applied-ai-018 commited on
Commit
0b5bf05
·
verified ·
1 Parent(s): 087a1c9

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. llmeval-env/lib/python3.10/site-packages/scipy/interpolate/tests/data/bug-1310.npz +3 -0
  3. llmeval-env/lib/python3.10/site-packages/scipy/interpolate/tests/data/estimate_gradients_hang.npy +3 -0
  4. llmeval-env/lib/python3.10/site-packages/scipy/io/_fast_matrix_market/_fmm_core.cpython-310-x86_64-linux-gnu.so +3 -0
  5. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_axis_nan_policy.cpython-310.pyc +0 -0
  6. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_continuous_distns.cpython-310.pyc +0 -0
  7. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_crosstab.cpython-310.pyc +0 -0
  8. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_fit.cpython-310.pyc +0 -0
  9. llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/contingency.cpython-310.pyc +0 -0
  10. llmeval-env/lib/python3.10/site-packages/scipy/stats/_boost/__init__.py +53 -0
  11. llmeval-env/lib/python3.10/site-packages/scipy/stats/_boost/skewnorm_ufunc.cpython-310-x86_64-linux-gnu.so +0 -0
  12. llmeval-env/lib/python3.10/site-packages/scipy/stats/_distn_infrastructure.py +0 -0
  13. llmeval-env/lib/python3.10/site-packages/scipy/stats/_levy_stable/__pycache__/__init__.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/scipy/stats/_levy_stable/levyst.cpython-310-x86_64-linux-gnu.so +0 -0
  15. llmeval-env/lib/python3.10/site-packages/scipy/stats/_odds_ratio.py +482 -0
  16. llmeval-env/lib/python3.10/site-packages/scipy/stats/_rcont/__init__.py +4 -0
  17. llmeval-env/lib/python3.10/site-packages/scipy/stats/_rcont/__pycache__/__init__.cpython-310.pyc +0 -0
  18. llmeval-env/lib/python3.10/site-packages/scipy/stats/_rcont/rcont.cpython-310-x86_64-linux-gnu.so +0 -0
  19. llmeval-env/lib/python3.10/site-packages/scipy/stats/_wilcoxon.py +237 -0
  20. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__init__.py +0 -0
  21. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  22. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_axis_nan_policy.cpython-310.pyc +0 -0
  23. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_binned_statistic.cpython-310.pyc +0 -0
  24. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_boost_ufuncs.cpython-310.pyc +0 -0
  25. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_censored_data.cpython-310.pyc +0 -0
  26. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_contingency.cpython-310.pyc +0 -0
  27. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_continuous_basic.cpython-310.pyc +0 -0
  28. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_continuous_fit_censored.cpython-310.pyc +0 -0
  29. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_crosstab.cpython-310.pyc +0 -0
  30. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_discrete_basic.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_entropy.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_fast_gen_inversion.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_fit.cpython-310.pyc +0 -0
  34. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_hypotests.cpython-310.pyc +0 -0
  35. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_kdeoth.cpython-310.pyc +0 -0
  36. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_morestats.cpython-310.pyc +0 -0
  37. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_mstats_basic.cpython-310.pyc +0 -0
  38. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_mstats_extras.cpython-310.pyc +0 -0
  39. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_multivariate.cpython-310.pyc +0 -0
  40. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_qmc.cpython-310.pyc +0 -0
  41. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_rank.cpython-310.pyc +0 -0
  42. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_resampling.cpython-310.pyc +0 -0
  43. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_sampling.cpython-310.pyc +0 -0
  44. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_sensitivity_analysis.cpython-310.pyc +0 -0
  45. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_stats.cpython-310.pyc +0 -0
  46. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_survival.cpython-310.pyc +0 -0
  47. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_tukeylambda_stats.cpython-310.pyc +0 -0
  48. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_variation.cpython-310.pyc +0 -0
  49. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/common_tests.py +351 -0
  50. llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/data/__pycache__/_mvt.cpython-310.pyc +0 -0
.gitattributes CHANGED
@@ -212,3 +212,4 @@ env-llmeval/lib/python3.10/site-packages/pyarrow/libarrow.so.1500 filter=lfs dif
212
  llmeval-env/lib/python3.10/site-packages/scipy/special/_ufuncs.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
213
  llmeval-env/lib/python3.10/site-packages/scipy/special/cython_special.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
214
  llmeval-env/lib/python3.10/site-packages/scipy/linalg/_flapack.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
 
 
212
  llmeval-env/lib/python3.10/site-packages/scipy/special/_ufuncs.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
213
  llmeval-env/lib/python3.10/site-packages/scipy/special/cython_special.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
214
  llmeval-env/lib/python3.10/site-packages/scipy/linalg/_flapack.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
215
+ llmeval-env/lib/python3.10/site-packages/scipy/io/_fast_matrix_market/_fmm_core.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
llmeval-env/lib/python3.10/site-packages/scipy/interpolate/tests/data/bug-1310.npz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d6803c0b398f2704c236f1d1b9e8e5ede06bd165a0abb0f228281abbd455ae9
3
+ size 2648
llmeval-env/lib/python3.10/site-packages/scipy/interpolate/tests/data/estimate_gradients_hang.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:406c10857417ff5ea98d8cd28945c9d0e4f5c24f92a48ad0e8fab955bf2477f1
3
+ size 35680
llmeval-env/lib/python3.10/site-packages/scipy/io/_fast_matrix_market/_fmm_core.cpython-310-x86_64-linux-gnu.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:719f8c4c68bbb75108c6968d2ba4160a2a35d69eb787ee348943a884ea629827
3
+ size 3827072
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_axis_nan_policy.cpython-310.pyc ADDED
Binary file (19.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_continuous_distns.cpython-310.pyc ADDED
Binary file (365 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_crosstab.cpython-310.pyc ADDED
Binary file (7.35 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/_fit.cpython-310.pyc ADDED
Binary file (52.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/__pycache__/contingency.cpython-310.pyc ADDED
