Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/bbp_pi.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/continued_fraction.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/digits.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/ecm.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/egyptian_fraction.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/elliptic_curve.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/factor_.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/generate.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/modular.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/multinomial.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/partitions_.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/primetest.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/qs.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/residue_ntheory.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_bbp_pi.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_continued_fraction.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_digits.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_ecm.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_egyptian_fraction.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_elliptic_curve.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_factor_.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_generate.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_modular.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_multinomial.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_partitions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_primetest.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_qs.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_residue.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/test_bbp_pi.py +133 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/test_elliptic_curve.py +20 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/test_generate.py +250 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/test_primetest.py +159 -0
- llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/test_qs.py +124 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/__init__.py +23 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/__pycache__/functions.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/__pycache__/index_methods.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/__pycache__/indexed.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/__pycache__/tensor.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/__pycache__/toperators.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/__init__.py +271 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/array_comprehension.py +399 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/array_derivatives.py +129 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/arrayop.py +528 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/dense_ndim_array.py +206 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/mutable_ndim_array.py +13 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/ndim_array.py +600 -0
- llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/sparse_ndim_array.py +196 -0
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.51 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/bbp_pi.cpython-310.pyc
ADDED
Binary file (5.13 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/continued_fraction.cpython-310.pyc
ADDED
Binary file (9.17 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/digits.cpython-310.pyc
ADDED
Binary file (3.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/ecm.cpython-310.pyc
ADDED
Binary file (9.12 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/egyptian_fraction.cpython-310.pyc
ADDED
Binary file (6.55 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/elliptic_curve.cpython-310.pyc
ADDED
Binary file (11.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/factor_.cpython-310.pyc
ADDED
Binary file (65.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/generate.cpython-310.pyc
ADDED
Binary file (26.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/modular.cpython-310.pyc
ADDED
Binary file (7.43 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/multinomial.cpython-310.pyc
ADDED
Binary file (4.51 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/partitions_.cpython-310.pyc
ADDED
Binary file (4.81 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/primetest.cpython-310.pyc
ADDED
Binary file (15.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/qs.cpython-310.pyc
ADDED
Binary file (15.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/__pycache__/residue_ntheory.cpython-310.pyc
ADDED
Binary file (34.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (192 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_bbp_pi.cpython-310.pyc
ADDED
Binary file (9.52 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_continued_fraction.cpython-310.pyc
ADDED
Binary file (3.92 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_digits.cpython-310.pyc
ADDED
Binary file (2.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_ecm.cpython-310.pyc
ADDED
Binary file (2.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_egyptian_fraction.cpython-310.pyc
ADDED
Binary file (2.76 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_elliptic_curve.cpython-310.pyc
ADDED
Binary file (742 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_factor_.cpython-310.pyc
ADDED
Binary file (26.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_generate.cpython-310.pyc
ADDED
Binary file (10.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_modular.cpython-310.pyc
ADDED
Binary file (1.89 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_multinomial.cpython-310.pyc
ADDED
Binary file (2.69 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_partitions.cpython-310.pyc
ADDED
Binary file (858 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_primetest.cpython-310.pyc
ADDED
Binary file (6.08 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_qs.cpython-310.pyc
ADDED
Binary file (4.85 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/__pycache__/test_residue.cpython-310.pyc
ADDED
Binary file (11.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/test_bbp_pi.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.random import randint
|
2 |
+
|
3 |
+
from sympy.ntheory.bbp_pi import pi_hex_digits
|
4 |
+
from sympy.testing.pytest import raises
|
5 |
+
|
6 |
+
|
7 |
+
# http://www.herongyang.com/Cryptography/Blowfish-First-8366-Hex-Digits-of-PI.html
|
8 |
+
# There are actually 8336 listed there; with the prepended 3 there are 8337
|
9 |
+
# below
|
10 |
+
dig=''.join('''
|
11 |
+
3243f6a8885a308d313198a2e03707344a4093822299f31d0082efa98ec4e6c89452821e638d013
|
12 |
+
77be5466cf34e90c6cc0ac29b7c97c50dd3f84d5b5b54709179216d5d98979fb1bd1310ba698dfb5
|
13 |
+
ac2ffd72dbd01adfb7b8e1afed6a267e96ba7c9045f12c7f9924a19947b3916cf70801f2e2858efc
|
14 |
+
16636920d871574e69a458fea3f4933d7e0d95748f728eb658718bcd5882154aee7b54a41dc25a59
|
15 |
+
b59c30d5392af26013c5d1b023286085f0ca417918b8db38ef8e79dcb0603a180e6c9e0e8bb01e8a
|
16 |
+
3ed71577c1bd314b2778af2fda55605c60e65525f3aa55ab945748986263e8144055ca396a2aab10
|
17 |
+
b6b4cc5c341141e8cea15486af7c72e993b3ee1411636fbc2a2ba9c55d741831f6ce5c3e169b8793
|
18 |
+
1eafd6ba336c24cf5c7a325381289586773b8f48986b4bb9afc4bfe81b6628219361d809ccfb21a9
|
19 |
+
91487cac605dec8032ef845d5de98575b1dc262302eb651b8823893e81d396acc50f6d6ff383f442
|
20 |
+
392e0b4482a484200469c8f04a9e1f9b5e21c66842f6e96c9a670c9c61abd388f06a51a0d2d8542f
|
21 |
+
68960fa728ab5133a36eef0b6c137a3be4ba3bf0507efb2a98a1f1651d39af017666ca593e82430e
|
22 |
+
888cee8619456f9fb47d84a5c33b8b5ebee06f75d885c12073401a449f56c16aa64ed3aa62363f77
|
23 |
+
061bfedf72429b023d37d0d724d00a1248db0fead349f1c09b075372c980991b7b25d479d8f6e8de
|
24 |
+
f7e3fe501ab6794c3b976ce0bd04c006bac1a94fb6409f60c45e5c9ec2196a246368fb6faf3e6c53
|
25 |
+
b51339b2eb3b52ec6f6dfc511f9b30952ccc814544af5ebd09bee3d004de334afd660f2807192e4b
|
26 |
+
b3c0cba85745c8740fd20b5f39b9d3fbdb5579c0bd1a60320ad6a100c6402c7279679f25fefb1fa3
|
27 |
+
cc8ea5e9f8db3222f83c7516dffd616b152f501ec8ad0552ab323db5fafd23876053317b483e00df
|
28 |
+
829e5c57bbca6f8ca01a87562edf1769dbd542a8f6287effc3ac6732c68c4f5573695b27b0bbca58
|
29 |
+
c8e1ffa35db8f011a010fa3d98fd2183b84afcb56c2dd1d35b9a53e479b6f84565d28e49bc4bfb97
|
30 |
+
90e1ddf2daa4cb7e3362fb1341cee4c6e8ef20cada36774c01d07e9efe2bf11fb495dbda4dae9091
|
31 |
+
98eaad8e716b93d5a0d08ed1d0afc725e08e3c5b2f8e7594b78ff6e2fbf2122b648888b812900df0
|
32 |
+
1c4fad5ea0688fc31cd1cff191b3a8c1ad2f2f2218be0e1777ea752dfe8b021fa1e5a0cc0fb56f74
|
33 |
+
e818acf3d6ce89e299b4a84fe0fd13e0b77cc43b81d2ada8d9165fa2668095770593cc7314211a14
|
34 |
+
77e6ad206577b5fa86c75442f5fb9d35cfebcdaf0c7b3e89a0d6411bd3ae1e7e4900250e2d2071b3
|
35 |
+
5e226800bb57b8e0af2464369bf009b91e5563911d59dfa6aa78c14389d95a537f207d5ba202e5b9
|
36 |
+
c5832603766295cfa911c819684e734a41b3472dca7b14a94a1b5100529a532915d60f573fbc9bc6
|
37 |
+
e42b60a47681e6740008ba6fb5571be91ff296ec6b2a0dd915b6636521e7b9f9b6ff34052ec58556
|
38 |
+
6453b02d5da99f8fa108ba47996e85076a4b7a70e9b5b32944db75092ec4192623ad6ea6b049a7df
|
39 |
+
7d9cee60b88fedb266ecaa8c71699a17ff5664526cc2b19ee1193602a575094c29a0591340e4183a
|
40 |
+
3e3f54989a5b429d656b8fe4d699f73fd6a1d29c07efe830f54d2d38e6f0255dc14cdd20868470eb
|
41 |
+
266382e9c6021ecc5e09686b3f3ebaefc93c9718146b6a70a1687f358452a0e286b79c5305aa5007
|
42 |
+
373e07841c7fdeae5c8e7d44ec5716f2b8b03ada37f0500c0df01c1f040200b3ffae0cf51a3cb574
|
43 |
+
b225837a58dc0921bdd19113f97ca92ff69432477322f547013ae5e58137c2dadcc8b576349af3dd
|
44 |
+
a7a94461460fd0030eecc8c73ea4751e41e238cd993bea0e2f3280bba1183eb3314e548b384f6db9
|
45 |
+
086f420d03f60a04bf2cb8129024977c795679b072bcaf89afde9a771fd9930810b38bae12dccf3f
|
46 |
+
2e5512721f2e6b7124501adde69f84cd877a5847187408da17bc9f9abce94b7d8cec7aec3adb851d
|
47 |
+
fa63094366c464c3d2ef1c18473215d908dd433b3724c2ba1612a14d432a65c45150940002133ae4
|
48 |
+
dd71dff89e10314e5581ac77d65f11199b043556f1d7a3c76b3c11183b5924a509f28fe6ed97f1fb
|
49 |
+
fa9ebabf2c1e153c6e86e34570eae96fb1860e5e0a5a3e2ab3771fe71c4e3d06fa2965dcb999e71d
|
50 |
+
0f803e89d65266c8252e4cc9789c10b36ac6150eba94e2ea78a5fc3c531e0a2df4f2f74ea7361d2b
|
51 |
+
3d1939260f19c279605223a708f71312b6ebadfe6eeac31f66e3bc4595a67bc883b17f37d1018cff
|
52 |
+
28c332ddefbe6c5aa56558218568ab9802eecea50fdb2f953b2aef7dad5b6e2f841521b628290761
|
53 |
+
70ecdd4775619f151013cca830eb61bd960334fe1eaa0363cfb5735c904c70a239d59e9e0bcbaade
|
54 |
+
14eecc86bc60622ca79cab5cabb2f3846e648b1eaf19bdf0caa02369b9655abb5040685a323c2ab4
|
55 |
+
b3319ee9d5c021b8f79b540b19875fa09995f7997e623d7da8f837889a97e32d7711ed935f166812
|
56 |
+
810e358829c7e61fd696dedfa17858ba9957f584a51b2272639b83c3ff1ac24696cdb30aeb532e30
|
57 |
+
548fd948e46dbc312858ebf2ef34c6ffeafe28ed61ee7c3c735d4a14d9e864b7e342105d14203e13
|
58 |
+
e045eee2b6a3aaabeadb6c4f15facb4fd0c742f442ef6abbb5654f3b1d41cd2105d81e799e86854d
|
59 |
+
c7e44b476a3d816250cf62a1f25b8d2646fc8883a0c1c7b6a37f1524c369cb749247848a0b5692b2
|
60 |
+
85095bbf00ad19489d1462b17423820e0058428d2a0c55f5ea1dadf43e233f70613372f0928d937e
|
61 |
+
41d65fecf16c223bdb7cde3759cbee74604085f2a7ce77326ea607808419f8509ee8efd85561d997
|
62 |
+
35a969a7aac50c06c25a04abfc800bcadc9e447a2ec3453484fdd567050e1e9ec9db73dbd3105588
|
63 |
+
cd675fda79e3674340c5c43465713e38d83d28f89ef16dff20153e21e78fb03d4ae6e39f2bdb83ad
|
64 |
+
f7e93d5a68948140f7f64c261c94692934411520f77602d4f7bcf46b2ed4a20068d40824713320f4
|
65 |
+
6a43b7d4b7500061af1e39f62e9724454614214f74bf8b88404d95fc1d96b591af70f4ddd366a02f
|
66 |
+
45bfbc09ec03bd97857fac6dd031cb850496eb27b355fd3941da2547e6abca0a9a28507825530429
|
67 |
+
f40a2c86dae9b66dfb68dc1462d7486900680ec0a427a18dee4f3ffea2e887ad8cb58ce0067af4d6
|
68 |
+
b6aace1e7cd3375fecce78a399406b2a4220fe9e35d9f385b9ee39d7ab3b124e8b1dc9faf74b6d18
|
69 |
+
5626a36631eae397b23a6efa74dd5b43326841e7f7ca7820fbfb0af54ed8feb397454056acba4895
|
70 |
+
2755533a3a20838d87fe6ba9b7d096954b55a867bca1159a58cca9296399e1db33a62a4a563f3125
|
71 |
+
f95ef47e1c9029317cfdf8e80204272f7080bb155c05282ce395c11548e4c66d2248c1133fc70f86
|
72 |
+
dc07f9c9ee41041f0f404779a45d886e17325f51ebd59bc0d1f2bcc18f41113564257b7834602a9c
|
73 |
+
60dff8e8a31f636c1b0e12b4c202e1329eaf664fd1cad181156b2395e0333e92e13b240b62eebeb9
|
74 |
+
2285b2a20ee6ba0d99de720c8c2da2f728d012784595b794fd647d0862e7ccf5f05449a36f877d48
|
75 |
+
fac39dfd27f33e8d1e0a476341992eff743a6f6eabf4f8fd37a812dc60a1ebddf8991be14cdb6e6b
|
76 |
+
0dc67b55106d672c372765d43bdcd0e804f1290dc7cc00ffa3b5390f92690fed0b667b9ffbcedb7d
|
77 |
+
9ca091cf0bd9155ea3bb132f88515bad247b9479bf763bd6eb37392eb3cc1159798026e297f42e31
|
78 |
+
2d6842ada7c66a2b3b12754ccc782ef11c6a124237b79251e706a1bbe64bfb63501a6b101811caed
|
79 |
+
fa3d25bdd8e2e1c3c9444216590a121386d90cec6ed5abea2a64af674eda86a85fbebfe98864e4c3
|
80 |
+
fe9dbc8057f0f7c08660787bf86003604dd1fd8346f6381fb07745ae04d736fccc83426b33f01eab
|
81 |
+
71b08041873c005e5f77a057bebde8ae2455464299bf582e614e58f48ff2ddfda2f474ef388789bd
|
82 |
+
c25366f9c3c8b38e74b475f25546fcd9b97aeb26618b1ddf84846a0e79915f95e2466e598e20b457
|
83 |
+
708cd55591c902de4cb90bace1bb8205d011a862487574a99eb77f19b6e0a9dc09662d09a1c43246
|
84 |
+
33e85a1f0209f0be8c4a99a0251d6efe101ab93d1d0ba5a4dfa186f20f2868f169dcb7da83573906
|
85 |
+
fea1e2ce9b4fcd7f5250115e01a70683faa002b5c40de6d0279af88c27773f8641c3604c0661a806
|
86 |
+
b5f0177a28c0f586e0006058aa30dc7d6211e69ed72338ea6353c2dd94c2c21634bbcbee5690bcb6
|
87 |
+
deebfc7da1ce591d766f05e4094b7c018839720a3d7c927c2486e3725f724d9db91ac15bb4d39eb8
|
88 |
+
fced54557808fca5b5d83d7cd34dad0fc41e50ef5eb161e6f8a28514d96c51133c6fd5c7e756e14e
|
89 |
+
c4362abfceddc6c837d79a323492638212670efa8e406000e03a39ce37d3faf5cfabc277375ac52d
|
90 |
+
1b5cb0679e4fa33742d382274099bc9bbed5118e9dbf0f7315d62d1c7ec700c47bb78c1b6b21a190
|
91 |
+
45b26eb1be6a366eb45748ab2fbc946e79c6a376d26549c2c8530ff8ee468dde7dd5730a1d4cd04d
|
92 |
+
c62939bbdba9ba4650ac9526e8be5ee304a1fad5f06a2d519a63ef8ce29a86ee22c089c2b843242e
|
93 |
+
f6a51e03aa9cf2d0a483c061ba9be96a4d8fe51550ba645bd62826a2f9a73a3ae14ba99586ef5562
|
94 |
+
e9c72fefd3f752f7da3f046f6977fa0a5980e4a91587b086019b09e6ad3b3ee593e990fd5a9e34d7
|
95 |
+
972cf0b7d9022b8b5196d5ac3a017da67dd1cf3ed67c7d2d281f9f25cfadf2b89b5ad6b4725a88f5
|
96 |
+
4ce029ac71e019a5e647b0acfded93fa9be8d3c48d283b57ccf8d5662979132e28785f0191ed7560
|
97 |
+
55f7960e44e3d35e8c15056dd488f46dba03a161250564f0bdc3eb9e153c9057a297271aeca93a07
|
98 |
+
2a1b3f6d9b1e6321f5f59c66fb26dcf3197533d928b155fdf5035634828aba3cbb28517711c20ad9
|
99 |
+
f8abcc5167ccad925f4de817513830dc8e379d58629320f991ea7a90c2fb3e7bce5121ce64774fbe
|
100 |
+
32a8b6e37ec3293d4648de53696413e680a2ae0810dd6db22469852dfd09072166b39a460a6445c0
|
101 |
+
dd586cdecf1c20c8ae5bbef7dd1b588d40ccd2017f6bb4e3bbdda26a7e3a59ff453e350a44bcb4cd
|
102 |
+
d572eacea8fa6484bb8d6612aebf3c6f47d29be463542f5d9eaec2771bf64e6370740e0d8de75b13
|
103 |
+
57f8721671af537d5d4040cb084eb4e2cc34d2466a0115af84e1b0042895983a1d06b89fb4ce6ea0
|
104 |
+
486f3f3b823520ab82011a1d4b277227f8611560b1e7933fdcbb3a792b344525bda08839e151ce79
|
105 |
+
4b2f32c9b7a01fbac9e01cc87ebcc7d1f6cf0111c3a1e8aac71a908749d44fbd9ad0dadecbd50ada
|
106 |
+
380339c32ac69136678df9317ce0b12b4ff79e59b743f5bb3af2d519ff27d9459cbf97222c15e6fc
|
107 |
+
2a0f91fc719b941525fae59361ceb69cebc2a8645912baa8d1b6c1075ee3056a0c10d25065cb03a4
|
108 |
+
42e0ec6e0e1698db3b4c98a0be3278e9649f1f9532e0d392dfd3a0342b8971f21e1b0a74414ba334
|
109 |
+
8cc5be7120c37632d8df359f8d9b992f2ee60b6f470fe3f11de54cda541edad891ce6279cfcd3e7e
|
110 |
+
6f1618b166fd2c1d05848fd2c5f6fb2299f523f357a632762393a8353156cccd02acf081625a75eb
|
111 |
+
b56e16369788d273ccde96629281b949d04c50901b71c65614e6c6c7bd327a140a45e1d006c3f27b
|
112 |
+
9ac9aa53fd62a80f00bb25bfe235bdd2f671126905b2040222b6cbcf7ccd769c2b53113ec01640e3
|
113 |
+
d338abbd602547adf0ba38209cf746ce7677afa1c52075606085cbfe4e8ae88dd87aaaf9b04cf9aa
|
114 |
+
7e1948c25c02fb8a8c01c36ae4d6ebe1f990d4f869a65cdea03f09252dc208e69fb74e6132ce77e2
|
115 |
+
5b578fdfe33ac372e6'''.split())
|
116 |
+
|
117 |
+
|
118 |
+
def test_hex_pi_nth_digits():
|
119 |
+
assert pi_hex_digits(0) == '3243f6a8885a30'
|
120 |
+
assert pi_hex_digits(1) == '243f6a8885a308'
|
121 |
+
assert pi_hex_digits(10000) == '68ac8fcfb8016c'
|
122 |
+
assert pi_hex_digits(13) == '08d313198a2e03'
|
123 |
+
assert pi_hex_digits(0, 3) == '324'
|
124 |
+
assert pi_hex_digits(0, 0) == ''
|
125 |
+
raises(ValueError, lambda: pi_hex_digits(-1))
|
126 |
+
raises(ValueError, lambda: pi_hex_digits(3.14))
