Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/nltk/__pycache__/collocations.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/__pycache__/compat.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/__pycache__/downloader.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/__pycache__/jsontags.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/__pycache__/text.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/__pycache__/toolbox.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/__pycache__/treeprettyprinter.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/__pycache__/treetransforms.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/app/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/app/__pycache__/chartparser_app.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/app/__pycache__/chunkparser_app.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/app/__pycache__/collocations_app.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/app/__pycache__/concordance_app.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/app/__pycache__/srparser_app.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/app/__pycache__/wordfreq_app.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/__init__.py +529 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/europarl_raw.py +56 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/__init__.py +186 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/aligned.py +154 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/chasen.py +158 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/chunked.py +273 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/cmudict.py +88 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/conll.py +579 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/crubadan.py +106 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/dependency.py +115 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/framenet.py +0 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/ieer.py +116 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/ipipan.py +356 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/knbc.py +188 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/lin.py +183 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/markdown.py +342 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/mte.py +397 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/nkjp.py +487 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/panlex_lite.py +174 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/panlex_swadesh.py +95 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/plaintext.py +227 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/ppattach.py +95 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/pros_cons.py +133 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/reviews.py +331 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/rte.py +146 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/semcor.py +296 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/sentiwordnet.py +136 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/sinica_treebank.py +75 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/string_category.py +56 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/switchboard.py +125 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/tagged.py +354 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/timit.py +510 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/util.py +867 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/verbnet.py +629 -0
- llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/wordnet.py +2489 -0
llmeval-env/lib/python3.10/site-packages/nltk/__pycache__/collocations.cpython-310.pyc
ADDED
Binary file (15 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/__pycache__/compat.cpython-310.pyc
ADDED
Binary file (1.15 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/__pycache__/downloader.cpython-310.pyc
ADDED
Binary file (61.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/__pycache__/jsontags.cpython-310.pyc
ADDED
Binary file (2.34 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/__pycache__/text.cpython-310.pyc
ADDED
Binary file (28.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/__pycache__/toolbox.cpython-310.pyc
ADDED
Binary file (15.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/__pycache__/treeprettyprinter.cpython-310.pyc
ADDED
Binary file (966 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/__pycache__/treetransforms.cpython-310.pyc
ADDED
Binary file (5.01 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/app/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.33 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/app/__pycache__/chartparser_app.cpython-310.pyc
ADDED
Binary file (62.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/app/__pycache__/chunkparser_app.cpython-310.pyc
ADDED
Binary file (33.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/app/__pycache__/collocations_app.cpython-310.pyc
ADDED
Binary file (14.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/app/__pycache__/concordance_app.cpython-310.pyc
ADDED
Binary file (22.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/app/__pycache__/srparser_app.cpython-310.pyc
ADDED
Binary file (22.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/app/__pycache__/wordfreq_app.cpython-310.pyc
ADDED
Binary file (1.48 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/__init__.py
ADDED
@@ -0,0 +1,529 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Corpus Readers
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Edward Loper <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
# TODO this docstring isn't up-to-date!
|
9 |
+
"""
|
10 |
+
NLTK corpus readers. The modules in this package provide functions
|
11 |
+
that can be used to read corpus files in a variety of formats. These
|
12 |
+
functions can be used to read both the corpus files that are
|
13 |
+
distributed in the NLTK corpus package, and corpus files that are part
|
14 |
+
of external corpora.
|
15 |
+
|
16 |
+
Available Corpora
|
17 |
+
=================
|
18 |
+
|
19 |
+
Please see https://www.nltk.org/nltk_data/ for a complete list.
|
20 |
+
Install corpora using nltk.download().
|
21 |
+
|
22 |
+
Corpus Reader Functions
|
23 |
+
=======================
|
24 |
+
Each corpus module defines one or more "corpus reader functions",
|
25 |
+
which can be used to read documents from that corpus. These functions
|
26 |
+
take an argument, ``item``, which is used to indicate which document
|
27 |
+
should be read from the corpus:
|
28 |
+
|
29 |
+
- If ``item`` is one of the unique identifiers listed in the corpus
|
30 |
+
module's ``items`` variable, then the corresponding document will
|
31 |
+
be loaded from the NLTK corpus package.
|
32 |
+
- If ``item`` is a filename, then that file will be read.
|
33 |
+
|
34 |
+
Additionally, corpus reader functions can be given lists of item
|
35 |
+
names; in which case, they will return a concatenation of the
|
36 |
+
corresponding documents.
|
37 |
+
|
38 |
+
Corpus reader functions are named based on the type of information
|
39 |
+
they return. Some common examples, and their return types, are:
|
40 |
+
|
41 |
+
- words(): list of str
|
42 |
+
- sents(): list of (list of str)
|
43 |
+
- paras(): list of (list of (list of str))
|
44 |
+
- tagged_words(): list of (str,str) tuple
|
45 |
+
- tagged_sents(): list of (list of (str,str))
|
46 |
+
- tagged_paras(): list of (list of (list of (str,str)))
|
47 |
+
- chunked_sents(): list of (Tree w/ (str,str) leaves)
|
48 |
+
- parsed_sents(): list of (Tree with str leaves)
|
49 |
+
- parsed_paras(): list of (list of (Tree with str leaves))
|
50 |
+
- xml(): A single xml ElementTree
|
51 |
+
- raw(): unprocessed corpus contents
|
52 |
+
|
53 |
+
For example, to read a list of the words in the Brown Corpus, use
|
54 |
+
``nltk.corpus.brown.words()``:
|
55 |
+
|
56 |
+
>>> from nltk.corpus import brown
|
57 |
+
>>> print(", ".join(brown.words())) # doctest: +ELLIPSIS
|
58 |
+
The, Fulton, County, Grand, Jury, said, ...
|
59 |
+
|
60 |
+
"""
|
61 |
+
|
62 |
+
import re
|
63 |
+
|
64 |
+
from nltk.corpus.reader import *
|
65 |
+
from nltk.corpus.util import LazyCorpusLoader
|
66 |
+
from nltk.tokenize import RegexpTokenizer
|
67 |
+
|
68 |
+
abc: PlaintextCorpusReader = LazyCorpusLoader(
|
69 |
+
"abc",
|
70 |
+
PlaintextCorpusReader,
|
71 |
+
r"(?!\.).*\.txt",
|
72 |
+
encoding=[("science", "latin_1"), ("rural", "utf8")],
|
73 |
+
)
|
74 |
+
alpino: AlpinoCorpusReader = LazyCorpusLoader(
|
75 |
+
"alpino", AlpinoCorpusReader, tagset="alpino"
|
76 |
+
)
|
77 |
+
bcp47: BCP47CorpusReader = LazyCorpusLoader(
|
78 |
+
"bcp47", BCP47CorpusReader, r"(cldr|iana)/*"
|
79 |
+
)
|
80 |
+
brown: CategorizedTaggedCorpusReader = LazyCorpusLoader(
|
81 |
+
"brown",
|
82 |
+
CategorizedTaggedCorpusReader,
|
83 |
+
r"c[a-z]\d\d",
|
84 |
+
cat_file="cats.txt",
|
85 |
+
tagset="brown",
|
86 |
+
encoding="ascii",
|
87 |
+
)
|
88 |
+
cess_cat: BracketParseCorpusReader = LazyCorpusLoader(
|
89 |
+
"cess_cat",
|
90 |
+
BracketParseCorpusReader,
|
91 |
+
r"(?!\.).*\.tbf",
|
92 |
+
tagset="unknown",
|
93 |
+
encoding="ISO-8859-15",
|
94 |
+
)
|
95 |
+
cess_esp: BracketParseCorpusReader = LazyCorpusLoader(
|
96 |
+
"cess_esp",
|
97 |
+
BracketParseCorpusReader,
|
98 |
+
r"(?!\.).*\.tbf",
|
99 |
+
tagset="unknown",
|
100 |
+
encoding="ISO-8859-15",
|
101 |
+
)
|
102 |
+
cmudict: CMUDictCorpusReader = LazyCorpusLoader(
|
103 |
+
"cmudict", CMUDictCorpusReader, ["cmudict"]
|
104 |
+
)
|
105 |
+
comtrans: AlignedCorpusReader = LazyCorpusLoader(
|
106 |
+
"comtrans", AlignedCorpusReader, r"(?!\.).*\.txt"
|
107 |
+
)
|
108 |
+
comparative_sentences: ComparativeSentencesCorpusReader = LazyCorpusLoader(
|
109 |
+
"comparative_sentences",
|
110 |
+
ComparativeSentencesCorpusReader,
|
111 |
+
r"labeledSentences\.txt",
|
112 |
+
encoding="latin-1",
|
113 |
+
)
|
114 |
+
conll2000: ConllChunkCorpusReader = LazyCorpusLoader(
|
115 |
+
"conll2000",
|
116 |
+
ConllChunkCorpusReader,
|
117 |
+
["train.txt", "test.txt"],
|
118 |
+
("NP", "VP", "PP"),
|
119 |
+
tagset="wsj",
|
120 |
+
encoding="ascii",
|
121 |
+
)
|
122 |
+
conll2002: ConllChunkCorpusReader = LazyCorpusLoader(
|
123 |
+
"conll2002",
|
124 |
+
ConllChunkCorpusReader,
|
125 |
+
r".*\.(test|train).*",
|
126 |
+
("LOC", "PER", "ORG", "MISC"),
|
127 |
+
encoding="utf-8",
|
128 |
+
)
|
129 |
+
conll2007: DependencyCorpusReader = LazyCorpusLoader(
|
130 |
+
"conll2007",
|
131 |
+
DependencyCorpusReader,
|
132 |
+
r".*\.(test|train).*",
|
133 |
+
encoding=[("eus", "ISO-8859-2"), ("esp", "utf8")],
|
134 |
+
)
|
135 |
+
crubadan: CrubadanCorpusReader = LazyCorpusLoader(
|
136 |
+
"crubadan", CrubadanCorpusReader, r".*\.txt"
|
137 |
+
)
|
138 |
+
dependency_treebank: DependencyCorpusReader = LazyCorpusLoader(
|
139 |
+
"dependency_treebank", DependencyCorpusReader, r".*\.dp", encoding="ascii"
|
140 |
+
)
|
141 |
+
extended_omw: CorpusReader = LazyCorpusLoader(
|
142 |
+
"extended_omw", CorpusReader, r".*/wn-[a-z\-]*\.tab", encoding="utf8"
|
143 |
+
)
|
144 |
+
floresta: BracketParseCorpusReader = LazyCorpusLoader(
|
145 |
+
"floresta",
|
146 |
+
BracketParseCorpusReader,
|
147 |
+
r"(?!\.).*\.ptb",
|
148 |
+
"#",
|
149 |
+
tagset="unknown",
|
150 |
+
encoding="ISO-8859-15",
|
151 |
+
)
|
152 |
+
framenet15: FramenetCorpusReader = LazyCorpusLoader(
|
153 |
+
"framenet_v15",
|
154 |
+
FramenetCorpusReader,
|
155 |
+
[
|
156 |
+
"frRelation.xml",
|
157 |
+
"frameIndex.xml",
|
158 |
+
"fulltextIndex.xml",
|
159 |
+
"luIndex.xml",
|
160 |
+
"semTypes.xml",
|
161 |
+
],
|
162 |
+
)
|
163 |
+
framenet: FramenetCorpusReader = LazyCorpusLoader(
|
164 |
+
"framenet_v17",
|
165 |
+
FramenetCorpusReader,
|
166 |
+
[
|
167 |
+
"frRelation.xml",
|
168 |
+
"frameIndex.xml",
|
169 |
+
"fulltextIndex.xml",
|
170 |
+
"luIndex.xml",
|
171 |
+
"semTypes.xml",
|
172 |
+
],
|
173 |
+
)
|
174 |
+
gazetteers: WordListCorpusReader = LazyCorpusLoader(
|
175 |
+
"gazetteers", WordListCorpusReader, r"(?!LICENSE|\.).*\.txt", encoding="ISO-8859-2"
|
176 |
+
)
|
177 |
+
genesis: PlaintextCorpusReader = LazyCorpusLoader(
|
178 |
+
"genesis",
|
179 |
+
PlaintextCorpusReader,
|
180 |
+
r"(?!\.).*\.txt",
|
181 |
+
encoding=[
|
182 |
+
("finnish|french|german", "latin_1"),
|
183 |
+
("swedish", "cp865"),
|
184 |
+
(".*", "utf_8"),
|
185 |
+
],
|
186 |
+
)
|
187 |
+
gutenberg: PlaintextCorpusReader = LazyCorpusLoader(
|
188 |
+
"gutenberg", PlaintextCorpusReader, r"(?!\.).*\.txt", encoding="latin1"
|
189 |
+
)
|
190 |
+
ieer: IEERCorpusReader = LazyCorpusLoader("ieer", IEERCorpusReader, r"(?!README|\.).*")
|
191 |
+
inaugural: PlaintextCorpusReader = LazyCorpusLoader(
|
192 |
+
"inaugural", PlaintextCorpusReader, r"(?!\.).*\.txt", encoding="latin1"
|
193 |
+
)
|
194 |
+
# [XX] This should probably just use TaggedCorpusReader:
|
195 |
+
indian: IndianCorpusReader = LazyCorpusLoader(
|
196 |
+
"indian", IndianCorpusReader, r"(?!\.).*\.pos", tagset="unknown", encoding="utf8"
|
197 |
+
)
|
198 |
+
|
199 |
+
jeita: ChasenCorpusReader = LazyCorpusLoader(
|
200 |
+
"jeita", ChasenCorpusReader, r".*\.chasen", encoding="utf-8"
|
201 |
+
)
|
202 |
+
knbc: KNBCorpusReader = LazyCorpusLoader(
|
203 |
+
"knbc/corpus1", KNBCorpusReader, r".*/KN.*", encoding="euc-jp"
|
204 |
+
)
|
205 |
+
lin_thesaurus: LinThesaurusCorpusReader = LazyCorpusLoader(
|
206 |
+
"lin_thesaurus", LinThesaurusCorpusReader, r".*\.lsp"
|
207 |
+
)
|
208 |
+
mac_morpho: MacMorphoCorpusReader = LazyCorpusLoader(
|
209 |
+
"mac_morpho",
|
210 |
+
MacMorphoCorpusReader,
|
211 |
+
r"(?!\.).*\.txt",
|
212 |
+
tagset="unknown",
|
213 |
+
encoding="latin-1",
|
214 |
+
)
|
215 |
+
machado: PortugueseCategorizedPlaintextCorpusReader = LazyCorpusLoader(
|
216 |
+
"machado",
|
217 |
+
PortugueseCategorizedPlaintextCorpusReader,
|
218 |
+
r"(?!\.).*\.txt",
|
219 |
+
cat_pattern=r"([a-z]*)/.*",
|
220 |
+
encoding="latin-1",
|
221 |
+
)
|
222 |
+
masc_tagged: CategorizedTaggedCorpusReader = LazyCorpusLoader(
|
223 |
+
"masc_tagged",
|
224 |
+
CategorizedTaggedCorpusReader,
|
225 |
+
r"(spoken|written)/.*\.txt",
|
226 |
+
cat_file="categories.txt",
|
227 |
+
tagset="wsj",
|
228 |
+
encoding="utf-8",
|
229 |
+
sep="_",
|
230 |
+
)
|
231 |
+
movie_reviews: CategorizedPlaintextCorpusReader = LazyCorpusLoader(
|
232 |
+
"movie_reviews",
|
233 |
+
CategorizedPlaintextCorpusReader,
|
234 |
+
r"(?!\.).*\.txt",
|
235 |
+
cat_pattern=r"(neg|pos)/.*",
|
236 |
+
encoding="ascii",
|
237 |
+
)
|
238 |
+
multext_east: MTECorpusReader = LazyCorpusLoader(
|
239 |
+
"mte_teip5", MTECorpusReader, r"(oana).*\.xml", encoding="utf-8"
|
240 |
+
)
|
241 |
+
names: WordListCorpusReader = LazyCorpusLoader(
|
242 |
+
"names", WordListCorpusReader, r"(?!\.).*\.txt", encoding="ascii"
|
243 |
+
)
|
244 |
+
nps_chat: NPSChatCorpusReader = LazyCorpusLoader(
|
245 |
+
"nps_chat", NPSChatCorpusReader, r"(?!README|\.).*\.xml", tagset="wsj"
|
246 |
+
)
|
247 |
+
opinion_lexicon: OpinionLexiconCorpusReader = LazyCorpusLoader(
|
248 |
+
"opinion_lexicon",
|
249 |
+
OpinionLexiconCorpusReader,
|
250 |
+
r"(\w+)\-words\.txt",
|
251 |
+
encoding="ISO-8859-2",
|
252 |
+
)
|
253 |
+
ppattach: PPAttachmentCorpusReader = LazyCorpusLoader(
|
254 |
+
"ppattach", PPAttachmentCorpusReader, ["training", "test", "devset"]
|
255 |
+
)
|
256 |
+
product_reviews_1: ReviewsCorpusReader = LazyCorpusLoader(
|
257 |
+
"product_reviews_1", ReviewsCorpusReader, r"^(?!Readme).*\.txt", encoding="utf8"
|
258 |
+
)
|
259 |
+
product_reviews_2: ReviewsCorpusReader = LazyCorpusLoader(
|
260 |
+
"product_reviews_2", ReviewsCorpusReader, r"^(?!Readme).*\.txt", encoding="utf8"
|
261 |
+
)
|
262 |
+
pros_cons: ProsConsCorpusReader = LazyCorpusLoader(
|
263 |
+
"pros_cons",
|
264 |
+
ProsConsCorpusReader,
|
265 |
+
r"Integrated(Cons|Pros)\.txt",
|
266 |
+
cat_pattern=r"Integrated(Cons|Pros)\.txt",
|
267 |
+
encoding="ISO-8859-2",
|
268 |
+
)
|
269 |
+
ptb: CategorizedBracketParseCorpusReader = (
|
270 |
+
LazyCorpusLoader( # Penn Treebank v3: WSJ and Brown portions
|
271 |
+
"ptb",
|
272 |
+
CategorizedBracketParseCorpusReader,
|
273 |
+
r"(WSJ/\d\d/WSJ_\d\d|BROWN/C[A-Z]/C[A-Z])\d\d.MRG",
|
274 |
+
cat_file="allcats.txt",
|
275 |
+
tagset="wsj",
|
276 |
+
)
|
277 |
+
)
|
278 |
+
qc: StringCategoryCorpusReader = LazyCorpusLoader(
|
279 |
+
"qc", StringCategoryCorpusReader, ["train.txt", "test.txt"], encoding="ISO-8859-2"
|
280 |
+
)
|
281 |
+
reuters: CategorizedPlaintextCorpusReader = LazyCorpusLoader(
|
282 |
+
"reuters",
|
283 |
+
CategorizedPlaintextCorpusReader,
|
284 |
+
"(training|test).*",
|
285 |
+
cat_file="cats.txt",
|
286 |
+
encoding="ISO-8859-2",
|
287 |
+
)
|
288 |
+
rte: RTECorpusReader = LazyCorpusLoader("rte", RTECorpusReader, r"(?!\.).*\.xml")
|
289 |
+
senseval: SensevalCorpusReader = LazyCorpusLoader(
|
290 |
+
"senseval", SensevalCorpusReader, r"(?!\.).*\.pos"
|
291 |
+
)
|
292 |
+
sentence_polarity: CategorizedSentencesCorpusReader = LazyCorpusLoader(
|
293 |
+
"sentence_polarity",
|
294 |
+
CategorizedSentencesCorpusReader,
|
295 |
+
r"rt-polarity\.(neg|pos)",
|
296 |
+
cat_pattern=r"rt-polarity\.(neg|pos)",
|
297 |
+
encoding="utf-8",
|
298 |
+
)
|
299 |
+
sentiwordnet: SentiWordNetCorpusReader = LazyCorpusLoader(
|
300 |
+
"sentiwordnet", SentiWordNetCorpusReader, "SentiWordNet_3.0.0.txt", encoding="utf-8"
|
301 |
+
)
|
302 |
+
shakespeare: XMLCorpusReader = LazyCorpusLoader(
|
303 |
+
"shakespeare", XMLCorpusReader, r"(?!\.).*\.xml"
|
304 |
+
)
|
305 |
+
sinica_treebank: SinicaTreebankCorpusReader = LazyCorpusLoader(
|
306 |
+
"sinica_treebank",
|
307 |
+
SinicaTreebankCorpusReader,
|
308 |
+
["parsed"],
|
309 |
+
tagset="unknown",
|
310 |
+
encoding="utf-8",
|
311 |
+
)
|
312 |
+
state_union: PlaintextCorpusReader = LazyCorpusLoader(
|
313 |
+
"state_union", PlaintextCorpusReader, r"(?!\.).*\.txt", encoding="ISO-8859-2"
|
314 |
+
)
|
315 |
+
stopwords: WordListCorpusReader = LazyCorpusLoader(
|
316 |
+
"stopwords", WordListCorpusReader, r"(?!README|\.).*", encoding="utf8"
|
317 |
+
)
|
318 |
+
subjectivity: CategorizedSentencesCorpusReader = LazyCorpusLoader(
|
319 |
+
"subjectivity",
|
320 |
+
CategorizedSentencesCorpusReader,
|
321 |
+
r"(quote.tok.gt9|plot.tok.gt9)\.5000",
|
322 |
+
cat_map={"quote.tok.gt9.5000": ["subj"], "plot.tok.gt9.5000": ["obj"]},
|
323 |
+
encoding="latin-1",
|
324 |
+
)
|
325 |
+
swadesh: SwadeshCorpusReader = LazyCorpusLoader(
|
326 |
+
"swadesh", SwadeshCorpusReader, r"(?!README|\.).*", encoding="utf8"
|
327 |
+
)
|
328 |
+
swadesh110: PanlexSwadeshCorpusReader = LazyCorpusLoader(
|
329 |
+
"panlex_swadesh", PanlexSwadeshCorpusReader, r"swadesh110/.*\.txt", encoding="utf8"
|
330 |
+
)
|
331 |
+
swadesh207: PanlexSwadeshCorpusReader = LazyCorpusLoader(
|
332 |
+
"panlex_swadesh", PanlexSwadeshCorpusReader, r"swadesh207/.*\.txt", encoding="utf8"
|
333 |
+
)
|
334 |
+
switchboard: SwitchboardCorpusReader = LazyCorpusLoader(
|
335 |
+
"switchboard", SwitchboardCorpusReader, tagset="wsj"
|
336 |
+
)
|
337 |
+
timit: TimitCorpusReader = LazyCorpusLoader("timit", TimitCorpusReader)
|
338 |
+
timit_tagged: TimitTaggedCorpusReader = LazyCorpusLoader(
|
339 |
+
"timit", TimitTaggedCorpusReader, r".+\.tags", tagset="wsj", encoding="ascii"
|
340 |
+
)
|
341 |
+
toolbox: ToolboxCorpusReader = LazyCorpusLoader(
|
342 |
+
"toolbox", ToolboxCorpusReader, r"(?!.*(README|\.)).*\.(dic|txt)"
|
343 |
+
)
|
344 |
+
treebank: BracketParseCorpusReader = LazyCorpusLoader(
|
345 |
+
"treebank/combined",
|
346 |
+
BracketParseCorpusReader,
|
347 |
+
r"wsj_.*\.mrg",
|
348 |
+
tagset="wsj",
|
349 |
+
encoding="ascii",
|
350 |
+
)
|
351 |
+
treebank_chunk: ChunkedCorpusReader = LazyCorpusLoader(
|
352 |
+
"treebank/tagged",
|
353 |
+
ChunkedCorpusReader,
|
354 |
+
r"wsj_.*\.pos",
|
355 |
+
sent_tokenizer=RegexpTokenizer(r"(?<=/\.)\s*(?![^\[]*\])", gaps=True),
|
356 |
+
para_block_reader=tagged_treebank_para_block_reader,
|
357 |
+
tagset="wsj",
|
358 |
+
encoding="ascii",
|
359 |
+
)
|
360 |
+
treebank_raw: PlaintextCorpusReader = LazyCorpusLoader(
|
361 |
+
"treebank/raw", PlaintextCorpusReader, r"wsj_.*", encoding="ISO-8859-2"
|
362 |
+
)
|
363 |
+
twitter_samples: TwitterCorpusReader = LazyCorpusLoader(
|
364 |
+
"twitter_samples", TwitterCorpusReader, r".*\.json"
|
365 |
+
)
|
366 |
+
udhr: UdhrCorpusReader = LazyCorpusLoader("udhr", UdhrCorpusReader)
|
367 |
+
udhr2: PlaintextCorpusReader = LazyCorpusLoader(
|
368 |
+
"udhr2", PlaintextCorpusReader, r".*\.txt", encoding="utf8"
|
369 |
+
)
|
370 |
+
universal_treebanks: ConllCorpusReader = LazyCorpusLoader(
|
371 |
+
"universal_treebanks_v20",
|
372 |
+
ConllCorpusReader,
|
373 |
+
r".*\.conll",
|
374 |
+
columntypes=(
|
375 |
+
"ignore",
|
376 |
+
"words",
|
377 |
+
"ignore",
|
378 |
+
"ignore",
|
379 |
+
"pos",
|
380 |
+
"ignore",
|
381 |
+
"ignore",
|
382 |
+
"ignore",
|
383 |
+
"ignore",
|
384 |
+
"ignore",
|
385 |
+
),
|
386 |
+
)
|
387 |
+
verbnet: VerbnetCorpusReader = LazyCorpusLoader(
|
388 |
+
"verbnet", VerbnetCorpusReader, r"(?!\.).*\.xml"
|
389 |
+
)
|
390 |
+
webtext: PlaintextCorpusReader = LazyCorpusLoader(
|
391 |
+
"webtext", PlaintextCorpusReader, r"(?!README|\.).*\.txt", encoding="ISO-8859-2"
|
392 |
+
)
|
393 |
+
wordnet: WordNetCorpusReader = LazyCorpusLoader(
|
394 |
+
"wordnet",
|
395 |
+
WordNetCorpusReader,
|
396 |
+
LazyCorpusLoader("omw-1.4", CorpusReader, r".*/wn-data-.*\.tab", encoding="utf8"),
|
397 |
+
)
|
398 |
+
wordnet31: WordNetCorpusReader = LazyCorpusLoader(
|
399 |
+
"wordnet31",
|
400 |
+
WordNetCorpusReader,
|
401 |
+
LazyCorpusLoader("omw-1.4", CorpusReader, r".*/wn-data-.*\.tab", encoding="utf8"),
|
402 |
+
)
|
403 |
+
wordnet2021: WordNetCorpusReader = LazyCorpusLoader(
|
404 |
+
"wordnet2021",
|
405 |
+
WordNetCorpusReader,
|
406 |
+
LazyCorpusLoader("omw-1.4", CorpusReader, r".*/wn-data-.*\.tab", encoding="utf8"),
|
407 |
+
)
|
408 |
+
wordnet_ic: WordNetICCorpusReader = LazyCorpusLoader(
|
409 |
+
"wordnet_ic", WordNetICCorpusReader, r".*\.dat"
|
410 |
+
)
|
411 |
+
words: WordListCorpusReader = LazyCorpusLoader(
|
412 |
+
"words", WordListCorpusReader, r"(?!README|\.).*", encoding="ascii"
|
413 |
+
)
|
414 |
+
|
415 |
+
# defined after treebank
|
416 |
+
propbank: PropbankCorpusReader = LazyCorpusLoader(
|
417 |
+
"propbank",
|
418 |
+
PropbankCorpusReader,
|
419 |
+
"prop.txt",
|
420 |
+
r"frames/.*\.xml",
|
421 |
+
"verbs.txt",
|
422 |
+
lambda filename: re.sub(r"^wsj/\d\d/", "", filename),
|
423 |
+
treebank,
|
424 |
+
) # Must be defined *after* treebank corpus.
|
425 |
+
nombank: NombankCorpusReader = LazyCorpusLoader(
|
426 |
+
"nombank.1.0",
|
427 |
+
NombankCorpusReader,
|
428 |
+
"nombank.1.0",
|
429 |
+
r"frames/.*\.xml",
|
430 |
+
"nombank.1.0.words",
|
431 |
+
lambda filename: re.sub(r"^wsj/\d\d/", "", filename),
|
432 |
+
treebank,
|
433 |
+
) # Must be defined *after* treebank corpus.
|
434 |
+
propbank_ptb: PropbankCorpusReader = LazyCorpusLoader(
|
435 |
+
"propbank",
|
436 |
+
PropbankCorpusReader,
|
437 |
+
"prop.txt",
|
438 |
+
r"frames/.*\.xml",
|
439 |
+
"verbs.txt",
|
440 |
+
lambda filename: filename.upper(),
|
441 |
+
ptb,
|
442 |
+
) # Must be defined *after* ptb corpus.
|
443 |
+
nombank_ptb: NombankCorpusReader = LazyCorpusLoader(
|
444 |
+
"nombank.1.0",
|
445 |
+
NombankCorpusReader,
|
446 |
+
"nombank.1.0",
|
447 |
+
r"frames/.*\.xml",
|
448 |
+
"nombank.1.0.words",
|
449 |
+
lambda filename: filename.upper(),
|
450 |
+
ptb,
|
451 |
+
) # Must be defined *after* ptb corpus.
|
452 |
+
semcor: SemcorCorpusReader = LazyCorpusLoader(
|
453 |
+
"semcor", SemcorCorpusReader, r"brown./tagfiles/br-.*\.xml", wordnet
|
454 |
+
) # Must be defined *after* wordnet corpus.
|
455 |
+
|
456 |
+
nonbreaking_prefixes: NonbreakingPrefixesCorpusReader = LazyCorpusLoader(
|
457 |
+
"nonbreaking_prefixes",
|
458 |
+
NonbreakingPrefixesCorpusReader,
|
459 |
+
r"(?!README|\.).*",
|
460 |
+
encoding="utf8",
|
461 |
+
)
|
462 |
+
perluniprops: UnicharsCorpusReader = LazyCorpusLoader(
|
463 |
+
"perluniprops",
|
464 |
+
UnicharsCorpusReader,
|
465 |
+
r"(?!README|\.).*",
|
466 |
+
nltk_data_subdir="misc",
|
467 |
+
encoding="utf8",
|
468 |
+
)
|
469 |
+
|
470 |
+
# mwa_ppdb = LazyCorpusLoader(
|
471 |
+
# 'mwa_ppdb', MWAPPDBCorpusReader, r'(?!README|\.).*', nltk_data_subdir='misc', encoding='utf8')
|
472 |
+
|
473 |
+
# See https://github.com/nltk/nltk/issues/1579
|
474 |
+
# and https://github.com/nltk/nltk/issues/1716
|
475 |
+
#
|
476 |
+
# pl196x = LazyCorpusLoader(
|
477 |
+
# 'pl196x', Pl196xCorpusReader, r'[a-z]-.*\.xml',
|
478 |
+
# cat_file='cats.txt', textid_file='textids.txt', encoding='utf8')
|
479 |
+
#
|
480 |
+
# ipipan = LazyCorpusLoader(
|
481 |
+
# 'ipipan', IPIPANCorpusReader, r'(?!\.).*morph\.xml')
|
482 |
+
#
|
483 |
+
# nkjp = LazyCorpusLoader(
|
484 |
+
# 'nkjp', NKJPCorpusReader, r'', encoding='utf8')
|
485 |
+
#
|
486 |
+
# panlex_lite = LazyCorpusLoader(
|
487 |
+
# 'panlex_lite', PanLexLiteCorpusReader)
|
488 |
+
#
|
489 |
+
# ycoe = LazyCorpusLoader(
|
490 |
+
# 'ycoe', YCOECorpusReader)
|
491 |
+
#
|
492 |
+
# corpus not available with NLTK; these lines caused help(nltk.corpus) to break
|
493 |
+
# hebrew_treebank = LazyCorpusLoader(
|
494 |
+
# 'hebrew_treebank', BracketParseCorpusReader, r'.*\.txt')
|
495 |
+
|
496 |
+
# FIXME: override any imported demo from various corpora, see https://github.com/nltk/nltk/issues/2116
|
497 |
+
def demo():
|
498 |
+
# This is out-of-date:
|
499 |
+
abc.demo()
|
500 |
+
brown.demo()
|
501 |
+
# chat80.demo()
|
502 |
+
cmudict.demo()
|
503 |
+
conll2000.demo()
|
504 |
+
conll2002.demo()
|
505 |
+
genesis.demo()
|
506 |
+
gutenberg.demo()
|
507 |
+
ieer.demo()
|
508 |
+
inaugural.demo()
|
509 |
+
indian.demo()
|
510 |
+
names.demo()
|
511 |
+
ppattach.demo()
|
512 |
+
senseval.demo()
|
513 |
+
shakespeare.demo()
|
514 |
+
sinica_treebank.demo()
|
515 |
+
state_union.demo()
|
516 |
+
stopwords.demo()
|
517 |
+
timit.demo()
|
518 |
+
toolbox.demo()
|
519 |
+
treebank.demo()
|
520 |
+
udhr.demo()
|
521 |
+
webtext.demo()
|
522 |
+
words.demo()
|
523 |
+
|
524 |
+
|
525 |
+
# ycoe.demo()
|
526 |
+
|
527 |
+
if __name__ == "__main__":
|
528 |
+
# demo()
|
529 |
+
pass
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/europarl_raw.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Europarl Corpus Readers
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Nitin Madnani <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
import re
|
9 |
+
|
10 |
+
from nltk.corpus.reader import *
|
11 |
+
from nltk.corpus.util import LazyCorpusLoader
|
12 |
+
|
13 |
+
# Create a new corpus reader instance for each European language
|
14 |
+
danish: EuroparlCorpusReader = LazyCorpusLoader(
|
15 |
+
"europarl_raw/danish", EuroparlCorpusReader, r"ep-.*\.da", encoding="utf-8"
|
16 |
+
)
|
17 |
+
|
18 |
+
dutch: EuroparlCorpusReader = LazyCorpusLoader(
|
19 |
+
"europarl_raw/dutch", EuroparlCorpusReader, r"ep-.*\.nl", encoding="utf-8"
|
20 |
+
)
|
21 |
+
|
22 |
+
english: EuroparlCorpusReader = LazyCorpusLoader(
|
23 |
+
"europarl_raw/english", EuroparlCorpusReader, r"ep-.*\.en", encoding="utf-8"
|
24 |
+
)
|
25 |
+
|
26 |
+
finnish: EuroparlCorpusReader = LazyCorpusLoader(
|
27 |
+
"europarl_raw/finnish", EuroparlCorpusReader, r"ep-.*\.fi", encoding="utf-8"
|
28 |
+
)
|
29 |
+
|
30 |
+
french: EuroparlCorpusReader = LazyCorpusLoader(
|
31 |
+
"europarl_raw/french", EuroparlCorpusReader, r"ep-.*\.fr", encoding="utf-8"
|
32 |
+
)
|
33 |
+
|
34 |
+
german: EuroparlCorpusReader = LazyCorpusLoader(
|
35 |
+
"europarl_raw/german", EuroparlCorpusReader, r"ep-.*\.de", encoding="utf-8"
|
36 |
+
)
|
37 |
+
|
38 |
+
greek: EuroparlCorpusReader = LazyCorpusLoader(
|
39 |
+
"europarl_raw/greek", EuroparlCorpusReader, r"ep-.*\.el", encoding="utf-8"
|
40 |
+
)
|
41 |
+
|
42 |
+
italian: EuroparlCorpusReader = LazyCorpusLoader(
|
43 |
+
"europarl_raw/italian", EuroparlCorpusReader, r"ep-.*\.it", encoding="utf-8"
|
44 |
+
)
|
45 |
+
|
46 |
+
portuguese: EuroparlCorpusReader = LazyCorpusLoader(
|
47 |
+
"europarl_raw/portuguese", EuroparlCorpusReader, r"ep-.*\.pt", encoding="utf-8"
|
48 |
+
)
|
49 |
+
|
50 |
+
spanish: EuroparlCorpusReader = LazyCorpusLoader(
|
51 |
+
"europarl_raw/spanish", EuroparlCorpusReader, r"ep-.*\.es", encoding="utf-8"
|
52 |
+
)
|
53 |
+
|
54 |
+
swedish: EuroparlCorpusReader = LazyCorpusLoader(
|
55 |
+
"europarl_raw/swedish", EuroparlCorpusReader, r"ep-.*\.sv", encoding="utf-8"
|
56 |
+
)
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/__init__.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Corpus Readers
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bird <[email protected]>
|
5 |
+
# Edward Loper <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
"""
|
10 |
+
NLTK corpus readers. The modules in this package provide functions
|
11 |
+
that can be used to read corpus fileids in a variety of formats. These
|
12 |
+
functions can be used to read both the corpus fileids that are
|
13 |
+
distributed in the NLTK corpus package, and corpus fileids that are part
|
14 |
+
of external corpora.
|
15 |
+
|
16 |
+
Corpus Reader Functions
|
17 |
+
=======================
|
18 |
+
Each corpus module defines one or more "corpus reader functions",
|
19 |
+
which can be used to read documents from that corpus. These functions
|
20 |
+
take an argument, ``item``, which is used to indicate which document
|
21 |
+
should be read from the corpus:
|
22 |
+
|
23 |
+
- If ``item`` is one of the unique identifiers listed in the corpus
|
24 |
+
module's ``items`` variable, then the corresponding document will
|
25 |
+
be loaded from the NLTK corpus package.
|
26 |
+
- If ``item`` is a fileid, then that file will be read.
|
27 |
+
|
28 |
+
Additionally, corpus reader functions can be given lists of item
|
29 |
+
names; in which case, they will return a concatenation of the
|
30 |
+
corresponding documents.
|
31 |
+
|
32 |
+
Corpus reader functions are named based on the type of information
|
33 |
+
they return. Some common examples, and their return types, are:
|
34 |
+
|
35 |
+
- words(): list of str
|
36 |
+
- sents(): list of (list of str)
|
37 |
+
- paras(): list of (list of (list of str))
|
38 |
+
- tagged_words(): list of (str,str) tuple
|
39 |
+
- tagged_sents(): list of (list of (str,str))
|
40 |
+
- tagged_paras(): list of (list of (list of (str,str)))
|
41 |
+
- chunked_sents(): list of (Tree w/ (str,str) leaves)
|
42 |
+
- parsed_sents(): list of (Tree with str leaves)
|
43 |
+
- parsed_paras(): list of (list of (Tree with str leaves))
|
44 |
+
- xml(): A single xml ElementTree
|
45 |
+
- raw(): unprocessed corpus contents
|
46 |
+
|
47 |
+
For example, to read a list of the words in the Brown Corpus, use
|
48 |
+
``nltk.corpus.brown.words()``:
|
49 |
+
|
50 |
+
>>> from nltk.corpus import brown
|
51 |
+
>>> print(", ".join(brown.words()[:6])) # only first 6 words
|
52 |
+
The, Fulton, County, Grand, Jury, said
|
53 |
+
|
54 |
+
isort:skip_file
|
55 |
+
"""
|
56 |
+
|
57 |
+
from nltk.corpus.reader.plaintext import *
|
58 |
+
from nltk.corpus.reader.util import *
|
59 |
+
from nltk.corpus.reader.api import *
|
60 |
+
from nltk.corpus.reader.tagged import *
|
61 |
+
from nltk.corpus.reader.cmudict import *
|
62 |
+
from nltk.corpus.reader.conll import *
|
63 |
+
from nltk.corpus.reader.chunked import *
|
64 |
+
from nltk.corpus.reader.wordlist import *
|
65 |
+
from nltk.corpus.reader.xmldocs import *
|
66 |
+
from nltk.corpus.reader.ppattach import *
|
67 |
+
from nltk.corpus.reader.senseval import *
|
68 |
+
from nltk.corpus.reader.ieer import *
|
69 |
+
from nltk.corpus.reader.sinica_treebank import *
|
70 |
+
from nltk.corpus.reader.bracket_parse import *
|
71 |
+
from nltk.corpus.reader.indian import *
|
72 |
+
from nltk.corpus.reader.toolbox import *
|
73 |
+
from nltk.corpus.reader.timit import *
|
74 |
+
from nltk.corpus.reader.ycoe import *
|
75 |
+
from nltk.corpus.reader.rte import *
|
76 |
+
from nltk.corpus.reader.string_category import *
|
77 |
+
from nltk.corpus.reader.propbank import *
|
78 |
+
from nltk.corpus.reader.verbnet import *
|
79 |
+
from nltk.corpus.reader.bnc import *
|
80 |
+
from nltk.corpus.reader.nps_chat import *
|
81 |
+
from nltk.corpus.reader.wordnet import *
|
82 |
+
from nltk.corpus.reader.switchboard import *
|
83 |
+
from nltk.corpus.reader.dependency import *
|
84 |
+
from nltk.corpus.reader.nombank import *
|
85 |
+
from nltk.corpus.reader.ipipan import *
|
86 |
+
from nltk.corpus.reader.pl196x import *
|
87 |
+
from nltk.corpus.reader.knbc import *
|
88 |
+
from nltk.corpus.reader.chasen import *
|
89 |
+
from nltk.corpus.reader.childes import *
|
90 |
+
from nltk.corpus.reader.aligned import *
|
91 |
+
from nltk.corpus.reader.lin import *
|
92 |
+
from nltk.corpus.reader.semcor import *
|
93 |
+
from nltk.corpus.reader.framenet import *
|
94 |
+
from nltk.corpus.reader.udhr import *
|
95 |
+
from nltk.corpus.reader.bnc import *
|
96 |
+
from nltk.corpus.reader.sentiwordnet import *
|
97 |
+
from nltk.corpus.reader.twitter import *
|
98 |
+
from nltk.corpus.reader.nkjp import *
|
99 |
+
from nltk.corpus.reader.crubadan import *
|
100 |
+
from nltk.corpus.reader.mte import *
|
101 |
+
from nltk.corpus.reader.reviews import *
|
102 |
+
from nltk.corpus.reader.opinion_lexicon import *
|
103 |
+
from nltk.corpus.reader.pros_cons import *
|
104 |
+
from nltk.corpus.reader.categorized_sents import *
|
105 |
+
from nltk.corpus.reader.comparative_sents import *
|
106 |
+
from nltk.corpus.reader.panlex_lite import *
|
107 |
+
from nltk.corpus.reader.panlex_swadesh import *
|
108 |
+
from nltk.corpus.reader.bcp47 import *
|
109 |
+
|
110 |
+
# Make sure that nltk.corpus.reader.bracket_parse gives the module, not
|
111 |
+
# the function bracket_parse() defined in nltk.tree:
|
112 |
+
from nltk.corpus.reader import bracket_parse
|
113 |
+
|
114 |
+
__all__ = [
|
115 |
+
"CorpusReader",
|
116 |
+
"CategorizedCorpusReader",
|
117 |
+
"PlaintextCorpusReader",
|
118 |
+
"find_corpus_fileids",
|
119 |
+
"TaggedCorpusReader",
|
120 |
+
"CMUDictCorpusReader",
|
121 |
+
"ConllChunkCorpusReader",
|
122 |
+
"WordListCorpusReader",
|
123 |
+
"PPAttachmentCorpusReader",
|
124 |
+
"SensevalCorpusReader",
|
125 |
+
"IEERCorpusReader",
|
126 |
+
"ChunkedCorpusReader",
|
127 |
+
"SinicaTreebankCorpusReader",
|
128 |
+
"BracketParseCorpusReader",
|
129 |
+
"IndianCorpusReader",
|
130 |
+
"ToolboxCorpusReader",
|
131 |
+
"TimitCorpusReader",
|
132 |
+
"YCOECorpusReader",
|
133 |
+
"MacMorphoCorpusReader",
|
134 |
+
"SyntaxCorpusReader",
|
135 |
+
"AlpinoCorpusReader",
|
136 |
+
"RTECorpusReader",
|
137 |
+
"StringCategoryCorpusReader",
|
138 |
+
"EuroparlCorpusReader",
|
139 |
+
"CategorizedBracketParseCorpusReader",
|
140 |
+
"CategorizedTaggedCorpusReader",
|
141 |
+
"CategorizedPlaintextCorpusReader",
|
142 |
+
"PortugueseCategorizedPlaintextCorpusReader",
|
143 |
+
"tagged_treebank_para_block_reader",
|
144 |
+
"PropbankCorpusReader",
|
145 |
+
"VerbnetCorpusReader",
|
146 |
+
"BNCCorpusReader",
|
147 |
+
"ConllCorpusReader",
|
148 |
+
"XMLCorpusReader",
|
149 |
+
"NPSChatCorpusReader",
|
150 |
+
"SwadeshCorpusReader",
|
151 |
+
"WordNetCorpusReader",
|
152 |
+
"WordNetICCorpusReader",
|
153 |
+
"SwitchboardCorpusReader",
|
154 |
+
"DependencyCorpusReader",
|
155 |
+
"NombankCorpusReader",
|
156 |
+
"IPIPANCorpusReader",
|
157 |
+
"Pl196xCorpusReader",
|
158 |
+
"TEICorpusView",
|
159 |
+
"KNBCorpusReader",
|
160 |
+
"ChasenCorpusReader",
|
161 |
+
"CHILDESCorpusReader",
|
162 |
+
"AlignedCorpusReader",
|
163 |
+
"TimitTaggedCorpusReader",
|
164 |
+
"LinThesaurusCorpusReader",
|
165 |
+
"SemcorCorpusReader",
|
166 |
+
"FramenetCorpusReader",
|
167 |
+
"UdhrCorpusReader",
|
168 |
+
"BNCCorpusReader",
|
169 |
+
"SentiWordNetCorpusReader",
|
170 |
+
"SentiSynset",
|
171 |
+
"TwitterCorpusReader",
|
172 |
+
"NKJPCorpusReader",
|
173 |
+
"CrubadanCorpusReader",
|
174 |
+
"MTECorpusReader",
|
175 |
+
"ReviewsCorpusReader",
|
176 |
+
"OpinionLexiconCorpusReader",
|
177 |
+
"ProsConsCorpusReader",
|
178 |
+
"CategorizedSentencesCorpusReader",
|
179 |
+
"ComparativeSentencesCorpusReader",
|
180 |
+
"PanLexLiteCorpusReader",
|
181 |
+
"NonbreakingPrefixesCorpusReader",
|
182 |
+
"UnicharsCorpusReader",
|
183 |
+
"MWAPPDBCorpusReader",
|
184 |
+
"PanlexSwadeshCorpusReader",
|
185 |
+
"BCP47CorpusReader",
|
186 |
+
]
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/aligned.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Aligned Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# URL: <https://www.nltk.org/>
|
5 |
+
# Author: Steven Bird <[email protected]>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
from nltk.corpus.reader.api import CorpusReader
|
9 |
+
from nltk.corpus.reader.util import (
|
10 |
+
StreamBackedCorpusView,
|
11 |
+
concat,
|
12 |
+
read_alignedsent_block,
|
13 |
+
)
|
14 |
+
from nltk.tokenize import RegexpTokenizer, WhitespaceTokenizer
|
15 |
+
from nltk.translate import AlignedSent, Alignment
|
16 |
+
|
17 |
+
|
18 |
+
class AlignedCorpusReader(CorpusReader):
|
19 |
+
"""
|
20 |
+
Reader for corpora of word-aligned sentences. Tokens are assumed
|
21 |
+
to be separated by whitespace. Sentences begin on separate lines.
|
22 |
+
"""
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
root,
|
27 |
+
fileids,
|
28 |
+
sep="/",
|
29 |
+
word_tokenizer=WhitespaceTokenizer(),
|
30 |
+
sent_tokenizer=RegexpTokenizer("\n", gaps=True),
|
31 |
+
alignedsent_block_reader=read_alignedsent_block,
|
32 |
+
encoding="latin1",
|
33 |
+
):
|
34 |
+
"""
|
35 |
+
Construct a new Aligned Corpus reader for a set of documents
|
36 |
+
located at the given root directory. Example usage:
|
37 |
+
|
38 |
+
>>> root = '/...path to corpus.../'
|
39 |
+
>>> reader = AlignedCorpusReader(root, '.*', '.txt') # doctest: +SKIP
|
40 |
+
|
41 |
+
:param root: The root directory for this corpus.
|
42 |
+
:param fileids: A list or regexp specifying the fileids in this corpus.
|
43 |
+
"""
|
44 |
+
CorpusReader.__init__(self, root, fileids, encoding)
|
45 |
+
self._sep = sep
|
46 |
+
self._word_tokenizer = word_tokenizer
|
47 |
+
self._sent_tokenizer = sent_tokenizer
|
48 |
+
self._alignedsent_block_reader = alignedsent_block_reader
|
49 |
+
|
50 |
+
def words(self, fileids=None):
|
51 |
+
"""
|
52 |
+
:return: the given file(s) as a list of words
|
53 |
+
and punctuation symbols.
|
54 |
+
:rtype: list(str)
|
55 |
+
"""
|
56 |
+
return concat(
|
57 |
+
[
|
58 |
+
AlignedSentCorpusView(
|
59 |
+
fileid,
|
60 |
+
enc,
|
61 |
+
False,
|
62 |
+
False,
|
63 |
+
self._word_tokenizer,
|
64 |
+
self._sent_tokenizer,
|
65 |
+
self._alignedsent_block_reader,
|
66 |
+
)
|
67 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
68 |
+
]
|
69 |
+
)
|
70 |
+
|
71 |
+
def sents(self, fileids=None):
|
72 |
+
"""
|
73 |
+
:return: the given file(s) as a list of
|
74 |
+
sentences or utterances, each encoded as a list of word
|
75 |
+
strings.
|
76 |
+
:rtype: list(list(str))
|
77 |
+
"""
|
78 |
+
return concat(
|
79 |
+
[
|
80 |
+
AlignedSentCorpusView(
|
81 |
+
fileid,
|
82 |
+
enc,
|
83 |
+
False,
|
84 |
+
True,
|
85 |
+
self._word_tokenizer,
|
86 |
+
self._sent_tokenizer,
|
87 |
+
self._alignedsent_block_reader,
|
88 |
+
)
|
89 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
90 |
+
]
|
91 |
+
)
|
92 |
+
|
93 |
+
def aligned_sents(self, fileids=None):
|
94 |
+
"""
|
95 |
+
:return: the given file(s) as a list of AlignedSent objects.
|
96 |
+
:rtype: list(AlignedSent)
|
97 |
+
"""
|
98 |
+
return concat(
|
99 |
+
[
|
100 |
+
AlignedSentCorpusView(
|
101 |
+
fileid,
|
102 |
+
enc,
|
103 |
+
True,
|
104 |
+
True,
|
105 |
+
self._word_tokenizer,
|
106 |
+
self._sent_tokenizer,
|
107 |
+
self._alignedsent_block_reader,
|
108 |
+
)
|
109 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
110 |
+
]
|
111 |
+
)
|
112 |
+
|
113 |
+
|
114 |
+
class AlignedSentCorpusView(StreamBackedCorpusView):
|
115 |
+
"""
|
116 |
+
A specialized corpus view for aligned sentences.
|
117 |
+
``AlignedSentCorpusView`` objects are typically created by
|
118 |
+
``AlignedCorpusReader`` (not directly by nltk users).
|
119 |
+
"""
|
120 |
+
|
121 |
+
def __init__(
|
122 |
+
self,
|
123 |
+
corpus_file,
|
124 |
+
encoding,
|
125 |
+
aligned,
|
126 |
+
group_by_sent,
|
127 |
+
word_tokenizer,
|
128 |
+
sent_tokenizer,
|
129 |
+
alignedsent_block_reader,
|
130 |
+
):
|
131 |
+
self._aligned = aligned
|
132 |
+
self._group_by_sent = group_by_sent
|
133 |
+
self._word_tokenizer = word_tokenizer
|
134 |
+
self._sent_tokenizer = sent_tokenizer
|
135 |
+
self._alignedsent_block_reader = alignedsent_block_reader
|
136 |
+
StreamBackedCorpusView.__init__(self, corpus_file, encoding=encoding)
|
137 |
+
|
138 |
+
def read_block(self, stream):
|
139 |
+
block = [
|
140 |
+
self._word_tokenizer.tokenize(sent_str)
|
141 |
+
for alignedsent_str in self._alignedsent_block_reader(stream)
|
142 |
+
for sent_str in self._sent_tokenizer.tokenize(alignedsent_str)
|
143 |
+
]
|
144 |
+
if self._aligned:
|
145 |
+
block[2] = Alignment.fromstring(
|
146 |
+
" ".join(block[2])
|
147 |
+
) # kludge; we shouldn't have tokenized the alignment string
|
148 |
+
block = [AlignedSent(*block)]
|
149 |
+
elif self._group_by_sent:
|
150 |
+
block = [block[0]]
|
151 |
+
else:
|
152 |
+
block = block[0]
|
153 |
+
|
154 |
+
return block
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/chasen.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Copyright (C) 2001-2023 NLTK Project
|
3 |
+
# Author: Masato Hagiwara <[email protected]>
|
4 |
+
# URL: <https://www.nltk.org/>
|
5 |
+
# For license information, see LICENSE.TXT
|
6 |
+
|
7 |
+
import sys
|
8 |
+
|
9 |
+
from nltk.corpus.reader import util
|
10 |
+
from nltk.corpus.reader.api import *
|
11 |
+
from nltk.corpus.reader.util import *
|
12 |
+
|
13 |
+
|
14 |
+
class ChasenCorpusReader(CorpusReader):
|
15 |
+
def __init__(self, root, fileids, encoding="utf8", sent_splitter=None):
|
16 |
+
self._sent_splitter = sent_splitter
|
17 |
+
CorpusReader.__init__(self, root, fileids, encoding)
|
18 |
+
|
19 |
+
def words(self, fileids=None):
|
20 |
+
return concat(
|
21 |
+
[
|
22 |
+
ChasenCorpusView(fileid, enc, False, False, False, self._sent_splitter)
|
23 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
24 |
+
]
|
25 |
+
)
|
26 |
+
|
27 |
+
def tagged_words(self, fileids=None):
|
28 |
+
return concat(
|
29 |
+
[
|
30 |
+
ChasenCorpusView(fileid, enc, True, False, False, self._sent_splitter)
|
31 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
32 |
+
]
|
33 |
+
)
|
34 |
+
|
35 |
+
def sents(self, fileids=None):
|
36 |
+
return concat(
|
37 |
+
[
|
38 |
+
ChasenCorpusView(fileid, enc, False, True, False, self._sent_splitter)
|
39 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
40 |
+
]
|
41 |
+
)
|
42 |
+
|
43 |
+
def tagged_sents(self, fileids=None):
|
44 |
+
return concat(
|
45 |
+
[
|
46 |
+
ChasenCorpusView(fileid, enc, True, True, False, self._sent_splitter)
|
47 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
48 |
+
]
|
49 |
+
)
|
50 |
+
|
51 |
+
def paras(self, fileids=None):
|
52 |
+
return concat(
|
53 |
+
[
|
54 |
+
ChasenCorpusView(fileid, enc, False, True, True, self._sent_splitter)
|
55 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
56 |
+
]
|
57 |
+
)
|
58 |
+
|
59 |
+
def tagged_paras(self, fileids=None):
|
60 |
+
return concat(
|
61 |
+
[
|
62 |
+
ChasenCorpusView(fileid, enc, True, True, True, self._sent_splitter)
|
63 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
64 |
+
]
|
65 |
+
)
|
66 |
+
|
67 |
+
|
68 |
+
class ChasenCorpusView(StreamBackedCorpusView):
|
69 |
+
"""
|
70 |
+
A specialized corpus view for ChasenReader. Similar to ``TaggedCorpusView``,
|
71 |
+
but this'll use fixed sets of word and sentence tokenizer.
|
72 |
+
"""
|
73 |
+
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
corpus_file,
|
77 |
+
encoding,
|
78 |
+
tagged,
|
79 |
+
group_by_sent,
|
80 |
+
group_by_para,
|
81 |
+
sent_splitter=None,
|
82 |
+
):
|
83 |
+
self._tagged = tagged
|
84 |
+
self._group_by_sent = group_by_sent
|
85 |
+
self._group_by_para = group_by_para
|
86 |
+
self._sent_splitter = sent_splitter
|
87 |
+
StreamBackedCorpusView.__init__(self, corpus_file, encoding=encoding)
|
88 |
+
|
89 |
+
def read_block(self, stream):
|
90 |
+
"""Reads one paragraph at a time."""
|
91 |
+
block = []
|
92 |
+
for para_str in read_regexp_block(stream, r".", r"^EOS\n"):
|
93 |
+
|
94 |
+
para = []
|
95 |
+
|
96 |
+
sent = []
|
97 |
+
for line in para_str.splitlines():
|
98 |
+
|
99 |
+
_eos = line.strip() == "EOS"
|
100 |
+
_cells = line.split("\t")
|
101 |
+
w = (_cells[0], "\t".join(_cells[1:]))
|
102 |
+
if not _eos:
|
103 |
+
sent.append(w)
|
104 |
+
|
105 |
+
if _eos or (self._sent_splitter and self._sent_splitter(w)):
|
106 |
+
if not self._tagged:
|
107 |
+
sent = [w for (w, t) in sent]
|
108 |
+
if self._group_by_sent:
|
109 |
+
para.append(sent)
|
110 |
+
else:
|
111 |
+
para.extend(sent)
|
112 |
+
sent = []
|
113 |
+
|
114 |
+
if len(sent) > 0:
|
115 |
+
if not self._tagged:
|
116 |
+
sent = [w for (w, t) in sent]
|
117 |
+
|
118 |
+
if self._group_by_sent:
|
119 |
+
para.append(sent)
|
120 |
+
else:
|
121 |
+
para.extend(sent)
|
122 |
+
|
123 |
+
if self._group_by_para:
|
124 |
+
block.append(para)
|
125 |
+
else:
|
126 |
+
block.extend(para)
|
127 |
+
|
128 |
+
return block
|
129 |
+
|
130 |
+
|
131 |
+
def demo():
|
132 |
+
|
133 |
+
import nltk
|
134 |
+
from nltk.corpus.util import LazyCorpusLoader
|
135 |
+
|
136 |
+
jeita = LazyCorpusLoader("jeita", ChasenCorpusReader, r".*chasen", encoding="utf-8")
|
137 |
+
print("/".join(jeita.words()[22100:22140]))
|
138 |
+
|
139 |
+
print(
|
140 |
+
"\nEOS\n".join(
|
141 |
+
"\n".join("{}/{}".format(w[0], w[1].split("\t")[2]) for w in sent)
|
142 |
+
for sent in jeita.tagged_sents()[2170:2173]
|
143 |
+
)
|
144 |
+
)
|
145 |
+
|
146 |
+
|
147 |
+
def test():
|
148 |
+
|
149 |
+
from nltk.corpus.util import LazyCorpusLoader
|
150 |
+
|
151 |
+
jeita = LazyCorpusLoader("jeita", ChasenCorpusReader, r".*chasen", encoding="utf-8")
|
152 |
+
|
153 |
+
assert isinstance(jeita.tagged_words()[0][1], str)
|
154 |
+
|
155 |
+
|
156 |
+
if __name__ == "__main__":
|
157 |
+
demo()
|
158 |
+
test()
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/chunked.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Chunked Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bird <[email protected]>
|
5 |
+
# Edward Loper <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
"""
|
10 |
+
A reader for corpora that contain chunked (and optionally tagged)
|
11 |
+
documents.
|
12 |
+
"""
|
13 |
+
|
14 |
+
import codecs
|
15 |
+
import os.path
|
16 |
+
|
17 |
+
import nltk
|
18 |
+
from nltk.chunk import tagstr2tree
|
19 |
+
from nltk.corpus.reader.api import *
|
20 |
+
from nltk.corpus.reader.bracket_parse import BracketParseCorpusReader
|
21 |
+
from nltk.corpus.reader.util import *
|
22 |
+
from nltk.tokenize import *
|
23 |
+
from nltk.tree import Tree
|
24 |
+
|
25 |
+
|
26 |
+
class ChunkedCorpusReader(CorpusReader):
|
27 |
+
"""
|
28 |
+
Reader for chunked (and optionally tagged) corpora. Paragraphs
|
29 |
+
are split using a block reader. They are then tokenized into
|
30 |
+
sentences using a sentence tokenizer. Finally, these sentences
|
31 |
+
are parsed into chunk trees using a string-to-chunktree conversion
|
32 |
+
function. Each of these steps can be performed using a default
|
33 |
+
function or a custom function. By default, paragraphs are split
|
34 |
+
on blank lines; sentences are listed one per line; and sentences
|
35 |
+
are parsed into chunk trees using ``nltk.chunk.tagstr2tree``.
