applied-ai-018 commited on
Commit
08ccbe1
·
verified ·
1 Parent(s): b2b1b13

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/torch/nn/backends/__init__.py +0 -0
  2. llmeval-env/lib/python3.10/site-packages/torch/nn/backends/__pycache__/__init__.cpython-310.pyc +0 -0
  3. llmeval-env/lib/python3.10/site-packages/torch/nn/backends/__pycache__/thnn.cpython-310.pyc +0 -0
  4. llmeval-env/lib/python3.10/site-packages/torch/nn/backends/thnn.py +4 -0
  5. llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/__init__.py +35 -0
  6. llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/__pycache__/__init__.cpython-310.pyc +0 -0
  7. llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/modules/__init__.py +31 -0
  8. llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/modules/__pycache__/__init__.cpython-310.pyc +0 -0
  9. llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/modules/__pycache__/fused.cpython-310.pyc +0 -0
  10. llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/modules/fused.py +30 -0
  11. llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/qat/__init__.py +1 -0
  12. llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/qat/__pycache__/__init__.cpython-310.pyc +0 -0
  13. llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/__pycache__/__init__.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/__pycache__/conv_fused.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/__pycache__/linear_fused.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/__pycache__/linear_relu.cpython-310.pyc +0 -0
  17. llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/conv_fused.py +37 -0
  18. llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/linear_fused.py +15 -0
  19. llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/quantized/__init__.py +13 -0
  20. llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/quantized/dynamic/modules/__pycache__/__init__.cpython-310.pyc +0 -0
  21. llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/quantized/dynamic/modules/__pycache__/linear_relu.cpython-310.pyc +0 -0
  22. llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/quantized/modules/__init__.py +12 -0
  23. llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/quantized/modules/bn_relu.py +7 -0
  24. llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/quantized/modules/linear_relu.py +5 -0
  25. llmeval-env/lib/python3.10/site-packages/torch/nn/modules/_functions.py +288 -0
  26. llmeval-env/lib/python3.10/site-packages/torch/nn/modules/flatten.py +144 -0
  27. llmeval-env/lib/python3.10/site-packages/torch/nn/modules/fold.py +303 -0
  28. llmeval-env/lib/python3.10/site-packages/torch/nn/modules/instancenorm.py +434 -0
  29. llmeval-env/lib/python3.10/site-packages/torch/nn/modules/module.py +0 -0
  30. llmeval-env/lib/python3.10/site-packages/torch/nn/modules/padding.py +801 -0
  31. llmeval-env/lib/python3.10/site-packages/torch/nn/modules/pixelshuffle.py +113 -0
  32. llmeval-env/lib/python3.10/site-packages/torch/nn/modules/transformer.py +975 -0
  33. llmeval-env/lib/python3.10/site-packages/torch/nn/modules/upsampling.py +264 -0
  34. llmeval-env/lib/python3.10/site-packages/torch/nn/modules/utils.py +79 -0
  35. llmeval-env/lib/python3.10/site-packages/torch/nn/qat/__init__.py +18 -0
  36. llmeval-env/lib/python3.10/site-packages/torch/nn/qat/dynamic/__init__.py +7 -0
  37. llmeval-env/lib/python3.10/site-packages/torch/nn/qat/dynamic/__pycache__/__init__.cpython-310.pyc +0 -0
  38. llmeval-env/lib/python3.10/site-packages/torch/nn/qat/dynamic/modules/__init__.py +3 -0
  39. llmeval-env/lib/python3.10/site-packages/torch/nn/qat/dynamic/modules/__pycache__/__init__.cpython-310.pyc +0 -0
  40. llmeval-env/lib/python3.10/site-packages/torch/nn/qat/dynamic/modules/__pycache__/linear.cpython-310.pyc +0 -0
  41. llmeval-env/lib/python3.10/site-packages/torch/nn/qat/dynamic/modules/linear.py +10 -0
  42. llmeval-env/lib/python3.10/site-packages/torch/nn/qat/modules/__init__.py +24 -0
  43. llmeval-env/lib/python3.10/site-packages/torch/nn/qat/modules/conv.py +12 -0
  44. llmeval-env/lib/python3.10/site-packages/torch/nn/quantized/modules/__pycache__/functional_modules.cpython-310.pyc +0 -0
  45. llmeval-env/lib/python3.10/site-packages/torch/nn/quantized/modules/__pycache__/utils.cpython-310.pyc +0 -0
  46. llmeval-env/lib/python3.10/site-packages/torch/nn/quantized/modules/activation.py +18 -0
  47. llmeval-env/lib/python3.10/site-packages/torch/nn/quantized/modules/conv.py +21 -0
  48. llmeval-env/lib/python3.10/site-packages/torch/nn/quantized/modules/dropout.py +13 -0
  49. llmeval-env/lib/python3.10/site-packages/torch/nn/quantized/modules/embedding_ops.py +15 -0
  50. llmeval-env/lib/python3.10/site-packages/torch/nn/quantized/modules/functional_modules.py +15 -0
llmeval-env/lib/python3.10/site-packages/torch/nn/backends/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/torch/nn/backends/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (190 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/nn/backends/__pycache__/thnn.cpython-310.pyc ADDED
Binary file (302 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/nn/backends/thnn.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ # this is for historical pickle deserialization, it is not used otherwise
2
+
3
+ def _get_thnn_function_backend():
4
+ pass
llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/__init__.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.ao.nn.intrinsic import ConvBn1d
2
+ from torch.ao.nn.intrinsic import ConvBn2d
3
+ from torch.ao.nn.intrinsic import ConvBn3d
4
+ from torch.ao.nn.intrinsic import ConvBnReLU1d
5
+ from torch.ao.nn.intrinsic import ConvBnReLU2d
6
+ from torch.ao.nn.intrinsic import ConvBnReLU3d
7
+ from torch.ao.nn.intrinsic import ConvReLU1d
8
+ from torch.ao.nn.intrinsic import ConvReLU2d
9
+ from torch.ao.nn.intrinsic import ConvReLU3d
10
+ from torch.ao.nn.intrinsic import LinearReLU
11
+ from torch.ao.nn.intrinsic import BNReLU2d
12
+ from torch.ao.nn.intrinsic import BNReLU3d
13
+ from torch.ao.nn.intrinsic import LinearBn1d
14
+ from torch.ao.nn.intrinsic.modules.fused import _FusedModule # noqa: F401
15
+
16
+ # Include the subpackages in case user imports from it directly
17
+ from . import modules # noqa: F401
18
+ from . import qat # noqa: F401
19
+ from . import quantized # noqa: F401
20
+
21
+ __all__ = [
22
+ 'ConvBn1d',
23
+ 'ConvBn2d',
24
+ 'ConvBn3d',
25
+ 'ConvBnReLU1d',
26
+ 'ConvBnReLU2d',
27
+ 'ConvBnReLU3d',
28
+ 'ConvReLU1d',
29
+ 'ConvReLU2d',
30
+ 'ConvReLU3d',
31
+ 'LinearReLU',
32
+ 'BNReLU2d',
33
+ 'BNReLU3d',
34
+ 'LinearBn1d',
35
+ ]
llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (892 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/modules/__init__.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .fused import _FusedModule # noqa: F401
2
+ from .fused import BNReLU2d
3
+ from .fused import BNReLU3d
4
+ from .fused import ConvBn1d
5
+ from .fused import ConvBn2d
6
+ from .fused import ConvBn3d
7
+ from .fused import ConvBnReLU1d
8
+ from .fused import ConvBnReLU2d
9
+ from .fused import ConvBnReLU3d
10
+ from .fused import ConvReLU1d
11
+ from .fused import ConvReLU2d
12
+ from .fused import ConvReLU3d
13
+ from .fused import LinearBn1d
14
+ from .fused import LinearReLU
15
+
16
+
17
+ __all__ = [
18
+ 'BNReLU2d',
19
+ 'BNReLU3d',
20
+ 'ConvBn1d',
21
+ 'ConvBn2d',
22
+ 'ConvBn3d',
23
+ 'ConvBnReLU1d',
24
+ 'ConvBnReLU2d',
25
+ 'ConvBnReLU3d',
26
+ 'ConvReLU1d',
27
+ 'ConvReLU2d',
28
+ 'ConvReLU3d',
29
+ 'LinearBn1d',
30
+ 'LinearReLU',
31
+ ]
llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/modules/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (752 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/modules/__pycache__/fused.cpython-310.pyc ADDED
Binary file (802 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/modules/fused.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.ao.nn.intrinsic import BNReLU2d
2
+ from torch.ao.nn.intrinsic import BNReLU3d
3
+ from torch.ao.nn.intrinsic import ConvBn1d
4
+ from torch.ao.nn.intrinsic import ConvBn2d
5
+ from torch.ao.nn.intrinsic import ConvBn3d
6
+ from torch.ao.nn.intrinsic import ConvBnReLU1d
7
+ from torch.ao.nn.intrinsic import ConvBnReLU2d
8
+ from torch.ao.nn.intrinsic import ConvBnReLU3d
9
+ from torch.ao.nn.intrinsic import ConvReLU1d
10
+ from torch.ao.nn.intrinsic import ConvReLU2d
11
+ from torch.ao.nn.intrinsic import ConvReLU3d
12
+ from torch.ao.nn.intrinsic import LinearBn1d
13
+ from torch.ao.nn.intrinsic import LinearReLU
14
+ from torch.ao.nn.intrinsic.modules.fused import _FusedModule # noqa: F401
15
+
16
+ __all__ = [
17
+ 'BNReLU2d',
18
+ 'BNReLU3d',
19
+ 'ConvBn1d',
20
+ 'ConvBn2d',
21
+ 'ConvBn3d',
22
+ 'ConvBnReLU1d',
23
+ 'ConvBnReLU2d',
24
+ 'ConvBnReLU3d',
25
+ 'ConvReLU1d',
26
+ 'ConvReLU2d',
27
+ 'ConvReLU3d',
28
+ 'LinearBn1d',
29
+ 'LinearReLU',
30
+ ]
llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/qat/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .modules import * # noqa: F403
llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/qat/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (219 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (647 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/__pycache__/conv_fused.cpython-310.pyc ADDED
Binary file (1.04 kB). View file
 
llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/__pycache__/linear_fused.cpython-310.pyc ADDED
Binary file (653 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/__pycache__/linear_relu.cpython-310.pyc ADDED
Binary file (652 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/conv_fused.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa: F401
2
+ r"""Intrinsic QAT Modules.
3
+
4
+ This file is in the process of migration to `torch/ao/nn/intrinsic/qat`, and
5
+ is kept here for compatibility while the migration process is ongoing.
6
+ If you are adding a new entry/functionality, please, add it to the
7
+ appropriate file under the `torch/ao/nn/intrinsic/qat/modules`,
8
+ while adding an import statement here.
9
+ """
10
+
11
+ __all__ = [
12
+ # Modules
13
+ 'ConvBn1d',
14
+ 'ConvBnReLU1d',
15
+ 'ConvReLU1d',
16
+ 'ConvBn2d',
17
+ 'ConvBnReLU2d',
18
+ 'ConvReLU2d',
19
+ 'ConvBn3d',
20
+ 'ConvBnReLU3d',
21
+ 'ConvReLU3d',
22
+ # Utilities
23
+ 'freeze_bn_stats',
24
+ 'update_bn_stats',
25
+ ]
26
+
27
+ from torch.ao.nn.intrinsic.qat import ConvBn1d
28
+ from torch.ao.nn.intrinsic.qat import ConvBnReLU1d
29
+ from torch.ao.nn.intrinsic.qat import ConvReLU1d
30
+ from torch.ao.nn.intrinsic.qat import ConvBn2d
31
+ from torch.ao.nn.intrinsic.qat import ConvBnReLU2d
32
+ from torch.ao.nn.intrinsic.qat import ConvReLU2d
33
+ from torch.ao.nn.intrinsic.qat import ConvBn3d
34
+ from torch.ao.nn.intrinsic.qat import ConvBnReLU3d
35
+ from torch.ao.nn.intrinsic.qat import ConvReLU3d
36
+ from torch.ao.nn.intrinsic.qat import freeze_bn_stats
37
+ from torch.ao.nn.intrinsic.qat import update_bn_stats
llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/qat/modules/linear_fused.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa: F401
2
+ r"""Intrinsic QAT Modules.
3
+
4
+ This file is in the process of migration to `torch/ao/nn/intrinsic/qat`, and
5
+ is kept here for compatibility while the migration process is ongoing.
6
+ If you are adding a new entry/functionality, please, add it to the
7
+ appropriate file under the `torch/ao/nn/intrinsic/qat/modules`,
8
+ while adding an import statement here.
9
+ """
10
+
11
+ __all__ = [
12
+ 'LinearBn1d',
13
+ ]
14
+
15
+ from torch.ao.nn.intrinsic.qat import LinearBn1d
llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/quantized/__init__.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .modules import * # noqa: F403
2
+ # to ensure customers can use the module below
3
+ # without importing it directly
4
+ import torch.nn.intrinsic.quantized.dynamic
5
+
6
+ __all__ = [
7
+ 'BNReLU2d',
8
+ 'BNReLU3d',
9
+ 'ConvReLU1d',
10
+ 'ConvReLU2d',
11
+ 'ConvReLU3d',
12
+ 'LinearReLU',
13
+ ]
llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/quantized/dynamic/modules/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (287 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/quantized/dynamic/modules/__pycache__/linear_relu.cpython-310.pyc ADDED
Binary file (318 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/quantized/modules/__init__.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .linear_relu import LinearReLU
2
+ from .conv_relu import ConvReLU1d, ConvReLU2d, ConvReLU3d
3
+ from .bn_relu import BNReLU2d, BNReLU3d
4
+
5
+ __all__ = [
6
+ 'LinearReLU',
7
+ 'ConvReLU1d',
8
+ 'ConvReLU2d',
9
+ 'ConvReLU3d',
10
+ 'BNReLU2d',
11
+ 'BNReLU3d',
12
+ ]
llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/quantized/modules/bn_relu.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from torch.ao.nn.intrinsic.quantized import BNReLU2d
2
+ from torch.ao.nn.intrinsic.quantized import BNReLU3d
3
+
4
+ __all__ = [
5
+ 'BNReLU2d',
6
+ 'BNReLU3d',
7
+ ]
llmeval-env/lib/python3.10/site-packages/torch/nn/intrinsic/quantized/modules/linear_relu.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from torch.ao.nn.intrinsic.quantized import LinearReLU
2
+
3
+ __all__ = [
4
+ 'LinearReLU',
5
+ ]
llmeval-env/lib/python3.10/site-packages/torch/nn/modules/_functions.py ADDED
@@ -0,0 +1,288 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.distributed as dist
3
+
4
+ from torch.autograd.function import Function
5
+
6
+ class SyncBatchNorm(Function):
7
+
8
+ @staticmethod
9
+ def forward(self, input, weight, bias, running_mean, running_var, eps, momentum, process_group, world_size):
10
+ if not (
11
+ input.is_contiguous(memory_format=torch.channels_last) or
12
+ input.is_contiguous(memory_format=torch.channels_last_3d)
13
+ ):
14
+ input = input.contiguous()
15
+ if weight is not None:
16
+ weight = weight.contiguous()
17
+
18
+ size = int(input.numel() // input.size(1))
19
+ if size == 1 and world_size < 2:
20
+ raise ValueError(f'Expected more than 1 value per channel when training, got input size {size}')
21
+
22
+ num_channels = input.shape[1]
23
+ if input.numel() > 0:
24
+ # calculate mean/invstd for input.
25
+ mean, invstd = torch.batch_norm_stats(input, eps)
26
+
27
+ count = torch.full(
28
+ (1,),
29
+ input.numel() // input.size(1),
30
+ dtype=mean.dtype,
31
+ device=mean.device
32
+ )
33
+
34
+ # C, C, 1 -> (2C + 1)
35
+ combined = torch.cat([mean, invstd, count], dim=0)
36
+ else:
37
+ # for empty input, set stats and the count to zero. The stats with
38
+ # zero count will be filtered out later when computing global mean
39
+ # & invstd, but they still needs to participate the all_gather
40
+ # collective communication to unblock other peer processes.
41
+ combined = torch.zeros(
42
+ 2 * num_channels + 1,
43
+ dtype=input.dtype,
44
+ device=input.device
45
+ )
46
+
47
+ # Use allgather instead of allreduce because count could be different across
48
+ # ranks, simple all reduce op can not give correct results.
49
+ # batch_norm_gather_stats_with_counts calculates global mean & invstd based on
50
+ # all gathered mean, invstd and count.
51
+ # for nccl backend, use the optimized version of all gather.
52
+ # The Gloo backend does not support `all_gather_into_tensor`.
53
+ if process_group._get_backend_name() != "gloo":
54
+ # world_size * (2C + 1)
55
+ combined_size = combined.numel()
56
+ combined_flat = torch.empty(1,
57
+ combined_size * world_size,
58
+ dtype=combined.dtype,
59
+ device=combined.device)
60
+ dist.all_gather_into_tensor(combined_flat, combined, process_group, async_op=False)
61
+ combined = torch.reshape(combined_flat, (world_size, combined_size))
62
+ # world_size * (2C + 1) -> world_size * C, world_size * C, world_size * 1
63
+ mean_all, invstd_all, count_all = torch.split(combined, num_channels, dim=1)
64
+ else:
65
+ # world_size * (2C + 1)
66
+ combined_list = [
67
+ torch.empty_like(combined) for _ in range(world_size)
68
+ ]
69
+ dist.all_gather(combined_list, combined, process_group, async_op=False)
70
+ combined = torch.stack(combined_list, dim=0)
71
+ # world_size * (2C + 1) -> world_size * C, world_size * C, world_size * 1
72
+ mean_all, invstd_all, count_all = torch.split(combined, num_channels, dim=1)
73
+
74
+ if not (torch.cuda.is_available() and torch.cuda.is_current_stream_capturing()):
75
+ # The lines below force a synchronization between CUDA and CPU, because
76
+ # the shape of the result count_all depends on the values in mask tensor.
77
+ # Such synchronizations break CUDA Graph capturing.
78
+ # See https://github.com/pytorch/pytorch/issues/78549
79
+ # FIXME: https://github.com/pytorch/pytorch/issues/78656 describes
80
+ # a better longer-term solution.
81
+
82
+ # remove stats from empty inputs
83
+ mask = count_all.squeeze(-1) >= 1
84
+ count_all = count_all[mask]
85
+ mean_all = mean_all[mask]
86
+ invstd_all = invstd_all[mask]
87
+
88
+ # calculate global mean & invstd
89
+ counts = count_all.view(-1)
90
+ if running_mean is not None and counts.dtype != running_mean.dtype:
91
+ counts = counts.to(running_mean.dtype)
92
+ mean, invstd = torch.batch_norm_gather_stats_with_counts(
93
+ input,
94
+ mean_all,
95
+ invstd_all,
96
+ running_mean,
97
+ running_var,
98
+ momentum,
99
+ eps,
100
+ counts,
101
+ )
102
+
103
+ self.save_for_backward(input, weight, mean, invstd, count_all.to(torch.int32))
104
+ self.process_group = process_group
105
+
106
+ # apply element-wise normalization
107
+ if input.numel() > 0:
108
+ return torch.batch_norm_elemt(input, weight, bias, mean, invstd, eps)
109
+ else:
110
+ return torch.empty_like(input)
111
+
112
+ @staticmethod
113
+ def backward(self, grad_output):
114
+ if not (
115
+ grad_output.is_contiguous(memory_format=torch.channels_last) or
116
+ grad_output.is_contiguous(memory_format=torch.channels_last_3d)
117
+ ):
118
+ grad_output = grad_output.contiguous()
119
+ saved_input, weight, mean, invstd, count_tensor = self.saved_tensors
120
+ grad_input = grad_weight = grad_bias = None
121
+ process_group = self.process_group
122
+
123
+ if saved_input.numel() > 0:
124
+ # calculate local stats as well as grad_weight / grad_bias
125
+ sum_dy, sum_dy_xmu, grad_weight, grad_bias = torch.batch_norm_backward_reduce(
126
+ grad_output,
127
+ saved_input,
128
+ mean,
129
+ invstd,
130
+ weight,
131
+ self.needs_input_grad[0],
132
+ self.needs_input_grad[1],
133
+ self.needs_input_grad[2]
134
+ )
135
+
136
+ if self.needs_input_grad[0]:
137
+ # synchronizing stats used to calculate input gradient.
138
+ num_channels = sum_dy.shape[0]
139
+ combined = torch.cat([sum_dy, sum_dy_xmu], dim=0)
140
+ torch.distributed.all_reduce(
141
+ combined, torch.distributed.ReduceOp.SUM, process_group, async_op=False)
142
+ sum_dy, sum_dy_xmu = torch.split(combined, num_channels)
143
+
144
+ # backward pass for gradient calculation
145
+ if weight is not None and weight.dtype != mean.dtype:
146
+ weight = weight.to(mean.dtype)
147
+ grad_input = torch.batch_norm_backward_elemt(
148
+ grad_output,
149
+ saved_input,
150
+ mean,
151
+ invstd,
152
+ weight,
153
+ sum_dy,
154
+ sum_dy_xmu,
155
+ count_tensor
156
+ )
157
+ # synchronizing of grad_weight / grad_bias is not needed as distributed
158
+ # training would handle all reduce.
159
+ if weight is None or not self.needs_input_grad[1]:
160
+ grad_weight = None
161
+
162
+ if weight is None or not self.needs_input_grad[2]:
163
+ grad_bias = None
164
+ else:
165
+ # This process got an empty input tensor in the forward pass.
