Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- env-llmeval/lib/python3.10/site-packages/pyarrow/libarrow.so.1500 +3 -0
- env-llmeval/lib/python3.10/site-packages/pyarrow/tests/data/orc/decimal.jsn.gz +3 -0
- env-llmeval/lib/python3.10/site-packages/pyarrow/tests/data/parquet/v0.7.1.parquet +3 -0
- env-llmeval/lib/python3.10/site-packages/pyarrow/tests/data/parquet/v0.7.1.some-named-index.parquet +3 -0
- env-llmeval/lib/python3.10/site-packages/transformers/activations.py +239 -0
- env-llmeval/lib/python3.10/site-packages/transformers/activations_tf.py +147 -0
- env-llmeval/lib/python3.10/site-packages/transformers/audio_utils.py +825 -0
- env-llmeval/lib/python3.10/site-packages/transformers/benchmark/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/benchmark/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/benchmark/__pycache__/benchmark.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/benchmark/__pycache__/benchmark_args.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/benchmark/__pycache__/benchmark_args_tf.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/benchmark/__pycache__/benchmark_args_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/benchmark/__pycache__/benchmark_tf.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/benchmark/__pycache__/benchmark_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/benchmark/benchmark.py +271 -0
- env-llmeval/lib/python3.10/site-packages/transformers/benchmark/benchmark_args.py +124 -0
- env-llmeval/lib/python3.10/site-packages/transformers/benchmark/benchmark_args_tf.py +136 -0
- env-llmeval/lib/python3.10/site-packages/transformers/benchmark/benchmark_args_utils.py +166 -0
- env-llmeval/lib/python3.10/site-packages/transformers/benchmark/benchmark_tf.py +303 -0
- env-llmeval/lib/python3.10/site-packages/transformers/benchmark/benchmark_utils.py +914 -0
- env-llmeval/lib/python3.10/site-packages/transformers/cache_utils.py +435 -0
- env-llmeval/lib/python3.10/site-packages/transformers/configuration_utils.py +1133 -0
- env-llmeval/lib/python3.10/site-packages/transformers/convert_pytorch_checkpoint_to_tf2.py +498 -0
- env-llmeval/lib/python3.10/site-packages/transformers/convert_slow_tokenizer.py +1525 -0
- env-llmeval/lib/python3.10/site-packages/transformers/convert_slow_tokenizers_checkpoints_to_fast.py +126 -0
- env-llmeval/lib/python3.10/site-packages/transformers/convert_tf_hub_seq_to_seq_bert_to_pytorch.py +88 -0
- env-llmeval/lib/python3.10/site-packages/transformers/dependency_versions_table.py +92 -0
- env-llmeval/lib/python3.10/site-packages/transformers/feature_extraction_sequence_utils.py +371 -0
- env-llmeval/lib/python3.10/site-packages/transformers/file_utils.py +133 -0
- env-llmeval/lib/python3.10/site-packages/transformers/generation_flax_utils.py +28 -0
- env-llmeval/lib/python3.10/site-packages/transformers/hf_argparser.py +419 -0
- env-llmeval/lib/python3.10/site-packages/transformers/hyperparameter_search.py +141 -0
- env-llmeval/lib/python3.10/site-packages/transformers/image_processing_utils.py +793 -0
- env-llmeval/lib/python3.10/site-packages/transformers/image_transforms.py +801 -0
- env-llmeval/lib/python3.10/site-packages/transformers/integrations/__init__.py +158 -0
- env-llmeval/lib/python3.10/site-packages/transformers/integrations/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/integrations/__pycache__/aqlm.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/integrations/__pycache__/awq.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/integrations/__pycache__/bitsandbytes.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/integrations/__pycache__/deepspeed.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/integrations/__pycache__/integration_utils.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/integrations/__pycache__/peft.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/integrations/__pycache__/quanto.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/integrations/__pycache__/tpu.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/transformers/integrations/aqlm.py +99 -0
- env-llmeval/lib/python3.10/site-packages/transformers/integrations/awq.py +421 -0
- env-llmeval/lib/python3.10/site-packages/transformers/integrations/bitsandbytes.py +321 -0
- env-llmeval/lib/python3.10/site-packages/transformers/integrations/deepspeed.py +438 -0
.gitattributes
CHANGED
@@ -208,3 +208,4 @@ env-llmeval/lib/python3.10/site-packages/torch/lib/libcusparseLt-f8b4a9fb.so.0 f
|
|
208 |
env-llmeval/lib/python3.10/site-packages/torch/lib/libtorch_cuda_linalg.so filter=lfs diff=lfs merge=lfs -text
|
209 |
env-llmeval/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so filter=lfs diff=lfs merge=lfs -text
|
210 |
env-llmeval/lib/python3.10/site-packages/pyarrow/_dataset.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
|
|
|
208 |
env-llmeval/lib/python3.10/site-packages/torch/lib/libtorch_cuda_linalg.so filter=lfs diff=lfs merge=lfs -text
|
209 |
env-llmeval/lib/python3.10/site-packages/torch/lib/libtorch_cpu.so filter=lfs diff=lfs merge=lfs -text
|
210 |
env-llmeval/lib/python3.10/site-packages/pyarrow/_dataset.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
211 |
+
env-llmeval/lib/python3.10/site-packages/pyarrow/libarrow.so.1500 filter=lfs diff=lfs merge=lfs -text
|
env-llmeval/lib/python3.10/site-packages/pyarrow/libarrow.so.1500
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:607b9370170efd1f347aa188239d228c6c17630c2e7227cb80466a4453e9cbfe
|
3 |
+
size 61303528
|
env-llmeval/lib/python3.10/site-packages/pyarrow/tests/data/orc/decimal.jsn.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91313261d3c3000485517f0d8b2af2e6644317e63e2ecae14808dbbb8e779af0
|
3 |
+
size 19313
|
env-llmeval/lib/python3.10/site-packages/pyarrow/tests/data/parquet/v0.7.1.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be6773848ce905b99192adc68f0c3b2aabab7d214db50b92a52203790566ab2b
|
3 |
+
size 4372
|
env-llmeval/lib/python3.10/site-packages/pyarrow/tests/data/parquet/v0.7.1.some-named-index.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5468128ea8a1091b5d07195471f3f9b3705247b69440aba45be6c68092dffc76
|
3 |
+
size 4008
|
env-llmeval/lib/python3.10/site-packages/transformers/activations.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
from collections import OrderedDict
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from packaging import version
|
20 |
+
from torch import Tensor, nn
|
21 |
+
|
22 |
+
from .utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
class PytorchGELUTanh(nn.Module):
|
29 |
+
"""
|
30 |
+
A fast C implementation of the tanh approximation of the GeLU activation function. See
|
31 |
+
https://arxiv.org/abs/1606.08415.
|
32 |
+
|
33 |
+
This implementation is equivalent to NewGELU and FastGELU but much faster. However, it is not an exact numerical
|
34 |
+
match due to rounding errors.
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(self):
|
38 |
+
super().__init__()
|
39 |
+
if version.parse(torch.__version__) < version.parse("1.12.0"):
|
40 |
+
raise ImportError(
|
41 |
+
f"You are using torch=={torch.__version__}, but torch>=1.12.0 is required to use "
|
42 |
+
"PytorchGELUTanh. Please upgrade torch."
|
43 |
+
)
|
44 |
+
|
45 |
+
def forward(self, input: Tensor) -> Tensor:
|
46 |
+
return nn.functional.gelu(input, approximate="tanh")
|
47 |
+
|
48 |
+
|
49 |
+
class NewGELUActivation(nn.Module):
|
50 |
+
"""
|
51 |
+
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see
|
52 |
+
the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
|
53 |
+
"""
|
54 |
+
|
55 |
+
def forward(self, input: Tensor) -> Tensor:
|
56 |
+
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(input, 3.0))))
|
57 |
+
|
58 |
+
|
59 |
+
class GELUActivation(nn.Module):
|
60 |
+
"""
|
61 |
+
Original Implementation of the GELU activation function in Google BERT repo when initially created. For
|
62 |
+
information: OpenAI GPT's GELU is slightly different (and gives slightly different results): 0.5 * x * (1 +
|
63 |
+
torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) This is now written in C in nn.functional
|
64 |
+
Also see the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
|
65 |
+
"""
|
66 |
+
|
67 |
+
def __init__(self, use_gelu_python: bool = False):
|
68 |
+
super().__init__()
|
69 |
+
if use_gelu_python:
|
70 |
+
self.act = self._gelu_python
|
71 |
+
else:
|
72 |
+
self.act = nn.functional.gelu
|
73 |
+
|
74 |
+
def _gelu_python(self, input: Tensor) -> Tensor:
|
75 |
+
return input * 0.5 * (1.0 + torch.erf(input / math.sqrt(2.0)))
|
76 |
+
|
77 |
+
def forward(self, input: Tensor) -> Tensor:
|
78 |
+
return self.act(input)
|
79 |
+
|
80 |
+
|
81 |
+
class FastGELUActivation(nn.Module):
|
82 |
+
"""
|
83 |
+
Applies GELU approximation that is slower than QuickGELU but more accurate. See: https://github.com/hendrycks/GELUs
|
84 |
+
"""
|
85 |
+
|
86 |
+
def forward(self, input: Tensor) -> Tensor:
|
87 |
+
return 0.5 * input * (1.0 + torch.tanh(input * 0.7978845608 * (1.0 + 0.044715 * input * input)))
|
88 |
+
|
89 |
+
|
90 |
+
class QuickGELUActivation(nn.Module):
|
91 |
+
"""
|
92 |
+
Applies GELU approximation that is fast but somewhat inaccurate. See: https://github.com/hendrycks/GELUs
|
93 |
+
"""
|
94 |
+
|
95 |
+
def forward(self, input: Tensor) -> Tensor:
|
96 |
+
return input * torch.sigmoid(1.702 * input)
|
97 |
+
|
98 |
+
|
99 |
+
class ClippedGELUActivation(nn.Module):
|
100 |
+
"""
|
101 |
+
Clip the range of possible GeLU outputs between [min, max]. This is especially useful for quantization purpose, as
|
102 |
+
it allows mapping negatives values in the GeLU spectrum. For more information on this trick, please refer to
|
103 |
+
https://arxiv.org/abs/2004.09602.
|
104 |
+
|
105 |
+
Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when
|
106 |
+
initially created.
|
107 |
+
|
108 |
+
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 +
|
109 |
+
torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))). See https://arxiv.org/abs/1606.08415
|
110 |
+
"""
|
111 |
+
|
112 |
+
def __init__(self, min: float, max: float):
|
113 |
+
if min > max:
|
114 |
+
raise ValueError(f"min should be < max (got min: {min}, max: {max})")
|
115 |
+
|
116 |
+
super().__init__()
|
117 |
+
self.min = min
|
118 |
+
self.max = max
|
119 |
+
|
120 |
+
def forward(self, x: Tensor) -> Tensor:
|
121 |
+
return torch.clip(gelu(x), self.min, self.max)
|
122 |
+
|
123 |
+
|
124 |
+
class AccurateGELUActivation(nn.Module):
|
125 |
+
"""
|
126 |
+
Applies GELU approximation that is faster than default and more accurate than QuickGELU. See:
|
127 |
+
https://github.com/hendrycks/GELUs
|
128 |
+
|
129 |
+
Implemented along with MEGA (Moving Average Equipped Gated Attention)
|
130 |
+
"""
|
131 |
+
|
132 |
+
def __init__(self):
|
133 |
+
super().__init__()
|
134 |
+
self.precomputed_constant = math.sqrt(2 / math.pi)
|
135 |
+
|
136 |
+
def forward(self, input: Tensor) -> Tensor:
|
137 |
+
return 0.5 * input * (1 + torch.tanh(self.precomputed_constant * (input + 0.044715 * torch.pow(input, 3))))
|
138 |
+
|
139 |
+
|
140 |
+
class MishActivation(nn.Module):
|
141 |
+
"""
|
142 |
+
See Mish: A Self-Regularized Non-Monotonic Activation Function (Misra., https://arxiv.org/abs/1908.08681). Also
|
143 |
+
visit the official repository for the paper: https://github.com/digantamisra98/Mish
|
144 |
+
"""
|
145 |
+
|
146 |
+
def __init__(self):
|
147 |
+
super().__init__()
|
148 |
+
if version.parse(torch.__version__) < version.parse("1.9.0"):
|
149 |
+
self.act = self._mish_python
|
150 |
+
else:
|
151 |
+
self.act = nn.functional.mish
|
152 |
+
|
153 |
+
def _mish_python(self, input: Tensor) -> Tensor:
|
154 |
+
return input * torch.tanh(nn.functional.softplus(input))
|
155 |
+
|
156 |
+
def forward(self, input: Tensor) -> Tensor:
|
157 |
+
return self.act(input)
|
158 |
+
|
159 |
+
|
160 |
+
class LinearActivation(nn.Module):
|
161 |
+
"""
|
162 |
+
Applies the linear activation function, i.e. forwarding input directly to output.
|
163 |
+
"""
|
164 |
+
|
165 |
+
def forward(self, input: Tensor) -> Tensor:
|
166 |
+
return input
|
167 |
+
|
168 |
+
|
169 |
+
class LaplaceActivation(nn.Module):
|
170 |
+
"""
|
171 |
+
Applies elementwise activation based on Laplace function, introduced in MEGA as an attention activation. See
|
172 |
+
https://arxiv.org/abs/2209.10655
|
173 |
+
|
174 |
+
Inspired by squared relu, but with bounded range and gradient for better stability
|
175 |
+
"""
|
176 |
+
|
177 |
+
def forward(self, input, mu=0.707107, sigma=0.282095):
|
178 |
+
input = (input - mu).div(sigma * math.sqrt(2.0))
|
179 |
+
return 0.5 * (1.0 + torch.erf(input))
|
180 |
+
|
181 |
+
|
182 |
+
class ReLUSquaredActivation(nn.Module):
|
183 |
+
"""
|
184 |
+
Applies the relu^2 activation introduced in https://arxiv.org/abs/2109.08668v2
|
185 |
+
"""
|
186 |
+
|
187 |
+
def forward(self, input):
|
188 |
+
relu_applied = nn.functional.relu(input)
|
189 |
+
squared = torch.square(relu_applied)
|
190 |
+
return squared
|
191 |
+
|
192 |
+
|
193 |
+
class ClassInstantier(OrderedDict):
|
194 |
+
def __getitem__(self, key):
|
195 |
+
content = super().__getitem__(key)
|
196 |
+
cls, kwargs = content if isinstance(content, tuple) else (content, {})
|
197 |
+
return cls(**kwargs)
|
198 |
+
|
199 |
+
|
200 |
+
ACT2CLS = {
|
201 |
+
"gelu": GELUActivation,
|
202 |
+
"gelu_10": (ClippedGELUActivation, {"min": -10, "max": 10}),
|
203 |
+
"gelu_fast": FastGELUActivation,
|
204 |
+
"gelu_new": NewGELUActivation,
|
205 |
+
"gelu_python": (GELUActivation, {"use_gelu_python": True}),
|
206 |
+
"gelu_pytorch_tanh": PytorchGELUTanh,
|
207 |
+
"gelu_accurate": AccurateGELUActivation,
|
208 |
+
"laplace": LaplaceActivation,
|
209 |
+
"leaky_relu": nn.LeakyReLU,
|
210 |
+
"linear": LinearActivation,
|
211 |
+
"mish": MishActivation,
|
212 |
+
"quick_gelu": QuickGELUActivation,
|
213 |
+
"relu": nn.ReLU,
|
214 |
+
"relu2": ReLUSquaredActivation,
|
215 |
+
"relu6": nn.ReLU6,
|
216 |
+
"sigmoid": nn.Sigmoid,
|
217 |
+
"silu": nn.SiLU,
|
218 |
+
"swish": nn.SiLU,
|
219 |
+
"tanh": nn.Tanh,
|
220 |
+
}
|
221 |
+
ACT2FN = ClassInstantier(ACT2CLS)
|
222 |
+
|
223 |
+
|
224 |
+
def get_activation(activation_string):
|
225 |
+
if activation_string in ACT2FN:
|
226 |
+
return ACT2FN[activation_string]
|
227 |
+
else:
|
228 |
+
raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}")
|
229 |
+
|
230 |
+
|
231 |
+
# For backwards compatibility with: from activations import gelu_python
|
232 |
+
gelu_python = get_activation("gelu_python")
|
233 |
+
gelu_new = get_activation("gelu_new")
|
234 |
+
gelu = get_activation("gelu")
|
235 |
+
gelu_fast = get_activation("gelu_fast")
|
236 |
+
quick_gelu = get_activation("quick_gelu")
|
237 |
+
silu = get_activation("silu")
|
238 |
+
mish = get_activation("mish")
|
239 |
+
linear_act = get_activation("linear")
|
env-llmeval/lib/python3.10/site-packages/transformers/activations_tf.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
|
17 |
+
import tensorflow as tf
|
18 |
+
from packaging.version import parse
|
19 |
+
|
20 |
+
|
21 |
+
try:
|
22 |
+
import tf_keras as keras
|
23 |
+
except (ModuleNotFoundError, ImportError):
|
24 |
+
import keras
|
25 |
+
|
26 |
+
if parse(keras.__version__).major > 2:
|
27 |
+
raise ValueError(
|
28 |
+
"Your currently installed version of Keras is Keras 3, but this is not yet supported in "
|
29 |
+
"Transformers. Please install the backwards-compatible tf-keras package with "
|
30 |
+
"`pip install tf-keras`."
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
def _gelu(x):
|
35 |
+
"""
|
36 |
+
Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when
|
37 |
+
initially created. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
|
38 |
+
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see
|
39 |
+
https://arxiv.org/abs/1606.08415
|
40 |
+
"""
|
41 |
+
x = tf.convert_to_tensor(x)
|
42 |
+
cdf = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0), x.dtype)))
|
43 |
+
|
44 |
+
return x * cdf
|
45 |
+
|
46 |
+
|
47 |
+
def _gelu_new(x):
|
48 |
+
"""
|
49 |
+
Gaussian Error Linear Unit. This is a smoother version of the GELU. Original paper: https://arxiv.org/abs/1606.0841
|
50 |
+
|
51 |
+
Args:
|
52 |
+
x: float Tensor to perform activation
|
53 |
+
|
54 |
+
Returns:
|
55 |
+
`x` with the GELU activation applied.
|
56 |
+
"""
|
57 |
+
x = tf.convert_to_tensor(x)
|
58 |
+
pi = tf.cast(math.pi, x.dtype)
|
59 |
+
coeff = tf.cast(0.044715, x.dtype)
|
60 |
+
cdf = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi) * (x + coeff * tf.pow(x, 3))))
|
61 |
+
|
62 |
+
return x * cdf
|
63 |
+
|
64 |
+
|
65 |
+
def mish(x):
|
66 |
+
x = tf.convert_to_tensor(x)
|
67 |
+
|
68 |
+
return x * tf.tanh(tf.math.softplus(x))
|
69 |
+
|
70 |
+
|
71 |
+
def gelu_fast(x):
|
72 |
+
x = tf.convert_to_tensor(x)
|
73 |
+
coeff1 = tf.cast(0.044715, x.dtype)
|
74 |
+
coeff2 = tf.cast(0.7978845608, x.dtype)
|
75 |
+
|
76 |
+
return 0.5 * x * (1.0 + tf.tanh(x * coeff2 * (1.0 + coeff1 * x * x)))
|
77 |
+
|
78 |
+
|
79 |
+
def quick_gelu(x):
|
80 |
+
x = tf.convert_to_tensor(x)
|
81 |
+
coeff = tf.cast(1.702, x.dtype)
|
82 |
+
return x * tf.math.sigmoid(coeff * x)
|
83 |
+
|
84 |
+
|
85 |
+
def gelu_10(x):
|
86 |
+
"""
|
87 |
+
Clip the range of possible GeLU outputs between [-10, 10]. This is especially useful for quantization purpose, as
|
88 |
+
it allows mapping 2 negatives values in the GeLU spectrum. For more information on this trick, please refer to
|
89 |
+
https://arxiv.org/abs/2004.09602
|
90 |
+
|
91 |
+
Gaussian Error Linear Unit. Original Implementation of the gelu activation function in Google Bert repo when
|
92 |
+
initially created. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
|
93 |
+
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see
|
94 |
+
https://arxiv.org/abs/1606.08415 :param x: :return:
|
95 |
+
"""
|
96 |
+
return tf.clip_by_value(_gelu(x), -10, 10)
|
97 |
+
|
98 |
+
|
99 |
+
def glu(x, axis=-1):
|
100 |
+
"""
|
101 |
+
Gated Linear Unit. Implementation as defined in the original paper (see https://arxiv.org/abs/1612.08083), where
|
102 |
+
the input `x` is split in two halves across a dimension (`axis`), A and B, returning A * sigmoid(B).
|
103 |
+
|
104 |
+
Args:
|
105 |
+
`x`: float Tensor to perform activation
|
106 |
+
`axis`: dimension across which `x` be split in half
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
`x` with the GLU activation applied (with its size halved across the dimension `axis`).
|
110 |
+
"""
|
111 |
+
a, b = tf.split(x, 2, axis=axis)
|
112 |
+
return a * tf.math.sigmoid(b)
|
113 |
+
|
114 |
+
|
115 |
+
if parse(tf.version.VERSION) >= parse("2.4"):
|
116 |
+
|
117 |
+
def approximate_gelu_wrap(x):
|
118 |
+
return keras.activations.gelu(x, approximate=True)
|
119 |
+
|
120 |
+
gelu = keras.activations.gelu
|
121 |
+
gelu_new = approximate_gelu_wrap
|
122 |
+
else:
|
123 |
+
gelu = _gelu
|
124 |
+
gelu_new = _gelu_new
|
125 |
+
|
126 |
+
|
127 |
+
ACT2FN = {
|
128 |
+
"gelu": gelu,
|
129 |
+
"gelu_10": gelu_10,
|
130 |
+
"gelu_fast": gelu_fast,
|
131 |
+
"gelu_new": gelu_new,
|
132 |
+
"glu": glu,
|
133 |
+
"mish": mish,
|
134 |
+
"quick_gelu": quick_gelu,
|
135 |
+
"relu": keras.activations.relu,
|
136 |
+
"sigmoid": keras.activations.sigmoid,
|
137 |
+
"silu": keras.activations.swish,
|
138 |
+
"swish": keras.activations.swish,
|
139 |
+
"tanh": keras.activations.tanh,
|
140 |
+
}
|
141 |
+
|
142 |
+
|
143 |
+
def get_tf_activation(activation_string):
|
144 |
+
if activation_string in ACT2FN:
|
145 |
+
return ACT2FN[activation_string]
|
146 |
+
else:
|
147 |
+
raise KeyError(f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}")
|
env-llmeval/lib/python3.10/site-packages/transformers/audio_utils.py
ADDED
@@ -0,0 +1,825 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team and the librosa & torchaudio authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Audio processing functions to extract features from audio waveforms. This code is pure numpy to support all frameworks
|
17 |
+
and remove unnecessary dependencies.
|
18 |
+
"""
|
19 |
+
import warnings
|
20 |
+
from typing import Optional, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
|
25 |
+
def hertz_to_mel(freq: Union[float, np.ndarray], mel_scale: str = "htk") -> Union[float, np.ndarray]:
|
26 |
+
"""
|
27 |
+
Convert frequency from hertz to mels.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
freq (`float` or `np.ndarray`):
|
31 |
+
The frequency, or multiple frequencies, in hertz (Hz).
|
32 |
+
mel_scale (`str`, *optional*, defaults to `"htk"`):
|
33 |
+
The mel frequency scale to use, `"htk"`, `"kaldi"` or `"slaney"`.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
`float` or `np.ndarray`: The frequencies on the mel scale.
|
37 |
+
"""
|
38 |
+
|
39 |
+
if mel_scale not in ["slaney", "htk", "kaldi"]:
|
40 |
+
raise ValueError('mel_scale should be one of "htk", "slaney" or "kaldi".')
|
41 |
+
|
42 |
+
if mel_scale == "htk":
|
43 |
+
return 2595.0 * np.log10(1.0 + (freq / 700.0))
|
44 |
+
elif mel_scale == "kaldi":
|
45 |
+
return 1127.0 * np.log(1.0 + (freq / 700.0))
|
46 |
+
|
47 |
+
min_log_hertz = 1000.0
|
48 |
+
min_log_mel = 15.0
|
49 |
+
logstep = 27.0 / np.log(6.4)
|
50 |
+
mels = 3.0 * freq / 200.0
|
51 |
+
|
52 |
+
if isinstance(freq, np.ndarray):
|
53 |
+
log_region = freq >= min_log_hertz
|
54 |
+
mels[log_region] = min_log_mel + np.log(freq[log_region] / min_log_hertz) * logstep
|
55 |
+
elif freq >= min_log_hertz:
|
56 |
+
mels = min_log_mel + np.log(freq / min_log_hertz) * logstep
|
57 |
+
|
58 |
+
return mels
|
59 |
+
|
60 |
+
|
61 |
+
def mel_to_hertz(mels: Union[float, np.ndarray], mel_scale: str = "htk") -> Union[float, np.ndarray]:
|
62 |
+
"""
|
63 |
+
Convert frequency from mels to hertz.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
mels (`float` or `np.ndarray`):
|
67 |
+
The frequency, or multiple frequencies, in mels.
|
68 |
+
mel_scale (`str`, *optional*, `"htk"`):
|
69 |
+
The mel frequency scale to use, `"htk"`, `"kaldi"` or `"slaney"`.
|
70 |
+
|
71 |
+
Returns:
|
72 |
+
`float` or `np.ndarray`: The frequencies in hertz.
|
73 |
+
"""
|
74 |
+
|
75 |
+
if mel_scale not in ["slaney", "htk", "kaldi"]:
|
76 |
+
raise ValueError('mel_scale should be one of "htk", "slaney" or "kaldi".')
|
77 |
+
|
78 |
+
if mel_scale == "htk":
|
79 |
+
return 700.0 * (np.power(10, mels / 2595.0) - 1.0)
|
80 |
+
elif mel_scale == "kaldi":
|
81 |
+
return 700.0 * (np.exp(mels / 1127.0) - 1.0)
|
82 |
+
|
83 |
+
min_log_hertz = 1000.0
|
84 |
+
min_log_mel = 15.0
|
85 |
+
logstep = np.log(6.4) / 27.0
|
86 |
+
freq = 200.0 * mels / 3.0
|
87 |
+
|
88 |
+
if isinstance(mels, np.ndarray):
|
89 |
+
log_region = mels >= min_log_mel
|
90 |
+
freq[log_region] = min_log_hertz * np.exp(logstep * (mels[log_region] - min_log_mel))
|
91 |
+
elif mels >= min_log_mel:
|
92 |
+
freq = min_log_hertz * np.exp(logstep * (mels - min_log_mel))
|
93 |
+
|
94 |
+
return freq
|
95 |
+
|
96 |
+
|
97 |
+
def hertz_to_octave(
|
98 |
+
freq: Union[float, np.ndarray], tuning: Optional[float] = 0.0, bins_per_octave: Optional[int] = 12
|
99 |
+
):
|
100 |
+
"""
|
101 |
+
Convert frequency from hertz to fractional octave numbers.
|
102 |
+
Adapted from *librosa*.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
freq (`float` or `np.ndarray`):
|
106 |
+
The frequency, or multiple frequencies, in hertz (Hz).
|
107 |
+
tuning (`float`, defaults to `0.`):
|
108 |
+
Tuning deviation from the Stuttgart pitch (A440) in (fractional) bins per octave.
|
109 |
+
bins_per_octave (`int`, defaults to `12`):
|
110 |
+
Number of bins per octave.
|
111 |
+
|
112 |
+
Returns:
|
113 |
+
`float` or `np.ndarray`: The frequencies on the octave scale.
|
114 |
+
"""
|
115 |
+
stuttgart_pitch = 440.0 * 2.0 ** (tuning / bins_per_octave)
|
116 |
+
octave = np.log2(freq / (float(stuttgart_pitch) / 16))
|
117 |
+
return octave
|
118 |
+
|
119 |
+
|
120 |
+
def _create_triangular_filter_bank(fft_freqs: np.ndarray, filter_freqs: np.ndarray) -> np.ndarray:
|
121 |
+
"""
|
122 |
+
Creates a triangular filter bank.
|
123 |
+
|
124 |
+
Adapted from *torchaudio* and *librosa*.
|
125 |
+
|
126 |
+
Args:
|
127 |
+
fft_freqs (`np.ndarray` of shape `(num_frequency_bins,)`):
|
128 |
+
Discrete frequencies of the FFT bins in Hz.
|
129 |
+
filter_freqs (`np.ndarray` of shape `(num_mel_filters,)`):
|
130 |
+
Center frequencies of the triangular filters to create, in Hz.
|
131 |
+
|
132 |
+
Returns:
|
133 |
+
`np.ndarray` of shape `(num_frequency_bins, num_mel_filters)`
|
134 |
+
"""
|
135 |
+
filter_diff = np.diff(filter_freqs)
|
136 |
+
slopes = np.expand_dims(filter_freqs, 0) - np.expand_dims(fft_freqs, 1)
|
137 |
+
down_slopes = -slopes[:, :-2] / filter_diff[:-1]
|
138 |
+
up_slopes = slopes[:, 2:] / filter_diff[1:]
|
139 |
+
return np.maximum(np.zeros(1), np.minimum(down_slopes, up_slopes))
|
140 |
+
|
141 |
+
|
142 |
+
def chroma_filter_bank(
|
143 |
+
num_frequency_bins: int,
|
144 |
+
num_chroma: int,
|
145 |
+
sampling_rate: int,
|
146 |
+
tuning: float = 0.0,
|
147 |
+
power: Optional[float] = 2.0,
|
148 |
+
weighting_parameters: Optional[Tuple[float]] = (5.0, 2),
|
149 |
+
start_at_c_chroma: Optional[bool] = True,
|
150 |
+
):
|
151 |
+
"""
|
152 |
+
Creates a chroma filter bank, i.e a linear transformation to project spectrogram bins onto chroma bins.
|
153 |
+
|
154 |
+
Adapted from *librosa*.
|
155 |
+
|
156 |
+
Args:
|
157 |
+
num_frequency_bins (`int`):
|
158 |
+
Number of frequencies used to compute the spectrogram (should be the same as in `stft`).
|
159 |
+
num_chroma (`int`):
|
160 |
+
Number of chroma bins (i.e pitch classes).
|
161 |
+
sampling_rate (`float`):
|
162 |
+
Sample rate of the audio waveform.
|
163 |
+
tuning (`float`):
|
164 |
+
Tuning deviation from A440 in fractions of a chroma bin.
|
165 |
+
power (`float`, *optional*, defaults to 2.0):
|
166 |
+
If 12.0, normalizes each column with their L2 norm. If 1.0, normalizes each column with their L1 norm.
|
167 |
+
weighting_parameters (`Tuple[float]`, *optional*, defaults to `(5., 2.)`):
|
168 |
+
If specified, apply a Gaussian weighting parameterized by the first element of the tuple being the center and
|
169 |
+
the second element being the Gaussian half-width.
|
170 |
+
start_at_c_chroma (`float`, *optional*, defaults to `True`):
|
171 |
+
If True, the filter bank will start at the 'C' pitch class. Otherwise, it will start at 'A'.
|
172 |
+
Returns:
|
173 |
+
`np.ndarray` of shape `(num_frequency_bins, num_chroma)`
|
174 |
+
"""
|
175 |
+
# Get the FFT bins, not counting the DC component
|
176 |
+
frequencies = np.linspace(0, sampling_rate, num_frequency_bins, endpoint=False)[1:]
|
177 |
+
|
178 |
+
freq_bins = num_chroma * hertz_to_octave(frequencies, tuning=tuning, bins_per_octave=num_chroma)
|
179 |
+
|
180 |
+
# make up a value for the 0 Hz bin = 1.5 octaves below bin 1
|
181 |
+
# (so chroma is 50% rotated from bin 1, and bin width is broad)
|
182 |
+
freq_bins = np.concatenate(([freq_bins[0] - 1.5 * num_chroma], freq_bins))
|
183 |
+
|
184 |
+
bins_width = np.concatenate((np.maximum(freq_bins[1:] - freq_bins[:-1], 1.0), [1]))
|
185 |
+
|
186 |
+
chroma_filters = np.subtract.outer(freq_bins, np.arange(0, num_chroma, dtype="d")).T
|
187 |
+
|
188 |
+
num_chroma2 = np.round(float(num_chroma) / 2)
|
189 |
+
|
190 |
+
# Project into range -num_chroma/2 .. num_chroma/2
|
191 |
+
# add on fixed offset of 10*num_chroma to ensure all values passed to
|
192 |
+
# rem are positive
|
193 |
+
chroma_filters = np.remainder(chroma_filters + num_chroma2 + 10 * num_chroma, num_chroma) - num_chroma2
|
194 |
+
|
195 |
+
# Gaussian bumps - 2*D to make them narrower
|
196 |
+
chroma_filters = np.exp(-0.5 * (2 * chroma_filters / np.tile(bins_width, (num_chroma, 1))) ** 2)
|
197 |
+
|
198 |
+
# normalize each column
|
199 |
+
if power is not None:
|
200 |
+
chroma_filters = chroma_filters / np.sum(chroma_filters**power, axis=0, keepdims=True) ** (1.0 / power)
|
201 |
+
|
202 |
+
# Maybe apply scaling for fft bins
|
203 |
+
if weighting_parameters is not None:
|
204 |
+
center, half_width = weighting_parameters
|
205 |
+
chroma_filters *= np.tile(
|
206 |
+
np.exp(-0.5 * (((freq_bins / num_chroma - center) / half_width) ** 2)),
|
207 |
+
(num_chroma, 1),
|
208 |
+
)
|
209 |
+
|
210 |
+
if start_at_c_chroma:
|
211 |
+
chroma_filters = np.roll(chroma_filters, -3 * (num_chroma // 12), axis=0)
|
212 |
+
|
213 |
+
# remove aliasing columns, copy to ensure row-contiguity
|
214 |
+
return np.ascontiguousarray(chroma_filters[:, : int(1 + num_frequency_bins / 2)])
|
215 |
+
|
216 |
+
|
217 |
+
def mel_filter_bank(
|
218 |
+
num_frequency_bins: int,
|
219 |
+
num_mel_filters: int,
|
220 |
+
min_frequency: float,
|
221 |
+
max_frequency: float,
|
222 |
+
sampling_rate: int,
|
223 |
+
norm: Optional[str] = None,
|
224 |
+
mel_scale: str = "htk",
|
225 |
+
triangularize_in_mel_space: bool = False,
|
226 |
+
) -> np.ndarray:
|
227 |
+
"""
|
228 |
+
Creates a frequency bin conversion matrix used to obtain a mel spectrogram. This is called a *mel filter bank*, and
|
229 |
+
various implementation exist, which differ in the number of filters, the shape of the filters, the way the filters
|
230 |
+
are spaced, the bandwidth of the filters, and the manner in which the spectrum is warped. The goal of these
|
231 |
+
features is to approximate the non-linear human perception of the variation in pitch with respect to the frequency.
|
232 |
+
|
233 |
+
Different banks of mel filters were introduced in the literature. The following variations are supported:
|
234 |
+
|
235 |
+
- MFCC FB-20: introduced in 1980 by Davis and Mermelstein, it assumes a sampling frequency of 10 kHz and a speech
|
236 |
+
bandwidth of `[0, 4600]` Hz.
|
237 |
+
- MFCC FB-24 HTK: from the Cambridge HMM Toolkit (HTK) (1995) uses a filter bank of 24 filters for a speech
|
238 |
+
bandwidth of `[0, 8000]` Hz. This assumes sampling rate ≥ 16 kHz.
|
239 |
+
- MFCC FB-40: from the Auditory Toolbox for MATLAB written by Slaney in 1998, assumes a sampling rate of 16 kHz and
|
240 |
+
speech bandwidth of `[133, 6854]` Hz. This version also includes area normalization.
|
241 |
+
- HFCC-E FB-29 (Human Factor Cepstral Coefficients) of Skowronski and Harris (2004), assumes a sampling rate of
|
242 |
+
12.5 kHz and speech bandwidth of `[0, 6250]` Hz.
|
243 |
+
|
244 |
+
This code is adapted from *torchaudio* and *librosa*. Note that the default parameters of torchaudio's
|
245 |
+
`melscale_fbanks` implement the `"htk"` filters while librosa uses the `"slaney"` implementation.
|
246 |
+
|
247 |
+
Args:
|
248 |
+
num_frequency_bins (`int`):
|
249 |
+
Number of frequencies used to compute the spectrogram (should be the same as in `stft`).
|
250 |
+
num_mel_filters (`int`):
|
251 |
+
Number of mel filters to generate.
|
252 |
+
min_frequency (`float`):
|
253 |
+
Lowest frequency of interest in Hz.
|
254 |
+
max_frequency (`float`):
|
255 |
+
Highest frequency of interest in Hz. This should not exceed `sampling_rate / 2`.
|
256 |
+
sampling_rate (`int`):
|
257 |
+
Sample rate of the audio waveform.
|
258 |
+
norm (`str`, *optional*):
|
259 |
+
If `"slaney"`, divide the triangular mel weights by the width of the mel band (area normalization).
|
260 |
+
mel_scale (`str`, *optional*, defaults to `"htk"`):
|
261 |
+
The mel frequency scale to use, `"htk"`, `"kaldi"` or `"slaney"`.
|
262 |
+
triangularize_in_mel_space (`bool`, *optional*, defaults to `False`):
|
263 |
+
If this option is enabled, the triangular filter is applied in mel space rather than frequency space. This
|
264 |
+
should be set to `true` in order to get the same results as `torchaudio` when computing mel filters.
|
265 |
+
|
266 |
+
Returns:
|
267 |
+
`np.ndarray` of shape (`num_frequency_bins`, `num_mel_filters`): Triangular filter bank matrix. This is a
|
268 |
+
projection matrix to go from a spectrogram to a mel spectrogram.
|
269 |
+
"""
|
270 |
+
if norm is not None and norm != "slaney":
|
271 |
+
raise ValueError('norm must be one of None or "slaney"')
|
272 |
+
|
273 |
+
# center points of the triangular mel filters
|
274 |
+
mel_min = hertz_to_mel(min_frequency, mel_scale=mel_scale)
|
275 |
+
mel_max = hertz_to_mel(max_frequency, mel_scale=mel_scale)
|
276 |
+
mel_freqs = np.linspace(mel_min, mel_max, num_mel_filters + 2)
|
277 |
+
filter_freqs = mel_to_hertz(mel_freqs, mel_scale=mel_scale)
|
278 |
+
|
279 |
+
if triangularize_in_mel_space:
|
280 |
+
# frequencies of FFT bins in Hz, but filters triangularized in mel space
|
281 |
+
fft_bin_width = sampling_rate / (num_frequency_bins * 2)
|
282 |
+
fft_freqs = hertz_to_mel(fft_bin_width * np.arange(num_frequency_bins), mel_scale=mel_scale)
|
283 |
+
filter_freqs = mel_freqs
|
284 |
+
else:
|
285 |
+
# frequencies of FFT bins in Hz
|
286 |
+
fft_freqs = np.linspace(0, sampling_rate // 2, num_frequency_bins)
|
287 |
+
|
288 |
+
mel_filters = _create_triangular_filter_bank(fft_freqs, filter_freqs)
|
289 |
+
|
290 |
+
if norm is not None and norm == "slaney":
|
291 |
+
# Slaney-style mel is scaled to be approx constant energy per channel
|
292 |
+
enorm = 2.0 / (filter_freqs[2 : num_mel_filters + 2] - filter_freqs[:num_mel_filters])
|
293 |
+
mel_filters *= np.expand_dims(enorm, 0)
|
294 |
+
|
295 |
+
if (mel_filters.max(axis=0) == 0.0).any():
|
296 |
+
warnings.warn(
|
297 |
+
"At least one mel filter has all zero values. "
|
298 |
+
f"The value for `num_mel_filters` ({num_mel_filters}) may be set too high. "
|
299 |
+
f"Or, the value for `num_frequency_bins` ({num_frequency_bins}) may be set too low."
|
300 |
+
)
|
301 |
+
|
302 |
+
return mel_filters
|
303 |
+
|
304 |
+
|
305 |
+
def optimal_fft_length(window_length: int) -> int:
|
306 |
+
"""
|
307 |
+
Finds the best FFT input size for a given `window_length`. This function takes a given window length and, if not
|
308 |
+
already a power of two, rounds it up to the next power or two.
|
309 |
+
|
310 |
+
The FFT algorithm works fastest when the length of the input is a power of two, which may be larger than the size
|
311 |
+
of the window or analysis frame. For example, if the window is 400 samples, using an FFT input size of 512 samples
|
312 |
+
is more optimal than an FFT size of 400 samples. Using a larger FFT size does not affect the detected frequencies,
|
313 |
+
it simply gives a higher frequency resolution (i.e. the frequency bins are smaller).
|
314 |
+
"""
|
315 |
+
return 2 ** int(np.ceil(np.log2(window_length)))
|
316 |
+
|
317 |
+
|
318 |
+
def window_function(
|
319 |
+
window_length: int,
|
320 |
+
name: str = "hann",
|
321 |
+
periodic: bool = True,
|
322 |
+
frame_length: Optional[int] = None,
|
323 |
+
center: bool = True,
|
324 |
+
) -> np.ndarray:
|
325 |
+
"""
|
326 |
+
Returns an array containing the specified window. This window is intended to be used with `stft`.
|
327 |
+
|
328 |
+
The following window types are supported:
|
329 |
+
|
330 |
+
- `"boxcar"`: a rectangular window
|
331 |
+
- `"hamming"`: the Hamming window
|
332 |
+
- `"hann"`: the Hann window
|
333 |
+
- `"povey"`: the Povey window
|
334 |
+
|
335 |
+
Args:
|
336 |
+
window_length (`int`):
|
337 |
+
The length of the window in samples.
|
338 |
+
name (`str`, *optional*, defaults to `"hann"`):
|
339 |
+
The name of the window function.
|
340 |
+
periodic (`bool`, *optional*, defaults to `True`):
|
341 |
+
Whether the window is periodic or symmetric.
|
342 |
+
frame_length (`int`, *optional*):
|
343 |
+
The length of the analysis frames in samples. Provide a value for `frame_length` if the window is smaller
|
344 |
+
than the frame length, so that it will be zero-padded.
|
345 |
+
center (`bool`, *optional*, defaults to `True`):
|
346 |
+
Whether to center the window inside the FFT buffer. Only used when `frame_length` is provided.
|
347 |
+
|
348 |
+
Returns:
|
349 |
+
`np.ndarray` of shape `(window_length,)` or `(frame_length,)` containing the window.
|
350 |
+
"""
|
351 |
+
length = window_length + 1 if periodic else window_length
|
352 |
+
|
353 |
+
if name == "boxcar":
|
354 |
+
window = np.ones(length)
|
355 |
+
elif name in ["hamming", "hamming_window"]:
|
356 |
+
window = np.hamming(length)
|
357 |
+
elif name in ["hann", "hann_window"]:
|
358 |
+
window = np.hanning(length)
|
359 |
+
elif name in ["povey"]:
|
360 |
+
window = np.power(np.hanning(length), 0.85)
|
361 |
+
else:
|
362 |
+
raise ValueError(f"Unknown window function '{name}'")
|
363 |
+
|
364 |
+
if periodic:
|
365 |
+
window = window[:-1]
|
366 |
+
|
367 |
+
if frame_length is None:
|
368 |
+
return window
|
369 |
+
|
370 |
+
if window_length > frame_length:
|
371 |
+
raise ValueError(
|
372 |
+
f"Length of the window ({window_length}) may not be larger than frame_length ({frame_length})"
|
373 |
+
)
|
374 |
+
|
375 |
+
padded_window = np.zeros(frame_length)
|
376 |
+
offset = (frame_length - window_length) // 2 if center else 0
|
377 |
+
padded_window[offset : offset + window_length] = window
|
378 |
+
return padded_window
|
379 |
+
|
380 |
+
|
381 |
+
# TODO This method does not support batching yet as we are mainly focused on inference.
|
382 |
+
def spectrogram(
|
383 |
+
waveform: np.ndarray,
|
384 |
+
window: np.ndarray,
|
385 |
+
frame_length: int,
|
386 |
+
hop_length: int,
|
387 |
+
fft_length: Optional[int] = None,
|
388 |
+
power: Optional[float] = 1.0,
|
389 |
+
center: bool = True,
|
390 |
+
pad_mode: str = "reflect",
|
391 |
+
onesided: bool = True,
|
392 |
+
preemphasis: Optional[float] = None,
|
393 |
+
mel_filters: Optional[np.ndarray] = None,
|
394 |
+
mel_floor: float = 1e-10,
|
395 |
+
log_mel: Optional[str] = None,
|
396 |
+
reference: float = 1.0,
|
397 |
+
min_value: float = 1e-10,
|
398 |
+
db_range: Optional[float] = None,
|
399 |
+
remove_dc_offset: Optional[bool] = None,
|
400 |
+
dtype: np.dtype = np.float32,
|
401 |
+
) -> np.ndarray:
|
402 |
+
"""
|
403 |
+
Calculates a spectrogram over one waveform using the Short-Time Fourier Transform.
|
404 |
+
|
405 |
+
This function can create the following kinds of spectrograms:
|
406 |
+
|
407 |
+
- amplitude spectrogram (`power = 1.0`)
|
408 |
+
- power spectrogram (`power = 2.0`)
|
409 |
+
- complex-valued spectrogram (`power = None`)
|
410 |
+
- log spectrogram (use `log_mel` argument)
|
411 |
+
- mel spectrogram (provide `mel_filters`)
|
412 |
+
- log-mel spectrogram (provide `mel_filters` and `log_mel`)
|
413 |
+
|
414 |
+
How this works:
|
415 |
+
|
416 |
+
1. The input waveform is split into frames of size `frame_length` that are partially overlapping by `frame_length
|
417 |
+
- hop_length` samples.
|
418 |
+
2. Each frame is multiplied by the window and placed into a buffer of size `fft_length`.
|
419 |
+
3. The DFT is taken of each windowed frame.
|
420 |
+
4. The results are stacked into a spectrogram.
|
421 |
+
|
422 |
+
We make a distinction between the following "blocks" of sample data, each of which may have a different lengths:
|
423 |
+
|
424 |
+
- The analysis frame. This is the size of the time slices that the input waveform is split into.
|
425 |
+
- The window. Each analysis frame is multiplied by the window to avoid spectral leakage.
|
426 |
+
- The FFT input buffer. The length of this determines how many frequency bins are in the spectrogram.
|
427 |
+
|
428 |
+
In this implementation, the window is assumed to be zero-padded to have the same size as the analysis frame. A
|
429 |
+
padded window can be obtained from `window_function()`. The FFT input buffer may be larger than the analysis frame,
|
430 |
+
typically the next power of two.
|
431 |
+
|
432 |
+
Note: This function is not optimized for speed yet. It should be mostly compatible with `librosa.stft` and
|
433 |
+
`torchaudio.functional.transforms.Spectrogram`, although it is more flexible due to the different ways spectrograms
|
434 |
+
can be constructed.
|
435 |
+
|
436 |
+
Args:
|
437 |
+
waveform (`np.ndarray` of shape `(length,)`):
|
438 |
+
The input waveform. This must be a single real-valued, mono waveform.
|
439 |
+
window (`np.ndarray` of shape `(frame_length,)`):
|
440 |
+
The windowing function to apply, including zero-padding if necessary. The actual window length may be
|
441 |
+
shorter than `frame_length`, but we're assuming the array has already been zero-padded.
|
442 |
+
frame_length (`int`):
|
443 |
+
The length of the analysis frames in samples. With librosa this is always equal to `fft_length` but we also
|
444 |
+
allow smaller sizes.
|
445 |
+
hop_length (`int`):
|
446 |
+
The stride between successive analysis frames in samples.
|
447 |
+
fft_length (`int`, *optional*):
|
448 |
+
The size of the FFT buffer in samples. This determines how many frequency bins the spectrogram will have.
|
449 |
+
For optimal speed, this should be a power of two. If `None`, uses `frame_length`.
|
450 |
+
power (`float`, *optional*, defaults to 1.0):
|
451 |
+
If 1.0, returns the amplitude spectrogram. If 2.0, returns the power spectrogram. If `None`, returns
|
452 |
+
complex numbers.
|
453 |
+
center (`bool`, *optional*, defaults to `True`):
|
454 |
+
Whether to pad the waveform so that frame `t` is centered around time `t * hop_length`. If `False`, frame
|
455 |
+
`t` will start at time `t * hop_length`.
|
456 |
+
pad_mode (`str`, *optional*, defaults to `"reflect"`):
|
457 |
+
Padding mode used when `center` is `True`. Possible values are: `"constant"` (pad with zeros), `"edge"`
|
458 |
+
(pad with edge values), `"reflect"` (pads with mirrored values).
|
459 |
+
onesided (`bool`, *optional*, defaults to `True`):
|
460 |
+
If True, only computes the positive frequencies and returns a spectrogram containing `fft_length // 2 + 1`
|
461 |
+
frequency bins. If False, also computes the negative frequencies and returns `fft_length` frequency bins.
|
462 |
+
preemphasis (`float`, *optional*)
|
463 |
+
Coefficient for a low-pass filter that applies pre-emphasis before the DFT.
|
464 |
+
mel_filters (`np.ndarray` of shape `(num_freq_bins, num_mel_filters)`, *optional*):
|
465 |
+
The mel filter bank. If supplied, applies a this filter bank to create a mel spectrogram.
|
466 |
+
mel_floor (`float`, *optional*, defaults to 1e-10):
|
467 |
+
Minimum value of mel frequency banks.
|
468 |
+
log_mel (`str`, *optional*):
|
469 |
+
How to convert the spectrogram to log scale. Possible options are: `None` (don't convert), `"log"` (take
|
470 |
+
the natural logarithm) `"log10"` (take the base-10 logarithm), `"dB"` (convert to decibels). Can only be
|
471 |
+
used when `power` is not `None`.
|
472 |
+
reference (`float`, *optional*, defaults to 1.0):
|
473 |
+
Sets the input spectrogram value that corresponds to 0 dB. For example, use `np.max(spectrogram)` to set
|
474 |
+
the loudest part to 0 dB. Must be greater than zero.
|
475 |
+
min_value (`float`, *optional*, defaults to `1e-10`):
|
476 |
+
The spectrogram will be clipped to this minimum value before conversion to decibels, to avoid taking
|
477 |
+
`log(0)`. For a power spectrogram, the default of `1e-10` corresponds to a minimum of -100 dB. For an
|
478 |
+
amplitude spectrogram, the value `1e-5` corresponds to -100 dB. Must be greater than zero.
|
479 |
+
db_range (`float`, *optional*):
|
480 |
+
Sets the maximum dynamic range in decibels. For example, if `db_range = 80`, the difference between the
|
481 |
+
peak value and the smallest value will never be more than 80 dB. Must be greater than zero.
|
482 |
+
remove_dc_offset (`bool`, *optional*):
|
483 |
+
Subtract mean from waveform on each frame, applied before pre-emphasis. This should be set to `true` in
|
484 |
+
order to get the same results as `torchaudio.compliance.kaldi.fbank` when computing mel filters.
|
485 |
+
dtype (`np.dtype`, *optional*, defaults to `np.float32`):
|
486 |
+
Data type of the spectrogram tensor. If `power` is None, this argument is ignored and the dtype will be
|
487 |
+
`np.complex64`.
|
488 |
+
|
489 |
+
Returns:
|
490 |
+
`nd.array` containing a spectrogram of shape `(num_frequency_bins, length)` for a regular spectrogram or shape
|
491 |
+
`(num_mel_filters, length)` for a mel spectrogram.
|
492 |
+
"""
|
493 |
+
window_length = len(window)
|
494 |
+
|
495 |
+
if fft_length is None:
|
496 |
+
fft_length = frame_length
|
497 |
+
|
498 |
+
if frame_length > fft_length:
|
499 |
+
raise ValueError(f"frame_length ({frame_length}) may not be larger than fft_length ({fft_length})")
|
500 |
+
|
501 |
+
if window_length != frame_length:
|
502 |
+
raise ValueError(f"Length of the window ({window_length}) must equal frame_length ({frame_length})")
|
503 |
+
|
504 |
+
if hop_length <= 0:
|
505 |
+
raise ValueError("hop_length must be greater than zero")
|
506 |
+
|
507 |
+
if waveform.ndim != 1:
|
508 |
+
raise ValueError(f"Input waveform must have only one dimension, shape is {waveform.shape}")
|
509 |
+
|
510 |
+
if np.iscomplexobj(waveform):
|
511 |
+
raise ValueError("Complex-valued input waveforms are not currently supported")
|
512 |
+
|
513 |
+
if power is None and mel_filters is not None:
|
514 |
+
raise ValueError(
|
515 |
+
"You have provided `mel_filters` but `power` is `None`. Mel spectrogram computation is not yet supported for complex-valued spectrogram."
|
516 |
+
"Specify `power` to fix this issue."
|
517 |
+
)
|
518 |
+
|
519 |
+
# center pad the waveform
|
520 |
+
if center:
|
521 |
+
padding = [(int(frame_length // 2), int(frame_length // 2))]
|
522 |
+
waveform = np.pad(waveform, padding, mode=pad_mode)
|
523 |
+
|
524 |
+
# promote to float64, since np.fft uses float64 internally
|
525 |
+
waveform = waveform.astype(np.float64)
|
526 |
+
window = window.astype(np.float64)
|
527 |
+
|
528 |
+
# split waveform into frames of frame_length size
|
529 |
+
num_frames = int(1 + np.floor((waveform.size - frame_length) / hop_length))
|
530 |
+
|
531 |
+
num_frequency_bins = (fft_length // 2) + 1 if onesided else fft_length
|
532 |
+
spectrogram = np.empty((num_frames, num_frequency_bins), dtype=np.complex64)
|
533 |
+
|
534 |
+
# rfft is faster than fft
|
535 |
+
fft_func = np.fft.rfft if onesided else np.fft.fft
|
536 |
+
buffer = np.zeros(fft_length)
|
537 |
+
|
538 |
+
timestep = 0
|
539 |
+
for frame_idx in range(num_frames):
|
540 |
+
buffer[:frame_length] = waveform[timestep : timestep + frame_length]
|
541 |
+
|
542 |
+
if remove_dc_offset:
|
543 |
+
buffer[:frame_length] = buffer[:frame_length] - buffer[:frame_length].mean()
|
544 |
+
|
545 |
+
if preemphasis is not None:
|
546 |
+
buffer[1:frame_length] -= preemphasis * buffer[: frame_length - 1]
|
547 |
+
buffer[0] *= 1 - preemphasis
|
548 |
+
|
549 |
+
buffer[:frame_length] *= window
|
550 |
+
|
551 |
+
spectrogram[frame_idx] = fft_func(buffer)
|
552 |
+
timestep += hop_length
|
553 |
+
|
554 |
+
# note: ** is much faster than np.power
|
555 |
+
if power is not None:
|
556 |
+
spectrogram = np.abs(spectrogram, dtype=np.float64) ** power
|
557 |
+
|
558 |
+
spectrogram = spectrogram.T
|
559 |
+
|
560 |
+
if mel_filters is not None:
|
561 |
+
spectrogram = np.maximum(mel_floor, np.dot(mel_filters.T, spectrogram))
|
562 |
+
|
563 |
+
if power is not None and log_mel is not None:
|
564 |
+
if log_mel == "log":
|
565 |
+
spectrogram = np.log(spectrogram)
|
566 |
+
elif log_mel == "log10":
|
567 |
+
spectrogram = np.log10(spectrogram)
|
568 |
+
elif log_mel == "dB":
|
569 |
+
if power == 1.0:
|
570 |
+
spectrogram = amplitude_to_db(spectrogram, reference, min_value, db_range)
|
571 |
+
elif power == 2.0:
|
572 |
+
spectrogram = power_to_db(spectrogram, reference, min_value, db_range)
|
573 |
+
else:
|
574 |
+
raise ValueError(f"Cannot use log_mel option '{log_mel}' with power {power}")
|
575 |
+
else:
|
576 |
+
raise ValueError(f"Unknown log_mel option: {log_mel}")
|
577 |
+
|
578 |
+
spectrogram = np.asarray(spectrogram, dtype)
|
579 |
+
|
580 |
+
return spectrogram
|
581 |
+
|
582 |
+
|
583 |
+
def power_to_db(
|
584 |
+
spectrogram: np.ndarray,
|
585 |
+
reference: float = 1.0,
|
586 |
+
min_value: float = 1e-10,
|
587 |
+
db_range: Optional[float] = None,
|
588 |
+
) -> np.ndarray:
|
589 |
+
"""
|
590 |
+
Converts a power spectrogram to the decibel scale. This computes `10 * log10(spectrogram / reference)`, using basic
|
591 |
+
logarithm properties for numerical stability.
|
592 |
+
|
593 |
+
The motivation behind applying the log function on the (mel) spectrogram is that humans do not hear loudness on a
|
594 |
+
linear scale. Generally to double the perceived volume of a sound we need to put 8 times as much energy into it.
|
595 |
+
This means that large variations in energy may not sound all that different if the sound is loud to begin with.
|
596 |
+
This compression operation makes the (mel) spectrogram features match more closely what humans actually hear.
|
597 |
+
|
598 |
+
Based on the implementation of `librosa.power_to_db`.
|
599 |
+
|
600 |
+
Args:
|
601 |
+
spectrogram (`np.ndarray`):
|
602 |
+
The input power (mel) spectrogram. Note that a power spectrogram has the amplitudes squared!
|
603 |
+
reference (`float`, *optional*, defaults to 1.0):
|
604 |
+
Sets the input spectrogram value that corresponds to 0 dB. For example, use `np.max(spectrogram)` to set
|
605 |
+
the loudest part to 0 dB. Must be greater than zero.
|
606 |
+
min_value (`float`, *optional*, defaults to `1e-10`):
|
607 |
+
The spectrogram will be clipped to this minimum value before conversion to decibels, to avoid taking
|
608 |
+
`log(0)`. The default of `1e-10` corresponds to a minimum of -100 dB. Must be greater than zero.
|
609 |
+
db_range (`float`, *optional*):
|
610 |
+
Sets the maximum dynamic range in decibels. For example, if `db_range = 80`, the difference between the
|
611 |
+
peak value and the smallest value will never be more than 80 dB. Must be greater than zero.
|
612 |
+
|
613 |
+
Returns:
|
614 |
+
`np.ndarray`: the spectrogram in decibels
|
615 |
+
"""
|
616 |
+
if reference <= 0.0:
|
617 |
+
raise ValueError("reference must be greater than zero")
|
618 |
+
if min_value <= 0.0:
|
619 |
+
raise ValueError("min_value must be greater than zero")
|
620 |
+
|
621 |
+
reference = max(min_value, reference)
|
622 |
+
|
623 |
+
spectrogram = np.clip(spectrogram, a_min=min_value, a_max=None)
|
624 |
+
spectrogram = 10.0 * (np.log10(spectrogram) - np.log10(reference))
|
625 |
+
|
626 |
+
if db_range is not None:
|
627 |
+
if db_range <= 0.0:
|
628 |
+
raise ValueError("db_range must be greater than zero")
|
629 |
+
spectrogram = np.clip(spectrogram, a_min=spectrogram.max() - db_range, a_max=None)
|
630 |
+
|
631 |
+
return spectrogram
|
632 |
+
|
633 |
+
|
634 |
+
def amplitude_to_db(
|
635 |
+
spectrogram: np.ndarray,
|
636 |
+
reference: float = 1.0,
|
637 |
+
min_value: float = 1e-5,
|
638 |
+
db_range: Optional[float] = None,
|
639 |
+
) -> np.ndarray:
|
640 |
+
"""
|
641 |
+
Converts an amplitude spectrogram to the decibel scale. This computes `20 * log10(spectrogram / reference)`, using
|
642 |
+
basic logarithm properties for numerical stability.
|
643 |
+
|
644 |
+
The motivation behind applying the log function on the (mel) spectrogram is that humans do not hear loudness on a
|
645 |
+
linear scale. Generally to double the perceived volume of a sound we need to put 8 times as much energy into it.
|
646 |
+
This means that large variations in energy may not sound all that different if the sound is loud to begin with.
|
647 |
+
This compression operation makes the (mel) spectrogram features match more closely what humans actually hear.
|
648 |
+
|
649 |
+
Args:
|
650 |
+
spectrogram (`np.ndarray`):
|
651 |
+
The input amplitude (mel) spectrogram.
|
652 |
+
reference (`float`, *optional*, defaults to 1.0):
|
653 |
+
Sets the input spectrogram value that corresponds to 0 dB. For example, use `np.max(spectrogram)` to set
|
654 |
+
the loudest part to 0 dB. Must be greater than zero.
|
655 |
+
min_value (`float`, *optional*, defaults to `1e-5`):
|
656 |
+
The spectrogram will be clipped to this minimum value before conversion to decibels, to avoid taking
|
657 |
+
`log(0)`. The default of `1e-5` corresponds to a minimum of -100 dB. Must be greater than zero.
|
658 |
+
db_range (`float`, *optional*):
|
659 |
+
Sets the maximum dynamic range in decibels. For example, if `db_range = 80`, the difference between the
|
660 |
+
peak value and the smallest value will never be more than 80 dB. Must be greater than zero.
|
661 |
+
|
662 |
+
Returns:
|
663 |
+
`np.ndarray`: the spectrogram in decibels
|
664 |
+
"""
|
665 |
+
if reference <= 0.0:
|
666 |
+
raise ValueError("reference must be greater than zero")
|
667 |
+
if min_value <= 0.0:
|
668 |
+
raise ValueError("min_value must be greater than zero")
|
669 |
+
|
670 |
+
reference = max(min_value, reference)
|
671 |
+
|
672 |
+
spectrogram = np.clip(spectrogram, a_min=min_value, a_max=None)
|
673 |
+
spectrogram = 20.0 * (np.log10(spectrogram) - np.log10(reference))
|
674 |
+
|
675 |
+
if db_range is not None:
|
676 |
+
if db_range <= 0.0:
|
677 |
+
raise ValueError("db_range must be greater than zero")
|
678 |
+
spectrogram = np.clip(spectrogram, a_min=spectrogram.max() - db_range, a_max=None)
|
679 |
+
|
680 |
+
return spectrogram
|
681 |
+
|
682 |
+
|
683 |
+
### deprecated functions below this line ###
|
684 |
+
|
685 |
+
|
686 |
+
def get_mel_filter_banks(
|
687 |
+
nb_frequency_bins: int,
|
688 |
+
nb_mel_filters: int,
|
689 |
+
frequency_min: float,
|
690 |
+
frequency_max: float,
|
691 |
+
sample_rate: int,
|
692 |
+
norm: Optional[str] = None,
|
693 |
+
mel_scale: str = "htk",
|
694 |
+
) -> np.array:
|
695 |
+
warnings.warn(
|
696 |
+
"The function `get_mel_filter_banks` is deprecated and will be removed in version 4.31.0 of Transformers",
|
697 |
+
FutureWarning,
|
698 |
+
)
|
699 |
+
return mel_filter_bank(
|
700 |
+
num_frequency_bins=nb_frequency_bins,
|
701 |
+
num_mel_filters=nb_mel_filters,
|
702 |
+
min_frequency=frequency_min,
|
703 |
+
max_frequency=frequency_max,
|
704 |
+
sampling_rate=sample_rate,
|
705 |
+
norm=norm,
|
706 |
+
mel_scale=mel_scale,
|
707 |
+
)
|
708 |
+
|
709 |
+
|
710 |
+
def fram_wave(waveform: np.array, hop_length: int = 160, fft_window_size: int = 400, center: bool = True):
|
711 |
+
"""
|
712 |
+
In order to compute the short time fourier transform, the waveform needs to be split in overlapping windowed
|
713 |
+
segments called `frames`.
|
714 |
+
|
715 |
+
The window length (window_length) defines how much of the signal is contained in each frame, while the hop length
|
716 |
+
defines the step between the beginning of each new frame.
|
717 |
+
|
718 |
+
|
719 |
+
Args:
|
720 |
+
waveform (`np.array` of shape `(sample_length,)`):
|
721 |
+
The raw waveform which will be split into smaller chunks.
|
722 |
+
hop_length (`int`, *optional*, defaults to 160):
|
723 |
+
Step between each window of the waveform.
|
724 |
+
fft_window_size (`int`, *optional*, defaults to 400):
|
725 |
+
Defines the size of the window.
|
726 |
+
center (`bool`, defaults to `True`):
|
727 |
+
Whether or not to center each frame around the middle of the frame. Centering is done by reflecting the
|
728 |
+
waveform on the left and on the right.
|
729 |
+
|
730 |
+
Return:
|
731 |
+
framed_waveform (`np.array` of shape `(waveform.shape // hop_length , fft_window_size)`):
|
732 |
+
The framed waveforms that can be fed to `np.fft`.
|
733 |
+
"""
|
734 |
+
warnings.warn(
|
735 |
+
"The function `fram_wave` is deprecated and will be removed in version 4.31.0 of Transformers",
|
736 |
+
FutureWarning,
|
737 |
+
)
|
738 |
+
frames = []
|
739 |
+
for i in range(0, waveform.shape[0] + 1, hop_length):
|
740 |
+
if center:
|
741 |
+
half_window = (fft_window_size - 1) // 2 + 1
|
742 |
+
start = i - half_window if i > half_window else 0
|
743 |
+
end = i + half_window if i < waveform.shape[0] - half_window else waveform.shape[0]
|
744 |
+
frame = waveform[start:end]
|
745 |
+
if start == 0:
|
746 |
+
padd_width = (-i + half_window, 0)
|
747 |
+
frame = np.pad(frame, pad_width=padd_width, mode="reflect")
|
748 |
+
|
749 |
+
elif end == waveform.shape[0]:
|
750 |
+
padd_width = (0, (i - waveform.shape[0] + half_window))
|
751 |
+
frame = np.pad(frame, pad_width=padd_width, mode="reflect")
|
752 |
+
|
753 |
+
else:
|
754 |
+
frame = waveform[i : i + fft_window_size]
|
755 |
+
frame_width = frame.shape[0]
|
756 |
+
if frame_width < waveform.shape[0]:
|
757 |
+
frame = np.lib.pad(
|
758 |
+
frame, pad_width=(0, fft_window_size - frame_width), mode="constant", constant_values=0
|
759 |
+
)
|
760 |
+
frames.append(frame)
|
761 |
+
|
762 |
+
frames = np.stack(frames, 0)
|
763 |
+
return frames
|
764 |
+
|
765 |
+
|
766 |
+
def stft(frames: np.array, windowing_function: np.array, fft_window_size: int = None):
|
767 |
+
"""
|
768 |
+
Calculates the complex Short-Time Fourier Transform (STFT) of the given framed signal. Should give the same results
|
769 |
+
as `torch.stft`.
|
770 |
+
|
771 |
+
Args:
|
772 |
+
frames (`np.array` of dimension `(num_frames, fft_window_size)`):
|
773 |
+
A framed audio signal obtained using `audio_utils.fram_wav`.
|
774 |
+
windowing_function (`np.array` of dimension `(nb_frequency_bins, nb_mel_filters)`:
|
775 |
+
A array reprensenting the function that will be used to reduces the amplitude of the discontinuities at the
|
776 |
+
boundaries of each frame when computing the STFT. Each frame will be multiplied by the windowing_function.
|
777 |
+
For more information on the discontinuities, called *Spectral leakage*, refer to [this
|
778 |
+
tutorial]https://download.ni.com/evaluation/pxi/Understanding%20FFTs%20and%20Windowing.pdf
|
779 |
+
fft_window_size (`int`, *optional*):
|
780 |
+
Size of the window om which the Fourier transform is applied. This controls the frequency resolution of the
|
781 |
+
spectrogram. 400 means that the fourrier transform is computed on windows of 400 samples. The number of
|
782 |
+
frequency bins (`nb_frequency_bins`) used to divide the window into equal strips is equal to
|
783 |
+
`(1+fft_window_size)//2`. An increase of the fft_window_size slows the calculus time proportionnally.