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
root,
|
41 |
+
fileids,
|
42 |
+
extension="",
|
43 |
+
str2chunktree=tagstr2tree,
|
44 |
+
sent_tokenizer=RegexpTokenizer("\n", gaps=True),
|
45 |
+
para_block_reader=read_blankline_block,
|
46 |
+
encoding="utf8",
|
47 |
+
tagset=None,
|
48 |
+
):
|
49 |
+
"""
|
50 |
+
:param root: The root directory for this corpus.
|
51 |
+
:param fileids: A list or regexp specifying the fileids in this corpus.
|
52 |
+
"""
|
53 |
+
CorpusReader.__init__(self, root, fileids, encoding)
|
54 |
+
self._cv_args = (str2chunktree, sent_tokenizer, para_block_reader, tagset)
|
55 |
+
"""Arguments for corpus views generated by this corpus: a tuple
|
56 |
+
(str2chunktree, sent_tokenizer, para_block_tokenizer)"""
|
57 |
+
|
58 |
+
def words(self, fileids=None):
|
59 |
+
"""
|
60 |
+
:return: the given file(s) as a list of words
|
61 |
+
and punctuation symbols.
|
62 |
+
:rtype: list(str)
|
63 |
+
"""
|
64 |
+
return concat(
|
65 |
+
[
|
66 |
+
ChunkedCorpusView(f, enc, 0, 0, 0, 0, *self._cv_args)
|
67 |
+
for (f, enc) in self.abspaths(fileids, True)
|
68 |
+
]
|
69 |
+
)
|
70 |
+
|
71 |
+
def sents(self, fileids=None):
|
72 |
+
"""
|
73 |
+
:return: the given file(s) as a list of
|
74 |
+
sentences or utterances, each encoded as a list of word
|
75 |
+
strings.
|
76 |
+
:rtype: list(list(str))
|
77 |
+
"""
|
78 |
+
return concat(
|
79 |
+
[
|
80 |
+
ChunkedCorpusView(f, enc, 0, 1, 0, 0, *self._cv_args)
|
81 |
+
for (f, enc) in self.abspaths(fileids, True)
|
82 |
+
]
|
83 |
+
)
|
84 |
+
|
85 |
+
def paras(self, fileids=None):
|
86 |
+
"""
|
87 |
+
:return: the given file(s) as a list of
|
88 |
+
paragraphs, each encoded as a list of sentences, which are
|
89 |
+
in turn encoded as lists of word strings.
|
90 |
+
:rtype: list(list(list(str)))
|
91 |
+
"""
|
92 |
+
return concat(
|
93 |
+
[
|
94 |
+
ChunkedCorpusView(f, enc, 0, 1, 1, 0, *self._cv_args)
|
95 |
+
for (f, enc) in self.abspaths(fileids, True)
|
96 |
+
]
|
97 |
+
)
|
98 |
+
|
99 |
+
def tagged_words(self, fileids=None, tagset=None):
|
100 |
+
"""
|
101 |
+
:return: the given file(s) as a list of tagged
|
102 |
+
words and punctuation symbols, encoded as tuples
|
103 |
+
``(word,tag)``.
|
104 |
+
:rtype: list(tuple(str,str))
|
105 |
+
"""
|
106 |
+
return concat(
|
107 |
+
[
|
108 |
+
ChunkedCorpusView(
|
109 |
+
f, enc, 1, 0, 0, 0, *self._cv_args, target_tagset=tagset
|
110 |
+
)
|
111 |
+
for (f, enc) in self.abspaths(fileids, True)
|
112 |
+
]
|
113 |
+
)
|
114 |
+
|
115 |
+
def tagged_sents(self, fileids=None, tagset=None):
|
116 |
+
"""
|
117 |
+
:return: the given file(s) as a list of
|
118 |
+
sentences, each encoded as a list of ``(word,tag)`` tuples.
|
119 |
+
|
120 |
+
:rtype: list(list(tuple(str,str)))
|
121 |
+
"""
|
122 |
+
return concat(
|
123 |
+
[
|
124 |
+
ChunkedCorpusView(
|
125 |
+
f, enc, 1, 1, 0, 0, *self._cv_args, target_tagset=tagset
|
126 |
+
)
|
127 |
+
for (f, enc) in self.abspaths(fileids, True)
|
128 |
+
]
|
129 |
+
)
|
130 |
+
|
131 |
+
def tagged_paras(self, fileids=None, tagset=None):
|
132 |
+
"""
|
133 |
+
:return: the given file(s) as a list of
|
134 |
+
paragraphs, each encoded as a list of sentences, which are
|
135 |
+
in turn encoded as lists of ``(word,tag)`` tuples.
|
136 |
+
:rtype: list(list(list(tuple(str,str))))
|
137 |
+
"""
|
138 |
+
return concat(
|
139 |
+
[
|
140 |
+
ChunkedCorpusView(
|
141 |
+
f, enc, 1, 1, 1, 0, *self._cv_args, target_tagset=tagset
|
142 |
+
)
|
143 |
+
for (f, enc) in self.abspaths(fileids, True)
|
144 |
+
]
|
145 |
+
)
|
146 |
+
|
147 |
+
def chunked_words(self, fileids=None, tagset=None):
|
148 |
+
"""
|
149 |
+
:return: the given file(s) as a list of tagged
|
150 |
+
words and chunks. Words are encoded as ``(word, tag)``
|
151 |
+
tuples (if the corpus has tags) or word strings (if the
|
152 |
+
corpus has no tags). Chunks are encoded as depth-one
|
153 |
+
trees over ``(word,tag)`` tuples or word strings.
|
154 |
+
:rtype: list(tuple(str,str) and Tree)
|
155 |
+
"""
|
156 |
+
return concat(
|
157 |
+
[
|
158 |
+
ChunkedCorpusView(
|
159 |
+
f, enc, 1, 0, 0, 1, *self._cv_args, target_tagset=tagset
|
160 |
+
)
|
161 |
+
for (f, enc) in self.abspaths(fileids, True)
|
162 |
+
]
|
163 |
+
)
|
164 |
+
|
165 |
+
def chunked_sents(self, fileids=None, tagset=None):
|
166 |
+
"""
|
167 |
+
:return: the given file(s) as a list of
|
168 |
+
sentences, each encoded as a shallow Tree. The leaves
|
169 |
+
of these trees are encoded as ``(word, tag)`` tuples (if
|
170 |
+
the corpus has tags) or word strings (if the corpus has no
|
171 |
+
tags).
|
172 |
+
:rtype: list(Tree)
|
173 |
+
"""
|
174 |
+
return concat(
|
175 |
+
[
|
176 |
+
ChunkedCorpusView(
|
177 |
+
f, enc, 1, 1, 0, 1, *self._cv_args, target_tagset=tagset
|
178 |
+
)
|
179 |
+
for (f, enc) in self.abspaths(fileids, True)
|
180 |
+
]
|
181 |
+
)
|
182 |
+
|
183 |
+
def chunked_paras(self, fileids=None, tagset=None):
|
184 |
+
"""
|
185 |
+
:return: the given file(s) as a list of
|
186 |
+
paragraphs, each encoded as a list of sentences, which are
|
187 |
+
in turn encoded as a shallow Tree. The leaves of these
|
188 |
+
trees are encoded as ``(word, tag)`` tuples (if the corpus
|
189 |
+
has tags) or word strings (if the corpus has no tags).
|
190 |
+
:rtype: list(list(Tree))
|
191 |
+
"""
|
192 |
+
return concat(
|
193 |
+
[
|
194 |
+
ChunkedCorpusView(
|
195 |
+
f, enc, 1, 1, 1, 1, *self._cv_args, target_tagset=tagset
|
196 |
+
)
|
197 |
+
for (f, enc) in self.abspaths(fileids, True)
|
198 |
+
]
|
199 |
+
)
|
200 |
+
|
201 |
+
def _read_block(self, stream):
|
202 |
+
return [tagstr2tree(t) for t in read_blankline_block(stream)]
|
203 |
+
|
204 |
+
|
205 |
+
class ChunkedCorpusView(StreamBackedCorpusView):
|
206 |
+
def __init__(
|
207 |
+
self,
|
208 |
+
fileid,
|
209 |
+
encoding,
|
210 |
+
tagged,
|
211 |
+
group_by_sent,
|
212 |
+
group_by_para,
|
213 |
+
chunked,
|
214 |
+
str2chunktree,
|
215 |
+
sent_tokenizer,
|
216 |
+
para_block_reader,
|
217 |
+
source_tagset=None,
|
218 |
+
target_tagset=None,
|
219 |
+
):
|
220 |
+
StreamBackedCorpusView.__init__(self, fileid, encoding=encoding)
|
221 |
+
self._tagged = tagged
|
222 |
+
self._group_by_sent = group_by_sent
|
223 |
+
self._group_by_para = group_by_para
|
224 |
+
self._chunked = chunked
|
225 |
+
self._str2chunktree = str2chunktree
|
226 |
+
self._sent_tokenizer = sent_tokenizer
|
227 |
+
self._para_block_reader = para_block_reader
|
228 |
+
self._source_tagset = source_tagset
|
229 |
+
self._target_tagset = target_tagset
|
230 |
+
|
231 |
+
def read_block(self, stream):
|
232 |
+
block = []
|
233 |
+
for para_str in self._para_block_reader(stream):
|
234 |
+
para = []
|
235 |
+
for sent_str in self._sent_tokenizer.tokenize(para_str):
|
236 |
+
sent = self._str2chunktree(
|
237 |
+
sent_str,
|
238 |
+
source_tagset=self._source_tagset,
|
239 |
+
target_tagset=self._target_tagset,
|
240 |
+
)
|
241 |
+
|
242 |
+
# If requested, throw away the tags.
|
243 |
+
if not self._tagged:
|
244 |
+
sent = self._untag(sent)
|
245 |
+
|
246 |
+
# If requested, throw away the chunks.
|
247 |
+
if not self._chunked:
|
248 |
+
sent = sent.leaves()
|
249 |
+
|
250 |
+
# Add the sentence to `para`.
|
251 |
+
if self._group_by_sent:
|
252 |
+
para.append(sent)
|
253 |
+
else:
|
254 |
+
para.extend(sent)
|
255 |
+
|
256 |
+
# Add the paragraph to `block`.
|
257 |
+
if self._group_by_para:
|
258 |
+
block.append(para)
|
259 |
+
else:
|
260 |
+
block.extend(para)
|
261 |
+
|
262 |
+
# Return the block
|
263 |
+
return block
|
264 |
+
|
265 |
+
def _untag(self, tree):
|
266 |
+
for i, child in enumerate(tree):
|
267 |
+
if isinstance(child, Tree):
|
268 |
+
self._untag(child)
|
269 |
+
elif isinstance(child, tuple):
|
270 |
+
tree[i] = child[0]
|
271 |
+
else:
|
272 |
+
raise ValueError("expected child to be Tree or tuple")
|
273 |
+
return tree
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/cmudict.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Carnegie Mellon Pronouncing Dictionary Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bird <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
The Carnegie Mellon Pronouncing Dictionary [cmudict.0.6]
|
10 |
+
ftp://ftp.cs.cmu.edu/project/speech/dict/
|
11 |
+
Copyright 1998 Carnegie Mellon University
|
12 |
+
|
13 |
+
File Format: Each line consists of an uppercased word, a counter
|
14 |
+
(for alternative pronunciations), and a transcription. Vowels are
|
15 |
+
marked for stress (1=primary, 2=secondary, 0=no stress). E.g.:
|
16 |
+
NATURAL 1 N AE1 CH ER0 AH0 L
|
17 |
+
|
18 |
+
The dictionary contains 127069 entries. Of these, 119400 words are assigned
|
19 |
+
a unique pronunciation, 6830 words have two pronunciations, and 839 words have
|
20 |
+
three or more pronunciations. Many of these are fast-speech variants.
|
21 |
+
|
22 |
+
Phonemes: There are 39 phonemes, as shown below:
|
23 |
+
|
24 |
+
Phoneme Example Translation Phoneme Example Translation
|
25 |
+
------- ------- ----------- ------- ------- -----------
|
26 |
+
AA odd AA D AE at AE T
|
27 |
+
AH hut HH AH T AO ought AO T
|
28 |
+
AW cow K AW AY hide HH AY D
|
29 |
+
B be B IY CH cheese CH IY Z
|
30 |
+
D dee D IY DH thee DH IY
|
31 |
+
EH Ed EH D ER hurt HH ER T
|
32 |
+
EY ate EY T F fee F IY
|
33 |
+
G green G R IY N HH he HH IY
|
34 |
+
IH it IH T IY eat IY T
|
35 |
+
JH gee JH IY K key K IY
|
36 |
+
L lee L IY M me M IY
|
37 |
+
N knee N IY NG ping P IH NG
|
38 |
+
OW oat OW T OY toy T OY
|
39 |
+
P pee P IY R read R IY D
|
40 |
+
S sea S IY SH she SH IY
|
41 |
+
T tea T IY TH theta TH EY T AH
|
42 |
+
UH hood HH UH D UW two T UW
|
43 |
+
V vee V IY W we W IY
|
44 |
+
Y yield Y IY L D Z zee Z IY
|
45 |
+
ZH seizure S IY ZH ER
|
46 |
+
"""
|
47 |
+
|
48 |
+
from nltk.corpus.reader.api import *
|
49 |
+
from nltk.corpus.reader.util import *
|
50 |
+
from nltk.util import Index
|
51 |
+
|
52 |
+
|
53 |
+
class CMUDictCorpusReader(CorpusReader):
|
54 |
+
def entries(self):
|
55 |
+
"""
|
56 |
+
:return: the cmudict lexicon as a list of entries
|
57 |
+
containing (word, transcriptions) tuples.
|
58 |
+
"""
|
59 |
+
return concat(
|
60 |
+
[
|
61 |
+
StreamBackedCorpusView(fileid, read_cmudict_block, encoding=enc)
|
62 |
+
for fileid, enc in self.abspaths(None, True)
|
63 |
+
]
|
64 |
+
)
|
65 |
+
|
66 |
+
def words(self):
|
67 |
+
"""
|
68 |
+
:return: a list of all words defined in the cmudict lexicon.
|
69 |
+
"""
|
70 |
+
return [word.lower() for (word, _) in self.entries()]
|
71 |
+
|
72 |
+
def dict(self):
|
73 |
+
"""
|
74 |
+
:return: the cmudict lexicon as a dictionary, whose keys are
|
75 |
+
lowercase words and whose values are lists of pronunciations.
|
76 |
+
"""
|
77 |
+
return dict(Index(self.entries()))
|
78 |
+
|
79 |
+
|
80 |
+
def read_cmudict_block(stream):
|
81 |
+
entries = []
|
82 |
+
while len(entries) < 100: # Read 100 at a time.
|
83 |
+
line = stream.readline()
|
84 |
+
if line == "":
|
85 |
+
return entries # end of file.
|
86 |
+
pieces = line.split()
|
87 |
+
entries.append((pieces[0].lower(), pieces[2:]))
|
88 |
+
return entries
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/conll.py
ADDED
@@ -0,0 +1,579 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: CONLL Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bird <[email protected]>
|
5 |
+
# Edward Loper <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
"""
|
10 |
+
Read CoNLL-style chunk fileids.
|
11 |
+
"""
|
12 |
+
|
13 |
+
import textwrap
|
14 |
+
|
15 |
+
from nltk.corpus.reader.api import *
|
16 |
+
from nltk.corpus.reader.util import *
|
17 |
+
from nltk.tag import map_tag
|
18 |
+
from nltk.tree import Tree
|
19 |
+
from nltk.util import LazyConcatenation, LazyMap
|
20 |
+
|
21 |
+
|
22 |
+
class ConllCorpusReader(CorpusReader):
|
23 |
+
"""
|
24 |
+
A corpus reader for CoNLL-style files. These files consist of a
|
25 |
+
series of sentences, separated by blank lines. Each sentence is
|
26 |
+
encoded using a table (or "grid") of values, where each line
|
27 |
+
corresponds to a single word, and each column corresponds to an
|
28 |
+
annotation type. The set of columns used by CoNLL-style files can
|
29 |
+
vary from corpus to corpus; the ``ConllCorpusReader`` constructor
|
30 |
+
therefore takes an argument, ``columntypes``, which is used to
|
31 |
+
specify the columns that are used by a given corpus. By default
|
32 |
+
columns are split by consecutive whitespaces, with the
|
33 |
+
``separator`` argument you can set a string to split by (e.g.
|
34 |
+
``\'\t\'``).
|
35 |
+
|
36 |
+
|
37 |
+
@todo: Add support for reading from corpora where different
|
38 |
+
parallel files contain different columns.
|
39 |
+
@todo: Possibly add caching of the grid corpus view? This would
|
40 |
+
allow the same grid view to be used by different data access
|
41 |
+
methods (eg words() and parsed_sents() could both share the
|
42 |
+
same grid corpus view object).
|
43 |
+
@todo: Better support for -DOCSTART-. Currently, we just ignore
|
44 |
+
it, but it could be used to define methods that retrieve a
|
45 |
+
document at a time (eg parsed_documents()).
|
46 |
+
"""
|
47 |
+
|
48 |
+
# /////////////////////////////////////////////////////////////////
|
49 |
+
# Column Types
|
50 |
+
# /////////////////////////////////////////////////////////////////
|
51 |
+
|
52 |
+
WORDS = "words" #: column type for words
|
53 |
+
POS = "pos" #: column type for part-of-speech tags
|
54 |
+
TREE = "tree" #: column type for parse trees
|
55 |
+
CHUNK = "chunk" #: column type for chunk structures
|
56 |
+
NE = "ne" #: column type for named entities
|
57 |
+
SRL = "srl" #: column type for semantic role labels
|
58 |
+
IGNORE = "ignore" #: column type for column that should be ignored
|
59 |
+
|
60 |
+
#: A list of all column types supported by the conll corpus reader.
|
61 |
+
COLUMN_TYPES = (WORDS, POS, TREE, CHUNK, NE, SRL, IGNORE)
|
62 |
+
|
63 |
+
# /////////////////////////////////////////////////////////////////
|
64 |
+
# Constructor
|
65 |
+
# /////////////////////////////////////////////////////////////////
|
66 |
+
|
67 |
+
def __init__(
|
68 |
+
self,
|
69 |
+
root,
|
70 |
+
fileids,
|
71 |
+
columntypes,
|
72 |
+
chunk_types=None,
|
73 |
+
root_label="S",
|
74 |
+
pos_in_tree=False,
|
75 |
+
srl_includes_roleset=True,
|
76 |
+
encoding="utf8",
|
77 |
+
tree_class=Tree,
|
78 |
+
tagset=None,
|
79 |
+
separator=None,
|
80 |
+
):
|
81 |
+
for columntype in columntypes:
|
82 |
+
if columntype not in self.COLUMN_TYPES:
|
83 |
+
raise ValueError("Bad column type %r" % columntype)
|
84 |
+
if isinstance(chunk_types, str):
|
85 |
+
chunk_types = [chunk_types]
|
86 |
+
self._chunk_types = chunk_types
|
87 |
+
self._colmap = {c: i for (i, c) in enumerate(columntypes)}
|
88 |
+
self._pos_in_tree = pos_in_tree
|
89 |
+
self._root_label = root_label # for chunks
|
90 |
+
self._srl_includes_roleset = srl_includes_roleset
|
91 |
+
self._tree_class = tree_class
|
92 |
+
CorpusReader.__init__(self, root, fileids, encoding)
|
93 |
+
self._tagset = tagset
|
94 |
+
self.sep = separator
|
95 |
+
|
96 |
+
# /////////////////////////////////////////////////////////////////
|
97 |
+
# Data Access Methods
|
98 |
+
# /////////////////////////////////////////////////////////////////
|
99 |
+
|
100 |
+
def words(self, fileids=None):
|
101 |
+
self._require(self.WORDS)
|
102 |
+
return LazyConcatenation(LazyMap(self._get_words, self._grids(fileids)))
|
103 |
+
|
104 |
+
def sents(self, fileids=None):
|
105 |
+
self._require(self.WORDS)
|
106 |
+
return LazyMap(self._get_words, self._grids(fileids))
|
107 |
+
|
108 |
+
def tagged_words(self, fileids=None, tagset=None):
|
109 |
+
self._require(self.WORDS, self.POS)
|
110 |
+
|
111 |
+
def get_tagged_words(grid):
|
112 |
+
return self._get_tagged_words(grid, tagset)
|
113 |
+
|
114 |
+
return LazyConcatenation(LazyMap(get_tagged_words, self._grids(fileids)))
|
115 |
+
|
116 |
+
def tagged_sents(self, fileids=None, tagset=None):
|
117 |
+
self._require(self.WORDS, self.POS)
|
118 |
+
|
119 |
+
def get_tagged_words(grid):
|
120 |
+
return self._get_tagged_words(grid, tagset)
|
121 |
+
|
122 |
+
return LazyMap(get_tagged_words, self._grids(fileids))
|
123 |
+
|
124 |
+
def chunked_words(self, fileids=None, chunk_types=None, tagset=None):
|
125 |
+
self._require(self.WORDS, self.POS, self.CHUNK)
|
126 |
+
if chunk_types is None:
|
127 |
+
chunk_types = self._chunk_types
|
128 |
+
|
129 |
+
def get_chunked_words(grid): # capture chunk_types as local var
|
130 |
+
return self._get_chunked_words(grid, chunk_types, tagset)
|
131 |
+
|
132 |
+
return LazyConcatenation(LazyMap(get_chunked_words, self._grids(fileids)))
|
133 |
+
|
134 |
+
def chunked_sents(self, fileids=None, chunk_types=None, tagset=None):
|
135 |
+
self._require(self.WORDS, self.POS, self.CHUNK)
|
136 |
+
if chunk_types is None:
|
137 |
+
chunk_types = self._chunk_types
|
138 |
+
|
139 |
+
def get_chunked_words(grid): # capture chunk_types as local var
|
140 |
+
return self._get_chunked_words(grid, chunk_types, tagset)
|
141 |
+
|
142 |
+
return LazyMap(get_chunked_words, self._grids(fileids))
|
143 |
+
|
144 |
+
def parsed_sents(self, fileids=None, pos_in_tree=None, tagset=None):
|
145 |
+
self._require(self.WORDS, self.POS, self.TREE)
|
146 |
+
if pos_in_tree is None:
|
147 |
+
pos_in_tree = self._pos_in_tree
|
148 |
+
|
149 |
+
def get_parsed_sent(grid): # capture pos_in_tree as local var
|
150 |
+
return self._get_parsed_sent(grid, pos_in_tree, tagset)
|
151 |
+
|
152 |
+
return LazyMap(get_parsed_sent, self._grids(fileids))
|
153 |
+
|
154 |
+
def srl_spans(self, fileids=None):
|
155 |
+
self._require(self.SRL)
|
156 |
+
return LazyMap(self._get_srl_spans, self._grids(fileids))
|
157 |
+
|
158 |
+
def srl_instances(self, fileids=None, pos_in_tree=None, flatten=True):
|
159 |
+
self._require(self.WORDS, self.POS, self.TREE, self.SRL)
|
160 |
+
if pos_in_tree is None:
|
161 |
+
pos_in_tree = self._pos_in_tree
|
162 |
+
|
163 |
+
def get_srl_instances(grid): # capture pos_in_tree as local var
|
164 |
+
return self._get_srl_instances(grid, pos_in_tree)
|
165 |
+
|
166 |
+
result = LazyMap(get_srl_instances, self._grids(fileids))
|
167 |
+
if flatten:
|
168 |
+
result = LazyConcatenation(result)
|
169 |
+
return result
|
170 |
+
|
171 |
+
def iob_words(self, fileids=None, tagset=None):
|
172 |
+
"""
|
173 |
+
:return: a list of word/tag/IOB tuples
|
174 |
+
:rtype: list(tuple)
|
175 |
+
:param fileids: the list of fileids that make up this corpus
|
176 |
+
:type fileids: None or str or list
|
177 |
+
"""
|
178 |
+
self._require(self.WORDS, self.POS, self.CHUNK)
|
179 |
+
|
180 |
+
def get_iob_words(grid):
|
181 |
+
return self._get_iob_words(grid, tagset)
|
182 |
+
|
183 |
+
return LazyConcatenation(LazyMap(get_iob_words, self._grids(fileids)))
|
184 |
+
|
185 |
+
def iob_sents(self, fileids=None, tagset=None):
|
186 |
+
"""
|
187 |
+
:return: a list of lists of word/tag/IOB tuples
|
188 |
+
:rtype: list(list)
|
189 |
+
:param fileids: the list of fileids that make up this corpus
|
190 |
+
:type fileids: None or str or list
|
191 |
+
"""
|
192 |
+
self._require(self.WORDS, self.POS, self.CHUNK)
|
193 |
+
|
194 |
+
def get_iob_words(grid):
|
195 |
+
return self._get_iob_words(grid, tagset)
|
196 |
+
|
197 |
+
return LazyMap(get_iob_words, self._grids(fileids))
|
198 |
+
|
199 |
+
# /////////////////////////////////////////////////////////////////
|
200 |
+
# Grid Reading
|
201 |
+
# /////////////////////////////////////////////////////////////////
|
202 |
+
|
203 |
+
def _grids(self, fileids=None):
|
204 |
+
# n.b.: we could cache the object returned here (keyed on
|
205 |
+
# fileids), which would let us reuse the same corpus view for
|
206 |
+
# different things (eg srl and parse trees).
|
207 |
+
return concat(
|
208 |
+
[
|
209 |
+
StreamBackedCorpusView(fileid, self._read_grid_block, encoding=enc)
|
210 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
211 |
+
]
|
212 |
+
)
|
213 |
+
|
214 |
+
def _read_grid_block(self, stream):
|
215 |
+
grids = []
|
216 |
+
for block in read_blankline_block(stream):
|
217 |
+
block = block.strip()
|
218 |
+
if not block:
|
219 |
+
continue
|
220 |
+
|
221 |
+
grid = [line.split(self.sep) for line in block.split("\n")]
|
222 |
+
|
223 |
+
# If there's a docstart row, then discard. ([xx] eventually it
|
224 |
+
# would be good to actually use it)
|
225 |
+
if grid[0][self._colmap.get("words", 0)] == "-DOCSTART-":
|
226 |
+
del grid[0]
|
227 |
+
|
228 |
+
# Check that the grid is consistent.
|
229 |
+
for row in grid:
|
230 |
+
if len(row) != len(grid[0]):
|
231 |
+
raise ValueError("Inconsistent number of columns:\n%s" % block)
|
232 |
+
grids.append(grid)
|
233 |
+
return grids
|
234 |
+
|
235 |
+
# /////////////////////////////////////////////////////////////////
|
236 |
+
# Transforms
|
237 |
+
# /////////////////////////////////////////////////////////////////
|
238 |
+
# given a grid, transform it into some representation (e.g.,
|
239 |
+
# a list of words or a parse tree).
|
240 |
+
|
241 |
+
def _get_words(self, grid):
|
242 |
+
return self._get_column(grid, self._colmap["words"])
|
243 |
+
|
244 |
+
def _get_tagged_words(self, grid, tagset=None):
|
245 |
+
pos_tags = self._get_column(grid, self._colmap["pos"])
|
246 |
+
if tagset and tagset != self._tagset:
|
247 |
+
pos_tags = [map_tag(self._tagset, tagset, t) for t in pos_tags]
|
248 |
+
return list(zip(self._get_column(grid, self._colmap["words"]), pos_tags))
|
249 |
+
|
250 |
+
def _get_iob_words(self, grid, tagset=None):
|
251 |
+
pos_tags = self._get_column(grid, self._colmap["pos"])
|
252 |
+
if tagset and tagset != self._tagset:
|
253 |
+
pos_tags = [map_tag(self._tagset, tagset, t) for t in pos_tags]
|
254 |
+
return list(
|
255 |
+
zip(
|
256 |
+
self._get_column(grid, self._colmap["words"]),
|
257 |
+
pos_tags,
|
258 |
+
self._get_column(grid, self._colmap["chunk"]),
|
259 |
+
)
|
260 |
+
)
|
261 |
+
|
262 |
+
def _get_chunked_words(self, grid, chunk_types, tagset=None):
|
263 |
+
# n.b.: this method is very similar to conllstr2tree.
|
264 |
+
words = self._get_column(grid, self._colmap["words"])
|
265 |
+
pos_tags = self._get_column(grid, self._colmap["pos"])
|
266 |
+
if tagset and tagset != self._tagset:
|
267 |
+
pos_tags = [map_tag(self._tagset, tagset, t) for t in pos_tags]
|
268 |
+
chunk_tags = self._get_column(grid, self._colmap["chunk"])
|
269 |
+
|
270 |
+
stack = [Tree(self._root_label, [])]
|
271 |
+
|
272 |
+
for (word, pos_tag, chunk_tag) in zip(words, pos_tags, chunk_tags):
|
273 |
+
if chunk_tag == "O":
|
274 |
+
state, chunk_type = "O", ""
|
275 |
+
else:
|
276 |
+
(state, chunk_type) = chunk_tag.split("-")
|
277 |
+
# If it's a chunk we don't care about, treat it as O.
|
278 |
+
if chunk_types is not None and chunk_type not in chunk_types:
|
279 |
+
state = "O"
|
280 |
+
# Treat a mismatching I like a B.
|
281 |
+
if state == "I" and chunk_type != stack[-1].label():
|
282 |
+
state = "B"
|
283 |
+
# For B or I: close any open chunks
|
284 |
+
if state in "BO" and len(stack) == 2:
|
285 |
+
stack.pop()
|
286 |
+
# For B: start a new chunk.
|
287 |
+
if state == "B":
|
288 |
+
new_chunk = Tree(chunk_type, [])
|
289 |
+
stack[-1].append(new_chunk)
|
290 |
+
stack.append(new_chunk)
|
291 |
+
# Add the word token.
|
292 |
+
stack[-1].append((word, pos_tag))
|
293 |
+
|
294 |
+
return stack[0]
|
295 |
+
|
296 |
+
def _get_parsed_sent(self, grid, pos_in_tree, tagset=None):
|
297 |
+
words = self._get_column(grid, self._colmap["words"])
|
298 |
+
pos_tags = self._get_column(grid, self._colmap["pos"])
|
299 |
+
if tagset and tagset != self._tagset:
|
300 |
+
pos_tags = [map_tag(self._tagset, tagset, t) for t in pos_tags]
|
301 |
+
parse_tags = self._get_column(grid, self._colmap["tree"])
|
302 |
+
|
303 |
+
treestr = ""
|
304 |
+
for (word, pos_tag, parse_tag) in zip(words, pos_tags, parse_tags):
|
305 |
+
if word == "(":
|
306 |
+
word = "-LRB-"
|
307 |
+
if word == ")":
|
308 |
+
word = "-RRB-"
|
309 |
+
if pos_tag == "(":
|
310 |
+
pos_tag = "-LRB-"
|
311 |
+
if pos_tag == ")":
|
312 |
+
pos_tag = "-RRB-"
|
313 |
+
(left, right) = parse_tag.split("*")
|
314 |
+
right = right.count(")") * ")" # only keep ')'.
|
315 |
+
treestr += f"{left} ({pos_tag} {word}) {right}"
|
316 |
+
try:
|
317 |
+
tree = self._tree_class.fromstring(treestr)
|
318 |
+
except (ValueError, IndexError):
|
319 |
+
tree = self._tree_class.fromstring(f"({self._root_label} {treestr})")
|
320 |
+
|
321 |
+
if not pos_in_tree:
|
322 |
+
for subtree in tree.subtrees():
|
323 |
+
for i, child in enumerate(subtree):
|
324 |
+
if (
|
325 |
+
isinstance(child, Tree)
|
326 |
+
and len(child) == 1
|
327 |
+
and isinstance(child[0], str)
|
328 |
+
):
|
329 |
+
subtree[i] = (child[0], child.label())
|
330 |
+
|
331 |
+
return tree
|
332 |
+
|
333 |
+
def _get_srl_spans(self, grid):
|
334 |
+
"""
|
335 |
+
list of list of (start, end), tag) tuples
|
336 |
+
"""
|
337 |
+
if self._srl_includes_roleset:
|
338 |
+
predicates = self._get_column(grid, self._colmap["srl"] + 1)
|
339 |
+
start_col = self._colmap["srl"] + 2
|
340 |
+
else:
|
341 |
+
predicates = self._get_column(grid, self._colmap["srl"])
|
342 |
+
start_col = self._colmap["srl"] + 1
|
343 |
+
|
344 |
+
# Count how many predicates there are. This tells us how many
|
345 |
+
# columns to expect for SRL data.
|
346 |
+
num_preds = len([p for p in predicates if p != "-"])
|
347 |
+
|
348 |
+
spanlists = []
|
349 |
+
for i in range(num_preds):
|
350 |
+
col = self._get_column(grid, start_col + i)
|
351 |
+
spanlist = []
|
352 |
+
stack = []
|
353 |
+
for wordnum, srl_tag in enumerate(col):
|
354 |
+
(left, right) = srl_tag.split("*")
|
355 |
+
for tag in left.split("("):
|
356 |
+
if tag:
|
357 |
+
stack.append((tag, wordnum))
|
358 |
+
for i in range(right.count(")")):
|
359 |
+
(tag, start) = stack.pop()
|
360 |
+
spanlist.append(((start, wordnum + 1), tag))
|
361 |
+
spanlists.append(spanlist)
|
362 |
+
|
363 |
+
return spanlists
|
364 |
+
|
365 |
+
def _get_srl_instances(self, grid, pos_in_tree):
|
366 |
+
tree = self._get_parsed_sent(grid, pos_in_tree)
|
367 |
+
spanlists = self._get_srl_spans(grid)
|
368 |
+
if self._srl_includes_roleset:
|
369 |
+
predicates = self._get_column(grid, self._colmap["srl"] + 1)
|
370 |
+
rolesets = self._get_column(grid, self._colmap["srl"])
|
371 |
+
else:
|
372 |
+
predicates = self._get_column(grid, self._colmap["srl"])
|
373 |
+
rolesets = [None] * len(predicates)
|
374 |
+
|
375 |
+
instances = ConllSRLInstanceList(tree)
|
376 |
+
for wordnum, predicate in enumerate(predicates):
|
377 |
+
if predicate == "-":
|
378 |
+
continue
|
379 |
+
# Decide which spanlist to use. Don't assume that they're
|
380 |
+
# sorted in the same order as the predicates (even though
|
381 |
+
# they usually are).
|
382 |
+
for spanlist in spanlists:
|
383 |
+
for (start, end), tag in spanlist:
|
384 |
+
if wordnum in range(start, end) and tag in ("V", "C-V"):
|
385 |
+
break
|
386 |
+
else:
|
387 |
+
continue
|
388 |
+
break
|
389 |
+
else:
|
390 |
+
raise ValueError("No srl column found for %r" % predicate)
|
391 |
+
instances.append(
|
392 |
+
ConllSRLInstance(tree, wordnum, predicate, rolesets[wordnum], spanlist)
|
393 |
+
)
|
394 |
+
|
395 |
+
return instances
|
396 |
+
|
397 |
+
# /////////////////////////////////////////////////////////////////
|
398 |
+
# Helper Methods
|
399 |
+
# /////////////////////////////////////////////////////////////////
|
400 |
+
|
401 |
+
def _require(self, *columntypes):
|
402 |
+
for columntype in columntypes:
|
403 |
+
if columntype not in self._colmap:
|
404 |
+
raise ValueError(
|
405 |
+
"This corpus does not contain a %s " "column." % columntype
|
406 |
+
)
|
407 |
+
|
408 |
+
@staticmethod
|
409 |
+
def _get_column(grid, column_index):
|
410 |
+
return [grid[i][column_index] for i in range(len(grid))]
|
411 |
+
|
412 |
+
|
413 |
+
class ConllSRLInstance:
|
414 |
+
"""
|
415 |
+
An SRL instance from a CoNLL corpus, which identifies and
|
416 |
+
providing labels for the arguments of a single verb.
|
417 |
+
"""
|
418 |
+
|
419 |
+
# [xx] add inst.core_arguments, inst.argm_arguments?
|
420 |
+
|
421 |
+
def __init__(self, tree, verb_head, verb_stem, roleset, tagged_spans):
|
422 |
+
self.verb = []
|
423 |
+
"""A list of the word indices of the words that compose the
|
424 |
+
verb whose arguments are identified by this instance.
|
425 |
+
This will contain multiple word indices when multi-word
|
426 |
+
verbs are used (e.g. 'turn on')."""
|
427 |
+
|
428 |
+
self.verb_head = verb_head
|
429 |
+
"""The word index of the head word of the verb whose arguments
|
430 |
+
are identified by this instance. E.g., for a sentence that
|
431 |
+
uses the verb 'turn on,' ``verb_head`` will be the word index
|
432 |
+
of the word 'turn'."""
|
433 |
+
|
434 |
+
self.verb_stem = verb_stem
|
435 |
+
|
436 |
+
self.roleset = roleset
|
437 |
+
|
438 |
+
self.arguments = []
|
439 |
+
"""A list of ``(argspan, argid)`` tuples, specifying the location
|
440 |
+
and type for each of the arguments identified by this
|
441 |
+
instance. ``argspan`` is a tuple ``start, end``, indicating
|
442 |
+
that the argument consists of the ``words[start:end]``."""
|
443 |
+
|
444 |
+
self.tagged_spans = tagged_spans
|
445 |
+
"""A list of ``(span, id)`` tuples, specifying the location and
|
446 |
+
type for each of the arguments, as well as the verb pieces,
|
447 |
+
that make up this instance."""
|
448 |
+
|
449 |
+
self.tree = tree
|
450 |
+
"""The parse tree for the sentence containing this instance."""
|
451 |
+
|
452 |
+
self.words = tree.leaves()
|
453 |
+
"""A list of the words in the sentence containing this
|
454 |
+
instance."""
|
455 |
+
|
456 |
+
# Fill in the self.verb and self.arguments values.
|
457 |
+
for (start, end), tag in tagged_spans:
|
458 |
+
if tag in ("V", "C-V"):
|
459 |
+
self.verb += list(range(start, end))
|
460 |
+
else:
|
461 |
+
self.arguments.append(((start, end), tag))
|
462 |
+
|
463 |
+
def __repr__(self):
|
464 |
+
# Originally, its:
|
465 |
+
##plural = 's' if len(self.arguments) != 1 else ''
|
466 |
+
plural = "s" if len(self.arguments) != 1 else ""
|
467 |
+
return "<ConllSRLInstance for %r with %d argument%s>" % (
|
468 |
+
(self.verb_stem, len(self.arguments), plural)
|
469 |
+
)
|
470 |
+
|
471 |
+
def pprint(self):
|
472 |
+
verbstr = " ".join(self.words[i][0] for i in self.verb)
|
473 |
+
hdr = f"SRL for {verbstr!r} (stem={self.verb_stem!r}):\n"
|
474 |
+
s = ""
|
475 |
+
for i, word in enumerate(self.words):
|
476 |
+
if isinstance(word, tuple):
|
477 |
+
word = word[0]
|
478 |
+
for (start, end), argid in self.arguments:
|
479 |
+
if i == start:
|
480 |
+
s += "[%s " % argid
|
481 |
+
if i == end:
|
482 |
+
s += "] "
|
483 |
+
if i in self.verb:
|
484 |
+
word = "<<%s>>" % word
|
485 |
+
s += word + " "
|
486 |
+
return hdr + textwrap.fill(
|
487 |
+
s.replace(" ]", "]"), initial_indent=" ", subsequent_indent=" "
|
488 |
+
)
|
489 |
+
|
490 |
+
|
491 |
+
class ConllSRLInstanceList(list):
|
492 |
+
"""
|
493 |
+
Set of instances for a single sentence
|
494 |
+
"""
|
495 |
+
|
496 |
+
def __init__(self, tree, instances=()):
|
497 |
+
self.tree = tree
|
498 |
+
list.__init__(self, instances)
|
499 |
+
|
500 |
+
def __str__(self):
|
501 |
+
return self.pprint()
|
502 |
+
|
503 |
+
def pprint(self, include_tree=False):
|
504 |
+
# Sanity check: trees should be the same
|
505 |
+
for inst in self:
|
506 |
+
if inst.tree != self.tree:
|
507 |
+
raise ValueError("Tree mismatch!")
|
508 |
+
|
509 |
+
# If desired, add trees:
|
510 |
+
if include_tree:
|
511 |
+
words = self.tree.leaves()
|
512 |
+
pos = [None] * len(words)
|
513 |
+
synt = ["*"] * len(words)
|
514 |
+
self._tree2conll(self.tree, 0, words, pos, synt)
|
515 |
+
|
516 |
+
s = ""
|
517 |
+
for i in range(len(words)):
|
518 |
+
# optional tree columns
|
519 |
+
if include_tree:
|
520 |
+
s += "%-20s " % words[i]
|
521 |
+
s += "%-8s " % pos[i]
|
522 |
+
s += "%15s*%-8s " % tuple(synt[i].split("*"))
|
523 |
+
|
524 |
+
# verb head column
|
525 |
+
for inst in self:
|
526 |
+
if i == inst.verb_head:
|
527 |
+
s += "%-20s " % inst.verb_stem
|
528 |
+
break
|
529 |
+
else:
|
530 |
+
s += "%-20s " % "-"
|
531 |
+
# Remaining columns: self
|
532 |
+
for inst in self:
|
533 |
+
argstr = "*"
|
534 |
+
for (start, end), argid in inst.tagged_spans:
|
535 |
+
if i == start:
|
536 |
+
argstr = f"({argid}{argstr}"
|
537 |
+
if i == (end - 1):
|
538 |
+
argstr += ")"
|
539 |
+
s += "%-12s " % argstr
|
540 |
+
s += "\n"
|
541 |
+
return s
|
542 |
+
|
543 |
+
def _tree2conll(self, tree, wordnum, words, pos, synt):
|
544 |
+
assert isinstance(tree, Tree)
|
545 |
+
if len(tree) == 1 and isinstance(tree[0], str):
|
546 |
+
pos[wordnum] = tree.label()
|
547 |
+
assert words[wordnum] == tree[0]
|
548 |
+
return wordnum + 1
|
549 |
+
elif len(tree) == 1 and isinstance(tree[0], tuple):
|
550 |
+
assert len(tree[0]) == 2
|
551 |
+
pos[wordnum], pos[wordnum] = tree[0]
|
552 |
+
return wordnum + 1
|
553 |
+
else:
|
554 |
+
synt[wordnum] = f"({tree.label()}{synt[wordnum]}"
|
555 |
+
for child in tree:
|
556 |
+
wordnum = self._tree2conll(child, wordnum, words, pos, synt)
|
557 |
+
synt[wordnum - 1] += ")"
|
558 |
+
return wordnum
|
559 |
+
|
560 |
+
|
561 |
+
class ConllChunkCorpusReader(ConllCorpusReader):
|
562 |
+
"""
|
563 |
+
A ConllCorpusReader whose data file contains three columns: words,
|
564 |
+
pos, and chunk.
|
565 |
+
"""
|
566 |
+
|
567 |
+
def __init__(
|
568 |
+
self, root, fileids, chunk_types, encoding="utf8", tagset=None, separator=None
|
569 |
+
):
|
570 |
+
ConllCorpusReader.__init__(
|
571 |
+
self,
|
572 |
+
root,
|
573 |
+
fileids,
|
574 |
+
("words", "pos", "chunk"),
|
575 |
+
chunk_types=chunk_types,
|
576 |
+
encoding=encoding,
|
577 |
+
tagset=tagset,
|
578 |
+
separator=separator,
|
579 |
+
)
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/crubadan.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: An Crubadan N-grams Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Avital Pekker <[email protected]>
|
5 |
+
#
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
"""
|
10 |
+
An NLTK interface for the n-gram statistics gathered from
|
11 |
+
the corpora for each language using An Crubadan.
|
12 |
+
|
13 |
+
There are multiple potential applications for the data but
|
14 |
+
this reader was created with the goal of using it in the
|
15 |
+
context of language identification.
|
16 |
+
|
17 |
+
For details about An Crubadan, this data, and its potential uses, see:
|
18 |
+
http://borel.slu.edu/crubadan/index.html
|
19 |
+
"""
|
20 |
+
|
21 |
+
import re
|
22 |
+
from os import path
|
23 |
+
|
24 |
+
from nltk.corpus.reader import CorpusReader
|
25 |
+
from nltk.data import ZipFilePathPointer
|
26 |
+
from nltk.probability import FreqDist
|
27 |
+
|
28 |
+
|
29 |
+
class CrubadanCorpusReader(CorpusReader):
|
30 |
+
"""
|
31 |
+
A corpus reader used to access language An Crubadan n-gram files.
|
32 |
+
"""
|
33 |
+
|
34 |
+
_LANG_MAPPER_FILE = "table.txt"
|
35 |
+
_all_lang_freq = {}
|
36 |
+
|
37 |
+
def __init__(self, root, fileids, encoding="utf8", tagset=None):
|
38 |
+
super().__init__(root, fileids, encoding="utf8")
|
39 |
+
self._lang_mapping_data = []
|
40 |
+
self._load_lang_mapping_data()
|
41 |
+
|
42 |
+
def lang_freq(self, lang):
|
43 |
+
"""Return n-gram FreqDist for a specific language
|
44 |
+
given ISO 639-3 language code"""
|
45 |
+
|
46 |
+
if lang not in self._all_lang_freq:
|
47 |
+
self._all_lang_freq[lang] = self._load_lang_ngrams(lang)
|
48 |
+
|
49 |
+
return self._all_lang_freq[lang]
|
50 |
+
|
51 |
+
def langs(self):
|
52 |
+
"""Return a list of supported languages as ISO 639-3 codes"""
|
53 |
+
return [row[1] for row in self._lang_mapping_data]
|
54 |
+
|
55 |
+
def iso_to_crubadan(self, lang):
|
56 |
+
"""Return internal Crubadan code based on ISO 639-3 code"""
|
57 |
+
for i in self._lang_mapping_data:
|
58 |
+
if i[1].lower() == lang.lower():
|
59 |
+
return i[0]
|
60 |
+
|
61 |
+
def crubadan_to_iso(self, lang):
|
62 |
+
"""Return ISO 639-3 code given internal Crubadan code"""
|
63 |
+
for i in self._lang_mapping_data:
|
64 |
+
if i[0].lower() == lang.lower():
|
65 |
+
return i[1]
|
66 |
+
|
67 |
+
def _load_lang_mapping_data(self):
|
68 |
+
"""Load language mappings between codes and description from table.txt"""
|
69 |
+
if isinstance(self.root, ZipFilePathPointer):
|
70 |
+
raise RuntimeError(
|
71 |
+
"Please install the 'crubadan' corpus first, use nltk.download()"
|
72 |
+
)
|
73 |
+
|
74 |
+
mapper_file = path.join(self.root, self._LANG_MAPPER_FILE)
|
75 |
+
if self._LANG_MAPPER_FILE not in self.fileids():
|
76 |
+
raise RuntimeError("Could not find language mapper file: " + mapper_file)
|
77 |
+
|
78 |
+
with open(mapper_file, encoding="utf-8") as raw:
|
79 |
+
strip_raw = raw.read().strip()
|
80 |
+
|
81 |
+
self._lang_mapping_data = [row.split("\t") for row in strip_raw.split("\n")]
|
82 |
+
|
83 |
+
def _load_lang_ngrams(self, lang):
|
84 |
+
"""Load single n-gram language file given the ISO 639-3 language code
|
85 |
+
and return its FreqDist"""
|
86 |
+
|
87 |
+
if lang not in self.langs():
|
88 |
+
raise RuntimeError("Unsupported language.")
|
89 |
+
|
90 |
+
crubadan_code = self.iso_to_crubadan(lang)
|
91 |
+
ngram_file = path.join(self.root, crubadan_code + "-3grams.txt")
|
92 |
+
|
93 |
+
if not path.isfile(ngram_file):
|
94 |
+
raise RuntimeError("No N-gram file found for requested language.")
|
95 |
+
|
96 |
+
counts = FreqDist()
|
97 |
+
with open(ngram_file, encoding="utf-8") as f:
|
98 |
+
for line in f:
|
99 |
+
data = line.split(" ")
|
100 |
+
|
101 |
+
ngram = data[1].strip("\n")
|
102 |
+
freq = int(data[0])
|
103 |
+
|
104 |
+
counts[ngram] = freq
|
105 |
+
|
106 |
+
return counts
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/dependency.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Dependency Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Kepa Sarasola <[email protected]>
|
5 |
+
# Iker Manterola <[email protected]>
|
6 |
+
#
|
7 |
+
# URL: <https://www.nltk.org/>
|
8 |
+
# For license information, see LICENSE.TXT
|
9 |
+
|
10 |
+
from nltk.corpus.reader.api import *
|
11 |
+
from nltk.corpus.reader.util import *
|
12 |
+
from nltk.parse import DependencyGraph
|
13 |
+
from nltk.tokenize import *
|
14 |
+
|
15 |
+
|
16 |
+
class DependencyCorpusReader(SyntaxCorpusReader):
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
root,
|
20 |
+
fileids,
|
21 |
+
encoding="utf8",
|
22 |
+
word_tokenizer=TabTokenizer(),
|
23 |
+
sent_tokenizer=RegexpTokenizer("\n", gaps=True),
|
24 |
+
para_block_reader=read_blankline_block,
|
25 |
+
):
|
26 |
+
SyntaxCorpusReader.__init__(self, root, fileids, encoding)
|
27 |
+
|
28 |
+
#########################################################
|
29 |
+
|
30 |
+
def words(self, fileids=None):
|
31 |
+
return concat(
|
32 |
+
[
|
33 |
+
DependencyCorpusView(fileid, False, False, False, encoding=enc)
|
34 |
+
for fileid, enc in self.abspaths(fileids, include_encoding=True)
|
35 |
+
]
|
36 |
+
)
|
37 |
+
|
38 |
+
def tagged_words(self, fileids=None):
|
39 |
+
return concat(
|
40 |
+
[
|
41 |
+
DependencyCorpusView(fileid, True, False, False, encoding=enc)
|
42 |
+
for fileid, enc in self.abspaths(fileids, include_encoding=True)
|
43 |
+
]
|
44 |
+
)
|
45 |
+
|
46 |
+
def sents(self, fileids=None):
|
47 |
+
return concat(
|
48 |
+
[
|
49 |
+
DependencyCorpusView(fileid, False, True, False, encoding=enc)
|
50 |
+
for fileid, enc in self.abspaths(fileids, include_encoding=True)
|
51 |
+
]
|
52 |
+
)
|
53 |
+
|
54 |
+
def tagged_sents(self, fileids=None):
|
55 |
+
return concat(
|
56 |
+
[
|
57 |
+
DependencyCorpusView(fileid, True, True, False, encoding=enc)
|
58 |
+
for fileid, enc in self.abspaths(fileids, include_encoding=True)
|
59 |
+
]
|
60 |
+
)
|
61 |
+
|
62 |
+
def parsed_sents(self, fileids=None):
|
63 |
+
sents = concat(
|
64 |
+
[
|
65 |
+
DependencyCorpusView(fileid, False, True, True, encoding=enc)
|
66 |
+
for fileid, enc in self.abspaths(fileids, include_encoding=True)
|
67 |
+
]
|
68 |
+
)
|
69 |
+
return [DependencyGraph(sent) for sent in sents]
|
70 |
+
|
71 |
+
|
72 |
+
class DependencyCorpusView(StreamBackedCorpusView):
|
73 |
+
_DOCSTART = "-DOCSTART- -DOCSTART- O\n" # dokumentu hasiera definitzen da
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
corpus_file,
|
78 |
+
tagged,
|
79 |
+
group_by_sent,
|
80 |
+
dependencies,
|
81 |
+
chunk_types=None,
|
82 |
+
encoding="utf8",
|
83 |
+
):
|
84 |
+
self._tagged = tagged
|
85 |
+
self._dependencies = dependencies
|
86 |
+
self._group_by_sent = group_by_sent
|
87 |
+
self._chunk_types = chunk_types
|
88 |
+
StreamBackedCorpusView.__init__(self, corpus_file, encoding=encoding)
|
89 |
+
|
90 |
+
def read_block(self, stream):
|
91 |
+
# Read the next sentence.
|
92 |
+
sent = read_blankline_block(stream)[0].strip()
|
93 |
+
# Strip off the docstart marker, if present.
|
94 |
+
if sent.startswith(self._DOCSTART):
|
95 |
+
sent = sent[len(self._DOCSTART) :].lstrip()
|
96 |
+
|
97 |
+
# extract word and tag from any of the formats
|
98 |
+
if not self._dependencies:
|
99 |
+
lines = [line.split("\t") for line in sent.split("\n")]
|
100 |
+
if len(lines[0]) == 3 or len(lines[0]) == 4:
|
101 |
+
sent = [(line[0], line[1]) for line in lines]
|
102 |
+
elif len(lines[0]) == 10:
|
103 |
+
sent = [(line[1], line[4]) for line in lines]
|
104 |
+
else:
|
105 |
+
raise ValueError("Unexpected number of fields in dependency tree file")
|
106 |
+
|
107 |
+
# discard tags if they weren't requested
|
108 |
+
if not self._tagged:
|
109 |
+
sent = [word for (word, tag) in sent]
|
110 |
+
|
111 |
+
# Return the result.
|
112 |
+
if self._group_by_sent:
|
113 |
+
return [sent]
|
114 |
+
else:
|
115 |
+
return list(sent)
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/framenet.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/ieer.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: IEER Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bird <[email protected]>
|
5 |
+
# Edward Loper <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
"""
|
10 |
+
Corpus reader for the Information Extraction and Entity Recognition Corpus.
|
11 |
+
|
12 |
+
NIST 1999 Information Extraction: Entity Recognition Evaluation
|
13 |
+
https://www.itl.nist.gov/iad/894.01/tests/ie-er/er_99/er_99.htm
|
14 |
+
|
15 |
+
This corpus contains the NEWSWIRE development test data for the
|
16 |
+
NIST 1999 IE-ER Evaluation. The files were taken from the
|
17 |
+
subdirectory: ``/ie_er_99/english/devtest/newswire/*.ref.nwt``
|
18 |
+
and filenames were shortened.
|
19 |
+
|
20 |
+
The corpus contains the following files: APW_19980314, APW_19980424,
|
21 |
+
APW_19980429, NYT_19980315, NYT_19980403, and NYT_19980407.
|
22 |
+
"""
|
23 |
+
|
24 |
+
import nltk
|
25 |
+
from nltk.corpus.reader.api import *
|
26 |
+
|
27 |
+
#: A dictionary whose keys are the names of documents in this corpus;
|
28 |
+
#: and whose values are descriptions of those documents' contents.
|
29 |
+
titles = {
|
30 |
+
"APW_19980314": "Associated Press Weekly, 14 March 1998",
|
31 |
+
"APW_19980424": "Associated Press Weekly, 24 April 1998",
|
32 |
+
"APW_19980429": "Associated Press Weekly, 29 April 1998",
|
33 |
+
"NYT_19980315": "New York Times, 15 March 1998",
|
34 |
+
"NYT_19980403": "New York Times, 3 April 1998",
|
35 |
+
"NYT_19980407": "New York Times, 7 April 1998",
|
36 |
+
}
|
37 |
+
|
38 |
+
#: A list of all documents in this corpus.
|
39 |
+
documents = sorted(titles)
|
40 |
+
|
41 |
+
|
42 |
+
class IEERDocument:
|
43 |
+
def __init__(self, text, docno=None, doctype=None, date_time=None, headline=""):
|
44 |
+
self.text = text
|
45 |
+
self.docno = docno
|
46 |
+
self.doctype = doctype
|
47 |
+
self.date_time = date_time
|
48 |
+
self.headline = headline
|
49 |
+
|
50 |
+
def __repr__(self):
|
51 |
+
if self.headline:
|
52 |
+
headline = " ".join(self.headline.leaves())
|
53 |
+
else:
|
54 |
+
headline = (
|
55 |
+
" ".join([w for w in self.text.leaves() if w[:1] != "<"][:12]) + "..."
|
56 |
+
)
|
57 |
+
if self.docno is not None:
|
58 |
+
return f"<IEERDocument {self.docno}: {headline!r}>"
|
59 |
+
else:
|
60 |
+
return "<IEERDocument: %r>" % headline
|
61 |
+
|
62 |
+
|
63 |
+
class IEERCorpusReader(CorpusReader):
|
64 |
+
""" """
|
65 |
+
|
66 |
+
def docs(self, fileids=None):
|
67 |
+
return concat(
|
68 |
+
[
|
69 |
+
StreamBackedCorpusView(fileid, self._read_block, encoding=enc)
|
70 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
71 |
+
]
|
72 |
+
)
|
73 |
+
|
74 |
+
def parsed_docs(self, fileids=None):
|
75 |
+
return concat(
|
76 |
+
[
|
77 |
+
StreamBackedCorpusView(fileid, self._read_parsed_block, encoding=enc)
|
78 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
79 |
+
]
|
80 |
+
)
|
81 |
+
|
82 |
+
def _read_parsed_block(self, stream):
|
83 |
+
# TODO: figure out while empty documents are being returned
|
84 |
+
return [
|
85 |
+
self._parse(doc)
|
86 |
+
for doc in self._read_block(stream)
|
87 |
+
if self._parse(doc).docno is not None
|
88 |
+
]
|
89 |
+
|
90 |
+
def _parse(self, doc):
|
91 |
+
val = nltk.chunk.ieerstr2tree(doc, root_label="DOCUMENT")
|
92 |
+
if isinstance(val, dict):
|
93 |
+
return IEERDocument(**val)
|
94 |
+
else:
|
95 |
+
return IEERDocument(val)
|
96 |
+
|
97 |
+
def _read_block(self, stream):
|
98 |
+
out = []
|
99 |
+
# Skip any preamble.
|
100 |
+
while True:
|
101 |
+
line = stream.readline()
|
102 |
+
if not line:
|
103 |
+
break
|
104 |
+
if line.strip() == "<DOC>":
|
105 |
+
break
|
106 |
+
out.append(line)
|
107 |
+
# Read the document
|
108 |
+
while True:
|
109 |
+
line = stream.readline()
|
110 |
+
if not line:
|
111 |
+
break
|
112 |
+
out.append(line)
|
113 |
+
if line.strip() == "</DOC>":
|
114 |
+
break
|
115 |
+
# Return the document
|
116 |
+
return ["\n".join(out)]
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/ipipan.py
ADDED
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: IPI PAN Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Konrad Goluchowski <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
import functools
|
9 |
+
|
10 |
+
from nltk.corpus.reader.api import CorpusReader
|
11 |
+
from nltk.corpus.reader.util import StreamBackedCorpusView, concat
|
12 |
+
|
13 |
+
|
14 |
+
def _parse_args(fun):
|
15 |
+
@functools.wraps(fun)
|
16 |
+
def decorator(self, fileids=None, **kwargs):
|
17 |
+
kwargs.pop("tags", None)
|
18 |
+
if not fileids:
|
19 |
+
fileids = self.fileids()
|
20 |
+
return fun(self, fileids, **kwargs)
|
21 |
+
|
22 |
+
return decorator
|
23 |
+
|
24 |
+
|
25 |
+
class IPIPANCorpusReader(CorpusReader):
|
26 |
+
"""
|
27 |
+
Corpus reader designed to work with corpus created by IPI PAN.
|
28 |
+
See http://korpus.pl/en/ for more details about IPI PAN corpus.
|
29 |
+
|
30 |
+
The corpus includes information about text domain, channel and categories.
|
31 |
+
You can access possible values using ``domains()``, ``channels()`` and
|
32 |
+
``categories()``. You can use also this metadata to filter files, e.g.:
|
33 |
+
``fileids(channel='prasa')``, ``fileids(categories='publicystyczny')``.
|
34 |
+
|
35 |
+
The reader supports methods: words, sents, paras and their tagged versions.
|
36 |
+
You can get part of speech instead of full tag by giving "simplify_tags=True"
|
37 |
+
parameter, e.g.: ``tagged_sents(simplify_tags=True)``.
|
38 |
+
|
39 |
+
Also you can get all tags disambiguated tags specifying parameter
|
40 |
+
"one_tag=False", e.g.: ``tagged_paras(one_tag=False)``.
|
41 |
+
|
42 |
+
You can get all tags that were assigned by a morphological analyzer specifying
|
43 |
+
parameter "disamb_only=False", e.g. ``tagged_words(disamb_only=False)``.
|
44 |
+
|
45 |
+
The IPIPAN Corpus contains tags indicating if there is a space between two
|
46 |
+
tokens. To add special "no space" markers, you should specify parameter
|
47 |
+
"append_no_space=True", e.g. ``tagged_words(append_no_space=True)``.
|
48 |
+
As a result in place where there should be no space between two tokens new
|
49 |
+
pair ('', 'no-space') will be inserted (for tagged data) and just '' for
|
50 |
+
methods without tags.
|
51 |
+
|
52 |
+
The corpus reader can also try to append spaces between words. To enable this
|
53 |
+
option, specify parameter "append_space=True", e.g. ``words(append_space=True)``.
|
54 |
+
As a result either ' ' or (' ', 'space') will be inserted between tokens.
|
55 |
+
|
56 |
+
By default, xml entities like " and & are replaced by corresponding
|
57 |
+
characters. You can turn off this feature, specifying parameter
|
58 |
+
"replace_xmlentities=False", e.g. ``words(replace_xmlentities=False)``.
|
59 |
+
"""
|
60 |
+
|
61 |
+
def __init__(self, root, fileids):
|
62 |
+
CorpusReader.__init__(self, root, fileids, None, None)
|
63 |
+
|
64 |
+
def channels(self, fileids=None):
|
65 |
+
if not fileids:
|
66 |
+
fileids = self.fileids()
|
67 |
+
return self._parse_header(fileids, "channel")
|
68 |
+
|
69 |
+
def domains(self, fileids=None):
|
70 |
+
if not fileids:
|
71 |
+
fileids = self.fileids()
|
72 |
+
return self._parse_header(fileids, "domain")
|
73 |
+
|
74 |
+
def categories(self, fileids=None):
|
75 |
+
if not fileids:
|
76 |
+
fileids = self.fileids()
|
77 |
+
return [
|
78 |
+
self._map_category(cat) for cat in self._parse_header(fileids, "keyTerm")
|
79 |
+
]
|
80 |
+
|
81 |
+
def fileids(self, channels=None, domains=None, categories=None):
|
82 |
+
if channels is not None and domains is not None and categories is not None:
|
83 |
+
raise ValueError(
|
84 |
+
"You can specify only one of channels, domains "
|
85 |
+
"and categories parameter at once"
|
86 |
+
)
|
87 |
+
if channels is None and domains is None and categories is None:
|
88 |
+
return CorpusReader.fileids(self)
|
89 |
+
if isinstance(channels, str):
|
90 |
+
channels = [channels]
|
91 |
+
if isinstance(domains, str):
|
92 |
+
domains = [domains]
|
93 |
+
if isinstance(categories, str):
|
94 |
+
categories = [categories]
|
95 |
+
if channels:
|
96 |
+
return self._list_morph_files_by("channel", channels)
|
97 |
+
elif domains:
|
98 |
+
return self._list_morph_files_by("domain", domains)
|
99 |
+
else:
|
100 |
+
return self._list_morph_files_by(
|
101 |
+
"keyTerm", categories, map=self._map_category
|
102 |
+
)
|
103 |
+
|
104 |
+
@_parse_args
|
105 |
+
def sents(self, fileids=None, **kwargs):
|
106 |
+
return concat(
|
107 |
+
[
|
108 |
+
self._view(
|
109 |
+
fileid, mode=IPIPANCorpusView.SENTS_MODE, tags=False, **kwargs
|
110 |
+
)
|
111 |
+
for fileid in self._list_morph_files(fileids)
|
112 |
+
]
|
113 |
+
)
|
114 |
+
|
115 |
+
@_parse_args
|
116 |
+
def paras(self, fileids=None, **kwargs):
|
117 |
+
return concat(
|
118 |
+
[
|
119 |
+
self._view(
|
120 |
+
fileid, mode=IPIPANCorpusView.PARAS_MODE, tags=False, **kwargs
|
121 |
+
)
|
122 |
+
for fileid in self._list_morph_files(fileids)
|
123 |
+
]
|
124 |
+
)
|
125 |
+
|
126 |
+
@_parse_args
|
127 |
+
def words(self, fileids=None, **kwargs):
|
128 |
+
return concat(
|
129 |
+
[
|
130 |
+
self._view(fileid, tags=False, **kwargs)
|
131 |
+
for fileid in self._list_morph_files(fileids)
|
132 |
+
]
|
133 |
+
)
|
134 |
+
|
135 |
+
@_parse_args
|
136 |
+
def tagged_sents(self, fileids=None, **kwargs):
|
137 |
+
return concat(
|
138 |
+
[
|
139 |
+
self._view(fileid, mode=IPIPANCorpusView.SENTS_MODE, **kwargs)
|
140 |
+
for fileid in self._list_morph_files(fileids)
|
141 |
+
]
|
142 |
+
)
|
143 |
+
|
144 |
+
@_parse_args
|
145 |
+
def tagged_paras(self, fileids=None, **kwargs):
|
146 |
+
return concat(
|
147 |
+
[
|
148 |
+
self._view(fileid, mode=IPIPANCorpusView.PARAS_MODE, **kwargs)
|
149 |
+
for fileid in self._list_morph_files(fileids)
|
150 |
+
]
|
151 |
+
)
|
152 |
+
|
153 |
+
@_parse_args
|
154 |
+
def tagged_words(self, fileids=None, **kwargs):
|
155 |
+
return concat(
|
156 |
+
[self._view(fileid, **kwargs) for fileid in self._list_morph_files(fileids)]
|
157 |
+
)
|
158 |
+
|
159 |
+
def _list_morph_files(self, fileids):
|
160 |
+
return [f for f in self.abspaths(fileids)]
|
161 |
+
|
162 |
+
def _list_header_files(self, fileids):
|
163 |
+
return [
|
164 |
+
f.replace("morph.xml", "header.xml")
|
165 |
+
for f in self._list_morph_files(fileids)
|
166 |
+
]
|
167 |
+
|
168 |
+
def _parse_header(self, fileids, tag):
|
169 |
+
values = set()
|
170 |
+
for f in self._list_header_files(fileids):
|
171 |
+
values_list = self._get_tag(f, tag)
|
172 |
+
for v in values_list:
|
173 |
+
values.add(v)
|
174 |
+
return list(values)
|
175 |
+
|
176 |
+
def _list_morph_files_by(self, tag, values, map=None):
|
177 |
+
fileids = self.fileids()
|
178 |
+
ret_fileids = set()
|
179 |
+
for f in fileids:
|
180 |
+
fp = self.abspath(f).replace("morph.xml", "header.xml")
|
181 |
+
values_list = self._get_tag(fp, tag)
|
182 |
+
for value in values_list:
|
183 |
+
if map is not None:
|
184 |
+
value = map(value)
|
185 |
+
if value in values:
|
186 |
+
ret_fileids.add(f)
|
187 |
+
return list(ret_fileids)
|
188 |
+
|
189 |
+
def _get_tag(self, f, tag):
|
190 |
+
tags = []
|
191 |
+
with open(f) as infile:
|
192 |
+
header = infile.read()
|
193 |
+
tag_end = 0
|
194 |
+
while True:
|
195 |
+
tag_pos = header.find("<" + tag, tag_end)
|
196 |
+
if tag_pos < 0:
|
197 |
+
return tags
|
198 |
+
tag_end = header.find("</" + tag + ">", tag_pos)
|
199 |
+
tags.append(header[tag_pos + len(tag) + 2 : tag_end])
|
200 |
+
|
201 |
+
def _map_category(self, cat):
|
202 |
+
pos = cat.find(">")
|
203 |
+
if pos == -1:
|
204 |
+
return cat
|
205 |
+
else:
|
206 |
+
return cat[pos + 1 :]
|
207 |
+
|
208 |
+
def _view(self, filename, **kwargs):
|
209 |
+
tags = kwargs.pop("tags", True)
|
210 |
+
mode = kwargs.pop("mode", 0)
|
211 |
+
simplify_tags = kwargs.pop("simplify_tags", False)
|
212 |
+
one_tag = kwargs.pop("one_tag", True)
|
213 |
+
disamb_only = kwargs.pop("disamb_only", True)
|
214 |
+
append_no_space = kwargs.pop("append_no_space", False)
|
215 |
+
append_space = kwargs.pop("append_space", False)
|
216 |
+
replace_xmlentities = kwargs.pop("replace_xmlentities", True)
|
217 |
+
|
218 |
+
if len(kwargs) > 0:
|
219 |
+
raise ValueError("Unexpected arguments: %s" % kwargs.keys())
|
220 |
+
if not one_tag and not disamb_only:
|
221 |
+
raise ValueError(
|
222 |
+
"You cannot specify both one_tag=False and " "disamb_only=False"
|
223 |
+
)
|
224 |
+
if not tags and (simplify_tags or not one_tag or not disamb_only):
|
225 |
+
raise ValueError(
|
226 |
+
"You cannot specify simplify_tags, one_tag or "
|
227 |
+
"disamb_only with functions other than tagged_*"
|
228 |
+
)
|
229 |
+
|
230 |
+
return IPIPANCorpusView(
|
231 |
+
filename,
|
232 |
+
tags=tags,
|
233 |
+
mode=mode,
|
234 |
+
simplify_tags=simplify_tags,
|
235 |
+
one_tag=one_tag,
|
236 |
+
disamb_only=disamb_only,
|
237 |
+
append_no_space=append_no_space,
|
238 |
+
append_space=append_space,
|
239 |
+
replace_xmlentities=replace_xmlentities,
|
240 |
+
)
|
241 |
+
|
242 |
+
|
243 |
+
class IPIPANCorpusView(StreamBackedCorpusView):
|
244 |
+
|
245 |
+
WORDS_MODE = 0
|
246 |
+
SENTS_MODE = 1
|
247 |
+
PARAS_MODE = 2
|
248 |
+
|
249 |
+
def __init__(self, filename, startpos=0, **kwargs):
|
250 |
+
StreamBackedCorpusView.__init__(self, filename, None, startpos, None)
|
251 |
+
self.in_sentence = False
|
252 |
+
self.position = 0
|
253 |
+
|
254 |
+
self.show_tags = kwargs.pop("tags", True)
|
255 |
+
self.disamb_only = kwargs.pop("disamb_only", True)
|
256 |
+
self.mode = kwargs.pop("mode", IPIPANCorpusView.WORDS_MODE)
|
257 |
+
self.simplify_tags = kwargs.pop("simplify_tags", False)
|
258 |
+
self.one_tag = kwargs.pop("one_tag", True)
|
259 |
+
self.append_no_space = kwargs.pop("append_no_space", False)
|
260 |
+
self.append_space = kwargs.pop("append_space", False)
|
261 |
+
self.replace_xmlentities = kwargs.pop("replace_xmlentities", True)
|
262 |
+
|
263 |
+
def read_block(self, stream):
|
264 |
+
sentence = []
|
265 |
+
sentences = []
|
266 |
+
space = False
|
267 |
+
no_space = False
|
268 |
+
|
269 |
+
tags = set()
|
270 |
+
|
271 |
+
lines = self._read_data(stream)
|
272 |
+
|
273 |
+
while True:
|
274 |
+
|
275 |
+
# we may have only part of last line
|
276 |
+
if len(lines) <= 1:
|
277 |
+
self._seek(stream)
|
278 |
+
lines = self._read_data(stream)
|
279 |
+
|
280 |
+
if lines == [""]:
|
281 |
+
assert not sentences
|
282 |
+
return []
|
283 |
+
|
284 |
+
line = lines.pop()
|
285 |
+
self.position += len(line) + 1
|
286 |
+
|
287 |
+
if line.startswith('<chunk type="s"'):
|
288 |
+
self.in_sentence = True
|
289 |
+
elif line.startswith('<chunk type="p"'):
|
290 |
+
pass
|
291 |
+
elif line.startswith("<tok"):
|
292 |
+
if self.append_space and space and not no_space:
|
293 |
+
self._append_space(sentence)
|
294 |
+
space = True
|
295 |
+
no_space = False
|
296 |
+
orth = ""
|
297 |
+
tags = set()
|
298 |
+
elif line.startswith("</chunk"):
|
299 |
+
if self.in_sentence:
|
300 |
+
self.in_sentence = False
|
301 |
+
self._seek(stream)
|
302 |
+
if self.mode == self.SENTS_MODE:
|
303 |
+
return [sentence]
|
304 |
+
elif self.mode == self.WORDS_MODE:
|
305 |
+
if self.append_space:
|
306 |
+
self._append_space(sentence)
|
307 |
+
return sentence
|
308 |
+
else:
|
309 |
+
sentences.append(sentence)
|
310 |
+
elif self.mode == self.PARAS_MODE:
|
311 |
+
self._seek(stream)
|
312 |
+
return [sentences]
|
313 |
+
elif line.startswith("<orth"):
|
314 |
+
orth = line[6:-7]
|
315 |
+
if self.replace_xmlentities:
|
316 |
+
orth = orth.replace(""", '"').replace("&", "&")
|
317 |
+
elif line.startswith("<lex"):
|
318 |
+
if not self.disamb_only or line.find("disamb=") != -1:
|
319 |
+
tag = line[line.index("<ctag") + 6 : line.index("</ctag")]
|
320 |
+
tags.add(tag)
|
321 |
+
elif line.startswith("</tok"):
|
322 |
+
if self.show_tags:
|
323 |
+
if self.simplify_tags:
|
324 |
+
tags = [t.split(":")[0] for t in tags]
|
325 |
+
if not self.one_tag or not self.disamb_only:
|
326 |
+
sentence.append((orth, tuple(tags)))
|
327 |
+
else:
|
328 |
+
sentence.append((orth, tags.pop()))
|
329 |
+
else:
|
330 |
+
sentence.append(orth)
|
331 |
+
elif line.startswith("<ns/>"):
|
332 |
+
if self.append_space:
|
333 |
+
no_space = True
|
334 |
+
if self.append_no_space:
|
335 |
+
if self.show_tags:
|
336 |
+
sentence.append(("", "no-space"))
|
337 |
+
else:
|
338 |
+
sentence.append("")
|
339 |
+
elif line.startswith("</cesAna"):
|
340 |
+
pass
|
341 |
+
|
342 |
+
def _read_data(self, stream):
|
343 |
+
self.position = stream.tell()
|
344 |
+
buff = stream.read(4096)
|
345 |
+
lines = buff.split("\n")
|
346 |
+
lines.reverse()
|
347 |
+
return lines
|
348 |
+
|
349 |
+
def _seek(self, stream):
|
350 |
+
stream.seek(self.position)
|
351 |
+
|
352 |
+
def _append_space(self, sentence):
|
353 |
+
if self.show_tags:
|
354 |
+
sentence.append((" ", "space"))
|
355 |
+
else:
|
356 |
+
sentence.append(" ")
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/knbc.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /usr/bin/env python
|
2 |
+
# KNB Corpus reader
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Masato Hagiwara <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
# For more information, see http://lilyx.net/pages/nltkjapanesecorpus.html
|
9 |
+
|
10 |
+
import re
|
11 |
+
|
12 |
+
from nltk.corpus.reader.api import CorpusReader, SyntaxCorpusReader
|
13 |
+
from nltk.corpus.reader.util import (
|
14 |
+
FileSystemPathPointer,
|
15 |
+
find_corpus_fileids,
|
16 |
+
read_blankline_block,
|
17 |
+
)
|
18 |
+
from nltk.parse import DependencyGraph
|
19 |
+
|
20 |
+
# default function to convert morphlist to str for tree representation
|
21 |
+
_morphs2str_default = lambda morphs: "/".join(m[0] for m in morphs if m[0] != "EOS")
|
22 |
+
|
23 |
+
|
24 |
+
class KNBCorpusReader(SyntaxCorpusReader):
|
25 |
+
"""
|
26 |
+
This class implements:
|
27 |
+
- ``__init__``, which specifies the location of the corpus
|
28 |
+
and a method for detecting the sentence blocks in corpus files.