166
+ # Although this process can directly set grad_input as an empty
167
+ # tensor of zeros, it still needs to participate in the collective
168
+ # communication to unblock its peers, as other peer processes might
169
+ # have received non-empty inputs.
170
+ num_channels = saved_input.shape[1]
171
+ if self.needs_input_grad[0]:
172
+ # launch all_reduce to unblock other peer processes
173
+ combined = torch.zeros(
174
+ 2 * num_channels,
175
+ dtype=saved_input.dtype,
176
+ device=saved_input.device
177
+ )
178
+ torch.distributed.all_reduce(
179
+ combined, torch.distributed.ReduceOp.SUM, process_group, async_op=False)
180
+
181
+ # Leave grad_input, grad_weight and grad_bias as None, which will be
182
+ # interpreted by the autograd engine as Tensors full of zeros.
183
+
184
+ return grad_input, grad_weight, grad_bias, None, None, None, None, None, None
185
+
186
+ class CrossMapLRN2d(Function):
187
+
188
+ @staticmethod
189
+ def forward(ctx, input, size, alpha=1e-4, beta=0.75, k=1):
190
+ ctx.size = size
191
+ ctx.alpha = alpha
192
+ ctx.beta = beta
193
+ ctx.k = k
194
+ ctx.scale = None
195
+
196
+ if input.dim() != 4:
197
+ raise ValueError(f"CrossMapLRN2d: Expected input to be 4D, got {input.dim()}D instead.")
198
+
199
+ ctx.scale = ctx.scale or input.new()
200
+ output = input.new()
201
+
202
+ batch_size = input.size(0)
203
+ channels = input.size(1)
204
+ input_height = input.size(2)
205
+ input_width = input.size(3)
206
+
207
+ output.resize_as_(input)
208
+ ctx.scale.resize_as_(input)
209
+
210
+ # use output storage as temporary buffer
211
+ input_square = output
212
+ torch.pow(input, 2, out=input_square)
213
+
214
+ pre_pad = int((ctx.size - 1) / 2 + 1)
215
+ pre_pad_crop = min(pre_pad, channels)
216
+
217
+ scale_first = ctx.scale.select(1, 0)
218
+ scale_first.zero_()
219
+ # compute first feature map normalization
220
+ for c in range(pre_pad_crop):
221
+ scale_first.add_(input_square.select(1, c))
222
+
223
+ # reuse computations for next feature maps normalization
224
+ # by adding the next feature map and removing the previous
225
+ for c in range(1, channels):
226
+ scale_previous = ctx.scale.select(1, c - 1)
227
+ scale_current = ctx.scale.select(1, c)
228
+ scale_current.copy_(scale_previous)
229
+ if c < channels - pre_pad + 1:
230
+ square_next = input_square.select(1, c + pre_pad - 1)
231
+ scale_current.add_(square_next, alpha=1)
232
+
233
+ if c > pre_pad:
234
+ square_previous = input_square.select(1, c - pre_pad)
235
+ scale_current.add_(square_previous, alpha=-1)
236
+
237
+ ctx.scale.mul_(ctx.alpha / ctx.size).add_(ctx.k)
238
+
239
+ torch.pow(ctx.scale, -ctx.beta, out=output)
240
+ output.mul_(input)
241
+
242
+ ctx.save_for_backward(input, output)
243
+ return output
244
+
245
+ @staticmethod
246
+ def backward(ctx, grad_output):
247
+ input, output = ctx.saved_tensors
248
+ grad_input = grad_output.new()
249
+
250
+ batch_size = input.size(0)
251
+ channels = input.size(1)
252
+ input_height = input.size(2)
253
+ input_width = input.size(3)
254
+
255
+ paddded_ratio = input.new(channels + ctx.size - 1, input_height,
256
+ input_width)
257
+ accum_ratio = input.new(input_height, input_width)
258
+
259
+ cache_ratio_value = 2 * ctx.alpha * ctx.beta / ctx.size
260
+ inversePrePad = int(ctx.size - (ctx.size - 1) / 2)
261
+
262
+ grad_input.resize_as_(input)
263
+ torch.pow(ctx.scale, -ctx.beta, out=grad_input).mul_(grad_output)
264
+
265
+ paddded_ratio.zero_()
266
+ padded_ratio_center = paddded_ratio.narrow(0, inversePrePad,
267
+ channels)
268
+ for n in range(batch_size):
269
+ torch.mul(grad_output[n], output[n], out=padded_ratio_center)
270
+ padded_ratio_center.div_(ctx.scale[n])
271
+ torch.sum(
272
+ paddded_ratio.narrow(0, 0, ctx.size - 1), 0, keepdim=False, out=accum_ratio)
273
+ for c in range(channels):
274
+ accum_ratio.add_(paddded_ratio[c + ctx.size - 1])
275
+ grad_input[n][c].addcmul_(input[n][c], accum_ratio, value=-cache_ratio_value)
276
+ accum_ratio.add_(paddded_ratio[c], alpha=-1)
277
+
278
+ return grad_input, None, None, None, None
279
+
280
+ class BackwardHookFunction(torch.autograd.Function):
281
+ @staticmethod
282
+ def forward(ctx, *args):
283
+ ctx.mark_non_differentiable(*[arg for arg in args if not arg.requires_grad])
284
+ return args
285
+
286
+ @staticmethod
287
+ def backward(ctx, *args):
288
+ return args
llmeval-env/lib/python3.10/site-packages/torch/nn/modules/flatten.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .module import Module
2
+
3
+ from typing import Tuple, Union
4
+ from torch import Tensor
5
+ from torch.types import _size
6
+
7
+ __all__ = ['Flatten', 'Unflatten']
8
+
9
+ class Flatten(Module):
10
+ r"""
11
+ Flattens a contiguous range of dims into a tensor.
12
+
13
+ For use with :class:`~nn.Sequential`, see :meth:`torch.flatten` for details.
14
+
15
+ Shape:
16
+ - Input: :math:`(*, S_{\text{start}},..., S_{i}, ..., S_{\text{end}}, *)`,'
17
+ where :math:`S_{i}` is the size at dimension :math:`i` and :math:`*` means any
18
+ number of dimensions including none.
19
+ - Output: :math:`(*, \prod_{i=\text{start}}^{\text{end}} S_{i}, *)`.
20
+
21
+ Args:
22
+ start_dim: first dim to flatten (default = 1).
23
+ end_dim: last dim to flatten (default = -1).
24
+
25
+ Examples::
26
+ >>> input = torch.randn(32, 1, 5, 5)
27
+ >>> # With default parameters
28
+ >>> m = nn.Flatten()
29
+ >>> output = m(input)
30
+ >>> output.size()
31
+ torch.Size([32, 25])
32
+ >>> # With non-default parameters
33
+ >>> m = nn.Flatten(0, 2)
34
+ >>> output = m(input)
35
+ >>> output.size()
36
+ torch.Size([160, 5])
37
+ """
38
+
39
+ __constants__ = ['start_dim', 'end_dim']
40
+ start_dim: int
41
+ end_dim: int
42
+
43
+ def __init__(self, start_dim: int = 1, end_dim: int = -1) -> None:
44
+ super().__init__()
45
+ self.start_dim = start_dim
46
+ self.end_dim = end_dim
47
+
48
+ def forward(self, input: Tensor) -> Tensor:
49
+ return input.flatten(self.start_dim, self.end_dim)
50
+
51
+ def extra_repr(self) -> str:
52
+ return f'start_dim={self.start_dim}, end_dim={self.end_dim}'
53
+
54
+
55
+ class Unflatten(Module):
56
+ r"""
57
+ Unflattens a tensor dim expanding it to a desired shape. For use with :class:`~nn.Sequential`.
58
+
59
+ * :attr:`dim` specifies the dimension of the input tensor to be unflattened, and it can
60
+ be either `int` or `str` when `Tensor` or `NamedTensor` is used, respectively.
61
+
62
+ * :attr:`unflattened_size` is the new shape of the unflattened dimension of the tensor and it can be
63
+ a `tuple` of ints or a `list` of ints or `torch.Size` for `Tensor` input; a `NamedShape`
64
+ (tuple of `(name, size)` tuples) for `NamedTensor` input.
65
+
66
+ Shape:
67
+ - Input: :math:`(*, S_{\text{dim}}, *)`, where :math:`S_{\text{dim}}` is the size at
68
+ dimension :attr:`dim` and :math:`*` means any number of dimensions including none.
69
+ - Output: :math:`(*, U_1, ..., U_n, *)`, where :math:`U` = :attr:`unflattened_size` and
70
+ :math:`\prod_{i=1}^n U_i = S_{\text{dim}}`.
71
+
72
+ Args:
73
+ dim (Union[int, str]): Dimension to be unflattened
74
+ unflattened_size (Union[torch.Size, Tuple, List, NamedShape]): New shape of the unflattened dimension
75
+
76
+ Examples:
77
+ >>> input = torch.randn(2, 50)
78
+ >>> # With tuple of ints
79
+ >>> m = nn.Sequential(
80
+ >>> nn.Linear(50, 50),
81
+ >>> nn.Unflatten(1, (2, 5, 5))
82
+ >>> )
83
+ >>> output = m(input)
84
+ >>> output.size()
85
+ torch.Size([2, 2, 5, 5])
86
+ >>> # With torch.Size
87
+ >>> m = nn.Sequential(
88
+ >>> nn.Linear(50, 50),
89
+ >>> nn.Unflatten(1, torch.Size([2, 5, 5]))
90
+ >>> )
91
+ >>> output = m(input)
92
+ >>> output.size()
93
+ torch.Size([2, 2, 5, 5])
94
+ >>> # With namedshape (tuple of tuples)
95
+ >>> input = torch.randn(2, 50, names=('N', 'features'))
96
+ >>> unflatten = nn.Unflatten('features', (('C', 2), ('H', 5), ('W', 5)))
97
+ >>> output = unflatten(input)
98
+ >>> output.size()
99
+ torch.Size([2, 2, 5, 5])
100
+ """
101
+
102
+ NamedShape = Tuple[Tuple[str, int]]
103
+
104
+ __constants__ = ['dim', 'unflattened_size']
105
+ dim: Union[int, str]
106
+ unflattened_size: Union[_size, NamedShape]
107
+
108
+ def __init__(self, dim: Union[int, str], unflattened_size: Union[_size, NamedShape]) -> None:
109
+ super().__init__()
110
+
111
+ if isinstance(dim, int):
112
+ self._require_tuple_int(unflattened_size)
113
+ elif isinstance(dim, str):
114
+ self._require_tuple_tuple(unflattened_size)
115
+ else:
116
+ raise TypeError("invalid argument type for dim parameter")
117
+
118
+ self.dim = dim
119
+ self.unflattened_size = unflattened_size
120
+
121
+ def _require_tuple_tuple(self, input):
122
+ if (isinstance(input, tuple)):
123
+ for idx, elem in enumerate(input):
124
+ if not isinstance(elem, tuple):
125
+ raise TypeError("unflattened_size must be tuple of tuples, " +
126
+ f"but found element of type {type(elem).__name__} at pos {idx}")
127
+ return
128
+ raise TypeError("unflattened_size must be a tuple of tuples, " +
129
+ f"but found type {type(input).__name__}")
130
+
131
+ def _require_tuple_int(self, input):
132
+ if (isinstance(input, (tuple, list))):
133
+ for idx, elem in enumerate(input):
134
+ if not isinstance(elem, int):
135
+ raise TypeError("unflattened_size must be tuple of ints, " +
136
+ f"but found element of type {type(elem).__name__} at pos {idx}")
137
+ return
138
+ raise TypeError(f"unflattened_size must be a tuple of ints, but found type {type(input).__name__}")
139
+
140
+ def forward(self, input: Tensor) -> Tensor:
141
+ return input.unflatten(self.dim, self.unflattened_size)
142
+
143
+ def extra_repr(self) -> str:
144
+ return f'dim={self.dim}, unflattened_size={self.unflattened_size}'
llmeval-env/lib/python3.10/site-packages/torch/nn/modules/fold.py ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .module import Module
2
+ from .. import functional as F
3
+
4
+ from torch import Tensor
5
+ from ..common_types import _size_any_t
6
+
7
+ __all__ = ['Fold', 'Unfold']
8
+
9
+ class Fold(Module):
10
+ r"""Combines an array of sliding local blocks into a large containing tensor.
11
+
12
+ Consider a batched :attr:`input` tensor containing sliding local blocks,
13
+ e.g., patches of images, of shape :math:`(N, C \times \prod(\text{kernel\_size}), L)`,
14
+ where :math:`N` is batch dimension, :math:`C \times \prod(\text{kernel\_size})`
15
+ is the number of values within a block (a block has :math:`\prod(\text{kernel\_size})`
16
+ spatial locations each containing a :math:`C`-channeled vector), and
17
+ :math:`L` is the total number of blocks. (This is exactly the
18
+ same specification as the output shape of :class:`~torch.nn.Unfold`.) This
19
+ operation combines these local blocks into the large :attr:`output` tensor
20
+ of shape :math:`(N, C, \text{output\_size}[0], \text{output\_size}[1], \dots)`
21
+ by summing the overlapping values. Similar to :class:`~torch.nn.Unfold`, the
22
+ arguments must satisfy
23
+
24
+ .. math::
25
+ L = \prod_d \left\lfloor\frac{\text{output\_size}[d] + 2 \times \text{padding}[d] %
26
+ - \text{dilation}[d] \times (\text{kernel\_size}[d] - 1) - 1}{\text{stride}[d]} + 1\right\rfloor,
27
+
28
+ where :math:`d` is over all spatial dimensions.
29
+
30
+ * :attr:`output_size` describes the spatial shape of the large containing
31
+ tensor of the sliding local blocks. It is useful to resolve the ambiguity
32
+ when multiple input shapes map to same number of sliding blocks, e.g.,
33
+ with ``stride > 0``.
34
+
35
+ The :attr:`padding`, :attr:`stride` and :attr:`dilation` arguments specify
36
+ how the sliding blocks are retrieved.
37
+
38
+ * :attr:`stride` controls the stride for the sliding blocks.
39
+
40
+ * :attr:`padding` controls the amount of implicit zero-paddings on both
41
+ sides for :attr:`padding` number of points for each dimension before
42
+ reshaping.
43
+
44
+ * :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm.
45
+ It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does.
46
+
47
+ Args:
48
+ output_size (int or tuple): the shape of the spatial dimensions of the
49
+ output (i.e., ``output.sizes()[2:]``)
50
+ kernel_size (int or tuple): the size of the sliding blocks
51
+ dilation (int or tuple, optional): a parameter that controls the
52
+ stride of elements within the
53
+ neighborhood. Default: 1
54
+ padding (int or tuple, optional): implicit zero padding to be added on
55
+ both sides of input. Default: 0
56
+ stride (int or tuple): the stride of the sliding blocks in the input
57
+ spatial dimensions. Default: 1
58
+
59
+ * If :attr:`output_size`, :attr:`kernel_size`, :attr:`dilation`,
60
+ :attr:`padding` or :attr:`stride` is an int or a tuple of length 1 then
61
+ their values will be replicated across all spatial dimensions.
62
+
63
+ * For the case of two output spatial dimensions this operation is sometimes
64
+ called ``col2im``.
65
+
66
+ .. note::
67
+ :class:`~torch.nn.Fold` calculates each combined value in the resulting
68
+ large tensor by summing all values from all containing blocks.
69
+ :class:`~torch.nn.Unfold` extracts the values in the local blocks by
70
+ copying from the large tensor. So, if the blocks overlap, they are not
71
+ inverses of each other.
72
+
73
+ In general, folding and unfolding operations are related as
74
+ follows. Consider :class:`~torch.nn.Fold` and
75
+ :class:`~torch.nn.Unfold` instances created with the same
76
+ parameters:
77
+
78
+ >>> fold_params = dict(kernel_size=..., dilation=..., padding=..., stride=...)
79
+ >>> fold = nn.Fold(output_size=..., **fold_params)
80
+ >>> unfold = nn.Unfold(**fold_params)
81
+
82
+ Then for any (supported) ``input`` tensor the following
83
+ equality holds:
84
+
85
+ ::
86
+
87
+ fold(unfold(input)) == divisor * input
88
+
89
+ where ``divisor`` is a tensor that depends only on the shape
90
+ and dtype of the ``input``:
91
+
92
+ >>> # xdoctest: +SKIP
93
+ >>> input_ones = torch.ones(input.shape, dtype=input.dtype)
94
+ >>> divisor = fold(unfold(input_ones))
95
+
96
+ When the ``divisor`` tensor contains no zero elements, then
97
+ ``fold`` and ``unfold`` operations are inverses of each
98
+ other (up to constant divisor).
99
+
100
+ .. warning::
101
+ Currently, only unbatched (3D) or batched (4D) image-like output tensors are supported.
102
+
103
+ Shape:
104
+ - Input: :math:`(N, C \times \prod(\text{kernel\_size}), L)` or :math:`(C \times \prod(\text{kernel\_size}), L)`
105
+ - Output: :math:`(N, C, \text{output\_size}[0], \text{output\_size}[1], \dots)`
106
+ or :math:`(C, \text{output\_size}[0], \text{output\_size}[1], \dots)` as described above
107
+
108
+ Examples::
109
+
110
+ >>> fold = nn.Fold(output_size=(4, 5), kernel_size=(2, 2))
111
+ >>> input = torch.randn(1, 3 * 2 * 2, 12)
112
+ >>> output = fold(input)
113
+ >>> output.size()
114
+ torch.Size([1, 3, 4, 5])
115
+
116
+ .. _link:
117
+ https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
118
+
119
+ """
120
+
121
+ __constants__ = ['output_size', 'kernel_size', 'dilation', 'padding',
122
+ 'stride']
123
+ output_size: _size_any_t
124
+ kernel_size: _size_any_t
125
+ dilation: _size_any_t
126
+ padding: _size_any_t
127
+ stride: _size_any_t
128
+
129
+ def __init__(
130
+ self,
131
+ output_size: _size_any_t,
132
+ kernel_size: _size_any_t,
133
+ dilation: _size_any_t = 1,
134
+ padding: _size_any_t = 0,
135
+ stride: _size_any_t = 1
136
+ ) -> None:
137
+ super().__init__()
138
+ self.output_size = output_size
139
+ self.kernel_size = kernel_size
140
+ self.dilation = dilation
141
+ self.padding = padding
142
+ self.stride = stride
143
+
144
+ def forward(self, input: Tensor) -> Tensor:
145
+ return F.fold(input, self.output_size, self.kernel_size, self.dilation,
146
+ self.padding, self.stride)
147
+
148
+ def extra_repr(self) -> str:
149
+ return 'output_size={output_size}, kernel_size={kernel_size}, ' \
150
+ 'dilation={dilation}, padding={padding}, stride={stride}'.format(
151
+ **self.__dict__
152
+ )
153
+
154
+
155
+ class Unfold(Module):
156
+ r"""Extracts sliding local blocks from a batched input tensor.
157
+
158
+ Consider a batched :attr:`input` tensor of shape :math:`(N, C, *)`,
159
+ where :math:`N` is the batch dimension, :math:`C` is the channel dimension,
160
+ and :math:`*` represent arbitrary spatial dimensions. This operation flattens
161
+ each sliding :attr:`kernel_size`-sized block within the spatial dimensions
162
+ of :attr:`input` into a column (i.e., last dimension) of a 3-D :attr:`output`
163
+ tensor of shape :math:`(N, C \times \prod(\text{kernel\_size}), L)`, where
164
+ :math:`C \times \prod(\text{kernel\_size})` is the total number of values
165
+ within each block (a block has :math:`\prod(\text{kernel\_size})` spatial
166
+ locations each containing a :math:`C`-channeled vector), and :math:`L` is
167
+ the total number of such blocks:
168
+
169
+ .. math::
170
+ L = \prod_d \left\lfloor\frac{\text{spatial\_size}[d] + 2 \times \text{padding}[d] %
171
+ - \text{dilation}[d] \times (\text{kernel\_size}[d] - 1) - 1}{\text{stride}[d]} + 1\right\rfloor,
172
+
173
+ where :math:`\text{spatial\_size}` is formed by the spatial dimensions
174
+ of :attr:`input` (:math:`*` above), and :math:`d` is over all spatial
175
+ dimensions.
176
+
177
+ Therefore, indexing :attr:`output` at the last dimension (column dimension)
178
+ gives all values within a certain block.
179
+
180
+ The :attr:`padding`, :attr:`stride` and :attr:`dilation` arguments specify
181
+ how the sliding blocks are retrieved.
182
+
183
+ * :attr:`stride` controls the stride for the sliding blocks.
184
+
185
+ * :attr:`padding` controls the amount of implicit zero-paddings on both
186
+ sides for :attr:`padding` number of points for each dimension before
187
+ reshaping.
188
+
189
+ * :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm.
190
+ It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does.
191
+
192
+ Args:
193
+ kernel_size (int or tuple): the size of the sliding blocks
194
+ dilation (int or tuple, optional): a parameter that controls the
195
+ stride of elements within the
196
+ neighborhood. Default: 1
197
+ padding (int or tuple, optional): implicit zero padding to be added on
198
+ both sides of input. Default: 0
199
+ stride (int or tuple, optional): the stride of the sliding blocks in the input
200
+ spatial dimensions. Default: 1
201
+
202
+ * If :attr:`kernel_size`, :attr:`dilation`, :attr:`padding` or
203
+ :attr:`stride` is an int or a tuple of length 1, their values will be
204
+ replicated across all spatial dimensions.
205
+
206
+ * For the case of two input spatial dimensions this operation is sometimes
207
+ called ``im2col``.