|
127 |
+
|
128 |
+
# this will pick a random segment to compute every time
|
129 |
+
# it is run. If it ever fails, there is an error in the
|
130 |
+
# computation.
|
131 |
+
n = randint(0, len(dig))
|
132 |
+
prec = randint(0, len(dig) - n)
|
133 |
+
assert pi_hex_digits(n, prec) == dig[n: n + prec]
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/test_elliptic_curve.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.ntheory.elliptic_curve import EllipticCurve
|
2 |
+
|
3 |
+
|
4 |
+
def test_elliptic_curve():
|
5 |
+
# Point addition and multiplication
|
6 |
+
e3 = EllipticCurve(-1, 9)
|
7 |
+
p = e3(0, 3)
|
8 |
+
q = e3(-1, 3)
|
9 |
+
r = p + q
|
10 |
+
assert r.x == 1 and r.y == -3
|
11 |
+
r = 2*p + q
|
12 |
+
assert r.x == 35 and r.y == 207
|
13 |
+
r = -p + q
|
14 |
+
assert r.x == 37 and r.y == 225
|
15 |
+
# Verify result in http://www.lmfdb.org/EllipticCurve/Q
|
16 |
+
# Discriminant
|
17 |
+
assert EllipticCurve(-1, 9).discriminant == -34928
|
18 |
+
assert EllipticCurve(-2731, -55146, 1, 0, 1).discriminant == 25088
|
19 |
+
# Torsion points
|
20 |
+
assert len(EllipticCurve(0, 1).torsion_points()) == 6
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/test_generate.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import (I, Rational, nan, zoo)
|
2 |
+
from sympy.core.singleton import S
|
3 |
+
from sympy.core.symbol import Symbol
|
4 |
+
from sympy.ntheory.generate import (sieve, Sieve)
|
5 |
+
from sympy.series.limits import limit
|
6 |
+
|
7 |
+
from sympy.ntheory import isprime, totient, mobius, randprime, nextprime, prevprime, \
|
8 |
+
primerange, primepi, prime, primorial, composite, compositepi, reduced_totient
|
9 |
+
from sympy.ntheory.generate import cycle_length
|
10 |
+
from sympy.ntheory.primetest import mr
|
11 |
+
from sympy.testing.pytest import raises
|
12 |
+
|
13 |
+
def test_prime():
|
14 |
+
assert prime(1) == 2
|
15 |
+
assert prime(2) == 3
|
16 |
+
assert prime(5) == 11
|
17 |
+
assert prime(11) == 31
|
18 |
+
assert prime(57) == 269
|
19 |
+
assert prime(296) == 1949
|
20 |
+
assert prime(559) == 4051
|
21 |
+
assert prime(3000) == 27449
|
22 |
+
assert prime(4096) == 38873
|
23 |
+
assert prime(9096) == 94321
|
24 |
+
assert prime(25023) == 287341
|
25 |
+
assert prime(10000000) == 179424673 # issue #20951
|
26 |
+
assert prime(99999999) == 2038074739
|
27 |
+
raises(ValueError, lambda: prime(0))
|
28 |
+
sieve.extend(3000)
|
29 |
+
assert prime(401) == 2749
|
30 |
+
raises(ValueError, lambda: prime(-1))
|
31 |
+
|
32 |
+
|
33 |
+
def test_primepi():
|
34 |
+
assert primepi(-1) == 0
|
35 |
+
assert primepi(1) == 0
|
36 |
+
assert primepi(2) == 1
|
37 |
+
assert primepi(Rational(7, 2)) == 2
|
38 |
+
assert primepi(3.5) == 2
|
39 |
+
assert primepi(5) == 3
|
40 |
+
assert primepi(11) == 5
|
41 |
+
assert primepi(57) == 16
|
42 |
+
assert primepi(296) == 62
|
43 |
+
assert primepi(559) == 102
|
44 |
+
assert primepi(3000) == 430
|
45 |
+
assert primepi(4096) == 564
|
46 |
+
assert primepi(9096) == 1128
|
47 |
+
assert primepi(25023) == 2763
|
48 |
+
assert primepi(10**8) == 5761455
|
49 |
+
assert primepi(253425253) == 13856396
|
50 |
+
assert primepi(8769575643) == 401464322
|
51 |
+
sieve.extend(3000)
|
52 |
+
assert primepi(2000) == 303
|
53 |
+
|
54 |
+
n = Symbol('n')
|
55 |
+
assert primepi(n).subs(n, 2) == 1
|
56 |
+
|
57 |
+
r = Symbol('r', real=True)
|
58 |
+
assert primepi(r).subs(r, 2) == 1
|
59 |
+
|
60 |
+
assert primepi(S.Infinity) is S.Infinity
|
61 |
+
assert primepi(S.NegativeInfinity) == 0
|
62 |
+
|
63 |
+
assert limit(primepi(n), n, 100) == 25
|
64 |
+
|
65 |
+
raises(ValueError, lambda: primepi(I))
|
66 |
+
raises(ValueError, lambda: primepi(1 + I))
|
67 |
+
raises(ValueError, lambda: primepi(zoo))
|
68 |
+
raises(ValueError, lambda: primepi(nan))
|
69 |
+
|
70 |
+
|
71 |
+
def test_composite():
|
72 |
+
from sympy.ntheory.generate import sieve
|
73 |
+
sieve._reset()
|
74 |
+
assert composite(1) == 4
|
75 |
+
assert composite(2) == 6
|
76 |
+
assert composite(5) == 10
|
77 |
+
assert composite(11) == 20
|
78 |
+
assert composite(41) == 58
|
79 |
+
assert composite(57) == 80
|
80 |
+
assert composite(296) == 370
|
81 |
+
assert composite(559) == 684
|
82 |
+
assert composite(3000) == 3488
|
83 |
+
assert composite(4096) == 4736
|
84 |
+
assert composite(9096) == 10368
|
85 |
+
assert composite(25023) == 28088
|
86 |
+
sieve.extend(3000)
|
87 |
+
assert composite(1957) == 2300
|
88 |
+
assert composite(2568) == 2998
|
89 |
+
raises(ValueError, lambda: composite(0))
|
90 |
+
|
91 |
+
|
92 |
+
def test_compositepi():
|
93 |
+
assert compositepi(1) == 0
|
94 |
+
assert compositepi(2) == 0
|
95 |
+
assert compositepi(5) == 1
|
96 |
+
assert compositepi(11) == 5
|
97 |
+
assert compositepi(57) == 40
|
98 |
+
assert compositepi(296) == 233
|
99 |
+
assert compositepi(559) == 456
|
100 |
+
assert compositepi(3000) == 2569
|
101 |
+
assert compositepi(4096) == 3531
|
102 |
+
assert compositepi(9096) == 7967
|
103 |
+
assert compositepi(25023) == 22259
|
104 |
+
assert compositepi(10**8) == 94238544
|
105 |
+
assert compositepi(253425253) == 239568856
|
106 |
+
assert compositepi(8769575643) == 8368111320
|
107 |
+
sieve.extend(3000)
|
108 |
+
assert compositepi(2321) == 1976
|
109 |
+
|
110 |
+
|
111 |
+
def test_generate():
|
112 |
+
from sympy.ntheory.generate import sieve
|
113 |
+
sieve._reset()
|
114 |
+
assert nextprime(-4) == 2
|
115 |
+
assert nextprime(2) == 3
|
116 |
+
assert nextprime(5) == 7
|
117 |
+
assert nextprime(12) == 13
|
118 |
+
assert prevprime(3) == 2
|
119 |
+
assert prevprime(7) == 5
|
120 |
+
assert prevprime(13) == 11
|
121 |
+
assert prevprime(19) == 17
|
122 |
+
assert prevprime(20) == 19
|
123 |
+
|
124 |
+
sieve.extend_to_no(9)
|
125 |
+
assert sieve._list[-1] == 23
|
126 |
+
|
127 |
+
assert sieve._list[-1] < 31
|
128 |
+
assert 31 in sieve
|
129 |
+
|
130 |
+
assert nextprime(90) == 97
|
131 |
+
assert nextprime(10**40) == (10**40 + 121)
|
132 |
+
assert prevprime(97) == 89
|
133 |
+
assert prevprime(10**40) == (10**40 - 17)
|
134 |
+
|
135 |
+
assert list(sieve.primerange(10, 1)) == []
|
136 |
+
assert list(sieve.primerange(5, 9)) == [5, 7]
|
137 |
+
sieve._reset(prime=True)
|
138 |
+
assert list(sieve.primerange(2, 13)) == [2, 3, 5, 7, 11]
|
139 |
+
assert list(sieve.primerange(13)) == [2, 3, 5, 7, 11]
|
140 |
+
assert list(sieve.primerange(8)) == [2, 3, 5, 7]
|
141 |
+
assert list(sieve.primerange(-2)) == []
|
142 |
+
assert list(sieve.primerange(29)) == [2, 3, 5, 7, 11, 13, 17, 19, 23]
|
143 |
+
assert list(sieve.primerange(34)) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]
|
144 |
+
|
145 |
+
assert list(sieve.totientrange(5, 15)) == [4, 2, 6, 4, 6, 4, 10, 4, 12, 6]
|
146 |
+
sieve._reset(totient=True)
|
147 |
+
assert list(sieve.totientrange(3, 13)) == [2, 2, 4, 2, 6, 4, 6, 4, 10, 4]
|
148 |
+
assert list(sieve.totientrange(900, 1000)) == [totient(x) for x in range(900, 1000)]
|
149 |
+
assert list(sieve.totientrange(0, 1)) == []
|
150 |
+
assert list(sieve.totientrange(1, 2)) == [1]
|
151 |
+
|
152 |
+
assert list(sieve.mobiusrange(5, 15)) == [-1, 1, -1, 0, 0, 1, -1, 0, -1, 1]
|
153 |
+
sieve._reset(mobius=True)
|
154 |
+
assert list(sieve.mobiusrange(3, 13)) == [-1, 0, -1, 1, -1, 0, 0, 1, -1, 0]
|
155 |
+
assert list(sieve.mobiusrange(1050, 1100)) == [mobius(x) for x in range(1050, 1100)]
|
156 |
+
assert list(sieve.mobiusrange(0, 1)) == []
|
157 |
+
assert list(sieve.mobiusrange(1, 2)) == [1]
|
158 |
+
|
159 |
+
assert list(primerange(10, 1)) == []
|
160 |
+
assert list(primerange(2, 7)) == [2, 3, 5]
|
161 |
+
assert list(primerange(2, 10)) == [2, 3, 5, 7]
|
162 |
+
assert list(primerange(1050, 1100)) == [1051, 1061,
|
163 |
+
1063, 1069, 1087, 1091, 1093, 1097]
|
164 |
+
s = Sieve()
|
165 |
+
for i in range(30, 2350, 376):
|
166 |
+
for j in range(2, 5096, 1139):
|
167 |
+
A = list(s.primerange(i, i + j))
|
168 |
+
B = list(primerange(i, i + j))
|
169 |
+
assert A == B
|
170 |
+
s = Sieve()
|
171 |
+
assert s[10] == 29
|
172 |
+
|
173 |
+
assert nextprime(2, 2) == 5
|
174 |
+
|
175 |
+
raises(ValueError, lambda: totient(0))
|
176 |
+
|
177 |
+
raises(ValueError, lambda: reduced_totient(0))
|
178 |
+
|
179 |
+
raises(ValueError, lambda: primorial(0))
|
180 |
+
|
181 |
+
assert mr(1, [2]) is False
|
182 |
+
|
183 |
+
func = lambda i: (i**2 + 1) % 51
|
184 |
+
assert next(cycle_length(func, 4)) == (6, 2)
|
185 |
+
assert list(cycle_length(func, 4, values=True)) == \
|
186 |
+
[17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14]
|
187 |
+
assert next(cycle_length(func, 4, nmax=5)) == (5, None)
|
188 |
+
assert list(cycle_length(func, 4, nmax=5, values=True)) == \
|
189 |
+
[17, 35, 2, 5, 26]
|
190 |
+
sieve.extend(3000)
|
191 |
+
assert nextprime(2968) == 2969
|
192 |
+
assert prevprime(2930) == 2927
|
193 |
+
raises(ValueError, lambda: prevprime(1))
|
194 |
+
raises(ValueError, lambda: prevprime(-4))
|
195 |
+
|
196 |
+
|
197 |
+
def test_randprime():
|
198 |
+
assert randprime(10, 1) is None
|
199 |
+
assert randprime(3, -3) is None
|
200 |
+
assert randprime(2, 3) == 2
|
201 |
+
assert randprime(1, 3) == 2
|
202 |
+
assert randprime(3, 5) == 3
|
203 |
+
raises(ValueError, lambda: randprime(-12, -2))
|
204 |
+
raises(ValueError, lambda: randprime(-10, 0))
|
205 |
+
raises(ValueError, lambda: randprime(20, 22))
|
206 |
+
raises(ValueError, lambda: randprime(0, 2))
|
207 |
+
raises(ValueError, lambda: randprime(1, 2))
|
208 |
+
for a in [100, 300, 500, 250000]:
|
209 |
+
for b in [100, 300, 500, 250000]:
|
210 |
+
p = randprime(a, a + b)
|
211 |
+
assert a <= p < (a + b) and isprime(p)
|
212 |
+
|
213 |
+
|
214 |
+
def test_primorial():
|
215 |
+
assert primorial(1) == 2
|
216 |
+
assert primorial(1, nth=0) == 1
|
217 |
+
assert primorial(2) == 6
|
218 |
+
assert primorial(2, nth=0) == 2
|
219 |
+
assert primorial(4, nth=0) == 6
|
220 |
+
|
221 |
+
|
222 |
+
def test_search():
|
223 |
+
assert 2 in sieve
|
224 |
+
assert 2.1 not in sieve
|
225 |
+
assert 1 not in sieve
|
226 |
+
assert 2**1000 not in sieve
|
227 |
+
raises(ValueError, lambda: sieve.search(1))
|
228 |
+
|
229 |
+
|
230 |
+
def test_sieve_slice():
|
231 |
+
assert sieve[5] == 11
|
232 |
+
assert list(sieve[5:10]) == [sieve[x] for x in range(5, 10)]
|
233 |
+
assert list(sieve[5:10:2]) == [sieve[x] for x in range(5, 10, 2)]
|
234 |
+
assert list(sieve[1:5]) == [2, 3, 5, 7]
|
235 |
+
raises(IndexError, lambda: sieve[:5])
|
236 |
+
raises(IndexError, lambda: sieve[0])
|
237 |
+
raises(IndexError, lambda: sieve[0:5])
|
238 |
+
|
239 |
+
def test_sieve_iter():
|
240 |
+
values = []
|
241 |
+
for value in sieve:
|
242 |
+
if value > 7:
|
243 |
+
break
|
244 |
+
values.append(value)
|
245 |
+
assert values == list(sieve[1:5])
|
246 |
+
|
247 |
+
|
248 |
+
def test_sieve_repr():
|
249 |
+
assert "sieve" in repr(sieve)
|
250 |
+
assert "prime" in repr(sieve)
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/test_primetest.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.ntheory.generate import Sieve, sieve
|
2 |
+
from sympy.ntheory.primetest import (mr, is_lucas_prp, is_square,
|
3 |
+
is_strong_lucas_prp, is_extra_strong_lucas_prp, isprime, is_euler_pseudoprime,
|
4 |
+
is_gaussian_prime)
|
5 |
+
|
6 |
+
from sympy.testing.pytest import slow
|
7 |
+
from sympy.core.numbers import I
|
8 |
+
|
9 |
+
def test_euler_pseudoprimes():
|
10 |
+
assert is_euler_pseudoprime(9, 1) == True
|
11 |
+
assert is_euler_pseudoprime(341, 2) == False
|
12 |
+
assert is_euler_pseudoprime(121, 3) == True
|
13 |
+
assert is_euler_pseudoprime(341, 4) == True
|
14 |
+
assert is_euler_pseudoprime(217, 5) == False
|
15 |
+
assert is_euler_pseudoprime(185, 6) == False
|
16 |
+
assert is_euler_pseudoprime(55, 111) == True
|
17 |
+
assert is_euler_pseudoprime(115, 114) == True
|
18 |
+
assert is_euler_pseudoprime(49, 117) == True
|
19 |
+
assert is_euler_pseudoprime(85, 84) == True
|
20 |
+
assert is_euler_pseudoprime(87, 88) == True
|
21 |
+
assert is_euler_pseudoprime(49, 128) == True
|
22 |
+
assert is_euler_pseudoprime(39, 77) == True
|
23 |
+
assert is_euler_pseudoprime(9881, 30) == True
|
24 |
+
assert is_euler_pseudoprime(8841, 29) == False
|
25 |
+
assert is_euler_pseudoprime(8421, 29) == False
|
26 |
+
assert is_euler_pseudoprime(9997, 19) == True
|
27 |
+
|
28 |
+
def test_is_extra_strong_lucas_prp():
|
29 |
+
assert is_extra_strong_lucas_prp(4) == False
|
30 |
+
assert is_extra_strong_lucas_prp(989) == True
|
31 |
+
assert is_extra_strong_lucas_prp(10877) == True
|
32 |
+
assert is_extra_strong_lucas_prp(9) == False
|
33 |
+
assert is_extra_strong_lucas_prp(16) == False
|
34 |
+
assert is_extra_strong_lucas_prp(169) == False
|
35 |
+
|
36 |
+
@slow
|
37 |
+
def test_prps():
|
38 |
+
oddcomposites = [n for n in range(1, 10**5) if
|
39 |
+
n % 2 and not isprime(n)]