|
784 |
+
|
785 |
+
Example:
|
786 |
+
|
787 |
+
```python
|
788 |
+
>>> from transformers.audio_utils import stft, fram_wave
|
789 |
+
>>> import numpy as np
|
790 |
+
|
791 |
+
>>> audio = np.random.rand(50)
|
792 |
+
>>> fft_window_size = 10
|
793 |
+
>>> hop_length = 2
|
794 |
+
>>> framed_audio = fram_wave(audio, hop_length, fft_window_size)
|
795 |
+
>>> spectrogram = stft(framed_audio, np.hanning(fft_window_size + 1))
|
796 |
+
```
|
797 |
+
|
798 |
+
Returns:
|
799 |
+
spectrogram (`np.ndarray`):
|
800 |
+
A spectrogram of shape `(num_frames, nb_frequency_bins)` obtained using the STFT algorithm
|
801 |
+
"""
|
802 |
+
warnings.warn(
|
803 |
+
"The function `stft` is deprecated and will be removed in version 4.31.0 of Transformers",
|
804 |
+
FutureWarning,
|
805 |
+
)
|
806 |
+
frame_size = frames.shape[1]
|
807 |
+
|
808 |
+
if fft_window_size is None:
|
809 |
+
fft_window_size = frame_size
|
810 |
+
|
811 |
+
if fft_window_size < frame_size:
|
812 |
+
raise ValueError("FFT size must greater or equal the frame size")
|
813 |
+
# number of FFT bins to store
|
814 |
+
nb_frequency_bins = (fft_window_size >> 1) + 1
|
815 |
+
|
816 |
+
spectrogram = np.empty((len(frames), nb_frequency_bins), dtype=np.complex64)
|
817 |
+
fft_signal = np.zeros(fft_window_size)
|
818 |
+
|
819 |
+
for f, frame in enumerate(frames):
|
820 |
+
if windowing_function is not None:
|
821 |
+
np.multiply(frame, windowing_function, out=fft_signal[:frame_size])
|
822 |
+
else:
|
823 |
+
fft_signal[:frame_size] = frame
|
824 |
+
spectrogram[f] = np.fft.fft(fft_signal, axis=0)[:nb_frequency_bins]
|
825 |
+
return spectrogram.T
|
env-llmeval/lib/python3.10/site-packages/transformers/benchmark/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/transformers/benchmark/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (187 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/benchmark/__pycache__/benchmark.cpython-310.pyc
ADDED
Binary file (7.43 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/benchmark/__pycache__/benchmark_args.cpython-310.pyc
ADDED
Binary file (3.44 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/benchmark/__pycache__/benchmark_args_tf.cpython-310.pyc
ADDED
Binary file (3.94 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/benchmark/__pycache__/benchmark_args_utils.cpython-310.pyc
ADDED
Binary file (5.61 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/benchmark/__pycache__/benchmark_tf.cpython-310.pyc
ADDED
Binary file (9.51 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/benchmark/__pycache__/benchmark_utils.cpython-310.pyc
ADDED
Binary file (30 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/benchmark/benchmark.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Benchmarking the library on inference and training in PyTorch.
|
18 |
+
"""
|
19 |
+
|
20 |
+
|
21 |
+
import timeit
|
22 |
+
from typing import Callable, Optional
|
23 |
+
|
24 |
+
from ..configuration_utils import PretrainedConfig
|
25 |
+
from ..models.auto.modeling_auto import MODEL_MAPPING, MODEL_WITH_LM_HEAD_MAPPING
|
26 |
+
from ..utils import is_py3nvml_available, is_torch_available, logging
|
27 |
+
from .benchmark_utils import (
|
28 |
+
Benchmark,
|
29 |
+
Memory,
|
30 |
+
MemorySummary,
|
31 |
+
measure_peak_memory_cpu,
|
32 |
+
start_memory_tracing,
|
33 |
+
stop_memory_tracing,
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
if is_torch_available():
|
38 |
+
import torch
|
39 |
+
|
40 |
+
from .benchmark_args import PyTorchBenchmarkArguments
|
41 |
+
|
42 |
+
|
43 |
+
if is_py3nvml_available():
|
44 |
+
import py3nvml.py3nvml as nvml
|
45 |
+
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
|
50 |
+
class PyTorchBenchmark(Benchmark):
|
51 |
+
args: PyTorchBenchmarkArguments
|
52 |
+
configs: PretrainedConfig
|
53 |
+
framework: str = "PyTorch"
|
54 |
+
|
55 |
+
@property
|
56 |
+
def framework_version(self):
|
57 |
+
return torch.__version__
|
58 |
+
|
59 |
+
def _inference_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
|
60 |
+
_inference = self._prepare_inference_func(model_name, batch_size, sequence_length)
|
61 |
+
return self._measure_speed(_inference)
|
62 |
+
|
63 |
+
def _inference_memory(
|
64 |
+
self, model_name: str, batch_size: int, sequence_length: int
|
65 |
+
) -> [Memory, Optional[MemorySummary]]:
|
66 |
+
_inference = self._prepare_inference_func(model_name, batch_size, sequence_length)
|
67 |
+
return self._measure_memory(_inference)
|
68 |
+
|
69 |
+
def _train_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
|
70 |
+
_train = self._prepare_train_func(model_name, batch_size, sequence_length)
|
71 |
+
return self._measure_speed(_train)
|
72 |
+
|
73 |
+
def _train_memory(
|
74 |
+
self, model_name: str, batch_size: int, sequence_length: int
|
75 |
+
) -> [Memory, Optional[MemorySummary]]:
|
76 |
+
_train = self._prepare_train_func(model_name, batch_size, sequence_length)
|
77 |
+
return self._measure_memory(_train)
|
78 |
+
|
79 |
+
def _prepare_inference_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]:
|
80 |
+
config = self.config_dict[model_name]
|
81 |
+
|
82 |
+
if self.args.torchscript:
|
83 |
+
config.torchscript = True
|
84 |
+
|
85 |
+
has_model_class_in_config = (
|
86 |
+
hasattr(config, "architectures")
|
87 |
+
and isinstance(config.architectures, list)
|
88 |
+
and len(config.architectures) > 0
|
89 |
+
)
|
90 |
+
if not self.args.only_pretrain_model and has_model_class_in_config:
|
91 |
+
try:
|
92 |
+
model_class = config.architectures[0]
|
93 |
+
transformers_module = __import__("transformers", fromlist=[model_class])
|
94 |
+
model_cls = getattr(transformers_module, model_class)
|
95 |
+
model = model_cls(config)
|
96 |
+
except ImportError:
|
97 |
+
raise ImportError(
|
98 |
+
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
|
99 |
+
" set `--only_pretrain_model` or `args.only_pretrain_model=True`."
|
100 |
+
)
|
101 |
+
else:
|
102 |
+
model = MODEL_MAPPING[config.__class__](config)
|
103 |
+
|
104 |
+
model.eval()
|
105 |
+
model.to(self.args.device)
|
106 |
+
|
107 |
+
# encoder-decoder has vocab size saved differently
|
108 |
+
vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size
|
109 |
+
input_ids = torch.randint(vocab_size, (batch_size, sequence_length), dtype=torch.long, device=self.args.device)
|
110 |
+
|
111 |
+
if self.args.fp16:
|
112 |
+
logger.info("Running training in Mixed Precision...")
|
113 |
+
if not self.args.is_gpu:
|
114 |
+
raise ValueError("Mixed precision is possible only for GPU.")
|
115 |
+
# amp seems to have memory leaks so that memory usage
|
116 |
+
# is measured using .half() for now https://github.com/NVIDIA/apex/issues/439
|
117 |
+
model.half()
|
118 |
+
|
119 |
+
if self.args.torchscript:
|
120 |
+
with torch.no_grad():
|
121 |
+
inference_model = torch.jit.trace(model, input_ids)
|
122 |
+
else:
|
123 |
+
inference_model = model
|
124 |
+
|
125 |
+
def encoder_decoder_forward():
|
126 |
+
with torch.no_grad():
|
127 |
+
outputs = inference_model(input_ids, decoder_input_ids=input_ids)
|
128 |
+
return outputs
|
129 |
+
|
130 |
+
def encoder_forward():
|
131 |
+
with torch.no_grad():
|
132 |
+
outputs = inference_model(input_ids)
|
133 |
+
return outputs
|
134 |
+
|
135 |
+
_forward = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
|
136 |
+
return _forward
|
137 |
+
|
138 |
+
def _prepare_train_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]:
|
139 |
+
config = self.config_dict[model_name]
|
140 |
+
|
141 |
+
has_model_class_in_config = (
|
142 |
+
hasattr(config, "architectures")
|
143 |
+
and isinstance(config.architectures, list)
|
144 |
+
and len(config.architectures) > 0
|
145 |
+
)
|
146 |
+
if not self.args.only_pretrain_model and has_model_class_in_config:
|
147 |
+
try:
|
148 |
+
model_class = config.architectures[0]
|
149 |
+
transformers_module = __import__("transformers", fromlist=[model_class])
|
150 |
+
model_cls = getattr(transformers_module, model_class)
|
151 |
+
model = model_cls(config)
|
152 |
+
except ImportError:
|
153 |
+
raise ImportError(
|
154 |
+
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
|
155 |
+
" set `--only_pretrain_model` or `args.only_pretrain_model=True`."
|
156 |
+
)
|
157 |
+
else:
|
158 |
+
model = MODEL_WITH_LM_HEAD_MAPPING[config.__class__](config)
|
159 |
+
|
160 |
+
if self.args.torchscript:
|
161 |
+
raise NotImplementedError("Training for torchscript is currently not implemented")
|
162 |
+
else:
|
163 |
+
train_model = model
|
164 |
+
|
165 |
+
model.train()
|
166 |
+
model.to(self.args.device)
|
167 |
+
|
168 |
+
# encoder-decoder has vocab size saved differently
|
169 |
+
vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size
|
170 |
+
input_ids = torch.randint(vocab_size, (batch_size, sequence_length), dtype=torch.long, device=self.args.device)
|
171 |
+
|
172 |
+
if self.args.fp16:
|
173 |
+
logger.info("Running training in Mixed Precision...")
|
174 |
+
if not self.args.is_gpu:
|
175 |
+
raise ValueError("Mixed precision is possible only for GPU.")
|
176 |
+
|
177 |
+
# amp seems to have memory leaks so that memory usage
|
178 |
+
# is measured using .half() for now https://github.com/NVIDIA/apex/issues/439
|
179 |
+
model.half()
|
180 |
+
|
181 |
+
def compute_loss_and_backprob_encoder():
|
182 |
+
loss = train_model(input_ids, labels=input_ids)[0]
|
183 |
+
loss.backward()
|
184 |
+
return loss
|
185 |
+
|
186 |
+
def compute_loss_and_backprob_encoder_decoder():
|
187 |
+
loss = train_model(input_ids, decoder_input_ids=input_ids, labels=input_ids)[0]
|
188 |
+
loss.backward()
|
189 |
+
return loss
|
190 |
+
|
191 |
+
_train = (
|
192 |
+
compute_loss_and_backprob_encoder_decoder
|
193 |
+
if config.is_encoder_decoder
|
194 |
+
else compute_loss_and_backprob_encoder
|
195 |
+
)
|
196 |
+
return _train
|
197 |
+
|
198 |
+
def _measure_speed(self, func) -> float:
|
199 |
+
try:
|
200 |
+
if self.args.is_tpu or self.args.torchscript:
|
201 |
+
# run additional 10 times to stabilize compilation for tpu and torchscript
|
202 |
+
logger.info("Do inference on TPU or torchscript. Running model 5 times to stabilize compilation")
|
203 |
+
timeit.repeat(
|
204 |
+
func,
|
205 |
+
repeat=1,
|
206 |
+
number=5,
|
207 |
+
)
|
208 |
+
|
209 |
+
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
|
210 |
+
runtimes = timeit.repeat(
|
211 |
+
func,
|
212 |
+
repeat=self.args.repeat,
|
213 |
+
number=10,
|
214 |
+
)
|
215 |
+
|
216 |
+
if self.args.is_tpu and self.args.torch_xla_tpu_print_metrics:
|
217 |
+
import torch_xla.debug.metrics as met
|
218 |
+
|
219 |
+
self.print_fn(met.metrics_report())
|
220 |
+
|
221 |
+
return min(runtimes) / 10.0
|
222 |
+
except RuntimeError as e:
|
223 |
+
self.print_fn(f"Doesn't fit on GPU. {e}")
|
224 |
+
return "N/A"
|
225 |
+
|
226 |
+
def _measure_memory(self, func: Callable[[], None]) -> [Memory, MemorySummary]:
|
227 |
+
try:
|
228 |
+
if self.args.trace_memory_line_by_line:
|
229 |
+
trace = start_memory_tracing("transformers")
|
230 |
+
|
231 |
+
if self.args.is_tpu:
|
232 |
+
# tpu
|
233 |
+
raise NotImplementedError(
|
234 |
+
"Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking with"
|
235 |
+
" `--no-memory` or `args.memory=False`"
|
236 |
+
)
|
237 |
+
elif self.args.is_gpu:
|
238 |
+
if not is_py3nvml_available():
|
239 |
+
logger.warning(
|
240 |
+
"py3nvml not installed, we won't log GPU memory usage. "
|
241 |
+
"Install py3nvml (pip install py3nvml) to log information about GPU."
|
242 |
+
)
|
243 |
+
memory = "N/A"
|
244 |
+
else:
|
245 |
+
logger.info(
|
246 |
+
"Measuring total GPU usage on GPU device. Make sure to not have additional processes running"
|
247 |
+
" on the same GPU."
|
248 |
+
)
|
249 |
+
# init nvml
|
250 |
+
nvml.nvmlInit()
|
251 |
+
func()
|
252 |
+
handle = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx)
|
253 |
+
meminfo = nvml.nvmlDeviceGetMemoryInfo(handle)
|
254 |
+
max_bytes_in_use = meminfo.used
|
255 |
+
memory = Memory(max_bytes_in_use)
|
256 |
+
# shutdown nvml
|
257 |
+
nvml.nvmlShutdown()
|
258 |
+
else:
|
259 |
+
# cpu
|
260 |
+
memory_bytes = measure_peak_memory_cpu(func)
|
261 |
+
memory = Memory(memory_bytes) if isinstance(memory_bytes, int) else memory_bytes
|
262 |
+
|
263 |
+
if self.args.trace_memory_line_by_line:
|
264 |
+
summary = stop_memory_tracing(trace)
|
265 |
+
else:
|
266 |
+
summary = None
|
267 |
+
|
268 |
+
return memory, summary
|
269 |
+
except RuntimeError as e:
|
270 |
+
self.print_fn(f"Doesn't fit on GPU. {e}")
|
271 |
+
return "N/A", None
|
env-llmeval/lib/python3.10/site-packages/transformers/benchmark/benchmark_args.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
from dataclasses import dataclass, field
|
18 |
+
from typing import Tuple
|
19 |
+
|
20 |
+
from ..utils import (
|
21 |
+
cached_property,
|
22 |
+
is_torch_available,
|
23 |
+
is_torch_xla_available,
|
24 |
+
is_torch_xpu_available,
|
25 |
+
logging,
|
26 |
+
requires_backends,
|
27 |
+
)
|
28 |
+
from .benchmark_args_utils import BenchmarkArguments
|
29 |
+
|
30 |
+
|
31 |
+
if is_torch_available():
|
32 |
+
import torch
|
33 |
+
|
34 |
+
if is_torch_xla_available():
|
35 |
+
import torch_xla.core.xla_model as xm
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
|
41 |
+
@dataclass
|
42 |
+
class PyTorchBenchmarkArguments(BenchmarkArguments):
|
43 |
+
deprecated_args = [
|
44 |
+
"no_inference",
|
45 |
+
"no_cuda",
|
46 |
+
"no_tpu",
|
47 |
+
"no_speed",
|
48 |
+
"no_memory",
|
49 |
+
"no_env_print",
|
50 |
+
"no_multi_process",
|
51 |
+
]
|
52 |
+
|
53 |
+
def __init__(self, **kwargs):
|
54 |
+
"""
|
55 |
+
This __init__ is there for legacy code. When removing deprecated args completely, the class can simply be
|
56 |
+
deleted
|
57 |
+
"""
|
58 |
+
for deprecated_arg in self.deprecated_args:
|
59 |
+
if deprecated_arg in kwargs:
|
60 |
+
positive_arg = deprecated_arg[3:]
|
61 |
+
setattr(self, positive_arg, not kwargs.pop(deprecated_arg))
|
62 |
+
logger.warning(
|
63 |
+
f"{deprecated_arg} is depreciated. Please use --no_{positive_arg} or"
|
64 |
+
f" {positive_arg}={kwargs[positive_arg]}"
|
65 |
+
)
|
66 |
+
|
67 |
+
self.torchscript = kwargs.pop("torchscript", self.torchscript)
|
68 |
+
self.torch_xla_tpu_print_metrics = kwargs.pop("torch_xla_tpu_print_metrics", self.torch_xla_tpu_print_metrics)
|
69 |
+
self.fp16_opt_level = kwargs.pop("fp16_opt_level", self.fp16_opt_level)
|
70 |
+
super().__init__(**kwargs)
|
71 |
+
|
72 |
+
torchscript: bool = field(default=False, metadata={"help": "Trace the models using torchscript"})
|
73 |
+
torch_xla_tpu_print_metrics: bool = field(default=False, metadata={"help": "Print Xla/PyTorch tpu metrics"})
|
74 |
+
fp16_opt_level: str = field(
|
75 |
+
default="O1",
|
76 |
+
metadata={
|
77 |
+
"help": (
|
78 |
+
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. "
|
79 |
+
"See details at https://nvidia.github.io/apex/amp.html"
|
80 |
+
)
|
81 |
+
},
|
82 |
+
)
|
83 |
+
|
84 |
+
@cached_property
|
85 |
+
def _setup_devices(self) -> Tuple["torch.device", int]:
|
86 |
+
requires_backends(self, ["torch"])
|
87 |
+
logger.info("PyTorch: setting up devices")
|
88 |
+
if not self.cuda:
|
89 |
+
device = torch.device("cpu")
|
90 |
+
n_gpu = 0
|
91 |
+
elif is_torch_xla_available():
|
92 |
+
device = xm.xla_device()
|
93 |
+
n_gpu = 0
|
94 |
+
elif is_torch_xpu_available():
|
95 |
+
device = torch.device("xpu")
|
96 |
+
n_gpu = torch.xpu.device_count()
|
97 |
+
else:
|
98 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
99 |
+
n_gpu = torch.cuda.device_count()
|
100 |
+
return device, n_gpu
|
101 |
+
|
102 |
+
@property
|
103 |
+
def is_tpu(self):
|
104 |
+
return is_torch_xla_available() and self.tpu
|
105 |
+
|
106 |
+
@property
|
107 |
+
def device_idx(self) -> int:
|
108 |
+
requires_backends(self, ["torch"])
|
109 |
+
# TODO(PVP): currently only single GPU is supported
|
110 |
+
return torch.cuda.current_device()
|
111 |
+
|
112 |
+
@property
|
113 |
+
def device(self) -> "torch.device":
|
114 |
+
requires_backends(self, ["torch"])
|
115 |
+
return self._setup_devices[0]
|
116 |
+
|
117 |
+
@property
|
118 |
+
def n_gpu(self):
|
119 |
+
requires_backends(self, ["torch"])
|
120 |
+
return self._setup_devices[1]
|
121 |
+
|
122 |
+
@property
|
123 |
+
def is_gpu(self):
|
124 |
+
return self.n_gpu > 0
|
env-llmeval/lib/python3.10/site-packages/transformers/benchmark/benchmark_args_tf.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
from dataclasses import dataclass, field
|
18 |
+
from typing import Tuple
|
19 |
+
|
20 |
+
from ..utils import cached_property, is_tf_available, logging, requires_backends
|
21 |
+
from .benchmark_args_utils import BenchmarkArguments
|
22 |
+
|
23 |
+
|
24 |
+
if is_tf_available():
|
25 |
+
import tensorflow as tf
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
@dataclass
|
32 |
+
class TensorFlowBenchmarkArguments(BenchmarkArguments):
|
33 |
+
deprecated_args = [
|
34 |
+
"no_inference",
|
35 |
+
"no_cuda",
|
36 |
+
"no_tpu",
|
37 |
+
"no_speed",
|
38 |
+
"no_memory",
|
39 |
+
"no_env_print",
|
40 |
+
"no_multi_process",
|
41 |
+
]
|
42 |
+
|
43 |
+
def __init__(self, **kwargs):
|
44 |
+
"""
|
45 |
+
This __init__ is there for legacy code. When removing deprecated args completely, the class can simply be
|
46 |
+
deleted
|
47 |
+
"""
|
48 |
+
for deprecated_arg in self.deprecated_args:
|
49 |
+
if deprecated_arg in kwargs:
|
50 |
+
positive_arg = deprecated_arg[3:]
|
51 |
+
kwargs[positive_arg] = not kwargs.pop(deprecated_arg)
|
52 |
+
logger.warning(
|
53 |
+
f"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or"
|
54 |
+
f" {positive_arg}={kwargs[positive_arg]}"
|
55 |
+
)
|
56 |
+
self.tpu_name = kwargs.pop("tpu_name", self.tpu_name)
|
57 |
+
self.device_idx = kwargs.pop("device_idx", self.device_idx)
|
58 |
+
self.eager_mode = kwargs.pop("eager_mode", self.eager_mode)
|
59 |
+
self.use_xla = kwargs.pop("use_xla", self.use_xla)
|
60 |
+
super().__init__(**kwargs)
|
61 |
+
|
62 |
+
tpu_name: str = field(
|
63 |
+
default=None,
|
64 |
+
metadata={"help": "Name of TPU"},
|
65 |
+
)
|
66 |
+
device_idx: int = field(
|
67 |
+
default=0,
|
68 |
+
metadata={"help": "CPU / GPU device index. Defaults to 0."},
|
69 |
+
)
|
70 |
+
eager_mode: bool = field(default=False, metadata={"help": "Benchmark models in eager model."})
|
71 |
+
use_xla: bool = field(
|
72 |
+
default=False,
|
73 |
+
metadata={
|
74 |
+
"help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`."
|
75 |
+
},
|
76 |
+
)
|
77 |
+
|
78 |
+
@cached_property
|
79 |
+
def _setup_tpu(self) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]:
|
80 |
+
requires_backends(self, ["tf"])
|
81 |
+
tpu = None
|
82 |
+
if self.tpu:
|
83 |
+
try:
|
84 |
+
if self.tpu_name:
|
85 |
+
tpu = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name)
|
86 |
+
else:
|
87 |
+
tpu = tf.distribute.cluster_resolver.TPUClusterResolver()
|
88 |
+
except ValueError:
|
89 |
+
tpu = None
|
90 |
+
return tpu
|
91 |
+
|
92 |
+
@cached_property
|
93 |
+
def _setup_strategy(self) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]:
|
94 |
+
requires_backends(self, ["tf"])
|
95 |
+
if self.is_tpu:
|
96 |
+
tf.config.experimental_connect_to_cluster(self._setup_tpu)
|
97 |
+
tf.tpu.experimental.initialize_tpu_system(self._setup_tpu)
|
98 |
+
|
99 |
+
strategy = tf.distribute.TPUStrategy(self._setup_tpu)
|
100 |
+
else:
|
101 |
+
# currently no multi gpu is allowed
|
102 |
+
if self.is_gpu:
|
103 |
+
# TODO: Currently only single GPU is supported
|
104 |
+
tf.config.set_visible_devices(self.gpu_list[self.device_idx], "GPU")
|
105 |
+
strategy = tf.distribute.OneDeviceStrategy(device=f"/gpu:{self.device_idx}")
|
106 |
+
else:
|
107 |
+
tf.config.set_visible_devices([], "GPU") # disable GPU
|
108 |
+
strategy = tf.distribute.OneDeviceStrategy(device=f"/cpu:{self.device_idx}")
|
109 |
+
|
110 |
+
return strategy
|
111 |
+
|
112 |
+
@property
|
113 |
+
def is_tpu(self) -> bool:
|
114 |
+
requires_backends(self, ["tf"])
|
115 |
+
return self._setup_tpu is not None
|
116 |
+
|
117 |
+
@property
|
118 |
+
def strategy(self) -> "tf.distribute.Strategy":
|
119 |
+
requires_backends(self, ["tf"])
|
120 |
+
return self._setup_strategy
|
121 |
+
|
122 |
+
@property
|
123 |
+
def gpu_list(self):
|
124 |
+
requires_backends(self, ["tf"])
|
125 |
+
return tf.config.list_physical_devices("GPU")
|
126 |
+
|
127 |
+
@property
|
128 |
+
def n_gpu(self) -> int:
|
129 |
+
requires_backends(self, ["tf"])
|
130 |
+
if self.cuda:
|
131 |
+
return len(self.gpu_list)
|
132 |
+
return 0
|
133 |
+
|
134 |
+
@property
|
135 |
+
def is_gpu(self) -> bool:
|
136 |
+
return self.n_gpu > 0
|
env-llmeval/lib/python3.10/site-packages/transformers/benchmark/benchmark_args_utils.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import dataclasses
|
18 |
+
import json
|
19 |
+
import warnings
|
20 |
+
from dataclasses import dataclass, field
|
21 |
+
from time import time
|
22 |
+
from typing import List
|
23 |
+
|
24 |
+
from ..utils import logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
def list_field(default=None, metadata=None):
|
31 |
+
return field(default_factory=lambda: default, metadata=metadata)
|
32 |
+
|
33 |
+
|
34 |
+
@dataclass
|
35 |
+
class BenchmarkArguments:
|
36 |
+
"""
|
37 |
+
BenchMarkArguments are arguments we use in our benchmark scripts **which relate to the training loop itself**.
|
38 |
+
|
39 |
+
Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command
|
40 |
+
line.
|
41 |
+
"""
|
42 |
+
|
43 |
+
models: List[str] = list_field(
|
44 |
+
default=[],
|
45 |
+
metadata={
|
46 |
+
"help": (
|
47 |
+
"Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version"
|
48 |
+
" of all available models"
|
49 |
+
)
|
50 |
+
},
|
51 |
+
)
|
52 |
+
|
53 |
+
batch_sizes: List[int] = list_field(
|
54 |
+
default=[8], metadata={"help": "List of batch sizes for which memory and time performance will be evaluated"}
|
55 |
+
)
|
56 |
+
|
57 |
+
sequence_lengths: List[int] = list_field(
|
58 |
+
default=[8, 32, 128, 512],
|
59 |
+
metadata={"help": "List of sequence lengths for which memory and time performance will be evaluated"},
|
60 |
+
)
|
61 |
+
|
62 |
+
inference: bool = field(
|
63 |
+
default=True,
|
64 |
+
metadata={"help": "Whether to benchmark inference of model. Inference can be disabled via --no-inference."},
|
65 |
+
)
|
66 |
+
cuda: bool = field(
|
67 |
+
default=True,
|
68 |
+
metadata={"help": "Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."},
|
69 |
+
)
|
70 |
+
tpu: bool = field(
|
71 |
+
default=True, metadata={"help": "Whether to run on available tpu devices. TPU can be disabled via --no-tpu."}
|
72 |
+
)
|
73 |
+
fp16: bool = field(default=False, metadata={"help": "Use FP16 to accelerate inference."})
|
74 |
+
training: bool = field(default=False, metadata={"help": "Benchmark training of model"})
|
75 |
+
verbose: bool = field(default=False, metadata={"help": "Verbose memory tracing"})
|
76 |
+
speed: bool = field(
|
77 |
+
default=True,
|
78 |
+
metadata={"help": "Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."},
|
79 |
+
)
|
80 |
+
memory: bool = field(
|
81 |
+
default=True,
|
82 |
+
metadata={
|
83 |
+
"help": "Whether to perform memory measurements. Memory measurements can be disabled via --no-memory"
|
84 |
+
},
|
85 |
+
)
|
86 |
+
trace_memory_line_by_line: bool = field(default=False, metadata={"help": "Trace memory line by line"})
|
87 |
+
save_to_csv: bool = field(default=False, metadata={"help": "Save result to a CSV file"})
|
88 |
+
log_print: bool = field(default=False, metadata={"help": "Save all print statements in a log file"})
|
89 |
+
env_print: bool = field(default=False, metadata={"help": "Whether to print environment information"})
|
90 |
+
multi_process: bool = field(
|
91 |
+
default=True,
|
92 |
+
metadata={
|
93 |
+
"help": (
|
94 |
+
"Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use"
|
95 |
+
" multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled"
|
96 |
+
" for debugging / testing and on TPU."
|
97 |
+
)
|
98 |
+
},
|
99 |
+
)
|
100 |
+
inference_time_csv_file: str = field(
|
101 |
+
default=f"inference_time_{round(time())}.csv",
|
102 |
+
metadata={"help": "CSV filename used if saving time results to csv."},
|
103 |
+
)
|
104 |
+
inference_memory_csv_file: str = field(
|
105 |
+
default=f"inference_memory_{round(time())}.csv",
|
106 |
+
metadata={"help": "CSV filename used if saving memory results to csv."},
|
107 |
+
)
|
108 |
+
train_time_csv_file: str = field(
|
109 |
+
default=f"train_time_{round(time())}.csv",
|
110 |
+
metadata={"help": "CSV filename used if saving time results to csv for training."},
|
111 |
+
)
|
112 |
+
train_memory_csv_file: str = field(
|
113 |
+
default=f"train_memory_{round(time())}.csv",
|
114 |
+
metadata={"help": "CSV filename used if saving memory results to csv for training."},
|
115 |
+
)
|
116 |
+
env_info_csv_file: str = field(
|
117 |
+
default=f"env_info_{round(time())}.csv",
|
118 |
+
metadata={"help": "CSV filename used if saving environment information."},
|
119 |
+
)
|
120 |
+
log_filename: str = field(
|
121 |
+
default=f"log_{round(time())}.csv",
|
122 |
+
metadata={"help": "Log filename used if print statements are saved in log."},
|
123 |
+
)
|
124 |
+
repeat: int = field(default=3, metadata={"help": "Times an experiment will be run."})
|
125 |
+
only_pretrain_model: bool = field(
|
126 |
+
default=False,
|
127 |
+
metadata={
|
128 |
+
"help": (
|
129 |
+
"Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain"
|
130 |
+
" model weights."
|
131 |
+
)
|
132 |
+
},
|
133 |
+
)
|
134 |
+
|
135 |
+
def __post_init__(self):
|
136 |
+
warnings.warn(
|
137 |
+
f"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils"
|
138 |
+
" are deprecated in general and it is advised to use external Benchmarking libraries "
|
139 |
+
" to benchmark Transformer models.",
|
140 |
+
FutureWarning,
|
141 |
+
)
|
142 |
+
|
143 |
+
def to_json_string(self):
|
144 |
+
"""
|
145 |
+
Serializes this instance to a JSON string.
|
146 |
+
"""
|
147 |
+
return json.dumps(dataclasses.asdict(self), indent=2)
|
148 |
+
|
149 |
+
@property
|
150 |
+
def model_names(self) -> List[str]:
|
151 |
+
if len(self.models) <= 0:
|
152 |
+
raise ValueError(
|
153 |
+
"Please make sure you provide at least one model name / model identifier, *e.g.* `--models"
|
154 |
+
" google-bert/bert-base-cased` or `args.models = ['google-bert/bert-base-cased']."
|
155 |
+
)
|
156 |
+
return self.models
|
157 |
+
|
158 |
+
@property
|
159 |
+
def do_multi_processing(self):
|
160 |
+
if not self.multi_process:
|
161 |
+
return False
|
162 |
+
elif self.is_tpu:
|
163 |
+
logger.info("Multiprocessing is currently not possible on TPU.")
|
164 |
+
return False
|
165 |
+
else:
|
166 |
+
return True
|
env-llmeval/lib/python3.10/site-packages/transformers/benchmark/benchmark_tf.py
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Benchmarking the library on inference and training in PyTorch.
|
18 |
+
"""
|
19 |
+
|
20 |
+
|
21 |
+
import random
|
22 |
+
import timeit
|
23 |
+
from functools import wraps
|
24 |
+
from typing import Callable, Optional
|
25 |
+
|
26 |
+
from ..configuration_utils import PretrainedConfig
|
27 |
+
from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING
|
28 |
+
from ..utils import is_py3nvml_available, is_tf_available, logging
|
29 |
+
from .benchmark_utils import (
|
30 |
+
Benchmark,
|
31 |
+
Memory,
|
32 |
+
MemorySummary,
|
33 |
+
measure_peak_memory_cpu,
|
34 |
+
start_memory_tracing,
|
35 |
+
stop_memory_tracing,
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
if is_tf_available():
|
40 |
+
import tensorflow as tf
|
41 |
+
from tensorflow.python.framework.errors_impl import ResourceExhaustedError
|
42 |
+
|
43 |
+
from .benchmark_args_tf import TensorFlowBenchmarkArguments
|
44 |
+
|
45 |
+
if is_py3nvml_available():
|
46 |
+
import py3nvml.py3nvml as nvml
|
47 |
+
|
48 |
+
logger = logging.get_logger(__name__)
|
49 |
+
|
50 |
+
|
51 |
+
def run_with_tf_optimizations(do_eager_mode: bool, use_xla: bool):
|
52 |
+
def run_func(func):
|
53 |
+
@wraps(func)
|
54 |
+
def run_in_eager_mode(*args, **kwargs):
|
55 |
+
return func(*args, **kwargs)
|
56 |
+
|
57 |
+
@wraps(func)
|
58 |
+
@tf.function(experimental_compile=use_xla)
|
59 |
+
def run_in_graph_mode(*args, **kwargs):
|
60 |
+
return func(*args, **kwargs)
|
61 |
+
|
62 |
+
if do_eager_mode is True:
|
63 |
+
if use_xla is not False:
|
64 |
+
raise ValueError(
|
65 |
+
"Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`."
|
66 |
+
)
|
67 |
+
return run_in_eager_mode
|
68 |
+
else:
|
69 |
+
return run_in_graph_mode
|
70 |
+
|
71 |
+
return run_func
|
72 |
+
|
73 |
+
|
74 |
+
def random_input_ids(batch_size: int, sequence_length: int, vocab_size: int) -> ["tf.Tensor"]:
|
75 |
+
rng = random.Random()
|
76 |
+
values = [rng.randint(0, vocab_size - 1) for i in range(batch_size * sequence_length)]
|
77 |
+
return tf.constant(values, shape=(batch_size, sequence_length), dtype=tf.int32)
|
78 |
+
|
79 |
+
|
80 |
+
class TensorFlowBenchmark(Benchmark):
|
81 |
+
args: TensorFlowBenchmarkArguments
|
82 |
+
configs: PretrainedConfig
|
83 |
+
framework: str = "TensorFlow"
|
84 |
+
|
85 |
+
@property
|
86 |
+
def framework_version(self):
|
87 |
+
return tf.__version__
|
88 |
+
|
89 |
+
def _inference_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
|
90 |
+
# initialize GPU on separate process
|
91 |
+
strategy = self.args.strategy
|
92 |
+
if strategy is None:
|
93 |
+
raise ValueError("A device strategy has to be initialized before using TensorFlow.")
|
94 |
+
_inference = self._prepare_inference_func(model_name, batch_size, sequence_length)
|
95 |
+
return self._measure_speed(_inference)
|
96 |
+
|
97 |
+
def _train_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
|
98 |
+
strategy = self.args.strategy
|
99 |
+
if strategy is None:
|
100 |
+
raise ValueError("A device strategy has to be initialized before using TensorFlow.")
|
101 |
+
_train = self._prepare_train_func(model_name, batch_size, sequence_length)
|
102 |
+
return self._measure_speed(_train)
|
103 |
+
|
104 |
+
def _inference_memory(
|
105 |
+
self, model_name: str, batch_size: int, sequence_length: int
|
106 |
+
) -> [Memory, Optional[MemorySummary]]:
|
107 |
+
# initialize GPU on separate process
|
108 |
+
if self.args.is_gpu:
|
109 |
+
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], True)
|
110 |
+
strategy = self.args.strategy
|
111 |
+
if strategy is None:
|
112 |
+
raise ValueError("A device strategy has to be initialized before using TensorFlow.")
|
113 |
+
_inference = self._prepare_inference_func(model_name, batch_size, sequence_length)
|
114 |
+
return self._measure_memory(_inference)
|
115 |
+
|
116 |
+
def _train_memory(
|
117 |
+
self, model_name: str, batch_size: int, sequence_length: int
|
118 |
+
) -> [Memory, Optional[MemorySummary]]:
|
119 |
+
if self.args.is_gpu:
|
120 |
+
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx], True)
|
121 |
+
strategy = self.args.strategy
|
122 |
+
if strategy is None:
|
123 |
+
raise ValueError("A device strategy has to be initialized before using TensorFlow.")
|
124 |
+
|
125 |
+
_train = self._prepare_train_func(model_name, batch_size, sequence_length)
|
126 |
+
return self._measure_memory(_train)
|
127 |
+
|
128 |
+
def _prepare_inference_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]:
|
129 |
+
config = self.config_dict[model_name]
|
130 |
+
|
131 |
+
if self.args.fp16:
|
132 |
+
raise NotImplementedError("Mixed precision is currently not supported.")
|
133 |
+
|
134 |
+
has_model_class_in_config = (
|
135 |
+
hasattr(config, "architectures")
|
136 |
+
and isinstance(config.architectures, list)
|
137 |
+
and len(config.architectures) > 0
|
138 |
+
)
|
139 |
+
if not self.args.only_pretrain_model and has_model_class_in_config:
|
140 |
+
try:
|
141 |
+
model_class = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model
|
142 |
+
transformers_module = __import__("transformers", fromlist=[model_class])
|
143 |
+
model_cls = getattr(transformers_module, model_class)
|
144 |
+
model = model_cls(config)
|
145 |
+
except ImportError:
|
146 |
+
raise ImportError(
|
147 |
+
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
|
148 |
+
" set `--only_pretrain_model` or `args.only_pretrain_model=True`."
|
149 |
+
)
|
150 |
+
else:
|
151 |
+
model = TF_MODEL_MAPPING[config.__class__](config)
|
152 |
+
|
153 |
+
# encoder-decoder has vocab size saved differently
|
154 |
+
vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size
|
155 |
+
input_ids = random_input_ids(batch_size, sequence_length, vocab_size)
|
156 |
+
|
157 |
+
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla)
|
158 |
+
def encoder_decoder_forward():
|
159 |
+
return model(input_ids, decoder_input_ids=input_ids, training=False)
|
160 |
+
|
161 |
+
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla)
|
162 |
+
def encoder_forward():
|
163 |
+
return model(input_ids, training=False)
|
164 |
+
|
165 |
+
_inference = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
|
166 |
+
|
167 |
+
return _inference
|
168 |
+
|
169 |
+
def _prepare_train_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]:
|
170 |
+
config = self.config_dict[model_name]
|
171 |
+
|
172 |
+
if self.args.eager_mode is not False:
|
173 |
+
raise ValueError("Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.")
|
174 |
+
|
175 |
+
if self.args.fp16:
|
176 |
+
raise NotImplementedError("Mixed precision is currently not supported.")
|
177 |
+
|
178 |
+
has_model_class_in_config = (
|
179 |
+
hasattr(config, "architectures")
|
180 |
+
and isinstance(config.architectures, list)
|
181 |
+
and len(config.architectures) > 0
|
182 |
+
)
|
183 |
+
if not self.args.only_pretrain_model and has_model_class_in_config:
|
184 |
+
try:
|
185 |
+
model_class = "TF" + config.architectures[0] # prepend 'TF' for tensorflow model
|
186 |
+
transformers_module = __import__("transformers", fromlist=[model_class])
|
187 |
+
model_cls = getattr(transformers_module, model_class)
|
188 |
+
model = model_cls(config)
|
189 |
+
except ImportError:
|
190 |
+
raise ImportError(
|
191 |
+
f"{model_class} does not exist. If you just want to test the pretrained model, you might want to"
|
192 |
+
" set `--only_pretrain_model` or `args.only_pretrain_model=True`."
|
193 |
+
)
|
194 |
+
else:
|
195 |
+
model = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](config)
|
196 |
+
|
197 |
+
# encoder-decoder has vocab size saved differently
|
198 |
+
vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size
|
199 |
+
input_ids = random_input_ids(batch_size, sequence_length, vocab_size)
|
200 |
+
|
201 |
+
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla)
|
202 |
+
def encoder_decoder_train():
|
203 |
+
loss = model(input_ids, decoder_input_ids=input_ids, labels=input_ids, training=True)[0]
|
204 |
+
gradients = tf.gradients(loss, model.trainable_variables)
|
205 |
+
return gradients
|
206 |
+
|
207 |
+
@run_with_tf_optimizations(self.args.eager_mode, self.args.use_xla)
|
208 |
+
def encoder_train():
|
209 |
+
loss = model(input_ids, labels=input_ids, training=True)[0]
|
210 |
+
gradients = tf.gradients(loss, model.trainable_variables)
|
211 |
+
return gradients
|
212 |
+
|
213 |
+
_train = encoder_decoder_train if config.is_encoder_decoder else encoder_train
|
214 |
+
|
215 |
+
return _train
|
216 |
+
|
217 |
+
def _measure_speed(self, func) -> float:
|
218 |
+
with self.args.strategy.scope():
|
219 |
+
try:
|
220 |
+
if self.args.is_tpu or self.args.use_xla:
|
221 |
+
# run additional 10 times to stabilize compilation for tpu
|
222 |
+
logger.info("Do inference on TPU. Running model 5 times to stabilize compilation")
|
223 |
+
timeit.repeat(func, repeat=1, number=5)
|
224 |
+
|
225 |
+
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
|
226 |
+
runtimes = timeit.repeat(
|
227 |
+
func,
|
228 |
+
repeat=self.args.repeat,
|
229 |
+
number=10,
|
230 |
+
)
|
231 |
+
|
232 |
+
return min(runtimes) / 10.0
|
233 |
+
except ResourceExhaustedError as e:
|
234 |
+
self.print_fn(f"Doesn't fit on GPU. {e}")
|
235 |
+
|
236 |
+
def _measure_memory(self, func: Callable[[], None]) -> [Memory, MemorySummary]:
|
237 |
+
logger.info(
|
238 |
+
"Note that TensorFlow allocates more memory than "
|
239 |
+
"it might need to speed up computation. "
|
240 |
+
"The memory reported here corresponds to the memory "
|
241 |
+
"reported by `nvidia-smi`, which can vary depending "
|
242 |
+
"on total available memory on the GPU that is used."
|
243 |
+
)
|
244 |
+
with self.args.strategy.scope():
|
245 |
+
try:
|
246 |
+
if self.args.trace_memory_line_by_line:
|
247 |
+
if not self.args.eager_mode:
|
248 |
+
raise ValueError(
|
249 |
+
"`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory"
|
250 |
+
" consumption line by line."
|
251 |
+
)
|
252 |
+
trace = start_memory_tracing("transformers")
|
253 |
+
|
254 |
+
if self.args.is_tpu:
|
255 |
+
# tpu
|
256 |
+
raise NotImplementedError(
|
257 |
+
"Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking"
|
258 |
+
" with `args.memory=False`"
|
259 |
+
)
|
260 |
+
elif self.args.is_gpu:
|
261 |
+
# gpu
|
262 |
+
if not is_py3nvml_available():
|
263 |
+
logger.warning(
|
264 |
+
"py3nvml not installed, we won't log GPU memory usage. "
|
265 |
+
"Install py3nvml (pip install py3nvml) to log information about GPU."
|
266 |
+
)
|
267 |
+
memory = "N/A"
|
268 |
+
else:
|
269 |
+
logger.info(
|
270 |
+
"Measuring total GPU usage on GPU device. Make sure to not have additional processes"
|
271 |
+
" running on the same GPU."
|
272 |
+
)
|
273 |
+
# init nvml
|
274 |
+
nvml.nvmlInit()
|
275 |
+
func()
|
276 |
+
handle = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx)
|
277 |
+
meminfo = nvml.nvmlDeviceGetMemoryInfo(handle)
|
278 |
+
max_bytes_in_use = meminfo.used
|
279 |
+
memory = Memory(max_bytes_in_use)
|
280 |
+
# shutdown nvml
|
281 |
+
nvml.nvmlShutdown()
|
282 |
+
else:
|
283 |
+
# cpu
|
284 |
+
if self.args.trace_memory_line_by_line:
|
285 |
+
logger.info(
|
286 |
+
"When enabling line by line tracing, the max peak memory for CPU is inaccurate in"
|
287 |
+
" TensorFlow."
|
288 |
+
)
|
289 |
+
memory = None
|
290 |
+
else:
|
291 |
+
memory_bytes = measure_peak_memory_cpu(func)
|
292 |
+
memory = Memory(memory_bytes) if isinstance(memory_bytes, int) else memory_bytes
|
293 |
+
if self.args.trace_memory_line_by_line:
|
294 |
+
summary = stop_memory_tracing(trace)
|
295 |
+
if memory is None:
|
296 |
+
memory = summary.total
|
297 |
+
else:
|
298 |
+
summary = None
|
299 |
+
|
300 |
+
return memory, summary
|
301 |
+
except ResourceExhaustedError as e:
|
302 |
+
self.print_fn(f"Doesn't fit on GPU. {e}")
|
303 |
+
return "N/A", None
|
env-llmeval/lib/python3.10/site-packages/transformers/benchmark/benchmark_utils.py
ADDED
@@ -0,0 +1,914 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp
|
2 |
+
|
3 |
+
# Copyright 2020 The HuggingFace Team and the AllenNLP authors. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Utilities for working with the local dataset cache.
|
18 |
+
"""
|
19 |
+
|
20 |
+
import copy
|
21 |
+
import csv
|
22 |
+
import linecache
|
23 |
+
import os
|
24 |
+
import platform
|
25 |
+
import sys
|
26 |
+
import warnings
|
27 |
+
from abc import ABC, abstractmethod
|
28 |
+
from collections import defaultdict, namedtuple
|
29 |
+
from datetime import datetime
|
30 |
+
from multiprocessing import Pipe, Process, Queue
|
31 |
+
from multiprocessing.connection import Connection
|
32 |
+
from typing import Callable, Iterable, List, NamedTuple, Optional, Union
|
33 |
+
|
34 |
+
from .. import AutoConfig, PretrainedConfig
|
35 |
+
from .. import __version__ as version
|
36 |
+
from ..utils import is_psutil_available, is_py3nvml_available, is_tf_available, is_torch_available, logging
|
37 |
+
from .benchmark_args_utils import BenchmarkArguments
|
38 |
+
|
39 |
+
|
40 |
+
if is_torch_available():
|
41 |
+
from torch.cuda import empty_cache as torch_empty_cache
|
42 |
+
|
43 |
+
if is_tf_available():
|
44 |
+
from tensorflow.python.eager import context as tf_context
|
45 |
+
|
46 |
+
if is_psutil_available():
|
47 |
+
import psutil
|
48 |
+
|
49 |
+
if is_py3nvml_available():
|
50 |
+
import py3nvml.py3nvml as nvml
|
51 |
+
|
52 |
+
if platform.system() == "Windows":
|
53 |
+
from signal import CTRL_C_EVENT as SIGKILL
|
54 |
+
else:
|
55 |
+
from signal import SIGKILL
|
56 |
+
|
57 |
+
|
58 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
59 |
+
|
60 |
+
|
61 |
+
_is_memory_tracing_enabled = False
|
62 |
+
|
63 |
+
BenchmarkOutput = namedtuple(
|
64 |
+
"BenchmarkOutput",
|
65 |
+
[
|
66 |
+
"time_inference_result",
|
67 |
+
"memory_inference_result",
|
68 |
+
"time_train_result",
|
69 |
+
"memory_train_result",
|
70 |
+
"inference_summary",
|
71 |
+
"train_summary",
|
72 |
+
],
|
73 |
+
)
|
74 |
+
|
75 |
+
|
76 |
+
def separate_process_wrapper_fn(func: Callable[[], None], do_multi_processing: bool) -> Callable[[], None]:
|
77 |
+
"""
|
78 |
+
This function wraps another function into its own separated process. In order to ensure accurate memory
|
79 |
+
measurements it is important that the function is executed in a separate process
|
80 |
+
|
81 |
+
Args:
|
82 |
+
- `func`: (`callable`): function() -> ... generic function which will be executed in its own separate process
|
83 |
+
- `do_multi_processing`: (`bool`) Whether to run function on separate process or not
|
84 |
+
"""
|
85 |
+
|
86 |
+
def multi_process_func(*args, **kwargs):
|
87 |
+
# run function in an individual
|
88 |
+
# process to get correct memory
|
89 |
+
def wrapper_func(queue: Queue, *args):
|
90 |
+
try:
|
91 |
+
result = func(*args)
|
92 |
+
except Exception as e:
|
93 |
+
logger.error(e)
|
94 |
+
print(e)
|
95 |
+
result = "N/A"
|
96 |
+
queue.put(result)
|
97 |
+
|
98 |
+
queue = Queue()
|
99 |
+
p = Process(target=wrapper_func, args=[queue] + list(args))
|
100 |
+
p.start()
|
101 |
+
result = queue.get()
|
102 |
+
p.join()
|
103 |
+
return result
|
104 |
+
|
105 |
+
if do_multi_processing:
|
106 |
+
logger.info(f"Function {func} is executed in its own process...")
|
107 |
+
return multi_process_func
|
108 |
+
else:
|
109 |
+
return func
|
110 |
+
|
111 |
+
|
112 |
+
def is_memory_tracing_enabled():
|
113 |
+
global _is_memory_tracing_enabled
|
114 |
+
return _is_memory_tracing_enabled
|
115 |
+
|
116 |
+
|
117 |
+
class Frame(NamedTuple):
|
118 |
+
"""
|
119 |
+
`Frame` is a NamedTuple used to gather the current frame state. `Frame` has the following fields:
|
120 |
+
|
121 |
+
- 'filename' (string): Name of the file currently executed
|
122 |
+
- 'module' (string): Name of the module currently executed
|
123 |
+
- 'line_number' (int): Number of the line currently executed
|
124 |
+
- 'event' (string): Event that triggered the tracing (default will be "line")
|
125 |
+
- 'line_text' (string): Text of the line in the python script
|
126 |
+
"""
|
127 |
+
|
128 |
+
filename: str
|
129 |
+
module: str
|
130 |
+
line_number: int
|
131 |
+
event: str
|
132 |
+
line_text: str
|
133 |
+
|
134 |
+
|
135 |
+
class UsedMemoryState(NamedTuple):
|
136 |
+
"""
|
137 |
+
`UsedMemoryState` are named tuples with the following fields:
|
138 |
+
|
139 |
+
- 'frame': a `Frame` namedtuple (see below) storing information on the current tracing frame (current file,
|
140 |
+
location in current file)
|
141 |
+
- 'cpu_memory': CPU RSS memory state *before* executing the line
|
142 |
+
- 'gpu_memory': GPU used memory *before* executing the line (sum for all GPUs or for only `gpus_to_trace` if
|
143 |
+
provided)
|
144 |
+
"""
|
145 |
+
|
146 |
+
frame: Frame
|
147 |
+
cpu_memory: int
|
148 |
+
gpu_memory: int
|
149 |
+
|
150 |
+
|
151 |
+
class Memory(NamedTuple):
|
152 |
+
"""
|
153 |
+
`Memory` NamedTuple have a single field `bytes` and you can get a human readable str of the number of mega bytes by
|
154 |
+
calling `__repr__`
|
155 |
+
|
156 |
+
- `byte` (integer): number of bytes,
|
157 |
+
"""
|
158 |
+
|
159 |
+
bytes: int
|
160 |
+
|
161 |
+
def __repr__(self) -> str:
|
162 |
+
return str(bytes_to_mega_bytes(self.bytes))
|
163 |
+
|
164 |
+
|
165 |
+
class MemoryState(NamedTuple):
|
166 |
+
"""
|
167 |
+
`MemoryState` are namedtuples listing frame + CPU/GPU memory with the following fields:
|
168 |
+
|
169 |
+
- `frame` (`Frame`): the current frame (see above)
|
170 |
+
- `cpu`: CPU memory consumed at during the current frame as a `Memory` named tuple
|
171 |
+
- `gpu`: GPU memory consumed at during the current frame as a `Memory` named tuple
|
172 |
+
- `cpu_gpu`: CPU + GPU memory consumed at during the current frame as a `Memory` named tuple
|
173 |
+
"""
|
174 |
+
|
175 |
+
frame: Frame
|
176 |
+
cpu: Memory
|
177 |
+
gpu: Memory
|
178 |
+
cpu_gpu: Memory
|
179 |
+
|
180 |
+
|
181 |
+
class MemorySummary(NamedTuple):
|
182 |
+
"""
|
183 |
+
`MemorySummary` namedtuple otherwise with the fields:
|
184 |
+
|
185 |
+
- `sequential`: a list of `MemoryState` namedtuple (see below) computed from the provided `memory_trace` by
|
186 |
+
subtracting the memory after executing each line from the memory before executing said line.
|
187 |
+
- `cumulative`: a list of `MemoryState` namedtuple (see below) with cumulative increase in memory for each line
|
188 |
+
obtained by summing repeated memory increase for a line if it's executed several times. The list is sorted
|
189 |
+
from the frame with the largest memory consumption to the frame with the smallest (can be negative if memory
|
190 |
+
is released)
|
191 |
+
- `total`: total memory increase during the full tracing as a `Memory` named tuple (see below). Line with
|
192 |
+
memory release (negative consumption) are ignored if `ignore_released_memory` is `True` (default).
|
193 |
+
"""
|
194 |
+
|
195 |
+
sequential: List[MemoryState]
|
196 |
+
cumulative: List[MemoryState]
|
197 |
+
current: List[MemoryState]
|
198 |
+
total: Memory
|
199 |
+
|
200 |
+
|
201 |
+
MemoryTrace = List[UsedMemoryState]
|
202 |
+
|
203 |
+
|
204 |
+
def measure_peak_memory_cpu(function: Callable[[], None], interval=0.5, device_idx=None) -> int:
|
205 |
+
"""
|
206 |
+
measures peak cpu memory consumption of a given `function` running the function for at least interval seconds and
|
207 |
+
at most 20 * interval seconds. This function is heavily inspired by: `memory_usage` of the package
|
208 |
+
`memory_profiler`:
|
209 |
+
https://github.com/pythonprofilers/memory_profiler/blob/895c4ac7a08020d66ae001e24067da6dcea42451/memory_profiler.py#L239
|
210 |
+
|
211 |
+
Args:
|
212 |
+
- `function`: (`callable`): function() -> ... function without any arguments to measure for which to measure
|
213 |
+
the peak memory
|
214 |
+
|
215 |
+
- `interval`: (`float`, `optional`, defaults to `0.5`) interval in second for which to measure the memory usage
|
216 |
+
|
217 |
+
- `device_idx`: (`int`, `optional`, defaults to `None`) device id for which to measure gpu usage
|
218 |
+
|
219 |
+
Returns:
|
220 |
+
|
221 |
+
- `max_memory`: (`int`) consumed memory peak in Bytes
|
222 |
+
"""
|
223 |
+
|
224 |
+
def get_cpu_memory(process_id: int) -> int:
|
225 |
+
"""
|
226 |
+
measures current cpu memory usage of a given `process_id`
|
227 |
+
|
228 |
+
Args:
|
229 |
+
- `process_id`: (`int`) process_id for which to measure memory
|
230 |
+
|
231 |
+
Returns
|
232 |
+
|
233 |
+
- `memory`: (`int`) consumed memory in Bytes
|
234 |
+
"""
|
235 |
+
process = psutil.Process(process_id)
|
236 |
+
try:
|
237 |
+
meminfo_attr = "memory_info" if hasattr(process, "memory_info") else "get_memory_info"
|
238 |
+
memory = getattr(process, meminfo_attr)()[0]
|
239 |
+
except psutil.AccessDenied:
|
240 |
+
raise ValueError("Error with Psutil.")
|
241 |
+
return memory
|
242 |
+
|
243 |
+
if not is_psutil_available():
|
244 |
+
logger.warning(
|
245 |
+
"Psutil not installed, we won't log CPU memory usage. "
|
246 |
+
"Install Psutil (pip install psutil) to use CPU memory tracing."
|
247 |
+
)
|
248 |
+
max_memory = "N/A"
|
249 |
+
else:
|
250 |
+
|
251 |
+
class MemoryMeasureProcess(Process):
|
252 |
+
|
253 |
+
"""
|
254 |
+
`MemoryMeasureProcess` inherits from `Process` and overwrites its `run()` method. Used to measure the
|
255 |
+
memory usage of a process
|
256 |
+
"""
|
257 |
+
|
258 |
+
def __init__(self, process_id: int, child_connection: Connection, interval: float):
|
259 |
+
super().__init__()
|
260 |
+
self.process_id = process_id
|
261 |
+
self.interval = interval
|
262 |
+
self.connection = child_connection
|
263 |
+
self.num_measurements = 1
|
264 |
+
self.mem_usage = get_cpu_memory(self.process_id)
|
265 |
+
|
266 |
+
def run(self):
|
267 |
+
self.connection.send(0)
|
268 |
+
stop = False
|
269 |
+
while True:
|
270 |
+
self.mem_usage = max(self.mem_usage, get_cpu_memory(self.process_id))
|
271 |
+
self.num_measurements += 1
|
272 |
+
|
273 |
+
if stop:
|
274 |
+
break
|
275 |
+
|
276 |
+
stop = self.connection.poll(self.interval)
|
277 |
+
|
278 |
+
# send results to parent pipe
|
279 |
+
self.connection.send(self.mem_usage)
|
280 |
+
self.connection.send(self.num_measurements)
|
281 |
+
|
282 |
+
while True:
|
283 |
+
# create child, parent connection
|
284 |
+
child_connection, parent_connection = Pipe()
|
285 |
+
|
286 |
+
# instantiate process
|
287 |
+
mem_process = MemoryMeasureProcess(os.getpid(), child_connection, interval)
|
288 |
+
mem_process.start()
|
289 |
+
|
290 |
+
# wait until we get memory
|
291 |
+
parent_connection.recv()
|
292 |
+
|
293 |
+
try:
|
294 |
+
# execute function
|
295 |
+
function()
|
296 |
+
|
297 |
+
# start parent connection
|
298 |
+
parent_connection.send(0)
|
299 |
+
|
300 |
+
# receive memory and num measurements
|
301 |
+
max_memory = parent_connection.recv()
|
302 |
+
num_measurements = parent_connection.recv()
|
303 |
+
except Exception:
|
304 |
+
# kill process in a clean way
|
305 |
+
parent = psutil.Process(os.getpid())
|
306 |
+
for child in parent.children(recursive=True):
|
307 |
+
os.kill(child.pid, SIGKILL)
|
308 |
+
mem_process.join(0)
|
309 |
+
raise RuntimeError("Process killed. Error in Process")
|
310 |
+
|
311 |
+
# run process at least 20 * interval or until it finishes
|
312 |
+
mem_process.join(20 * interval)
|
313 |
+
|
314 |
+
if (num_measurements > 4) or (interval < 1e-6):
|
315 |
+
break
|
316 |
+
|
317 |
+
# reduce interval
|
318 |
+
interval /= 10
|
319 |
+
|
320 |
+
return max_memory
|
321 |
+
|
322 |
+
|
323 |
+
def start_memory_tracing(
|
324 |
+
modules_to_trace: Optional[Union[str, Iterable[str]]] = None,
|
325 |
+
modules_not_to_trace: Optional[Union[str, Iterable[str]]] = None,
|
326 |
+
events_to_trace: str = "line",
|
327 |
+
gpus_to_trace: Optional[List[int]] = None,
|
328 |
+
) -> MemoryTrace:
|
329 |
+
"""
|
330 |
+
Setup line-by-line tracing to record rss mem (RAM) at each line of a module or sub-module. See `./benchmark.py` for
|
331 |
+
usage examples. Current memory consumption is returned using psutil and in particular is the RSS memory "Resident
|
332 |
+
Set Size” (the non-swapped physical memory the process is using). See
|
333 |
+
https://psutil.readthedocs.io/en/latest/#psutil.Process.memory_info
|
334 |
+
|
335 |
+
Args:
|
336 |
+
- `modules_to_trace`: (None, string, list/tuple of string) if None, all events are recorded if string or list
|
337 |
+
of strings: only events from the listed module/sub-module will be recorded (e.g. 'fairseq' or
|
338 |
+
'transformers.models.gpt2.modeling_gpt2')
|
339 |
+
- `modules_not_to_trace`: (None, string, list/tuple of string) if None, no module is avoided if string or list
|
340 |
+
of strings: events from the listed module/sub-module will not be recorded (e.g. 'torch')
|
341 |
+
- `events_to_trace`: string or list of string of events to be recorded (see official python doc for
|
342 |
+
`sys.settrace` for the list of events) default to line
|
343 |
+
- `gpus_to_trace`: (optional list, default None) list of GPUs to trace. Default to tracing all GPUs
|
344 |
+
|
345 |
+
Return:
|
346 |
+
|
347 |
+
- `memory_trace` is a list of `UsedMemoryState` for each event (default each line of the traced script).
|
348 |
+
|
349 |
+
- `UsedMemoryState` are named tuples with the following fields:
|
350 |
+
|
351 |
+
- 'frame': a `Frame` namedtuple (see below) storing information on the current tracing frame (current
|
352 |
+
file, location in current file)
|
353 |
+
- 'cpu_memory': CPU RSS memory state *before* executing the line
|
354 |
+
- 'gpu_memory': GPU used memory *before* executing the line (sum for all GPUs or for only
|
355 |
+
`gpus_to_trace` if provided)
|
356 |
+
|
357 |
+
`Frame` is a namedtuple used by `UsedMemoryState` to list the current frame state. `Frame` has the following
|
358 |
+
fields: - 'filename' (string): Name of the file currently executed - 'module' (string): Name of the module
|
359 |
+
currently executed - 'line_number' (int): Number of the line currently executed - 'event' (string): Event that
|
360 |
+
triggered the tracing (default will be "line") - 'line_text' (string): Text of the line in the python script
|
361 |
+
|
362 |
+
"""
|
363 |
+
if is_psutil_available():
|
364 |
+
process = psutil.Process(os.getpid())
|
365 |
+
else:
|
366 |
+
logger.warning(
|
367 |
+
"Psutil not installed, we won't log CPU memory usage. "
|
368 |
+
"Install psutil (pip install psutil) to use CPU memory tracing."
|
369 |
+
)
|
370 |
+
process = None
|
371 |
+
|
372 |
+
if is_py3nvml_available():
|
373 |
+
try:
|
374 |
+
nvml.nvmlInit()
|
375 |
+
devices = list(range(nvml.nvmlDeviceGetCount())) if gpus_to_trace is None else gpus_to_trace
|
376 |
+
nvml.nvmlShutdown()
|
377 |
+
except (OSError, nvml.NVMLError):
|
378 |
+
logger.warning("Error while initializing communication with GPU. We won't perform GPU memory tracing.")
|
379 |
+
log_gpu = False
|
380 |
+
else:
|
381 |
+
log_gpu = is_torch_available() or is_tf_available()
|
382 |
+
else:
|
383 |
+
logger.warning(
|
384 |
+
"py3nvml not installed, we won't log GPU memory usage. "
|
385 |
+
"Install py3nvml (pip install py3nvml) to use GPU memory tracing."
|
386 |
+
)
|
387 |
+
log_gpu = False
|
388 |
+
|
389 |
+
memory_trace = []
|
390 |
+
|
391 |
+
def traceit(frame, event, args):
|
392 |
+
"""
|
393 |
+
Tracing method executed before running each line in a module or sub-module Record memory allocated in a list
|
394 |
+
with debugging information
|
395 |
+
"""
|
396 |
+
global _is_memory_tracing_enabled
|
397 |
+
|
398 |
+
if not _is_memory_tracing_enabled:
|
399 |
+
return traceit
|
400 |
+
|
401 |
+
# Filter events
|
402 |
+
if events_to_trace is not None:
|
403 |
+
if isinstance(events_to_trace, str) and event != events_to_trace:
|
404 |
+
return traceit
|
405 |
+
elif isinstance(events_to_trace, (list, tuple)) and event not in events_to_trace:
|
406 |
+
return traceit
|
407 |
+
|
408 |
+
if "__name__" not in frame.f_globals:
|
409 |
+
return traceit
|
410 |
+
|
411 |
+
# Filter modules
|
412 |
+
name = frame.f_globals["__name__"]
|
413 |
+
if not isinstance(name, str):
|
414 |
+
return traceit
|
415 |
+
else:
|
416 |
+
# Filter whitelist of modules to trace
|
417 |
+
if modules_to_trace is not None:
|
418 |
+
if isinstance(modules_to_trace, str) and modules_to_trace not in name:
|
419 |
+
return traceit
|
420 |
+
elif isinstance(modules_to_trace, (list, tuple)) and all(m not in name for m in modules_to_trace):
|
421 |
+
return traceit
|
422 |
+
|
423 |
+
# Filter blacklist of modules not to trace
|
424 |
+
if modules_not_to_trace is not None:
|
425 |
+
if isinstance(modules_not_to_trace, str) and modules_not_to_trace in name:
|
426 |
+
return traceit
|
427 |
+
elif isinstance(modules_not_to_trace, (list, tuple)) and any(m in name for m in modules_not_to_trace):
|
428 |
+
return traceit
|
429 |
+
|
430 |
+
# Record current tracing state (file, location in file...)
|
431 |
+
lineno = frame.f_lineno
|
432 |
+
filename = frame.f_globals["__file__"]
|
433 |
+
if filename.endswith(".pyc") or filename.endswith(".pyo"):
|
434 |
+
filename = filename[:-1]
|
435 |
+
line = linecache.getline(filename, lineno).rstrip()
|
436 |
+
traced_state = Frame(filename, name, lineno, event, line)
|
437 |
+
|
438 |
+
# Record current memory state (rss memory) and compute difference with previous memory state
|
439 |
+
cpu_mem = 0
|
440 |
+
if process is not None:
|
441 |
+
mem = process.memory_info()
|
442 |
+
cpu_mem = mem.rss
|
443 |
+
|
444 |
+
gpu_mem = 0
|
445 |
+
if log_gpu:
|
446 |
+
# Clear GPU caches
|
447 |
+
if is_torch_available():
|
448 |
+
torch_empty_cache()
|
449 |
+
if is_tf_available():
|
450 |
+
tf_context.context()._clear_caches() # See https://github.com/tensorflow/tensorflow/issues/20218#issuecomment-416771802
|
451 |
+
|
452 |
+
# Sum used memory for all GPUs
|
453 |
+
nvml.nvmlInit()
|
454 |
+
|
455 |
+
for i in devices:
|
456 |
+
handle = nvml.nvmlDeviceGetHandleByIndex(i)
|
457 |
+
meminfo = nvml.nvmlDeviceGetMemoryInfo(handle)
|
458 |
+
gpu_mem += meminfo.used
|
459 |
+
|
460 |
+
nvml.nvmlShutdown()
|
461 |
+
|
462 |
+
mem_state = UsedMemoryState(traced_state, cpu_mem, gpu_mem)
|
463 |
+
memory_trace.append(mem_state)
|
464 |
+
|
465 |
+
return traceit
|
466 |
+
|
467 |
+
sys.settrace(traceit)
|
468 |
+
|
469 |
+
global _is_memory_tracing_enabled
|
470 |
+
_is_memory_tracing_enabled = True
|
471 |
+
|
472 |
+
return memory_trace
|
473 |
+
|
474 |
+
|
475 |
+
def stop_memory_tracing(
|
476 |
+
memory_trace: Optional[MemoryTrace] = None, ignore_released_memory: bool = True
|
477 |
+
) -> Optional[MemorySummary]:
|
478 |
+
"""
|
479 |
+
Stop memory tracing cleanly and return a summary of the memory trace if a trace is given.
|
480 |
+
|
481 |
+
Args:
|
482 |
+
`memory_trace` (optional output of start_memory_tracing, default: None):
|
483 |
+
memory trace to convert in summary
|
484 |
+
`ignore_released_memory` (boolean, default: None):
|
485 |
+
if True we only sum memory increase to compute total memory
|
486 |
+
|
487 |
+
Return:
|
488 |
+
|
489 |
+
- None if `memory_trace` is None
|
490 |
+
- `MemorySummary` namedtuple otherwise with the fields:
|
491 |
+
|
492 |
+
- `sequential`: a list of `MemoryState` namedtuple (see below) computed from the provided `memory_trace` by
|
493 |
+
subtracting the memory after executing each line from the memory before executing said line.
|
494 |
+
- `cumulative`: a list of `MemoryState` namedtuple (see below) with cumulative increase in memory for each
|
495 |
+
line obtained by summing repeated memory increase for a line if it's executed several times. The list is
|
496 |
+
sorted from the frame with the largest memory consumption to the frame with the smallest (can be negative
|
497 |
+
if memory is released)
|
498 |
+
- `total`: total memory increase during the full tracing as a `Memory` named tuple (see below). Line with
|
499 |
+
memory release (negative consumption) are ignored if `ignore_released_memory` is `True` (default).