Binary file (15.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/_boost/__init__.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from scipy.stats._boost.beta_ufunc import (
2
+ _beta_pdf, _beta_cdf, _beta_sf, _beta_ppf,
3
+ _beta_isf, _beta_mean, _beta_variance,
4
+ _beta_skewness, _beta_kurtosis_excess,
5
+ )
6
+
7
+ from scipy.stats._boost.binom_ufunc import (
8
+ _binom_pdf, _binom_cdf, _binom_sf, _binom_ppf,
9
+ _binom_isf, _binom_mean, _binom_variance,
10
+ _binom_skewness, _binom_kurtosis_excess,
11
+ )
12
+
13
+ from scipy.stats._boost.nbinom_ufunc import (
14
+ _nbinom_pdf, _nbinom_cdf, _nbinom_sf, _nbinom_ppf,
15
+ _nbinom_isf, _nbinom_mean, _nbinom_variance,
16
+ _nbinom_skewness, _nbinom_kurtosis_excess,
17
+ )
18
+
19
+ from scipy.stats._boost.hypergeom_ufunc import (
20
+ _hypergeom_pdf, _hypergeom_cdf, _hypergeom_sf, _hypergeom_ppf,
21
+ _hypergeom_isf, _hypergeom_mean, _hypergeom_variance,
22
+ _hypergeom_skewness, _hypergeom_kurtosis_excess,
23
+ )
24
+
25
+ from scipy.stats._boost.ncf_ufunc import (
26
+ _ncf_pdf, _ncf_cdf, _ncf_sf, _ncf_ppf,
27
+ _ncf_isf, _ncf_mean, _ncf_variance,
28
+ _ncf_skewness, _ncf_kurtosis_excess,
29
+ )
30
+
31
+ from scipy.stats._boost.ncx2_ufunc import (
32
+ _ncx2_pdf, _ncx2_cdf, _ncx2_sf, _ncx2_ppf,
33
+ _ncx2_isf, _ncx2_mean, _ncx2_variance,
34
+ _ncx2_skewness, _ncx2_kurtosis_excess,
35
+ )
36
+
37
+ from scipy.stats._boost.nct_ufunc import (
38
+ _nct_pdf, _nct_cdf, _nct_sf, _nct_ppf,
39
+ _nct_isf, _nct_mean, _nct_variance,
40
+ _nct_skewness, _nct_kurtosis_excess,
41
+ )
42
+
43
+ from scipy.stats._boost.skewnorm_ufunc import (
44
+ _skewnorm_pdf, _skewnorm_cdf, _skewnorm_sf, _skewnorm_ppf,
45
+ _skewnorm_isf, _skewnorm_mean, _skewnorm_variance,
46
+ _skewnorm_skewness, _skewnorm_kurtosis_excess,
47
+ )
48
+
49
+ from scipy.stats._boost.invgauss_ufunc import (
50
+ _invgauss_pdf, _invgauss_cdf, _invgauss_sf, _invgauss_ppf,
51
+ _invgauss_isf, _invgauss_mean, _invgauss_variance,
52
+ _invgauss_skewness, _invgauss_kurtosis_excess,
53
+ )
llmeval-env/lib/python3.10/site-packages/scipy/stats/_boost/skewnorm_ufunc.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (109 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/_distn_infrastructure.py ADDED
The diff for this file is too large to render. See raw diff
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/_levy_stable/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (32.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/_levy_stable/levyst.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (66.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/_odds_ratio.py ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from scipy.special import ndtri
4
+ from scipy.optimize import brentq
5
+ from ._discrete_distns import nchypergeom_fisher
6
+ from ._common import ConfidenceInterval
7
+
8
+
9
+ def _sample_odds_ratio(table):
10
+ """
11
+ Given a table [[a, b], [c, d]], compute a*d/(b*c).
12
+
13
+ Return nan if the numerator and denominator are 0.
14
+ Return inf if just the denominator is 0.
15
+ """
16
+ # table must be a 2x2 numpy array.
17
+ if table[1, 0] > 0 and table[0, 1] > 0:
18
+ oddsratio = table[0, 0] * table[1, 1] / (table[1, 0] * table[0, 1])
19
+ elif table[0, 0] == 0 or table[1, 1] == 0:
20
+ oddsratio = np.nan
21
+ else:
22
+ oddsratio = np.inf
23
+ return oddsratio
24
+
25
+
26
+ def _solve(func):
27
+ """
28
+ Solve func(nc) = 0. func must be an increasing function.
29
+ """
30
+ # We could just as well call the variable `x` instead of `nc`, but we
31
+ # always call this function with functions for which nc (the noncentrality
32
+ # parameter) is the variable for which we are solving.
33
+ nc = 1.0
34
+ value = func(nc)
35
+ if value == 0:
36
+ return nc
37
+
38
+ # Multiplicative factor by which to increase or decrease nc when
39
+ # searching for a bracketing interval.
40
+ factor = 2.0
41
+ # Find a bracketing interval.
42
+ if value > 0:
43
+ nc /= factor
44
+ while func(nc) > 0:
45
+ nc /= factor
46
+ lo = nc
47
+ hi = factor*nc
48
+ else:
49
+ nc *= factor
50
+ while func(nc) < 0:
51
+ nc *= factor
52
+ lo = nc/factor
53
+ hi = nc
54
+
55
+ # lo and hi bracket the solution for nc.
56
+ nc = brentq(func, lo, hi, xtol=1e-13)
57
+ return nc
58
+
59
+
60
+ def _nc_hypergeom_mean_inverse(x, M, n, N):
61
+ """
62
+ For the given noncentral hypergeometric parameters x, M, n,and N
63
+ (table[0,0], total, row 0 sum and column 0 sum, resp., of a 2x2
64
+ contingency table), find the noncentrality parameter of Fisher's
65
+ noncentral hypergeometric distribution whose mean is x.
66
+ """
67
+ nc = _solve(lambda nc: nchypergeom_fisher.mean(M, n, N, nc) - x)
68
+ return nc
69
+
70
+
71
+ def _hypergeom_params_from_table(table):
72
+ # The notation M, n and N is consistent with stats.hypergeom and
73
+ # stats.nchypergeom_fisher.
74
+ x = table[0, 0]
75
+ M = table.sum()
76
+ n = table[0].sum()
77
+ N = table[:, 0].sum()
78
+ return x, M, n, N
79
+
80
+
81
+ def _ci_upper(table, alpha):
82
+ """
83
+ Compute the upper end of the confidence interval.
84
+ """
85
+ if _sample_odds_ratio(table) == np.inf:
86
+ return np.inf
87
+
88
+ x, M, n, N = _hypergeom_params_from_table(table)
89
+
90
+ # nchypergeom_fisher.cdf is a decreasing function of nc, so we negate
91
+ # it in the lambda expression.
92
+ nc = _solve(lambda nc: -nchypergeom_fisher.cdf(x, M, n, N, nc) + alpha)
93
+ return nc
94
+
95
+
96
+ def _ci_lower(table, alpha):
97
+ """
98
+ Compute the lower end of the confidence interval.
99
+ """
100
+ if _sample_odds_ratio(table) == 0:
101
+ return 0
102
+
103
+ x, M, n, N = _hypergeom_params_from_table(table)
104
+
105
+ nc = _solve(lambda nc: nchypergeom_fisher.sf(x - 1, M, n, N, nc) - alpha)
106
+ return nc
107
+
108
+
109
+ def _conditional_oddsratio(table):
110
+ """
111
+ Conditional MLE of the odds ratio for the 2x2 contingency table.
112
+ """
113
+ x, M, n, N = _hypergeom_params_from_table(table)
114
+ # Get the bounds of the support. The support of the noncentral
115
+ # hypergeometric distribution with parameters M, n, and N is the same
116
+ # for all values of the noncentrality parameter, so we can use 1 here.
117
+ lo, hi = nchypergeom_fisher.support(M, n, N, 1)
118
+
119
+ # Check if x is at one of the extremes of the support. If so, we know
120
+ # the odds ratio is either 0 or inf.
121
+ if x == lo:
122
+ # x is at the low end of the support.
123
+ return 0
124
+ if x == hi:
125
+ # x is at the high end of the support.
126
+ return np.inf
127
+
128
+ nc = _nc_hypergeom_mean_inverse(x, M, n, N)
129
+ return nc
130
+
131
+
132
+ def _conditional_oddsratio_ci(table, confidence_level=0.95,
133
+ alternative='two-sided'):
134
+ """
135
+ Conditional exact confidence interval for the odds ratio.