208
+
209
+ .. note::
210
+ :class:`~torch.nn.Fold` calculates each combined value in the resulting
211
+ large tensor by summing all values from all containing blocks.
212
+ :class:`~torch.nn.Unfold` extracts the values in the local blocks by
213
+ copying from the large tensor. So, if the blocks overlap, they are not
214
+ inverses of each other.
215
+
216
+ In general, folding and unfolding operations are related as
217
+ follows. Consider :class:`~torch.nn.Fold` and
218
+ :class:`~torch.nn.Unfold` instances created with the same
219
+ parameters:
220
+
221
+ >>> fold_params = dict(kernel_size=..., dilation=..., padding=..., stride=...)
222
+ >>> fold = nn.Fold(output_size=..., **fold_params)
223
+ >>> unfold = nn.Unfold(**fold_params)
224
+
225
+ Then for any (supported) ``input`` tensor the following
226
+ equality holds:
227
+
228
+ ::
229
+
230
+ fold(unfold(input)) == divisor * input
231
+
232
+ where ``divisor`` is a tensor that depends only on the shape
233
+ and dtype of the ``input``:
234
+
235
+ >>> # xdoctest: +SKIP
236
+ >>> input_ones = torch.ones(input.shape, dtype=input.dtype)
237
+ >>> divisor = fold(unfold(input_ones))
238
+
239
+ When the ``divisor`` tensor contains no zero elements, then
240
+ ``fold`` and ``unfold`` operations are inverses of each
241
+ other (up to constant divisor).
242
+
243
+ .. warning::
244
+ Currently, only 4-D input tensors (batched image-like tensors) are
245
+ supported.
246
+
247
+ Shape:
248
+ - Input: :math:`(N, C, *)`
249
+ - Output: :math:`(N, C \times \prod(\text{kernel\_size}), L)` as described above
250
+
251
+ Examples::
252
+
253
+ >>> unfold = nn.Unfold(kernel_size=(2, 3))
254
+ >>> input = torch.randn(2, 5, 3, 4)
255
+ >>> output = unfold(input)
256
+ >>> # each patch contains 30 values (2x3=6 vectors, each of 5 channels)
257
+ >>> # 4 blocks (2x3 kernels) in total in the 3x4 input
258
+ >>> output.size()
259
+ torch.Size([2, 30, 4])
260
+
261
+ >>> # xdoctest: +IGNORE_WANT
262
+ >>> # Convolution is equivalent with Unfold + Matrix Multiplication + Fold (or view to output shape)
263
+ >>> inp = torch.randn(1, 3, 10, 12)
264
+ >>> w = torch.randn(2, 3, 4, 5)
265
+ >>> inp_unf = torch.nn.functional.unfold(inp, (4, 5))
266
+ >>> out_unf = inp_unf.transpose(1, 2).matmul(w.view(w.size(0), -1).t()).transpose(1, 2)
267
+ >>> out = torch.nn.functional.fold(out_unf, (7, 8), (1, 1))
268
+ >>> # or equivalently (and avoiding a copy),
269
+ >>> # out = out_unf.view(1, 2, 7, 8)
270
+ >>> (torch.nn.functional.conv2d(inp, w) - out).abs().max()
271
+ tensor(1.9073e-06)
272
+
273
+ .. _link:
274
+ https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
275
+
276
+ """
277
+
278
+ __constants__ = ['kernel_size', 'dilation', 'padding', 'stride']
279
+ kernel_size: _size_any_t
280
+ dilation: _size_any_t
281
+ padding: _size_any_t
282
+ stride: _size_any_t
283
+
284
+ def __init__(
285
+ self,
286
+ kernel_size: _size_any_t,
287
+ dilation: _size_any_t = 1,
288
+ padding: _size_any_t = 0,
289
+ stride: _size_any_t = 1
290
+ ) -> None:
291
+ super().__init__()
292
+ self.kernel_size = kernel_size
293
+ self.dilation = dilation
294
+ self.padding = padding
295
+ self.stride = stride
296
+
297
+ def forward(self, input: Tensor) -> Tensor:
298
+ return F.unfold(input, self.kernel_size, self.dilation,
299
+ self.padding, self.stride)
300
+
301
+ def extra_repr(self) -> str:
302
+ return 'kernel_size={kernel_size}, dilation={dilation}, padding={padding},' \
303
+ ' stride={stride}'.format(**self.__dict__)
llmeval-env/lib/python3.10/site-packages/torch/nn/modules/instancenorm.py ADDED
@@ -0,0 +1,434 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import warnings
3
+ from torch import Tensor
4
+
5
+ from .batchnorm import _LazyNormBase, _NormBase
6
+ from .. import functional as F
7
+
8
+ __all__ = ['InstanceNorm1d', 'InstanceNorm2d', 'InstanceNorm3d', 'LazyInstanceNorm1d',
9
+ 'LazyInstanceNorm2d', 'LazyInstanceNorm3d']
10
+
11
+ class _InstanceNorm(_NormBase):
12
+ def __init__(
13
+ self,
14
+ num_features: int,
15
+ eps: float = 1e-5,
16
+ momentum: float = 0.1,
17
+ affine: bool = False,
18
+ track_running_stats: bool = False,
19
+ device=None,
20
+ dtype=None
21
+ ) -> None:
22
+ factory_kwargs = {'device': device, 'dtype': dtype}
23
+ super().__init__(
24
+ num_features, eps, momentum, affine, track_running_stats, **factory_kwargs)
25
+
26
+ def _check_input_dim(self, input):
27
+ raise NotImplementedError
28
+
29
+ def _get_no_batch_dim(self):
30
+ raise NotImplementedError
31
+
32
+ def _handle_no_batch_input(self, input):
33
+ return self._apply_instance_norm(input.unsqueeze(0)).squeeze(0)
34
+
35
+ def _apply_instance_norm(self, input):
36
+ return F.instance_norm(
37
+ input, self.running_mean, self.running_var, self.weight, self.bias,
38
+ self.training or not self.track_running_stats, self.momentum, self.eps)
39
+
40
+ def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
41
+ missing_keys, unexpected_keys, error_msgs):
42
+ version = local_metadata.get('version', None)
43
+ # at version 1: removed running_mean and running_var when
44
+ # track_running_stats=False (default)
45
+ if version is None and not self.track_running_stats:
46
+ running_stats_keys = []
47
+ for name in ('running_mean', 'running_var'):
48
+ key = prefix + name
49
+ if key in state_dict:
50
+ running_stats_keys.append(key)
51
+ if len(running_stats_keys) > 0:
52
+ error_msgs.append(
53
+ 'Unexpected running stats buffer(s) {names} for {klass} '
54
+ 'with track_running_stats=False. If state_dict is a '
55
+ 'checkpoint saved before 0.4.0, this may be expected '
56
+ 'because {klass} does not track running stats by default '
57
+ 'since 0.4.0. Please remove these keys from state_dict. If '
58
+ 'the running stats are actually needed, instead set '
59
+ 'track_running_stats=True in {klass} to enable them. See '
60
+ 'the documentation of {klass} for details.'
61
+ .format(names=" and ".join(f'"{k}"' for k in running_stats_keys),
62
+ klass=self.__class__.__name__))
63
+ for key in running_stats_keys:
64
+ state_dict.pop(key)
65
+
66
+ super()._load_from_state_dict(
67
+ state_dict, prefix, local_metadata, strict,
68
+ missing_keys, unexpected_keys, error_msgs)
69
+
70
+ def forward(self, input: Tensor) -> Tensor:
71
+ self._check_input_dim(input)
72
+
73
+ feature_dim = input.dim() - self._get_no_batch_dim()
74
+ if input.size(feature_dim) != self.num_features:
75
+ if self.affine:
76
+ raise ValueError(
77
+ f"expected input's size at dim={feature_dim} to match num_features"
78
+ f" ({self.num_features}), but got: {input.size(feature_dim)}.")
79
+ else:
80
+ warnings.warn(f"input's size at dim={feature_dim} does not match num_features. "
81
+ "You can silence this warning by not passing in num_features, "
82
+ "which is not used because affine=False")
83
+
84
+ if input.dim() == self._get_no_batch_dim():
85
+ return self._handle_no_batch_input(input)
86
+
87
+ return self._apply_instance_norm(input)
88
+
89
+
90
+ class InstanceNorm1d(_InstanceNorm):
91
+ r"""Applies Instance Normalization.
92
+
93
+ This operation applies Instance Normalization
94
+ over a 2D (unbatched) or 3D (batched) input as described in the paper
95
+ `Instance Normalization: The Missing Ingredient for Fast Stylization
96
+ <https://arxiv.org/abs/1607.08022>`__.
97
+
98
+ .. math::
99
+
100
+ y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
101
+
102
+ The mean and standard-deviation are calculated per-dimension separately
103
+ for each object in a mini-batch. :math:`\gamma` and :math:`\beta` are learnable parameter vectors
104
+ of size `C` (where `C` is the number of features or channels of the input) if :attr:`affine` is ``True``.
105
+ The standard-deviation is calculated via the biased estimator, equivalent to
106
+ `torch.var(input, unbiased=False)`.
107
+
108
+ By default, this layer uses instance statistics computed from input data in
109
+ both training and evaluation modes.
110
+
111
+ If :attr:`track_running_stats` is set to ``True``, during training this
112
+ layer keeps running estimates of its computed mean and variance, which are
113
+ then used for normalization during evaluation. The running estimates are
114
+ kept with a default :attr:`momentum` of 0.1.
115
+
116
+ .. note::
117
+ This :attr:`momentum` argument is different from one used in optimizer
118
+ classes and the conventional notion of momentum. Mathematically, the
119
+ update rule for running statistics here is
120
+ :math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t`,
121
+ where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
122
+ new observed value.
123
+
124
+ .. note::
125
+ :class:`InstanceNorm1d` and :class:`LayerNorm` are very similar, but
126
+ have some subtle differences. :class:`InstanceNorm1d` is applied
127
+ on each channel of channeled data like multidimensional time series, but
128
+ :class:`LayerNorm` is usually applied on entire sample and often in NLP
129
+ tasks. Additionally, :class:`LayerNorm` applies elementwise affine
130
+ transform, while :class:`InstanceNorm1d` usually don't apply affine
131
+ transform.
132
+
133
+ Args:
134
+ num_features: number of features or channels :math:`C` of the input
135
+ eps: a value added to the denominator for numerical stability. Default: 1e-5
136
+ momentum: the value used for the running_mean and running_var computation. Default: 0.1
137
+ affine: a boolean value that when set to ``True``, this module has
138
+ learnable affine parameters, initialized the same way as done for batch normalization.
139
+ Default: ``False``.
140
+ track_running_stats: a boolean value that when set to ``True``, this
141
+ module tracks the running mean and variance, and when set to ``False``,
142
+ this module does not track such statistics and always uses batch
143
+ statistics in both training and eval modes. Default: ``False``
144
+
145
+ Shape:
146
+ - Input: :math:`(N, C, L)` or :math:`(C, L)`
147
+ - Output: :math:`(N, C, L)` or :math:`(C, L)` (same shape as input)
148
+
149
+ Examples::
150
+
151
+ >>> # Without Learnable Parameters
152
+ >>> m = nn.InstanceNorm1d(100)
153
+ >>> # With Learnable Parameters
154
+ >>> m = nn.InstanceNorm1d(100, affine=True)
155
+ >>> input = torch.randn(20, 100, 40)
156
+ >>> output = m(input)
157
+ """
158
+
159
+ def _get_no_batch_dim(self):
160
+ return 2
161
+
162
+ def _check_input_dim(self, input):
163
+ if input.dim() not in (2, 3):
164
+ raise ValueError(f'expected 2D or 3D input (got {input.dim()}D input)')
165
+
166
+
167
+ class LazyInstanceNorm1d(_LazyNormBase, _InstanceNorm):
168
+ r"""A :class:`torch.nn.InstanceNorm1d` module with lazy initialization of the ``num_features`` argument.
169
+
170
+ The ``num_features`` argument of the :class:`InstanceNorm1d` is inferred from the ``input.size(1)``.
171
+ The attributes that will be lazily initialized are `weight`, `bias`, `running_mean` and `running_var`.
172
+
173
+ Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
174
+ on lazy modules and their limitations.
175
+
176
+ Args:
177
+ num_features: :math:`C` from an expected input of size
178
+ :math:`(N, C, L)` or :math:`(C, L)`
179
+ eps: a value added to the denominator for numerical stability. Default: 1e-5
180
+ momentum: the value used for the running_mean and running_var computation. Default: 0.1
181
+ affine: a boolean value that when set to ``True``, this module has
182
+ learnable affine parameters, initialized the same way as done for batch normalization.
183
+ Default: ``False``.
184
+ track_running_stats: a boolean value that when set to ``True``, this
185
+ module tracks the running mean and variance, and when set to ``False``,
186
+ this module does not track such statistics and always uses batch
187
+ statistics in both training and eval modes. Default: ``False``
188
+
189
+ Shape:
190
+ - Input: :math:`(N, C, L)` or :math:`(C, L)`
191
+ - Output: :math:`(N, C, L)` or :math:`(C, L)` (same shape as input)
192
+ """
193
+
194
+ cls_to_become = InstanceNorm1d # type: ignore[assignment]
195
+
196
+ def _get_no_batch_dim(self):
197
+ return 2
198
+
199
+ def _check_input_dim(self, input):
200
+ if input.dim() not in (2, 3):
201
+ raise ValueError(f'expected 2D or 3D input (got {input.dim()}D input)')
202
+
203
+
204
+ class InstanceNorm2d(_InstanceNorm):
205
+ r"""Applies Instance Normalization.
206
+
207
+ This operation applies Instance Normalization
208
+ over a 4D input (a mini-batch of 2D inputs
209
+ with additional channel dimension) as described in the paper
210
+ `Instance Normalization: The Missing Ingredient for Fast Stylization
211
+ <https://arxiv.org/abs/1607.08022>`__.
212
+
213
+ .. math::
214
+
215
+ y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
216
+
217
+ The mean and standard-deviation are calculated per-dimension separately
218
+ for each object in a mini-batch. :math:`\gamma` and :math:`\beta` are learnable parameter vectors
219
+ of size `C` (where `C` is the input size) if :attr:`affine` is ``True``.
220
+ The standard-deviation is calculated via the biased estimator, equivalent to
221
+ `torch.var(input, unbiased=False)`.
222
+
223
+ By default, this layer uses instance statistics computed from input data in
224
+ both training and evaluation modes.
225
+
226
+ If :attr:`track_running_stats` is set to ``True``, during training this
227
+ layer keeps running estimates of its computed mean and variance, which are
228
+ then used for normalization during evaluation. The running estimates are
229
+ kept with a default :attr:`momentum` of 0.1.
230
+
231
+ .. note::
232
+ This :attr:`momentum` argument is different from one used in optimizer
233
+ classes and the conventional notion of momentum. Mathematically, the
234
+ update rule for running statistics here is
235
+ :math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t`,
236
+ where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
237
+ new observed value.
238
+
239
+ .. note::
240
+ :class:`InstanceNorm2d` and :class:`LayerNorm` are very similar, but
241
+ have some subtle differences. :class:`InstanceNorm2d` is applied
242
+ on each channel of channeled data like RGB images, but
243
+ :class:`LayerNorm` is usually applied on entire sample and often in NLP
244
+ tasks. Additionally, :class:`LayerNorm` applies elementwise affine
245
+ transform, while :class:`InstanceNorm2d` usually don't apply affine
246
+ transform.
247
+
248
+ Args:
249
+ num_features: :math:`C` from an expected input of size
250
+ :math:`(N, C, H, W)` or :math:`(C, H, W)`
251
+ eps: a value added to the denominator for numerical stability. Default: 1e-5
252
+ momentum: the value used for the running_mean and running_var computation. Default: 0.1
253
+ affine: a boolean value that when set to ``True``, this module has
254
+ learnable affine parameters, initialized the same way as done for batch normalization.
255
+ Default: ``False``.
256
+ track_running_stats: a boolean value that when set to ``True``, this
257
+ module tracks the running mean and variance, and when set to ``False``,
258
+ this module does not track such statistics and always uses batch
259
+ statistics in both training and eval modes. Default: ``False``
260
+
261
+ Shape:
262
+ - Input: :math:`(N, C, H, W)` or :math:`(C, H, W)`
263
+ - Output: :math:`(N, C, H, W)` or :math:`(C, H, W)` (same shape as input)
264
+
265
+ Examples::
266
+
267
+ >>> # Without Learnable Parameters
268
+ >>> m = nn.InstanceNorm2d(100)
269
+ >>> # With Learnable Parameters
270
+ >>> m = nn.InstanceNorm2d(100, affine=True)
271
+ >>> input = torch.randn(20, 100, 35, 45)
272
+ >>> output = m(input)
273
+ """
274
+
275
+ def _get_no_batch_dim(self):
276
+ return 3
277
+
278
+ def _check_input_dim(self, input):
279
+ if input.dim() not in (3, 4):
280
+ raise ValueError(f'expected 3D or 4D input (got {input.dim()}D input)')
281
+
282
+
283
+ class LazyInstanceNorm2d(_LazyNormBase, _InstanceNorm):
284
+ r"""A :class:`torch.nn.InstanceNorm2d` module with lazy initialization of the ``num_features`` argument.
285
+
286
+ The ``num_features`` argument of the :class:`InstanceNorm2d` is inferred from the ``input.size(1)``.
287
+ The attributes that will be lazily initialized are `weight`, `bias`,
288
+ `running_mean` and `running_var`.
289
+
290
+ Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
291
+ on lazy modules and their limitations.
292
+
293
+ Args:
294
+ num_features: :math:`C` from an expected input of size
295
+ :math:`(N, C, H, W)` or :math:`(C, H, W)`
296
+ eps: a value added to the denominator for numerical stability. Default: 1e-5
297
+ momentum: the value used for the running_mean and running_var computation. Default: 0.1
298
+ affine: a boolean value that when set to ``True``, this module has
299
+ learnable affine parameters, initialized the same way as done for batch normalization.
300
+ Default: ``False``.
301
+ track_running_stats: a boolean value that when set to ``True``, this
302
+ module tracks the running mean and variance, and when set to ``False``,
303
+ this module does not track such statistics and always uses batch
304
+ statistics in both training and eval modes. Default: ``False``
305
+
306
+ Shape:
307
+ - Input: :math:`(N, C, H, W)` or :math:`(C, H, W)`
308
+ - Output: :math:`(N, C, H, W)` or :math:`(C, H, W)` (same shape as input)
309
+ """
310
+
311
+ cls_to_become = InstanceNorm2d # type: ignore[assignment]
312
+
313
+ def _get_no_batch_dim(self):
314
+ return 3
315
+
316
+ def _check_input_dim(self, input):
317
+ if input.dim() not in (3, 4):
318
+ raise ValueError(f'expected 3D or 4D input (got {input.dim()}D input)')
319
+
320
+
321
+ class InstanceNorm3d(_InstanceNorm):
322
+ r"""Applies Instance Normalization.
323
+
324
+ This operation applies Instance Normalization
325
+ over a 5D input (a mini-batch of 3D inputs with additional channel dimension) as described in the paper
326
+ `Instance Normalization: The Missing Ingredient for Fast Stylization
327
+ <https://arxiv.org/abs/1607.08022>`__.
328
+
329
+ .. math::
330
+
331
+ y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
332
+
333
+ The mean and standard-deviation are calculated per-dimension separately
334
+ for each object in a mini-batch. :math:`\gamma` and :math:`\beta` are learnable parameter vectors
335
+ of size C (where C is the input size) if :attr:`affine` is ``True``.
336
+ The standard-deviation is calculated via the biased estimator, equivalent to
337
+ `torch.var(input, unbiased=False)`.
338
+
339
+ By default, this layer uses instance statistics computed from input data in
340
+ both training and evaluation modes.
341
+
342
+ If :attr:`track_running_stats` is set to ``True``, during training this
343
+ layer keeps running estimates of its computed mean and variance, which are
344
+ then used for normalization during evaluation. The running estimates are
345
+ kept with a default :attr:`momentum` of 0.1.
346
+
347
+ .. note::
348
+ This :attr:`momentum` argument is different from one used in optimizer
349
+ classes and the conventional notion of momentum. Mathematically, the
350
+ update rule for running statistics here is
351
+ :math:`\hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t`,
352
+ where :math:`\hat{x}` is the estimated statistic and :math:`x_t` is the
353
+ new observed value.
354
+
355
+ .. note::
356
+ :class:`InstanceNorm3d` and :class:`LayerNorm` are very similar, but
357
+ have some subtle differences. :class:`InstanceNorm3d` is applied
358
+ on each channel of channeled data like 3D models with RGB color, but
359
+ :class:`LayerNorm` is usually applied on entire sample and often in NLP
360
+ tasks. Additionally, :class:`LayerNorm` applies elementwise affine
361
+ transform, while :class:`InstanceNorm3d` usually don't apply affine
362
+ transform.
363
+
364
+ Args:
365
+ num_features: :math:`C` from an expected input of size
366
+ :math:`(N, C, D, H, W)` or :math:`(C, D, H, W)`
367
+ eps: a value added to the denominator for numerical stability. Default: 1e-5
368
+ momentum: the value used for the running_mean and running_var computation. Default: 0.1
369
+ affine: a boolean value that when set to ``True``, this module has
370
+ learnable affine parameters, initialized the same way as done for batch normalization.
371
+ Default: ``False``.