|
500 |
+
|
501 |
+
`Memory` named tuple have fields
|
502 |
+
|
503 |
+
- `byte` (integer): number of bytes,
|
504 |
+
- `string` (string): same as human readable string (ex: "3.5MB")
|
505 |
+
|
506 |
+
`Frame` are namedtuple used to list the current frame state and have the following fields:
|
507 |
+
|
508 |
+
- 'filename' (string): Name of the file currently executed
|
509 |
+
- 'module' (string): Name of the module currently executed
|
510 |
+
- 'line_number' (int): Number of the line currently executed
|
511 |
+
- 'event' (string): Event that triggered the tracing (default will be "line")
|
512 |
+
- 'line_text' (string): Text of the line in the python script
|
513 |
+
|
514 |
+
`MemoryState` are namedtuples listing frame + CPU/GPU memory with the following fields:
|
515 |
+
|
516 |
+
- `frame` (`Frame`): the current frame (see above)
|
517 |
+
- `cpu`: CPU memory consumed at during the current frame as a `Memory` named tuple
|
518 |
+
- `gpu`: GPU memory consumed at during the current frame as a `Memory` named tuple
|
519 |
+
- `cpu_gpu`: CPU + GPU memory consumed at during the current frame as a `Memory` named tuple
|
520 |
+
"""
|
521 |
+
global _is_memory_tracing_enabled
|
522 |
+
_is_memory_tracing_enabled = False
|
523 |
+
|
524 |
+
if memory_trace is not None and len(memory_trace) > 1:
|
525 |
+
memory_diff_trace = []
|
526 |
+
memory_curr_trace = []
|
527 |
+
|
528 |
+
cumulative_memory_dict = defaultdict(lambda: [0, 0, 0])
|
529 |
+
|
530 |
+
for (
|
531 |
+
(frame, cpu_mem, gpu_mem),
|
532 |
+
(next_frame, next_cpu_mem, next_gpu_mem),
|
533 |
+
) in zip(memory_trace[:-1], memory_trace[1:]):
|
534 |
+
cpu_mem_inc = next_cpu_mem - cpu_mem
|
535 |
+
gpu_mem_inc = next_gpu_mem - gpu_mem
|
536 |
+
cpu_gpu_mem_inc = cpu_mem_inc + gpu_mem_inc
|
537 |
+
memory_diff_trace.append(
|
538 |
+
MemoryState(
|
539 |
+
frame=frame,
|
540 |
+
cpu=Memory(cpu_mem_inc),
|
541 |
+
gpu=Memory(gpu_mem_inc),
|
542 |
+
cpu_gpu=Memory(cpu_gpu_mem_inc),
|
543 |
+
)
|
544 |
+
)
|
545 |
+
|
546 |
+
memory_curr_trace.append(
|
547 |
+
MemoryState(
|
548 |
+
frame=frame,
|
549 |
+
cpu=Memory(next_cpu_mem),
|
550 |
+
gpu=Memory(next_gpu_mem),
|
551 |
+
cpu_gpu=Memory(next_gpu_mem + next_cpu_mem),
|
552 |
+
)
|
553 |
+
)
|
554 |
+
|
555 |
+
cumulative_memory_dict[frame][0] += cpu_mem_inc
|
556 |
+
cumulative_memory_dict[frame][1] += gpu_mem_inc
|
557 |
+
cumulative_memory_dict[frame][2] += cpu_gpu_mem_inc
|
558 |
+
|
559 |
+
cumulative_memory = sorted(
|
560 |
+
cumulative_memory_dict.items(), key=lambda x: x[1][2], reverse=True
|
561 |
+
) # order by the total CPU + GPU memory increase
|
562 |
+
cumulative_memory = [
|
563 |
+
MemoryState(
|
564 |
+
frame=frame,
|
565 |
+
cpu=Memory(cpu_mem_inc),
|
566 |
+
gpu=Memory(gpu_mem_inc),
|
567 |
+
cpu_gpu=Memory(cpu_gpu_mem_inc),
|
568 |
+
)
|
569 |
+
for frame, (cpu_mem_inc, gpu_mem_inc, cpu_gpu_mem_inc) in cumulative_memory
|
570 |
+
]
|
571 |
+
|
572 |
+
memory_curr_trace = sorted(memory_curr_trace, key=lambda x: x.cpu_gpu.bytes, reverse=True)
|
573 |
+
|
574 |
+
if ignore_released_memory:
|
575 |
+
total_memory = sum(max(0, step_trace.cpu_gpu.bytes) for step_trace in memory_diff_trace)
|
576 |
+
else:
|
577 |
+
total_memory = sum(step_trace.cpu_gpu.bytes for step_trace in memory_diff_trace)
|
578 |
+
|
579 |
+
total_memory = Memory(total_memory)
|
580 |
+
|
581 |
+
return MemorySummary(
|
582 |
+
sequential=memory_diff_trace,
|
583 |
+
cumulative=cumulative_memory,
|
584 |
+
current=memory_curr_trace,
|
585 |
+
total=total_memory,
|
586 |
+
)
|
587 |
+
|
588 |
+
return None
|
589 |
+
|
590 |
+
|
591 |
+
def bytes_to_mega_bytes(memory_amount: int) -> int:
|
592 |
+
"""Utility to convert a number of bytes (int) into a number of mega bytes (int)"""
|
593 |
+
return memory_amount >> 20
|
594 |
+
|
595 |
+
|
596 |
+
class Benchmark(ABC):
|
597 |
+
"""
|
598 |
+
Benchmarks is a simple but feature-complete benchmarking script to compare memory and time performance of models in
|
599 |
+
Transformers.
|
600 |
+
"""
|
601 |
+
|
602 |
+
args: BenchmarkArguments
|
603 |
+
configs: PretrainedConfig
|
604 |
+
framework: str
|
605 |
+
|
606 |
+
def __init__(self, args: BenchmarkArguments = None, configs: PretrainedConfig = None):
|
607 |
+
self.args = args
|
608 |
+
if configs is None:
|
609 |
+
self.config_dict = {
|
610 |
+
model_name: AutoConfig.from_pretrained(model_name) for model_name in self.args.model_names
|
611 |
+
}
|
612 |
+
else:
|
613 |
+
self.config_dict = dict(zip(self.args.model_names, configs))
|
614 |
+
|
615 |
+
warnings.warn(
|
616 |
+
f"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils"
|
617 |
+
" are deprecated in general and it is advised to use external Benchmarking libraries "
|
618 |
+
" to benchmark Transformer models.",
|
619 |
+
FutureWarning,
|
620 |
+
)
|
621 |
+
|
622 |
+
if self.args.memory and os.getenv("TRANSFORMERS_USE_MULTIPROCESSING") == 0:
|
623 |
+
logger.warning(
|
624 |
+
"Memory consumption will not be measured accurately if `args.multi_process` is set to `False.` The"
|
625 |
+
" flag 'TRANSFORMERS_USE_MULTIPROCESSING' should only be disabled for debugging / testing."
|
626 |
+
)
|
627 |
+
|
628 |
+
self._print_fn = None
|
629 |
+
self._framework_version = None
|
630 |
+
self._environment_info = None
|
631 |
+
|
632 |
+
@property
|
633 |
+
def print_fn(self):
|
634 |
+
if self._print_fn is None:
|
635 |
+
if self.args.log_print:
|
636 |
+
|
637 |
+
def print_and_log(*args):
|
638 |
+
with open(self.args.log_filename, "a") as log_file:
|
639 |
+
log_file.write("".join(args) + "\n")
|
640 |
+
print(*args)
|
641 |
+
|
642 |
+
self._print_fn = print_and_log
|
643 |
+
else:
|
644 |
+
self._print_fn = print
|
645 |
+
return self._print_fn
|
646 |
+
|
647 |
+
@property
|
648 |
+
@abstractmethod
|
649 |
+
def framework_version(self):
|
650 |
+
pass
|
651 |
+
|
652 |
+
@abstractmethod
|
653 |
+
def _inference_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
|
654 |
+
pass
|
655 |
+
|
656 |
+
@abstractmethod
|
657 |
+
def _train_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float:
|
658 |
+
pass
|
659 |
+
|
660 |
+
@abstractmethod
|
661 |
+
def _inference_memory(
|
662 |
+
self, model_name: str, batch_size: int, sequence_length: int
|
663 |
+
) -> [Memory, Optional[MemorySummary]]:
|
664 |
+
pass
|
665 |
+
|
666 |
+
@abstractmethod
|
667 |
+
def _train_memory(
|
668 |
+
self, model_name: str, batch_size: int, sequence_length: int
|
669 |
+
) -> [Memory, Optional[MemorySummary]]:
|
670 |
+
pass
|
671 |
+
|
672 |
+
def inference_speed(self, *args, **kwargs) -> float:
|
673 |
+
return separate_process_wrapper_fn(self._inference_speed, self.args.do_multi_processing)(*args, **kwargs)
|
674 |
+
|
675 |
+
def train_speed(self, *args, **kwargs) -> float:
|
676 |
+
return separate_process_wrapper_fn(self._train_speed, self.args.do_multi_processing)(*args, **kwargs)
|
677 |
+
|
678 |
+
def inference_memory(self, *args, **kwargs) -> [Memory, Optional[MemorySummary]]:
|
679 |
+
return separate_process_wrapper_fn(self._inference_memory, self.args.do_multi_processing)(*args, **kwargs)
|
680 |
+
|
681 |
+
def train_memory(self, *args, **kwargs) -> [Memory, Optional[MemorySummary]]:
|
682 |
+
return separate_process_wrapper_fn(self._train_memory, self.args.do_multi_processing)(*args, **kwargs)
|
683 |
+
|
684 |
+
def run(self):
|
685 |
+
result_dict = {model_name: {} for model_name in self.args.model_names}
|
686 |
+
inference_result_time = copy.deepcopy(result_dict)
|
687 |
+
inference_result_memory = copy.deepcopy(result_dict)
|
688 |
+
train_result_time = copy.deepcopy(result_dict)
|
689 |
+
train_result_memory = copy.deepcopy(result_dict)
|
690 |
+
|
691 |
+
for c, model_name in enumerate(self.args.model_names):
|
692 |
+
self.print_fn(f"{c + 1} / {len(self.args.model_names)}")
|
693 |
+
|
694 |
+
model_dict = {
|
695 |
+
"bs": self.args.batch_sizes,
|
696 |
+
"ss": self.args.sequence_lengths,
|
697 |
+
"result": {i: {} for i in self.args.batch_sizes},
|
698 |
+
}
|
699 |
+
inference_result_time[model_name] = copy.deepcopy(model_dict)
|
700 |
+
inference_result_memory[model_name] = copy.deepcopy(model_dict)
|
701 |
+
train_result_time[model_name] = copy.deepcopy(model_dict)
|
702 |
+
train_result_memory[model_name] = copy.deepcopy(model_dict)
|
703 |
+
|
704 |
+
inference_summary = train_summary = None
|
705 |
+
|
706 |
+
for batch_size in self.args.batch_sizes:
|
707 |
+
for sequence_length in self.args.sequence_lengths:
|
708 |
+
if self.args.inference:
|
709 |
+
if self.args.memory:
|
710 |
+
memory, inference_summary = self.inference_memory(model_name, batch_size, sequence_length)
|
711 |
+
inference_result_memory[model_name]["result"][batch_size][sequence_length] = memory
|
712 |
+
if self.args.speed:
|
713 |
+
time = self.inference_speed(model_name, batch_size, sequence_length)
|
714 |
+
inference_result_time[model_name]["result"][batch_size][sequence_length] = time
|
715 |
+
|
716 |
+
if self.args.training:
|
717 |
+
if self.args.memory:
|
718 |
+
memory, train_summary = self.train_memory(model_name, batch_size, sequence_length)
|
719 |
+
train_result_memory[model_name]["result"][batch_size][sequence_length] = memory
|
720 |
+
if self.args.speed:
|
721 |
+
time = self.train_speed(model_name, batch_size, sequence_length)
|
722 |
+
train_result_time[model_name]["result"][batch_size][sequence_length] = time
|
723 |
+
|
724 |
+
if self.args.inference:
|
725 |
+
if self.args.speed:
|
726 |
+
self.print_fn("\n" + 20 * "=" + ("INFERENCE - SPEED - RESULT").center(40) + 20 * "=")
|
727 |
+
self.print_results(inference_result_time, type_label="Time in s")
|
728 |
+
self.save_to_csv(inference_result_time, self.args.inference_time_csv_file)
|
729 |
+
if self.args.is_tpu:
|
730 |
+
self.print_fn(
|
731 |
+
"TPU was used for inference. Note that the time after compilation stabilized (after ~10"
|
732 |
+
" inferences model.forward(..) calls) was measured."
|
733 |
+
)
|
734 |
+
|
735 |
+
if self.args.memory:
|
736 |
+
self.print_fn("\n" + 20 * "=" + ("INFERENCE - MEMORY - RESULT").center(40) + 20 * "=")
|
737 |
+
self.print_results(inference_result_memory, type_label="Memory in MB")
|
738 |
+
self.save_to_csv(inference_result_memory, self.args.inference_memory_csv_file)
|
739 |
+
|
740 |
+
if self.args.trace_memory_line_by_line:
|
741 |
+
self.print_fn("\n" + 20 * "=" + ("INFERENCE - MEMOMRY - LINE BY LINE - SUMMARY").center(40) + 20 * "=")
|
742 |
+
self.print_memory_trace_statistics(inference_summary)
|
743 |
+
|
744 |
+
if self.args.training:
|
745 |
+
if self.args.speed:
|
746 |
+
self.print_fn("\n" + 20 * "=" + ("TRAIN - SPEED - RESULTS").center(40) + 20 * "=")
|
747 |
+
self.print_results(train_result_time, "Time in s")
|
748 |
+
self.save_to_csv(train_result_time, self.args.train_time_csv_file)
|
749 |
+
if self.args.is_tpu:
|
750 |
+
self.print_fn(
|
751 |
+
"TPU was used for training. Note that the time after compilation stabilized (after ~10 train"
|
752 |
+
" loss=model.forward(...) + loss.backward() calls) was measured."
|
753 |
+
)
|
754 |
+
|
755 |
+
if self.args.memory:
|
756 |
+
self.print_fn("\n" + 20 * "=" + ("TRAIN - MEMORY - RESULTS").center(40) + 20 * "=")
|
757 |
+
self.print_results(train_result_memory, type_label="Memory in MB")
|
758 |
+
self.save_to_csv(train_result_memory, self.args.train_memory_csv_file)
|
759 |
+
|
760 |
+
if self.args.trace_memory_line_by_line:
|
761 |
+
self.print_fn("\n" + 20 * "=" + ("TRAIN - MEMOMRY - LINE BY LINE - SUMMARY").center(40) + 20 * "=")
|
762 |
+
self.print_memory_trace_statistics(train_summary)
|
763 |
+
|
764 |
+
if self.args.env_print:
|
765 |
+
self.print_fn("\n" + 20 * "=" + ("ENVIRONMENT INFORMATION").center(40) + 20 * "=")
|
766 |
+
self.print_fn("\n".join([f"- {prop}: {val}" for prop, val in self.environment_info.items()]) + "\n")
|
767 |
+
|
768 |
+
if self.args.save_to_csv:
|
769 |
+
with open(self.args.env_info_csv_file, mode="w", newline="") as csv_file:
|
770 |
+
writer = csv.writer(csv_file)
|
771 |
+
for key, value in self.environment_info.items():
|
772 |
+
writer.writerow([key, value])
|
773 |
+
|
774 |
+
return BenchmarkOutput(
|
775 |
+
inference_result_time,
|
776 |
+
inference_result_memory,
|
777 |
+
train_result_time,
|
778 |
+
train_result_memory,
|
779 |
+
inference_summary,
|
780 |
+
train_summary,
|
781 |
+
)
|
782 |
+
|
783 |
+
@property
|
784 |
+
def environment_info(self):
|
785 |
+
if self._environment_info is None:
|
786 |
+
info = {}
|
787 |
+
info["transformers_version"] = version
|
788 |
+
info["framework"] = self.framework
|
789 |
+
if self.framework == "PyTorch":
|
790 |
+
info["use_torchscript"] = self.args.torchscript
|
791 |
+
if self.framework == "TensorFlow":
|
792 |
+
info["eager_mode"] = self.args.eager_mode
|
793 |
+
info["use_xla"] = self.args.use_xla
|
794 |
+
info["framework_version"] = self.framework_version
|
795 |
+
info["python_version"] = platform.python_version()
|
796 |
+
info["system"] = platform.system()
|
797 |
+
info["cpu"] = platform.processor()
|
798 |
+
info["architecture"] = platform.architecture()[0]
|
799 |
+
info["date"] = datetime.date(datetime.now())
|
800 |
+
info["time"] = datetime.time(datetime.now())
|
801 |
+
info["fp16"] = self.args.fp16
|
802 |
+
info["use_multiprocessing"] = self.args.do_multi_processing
|
803 |
+
info["only_pretrain_model"] = self.args.only_pretrain_model
|
804 |
+
|
805 |
+
if is_psutil_available():
|
806 |
+
info["cpu_ram_mb"] = bytes_to_mega_bytes(psutil.virtual_memory().total)
|
807 |
+
else:
|
808 |
+
logger.warning(
|
809 |
+
"Psutil not installed, we won't log available CPU memory. "
|
810 |
+
"Install psutil (pip install psutil) to log available CPU memory."
|
811 |
+
)
|
812 |
+
info["cpu_ram_mb"] = "N/A"
|
813 |
+
|
814 |
+
info["use_gpu"] = self.args.is_gpu
|
815 |
+
if self.args.is_gpu:
|
816 |
+
info["num_gpus"] = 1 # TODO(PVP) Currently only single GPU is supported
|
817 |
+
if is_py3nvml_available():
|
818 |
+
nvml.nvmlInit()
|
819 |
+
handle = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx)
|
820 |
+
info["gpu"] = nvml.nvmlDeviceGetName(handle)
|
821 |
+
info["gpu_ram_mb"] = bytes_to_mega_bytes(nvml.nvmlDeviceGetMemoryInfo(handle).total)
|
822 |
+
info["gpu_power_watts"] = nvml.nvmlDeviceGetPowerManagementLimit(handle) / 1000
|
823 |
+
info["gpu_performance_state"] = nvml.nvmlDeviceGetPerformanceState(handle)
|
824 |
+
nvml.nvmlShutdown()
|
825 |
+
else:
|
826 |
+
logger.warning(
|
827 |
+
"py3nvml not installed, we won't log GPU memory usage. "
|
828 |
+
"Install py3nvml (pip install py3nvml) to log information about GPU."
|
829 |
+
)
|
830 |
+
info["gpu"] = "N/A"
|
831 |
+
info["gpu_ram_mb"] = "N/A"
|
832 |
+
info["gpu_power_watts"] = "N/A"
|
833 |
+
info["gpu_performance_state"] = "N/A"
|
834 |
+
|
835 |
+
info["use_tpu"] = self.args.is_tpu
|
836 |
+
# TODO(PVP): See if we can add more information about TPU
|
837 |
+
# see: https://github.com/pytorch/xla/issues/2180
|
838 |
+
|
839 |
+
self._environment_info = info
|
840 |
+
return self._environment_info
|
841 |
+
|
842 |
+
def print_results(self, result_dict, type_label):
|
843 |
+
self.print_fn(80 * "-")
|
844 |
+
self.print_fn(
|
845 |
+
"Model Name".center(30) + "Batch Size".center(15) + "Seq Length".center(15) + type_label.center(15)
|
846 |
+
)
|
847 |
+
self.print_fn(80 * "-")
|
848 |
+
for model_name in self.args.model_names:
|
849 |
+
for batch_size in result_dict[model_name]["bs"]:
|
850 |
+
for sequence_length in result_dict[model_name]["ss"]:
|
851 |
+
result = result_dict[model_name]["result"][batch_size][sequence_length]
|
852 |
+
if isinstance(result, float):
|
853 |
+
result = round(1000 * result) / 1000
|
854 |
+
result = "< 0.001" if result == 0.0 else str(result)
|
855 |
+
else:
|
856 |
+
result = str(result)
|
857 |
+
self.print_fn(
|
858 |
+
model_name[:30].center(30) + str(batch_size).center(15),
|
859 |
+
str(sequence_length).center(15),
|
860 |
+
result.center(15),
|
861 |
+
)
|
862 |
+
self.print_fn(80 * "-")
|
863 |
+
|
864 |
+
def print_memory_trace_statistics(self, summary: MemorySummary):
|
865 |
+
self.print_fn(
|
866 |
+
"\nLine by line memory consumption:\n"
|
867 |
+
+ "\n".join(
|
868 |
+
f"{state.frame.filename}:{state.frame.line_number}: mem {state.cpu_gpu}: {state.frame.line_text}"
|
869 |
+
for state in summary.sequential
|
870 |
+
)
|
871 |
+
)
|
872 |
+
self.print_fn(
|
873 |
+
"\nLines with top memory consumption:\n"
|
874 |
+
+ "\n".join(
|
875 |
+
f"=> {state.frame.filename}:{state.frame.line_number}: mem {state.cpu_gpu}: {state.frame.line_text}"
|
876 |
+
for state in summary.cumulative[:6]
|
877 |
+
)
|
878 |
+
)
|
879 |
+
self.print_fn(
|
880 |
+
"\nLines with lowest memory consumption:\n"
|
881 |
+
+ "\n".join(
|
882 |
+
f"=> {state.frame.filename}:{state.frame.line_number}: mem {state.cpu_gpu}: {state.frame.line_text}"
|
883 |
+
for state in summary.cumulative[-6:]
|
884 |
+
)
|
885 |
+
)
|
886 |
+
self.print_fn(f"\nTotal memory increase: {summary.total}")
|
887 |
+
|
888 |
+
def save_to_csv(self, result_dict, filename):
|
889 |
+
if not self.args.save_to_csv:
|
890 |
+
return
|
891 |
+
self.print_fn("Saving results to csv.")
|
892 |
+
with open(filename, mode="w") as csv_file:
|
893 |
+
if len(self.args.model_names) <= 0:
|
894 |
+
raise ValueError(f"At least 1 model should be defined, but got {self.model_names}")
|
895 |
+
|
896 |
+
fieldnames = ["model", "batch_size", "sequence_length"]
|
897 |
+
writer = csv.DictWriter(csv_file, fieldnames=fieldnames + ["result"])
|
898 |
+
writer.writeheader()
|
899 |
+
|
900 |
+
for model_name in self.args.model_names:
|
901 |
+
result_dict_model = result_dict[model_name]["result"]
|
902 |
+
for bs in result_dict_model:
|
903 |
+
for ss in result_dict_model[bs]:
|
904 |
+
result_model = result_dict_model[bs][ss]
|
905 |
+
writer.writerow(
|
906 |
+
{
|
907 |
+
"model": model_name,
|
908 |
+
"batch_size": bs,
|
909 |
+
"sequence_length": ss,
|
910 |
+
"result": ("{}" if not isinstance(result_model, float) else "{:.4f}").format(
|
911 |
+
result_model
|
912 |
+
),
|
913 |
+
}
|
914 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/cache_utils.py
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Any, Dict, List, Optional, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from .configuration_utils import PretrainedConfig
|
7 |
+
from .utils import logging
|
8 |
+
|
9 |
+
|
10 |
+
logger = logging.get_logger(__name__)
|
11 |
+
|
12 |
+
|
13 |
+
@dataclass
|
14 |
+
class Cache:
|
15 |
+
"""
|
16 |
+
Base, abstract class for all caches. The actual data structure is specific to each subclass.
|
17 |
+
"""
|
18 |
+
|
19 |
+
def update(
|
20 |
+
self,
|
21 |
+
key_states: torch.Tensor,
|
22 |
+
value_states: torch.Tensor,
|
23 |
+
layer_idx: int,
|
24 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
25 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
26 |
+
"""
|
27 |
+
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
28 |
+
|
29 |
+
Parameters:
|
30 |
+
key_states (`torch.Tensor`):
|
31 |
+
The new key states to cache.
|
32 |
+
value_states (`torch.Tensor`):
|
33 |
+
The new value states to cache.
|
34 |
+
layer_idx (`int`):
|
35 |
+
The index of the layer to cache the states for.
|
36 |
+
cache_kwargs (`Dict[str, Any]`, `optional`):
|
37 |
+
Additional arguments for the cache subclass. These are specific to each subclass and allow new types of
|
38 |
+
cache to be created.
|
39 |
+
|
40 |
+
Return:
|
41 |
+
A tuple containing the updated key and value states.
|
42 |
+
"""
|
43 |
+
raise NotImplementedError("Make sure to implement `update` in a subclass.")
|
44 |
+
|
45 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
46 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
47 |
+
raise NotImplementedError("Make sure to implement `get_seq_length` in a subclass.")
|
48 |
+
|
49 |
+
def get_max_length(self) -> Optional[int]:
|
50 |
+
"""Returns the maximum sequence length of the cached states, if there is any."""
|
51 |
+
raise NotImplementedError("Make sure to implement `get_max_length` in a subclass.")
|
52 |
+
|
53 |
+
def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
|
54 |
+
"""Given the sequence length of the new inputs, returns the usable length of the cache."""
|
55 |
+
# Cache without size limit -> all cache is usable
|
56 |
+
# Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache
|
57 |
+
# length, we will need to evict part of the cache (and thus not all cache is usable)
|
58 |
+
max_length = self.get_max_length()
|
59 |
+
previous_seq_length = self.get_seq_length(layer_idx)
|
60 |
+
if max_length is not None and previous_seq_length + new_seq_length > max_length:
|
61 |
+
return max_length - new_seq_length
|
62 |
+
return previous_seq_length
|
63 |
+
|
64 |
+
@property
|
65 |
+
def seen_tokens(self):
|
66 |
+
logger.warning_once(
|
67 |
+
"The `seen_tokens` attribute is deprecated and will be removed in v4.41. Use the `cache_position` "
|
68 |
+
"model input instead."
|
69 |
+
)
|
70 |
+
if hasattr(self, "_seen_tokens"):
|
71 |
+
return self._seen_tokens
|
72 |
+
else:
|
73 |
+
return None
|
74 |
+
|
75 |
+
|
76 |
+
class DynamicCache(Cache):
|
77 |
+
"""
|
78 |
+
A cache that grows dynamically as more tokens are generated. This is the default for generative models.
|
79 |
+
|
80 |
+
It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
|
81 |
+
`[batch_size, num_heads, seq_len, head_dim]`.
|
82 |
+
"""
|
83 |
+
|
84 |
+
def __init__(self) -> None:
|
85 |
+
self.key_cache: List[torch.Tensor] = []
|
86 |
+
self.value_cache: List[torch.Tensor] = []
|
87 |
+
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
|
88 |
+
|
89 |
+
def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
|
90 |
+
"""
|
91 |
+
Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
|
92 |
+
sequence length.
|
93 |
+
"""
|
94 |
+
if layer_idx < len(self):
|
95 |
+
return (self.key_cache[layer_idx], self.value_cache[layer_idx])
|
96 |
+
else:
|
97 |
+
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
|
98 |
+
|
99 |
+
def __iter__(self):
|
100 |
+
"""
|
101 |
+
Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
|
102 |
+
keys and values
|
103 |
+
"""
|
104 |
+
for layer_idx in range(len(self)):
|
105 |
+
yield (self.key_cache[layer_idx], self.value_cache[layer_idx])
|
106 |
+
|
107 |
+
def __len__(self):
|
108 |
+
"""
|
109 |
+
Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
|
110 |
+
to the number of layers in the model.
|
111 |
+
"""
|
112 |
+
return len(self.key_cache)
|
113 |
+
|
114 |
+
def update(
|
115 |
+
self,
|
116 |
+
key_states: torch.Tensor,
|
117 |
+
value_states: torch.Tensor,
|
118 |
+
layer_idx: int,
|
119 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
120 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
121 |
+
"""
|
122 |
+
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
123 |
+
|
124 |
+
Parameters:
|
125 |
+
key_states (`torch.Tensor`):
|
126 |
+
The new key states to cache.
|
127 |
+
value_states (`torch.Tensor`):
|
128 |
+
The new value states to cache.
|
129 |
+
layer_idx (`int`):
|
130 |
+
The index of the layer to cache the states for.
|
131 |
+
cache_kwargs (`Dict[str, Any]`, `optional`):
|
132 |
+
Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
|
133 |
+
|
134 |
+
Return:
|
135 |
+
A tuple containing the updated key and value states.
|
136 |
+
"""
|
137 |
+
# Update the number of seen tokens
|
138 |
+
if layer_idx == 0:
|
139 |
+
self._seen_tokens += key_states.shape[-2]
|
140 |
+
|
141 |
+
# Update the cache
|
142 |
+
if len(self.key_cache) <= layer_idx:
|
143 |
+
self.key_cache.append(key_states)
|
144 |
+
self.value_cache.append(value_states)
|
145 |
+
else:
|
146 |
+
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
|
147 |
+
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
|
148 |
+
|
149 |
+
return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
150 |
+
|
151 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
152 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
153 |
+
if len(self.key_cache) <= layer_idx:
|
154 |
+
return 0
|
155 |
+
return self.key_cache[layer_idx].shape[-2]
|
156 |
+
|
157 |
+
def get_max_length(self) -> Optional[int]:
|
158 |
+
"""Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
|
159 |
+
return None
|
160 |
+
|
161 |
+
def reorder_cache(self, beam_idx: torch.LongTensor):
|
162 |
+
"""Reorders the cache for beam search, given the selected beam indices."""
|
163 |
+
for layer_idx in range(len(self.key_cache)):
|
164 |
+
device = self.key_cache[layer_idx].device
|
165 |
+
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
|
166 |
+
device = self.value_cache[layer_idx].device
|
167 |
+
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
|
168 |
+
|
169 |
+
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
|
170 |
+
"""Converts the `DynamicCache` instance into the its equivalent in the legacy cache format."""
|
171 |
+
legacy_cache = ()
|
172 |
+
for layer_idx in range(len(self)):
|
173 |
+
legacy_cache += ((self.key_cache[layer_idx], self.value_cache[layer_idx]),)
|
174 |
+
return legacy_cache
|
175 |
+
|
176 |
+
@classmethod
|
177 |
+
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
|
178 |
+
"""Converts a cache in the legacy cache format into an equivalent `DynamicCache`."""
|
179 |
+
cache = cls()
|
180 |
+
if past_key_values is not None:
|
181 |
+
for layer_idx in range(len(past_key_values)):
|
182 |
+
key_states, value_states = past_key_values[layer_idx]
|
183 |
+
cache.update(key_states, value_states, layer_idx)
|
184 |
+
return cache
|
185 |
+
|
186 |
+
|
187 |
+
class SinkCache(Cache):
|
188 |
+
"""
|
189 |
+
A cache that as described in the [Attention Sinks paper](https://arxiv.org/abs/2309.17453). It allows the model to
|
190 |
+
generate beyond the length of its context window, without losing fluency in the conversation. As it discards past
|
191 |
+
tokens, the model will lose the ability to generate tokens that depend on the context that was discarded.
|
192 |
+
|
193 |
+
It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
|
194 |
+
`[batch_size, num_heads, seq_len, head_dim]`.
|
195 |
+
|
196 |
+
Parameters:
|
197 |
+
window_length (`int`):
|
198 |
+
The length of the context window.
|
199 |
+
num_sink_tokens (`int`):
|
200 |
+
The number of sink tokens. See the original paper for more information.
|
201 |
+
"""
|
202 |
+
|
203 |
+
def __init__(self, window_length: int, num_sink_tokens: int) -> None:
|
204 |
+
self.key_cache: List[torch.Tensor] = []
|
205 |
+
self.value_cache: List[torch.Tensor] = []
|
206 |
+
self.window_length = window_length
|
207 |
+
self.num_sink_tokens = num_sink_tokens
|
208 |
+
self.cos_sin_cache = {}
|
209 |
+
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
|
210 |
+
|
211 |
+
@staticmethod
|
212 |
+
def _rotate_half(x):
|
213 |
+
x1 = x[..., : x.shape[-1] // 2]
|
214 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
215 |
+
return torch.cat((-x2, x1), dim=-1)
|
216 |
+
|
217 |
+
def _apply_key_rotary_pos_emb(
|
218 |
+
self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
219 |
+
) -> torch.Tensor:
|
220 |
+
rotated_key_states = (key_states * cos) + (self._rotate_half(key_states) * sin)
|
221 |
+
return rotated_key_states
|
222 |
+
|
223 |
+
def _get_rerotation_cos_sin(
|
224 |
+
self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
225 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
226 |
+
if key_states.shape[-2] not in self.cos_sin_cache:
|
227 |
+
# Upcast to float32 temporarily for better accuracy
|
228 |
+
cos = cos.to(torch.float32)
|
229 |
+
sin = sin.to(torch.float32)
|
230 |
+
|
231 |
+
# Compute the cos and sin required for back- and forward-rotating to one position earlier in the sequence
|
232 |
+
original_cos = cos[self.num_sink_tokens + key_states.shape[-2] :]
|
233 |
+
shifted_cos = cos[self.num_sink_tokens : -key_states.shape[-2]]
|
234 |
+
original_sin = sin[self.num_sink_tokens + key_states.shape[-2] :]
|
235 |
+
shifted_sin = sin[self.num_sink_tokens : -key_states.shape[-2]]
|
236 |
+
rerotation_cos = original_cos * shifted_cos + original_sin * shifted_sin
|
237 |
+
rerotation_sin = -original_sin * shifted_cos + original_cos * shifted_sin
|
238 |
+
|
239 |
+
self.cos_sin_cache[key_states.shape[-2]] = (
|
240 |
+
rerotation_cos.to(key_states.dtype).unsqueeze(0),
|
241 |
+
rerotation_sin.to(key_states.dtype).unsqueeze(0),
|
242 |
+
)
|
243 |
+
return self.cos_sin_cache[key_states.shape[-2]]
|
244 |
+
|
245 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
246 |
+
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
247 |
+
# Workaround to make 'key_states.shape[-2] + past_key_value.get_seq_length(self.layer_idx)' <= window_length
|
248 |
+
if len(self.key_cache) <= layer_idx:
|
249 |
+
return 0
|
250 |
+
return self.key_cache[layer_idx].shape[-2]
|
251 |
+
|
252 |
+
def get_max_length(self) -> Optional[int]:
|
253 |
+
"""Returns the maximum sequence length of the cached states."""
|
254 |
+
return self.window_length
|
255 |
+
|
256 |
+
def update(
|
257 |
+
self,
|
258 |
+
key_states: torch.Tensor,
|
259 |
+
value_states: torch.Tensor,
|
260 |
+
layer_idx: int,
|
261 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
262 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
263 |
+
"""
|
264 |
+
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
265 |
+
|
266 |
+
Parameters:
|
267 |
+
key_states (`torch.Tensor`):
|
268 |
+
The new key states to cache.
|
269 |
+
value_states (`torch.Tensor`):
|
270 |
+
The new value states to cache.
|
271 |
+
layer_idx (`int`):
|
272 |
+
The index of the layer to cache the states for.
|
273 |
+
cache_kwargs (`Dict[str, Any]`, `optional`):
|
274 |
+
Additional arguments for the cache subclass. The following arguments can be used in `SinkCache`: `sin`,
|
275 |
+
`cos` and `partial_rotation_size`. These arguments are used with models using RoPE, to recompute the
|
276 |
+
rotation as the tokens are shifted.
|
277 |
+
|
278 |
+
Return:
|
279 |
+
A tuple containing the updated key and value states.
|
280 |
+
"""
|
281 |
+
# Optional kwargs for `SinkCache` -- needed on models using RoPE. `partial_rotation_size` is used on models
|
282 |
+
# with partially rotated position embeddings, like Phi or Persimmon.
|
283 |
+
sin = cache_kwargs.get("sin")
|
284 |
+
cos = cache_kwargs.get("cos")
|
285 |
+
partial_rotation_size = cache_kwargs.get("partial_rotation_size")
|
286 |
+
using_rope = cos is not None and sin is not None
|
287 |
+
|
288 |
+
# Update the number of seen tokens
|
289 |
+
if layer_idx == 0:
|
290 |
+
self._seen_tokens += key_states.shape[-2]
|
291 |
+
|
292 |
+
# [bsz, num_heads, seq_len, head_dim]
|
293 |
+
if len(self.key_cache) <= layer_idx:
|
294 |
+
# Empty cache
|
295 |
+
self.key_cache.append(key_states)
|
296 |
+
self.value_cache.append(value_states)
|
297 |
+
|
298 |
+
elif key_states.shape[-2] + self.get_seq_length(layer_idx) < self.window_length:
|
299 |
+
# Growing cache
|
300 |
+
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
|
301 |
+
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
|
302 |
+
|
303 |
+
else:
|
304 |
+
# Shifting cache
|
305 |
+
keys_to_keep = self.key_cache[layer_idx][
|
306 |
+
:, :, -self.window_length + self.num_sink_tokens + key_states.shape[-2] :
|
307 |
+
]
|
308 |
+
|
309 |
+
# On RoPE models, we need to recompute the Key rotation as the tokens are shifted
|
310 |
+
if using_rope:
|
311 |
+
rerotation_cos, rerotation_sin = self._get_rerotation_cos_sin(
|
312 |
+
key_states, cos[: self.window_length], sin[: self.window_length]
|
313 |
+
)
|
314 |
+
if partial_rotation_size is not None:
|
315 |
+
keys_to_keep, keys_pass = (
|
316 |
+
keys_to_keep[..., :partial_rotation_size],
|
317 |
+
keys_to_keep[..., partial_rotation_size:],
|
318 |
+
)
|
319 |
+
keys_to_keep = self._apply_key_rotary_pos_emb(keys_to_keep, rerotation_cos, rerotation_sin)
|
320 |
+
if partial_rotation_size is not None:
|
321 |
+
keys_to_keep = torch.cat((keys_to_keep, keys_pass), dim=-1)
|
322 |
+
|
323 |
+
# Concatenate sink tokens, shifted & rotated tokens (if needed), and new tokens
|
324 |
+
sink_keys = self.key_cache[layer_idx][:, :, : self.num_sink_tokens]
|
325 |
+
self.key_cache[layer_idx] = torch.cat([sink_keys, keys_to_keep, key_states], dim=-2)
|
326 |
+
|
327 |
+
sink_values = self.value_cache[layer_idx][:, :, : self.num_sink_tokens]
|
328 |
+
values_to_keep = self.value_cache[layer_idx][
|
329 |
+
:, :, -self.window_length + self.num_sink_tokens + value_states.shape[-2] :
|
330 |
+
]
|
331 |
+
self.value_cache[layer_idx] = torch.cat([sink_values, values_to_keep, value_states], dim=-2)
|
332 |
+
|
333 |
+
return self.key_cache[layer_idx], self.value_cache[layer_idx]
|
334 |
+
|
335 |
+
def reorder_cache(self, beam_idx: torch.LongTensor):
|
336 |
+
"""Reorders the cache for beam search, given the selected beam indices."""
|
337 |
+
for layer_idx in range(len(self.key_cache)):
|
338 |
+
device = self.key_cache[layer_idx].device
|
339 |
+
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
|
340 |
+
device = self.value_cache[layer_idx].device
|
341 |
+
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
|
342 |
+
|
343 |
+
|
344 |
+
class StaticCache(Cache):
|
345 |
+
"""
|
346 |
+
Static Cache class to be used with `torch.compile(model)`.
|
347 |
+
|
348 |
+
Parameters:
|
349 |
+
config (`PretrainedConfig):
|
350 |
+
The configuration file defining the `max_position_embeddings`, `hidden_size` and `num_attention_heads`
|
351 |
+
required to initialize the static cache.
|
352 |
+
max_batch_size (`int`):
|
353 |
+
The maximum batch size with which the model will be used.
|
354 |
+
max_cache_len (`int`):
|
355 |
+
The maximum sequence length with which the model will be used.
|
356 |
+
device (`torch.device`):
|
357 |
+
The device on which the cache should be initialized. Should be the same as the layer.
|
358 |
+
dtype (*optional*, defaults to `torch.float32`):
|
359 |
+
The default `dtype` to use when initializing the layer.
|
360 |
+
"""
|
361 |
+
|
362 |
+
def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device, dtype=None) -> None:
|
363 |
+
super().__init__()
|
364 |
+
self.max_batch_size = max_batch_size
|
365 |
+
self.max_cache_len = config.max_position_embeddings if max_cache_len is None else max_cache_len
|
366 |
+
# Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
|
367 |
+
self.head_dim = (
|
368 |
+
config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
|
369 |
+
)
|
370 |
+
|
371 |
+
self.dtype = dtype if dtype is not None else torch.float32
|
372 |
+
self.num_key_value_heads = (
|
373 |
+
config.num_attention_heads if config.num_key_value_heads is None else config.num_key_value_heads
|
374 |
+
)
|
375 |
+
|
376 |
+
cache_shape = (max_batch_size, self.num_key_value_heads, self.max_cache_len, self.head_dim)
|
377 |
+
self.key_cache: torch.Tensor = torch.zeros(cache_shape, dtype=self.dtype, device=device)
|
378 |
+
self.value_cache: torch.Tensor = torch.zeros(cache_shape, dtype=self.dtype, device=device)
|
379 |
+
|
380 |
+
def update(
|
381 |
+
self,
|
382 |
+
key_states: torch.Tensor,
|
383 |
+
value_states: torch.Tensor,
|
384 |
+
layer_idx: int,
|
385 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
386 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
387 |
+
"""
|
388 |
+
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
|
389 |
+
It is VERY important to index using a tensor, otherwise you introduce a copy to the device.
|
390 |
+
|
391 |
+
Parameters:
|
392 |
+
key_states (`torch.Tensor`):
|
393 |
+
The new key states to cache.
|
394 |
+
value_states (`torch.Tensor`):
|
395 |
+
The new value states to cache.
|
396 |
+
layer_idx (`int`):
|
397 |
+
The index of the layer to cache the states for. Kept for backward compatibility
|
398 |
+
cache_kwargs (`Dict[str, Any]`, `optional`):
|
399 |
+
Additional arguments for the cache subclass. The `StaticCache` just needs the `q_len`
|
400 |
+
to know how much of the cache it should overwrite.
|
401 |
+
|
402 |
+
Return:
|
403 |
+
A tuple containing the updated key and value states.
|
404 |
+
"""
|
405 |
+
new_cache_positions = cache_kwargs.get("cache_position")
|
406 |
+
k_out = self.key_cache
|
407 |
+
v_out = self.value_cache
|
408 |
+
|
409 |
+
k_out[:, :, new_cache_positions] = key_states
|
410 |
+
v_out[:, :, new_cache_positions] = value_states
|
411 |
+
|
412 |
+
return k_out, v_out
|
413 |
+
|
414 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
|
415 |
+
"""Returns the sequence length of the cached states that were seen by the model. `layer_idx` kept for BC"""
|
416 |
+
# Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's
|
417 |
+
# limit the check to the first batch member and head dimension.
|
418 |
+
# TODO: This is error prone, a filled cache may be `0.0`. Let's use a stateless integer instead, after
|
419 |
+
# https://github.com/pytorch/pytorch/issues/120248 is fixed
|
420 |
+
return (self.key_cache[0, 0].any(dim=-1)).sum()
|
421 |
+
|
422 |
+
def get_max_length(self) -> Optional[int]:
|
423 |
+
"""Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
|
424 |
+
return self.max_cache_len
|
425 |
+
|
426 |
+
def reorder_cache(self, beam_idx: torch.LongTensor):
|
427 |
+
"""Reorders the cache for beam search, given the selected beam indices."""
|
428 |
+
device = self.key_cache.device
|
429 |
+
self.key_cache = self.key_cache.index_select(0, beam_idx.to(device))
|
430 |
+
device = self.value_cache.device
|
431 |
+
self.value_cache = self.value_cache.index_select(0, beam_idx.to(device))
|
432 |
+
|
433 |
+
def to_legacy_cache(self):
|
434 |
+
"""Dummy function for BC. We have to keep it because otherwise the call in the forward of models will break it"""
|
435 |
+
return None
|
env-llmeval/lib/python3.10/site-packages/transformers/configuration_utils.py
ADDED
@@ -0,0 +1,1133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" Configuration base class and utilities."""
|
17 |
+
|
18 |
+
|
19 |
+
import copy
|
20 |
+
import json
|
21 |
+
import os
|
22 |
+
import re
|
23 |
+
import warnings
|
24 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
25 |
+
|
26 |
+
from packaging import version
|
27 |
+
|
28 |
+
from . import __version__
|
29 |
+
from .dynamic_module_utils import custom_object_save
|
30 |
+
from .utils import (
|
31 |
+
CONFIG_NAME,
|
32 |
+
PushToHubMixin,
|
33 |
+
add_model_info_to_auto_map,
|
34 |
+
cached_file,
|
35 |
+
copy_func,
|
36 |
+
download_url,
|
37 |
+
extract_commit_hash,
|
38 |
+
is_remote_url,
|
39 |
+
is_torch_available,
|
40 |
+
logging,
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
_re_configuration_file = re.compile(r"config\.(.*)\.json")
|
47 |
+
|
48 |
+
|
49 |
+
class PretrainedConfig(PushToHubMixin):
|
50 |
+
# no-format
|
51 |
+
r"""
|
52 |
+
Base class for all configuration classes. Handles a few parameters common to all models' configurations as well as
|
53 |
+
methods for loading/downloading/saving configurations.
|
54 |
+
|
55 |
+
<Tip>
|
56 |
+
|
57 |
+
A configuration file can be loaded and saved to disk. Loading the configuration file and using this file to
|
58 |
+
initialize a model does **not** load the model weights. It only affects the model's configuration.
|
59 |
+
|
60 |
+
</Tip>
|
61 |
+
|
62 |
+
Class attributes (overridden by derived classes):
|
63 |
+
|
64 |
+
- **model_type** (`str`) -- An identifier for the model type, serialized into the JSON file, and used to recreate
|
65 |
+
the correct object in [`~transformers.AutoConfig`].
|
66 |
+
- **is_composition** (`bool`) -- Whether the config class is composed of multiple sub-configs. In this case the
|
67 |
+
config has to be initialized from two or more configs of type [`~transformers.PretrainedConfig`] like:
|
68 |
+
[`~transformers.EncoderDecoderConfig`] or [`~RagConfig`].
|
69 |
+
- **keys_to_ignore_at_inference** (`List[str]`) -- A list of keys to ignore by default when looking at dictionary
|
70 |
+
outputs of the model during inference.
|
71 |
+
- **attribute_map** (`Dict[str, str]`) -- A dict that maps model specific attribute names to the standardized
|
72 |
+
naming of attributes.
|
73 |
+
|
74 |
+
Common attributes (present in all subclasses):
|
75 |
+
|
76 |
+
- **vocab_size** (`int`) -- The number of tokens in the vocabulary, which is also the first dimension of the
|
77 |
+
embeddings matrix (this attribute may be missing for models that don't have a text modality like ViT).
|
78 |
+
- **hidden_size** (`int`) -- The hidden size of the model.
|
79 |
+
- **num_attention_heads** (`int`) -- The number of attention heads used in the multi-head attention layers of the
|
80 |
+
model.
|
81 |
+
- **num_hidden_layers** (`int`) -- The number of blocks in the model.
|
82 |
+
|
83 |
+
Arg:
|
84 |
+
name_or_path (`str`, *optional*, defaults to `""`):
|
85 |
+
Store the string that was passed to [`PreTrainedModel.from_pretrained`] or
|
86 |
+
[`TFPreTrainedModel.from_pretrained`] as `pretrained_model_name_or_path` if the configuration was created
|
87 |
+
with such a method.
|
88 |
+
output_hidden_states (`bool`, *optional*, defaults to `False`):
|
89 |
+
Whether or not the model should return all hidden-states.
|
90 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
91 |
+
Whether or not the model should returns all attentions.
|
92 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
93 |
+
Whether or not the model should return a [`~transformers.utils.ModelOutput`] instead of a plain tuple.
|
94 |
+
is_encoder_decoder (`bool`, *optional*, defaults to `False`):
|
95 |
+
Whether the model is used as an encoder/decoder or not.
|
96 |
+
is_decoder (`bool`, *optional*, defaults to `False`):
|
97 |
+
Whether the model is used as decoder or not (in which case it's used as an encoder).
|
98 |
+
cross_attention_hidden_size** (`bool`, *optional*):
|
99 |
+
The hidden size of the cross-attention layer in case the model is used as a decoder in an encoder-decoder
|
100 |
+
setting and the cross-attention hidden dimension differs from `self.config.hidden_size`.
|
101 |
+
add_cross_attention (`bool`, *optional*, defaults to `False`):
|
102 |
+
Whether cross-attention layers should be added to the model. Note, this option is only relevant for models
|
103 |
+
that can be used as decoder models within the [`EncoderDecoderModel`] class, which consists of all models
|
104 |
+
in `AUTO_MODELS_FOR_CAUSAL_LM`.
|
105 |
+
tie_encoder_decoder (`bool`, *optional*, defaults to `False`):
|
106 |
+
Whether all encoder weights should be tied to their equivalent decoder weights. This requires the encoder
|
107 |
+
and decoder model to have the exact same parameter names.
|
108 |
+
prune_heads (`Dict[int, List[int]]`, *optional*, defaults to `{}`):
|
109 |
+
Pruned heads of the model. The keys are the selected layer indices and the associated values, the list of
|
110 |
+
heads to prune in said layer.
|
111 |
+
|
112 |
+
For instance `{1: [0, 2], 2: [2, 3]}` will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2.
|
113 |
+
chunk_size_feed_forward (`int`, *optional*, defaults to `0`):
|
114 |
+
The chunk size of all feed forward layers in the residual attention blocks. A chunk size of `0` means that
|
115 |
+
the feed forward layer is not chunked. A chunk size of n means that the feed forward layer processes `n` <
|
116 |
+
sequence_length embeddings at a time. For more information on feed forward chunking, see [How does Feed
|
117 |
+
Forward Chunking work?](../glossary.html#feed-forward-chunking).
|
118 |
+
|
119 |
+
> Parameters for sequence generation
|
120 |
+
|
121 |
+
max_length (`int`, *optional*, defaults to 20):
|
122 |
+
Maximum length that will be used by default in the `generate` method of the model.
|
123 |
+
min_length (`int`, *optional*, defaults to 0):
|
124 |
+
Minimum length that will be used by default in the `generate` method of the model.
|
125 |
+
do_sample (`bool`, *optional*, defaults to `False`):
|
126 |
+
Flag that will be used by default in the `generate` method of the model. Whether or not to use sampling ;
|
127 |
+
use greedy decoding otherwise.
|
128 |
+
early_stopping (`bool`, *optional*, defaults to `False`):
|
129 |
+
Flag that will be used by default in the `generate` method of the model. Whether to stop the beam search
|
130 |
+
when at least `num_beams` sentences are finished per batch or not.
|
131 |
+
num_beams (`int`, *optional*, defaults to 1):
|
132 |
+
Number of beams for beam search that will be used by default in the `generate` method of the model. 1 means
|
133 |
+
no beam search.
|
134 |
+
num_beam_groups (`int`, *optional*, defaults to 1):
|
135 |
+
Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams
|
136 |
+
that will be used by default in the `generate` method of the model. 1 means no group beam search.
|
137 |
+
diversity_penalty (`float`, *optional*, defaults to 0.0):
|
138 |
+
Value to control diversity for group beam search. that will be used by default in the `generate` method of
|
139 |
+
the model. 0 means no diversity penalty. The higher the penalty, the more diverse are the outputs.
|
140 |
+
temperature (`float`, *optional*, defaults to 1.0):
|
141 |
+
The value used to module the next token probabilities that will be used by default in the `generate` method
|
142 |
+
of the model. Must be strictly positive.
|
143 |
+
top_k (`int`, *optional*, defaults to 50):
|
144 |
+
Number of highest probability vocabulary tokens to keep for top-k-filtering that will be used by default in
|
145 |
+
the `generate` method of the model.
|
146 |
+
top_p (`float`, *optional*, defaults to 1):
|
147 |
+
Value that will be used by default in the `generate` method of the model for `top_p`. If set to float < 1,
|
148 |
+
only the most probable tokens with probabilities that add up to `top_p` or higher are kept for generation.
|
149 |
+
typical_p (`float`, *optional*, defaults to 1):
|
150 |
+
Local typicality measures how similar the conditional probability of predicting a target token next is to
|
151 |
+
the expected conditional probability of predicting a random token next, given the partial text already
|
152 |
+
generated. If set to float < 1, the smallest set of the most locally typical tokens with probabilities that
|
153 |
+
add up to `typical_p` or higher are kept for generation. See [this
|
154 |
+
paper](https://arxiv.org/pdf/2202.00666.pdf) for more details.
|
155 |
+
repetition_penalty (`float`, *optional*, defaults to 1):
|
156 |
+
Parameter for repetition penalty that will be used by default in the `generate` method of the model. 1.0
|
157 |
+
means no penalty.
|
158 |
+
length_penalty (`float`, *optional*, defaults to 1):
|
159 |
+
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to
|
160 |
+
the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log
|
161 |
+
likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while
|
162 |
+
`length_penalty` < 0.0 encourages shorter sequences.
|
163 |
+
no_repeat_ngram_size (`int`, *optional*, defaults to 0) -- Value that will be used by default in the
|
164 |
+
`generate` method of the model for `no_repeat_ngram_size`. If set to int > 0, all ngrams of that size can
|
165 |
+
only occur once.
|
166 |
+
encoder_no_repeat_ngram_size (`int`, *optional*, defaults to 0) -- Value that will be used by
|
167 |
+
default in the `generate` method of the model for `encoder_no_repeat_ngram_size`. If set to int > 0, all
|
168 |
+
ngrams of that size that occur in the `encoder_input_ids` cannot occur in the `decoder_input_ids`.
|
169 |
+
bad_words_ids (`List[int]`, *optional*):
|
170 |
+
List of token ids that are not allowed to be generated that will be used by default in the `generate`
|
171 |
+
method of the model. In order to get the tokens of the words that should not appear in the generated text,
|
172 |
+
use `tokenizer.encode(bad_word, add_prefix_space=True)`.
|
173 |
+
num_return_sequences (`int`, *optional*, defaults to 1):
|
174 |
+
Number of independently computed returned sequences for each element in the batch that will be used by
|
175 |
+
default in the `generate` method of the model.
|
176 |
+
output_scores (`bool`, *optional*, defaults to `False`):
|
177 |
+
Whether the model should return the logits when used for generation.
|
178 |
+
return_dict_in_generate (`bool`, *optional*, defaults to `False`):
|
179 |
+
Whether the model should return a [`~transformers.utils.ModelOutput`] instead of a `torch.LongTensor`.
|
180 |
+
forced_bos_token_id (`int`, *optional*):
|
181 |
+
The id of the token to force as the first generated token after the `decoder_start_token_id`. Useful for
|
182 |
+
multilingual models like [mBART](../model_doc/mbart) where the first generated token needs to be the target
|
183 |
+
language token.
|
184 |
+
forced_eos_token_id (`int`, *optional*):
|
185 |
+
The id of the token to force as the last generated token when `max_length` is reached.
|
186 |
+
remove_invalid_values (`bool`, *optional*):
|
187 |
+
Whether to remove possible _nan_ and _inf_ outputs of the model to prevent the generation method to crash.
|
188 |
+
Note that using `remove_invalid_values` can slow down generation.
|
189 |
+
|
190 |
+
> Parameters for fine-tuning tasks
|
191 |
+
|
192 |
+
architectures (`List[str]`, *optional*):
|
193 |
+
Model architectures that can be used with the model pretrained weights.
|
194 |
+
finetuning_task (`str`, *optional*):
|
195 |
+
Name of the task used to fine-tune the model. This can be used when converting from an original (TensorFlow
|
196 |
+
or PyTorch) checkpoint.
|
197 |
+
id2label (`Dict[int, str]`, *optional*):
|
198 |
+
A map from index (for instance prediction index, or target index) to label.
|
199 |
+
label2id (`Dict[str, int]`, *optional*): A map from label to index for the model.
|
200 |
+
num_labels (`int`, *optional*):
|
201 |
+
Number of labels to use in the last layer added to the model, typically for a classification task.
|
202 |
+
task_specific_params (`Dict[str, Any]`, *optional*):
|
203 |
+
Additional keyword arguments to store for the current task.
|
204 |
+
problem_type (`str`, *optional*):
|
205 |
+
Problem type for `XxxForSequenceClassification` models. Can be one of `"regression"`,
|
206 |
+
`"single_label_classification"` or `"multi_label_classification"`.
|
207 |
+
|
208 |
+
> Parameters linked to the tokenizer
|
209 |
+
|
210 |
+
tokenizer_class (`str`, *optional*):
|
211 |
+
The name of the associated tokenizer class to use (if none is set, will use the tokenizer associated to the
|
212 |
+
model by default).
|
213 |
+
prefix (`str`, *optional*):
|
214 |
+
A specific prompt that should be added at the beginning of each text before calling the model.
|
215 |
+
bos_token_id (`int`, *optional*): The id of the _beginning-of-stream_ token.
|
216 |
+
pad_token_id (`int`, *optional*): The id of the _padding_ token.
|
217 |
+
eos_token_id (`int`, *optional*): The id of the _end-of-stream_ token.
|
218 |
+
decoder_start_token_id (`int`, *optional*):
|
219 |
+
If an encoder-decoder model starts decoding with a different token than _bos_, the id of that token.
|
220 |
+
sep_token_id (`int`, *optional*): The id of the _separation_ token.
|
221 |
+
|
222 |
+
> PyTorch specific parameters
|
223 |
+
|
224 |
+
torchscript (`bool`, *optional*, defaults to `False`):
|
225 |
+
Whether or not the model should be used with Torchscript.
|
226 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
|
227 |
+
Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
|
228 |
+
model has a output word embedding layer.
|
229 |
+
torch_dtype (`str`, *optional*):
|
230 |
+
The `dtype` of the weights. This attribute can be used to initialize the model to a non-default `dtype`
|
231 |
+
(which is normally `float32`) and thus allow for optimal storage allocation. For example, if the saved
|
232 |
+
model is `float16`, ideally we want to load it back using the minimal amount of memory needed to load
|
233 |
+
`float16` weights. Since the config object is stored in plain text, this attribute contains just the
|
234 |
+
floating type string without the `torch.` prefix. For example, for `torch.float16` ``torch_dtype` is the
|
235 |
+
`"float16"` string.
|
236 |
+
|
237 |
+
This attribute is currently not being used during model loading time, but this may change in the future
|
238 |
+
versions. But we can already start preparing for the future by saving the dtype with save_pretrained.
|
239 |
+
|
240 |
+
> TensorFlow specific parameters
|
241 |
+
|
242 |
+
use_bfloat16 (`bool`, *optional*, defaults to `False`):
|
243 |
+
Whether or not the model should use BFloat16 scalars (only used by some TensorFlow models).
|
244 |
+
tf_legacy_loss (`bool`, *optional*, defaults to `False`):
|
245 |
+
Whether the model should use legacy TensorFlow losses. Legacy losses have variable output shapes and may
|
246 |
+
not be XLA-compatible. This option is here for backward compatibility and will be removed in Transformers
|
247 |
+
v5.
|
248 |
+
"""
|
249 |
+
|
250 |
+
model_type: str = ""
|
251 |
+
is_composition: bool = False
|
252 |
+
attribute_map: Dict[str, str] = {}
|
253 |
+
_auto_class: Optional[str] = None
|
254 |
+
|
255 |
+
def __setattr__(self, key, value):
|
256 |
+
if key in super().__getattribute__("attribute_map"):
|
257 |
+
key = super().__getattribute__("attribute_map")[key]
|
258 |
+
super().__setattr__(key, value)
|
259 |
+
|
260 |
+
def __getattribute__(self, key):
|
261 |
+
if key != "attribute_map" and key in super().__getattribute__("attribute_map"):
|
262 |
+
key = super().__getattribute__("attribute_map")[key]
|
263 |
+
return super().__getattribute__(key)
|
264 |
+
|
265 |
+
def __init__(self, **kwargs):
|
266 |
+
# Attributes with defaults
|
267 |
+
self.return_dict = kwargs.pop("return_dict", True)
|
268 |
+
self.output_hidden_states = kwargs.pop("output_hidden_states", False)
|
269 |
+
self.output_attentions = kwargs.pop("output_attentions", False)
|
270 |
+
self.torchscript = kwargs.pop("torchscript", False) # Only used by PyTorch models
|
271 |
+
self.torch_dtype = kwargs.pop("torch_dtype", None) # Only used by PyTorch models
|
272 |
+
self.use_bfloat16 = kwargs.pop("use_bfloat16", False)
|
273 |
+
self.tf_legacy_loss = kwargs.pop("tf_legacy_loss", False) # Only used by TensorFlow models
|
274 |
+
self.pruned_heads = kwargs.pop("pruned_heads", {})
|
275 |
+
self.tie_word_embeddings = kwargs.pop(
|
276 |
+
"tie_word_embeddings", True
|
277 |
+
) # Whether input and output word embeddings should be tied for all MLM, LM and Seq2Seq models.
|
278 |
+
self.chunk_size_feed_forward = kwargs.pop("chunk_size_feed_forward", 0)
|
279 |
+
|
280 |
+
# Is decoder is used in encoder-decoder models to differentiate encoder from decoder
|
281 |
+
self.is_encoder_decoder = kwargs.pop("is_encoder_decoder", False)
|
282 |
+
self.is_decoder = kwargs.pop("is_decoder", False)
|
283 |
+
self.cross_attention_hidden_size = kwargs.pop("cross_attention_hidden_size", None)
|
284 |
+
self.add_cross_attention = kwargs.pop("add_cross_attention", False)
|
285 |
+
self.tie_encoder_decoder = kwargs.pop("tie_encoder_decoder", False)
|
286 |
+
|
287 |
+
# Retrocompatibility: Parameters for sequence generation. While we will keep the ability to load these
|
288 |
+
# parameters, saving them will be deprecated. In a distant future, we won't need to load them.
|
289 |
+
for parameter_name, default_value in self._get_generation_defaults().items():
|
290 |
+
setattr(self, parameter_name, kwargs.pop(parameter_name, default_value))
|
291 |
+
|
292 |
+
# Fine-tuning task arguments
|
293 |
+
self.architectures = kwargs.pop("architectures", None)
|
294 |
+
self.finetuning_task = kwargs.pop("finetuning_task", None)
|
295 |
+
self.id2label = kwargs.pop("id2label", None)
|
296 |
+
self.label2id = kwargs.pop("label2id", None)
|
297 |
+
if self.label2id is not None and not isinstance(self.label2id, dict):
|
298 |
+
raise ValueError("Argument label2id should be a dictionary.")
|
299 |
+
if self.id2label is not None:
|
300 |
+
if not isinstance(self.id2label, dict):
|
301 |
+
raise ValueError("Argument id2label should be a dictionary.")
|
302 |
+
num_labels = kwargs.pop("num_labels", None)
|
303 |
+
if num_labels is not None and len(self.id2label) != num_labels:
|
304 |
+
logger.warning(
|
305 |
+
f"You passed along `num_labels={num_labels}` with an incompatible id to label map: "
|
306 |
+
f"{self.id2label}. The number of labels wil be overwritten to {self.num_labels}."
|
307 |
+
)
|
308 |
+
self.id2label = {int(key): value for key, value in self.id2label.items()}
|
309 |
+
# Keys are always strings in JSON so convert ids to int here.
|
310 |
+
else:
|
311 |
+
self.num_labels = kwargs.pop("num_labels", 2)
|
312 |
+
|
313 |
+
if self.torch_dtype is not None and isinstance(self.torch_dtype, str):
|
314 |
+
# we will start using self.torch_dtype in v5, but to be consistent with
|
315 |
+
# from_pretrained's torch_dtype arg convert it to an actual torch.dtype object
|
316 |
+
if is_torch_available():
|
317 |
+
import torch
|
318 |
+
|
319 |
+
self.torch_dtype = getattr(torch, self.torch_dtype)
|
320 |
+
|
321 |
+
# Tokenizer arguments TODO: eventually tokenizer and models should share the same config
|
322 |
+
self.tokenizer_class = kwargs.pop("tokenizer_class", None)
|
323 |
+
self.prefix = kwargs.pop("prefix", None)
|
324 |
+
self.bos_token_id = kwargs.pop("bos_token_id", None)
|
325 |
+
self.pad_token_id = kwargs.pop("pad_token_id", None)
|
326 |
+
self.eos_token_id = kwargs.pop("eos_token_id", None)
|
327 |
+
self.sep_token_id = kwargs.pop("sep_token_id", None)
|
328 |
+
|
329 |
+
self.decoder_start_token_id = kwargs.pop("decoder_start_token_id", None)
|
330 |
+
|
331 |
+
# task specific arguments
|
332 |
+
self.task_specific_params = kwargs.pop("task_specific_params", None)
|
333 |
+
|
334 |
+
# regression / multi-label classification
|
335 |
+
self.problem_type = kwargs.pop("problem_type", None)
|
336 |
+
allowed_problem_types = ("regression", "single_label_classification", "multi_label_classification")
|
337 |
+
if self.problem_type is not None and self.problem_type not in allowed_problem_types:
|
338 |
+
raise ValueError(
|
339 |
+
f"The config parameter `problem_type` was not understood: received {self.problem_type} "
|
340 |
+
"but only 'regression', 'single_label_classification' and 'multi_label_classification' are valid."
|
341 |
+
)
|
342 |
+
|
343 |
+
# TPU arguments
|
344 |
+
if kwargs.pop("xla_device", None) is not None:
|
345 |
+
logger.warning(
|
346 |
+
"The `xla_device` argument has been deprecated in v4.4.0 of Transformers. It is ignored and you can "
|
347 |
+
"safely remove it from your `config.json` file."
|
348 |
+
)
|
349 |
+
|
350 |
+
# Name or path to the pretrained checkpoint
|
351 |
+
self._name_or_path = str(kwargs.pop("name_or_path", ""))
|
352 |
+
# Config hash
|
353 |
+
self._commit_hash = kwargs.pop("_commit_hash", None)
|
354 |
+
|
355 |
+
# Attention implementation to use, if relevant.
|
356 |
+
self._attn_implementation_internal = kwargs.pop("attn_implementation", None)
|
357 |
+
|
358 |
+
# Drop the transformers version info
|
359 |
+
self.transformers_version = kwargs.pop("transformers_version", None)
|
360 |
+
|
361 |
+
# Deal with gradient checkpointing
|
362 |
+
if kwargs.get("gradient_checkpointing", False):
|
363 |
+
warnings.warn(
|
364 |
+
"Passing `gradient_checkpointing` to a config initialization is deprecated and will be removed in v5 "
|
365 |
+
"Transformers. Using `model.gradient_checkpointing_enable()` instead, or if you are using the "
|
366 |
+
"`Trainer` API, pass `gradient_checkpointing=True` in your `TrainingArguments`."
|
367 |
+
)
|
368 |
+
|
369 |
+
# Additional attributes without default values
|
370 |
+
for key, value in kwargs.items():
|
371 |
+
try:
|
372 |
+
setattr(self, key, value)
|
373 |
+
except AttributeError as err:
|
374 |
+
logger.error(f"Can't set {key} with value {value} for {self}")
|
375 |
+
raise err
|
376 |
+
|
377 |
+
@property
|
378 |
+
def name_or_path(self) -> str:
|
379 |
+
return getattr(self, "_name_or_path", None)
|
380 |
+
|
381 |
+
@name_or_path.setter
|
382 |
+
def name_or_path(self, value):
|
383 |
+
self._name_or_path = str(value) # Make sure that name_or_path is a string (for JSON encoding)
|
384 |
+
|
385 |
+
@property
|
386 |
+
def use_return_dict(self) -> bool:
|
387 |
+
"""
|
388 |
+
`bool`: Whether or not return [`~utils.ModelOutput`] instead of tuples.
|
389 |
+
"""
|
390 |
+
# If torchscript is set, force `return_dict=False` to avoid jit errors
|
391 |
+
return self.return_dict and not self.torchscript
|
392 |
+
|
393 |
+
@property
|
394 |
+
def num_labels(self) -> int:
|
395 |
+
"""
|
396 |
+
`int`: The number of labels for classification models.
|
397 |
+
"""
|
398 |
+
return len(self.id2label)
|
399 |
+
|
400 |
+
@num_labels.setter
|
401 |
+
def num_labels(self, num_labels: int):
|
402 |
+
if not hasattr(self, "id2label") or self.id2label is None or len(self.id2label) != num_labels:
|
403 |
+
self.id2label = {i: f"LABEL_{i}" for i in range(num_labels)}
|
404 |
+
self.label2id = dict(zip(self.id2label.values(), self.id2label.keys()))
|
405 |
+
|
406 |
+
@property
|
407 |
+
def _attn_implementation(self):
|
408 |
+
# This property is made private for now (as it cannot be changed and a PreTrainedModel.use_attn_implementation method needs to be implemented.)
|
409 |
+
if hasattr(self, "_attn_implementation_internal"):
|
410 |
+
if self._attn_implementation_internal is None:
|
411 |
+
# `config.attn_implementation` should never be None, for backward compatibility.
|
412 |
+
return "eager"
|
413 |
+
else:
|
414 |
+
return self._attn_implementation_internal
|
415 |
+
else:
|
416 |
+
return "eager"
|
417 |
+
|
418 |
+
@_attn_implementation.setter
|
419 |
+
def _attn_implementation(self, value):
|
420 |
+
self._attn_implementation_internal = value
|
421 |
+
|
422 |
+
def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
|
423 |
+
"""
|
424 |
+
Save a configuration object to the directory `save_directory`, so that it can be re-loaded using the
|
425 |
+
[`~PretrainedConfig.from_pretrained`] class method.