|
40 |
+
# A checksum would be better.
|
41 |
+
assert sum(oddcomposites) == 2045603465
|
42 |
+
assert [n for n in oddcomposites if mr(n, [2])] == [
|
43 |
+
2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141,
|
44 |
+
52633, 65281, 74665, 80581, 85489, 88357, 90751]
|
45 |
+
assert [n for n in oddcomposites if mr(n, [3])] == [
|
46 |
+
121, 703, 1891, 3281, 8401, 8911, 10585, 12403, 16531,
|
47 |
+
18721, 19345, 23521, 31621, 44287, 47197, 55969, 63139,
|
48 |
+
74593, 79003, 82513, 87913, 88573, 97567]
|
49 |
+
assert [n for n in oddcomposites if mr(n, [325])] == [
|
50 |
+
9, 25, 27, 49, 65, 81, 325, 341, 343, 697, 1141, 2059,
|
51 |
+
2149, 3097, 3537, 4033, 4681, 4941, 5833, 6517, 7987, 8911,
|
52 |
+
12403, 12913, 15043, 16021, 20017, 22261, 23221, 24649,
|
53 |
+
24929, 31841, 35371, 38503, 43213, 44173, 47197, 50041,
|
54 |
+
55909, 56033, 58969, 59089, 61337, 65441, 68823, 72641,
|
55 |
+
76793, 78409, 85879]
|
56 |
+
assert not any(mr(n, [9345883071009581737]) for n in oddcomposites)
|
57 |
+
assert [n for n in oddcomposites if is_lucas_prp(n)] == [
|
58 |
+
323, 377, 1159, 1829, 3827, 5459, 5777, 9071, 9179, 10877,
|
59 |
+
11419, 11663, 13919, 14839, 16109, 16211, 18407, 18971,
|
60 |
+
19043, 22499, 23407, 24569, 25199, 25877, 26069, 27323,
|
61 |
+
32759, 34943, 35207, 39059, 39203, 39689, 40309, 44099,
|
62 |
+
46979, 47879, 50183, 51983, 53663, 56279, 58519, 60377,
|
63 |
+
63881, 69509, 72389, 73919, 75077, 77219, 79547, 79799,
|
64 |
+
82983, 84419, 86063, 90287, 94667, 97019, 97439]
|
65 |
+
assert [n for n in oddcomposites if is_strong_lucas_prp(n)] == [
|
66 |
+
5459, 5777, 10877, 16109, 18971, 22499, 24569, 25199, 40309,
|
67 |
+
58519, 75077, 97439]
|
68 |
+
assert [n for n in oddcomposites if is_extra_strong_lucas_prp(n)
|
69 |
+
] == [
|
70 |
+
989, 3239, 5777, 10877, 27971, 29681, 30739, 31631, 39059,
|
71 |
+
72389, 73919, 75077]
|
72 |
+
|
73 |
+
|
74 |
+
def test_isprime():
|
75 |
+
s = Sieve()
|
76 |
+
s.extend(100000)
|
77 |
+
ps = set(s.primerange(2, 100001))
|
78 |
+
for n in range(100001):
|
79 |
+
# if (n in ps) != isprime(n): print n
|
80 |
+
assert (n in ps) == isprime(n)
|
81 |
+
assert isprime(179424673)
|
82 |
+
assert isprime(20678048681)
|
83 |
+
assert isprime(1968188556461)
|
84 |
+
assert isprime(2614941710599)
|
85 |
+
assert isprime(65635624165761929287)
|
86 |
+
assert isprime(1162566711635022452267983)
|
87 |
+
assert isprime(77123077103005189615466924501)
|
88 |
+
assert isprime(3991617775553178702574451996736229)
|
89 |
+
assert isprime(273952953553395851092382714516720001799)
|
90 |
+
assert isprime(int('''
|
91 |
+
531137992816767098689588206552468627329593117727031923199444138200403\
|
92 |
+
559860852242739162502265229285668889329486246501015346579337652707239\
|
93 |
+
409519978766587351943831270835393219031728127'''))
|
94 |
+
|
95 |
+
# Some Mersenne primes
|
96 |
+
assert isprime(2**61 - 1)
|
97 |
+
assert isprime(2**89 - 1)
|
98 |
+
assert isprime(2**607 - 1)
|
99 |
+
# (but not all Mersenne's are primes
|
100 |
+
assert not isprime(2**601 - 1)
|
101 |
+
|
102 |
+
# pseudoprimes
|
103 |
+
#-------------
|
104 |
+
# to some small bases
|
105 |
+
assert not isprime(2152302898747)
|
106 |
+
assert not isprime(3474749660383)
|
107 |
+
assert not isprime(341550071728321)
|
108 |
+
assert not isprime(3825123056546413051)
|
109 |
+
# passes the base set [2, 3, 7, 61, 24251]
|
110 |
+
assert not isprime(9188353522314541)
|
111 |
+
# large examples
|
112 |
+
assert not isprime(877777777777777777777777)
|
113 |
+
# conjectured psi_12 given at http://mathworld.wolfram.com/StrongPseudoprime.html
|
114 |
+
assert not isprime(318665857834031151167461)
|
115 |
+
# conjectured psi_17 given at http://mathworld.wolfram.com/StrongPseudoprime.html
|
116 |
+
assert not isprime(564132928021909221014087501701)
|
117 |
+
# Arnault's 1993 number; a factor of it is
|
118 |
+
# 400958216639499605418306452084546853005188166041132508774506\
|
119 |
+
# 204738003217070119624271622319159721973358216316508535816696\
|
120 |
+
# 9145233813917169287527980445796800452592031836601
|
121 |
+
assert not isprime(int('''
|
122 |
+
803837457453639491257079614341942108138837688287558145837488917522297\
|
123 |
+
427376533365218650233616396004545791504202360320876656996676098728404\
|
124 |
+
396540823292873879185086916685732826776177102938969773947016708230428\
|
125 |
+
687109997439976544144845341155872450633409279022275296229414984230688\
|
126 |
+
1685404326457534018329786111298960644845216191652872597534901'''))
|
127 |
+
# Arnault's 1995 number; can be factored as
|
128 |
+
# p1*(313*(p1 - 1) + 1)*(353*(p1 - 1) + 1) where p1 is
|
129 |
+
# 296744956686855105501541746429053327307719917998530433509950\
|
130 |
+
# 755312768387531717701995942385964281211880336647542183455624\
|
131 |
+
# 93168782883
|
132 |
+
assert not isprime(int('''
|
133 |
+
288714823805077121267142959713039399197760945927972270092651602419743\
|
134 |
+
230379915273311632898314463922594197780311092934965557841894944174093\
|
135 |
+
380561511397999942154241693397290542371100275104208013496673175515285\
|
136 |
+
922696291677532547504444585610194940420003990443211677661994962953925\
|
137 |
+
045269871932907037356403227370127845389912612030924484149472897688540\
|
138 |
+
6024976768122077071687938121709811322297802059565867'''))
|
139 |
+
sieve.extend(3000)
|
140 |
+
assert isprime(2819)
|
141 |
+
assert not isprime(2931)
|
142 |
+
assert not isprime(2.0)
|
143 |
+
|
144 |
+
|
145 |
+
def test_is_square():
|
146 |
+
assert [i for i in range(25) if is_square(i)] == [0, 1, 4, 9, 16]
|
147 |
+
|
148 |
+
# issue #17044
|
149 |
+
assert not is_square(60 ** 3)
|
150 |
+
assert not is_square(60 ** 5)
|
151 |
+
assert not is_square(84 ** 7)
|
152 |
+
assert not is_square(105 ** 9)
|
153 |
+
assert not is_square(120 ** 3)
|
154 |
+
|
155 |
+
def test_is_gaussianprime():
|
156 |
+
assert is_gaussian_prime(7*I)
|
157 |
+
assert is_gaussian_prime(7)
|
158 |
+
assert is_gaussian_prime(2 + 3*I)
|
159 |
+
assert not is_gaussian_prime(2 + 2*I)
|
llmeval-env/lib/python3.10/site-packages/sympy/ntheory/tests/test_qs.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from sympy.ntheory import qs
|
4 |
+
from sympy.ntheory.qs import SievePolynomial, _generate_factor_base, \
|
5 |
+
_initialize_first_polynomial, _initialize_ith_poly, \
|
6 |
+
_gen_sieve_array, _check_smoothness, _trial_division_stage, _gauss_mod_2, \
|
7 |
+
_build_matrix, _find_factor
|
8 |
+
from sympy.testing.pytest import slow
|
9 |
+
|
10 |
+
|
11 |
+
@slow
|
12 |
+
def test_qs_1():
|
13 |
+
assert qs(10009202107, 100, 10000) == {100043, 100049}
|
14 |
+
assert qs(211107295182713951054568361, 1000, 10000) == \
|
15 |
+
{13791315212531, 15307263442931}
|
16 |
+
assert qs(980835832582657*990377764891511, 3000, 50000) == \
|
17 |
+
{980835832582657, 990377764891511}
|
18 |
+
assert qs(18640889198609*20991129234731, 1000, 50000) == \
|
19 |
+
{18640889198609, 20991129234731}
|
20 |
+
|
21 |
+
|
22 |
+
def test_qs_2() -> None:
|
23 |
+
n = 10009202107
|
24 |
+
M = 50
|
25 |
+
# a = 10, b = 15, modified_coeff = [a**2, 2*a*b, b**2 - N]
|
26 |
+
sieve_poly = SievePolynomial([100, 1600, -10009195707], 10, 80)
|
27 |
+
assert sieve_poly.eval(10) == -10009169707
|
28 |
+
assert sieve_poly.eval(5) == -10009185207
|
29 |
+
|
30 |
+
idx_1000, idx_5000, factor_base = _generate_factor_base(2000, n)
|
31 |
+
assert idx_1000 == 82
|
32 |
+
assert [factor_base[i].prime for i in range(15)] == \
|
33 |
+
[2, 3, 7, 11, 17, 19, 29, 31, 43, 59, 61, 67, 71, 73, 79]
|
34 |
+
assert [factor_base[i].tmem_p for i in range(15)] == \
|
35 |
+
[1, 1, 3, 5, 3, 6, 6, 14, 1, 16, 24, 22, 18, 22, 15]
|
36 |
+
assert [factor_base[i].log_p for i in range(5)] == \
|
37 |
+
[710, 1125, 1993, 2455, 2901]
|
38 |
+
|
39 |
+
g, B = _initialize_first_polynomial(
|
40 |
+
n, M, factor_base, idx_1000, idx_5000, seed=0)
|
41 |
+
assert g.a == 1133107
|
42 |
+
assert g.b == 682543
|
43 |
+
assert B == [272889, 409654]
|
44 |
+
assert [factor_base[i].soln1 for i in range(15)] == \
|
45 |
+
[0, 0, 3, 7, 13, 0, 8, 19, 9, 43, 27, 25, 63, 29, 19]
|
46 |
+
assert [factor_base[i].soln2 for i in range(15)] == \
|
47 |
+
[0, 1, 1, 3, 12, 16, 15, 6, 15, 1, 56, 55, 61, 58, 16]
|
48 |
+
assert [factor_base[i].a_inv for i in range(15)] == \
|
49 |
+
[1, 1, 5, 7, 3, 5, 26, 6, 40, 5, 21, 45, 4, 1, 8]
|
50 |
+
assert [factor_base[i].b_ainv for i in range(5)] == \
|
51 |
+
[[0, 0], [0, 2], [3, 0], [3, 9], [13, 13]]
|
52 |
+
|
53 |
+
g_1 = _initialize_ith_poly(n, factor_base, 1, g, B)
|
54 |
+
assert g_1.a == 1133107
|
55 |
+
assert g_1.b == 136765
|
56 |
+
|
57 |
+
sieve_array = _gen_sieve_array(M, factor_base)
|
58 |
+
assert sieve_array[0:5] == [8424, 13603, 1835, 5335, 710]
|
59 |
+
|
60 |
+
assert _check_smoothness(9645, factor_base) == (5, False)
|
61 |
+
assert _check_smoothness(210313, factor_base)[0][0:15] == \
|
62 |
+
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1]
|
63 |
+
assert _check_smoothness(210313, factor_base)[1]
|
64 |
+
|
65 |
+
partial_relations: dict[int, tuple[int, int]] = {}
|
66 |
+
smooth_relation, partial_relation = _trial_division_stage(
|
67 |
+
n, M, factor_base, sieve_array, sieve_poly, partial_relations,
|
68 |
+
ERROR_TERM=25*2**10)
|
69 |
+
|
70 |
+
assert partial_relations == {
|
71 |
+
8699: (440, -10009008507),
|
72 |
+
166741: (490, -10008962007),
|
73 |
+
131449: (530, -10008921207),
|
74 |
+
6653: (550, -10008899607)
|
75 |
+
}
|
76 |
+
assert [smooth_relation[i][0] for i in range(5)] == [
|
77 |
+
-250, -670615476700, -45211565844500, -231723037747200, -1811665537200]
|
78 |
+
assert [smooth_relation[i][1] for i in range(5)] == [
|
79 |
+
-10009139607, 1133094251961, 5302606761, 53804049849, 1950723889]
|
80 |
+
assert smooth_relation[0][2][0:15] == [
|
81 |
+
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
82 |
+
|
83 |
+
assert _gauss_mod_2(
|
84 |
+
[[0, 0, 1], [1, 0, 1], [0, 1, 0], [0, 1, 1], [0, 1, 1]]
|
85 |
+
) == (
|
86 |
+
[[[0, 1, 1], 3], [[0, 1, 1], 4]],
|
87 |
+
[True, True, True, False, False],
|
88 |
+
[[0, 0, 1], [1, 0, 0], [0, 1, 0], [0, 1, 1], [0, 1, 1]]
|
89 |
+
)
|
90 |
+
|
91 |
+
|
92 |
+
def test_qs_3():
|
93 |
+
N = 1817
|
94 |
+
smooth_relations = [
|
95 |
+
(2455024, 637, [0, 0, 0, 1]),
|
96 |
+
(-27993000, 81536, [0, 1, 0, 1]),
|
97 |
+
(11461840, 12544, [0, 0, 0, 0]),
|
98 |
+
(149, 20384, [0, 1, 0, 1]),
|
99 |
+
(-31138074, 19208, [0, 1, 0, 0])
|
100 |
+
]
|
101 |
+
|
102 |
+
matrix = _build_matrix(smooth_relations)
|
103 |
+
assert matrix == [
|
104 |
+
[0, 0, 0, 1],
|
105 |
+
[0, 1, 0, 1],
|
106 |
+
[0, 0, 0, 0],
|
107 |
+
[0, 1, 0, 1],
|
108 |
+
[0, 1, 0, 0]
|
109 |
+
]
|
110 |
+
|
111 |
+
dependent_row, mark, gauss_matrix = _gauss_mod_2(matrix)
|
112 |
+
assert dependent_row == [[[0, 0, 0, 0], 2], [[0, 1, 0, 0], 3]]
|
113 |
+
assert mark == [True, True, False, False, True]
|
114 |
+
assert gauss_matrix == [
|
115 |
+
[0, 0, 0, 1],
|
116 |
+
[0, 1, 0, 0],
|
117 |
+
[0, 0, 0, 0],
|
118 |
+
[0, 1, 0, 0],
|
119 |
+
[0, 1, 0, 1]
|
120 |
+
]
|
121 |
+
|
122 |
+
factor = _find_factor(
|
123 |
+
dependent_row, mark, gauss_matrix, 0, smooth_relations, N)
|
124 |
+
assert factor == 23
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/__init__.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A module to manipulate symbolic objects with indices including tensors
|
2 |
+
|
3 |
+
"""
|
4 |
+
from .indexed import IndexedBase, Idx, Indexed
|
5 |
+
from .index_methods import get_contraction_structure, get_indices
|
6 |
+
from .functions import shape
|
7 |
+
from .array import (MutableDenseNDimArray, ImmutableDenseNDimArray,
|
8 |
+
MutableSparseNDimArray, ImmutableSparseNDimArray, NDimArray, tensorproduct,
|
9 |
+
tensorcontraction, tensordiagonal, derive_by_array, permutedims, Array,
|
10 |
+
DenseNDimArray, SparseNDimArray,)
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
'IndexedBase', 'Idx', 'Indexed',
|
14 |
+
|
15 |
+
'get_contraction_structure', 'get_indices',
|
16 |
+
|
17 |
+
'shape',
|
18 |
+
|
19 |
+
'MutableDenseNDimArray', 'ImmutableDenseNDimArray',
|
20 |
+
'MutableSparseNDimArray', 'ImmutableSparseNDimArray', 'NDimArray',
|
21 |
+
'tensorproduct', 'tensorcontraction', 'tensordiagonal', 'derive_by_array', 'permutedims',
|
22 |
+
'Array', 'DenseNDimArray', 'SparseNDimArray',
|
23 |
+
]
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (954 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/__pycache__/functions.cpython-310.pyc
ADDED
Binary file (5.28 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/__pycache__/index_methods.cpython-310.pyc
ADDED
Binary file (13.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/__pycache__/indexed.cpython-310.pyc
ADDED
Binary file (23.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/__pycache__/tensor.cpython-310.pyc
ADDED
Binary file (151 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/__pycache__/toperators.cpython-310.pyc
ADDED
Binary file (9.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/__init__.py
ADDED
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
r"""
|
2 |
+
N-dim array module for SymPy.