|
29 |
+
- ``_read_block``, which reads a block from the input stream.
|
30 |
+
- ``_word``, which takes a block and returns a list of list of words.
|
31 |
+
- ``_tag``, which takes a block and returns a list of list of tagged
|
32 |
+
words.
|
33 |
+
- ``_parse``, which takes a block and returns a list of parsed
|
34 |
+
sentences.
|
35 |
+
|
36 |
+
The structure of tagged words:
|
37 |
+
tagged_word = (word(str), tags(tuple))
|
38 |
+
tags = (surface, reading, lemma, pos1, posid1, pos2, posid2, pos3, posid3, others ...)
|
39 |
+
|
40 |
+
Usage example
|
41 |
+
|
42 |
+
>>> from nltk.corpus.util import LazyCorpusLoader
|
43 |
+
>>> knbc = LazyCorpusLoader(
|
44 |
+
... 'knbc/corpus1',
|
45 |
+
... KNBCorpusReader,
|
46 |
+
... r'.*/KN.*',
|
47 |
+
... encoding='euc-jp',
|
48 |
+
... )
|
49 |
+
|
50 |
+
>>> len(knbc.sents()[0])
|
51 |
+
9
|
52 |
+
|
53 |
+
"""
|
54 |
+
|
55 |
+
def __init__(self, root, fileids, encoding="utf8", morphs2str=_morphs2str_default):
|
56 |
+
"""
|
57 |
+
Initialize KNBCorpusReader
|
58 |
+
morphs2str is a function to convert morphlist to str for tree representation
|
59 |
+
for _parse()
|
60 |
+
"""
|
61 |
+
SyntaxCorpusReader.__init__(self, root, fileids, encoding)
|
62 |
+
self.morphs2str = morphs2str
|
63 |
+
|
64 |
+
def _read_block(self, stream):
|
65 |
+
# blocks are split by blankline (or EOF) - default
|
66 |
+
return read_blankline_block(stream)
|
67 |
+
|
68 |
+
def _word(self, t):
|
69 |
+
res = []
|
70 |
+
for line in t.splitlines():
|
71 |
+
# ignore the Bunsets headers
|
72 |
+
if not re.match(r"EOS|\*|\#|\+", line):
|
73 |
+
cells = line.strip().split(" ")
|
74 |
+
res.append(cells[0])
|
75 |
+
|
76 |
+
return res
|
77 |
+
|
78 |
+
# ignores tagset argument
|
79 |
+
def _tag(self, t, tagset=None):
|
80 |
+
res = []
|
81 |
+
for line in t.splitlines():
|
82 |
+
# ignore the Bunsets headers
|
83 |
+
if not re.match(r"EOS|\*|\#|\+", line):
|
84 |
+
cells = line.strip().split(" ")
|
85 |
+
# convert cells to morph tuples
|
86 |
+
res.append((cells[0], " ".join(cells[1:])))
|
87 |
+
|
88 |
+
return res
|
89 |
+
|
90 |
+
def _parse(self, t):
|
91 |
+
dg = DependencyGraph()
|
92 |
+
i = 0
|
93 |
+
for line in t.splitlines():
|
94 |
+
if line[0] in "*+":
|
95 |
+
# start of bunsetsu or tag
|
96 |
+
|
97 |
+
cells = line.strip().split(" ", 3)
|
98 |
+
m = re.match(r"([\-0-9]*)([ADIP])", cells[1])
|
99 |
+
|
100 |
+
assert m is not None
|
101 |
+
|
102 |
+
node = dg.nodes[i]
|
103 |
+
node.update({"address": i, "rel": m.group(2), "word": []})
|
104 |
+
|
105 |
+
dep_parent = int(m.group(1))
|
106 |
+
|
107 |
+
if dep_parent == -1:
|
108 |
+
dg.root = node
|
109 |
+
else:
|
110 |
+
dg.nodes[dep_parent]["deps"].append(i)
|
111 |
+
|
112 |
+
i += 1
|
113 |
+
elif line[0] != "#":
|
114 |
+
# normal morph
|
115 |
+
cells = line.strip().split(" ")
|
116 |
+
# convert cells to morph tuples
|
117 |
+
morph = cells[0], " ".join(cells[1:])
|
118 |
+
dg.nodes[i - 1]["word"].append(morph)
|
119 |
+
|
120 |
+
if self.morphs2str:
|
121 |
+
for node in dg.nodes.values():
|
122 |
+
node["word"] = self.morphs2str(node["word"])
|
123 |
+
|
124 |
+
return dg.tree()
|
125 |
+
|
126 |
+
|
127 |
+
######################################################################
|
128 |
+
# Demo
|
129 |
+
######################################################################
|
130 |
+
|
131 |
+
|
132 |
+
def demo():
|
133 |
+
|
134 |
+
import nltk
|
135 |
+
from nltk.corpus.util import LazyCorpusLoader
|
136 |
+
|
137 |
+
root = nltk.data.find("corpora/knbc/corpus1")
|
138 |
+
fileids = [
|
139 |
+
f
|
140 |
+
for f in find_corpus_fileids(FileSystemPathPointer(root), ".*")
|
141 |
+
if re.search(r"\d\-\d\-[\d]+\-[\d]+", f)
|
142 |
+
]
|
143 |
+
|
144 |
+
def _knbc_fileids_sort(x):
|
145 |
+
cells = x.split("-")
|
146 |
+
return (cells[0], int(cells[1]), int(cells[2]), int(cells[3]))
|
147 |
+
|
148 |
+
knbc = LazyCorpusLoader(
|
149 |
+
"knbc/corpus1",
|
150 |
+
KNBCorpusReader,
|
151 |
+
sorted(fileids, key=_knbc_fileids_sort),
|
152 |
+
encoding="euc-jp",
|
153 |
+
)
|
154 |
+
|
155 |
+
print(knbc.fileids()[:10])
|
156 |
+
print("".join(knbc.words()[:100]))
|
157 |
+
|
158 |
+
print("\n\n".join(str(tree) for tree in knbc.parsed_sents()[:2]))
|
159 |
+
|
160 |
+
knbc.morphs2str = lambda morphs: "/".join(
|
161 |
+
"{}({})".format(m[0], m[1].split(" ")[2]) for m in morphs if m[0] != "EOS"
|
162 |
+
).encode("utf-8")
|
163 |
+
|
164 |
+
print("\n\n".join("%s" % tree for tree in knbc.parsed_sents()[:2]))
|
165 |
+
|
166 |
+
print(
|
167 |
+
"\n".join(
|
168 |
+
" ".join("{}/{}".format(w[0], w[1].split(" ")[2]) for w in sent)
|
169 |
+
for sent in knbc.tagged_sents()[0:2]
|
170 |
+
)
|
171 |
+
)
|
172 |
+
|
173 |
+
|
174 |
+
def test():
|
175 |
+
|
176 |
+
from nltk.corpus.util import LazyCorpusLoader
|
177 |
+
|
178 |
+
knbc = LazyCorpusLoader(
|
179 |
+
"knbc/corpus1", KNBCorpusReader, r".*/KN.*", encoding="euc-jp"
|
180 |
+
)
|
181 |
+
assert isinstance(knbc.words()[0], str)
|
182 |
+
assert isinstance(knbc.sents()[0][0], str)
|
183 |
+
assert isinstance(knbc.tagged_words()[0], tuple)
|
184 |
+
assert isinstance(knbc.tagged_sents()[0][0], tuple)
|
185 |
+
|
186 |
+
|
187 |
+
if __name__ == "__main__":
|
188 |
+
demo()
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/lin.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Lin's Thesaurus
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Dan Blanchard <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.txt
|
7 |
+
|
8 |
+
import re
|
9 |
+
from collections import defaultdict
|
10 |
+
from functools import reduce
|
11 |
+
|
12 |
+
from nltk.corpus.reader import CorpusReader
|
13 |
+
|
14 |
+
|
15 |
+
class LinThesaurusCorpusReader(CorpusReader):
|
16 |
+
"""Wrapper for the LISP-formatted thesauruses distributed by Dekang Lin."""
|
17 |
+
|
18 |
+
# Compiled regular expression for extracting the key from the first line of each
|
19 |
+
# thesaurus entry
|
20 |
+
_key_re = re.compile(r'\("?([^"]+)"? \(desc [0-9.]+\).+')
|
21 |
+
|
22 |
+
@staticmethod
|
23 |
+
def __defaultdict_factory():
|
24 |
+
"""Factory for creating defaultdict of defaultdict(dict)s"""
|
25 |
+
return defaultdict(dict)
|
26 |
+
|
27 |
+
def __init__(self, root, badscore=0.0):
|
28 |
+
"""
|
29 |
+
Initialize the thesaurus.
|
30 |
+
|
31 |
+
:param root: root directory containing thesaurus LISP files
|
32 |
+
:type root: C{string}
|
33 |
+
:param badscore: the score to give to words which do not appear in each other's sets of synonyms
|
34 |
+
:type badscore: C{float}
|
35 |
+
"""
|
36 |
+
|
37 |
+
super().__init__(root, r"sim[A-Z]\.lsp")
|
38 |
+
self._thesaurus = defaultdict(LinThesaurusCorpusReader.__defaultdict_factory)
|
39 |
+
self._badscore = badscore
|
40 |
+
for path, encoding, fileid in self.abspaths(
|
41 |
+
include_encoding=True, include_fileid=True
|
42 |
+
):
|
43 |
+
with open(path) as lin_file:
|
44 |
+
first = True
|
45 |
+
for line in lin_file:
|
46 |
+
line = line.strip()
|
47 |
+
# Start of entry
|
48 |
+
if first:
|
49 |
+
key = LinThesaurusCorpusReader._key_re.sub(r"\1", line)
|
50 |
+
first = False
|
51 |
+
# End of entry
|
52 |
+
elif line == "))":
|
53 |
+
first = True
|
54 |
+
# Lines with pairs of ngrams and scores
|
55 |
+
else:
|
56 |
+
split_line = line.split("\t")
|
57 |
+
if len(split_line) == 2:
|
58 |
+
ngram, score = split_line
|
59 |
+
self._thesaurus[fileid][key][ngram.strip('"')] = float(
|
60 |
+
score
|
61 |
+
)
|
62 |
+
|
63 |
+
def similarity(self, ngram1, ngram2, fileid=None):
|
64 |
+
"""
|
65 |
+
Returns the similarity score for two ngrams.
|
66 |
+
|
67 |
+
:param ngram1: first ngram to compare
|
68 |
+
:type ngram1: C{string}
|
69 |
+
:param ngram2: second ngram to compare
|
70 |
+
:type ngram2: C{string}
|
71 |
+
:param fileid: thesaurus fileid to search in. If None, search all fileids.
|
72 |
+
:type fileid: C{string}
|
73 |
+
:return: If fileid is specified, just the score for the two ngrams; otherwise,
|
74 |
+
list of tuples of fileids and scores.
|
75 |
+
"""
|
76 |
+
# Entries don't contain themselves, so make sure similarity between item and itself is 1.0
|
77 |
+
if ngram1 == ngram2:
|
78 |
+
if fileid:
|
79 |
+
return 1.0
|
80 |
+
else:
|
81 |
+
return [(fid, 1.0) for fid in self._fileids]
|
82 |
+
else:
|
83 |
+
if fileid:
|
84 |
+
return (
|
85 |
+
self._thesaurus[fileid][ngram1][ngram2]
|
86 |
+
if ngram2 in self._thesaurus[fileid][ngram1]
|
87 |
+
else self._badscore
|
88 |
+
)
|
89 |
+
else:
|
90 |
+
return [
|
91 |
+
(
|
92 |
+
fid,
|
93 |
+
(
|
94 |
+
self._thesaurus[fid][ngram1][ngram2]
|
95 |
+
if ngram2 in self._thesaurus[fid][ngram1]
|
96 |
+
else self._badscore
|
97 |
+
),
|
98 |
+
)
|
99 |
+
for fid in self._fileids
|
100 |
+
]
|
101 |
+
|
102 |
+
def scored_synonyms(self, ngram, fileid=None):
|
103 |
+
"""
|
104 |
+
Returns a list of scored synonyms (tuples of synonyms and scores) for the current ngram
|
105 |
+
|
106 |
+
:param ngram: ngram to lookup
|
107 |
+
:type ngram: C{string}
|
108 |
+
:param fileid: thesaurus fileid to search in. If None, search all fileids.
|
109 |
+
:type fileid: C{string}
|
110 |
+
:return: If fileid is specified, list of tuples of scores and synonyms; otherwise,
|
111 |
+
list of tuples of fileids and lists, where inner lists consist of tuples of
|
112 |
+
scores and synonyms.
|
113 |
+
"""
|
114 |
+
if fileid:
|
115 |
+
return self._thesaurus[fileid][ngram].items()
|
116 |
+
else:
|
117 |
+
return [
|
118 |
+
(fileid, self._thesaurus[fileid][ngram].items())
|
119 |
+
for fileid in self._fileids
|
120 |
+
]
|
121 |
+
|
122 |
+
def synonyms(self, ngram, fileid=None):
|
123 |
+
"""
|
124 |
+
Returns a list of synonyms for the current ngram.
|
125 |
+
|
126 |
+
:param ngram: ngram to lookup
|
127 |
+
:type ngram: C{string}
|
128 |
+
:param fileid: thesaurus fileid to search in. If None, search all fileids.
|
129 |
+
:type fileid: C{string}
|
130 |
+
:return: If fileid is specified, list of synonyms; otherwise, list of tuples of fileids and
|
131 |
+
lists, where inner lists contain synonyms.
|
132 |
+
"""
|
133 |
+
if fileid:
|
134 |
+
return self._thesaurus[fileid][ngram].keys()
|
135 |
+
else:
|
136 |
+
return [
|
137 |
+
(fileid, self._thesaurus[fileid][ngram].keys())
|
138 |
+
for fileid in self._fileids
|
139 |
+
]
|
140 |
+
|
141 |
+
def __contains__(self, ngram):
|
142 |
+
"""
|
143 |
+
Determines whether or not the given ngram is in the thesaurus.
|
144 |
+
|
145 |
+
:param ngram: ngram to lookup
|
146 |
+
:type ngram: C{string}
|
147 |
+
:return: whether the given ngram is in the thesaurus.
|
148 |
+
"""
|
149 |
+
return reduce(
|
150 |
+
lambda accum, fileid: accum or (ngram in self._thesaurus[fileid]),
|
151 |
+
self._fileids,
|
152 |
+
False,
|
153 |
+
)
|
154 |
+
|
155 |
+
|
156 |
+
######################################################################
|
157 |
+
# Demo
|
158 |
+
######################################################################
|
159 |
+
|
160 |
+
|
161 |
+
def demo():
|
162 |
+
from nltk.corpus import lin_thesaurus as thes
|
163 |
+
|
164 |
+
word1 = "business"
|
165 |
+
word2 = "enterprise"
|
166 |
+
print("Getting synonyms for " + word1)
|
167 |
+
print(thes.synonyms(word1))
|
168 |
+
|
169 |
+
print("Getting scored synonyms for " + word1)
|
170 |
+
print(thes.scored_synonyms(word1))
|
171 |
+
|
172 |
+
print("Getting synonyms from simN.lsp (noun subsection) for " + word1)
|
173 |
+
print(thes.synonyms(word1, fileid="simN.lsp"))
|
174 |
+
|
175 |
+
print("Getting synonyms from simN.lsp (noun subsection) for " + word1)
|
176 |
+
print(thes.synonyms(word1, fileid="simN.lsp"))
|
177 |
+
|
178 |
+
print(f"Similarity score for {word1} and {word2}:")
|
179 |
+
print(thes.similarity(word1, word2))
|
180 |
+
|
181 |
+
|
182 |
+
if __name__ == "__main__":
|
183 |
+
demo()
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/markdown.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import namedtuple
|
2 |
+
from functools import partial, wraps
|
3 |
+
|
4 |
+
from nltk.corpus.reader.api import CategorizedCorpusReader
|
5 |
+
from nltk.corpus.reader.plaintext import PlaintextCorpusReader
|
6 |
+
from nltk.corpus.reader.util import concat, read_blankline_block
|
7 |
+
from nltk.tokenize import blankline_tokenize, sent_tokenize, word_tokenize
|
8 |
+
|
9 |
+
|
10 |
+
def comma_separated_string_args(func):
|
11 |
+
"""
|
12 |
+
A decorator that allows a function to be called with
|
13 |
+
a single string of comma-separated values which become
|
14 |
+
individual function arguments.
|
15 |
+
"""
|
16 |
+
|
17 |
+
@wraps(func)
|
18 |
+
def wrapper(*args, **kwargs):
|
19 |
+
_args = list()
|
20 |
+
for arg in args:
|
21 |
+
if isinstance(arg, str):
|
22 |
+
_args.append({part.strip() for part in arg.split(",")})
|
23 |
+
elif isinstance(arg, list):
|
24 |
+
_args.append(set(arg))
|
25 |
+
else:
|
26 |
+
_args.append(arg)
|
27 |
+
for name, value in kwargs.items():
|
28 |
+
if isinstance(value, str):
|
29 |
+
kwargs[name] = {part.strip() for part in value.split(",")}
|
30 |
+
return func(*_args, **kwargs)
|
31 |
+
|
32 |
+
return wrapper
|
33 |
+
|
34 |
+
|
35 |
+
def read_parse_blankline_block(stream, parser):
|
36 |
+
block = read_blankline_block(stream)
|
37 |
+
if block:
|
38 |
+
return [parser.render(block[0])]
|
39 |
+
return block
|
40 |
+
|
41 |
+
|
42 |
+
class MarkdownBlock:
|
43 |
+
def __init__(self, content):
|
44 |
+
self.content = content
|
45 |
+
self.truncate_at = 16
|
46 |
+
|
47 |
+
def __repr__(self):
|
48 |
+
return f"{self.__class__.__name__}(content={repr(str(self))})"
|
49 |
+
|
50 |
+
def __str__(self):
|
51 |
+
return (
|
52 |
+
f"{self.content[:self.truncate_at]}"
|
53 |
+
f"{'...' if len(self.content) > self.truncate_at else ''}"
|
54 |
+
)
|
55 |
+
|
56 |
+
@property
|
57 |
+
def raw(self):
|
58 |
+
return self.content
|
59 |
+
|
60 |
+
@property
|
61 |
+
def words(self):
|
62 |
+
return word_tokenize(self.content)
|
63 |
+
|
64 |
+
@property
|
65 |
+
def sents(self):
|
66 |
+
return [word_tokenize(sent) for sent in sent_tokenize(self.content)]
|
67 |
+
|
68 |
+
@property
|
69 |
+
def paras(self):
|
70 |
+
return [
|
71 |
+
[word_tokenize(sent) for sent in sent_tokenize(para)]
|
72 |
+
for para in blankline_tokenize(self.content)
|
73 |
+
]
|
74 |
+
|
75 |
+
|
76 |
+
class CodeBlock(MarkdownBlock):
|
77 |
+
def __init__(self, language, *args):
|
78 |
+
self.language = language
|
79 |
+
super().__init__(*args)
|
80 |
+
|
81 |
+
@property
|
82 |
+
def sents(self):
|
83 |
+
return [word_tokenize(line) for line in self.content.splitlines()]
|
84 |
+
|
85 |
+
@property
|
86 |
+
def lines(self):
|
87 |
+
return self.content.splitlines()
|
88 |
+
|
89 |
+
@property
|
90 |
+
def paras(self):
|
91 |
+
return [
|
92 |
+
[word_tokenize(line) for line in para.splitlines()]
|
93 |
+
for para in blankline_tokenize(self.content)
|
94 |
+
]
|
95 |
+
|
96 |
+
|
97 |
+
class MarkdownSection(MarkdownBlock):
|
98 |
+
def __init__(self, heading, level, *args):
|
99 |
+
self.heading = heading
|
100 |
+
self.level = level
|
101 |
+
super().__init__(*args)
|
102 |
+
|
103 |
+
|
104 |
+
Image = namedtuple("Image", "label, src, title")
|
105 |
+
Link = namedtuple("Link", "label, href, title")
|
106 |
+
List = namedtuple("List", "is_ordered, items")
|
107 |
+
|
108 |
+
|
109 |
+
class MarkdownCorpusReader(PlaintextCorpusReader):
|
110 |
+
def __init__(self, *args, parser=None, **kwargs):
|
111 |
+
from markdown_it import MarkdownIt
|
112 |
+
from mdit_plain.renderer import RendererPlain
|
113 |
+
from mdit_py_plugins.front_matter import front_matter_plugin
|
114 |
+
|
115 |
+
self.parser = parser
|
116 |
+
if self.parser is None:
|
117 |
+
self.parser = MarkdownIt("commonmark", renderer_cls=RendererPlain)
|
118 |
+
self.parser.use(front_matter_plugin)
|
119 |
+
|
120 |
+
kwargs.setdefault(
|
121 |
+
"para_block_reader", partial(read_parse_blankline_block, parser=self.parser)
|
122 |
+
)
|
123 |
+
super().__init__(*args, **kwargs)
|
124 |
+
|
125 |
+
# This override takes care of removing markup.
|
126 |
+
def _read_word_block(self, stream):
|
127 |
+
words = list()
|
128 |
+
for para in self._para_block_reader(stream):
|
129 |
+
words.extend(self._word_tokenizer.tokenize(para))
|
130 |
+
return words
|
131 |
+
|
132 |
+
|
133 |
+
class CategorizedMarkdownCorpusReader(CategorizedCorpusReader, MarkdownCorpusReader):
|
134 |
+
"""
|
135 |
+
A reader for markdown corpora whose documents are divided into
|
136 |
+
categories based on their file identifiers.
|
137 |
+
|
138 |
+
Based on nltk.corpus.reader.plaintext.CategorizedPlaintextCorpusReader:
|
139 |
+
https://www.nltk.org/_modules/nltk/corpus/reader/api.html#CategorizedCorpusReader
|
140 |
+
"""
|
141 |
+
|
142 |
+
def __init__(self, *args, cat_field="tags", **kwargs):
|
143 |
+
"""
|
144 |
+
Initialize the corpus reader. Categorization arguments
|
145 |
+
(``cat_pattern``, ``cat_map``, and ``cat_file``) are passed to
|
146 |
+
the ``CategorizedCorpusReader`` constructor. The remaining arguments
|
147 |
+
are passed to the ``MarkdownCorpusReader`` constructor.
|
148 |
+
"""
|
149 |
+
cat_args = ["cat_pattern", "cat_map", "cat_file"]
|
150 |
+
if not any(arg in kwargs for arg in cat_args):
|
151 |
+
# Initialize with a blank map now,
|
152 |
+
# and try to build categories from document metadata later.
|
153 |
+
kwargs["cat_map"] = dict()
|
154 |
+
CategorizedCorpusReader.__init__(self, kwargs)
|
155 |
+
MarkdownCorpusReader.__init__(self, *args, **kwargs)
|
156 |
+
|
157 |
+
# Map file IDs to categories if self._map exists but is still empty:
|
158 |
+
if self._map is not None and not self._map:
|
159 |
+
for file_id in self._fileids:
|
160 |
+
metadata = self.metadata(file_id)
|
161 |
+
if metadata:
|
162 |
+
self._map[file_id] = metadata[0].get(cat_field, [])
|
163 |
+
|
164 |
+
### Begin CategorizedCorpusReader Overrides
|
165 |
+
@comma_separated_string_args
|
166 |
+
def categories(self, fileids=None):
|
167 |
+
return super().categories(fileids)
|
168 |
+
|
169 |
+
@comma_separated_string_args
|
170 |
+
def fileids(self, categories=None):
|
171 |
+
if categories is None:
|
172 |
+
return self._fileids
|
173 |
+
return super().fileids(categories)
|
174 |
+
|
175 |
+
### End CategorizedCorpusReader Overrides
|
176 |
+
|
177 |
+
### Begin MarkdownCorpusReader Overrides
|
178 |
+
@comma_separated_string_args
|
179 |
+
def raw(self, fileids=None, categories=None):
|
180 |
+
return super().raw(self._resolve(fileids, categories))
|
181 |
+
|
182 |
+
@comma_separated_string_args
|
183 |
+
def words(self, fileids=None, categories=None):
|
184 |
+
return super().words(self._resolve(fileids, categories))
|
185 |
+
|
186 |
+
@comma_separated_string_args
|
187 |
+
def sents(self, fileids=None, categories=None):
|
188 |
+
return super().sents(self._resolve(fileids, categories))
|
189 |
+
|
190 |
+
@comma_separated_string_args
|
191 |
+
def paras(self, fileids=None, categories=None):
|
192 |
+
return super().paras(self._resolve(fileids, categories))
|
193 |
+
|
194 |
+
### End MarkdownCorpusReader Overrides
|
195 |
+
|
196 |
+
def concatenated_view(self, reader, fileids, categories):
|
197 |
+
return concat(
|
198 |
+
[
|
199 |
+
self.CorpusView(path, reader, encoding=enc)
|
200 |
+
for (path, enc) in self.abspaths(
|
201 |
+
self._resolve(fileids, categories), include_encoding=True
|
202 |
+
)
|
203 |
+
]
|
204 |
+
)
|
205 |
+
|
206 |
+
def metadata_reader(self, stream):
|
207 |
+
from yaml import safe_load
|
208 |
+
|
209 |
+
return [
|
210 |
+
safe_load(t.content)
|
211 |
+
for t in self.parser.parse(stream.read())
|
212 |
+
if t.type == "front_matter"
|
213 |
+
]
|
214 |
+
|
215 |
+
@comma_separated_string_args
|
216 |
+
def metadata(self, fileids=None, categories=None):
|
217 |
+
return self.concatenated_view(self.metadata_reader, fileids, categories)
|
218 |
+
|
219 |
+
def blockquote_reader(self, stream):
|
220 |
+
tokens = self.parser.parse(stream.read())
|
221 |
+
opening_tokens = filter(
|
222 |
+
lambda t: t.level == 0 and t.type == "blockquote_open", tokens
|
223 |
+
)
|
224 |
+
closing_tokens = filter(
|
225 |
+
lambda t: t.level == 0 and t.type == "blockquote_close", tokens
|
226 |
+
)
|
227 |
+
blockquotes = list()
|
228 |
+
for o, c in zip(opening_tokens, closing_tokens):
|
229 |
+
opening_index = tokens.index(o)
|
230 |
+
closing_index = tokens.index(c, opening_index)
|
231 |
+
blockquotes.append(tokens[opening_index : closing_index + 1])
|
232 |
+
return [
|
233 |
+
MarkdownBlock(
|
234 |
+
self.parser.renderer.render(block, self.parser.options, env=None)
|
235 |
+
)
|
236 |
+
for block in blockquotes
|
237 |
+
]
|
238 |
+
|
239 |
+
@comma_separated_string_args
|
240 |
+
def blockquotes(self, fileids=None, categories=None):
|
241 |
+
return self.concatenated_view(self.blockquote_reader, fileids, categories)
|
242 |
+
|
243 |
+
def code_block_reader(self, stream):
|
244 |
+
return [
|
245 |
+
CodeBlock(
|
246 |
+
t.info,
|
247 |
+
t.content,
|
248 |
+
)
|
249 |
+
for t in self.parser.parse(stream.read())
|
250 |
+
if t.level == 0 and t.type in ("fence", "code_block")
|
251 |
+
]
|
252 |
+
|
253 |
+
@comma_separated_string_args
|
254 |
+
def code_blocks(self, fileids=None, categories=None):
|
255 |
+
return self.concatenated_view(self.code_block_reader, fileids, categories)
|
256 |
+
|
257 |
+
def image_reader(self, stream):
|
258 |
+
return [
|
259 |
+
Image(
|
260 |
+
child_token.content,
|
261 |
+
child_token.attrGet("src"),
|
262 |
+
child_token.attrGet("title"),
|
263 |
+
)
|
264 |
+
for inline_token in filter(
|
265 |
+
lambda t: t.type == "inline", self.parser.parse(stream.read())
|
266 |
+
)
|
267 |
+
for child_token in inline_token.children
|
268 |
+
if child_token.type == "image"
|
269 |
+
]
|
270 |
+
|
271 |
+
@comma_separated_string_args
|
272 |
+
def images(self, fileids=None, categories=None):
|
273 |
+
return self.concatenated_view(self.image_reader, fileids, categories)
|
274 |
+
|
275 |
+
def link_reader(self, stream):
|
276 |
+
return [
|
277 |
+
Link(
|
278 |
+
inline_token.children[i + 1].content,
|
279 |
+
child_token.attrGet("href"),
|
280 |
+
child_token.attrGet("title"),
|
281 |
+
)
|
282 |
+
for inline_token in filter(
|
283 |
+
lambda t: t.type == "inline", self.parser.parse(stream.read())
|
284 |
+
)
|
285 |
+
for i, child_token in enumerate(inline_token.children)
|
286 |
+
if child_token.type == "link_open"
|
287 |
+
]
|
288 |
+
|
289 |
+
@comma_separated_string_args
|
290 |
+
def links(self, fileids=None, categories=None):
|
291 |
+
return self.concatenated_view(self.link_reader, fileids, categories)
|
292 |
+
|
293 |
+
def list_reader(self, stream):
|
294 |
+
tokens = self.parser.parse(stream.read())
|
295 |
+
opening_types = ("bullet_list_open", "ordered_list_open")
|
296 |
+
opening_tokens = filter(
|
297 |
+
lambda t: t.level == 0 and t.type in opening_types, tokens
|
298 |
+
)
|
299 |
+
closing_types = ("bullet_list_close", "ordered_list_close")
|
300 |
+
closing_tokens = filter(
|
301 |
+
lambda t: t.level == 0 and t.type in closing_types, tokens
|
302 |
+
)
|
303 |
+
list_blocks = list()
|
304 |
+
for o, c in zip(opening_tokens, closing_tokens):
|
305 |
+
opening_index = tokens.index(o)
|
306 |
+
closing_index = tokens.index(c, opening_index)
|
307 |
+
list_blocks.append(tokens[opening_index : closing_index + 1])
|
308 |
+
return [
|
309 |
+
List(
|
310 |
+
tokens[0].type == "ordered_list_open",
|
311 |
+
[t.content for t in tokens if t.content],
|
312 |
+
)
|
313 |
+
for tokens in list_blocks
|
314 |
+
]
|
315 |
+
|
316 |
+
@comma_separated_string_args
|
317 |
+
def lists(self, fileids=None, categories=None):
|
318 |
+
return self.concatenated_view(self.list_reader, fileids, categories)
|
319 |
+
|
320 |
+
def section_reader(self, stream):
|
321 |
+
section_blocks, block = list(), list()
|
322 |
+
in_heading = False
|
323 |
+
for t in self.parser.parse(stream.read()):
|
324 |
+
if t.level == 0 and t.type == "heading_open":
|
325 |
+
if block:
|
326 |
+
section_blocks.append(block)
|
327 |
+
block = list()
|
328 |
+
in_heading = True
|
329 |
+
if in_heading:
|
330 |
+
block.append(t)
|
331 |
+
return [
|
332 |
+
MarkdownSection(
|
333 |
+
block[1].content,
|
334 |
+
block[0].markup.count("#"),
|
335 |
+
self.parser.renderer.render(block, self.parser.options, env=None),
|
336 |
+
)
|
337 |
+
for block in section_blocks
|
338 |
+
]
|
339 |
+
|
340 |
+
@comma_separated_string_args
|
341 |
+
def sections(self, fileids=None, categories=None):
|
342 |
+
return self.concatenated_view(self.section_reader, fileids, categories)
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/mte.py
ADDED
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A reader for corpora whose documents are in MTE format.
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
import re
|
6 |
+
from functools import reduce
|
7 |
+
|
8 |
+
from nltk.corpus.reader import TaggedCorpusReader, concat
|
9 |
+
from nltk.corpus.reader.xmldocs import XMLCorpusView
|
10 |
+
|
11 |
+
|
12 |
+
def xpath(root, path, ns):
|
13 |
+
return root.findall(path, ns)
|
14 |
+
|
15 |
+
|
16 |
+
class MTECorpusView(XMLCorpusView):
|
17 |
+
"""
|
18 |
+
Class for lazy viewing the MTE Corpus.
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(self, fileid, tagspec, elt_handler=None):
|
22 |
+
XMLCorpusView.__init__(self, fileid, tagspec, elt_handler)
|
23 |
+
|
24 |
+
def read_block(self, stream, tagspec=None, elt_handler=None):
|
25 |
+
return list(
|
26 |
+
filter(
|
27 |
+
lambda x: x is not None,
|
28 |
+
XMLCorpusView.read_block(self, stream, tagspec, elt_handler),
|
29 |
+
)
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
class MTEFileReader:
|
34 |
+
"""
|
35 |
+
Class for loading the content of the multext-east corpus. It
|
36 |
+
parses the xml files and does some tag-filtering depending on the
|
37 |
+
given method parameters.
|
38 |
+
"""
|
39 |
+
|
40 |
+
ns = {
|
41 |
+
"tei": "https://www.tei-c.org/ns/1.0",
|
42 |
+
"xml": "https://www.w3.org/XML/1998/namespace",
|
43 |
+
}
|
44 |
+
tag_ns = "{https://www.tei-c.org/ns/1.0}"
|
45 |
+
xml_ns = "{https://www.w3.org/XML/1998/namespace}"
|
46 |
+
word_path = "TEI/text/body/div/div/p/s/(w|c)"
|
47 |
+
sent_path = "TEI/text/body/div/div/p/s"
|
48 |
+
para_path = "TEI/text/body/div/div/p"
|
49 |
+
|
50 |
+
def __init__(self, file_path):
|
51 |
+
self.__file_path = file_path
|
52 |
+
|
53 |
+
@classmethod
|
54 |
+
def _word_elt(cls, elt, context):
|
55 |
+
return elt.text
|
56 |
+
|
57 |
+
@classmethod
|
58 |
+
def _sent_elt(cls, elt, context):
|
59 |
+
return [cls._word_elt(w, None) for w in xpath(elt, "*", cls.ns)]
|
60 |
+
|
61 |
+
@classmethod
|
62 |
+
def _para_elt(cls, elt, context):
|
63 |
+
return [cls._sent_elt(s, None) for s in xpath(elt, "*", cls.ns)]
|
64 |
+
|
65 |
+
@classmethod
|
66 |
+
def _tagged_word_elt(cls, elt, context):
|
67 |
+
if "ana" not in elt.attrib:
|
68 |
+
return (elt.text, "")
|
69 |
+
|
70 |
+
if cls.__tags == "" and cls.__tagset == "msd":
|
71 |
+
return (elt.text, elt.attrib["ana"])
|
72 |
+
elif cls.__tags == "" and cls.__tagset == "universal":
|
73 |
+
return (elt.text, MTETagConverter.msd_to_universal(elt.attrib["ana"]))
|
74 |
+
else:
|
75 |
+
tags = re.compile("^" + re.sub("-", ".", cls.__tags) + ".*$")
|
76 |
+
if tags.match(elt.attrib["ana"]):
|
77 |
+
if cls.__tagset == "msd":
|
78 |
+
return (elt.text, elt.attrib["ana"])
|
79 |
+
else:
|
80 |
+
return (
|
81 |
+
elt.text,
|
82 |
+
MTETagConverter.msd_to_universal(elt.attrib["ana"]),
|
83 |
+
)
|
84 |
+
else:
|
85 |
+
return None
|
86 |
+
|
87 |
+
@classmethod
|
88 |
+
def _tagged_sent_elt(cls, elt, context):
|
89 |
+
return list(
|
90 |
+
filter(
|
91 |
+
lambda x: x is not None,
|
92 |
+
[cls._tagged_word_elt(w, None) for w in xpath(elt, "*", cls.ns)],
|
93 |
+
)
|
94 |
+
)
|
95 |
+
|
96 |
+
@classmethod
|
97 |
+
def _tagged_para_elt(cls, elt, context):
|
98 |
+
return list(
|
99 |
+
filter(
|
100 |
+
lambda x: x is not None,
|
101 |
+
[cls._tagged_sent_elt(s, None) for s in xpath(elt, "*", cls.ns)],
|
102 |
+
)
|
103 |
+
)
|
104 |
+
|
105 |
+
@classmethod
|
106 |
+
def _lemma_word_elt(cls, elt, context):
|
107 |
+
if "lemma" not in elt.attrib:
|
108 |
+
return (elt.text, "")
|
109 |
+
else:
|
110 |
+
return (elt.text, elt.attrib["lemma"])
|
111 |
+
|
112 |
+
@classmethod
|
113 |
+
def _lemma_sent_elt(cls, elt, context):
|
114 |
+
return [cls._lemma_word_elt(w, None) for w in xpath(elt, "*", cls.ns)]
|
115 |
+
|
116 |
+
@classmethod
|
117 |
+
def _lemma_para_elt(cls, elt, context):
|
118 |
+
return [cls._lemma_sent_elt(s, None) for s in xpath(elt, "*", cls.ns)]
|
119 |
+
|
120 |
+
def words(self):
|
121 |
+
return MTECorpusView(
|
122 |
+
self.__file_path, MTEFileReader.word_path, MTEFileReader._word_elt
|
123 |
+
)
|
124 |
+
|
125 |
+
def sents(self):
|
126 |
+
return MTECorpusView(
|
127 |
+
self.__file_path, MTEFileReader.sent_path, MTEFileReader._sent_elt
|
128 |
+
)
|
129 |
+
|
130 |
+
def paras(self):
|
131 |
+
return MTECorpusView(
|
132 |
+
self.__file_path, MTEFileReader.para_path, MTEFileReader._para_elt
|
133 |
+
)
|
134 |
+
|
135 |
+
def lemma_words(self):
|
136 |
+
return MTECorpusView(
|
137 |
+
self.__file_path, MTEFileReader.word_path, MTEFileReader._lemma_word_elt
|
138 |
+
)
|
139 |
+
|
140 |
+
def tagged_words(self, tagset, tags):
|
141 |
+
MTEFileReader.__tagset = tagset
|
142 |
+
MTEFileReader.__tags = tags
|
143 |
+
return MTECorpusView(
|
144 |
+
self.__file_path, MTEFileReader.word_path, MTEFileReader._tagged_word_elt
|
145 |
+
)
|
146 |
+
|
147 |
+
def lemma_sents(self):
|
148 |
+
return MTECorpusView(
|
149 |
+
self.__file_path, MTEFileReader.sent_path, MTEFileReader._lemma_sent_elt
|
150 |
+
)
|
151 |
+
|
152 |
+
def tagged_sents(self, tagset, tags):
|
153 |
+
MTEFileReader.__tagset = tagset
|
154 |
+
MTEFileReader.__tags = tags
|
155 |
+
return MTECorpusView(
|
156 |
+
self.__file_path, MTEFileReader.sent_path, MTEFileReader._tagged_sent_elt
|
157 |
+
)
|
158 |
+
|
159 |
+
def lemma_paras(self):
|
160 |
+
return MTECorpusView(
|
161 |
+
self.__file_path, MTEFileReader.para_path, MTEFileReader._lemma_para_elt
|
162 |
+
)
|
163 |
+
|
164 |
+
def tagged_paras(self, tagset, tags):
|
165 |
+
MTEFileReader.__tagset = tagset
|
166 |
+
MTEFileReader.__tags = tags
|
167 |
+
return MTECorpusView(
|
168 |
+
self.__file_path, MTEFileReader.para_path, MTEFileReader._tagged_para_elt
|
169 |
+
)
|
170 |
+
|
171 |
+
|
172 |
+
class MTETagConverter:
|
173 |
+
"""
|
174 |
+
Class for converting msd tags to universal tags, more conversion
|
175 |
+
options are currently not implemented.
|
176 |
+
"""
|
177 |
+
|
178 |
+
mapping_msd_universal = {
|
179 |
+
"A": "ADJ",
|
180 |
+
"S": "ADP",
|
181 |
+
"R": "ADV",
|
182 |
+
"C": "CONJ",
|
183 |
+
"D": "DET",
|
184 |
+
"N": "NOUN",
|
185 |
+
"M": "NUM",
|
186 |
+
"Q": "PRT",
|
187 |
+
"P": "PRON",
|
188 |
+
"V": "VERB",
|
189 |
+
".": ".",
|
190 |
+
"-": "X",
|
191 |
+
}
|
192 |
+
|
193 |
+
@staticmethod
|
194 |
+
def msd_to_universal(tag):
|
195 |
+
"""
|
196 |
+
This function converts the annotation from the Multex-East to the universal tagset
|
197 |
+
as described in Chapter 5 of the NLTK-Book
|
198 |
+
|
199 |
+
Unknown Tags will be mapped to X. Punctuation marks are not supported in MSD tags, so
|
200 |
+
"""
|
201 |
+
indicator = tag[0] if not tag[0] == "#" else tag[1]
|
202 |
+
|
203 |
+
if not indicator in MTETagConverter.mapping_msd_universal:
|
204 |
+
indicator = "-"
|
205 |
+
|
206 |
+
return MTETagConverter.mapping_msd_universal[indicator]
|
207 |
+
|
208 |
+
|
209 |
+
class MTECorpusReader(TaggedCorpusReader):
|
210 |
+
"""
|
211 |
+
Reader for corpora following the TEI-p5 xml scheme, such as MULTEXT-East.
|
212 |
+
MULTEXT-East contains part-of-speech-tagged words with a quite precise tagging
|
213 |
+
scheme. These tags can be converted to the Universal tagset
|
214 |
+
"""
|
215 |
+
|
216 |
+
def __init__(self, root=None, fileids=None, encoding="utf8"):
|
217 |
+
"""
|
218 |
+
Construct a new MTECorpusreader for a set of documents
|
219 |
+
located at the given root directory. Example usage:
|
220 |
+
|
221 |
+
>>> root = '/...path to corpus.../'
|
222 |
+
>>> reader = MTECorpusReader(root, 'oana-*.xml', 'utf8') # doctest: +SKIP
|
223 |
+
|
224 |
+
:param root: The root directory for this corpus. (default points to location in multext config file)
|
225 |
+
:param fileids: A list or regexp specifying the fileids in this corpus. (default is oana-en.xml)
|
226 |
+
:param encoding: The encoding of the given files (default is utf8)
|
227 |
+
"""
|
228 |
+
TaggedCorpusReader.__init__(self, root, fileids, encoding)
|
229 |
+
self._readme = "00README.txt"
|
230 |
+
|
231 |
+
def __fileids(self, fileids):
|
232 |
+
if fileids is None:
|
233 |
+
fileids = self._fileids
|
234 |
+
elif isinstance(fileids, str):
|
235 |
+
fileids = [fileids]
|
236 |
+
# filter wrong userinput
|
237 |
+
fileids = filter(lambda x: x in self._fileids, fileids)
|
238 |
+
# filter multext-east sourcefiles that are not compatible to the teip5 specification
|
239 |
+
fileids = filter(lambda x: x not in ["oana-bg.xml", "oana-mk.xml"], fileids)
|
240 |
+
if not fileids:
|
241 |
+
print("No valid multext-east file specified")
|
242 |
+
return fileids
|
243 |
+
|
244 |
+
def words(self, fileids=None):
|
245 |
+
"""
|
246 |
+
:param fileids: A list specifying the fileids that should be used.
|
247 |
+
:return: the given file(s) as a list of words and punctuation symbols.
|
248 |
+
:rtype: list(str)
|
249 |
+
"""
|
250 |
+
return concat(
|
251 |
+
[
|
252 |
+
MTEFileReader(os.path.join(self._root, f)).words()
|
253 |
+
for f in self.__fileids(fileids)
|
254 |
+
]
|
255 |
+
)
|
256 |
+
|
257 |
+
def sents(self, fileids=None):
|
258 |
+
"""
|
259 |
+
:param fileids: A list specifying the fileids that should be used.
|
260 |
+
:return: the given file(s) as a list of sentences or utterances,
|
261 |
+
each encoded as a list of word strings
|
262 |
+
:rtype: list(list(str))
|
263 |
+
"""
|
264 |
+
return concat(
|
265 |
+
[
|
266 |
+
MTEFileReader(os.path.join(self._root, f)).sents()
|
267 |
+
for f in self.__fileids(fileids)
|
268 |
+
]
|
269 |
+
)
|
270 |
+
|
271 |
+
def paras(self, fileids=None):
|
272 |
+
"""
|
273 |
+
:param fileids: A list specifying the fileids that should be used.
|
274 |
+
:return: the given file(s) as a list of paragraphs, each encoded as a list
|
275 |
+
of sentences, which are in turn encoded as lists of word string
|
276 |
+
:rtype: list(list(list(str)))
|
277 |
+
"""
|
278 |
+
return concat(
|
279 |
+
[
|
280 |
+
MTEFileReader(os.path.join(self._root, f)).paras()
|
281 |
+
for f in self.__fileids(fileids)
|
282 |
+
]
|
283 |
+
)
|
284 |
+
|
285 |
+
def lemma_words(self, fileids=None):
|
286 |
+
"""
|
287 |
+
:param fileids: A list specifying the fileids that should be used.
|
288 |
+
:return: the given file(s) as a list of words, the corresponding lemmas
|
289 |
+
and punctuation symbols, encoded as tuples (word, lemma)
|
290 |
+
:rtype: list(tuple(str,str))
|
291 |
+
"""
|
292 |
+
return concat(
|
293 |
+
[
|
294 |
+
MTEFileReader(os.path.join(self._root, f)).lemma_words()
|
295 |
+
for f in self.__fileids(fileids)
|
296 |
+
]
|
297 |
+
)
|
298 |
+
|
299 |
+
def tagged_words(self, fileids=None, tagset="msd", tags=""):
|
300 |
+
"""
|
301 |
+
:param fileids: A list specifying the fileids that should be used.
|
302 |
+
:param tagset: The tagset that should be used in the returned object,
|
303 |
+
either "universal" or "msd", "msd" is the default
|
304 |
+
:param tags: An MSD Tag that is used to filter all parts of the used corpus
|
305 |
+
that are not more precise or at least equal to the given tag
|
306 |
+
:return: the given file(s) as a list of tagged words and punctuation symbols
|
307 |
+
encoded as tuples (word, tag)
|
308 |
+
:rtype: list(tuple(str, str))
|
309 |
+
"""
|
310 |
+
if tagset == "universal" or tagset == "msd":
|
311 |
+
return concat(
|
312 |
+
[
|
313 |
+
MTEFileReader(os.path.join(self._root, f)).tagged_words(
|
314 |
+
tagset, tags
|
315 |
+
)
|
316 |
+
for f in self.__fileids(fileids)
|
317 |
+
]
|
318 |
+
)
|
319 |
+
else:
|
320 |
+
print("Unknown tagset specified.")
|
321 |
+
|
322 |
+
def lemma_sents(self, fileids=None):
|
323 |
+
"""
|
324 |
+
:param fileids: A list specifying the fileids that should be used.
|
325 |
+
:return: the given file(s) as a list of sentences or utterances, each
|
326 |
+
encoded as a list of tuples of the word and the corresponding
|
327 |
+
lemma (word, lemma)
|
328 |
+
:rtype: list(list(tuple(str, str)))
|
329 |
+
"""
|
330 |
+
return concat(
|
331 |
+
[
|
332 |
+
MTEFileReader(os.path.join(self._root, f)).lemma_sents()
|
333 |
+
for f in self.__fileids(fileids)
|
334 |
+
]
|
335 |
+
)
|
336 |
+
|
337 |
+
def tagged_sents(self, fileids=None, tagset="msd", tags=""):
|
338 |
+
"""
|
339 |
+
:param fileids: A list specifying the fileids that should be used.
|
340 |
+
:param tagset: The tagset that should be used in the returned object,
|
341 |
+
either "universal" or "msd", "msd" is the default
|
342 |
+
:param tags: An MSD Tag that is used to filter all parts of the used corpus
|
343 |
+
that are not more precise or at least equal to the given tag
|
344 |
+
:return: the given file(s) as a list of sentences or utterances, each
|
345 |
+
each encoded as a list of (word,tag) tuples
|
346 |
+
:rtype: list(list(tuple(str, str)))
|
347 |
+
"""
|
348 |
+
if tagset == "universal" or tagset == "msd":
|
349 |
+
return concat(
|
350 |
+
[
|
351 |
+
MTEFileReader(os.path.join(self._root, f)).tagged_sents(
|
352 |
+
tagset, tags
|
353 |
+
)
|
354 |
+
for f in self.__fileids(fileids)
|
355 |
+
]
|
356 |
+
)
|
357 |
+
else:
|
358 |
+
print("Unknown tagset specified.")
|
359 |
+
|
360 |
+
def lemma_paras(self, fileids=None):
|
361 |
+
"""
|
362 |
+
:param fileids: A list specifying the fileids that should be used.
|
363 |
+
:return: the given file(s) as a list of paragraphs, each encoded as a
|
364 |
+
list of sentences, which are in turn encoded as a list of
|
365 |
+
tuples of the word and the corresponding lemma (word, lemma)
|
366 |
+
:rtype: list(List(List(tuple(str, str))))
|
367 |
+
"""
|
368 |
+
return concat(
|
369 |
+
[
|
370 |
+
MTEFileReader(os.path.join(self._root, f)).lemma_paras()
|
371 |
+
for f in self.__fileids(fileids)
|
372 |
+
]
|
373 |
+
)
|
374 |
+
|
375 |
+
def tagged_paras(self, fileids=None, tagset="msd", tags=""):
|
376 |
+
"""
|
377 |
+
:param fileids: A list specifying the fileids that should be used.
|
378 |
+
:param tagset: The tagset that should be used in the returned object,
|
379 |
+
either "universal" or "msd", "msd" is the default
|
380 |
+
:param tags: An MSD Tag that is used to filter all parts of the used corpus
|
381 |
+
that are not more precise or at least equal to the given tag
|
382 |
+
:return: the given file(s) as a list of paragraphs, each encoded as a
|
383 |
+
list of sentences, which are in turn encoded as a list
|
384 |
+
of (word,tag) tuples
|
385 |
+
:rtype: list(list(list(tuple(str, str))))
|
386 |
+
"""
|
387 |
+
if tagset == "universal" or tagset == "msd":
|
388 |
+
return concat(
|
389 |
+
[
|
390 |
+
MTEFileReader(os.path.join(self._root, f)).tagged_paras(
|
391 |
+
tagset, tags
|
392 |
+
)
|
393 |
+
for f in self.__fileids(fileids)
|
394 |
+
]
|
395 |
+
)
|
396 |
+
else:
|
397 |
+
print("Unknown tagset specified.")
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/nkjp.py
ADDED
@@ -0,0 +1,487 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: NKJP Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Gabriela Kaczka
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
import functools
|
9 |
+
import os
|
10 |
+
import re
|
11 |
+
import tempfile
|
12 |
+
|
13 |
+
from nltk.corpus.reader.util import concat
|
14 |
+
from nltk.corpus.reader.xmldocs import XMLCorpusReader, XMLCorpusView
|
15 |
+
|
16 |
+
|
17 |
+
def _parse_args(fun):
|
18 |
+
"""
|
19 |
+
Wraps function arguments:
|
20 |
+
if fileids not specified then function set NKJPCorpusReader paths.
|
21 |
+
"""
|
22 |
+
|
23 |
+
@functools.wraps(fun)
|
24 |
+
def decorator(self, fileids=None, **kwargs):
|
25 |
+
if not fileids:
|
26 |
+
fileids = self._paths
|
27 |
+
return fun(self, fileids, **kwargs)
|
28 |
+
|
29 |
+
return decorator
|
30 |
+
|
31 |
+
|
32 |
+
class NKJPCorpusReader(XMLCorpusReader):
|
33 |
+
WORDS_MODE = 0
|
34 |
+
SENTS_MODE = 1
|
35 |
+
HEADER_MODE = 2
|
36 |
+
RAW_MODE = 3
|
37 |
+
|
38 |
+
def __init__(self, root, fileids=".*"):
|
39 |
+
"""
|
40 |
+
Corpus reader designed to work with National Corpus of Polish.
|
41 |
+
See http://nkjp.pl/ for more details about NKJP.
|
42 |
+
use example:
|
43 |
+
import nltk
|
44 |
+
import nkjp
|
45 |
+
from nkjp import NKJPCorpusReader
|
46 |
+
x = NKJPCorpusReader(root='/home/USER/nltk_data/corpora/nkjp/', fileids='') # obtain the whole corpus
|
47 |
+
x.header()
|
48 |
+
x.raw()
|
49 |
+
x.words()
|
50 |
+
x.tagged_words(tags=['subst', 'comp']) #Link to find more tags: nkjp.pl/poliqarp/help/ense2.html
|
51 |
+
x.sents()
|
52 |
+
x = NKJPCorpusReader(root='/home/USER/nltk_data/corpora/nkjp/', fileids='Wilk*') # obtain particular file(s)
|
53 |
+
x.header(fileids=['WilkDom', '/home/USER/nltk_data/corpora/nkjp/WilkWilczy'])
|
54 |
+
x.tagged_words(fileids=['WilkDom', '/home/USER/nltk_data/corpora/nkjp/WilkWilczy'], tags=['subst', 'comp'])
|
55 |
+
"""
|
56 |
+
if isinstance(fileids, str):
|
57 |
+
XMLCorpusReader.__init__(self, root, fileids + ".*/header.xml")
|
58 |
+
else:
|
59 |
+
XMLCorpusReader.__init__(
|
60 |
+
self, root, [fileid + "/header.xml" for fileid in fileids]
|
61 |
+
)
|
62 |
+
self._paths = self.get_paths()
|
63 |
+
|
64 |
+
def get_paths(self):
|
65 |
+
return [
|
66 |
+
os.path.join(str(self._root), f.split("header.xml")[0])
|
67 |
+
for f in self._fileids
|
68 |
+
]
|
69 |
+
|
70 |
+
def fileids(self):
|
71 |
+
"""
|
72 |
+
Returns a list of file identifiers for the fileids that make up
|
73 |
+
this corpus.
|
74 |
+
"""
|
75 |
+
return [f.split("header.xml")[0] for f in self._fileids]
|
76 |
+
|
77 |
+
def _view(self, filename, tags=None, **kwargs):
|
78 |
+
"""
|
79 |
+
Returns a view specialised for use with particular corpus file.
|
80 |
+
"""
|
81 |
+
mode = kwargs.pop("mode", NKJPCorpusReader.WORDS_MODE)
|
82 |
+
if mode is NKJPCorpusReader.WORDS_MODE:
|
83 |
+
return NKJPCorpus_Morph_View(filename, tags=tags)
|
84 |
+
elif mode is NKJPCorpusReader.SENTS_MODE:
|
85 |
+
return NKJPCorpus_Segmentation_View(filename, tags=tags)
|
86 |
+
elif mode is NKJPCorpusReader.HEADER_MODE:
|
87 |
+
return NKJPCorpus_Header_View(filename, tags=tags)
|
88 |
+
elif mode is NKJPCorpusReader.RAW_MODE:
|
89 |
+
return NKJPCorpus_Text_View(
|
90 |
+
filename, tags=tags, mode=NKJPCorpus_Text_View.RAW_MODE
|
91 |
+
)
|
92 |
+
|
93 |
+
else:
|
94 |
+
raise NameError("No such mode!")
|
95 |
+
|
96 |
+
def add_root(self, fileid):
|
97 |
+
"""
|
98 |
+
Add root if necessary to specified fileid.
|
99 |
+
"""
|
100 |
+
if self.root in fileid:
|
101 |
+
return fileid
|
102 |
+
return self.root + fileid
|
103 |
+
|
104 |
+
@_parse_args
|
105 |
+
def header(self, fileids=None, **kwargs):
|
106 |
+
"""
|
107 |
+
Returns header(s) of specified fileids.
|
108 |
+
"""
|
109 |
+
return concat(
|
110 |
+
[
|
111 |
+
self._view(
|
112 |
+
self.add_root(fileid), mode=NKJPCorpusReader.HEADER_MODE, **kwargs
|
113 |
+
).handle_query()
|
114 |
+
for fileid in fileids
|
115 |
+
]
|
116 |
+
)
|
117 |
+
|
118 |
+
@_parse_args
|
119 |
+
def sents(self, fileids=None, **kwargs):
|
120 |
+
"""
|
121 |
+
Returns sentences in specified fileids.
|
122 |
+
"""
|
123 |
+
return concat(
|
124 |
+
[
|
125 |
+
self._view(
|
126 |
+
self.add_root(fileid), mode=NKJPCorpusReader.SENTS_MODE, **kwargs
|
127 |
+
).handle_query()
|
128 |
+
for fileid in fileids
|
129 |
+
]
|
130 |
+
)
|
131 |
+
|
132 |
+
@_parse_args
|
133 |
+
def words(self, fileids=None, **kwargs):
|
134 |
+
"""
|
135 |
+
Returns words in specified fileids.
|
136 |
+
"""
|
137 |
+
|
138 |
+
return concat(
|
139 |
+
[
|
140 |
+
self._view(
|
141 |
+
self.add_root(fileid), mode=NKJPCorpusReader.WORDS_MODE, **kwargs
|
142 |
+
).handle_query()
|
143 |
+
for fileid in fileids
|
144 |
+
]
|
145 |
+
)
|
146 |
+
|
147 |
+
@_parse_args
|
148 |
+
def tagged_words(self, fileids=None, **kwargs):
|
149 |
+
"""
|
150 |
+
Call with specified tags as a list, e.g. tags=['subst', 'comp'].
|
151 |
+
Returns tagged words in specified fileids.
|
152 |
+
"""
|
153 |
+
tags = kwargs.pop("tags", [])
|
154 |
+
return concat(
|
155 |
+
[
|
156 |
+
self._view(
|
157 |
+
self.add_root(fileid),
|
158 |
+
mode=NKJPCorpusReader.WORDS_MODE,
|
159 |
+
tags=tags,
|
160 |
+
**kwargs
|
161 |
+
).handle_query()
|
162 |
+
for fileid in fileids
|
163 |
+
]
|
164 |
+
)
|
165 |
+
|
166 |
+
@_parse_args
|
167 |
+
def raw(self, fileids=None, **kwargs):
|
168 |
+
"""
|
169 |
+
Returns words in specified fileids.
|
170 |
+
"""
|
171 |
+
return concat(
|
172 |
+
[
|
173 |
+
self._view(
|
174 |
+
self.add_root(fileid), mode=NKJPCorpusReader.RAW_MODE, **kwargs
|
175 |
+
).handle_query()
|
176 |
+
for fileid in fileids
|
177 |
+
]
|
178 |
+
)
|
179 |
+
|
180 |
+
|
181 |
+
class NKJPCorpus_Header_View(XMLCorpusView):
|
182 |
+
def __init__(self, filename, **kwargs):
|
183 |
+
"""
|
184 |
+
HEADER_MODE
|
185 |
+
A stream backed corpus view specialized for use with
|
186 |
+
header.xml files in NKJP corpus.
|
187 |
+
"""
|
188 |
+
self.tagspec = ".*/sourceDesc$"
|
189 |
+
XMLCorpusView.__init__(self, filename + "header.xml", self.tagspec)
|
190 |
+
|
191 |
+
def handle_query(self):
|
192 |
+
self._open()
|
193 |
+
header = []
|
194 |
+
while True:
|
195 |
+
segm = XMLCorpusView.read_block(self, self._stream)
|
196 |
+
if len(segm) == 0:
|
197 |
+
break
|
198 |
+
header.extend(segm)
|
199 |
+
self.close()
|
200 |
+
return header
|
201 |
+
|
202 |
+
def handle_elt(self, elt, context):
|
203 |
+
titles = elt.findall("bibl/title")
|
204 |
+
title = []
|
205 |
+
if titles:
|
206 |
+
title = "\n".join(title.text.strip() for title in titles)
|
207 |
+
|
208 |
+
authors = elt.findall("bibl/author")
|
209 |
+
author = []
|
210 |
+
if authors:
|
211 |
+
author = "\n".join(author.text.strip() for author in authors)
|
212 |
+
|
213 |
+
dates = elt.findall("bibl/date")
|
214 |
+
date = []
|
215 |
+
if dates:
|
216 |
+
date = "\n".join(date.text.strip() for date in dates)
|
217 |
+
|
218 |
+
publishers = elt.findall("bibl/publisher")
|
219 |
+
publisher = []
|
220 |
+
if publishers:
|
221 |
+
publisher = "\n".join(publisher.text.strip() for publisher in publishers)
|
222 |
+
|
223 |
+
idnos = elt.findall("bibl/idno")
|
224 |
+
idno = []
|
225 |
+
if idnos:
|
226 |
+
idno = "\n".join(idno.text.strip() for idno in idnos)
|
227 |
+
|
228 |
+
notes = elt.findall("bibl/note")
|
229 |
+
note = []
|
230 |
+
if notes:
|
231 |
+
note = "\n".join(note.text.strip() for note in notes)
|
232 |
+
|
233 |
+
return {
|
234 |
+
"title": title,
|
235 |
+
"author": author,
|
236 |
+
"date": date,
|
237 |
+
"publisher": publisher,
|
238 |
+
"idno": idno,
|
239 |
+
"note": note,
|
240 |
+
}
|
241 |
+
|
242 |
+
|
243 |
+
class XML_Tool:
|
244 |
+
"""
|
245 |
+
Helper class creating xml file to one without references to nkjp: namespace.
|
246 |
+
That's needed because the XMLCorpusView assumes that one can find short substrings
|
247 |
+
of XML that are valid XML, which is not true if a namespace is declared at top level
|
248 |
+
"""
|
249 |
+
|
250 |
+
def __init__(self, root, filename):
|
251 |
+
self.read_file = os.path.join(root, filename)
|
252 |
+
self.write_file = tempfile.NamedTemporaryFile(delete=False)
|
253 |
+
|
254 |
+
def build_preprocessed_file(self):
|
255 |
+
try:
|
256 |
+
fr = open(self.read_file)
|
257 |
+
fw = self.write_file
|
258 |
+
line = " "
|
259 |
+
while len(line):
|
260 |
+
line = fr.readline()
|
261 |
+
x = re.split(r"nkjp:[^ ]* ", line) # in all files
|
262 |
+
ret = " ".join(x)
|
263 |
+
x = re.split("<nkjp:paren>", ret) # in ann_segmentation.xml
|
264 |
+
ret = " ".join(x)
|
265 |
+
x = re.split("</nkjp:paren>", ret) # in ann_segmentation.xml
|
266 |
+
ret = " ".join(x)
|
267 |
+
x = re.split("<choice>", ret) # in ann_segmentation.xml
|
268 |
+
ret = " ".join(x)
|
269 |
+
x = re.split("</choice>", ret) # in ann_segmentation.xml
|
270 |
+
ret = " ".join(x)
|
271 |
+
fw.write(ret)
|
272 |
+
fr.close()
|
273 |
+
fw.close()
|
274 |
+
return self.write_file.name
|
275 |
+
except Exception as e:
|
276 |
+
self.remove_preprocessed_file()
|
277 |
+
raise Exception from e
|
278 |
+
|
279 |
+
def remove_preprocessed_file(self):
|
280 |
+
os.remove(self.write_file.name)
|
281 |
+
|
282 |
+
|
283 |
+
class NKJPCorpus_Segmentation_View(XMLCorpusView):
|
284 |
+
"""
|
285 |
+
A stream backed corpus view specialized for use with
|
286 |
+
ann_segmentation.xml files in NKJP corpus.