136
+ """
137
+ if alternative == 'two-sided':
138
+ alpha = 0.5*(1 - confidence_level)
139
+ lower = _ci_lower(table, alpha)
140
+ upper = _ci_upper(table, alpha)
141
+ elif alternative == 'less':
142
+ lower = 0.0
143
+ upper = _ci_upper(table, 1 - confidence_level)
144
+ else:
145
+ # alternative == 'greater'
146
+ lower = _ci_lower(table, 1 - confidence_level)
147
+ upper = np.inf
148
+
149
+ return lower, upper
150
+
151
+
152
+ def _sample_odds_ratio_ci(table, confidence_level=0.95,
153
+ alternative='two-sided'):
154
+ oddsratio = _sample_odds_ratio(table)
155
+ log_or = np.log(oddsratio)
156
+ se = np.sqrt((1/table).sum())
157
+ if alternative == 'less':
158
+ z = ndtri(confidence_level)
159
+ loglow = -np.inf
160
+ loghigh = log_or + z*se
161
+ elif alternative == 'greater':
162
+ z = ndtri(confidence_level)
163
+ loglow = log_or - z*se
164
+ loghigh = np.inf
165
+ else:
166
+ # alternative is 'two-sided'
167
+ z = ndtri(0.5*confidence_level + 0.5)
168
+ loglow = log_or - z*se
169
+ loghigh = log_or + z*se
170
+
171
+ return np.exp(loglow), np.exp(loghigh)
172
+
173
+
174
+ class OddsRatioResult:
175
+ """
176
+ Result of `scipy.stats.contingency.odds_ratio`. See the
177
+ docstring for `odds_ratio` for more details.
178
+
179
+ Attributes
180
+ ----------
181
+ statistic : float
182
+ The computed odds ratio.
183
+
184
+ * If `kind` is ``'sample'``, this is sample (or unconditional)
185
+ estimate, given by
186
+ ``table[0, 0]*table[1, 1]/(table[0, 1]*table[1, 0])``.
187
+ * If `kind` is ``'conditional'``, this is the conditional
188
+ maximum likelihood estimate for the odds ratio. It is
189
+ the noncentrality parameter of Fisher's noncentral
190
+ hypergeometric distribution with the same hypergeometric
191
+ parameters as `table` and whose mean is ``table[0, 0]``.
192
+
193
+ Methods
194
+ -------
195
+ confidence_interval :
196
+ Confidence interval for the odds ratio.
197
+ """
198
+
199
+ def __init__(self, _table, _kind, statistic):
200
+ # for now, no need to make _table and _kind public, since this sort of
201
+ # information is returned in very few `scipy.stats` results
202
+ self._table = _table
203
+ self._kind = _kind
204
+ self.statistic = statistic
205
+
206
+ def __repr__(self):
207
+ return f"OddsRatioResult(statistic={self.statistic})"
208
+
209
+ def confidence_interval(self, confidence_level=0.95,
210
+ alternative='two-sided'):
211
+ """
212
+ Confidence interval for the odds ratio.
213
+
214
+ Parameters
215
+ ----------
216
+ confidence_level: float
217
+ Desired confidence level for the confidence interval.
218
+ The value must be given as a fraction between 0 and 1.
219
+ Default is 0.95 (meaning 95%).
220
+
221
+ alternative : {'two-sided', 'less', 'greater'}, optional
222
+ The alternative hypothesis of the hypothesis test to which the
223
+ confidence interval corresponds. That is, suppose the null
224
+ hypothesis is that the true odds ratio equals ``OR`` and the
225
+ confidence interval is ``(low, high)``. Then the following options
226
+ for `alternative` are available (default is 'two-sided'):
227
+
228
+ * 'two-sided': the true odds ratio is not equal to ``OR``. There
229
+ is evidence against the null hypothesis at the chosen
230
+ `confidence_level` if ``high < OR`` or ``low > OR``.
231
+ * 'less': the true odds ratio is less than ``OR``. The ``low`` end
232
+ of the confidence interval is 0, and there is evidence against
233
+ the null hypothesis at the chosen `confidence_level` if
234
+ ``high < OR``.
235
+ * 'greater': the true odds ratio is greater than ``OR``. The
236
+ ``high`` end of the confidence interval is ``np.inf``, and there
237
+ is evidence against the null hypothesis at the chosen
238
+ `confidence_level` if ``low > OR``.
239
+
240
+ Returns
241
+ -------
242
+ ci : ``ConfidenceInterval`` instance
243
+ The confidence interval, represented as an object with
244
+ attributes ``low`` and ``high``.
245
+
246
+ Notes
247
+ -----
248
+ When `kind` is ``'conditional'``, the limits of the confidence
249
+ interval are the conditional "exact confidence limits" as described
250
+ by Fisher [1]_. The conditional odds ratio and confidence interval are
251
+ also discussed in Section 4.1.2 of the text by Sahai and Khurshid [2]_.
252
+
253
+ When `kind` is ``'sample'``, the confidence interval is computed
254
+ under the assumption that the logarithm of the odds ratio is normally
255
+ distributed with standard error given by::
256
+
257
+ se = sqrt(1/a + 1/b + 1/c + 1/d)
258
+
259
+ where ``a``, ``b``, ``c`` and ``d`` are the elements of the
260
+ contingency table. (See, for example, [2]_, section 3.1.3.2,
261
+ or [3]_, section 2.3.3).
262
+
263
+ References
264
+ ----------
265
+ .. [1] R. A. Fisher (1935), The logic of inductive inference,
266
+ Journal of the Royal Statistical Society, Vol. 98, No. 1,
267
+ pp. 39-82.
268
+ .. [2] H. Sahai and A. Khurshid (1996), Statistics in Epidemiology:
269
+ Methods, Techniques, and Applications, CRC Press LLC, Boca
270
+ Raton, Florida.
271
+ .. [3] Alan Agresti, An Introduction to Categorical Data Analysis
272
+ (second edition), Wiley, Hoboken, NJ, USA (2007).
273
+ """
274
+ if alternative not in ['two-sided', 'less', 'greater']:
275
+ raise ValueError("`alternative` must be 'two-sided', 'less' or "
276
+ "'greater'.")
277
+
278
+ if confidence_level < 0 or confidence_level > 1:
279
+ raise ValueError('confidence_level must be between 0 and 1')
280
+
281
+ if self._kind == 'conditional':
282
+ ci = self._conditional_odds_ratio_ci(confidence_level, alternative)
283
+ else:
284
+ ci = self._sample_odds_ratio_ci(confidence_level, alternative)
285
+ return ci
286
+
287
+ def _conditional_odds_ratio_ci(self, confidence_level=0.95,
288
+ alternative='two-sided'):
289
+ """
290
+ Confidence interval for the conditional odds ratio.
291
+ """
292
+
293
+ table = self._table
294
+ if 0 in table.sum(axis=0) or 0 in table.sum(axis=1):
295
+ # If both values in a row or column are zero, the p-value is 1,
296
+ # the odds ratio is NaN and the confidence interval is (0, inf).
297
+ ci = (0, np.inf)
298
+ else:
299
+ ci = _conditional_oddsratio_ci(table,
300
+ confidence_level=confidence_level,
301
+ alternative=alternative)
302
+ return ConfidenceInterval(low=ci[0], high=ci[1])
303
+
304
+ def _sample_odds_ratio_ci(self, confidence_level=0.95,
305
+ alternative='two-sided'):
306
+ """
307
+ Confidence interval for the sample odds ratio.
308
+ """
309
+ if confidence_level < 0 or confidence_level > 1:
310
+ raise ValueError('confidence_level must be between 0 and 1')
311
+
312
+ table = self._table
313
+ if 0 in table.sum(axis=0) or 0 in table.sum(axis=1):
314
+ # If both values in a row or column are zero, the p-value is 1,
315
+ # the odds ratio is NaN and the confidence interval is (0, inf).