|
3 |
+
|
4 |
+
Four classes are provided to handle N-dim arrays, given by the combinations
|
5 |
+
dense/sparse (i.e. whether to store all elements or only the non-zero ones in
|
6 |
+
memory) and mutable/immutable (immutable classes are SymPy objects, but cannot
|
7 |
+
change after they have been created).
|
8 |
+
|
9 |
+
Examples
|
10 |
+
========
|
11 |
+
|
12 |
+
The following examples show the usage of ``Array``. This is an abbreviation for
|
13 |
+
``ImmutableDenseNDimArray``, that is an immutable and dense N-dim array, the
|
14 |
+
other classes are analogous. For mutable classes it is also possible to change
|
15 |
+
element values after the object has been constructed.
|
16 |
+
|
17 |
+
Array construction can detect the shape of nested lists and tuples:
|
18 |
+
|
19 |
+
>>> from sympy import Array
|
20 |
+
>>> a1 = Array([[1, 2], [3, 4], [5, 6]])
|
21 |
+
>>> a1
|
22 |
+
[[1, 2], [3, 4], [5, 6]]
|
23 |
+
>>> a1.shape
|
24 |
+
(3, 2)
|
25 |
+
>>> a1.rank()
|
26 |
+
2
|
27 |
+
>>> from sympy.abc import x, y, z
|
28 |
+
>>> a2 = Array([[[x, y], [z, x*z]], [[1, x*y], [1/x, x/y]]])
|
29 |
+
>>> a2
|
30 |
+
[[[x, y], [z, x*z]], [[1, x*y], [1/x, x/y]]]
|
31 |
+
>>> a2.shape
|
32 |
+
(2, 2, 2)
|
33 |
+
>>> a2.rank()
|
34 |
+
3
|
35 |
+
|
36 |
+
Otherwise one could pass a 1-dim array followed by a shape tuple:
|
37 |
+
|
38 |
+
>>> m1 = Array(range(12), (3, 4))
|
39 |
+
>>> m1
|
40 |
+
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
|
41 |
+
>>> m2 = Array(range(12), (3, 2, 2))
|
42 |
+
>>> m2
|
43 |
+
[[[0, 1], [2, 3]], [[4, 5], [6, 7]], [[8, 9], [10, 11]]]
|
44 |
+
>>> m2[1,1,1]
|
45 |
+
7
|
46 |
+
>>> m2.reshape(4, 3)
|
47 |
+
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]
|
48 |
+
|
49 |
+
Slice support:
|
50 |
+
|
51 |
+
>>> m2[:, 1, 1]
|
52 |
+
[3, 7, 11]
|
53 |
+
|
54 |
+
Elementwise derivative:
|
55 |
+
|
56 |
+
>>> from sympy.abc import x, y, z
|
57 |
+
>>> m3 = Array([x**3, x*y, z])
|
58 |
+
>>> m3.diff(x)
|
59 |
+
[3*x**2, y, 0]
|
60 |
+
>>> m3.diff(z)
|
61 |
+
[0, 0, 1]
|
62 |
+
|
63 |
+
Multiplication with other SymPy expressions is applied elementwisely:
|
64 |
+
|
65 |
+
>>> (1+x)*m3
|
66 |
+
[x**3*(x + 1), x*y*(x + 1), z*(x + 1)]
|
67 |
+
|
68 |
+
To apply a function to each element of the N-dim array, use ``applyfunc``:
|
69 |
+
|
70 |
+
>>> m3.applyfunc(lambda x: x/2)
|
71 |
+
[x**3/2, x*y/2, z/2]
|
72 |
+
|
73 |
+
N-dim arrays can be converted to nested lists by the ``tolist()`` method:
|
74 |
+
|
75 |
+
>>> m2.tolist()
|
76 |
+
[[[0, 1], [2, 3]], [[4, 5], [6, 7]], [[8, 9], [10, 11]]]
|
77 |
+
>>> isinstance(m2.tolist(), list)
|
78 |
+
True
|
79 |
+
|
80 |
+
If the rank is 2, it is possible to convert them to matrices with ``tomatrix()``:
|
81 |
+
|
82 |
+
>>> m1.tomatrix()
|
83 |
+
Matrix([
|
84 |
+
[0, 1, 2, 3],
|
85 |
+
[4, 5, 6, 7],
|
86 |
+
[8, 9, 10, 11]])
|
87 |
+
|
88 |
+
Products and contractions
|
89 |
+
-------------------------
|
90 |
+
|
91 |
+
Tensor product between arrays `A_{i_1,\ldots,i_n}` and `B_{j_1,\ldots,j_m}`
|
92 |
+
creates the combined array `P = A \otimes B` defined as
|
93 |
+
|
94 |
+
`P_{i_1,\ldots,i_n,j_1,\ldots,j_m} := A_{i_1,\ldots,i_n}\cdot B_{j_1,\ldots,j_m}.`
|
95 |
+
|
96 |
+
It is available through ``tensorproduct(...)``:
|
97 |
+
|
98 |
+
>>> from sympy import Array, tensorproduct
|
99 |
+
>>> from sympy.abc import x,y,z,t
|
100 |
+
>>> A = Array([x, y, z, t])
|
101 |
+
>>> B = Array([1, 2, 3, 4])
|
102 |
+
>>> tensorproduct(A, B)
|
103 |
+
[[x, 2*x, 3*x, 4*x], [y, 2*y, 3*y, 4*y], [z, 2*z, 3*z, 4*z], [t, 2*t, 3*t, 4*t]]
|
104 |
+
|
105 |
+
In case you don't want to evaluate the tensor product immediately, you can use
|
106 |
+
``ArrayTensorProduct``, which creates an unevaluated tensor product expression:
|
107 |
+
|
108 |
+
>>> from sympy.tensor.array.expressions import ArrayTensorProduct
|
109 |
+
>>> ArrayTensorProduct(A, B)
|
110 |
+
ArrayTensorProduct([x, y, z, t], [1, 2, 3, 4])
|
111 |
+
|
112 |
+
Calling ``.as_explicit()`` on ``ArrayTensorProduct`` is equivalent to just calling
|
113 |
+
``tensorproduct(...)``:
|
114 |
+
|
115 |
+
>>> ArrayTensorProduct(A, B).as_explicit()
|
116 |
+
[[x, 2*x, 3*x, 4*x], [y, 2*y, 3*y, 4*y], [z, 2*z, 3*z, 4*z], [t, 2*t, 3*t, 4*t]]
|
117 |
+
|
118 |
+
Tensor product between a rank-1 array and a matrix creates a rank-3 array:
|
119 |
+
|
120 |
+
>>> from sympy import eye
|
121 |
+
>>> p1 = tensorproduct(A, eye(4))
|
122 |
+
>>> p1
|
123 |
+
[[[x, 0, 0, 0], [0, x, 0, 0], [0, 0, x, 0], [0, 0, 0, x]], [[y, 0, 0, 0], [0, y, 0, 0], [0, 0, y, 0], [0, 0, 0, y]], [[z, 0, 0, 0], [0, z, 0, 0], [0, 0, z, 0], [0, 0, 0, z]], [[t, 0, 0, 0], [0, t, 0, 0], [0, 0, t, 0], [0, 0, 0, t]]]
|
124 |
+
|
125 |
+
Now, to get back `A_0 \otimes \mathbf{1}` one can access `p_{0,m,n}` by slicing:
|
126 |
+
|
127 |
+
>>> p1[0,:,:]
|
128 |
+
[[x, 0, 0, 0], [0, x, 0, 0], [0, 0, x, 0], [0, 0, 0, x]]
|
129 |
+
|
130 |
+
Tensor contraction sums over the specified axes, for example contracting
|
131 |
+
positions `a` and `b` means
|
132 |
+
|
133 |
+
`A_{i_1,\ldots,i_a,\ldots,i_b,\ldots,i_n} \implies \sum_k A_{i_1,\ldots,k,\ldots,k,\ldots,i_n}`
|
134 |
+
|
135 |
+
Remember that Python indexing is zero starting, to contract the a-th and b-th
|
136 |
+
axes it is therefore necessary to specify `a-1` and `b-1`
|
137 |
+
|
138 |
+
>>> from sympy import tensorcontraction
|
139 |
+
>>> C = Array([[x, y], [z, t]])
|
140 |
+
|
141 |
+
The matrix trace is equivalent to the contraction of a rank-2 array:
|
142 |
+
|
143 |
+
`A_{m,n} \implies \sum_k A_{k,k}`
|
144 |
+
|
145 |
+
>>> tensorcontraction(C, (0, 1))
|
146 |
+
t + x
|
147 |
+
|
148 |
+
To create an expression representing a tensor contraction that does not get
|
149 |
+
evaluated immediately, use ``ArrayContraction``, which is equivalent to
|
150 |
+
``tensorcontraction(...)`` if it is followed by ``.as_explicit()``:
|
151 |
+
|
152 |
+
>>> from sympy.tensor.array.expressions import ArrayContraction
|
153 |
+
>>> ArrayContraction(C, (0, 1))
|
154 |
+
ArrayContraction([[x, y], [z, t]], (0, 1))
|
155 |
+
>>> ArrayContraction(C, (0, 1)).as_explicit()
|
156 |
+
t + x
|
157 |
+
|
158 |
+
Matrix product is equivalent to a tensor product of two rank-2 arrays, followed
|
159 |
+
by a contraction of the 2nd and 3rd axes (in Python indexing axes number 1, 2).
|
160 |
+
|
161 |
+
`A_{m,n}\cdot B_{i,j} \implies \sum_k A_{m, k}\cdot B_{k, j}`
|
162 |
+
|
163 |
+
>>> D = Array([[2, 1], [0, -1]])
|
164 |
+
>>> tensorcontraction(tensorproduct(C, D), (1, 2))
|
165 |
+
[[2*x, x - y], [2*z, -t + z]]
|
166 |
+
|
167 |
+
One may verify that the matrix product is equivalent:
|
168 |
+
|
169 |
+
>>> from sympy import Matrix
|
170 |
+
>>> Matrix([[x, y], [z, t]])*Matrix([[2, 1], [0, -1]])
|
171 |
+
Matrix([
|
172 |
+
[2*x, x - y],
|
173 |
+
[2*z, -t + z]])
|
174 |
+
|
175 |
+
or equivalently
|
176 |
+
|
177 |
+
>>> C.tomatrix()*D.tomatrix()
|
178 |
+
Matrix([
|
179 |
+
[2*x, x - y],
|
180 |
+
[2*z, -t + z]])
|
181 |
+
|
182 |
+
Diagonal operator
|
183 |
+
-----------------
|
184 |
+
|
185 |
+
The ``tensordiagonal`` function acts in a similar manner as ``tensorcontraction``,
|
186 |
+
but the joined indices are not summed over, for example diagonalizing
|
187 |
+
positions `a` and `b` means
|
188 |
+
|
189 |
+
`A_{i_1,\ldots,i_a,\ldots,i_b,\ldots,i_n} \implies A_{i_1,\ldots,k,\ldots,k,\ldots,i_n}
|
190 |
+
\implies \tilde{A}_{i_1,\ldots,i_{a-1},i_{a+1},\ldots,i_{b-1},i_{b+1},\ldots,i_n,k}`
|
191 |
+
|
192 |
+
where `\tilde{A}` is the array equivalent to the diagonal of `A` at positions
|
193 |
+
`a` and `b` moved to the last index slot.
|
194 |
+
|
195 |
+
Compare the difference between contraction and diagonal operators:
|
196 |
+
|
197 |
+
>>> from sympy import tensordiagonal
|
198 |
+
>>> from sympy.abc import a, b, c, d
|
199 |
+
>>> m = Matrix([[a, b], [c, d]])
|
200 |
+
>>> tensorcontraction(m, [0, 1])
|
201 |
+
a + d
|
202 |
+
>>> tensordiagonal(m, [0, 1])
|
203 |
+
[a, d]
|
204 |
+
|
205 |
+
In short, no summation occurs with ``tensordiagonal``.
|
206 |
+
|
207 |
+
|
208 |
+
Derivatives by array
|
209 |
+
--------------------
|
210 |
+
|
211 |
+
The usual derivative operation may be extended to support derivation with
|
212 |
+
respect to arrays, provided that all elements in the that array are symbols or
|
213 |
+
expressions suitable for derivations.