|
426 |
+
|
427 |
+
Args:
|
428 |
+
save_directory (`str` or `os.PathLike`):
|
429 |
+
Directory where the configuration JSON file will be saved (will be created if it does not exist).
|
430 |
+
push_to_hub (`bool`, *optional*, defaults to `False`):
|
431 |
+
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
|
432 |
+
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
|
433 |
+
namespace).
|
434 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
435 |
+
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
436 |
+
"""
|
437 |
+
self._set_token_in_kwargs(kwargs)
|
438 |
+
|
439 |
+
if os.path.isfile(save_directory):
|
440 |
+
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
|
441 |
+
|
442 |
+
non_default_generation_parameters = {}
|
443 |
+
for parameter_name, default_value in self._get_generation_defaults().items():
|
444 |
+
if hasattr(self, parameter_name) and getattr(self, parameter_name) != default_value:
|
445 |
+
non_default_generation_parameters[parameter_name] = getattr(self, parameter_name)
|
446 |
+
if len(non_default_generation_parameters) > 0:
|
447 |
+
logger.warning(
|
448 |
+
"Some non-default generation parameters are set in the model config. These should go into a "
|
449 |
+
"GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) "
|
450 |
+
"instead. This warning will be raised to an exception in v4.41.\n"
|
451 |
+
f"Non-default generation parameters: {str(non_default_generation_parameters)}"
|
452 |
+
)
|
453 |
+
|
454 |
+
os.makedirs(save_directory, exist_ok=True)
|
455 |
+
|
456 |
+
if push_to_hub:
|
457 |
+
commit_message = kwargs.pop("commit_message", None)
|
458 |
+
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
|
459 |
+
repo_id = self._create_repo(repo_id, **kwargs)
|
460 |
+
files_timestamps = self._get_files_timestamps(save_directory)
|
461 |
+
|
462 |
+
# If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be
|
463 |
+
# loaded from the Hub.
|
464 |
+
if self._auto_class is not None:
|
465 |
+
custom_object_save(self, save_directory, config=self)
|
466 |
+
|
467 |
+
# If we save using the predefined names, we can load using `from_pretrained`
|
468 |
+
output_config_file = os.path.join(save_directory, CONFIG_NAME)
|
469 |
+
|
470 |
+
self.to_json_file(output_config_file, use_diff=True)
|
471 |
+
logger.info(f"Configuration saved in {output_config_file}")
|
472 |
+
|
473 |
+
if push_to_hub:
|
474 |
+
self._upload_modified_files(
|
475 |
+
save_directory,
|
476 |
+
repo_id,
|
477 |
+
files_timestamps,
|
478 |
+
commit_message=commit_message,
|
479 |
+
token=kwargs.get("token"),
|
480 |
+
)
|
481 |
+
|
482 |
+
@staticmethod
|
483 |
+
def _set_token_in_kwargs(kwargs, token=None):
|
484 |
+
"""Temporary method to deal with `token` and `use_auth_token`.
|
485 |
+
|
486 |
+
This method is to avoid apply the same changes in all model config classes that overwrite `from_pretrained`.
|
487 |
+
|
488 |
+
Need to clean up `use_auth_token` in a follow PR.
|
489 |
+
"""
|
490 |
+
# Some model config classes like CLIP define their own `from_pretrained` without the new argument `token` yet.
|
491 |
+
if token is None:
|
492 |
+
token = kwargs.pop("token", None)
|
493 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
494 |
+
|
495 |
+
if use_auth_token is not None:
|
496 |
+
warnings.warn(
|
497 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
498 |
+
FutureWarning,
|
499 |
+
)
|
500 |
+
if token is not None:
|
501 |
+
raise ValueError(
|
502 |
+
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
503 |
+
)
|
504 |
+
token = use_auth_token
|
505 |
+
|
506 |
+
if token is not None:
|
507 |
+
kwargs["token"] = token
|
508 |
+
|
509 |
+
@classmethod
|
510 |
+
def from_pretrained(
|
511 |
+
cls,
|
512 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
513 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
514 |
+
force_download: bool = False,
|
515 |
+
local_files_only: bool = False,
|
516 |
+
token: Optional[Union[str, bool]] = None,
|
517 |
+
revision: str = "main",
|
518 |
+
**kwargs,
|
519 |
+
) -> "PretrainedConfig":
|
520 |
+
r"""
|
521 |
+
Instantiate a [`PretrainedConfig`] (or a derived class) from a pretrained model configuration.
|
522 |
+
|
523 |
+
Args:
|
524 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
525 |
+
This can be either:
|
526 |
+
|
527 |
+
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
|
528 |
+
huggingface.co.
|
529 |
+
- a path to a *directory* containing a configuration file saved using the
|
530 |
+
[`~PretrainedConfig.save_pretrained`] method, e.g., `./my_model_directory/`.
|
531 |
+
- a path or url to a saved configuration JSON *file*, e.g., `./my_model_directory/configuration.json`.
|
532 |
+
cache_dir (`str` or `os.PathLike`, *optional*):
|
533 |
+
Path to a directory in which a downloaded pretrained model configuration should be cached if the
|
534 |
+
standard cache should not be used.
|
535 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
536 |
+
Whether or not to force to (re-)download the configuration files and override the cached versions if
|
537 |
+
they exist.
|
538 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
539 |
+
Whether or not to delete incompletely received file. Attempts to resume the download if such a file
|
540 |
+
exists.
|
541 |
+
proxies (`Dict[str, str]`, *optional*):
|
542 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
543 |
+
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
544 |
+
token (`str` or `bool`, *optional*):
|
545 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
|
546 |
+
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
|
547 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
548 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
549 |
+
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
550 |
+
identifier allowed by git.
|
551 |
+
|
552 |
+
<Tip>
|
553 |
+
|
554 |
+
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
|
555 |
+
|
556 |
+
</Tip>
|
557 |
+
|
558 |
+
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
|
559 |
+
If `False`, then this function returns just the final configuration object.
|
560 |
+
|
561 |
+
If `True`, then this functions returns a `Tuple(config, unused_kwargs)` where *unused_kwargs* is a
|
562 |
+
dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the
|
563 |
+
part of `kwargs` which has not been used to update `config` and is otherwise ignored.
|
564 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
565 |
+
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
|
566 |
+
specify the folder name here.
|
567 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
568 |
+
The values in kwargs of any keys which are configuration attributes will be used to override the loaded
|
569 |
+
values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
|
570 |
+
by the `return_unused_kwargs` keyword parameter.
|
571 |
+
|
572 |
+
Returns:
|
573 |
+
[`PretrainedConfig`]: The configuration object instantiated from this pretrained model.
|
574 |
+
|
575 |
+
Examples:
|
576 |
+
|
577 |
+
```python
|
578 |
+
# We can't instantiate directly the base class *PretrainedConfig* so let's show the examples on a
|
579 |
+
# derived class: BertConfig
|
580 |
+
config = BertConfig.from_pretrained(
|
581 |
+
"google-bert/bert-base-uncased"
|
582 |
+
) # Download configuration from huggingface.co and cache.
|
583 |
+
config = BertConfig.from_pretrained(
|
584 |
+
"./test/saved_model/"
|
585 |
+
) # E.g. config (or model) was saved using *save_pretrained('./test/saved_model/')*
|
586 |
+
config = BertConfig.from_pretrained("./test/saved_model/my_configuration.json")
|
587 |
+
config = BertConfig.from_pretrained("google-bert/bert-base-uncased", output_attentions=True, foo=False)
|
588 |
+
assert config.output_attentions == True
|
589 |
+
config, unused_kwargs = BertConfig.from_pretrained(
|
590 |
+
"google-bert/bert-base-uncased", output_attentions=True, foo=False, return_unused_kwargs=True
|
591 |
+
)
|
592 |
+
assert config.output_attentions == True
|
593 |
+
assert unused_kwargs == {"foo": False}
|
594 |
+
```"""
|
595 |
+
kwargs["cache_dir"] = cache_dir
|
596 |
+
kwargs["force_download"] = force_download
|
597 |
+
kwargs["local_files_only"] = local_files_only
|
598 |
+
kwargs["revision"] = revision
|
599 |
+
|
600 |
+
cls._set_token_in_kwargs(kwargs, token)
|
601 |
+
|
602 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
603 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
604 |
+
logger.warning(
|
605 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
606 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
607 |
+
)
|
608 |
+
|
609 |
+
return cls.from_dict(config_dict, **kwargs)
|
610 |
+
|
611 |
+
@classmethod
|
612 |
+
def get_config_dict(
|
613 |
+
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
|
614 |
+
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
615 |
+
"""
|
616 |
+
From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a
|
617 |
+
[`PretrainedConfig`] using `from_dict`.
|
618 |
+
|
619 |
+
Parameters:
|
620 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
621 |
+
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.
|
622 |
+
|
623 |
+
Returns:
|
624 |
+
`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the configuration object.
|
625 |
+
|
626 |
+
"""
|
627 |
+
cls._set_token_in_kwargs(kwargs)
|
628 |
+
|
629 |
+
original_kwargs = copy.deepcopy(kwargs)
|
630 |
+
# Get config dict associated with the base config file
|
631 |
+
config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs)
|
632 |
+
if "_commit_hash" in config_dict:
|
633 |
+
original_kwargs["_commit_hash"] = config_dict["_commit_hash"]
|
634 |
+
|
635 |
+
# That config file may point us toward another config file to use.
|
636 |
+
if "configuration_files" in config_dict:
|
637 |
+
configuration_file = get_configuration_file(config_dict["configuration_files"])
|
638 |
+
config_dict, kwargs = cls._get_config_dict(
|
639 |
+
pretrained_model_name_or_path, _configuration_file=configuration_file, **original_kwargs
|
640 |
+
)
|
641 |
+
|
642 |
+
return config_dict, kwargs
|
643 |
+
|
644 |
+
@classmethod
|
645 |
+
def _get_config_dict(
|
646 |
+
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
|
647 |
+
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
648 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
649 |
+
force_download = kwargs.pop("force_download", False)
|
650 |
+
resume_download = kwargs.pop("resume_download", False)
|
651 |
+
proxies = kwargs.pop("proxies", None)
|
652 |
+
token = kwargs.pop("token", None)
|
653 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
654 |
+
revision = kwargs.pop("revision", None)
|
655 |
+
trust_remote_code = kwargs.pop("trust_remote_code", None)
|
656 |
+
subfolder = kwargs.pop("subfolder", "")
|
657 |
+
from_pipeline = kwargs.pop("_from_pipeline", None)
|
658 |
+
from_auto_class = kwargs.pop("_from_auto", False)
|
659 |
+
commit_hash = kwargs.pop("_commit_hash", None)
|
660 |
+
|
661 |
+
if trust_remote_code is True:
|
662 |
+
logger.warning(
|
663 |
+
"The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is"
|
664 |
+
" ignored."
|
665 |
+
)
|
666 |
+
|
667 |
+
user_agent = {"file_type": "config", "from_auto_class": from_auto_class}
|
668 |
+
if from_pipeline is not None:
|
669 |
+
user_agent["using_pipeline"] = from_pipeline
|
670 |
+
|
671 |
+
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
672 |
+
|
673 |
+
is_local = os.path.isdir(pretrained_model_name_or_path)
|
674 |
+
if os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)):
|
675 |
+
# Special case when pretrained_model_name_or_path is a local file
|
676 |
+
resolved_config_file = pretrained_model_name_or_path
|
677 |
+
is_local = True
|
678 |
+
elif is_remote_url(pretrained_model_name_or_path):
|
679 |
+
configuration_file = pretrained_model_name_or_path
|
680 |
+
resolved_config_file = download_url(pretrained_model_name_or_path)
|
681 |
+
else:
|
682 |
+
configuration_file = kwargs.pop("_configuration_file", CONFIG_NAME)
|
683 |
+
|
684 |
+
try:
|
685 |
+
# Load from local folder or from cache or download from model Hub and cache
|
686 |
+
resolved_config_file = cached_file(
|
687 |
+
pretrained_model_name_or_path,
|
688 |
+
configuration_file,
|
689 |
+
cache_dir=cache_dir,
|
690 |
+
force_download=force_download,
|
691 |
+
proxies=proxies,
|
692 |
+
resume_download=resume_download,
|
693 |
+
local_files_only=local_files_only,
|
694 |
+
token=token,
|
695 |
+
user_agent=user_agent,
|
696 |
+
revision=revision,
|
697 |
+
subfolder=subfolder,
|
698 |
+
_commit_hash=commit_hash,
|
699 |
+
)
|
700 |
+
commit_hash = extract_commit_hash(resolved_config_file, commit_hash)
|
701 |
+
except EnvironmentError:
|
702 |
+
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
|
703 |
+
# the original exception.
|
704 |
+
raise
|
705 |
+
except Exception:
|
706 |
+
# For any other exception, we throw a generic error.
|
707 |
+
raise EnvironmentError(
|
708 |
+
f"Can't load the configuration of '{pretrained_model_name_or_path}'. If you were trying to load it"
|
709 |
+
" from 'https://huggingface.co/models', make sure you don't have a local directory with the same"
|
710 |
+
f" name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory"
|
711 |
+
f" containing a {configuration_file} file"
|
712 |
+
)
|
713 |
+
|
714 |
+
try:
|
715 |
+
# Load config dict
|
716 |
+
config_dict = cls._dict_from_json_file(resolved_config_file)
|
717 |
+
config_dict["_commit_hash"] = commit_hash
|
718 |
+
except (json.JSONDecodeError, UnicodeDecodeError):
|
719 |
+
raise EnvironmentError(
|
720 |
+
f"It looks like the config file at '{resolved_config_file}' is not a valid JSON file."
|
721 |
+
)
|
722 |
+
|
723 |
+
if is_local:
|
724 |
+
logger.info(f"loading configuration file {resolved_config_file}")
|
725 |
+
else:
|
726 |
+
logger.info(f"loading configuration file {configuration_file} from cache at {resolved_config_file}")
|
727 |
+
|
728 |
+
if "auto_map" in config_dict and not is_local:
|
729 |
+
config_dict["auto_map"] = add_model_info_to_auto_map(
|
730 |
+
config_dict["auto_map"], pretrained_model_name_or_path
|
731 |
+
)
|
732 |
+
return config_dict, kwargs
|
733 |
+
|
734 |
+
@classmethod
|
735 |
+
def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PretrainedConfig":
|
736 |
+
"""
|
737 |
+
Instantiates a [`PretrainedConfig`] from a Python dictionary of parameters.
|
738 |
+
|
739 |
+
Args:
|
740 |
+
config_dict (`Dict[str, Any]`):
|
741 |
+
Dictionary that will be used to instantiate the configuration object. Such a dictionary can be
|
742 |
+
retrieved from a pretrained checkpoint by leveraging the [`~PretrainedConfig.get_config_dict`] method.
|
743 |
+
kwargs (`Dict[str, Any]`):
|
744 |
+
Additional parameters from which to initialize the configuration object.
|
745 |
+
|
746 |
+
Returns:
|
747 |
+
[`PretrainedConfig`]: The configuration object instantiated from those parameters.
|
748 |
+
"""
|
749 |
+
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
|
750 |
+
# Those arguments may be passed along for our internal telemetry.
|
751 |
+
# We remove them so they don't appear in `return_unused_kwargs`.
|
752 |
+
kwargs.pop("_from_auto", None)
|
753 |
+
kwargs.pop("_from_pipeline", None)
|
754 |
+
# The commit hash might have been updated in the `config_dict`, we don't want the kwargs to erase that update.
|
755 |
+
if "_commit_hash" in kwargs and "_commit_hash" in config_dict:
|
756 |
+
kwargs["_commit_hash"] = config_dict["_commit_hash"]
|
757 |
+
|
758 |
+
# We remove it from kwargs so that it does not appear in `return_unused_kwargs`.
|
759 |
+
config_dict["attn_implementation"] = kwargs.pop("attn_implementation", None)
|
760 |
+
|
761 |
+
config = cls(**config_dict)
|
762 |
+
|
763 |
+
if hasattr(config, "pruned_heads"):
|
764 |
+
config.pruned_heads = {int(key): value for key, value in config.pruned_heads.items()}
|
765 |
+
|
766 |
+
# Update config with kwargs if needed
|
767 |
+
if "num_labels" in kwargs and "id2label" in kwargs:
|
768 |
+
num_labels = kwargs["num_labels"]
|
769 |
+
id2label = kwargs["id2label"] if kwargs["id2label"] is not None else []
|
770 |
+
if len(id2label) != num_labels:
|
771 |
+
raise ValueError(
|
772 |
+
f"You passed along `num_labels={num_labels }` with an incompatible id to label map: "
|
773 |
+
f"{kwargs['id2label']}. Since those arguments are inconsistent with each other, you should remove "
|
774 |
+
"one of them."
|
775 |
+
)
|
776 |
+
to_remove = []
|
777 |
+
for key, value in kwargs.items():
|
778 |
+
if hasattr(config, key):
|
779 |
+
current_attr = getattr(config, key)
|
780 |
+
# To authorize passing a custom subconfig as kwarg in models that have nested configs.
|
781 |
+
if isinstance(current_attr, PretrainedConfig) and isinstance(value, dict):
|
782 |
+
value = current_attr.__class__(**value)
|
783 |
+
setattr(config, key, value)
|
784 |
+
if key != "torch_dtype":
|
785 |
+
to_remove.append(key)
|
786 |
+
for key in to_remove:
|
787 |
+
kwargs.pop(key, None)
|
788 |
+
|
789 |
+
logger.info(f"Model config {config}")
|
790 |
+
if return_unused_kwargs:
|
791 |
+
return config, kwargs
|
792 |
+
else:
|
793 |
+
return config
|
794 |
+
|
795 |
+
@classmethod
|
796 |
+
def from_json_file(cls, json_file: Union[str, os.PathLike]) -> "PretrainedConfig":
|
797 |
+
"""
|
798 |
+
Instantiates a [`PretrainedConfig`] from the path to a JSON file of parameters.
|
799 |
+
|
800 |
+
Args:
|
801 |
+
json_file (`str` or `os.PathLike`):
|
802 |
+
Path to the JSON file containing the parameters.
|
803 |
+
|
804 |
+
Returns:
|
805 |
+
[`PretrainedConfig`]: The configuration object instantiated from that JSON file.
|
806 |
+
|
807 |
+
"""
|
808 |
+
config_dict = cls._dict_from_json_file(json_file)
|
809 |
+
return cls(**config_dict)
|
810 |
+
|
811 |
+
@classmethod
|
812 |
+
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
|
813 |
+
with open(json_file, "r", encoding="utf-8") as reader:
|
814 |
+
text = reader.read()
|
815 |
+
return json.loads(text)
|
816 |
+
|
817 |
+
def __eq__(self, other):
|
818 |
+
return isinstance(other, PretrainedConfig) and (self.__dict__ == other.__dict__)
|
819 |
+
|
820 |
+
def __repr__(self):
|
821 |
+
return f"{self.__class__.__name__} {self.to_json_string()}"
|
822 |
+
|
823 |
+
def to_diff_dict(self) -> Dict[str, Any]:
|
824 |
+
"""
|
825 |
+
Removes all attributes from config which correspond to the default config attributes for better readability and
|
826 |
+
serializes to a Python dictionary.
|
827 |
+
|
828 |
+
Returns:
|
829 |
+
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
|
830 |
+
"""
|
831 |
+
config_dict = self.to_dict()
|
832 |
+
|
833 |
+
# get the default config dict
|
834 |
+
default_config_dict = PretrainedConfig().to_dict()
|
835 |
+
|
836 |
+
# get class specific config dict
|
837 |
+
class_config_dict = self.__class__().to_dict() if not self.is_composition else {}
|
838 |
+
|
839 |
+
serializable_config_dict = {}
|
840 |
+
|
841 |
+
# only serialize values that differ from the default config
|
842 |
+
for key, value in config_dict.items():
|
843 |
+
if (
|
844 |
+
isinstance(getattr(self, key, None), PretrainedConfig)
|
845 |
+
and key in class_config_dict
|
846 |
+
and isinstance(class_config_dict[key], dict)
|
847 |
+
):
|
848 |
+
# For nested configs we need to clean the diff recursively
|
849 |
+
diff = recursive_diff_dict(value, class_config_dict[key], config_obj=getattr(self, key, None))
|
850 |
+
if "model_type" in value:
|
851 |
+
# Needs to be set even if it's not in the diff
|
852 |
+
diff["model_type"] = value["model_type"]
|
853 |
+
if len(diff) > 0:
|
854 |
+
serializable_config_dict[key] = diff
|
855 |
+
elif (
|
856 |
+
key not in default_config_dict
|
857 |
+
or key == "transformers_version"
|
858 |
+
or value != default_config_dict[key]
|
859 |
+
or (key in class_config_dict and value != class_config_dict[key])
|
860 |
+
):
|
861 |
+
serializable_config_dict[key] = value
|
862 |
+
|
863 |
+
if hasattr(self, "quantization_config"):
|
864 |
+
serializable_config_dict["quantization_config"] = (
|
865 |
+
self.quantization_config.to_dict()
|
866 |
+
if not isinstance(self.quantization_config, dict)
|
867 |
+
else self.quantization_config
|
868 |
+
)
|
869 |
+
|
870 |
+
# pop the `_pre_quantization_dtype` as torch.dtypes are not serializable.
|
871 |
+
_ = serializable_config_dict.pop("_pre_quantization_dtype", None)
|
872 |
+
|
873 |
+
self.dict_torch_dtype_to_str(serializable_config_dict)
|
874 |
+
|
875 |
+
if "_attn_implementation_internal" in serializable_config_dict:
|
876 |
+
del serializable_config_dict["_attn_implementation_internal"]
|
877 |
+
|
878 |
+
return serializable_config_dict
|
879 |
+
|
880 |
+
def to_dict(self) -> Dict[str, Any]:
|
881 |
+
"""
|
882 |
+
Serializes this instance to a Python dictionary.
|
883 |
+
|
884 |
+
Returns:
|
885 |
+
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
|
886 |
+
"""
|
887 |
+
output = copy.deepcopy(self.__dict__)
|
888 |
+
if hasattr(self.__class__, "model_type"):
|
889 |
+
output["model_type"] = self.__class__.model_type
|
890 |
+
if "_auto_class" in output:
|
891 |
+
del output["_auto_class"]
|
892 |
+
if "_commit_hash" in output:
|
893 |
+
del output["_commit_hash"]
|
894 |
+
if "_attn_implementation_internal" in output:
|
895 |
+
del output["_attn_implementation_internal"]
|
896 |
+
|
897 |
+
# Transformers version when serializing the model
|
898 |
+
output["transformers_version"] = __version__
|
899 |
+
|
900 |
+
for key, value in output.items():
|
901 |
+
# Deal with nested configs like CLIP
|
902 |
+
if isinstance(value, PretrainedConfig):
|
903 |
+
value = value.to_dict()
|
904 |
+
del value["transformers_version"]
|
905 |
+
|
906 |
+
output[key] = value
|
907 |
+
|
908 |
+
if hasattr(self, "quantization_config"):
|
909 |
+
output["quantization_config"] = (
|
910 |
+
self.quantization_config.to_dict()
|
911 |
+
if not isinstance(self.quantization_config, dict)
|
912 |
+
else self.quantization_config
|
913 |
+
)
|
914 |
+
|
915 |
+
# pop the `_pre_quantization_dtype` as torch.dtypes are not serializable.
|
916 |
+
_ = output.pop("_pre_quantization_dtype", None)
|
917 |
+
|
918 |
+
self.dict_torch_dtype_to_str(output)
|
919 |
+
|
920 |
+
return output
|
921 |
+
|
922 |
+
def to_json_string(self, use_diff: bool = True) -> str:
|
923 |
+
"""
|
924 |
+
Serializes this instance to a JSON string.
|
925 |
+
|
926 |
+
Args:
|
927 |
+
use_diff (`bool`, *optional*, defaults to `True`):
|
928 |
+
If set to `True`, only the difference between the config instance and the default `PretrainedConfig()`
|
929 |
+
is serialized to JSON string.
|
930 |
+
|
931 |
+
Returns:
|
932 |
+
`str`: String containing all the attributes that make up this configuration instance in JSON format.
|
933 |
+
"""
|
934 |
+
if use_diff is True:
|
935 |
+
config_dict = self.to_diff_dict()
|
936 |
+
else:
|
937 |
+
config_dict = self.to_dict()
|
938 |
+
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
|
939 |
+
|
940 |
+
def to_json_file(self, json_file_path: Union[str, os.PathLike], use_diff: bool = True):
|
941 |
+
"""
|
942 |
+
Save this instance to a JSON file.
|
943 |
+
|
944 |
+
Args:
|
945 |
+
json_file_path (`str` or `os.PathLike`):
|
946 |
+
Path to the JSON file in which this configuration instance's parameters will be saved.
|
947 |
+
use_diff (`bool`, *optional*, defaults to `True`):
|
948 |
+
If set to `True`, only the difference between the config instance and the default `PretrainedConfig()`
|
949 |
+
is serialized to JSON file.
|
950 |
+
"""
|
951 |
+
with open(json_file_path, "w", encoding="utf-8") as writer:
|
952 |
+
writer.write(self.to_json_string(use_diff=use_diff))
|
953 |
+
|
954 |
+
def update(self, config_dict: Dict[str, Any]):
|
955 |
+
"""
|
956 |
+
Updates attributes of this class with attributes from `config_dict`.
|
957 |
+
|
958 |
+
Args:
|
959 |
+
config_dict (`Dict[str, Any]`): Dictionary of attributes that should be updated for this class.
|
960 |
+
"""
|
961 |
+
for key, value in config_dict.items():
|
962 |
+
setattr(self, key, value)
|
963 |
+
|
964 |
+
def update_from_string(self, update_str: str):
|
965 |
+
"""
|
966 |
+
Updates attributes of this class with attributes from `update_str`.
|
967 |
+
|
968 |
+
The expected format is ints, floats and strings as is, and for booleans use `true` or `false`. For example:
|
969 |
+
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
|
970 |
+
|
971 |
+
The keys to change have to already exist in the config object.
|
972 |
+
|
973 |
+
Args:
|
974 |
+
update_str (`str`): String with attributes that should be updated for this class.
|
975 |
+
|
976 |
+
"""
|
977 |
+
|
978 |
+
d = dict(x.split("=") for x in update_str.split(","))
|
979 |
+
for k, v in d.items():
|
980 |
+
if not hasattr(self, k):
|
981 |
+
raise ValueError(f"key {k} isn't in the original config dict")
|
982 |
+
|
983 |
+
old_v = getattr(self, k)
|
984 |
+
if isinstance(old_v, bool):
|
985 |
+
if v.lower() in ["true", "1", "y", "yes"]:
|
986 |
+
v = True
|
987 |
+
elif v.lower() in ["false", "0", "n", "no"]:
|
988 |
+
v = False
|
989 |
+
else:
|
990 |
+
raise ValueError(f"can't derive true or false from {v} (key {k})")
|
991 |
+
elif isinstance(old_v, int):
|
992 |
+
v = int(v)
|
993 |
+
elif isinstance(old_v, float):
|
994 |
+
v = float(v)
|
995 |
+
elif not isinstance(old_v, str):
|
996 |
+
raise ValueError(
|
997 |
+
f"You can only update int, float, bool or string values in the config, got {v} for key {k}"
|
998 |
+
)
|
999 |
+
|
1000 |
+
setattr(self, k, v)
|
1001 |
+
|
1002 |
+
def dict_torch_dtype_to_str(self, d: Dict[str, Any]) -> None:
|
1003 |
+
"""
|
1004 |
+
Checks whether the passed dictionary and its nested dicts have a *torch_dtype* key and if it's not None,
|
1005 |
+
converts torch.dtype to a string of just the type. For example, `torch.float32` get converted into *"float32"*
|
1006 |
+
string, which can then be stored in the json format.
|
1007 |
+
"""
|
1008 |
+
if d.get("torch_dtype", None) is not None and not isinstance(d["torch_dtype"], str):
|
1009 |
+
d["torch_dtype"] = str(d["torch_dtype"]).split(".")[1]
|
1010 |
+
for value in d.values():
|
1011 |
+
if isinstance(value, dict):
|
1012 |
+
self.dict_torch_dtype_to_str(value)
|
1013 |
+
|
1014 |
+
@classmethod
|
1015 |
+
def register_for_auto_class(cls, auto_class="AutoConfig"):
|
1016 |
+
"""
|
1017 |
+
Register this class with a given auto class. This should only be used for custom configurations as the ones in
|
1018 |
+
the library are already mapped with `AutoConfig`.
|
1019 |
+
|
1020 |
+
<Tip warning={true}>
|
1021 |
+
|
1022 |
+
This API is experimental and may have some slight breaking changes in the next releases.
|
1023 |
+
|
1024 |
+
</Tip>
|
1025 |
+
|
1026 |
+
Args:
|
1027 |
+
auto_class (`str` or `type`, *optional*, defaults to `"AutoConfig"`):
|
1028 |
+
The auto class to register this new configuration with.
|
1029 |
+
"""
|
1030 |
+
if not isinstance(auto_class, str):
|
1031 |
+
auto_class = auto_class.__name__
|
1032 |
+
|
1033 |
+
import transformers.models.auto as auto_module
|
1034 |
+
|
1035 |
+
if not hasattr(auto_module, auto_class):
|
1036 |
+
raise ValueError(f"{auto_class} is not a valid auto class.")
|
1037 |
+
|
1038 |
+
cls._auto_class = auto_class
|
1039 |
+
|
1040 |
+
@staticmethod
|
1041 |
+
def _get_generation_defaults() -> Dict[str, Any]:
|
1042 |
+
return {
|
1043 |
+
"max_length": 20,
|
1044 |
+
"min_length": 0,
|
1045 |
+
"do_sample": False,
|
1046 |
+
"early_stopping": False,
|
1047 |
+
"num_beams": 1,
|
1048 |
+
"num_beam_groups": 1,
|
1049 |
+
"diversity_penalty": 0.0,
|
1050 |
+
"temperature": 1.0,
|
1051 |
+
"top_k": 50,
|
1052 |
+
"top_p": 1.0,
|
1053 |
+
"typical_p": 1.0,
|
1054 |
+
"repetition_penalty": 1.0,
|
1055 |
+
"length_penalty": 1.0,
|
1056 |
+
"no_repeat_ngram_size": 0,
|
1057 |
+
"encoder_no_repeat_ngram_size": 0,
|
1058 |
+
"bad_words_ids": None,
|
1059 |
+
"num_return_sequences": 1,
|
1060 |
+
"output_scores": False,
|
1061 |
+
"return_dict_in_generate": False,
|
1062 |
+
"forced_bos_token_id": None,
|
1063 |
+
"forced_eos_token_id": None,
|
1064 |
+
"remove_invalid_values": False,
|
1065 |
+
"exponential_decay_length_penalty": None,
|
1066 |
+
"suppress_tokens": None,
|
1067 |
+
"begin_suppress_tokens": None,
|
1068 |
+
}
|
1069 |
+
|
1070 |
+
def _has_non_default_generation_parameters(self) -> bool:
|
1071 |
+
"""
|
1072 |
+
Whether or not this instance holds non-default generation parameters.
|
1073 |
+
"""
|
1074 |
+
for parameter_name, default_value in self._get_generation_defaults().items():
|
1075 |
+
if hasattr(self, parameter_name) and getattr(self, parameter_name) != default_value:
|
1076 |
+
return True
|
1077 |
+
return False
|
1078 |
+
|
1079 |
+
|
1080 |
+
def get_configuration_file(configuration_files: List[str]) -> str:
|
1081 |
+
"""
|
1082 |
+
Get the configuration file to use for this version of transformers.
|
1083 |
+
|
1084 |
+
Args:
|
1085 |
+
configuration_files (`List[str]`): The list of available configuration files.
|
1086 |
+
|
1087 |
+
Returns:
|
1088 |
+
`str`: The configuration file to use.
|
1089 |
+
"""
|
1090 |
+
configuration_files_map = {}
|
1091 |
+
for file_name in configuration_files:
|
1092 |
+
search = _re_configuration_file.search(file_name)
|
1093 |
+
if search is not None:
|
1094 |
+
v = search.groups()[0]
|
1095 |
+
configuration_files_map[v] = file_name
|
1096 |
+
available_versions = sorted(configuration_files_map.keys())
|
1097 |
+
|
1098 |
+
# Defaults to FULL_CONFIGURATION_FILE and then try to look at some newer versions.
|
1099 |
+
configuration_file = CONFIG_NAME
|
1100 |
+
transformers_version = version.parse(__version__)
|
1101 |
+
for v in available_versions:
|
1102 |
+
if version.parse(v) <= transformers_version:
|
1103 |
+
configuration_file = configuration_files_map[v]
|
1104 |
+
else:
|
1105 |
+
# No point going further since the versions are sorted.
|
1106 |
+
break
|
1107 |
+
|
1108 |
+
return configuration_file
|
1109 |
+
|
1110 |
+
|
1111 |
+
def recursive_diff_dict(dict_a, dict_b, config_obj=None):
|
1112 |
+
"""
|
1113 |
+
Helper function to recursively take the diff between two nested dictionaries. The resulting diff only contains the
|
1114 |
+
values from `dict_a` that are different from values in `dict_b`.
|
1115 |
+
"""
|
1116 |
+
diff = {}
|
1117 |
+
default = config_obj.__class__().to_dict() if config_obj is not None else {}
|
1118 |
+
for key, value in dict_a.items():
|
1119 |
+
obj_value = getattr(config_obj, str(key), None)
|
1120 |
+
if isinstance(obj_value, PretrainedConfig) and key in dict_b and isinstance(dict_b[key], dict):
|
1121 |
+
diff_value = recursive_diff_dict(value, dict_b[key], config_obj=obj_value)
|
1122 |
+
if len(diff_value) > 0:
|
1123 |
+
diff[key] = diff_value
|
1124 |
+
elif key not in dict_b or value != dict_b[key] or key not in default or value != default[key]:
|
1125 |
+
diff[key] = value
|
1126 |
+
return diff
|
1127 |
+
|
1128 |
+
|
1129 |
+
PretrainedConfig.push_to_hub = copy_func(PretrainedConfig.push_to_hub)
|
1130 |
+
if PretrainedConfig.push_to_hub.__doc__ is not None:
|
1131 |
+
PretrainedConfig.push_to_hub.__doc__ = PretrainedConfig.push_to_hub.__doc__.format(
|
1132 |
+
object="config", object_class="AutoConfig", object_files="configuration file"
|
1133 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/convert_pytorch_checkpoint_to_tf2.py
ADDED
@@ -0,0 +1,498 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Convert pytorch checkpoints to TensorFlow"""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import os
|
20 |
+
|
21 |
+
from . import (
|
22 |
+
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
23 |
+
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
|
24 |
+
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
25 |
+
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
26 |
+
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
27 |
+
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
28 |
+
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
29 |
+
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
30 |
+
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
31 |
+
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
32 |
+
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
33 |
+
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
34 |
+
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
|
35 |
+
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
36 |
+
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
37 |
+
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
38 |
+
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
39 |
+
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
40 |
+
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
41 |
+
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
42 |
+
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
43 |
+
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
44 |
+
AlbertConfig,
|
45 |
+
BartConfig,
|
46 |
+
BertConfig,
|
47 |
+
CamembertConfig,
|
48 |
+
CTRLConfig,
|
49 |
+
DistilBertConfig,
|
50 |
+
DPRConfig,
|
51 |
+
ElectraConfig,
|
52 |
+
FlaubertConfig,
|
53 |
+
GPT2Config,
|
54 |
+
LayoutLMConfig,
|
55 |
+
LxmertConfig,
|
56 |
+
OpenAIGPTConfig,
|
57 |
+
RobertaConfig,
|
58 |
+
T5Config,
|
59 |
+
TFAlbertForPreTraining,
|
60 |
+
TFBartForConditionalGeneration,
|
61 |
+
TFBartForSequenceClassification,
|
62 |
+
TFBertForPreTraining,
|
63 |
+
TFBertForQuestionAnswering,
|
64 |
+
TFBertForSequenceClassification,
|
65 |
+
TFCamembertForMaskedLM,
|
66 |
+
TFCTRLLMHeadModel,
|
67 |
+
TFDistilBertForMaskedLM,
|
68 |
+
TFDistilBertForQuestionAnswering,
|
69 |
+
TFDPRContextEncoder,
|
70 |
+
TFDPRQuestionEncoder,
|
71 |
+
TFDPRReader,
|
72 |
+
TFElectraForPreTraining,
|
73 |
+
TFFlaubertWithLMHeadModel,
|
74 |
+
TFGPT2LMHeadModel,
|
75 |
+
TFLayoutLMForMaskedLM,
|
76 |
+
TFLxmertForPreTraining,
|
77 |
+
TFLxmertVisualFeatureEncoder,
|
78 |
+
TFOpenAIGPTLMHeadModel,
|
79 |
+
TFRobertaForCausalLM,
|
80 |
+
TFRobertaForMaskedLM,
|
81 |
+
TFRobertaForSequenceClassification,
|
82 |
+
TFT5ForConditionalGeneration,
|
83 |
+
TFTransfoXLLMHeadModel,
|
84 |
+
TFWav2Vec2Model,
|
85 |
+
TFXLMRobertaForMaskedLM,
|
86 |
+
TFXLMWithLMHeadModel,
|
87 |
+
TFXLNetLMHeadModel,
|
88 |
+
TransfoXLConfig,
|
89 |
+
Wav2Vec2Config,
|
90 |
+
Wav2Vec2Model,
|
91 |
+
XLMConfig,
|
92 |
+
XLMRobertaConfig,
|
93 |
+
XLNetConfig,
|
94 |
+
is_torch_available,
|
95 |
+
load_pytorch_checkpoint_in_tf2_model,
|
96 |
+
)
|
97 |
+
from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging
|
98 |
+
|
99 |
+
|
100 |
+
if is_torch_available():
|
101 |
+
import numpy as np
|
102 |
+
import torch
|
103 |
+
|
104 |
+
from . import (
|
105 |
+
AlbertForPreTraining,
|
106 |
+
BartForConditionalGeneration,
|
107 |
+
BertForPreTraining,
|
108 |
+
BertForQuestionAnswering,
|
109 |
+
BertForSequenceClassification,
|
110 |
+
CamembertForMaskedLM,
|
111 |
+
CTRLLMHeadModel,
|
112 |
+
DistilBertForMaskedLM,
|
113 |
+
DistilBertForQuestionAnswering,
|
114 |
+
DPRContextEncoder,
|
115 |
+
DPRQuestionEncoder,
|
116 |
+
DPRReader,
|
117 |
+
ElectraForPreTraining,
|
118 |
+
FlaubertWithLMHeadModel,
|
119 |
+
GPT2LMHeadModel,
|
120 |
+
LayoutLMForMaskedLM,
|
121 |
+
LxmertForPreTraining,
|
122 |
+
LxmertVisualFeatureEncoder,
|
123 |
+
OpenAIGPTLMHeadModel,
|
124 |
+
RobertaForMaskedLM,
|
125 |
+
RobertaForSequenceClassification,
|
126 |
+
T5ForConditionalGeneration,
|
127 |
+
TransfoXLLMHeadModel,
|
128 |
+
XLMRobertaForMaskedLM,
|
129 |
+
XLMWithLMHeadModel,
|
130 |
+
XLNetLMHeadModel,
|
131 |
+
)
|
132 |
+
from .pytorch_utils import is_torch_greater_or_equal_than_1_13
|
133 |
+
|
134 |
+
|
135 |
+
logging.set_verbosity_info()
|
136 |
+
|
137 |
+
MODEL_CLASSES = {
|
138 |
+
"bart": (
|
139 |
+
BartConfig,
|
140 |
+
TFBartForConditionalGeneration,
|
141 |
+
TFBartForSequenceClassification,
|
142 |
+
BartForConditionalGeneration,
|
143 |
+
BART_PRETRAINED_MODEL_ARCHIVE_LIST,
|
144 |
+
),
|
145 |
+
"bert": (
|
146 |
+
BertConfig,
|
147 |
+
TFBertForPreTraining,
|
148 |
+
BertForPreTraining,
|
149 |
+
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
150 |
+
),
|
151 |
+
"google-bert/bert-large-uncased-whole-word-masking-finetuned-squad": (
|
152 |
+
BertConfig,
|
153 |
+
TFBertForQuestionAnswering,
|
154 |
+
BertForQuestionAnswering,
|
155 |
+
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
156 |
+
),
|
157 |
+
"google-bert/bert-large-cased-whole-word-masking-finetuned-squad": (
|
158 |
+
BertConfig,
|
159 |
+
TFBertForQuestionAnswering,
|
160 |
+
BertForQuestionAnswering,
|
161 |
+
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
162 |
+
),
|
163 |
+
"google-bert/bert-base-cased-finetuned-mrpc": (
|
164 |
+
BertConfig,
|
165 |
+
TFBertForSequenceClassification,
|
166 |
+
BertForSequenceClassification,
|
167 |
+
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
168 |
+
),
|
169 |
+
"dpr": (
|
170 |
+
DPRConfig,
|
171 |
+
TFDPRQuestionEncoder,
|
172 |
+
TFDPRContextEncoder,
|
173 |
+
TFDPRReader,
|
174 |
+
DPRQuestionEncoder,
|
175 |
+
DPRContextEncoder,
|
176 |
+
DPRReader,
|
177 |
+
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
178 |
+
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
179 |
+
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
180 |
+
),
|
181 |
+
"openai-community/gpt2": (
|
182 |
+
GPT2Config,
|
183 |
+
TFGPT2LMHeadModel,
|
184 |
+
GPT2LMHeadModel,
|
185 |
+
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
186 |
+
),
|
187 |
+
"xlnet": (
|
188 |
+
XLNetConfig,
|
189 |
+
TFXLNetLMHeadModel,
|
190 |
+
XLNetLMHeadModel,
|
191 |
+
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
192 |
+
),
|
193 |
+
"xlm": (
|
194 |
+
XLMConfig,
|
195 |
+
TFXLMWithLMHeadModel,
|
196 |
+
XLMWithLMHeadModel,
|
197 |
+
XLM_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
198 |
+
),
|
199 |
+
"xlm-roberta": (
|
200 |
+
XLMRobertaConfig,
|
201 |
+
TFXLMRobertaForMaskedLM,
|
202 |
+
XLMRobertaForMaskedLM,
|
203 |
+
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
204 |
+
),
|
205 |
+
"transfo-xl": (
|
206 |
+
TransfoXLConfig,
|
207 |
+
TFTransfoXLLMHeadModel,
|
208 |
+
TransfoXLLMHeadModel,
|
209 |
+
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
210 |
+
),
|
211 |
+
"openai-community/openai-gpt": (
|
212 |
+
OpenAIGPTConfig,
|
213 |
+
TFOpenAIGPTLMHeadModel,
|
214 |
+
OpenAIGPTLMHeadModel,
|
215 |
+
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
216 |
+
),
|
217 |
+
"roberta": (
|
218 |
+
RobertaConfig,
|
219 |
+
TFRobertaForCausalLM,
|
220 |
+
TFRobertaForMaskedLM,
|
221 |
+
RobertaForMaskedLM,
|
222 |
+
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
223 |
+
),
|
224 |
+
"layoutlm": (
|
225 |
+
LayoutLMConfig,
|
226 |
+
TFLayoutLMForMaskedLM,
|
227 |
+
LayoutLMForMaskedLM,
|
228 |
+
LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
|
229 |
+
),
|
230 |
+
"FacebookAI/roberta-large-mnli": (
|
231 |
+
RobertaConfig,
|
232 |
+
TFRobertaForSequenceClassification,
|
233 |
+
RobertaForSequenceClassification,
|
234 |
+
ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
235 |
+
),
|
236 |
+
"camembert": (
|
237 |
+
CamembertConfig,
|
238 |
+
TFCamembertForMaskedLM,
|
239 |
+
CamembertForMaskedLM,
|
240 |
+
CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
241 |
+
),
|
242 |
+
"flaubert": (
|
243 |
+
FlaubertConfig,
|
244 |
+
TFFlaubertWithLMHeadModel,
|
245 |
+
FlaubertWithLMHeadModel,
|
246 |
+
FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
247 |
+
),
|
248 |
+
"distilbert": (
|
249 |
+
DistilBertConfig,
|
250 |
+
TFDistilBertForMaskedLM,
|
251 |
+
DistilBertForMaskedLM,
|
252 |
+
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
253 |
+
),
|
254 |
+
"distilbert-base-distilled-squad": (
|
255 |
+
DistilBertConfig,
|
256 |
+
TFDistilBertForQuestionAnswering,
|
257 |
+
DistilBertForQuestionAnswering,
|
258 |
+
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
259 |
+
),
|
260 |
+
"lxmert": (
|
261 |
+
LxmertConfig,
|
262 |
+
TFLxmertForPreTraining,
|
263 |
+
LxmertForPreTraining,
|
264 |
+
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
265 |
+
),
|
266 |
+
"lxmert-visual-feature-encoder": (
|
267 |
+
LxmertConfig,
|
268 |
+
TFLxmertVisualFeatureEncoder,
|
269 |
+
LxmertVisualFeatureEncoder,
|
270 |
+
LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
271 |
+
),
|
272 |
+
"Salesforce/ctrl": (
|
273 |
+
CTRLConfig,
|
274 |
+
TFCTRLLMHeadModel,
|
275 |
+
CTRLLMHeadModel,
|
276 |
+
CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
277 |
+
),
|
278 |
+
"albert": (
|
279 |
+
AlbertConfig,
|
280 |
+
TFAlbertForPreTraining,
|
281 |
+
AlbertForPreTraining,
|
282 |
+
ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
283 |
+
),
|
284 |
+
"t5": (
|
285 |
+
T5Config,
|
286 |
+
TFT5ForConditionalGeneration,
|
287 |
+
T5ForConditionalGeneration,
|
288 |
+
T5_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
289 |
+
),
|
290 |
+
"electra": (
|
291 |
+
ElectraConfig,
|
292 |
+
TFElectraForPreTraining,
|
293 |
+
ElectraForPreTraining,
|
294 |
+
ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
295 |
+
),
|
296 |
+
"wav2vec2": (
|
297 |
+
Wav2Vec2Config,
|
298 |
+
TFWav2Vec2Model,
|
299 |
+
Wav2Vec2Model,
|
300 |
+
WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
301 |
+
),
|
302 |
+
}
|
303 |
+
|
304 |
+
|
305 |
+
def convert_pt_checkpoint_to_tf(
|
306 |
+
model_type, pytorch_checkpoint_path, config_file, tf_dump_path, compare_with_pt_model=False, use_cached_models=True
|
307 |
+
):
|
308 |
+
if model_type not in MODEL_CLASSES:
|
309 |
+
raise ValueError(f"Unrecognized model type, should be one of {list(MODEL_CLASSES.keys())}.")
|
310 |
+
|
311 |
+
config_class, model_class, pt_model_class, aws_config_map = MODEL_CLASSES[model_type]
|
312 |
+
|
313 |
+
# Initialise TF model
|
314 |
+
if config_file in aws_config_map:
|
315 |
+
config_file = cached_file(config_file, CONFIG_NAME, force_download=not use_cached_models)
|
316 |
+
config = config_class.from_json_file(config_file)
|
317 |
+
config.output_hidden_states = True
|
318 |
+
config.output_attentions = True
|
319 |
+
print(f"Building TensorFlow model from configuration: {config}")
|
320 |
+
tf_model = model_class(config)
|
321 |
+
|
322 |
+
# Load weights from tf checkpoint
|
323 |
+
if pytorch_checkpoint_path in aws_config_map.keys():
|
324 |
+
pytorch_checkpoint_path = cached_file(
|
325 |
+
pytorch_checkpoint_path, WEIGHTS_NAME, force_download=not use_cached_models
|
326 |
+
)
|
327 |
+
# Load PyTorch checkpoint in tf2 model:
|
328 |
+
tf_model = load_pytorch_checkpoint_in_tf2_model(tf_model, pytorch_checkpoint_path)
|
329 |
+
|
330 |
+
if compare_with_pt_model:
|
331 |
+
tfo = tf_model(tf_model.dummy_inputs, training=False) # build the network
|
332 |
+
|
333 |
+
weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {}
|
334 |
+
state_dict = torch.load(
|
335 |
+
pytorch_checkpoint_path,
|
336 |
+
map_location="cpu",
|
337 |
+
**weights_only_kwarg,
|
338 |
+
)
|
339 |
+
pt_model = pt_model_class.from_pretrained(
|
340 |
+
pretrained_model_name_or_path=None, config=config, state_dict=state_dict
|
341 |
+
)
|
342 |
+
|
343 |
+
with torch.no_grad():
|
344 |
+
pto = pt_model(**pt_model.dummy_inputs)
|
345 |
+
|
346 |
+
np_pt = pto[0].numpy()
|
347 |
+
np_tf = tfo[0].numpy()
|
348 |
+
diff = np.amax(np.abs(np_pt - np_tf))
|
349 |
+
print(f"Max absolute difference between models outputs {diff}")
|
350 |
+
assert diff <= 2e-2, f"Error, model absolute difference is >2e-2: {diff}"
|
351 |
+
|
352 |
+
# Save pytorch-model
|
353 |
+
print(f"Save TensorFlow model to {tf_dump_path}")
|
354 |
+
tf_model.save_weights(tf_dump_path, save_format="h5")
|
355 |
+
|
356 |
+
|
357 |
+
def convert_all_pt_checkpoints_to_tf(
|
358 |
+
args_model_type,
|
359 |
+
tf_dump_path,
|
360 |
+
model_shortcut_names_or_path=None,
|
361 |
+
config_shortcut_names_or_path=None,
|
362 |
+
compare_with_pt_model=False,
|
363 |
+
use_cached_models=False,
|
364 |
+
remove_cached_files=False,
|
365 |
+
only_convert_finetuned_models=False,
|
366 |
+
):
|
367 |
+
if args_model_type is None:
|
368 |
+
model_types = list(MODEL_CLASSES.keys())
|
369 |
+
else:
|
370 |
+
model_types = [args_model_type]
|
371 |
+
|
372 |
+
for j, model_type in enumerate(model_types, start=1):
|
373 |
+
print("=" * 100)
|
374 |
+
print(f" Converting model type {j}/{len(model_types)}: {model_type}")
|
375 |
+
print("=" * 100)
|
376 |
+
if model_type not in MODEL_CLASSES:
|
377 |
+
raise ValueError(f"Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys())}.")
|
378 |
+
|
379 |
+
config_class, model_class, pt_model_class, aws_model_maps, aws_config_map = MODEL_CLASSES[model_type]
|
380 |
+
|
381 |
+
if model_shortcut_names_or_path is None:
|
382 |
+
model_shortcut_names_or_path = list(aws_model_maps.keys())
|
383 |
+
if config_shortcut_names_or_path is None:
|
384 |
+
config_shortcut_names_or_path = model_shortcut_names_or_path
|
385 |
+
|
386 |
+
for i, (model_shortcut_name, config_shortcut_name) in enumerate(
|
387 |
+
zip(model_shortcut_names_or_path, config_shortcut_names_or_path), start=1
|
388 |
+
):
|
389 |
+
print("-" * 100)
|
390 |
+
if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name:
|
391 |
+
if not only_convert_finetuned_models:
|
392 |
+
print(f" Skipping finetuned checkpoint {model_shortcut_name}")
|
393 |
+
continue
|
394 |
+
model_type = model_shortcut_name
|
395 |
+
elif only_convert_finetuned_models:
|
396 |
+
print(f" Skipping not finetuned checkpoint {model_shortcut_name}")
|
397 |
+
continue
|
398 |
+
print(
|
399 |
+
f" Converting checkpoint {i}/{len(aws_config_map)}: {model_shortcut_name} - model_type {model_type}"
|
400 |
+
)
|
401 |
+
print("-" * 100)
|
402 |
+
|
403 |
+
if config_shortcut_name in aws_config_map:
|
404 |
+
config_file = cached_file(config_shortcut_name, CONFIG_NAME, force_download=not use_cached_models)
|
405 |
+
else:
|
406 |
+
config_file = config_shortcut_name
|
407 |
+
|
408 |
+
if model_shortcut_name in aws_model_maps:
|
409 |
+
model_file = cached_file(model_shortcut_name, WEIGHTS_NAME, force_download=not use_cached_models)
|
410 |
+
else:
|
411 |
+
model_file = model_shortcut_name
|
412 |
+
|
413 |
+
if os.path.isfile(model_shortcut_name):
|
414 |
+
model_shortcut_name = "converted_model"
|
415 |
+
|
416 |
+
convert_pt_checkpoint_to_tf(
|
417 |
+
model_type=model_type,
|
418 |
+
pytorch_checkpoint_path=model_file,
|
419 |
+
config_file=config_file,
|
420 |
+
tf_dump_path=os.path.join(tf_dump_path, model_shortcut_name + "-tf_model.h5"),
|
421 |
+
compare_with_pt_model=compare_with_pt_model,
|
422 |
+
)
|
423 |
+
if remove_cached_files:
|
424 |
+
os.remove(config_file)
|
425 |
+
os.remove(model_file)
|
426 |
+
|
427 |
+
|
428 |
+
if __name__ == "__main__":
|
429 |
+
parser = argparse.ArgumentParser()
|
430 |
+
# Required parameters
|
431 |
+
parser.add_argument(
|
432 |
+
"--tf_dump_path", default=None, type=str, required=True, help="Path to the output Tensorflow dump file."
|
433 |
+
)
|
434 |
+
parser.add_argument(
|
435 |
+
"--model_type",
|
436 |
+
default=None,
|
437 |
+
type=str,
|
438 |
+
help=(
|
439 |
+
f"Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and "
|
440 |
+
"convert all the models from AWS."
|
441 |
+
),
|
442 |
+
)
|
443 |
+
parser.add_argument(
|
444 |
+
"--pytorch_checkpoint_path",
|
445 |
+
default=None,
|
446 |
+
type=str,
|
447 |
+
help=(
|
448 |
+
"Path to the PyTorch checkpoint path or shortcut name to download from AWS. "
|
449 |
+
"If not given, will download and convert all the checkpoints from AWS."
|
450 |
+
),
|
451 |
+
)
|
452 |
+
parser.add_argument(
|
453 |
+
"--config_file",
|
454 |
+
default=None,
|
455 |
+
type=str,
|
456 |
+
help=(
|
457 |
+
"The config json file corresponding to the pre-trained model. \n"
|
458 |
+
"This specifies the model architecture. If not given and "
|
459 |
+
"--pytorch_checkpoint_path is not given or is a shortcut name "
|
460 |
+
"use the configuration associated to the shortcut name on the AWS"
|
461 |
+
),
|
462 |
+
)
|
463 |
+
parser.add_argument(
|
464 |
+
"--compare_with_pt_model", action="store_true", help="Compare Tensorflow and PyTorch model predictions."
|
465 |
+
)
|
466 |
+
parser.add_argument(
|
467 |
+
"--use_cached_models",
|
468 |
+
action="store_true",
|
469 |
+
help="Use cached models if possible instead of updating to latest checkpoint versions.",
|
470 |
+
)
|
471 |
+
parser.add_argument(
|
472 |
+
"--remove_cached_files",
|
473 |
+
action="store_true",
|
474 |
+
help="Remove pytorch models after conversion (save memory when converting in batches).",
|
475 |
+
)
|
476 |
+
parser.add_argument("--only_convert_finetuned_models", action="store_true", help="Only convert finetuned models.")
|
477 |
+
args = parser.parse_args()
|
478 |
+
|
479 |
+
# if args.pytorch_checkpoint_path is not None:
|
480 |
+
# convert_pt_checkpoint_to_tf(args.model_type.lower(),
|
481 |
+
# args.pytorch_checkpoint_path,
|
482 |
+
# args.config_file if args.config_file is not None else args.pytorch_checkpoint_path,
|
483 |
+
# args.tf_dump_path,
|
484 |
+
# compare_with_pt_model=args.compare_with_pt_model,
|
485 |
+
# use_cached_models=args.use_cached_models)
|
486 |
+
# else:
|
487 |
+
convert_all_pt_checkpoints_to_tf(
|
488 |
+
args.model_type.lower() if args.model_type is not None else None,
|
489 |
+
args.tf_dump_path,
|
490 |
+
model_shortcut_names_or_path=[args.pytorch_checkpoint_path]
|
491 |
+
if args.pytorch_checkpoint_path is not None
|
492 |
+
else None,
|
493 |
+
config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None,
|
494 |
+
compare_with_pt_model=args.compare_with_pt_model,
|
495 |
+
use_cached_models=args.use_cached_models,
|
496 |
+
remove_cached_files=args.remove_cached_files,
|
497 |
+
only_convert_finetuned_models=args.only_convert_finetuned_models,
|
498 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/convert_slow_tokenizer.py
ADDED
@@ -0,0 +1,1525 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Utilities to convert slow tokenizers in their fast tokenizers counterparts.
|
17 |
+
|
18 |
+
All the conversions are grouped here to gather SentencePiece dependencies outside of the fast tokenizers files and
|
19 |
+
allow to make our dependency on SentencePiece optional.
|
20 |
+
"""
|
21 |
+
|
22 |
+
import warnings
|
23 |
+
from typing import Dict, List, Tuple
|
24 |
+
|
25 |
+
from packaging import version
|
26 |
+
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, processors
|
27 |
+
from tokenizers.models import BPE, Unigram, WordPiece
|
28 |
+
|
29 |
+
from .utils import is_protobuf_available, requires_backends
|
30 |
+
from .utils.import_utils import PROTOBUF_IMPORT_ERROR
|
31 |
+
|
32 |
+
|
33 |
+
def import_protobuf(error_message=""):
|
34 |
+
if is_protobuf_available():
|
35 |
+
import google.protobuf
|
36 |
+
|
37 |
+
if version.parse(google.protobuf.__version__) < version.parse("4.0.0"):
|
38 |
+
from transformers.utils import sentencepiece_model_pb2
|
39 |
+
else:
|
40 |
+
from transformers.utils import sentencepiece_model_pb2_new as sentencepiece_model_pb2
|
41 |
+
return sentencepiece_model_pb2
|
42 |
+
else:
|
43 |
+
raise ImportError(PROTOBUF_IMPORT_ERROR.format(error_message))
|
44 |
+
|
45 |
+
|
46 |
+
class SentencePieceExtractor:
|
47 |
+
"""
|
48 |
+
Extractor implementation for SentencePiece trained models. https://github.com/google/sentencepiece
|
49 |
+
"""
|
50 |
+
|
51 |
+
def __init__(self, model: str):
|
52 |
+
requires_backends(self, "sentencepiece")
|
53 |
+
from sentencepiece import SentencePieceProcessor
|
54 |
+
|
55 |
+
self.sp = SentencePieceProcessor()
|
56 |
+
self.sp.Load(model)
|
57 |
+
|
58 |
+
def extract(self, vocab_scores=None) -> Tuple[Dict[str, int], List[Tuple]]:
|
59 |
+
"""
|
60 |
+
By default will return vocab and merges with respect to their order, by sending `vocab_scores` we're going to
|
61 |
+
order the merges with respect to the piece scores instead.
|
62 |
+
"""
|
63 |
+
sp = self.sp
|
64 |
+
vocab = {sp.id_to_piece(index): index for index in range(sp.GetPieceSize())}
|
65 |
+
|
66 |
+
if vocab_scores is not None:
|
67 |
+
vocab_scores, reverse = dict(vocab_scores), True
|
68 |
+
else:
|
69 |
+
vocab_scores, reverse = vocab, False
|
70 |
+
|
71 |
+
# Merges
|
72 |
+
merges = []
|
73 |
+
for merge, piece_score in vocab_scores.items():
|
74 |
+
local = []
|
75 |
+
for index in range(1, len(merge)):
|
76 |
+
piece_l, piece_r = merge[:index], merge[index:]
|
77 |
+
if piece_l in vocab and piece_r in vocab:
|
78 |
+
local.append((piece_l, piece_r, piece_score))
|
79 |
+
local = sorted(local, key=lambda x: (vocab[x[0]], vocab[x[1]]))
|
80 |
+
merges.extend(local)
|
81 |
+
|
82 |
+
merges = sorted(merges, key=lambda val: val[2], reverse=reverse)
|
83 |
+
merges = [(val[0], val[1]) for val in merges]
|
84 |
+
return vocab, merges
|
85 |
+
|
86 |
+
|
87 |
+
class GemmaSentencePieceExtractor(SentencePieceExtractor):
|
88 |
+
def extract(self, vocab_scores=None) -> Tuple[Dict[str, int], List[Tuple]]:
|
89 |
+
"""
|
90 |
+
By default will return vocab and merges with respect to their order, by sending `vocab_scores` we're going to
|
91 |
+
order the merges with respect to the piece scores instead.
|
92 |
+
"""
|
93 |
+
sp = self.sp
|
94 |
+
vocab = {sp.id_to_piece(index): index for index in range(sp.GetPieceSize())}
|
95 |
+
|
96 |
+
# there is a missing token in the vocab. We have to do this to support merges
|
97 |
+
# "<0x09>" is the bytefallback for `\t`
|
98 |
+
vocab["\t"] = vocab.pop("<0x09>")
|
99 |
+
|
100 |
+
if vocab_scores is not None:
|
101 |
+
vocab_scores, reverse = dict(vocab_scores), True
|
102 |
+
else:
|
103 |
+
vocab_scores, reverse = vocab, False
|
104 |
+
|
105 |
+
# Merges
|
106 |
+
merges = []
|
107 |
+
for merge, piece_score in vocab_scores.items():
|
108 |
+
local = []
|
109 |
+
for index in range(1, len(merge)):
|
110 |
+
piece_l, piece_r = merge[:index], merge[index:]
|
111 |
+
if piece_l in vocab and piece_r in vocab:
|
112 |
+
local.append((piece_l, piece_r, piece_score))
|
113 |
+
local = sorted(local, key=lambda x: (vocab[x[0]], vocab[x[1]]))
|
114 |
+
merges.extend(local)
|
115 |
+
|
116 |
+
merges = sorted(merges, key=lambda val: val[2], reverse=reverse)
|
117 |
+
merges = [(val[0], val[1]) for val in merges]
|
118 |
+
return vocab, merges
|
119 |
+
|
120 |
+
|
121 |
+
def check_number_comma(piece: str) -> bool:
|
122 |
+
return len(piece) < 2 or piece[-1] != "," or not piece[-2].isdigit()
|
123 |
+
|
124 |
+
|
125 |
+
class Converter:
|
126 |
+
def __init__(self, original_tokenizer):
|
127 |
+
self.original_tokenizer = original_tokenizer
|
128 |
+
|
129 |
+
def converted(self) -> Tokenizer:
|
130 |
+
raise NotImplementedError()
|
131 |
+
|
132 |
+
|
133 |
+
class BertConverter(Converter):
|
134 |
+
def converted(self) -> Tokenizer:
|
135 |
+
vocab = self.original_tokenizer.vocab
|
136 |
+
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))
|
137 |
+
|
138 |
+
tokenize_chinese_chars = False
|
139 |
+
strip_accents = False
|
140 |
+
do_lower_case = False
|
141 |
+
if hasattr(self.original_tokenizer, "basic_tokenizer"):
|
142 |
+
tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars
|
143 |
+
strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
|
144 |
+
do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case
|
145 |
+
|
146 |
+
tokenizer.normalizer = normalizers.BertNormalizer(
|
147 |
+
clean_text=True,
|
148 |
+
handle_chinese_chars=tokenize_chinese_chars,
|
149 |
+
strip_accents=strip_accents,
|
150 |
+
lowercase=do_lower_case,
|
151 |
+
)
|
152 |
+
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
|
153 |
+
|
154 |
+
cls = str(self.original_tokenizer.cls_token)
|
155 |
+
sep = str(self.original_tokenizer.sep_token)
|
156 |
+
cls_token_id = self.original_tokenizer.cls_token_id
|
157 |
+
sep_token_id = self.original_tokenizer.sep_token_id
|
158 |
+
|
159 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
160 |
+
single=f"{cls}:0 $A:0 {sep}:0",
|
161 |
+
pair=f"{cls}:0 $A:0 {sep}:0 $B:1 {sep}:1",
|
162 |
+
special_tokens=[
|
163 |
+
(cls, cls_token_id),
|
164 |
+
(sep, sep_token_id),
|
165 |
+
],
|
166 |
+
)
|
167 |
+
tokenizer.decoder = decoders.WordPiece(prefix="##")
|
168 |
+
|
169 |
+
return tokenizer
|
170 |
+
|
171 |
+
|
172 |
+
class SplinterConverter(Converter):
|
173 |
+
def converted(self) -> Tokenizer:
|
174 |
+
vocab = self.original_tokenizer.vocab
|
175 |
+
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))
|
176 |
+
|
177 |
+
tokenize_chinese_chars = False
|
178 |
+
strip_accents = False
|
179 |
+
do_lower_case = False
|
180 |
+
if hasattr(self.original_tokenizer, "basic_tokenizer"):
|
181 |
+
tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars
|
182 |
+
strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
|
183 |
+
do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case
|
184 |
+
|
185 |
+
tokenizer.normalizer = normalizers.BertNormalizer(
|
186 |
+
clean_text=True,
|
187 |
+
handle_chinese_chars=tokenize_chinese_chars,
|
188 |
+
strip_accents=strip_accents,
|
189 |
+
lowercase=do_lower_case,
|
190 |
+
)
|
191 |
+
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
|
192 |
+
|
193 |
+
cls = str(self.original_tokenizer.cls_token)
|
194 |
+
sep = str(self.original_tokenizer.sep_token)
|
195 |
+
question = str(self.original_tokenizer.question_token)
|
196 |
+
dot = "."
|
197 |
+
cls_token_id = self.original_tokenizer.cls_token_id
|
198 |
+
sep_token_id = self.original_tokenizer.sep_token_id
|
199 |
+
question_token_id = self.original_tokenizer.question_token_id
|
200 |
+
dot_token_id = self.original_tokenizer.convert_tokens_to_ids(".")