316
+ ci = (0, np.inf)
317
+ else:
318
+ ci = _sample_odds_ratio_ci(table,
319
+ confidence_level=confidence_level,
320
+ alternative=alternative)
321
+ return ConfidenceInterval(low=ci[0], high=ci[1])
322
+
323
+
324
+ def odds_ratio(table, *, kind='conditional'):
325
+ r"""
326
+ Compute the odds ratio for a 2x2 contingency table.
327
+
328
+ Parameters
329
+ ----------
330
+ table : array_like of ints
331
+ A 2x2 contingency table. Elements must be non-negative integers.
332
+ kind : str, optional
333
+ Which kind of odds ratio to compute, either the sample
334
+ odds ratio (``kind='sample'``) or the conditional odds ratio
335
+ (``kind='conditional'``). Default is ``'conditional'``.
336
+
337
+ Returns
338
+ -------
339
+ result : `~scipy.stats._result_classes.OddsRatioResult` instance
340
+ The returned object has two computed attributes:
341
+
342
+ statistic : float
343
+ * If `kind` is ``'sample'``, this is sample (or unconditional)
344
+ estimate, given by
345
+ ``table[0, 0]*table[1, 1]/(table[0, 1]*table[1, 0])``.
346
+ * If `kind` is ``'conditional'``, this is the conditional
347
+ maximum likelihood estimate for the odds ratio. It is
348
+ the noncentrality parameter of Fisher's noncentral
349
+ hypergeometric distribution with the same hypergeometric
350
+ parameters as `table` and whose mean is ``table[0, 0]``.
351
+
352
+ The object has the method `confidence_interval` that computes
353
+ the confidence interval of the odds ratio.
354
+
355
+ See Also
356
+ --------
357
+ scipy.stats.fisher_exact
358
+ relative_risk
359
+
360
+ Notes
361
+ -----
362
+ The conditional odds ratio was discussed by Fisher (see "Example 1"
363
+ of [1]_). Texts that cover the odds ratio include [2]_ and [3]_.
364
+
365
+ .. versionadded:: 1.10.0
366
+
367
+ References
368
+ ----------
369
+ .. [1] R. A. Fisher (1935), The logic of inductive inference,
370
+ Journal of the Royal Statistical Society, Vol. 98, No. 1,
371
+ pp. 39-82.
372
+ .. [2] Breslow NE, Day NE (1980). Statistical methods in cancer research.
373
+ Volume I - The analysis of case-control studies. IARC Sci Publ.
374
+ (32):5-338. PMID: 7216345. (See section 4.2.)
375
+ .. [3] H. Sahai and A. Khurshid (1996), Statistics in Epidemiology:
376
+ Methods, Techniques, and Applications, CRC Press LLC, Boca
377
+ Raton, Florida.
378
+ .. [4] Berger, Jeffrey S. et al. "Aspirin for the Primary Prevention of
379
+ Cardiovascular Events in Women and Men: A Sex-Specific
380
+ Meta-analysis of Randomized Controlled Trials."
381
+ JAMA, 295(3):306-313, :doi:`10.1001/jama.295.3.306`, 2006.
382
+
383
+ Examples
384
+ --------
385
+ In epidemiology, individuals are classified as "exposed" or
386
+ "unexposed" to some factor or treatment. If the occurrence of some
387
+ illness is under study, those who have the illness are often
388
+ classified as "cases", and those without it are "noncases". The
389
+ counts of the occurrences of these classes gives a contingency
390
+ table::
391
+
392
+ exposed unexposed
393
+ cases a b
394
+ noncases c d
395
+
396
+ The sample odds ratio may be written ``(a/c) / (b/d)``. ``a/c`` can
397
+ be interpreted as the odds of a case occurring in the exposed group,
398
+ and ``b/d`` as the odds of a case occurring in the unexposed group.
399
+ The sample odds ratio is the ratio of these odds. If the odds ratio
400
+ is greater than 1, it suggests that there is a positive association
401
+ between being exposed and being a case.
402
+
403
+ Interchanging the rows or columns of the contingency table inverts
404
+ the odds ratio, so it is import to understand the meaning of labels
405
+ given to the rows and columns of the table when interpreting the
406
+ odds ratio.
407
+
408
+ In [4]_, the use of aspirin to prevent cardiovascular events in women
409
+ and men was investigated. The study notably concluded:
410
+
411
+ ...aspirin therapy reduced the risk of a composite of
412
+ cardiovascular events due to its effect on reducing the risk of
413
+ ischemic stroke in women [...]
414
+
415
+ The article lists studies of various cardiovascular events. Let's
416
+ focus on the ischemic stoke in women.
417
+
418
+ The following table summarizes the results of the experiment in which
419
+ participants took aspirin or a placebo on a regular basis for several
420
+ years. Cases of ischemic stroke were recorded::
421
+
422
+ Aspirin Control/Placebo
423
+ Ischemic stroke 176 230
424
+ No stroke 21035 21018
425
+
426
+ The question we ask is "Is there evidence that the aspirin reduces the
427
+ risk of ischemic stroke?"
428
+
429
+ Compute the odds ratio:
430
+
431
+ >>> from scipy.stats.contingency import odds_ratio
432
+ >>> res = odds_ratio([[176, 230], [21035, 21018]])
433
+ >>> res.statistic
434
+ 0.7646037659999126
435
+
436
+ For this sample, the odds of getting an ischemic stroke for those who have
437
+ been taking aspirin are 0.76 times that of those
438
+ who have received the placebo.
439
+
440
+ To make statistical inferences about the population under study,
441
+ we can compute the 95% confidence interval for the odds ratio:
442
+
443
+ >>> res.confidence_interval(confidence_level=0.95)
444
+ ConfidenceInterval(low=0.6241234078749812, high=0.9354102892100372)
445
+
446
+ The 95% confidence interval for the conditional odds ratio is
447
+ approximately (0.62, 0.94).
448
+
449
+ The fact that the entire 95% confidence interval falls below 1 supports
450
+ the authors' conclusion that the aspirin was associated with a
451
+ statistically significant reduction in ischemic stroke.
452
+ """
453
+ if kind not in ['conditional', 'sample']:
454
+ raise ValueError("`kind` must be 'conditional' or 'sample'.")
455
+
456
+ c = np.asarray(table)
457
+
458
+ if c.shape != (2, 2):
459
+ raise ValueError(f"Invalid shape {c.shape}. The input `table` must be "
460
+ "of shape (2, 2).")
461
+
462
+ if not np.issubdtype(c.dtype, np.integer):
463
+ raise ValueError("`table` must be an array of integers, but got "
464
+ f"type {c.dtype}")
465
+ c = c.astype(np.int64)
466
+
467
+ if np.any(c < 0):
468
+ raise ValueError("All values in `table` must be nonnegative.")
469
+
470
+ if 0 in c.sum(axis=0) or 0 in c.sum(axis=1):
471
+ # If both values in a row or column are zero, the p-value is NaN and
472
+ # the odds ratio is NaN.