|
214 |
+
|
215 |
+
The definition of a derivative by an array is as follows: given the array
|
216 |
+
`A_{i_1, \ldots, i_N}` and the array `X_{j_1, \ldots, j_M}`
|
217 |
+
the derivative of arrays will return a new array `B` defined by
|
218 |
+
|
219 |
+
`B_{j_1,\ldots,j_M,i_1,\ldots,i_N} := \frac{\partial A_{i_1,\ldots,i_N}}{\partial X_{j_1,\ldots,j_M}}`
|
220 |
+
|
221 |
+
The function ``derive_by_array`` performs such an operation:
|
222 |
+
|
223 |
+
>>> from sympy import derive_by_array
|
224 |
+
>>> from sympy.abc import x, y, z, t
|
225 |
+
>>> from sympy import sin, exp
|
226 |
+
|
227 |
+
With scalars, it behaves exactly as the ordinary derivative:
|
228 |
+
|
229 |
+
>>> derive_by_array(sin(x*y), x)
|
230 |
+
y*cos(x*y)
|
231 |
+
|
232 |
+
Scalar derived by an array basis:
|
233 |
+
|
234 |
+
>>> derive_by_array(sin(x*y), [x, y, z])
|
235 |
+
[y*cos(x*y), x*cos(x*y), 0]
|
236 |
+
|
237 |
+
Deriving array by an array basis: `B^{nm} := \frac{\partial A^m}{\partial x^n}`
|
238 |
+
|
239 |
+
>>> basis = [x, y, z]
|
240 |
+
>>> ax = derive_by_array([exp(x), sin(y*z), t], basis)
|
241 |
+
>>> ax
|
242 |
+
[[exp(x), 0, 0], [0, z*cos(y*z), 0], [0, y*cos(y*z), 0]]
|
243 |
+
|
244 |
+
Contraction of the resulting array: `\sum_m \frac{\partial A^m}{\partial x^m}`
|
245 |
+
|
246 |
+
>>> tensorcontraction(ax, (0, 1))
|
247 |
+
z*cos(y*z) + exp(x)
|
248 |
+
|
249 |
+
"""
|
250 |
+
|
251 |
+
from .dense_ndim_array import MutableDenseNDimArray, ImmutableDenseNDimArray, DenseNDimArray
|
252 |
+
from .sparse_ndim_array import MutableSparseNDimArray, ImmutableSparseNDimArray, SparseNDimArray
|
253 |
+
from .ndim_array import NDimArray, ArrayKind
|
254 |
+
from .arrayop import tensorproduct, tensorcontraction, tensordiagonal, derive_by_array, permutedims
|
255 |
+
from .array_comprehension import ArrayComprehension, ArrayComprehensionMap
|
256 |
+
|
257 |
+
Array = ImmutableDenseNDimArray
|
258 |
+
|
259 |
+
__all__ = [
|
260 |
+
'MutableDenseNDimArray', 'ImmutableDenseNDimArray', 'DenseNDimArray',
|
261 |
+
|
262 |
+
'MutableSparseNDimArray', 'ImmutableSparseNDimArray', 'SparseNDimArray',
|
263 |
+
|
264 |
+
'NDimArray', 'ArrayKind',
|
265 |
+
|
266 |
+
'tensorproduct', 'tensorcontraction', 'tensordiagonal', 'derive_by_array',
|
267 |
+
|
268 |
+
'permutedims', 'ArrayComprehension', 'ArrayComprehensionMap',
|
269 |
+
|
270 |
+
'Array',
|
271 |
+
]
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/array_comprehension.py
ADDED
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools, itertools
|
2 |
+
from sympy.core.sympify import _sympify, sympify
|
3 |
+
from sympy.core.expr import Expr
|
4 |
+
from sympy.core import Basic, Tuple
|
5 |
+
from sympy.tensor.array import ImmutableDenseNDimArray
|
6 |
+
from sympy.core.symbol import Symbol
|
7 |
+
from sympy.core.numbers import Integer
|
8 |
+
|
9 |
+
|
10 |
+
class ArrayComprehension(Basic):
|
11 |
+
"""
|
12 |
+
Generate a list comprehension.
|
13 |
+
|
14 |
+
Explanation
|
15 |
+
===========
|
16 |
+
|
17 |
+
If there is a symbolic dimension, for example, say [i for i in range(1, N)] where
|
18 |
+
N is a Symbol, then the expression will not be expanded to an array. Otherwise,
|
19 |
+
calling the doit() function will launch the expansion.
|
20 |
+
|
21 |
+
Examples
|
22 |
+
========
|
23 |
+
|
24 |
+
>>> from sympy.tensor.array import ArrayComprehension
|
25 |
+
>>> from sympy import symbols
|
26 |
+
>>> i, j, k = symbols('i j k')
|
27 |
+
>>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
28 |
+
>>> a
|
29 |
+
ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
30 |
+
>>> a.doit()
|
31 |
+
[[11, 12, 13], [21, 22, 23], [31, 32, 33], [41, 42, 43]]
|
32 |
+
>>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k))
|
33 |
+
>>> b.doit()
|
34 |
+
ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k))
|
35 |
+
"""
|
36 |
+
def __new__(cls, function, *symbols, **assumptions):
|
37 |
+
if any(len(l) != 3 or None for l in symbols):
|
38 |
+
raise ValueError('ArrayComprehension requires values lower and upper bound'
|
39 |
+
' for the expression')
|
40 |
+
arglist = [sympify(function)]
|
41 |
+
arglist.extend(cls._check_limits_validity(function, symbols))
|
42 |
+
obj = Basic.__new__(cls, *arglist, **assumptions)
|
43 |
+
obj._limits = obj._args[1:]
|
44 |
+
obj._shape = cls._calculate_shape_from_limits(obj._limits)
|
45 |
+
obj._rank = len(obj._shape)
|
46 |
+
obj._loop_size = cls._calculate_loop_size(obj._shape)
|
47 |
+
return obj
|
48 |
+
|
49 |
+
@property
|
50 |
+
def function(self):
|
51 |
+
"""The function applied across limits.
|
52 |
+
|
53 |
+
Examples
|
54 |
+
========
|
55 |
+
|
56 |
+
>>> from sympy.tensor.array import ArrayComprehension
|
57 |
+
>>> from sympy import symbols
|
58 |
+
>>> i, j = symbols('i j')
|
59 |
+
>>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
60 |
+
>>> a.function
|
61 |
+
10*i + j
|
62 |
+
"""
|
63 |
+
return self._args[0]
|
64 |
+
|
65 |
+
@property
|
66 |
+
def limits(self):
|
67 |
+
"""
|
68 |
+
The list of limits that will be applied while expanding the array.
|
69 |
+
|
70 |
+
Examples
|
71 |
+
========
|
72 |
+
|
73 |
+
>>> from sympy.tensor.array import ArrayComprehension
|
74 |
+
>>> from sympy import symbols
|
75 |
+
>>> i, j = symbols('i j')
|
76 |
+
>>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
77 |
+
>>> a.limits
|
78 |
+
((i, 1, 4), (j, 1, 3))
|
79 |
+
"""
|
80 |
+
return self._limits
|
81 |
+
|
82 |
+
@property
|
83 |
+
def free_symbols(self):
|
84 |
+
"""
|
85 |
+
The set of the free_symbols in the array.
|
86 |
+
Variables appeared in the bounds are supposed to be excluded
|
87 |
+
from the free symbol set.
|
88 |
+
|
89 |
+
Examples
|
90 |
+
========
|
91 |
+
|
92 |
+
>>> from sympy.tensor.array import ArrayComprehension
|
93 |
+
>>> from sympy import symbols
|
94 |
+
>>> i, j, k = symbols('i j k')
|
95 |
+
>>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
96 |
+
>>> a.free_symbols
|
97 |
+
set()
|
98 |
+
>>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k+3))
|
99 |
+
>>> b.free_symbols
|
100 |
+
{k}
|
101 |
+
"""
|
102 |
+
expr_free_sym = self.function.free_symbols
|
103 |
+
for var, inf, sup in self._limits:
|
104 |
+
expr_free_sym.discard(var)
|
105 |
+
curr_free_syms = inf.free_symbols.union(sup.free_symbols)
|
106 |
+
expr_free_sym = expr_free_sym.union(curr_free_syms)
|
107 |
+
return expr_free_sym
|
108 |
+
|
109 |
+
@property
|
110 |
+
def variables(self):
|
111 |
+
"""The tuples of the variables in the limits.
|
112 |
+
|
113 |
+
Examples
|
114 |
+
========
|
115 |
+
|
116 |
+
>>> from sympy.tensor.array import ArrayComprehension
|
117 |
+
>>> from sympy import symbols
|
118 |
+
>>> i, j, k = symbols('i j k')
|
119 |
+
>>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
120 |
+
>>> a.variables
|
121 |
+
[i, j]
|
122 |
+
"""
|
123 |
+
return [l[0] for l in self._limits]
|
124 |
+
|
125 |
+
@property
|
126 |
+
def bound_symbols(self):
|
127 |
+
"""The list of dummy variables.
|
128 |
+
|
129 |
+
Note
|
130 |
+
====
|
131 |
+
|
132 |
+
Note that all variables are dummy variables since a limit without
|
133 |
+
lower bound or upper bound is not accepted.
|
134 |
+
"""
|
135 |
+
return [l[0] for l in self._limits if len(l) != 1]
|
136 |
+
|
137 |
+
@property
|
138 |
+
def shape(self):
|
139 |
+
"""
|
140 |
+
The shape of the expanded array, which may have symbols.
|
141 |
+
|
142 |
+
Note
|
143 |
+
====
|
144 |
+
|
145 |
+
Both the lower and the upper bounds are included while
|
146 |
+
calculating the shape.
|
147 |
+
|
148 |
+
Examples
|
149 |
+
========
|
150 |
+
|
151 |
+
>>> from sympy.tensor.array import ArrayComprehension
|
152 |
+
>>> from sympy import symbols
|
153 |
+
>>> i, j, k = symbols('i j k')
|
154 |
+
>>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
155 |
+
>>> a.shape
|
156 |
+
(4, 3)
|
157 |
+
>>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k+3))
|
158 |
+
>>> b.shape
|
159 |
+
(4, k + 3)
|
160 |
+
"""
|
161 |
+
return self._shape
|
162 |
+
|
163 |
+
@property
|
164 |
+
def is_shape_numeric(self):
|
165 |
+
"""
|
166 |
+
Test if the array is shape-numeric which means there is no symbolic
|
167 |
+
dimension.
|
168 |
+
|
169 |
+
Examples
|
170 |
+
========
|
171 |
+
|
172 |
+
>>> from sympy.tensor.array import ArrayComprehension
|
173 |
+
>>> from sympy import symbols
|
174 |
+
>>> i, j, k = symbols('i j k')
|
175 |
+
>>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
176 |
+
>>> a.is_shape_numeric
|
177 |
+
True
|
178 |
+
>>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k+3))
|
179 |
+
>>> b.is_shape_numeric
|
180 |
+
False
|
181 |
+
"""
|
182 |
+
for _, inf, sup in self._limits:
|
183 |
+
if Basic(inf, sup).atoms(Symbol):
|
184 |
+
return False
|
185 |
+
return True
|
186 |
+
|
187 |
+
def rank(self):
|
188 |
+
"""The rank of the expanded array.
|
189 |
+
|
190 |
+
Examples
|
191 |
+
========
|
192 |
+
|
193 |
+
>>> from sympy.tensor.array import ArrayComprehension
|
194 |
+
>>> from sympy import symbols
|
195 |
+
>>> i, j, k = symbols('i j k')
|
196 |
+
>>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
197 |
+
>>> a.rank()
|
198 |
+
2
|
199 |
+
"""
|
200 |
+
return self._rank
|
201 |
+
|
202 |
+
def __len__(self):
|
203 |
+
"""
|
204 |
+
The length of the expanded array which means the number
|
205 |
+
of elements in the array.
|
206 |
+
|
207 |
+
Raises
|
208 |
+
======
|
209 |
+
|
210 |
+
ValueError : When the length of the array is symbolic
|
211 |
+
|
212 |
+
Examples
|
213 |
+
========
|
214 |
+
|
215 |
+
>>> from sympy.tensor.array import ArrayComprehension
|
216 |
+
>>> from sympy import symbols
|
217 |
+
>>> i, j = symbols('i j')
|
218 |
+
>>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
219 |
+
>>> len(a)
|
220 |
+
12
|
221 |
+
"""
|
222 |
+
if self._loop_size.free_symbols:
|
223 |
+
raise ValueError('Symbolic length is not supported')
|
224 |
+
return self._loop_size
|
225 |
+
|
226 |
+
@classmethod
|
227 |
+
def _check_limits_validity(cls, function, limits):
|
228 |
+
#limits = sympify(limits)
|
229 |
+
new_limits = []
|
230 |
+
for var, inf, sup in limits:
|
231 |
+
var = _sympify(var)
|
232 |
+
inf = _sympify(inf)
|
233 |
+
#since this is stored as an argument, it should be
|
234 |
+
#a Tuple
|
235 |
+
if isinstance(sup, list):
|
236 |
+
sup = Tuple(*sup)
|
237 |
+
else:
|
238 |
+
sup = _sympify(sup)
|
239 |
+
new_limits.append(Tuple(var, inf, sup))
|
240 |
+
if any((not isinstance(i, Expr)) or i.atoms(Symbol, Integer) != i.atoms()
|
241 |
+
for i in [inf, sup]):
|
242 |
+
raise TypeError('Bounds should be an Expression(combination of Integer and Symbol)')
|
243 |
+
if (inf > sup) == True:
|
244 |
+
raise ValueError('Lower bound should be inferior to upper bound')
|
245 |
+
if var in inf.free_symbols or var in sup.free_symbols:
|
246 |
+
raise ValueError('Variable should not be part of its bounds')
|
247 |
+
return new_limits
|
248 |
+
|
249 |
+
@classmethod
|
250 |
+
def _calculate_shape_from_limits(cls, limits):
|
251 |
+
return tuple([sup - inf + 1 for _, inf, sup in limits])
|
252 |
+
|
253 |
+
@classmethod
|
254 |
+
def _calculate_loop_size(cls, shape):
|
255 |
+
if not shape:
|
256 |
+
return 0
|
257 |
+
loop_size = 1
|
258 |
+
for l in shape:
|
259 |
+
loop_size = loop_size * l
|
260 |
+
|
261 |
+
return loop_size
|
262 |
+
|
263 |
+
def doit(self, **hints):
|
264 |
+
if not self.is_shape_numeric:
|
265 |
+
return self
|
266 |
+
|
267 |
+
return self._expand_array()
|
268 |
+
|
269 |
+
def _expand_array(self):
|
270 |
+
res = []
|
271 |
+
for values in itertools.product(*[range(inf, sup+1)
|
272 |
+
for var, inf, sup
|
273 |
+
in self._limits]):
|
274 |
+
res.append(self._get_element(values))
|
275 |
+
|
276 |
+
return ImmutableDenseNDimArray(res, self.shape)
|
277 |
+
|
278 |
+
def _get_element(self, values):
|
279 |
+
temp = self.function
|
280 |
+
for var, val in zip(self.variables, values):
|
281 |
+
temp = temp.subs(var, val)
|
282 |
+
return temp
|
283 |
+
|
284 |
+
def tolist(self):
|
285 |
+
"""Transform the expanded array to a list.
|
286 |
+
|
287 |
+
Raises
|
288 |
+
======
|
289 |
+
|
290 |
+
ValueError : When there is a symbolic dimension
|
291 |
+
|
292 |
+
Examples
|
293 |
+
========
|
294 |
+
|
295 |
+
>>> from sympy.tensor.array import ArrayComprehension
|
296 |
+
>>> from sympy import symbols
|
297 |
+
>>> i, j = symbols('i j')
|
298 |
+
>>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
299 |
+
>>> a.tolist()
|
300 |
+
[[11, 12, 13], [21, 22, 23], [31, 32, 33], [41, 42, 43]]
|
301 |
+
"""
|
302 |
+
if self.is_shape_numeric:
|
303 |
+
return self._expand_array().tolist()
|
304 |
+
|
305 |
+
raise ValueError("A symbolic array cannot be expanded to a list")
|
306 |
+
|
307 |
+
def tomatrix(self):
|
308 |
+
"""Transform the expanded array to a matrix.
|
309 |
+
|
310 |
+
Raises
|
311 |
+
======
|
312 |
+
|
313 |
+
ValueError : When there is a symbolic dimension
|
314 |
+
ValueError : When the rank of the expanded array is not equal to 2
|
315 |
+
|
316 |
+
Examples
|
317 |
+
========
|
318 |
+
|
319 |
+
>>> from sympy.tensor.array import ArrayComprehension
|
320 |
+
>>> from sympy import symbols
|
321 |
+
>>> i, j = symbols('i j')
|
322 |
+
>>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3))
|
323 |
+
>>> a.tomatrix()
|
324 |
+
Matrix([
|
325 |
+
[11, 12, 13],
|
326 |
+
[21, 22, 23],
|
327 |
+
[31, 32, 33],
|
328 |
+
[41, 42, 43]])
|
329 |
+
"""
|
330 |
+
from sympy.matrices import Matrix
|
331 |
+
|
332 |
+
if not self.is_shape_numeric:
|
333 |
+
raise ValueError("A symbolic array cannot be expanded to a matrix")
|
334 |
+
if self._rank != 2:
|
335 |
+
raise ValueError('Dimensions must be of size of 2')
|
336 |
+
|
337 |
+
return Matrix(self._expand_array().tomatrix())
|
338 |
+
|
339 |
+
|
340 |
+
def isLambda(v):
|
341 |
+
LAMBDA = lambda: 0
|
342 |
+
return isinstance(v, type(LAMBDA)) and v.__name__ == LAMBDA.__name__
|
343 |
+
|
344 |
+
class ArrayComprehensionMap(ArrayComprehension):
|
345 |
+
'''
|
346 |
+
A subclass of ArrayComprehension dedicated to map external function lambda.
|
347 |
+
|
348 |
+
Notes
|
349 |
+
=====
|
350 |
+
|
351 |
+
Only the lambda function is considered.
|
352 |
+
At most one argument in lambda function is accepted in order to avoid ambiguity
|
353 |
+
in value assignment.
