)
|
501 |
+
G.is_alt_sym()
|
502 |
+
assert G.is_alt_sym() is False
|
503 |
+
|
504 |
+
|
505 |
+
def test_minimal_block():
|
506 |
+
D = DihedralGroup(6)
|
507 |
+
block_system = D.minimal_block([0, 3])
|
508 |
+
for i in range(3):
|
509 |
+
assert block_system[i] == block_system[i + 3]
|
510 |
+
S = SymmetricGroup(6)
|
511 |
+
assert S.minimal_block([0, 1]) == [0, 0, 0, 0, 0, 0]
|
512 |
+
|
513 |
+
assert Tetra.pgroup.minimal_block([0, 1]) == [0, 0, 0, 0]
|
514 |
+
|
515 |
+
P1 = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5))
|
516 |
+
P2 = PermutationGroup(Permutation(0, 1, 2, 3, 4, 5), Permutation(1, 5)(2, 4))
|
517 |
+
assert P1.minimal_block([0, 2]) == [0, 1, 0, 1, 0, 1]
|
518 |
+
assert P2.minimal_block([0, 2]) == [0, 1, 0, 1, 0, 1]
|
519 |
+
|
520 |
+
|
521 |
+
def test_minimal_blocks():
|
522 |
+
P = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5))
|
523 |
+
assert P.minimal_blocks() == [[0, 1, 0, 1, 0, 1], [0, 1, 2, 0, 1, 2]]
|
524 |
+
|
525 |
+
P = SymmetricGroup(5)
|
526 |
+
assert P.minimal_blocks() == [[0]*5]
|
527 |
+
|
528 |
+
P = PermutationGroup(Permutation(0, 3))
|
529 |
+
assert P.minimal_blocks() is False
|
530 |
+
|
531 |
+
|
532 |
+
def test_max_div():
|
533 |
+
S = SymmetricGroup(10)
|
534 |
+
assert S.max_div == 5
|
535 |
+
|
536 |
+
|
537 |
+
def test_is_primitive():
|
538 |
+
S = SymmetricGroup(5)
|
539 |
+
assert S.is_primitive() is True
|
540 |
+
C = CyclicGroup(7)
|
541 |
+
assert C.is_primitive() is True
|
542 |
+
|
543 |
+
a = Permutation(0, 1, 2, size=6)
|
544 |
+
b = Permutation(3, 4, 5, size=6)
|
545 |
+
G = PermutationGroup(a, b)
|
546 |
+
assert G.is_primitive() is False
|
547 |
+
|
548 |
+
|
549 |
+
def test_random_stab():
|
550 |
+
S = SymmetricGroup(5)
|
551 |
+
_random_el = Permutation([1, 3, 2, 0, 4])
|
552 |
+
_random_prec = {'rand': _random_el}
|
553 |
+
g = S.random_stab(2, _random_prec=_random_prec)
|
554 |
+
assert g == Permutation([1, 3, 2, 0, 4])
|
555 |
+
h = S.random_stab(1)
|
556 |
+
assert h(1) == 1
|
557 |
+
|
558 |
+
|
559 |
+
def test_transitivity_degree():
|
560 |
+
perm = Permutation([1, 2, 0])
|
561 |
+
C = PermutationGroup([perm])
|
562 |
+
assert C.transitivity_degree == 1
|
563 |
+
gen1 = Permutation([1, 2, 0, 3, 4])
|
564 |
+
gen2 = Permutation([1, 2, 3, 4, 0])
|
565 |
+
# alternating group of degree 5
|
566 |
+
Alt = PermutationGroup([gen1, gen2])
|
567 |
+
assert Alt.transitivity_degree == 3
|
568 |
+
|
569 |
+
|
570 |
+
def test_schreier_sims_random():
|
571 |
+
assert sorted(Tetra.pgroup.base) == [0, 1]
|
572 |
+
|
573 |
+
S = SymmetricGroup(3)
|
574 |
+
base = [0, 1]
|
575 |
+
strong_gens = [Permutation([1, 2, 0]), Permutation([1, 0, 2]),
|
576 |
+
Permutation([0, 2, 1])]
|
577 |
+
assert S.schreier_sims_random(base, strong_gens, 5) == (base, strong_gens)
|
578 |
+
D = DihedralGroup(3)
|
579 |
+
_random_prec = {'g': [Permutation([2, 0, 1]), Permutation([1, 2, 0]),
|
580 |
+
Permutation([1, 0, 2])]}
|
581 |
+
base = [0, 1]
|
582 |
+
strong_gens = [Permutation([1, 2, 0]), Permutation([2, 1, 0]),
|
583 |
+
Permutation([0, 2, 1])]
|
584 |
+
assert D.schreier_sims_random([], D.generators, 2,
|
585 |
+
_random_prec=_random_prec) == (base, strong_gens)
|
586 |
+
|
587 |
+
|
588 |
+
def test_baseswap():
|
589 |
+
S = SymmetricGroup(4)
|
590 |
+
S.schreier_sims()
|
591 |
+
base = S.base
|
592 |
+
strong_gens = S.strong_gens
|
593 |
+
assert base == [0, 1, 2]
|
594 |
+
deterministic = S.baseswap(base, strong_gens, 1, randomized=False)
|
595 |
+
randomized = S.baseswap(base, strong_gens, 1)
|
596 |
+
assert deterministic[0] == [0, 2, 1]
|
597 |
+
assert _verify_bsgs(S, deterministic[0], deterministic[1]) is True
|
598 |
+
assert randomized[0] == [0, 2, 1]
|
599 |
+
assert _verify_bsgs(S, randomized[0], randomized[1]) is True
|
600 |
+
|
601 |
+
|
602 |
+
def test_schreier_sims_incremental():
|
603 |
+
identity = Permutation([0, 1, 2, 3, 4])
|
604 |
+
TrivialGroup = PermutationGroup([identity])
|
605 |
+
base, strong_gens = TrivialGroup.schreier_sims_incremental(base=[0, 1, 2])
|
606 |
+
assert _verify_bsgs(TrivialGroup, base, strong_gens) is True
|
607 |
+
S = SymmetricGroup(5)
|
608 |
+
base, strong_gens = S.schreier_sims_incremental(base=[0, 1, 2])
|
609 |
+
assert _verify_bsgs(S, base, strong_gens) is True
|
610 |
+
D = DihedralGroup(2)
|
611 |
+
base, strong_gens = D.schreier_sims_incremental(base=[1])
|
612 |
+
assert _verify_bsgs(D, base, strong_gens) is True
|
613 |
+
A = AlternatingGroup(7)
|
614 |
+
gens = A.generators[:]
|
615 |
+
gen0 = gens[0]
|
616 |
+
gen1 = gens[1]
|
617 |
+
gen1 = rmul(gen1, ~gen0)
|
618 |
+
gen0 = rmul(gen0, gen1)
|
619 |
+
gen1 = rmul(gen0, gen1)
|
620 |
+
base, strong_gens = A.schreier_sims_incremental(base=[0, 1], gens=gens)
|
621 |
+
assert _verify_bsgs(A, base, strong_gens) is True
|
622 |
+
C = CyclicGroup(11)
|
623 |
+
gen = C.generators[0]
|
624 |
+
base, strong_gens = C.schreier_sims_incremental(gens=[gen**3])
|
625 |
+
assert _verify_bsgs(C, base, strong_gens) is True
|
626 |
+
|
627 |
+
|
628 |
+
def _subgroup_search(i, j, k):
|
629 |
+
prop_true = lambda x: True
|
630 |
+
prop_fix_points = lambda x: [x(point) for point in points] == points
|
631 |
+
prop_comm_g = lambda x: rmul(x, g) == rmul(g, x)
|
632 |
+
prop_even = lambda x: x.is_even
|
633 |
+
for i in range(i, j, k):
|
634 |
+
S = SymmetricGroup(i)
|
635 |
+
A = AlternatingGroup(i)
|
636 |
+
C = CyclicGroup(i)
|
637 |
+
Sym = S.subgroup_search(prop_true)
|
638 |
+
assert Sym.is_subgroup(S)
|
639 |
+
Alt = S.subgroup_search(prop_even)
|
640 |
+
assert Alt.is_subgroup(A)
|
641 |
+
Sym = S.subgroup_search(prop_true, init_subgroup=C)
|
642 |
+
assert Sym.is_subgroup(S)
|
643 |
+
points = [7]
|
644 |
+
assert S.stabilizer(7).is_subgroup(S.subgroup_search(prop_fix_points))
|
645 |
+
points = [3, 4]
|
646 |
+
assert S.stabilizer(3).stabilizer(4).is_subgroup(
|
647 |
+
S.subgroup_search(prop_fix_points))
|
648 |
+
points = [3, 5]
|
649 |
+
fix35 = A.subgroup_search(prop_fix_points)
|
650 |
+
points = [5]
|
651 |
+
fix5 = A.subgroup_search(prop_fix_points)
|
652 |
+
assert A.subgroup_search(prop_fix_points, init_subgroup=fix35
|
653 |
+
).is_subgroup(fix5)
|
654 |
+
base, strong_gens = A.schreier_sims_incremental()
|
655 |
+
g = A.generators[0]
|
656 |
+
comm_g = \
|
657 |
+
A.subgroup_search(prop_comm_g, base=base, strong_gens=strong_gens)
|
658 |
+
assert _verify_bsgs(comm_g, base, comm_g.generators) is True
|
659 |
+
assert [prop_comm_g(gen) is True for gen in comm_g.generators]
|
660 |
+
|
661 |
+
|
662 |
+
def test_subgroup_search():
|
663 |
+
_subgroup_search(10, 15, 2)
|
664 |
+
|
665 |
+
|
666 |
+
@XFAIL
|
667 |
+
def test_subgroup_search2():
|
668 |
+
skip('takes too much time')
|
669 |
+
_subgroup_search(16, 17, 1)
|
670 |
+
|
671 |
+
|
672 |
+
def test_normal_closure():
|
673 |
+
# the normal closure of the trivial group is trivial
|
674 |
+
S = SymmetricGroup(3)
|
675 |
+
identity = Permutation([0, 1, 2])
|
676 |
+
closure = S.normal_closure(identity)
|
677 |
+
assert closure.is_trivial
|
678 |
+
# the normal closure of the entire group is the entire group
|
679 |
+
A = AlternatingGroup(4)
|
680 |
+
assert A.normal_closure(A).is_subgroup(A)
|
681 |
+