473
+ result = OddsRatioResult(_table=c, _kind=kind, statistic=np.nan)
474
+ return result
475
+
476
+ if kind == 'sample':
477
+ oddsratio = _sample_odds_ratio(c)
478
+ else: # kind is 'conditional'
479
+ oddsratio = _conditional_oddsratio(c)
480
+
481
+ result = OddsRatioResult(_table=c, _kind=kind, statistic=oddsratio)
482
+ return result
llmeval-env/lib/python3.10/site-packages/scipy/stats/_rcont/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ #
2
+ from .rcont import rvs_rcont1, rvs_rcont2
3
+
4
+ __all__ = ["rvs_rcont1", "rvs_rcont2"]
llmeval-env/lib/python3.10/site-packages/scipy/stats/_rcont/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (281 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/_rcont/rcont.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (299 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/_wilcoxon.py ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import warnings
2
+ import numpy as np
3
+
4
+ from scipy import stats
5
+ from ._stats_py import _get_pvalue, _rankdata
6
+ from . import _morestats
7
+ from ._axis_nan_policy import _broadcast_arrays
8
+ from ._hypotests import _get_wilcoxon_distr
9
+ from scipy._lib._util import _lazywhere, _get_nan
10
+
11
+
12
+ class WilcoxonDistribution:
13
+
14
+ def __init__(self, n):
15
+ n = np.asarray(n).astype(int, copy=False)
16
+ self.n = n
17
+ self._dists = {ni: _get_wilcoxon_distr(ni) for ni in np.unique(n)}
18
+
19
+ def _cdf1(self, k, n):
20
+ pmfs = self._dists[n]
21
+ return pmfs[:k + 1].sum()
22
+
23
+ def _cdf(self, k, n):
24
+ return np.vectorize(self._cdf1, otypes=[float])(k, n)
25
+
26
+ def _sf1(self, k, n):
27
+ pmfs = self._dists[n]
28
+ return pmfs[k:].sum()
29
+
30
+ def _sf(self, k, n):
31
+ return np.vectorize(self._sf1, otypes=[float])(k, n)
32
+
33
+ def mean(self):
34
+ return self.n * (self.n + 1) / 4
35
+
36
+ def _prep(self, k):
37
+ k = np.asarray(k).astype(int, copy=False)
38
+ mn = self.mean()
39
+ out = np.empty(k.shape, dtype=np.float64)
40
+ return k, mn, out
41
+
42
+ def cdf(self, k):
43
+ k, mn, out = self._prep(k)
44
+ return _lazywhere(k <= mn, (k, self.n), self._cdf,
45
+ f2=lambda k, n: 1 - self._sf(k+1, n))[()]
46
+
47
+ def sf(self, k):
48
+ k, mn, out = self._prep(k)
49
+ return _lazywhere(k <= mn, (k, self.n), self._sf,
50
+ f2=lambda k, n: 1 - self._cdf(k-1, n))[()]
51
+
52
+
53
+ def _wilcoxon_iv(x, y, zero_method, correction, alternative, method, axis):
54
+
55
+ axis = np.asarray(axis)[()]
56
+ message = "`axis` must be an integer."
57
+ if not np.issubdtype(axis.dtype, np.integer) or axis.ndim != 0:
58
+ raise ValueError(message)
59
+
60
+ message = '`axis` must be compatible with the shape(s) of `x` (and `y`)'
61
+ try:
62
+ if y is None:
63
+ x = np.asarray(x)
64
+ d = x
65
+ else:
66
+ x, y = _broadcast_arrays((x, y), axis=axis)
67
+ d = x - y
68
+ d = np.moveaxis(d, axis, -1)
69
+ except np.AxisError as e:
70
+ raise ValueError(message) from e
71
+
72
+ message = "`x` and `y` must have the same length along `axis`."
73
+ if y is not None and x.shape[axis] != y.shape[axis]:
74
+ raise ValueError(message)
75
+
76
+ message = "`x` (and `y`, if provided) must be an array of real numbers."
77
+ if np.issubdtype(d.dtype, np.integer):
78
+ d = d.astype(np.float64)
79
+ if not np.issubdtype(d.dtype, np.floating):
80
+ raise ValueError(message)
81
+
82
+ zero_method = str(zero_method).lower()
83
+ zero_methods = {"wilcox", "pratt", "zsplit"}
84
+ message = f"`zero_method` must be one of {zero_methods}."
85
+ if zero_method not in zero_methods:
86
+ raise ValueError(message)
87
+
88
+ corrections = {True, False}
89
+ message = f"`correction` must be one of {corrections}."
90
+ if correction not in corrections:
91
+ raise ValueError(message)
92
+
93
+ alternative = str(alternative).lower()
94
+ alternatives = {"two-sided", "less", "greater"}
95
+ message = f"`alternative` must be one of {alternatives}."
96
+ if alternative not in alternatives:
97
+ raise ValueError(message)
98
+
99
+ if not isinstance(method, stats.PermutationMethod):
100
+ methods = {"auto", "approx", "exact"}
101
+ message = (f"`method` must be one of {methods} or "
102
+ "an instance of `stats.PermutationMethod`.")
103
+ if method not in methods:
104
+ raise ValueError(message)
105
+
106
+ # logic unchanged here for backward compatibility
107
+ n_zero = np.sum(d == 0, axis=-1)
108
+ has_zeros = np.any(n_zero > 0)
109
+ if method == "auto":
110
+ if d.shape[-1] <= 50 and not has_zeros:
111
+ method = "exact"
112
+ else:
113
+ method = "approx"
114
+
115
+ n_zero = np.sum(d == 0)
116
+ if n_zero > 0 and method == "exact":
117
+ method = "approx"
118
+ warnings.warn("Exact p-value calculation does not work if there are "
119
+ "zeros. Switching to normal approximation.",
120
+ stacklevel=2)
121
+
122
+ if (method == "approx" and zero_method in ["wilcox", "pratt"]
123
+ and n_zero == d.size and d.size > 0 and d.ndim == 1):
124
+ raise ValueError("zero_method 'wilcox' and 'pratt' do not "
125
+ "work if x - y is zero for all elements.")
126
+
127
+ if 0 < d.shape[-1] < 10 and method == "approx":
128
+ warnings.warn("Sample size too small for normal approximation.", stacklevel=2)
129
+
130
+ return d, zero_method, correction, alternative, method, axis
131
+
132
+
133
+ def _wilcoxon_statistic(d, zero_method='wilcox'):
134
+
135
+ i_zeros = (d == 0)
136
+
137
+ if zero_method == 'wilcox':
138
+ # Wilcoxon's method for treating zeros was to remove them from
139
+ # the calculation. We do this by replacing 0s with NaNs, which
140
+ # are ignored anyway.
141
+ if not d.flags['WRITEABLE']:
142
+ d = d.copy()
143
+ d[i_zeros] = np.nan
144
+
145
+ i_nan = np.isnan(d)
146
+ n_nan = np.sum(i_nan, axis=-1)
147
+ count = d.shape[-1] - n_nan
148
+
149
+ r, t = _rankdata(abs(d), 'average', return_ties=True)
150
+
151
+ r_plus = np.sum((d > 0) * r, axis=-1)
152
+ r_minus = np.sum((d < 0) * r, axis=-1)
153
+
154
+ if zero_method == "zsplit":
155
+ # The "zero-split" method for treating zeros is to add half their contribution
156
+ # to r_plus and half to r_minus.
157
+ # See gh-2263 for the origin of this method.
158
+ r_zero_2 = np.sum(i_zeros * r, axis=-1) / 2
159
+ r_plus += r_zero_2
160
+ r_minus += r_zero_2
161
+
162
+ mn = count * (count + 1.) * 0.25
163
+ se = count * (count + 1.) * (2. * count + 1.)