|
201 |
+
|
202 |
+
if self.original_tokenizer.padding_side == "right":
|
203 |
+
pair = f"{cls}:0 $A:0 {question} {dot} {sep}:0 $B:1 {sep}:1"
|
204 |
+
else:
|
205 |
+
pair = f"{cls}:0 $A:0 {sep}:0 $B:1 {question} {dot} {sep}:1"
|
206 |
+
|
207 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
208 |
+
single=f"{cls}:0 $A:0 {sep}:0",
|
209 |
+
pair=pair,
|
210 |
+
special_tokens=[
|
211 |
+
(cls, cls_token_id),
|
212 |
+
(sep, sep_token_id),
|
213 |
+
(question, question_token_id),
|
214 |
+
(dot, dot_token_id),
|
215 |
+
],
|
216 |
+
)
|
217 |
+
tokenizer.decoder = decoders.WordPiece(prefix="##")
|
218 |
+
|
219 |
+
return tokenizer
|
220 |
+
|
221 |
+
|
222 |
+
class FunnelConverter(Converter):
|
223 |
+
def converted(self) -> Tokenizer:
|
224 |
+
vocab = self.original_tokenizer.vocab
|
225 |
+
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))
|
226 |
+
|
227 |
+
tokenize_chinese_chars = False
|
228 |
+
strip_accents = False
|
229 |
+
do_lower_case = False
|
230 |
+
if hasattr(self.original_tokenizer, "basic_tokenizer"):
|
231 |
+
tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars
|
232 |
+
strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
|
233 |
+
do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case
|
234 |
+
|
235 |
+
tokenizer.normalizer = normalizers.BertNormalizer(
|
236 |
+
clean_text=True,
|
237 |
+
handle_chinese_chars=tokenize_chinese_chars,
|
238 |
+
strip_accents=strip_accents,
|
239 |
+
lowercase=do_lower_case,
|
240 |
+
)
|
241 |
+
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
|
242 |
+
|
243 |
+
cls = str(self.original_tokenizer.cls_token)
|
244 |
+
sep = str(self.original_tokenizer.sep_token)
|
245 |
+
cls_token_id = self.original_tokenizer.cls_token_id
|
246 |
+
sep_token_id = self.original_tokenizer.sep_token_id
|
247 |
+
|
248 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
249 |
+
single=f"{cls}:2 $A:0 {sep}:0", # token_type_id is 2 for Funnel transformer
|
250 |
+
pair=f"{cls}:2 $A:0 {sep}:0 $B:1 {sep}:1",
|
251 |
+
special_tokens=[
|
252 |
+
(cls, cls_token_id),
|
253 |
+
(sep, sep_token_id),
|
254 |
+
],
|
255 |
+
)
|
256 |
+
tokenizer.decoder = decoders.WordPiece(prefix="##")
|
257 |
+
|
258 |
+
return tokenizer
|
259 |
+
|
260 |
+
|
261 |
+
class MPNetConverter(Converter):
|
262 |
+
def converted(self) -> Tokenizer:
|
263 |
+
vocab = self.original_tokenizer.vocab
|
264 |
+
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))
|
265 |
+
|
266 |
+
tokenize_chinese_chars = False
|
267 |
+
strip_accents = False
|
268 |
+
do_lower_case = False
|
269 |
+
if hasattr(self.original_tokenizer, "basic_tokenizer"):
|
270 |
+
tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars
|
271 |
+
strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
|
272 |
+
do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case
|
273 |
+
|
274 |
+
tokenizer.normalizer = normalizers.BertNormalizer(
|
275 |
+
clean_text=True,
|
276 |
+
handle_chinese_chars=tokenize_chinese_chars,
|
277 |
+
strip_accents=strip_accents,
|
278 |
+
lowercase=do_lower_case,
|
279 |
+
)
|
280 |
+
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
|
281 |
+
|
282 |
+
cls = str(self.original_tokenizer.cls_token)
|
283 |
+
sep = str(self.original_tokenizer.sep_token)
|
284 |
+
cls_token_id = self.original_tokenizer.cls_token_id
|
285 |
+
sep_token_id = self.original_tokenizer.sep_token_id
|
286 |
+
|
287 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
288 |
+
single=f"{cls}:0 $A:0 {sep}:0",
|
289 |
+
pair=f"{cls}:0 $A:0 {sep}:0 {sep}:0 $B:1 {sep}:1", # MPNet uses two [SEP] tokens
|
290 |
+
special_tokens=[
|
291 |
+
(cls, cls_token_id),
|
292 |
+
(sep, sep_token_id),
|
293 |
+
],
|
294 |
+
)
|
295 |
+
tokenizer.decoder = decoders.WordPiece(prefix="##")
|
296 |
+
|
297 |
+
return tokenizer
|
298 |
+
|
299 |
+
|
300 |
+
class OpenAIGPTConverter(Converter):
|
301 |
+
def converted(self) -> Tokenizer:
|
302 |
+
vocab = self.original_tokenizer.encoder
|
303 |
+
merges = list(self.original_tokenizer.bpe_ranks.keys())
|
304 |
+
unk_token = self.original_tokenizer.unk_token
|
305 |
+
|
306 |
+
tokenizer = Tokenizer(
|
307 |
+
BPE(
|
308 |
+
vocab=vocab,
|
309 |
+
merges=merges,
|
310 |
+
dropout=None,
|
311 |
+
unk_token=str(unk_token),
|
312 |
+
end_of_word_suffix="</w>",
|
313 |
+
fuse_unk=False,
|
314 |
+
)
|
315 |
+
)
|
316 |
+
|
317 |
+
if tokenizer.token_to_id(str(unk_token)) is not None:
|
318 |
+
tokenizer.add_special_tokens([str(unk_token)])
|
319 |
+
|
320 |
+
tokenizer.normalizer = normalizers.BertNormalizer(lowercase=True)
|
321 |
+
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
|
322 |
+
tokenizer.decoder = decoders.BPEDecoder(suffix="</w>")
|
323 |
+
|
324 |
+
return tokenizer
|
325 |
+
|
326 |
+
|
327 |
+
class GPT2Converter(Converter):
|
328 |
+
def converted(self) -> Tokenizer:
|
329 |
+
vocab = self.original_tokenizer.encoder
|
330 |
+
merges = list(self.original_tokenizer.bpe_ranks.keys())
|
331 |
+
|
332 |
+
tokenizer = Tokenizer(
|
333 |
+
BPE(
|
334 |
+
vocab=vocab,
|
335 |
+
merges=merges,
|
336 |
+
dropout=None,
|
337 |
+
continuing_subword_prefix="",
|
338 |
+
end_of_word_suffix="",
|
339 |
+
fuse_unk=False,
|
340 |
+
)
|
341 |
+
)
|
342 |
+
|
343 |
+
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=self.original_tokenizer.add_prefix_space)
|
344 |
+
tokenizer.decoder = decoders.ByteLevel()
|
345 |
+
if self.original_tokenizer.add_bos_token:
|
346 |
+
bos = self.original_tokenizer.bos_token
|
347 |
+
bos_token_id = self.original_tokenizer.bos_token_id
|
348 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
349 |
+
single=f"{bos}:0 $A:0",
|
350 |
+
pair=f"{bos}:0 $A:0 $B:1",
|
351 |
+
special_tokens=[
|
352 |
+
(bos, bos_token_id),
|
353 |
+
],
|
354 |
+
)
|
355 |
+
else:
|
356 |
+
# XXX trim_offsets=False actually means this post_processor doesn't
|
357 |
+
# really do anything.
|
358 |
+
tokenizer.post_processor = processors.ByteLevel(trim_offsets=False)
|
359 |
+
return tokenizer
|
360 |
+
|
361 |
+
|
362 |
+
class HerbertConverter(Converter):
|
363 |
+
def converted(self) -> Tokenizer:
|
364 |
+
tokenizer_info_str = "#version:"
|
365 |
+
token_suffix = "</w>"
|
366 |
+
|
367 |
+
vocab = self.original_tokenizer.encoder
|
368 |
+
merges = list(self.original_tokenizer.bpe_ranks.keys())
|
369 |
+
if tokenizer_info_str in merges[0][0]:
|
370 |
+
merges = merges[1:]
|
371 |
+
|
372 |
+
tokenizer = Tokenizer(
|
373 |
+
BPE(
|
374 |
+
vocab,
|
375 |
+
merges,
|
376 |
+
dropout=None,
|
377 |
+
unk_token=self.original_tokenizer.unk_token,
|
378 |
+
end_of_word_suffix=token_suffix,
|
379 |
+
)
|
380 |
+
)
|
381 |
+
|
382 |
+
tokenizer.normalizer = normalizers.BertNormalizer(lowercase=False, strip_accents=False)
|
383 |
+
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
|
384 |
+
tokenizer.decoder = decoders.BPEDecoder(suffix=token_suffix)
|
385 |
+
tokenizer.post_processor = processors.BertProcessing(
|
386 |
+
sep=(self.original_tokenizer.sep_token, self.original_tokenizer.sep_token_id),
|
387 |
+
cls=(self.original_tokenizer.cls_token, self.original_tokenizer.cls_token_id),
|
388 |
+
)
|
389 |
+
|
390 |
+
return tokenizer
|
391 |
+
|
392 |
+
|
393 |
+
class Qwen2Converter(Converter):
|
394 |
+
def converted(self) -> Tokenizer:
|
395 |
+
vocab = self.original_tokenizer.encoder
|
396 |
+
merges = list(self.original_tokenizer.bpe_ranks.keys())
|
397 |
+
|
398 |
+
tokenizer = Tokenizer(
|
399 |
+
BPE(
|
400 |
+
vocab=vocab,
|
401 |
+
merges=merges,
|
402 |
+
dropout=None,
|
403 |
+
unk_token=None,
|
404 |
+
continuing_subword_prefix="",
|
405 |
+
end_of_word_suffix="",
|
406 |
+
fuse_unk=False,
|
407 |
+
byte_fallback=False,
|
408 |
+
)
|
409 |
+
)
|
410 |
+
|
411 |
+
tokenizer.normalizer = normalizers.NFC()
|
412 |
+
|
413 |
+
tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
|
414 |
+
[
|
415 |
+
pre_tokenizers.Split(
|
416 |
+
Regex(
|
417 |
+
r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
418 |
+
),
|
419 |
+
behavior="isolated",
|
420 |
+
invert=False,
|
421 |
+
),
|
422 |
+
pre_tokenizers.ByteLevel(
|
423 |
+
add_prefix_space=getattr(self.original_tokenizer, "add_prefix_space", False),
|
424 |
+
use_regex=False,
|
425 |
+
),
|
426 |
+
]
|
427 |
+
)
|
428 |
+
|
429 |
+
tokenizer.decoder = decoders.ByteLevel()
|
430 |
+
tokenizer.post_processor = processors.ByteLevel(trim_offsets=False)
|
431 |
+
|
432 |
+
return tokenizer
|
433 |
+
|
434 |
+
|
435 |
+
class RobertaConverter(Converter):
|
436 |
+
def converted(self) -> Tokenizer:
|
437 |
+
ot = self.original_tokenizer
|
438 |
+
vocab = ot.encoder
|
439 |
+
merges = list(ot.bpe_ranks.keys())
|
440 |
+
|
441 |
+
tokenizer = Tokenizer(
|
442 |
+
BPE(
|
443 |
+
vocab=vocab,
|
444 |
+
merges=merges,
|
445 |
+
dropout=None,
|
446 |
+
continuing_subword_prefix="",
|
447 |
+
end_of_word_suffix="",
|
448 |
+
fuse_unk=False,
|
449 |
+
)
|
450 |
+
)
|
451 |
+
|
452 |
+
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space)
|
453 |
+
tokenizer.decoder = decoders.ByteLevel()
|
454 |
+
tokenizer.post_processor = processors.RobertaProcessing(
|
455 |
+
sep=(ot.sep_token, ot.sep_token_id),
|
456 |
+
cls=(ot.cls_token, ot.cls_token_id),
|
457 |
+
add_prefix_space=ot.add_prefix_space,
|
458 |
+
trim_offsets=True, # True by default on Roberta (historical)
|
459 |
+
)
|
460 |
+
|
461 |
+
return tokenizer
|
462 |
+
|
463 |
+
|
464 |
+
class RoFormerConverter(Converter):
|
465 |
+
def converted(self) -> Tokenizer:
|
466 |
+
from .models.roformer.tokenization_utils import JiebaPreTokenizer
|
467 |
+
|
468 |
+
vocab = self.original_tokenizer.vocab
|
469 |
+
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))
|
470 |
+
|
471 |
+
strip_accents = False
|
472 |
+
do_lower_case = False
|
473 |
+
if hasattr(self.original_tokenizer, "basic_tokenizer"):
|
474 |
+
strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
|
475 |
+
do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case
|
476 |
+
|
477 |
+
tokenizer.normalizer = normalizers.BertNormalizer(
|
478 |
+
clean_text=True,
|
479 |
+
handle_chinese_chars=False,
|
480 |
+
strip_accents=strip_accents,
|
481 |
+
lowercase=do_lower_case,
|
482 |
+
)
|
483 |
+
tokenizer.pre_tokenizer = pre_tokenizers.PreTokenizer.custom(JiebaPreTokenizer(vocab))
|
484 |
+
|
485 |
+
cls = str(self.original_tokenizer.cls_token)
|
486 |
+
sep = str(self.original_tokenizer.sep_token)
|
487 |
+
cls_token_id = self.original_tokenizer.cls_token_id
|
488 |
+
sep_token_id = self.original_tokenizer.sep_token_id
|
489 |
+
|
490 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
491 |
+
single=f"{cls}:0 $A:0 {sep}:0",
|
492 |
+
pair=f"{cls}:0 $A:0 {sep}:0 $B:1 {sep}:1",
|
493 |
+
special_tokens=[
|
494 |
+
(cls, cls_token_id),
|
495 |
+
(sep, sep_token_id),
|
496 |
+
],
|
497 |
+
)
|
498 |
+
tokenizer.decoder = decoders.WordPiece(prefix="##")
|
499 |
+
|
500 |
+
return tokenizer
|
501 |
+
|
502 |
+
|
503 |
+
class DebertaConverter(Converter):
|
504 |
+
def converted(self) -> Tokenizer:
|
505 |
+
ot = self.original_tokenizer
|
506 |
+
vocab = ot.encoder
|
507 |
+
merges = list(ot.bpe_ranks.keys())
|
508 |
+
|
509 |
+
tokenizer = Tokenizer(
|
510 |
+
BPE(
|
511 |
+
vocab=vocab,
|
512 |
+
merges=merges,
|
513 |
+
dropout=None,
|
514 |
+
continuing_subword_prefix="",
|
515 |
+
end_of_word_suffix="",
|
516 |
+
fuse_unk=False,
|
517 |
+
)
|
518 |
+
)
|
519 |
+
|
520 |
+
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space)
|
521 |
+
tokenizer.decoder = decoders.ByteLevel()
|
522 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
523 |
+
single="[CLS]:0 $A:0 [SEP]:0",
|
524 |
+
pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
|
525 |
+
special_tokens=[
|
526 |
+
("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")),
|
527 |
+
("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")),
|
528 |
+
],
|
529 |
+
)
|
530 |
+
|
531 |
+
return tokenizer
|
532 |
+
|
533 |
+
|
534 |
+
class SpmConverter(Converter):
|
535 |
+
def __init__(self, *args):
|
536 |
+
requires_backends(self, "protobuf")
|
537 |
+
|
538 |
+
super().__init__(*args)
|
539 |
+
|
540 |
+
# from .utils import sentencepiece_model_pb2 as model_pb2
|
541 |
+
model_pb2 = import_protobuf()
|
542 |
+
|
543 |
+
m = model_pb2.ModelProto()
|
544 |
+
with open(self.original_tokenizer.vocab_file, "rb") as f:
|
545 |
+
m.ParseFromString(f.read())
|
546 |
+
self.proto = m
|
547 |
+
|
548 |
+
if self.proto.trainer_spec.byte_fallback:
|
549 |
+
if not getattr(self, "handle_byte_fallback", None):
|
550 |
+
warnings.warn(
|
551 |
+
"The sentencepiece tokenizer that you are converting to a fast tokenizer uses the byte fallback option"
|
552 |
+
" which is not implemented in the fast tokenizers. In practice this means that the fast version of the"
|
553 |
+
" tokenizer can produce unknown tokens whereas the sentencepiece version would have converted these "
|
554 |
+
"unknown tokens into a sequence of byte tokens matching the original piece of text."
|
555 |
+
)
|
556 |
+
|
557 |
+
def vocab(self, proto):
|
558 |
+
return [(piece.piece, piece.score) for piece in proto.pieces]
|
559 |
+
|
560 |
+
def unk_id(self, proto):
|
561 |
+
return proto.trainer_spec.unk_id
|
562 |
+
|
563 |
+
def tokenizer(self, proto):
|
564 |
+
model_type = proto.trainer_spec.model_type
|
565 |
+
vocab_scores = self.vocab(proto)
|
566 |
+
unk_id = self.unk_id(proto)
|
567 |
+
|
568 |
+
if model_type == 1:
|
569 |
+
tokenizer = Tokenizer(Unigram(vocab_scores, unk_id))
|
570 |
+
elif model_type == 2:
|
571 |
+
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract()
|
572 |
+
bpe_vocab = {word: i for i, (word, score) in enumerate(vocab_scores)}
|
573 |
+
tokenizer = Tokenizer(
|
574 |
+
BPE(
|
575 |
+
bpe_vocab,
|
576 |
+
merges,
|
577 |
+
unk_token=proto.trainer_spec.unk_piece,
|
578 |
+
fuse_unk=True,
|
579 |
+
)
|
580 |
+
)
|
581 |
+
else:
|
582 |
+
raise Exception(
|
583 |
+
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
|
584 |
+
)
|
585 |
+
|
586 |
+
return tokenizer
|
587 |
+
|
588 |
+
def normalizer(self, proto):
|
589 |
+
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
|
590 |
+
_normalizers = [
|
591 |
+
normalizers.Strip(left=False, right=True), # stripping is important
|
592 |
+
normalizers.Replace(Regex(" {2,}"), "▁"),
|
593 |
+
]
|
594 |
+
if not precompiled_charsmap:
|
595 |
+
return normalizers.Sequence(_normalizers)
|
596 |
+
else:
|
597 |
+
return normalizers.Sequence([normalizers.Precompiled(precompiled_charsmap)] + _normalizers)
|
598 |
+
|
599 |
+
def pre_tokenizer(self, replacement, add_prefix_space):
|
600 |
+
prepend_scheme = "always"
|
601 |
+
if hasattr(self.original_tokenizer, "legacy") and not self.original_tokenizer.legacy:
|
602 |
+
prepend_scheme = "first"
|
603 |
+
return pre_tokenizers.Metaspace(
|
604 |
+
replacement=replacement, add_prefix_space=add_prefix_space, prepend_scheme=prepend_scheme
|
605 |
+
)
|
606 |
+
|
607 |
+
def post_processor(self):
|
608 |
+
return None
|
609 |
+
|
610 |
+
def decoder(self, replacement, add_prefix_space):
|
611 |
+
return decoders.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space)
|
612 |
+
|
613 |
+
def converted(self) -> Tokenizer:
|
614 |
+
tokenizer = self.tokenizer(self.proto)
|
615 |
+
|
616 |
+
# Tokenizer assemble
|
617 |
+
normalizer = self.normalizer(self.proto)
|
618 |
+
if normalizer is not None:
|
619 |
+
tokenizer.normalizer = normalizer
|
620 |
+
|
621 |
+
replacement = "▁"
|
622 |
+
add_prefix_space = True
|
623 |
+
if hasattr(self.original_tokenizer, "add_prefix_space"):
|
624 |
+
add_prefix_space = self.original_tokenizer.add_prefix_space
|
625 |
+
|
626 |
+
pre_tokenizer = self.pre_tokenizer(replacement, add_prefix_space)
|
627 |
+
if pre_tokenizer is not None:
|
628 |
+
tokenizer.pre_tokenizer = pre_tokenizer
|
629 |
+
|
630 |
+
tokenizer.decoder = self.decoder(replacement, add_prefix_space)
|
631 |
+
post_processor = self.post_processor()
|
632 |
+
if post_processor:
|
633 |
+
tokenizer.post_processor = post_processor
|
634 |
+
|
635 |
+
return tokenizer
|
636 |
+
|
637 |
+
|
638 |
+
class AlbertConverter(SpmConverter):
|
639 |
+
def vocab(self, proto):
|
640 |
+
return [
|
641 |
+
(piece.piece, piece.score) if check_number_comma(piece.piece) else (piece.piece, piece.score - 100)
|
642 |
+
for piece in proto.pieces
|
643 |
+
]
|
644 |
+
|
645 |
+
def normalizer(self, proto):
|
646 |
+
list_normalizers = [
|
647 |
+
normalizers.Replace("``", '"'),
|
648 |
+
normalizers.Replace("''", '"'),
|
649 |
+
]
|
650 |
+
if not self.original_tokenizer.keep_accents:
|
651 |
+
list_normalizers.append(normalizers.NFKD())
|
652 |
+
list_normalizers.append(normalizers.StripAccents())
|
653 |
+
if self.original_tokenizer.do_lower_case:
|
654 |
+
list_normalizers.append(normalizers.Lowercase())
|
655 |
+
|
656 |
+
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
|
657 |
+
|
658 |
+
if precompiled_charsmap:
|
659 |
+
list_normalizers.append(normalizers.Precompiled(precompiled_charsmap))
|
660 |
+
|
661 |
+
list_normalizers.append(normalizers.Replace(Regex(" {2,}"), " "))
|
662 |
+
return normalizers.Sequence(list_normalizers)
|
663 |
+
|
664 |
+
def post_processor(self):
|
665 |
+
return processors.TemplateProcessing(
|
666 |
+
single="[CLS]:0 $A:0 [SEP]:0",
|
667 |
+
pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
|
668 |
+
special_tokens=[
|
669 |
+
("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")),
|
670 |
+
("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")),
|
671 |
+
],
|
672 |
+
)
|
673 |
+
|
674 |
+
|
675 |
+
class BarthezConverter(SpmConverter):
|
676 |
+
def unk_id(self, proto):
|
677 |
+
unk_id = 3
|
678 |
+
return unk_id
|
679 |
+
|
680 |
+
def post_processor(self):
|
681 |
+
return processors.TemplateProcessing(
|
682 |
+
single="<s> $A </s>",
|
683 |
+
pair="<s> $A </s> </s> $B </s>",
|
684 |
+
special_tokens=[
|
685 |
+
("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")),
|
686 |
+
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
|
687 |
+
],
|
688 |
+
)
|
689 |
+
|
690 |
+
|
691 |
+
class CamembertConverter(SpmConverter):
|
692 |
+
def vocab(self, proto):
|
693 |
+
vocab = [
|
694 |
+
("<s>NOTUSED", 0.0),
|
695 |
+
("<pad>", 0.0),
|
696 |
+
("</s>NOTUSED", 0.0),
|
697 |
+
("<unk>", 0.0),
|
698 |
+
("<unk>NOTUSED", -100),
|
699 |
+
]
|
700 |
+
# We down-grade the original SentencePiece by -100 to avoid using it and use our added token instead
|
701 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[1:]]
|
702 |
+
vocab += [("<mask>", 0.0)]
|
703 |
+
return vocab
|
704 |
+
|
705 |
+
def unk_id(self, proto):
|
706 |
+
# See vocab unk position
|
707 |
+
return 3
|
708 |
+
|
709 |
+
def post_processor(self):
|
710 |
+
return processors.TemplateProcessing(
|
711 |
+
single="<s> $A </s>",
|
712 |
+
pair="<s> $A </s> </s> $B </s>",
|
713 |
+
special_tokens=[
|
714 |
+
("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")),
|
715 |
+
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
|
716 |
+
],
|
717 |
+
)
|
718 |
+
|
719 |
+
|
720 |
+
class DebertaV2Converter(SpmConverter):
|
721 |
+
def pre_tokenizer(self, replacement, add_prefix_space):
|
722 |
+
list_pretokenizers = []
|
723 |
+
if self.original_tokenizer.split_by_punct:
|
724 |
+
list_pretokenizers.append(pre_tokenizers.Punctuation(behavior="isolated"))
|
725 |
+
list_pretokenizers.append(pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space))
|
726 |
+
return pre_tokenizers.Sequence(list_pretokenizers)
|
727 |
+
|
728 |
+
def normalizer(self, proto):
|
729 |
+
list_normalizers = []
|
730 |
+
if self.original_tokenizer.do_lower_case:
|
731 |
+
list_normalizers.append(normalizers.Lowercase())
|
732 |
+
list_normalizers.append(normalizers.Strip())
|
733 |
+
|
734 |
+
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
|
735 |
+
if precompiled_charsmap:
|
736 |
+
list_normalizers.append(normalizers.Precompiled(precompiled_charsmap))
|
737 |
+
list_normalizers.append(normalizers.Replace(Regex(" {2,}"), " "))
|
738 |
+
|
739 |
+
return normalizers.Sequence(list_normalizers)
|
740 |
+
|
741 |
+
def post_processor(self):
|
742 |
+
return processors.TemplateProcessing(
|
743 |
+
single="[CLS]:0 $A:0 [SEP]:0",
|
744 |
+
pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
|
745 |
+
special_tokens=[
|
746 |
+
("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")),
|
747 |
+
("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")),
|
748 |
+
],
|
749 |
+
)
|
750 |
+
|
751 |
+
|
752 |
+
class MBartConverter(SpmConverter):
|
753 |
+
def vocab(self, proto):
|
754 |
+
vocab = [
|
755 |
+
("<s>", 0.0),
|
756 |
+
("<pad>", 0.0),
|
757 |
+
("</s>", 0.0),
|
758 |
+
("<unk>", 0.0),
|
759 |
+
]
|
760 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
761 |
+
vocab += [
|
762 |
+
("ar_AR", 0.0),
|
763 |
+
("cs_CZ", 0.0),
|
764 |
+
("de_DE", 0.0),
|
765 |
+
("en_XX", 0.0),
|
766 |
+
("es_XX", 0.0),
|
767 |
+
("et_EE", 0.0),
|
768 |
+
("fi_FI", 0.0),
|
769 |
+
("fr_XX", 0.0),
|
770 |
+
("gu_IN", 0.0),
|
771 |
+
("hi_IN", 0.0),
|
772 |
+
("it_IT", 0.0),
|
773 |
+
("ja_XX", 0.0),
|
774 |
+
("kk_KZ", 0.0),
|
775 |
+
("ko_KR", 0.0),
|
776 |
+
("lt_LT", 0.0),
|
777 |
+
("lv_LV", 0.0),
|
778 |
+
("my_MM", 0.0),
|
779 |
+
("ne_NP", 0.0),
|
780 |
+
("nl_XX", 0.0),
|
781 |
+
("ro_RO", 0.0),
|
782 |
+
("ru_RU", 0.0),
|
783 |
+
("si_LK", 0.0),
|
784 |
+
("tr_TR", 0.0),
|
785 |
+
("vi_VN", 0.0),
|
786 |
+
("zh_CN", 0.0),
|
787 |
+
]
|
788 |
+
vocab += [("<mask>", 0.0)]
|
789 |
+
return vocab
|
790 |
+
|
791 |
+
def unk_id(self, proto):
|
792 |
+
return 3
|
793 |
+
|
794 |
+
def post_processor(self):
|
795 |
+
return processors.TemplateProcessing(
|
796 |
+
single="$A </s> en_XX",
|
797 |
+
pair="$A $B </s> en_XX",
|
798 |
+
special_tokens=[
|
799 |
+
("en_XX", self.original_tokenizer.convert_tokens_to_ids("en_XX")),
|
800 |
+
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
|
801 |
+
],
|
802 |
+
)
|
803 |
+
|
804 |
+
|
805 |
+
class MBart50Converter(SpmConverter):
|
806 |
+
def vocab(self, proto):
|
807 |
+
vocab = [
|
808 |
+
("<s>", 0.0),
|
809 |
+
("<pad>", 0.0),
|
810 |
+
("</s>", 0.0),
|
811 |
+
("<unk>", 0.0),
|
812 |
+
]
|
813 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
814 |
+
vocab += [("ar_AR", 0.0), ("cs_CZ", 0.0), ("de_DE", 0.0), ("en_XX", 0.0), ("es_XX", 0.0), ("et_EE", 0.0), ("fi_FI", 0.0), ("fr_XX", 0.0), ("gu_IN", 0.0), ("hi_IN", 0.0), ("it_IT", 0.0), ("ja_XX", 0.0), ("kk_KZ", 0.0), ("ko_KR", 0.0), ("lt_LT", 0.0), ("lv_LV", 0.0), ("my_MM", 0.0), ("ne_NP", 0.0), ("nl_XX", 0.0), ("ro_RO", 0.0), ("ru_RU", 0.0), ("si_LK", 0.0), ("tr_TR", 0.0), ("vi_VN", 0.0), ("zh_CN", 0.0), ("af_ZA", 0.0), ("az_AZ", 0.0), ("bn_IN", 0.0), ("fa_IR", 0.0), ("he_IL", 0.0), ("hr_HR", 0.0), ("id_ID", 0.0), ("ka_GE", 0.0), ("km_KH", 0.0), ("mk_MK", 0.0), ("ml_IN", 0.0), ("mn_MN", 0.0), ("mr_IN", 0.0), ("pl_PL", 0.0), ("ps_AF", 0.0), ("pt_XX", 0.0), ("sv_SE", 0.0), ("sw_KE", 0.0), ("ta_IN", 0.0), ("te_IN", 0.0), ("th_TH", 0.0), ("tl_XX", 0.0), ("uk_UA", 0.0), ("ur_PK", 0.0), ("xh_ZA", 0.0), ("gl_ES", 0.0), ("sl_SI", 0.0)] # fmt: skip
|
815 |
+
vocab += [("<mask>", 0.0)]
|
816 |
+
return vocab
|
817 |
+
|
818 |
+
def unk_id(self, proto):
|
819 |
+
return 3
|
820 |
+
|
821 |
+
def post_processor(self):
|
822 |
+
return processors.TemplateProcessing(
|
823 |
+
single="en_XX $A </s>",
|
824 |
+
pair="en_XX $A $B </s>",
|
825 |
+
special_tokens=[
|
826 |
+
("en_XX", self.original_tokenizer.convert_tokens_to_ids("en_XX")),
|
827 |
+
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
|
828 |
+
],
|
829 |
+
)
|
830 |
+
|
831 |
+
|
832 |
+
class NllbConverter(SpmConverter):
|
833 |
+
def vocab(self, proto):
|
834 |
+
vocab = [
|
835 |
+
("<s>", 0.0),
|
836 |
+
("<pad>", 0.0),
|
837 |
+
("</s>", 0.0),
|
838 |
+
("<unk>", 0.0),
|
839 |
+
]
|
840 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
841 |
+
return vocab
|
842 |
+
|
843 |
+
def unk_id(self, proto):
|
844 |
+
return 3
|
845 |
+
|
846 |
+
def post_processor(self):
|
847 |
+
return processors.TemplateProcessing(
|
848 |
+
single="eng_Latn $A </s>",
|
849 |
+
pair="eng_Latn $A $B </s>",
|
850 |
+
special_tokens=[
|
851 |
+
("eng_Latn", self.original_tokenizer.convert_tokens_to_ids("eng_Latn")),
|
852 |
+
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
|
853 |
+
],
|
854 |
+
)
|
855 |
+
|
856 |
+
|
857 |
+
class SeamlessM4TConverter(SpmConverter):
|
858 |
+
def vocab(self, proto):
|
859 |
+
vocab = [
|
860 |
+
("<pad>", 0.0),
|
861 |
+
("<unk>", 0.0),
|
862 |
+
("<s>", 0.0),
|
863 |
+
("</s>", 0.0),
|
864 |
+
]
|
865 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
866 |
+
return vocab
|
867 |
+
|
868 |
+
def unk_id(self, proto):
|
869 |
+
return self.original_tokenizer.unk_token_id
|
870 |
+
|
871 |
+
def post_processor(self):
|
872 |
+
return processors.TemplateProcessing(
|
873 |
+
single="__eng__ $A </s>",
|
874 |
+
pair="__eng__ $A $B </s>",
|
875 |
+
special_tokens=[
|
876 |
+
("__eng__", self.original_tokenizer.convert_tokens_to_ids("__eng__")),
|
877 |
+
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
|
878 |
+
],
|
879 |
+
)
|
880 |
+
|
881 |
+
|
882 |
+
class XLMRobertaConverter(SpmConverter):
|
883 |
+
def vocab(self, proto):
|
884 |
+
vocab = [
|
885 |
+
("<s>", 0.0),
|
886 |
+
("<pad>", 0.0),
|
887 |
+
("</s>", 0.0),
|
888 |
+
("<unk>", 0.0),
|
889 |
+
]
|
890 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
891 |
+
vocab += [("<mask>", 0.0)]
|
892 |
+
return vocab
|
893 |
+
|
894 |
+
def unk_id(self, proto):
|
895 |
+
unk_id = 3
|
896 |
+
return unk_id
|
897 |
+
|
898 |
+
def post_processor(self):
|
899 |
+
return processors.TemplateProcessing(
|
900 |
+
single="<s> $A </s>",
|
901 |
+
pair="<s> $A </s> </s> $B </s>",
|
902 |
+
special_tokens=[
|
903 |
+
("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")),
|
904 |
+
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
|
905 |
+
],
|
906 |
+
)
|
907 |
+
|
908 |
+
|
909 |
+
class XLNetConverter(SpmConverter):
|
910 |
+
def vocab(self, proto):
|
911 |
+
return [
|
912 |
+
(piece.piece, piece.score) if check_number_comma(piece.piece) else (piece.piece, piece.score - 100)
|
913 |
+
for piece in proto.pieces
|
914 |
+
]
|
915 |
+
|
916 |
+
def normalizer(self, proto):
|
917 |
+
list_normalizers = [
|
918 |
+
normalizers.Replace("``", '"'),
|
919 |
+
normalizers.Replace("''", '"'),
|
920 |
+
]
|
921 |
+
if not self.original_tokenizer.keep_accents:
|
922 |
+
list_normalizers.append(normalizers.NFKD())
|
923 |
+
list_normalizers.append(normalizers.StripAccents())
|
924 |
+
if self.original_tokenizer.do_lower_case:
|
925 |
+
list_normalizers.append(normalizers.Lowercase())
|
926 |
+
|
927 |
+
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
|
928 |
+
|
929 |
+
if precompiled_charsmap:
|
930 |
+
list_normalizers.append(normalizers.Precompiled(precompiled_charsmap))
|
931 |
+
|
932 |
+
list_normalizers.append(normalizers.Replace(Regex(" {2,}"), " "))
|
933 |
+
return normalizers.Sequence(list_normalizers)
|
934 |
+
|
935 |
+
def post_processor(self):
|
936 |
+
return processors.TemplateProcessing(
|
937 |
+
single="$A:0 <sep>:0 <cls>:2",
|
938 |
+
pair="$A:0 <sep>:0 $B:1 <sep>:1 <cls>:2",
|
939 |
+
special_tokens=[
|
940 |
+
("<sep>", self.original_tokenizer.convert_tokens_to_ids("<sep>")),
|
941 |
+
("<cls>", self.original_tokenizer.convert_tokens_to_ids("<cls>")),
|
942 |
+
],
|
943 |
+
)
|
944 |
+
|
945 |
+
|
946 |
+
class ReformerConverter(SpmConverter):
|
947 |
+
pass
|
948 |
+
|
949 |
+
|
950 |
+
class RemBertConverter(SpmConverter):
|
951 |
+
# Inspired from AlbertConverter
|
952 |
+
def normalizer(self, proto):
|
953 |
+
list_normalizers = [
|
954 |
+
normalizers.Replace("``", '"'),
|
955 |
+
normalizers.Replace("''", '"'),
|
956 |
+
normalizers.Replace(Regex(" {2,}"), " "),
|
957 |
+
]
|
958 |
+
if not self.original_tokenizer.keep_accents:
|
959 |
+
list_normalizers.append(normalizers.NFKD())
|
960 |
+
list_normalizers.append(normalizers.StripAccents())
|
961 |
+
if self.original_tokenizer.do_lower_case:
|
962 |
+
list_normalizers.append(normalizers.Lowercase())
|
963 |
+
|
964 |
+
precompiled_charsmap = proto.normalizer_spec.precompiled_charsmap
|
965 |
+
|
966 |
+
if precompiled_charsmap:
|
967 |
+
list_normalizers.append(normalizers.Precompiled(precompiled_charsmap))
|
968 |
+
|
969 |
+
return normalizers.Sequence(list_normalizers)
|
970 |
+
|
971 |
+
def post_processor(self):
|
972 |
+
return processors.TemplateProcessing(
|
973 |
+
single="[CLS]:0 $A:0 [SEP]:0",
|
974 |
+
pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
|
975 |
+
special_tokens=[
|
976 |
+
("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")),
|
977 |
+
("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")),
|
978 |
+
],
|
979 |
+
)
|
980 |
+
|
981 |
+
|
982 |
+
class BertGenerationConverter(SpmConverter):
|
983 |
+
pass
|
984 |
+
|
985 |
+
|
986 |
+
class PegasusConverter(SpmConverter):
|
987 |
+
def vocab(self, proto):
|
988 |
+
vocab = [
|
989 |
+
(self.original_tokenizer.pad_token, 0.0),
|
990 |
+
(self.original_tokenizer.eos_token, 0.0),
|
991 |
+
]
|
992 |
+
|
993 |
+
if self.original_tokenizer.mask_token_sent is not None:
|
994 |
+
vocab += [(self.original_tokenizer.mask_token_sent, 0.0)]
|
995 |
+
|
996 |
+
if (
|
997 |
+
self.original_tokenizer.mask_token is not None
|
998 |
+
and self.original_tokenizer.mask_token_id < self.original_tokenizer.offset
|
999 |
+
):
|
1000 |
+
vocab += [(self.original_tokenizer.mask_token, 0.0)]
|
1001 |
+
|
1002 |
+
vocab += [(f"<unk_{i}>", -100.0) for i in range(2, self.original_tokenizer.offset)]
|
1003 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[2:]]
|
1004 |
+
return vocab
|
1005 |
+
|
1006 |
+
def unk_id(self, proto):
|
1007 |
+
return proto.trainer_spec.unk_id + self.original_tokenizer.offset
|
1008 |
+
|
1009 |
+
def pre_tokenizer(self, replacement, add_prefix_space):
|
1010 |
+
return pre_tokenizers.Sequence(
|
1011 |
+
[
|
1012 |
+
pre_tokenizers.WhitespaceSplit(),
|
1013 |
+
pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space),
|
1014 |
+
]
|
1015 |
+
)
|
1016 |
+
|
1017 |
+
def post_processor(self):
|
1018 |
+
eos = self.original_tokenizer.eos_token
|
1019 |
+
special_tokens = [
|
1020 |
+
(eos, self.original_tokenizer.eos_token_id),
|
1021 |
+
]
|
1022 |
+
return processors.TemplateProcessing(single=["$A", eos], pair=["$A", "$B", eos], special_tokens=special_tokens)
|
1023 |
+
|
1024 |
+
|
1025 |
+
class T5Converter(SpmConverter):
|
1026 |
+
def vocab(self, proto):
|
1027 |
+
num_extra_ids = self.original_tokenizer._extra_ids
|
1028 |
+
vocab = [(piece.piece, piece.score) for piece in proto.pieces]
|
1029 |
+
vocab += [(f"<extra_id_{i}>", 0.0) for i in range(num_extra_ids - 1, -1, -1)]
|
1030 |
+
return vocab
|
1031 |
+
|
1032 |
+
def post_processor(self):
|
1033 |
+
return processors.TemplateProcessing(
|
1034 |
+
single=["$A", "</s>"],
|
1035 |
+
pair=["$A", "</s>", "$B", "</s>"],
|
1036 |
+
special_tokens=[
|
1037 |
+
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
|
1038 |
+
],
|
1039 |
+
)
|
1040 |
+
|
1041 |
+
|
1042 |
+
class UdopConverter(SpmConverter):
|
1043 |
+
def post_processor(self):
|
1044 |
+
return processors.TemplateProcessing(
|
1045 |
+
single=["$A", "</s>"],
|
1046 |
+
pair=["$A", "</s>", "$B", "</s>"],
|
1047 |
+
special_tokens=[
|
1048 |
+
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
|
1049 |
+
],
|
1050 |
+
)
|
1051 |
+
|
1052 |
+
|
1053 |
+
class WhisperConverter(Converter):
|
1054 |
+
def converted(self) -> Tokenizer:
|
1055 |
+
vocab = self.original_tokenizer.encoder
|
1056 |
+
merges = list(self.original_tokenizer.bpe_ranks.keys())
|
1057 |
+
|
1058 |
+
tokenizer = Tokenizer(
|
1059 |
+
BPE(
|
1060 |
+
vocab=vocab,
|
1061 |
+
merges=merges,
|
1062 |
+
dropout=None,
|
1063 |
+
continuing_subword_prefix="",
|
1064 |
+
end_of_word_suffix="",
|
1065 |
+
fuse_unk=False,
|
1066 |
+
)
|
1067 |
+
)
|
1068 |
+
|
1069 |
+
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=self.original_tokenizer.add_prefix_space)
|
1070 |
+
tokenizer.decoder = decoders.ByteLevel()
|
1071 |
+
|
1072 |
+
prefix_token_ids = self.original_tokenizer.prefix_tokens
|
1073 |
+
prefixes = self.original_tokenizer.convert_ids_to_tokens(prefix_token_ids)
|
1074 |
+
eos = self.original_tokenizer.eos_token
|
1075 |
+
eos_token_id = self.original_tokenizer.eos_token_id
|
1076 |
+
prefix_template = " ".join([f"{token}:0" for token in prefixes])
|
1077 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
1078 |
+
single=f"{prefix_template} $A:0 {eos}:0",
|
1079 |
+
pair=f"{prefix_template} $A:0 $B:1 {eos}:1",
|
1080 |
+
special_tokens=[
|
1081 |
+
(eos, eos_token_id),
|
1082 |
+
*zip(prefixes, prefix_token_ids),
|
1083 |
+
],
|
1084 |
+
)
|
1085 |
+
|
1086 |
+
return tokenizer
|
1087 |
+
|
1088 |
+
|
1089 |
+
class BigBirdConverter(SpmConverter):
|
1090 |
+
def post_processor(self):
|
1091 |
+
return processors.TemplateProcessing(
|
1092 |
+
single="[CLS]:0 $A:0 [SEP]:0",
|
1093 |
+
pair="[CLS]:0 $A:0 [SEP]:0 $B:1 [SEP]:1",
|
1094 |
+
special_tokens=[
|
1095 |
+
("[CLS]", self.original_tokenizer.convert_tokens_to_ids("[CLS]")),
|
1096 |
+
("[SEP]", self.original_tokenizer.convert_tokens_to_ids("[SEP]")),
|
1097 |
+
],
|
1098 |
+
)
|
1099 |
+
|
1100 |
+
|
1101 |
+
class CLIPConverter(Converter):
|
1102 |
+
def converted(self) -> Tokenizer:
|
1103 |
+
vocab = self.original_tokenizer.encoder
|
1104 |
+
merges = list(self.original_tokenizer.bpe_ranks.keys())
|
1105 |
+
unk_token = self.original_tokenizer.unk_token
|
1106 |
+
|
1107 |
+
tokenizer = Tokenizer(
|
1108 |
+
BPE(
|
1109 |
+
vocab=vocab,
|
1110 |
+
merges=merges,
|
1111 |
+
dropout=None,
|
1112 |
+
continuing_subword_prefix="",
|
1113 |
+
end_of_word_suffix="</w>",
|
1114 |
+
fuse_unk=False,
|
1115 |
+
unk_token=str(unk_token),
|
1116 |
+
)
|
1117 |
+
)
|
1118 |
+
|
1119 |
+
tokenizer.normalizer = normalizers.Sequence(
|
1120 |
+
[normalizers.NFC(), normalizers.Replace(Regex(r"\s+"), " "), normalizers.Lowercase()]
|
1121 |
+
)
|
1122 |
+
tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
|
1123 |
+
[
|
1124 |
+
pre_tokenizers.Split(
|
1125 |
+
Regex(r"""'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+"""),
|
1126 |
+
behavior="removed",
|
1127 |
+
invert=True,
|
1128 |
+
),
|
1129 |
+
pre_tokenizers.ByteLevel(add_prefix_space=False),
|
1130 |
+
]
|
1131 |
+
)
|
1132 |
+
tokenizer.decoder = decoders.ByteLevel()
|
1133 |
+
|
1134 |
+
# Hack to have a ByteLevel and TemplaceProcessor
|
1135 |
+
tokenizer.post_processor = processors.RobertaProcessing(
|
1136 |
+
sep=(self.original_tokenizer.eos_token, self.original_tokenizer.eos_token_id),
|
1137 |
+
cls=(self.original_tokenizer.bos_token, self.original_tokenizer.bos_token_id),
|
1138 |
+
add_prefix_space=False,
|
1139 |
+
trim_offsets=False,
|
1140 |
+
)
|
1141 |
+
return tokenizer
|
1142 |
+
|
1143 |
+
|
1144 |
+
class LayoutLMv2Converter(Converter):
|
1145 |
+
def converted(self) -> Tokenizer:
|
1146 |
+
vocab = self.original_tokenizer.vocab
|
1147 |
+
tokenizer = Tokenizer(WordPiece(vocab, unk_token=str(self.original_tokenizer.unk_token)))
|
1148 |
+
|
1149 |
+
tokenize_chinese_chars = False
|
1150 |
+
strip_accents = False
|
1151 |
+
do_lower_case = True
|
1152 |
+
if hasattr(self.original_tokenizer, "basic_tokenizer"):
|
1153 |
+
tokenize_chinese_chars = self.original_tokenizer.basic_tokenizer.tokenize_chinese_chars
|
1154 |
+
strip_accents = self.original_tokenizer.basic_tokenizer.strip_accents
|
1155 |
+
do_lower_case = self.original_tokenizer.basic_tokenizer.do_lower_case
|
1156 |
+
|
1157 |
+
tokenizer.normalizer = normalizers.BertNormalizer(
|
1158 |
+
clean_text=True,
|
1159 |
+
handle_chinese_chars=tokenize_chinese_chars,
|
1160 |
+
strip_accents=strip_accents,
|
1161 |
+
lowercase=do_lower_case,
|
1162 |
+
)
|
1163 |
+
tokenizer.pre_tokenizer = pre_tokenizers.BertPreTokenizer()
|
1164 |
+
|
1165 |
+
cls = str(self.original_tokenizer.cls_token)
|
1166 |
+
sep = str(self.original_tokenizer.sep_token)
|
1167 |
+
cls_token_id = self.original_tokenizer.cls_token_id
|
1168 |
+
sep_token_id = self.original_tokenizer.sep_token_id
|
1169 |
+
|
1170 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
1171 |
+
single=f"{cls}:0 $A:0 {sep}:0",
|
1172 |
+
pair=f"{cls}:0 $A:0 {sep}:0 $B:1 {sep}:1",
|
1173 |
+
special_tokens=[
|
1174 |
+
(cls, cls_token_id),
|
1175 |
+
(sep, sep_token_id),
|
1176 |
+
],
|
1177 |
+
)
|
1178 |
+
tokenizer.decoder = decoders.WordPiece(prefix="##")
|
1179 |
+
|
1180 |
+
return tokenizer
|
1181 |
+
|
1182 |
+
|
1183 |
+
class BlenderbotConverter(Converter):
|
1184 |
+
def converted(self) -> Tokenizer:
|
1185 |
+
ot = self.original_tokenizer
|
1186 |
+
vocab = ot.encoder
|
1187 |
+
merges = list(ot.bpe_ranks.keys())
|
1188 |
+
|
1189 |
+
tokenizer = Tokenizer(
|
1190 |
+
BPE(
|
1191 |
+
vocab=vocab,
|
1192 |
+
merges=merges,
|
1193 |
+
dropout=None,
|
1194 |
+
continuing_subword_prefix="",
|
1195 |
+
end_of_word_suffix="",
|
1196 |
+
fuse_unk=False,
|
1197 |
+
)
|
1198 |
+
)
|
1199 |
+
|
1200 |
+
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space)
|
1201 |
+
tokenizer.decoder = decoders.ByteLevel()
|
1202 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
1203 |
+
single=f"$A:0 {ot.eos_token}:0",
|
1204 |
+
special_tokens=[
|
1205 |
+
(ot.eos_token, ot.eos_token_id),
|
1206 |
+
],
|
1207 |
+
)
|
1208 |
+
|
1209 |
+
return tokenizer
|
1210 |
+
|
1211 |
+
|
1212 |
+
class XGLMConverter(SpmConverter):
|
1213 |
+
def vocab(self, proto):
|
1214 |
+
vocab = [
|
1215 |
+
("<s>", 0.0),
|
1216 |
+
("<pad>", 0.0),
|
1217 |
+
("</s>", 0.0),
|
1218 |
+
("<unk>", 0.0),
|
1219 |
+
]
|
1220 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
1221 |
+
vocab += [("<madeupword0>", 0.0), ("<madeupword1>", 0.0), ("<madeupword2>", 0.0), ("<madeupword3>", 0.0), ("<madeupword4>", 0.0), ("<madeupword5>", 0.0), ("<madeupword6>", 0.0)] # fmt: skip
|
1222 |
+
return vocab
|
1223 |
+
|
1224 |
+
def unk_id(self, proto):
|
1225 |
+
unk_id = 3
|
1226 |
+
return unk_id
|
1227 |
+
|
1228 |
+
def post_processor(self):
|
1229 |
+
return processors.TemplateProcessing(
|
1230 |
+
single="</s> $A",
|
1231 |
+
pair="</s> $A </s> </s> $B",
|
1232 |
+
special_tokens=[
|
1233 |
+
("<s>", self.original_tokenizer.convert_tokens_to_ids("<s>")),
|
1234 |
+
("</s>", self.original_tokenizer.convert_tokens_to_ids("</s>")),
|
1235 |
+
],
|
1236 |
+
)
|
1237 |
+
|
1238 |
+
|
1239 |
+
class GemmaConvert(SpmConverter):
|
1240 |
+
handle_byte_fallback = True
|
1241 |
+
|
1242 |
+
""""
|
1243 |
+
split_by_unicode_script: true
|
1244 |
+
split_by_number: true
|
1245 |
+
split_by_whitespace: true
|
1246 |
+
treat_whitespace_as_suffix: false
|
1247 |
+
allow_whitespace_only_pieces: true
|
1248 |
+
split_digits: true
|
1249 |
+
byte_fallback: true
|
1250 |
+
"""
|
1251 |
+
|
1252 |
+
def normalizer(self, proto):
|
1253 |
+
return normalizers.Replace(" ", "▁")
|
1254 |
+
|
1255 |
+
def vocab(self, proto):
|
1256 |
+
vocab = [
|
1257 |
+
(self.original_tokenizer.pad_token, 0.0),
|
1258 |
+
(self.original_tokenizer.eos_token, 0.0),
|
1259 |
+
(self.original_tokenizer.bos_token, 0.0),
|
1260 |
+
]
|
1261 |
+
for piece in proto.pieces[3:]:
|
1262 |
+
if piece.piece == "<0x09>":
|
1263 |
+
vocab += [("\t", piece.score)]
|
1264 |
+
else:
|
1265 |
+
vocab += [(piece.piece, piece.score)]
|
1266 |
+
# vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
1267 |
+
return vocab
|
1268 |
+
|
1269 |
+
def pre_tokenizer(self, replacement, add_prefix_space):
|
1270 |
+
return None
|
1271 |
+
|
1272 |
+
def unk_id(self, proto):
|
1273 |
+
unk_id = 3
|
1274 |
+
return unk_id
|
1275 |
+
|
1276 |
+
def decoder(self, replacement, add_prefix_space):
|
1277 |
+
return decoders.Sequence(
|
1278 |
+
[
|
1279 |
+
decoders.Replace("▁", " "),
|
1280 |
+
decoders.ByteFallback(),
|
1281 |
+
decoders.Fuse(),
|
1282 |
+
]
|
1283 |
+
)
|
1284 |
+
|
1285 |
+
def tokenizer(self, proto):
|
1286 |
+
model_type = proto.trainer_spec.model_type
|
1287 |
+
vocab_scores = self.vocab(proto)
|
1288 |
+
if model_type == 1:
|
1289 |
+
import tokenizers
|
1290 |
+
|
1291 |
+
if version.parse(tokenizers.__version__) < version.parse("0.14.0"):
|
1292 |
+
tokenizer = Tokenizer(Unigram(vocab_scores, 0))
|
1293 |
+
else:
|
1294 |
+
tokenizer = Tokenizer(Unigram(vocab_scores, 0, byte_fallback=True))
|
1295 |
+
|
1296 |
+
elif model_type == 2:
|
1297 |
+
_, merges = GemmaSentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
|
1298 |
+
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
|
1299 |
+
|
1300 |
+
tokenizer = Tokenizer(
|
1301 |
+
BPE(
|
1302 |
+
bpe_vocab,
|
1303 |
+
merges,
|
1304 |
+
unk_token=proto.trainer_spec.unk_piece,
|
1305 |
+
fuse_unk=True,
|
1306 |
+
byte_fallback=True,
|
1307 |
+
dropout=None,
|
1308 |
+
)
|
1309 |
+
)
|
1310 |
+
tokenizer.add_special_tokens(
|
1311 |
+
[
|
1312 |
+
AddedToken("<pad>", normalized=False, special=True),
|
1313 |
+
AddedToken("<eos>", normalized=False, special=True),
|
1314 |
+
AddedToken("<bos>", normalized=False, special=True),
|
1315 |
+
AddedToken("<unk>", normalized=False, special=True),
|
1316 |
+
]
|
1317 |
+
)
|
1318 |
+
else:
|
1319 |
+
raise Exception(
|
1320 |
+
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
|
1321 |
+
)
|
1322 |
+
user_defined_symbols = [
|
1323 |
+
AddedToken(token, normalized=False, special=False) for token in proto.trainer_spec.user_defined_symbols
|
1324 |
+
]
|
1325 |
+
tokenizer.add_tokens(user_defined_symbols)
|
1326 |
+
return tokenizer
|
1327 |
+
|
1328 |
+
|
1329 |
+
class LlamaConverter(SpmConverter):
|
1330 |
+
handle_byte_fallback = True
|
1331 |
+
|
1332 |
+
def vocab(self, proto):
|
1333 |
+
vocab = [
|
1334 |
+
(self.original_tokenizer.convert_ids_to_tokens(0), 0.0),
|
1335 |
+
(self.original_tokenizer.convert_ids_to_tokens(1), 0.0),
|
1336 |
+
(self.original_tokenizer.convert_ids_to_tokens(2), 0.0),
|
1337 |
+
]
|
1338 |
+
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
|
1339 |
+
return vocab
|
1340 |
+
|
1341 |
+
def unk_id(self, proto):
|
1342 |
+
unk_id = 0
|
1343 |
+
return unk_id
|
1344 |
+
|
1345 |
+
def decoder(self, replacement, add_prefix_space):
|
1346 |
+
sequence = [
|
1347 |
+
decoders.Replace("▁", " "),
|
1348 |
+
decoders.ByteFallback(),
|
1349 |
+
decoders.Fuse(),
|
1350 |
+
]
|
1351 |
+
if add_prefix_space:
|
1352 |
+
sequence += [decoders.Strip(content=" ", left=1)]
|
1353 |
+
return decoders.Sequence(sequence)
|
1354 |
+
|
1355 |
+
def tokenizer(self, proto):
|
1356 |
+
model_type = proto.trainer_spec.model_type
|
1357 |
+
vocab_scores = self.vocab(proto)
|
1358 |
+
if model_type == 1:
|
1359 |
+
import tokenizers
|
1360 |
+
|
1361 |
+
if version.parse(tokenizers.__version__) < version.parse("0.14.0"):
|
1362 |
+
tokenizer = Tokenizer(Unigram(vocab_scores, 0))
|
1363 |
+
else:
|
1364 |
+
tokenizer = Tokenizer(Unigram(vocab_scores, 0, byte_fallback=True))
|
1365 |
+
|
1366 |
+
elif model_type == 2:
|
1367 |
+
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
|
1368 |
+
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
|
1369 |
+
tokenizer = Tokenizer(
|
1370 |
+
BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
|
1371 |
+
)
|
1372 |
+
tokenizer.add_special_tokens(
|
1373 |
+
[
|
1374 |
+
AddedToken(self.original_tokenizer.convert_ids_to_tokens(0), normalized=False, special=True),
|
1375 |
+
AddedToken(self.original_tokenizer.convert_ids_to_tokens(1), normalized=False, special=True),
|
1376 |
+
AddedToken(self.original_tokenizer.convert_ids_to_tokens(2), normalized=False, special=True),
|
1377 |
+
]
|
1378 |
+
)
|
1379 |
+
else:
|
1380 |
+
raise Exception(
|
1381 |
+
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
|
1382 |
+
)
|
1383 |
+
|
1384 |
+
return tokenizer
|
1385 |
+
|
1386 |
+
def normalizer(self, proto):
|
1387 |
+
sequence = []
|
1388 |
+
if hasattr(self.original_tokenizer, "add_prefix_space"):
|
1389 |
+
if self.original_tokenizer.add_prefix_space:
|
1390 |
+
sequence += [normalizers.Prepend(prepend="▁")]
|
1391 |
+
sequence += [normalizers.Replace(pattern=" ", content="▁")]
|
1392 |
+
return normalizers.Sequence(sequence)
|
1393 |
+
|
1394 |
+
def pre_tokenizer(self, replacement, add_prefix_space):
|
1395 |
+
return None
|
1396 |
+
|
1397 |
+
def post_processor(self):
|
1398 |
+
# the processor is defined in the LlamaTokenizerFast class.
|
1399 |
+
return None
|
1400 |
+
|
1401 |
+
|
1402 |
+
class MarkupLMConverter(Converter):
|
1403 |
+
def converted(self) -> Tokenizer:
|
1404 |
+
ot = self.original_tokenizer
|
1405 |
+
vocab = ot.encoder
|
1406 |
+
merges = list(ot.bpe_ranks.keys())
|
1407 |
+
|
1408 |
+
tokenizer = Tokenizer(
|
1409 |
+
BPE(
|
1410 |
+
vocab=vocab,
|
1411 |
+
merges=merges,
|
1412 |
+
dropout=None,
|
1413 |
+
continuing_subword_prefix="",
|
1414 |
+
end_of_word_suffix="",
|
1415 |
+
fuse_unk=False,
|
1416 |
+
unk_token=self.original_tokenizer.unk_token,
|
1417 |
+
)
|
1418 |
+
)
|
1419 |
+
|
1420 |
+
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=ot.add_prefix_space)
|
1421 |
+
tokenizer.decoder = decoders.ByteLevel()
|
1422 |
+
|
1423 |
+
cls = str(self.original_tokenizer.cls_token)
|
1424 |
+
sep = str(self.original_tokenizer.sep_token)
|
1425 |
+
cls_token_id = self.original_tokenizer.cls_token_id
|
1426 |
+
sep_token_id = self.original_tokenizer.sep_token_id
|
1427 |
+
|
1428 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
1429 |
+
single=f"{cls} $A {sep}",
|
1430 |
+
pair=f"{cls} $A {sep} $B {sep}",
|
1431 |
+
special_tokens=[
|
1432 |
+
(cls, cls_token_id),
|
1433 |
+
(sep, sep_token_id),
|
1434 |
+
],
|
1435 |
+
)
|
1436 |
+
|
1437 |
+
return tokenizer
|
1438 |
+
|
1439 |
+
|
1440 |
+
SLOW_TO_FAST_CONVERTERS = {
|
1441 |
+
"AlbertTokenizer": AlbertConverter,
|
1442 |
+
"BartTokenizer": RobertaConverter,
|
1443 |
+
"BarthezTokenizer": BarthezConverter,
|
1444 |
+
"BertTokenizer": BertConverter,
|
1445 |
+
"BigBirdTokenizer": BigBirdConverter,
|
1446 |
+
"BlenderbotTokenizer": BlenderbotConverter,
|
1447 |
+
"CamembertTokenizer": CamembertConverter,
|
1448 |
+
"CLIPTokenizer": CLIPConverter,
|
1449 |
+
"CodeGenTokenizer": GPT2Converter,
|
1450 |
+
"ConvBertTokenizer": BertConverter,
|
1451 |
+
"DebertaTokenizer": DebertaConverter,
|
1452 |
+
"DebertaV2Tokenizer": DebertaV2Converter,
|
1453 |
+
"DistilBertTokenizer": BertConverter,
|
1454 |
+
"DPRReaderTokenizer": BertConverter,
|
1455 |
+
"DPRQuestionEncoderTokenizer": BertConverter,
|
1456 |
+
"DPRContextEncoderTokenizer": BertConverter,
|
1457 |
+
"ElectraTokenizer": BertConverter,
|
1458 |
+
"FNetTokenizer": AlbertConverter,
|
1459 |
+
"FunnelTokenizer": FunnelConverter,
|
1460 |
+
"GPT2Tokenizer": GPT2Converter,
|
1461 |
+
"HerbertTokenizer": HerbertConverter,
|
1462 |
+
"LayoutLMTokenizer": BertConverter,
|
1463 |
+
"LayoutLMv2Tokenizer": BertConverter,
|
1464 |
+
"LayoutLMv3Tokenizer": RobertaConverter,
|
1465 |
+
"LayoutXLMTokenizer": XLMRobertaConverter,
|
1466 |
+
"LongformerTokenizer": RobertaConverter,
|
1467 |
+
"LEDTokenizer": RobertaConverter,
|
1468 |
+
"LxmertTokenizer": BertConverter,
|
1469 |
+
"MarkupLMTokenizer": MarkupLMConverter,
|
1470 |
+
"MBartTokenizer": MBartConverter,
|
1471 |
+
"MBart50Tokenizer": MBart50Converter,
|
1472 |
+
"MPNetTokenizer": MPNetConverter,
|
1473 |
+
"MobileBertTokenizer": BertConverter,
|
1474 |
+
"MvpTokenizer": RobertaConverter,
|
1475 |
+
"NllbTokenizer": NllbConverter,
|
1476 |
+
"OpenAIGPTTokenizer": OpenAIGPTConverter,
|
1477 |
+
"PegasusTokenizer": PegasusConverter,
|
1478 |
+
"Qwen2Tokenizer": Qwen2Converter,
|
1479 |
+
"RealmTokenizer": BertConverter,
|
1480 |
+
"ReformerTokenizer": ReformerConverter,
|
1481 |
+
"RemBertTokenizer": RemBertConverter,
|
1482 |
+
"RetriBertTokenizer": BertConverter,
|
1483 |
+
"RobertaTokenizer": RobertaConverter,
|
1484 |
+
"RoFormerTokenizer": RoFormerConverter,
|
1485 |
+
"SeamlessM4TTokenizer": SeamlessM4TConverter,
|
1486 |
+
"SqueezeBertTokenizer": BertConverter,
|
1487 |
+
"T5Tokenizer": T5Converter,
|
1488 |
+
"UdopTokenizer": UdopConverter,
|
1489 |
+
"WhisperTokenizer": WhisperConverter,
|
1490 |
+
"XLMRobertaTokenizer": XLMRobertaConverter,
|
1491 |
+
"XLNetTokenizer": XLNetConverter,
|
1492 |
+
"SplinterTokenizer": SplinterConverter,
|
1493 |
+
"XGLMTokenizer": XGLMConverter,
|
1494 |
+
"LlamaTokenizer": LlamaConverter,
|
1495 |
+
"CodeLlamaTokenizer": LlamaConverter,
|
1496 |
+
"GemmaTokenizer": GemmaConvert,
|
1497 |
+
}
|
1498 |
+
|
1499 |
+
|
1500 |
+
def convert_slow_tokenizer(transformer_tokenizer) -> Tokenizer:
|
1501 |
+
"""
|
1502 |
+
Utilities to convert a slow tokenizer instance in a fast tokenizer instance.
|
1503 |
+
|
1504 |
+
Args:
|
1505 |
+
transformer_tokenizer ([`~tokenization_utils_base.PreTrainedTokenizer`]):
|
1506 |
+
Instance of a slow tokenizer to convert in the backend tokenizer for
|
1507 |
+
[`~tokenization_utils_base.PreTrainedTokenizerFast`].
|
1508 |
+
|
1509 |
+
Return:
|
1510 |
+
A instance of [`~tokenizers.Tokenizer`] to be used as the backend tokenizer of a
|
1511 |
+
[`~tokenization_utils_base.PreTrainedTokenizerFast`]
|
1512 |
+
"""
|
1513 |
+
|
1514 |
+
tokenizer_class_name = transformer_tokenizer.__class__.__name__
|
1515 |
+
|
1516 |
+
if tokenizer_class_name not in SLOW_TO_FAST_CONVERTERS:
|
1517 |
+
raise ValueError(
|
1518 |
+
f"An instance of tokenizer class {tokenizer_class_name} cannot be converted in a Fast tokenizer instance."
|
1519 |
+
" No converter was found. Currently available slow->fast convertors:"
|
1520 |
+
f" {list(SLOW_TO_FAST_CONVERTERS.keys())}"
|
1521 |
+
)
|
1522 |
+
|
1523 |
+
converter_class = SLOW_TO_FAST_CONVERTERS[tokenizer_class_name]
|
1524 |
+
|
1525 |
+
return converter_class(transformer_tokenizer).converted()
|
env-llmeval/lib/python3.10/site-packages/transformers/convert_slow_tokenizers_checkpoints_to_fast.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Convert slow tokenizers checkpoints in fast (serialization format of the `tokenizers` library)"""
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import os
|
19 |
+
|
20 |
+
import transformers
|
21 |
+
|
22 |
+
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
|
23 |
+
from .utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logging.set_verbosity_info()
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
TOKENIZER_CLASSES = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS}
|
32 |
+
|
33 |
+
|
34 |
+
def convert_slow_checkpoint_to_fast(tokenizer_name, checkpoint_name, dump_path, force_download):
|
35 |
+
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
|
36 |
+
raise ValueError(f"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys())}.")
|
37 |
+
|
38 |
+
if tokenizer_name is None:
|
39 |
+
tokenizer_names = TOKENIZER_CLASSES
|
40 |
+
else:
|
41 |
+
tokenizer_names = {tokenizer_name: getattr(transformers, tokenizer_name + "Fast")}
|
42 |
+
|
43 |
+
logger.info(f"Loading tokenizer classes: {tokenizer_names}")
|
44 |
+
|
45 |
+
for tokenizer_name in tokenizer_names:
|
46 |
+
tokenizer_class = TOKENIZER_CLASSES[tokenizer_name]
|
47 |
+
|
48 |
+
add_prefix = True
|
49 |
+
if checkpoint_name is None:
|
50 |
+
checkpoint_names = list(tokenizer_class.max_model_input_sizes.keys())
|
51 |
+
else:
|
52 |
+
checkpoint_names = [checkpoint_name]
|
53 |
+
|
54 |
+
logger.info(f"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}")
|
55 |
+
|
56 |
+
for checkpoint in checkpoint_names:
|
57 |
+
logger.info(f"Loading {tokenizer_class.__class__.__name__} {checkpoint}")
|
58 |
+
|
59 |
+
# Load tokenizer
|
60 |
+
tokenizer = tokenizer_class.from_pretrained(checkpoint, force_download=force_download)
|
61 |
+
|
62 |
+
# Save fast tokenizer
|
63 |
+
logger.info(f"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}")
|
64 |
+
|
65 |
+
# For organization names we create sub-directories
|
66 |
+
if "/" in checkpoint:
|
67 |
+
checkpoint_directory, checkpoint_prefix_name = checkpoint.split("/")
|
68 |
+
dump_path_full = os.path.join(dump_path, checkpoint_directory)
|
69 |
+
elif add_prefix:
|
70 |
+
checkpoint_prefix_name = checkpoint
|
71 |
+
dump_path_full = dump_path
|
72 |
+
else:
|
73 |
+
checkpoint_prefix_name = None
|
74 |
+
dump_path_full = dump_path
|
75 |
+
|
76 |
+
logger.info(f"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}")
|
77 |
+
|
78 |
+
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values())[0]:
|
79 |
+
file_path = list(tokenizer.pretrained_vocab_files_map.values())[0][checkpoint]
|
80 |
+
next_char = file_path.split(checkpoint)[-1][0]
|
81 |
+
if next_char == "/":
|
82 |
+
dump_path_full = os.path.join(dump_path_full, checkpoint_prefix_name)
|
83 |
+
checkpoint_prefix_name = None
|
84 |
+
|
85 |
+
logger.info(f"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}")
|
86 |
+
|
87 |
+
file_names = tokenizer.save_pretrained(
|
88 |
+
dump_path_full, legacy_format=False, filename_prefix=checkpoint_prefix_name
|
89 |
+
)
|
90 |
+
logger.info(f"=> File names {file_names}")
|
91 |
+
|
92 |
+
for file_name in file_names:
|
93 |
+
if not file_name.endswith("tokenizer.json"):
|
94 |
+
os.remove(file_name)
|
95 |
+
logger.info(f"=> removing {file_name}")
|
96 |
+
|
97 |
+
|
98 |
+
if __name__ == "__main__":
|
99 |
+
parser = argparse.ArgumentParser()
|
100 |
+
# Required parameters
|
101 |
+
parser.add_argument(
|
102 |
+
"--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files."
|
103 |
+
)
|
104 |
+
parser.add_argument(
|
105 |
+
"--tokenizer_name",
|
106 |
+
default=None,
|
107 |
+
type=str,
|
108 |
+
help=(
|
109 |
+
f"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will "
|
110 |
+
"download and convert all the checkpoints from AWS."
|
111 |
+
),
|
112 |
+
)
|
113 |
+
parser.add_argument(
|
114 |
+
"--checkpoint_name",
|
115 |
+
default=None,
|
116 |
+
type=str,
|
117 |
+
help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.",
|
118 |
+
)
|
119 |
+
parser.add_argument(
|
120 |
+
"--force_download",
|
121 |
+
action="store_true",
|
122 |
+
help="Re-download checkpoints.",
|
123 |
+
)
|
124 |
+
args = parser.parse_args()
|
125 |
+
|
126 |
+
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
|
env-llmeval/lib/python3.10/site-packages/transformers/convert_tf_hub_seq_to_seq_bert_to_pytorch.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert Seq2Seq TF Hub checkpoint."""
|
16 |
+
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
|
20 |
+
from . import (
|
21 |
+
BertConfig,
|
22 |
+
BertGenerationConfig,
|
23 |
+
BertGenerationDecoder,
|
24 |
+
BertGenerationEncoder,
|
25 |
+
load_tf_weights_in_bert_generation,
|
26 |
+
logging,
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
logging.set_verbosity_info()
|
31 |
+
|
32 |
+
|
33 |
+
def convert_tf_checkpoint_to_pytorch(tf_hub_path, pytorch_dump_path, is_encoder_named_decoder, vocab_size, is_encoder):
|
34 |
+
# Initialise PyTorch model
|
35 |
+
bert_config = BertConfig.from_pretrained(
|
36 |
+
"google-bert/bert-large-cased",
|
37 |
+
vocab_size=vocab_size,
|
38 |
+
max_position_embeddings=512,
|
39 |
+
is_decoder=True,
|
40 |
+
add_cross_attention=True,
|
41 |
+
)
|
42 |
+
bert_config_dict = bert_config.to_dict()
|
43 |
+
del bert_config_dict["type_vocab_size"]
|
44 |
+
config = BertGenerationConfig(**bert_config_dict)
|
45 |
+
if is_encoder:
|
46 |
+
model = BertGenerationEncoder(config)
|
47 |
+
else:
|
48 |
+
model = BertGenerationDecoder(config)
|
49 |
+
print(f"Building PyTorch model from configuration: {config}")
|
50 |
+
|
51 |
+
# Load weights from tf checkpoint
|
52 |
+
load_tf_weights_in_bert_generation(
|
53 |
+
model,
|
54 |
+
tf_hub_path,
|
55 |
+
model_class="bert",
|
56 |
+
is_encoder_named_decoder=is_encoder_named_decoder,
|
57 |
+
is_encoder=is_encoder,
|
58 |
+
)
|
59 |
+
|
60 |
+
# Save pytorch-model
|
61 |
+
print(f"Save PyTorch model and config to {pytorch_dump_path}")
|
62 |
+
model.save_pretrained(pytorch_dump_path)
|
63 |
+
|
64 |
+
|
65 |
+
if __name__ == "__main__":
|
66 |
+
parser = argparse.ArgumentParser()
|
67 |
+
# Required parameters
|
68 |
+
parser.add_argument(
|
69 |
+
"--tf_hub_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
|
70 |
+
)
|
71 |
+
parser.add_argument(
|
72 |
+
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
|
73 |
+
)
|
74 |
+
parser.add_argument(
|
75 |
+
"--is_encoder_named_decoder",
|
76 |
+
action="store_true",
|
77 |
+
help="If decoder has to be renamed to encoder in PyTorch model.",
|
78 |
+
)
|
79 |
+
parser.add_argument("--is_encoder", action="store_true", help="If model is an encoder.")