# brute-force verifications for subgroups
|
682 |
+
for i in (3, 4, 5):
|
683 |
+
S = SymmetricGroup(i)
|
684 |
+
A = AlternatingGroup(i)
|
685 |
+
D = DihedralGroup(i)
|
686 |
+
C = CyclicGroup(i)
|
687 |
+
for gp in (A, D, C):
|
688 |
+
assert _verify_normal_closure(S, gp)
|
689 |
+
# brute-force verifications for all elements of a group
|
690 |
+
S = SymmetricGroup(5)
|
691 |
+
elements = list(S.generate_dimino())
|
692 |
+
for element in elements:
|
693 |
+
assert _verify_normal_closure(S, element)
|
694 |
+
# small groups
|
695 |
+
small = []
|
696 |
+
for i in (1, 2, 3):
|
697 |
+
small.append(SymmetricGroup(i))
|
698 |
+
small.append(AlternatingGroup(i))
|
699 |
+
small.append(DihedralGroup(i))
|
700 |
+
small.append(CyclicGroup(i))
|
701 |
+
for gp in small:
|
702 |
+
for gp2 in small:
|
703 |
+
if gp2.is_subgroup(gp, 0) and gp2.degree == gp.degree:
|
704 |
+
assert _verify_normal_closure(gp, gp2)
|
705 |
+
|
706 |
+
|
707 |
+
def test_derived_series():
|
708 |
+
# the derived series of the trivial group consists only of the trivial group
|
709 |
+
triv = PermutationGroup([Permutation([0, 1, 2])])
|
710 |
+
assert triv.derived_series()[0].is_subgroup(triv)
|
711 |
+
# the derived series for a simple group consists only of the group itself
|
712 |
+
for i in (5, 6, 7):
|
713 |
+
A = AlternatingGroup(i)
|
714 |
+
assert A.derived_series()[0].is_subgroup(A)
|
715 |
+
# the derived series for S_4 is S_4 > A_4 > K_4 > triv
|
716 |
+
S = SymmetricGroup(4)
|
717 |
+
series = S.derived_series()
|
718 |
+
assert series[1].is_subgroup(AlternatingGroup(4))
|
719 |
+
assert series[2].is_subgroup(DihedralGroup(2))
|
720 |
+
assert series[3].is_trivial
|
721 |
+
|
722 |
+
|
723 |
+
def test_lower_central_series():
|
724 |
+
# the lower central series of the trivial group consists of the trivial
|
725 |
+
# group
|
726 |
+
triv = PermutationGroup([Permutation([0, 1, 2])])
|
727 |
+
assert triv.lower_central_series()[0].is_subgroup(triv)
|
728 |
+
# the lower central series of a simple group consists of the group itself
|
729 |
+
for i in (5, 6, 7):
|
730 |
+
A = AlternatingGroup(i)
|
731 |
+
assert A.lower_central_series()[0].is_subgroup(A)
|
732 |
+
# GAP-verified example
|
733 |
+
S = SymmetricGroup(6)
|
734 |
+
series = S.lower_central_series()
|
735 |
+
assert len(series) == 2
|
736 |
+
assert series[1].is_subgroup(AlternatingGroup(6))
|
737 |
+
|
738 |
+
|
739 |
+
def test_commutator():
|
740 |
+
# the commutator of the trivial group and the trivial group is trivial
|
741 |
+
S = SymmetricGroup(3)
|
742 |
+
triv = PermutationGroup([Permutation([0, 1, 2])])
|
743 |
+
assert S.commutator(triv, triv).is_subgroup(triv)
|
744 |
+
# the commutator of the trivial group and any other group is again trivial
|
745 |
+
A = AlternatingGroup(3)
|
746 |
+
assert S.commutator(triv, A).is_subgroup(triv)
|
747 |
+
# the commutator is commutative
|
748 |
+
for i in (3, 4, 5):
|
749 |
+
S = SymmetricGroup(i)
|
750 |
+
A = AlternatingGroup(i)
|
751 |
+
D = DihedralGroup(i)
|
752 |
+
assert S.commutator(A, D).is_subgroup(S.commutator(D, A))
|
753 |
+
# the commutator of an abelian group is trivial
|
754 |
+
S = SymmetricGroup(7)
|
755 |
+
A1 = AbelianGroup(2, 5)
|
756 |
+
A2 = AbelianGroup(3, 4)
|
757 |
+
triv = PermutationGroup([Permutation([0, 1, 2, 3, 4, 5, 6])])
|
758 |
+
assert S.commutator(A1, A1).is_subgroup(triv)
|
759 |
+
assert S.commutator(A2, A2).is_subgroup(triv)
|
760 |
+
# examples calculated by hand
|
761 |
+
S = SymmetricGroup(3)
|
762 |
+
A = AlternatingGroup(3)
|
763 |
+
assert S.commutator(A, S).is_subgroup(A)
|
764 |
+
|
765 |
+
|
766 |
+
def test_is_nilpotent():
|
767 |
+
# every abelian group is nilpotent
|
768 |
+
for i in (1, 2, 3):
|
769 |
+
C = CyclicGroup(i)
|
770 |
+
Ab = AbelianGroup(i, i + 2)
|
771 |
+
assert C.is_nilpotent
|
772 |
+
assert Ab.is_nilpotent
|
773 |
+
Ab = AbelianGroup(5, 7, 10)
|
774 |
+
assert Ab.is_nilpotent
|
775 |
+
# A_5 is not solvable and thus not nilpotent
|
776 |
+
assert AlternatingGroup(5).is_nilpotent is False
|
777 |
+
|
778 |
+
|
779 |
+
def test_is_trivial():
|
780 |
+
for i in range(5):
|
781 |
+
triv = PermutationGroup([Permutation(list(range(i)))])
|
782 |
+
assert triv.is_trivial
|
783 |
+
|
784 |
+
|
785 |
+
def test_pointwise_stabilizer():
|
786 |
+
S = SymmetricGroup(2)
|
787 |
+
stab = S.pointwise_stabilizer([0])
|
788 |
+
assert stab.generators == [Permutation(1)]
|
789 |
+
S = SymmetricGroup(5)
|
790 |
+
points = []
|
791 |
+
stab = S
|
792 |
+
for point in (2, 0, 3, 4, 1):
|
793 |
+
stab = stab.stabilizer(point)
|
794 |
+
points.append(point)
|
795 |
+
assert S.pointwise_stabilizer(points).is_subgroup(stab)
|
796 |
+
|
797 |
+
|
798 |
+
def test_make_perm():
|
799 |
+
assert cube.pgroup.make_perm(5, seed=list(range(5))) == \
|
800 |
+
Permutation([4, 7, 6, 5, 0, 3, 2, 1])
|
801 |
+
assert cube.pgroup.make_perm(7, seed=list(range(7))) == \
|
802 |
+
Permutation([6, 7, 3, 2, 5, 4, 0, 1])
|
803 |
+
|
804 |
+
|
805 |
+
def test_elements():
|
806 |
+
from sympy.sets.sets import FiniteSet
|
807 |
+
|
808 |
+
p = Permutation(2, 3)
|
809 |
+
assert PermutationGroup(p).elements == {Permutation(3), Permutation(2, 3)}
|
810 |
+
assert FiniteSet(*PermutationGroup(p).elements) \
|
811 |
+
== FiniteSet(Permutation(2, 3), Permutation(3))
|
812 |
+
|
813 |
+
|
814 |
+
def test_is_group():
|
815 |
+
assert PermutationGroup(Permutation(1,2), Permutation(2,4)).is_group is True
|
816 |
+
assert SymmetricGroup(4).is_group is True
|
817 |
+
|
818 |
+
|
819 |
+
def test_PermutationGroup():
|
820 |
+
assert PermutationGroup() == PermutationGroup(Permutation())
|
821 |
+
assert (PermutationGroup() == 0) is False
|
822 |
+
|
823 |
+
|
824 |
+
def test_coset_transvesal():
|
825 |
+
G = AlternatingGroup(5)
|
826 |
+
H = PermutationGroup(Permutation(0,1,2),Permutation(1,2)(3,4))
|
827 |
+
assert G.coset_transversal(H) == \
|
828 |
+
[Permutation(4), Permutation(2, 3, 4), Permutation(2, 4, 3),
|
829 |
+
Permutation(1, 2, 4), Permutation(4)(1, 2, 3), Permutation(1, 3)(2, 4),
|
830 |
+
Permutation(0, 1, 2, 3, 4), Permutation(0, 1, 2, 4, 3),
|
831 |
+
Permutation(0, 1, 3, 2, 4), Permutation(0, 2, 4, 1, 3)]
|
832 |
+
|
833 |
+
|
834 |
+
def test_coset_table():
|
835 |
+
G = PermutationGroup(Permutation(0,1,2,3), Permutation(0,1,2),
|
836 |
+
Permutation(0,4,2,7), Permutation(5,6), Permutation(0,7));
|
837 |
+
H = PermutationGroup(Permutation(0,1,2,3), Permutation(0,7))
|
838 |
+
assert G.coset_table(H) == \
|
839 |
+
[[0, 0, 0, 0, 1, 2, 3, 3, 0, 0], [4, 5, 2, 5, 6, 0, 7, 7, 1, 1],
|
840 |
+
[5, 4, 5, 1, 0, 6, 8, 8, 6, 6], [3, 3, 3, 3, 7, 8, 0, 0, 3, 3],
|
841 |
+
[2, 1, 4, 4, 4, 4, 9, 9, 4, 4], [1, 2, 1, 2, 5, 5, 10, 10, 5, 5],
|
842 |
+
[6, 6, 6, 6, 2, 1, 11, 11, 2, 2], [9, 10, 8, 10, 11, 3, 1, 1, 7, 7],
|
843 |
+
[10, 9, 10, 7, 3, 11, 2, 2, 11, 11], [8, 7, 9, 9, 9, 9, 4, 4, 9, 9],
|
844 |
+
[7, 8, 7, 8, 10, 10, 5, 5, 10, 10], [11, 11, 11, 11, 8, 7, 6, 6, 8, 8]]
|
845 |
+
|
846 |
+
|
847 |
+
def test_subgroup():
|
848 |
+
G = PermutationGroup(Permutation(0,1,2), Permutation(0,2,3))
|
849 |
+
H = G.subgroup([Permutation(0,1,3)])
|
850 |
+
assert H.is_subgroup(G)
|
851 |
+
|
852 |
+
|
853 |
+
def test_generator_product():
|
854 |
+