164
+
165
+ if zero_method == "pratt":
166
+ # Pratt's method for treating zeros was just to modify the z-statistic.
167
+
168
+ # normal approximation needs to be adjusted, see Cureton (1967)
169
+ n_zero = i_zeros.sum(axis=-1)
170
+ mn -= n_zero * (n_zero + 1.) * 0.25
171
+ se -= n_zero * (n_zero + 1.) * (2. * n_zero + 1.)
172
+
173
+ # zeros are not to be included in tie-correction.
174
+ # any tie counts corresponding with zeros are in the 0th column
175
+ t[i_zeros.any(axis=-1), 0] = 0
176
+
177
+ tie_correct = (t**3 - t).sum(axis=-1)
178
+ se -= tie_correct/2
179
+ se = np.sqrt(se / 24)
180
+
181
+ z = (r_plus - mn) / se
182
+
183
+ return r_plus, r_minus, se, z, count
184
+
185
+
186
+ def _correction_sign(z, alternative):
187
+ if alternative == 'greater':
188
+ return 1
189
+ elif alternative == 'less':
190
+ return -1
191
+ else:
192
+ return np.sign(z)
193
+
194
+
195
+ def _wilcoxon_nd(x, y=None, zero_method='wilcox', correction=True,
196
+ alternative='two-sided', method='auto', axis=0):
197
+
198
+ temp = _wilcoxon_iv(x, y, zero_method, correction, alternative, method, axis)
199
+ d, zero_method, correction, alternative, method, axis = temp
200
+
201
+ if d.size == 0:
202
+ NaN = _get_nan(d)
203
+ res = _morestats.WilcoxonResult(statistic=NaN, pvalue=NaN)
204
+ if method == 'approx':
205
+ res.zstatistic = NaN
206
+ return res
207
+
208
+ r_plus, r_minus, se, z, count = _wilcoxon_statistic(d, zero_method)
209
+
210
+ if method == 'approx':
211
+ if correction:
212
+ sign = _correction_sign(z, alternative)
213
+ z -= sign * 0.5 / se
214
+ p = _get_pvalue(z, stats.norm, alternative)
215
+ elif method == 'exact':
216
+ dist = WilcoxonDistribution(count)
217
+ if alternative == 'less':
218
+ p = dist.cdf(r_plus)
219
+ elif alternative == 'greater':
220
+ p = dist.sf(r_plus)
221
+ else:
222
+ p = 2 * np.minimum(dist.sf(r_plus), dist.cdf(r_plus))
223
+ p = np.clip(p, 0, 1)
224
+ else: # `PermutationMethod` instance (already validated)
225
+ p = stats.permutation_test(
226
+ (d,), lambda d: _wilcoxon_statistic(d, zero_method)[0],
227
+ permutation_type='samples', **method._asdict(),
228
+ alternative=alternative, axis=-1).pvalue
229
+
230
+ # for backward compatibility...
231
+ statistic = np.minimum(r_plus, r_minus) if alternative=='two-sided' else r_plus
232
+ z = -np.abs(z) if (alternative == 'two-sided' and method == 'approx') else z
233
+
234
+ res = _morestats.WilcoxonResult(statistic=statistic, pvalue=p[()])
235
+ if method == 'approx':
236
+ res.zstatistic = z[()]
237
+ return res
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (190 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_axis_nan_policy.cpython-310.pyc ADDED
Binary file (34 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_binned_statistic.cpython-310.pyc ADDED
Binary file (16.6 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_boost_ufuncs.cpython-310.pyc ADDED
Binary file (1.73 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_censored_data.cpython-310.pyc ADDED
Binary file (6.12 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_contingency.cpython-310.pyc ADDED
Binary file (5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_continuous_basic.cpython-310.pyc ADDED
Binary file (27.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_continuous_fit_censored.cpython-310.pyc ADDED
Binary file (22.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_crosstab.cpython-310.pyc ADDED
Binary file (3.87 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_discrete_basic.cpython-310.pyc ADDED
Binary file (14 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_entropy.cpython-310.pyc ADDED
Binary file (10.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_fast_gen_inversion.cpython-310.pyc ADDED
Binary file (12.2 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_fit.cpython-310.pyc ADDED
Binary file (30.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_hypotests.cpython-310.pyc ADDED
Binary file (55.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_kdeoth.cpython-310.pyc ADDED
Binary file (16.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_morestats.cpython-310.pyc ADDED
Binary file (99.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_mstats_basic.cpython-310.pyc ADDED
Binary file (68.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_mstats_extras.cpython-310.pyc ADDED
Binary file (5.57 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_multivariate.cpython-310.pyc ADDED
Binary file (112 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_qmc.cpython-310.pyc ADDED
Binary file (44.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_rank.cpython-310.pyc ADDED
Binary file (12.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_resampling.cpython-310.pyc ADDED
Binary file (52.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_sampling.cpython-310.pyc ADDED
Binary file (46.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_sensitivity_analysis.cpython-310.pyc ADDED
Binary file (8.37 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_stats.cpython-310.pyc ADDED
Binary file (265 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_survival.cpython-310.pyc ADDED
Binary file (13.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_tukeylambda_stats.cpython-310.pyc ADDED
Binary file (2.23 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/__pycache__/test_variation.cpython-310.pyc ADDED
Binary file (6.98 kB). View file
 
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/common_tests.py ADDED
@@ -0,0 +1,351 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+
3
+ import numpy as np
4
+ import numpy.testing as npt
5
+ from numpy.testing import assert_allclose, assert_equal
6
+ from pytest import raises as assert_raises
7
+
8
+ import numpy.ma.testutils as ma_npt
9
+
10
+ from scipy._lib._util import (
11
+ getfullargspec_no_self as _getfullargspec, np_long
12
+ )
13
+ from scipy import stats
14
+
15
+
16
+ def check_named_results(res, attributes, ma=False):
17
+ for i, attr in enumerate(attributes):
18
+ if ma:
19
+ ma_npt.assert_equal(res[i], getattr(res, attr))
20
+ else:
21
+ npt.assert_equal(res[i], getattr(res, attr))
22
+
23
+
24
+ def check_normalization(distfn, args, distname):
25
+ norm_moment = distfn.moment(0, *args)
26
+ npt.assert_allclose(norm_moment, 1.0)
27
+
28
+ if distname == "rv_histogram_instance":