|
80 |
+
parser.add_argument("--vocab_size", default=50358, type=int, help="Vocab size of model")
|
81 |
+
args = parser.parse_args()
|
82 |
+
convert_tf_checkpoint_to_pytorch(
|
83 |
+
args.tf_hub_path,
|
84 |
+
args.pytorch_dump_path,
|
85 |
+
args.is_encoder_named_decoder,
|
86 |
+
args.vocab_size,
|
87 |
+
is_encoder=args.is_encoder,
|
88 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/dependency_versions_table.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# THIS FILE HAS BEEN AUTOGENERATED. To update:
|
2 |
+
# 1. modify the `_deps` dict in setup.py
|
3 |
+
# 2. run `make deps_table_update``
|
4 |
+
deps = {
|
5 |
+
"Pillow": "Pillow>=10.0.1,<=15.0",
|
6 |
+
"accelerate": "accelerate>=0.21.0",
|
7 |
+
"av": "av==9.2.0",
|
8 |
+
"beautifulsoup4": "beautifulsoup4",
|
9 |
+
"codecarbon": "codecarbon==1.2.0",
|
10 |
+
"cookiecutter": "cookiecutter==1.7.3",
|
11 |
+
"dataclasses": "dataclasses",
|
12 |
+
"datasets": "datasets!=2.5.0",
|
13 |
+
"decord": "decord==0.6.0",
|
14 |
+
"deepspeed": "deepspeed>=0.9.3",
|
15 |
+
"diffusers": "diffusers",
|
16 |
+
"dill": "dill<0.3.5",
|
17 |
+
"evaluate": "evaluate>=0.2.0",
|
18 |
+
"faiss-cpu": "faiss-cpu",
|
19 |
+
"fastapi": "fastapi",
|
20 |
+
"filelock": "filelock",
|
21 |
+
"flax": "flax>=0.4.1,<=0.7.0",
|
22 |
+
"fsspec": "fsspec<2023.10.0",
|
23 |
+
"ftfy": "ftfy",
|
24 |
+
"fugashi": "fugashi>=1.0",
|
25 |
+
"GitPython": "GitPython<3.1.19",
|
26 |
+
"hf-doc-builder": "hf-doc-builder>=0.3.0",
|
27 |
+
"huggingface-hub": "huggingface-hub>=0.19.3,<1.0",
|
28 |
+
"importlib_metadata": "importlib_metadata",
|
29 |
+
"ipadic": "ipadic>=1.0.0,<2.0",
|
30 |
+
"isort": "isort>=5.5.4",
|
31 |
+
"jax": "jax>=0.4.1,<=0.4.13",
|
32 |
+
"jaxlib": "jaxlib>=0.4.1,<=0.4.13",
|
33 |
+
"jieba": "jieba",
|
34 |
+
"kenlm": "kenlm",
|
35 |
+
"keras": "keras<2.16",
|
36 |
+
"keras-nlp": "keras-nlp>=0.3.1",
|
37 |
+
"librosa": "librosa",
|
38 |
+
"nltk": "nltk",
|
39 |
+
"natten": "natten>=0.14.6,<0.15.0",
|
40 |
+
"numpy": "numpy>=1.17",
|
41 |
+
"onnxconverter-common": "onnxconverter-common",
|
42 |
+
"onnxruntime-tools": "onnxruntime-tools>=1.4.2",
|
43 |
+
"onnxruntime": "onnxruntime>=1.4.0",
|
44 |
+
"opencv-python": "opencv-python",
|
45 |
+
"optuna": "optuna",
|
46 |
+
"optax": "optax>=0.0.8,<=0.1.4",
|
47 |
+
"packaging": "packaging>=20.0",
|
48 |
+
"parameterized": "parameterized",
|
49 |
+
"phonemizer": "phonemizer",
|
50 |
+
"protobuf": "protobuf",
|
51 |
+
"psutil": "psutil",
|
52 |
+
"pyyaml": "pyyaml>=5.1",
|
53 |
+
"pydantic": "pydantic",
|
54 |
+
"pytest": "pytest>=7.2.0,<8.0.0",
|
55 |
+
"pytest-timeout": "pytest-timeout",
|
56 |
+
"pytest-xdist": "pytest-xdist",
|
57 |
+
"python": "python>=3.8.0",
|
58 |
+
"ray[tune]": "ray[tune]>=2.7.0",
|
59 |
+
"regex": "regex!=2019.12.17",
|
60 |
+
"requests": "requests",
|
61 |
+
"rhoknp": "rhoknp>=1.1.0,<1.3.1",
|
62 |
+
"rjieba": "rjieba",
|
63 |
+
"rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1",
|
64 |
+
"ruff": "ruff==0.1.5",
|
65 |
+
"sacrebleu": "sacrebleu>=1.4.12,<2.0.0",
|
66 |
+
"sacremoses": "sacremoses",
|
67 |
+
"safetensors": "safetensors>=0.4.1",
|
68 |
+
"sagemaker": "sagemaker>=2.31.0",
|
69 |
+
"scikit-learn": "scikit-learn",
|
70 |
+
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
|
71 |
+
"sigopt": "sigopt",
|
72 |
+
"starlette": "starlette",
|
73 |
+
"sudachipy": "sudachipy>=0.6.6",
|
74 |
+
"sudachidict_core": "sudachidict_core>=20220729",
|
75 |
+
"tensorboard": "tensorboard",
|
76 |
+
"tensorflow-cpu": "tensorflow-cpu>=2.6,<2.16",
|
77 |
+
"tensorflow": "tensorflow>=2.6,<2.16",
|
78 |
+
"tensorflow-text": "tensorflow-text<2.16",
|
79 |
+
"tf2onnx": "tf2onnx",
|
80 |
+
"timeout-decorator": "timeout-decorator",
|
81 |
+
"timm": "timm",
|
82 |
+
"tokenizers": "tokenizers>=0.14,<0.19",
|
83 |
+
"torch": "torch",
|
84 |
+
"torchaudio": "torchaudio",
|
85 |
+
"torchvision": "torchvision",
|
86 |
+
"pyctcdecode": "pyctcdecode>=0.4.0",
|
87 |
+
"tqdm": "tqdm>=4.27",
|
88 |
+
"unidic": "unidic>=1.0.2",
|
89 |
+
"unidic_lite": "unidic_lite>=1.0.7",
|
90 |
+
"urllib3": "urllib3<2.0.0",
|
91 |
+
"uvicorn": "uvicorn",
|
92 |
+
}
|
env-llmeval/lib/python3.10/site-packages/transformers/feature_extraction_sequence_utils.py
ADDED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Sequence feature extraction class for common feature extractors to preprocess sequences.
|
17 |
+
"""
|
18 |
+
from typing import Dict, List, Optional, Union
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
|
22 |
+
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
|
23 |
+
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
class SequenceFeatureExtractor(FeatureExtractionMixin):
|
30 |
+
"""
|
31 |
+
This is a general feature extraction class for speech recognition.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
feature_size (`int`):
|
35 |
+
The feature dimension of the extracted features.
|
36 |
+
sampling_rate (`int`):
|
37 |
+
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
|
38 |
+
padding_value (`float`):
|
39 |
+
The value that is used to fill the padding values / vectors.
|
40 |
+
"""
|
41 |
+
|
42 |
+
def __init__(self, feature_size: int, sampling_rate: int, padding_value: float, **kwargs):
|
43 |
+
self.feature_size = feature_size
|
44 |
+
self.sampling_rate = sampling_rate
|
45 |
+
self.padding_value = padding_value
|
46 |
+
|
47 |
+
self.padding_side = kwargs.pop("padding_side", "right")
|
48 |
+
self.return_attention_mask = kwargs.pop("return_attention_mask", True)
|
49 |
+
|
50 |
+
super().__init__(**kwargs)
|
51 |
+
|
52 |
+
def pad(
|
53 |
+
self,
|
54 |
+
processed_features: Union[
|
55 |
+
BatchFeature,
|
56 |
+
List[BatchFeature],
|
57 |
+
Dict[str, BatchFeature],
|
58 |
+
Dict[str, List[BatchFeature]],
|
59 |
+
List[Dict[str, BatchFeature]],
|
60 |
+
],
|
61 |
+
padding: Union[bool, str, PaddingStrategy] = True,
|
62 |
+
max_length: Optional[int] = None,
|
63 |
+
truncation: bool = False,
|
64 |
+
pad_to_multiple_of: Optional[int] = None,
|
65 |
+
return_attention_mask: Optional[bool] = None,
|
66 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
67 |
+
) -> BatchFeature:
|
68 |
+
"""
|
69 |
+
Pad input values / input vectors or a batch of input values / input vectors up to predefined length or to the
|
70 |
+
max sequence length in the batch.
|
71 |
+
|
72 |
+
Padding side (left/right) padding values are defined at the feature extractor level (with `self.padding_side`,
|
73 |
+
`self.padding_value`)
|
74 |
+
|
75 |
+
<Tip>
|
76 |
+
|
77 |
+
If the `processed_features` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
|
78 |
+
result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of
|
79 |
+
PyTorch tensors, you will lose the specific device of your tensors however.
|
80 |
+
|
81 |
+
</Tip>
|
82 |
+
|
83 |
+
Args:
|
84 |
+
processed_features ([`BatchFeature`], list of [`BatchFeature`], `Dict[str, List[float]]`, `Dict[str, List[List[float]]` or `List[Dict[str, List[float]]]`):
|
85 |
+
Processed inputs. Can represent one input ([`BatchFeature`] or `Dict[str, List[float]]`) or a batch of
|
86 |
+
input values / vectors (list of [`BatchFeature`], *Dict[str, List[List[float]]]* or *List[Dict[str,
|
87 |
+
List[float]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader
|
88 |
+
collate function.
|
89 |
+
|
90 |
+
Instead of `List[float]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors),
|
91 |
+
see the note above for the return type.
|
92 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
|
93 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
94 |
+
index) among:
|
95 |
+
|
96 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
97 |
+
sequence if provided).
|
98 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
99 |
+
acceptable input length for the model if that argument is not provided.
|
100 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
101 |
+
lengths).
|
102 |
+
max_length (`int`, *optional*):
|
103 |
+
Maximum length of the returned list and optionally padding length (see above).
|
104 |
+
truncation (`bool`):
|
105 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
106 |
+
pad_to_multiple_of (`int`, *optional*):
|
107 |
+
If set will pad the sequence to a multiple of the provided value.
|
108 |
+
|
109 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
110 |
+
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
|
111 |
+
return_attention_mask (`bool`, *optional*):
|
112 |
+
Whether to return the attention mask. If left to the default, will return the attention mask according
|
113 |
+
to the specific feature_extractor's default.
|
114 |
+
|
115 |
+
[What are attention masks?](../glossary#attention-mask)
|
116 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
117 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
118 |
+
|
119 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
120 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
121 |
+
- `'np'`: Return Numpy `np.ndarray` objects.
|
122 |
+
"""
|
123 |
+
# If we have a list of dicts, let's convert it in a dict of lists
|
124 |
+
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
|
125 |
+
if isinstance(processed_features, (list, tuple)) and isinstance(processed_features[0], (dict, BatchFeature)):
|
126 |
+
processed_features = {
|
127 |
+
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
|
128 |
+
}
|
129 |
+
|
130 |
+
# The model's main input name, usually `input_values`, has be passed for padding
|
131 |
+
if self.model_input_names[0] not in processed_features:
|
132 |
+
raise ValueError(
|
133 |
+
"You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`"
|
134 |
+
f" to this method that includes {self.model_input_names[0]}, but you provided"
|
135 |
+
f" {list(processed_features.keys())}"
|
136 |
+
)
|
137 |
+
|
138 |
+
required_input = processed_features[self.model_input_names[0]]
|
139 |
+
return_attention_mask = (
|
140 |
+
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
|
141 |
+
)
|
142 |
+
|
143 |
+
if len(required_input) == 0:
|
144 |
+
if return_attention_mask:
|
145 |
+
processed_features["attention_mask"] = []
|
146 |
+
return processed_features
|
147 |
+
|
148 |
+
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
|
149 |
+
# and rebuild them afterwards if no return_tensors is specified
|
150 |
+
# Note that we lose the specific device the tensor may be on for PyTorch
|
151 |
+
|
152 |
+
first_element = required_input[0]
|
153 |
+
if isinstance(first_element, (list, tuple)):
|
154 |
+
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
|
155 |
+
index = 0
|
156 |
+
while len(required_input[index]) == 0:
|
157 |
+
index += 1
|
158 |
+
if index < len(required_input):
|
159 |
+
first_element = required_input[index][0]
|
160 |
+
|
161 |
+
if return_tensors is None:
|
162 |
+
if is_tf_tensor(first_element):
|
163 |
+
return_tensors = "tf"
|
164 |
+
elif is_torch_tensor(first_element):
|
165 |
+
return_tensors = "pt"
|
166 |
+
elif isinstance(first_element, (int, float, list, tuple, np.ndarray)):
|
167 |
+
return_tensors = "np"
|
168 |
+
else:
|
169 |
+
raise ValueError(
|
170 |
+
f"type of {first_element} unknown: {type(first_element)}. "
|
171 |
+
"Should be one of a python, numpy, pytorch or tensorflow object."
|
172 |
+
)
|
173 |
+
|
174 |
+
for key, value in processed_features.items():
|
175 |
+
if isinstance(value[0], (int, float)):
|
176 |
+
processed_features[key] = to_numpy(value)
|
177 |
+
else:
|
178 |
+
processed_features[key] = [to_numpy(v) for v in value]
|
179 |
+
|
180 |
+
# Convert padding_strategy in PaddingStrategy
|
181 |
+
padding_strategy = self._get_padding_strategies(padding=padding, max_length=max_length)
|
182 |
+
|
183 |
+
required_input = processed_features[self.model_input_names[0]]
|
184 |
+
|
185 |
+
batch_size = len(required_input)
|
186 |
+
if not all(len(v) == batch_size for v in processed_features.values()):
|
187 |
+
raise ValueError("Some items in the output dictionary have a different batch size than others.")
|
188 |
+
|
189 |
+
truncated_inputs = []
|
190 |
+
for i in range(batch_size):
|
191 |
+
inputs = {k: v[i] for k, v in processed_features.items()}
|
192 |
+
# truncation
|
193 |
+
inputs_slice = self._truncate(
|
194 |
+
inputs,
|
195 |
+
max_length=max_length,
|
196 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
197 |
+
truncation=truncation,
|
198 |
+
)
|
199 |
+
truncated_inputs.append(inputs_slice)
|
200 |
+
|
201 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
202 |
+
# make sure that `max_length` cannot be longer than the longest truncated length
|
203 |
+
max_length = max(len(input_slice[self.model_input_names[0]]) for input_slice in truncated_inputs)
|
204 |
+
padding_strategy = PaddingStrategy.MAX_LENGTH
|
205 |
+
|
206 |
+
batch_outputs = {}
|
207 |
+
for i in range(batch_size):
|
208 |
+
# padding
|
209 |
+
outputs = self._pad(
|
210 |
+
truncated_inputs[i],
|
211 |
+
max_length=max_length,
|
212 |
+
padding_strategy=padding_strategy,
|
213 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
214 |
+
return_attention_mask=return_attention_mask,
|
215 |
+
)
|
216 |
+
|
217 |
+
for key, value in outputs.items():
|
218 |
+
if key not in batch_outputs:
|
219 |
+
batch_outputs[key] = []
|
220 |
+
if value.dtype is np.dtype(np.float64):
|
221 |
+
value = value.astype(np.float32)
|
222 |
+
batch_outputs[key].append(value)
|
223 |
+
|
224 |
+
return BatchFeature(batch_outputs, tensor_type=return_tensors)
|
225 |
+
|
226 |
+
def _pad(
|
227 |
+
self,
|
228 |
+
processed_features: Union[Dict[str, np.ndarray], BatchFeature],
|
229 |
+
max_length: Optional[int] = None,
|
230 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
231 |
+
pad_to_multiple_of: Optional[int] = None,
|
232 |
+
return_attention_mask: Optional[bool] = None,
|
233 |
+
) -> dict:
|
234 |
+
"""
|
235 |
+
Pad inputs (on left/right and up to predefined length or max length in the batch)
|
236 |
+
|
237 |
+
Args:
|
238 |
+
processed_features (`Union[Dict[str, np.ndarray], BatchFeature]`):
|
239 |
+
Dictionary of input values (`np.ndarray[float]`) / input vectors (`List[np.ndarray[float]]`) or batch
|
240 |
+
of inputs values (`List[np.ndarray[int]]`) / input vectors (`List[np.ndarray[int]]`)
|
241 |
+
max_length (`int`, *optional*):
|
242 |
+
Maximum length of the returned list and optionally padding length (see below)
|
243 |
+
padding_strategy (`PaddingStrategy`, *optional*, default to `PaddingStrategy.DO_NOT_PAD`):
|
244 |
+
PaddingStrategy to use for padding.
|
245 |
+
|
246 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
247 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
248 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
249 |
+
The feature_extractor padding sides are defined in self.padding_side:
|
250 |
+
|
251 |
+
- 'left': pads on the left of the sequences
|
252 |
+
- 'right': pads on the right of the sequences
|
253 |
+
pad_to_multiple_of (`int`, *optional*):
|
254 |
+
Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to
|
255 |
+
enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs
|
256 |
+
which benefit from having sequence lengths be a multiple of 128.
|
257 |
+
return_attention_mask (`bool`, *optional*):
|
258 |
+
Set to False to avoid returning attention mask (default: set to model specifics)
|
259 |
+
"""
|
260 |
+
required_input = processed_features[self.model_input_names[0]]
|
261 |
+
|
262 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
263 |
+
max_length = len(required_input)
|
264 |
+
|
265 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
266 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
267 |
+
|
268 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) < max_length
|
269 |
+
|
270 |
+
if return_attention_mask and "attention_mask" not in processed_features:
|
271 |
+
processed_features["attention_mask"] = np.ones(len(required_input), dtype=np.int32)
|
272 |
+
|
273 |
+
if needs_to_be_padded:
|
274 |
+
difference = max_length - len(required_input)
|
275 |
+
if self.padding_side == "right":
|
276 |
+
if return_attention_mask:
|
277 |
+
processed_features["attention_mask"] = np.pad(
|
278 |
+
processed_features["attention_mask"], (0, difference)
|
279 |
+
)
|
280 |
+
padding_shape = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
|
281 |
+
processed_features[self.model_input_names[0]] = np.pad(
|
282 |
+
required_input, padding_shape, "constant", constant_values=self.padding_value
|
283 |
+
)
|
284 |
+
elif self.padding_side == "left":
|
285 |
+
if return_attention_mask:
|
286 |
+
processed_features["attention_mask"] = np.pad(
|
287 |
+
processed_features["attention_mask"], (difference, 0)
|
288 |
+
)
|
289 |
+
padding_shape = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
|
290 |
+
processed_features[self.model_input_names[0]] = np.pad(
|
291 |
+
required_input, padding_shape, "constant", constant_values=self.padding_value
|
292 |
+
)
|
293 |
+
else:
|
294 |
+
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
295 |
+
|
296 |
+
return processed_features
|
297 |
+
|
298 |
+
def _truncate(
|
299 |
+
self,
|
300 |
+
processed_features: Union[Dict[str, np.ndarray], BatchFeature],
|
301 |
+
max_length: Optional[int] = None,
|
302 |
+
pad_to_multiple_of: Optional[int] = None,
|
303 |
+
truncation: Optional[bool] = None,
|
304 |
+
):
|
305 |
+
"""
|
306 |
+
Truncate inputs to predefined length or max length in the batch
|
307 |
+
|
308 |
+
Args:
|
309 |
+
processed_features(`Union[Dict[str, np.ndarray], BatchFeature]`):
|
310 |
+
Dictionary of input values (`np.ndarray[float]`) / input vectors (`List[np.ndarray[float]]`) or batch
|
311 |
+
of inputs values (`List[np.ndarray[int]]`) / input vectors (`List[np.ndarray[int]]`)
|
312 |
+
max_length (`int`, *optional*):
|
313 |
+
maximum length of the returned list and optionally padding length (see below)
|
314 |
+
pad_to_multiple_of (`int`, *optional*) :
|
315 |
+
Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to
|
316 |
+
enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs
|
317 |
+
which benefit from having sequence lengths be a multiple of 128.
|
318 |
+
truncation (`bool`, *optional*):
|
319 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
320 |
+
"""
|
321 |
+
if not truncation:
|
322 |
+
return processed_features
|
323 |
+
elif truncation and max_length is None:
|
324 |
+
raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined.")
|
325 |
+
|
326 |
+
required_input = processed_features[self.model_input_names[0]]
|
327 |
+
|
328 |
+
# find `max_length` that fits `pad_to_multiple_of`
|
329 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
330 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
331 |
+
|
332 |
+
needs_to_be_truncated = len(required_input) > max_length
|
333 |
+
|
334 |
+
if needs_to_be_truncated:
|
335 |
+
processed_features[self.model_input_names[0]] = processed_features[self.model_input_names[0]][:max_length]
|
336 |
+
if "attention_mask" in processed_features:
|
337 |
+
processed_features["attention_mask"] = processed_features["attention_mask"][:max_length]
|
338 |
+
|
339 |
+
return processed_features
|
340 |
+
|
341 |
+
def _get_padding_strategies(self, padding=False, max_length=None):
|
342 |
+
"""
|
343 |
+
Find the correct padding strategy
|
344 |
+
"""
|
345 |
+
|
346 |
+
# Get padding strategy
|
347 |
+
if padding is not False:
|
348 |
+
if padding is True:
|
349 |
+
padding_strategy = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
|
350 |
+
elif not isinstance(padding, PaddingStrategy):
|
351 |
+
padding_strategy = PaddingStrategy(padding)
|
352 |
+
elif isinstance(padding, PaddingStrategy):
|
353 |
+
padding_strategy = padding
|
354 |
+
else:
|
355 |
+
padding_strategy = PaddingStrategy.DO_NOT_PAD
|
356 |
+
|
357 |
+
# Set max length if needed
|
358 |
+
if max_length is None:
|
359 |
+
if padding_strategy == PaddingStrategy.MAX_LENGTH:
|
360 |
+
raise ValueError(
|
361 |
+
f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined"
|
362 |
+
)
|
363 |
+
|
364 |
+
# Test if we have a padding value
|
365 |
+
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
|
366 |
+
raise ValueError(
|
367 |
+
"Asking to pad but the feature_extractor does not have a padding value. Please select a value to use"
|
368 |
+
" as `padding_value`. For example: `feature_extractor.padding_value = 0.0`."
|
369 |
+
)
|
370 |
+
|
371 |
+
return padding_strategy
|
env-llmeval/lib/python3.10/site-packages/transformers/file_utils.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""
|
15 |
+
File utilities: utilities related to download and cache models
|
16 |
+
|
17 |
+
This module should not be update anymore and is only left for backward compatibility.
|
18 |
+
"""
|
19 |
+
|
20 |
+
from huggingface_hub import get_full_repo_name # for backward compatibility
|
21 |
+
from huggingface_hub.constants import HF_HUB_DISABLE_TELEMETRY as DISABLE_TELEMETRY # for backward compatibility
|
22 |
+
|
23 |
+
from . import __version__
|
24 |
+
|
25 |
+
# Backward compatibility imports, to make sure all those objects can be found in file_utils
|
26 |
+
from .utils import (
|
27 |
+
CLOUDFRONT_DISTRIB_PREFIX,
|
28 |
+
CONFIG_NAME,
|
29 |
+
DUMMY_INPUTS,
|
30 |
+
DUMMY_MASK,
|
31 |
+
ENV_VARS_TRUE_AND_AUTO_VALUES,
|
32 |
+
ENV_VARS_TRUE_VALUES,
|
33 |
+
FEATURE_EXTRACTOR_NAME,
|
34 |
+
FLAX_WEIGHTS_NAME,
|
35 |
+
HF_MODULES_CACHE,
|
36 |
+
HUGGINGFACE_CO_PREFIX,
|
37 |
+
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
|
38 |
+
MODEL_CARD_NAME,
|
39 |
+
MULTIPLE_CHOICE_DUMMY_INPUTS,
|
40 |
+
PYTORCH_PRETRAINED_BERT_CACHE,
|
41 |
+
PYTORCH_TRANSFORMERS_CACHE,
|
42 |
+
S3_BUCKET_PREFIX,
|
43 |
+
SENTENCEPIECE_UNDERLINE,
|
44 |
+
SPIECE_UNDERLINE,
|
45 |
+
TF2_WEIGHTS_NAME,
|
46 |
+
TF_WEIGHTS_NAME,
|
47 |
+
TORCH_FX_REQUIRED_VERSION,
|
48 |
+
TRANSFORMERS_CACHE,
|
49 |
+
TRANSFORMERS_DYNAMIC_MODULE_NAME,
|
50 |
+
USE_JAX,
|
51 |
+
USE_TF,
|
52 |
+
USE_TORCH,
|
53 |
+
WEIGHTS_INDEX_NAME,
|
54 |
+
WEIGHTS_NAME,
|
55 |
+
ContextManagers,
|
56 |
+
DummyObject,
|
57 |
+
EntryNotFoundError,
|
58 |
+
ExplicitEnum,
|
59 |
+
ModelOutput,
|
60 |
+
PaddingStrategy,
|
61 |
+
PushToHubMixin,
|
62 |
+
RepositoryNotFoundError,
|
63 |
+
RevisionNotFoundError,
|
64 |
+
TensorType,
|
65 |
+
_LazyModule,
|
66 |
+
add_code_sample_docstrings,
|
67 |
+
add_end_docstrings,
|
68 |
+
add_start_docstrings,
|
69 |
+
add_start_docstrings_to_model_forward,
|
70 |
+
cached_property,
|
71 |
+
copy_func,
|
72 |
+
default_cache_path,
|
73 |
+
define_sagemaker_information,
|
74 |
+
get_cached_models,
|
75 |
+
get_file_from_repo,
|
76 |
+
get_torch_version,
|
77 |
+
has_file,
|
78 |
+
http_user_agent,
|
79 |
+
is_apex_available,
|
80 |
+
is_bs4_available,
|
81 |
+
is_coloredlogs_available,
|
82 |
+
is_datasets_available,
|
83 |
+
is_detectron2_available,
|
84 |
+
is_faiss_available,
|
85 |
+
is_flax_available,
|
86 |
+
is_ftfy_available,
|
87 |
+
is_g2p_en_available,
|
88 |
+
is_in_notebook,
|
89 |
+
is_ipex_available,
|
90 |
+
is_librosa_available,
|
91 |
+
is_offline_mode,
|
92 |
+
is_onnx_available,
|
93 |
+
is_pandas_available,
|
94 |
+
is_phonemizer_available,
|
95 |
+
is_protobuf_available,
|
96 |
+
is_psutil_available,
|
97 |
+
is_py3nvml_available,
|
98 |
+
is_pyctcdecode_available,
|
99 |
+
is_pytesseract_available,
|
100 |
+
is_pytorch_quantization_available,
|
101 |
+
is_rjieba_available,
|
102 |
+
is_sagemaker_dp_enabled,
|
103 |
+
is_sagemaker_mp_enabled,
|
104 |
+
is_scipy_available,
|
105 |
+
is_sentencepiece_available,
|
106 |
+
is_seqio_available,
|
107 |
+
is_sklearn_available,
|
108 |
+
is_soundfile_availble,
|
109 |
+
is_spacy_available,
|
110 |
+
is_speech_available,
|
111 |
+
is_tensor,
|
112 |
+
is_tensorflow_probability_available,
|
113 |
+
is_tf2onnx_available,
|
114 |
+
is_tf_available,
|
115 |
+
is_timm_available,
|
116 |
+
is_tokenizers_available,
|
117 |
+
is_torch_available,
|
118 |
+
is_torch_bf16_available,
|
119 |
+
is_torch_cuda_available,
|
120 |
+
is_torch_fx_available,
|
121 |
+
is_torch_fx_proxy,
|
122 |
+
is_torch_mps_available,
|
123 |
+
is_torch_tf32_available,
|
124 |
+
is_torch_xla_available,
|
125 |
+
is_torchaudio_available,
|
126 |
+
is_training_run_on_sagemaker,
|
127 |
+
is_vision_available,
|
128 |
+
replace_return_docstrings,
|
129 |
+
requires_backends,
|
130 |
+
to_numpy,
|
131 |
+
to_py_obj,
|
132 |
+
torch_only_method,
|
133 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/generation_flax_utils.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The Google AI Flax Team Authors, and The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
|
19 |
+
from .generation import FlaxGenerationMixin
|
20 |
+
|
21 |
+
|
22 |
+
class FlaxGenerationMixin(FlaxGenerationMixin):
|
23 |
+
# warning at import time
|
24 |
+
warnings.warn(
|
25 |
+
"Importing `FlaxGenerationMixin` from `src/transformers/generation_flax_utils.py` is deprecated and will "
|
26 |
+
"be removed in Transformers v4.40. Import as `from transformers import FlaxGenerationMixin` instead.",
|
27 |
+
FutureWarning,
|
28 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/hf_argparser.py
ADDED
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import dataclasses
|
16 |
+
import json
|
17 |
+
import sys
|
18 |
+
import types
|
19 |
+
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError
|
20 |
+
from copy import copy
|
21 |
+
from enum import Enum
|
22 |
+
from inspect import isclass
|
23 |
+
from pathlib import Path
|
24 |
+
from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints
|
25 |
+
|
26 |
+
import yaml
|
27 |
+
|
28 |
+
|
29 |
+
DataClass = NewType("DataClass", Any)
|
30 |
+
DataClassType = NewType("DataClassType", Any)
|
31 |
+
|
32 |
+
|
33 |
+
# From https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
|
34 |
+
def string_to_bool(v):
|
35 |
+
if isinstance(v, bool):
|
36 |
+
return v
|
37 |
+
if v.lower() in ("yes", "true", "t", "y", "1"):
|
38 |
+
return True
|
39 |
+
elif v.lower() in ("no", "false", "f", "n", "0"):
|
40 |
+
return False
|
41 |
+
else:
|
42 |
+
raise ArgumentTypeError(
|
43 |
+
f"Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive)."
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
+
def make_choice_type_function(choices: list) -> Callable[[str], Any]:
|
48 |
+
"""
|
49 |
+
Creates a mapping function from each choices string representation to the actual value. Used to support multiple
|
50 |
+
value types for a single argument.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
choices (list): List of choices.
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
Callable[[str], Any]: Mapping function from string representation to actual value for each choice.
|
57 |
+
"""
|
58 |
+
str_to_choice = {str(choice): choice for choice in choices}
|
59 |
+
return lambda arg: str_to_choice.get(arg, arg)
|
60 |
+
|
61 |
+
|
62 |
+
def HfArg(
|
63 |
+
*,
|
64 |
+
aliases: Union[str, List[str]] = None,
|
65 |
+
help: str = None,
|
66 |
+
default: Any = dataclasses.MISSING,
|
67 |
+
default_factory: Callable[[], Any] = dataclasses.MISSING,
|
68 |
+
metadata: dict = None,
|
69 |
+
**kwargs,
|
70 |
+
) -> dataclasses.Field:
|
71 |
+
"""Argument helper enabling a concise syntax to create dataclass fields for parsing with `HfArgumentParser`.
|
72 |
+
|
73 |
+
Example comparing the use of `HfArg` and `dataclasses.field`:
|
74 |
+
```
|
75 |
+
@dataclass
|
76 |
+
class Args:
|
77 |
+
regular_arg: str = dataclasses.field(default="Huggingface", metadata={"aliases": ["--example", "-e"], "help": "This syntax could be better!"})
|
78 |
+
hf_arg: str = HfArg(default="Huggingface", aliases=["--example", "-e"], help="What a nice syntax!")
|
79 |
+
```
|
80 |
+
|
81 |
+
Args:
|
82 |
+
aliases (Union[str, List[str]], optional):
|
83 |
+
Single string or list of strings of aliases to pass on to argparse, e.g. `aliases=["--example", "-e"]`.
|
84 |
+
Defaults to None.
|
85 |
+
help (str, optional): Help string to pass on to argparse that can be displayed with --help. Defaults to None.
|
86 |
+
default (Any, optional):
|
87 |
+
Default value for the argument. If not default or default_factory is specified, the argument is required.
|
88 |
+
Defaults to dataclasses.MISSING.
|
89 |
+
default_factory (Callable[[], Any], optional):
|
90 |
+
The default_factory is a 0-argument function called to initialize a field's value. It is useful to provide
|
91 |
+
default values for mutable types, e.g. lists: `default_factory=list`. Mutually exclusive with `default=`.
|
92 |
+
Defaults to dataclasses.MISSING.
|
93 |
+
metadata (dict, optional): Further metadata to pass on to `dataclasses.field`. Defaults to None.
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
Field: A `dataclasses.Field` with the desired properties.
|
97 |
+
"""
|
98 |
+
if metadata is None:
|
99 |
+
# Important, don't use as default param in function signature because dict is mutable and shared across function calls
|
100 |
+
metadata = {}
|
101 |
+
if aliases is not None:
|
102 |
+
metadata["aliases"] = aliases
|
103 |
+
if help is not None:
|
104 |
+
metadata["help"] = help
|
105 |
+
|
106 |
+
return dataclasses.field(metadata=metadata, default=default, default_factory=default_factory, **kwargs)
|
107 |
+
|
108 |
+
|
109 |
+
class HfArgumentParser(ArgumentParser):
|
110 |
+
"""
|
111 |
+
This subclass of `argparse.ArgumentParser` uses type hints on dataclasses to generate arguments.
|
112 |
+
|
113 |
+
The class is designed to play well with the native argparse. In particular, you can add more (non-dataclass backed)
|
114 |
+
arguments to the parser after initialization and you'll get the output back after parsing as an additional
|
115 |
+
namespace. Optional: To create sub argument groups use the `_argument_group_name` attribute in the dataclass.
|
116 |
+
"""
|
117 |
+
|
118 |
+
dataclass_types: Iterable[DataClassType]
|
119 |
+
|
120 |
+
def __init__(self, dataclass_types: Union[DataClassType, Iterable[DataClassType]], **kwargs):
|
121 |
+
"""
|
122 |
+
Args:
|
123 |
+
dataclass_types:
|
124 |
+
Dataclass type, or list of dataclass types for which we will "fill" instances with the parsed args.
|
125 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
126 |
+
Passed to `argparse.ArgumentParser()` in the regular way.
|
127 |
+
"""
|
128 |
+
# To make the default appear when using --help
|
129 |
+
if "formatter_class" not in kwargs:
|
130 |
+
kwargs["formatter_class"] = ArgumentDefaultsHelpFormatter
|
131 |
+
super().__init__(**kwargs)
|
132 |
+
if dataclasses.is_dataclass(dataclass_types):
|
133 |
+
dataclass_types = [dataclass_types]
|
134 |
+
self.dataclass_types = list(dataclass_types)
|
135 |
+
for dtype in self.dataclass_types:
|
136 |
+
self._add_dataclass_arguments(dtype)
|
137 |
+
|
138 |
+
@staticmethod
|
139 |
+
def _parse_dataclass_field(parser: ArgumentParser, field: dataclasses.Field):
|
140 |
+
field_name = f"--{field.name}"
|
141 |
+
kwargs = field.metadata.copy()
|
142 |
+
# field.metadata is not used at all by Data Classes,
|
143 |
+
# it is provided as a third-party extension mechanism.
|
144 |
+
if isinstance(field.type, str):
|
145 |
+
raise RuntimeError(
|
146 |
+
"Unresolved type detected, which should have been done with the help of "
|
147 |
+
"`typing.get_type_hints` method by default"
|
148 |
+
)
|
149 |
+
|
150 |
+
aliases = kwargs.pop("aliases", [])
|
151 |
+
if isinstance(aliases, str):
|
152 |
+
aliases = [aliases]
|
153 |
+
|
154 |
+
origin_type = getattr(field.type, "__origin__", field.type)
|
155 |
+
if origin_type is Union or (hasattr(types, "UnionType") and isinstance(origin_type, types.UnionType)):
|
156 |
+
if str not in field.type.__args__ and (
|
157 |
+
len(field.type.__args__) != 2 or type(None) not in field.type.__args__
|
158 |
+
):
|
159 |
+
raise ValueError(
|
160 |
+
"Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because"
|
161 |
+
" the argument parser only supports one type per argument."
|
162 |
+
f" Problem encountered in field '{field.name}'."
|
163 |
+
)
|
164 |
+
if type(None) not in field.type.__args__:
|
165 |
+
# filter `str` in Union
|
166 |
+
field.type = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1]
|
167 |
+
origin_type = getattr(field.type, "__origin__", field.type)
|
168 |
+
elif bool not in field.type.__args__:
|
169 |
+
# filter `NoneType` in Union (except for `Union[bool, NoneType]`)
|
170 |
+
field.type = (
|
171 |
+
field.type.__args__[0] if isinstance(None, field.type.__args__[1]) else field.type.__args__[1]
|
172 |
+
)
|
173 |
+
origin_type = getattr(field.type, "__origin__", field.type)
|
174 |
+
|
175 |
+
# A variable to store kwargs for a boolean field, if needed
|
176 |
+
# so that we can init a `no_*` complement argument (see below)
|
177 |
+
bool_kwargs = {}
|
178 |
+
if origin_type is Literal or (isinstance(field.type, type) and issubclass(field.type, Enum)):
|
179 |
+
if origin_type is Literal:
|
180 |
+
kwargs["choices"] = field.type.__args__
|
181 |
+
else:
|
182 |
+
kwargs["choices"] = [x.value for x in field.type]
|
183 |
+
|
184 |
+
kwargs["type"] = make_choice_type_function(kwargs["choices"])
|
185 |
+
|
186 |
+
if field.default is not dataclasses.MISSING:
|
187 |
+
kwargs["default"] = field.default
|
188 |
+
else:
|
189 |
+
kwargs["required"] = True
|
190 |
+
elif field.type is bool or field.type == Optional[bool]:
|
191 |
+
# Copy the currect kwargs to use to instantiate a `no_*` complement argument below.
|
192 |
+
# We do not initialize it here because the `no_*` alternative must be instantiated after the real argument
|
193 |
+
bool_kwargs = copy(kwargs)
|
194 |
+
|
195 |
+
# Hack because type=bool in argparse does not behave as we want.
|
196 |
+
kwargs["type"] = string_to_bool
|
197 |
+
if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING):
|
198 |
+
# Default value is False if we have no default when of type bool.
|
199 |
+
default = False if field.default is dataclasses.MISSING else field.default
|
200 |
+
# This is the value that will get picked if we don't include --field_name in any way
|
201 |
+
kwargs["default"] = default
|
202 |
+
# This tells argparse we accept 0 or 1 value after --field_name
|
203 |
+
kwargs["nargs"] = "?"
|
204 |
+
# This is the value that will get picked if we do --field_name (without value)
|
205 |
+
kwargs["const"] = True
|
206 |
+
elif isclass(origin_type) and issubclass(origin_type, list):
|
207 |
+
kwargs["type"] = field.type.__args__[0]
|
208 |
+
kwargs["nargs"] = "+"
|
209 |
+
if field.default_factory is not dataclasses.MISSING:
|
210 |
+
kwargs["default"] = field.default_factory()
|
211 |
+
elif field.default is dataclasses.MISSING:
|
212 |
+
kwargs["required"] = True
|
213 |
+
else:
|
214 |
+
kwargs["type"] = field.type
|
215 |
+
if field.default is not dataclasses.MISSING:
|
216 |
+
kwargs["default"] = field.default
|
217 |
+
elif field.default_factory is not dataclasses.MISSING:
|
218 |
+
kwargs["default"] = field.default_factory()
|
219 |
+
else:
|
220 |
+
kwargs["required"] = True
|
221 |
+
parser.add_argument(field_name, *aliases, **kwargs)
|
222 |
+
|
223 |
+
# Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added.
|
224 |
+
# Order is important for arguments with the same destination!
|
225 |
+
# We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down
|
226 |
+
# here and we do not need those changes/additional keys.
|
227 |
+
if field.default is True and (field.type is bool or field.type == Optional[bool]):
|
228 |
+
bool_kwargs["default"] = False
|
229 |
+
parser.add_argument(f"--no_{field.name}", action="store_false", dest=field.name, **bool_kwargs)
|
230 |
+
|
231 |
+
def _add_dataclass_arguments(self, dtype: DataClassType):
|
232 |
+
if hasattr(dtype, "_argument_group_name"):
|
233 |
+
parser = self.add_argument_group(dtype._argument_group_name)
|
234 |
+
else:
|
235 |
+
parser = self
|
236 |
+
|
237 |
+
try:
|
238 |
+
type_hints: Dict[str, type] = get_type_hints(dtype)
|
239 |
+
except NameError:
|
240 |
+
raise RuntimeError(
|
241 |
+
f"Type resolution failed for {dtype}. Try declaring the class in global scope or "
|
242 |
+
"removing line of `from __future__ import annotations` which opts in Postponed "
|
243 |
+
"Evaluation of Annotations (PEP 563)"
|
244 |
+
)
|
245 |
+
except TypeError as ex:
|
246 |
+
# Remove this block when we drop Python 3.9 support
|
247 |
+
if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(ex):
|
248 |
+
python_version = ".".join(map(str, sys.version_info[:3]))
|
249 |
+
raise RuntimeError(
|
250 |
+
f"Type resolution failed for {dtype} on Python {python_version}. Try removing "
|
251 |
+
"line of `from __future__ import annotations` which opts in union types as "
|
252 |
+
"`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To "
|
253 |
+
"support Python versions that lower than 3.10, you need to use "
|
254 |
+
"`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of "
|
255 |
+
"`X | None`."
|
256 |
+
) from ex
|
257 |
+
raise
|
258 |
+
|
259 |
+
for field in dataclasses.fields(dtype):
|
260 |
+
if not field.init:
|
261 |
+
continue
|
262 |
+
field.type = type_hints[field.name]
|
263 |
+
self._parse_dataclass_field(parser, field)
|
264 |
+
|
265 |
+
def parse_args_into_dataclasses(
|
266 |
+
self,
|
267 |
+
args=None,
|
268 |
+
return_remaining_strings=False,
|
269 |
+
look_for_args_file=True,
|
270 |
+
args_filename=None,
|
271 |
+
args_file_flag=None,
|
272 |
+
) -> Tuple[DataClass, ...]:
|
273 |
+
"""
|
274 |
+
Parse command-line args into instances of the specified dataclass types.
|
275 |
+
|
276 |
+
This relies on argparse's `ArgumentParser.parse_known_args`. See the doc at:
|
277 |
+
docs.python.org/3.7/library/argparse.html#argparse.ArgumentParser.parse_args
|
278 |
+
|
279 |
+
Args:
|
280 |
+
args:
|
281 |
+
List of strings to parse. The default is taken from sys.argv. (same as argparse.ArgumentParser)
|
282 |
+
return_remaining_strings:
|
283 |
+
If true, also return a list of remaining argument strings.
|
284 |
+
look_for_args_file:
|
285 |
+
If true, will look for a ".args" file with the same base name as the entry point script for this
|
286 |
+
process, and will append its potential content to the command line args.
|
287 |
+
args_filename:
|
288 |
+
If not None, will uses this file instead of the ".args" file specified in the previous argument.
|
289 |
+
args_file_flag:
|
290 |
+
If not None, will look for a file in the command-line args specified with this flag. The flag can be
|
291 |
+
specified multiple times and precedence is determined by the order (last one wins).
|
292 |
+
|
293 |
+
Returns:
|
294 |
+
Tuple consisting of:
|
295 |
+
|
296 |
+
- the dataclass instances in the same order as they were passed to the initializer.abspath
|
297 |
+
- if applicable, an additional namespace for more (non-dataclass backed) arguments added to the parser
|
298 |
+
after initialization.
|
299 |
+
- The potential list of remaining argument strings. (same as argparse.ArgumentParser.parse_known_args)
|
300 |
+
"""
|
301 |
+
|
302 |
+
if args_file_flag or args_filename or (look_for_args_file and len(sys.argv)):
|
303 |
+
args_files = []
|
304 |
+
|
305 |
+
if args_filename:
|
306 |
+
args_files.append(Path(args_filename))
|
307 |
+
elif look_for_args_file and len(sys.argv):
|
308 |
+
args_files.append(Path(sys.argv[0]).with_suffix(".args"))
|
309 |
+
|
310 |
+
# args files specified via command line flag should overwrite default args files so we add them last
|
311 |
+
if args_file_flag:
|
312 |
+
# Create special parser just to extract the args_file_flag values
|
313 |
+
args_file_parser = ArgumentParser()
|
314 |
+
args_file_parser.add_argument(args_file_flag, type=str, action="append")
|
315 |
+
|
316 |
+
# Use only remaining args for further parsing (remove the args_file_flag)
|
317 |
+
cfg, args = args_file_parser.parse_known_args(args=args)
|
318 |
+
cmd_args_file_paths = vars(cfg).get(args_file_flag.lstrip("-"), None)
|
319 |
+
|
320 |
+
if cmd_args_file_paths:
|
321 |
+
args_files.extend([Path(p) for p in cmd_args_file_paths])
|
322 |
+
|
323 |
+
file_args = []
|
324 |
+
for args_file in args_files:
|
325 |
+
if args_file.exists():
|
326 |
+
file_args += args_file.read_text().split()
|
327 |
+
|
328 |
+
# in case of duplicate arguments the last one has precedence
|
329 |
+
# args specified via the command line should overwrite args from files, so we add them last
|
330 |
+
args = file_args + args if args is not None else file_args + sys.argv[1:]
|
331 |
+
namespace, remaining_args = self.parse_known_args(args=args)
|
332 |
+
outputs = []
|
333 |
+
for dtype in self.dataclass_types:
|
334 |
+
keys = {f.name for f in dataclasses.fields(dtype) if f.init}
|
335 |
+
inputs = {k: v for k, v in vars(namespace).items() if k in keys}
|
336 |
+
for k in keys:
|
337 |
+
delattr(namespace, k)
|
338 |
+
obj = dtype(**inputs)
|
339 |
+
outputs.append(obj)
|
340 |
+
if len(namespace.__dict__) > 0:
|
341 |
+
# additional namespace.
|
342 |
+
outputs.append(namespace)
|
343 |
+
if return_remaining_strings:
|
344 |
+
return (*outputs, remaining_args)
|
345 |
+
else:
|
346 |
+
if remaining_args:
|
347 |
+
raise ValueError(f"Some specified arguments are not used by the HfArgumentParser: {remaining_args}")
|
348 |
+
|
349 |
+
return (*outputs,)
|
350 |
+
|
351 |
+
def parse_dict(self, args: Dict[str, Any], allow_extra_keys: bool = False) -> Tuple[DataClass, ...]:
|
352 |
+
"""
|
353 |
+
Alternative helper method that does not use `argparse` at all, instead uses a dict and populating the dataclass
|
354 |
+
types.
|
355 |
+
|
356 |
+
Args:
|
357 |
+
args (`dict`):
|
358 |
+
dict containing config values
|
359 |
+
allow_extra_keys (`bool`, *optional*, defaults to `False`):
|
360 |
+
Defaults to False. If False, will raise an exception if the dict contains keys that are not parsed.
|
361 |
+
|
362 |
+
Returns:
|
363 |
+
Tuple consisting of:
|
364 |
+
|
365 |
+
- the dataclass instances in the same order as they were passed to the initializer.
|
366 |
+
"""
|
367 |
+
unused_keys = set(args.keys())
|
368 |
+
outputs = []
|
369 |
+
for dtype in self.dataclass_types:
|
370 |
+
keys = {f.name for f in dataclasses.fields(dtype) if f.init}
|
371 |
+
inputs = {k: v for k, v in args.items() if k in keys}
|
372 |
+
unused_keys.difference_update(inputs.keys())
|
373 |
+
obj = dtype(**inputs)
|
374 |
+
outputs.append(obj)
|
375 |
+
if not allow_extra_keys and unused_keys:
|
376 |
+
raise ValueError(f"Some keys are not used by the HfArgumentParser: {sorted(unused_keys)}")
|
377 |
+
return tuple(outputs)
|
378 |
+
|
379 |
+
def parse_json_file(self, json_file: str, allow_extra_keys: bool = False) -> Tuple[DataClass, ...]:
|
380 |
+
"""
|
381 |
+
Alternative helper method that does not use `argparse` at all, instead loading a json file and populating the
|
382 |
+
dataclass types.
|
383 |
+
|
384 |
+
Args:
|
385 |
+
json_file (`str` or `os.PathLike`):
|
386 |
+
File name of the json file to parse
|
387 |
+
allow_extra_keys (`bool`, *optional*, defaults to `False`):
|
388 |
+
Defaults to False. If False, will raise an exception if the json file contains keys that are not
|
389 |
+
parsed.
|
390 |
+
|
391 |
+
Returns:
|
392 |
+
Tuple consisting of:
|
393 |
+
|
394 |
+
- the dataclass instances in the same order as they were passed to the initializer.
|
395 |
+
"""
|
396 |
+
with open(Path(json_file), encoding="utf-8") as open_json_file:
|
397 |
+
data = json.loads(open_json_file.read())
|
398 |
+
outputs = self.parse_dict(data, allow_extra_keys=allow_extra_keys)
|
399 |
+
return tuple(outputs)
|
400 |
+
|
401 |
+
def parse_yaml_file(self, yaml_file: str, allow_extra_keys: bool = False) -> Tuple[DataClass, ...]:
|
402 |
+
"""
|
403 |
+
Alternative helper method that does not use `argparse` at all, instead loading a yaml file and populating the
|
404 |
+
dataclass types.
|
405 |
+
|
406 |
+
Args:
|
407 |
+
yaml_file (`str` or `os.PathLike`):
|
408 |
+
File name of the yaml file to parse
|
409 |
+
allow_extra_keys (`bool`, *optional*, defaults to `False`):
|
410 |
+
Defaults to False. If False, will raise an exception if the json file contains keys that are not
|
411 |
+
parsed.
|
412 |
+
|
413 |
+
Returns:
|
414 |
+
Tuple consisting of:
|
415 |
+
|
416 |
+
- the dataclass instances in the same order as they were passed to the initializer.
|
417 |
+
"""
|
418 |
+
outputs = self.parse_dict(yaml.safe_load(Path(yaml_file).read_text()), allow_extra_keys=allow_extra_keys)
|
419 |
+
return tuple(outputs)
|
env-llmeval/lib/python3.10/site-packages/transformers/hyperparameter_search.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from .integrations import (
|
17 |
+
is_optuna_available,
|
18 |
+
is_ray_tune_available,
|
19 |
+
is_sigopt_available,
|
20 |
+
is_wandb_available,
|
21 |
+
run_hp_search_optuna,
|
22 |
+
run_hp_search_ray,
|
23 |
+
run_hp_search_sigopt,
|
24 |
+
run_hp_search_wandb,
|
25 |
+
)
|
26 |
+
from .trainer_utils import (
|
27 |
+
HPSearchBackend,
|
28 |
+
default_hp_space_optuna,
|
29 |
+
default_hp_space_ray,
|
30 |
+
default_hp_space_sigopt,
|
31 |
+
default_hp_space_wandb,
|
32 |
+
)
|
33 |
+
from .utils import logging
|
34 |
+
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
|
39 |
+
class HyperParamSearchBackendBase:
|
40 |
+
name: str
|
41 |
+
pip_package: str = None
|
42 |
+
|
43 |
+
@staticmethod
|
44 |
+
def is_available():
|
45 |
+
raise NotImplementedError
|
46 |
+
|
47 |
+
def run(self, trainer, n_trials: int, direction: str, **kwargs):
|
48 |
+
raise NotImplementedError
|
49 |
+
|
50 |
+
def default_hp_space(self, trial):
|
51 |
+
raise NotImplementedError
|
52 |
+
|
53 |
+
def ensure_available(self):
|
54 |
+
if not self.is_available():
|
55 |
+
raise RuntimeError(
|
56 |
+
f"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}."
|
57 |
+
)
|
58 |
+
|
59 |
+
@classmethod
|
60 |
+
def pip_install(cls):
|
61 |
+
return f"`pip install {cls.pip_package or cls.name}`"
|
62 |
+
|
63 |
+
|
64 |
+
class OptunaBackend(HyperParamSearchBackendBase):
|
65 |
+
name = "optuna"
|
66 |
+
|
67 |
+
@staticmethod
|
68 |
+
def is_available():
|
69 |
+
return is_optuna_available()
|
70 |
+
|
71 |
+
def run(self, trainer, n_trials: int, direction: str, **kwargs):
|
72 |
+
return run_hp_search_optuna(trainer, n_trials, direction, **kwargs)
|
73 |
+
|
74 |
+
def default_hp_space(self, trial):
|
75 |
+
return default_hp_space_optuna(trial)
|
76 |
+
|
77 |
+
|
78 |
+
class RayTuneBackend(HyperParamSearchBackendBase):
|
79 |
+
name = "ray"
|
80 |
+
pip_package = "'ray[tune]'"
|
81 |
+
|
82 |
+
@staticmethod
|
83 |
+
def is_available():
|
84 |
+
return is_ray_tune_available()
|
85 |
+
|
86 |
+
def run(self, trainer, n_trials: int, direction: str, **kwargs):
|
87 |
+
return run_hp_search_ray(trainer, n_trials, direction, **kwargs)
|
88 |
+
|
89 |
+
def default_hp_space(self, trial):
|
90 |
+
return default_hp_space_ray(trial)
|
91 |
+
|
92 |
+
|
93 |
+
class SigOptBackend(HyperParamSearchBackendBase):
|
94 |
+
name = "sigopt"
|
95 |
+
|
96 |
+
@staticmethod
|
97 |
+
def is_available():
|
98 |
+
return is_sigopt_available()
|
99 |
+
|
100 |
+
def run(self, trainer, n_trials: int, direction: str, **kwargs):
|
101 |
+
return run_hp_search_sigopt(trainer, n_trials, direction, **kwargs)
|
102 |
+
|
103 |
+
def default_hp_space(self, trial):
|
104 |
+
return default_hp_space_sigopt(trial)
|
105 |
+
|
106 |
+
|
107 |
+
class WandbBackend(HyperParamSearchBackendBase):
|
108 |
+
name = "wandb"
|
109 |
+
|
110 |
+
@staticmethod
|
111 |
+
def is_available():
|
112 |
+
return is_wandb_available()
|
113 |
+
|
114 |
+
def run(self, trainer, n_trials: int, direction: str, **kwargs):
|
115 |
+
return run_hp_search_wandb(trainer, n_trials, direction, **kwargs)
|
116 |
+
|
117 |
+
def default_hp_space(self, trial):
|
118 |
+
return default_hp_space_wandb(trial)
|
119 |
+
|
120 |
+
|
121 |
+
ALL_HYPERPARAMETER_SEARCH_BACKENDS = {
|
122 |
+
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
|
123 |
+
}
|
124 |
+
|
125 |
+
|
126 |
+
def default_hp_search_backend() -> str:
|
127 |
+
available_backends = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
|
128 |
+
if len(available_backends) > 0:
|
129 |
+
name = available_backends[0].name
|
130 |
+
if len(available_backends) > 1:
|
131 |
+
logger.info(
|
132 |
+
f"{len(available_backends)} hyperparameter search backends available. Using {name} as the default."
|
133 |
+
)
|
134 |
+
return name
|
135 |
+
raise RuntimeError(
|
136 |
+
"No hyperparameter search backend available.\n"
|
137 |
+
+ "\n".join(
|
138 |
+
f" - To install {backend.name} run {backend.pip_install()}"
|
139 |
+
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values()
|
140 |
+
)
|
141 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/image_processing_utils.py
ADDED
@@ -0,0 +1,793 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import copy
|
17 |
+
import json
|
18 |
+
import os
|
19 |
+
import warnings
|
20 |
+
from io import BytesIO
|
21 |
+
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import requests
|
25 |
+
|
26 |
+
from .dynamic_module_utils import custom_object_save
|
27 |
+
from .feature_extraction_utils import BatchFeature as BaseBatchFeature
|
28 |
+
from .image_transforms import center_crop, normalize, rescale
|
29 |
+
from .image_utils import ChannelDimension
|
30 |
+
from .utils import (
|
31 |
+
IMAGE_PROCESSOR_NAME,
|
32 |
+
PushToHubMixin,
|
33 |
+
add_model_info_to_auto_map,
|
34 |
+
cached_file,
|
35 |
+
copy_func,
|
36 |
+
download_url,
|
37 |
+
is_offline_mode,
|
38 |
+
is_remote_url,
|
39 |
+
is_vision_available,
|
40 |
+
logging,
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
if is_vision_available():
|
45 |
+
from PIL import Image
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
|
50 |
+
# TODO: Move BatchFeature to be imported by both image_processing_utils and image_processing_utils
|
51 |
+
# We override the class string here, but logic is the same.
|
52 |
+
class BatchFeature(BaseBatchFeature):
|
53 |
+
r"""
|
54 |
+
Holds the output of the image processor specific `__call__` methods.
|
55 |
+
|
56 |
+
This class is derived from a python dictionary and can be used as a dictionary.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
data (`dict`):
|
60 |
+
Dictionary of lists/arrays/tensors returned by the __call__ method ('pixel_values', etc.).
|
61 |
+
tensor_type (`Union[None, str, TensorType]`, *optional*):
|
62 |
+
You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at
|
63 |
+
initialization.
|
64 |
+
"""
|
65 |
+
|
66 |
+
|
67 |
+
# TODO: (Amy) - factor out the common parts of this and the feature extractor
|
68 |
+
class ImageProcessingMixin(PushToHubMixin):
|
69 |
+
"""
|
70 |
+
This is an image processor mixin used to provide saving/loading functionality for sequential and image feature
|
71 |
+
extractors.
|
72 |
+
"""
|
73 |
+
|
74 |
+
_auto_class = None
|
75 |
+
|
76 |
+
def __init__(self, **kwargs):
|
77 |
+
"""Set elements of `kwargs` as attributes."""
|
78 |
+
# This key was saved while we still used `XXXFeatureExtractor` for image processing. Now we use
|
79 |
+
# `XXXImageProcessor`, this attribute and its value are misleading.
|
80 |
+
kwargs.pop("feature_extractor_type", None)
|
81 |
+
# Pop "processor_class" as it should be saved as private attribute
|
82 |
+
self._processor_class = kwargs.pop("processor_class", None)
|
83 |
+
# Additional attributes without default values
|
84 |
+
for key, value in kwargs.items():
|
85 |
+
try:
|
86 |
+
setattr(self, key, value)
|
87 |
+
except AttributeError as err:
|
88 |
+
logger.error(f"Can't set {key} with value {value} for {self}")
|
89 |
+
raise err
|
90 |
+
|
91 |
+
def _set_processor_class(self, processor_class: str):
|
92 |
+
"""Sets processor class as an attribute."""
|
93 |
+
self._processor_class = processor_class
|
94 |
+
|
95 |
+
@classmethod
|
96 |
+
def from_pretrained(
|
97 |
+
cls,
|
98 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
99 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
100 |
+
force_download: bool = False,
|
101 |
+
local_files_only: bool = False,
|
102 |
+
token: Optional[Union[str, bool]] = None,
|
103 |
+
revision: str = "main",
|
104 |
+
**kwargs,
|
105 |
+
):
|
106 |
+
r"""
|
107 |
+
Instantiate a type of [`~image_processing_utils.ImageProcessingMixin`] from an image processor.
|
108 |
+
|
109 |
+
Args:
|
110 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
111 |
+
This can be either:
|
112 |
+
|
113 |
+
- a string, the *model id* of a pretrained image_processor hosted inside a model repo on
|
114 |
+
huggingface.co.
|
115 |
+
- a path to a *directory* containing a image processor file saved using the
|
116 |
+
[`~image_processing_utils.ImageProcessingMixin.save_pretrained`] method, e.g.,
|
117 |
+
`./my_model_directory/`.
|
118 |
+
- a path or url to a saved image processor JSON *file*, e.g.,
|
119 |
+
`./my_model_directory/preprocessor_config.json`.
|
120 |
+
cache_dir (`str` or `os.PathLike`, *optional*):
|
121 |
+
Path to a directory in which a downloaded pretrained model image processor should be cached if the
|
122 |
+
standard cache should not be used.
|
123 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
124 |
+
Whether or not to force to (re-)download the image processor files and override the cached versions if
|
125 |
+
they exist.
|
126 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
127 |
+
Whether or not to delete incompletely received file. Attempts to resume the download if such a file
|
128 |
+
exists.
|
129 |
+
proxies (`Dict[str, str]`, *optional*):
|
130 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
131 |
+
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
132 |
+
token (`str` or `bool`, *optional*):
|
133 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
|
134 |
+
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
|
135 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
136 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
137 |
+
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
138 |
+
identifier allowed by git.
|
139 |
+
|
140 |
+
|
141 |
+
<Tip>
|
142 |
+
|
143 |
+
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
|
144 |
+
|
145 |
+
</Tip>
|
146 |
+
|
147 |
+
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
|
148 |
+
If `False`, then this function returns just the final image processor object. If `True`, then this
|
149 |
+
functions returns a `Tuple(image_processor, unused_kwargs)` where *unused_kwargs* is a dictionary
|
150 |
+
consisting of the key/value pairs whose keys are not image processor attributes: i.e., the part of
|
151 |
+
`kwargs` which has not been used to update `image_processor` and is otherwise ignored.
|
152 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
153 |
+
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
|
154 |
+
specify the folder name here.
|
155 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
156 |
+
The values in kwargs of any keys which are image processor attributes will be used to override the
|
157 |
+
loaded values. Behavior concerning key/value pairs whose keys are *not* image processor attributes is
|
158 |
+
controlled by the `return_unused_kwargs` keyword parameter.
|
159 |
+
|
160 |
+
Returns:
|
161 |
+
A image processor of type [`~image_processing_utils.ImageProcessingMixin`].
|
162 |
+
|
163 |
+
Examples:
|
164 |
+
|
165 |
+
```python
|
166 |
+
# We can't instantiate directly the base class *ImageProcessingMixin* so let's show the examples on a
|
167 |
+
# derived class: *CLIPImageProcessor*
|
168 |
+
image_processor = CLIPImageProcessor.from_pretrained(
|
169 |
+
"openai/clip-vit-base-patch32"
|
170 |
+
) # Download image_processing_config from huggingface.co and cache.
|
171 |
+
image_processor = CLIPImageProcessor.from_pretrained(
|
172 |
+
"./test/saved_model/"
|
173 |
+
) # E.g. image processor (or model) was saved using *save_pretrained('./test/saved_model/')*
|
174 |
+
image_processor = CLIPImageProcessor.from_pretrained("./test/saved_model/preprocessor_config.json")
|
175 |
+
image_processor = CLIPImageProcessor.from_pretrained(
|
176 |
+
"openai/clip-vit-base-patch32", do_normalize=False, foo=False
|
177 |
+
)
|
178 |
+
assert image_processor.do_normalize is False
|
179 |
+
image_processor, unused_kwargs = CLIPImageProcessor.from_pretrained(
|
180 |
+
"openai/clip-vit-base-patch32", do_normalize=False, foo=False, return_unused_kwargs=True
|
181 |
+
)
|
182 |
+
assert image_processor.do_normalize is False
|
183 |
+
assert unused_kwargs == {"foo": False}
|
184 |
+
```"""
|
185 |
+
kwargs["cache_dir"] = cache_dir
|
186 |
+
kwargs["force_download"] = force_download
|
187 |
+
kwargs["local_files_only"] = local_files_only
|
188 |
+
kwargs["revision"] = revision
|
189 |
+
|
190 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
191 |
+
if use_auth_token is not None:
|
192 |
+
warnings.warn(
|
193 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
194 |
+
FutureWarning,
|
195 |
+
)
|
196 |
+
if token is not None:
|
197 |
+
raise ValueError(
|
198 |
+
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
199 |
+
)
|
200 |
+
token = use_auth_token
|
201 |
+
|
202 |
+
if token is not None:
|
203 |
+
kwargs["token"] = token
|
204 |
+
|
205 |
+
image_processor_dict, kwargs = cls.get_image_processor_dict(pretrained_model_name_or_path, **kwargs)
|
206 |
+
|
207 |
+
return cls.from_dict(image_processor_dict, **kwargs)
|
208 |
+
|
209 |
+
def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
|
210 |
+
"""
|
211 |
+
Save an image processor object to the directory `save_directory`, so that it can be re-loaded using the
|
212 |
+
[`~image_processing_utils.ImageProcessingMixin.from_pretrained`] class method.
|
213 |
+
|
214 |
+
Args:
|
215 |
+
save_directory (`str` or `os.PathLike`):
|
216 |
+
Directory where the image processor JSON file will be saved (will be created if it does not exist).
|
217 |
+
push_to_hub (`bool`, *optional*, defaults to `False`):
|
218 |
+
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
|
219 |
+
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
|
220 |
+
namespace).
|
221 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
222 |
+
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
223 |
+
"""
|
224 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
225 |
+
|
226 |
+
if use_auth_token is not None:
|
227 |
+
warnings.warn(
|
228 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
229 |
+
FutureWarning,
|
230 |
+
)
|
231 |
+
if kwargs.get("token", None) is not None:
|
232 |
+
raise ValueError(
|
233 |
+
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
234 |
+
)
|
235 |
+
kwargs["token"] = use_auth_token
|
236 |
+
|
237 |
+
if os.path.isfile(save_directory):
|
238 |
+
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
|
239 |
+
|
240 |
+
os.makedirs(save_directory, exist_ok=True)
|
241 |
+
|
242 |
+
if push_to_hub:
|
243 |
+
commit_message = kwargs.pop("commit_message", None)
|
244 |
+
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
|
245 |
+
repo_id = self._create_repo(repo_id, **kwargs)
|
246 |
+
files_timestamps = self._get_files_timestamps(save_directory)
|
247 |
+
|
248 |
+
# If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be
|
249 |
+
# loaded from the Hub.
|
250 |
+
if self._auto_class is not None:
|
251 |
+
custom_object_save(self, save_directory, config=self)
|
252 |
+
|
253 |
+
# If we save using the predefined names, we can load using `from_pretrained`
|
254 |
+
output_image_processor_file = os.path.join(save_directory, IMAGE_PROCESSOR_NAME)
|
255 |
+
|
256 |
+
self.to_json_file(output_image_processor_file)
|
257 |
+
logger.info(f"Image processor saved in {output_image_processor_file}")
|
258 |
+
|
259 |
+
if push_to_hub:
|
260 |
+
self._upload_modified_files(
|
261 |
+
save_directory,
|
262 |
+
repo_id,
|
263 |
+
files_timestamps,
|
264 |
+
commit_message=commit_message,
|
265 |
+
token=kwargs.get("token"),
|
266 |
+
)
|
267 |
+
|
268 |
+
return [output_image_processor_file]
|
269 |
+
|
270 |
+
@classmethod
|
271 |
+
def get_image_processor_dict(
|
272 |
+
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
|
273 |
+
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
274 |
+
"""
|
275 |
+
From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a
|
276 |
+
image processor of type [`~image_processor_utils.ImageProcessingMixin`] using `from_dict`.
|
277 |
+
|
278 |
+
Parameters:
|
279 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
280 |
+
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.
|
281 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
282 |
+
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
|
283 |
+
specify the folder name here.
|
284 |
+
|
285 |
+
Returns:
|
286 |
+
`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the image processor object.