G = SymmetricGroup(5)
|
855 |
+
p = Permutation(0, 2, 3)(1, 4)
|
856 |
+
gens = G.generator_product(p)
|
857 |
+
assert all(g in G.strong_gens for g in gens)
|
858 |
+
w = G.identity
|
859 |
+
for g in gens:
|
860 |
+
w = g*w
|
861 |
+
assert w == p
|
862 |
+
|
863 |
+
|
864 |
+
def test_sylow_subgroup():
|
865 |
+
P = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5))
|
866 |
+
S = P.sylow_subgroup(2)
|
867 |
+
assert S.order() == 4
|
868 |
+
|
869 |
+
P = DihedralGroup(12)
|
870 |
+
S = P.sylow_subgroup(3)
|
871 |
+
assert S.order() == 3
|
872 |
+
|
873 |
+
P = PermutationGroup(
|
874 |
+
Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5), Permutation(0, 2))
|
875 |
+
S = P.sylow_subgroup(3)
|
876 |
+
assert S.order() == 9
|
877 |
+
S = P.sylow_subgroup(2)
|
878 |
+
assert S.order() == 8
|
879 |
+
|
880 |
+
P = SymmetricGroup(10)
|
881 |
+
S = P.sylow_subgroup(2)
|
882 |
+
assert S.order() == 256
|
883 |
+
S = P.sylow_subgroup(3)
|
884 |
+
assert S.order() == 81
|
885 |
+
S = P.sylow_subgroup(5)
|
886 |
+
assert S.order() == 25
|
887 |
+
|
888 |
+
# the length of the lower central series
|
889 |
+
# of a p-Sylow subgroup of Sym(n) grows with
|
890 |
+
# the highest exponent exp of p such
|
891 |
+
# that n >= p**exp
|
892 |
+
exp = 1
|
893 |
+
length = 0
|
894 |
+
for i in range(2, 9):
|
895 |
+
P = SymmetricGroup(i)
|
896 |
+
S = P.sylow_subgroup(2)
|
897 |
+
ls = S.lower_central_series()
|
898 |
+
if i // 2**exp > 0:
|
899 |
+
# length increases with exponent
|
900 |
+
assert len(ls) > length
|
901 |
+
length = len(ls)
|
902 |
+
exp += 1
|
903 |
+
else:
|
904 |
+
assert len(ls) == length
|
905 |
+
|
906 |
+
G = SymmetricGroup(100)
|
907 |
+
S = G.sylow_subgroup(3)
|
908 |
+
assert G.order() % S.order() == 0
|
909 |
+
assert G.order()/S.order() % 3 > 0
|
910 |
+
|
911 |
+
G = AlternatingGroup(100)
|
912 |
+
S = G.sylow_subgroup(2)
|
913 |
+
assert G.order() % S.order() == 0
|
914 |
+
assert G.order()/S.order() % 2 > 0
|
915 |
+
|
916 |
+
G = DihedralGroup(18)
|
917 |
+
S = G.sylow_subgroup(p=2)
|
918 |
+
assert S.order() == 4
|
919 |
+
|
920 |
+
G = DihedralGroup(50)
|
921 |
+
S = G.sylow_subgroup(p=2)
|
922 |
+
assert S.order() == 4
|
923 |
+
|
924 |
+
|
925 |
+
@slow
|
926 |
+
def test_presentation():
|
927 |
+
def _test(P):
|
928 |
+
G = P.presentation()
|
929 |
+
return G.order() == P.order()
|
930 |
+
|
931 |
+
def _strong_test(P):
|
932 |
+
G = P.strong_presentation()
|
933 |
+
chk = len(G.generators) == len(P.strong_gens)
|
934 |
+
return chk and G.order() == P.order()
|
935 |
+
|
936 |
+
P = PermutationGroup(Permutation(0,1,5,2)(3,7,4,6), Permutation(0,3,5,4)(1,6,2,7))
|
937 |
+
assert _test(P)
|
938 |
+
|
939 |
+
P = AlternatingGroup(5)
|
940 |
+
assert _test(P)
|
941 |
+
|
942 |
+
P = SymmetricGroup(5)
|
943 |
+
assert _test(P)
|
944 |
+
|
945 |
+
P = PermutationGroup(
|
946 |
+
[Permutation(0,3,1,2), Permutation(3)(0,1), Permutation(0,1)(2,3)])
|
947 |
+
assert _strong_test(P)
|
948 |
+
|
949 |
+
P = DihedralGroup(6)
|
950 |
+
assert _strong_test(P)
|
951 |
+
|
952 |
+
a = Permutation(0,1)(2,3)
|
953 |
+
b = Permutation(0,2)(3,1)
|
954 |
+
c = Permutation(4,5)
|
955 |
+
P = PermutationGroup(c, a, b)
|
956 |
+
assert _strong_test(P)
|
957 |
+
|
958 |
+
|
959 |
+
def test_polycyclic():
|
960 |
+
a = Permutation([0, 1, 2])
|
961 |
+
b = Permutation([2, 1, 0])
|
962 |
+
G = PermutationGroup([a, b])
|
963 |
+
assert G.is_polycyclic is True
|
964 |
+
|
965 |
+
a = Permutation([1, 2, 3, 4, 0])
|
966 |
+
b = Permutation([1, 0, 2, 3, 4])
|
967 |
+
G = PermutationGroup([a, b])
|
968 |
+
assert G.is_polycyclic is False
|
969 |
+
|
970 |
+
|
971 |
+
def test_elementary():
|
972 |
+
a = Permutation([1, 5, 2, 0, 3, 6, 4])
|
973 |
+
G = PermutationGroup([a])
|
974 |
+
assert G.is_elementary(7) is False
|
975 |
+
|
976 |
+
a = Permutation(0, 1)(2, 3)
|
977 |
+
b = Permutation(0, 2)(3, 1)
|
978 |
+
G = PermutationGroup([a, b])
|
979 |
+
assert G.is_elementary(2) is True
|
980 |
+
c = Permutation(4, 5, 6)
|
981 |
+
G = PermutationGroup([a, b, c])
|
982 |
+
assert G.is_elementary(2) is False
|
983 |
+
|
984 |
+
G = SymmetricGroup(4).sylow_subgroup(2)
|
985 |
+
assert G.is_elementary(2) is False
|
986 |
+
H = AlternatingGroup(4).sylow_subgroup(2)
|
987 |
+
assert H.is_elementary(2) is True
|
988 |
+
|
989 |
+
|
990 |
+
def test_perfect():
|
991 |
+
G = AlternatingGroup(3)
|
992 |
+
assert G.is_perfect is False
|
993 |
+
G = AlternatingGroup(5)
|
994 |
+
assert G.is_perfect is True
|
995 |
+
|
996 |
+
|
997 |
+
def test_index():
|
998 |
+
G = PermutationGroup(Permutation(0,1,2), Permutation(0,2,3))
|
999 |
+
H = G.subgroup([Permutation(0,1,3)])
|
1000 |
+
assert G.index(H) == 4
|
1001 |
+
|
1002 |
+
|
1003 |
+
def test_cyclic():
|
1004 |
+
G = SymmetricGroup(2)
|
1005 |
+
assert G.is_cyclic
|
1006 |
+
G = AbelianGroup(3, 7)
|
1007 |
+
assert G.is_cyclic
|
1008 |
+
G = AbelianGroup(7, 7)
|
1009 |
+
assert not G.is_cyclic
|
1010 |
+
G = AlternatingGroup(3)
|
1011 |
+
assert G.is_cyclic
|
1012 |
+
G = AlternatingGroup(4)
|
1013 |
+
assert not G.is_cyclic
|
1014 |
+
|
1015 |
+
# Order less than 6
|
1016 |
+
G = PermutationGroup(Permutation(0, 1, 2), Permutation(0, 2, 1))
|
1017 |
+
assert G.is_cyclic
|
1018 |
+
G = PermutationGroup(
|
1019 |
+
Permutation(0, 1, 2, 3),
|
1020 |
+
Permutation(0, 2)(1, 3)
|
1021 |
+
)
|
1022 |
+
assert G.is_cyclic
|
1023 |
+
G = PermutationGroup(
|
1024 |
+
Permutation(3),
|
1025 |
+
Permutation(0, 1)(2, 3),
|
1026 |
+
Permutation(0, 2)(1, 3),
|
1027 |
+
Permutation(0, 3)(1, 2)
|
1028 |
+
)
|
1029 |
+
assert G.is_cyclic is False
|
1030 |
+
|
1031 |
+
# Order 15
|
1032 |
+
G = PermutationGroup(
|
1033 |
+
Permutation(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14),
|
1034 |
+
Permutation(0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13)
|
1035 |
+
)
|
1036 |
+
assert G.is_cyclic
|
1037 |
+
|
1038 |
+
# Distinct prime orders
|
1039 |
+
assert PermutationGroup._distinct_primes_lemma([3, 5]) is True
|
1040 |
+
assert PermutationGroup._distinct_primes_lemma([5, 7]) is True
|
1041 |
+
assert PermutationGroup._distinct_primes_lemma([2, 3]) is None
|
1042 |
+
assert PermutationGroup._distinct_primes_lemma([3, 5, 7]) is None
|
1043 |
+
assert PermutationGroup._distinct_primes_lemma([5, 7, 13]) is True
|
1044 |
+
|
1045 |
+
G = PermutationGroup(
|
1046 |
+
Permutation(0, 1, 2, 3),
|
1047 |
+
Permutation(0, 2)(1, 3))
|
1048 |
+
assert G.is_cyclic
|
1049 |
+
assert G._is_abelian
|
1050 |
+
|
1051 |
+
# Non-abelian and therefore not cyclic
|
1052 |
+
G = PermutationGroup(*SymmetricGroup(3).generators)
|
1053 |
+
assert G.is_cyclic is False
|
1054 |
+
|
1055 |
+
# Abelian and cyclic
|
1056 |
+
G = PermutationGroup(
|
1057 |
+
Permutation(0, 1, 2, 3),
|
1058 |
+
Permutation(4, 5, 6)
|
1059 |
+
)
|
1060 |
+
assert G.is_cyclic
|
1061 |
+
|
1062 |
+
# Abelian but not cyclic
|
1063 |
+
G = PermutationGroup(
|
1064 |
+
Permutation(0, 1),
|
1065 |
+
Permutation(2, 3),
|
1066 |
+
Permutation(4, 5, 6)
|
1067 |
+
)
|
1068 |
+
assert G.is_cyclic is False
|
1069 |
+
|
1070 |
+
|
1071 |
+
def test_dihedral():
|
1072 |
+
G = SymmetricGroup(2)
|
1073 |
+
assert G.is_dihedral
|
1074 |
+
G = SymmetricGroup(3)
|
1075 |
+
assert G.is_dihedral