|
354 |
+
|
355 |
+
Examples
|
356 |
+
========
|
357 |
+
|
358 |
+
>>> from sympy.tensor.array import ArrayComprehensionMap
|
359 |
+
>>> from sympy import symbols
|
360 |
+
>>> i, j, k = symbols('i j k')
|
361 |
+
>>> a = ArrayComprehensionMap(lambda: 1, (i, 1, 4))
|
362 |
+
>>> a.doit()
|
363 |
+
[1, 1, 1, 1]
|
364 |
+
>>> b = ArrayComprehensionMap(lambda a: a+1, (j, 1, 4))
|
365 |
+
>>> b.doit()
|
366 |
+
[2, 3, 4, 5]
|
367 |
+
|
368 |
+
'''
|
369 |
+
def __new__(cls, function, *symbols, **assumptions):
|
370 |
+
if any(len(l) != 3 or None for l in symbols):
|
371 |
+
raise ValueError('ArrayComprehension requires values lower and upper bound'
|
372 |
+
' for the expression')
|
373 |
+
|
374 |
+
if not isLambda(function):
|
375 |
+
raise ValueError('Data type not supported')
|
376 |
+
|
377 |
+
arglist = cls._check_limits_validity(function, symbols)
|
378 |
+
obj = Basic.__new__(cls, *arglist, **assumptions)
|
379 |
+
obj._limits = obj._args
|
380 |
+
obj._shape = cls._calculate_shape_from_limits(obj._limits)
|
381 |
+
obj._rank = len(obj._shape)
|
382 |
+
obj._loop_size = cls._calculate_loop_size(obj._shape)
|
383 |
+
obj._lambda = function
|
384 |
+
return obj
|
385 |
+
|
386 |
+
@property
|
387 |
+
def func(self):
|
388 |
+
class _(ArrayComprehensionMap):
|
389 |
+
def __new__(cls, *args, **kwargs):
|
390 |
+
return ArrayComprehensionMap(self._lambda, *args, **kwargs)
|
391 |
+
return _
|
392 |
+
|
393 |
+
def _get_element(self, values):
|
394 |
+
temp = self._lambda
|
395 |
+
if self._lambda.__code__.co_argcount == 0:
|
396 |
+
temp = temp()
|
397 |
+
elif self._lambda.__code__.co_argcount == 1:
|
398 |
+
temp = temp(functools.reduce(lambda a, b: a*b, values))
|
399 |
+
return temp
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/array_derivatives.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from sympy.core.expr import Expr
|
4 |
+
from sympy.core.function import Derivative
|
5 |
+
from sympy.core.numbers import Integer
|
6 |
+
from sympy.matrices.common import MatrixCommon
|
7 |
+
from .ndim_array import NDimArray
|
8 |
+
from .arrayop import derive_by_array
|
9 |
+
from sympy.matrices.expressions.matexpr import MatrixExpr
|
10 |
+
from sympy.matrices.expressions.special import ZeroMatrix
|
11 |
+
from sympy.matrices.expressions.matexpr import _matrix_derivative
|
12 |
+
|
13 |
+
|
14 |
+
class ArrayDerivative(Derivative):
|
15 |
+
|
16 |
+
is_scalar = False
|
17 |
+
|
18 |
+
def __new__(cls, expr, *variables, **kwargs):
|
19 |
+
obj = super().__new__(cls, expr, *variables, **kwargs)
|
20 |
+
if isinstance(obj, ArrayDerivative):
|
21 |
+
obj._shape = obj._get_shape()
|
22 |
+
return obj
|
23 |
+
|
24 |
+
def _get_shape(self):
|
25 |
+
shape = ()
|
26 |
+
for v, count in self.variable_count:
|
27 |
+
if hasattr(v, "shape"):
|
28 |
+
for i in range(count):
|
29 |
+
shape += v.shape
|
30 |
+
if hasattr(self.expr, "shape"):
|
31 |
+
shape += self.expr.shape
|
32 |
+
return shape
|
33 |
+
|
34 |
+
@property
|
35 |
+
def shape(self):
|
36 |
+
return self._shape
|
37 |
+
|
38 |
+
@classmethod
|
39 |
+
def _get_zero_with_shape_like(cls, expr):
|
40 |
+
if isinstance(expr, (MatrixCommon, NDimArray)):
|
41 |
+
return expr.zeros(*expr.shape)
|
42 |
+
elif isinstance(expr, MatrixExpr):
|
43 |
+
return ZeroMatrix(*expr.shape)
|
44 |
+
else:
|
45 |
+
raise RuntimeError("Unable to determine shape of array-derivative.")
|
46 |
+
|
47 |
+
@staticmethod
|
48 |
+
def _call_derive_scalar_by_matrix(expr: Expr, v: MatrixCommon) -> Expr:
|
49 |
+
return v.applyfunc(lambda x: expr.diff(x))
|
50 |
+
|
51 |
+
@staticmethod
|
52 |
+
def _call_derive_scalar_by_matexpr(expr: Expr, v: MatrixExpr) -> Expr:
|
53 |
+
if expr.has(v):
|
54 |
+
return _matrix_derivative(expr, v)
|
55 |
+
else:
|
56 |
+
return ZeroMatrix(*v.shape)
|
57 |
+
|
58 |
+
@staticmethod
|
59 |
+
def _call_derive_scalar_by_array(expr: Expr, v: NDimArray) -> Expr:
|
60 |
+
return v.applyfunc(lambda x: expr.diff(x))
|
61 |
+
|
62 |
+
@staticmethod
|
63 |
+
def _call_derive_matrix_by_scalar(expr: MatrixCommon, v: Expr) -> Expr:
|
64 |
+
return _matrix_derivative(expr, v)
|
65 |
+
|
66 |
+
@staticmethod
|
67 |
+
def _call_derive_matexpr_by_scalar(expr: MatrixExpr, v: Expr) -> Expr:
|
68 |
+
return expr._eval_derivative(v)
|
69 |
+
|
70 |
+
@staticmethod
|
71 |
+
def _call_derive_array_by_scalar(expr: NDimArray, v: Expr) -> Expr:
|
72 |
+
return expr.applyfunc(lambda x: x.diff(v))
|
73 |
+
|
74 |
+
@staticmethod
|
75 |
+
def _call_derive_default(expr: Expr, v: Expr) -> Expr | None:
|
76 |
+
if expr.has(v):
|
77 |
+
return _matrix_derivative(expr, v)
|
78 |
+
else:
|
79 |
+
return None
|
80 |
+
|
81 |
+
@classmethod
|
82 |
+
def _dispatch_eval_derivative_n_times(cls, expr, v, count):
|
83 |
+
# Evaluate the derivative `n` times. If
|
84 |
+
# `_eval_derivative_n_times` is not overridden by the current
|
85 |
+
# object, the default in `Basic` will call a loop over
|
86 |
+
# `_eval_derivative`:
|
87 |
+
|
88 |
+
if not isinstance(count, (int, Integer)) or ((count <= 0) == True):
|
89 |
+
return None
|
90 |
+
|
91 |
+
# TODO: this could be done with multiple-dispatching:
|
92 |
+
if expr.is_scalar:
|
93 |
+
if isinstance(v, MatrixCommon):
|
94 |
+
result = cls._call_derive_scalar_by_matrix(expr, v)
|
95 |
+
elif isinstance(v, MatrixExpr):
|
96 |
+
result = cls._call_derive_scalar_by_matexpr(expr, v)
|
97 |
+
elif isinstance(v, NDimArray):
|
98 |
+
result = cls._call_derive_scalar_by_array(expr, v)
|
99 |
+
elif v.is_scalar:
|
100 |
+
# scalar by scalar has a special
|
101 |
+
return super()._dispatch_eval_derivative_n_times(expr, v, count)
|
102 |
+
else:
|
103 |
+
return None
|
104 |
+
elif v.is_scalar:
|
105 |
+
if isinstance(expr, MatrixCommon):
|
106 |
+
result = cls._call_derive_matrix_by_scalar(expr, v)
|
107 |
+
elif isinstance(expr, MatrixExpr):
|
108 |
+
result = cls._call_derive_matexpr_by_scalar(expr, v)
|
109 |
+
elif isinstance(expr, NDimArray):
|
110 |
+
result = cls._call_derive_array_by_scalar(expr, v)
|
111 |
+
else:
|
112 |
+
return None
|
113 |
+
else:
|
114 |
+
# Both `expr` and `v` are some array/matrix type:
|
115 |
+
if isinstance(expr, MatrixCommon) or isinstance(expr, MatrixCommon):
|
116 |
+
result = derive_by_array(expr, v)
|
117 |
+
elif isinstance(expr, MatrixExpr) and isinstance(v, MatrixExpr):
|
118 |
+
result = cls._call_derive_default(expr, v)
|
119 |
+
elif isinstance(expr, MatrixExpr) or isinstance(v, MatrixExpr):
|
120 |
+
# if one expression is a symbolic matrix expression while the other isn't, don't evaluate:
|
121 |
+
return None
|
122 |
+
else:
|
123 |
+
result = derive_by_array(expr, v)
|
124 |
+
if result is None:
|
125 |
+
return None
|
126 |
+
if count == 1:
|
127 |
+
return result
|
128 |
+
else:
|
129 |
+
return cls._dispatch_eval_derivative_n_times(result, v, count - 1)
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/arrayop.py
ADDED
@@ -0,0 +1,528 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
from collections.abc import Iterable
|
3 |
+
|
4 |
+
from sympy.core._print_helpers import Printable
|
5 |
+
from sympy.core.containers import Tuple
|
6 |
+
from sympy.core.function import diff
|
7 |
+
from sympy.core.singleton import S
|
8 |
+
from sympy.core.sympify import _sympify
|
9 |
+
|
10 |
+
from sympy.tensor.array.ndim_array import NDimArray
|
11 |
+
from sympy.tensor.array.dense_ndim_array import DenseNDimArray, ImmutableDenseNDimArray
|
12 |
+
from sympy.tensor.array.sparse_ndim_array import SparseNDimArray
|
13 |
+
|
14 |
+
|
15 |
+
def _arrayfy(a):
|
16 |
+
from sympy.matrices import MatrixBase
|
17 |
+
|
18 |
+
if isinstance(a, NDimArray):
|
19 |
+
return a
|
20 |
+
if isinstance(a, (MatrixBase, list, tuple, Tuple)):
|
21 |
+
return ImmutableDenseNDimArray(a)
|
22 |
+
return a
|
23 |
+
|
24 |
+
|
25 |
+
def tensorproduct(*args):
|
26 |
+
"""
|
27 |
+
Tensor product among scalars or array-like objects.
|
28 |
+
|
29 |
+
The equivalent operator for array expressions is ``ArrayTensorProduct``,
|
30 |
+
which can be used to keep the expression unevaluated.
|
31 |
+
|
32 |
+
Examples
|
33 |
+
========
|
34 |
+
|
35 |
+
>>> from sympy.tensor.array import tensorproduct, Array
|
36 |
+
>>> from sympy.abc import x, y, z, t
|
37 |
+
>>> A = Array([[1, 2], [3, 4]])
|
38 |
+
>>> B = Array([x, y])
|
39 |
+
>>> tensorproduct(A, B)
|
40 |
+
[[[x, y], [2*x, 2*y]], [[3*x, 3*y], [4*x, 4*y]]]
|
41 |
+
>>> tensorproduct(A, x)
|
42 |
+
[[x, 2*x], [3*x, 4*x]]
|
43 |
+
>>> tensorproduct(A, B, B)
|
44 |
+
[[[[x**2, x*y], [x*y, y**2]], [[2*x**2, 2*x*y], [2*x*y, 2*y**2]]], [[[3*x**2, 3*x*y], [3*x*y, 3*y**2]], [[4*x**2, 4*x*y], [4*x*y, 4*y**2]]]]
|
45 |
+
|
46 |
+
Applying this function on two matrices will result in a rank 4 array.
|
47 |
+
|
48 |
+
>>> from sympy import Matrix, eye
|
49 |
+
>>> m = Matrix([[x, y], [z, t]])
|
50 |
+
>>> p = tensorproduct(eye(3), m)
|
51 |
+
>>> p
|
52 |
+
[[[[x, y], [z, t]], [[0, 0], [0, 0]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[x, y], [z, t]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[0, 0], [0, 0]], [[x, y], [z, t]]]]
|
53 |
+
|
54 |
+
See Also
|
55 |
+
========
|
56 |
+
|
57 |
+
sympy.tensor.array.expressions.array_expressions.ArrayTensorProduct
|
58 |
+
|
59 |
+
"""
|
60 |
+
from sympy.tensor.array import SparseNDimArray, ImmutableSparseNDimArray
|
61 |
+
|
62 |
+
if len(args) == 0:
|
63 |
+
return S.One
|
64 |
+
if len(args) == 1:
|
65 |
+
return _arrayfy(args[0])
|
66 |
+
from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract
|
67 |
+
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
|
68 |
+
from sympy.tensor.array.expressions.array_expressions import _ArrayExpr
|
69 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
70 |
+
if any(isinstance(arg, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)) for arg in args):
|
71 |
+
return ArrayTensorProduct(*args)
|
72 |
+
if len(args) > 2:
|
73 |
+
return tensorproduct(tensorproduct(args[0], args[1]), *args[2:])
|
74 |
+
|
75 |
+
# length of args is 2:
|
76 |
+
a, b = map(_arrayfy, args)
|
77 |
+
|
78 |
+
if not isinstance(a, NDimArray) or not isinstance(b, NDimArray):
|
79 |
+
return a*b
|
80 |
+
|
81 |
+
if isinstance(a, SparseNDimArray) and isinstance(b, SparseNDimArray):
|
82 |
+
lp = len(b)
|
83 |
+
new_array = {k1*lp + k2: v1*v2 for k1, v1 in a._sparse_array.items() for k2, v2 in b._sparse_array.items()}
|
84 |
+
return ImmutableSparseNDimArray(new_array, a.shape + b.shape)
|
85 |
+
|
86 |
+
product_list = [i*j for i in Flatten(a) for j in Flatten(b)]
|
87 |
+
return ImmutableDenseNDimArray(product_list, a.shape + b.shape)
|
88 |
+
|
89 |
+
|
90 |
+
def _util_contraction_diagonal(array, *contraction_or_diagonal_axes):
|
91 |
+
array = _arrayfy(array)
|
92 |
+
|
93 |
+
# Verify contraction_axes:
|
94 |
+
taken_dims = set()
|
95 |
+
for axes_group in contraction_or_diagonal_axes:
|
96 |
+
if not isinstance(axes_group, Iterable):
|
97 |
+
raise ValueError("collections of contraction/diagonal axes expected")
|
98 |
+
|
99 |
+
dim = array.shape[axes_group[0]]
|
100 |
+
|
101 |
+
for d in axes_group:
|
102 |
+
if d in taken_dims:
|
103 |
+
raise ValueError("dimension specified more than once")
|
104 |
+
if dim != array.shape[d]:
|
105 |
+
raise ValueError("cannot contract or diagonalize between axes of different dimension")
|
106 |
+
taken_dims.add(d)
|
107 |
+
|
108 |
+
rank = array.rank()
|
109 |
+
|
110 |
+
remaining_shape = [dim for i, dim in enumerate(array.shape) if i not in taken_dims]
|
111 |
+
cum_shape = [0]*rank
|
112 |
+
_cumul = 1
|
113 |
+
for i in range(rank):
|
114 |
+
cum_shape[rank - i - 1] = _cumul
|
115 |
+
_cumul *= int(array.shape[rank - i - 1])
|
116 |
+
|
117 |
+
# DEFINITION: by absolute position it is meant the position along the one
|
118 |
+
# dimensional array containing all the tensor components.
|
119 |
+
|
120 |
+
# Possible future work on this module: move computation of absolute
|
121 |
+
# positions to a class method.
|
122 |
+
|
123 |
+
# Determine absolute positions of the uncontracted indices:
|
124 |
+
remaining_indices = [[cum_shape[i]*j for j in range(array.shape[i])]
|
125 |
+
for i in range(rank) if i not in taken_dims]
|
126 |
+
|
127 |
+
# Determine absolute positions of the contracted indices:
|
128 |
+
summed_deltas = []
|
129 |
+
for axes_group in contraction_or_diagonal_axes:
|
130 |
+
lidx = []
|
131 |
+
for js in range(array.shape[axes_group[0]]):
|
132 |
+
lidx.append(sum([cum_shape[ig] * js for ig in axes_group]))
|
133 |
+
summed_deltas.append(lidx)
|
134 |
+
|
135 |
+
return array, remaining_indices, remaining_shape, summed_deltas
|
136 |
+
|
137 |
+
|
138 |
+
def tensorcontraction(array, *contraction_axes):
|
139 |
+
"""
|
140 |
+
Contraction of an array-like object on the specified axes.
|
141 |
+
|
142 |
+
The equivalent operator for array expressions is ``ArrayContraction``,
|
143 |
+
which can be used to keep the expression unevaluated.