29
+ atol, rtol = 1e-5, 0
30
+ else:
31
+ atol, rtol = 1e-7, 1e-7
32
+
33
+ normalization_expect = distfn.expect(lambda x: 1, args=args)
34
+ npt.assert_allclose(normalization_expect, 1.0, atol=atol, rtol=rtol,
35
+ err_msg=distname, verbose=True)
36
+
37
+ _a, _b = distfn.support(*args)
38
+ normalization_cdf = distfn.cdf(_b, *args)
39
+ npt.assert_allclose(normalization_cdf, 1.0)
40
+
41
+
42
+ def check_moment(distfn, arg, m, v, msg):
43
+ m1 = distfn.moment(1, *arg)
44
+ m2 = distfn.moment(2, *arg)
45
+ if not np.isinf(m):
46
+ npt.assert_almost_equal(m1, m, decimal=10,
47
+ err_msg=msg + ' - 1st moment')
48
+ else: # or np.isnan(m1),
49
+ npt.assert_(np.isinf(m1),
50
+ msg + ' - 1st moment -infinite, m1=%s' % str(m1))
51
+
52
+ if not np.isinf(v):
53
+ npt.assert_almost_equal(m2 - m1 * m1, v, decimal=10,
54
+ err_msg=msg + ' - 2ndt moment')
55
+ else: # or np.isnan(m2),
56
+ npt.assert_(np.isinf(m2), msg + f' - 2nd moment -infinite, {m2=}')
57
+
58
+
59
+ def check_mean_expect(distfn, arg, m, msg):
60
+ if np.isfinite(m):
61
+ m1 = distfn.expect(lambda x: x, arg)
62
+ npt.assert_almost_equal(m1, m, decimal=5,
63
+ err_msg=msg + ' - 1st moment (expect)')
64
+
65
+
66
+ def check_var_expect(distfn, arg, m, v, msg):
67
+ dist_looser_tolerances = {"rv_histogram_instance" , "ksone"}
68
+ kwargs = {'rtol': 5e-6} if msg in dist_looser_tolerances else {}
69
+ if np.isfinite(v):
70
+ m2 = distfn.expect(lambda x: x*x, arg)
71
+ npt.assert_allclose(m2, v + m*m, **kwargs)
72
+
73
+
74
+ def check_skew_expect(distfn, arg, m, v, s, msg):
75
+ if np.isfinite(s):
76
+ m3e = distfn.expect(lambda x: np.power(x-m, 3), arg)
77
+ npt.assert_almost_equal(m3e, s * np.power(v, 1.5),
78
+ decimal=5, err_msg=msg + ' - skew')
79
+ else:
80
+ npt.assert_(np.isnan(s))
81
+
82
+
83
+ def check_kurt_expect(distfn, arg, m, v, k, msg):
84
+ if np.isfinite(k):
85
+ m4e = distfn.expect(lambda x: np.power(x-m, 4), arg)
86
+ npt.assert_allclose(m4e, (k + 3.) * np.power(v, 2),
87
+ atol=1e-5, rtol=1e-5,
88
+ err_msg=msg + ' - kurtosis')
89
+ elif not np.isposinf(k):
90
+ npt.assert_(np.isnan(k))
91
+
92
+
93
+ def check_munp_expect(dist, args, msg):
94
+ # If _munp is overridden, test a higher moment. (Before gh-18634, some
95
+ # distributions had issues with moments 5 and higher.)
96
+ if dist._munp.__func__ != stats.rv_continuous._munp:
97
+ res = dist.moment(5, *args) # shouldn't raise an error
98
+ ref = dist.expect(lambda x: x ** 5, args, lb=-np.inf, ub=np.inf)
99
+ if not np.isfinite(res): # could be valid; automated test can't know
100
+ return
101
+ # loose tolerance, mostly to see whether _munp returns *something*
102
+ assert_allclose(res, ref, atol=1e-10, rtol=1e-4,
103
+ err_msg=msg + ' - higher moment / _munp')
104
+
105
+
106
+ def check_entropy(distfn, arg, msg):
107
+ ent = distfn.entropy(*arg)
108
+ npt.assert_(not np.isnan(ent), msg + 'test Entropy is nan')
109
+
110
+
111
+ def check_private_entropy(distfn, args, superclass):
112
+ # compare a generic _entropy with the distribution-specific implementation
113
+ npt.assert_allclose(distfn._entropy(*args),
114
+ superclass._entropy(distfn, *args))
115
+
116
+
117
+ def check_entropy_vect_scale(distfn, arg):
118
+ # check 2-d
119
+ sc = np.asarray([[1, 2], [3, 4]])
120
+ v_ent = distfn.entropy(*arg, scale=sc)
121
+ s_ent = [distfn.entropy(*arg, scale=s) for s in sc.ravel()]
122
+ s_ent = np.asarray(s_ent).reshape(v_ent.shape)
123
+ assert_allclose(v_ent, s_ent, atol=1e-14)
124
+
125
+ # check invalid value, check cast
126
+ sc = [1, 2, -3]
127
+ v_ent = distfn.entropy(*arg, scale=sc)
128
+ s_ent = [distfn.entropy(*arg, scale=s) for s in sc]
129
+ s_ent = np.asarray(s_ent).reshape(v_ent.shape)
130
+ assert_allclose(v_ent, s_ent, atol=1e-14)
131
+
132
+
133
+ def check_edge_support(distfn, args):
134
+ # Make sure that x=self.a and self.b are handled correctly.
135
+ x = distfn.support(*args)
136
+ if isinstance(distfn, stats.rv_discrete):
137
+ x = x[0]-1, x[1]
138
+
139
+ npt.assert_equal(distfn.cdf(x, *args), [0.0, 1.0])
140
+ npt.assert_equal(distfn.sf(x, *args), [1.0, 0.0])
141
+
142
+ if distfn.name not in ('skellam', 'dlaplace'):
143
+ # with a = -inf, log(0) generates warnings
144
+ npt.assert_equal(distfn.logcdf(x, *args), [-np.inf, 0.0])
145
+ npt.assert_equal(distfn.logsf(x, *args), [0.0, -np.inf])
146
+
147
+ npt.assert_equal(distfn.ppf([0.0, 1.0], *args), x)
148
+ npt.assert_equal(distfn.isf([0.0, 1.0], *args), x[::-1])
149
+
150
+ # out-of-bounds for isf & ppf
151
+ npt.assert_(np.isnan(distfn.isf([-1, 2], *args)).all())
152
+ npt.assert_(np.isnan(distfn.ppf([-1, 2], *args)).all())
153
+
154
+
155
+ def check_named_args(distfn, x, shape_args, defaults, meths):
156
+ ## Check calling w/ named arguments.
157
+
158
+ # check consistency of shapes, numargs and _parse signature
159
+ signature = _getfullargspec(distfn._parse_args)
160
+ npt.assert_(signature.varargs is None)
161
+ npt.assert_(signature.varkw is None)
162
+ npt.assert_(not signature.kwonlyargs)
163
+ npt.assert_(list(signature.defaults) == list(defaults))
164
+
165
+ shape_argnames = signature.args[:-len(defaults)] # a, b, loc=0, scale=1
166
+ if distfn.shapes:
167
+ shapes_ = distfn.shapes.replace(',', ' ').split()
168
+ else:
169
+ shapes_ = ''
170
+ npt.assert_(len(shapes_) == distfn.numargs)
171
+ npt.assert_(len(shapes_) == len(shape_argnames))
172
+
173
+ # check calling w/ named arguments
174
+ shape_args = list(shape_args)
175
+
176
+ vals = [meth(x, *shape_args) for meth in meths]
177
+ npt.assert_(np.all(np.isfinite(vals)))
178
+
179
+ names, a, k = shape_argnames[:], shape_args[:], {}
180
+ while names:
181
+ k.update({names.pop(): a.pop()})
182
+ v = [meth(x, *a, **k) for meth in meths]
183
+ npt.assert_array_equal(vals, v)
184
+ if 'n' not in k.keys():
185
+ # `n` is first parameter of moment(), so can't be used as named arg
186
+ npt.assert_equal(distfn.moment(1, *a, **k),
187
+ distfn.moment(1, *shape_args))
188
+
189
+ # unknown arguments should not go through:
190
+ k.update({'kaboom': 42})
191
+ assert_raises(TypeError, distfn.cdf, x, **k)
192
+
193
+
194
+ def check_random_state_property(distfn, args):
195
+ # check the random_state attribute of a distribution *instance*
196
+
197
+ # This test fiddles with distfn.random_state. This breaks other tests,
198
+ # hence need to save it and then restore.