|
1076 |
+
|
1077 |
+
G = AbelianGroup(2, 2)
|
1078 |
+
assert G.is_dihedral
|
1079 |
+
G = CyclicGroup(4)
|
1080 |
+
assert not G.is_dihedral
|
1081 |
+
|
1082 |
+
G = AbelianGroup(3, 5)
|
1083 |
+
assert not G.is_dihedral
|
1084 |
+
G = AbelianGroup(2)
|
1085 |
+
assert G.is_dihedral
|
1086 |
+
G = AbelianGroup(6)
|
1087 |
+
assert not G.is_dihedral
|
1088 |
+
|
1089 |
+
# D6, generated by two adjacent flips
|
1090 |
+
G = PermutationGroup(
|
1091 |
+
Permutation(1, 5)(2, 4),
|
1092 |
+
Permutation(0, 1)(3, 4)(2, 5))
|
1093 |
+
assert G.is_dihedral
|
1094 |
+
|
1095 |
+
# D7, generated by a flip and a rotation
|
1096 |
+
G = PermutationGroup(
|
1097 |
+
Permutation(1, 6)(2, 5)(3, 4),
|
1098 |
+
Permutation(0, 1, 2, 3, 4, 5, 6))
|
1099 |
+
assert G.is_dihedral
|
1100 |
+
|
1101 |
+
# S4, presented by three generators, fails due to having exactly 9
|
1102 |
+
# elements of order 2:
|
1103 |
+
G = PermutationGroup(
|
1104 |
+
Permutation(0, 1), Permutation(0, 2),
|
1105 |
+
Permutation(0, 3))
|
1106 |
+
assert not G.is_dihedral
|
1107 |
+
|
1108 |
+
# D7, given by three generators
|
1109 |
+
G = PermutationGroup(
|
1110 |
+
Permutation(1, 6)(2, 5)(3, 4),
|
1111 |
+
Permutation(2, 0)(3, 6)(4, 5),
|
1112 |
+
Permutation(0, 1, 2, 3, 4, 5, 6))
|
1113 |
+
assert G.is_dihedral
|
1114 |
+
|
1115 |
+
|
1116 |
+
def test_abelian_invariants():
|
1117 |
+
G = AbelianGroup(2, 3, 4)
|
1118 |
+
assert G.abelian_invariants() == [2, 3, 4]
|
1119 |
+
G=PermutationGroup([Permutation(1, 2, 3, 4), Permutation(1, 2), Permutation(5, 6)])
|
1120 |
+
assert G.abelian_invariants() == [2, 2]
|
1121 |
+
G = AlternatingGroup(7)
|
1122 |
+
assert G.abelian_invariants() == []
|
1123 |
+
G = AlternatingGroup(4)
|
1124 |
+
assert G.abelian_invariants() == [3]
|
1125 |
+
G = DihedralGroup(4)
|
1126 |
+
assert G.abelian_invariants() == [2, 2]
|
1127 |
+
|
1128 |
+
G = PermutationGroup([Permutation(1, 2, 3, 4, 5, 6, 7)])
|
1129 |
+
assert G.abelian_invariants() == [7]
|
1130 |
+
G = DihedralGroup(12)
|
1131 |
+
S = G.sylow_subgroup(3)
|
1132 |
+
assert S.abelian_invariants() == [3]
|
1133 |
+
G = PermutationGroup(Permutation(0, 1, 2), Permutation(0, 2, 3))
|
1134 |
+
assert G.abelian_invariants() == [3]
|
1135 |
+
G = PermutationGroup([Permutation(0, 1), Permutation(0, 2, 4, 6)(1, 3, 5, 7)])
|
1136 |
+
assert G.abelian_invariants() == [2, 4]
|
1137 |
+
G = SymmetricGroup(30)
|
1138 |
+
S = G.sylow_subgroup(2)
|
1139 |
+
assert S.abelian_invariants() == [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
|
1140 |
+
S = G.sylow_subgroup(3)
|
1141 |
+
assert S.abelian_invariants() == [3, 3, 3, 3]
|
1142 |
+
S = G.sylow_subgroup(5)
|
1143 |
+
assert S.abelian_invariants() == [5, 5, 5]
|
1144 |
+
|
1145 |
+
|
1146 |
+
def test_composition_series():
|
1147 |
+
a = Permutation(1, 2, 3)
|
1148 |
+
b = Permutation(1, 2)
|
1149 |
+
G = PermutationGroup([a, b])
|
1150 |
+
comp_series = G.composition_series()
|
1151 |
+
assert comp_series == G.derived_series()
|
1152 |
+
# The first group in the composition series is always the group itself and
|
1153 |
+
# the last group in the series is the trivial group.
|
1154 |
+
S = SymmetricGroup(4)
|
1155 |
+
assert S.composition_series()[0] == S
|
1156 |
+
assert len(S.composition_series()) == 5
|
1157 |
+
A = AlternatingGroup(4)
|
1158 |
+
assert A.composition_series()[0] == A
|
1159 |
+
assert len(A.composition_series()) == 4
|
1160 |
+
|
1161 |
+
# the composition series for C_8 is C_8 > C_4 > C_2 > triv
|
1162 |
+
G = CyclicGroup(8)
|
1163 |
+
series = G.composition_series()
|
1164 |
+
assert is_isomorphic(series[1], CyclicGroup(4))
|
1165 |
+
assert is_isomorphic(series[2], CyclicGroup(2))
|
1166 |
+
assert series[3].is_trivial
|
1167 |
+
|
1168 |
+
|
1169 |
+
def test_is_symmetric():
|
1170 |
+
a = Permutation(0, 1, 2)
|
1171 |
+
b = Permutation(0, 1, size=3)
|
1172 |
+
assert PermutationGroup(a, b).is_symmetric is True
|
1173 |
+
|
1174 |
+
a = Permutation(0, 2, 1)
|
1175 |
+
b = Permutation(1, 2, size=3)
|
1176 |
+
assert PermutationGroup(a, b).is_symmetric is True
|
1177 |
+
|
1178 |
+
a = Permutation(0, 1, 2, 3)
|
1179 |
+
b = Permutation(0, 3)(1, 2)
|
1180 |
+
assert PermutationGroup(a, b).is_symmetric is False
|
1181 |
+
|
1182 |
+
def test_conjugacy_class():
|
1183 |
+
S = SymmetricGroup(4)
|
1184 |
+
x = Permutation(1, 2, 3)
|
1185 |
+
C = {Permutation(0, 1, 2, size = 4), Permutation(0, 1, 3),
|
1186 |
+
Permutation(0, 2, 1, size = 4), Permutation(0, 2, 3),
|
1187 |
+
Permutation(0, 3, 1), Permutation(0, 3, 2),
|
1188 |
+
Permutation(1, 2, 3), Permutation(1, 3, 2)}
|
1189 |
+
assert S.conjugacy_class(x) == C
|
1190 |
+
|
1191 |
+
def test_conjugacy_classes():
|
1192 |
+
S = SymmetricGroup(3)
|
1193 |
+
expected = [{Permutation(size = 3)},
|
1194 |
+
{Permutation(0, 1, size = 3), Permutation(0, 2), Permutation(1, 2)},
|
1195 |
+
{Permutation(0, 1, 2), Permutation(0, 2, 1)}]
|
1196 |
+
computed = S.conjugacy_classes()
|
1197 |
+
|
1198 |
+
assert len(expected) == len(computed)
|
1199 |
+
assert all(e in computed for e in expected)
|
1200 |
+
|
1201 |
+
def test_coset_class():
|
1202 |
+
a = Permutation(1, 2)
|
1203 |
+
b = Permutation(0, 1)
|
1204 |
+
G = PermutationGroup([a, b])
|
1205 |
+
#Creating right coset
|
1206 |
+
rht_coset = G*a
|
1207 |
+
#Checking whether it is left coset or right coset
|
1208 |
+
assert rht_coset.is_right_coset
|
1209 |
+
assert not rht_coset.is_left_coset
|
1210 |
+
#Creating list representation of coset
|
1211 |
+
list_repr = rht_coset.as_list()
|
1212 |
+
expected = [Permutation(0, 2), Permutation(0, 2, 1), Permutation(1, 2),
|
1213 |
+
Permutation(2), Permutation(2)(0, 1), Permutation(0, 1, 2)]
|
1214 |
+
for ele in list_repr:
|
1215 |
+
assert ele in expected
|
1216 |
+
#Creating left coset
|
1217 |
+
left_coset = a*G
|
1218 |
+
#Checking whether it is left coset or right coset
|
1219 |
+
assert not left_coset.is_right_coset
|
1220 |
+
assert left_coset.is_left_coset
|
1221 |
+
#Creating list representation of Coset
|
1222 |
+
list_repr = left_coset.as_list()
|
1223 |
+
expected = [Permutation(2)(0, 1), Permutation(0, 1, 2), Permutation(1, 2),
|
1224 |
+
Permutation(2), Permutation(0, 2), Permutation(0, 2, 1)]
|
1225 |
+
for ele in list_repr:
|
1226 |
+
assert ele in expected
|
1227 |
+
|
1228 |
+
G = PermutationGroup(Permutation(1, 2, 3, 4), Permutation(2, 3, 4))
|
1229 |
+
H = PermutationGroup(Permutation(1, 2, 3, 4))
|
1230 |
+
g = Permutation(1, 3)(2, 4)
|
1231 |
+
rht_coset = Coset(g, H, G, dir='+')
|
1232 |
+
assert rht_coset.is_right_coset
|
1233 |
+
list_repr = rht_coset.as_list()
|
1234 |
+
expected = [Permutation(1, 2, 3, 4), Permutation(4), Permutation(1, 3)(2, 4),
|
1235 |
+
Permutation(1, 4, 3, 2)]
|
1236 |
+
for ele in list_repr:
|
1237 |
+
assert ele in expected
|
1238 |
+
|
1239 |
+
def test_symmetricpermutationgroup():
|
1240 |
+
a = SymmetricPermutationGroup(5)
|
1241 |
+
assert a.degree == 5
|
1242 |
+
assert a.order() == 120
|
1243 |
+
assert a.identity() == Permutation(4)
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_polyhedron.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.symbol import symbols
|
2 |
+
from sympy.sets.sets import FiniteSet
|
3 |
+