|
287 |
+
"""
|
288 |
+
|
289 |
+
def __init__(self, filename, **kwargs):
|
290 |
+
self.tagspec = ".*p/.*s"
|
291 |
+
# intersperse NKJPCorpus_Text_View
|
292 |
+
self.text_view = NKJPCorpus_Text_View(
|
293 |
+
filename, mode=NKJPCorpus_Text_View.SENTS_MODE
|
294 |
+
)
|
295 |
+
self.text_view.handle_query()
|
296 |
+
# xml preprocessing
|
297 |
+
self.xml_tool = XML_Tool(filename, "ann_segmentation.xml")
|
298 |
+
# base class init
|
299 |
+
XMLCorpusView.__init__(
|
300 |
+
self, self.xml_tool.build_preprocessed_file(), self.tagspec
|
301 |
+
)
|
302 |
+
|
303 |
+
def get_segm_id(self, example_word):
|
304 |
+
return example_word.split("(")[1].split(",")[0]
|
305 |
+
|
306 |
+
def get_sent_beg(self, beg_word):
|
307 |
+
# returns index of beginning letter in sentence
|
308 |
+
return int(beg_word.split(",")[1])
|
309 |
+
|
310 |
+
def get_sent_end(self, end_word):
|
311 |
+
# returns index of end letter in sentence
|
312 |
+
splitted = end_word.split(")")[0].split(",")
|
313 |
+
return int(splitted[1]) + int(splitted[2])
|
314 |
+
|
315 |
+
def get_sentences(self, sent_segm):
|
316 |
+
# returns one sentence
|
317 |
+
id = self.get_segm_id(sent_segm[0])
|
318 |
+
segm = self.text_view.segm_dict[id] # text segment
|
319 |
+
beg = self.get_sent_beg(sent_segm[0])
|
320 |
+
end = self.get_sent_end(sent_segm[len(sent_segm) - 1])
|
321 |
+
return segm[beg:end]
|
322 |
+
|
323 |
+
def remove_choice(self, segm):
|
324 |
+
ret = []
|
325 |
+
prev_txt_end = -1
|
326 |
+
prev_txt_nr = -1
|
327 |
+
for word in segm:
|
328 |
+
txt_nr = self.get_segm_id(word)
|
329 |
+
# get increasing sequence of ids: in case of choice get first possibility
|
330 |
+
if self.get_sent_beg(word) > prev_txt_end - 1 or prev_txt_nr != txt_nr:
|
331 |
+
ret.append(word)
|
332 |
+
prev_txt_end = self.get_sent_end(word)
|
333 |
+
prev_txt_nr = txt_nr
|
334 |
+
|
335 |
+
return ret
|
336 |
+
|
337 |
+
def handle_query(self):
|
338 |
+
try:
|
339 |
+
self._open()
|
340 |
+
sentences = []
|
341 |
+
while True:
|
342 |
+
sent_segm = XMLCorpusView.read_block(self, self._stream)
|
343 |
+
if len(sent_segm) == 0:
|
344 |
+
break
|
345 |
+
for segm in sent_segm:
|
346 |
+
segm = self.remove_choice(segm)
|
347 |
+
sentences.append(self.get_sentences(segm))
|
348 |
+
self.close()
|
349 |
+
self.xml_tool.remove_preprocessed_file()
|
350 |
+
return sentences
|
351 |
+
except Exception as e:
|
352 |
+
self.xml_tool.remove_preprocessed_file()
|
353 |
+
raise Exception from e
|
354 |
+
|
355 |
+
def handle_elt(self, elt, context):
|
356 |
+
ret = []
|
357 |
+
for seg in elt:
|
358 |
+
ret.append(seg.get("corresp"))
|
359 |
+
return ret
|
360 |
+
|
361 |
+
|
362 |
+
class NKJPCorpus_Text_View(XMLCorpusView):
|
363 |
+
"""
|
364 |
+
A stream backed corpus view specialized for use with
|
365 |
+
text.xml files in NKJP corpus.
|
366 |
+
"""
|
367 |
+
|
368 |
+
SENTS_MODE = 0
|
369 |
+
RAW_MODE = 1
|
370 |
+
|
371 |
+
def __init__(self, filename, **kwargs):
|
372 |
+
self.mode = kwargs.pop("mode", 0)
|
373 |
+
self.tagspec = ".*/div/ab"
|
374 |
+
self.segm_dict = dict()
|
375 |
+
# xml preprocessing
|
376 |
+
self.xml_tool = XML_Tool(filename, "text.xml")
|
377 |
+
# base class init
|
378 |
+
XMLCorpusView.__init__(
|
379 |
+
self, self.xml_tool.build_preprocessed_file(), self.tagspec
|
380 |
+
)
|
381 |
+
|
382 |
+
def handle_query(self):
|
383 |
+
try:
|
384 |
+
self._open()
|
385 |
+
x = self.read_block(self._stream)
|
386 |
+
self.close()
|
387 |
+
self.xml_tool.remove_preprocessed_file()
|
388 |
+
return x
|
389 |
+
except Exception as e:
|
390 |
+
self.xml_tool.remove_preprocessed_file()
|
391 |
+
raise Exception from e
|
392 |
+
|
393 |
+
def read_block(self, stream, tagspec=None, elt_handler=None):
|
394 |
+
"""
|
395 |
+
Returns text as a list of sentences.
|
396 |
+
"""
|
397 |
+
txt = []
|
398 |
+
while True:
|
399 |
+
segm = XMLCorpusView.read_block(self, stream)
|
400 |
+
if len(segm) == 0:
|
401 |
+
break
|
402 |
+
for part in segm:
|
403 |
+
txt.append(part)
|
404 |
+
|
405 |
+
return [" ".join([segm for segm in txt])]
|
406 |
+
|
407 |
+
def get_segm_id(self, elt):
|
408 |
+
for attr in elt.attrib:
|
409 |
+
if attr.endswith("id"):
|
410 |
+
return elt.get(attr)
|
411 |
+
|
412 |
+
def handle_elt(self, elt, context):
|
413 |
+
# fill dictionary to use later in sents mode
|
414 |
+
if self.mode is NKJPCorpus_Text_View.SENTS_MODE:
|
415 |
+
self.segm_dict[self.get_segm_id(elt)] = elt.text
|
416 |
+
return elt.text
|
417 |
+
|
418 |
+
|
419 |
+
class NKJPCorpus_Morph_View(XMLCorpusView):
|
420 |
+
"""
|
421 |
+
A stream backed corpus view specialized for use with
|
422 |
+
ann_morphosyntax.xml files in NKJP corpus.
|
423 |
+
"""
|
424 |
+
|
425 |
+
def __init__(self, filename, **kwargs):
|
426 |
+
self.tags = kwargs.pop("tags", None)
|
427 |
+
self.tagspec = ".*/seg/fs"
|
428 |
+
self.xml_tool = XML_Tool(filename, "ann_morphosyntax.xml")
|
429 |
+
XMLCorpusView.__init__(
|
430 |
+
self, self.xml_tool.build_preprocessed_file(), self.tagspec
|
431 |
+
)
|
432 |
+
|
433 |
+
def handle_query(self):
|
434 |
+
try:
|
435 |
+
self._open()
|
436 |
+
words = []
|
437 |
+
while True:
|
438 |
+
segm = XMLCorpusView.read_block(self, self._stream)
|
439 |
+
if len(segm) == 0:
|
440 |
+
break
|
441 |
+
for part in segm:
|
442 |
+
if part is not None:
|
443 |
+
words.append(part)
|
444 |
+
self.close()
|
445 |
+
self.xml_tool.remove_preprocessed_file()
|
446 |
+
return words
|
447 |
+
except Exception as e:
|
448 |
+
self.xml_tool.remove_preprocessed_file()
|
449 |
+
raise Exception from e
|
450 |
+
|
451 |
+
def handle_elt(self, elt, context):
|
452 |
+
word = ""
|
453 |
+
flag = False
|
454 |
+
is_not_interp = True
|
455 |
+
# if tags not specified, then always return word
|
456 |
+
if self.tags is None:
|
457 |
+
flag = True
|
458 |
+
|
459 |
+
for child in elt:
|
460 |
+
|
461 |
+
# get word
|
462 |
+
if "name" in child.keys() and child.attrib["name"] == "orth":
|
463 |
+
for symbol in child:
|
464 |
+
if symbol.tag == "string":
|
465 |
+
word = symbol.text
|
466 |
+
elif "name" in child.keys() and child.attrib["name"] == "interps":
|
467 |
+
for symbol in child:
|
468 |
+
if "type" in symbol.keys() and symbol.attrib["type"] == "lex":
|
469 |
+
for symbol2 in symbol:
|
470 |
+
if (
|
471 |
+
"name" in symbol2.keys()
|
472 |
+
and symbol2.attrib["name"] == "ctag"
|
473 |
+
):
|
474 |
+
for symbol3 in symbol2:
|
475 |
+
if (
|
476 |
+
"value" in symbol3.keys()
|
477 |
+
and self.tags is not None
|
478 |
+
and symbol3.attrib["value"] in self.tags
|
479 |
+
):
|
480 |
+
flag = True
|
481 |
+
elif (
|
482 |
+
"value" in symbol3.keys()
|
483 |
+
and symbol3.attrib["value"] == "interp"
|
484 |
+
):
|
485 |
+
is_not_interp = False
|
486 |
+
if flag and is_not_interp:
|
487 |
+
return word
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/panlex_lite.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: PanLex Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: David Kamholz <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
CorpusReader for PanLex Lite, a stripped down version of PanLex distributed
|
10 |
+
as an SQLite database. See the README.txt in the panlex_lite corpus directory
|
11 |
+
for more information on PanLex Lite.
|
12 |
+
"""
|
13 |
+
|
14 |
+
import os
|
15 |
+
import sqlite3
|
16 |
+
|
17 |
+
from nltk.corpus.reader.api import CorpusReader
|
18 |
+
|
19 |
+
|
20 |
+
class PanLexLiteCorpusReader(CorpusReader):
|
21 |
+
MEANING_Q = """
|
22 |
+
SELECT dnx2.mn, dnx2.uq, dnx2.ap, dnx2.ui, ex2.tt, ex2.lv
|
23 |
+
FROM dnx
|
24 |
+
JOIN ex ON (ex.ex = dnx.ex)
|
25 |
+
JOIN dnx dnx2 ON (dnx2.mn = dnx.mn)
|
26 |
+
JOIN ex ex2 ON (ex2.ex = dnx2.ex)
|
27 |
+
WHERE dnx.ex != dnx2.ex AND ex.tt = ? AND ex.lv = ?
|
28 |
+
ORDER BY dnx2.uq DESC
|
29 |
+
"""
|
30 |
+
|
31 |
+
TRANSLATION_Q = """
|
32 |
+
SELECT s.tt, sum(s.uq) AS trq FROM (
|
33 |
+
SELECT ex2.tt, max(dnx.uq) AS uq
|
34 |
+
FROM dnx
|
35 |
+
JOIN ex ON (ex.ex = dnx.ex)
|
36 |
+
JOIN dnx dnx2 ON (dnx2.mn = dnx.mn)
|
37 |
+
JOIN ex ex2 ON (ex2.ex = dnx2.ex)
|
38 |
+
WHERE dnx.ex != dnx2.ex AND ex.lv = ? AND ex.tt = ? AND ex2.lv = ?
|
39 |
+
GROUP BY ex2.tt, dnx.ui
|
40 |
+
) s
|
41 |
+
GROUP BY s.tt
|
42 |
+
ORDER BY trq DESC, s.tt
|
43 |
+
"""
|
44 |
+
|
45 |
+
def __init__(self, root):
|
46 |
+
self._c = sqlite3.connect(os.path.join(root, "db.sqlite")).cursor()
|
47 |
+
|
48 |
+
self._uid_lv = {}
|
49 |
+
self._lv_uid = {}
|
50 |
+
|
51 |
+
for row in self._c.execute("SELECT uid, lv FROM lv"):
|
52 |
+
self._uid_lv[row[0]] = row[1]
|
53 |
+
self._lv_uid[row[1]] = row[0]
|
54 |
+
|
55 |
+
def language_varieties(self, lc=None):
|
56 |
+
"""
|
57 |
+
Return a list of PanLex language varieties.
|
58 |
+
|
59 |
+
:param lc: ISO 639 alpha-3 code. If specified, filters returned varieties
|
60 |
+
by this code. If unspecified, all varieties are returned.
|
61 |
+
:return: the specified language varieties as a list of tuples. The first
|
62 |
+
element is the language variety's seven-character uniform identifier,
|
63 |
+
and the second element is its default name.
|
64 |
+
:rtype: list(tuple)
|
65 |
+
"""
|
66 |
+
|
67 |
+
if lc is None:
|
68 |
+
return self._c.execute("SELECT uid, tt FROM lv ORDER BY uid").fetchall()
|
69 |
+
else:
|
70 |
+
return self._c.execute(
|
71 |
+
"SELECT uid, tt FROM lv WHERE lc = ? ORDER BY uid", (lc,)
|
72 |
+
).fetchall()
|
73 |
+
|
74 |
+
def meanings(self, expr_uid, expr_tt):
|
75 |
+
"""
|
76 |
+
Return a list of meanings for an expression.
|
77 |
+
|
78 |
+
:param expr_uid: the expression's language variety, as a seven-character
|
79 |
+
uniform identifier.
|
80 |
+
:param expr_tt: the expression's text.
|
81 |
+
:return: a list of Meaning objects.
|
82 |
+
:rtype: list(Meaning)
|
83 |
+
"""
|
84 |
+
|
85 |
+
expr_lv = self._uid_lv[expr_uid]
|
86 |
+
|
87 |
+
mn_info = {}
|
88 |
+
|
89 |
+
for i in self._c.execute(self.MEANING_Q, (expr_tt, expr_lv)):
|
90 |
+
mn = i[0]
|
91 |
+
uid = self._lv_uid[i[5]]
|
92 |
+
|
93 |
+
if not mn in mn_info:
|
94 |
+
mn_info[mn] = {
|
95 |
+
"uq": i[1],
|
96 |
+
"ap": i[2],
|
97 |
+
"ui": i[3],
|
98 |
+
"ex": {expr_uid: [expr_tt]},
|
99 |
+
}
|
100 |
+
|
101 |
+
if not uid in mn_info[mn]["ex"]:
|
102 |
+
mn_info[mn]["ex"][uid] = []
|
103 |
+
|
104 |
+
mn_info[mn]["ex"][uid].append(i[4])
|
105 |
+
|
106 |
+
return [Meaning(mn, mn_info[mn]) for mn in mn_info]
|
107 |
+
|
108 |
+
def translations(self, from_uid, from_tt, to_uid):
|
109 |
+
"""
|
110 |
+
Return a list of translations for an expression into a single language
|
111 |
+
variety.
|
112 |
+
|
113 |
+
:param from_uid: the source expression's language variety, as a
|
114 |
+
seven-character uniform identifier.
|
115 |
+
:param from_tt: the source expression's text.
|
116 |
+
:param to_uid: the target language variety, as a seven-character
|
117 |
+
uniform identifier.
|
118 |
+
:return: a list of translation tuples. The first element is the expression
|
119 |
+
text and the second element is the translation quality.
|
120 |
+
:rtype: list(tuple)
|
121 |
+
"""
|
122 |
+
|
123 |
+
from_lv = self._uid_lv[from_uid]
|
124 |
+
to_lv = self._uid_lv[to_uid]
|
125 |
+
|
126 |
+
return self._c.execute(self.TRANSLATION_Q, (from_lv, from_tt, to_lv)).fetchall()
|
127 |
+
|
128 |
+
|
129 |
+
class Meaning(dict):
|
130 |
+
"""
|
131 |
+
Represents a single PanLex meaning. A meaning is a translation set derived
|
132 |
+
from a single source.
|
133 |
+
"""
|
134 |
+
|
135 |
+
def __init__(self, mn, attr):
|
136 |
+
super().__init__(**attr)
|
137 |
+
self["mn"] = mn
|
138 |
+
|
139 |
+
def id(self):
|
140 |
+
"""
|
141 |
+
:return: the meaning's id.
|
142 |
+
:rtype: int
|
143 |
+
"""
|
144 |
+
return self["mn"]
|
145 |
+
|
146 |
+
def quality(self):
|
147 |
+
"""
|
148 |
+
:return: the meaning's source's quality (0=worst, 9=best).
|
149 |
+
:rtype: int
|
150 |
+
"""
|
151 |
+
return self["uq"]
|
152 |
+
|
153 |
+
def source(self):
|
154 |
+
"""
|
155 |
+
:return: the meaning's source id.
|
156 |
+
:rtype: int
|
157 |
+
"""
|
158 |
+
return self["ap"]
|
159 |
+
|
160 |
+
def source_group(self):
|
161 |
+
"""
|
162 |
+
:return: the meaning's source group id.
|
163 |
+
:rtype: int
|
164 |
+
"""
|
165 |
+
return self["ui"]
|
166 |
+
|
167 |
+
def expressions(self):
|
168 |
+
"""
|
169 |
+
:return: the meaning's expressions as a dictionary whose keys are language
|
170 |
+
variety uniform identifiers and whose values are lists of expression
|
171 |
+
texts.
|
172 |
+
:rtype: dict
|
173 |
+
"""
|
174 |
+
return self["ex"]
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/panlex_swadesh.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Word List Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bird <[email protected]>
|
5 |
+
# Edward Loper <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
|
10 |
+
import re
|
11 |
+
from collections import defaultdict, namedtuple
|
12 |
+
|
13 |
+
from nltk.corpus.reader.api import *
|
14 |
+
from nltk.corpus.reader.util import *
|
15 |
+
from nltk.corpus.reader.wordlist import WordListCorpusReader
|
16 |
+
from nltk.tokenize import line_tokenize
|
17 |
+
|
18 |
+
PanlexLanguage = namedtuple(
|
19 |
+
"PanlexLanguage",
|
20 |
+
[
|
21 |
+
"panlex_uid", # (1) PanLex UID
|
22 |
+
"iso639", # (2) ISO 639 language code
|
23 |
+
"iso639_type", # (3) ISO 639 language type, see README
|
24 |
+
"script", # (4) normal scripts of expressions
|
25 |
+
"name", # (5) PanLex default name
|
26 |
+
"langvar_uid", # (6) UID of the language variety in which the default name is an expression
|
27 |
+
],
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
class PanlexSwadeshCorpusReader(WordListCorpusReader):
|
32 |
+
"""
|
33 |
+
This is a class to read the PanLex Swadesh list from
|
34 |
+
|
35 |
+
David Kamholz, Jonathan Pool, and Susan M. Colowick (2014).
|
36 |
+
PanLex: Building a Resource for Panlingual Lexical Translation.
|
37 |
+
In LREC. http://www.lrec-conf.org/proceedings/lrec2014/pdf/1029_Paper.pdf
|
38 |
+
|
39 |
+
License: CC0 1.0 Universal
|
40 |
+
https://creativecommons.org/publicdomain/zero/1.0/legalcode
|
41 |
+
"""
|
42 |
+
|
43 |
+
def __init__(self, *args, **kwargs):
|
44 |
+
super().__init__(*args, **kwargs)
|
45 |
+
# Find the swadesh size using the fileids' path.
|
46 |
+
self.swadesh_size = re.match(r"swadesh([0-9].*)\/", self.fileids()[0]).group(1)
|
47 |
+
self._languages = {lang.panlex_uid: lang for lang in self.get_languages()}
|
48 |
+
self._macro_langauges = self.get_macrolanguages()
|
49 |
+
|
50 |
+
def license(self):
|
51 |
+
return "CC0 1.0 Universal"
|
52 |
+
|
53 |
+
def language_codes(self):
|
54 |
+
return self._languages.keys()
|
55 |
+
|
56 |
+
def get_languages(self):
|
57 |
+
for line in self.raw(f"langs{self.swadesh_size}.txt").split("\n"):
|
58 |
+
if not line.strip(): # Skip empty lines.
|
59 |
+
continue
|
60 |
+
yield PanlexLanguage(*line.strip().split("\t"))
|
61 |
+
|
62 |
+
def get_macrolanguages(self):
|
63 |
+
macro_langauges = defaultdict(list)
|
64 |
+
for lang in self._languages.values():
|
65 |
+
macro_langauges[lang.iso639].append(lang.panlex_uid)
|
66 |
+
return macro_langauges
|
67 |
+
|
68 |
+
def words_by_lang(self, lang_code):
|
69 |
+
"""
|
70 |
+
:return: a list of list(str)
|
71 |
+
"""
|
72 |
+
fileid = f"swadesh{self.swadesh_size}/{lang_code}.txt"
|
73 |
+
return [concept.split("\t") for concept in self.words(fileid)]
|
74 |
+
|
75 |
+
def words_by_iso639(self, iso63_code):
|
76 |
+
"""
|
77 |
+
:return: a list of list(str)
|
78 |
+
"""
|
79 |
+
fileids = [
|
80 |
+
f"swadesh{self.swadesh_size}/{lang_code}.txt"
|
81 |
+
for lang_code in self._macro_langauges[iso63_code]
|
82 |
+
]
|
83 |
+
return [
|
84 |
+
concept.split("\t") for fileid in fileids for concept in self.words(fileid)
|
85 |
+
]
|
86 |
+
|
87 |
+
def entries(self, fileids=None):
|
88 |
+
"""
|
89 |
+
:return: a tuple of words for the specified fileids.
|
90 |
+
"""
|
91 |
+
if not fileids:
|
92 |
+
fileids = self.fileids()
|
93 |
+
|
94 |
+
wordlists = [self.words(f) for f in fileids]
|
95 |
+
return list(zip(*wordlists))
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/plaintext.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Plaintext Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bird <[email protected]>
|
5 |
+
# Edward Loper <[email protected]>
|
6 |
+
# Nitin Madnani <[email protected]>
|
7 |
+
# URL: <https://www.nltk.org/>
|
8 |
+
# For license information, see LICENSE.TXT
|
9 |
+
|
10 |
+
"""
|
11 |
+
A reader for corpora that consist of plaintext documents.
|
12 |
+
"""
|
13 |
+
|
14 |
+
import nltk.data
|
15 |
+
from nltk.corpus.reader.api import *
|
16 |
+
from nltk.corpus.reader.util import *
|
17 |
+
from nltk.tokenize import *
|
18 |
+
|
19 |
+
|
20 |
+
class PlaintextCorpusReader(CorpusReader):
|
21 |
+
"""
|
22 |
+
Reader for corpora that consist of plaintext documents. Paragraphs
|
23 |
+
are assumed to be split using blank lines. Sentences and words can
|
24 |
+
be tokenized using the default tokenizers, or by custom tokenizers
|
25 |
+
specified as parameters to the constructor.
|
26 |
+
|
27 |
+
This corpus reader can be customized (e.g., to skip preface
|
28 |
+
sections of specific document formats) by creating a subclass and
|
29 |
+
overriding the ``CorpusView`` class variable.
|
30 |
+
"""
|
31 |
+
|
32 |
+
CorpusView = StreamBackedCorpusView
|
33 |
+
"""The corpus view class used by this reader. Subclasses of
|
34 |
+
``PlaintextCorpusReader`` may specify alternative corpus view
|
35 |
+
classes (e.g., to skip the preface sections of documents.)"""
|
36 |
+
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
root,
|
40 |
+
fileids,
|
41 |
+
word_tokenizer=WordPunctTokenizer(),
|
42 |
+
sent_tokenizer=nltk.data.LazyLoader("tokenizers/punkt/english.pickle"),
|
43 |
+
para_block_reader=read_blankline_block,
|
44 |
+
encoding="utf8",
|
45 |
+
):
|
46 |
+
r"""
|
47 |
+
Construct a new plaintext corpus reader for a set of documents
|
48 |
+
located at the given root directory. Example usage:
|
49 |
+
|
50 |
+
>>> root = '/usr/local/share/nltk_data/corpora/webtext/'
|
51 |
+
>>> reader = PlaintextCorpusReader(root, '.*\.txt') # doctest: +SKIP
|
52 |
+
|
53 |
+
:param root: The root directory for this corpus.
|
54 |
+
:param fileids: A list or regexp specifying the fileids in this corpus.
|
55 |
+
:param word_tokenizer: Tokenizer for breaking sentences or
|
56 |
+
paragraphs into words.
|
57 |
+
:param sent_tokenizer: Tokenizer for breaking paragraphs
|
58 |
+
into words.
|
59 |
+
:param para_block_reader: The block reader used to divide the
|
60 |
+
corpus into paragraph blocks.
|
61 |
+
"""
|
62 |
+
CorpusReader.__init__(self, root, fileids, encoding)
|
63 |
+
self._word_tokenizer = word_tokenizer
|
64 |
+
self._sent_tokenizer = sent_tokenizer
|
65 |
+
self._para_block_reader = para_block_reader
|
66 |
+
|
67 |
+
def words(self, fileids=None):
|
68 |
+
"""
|
69 |
+
:return: the given file(s) as a list of words
|
70 |
+
and punctuation symbols.
|
71 |
+
:rtype: list(str)
|
72 |
+
"""
|
73 |
+
return concat(
|
74 |
+
[
|
75 |
+
self.CorpusView(path, self._read_word_block, encoding=enc)
|
76 |
+
for (path, enc, fileid) in self.abspaths(fileids, True, True)
|
77 |
+
]
|
78 |
+
)
|
79 |
+
|
80 |
+
def sents(self, fileids=None):
|
81 |
+
"""
|
82 |
+
:return: the given file(s) as a list of
|
83 |
+
sentences or utterances, each encoded as a list of word
|
84 |
+
strings.
|
85 |
+
:rtype: list(list(str))
|
86 |
+
"""
|
87 |
+
if self._sent_tokenizer is None:
|
88 |
+
raise ValueError("No sentence tokenizer for this corpus")
|
89 |
+
|
90 |
+
return concat(
|
91 |
+
[
|
92 |
+
self.CorpusView(path, self._read_sent_block, encoding=enc)
|
93 |
+
for (path, enc, fileid) in self.abspaths(fileids, True, True)
|
94 |
+
]
|
95 |
+
)
|
96 |
+
|
97 |
+
def paras(self, fileids=None):
|
98 |
+
"""
|
99 |
+
:return: the given file(s) as a list of
|
100 |
+
paragraphs, each encoded as a list of sentences, which are
|
101 |
+
in turn encoded as lists of word strings.
|
102 |
+
:rtype: list(list(list(str)))
|
103 |
+
"""
|
104 |
+
if self._sent_tokenizer is None:
|
105 |
+
raise ValueError("No sentence tokenizer for this corpus")
|
106 |
+
|
107 |
+
return concat(
|
108 |
+
[
|
109 |
+
self.CorpusView(path, self._read_para_block, encoding=enc)
|
110 |
+
for (path, enc, fileid) in self.abspaths(fileids, True, True)
|
111 |
+
]
|
112 |
+
)
|
113 |
+
|
114 |
+
def _read_word_block(self, stream):
|
115 |
+
words = []
|
116 |
+
for i in range(20): # Read 20 lines at a time.
|
117 |
+
words.extend(self._word_tokenizer.tokenize(stream.readline()))
|
118 |
+
return words
|
119 |
+
|
120 |
+
def _read_sent_block(self, stream):
|
121 |
+
sents = []
|
122 |
+
for para in self._para_block_reader(stream):
|
123 |
+
sents.extend(
|
124 |
+
[
|
125 |
+
self._word_tokenizer.tokenize(sent)
|
126 |
+
for sent in self._sent_tokenizer.tokenize(para)
|
127 |
+
]
|
128 |
+
)
|
129 |
+
return sents
|
130 |
+
|
131 |
+
def _read_para_block(self, stream):
|
132 |
+
paras = []
|
133 |
+
for para in self._para_block_reader(stream):
|
134 |
+
paras.append(
|
135 |
+
[
|
136 |
+
self._word_tokenizer.tokenize(sent)
|
137 |
+
for sent in self._sent_tokenizer.tokenize(para)
|
138 |
+
]
|
139 |
+
)
|
140 |
+
return paras
|
141 |
+
|
142 |
+
|
143 |
+
class CategorizedPlaintextCorpusReader(CategorizedCorpusReader, PlaintextCorpusReader):
|
144 |
+
"""
|
145 |
+
A reader for plaintext corpora whose documents are divided into
|
146 |
+
categories based on their file identifiers.
|
147 |
+
"""
|
148 |
+
|
149 |
+
def __init__(self, *args, **kwargs):
|
150 |
+
"""
|
151 |
+
Initialize the corpus reader. Categorization arguments
|
152 |
+
(``cat_pattern``, ``cat_map``, and ``cat_file``) are passed to
|
153 |
+
the ``CategorizedCorpusReader`` constructor. The remaining arguments
|
154 |
+
are passed to the ``PlaintextCorpusReader`` constructor.
|
155 |
+
"""
|
156 |
+
CategorizedCorpusReader.__init__(self, kwargs)
|
157 |
+
PlaintextCorpusReader.__init__(self, *args, **kwargs)
|
158 |
+
|
159 |
+
|
160 |
+
# FIXME: Is there a better way? How to not hardcode this?
|
161 |
+
# Possibly, add a language kwargs to CategorizedPlaintextCorpusReader to
|
162 |
+
# override the `sent_tokenizer`.
|
163 |
+
class PortugueseCategorizedPlaintextCorpusReader(CategorizedPlaintextCorpusReader):
|
164 |
+
def __init__(self, *args, **kwargs):
|
165 |
+
CategorizedCorpusReader.__init__(self, kwargs)
|
166 |
+
kwargs["sent_tokenizer"] = nltk.data.LazyLoader(
|
167 |
+
"tokenizers/punkt/portuguese.pickle"
|
168 |
+
)
|
169 |
+
PlaintextCorpusReader.__init__(self, *args, **kwargs)
|
170 |
+
|
171 |
+
|
172 |
+
class EuroparlCorpusReader(PlaintextCorpusReader):
|
173 |
+
|
174 |
+
"""
|
175 |
+
Reader for Europarl corpora that consist of plaintext documents.
|
176 |
+
Documents are divided into chapters instead of paragraphs as
|
177 |
+
for regular plaintext documents. Chapters are separated using blank
|
178 |
+
lines. Everything is inherited from ``PlaintextCorpusReader`` except
|
179 |
+
that:
|
180 |
+
|
181 |
+
- Since the corpus is pre-processed and pre-tokenized, the
|
182 |
+
word tokenizer should just split the line at whitespaces.
|
183 |
+
- For the same reason, the sentence tokenizer should just
|
184 |
+
split the paragraph at line breaks.
|
185 |
+
- There is a new 'chapters()' method that returns chapters instead
|
186 |
+
instead of paragraphs.
|
187 |
+
- The 'paras()' method inherited from PlaintextCorpusReader is
|
188 |
+
made non-functional to remove any confusion between chapters
|
189 |
+
and paragraphs for Europarl.
|
190 |
+
"""
|
191 |
+
|
192 |
+
def _read_word_block(self, stream):
|
193 |
+
words = []
|
194 |
+
for i in range(20): # Read 20 lines at a time.
|
195 |
+
words.extend(stream.readline().split())
|
196 |
+
return words
|
197 |
+
|
198 |
+
def _read_sent_block(self, stream):
|
199 |
+
sents = []
|
200 |
+
for para in self._para_block_reader(stream):
|
201 |
+
sents.extend([sent.split() for sent in para.splitlines()])
|
202 |
+
return sents
|
203 |
+
|
204 |
+
def _read_para_block(self, stream):
|
205 |
+
paras = []
|
206 |
+
for para in self._para_block_reader(stream):
|
207 |
+
paras.append([sent.split() for sent in para.splitlines()])
|
208 |
+
return paras
|
209 |
+
|
210 |
+
def chapters(self, fileids=None):
|
211 |
+
"""
|
212 |
+
:return: the given file(s) as a list of
|
213 |
+
chapters, each encoded as a list of sentences, which are
|
214 |
+
in turn encoded as lists of word strings.
|
215 |
+
:rtype: list(list(list(str)))
|
216 |
+
"""
|
217 |
+
return concat(
|
218 |
+
[
|
219 |
+
self.CorpusView(fileid, self._read_para_block, encoding=enc)
|
220 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
221 |
+
]
|
222 |
+
)
|
223 |
+
|
224 |
+
def paras(self, fileids=None):
|
225 |
+
raise NotImplementedError(
|
226 |
+
"The Europarl corpus reader does not support paragraphs. Please use chapters() instead."
|
227 |
+
)
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/ppattach.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: PP Attachment Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bird <[email protected]>
|
5 |
+
# Edward Loper <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
"""
|
10 |
+
Read lines from the Prepositional Phrase Attachment Corpus.
|
11 |
+
|
12 |
+
The PP Attachment Corpus contains several files having the format:
|
13 |
+
|
14 |
+
sentence_id verb noun1 preposition noun2 attachment
|
15 |
+
|
16 |
+
For example:
|
17 |
+
|
18 |
+
42960 gives authority to administration V
|
19 |
+
46742 gives inventors of microchip N
|
20 |
+
|
21 |
+
The PP attachment is to the verb phrase (V) or noun phrase (N), i.e.:
|
22 |
+
|
23 |
+
(VP gives (NP authority) (PP to administration))
|
24 |
+
(VP gives (NP inventors (PP of microchip)))
|
25 |
+
|
26 |
+
The corpus contains the following files:
|
27 |
+
|
28 |
+
training: training set
|
29 |
+
devset: development test set, used for algorithm development.
|
30 |
+
test: test set, used to report results
|
31 |
+
bitstrings: word classes derived from Mutual Information Clustering for the Wall Street Journal.
|
32 |
+
|
33 |
+
Ratnaparkhi, Adwait (1994). A Maximum Entropy Model for Prepositional
|
34 |
+
Phrase Attachment. Proceedings of the ARPA Human Language Technology
|
35 |
+
Conference. [http://www.cis.upenn.edu/~adwait/papers/hlt94.ps]
|
36 |
+
|
37 |
+
The PP Attachment Corpus is distributed with NLTK with the permission
|
38 |
+
of the author.
|
39 |
+
"""
|
40 |
+
|
41 |
+
from nltk.corpus.reader.api import *
|
42 |
+
from nltk.corpus.reader.util import *
|
43 |
+
|
44 |
+
|
45 |
+
class PPAttachment:
|
46 |
+
def __init__(self, sent, verb, noun1, prep, noun2, attachment):
|
47 |
+
self.sent = sent
|
48 |
+
self.verb = verb
|
49 |
+
self.noun1 = noun1
|
50 |
+
self.prep = prep
|
51 |
+
self.noun2 = noun2
|
52 |
+
self.attachment = attachment
|
53 |
+
|
54 |
+
def __repr__(self):
|
55 |
+
return (
|
56 |
+
"PPAttachment(sent=%r, verb=%r, noun1=%r, prep=%r, "
|
57 |
+
"noun2=%r, attachment=%r)"
|
58 |
+
% (self.sent, self.verb, self.noun1, self.prep, self.noun2, self.attachment)
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
class PPAttachmentCorpusReader(CorpusReader):
|
63 |
+
"""
|
64 |
+
sentence_id verb noun1 preposition noun2 attachment
|
65 |
+
"""
|
66 |
+
|
67 |
+
def attachments(self, fileids):
|
68 |
+
return concat(
|
69 |
+
[
|
70 |
+
StreamBackedCorpusView(fileid, self._read_obj_block, encoding=enc)
|
71 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
72 |
+
]
|
73 |
+
)
|
74 |
+
|
75 |
+
def tuples(self, fileids):
|
76 |
+
return concat(
|
77 |
+
[
|
78 |
+
StreamBackedCorpusView(fileid, self._read_tuple_block, encoding=enc)
|
79 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
80 |
+
]
|
81 |
+
)
|
82 |
+
|
83 |
+
def _read_tuple_block(self, stream):
|
84 |
+
line = stream.readline()
|
85 |
+
if line:
|
86 |
+
return [tuple(line.split())]
|
87 |
+
else:
|
88 |
+
return []
|
89 |
+
|
90 |
+
def _read_obj_block(self, stream):
|
91 |
+
line = stream.readline()
|
92 |
+
if line:
|
93 |
+
return [PPAttachment(*line.split())]
|
94 |
+
else:
|
95 |
+
return []
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/pros_cons.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Pros and Cons Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Pierpaolo Pantone <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
CorpusReader for the Pros and Cons dataset.
|
10 |
+
|
11 |
+
- Pros and Cons dataset information -
|
12 |
+
|
13 |
+
Contact: Bing Liu, [email protected]
|
14 |
+
https://www.cs.uic.edu/~liub
|
15 |
+
|
16 |
+
Distributed with permission.
|
17 |
+
|
18 |
+
Related papers:
|
19 |
+
|
20 |
+
- Murthy Ganapathibhotla and Bing Liu. "Mining Opinions in Comparative Sentences".
|
21 |
+
Proceedings of the 22nd International Conference on Computational Linguistics
|
22 |
+
(Coling-2008), Manchester, 18-22 August, 2008.
|
23 |
+
|
24 |
+
- Bing Liu, Minqing Hu and Junsheng Cheng. "Opinion Observer: Analyzing and Comparing
|
25 |
+
Opinions on the Web". Proceedings of the 14th international World Wide Web
|
26 |
+
conference (WWW-2005), May 10-14, 2005, in Chiba, Japan.
|
27 |
+
"""
|
28 |
+
import re
|
29 |
+
|
30 |
+
from nltk.corpus.reader.api import *
|
31 |
+
from nltk.tokenize import *
|
32 |
+
|
33 |
+
|
34 |
+
class ProsConsCorpusReader(CategorizedCorpusReader, CorpusReader):
|
35 |
+
"""
|
36 |
+
Reader for the Pros and Cons sentence dataset.
|
37 |
+
|
38 |
+
>>> from nltk.corpus import pros_cons
|
39 |
+
>>> pros_cons.sents(categories='Cons') # doctest: +NORMALIZE_WHITESPACE
|
40 |
+
[['East', 'batteries', '!', 'On', '-', 'off', 'switch', 'too', 'easy',
|
41 |
+
'to', 'maneuver', '.'], ['Eats', '...', 'no', ',', 'GULPS', 'batteries'],
|
42 |
+
...]
|
43 |
+
>>> pros_cons.words('IntegratedPros.txt')
|
44 |
+
['Easy', 'to', 'use', ',', 'economical', '!', ...]
|
45 |
+
"""
|
46 |
+
|
47 |
+
CorpusView = StreamBackedCorpusView
|
48 |
+
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
root,
|
52 |
+
fileids,
|
53 |
+
word_tokenizer=WordPunctTokenizer(),
|
54 |
+
encoding="utf8",
|
55 |
+
**kwargs
|
56 |
+
):
|
57 |
+
"""
|
58 |
+
:param root: The root directory for the corpus.
|
59 |
+
:param fileids: a list or regexp specifying the fileids in the corpus.
|
60 |
+
:param word_tokenizer: a tokenizer for breaking sentences or paragraphs
|
61 |
+
into words. Default: `WhitespaceTokenizer`
|
62 |
+
:param encoding: the encoding that should be used to read the corpus.
|
63 |
+
:param kwargs: additional parameters passed to CategorizedCorpusReader.
|
64 |
+
"""
|
65 |
+
|
66 |
+
CorpusReader.__init__(self, root, fileids, encoding)
|
67 |
+
CategorizedCorpusReader.__init__(self, kwargs)
|
68 |
+
self._word_tokenizer = word_tokenizer
|
69 |
+
|
70 |
+
def sents(self, fileids=None, categories=None):
|
71 |
+
"""
|
72 |
+
Return all sentences in the corpus or in the specified files/categories.
|
73 |
+
|
74 |
+
:param fileids: a list or regexp specifying the ids of the files whose
|
75 |
+
sentences have to be returned.
|
76 |
+
:param categories: a list specifying the categories whose sentences
|
77 |
+
have to be returned.
|
78 |
+
:return: the given file(s) as a list of sentences. Each sentence is
|
79 |
+
tokenized using the specified word_tokenizer.
|
80 |
+
:rtype: list(list(str))
|
81 |
+
"""
|
82 |
+
fileids = self._resolve(fileids, categories)
|
83 |
+
if fileids is None:
|
84 |
+
fileids = self._fileids
|
85 |
+
elif isinstance(fileids, str):
|
86 |
+
fileids = [fileids]
|
87 |
+
return concat(
|
88 |
+
[
|
89 |
+
self.CorpusView(path, self._read_sent_block, encoding=enc)
|
90 |
+
for (path, enc, fileid) in self.abspaths(fileids, True, True)
|
91 |
+
]
|
92 |
+
)
|
93 |
+
|
94 |
+
def words(self, fileids=None, categories=None):
|
95 |
+
"""
|
96 |
+
Return all words and punctuation symbols in the corpus or in the specified
|
97 |
+
files/categories.
|
98 |
+
|
99 |
+
:param fileids: a list or regexp specifying the ids of the files whose
|
100 |
+
words have to be returned.
|
101 |
+
:param categories: a list specifying the categories whose words have
|
102 |
+
to be returned.
|
103 |
+
:return: the given file(s) as a list of words and punctuation symbols.
|
104 |
+
:rtype: list(str)
|
105 |
+
"""
|
106 |
+
fileids = self._resolve(fileids, categories)
|
107 |
+
if fileids is None:
|
108 |
+
fileids = self._fileids
|
109 |
+
elif isinstance(fileids, str):
|
110 |
+
fileids = [fileids]
|
111 |
+
return concat(
|
112 |
+
[
|
113 |
+
self.CorpusView(path, self._read_word_block, encoding=enc)
|
114 |
+
for (path, enc, fileid) in self.abspaths(fileids, True, True)
|
115 |
+
]
|
116 |
+
)
|
117 |
+
|
118 |
+
def _read_sent_block(self, stream):
|
119 |
+
sents = []
|
120 |
+
for i in range(20): # Read 20 lines at a time.
|
121 |
+
line = stream.readline()
|
122 |
+
if not line:
|
123 |
+
continue
|
124 |
+
sent = re.match(r"^(?!\n)\s*<(Pros|Cons)>(.*)</(?:Pros|Cons)>", line)
|
125 |
+
if sent:
|
126 |
+
sents.append(self._word_tokenizer.tokenize(sent.group(2).strip()))
|
127 |
+
return sents
|
128 |
+
|
129 |
+
def _read_word_block(self, stream):
|
130 |
+
words = []
|
131 |
+
for sent in self._read_sent_block(stream):
|
132 |
+
words.extend(sent)
|
133 |
+
return words
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/reviews.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Product Reviews Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Pierpaolo Pantone <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
CorpusReader for reviews corpora (syntax based on Customer Review Corpus).
|
10 |
+
|
11 |
+
Customer Review Corpus information
|
12 |
+
==================================
|
13 |
+
|
14 |
+
Annotated by: Minqing Hu and Bing Liu, 2004.
|
15 |
+
Department of Computer Science
|
16 |
+
University of Illinois at Chicago
|
17 |
+
|
18 |
+
Contact: Bing Liu, [email protected]
|
19 |
+
https://www.cs.uic.edu/~liub
|
20 |
+
|
21 |
+
Distributed with permission.
|
22 |
+
|
23 |
+
The "product_reviews_1" and "product_reviews_2" datasets respectively contain
|
24 |
+
annotated customer reviews of 5 and 9 products from amazon.com.
|
25 |
+
|
26 |
+
Related papers:
|
27 |
+
|
28 |
+
- Minqing Hu and Bing Liu. "Mining and summarizing customer reviews".
|
29 |
+
Proceedings of the ACM SIGKDD International Conference on Knowledge
|
30 |
+
Discovery & Data Mining (KDD-04), 2004.
|
31 |
+
|
32 |
+
- Minqing Hu and Bing Liu. "Mining Opinion Features in Customer Reviews".
|
33 |
+
Proceedings of Nineteeth National Conference on Artificial Intelligence
|
34 |
+
(AAAI-2004), 2004.
|
35 |
+
|
36 |
+
- Xiaowen Ding, Bing Liu and Philip S. Yu. "A Holistic Lexicon-Based Appraoch to
|
37 |
+
Opinion Mining." Proceedings of First ACM International Conference on Web
|
38 |
+
Search and Data Mining (WSDM-2008), Feb 11-12, 2008, Stanford University,
|
39 |
+
Stanford, California, USA.
|
40 |
+
|
41 |
+
Symbols used in the annotated reviews:
|
42 |
+
|
43 |
+
:[t]: the title of the review: Each [t] tag starts a review.
|
44 |
+
:xxxx[+|-n]: xxxx is a product feature.
|
45 |
+
:[+n]: Positive opinion, n is the opinion strength: 3 strongest, and 1 weakest.
|
46 |
+
Note that the strength is quite subjective.
|
47 |
+
You may want ignore it, but only considering + and -
|
48 |
+
:[-n]: Negative opinion
|
49 |
+
:##: start of each sentence. Each line is a sentence.
|
50 |
+
:[u]: feature not appeared in the sentence.
|
51 |
+
:[p]: feature not appeared in the sentence. Pronoun resolution is needed.
|
52 |
+
:[s]: suggestion or recommendation.
|
53 |
+
:[cc]: comparison with a competing product from a different brand.
|
54 |
+
:[cs]: comparison with a competing product from the same brand.
|
55 |
+
|
56 |
+
Note: Some of the files (e.g. "ipod.txt", "Canon PowerShot SD500.txt") do not
|
57 |
+
provide separation between different reviews. This is due to the fact that
|
58 |
+
the dataset was specifically designed for aspect/feature-based sentiment
|
59 |
+
analysis, for which sentence-level annotation is sufficient. For document-
|
60 |
+
level classification and analysis, this peculiarity should be taken into
|
61 |
+
consideration.
|
62 |
+
"""
|
63 |
+
|
64 |
+
import re
|
65 |
+
|
66 |
+
from nltk.corpus.reader.api import *
|
67 |
+
from nltk.tokenize import *
|
68 |
+
|
69 |
+
TITLE = re.compile(r"^\[t\](.*)$") # [t] Title
|
70 |
+
FEATURES = re.compile(
|
71 |
+
r"((?:(?:\w+\s)+)?\w+)\[((?:\+|\-)\d)\]"
|
72 |
+
) # find 'feature' in feature[+3]
|
73 |
+
NOTES = re.compile(r"\[(?!t)(p|u|s|cc|cs)\]") # find 'p' in camera[+2][p]
|
74 |
+
SENT = re.compile(r"##(.*)$") # find tokenized sentence
|
75 |
+
|
76 |
+
|
77 |
+
class Review:
|
78 |
+
"""
|
79 |
+
A Review is the main block of a ReviewsCorpusReader.
|
80 |
+
"""
|
81 |
+
|
82 |
+
def __init__(self, title=None, review_lines=None):
|
83 |
+
"""
|
84 |
+
:param title: the title of the review.
|
85 |
+
:param review_lines: the list of the ReviewLines that belong to the Review.
|
86 |
+
"""
|
87 |
+
self.title = title
|
88 |
+
if review_lines is None:
|
89 |
+
self.review_lines = []
|
90 |
+
else:
|
91 |
+
self.review_lines = review_lines
|
92 |
+
|
93 |
+
def add_line(self, review_line):
|
94 |
+
"""
|
95 |
+
Add a line (ReviewLine) to the review.
|
96 |
+
|
97 |
+
:param review_line: a ReviewLine instance that belongs to the Review.
|
98 |
+
"""
|
99 |
+
assert isinstance(review_line, ReviewLine)
|
100 |
+
self.review_lines.append(review_line)
|
101 |
+
|
102 |
+
def features(self):
|
103 |
+
"""
|
104 |
+
Return a list of features in the review. Each feature is a tuple made of
|
105 |
+
the specific item feature and the opinion strength about that feature.
|
106 |
+
|
107 |
+
:return: all features of the review as a list of tuples (feat, score).
|
108 |
+
:rtype: list(tuple)
|
109 |
+
"""
|
110 |
+
features = []
|
111 |
+
for review_line in self.review_lines:
|
112 |
+
features.extend(review_line.features)
|
113 |
+
return features
|
114 |
+
|
115 |
+
def sents(self):
|
116 |
+
"""
|
117 |
+
Return all tokenized sentences in the review.
|
118 |
+
|
119 |
+
:return: all sentences of the review as lists of tokens.
|
120 |
+
:rtype: list(list(str))
|
121 |
+
"""
|
122 |
+
return [review_line.sent for review_line in self.review_lines]
|
123 |
+
|
124 |
+
def __repr__(self):
|
125 |
+
return 'Review(title="{}", review_lines={})'.format(
|
126 |
+
self.title, self.review_lines
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
class ReviewLine:
|
131 |
+
"""
|
132 |
+
A ReviewLine represents a sentence of the review, together with (optional)
|
133 |
+
annotations of its features and notes about the reviewed item.
|
134 |
+
"""
|
135 |
+
|
136 |
+
def __init__(self, sent, features=None, notes=None):
|
137 |
+
self.sent = sent
|
138 |
+
if features is None:
|
139 |
+
self.features = []
|
140 |
+
else:
|
141 |
+
self.features = features
|
142 |
+
|
143 |
+
if notes is None:
|
144 |
+
self.notes = []
|
145 |
+
else:
|
146 |
+
self.notes = notes
|
147 |
+
|
148 |
+
def __repr__(self):
|
149 |
+
return "ReviewLine(features={}, notes={}, sent={})".format(
|
150 |
+
self.features, self.notes, self.sent
|
151 |
+
)
|
152 |
+
|
153 |
+
|
154 |
+
class ReviewsCorpusReader(CorpusReader):
|
155 |
+
"""
|
156 |
+
Reader for the Customer Review Data dataset by Hu, Liu (2004).
|
157 |
+
Note: we are not applying any sentence tokenization at the moment, just word
|
158 |
+
tokenization.
|
159 |
+
|
160 |
+
>>> from nltk.corpus import product_reviews_1
|
161 |
+
>>> camera_reviews = product_reviews_1.reviews('Canon_G3.txt')
|
162 |
+
>>> review = camera_reviews[0]
|
163 |
+
>>> review.sents()[0] # doctest: +NORMALIZE_WHITESPACE
|
164 |
+
['i', 'recently', 'purchased', 'the', 'canon', 'powershot', 'g3', 'and', 'am',
|
165 |
+
'extremely', 'satisfied', 'with', 'the', 'purchase', '.']
|
166 |
+
>>> review.features() # doctest: +NORMALIZE_WHITESPACE
|
167 |
+
[('canon powershot g3', '+3'), ('use', '+2'), ('picture', '+2'),
|
168 |
+
('picture quality', '+1'), ('picture quality', '+1'), ('camera', '+2'),
|
169 |
+
('use', '+2'), ('feature', '+1'), ('picture quality', '+3'), ('use', '+1'),
|
170 |
+
('option', '+1')]
|
171 |
+
|
172 |
+
We can also reach the same information directly from the stream:
|
173 |
+
|
174 |
+
>>> product_reviews_1.features('Canon_G3.txt')
|
175 |
+
[('canon powershot g3', '+3'), ('use', '+2'), ...]
|
176 |
+
|
177 |
+
We can compute stats for specific product features:
|
178 |
+
|
179 |
+
>>> n_reviews = len([(feat,score) for (feat,score) in product_reviews_1.features('Canon_G3.txt') if feat=='picture'])
|
180 |
+
>>> tot = sum([int(score) for (feat,score) in product_reviews_1.features('Canon_G3.txt') if feat=='picture'])
|
181 |
+
>>> mean = tot / n_reviews
|
182 |
+
>>> print(n_reviews, tot, mean)
|
183 |
+
15 24 1.6
|
184 |
+
"""
|
185 |
+
|
186 |
+
CorpusView = StreamBackedCorpusView
|
187 |
+
|
188 |
+
def __init__(
|
189 |
+
self, root, fileids, word_tokenizer=WordPunctTokenizer(), encoding="utf8"
|
190 |
+
):
|
191 |
+
"""
|
192 |
+
:param root: The root directory for the corpus.
|
193 |
+
:param fileids: a list or regexp specifying the fileids in the corpus.
|
194 |
+
:param word_tokenizer: a tokenizer for breaking sentences or paragraphs
|
195 |
+
into words. Default: `WordPunctTokenizer`
|
196 |
+
:param encoding: the encoding that should be used to read the corpus.
|
197 |
+
"""
|
198 |
+
|
199 |
+
CorpusReader.__init__(self, root, fileids, encoding)
|
200 |
+
self._word_tokenizer = word_tokenizer
|
201 |
+
self._readme = "README.txt"
|
202 |
+
|
203 |
+
def features(self, fileids=None):
|
204 |
+
"""
|
205 |
+
Return a list of features. Each feature is a tuple made of the specific
|
206 |
+
item feature and the opinion strength about that feature.
|
207 |
+
|
208 |
+
:param fileids: a list or regexp specifying the ids of the files whose
|
209 |
+
features have to be returned.
|
210 |
+
:return: all features for the item(s) in the given file(s).
|
211 |
+
:rtype: list(tuple)
|
212 |
+
"""
|
213 |
+
if fileids is None:
|
214 |
+
fileids = self._fileids
|
215 |
+
elif isinstance(fileids, str):
|
216 |
+
fileids = [fileids]
|
217 |
+
return concat(
|
218 |
+
[
|
219 |
+
self.CorpusView(fileid, self._read_features, encoding=enc)
|
220 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
221 |
+
]
|
222 |
+
)
|
223 |
+
|
224 |
+
def reviews(self, fileids=None):
|
225 |
+
"""
|
226 |
+
Return all the reviews as a list of Review objects. If `fileids` is
|
227 |
+
specified, return all the reviews from each of the specified files.
|
228 |
+
|
229 |
+
:param fileids: a list or regexp specifying the ids of the files whose
|
230 |
+
reviews have to be returned.
|
231 |
+
:return: the given file(s) as a list of reviews.
|
232 |
+
"""
|
233 |
+
if fileids is None:
|
234 |
+
fileids = self._fileids
|
235 |
+
return concat(
|
236 |
+
[
|
237 |
+
self.CorpusView(fileid, self._read_review_block, encoding=enc)
|
238 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
239 |
+
]
|
240 |
+
)
|
241 |
+
|
242 |
+
def sents(self, fileids=None):
|
243 |
+
"""
|
244 |
+
Return all sentences in the corpus or in the specified files.
|
245 |
+
|
246 |
+
:param fileids: a list or regexp specifying the ids of the files whose
|
247 |
+
sentences have to be returned.
|
248 |
+
:return: the given file(s) as a list of sentences, each encoded as a
|
249 |
+
list of word strings.
|
250 |
+
:rtype: list(list(str))
|
251 |
+
"""
|
252 |
+
return concat(
|
253 |
+
[
|
254 |
+
self.CorpusView(path, self._read_sent_block, encoding=enc)
|
255 |
+
for (path, enc, fileid) in self.abspaths(fileids, True, True)
|
256 |
+
]
|
257 |
+
)
|
258 |
+
|
259 |
+
def words(self, fileids=None):
|
260 |
+
"""
|
261 |
+
Return all words and punctuation symbols in the corpus or in the specified
|
262 |
+
files.
|
263 |
+
|
264 |
+
:param fileids: a list or regexp specifying the ids of the files whose
|
265 |
+
words have to be returned.
|
266 |
+
:return: the given file(s) as a list of words and punctuation symbols.
|
267 |
+
:rtype: list(str)
|
268 |
+
"""
|
269 |
+
return concat(
|
270 |
+
[
|
271 |
+
self.CorpusView(path, self._read_word_block, encoding=enc)
|
272 |
+
for (path, enc, fileid) in self.abspaths(fileids, True, True)
|
273 |
+
]
|
274 |
+
)
|
275 |
+
|
276 |
+
def _read_features(self, stream):
|
277 |
+
features = []
|
278 |
+
for i in range(20):
|
279 |
+
line = stream.readline()
|
280 |
+
if not line:
|
281 |
+
return features
|
282 |
+
features.extend(re.findall(FEATURES, line))
|
283 |
+
return features
|
284 |
+
|
285 |
+
def _read_review_block(self, stream):
|
286 |
+
while True:
|
287 |
+
line = stream.readline()
|
288 |
+
if not line:
|
289 |
+
return [] # end of file.
|
290 |
+
title_match = re.match(TITLE, line)
|
291 |
+
if title_match:
|
292 |
+
review = Review(
|
293 |
+
title=title_match.group(1).strip()
|
294 |
+
) # We create a new review
|
295 |
+
break
|
296 |
+
|
297 |
+
# Scan until we find another line matching the regexp, or EOF.
|
298 |
+
while True:
|
299 |
+
oldpos = stream.tell()
|
300 |
+
line = stream.readline()
|
301 |
+
# End of file:
|
302 |
+
if not line:
|
303 |
+
return [review]
|
304 |
+
# Start of a new review: backup to just before it starts, and
|
305 |
+
# return the review we've already collected.
|
306 |
+
if re.match(TITLE, line):
|
307 |
+
stream.seek(oldpos)
|
308 |
+
return [review]
|
309 |
+
# Anything else is part of the review line.
|
310 |
+
feats = re.findall(FEATURES, line)
|
311 |
+
notes = re.findall(NOTES, line)
|
312 |
+
sent = re.findall(SENT, line)
|
313 |
+
if sent:
|
314 |
+
sent = self._word_tokenizer.tokenize(sent[0])
|
315 |
+
review_line = ReviewLine(sent=sent, features=feats, notes=notes)
|
316 |
+
review.add_line(review_line)
|
317 |
+
|
318 |
+
def _read_sent_block(self, stream):
|
319 |
+
sents = []
|
320 |
+
for review in self._read_review_block(stream):
|
321 |
+
sents.extend([sent for sent in review.sents()])
|
322 |
+
return sents
|
323 |
+
|
324 |
+
def _read_word_block(self, stream):
|
325 |
+
words = []
|
326 |
+
for i in range(20): # Read 20 lines at a time.
|
327 |
+
line = stream.readline()
|
328 |
+
sent = re.findall(SENT, line)
|
329 |
+
if sent:
|
330 |
+
words.extend(self._word_tokenizer.tokenize(sent[0]))
|
331 |
+
return words
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/rte.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: RTE Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Ewan Klein <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
Corpus reader for the Recognizing Textual Entailment (RTE) Challenge Corpora.
|
10 |
+
|
11 |
+
The files were taken from the RTE1, RTE2 and RTE3 datasets and the files
|
12 |
+
were regularized.
|
13 |
+
|
14 |
+
Filenames are of the form rte*_dev.xml and rte*_test.xml. The latter are the
|
15 |
+
gold standard annotated files.
|
16 |
+
|
17 |
+
Each entailment corpus is a list of 'text'/'hypothesis' pairs. The following
|
18 |
+
example is taken from RTE3::
|
19 |
+
|
20 |
+
<pair id="1" entailment="YES" task="IE" length="short" >
|
21 |
+
|
22 |
+
<t>The sale was made to pay Yukos' US$ 27.5 billion tax bill,
|
23 |
+
Yuganskneftegaz was originally sold for US$ 9.4 billion to a little known
|
24 |
+
company Baikalfinansgroup which was later bought by the Russian
|
25 |
+
state-owned oil company Rosneft .</t>
|
26 |
+
|
27 |
+
<h>Baikalfinansgroup was sold to Rosneft.</h>
|
28 |
+
</pair>
|
29 |
+
|
30 |
+
In order to provide globally unique IDs for each pair, a new attribute
|
31 |
+
``challenge`` has been added to the root element ``entailment-corpus`` of each
|
32 |
+
file, taking values 1, 2 or 3. The GID is formatted 'm-n', where 'm' is the
|
33 |
+
challenge number and 'n' is the pair ID.
|
34 |
+
"""
|
35 |
+
from nltk.corpus.reader.api import *
|
36 |
+
from nltk.corpus.reader.util import *
|
37 |
+
from nltk.corpus.reader.xmldocs import *
|
38 |
+
|
39 |
+
|
40 |
+
def norm(value_string):
|
41 |
+
"""
|
42 |
+
Normalize the string value in an RTE pair's ``value`` or ``entailment``
|
43 |
+
attribute as an integer (1, 0).
|
44 |
+
|
45 |
+
:param value_string: the label used to classify a text/hypothesis pair
|
46 |
+
:type value_string: str
|
47 |
+
:rtype: int
|
48 |
+
"""
|
49 |
+
|
50 |
+
valdict = {"TRUE": 1, "FALSE": 0, "YES": 1, "NO": 0}
|
51 |
+
return valdict[value_string.upper()]
|
52 |
+
|
53 |
+
|
54 |
+
class RTEPair:
|
55 |
+
"""
|
56 |
+
Container for RTE text-hypothesis pairs.
|
57 |
+
|
58 |
+
The entailment relation is signalled by the ``value`` attribute in RTE1, and by
|
59 |
+
``entailment`` in RTE2 and RTE3. These both get mapped on to the ``entailment``
|
60 |
+
attribute of this class.
|
61 |
+
"""
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
pair,
|
66 |
+
challenge=None,
|
67 |
+
id=None,
|
68 |
+
text=None,
|
69 |
+
hyp=None,
|
70 |
+
value=None,
|
71 |
+
task=None,
|
72 |
+
length=None,
|
73 |
+
):
|
74 |
+
"""
|
75 |
+
:param challenge: version of the RTE challenge (i.e., RTE1, RTE2 or RTE3)
|
76 |
+
:param id: identifier for the pair
|
77 |
+
:param text: the text component of the pair
|
78 |
+
:param hyp: the hypothesis component of the pair
|
79 |
+
:param value: classification label for the pair
|
80 |
+
:param task: attribute for the particular NLP task that the data was drawn from
|
81 |
+
:param length: attribute for the length of the text of the pair
|
82 |
+
"""
|
83 |
+
self.challenge = challenge
|
84 |
+
self.id = pair.attrib["id"]
|
85 |
+
self.gid = f"{self.challenge}-{self.id}"
|
86 |
+
self.text = pair[0].text
|
87 |
+
self.hyp = pair[1].text
|
88 |
+
|
89 |
+
if "value" in pair.attrib:
|
90 |
+
self.value = norm(pair.attrib["value"])
|
91 |
+
elif "entailment" in pair.attrib:
|
92 |
+
self.value = norm(pair.attrib["entailment"])
|
93 |
+
else:
|
94 |
+
self.value = value
|
95 |
+
if "task" in pair.attrib:
|
96 |
+
self.task = pair.attrib["task"]
|
97 |
+
else:
|
98 |
+
self.task = task
|
99 |
+
if "length" in pair.attrib:
|
100 |
+
self.length = pair.attrib["length"]
|
101 |
+
else:
|
102 |
+
self.length = length
|
103 |
+
|
104 |
+
def __repr__(self):
|
105 |
+
if self.challenge:
|
106 |
+
return f"<RTEPair: gid={self.challenge}-{self.id}>"
|
107 |
+
else:
|
108 |
+
return "<RTEPair: id=%s>" % self.id
|
109 |
+
|
110 |
+
|
111 |
+
class RTECorpusReader(XMLCorpusReader):
|
112 |
+
"""
|
113 |
+
Corpus reader for corpora in RTE challenges.
|
114 |
+
|
115 |
+
This is just a wrapper around the XMLCorpusReader. See module docstring above for the expected
|
116 |
+
structure of input documents.
|
117 |
+
"""
|
118 |
+
|
119 |
+
def _read_etree(self, doc):
|
120 |
+
"""
|
121 |
+
Map the XML input into an RTEPair.
|
122 |
+
|
123 |
+
This uses the ``getiterator()`` method from the ElementTree package to
|
124 |
+
find all the ``<pair>`` elements.
|
125 |
+
|
126 |
+
:param doc: a parsed XML document
|
127 |
+
:rtype: list(RTEPair)
|
128 |
+
"""
|
129 |
+
try:
|
130 |
+
challenge = doc.attrib["challenge"]
|
131 |
+
except KeyError:
|
132 |
+
challenge = None
|
133 |
+
pairiter = doc.iter("pair")
|
134 |
+
return [RTEPair(pair, challenge=challenge) for pair in pairiter]
|
135 |
+
|
136 |
+
def pairs(self, fileids):
|
137 |
+
"""
|
138 |
+
Build a list of RTEPairs from a RTE corpus.
|
139 |
+
|
140 |
+
:param fileids: a list of RTE corpus fileids
|
141 |
+
:type: list
|
142 |
+
:rtype: list(RTEPair)
|
143 |
+
"""
|
144 |
+
if isinstance(fileids, str):
|
145 |
+
fileids = [fileids]
|
146 |
+
return concat([self._read_etree(self.xml(fileid)) for fileid in fileids])
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/semcor.py
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: SemCor Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Nathan Schneider <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
Corpus reader for the SemCor Corpus.
|
10 |
+
"""
|
11 |
+
|
12 |
+
__docformat__ = "epytext en"
|
13 |
+
|
14 |
+
from nltk.corpus.reader.api import *
|
15 |
+
from nltk.corpus.reader.xmldocs import XMLCorpusReader, XMLCorpusView
|
16 |
+
from nltk.tree import Tree
|
17 |
+
|
18 |
+
|
19 |
+
class SemcorCorpusReader(XMLCorpusReader):
|
20 |
+
"""
|
21 |
+
Corpus reader for the SemCor Corpus.
|
22 |
+
For access to the complete XML data structure, use the ``xml()``
|
23 |
+
method. For access to simple word lists and tagged word lists, use
|
24 |
+
``words()``, ``sents()``, ``tagged_words()``, and ``tagged_sents()``.
|
25 |
+
"""
|
26 |
+
|
27 |
+
def __init__(self, root, fileids, wordnet, lazy=True):
|
28 |
+
XMLCorpusReader.__init__(self, root, fileids)
|
29 |
+
self._lazy = lazy
|
30 |
+
self._wordnet = wordnet
|
31 |
+
|
32 |
+
def words(self, fileids=None):
|
33 |
+
"""
|
34 |
+
:return: the given file(s) as a list of words and punctuation symbols.
|
35 |
+
:rtype: list(str)
|
36 |
+
"""
|
37 |
+
return self._items(fileids, "word", False, False, False)
|
38 |
+
|
39 |
+
def chunks(self, fileids=None):
|
40 |
+
"""
|
41 |
+
:return: the given file(s) as a list of chunks,
|
42 |
+
each of which is a list of words and punctuation symbols
|
43 |
+
that form a unit.