372
+ track_running_stats: a boolean value that when set to ``True``, this
373
+ module tracks the running mean and variance, and when set to ``False``,
374
+ this module does not track such statistics and always uses batch
375
+ statistics in both training and eval modes. Default: ``False``
376
+
377
+ Shape:
378
+ - Input: :math:`(N, C, D, H, W)` or :math:`(C, D, H, W)`
379
+ - Output: :math:`(N, C, D, H, W)` or :math:`(C, D, H, W)` (same shape as input)
380
+
381
+ Examples::
382
+
383
+ >>> # Without Learnable Parameters
384
+ >>> m = nn.InstanceNorm3d(100)
385
+ >>> # With Learnable Parameters
386
+ >>> m = nn.InstanceNorm3d(100, affine=True)
387
+ >>> input = torch.randn(20, 100, 35, 45, 10)
388
+ >>> output = m(input)
389
+ """
390
+
391
+ def _get_no_batch_dim(self):
392
+ return 4
393
+
394
+ def _check_input_dim(self, input):
395
+ if input.dim() not in (4, 5):
396
+ raise ValueError(f'expected 4D or 5D input (got {input.dim()}D input)')
397
+
398
+
399
+ class LazyInstanceNorm3d(_LazyNormBase, _InstanceNorm):
400
+ r"""A :class:`torch.nn.InstanceNorm3d` module with lazy initialization of the ``num_features`` argument.
401
+
402
+ The ``num_features`` argument of the :class:`InstanceNorm3d` is inferred from the ``input.size(1)``.
403
+ The attributes that will be lazily initialized are `weight`, `bias`,
404
+ `running_mean` and `running_var`.
405
+
406
+ Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
407
+ on lazy modules and their limitations.
408
+
409
+ Args:
410
+ num_features: :math:`C` from an expected input of size
411
+ :math:`(N, C, D, H, W)` or :math:`(C, D, H, W)`
412
+ eps: a value added to the denominator for numerical stability. Default: 1e-5
413
+ momentum: the value used for the running_mean and running_var computation. Default: 0.1
414
+ affine: a boolean value that when set to ``True``, this module has
415
+ learnable affine parameters, initialized the same way as done for batch normalization.
416
+ Default: ``False``.
417
+ track_running_stats: a boolean value that when set to ``True``, this
418
+ module tracks the running mean and variance, and when set to ``False``,
419
+ this module does not track such statistics and always uses batch
420
+ statistics in both training and eval modes. Default: ``False``
421
+
422
+ Shape:
423
+ - Input: :math:`(N, C, D, H, W)` or :math:`(C, D, H, W)`
424
+ - Output: :math:`(N, C, D, H, W)` or :math:`(C, D, H, W)` (same shape as input)
425
+ """
426
+
427
+ cls_to_become = InstanceNorm3d # type: ignore[assignment]
428
+
429
+ def _get_no_batch_dim(self):
430
+ return 4
431
+
432
+ def _check_input_dim(self, input):
433
+ if input.dim() not in (4, 5):
434
+ raise ValueError(f'expected 4D or 5D input (got {input.dim()}D input)')
llmeval-env/lib/python3.10/site-packages/torch/nn/modules/module.py ADDED
The diff for this file is too large to render. See raw diff
 
llmeval-env/lib/python3.10/site-packages/torch/nn/modules/padding.py ADDED
@@ -0,0 +1,801 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .module import Module
2
+ from .utils import _pair, _quadruple, _ntuple
3
+ from .. import functional as F
4
+
5
+ from torch import Tensor
6
+ from ..common_types import _size_2_t, _size_4_t, _size_6_t
7
+ from typing import Sequence, Tuple
8
+
9
+
10
+ # TODO: grad_output size asserts in THNN
11
+
12
+ __all__ = ['CircularPad1d', 'CircularPad2d', 'CircularPad3d', 'ConstantPad1d', 'ConstantPad2d',
13
+ 'ConstantPad3d', 'ReflectionPad1d', 'ReflectionPad2d', 'ReflectionPad3d',
14
+ 'ReplicationPad1d', 'ReplicationPad2d', 'ReplicationPad3d', 'ZeroPad1d', 'ZeroPad2d', 'ZeroPad3d']
15
+
16
+
17
+ class _CircularPadNd(Module):
18
+ __constants__ = ['padding']
19
+ padding: Sequence[int]
20
+
21
+ def _check_input_dim(self, input):
22
+ raise NotImplementedError
23
+
24
+ def forward(self, input: Tensor) -> Tensor:
25
+ self._check_input_dim(input)
26
+ return F.pad(input, self.padding, 'circular')
27
+
28
+ def extra_repr(self) -> str:
29
+ return f'{self.padding}'
30
+
31
+
32
+ class CircularPad1d(_CircularPadNd):
33
+ r"""Pads the input tensor using circular padding of the input boundary.
34
+
35
+ Tensor values at the beginning of the dimension are used to pad the end,
36
+ and values at the end are used to pad the beginning. If negative padding is
37
+ applied then the ends of the tensor get removed.
38
+
39
+ For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
40
+
41
+ Args:
42
+ padding (int, tuple): the size of the padding. If is `int`, uses the same
43
+ padding in all boundaries. If a 2-`tuple`, uses
44
+ (:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)
45
+
46
+ Shape:
47
+ - Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`.
48
+ - Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where
49
+
50
+ :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
51
+
52
+ Examples::
53
+
54
+ >>> # xdoctest: +IGNORE_WANT("not sure why xdoctest is choking on this")
55
+ >>> m = nn.CircularPad1d(2)
56
+ >>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4)
57
+ >>> input
58
+ tensor([[[0., 1., 2., 3.],
59
+ [4., 5., 6., 7.]]])
60
+ >>> m(input)
61
+ tensor([[[2., 3., 0., 1., 2., 3., 0., 1.],
62
+ [6., 7., 4., 5., 6., 7., 4., 5.]]])
63
+ >>> # using different paddings for different sides
64
+ >>> m = nn.CircularPad1d((3, 1))
65
+ >>> m(input)
66
+ tensor([[[1., 2., 3., 0., 1., 2., 3., 0.],
67
+ [5., 6., 7., 4., 5., 6., 7., 4.]]])
68
+ """
69
+
70
+ padding: Tuple[int, int]
71
+
72
+ def __init__(self, padding: _size_2_t) -> None:
73
+ super().__init__()
74
+ self.padding = _pair(padding)
75
+
76
+ def _check_input_dim(self, input):
77
+ if input.dim() != 2 and input.dim() != 3:
78
+ raise ValueError(
79
+ f"expected 2D or 3D input (got {input.dim()}D input)"
80
+ )
81
+
82
+
83
+ class CircularPad2d(_CircularPadNd):
84
+ r"""Pads the input tensor using circular padding of the input boundary.
85
+
86
+ Tensor values at the beginning of the dimension are used to pad the end,
87
+ and values at the end are used to pad the beginning. If negative padding is
88
+ applied then the ends of the tensor get removed.
89
+
90
+ For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
91
+
92
+ Args:
93
+ padding (int, tuple): the size of the padding. If is `int`, uses the same
94
+ padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,
95
+ :math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)
96
+
97
+ Shape:
98
+ - Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
99
+ - Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where
100
+
101
+ :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
102
+
103
+ :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
104
+
105
+ Examples::
106
+
107
+ >>> m = nn.CircularPad2d(2)
108
+ >>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3)
109
+ >>> input
110
+ tensor([[[[0., 1., 2.],
111
+ [3., 4., 5.],
112
+ [6., 7., 8.]]]])
113
+ >>> m(input)
114
+ tensor([[[[4., 5., 3., 4., 5., 3., 4.],
115
+ [7., 8., 6., 7., 8., 6., 7.],
116
+ [1., 2., 0., 1., 2., 0., 1.],
117
+ [4., 5., 3., 4., 5., 3., 4.],
118
+ [7., 8., 6., 7., 8., 6., 7.],
119
+ [1., 2., 0., 1., 2., 0., 1.],
120
+ [4., 5., 3., 4., 5., 3., 4.]]]])
121
+ >>> # using different paddings for different sides
122
+ >>> m = nn.CircularPad2d((1, 1, 2, 0))
123
+ >>> m(input)
124
+ tensor([[[[5., 3., 4., 5., 3.],
125
+ [8., 6., 7., 8., 6.],
126
+ [2., 0., 1., 2., 0.],
127
+ [5., 3., 4., 5., 3.],
128
+ [8., 6., 7., 8., 6.]]]])
129
+ """
130
+
131
+ padding: Tuple[int, int, int, int]
132
+
133
+ def __init__(self, padding: _size_4_t) -> None:
134
+ super().__init__()
135
+ self.padding = _quadruple(padding)
136
+
137
+ def _check_input_dim(self, input):
138
+ if input.dim() != 3 and input.dim() != 4:
139
+ raise ValueError(
140
+ f"expected 3D or 4D input (got {input.dim()}D input)"
141
+ )
142
+
143
+
144
+ class CircularPad3d(_CircularPadNd):
145
+ r"""Pads the input tensor using circular padding of the input boundary.
146
+
147
+ Tensor values at the beginning of the dimension are used to pad the end,
148
+ and values at the end are used to pad the beginning. If negative padding is
149
+ applied then the ends of the tensor get removed.
150
+
151
+ For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
152
+
153
+ Args:
154
+ padding (int, tuple): the size of the padding. If is `int`, uses the same
155
+ padding in all boundaries. If a 6-`tuple`, uses
156
+ (:math:`\text{padding\_left}`, :math:`\text{padding\_right}`,
157
+ :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`,
158
+ :math:`\text{padding\_front}`, :math:`\text{padding\_back}`)
159
+
160
+ Shape:
161
+ - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
162
+ - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(C, D_{out}, H_{out}, W_{out})`,
163
+ where
164
+
165
+ :math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}`
166
+
167
+ :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
168
+
169
+ :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
170
+
171
+ Examples::
172
+
173
+ >>> # xdoctest: +IGNORE_WANT("non-deterministic")
174
+ >>> m = nn.CircularPad3d(3)
175
+ >>> input = torch.randn(16, 3, 8, 320, 480)
176
+ >>> output = m(input)
177
+ >>> # using different paddings for different sides
178
+ >>> m = nn.CircularPad3d((3, 3, 6, 6, 1, 1))
179
+ >>> output = m(input)
180
+ """
181
+
182
+ padding: Tuple[int, int, int, int, int, int]
183
+
184
+ def __init__(self, padding: _size_6_t) -> None:
185
+ super().__init__()
186
+ self.padding = _ntuple(6)(padding)
187
+
188
+ def _check_input_dim(self, input):
189
+ if input.dim() != 4 and input.dim() != 5:
190
+ raise ValueError(
191
+ f"expected 4D or 5D input (got {input.dim()}D input)"
192
+ )
193
+
194
+
195
+ class _ConstantPadNd(Module):
196
+ __constants__ = ['padding', 'value']
197
+ value: float
198
+ padding: Sequence[int]
199
+
200
+ def __init__(self, value: float) -> None:
201
+ super().__init__()
202
+ self.value = value
203
+
204
+ def forward(self, input: Tensor) -> Tensor:
205
+ return F.pad(input, self.padding, 'constant', self.value)
206
+
207
+ def extra_repr(self) -> str:
208
+ return f'padding={self.padding}, value={self.value}'
209
+
210
+
211
+ class ConstantPad1d(_ConstantPadNd):
212
+ r"""Pads the input tensor boundaries with a constant value.
213
+
214
+ For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
215
+
216
+ Args:
217
+ padding (int, tuple): the size of the padding. If is `int`, uses the same
218
+ padding in both boundaries. If a 2-`tuple`, uses
219
+ (:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)
220
+
221
+ Shape:
222
+ - Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`.
223
+ - Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where
224
+
225
+ :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
226
+
227
+ Examples::
228
+
229
+ >>> # xdoctest: +IGNORE_WANT("non-deterministic")
230
+ >>> m = nn.ConstantPad1d(2, 3.5)
231
+ >>> input = torch.randn(1, 2, 4)
232
+ >>> input
233
+ tensor([[[-1.0491, -0.7152, -0.0749, 0.8530],
234
+ [-1.3287, 1.8966, 0.1466, -0.2771]]])
235
+ >>> m(input)
236
+ tensor([[[ 3.5000, 3.5000, -1.0491, -0.7152, -0.0749, 0.8530, 3.5000,
237
+ 3.5000],
238
+ [ 3.5000, 3.5000, -1.3287, 1.8966, 0.1466, -0.2771, 3.5000,
239
+ 3.5000]]])
240
+ >>> m = nn.ConstantPad1d(2, 3.5)
241
+ >>> input = torch.randn(1, 2, 3)
242
+ >>> input
243
+ tensor([[[ 1.6616, 1.4523, -1.1255],
244
+ [-3.6372, 0.1182, -1.8652]]])
245
+ >>> m(input)
246
+ tensor([[[ 3.5000, 3.5000, 1.6616, 1.4523, -1.1255, 3.5000, 3.5000],
247
+ [ 3.5000, 3.5000, -3.6372, 0.1182, -1.8652, 3.5000, 3.5000]]])
248
+ >>> # using different paddings for different sides
249
+ >>> m = nn.ConstantPad1d((3, 1), 3.5)
250
+ >>> m(input)
251
+ tensor([[[ 3.5000, 3.5000, 3.5000, 1.6616, 1.4523, -1.1255, 3.5000],
252
+ [ 3.5000, 3.5000, 3.5000, -3.6372, 0.1182, -1.8652, 3.5000]]])
253
+ """
254
+
255
+ padding: Tuple[int, int]
256
+
257
+ def __init__(self, padding: _size_2_t, value: float):
258
+ super().__init__(value)
259
+ self.padding = _pair(padding)
260
+
261
+
262
+ class ConstantPad2d(_ConstantPadNd):
263
+ r"""Pads the input tensor boundaries with a constant value.
264
+
265
+ For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
266
+
267
+ Args:
268
+ padding (int, tuple): the size of the padding. If is `int`, uses the same
269
+ padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,
270
+ :math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)
271
+
272
+ Shape:
273
+ - Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
274
+ - Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where
275
+
276
+ :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
277
+
278
+ :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
279
+
280
+ Examples::
281
+
282
+ >>> # xdoctest: +IGNORE_WANT("non-deterministic")
283
+ >>> m = nn.ConstantPad2d(2, 3.5)
284
+ >>> input = torch.randn(1, 2, 2)
285
+ >>> input
286
+ tensor([[[ 1.6585, 0.4320],
287
+ [-0.8701, -0.4649]]])
288
+ >>> m(input)
289
+ tensor([[[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000],
290
+ [ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000],
291
+ [ 3.5000, 3.5000, 1.6585, 0.4320, 3.5000, 3.5000],
292
+ [ 3.5000, 3.5000, -0.8701, -0.4649, 3.5000, 3.5000],
293
+ [ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000],
294
+ [ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000]]])
295
+ >>> # using different paddings for different sides
296
+ >>> m = nn.ConstantPad2d((3, 0, 2, 1), 3.5)
297
+ >>> m(input)
298
+ tensor([[[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000],
299
+ [ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000],
300
+ [ 3.5000, 3.5000, 3.5000, 1.6585, 0.4320],
301
+ [ 3.5000, 3.5000, 3.5000, -0.8701, -0.4649],
302
+ [ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000]]])
303
+ """
304
+
305
+ __constants__ = ['padding', 'value']
306
+ padding: Tuple[int, int, int, int]
307
+
308
+ def __init__(self, padding: _size_4_t, value: float) -> None:
309
+ super().__init__(value)
310
+ self.padding = _quadruple(padding)
311
+
312
+
313
+ class ConstantPad3d(_ConstantPadNd):
314
+ r"""Pads the input tensor boundaries with a constant value.
315
+
316
+ For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
317
+
318
+ Args:
319
+ padding (int, tuple): the size of the padding. If is `int`, uses the same
320
+ padding in all boundaries. If a 6-`tuple`, uses
321
+ (:math:`\text{padding\_left}`, :math:`\text{padding\_right}`,
322
+ :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`,
323
+ :math:`\text{padding\_front}`, :math:`\text{padding\_back}`)
324
+
325
+ Shape:
326
+ - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
327
+ - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or
328
+ :math:`(C, D_{out}, H_{out}, W_{out})`, where
329
+
330
+ :math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}`
331
+
332
+ :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
333
+
334
+ :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
335
+
336
+ Examples::
337
+
338
+ >>> m = nn.ConstantPad3d(3, 3.5)
339
+ >>> input = torch.randn(16, 3, 10, 20, 30)
340
+ >>> output = m(input)
341
+ >>> # using different paddings for different sides
342
+ >>> m = nn.ConstantPad3d((3, 3, 6, 6, 0, 1), 3.5)
343
+ >>> output = m(input)
344
+ """
345
+
346
+ padding: Tuple[int, int, int, int, int, int]
347
+
348
+ def __init__(self, padding: _size_6_t, value: float) -> None:
349
+ super().__init__(value)
350
+ self.padding = _ntuple(6)(padding)
351
+
352
+
353
+ class _ReflectionPadNd(Module):
354
+ __constants__ = ['padding']
355
+ padding: Sequence[int]
356
+
357
+ def forward(self, input: Tensor) -> Tensor:
358
+ return F.pad(input, self.padding, 'reflect')
359
+
360
+ def extra_repr(self) -> str:
361
+ return f'{self.padding}'
362
+
363
+
364
+ class ReflectionPad1d(_ReflectionPadNd):
365
+ r"""Pads the input tensor using the reflection of the input boundary.
366
+
367
+ For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
368
+
369
+ Args:
370
+ padding (int, tuple): the size of the padding. If is `int`, uses the same
371
+ padding in all boundaries. If a 2-`tuple`, uses
372
+ (:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)
373
+
374
+ Shape:
375
+ - Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`.
376
+ - Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where
377
+
378
+ :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
379
+
380
+ Examples::
381
+
382
+ >>> m = nn.ReflectionPad1d(2)
383
+ >>> # xdoctest: +IGNORE_WANT("other tests seem to modify printing styles")
384
+ >>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4)
385
+ >>> input
386
+ tensor([[[0., 1., 2., 3.],
387
+ [4., 5., 6., 7.]]])
388
+ >>> m(input)
389
+ tensor([[[2., 1., 0., 1., 2., 3., 2., 1.],
390
+ [6., 5., 4., 5., 6., 7., 6., 5.]]])
391
+ >>> # using different paddings for different sides
392
+ >>> m = nn.ReflectionPad1d((3, 1))
393
+ >>> m(input)
394
+ tensor([[[3., 2., 1., 0., 1., 2., 3., 2.],
395
+ [7., 6., 5., 4., 5., 6., 7., 6.]]])
396
+ """
397
+
398
+ padding: Tuple[int, int]
399
+
400
+ def __init__(self, padding: _size_2_t) -> None:
401
+ super().__init__()
402
+ self.padding = _pair(padding)
403
+
404
+
405
+ class ReflectionPad2d(_ReflectionPadNd):
406
+ r"""Pads the input tensor using the reflection of the input boundary.
407
+
408
+ For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
409
+
410
+ Args:
411
+ padding (int, tuple): the size of the padding. If is `int`, uses the same
412
+ padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,
413
+ :math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)
414
+ Note that padding size should be less than the corresponding input dimension.
415
+
416
+ Shape:
417
+ - Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
418
+ - Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})` where
419
+
420
+ :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
421
+
422
+ :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
423
+
424
+ Examples::
425
+
426
+ >>> # xdoctest: +IGNORE_WANT("not sure why xdoctest is choking on this")
427
+ >>> m = nn.ReflectionPad2d(2)
428
+ >>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3)
429
+ >>> input
430
+ tensor([[[[0., 1., 2.],
431
+ [3., 4., 5.],
432
+ [6., 7., 8.]]]])
433
+ >>> m(input)
434
+ tensor([[[[8., 7., 6., 7., 8., 7., 6.],
435
+ [5., 4., 3., 4., 5., 4., 3.],
436
+ [2., 1., 0., 1., 2., 1., 0.],
437
+ [5., 4., 3., 4., 5., 4., 3.],
438
+ [8., 7., 6., 7., 8., 7., 6.],
439
+ [5., 4., 3., 4., 5., 4., 3.],
440
+ [2., 1., 0., 1., 2., 1., 0.]]]])
441
+ >>> # using different paddings for different sides
442
+ >>> m = nn.ReflectionPad2d((1, 1, 2, 0))
443
+ >>> m(input)
444
+ tensor([[[[7., 6., 7., 8., 7.],
445
+ [4., 3., 4., 5., 4.],
446
+ [1., 0., 1., 2., 1.],
447
+ [4., 3., 4., 5., 4.],
448
+ [7., 6., 7., 8., 7.]]]])
449
+ """
450
+
451
+ padding: Tuple[int, int, int, int]
452
+
453
+ def __init__(self, padding: _size_4_t) -> None:
454
+ super().__init__()
455
+ self.padding = _quadruple(padding)
456
+
457
+
458
+ class ReflectionPad3d(_ReflectionPadNd):
459
+ r"""Pads the input tensor using the reflection of the input boundary.
460
+
461
+ For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
462
+
463
+ Args:
464
+ padding (int, tuple): the size of the padding. If is `int`, uses the same
465
+ padding in all boundaries. If a 6-`tuple`, uses
466
+ (:math:`\text{padding\_left}`, :math:`\text{padding\_right}`,
467
+ :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`,
468
+ :math:`\text{padding\_front}`, :math:`\text{padding\_back}`)
469
+
470
+ Shape:
471
+ - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
472
+ - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(C, D_{out}, H_{out}, W_{out})`,
473
+ where
474
+
475
+ :math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}`
476
+
477
+ :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
478
+
479
+ :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
480
+
481
+ Examples::
482
+
483
+ >>> # xdoctest: +IGNORE_WANT("not sure why xdoctest is choking on this")
484
+ >>> m = nn.ReflectionPad3d(1)
485
+ >>> input = torch.arange(8, dtype=torch.float).reshape(1, 1, 2, 2, 2)
486
+ >>> m(input)
487
+ tensor([[[[[7., 6., 7., 6.],
488
+ [5., 4., 5., 4.],
489
+ [7., 6., 7., 6.],
490
+ [5., 4., 5., 4.]],
491
+ [[3., 2., 3., 2.],
492
+ [1., 0., 1., 0.],
493
+ [3., 2., 3., 2.],
494
+ [1., 0., 1., 0.]],
495
+ [[7., 6., 7., 6.],
496
+ [5., 4., 5., 4.],
497
+ [7., 6., 7., 6.],
498
+ [5., 4., 5., 4.]],
499
+ [[3., 2., 3., 2.],
500
+ [1., 0., 1., 0.],
501
+ [3., 2., 3., 2.],
502
+ [1., 0., 1., 0.]]]]])