199
+ rndm = distfn.random_state
200
+
201
+ # baseline: this relies on the global state
202
+ np.random.seed(1234)
203
+ distfn.random_state = None
204
+ r0 = distfn.rvs(*args, size=8)
205
+
206
+ # use an explicit instance-level random_state
207
+ distfn.random_state = 1234
208
+ r1 = distfn.rvs(*args, size=8)
209
+ npt.assert_equal(r0, r1)
210
+
211
+ distfn.random_state = np.random.RandomState(1234)
212
+ r2 = distfn.rvs(*args, size=8)
213
+ npt.assert_equal(r0, r2)
214
+
215
+ # check that np.random.Generator can be used (numpy >= 1.17)
216
+ if hasattr(np.random, 'default_rng'):
217
+ # obtain a np.random.Generator object
218
+ rng = np.random.default_rng(1234)
219
+ distfn.rvs(*args, size=1, random_state=rng)
220
+
221
+ # can override the instance-level random_state for an individual .rvs call
222
+ distfn.random_state = 2
223
+ orig_state = distfn.random_state.get_state()
224
+
225
+ r3 = distfn.rvs(*args, size=8, random_state=np.random.RandomState(1234))
226
+ npt.assert_equal(r0, r3)
227
+
228
+ # ... and that does not alter the instance-level random_state!
229
+ npt.assert_equal(distfn.random_state.get_state(), orig_state)
230
+
231
+ # finally, restore the random_state
232
+ distfn.random_state = rndm
233
+
234
+
235
+ def check_meth_dtype(distfn, arg, meths):
236
+ q0 = [0.25, 0.5, 0.75]
237
+ x0 = distfn.ppf(q0, *arg)
238
+ x_cast = [x0.astype(tp) for tp in (np_long, np.float16, np.float32,
239
+ np.float64)]
240
+
241
+ for x in x_cast:
242
+ # casting may have clipped the values, exclude those
243
+ distfn._argcheck(*arg)
244
+ x = x[(distfn.a < x) & (x < distfn.b)]
245
+ for meth in meths:
246
+ val = meth(x, *arg)
247
+ npt.assert_(val.dtype == np.float64)
248
+
249
+
250
+ def check_ppf_dtype(distfn, arg):
251
+ q0 = np.asarray([0.25, 0.5, 0.75])
252
+ q_cast = [q0.astype(tp) for tp in (np.float16, np.float32, np.float64)]
253
+ for q in q_cast:
254
+ for meth in [distfn.ppf, distfn.isf]:
255
+ val = meth(q, *arg)
256
+ npt.assert_(val.dtype == np.float64)
257
+
258
+
259
+ def check_cmplx_deriv(distfn, arg):
260
+ # Distributions allow complex arguments.
261
+ def deriv(f, x, *arg):
262
+ x = np.asarray(x)
263
+ h = 1e-10
264
+ return (f(x + h*1j, *arg)/h).imag
265
+
266
+ x0 = distfn.ppf([0.25, 0.51, 0.75], *arg)
267
+ x_cast = [x0.astype(tp) for tp in (np_long, np.float16, np.float32,
268
+ np.float64)]
269
+
270
+ for x in x_cast:
271
+ # casting may have clipped the values, exclude those
272
+ distfn._argcheck(*arg)
273
+ x = x[(distfn.a < x) & (x < distfn.b)]
274
+
275
+ pdf, cdf, sf = distfn.pdf(x, *arg), distfn.cdf(x, *arg), distfn.sf(x, *arg)
276
+ assert_allclose(deriv(distfn.cdf, x, *arg), pdf, rtol=1e-5)
277
+ assert_allclose(deriv(distfn.logcdf, x, *arg), pdf/cdf, rtol=1e-5)
278
+
279
+ assert_allclose(deriv(distfn.sf, x, *arg), -pdf, rtol=1e-5)
280
+ assert_allclose(deriv(distfn.logsf, x, *arg), -pdf/sf, rtol=1e-5)
281
+
282
+ assert_allclose(deriv(distfn.logpdf, x, *arg),
283
+ deriv(distfn.pdf, x, *arg) / distfn.pdf(x, *arg),
284
+ rtol=1e-5)
285
+
286
+
287
+ def check_pickling(distfn, args):
288
+ # check that a distribution instance pickles and unpickles
289
+ # pay special attention to the random_state property
290
+
291
+ # save the random_state (restore later)
292
+ rndm = distfn.random_state
293
+
294
+ # check unfrozen
295
+ distfn.random_state = 1234
296
+ distfn.rvs(*args, size=8)
297
+ s = pickle.dumps(distfn)
298
+ r0 = distfn.rvs(*args, size=8)
299
+
300
+ unpickled = pickle.loads(s)
301
+ r1 = unpickled.rvs(*args, size=8)
302
+ npt.assert_equal(r0, r1)
303
+
304
+ # also smoke test some methods
305
+ medians = [distfn.ppf(0.5, *args), unpickled.ppf(0.5, *args)]
306
+ npt.assert_equal(medians[0], medians[1])
307
+ npt.assert_equal(distfn.cdf(medians[0], *args),
308
+ unpickled.cdf(medians[1], *args))
309
+
310
+ # check frozen pickling/unpickling with rvs
311
+ frozen_dist = distfn(*args)
312
+ pkl = pickle.dumps(frozen_dist)
313
+ unpickled = pickle.loads(pkl)
314
+
315
+ r0 = frozen_dist.rvs(size=8)
316
+ r1 = unpickled.rvs(size=8)
317
+ npt.assert_equal(r0, r1)
318
+
319
+ # check pickling/unpickling of .fit method
320
+ if hasattr(distfn, "fit"):
321
+ fit_function = distfn.fit
322
+ pickled_fit_function = pickle.dumps(fit_function)
323
+ unpickled_fit_function = pickle.loads(pickled_fit_function)
324
+ assert fit_function.__name__ == unpickled_fit_function.__name__ == "fit"
325
+
326
+ # restore the random_state
327
+ distfn.random_state = rndm
328
+
329
+
330
+ def check_freezing(distfn, args):
331
+ # regression test for gh-11089: freezing a distribution fails
332
+ # if loc and/or scale are specified
333
+ if isinstance(distfn, stats.rv_continuous):
334
+ locscale = {'loc': 1, 'scale': 2}
335
+ else:
336
+ locscale = {'loc': 1}
337
+
338
+ rv = distfn(*args, **locscale)
339
+ assert rv.a == distfn(*args).a
340
+ assert rv.b == distfn(*args).b
341
+
342
+
343
+ def check_rvs_broadcast(distfunc, distname, allargs, shape, shape_only, otype):
344
+ np.random.seed(123)
345
+ sample = distfunc.rvs(*allargs)
346
+ assert_equal(sample.shape, shape, "%s: rvs failed to broadcast" % distname)
347
+ if not shape_only:
348
+ rvs = np.vectorize(lambda *allargs: distfunc.rvs(*allargs), otypes=otype)
349
+ np.random.seed(123)
350
+ expected = rvs(*allargs)
351
+ assert_allclose(sample, expected, rtol=1e-13)
llmeval-env/lib/python3.10/site-packages/scipy/stats/tests/data/__pycache__/_mvt.cpython-310.pyc ADDED
Binary file (4.05 kB). View file