|
287 |
+
"""
|
288 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
289 |
+
force_download = kwargs.pop("force_download", False)
|
290 |
+
resume_download = kwargs.pop("resume_download", False)
|
291 |
+
proxies = kwargs.pop("proxies", None)
|
292 |
+
token = kwargs.pop("token", None)
|
293 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
294 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
295 |
+
revision = kwargs.pop("revision", None)
|
296 |
+
subfolder = kwargs.pop("subfolder", "")
|
297 |
+
|
298 |
+
from_pipeline = kwargs.pop("_from_pipeline", None)
|
299 |
+
from_auto_class = kwargs.pop("_from_auto", False)
|
300 |
+
|
301 |
+
if use_auth_token is not None:
|
302 |
+
warnings.warn(
|
303 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
304 |
+
FutureWarning,
|
305 |
+
)
|
306 |
+
if token is not None:
|
307 |
+
raise ValueError(
|
308 |
+
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
309 |
+
)
|
310 |
+
token = use_auth_token
|
311 |
+
|
312 |
+
user_agent = {"file_type": "image processor", "from_auto_class": from_auto_class}
|
313 |
+
if from_pipeline is not None:
|
314 |
+
user_agent["using_pipeline"] = from_pipeline
|
315 |
+
|
316 |
+
if is_offline_mode() and not local_files_only:
|
317 |
+
logger.info("Offline mode: forcing local_files_only=True")
|
318 |
+
local_files_only = True
|
319 |
+
|
320 |
+
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
321 |
+
is_local = os.path.isdir(pretrained_model_name_or_path)
|
322 |
+
if os.path.isdir(pretrained_model_name_or_path):
|
323 |
+
image_processor_file = os.path.join(pretrained_model_name_or_path, IMAGE_PROCESSOR_NAME)
|
324 |
+
if os.path.isfile(pretrained_model_name_or_path):
|
325 |
+
resolved_image_processor_file = pretrained_model_name_or_path
|
326 |
+
is_local = True
|
327 |
+
elif is_remote_url(pretrained_model_name_or_path):
|
328 |
+
image_processor_file = pretrained_model_name_or_path
|
329 |
+
resolved_image_processor_file = download_url(pretrained_model_name_or_path)
|
330 |
+
else:
|
331 |
+
image_processor_file = IMAGE_PROCESSOR_NAME
|
332 |
+
try:
|
333 |
+
# Load from local folder or from cache or download from model Hub and cache
|
334 |
+
resolved_image_processor_file = cached_file(
|
335 |
+
pretrained_model_name_or_path,
|
336 |
+
image_processor_file,
|
337 |
+
cache_dir=cache_dir,
|
338 |
+
force_download=force_download,
|
339 |
+
proxies=proxies,
|
340 |
+
resume_download=resume_download,
|
341 |
+
local_files_only=local_files_only,
|
342 |
+
token=token,
|
343 |
+
user_agent=user_agent,
|
344 |
+
revision=revision,
|
345 |
+
subfolder=subfolder,
|
346 |
+
)
|
347 |
+
except EnvironmentError:
|
348 |
+
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
|
349 |
+
# the original exception.
|
350 |
+
raise
|
351 |
+
except Exception:
|
352 |
+
# For any other exception, we throw a generic error.
|
353 |
+
raise EnvironmentError(
|
354 |
+
f"Can't load image processor for '{pretrained_model_name_or_path}'. If you were trying to load"
|
355 |
+
" it from 'https://huggingface.co/models', make sure you don't have a local directory with the"
|
356 |
+
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
|
357 |
+
f" directory containing a {IMAGE_PROCESSOR_NAME} file"
|
358 |
+
)
|
359 |
+
|
360 |
+
try:
|
361 |
+
# Load image_processor dict
|
362 |
+
with open(resolved_image_processor_file, "r", encoding="utf-8") as reader:
|
363 |
+
text = reader.read()
|
364 |
+
image_processor_dict = json.loads(text)
|
365 |
+
|
366 |
+
except json.JSONDecodeError:
|
367 |
+
raise EnvironmentError(
|
368 |
+
f"It looks like the config file at '{resolved_image_processor_file}' is not a valid JSON file."
|
369 |
+
)
|
370 |
+
|
371 |
+
if is_local:
|
372 |
+
logger.info(f"loading configuration file {resolved_image_processor_file}")
|
373 |
+
else:
|
374 |
+
logger.info(
|
375 |
+
f"loading configuration file {image_processor_file} from cache at {resolved_image_processor_file}"
|
376 |
+
)
|
377 |
+
|
378 |
+
if "auto_map" in image_processor_dict and not is_local:
|
379 |
+
image_processor_dict["auto_map"] = add_model_info_to_auto_map(
|
380 |
+
image_processor_dict["auto_map"], pretrained_model_name_or_path
|
381 |
+
)
|
382 |
+
|
383 |
+
return image_processor_dict, kwargs
|
384 |
+
|
385 |
+
@classmethod
|
386 |
+
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
|
387 |
+
"""
|
388 |
+
Instantiates a type of [`~image_processing_utils.ImageProcessingMixin`] from a Python dictionary of parameters.
|
389 |
+
|
390 |
+
Args:
|
391 |
+
image_processor_dict (`Dict[str, Any]`):
|
392 |
+
Dictionary that will be used to instantiate the image processor object. Such a dictionary can be
|
393 |
+
retrieved from a pretrained checkpoint by leveraging the
|
394 |
+
[`~image_processing_utils.ImageProcessingMixin.to_dict`] method.
|
395 |
+
kwargs (`Dict[str, Any]`):
|
396 |
+
Additional parameters from which to initialize the image processor object.
|
397 |
+
|
398 |
+
Returns:
|
399 |
+
[`~image_processing_utils.ImageProcessingMixin`]: The image processor object instantiated from those
|
400 |
+
parameters.
|
401 |
+
"""
|
402 |
+
image_processor_dict = image_processor_dict.copy()
|
403 |
+
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
|
404 |
+
|
405 |
+
# The `size` parameter is a dict and was previously an int or tuple in feature extractors.
|
406 |
+
# We set `size` here directly to the `image_processor_dict` so that it is converted to the appropriate
|
407 |
+
# dict within the image processor and isn't overwritten if `size` is passed in as a kwarg.
|
408 |
+
if "size" in kwargs and "size" in image_processor_dict:
|
409 |
+
image_processor_dict["size"] = kwargs.pop("size")
|
410 |
+
if "crop_size" in kwargs and "crop_size" in image_processor_dict:
|
411 |
+
image_processor_dict["crop_size"] = kwargs.pop("crop_size")
|
412 |
+
|
413 |
+
image_processor = cls(**image_processor_dict)
|
414 |
+
|
415 |
+
# Update image_processor with kwargs if needed
|
416 |
+
to_remove = []
|
417 |
+
for key, value in kwargs.items():
|
418 |
+
if hasattr(image_processor, key):
|
419 |
+
setattr(image_processor, key, value)
|
420 |
+
to_remove.append(key)
|
421 |
+
for key in to_remove:
|
422 |
+
kwargs.pop(key, None)
|
423 |
+
|
424 |
+
logger.info(f"Image processor {image_processor}")
|
425 |
+
if return_unused_kwargs:
|
426 |
+
return image_processor, kwargs
|
427 |
+
else:
|
428 |
+
return image_processor
|
429 |
+
|
430 |
+
def to_dict(self) -> Dict[str, Any]:
|
431 |
+
"""
|
432 |
+
Serializes this instance to a Python dictionary.
|
433 |
+
|
434 |
+
Returns:
|
435 |
+
`Dict[str, Any]`: Dictionary of all the attributes that make up this image processor instance.
|
436 |
+
"""
|
437 |
+
output = copy.deepcopy(self.__dict__)
|
438 |
+
output["image_processor_type"] = self.__class__.__name__
|
439 |
+
|
440 |
+
return output
|
441 |
+
|
442 |
+
@classmethod
|
443 |
+
def from_json_file(cls, json_file: Union[str, os.PathLike]):
|
444 |
+
"""
|
445 |
+
Instantiates a image processor of type [`~image_processing_utils.ImageProcessingMixin`] from the path to a JSON
|
446 |
+
file of parameters.
|
447 |
+
|
448 |
+
Args:
|
449 |
+
json_file (`str` or `os.PathLike`):
|
450 |
+
Path to the JSON file containing the parameters.
|
451 |
+
|
452 |
+
Returns:
|
453 |
+
A image processor of type [`~image_processing_utils.ImageProcessingMixin`]: The image_processor object
|
454 |
+
instantiated from that JSON file.
|
455 |
+
"""
|
456 |
+
with open(json_file, "r", encoding="utf-8") as reader:
|
457 |
+
text = reader.read()
|
458 |
+
image_processor_dict = json.loads(text)
|
459 |
+
return cls(**image_processor_dict)
|
460 |
+
|
461 |
+
def to_json_string(self) -> str:
|
462 |
+
"""
|
463 |
+
Serializes this instance to a JSON string.
|
464 |
+
|
465 |
+
Returns:
|
466 |
+
`str`: String containing all the attributes that make up this feature_extractor instance in JSON format.
|
467 |
+
"""
|
468 |
+
dictionary = self.to_dict()
|
469 |
+
|
470 |
+
for key, value in dictionary.items():
|
471 |
+
if isinstance(value, np.ndarray):
|
472 |
+
dictionary[key] = value.tolist()
|
473 |
+
|
474 |
+
# make sure private name "_processor_class" is correctly
|
475 |
+
# saved as "processor_class"
|
476 |
+
_processor_class = dictionary.pop("_processor_class", None)
|
477 |
+
if _processor_class is not None:
|
478 |
+
dictionary["processor_class"] = _processor_class
|
479 |
+
|
480 |
+
return json.dumps(dictionary, indent=2, sort_keys=True) + "\n"
|
481 |
+
|
482 |
+
def to_json_file(self, json_file_path: Union[str, os.PathLike]):
|
483 |
+
"""
|
484 |
+
Save this instance to a JSON file.
|
485 |
+
|
486 |
+
Args:
|
487 |
+
json_file_path (`str` or `os.PathLike`):
|
488 |
+
Path to the JSON file in which this image_processor instance's parameters will be saved.
|
489 |
+
"""
|
490 |
+
with open(json_file_path, "w", encoding="utf-8") as writer:
|
491 |
+
writer.write(self.to_json_string())
|
492 |
+
|
493 |
+
def __repr__(self):
|
494 |
+
return f"{self.__class__.__name__} {self.to_json_string()}"
|
495 |
+
|
496 |
+
@classmethod
|
497 |
+
def register_for_auto_class(cls, auto_class="AutoImageProcessor"):
|
498 |
+
"""
|
499 |
+
Register this class with a given auto class. This should only be used for custom image processors as the ones
|
500 |
+
in the library are already mapped with `AutoImageProcessor `.
|
501 |
+
|
502 |
+
<Tip warning={true}>
|
503 |
+
|
504 |
+
This API is experimental and may have some slight breaking changes in the next releases.
|
505 |
+
|
506 |
+
</Tip>
|
507 |
+
|
508 |
+
Args:
|
509 |
+
auto_class (`str` or `type`, *optional*, defaults to `"AutoImageProcessor "`):
|
510 |
+
The auto class to register this new image processor with.
|
511 |
+
"""
|
512 |
+
if not isinstance(auto_class, str):
|
513 |
+
auto_class = auto_class.__name__
|
514 |
+
|
515 |
+
import transformers.models.auto as auto_module
|
516 |
+
|
517 |
+
if not hasattr(auto_module, auto_class):
|
518 |
+
raise ValueError(f"{auto_class} is not a valid auto class.")
|
519 |
+
|
520 |
+
cls._auto_class = auto_class
|
521 |
+
|
522 |
+
def fetch_images(self, image_url_or_urls: Union[str, List[str]]):
|
523 |
+
"""
|
524 |
+
Convert a single or a list of urls into the corresponding `PIL.Image` objects.
|
525 |
+
|
526 |
+
If a single url is passed, the return value will be a single object. If a list is passed a list of objects is
|
527 |
+
returned.
|
528 |
+
"""
|
529 |
+
headers = {
|
530 |
+
"User-Agent": (
|
531 |
+
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0"
|
532 |
+
" Safari/537.36"
|
533 |
+
)
|
534 |
+
}
|
535 |
+
if isinstance(image_url_or_urls, list):
|
536 |
+
return [self.fetch_images(x) for x in image_url_or_urls]
|
537 |
+
elif isinstance(image_url_or_urls, str):
|
538 |
+
response = requests.get(image_url_or_urls, stream=True, headers=headers)
|
539 |
+
response.raise_for_status()
|
540 |
+
return Image.open(BytesIO(response.content))
|
541 |
+
else:
|
542 |
+
raise ValueError(f"only a single or a list of entries is supported but got type={type(image_url_or_urls)}")
|
543 |
+
|
544 |
+
|
545 |
+
class BaseImageProcessor(ImageProcessingMixin):
|
546 |
+
def __init__(self, **kwargs):
|
547 |
+
super().__init__(**kwargs)
|
548 |
+
|
549 |
+
def __call__(self, images, **kwargs) -> BatchFeature:
|
550 |
+
"""Preprocess an image or a batch of images."""
|
551 |
+
return self.preprocess(images, **kwargs)
|
552 |
+
|
553 |
+
def preprocess(self, images, **kwargs) -> BatchFeature:
|
554 |
+
raise NotImplementedError("Each image processor must implement its own preprocess method")
|
555 |
+
|
556 |
+
def rescale(
|
557 |
+
self,
|
558 |
+
image: np.ndarray,
|
559 |
+
scale: float,
|
560 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
561 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
562 |
+
**kwargs,
|
563 |
+
) -> np.ndarray:
|
564 |
+
"""
|
565 |
+
Rescale an image by a scale factor. image = image * scale.
|
566 |
+
|
567 |
+
Args:
|
568 |
+
image (`np.ndarray`):
|
569 |
+
Image to rescale.
|
570 |
+
scale (`float`):
|
571 |
+
The scaling factor to rescale pixel values by.
|
572 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
573 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
574 |
+
image is used. Can be one of:
|
575 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
576 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
577 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
578 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
579 |
+
from the input image. Can be one of:
|
580 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
581 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
582 |
+
|
583 |
+
Returns:
|
584 |
+
`np.ndarray`: The rescaled image.
|
585 |
+
"""
|
586 |
+
return rescale(image, scale=scale, data_format=data_format, input_data_format=input_data_format, **kwargs)
|
587 |
+
|
588 |
+
def normalize(
|
589 |
+
self,
|
590 |
+
image: np.ndarray,
|
591 |
+
mean: Union[float, Iterable[float]],
|
592 |
+
std: Union[float, Iterable[float]],
|
593 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
594 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
595 |
+
**kwargs,
|
596 |
+
) -> np.ndarray:
|
597 |
+
"""
|
598 |
+
Normalize an image. image = (image - image_mean) / image_std.
|
599 |
+
|
600 |
+
Args:
|
601 |
+
image (`np.ndarray`):
|
602 |
+
Image to normalize.
|
603 |
+
mean (`float` or `Iterable[float]`):
|
604 |
+
Image mean to use for normalization.
|
605 |
+
std (`float` or `Iterable[float]`):
|
606 |
+
Image standard deviation to use for normalization.
|
607 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
608 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
609 |
+
image is used. Can be one of:
|
610 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
611 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
612 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
613 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
614 |
+
from the input image. Can be one of:
|
615 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
616 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
617 |
+
|
618 |
+
Returns:
|
619 |
+
`np.ndarray`: The normalized image.
|
620 |
+
"""
|
621 |
+
return normalize(
|
622 |
+
image, mean=mean, std=std, data_format=data_format, input_data_format=input_data_format, **kwargs
|
623 |
+
)
|
624 |
+
|
625 |
+
def center_crop(
|
626 |
+
self,
|
627 |
+
image: np.ndarray,
|
628 |
+
size: Dict[str, int],
|
629 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
630 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
631 |
+
**kwargs,
|
632 |
+
) -> np.ndarray:
|
633 |
+
"""
|
634 |
+
Center crop an image to `(size["height"], size["width"])`. If the input size is smaller than `crop_size` along
|
635 |
+
any edge, the image is padded with 0's and then center cropped.
|
636 |
+
|
637 |
+
Args:
|
638 |
+
image (`np.ndarray`):
|
639 |
+
Image to center crop.
|
640 |
+
size (`Dict[str, int]`):
|
641 |
+
Size of the output image.
|
642 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
643 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
644 |
+
image is used. Can be one of:
|
645 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
646 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
647 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
648 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
649 |
+
from the input image. Can be one of:
|
650 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
651 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
652 |
+
"""
|
653 |
+
size = get_size_dict(size)
|
654 |
+
if "height" not in size or "width" not in size:
|
655 |
+
raise ValueError(f"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}")
|
656 |
+
return center_crop(
|
657 |
+
image,
|
658 |
+
size=(size["height"], size["width"]),
|
659 |
+
data_format=data_format,
|
660 |
+
input_data_format=input_data_format,
|
661 |
+
**kwargs,
|
662 |
+
)
|
663 |
+
|
664 |
+
|
665 |
+
VALID_SIZE_DICT_KEYS = ({"height", "width"}, {"shortest_edge"}, {"shortest_edge", "longest_edge"}, {"longest_edge"})
|
666 |
+
|
667 |
+
|
668 |
+
def is_valid_size_dict(size_dict):
|
669 |
+
if not isinstance(size_dict, dict):
|
670 |
+
return False
|
671 |
+
|
672 |
+
size_dict_keys = set(size_dict.keys())
|
673 |
+
for allowed_keys in VALID_SIZE_DICT_KEYS:
|
674 |
+
if size_dict_keys == allowed_keys:
|
675 |
+
return True
|
676 |
+
return False
|
677 |
+
|
678 |
+
|
679 |
+
def convert_to_size_dict(
|
680 |
+
size, max_size: Optional[int] = None, default_to_square: bool = True, height_width_order: bool = True
|
681 |
+
):
|
682 |
+
# By default, if size is an int we assume it represents a tuple of (size, size).
|
683 |
+
if isinstance(size, int) and default_to_square:
|
684 |
+
if max_size is not None:
|
685 |
+
raise ValueError("Cannot specify both size as an int, with default_to_square=True and max_size")
|
686 |
+
return {"height": size, "width": size}
|
687 |
+
# In other configs, if size is an int and default_to_square is False, size represents the length of
|
688 |
+
# the shortest edge after resizing.
|
689 |
+
elif isinstance(size, int) and not default_to_square:
|
690 |
+
size_dict = {"shortest_edge": size}
|
691 |
+
if max_size is not None:
|
692 |
+
size_dict["longest_edge"] = max_size
|
693 |
+
return size_dict
|
694 |
+
# Otherwise, if size is a tuple it's either (height, width) or (width, height)
|
695 |
+
elif isinstance(size, (tuple, list)) and height_width_order:
|
696 |
+
return {"height": size[0], "width": size[1]}
|
697 |
+
elif isinstance(size, (tuple, list)) and not height_width_order:
|
698 |
+
return {"height": size[1], "width": size[0]}
|
699 |
+
elif size is None and max_size is not None:
|
700 |
+
if default_to_square:
|
701 |
+
raise ValueError("Cannot specify both default_to_square=True and max_size")
|
702 |
+
return {"longest_edge": max_size}
|
703 |
+
|
704 |
+
raise ValueError(f"Could not convert size input to size dict: {size}")
|
705 |
+
|
706 |
+
|
707 |
+
def get_size_dict(
|
708 |
+
size: Union[int, Iterable[int], Dict[str, int]] = None,
|
709 |
+
max_size: Optional[int] = None,
|
710 |
+
height_width_order: bool = True,
|
711 |
+
default_to_square: bool = True,
|
712 |
+
param_name="size",
|
713 |
+
) -> dict:
|
714 |
+
"""
|
715 |
+
Converts the old size parameter in the config into the new dict expected in the config. This is to ensure backwards
|
716 |
+
compatibility with the old image processor configs and removes ambiguity over whether the tuple is in (height,
|
717 |
+
width) or (width, height) format.
|
718 |
+
|
719 |
+
- If `size` is tuple, it is converted to `{"height": size[0], "width": size[1]}` or `{"height": size[1], "width":
|
720 |
+
size[0]}` if `height_width_order` is `False`.
|
721 |
+
- If `size` is an int, and `default_to_square` is `True`, it is converted to `{"height": size, "width": size}`.
|
722 |
+
- If `size` is an int and `default_to_square` is False, it is converted to `{"shortest_edge": size}`. If `max_size`
|
723 |
+
is set, it is added to the dict as `{"longest_edge": max_size}`.
|
724 |
+
|
725 |
+
Args:
|
726 |
+
size (`Union[int, Iterable[int], Dict[str, int]]`, *optional*):
|
727 |
+
The `size` parameter to be cast into a size dictionary.
|
728 |
+
max_size (`Optional[int]`, *optional*):
|
729 |
+
The `max_size` parameter to be cast into a size dictionary.
|
730 |
+
height_width_order (`bool`, *optional*, defaults to `True`):
|
731 |
+
If `size` is a tuple, whether it's in (height, width) or (width, height) order.
|
732 |
+
default_to_square (`bool`, *optional*, defaults to `True`):
|
733 |
+
If `size` is an int, whether to default to a square image or not.
|
734 |
+
"""
|
735 |
+
if not isinstance(size, dict):
|
736 |
+
size_dict = convert_to_size_dict(size, max_size, default_to_square, height_width_order)
|
737 |
+
logger.info(
|
738 |
+
f"{param_name} should be a dictionary on of the following set of keys: {VALID_SIZE_DICT_KEYS}, got {size}."
|
739 |
+
f" Converted to {size_dict}.",
|
740 |
+
)
|
741 |
+
else:
|
742 |
+
size_dict = size
|
743 |
+
|
744 |
+
if not is_valid_size_dict(size_dict):
|
745 |
+
raise ValueError(
|
746 |
+
f"{param_name} must have one of the following set of keys: {VALID_SIZE_DICT_KEYS}, got {size_dict.keys()}"
|
747 |
+
)
|
748 |
+
return size_dict
|
749 |
+
|
750 |
+
|
751 |
+
def select_best_resolution(original_size: tuple, possible_resolutions: list) -> tuple:
|
752 |
+
"""
|
753 |
+
Selects the best resolution from a list of possible resolutions based on the original size.
|
754 |
+
|
755 |
+
This is done by calculating the effective and wasted resolution for each possible resolution.
|
756 |
+
|
757 |
+
The best fit resolution is the one that maximizes the effective resolution and minimizes the wasted resolution.
|
758 |
+
|
759 |
+
Args:
|
760 |
+
original_size (tuple):
|
761 |
+
The original size of the image in the format (height, width).
|
762 |
+
possible_resolutions (list):
|
763 |
+
A list of possible resolutions in the format [(height1, width1), (height2, width2), ...].
|
764 |
+
|
765 |
+
Returns:
|
766 |
+
tuple: The best fit resolution in the format (height, width).
|
767 |
+
"""
|
768 |
+
original_height, original_width = original_size
|
769 |
+
best_fit = None
|
770 |
+
max_effective_resolution = 0
|
771 |
+
min_wasted_resolution = float("inf")
|
772 |
+
|
773 |
+
for height, width in possible_resolutions:
|
774 |
+
scale = min(width / original_width, height / original_height)
|
775 |
+
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
|
776 |
+
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
|
777 |
+
wasted_resolution = (width * height) - effective_resolution
|
778 |
+
|
779 |
+
if effective_resolution > max_effective_resolution or (
|
780 |
+
effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution
|
781 |
+
):
|
782 |
+
max_effective_resolution = effective_resolution
|
783 |
+
min_wasted_resolution = wasted_resolution
|
784 |
+
best_fit = (height, width)
|
785 |
+
|
786 |
+
return best_fit
|
787 |
+
|
788 |
+
|
789 |
+
ImageProcessingMixin.push_to_hub = copy_func(ImageProcessingMixin.push_to_hub)
|
790 |
+
if ImageProcessingMixin.push_to_hub.__doc__ is not None:
|
791 |
+
ImageProcessingMixin.push_to_hub.__doc__ = ImageProcessingMixin.push_to_hub.__doc__.format(
|
792 |
+
object="image processor", object_class="AutoImageProcessor", object_files="image processor file"
|
793 |
+
)
|
env-llmeval/lib/python3.10/site-packages/transformers/image_transforms.py
ADDED
@@ -0,0 +1,801 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import warnings
|
17 |
+
from typing import Iterable, List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from .image_utils import (
|
22 |
+
ChannelDimension,
|
23 |
+
ImageInput,
|
24 |
+
get_channel_dimension_axis,
|
25 |
+
get_image_size,
|
26 |
+
infer_channel_dimension_format,
|
27 |
+
)
|
28 |
+
from .utils import ExplicitEnum, TensorType, is_jax_tensor, is_tf_tensor, is_torch_tensor
|
29 |
+
from .utils.import_utils import (
|
30 |
+
is_flax_available,
|
31 |
+
is_tf_available,
|
32 |
+
is_torch_available,
|
33 |
+
is_vision_available,
|
34 |
+
requires_backends,
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
if is_vision_available():
|
39 |
+
import PIL
|
40 |
+
|
41 |
+
from .image_utils import PILImageResampling
|
42 |
+
|
43 |
+
if is_torch_available():
|
44 |
+
import torch
|
45 |
+
|
46 |
+
if is_tf_available():
|
47 |
+
import tensorflow as tf
|
48 |
+
|
49 |
+
if is_flax_available():
|
50 |
+
import jax.numpy as jnp
|
51 |
+
|
52 |
+
|
53 |
+
def to_channel_dimension_format(
|
54 |
+
image: np.ndarray,
|
55 |
+
channel_dim: Union[ChannelDimension, str],
|
56 |
+
input_channel_dim: Optional[Union[ChannelDimension, str]] = None,
|
57 |
+
) -> np.ndarray:
|
58 |
+
"""
|
59 |
+
Converts `image` to the channel dimension format specified by `channel_dim`.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
image (`numpy.ndarray`):
|
63 |
+
The image to have its channel dimension set.
|
64 |
+
channel_dim (`ChannelDimension`):
|
65 |
+
The channel dimension format to use.
|
66 |
+
input_channel_dim (`ChannelDimension`, *optional*):
|
67 |
+
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
|
68 |
+
|
69 |
+
Returns:
|
70 |
+
`np.ndarray`: The image with the channel dimension set to `channel_dim`.
|
71 |
+
"""
|
72 |
+
if not isinstance(image, np.ndarray):
|
73 |
+
raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}")
|
74 |
+
|
75 |
+
if input_channel_dim is None:
|
76 |
+
input_channel_dim = infer_channel_dimension_format(image)
|
77 |
+
|
78 |
+
target_channel_dim = ChannelDimension(channel_dim)
|
79 |
+
if input_channel_dim == target_channel_dim:
|
80 |
+
return image
|
81 |
+
|
82 |
+
if target_channel_dim == ChannelDimension.FIRST:
|
83 |
+
image = image.transpose((2, 0, 1))
|
84 |
+
elif target_channel_dim == ChannelDimension.LAST:
|
85 |
+
image = image.transpose((1, 2, 0))
|
86 |
+
else:
|
87 |
+
raise ValueError("Unsupported channel dimension format: {}".format(channel_dim))
|
88 |
+
|
89 |
+
return image
|
90 |
+
|
91 |
+
|
92 |
+
def rescale(
|
93 |
+
image: np.ndarray,
|
94 |
+
scale: float,
|
95 |
+
data_format: Optional[ChannelDimension] = None,
|
96 |
+
dtype: np.dtype = np.float32,
|
97 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
98 |
+
) -> np.ndarray:
|
99 |
+
"""
|
100 |
+
Rescales `image` by `scale`.
|
101 |
+
|
102 |
+
Args:
|
103 |
+
image (`np.ndarray`):
|
104 |
+
The image to rescale.
|
105 |
+
scale (`float`):
|
106 |
+
The scale to use for rescaling the image.
|
107 |
+
data_format (`ChannelDimension`, *optional*):
|
108 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
109 |
+
dtype (`np.dtype`, *optional*, defaults to `np.float32`):
|
110 |
+
The dtype of the output image. Defaults to `np.float32`. Used for backwards compatibility with feature
|
111 |
+
extractors.
|
112 |
+
input_data_format (`ChannelDimension`, *optional*):
|
113 |
+
The channel dimension format of the input image. If not provided, it will be inferred from the input image.
|
114 |
+
|
115 |
+
Returns:
|
116 |
+
`np.ndarray`: The rescaled image.
|
117 |
+
"""
|
118 |
+
if not isinstance(image, np.ndarray):
|
119 |
+
raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}")
|
120 |
+
|
121 |
+
rescaled_image = image * scale
|
122 |
+
if data_format is not None:
|
123 |
+
rescaled_image = to_channel_dimension_format(rescaled_image, data_format, input_data_format)
|
124 |
+
|
125 |
+
rescaled_image = rescaled_image.astype(dtype)
|
126 |
+
|
127 |
+
return rescaled_image
|
128 |
+
|
129 |
+
|
130 |
+
def _rescale_for_pil_conversion(image):
|
131 |
+
"""
|
132 |
+
Detects whether or not the image needs to be rescaled before being converted to a PIL image.
|
133 |
+
|
134 |
+
The assumption is that if the image is of type `np.float` and all values are between 0 and 1, it needs to be
|
135 |
+
rescaled.
|
136 |
+
"""
|
137 |
+
if image.dtype == np.uint8:
|
138 |
+
do_rescale = False
|
139 |
+
elif np.allclose(image, image.astype(int)):
|
140 |
+
if np.all(0 <= image) and np.all(image <= 255):
|
141 |
+
do_rescale = False
|
142 |
+
else:
|
143 |
+
raise ValueError(
|
144 |
+
"The image to be converted to a PIL image contains values outside the range [0, 255], "
|
145 |
+
f"got [{image.min()}, {image.max()}] which cannot be converted to uint8."
|
146 |
+
)
|
147 |
+
elif np.all(0 <= image) and np.all(image <= 1):
|
148 |
+
do_rescale = True
|
149 |
+
else:
|
150 |
+
raise ValueError(
|
151 |
+
"The image to be converted to a PIL image contains values outside the range [0, 1], "
|
152 |
+
f"got [{image.min()}, {image.max()}] which cannot be converted to uint8."
|
153 |
+
)
|
154 |
+
return do_rescale
|
155 |
+
|
156 |
+
|
157 |
+
def to_pil_image(
|
158 |
+
image: Union[np.ndarray, "PIL.Image.Image", "torch.Tensor", "tf.Tensor", "jnp.ndarray"],
|
159 |
+
do_rescale: Optional[bool] = None,
|
160 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
161 |
+
) -> "PIL.Image.Image":
|
162 |
+
"""
|
163 |
+
Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
|
164 |
+
needed.
|
165 |
+
|
166 |
+
Args:
|
167 |
+
image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor` or `tf.Tensor`):
|
168 |
+
The image to convert to the `PIL.Image` format.
|
169 |
+
do_rescale (`bool`, *optional*):
|
170 |
+
Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will default
|
171 |
+
to `True` if the image type is a floating type and casting to `int` would result in a loss of precision,
|
172 |
+
and `False` otherwise.
|
173 |
+
input_data_format (`ChannelDimension`, *optional*):
|
174 |
+
The channel dimension format of the input image. If unset, will use the inferred format from the input.
|
175 |
+
|
176 |
+
Returns:
|
177 |
+
`PIL.Image.Image`: The converted image.
|
178 |
+
"""
|
179 |
+
requires_backends(to_pil_image, ["vision"])
|
180 |
+
|
181 |
+
if isinstance(image, PIL.Image.Image):
|
182 |
+
return image
|
183 |
+
|
184 |
+
# Convert all tensors to numpy arrays before converting to PIL image
|
185 |
+
if is_torch_tensor(image) or is_tf_tensor(image):
|
186 |
+
image = image.numpy()
|
187 |
+
elif is_jax_tensor(image):
|
188 |
+
image = np.array(image)
|
189 |
+
elif not isinstance(image, np.ndarray):
|
190 |
+
raise ValueError("Input image type not supported: {}".format(type(image)))
|
191 |
+
|
192 |
+
# If the channel has been moved to first dim, we put it back at the end.
|
193 |
+
image = to_channel_dimension_format(image, ChannelDimension.LAST, input_data_format)
|
194 |
+
|
195 |
+
# If there is a single channel, we squeeze it, as otherwise PIL can't handle it.
|
196 |
+
image = np.squeeze(image, axis=-1) if image.shape[-1] == 1 else image
|
197 |
+
|
198 |
+
# PIL.Image can only store uint8 values so we rescale the image to be between 0 and 255 if needed.
|
199 |
+
do_rescale = _rescale_for_pil_conversion(image) if do_rescale is None else do_rescale
|
200 |
+
|
201 |
+
if do_rescale:
|
202 |
+
image = rescale(image, 255)
|
203 |
+
|
204 |
+
image = image.astype(np.uint8)
|
205 |
+
return PIL.Image.fromarray(image)
|
206 |
+
|
207 |
+
|
208 |
+
# Logic adapted from torchvision resizing logic: https://github.com/pytorch/vision/blob/511924c1ced4ce0461197e5caa64ce5b9e558aab/torchvision/transforms/functional.py#L366
|
209 |
+
def get_resize_output_image_size(
|
210 |
+
input_image: np.ndarray,
|
211 |
+
size: Union[int, Tuple[int, int], List[int], Tuple[int]],
|
212 |
+
default_to_square: bool = True,
|
213 |
+
max_size: Optional[int] = None,
|
214 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
215 |
+
) -> tuple:
|
216 |
+
"""
|
217 |
+
Find the target (height, width) dimension of the output image after resizing given the input image and the desired
|
218 |
+
size.
|
219 |
+
|
220 |
+
Args:
|
221 |
+
input_image (`np.ndarray`):
|
222 |
+
The image to resize.
|
223 |
+
size (`int` or `Tuple[int, int]` or List[int] or Tuple[int]):
|
224 |
+
The size to use for resizing the image. If `size` is a sequence like (h, w), output size will be matched to
|
225 |
+
this.
|
226 |
+
|
227 |
+
If `size` is an int and `default_to_square` is `True`, then image will be resized to (size, size). If
|
228 |
+
`size` is an int and `default_to_square` is `False`, then smaller edge of the image will be matched to this
|
229 |
+
number. i.e, if height > width, then image will be rescaled to (size * height / width, size).
|
230 |
+
default_to_square (`bool`, *optional*, defaults to `True`):
|
231 |
+
How to convert `size` when it is a single int. If set to `True`, the `size` will be converted to a square
|
232 |
+
(`size`,`size`). If set to `False`, will replicate
|
233 |
+
[`torchvision.transforms.Resize`](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.Resize)
|
234 |
+
with support for resizing only the smallest edge and providing an optional `max_size`.
|
235 |
+
max_size (`int`, *optional*):
|
236 |
+
The maximum allowed for the longer edge of the resized image: if the longer edge of the image is greater
|
237 |
+
than `max_size` after being resized according to `size`, then the image is resized again so that the longer
|
238 |
+
edge is equal to `max_size`. As a result, `size` might be overruled, i.e the smaller edge may be shorter
|
239 |
+
than `size`. Only used if `default_to_square` is `False`.
|
240 |
+
input_data_format (`ChannelDimension`, *optional*):
|
241 |
+
The channel dimension format of the input image. If unset, will use the inferred format from the input.
|
242 |
+
|
243 |
+
Returns:
|
244 |
+
`tuple`: The target (height, width) dimension of the output image after resizing.
|
245 |
+
"""
|
246 |
+
if isinstance(size, (tuple, list)):
|
247 |
+
if len(size) == 2:
|
248 |
+
return tuple(size)
|
249 |
+
elif len(size) == 1:
|
250 |
+
# Perform same logic as if size was an int
|
251 |
+
size = size[0]
|
252 |
+
else:
|
253 |
+
raise ValueError("size must have 1 or 2 elements if it is a list or tuple")
|
254 |
+
|
255 |
+
if default_to_square:
|
256 |
+
return (size, size)
|
257 |
+
|
258 |
+
height, width = get_image_size(input_image, input_data_format)
|
259 |
+
short, long = (width, height) if width <= height else (height, width)
|
260 |
+
requested_new_short = size
|
261 |
+
|
262 |
+
new_short, new_long = requested_new_short, int(requested_new_short * long / short)
|
263 |
+
|
264 |
+
if max_size is not None:
|
265 |
+
if max_size <= requested_new_short:
|
266 |
+
raise ValueError(
|
267 |
+
f"max_size = {max_size} must be strictly greater than the requested "
|
268 |
+
f"size for the smaller edge size = {size}"
|
269 |
+
)
|
270 |
+
if new_long > max_size:
|
271 |
+
new_short, new_long = int(max_size * new_short / new_long), max_size
|
272 |
+
|
273 |
+
return (new_long, new_short) if width <= height else (new_short, new_long)
|
274 |
+
|
275 |
+
|
276 |
+
def resize(
|
277 |
+
image: np.ndarray,
|
278 |
+
size: Tuple[int, int],
|
279 |
+
resample: "PILImageResampling" = None,
|
280 |
+
reducing_gap: Optional[int] = None,
|
281 |
+
data_format: Optional[ChannelDimension] = None,
|
282 |
+
return_numpy: bool = True,
|
283 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
284 |
+
) -> np.ndarray:
|
285 |
+
"""
|
286 |
+
Resizes `image` to `(height, width)` specified by `size` using the PIL library.
|
287 |
+
|
288 |
+
Args:
|
289 |
+
image (`np.ndarray`):
|
290 |
+
The image to resize.
|
291 |
+
size (`Tuple[int, int]`):
|
292 |
+
The size to use for resizing the image.
|
293 |
+
resample (`int`, *optional*, defaults to `PILImageResampling.BILINEAR`):
|
294 |
+
The filter to user for resampling.
|
295 |
+
reducing_gap (`int`, *optional*):
|
296 |
+
Apply optimization by resizing the image in two steps. The bigger `reducing_gap`, the closer the result to
|
297 |
+
the fair resampling. See corresponding Pillow documentation for more details.
|
298 |
+
data_format (`ChannelDimension`, *optional*):
|
299 |
+
The channel dimension format of the output image. If unset, will use the inferred format from the input.
|
300 |
+
return_numpy (`bool`, *optional*, defaults to `True`):
|
301 |
+
Whether or not to return the resized image as a numpy array. If False a `PIL.Image.Image` object is
|
302 |
+
returned.
|
303 |
+
input_data_format (`ChannelDimension`, *optional*):
|
304 |
+
The channel dimension format of the input image. If unset, will use the inferred format from the input.
|
305 |
+
|
306 |
+
Returns:
|
307 |
+
`np.ndarray`: The resized image.
|
308 |
+
"""
|
309 |
+
requires_backends(resize, ["vision"])
|
310 |
+
|
311 |
+
resample = resample if resample is not None else PILImageResampling.BILINEAR
|
312 |
+
|
313 |
+
if not len(size) == 2:
|
314 |
+
raise ValueError("size must have 2 elements")
|
315 |
+
|
316 |
+
# For all transformations, we want to keep the same data format as the input image unless otherwise specified.
|
317 |
+
# The resized image from PIL will always have channels last, so find the input format first.
|
318 |
+
if input_data_format is None:
|
319 |
+
input_data_format = infer_channel_dimension_format(image)
|
320 |
+
data_format = input_data_format if data_format is None else data_format
|
321 |
+
|
322 |
+
# To maintain backwards compatibility with the resizing done in previous image feature extractors, we use
|
323 |
+
# the pillow library to resize the image and then convert back to numpy
|
324 |
+
do_rescale = False
|
325 |
+
if not isinstance(image, PIL.Image.Image):
|
326 |
+
do_rescale = _rescale_for_pil_conversion(image)
|
327 |
+
image = to_pil_image(image, do_rescale=do_rescale, input_data_format=input_data_format)
|
328 |
+
height, width = size
|
329 |
+
# PIL images are in the format (width, height)
|
330 |
+
resized_image = image.resize((width, height), resample=resample, reducing_gap=reducing_gap)
|
331 |
+
|
332 |
+
if return_numpy:
|
333 |
+
resized_image = np.array(resized_image)
|
334 |
+
# If the input image channel dimension was of size 1, then it is dropped when converting to a PIL image
|
335 |
+
# so we need to add it back if necessary.
|
336 |
+
resized_image = np.expand_dims(resized_image, axis=-1) if resized_image.ndim == 2 else resized_image
|
337 |
+
# The image is always in channels last format after converting from a PIL image
|
338 |
+
resized_image = to_channel_dimension_format(
|
339 |
+
resized_image, data_format, input_channel_dim=ChannelDimension.LAST
|
340 |
+
)
|
341 |
+
# If an image was rescaled to be in the range [0, 255] before converting to a PIL image, then we need to
|
342 |
+
# rescale it back to the original range.
|
343 |
+
resized_image = rescale(resized_image, 1 / 255) if do_rescale else resized_image
|
344 |
+
return resized_image
|
345 |
+
|
346 |
+
|
347 |
+
def normalize(
|
348 |
+
image: np.ndarray,
|
349 |
+
mean: Union[float, Iterable[float]],
|
350 |
+
std: Union[float, Iterable[float]],
|
351 |
+
data_format: Optional[ChannelDimension] = None,
|
352 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
353 |
+
) -> np.ndarray:
|
354 |
+
"""
|
355 |
+
Normalizes `image` using the mean and standard deviation specified by `mean` and `std`.
|
356 |
+
|
357 |
+
image = (image - mean) / std
|
358 |
+
|
359 |
+
Args:
|
360 |
+
image (`np.ndarray`):
|
361 |
+
The image to normalize.
|
362 |
+
mean (`float` or `Iterable[float]`):
|
363 |
+
The mean to use for normalization.
|
364 |
+
std (`float` or `Iterable[float]`):
|
365 |
+
The standard deviation to use for normalization.
|
366 |
+
data_format (`ChannelDimension`, *optional*):
|
367 |
+
The channel dimension format of the output image. If unset, will use the inferred format from the input.
|
368 |
+
input_data_format (`ChannelDimension`, *optional*):
|
369 |
+
The channel dimension format of the input image. If unset, will use the inferred format from the input.
|
370 |
+
"""
|
371 |
+
if not isinstance(image, np.ndarray):
|
372 |
+
raise ValueError("image must be a numpy array")
|
373 |
+
|
374 |
+
if input_data_format is None:
|
375 |
+
input_data_format = infer_channel_dimension_format(image)
|
376 |
+
channel_axis = get_channel_dimension_axis(image, input_data_format=input_data_format)
|
377 |
+
num_channels = image.shape[channel_axis]
|
378 |
+
|
379 |
+
# We cast to float32 to avoid errors that can occur when subtracting uint8 values.
|
380 |
+
# We preserve the original dtype if it is a float type to prevent upcasting float16.
|
381 |
+
if not np.issubdtype(image.dtype, np.floating):
|
382 |
+
image = image.astype(np.float32)
|
383 |
+
|
384 |
+
if isinstance(mean, Iterable):
|
385 |
+
if len(mean) != num_channels:
|
386 |
+
raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(mean)}")
|
387 |
+
else:
|
388 |
+
mean = [mean] * num_channels
|
389 |
+
mean = np.array(mean, dtype=image.dtype)
|
390 |
+
|
391 |
+
if isinstance(std, Iterable):
|
392 |
+
if len(std) != num_channels:
|
393 |
+
raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(std)}")
|
394 |
+
else:
|
395 |
+
std = [std] * num_channels
|
396 |
+
std = np.array(std, dtype=image.dtype)
|
397 |
+
|
398 |
+
if input_data_format == ChannelDimension.LAST:
|
399 |
+
image = (image - mean) / std
|
400 |
+
else:
|
401 |
+
image = ((image.T - mean) / std).T
|
402 |
+
|
403 |
+
image = to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
|
404 |
+
return image
|
405 |
+
|
406 |
+
|
407 |
+
def center_crop(
|
408 |
+
image: np.ndarray,
|
409 |
+
size: Tuple[int, int],
|
410 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
411 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
412 |
+
return_numpy: Optional[bool] = None,
|
413 |
+
) -> np.ndarray:
|
414 |
+
"""
|
415 |
+
Crops the `image` to the specified `size` using a center crop. Note that if the image is too small to be cropped to
|
416 |
+
the size given, it will be padded (so the returned result will always be of size `size`).
|
417 |
+
|
418 |
+
Args:
|
419 |
+
image (`np.ndarray`):
|
420 |
+
The image to crop.
|
421 |
+
size (`Tuple[int, int]`):
|
422 |
+
The target size for the cropped image.
|
423 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
424 |
+
The channel dimension format for the output image. Can be one of:
|
425 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
426 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
427 |
+
If unset, will use the inferred format of the input image.
|
428 |
+
input_data_format (`str` or `ChannelDimension`, *optional*):
|
429 |
+
The channel dimension format for the input image. Can be one of:
|
430 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
431 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
432 |
+
If unset, will use the inferred format of the input image.
|
433 |
+
return_numpy (`bool`, *optional*):
|
434 |
+
Whether or not to return the cropped image as a numpy array. Used for backwards compatibility with the
|
435 |
+
previous ImageFeatureExtractionMixin method.
|
436 |
+
- Unset: will return the same type as the input image.
|
437 |
+
- `True`: will return a numpy array.
|
438 |
+
- `False`: will return a `PIL.Image.Image` object.
|
439 |
+
Returns:
|
440 |
+
`np.ndarray`: The cropped image.
|
441 |
+
"""
|
442 |
+
requires_backends(center_crop, ["vision"])
|
443 |
+
|
444 |
+
if return_numpy is not None:
|
445 |
+
warnings.warn("return_numpy is deprecated and will be removed in v.4.33", FutureWarning)
|
446 |
+
|
447 |
+
return_numpy = True if return_numpy is None else return_numpy
|
448 |
+
|
449 |
+
if not isinstance(image, np.ndarray):
|
450 |
+
raise ValueError(f"Input image must be of type np.ndarray, got {type(image)}")
|
451 |
+
|
452 |
+
if not isinstance(size, Iterable) or len(size) != 2:
|
453 |
+
raise ValueError("size must have 2 elements representing the height and width of the output image")
|
454 |
+
|
455 |
+
if input_data_format is None:
|
456 |
+
input_data_format = infer_channel_dimension_format(image)
|
457 |
+
output_data_format = data_format if data_format is not None else input_data_format
|
458 |
+
|
459 |
+
# We perform the crop in (C, H, W) format and then convert to the output format
|
460 |
+
image = to_channel_dimension_format(image, ChannelDimension.FIRST, input_data_format)
|
461 |
+
|
462 |
+
orig_height, orig_width = get_image_size(image, ChannelDimension.FIRST)
|
463 |
+
crop_height, crop_width = size
|
464 |
+
crop_height, crop_width = int(crop_height), int(crop_width)
|
465 |
+
|
466 |
+
# In case size is odd, (image_shape[0] + size[0]) // 2 won't give the proper result.
|
467 |
+
top = (orig_height - crop_height) // 2
|
468 |
+
bottom = top + crop_height
|
469 |
+
# In case size is odd, (image_shape[1] + size[1]) // 2 won't give the proper result.
|
470 |
+
left = (orig_width - crop_width) // 2
|
471 |
+
right = left + crop_width
|
472 |
+
|
473 |
+
# Check if cropped area is within image boundaries
|
474 |
+
if top >= 0 and bottom <= orig_height and left >= 0 and right <= orig_width:
|
475 |
+
image = image[..., top:bottom, left:right]
|
476 |
+
image = to_channel_dimension_format(image, output_data_format, ChannelDimension.FIRST)
|
477 |
+
return image
|
478 |
+
|
479 |
+
# Otherwise, we may need to pad if the image is too small. Oh joy...
|
480 |
+
new_height = max(crop_height, orig_height)
|
481 |
+
new_width = max(crop_width, orig_width)
|
482 |
+
new_shape = image.shape[:-2] + (new_height, new_width)
|
483 |
+
new_image = np.zeros_like(image, shape=new_shape)
|
484 |
+
|
485 |
+
# If the image is too small, pad it with zeros
|
486 |
+
top_pad = (new_height - orig_height) // 2
|
487 |
+
bottom_pad = top_pad + orig_height
|
488 |
+
left_pad = (new_width - orig_width) // 2
|
489 |
+
right_pad = left_pad + orig_width
|
490 |
+
new_image[..., top_pad:bottom_pad, left_pad:right_pad] = image
|
491 |
+
|
492 |
+
top += top_pad
|
493 |
+
bottom += top_pad
|
494 |
+
left += left_pad
|
495 |
+
right += left_pad
|
496 |
+
|
497 |
+
new_image = new_image[..., max(0, top) : min(new_height, bottom), max(0, left) : min(new_width, right)]
|
498 |
+
new_image = to_channel_dimension_format(new_image, output_data_format, ChannelDimension.FIRST)
|
499 |
+
|
500 |
+
if not return_numpy:
|
501 |
+
new_image = to_pil_image(new_image)
|
502 |
+
|
503 |
+
return new_image
|
504 |
+
|
505 |
+
|
506 |
+
def _center_to_corners_format_torch(bboxes_center: "torch.Tensor") -> "torch.Tensor":
|
507 |
+
center_x, center_y, width, height = bboxes_center.unbind(-1)
|
508 |
+
bbox_corners = torch.stack(
|
509 |
+
# top left x, top left y, bottom right x, bottom right y
|
510 |
+
[(center_x - 0.5 * width), (center_y - 0.5 * height), (center_x + 0.5 * width), (center_y + 0.5 * height)],
|
511 |
+
dim=-1,
|
512 |
+
)
|
513 |
+
return bbox_corners
|
514 |
+
|
515 |
+
|
516 |
+
def _center_to_corners_format_numpy(bboxes_center: np.ndarray) -> np.ndarray:
|
517 |
+
center_x, center_y, width, height = bboxes_center.T
|
518 |
+
bboxes_corners = np.stack(
|
519 |
+
# top left x, top left y, bottom right x, bottom right y
|
520 |
+
[center_x - 0.5 * width, center_y - 0.5 * height, center_x + 0.5 * width, center_y + 0.5 * height],
|
521 |
+
axis=-1,
|
522 |
+
)
|
523 |
+
return bboxes_corners
|
524 |
+
|
525 |
+
|
526 |
+
def _center_to_corners_format_tf(bboxes_center: "tf.Tensor") -> "tf.Tensor":
|
527 |
+
center_x, center_y, width, height = tf.unstack(bboxes_center, axis=-1)
|
528 |
+
bboxes_corners = tf.stack(
|
529 |
+
# top left x, top left y, bottom right x, bottom right y
|
530 |
+
[center_x - 0.5 * width, center_y - 0.5 * height, center_x + 0.5 * width, center_y + 0.5 * height],
|
531 |
+
axis=-1,
|
532 |
+
)
|
533 |
+
return bboxes_corners
|
534 |
+
|
535 |
+
|
536 |
+
# 2 functions below inspired by https://github.com/facebookresearch/detr/blob/master/util/box_ops.py
|
537 |
+
def center_to_corners_format(bboxes_center: TensorType) -> TensorType:
|
538 |
+
"""
|
539 |
+
Converts bounding boxes from center format to corners format.
|
540 |
+
|
541 |
+
center format: contains the coordinate for the center of the box and its width, height dimensions
|
542 |
+
(center_x, center_y, width, height)
|
543 |
+
corners format: contains the coodinates for the top-left and bottom-right corners of the box
|
544 |
+
(top_left_x, top_left_y, bottom_right_x, bottom_right_y)
|
545 |
+
"""
|
546 |
+
# Function is used during model forward pass, so we use the input framework if possible, without
|
547 |
+
# converting to numpy
|
548 |
+
if is_torch_tensor(bboxes_center):
|
549 |
+
return _center_to_corners_format_torch(bboxes_center)
|
550 |
+
elif isinstance(bboxes_center, np.ndarray):
|
551 |
+
return _center_to_corners_format_numpy(bboxes_center)
|
552 |
+
elif is_tf_tensor(bboxes_center):
|
553 |
+
return _center_to_corners_format_tf(bboxes_center)
|
554 |
+
|
555 |
+
raise ValueError(f"Unsupported input type {type(bboxes_center)}")
|
556 |
+
|
557 |
+
|
558 |
+
def _corners_to_center_format_torch(bboxes_corners: "torch.Tensor") -> "torch.Tensor":
|
559 |
+
top_left_x, top_left_y, bottom_right_x, bottom_right_y = bboxes_corners.unbind(-1)
|
560 |
+
b = [
|
561 |
+
(top_left_x + bottom_right_x) / 2, # center x
|
562 |
+
(top_left_y + bottom_right_y) / 2, # center y
|
563 |
+
(bottom_right_x - top_left_x), # width
|
564 |
+
(bottom_right_y - top_left_y), # height
|
565 |
+
]
|
566 |
+
return torch.stack(b, dim=-1)
|
567 |
+
|
568 |
+
|
569 |
+
def _corners_to_center_format_numpy(bboxes_corners: np.ndarray) -> np.ndarray:
|
570 |
+
top_left_x, top_left_y, bottom_right_x, bottom_right_y = bboxes_corners.T
|
571 |
+
bboxes_center = np.stack(
|
572 |
+
[
|
573 |
+
(top_left_x + bottom_right_x) / 2, # center x
|
574 |
+
(top_left_y + bottom_right_y) / 2, # center y
|
575 |
+
(bottom_right_x - top_left_x), # width
|
576 |
+
(bottom_right_y - top_left_y), # height
|
577 |
+
],
|
578 |
+
axis=-1,
|
579 |
+
)
|
580 |
+
return bboxes_center
|
581 |
+
|
582 |
+
|
583 |
+
def _corners_to_center_format_tf(bboxes_corners: "tf.Tensor") -> "tf.Tensor":
|
584 |
+
top_left_x, top_left_y, bottom_right_x, bottom_right_y = tf.unstack(bboxes_corners, axis=-1)
|
585 |
+
bboxes_center = tf.stack(
|
586 |
+
[
|
587 |
+
(top_left_x + bottom_right_x) / 2, # center x
|
588 |
+
(top_left_y + bottom_right_y) / 2, # center y
|
589 |
+
(bottom_right_x - top_left_x), # width
|
590 |
+
(bottom_right_y - top_left_y), # height
|
591 |
+
],
|
592 |
+
axis=-1,
|
593 |
+
)
|
594 |
+
return bboxes_center
|
595 |
+
|
596 |
+
|
597 |
+
def corners_to_center_format(bboxes_corners: TensorType) -> TensorType:
|
598 |
+
"""
|
599 |
+
Converts bounding boxes from corners format to center format.
|
600 |
+
|
601 |
+
corners format: contains the coordinates for the top-left and bottom-right corners of the box
|
602 |
+
(top_left_x, top_left_y, bottom_right_x, bottom_right_y)
|
603 |
+
center format: contains the coordinate for the center of the box and its the width, height dimensions
|
604 |
+
(center_x, center_y, width, height)
|
605 |
+
"""
|
606 |
+
# Inverse function accepts different input types so implemented here too
|
607 |
+
if is_torch_tensor(bboxes_corners):
|
608 |
+
return _corners_to_center_format_torch(bboxes_corners)
|
609 |
+
elif isinstance(bboxes_corners, np.ndarray):
|
610 |
+
return _corners_to_center_format_numpy(bboxes_corners)
|
611 |
+
elif is_tf_tensor(bboxes_corners):
|
612 |
+
return _corners_to_center_format_tf(bboxes_corners)
|
613 |
+
|
614 |
+
raise ValueError(f"Unsupported input type {type(bboxes_corners)}")
|
615 |
+
|
616 |
+
|
617 |
+
# 2 functions below copied from https://github.com/cocodataset/panopticapi/blob/master/panopticapi/utils.py
|
618 |
+
# Copyright (c) 2018, Alexander Kirillov
|
619 |
+
# All rights reserved.
|
620 |
+
def rgb_to_id(color):
|
621 |
+
"""
|
622 |
+
Converts RGB color to unique ID.
|
623 |
+
"""
|
624 |
+
if isinstance(color, np.ndarray) and len(color.shape) == 3:
|
625 |
+
if color.dtype == np.uint8:
|
626 |
+
color = color.astype(np.int32)
|
627 |
+
return color[:, :, 0] + 256 * color[:, :, 1] + 256 * 256 * color[:, :, 2]
|
628 |
+
return int(color[0] + 256 * color[1] + 256 * 256 * color[2])
|
629 |
+
|
630 |
+
|
631 |
+
def id_to_rgb(id_map):
|
632 |
+
"""
|
633 |
+
Converts unique ID to RGB color.
|
634 |
+
"""
|
635 |
+
if isinstance(id_map, np.ndarray):
|
636 |
+
id_map_copy = id_map.copy()
|
637 |
+
rgb_shape = tuple(list(id_map.shape) + [3])
|
638 |
+
rgb_map = np.zeros(rgb_shape, dtype=np.uint8)
|
639 |
+
for i in range(3):
|
640 |
+
rgb_map[..., i] = id_map_copy % 256
|
641 |
+
id_map_copy //= 256
|
642 |
+
return rgb_map
|
643 |
+
color = []
|
644 |
+
for _ in range(3):
|
645 |
+
color.append(id_map % 256)
|
646 |
+
id_map //= 256
|
647 |
+
return color
|
648 |
+
|
649 |
+
|
650 |
+
class PaddingMode(ExplicitEnum):
|
651 |
+
"""
|
652 |
+
Enum class for the different padding modes to use when padding images.
|
653 |
+
"""
|
654 |
+
|
655 |
+
CONSTANT = "constant"
|
656 |
+
REFLECT = "reflect"
|
657 |
+
REPLICATE = "replicate"
|
658 |
+
SYMMETRIC = "symmetric"
|
659 |
+
|
660 |
+
|
661 |
+
def pad(
|
662 |
+
image: np.ndarray,
|
663 |
+
padding: Union[int, Tuple[int, int], Iterable[Tuple[int, int]]],
|
664 |
+
mode: PaddingMode = PaddingMode.CONSTANT,
|
665 |
+
constant_values: Union[float, Iterable[float]] = 0.0,
|
666 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
667 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
668 |
+
) -> np.ndarray:
|
669 |
+
"""
|
670 |
+
Pads the `image` with the specified (height, width) `padding` and `mode`.
|
671 |
+
|
672 |
+
Args:
|
673 |
+
image (`np.ndarray`):
|
674 |
+
The image to pad.
|
675 |
+
padding (`int` or `Tuple[int, int]` or `Iterable[Tuple[int, int]]`):
|
676 |
+
Padding to apply to the edges of the height, width axes. Can be one of three formats:
|
677 |
+
- `((before_height, after_height), (before_width, after_width))` unique pad widths for each axis.
|
678 |
+
- `((before, after),)` yields same before and after pad for height and width.
|
679 |
+
- `(pad,)` or int is a shortcut for before = after = pad width for all axes.
|
680 |
+
mode (`PaddingMode`):
|
681 |
+
The padding mode to use. Can be one of:
|
682 |
+
- `"constant"`: pads with a constant value.
|
683 |
+
- `"reflect"`: pads with the reflection of the vector mirrored on the first and last values of the
|
684 |
+
vector along each axis.
|
685 |
+
- `"replicate"`: pads with the replication of the last value on the edge of the array along each axis.
|
686 |
+
- `"symmetric"`: pads with the reflection of the vector mirrored along the edge of the array.
|
687 |
+
constant_values (`float` or `Iterable[float]`, *optional*):
|
688 |
+
The value to use for the padding if `mode` is `"constant"`.
|
689 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
690 |
+
The channel dimension format for the output image. Can be one of:
|
691 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
692 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
693 |
+
If unset, will use same as the input image.
|
694 |
+
input_data_format (`str` or `ChannelDimension`, *optional*):
|
695 |
+
The channel dimension format for the input image. Can be one of:
|
696 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
697 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
698 |
+
If unset, will use the inferred format of the input image.
|
699 |
+
|
700 |
+
Returns:
|
701 |
+
`np.ndarray`: The padded image.
|
702 |
+
|
703 |
+
"""
|
704 |
+
if input_data_format is None:
|
705 |
+
input_data_format = infer_channel_dimension_format(image)
|
706 |
+
|
707 |
+
def _expand_for_data_format(values):
|
708 |
+
"""
|
709 |
+
Convert values to be in the format expected by np.pad based on the data format.
|
710 |
+
"""
|
711 |
+
if isinstance(values, (int, float)):
|
712 |
+
values = ((values, values), (values, values))
|
713 |
+
elif isinstance(values, tuple) and len(values) == 1:
|
714 |
+
values = ((values[0], values[0]), (values[0], values[0]))
|
715 |
+
elif isinstance(values, tuple) and len(values) == 2 and isinstance(values[0], int):
|
716 |
+
values = (values, values)
|
717 |
+
elif isinstance(values, tuple) and len(values) == 2 and isinstance(values[0], tuple):
|
718 |
+
values = values
|
719 |
+
else:
|
720 |
+
raise ValueError(f"Unsupported format: {values}")
|
721 |
+
|
722 |
+
# add 0 for channel dimension
|
723 |
+
values = ((0, 0), *values) if input_data_format == ChannelDimension.FIRST else (*values, (0, 0))
|
724 |
+
|
725 |
+
# Add additional padding if there's a batch dimension
|
726 |
+
values = (0, *values) if image.ndim == 4 else values
|
727 |
+
return values
|
728 |
+
|
729 |
+
padding = _expand_for_data_format(padding)
|
730 |
+
|
731 |
+
if mode == PaddingMode.CONSTANT:
|
732 |
+
constant_values = _expand_for_data_format(constant_values)
|
733 |
+
image = np.pad(image, padding, mode="constant", constant_values=constant_values)
|
734 |
+
elif mode == PaddingMode.REFLECT:
|
735 |
+
image = np.pad(image, padding, mode="reflect")
|
736 |
+
elif mode == PaddingMode.REPLICATE:
|
737 |
+
image = np.pad(image, padding, mode="edge")
|
738 |
+
elif mode == PaddingMode.SYMMETRIC:
|
739 |
+
image = np.pad(image, padding, mode="symmetric")
|
740 |
+
else:
|
741 |
+
raise ValueError(f"Invalid padding mode: {mode}")
|
742 |
+
|
743 |
+
image = to_channel_dimension_format(image, data_format, input_data_format) if data_format is not None else image
|
744 |
+
return image
|
745 |
+
|
746 |
+
|
747 |
+
# TODO (Amy): Accept 1/3/4 channel numpy array as input and return np.array as default
|
748 |
+
def convert_to_rgb(image: ImageInput) -> ImageInput:
|
749 |
+
"""
|
750 |
+
Converts an image to RGB format. Only converts if the image is of type PIL.Image.Image, otherwise returns the image
|
751 |
+
as is.
|
752 |
+
|
753 |
+
Args:
|
754 |
+
image (Image):
|
755 |
+
The image to convert.
|
756 |
+
"""
|
757 |
+
requires_backends(convert_to_rgb, ["vision"])
|
758 |
+
|
759 |
+
if not isinstance(image, PIL.Image.Image):
|
760 |
+
return image
|
761 |
+
|
762 |
+
image = image.convert("RGB")
|
763 |
+
return image
|
764 |
+
|
765 |
+
|
766 |
+
def flip_channel_order(
|
767 |
+
image: np.ndarray,
|
768 |
+
data_format: Optional[ChannelDimension] = None,
|
769 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
770 |
+
) -> np.ndarray:
|
771 |
+
"""
|
772 |
+
Flips the channel order of the image.
|
773 |
+
|
774 |
+
If the image is in RGB format, it will be converted to BGR and vice versa.
|
775 |
+
|
776 |
+
Args:
|
777 |
+
image (`np.ndarray`):
|
778 |
+
The image to flip.
|
779 |
+
data_format (`ChannelDimension`, *optional*):
|
780 |
+
The channel dimension format for the output image. Can be one of:
|
781 |
+
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
782 |
+
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
783 |
+
If unset, will use same as the input image.
|
784 |
+
input_data_format (`ChannelDimension`, *optional*):
|
785 |
+
The channel dimension format for the input image. Can be one of:
|
786 |
+
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
787 |
+
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
788 |
+
If unset, will use the inferred format of the input image.
|
789 |
+
"""
|
790 |
+
input_data_format = infer_channel_dimension_format(image) if input_data_format is None else input_data_format
|
791 |
+
|
792 |
+
if input_data_format == ChannelDimension.LAST:
|
793 |
+
image = image[..., ::-1]
|
794 |
+
elif input_data_format == ChannelDimension.FIRST:
|
795 |
+
image = image[::-1, ...]
|
796 |
+
else:
|
797 |
+
raise ValueError(f"Unsupported channel dimension: {input_data_format}")
|
798 |
+
|
799 |
+
if data_format is not None:
|
800 |
+
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
801 |
+
return image
|
env-llmeval/lib/python3.10/site-packages/transformers/integrations/__init__.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ..utils import _LazyModule
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"aqlm": ["replace_with_aqlm_linear"],
|
21 |
+
"awq": [
|
22 |
+
"fuse_awq_modules",
|
23 |
+
"post_init_awq_exllama_modules",
|
24 |
+
"replace_with_awq_linear",
|
25 |
+
],
|
26 |
+
"bitsandbytes": [
|
27 |
+
"get_keys_to_not_convert",
|
28 |
+
"replace_8bit_linear",
|
29 |
+
"replace_with_bnb_linear",
|
30 |
+
"set_module_8bit_tensor_to_device",
|
31 |
+
"set_module_quantized_tensor_to_device",
|
32 |
+
],
|
33 |
+
"deepspeed": [
|
34 |
+
"HfDeepSpeedConfig",
|
35 |
+
"HfTrainerDeepSpeedConfig",
|
36 |
+
"deepspeed_config",
|
37 |
+
"deepspeed_init",
|
38 |
+
"deepspeed_load_checkpoint",
|
39 |
+
"deepspeed_optim_sched",
|
40 |
+
"is_deepspeed_available",
|
41 |
+
"is_deepspeed_zero3_enabled",
|
42 |
+
"set_hf_deepspeed_config",
|
43 |
+
"unset_hf_deepspeed_config",
|
44 |
+
],
|
45 |
+
"integration_utils": [
|
46 |
+
"INTEGRATION_TO_CALLBACK",
|
47 |
+
"AzureMLCallback",
|
48 |
+
"ClearMLCallback",
|
49 |
+
"CodeCarbonCallback",
|
50 |
+
"CometCallback",
|
51 |
+
"DagsHubCallback",
|
52 |
+
"DVCLiveCallback",
|
53 |
+
"FlyteCallback",
|
54 |
+
"MLflowCallback",
|
55 |
+
"NeptuneCallback",
|
56 |
+
"NeptuneMissingConfiguration",
|
57 |
+
"TensorBoardCallback",
|
58 |
+
"WandbCallback",
|
59 |
+
"get_available_reporting_integrations",
|
60 |
+
"get_reporting_integration_callbacks",
|
61 |
+
"hp_params",
|
62 |
+
"is_azureml_available",
|
63 |
+
"is_clearml_available",
|
64 |
+
"is_codecarbon_available",
|
65 |
+
"is_comet_available",
|
66 |
+
"is_dagshub_available",
|
67 |
+
"is_dvclive_available",
|
68 |
+
"is_flyte_deck_standard_available",
|
69 |
+
"is_flytekit_available",
|
70 |
+
"is_mlflow_available",
|
71 |
+
"is_neptune_available",
|
72 |
+
"is_optuna_available",
|
73 |
+
"is_ray_available",
|
74 |
+
"is_ray_tune_available",
|
75 |
+
"is_sigopt_available",
|
76 |
+
"is_tensorboard_available",
|
77 |
+
"is_wandb_available",
|
78 |
+
"rewrite_logs",
|
79 |
+
"run_hp_search_optuna",
|
80 |
+
"run_hp_search_ray",
|
81 |
+
"run_hp_search_sigopt",
|
82 |
+
"run_hp_search_wandb",
|
83 |
+
],
|
84 |
+
"peft": ["PeftAdapterMixin"],
|
85 |
+
"quanto": ["replace_with_quanto_layers"],
|
86 |
+
}
|
87 |
+
|
88 |
+
if TYPE_CHECKING:
|
89 |
+
from .aqlm import replace_with_aqlm_linear
|
90 |
+
from .awq import (
|
91 |
+
fuse_awq_modules,
|
92 |
+
post_init_awq_exllama_modules,
|
93 |
+
replace_with_awq_linear,
|
94 |
+
)
|
95 |
+
from .bitsandbytes import (
|
96 |
+
get_keys_to_not_convert,
|
97 |
+
replace_8bit_linear,
|
98 |
+
replace_with_bnb_linear,
|
99 |
+
set_module_8bit_tensor_to_device,
|
100 |
+
set_module_quantized_tensor_to_device,
|
101 |
+
)
|
102 |
+
from .deepspeed import (
|
103 |
+
HfDeepSpeedConfig,
|
104 |
+
HfTrainerDeepSpeedConfig,
|
105 |
+
deepspeed_config,
|
106 |
+
deepspeed_init,
|
107 |
+
deepspeed_load_checkpoint,
|
108 |
+
deepspeed_optim_sched,
|
109 |
+
is_deepspeed_available,
|
110 |
+
is_deepspeed_zero3_enabled,
|
111 |
+
set_hf_deepspeed_config,
|
112 |
+
unset_hf_deepspeed_config,
|
113 |
+
)
|
114 |
+
from .integration_utils import (
|
115 |
+
INTEGRATION_TO_CALLBACK,
|
116 |
+
AzureMLCallback,
|
117 |
+
ClearMLCallback,
|
118 |
+
CodeCarbonCallback,
|
119 |
+
CometCallback,
|
120 |
+
DagsHubCallback,
|
121 |
+
DVCLiveCallback,
|
122 |
+
FlyteCallback,
|
123 |
+
MLflowCallback,
|
124 |
+
NeptuneCallback,
|
125 |
+
NeptuneMissingConfiguration,
|
126 |
+
TensorBoardCallback,
|
127 |
+
WandbCallback,
|
128 |
+
get_available_reporting_integrations,
|
129 |
+
get_reporting_integration_callbacks,
|
130 |
+
hp_params,
|
131 |
+
is_azureml_available,
|
132 |
+
is_clearml_available,
|
133 |
+
is_codecarbon_available,
|
134 |
+
is_comet_available,
|
135 |
+
is_dagshub_available,
|
136 |
+
is_dvclive_available,
|
137 |
+
is_flyte_deck_standard_available,
|
138 |
+
is_flytekit_available,
|
139 |
+
is_mlflow_available,
|
140 |
+
is_neptune_available,
|
141 |
+
is_optuna_available,
|
142 |
+
is_ray_available,
|
143 |
+
is_ray_tune_available,
|
144 |
+
is_sigopt_available,
|
145 |
+
is_tensorboard_available,
|
146 |
+
is_wandb_available,
|
147 |
+
rewrite_logs,
|
148 |
+
run_hp_search_optuna,
|
149 |
+
run_hp_search_ray,
|
150 |
+
run_hp_search_sigopt,
|
151 |
+
run_hp_search_wandb,
|
152 |
+
)
|
153 |
+
from .peft import PeftAdapterMixin
|
154 |
+
from .quanto import replace_with_quanto_layers
|
155 |
+
else:
|
156 |
+
import sys
|
157 |
+
|
158 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
env-llmeval/lib/python3.10/site-packages/transformers/integrations/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.52 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/integrations/__pycache__/aqlm.cpython-310.pyc
ADDED
Binary file (2.76 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/integrations/__pycache__/awq.cpython-310.pyc
ADDED
Binary file (11.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/integrations/__pycache__/bitsandbytes.cpython-310.pyc
ADDED
Binary file (9.95 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/integrations/__pycache__/deepspeed.cpython-310.pyc
ADDED
Binary file (12 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/integrations/__pycache__/integration_utils.cpython-310.pyc
ADDED
Binary file (63.3 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/integrations/__pycache__/peft.cpython-310.pyc
ADDED
Binary file (17.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/integrations/__pycache__/quanto.cpython-310.pyc
ADDED
Binary file (2.83 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/integrations/__pycache__/tpu.cpython-310.pyc
ADDED
Binary file (865 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/transformers/integrations/aqlm.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"AQLM (Additive Quantization of Language Model) integration file"
|
15 |
+
|
16 |
+
|
17 |
+
from ..utils import is_accelerate_available, is_aqlm_available, is_torch_available
|
18 |
+
|
19 |
+
|
20 |
+
if is_torch_available():
|
21 |
+
import torch.nn as nn
|
22 |
+
|
23 |
+
|
24 |
+
def replace_with_aqlm_linear(
|
25 |
+
model,
|
26 |
+
quantization_config=None,
|
27 |
+
linear_weights_not_to_quantize=None,
|
28 |
+
current_key_name=None,
|
29 |
+
has_been_replaced=False,
|
30 |
+
):
|
31 |
+
"""
|
32 |
+
Public method that recursively replaces the Linear layers of the given model with AQLM quantized layers.