503
+ """
504
+
505
+ padding: Tuple[int, int, int, int, int, int]
506
+
507
+ def __init__(self, padding: _size_6_t) -> None:
508
+ super().__init__()
509
+ self.padding = _ntuple(6)(padding)
510
+
511
+
512
+ class _ReplicationPadNd(Module):
513
+ __constants__ = ['padding']
514
+ padding: Sequence[int]
515
+
516
+ def forward(self, input: Tensor) -> Tensor:
517
+ return F.pad(input, self.padding, 'replicate')
518
+
519
+ def extra_repr(self) -> str:
520
+ return f'{self.padding}'
521
+
522
+
523
+ class ReplicationPad1d(_ReplicationPadNd):
524
+ r"""Pads the input tensor using replication of the input boundary.
525
+
526
+ For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
527
+
528
+ Args:
529
+ padding (int, tuple): the size of the padding. If is `int`, uses the same
530
+ padding in all boundaries. If a 2-`tuple`, uses
531
+ (:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)
532
+
533
+ Shape:
534
+ - Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`.
535
+ - Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where
536
+
537
+ :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
538
+
539
+ Examples::
540
+
541
+ >>> # xdoctest: +IGNORE_WANT("not sure why xdoctest is choking on this")
542
+ >>> m = nn.ReplicationPad1d(2)
543
+ >>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4)
544
+ >>> input
545
+ tensor([[[0., 1., 2., 3.],
546
+ [4., 5., 6., 7.]]])
547
+ >>> m(input)
548
+ tensor([[[0., 0., 0., 1., 2., 3., 3., 3.],
549
+ [4., 4., 4., 5., 6., 7., 7., 7.]]])
550
+ >>> # using different paddings for different sides
551
+ >>> m = nn.ReplicationPad1d((3, 1))
552
+ >>> m(input)
553
+ tensor([[[0., 0., 0., 0., 1., 2., 3., 3.],
554
+ [4., 4., 4., 4., 5., 6., 7., 7.]]])
555
+ """
556
+
557
+ padding: Tuple[int, int]
558
+
559
+ def __init__(self, padding: _size_2_t) -> None:
560
+ super().__init__()
561
+ self.padding = _pair(padding)
562
+
563
+
564
+ class ReplicationPad2d(_ReplicationPadNd):
565
+ r"""Pads the input tensor using replication of the input boundary.
566
+
567
+ For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
568
+
569
+ Args:
570
+ padding (int, tuple): the size of the padding. If is `int`, uses the same
571
+ padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,
572
+ :math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)
573
+
574
+ Shape:
575
+ - Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
576
+ - Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where
577
+
578
+ :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
579
+
580
+ :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
581
+
582
+ Examples::
583
+
584
+ >>> m = nn.ReplicationPad2d(2)
585
+ >>> # xdoctest: +IGNORE_WANT("non-deterministic")
586
+ >>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3)
587
+ >>> input
588
+ tensor([[[[0., 1., 2.],
589
+ [3., 4., 5.],
590
+ [6., 7., 8.]]]])
591
+ >>> m(input)
592
+ tensor([[[[0., 0., 0., 1., 2., 2., 2.],
593
+ [0., 0., 0., 1., 2., 2., 2.],
594
+ [0., 0., 0., 1., 2., 2., 2.],
595
+ [3., 3., 3., 4., 5., 5., 5.],
596
+ [6., 6., 6., 7., 8., 8., 8.],
597
+ [6., 6., 6., 7., 8., 8., 8.],
598
+ [6., 6., 6., 7., 8., 8., 8.]]]])
599
+ >>> # using different paddings for different sides
600
+ >>> m = nn.ReplicationPad2d((1, 1, 2, 0))
601
+ >>> m(input)
602
+ tensor([[[[0., 0., 1., 2., 2.],
603
+ [0., 0., 1., 2., 2.],
604
+ [0., 0., 1., 2., 2.],
605
+ [3., 3., 4., 5., 5.],
606
+ [6., 6., 7., 8., 8.]]]])
607
+ """
608
+
609
+ padding: Tuple[int, int, int, int]
610
+
611
+ def __init__(self, padding: _size_4_t) -> None:
612
+ super().__init__()
613
+ self.padding = _quadruple(padding)
614
+
615
+
616
+ class ReplicationPad3d(_ReplicationPadNd):
617
+ r"""Pads the input tensor using replication of the input boundary.
618
+
619
+ For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
620
+
621
+ Args:
622
+ padding (int, tuple): the size of the padding. If is `int`, uses the same
623
+ padding in all boundaries. If a 6-`tuple`, uses
624
+ (:math:`\text{padding\_left}`, :math:`\text{padding\_right}`,
625
+ :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`,
626
+ :math:`\text{padding\_front}`, :math:`\text{padding\_back}`)
627
+
628
+ Shape:
629
+ - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
630
+ - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(C, D_{out}, H_{out}, W_{out})`,
631
+ where
632
+
633
+ :math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}`
634
+
635
+ :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
636
+
637
+ :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
638
+
639
+ Examples::
640
+
641
+ >>> # xdoctest: +IGNORE_WANT("non-deterministic")
642
+ >>> m = nn.ReplicationPad3d(3)
643
+ >>> input = torch.randn(16, 3, 8, 320, 480)
644
+ >>> output = m(input)
645
+ >>> # using different paddings for different sides
646
+ >>> m = nn.ReplicationPad3d((3, 3, 6, 6, 1, 1))
647
+ >>> output = m(input)
648
+ """
649
+
650
+ padding: Tuple[int, int, int, int, int, int]
651
+
652
+ def __init__(self, padding: _size_6_t) -> None:
653
+ super().__init__()
654
+ self.padding = _ntuple(6)(padding)
655
+
656
+
657
+ class ZeroPad1d(ConstantPad1d):
658
+ r"""Pads the input tensor boundaries with zero.
659
+
660
+ For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
661
+
662
+ Args:
663
+ padding (int, tuple): the size of the padding. If is `int`, uses the same
664
+ padding in both boundaries. If a 2-`tuple`, uses
665
+ (:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)
666
+
667
+ Shape:
668
+ - Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`.
669
+ - Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where
670
+
671
+ :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
672
+
673
+ Examples::
674
+
675
+ >>> # xdoctest: +IGNORE_WANT("non-deterministic")
676
+ >>> m = nn.ZeroPad1d(2)
677
+ >>> input = torch.randn(1, 2, 4)
678
+ >>> input
679
+ tensor([[[-1.0491, -0.7152, -0.0749, 0.8530],
680
+ [-1.3287, 1.8966, 0.1466, -0.2771]]])
681
+ >>> m(input)
682
+ tensor([[[ 0.0000, 0.0000, -1.0491, -0.7152, -0.0749, 0.8530, 0.0000,
683
+ 0.0000],
684
+ [ 0.0000, 0.0000, -1.3287, 1.8966, 0.1466, -0.2771, 0.0000,
685
+ 0.0000]]])
686
+ >>> m = nn.ZeroPad1d(2)
687
+ >>> input = torch.randn(1, 2, 3)
688
+ >>> input
689
+ tensor([[[ 1.6616, 1.4523, -1.1255],
690
+ [-3.6372, 0.1182, -1.8652]]])
691
+ >>> m(input)
692
+ tensor([[[ 0.0000, 0.0000, 1.6616, 1.4523, -1.1255, 0.0000, 0.0000],
693
+ [ 0.0000, 0.0000, -3.6372, 0.1182, -1.8652, 0.0000, 0.0000]]])
694
+ >>> # using different paddings for different sides
695
+ >>> m = nn.ZeroPad1d((3, 1))
696
+ >>> m(input)
697
+ tensor([[[ 0.0000, 0.0000, 0.0000, 1.6616, 1.4523, -1.1255, 0.0000],
698
+ [ 0.0000, 0.0000, 0.0000, -3.6372, 0.1182, -1.8652, 0.0000]]])
699
+ """
700
+
701
+ padding: Tuple[int, int]
702
+
703
+ def __init__(self, padding: _size_2_t) -> None:
704
+ super().__init__(padding, 0.)
705
+
706
+ def extra_repr(self) -> str:
707
+ return f'{self.padding}'
708
+
709
+ class ZeroPad2d(ConstantPad2d):
710
+ r"""Pads the input tensor boundaries with zero.
711
+
712
+ For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
713
+
714
+ Args:
715
+ padding (int, tuple): the size of the padding. If is `int`, uses the same
716
+ padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,
717
+ :math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)
718
+
719
+ Shape:
720
+ - Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
721
+ - Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where
722
+
723
+ :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
724
+
725
+ :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
726
+
727
+ Examples::
728
+
729
+ >>> # xdoctest: +IGNORE_WANT("non-deterministic")
730
+ >>> m = nn.ZeroPad2d(2)
731
+ >>> input = torch.randn(1, 1, 3, 3)
732
+ >>> input
733
+ tensor([[[[-0.1678, -0.4418, 1.9466],
734
+ [ 0.9604, -0.4219, -0.5241],
735
+ [-0.9162, -0.5436, -0.6446]]]])
736
+ >>> m(input)
737
+ tensor([[[[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
738
+ [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
739
+ [ 0.0000, 0.0000, -0.1678, -0.4418, 1.9466, 0.0000, 0.0000],
740
+ [ 0.0000, 0.0000, 0.9604, -0.4219, -0.5241, 0.0000, 0.0000],
741
+ [ 0.0000, 0.0000, -0.9162, -0.5436, -0.6446, 0.0000, 0.0000],
742
+ [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
743
+ [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]])
744
+ >>> # using different paddings for different sides
745
+ >>> m = nn.ZeroPad2d((1, 1, 2, 0))
746
+ >>> m(input)
747
+ tensor([[[[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
748
+ [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
749
+ [ 0.0000, -0.1678, -0.4418, 1.9466, 0.0000],
750
+ [ 0.0000, 0.9604, -0.4219, -0.5241, 0.0000],
751
+ [ 0.0000, -0.9162, -0.5436, -0.6446, 0.0000]]]])
752
+ """
753
+
754
+ padding: Tuple[int, int, int, int]
755
+
756
+ def __init__(self, padding: _size_4_t) -> None:
757
+ super().__init__(padding, 0.)
758
+
759
+ def extra_repr(self) -> str:
760
+ return f'{self.padding}'
761
+
762
+ class ZeroPad3d(ConstantPad3d):
763
+ r"""Pads the input tensor boundaries with zero.
764
+
765
+ For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
766
+
767
+ Args:
768
+ padding (int, tuple): the size of the padding. If is `int`, uses the same
769
+ padding in all boundaries. If a 6-`tuple`, uses
770
+ (:math:`\text{padding\_left}`, :math:`\text{padding\_right}`,
771
+ :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`,
772
+ :math:`\text{padding\_front}`, :math:`\text{padding\_back}`)
773
+
774
+ Shape:
775
+ - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
776
+ - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or
777
+ :math:`(C, D_{out}, H_{out}, W_{out})`, where
778
+
779
+ :math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}`
780
+
781
+ :math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
782
+
783
+ :math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
784
+
785
+ Examples::
786
+
787
+ >>> m = nn.ZeroPad3d(3)
788
+ >>> input = torch.randn(16, 3, 10, 20, 30)
789
+ >>> output = m(input)
790
+ >>> # using different paddings for different sides
791
+ >>> m = nn.ZeroPad3d((3, 3, 6, 6, 0, 1))
792
+ >>> output = m(input)
793
+ """
794
+
795
+ padding: Tuple[int, int, int, int, int, int]
796
+
797
+ def __init__(self, padding: _size_6_t) -> None:
798
+ super().__init__(padding, 0.)
799
+
800
+ def extra_repr(self) -> str:
801
+ return f'{self.padding}'
llmeval-env/lib/python3.10/site-packages/torch/nn/modules/pixelshuffle.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .module import Module
2
+ from .. import functional as F
3
+
4
+ from torch import Tensor
5
+
6
+ __all__ = ['PixelShuffle', 'PixelUnshuffle']
7
+
8
+ class PixelShuffle(Module):
9
+ r"""Rearrange elements in a tensor according to an upscaling factor.
10
+
11
+ Rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)`
12
+ to a tensor of shape :math:`(*, C, H \times r, W \times r)`, where r is an upscale factor.
13
+
14
+ This is useful for implementing efficient sub-pixel convolution
15
+ with a stride of :math:`1/r`.
16
+
17
+ See the paper:
18
+ `Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network`_
19
+ by Shi et. al (2016) for more details.
20
+
21
+ Args:
22
+ upscale_factor (int): factor to increase spatial resolution by
23
+
24
+ Shape:
25
+ - Input: :math:`(*, C_{in}, H_{in}, W_{in})`, where * is zero or more batch dimensions
26
+ - Output: :math:`(*, C_{out}, H_{out}, W_{out})`, where
27
+
28
+ .. math::
29
+ C_{out} = C_{in} \div \text{upscale\_factor}^2
30
+
31
+ .. math::
32
+ H_{out} = H_{in} \times \text{upscale\_factor}
33
+
34
+ .. math::
35
+ W_{out} = W_{in} \times \text{upscale\_factor}
36
+
37
+ Examples::
38
+
39
+ >>> pixel_shuffle = nn.PixelShuffle(3)
40
+ >>> input = torch.randn(1, 9, 4, 4)
41
+ >>> output = pixel_shuffle(input)
42
+ >>> print(output.size())
43
+ torch.Size([1, 1, 12, 12])
44
+
45
+ .. _Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network:
46
+ https://arxiv.org/abs/1609.05158
47
+ """
48
+
49
+ __constants__ = ['upscale_factor']
50
+ upscale_factor: int
51
+
52
+ def __init__(self, upscale_factor: int) -> None:
53
+ super().__init__()
54
+ self.upscale_factor = upscale_factor
55
+
56
+ def forward(self, input: Tensor) -> Tensor:
57
+ return F.pixel_shuffle(input, self.upscale_factor)
58
+
59
+ def extra_repr(self) -> str:
60
+ return f'upscale_factor={self.upscale_factor}'
61
+
62
+
63
+ class PixelUnshuffle(Module):
64
+ r"""Reverse the PixelShuffle operation.
65
+
66
+ Reverses the :class:`~torch.nn.PixelShuffle` operation by rearranging elements
67
+ in a tensor of shape :math:`(*, C, H \times r, W \times r)` to a tensor of shape
68
+ :math:`(*, C \times r^2, H, W)`, where r is a downscale factor.
69
+
70
+ See the paper:
71
+ `Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network`_
72
+ by Shi et. al (2016) for more details.
73
+
74
+ Args:
75
+ downscale_factor (int): factor to decrease spatial resolution by
76
+
77
+ Shape:
78
+ - Input: :math:`(*, C_{in}, H_{in}, W_{in})`, where * is zero or more batch dimensions
79
+ - Output: :math:`(*, C_{out}, H_{out}, W_{out})`, where
80
+
81
+ .. math::
82
+ C_{out} = C_{in} \times \text{downscale\_factor}^2
83
+
84
+ .. math::
85
+ H_{out} = H_{in} \div \text{downscale\_factor}
86
+
87
+ .. math::
88
+ W_{out} = W_{in} \div \text{downscale\_factor}
89
+
90
+ Examples::
91
+
92
+ >>> pixel_unshuffle = nn.PixelUnshuffle(3)
93
+ >>> input = torch.randn(1, 1, 12, 12)
94
+ >>> output = pixel_unshuffle(input)
95
+ >>> print(output.size())
96
+ torch.Size([1, 9, 4, 4])
97
+
98
+ .. _Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network:
99
+ https://arxiv.org/abs/1609.05158
100
+ """
101
+
102
+ __constants__ = ['downscale_factor']
103
+ downscale_factor: int
104
+
105
+ def __init__(self, downscale_factor: int) -> None:
106
+ super().__init__()
107
+ self.downscale_factor = downscale_factor
108
+
109
+ def forward(self, input: Tensor) -> Tensor:
110
+ return F.pixel_unshuffle(input, self.downscale_factor)
111
+
112
+ def extra_repr(self) -> str:
113
+ return f'downscale_factor={self.downscale_factor}'
llmeval-env/lib/python3.10/site-packages/torch/nn/modules/transformer.py ADDED
@@ -0,0 +1,975 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ from typing import Optional, Any, Union, Callable
3
+
4
+ import torch
5
+ import warnings
6
+ from torch import Tensor
7
+ from .. import functional as F
8
+ from .module import Module
9
+ from .activation import MultiheadAttention
10
+ from .container import ModuleList
11
+ from ..init import xavier_uniform_
12
+ from .dropout import Dropout
13
+ from .linear import Linear
14
+ from .normalization import LayerNorm
15
+
16
+ __all__ = ['Transformer', 'TransformerEncoder', 'TransformerDecoder', 'TransformerEncoderLayer', 'TransformerDecoderLayer']
17
+
18
+ def _generate_square_subsequent_mask(
19
+ sz: int,
20
+ device: Optional[torch.device] = None,
21
+ dtype: Optional[torch.dtype] = None,
22
+ ) -> Tensor:
23
+ r"""Generate a square causal mask for the sequence.
24
+
25
+ The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0).
26
+ """
27
+ if device is None:
28
+ device = torch.device('cpu')
29
+ if dtype is None:
30
+ dtype = torch.float32
31
+ return torch.triu(
32
+ torch.full((sz, sz), float('-inf'), dtype=dtype, device=device),
33
+ diagonal=1,
34
+ )
35
+
36
+
37
+ def _get_seq_len(
38
+ src: Tensor,
39
+ batch_first: bool
40
+ ) -> Optional[int]:
41
+
42
+ if src.is_nested:
43
+ return None
44
+ else:
45
+ src_size = src.size()
46
+ if len(src_size) == 2:
47
+ # unbatched: S, E
48
+ return src_size[0]
49
+ else:
50
+ # batched: B, S, E if batch_first else S, B, E
51
+ seq_len_pos = 1 if batch_first else 0
52
+ return src_size[seq_len_pos]
53
+
54
+
55
+ class Transformer(Module):
56
+ r"""A transformer model.
57
+
58
+ User is able to modify the attributes as needed. The architecture
59
+ is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer,
60
+ Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
61
+ Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
62
+ Processing Systems, pages 6000-6010.
63
+
64
+ Args:
65
+ d_model: the number of expected features in the encoder/decoder inputs (default=512).
66
+ nhead: the number of heads in the multiheadattention models (default=8).
67
+ num_encoder_layers: the number of sub-encoder-layers in the encoder (default=6).
68
+ num_decoder_layers: the number of sub-decoder-layers in the decoder (default=6).
69
+ dim_feedforward: the dimension of the feedforward network model (default=2048).
70
+ dropout: the dropout value (default=0.1).
71
+ activation: the activation function of encoder/decoder intermediate layer, can be a string
72
+ ("relu" or "gelu") or a unary callable. Default: relu
73
+ custom_encoder: custom encoder (default=None).
74
+ custom_decoder: custom decoder (default=None).
75
+ layer_norm_eps: the eps value in layer normalization components (default=1e-5).
76
+ batch_first: If ``True``, then the input and output tensors are provided
77
+ as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
78
+ norm_first: if ``True``, encoder and decoder layers will perform LayerNorms before
79
+ other attention and feedforward operations, otherwise after. Default: ``False`` (after).
80
+ bias: If set to ``False``, ``Linear`` and ``LayerNorm`` layers will not learn an additive
81
+ bias. Default: ``True``.
82
+
83
+ Examples::
84
+ >>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12)
85
+ >>> src = torch.rand((10, 32, 512))
86
+ >>> tgt = torch.rand((20, 32, 512))
87
+ >>> out = transformer_model(src, tgt)
88
+
89
+ Note: A full example to apply nn.Transformer module for the word language model is available in
90
+ https://github.com/pytorch/examples/tree/master/word_language_model
91
+ """
92
+
93
+ def __init__(self, d_model: int = 512, nhead: int = 8, num_encoder_layers: int = 6,
94
+ num_decoder_layers: int = 6, dim_feedforward: int = 2048, dropout: float = 0.1,
95
+ activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
96
+ custom_encoder: Optional[Any] = None, custom_decoder: Optional[Any] = None,
97
+ layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False,
98
+ bias: bool = True, device=None, dtype=None) -> None:
99
+ factory_kwargs = {'device': device, 'dtype': dtype}
100
+ super().__init__()
101
+ torch._C._log_api_usage_once(f"torch.nn.modules.{self.__class__.__name__}")
102
+
103
+ if custom_encoder is not None:
104
+ self.encoder = custom_encoder
105
+ else:
106
+ encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout,
107
+ activation, layer_norm_eps, batch_first, norm_first,
108
+ bias, **factory_kwargs)
109
+ encoder_norm = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
110
+ self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
111
+
112
+ if custom_decoder is not None:
113
+ self.decoder = custom_decoder
114
+ else:
115
+ decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout,
116
+ activation, layer_norm_eps, batch_first, norm_first,
117
+ bias, **factory_kwargs)
118
+ decoder_norm = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
119
+ self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm)
120
+
121
+ self._reset_parameters()
122
+
123
+ self.d_model = d_model
124
+ self.nhead = nhead
125
+
126
+ self.batch_first = batch_first
127
+
128
+ def forward(self, src: Tensor, tgt: Tensor, src_mask: Optional[Tensor] = None, tgt_mask: Optional[Tensor] = None,
129
+ memory_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None,
130
+ tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None,
131
+ src_is_causal: Optional[bool] = None, tgt_is_causal: Optional[bool] = None,
132
+ memory_is_causal: bool = False) -> Tensor:
133
+ r"""Take in and process masked source/target sequences.