from sympy.combinatorics.polyhedron import (Polyhedron,
|
4 |
+
tetrahedron, cube as square, octahedron, dodecahedron, icosahedron,
|
5 |
+
cube_faces)
|
6 |
+
from sympy.combinatorics.permutations import Permutation
|
7 |
+
from sympy.combinatorics.perm_groups import PermutationGroup
|
8 |
+
from sympy.testing.pytest import raises
|
9 |
+
|
10 |
+
rmul = Permutation.rmul
|
11 |
+
|
12 |
+
|
13 |
+
def test_polyhedron():
|
14 |
+
raises(ValueError, lambda: Polyhedron(list('ab'),
|
15 |
+
pgroup=[Permutation([0])]))
|
16 |
+
pgroup = [Permutation([[0, 7, 2, 5], [6, 1, 4, 3]]),
|
17 |
+
Permutation([[0, 7, 1, 6], [5, 2, 4, 3]]),
|
18 |
+
Permutation([[3, 6, 0, 5], [4, 1, 7, 2]]),
|
19 |
+
Permutation([[7, 4, 5], [1, 3, 0], [2], [6]]),
|
20 |
+
Permutation([[1, 3, 2], [7, 6, 5], [4], [0]]),
|
21 |
+
Permutation([[4, 7, 6], [2, 0, 3], [1], [5]]),
|
22 |
+
Permutation([[1, 2, 0], [4, 5, 6], [3], [7]]),
|
23 |
+
Permutation([[4, 2], [0, 6], [3, 7], [1, 5]]),
|
24 |
+
Permutation([[3, 5], [7, 1], [2, 6], [0, 4]]),
|
25 |
+
Permutation([[2, 5], [1, 6], [0, 4], [3, 7]]),
|
26 |
+
Permutation([[4, 3], [7, 0], [5, 1], [6, 2]]),
|
27 |
+
Permutation([[4, 1], [0, 5], [6, 2], [7, 3]]),
|
28 |
+
Permutation([[7, 2], [3, 6], [0, 4], [1, 5]]),
|
29 |
+
Permutation([0, 1, 2, 3, 4, 5, 6, 7])]
|
30 |
+
corners = tuple(symbols('A:H'))
|
31 |
+
faces = cube_faces
|
32 |
+
cube = Polyhedron(corners, faces, pgroup)
|
33 |
+
|
34 |
+
assert cube.edges == FiniteSet(*(
|
35 |
+
(0, 1), (6, 7), (1, 2), (5, 6), (0, 3), (2, 3),
|
36 |
+
(4, 7), (4, 5), (3, 7), (1, 5), (0, 4), (2, 6)))
|
37 |
+
|
38 |
+
for i in range(3): # add 180 degree face rotations
|
39 |
+
cube.rotate(cube.pgroup[i]**2)
|
40 |
+
|
41 |
+
assert cube.corners == corners
|
42 |
+
|
43 |
+
for i in range(3, 7): # add 240 degree axial corner rotations
|
44 |
+
cube.rotate(cube.pgroup[i]**2)
|
45 |
+
|
46 |
+
assert cube.corners == corners
|
47 |
+
cube.rotate(1)
|
48 |
+
raises(ValueError, lambda: cube.rotate(Permutation([0, 1])))
|
49 |
+
assert cube.corners != corners
|
50 |
+
assert cube.array_form == [7, 6, 4, 5, 3, 2, 0, 1]
|
51 |
+
assert cube.cyclic_form == [[0, 7, 1, 6], [2, 4, 3, 5]]
|
52 |
+
cube.reset()
|
53 |
+
assert cube.corners == corners
|
54 |
+
|
55 |
+
def check(h, size, rpt, target):
|
56 |
+
|
57 |
+
assert len(h.faces) + len(h.vertices) - len(h.edges) == 2
|
58 |
+
assert h.size == size
|
59 |
+
|
60 |
+
got = set()
|
61 |
+
for p in h.pgroup:
|
62 |
+
# make sure it restores original
|
63 |
+
P = h.copy()
|
64 |
+
hit = P.corners
|
65 |
+
for i in range(rpt):
|
66 |
+
P.rotate(p)
|
67 |
+
if P.corners == hit:
|
68 |
+
break
|
69 |
+
else:
|
70 |
+
print('error in permutation', p.array_form)
|
71 |
+
for i in range(rpt):
|
72 |
+
P.rotate(p)
|
73 |
+
got.add(tuple(P.corners))
|
74 |
+
c = P.corners
|
75 |
+
f = [[c[i] for i in f] for f in P.faces]
|
76 |
+
assert h.faces == Polyhedron(c, f).faces
|
77 |
+
assert len(got) == target
|
78 |
+
assert PermutationGroup([Permutation(g) for g in got]).is_group
|
79 |
+
|
80 |
+
for h, size, rpt, target in zip(
|
81 |
+
(tetrahedron, square, octahedron, dodecahedron, icosahedron),
|
82 |
+
(4, 8, 6, 20, 12),
|
83 |
+
(3, 4, 4, 5, 5),
|
84 |
+
(12, 24, 24, 60, 60)):
|
85 |
+
check(h, size, rpt, target)
|
86 |
+
|
87 |
+
|
88 |
+
def test_pgroups():
|
89 |
+
from sympy.combinatorics.polyhedron import (cube, tetrahedron_faces,
|
90 |
+
octahedron_faces, dodecahedron_faces, icosahedron_faces)
|
91 |
+
from sympy.combinatorics.polyhedron import _pgroup_calcs
|
92 |
+
(tetrahedron2, cube2, octahedron2, dodecahedron2, icosahedron2,
|
93 |
+
tetrahedron_faces2, cube_faces2, octahedron_faces2,
|
94 |
+
dodecahedron_faces2, icosahedron_faces2) = _pgroup_calcs()
|
95 |
+
|
96 |
+
assert tetrahedron == tetrahedron2
|
97 |
+
assert cube == cube2
|
98 |
+
assert octahedron == octahedron2
|
99 |
+
assert dodecahedron == dodecahedron2
|
100 |
+
assert icosahedron == icosahedron2
|
101 |
+
assert sorted(map(sorted, tetrahedron_faces)) == sorted(map(sorted, tetrahedron_faces2))
|
102 |
+
assert sorted(cube_faces) == sorted(cube_faces2)
|
103 |
+
assert sorted(octahedron_faces) == sorted(octahedron_faces2)
|
104 |
+
assert sorted(dodecahedron_faces) == sorted(dodecahedron_faces2)
|
105 |
+
assert sorted(icosahedron_faces) == sorted(icosahedron_faces2)
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_prufer.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.combinatorics.prufer import Prufer
|
2 |
+
from sympy.testing.pytest import raises
|
3 |
+
|
4 |
+
|
5 |
+
def test_prufer():
|
6 |
+
# number of nodes is optional
|
7 |
+
assert Prufer([[0, 1], [0, 2], [0, 3], [0, 4]], 5).nodes == 5
|
8 |
+
assert Prufer([[0, 1], [0, 2], [0, 3], [0, 4]]).nodes == 5
|
9 |
+
|
10 |
+
a = Prufer([[0, 1], [0, 2], [0, 3], [0, 4]])
|
11 |
+
assert a.rank == 0
|
12 |
+
assert a.nodes == 5
|
13 |
+
assert a.prufer_repr == [0, 0, 0]
|
14 |
+
|
15 |
+
a = Prufer([[2, 4], [1, 4], [1, 3], [0, 5], [0, 4]])
|
16 |
+
assert a.rank == 924
|
17 |
+
assert a.nodes == 6
|
18 |
+
assert a.tree_repr == [[2, 4], [1, 4], [1, 3], [0, 5], [0, 4]]
|
19 |
+
assert a.prufer_repr == [4, 1, 4, 0]
|
20 |
+
|
21 |
+
assert Prufer.edges([0, 1, 2, 3], [1, 4, 5], [1, 4, 6]) == \
|
22 |
+
([[0, 1], [1, 2], [1, 4], [2, 3], [4, 5], [4, 6]], 7)
|
23 |
+
assert Prufer([0]*4).size == Prufer([6]*4).size == 1296
|
24 |
+
|
25 |
+
# accept iterables but convert to list of lists
|
26 |
+
tree = [(0, 1), (1, 5), (0, 3), (0, 2), (2, 6), (4, 7), (2, 4)]
|
27 |
+
tree_lists = [list(t) for t in tree]
|
28 |
+
assert Prufer(tree).tree_repr == tree_lists
|
29 |
+
assert sorted(Prufer(set(tree)).tree_repr) == sorted(tree_lists)
|
30 |
+
|
31 |
+
raises(ValueError, lambda: Prufer([[1, 2], [3, 4]])) # 0 is missing
|
32 |
+
raises(ValueError, lambda: Prufer([[2, 3], [3, 4]])) # 0, 1 are missing
|
33 |
+
assert Prufer(*Prufer.edges([1, 2], [3, 4])).prufer_repr == [1, 3]
|
34 |
+
raises(ValueError, lambda: Prufer.edges(
|
35 |
+
[1, 3], [3, 4])) # a broken tree but edges doesn't care
|
36 |
+
raises(ValueError, lambda: Prufer.edges([1, 2], [5, 6]))
|
37 |
+
raises(ValueError, lambda: Prufer([[]]))
|
38 |
+
|
39 |
+
a = Prufer([[0, 1], [0, 2], [0, 3]])
|
40 |
+
b = a.next()
|
41 |
+
assert b.tree_repr == [[0, 2], [0, 1], [1, 3]]
|
42 |
+
assert b.rank == 1
|
43 |
+
|
44 |
+
|
45 |
+
def test_round_trip():
|
46 |
+
def doit(t, b):
|
47 |
+
e, n = Prufer.edges(*t)
|
48 |
+
t = Prufer(e, n)
|
49 |
+
a = sorted(t.tree_repr)
|
50 |
+
b = [i - 1 for i in b]
|
51 |
+
assert t.prufer_repr == b
|
52 |
+
assert sorted(Prufer(b).tree_repr) == a
|
53 |
+
assert Prufer.unrank(t.rank, n).prufer_repr == b
|
54 |
+
|
55 |
+
doit([[1, 2]], [])
|
56 |
+
doit([[2, 1, 3]], [1])
|
57 |
+
doit([[1, 3, 2]], [3])
|
58 |
+
doit([[1, 2, 3]], [2])
|
59 |
+
doit([[2, 1, 4], [1, 3]], [1, 1])
|
60 |
+
doit([[3, 2, 1, 4]], [2, 1])
|
61 |
+
doit([[3, 2, 1], [2, 4]], [2, 2])
|
62 |
+
doit([[1, 3, 2, 4]], [3, 2])
|
63 |
+
doit([[1, 4, 2, 3]], [4, 2])
|
64 |
+
doit([[3, 1, 4, 2]], [4, 1])
|
65 |
+
doit([[4, 2, 1, 3]], [1, 2])
|
66 |
+
doit([[1, 2, 4, 3]], [2, 4])
|
67 |
+
doit([[1, 3, 4, 2]], [3, 4])
|
68 |
+
doit([[2, 4, 1], [4, 3]], [4, 4])
|
69 |
+