|
33 |
+
`accelerate` is needed to use this method. Returns the converted model and a boolean that indicates if the
|
34 |
+
conversion has been successfull or not.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
model (`torch.nn.Module`):
|
38 |
+
The model to convert, can be any `torch.nn.Module` instance.
|
39 |
+
quantization_config (`AqlmConfig`):
|
40 |
+
The quantization config object that contains the quantization parameters.
|
41 |
+
linear_weights_not_to_quantize (`list[str]`, *optional*):
|
42 |
+
A list of nn.Linear weights to not convert. If a parameter path is in the list (e.g. `lm_head.weight`), the corresponding module will not be
|
43 |
+
converted.
|
44 |
+
current_key_name (`list`, *optional*):
|
45 |
+
A list that contains the current key name. This is used for recursion and should not be passed by the user.
|
46 |
+
has_been_replaced (`bool`, *optional*):
|
47 |
+
A boolean that indicates if the conversion has been successful or not. This is used for recursion and
|
48 |
+
should not be passed by the user.
|
49 |
+
"""
|
50 |
+
if not is_aqlm_available():
|
51 |
+
raise ValueError("AQLM is not available. Please install it with `pip install aqlm[cpu,gpu]`")
|
52 |
+
|
53 |
+
if not is_accelerate_available():
|
54 |
+
raise ValueError("AQLM requires Accelerate to be installed: `pip install accelerate`")
|
55 |
+
|
56 |
+
if linear_weights_not_to_quantize is None:
|
57 |
+
linear_weights_not_to_quantize = []
|
58 |
+
|
59 |
+
from accelerate import init_empty_weights
|
60 |
+
from aqlm import QuantizedLinear
|
61 |
+
|
62 |
+
for name, module in model.named_children():
|
63 |
+
if current_key_name is None:
|
64 |
+
current_key_name = []
|
65 |
+
current_key_name.append(name)
|
66 |
+
|
67 |
+
if isinstance(module, nn.Linear):
|
68 |
+
# Check if the current key is not in the `linear_weights_not_to_quantize`
|
69 |
+
if ".".join(current_key_name) + ".weight" not in linear_weights_not_to_quantize:
|
70 |
+
with init_empty_weights():
|
71 |
+
in_features = module.in_features
|
72 |
+
out_features = module.out_features
|
73 |
+
|
74 |
+
model._modules[name] = QuantizedLinear(
|
75 |
+
in_features,
|
76 |
+
out_features,
|
77 |
+
bias=module.bias is not None,
|
78 |
+
in_group_size=quantization_config.in_group_size,
|
79 |
+
out_group_size=quantization_config.out_group_size,
|
80 |
+
num_codebooks=quantization_config.num_codebooks,
|
81 |
+
nbits_per_codebook=quantization_config.nbits_per_codebook,
|
82 |
+
)
|
83 |
+
has_been_replaced = True
|
84 |
+
|
85 |
+
# Store the module class in case we need to transpose the weight later
|
86 |
+
model._modules[name].source_cls = type(module)
|
87 |
+
# Force requires grad to False to avoid unexpected errors
|
88 |
+
model._modules[name].requires_grad_(False)
|
89 |
+
if len(list(module.children())) > 0:
|
90 |
+
_, has_been_replaced = replace_with_aqlm_linear(
|
91 |
+
module,
|
92 |
+
quantization_config=quantization_config,
|
93 |
+
linear_weights_not_to_quantize=linear_weights_not_to_quantize,
|
94 |
+
current_key_name=current_key_name,
|
95 |
+
has_been_replaced=has_been_replaced,
|
96 |
+
)
|
97 |
+
# Remove the last key for recursion
|
98 |
+
current_key_name.pop(-1)
|
99 |
+
return model, has_been_replaced
|
env-llmeval/lib/python3.10/site-packages/transformers/integrations/awq.py
ADDED
@@ -0,0 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"AWQ (Activation aware Weight Quantization) integration file"
|
15 |
+
from ..activations import ACT2FN
|
16 |
+
from ..modeling_utils import PreTrainedModel
|
17 |
+
from ..utils import is_auto_awq_available, is_torch_available
|
18 |
+
from ..utils.quantization_config import (
|
19 |
+
AwqBackendPackingMethod,
|
20 |
+
AwqConfig,
|
21 |
+
AWQLinearVersion,
|
22 |
+
ExllamaVersion,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
if is_torch_available():
|
27 |
+
import torch
|
28 |
+
import torch.nn as nn
|
29 |
+
|
30 |
+
|
31 |
+
AWQ_FUSED_MAPPINGS = {
|
32 |
+
"mistral": {
|
33 |
+
"attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
|
34 |
+
"mlp": ["gate_proj", "up_proj", "down_proj"],
|
35 |
+
"layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
|
36 |
+
"use_alibi": False,
|
37 |
+
},
|
38 |
+
"mixtral": {
|
39 |
+
"attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
|
40 |
+
"mlp": ["w1", "w3", "w2"],
|
41 |
+
"layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
|
42 |
+
"use_alibi": False,
|
43 |
+
"rope_theta": 1000000.0,
|
44 |
+
},
|
45 |
+
"llama": {
|
46 |
+
"attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
|
47 |
+
"mlp": ["gate_proj", "up_proj", "down_proj"],
|
48 |
+
"layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
|
49 |
+
"use_alibi": False,
|
50 |
+
},
|
51 |
+
"llava": {
|
52 |
+
"attention": ["q_proj", "k_proj", "v_proj", "o_proj"],
|
53 |
+
"mlp": ["gate_proj", "up_proj", "down_proj"],
|
54 |
+
"layernorm": ["input_layernorm", "post_attention_layernorm", "norm"],
|
55 |
+
"use_alibi": False,
|
56 |
+
},
|
57 |
+
}
|
58 |
+
|
59 |
+
|
60 |
+
def replace_with_awq_linear(
|
61 |
+
model,
|
62 |
+
modules_to_not_convert=None,
|
63 |
+
quantization_config=None,
|
64 |
+
current_key_name=None,
|
65 |
+
has_been_replaced=False,
|
66 |
+
) -> bool:
|
67 |
+
"""
|
68 |
+
Public method that recursively replaces the Linear layers of the given model with AWQ quantized layers.
|
69 |
+
`accelerate` is needed to use this method. Returns the converted model and a boolean that indicates if the
|
70 |
+
conversion has been successfull or not.
|
71 |
+
|
72 |
+
During the module replacement, we also infer the backend to use through the `quantization_config` object.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
model (`torch.nn.Module`):
|
76 |
+
The model to convert, can be any `torch.nn.Module` instance.
|
77 |
+
quantization_config (`AwqConfig`):
|
78 |
+
The quantization config object that contains the quantization parameters.
|
79 |
+
modules_to_not_convert (`list`, *optional*):
|
80 |
+
A list of modules to not convert. If a module name is in the list (e.g. `lm_head`), it will not be
|
81 |
+
converted.
|
82 |
+
current_key_name (`list`, *optional*):
|
83 |
+
A list that contains the current key name. This is used for recursion and should not be passed by the user.
|
84 |
+
has_been_replaced (`bool`, *optional*):
|
85 |
+
A boolean that indicates if the conversion has been successful or not. This is used for recursion and
|
86 |
+
should not be passed by the user.
|
87 |
+
"""
|
88 |
+
if modules_to_not_convert is None:
|
89 |
+
modules_to_not_convert = []
|
90 |
+
|
91 |
+
backend = quantization_config.backend
|
92 |
+
|
93 |
+
if not is_auto_awq_available():
|
94 |
+
raise ValueError(
|
95 |
+
"AWQ (either `autoawq` or `llmawq`) is not available. Please install it with `pip install autoawq` or check out the installation guide in https://github.com/mit-han-lab/llm-awq"
|
96 |
+
)
|
97 |
+
|
98 |
+
if backend == AwqBackendPackingMethod.AUTOAWQ:
|
99 |
+
if quantization_config.version == AWQLinearVersion.GEMM:
|
100 |
+
from awq.modules.linear.gemm import WQLinear_GEMM
|
101 |
+
|
102 |
+
target_cls = WQLinear_GEMM
|
103 |
+
elif quantization_config.version == AWQLinearVersion.GEMV:
|
104 |
+
from awq.modules.linear.gemv import WQLinear_GEMV
|
105 |
+
|
106 |
+
target_cls = WQLinear_GEMV
|
107 |
+
elif quantization_config.version == AWQLinearVersion.EXLLAMA:
|
108 |
+
if quantization_config.exllama_config["version"] == ExllamaVersion.ONE:
|
109 |
+
from awq.modules.linear.exllama import WQLinear_Exllama
|
110 |
+
|
111 |
+
target_cls = WQLinear_Exllama
|
112 |
+
elif quantization_config.exllama_config["version"] == ExllamaVersion.TWO:
|
113 |
+
from awq.modules.linear.exllamav2 import WQLinear_ExllamaV2
|
114 |
+
|
115 |
+
target_cls = WQLinear_ExllamaV2
|
116 |
+
else:
|
117 |
+
raise ValueError(f"Unrecognized Exllama version: {quantization_config.exllama_config['version']}")
|
118 |
+
else:
|
119 |
+
raise ValueError(f"Unrecognized AWQ version: {quantization_config.version}")
|
120 |
+
else:
|
121 |
+
from awq.quantize.qmodule import WQLinear
|
122 |
+
|
123 |
+
target_cls = WQLinear
|
124 |
+
|
125 |
+
for name, module in model.named_children():
|
126 |
+
if current_key_name is None:
|
127 |
+
current_key_name = []
|
128 |
+
current_key_name.append(name)
|
129 |
+
|
130 |
+
if isinstance(module, nn.Linear) and name not in modules_to_not_convert:
|
131 |
+
# Check if the current key is not in the `modules_to_not_convert`
|
132 |
+
if not any(key in ".".join(current_key_name) for key in modules_to_not_convert):
|
133 |
+
in_features = module.in_features
|
134 |
+
out_features = module.out_features
|
135 |
+
|
136 |
+
model._modules[name] = target_cls(
|
137 |
+
w_bit=quantization_config.bits,
|
138 |
+
group_size=quantization_config.group_size,
|
139 |
+
in_features=in_features,
|
140 |
+
out_features=out_features,
|
141 |
+
bias=module.bias is not None,
|
142 |
+
dev=module.weight.device,
|
143 |
+
)
|
144 |
+
has_been_replaced = True
|
145 |
+
|
146 |
+
# Force requires grad to False to avoid unexpected errors
|
147 |
+
model._modules[name].requires_grad_(False)
|
148 |
+
if len(list(module.children())) > 0:
|
149 |
+
_, has_been_replaced = replace_with_awq_linear(
|
150 |
+
module,
|
151 |
+
modules_to_not_convert=modules_to_not_convert,
|
152 |
+
current_key_name=current_key_name,
|
153 |
+
quantization_config=quantization_config,
|
154 |
+
has_been_replaced=has_been_replaced,
|
155 |
+
)
|
156 |
+
# Remove the last key for recursion
|
157 |
+
current_key_name.pop(-1)
|
158 |
+
return model, has_been_replaced
|
159 |
+
|
160 |
+
|
161 |
+
def get_modules_to_fuse(model, quantization_config):
|
162 |
+
"""
|
163 |
+
Returns the fusing mapping given the quantization config and the model
|
164 |
+
|
165 |
+
Args:
|
166 |
+
model (`~PreTrainedModel`):
|
167 |
+
The model to fuse - note this model should have been converted into AWQ format beforehand.
|
168 |
+
quantization_config (`~transformers.quantization_config.AWQConfig`):
|
169 |
+
The quantization configuration to use.
|
170 |
+
"""
|
171 |
+
if not isinstance(model, PreTrainedModel):
|
172 |
+
raise ValueError(f"The model should be an instance of `PreTrainedModel`, got {model.__class__.__name__}")
|
173 |
+
|
174 |
+
# Always default to `quantization_config.modules_to_fuse`
|
175 |
+
if quantization_config.modules_to_fuse is not None:
|
176 |
+
current_fused_mapping = quantization_config.modules_to_fuse
|
177 |
+
current_fused_mapping["max_seq_len"] = quantization_config.fuse_max_seq_len
|
178 |
+
elif model.config.model_type in AWQ_FUSED_MAPPINGS:
|
179 |
+
current_fused_mapping = AWQ_FUSED_MAPPINGS[model.config.model_type]
|
180 |
+
|
181 |
+
# Properly deal with the case where we have a multi-modal model as well (e.g. Llava)
|
182 |
+
if not hasattr(model.config, "text_config"):
|
183 |
+
config = model.config
|
184 |
+
else:
|
185 |
+
config = model.config.text_config
|
186 |
+
|
187 |
+
# Handle hidden_size, num_attention_heads, num_key_value_heads on our own.
|
188 |
+
hidden_size = config.hidden_size
|
189 |
+
num_attention_heads = config.num_attention_heads
|
190 |
+
num_key_value_heads = getattr(config, "num_key_value_heads", num_attention_heads)
|
191 |
+
|
192 |
+
# Fill `current_fused_mapping` with the expected values
|
193 |
+
current_fused_mapping["hidden_size"] = hidden_size
|
194 |
+
current_fused_mapping["num_attention_heads"] = num_attention_heads
|
195 |
+
current_fused_mapping["num_key_value_heads"] = num_key_value_heads
|
196 |
+
current_fused_mapping["max_seq_len"] = quantization_config.fuse_max_seq_len
|
197 |
+
else:
|
198 |
+
raise ValueError(
|
199 |
+
"Fusing mapping not found either on the quantization config or the supported `AWQ_FUSED_MAPPINGS`. Please pass a `fused_mapping` argument"
|
200 |
+
" in the `quantization_config` or raise an issue on transformers https://github.com/huggingface/transformers to add its support."
|
201 |
+
)
|
202 |
+
return current_fused_mapping
|
203 |
+
|
204 |
+
|
205 |
+
def fuse_awq_modules(model, quantization_config):
|
206 |
+
"""
|
207 |
+
Optionally fuse some modules in the model to speedup inference.
|
208 |
+
|
209 |
+
Args:
|
210 |
+
model (`~PreTrainedModel`):
|
211 |
+
The model to fuse - note this model should have been converted into AWQ format beforehand.
|
212 |
+
quantization_config (`Union[AwqConfig, dict]`):
|
213 |
+
The quantization configuration to use.
|
214 |
+
"""
|
215 |
+
# We need to convert it from dict in order to get an AwqConfig object
|
216 |
+
# otherwise the fields `backend` etc. will not be available
|
217 |
+
# https://github.com/huggingface/transformers/pull/27411#discussion_r1414044495
|
218 |
+
if isinstance(quantization_config, dict):
|
219 |
+
quantization_config = AwqConfig.from_dict(quantization_config)
|
220 |
+
backend = quantization_config.backend
|
221 |
+
|
222 |
+
modules_to_fuse = get_modules_to_fuse(model, quantization_config)
|
223 |
+
modules_to_not_convert = getattr(quantization_config, "modules_to_not_convert", None)
|
224 |
+
|
225 |
+
if backend == AwqBackendPackingMethod.AUTOAWQ:
|
226 |
+
from awq.modules.fused.attn import QuantAttentionFused
|
227 |
+
from awq.modules.fused.mlp import QuantFusedMLP
|
228 |
+
from awq.modules.fused.norm import FasterTransformerRMSNorm
|
229 |
+
else:
|
230 |
+
raise ValueError("Fusing is only supported for the AutoAWQ backend")
|
231 |
+
|
232 |
+
for name, module in model.named_modules():
|
233 |
+
if modules_to_not_convert is not None:
|
234 |
+
if any(module_name_to_not_convert in name for module_name_to_not_convert in modules_to_not_convert):
|
235 |
+
continue
|
236 |
+
|
237 |
+
# Replace layer norms
|
238 |
+
_fuse_awq_layernorm(modules_to_fuse["layernorm"], module, FasterTransformerRMSNorm)
|
239 |
+
|
240 |
+
# Replace MLP layers
|
241 |
+
_fuse_awq_mlp(model, name, modules_to_fuse["mlp"], module, QuantFusedMLP)
|
242 |
+
|
243 |
+
# Replace attention layers
|
244 |
+
_fuse_awq_attention_layers(model, module, modules_to_fuse, name, QuantAttentionFused)
|
245 |
+
return model
|
246 |
+
|
247 |
+
|
248 |
+
def _fuse_awq_layernorm(fuse_module_names, module, target_cls):
|
249 |
+
"""
|
250 |
+
Fuse the LayerNorm layers into a target class using autoawq
|
251 |
+
|
252 |
+
Args:
|
253 |
+
fuse_module_names (`List[str]`):
|
254 |
+
The list of module names to fuse
|
255 |
+
module (`nn.Module`):
|
256 |
+
The pytorch parent module that has layernorm modules to fuse
|
257 |
+
target_cls (`~autoawq.FasterTransformerRMSNorm`):
|
258 |
+
The `FasterTransformerRMSNorm` class as it only supports that class
|
259 |
+
for now.
|
260 |
+
"""
|
261 |
+
for module_name in fuse_module_names:
|
262 |
+
if hasattr(module, module_name):
|
263 |
+
old_module = getattr(module, module_name)
|
264 |
+
module._modules[module_name] = target_cls(
|
265 |
+
old_module.weight,
|
266 |
+
old_module.variance_epsilon,
|
267 |
+
).to(old_module.weight.device)
|
268 |
+
del old_module
|
269 |
+
|
270 |
+
|
271 |
+
def _fuse_awq_mlp(model, current_module_name, fuse_module_names, module, target_cls):
|
272 |
+
"""
|
273 |
+
Fuse the MLP layers into a target class using autoawq
|
274 |
+
|
275 |
+
Args:
|
276 |
+
model (`~PreTrainedModel`):
|
277 |
+
The input pretrained model
|
278 |
+
current_module_name (`str`):
|
279 |
+
The current submodule name
|
280 |
+
fuse_module_names (`List[str]`):
|
281 |
+
The list of module names to fuse. For the MLP layers it has to be an array
|
282 |
+
of length 3 that consists of the 3 MLP layers in the order (gate (dense layer post-attention) / up / down layers)
|
283 |
+
module (`nn.Module`):
|
284 |
+
The pytorch parent module that has layernorm modules to fuse
|
285 |
+
target_cls (`~autoawq.QuantFusedMLP`):
|
286 |
+
The `QuantFusedMLP` class as it only supports that class
|
287 |
+
for now.
|
288 |
+
"""
|
289 |
+
if len(fuse_module_names) == 0:
|
290 |
+
return
|
291 |
+
|
292 |
+
if hasattr(module, fuse_module_names[0]):
|
293 |
+
gate_proj = getattr(module, fuse_module_names[0])
|
294 |
+
up_proj = getattr(module, fuse_module_names[1])
|
295 |
+
down_proj = getattr(module, fuse_module_names[2])
|
296 |
+
|
297 |
+
previous_device = gate_proj.qweight.device
|
298 |
+
|
299 |
+
# Deal also with the case model has `text_config` attribute
|
300 |
+
hidden_act = (
|
301 |
+
model.config.hidden_act
|
302 |
+
if not hasattr(model.config, "text_config")
|
303 |
+
else model.config.text_config.hidden_act
|
304 |
+
)
|
305 |
+
activation_fn = ACT2FN[hidden_act]
|
306 |
+
new_module = target_cls(gate_proj, down_proj, up_proj, activation_fn)
|
307 |
+
|
308 |
+
parent_name, child_name = current_module_name.rsplit(".", 1)
|
309 |
+
parent = model.get_submodule(parent_name)
|
310 |
+
setattr(parent, child_name, new_module.to(previous_device))
|
311 |
+
|
312 |
+
del gate_proj, up_proj, down_proj
|
313 |
+
|
314 |
+
|
315 |
+
def _fuse_awq_attention_layers(model, module, modules_to_fuse, current_module_name, target_cls):
|
316 |
+
"""
|
317 |
+
Fuse the Attention layers into a target class using autoawq
|
318 |
+
|
319 |
+
Args:
|
320 |
+
model (`~PreTrainedModel`):
|
321 |
+
The input pretrained model
|
322 |
+
module (`nn.Module`):
|
323 |
+
The pytorch parent module that has layernorm modules to fuse
|
324 |
+
modules_to_fuse (`List[str]`):
|
325 |
+
The module fusing mapping. The dictionary has to contain a field `attention` with attention module names
|
326 |
+
in the correct order: q, k, v, o layer
|
327 |
+
current_module_name (`str`):
|
328 |
+
The current submodule name
|
329 |
+
target_cls (`~autoawq.QuantAttentionFused`):
|
330 |
+
The `QuantAttentionFused` class as it only supports that class
|
331 |
+
for now.
|
332 |
+
"""
|
333 |
+
from awq.modules.linear import WQLinear_GEMM, WQLinear_GEMV
|
334 |
+
|
335 |
+
if len(modules_to_fuse["attention"]) == 0:
|
336 |
+
return
|
337 |
+
|
338 |
+
if hasattr(module, modules_to_fuse["attention"][0]):
|
339 |
+
# First, we pack the QKV layers together
|
340 |
+
q_proj = getattr(module, modules_to_fuse["attention"][0])
|
341 |
+
|
342 |
+
if isinstance(q_proj, WQLinear_GEMV):
|
343 |
+
linear_target_cls = WQLinear_GEMV
|
344 |
+
cat_dim = 0
|
345 |
+
elif isinstance(q_proj, WQLinear_GEMM):
|
346 |
+
linear_target_cls = WQLinear_GEMM
|
347 |
+
cat_dim = 1
|
348 |
+
else:
|
349 |
+
raise ValueError("Unsupported q_proj type: {type(q_proj)}")
|
350 |
+
|
351 |
+
previous_device = q_proj.qweight.device
|
352 |
+
|
353 |
+
k_proj = getattr(module, modules_to_fuse["attention"][1])
|
354 |
+
v_proj = getattr(module, modules_to_fuse["attention"][2])
|
355 |
+
o_proj = getattr(module, modules_to_fuse["attention"][3])
|
356 |
+
|
357 |
+
bias = torch.cat([q_proj.bias, k_proj.bias, v_proj.bias], dim=0) if q_proj.bias is not None else None
|
358 |
+
|
359 |
+
qkv_layer = linear_target_cls(
|
360 |
+
q_proj.w_bit,
|
361 |
+
q_proj.group_size,
|
362 |
+
q_proj.in_features,
|
363 |
+
q_proj.out_features + k_proj.out_features + v_proj.out_features,
|
364 |
+
q_proj.bias is not None,
|
365 |
+
next(iter(module.state_dict().values())).device,
|
366 |
+
)
|
367 |
+
|
368 |
+
qkv_layer.qweight = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=cat_dim)
|
369 |
+
qkv_layer.qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=cat_dim)
|
370 |
+
qkv_layer.scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=cat_dim)
|
371 |
+
|
372 |
+
if isinstance(qkv_layer, WQLinear_GEMV):
|
373 |
+
qkv_layer.split_k_iters = q_proj.split_k_iters
|
374 |
+
|
375 |
+
qkv_layer.bias = bias
|
376 |
+
|
377 |
+
fused_attention_layer = target_cls(
|
378 |
+
modules_to_fuse["hidden_size"],
|
379 |
+
modules_to_fuse["num_attention_heads"],
|
380 |
+
modules_to_fuse["num_key_value_heads"],
|
381 |
+
qkv_layer,
|
382 |
+
o_proj,
|
383 |
+
previous_device,
|
384 |
+
modules_to_fuse["max_seq_len"],
|
385 |
+
use_alibi=modules_to_fuse["use_alibi"],
|
386 |
+
# The default value in autoawq is set to 10000.0
|
387 |
+
rope_theta=modules_to_fuse.get("rope_theta", 10000.0),
|
388 |
+
)
|
389 |
+
|
390 |
+
fused_attention_layer.is_hf_transformers = True
|
391 |
+
|
392 |
+
parent_name, child_name = current_module_name.rsplit(".", 1)
|
393 |
+
parent = model.get_submodule(parent_name)
|
394 |
+
setattr(parent, child_name, fused_attention_layer.to(previous_device))
|
395 |
+
|
396 |
+
del q_proj, k_proj, v_proj, o_proj
|
397 |
+
|
398 |
+
|
399 |
+
def post_init_awq_exllama_modules(model, exllama_config):
|
400 |
+
"""
|
401 |
+
Runs post init for Exllama layers which performs:
|
402 |
+
- Weights unpacking, reordering and repacking
|
403 |
+
- Devices scratch space allocation
|
404 |
+
"""
|
405 |
+
|
406 |
+
if exllama_config["version"] == ExllamaVersion.ONE:
|
407 |
+
from awq.modules.linear.exllama import exllama_post_init
|
408 |
+
|
409 |
+
model = exllama_post_init(model)
|
410 |
+
elif exllama_config["version"] == ExllamaVersion.TWO:
|
411 |
+
from awq.modules.linear.exllamav2 import exllamav2_post_init
|
412 |
+
|
413 |
+
model = exllamav2_post_init(
|
414 |
+
model,
|
415 |
+
max_input_len=exllama_config["max_input_len"],
|
416 |
+
max_batch_size=exllama_config["max_batch_size"],
|
417 |
+
)
|
418 |
+
else:
|
419 |
+
raise ValueError(f"Unrecognized Exllama version: {exllama_config['version']}")
|
420 |
+
|
421 |
+
return model
|
env-llmeval/lib/python3.10/site-packages/transformers/integrations/bitsandbytes.py
ADDED
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib.metadata
|
2 |
+
import warnings
|
3 |
+
from copy import deepcopy
|
4 |
+
from inspect import signature
|
5 |
+
|
6 |
+
from packaging import version
|
7 |
+
|
8 |
+
from ..utils import is_accelerate_available, is_bitsandbytes_available, logging
|
9 |
+
|
10 |
+
|
11 |
+
if is_bitsandbytes_available():
|
12 |
+
import bitsandbytes as bnb
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
|
16 |
+
from ..pytorch_utils import Conv1D
|
17 |
+
|
18 |
+
if is_accelerate_available():
|
19 |
+
from accelerate import init_empty_weights
|
20 |
+
from accelerate.utils import find_tied_parameters
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
def set_module_quantized_tensor_to_device(module, tensor_name, device, value=None, quantized_stats=None):
|
26 |
+
"""
|
27 |
+
A helper function to set a given tensor (parameter of buffer) of a module on a specific device (note that doing
|
28 |
+
`param.to(device)` creates a new tensor not linked to the parameter, which is why we need this function). The
|
29 |
+
function is adapted from `set_module_tensor_to_device` function from accelerate that is adapted to support the
|
30 |
+
class `Int8Params` from `bitsandbytes`.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
module (`torch.nn.Module`):
|
34 |
+
The module in which the tensor we want to move lives.
|
35 |
+
tensor_name (`str`):
|
36 |
+
The full name of the parameter/buffer.
|
37 |
+
device (`int`, `str` or `torch.device`):
|
38 |
+
The device on which to set the tensor.
|
39 |
+
value (`torch.Tensor`, *optional*):
|
40 |
+
The value of the tensor (useful when going from the meta device to any other device).
|
41 |
+
quantized_stats (`dict[str, Any]`, *optional*):
|
42 |
+
Dict with items for either 4-bit or 8-bit serialization
|
43 |
+
"""
|
44 |
+
# Recurse if needed
|
45 |
+
if "." in tensor_name:
|
46 |
+
splits = tensor_name.split(".")
|
47 |
+
for split in splits[:-1]:
|
48 |
+
new_module = getattr(module, split)
|
49 |
+
if new_module is None:
|
50 |
+
raise ValueError(f"{module} has no attribute {split}.")
|
51 |
+
module = new_module
|
52 |
+
tensor_name = splits[-1]
|
53 |
+
|
54 |
+
if tensor_name not in module._parameters and tensor_name not in module._buffers:
|
55 |
+
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.")
|
56 |
+
is_buffer = tensor_name in module._buffers
|
57 |
+
old_value = getattr(module, tensor_name)
|
58 |
+
|
59 |
+
if old_value.device == torch.device("meta") and device not in ["meta", torch.device("meta")] and value is None:
|
60 |
+
raise ValueError(f"{tensor_name} is on the meta device, we need a `value` to put in on {device}.")
|
61 |
+
|
62 |
+
prequantized_loading = quantized_stats is not None
|
63 |
+
if is_buffer or not is_bitsandbytes_available():
|
64 |
+
is_8bit = False
|
65 |
+
is_4bit = False
|
66 |
+
else:
|
67 |
+
is_4bit = hasattr(bnb.nn, "Params4bit") and isinstance(module._parameters[tensor_name], bnb.nn.Params4bit)
|
68 |
+
is_8bit = isinstance(module._parameters[tensor_name], bnb.nn.Int8Params)
|
69 |
+
|
70 |
+
if is_8bit or is_4bit:
|
71 |
+
param = module._parameters[tensor_name]
|
72 |
+
if param.device.type != "cuda":
|
73 |
+
if value is None:
|
74 |
+
new_value = old_value.to(device)
|
75 |
+
elif isinstance(value, torch.Tensor):
|
76 |
+
new_value = value.to("cpu")
|
77 |
+
else:
|
78 |
+
new_value = torch.tensor(value, device="cpu")
|
79 |
+
|
80 |
+
# Support models using `Conv1D` in place of `nn.Linear` (e.g. openai-community/gpt2) by transposing the weight matrix prior to quantization.
|
81 |
+
# Since weights are saved in the correct "orientation", we skip transposing when loading.
|
82 |
+
if issubclass(module.source_cls, Conv1D) and not prequantized_loading:
|
83 |
+
new_value = new_value.T
|
84 |
+
|
85 |
+
kwargs = old_value.__dict__
|
86 |
+
|
87 |
+
if prequantized_loading != (new_value.dtype in (torch.int8, torch.uint8)):
|
88 |
+
raise ValueError(
|
89 |
+
f"Value dtype `{new_value.dtype}` is not compatible with parameter quantization status."
|
90 |
+
)
|
91 |
+
|
92 |
+
if is_8bit:
|
93 |
+
is_8bit_serializable = version.parse(importlib.metadata.version("bitsandbytes")) > version.parse(
|
94 |
+
"0.37.2"
|
95 |
+
)
|
96 |
+
if new_value.dtype in (torch.int8, torch.uint8) and not is_8bit_serializable:
|
97 |
+
raise ValueError(
|
98 |
+
"Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. "
|
99 |
+
"Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`."
|
100 |
+
)
|
101 |
+
new_value = bnb.nn.Int8Params(new_value, requires_grad=False, **kwargs).to(device)
|
102 |
+
if prequantized_loading:
|
103 |
+
setattr(new_value, "SCB", quantized_stats["SCB"].to(device))
|
104 |
+
elif is_4bit:
|
105 |
+
if prequantized_loading:
|
106 |
+
is_4bit_serializable = version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse(
|
107 |
+
"0.41.3"
|
108 |
+
)
|
109 |
+
if new_value.dtype in (torch.int8, torch.uint8) and not is_4bit_serializable:
|
110 |
+
raise ValueError(
|
111 |
+
"Detected 4-bit weights but the version of bitsandbytes is not compatible with 4-bit serialization. "
|
112 |
+
"Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`."
|
113 |
+
)
|
114 |
+
new_value = bnb.nn.Params4bit.from_prequantized(
|
115 |
+
data=new_value,
|
116 |
+
quantized_stats=quantized_stats,
|
117 |
+
requires_grad=False,
|
118 |
+
device=device,
|
119 |
+
**kwargs,
|
120 |
+
)
|
121 |
+
else:
|
122 |
+
new_value = bnb.nn.Params4bit(new_value, requires_grad=False, **kwargs).to(device)
|
123 |
+
module._parameters[tensor_name] = new_value
|
124 |
+
|
125 |
+
else:
|
126 |
+
if value is None:
|
127 |
+
new_value = old_value.to(device)
|
128 |
+
elif isinstance(value, torch.Tensor):
|
129 |
+
new_value = value.to(device)
|
130 |
+
else:
|
131 |
+
new_value = torch.tensor(value, device=device)
|
132 |
+
|
133 |
+
if is_buffer:
|
134 |
+
module._buffers[tensor_name] = new_value
|
135 |
+
else:
|
136 |
+
new_value = nn.Parameter(new_value, requires_grad=old_value.requires_grad)
|
137 |
+
module._parameters[tensor_name] = new_value
|
138 |
+
|
139 |
+
|
140 |
+
def _replace_with_bnb_linear(
|
141 |
+
model,
|
142 |
+
modules_to_not_convert=None,
|
143 |
+
current_key_name=None,
|
144 |
+
quantization_config=None,
|
145 |
+
has_been_replaced=False,
|
146 |
+
):
|
147 |
+
"""
|
148 |
+
Private method that wraps the recursion for module replacement.
|
149 |
+
|
150 |
+
Returns the converted model and a boolean that indicates if the conversion has been successfull or not.
|
151 |
+
"""
|
152 |
+
for name, module in model.named_children():
|
153 |
+
if current_key_name is None:
|
154 |
+
current_key_name = []
|
155 |
+
current_key_name.append(name)
|
156 |
+
|
157 |
+
if (isinstance(module, nn.Linear) or isinstance(module, Conv1D)) and name not in modules_to_not_convert:
|
158 |
+
# Check if the current key is not in the `modules_to_not_convert`
|
159 |
+
if not any(key in ".".join(current_key_name) for key in modules_to_not_convert):
|
160 |
+
with init_empty_weights():
|
161 |
+
if isinstance(module, Conv1D):
|
162 |
+
in_features, out_features = module.weight.shape
|
163 |
+
else:
|
164 |
+
in_features = module.in_features
|
165 |
+
out_features = module.out_features
|
166 |
+
|
167 |
+
if quantization_config.quantization_method() == "llm_int8":
|
168 |
+
model._modules[name] = bnb.nn.Linear8bitLt(
|
169 |
+
in_features,
|
170 |
+
out_features,
|
171 |
+
module.bias is not None,
|
172 |
+
has_fp16_weights=quantization_config.llm_int8_has_fp16_weight,
|
173 |
+
threshold=quantization_config.llm_int8_threshold,
|
174 |
+
)
|
175 |
+
has_been_replaced = True
|
176 |
+
else:
|
177 |
+
if (
|
178 |
+
quantization_config.llm_int8_skip_modules is not None
|
179 |
+
and name in quantization_config.llm_int8_skip_modules
|
180 |
+
):
|
181 |
+
pass
|
182 |
+
else:
|
183 |
+
extra_kwargs = (
|
184 |
+
{"quant_storage": quantization_config.bnb_4bit_quant_storage}
|
185 |
+
if "quant_storage" in list(signature(bnb.nn.Linear4bit).parameters)
|
186 |
+
else {}
|
187 |
+
)
|
188 |
+
model._modules[name] = bnb.nn.Linear4bit(
|
189 |
+
in_features,
|
190 |
+
out_features,
|
191 |
+
module.bias is not None,
|
192 |
+
quantization_config.bnb_4bit_compute_dtype,
|
193 |
+
compress_statistics=quantization_config.bnb_4bit_use_double_quant,
|
194 |
+
quant_type=quantization_config.bnb_4bit_quant_type,
|
195 |
+
**extra_kwargs,
|
196 |
+
)
|
197 |
+
has_been_replaced = True
|
198 |
+
# Store the module class in case we need to transpose the weight later
|
199 |
+
model._modules[name].source_cls = type(module)
|
200 |
+
# Force requires grad to False to avoid unexpected errors
|
201 |
+
model._modules[name].requires_grad_(False)
|
202 |
+
if len(list(module.children())) > 0:
|
203 |
+
_, has_been_replaced = _replace_with_bnb_linear(
|
204 |
+
module,
|
205 |
+
modules_to_not_convert,
|
206 |
+
current_key_name,
|
207 |
+
quantization_config,
|
208 |
+
has_been_replaced=has_been_replaced,
|
209 |
+
)
|
210 |
+
# Remove the last key for recursion
|
211 |
+
current_key_name.pop(-1)
|
212 |
+
return model, has_been_replaced
|
213 |
+
|
214 |
+
|
215 |
+
def replace_with_bnb_linear(model, modules_to_not_convert=None, current_key_name=None, quantization_config=None):
|
216 |
+
"""
|
217 |
+
A helper function to replace all `torch.nn.Linear` modules by `bnb.nn.Linear8bit` modules from the `bitsandbytes`
|
218 |
+
library. This will enable running your models using mixed int8 precision as described by the paper `LLM.int8():
|
219 |
+
8-bit Matrix Multiplication for Transformers at Scale`. Make sure `bitsandbytes` compiled with the correct CUDA
|
220 |
+
version of your hardware is installed before running this function. `pip install -i https://test.pypi.org/simple/
|
221 |
+
bitsandbytes`
|
222 |
+
|
223 |
+
The function will be run recursively and replace all `torch.nn.Linear` modules except for the `lm_head` that should
|
224 |
+
be kept as a `torch.nn.Linear` module. The replacement is done under `init_empty_weights` context manager so no
|
225 |
+
CPU/GPU memory is required to run this function. Int8 mixed-precision matrix decomposition works by separating a
|
226 |
+
matrix multiplication into two streams: (1) and systematic feature outlier stream matrix multiplied in fp16
|
227 |
+
(0.01%), (2) a regular stream of int8 matrix multiplication (99.9%). With this method, int8 inference with no
|
228 |
+
predictive degradation is possible for very large models (>=176B parameters).
|
229 |
+
|
230 |
+
Parameters:
|
231 |
+
model (`torch.nn.Module`):
|
232 |
+
Input model or `torch.nn.Module` as the function is run recursively.
|
233 |
+
modules_to_not_convert (`List[`str`]`, *optional*, defaults to `["lm_head"]`):
|
234 |
+
Names of the modules to not convert in `Linear8bitLt`. In practice we keep the `lm_head` in full precision
|
235 |
+
for numerical stability reasons.
|
236 |
+
current_key_name (`List[`str`]`, *optional*):
|
237 |
+
An array to track the current key of the recursion. This is used to check whether the current key (part of
|
238 |
+
it) is not in the list of modules to not convert (for instances modules that are offloaded to `cpu` or
|
239 |
+
`disk`).
|
240 |
+
"""
|
241 |
+
modules_to_not_convert = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert
|
242 |
+
model, has_been_replaced = _replace_with_bnb_linear(
|
243 |
+
model, modules_to_not_convert, current_key_name, quantization_config
|
244 |
+
)
|
245 |
+
|
246 |
+
if not has_been_replaced:
|
247 |
+
logger.warning(
|
248 |
+
"You are loading your model in 8bit or 4bit but no linear modules were found in your model."
|
249 |
+
" Please double check your model architecture, or submit an issue on github if you think this is"
|
250 |
+
" a bug."
|
251 |
+
)
|
252 |
+
|
253 |
+
return model
|
254 |
+
|
255 |
+
|
256 |
+
# For backward compatibility
|
257 |
+
def replace_8bit_linear(*args, **kwargs):
|
258 |
+
warnings.warn(
|
259 |
+
"`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead",
|
260 |
+
FutureWarning,
|
261 |
+
)
|
262 |
+
return replace_with_bnb_linear(*args, **kwargs)
|
263 |
+
|
264 |
+
|
265 |
+
# For backward compatiblity
|
266 |
+
def set_module_8bit_tensor_to_device(*args, **kwargs):
|
267 |
+
warnings.warn(
|
268 |
+
"`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead",
|
269 |
+
FutureWarning,
|
270 |
+
)
|
271 |
+
return set_module_quantized_tensor_to_device(*args, **kwargs)
|
272 |
+
|
273 |
+
|
274 |
+
def get_keys_to_not_convert(model):
|
275 |
+
r"""
|
276 |
+
An utility function to get the key of the module to keep in full precision if any For example for CausalLM modules
|
277 |
+
we may want to keep the lm_head in full precision for numerical stability reasons. For other architectures, we want
|
278 |
+
to keep the tied weights of the model. The function will return a list of the keys of the modules to not convert in
|
279 |
+
int8.
|
280 |
+
|
281 |
+
Parameters:
|
282 |
+
model (`torch.nn.Module`):
|
283 |
+
Input model
|
284 |
+
"""
|
285 |
+
# Create a copy of the model and tie the weights, then
|
286 |
+
# check if it contains tied weights
|
287 |
+
tied_model = deepcopy(model) # this has 0 cost since it is done inside `init_empty_weights` context manager`
|
288 |
+
tied_model.tie_weights()
|
289 |
+
|
290 |
+
tied_params = find_tied_parameters(tied_model)
|
291 |
+
# For compatibility with Accelerate < 0.18
|
292 |
+
if isinstance(tied_params, dict):
|
293 |
+
tied_keys = sum(list(tied_params.values()), []) + list(tied_params.keys())
|
294 |
+
else:
|
295 |
+
tied_keys = sum(tied_params, [])
|
296 |
+
has_tied_params = len(tied_keys) > 0
|
297 |
+
|
298 |
+
# If there is not tied weights, we want to keep the lm_head(output_embedding) in full precision
|
299 |
+
if not has_tied_params:
|
300 |
+
output_emb = model.get_output_embeddings()
|
301 |
+
if output_emb is not None:
|
302 |
+
list_last_module = [name for name, module in model.named_modules() if id(module) == id(output_emb)]
|
303 |
+
return list_last_module
|
304 |
+
|
305 |
+
# otherwise, no tied weights, no output embedding defined, simply keep the last module in full precision
|
306 |
+
list_modules = list(model.named_parameters())
|
307 |
+
list_last_module = [list_modules[-1][0]]
|
308 |
+
# add last module together with tied weights
|
309 |
+
intersection = set(list_last_module) - set(tied_keys)
|
310 |
+
list_untouched = list(set(tied_keys)) + list(intersection)
|
311 |
+
|
312 |
+
# remove ".weight" from the keys
|
313 |
+
names_to_remove = [".weight", ".bias"]
|
314 |
+
filtered_module_names = []
|
315 |
+
for name in list_untouched:
|
316 |
+
for name_to_remove in names_to_remove:
|
317 |
+
if name_to_remove in name:
|
318 |
+
name = name.replace(name_to_remove, "")
|
319 |
+
filtered_module_names.append(name)
|
320 |
+
|
321 |
+
return filtered_module_names
|
env-llmeval/lib/python3.10/site-packages/transformers/integrations/deepspeed.py
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""
|
15 |
+
Integration with Deepspeed
|
16 |
+
"""
|
17 |
+
import copy
|
18 |
+
import importlib.metadata as importlib_metadata
|
19 |
+
import importlib.util
|
20 |
+
import weakref
|
21 |
+
from functools import partialmethod
|
22 |
+
|
23 |
+
from ..dependency_versions_check import dep_version_check
|
24 |
+
from ..utils import is_accelerate_available, is_torch_available, logging
|
25 |
+
|
26 |
+
|
27 |
+
if is_torch_available():
|
28 |
+
import torch
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
|
34 |
+
def is_deepspeed_available():
|
35 |
+
package_exists = importlib.util.find_spec("deepspeed") is not None
|
36 |
+
|
37 |
+
# Check we're not importing a "deepspeed" directory somewhere but the actual library by trying to grab the version
|
38 |
+
# AND checking it has an author field in the metadata that is HuggingFace.
|
39 |
+
if package_exists:
|
40 |
+
try:
|
41 |
+
_ = importlib_metadata.metadata("deepspeed")
|
42 |
+
return True
|
43 |
+
except importlib_metadata.PackageNotFoundError:
|
44 |
+
return False
|
45 |
+
|
46 |
+
|
47 |
+
if is_accelerate_available() and is_deepspeed_available():
|
48 |
+
from accelerate.utils.deepspeed import HfDeepSpeedConfig as DeepSpeedConfig
|
49 |
+
else:
|
50 |
+
# Inherits from a dummy `object` if accelerate is not available, so that python succeeds to import this file.
|
51 |
+
# Deepspeed glue code will never inherit this dummy object as it checks if accelerate is available.
|
52 |
+
from builtins import object as DeepSpeedConfig
|
53 |
+
|
54 |
+
|
55 |
+
class HfDeepSpeedConfig(DeepSpeedConfig):
|
56 |
+
"""
|
57 |
+
This object contains a DeepSpeed configuration dictionary and can be quickly queried for things like zero stage.
|
58 |
+
|
59 |
+
A `weakref` of this object is stored in the module's globals to be able to access the config from areas where
|
60 |
+
things like the Trainer object is not available (e.g. `from_pretrained` and `_get_resized_embeddings`). Therefore
|
61 |
+
it's important that this object remains alive while the program is still running.
|
62 |
+
|
63 |
+
[`Trainer`] uses the `HfTrainerDeepSpeedConfig` subclass instead. That subclass has logic to sync the configuration
|
64 |
+
with values of [`TrainingArguments`] by replacing special placeholder values: `"auto"`. Without this special logic
|
65 |
+
the DeepSpeed configuration is not modified in any way.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
config_file_or_dict (`Union[str, Dict]`): path to DeepSpeed config file or dict.
|
69 |
+
|
70 |
+
"""
|
71 |
+
|
72 |
+
def __init__(self, config_file_or_dict):
|
73 |
+
# set global weakref object
|
74 |
+
set_hf_deepspeed_config(self)
|
75 |
+
dep_version_check("accelerate")
|
76 |
+
dep_version_check("deepspeed")
|
77 |
+
super().__init__(config_file_or_dict)
|
78 |
+
|
79 |
+
|
80 |
+
class HfTrainerDeepSpeedConfig(HfDeepSpeedConfig):
|
81 |
+
"""
|
82 |
+
The `HfTrainerDeepSpeedConfig` object is meant to be created during `TrainingArguments` object creation and has the
|
83 |
+
same lifespan as the latter.
|
84 |
+
"""
|
85 |
+
|
86 |
+
def __init__(self, config_file_or_dict):
|
87 |
+
super().__init__(config_file_or_dict)
|
88 |
+
self._dtype = None
|
89 |
+
self.mismatches = []
|
90 |
+
|
91 |
+
def dtype(self):
|
92 |
+
if self._dtype is None:
|
93 |
+
raise ValueError("trainer_config_process() wasn't called yet to tell dtype")
|
94 |
+
return self._dtype
|
95 |
+
|
96 |
+
def is_auto(self, ds_key_long):
|
97 |
+
val = self.get_value(ds_key_long)
|
98 |
+
if val is None:
|
99 |
+
return False
|
100 |
+
else:
|
101 |
+
return val == "auto"
|
102 |
+
|
103 |
+
def fill_match(self, ds_key_long, hf_val, hf_key=None, must_match=True):
|
104 |
+
"""
|
105 |
+
A utility method that massages the config file and can optionally verify that the values match.
|
106 |
+
|
107 |
+
1. Replace "auto" values with `TrainingArguments` value.
|
108 |
+
|
109 |
+
2. If it wasn't "auto" and `must_match` is true, then check that DS config matches Trainer
|
110 |
+
config values and if mismatched add the entry to `self.mismatched` - will assert during
|
111 |
+
`trainer_config_finalize` for one or more mismatches.
|
112 |
+
|
113 |
+
"""
|
114 |
+
config, ds_key = self.find_config_node(ds_key_long)
|
115 |
+
if config is None:
|
116 |
+
return
|
117 |
+
|
118 |
+
if config.get(ds_key) == "auto":
|
119 |
+
config[ds_key] = hf_val
|
120 |
+
return
|
121 |
+
|
122 |
+
if not must_match:
|
123 |
+
return
|
124 |
+
|
125 |
+
ds_val = config.get(ds_key)
|
126 |
+
if ds_val is not None and ds_val != hf_val:
|
127 |
+
self.mismatches.append(f"- ds {ds_key_long}={ds_val} vs hf {hf_key}={hf_val}")
|
128 |
+
|
129 |
+
fill_only = partialmethod(fill_match, must_match=False)
|
130 |
+
|
131 |
+
def trainer_config_process(self, args, auto_find_batch_size=False):
|
132 |
+
"""
|
133 |
+
Adjust the config with `TrainingArguments` values. This stage is run during `TrainingArguments` object
|
134 |
+
creation.
|
135 |
+
"""
|
136 |
+
# DeepSpeed does:
|
137 |
+
# train_batch_size = world_size * train_micro_batch_size_per_gpu * gradient_accumulation_steps
|
138 |
+
train_batch_size = args.world_size * args.per_device_train_batch_size * args.gradient_accumulation_steps
|
139 |
+
self.fill_match(
|
140 |
+
"train_micro_batch_size_per_gpu",
|
141 |
+
args.per_device_train_batch_size,
|
142 |
+
"per_device_train_batch_size",
|
143 |
+
not auto_find_batch_size,
|
144 |
+
)
|
145 |
+
self.fill_match(
|
146 |
+
"gradient_accumulation_steps",
|
147 |
+
args.gradient_accumulation_steps,
|
148 |
+
"gradient_accumulation_steps",
|
149 |
+
)
|
150 |
+
self.fill_match(
|
151 |
+
"train_batch_size",
|
152 |
+
train_batch_size,
|
153 |
+
"train_batch_size (calculated)",
|
154 |
+
not auto_find_batch_size,
|
155 |
+
)
|
156 |
+
self.fill_match("gradient_clipping", args.max_grad_norm, "max_grad_norm")
|
157 |
+
|
158 |
+
self.fill_match("optimizer.params.lr", args.learning_rate, "learning_rate")
|
159 |
+
self.fill_match(
|
160 |
+
"optimizer.params.betas",
|
161 |
+
[args.adam_beta1, args.adam_beta2],
|
162 |
+
"adam_beta1+adam_beta2",
|
163 |
+
)
|
164 |
+
self.fill_match("optimizer.params.eps", args.adam_epsilon, "adam_epsilon")
|
165 |
+
self.fill_match("optimizer.params.weight_decay", args.weight_decay, "weight_decay")
|
166 |
+
|
167 |
+
self.fill_only("scheduler.params.warmup_min_lr", 0) # not a trainer arg
|
168 |
+
self.fill_match("scheduler.params.warmup_max_lr", args.learning_rate, "learning_rate")
|
169 |
+
# total_num_steps - will get set in trainer_config_finalize
|
170 |
+
|
171 |
+
# fp16
|
172 |
+
if args.fp16 or args.fp16_full_eval:
|
173 |
+
fp16_backend = "apex" if args.fp16_backend == "apex" else "amp"
|
174 |
+
else:
|
175 |
+
fp16_backend = None
|
176 |
+
|
177 |
+
if args.save_on_each_node:
|
178 |
+
# deepspeed uses shared storage by default. Let's override this setting if save_on_each_node == True
|
179 |
+
self.config["checkpoint"] = self.config.get("checkpoint", {})
|
180 |
+
self.config["checkpoint"]["use_node_local_storage"] = args.save_on_each_node
|
181 |
+
|
182 |
+
# amp: similar to the pytorch native amp - it has a bunch of optional params but we won't set
|
183 |
+
# any here unless the user did the work
|
184 |
+
self.fill_match(
|
185 |
+
"fp16.enabled",
|
186 |
+
((args.fp16 or args.fp16_full_eval) and fp16_backend == "amp"),
|
187 |
+
"fp16|fp16_full_eval+fp16_backend(amp)",
|
188 |
+
)
|
189 |
+
|
190 |
+
# apex: delegates amp work to apex (which needs to be available), but it cannot be used with any
|
191 |
+
# ZeRO features
|
192 |
+
self.fill_match("amp.enabled", fp16_backend == "apex", "fp16+fp16_backend(apex)")
|
193 |
+
self.fill_match("amp.opt_level", args.fp16_opt_level, "fp16_opt_level")
|
194 |
+
|
195 |
+
self.fill_match("bf16.enabled", (args.bf16 or args.bf16_full_eval), "bf16|bf16_full_eval")
|
196 |
+
|
197 |
+
# deepspeed's default mode is fp16 unless there is a config that says differently
|
198 |
+
if self.is_true("bf16.enabled"):
|
199 |
+
self._dtype = torch.bfloat16
|
200 |
+
elif self.is_false("fp16.enabled"):
|
201 |
+
self._dtype = torch.float32
|
202 |
+
else:
|
203 |
+
self._dtype = torch.float16
|
204 |
+
|
205 |
+
def trainer_config_finalize(self, args, model, num_training_steps):
|
206 |
+
"""
|
207 |
+
This stage is run after we have the model and know num_training_steps.
|
208 |
+
|
209 |
+
Now we can complete the configuration process.
|
210 |
+
"""
|
211 |
+
# zero
|
212 |
+
|
213 |
+
# deal with config keys that use `auto` value and rely on model's hidden_size
|
214 |
+
hidden_size_based_keys = [
|
215 |
+
"zero_optimization.reduce_bucket_size",
|
216 |
+
"zero_optimization.stage3_prefetch_bucket_size",
|
217 |
+
"zero_optimization.stage3_param_persistence_threshold",
|
218 |
+
]
|
219 |
+
hidden_size_auto_keys = [x for x in hidden_size_based_keys if self.is_auto(x)]
|
220 |
+
|
221 |
+
if len(hidden_size_auto_keys) > 0:
|
222 |
+
if hasattr(model.config, "hidden_size"):
|
223 |
+
hidden_size = model.config.hidden_size
|
224 |
+
elif hasattr(model.config, "hidden_sizes"):
|
225 |
+
# if there are many hidden sizes pick the largest one
|
226 |
+
hidden_size = max(model.config.hidden_sizes)
|
227 |
+
else:
|
228 |
+
raise ValueError(
|
229 |
+
"The model's config file has neither `hidden_size` nor `hidden_sizes` entry, "
|
230 |
+
"therefore it's not possible to automatically fill out the following `auto` entries "
|
231 |
+
f"in the DeepSpeed config file: {hidden_size_auto_keys}. You can fix that by replacing "
|
232 |
+
"`auto` values for these keys with an integer value of your choice."
|
233 |
+
)
|
234 |
+
|
235 |
+
self.fill_only("zero_optimization.reduce_bucket_size", hidden_size * hidden_size)
|
236 |
+
if self.is_zero3():
|
237 |
+
# automatically assign the optimal config values based on model config
|
238 |
+
self.fill_only(
|
239 |
+
"zero_optimization.stage3_prefetch_bucket_size",
|
240 |
+
0.9 * hidden_size * hidden_size,
|
241 |
+
)
|
242 |
+
self.fill_only(
|
243 |
+
"zero_optimization.stage3_param_persistence_threshold",
|
244 |
+
10 * hidden_size,
|
245 |
+
)
|
246 |
+
|
247 |
+
# scheduler
|
248 |
+
self.fill_match(
|
249 |
+
"scheduler.params.total_num_steps",
|
250 |
+
num_training_steps,
|
251 |
+
"num_training_steps (calculated)",
|
252 |
+
)
|
253 |
+
self.fill_match(
|
254 |
+
"scheduler.params.warmup_num_steps",
|
255 |
+
args.get_warmup_steps(num_training_steps),
|
256 |
+
"warmup_steps",
|
257 |
+
)
|
258 |
+
|
259 |
+
if len(self.mismatches) > 0:
|
260 |
+
mismatches = "\n".join(self.mismatches)
|
261 |
+
raise ValueError(
|
262 |
+
"Please correct the following DeepSpeed config values that mismatch TrainingArguments"
|
263 |
+
f" values:\n{mismatches}\nThe easiest method is to set these DeepSpeed config values to 'auto'."
|
264 |
+
)
|
265 |
+
|
266 |
+
|
267 |
+
# keep the config object global to be able to access it anywhere during TrainingArguments life-cycle
|
268 |
+
_hf_deepspeed_config_weak_ref = None
|
269 |
+
|
270 |
+
|
271 |
+
def set_hf_deepspeed_config(hf_deepspeed_config_obj):
|
272 |
+
# this is a special weakref global object to allow us to get to Deepspeed config from APIs
|
273 |
+
# that don't have an easy way to get to the Deepspeed config outside of the Trainer domain.
|
274 |
+
global _hf_deepspeed_config_weak_ref
|
275 |
+
# will go away automatically when HfDeepSpeedConfig is destroyed (when TrainingArguments is destroyed)
|
276 |
+
_hf_deepspeed_config_weak_ref = weakref.ref(hf_deepspeed_config_obj)
|
277 |
+
|
278 |
+
|
279 |
+
def unset_hf_deepspeed_config():
|
280 |
+
# useful for unit tests to ensure the global state doesn't leak - call from `tearDown` method
|
281 |
+
global _hf_deepspeed_config_weak_ref
|
282 |
+
_hf_deepspeed_config_weak_ref = None
|
283 |
+
|
284 |
+
|
285 |
+
def is_deepspeed_zero3_enabled():
|
286 |
+
if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None:
|
287 |
+
return _hf_deepspeed_config_weak_ref().is_zero3()
|
288 |
+
else:
|
289 |
+
return False
|
290 |
+
|
291 |
+
|
292 |
+
def deepspeed_config():
|
293 |
+
if _hf_deepspeed_config_weak_ref is not None and _hf_deepspeed_config_weak_ref() is not None:
|
294 |
+
return _hf_deepspeed_config_weak_ref().config
|
295 |
+
else:
|
296 |
+
return None
|
297 |
+
|
298 |
+
|
299 |
+
def deepspeed_optim_sched(trainer, hf_deepspeed_config, args, num_training_steps, model_parameters):
|
300 |
+
"""
|
301 |
+
A convenience wrapper that deals with optimizer and lr scheduler configuration.
|
302 |
+
"""
|
303 |
+
from accelerate.utils import DummyOptim, DummyScheduler
|
304 |
+
|
305 |
+
config = hf_deepspeed_config.config
|
306 |
+
|
307 |
+
# Mixing and matching DS schedulers and optimizers is supported unless Offload is enabled in which case it's:
|
308 |
+
# 1. DS scheduler + DS optimizer: Yes
|
309 |
+
# 2. HF scheduler + HF optimizer: Mostly*
|
310 |
+
# 3. DS scheduler + HF optimizer: Mostly*
|
311 |
+
# 4. HF scheduler + DS optimizer: Yes
|
312 |
+
#
|
313 |
+
# Mostly*: All non-native DeepSpeed optimizers that have both CPU and GPU implementation should work (except LAMB)
|
314 |
+
|
315 |
+
optimizer = None
|
316 |
+
if "optimizer" in config:
|
317 |
+
if args.adafactor:
|
318 |
+
raise ValueError(
|
319 |
+
"--adafactor was passed, but also found `optimizer` configured in the DeepSpeed config. "
|
320 |
+
"Only one optimizer can be configured."
|
321 |
+
)
|
322 |
+
optimizer = DummyOptim(params=model_parameters)
|
323 |
+
else:
|
324 |
+
if hf_deepspeed_config.is_offload():
|
325 |
+
logger.info(
|
326 |
+
"Detected ZeRO Offload and non-DeepSpeed optimizers: This combination should work as long as the"
|
327 |
+
" custom optimizer has both CPU and GPU implementation (except LAMB)"
|
328 |
+
)
|
329 |
+
|
330 |
+
# ds supports Adam, OneBitAdam, and Lamb optimizers and can import other optimizers from torch.
|
331 |
+
# But trainer uses AdamW by default.
|
332 |
+
optimizer = trainer.create_optimizer()
|
333 |
+
# To use other optimizers requires voiding warranty with: `zero_allow_untested_optimizer`
|
334 |
+
config["zero_allow_untested_optimizer"] = True
|
335 |
+
|
336 |
+
lr_scheduler = None
|
337 |
+
if "scheduler" in config:
|
338 |
+
lr_scheduler = DummyScheduler(optimizer)
|
339 |
+
else:
|
340 |
+
if isinstance(optimizer, DummyOptim):
|
341 |
+
|
342 |
+
def _lr_scheduler_callable(optimizer):
|
343 |
+
# create a shallow copy first, so later modifications do not affect original trainer
|
344 |
+
trainer_copy = copy.copy(trainer)
|
345 |
+
# at the time _lr_scheduler_callable is called, trainer.lr_scheduler has been set
|
346 |
+
# update it to None so that we can re-create a new scheduler
|
347 |
+
trainer_copy.lr_scheduler = None
|
348 |
+
lr_scheduler = trainer_copy.create_scheduler(
|
349 |
+
num_training_steps=num_training_steps, optimizer=optimizer
|
350 |
+
)
|
351 |
+
return lr_scheduler
|
352 |
+
|
353 |
+
lr_scheduler = DummyScheduler(optimizer, lr_scheduler_callable=_lr_scheduler_callable)
|
354 |
+
else:
|
355 |
+
lr_scheduler = trainer.create_scheduler(num_training_steps=num_training_steps, optimizer=optimizer)
|
356 |
+
|
357 |
+
return optimizer, lr_scheduler
|
358 |
+
|
359 |
+
|
360 |
+
def deepspeed_init(trainer, num_training_steps, inference=False):
|
361 |
+
"""
|
362 |
+
Init DeepSpeed, after updating the DeepSpeed configuration with any relevant Trainer's args.
|
363 |
+
|
364 |
+
If `resume_from_checkpoint` was passed then an attempt to resume from a previously saved checkpoint will be made.
|
365 |
+
|
366 |
+
Args:
|
367 |
+
trainer: Trainer object
|
368 |
+
num_training_steps: per single gpu
|
369 |
+
resume_from_checkpoint: path to a checkpoint if to resume from after normal DeepSpeedEngine load
|
370 |
+
inference: launch in inference mode (no optimizer and no lr scheduler)
|
371 |
+
auto_find_batch_size: whether to ignore the `train_micro_batch_size_per_gpu` argument as it's being
|
372 |
+
set automatically by the auto batch size finder
|
373 |
+
|
374 |
+
Returns: optimizer, lr_scheduler
|
375 |
+
|
376 |
+
We may use `deepspeed_init` more than once during the life of Trainer, when we do - it's a temp hack based on:
|
377 |
+
https://github.com/microsoft/DeepSpeed/issues/1394#issuecomment-937405374 until Deepspeed fixes a bug where it
|
378 |
+
can't resume from a checkpoint after it did some stepping https://github.com/microsoft/DeepSpeed/issues/1612
|
379 |
+
|
380 |
+
"""
|
381 |
+
from deepspeed.utils import logger as ds_logger
|
382 |
+
|
383 |
+
model = trainer.model
|
384 |
+
args = trainer.args
|
385 |
+
|
386 |
+
hf_deepspeed_config = trainer.accelerator.state.deepspeed_plugin.hf_ds_config
|
387 |
+
|
388 |
+
# resume config update - some bits like `model` and `num_training_steps` only become available during train
|
389 |
+
hf_deepspeed_config.trainer_config_finalize(args, model, num_training_steps)
|
390 |
+
|
391 |
+
# set the Deepspeed log level consistent with the Trainer
|
392 |
+
ds_logger.setLevel(args.get_process_log_level())
|
393 |
+
|
394 |
+
if inference:
|
395 |
+
# only Z3 makes sense for the inference
|
396 |
+
if not hf_deepspeed_config.is_zero3():
|
397 |
+
raise ValueError("ZeRO inference only makes sense with ZeRO Stage 3 - please adjust your config")
|
398 |
+
|
399 |
+
# in case the training config is re-used for inference
|
400 |
+
hf_deepspeed_config.del_config_sub_tree("optimizer")
|
401 |
+
hf_deepspeed_config.del_config_sub_tree("lr_scheduler")
|
402 |
+
optimizer, lr_scheduler = None, None
|
403 |
+
model_parameters = None
|
404 |
+
else:
|
405 |
+
trainer.optimizer = None # important for when deepspeed_init is used as re-init
|
406 |
+
model_parameters = list(filter(lambda p: p.requires_grad, model.parameters()))
|
407 |
+
optimizer, lr_scheduler = deepspeed_optim_sched(
|
408 |
+
trainer, hf_deepspeed_config, args, num_training_steps, model_parameters
|
409 |
+
)
|
410 |
+
|
411 |
+
# keep for quick debug:
|
412 |
+
# from pprint import pprint; pprint(config)
|
413 |
+
|
414 |
+
return optimizer, lr_scheduler
|
415 |
+
|
416 |
+
|
417 |
+
def deepspeed_load_checkpoint(deepspeed_engine, checkpoint_path, load_module_strict=True):
|
418 |
+
# it's possible that the user is trying to resume from model_path, which doesn't necessarily
|
419 |
+
# contain a deepspeed checkpoint. e.g. examples just check if the dir exists and assume it's
|
420 |
+
# a resume from a checkpoint and not just a local pretrained weight. So we check here if the
|
421 |
+
# path contains what looks like a deepspeed checkpoint
|
422 |
+
import glob
|
423 |
+
|
424 |
+
deepspeed_checkpoint_dirs = sorted(glob.glob(f"{checkpoint_path}/global_step*"))
|
425 |
+
|
426 |
+
if len(deepspeed_checkpoint_dirs) > 0:
|
427 |
+
logger.info(f"Attempting to resume from {checkpoint_path}")
|
428 |
+
# this magically updates self.optimizer and self.lr_scheduler
|
429 |
+
load_path, _ = deepspeed_engine.load_checkpoint(
|
430 |
+
checkpoint_path,
|
431 |
+
load_module_strict=load_module_strict,
|
432 |
+
load_optimizer_states=True,
|
433 |
+
load_lr_scheduler_states=True,
|
434 |
+
)
|
435 |
+
if load_path is None:
|
436 |
+
raise ValueError(f"[deepspeed] failed to resume from checkpoint {checkpoint_path}")
|
437 |
+
else:
|
438 |
+
raise ValueError(f"Can't find a valid checkpoint at {checkpoint_path}")
|