134
+
135
+ .. note::
136
+
137
+ If a boolean tensor is provided for any of the [src/tgt/memory]_mask arguments, positions with a ``True`` value are
138
+ not allowed to participate in the attention,
139
+ which is the opposite of the definition for :attr:`attn_mask`
140
+ in :func:`torch.nn.functional.scaled_dot_product_attention`.
141
+
142
+ Args:
143
+ src: the sequence to the encoder (required).
144
+ tgt: the sequence to the decoder (required).
145
+ src_mask: the additive mask for the src sequence (optional).
146
+ tgt_mask: the additive mask for the tgt sequence (optional).
147
+ memory_mask: the additive mask for the encoder output (optional).
148
+ src_key_padding_mask: the Tensor mask for src keys per batch (optional).
149
+ tgt_key_padding_mask: the Tensor mask for tgt keys per batch (optional).
150
+ memory_key_padding_mask: the Tensor mask for memory keys per batch (optional).
151
+ src_is_causal: If specified, applies a causal mask as ``src_mask``.
152
+ Default: ``None``; try to detect a causal mask.
153
+ Warning:
154
+ ``src_is_causal`` provides a hint that ``src_mask`` is
155
+ the causal mask. Providing incorrect hints can result in
156
+ incorrect execution, including forward and backward
157
+ compatibility.
158
+ tgt_is_causal: If specified, applies a causal mask as ``tgt_mask``.
159
+ Default: ``None``; try to detect a causal mask.
160
+ Warning:
161
+ ``tgt_is_causal`` provides a hint that ``tgt_mask`` is
162
+ the causal mask. Providing incorrect hints can result in
163
+ incorrect execution, including forward and backward
164
+ compatibility.
165
+ memory_is_causal: If specified, applies a causal mask as
166
+ ``memory_mask``.
167
+ Default: ``False``.
168
+ Warning:
169
+ ``memory_is_causal`` provides a hint that
170
+ ``memory_mask`` is the causal mask. Providing incorrect
171
+ hints can result in incorrect execution, including
172
+ forward and backward compatibility.
173
+
174
+ Shape:
175
+ - src: :math:`(S, E)` for unbatched input, :math:`(S, N, E)` if `batch_first=False` or
176
+ `(N, S, E)` if `batch_first=True`.
177
+ - tgt: :math:`(T, E)` for unbatched input, :math:`(T, N, E)` if `batch_first=False` or
178
+ `(N, T, E)` if `batch_first=True`.
179
+ - src_mask: :math:`(S, S)` or :math:`(N\cdot\text{num\_heads}, S, S)`.
180
+ - tgt_mask: :math:`(T, T)` or :math:`(N\cdot\text{num\_heads}, T, T)`.
181
+ - memory_mask: :math:`(T, S)`.
182
+ - src_key_padding_mask: :math:`(S)` for unbatched input otherwise :math:`(N, S)`.
183
+ - tgt_key_padding_mask: :math:`(T)` for unbatched input otherwise :math:`(N, T)`.
184
+ - memory_key_padding_mask: :math:`(S)` for unbatched input otherwise :math:`(N, S)`.
185
+
186
+ Note: [src/tgt/memory]_mask ensures that position :math:`i` is allowed to attend the unmasked
187
+ positions. If a BoolTensor is provided, positions with ``True``
188
+ are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
189
+ is provided, it will be added to the attention weight.
190
+ [src/tgt/memory]_key_padding_mask provides specified elements in the key to be ignored by
191
+ the attention. If a BoolTensor is provided, the positions with the
192
+ value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
193
+
194
+ - output: :math:`(T, E)` for unbatched input, :math:`(T, N, E)` if `batch_first=False` or
195
+ `(N, T, E)` if `batch_first=True`.
196
+
197
+ Note: Due to the multi-head attention architecture in the transformer model,
198
+ the output sequence length of a transformer is same as the input sequence
199
+ (i.e. target) length of the decoder.
200
+
201
+ where :math:`S` is the source sequence length, :math:`T` is the target sequence length, :math:`N` is the
202
+ batch size, :math:`E` is the feature number
203
+
204
+ Examples:
205
+ >>> # xdoctest: +SKIP
206
+ >>> output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask)
207
+ """
208
+ is_batched = src.dim() == 3
209
+ if not self.batch_first and src.size(1) != tgt.size(1) and is_batched:
210
+ raise RuntimeError("the batch number of src and tgt must be equal")
211
+ elif self.batch_first and src.size(0) != tgt.size(0) and is_batched:
212
+ raise RuntimeError("the batch number of src and tgt must be equal")
213
+
214
+ if src.size(-1) != self.d_model or tgt.size(-1) != self.d_model:
215
+ raise RuntimeError("the feature number of src and tgt must be equal to d_model")
216
+
217
+ memory = self.encoder(src, mask=src_mask, src_key_padding_mask=src_key_padding_mask,
218
+ is_causal=src_is_causal)
219
+ output = self.decoder(tgt, memory, tgt_mask=tgt_mask, memory_mask=memory_mask,
220
+ tgt_key_padding_mask=tgt_key_padding_mask,
221
+ memory_key_padding_mask=memory_key_padding_mask,
222
+ tgt_is_causal=tgt_is_causal, memory_is_causal=memory_is_causal)
223
+ return output
224
+
225
+ @staticmethod
226
+ def generate_square_subsequent_mask(
227
+ sz: int,
228
+ device: Optional[torch.device] = None,
229
+ dtype: Optional[torch.dtype] = None,
230
+ ) -> Tensor:
231
+ r"""Generate a square causal mask for the sequence.
232
+
233
+ The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0).
234
+ """
235
+ return _generate_square_subsequent_mask(sz, dtype=dtype, device=device)
236
+
237
+ def _reset_parameters(self):
238
+ r"""Initiate parameters in the transformer model."""
239
+ for p in self.parameters():
240
+ if p.dim() > 1:
241
+ xavier_uniform_(p)
242
+
243
+
244
+ class TransformerEncoder(Module):
245
+ r"""TransformerEncoder is a stack of N encoder layers.
246
+
247
+ Users can build the BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
248
+
249
+ Args:
250
+ encoder_layer: an instance of the TransformerEncoderLayer() class (required).
251
+ num_layers: the number of sub-encoder-layers in the encoder (required).
252
+ norm: the layer normalization component (optional).
253
+ enable_nested_tensor: if True, input will automatically convert to nested tensor
254
+ (and convert back on output). This will improve the overall performance of
255
+ TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
256
+
257
+ Examples::
258
+ >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
259
+ >>> transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
260
+ >>> src = torch.rand(10, 32, 512)
261
+ >>> out = transformer_encoder(src)
262
+ """
263
+
264
+ __constants__ = ['norm']
265
+
266
+ def __init__(
267
+ self,
268
+ encoder_layer: "TransformerEncoderLayer",
269
+ num_layers: int,
270
+ norm: Optional[Module] = None,
271
+ enable_nested_tensor: bool = True,
272
+ mask_check: bool = True
273
+ ) -> None:
274
+ super().__init__()
275
+ torch._C._log_api_usage_once(f"torch.nn.modules.{self.__class__.__name__}")
276
+ self.layers = _get_clones(encoder_layer, num_layers)
277
+ self.num_layers = num_layers
278
+ self.norm = norm
279
+ # this attribute saves the value providedat object construction
280
+ self.enable_nested_tensor = enable_nested_tensor
281
+ # this attribute controls whether nested tensors are used
282
+ self.use_nested_tensor = enable_nested_tensor
283
+ self.mask_check = mask_check
284
+
285
+ enc_layer = "encoder_layer"
286
+ why_not_sparsity_fast_path = ''
287
+ if not isinstance(encoder_layer, torch.nn.TransformerEncoderLayer):
288
+ why_not_sparsity_fast_path = f"{enc_layer} was not TransformerEncoderLayer"
289
+ elif encoder_layer.norm_first :
290
+ why_not_sparsity_fast_path = f"{enc_layer}.norm_first was True"
291
+ elif not encoder_layer.self_attn.batch_first:
292
+ why_not_sparsity_fast_path = (f"{enc_layer}.self_attn.batch_first was not True" +
293
+ "(use batch_first for better inference performance)")
294
+ elif not encoder_layer.self_attn._qkv_same_embed_dim:
295
+ why_not_sparsity_fast_path = f"{enc_layer}.self_attn._qkv_same_embed_dim was not True"
296
+ elif encoder_layer.self_attn.in_proj_bias is None:
297
+ why_not_sparsity_fast_path = f"{enc_layer}.self_attn was passed bias=False"
298
+ elif not encoder_layer.activation_relu_or_gelu:
299
+ why_not_sparsity_fast_path = f"{enc_layer}.activation_relu_or_gelu was not True"
300
+ elif not (encoder_layer.norm1.eps == encoder_layer.norm2.eps) :
301
+ why_not_sparsity_fast_path = f"{enc_layer}.norm1.eps was not equal to {enc_layer}.norm2.eps"
302
+ elif encoder_layer.self_attn.num_heads % 2 == 1:
303
+ why_not_sparsity_fast_path = f"{enc_layer}.self_attn.num_heads is odd"
304
+
305
+ if enable_nested_tensor and why_not_sparsity_fast_path:
306
+ warnings.warn(f"enable_nested_tensor is True, but self.use_nested_tensor is False because {why_not_sparsity_fast_path}")
307
+ self.use_nested_tensor = False
308
+
309
+
310
+ def forward(
311
+ self,
312
+ src: Tensor,
313
+ mask: Optional[Tensor] = None,
314
+ src_key_padding_mask: Optional[Tensor] = None,
315
+ is_causal: Optional[bool] = None) -> Tensor:
316
+ r"""Pass the input through the encoder layers in turn.
317
+
318
+ Args:
319
+ src: the sequence to the encoder (required).
320
+ mask: the mask for the src sequence (optional).
321
+ src_key_padding_mask: the mask for the src keys per batch (optional).
322
+ is_causal: If specified, applies a causal mask as ``mask``.
323
+ Default: ``None``; try to detect a causal mask.
324
+ Warning:
325
+ ``is_causal`` provides a hint that ``mask`` is the
326
+ causal mask. Providing incorrect hints can result in
327
+ incorrect execution, including forward and backward
328
+ compatibility.
329
+
330
+ Shape:
331
+ see the docs in :class:`~torch.nn.Transformer`.
332
+ """
333
+ src_key_padding_mask = F._canonical_mask(
334
+ mask=src_key_padding_mask,
335
+ mask_name="src_key_padding_mask",
336
+ other_type=F._none_or_dtype(mask),
337
+ other_name="mask",
338
+ target_type=src.dtype
339
+ )
340
+
341
+ mask = F._canonical_mask(
342
+ mask=mask,
343
+ mask_name="mask",
344
+ other_type=None,
345
+ other_name="",
346
+ target_type=src.dtype,
347
+ check_other=False,
348
+ )
349
+
350
+ output = src
351
+ convert_to_nested = False
352
+ first_layer = self.layers[0]
353
+ src_key_padding_mask_for_layers = src_key_padding_mask
354
+ why_not_sparsity_fast_path = ''
355
+ str_first_layer = "self.layers[0]"
356
+ batch_first = first_layer.self_attn.batch_first
357
+ is_fastpath_enabled = torch.backends.mha.get_fastpath_enabled()
358
+
359
+ if not is_fastpath_enabled:
360
+ why_not_sparsity_fast_path = "torch.backends.mha.get_fastpath_enabled() was not True"
361
+ elif not hasattr(self, "use_nested_tensor"):
362
+ why_not_sparsity_fast_path = "use_nested_tensor attribute not present"
363
+ elif not self.use_nested_tensor:
364
+ why_not_sparsity_fast_path = "self.use_nested_tensor (set in init) was not True"
365
+ elif first_layer.training:
366
+ why_not_sparsity_fast_path = f"{str_first_layer} was in training mode"
367
+ elif not src.dim() == 3:
368
+ why_not_sparsity_fast_path = f"input not batched; expected src.dim() of 3 but got {src.dim()}"
369
+ elif src_key_padding_mask is None:
370
+ why_not_sparsity_fast_path = "src_key_padding_mask was None"
371
+ elif (((not hasattr(self, "mask_check")) or self.mask_check)
372
+ and not torch._nested_tensor_from_mask_left_aligned(src, src_key_padding_mask.logical_not())):
373
+ why_not_sparsity_fast_path = "mask_check enabled, and src and src_key_padding_mask was not left aligned"
374
+ elif output.is_nested:
375
+ why_not_sparsity_fast_path = "NestedTensor input is not supported"
376
+ elif mask is not None:
377
+ why_not_sparsity_fast_path = "src_key_padding_mask and mask were both supplied"
378
+ elif torch.is_autocast_enabled():
379
+ why_not_sparsity_fast_path = "autocast is enabled"
380
+
381
+ if not why_not_sparsity_fast_path:
382
+ tensor_args = (
383
+ src,
384
+ first_layer.self_attn.in_proj_weight,
385
+ first_layer.self_attn.in_proj_bias,
386
+ first_layer.self_attn.out_proj.weight,
387
+ first_layer.self_attn.out_proj.bias,
388
+ first_layer.norm1.weight,
389
+ first_layer.norm1.bias,
390
+ first_layer.norm2.weight,
391
+ first_layer.norm2.bias,
392
+ first_layer.linear1.weight,
393
+ first_layer.linear1.bias,
394
+ first_layer.linear2.weight,
395
+ first_layer.linear2.bias,
396
+ )
397
+ _supported_device_type = ["cpu", "cuda", torch.utils.backend_registration._privateuse1_backend_name]
398
+ if torch.overrides.has_torch_function(tensor_args):
399
+ why_not_sparsity_fast_path = "some Tensor argument has_torch_function"
400
+ elif src.device.type not in _supported_device_type:
401
+ why_not_sparsity_fast_path = f"src device is neither one of {_supported_device_type}"
402
+ elif torch.is_grad_enabled() and any(x.requires_grad for x in tensor_args):
403
+ why_not_sparsity_fast_path = ("grad is enabled and at least one of query or the "
404
+ "input/output projection weights or biases requires_grad")
405
+
406
+ if (not why_not_sparsity_fast_path) and (src_key_padding_mask is not None):
407
+ convert_to_nested = True
408
+ output = torch._nested_tensor_from_mask(output, src_key_padding_mask.logical_not(), mask_check=False)
409
+ src_key_padding_mask_for_layers = None
410
+
411
+ seq_len = _get_seq_len(src, batch_first)
412
+ is_causal = _detect_is_causal_mask(mask, is_causal, seq_len)
413
+
414
+ for mod in self.layers:
415
+ output = mod(output, src_mask=mask, is_causal=is_causal, src_key_padding_mask=src_key_padding_mask_for_layers)
416
+
417
+ if convert_to_nested:
418
+ output = output.to_padded_tensor(0., src.size())
419
+
420
+ if self.norm is not None:
421
+ output = self.norm(output)
422
+
423
+ return output
424
+
425
+
426
+ class TransformerDecoder(Module):
427
+ r"""TransformerDecoder is a stack of N decoder layers.
428
+
429
+ Args:
430
+ decoder_layer: an instance of the TransformerDecoderLayer() class (required).
431
+ num_layers: the number of sub-decoder-layers in the decoder (required).
432
+ norm: the layer normalization component (optional).
433
+
434
+ Examples::
435
+ >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
436
+ >>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6)
437
+ >>> memory = torch.rand(10, 32, 512)
438
+ >>> tgt = torch.rand(20, 32, 512)
439
+ >>> out = transformer_decoder(tgt, memory)
440
+ """
441
+
442
+ __constants__ = ['norm']
443
+
444
+ def __init__(
445
+ self,
446
+ decoder_layer: "TransformerDecoderLayer",
447
+ num_layers: int,
448
+ norm: Optional[Module] = None
449
+ ) -> None:
450
+ super().__init__()
451
+ torch._C._log_api_usage_once(f"torch.nn.modules.{self.__class__.__name__}")
452
+ self.layers = _get_clones(decoder_layer, num_layers)
453
+ self.num_layers = num_layers
454
+ self.norm = norm
455
+
456
+ def forward(self, tgt: Tensor, memory: Tensor, tgt_mask: Optional[Tensor] = None,
457
+ memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None,
458
+ memory_key_padding_mask: Optional[Tensor] = None, tgt_is_causal: Optional[bool] = None,
459
+ memory_is_causal: bool = False) -> Tensor:
460
+ r"""Pass the inputs (and mask) through the decoder layer in turn.
461
+
462
+ Args:
463
+ tgt: the sequence to the decoder (required).
464
+ memory: the sequence from the last layer of the encoder (required).
465
+ tgt_mask: the mask for the tgt sequence (optional).
466
+ memory_mask: the mask for the memory sequence (optional).
467
+ tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
468
+ memory_key_padding_mask: the mask for the memory keys per batch (optional).
469
+ tgt_is_causal: If specified, applies a causal mask as ``tgt mask``.
470
+ Default: ``None``; try to detect a causal mask.
471
+ Warning:
472
+ ``tgt_is_causal`` provides a hint that ``tgt_mask`` is
473
+ the causal mask. Providing incorrect hints can result in
474
+ incorrect execution, including forward and backward
475
+ compatibility.
476
+ memory_is_causal: If specified, applies a causal mask as
477
+ ``memory mask``.
478
+ Default: ``False``.
479
+ Warning:
480
+ ``memory_is_causal`` provides a hint that
481
+ ``memory_mask`` is the causal mask. Providing incorrect
482
+ hints can result in incorrect execution, including
483
+ forward and backward compatibility.
484
+
485
+ Shape:
486
+ see the docs in :class:`~torch.nn.Transformer`.
487
+ """
488
+ output = tgt
489
+
490
+ seq_len = _get_seq_len(tgt, self.layers[0].self_attn.batch_first)
491
+ tgt_is_causal = _detect_is_causal_mask(tgt_mask, tgt_is_causal, seq_len)
492
+
493
+ for mod in self.layers:
494
+ output = mod(output, memory, tgt_mask=tgt_mask,
495
+ memory_mask=memory_mask,
496
+ tgt_key_padding_mask=tgt_key_padding_mask,
497
+ memory_key_padding_mask=memory_key_padding_mask,
498
+ tgt_is_causal=tgt_is_causal,
499
+ memory_is_causal=memory_is_causal)
500
+
501
+ if self.norm is not None:
502
+ output = self.norm(output)
503
+
504
+ return output
505
+
506
+ class TransformerEncoderLayer(Module):
507
+ r"""TransformerEncoderLayer is made up of self-attn and feedforward network.
508
+
509
+ This standard encoder layer is based on the paper "Attention Is All You Need".
510
+ Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
511
+ Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
512
+ Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
513
+ in a different way during application.
514
+
515
+ TransformerEncoderLayer can handle either traditional torch.tensor inputs,
516
+ or Nested Tensor inputs. Derived classes are expected to similarly accept
517
+ both input formats. (Not all combinations of inputs are currently
518
+ supported by TransformerEncoderLayer while Nested Tensor is in prototype
519
+ state.)
520
+
521
+ If you are implementing a custom layer, you may derive it either from
522
+ the Module or TransformerEncoderLayer class. If your custom layer
523
+ supports both torch.Tensors and Nested Tensors inputs, make its
524
+ implementation a derived class of TransformerEncoderLayer. If your custom
525
+ Layer supports only torch.Tensor inputs, derive its implementation from
526
+ Module.
527
+
528
+ Args:
529
+ d_model: the number of expected features in the input (required).
530
+ nhead: the number of heads in the multiheadattention models (required).
531
+ dim_feedforward: the dimension of the feedforward network model (default=2048).
532
+ dropout: the dropout value (default=0.1).
533
+ activation: the activation function of the intermediate layer, can be a string
534
+ ("relu" or "gelu") or a unary callable. Default: relu
535
+ layer_norm_eps: the eps value in layer normalization components (default=1e-5).
536
+ batch_first: If ``True``, then the input and output tensors are provided
537
+ as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
538
+ norm_first: if ``True``, layer norm is done prior to attention and feedforward
539
+ operations, respectively. Otherwise it's done after. Default: ``False`` (after).
540
+ bias: If set to ``False``, ``Linear`` and ``LayerNorm`` layers will not learn an additive
541
+ bias. Default: ``True``.
542
+
543
+ Examples::
544
+ >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
545
+ >>> src = torch.rand(10, 32, 512)
546
+ >>> out = encoder_layer(src)
547
+
548
+ Alternatively, when ``batch_first`` is ``True``:
549
+ >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True)
550
+ >>> src = torch.rand(32, 10, 512)
551
+ >>> out = encoder_layer(src)
552
+
553
+ Fast path:
554
+ forward() will use a special optimized implementation described in
555
+ `FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`_ if all of the following
556
+ conditions are met:
557
+
558
+ - Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor
559
+ argument ``requires_grad``
560
+ - training is disabled (using ``.eval()``)
561
+ - batch_first is ``True`` and the input is batched (i.e., ``src.dim() == 3``)
562
+ - activation is one of: ``"relu"``, ``"gelu"``, ``torch.functional.relu``, or ``torch.functional.gelu``
563
+ - at most one of ``src_mask`` and ``src_key_padding_mask`` is passed
564
+ - if src is a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_, neither ``src_mask``
565
+ nor ``src_key_padding_mask`` is passed
566
+ - the two ``LayerNorm`` instances have a consistent ``eps`` value (this will naturally be the case
567
+ unless the caller has manually modified one without modifying the other)
568
+
569
+ If the optimized implementation is in use, a
570
+ `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be
571
+ passed for ``src`` to represent padding more efficiently than using a padding
572
+ mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ will be
573
+ returned, and an additional speedup proportional to the fraction of the input that
574
+ is padding can be expected.