|
44 |
+
:rtype: list(list(str))
|
45 |
+
"""
|
46 |
+
return self._items(fileids, "chunk", False, False, False)
|
47 |
+
|
48 |
+
def tagged_chunks(self, fileids=None, tag=("pos" or "sem" or "both")):
|
49 |
+
"""
|
50 |
+
:return: the given file(s) as a list of tagged chunks, represented
|
51 |
+
in tree form.
|
52 |
+
:rtype: list(Tree)
|
53 |
+
|
54 |
+
:param tag: `'pos'` (part of speech), `'sem'` (semantic), or `'both'`
|
55 |
+
to indicate the kind of tags to include. Semantic tags consist of
|
56 |
+
WordNet lemma IDs, plus an `'NE'` node if the chunk is a named entity
|
57 |
+
without a specific entry in WordNet. (Named entities of type 'other'
|
58 |
+
have no lemma. Other chunks not in WordNet have no semantic tag.
|
59 |
+
Punctuation tokens have `None` for their part of speech tag.)
|
60 |
+
"""
|
61 |
+
return self._items(fileids, "chunk", False, tag != "sem", tag != "pos")
|
62 |
+
|
63 |
+
def sents(self, fileids=None):
|
64 |
+
"""
|
65 |
+
:return: the given file(s) as a list of sentences, each encoded
|
66 |
+
as a list of word strings.
|
67 |
+
:rtype: list(list(str))
|
68 |
+
"""
|
69 |
+
return self._items(fileids, "word", True, False, False)
|
70 |
+
|
71 |
+
def chunk_sents(self, fileids=None):
|
72 |
+
"""
|
73 |
+
:return: the given file(s) as a list of sentences, each encoded
|
74 |
+
as a list of chunks.
|
75 |
+
:rtype: list(list(list(str)))
|
76 |
+
"""
|
77 |
+
return self._items(fileids, "chunk", True, False, False)
|
78 |
+
|
79 |
+
def tagged_sents(self, fileids=None, tag=("pos" or "sem" or "both")):
|
80 |
+
"""
|
81 |
+
:return: the given file(s) as a list of sentences. Each sentence
|
82 |
+
is represented as a list of tagged chunks (in tree form).
|
83 |
+
:rtype: list(list(Tree))
|
84 |
+
|
85 |
+
:param tag: `'pos'` (part of speech), `'sem'` (semantic), or `'both'`
|
86 |
+
to indicate the kind of tags to include. Semantic tags consist of
|
87 |
+
WordNet lemma IDs, plus an `'NE'` node if the chunk is a named entity
|
88 |
+
without a specific entry in WordNet. (Named entities of type 'other'
|
89 |
+
have no lemma. Other chunks not in WordNet have no semantic tag.
|
90 |
+
Punctuation tokens have `None` for their part of speech tag.)
|
91 |
+
"""
|
92 |
+
return self._items(fileids, "chunk", True, tag != "sem", tag != "pos")
|
93 |
+
|
94 |
+
def _items(self, fileids, unit, bracket_sent, pos_tag, sem_tag):
|
95 |
+
if unit == "word" and not bracket_sent:
|
96 |
+
# the result of the SemcorWordView may be a multiword unit, so the
|
97 |
+
# LazyConcatenation will make sure the sentence is flattened
|
98 |
+
_ = lambda *args: LazyConcatenation(
|
99 |
+
(SemcorWordView if self._lazy else self._words)(*args)
|
100 |
+
)
|
101 |
+
else:
|
102 |
+
_ = SemcorWordView if self._lazy else self._words
|
103 |
+
return concat(
|
104 |
+
[
|
105 |
+
_(fileid, unit, bracket_sent, pos_tag, sem_tag, self._wordnet)
|
106 |
+
for fileid in self.abspaths(fileids)
|
107 |
+
]
|
108 |
+
)
|
109 |
+
|
110 |
+
def _words(self, fileid, unit, bracket_sent, pos_tag, sem_tag):
|
111 |
+
"""
|
112 |
+
Helper used to implement the view methods -- returns a list of
|
113 |
+
tokens, (segmented) words, chunks, or sentences. The tokens
|
114 |
+
and chunks may optionally be tagged (with POS and sense
|
115 |
+
information).
|
116 |
+
|
117 |
+
:param fileid: The name of the underlying file.
|
118 |
+
:param unit: One of `'token'`, `'word'`, or `'chunk'`.
|
119 |
+
:param bracket_sent: If true, include sentence bracketing.
|
120 |
+
:param pos_tag: Whether to include part-of-speech tags.
|
121 |
+
:param sem_tag: Whether to include semantic tags, namely WordNet lemma
|
122 |
+
and OOV named entity status.
|
123 |
+
"""
|
124 |
+
assert unit in ("token", "word", "chunk")
|
125 |
+
result = []
|
126 |
+
|
127 |
+
xmldoc = ElementTree.parse(fileid).getroot()
|
128 |
+
for xmlsent in xmldoc.findall(".//s"):
|
129 |
+
sent = []
|
130 |
+
for xmlword in _all_xmlwords_in(xmlsent):
|
131 |
+
itm = SemcorCorpusReader._word(
|
132 |
+
xmlword, unit, pos_tag, sem_tag, self._wordnet
|
133 |
+
)
|
134 |
+
if unit == "word":
|
135 |
+
sent.extend(itm)
|
136 |
+
else:
|
137 |
+
sent.append(itm)
|
138 |
+
|
139 |
+
if bracket_sent:
|
140 |
+
result.append(SemcorSentence(xmlsent.attrib["snum"], sent))
|
141 |
+
else:
|
142 |
+
result.extend(sent)
|
143 |
+
|
144 |
+
assert None not in result
|
145 |
+
return result
|
146 |
+
|
147 |
+
@staticmethod
|
148 |
+
def _word(xmlword, unit, pos_tag, sem_tag, wordnet):
|
149 |
+
tkn = xmlword.text
|
150 |
+
if not tkn:
|
151 |
+
tkn = "" # fixes issue 337?
|
152 |
+
|
153 |
+
lemma = xmlword.get("lemma", tkn) # lemma or NE class
|
154 |
+
lexsn = xmlword.get("lexsn") # lex_sense (locator for the lemma's sense)
|
155 |
+
if lexsn is not None:
|
156 |
+
sense_key = lemma + "%" + lexsn
|
157 |
+
wnpos = ("n", "v", "a", "r", "s")[
|
158 |
+
int(lexsn.split(":")[0]) - 1
|
159 |
+
] # see http://wordnet.princeton.edu/man/senseidx.5WN.html
|
160 |
+
else:
|
161 |
+
sense_key = wnpos = None
|
162 |
+
redef = xmlword.get(
|
163 |
+
"rdf", tkn
|
164 |
+
) # redefinition--this indicates the lookup string
|
165 |
+
# does not exactly match the enclosed string, e.g. due to typographical adjustments
|
166 |
+
# or discontinuity of a multiword expression. If a redefinition has occurred,
|
167 |
+
# the "rdf" attribute holds its inflected form and "lemma" holds its lemma.
|
168 |
+
# For NEs, "rdf", "lemma", and "pn" all hold the same value (the NE class).
|
169 |
+
sensenum = xmlword.get("wnsn") # WordNet sense number
|
170 |
+
isOOVEntity = "pn" in xmlword.keys() # a "personal name" (NE) not in WordNet
|
171 |
+
pos = xmlword.get(
|
172 |
+
"pos"
|
173 |
+
) # part of speech for the whole chunk (None for punctuation)
|
174 |
+
|
175 |
+
if unit == "token":
|
176 |
+
if not pos_tag and not sem_tag:
|
177 |
+
itm = tkn
|
178 |
+
else:
|
179 |
+
itm = (
|
180 |
+
(tkn,)
|
181 |
+
+ ((pos,) if pos_tag else ())
|
182 |
+
+ ((lemma, wnpos, sensenum, isOOVEntity) if sem_tag else ())
|
183 |
+
)
|
184 |
+
return itm
|
185 |
+
else:
|
186 |
+
ww = tkn.split("_") # TODO: case where punctuation intervenes in MWE
|
187 |
+
if unit == "word":
|
188 |
+
return ww
|
189 |
+
else:
|
190 |
+
if sensenum is not None:
|
191 |
+
try:
|
192 |
+
sense = wordnet.lemma_from_key(sense_key) # Lemma object
|
193 |
+
except Exception:
|
194 |
+
# cannot retrieve the wordnet.Lemma object. possible reasons:
|
195 |
+
# (a) the wordnet corpus is not downloaded;
|
196 |
+
# (b) a nonexistent sense is annotated: e.g., such.s.00 triggers:
|
197 |
+
# nltk.corpus.reader.wordnet.WordNetError: No synset found for key u'such%5:00:01:specified:00'
|
198 |
+
# solution: just use the lemma name as a string
|
199 |
+
try:
|
200 |
+
sense = "%s.%s.%02d" % (
|
201 |
+
lemma,
|
202 |
+
wnpos,
|
203 |
+
int(sensenum),
|
204 |
+
) # e.g.: reach.v.02
|
205 |
+
except ValueError:
|
206 |
+
sense = (
|
207 |
+
lemma + "." + wnpos + "." + sensenum
|
208 |
+
) # e.g. the sense number may be "2;1"
|
209 |
+
|
210 |
+
bottom = [Tree(pos, ww)] if pos_tag else ww
|
211 |
+
|
212 |
+
if sem_tag and isOOVEntity:
|
213 |
+
if sensenum is not None:
|
214 |
+
return Tree(sense, [Tree("NE", bottom)])
|
215 |
+
else: # 'other' NE
|
216 |
+
return Tree("NE", bottom)
|
217 |
+
elif sem_tag and sensenum is not None:
|
218 |
+
return Tree(sense, bottom)
|
219 |
+
elif pos_tag:
|
220 |
+
return bottom[0]
|
221 |
+
else:
|
222 |
+
return bottom # chunk as a list
|
223 |
+
|
224 |
+
|
225 |
+
def _all_xmlwords_in(elt, result=None):
|
226 |
+
if result is None:
|
227 |
+
result = []
|
228 |
+
for child in elt:
|
229 |
+
if child.tag in ("wf", "punc"):
|
230 |
+
result.append(child)
|
231 |
+
else:
|
232 |
+
_all_xmlwords_in(child, result)
|
233 |
+
return result
|
234 |
+
|
235 |
+
|
236 |
+
class SemcorSentence(list):
|
237 |
+
"""
|
238 |
+
A list of words, augmented by an attribute ``num`` used to record
|
239 |
+
the sentence identifier (the ``n`` attribute from the XML).
|
240 |
+
"""
|
241 |
+
|
242 |
+
def __init__(self, num, items):
|
243 |
+
self.num = num
|
244 |
+
list.__init__(self, items)
|
245 |
+
|
246 |
+
|
247 |
+
class SemcorWordView(XMLCorpusView):
|
248 |
+
"""
|
249 |
+
A stream backed corpus view specialized for use with the BNC corpus.
|
250 |
+
"""
|
251 |
+
|
252 |
+
def __init__(self, fileid, unit, bracket_sent, pos_tag, sem_tag, wordnet):
|
253 |
+
"""
|
254 |
+
:param fileid: The name of the underlying file.
|
255 |
+
:param unit: One of `'token'`, `'word'`, or `'chunk'`.
|
256 |
+
:param bracket_sent: If true, include sentence bracketing.
|
257 |
+
:param pos_tag: Whether to include part-of-speech tags.
|
258 |
+
:param sem_tag: Whether to include semantic tags, namely WordNet lemma
|
259 |
+
and OOV named entity status.
|
260 |
+
"""
|
261 |
+
if bracket_sent:
|
262 |
+
tagspec = ".*/s"
|
263 |
+
else:
|
264 |
+
tagspec = ".*/s/(punc|wf)"
|
265 |
+
|
266 |
+
self._unit = unit
|
267 |
+
self._sent = bracket_sent
|
268 |
+
self._pos_tag = pos_tag
|
269 |
+
self._sem_tag = sem_tag
|
270 |
+
self._wordnet = wordnet
|
271 |
+
|
272 |
+
XMLCorpusView.__init__(self, fileid, tagspec)
|
273 |
+
|
274 |
+
def handle_elt(self, elt, context):
|
275 |
+
if self._sent:
|
276 |
+
return self.handle_sent(elt)
|
277 |
+
else:
|
278 |
+
return self.handle_word(elt)
|
279 |
+
|
280 |
+
def handle_word(self, elt):
|
281 |
+
return SemcorCorpusReader._word(
|
282 |
+
elt, self._unit, self._pos_tag, self._sem_tag, self._wordnet
|
283 |
+
)
|
284 |
+
|
285 |
+
def handle_sent(self, elt):
|
286 |
+
sent = []
|
287 |
+
for child in elt:
|
288 |
+
if child.tag in ("wf", "punc"):
|
289 |
+
itm = self.handle_word(child)
|
290 |
+
if self._unit == "word":
|
291 |
+
sent.extend(itm)
|
292 |
+
else:
|
293 |
+
sent.append(itm)
|
294 |
+
else:
|
295 |
+
raise ValueError("Unexpected element %s" % child.tag)
|
296 |
+
return SemcorSentence(elt.attrib["snum"], sent)
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/sentiwordnet.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: SentiWordNet
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Christopher Potts <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
An NLTK interface for SentiWordNet
|
10 |
+
|
11 |
+
SentiWordNet is a lexical resource for opinion mining.
|
12 |
+
SentiWordNet assigns to each synset of WordNet three
|
13 |
+
sentiment scores: positivity, negativity, and objectivity.
|
14 |
+
|
15 |
+
For details about SentiWordNet see:
|
16 |
+
http://sentiwordnet.isti.cnr.it/
|
17 |
+
|
18 |
+
>>> from nltk.corpus import sentiwordnet as swn
|
19 |
+
>>> print(swn.senti_synset('breakdown.n.03'))
|
20 |
+
<breakdown.n.03: PosScore=0.0 NegScore=0.25>
|
21 |
+
>>> list(swn.senti_synsets('slow'))
|
22 |
+
[SentiSynset('decelerate.v.01'), SentiSynset('slow.v.02'),\
|
23 |
+
SentiSynset('slow.v.03'), SentiSynset('slow.a.01'),\
|
24 |
+
SentiSynset('slow.a.02'), SentiSynset('dense.s.04'),\
|
25 |
+
SentiSynset('slow.a.04'), SentiSynset('boring.s.01'),\
|
26 |
+
SentiSynset('dull.s.08'), SentiSynset('slowly.r.01'),\
|
27 |
+
SentiSynset('behind.r.03')]
|
28 |
+
>>> happy = swn.senti_synsets('happy', 'a')
|
29 |
+
>>> happy0 = list(happy)[0]
|
30 |
+
>>> happy0.pos_score()
|
31 |
+
0.875
|
32 |
+
>>> happy0.neg_score()
|
33 |
+
0.0
|
34 |
+
>>> happy0.obj_score()
|
35 |
+
0.125
|
36 |
+
"""
|
37 |
+
|
38 |
+
import re
|
39 |
+
|
40 |
+
from nltk.corpus.reader import CorpusReader
|
41 |
+
|
42 |
+
|
43 |
+
class SentiWordNetCorpusReader(CorpusReader):
|
44 |
+
def __init__(self, root, fileids, encoding="utf-8"):
|
45 |
+
"""
|
46 |
+
Construct a new SentiWordNet Corpus Reader, using data from
|
47 |
+
the specified file.
|
48 |
+
"""
|
49 |
+
super().__init__(root, fileids, encoding=encoding)
|
50 |
+
if len(self._fileids) != 1:
|
51 |
+
raise ValueError("Exactly one file must be specified")
|
52 |
+
self._db = {}
|
53 |
+
self._parse_src_file()
|
54 |
+
|
55 |
+
def _parse_src_file(self):
|
56 |
+
lines = self.open(self._fileids[0]).read().splitlines()
|
57 |
+
lines = filter((lambda x: not re.search(r"^\s*#", x)), lines)
|
58 |
+
for i, line in enumerate(lines):
|
59 |
+
fields = [field.strip() for field in re.split(r"\t+", line)]
|
60 |
+
try:
|
61 |
+
pos, offset, pos_score, neg_score, synset_terms, gloss = fields
|
62 |
+
except BaseException as e:
|
63 |
+
raise ValueError(f"Line {i} formatted incorrectly: {line}\n") from e
|
64 |
+
if pos and offset:
|
65 |
+
offset = int(offset)
|
66 |
+
self._db[(pos, offset)] = (float(pos_score), float(neg_score))
|
67 |
+
|
68 |
+
def senti_synset(self, *vals):
|
69 |
+
from nltk.corpus import wordnet as wn
|
70 |
+
|
71 |
+
if tuple(vals) in self._db:
|
72 |
+
pos_score, neg_score = self._db[tuple(vals)]
|
73 |
+
pos, offset = vals
|
74 |
+
if pos == "s":
|
75 |
+
pos = "a"
|
76 |
+
synset = wn.synset_from_pos_and_offset(pos, offset)
|
77 |
+
return SentiSynset(pos_score, neg_score, synset)
|
78 |
+
else:
|
79 |
+
synset = wn.synset(vals[0])
|
80 |
+
pos = synset.pos()
|
81 |
+
if pos == "s":
|
82 |
+
pos = "a"
|
83 |
+
offset = synset.offset()
|
84 |
+
if (pos, offset) in self._db:
|
85 |
+
pos_score, neg_score = self._db[(pos, offset)]
|
86 |
+
return SentiSynset(pos_score, neg_score, synset)
|
87 |
+
else:
|
88 |
+
return None
|
89 |
+
|
90 |
+
def senti_synsets(self, string, pos=None):
|
91 |
+
from nltk.corpus import wordnet as wn
|
92 |
+
|
93 |
+
sentis = []
|
94 |
+
synset_list = wn.synsets(string, pos)
|
95 |
+
for synset in synset_list:
|
96 |
+
sentis.append(self.senti_synset(synset.name()))
|
97 |
+
sentis = filter(lambda x: x, sentis)
|
98 |
+
return sentis
|
99 |
+
|
100 |
+
def all_senti_synsets(self):
|
101 |
+
from nltk.corpus import wordnet as wn
|
102 |
+
|
103 |
+
for key, fields in self._db.items():
|
104 |
+
pos, offset = key
|
105 |
+
pos_score, neg_score = fields
|
106 |
+
synset = wn.synset_from_pos_and_offset(pos, offset)
|
107 |
+
yield SentiSynset(pos_score, neg_score, synset)
|
108 |
+
|
109 |
+
|
110 |
+
class SentiSynset:
|
111 |
+
def __init__(self, pos_score, neg_score, synset):
|
112 |
+
self._pos_score = pos_score
|
113 |
+
self._neg_score = neg_score
|
114 |
+
self._obj_score = 1.0 - (self._pos_score + self._neg_score)
|
115 |
+
self.synset = synset
|
116 |
+
|
117 |
+
def pos_score(self):
|
118 |
+
return self._pos_score
|
119 |
+
|
120 |
+
def neg_score(self):
|
121 |
+
return self._neg_score
|
122 |
+
|
123 |
+
def obj_score(self):
|
124 |
+
return self._obj_score
|
125 |
+
|
126 |
+
def __str__(self):
|
127 |
+
"""Prints just the Pos/Neg scores for now."""
|
128 |
+
s = "<"
|
129 |
+
s += self.synset.name() + ": "
|
130 |
+
s += "PosScore=%s " % self._pos_score
|
131 |
+
s += "NegScore=%s" % self._neg_score
|
132 |
+
s += ">"
|
133 |
+
return s
|
134 |
+
|
135 |
+
def __repr__(self):
|
136 |
+
return "Senti" + repr(self.synset)
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/sinica_treebank.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Sinica Treebank Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bird <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
Sinica Treebank Corpus Sample
|
10 |
+
|
11 |
+
http://rocling.iis.sinica.edu.tw/CKIP/engversion/treebank.htm
|
12 |
+
|
13 |
+
10,000 parsed sentences, drawn from the Academia Sinica Balanced
|
14 |
+
Corpus of Modern Chinese. Parse tree notation is based on
|
15 |
+
Information-based Case Grammar. Tagset documentation is available
|
16 |
+
at https://www.sinica.edu.tw/SinicaCorpus/modern_e_wordtype.html
|
17 |
+
|
18 |
+
Language and Knowledge Processing Group, Institute of Information
|
19 |
+
Science, Academia Sinica
|
20 |
+
|
21 |
+
The data is distributed with the Natural Language Toolkit under the terms of
|
22 |
+
the Creative Commons Attribution-NonCommercial-ShareAlike License
|
23 |
+
[https://creativecommons.org/licenses/by-nc-sa/2.5/].
|
24 |
+
|
25 |
+
References:
|
26 |
+
|
27 |
+
Feng-Yi Chen, Pi-Fang Tsai, Keh-Jiann Chen, and Chu-Ren Huang (1999)
|
28 |
+
The Construction of Sinica Treebank. Computational Linguistics and
|
29 |
+
Chinese Language Processing, 4, pp 87-104.
|
30 |
+
|
31 |
+
Huang Chu-Ren, Keh-Jiann Chen, Feng-Yi Chen, Keh-Jiann Chen, Zhao-Ming
|
32 |
+
Gao, and Kuang-Yu Chen. 2000. Sinica Treebank: Design Criteria,
|
33 |
+
Annotation Guidelines, and On-line Interface. Proceedings of 2nd
|
34 |
+
Chinese Language Processing Workshop, Association for Computational
|
35 |
+
Linguistics.
|
36 |
+
|
37 |
+
Chen Keh-Jiann and Yu-Ming Hsieh (2004) Chinese Treebanks and Grammar
|
38 |
+
Extraction, Proceedings of IJCNLP-04, pp560-565.
|
39 |
+
"""
|
40 |
+
|
41 |
+
from nltk.corpus.reader.api import *
|
42 |
+
from nltk.corpus.reader.util import *
|
43 |
+
from nltk.tag import map_tag
|
44 |
+
from nltk.tree import sinica_parse
|
45 |
+
|
46 |
+
IDENTIFIER = re.compile(r"^#\S+\s")
|
47 |
+
APPENDIX = re.compile(r"(?<=\))#.*$")
|
48 |
+
TAGWORD = re.compile(r":([^:()|]+):([^:()|]+)")
|
49 |
+
WORD = re.compile(r":[^:()|]+:([^:()|]+)")
|
50 |
+
|
51 |
+
|
52 |
+
class SinicaTreebankCorpusReader(SyntaxCorpusReader):
|
53 |
+
"""
|
54 |
+
Reader for the sinica treebank.
|
55 |
+
"""
|
56 |
+
|
57 |
+
def _read_block(self, stream):
|
58 |
+
sent = stream.readline()
|
59 |
+
sent = IDENTIFIER.sub("", sent)
|
60 |
+
sent = APPENDIX.sub("", sent)
|
61 |
+
return [sent]
|
62 |
+
|
63 |
+
def _parse(self, sent):
|
64 |
+
return sinica_parse(sent)
|
65 |
+
|
66 |
+
def _tag(self, sent, tagset=None):
|
67 |
+
tagged_sent = [(w, t) for (t, w) in TAGWORD.findall(sent)]
|
68 |
+
if tagset and tagset != self._tagset:
|
69 |
+
tagged_sent = [
|
70 |
+
(w, map_tag(self._tagset, tagset, t)) for (w, t) in tagged_sent
|
71 |
+
]
|
72 |
+
return tagged_sent
|
73 |
+
|
74 |
+
def _word(self, sent):
|
75 |
+
return WORD.findall(sent)
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/string_category.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: String Category Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bird <[email protected]>
|
5 |
+
# Edward Loper <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
"""
|
10 |
+
Read tuples from a corpus consisting of categorized strings.
|
11 |
+
For example, from the question classification corpus:
|
12 |
+
|
13 |
+
NUM:dist How far is it from Denver to Aspen ?
|
14 |
+
LOC:city What county is Modesto , California in ?
|
15 |
+
HUM:desc Who was Galileo ?
|
16 |
+
DESC:def What is an atom ?
|
17 |
+
NUM:date When did Hawaii become a state ?
|
18 |
+
"""
|
19 |
+
|
20 |
+
from nltk.corpus.reader.api import *
|
21 |
+
|
22 |
+
# based on PPAttachmentCorpusReader
|
23 |
+
from nltk.corpus.reader.util import *
|
24 |
+
|
25 |
+
|
26 |
+
# [xx] Should the order of the tuple be reversed -- in most other places
|
27 |
+
# in nltk, we use the form (data, tag) -- e.g., tagged words and
|
28 |
+
# labeled texts for classifiers.
|
29 |
+
class StringCategoryCorpusReader(CorpusReader):
|
30 |
+
def __init__(self, root, fileids, delimiter=" ", encoding="utf8"):
|
31 |
+
"""
|
32 |
+
:param root: The root directory for this corpus.
|
33 |
+
:param fileids: A list or regexp specifying the fileids in this corpus.
|
34 |
+
:param delimiter: Field delimiter
|
35 |
+
"""
|
36 |
+
CorpusReader.__init__(self, root, fileids, encoding)
|
37 |
+
self._delimiter = delimiter
|
38 |
+
|
39 |
+
def tuples(self, fileids=None):
|
40 |
+
if fileids is None:
|
41 |
+
fileids = self._fileids
|
42 |
+
elif isinstance(fileids, str):
|
43 |
+
fileids = [fileids]
|
44 |
+
return concat(
|
45 |
+
[
|
46 |
+
StreamBackedCorpusView(fileid, self._read_tuple_block, encoding=enc)
|
47 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
48 |
+
]
|
49 |
+
)
|
50 |
+
|
51 |
+
def _read_tuple_block(self, stream):
|
52 |
+
line = stream.readline().strip()
|
53 |
+
if line:
|
54 |
+
return [tuple(line.split(self._delimiter, 1))]
|
55 |
+
else:
|
56 |
+
return []
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/switchboard.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Switchboard Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Edward Loper <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
import re
|
8 |
+
|
9 |
+
from nltk.corpus.reader.api import *
|
10 |
+
from nltk.corpus.reader.util import *
|
11 |
+
from nltk.tag import map_tag, str2tuple
|
12 |
+
|
13 |
+
|
14 |
+
class SwitchboardTurn(list):
|
15 |
+
"""
|
16 |
+
A specialized list object used to encode switchboard utterances.
|
17 |
+
The elements of the list are the words in the utterance; and two
|
18 |
+
attributes, ``speaker`` and ``id``, are provided to retrieve the
|
19 |
+
spearker identifier and utterance id. Note that utterance ids
|
20 |
+
are only unique within a given discourse.
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(self, words, speaker, id):
|
24 |
+
list.__init__(self, words)
|
25 |
+
self.speaker = speaker
|
26 |
+
self.id = int(id)
|
27 |
+
|
28 |
+
def __repr__(self):
|
29 |
+
if len(self) == 0:
|
30 |
+
text = ""
|
31 |
+
elif isinstance(self[0], tuple):
|
32 |
+
text = " ".join("%s/%s" % w for w in self)
|
33 |
+
else:
|
34 |
+
text = " ".join(self)
|
35 |
+
return f"<{self.speaker}.{self.id}: {text!r}>"
|
36 |
+
|
37 |
+
|
38 |
+
class SwitchboardCorpusReader(CorpusReader):
|
39 |
+
_FILES = ["tagged"]
|
40 |
+
# Use the "tagged" file even for non-tagged data methods, since
|
41 |
+
# it's tokenized.
|
42 |
+
|
43 |
+
def __init__(self, root, tagset=None):
|
44 |
+
CorpusReader.__init__(self, root, self._FILES)
|
45 |
+
self._tagset = tagset
|
46 |
+
|
47 |
+
def words(self):
|
48 |
+
return StreamBackedCorpusView(self.abspath("tagged"), self._words_block_reader)
|
49 |
+
|
50 |
+
def tagged_words(self, tagset=None):
|
51 |
+
def tagged_words_block_reader(stream):
|
52 |
+
return self._tagged_words_block_reader(stream, tagset)
|
53 |
+
|
54 |
+
return StreamBackedCorpusView(self.abspath("tagged"), tagged_words_block_reader)
|
55 |
+
|
56 |
+
def turns(self):
|
57 |
+
return StreamBackedCorpusView(self.abspath("tagged"), self._turns_block_reader)
|
58 |
+
|
59 |
+
def tagged_turns(self, tagset=None):
|
60 |
+
def tagged_turns_block_reader(stream):
|
61 |
+
return self._tagged_turns_block_reader(stream, tagset)
|
62 |
+
|
63 |
+
return StreamBackedCorpusView(self.abspath("tagged"), tagged_turns_block_reader)
|
64 |
+
|
65 |
+
def discourses(self):
|
66 |
+
return StreamBackedCorpusView(
|
67 |
+
self.abspath("tagged"), self._discourses_block_reader
|
68 |
+
)
|
69 |
+
|
70 |
+
def tagged_discourses(self, tagset=False):
|
71 |
+
def tagged_discourses_block_reader(stream):
|
72 |
+
return self._tagged_discourses_block_reader(stream, tagset)
|
73 |
+
|
74 |
+
return StreamBackedCorpusView(
|
75 |
+
self.abspath("tagged"), tagged_discourses_block_reader
|
76 |
+
)
|
77 |
+
|
78 |
+
def _discourses_block_reader(self, stream):
|
79 |
+
# returns at most 1 discourse. (The other methods depend on this.)
|
80 |
+
return [
|
81 |
+
[
|
82 |
+
self._parse_utterance(u, include_tag=False)
|
83 |
+
for b in read_blankline_block(stream)
|
84 |
+
for u in b.split("\n")
|
85 |
+
if u.strip()
|
86 |
+
]
|
87 |
+
]
|
88 |
+
|
89 |
+
def _tagged_discourses_block_reader(self, stream, tagset=None):
|
90 |
+
# returns at most 1 discourse. (The other methods depend on this.)
|
91 |
+
return [
|
92 |
+
[
|
93 |
+
self._parse_utterance(u, include_tag=True, tagset=tagset)
|
94 |
+
for b in read_blankline_block(stream)
|
95 |
+
for u in b.split("\n")
|
96 |
+
if u.strip()
|
97 |
+
]
|
98 |
+
]
|
99 |
+
|
100 |
+
def _turns_block_reader(self, stream):
|
101 |
+
return self._discourses_block_reader(stream)[0]
|
102 |
+
|
103 |
+
def _tagged_turns_block_reader(self, stream, tagset=None):
|
104 |
+
return self._tagged_discourses_block_reader(stream, tagset)[0]
|
105 |
+
|
106 |
+
def _words_block_reader(self, stream):
|
107 |
+
return sum(self._discourses_block_reader(stream)[0], [])
|
108 |
+
|
109 |
+
def _tagged_words_block_reader(self, stream, tagset=None):
|
110 |
+
return sum(self._tagged_discourses_block_reader(stream, tagset)[0], [])
|
111 |
+
|
112 |
+
_UTTERANCE_RE = re.compile(r"(\w+)\.(\d+)\:\s*(.*)")
|
113 |
+
_SEP = "/"
|
114 |
+
|
115 |
+
def _parse_utterance(self, utterance, include_tag, tagset=None):
|
116 |
+
m = self._UTTERANCE_RE.match(utterance)
|
117 |
+
if m is None:
|
118 |
+
raise ValueError("Bad utterance %r" % utterance)
|
119 |
+
speaker, id, text = m.groups()
|
120 |
+
words = [str2tuple(s, self._SEP) for s in text.split()]
|
121 |
+
if not include_tag:
|
122 |
+
words = [w for (w, t) in words]
|
123 |
+
elif tagset and tagset != self._tagset:
|
124 |
+
words = [(w, map_tag(self._tagset, tagset, t)) for (w, t) in words]
|
125 |
+
return SwitchboardTurn(words, speaker, id)
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/tagged.py
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Tagged Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Edward Loper <[email protected]>
|
5 |
+
# Steven Bird <[email protected]>
|
6 |
+
# Jacob Perkins <[email protected]>
|
7 |
+
# URL: <https://www.nltk.org/>
|
8 |
+
# For license information, see LICENSE.TXT
|
9 |
+
|
10 |
+
"""
|
11 |
+
A reader for corpora whose documents contain part-of-speech-tagged words.
|
12 |
+
"""
|
13 |
+
|
14 |
+
import os
|
15 |
+
|
16 |
+
from nltk.corpus.reader.api import *
|
17 |
+
from nltk.corpus.reader.timit import read_timit_block
|
18 |
+
from nltk.corpus.reader.util import *
|
19 |
+
from nltk.tag import map_tag, str2tuple
|
20 |
+
from nltk.tokenize import *
|
21 |
+
|
22 |
+
|
23 |
+
class TaggedCorpusReader(CorpusReader):
|
24 |
+
"""
|
25 |
+
Reader for simple part-of-speech tagged corpora. Paragraphs are
|
26 |
+
assumed to be split using blank lines. Sentences and words can be
|
27 |
+
tokenized using the default tokenizers, or by custom tokenizers
|
28 |
+
specified as parameters to the constructor. Words are parsed
|
29 |
+
using ``nltk.tag.str2tuple``. By default, ``'/'`` is used as the
|
30 |
+
separator. I.e., words should have the form::
|
31 |
+
|
32 |
+
word1/tag1 word2/tag2 word3/tag3 ...
|
33 |
+
|
34 |
+
But custom separators may be specified as parameters to the
|
35 |
+
constructor. Part of speech tags are case-normalized to upper
|
36 |
+
case.
|
37 |
+
"""
|
38 |
+
|
39 |
+
def __init__(
|
40 |
+
self,
|
41 |
+
root,
|
42 |
+
fileids,
|
43 |
+
sep="/",
|
44 |
+
word_tokenizer=WhitespaceTokenizer(),
|
45 |
+
sent_tokenizer=RegexpTokenizer("\n", gaps=True),
|
46 |
+
para_block_reader=read_blankline_block,
|
47 |
+
encoding="utf8",
|
48 |
+
tagset=None,
|
49 |
+
):
|
50 |
+
"""
|
51 |
+
Construct a new Tagged Corpus reader for a set of documents
|
52 |
+
located at the given root directory. Example usage:
|
53 |
+
|
54 |
+
>>> root = '/...path to corpus.../'
|
55 |
+
>>> reader = TaggedCorpusReader(root, '.*', '.txt') # doctest: +SKIP
|
56 |
+
|
57 |
+
:param root: The root directory for this corpus.
|
58 |
+
:param fileids: A list or regexp specifying the fileids in this corpus.
|
59 |
+
"""
|
60 |
+
CorpusReader.__init__(self, root, fileids, encoding)
|
61 |
+
self._sep = sep
|
62 |
+
self._word_tokenizer = word_tokenizer
|
63 |
+
self._sent_tokenizer = sent_tokenizer
|
64 |
+
self._para_block_reader = para_block_reader
|
65 |
+
self._tagset = tagset
|
66 |
+
|
67 |
+
def words(self, fileids=None):
|
68 |
+
"""
|
69 |
+
:return: the given file(s) as a list of words
|
70 |
+
and punctuation symbols.
|
71 |
+
:rtype: list(str)
|
72 |
+
"""
|
73 |
+
return concat(
|
74 |
+
[
|
75 |
+
TaggedCorpusView(
|
76 |
+
fileid,
|
77 |
+
enc,
|
78 |
+
False,
|
79 |
+
False,
|
80 |
+
False,
|
81 |
+
self._sep,
|
82 |
+
self._word_tokenizer,
|
83 |
+
self._sent_tokenizer,
|
84 |
+
self._para_block_reader,
|
85 |
+
None,
|
86 |
+
)
|
87 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
88 |
+
]
|
89 |
+
)
|
90 |
+
|
91 |
+
def sents(self, fileids=None):
|
92 |
+
"""
|
93 |
+
:return: the given file(s) as a list of
|
94 |
+
sentences or utterances, each encoded as a list of word
|
95 |
+
strings.
|
96 |
+
:rtype: list(list(str))
|
97 |
+
"""
|
98 |
+
return concat(
|
99 |
+
[
|
100 |
+
TaggedCorpusView(
|
101 |
+
fileid,
|
102 |
+
enc,
|
103 |
+
False,
|
104 |
+
True,
|
105 |
+
False,
|
106 |
+
self._sep,
|
107 |
+
self._word_tokenizer,
|
108 |
+
self._sent_tokenizer,
|
109 |
+
self._para_block_reader,
|
110 |
+
None,
|
111 |
+
)
|
112 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
113 |
+
]
|
114 |
+
)
|
115 |
+
|
116 |
+
def paras(self, fileids=None):
|
117 |
+
"""
|
118 |
+
:return: the given file(s) as a list of
|
119 |
+
paragraphs, each encoded as a list of sentences, which are
|
120 |
+
in turn encoded as lists of word strings.
|
121 |
+
:rtype: list(list(list(str)))
|
122 |
+
"""
|
123 |
+
return concat(
|
124 |
+
[
|
125 |
+
TaggedCorpusView(
|
126 |
+
fileid,
|
127 |
+
enc,
|
128 |
+
False,
|
129 |
+
True,
|
130 |
+
True,
|
131 |
+
self._sep,
|
132 |
+
self._word_tokenizer,
|
133 |
+
self._sent_tokenizer,
|
134 |
+
self._para_block_reader,
|
135 |
+
None,
|
136 |
+
)
|
137 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
138 |
+
]
|
139 |
+
)
|
140 |
+
|
141 |
+
def tagged_words(self, fileids=None, tagset=None):
|
142 |
+
"""
|
143 |
+
:return: the given file(s) as a list of tagged
|
144 |
+
words and punctuation symbols, encoded as tuples
|
145 |
+
``(word,tag)``.
|
146 |
+
:rtype: list(tuple(str,str))
|
147 |
+
"""
|
148 |
+
if tagset and tagset != self._tagset:
|
149 |
+
tag_mapping_function = lambda t: map_tag(self._tagset, tagset, t)
|
150 |
+
else:
|
151 |
+
tag_mapping_function = None
|
152 |
+
return concat(
|
153 |
+
[
|
154 |
+
TaggedCorpusView(
|
155 |
+
fileid,
|
156 |
+
enc,
|
157 |
+
True,
|
158 |
+
False,
|
159 |
+
False,
|
160 |
+
self._sep,
|
161 |
+
self._word_tokenizer,
|
162 |
+
self._sent_tokenizer,
|
163 |
+
self._para_block_reader,
|
164 |
+
tag_mapping_function,
|
165 |
+
)
|
166 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
167 |
+
]
|
168 |
+
)
|
169 |
+
|
170 |
+
def tagged_sents(self, fileids=None, tagset=None):
|
171 |
+
"""
|
172 |
+
:return: the given file(s) as a list of
|
173 |
+
sentences, each encoded as a list of ``(word,tag)`` tuples.
|
174 |
+
|
175 |
+
:rtype: list(list(tuple(str,str)))
|
176 |
+
"""
|
177 |
+
if tagset and tagset != self._tagset:
|
178 |
+
tag_mapping_function = lambda t: map_tag(self._tagset, tagset, t)
|
179 |
+
else:
|
180 |
+
tag_mapping_function = None
|
181 |
+
return concat(
|
182 |
+
[
|
183 |
+
TaggedCorpusView(
|
184 |
+
fileid,
|
185 |
+
enc,
|
186 |
+
True,
|
187 |
+
True,
|
188 |
+
False,
|
189 |
+
self._sep,
|
190 |
+
self._word_tokenizer,
|
191 |
+
self._sent_tokenizer,
|
192 |
+
self._para_block_reader,
|
193 |
+
tag_mapping_function,
|
194 |
+
)
|
195 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
196 |
+
]
|
197 |
+
)
|
198 |
+
|
199 |
+
def tagged_paras(self, fileids=None, tagset=None):
|
200 |
+
"""
|
201 |
+
:return: the given file(s) as a list of
|
202 |
+
paragraphs, each encoded as a list of sentences, which are
|
203 |
+
in turn encoded as lists of ``(word,tag)`` tuples.
|
204 |
+
:rtype: list(list(list(tuple(str,str))))
|
205 |
+
"""
|
206 |
+
if tagset and tagset != self._tagset:
|
207 |
+
tag_mapping_function = lambda t: map_tag(self._tagset, tagset, t)
|
208 |
+
else:
|
209 |
+
tag_mapping_function = None
|
210 |
+
return concat(
|
211 |
+
[
|
212 |
+
TaggedCorpusView(
|
213 |
+
fileid,
|
214 |
+
enc,
|
215 |
+
True,
|
216 |
+
True,
|
217 |
+
True,
|
218 |
+
self._sep,
|
219 |
+
self._word_tokenizer,
|
220 |
+
self._sent_tokenizer,
|
221 |
+
self._para_block_reader,
|
222 |
+
tag_mapping_function,
|
223 |
+
)
|
224 |
+
for (fileid, enc) in self.abspaths(fileids, True)
|
225 |
+
]
|
226 |
+
)
|
227 |
+
|
228 |
+
|
229 |
+
class CategorizedTaggedCorpusReader(CategorizedCorpusReader, TaggedCorpusReader):
|
230 |
+
"""
|
231 |
+
A reader for part-of-speech tagged corpora whose documents are
|
232 |
+
divided into categories based on their file identifiers.
|
233 |
+
"""
|
234 |
+
|
235 |
+
def __init__(self, *args, **kwargs):
|
236 |
+
"""
|
237 |
+
Initialize the corpus reader. Categorization arguments
|
238 |
+
(``cat_pattern``, ``cat_map``, and ``cat_file``) are passed to
|
239 |
+
the ``CategorizedCorpusReader`` constructor. The remaining arguments
|
240 |
+
are passed to the ``TaggedCorpusReader``.
|
241 |
+
"""
|
242 |
+
CategorizedCorpusReader.__init__(self, kwargs)
|
243 |
+
TaggedCorpusReader.__init__(self, *args, **kwargs)
|
244 |
+
|
245 |
+
def tagged_words(self, fileids=None, categories=None, tagset=None):
|
246 |
+
return super().tagged_words(self._resolve(fileids, categories), tagset)
|
247 |
+
|
248 |
+
def tagged_sents(self, fileids=None, categories=None, tagset=None):
|
249 |
+
return super().tagged_sents(self._resolve(fileids, categories), tagset)
|
250 |
+
|
251 |
+
def tagged_paras(self, fileids=None, categories=None, tagset=None):
|
252 |
+
return super().tagged_paras(self._resolve(fileids, categories), tagset)
|
253 |
+
|
254 |
+
|
255 |
+
class TaggedCorpusView(StreamBackedCorpusView):
|
256 |
+
"""
|
257 |
+
A specialized corpus view for tagged documents. It can be
|
258 |
+
customized via flags to divide the tagged corpus documents up by
|
259 |
+
sentence or paragraph, and to include or omit part of speech tags.
|
260 |
+
``TaggedCorpusView`` objects are typically created by
|
261 |
+
``TaggedCorpusReader`` (not directly by nltk users).
|
262 |
+
"""
|
263 |
+
|
264 |
+
def __init__(
|
265 |
+
self,
|
266 |
+
corpus_file,
|
267 |
+
encoding,
|
268 |
+
tagged,
|
269 |
+
group_by_sent,
|
270 |
+
group_by_para,
|
271 |
+
sep,
|
272 |
+
word_tokenizer,
|
273 |
+
sent_tokenizer,
|
274 |
+
para_block_reader,
|
275 |
+
tag_mapping_function=None,
|
276 |
+
):
|
277 |
+
self._tagged = tagged
|
278 |
+
self._group_by_sent = group_by_sent
|
279 |
+
self._group_by_para = group_by_para
|
280 |
+
self._sep = sep
|
281 |
+
self._word_tokenizer = word_tokenizer
|
282 |
+
self._sent_tokenizer = sent_tokenizer
|
283 |
+
self._para_block_reader = para_block_reader
|
284 |
+
self._tag_mapping_function = tag_mapping_function
|
285 |
+
StreamBackedCorpusView.__init__(self, corpus_file, encoding=encoding)
|
286 |
+
|
287 |
+
def read_block(self, stream):
|
288 |
+
"""Reads one paragraph at a time."""
|
289 |
+
block = []
|
290 |
+
for para_str in self._para_block_reader(stream):
|
291 |
+
para = []
|
292 |
+
for sent_str in self._sent_tokenizer.tokenize(para_str):
|
293 |
+
sent = [
|
294 |
+
str2tuple(s, self._sep)
|
295 |
+
for s in self._word_tokenizer.tokenize(sent_str)
|
296 |
+
]
|
297 |
+
if self._tag_mapping_function:
|
298 |
+
sent = [(w, self._tag_mapping_function(t)) for (w, t) in sent]
|
299 |
+
if not self._tagged:
|
300 |
+
sent = [w for (w, t) in sent]
|
301 |
+
if self._group_by_sent:
|
302 |
+
para.append(sent)
|
303 |
+
else:
|
304 |
+
para.extend(sent)
|
305 |
+
if self._group_by_para:
|
306 |
+
block.append(para)
|
307 |
+
else:
|
308 |
+
block.extend(para)
|
309 |
+
return block
|
310 |
+
|
311 |
+
|
312 |
+
# needs to implement simplified tags
|
313 |
+
class MacMorphoCorpusReader(TaggedCorpusReader):
|
314 |
+
"""
|
315 |
+
A corpus reader for the MAC_MORPHO corpus. Each line contains a
|
316 |
+
single tagged word, using '_' as a separator. Sentence boundaries
|
317 |
+
are based on the end-sentence tag ('_.'). Paragraph information
|
318 |
+
is not included in the corpus, so each paragraph returned by
|
319 |
+
``self.paras()`` and ``self.tagged_paras()`` contains a single
|
320 |
+
sentence.
|
321 |
+
"""
|
322 |
+
|
323 |
+
def __init__(self, root, fileids, encoding="utf8", tagset=None):
|
324 |
+
TaggedCorpusReader.__init__(
|
325 |
+
self,
|
326 |
+
root,
|
327 |
+
fileids,
|
328 |
+
sep="_",
|
329 |
+
word_tokenizer=LineTokenizer(),
|
330 |
+
sent_tokenizer=RegexpTokenizer(".*\n"),
|
331 |
+
para_block_reader=self._read_block,
|
332 |
+
encoding=encoding,
|
333 |
+
tagset=tagset,
|
334 |
+
)
|
335 |
+
|
336 |
+
def _read_block(self, stream):
|
337 |
+
return read_regexp_block(stream, r".*", r".*_\.")
|
338 |
+
|
339 |
+
|
340 |
+
class TimitTaggedCorpusReader(TaggedCorpusReader):
|
341 |
+
"""
|
342 |
+
A corpus reader for tagged sentences that are included in the TIMIT corpus.
|
343 |
+
"""
|
344 |
+
|
345 |
+
def __init__(self, *args, **kwargs):
|
346 |
+
TaggedCorpusReader.__init__(
|
347 |
+
self, para_block_reader=read_timit_block, *args, **kwargs
|
348 |
+
)
|
349 |
+
|
350 |
+
def paras(self):
|
351 |
+
raise NotImplementedError("use sents() instead")
|
352 |
+
|
353 |
+
def tagged_paras(self):
|
354 |
+
raise NotImplementedError("use tagged_sents() instead")
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/timit.py
ADDED
@@ -0,0 +1,510 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: TIMIT Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2007 NLTK Project
|
4 |
+
# Author: Haejoong Lee <[email protected]>
|
5 |
+
# Steven Bird <[email protected]>
|
6 |
+
# Jacob Perkins <[email protected]>
|
7 |
+
# URL: <https://www.nltk.org/>
|
8 |
+
# For license information, see LICENSE.TXT
|
9 |
+
|
10 |
+
# [xx] this docstring is out-of-date:
|
11 |
+
"""
|
12 |
+
Read tokens, phonemes and audio data from the NLTK TIMIT Corpus.
|
13 |
+
|
14 |
+
This corpus contains selected portion of the TIMIT corpus.
|
15 |
+
|
16 |
+
- 16 speakers from 8 dialect regions
|
17 |
+
- 1 male and 1 female from each dialect region
|
18 |
+
- total 130 sentences (10 sentences per speaker. Note that some
|
19 |
+
sentences are shared among other speakers, especially sa1 and sa2
|
20 |
+
are spoken by all speakers.)
|
21 |
+
- total 160 recording of sentences (10 recordings per speaker)
|
22 |
+
- audio format: NIST Sphere, single channel, 16kHz sampling,
|
23 |
+
16 bit sample, PCM encoding
|
24 |
+
|
25 |
+
|
26 |
+
Module contents
|
27 |
+
===============
|
28 |
+
|
29 |
+
The timit corpus reader provides 4 functions and 4 data items.
|
30 |
+
|
31 |
+
- utterances
|
32 |
+
|
33 |
+
List of utterances in the corpus. There are total 160 utterances,
|
34 |
+
each of which corresponds to a unique utterance of a speaker.
|
35 |
+
Here's an example of an utterance identifier in the list::
|
36 |
+
|
37 |
+
dr1-fvmh0/sx206
|
38 |
+
- _---- _---
|
39 |
+
| | | | |
|
40 |
+
| | | | |
|
41 |
+
| | | | `--- sentence number
|
42 |
+
| | | `----- sentence type (a:all, i:shared, x:exclusive)
|
43 |
+
| | `--------- speaker ID
|
44 |
+
| `------------ sex (m:male, f:female)
|
45 |
+
`-------------- dialect region (1..8)
|
46 |
+
|
47 |
+
- speakers
|
48 |
+
|
49 |
+
List of speaker IDs. An example of speaker ID::
|
50 |
+
|
51 |
+
dr1-fvmh0
|
52 |
+
|
53 |
+
Note that if you split an item ID with colon and take the first element of
|
54 |
+
the result, you will get a speaker ID.
|
55 |
+
|
56 |
+
>>> itemid = 'dr1-fvmh0/sx206'
|
57 |
+
>>> spkrid , sentid = itemid.split('/')
|
58 |
+
>>> spkrid
|
59 |
+
'dr1-fvmh0'
|
60 |
+
|
61 |
+
The second element of the result is a sentence ID.
|
62 |
+
|
63 |
+
- dictionary()
|
64 |
+
|
65 |
+
Phonetic dictionary of words contained in this corpus. This is a Python
|
66 |
+
dictionary from words to phoneme lists.
|
67 |
+
|
68 |
+
- spkrinfo()
|
69 |
+
|
70 |
+
Speaker information table. It's a Python dictionary from speaker IDs to
|
71 |
+
records of 10 fields. Speaker IDs the same as the ones in timie.speakers.
|
72 |
+
Each record is a dictionary from field names to values, and the fields are
|
73 |
+
as follows::
|
74 |
+
|
75 |
+
id speaker ID as defined in the original TIMIT speaker info table
|
76 |
+
sex speaker gender (M:male, F:female)
|
77 |
+
dr speaker dialect region (1:new england, 2:northern,
|
78 |
+
3:north midland, 4:south midland, 5:southern, 6:new york city,
|
79 |
+
7:western, 8:army brat (moved around))
|
80 |
+
use corpus type (TRN:training, TST:test)
|
81 |
+
in this sample corpus only TRN is available
|
82 |
+
recdate recording date
|
83 |
+
birthdate speaker birth date
|
84 |
+
ht speaker height
|
85 |
+
race speaker race (WHT:white, BLK:black, AMR:american indian,
|
86 |
+
SPN:spanish-american, ORN:oriental,???:unknown)
|
87 |
+
edu speaker education level (HS:high school, AS:associate degree,
|
88 |
+
BS:bachelor's degree (BS or BA), MS:master's degree (MS or MA),
|
89 |
+
PHD:doctorate degree (PhD,JD,MD), ??:unknown)
|
90 |
+
comments comments by the recorder
|
91 |
+
|
92 |
+
The 4 functions are as follows.
|
93 |
+
|
94 |
+
- tokenized(sentences=items, offset=False)
|
95 |
+
|
96 |
+
Given a list of items, returns an iterator of a list of word lists,
|
97 |
+
each of which corresponds to an item (sentence). If offset is set to True,
|
98 |
+
each element of the word list is a tuple of word(string), start offset and
|
99 |
+
end offset, where offset is represented as a number of 16kHz samples.
|
100 |
+
|
101 |
+
- phonetic(sentences=items, offset=False)
|
102 |
+
|
103 |
+
Given a list of items, returns an iterator of a list of phoneme lists,
|
104 |
+
each of which corresponds to an item (sentence). If offset is set to True,
|
105 |
+
each element of the phoneme list is a tuple of word(string), start offset
|
106 |
+
and end offset, where offset is represented as a number of 16kHz samples.
|
107 |
+
|
108 |
+
- audiodata(item, start=0, end=None)
|
109 |
+
|
110 |
+
Given an item, returns a chunk of audio samples formatted into a string.
|
111 |
+
When the function is called, if start and end are omitted, the entire
|
112 |
+
samples of the recording will be returned. If only end is omitted,
|
113 |
+
samples from the start offset to the end of the recording will be returned.
|
114 |
+
|
115 |
+
- play(data)
|
116 |
+
|
117 |
+
Play the given audio samples. The audio samples can be obtained from the
|
118 |
+
timit.audiodata function.
|
119 |
+
|
120 |
+
"""
|
121 |
+
import sys
|
122 |
+
import time
|
123 |
+
|
124 |
+
from nltk.corpus.reader.api import *
|
125 |
+
from nltk.internals import import_from_stdlib
|
126 |
+
from nltk.tree import Tree
|
127 |
+
|
128 |
+
|
129 |
+
class TimitCorpusReader(CorpusReader):
|
130 |
+
"""
|
131 |
+
Reader for the TIMIT corpus (or any other corpus with the same
|
132 |
+
file layout and use of file formats). The corpus root directory
|
133 |
+
should contain the following files:
|
134 |
+
|
135 |
+
- timitdic.txt: dictionary of standard transcriptions
|
136 |
+
- spkrinfo.txt: table of speaker information
|
137 |
+
|
138 |
+
In addition, the root directory should contain one subdirectory
|
139 |
+
for each speaker, containing three files for each utterance:
|
140 |
+
|
141 |
+
- <utterance-id>.txt: text content of utterances
|
142 |
+
- <utterance-id>.wrd: tokenized text content of utterances
|
143 |
+
- <utterance-id>.phn: phonetic transcription of utterances
|
144 |
+
- <utterance-id>.wav: utterance sound file
|
145 |
+
"""
|
146 |
+
|
147 |
+
_FILE_RE = r"(\w+-\w+/\w+\.(phn|txt|wav|wrd))|" + r"timitdic\.txt|spkrinfo\.txt"
|
148 |
+
"""A regexp matching fileids that are used by this corpus reader."""
|
149 |
+
_UTTERANCE_RE = r"\w+-\w+/\w+\.txt"
|
150 |
+
|
151 |
+
def __init__(self, root, encoding="utf8"):
|
152 |
+
"""
|
153 |
+
Construct a new TIMIT corpus reader in the given directory.
|
154 |
+
:param root: The root directory for this corpus.
|
155 |
+
"""
|
156 |
+
# Ensure that wave files don't get treated as unicode data:
|
157 |
+
if isinstance(encoding, str):
|
158 |
+
encoding = [(r".*\.wav", None), (".*", encoding)]
|
159 |
+
|
160 |
+
CorpusReader.__init__(
|
161 |
+
self, root, find_corpus_fileids(root, self._FILE_RE), encoding=encoding
|
162 |
+
)
|
163 |
+
|
164 |
+
self._utterances = [
|
165 |
+
name[:-4] for name in find_corpus_fileids(root, self._UTTERANCE_RE)
|
166 |
+
]
|
167 |
+
"""A list of the utterance identifiers for all utterances in
|
168 |
+
this corpus."""
|
169 |
+
|
170 |
+
self._speakerinfo = None
|
171 |
+
self._root = root
|
172 |
+
self.speakers = sorted({u.split("/")[0] for u in self._utterances})
|
173 |
+
|
174 |
+
def fileids(self, filetype=None):
|
175 |
+
"""
|
176 |
+
Return a list of file identifiers for the files that make up
|
177 |
+
this corpus.
|
178 |
+
|
179 |
+
:param filetype: If specified, then ``filetype`` indicates that
|
180 |
+
only the files that have the given type should be
|
181 |
+
returned. Accepted values are: ``txt``, ``wrd``, ``phn``,
|
182 |
+
``wav``, or ``metadata``,
|
183 |
+
"""
|
184 |
+
if filetype is None:
|
185 |
+
return CorpusReader.fileids(self)
|
186 |
+
elif filetype in ("txt", "wrd", "phn", "wav"):
|
187 |
+
return [f"{u}.{filetype}" for u in self._utterances]
|
188 |
+
elif filetype == "metadata":
|
189 |
+
return ["timitdic.txt", "spkrinfo.txt"]
|
190 |
+
else:
|
191 |
+
raise ValueError("Bad value for filetype: %r" % filetype)
|
192 |
+
|
193 |
+
def utteranceids(
|
194 |
+
self, dialect=None, sex=None, spkrid=None, sent_type=None, sentid=None
|
195 |
+
):
|
196 |
+
"""
|
197 |
+
:return: A list of the utterance identifiers for all
|
198 |
+
utterances in this corpus, or for the given speaker, dialect
|
199 |
+
region, gender, sentence type, or sentence number, if
|
200 |
+
specified.
|
201 |
+
"""
|
202 |
+
if isinstance(dialect, str):
|
203 |
+
dialect = [dialect]
|
204 |
+
if isinstance(sex, str):
|
205 |
+
sex = [sex]
|
206 |
+
if isinstance(spkrid, str):
|
207 |
+
spkrid = [spkrid]
|
208 |
+
if isinstance(sent_type, str):
|
209 |
+
sent_type = [sent_type]
|
210 |
+
if isinstance(sentid, str):
|
211 |
+
sentid = [sentid]
|
212 |
+
|
213 |
+
utterances = self._utterances[:]
|
214 |
+
if dialect is not None:
|
215 |
+
utterances = [u for u in utterances if u[2] in dialect]
|
216 |
+
if sex is not None:
|
217 |
+
utterances = [u for u in utterances if u[4] in sex]
|
218 |
+
if spkrid is not None:
|
219 |
+
utterances = [u for u in utterances if u[:9] in spkrid]
|
220 |
+
if sent_type is not None:
|
221 |
+
utterances = [u for u in utterances if u[11] in sent_type]
|
222 |
+
if sentid is not None:
|
223 |
+
utterances = [u for u in utterances if u[10:] in spkrid]
|
224 |
+
return utterances
|
225 |
+
|
226 |
+
def transcription_dict(self):
|
227 |
+
"""
|
228 |
+
:return: A dictionary giving the 'standard' transcription for
|
229 |
+
each word.
|
230 |
+
"""
|
231 |
+
_transcriptions = {}
|
232 |
+
with self.open("timitdic.txt") as fp:
|
233 |
+
for line in fp:
|
234 |
+
if not line.strip() or line[0] == ";":
|
235 |
+
continue
|
236 |
+
m = re.match(r"\s*(\S+)\s+/(.*)/\s*$", line)
|
237 |
+
if not m:
|
238 |
+
raise ValueError("Bad line: %r" % line)
|
239 |
+
_transcriptions[m.group(1)] = m.group(2).split()
|
240 |
+
return _transcriptions
|
241 |
+
|
242 |
+
def spkrid(self, utterance):
|
243 |
+
return utterance.split("/")[0]
|
244 |
+
|
245 |
+
def sentid(self, utterance):
|
246 |
+
return utterance.split("/")[1]
|
247 |
+
|
248 |
+
def utterance(self, spkrid, sentid):
|
249 |
+
return f"{spkrid}/{sentid}"
|
250 |
+
|
251 |
+
def spkrutteranceids(self, speaker):
|
252 |
+
"""
|
253 |
+
:return: A list of all utterances associated with a given
|
254 |
+
speaker.
|
255 |
+
"""
|
256 |
+
return [
|
257 |
+
utterance
|
258 |
+
for utterance in self._utterances
|
259 |
+
if utterance.startswith(speaker + "/")
|
260 |
+
]
|
261 |
+
|
262 |
+
def spkrinfo(self, speaker):
|
263 |
+
"""
|
264 |
+
:return: A dictionary mapping .. something.
|
265 |
+
"""
|
266 |
+
if speaker in self._utterances:
|
267 |
+
speaker = self.spkrid(speaker)
|
268 |
+
|
269 |
+
if self._speakerinfo is None:
|
270 |
+
self._speakerinfo = {}
|
271 |
+
with self.open("spkrinfo.txt") as fp:
|
272 |
+
for line in fp:
|
273 |
+
if not line.strip() or line[0] == ";":
|
274 |
+
continue
|
275 |
+
rec = line.strip().split(None, 9)
|
276 |
+
key = f"dr{rec[2]}-{rec[1].lower()}{rec[0].lower()}"
|
277 |
+
self._speakerinfo[key] = SpeakerInfo(*rec)
|
278 |
+
|
279 |
+
return self._speakerinfo[speaker]
|
280 |
+
|
281 |
+
def phones(self, utterances=None):
|
282 |
+
results = []
|
283 |
+
for fileid in self._utterance_fileids(utterances, ".phn"):
|
284 |
+
with self.open(fileid) as fp:
|
285 |
+
for line in fp:
|
286 |
+
if line.strip():
|
287 |
+
results.append(line.split()[-1])
|
288 |
+
return results
|
289 |
+
|
290 |
+
def phone_times(self, utterances=None):
|
291 |
+
"""
|
292 |
+
offset is represented as a number of 16kHz samples!
|
293 |
+
"""
|
294 |
+
results = []
|
295 |
+
for fileid in self._utterance_fileids(utterances, ".phn"):
|
296 |
+
with self.open(fileid) as fp:
|
297 |
+
for line in fp:
|
298 |
+
if line.strip():
|
299 |
+
results.append(
|
300 |
+
(
|
301 |
+
line.split()[2],
|
302 |
+
int(line.split()[0]),
|
303 |
+
int(line.split()[1]),
|
304 |
+
)
|
305 |
+
)
|
306 |
+
return results
|
307 |
+
|
308 |
+
def words(self, utterances=None):
|
309 |
+
results = []
|
310 |
+
for fileid in self._utterance_fileids(utterances, ".wrd"):
|
311 |
+
with self.open(fileid) as fp:
|
312 |
+
for line in fp:
|
313 |
+
if line.strip():
|
314 |
+
results.append(line.split()[-1])
|
315 |
+
return results
|
316 |
+
|
317 |
+
def word_times(self, utterances=None):
|
318 |
+
results = []
|
319 |
+
for fileid in self._utterance_fileids(utterances, ".wrd"):
|
320 |
+
with self.open(fileid) as fp:
|
321 |
+
for line in fp:
|
322 |
+
if line.strip():
|
323 |
+
results.append(
|
324 |
+
(
|
325 |
+
line.split()[2],
|
326 |
+
int(line.split()[0]),
|
327 |
+
int(line.split()[1]),
|
328 |
+
)
|
329 |
+
)
|
330 |
+
return results
|
331 |
+
|
332 |
+
def sents(self, utterances=None):
|
333 |
+
results = []
|
334 |
+
for fileid in self._utterance_fileids(utterances, ".wrd"):
|
335 |
+
with self.open(fileid) as fp:
|
336 |
+
results.append([line.split()[-1] for line in fp if line.strip()])
|
337 |
+
return results
|
338 |
+
|
339 |
+
def sent_times(self, utterances=None):
|
340 |
+
# TODO: Check this
|
341 |
+
return [
|
342 |
+
(
|
343 |
+
line.split(None, 2)[-1].strip(),
|
344 |
+
int(line.split()[0]),
|
345 |
+
int(line.split()[1]),
|
346 |
+
)
|
347 |
+
for fileid in self._utterance_fileids(utterances, ".txt")
|
348 |
+
for line in self.open(fileid)
|
349 |
+
if line.strip()
|
350 |
+
]
|
351 |
+
|
352 |
+
def phone_trees(self, utterances=None):
|
353 |
+
if utterances is None:
|
354 |
+
utterances = self._utterances
|
355 |
+
if isinstance(utterances, str):
|
356 |
+
utterances = [utterances]
|
357 |
+
|
358 |
+
trees = []
|
359 |
+
for utterance in utterances:
|
360 |
+
word_times = self.word_times(utterance)
|
361 |
+
phone_times = self.phone_times(utterance)
|
362 |
+
sent_times = self.sent_times(utterance)
|
363 |
+
|
364 |
+
while sent_times:
|
365 |
+
(sent, sent_start, sent_end) = sent_times.pop(0)
|
366 |
+
trees.append(Tree("S", []))
|
367 |
+
while (
|
368 |
+
word_times and phone_times and phone_times[0][2] <= word_times[0][1]
|
369 |
+
):
|
370 |
+
trees[-1].append(phone_times.pop(0)[0])
|
371 |
+
while word_times and word_times[0][2] <= sent_end:
|
372 |
+
(word, word_start, word_end) = word_times.pop(0)
|
373 |
+
trees[-1].append(Tree(word, []))
|
374 |
+
while phone_times and phone_times[0][2] <= word_end:
|
375 |
+
trees[-1][-1].append(phone_times.pop(0)[0])
|
376 |
+
while phone_times and phone_times[0][2] <= sent_end:
|
377 |
+
trees[-1].append(phone_times.pop(0)[0])
|
378 |
+
return trees
|
379 |
+
|
380 |
+
# [xx] NOTE: This is currently broken -- we're assuming that the
|
381 |
+
# fileids are WAV fileids (aka RIFF), but they're actually NIST SPHERE
|
382 |
+
# fileids.
|
383 |
+
def wav(self, utterance, start=0, end=None):
|
384 |
+
# nltk.chunk conflicts with the stdlib module 'chunk'
|
385 |
+
wave = import_from_stdlib("wave")
|
386 |
+
|
387 |
+
w = wave.open(self.open(utterance + ".wav"), "rb")
|
388 |
+
|
389 |
+
if end is None:
|
390 |
+
end = w.getnframes()
|
391 |
+
|
392 |
+
# Skip past frames before start, then read the frames we want
|
393 |
+
w.readframes(start)
|
394 |
+
frames = w.readframes(end - start)
|
395 |
+
|
396 |
+
# Open a new temporary file -- the wave module requires
|
397 |
+
# an actual file, and won't work w/ stringio. :(
|
398 |
+
tf = tempfile.TemporaryFile()
|
399 |
+
out = wave.open(tf, "w")
|
400 |
+
|
401 |
+
# Write the parameters & data to the new file.
|
402 |
+
out.setparams(w.getparams())
|
403 |
+
out.writeframes(frames)
|
404 |
+
out.close()
|
405 |
+
|
406 |
+
# Read the data back from the file, and return it. The
|
407 |
+
# file will automatically be deleted when we return.
|
408 |
+
tf.seek(0)
|
409 |
+
return tf.read()
|
410 |
+
|
411 |
+
def audiodata(self, utterance, start=0, end=None):
|
412 |
+
assert end is None or end > start
|
413 |
+
headersize = 44
|
414 |
+
with self.open(utterance + ".wav") as fp:
|
415 |
+
if end is None:
|
416 |
+
data = fp.read()
|
417 |
+
else:
|
418 |
+
data = fp.read(headersize + end * 2)
|
419 |
+
return data[headersize + start * 2 :]
|
420 |
+
|
421 |
+
def _utterance_fileids(self, utterances, extension):
|
422 |
+
if utterances is None:
|
423 |
+
utterances = self._utterances
|
424 |
+
if isinstance(utterances, str):
|
425 |
+
utterances = [utterances]
|
426 |
+
return [f"{u}{extension}" for u in utterances]
|
427 |
+
|
428 |
+
def play(self, utterance, start=0, end=None):
|
429 |
+
"""
|
430 |
+
Play the given audio sample.