doit([[1, 2, 3, 4]], [2, 3])
|
70 |
+
doit([[2, 3, 1], [3, 4]], [3, 3])
|
71 |
+
doit([[1, 4, 3, 2]], [4, 3])
|
72 |
+
doit([[2, 1, 4, 3]], [1, 4])
|
73 |
+
doit([[2, 1, 3, 4]], [1, 3])
|
74 |
+
doit([[6, 2, 1, 4], [1, 3, 5, 8], [3, 7]], [1, 2, 1, 3, 3, 5])
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_rewriting.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.combinatorics.fp_groups import FpGroup
|
2 |
+
from sympy.combinatorics.free_groups import free_group
|
3 |
+
from sympy.testing.pytest import raises
|
4 |
+
|
5 |
+
|
6 |
+
def test_rewriting():
|
7 |
+
F, a, b = free_group("a, b")
|
8 |
+
G = FpGroup(F, [a*b*a**-1*b**-1])
|
9 |
+
a, b = G.generators
|
10 |
+
R = G._rewriting_system
|
11 |
+
assert R.is_confluent
|
12 |
+
|
13 |
+
assert G.reduce(b**-1*a) == a*b**-1
|
14 |
+
assert G.reduce(b**3*a**4*b**-2*a) == a**5*b
|
15 |
+
assert G.equals(b**2*a**-1*b, b**4*a**-1*b**-1)
|
16 |
+
|
17 |
+
assert R.reduce_using_automaton(b*a*a**2*b**-1) == a**3
|
18 |
+
assert R.reduce_using_automaton(b**3*a**4*b**-2*a) == a**5*b
|
19 |
+
assert R.reduce_using_automaton(b**-1*a) == a*b**-1
|
20 |
+
|
21 |
+
G = FpGroup(F, [a**3, b**3, (a*b)**2])
|
22 |
+
R = G._rewriting_system
|
23 |
+
R.make_confluent()
|
24 |
+
# R._is_confluent should be set to True after
|
25 |
+
# a successful run of make_confluent
|
26 |
+
assert R.is_confluent
|
27 |
+
# but also the system should actually be confluent
|
28 |
+
assert R._check_confluence()
|
29 |
+
assert G.reduce(b*a**-1*b**-1*a**3*b**4*a**-1*b**-15) == a**-1*b**-1
|
30 |
+
# check for automaton reduction
|
31 |
+
assert R.reduce_using_automaton(b*a**-1*b**-1*a**3*b**4*a**-1*b**-15) == a**-1*b**-1
|
32 |
+
|
33 |
+
G = FpGroup(F, [a**2, b**3, (a*b)**4])
|
34 |
+
R = G._rewriting_system
|
35 |
+
assert G.reduce(a**2*b**-2*a**2*b) == b**-1
|
36 |
+
assert R.reduce_using_automaton(a**2*b**-2*a**2*b) == b**-1
|
37 |
+
assert G.reduce(a**3*b**-2*a**2*b) == a**-1*b**-1
|
38 |
+
assert R.reduce_using_automaton(a**3*b**-2*a**2*b) == a**-1*b**-1
|
39 |
+
# Check after adding a rule
|
40 |
+
R.add_rule(a**2, b)
|
41 |
+
assert R.reduce_using_automaton(a**2*b**-2*a**2*b) == b**-1
|
42 |
+
assert R.reduce_using_automaton(a**4*b**-2*a**2*b**3) == b
|
43 |
+
|
44 |
+
R.set_max(15)
|
45 |
+
raises(RuntimeError, lambda: R.add_rule(a**-3, b))
|
46 |
+
R.set_max(20)
|
47 |
+
R.add_rule(a**-3, b)
|
48 |
+
|
49 |
+
assert R.add_rule(a, a) == set()
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_schur_number.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import S, Rational
|
2 |
+
from sympy.combinatorics.schur_number import schur_partition, SchurNumber
|
3 |
+
from sympy.core.random import _randint
|
4 |
+
from sympy.testing.pytest import raises
|
5 |
+
from sympy.core.symbol import symbols
|
6 |
+
|
7 |
+
|
8 |
+
def _sum_free_test(subset):
|
9 |
+
"""
|
10 |
+
Checks if subset is sum-free(There are no x,y,z in the subset such that
|
11 |
+
x + y = z)
|
12 |
+
"""
|
13 |
+
for i in subset:
|
14 |
+
for j in subset:
|
15 |
+
assert (i + j in subset) is False
|
16 |
+
|
17 |
+
|
18 |
+
def test_schur_partition():
|
19 |
+
raises(ValueError, lambda: schur_partition(S.Infinity))
|
20 |
+
raises(ValueError, lambda: schur_partition(-1))
|
21 |
+
raises(ValueError, lambda: schur_partition(0))
|
22 |
+
assert schur_partition(2) == [[1, 2]]
|
23 |
+
|
24 |
+
random_number_generator = _randint(1000)
|
25 |
+
for _ in range(5):
|
26 |
+
n = random_number_generator(1, 1000)
|
27 |
+
result = schur_partition(n)
|
28 |
+
t = 0
|
29 |
+
numbers = []
|
30 |
+
for item in result:
|
31 |
+
_sum_free_test(item)
|
32 |
+
"""
|
33 |
+
Checks if the occurrence of all numbers is exactly one
|
34 |
+
"""
|
35 |
+
t += len(item)
|
36 |
+
for l in item:
|
37 |
+
assert (l in numbers) is False
|
38 |
+
numbers.append(l)
|
39 |
+
assert n == t
|
40 |
+
|
41 |
+
x = symbols("x")
|
42 |
+
raises(ValueError, lambda: schur_partition(x))
|
43 |
+
|
44 |
+
def test_schur_number():
|
45 |
+
first_known_schur_numbers = {1: 1, 2: 4, 3: 13, 4: 44, 5: 160}
|
46 |
+
for k in first_known_schur_numbers:
|
47 |
+
assert SchurNumber(k) == first_known_schur_numbers[k]
|
48 |
+
|
49 |
+
assert SchurNumber(S.Infinity) == S.Infinity
|
50 |
+
assert SchurNumber(0) == 0
|
51 |
+
raises(ValueError, lambda: SchurNumber(0.5))
|
52 |
+
|
53 |
+
n = symbols("n")
|
54 |
+
assert SchurNumber(n).lower_bound() == 3**n/2 - Rational(1, 2)
|
55 |
+
assert SchurNumber(8).lower_bound() == 5039
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_subsets.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.combinatorics.subsets import Subset, ksubsets
|
2 |
+
from sympy.testing.pytest import raises
|
3 |
+
|
4 |
+
|
5 |
+
def test_subset():
|
6 |
+
a = Subset(['c', 'd'], ['a', 'b', 'c', 'd'])
|
7 |
+
assert a.next_binary() == Subset(['b'], ['a', 'b', 'c', 'd'])
|
8 |
+
assert a.prev_binary() == Subset(['c'], ['a', 'b', 'c', 'd'])
|
9 |
+
assert a.next_lexicographic() == Subset(['d'], ['a', 'b', 'c', 'd'])
|
10 |
+
assert a.prev_lexicographic() == Subset(['c'], ['a', 'b', 'c', 'd'])
|
11 |
+
assert a.next_gray() == Subset(['c'], ['a', 'b', 'c', 'd'])
|
12 |
+
assert a.prev_gray() == Subset(['d'], ['a', 'b', 'c', 'd'])
|
13 |
+
assert a.rank_binary == 3
|
14 |
+
assert a.rank_lexicographic == 14
|
15 |
+
assert a.rank_gray == 2
|
16 |
+
assert a.cardinality == 16
|
17 |
+
assert a.size == 2
|
18 |
+
assert Subset.bitlist_from_subset(a, ['a', 'b', 'c', 'd']) == '0011'
|
19 |
+
|
20 |
+
a = Subset([2, 5, 7], [1, 2, 3, 4, 5, 6, 7])
|
21 |
+
assert a.next_binary() == Subset([2, 5, 6], [1, 2, 3, 4, 5, 6, 7])
|
22 |
+
assert a.prev_binary() == Subset([2, 5], [1, 2, 3, 4, 5, 6, 7])
|
23 |
+
assert a.next_lexicographic() == Subset([2, 6], [1, 2, 3, 4, 5, 6, 7])
|
24 |
+
assert a.prev_lexicographic() == Subset([2, 5, 6, 7], [1, 2, 3, 4, 5, 6, 7])
|
25 |
+
assert a.next_gray() == Subset([2, 5, 6, 7], [1, 2, 3, 4, 5, 6, 7])
|
26 |
+
assert a.prev_gray() == Subset([2, 5], [1, 2, 3, 4, 5, 6, 7])
|
27 |
+
assert a.rank_binary == 37
|
28 |
+
assert a.rank_lexicographic == 93
|
29 |
+
assert a.rank_gray == 57
|
30 |
+
assert a.cardinality == 128
|
31 |
+
|
32 |
+
superset = ['a', 'b', 'c', 'd']
|
33 |
+
assert Subset.unrank_binary(4, superset).rank_binary == 4
|
34 |
+
assert Subset.unrank_gray(10, superset).rank_gray == 10
|
35 |
+
|
36 |
+
superset = [1, 2, 3, 4, 5, 6, 7, 8, 9]
|
37 |
+
assert Subset.unrank_binary(33, superset).rank_binary == 33
|
38 |
+
assert Subset.unrank_gray(25, superset).rank_gray == 25
|
39 |
+
|
40 |
+
a = Subset([], ['a', 'b', 'c', 'd'])
|
41 |
+
i = 1
|
42 |
+
while a.subset != Subset(['d'], ['a', 'b', 'c', 'd']).subset:
|
43 |
+
a = a.next_lexicographic()
|
44 |
+
i = i + 1
|
45 |
+
assert i == 16
|
46 |
+
|
47 |
+
i = 1
|
48 |
+
while a.subset != Subset([], ['a', 'b', 'c', 'd']).subset:
|
49 |
+
a = a.prev_lexicographic()
|
50 |
+
i = i + 1
|
51 |
+
assert i == 16
|
52 |
+
|
53 |
+
raises(ValueError, lambda: Subset(['a', 'b'], ['a']))
|
54 |
+
raises(ValueError, lambda: Subset(['a'], ['b', 'c']))
|
55 |
+
raises(ValueError, lambda: Subset.subset_from_bitlist(['a', 'b'], '010'))
|
56 |
+
|
57 |
+
assert Subset(['a'], ['a', 'b']) != Subset(['b'], ['a', 'b'])
|
58 |