575
+
576
+ .. _`FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness`:
577
+ https://arxiv.org/abs/2205.14135
578
+
579
+ """
580
+
581
+ __constants__ = ['norm_first']
582
+
583
+ def __init__(self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1,
584
+ activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
585
+ layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False,
586
+ bias: bool = True, device=None, dtype=None) -> None:
587
+ factory_kwargs = {'device': device, 'dtype': dtype}
588
+ super().__init__()
589
+ self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout,
590
+ bias=bias, batch_first=batch_first,
591
+ **factory_kwargs)
592
+ # Implementation of Feedforward model
593
+ self.linear1 = Linear(d_model, dim_feedforward, bias=bias, **factory_kwargs)
594
+ self.dropout = Dropout(dropout)
595
+ self.linear2 = Linear(dim_feedforward, d_model, bias=bias, **factory_kwargs)
596
+
597
+ self.norm_first = norm_first
598
+ self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
599
+ self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
600
+ self.dropout1 = Dropout(dropout)
601
+ self.dropout2 = Dropout(dropout)
602
+
603
+ # Legacy string support for activation function.
604
+ if isinstance(activation, str):
605
+ activation = _get_activation_fn(activation)
606
+
607
+ # We can't test self.activation in forward() in TorchScript,
608
+ # so stash some information about it instead.
609
+ if activation is F.relu or isinstance(activation, torch.nn.ReLU):
610
+ self.activation_relu_or_gelu = 1
611
+ elif activation is F.gelu or isinstance(activation, torch.nn.GELU):
612
+ self.activation_relu_or_gelu = 2
613
+ else:
614
+ self.activation_relu_or_gelu = 0
615
+ self.activation = activation
616
+
617
+ def __setstate__(self, state):
618
+ super().__setstate__(state)
619
+ if not hasattr(self, 'activation'):
620
+ self.activation = F.relu
621
+
622
+
623
+ def forward(
624
+ self,
625
+ src: Tensor,
626
+ src_mask: Optional[Tensor] = None,
627
+ src_key_padding_mask: Optional[Tensor] = None,
628
+ is_causal: bool = False) -> Tensor:
629
+ r"""Pass the input through the encoder layer.
630
+
631
+ Args:
632
+ src: the sequence to the encoder layer (required).
633
+ src_mask: the mask for the src sequence (optional).
634
+ src_key_padding_mask: the mask for the src keys per batch (optional).
635
+ is_causal: If specified, applies a causal mask as ``src mask``.
636
+ Default: ``False``.
637
+ Warning:
638
+ ``is_causal`` provides a hint that ``src_mask`` is the
639
+ causal mask. Providing incorrect hints can result in
640
+ incorrect execution, including forward and backward
641
+ compatibility.
642
+
643
+ Shape:
644
+ see the docs in :class:`~torch.nn.Transformer`.
645
+ """
646
+ src_key_padding_mask = F._canonical_mask(
647
+ mask=src_key_padding_mask,
648
+ mask_name="src_key_padding_mask",
649
+ other_type=F._none_or_dtype(src_mask),
650
+ other_name="src_mask",
651
+ target_type=src.dtype
652
+ )
653
+
654
+ src_mask = F._canonical_mask(
655
+ mask=src_mask,
656
+ mask_name="src_mask",
657
+ other_type=None,
658
+ other_name="",
659
+ target_type=src.dtype,
660
+ check_other=False,
661
+ )
662
+
663
+ is_fastpath_enabled = torch.backends.mha.get_fastpath_enabled()
664
+
665
+ # see Fig. 1 of https://arxiv.org/pdf/2002.04745v1.pdf
666
+ why_not_sparsity_fast_path = ''
667
+ if not is_fastpath_enabled:
668
+ why_not_sparsity_fast_path = "torch.backends.mha.get_fastpath_enabled() was not True"
669
+ elif not src.dim() == 3:
670
+ why_not_sparsity_fast_path = f"input not batched; expected src.dim() of 3 but got {src.dim()}"
671
+ elif self.training:
672
+ why_not_sparsity_fast_path = "training is enabled"
673
+ elif not self.self_attn.batch_first:
674
+ why_not_sparsity_fast_path = "self_attn.batch_first was not True"
675
+ elif self.self_attn.in_proj_bias is None:
676
+ why_not_sparsity_fast_path = "self_attn was passed bias=False"
677
+ elif not self.self_attn._qkv_same_embed_dim:
678
+ why_not_sparsity_fast_path = "self_attn._qkv_same_embed_dim was not True"
679
+ elif not self.activation_relu_or_gelu:
680
+ why_not_sparsity_fast_path = "activation_relu_or_gelu was not True"
681
+ elif not (self.norm1.eps == self.norm2.eps):
682
+ why_not_sparsity_fast_path = "norm1.eps is not equal to norm2.eps"
683
+ elif src.is_nested and (src_key_padding_mask is not None or src_mask is not None):
684
+ why_not_sparsity_fast_path = "neither src_key_padding_mask nor src_mask are not supported with NestedTensor input"
685
+ elif self.self_attn.num_heads % 2 == 1:
686
+ why_not_sparsity_fast_path = "num_head is odd"
687
+ elif torch.is_autocast_enabled():
688
+ why_not_sparsity_fast_path = "autocast is enabled"
689
+ if not why_not_sparsity_fast_path:
690
+ tensor_args = (
691
+ src,
692
+ self.self_attn.in_proj_weight,
693
+ self.self_attn.in_proj_bias,
694
+ self.self_attn.out_proj.weight,
695
+ self.self_attn.out_proj.bias,
696
+ self.norm1.weight,
697
+ self.norm1.bias,
698
+ self.norm2.weight,
699
+ self.norm2.bias,
700
+ self.linear1.weight,
701
+ self.linear1.bias,
702
+ self.linear2.weight,
703
+ self.linear2.bias,
704
+ )
705
+
706
+ # We have to use list comprehensions below because TorchScript does not support
707
+ # generator expressions.
708
+ _supported_device_type = ["cpu", "cuda", torch.utils.backend_registration._privateuse1_backend_name]
709
+ if torch.overrides.has_torch_function(tensor_args):
710
+ why_not_sparsity_fast_path = "some Tensor argument has_torch_function"
711
+ elif not all((x.device.type in _supported_device_type) for x in tensor_args):
712
+ why_not_sparsity_fast_path = ("some Tensor argument's device is neither one of "
713
+ f"{_supported_device_type}")
714
+ elif torch.is_grad_enabled() and any(x.requires_grad for x in tensor_args):
715
+ why_not_sparsity_fast_path = ("grad is enabled and at least one of query or the "
716
+ "input/output projection weights or biases requires_grad")
717
+
718
+ if not why_not_sparsity_fast_path:
719
+ merged_mask, mask_type = self.self_attn.merge_masks(src_mask, src_key_padding_mask, src)
720
+ return torch._transformer_encoder_layer_fwd(
721
+ src,
722
+ self.self_attn.embed_dim,
723
+ self.self_attn.num_heads,
724
+ self.self_attn.in_proj_weight,
725
+ self.self_attn.in_proj_bias,
726
+ self.self_attn.out_proj.weight,
727
+ self.self_attn.out_proj.bias,
728
+ self.activation_relu_or_gelu == 2,
729
+ self.norm_first,
730
+ self.norm1.eps,
731
+ self.norm1.weight,
732
+ self.norm1.bias,
733
+ self.norm2.weight,
734
+ self.norm2.bias,
735
+ self.linear1.weight,
736
+ self.linear1.bias,
737
+ self.linear2.weight,
738
+ self.linear2.bias,
739
+ merged_mask,
740
+ mask_type,
741
+ )
742
+
743
+
744
+ x = src
745
+ if self.norm_first:
746
+ x = x + self._sa_block(self.norm1(x), src_mask, src_key_padding_mask, is_causal=is_causal)
747
+ x = x + self._ff_block(self.norm2(x))
748
+ else:
749
+ x = self.norm1(x + self._sa_block(x, src_mask, src_key_padding_mask, is_causal=is_causal))
750
+ x = self.norm2(x + self._ff_block(x))
751
+
752
+ return x
753
+
754
+ # self-attention block
755
+ def _sa_block(self, x: Tensor,
756
+ attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], is_causal: bool = False) -> Tensor:
757
+ x = self.self_attn(x, x, x,
758
+ attn_mask=attn_mask,
759
+ key_padding_mask=key_padding_mask,
760
+ need_weights=False, is_causal=is_causal)[0]
761
+ return self.dropout1(x)
762
+
763
+ # feed forward block
764
+ def _ff_block(self, x: Tensor) -> Tensor:
765
+ x = self.linear2(self.dropout(self.activation(self.linear1(x))))
766
+ return self.dropout2(x)
767
+
768
+
769
+ class TransformerDecoderLayer(Module):
770
+ r"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network.
771
+
772
+ This standard decoder layer is based on the paper "Attention Is All You Need".
773
+ Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
774
+ Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
775
+ Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
776
+ in a different way during application.
777
+
778
+ Args:
779
+ d_model: the number of expected features in the input (required).
780
+ nhead: the number of heads in the multiheadattention models (required).
781
+ dim_feedforward: the dimension of the feedforward network model (default=2048).
782
+ dropout: the dropout value (default=0.1).
783
+ activation: the activation function of the intermediate layer, can be a string
784
+ ("relu" or "gelu") or a unary callable. Default: relu
785
+ layer_norm_eps: the eps value in layer normalization components (default=1e-5).
786
+ batch_first: If ``True``, then the input and output tensors are provided
787
+ as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
788
+ norm_first: if ``True``, layer norm is done prior to self attention, multihead
789
+ attention and feedforward operations, respectively. Otherwise it's done after.
790
+ Default: ``False`` (after).
791
+ bias: If set to ``False``, ``Linear`` and ``LayerNorm`` layers will not learn an additive
792
+ bias. Default: ``True``.
793
+
794
+ Examples::
795
+ >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
796
+ >>> memory = torch.rand(10, 32, 512)
797
+ >>> tgt = torch.rand(20, 32, 512)
798
+ >>> out = decoder_layer(tgt, memory)
799
+
800
+ Alternatively, when ``batch_first`` is ``True``:
801
+ >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8, batch_first=True)
802
+ >>> memory = torch.rand(32, 10, 512)
803
+ >>> tgt = torch.rand(32, 20, 512)
804
+ >>> out = decoder_layer(tgt, memory)
805
+ """
806
+
807
+ __constants__ = ['norm_first']
808
+
809
+ def __init__(self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1,
810
+ activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
811
+ layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False,
812
+ bias: bool = True, device=None, dtype=None) -> None:
813
+ factory_kwargs = {'device': device, 'dtype': dtype}
814
+ super().__init__()
815
+ self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first,
816
+ bias=bias, **factory_kwargs)
817
+ self.multihead_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first,
818
+ bias=bias, **factory_kwargs)
819
+ # Implementation of Feedforward model
820
+ self.linear1 = Linear(d_model, dim_feedforward, bias=bias, **factory_kwargs)
821
+ self.dropout = Dropout(dropout)
822
+ self.linear2 = Linear(dim_feedforward, d_model, bias=bias, **factory_kwargs)
823
+
824
+ self.norm_first = norm_first
825
+ self.norm1 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
826
+ self.norm2 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
827
+ self.norm3 = LayerNorm(d_model, eps=layer_norm_eps, bias=bias, **factory_kwargs)
828
+ self.dropout1 = Dropout(dropout)
829
+ self.dropout2 = Dropout(dropout)
830
+ self.dropout3 = Dropout(dropout)
831
+
832
+ # Legacy string support for activation function.
833
+ if isinstance(activation, str):
834
+ self.activation = _get_activation_fn(activation)
835
+ else:
836
+ self.activation = activation
837
+
838
+ def __setstate__(self, state):
839
+ if 'activation' not in state:
840
+ state['activation'] = F.relu
841
+ super().__setstate__(state)
842
+
843
+ def forward(
844
+ self,
845
+ tgt: Tensor,
846
+ memory: Tensor,
847
+ tgt_mask: Optional[Tensor] = None,
848
+ memory_mask: Optional[Tensor] = None,
849
+ tgt_key_padding_mask: Optional[Tensor] = None,
850
+ memory_key_padding_mask: Optional[Tensor] = None,
851
+ tgt_is_causal: bool = False,
852
+ memory_is_causal: bool = False,
853
+ ) -> Tensor:
854
+ r"""Pass the inputs (and mask) through the decoder layer.
855
+
856
+ Args:
857
+ tgt: the sequence to the decoder layer (required).
858
+ memory: the sequence from the last layer of the encoder (required).
859
+ tgt_mask: the mask for the tgt sequence (optional).
860
+ memory_mask: the mask for the memory sequence (optional).
861
+ tgt_key_padding_mask: the mask for the tgt keys per batch (optional).
862
+ memory_key_padding_mask: the mask for the memory keys per batch (optional).
863
+ tgt_is_causal: If specified, applies a causal mask as ``tgt mask``.
864
+ Default: ``False``.
865
+ Warning:
866
+ ``tgt_is_causal`` provides a hint that ``tgt_mask`` is
867
+ the causal mask. Providing incorrect hints can result in
868
+ incorrect execution, including forward and backward
869
+ compatibility.
870
+ memory_is_causal: If specified, applies a causal mask as
871
+ ``memory mask``.
872
+ Default: ``False``.
873
+ Warning:
874
+ ``memory_is_causal`` provides a hint that
875
+ ``memory_mask`` is the causal mask. Providing incorrect
876
+ hints can result in incorrect execution, including
877
+ forward and backward compatibility.
878
+
879
+ Shape:
880
+ see the docs in :class:`~torch.nn.Transformer`.
881
+ """
882
+ # see Fig. 1 of https://arxiv.org/pdf/2002.04745v1.pdf
883
+
884
+ x = tgt
885
+ if self.norm_first:
886
+ x = x + self._sa_block(self.norm1(x), tgt_mask, tgt_key_padding_mask, tgt_is_causal)
887
+ x = x + self._mha_block(self.norm2(x), memory, memory_mask, memory_key_padding_mask, memory_is_causal)
888
+ x = x + self._ff_block(self.norm3(x))
889
+ else:
890
+ x = self.norm1(x + self._sa_block(x, tgt_mask, tgt_key_padding_mask, tgt_is_causal))
891
+ x = self.norm2(x + self._mha_block(x, memory, memory_mask, memory_key_padding_mask, memory_is_causal))
892
+ x = self.norm3(x + self._ff_block(x))
893
+
894
+ return x
895
+
896
+ # self-attention block
897
+ def _sa_block(self, x: Tensor,
898
+ attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], is_causal: bool = False) -> Tensor:
899
+ x = self.self_attn(x, x, x,
900
+ attn_mask=attn_mask,
901
+ key_padding_mask=key_padding_mask,
902
+ is_causal=is_causal,
903
+ need_weights=False)[0]
904
+ return self.dropout1(x)
905
+
906
+ # multihead attention block
907
+ def _mha_block(self, x: Tensor, mem: Tensor,
908
+ attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], is_causal: bool = False) -> Tensor:
909
+ x = self.multihead_attn(x, mem, mem,
910
+ attn_mask=attn_mask,
911
+ key_padding_mask=key_padding_mask,
912
+ is_causal=is_causal,
913
+ need_weights=False)[0]
914
+ return self.dropout2(x)
915
+
916
+ # feed forward block
917
+ def _ff_block(self, x: Tensor) -> Tensor:
918
+ x = self.linear2(self.dropout(self.activation(self.linear1(x))))
919
+ return self.dropout3(x)
920
+
921
+
922
+ def _get_clones(module, N):
923
+ # FIXME: copy.deepcopy() is not defined on nn.module
924
+ return ModuleList([copy.deepcopy(module) for i in range(N)])
925
+
926
+
927
+ def _get_activation_fn(activation: str) -> Callable[[Tensor], Tensor]:
928
+ if activation == "relu":
929
+ return F.relu
930
+ elif activation == "gelu":
931
+ return F.gelu
932
+
933
+ raise RuntimeError(f"activation should be relu/gelu, not {activation}")
934
+
935
+
936
+ def _detect_is_causal_mask(
937
+ mask: Optional[Tensor],
938
+ is_causal: Optional[bool] = None,
939
+ size: Optional[int] = None,
940
+ ) -> bool:
941
+ """Return whether the given attention mask is causal.
942
+
943
+ Warning:
944
+ If ``is_causal`` is not ``None``, its value will be returned as is. If a
945
+ user supplies an incorrect ``is_causal`` hint,
946
+
947
+ ``is_causal=False`` when the mask is in fact a causal attention.mask
948
+ may lead to reduced performance relative to what would be achievable
949
+ with ``is_causal=True``;
950
+ ``is_causal=True`` when the mask is in fact not a causal attention.mask
951
+ may lead to incorrect and unpredictable execution - in some scenarios,
952
+ a causal mask may be applied based on the hint, in other execution
953
+ scenarios the specified mask may be used. The choice may not appear
954
+ to be deterministic, in that a number of factors like alignment,
955
+ hardware SKU, etc influence the decision whether to use a mask or
956
+ rely on the hint.
957
+ ``size`` if not None, check whether the mask is a causal mask of the provided size
958
+ Otherwise, checks for any causal mask.
959
+ """
960
+ # Prevent type refinement
961
+ make_causal = (is_causal is True)
962
+
963
+ if is_causal is None and mask is not None:
964
+ sz = size if size is not None else mask.size(-2)
965
+ causal_comparison = _generate_square_subsequent_mask(
966
+ sz, device=mask.device, dtype=mask.dtype)
967
+
968
+ # Do not use `torch.equal` so we handle batched masks by
969
+ # broadcasting the comparison.
970
+ if mask.size() == causal_comparison.size():
971
+ make_causal = bool((mask == causal_comparison).all())
972
+ else:
973
+ make_causal = False
974
+
975
+ return make_causal
llmeval-env/lib/python3.10/site-packages/torch/nn/modules/upsampling.py ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .module import Module
2
+ from .. import functional as F
3
+
4
+ from torch import Tensor
5
+ from typing import Optional
6
+ from ..common_types import _size_2_t, _ratio_2_t, _size_any_t, _ratio_any_t
7
+
8
+ __all__ = ['Upsample', 'UpsamplingNearest2d', 'UpsamplingBilinear2d']
9
+
10
+
11
+ class Upsample(Module):
12
+ r"""Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data.
13
+
14
+ The input data is assumed to be of the form
15
+ `minibatch x channels x [optional depth] x [optional height] x width`.
16
+ Hence, for spatial inputs, we expect a 4D Tensor and for volumetric inputs, we expect a 5D Tensor.
17
+
18
+ The algorithms available for upsampling are nearest neighbor and linear,
19
+ bilinear, bicubic and trilinear for 3D, 4D and 5D input Tensor,
20
+ respectively.
21
+
22
+ One can either give a :attr:`scale_factor` or the target output :attr:`size` to
23
+ calculate the output size. (You cannot give both, as it is ambiguous)
24
+
25
+ Args:
26
+ size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int], optional):
27
+ output spatial sizes
28
+ scale_factor (float or Tuple[float] or Tuple[float, float] or Tuple[float, float, float], optional):
29
+ multiplier for spatial size. Has to match input size if it is a tuple.
30
+ mode (str, optional): the upsampling algorithm: one of ``'nearest'``,
31
+ ``'linear'``, ``'bilinear'``, ``'bicubic'`` and ``'trilinear'``.
32
+ Default: ``'nearest'``
33
+ align_corners (bool, optional): if ``True``, the corner pixels of the input
34
+ and output tensors are aligned, and thus preserving the values at
35
+ those pixels. This only has effect when :attr:`mode` is
36
+ ``'linear'``, ``'bilinear'``, ``'bicubic'``, or ``'trilinear'``.
37
+ Default: ``False``
38
+ recompute_scale_factor (bool, optional): recompute the scale_factor for use in the
39
+ interpolation calculation. If `recompute_scale_factor` is ``True``, then
40
+ `scale_factor` must be passed in and `scale_factor` is used to compute the
41
+ output `size`. The computed output `size` will be used to infer new scales for
42
+ the interpolation. Note that when `scale_factor` is floating-point, it may differ
43
+ from the recomputed `scale_factor` due to rounding and precision issues.
44
+ If `recompute_scale_factor` is ``False``, then `size` or `scale_factor` will
45
+ be used directly for interpolation.
46
+
47
+ Shape:
48
+ - Input: :math:`(N, C, W_{in})`, :math:`(N, C, H_{in}, W_{in})` or :math:`(N, C, D_{in}, H_{in}, W_{in})`
49
+ - Output: :math:`(N, C, W_{out})`, :math:`(N, C, H_{out}, W_{out})`
50
+ or :math:`(N, C, D_{out}, H_{out}, W_{out})`, where
51
+
52
+ .. math::
53
+ D_{out} = \left\lfloor D_{in} \times \text{scale\_factor} \right\rfloor
54
+
55
+ .. math::
56
+ H_{out} = \left\lfloor H_{in} \times \text{scale\_factor} \right\rfloor
57
+
58
+ .. math::
59
+ W_{out} = \left\lfloor W_{in} \times \text{scale\_factor} \right\rfloor
60
+
61
+ .. warning::
62
+ With ``align_corners = True``, the linearly interpolating modes
63
+ (`linear`, `bilinear`, `bicubic`, and `trilinear`) don't proportionally
64
+ align the output and input pixels, and thus the output values can depend
65
+ on the input size. This was the default behavior for these modes up to
66
+ version 0.3.1. Since then, the default behavior is
67
+ ``align_corners = False``. See below for concrete examples on how this
68
+ affects the outputs.