|
431 |
+
|
432 |
+
:param utterance: The utterance id of the sample to play
|
433 |
+
"""
|
434 |
+
# Method 1: os audio dev.
|
435 |
+
try:
|
436 |
+
import ossaudiodev
|
437 |
+
|
438 |
+
try:
|
439 |
+
dsp = ossaudiodev.open("w")
|
440 |
+
dsp.setfmt(ossaudiodev.AFMT_S16_LE)
|
441 |
+
dsp.channels(1)
|
442 |
+
dsp.speed(16000)
|
443 |
+
dsp.write(self.audiodata(utterance, start, end))
|
444 |
+
dsp.close()
|
445 |
+
except OSError as e:
|
446 |
+
print(
|
447 |
+
(
|
448 |
+
"can't acquire the audio device; please "
|
449 |
+
"activate your audio device."
|
450 |
+
),
|
451 |
+
file=sys.stderr,
|
452 |
+
)
|
453 |
+
print("system error message:", str(e), file=sys.stderr)
|
454 |
+
return
|
455 |
+
except ImportError:
|
456 |
+
pass
|
457 |
+
|
458 |
+
# Method 2: pygame
|
459 |
+
try:
|
460 |
+
# FIXME: this won't work under python 3
|
461 |
+
import pygame.mixer
|
462 |
+
import StringIO
|
463 |
+
|
464 |
+
pygame.mixer.init(16000)
|
465 |
+
f = StringIO.StringIO(self.wav(utterance, start, end))
|
466 |
+
pygame.mixer.Sound(f).play()
|
467 |
+
while pygame.mixer.get_busy():
|
468 |
+
time.sleep(0.01)
|
469 |
+
return
|
470 |
+
except ImportError:
|
471 |
+
pass
|
472 |
+
|
473 |
+
# Method 3: complain. :)
|
474 |
+
print(
|
475 |
+
("you must install pygame or ossaudiodev " "for audio playback."),
|
476 |
+
file=sys.stderr,
|
477 |
+
)
|
478 |
+
|
479 |
+
|
480 |
+
class SpeakerInfo:
|
481 |
+
def __init__(
|
482 |
+
self, id, sex, dr, use, recdate, birthdate, ht, race, edu, comments=None
|
483 |
+
):
|
484 |
+
self.id = id
|
485 |
+
self.sex = sex
|
486 |
+
self.dr = dr
|
487 |
+
self.use = use
|
488 |
+
self.recdate = recdate
|
489 |
+
self.birthdate = birthdate
|
490 |
+
self.ht = ht
|
491 |
+
self.race = race
|
492 |
+
self.edu = edu
|
493 |
+
self.comments = comments
|
494 |
+
|
495 |
+
def __repr__(self):
|
496 |
+
attribs = "id sex dr use recdate birthdate ht race edu comments"
|
497 |
+
args = [f"{attr}={getattr(self, attr)!r}" for attr in attribs.split()]
|
498 |
+
return "SpeakerInfo(%s)" % (", ".join(args))
|
499 |
+
|
500 |
+
|
501 |
+
def read_timit_block(stream):
|
502 |
+
"""
|
503 |
+
Block reader for timit tagged sentences, which are preceded by a sentence
|
504 |
+
number that will be ignored.
|
505 |
+
"""
|
506 |
+
line = stream.readline()
|
507 |
+
if not line:
|
508 |
+
return []
|
509 |
+
n, sent = line.split(" ", 1)
|
510 |
+
return [sent]
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/util.py
ADDED
@@ -0,0 +1,867 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Corpus Reader Utilities
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bird <[email protected]>
|
5 |
+
# Edward Loper <[email protected]>
|
6 |
+
# URL: <https://www.nltk.org/>
|
7 |
+
# For license information, see LICENSE.TXT
|
8 |
+
|
9 |
+
import bisect
|
10 |
+
import os
|
11 |
+
import pickle
|
12 |
+
import re
|
13 |
+
import tempfile
|
14 |
+
from functools import reduce
|
15 |
+
from xml.etree import ElementTree
|
16 |
+
|
17 |
+
from nltk.data import (
|
18 |
+
FileSystemPathPointer,
|
19 |
+
PathPointer,
|
20 |
+
SeekableUnicodeStreamReader,
|
21 |
+
ZipFilePathPointer,
|
22 |
+
)
|
23 |
+
from nltk.internals import slice_bounds
|
24 |
+
from nltk.tokenize import wordpunct_tokenize
|
25 |
+
from nltk.util import AbstractLazySequence, LazyConcatenation, LazySubsequence
|
26 |
+
|
27 |
+
######################################################################
|
28 |
+
# { Corpus View
|
29 |
+
######################################################################
|
30 |
+
|
31 |
+
|
32 |
+
class StreamBackedCorpusView(AbstractLazySequence):
|
33 |
+
"""
|
34 |
+
A 'view' of a corpus file, which acts like a sequence of tokens:
|
35 |
+
it can be accessed by index, iterated over, etc. However, the
|
36 |
+
tokens are only constructed as-needed -- the entire corpus is
|
37 |
+
never stored in memory at once.
|
38 |
+
|
39 |
+
The constructor to ``StreamBackedCorpusView`` takes two arguments:
|
40 |
+
a corpus fileid (specified as a string or as a ``PathPointer``);
|
41 |
+
and a block reader. A "block reader" is a function that reads
|
42 |
+
zero or more tokens from a stream, and returns them as a list. A
|
43 |
+
very simple example of a block reader is:
|
44 |
+
|
45 |
+
>>> def simple_block_reader(stream):
|
46 |
+
... return stream.readline().split()
|
47 |
+
|
48 |
+
This simple block reader reads a single line at a time, and
|
49 |
+
returns a single token (consisting of a string) for each
|
50 |
+
whitespace-separated substring on the line.
|
51 |
+
|
52 |
+
When deciding how to define the block reader for a given
|
53 |
+
corpus, careful consideration should be given to the size of
|
54 |
+
blocks handled by the block reader. Smaller block sizes will
|
55 |
+
increase the memory requirements of the corpus view's internal
|
56 |
+
data structures (by 2 integers per block). On the other hand,
|
57 |
+
larger block sizes may decrease performance for random access to
|
58 |
+
the corpus. (But note that larger block sizes will *not*
|
59 |
+
decrease performance for iteration.)
|
60 |
+
|
61 |
+
Internally, ``CorpusView`` maintains a partial mapping from token
|
62 |
+
index to file position, with one entry per block. When a token
|
63 |
+
with a given index *i* is requested, the ``CorpusView`` constructs
|
64 |
+
it as follows:
|
65 |
+
|
66 |
+
1. First, it searches the toknum/filepos mapping for the token
|
67 |
+
index closest to (but less than or equal to) *i*.
|
68 |
+
|
69 |
+
2. Then, starting at the file position corresponding to that
|
70 |
+
index, it reads one block at a time using the block reader
|
71 |
+
until it reaches the requested token.
|
72 |
+
|
73 |
+
The toknum/filepos mapping is created lazily: it is initially
|
74 |
+
empty, but every time a new block is read, the block's
|
75 |
+
initial token is added to the mapping. (Thus, the toknum/filepos
|
76 |
+
map has one entry per block.)
|
77 |
+
|
78 |
+
In order to increase efficiency for random access patterns that
|
79 |
+
have high degrees of locality, the corpus view may cache one or
|
80 |
+
more blocks.
|
81 |
+
|
82 |
+
:note: Each ``CorpusView`` object internally maintains an open file
|
83 |
+
object for its underlying corpus file. This file should be
|
84 |
+
automatically closed when the ``CorpusView`` is garbage collected,
|
85 |
+
but if you wish to close it manually, use the ``close()``
|
86 |
+
method. If you access a ``CorpusView``'s items after it has been
|
87 |
+
closed, the file object will be automatically re-opened.
|
88 |
+
|
89 |
+
:warning: If the contents of the file are modified during the
|
90 |
+
lifetime of the ``CorpusView``, then the ``CorpusView``'s behavior
|
91 |
+
is undefined.
|
92 |
+
|
93 |
+
:warning: If a unicode encoding is specified when constructing a
|
94 |
+
``CorpusView``, then the block reader may only call
|
95 |
+
``stream.seek()`` with offsets that have been returned by
|
96 |
+
``stream.tell()``; in particular, calling ``stream.seek()`` with
|
97 |
+
relative offsets, or with offsets based on string lengths, may
|
98 |
+
lead to incorrect behavior.
|
99 |
+
|
100 |
+
:ivar _block_reader: The function used to read
|
101 |
+
a single block from the underlying file stream.
|
102 |
+
:ivar _toknum: A list containing the token index of each block
|
103 |
+
that has been processed. In particular, ``_toknum[i]`` is the
|
104 |
+
token index of the first token in block ``i``. Together
|
105 |
+
with ``_filepos``, this forms a partial mapping between token
|
106 |
+
indices and file positions.
|
107 |
+
:ivar _filepos: A list containing the file position of each block
|
108 |
+
that has been processed. In particular, ``_toknum[i]`` is the
|
109 |
+
file position of the first character in block ``i``. Together
|
110 |
+
with ``_toknum``, this forms a partial mapping between token
|
111 |
+
indices and file positions.
|
112 |
+
:ivar _stream: The stream used to access the underlying corpus file.
|
113 |
+
:ivar _len: The total number of tokens in the corpus, if known;
|
114 |
+
or None, if the number of tokens is not yet known.
|
115 |
+
:ivar _eofpos: The character position of the last character in the
|
116 |
+
file. This is calculated when the corpus view is initialized,
|
117 |
+
and is used to decide when the end of file has been reached.
|
118 |
+
:ivar _cache: A cache of the most recently read block. It
|
119 |
+
is encoded as a tuple (start_toknum, end_toknum, tokens), where
|
120 |
+
start_toknum is the token index of the first token in the block;
|
121 |
+
end_toknum is the token index of the first token not in the
|
122 |
+
block; and tokens is a list of the tokens in the block.
|
123 |
+
"""
|
124 |
+
|
125 |
+
def __init__(self, fileid, block_reader=None, startpos=0, encoding="utf8"):
|
126 |
+
"""
|
127 |
+
Create a new corpus view, based on the file ``fileid``, and
|
128 |
+
read with ``block_reader``. See the class documentation
|
129 |
+
for more information.
|
130 |
+
|
131 |
+
:param fileid: The path to the file that is read by this
|
132 |
+
corpus view. ``fileid`` can either be a string or a
|
133 |
+
``PathPointer``.
|
134 |
+
|
135 |
+
:param startpos: The file position at which the view will
|
136 |
+
start reading. This can be used to skip over preface
|
137 |
+
sections.
|
138 |
+
|
139 |
+
:param encoding: The unicode encoding that should be used to
|
140 |
+
read the file's contents. If no encoding is specified,
|
141 |
+
then the file's contents will be read as a non-unicode
|
142 |
+
string (i.e., a str).
|
143 |
+
"""
|
144 |
+
if block_reader:
|
145 |
+
self.read_block = block_reader
|
146 |
+
# Initialize our toknum/filepos mapping.
|
147 |
+
self._toknum = [0]
|
148 |
+
self._filepos = [startpos]
|
149 |
+
self._encoding = encoding
|
150 |
+
# We don't know our length (number of tokens) yet.
|
151 |
+
self._len = None
|
152 |
+
|
153 |
+
self._fileid = fileid
|
154 |
+
self._stream = None
|
155 |
+
|
156 |
+
self._current_toknum = None
|
157 |
+
"""This variable is set to the index of the next token that
|
158 |
+
will be read, immediately before ``self.read_block()`` is
|
159 |
+
called. This is provided for the benefit of the block
|
160 |
+
reader, which under rare circumstances may need to know
|
161 |
+
the current token number."""
|
162 |
+
|
163 |
+
self._current_blocknum = None
|
164 |
+
"""This variable is set to the index of the next block that
|
165 |
+
will be read, immediately before ``self.read_block()`` is
|
166 |
+
called. This is provided for the benefit of the block
|
167 |
+
reader, which under rare circumstances may need to know
|
168 |
+
the current block number."""
|
169 |
+
|
170 |
+
# Find the length of the file.
|
171 |
+
try:
|
172 |
+
if isinstance(self._fileid, PathPointer):
|
173 |
+
self._eofpos = self._fileid.file_size()
|
174 |
+
else:
|
175 |
+
self._eofpos = os.stat(self._fileid).st_size
|
176 |
+
except Exception as exc:
|
177 |
+
raise ValueError(f"Unable to open or access {fileid!r} -- {exc}") from exc
|
178 |
+
|
179 |
+
# Maintain a cache of the most recently read block, to
|
180 |
+
# increase efficiency of random access.
|
181 |
+
self._cache = (-1, -1, None)
|
182 |
+
|
183 |
+
fileid = property(
|
184 |
+
lambda self: self._fileid,
|
185 |
+
doc="""
|
186 |
+
The fileid of the file that is accessed by this view.
|
187 |
+
|
188 |
+
:type: str or PathPointer""",
|
189 |
+
)
|
190 |
+
|
191 |
+
def read_block(self, stream):
|
192 |
+
"""
|
193 |
+
Read a block from the input stream.
|
194 |
+
|
195 |
+
:return: a block of tokens from the input stream
|
196 |
+
:rtype: list(any)
|
197 |
+
:param stream: an input stream
|
198 |
+
:type stream: stream
|
199 |
+
"""
|
200 |
+
raise NotImplementedError("Abstract Method")
|
201 |
+
|
202 |
+
def _open(self):
|
203 |
+
"""
|
204 |
+
Open the file stream associated with this corpus view. This
|
205 |
+
will be called performed if any value is read from the view
|
206 |
+
while its file stream is closed.
|
207 |
+
"""
|
208 |
+
if isinstance(self._fileid, PathPointer):
|
209 |
+
self._stream = self._fileid.open(self._encoding)
|
210 |
+
elif self._encoding:
|
211 |
+
self._stream = SeekableUnicodeStreamReader(
|
212 |
+
open(self._fileid, "rb"), self._encoding
|
213 |
+
)
|
214 |
+
else:
|
215 |
+
self._stream = open(self._fileid, "rb")
|
216 |
+
|
217 |
+
def close(self):
|
218 |
+
"""
|
219 |
+
Close the file stream associated with this corpus view. This
|
220 |
+
can be useful if you are worried about running out of file
|
221 |
+
handles (although the stream should automatically be closed
|
222 |
+
upon garbage collection of the corpus view). If the corpus
|
223 |
+
view is accessed after it is closed, it will be automatically
|
224 |
+
re-opened.
|
225 |
+
"""
|
226 |
+
if self._stream is not None:
|
227 |
+
self._stream.close()
|
228 |
+
self._stream = None
|
229 |
+
|
230 |
+
def __enter__(self):
|
231 |
+
return self
|
232 |
+
|
233 |
+
def __exit__(self, type, value, traceback):
|
234 |
+
self.close()
|
235 |
+
|
236 |
+
def __len__(self):
|
237 |
+
if self._len is None:
|
238 |
+
# iterate_from() sets self._len when it reaches the end
|
239 |
+
# of the file:
|
240 |
+
for tok in self.iterate_from(self._toknum[-1]):
|
241 |
+
pass
|
242 |
+
return self._len
|
243 |
+
|
244 |
+
def __getitem__(self, i):
|
245 |
+
if isinstance(i, slice):
|
246 |
+
start, stop = slice_bounds(self, i)
|
247 |
+
# Check if it's in the cache.
|
248 |
+
offset = self._cache[0]
|
249 |
+
if offset <= start and stop <= self._cache[1]:
|
250 |
+
return self._cache[2][start - offset : stop - offset]
|
251 |
+
# Construct & return the result.
|
252 |
+
return LazySubsequence(self, start, stop)
|
253 |
+
else:
|
254 |
+
# Handle negative indices
|
255 |
+
if i < 0:
|
256 |
+
i += len(self)
|
257 |
+
if i < 0:
|
258 |
+
raise IndexError("index out of range")
|
259 |
+
# Check if it's in the cache.
|
260 |
+
offset = self._cache[0]
|
261 |
+
if offset <= i < self._cache[1]:
|
262 |
+
return self._cache[2][i - offset]
|
263 |
+
# Use iterate_from to extract it.
|
264 |
+
try:
|
265 |
+
return next(self.iterate_from(i))
|
266 |
+
except StopIteration as e:
|
267 |
+
raise IndexError("index out of range") from e
|
268 |
+
|
269 |
+
# If we wanted to be thread-safe, then this method would need to
|
270 |
+
# do some locking.
|
271 |
+
def iterate_from(self, start_tok):
|
272 |
+
# Start by feeding from the cache, if possible.
|
273 |
+
if self._cache[0] <= start_tok < self._cache[1]:
|
274 |
+
for tok in self._cache[2][start_tok - self._cache[0] :]:
|
275 |
+
yield tok
|
276 |
+
start_tok += 1
|
277 |
+
|
278 |
+
# Decide where in the file we should start. If `start` is in
|
279 |
+
# our mapping, then we can jump straight to the correct block;
|
280 |
+
# otherwise, start at the last block we've processed.
|
281 |
+
if start_tok < self._toknum[-1]:
|
282 |
+
block_index = bisect.bisect_right(self._toknum, start_tok) - 1
|
283 |
+
toknum = self._toknum[block_index]
|
284 |
+
filepos = self._filepos[block_index]
|
285 |
+
else:
|
286 |
+
block_index = len(self._toknum) - 1
|
287 |
+
toknum = self._toknum[-1]
|
288 |
+
filepos = self._filepos[-1]
|
289 |
+
|
290 |
+
# Open the stream, if it's not open already.
|
291 |
+
if self._stream is None:
|
292 |
+
self._open()
|
293 |
+
|
294 |
+
# If the file is empty, the while loop will never run.
|
295 |
+
# This *seems* to be all the state we need to set:
|
296 |
+
if self._eofpos == 0:
|
297 |
+
self._len = 0
|
298 |
+
|
299 |
+
# Each iteration through this loop, we read a single block
|
300 |
+
# from the stream.
|
301 |
+
while filepos < self._eofpos:
|
302 |
+
# Read the next block.
|
303 |
+
self._stream.seek(filepos)
|
304 |
+
self._current_toknum = toknum
|
305 |
+
self._current_blocknum = block_index
|
306 |
+
tokens = self.read_block(self._stream)
|
307 |
+
assert isinstance(tokens, (tuple, list, AbstractLazySequence)), (
|
308 |
+
"block reader %s() should return list or tuple."
|
309 |
+
% self.read_block.__name__
|
310 |
+
)
|
311 |
+
num_toks = len(tokens)
|
312 |
+
new_filepos = self._stream.tell()
|
313 |
+
assert (
|
314 |
+
new_filepos > filepos
|
315 |
+
), "block reader %s() should consume at least 1 byte (filepos=%d)" % (
|
316 |
+
self.read_block.__name__,
|
317 |
+
filepos,
|
318 |
+
)
|
319 |
+
|
320 |
+
# Update our cache.
|
321 |
+
self._cache = (toknum, toknum + num_toks, list(tokens))
|
322 |
+
|
323 |
+
# Update our mapping.
|
324 |
+
assert toknum <= self._toknum[-1]
|
325 |
+
if num_toks > 0:
|
326 |
+
block_index += 1
|
327 |
+
if toknum == self._toknum[-1]:
|
328 |
+
assert new_filepos > self._filepos[-1] # monotonic!
|
329 |
+
self._filepos.append(new_filepos)
|
330 |
+
self._toknum.append(toknum + num_toks)
|
331 |
+
else:
|
332 |
+
# Check for consistency:
|
333 |
+
assert (
|
334 |
+
new_filepos == self._filepos[block_index]
|
335 |
+
), "inconsistent block reader (num chars read)"
|
336 |
+
assert (
|
337 |
+
toknum + num_toks == self._toknum[block_index]
|
338 |
+
), "inconsistent block reader (num tokens returned)"
|
339 |
+
|
340 |
+
# If we reached the end of the file, then update self._len
|
341 |
+
if new_filepos == self._eofpos:
|
342 |
+
self._len = toknum + num_toks
|
343 |
+
# Generate the tokens in this block (but skip any tokens
|
344 |
+
# before start_tok). Note that between yields, our state
|
345 |
+
# may be modified.
|
346 |
+
for tok in tokens[max(0, start_tok - toknum) :]:
|
347 |
+
yield tok
|
348 |
+
# If we're at the end of the file, then we're done.
|
349 |
+
assert new_filepos <= self._eofpos
|
350 |
+
if new_filepos == self._eofpos:
|
351 |
+
break
|
352 |
+
# Update our indices
|
353 |
+
toknum += num_toks
|
354 |
+
filepos = new_filepos
|
355 |
+
|
356 |
+
# If we reach this point, then we should know our length.
|
357 |
+
assert self._len is not None
|
358 |
+
# Enforce closing of stream once we reached end of file
|
359 |
+
# We should have reached EOF once we're out of the while loop.
|
360 |
+
self.close()
|
361 |
+
|
362 |
+
# Use concat for these, so we can use a ConcatenatedCorpusView
|
363 |
+
# when possible.
|
364 |
+
def __add__(self, other):
|
365 |
+
return concat([self, other])
|
366 |
+
|
367 |
+
def __radd__(self, other):
|
368 |
+
return concat([other, self])
|
369 |
+
|
370 |
+
def __mul__(self, count):
|
371 |
+
return concat([self] * count)
|
372 |
+
|
373 |
+
def __rmul__(self, count):
|
374 |
+
return concat([self] * count)
|
375 |
+
|
376 |
+
|
377 |
+
class ConcatenatedCorpusView(AbstractLazySequence):
|
378 |
+
"""
|
379 |
+
A 'view' of a corpus file that joins together one or more
|
380 |
+
``StreamBackedCorpusViews<StreamBackedCorpusView>``. At most
|
381 |
+
one file handle is left open at any time.
|
382 |
+
"""
|
383 |
+
|
384 |
+
def __init__(self, corpus_views):
|
385 |
+
self._pieces = corpus_views
|
386 |
+
"""A list of the corpus subviews that make up this
|
387 |
+
concatenation."""
|
388 |
+
|
389 |
+
self._offsets = [0]
|
390 |
+
"""A list of offsets, indicating the index at which each
|
391 |
+
subview begins. In particular::
|
392 |
+
offsets[i] = sum([len(p) for p in pieces[:i]])"""
|
393 |
+
|
394 |
+
self._open_piece = None
|
395 |
+
"""The most recently accessed corpus subview (or None).
|
396 |
+
Before a new subview is accessed, this subview will be closed."""
|
397 |
+
|
398 |
+
def __len__(self):
|
399 |
+
if len(self._offsets) <= len(self._pieces):
|
400 |
+
# Iterate to the end of the corpus.
|
401 |
+
for tok in self.iterate_from(self._offsets[-1]):
|
402 |
+
pass
|
403 |
+
|
404 |
+
return self._offsets[-1]
|
405 |
+
|
406 |
+
def close(self):
|
407 |
+
for piece in self._pieces:
|
408 |
+
piece.close()
|
409 |
+
|
410 |
+
def iterate_from(self, start_tok):
|
411 |
+
piecenum = bisect.bisect_right(self._offsets, start_tok) - 1
|
412 |
+
|
413 |
+
while piecenum < len(self._pieces):
|
414 |
+
offset = self._offsets[piecenum]
|
415 |
+
piece = self._pieces[piecenum]
|
416 |
+
|
417 |
+
# If we've got another piece open, close it first.
|
418 |
+
if self._open_piece is not piece:
|
419 |
+
if self._open_piece is not None:
|
420 |
+
self._open_piece.close()
|
421 |
+
self._open_piece = piece
|
422 |
+
|
423 |
+
# Get everything we can from this piece.
|
424 |
+
yield from piece.iterate_from(max(0, start_tok - offset))
|
425 |
+
|
426 |
+
# Update the offset table.
|
427 |
+
if piecenum + 1 == len(self._offsets):
|
428 |
+
self._offsets.append(self._offsets[-1] + len(piece))
|
429 |
+
|
430 |
+
# Move on to the next piece.
|
431 |
+
piecenum += 1
|
432 |
+
|
433 |
+
|
434 |
+
def concat(docs):
|
435 |
+
"""
|
436 |
+
Concatenate together the contents of multiple documents from a
|
437 |
+
single corpus, using an appropriate concatenation function. This
|
438 |
+
utility function is used by corpus readers when the user requests
|
439 |
+
more than one document at a time.
|
440 |
+
"""
|
441 |
+
if len(docs) == 1:
|
442 |
+
return docs[0]
|
443 |
+
if len(docs) == 0:
|
444 |
+
raise ValueError("concat() expects at least one object!")
|
445 |
+
|
446 |
+
types = {d.__class__ for d in docs}
|
447 |
+
|
448 |
+
# If they're all strings, use string concatenation.
|
449 |
+
if all(isinstance(doc, str) for doc in docs):
|
450 |
+
return "".join(docs)
|
451 |
+
|
452 |
+
# If they're all corpus views, then use ConcatenatedCorpusView.
|
453 |
+
for typ in types:
|
454 |
+
if not issubclass(typ, (StreamBackedCorpusView, ConcatenatedCorpusView)):
|
455 |
+
break
|
456 |
+
else:
|
457 |
+
return ConcatenatedCorpusView(docs)
|
458 |
+
|
459 |
+
# If they're all lazy sequences, use a lazy concatenation
|
460 |
+
for typ in types:
|
461 |
+
if not issubclass(typ, AbstractLazySequence):
|
462 |
+
break
|
463 |
+
else:
|
464 |
+
return LazyConcatenation(docs)
|
465 |
+
|
466 |
+
# Otherwise, see what we can do:
|
467 |
+
if len(types) == 1:
|
468 |
+
typ = list(types)[0]
|
469 |
+
|
470 |
+
if issubclass(typ, list):
|
471 |
+
return reduce((lambda a, b: a + b), docs, [])
|
472 |
+
|
473 |
+
if issubclass(typ, tuple):
|
474 |
+
return reduce((lambda a, b: a + b), docs, ())
|
475 |
+
|
476 |
+
if ElementTree.iselement(typ):
|
477 |
+
xmltree = ElementTree.Element("documents")
|
478 |
+
for doc in docs:
|
479 |
+
xmltree.append(doc)
|
480 |
+
return xmltree
|
481 |
+
|
482 |
+
# No method found!
|
483 |
+
raise ValueError("Don't know how to concatenate types: %r" % types)
|
484 |
+
|
485 |
+
|
486 |
+
######################################################################
|
487 |
+
# { Corpus View for Pickled Sequences
|
488 |
+
######################################################################
|
489 |
+
|
490 |
+
|
491 |
+
class PickleCorpusView(StreamBackedCorpusView):
|
492 |
+
"""
|
493 |
+
A stream backed corpus view for corpus files that consist of
|
494 |
+
sequences of serialized Python objects (serialized using
|
495 |
+
``pickle.dump``). One use case for this class is to store the
|
496 |
+
result of running feature detection on a corpus to disk. This can
|
497 |
+
be useful when performing feature detection is expensive (so we
|
498 |
+
don't want to repeat it); but the corpus is too large to store in
|
499 |
+
memory. The following example illustrates this technique:
|
500 |
+
|
501 |
+
>>> from nltk.corpus.reader.util import PickleCorpusView
|
502 |
+
>>> from nltk.util import LazyMap
|
503 |
+
>>> feature_corpus = LazyMap(detect_features, corpus) # doctest: +SKIP
|
504 |
+
>>> PickleCorpusView.write(feature_corpus, some_fileid) # doctest: +SKIP
|
505 |
+
>>> pcv = PickleCorpusView(some_fileid) # doctest: +SKIP
|
506 |
+
"""
|
507 |
+
|
508 |
+
BLOCK_SIZE = 100
|
509 |
+
PROTOCOL = -1
|
510 |
+
|
511 |
+
def __init__(self, fileid, delete_on_gc=False):
|
512 |
+
"""
|
513 |
+
Create a new corpus view that reads the pickle corpus
|
514 |
+
``fileid``.
|
515 |
+
|
516 |
+
:param delete_on_gc: If true, then ``fileid`` will be deleted
|
517 |
+
whenever this object gets garbage-collected.
|
518 |
+
"""
|
519 |
+
self._delete_on_gc = delete_on_gc
|
520 |
+
StreamBackedCorpusView.__init__(self, fileid)
|
521 |
+
|
522 |
+
def read_block(self, stream):
|
523 |
+
result = []
|
524 |
+
for i in range(self.BLOCK_SIZE):
|
525 |
+
try:
|
526 |
+
result.append(pickle.load(stream))
|
527 |
+
except EOFError:
|
528 |
+
break
|
529 |
+
return result
|
530 |
+
|
531 |
+
def __del__(self):
|
532 |
+
"""
|
533 |
+
If ``delete_on_gc`` was set to true when this
|
534 |
+
``PickleCorpusView`` was created, then delete the corpus view's
|
535 |
+
fileid. (This method is called whenever a
|
536 |
+
``PickledCorpusView`` is garbage-collected.
|
537 |
+
"""
|
538 |
+
if getattr(self, "_delete_on_gc"):
|
539 |
+
if os.path.exists(self._fileid):
|
540 |
+
try:
|
541 |
+
os.remove(self._fileid)
|
542 |
+
except OSError:
|
543 |
+
pass
|
544 |
+
self.__dict__.clear() # make the garbage collector's job easier
|
545 |
+
|
546 |
+
@classmethod
|
547 |
+
def write(cls, sequence, output_file):
|
548 |
+
if isinstance(output_file, str):
|
549 |
+
output_file = open(output_file, "wb")
|
550 |
+
for item in sequence:
|
551 |
+
pickle.dump(item, output_file, cls.PROTOCOL)
|
552 |
+
|
553 |
+
@classmethod
|
554 |
+
def cache_to_tempfile(cls, sequence, delete_on_gc=True):
|
555 |
+
"""
|
556 |
+
Write the given sequence to a temporary file as a pickle
|
557 |
+
corpus; and then return a ``PickleCorpusView`` view for that
|
558 |
+
temporary corpus file.
|
559 |
+
|
560 |
+
:param delete_on_gc: If true, then the temporary file will be
|
561 |
+
deleted whenever this object gets garbage-collected.
|
562 |
+
"""
|
563 |
+
try:
|
564 |
+
fd, output_file_name = tempfile.mkstemp(".pcv", "nltk-")
|
565 |
+
output_file = os.fdopen(fd, "wb")
|
566 |
+
cls.write(sequence, output_file)
|
567 |
+
output_file.close()
|
568 |
+
return PickleCorpusView(output_file_name, delete_on_gc)
|
569 |
+
except OSError as e:
|
570 |
+
raise ValueError("Error while creating temp file: %s" % e) from e
|
571 |
+
|
572 |
+
|
573 |
+
######################################################################
|
574 |
+
# { Block Readers
|
575 |
+
######################################################################
|
576 |
+
|
577 |
+
|
578 |
+
def read_whitespace_block(stream):
|
579 |
+
toks = []
|
580 |
+
for i in range(20): # Read 20 lines at a time.
|
581 |
+
toks.extend(stream.readline().split())
|
582 |
+
return toks
|
583 |
+
|
584 |
+
|
585 |
+
def read_wordpunct_block(stream):
|
586 |
+
toks = []
|
587 |
+
for i in range(20): # Read 20 lines at a time.
|
588 |
+
toks.extend(wordpunct_tokenize(stream.readline()))
|
589 |
+
return toks
|
590 |
+
|
591 |
+
|
592 |
+
def read_line_block(stream):
|
593 |
+
toks = []
|
594 |
+
for i in range(20):
|
595 |
+
line = stream.readline()
|
596 |
+
if not line:
|
597 |
+
return toks
|
598 |
+
toks.append(line.rstrip("\n"))
|
599 |
+
return toks
|
600 |
+
|
601 |
+
|
602 |
+
def read_blankline_block(stream):
|
603 |
+
s = ""
|
604 |
+
while True:
|
605 |
+
line = stream.readline()
|
606 |
+
# End of file:
|
607 |
+
if not line:
|
608 |
+
if s:
|
609 |
+
return [s]
|
610 |
+
else:
|
611 |
+
return []
|
612 |
+
# Blank line:
|
613 |
+
elif line and not line.strip():
|
614 |
+
if s:
|
615 |
+
return [s]
|
616 |
+
# Other line:
|
617 |
+
else:
|
618 |
+
s += line
|
619 |
+
|
620 |
+
|
621 |
+
def read_alignedsent_block(stream):
|
622 |
+
s = ""
|
623 |
+
while True:
|
624 |
+
line = stream.readline()
|
625 |
+
if line[0] == "=" or line[0] == "\n" or line[:2] == "\r\n":
|
626 |
+
continue
|
627 |
+
# End of file:
|
628 |
+
if not line:
|
629 |
+
if s:
|
630 |
+
return [s]
|
631 |
+
else:
|
632 |
+
return []
|
633 |
+
# Other line:
|
634 |
+
else:
|
635 |
+
s += line
|
636 |
+
if re.match(r"^\d+-\d+", line) is not None:
|
637 |
+
return [s]
|
638 |
+
|
639 |
+
|
640 |
+
def read_regexp_block(stream, start_re, end_re=None):
|
641 |
+
"""
|
642 |
+
Read a sequence of tokens from a stream, where tokens begin with
|
643 |
+
lines that match ``start_re``. If ``end_re`` is specified, then
|
644 |
+
tokens end with lines that match ``end_re``; otherwise, tokens end
|
645 |
+
whenever the next line matching ``start_re`` or EOF is found.
|
646 |
+
"""
|
647 |
+
# Scan until we find a line matching the start regexp.
|
648 |
+
while True:
|
649 |
+
line = stream.readline()
|
650 |
+
if not line:
|
651 |
+
return [] # end of file.
|
652 |
+
if re.match(start_re, line):
|
653 |
+
break
|
654 |
+
|
655 |
+
# Scan until we find another line matching the regexp, or EOF.
|
656 |
+
lines = [line]
|
657 |
+
while True:
|
658 |
+
oldpos = stream.tell()
|
659 |
+
line = stream.readline()
|
660 |
+
# End of file:
|
661 |
+
if not line:
|
662 |
+
return ["".join(lines)]
|
663 |
+
# End of token:
|
664 |
+
if end_re is not None and re.match(end_re, line):
|
665 |
+
return ["".join(lines)]
|
666 |
+
# Start of new token: backup to just before it starts, and
|
667 |
+
# return the token we've already collected.
|
668 |
+
if end_re is None and re.match(start_re, line):
|
669 |
+
stream.seek(oldpos)
|
670 |
+
return ["".join(lines)]
|
671 |
+
# Anything else is part of the token.
|
672 |
+
lines.append(line)
|
673 |
+
|
674 |
+
|
675 |
+
def read_sexpr_block(stream, block_size=16384, comment_char=None):
|
676 |
+
"""
|
677 |
+
Read a sequence of s-expressions from the stream, and leave the
|
678 |
+
stream's file position at the end the last complete s-expression
|
679 |
+
read. This function will always return at least one s-expression,
|
680 |
+
unless there are no more s-expressions in the file.
|
681 |
+
|
682 |
+
If the file ends in in the middle of an s-expression, then that
|
683 |
+
incomplete s-expression is returned when the end of the file is
|
684 |
+
reached.
|
685 |
+
|
686 |
+
:param block_size: The default block size for reading. If an
|
687 |
+
s-expression is longer than one block, then more than one
|
688 |
+
block will be read.
|
689 |
+
:param comment_char: A character that marks comments. Any lines
|
690 |
+
that begin with this character will be stripped out.
|
691 |
+
(If spaces or tabs precede the comment character, then the
|
692 |
+
line will not be stripped.)
|
693 |
+
"""
|
694 |
+
start = stream.tell()
|
695 |
+
block = stream.read(block_size)
|
696 |
+
encoding = getattr(stream, "encoding", None)
|
697 |
+
assert encoding is not None or isinstance(block, str)
|
698 |
+
if encoding not in (None, "utf-8"):
|
699 |
+
import warnings
|
700 |
+
|
701 |
+
warnings.warn(
|
702 |
+
"Parsing may fail, depending on the properties "
|
703 |
+
"of the %s encoding!" % encoding
|
704 |
+
)
|
705 |
+
# (e.g., the utf-16 encoding does not work because it insists
|
706 |
+
# on adding BOMs to the beginning of encoded strings.)
|
707 |
+
|
708 |
+
if comment_char:
|
709 |
+
COMMENT = re.compile("(?m)^%s.*$" % re.escape(comment_char))
|
710 |
+
while True:
|
711 |
+
try:
|
712 |
+
# If we're stripping comments, then make sure our block ends
|
713 |
+
# on a line boundary; and then replace any comments with
|
714 |
+
# space characters. (We can't just strip them out -- that
|
715 |
+
# would make our offset wrong.)
|
716 |
+
if comment_char:
|
717 |
+
block += stream.readline()
|
718 |
+
block = re.sub(COMMENT, _sub_space, block)
|
719 |
+
# Read the block.
|
720 |
+
tokens, offset = _parse_sexpr_block(block)
|
721 |
+
# Skip whitespace
|
722 |
+
offset = re.compile(r"\s*").search(block, offset).end()
|
723 |
+
|
724 |
+
# Move to the end position.
|
725 |
+
if encoding is None:
|
726 |
+
stream.seek(start + offset)
|
727 |
+
else:
|
728 |
+
stream.seek(start + len(block[:offset].encode(encoding)))
|
729 |
+
|
730 |
+
# Return the list of tokens we processed
|
731 |
+
return tokens
|
732 |
+
except ValueError as e:
|
733 |
+
if e.args[0] == "Block too small":
|
734 |
+
next_block = stream.read(block_size)
|
735 |
+
if next_block:
|
736 |
+
block += next_block
|
737 |
+
continue
|
738 |
+
else:
|
739 |
+
# The file ended mid-sexpr -- return what we got.
|
740 |
+
return [block.strip()]
|
741 |
+
else:
|
742 |
+
raise
|
743 |
+
|
744 |
+
|
745 |
+
def _sub_space(m):
|
746 |
+
"""Helper function: given a regexp match, return a string of
|
747 |
+
spaces that's the same length as the matched string."""
|
748 |
+
return " " * (m.end() - m.start())
|
749 |
+
|
750 |
+
|
751 |
+
def _parse_sexpr_block(block):
|
752 |
+
tokens = []
|
753 |
+
start = end = 0
|
754 |
+
|
755 |
+
while end < len(block):
|
756 |
+
m = re.compile(r"\S").search(block, end)
|
757 |
+
if not m:
|
758 |
+
return tokens, end
|
759 |
+
|
760 |
+
start = m.start()
|
761 |
+
|
762 |
+
# Case 1: sexpr is not parenthesized.
|
763 |
+
if m.group() != "(":
|
764 |
+
m2 = re.compile(r"[\s(]").search(block, start)
|
765 |
+
if m2:
|
766 |
+
end = m2.start()
|
767 |
+
else:
|
768 |
+
if tokens:
|
769 |
+
return tokens, end
|
770 |
+
raise ValueError("Block too small")
|
771 |
+
|
772 |
+
# Case 2: parenthesized sexpr.
|
773 |
+
else:
|
774 |
+
nesting = 0
|
775 |
+
for m in re.compile(r"[()]").finditer(block, start):
|
776 |
+
if m.group() == "(":
|
777 |
+
nesting += 1
|
778 |
+
else:
|
779 |
+
nesting -= 1
|
780 |
+
if nesting == 0:
|
781 |
+
end = m.end()
|
782 |
+
break
|
783 |
+
else:
|
784 |
+
if tokens:
|
785 |
+
return tokens, end
|
786 |
+
raise ValueError("Block too small")
|
787 |
+
|
788 |
+
tokens.append(block[start:end])
|
789 |
+
|
790 |
+
return tokens, end
|
791 |
+
|
792 |
+
|
793 |
+
######################################################################
|
794 |
+
# { Finding Corpus Items
|
795 |
+
######################################################################
|
796 |
+
|
797 |
+
|
798 |
+
def find_corpus_fileids(root, regexp):
|
799 |
+
if not isinstance(root, PathPointer):
|
800 |
+
raise TypeError("find_corpus_fileids: expected a PathPointer")
|
801 |
+
regexp += "$"
|
802 |
+
|
803 |
+
# Find fileids in a zipfile: scan the zipfile's namelist. Filter
|
804 |
+
# out entries that end in '/' -- they're directories.
|
805 |
+
if isinstance(root, ZipFilePathPointer):
|
806 |
+
fileids = [
|
807 |
+
name[len(root.entry) :]
|
808 |
+
for name in root.zipfile.namelist()
|
809 |
+
if not name.endswith("/")
|
810 |
+
]
|
811 |
+
items = [name for name in fileids if re.match(regexp, name)]
|
812 |
+
return sorted(items)
|
813 |
+
|
814 |
+
# Find fileids in a directory: use os.walk to search all (proper
|
815 |
+
# or symlinked) subdirectories, and match paths against the regexp.
|
816 |
+
elif isinstance(root, FileSystemPathPointer):
|
817 |
+
items = []
|
818 |
+
for dirname, subdirs, fileids in os.walk(root.path):
|
819 |
+
prefix = "".join("%s/" % p for p in _path_from(root.path, dirname))
|
820 |
+
items += [
|
821 |
+
prefix + fileid
|
822 |
+
for fileid in fileids
|
823 |
+
if re.match(regexp, prefix + fileid)
|
824 |
+
]
|
825 |
+
# Don't visit svn directories:
|
826 |
+
if ".svn" in subdirs:
|
827 |
+
subdirs.remove(".svn")
|
828 |
+
return sorted(items)
|
829 |
+
|
830 |
+
else:
|
831 |
+
raise AssertionError("Don't know how to handle %r" % root)
|
832 |
+
|
833 |
+
|
834 |
+
def _path_from(parent, child):
|
835 |
+
if os.path.split(parent)[1] == "":
|
836 |
+
parent = os.path.split(parent)[0]
|
837 |
+
path = []
|
838 |
+
while parent != child:
|
839 |
+
child, dirname = os.path.split(child)
|
840 |
+
path.insert(0, dirname)
|
841 |
+
assert os.path.split(child)[0] != child
|
842 |
+
return path
|
843 |
+
|
844 |
+
|
845 |
+
######################################################################
|
846 |
+
# { Paragraph structure in Treebank files
|
847 |
+
######################################################################
|
848 |
+
|
849 |
+
|
850 |
+
def tagged_treebank_para_block_reader(stream):
|
851 |
+
# Read the next paragraph.
|
852 |
+
para = ""
|
853 |
+
while True:
|
854 |
+
line = stream.readline()
|
855 |
+
# End of paragraph:
|
856 |
+
if re.match(r"======+\s*$", line):
|
857 |
+
if para.strip():
|
858 |
+
return [para]
|
859 |
+
# End of file:
|
860 |
+
elif line == "":
|
861 |
+
if para.strip():
|
862 |
+
return [para]
|
863 |
+
else:
|
864 |
+
return []
|
865 |
+
# Content line:
|
866 |
+
else:
|
867 |
+
para += line
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/verbnet.py
ADDED
@@ -0,0 +1,629 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: Verbnet Corpus Reader
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Edward Loper <[email protected]>
|
5 |
+
# URL: <https://www.nltk.org/>
|
6 |
+
# For license information, see LICENSE.TXT
|
7 |
+
|
8 |
+
"""
|
9 |
+
An NLTK interface to the VerbNet verb lexicon
|
10 |
+
|
11 |
+
For details about VerbNet see:
|
12 |
+
https://verbs.colorado.edu/~mpalmer/projects/verbnet.html
|
13 |
+
"""
|
14 |
+
|
15 |
+
import re
|
16 |
+
import textwrap
|
17 |
+
from collections import defaultdict
|
18 |
+
|
19 |
+
from nltk.corpus.reader.xmldocs import XMLCorpusReader
|
20 |
+
|
21 |
+
|
22 |
+
class VerbnetCorpusReader(XMLCorpusReader):
|
23 |
+
"""
|
24 |
+
An NLTK interface to the VerbNet verb lexicon.
|
25 |
+
|
26 |
+
From the VerbNet site: "VerbNet (VN) (Kipper-Schuler 2006) is the largest
|
27 |
+
on-line verb lexicon currently available for English. It is a hierarchical
|
28 |
+
domain-independent, broad-coverage verb lexicon with mappings to other
|
29 |
+
lexical resources such as WordNet (Miller, 1990; Fellbaum, 1998), XTAG
|
30 |
+
(XTAG Research Group, 2001), and FrameNet (Baker et al., 1998)."
|
31 |
+
|
32 |
+
For details about VerbNet see:
|
33 |
+
https://verbs.colorado.edu/~mpalmer/projects/verbnet.html
|
34 |
+
"""
|
35 |
+
|
36 |
+
# No unicode encoding param, since the data files are all XML.
|
37 |
+
def __init__(self, root, fileids, wrap_etree=False):
|
38 |
+
XMLCorpusReader.__init__(self, root, fileids, wrap_etree)
|
39 |
+
|
40 |
+
self._lemma_to_class = defaultdict(list)
|
41 |
+
"""A dictionary mapping from verb lemma strings to lists of
|
42 |
+
VerbNet class identifiers."""
|
43 |
+
|
44 |
+
self._wordnet_to_class = defaultdict(list)
|
45 |
+
"""A dictionary mapping from wordnet identifier strings to
|
46 |
+
lists of VerbNet class identifiers."""
|
47 |
+
|
48 |
+
self._class_to_fileid = {}
|
49 |
+
"""A dictionary mapping from class identifiers to
|
50 |
+
corresponding file identifiers. The keys of this dictionary
|
51 |
+
provide a complete list of all classes and subclasses."""
|
52 |
+
|
53 |
+
self._shortid_to_longid = {}
|
54 |
+
|
55 |
+
# Initialize the dictionaries. Use the quick (regexp-based)
|
56 |
+
# method instead of the slow (xml-based) method, because it
|
57 |
+
# runs 2-30 times faster.
|
58 |
+
self._quick_index()
|
59 |
+
|
60 |
+
_LONGID_RE = re.compile(r"([^\-\.]*)-([\d+.\-]+)$")
|
61 |
+
"""Regular expression that matches (and decomposes) longids"""
|
62 |
+
|
63 |
+
_SHORTID_RE = re.compile(r"[\d+.\-]+$")
|
64 |
+
"""Regular expression that matches shortids"""
|
65 |
+
|
66 |
+
_INDEX_RE = re.compile(
|
67 |
+
r'<MEMBER name="\??([^"]+)" wn="([^"]*)"[^>]+>|' r'<VNSUBCLASS ID="([^"]+)"/?>'
|
68 |
+
)
|
69 |
+
"""Regular expression used by ``_index()`` to quickly scan the corpus
|
70 |
+
for basic information."""
|
71 |
+
|
72 |
+
def lemmas(self, vnclass=None):
|
73 |
+
"""
|
74 |
+
Return a list of all verb lemmas that appear in any class, or
|
75 |
+
in the ``classid`` if specified.
|
76 |
+
"""
|
77 |
+
if vnclass is None:
|
78 |
+
return sorted(self._lemma_to_class.keys())
|
79 |
+
else:
|
80 |
+
# [xx] should this include subclass members?
|
81 |
+
if isinstance(vnclass, str):
|
82 |
+
vnclass = self.vnclass(vnclass)
|
83 |
+
return [member.get("name") for member in vnclass.findall("MEMBERS/MEMBER")]
|
84 |
+
|
85 |
+
def wordnetids(self, vnclass=None):
|
86 |
+
"""
|
87 |
+
Return a list of all wordnet identifiers that appear in any
|
88 |
+
class, or in ``classid`` if specified.
|
89 |
+
"""
|
90 |
+
if vnclass is None:
|
91 |
+
return sorted(self._wordnet_to_class.keys())
|
92 |
+
else:
|
93 |
+
# [xx] should this include subclass members?
|
94 |
+
if isinstance(vnclass, str):
|
95 |
+
vnclass = self.vnclass(vnclass)
|
96 |
+
return sum(
|
97 |
+
(
|
98 |
+
member.get("wn", "").split()
|
99 |
+
for member in vnclass.findall("MEMBERS/MEMBER")
|
100 |
+
),
|
101 |
+
[],
|
102 |
+
)
|
103 |
+
|
104 |
+
def classids(self, lemma=None, wordnetid=None, fileid=None, classid=None):
|
105 |
+
"""
|
106 |
+
Return a list of the VerbNet class identifiers. If a file
|
107 |
+
identifier is specified, then return only the VerbNet class
|
108 |
+
identifiers for classes (and subclasses) defined by that file.
|
109 |
+
If a lemma is specified, then return only VerbNet class
|
110 |
+
identifiers for classes that contain that lemma as a member.
|
111 |
+
If a wordnetid is specified, then return only identifiers for
|
112 |
+
classes that contain that wordnetid as a member. If a classid
|
113 |
+
is specified, then return only identifiers for subclasses of
|
114 |
+
the specified VerbNet class.
|
115 |
+
If nothing is specified, return all classids within VerbNet
|
116 |
+
"""
|
117 |
+
if fileid is not None:
|
118 |
+
return [c for (c, f) in self._class_to_fileid.items() if f == fileid]
|
119 |
+
elif lemma is not None:
|
120 |
+
return self._lemma_to_class[lemma]
|
121 |
+
elif wordnetid is not None:
|
122 |
+
return self._wordnet_to_class[wordnetid]
|
123 |
+
elif classid is not None:
|
124 |
+
xmltree = self.vnclass(classid)
|
125 |
+
return [
|
126 |
+
subclass.get("ID")
|
127 |
+
for subclass in xmltree.findall("SUBCLASSES/VNSUBCLASS")
|
128 |
+
]
|
129 |
+
else:
|
130 |
+
return sorted(self._class_to_fileid.keys())
|
131 |
+
|
132 |
+
def vnclass(self, fileid_or_classid):
|
133 |
+
"""Returns VerbNet class ElementTree
|
134 |
+
|
135 |
+
Return an ElementTree containing the xml for the specified
|
136 |
+
VerbNet class.
|
137 |
+
|
138 |
+
:param fileid_or_classid: An identifier specifying which class
|
139 |
+
should be returned. Can be a file identifier (such as
|
140 |
+
``'put-9.1.xml'``), or a VerbNet class identifier (such as
|
141 |
+
``'put-9.1'``) or a short VerbNet class identifier (such as
|
142 |
+
``'9.1'``).
|
143 |
+
"""
|
144 |
+
# File identifier: just return the xml.
|
145 |
+
if fileid_or_classid in self._fileids:
|
146 |
+
return self.xml(fileid_or_classid)
|
147 |
+
|
148 |
+
# Class identifier: get the xml, and find the right elt.
|
149 |
+
classid = self.longid(fileid_or_classid)
|
150 |
+
if classid in self._class_to_fileid:
|
151 |
+
fileid = self._class_to_fileid[self.longid(classid)]
|
152 |
+
tree = self.xml(fileid)
|
153 |
+
if classid == tree.get("ID"):
|
154 |
+
return tree
|
155 |
+
else:
|
156 |
+
for subclass in tree.findall(".//VNSUBCLASS"):
|
157 |
+
if classid == subclass.get("ID"):
|
158 |
+
return subclass
|
159 |
+
else:
|
160 |
+
assert False # we saw it during _index()!
|
161 |
+
|
162 |
+
else:
|
163 |
+
raise ValueError(f"Unknown identifier {fileid_or_classid}")
|
164 |
+
|
165 |
+
def fileids(self, vnclass_ids=None):
|
166 |
+
"""
|
167 |
+
Return a list of fileids that make up this corpus. If
|
168 |
+
``vnclass_ids`` is specified, then return the fileids that make
|
169 |
+
up the specified VerbNet class(es).
|
170 |
+
"""
|
171 |
+
if vnclass_ids is None:
|
172 |
+
return self._fileids
|
173 |
+
elif isinstance(vnclass_ids, str):
|
174 |
+
return [self._class_to_fileid[self.longid(vnclass_ids)]]
|
175 |
+
else:
|
176 |
+
return [
|
177 |
+
self._class_to_fileid[self.longid(vnclass_id)]
|
178 |
+
for vnclass_id in vnclass_ids
|
179 |
+
]
|
180 |
+
|
181 |
+
def frames(self, vnclass):
|
182 |
+
"""Given a VerbNet class, this method returns VerbNet frames
|
183 |
+
|
184 |
+
The members returned are:
|
185 |
+
1) Example
|
186 |
+
2) Description
|
187 |
+
3) Syntax
|
188 |
+
4) Semantics
|
189 |
+
|
190 |
+
:param vnclass: A VerbNet class identifier; or an ElementTree
|
191 |
+
containing the xml contents of a VerbNet class.
|
192 |
+
:return: frames - a list of frame dictionaries
|
193 |
+
"""
|
194 |
+
if isinstance(vnclass, str):
|
195 |
+
vnclass = self.vnclass(vnclass)
|
196 |
+
frames = []
|
197 |
+
vnframes = vnclass.findall("FRAMES/FRAME")
|
198 |
+
for vnframe in vnframes:
|
199 |
+
frames.append(
|
200 |
+
{
|
201 |
+
"example": self._get_example_within_frame(vnframe),
|
202 |
+
"description": self._get_description_within_frame(vnframe),
|
203 |
+
"syntax": self._get_syntactic_list_within_frame(vnframe),
|
204 |
+
"semantics": self._get_semantics_within_frame(vnframe),
|
205 |
+
}
|
206 |
+
)
|
207 |
+
return frames
|
208 |
+
|
209 |
+
def subclasses(self, vnclass):
|
210 |
+
"""Returns subclass ids, if any exist
|
211 |
+
|
212 |
+
Given a VerbNet class, this method returns subclass ids (if they exist)
|
213 |
+
in a list of strings.
|
214 |
+
|
215 |
+
:param vnclass: A VerbNet class identifier; or an ElementTree
|
216 |
+
containing the xml contents of a VerbNet class.
|
217 |
+
:return: list of subclasses
|
218 |
+
"""
|
219 |
+
if isinstance(vnclass, str):
|
220 |
+
vnclass = self.vnclass(vnclass)
|
221 |
+
|
222 |
+
subclasses = [
|
223 |
+
subclass.get("ID") for subclass in vnclass.findall("SUBCLASSES/VNSUBCLASS")
|
224 |
+
]
|
225 |
+
return subclasses
|
226 |
+
|
227 |
+
def themroles(self, vnclass):
|
228 |
+
"""Returns thematic roles participating in a VerbNet class
|
229 |
+
|
230 |
+
Members returned as part of roles are-
|
231 |
+
1) Type
|
232 |
+
2) Modifiers
|
233 |
+
|
234 |
+
:param vnclass: A VerbNet class identifier; or an ElementTree
|
235 |
+
containing the xml contents of a VerbNet class.
|
236 |
+
:return: themroles: A list of thematic roles in the VerbNet class
|
237 |
+
"""
|
238 |
+
if isinstance(vnclass, str):
|
239 |
+
vnclass = self.vnclass(vnclass)
|
240 |
+
|
241 |
+
themroles = []
|
242 |
+
for trole in vnclass.findall("THEMROLES/THEMROLE"):
|
243 |
+
themroles.append(
|
244 |
+
{
|
245 |
+
"type": trole.get("type"),
|
246 |
+
"modifiers": [
|
247 |
+
{"value": restr.get("Value"), "type": restr.get("type")}
|
248 |
+
for restr in trole.findall("SELRESTRS/SELRESTR")
|
249 |
+
],
|
250 |
+
}
|
251 |
+
)
|
252 |
+
return themroles
|
253 |
+
|
254 |
+
######################################################################
|
255 |
+
# { Index Initialization
|
256 |
+
######################################################################
|
257 |
+
|
258 |
+
def _index(self):
|
259 |
+
"""
|
260 |
+
Initialize the indexes ``_lemma_to_class``,
|
261 |
+
``_wordnet_to_class``, and ``_class_to_fileid`` by scanning
|
262 |
+
through the corpus fileids. This is fast if ElementTree
|
263 |
+
uses the C implementation (<0.1 secs), but quite slow (>10 secs)
|
264 |
+
if only the python implementation is available.
|
265 |
+
"""
|
266 |
+
for fileid in self._fileids:
|
267 |
+
self._index_helper(self.xml(fileid), fileid)
|
268 |
+
|
269 |
+
def _index_helper(self, xmltree, fileid):
|
270 |
+
"""Helper for ``_index()``"""
|
271 |
+
vnclass = xmltree.get("ID")
|
272 |
+
self._class_to_fileid[vnclass] = fileid
|
273 |
+
self._shortid_to_longid[self.shortid(vnclass)] = vnclass
|
274 |
+
for member in xmltree.findall("MEMBERS/MEMBER"):
|
275 |
+
self._lemma_to_class[member.get("name")].append(vnclass)
|
276 |
+
for wn in member.get("wn", "").split():
|
277 |
+
self._wordnet_to_class[wn].append(vnclass)
|
278 |
+
for subclass in xmltree.findall("SUBCLASSES/VNSUBCLASS"):
|
279 |
+
self._index_helper(subclass, fileid)
|
280 |
+
|
281 |
+
def _quick_index(self):
|
282 |
+
"""
|
283 |
+
Initialize the indexes ``_lemma_to_class``,
|
284 |
+
``_wordnet_to_class``, and ``_class_to_fileid`` by scanning
|
285 |
+
through the corpus fileids. This doesn't do proper xml parsing,
|
286 |
+
but is good enough to find everything in the standard VerbNet
|
287 |
+
corpus -- and it runs about 30 times faster than xml parsing
|
288 |
+
(with the python ElementTree; only 2-3 times faster
|
289 |
+
if ElementTree uses the C implementation).
|
290 |
+
"""
|
291 |
+
# nb: if we got rid of wordnet_to_class, this would run 2-3
|
292 |
+
# times faster.
|
293 |
+
for fileid in self._fileids:
|
294 |
+
vnclass = fileid[:-4] # strip the '.xml'
|
295 |
+
self._class_to_fileid[vnclass] = fileid
|
296 |
+
self._shortid_to_longid[self.shortid(vnclass)] = vnclass
|
297 |
+
with self.open(fileid) as fp:
|
298 |
+
for m in self._INDEX_RE.finditer(fp.read()):
|
299 |
+
groups = m.groups()
|
300 |
+
if groups[0] is not None:
|
301 |
+
self._lemma_to_class[groups[0]].append(vnclass)
|
302 |
+
for wn in groups[1].split():
|
303 |
+
self._wordnet_to_class[wn].append(vnclass)
|
304 |
+
elif groups[2] is not None:
|
305 |
+
self._class_to_fileid[groups[2]] = fileid
|
306 |
+
vnclass = groups[2] # for <MEMBER> elts.
|
307 |
+
self._shortid_to_longid[self.shortid(vnclass)] = vnclass
|
308 |
+
else:
|
309 |
+
assert False, "unexpected match condition"
|
310 |
+
|
311 |
+
######################################################################
|
312 |
+
# { Identifier conversion
|
313 |
+
######################################################################
|
314 |
+
|
315 |
+
def longid(self, shortid):
|
316 |
+
"""Returns longid of a VerbNet class
|
317 |
+
|
318 |
+
Given a short VerbNet class identifier (eg '37.10'), map it
|
319 |
+
to a long id (eg 'confess-37.10'). If ``shortid`` is already a
|
320 |
+
long id, then return it as-is"""
|
321 |
+
if self._LONGID_RE.match(shortid):
|
322 |
+
return shortid # it's already a longid.
|
323 |
+
elif not self._SHORTID_RE.match(shortid):
|
324 |
+
raise ValueError("vnclass identifier %r not found" % shortid)
|
325 |
+
try:
|
326 |
+
return self._shortid_to_longid[shortid]
|
327 |
+
except KeyError as e:
|
328 |
+
raise ValueError("vnclass identifier %r not found" % shortid) from e
|
329 |
+
|
330 |
+
def shortid(self, longid):
|
331 |
+
"""Returns shortid of a VerbNet class
|
332 |
+
|
333 |
+
Given a long VerbNet class identifier (eg 'confess-37.10'),
|
334 |
+
map it to a short id (eg '37.10'). If ``longid`` is already a
|
335 |
+
short id, then return it as-is."""
|
336 |
+
if self._SHORTID_RE.match(longid):
|
337 |
+
return longid # it's already a shortid.
|
338 |
+
m = self._LONGID_RE.match(longid)
|
339 |
+
if m:
|
340 |
+
return m.group(2)
|
341 |
+
else:
|
342 |
+
raise ValueError("vnclass identifier %r not found" % longid)
|
343 |
+
|
344 |
+
######################################################################
|
345 |
+
# { Frame access utility functions
|
346 |
+
######################################################################
|
347 |
+
|
348 |
+
def _get_semantics_within_frame(self, vnframe):
|
349 |
+
"""Returns semantics within a single frame
|
350 |
+
|
351 |
+
A utility function to retrieve semantics within a frame in VerbNet
|
352 |
+
Members of the semantics dictionary:
|
353 |
+
1) Predicate value
|
354 |
+
2) Arguments
|
355 |
+
|
356 |
+
:param vnframe: An ElementTree containing the xml contents of
|
357 |
+
a VerbNet frame.
|
358 |
+
:return: semantics: semantics dictionary
|
359 |
+
"""
|
360 |
+
semantics_within_single_frame = []
|
361 |
+
for pred in vnframe.findall("SEMANTICS/PRED"):
|
362 |
+
arguments = [
|
363 |
+
{"type": arg.get("type"), "value": arg.get("value")}
|
364 |
+
for arg in pred.findall("ARGS/ARG")
|
365 |
+
]
|
366 |
+
semantics_within_single_frame.append(
|
367 |
+
{
|
368 |
+
"predicate_value": pred.get("value"),
|
369 |
+
"arguments": arguments,
|
370 |
+
"negated": pred.get("bool") == "!",
|
371 |
+
}
|
372 |
+
)
|
373 |
+
return semantics_within_single_frame
|
374 |
+
|
375 |
+
def _get_example_within_frame(self, vnframe):
|
376 |
+
"""Returns example within a frame
|
377 |
+
|
378 |
+
A utility function to retrieve an example within a frame in VerbNet.
|
379 |
+
|
380 |
+
:param vnframe: An ElementTree containing the xml contents of
|
381 |
+
a VerbNet frame.
|
382 |
+
:return: example_text: The example sentence for this particular frame
|
383 |
+
"""
|
384 |
+
example_element = vnframe.find("EXAMPLES/EXAMPLE")
|
385 |
+
if example_element is not None:
|
386 |
+
example_text = example_element.text
|
387 |
+
else:
|
388 |
+
example_text = ""
|
389 |
+
return example_text
|
390 |
+
|
391 |
+
def _get_description_within_frame(self, vnframe):
|
392 |
+
"""Returns member description within frame
|
393 |
+
|
394 |
+
A utility function to retrieve a description of participating members
|
395 |
+
within a frame in VerbNet.
|
396 |
+
|
397 |
+
:param vnframe: An ElementTree containing the xml contents of
|
398 |
+
a VerbNet frame.
|
399 |
+
:return: description: a description dictionary with members - primary and secondary
|
400 |
+
"""
|
401 |
+
description_element = vnframe.find("DESCRIPTION")
|
402 |
+
return {
|
403 |
+
"primary": description_element.attrib["primary"],
|
404 |
+
"secondary": description_element.get("secondary", ""),
|
405 |
+
}
|
406 |
+
|
407 |
+
def _get_syntactic_list_within_frame(self, vnframe):
|
408 |
+
"""Returns semantics within a frame
|
409 |
+
|
410 |
+
A utility function to retrieve semantics within a frame in VerbNet.
|
411 |
+
Members of the syntactic dictionary:
|
412 |
+
1) POS Tag
|
413 |
+
2) Modifiers
|
414 |
+
|
415 |
+
:param vnframe: An ElementTree containing the xml contents of
|
416 |
+
a VerbNet frame.
|
417 |
+
:return: syntax_within_single_frame
|
418 |
+
"""
|
419 |
+
syntax_within_single_frame = []
|
420 |
+
for elt in vnframe.find("SYNTAX"):
|
421 |
+
pos_tag = elt.tag
|
422 |
+
modifiers = dict()
|
423 |
+
modifiers["value"] = elt.get("value") if "value" in elt.attrib else ""
|
424 |
+
modifiers["selrestrs"] = [
|
425 |
+
{"value": restr.get("Value"), "type": restr.get("type")}
|
426 |
+
for restr in elt.findall("SELRESTRS/SELRESTR")
|
427 |
+
]
|
428 |
+
modifiers["synrestrs"] = [
|
429 |
+
{"value": restr.get("Value"), "type": restr.get("type")}
|
430 |
+
for restr in elt.findall("SYNRESTRS/SYNRESTR")
|
431 |
+
]
|
432 |
+
syntax_within_single_frame.append(
|
433 |
+
{"pos_tag": pos_tag, "modifiers": modifiers}
|
434 |
+
)
|
435 |
+
return syntax_within_single_frame
|
436 |
+
|
437 |
+
######################################################################
|
438 |
+
# { Pretty Printing
|
439 |
+
######################################################################
|
440 |
+
|
441 |
+
def pprint(self, vnclass):
|
442 |
+
"""Returns pretty printed version of a VerbNet class
|
443 |
+
|
444 |
+
Return a string containing a pretty-printed representation of
|
445 |
+
the given VerbNet class.
|
446 |
+
|
447 |
+
:param vnclass: A VerbNet class identifier; or an ElementTree
|
448 |
+
containing the xml contents of a VerbNet class.