+
assert Subset(['a'], ['a', 'b']) != Subset(['a'], ['a', 'c'])
|
59 |
+
|
60 |
+
def test_ksubsets():
|
61 |
+
assert list(ksubsets([1, 2, 3], 2)) == [(1, 2), (1, 3), (2, 3)]
|
62 |
+
assert list(ksubsets([1, 2, 3, 4, 5], 2)) == [(1, 2), (1, 3), (1, 4),
|
63 |
+
(1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)]
|
llmeval-env/lib/python3.10/site-packages/sympy/combinatorics/tests/test_testutil.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.combinatorics.named_groups import SymmetricGroup, AlternatingGroup,\
|
2 |
+
CyclicGroup
|
3 |
+
from sympy.combinatorics.testutil import _verify_bsgs, _cmp_perm_lists,\
|
4 |
+
_naive_list_centralizer, _verify_centralizer,\
|
5 |
+
_verify_normal_closure
|
6 |
+
from sympy.combinatorics.permutations import Permutation
|
7 |
+
from sympy.combinatorics.perm_groups import PermutationGroup
|
8 |
+
from sympy.core.random import shuffle
|
9 |
+
|
10 |
+
|
11 |
+
def test_cmp_perm_lists():
|
12 |
+
S = SymmetricGroup(4)
|
13 |
+
els = list(S.generate_dimino())
|
14 |
+
other = els[:]
|
15 |
+
shuffle(other)
|
16 |
+
assert _cmp_perm_lists(els, other) is True
|
17 |
+
|
18 |
+
|
19 |
+
def test_naive_list_centralizer():
|
20 |
+
# verified by GAP
|
21 |
+
S = SymmetricGroup(3)
|
22 |
+
A = AlternatingGroup(3)
|
23 |
+
assert _naive_list_centralizer(S, S) == [Permutation([0, 1, 2])]
|
24 |
+
assert PermutationGroup(_naive_list_centralizer(S, A)).is_subgroup(A)
|
25 |
+
|
26 |
+
|
27 |
+
def test_verify_bsgs():
|
28 |
+
S = SymmetricGroup(5)
|
29 |
+
S.schreier_sims()
|
30 |
+
base = S.base
|
31 |
+
strong_gens = S.strong_gens
|
32 |
+
assert _verify_bsgs(S, base, strong_gens) is True
|
33 |
+
assert _verify_bsgs(S, base[:-1], strong_gens) is False
|
34 |
+
assert _verify_bsgs(S, base, S.generators) is False
|
35 |
+
|
36 |
+
|
37 |
+
def test_verify_centralizer():
|
38 |
+
# verified by GAP
|
39 |
+
S = SymmetricGroup(3)
|
40 |
+
A = AlternatingGroup(3)
|
41 |
+
triv = PermutationGroup([Permutation([0, 1, 2])])
|
42 |
+
assert _verify_centralizer(S, S, centr=triv)
|
43 |
+
assert _verify_centralizer(S, A, centr=A)
|
44 |
+
|
45 |
+
|
46 |
+
def test_verify_normal_closure():
|
47 |
+
# verified by GAP
|
48 |
+
S = SymmetricGroup(3)
|
49 |
+
A = AlternatingGroup(3)
|
50 |
+
assert _verify_normal_closure(S, A, closure=A)
|
51 |
+
S = SymmetricGroup(5)
|
52 |
+
A = AlternatingGroup(5)
|
53 |
+
C = CyclicGroup(5)
|
54 |
+
assert _verify_normal_closure(S, A, closure=A)
|
55 |
+
assert _verify_normal_closure(S, C, closure=A)
|
llmeval-env/lib/python3.10/site-packages/sympy/logic/__init__.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .boolalg import (to_cnf, to_dnf, to_nnf, And, Or, Not, Xor, Nand, Nor, Implies,
|
2 |
+
Equivalent, ITE, POSform, SOPform, simplify_logic, bool_map, true, false,
|
3 |
+
gateinputcount)
|
4 |
+
from .inference import satisfiable
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
'to_cnf', 'to_dnf', 'to_nnf', 'And', 'Or', 'Not', 'Xor', 'Nand', 'Nor',
|
8 |
+
'Implies', 'Equivalent', 'ITE', 'POSform', 'SOPform', 'simplify_logic',
|
9 |
+
'bool_map', 'true', 'false', 'gateinputcount',
|
10 |
+
|
11 |
+
'satisfiable',
|
12 |
+
]
|
llmeval-env/lib/python3.10/site-packages/sympy/logic/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (695 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/logic/__pycache__/boolalg.cpython-310.pyc
ADDED
Binary file (101 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/logic/__pycache__/inference.cpython-310.pyc
ADDED
Binary file (9.01 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/logic/algorithms/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/sympy/logic/algorithms/dpll.py
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Implementation of DPLL algorithm
|
2 |
+
|
3 |
+
Further improvements: eliminate calls to pl_true, implement branching rules,
|
4 |
+
efficient unit propagation.
|
5 |
+
|
6 |
+
References:
|
7 |
+
- https://en.wikipedia.org/wiki/DPLL_algorithm
|
8 |
+
- https://www.researchgate.net/publication/242384772_Implementations_of_the_DPLL_Algorithm
|
9 |
+
"""
|
10 |
+
|
11 |
+
from sympy.core.sorting import default_sort_key
|
12 |
+
from sympy.logic.boolalg import Or, Not, conjuncts, disjuncts, to_cnf, \
|
13 |
+
to_int_repr, _find_predicates
|
14 |
+
from sympy.assumptions.cnf import CNF
|
15 |
+
from sympy.logic.inference import pl_true, literal_symbol
|
16 |
+
|
17 |
+
|
18 |
+
def dpll_satisfiable(expr):
|
19 |
+
"""
|
20 |
+
Check satisfiability of a propositional sentence.
|
21 |
+
It returns a model rather than True when it succeeds
|
22 |
+
|
23 |
+
>>> from sympy.abc import A, B
|
24 |
+
>>> from sympy.logic.algorithms.dpll import dpll_satisfiable
|
25 |
+
>>> dpll_satisfiable(A & ~B)
|
26 |
+
{A: True, B: False}
|
27 |
+
>>> dpll_satisfiable(A & ~A)
|
28 |
+
False
|
29 |
+
|
30 |
+
"""
|
31 |
+
if not isinstance(expr, CNF):
|
32 |
+
clauses = conjuncts(to_cnf(expr))
|
33 |
+
else:
|
34 |
+
clauses = expr.clauses
|
35 |
+
if False in clauses:
|
36 |
+
return False
|
37 |
+
symbols = sorted(_find_predicates(expr), key=default_sort_key)
|
38 |
+
symbols_int_repr = set(range(1, len(symbols) + 1))
|
39 |
+
clauses_int_repr = to_int_repr(clauses, symbols)
|
40 |
+
result = dpll_int_repr(clauses_int_repr, symbols_int_repr, {})
|
41 |
+
if not result:
|
42 |
+
return result
|
43 |
+
output = {}
|
44 |
+
for key in result:
|
45 |
+
output.update({symbols[key - 1]: result[key]})
|
46 |
+
return output
|
47 |
+
|
48 |
+
|
49 |
+
def dpll(clauses, symbols, model):
|
50 |
+
"""
|
51 |
+
Compute satisfiability in a partial model.
|
52 |
+
Clauses is an array of conjuncts.
|
53 |
+
|
54 |
+
>>> from sympy.abc import A, B, D
|
55 |
+
>>> from sympy.logic.algorithms.dpll import dpll
|
56 |
+
>>> dpll([A, B, D], [A, B], {D: False})
|
57 |
+
False
|
58 |
+
|
59 |
+
"""
|
60 |
+
# compute DP kernel
|
61 |
+
P, value = find_unit_clause(clauses, model)
|
62 |
+
while P:
|
63 |
+
model.update({P: value})
|
64 |
+
symbols.remove(P)
|
65 |
+
if not value:
|
66 |
+
P = ~P
|
67 |
+
clauses = unit_propagate(clauses, P)
|
68 |
+
P, value = find_unit_clause(clauses, model)
|
69 |
+
P, value = find_pure_symbol(symbols, clauses)
|
70 |
+
while P:
|
71 |
+
model.update({P: value})
|
72 |
+
symbols.remove(P)
|
73 |
+
if not value:
|
74 |
+
P = ~P
|
75 |
+
clauses = unit_propagate(clauses, P)
|
76 |
+
P, value = find_pure_symbol(symbols, clauses)
|
77 |
+
# end DP kernel
|
78 |
+
unknown_clauses = []
|
79 |
+
for c in clauses:
|
80 |
+
val = pl_true(c, model)
|
81 |
+
if val is False:
|
82 |
+
return False
|
83 |
+
if val is not True:
|
84 |
+
unknown_clauses.append(c)
|
85 |
+
if not unknown_clauses:
|
86 |
+
return model
|
87 |
+
if not clauses:
|
88 |
+
return model
|
89 |
+
P = symbols.pop()
|
90 |
+
model_copy = model.copy()
|
91 |
+
model.update({P: True})
|
92 |
+
model_copy.update({P: False})
|
93 |
+
symbols_copy = symbols[:]
|
94 |
+
return (dpll(unit_propagate(unknown_clauses, P), symbols, model) or
|
95 |
+
dpll(unit_propagate(unknown_clauses, Not(P)), symbols_copy, model_copy))
|
96 |
+
|
97 |
+
|
98 |
+
def dpll_int_repr(clauses, symbols, model):
|
99 |
+
"""
|
100 |
+
Compute satisfiability in a partial model.