|
144 |
+
|
145 |
+
Examples
|
146 |
+
========
|
147 |
+
|
148 |
+
>>> from sympy import Array, tensorcontraction
|
149 |
+
>>> from sympy import Matrix, eye
|
150 |
+
>>> tensorcontraction(eye(3), (0, 1))
|
151 |
+
3
|
152 |
+
>>> A = Array(range(18), (3, 2, 3))
|
153 |
+
>>> A
|
154 |
+
[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]]]
|
155 |
+
>>> tensorcontraction(A, (0, 2))
|
156 |
+
[21, 30]
|
157 |
+
|
158 |
+
Matrix multiplication may be emulated with a proper combination of
|
159 |
+
``tensorcontraction`` and ``tensorproduct``
|
160 |
+
|
161 |
+
>>> from sympy import tensorproduct
|
162 |
+
>>> from sympy.abc import a,b,c,d,e,f,g,h
|
163 |
+
>>> m1 = Matrix([[a, b], [c, d]])
|
164 |
+
>>> m2 = Matrix([[e, f], [g, h]])
|
165 |
+
>>> p = tensorproduct(m1, m2)
|
166 |
+
>>> p
|
167 |
+
[[[[a*e, a*f], [a*g, a*h]], [[b*e, b*f], [b*g, b*h]]], [[[c*e, c*f], [c*g, c*h]], [[d*e, d*f], [d*g, d*h]]]]
|
168 |
+
>>> tensorcontraction(p, (1, 2))
|
169 |
+
[[a*e + b*g, a*f + b*h], [c*e + d*g, c*f + d*h]]
|
170 |
+
>>> m1*m2
|
171 |
+
Matrix([
|
172 |
+
[a*e + b*g, a*f + b*h],
|
173 |
+
[c*e + d*g, c*f + d*h]])
|
174 |
+
|
175 |
+
See Also
|
176 |
+
========
|
177 |
+
|
178 |
+
sympy.tensor.array.expressions.array_expressions.ArrayContraction
|
179 |
+
|
180 |
+
"""
|
181 |
+
from sympy.tensor.array.expressions.array_expressions import _array_contraction
|
182 |
+
from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract
|
183 |
+
from sympy.tensor.array.expressions.array_expressions import _ArrayExpr
|
184 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
185 |
+
if isinstance(array, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)):
|
186 |
+
return _array_contraction(array, *contraction_axes)
|
187 |
+
|
188 |
+
array, remaining_indices, remaining_shape, summed_deltas = _util_contraction_diagonal(array, *contraction_axes)
|
189 |
+
|
190 |
+
# Compute the contracted array:
|
191 |
+
#
|
192 |
+
# 1. external for loops on all uncontracted indices.
|
193 |
+
# Uncontracted indices are determined by the combinatorial product of
|
194 |
+
# the absolute positions of the remaining indices.
|
195 |
+
# 2. internal loop on all contracted indices.
|
196 |
+
# It sums the values of the absolute contracted index and the absolute
|
197 |
+
# uncontracted index for the external loop.
|
198 |
+
contracted_array = []
|
199 |
+
for icontrib in itertools.product(*remaining_indices):
|
200 |
+
index_base_position = sum(icontrib)
|
201 |
+
isum = S.Zero
|
202 |
+
for sum_to_index in itertools.product(*summed_deltas):
|
203 |
+
idx = array._get_tuple_index(index_base_position + sum(sum_to_index))
|
204 |
+
isum += array[idx]
|
205 |
+
|
206 |
+
contracted_array.append(isum)
|
207 |
+
|
208 |
+
if len(remaining_indices) == 0:
|
209 |
+
assert len(contracted_array) == 1
|
210 |
+
return contracted_array[0]
|
211 |
+
|
212 |
+
return type(array)(contracted_array, remaining_shape)
|
213 |
+
|
214 |
+
|
215 |
+
def tensordiagonal(array, *diagonal_axes):
|
216 |
+
"""
|
217 |
+
Diagonalization of an array-like object on the specified axes.
|
218 |
+
|
219 |
+
This is equivalent to multiplying the expression by Kronecker deltas
|
220 |
+
uniting the axes.
|
221 |
+
|
222 |
+
The diagonal indices are put at the end of the axes.
|
223 |
+
|
224 |
+
The equivalent operator for array expressions is ``ArrayDiagonal``, which
|
225 |
+
can be used to keep the expression unevaluated.
|
226 |
+
|
227 |
+
Examples
|
228 |
+
========
|
229 |
+
|
230 |
+
``tensordiagonal`` acting on a 2-dimensional array by axes 0 and 1 is
|
231 |
+
equivalent to the diagonal of the matrix:
|
232 |
+
|
233 |
+
>>> from sympy import Array, tensordiagonal
|
234 |
+
>>> from sympy import Matrix, eye
|
235 |
+
>>> tensordiagonal(eye(3), (0, 1))
|
236 |
+
[1, 1, 1]
|
237 |
+
|
238 |
+
>>> from sympy.abc import a,b,c,d
|
239 |
+
>>> m1 = Matrix([[a, b], [c, d]])
|
240 |
+
>>> tensordiagonal(m1, [0, 1])
|
241 |
+
[a, d]
|
242 |
+
|
243 |
+
In case of higher dimensional arrays, the diagonalized out dimensions
|
244 |
+
are appended removed and appended as a single dimension at the end:
|
245 |
+
|
246 |
+
>>> A = Array(range(18), (3, 2, 3))
|
247 |
+
>>> A
|
248 |
+
[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]]]
|
249 |
+
>>> tensordiagonal(A, (0, 2))
|
250 |
+
[[0, 7, 14], [3, 10, 17]]
|
251 |
+
>>> from sympy import permutedims
|
252 |
+
>>> tensordiagonal(A, (0, 2)) == permutedims(Array([A[0, :, 0], A[1, :, 1], A[2, :, 2]]), [1, 0])
|
253 |
+
True
|
254 |
+
|
255 |
+
See Also
|
256 |
+
========
|
257 |
+
|
258 |
+
sympy.tensor.array.expressions.array_expressions.ArrayDiagonal
|
259 |
+
|
260 |
+
"""
|
261 |
+
if any(len(i) <= 1 for i in diagonal_axes):
|
262 |
+
raise ValueError("need at least two axes to diagonalize")
|
263 |
+
|
264 |
+
from sympy.tensor.array.expressions.array_expressions import _ArrayExpr
|
265 |
+
from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract
|
266 |
+
from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal, _array_diagonal
|
267 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
268 |
+
if isinstance(array, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)):
|
269 |
+
return _array_diagonal(array, *diagonal_axes)
|
270 |
+
|
271 |
+
ArrayDiagonal._validate(array, *diagonal_axes)
|
272 |
+
|
273 |
+
array, remaining_indices, remaining_shape, diagonal_deltas = _util_contraction_diagonal(array, *diagonal_axes)
|
274 |
+
|
275 |
+
# Compute the diagonalized array:
|
276 |
+
#
|
277 |
+
# 1. external for loops on all undiagonalized indices.
|
278 |
+
# Undiagonalized indices are determined by the combinatorial product of
|
279 |
+
# the absolute positions of the remaining indices.
|
280 |
+
# 2. internal loop on all diagonal indices.
|
281 |
+
# It appends the values of the absolute diagonalized index and the absolute
|
282 |
+
# undiagonalized index for the external loop.
|
283 |
+
diagonalized_array = []
|
284 |
+
diagonal_shape = [len(i) for i in diagonal_deltas]
|
285 |
+
for icontrib in itertools.product(*remaining_indices):
|
286 |
+
index_base_position = sum(icontrib)
|
287 |
+
isum = []
|
288 |
+
for sum_to_index in itertools.product(*diagonal_deltas):
|
289 |
+
idx = array._get_tuple_index(index_base_position + sum(sum_to_index))
|
290 |
+
isum.append(array[idx])
|
291 |
+
|
292 |
+
isum = type(array)(isum).reshape(*diagonal_shape)
|
293 |
+
diagonalized_array.append(isum)
|
294 |
+
|
295 |
+
return type(array)(diagonalized_array, remaining_shape + diagonal_shape)
|
296 |
+
|
297 |
+
|
298 |
+
def derive_by_array(expr, dx):
|
299 |
+
r"""
|
300 |
+
Derivative by arrays. Supports both arrays and scalars.
|
301 |
+
|
302 |
+
The equivalent operator for array expressions is ``array_derive``.
|
303 |
+
|
304 |
+
Explanation
|
305 |
+
===========
|
306 |
+
|
307 |
+
Given the array `A_{i_1, \ldots, i_N}` and the array `X_{j_1, \ldots, j_M}`
|
308 |
+
this function will return a new array `B` defined by
|
309 |
+
|
310 |
+
`B_{j_1,\ldots,j_M,i_1,\ldots,i_N} := \frac{\partial A_{i_1,\ldots,i_N}}{\partial X_{j_1,\ldots,j_M}}`
|
311 |
+
|
312 |
+
Examples
|
313 |
+
========
|
314 |
+
|
315 |
+
>>> from sympy import derive_by_array
|
316 |
+
>>> from sympy.abc import x, y, z, t
|
317 |
+
>>> from sympy import cos
|
318 |
+
>>> derive_by_array(cos(x*t), x)
|
319 |
+
-t*sin(t*x)
|
320 |
+
>>> derive_by_array(cos(x*t), [x, y, z, t])
|
321 |
+
[-t*sin(t*x), 0, 0, -x*sin(t*x)]
|
322 |
+
>>> derive_by_array([x, y**2*z], [[x, y], [z, t]])
|
323 |
+
[[[1, 0], [0, 2*y*z]], [[0, y**2], [0, 0]]]
|
324 |
+
|
325 |
+
"""
|
326 |
+
from sympy.matrices import MatrixBase
|
327 |
+
from sympy.tensor.array import SparseNDimArray
|
328 |
+
array_types = (Iterable, MatrixBase, NDimArray)
|
329 |
+
|
330 |
+
if isinstance(dx, array_types):
|
331 |
+
dx = ImmutableDenseNDimArray(dx)
|
332 |
+
for i in dx:
|
333 |
+
if not i._diff_wrt:
|
334 |
+
raise ValueError("cannot derive by this array")
|
335 |
+
|
336 |
+
if isinstance(expr, array_types):
|
337 |
+
if isinstance(expr, NDimArray):
|
338 |
+
expr = expr.as_immutable()
|
339 |
+
else:
|
340 |
+
expr = ImmutableDenseNDimArray(expr)
|
341 |
+
|
342 |
+
if isinstance(dx, array_types):
|
343 |
+
if isinstance(expr, SparseNDimArray):
|
344 |
+
lp = len(expr)
|
345 |
+
new_array = {k + i*lp: v
|
346 |
+
for i, x in enumerate(Flatten(dx))
|
347 |
+
for k, v in expr.diff(x)._sparse_array.items()}
|
348 |
+
else:
|
349 |
+
new_array = [[y.diff(x) for y in Flatten(expr)] for x in Flatten(dx)]
|
350 |
+
return type(expr)(new_array, dx.shape + expr.shape)
|
351 |
+
else:
|
352 |
+
return expr.diff(dx)
|
353 |
+
else:
|
354 |
+
expr = _sympify(expr)
|
355 |
+
if isinstance(dx, array_types):
|
356 |
+
return ImmutableDenseNDimArray([expr.diff(i) for i in Flatten(dx)], dx.shape)
|
357 |
+
else:
|
358 |
+
dx = _sympify(dx)
|
359 |
+
return diff(expr, dx)
|
360 |
+
|
361 |
+
|
362 |
+
def permutedims(expr, perm=None, index_order_old=None, index_order_new=None):
|
363 |
+
"""
|
364 |
+
Permutes the indices of an array.
|
365 |
+
|
366 |
+
Parameter specifies the permutation of the indices.
|
367 |
+
|
368 |
+
The equivalent operator for array expressions is ``PermuteDims``, which can
|
369 |
+
be used to keep the expression unevaluated.
|
370 |
+
|
371 |
+
Examples
|
372 |
+
========
|
373 |
+
|
374 |
+
>>> from sympy.abc import x, y, z, t
|
375 |
+
>>> from sympy import sin
|
376 |
+
>>> from sympy import Array, permutedims
|
377 |
+
>>> a = Array([[x, y, z], [t, sin(x), 0]])
|
378 |
+
>>> a
|
379 |
+
[[x, y, z], [t, sin(x), 0]]
|
380 |
+
>>> permutedims(a, (1, 0))
|
381 |
+
[[x, t], [y, sin(x)], [z, 0]]
|
382 |
+
|
383 |
+
If the array is of second order, ``transpose`` can be used:
|
384 |
+
|
385 |
+
>>> from sympy import transpose
|
386 |
+
>>> transpose(a)
|
387 |
+
[[x, t], [y, sin(x)], [z, 0]]
|
388 |
+
|
389 |
+
Examples on higher dimensions:
|
390 |
+
|
391 |
+
>>> b = Array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
|
392 |
+
>>> permutedims(b, (2, 1, 0))
|
393 |
+
[[[1, 5], [3, 7]], [[2, 6], [4, 8]]]
|
394 |
+
>>> permutedims(b, (1, 2, 0))
|
395 |
+
[[[1, 5], [2, 6]], [[3, 7], [4, 8]]]
|
396 |
+
|
397 |
+
An alternative way to specify the same permutations as in the previous
|
398 |
+
lines involves passing the *old* and *new* indices, either as a list or as
|
399 |
+
a string:
|
400 |
+
|
401 |
+
>>> permutedims(b, index_order_old="cba", index_order_new="abc")
|
402 |
+
[[[1, 5], [3, 7]], [[2, 6], [4, 8]]]
|
403 |
+
>>> permutedims(b, index_order_old="cab", index_order_new="abc")
|
404 |
+
[[[1, 5], [2, 6]], [[3, 7], [4, 8]]]
|
405 |
+
|
406 |
+
``Permutation`` objects are also allowed:
|
407 |
+
|
408 |
+
>>> from sympy.combinatorics import Permutation
|
409 |
+
>>> permutedims(b, Permutation([1, 2, 0]))
|
410 |
+
[[[1, 5], [2, 6]], [[3, 7], [4, 8]]]
|
411 |
+
|
412 |
+
See Also
|
413 |
+
========
|
414 |
+
|
415 |
+
sympy.tensor.array.expressions.array_expressions.PermuteDims
|
416 |
+
|
417 |
+
"""
|
418 |
+
from sympy.tensor.array import SparseNDimArray
|
419 |
+
|
420 |
+
from sympy.tensor.array.expressions.array_expressions import _ArrayExpr
|
421 |
+
from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract
|
422 |
+
from sympy.tensor.array.expressions.array_expressions import _permute_dims
|
423 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
424 |
+
from sympy.tensor.array.expressions import PermuteDims
|
425 |
+
from sympy.tensor.array.expressions.array_expressions import get_rank
|
426 |
+
perm = PermuteDims._get_permutation_from_arguments(perm, index_order_old, index_order_new, get_rank(expr))
|
427 |
+
if isinstance(expr, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)):
|
428 |
+
return _permute_dims(expr, perm)
|
429 |
+
|
430 |
+
if not isinstance(expr, NDimArray):
|
431 |
+
expr = ImmutableDenseNDimArray(expr)
|
432 |
+
|
433 |
+
from sympy.combinatorics import Permutation
|
434 |
+
if not isinstance(perm, Permutation):
|
435 |
+
perm = Permutation(list(perm))
|
436 |
+
|
437 |
+
if perm.size != expr.rank():
|
438 |
+
raise ValueError("wrong permutation size")
|
439 |
+
|
440 |
+
# Get the inverse permutation:
|
441 |
+
iperm = ~perm
|
442 |
+
new_shape = perm(expr.shape)
|
443 |
+
|
444 |
+
if isinstance(expr, SparseNDimArray):
|
445 |
+
return type(expr)({tuple(perm(expr._get_tuple_index(k))): v
|
446 |
+
for k, v in expr._sparse_array.items()}, new_shape)
|
447 |
+
|
448 |
+
indices_span = perm([range(i) for i in expr.shape])
|
449 |
+
|
450 |
+
new_array = [None]*len(expr)
|
451 |
+
for i, idx in enumerate(itertools.product(*indices_span)):
|
452 |
+
t = iperm(idx)
|
453 |
+
new_array[i] = expr[t]
|
454 |
+
|
455 |
+
return type(expr)(new_array, new_shape)
|
456 |
+
|
457 |
+
|
458 |
+
class Flatten(Printable):
|
459 |
+
"""
|
460 |
+
Flatten an iterable object to a list in a lazy-evaluation way.
|
461 |
+
|
462 |
+
Notes
|
463 |
+
=====
|
464 |
+
|
465 |
+
This class is an iterator with which the memory cost can be economised.
|
466 |
+
Optimisation has been considered to ameliorate the performance for some
|
467 |
+
specific data types like DenseNDimArray and SparseNDimArray.