|
449 |
+
"""
|
450 |
+
if isinstance(vnclass, str):
|
451 |
+
vnclass = self.vnclass(vnclass)
|
452 |
+
|
453 |
+
s = vnclass.get("ID") + "\n"
|
454 |
+
s += self.pprint_subclasses(vnclass, indent=" ") + "\n"
|
455 |
+
s += self.pprint_members(vnclass, indent=" ") + "\n"
|
456 |
+
s += " Thematic roles:\n"
|
457 |
+
s += self.pprint_themroles(vnclass, indent=" ") + "\n"
|
458 |
+
s += " Frames:\n"
|
459 |
+
s += self.pprint_frames(vnclass, indent=" ")
|
460 |
+
return s
|
461 |
+
|
462 |
+
def pprint_subclasses(self, vnclass, indent=""):
|
463 |
+
"""Returns pretty printed version of subclasses of VerbNet class
|
464 |
+
|
465 |
+
Return a string containing a pretty-printed representation of
|
466 |
+
the given VerbNet class's subclasses.
|
467 |
+
|
468 |
+
:param vnclass: A VerbNet class identifier; or an ElementTree
|
469 |
+
containing the xml contents of a VerbNet class.
|
470 |
+
"""
|
471 |
+
if isinstance(vnclass, str):
|
472 |
+
vnclass = self.vnclass(vnclass)
|
473 |
+
|
474 |
+
subclasses = self.subclasses(vnclass)
|
475 |
+
if not subclasses:
|
476 |
+
subclasses = ["(none)"]
|
477 |
+
s = "Subclasses: " + " ".join(subclasses)
|
478 |
+
return textwrap.fill(
|
479 |
+
s, 70, initial_indent=indent, subsequent_indent=indent + " "
|
480 |
+
)
|
481 |
+
|
482 |
+
def pprint_members(self, vnclass, indent=""):
|
483 |
+
"""Returns pretty printed version of members in a VerbNet class
|
484 |
+
|
485 |
+
Return a string containing a pretty-printed representation of
|
486 |
+
the given VerbNet class's member verbs.
|
487 |
+
|
488 |
+
:param vnclass: A VerbNet class identifier; or an ElementTree
|
489 |
+
containing the xml contents of a VerbNet class.
|
490 |
+
"""
|
491 |
+
if isinstance(vnclass, str):
|
492 |
+
vnclass = self.vnclass(vnclass)
|
493 |
+
|
494 |
+
members = self.lemmas(vnclass)
|
495 |
+
if not members:
|
496 |
+
members = ["(none)"]
|
497 |
+
s = "Members: " + " ".join(members)
|
498 |
+
return textwrap.fill(
|
499 |
+
s, 70, initial_indent=indent, subsequent_indent=indent + " "
|
500 |
+
)
|
501 |
+
|
502 |
+
def pprint_themroles(self, vnclass, indent=""):
|
503 |
+
"""Returns pretty printed version of thematic roles in a VerbNet class
|
504 |
+
|
505 |
+
Return a string containing a pretty-printed representation of
|
506 |
+
the given VerbNet class's thematic roles.
|
507 |
+
|
508 |
+
:param vnclass: A VerbNet class identifier; or an ElementTree
|
509 |
+
containing the xml contents of a VerbNet class.
|
510 |
+
"""
|
511 |
+
if isinstance(vnclass, str):
|
512 |
+
vnclass = self.vnclass(vnclass)
|
513 |
+
|
514 |
+
pieces = []
|
515 |
+
for themrole in self.themroles(vnclass):
|
516 |
+
piece = indent + "* " + themrole.get("type")
|
517 |
+
modifiers = [
|
518 |
+
modifier["value"] + modifier["type"]
|
519 |
+
for modifier in themrole["modifiers"]
|
520 |
+
]
|
521 |
+
if modifiers:
|
522 |
+
piece += "[{}]".format(" ".join(modifiers))
|
523 |
+
pieces.append(piece)
|
524 |
+
return "\n".join(pieces)
|
525 |
+
|
526 |
+
def pprint_frames(self, vnclass, indent=""):
|
527 |
+
"""Returns pretty version of all frames in a VerbNet class
|
528 |
+
|
529 |
+
Return a string containing a pretty-printed representation of
|
530 |
+
the list of frames within the VerbNet class.
|
531 |
+
|
532 |
+
:param vnclass: A VerbNet class identifier; or an ElementTree
|
533 |
+
containing the xml contents of a VerbNet class.
|
534 |
+
"""
|
535 |
+
if isinstance(vnclass, str):
|
536 |
+
vnclass = self.vnclass(vnclass)
|
537 |
+
pieces = []
|
538 |
+
for vnframe in self.frames(vnclass):
|
539 |
+
pieces.append(self._pprint_single_frame(vnframe, indent))
|
540 |
+
return "\n".join(pieces)
|
541 |
+
|
542 |
+
def _pprint_single_frame(self, vnframe, indent=""):
|
543 |
+
"""Returns pretty printed version of a single frame in a VerbNet class
|
544 |
+
|
545 |
+
Returns a string containing a pretty-printed representation of
|
546 |
+
the given frame.
|
547 |
+
|
548 |
+
:param vnframe: An ElementTree containing the xml contents of
|
549 |
+
a VerbNet frame.
|
550 |
+
"""
|
551 |
+
frame_string = self._pprint_description_within_frame(vnframe, indent) + "\n"
|
552 |
+
frame_string += self._pprint_example_within_frame(vnframe, indent + " ") + "\n"
|
553 |
+
frame_string += (
|
554 |
+
self._pprint_syntax_within_frame(vnframe, indent + " Syntax: ") + "\n"
|
555 |
+
)
|
556 |
+
frame_string += indent + " Semantics:\n"
|
557 |
+
frame_string += self._pprint_semantics_within_frame(vnframe, indent + " ")
|
558 |
+
return frame_string
|
559 |
+
|
560 |
+
def _pprint_example_within_frame(self, vnframe, indent=""):
|
561 |
+
"""Returns pretty printed version of example within frame in a VerbNet class
|
562 |
+
|
563 |
+
Return a string containing a pretty-printed representation of
|
564 |
+
the given VerbNet frame example.
|
565 |
+
|
566 |
+
:param vnframe: An ElementTree containing the xml contents of
|
567 |
+
a Verbnet frame.
|
568 |
+
"""
|
569 |
+
if vnframe["example"]:
|
570 |
+
return indent + " Example: " + vnframe["example"]
|
571 |
+
|
572 |
+
def _pprint_description_within_frame(self, vnframe, indent=""):
|
573 |
+
"""Returns pretty printed version of a VerbNet frame description
|
574 |
+
|
575 |
+
Return a string containing a pretty-printed representation of
|
576 |
+
the given VerbNet frame description.
|
577 |
+
|
578 |
+
:param vnframe: An ElementTree containing the xml contents of
|
579 |
+
a VerbNet frame.
|
580 |
+
"""
|
581 |
+
description = indent + vnframe["description"]["primary"]
|
582 |
+
if vnframe["description"]["secondary"]:
|
583 |
+
description += " ({})".format(vnframe["description"]["secondary"])
|
584 |
+
return description
|
585 |
+
|
586 |
+
def _pprint_syntax_within_frame(self, vnframe, indent=""):
|
587 |
+
"""Returns pretty printed version of syntax within a frame in a VerbNet class
|
588 |
+
|
589 |
+
Return a string containing a pretty-printed representation of
|
590 |
+
the given VerbNet frame syntax.
|
591 |
+
|
592 |
+
:param vnframe: An ElementTree containing the xml contents of
|
593 |
+
a VerbNet frame.
|
594 |
+
"""
|
595 |
+
pieces = []
|
596 |
+
for element in vnframe["syntax"]:
|
597 |
+
piece = element["pos_tag"]
|
598 |
+
modifier_list = []
|
599 |
+
if "value" in element["modifiers"] and element["modifiers"]["value"]:
|
600 |
+
modifier_list.append(element["modifiers"]["value"])
|
601 |
+
modifier_list += [
|
602 |
+
"{}{}".format(restr["value"], restr["type"])
|
603 |
+
for restr in (
|
604 |
+
element["modifiers"]["selrestrs"]
|
605 |
+
+ element["modifiers"]["synrestrs"]
|
606 |
+
)
|
607 |
+
]
|
608 |
+
if modifier_list:
|
609 |
+
piece += "[{}]".format(" ".join(modifier_list))
|
610 |
+
pieces.append(piece)
|
611 |
+
|
612 |
+
return indent + " ".join(pieces)
|
613 |
+
|
614 |
+
def _pprint_semantics_within_frame(self, vnframe, indent=""):
|
615 |
+
"""Returns a pretty printed version of semantics within frame in a VerbNet class
|
616 |
+
|
617 |
+
Return a string containing a pretty-printed representation of
|
618 |
+
the given VerbNet frame semantics.
|
619 |
+
|
620 |
+
:param vnframe: An ElementTree containing the xml contents of
|
621 |
+
a VerbNet frame.
|
622 |
+
"""
|
623 |
+
pieces = []
|
624 |
+
for predicate in vnframe["semantics"]:
|
625 |
+
arguments = [argument["value"] for argument in predicate["arguments"]]
|
626 |
+
pieces.append(
|
627 |
+
f"{'¬' if predicate['negated'] else ''}{predicate['predicate_value']}({', '.join(arguments)})"
|
628 |
+
)
|
629 |
+
return "\n".join(f"{indent}* {piece}" for piece in pieces)
|
llmeval-env/lib/python3.10/site-packages/nltk/corpus/reader/wordnet.py
ADDED
@@ -0,0 +1,2489 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Natural Language Toolkit: WordNet
|
2 |
+
#
|
3 |
+
# Copyright (C) 2001-2023 NLTK Project
|
4 |
+
# Author: Steven Bethard <[email protected]>
|
5 |
+
# Steven Bird <[email protected]>
|
6 |
+
# Edward Loper <[email protected]>
|
7 |
+
# Nitin Madnani <[email protected]>
|
8 |
+
# Nasruddin A’aidil Shari
|
9 |
+
# Sim Wei Ying Geraldine
|
10 |
+
# Soe Lynn
|
11 |
+
# Francis Bond <[email protected]>
|
12 |
+
# Eric Kafe <[email protected]>
|
13 |
+
|
14 |
+
# URL: <https://www.nltk.org/>
|
15 |
+
# For license information, see LICENSE.TXT
|
16 |
+
|
17 |
+
"""
|
18 |
+
An NLTK interface for WordNet
|
19 |
+
|
20 |
+
WordNet is a lexical database of English.
|
21 |
+
Using synsets, helps find conceptual relationships between words
|
22 |
+
such as hypernyms, hyponyms, synonyms, antonyms etc.
|
23 |
+
|
24 |
+
For details about WordNet see:
|
25 |
+
https://wordnet.princeton.edu/
|
26 |
+
|
27 |
+
This module also allows you to find lemmas in languages
|
28 |
+
other than English from the Open Multilingual Wordnet
|
29 |
+
https://omwn.org/
|
30 |
+
|
31 |
+
"""
|
32 |
+
|
33 |
+
import math
|
34 |
+
import os
|
35 |
+
import re
|
36 |
+
import warnings
|
37 |
+
from collections import defaultdict, deque
|
38 |
+
from functools import total_ordering
|
39 |
+
from itertools import chain, islice
|
40 |
+
from operator import itemgetter
|
41 |
+
|
42 |
+
from nltk.corpus.reader import CorpusReader
|
43 |
+
from nltk.internals import deprecated
|
44 |
+
from nltk.probability import FreqDist
|
45 |
+
from nltk.util import binary_search_file as _binary_search_file
|
46 |
+
|
47 |
+
######################################################################
|
48 |
+
# Table of Contents
|
49 |
+
######################################################################
|
50 |
+
# - Constants
|
51 |
+
# - Data Classes
|
52 |
+
# - WordNetError
|
53 |
+
# - Lemma
|
54 |
+
# - Synset
|
55 |
+
# - WordNet Corpus Reader
|
56 |
+
# - WordNet Information Content Corpus Reader
|
57 |
+
# - Similarity Metrics
|
58 |
+
# - Demo
|
59 |
+
|
60 |
+
######################################################################
|
61 |
+
# Constants
|
62 |
+
######################################################################
|
63 |
+
|
64 |
+
#: Positive infinity (for similarity functions)
|
65 |
+
_INF = 1e300
|
66 |
+
|
67 |
+
# { Part-of-speech constants
|
68 |
+
ADJ, ADJ_SAT, ADV, NOUN, VERB = "a", "s", "r", "n", "v"
|
69 |
+
# }
|
70 |
+
|
71 |
+
POS_LIST = [NOUN, VERB, ADJ, ADV]
|
72 |
+
|
73 |
+
# A table of strings that are used to express verb frames.
|
74 |
+
VERB_FRAME_STRINGS = (
|
75 |
+
None,
|
76 |
+
"Something %s",
|
77 |
+
"Somebody %s",
|
78 |
+
"It is %sing",
|
79 |
+
"Something is %sing PP",
|
80 |
+
"Something %s something Adjective/Noun",
|
81 |
+
"Something %s Adjective/Noun",
|
82 |
+
"Somebody %s Adjective",
|
83 |
+
"Somebody %s something",
|
84 |
+
"Somebody %s somebody",
|
85 |
+
"Something %s somebody",
|
86 |
+
"Something %s something",
|
87 |
+
"Something %s to somebody",
|
88 |
+
"Somebody %s on something",
|
89 |
+
"Somebody %s somebody something",
|
90 |
+
"Somebody %s something to somebody",
|
91 |
+
"Somebody %s something from somebody",
|
92 |
+
"Somebody %s somebody with something",
|
93 |
+
"Somebody %s somebody of something",
|
94 |
+
"Somebody %s something on somebody",
|
95 |
+
"Somebody %s somebody PP",
|
96 |
+
"Somebody %s something PP",
|
97 |
+
"Somebody %s PP",
|
98 |
+
"Somebody's (body part) %s",
|
99 |
+
"Somebody %s somebody to INFINITIVE",
|
100 |
+
"Somebody %s somebody INFINITIVE",
|
101 |
+
"Somebody %s that CLAUSE",
|
102 |
+
"Somebody %s to somebody",
|
103 |
+
"Somebody %s to INFINITIVE",
|
104 |
+
"Somebody %s whether INFINITIVE",
|
105 |
+
"Somebody %s somebody into V-ing something",
|
106 |
+
"Somebody %s something with something",
|
107 |
+
"Somebody %s INFINITIVE",
|
108 |
+
"Somebody %s VERB-ing",
|
109 |
+
"It %s that CLAUSE",
|
110 |
+
"Something %s INFINITIVE",
|
111 |
+
# OEWN additions:
|
112 |
+
"Somebody %s at something",
|
113 |
+
"Somebody %s for something",
|
114 |
+
"Somebody %s on somebody",
|
115 |
+
"Somebody %s out of somebody",
|
116 |
+
)
|
117 |
+
|
118 |
+
SENSENUM_RE = re.compile(r"\.[\d]+\.")
|
119 |
+
|
120 |
+
|
121 |
+
######################################################################
|
122 |
+
# Data Classes
|
123 |
+
######################################################################
|
124 |
+
|
125 |
+
|
126 |
+
class WordNetError(Exception):
|
127 |
+
"""An exception class for wordnet-related errors."""
|
128 |
+
|
129 |
+
|
130 |
+
@total_ordering
|
131 |
+
class _WordNetObject:
|
132 |
+
"""A common base class for lemmas and synsets."""
|
133 |
+
|
134 |
+
def hypernyms(self):
|
135 |
+
return self._related("@")
|
136 |
+
|
137 |
+
def _hypernyms(self):
|
138 |
+
return self._related("@")
|
139 |
+
|
140 |
+
def instance_hypernyms(self):
|
141 |
+
return self._related("@i")
|
142 |
+
|
143 |
+
def _instance_hypernyms(self):
|
144 |
+
return self._related("@i")
|
145 |
+
|
146 |
+
def hyponyms(self):
|
147 |
+
return self._related("~")
|
148 |
+
|
149 |
+
def instance_hyponyms(self):
|
150 |
+
return self._related("~i")
|
151 |
+
|
152 |
+
def member_holonyms(self):
|
153 |
+
return self._related("#m")
|
154 |
+
|
155 |
+
def substance_holonyms(self):
|
156 |
+
return self._related("#s")
|
157 |
+
|
158 |
+
def part_holonyms(self):
|
159 |
+
return self._related("#p")
|
160 |
+
|
161 |
+
def member_meronyms(self):
|
162 |
+
return self._related("%m")
|
163 |
+
|
164 |
+
def substance_meronyms(self):
|
165 |
+
return self._related("%s")
|
166 |
+
|
167 |
+
def part_meronyms(self):
|
168 |
+
return self._related("%p")
|
169 |
+
|
170 |
+
def topic_domains(self):
|
171 |
+
return self._related(";c")
|
172 |
+
|
173 |
+
def in_topic_domains(self):
|
174 |
+
return self._related("-c")
|
175 |
+
|
176 |
+
def region_domains(self):
|
177 |
+
return self._related(";r")
|
178 |
+
|
179 |
+
def in_region_domains(self):
|
180 |
+
return self._related("-r")
|
181 |
+
|
182 |
+
def usage_domains(self):
|
183 |
+
return self._related(";u")
|
184 |
+
|
185 |
+
def in_usage_domains(self):
|
186 |
+
return self._related("-u")
|
187 |
+
|
188 |
+
def attributes(self):
|
189 |
+
return self._related("=")
|
190 |
+
|
191 |
+
def entailments(self):
|
192 |
+
return self._related("*")
|
193 |
+
|
194 |
+
def causes(self):
|
195 |
+
return self._related(">")
|
196 |
+
|
197 |
+
def also_sees(self):
|
198 |
+
return self._related("^")
|
199 |
+
|
200 |
+
def verb_groups(self):
|
201 |
+
return self._related("$")
|
202 |
+
|
203 |
+
def similar_tos(self):
|
204 |
+
return self._related("&")
|
205 |
+
|
206 |
+
def __hash__(self):
|
207 |
+
return hash(self._name)
|
208 |
+
|
209 |
+
def __eq__(self, other):
|
210 |
+
return self._name == other._name
|
211 |
+
|
212 |
+
def __ne__(self, other):
|
213 |
+
return self._name != other._name
|
214 |
+
|
215 |
+
def __lt__(self, other):
|
216 |
+
return self._name < other._name
|
217 |
+
|
218 |
+
|
219 |
+
class Lemma(_WordNetObject):
|
220 |
+
"""
|
221 |
+
The lexical entry for a single morphological form of a
|
222 |
+
sense-disambiguated word.
|
223 |
+
|
224 |
+
Create a Lemma from a "<word>.<pos>.<number>.<lemma>" string where:
|
225 |
+
<word> is the morphological stem identifying the synset
|
226 |
+
<pos> is one of the module attributes ADJ, ADJ_SAT, ADV, NOUN or VERB
|
227 |
+
<number> is the sense number, counting from 0.
|
228 |
+
<lemma> is the morphological form of interest
|
229 |
+
|
230 |
+
Note that <word> and <lemma> can be different, e.g. the Synset
|
231 |
+
'salt.n.03' has the Lemmas 'salt.n.03.salt', 'salt.n.03.saltiness' and
|
232 |
+
'salt.n.03.salinity'.
|
233 |
+
|
234 |
+
Lemma attributes, accessible via methods with the same name:
|
235 |
+
|
236 |
+
- name: The canonical name of this lemma.
|
237 |
+
- synset: The synset that this lemma belongs to.
|
238 |
+
- syntactic_marker: For adjectives, the WordNet string identifying the
|
239 |
+
syntactic position relative modified noun. See:
|
240 |
+
https://wordnet.princeton.edu/documentation/wninput5wn
|
241 |
+
For all other parts of speech, this attribute is None.
|
242 |
+
- count: The frequency of this lemma in wordnet.
|
243 |
+
|
244 |
+
Lemma methods:
|
245 |
+
|
246 |
+
Lemmas have the following methods for retrieving related Lemmas. They
|
247 |
+
correspond to the names for the pointer symbols defined here:
|
248 |
+
https://wordnet.princeton.edu/documentation/wninput5wn
|
249 |
+
These methods all return lists of Lemmas:
|
250 |
+
|
251 |
+
- antonyms
|
252 |
+
- hypernyms, instance_hypernyms
|
253 |
+
- hyponyms, instance_hyponyms
|
254 |
+
- member_holonyms, substance_holonyms, part_holonyms
|
255 |
+
- member_meronyms, substance_meronyms, part_meronyms
|
256 |
+
- topic_domains, region_domains, usage_domains
|
257 |
+
- attributes
|
258 |
+
- derivationally_related_forms
|
259 |
+
- entailments
|
260 |
+
- causes
|
261 |
+
- also_sees
|
262 |
+
- verb_groups
|
263 |
+
- similar_tos
|
264 |
+
- pertainyms
|
265 |
+
"""
|
266 |
+
|
267 |
+
__slots__ = [
|
268 |
+
"_wordnet_corpus_reader",
|
269 |
+
"_name",
|
270 |
+
"_syntactic_marker",
|
271 |
+
"_synset",
|
272 |
+
"_frame_strings",
|
273 |
+
"_frame_ids",
|
274 |
+
"_lexname_index",
|
275 |
+
"_lex_id",
|
276 |
+
"_lang",
|
277 |
+
"_key",
|
278 |
+
]
|
279 |
+
|
280 |
+
def __init__(
|
281 |
+
self,
|
282 |
+
wordnet_corpus_reader,
|
283 |
+
synset,
|
284 |
+
name,
|
285 |
+
lexname_index,
|
286 |
+
lex_id,
|
287 |
+
syntactic_marker,
|
288 |
+
):
|
289 |
+
self._wordnet_corpus_reader = wordnet_corpus_reader
|
290 |
+
self._name = name
|
291 |
+
self._syntactic_marker = syntactic_marker
|
292 |
+
self._synset = synset
|
293 |
+
self._frame_strings = []
|
294 |
+
self._frame_ids = []
|
295 |
+
self._lexname_index = lexname_index
|
296 |
+
self._lex_id = lex_id
|
297 |
+
self._lang = "eng"
|
298 |
+
|
299 |
+
self._key = None # gets set later.
|
300 |
+
|
301 |
+
def name(self):
|
302 |
+
return self._name
|
303 |
+
|
304 |
+
def syntactic_marker(self):
|
305 |
+
return self._syntactic_marker
|
306 |
+
|
307 |
+
def synset(self):
|
308 |
+
return self._synset
|
309 |
+
|
310 |
+
def frame_strings(self):
|
311 |
+
return self._frame_strings
|
312 |
+
|
313 |
+
def frame_ids(self):
|
314 |
+
return self._frame_ids
|
315 |
+
|
316 |
+
def lang(self):
|
317 |
+
return self._lang
|
318 |
+
|
319 |
+
def key(self):
|
320 |
+
return self._key
|
321 |
+
|
322 |
+
def __repr__(self):
|
323 |
+
tup = type(self).__name__, self._synset._name, self._name
|
324 |
+
return "%s('%s.%s')" % tup
|
325 |
+
|
326 |
+
def _related(self, relation_symbol):
|
327 |
+
get_synset = self._wordnet_corpus_reader.synset_from_pos_and_offset
|
328 |
+
if (self._name, relation_symbol) not in self._synset._lemma_pointers:
|
329 |
+
return []
|
330 |
+
return [
|
331 |
+
get_synset(pos, offset)._lemmas[lemma_index]
|
332 |
+
for pos, offset, lemma_index in self._synset._lemma_pointers[
|
333 |
+
self._name, relation_symbol
|
334 |
+
]
|
335 |
+
]
|
336 |
+
|
337 |
+
def count(self):
|
338 |
+
"""Return the frequency count for this Lemma"""
|
339 |
+
return self._wordnet_corpus_reader.lemma_count(self)
|
340 |
+
|
341 |
+
def antonyms(self):
|
342 |
+
return self._related("!")
|
343 |
+
|
344 |
+
def derivationally_related_forms(self):
|
345 |
+
return self._related("+")
|
346 |
+
|
347 |
+
def pertainyms(self):
|
348 |
+
return self._related("\\")
|
349 |
+
|
350 |
+
|
351 |
+
class Synset(_WordNetObject):
|
352 |
+
"""Create a Synset from a "<lemma>.<pos>.<number>" string where:
|
353 |
+
<lemma> is the word's morphological stem
|
354 |
+
<pos> is one of the module attributes ADJ, ADJ_SAT, ADV, NOUN or VERB
|
355 |
+
<number> is the sense number, counting from 0.
|
356 |
+
|
357 |
+
Synset attributes, accessible via methods with the same name:
|
358 |
+
|
359 |
+
- name: The canonical name of this synset, formed using the first lemma
|
360 |
+
of this synset. Note that this may be different from the name
|
361 |
+
passed to the constructor if that string used a different lemma to
|
362 |
+
identify the synset.
|
363 |
+
- pos: The synset's part of speech, matching one of the module level
|
364 |
+
attributes ADJ, ADJ_SAT, ADV, NOUN or VERB.
|
365 |
+
- lemmas: A list of the Lemma objects for this synset.
|
366 |
+
- definition: The definition for this synset.
|
367 |
+
- examples: A list of example strings for this synset.
|
368 |
+
- offset: The offset in the WordNet dict file of this synset.
|
369 |
+
- lexname: The name of the lexicographer file containing this synset.
|
370 |
+
|
371 |
+
Synset methods:
|
372 |
+
|
373 |
+
Synsets have the following methods for retrieving related Synsets.
|
374 |
+
They correspond to the names for the pointer symbols defined here:
|
375 |
+
https://wordnet.princeton.edu/documentation/wninput5wn
|
376 |
+
These methods all return lists of Synsets.
|
377 |
+
|
378 |
+
- hypernyms, instance_hypernyms
|
379 |
+
- hyponyms, instance_hyponyms
|
380 |
+
- member_holonyms, substance_holonyms, part_holonyms
|
381 |
+
- member_meronyms, substance_meronyms, part_meronyms
|
382 |
+
- attributes
|
383 |
+
- entailments
|
384 |
+
- causes
|
385 |
+
- also_sees
|
386 |
+
- verb_groups
|
387 |
+
- similar_tos
|
388 |
+
|
389 |
+
Additionally, Synsets support the following methods specific to the
|
390 |
+
hypernym relation:
|
391 |
+
|
392 |
+
- root_hypernyms
|
393 |
+
- common_hypernyms
|
394 |
+
- lowest_common_hypernyms
|
395 |
+
|
396 |
+
Note that Synsets do not support the following relations because
|
397 |
+
these are defined by WordNet as lexical relations:
|
398 |
+
|
399 |
+
- antonyms
|
400 |
+
- derivationally_related_forms
|
401 |
+
- pertainyms
|
402 |
+
"""
|
403 |
+
|
404 |
+
__slots__ = [
|
405 |
+
"_pos",
|
406 |
+
"_offset",
|
407 |
+
"_name",
|
408 |
+
"_frame_ids",
|
409 |
+
"_lemmas",
|
410 |
+
"_lemma_names",
|
411 |
+
"_definition",
|
412 |
+
"_examples",
|
413 |
+
"_lexname",
|
414 |
+
"_pointers",
|
415 |
+
"_lemma_pointers",
|
416 |
+
"_max_depth",
|
417 |
+
"_min_depth",
|
418 |
+
]
|
419 |
+
|
420 |
+
def __init__(self, wordnet_corpus_reader):
|
421 |
+
self._wordnet_corpus_reader = wordnet_corpus_reader
|
422 |
+
# All of these attributes get initialized by
|
423 |
+
# WordNetCorpusReader._synset_from_pos_and_line()
|
424 |
+
|
425 |
+
self._pos = None
|
426 |
+
self._offset = None
|
427 |
+
self._name = None
|
428 |
+
self._frame_ids = []
|
429 |
+
self._lemmas = []
|
430 |
+
self._lemma_names = []
|
431 |
+
self._definition = None
|
432 |
+
self._examples = []
|
433 |
+
self._lexname = None # lexicographer name
|
434 |
+
self._all_hypernyms = None
|
435 |
+
|
436 |
+
self._pointers = defaultdict(set)
|
437 |
+
self._lemma_pointers = defaultdict(list)
|
438 |
+
|
439 |
+
def pos(self):
|
440 |
+
return self._pos
|
441 |
+
|
442 |
+
def offset(self):
|
443 |
+
return self._offset
|
444 |
+
|
445 |
+
def name(self):
|
446 |
+
return self._name
|
447 |
+
|
448 |
+
def frame_ids(self):
|
449 |
+
return self._frame_ids
|
450 |
+
|
451 |
+
def _doc(self, doc_type, default, lang="eng"):
|
452 |
+
"""Helper method for Synset.definition and Synset.examples"""
|
453 |
+
corpus = self._wordnet_corpus_reader
|
454 |
+
if lang not in corpus.langs():
|
455 |
+
return None
|
456 |
+
elif lang == "eng":
|
457 |
+
return default
|
458 |
+
else:
|
459 |
+
corpus._load_lang_data(lang)
|
460 |
+
of = corpus.ss2of(self)
|
461 |
+
i = corpus.lg_attrs.index(doc_type)
|
462 |
+
if of in corpus._lang_data[lang][i]:
|
463 |
+
return corpus._lang_data[lang][i][of]
|
464 |
+
else:
|
465 |
+
return None
|
466 |
+
|
467 |
+
def definition(self, lang="eng"):
|
468 |
+
"""Return definition in specified language"""
|
469 |
+
return self._doc("def", self._definition, lang=lang)
|
470 |
+
|
471 |
+
def examples(self, lang="eng"):
|
472 |
+
"""Return examples in specified language"""
|
473 |
+
return self._doc("exe", self._examples, lang=lang)
|
474 |
+
|
475 |
+
def lexname(self):
|
476 |
+
return self._lexname
|
477 |
+
|
478 |
+
def _needs_root(self):
|
479 |
+
if self._pos == NOUN and self._wordnet_corpus_reader.get_version() != "1.6":
|
480 |
+
return False
|
481 |
+
else:
|
482 |
+
return True
|
483 |
+
|
484 |
+
def lemma_names(self, lang="eng"):
|
485 |
+
"""Return all the lemma_names associated with the synset"""
|
486 |
+
if lang == "eng":
|
487 |
+
return self._lemma_names
|
488 |
+
else:
|
489 |
+
reader = self._wordnet_corpus_reader
|
490 |
+
reader._load_lang_data(lang)
|
491 |
+
i = reader.ss2of(self)
|
492 |
+
if i in reader._lang_data[lang][0]:
|
493 |
+
return reader._lang_data[lang][0][i]
|
494 |
+
else:
|
495 |
+
return []
|
496 |
+
|
497 |
+
def lemmas(self, lang="eng"):
|
498 |
+
"""Return all the lemma objects associated with the synset"""
|
499 |
+
if lang == "eng":
|
500 |
+
return self._lemmas
|
501 |
+
elif self._name:
|
502 |
+
self._wordnet_corpus_reader._load_lang_data(lang)
|
503 |
+
lemmark = []
|
504 |
+
lemmy = self.lemma_names(lang)
|
505 |
+
for lem in lemmy:
|
506 |
+
temp = Lemma(
|
507 |
+
self._wordnet_corpus_reader,
|
508 |
+
self,
|
509 |
+
lem,
|
510 |
+
self._wordnet_corpus_reader._lexnames.index(self.lexname()),
|
511 |
+
0,
|
512 |
+
None,
|
513 |
+
)
|
514 |
+
temp._lang = lang
|
515 |
+
lemmark.append(temp)
|
516 |
+
return lemmark
|
517 |
+
|
518 |
+
def root_hypernyms(self):
|
519 |
+
"""Get the topmost hypernyms of this synset in WordNet."""
|
520 |
+
|
521 |
+
result = []
|
522 |
+
seen = set()
|
523 |
+
todo = [self]
|
524 |
+
while todo:
|
525 |
+
next_synset = todo.pop()
|
526 |
+
if next_synset not in seen:
|
527 |
+
seen.add(next_synset)
|
528 |
+
next_hypernyms = (
|
529 |
+
next_synset.hypernyms() + next_synset.instance_hypernyms()
|
530 |
+
)
|
531 |
+
if not next_hypernyms:
|
532 |
+
result.append(next_synset)
|
533 |
+
else:
|
534 |
+
todo.extend(next_hypernyms)
|
535 |
+
return result
|
536 |
+
|
537 |
+
# Simpler implementation which makes incorrect assumption that
|
538 |
+
# hypernym hierarchy is acyclic:
|
539 |
+
#
|
540 |
+
# if not self.hypernyms():
|
541 |
+
# return [self]
|
542 |
+
# else:
|
543 |
+
# return list(set(root for h in self.hypernyms()
|
544 |
+
# for root in h.root_hypernyms()))
|
545 |
+
def max_depth(self):
|
546 |
+
"""
|
547 |
+
:return: The length of the longest hypernym path from this
|
548 |
+
synset to the root.
|
549 |
+
"""
|
550 |
+
|
551 |
+
if "_max_depth" not in self.__dict__:
|
552 |
+
hypernyms = self.hypernyms() + self.instance_hypernyms()
|
553 |
+
if not hypernyms:
|
554 |
+
self._max_depth = 0
|
555 |
+
else:
|
556 |
+
self._max_depth = 1 + max(h.max_depth() for h in hypernyms)
|
557 |
+
return self._max_depth
|
558 |
+
|
559 |
+
def min_depth(self):
|
560 |
+
"""
|
561 |
+
:return: The length of the shortest hypernym path from this
|
562 |
+
synset to the root.
|
563 |
+
"""
|
564 |
+
|
565 |
+
if "_min_depth" not in self.__dict__:
|
566 |
+
hypernyms = self.hypernyms() + self.instance_hypernyms()
|
567 |
+
if not hypernyms:
|
568 |
+
self._min_depth = 0
|
569 |
+
else:
|
570 |
+
self._min_depth = 1 + min(h.min_depth() for h in hypernyms)
|
571 |
+
return self._min_depth
|
572 |
+
|
573 |
+
def closure(self, rel, depth=-1):
|
574 |
+
"""
|
575 |
+
Return the transitive closure of source under the rel
|
576 |
+
relationship, breadth-first, discarding cycles:
|
577 |
+
|
578 |
+
>>> from nltk.corpus import wordnet as wn
|
579 |
+
>>> computer = wn.synset('computer.n.01')
|
580 |
+
>>> topic = lambda s:s.topic_domains()
|
581 |
+
>>> print(list(computer.closure(topic)))
|
582 |
+
[Synset('computer_science.n.01')]
|
583 |
+
|
584 |
+
UserWarning: Discarded redundant search for Synset('computer.n.01') at depth 2
|
585 |
+
|
586 |
+
|
587 |
+
Include redundant paths (but only once), avoiding duplicate searches
|
588 |
+
(from 'animal.n.01' to 'entity.n.01'):
|
589 |
+
|
590 |
+
>>> dog = wn.synset('dog.n.01')
|
591 |
+
>>> hyp = lambda s:s.hypernyms()
|
592 |
+
>>> print(list(dog.closure(hyp)))
|
593 |
+
[Synset('canine.n.02'), Synset('domestic_animal.n.01'), Synset('carnivore.n.01'),\
|
594 |
+
Synset('animal.n.01'), Synset('placental.n.01'), Synset('organism.n.01'),\
|
595 |
+
Synset('mammal.n.01'), Synset('living_thing.n.01'), Synset('vertebrate.n.01'),\
|
596 |
+
Synset('whole.n.02'), Synset('chordate.n.01'), Synset('object.n.01'),\
|
597 |
+
Synset('physical_entity.n.01'), Synset('entity.n.01')]
|
598 |
+
|
599 |
+
UserWarning: Discarded redundant search for Synset('animal.n.01') at depth 7
|
600 |
+
"""
|
601 |
+
|
602 |
+
from nltk.util import acyclic_breadth_first
|
603 |
+
|
604 |
+
for synset in acyclic_breadth_first(self, rel, depth):
|
605 |
+
if synset != self:
|
606 |
+
yield synset
|
607 |
+
|
608 |
+
from nltk.util import acyclic_depth_first as acyclic_tree
|
609 |
+
from nltk.util import unweighted_minimum_spanning_tree as mst
|
610 |
+
|
611 |
+
# Also add this shortcut?
|
612 |
+
# from nltk.util import unweighted_minimum_spanning_digraph as umsd
|
613 |
+
|
614 |
+
def tree(self, rel, depth=-1, cut_mark=None):
|
615 |
+
"""
|
616 |
+
Return the full relation tree, including self,
|
617 |
+
discarding cycles:
|
618 |
+
|
619 |
+
>>> from nltk.corpus import wordnet as wn
|
620 |
+
>>> from pprint import pprint
|
621 |
+
>>> computer = wn.synset('computer.n.01')
|
622 |
+
>>> topic = lambda s:s.topic_domains()
|
623 |
+
>>> pprint(computer.tree(topic))
|
624 |
+
[Synset('computer.n.01'), [Synset('computer_science.n.01')]]
|
625 |
+
|
626 |
+
UserWarning: Discarded redundant search for Synset('computer.n.01') at depth -3
|
627 |
+
|
628 |
+
|
629 |
+
But keep duplicate branches (from 'animal.n.01' to 'entity.n.01'):
|
630 |
+
|
631 |
+
>>> dog = wn.synset('dog.n.01')
|
632 |
+
>>> hyp = lambda s:s.hypernyms()
|
633 |
+
>>> pprint(dog.tree(hyp))
|
634 |
+
[Synset('dog.n.01'),
|
635 |
+
[Synset('canine.n.02'),
|
636 |
+
[Synset('carnivore.n.01'),
|
637 |
+
[Synset('placental.n.01'),
|
638 |
+
[Synset('mammal.n.01'),
|
639 |
+
[Synset('vertebrate.n.01'),
|
640 |
+
[Synset('chordate.n.01'),
|
641 |
+
[Synset('animal.n.01'),
|
642 |
+
[Synset('organism.n.01'),
|
643 |
+
[Synset('living_thing.n.01'),
|
644 |
+
[Synset('whole.n.02'),
|
645 |
+
[Synset('object.n.01'),
|
646 |
+
[Synset('physical_entity.n.01'),
|
647 |
+
[Synset('entity.n.01')]]]]]]]]]]]]],
|
648 |
+
[Synset('domestic_animal.n.01'),
|
649 |
+
[Synset('animal.n.01'),
|
650 |
+
[Synset('organism.n.01'),
|
651 |
+
[Synset('living_thing.n.01'),
|
652 |
+
[Synset('whole.n.02'),
|
653 |
+
[Synset('object.n.01'),
|
654 |
+
[Synset('physical_entity.n.01'), [Synset('entity.n.01')]]]]]]]]]
|
655 |
+
"""
|
656 |
+
|
657 |
+
from nltk.util import acyclic_branches_depth_first
|
658 |
+
|
659 |
+
return acyclic_branches_depth_first(self, rel, depth, cut_mark)
|
660 |
+
|
661 |
+
def hypernym_paths(self):
|
662 |
+
"""
|
663 |
+
Get the path(s) from this synset to the root, where each path is a
|
664 |
+
list of the synset nodes traversed on the way to the root.
|
665 |
+
|
666 |
+
:return: A list of lists, where each list gives the node sequence
|
667 |
+
connecting the initial ``Synset`` node and a root node.
|
668 |
+
"""
|
669 |
+
paths = []
|
670 |
+
|
671 |
+
hypernyms = self.hypernyms() + self.instance_hypernyms()
|
672 |
+
if len(hypernyms) == 0:
|
673 |
+
paths = [[self]]
|
674 |
+
|
675 |
+
for hypernym in hypernyms:
|
676 |
+
for ancestor_list in hypernym.hypernym_paths():
|
677 |
+
ancestor_list.append(self)
|
678 |
+
paths.append(ancestor_list)
|
679 |
+
return paths
|
680 |
+
|
681 |
+
def common_hypernyms(self, other):
|
682 |
+
"""
|
683 |
+
Find all synsets that are hypernyms of this synset and the
|
684 |
+
other synset.
|
685 |
+
|
686 |
+
:type other: Synset
|
687 |
+
:param other: other input synset.
|
688 |
+
:return: The synsets that are hypernyms of both synsets.
|
689 |
+
"""
|
690 |
+
if not self._all_hypernyms:
|
691 |
+
self._all_hypernyms = {
|
692 |
+
self_synset
|
693 |
+
for self_synsets in self._iter_hypernym_lists()
|
694 |
+
for self_synset in self_synsets
|
695 |
+
}
|
696 |
+
if not other._all_hypernyms:
|
697 |
+
other._all_hypernyms = {
|
698 |
+
other_synset
|
699 |
+
for other_synsets in other._iter_hypernym_lists()
|
700 |
+
for other_synset in other_synsets
|
701 |
+
}
|
702 |
+
return list(self._all_hypernyms.intersection(other._all_hypernyms))
|
703 |
+
|
704 |
+
def lowest_common_hypernyms(self, other, simulate_root=False, use_min_depth=False):
|
705 |
+
"""
|
706 |
+
Get a list of lowest synset(s) that both synsets have as a hypernym.
|
707 |
+
When `use_min_depth == False` this means that the synset which appears
|
708 |
+
as a hypernym of both `self` and `other` with the lowest maximum depth
|
709 |
+
is returned or if there are multiple such synsets at the same depth
|
710 |
+
they are all returned
|
711 |
+
|
712 |
+
However, if `use_min_depth == True` then the synset(s) which has/have
|
713 |
+
the lowest minimum depth and appear(s) in both paths is/are returned.
|
714 |
+
|
715 |
+
By setting the use_min_depth flag to True, the behavior of NLTK2 can be
|
716 |
+
preserved. This was changed in NLTK3 to give more accurate results in a
|
717 |
+
small set of cases, generally with synsets concerning people. (eg:
|
718 |
+
'chef.n.01', 'fireman.n.01', etc.)
|
719 |
+
|
720 |
+
This method is an implementation of Ted Pedersen's "Lowest Common
|
721 |
+
Subsumer" method from the Perl Wordnet module. It can return either
|
722 |
+
"self" or "other" if they are a hypernym of the other.
|
723 |
+
|
724 |
+
:type other: Synset
|
725 |
+
:param other: other input synset
|
726 |
+
:type simulate_root: bool
|
727 |
+
:param simulate_root: The various verb taxonomies do not
|
728 |
+
share a single root which disallows this metric from working for
|
729 |
+
synsets that are not connected. This flag (False by default)
|
730 |
+
creates a fake root that connects all the taxonomies. Set it
|
731 |
+
to True to enable this behavior. For the noun taxonomy,
|
732 |
+
there is usually a default root except for WordNet version 1.6.
|
733 |
+
If you are using wordnet 1.6, a fake root will need to be added
|
734 |
+
for nouns as well.
|
735 |
+
:type use_min_depth: bool
|
736 |
+
:param use_min_depth: This setting mimics older (v2) behavior of NLTK
|
737 |
+
wordnet If True, will use the min_depth function to calculate the
|
738 |
+
lowest common hypernyms. This is known to give strange results for
|
739 |
+
some synset pairs (eg: 'chef.n.01', 'fireman.n.01') but is retained
|
740 |
+
for backwards compatibility
|
741 |
+
:return: The synsets that are the lowest common hypernyms of both
|
742 |
+
synsets
|
743 |
+
"""
|
744 |
+
synsets = self.common_hypernyms(other)
|
745 |
+
if simulate_root:
|
746 |
+
fake_synset = Synset(None)
|
747 |
+
fake_synset._name = "*ROOT*"
|
748 |
+
fake_synset.hypernyms = lambda: []
|
749 |
+
fake_synset.instance_hypernyms = lambda: []
|
750 |
+
synsets.append(fake_synset)
|
751 |
+
|
752 |
+
try:
|
753 |
+
if use_min_depth:
|
754 |
+
max_depth = max(s.min_depth() for s in synsets)
|
755 |
+
unsorted_lch = [s for s in synsets if s.min_depth() == max_depth]
|
756 |
+
else:
|
757 |
+
max_depth = max(s.max_depth() for s in synsets)
|
758 |
+
unsorted_lch = [s for s in synsets if s.max_depth() == max_depth]
|
759 |
+
return sorted(unsorted_lch)
|
760 |
+
except ValueError:
|
761 |
+
return []
|
762 |
+
|
763 |
+
def hypernym_distances(self, distance=0, simulate_root=False):
|
764 |
+
"""
|
765 |
+
Get the path(s) from this synset to the root, counting the distance
|
766 |
+
of each node from the initial node on the way. A set of
|
767 |
+
(synset, distance) tuples is returned.
|
768 |
+
|
769 |
+
:type distance: int
|
770 |
+
:param distance: the distance (number of edges) from this hypernym to
|
771 |
+
the original hypernym ``Synset`` on which this method was called.
|
772 |
+
:return: A set of ``(Synset, int)`` tuples where each ``Synset`` is
|
773 |
+
a hypernym of the first ``Synset``.
|
774 |
+
"""
|
775 |
+
distances = {(self, distance)}
|
776 |
+
for hypernym in self._hypernyms() + self._instance_hypernyms():
|
777 |
+
distances |= hypernym.hypernym_distances(distance + 1, simulate_root=False)
|
778 |
+
if simulate_root:
|
779 |
+
fake_synset = Synset(None)
|
780 |
+
fake_synset._name = "*ROOT*"
|
781 |
+
fake_synset_distance = max(distances, key=itemgetter(1))[1]
|
782 |
+
distances.add((fake_synset, fake_synset_distance + 1))
|
783 |
+
return distances
|
784 |
+
|
785 |
+
def _shortest_hypernym_paths(self, simulate_root):
|
786 |
+
if self._name == "*ROOT*":
|
787 |
+
return {self: 0}
|
788 |
+
|
789 |
+
queue = deque([(self, 0)])
|
790 |
+
path = {}
|
791 |
+
|
792 |
+
while queue:
|
793 |
+
s, depth = queue.popleft()
|
794 |
+
if s in path:
|
795 |
+
continue
|
796 |
+
path[s] = depth
|
797 |
+
|
798 |
+
depth += 1
|
799 |
+
queue.extend((hyp, depth) for hyp in s._hypernyms())
|
800 |
+
queue.extend((hyp, depth) for hyp in s._instance_hypernyms())
|
801 |
+
|
802 |
+
if simulate_root:
|
803 |
+
fake_synset = Synset(None)
|
804 |
+
fake_synset._name = "*ROOT*"
|
805 |
+
path[fake_synset] = max(path.values()) + 1
|
806 |
+
|
807 |
+
return path
|
808 |
+
|
809 |
+
def shortest_path_distance(self, other, simulate_root=False):
|
810 |
+
"""
|
811 |
+
Returns the distance of the shortest path linking the two synsets (if
|
812 |
+
one exists). For each synset, all the ancestor nodes and their
|
813 |
+
distances are recorded and compared. The ancestor node common to both
|
814 |
+
synsets that can be reached with the minimum number of traversals is
|
815 |
+
used. If no ancestor nodes are common, None is returned. If a node is
|
816 |
+
compared with itself 0 is returned.
|
817 |
+
|
818 |
+
:type other: Synset
|
819 |
+
:param other: The Synset to which the shortest path will be found.
|
820 |
+
:return: The number of edges in the shortest path connecting the two
|
821 |
+
nodes, or None if no path exists.
|
822 |
+
"""
|
823 |
+
|
824 |
+
if self == other:
|
825 |
+
return 0
|
826 |
+
|
827 |
+
dist_dict1 = self._shortest_hypernym_paths(simulate_root)
|
828 |
+
dist_dict2 = other._shortest_hypernym_paths(simulate_root)
|
829 |
+
|
830 |
+
# For each ancestor synset common to both subject synsets, find the
|
831 |
+
# connecting path length. Return the shortest of these.
|
832 |
+
|
833 |
+
inf = float("inf")
|
834 |
+
path_distance = inf
|
835 |
+
for synset, d1 in dist_dict1.items():
|
836 |
+
d2 = dist_dict2.get(synset, inf)
|
837 |
+
path_distance = min(path_distance, d1 + d2)
|
838 |
+
|
839 |
+
return None if math.isinf(path_distance) else path_distance
|
840 |
+
|
841 |
+
# interface to similarity methods
|
842 |
+
def path_similarity(self, other, verbose=False, simulate_root=True):
|
843 |
+
"""
|
844 |
+
Path Distance Similarity:
|
845 |
+
Return a score denoting how similar two word senses are, based on the
|
846 |
+
shortest path that connects the senses in the is-a (hypernym/hypnoym)
|
847 |
+
taxonomy. The score is in the range 0 to 1, except in those cases where
|
848 |
+
a path cannot be found (will only be true for verbs as there are many
|
849 |
+
distinct verb taxonomies), in which case None is returned. A score of
|
850 |
+
1 represents identity i.e. comparing a sense with itself will return 1.
|
851 |
+
|
852 |
+
:type other: Synset
|
853 |
+
:param other: The ``Synset`` that this ``Synset`` is being compared to.
|
854 |
+
:type simulate_root: bool
|
855 |
+
:param simulate_root: The various verb taxonomies do not
|
856 |
+
share a single root which disallows this metric from working for
|
857 |
+
synsets that are not connected. This flag (True by default)
|
858 |
+
creates a fake root that connects all the taxonomies. Set it
|
859 |
+
to false to disable this behavior. For the noun taxonomy,
|
860 |
+
there is usually a default root except for WordNet version 1.6.
|
861 |
+
If you are using wordnet 1.6, a fake root will be added for nouns
|
862 |
+
as well.
|
863 |
+
:return: A score denoting the similarity of the two ``Synset`` objects,
|
864 |
+
normally between 0 and 1. None is returned if no connecting path
|
865 |
+
could be found. 1 is returned if a ``Synset`` is compared with
|
866 |
+
itself.
|
867 |
+
"""
|
868 |
+
|
869 |
+
distance = self.shortest_path_distance(
|
870 |
+
other,
|
871 |
+
simulate_root=simulate_root and (self._needs_root() or other._needs_root()),
|
872 |
+
)
|
873 |
+
if distance is None or distance < 0:
|
874 |
+
return None
|
875 |
+
return 1.0 / (distance + 1)
|
876 |
+
|
877 |
+
def lch_similarity(self, other, verbose=False, simulate_root=True):
|
878 |
+
"""
|
879 |
+
Leacock Chodorow Similarity:
|
880 |
+
Return a score denoting how similar two word senses are, based on the
|
881 |
+
shortest path that connects the senses (as above) and the maximum depth
|
882 |
+
of the taxonomy in which the senses occur. The relationship is given as
|
883 |
+
-log(p/2d) where p is the shortest path length and d is the taxonomy
|
884 |
+
depth.
|
885 |
+
|
886 |
+
:type other: Synset
|
887 |
+
:param other: The ``Synset`` that this ``Synset`` is being compared to.
|
888 |
+
:type simulate_root: bool
|
889 |
+
:param simulate_root: The various verb taxonomies do not
|
890 |
+
share a single root which disallows this metric from working for
|
891 |
+
synsets that are not connected. This flag (True by default)
|
892 |
+
creates a fake root that connects all the taxonomies. Set it
|
893 |
+
to false to disable this behavior. For the noun taxonomy,
|
894 |
+
there is usually a default root except for WordNet version 1.6.
|
895 |
+
If you are using wordnet 1.6, a fake root will be added for nouns
|
896 |
+
as well.
|
897 |
+
:return: A score denoting the similarity of the two ``Synset`` objects,
|
898 |
+
normally greater than 0. None is returned if no connecting path
|
899 |
+
could be found. If a ``Synset`` is compared with itself, the
|
900 |
+
maximum score is returned, which varies depending on the taxonomy
|
901 |
+
depth.
|
902 |
+
"""
|
903 |
+
|
904 |
+
if self._pos != other._pos:
|
905 |
+
raise WordNetError(
|
906 |
+
"Computing the lch similarity requires "
|
907 |
+
"%s and %s to have the same part of speech." % (self, other)
|
908 |
+
)
|
909 |
+
|
910 |
+
need_root = self._needs_root()
|
911 |
+
|
912 |
+
if self._pos not in self._wordnet_corpus_reader._max_depth:
|
913 |
+
self._wordnet_corpus_reader._compute_max_depth(self._pos, need_root)
|
914 |
+
|
915 |
+
depth = self._wordnet_corpus_reader._max_depth[self._pos]
|
916 |
+
|
917 |
+
distance = self.shortest_path_distance(
|
918 |
+
other, simulate_root=simulate_root and need_root
|
919 |
+
)
|
920 |
+
|
921 |
+
if distance is None or distance < 0 or depth == 0:
|
922 |
+
return None
|
923 |
+
return -math.log((distance + 1) / (2.0 * depth))
|
924 |
+
|
925 |
+
def wup_similarity(self, other, verbose=False, simulate_root=True):
|
926 |
+
"""
|
927 |
+
Wu-Palmer Similarity:
|
928 |
+
Return a score denoting how similar two word senses are, based on the
|
929 |
+
depth of the two senses in the taxonomy and that of their Least Common
|
930 |
+
Subsumer (most specific ancestor node). Previously, the scores computed
|
931 |
+
by this implementation did _not_ always agree with those given by
|
932 |
+
Pedersen's Perl implementation of WordNet Similarity. However, with
|
933 |
+
the addition of the simulate_root flag (see below), the score for
|
934 |
+
verbs now almost always agree but not always for nouns.
|
935 |
+
|
936 |
+
The LCS does not necessarily feature in the shortest path connecting
|
937 |
+
the two senses, as it is by definition the common ancestor deepest in
|
938 |
+
the taxonomy, not closest to the two senses. Typically, however, it
|
939 |
+
will so feature. Where multiple candidates for the LCS exist, that
|
940 |
+
whose shortest path to the root node is the longest will be selected.
|
941 |
+
Where the LCS has multiple paths to the root, the longer path is used
|
942 |
+
for the purposes of the calculation.
|
943 |
+
|
944 |
+
:type other: Synset
|
945 |
+
:param other: The ``Synset`` that this ``Synset`` is being compared to.
|
946 |
+
:type simulate_root: bool
|
947 |
+
:param simulate_root: The various verb taxonomies do not
|
948 |
+
share a single root which disallows this metric from working for
|
949 |
+
synsets that are not connected. This flag (True by default)
|
950 |
+
creates a fake root that connects all the taxonomies. Set it
|
951 |
+
to false to disable this behavior. For the noun taxonomy,
|
952 |
+
there is usually a default root except for WordNet version 1.6.
|
953 |
+
If you are using wordnet 1.6, a fake root will be added for nouns
|
954 |
+
as well.
|
955 |
+
:return: A float score denoting the similarity of the two ``Synset``
|
956 |
+
objects, normally greater than zero. If no connecting path between
|
957 |
+
the two senses can be found, None is returned.
|
958 |
+
|
959 |
+
"""
|
960 |
+
need_root = self._needs_root() or other._needs_root()
|
961 |
+
|
962 |
+
# Note that to preserve behavior from NLTK2 we set use_min_depth=True
|
963 |
+
# It is possible that more accurate results could be obtained by
|
964 |
+
# removing this setting and it should be tested later on
|
965 |
+
subsumers = self.lowest_common_hypernyms(
|
966 |
+
other, simulate_root=simulate_root and need_root, use_min_depth=True
|
967 |
+
)
|
968 |
+
|
969 |
+
# If no LCS was found return None
|
970 |
+
if len(subsumers) == 0:
|
971 |
+
return None
|
972 |
+
|
973 |
+
subsumer = self if self in subsumers else subsumers[0]
|
974 |
+
|
975 |
+
# Get the longest path from the LCS to the root,
|
976 |
+
# including a correction:
|
977 |
+
# - add one because the calculations include both the start and end
|
978 |
+
# nodes
|
979 |
+
depth = subsumer.max_depth() + 1
|
980 |
+
|
981 |
+
# Note: No need for an additional add-one correction for non-nouns
|
982 |
+
# to account for an imaginary root node because that is now
|
983 |
+
# automatically handled by simulate_root
|
984 |
+
# if subsumer._pos != NOUN:
|
985 |
+
# depth += 1
|
986 |
+
|
987 |
+
# Get the shortest path from the LCS to each of the synsets it is
|
988 |
+
# subsuming. Add this to the LCS path length to get the path
|
989 |
+
# length from each synset to the root.
|
990 |
+
len1 = self.shortest_path_distance(
|
991 |
+
subsumer, simulate_root=simulate_root and need_root
|
992 |
+
)
|
993 |
+
len2 = other.shortest_path_distance(
|
994 |
+
subsumer, simulate_root=simulate_root and need_root
|
995 |
+
)
|
996 |
+
if len1 is None or len2 is None:
|
997 |
+
return None
|
998 |
+
len1 += depth
|
999 |
+
len2 += depth
|
1000 |
+
return (2.0 * depth) / (len1 + len2)
|
1001 |
+
|
1002 |
+
def res_similarity(self, other, ic, verbose=False):
|
1003 |
+
"""
|
1004 |
+
Resnik Similarity:
|
1005 |
+
Return a score denoting how similar two word senses are, based on the
|
1006 |
+
Information Content (IC) of the Least Common Subsumer (most specific
|
1007 |
+
ancestor node).
|
1008 |
+
|
1009 |
+
:type other: Synset
|
1010 |
+
:param other: The ``Synset`` that this ``Synset`` is being compared to.
|
1011 |
+
:type ic: dict
|
1012 |
+
:param ic: an information content object (as returned by
|
1013 |
+
``nltk.corpus.wordnet_ic.ic()``).
|
1014 |
+
:return: A float score denoting the similarity of the two ``Synset``
|
1015 |
+
objects. Synsets whose LCS is the root node of the taxonomy will
|
1016 |
+
have a score of 0 (e.g. N['dog'][0] and N['table'][0]).
|
1017 |
+
"""
|
1018 |
+
|
1019 |
+
ic1, ic2, lcs_ic = _lcs_ic(self, other, ic)
|
1020 |
+
return lcs_ic
|
1021 |
+
|
1022 |
+
def jcn_similarity(self, other, ic, verbose=False):
|
1023 |
+
"""
|
1024 |
+
Jiang-Conrath Similarity:
|
1025 |
+
Return a score denoting how similar two word senses are, based on the
|
1026 |
+
Information Content (IC) of the Least Common Subsumer (most specific
|
1027 |
+
ancestor node) and that of the two input Synsets. The relationship is
|
1028 |
+
given by the equation 1 / (IC(s1) + IC(s2) - 2 * IC(lcs)).
|
1029 |
+
|
1030 |
+
:type other: Synset
|
1031 |
+
:param other: The ``Synset`` that this ``Synset`` is being compared to.
|
1032 |
+
:type ic: dict
|
1033 |
+
:param ic: an information content object (as returned by
|
1034 |
+
``nltk.corpus.wordnet_ic.ic()``).
|
1035 |
+
:return: A float score denoting the similarity of the two ``Synset``
|
1036 |
+
objects.
|
1037 |
+
"""
|
1038 |
+
|
1039 |
+
if self == other:
|
1040 |
+
return _INF
|
1041 |
+
|
1042 |
+
ic1, ic2, lcs_ic = _lcs_ic(self, other, ic)
|
1043 |
+
|
1044 |
+
# If either of the input synsets are the root synset, or have a
|
1045 |
+
# frequency of 0 (sparse data problem), return 0.
|
1046 |
+
if ic1 == 0 or ic2 == 0:
|
1047 |
+
return 0
|
1048 |
+
|
1049 |
+
ic_difference = ic1 + ic2 - 2 * lcs_ic
|
1050 |
+
|
1051 |
+
if ic_difference == 0:
|
1052 |
+
return _INF
|
1053 |
+
|
1054 |
+
return 1 / ic_difference
|
1055 |
+
|
1056 |
+
def lin_similarity(self, other, ic, verbose=False):
|
1057 |
+
"""
|
1058 |
+
Lin Similarity:
|
1059 |
+
Return a score denoting how similar two word senses are, based on the
|
1060 |
+
Information Content (IC) of the Least Common Subsumer (most specific
|
1061 |
+
ancestor node) and that of the two input Synsets. The relationship is
|
1062 |
+
given by the equation 2 * IC(lcs) / (IC(s1) + IC(s2)).
|
1063 |
+
|
1064 |
+
:type other: Synset
|
1065 |
+
:param other: The ``Synset`` that this ``Synset`` is being compared to.
|
1066 |
+
:type ic: dict
|
1067 |
+
:param ic: an information content object (as returned by
|
1068 |
+
``nltk.corpus.wordnet_ic.ic()``).
|
1069 |
+
:return: A float score denoting the similarity of the two ``Synset``
|
1070 |
+
objects, in the range 0 to 1.
|
1071 |
+
"""
|
1072 |
+
|
1073 |
+
ic1, ic2, lcs_ic = _lcs_ic(self, other, ic)
|
1074 |
+
return (2.0 * lcs_ic) / (ic1 + ic2)
|
1075 |
+
|
1076 |
+
def _iter_hypernym_lists(self):
|
1077 |
+
"""
|
1078 |
+
:return: An iterator over ``Synset`` objects that are either proper
|
1079 |
+
hypernyms or instance of hypernyms of the synset.
|
1080 |
+
"""
|
1081 |
+
todo = [self]
|
1082 |
+
seen = set()
|
1083 |
+
while todo:
|
1084 |
+
for synset in todo:
|
1085 |
+
seen.add(synset)
|
1086 |
+
yield todo
|
1087 |
+
todo = [
|
1088 |
+
hypernym
|
1089 |
+
for synset in todo
|
1090 |
+
for hypernym in (synset.hypernyms() + synset.instance_hypernyms())
|
1091 |
+
if hypernym not in seen
|
1092 |
+
]
|
1093 |
+
|
1094 |
+
def __repr__(self):
|
1095 |
+
return f"{type(self).__name__}('{self._name}')"
|
1096 |
+
|
1097 |
+
def _related(self, relation_symbol, sort=True):
|
1098 |
+
get_synset = self._wordnet_corpus_reader.synset_from_pos_and_offset
|
1099 |
+
if relation_symbol not in self._pointers:
|
1100 |
+
return []
|
1101 |
+
pointer_tuples = self._pointers[relation_symbol]
|
1102 |
+
r = [get_synset(pos, offset) for pos, offset in pointer_tuples]
|
1103 |
+
if sort:
|
1104 |
+
r.sort()
|
1105 |
+
return r
|
1106 |
+
|
1107 |
+
|
1108 |
+
######################################################################
|
1109 |
+
# WordNet Corpus Reader
|
1110 |
+
######################################################################
|
1111 |
+
|
1112 |
+
|
1113 |
+
class WordNetCorpusReader(CorpusReader):
|
1114 |
+
"""
|
1115 |
+
A corpus reader used to access wordnet or its variants.
|
1116 |
+
"""
|
1117 |
+
|
1118 |
+
_ENCODING = "utf8"
|
1119 |
+
|
1120 |
+
# { Part-of-speech constants
|
1121 |
+
ADJ, ADJ_SAT, ADV, NOUN, VERB = "a", "s", "r", "n", "v"
|
1122 |
+
# }
|
1123 |
+
|
1124 |
+
# { Filename constants
|
1125 |
+
_FILEMAP = {ADJ: "adj", ADV: "adv", NOUN: "noun", VERB: "verb"}
|
1126 |
+
# }
|
1127 |
+
|
1128 |
+
# { Part of speech constants
|
1129 |
+
_pos_numbers = {NOUN: 1, VERB: 2, ADJ: 3, ADV: 4, ADJ_SAT: 5}
|
1130 |
+
_pos_names = dict(tup[::-1] for tup in _pos_numbers.items())
|
1131 |
+
# }
|
1132 |
+
|
1133 |
+
#: A list of file identifiers for all the fileids used by this
|
1134 |
+
#: corpus reader.
|
1135 |
+
_FILES = (
|
1136 |
+
"cntlist.rev",
|
1137 |
+
"lexnames",
|
1138 |
+
"index.sense",
|
1139 |
+
"index.adj",
|
1140 |
+
"index.adv",
|
1141 |
+
"index.noun",
|
1142 |
+
"index.verb",
|
1143 |
+
"data.adj",
|
1144 |
+
"data.adv",
|
1145 |
+
"data.noun",
|
1146 |
+
"data.verb",
|
1147 |
+
"adj.exc",
|
1148 |
+
"adv.exc",
|
1149 |
+
"noun.exc",
|
1150 |
+
"verb.exc",
|
1151 |
+
)
|
1152 |
+
|
1153 |
+
def __init__(self, root, omw_reader):
|
1154 |
+
"""
|
1155 |
+
Construct a new wordnet corpus reader, with the given root
|
1156 |
+
directory.