69
+
70
+ .. note::
71
+ If you want downsampling/general resizing, you should use :func:`~nn.functional.interpolate`.
72
+
73
+ Examples::
74
+
75
+ >>> input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2)
76
+ >>> input
77
+ tensor([[[[1., 2.],
78
+ [3., 4.]]]])
79
+
80
+ >>> m = nn.Upsample(scale_factor=2, mode='nearest')
81
+ >>> m(input)
82
+ tensor([[[[1., 1., 2., 2.],
83
+ [1., 1., 2., 2.],
84
+ [3., 3., 4., 4.],
85
+ [3., 3., 4., 4.]]]])
86
+
87
+ >>> # xdoctest: +IGNORE_WANT("other tests seem to modify printing styles")
88
+ >>> m = nn.Upsample(scale_factor=2, mode='bilinear') # align_corners=False
89
+ >>> m(input)
90
+ tensor([[[[1.0000, 1.2500, 1.7500, 2.0000],
91
+ [1.5000, 1.7500, 2.2500, 2.5000],
92
+ [2.5000, 2.7500, 3.2500, 3.5000],
93
+ [3.0000, 3.2500, 3.7500, 4.0000]]]])
94
+
95
+ >>> m = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
96
+ >>> m(input)
97
+ tensor([[[[1.0000, 1.3333, 1.6667, 2.0000],
98
+ [1.6667, 2.0000, 2.3333, 2.6667],
99
+ [2.3333, 2.6667, 3.0000, 3.3333],
100
+ [3.0000, 3.3333, 3.6667, 4.0000]]]])
101
+
102
+ >>> # Try scaling the same data in a larger tensor
103
+ >>> input_3x3 = torch.zeros(3, 3).view(1, 1, 3, 3)
104
+ >>> input_3x3[:, :, :2, :2].copy_(input)
105
+ tensor([[[[1., 2.],
106
+ [3., 4.]]]])
107
+ >>> input_3x3
108
+ tensor([[[[1., 2., 0.],
109
+ [3., 4., 0.],
110
+ [0., 0., 0.]]]])
111
+
112
+ >>> # xdoctest: +IGNORE_WANT("seems to fail when other tests are run in the same session")
113
+ >>> m = nn.Upsample(scale_factor=2, mode='bilinear') # align_corners=False
114
+ >>> # Notice that values in top left corner are the same with the small input (except at boundary)
115
+ >>> m(input_3x3)
116
+ tensor([[[[1.0000, 1.2500, 1.7500, 1.5000, 0.5000, 0.0000],
117
+ [1.5000, 1.7500, 2.2500, 1.8750, 0.6250, 0.0000],
118
+ [2.5000, 2.7500, 3.2500, 2.6250, 0.8750, 0.0000],
119
+ [2.2500, 2.4375, 2.8125, 2.2500, 0.7500, 0.0000],
120
+ [0.7500, 0.8125, 0.9375, 0.7500, 0.2500, 0.0000],
121
+ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]])
122
+
123
+ >>> m = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
124
+ >>> # Notice that values in top left corner are now changed
125
+ >>> m(input_3x3)
126
+ tensor([[[[1.0000, 1.4000, 1.8000, 1.6000, 0.8000, 0.0000],
127
+ [1.8000, 2.2000, 2.6000, 2.2400, 1.1200, 0.0000],
128
+ [2.6000, 3.0000, 3.4000, 2.8800, 1.4400, 0.0000],
129
+ [2.4000, 2.7200, 3.0400, 2.5600, 1.2800, 0.0000],
130
+ [1.2000, 1.3600, 1.5200, 1.2800, 0.6400, 0.0000],
131
+ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]])
132
+ """
133
+
134
+ __constants__ = ['size', 'scale_factor', 'mode', 'align_corners', 'name', 'recompute_scale_factor']
135
+ name: str
136
+ size: Optional[_size_any_t]
137
+ scale_factor: Optional[_ratio_any_t]
138
+ mode: str
139
+ align_corners: Optional[bool]
140
+ recompute_scale_factor: Optional[bool]
141
+
142
+ def __init__(self, size: Optional[_size_any_t] = None, scale_factor: Optional[_ratio_any_t] = None,
143
+ mode: str = 'nearest', align_corners: Optional[bool] = None,
144
+ recompute_scale_factor: Optional[bool] = None) -> None:
145
+ super().__init__()
146
+ self.name = type(self).__name__
147
+ self.size = size
148
+ if isinstance(scale_factor, tuple):
149
+ self.scale_factor = tuple(float(factor) for factor in scale_factor)
150
+ else:
151
+ self.scale_factor = float(scale_factor) if scale_factor else None
152
+ self.mode = mode
153
+ self.align_corners = align_corners
154
+ self.recompute_scale_factor = recompute_scale_factor
155
+
156
+ def forward(self, input: Tensor) -> Tensor:
157
+ return F.interpolate(input, self.size, self.scale_factor, self.mode, self.align_corners,
158
+ recompute_scale_factor=self.recompute_scale_factor)
159
+
160
+ def __setstate__(self, state):
161
+ if 'recompute_scale_factor' not in state:
162
+ state['recompute_scale_factor'] = True
163
+
164
+ super().__setstate__(state)
165
+
166
+ def extra_repr(self) -> str:
167
+ if self.scale_factor is not None:
168
+ info = 'scale_factor=' + repr(self.scale_factor)
169
+ else:
170
+ info = 'size=' + repr(self.size)
171
+ info += ', mode=' + repr(self.mode)
172
+ return info
173
+
174
+
175
+ class UpsamplingNearest2d(Upsample):
176
+ r"""Applies a 2D nearest neighbor upsampling to an input signal composed of several input channels.
177
+
178
+ To specify the scale, it takes either the :attr:`size` or the :attr:`scale_factor`
179
+ as it's constructor argument.
180
+
181
+ When :attr:`size` is given, it is the output size of the image `(h, w)`.
182
+
183
+ Args:
184
+ size (int or Tuple[int, int], optional): output spatial sizes
185
+ scale_factor (float or Tuple[float, float], optional): multiplier for
186
+ spatial size.
187
+
188
+ .. warning::
189
+ This class is deprecated in favor of :func:`~nn.functional.interpolate`.
190
+
191
+ Shape:
192
+ - Input: :math:`(N, C, H_{in}, W_{in})`
193
+ - Output: :math:`(N, C, H_{out}, W_{out})` where
194
+
195
+ .. math::
196
+ H_{out} = \left\lfloor H_{in} \times \text{scale\_factor} \right\rfloor
197
+
198
+ .. math::
199
+ W_{out} = \left\lfloor W_{in} \times \text{scale\_factor} \right\rfloor
200
+
201
+ Examples::
202
+
203
+ >>> input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2)
204
+ >>> input
205
+ tensor([[[[1., 2.],
206
+ [3., 4.]]]])
207
+
208
+ >>> m = nn.UpsamplingNearest2d(scale_factor=2)
209
+ >>> m(input)
210
+ tensor([[[[1., 1., 2., 2.],
211
+ [1., 1., 2., 2.],
212
+ [3., 3., 4., 4.],
213
+ [3., 3., 4., 4.]]]])
214
+ """
215
+
216
+ def __init__(self, size: Optional[_size_2_t] = None, scale_factor: Optional[_ratio_2_t] = None) -> None:
217
+ super().__init__(size, scale_factor, mode='nearest')
218
+
219
+
220
+ class UpsamplingBilinear2d(Upsample):
221
+ r"""Applies a 2D bilinear upsampling to an input signal composed of several input channels.
222
+
223
+ To specify the scale, it takes either the :attr:`size` or the :attr:`scale_factor`
224
+ as it's constructor argument.
225
+
226
+ When :attr:`size` is given, it is the output size of the image `(h, w)`.
227
+
228
+ Args:
229
+ size (int or Tuple[int, int], optional): output spatial sizes
230
+ scale_factor (float or Tuple[float, float], optional): multiplier for
231
+ spatial size.
232
+
233
+ .. warning::
234
+ This class is deprecated in favor of :func:`~nn.functional.interpolate`. It is
235
+ equivalent to ``nn.functional.interpolate(..., mode='bilinear', align_corners=True)``.
236
+
237
+ Shape:
238
+ - Input: :math:`(N, C, H_{in}, W_{in})`
239
+ - Output: :math:`(N, C, H_{out}, W_{out})` where
240
+
241
+ .. math::
242
+ H_{out} = \left\lfloor H_{in} \times \text{scale\_factor} \right\rfloor
243
+
244
+ .. math::
245
+ W_{out} = \left\lfloor W_{in} \times \text{scale\_factor} \right\rfloor
246
+
247
+ Examples::
248
+
249
+ >>> input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2)
250
+ >>> input
251
+ tensor([[[[1., 2.],
252
+ [3., 4.]]]])
253
+
254
+ >>> # xdoctest: +IGNORE_WANT("do other tests modify the global state?")
255
+ >>> m = nn.UpsamplingBilinear2d(scale_factor=2)
256
+ >>> m(input)
257
+ tensor([[[[1.0000, 1.3333, 1.6667, 2.0000],
258
+ [1.6667, 2.0000, 2.3333, 2.6667],
259
+ [2.3333, 2.6667, 3.0000, 3.3333],
260
+ [3.0000, 3.3333, 3.6667, 4.0000]]]])
261
+ """
262
+
263
+ def __init__(self, size: Optional[_size_2_t] = None, scale_factor: Optional[_ratio_2_t] = None) -> None:
264
+ super().__init__(size, scale_factor, mode='bilinear', align_corners=True)
llmeval-env/lib/python3.10/site-packages/torch/nn/modules/utils.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import collections
2
+ from itertools import repeat
3
+ from typing import List, Dict, Any
4
+
5
+ __all__ = ['consume_prefix_in_state_dict_if_present']
6
+
7
+
8
+ def _ntuple(n, name="parse"):
9
+ def parse(x):
10
+ if isinstance(x, collections.abc.Iterable):
11
+ return tuple(x)
12
+ return tuple(repeat(x, n))
13
+
14
+ parse.__name__ = name
15
+ return parse
16
+
17
+
18
+ _single = _ntuple(1, "_single")
19
+ _pair = _ntuple(2, "_pair")
20
+ _triple = _ntuple(3, "_triple")
21
+ _quadruple = _ntuple(4, "_quadruple")
22
+
23
+
24
+ def _reverse_repeat_tuple(t, n):
25
+ r"""Reverse the order of `t` and repeat each element for `n` times.
26
+
27
+ This can be used to translate padding arg used by Conv and Pooling modules
28
+ to the ones used by `F.pad`.
29
+ """
30
+ return tuple(x for x in reversed(t) for _ in range(n))
31
+
32
+
33
+ def _list_with_default(out_size: List[int], defaults: List[int]) -> List[int]:
34
+ import torch
35
+ if isinstance(out_size, (int, torch.SymInt)):
36
+ return out_size
37
+ if len(defaults) <= len(out_size):
38
+ raise ValueError(
39
+ f"Input dimension should be at least {len(out_size) + 1}"
40
+ )
41
+ return [
42
+ v if v is not None else d for v, d in zip(out_size, defaults[-len(out_size) :])
43
+ ]
44
+
45
+
46
+ def consume_prefix_in_state_dict_if_present(
47
+ state_dict: Dict[str, Any], prefix: str
48
+ ) -> None:
49
+ r"""Strip the prefix in state_dict in place, if any.
50
+
51
+ ..note::
52
+ Given a `state_dict` from a DP/DDP model, a local model can load it by applying
53
+ `consume_prefix_in_state_dict_if_present(state_dict, "module.")` before calling
54
+ :meth:`torch.nn.Module.load_state_dict`.
55
+
56
+ Args:
57
+ state_dict (OrderedDict): a state-dict to be loaded to the model.
58
+ prefix (str): prefix.
59
+ """
60
+ keys = list(state_dict.keys())
61
+ for key in keys:
62
+ if key.startswith(prefix):
63
+ newkey = key[len(prefix) :]
64
+ state_dict[newkey] = state_dict.pop(key)
65
+
66
+ # also strip the prefix in metadata if any.
67
+ if hasattr(state_dict, "_metadata"):
68
+ keys = list(state_dict._metadata.keys())
69
+ for key in keys:
70
+ # for the metadata dict, the key can be:
71
+ # '': for the DDP module, which we want to remove.
72
+ # 'module': for the actual model.
73
+ # 'module.xx.xx': for the rest.
74
+ if len(key) == 0:
75
+ continue
76
+ # handling both, 'module' case and 'module.' cases
77
+ if key == prefix.replace('.', '') or key.startswith(prefix):
78
+ newkey = key[len(prefix) :]
79
+ state_dict._metadata[newkey] = state_dict._metadata.pop(key)
llmeval-env/lib/python3.10/site-packages/torch/nn/qat/__init__.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa: F401
2
+ r"""QAT Dynamic Modules.
3
+
4
+ This package is in the process of being deprecated.
5
+ Please, use `torch.ao.nn.qat.dynamic` instead.
6
+ """
7
+ from . import dynamic # noqa: F403
8
+ from . import modules # noqa: F403
9
+ from .modules import * # noqa: F403
10
+
11
+ __all__ = [
12
+ "Linear",
13
+ "Conv1d",
14
+ "Conv2d",
15
+ "Conv3d",
16
+ "Embedding",
17
+ "EmbeddingBag",
18
+ ]
llmeval-env/lib/python3.10/site-packages/torch/nn/qat/dynamic/__init__.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ # flake8: noqa: F401
2
+ r"""QAT Dynamic Modules.
3
+
4
+ This package is in the process of being deprecated.
5
+ Please, use `torch.ao.nn.qat.dynamic` instead.
6
+ """
7
+ from .modules import * # noqa: F403
llmeval-env/lib/python3.10/site-packages/torch/nn/qat/dynamic/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (355 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/nn/qat/dynamic/modules/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from .linear import Linear
2
+
3
+ __all__ = ["Linear"]
llmeval-env/lib/python3.10/site-packages/torch/nn/qat/dynamic/modules/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (260 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/nn/qat/dynamic/modules/__pycache__/linear.cpython-310.pyc ADDED
Binary file (616 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/nn/qat/dynamic/modules/linear.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa: F401
2
+ r"""QAT Modules.
3
+
4
+ This file is in the process of migration to `torch/ao/nn/qat/dynamic`, and
5
+ is kept here for compatibility while the migration process is ongoing.
6
+ If you are adding a new entry/functionality, please, add it to the
7
+ appropriate file under the `torch/ao/nn/qat/dynamic/modules`,
8
+ while adding an import statement here.
9
+ """
10
+ from torch.ao.nn.qat.dynamic.modules.linear import Linear
llmeval-env/lib/python3.10/site-packages/torch/nn/qat/modules/__init__.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa: F401
2
+ r"""QAT Modules.
3
+
4
+ This package is in the process of being deprecated.
5
+ Please, use `torch.ao.nn.qat.modules` instead.
6
+ """
7
+ from torch.ao.nn.qat.modules.linear import Linear
8
+ from torch.ao.nn.qat.modules.conv import Conv1d
9
+ from torch.ao.nn.qat.modules.conv import Conv2d
10
+ from torch.ao.nn.qat.modules.conv import Conv3d
11
+ from torch.ao.nn.qat.modules.embedding_ops import EmbeddingBag, Embedding
12
+
13
+ from . import conv
14
+ from . import embedding_ops
15
+ from . import linear
16
+
17
+ __all__ = [
18
+ "Linear",
19
+ "Conv1d",
20
+ "Conv2d",
21
+ "Conv3d",
22
+ "Embedding",
23
+ "EmbeddingBag",
24
+ ]
llmeval-env/lib/python3.10/site-packages/torch/nn/qat/modules/conv.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa: F401
2
+ r"""QAT Modules.
3
+
4
+ This file is in the process of migration to `torch/ao/nn/qat`, and
5
+ is kept here for compatibility while the migration process is ongoing.
6
+ If you are adding a new entry/functionality, please, add it to the
7
+ appropriate file under the `torch/ao/nn/qat/modules`,
8
+ while adding an import statement here.
9
+ """
10
+ from torch.ao.nn.qat.modules.conv import Conv1d
11
+ from torch.ao.nn.qat.modules.conv import Conv2d
12
+ from torch.ao.nn.qat.modules.conv import Conv3d
llmeval-env/lib/python3.10/site-packages/torch/nn/quantized/modules/__pycache__/functional_modules.cpython-310.pyc ADDED
Binary file (757 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/nn/quantized/modules/__pycache__/utils.cpython-310.pyc ADDED
Binary file (795 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/nn/quantized/modules/activation.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa: F401
2
+ r"""Quantized Modules.
3
+
4
+ This file is in the process of migration to `torch/ao/nn/quantized`, and
5
+ is kept here for compatibility while the migration process is ongoing.
6
+ If you are adding a new entry/functionality, please, add it to the
7
+ appropriate file under the `torch/ao/nn/quantized/modules`,
8
+ while adding an import statement here.
9
+ """
10
+
11
+ from torch.ao.nn.quantized.modules.activation import ELU
12
+ from torch.ao.nn.quantized.modules.activation import Hardswish
13
+ from torch.ao.nn.quantized.modules.activation import LeakyReLU
14
+ from torch.ao.nn.quantized.modules.activation import MultiheadAttention
15
+ from torch.ao.nn.quantized.modules.activation import PReLU
16
+ from torch.ao.nn.quantized.modules.activation import ReLU6
17
+ from torch.ao.nn.quantized.modules.activation import Sigmoid
18
+ from torch.ao.nn.quantized.modules.activation import Softmax
llmeval-env/lib/python3.10/site-packages/torch/nn/quantized/modules/conv.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa: F401
2
+ r"""Quantized Modules.
3
+
4
+ This file is in the process of migration to `torch/ao/nn/quantized`, and
5
+ is kept here for compatibility while the migration process is ongoing.
6
+ If you are adding a new entry/functionality, please, add it to the
7
+ appropriate file under the `torch/ao/nn/quantized/modules`,
8
+ while adding an import statement here.
9
+ """
10
+
11
+ __all__ = ['Conv1d', 'Conv2d', 'Conv3d', 'ConvTranspose1d', 'ConvTranspose2d', 'ConvTranspose3d']
12
+
13
+ from torch.ao.nn.quantized.modules.conv import _reverse_repeat_padding
14
+
15
+ from torch.ao.nn.quantized.modules.conv import Conv1d
16
+ from torch.ao.nn.quantized.modules.conv import Conv2d
17
+ from torch.ao.nn.quantized.modules.conv import Conv3d
18
+
19
+ from torch.ao.nn.quantized.modules.conv import ConvTranspose1d
20
+ from torch.ao.nn.quantized.modules.conv import ConvTranspose2d
21
+ from torch.ao.nn.quantized.modules.conv import ConvTranspose3d
llmeval-env/lib/python3.10/site-packages/torch/nn/quantized/modules/dropout.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa: F401
2
+ r"""Quantized Modules.
3
+
4
+ This file is in the process of migration to `torch/ao/nn/quantized`, and
5
+ is kept here for compatibility while the migration process is ongoing.
6
+ If you are adding a new entry/functionality, please, add it to the
7
+ appropriate file under the `torch/ao/nn/quantized/modules`,
8
+ while adding an import statement here.
9
+ """
10
+
11
+ __all__ = ['Dropout']
12
+
13
+ from torch.ao.nn.quantized.modules.dropout import Dropout
llmeval-env/lib/python3.10/site-packages/torch/nn/quantized/modules/embedding_ops.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa: F401
2
+ r"""Quantized Modules.
3
+
4
+ This file is in the process of migration to `torch/ao/nn/quantized`, and
5
+ is kept here for compatibility while the migration process is ongoing.
6
+ If you are adding a new entry/functionality, please, add it to the
7
+ appropriate file under the `torch/ao/nn/quantized/modules`,
8
+ while adding an import statement here.
9
+ """
10
+
11
+ __all__ = ['EmbeddingPackedParams', 'Embedding', 'EmbeddingBag']
12
+
13
+ from torch.ao.nn.quantized.modules.embedding_ops import Embedding
14
+ from torch.ao.nn.quantized.modules.embedding_ops import EmbeddingBag
15
+ from torch.ao.nn.quantized.modules.embedding_ops import EmbeddingPackedParams
llmeval-env/lib/python3.10/site-packages/torch/nn/quantized/modules/functional_modules.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa: F401
2
+ r"""Quantized Modules.
3
+
4
+ This file is in the process of migration to `torch/ao/nn/quantized`, and
5
+ is kept here for compatibility while the migration process is ongoing.
6
+ If you are adding a new entry/functionality, please, add it to the
7
+ appropriate file under the `torch/ao/nn/quantized/modules`,
8
+ while adding an import statement here.
9
+ """
10
+
11
+ __all__ = ['FloatFunctional', 'FXFloatFunctional', 'QFunctional']
12
+
13
+ from torch.ao.nn.quantized.modules.functional_modules import FloatFunctional
14
+ from torch.ao.nn.quantized.modules.functional_modules import FXFloatFunctional
15
+ from torch.ao.nn.quantized.modules.functional_modules import QFunctional