|
101 |
+
Arguments are expected to be in integer representation
|
102 |
+
|
103 |
+
>>> from sympy.logic.algorithms.dpll import dpll_int_repr
|
104 |
+
>>> dpll_int_repr([{1}, {2}, {3}], {1, 2}, {3: False})
|
105 |
+
False
|
106 |
+
|
107 |
+
"""
|
108 |
+
# compute DP kernel
|
109 |
+
P, value = find_unit_clause_int_repr(clauses, model)
|
110 |
+
while P:
|
111 |
+
model.update({P: value})
|
112 |
+
symbols.remove(P)
|
113 |
+
if not value:
|
114 |
+
P = -P
|
115 |
+
clauses = unit_propagate_int_repr(clauses, P)
|
116 |
+
P, value = find_unit_clause_int_repr(clauses, model)
|
117 |
+
P, value = find_pure_symbol_int_repr(symbols, clauses)
|
118 |
+
while P:
|
119 |
+
model.update({P: value})
|
120 |
+
symbols.remove(P)
|
121 |
+
if not value:
|
122 |
+
P = -P
|
123 |
+
clauses = unit_propagate_int_repr(clauses, P)
|
124 |
+
P, value = find_pure_symbol_int_repr(symbols, clauses)
|
125 |
+
# end DP kernel
|
126 |
+
unknown_clauses = []
|
127 |
+
for c in clauses:
|
128 |
+
val = pl_true_int_repr(c, model)
|
129 |
+
if val is False:
|
130 |
+
return False
|
131 |
+
if val is not True:
|
132 |
+
unknown_clauses.append(c)
|
133 |
+
if not unknown_clauses:
|
134 |
+
return model
|
135 |
+
P = symbols.pop()
|
136 |
+
model_copy = model.copy()
|
137 |
+
model.update({P: True})
|
138 |
+
model_copy.update({P: False})
|
139 |
+
symbols_copy = symbols.copy()
|
140 |
+
return (dpll_int_repr(unit_propagate_int_repr(unknown_clauses, P), symbols, model) or
|
141 |
+
dpll_int_repr(unit_propagate_int_repr(unknown_clauses, -P), symbols_copy, model_copy))
|
142 |
+
|
143 |
+
### helper methods for DPLL
|
144 |
+
|
145 |
+
|
146 |
+
def pl_true_int_repr(clause, model={}):
|
147 |
+
"""
|
148 |
+
Lightweight version of pl_true.
|
149 |
+
Argument clause represents the set of args of an Or clause. This is used
|
150 |
+
inside dpll_int_repr, it is not meant to be used directly.
|
151 |
+
|
152 |
+
>>> from sympy.logic.algorithms.dpll import pl_true_int_repr
|
153 |
+
>>> pl_true_int_repr({1, 2}, {1: False})
|
154 |
+
>>> pl_true_int_repr({1, 2}, {1: False, 2: False})
|
155 |
+
False
|
156 |
+
|
157 |
+
"""
|
158 |
+
result = False
|
159 |
+
for lit in clause:
|
160 |
+
if lit < 0:
|
161 |
+
p = model.get(-lit)
|
162 |
+
if p is not None:
|
163 |
+
p = not p
|
164 |
+
else:
|
165 |
+
p = model.get(lit)
|
166 |
+
if p is True:
|
167 |
+
return True
|
168 |
+
elif p is None:
|
169 |
+
result = None
|
170 |
+
return result
|
171 |
+
|
172 |
+
|
173 |
+
def unit_propagate(clauses, symbol):
|
174 |
+
"""
|
175 |
+
Returns an equivalent set of clauses
|
176 |
+
If a set of clauses contains the unit clause l, the other clauses are
|
177 |
+
simplified by the application of the two following rules:
|
178 |
+
|
179 |
+
1. every clause containing l is removed
|
180 |
+
2. in every clause that contains ~l this literal is deleted
|
181 |
+
|
182 |
+
Arguments are expected to be in CNF.
|
183 |
+
|
184 |
+
>>> from sympy.abc import A, B, D
|
185 |
+
>>> from sympy.logic.algorithms.dpll import unit_propagate
|
186 |
+
>>> unit_propagate([A | B, D | ~B, B], B)
|
187 |
+
[D, B]
|
188 |
+
|
189 |
+
"""
|
190 |
+
output = []
|
191 |
+
for c in clauses:
|
192 |
+
if c.func != Or:
|
193 |
+
output.append(c)
|
194 |
+
continue
|
195 |
+
for arg in c.args:
|
196 |
+
if arg == ~symbol:
|
197 |
+
output.append(Or(*[x for x in c.args if x != ~symbol]))
|
198 |
+
break
|
199 |
+
if arg == symbol:
|
200 |
+
break
|
201 |
+
else:
|
202 |
+
output.append(c)
|
203 |
+
return output
|
204 |
+
|
205 |
+
|
206 |
+
def unit_propagate_int_repr(clauses, s):
|
207 |
+
"""
|
208 |
+
Same as unit_propagate, but arguments are expected to be in integer
|
209 |
+
representation
|
210 |
+
|
211 |
+
>>> from sympy.logic.algorithms.dpll import unit_propagate_int_repr
|
212 |
+
>>> unit_propagate_int_repr([{1, 2}, {3, -2}, {2}], 2)
|
213 |
+
[{3}]
|
214 |
+
|
215 |
+
"""
|
216 |
+
negated = {-s}
|
217 |
+
return [clause - negated for clause in clauses if s not in clause]
|
218 |
+
|
219 |
+
|
220 |
+
def find_pure_symbol(symbols, unknown_clauses):
|
221 |
+
"""
|
222 |
+
Find a symbol and its value if it appears only as a positive literal
|
223 |
+
(or only as a negative) in clauses.
|
224 |
+
|
225 |
+
>>> from sympy.abc import A, B, D
|
226 |
+
>>> from sympy.logic.algorithms.dpll import find_pure_symbol
|
227 |
+
>>> find_pure_symbol([A, B, D], [A|~B,~B|~D,D|A])
|
228 |
+
(A, True)
|
229 |
+
|
230 |
+
"""
|
231 |
+
for sym in symbols:
|
232 |
+
found_pos, found_neg = False, False
|
233 |
+
for c in unknown_clauses:
|
234 |
+
if not found_pos and sym in disjuncts(c):
|
235 |
+
found_pos = True
|
236 |
+
if not found_neg and Not(sym) in disjuncts(c):
|
237 |
+
found_neg = True
|
238 |
+
if found_pos != found_neg:
|
239 |
+
return sym, found_pos
|
240 |
+
return None, None
|
241 |
+
|
242 |
+
|
243 |
+
def find_pure_symbol_int_repr(symbols, unknown_clauses):
|
244 |
+
"""
|
245 |
+
Same as find_pure_symbol, but arguments are expected
|
246 |
+
to be in integer representation
|
247 |
+
|
248 |
+
>>> from sympy.logic.algorithms.dpll import find_pure_symbol_int_repr
|
249 |
+
>>> find_pure_symbol_int_repr({1,2,3},
|
250 |
+
... [{1, -2}, {-2, -3}, {3, 1}])
|
251 |
+
(1, True)
|
252 |
+
|
253 |
+
"""
|
254 |
+
all_symbols = set().union(*unknown_clauses)
|
255 |
+
found_pos = all_symbols.intersection(symbols)
|
256 |
+
found_neg = all_symbols.intersection([-s for s in symbols])
|
257 |
+
for p in found_pos:
|
258 |
+
if -p not in found_neg:
|
259 |
+
return p, True
|
260 |
+
for p in found_neg:
|
261 |
+
if -p not in found_pos:
|
262 |
+
return -p, False
|
263 |
+
return None, None
|
264 |
+
|
265 |
+
|
266 |
+
def find_unit_clause(clauses, model):
|
267 |
+
"""
|
268 |
+
A unit clause has only 1 variable that is not bound in the model.
|
269 |
+
|
270 |
+
>>> from sympy.abc import A, B, D
|
271 |
+
>>> from sympy.logic.algorithms.dpll import find_unit_clause
|
272 |
+
>>> find_unit_clause([A | B | D, B | ~D, A | ~B], {A:True})
|
273 |
+
(B, False)
|
274 |
+
|
275 |
+
"""
|
276 |
+
for clause in clauses:
|
277 |
+
num_not_in_model = 0
|
278 |
+
for literal in disjuncts(clause):
|
279 |
+
sym = literal_symbol(literal)
|
280 |
+
if sym not in model:
|
281 |
+
num_not_in_model += 1
|
282 |
+
P, value = sym, not isinstance(literal, Not)
|
283 |
+
if num_not_in_model == 1:
|
284 |
+
return P, value
|
285 |
+
return None, None
|
286 |
+
|
287 |
+
|
288 |
+
def find_unit_clause_int_repr(clauses, model):
|
289 |
+
"""
|
290 |
+
Same as find_unit_clause, but arguments are expected to be in
|
291 |
+
integer representation.
|
292 |
+
|
293 |
+
>>> from sympy.logic.algorithms.dpll import find_unit_clause_int_repr
|
294 |
+
>>> find_unit_clause_int_repr([{1, 2, 3},
|
295 |
+
... {2, -3}, {1, -2}], {1: True})
|
296 |
+
(2, False)
|
297 |
+
|
298 |
+
"""
|
299 |
+
bound = set(model) | {-sym for sym in model}
|
300 |
+
for clause in clauses:
|
301 |
+
unbound = clause - bound
|
302 |
+
if len(unbound) == 1:
|
303 |
+
p = unbound.pop()
|
304 |
+
if p < 0:
|
305 |
+
return -p, False
|
306 |
+
else:
|
307 |
+
return p, True
|
308 |
+
return None, None
|