|
1157 |
+
"""
|
1158 |
+
|
1159 |
+
super().__init__(root, self._FILES, encoding=self._ENCODING)
|
1160 |
+
|
1161 |
+
# A index that provides the file offset
|
1162 |
+
# Map from lemma -> pos -> synset_index -> offset
|
1163 |
+
self._lemma_pos_offset_map = defaultdict(dict)
|
1164 |
+
|
1165 |
+
# A cache so we don't have to reconstruct synsets
|
1166 |
+
# Map from pos -> offset -> synset
|
1167 |
+
self._synset_offset_cache = defaultdict(dict)
|
1168 |
+
|
1169 |
+
# A lookup for the maximum depth of each part of speech. Useful for
|
1170 |
+
# the lch similarity metric.
|
1171 |
+
self._max_depth = defaultdict(dict)
|
1172 |
+
|
1173 |
+
# Corpus reader containing omw data.
|
1174 |
+
self._omw_reader = omw_reader
|
1175 |
+
|
1176 |
+
# Corpus reader containing extended_omw data.
|
1177 |
+
self._exomw_reader = None
|
1178 |
+
|
1179 |
+
self.provenances = defaultdict(str)
|
1180 |
+
self.provenances["eng"] = ""
|
1181 |
+
|
1182 |
+
if self._omw_reader is None:
|
1183 |
+
warnings.warn(
|
1184 |
+
"The multilingual functions are not available with this Wordnet version"
|
1185 |
+
)
|
1186 |
+
|
1187 |
+
self.omw_langs = set()
|
1188 |
+
|
1189 |
+
# A cache to store the wordnet data of multiple languages
|
1190 |
+
self._lang_data = defaultdict(list)
|
1191 |
+
|
1192 |
+
self._data_file_map = {}
|
1193 |
+
self._exception_map = {}
|
1194 |
+
self._lexnames = []
|
1195 |
+
self._key_count_file = None
|
1196 |
+
self._key_synset_file = None
|
1197 |
+
|
1198 |
+
# Load the lexnames
|
1199 |
+
with self.open("lexnames") as fp:
|
1200 |
+
for i, line in enumerate(fp):
|
1201 |
+
index, lexname, _ = line.split()
|
1202 |
+
assert int(index) == i
|
1203 |
+
self._lexnames.append(lexname)
|
1204 |
+
|
1205 |
+
# Load the indices for lemmas and synset offsets
|
1206 |
+
self._load_lemma_pos_offset_map()
|
1207 |
+
|
1208 |
+
# load the exception file data into memory
|
1209 |
+
self._load_exception_map()
|
1210 |
+
|
1211 |
+
self.nomap = []
|
1212 |
+
self.splits = {}
|
1213 |
+
|
1214 |
+
# map from WordNet 3.0 for OMW data
|
1215 |
+
self.map30 = self.map_wn30()
|
1216 |
+
|
1217 |
+
# Language data attributes
|
1218 |
+
self.lg_attrs = ["lemma", "none", "def", "exe"]
|
1219 |
+
|
1220 |
+
def index_sense(self, version=None):
|
1221 |
+
"""Read sense key to synset id mapping from index.sense file in corpus directory"""
|
1222 |
+
fn = "index.sense"
|
1223 |
+
if version:
|
1224 |
+
from nltk.corpus import CorpusReader, LazyCorpusLoader
|
1225 |
+
|
1226 |
+
ixreader = LazyCorpusLoader(version, CorpusReader, r".*/" + fn)
|
1227 |
+
else:
|
1228 |
+
ixreader = self
|
1229 |
+
with ixreader.open(fn) as fp:
|
1230 |
+
sensekey_map = {}
|
1231 |
+
for line in fp:
|
1232 |
+
fields = line.strip().split()
|
1233 |
+
sensekey = fields[0]
|
1234 |
+
pos = self._pos_names[int(sensekey.split("%")[1].split(":")[0])]
|
1235 |
+
sensekey_map[sensekey] = f"{fields[1]}-{pos}"
|
1236 |
+
return sensekey_map
|
1237 |
+
|
1238 |
+
def map_to_many(self):
|
1239 |
+
sensekey_map1 = self.index_sense("wordnet")
|
1240 |
+
sensekey_map2 = self.index_sense()
|
1241 |
+
synset_to_many = {}
|
1242 |
+
for synsetid in set(sensekey_map1.values()):
|
1243 |
+
synset_to_many[synsetid] = []
|
1244 |
+
for sensekey in set(sensekey_map1.keys()).intersection(
|
1245 |
+
set(sensekey_map2.keys())
|
1246 |
+
):
|
1247 |
+
source = sensekey_map1[sensekey]
|
1248 |
+
target = sensekey_map2[sensekey]
|
1249 |
+
synset_to_many[source].append(target)
|
1250 |
+
return synset_to_many
|
1251 |
+
|
1252 |
+
def map_to_one(self):
|
1253 |
+
synset_to_many = self.map_to_many()
|
1254 |
+
synset_to_one = {}
|
1255 |
+
for source in synset_to_many:
|
1256 |
+
candidates_bag = synset_to_many[source]
|
1257 |
+
if candidates_bag:
|
1258 |
+
candidates_set = set(candidates_bag)
|
1259 |
+
if len(candidates_set) == 1:
|
1260 |
+
target = candidates_bag[0]
|
1261 |
+
else:
|
1262 |
+
counts = []
|
1263 |
+
for candidate in candidates_set:
|
1264 |
+
counts.append((candidates_bag.count(candidate), candidate))
|
1265 |
+
self.splits[source] = counts
|
1266 |
+
target = max(counts)[1]
|
1267 |
+
synset_to_one[source] = target
|
1268 |
+
if source[-1] == "s":
|
1269 |
+
# Add a mapping from "a" to target for applications like omw,
|
1270 |
+
# where only Lithuanian and Slovak use the "s" ss_type.
|
1271 |
+
synset_to_one[f"{source[:-1]}a"] = target
|
1272 |
+
else:
|
1273 |
+
self.nomap.append(source)
|
1274 |
+
return synset_to_one
|
1275 |
+
|
1276 |
+
def map_wn30(self):
|
1277 |
+
"""Mapping from Wordnet 3.0 to currently loaded Wordnet version"""
|
1278 |
+
if self.get_version() == "3.0":
|
1279 |
+
return None
|
1280 |
+
else:
|
1281 |
+
return self.map_to_one()
|
1282 |
+
|
1283 |
+
# Open Multilingual WordNet functions, contributed by
|
1284 |
+
# Nasruddin A’aidil Shari, Sim Wei Ying Geraldine, and Soe Lynn
|
1285 |
+
|
1286 |
+
def of2ss(self, of):
|
1287 |
+
"""take an id and return the synsets"""
|
1288 |
+
return self.synset_from_pos_and_offset(of[-1], int(of[:8]))
|
1289 |
+
|
1290 |
+
def ss2of(self, ss):
|
1291 |
+
"""return the ID of the synset"""
|
1292 |
+
if ss:
|
1293 |
+
return f"{ss.offset():08d}-{ss.pos()}"
|
1294 |
+
|
1295 |
+
def _load_lang_data(self, lang):
|
1296 |
+
"""load the wordnet data of the requested language from the file to
|
1297 |
+
the cache, _lang_data"""
|
1298 |
+
|
1299 |
+
if lang in self._lang_data:
|
1300 |
+
return
|
1301 |
+
|
1302 |
+
if self._omw_reader and not self.omw_langs:
|
1303 |
+
self.add_omw()
|
1304 |
+
|
1305 |
+
if lang not in self.langs():
|
1306 |
+
raise WordNetError("Language is not supported.")
|
1307 |
+
|
1308 |
+
if self._exomw_reader and lang not in self.omw_langs:
|
1309 |
+
reader = self._exomw_reader
|
1310 |
+
else:
|
1311 |
+
reader = self._omw_reader
|
1312 |
+
|
1313 |
+
prov = self.provenances[lang]
|
1314 |
+
if prov in ["cldr", "wikt"]:
|
1315 |
+
prov2 = prov
|
1316 |
+
else:
|
1317 |
+
prov2 = "data"
|
1318 |
+
|
1319 |
+
with reader.open(f"{prov}/wn-{prov2}-{lang.split('_')[0]}.tab") as fp:
|
1320 |
+
self.custom_lemmas(fp, lang)
|
1321 |
+
self.disable_custom_lemmas(lang)
|
1322 |
+
|
1323 |
+
def add_provs(self, reader):
|
1324 |
+
"""Add languages from Multilingual Wordnet to the provenance dictionary"""
|
1325 |
+
fileids = reader.fileids()
|
1326 |
+
for fileid in fileids:
|
1327 |
+
prov, langfile = os.path.split(fileid)
|
1328 |
+
file_name, file_extension = os.path.splitext(langfile)
|
1329 |
+
if file_extension == ".tab":
|
1330 |
+
lang = file_name.split("-")[-1]
|
1331 |
+
if lang in self.provenances or prov in ["cldr", "wikt"]:
|
1332 |
+
# We already have another resource for this lang,
|
1333 |
+
# so we need to further specify the lang id:
|
1334 |
+
lang = f"{lang}_{prov}"
|
1335 |
+
self.provenances[lang] = prov
|
1336 |
+
|
1337 |
+
def add_omw(self):
|
1338 |
+
self.add_provs(self._omw_reader)
|
1339 |
+
self.omw_langs = set(self.provenances.keys())
|
1340 |
+
|
1341 |
+
def add_exomw(self):
|
1342 |
+
"""
|
1343 |
+
Add languages from Extended OMW
|
1344 |
+
|
1345 |
+
>>> import nltk
|
1346 |
+
>>> from nltk.corpus import wordnet as wn
|
1347 |
+
>>> wn.add_exomw()
|
1348 |
+
>>> print(wn.synset('intrinsically.r.01').lemmas(lang="eng_wikt"))
|
1349 |
+
[Lemma('intrinsically.r.01.per_se'), Lemma('intrinsically.r.01.as_such')]
|
1350 |
+
"""
|
1351 |
+
from nltk.corpus import extended_omw
|
1352 |
+
|
1353 |
+
self.add_omw()
|
1354 |
+
self._exomw_reader = extended_omw
|
1355 |
+
self.add_provs(self._exomw_reader)
|
1356 |
+
|
1357 |
+
def langs(self):
|
1358 |
+
"""return a list of languages supported by Multilingual Wordnet"""
|
1359 |
+
return list(self.provenances.keys())
|
1360 |
+
|
1361 |
+
def _load_lemma_pos_offset_map(self):
|
1362 |
+
for suffix in self._FILEMAP.values():
|
1363 |
+
|
1364 |
+
# parse each line of the file (ignoring comment lines)
|
1365 |
+
with self.open("index.%s" % suffix) as fp:
|
1366 |
+
for i, line in enumerate(fp):
|
1367 |
+
if line.startswith(" "):
|
1368 |
+
continue
|
1369 |
+
|
1370 |
+
_iter = iter(line.split())
|
1371 |
+
|
1372 |
+
def _next_token():
|
1373 |
+
return next(_iter)
|
1374 |
+
|
1375 |
+
try:
|
1376 |
+
|
1377 |
+
# get the lemma and part-of-speech
|
1378 |
+
lemma = _next_token()
|
1379 |
+
pos = _next_token()
|
1380 |
+
|
1381 |
+
# get the number of synsets for this lemma
|
1382 |
+
n_synsets = int(_next_token())
|
1383 |
+
assert n_synsets > 0
|
1384 |
+
|
1385 |
+
# get and ignore the pointer symbols for all synsets of
|
1386 |
+
# this lemma
|
1387 |
+
n_pointers = int(_next_token())
|
1388 |
+
[_next_token() for _ in range(n_pointers)]
|
1389 |
+
|
1390 |
+
# same as number of synsets
|
1391 |
+
n_senses = int(_next_token())
|
1392 |
+
assert n_synsets == n_senses
|
1393 |
+
|
1394 |
+
# get and ignore number of senses ranked according to
|
1395 |
+
# frequency
|
1396 |
+
_next_token()
|
1397 |
+
|
1398 |
+
# get synset offsets
|
1399 |
+
synset_offsets = [int(_next_token()) for _ in range(n_synsets)]
|
1400 |
+
|
1401 |
+
# raise more informative error with file name and line number
|
1402 |
+
except (AssertionError, ValueError) as e:
|
1403 |
+
tup = ("index.%s" % suffix), (i + 1), e
|
1404 |
+
raise WordNetError("file %s, line %i: %s" % tup) from e
|
1405 |
+
|
1406 |
+
# map lemmas and parts of speech to synsets
|
1407 |
+
self._lemma_pos_offset_map[lemma][pos] = synset_offsets
|
1408 |
+
if pos == ADJ:
|
1409 |
+
self._lemma_pos_offset_map[lemma][ADJ_SAT] = synset_offsets
|
1410 |
+
|
1411 |
+
def _load_exception_map(self):
|
1412 |
+
# load the exception file data into memory
|
1413 |
+
for pos, suffix in self._FILEMAP.items():
|
1414 |
+
self._exception_map[pos] = {}
|
1415 |
+
with self.open("%s.exc" % suffix) as fp:
|
1416 |
+
for line in fp:
|
1417 |
+
terms = line.split()
|
1418 |
+
self._exception_map[pos][terms[0]] = terms[1:]
|
1419 |
+
self._exception_map[ADJ_SAT] = self._exception_map[ADJ]
|
1420 |
+
|
1421 |
+
def _compute_max_depth(self, pos, simulate_root):
|
1422 |
+
"""
|
1423 |
+
Compute the max depth for the given part of speech. This is
|
1424 |
+
used by the lch similarity metric.
|
1425 |
+
"""
|
1426 |
+
depth = 0
|
1427 |
+
for ii in self.all_synsets(pos):
|
1428 |
+
try:
|
1429 |
+
depth = max(depth, ii.max_depth())
|
1430 |
+
except RuntimeError:
|
1431 |
+
print(ii)
|
1432 |
+
if simulate_root:
|
1433 |
+
depth += 1
|
1434 |
+
self._max_depth[pos] = depth
|
1435 |
+
|
1436 |
+
def get_version(self):
|
1437 |
+
fh = self._data_file(ADJ)
|
1438 |
+
fh.seek(0)
|
1439 |
+
for line in fh:
|
1440 |
+
match = re.search(r"Word[nN]et (\d+|\d+\.\d+) Copyright", line)
|
1441 |
+
if match is not None:
|
1442 |
+
version = match.group(1)
|
1443 |
+
fh.seek(0)
|
1444 |
+
return version
|
1445 |
+
|
1446 |
+
#############################################################
|
1447 |
+
# Loading Lemmas
|
1448 |
+
#############################################################
|
1449 |
+
|
1450 |
+
def lemma(self, name, lang="eng"):
|
1451 |
+
"""Return lemma object that matches the name"""
|
1452 |
+
# cannot simply split on first '.',
|
1453 |
+
# e.g.: '.45_caliber.a.01..45_caliber'
|
1454 |
+
separator = SENSENUM_RE.search(name).end()
|
1455 |
+
|
1456 |
+
synset_name, lemma_name = name[: separator - 1], name[separator:]
|
1457 |
+
|
1458 |
+
synset = self.synset(synset_name)
|
1459 |
+
for lemma in synset.lemmas(lang):
|
1460 |
+
if lemma._name == lemma_name:
|
1461 |
+
return lemma
|
1462 |
+
raise WordNetError(f"No lemma {lemma_name!r} in {synset_name!r}")
|
1463 |
+
|
1464 |
+
def lemma_from_key(self, key):
|
1465 |
+
# Keys are case sensitive and always lower-case
|
1466 |
+
key = key.lower()
|
1467 |
+
|
1468 |
+
lemma_name, lex_sense = key.split("%")
|
1469 |
+
pos_number, lexname_index, lex_id, _, _ = lex_sense.split(":")
|
1470 |
+
pos = self._pos_names[int(pos_number)]
|
1471 |
+
|
1472 |
+
# open the key -> synset file if necessary
|
1473 |
+
if self._key_synset_file is None:
|
1474 |
+
self._key_synset_file = self.open("index.sense")
|
1475 |
+
|
1476 |
+
# Find the synset for the lemma.
|
1477 |
+
synset_line = _binary_search_file(self._key_synset_file, key)
|
1478 |
+
if not synset_line:
|
1479 |
+
raise WordNetError("No synset found for key %r" % key)
|
1480 |
+
offset = int(synset_line.split()[1])
|
1481 |
+
synset = self.synset_from_pos_and_offset(pos, offset)
|
1482 |
+
# return the corresponding lemma
|
1483 |
+
for lemma in synset._lemmas:
|
1484 |
+
if lemma._key == key:
|
1485 |
+
return lemma
|
1486 |
+
raise WordNetError("No lemma found for for key %r" % key)
|
1487 |
+
|
1488 |
+
#############################################################
|
1489 |
+
# Loading Synsets
|
1490 |
+
#############################################################
|
1491 |
+
def synset(self, name):
|
1492 |
+
# split name into lemma, part of speech and synset number
|
1493 |
+
lemma, pos, synset_index_str = name.lower().rsplit(".", 2)
|
1494 |
+
synset_index = int(synset_index_str) - 1
|
1495 |
+
|
1496 |
+
# get the offset for this synset
|
1497 |
+
try:
|
1498 |
+
offset = self._lemma_pos_offset_map[lemma][pos][synset_index]
|
1499 |
+
except KeyError as e:
|
1500 |
+
raise WordNetError(f"No lemma {lemma!r} with part of speech {pos!r}") from e
|
1501 |
+
except IndexError as e:
|
1502 |
+
n_senses = len(self._lemma_pos_offset_map[lemma][pos])
|
1503 |
+
raise WordNetError(
|
1504 |
+
f"Lemma {lemma!r} with part of speech {pos!r} only "
|
1505 |
+
f"has {n_senses} {'sense' if n_senses == 1 else 'senses'}"
|
1506 |
+
) from e
|
1507 |
+
|
1508 |
+
# load synset information from the appropriate file
|
1509 |
+
synset = self.synset_from_pos_and_offset(pos, offset)
|
1510 |
+
|
1511 |
+
# some basic sanity checks on loaded attributes
|
1512 |
+
if pos == "s" and synset._pos == "a":
|
1513 |
+
message = (
|
1514 |
+
"Adjective satellite requested but only plain "
|
1515 |
+
"adjective found for lemma %r"
|
1516 |
+
)
|
1517 |
+
raise WordNetError(message % lemma)
|
1518 |
+
assert synset._pos == pos or (pos == "a" and synset._pos == "s")
|
1519 |
+
|
1520 |
+
# Return the synset object.
|
1521 |
+
return synset
|
1522 |
+
|
1523 |
+
def _data_file(self, pos):
|
1524 |
+
"""
|
1525 |
+
Return an open file pointer for the data file for the given
|
1526 |
+
part of speech.
|
1527 |
+
"""
|
1528 |
+
if pos == ADJ_SAT:
|
1529 |
+
pos = ADJ
|
1530 |
+
if self._data_file_map.get(pos) is None:
|
1531 |
+
fileid = "data.%s" % self._FILEMAP[pos]
|
1532 |
+
self._data_file_map[pos] = self.open(fileid)
|
1533 |
+
return self._data_file_map[pos]
|
1534 |
+
|
1535 |
+
def synset_from_pos_and_offset(self, pos, offset):
|
1536 |
+
"""
|
1537 |
+
- pos: The synset's part of speech, matching one of the module level
|
1538 |
+
attributes ADJ, ADJ_SAT, ADV, NOUN or VERB ('a', 's', 'r', 'n', or 'v').
|
1539 |
+
- offset: The byte offset of this synset in the WordNet dict file
|
1540 |
+
for this pos.
|
1541 |
+
|
1542 |
+
>>> from nltk.corpus import wordnet as wn
|
1543 |
+
>>> print(wn.synset_from_pos_and_offset('n', 1740))
|
1544 |
+
Synset('entity.n.01')
|
1545 |
+
"""
|
1546 |
+
# Check to see if the synset is in the cache
|
1547 |
+
if offset in self._synset_offset_cache[pos]:
|
1548 |
+
return self._synset_offset_cache[pos][offset]
|
1549 |
+
|
1550 |
+
data_file = self._data_file(pos)
|
1551 |
+
data_file.seek(offset)
|
1552 |
+
data_file_line = data_file.readline()
|
1553 |
+
# If valid, the offset equals the 8-digit 0-padded integer found at the start of the line:
|
1554 |
+
line_offset = data_file_line[:8]
|
1555 |
+
if (
|
1556 |
+
line_offset.isalnum()
|
1557 |
+
and line_offset == f"{'0'*(8-len(str(offset)))}{str(offset)}"
|
1558 |
+
):
|
1559 |
+
synset = self._synset_from_pos_and_line(pos, data_file_line)
|
1560 |
+
assert synset._offset == offset
|
1561 |
+
self._synset_offset_cache[pos][offset] = synset
|
1562 |
+
else:
|
1563 |
+
synset = None
|
1564 |
+
warnings.warn(f"No WordNet synset found for pos={pos} at offset={offset}.")
|
1565 |
+
data_file.seek(0)
|
1566 |
+
return synset
|
1567 |
+
|
1568 |
+
@deprecated("Use public method synset_from_pos_and_offset() instead")
|
1569 |
+
def _synset_from_pos_and_offset(self, *args, **kwargs):
|
1570 |
+
"""
|
1571 |
+
Hack to help people like the readers of
|
1572 |
+
https://stackoverflow.com/a/27145655/1709587
|
1573 |
+
who were using this function before it was officially a public method
|
1574 |
+
"""
|
1575 |
+
return self.synset_from_pos_and_offset(*args, **kwargs)
|
1576 |
+
|
1577 |
+
def _synset_from_pos_and_line(self, pos, data_file_line):
|
1578 |
+
# Construct a new (empty) synset.
|
1579 |
+
synset = Synset(self)
|
1580 |
+
|
1581 |
+
# parse the entry for this synset
|
1582 |
+
try:
|
1583 |
+
|
1584 |
+
# parse out the definitions and examples from the gloss
|
1585 |
+
columns_str, gloss = data_file_line.strip().split("|")
|
1586 |
+
definition = re.sub(r"[\"].*?[\"]", "", gloss).strip()
|
1587 |
+
examples = re.findall(r'"([^"]*)"', gloss)
|
1588 |
+
for example in examples:
|
1589 |
+
synset._examples.append(example)
|
1590 |
+
|
1591 |
+
synset._definition = definition.strip("; ")
|
1592 |
+
|
1593 |
+
# split the other info into fields
|
1594 |
+
_iter = iter(columns_str.split())
|
1595 |
+
|
1596 |
+
def _next_token():
|
1597 |
+
return next(_iter)
|
1598 |
+
|
1599 |
+
# get the offset
|
1600 |
+
synset._offset = int(_next_token())
|
1601 |
+
|
1602 |
+
# determine the lexicographer file name
|
1603 |
+
lexname_index = int(_next_token())
|
1604 |
+
synset._lexname = self._lexnames[lexname_index]
|
1605 |
+
|
1606 |
+
# get the part of speech
|
1607 |
+
synset._pos = _next_token()
|
1608 |
+
|
1609 |
+
# create Lemma objects for each lemma
|
1610 |
+
n_lemmas = int(_next_token(), 16)
|
1611 |
+
for _ in range(n_lemmas):
|
1612 |
+
# get the lemma name
|
1613 |
+
lemma_name = _next_token()
|
1614 |
+
# get the lex_id (used for sense_keys)
|
1615 |
+
lex_id = int(_next_token(), 16)
|
1616 |
+
# If the lemma has a syntactic marker, extract it.
|
1617 |
+
m = re.match(r"(.*?)(\(.*\))?$", lemma_name)
|
1618 |
+
lemma_name, syn_mark = m.groups()
|
1619 |
+
# create the lemma object
|
1620 |
+
lemma = Lemma(self, synset, lemma_name, lexname_index, lex_id, syn_mark)
|
1621 |
+
synset._lemmas.append(lemma)
|
1622 |
+
synset._lemma_names.append(lemma._name)
|
1623 |
+
|
1624 |
+
# collect the pointer tuples
|
1625 |
+
n_pointers = int(_next_token())
|
1626 |
+
for _ in range(n_pointers):
|
1627 |
+
symbol = _next_token()
|
1628 |
+
offset = int(_next_token())
|
1629 |
+
pos = _next_token()
|
1630 |
+
lemma_ids_str = _next_token()
|
1631 |
+
if lemma_ids_str == "0000":
|
1632 |
+
synset._pointers[symbol].add((pos, offset))
|
1633 |
+
else:
|
1634 |
+
source_index = int(lemma_ids_str[:2], 16) - 1
|
1635 |
+
target_index = int(lemma_ids_str[2:], 16) - 1
|
1636 |
+
source_lemma_name = synset._lemmas[source_index]._name
|
1637 |
+
lemma_pointers = synset._lemma_pointers
|
1638 |
+
tups = lemma_pointers[source_lemma_name, symbol]
|
1639 |
+
tups.append((pos, offset, target_index))
|
1640 |
+
|
1641 |
+
# read the verb frames
|
1642 |
+
try:
|
1643 |
+
frame_count = int(_next_token())
|
1644 |
+
except StopIteration:
|
1645 |
+
pass
|
1646 |
+
else:
|
1647 |
+
for _ in range(frame_count):
|
1648 |
+
# read the plus sign
|
1649 |
+
plus = _next_token()
|
1650 |
+
assert plus == "+"
|
1651 |
+
# read the frame and lemma number
|
1652 |
+
frame_number = int(_next_token())
|
1653 |
+
frame_string_fmt = VERB_FRAME_STRINGS[frame_number]
|
1654 |
+
lemma_number = int(_next_token(), 16)
|
1655 |
+
# lemma number of 00 means all words in the synset
|
1656 |
+
if lemma_number == 0:
|
1657 |
+
synset._frame_ids.append(frame_number)
|
1658 |
+
for lemma in synset._lemmas:
|
1659 |
+
lemma._frame_ids.append(frame_number)
|
1660 |
+
lemma._frame_strings.append(frame_string_fmt % lemma._name)
|
1661 |
+
# only a specific word in the synset
|
1662 |
+
else:
|
1663 |
+
lemma = synset._lemmas[lemma_number - 1]
|
1664 |
+
lemma._frame_ids.append(frame_number)
|
1665 |
+
lemma._frame_strings.append(frame_string_fmt % lemma._name)
|
1666 |
+
|
1667 |
+
# raise a more informative error with line text
|
1668 |
+
except ValueError as e:
|
1669 |
+
raise WordNetError(f"line {data_file_line!r}: {e}") from e
|
1670 |
+
|
1671 |
+
# set sense keys for Lemma objects - note that this has to be
|
1672 |
+
# done afterwards so that the relations are available
|
1673 |
+
for lemma in synset._lemmas:
|
1674 |
+
if synset._pos == ADJ_SAT:
|
1675 |
+
head_lemma = synset.similar_tos()[0]._lemmas[0]
|
1676 |
+
head_name = head_lemma._name
|
1677 |
+
head_id = "%02d" % head_lemma._lex_id
|
1678 |
+
else:
|
1679 |
+
head_name = head_id = ""
|
1680 |
+
tup = (
|
1681 |
+
lemma._name,
|
1682 |
+
WordNetCorpusReader._pos_numbers[synset._pos],
|
1683 |
+
lemma._lexname_index,
|
1684 |
+
lemma._lex_id,
|
1685 |
+
head_name,
|
1686 |
+
head_id,
|
1687 |
+
)
|
1688 |
+
lemma._key = ("%s%%%d:%02d:%02d:%s:%s" % tup).lower()
|
1689 |
+
|
1690 |
+
# the canonical name is based on the first lemma
|
1691 |
+
lemma_name = synset._lemmas[0]._name.lower()
|
1692 |
+
offsets = self._lemma_pos_offset_map[lemma_name][synset._pos]
|
1693 |
+
sense_index = offsets.index(synset._offset)
|
1694 |
+
tup = lemma_name, synset._pos, sense_index + 1
|
1695 |
+
synset._name = "%s.%s.%02i" % tup
|
1696 |
+
|
1697 |
+
return synset
|
1698 |
+
|
1699 |
+
def synset_from_sense_key(self, sense_key):
|
1700 |
+
"""
|
1701 |
+
Retrieves synset based on a given sense_key. Sense keys can be
|
1702 |
+
obtained from lemma.key()
|
1703 |
+
|
1704 |
+
From https://wordnet.princeton.edu/documentation/senseidx5wn:
|
1705 |
+
A sense_key is represented as::
|
1706 |
+
|
1707 |
+
lemma % lex_sense (e.g. 'dog%1:18:01::')
|
1708 |
+
|
1709 |
+
where lex_sense is encoded as::
|
1710 |
+
|
1711 |
+
ss_type:lex_filenum:lex_id:head_word:head_id
|
1712 |
+
|
1713 |
+
:lemma: ASCII text of word/collocation, in lower case
|
1714 |
+
:ss_type: synset type for the sense (1 digit int)
|
1715 |
+
The synset type is encoded as follows::
|
1716 |
+
|
1717 |
+
1 NOUN
|
1718 |
+
2 VERB
|
1719 |
+
3 ADJECTIVE
|
1720 |
+
4 ADVERB
|
1721 |
+
5 ADJECTIVE SATELLITE
|
1722 |
+
:lex_filenum: name of lexicographer file containing the synset for the sense (2 digit int)
|
1723 |
+
:lex_id: when paired with lemma, uniquely identifies a sense in the lexicographer file (2 digit int)
|
1724 |
+
:head_word: lemma of the first word in satellite's head synset
|
1725 |
+
Only used if sense is in an adjective satellite synset
|
1726 |
+
:head_id: uniquely identifies sense in a lexicographer file when paired with head_word
|
1727 |
+
Only used if head_word is present (2 digit int)
|
1728 |
+
|
1729 |
+
>>> import nltk
|
1730 |
+
>>> from nltk.corpus import wordnet as wn
|
1731 |
+
>>> print(wn.synset_from_sense_key("drive%1:04:03::"))
|
1732 |
+
Synset('drive.n.06')
|
1733 |
+
|
1734 |
+
>>> print(wn.synset_from_sense_key("driving%1:04:03::"))
|
1735 |
+
Synset('drive.n.06')
|
1736 |
+
"""
|
1737 |
+
return self.lemma_from_key(sense_key).synset()
|
1738 |
+
|
1739 |
+
#############################################################
|
1740 |
+
# Retrieve synsets and lemmas.
|
1741 |
+
#############################################################
|
1742 |
+
|
1743 |
+
def synsets(self, lemma, pos=None, lang="eng", check_exceptions=True):
|
1744 |
+
"""Load all synsets with a given lemma and part of speech tag.
|
1745 |
+
If no pos is specified, all synsets for all parts of speech
|
1746 |
+
will be loaded.
|
1747 |
+
If lang is specified, all the synsets associated with the lemma name
|
1748 |
+
of that language will be returned.
|
1749 |
+
"""
|
1750 |
+
lemma = lemma.lower()
|
1751 |
+
|
1752 |
+
if lang == "eng":
|
1753 |
+
get_synset = self.synset_from_pos_and_offset
|
1754 |
+
index = self._lemma_pos_offset_map
|
1755 |
+
if pos is None:
|
1756 |
+
pos = POS_LIST
|
1757 |
+
return [
|
1758 |
+
get_synset(p, offset)
|
1759 |
+
for p in pos
|
1760 |
+
for form in self._morphy(lemma, p, check_exceptions)
|
1761 |
+
for offset in index[form].get(p, [])
|
1762 |
+
]
|
1763 |
+
|
1764 |
+
else:
|
1765 |
+
self._load_lang_data(lang)
|
1766 |
+
synset_list = []
|
1767 |
+
if lemma in self._lang_data[lang][1]:
|
1768 |
+
for l in self._lang_data[lang][1][lemma]:
|
1769 |
+
if pos is not None and l[-1] != pos:
|
1770 |
+
continue
|
1771 |
+
synset_list.append(self.of2ss(l))
|
1772 |
+
return synset_list
|
1773 |
+
|
1774 |
+
def lemmas(self, lemma, pos=None, lang="eng"):
|
1775 |
+
"""Return all Lemma objects with a name matching the specified lemma
|
1776 |
+
name and part of speech tag. Matches any part of speech tag if none is
|
1777 |
+
specified."""
|
1778 |
+
|
1779 |
+
lemma = lemma.lower()
|
1780 |
+
if lang == "eng":
|
1781 |
+
return [
|
1782 |
+
lemma_obj
|
1783 |
+
for synset in self.synsets(lemma, pos)
|
1784 |
+
for lemma_obj in synset.lemmas()
|
1785 |
+
if lemma_obj.name().lower() == lemma
|
1786 |
+
]
|
1787 |
+
|
1788 |
+
else:
|
1789 |
+
self._load_lang_data(lang)
|
1790 |
+
lemmas = []
|
1791 |
+
syn = self.synsets(lemma, lang=lang)
|
1792 |
+
for s in syn:
|
1793 |
+
if pos is not None and s.pos() != pos:
|
1794 |
+
continue
|
1795 |
+
for lemma_obj in s.lemmas(lang=lang):
|
1796 |
+
if lemma_obj.name().lower() == lemma:
|
1797 |
+
lemmas.append(lemma_obj)
|
1798 |
+
return lemmas
|
1799 |
+
|
1800 |
+
def all_lemma_names(self, pos=None, lang="eng"):
|
1801 |
+
"""Return all lemma names for all synsets for the given
|
1802 |
+
part of speech tag and language or languages. If pos is
|
1803 |
+
not specified, all synsets for all parts of speech will
|
1804 |
+
be used."""
|
1805 |
+
|
1806 |
+
if lang == "eng":
|
1807 |
+
if pos is None:
|
1808 |
+
return iter(self._lemma_pos_offset_map)
|
1809 |
+
else:
|
1810 |
+
return (
|
1811 |
+
lemma
|
1812 |
+
for lemma in self._lemma_pos_offset_map
|
1813 |
+
if pos in self._lemma_pos_offset_map[lemma]
|
1814 |
+
)
|
1815 |
+
else:
|
1816 |
+
self._load_lang_data(lang)
|
1817 |
+
lemma = []
|
1818 |
+
for i in self._lang_data[lang][0]:
|
1819 |
+
if pos is not None and i[-1] != pos:
|
1820 |
+
continue
|
1821 |
+
lemma.extend(self._lang_data[lang][0][i])
|
1822 |
+
|
1823 |
+
lemma = iter(set(lemma))
|
1824 |
+
return lemma
|
1825 |
+
|
1826 |
+
def all_omw_synsets(self, pos=None, lang=None):
|
1827 |
+
if lang not in self.langs():
|
1828 |
+
return None
|
1829 |
+
self._load_lang_data(lang)
|
1830 |
+
for of in self._lang_data[lang][0]:
|
1831 |
+
if not pos or of[-1] == pos:
|
1832 |
+
ss = self.of2ss(of)
|
1833 |
+
if ss:
|
1834 |
+
yield ss
|
1835 |
+
|
1836 |
+
# else:
|
1837 |
+
# A few OMW offsets don't exist in Wordnet 3.0.
|
1838 |
+
# warnings.warn(f"Language {lang}: no synset found for {of}")
|
1839 |
+
|
1840 |
+
def all_synsets(self, pos=None, lang="eng"):
|
1841 |
+
"""Iterate over all synsets with a given part of speech tag.
|
1842 |
+
If no pos is specified, all synsets for all parts of speech
|
1843 |
+
will be loaded.
|
1844 |
+
"""
|
1845 |
+
if lang == "eng":
|
1846 |
+
return self.all_eng_synsets(pos=pos)
|
1847 |
+
else:
|
1848 |
+
return self.all_omw_synsets(pos=pos, lang=lang)
|
1849 |
+
|
1850 |
+
def all_eng_synsets(self, pos=None):
|
1851 |
+
if pos is None:
|
1852 |
+
pos_tags = self._FILEMAP.keys()
|
1853 |
+
else:
|
1854 |
+
pos_tags = [pos]
|
1855 |
+
|
1856 |
+
cache = self._synset_offset_cache
|
1857 |
+
from_pos_and_line = self._synset_from_pos_and_line
|
1858 |
+
|
1859 |
+
# generate all synsets for each part of speech
|
1860 |
+
for pos_tag in pos_tags:
|
1861 |
+
# Open the file for reading. Note that we can not re-use
|
1862 |
+
# the file pointers from self._data_file_map here, because
|
1863 |
+
# we're defining an iterator, and those file pointers might
|
1864 |
+
# be moved while we're not looking.
|
1865 |
+
if pos_tag == ADJ_SAT:
|
1866 |
+
pos_file = ADJ
|
1867 |
+
else:
|
1868 |
+
pos_file = pos_tag
|
1869 |
+
fileid = "data.%s" % self._FILEMAP[pos_file]
|
1870 |
+
data_file = self.open(fileid)
|
1871 |
+
|
1872 |
+
try:
|
1873 |
+
# generate synsets for each line in the POS file
|
1874 |
+
offset = data_file.tell()
|
1875 |
+
line = data_file.readline()
|
1876 |
+
while line:
|
1877 |
+
if not line[0].isspace():
|
1878 |
+
if offset in cache[pos_tag]:
|
1879 |
+
# See if the synset is cached
|
1880 |
+
synset = cache[pos_tag][offset]
|
1881 |
+
else:
|
1882 |
+
# Otherwise, parse the line
|
1883 |
+
synset = from_pos_and_line(pos_tag, line)
|
1884 |
+
cache[pos_tag][offset] = synset
|
1885 |
+
|
1886 |
+
# adjective satellites are in the same file as
|
1887 |
+
# adjectives so only yield the synset if it's actually
|
1888 |
+
# a satellite
|
1889 |
+
if pos_tag == ADJ_SAT and synset._pos == ADJ_SAT:
|
1890 |
+
yield synset
|
1891 |
+
# for all other POS tags, yield all synsets (this means
|
1892 |
+
# that adjectives also include adjective satellites)
|
1893 |
+
elif pos_tag != ADJ_SAT:
|
1894 |
+
yield synset
|
1895 |
+
offset = data_file.tell()
|
1896 |
+
line = data_file.readline()
|
1897 |
+
|
1898 |
+
# close the extra file handle we opened
|
1899 |
+
except:
|
1900 |
+
data_file.close()
|
1901 |
+
raise
|
1902 |
+
else:
|
1903 |
+
data_file.close()
|
1904 |
+
|
1905 |
+
def words(self, lang="eng"):
|
1906 |
+
"""return lemmas of the given language as list of words"""
|
1907 |
+
return self.all_lemma_names(lang=lang)
|
1908 |
+
|
1909 |
+
def synonyms(self, word, lang="eng"):
|
1910 |
+
"""return nested list with the synonyms of the different senses of word in the given language"""
|
1911 |
+
return [
|
1912 |
+
sorted(list(set(ss.lemma_names(lang=lang)) - {word}))
|
1913 |
+
for ss in self.synsets(word, lang=lang)
|
1914 |
+
]
|
1915 |
+
|
1916 |
+
def doc(self, file="README", lang="eng"):
|
1917 |
+
"""Return the contents of readme, license or citation file
|
1918 |
+
use lang=lang to get the file for an individual language"""
|
1919 |
+
if lang == "eng":
|
1920 |
+
reader = self
|
1921 |
+
else:
|
1922 |
+
reader = self._omw_reader
|
1923 |
+
if lang in self.langs():
|
1924 |
+
file = f"{os.path.join(self.provenances[lang],file)}"
|
1925 |
+
try:
|
1926 |
+
with reader.open(file) as fp:
|
1927 |
+
return fp.read()
|
1928 |
+
except:
|
1929 |
+
if lang in self._lang_data:
|
1930 |
+
return f"Cannot determine {file} for {lang}"
|
1931 |
+
else:
|
1932 |
+
return f"Language {lang} is not supported."
|
1933 |
+
|
1934 |
+
def license(self, lang="eng"):
|
1935 |
+
"""Return the contents of LICENSE (for omw)
|
1936 |
+
use lang=lang to get the license for an individual language"""
|
1937 |
+
return self.doc(file="LICENSE", lang=lang)
|
1938 |
+
|
1939 |
+
def readme(self, lang="eng"):
|
1940 |
+
"""Return the contents of README (for omw)
|
1941 |
+
use lang=lang to get the readme for an individual language"""
|
1942 |
+
return self.doc(file="README", lang=lang)
|
1943 |
+
|
1944 |
+
def citation(self, lang="eng"):
|
1945 |
+
"""Return the contents of citation.bib file (for omw)
|
1946 |
+
use lang=lang to get the citation for an individual language"""
|
1947 |
+
return self.doc(file="citation.bib", lang=lang)
|
1948 |
+
|
1949 |
+
#############################################################
|
1950 |
+
# Misc
|
1951 |
+
#############################################################
|
1952 |
+
def lemma_count(self, lemma):
|
1953 |
+
"""Return the frequency count for this Lemma"""
|
1954 |
+
# Currently, count is only work for English
|
1955 |
+
if lemma._lang != "eng":
|
1956 |
+
return 0
|
1957 |
+
# open the count file if we haven't already
|
1958 |
+
if self._key_count_file is None:
|
1959 |
+
self._key_count_file = self.open("cntlist.rev")
|
1960 |
+
# find the key in the counts file and return the count
|
1961 |
+
line = _binary_search_file(self._key_count_file, lemma._key)
|
1962 |
+
if line:
|
1963 |
+
return int(line.rsplit(" ", 1)[-1])
|
1964 |
+
else:
|
1965 |
+
return 0
|
1966 |
+
|
1967 |
+
def path_similarity(self, synset1, synset2, verbose=False, simulate_root=True):
|
1968 |
+
return synset1.path_similarity(synset2, verbose, simulate_root)
|
1969 |
+
|
1970 |
+
path_similarity.__doc__ = Synset.path_similarity.__doc__
|
1971 |
+
|
1972 |
+
def lch_similarity(self, synset1, synset2, verbose=False, simulate_root=True):
|
1973 |
+
return synset1.lch_similarity(synset2, verbose, simulate_root)
|
1974 |
+
|
1975 |
+
lch_similarity.__doc__ = Synset.lch_similarity.__doc__
|
1976 |
+
|
1977 |
+
def wup_similarity(self, synset1, synset2, verbose=False, simulate_root=True):
|
1978 |
+
return synset1.wup_similarity(synset2, verbose, simulate_root)
|
1979 |
+
|
1980 |
+
wup_similarity.__doc__ = Synset.wup_similarity.__doc__
|
1981 |
+
|
1982 |
+
def res_similarity(self, synset1, synset2, ic, verbose=False):
|
1983 |
+
return synset1.res_similarity(synset2, ic, verbose)
|
1984 |
+
|
1985 |
+
res_similarity.__doc__ = Synset.res_similarity.__doc__
|
1986 |
+
|
1987 |
+
def jcn_similarity(self, synset1, synset2, ic, verbose=False):
|
1988 |
+
return synset1.jcn_similarity(synset2, ic, verbose)
|
1989 |
+
|
1990 |
+
jcn_similarity.__doc__ = Synset.jcn_similarity.__doc__
|
1991 |
+
|
1992 |
+
def lin_similarity(self, synset1, synset2, ic, verbose=False):
|
1993 |
+
return synset1.lin_similarity(synset2, ic, verbose)
|
1994 |
+
|
1995 |
+
lin_similarity.__doc__ = Synset.lin_similarity.__doc__
|
1996 |
+
|
1997 |
+
#############################################################
|
1998 |
+
# Morphy
|
1999 |
+
#############################################################
|
2000 |
+
# Morphy, adapted from Oliver Steele's pywordnet
|
2001 |
+
def morphy(self, form, pos=None, check_exceptions=True):
|
2002 |
+
"""
|
2003 |
+
Find a possible base form for the given form, with the given
|
2004 |
+
part of speech, by checking WordNet's list of exceptional
|
2005 |
+
forms, and by recursively stripping affixes for this part of
|
2006 |
+
speech until a form in WordNet is found.
|
2007 |
+
|
2008 |
+
>>> from nltk.corpus import wordnet as wn
|
2009 |
+
>>> print(wn.morphy('dogs'))
|
2010 |
+
dog
|
2011 |
+
>>> print(wn.morphy('churches'))
|
2012 |
+
church
|
2013 |
+
>>> print(wn.morphy('aardwolves'))
|
2014 |
+
aardwolf
|
2015 |
+
>>> print(wn.morphy('abaci'))
|
2016 |
+
abacus
|
2017 |
+
>>> wn.morphy('hardrock', wn.ADV)
|
2018 |
+
>>> print(wn.morphy('book', wn.NOUN))
|
2019 |
+
book
|
2020 |
+
>>> wn.morphy('book', wn.ADJ)
|
2021 |
+
"""
|
2022 |
+
|
2023 |
+
if pos is None:
|
2024 |
+
morphy = self._morphy
|
2025 |
+
analyses = chain(a for p in POS_LIST for a in morphy(form, p))
|
2026 |
+
else:
|
2027 |
+
analyses = self._morphy(form, pos, check_exceptions)
|
2028 |
+
|
2029 |
+
# get the first one we find
|
2030 |
+
first = list(islice(analyses, 1))
|
2031 |
+
if len(first) == 1:
|
2032 |
+
return first[0]
|
2033 |
+
else:
|
2034 |
+
return None
|
2035 |
+
|
2036 |
+
MORPHOLOGICAL_SUBSTITUTIONS = {
|
2037 |
+
NOUN: [
|
2038 |
+
("s", ""),
|
2039 |
+
("ses", "s"),
|
2040 |
+
("ves", "f"),
|
2041 |
+
("xes", "x"),
|
2042 |
+
("zes", "z"),
|
2043 |
+
("ches", "ch"),
|
2044 |
+
("shes", "sh"),
|
2045 |
+
("men", "man"),
|
2046 |
+
("ies", "y"),
|
2047 |
+
],
|
2048 |
+
VERB: [
|
2049 |
+
("s", ""),
|
2050 |
+
("ies", "y"),
|
2051 |
+
("es", "e"),
|
2052 |
+
("es", ""),
|
2053 |
+
("ed", "e"),
|
2054 |
+
("ed", ""),
|
2055 |
+
("ing", "e"),
|
2056 |
+
("ing", ""),
|
2057 |
+
],
|
2058 |
+
ADJ: [("er", ""), ("est", ""), ("er", "e"), ("est", "e")],
|
2059 |
+
ADV: [],
|
2060 |
+
}
|
2061 |
+
|
2062 |
+
MORPHOLOGICAL_SUBSTITUTIONS[ADJ_SAT] = MORPHOLOGICAL_SUBSTITUTIONS[ADJ]
|
2063 |
+
|
2064 |
+
def _morphy(self, form, pos, check_exceptions=True):
|
2065 |
+
# from jordanbg:
|
2066 |
+
# Given an original string x
|
2067 |
+
# 1. Apply rules once to the input to get y1, y2, y3, etc.
|
2068 |
+
# 2. Return all that are in the database
|
2069 |
+
# 3. If there are no matches, keep applying rules until you either
|
2070 |
+
# find a match or you can't go any further
|
2071 |
+
|
2072 |
+
exceptions = self._exception_map[pos]
|
2073 |
+
substitutions = self.MORPHOLOGICAL_SUBSTITUTIONS[pos]
|
2074 |
+
|
2075 |
+
def apply_rules(forms):
|
2076 |
+
return [
|
2077 |
+
form[: -len(old)] + new
|
2078 |
+
for form in forms
|
2079 |
+
for old, new in substitutions
|
2080 |
+
if form.endswith(old)
|
2081 |
+
]
|
2082 |
+
|
2083 |
+
def filter_forms(forms):
|
2084 |
+
result = []
|
2085 |
+
seen = set()
|
2086 |
+
for form in forms:
|
2087 |
+
if form in self._lemma_pos_offset_map:
|
2088 |
+
if pos in self._lemma_pos_offset_map[form]:
|
2089 |
+
if form not in seen:
|
2090 |
+
result.append(form)
|
2091 |
+
seen.add(form)
|
2092 |
+
return result
|
2093 |
+
|
2094 |
+
# 0. Check the exception lists
|
2095 |
+
if check_exceptions:
|
2096 |
+
if form in exceptions:
|
2097 |
+
return filter_forms([form] + exceptions[form])
|
2098 |
+
|
2099 |
+
# 1. Apply rules once to the input to get y1, y2, y3, etc.
|
2100 |
+
forms = apply_rules([form])
|
2101 |
+
|
2102 |
+
# 2. Return all that are in the database (and check the original too)
|
2103 |
+
results = filter_forms([form] + forms)
|
2104 |
+
if results:
|
2105 |
+
return results
|
2106 |
+
|
2107 |
+
# 3. If there are no matches, keep applying rules until we find a match
|
2108 |
+
while forms:
|
2109 |
+
forms = apply_rules(forms)
|
2110 |
+
results = filter_forms(forms)
|
2111 |
+
if results:
|
2112 |
+
return results
|
2113 |
+
|
2114 |
+
# Return an empty list if we can't find anything
|
2115 |
+
return []
|
2116 |
+
|
2117 |
+
#############################################################
|
2118 |
+
# Create information content from corpus
|
2119 |
+
#############################################################
|
2120 |
+
def ic(self, corpus, weight_senses_equally=False, smoothing=1.0):
|
2121 |
+
"""
|
2122 |
+
Creates an information content lookup dictionary from a corpus.
|
2123 |
+
|
2124 |
+
:type corpus: CorpusReader
|
2125 |
+
:param corpus: The corpus from which we create an information
|
2126 |
+
content dictionary.
|
2127 |
+
:type weight_senses_equally: bool
|
2128 |
+
:param weight_senses_equally: If this is True, gives all
|
2129 |
+
possible senses equal weight rather than dividing by the
|
2130 |
+
number of possible senses. (If a word has 3 synses, each
|
2131 |
+
sense gets 0.3333 per appearance when this is False, 1.0 when
|
2132 |
+
it is true.)
|
2133 |
+
:param smoothing: How much do we smooth synset counts (default is 1.0)
|
2134 |
+
:type smoothing: float
|
2135 |
+
:return: An information content dictionary
|
2136 |
+
"""
|
2137 |
+
counts = FreqDist()
|
2138 |
+
for ww in corpus.words():
|
2139 |
+
counts[ww] += 1
|
2140 |
+
|
2141 |
+
ic = {}
|
2142 |
+
for pp in POS_LIST:
|
2143 |
+
ic[pp] = defaultdict(float)
|
2144 |
+
|
2145 |
+
# Initialize the counts with the smoothing value
|
2146 |
+
if smoothing > 0.0:
|
2147 |
+
for pp in POS_LIST:
|
2148 |
+
ic[pp][0] = smoothing
|
2149 |
+
for ss in self.all_synsets():
|
2150 |
+
pos = ss._pos
|
2151 |
+
if pos == ADJ_SAT:
|
2152 |
+
pos = ADJ
|
2153 |
+
ic[pos][ss._offset] = smoothing
|
2154 |
+
|
2155 |
+
for ww in counts:
|
2156 |
+
possible_synsets = self.synsets(ww)
|
2157 |
+
if len(possible_synsets) == 0:
|
2158 |
+
continue
|
2159 |
+
|
2160 |
+
# Distribute weight among possible synsets
|
2161 |
+
weight = float(counts[ww])
|
2162 |
+
if not weight_senses_equally:
|
2163 |
+
weight /= float(len(possible_synsets))
|
2164 |
+
|
2165 |
+
for ss in possible_synsets:
|
2166 |
+
pos = ss._pos
|
2167 |
+
if pos == ADJ_SAT:
|
2168 |
+
pos = ADJ
|
2169 |
+
for level in ss._iter_hypernym_lists():
|
2170 |
+
for hh in level:
|
2171 |
+
ic[pos][hh._offset] += weight
|
2172 |
+
# Add the weight to the root
|
2173 |
+
ic[pos][0] += weight
|
2174 |
+
return ic
|
2175 |
+
|
2176 |
+
def custom_lemmas(self, tab_file, lang):
|
2177 |
+
"""
|
2178 |
+
Reads a custom tab file containing mappings of lemmas in the given
|
2179 |
+
language to Princeton WordNet 3.0 synset offsets, allowing NLTK's
|
2180 |
+
WordNet functions to then be used with that language.
|
2181 |
+
|
2182 |
+
See the "Tab files" section at https://omwn.org/omw1.html for
|
2183 |
+
documentation on the Multilingual WordNet tab file format.
|
2184 |
+
|
2185 |
+
:param tab_file: Tab file as a file or file-like object
|
2186 |
+
:type: lang str
|
2187 |
+
:param: lang ISO 639-3 code of the language of the tab file
|
2188 |
+
"""
|
2189 |
+
lg = lang.split("_")[0]
|
2190 |
+
if len(lg) != 3:
|
2191 |
+
raise ValueError("lang should be a (3 character) ISO 639-3 code")
|
2192 |
+
self._lang_data[lang] = [
|
2193 |
+
defaultdict(list),
|
2194 |
+
defaultdict(list),
|
2195 |
+
defaultdict(list),
|
2196 |
+
defaultdict(list),
|
2197 |
+
]
|
2198 |
+
for line in tab_file.readlines():
|
2199 |
+
if isinstance(line, bytes):
|
2200 |
+
# Support byte-stream files (e.g. as returned by Python 2's
|
2201 |
+
# open() function) as well as text-stream ones
|
2202 |
+
line = line.decode("utf-8")
|
2203 |
+
if not line.startswith("#"):
|
2204 |
+
triple = line.strip().split("\t")
|
2205 |
+
if len(triple) < 3:
|
2206 |
+
continue
|
2207 |
+
offset_pos, label = triple[:2]
|
2208 |
+
val = triple[-1]
|
2209 |
+
if self.map30:
|
2210 |
+
if offset_pos in self.map30:
|
2211 |
+
# Map offset_pos to current Wordnet version:
|
2212 |
+
offset_pos = self.map30[offset_pos]
|
2213 |
+
else:
|
2214 |
+
# Some OMW offsets were never in Wordnet:
|
2215 |
+
if (
|
2216 |
+
offset_pos not in self.nomap
|
2217 |
+
and offset_pos.replace("a", "s") not in self.nomap
|
2218 |
+
):
|
2219 |
+
warnings.warn(
|
2220 |
+
f"{lang}: invalid offset {offset_pos} in '{line}'"
|
2221 |
+
)
|
2222 |
+
continue
|
2223 |
+
elif offset_pos[-1] == "a":
|
2224 |
+
wnss = self.of2ss(offset_pos)
|
2225 |
+
if wnss and wnss.pos() == "s": # Wordnet pos is "s"
|
2226 |
+
# Label OMW adjective satellites back to their Wordnet pos ("s")
|
2227 |
+
offset_pos = self.ss2of(wnss)
|
2228 |
+
pair = label.split(":")
|
2229 |
+
attr = pair[-1]
|
2230 |
+
if len(pair) == 1 or pair[0] == lg:
|
2231 |
+
if attr == "lemma":
|
2232 |
+
val = val.strip().replace(" ", "_")
|
2233 |
+
self._lang_data[lang][1][val.lower()].append(offset_pos)
|
2234 |
+
if attr in self.lg_attrs:
|
2235 |
+
self._lang_data[lang][self.lg_attrs.index(attr)][
|
2236 |
+
offset_pos
|
2237 |
+
].append(val)
|
2238 |
+
|
2239 |
+
def disable_custom_lemmas(self, lang):
|
2240 |
+
"""prevent synsets from being mistakenly added"""
|
2241 |
+
for n in range(len(self.lg_attrs)):
|
2242 |
+
self._lang_data[lang][n].default_factory = None
|
2243 |
+
|
2244 |
+
######################################################################
|
2245 |
+
# Visualize WordNet relation graphs using Graphviz
|
2246 |
+
######################################################################
|
2247 |
+
|
2248 |
+
def digraph(
|
2249 |
+
self,
|
2250 |
+
inputs,
|
2251 |
+
rel=lambda s: s.hypernyms(),
|
2252 |
+
pos=None,
|
2253 |
+
maxdepth=-1,
|
2254 |
+
shapes=None,
|
2255 |
+
attr=None,
|
2256 |
+
verbose=False,
|
2257 |
+
):
|
2258 |
+
"""
|
2259 |
+
Produce a graphical representation from 'inputs' (a list of
|
2260 |
+
start nodes, which can be a mix of Synsets, Lemmas and/or words),
|
2261 |
+
and a synset relation, for drawing with the 'dot' graph visualisation
|
2262 |
+
program from the Graphviz package.
|
2263 |
+
|
2264 |
+
Return a string in the DOT graph file language, which can then be
|
2265 |
+
converted to an image by nltk.parse.dependencygraph.dot2img(dot_string).
|
2266 |
+
|
2267 |
+
Optional Parameters:
|
2268 |
+
:rel: Wordnet synset relation
|
2269 |
+
:pos: for words, restricts Part of Speech to 'n', 'v', 'a' or 'r'
|
2270 |
+
:maxdepth: limit the longest path
|
2271 |
+
:shapes: dictionary of strings that trigger a specified shape
|
2272 |
+
:attr: dictionary with global graph attributes
|
2273 |
+
:verbose: warn about cycles
|
2274 |
+
|
2275 |
+
>>> from nltk.corpus import wordnet as wn
|
2276 |
+
>>> print(wn.digraph([wn.synset('dog.n.01')]))
|
2277 |
+
digraph G {
|
2278 |
+
"Synset('animal.n.01')" -> "Synset('organism.n.01')";
|
2279 |
+
"Synset('canine.n.02')" -> "Synset('carnivore.n.01')";
|
2280 |
+
"Synset('carnivore.n.01')" -> "Synset('placental.n.01')";
|
2281 |
+
"Synset('chordate.n.01')" -> "Synset('animal.n.01')";
|
2282 |
+
"Synset('dog.n.01')" -> "Synset('canine.n.02')";
|
2283 |
+
"Synset('dog.n.01')" -> "Synset('domestic_animal.n.01')";
|
2284 |
+
"Synset('domestic_animal.n.01')" -> "Synset('animal.n.01')";
|
2285 |
+
"Synset('living_thing.n.01')" -> "Synset('whole.n.02')";
|
2286 |
+
"Synset('mammal.n.01')" -> "Synset('vertebrate.n.01')";
|
2287 |
+
"Synset('object.n.01')" -> "Synset('physical_entity.n.01')";
|
2288 |
+
"Synset('organism.n.01')" -> "Synset('living_thing.n.01')";
|
2289 |
+
"Synset('physical_entity.n.01')" -> "Synset('entity.n.01')";
|
2290 |
+
"Synset('placental.n.01')" -> "Synset('mammal.n.01')";
|
2291 |
+
"Synset('vertebrate.n.01')" -> "Synset('chordate.n.01')";
|
2292 |
+
"Synset('whole.n.02')" -> "Synset('object.n.01')";
|
2293 |
+
}
|
2294 |
+
<BLANKLINE>
|
2295 |
+
"""
|
2296 |
+
from nltk.util import edge_closure, edges2dot
|
2297 |
+
|
2298 |
+
synsets = set()
|
2299 |
+
edges = set()
|
2300 |
+
if not shapes:
|
2301 |
+
shapes = dict()
|
2302 |
+
if not attr:
|
2303 |
+
attr = dict()
|
2304 |
+
|
2305 |
+
def add_lemma(lem):
|
2306 |
+
ss = lem.synset()
|
2307 |
+
synsets.add(ss)
|
2308 |
+
edges.add((lem, ss))
|
2309 |
+
|
2310 |
+
for node in inputs:
|
2311 |
+
typ = type(node)
|
2312 |
+
if typ == Synset:
|
2313 |
+
synsets.add(node)
|
2314 |
+
elif typ == Lemma:
|
2315 |
+
add_lemma(node)
|
2316 |
+
elif typ == str:
|
2317 |
+
for lemma in self.lemmas(node, pos):
|
2318 |
+
add_lemma(lemma)
|
2319 |
+
|
2320 |
+
for ss in synsets:
|
2321 |
+
edges = edges.union(edge_closure(ss, rel, maxdepth, verbose))
|
2322 |
+
dot_string = edges2dot(sorted(list(edges)), shapes=shapes, attr=attr)
|
2323 |
+
return dot_string
|
2324 |
+
|
2325 |
+
|
2326 |
+
######################################################################
|
2327 |
+
# WordNet Information Content Corpus Reader
|
2328 |
+
######################################################################
|
2329 |
+
|
2330 |
+
|
2331 |
+
class WordNetICCorpusReader(CorpusReader):
|
2332 |
+
"""
|
2333 |
+
A corpus reader for the WordNet information content corpus.
|
2334 |
+
"""
|
2335 |
+
|
2336 |
+
def __init__(self, root, fileids):
|
2337 |
+
CorpusReader.__init__(self, root, fileids, encoding="utf8")
|
2338 |
+
|
2339 |
+
# this load function would be more efficient if the data was pickled
|
2340 |
+
# Note that we can't use NLTK's frequency distributions because
|
2341 |
+
# synsets are overlapping (each instance of a synset also counts
|
2342 |
+
# as an instance of its hypernyms)
|
2343 |
+
def ic(self, icfile):
|
2344 |
+
"""
|
2345 |
+
Load an information content file from the wordnet_ic corpus
|
2346 |
+
and return a dictionary. This dictionary has just two keys,
|
2347 |
+
NOUN and VERB, whose values are dictionaries that map from
|
2348 |
+
synsets to information content values.
|
2349 |
+
|
2350 |
+
:type icfile: str
|
2351 |
+
:param icfile: The name of the wordnet_ic file (e.g. "ic-brown.dat")
|
2352 |
+
:return: An information content dictionary
|
2353 |
+
"""
|
2354 |
+
ic = {}
|
2355 |
+
ic[NOUN] = defaultdict(float)
|
2356 |
+
ic[VERB] = defaultdict(float)
|
2357 |
+
with self.open(icfile) as fp:
|
2358 |
+
for num, line in enumerate(fp):
|
2359 |
+
if num == 0: # skip the header
|
2360 |
+
continue
|
2361 |
+
fields = line.split()
|
2362 |
+
offset = int(fields[0][:-1])
|
2363 |
+
value = float(fields[1])
|
2364 |
+
pos = _get_pos(fields[0])
|
2365 |
+
if len(fields) == 3 and fields[2] == "ROOT":
|
2366 |
+
# Store root count.
|
2367 |
+
ic[pos][0] += value
|
2368 |
+
if value != 0:
|
2369 |
+
ic[pos][offset] = value
|
2370 |
+
return ic
|
2371 |
+
|
2372 |
+
|
2373 |
+
######################################################################
|
2374 |
+
# Similarity metrics
|
2375 |
+
######################################################################
|
2376 |
+
|
2377 |
+
# TODO: Add in the option to manually add a new root node; this will be
|
2378 |
+
# useful for verb similarity as there exist multiple verb taxonomies.
|
2379 |
+
|
2380 |
+
# More information about the metrics is available at
|
2381 |
+
# http://marimba.d.umn.edu/similarity/measures.html
|
2382 |
+
|
2383 |
+
|
2384 |
+
def path_similarity(synset1, synset2, verbose=False, simulate_root=True):
|
2385 |
+
return synset1.path_similarity(
|
2386 |
+
synset2, verbose=verbose, simulate_root=simulate_root
|
2387 |
+
)
|
2388 |
+
|
2389 |
+
|
2390 |
+
def lch_similarity(synset1, synset2, verbose=False, simulate_root=True):
|
2391 |
+
return synset1.lch_similarity(synset2, verbose=verbose, simulate_root=simulate_root)
|
2392 |
+
|
2393 |
+
|
2394 |
+
def wup_similarity(synset1, synset2, verbose=False, simulate_root=True):
|
2395 |
+
return synset1.wup_similarity(synset2, verbose=verbose, simulate_root=simulate_root)
|
2396 |
+
|
2397 |
+
|
2398 |
+
def res_similarity(synset1, synset2, ic, verbose=False):
|
2399 |
+
return synset1.res_similarity(synset2, ic, verbose=verbose)
|
2400 |
+
|
2401 |
+
|
2402 |
+
def jcn_similarity(synset1, synset2, ic, verbose=False):
|
2403 |
+
return synset1.jcn_similarity(synset2, ic, verbose=verbose)
|
2404 |
+
|
2405 |
+
|
2406 |
+
def lin_similarity(synset1, synset2, ic, verbose=False):
|
2407 |
+
return synset1.lin_similarity(synset2, ic, verbose=verbose)
|
2408 |
+
|
2409 |
+
|
2410 |
+
path_similarity.__doc__ = Synset.path_similarity.__doc__
|
2411 |
+
lch_similarity.__doc__ = Synset.lch_similarity.__doc__
|
2412 |
+
wup_similarity.__doc__ = Synset.wup_similarity.__doc__
|
2413 |
+
res_similarity.__doc__ = Synset.res_similarity.__doc__
|
2414 |
+
jcn_similarity.__doc__ = Synset.jcn_similarity.__doc__
|
2415 |
+
lin_similarity.__doc__ = Synset.lin_similarity.__doc__
|
2416 |
+
|
2417 |
+
|
2418 |
+
def _lcs_ic(synset1, synset2, ic, verbose=False):
|
2419 |
+
"""
|
2420 |
+
Get the information content of the least common subsumer that has
|
2421 |
+
the highest information content value. If two nodes have no
|
2422 |
+
explicit common subsumer, assume that they share an artificial
|
2423 |
+
root node that is the hypernym of all explicit roots.
|
2424 |
+
|
2425 |
+
:type synset1: Synset
|
2426 |
+
:param synset1: First input synset.
|
2427 |
+
:type synset2: Synset
|
2428 |
+
:param synset2: Second input synset. Must be the same part of
|
2429 |
+
speech as the first synset.
|
2430 |
+
:type ic: dict
|
2431 |
+
:param ic: an information content object (as returned by ``load_ic()``).
|
2432 |
+
:return: The information content of the two synsets and their most
|
2433 |
+
informative subsumer
|
2434 |
+
"""
|
2435 |
+
if synset1._pos != synset2._pos:
|
2436 |
+
raise WordNetError(
|
2437 |
+
"Computing the least common subsumer requires "
|
2438 |
+
"%s and %s to have the same part of speech." % (synset1, synset2)
|
2439 |
+
)
|
2440 |
+
|
2441 |
+
ic1 = information_content(synset1, ic)
|
2442 |
+
ic2 = information_content(synset2, ic)
|
2443 |
+
subsumers = synset1.common_hypernyms(synset2)
|
2444 |
+
if len(subsumers) == 0:
|
2445 |
+
subsumer_ic = 0
|
2446 |
+
else:
|
2447 |
+
subsumer_ic = max(information_content(s, ic) for s in subsumers)
|
2448 |
+
|
2449 |
+
if verbose:
|
2450 |
+
print("> LCS Subsumer by content:", subsumer_ic)
|
2451 |
+
|
2452 |
+
return ic1, ic2, subsumer_ic
|
2453 |
+
|
2454 |
+
|
2455 |
+
# Utility functions
|
2456 |
+
|
2457 |
+
|
2458 |
+
def information_content(synset, ic):
|
2459 |
+
pos = synset._pos
|
2460 |
+
if pos == ADJ_SAT:
|
2461 |
+
pos = ADJ
|
2462 |
+
try:
|
2463 |
+
icpos = ic[pos]
|
2464 |
+
except KeyError as e:
|
2465 |
+
msg = "Information content file has no entries for part-of-speech: %s"
|
2466 |
+
raise WordNetError(msg % pos) from e
|
2467 |
+
|
2468 |
+
counts = icpos[synset._offset]
|
2469 |
+
if counts == 0:
|
2470 |
+
return _INF
|
2471 |
+
else:
|
2472 |
+
return -math.log(counts / icpos[0])
|
2473 |
+
|
2474 |
+
|
2475 |
+
# get the part of speech (NOUN or VERB) from the information content record
|
2476 |
+
# (each identifier has a 'n' or 'v' suffix)
|
2477 |
+
|
2478 |
+
|
2479 |
+
def _get_pos(field):
|
2480 |
+
if field[-1] == "n":
|
2481 |
+
return NOUN
|
2482 |
+
elif field[-1] == "v":
|
2483 |
+
return VERB
|
2484 |
+
else:
|
2485 |
+
msg = (
|
2486 |
+
"Unidentified part of speech in WordNet Information Content file "
|
2487 |
+
"for field %s" % field
|
2488 |
+
)
|
2489 |
+
raise ValueError(msg)
|