|
468 |
+
|
469 |
+
Examples
|
470 |
+
========
|
471 |
+
|
472 |
+
>>> from sympy.tensor.array.arrayop import Flatten
|
473 |
+
>>> from sympy.tensor.array import Array
|
474 |
+
>>> A = Array(range(6)).reshape(2, 3)
|
475 |
+
>>> Flatten(A)
|
476 |
+
Flatten([[0, 1, 2], [3, 4, 5]])
|
477 |
+
>>> [i for i in Flatten(A)]
|
478 |
+
[0, 1, 2, 3, 4, 5]
|
479 |
+
"""
|
480 |
+
def __init__(self, iterable):
|
481 |
+
from sympy.matrices.matrices import MatrixBase
|
482 |
+
from sympy.tensor.array import NDimArray
|
483 |
+
|
484 |
+
if not isinstance(iterable, (Iterable, MatrixBase)):
|
485 |
+
raise NotImplementedError("Data type not yet supported")
|
486 |
+
|
487 |
+
if isinstance(iterable, list):
|
488 |
+
iterable = NDimArray(iterable)
|
489 |
+
|
490 |
+
self._iter = iterable
|
491 |
+
self._idx = 0
|
492 |
+
|
493 |
+
def __iter__(self):
|
494 |
+
return self
|
495 |
+
|
496 |
+
def __next__(self):
|
497 |
+
from sympy.matrices.matrices import MatrixBase
|
498 |
+
|
499 |
+
if len(self._iter) > self._idx:
|
500 |
+
if isinstance(self._iter, DenseNDimArray):
|
501 |
+
result = self._iter._array[self._idx]
|
502 |
+
|
503 |
+
elif isinstance(self._iter, SparseNDimArray):
|
504 |
+
if self._idx in self._iter._sparse_array:
|
505 |
+
result = self._iter._sparse_array[self._idx]
|
506 |
+
else:
|
507 |
+
result = 0
|
508 |
+
|
509 |
+
elif isinstance(self._iter, MatrixBase):
|
510 |
+
result = self._iter[self._idx]
|
511 |
+
|
512 |
+
elif hasattr(self._iter, '__next__'):
|
513 |
+
result = next(self._iter)
|
514 |
+
|
515 |
+
else:
|
516 |
+
result = self._iter[self._idx]
|
517 |
+
|
518 |
+
else:
|
519 |
+
raise StopIteration
|
520 |
+
|
521 |
+
self._idx += 1
|
522 |
+
return result
|
523 |
+
|
524 |
+
def next(self):
|
525 |
+
return self.__next__()
|
526 |
+
|
527 |
+
def _sympystr(self, printer):
|
528 |
+
return type(self).__name__ + '(' + printer._print(self._iter) + ')'
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/dense_ndim_array.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
from sympy.core.basic import Basic
|
5 |
+
from sympy.core.containers import Tuple
|
6 |
+
from sympy.core.singleton import S
|
7 |
+
from sympy.core.sympify import _sympify
|
8 |
+
from sympy.tensor.array.mutable_ndim_array import MutableNDimArray
|
9 |
+
from sympy.tensor.array.ndim_array import NDimArray, ImmutableNDimArray, ArrayKind
|
10 |
+
from sympy.utilities.iterables import flatten
|
11 |
+
|
12 |
+
|
13 |
+
class DenseNDimArray(NDimArray):
|
14 |
+
|
15 |
+
_array: List[Basic]
|
16 |
+
|
17 |
+
def __new__(self, *args, **kwargs):
|
18 |
+
return ImmutableDenseNDimArray(*args, **kwargs)
|
19 |
+
|
20 |
+
@property
|
21 |
+
def kind(self) -> ArrayKind:
|
22 |
+
return ArrayKind._union(self._array)
|
23 |
+
|
24 |
+
def __getitem__(self, index):
|
25 |
+
"""
|
26 |
+
Allows to get items from N-dim array.
|
27 |
+
|
28 |
+
Examples
|
29 |
+
========
|
30 |
+
|
31 |
+
>>> from sympy import MutableDenseNDimArray
|
32 |
+
>>> a = MutableDenseNDimArray([0, 1, 2, 3], (2, 2))
|
33 |
+
>>> a
|
34 |
+
[[0, 1], [2, 3]]
|
35 |
+
>>> a[0, 0]
|
36 |
+
0
|
37 |
+
>>> a[1, 1]
|
38 |
+
3
|
39 |
+
>>> a[0]
|
40 |
+
[0, 1]
|
41 |
+
>>> a[1]
|
42 |
+
[2, 3]
|
43 |
+
|
44 |
+
|
45 |
+
Symbolic index:
|
46 |
+
|
47 |
+
>>> from sympy.abc import i, j
|
48 |
+
>>> a[i, j]
|
49 |
+
[[0, 1], [2, 3]][i, j]
|
50 |
+
|
51 |
+
Replace `i` and `j` to get element `(1, 1)`:
|
52 |
+
|
53 |
+
>>> a[i, j].subs({i: 1, j: 1})
|
54 |
+
3
|
55 |
+
|
56 |
+
"""
|
57 |
+
syindex = self._check_symbolic_index(index)
|
58 |
+
if syindex is not None:
|
59 |
+
return syindex
|
60 |
+
|
61 |
+
index = self._check_index_for_getitem(index)
|
62 |
+
|
63 |
+
if isinstance(index, tuple) and any(isinstance(i, slice) for i in index):
|
64 |
+
sl_factors, eindices = self._get_slice_data_for_array_access(index)
|
65 |
+
array = [self._array[self._parse_index(i)] for i in eindices]
|
66 |
+
nshape = [len(el) for i, el in enumerate(sl_factors) if isinstance(index[i], slice)]
|
67 |
+
return type(self)(array, nshape)
|
68 |
+
else:
|
69 |
+
index = self._parse_index(index)
|
70 |
+
return self._array[index]
|
71 |
+
|
72 |
+
@classmethod
|
73 |
+
def zeros(cls, *shape):
|
74 |
+
list_length = functools.reduce(lambda x, y: x*y, shape, S.One)
|
75 |
+
return cls._new(([0]*list_length,), shape)
|
76 |
+
|
77 |
+
def tomatrix(self):
|
78 |
+
"""
|
79 |
+
Converts MutableDenseNDimArray to Matrix. Can convert only 2-dim array, else will raise error.
|
80 |
+
|
81 |
+
Examples
|
82 |
+
========
|
83 |
+
|
84 |
+
>>> from sympy import MutableDenseNDimArray
|
85 |
+
>>> a = MutableDenseNDimArray([1 for i in range(9)], (3, 3))
|
86 |
+
>>> b = a.tomatrix()
|
87 |
+
>>> b
|
88 |
+
Matrix([
|
89 |
+
[1, 1, 1],
|
90 |
+
[1, 1, 1],
|
91 |
+
[1, 1, 1]])
|
92 |
+
|
93 |
+
"""
|
94 |
+
from sympy.matrices import Matrix
|
95 |
+
|
96 |
+
if self.rank() != 2:
|
97 |
+
raise ValueError('Dimensions must be of size of 2')
|
98 |
+
|
99 |
+
return Matrix(self.shape[0], self.shape[1], self._array)
|
100 |
+
|
101 |
+
def reshape(self, *newshape):
|
102 |
+
"""
|
103 |
+
Returns MutableDenseNDimArray instance with new shape. Elements number
|
104 |
+
must be suitable to new shape. The only argument of method sets
|
105 |
+
new shape.
|
106 |
+
|
107 |
+
Examples
|
108 |
+
========
|
109 |
+
|
110 |
+
>>> from sympy import MutableDenseNDimArray
|
111 |
+
>>> a = MutableDenseNDimArray([1, 2, 3, 4, 5, 6], (2, 3))
|
112 |
+
>>> a.shape
|
113 |
+
(2, 3)
|
114 |
+
>>> a
|
115 |
+
[[1, 2, 3], [4, 5, 6]]
|
116 |
+
>>> b = a.reshape(3, 2)
|
117 |
+
>>> b.shape
|
118 |
+
(3, 2)
|
119 |
+
>>> b
|
120 |
+
[[1, 2], [3, 4], [5, 6]]
|
121 |
+
|
122 |
+
"""
|
123 |
+
new_total_size = functools.reduce(lambda x,y: x*y, newshape)
|
124 |
+
if new_total_size != self._loop_size:
|
125 |
+
raise ValueError('Expecting reshape size to %d but got prod(%s) = %d' % (
|
126 |
+
self._loop_size, str(newshape), new_total_size))
|
127 |
+
|
128 |
+
# there is no `.func` as this class does not subtype `Basic`:
|
129 |
+
return type(self)(self._array, newshape)
|
130 |
+
|
131 |
+
|
132 |
+
class ImmutableDenseNDimArray(DenseNDimArray, ImmutableNDimArray): # type: ignore
|
133 |
+
def __new__(cls, iterable, shape=None, **kwargs):
|
134 |
+
return cls._new(iterable, shape, **kwargs)
|
135 |
+
|
136 |
+
@classmethod
|
137 |
+
def _new(cls, iterable, shape, **kwargs):
|
138 |
+
shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs)
|
139 |
+
shape = Tuple(*map(_sympify, shape))
|
140 |
+
cls._check_special_bounds(flat_list, shape)
|
141 |
+
flat_list = flatten(flat_list)
|
142 |
+
flat_list = Tuple(*flat_list)
|
143 |
+
self = Basic.__new__(cls, flat_list, shape, **kwargs)
|
144 |
+
self._shape = shape
|
145 |
+
self._array = list(flat_list)
|
146 |
+
self._rank = len(shape)
|
147 |
+
self._loop_size = functools.reduce(lambda x,y: x*y, shape, 1)
|
148 |
+
return self
|
149 |
+
|
150 |
+
def __setitem__(self, index, value):
|
151 |
+
raise TypeError('immutable N-dim array')
|
152 |
+
|
153 |
+
def as_mutable(self):
|
154 |
+
return MutableDenseNDimArray(self)
|
155 |
+
|
156 |
+
def _eval_simplify(self, **kwargs):
|
157 |
+
from sympy.simplify.simplify import simplify
|
158 |
+
return self.applyfunc(simplify)
|
159 |
+
|
160 |
+
class MutableDenseNDimArray(DenseNDimArray, MutableNDimArray):
|
161 |
+
|
162 |
+
def __new__(cls, iterable=None, shape=None, **kwargs):
|
163 |
+
return cls._new(iterable, shape, **kwargs)
|
164 |
+
|
165 |
+
@classmethod
|
166 |
+
def _new(cls, iterable, shape, **kwargs):
|
167 |
+
shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs)
|
168 |
+
flat_list = flatten(flat_list)
|
169 |
+
self = object.__new__(cls)
|
170 |
+
self._shape = shape
|
171 |
+
self._array = list(flat_list)
|
172 |
+
self._rank = len(shape)
|
173 |
+
self._loop_size = functools.reduce(lambda x,y: x*y, shape) if shape else len(flat_list)
|
174 |
+
return self
|
175 |
+
|
176 |
+
def __setitem__(self, index, value):
|
177 |
+
"""Allows to set items to MutableDenseNDimArray.
|
178 |
+
|
179 |
+
Examples
|
180 |
+
========
|
181 |
+
|
182 |
+
>>> from sympy import MutableDenseNDimArray
|
183 |
+
>>> a = MutableDenseNDimArray.zeros(2, 2)
|
184 |
+
>>> a[0,0] = 1
|
185 |
+
>>> a[1,1] = 1
|
186 |
+
>>> a
|
187 |
+
[[1, 0], [0, 1]]
|
188 |
+
|
189 |
+
"""
|
190 |
+
if isinstance(index, tuple) and any(isinstance(i, slice) for i in index):
|
191 |
+
value, eindices, slice_offsets = self._get_slice_data_for_array_assignment(index, value)
|
192 |
+
for i in eindices:
|
193 |
+
other_i = [ind - j for ind, j in zip(i, slice_offsets) if j is not None]
|
194 |
+
self._array[self._parse_index(i)] = value[other_i]
|
195 |
+
else:
|
196 |
+
index = self._parse_index(index)
|
197 |
+
self._setter_iterable_check(value)
|
198 |
+
value = _sympify(value)
|
199 |
+
self._array[index] = value
|
200 |
+
|
201 |
+
def as_immutable(self):
|
202 |
+
return ImmutableDenseNDimArray(self)
|
203 |
+
|
204 |
+
@property
|
205 |
+
def free_symbols(self):
|
206 |
+
return {i for j in self._array for i in j.free_symbols}
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/mutable_ndim_array.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.tensor.array.ndim_array import NDimArray
|
2 |
+
|
3 |
+
|
4 |
+
class MutableNDimArray(NDimArray):
|
5 |
+
|
6 |
+
def as_immutable(self):
|
7 |
+
raise NotImplementedError("abstract method")
|
8 |
+
|
9 |
+
def as_mutable(self):
|
10 |
+
return self
|
11 |
+
|
12 |
+
def _sympy_(self):
|
13 |
+
return self.as_immutable()
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/ndim_array.py
ADDED
@@ -0,0 +1,600 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.basic import Basic
|
2 |
+
from sympy.core.containers import (Dict, Tuple)
|
3 |
+
from sympy.core.expr import Expr
|
4 |
+
from sympy.core.kind import Kind, NumberKind, UndefinedKind
|
5 |
+
from sympy.core.numbers import Integer
|
6 |
+
from sympy.core.singleton import S
|
7 |
+
from sympy.core.sympify import sympify
|
8 |
+
from sympy.external.gmpy import SYMPY_INTS
|
9 |
+
from sympy.printing.defaults import Printable
|
10 |
+
|
11 |
+
import itertools
|
12 |
+
from collections.abc import Iterable
|
13 |
+
|
14 |
+
|
15 |
+
class ArrayKind(Kind):
|
16 |
+
"""
|
17 |
+
Kind for N-dimensional array in SymPy.
|
18 |
+
|
19 |
+
This kind represents the multidimensional array that algebraic
|
20 |
+
operations are defined. Basic class for this kind is ``NDimArray``,
|
21 |
+
but any expression representing the array can have this.
|
22 |
+
|
23 |
+
Parameters
|
24 |
+
==========
|
25 |
+
|
26 |
+
element_kind : Kind
|
27 |
+
Kind of the element. Default is :obj:NumberKind `<sympy.core.kind.NumberKind>`,
|
28 |
+
which means that the array contains only numbers.
|
29 |
+
|
30 |
+
Examples
|
31 |
+
========
|
32 |
+
|
33 |
+
Any instance of array class has ``ArrayKind``.
|
34 |
+
|
35 |
+
>>> from sympy import NDimArray
|
36 |
+
>>> NDimArray([1,2,3]).kind
|
37 |
+
ArrayKind(NumberKind)
|
38 |
+
|
39 |
+
Although expressions representing an array may be not instance of
|
40 |
+
array class, it will have ``ArrayKind`` as well.
|
41 |
+
|
42 |
+
>>> from sympy import Integral
|
43 |
+
>>> from sympy.tensor.array import NDimArray
|
44 |
+
>>> from sympy.abc import x
|
45 |
+
>>> intA = Integral(NDimArray([1,2,3]), x)
|
46 |
+
>>> isinstance(intA, NDimArray)
|
47 |
+
False
|
48 |
+
>>> intA.kind
|
49 |
+
ArrayKind(NumberKind)
|
50 |
+
|
51 |
+
Use ``isinstance()`` to check for ``ArrayKind` without specifying
|
52 |
+
the element kind. Use ``is`` with specifying the element kind.
|
53 |
+
|
54 |
+
>>> from sympy.tensor.array import ArrayKind
|
55 |
+
>>> from sympy.core import NumberKind
|
56 |
+
>>> boolA = NDimArray([True, False])
|
57 |
+
>>> isinstance(boolA.kind, ArrayKind)
|
58 |
+
True
|
59 |
+
>>> boolA.kind is ArrayKind(NumberKind)
|
60 |
+
False
|
61 |
+
|
62 |
+
See Also
|
63 |
+
========
|
64 |
+
|
65 |
+
shape : Function to return the shape of objects with ``MatrixKind``.
|
66 |
+
|
67 |
+
"""
|
68 |
+
def __new__(cls, element_kind=NumberKind):
|
69 |
+
obj = super().__new__(cls, element_kind)
|
70 |
+
obj.element_kind = element_kind
|
71 |
+
return obj
|
72 |
+
|
73 |
+
def __repr__(self):
|
74 |
+
return "ArrayKind(%s)" % self.element_kind
|
75 |
+
|
76 |
+
@classmethod
|
77 |
+
def _union(cls, kinds) -> 'ArrayKind':
|
78 |
+
elem_kinds = {e.kind for e in kinds}
|
79 |
+
if len(elem_kinds) == 1:
|
80 |
+
elemkind, = elem_kinds
|
81 |
+
else:
|
82 |
+
elemkind = UndefinedKind
|
83 |
+
return ArrayKind(elemkind)
|
84 |
+
|
85 |
+
|
86 |
+
class NDimArray(Printable):
|
87 |
+
"""N-dimensional array.
|
88 |
+
|
89 |
+
Examples
|
90 |
+
========
|
91 |
+
|
92 |
+
Create an N-dim array of zeros:
|
93 |
+
|
94 |
+
>>> from sympy import MutableDenseNDimArray
|
95 |
+
>>> a = MutableDenseNDimArray.zeros(2, 3, 4)
|
96 |
+
>>> a
|
97 |
+
[[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]]
|
98 |
+
|
99 |
+
Create an N-dim array from a list;
|
100 |
+
|
101 |
+
>>> a = MutableDenseNDimArray([[2, 3], [4, 5]])
|
102 |
+
>>> a
|
103 |
+
[[2, 3], [4, 5]]
|
104 |
+
|
105 |
+
>>> b = MutableDenseNDimArray([[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]])
|
106 |
+
>>> b
|
107 |
+
[[[1, 2], [3, 4], [5, 6]], [[7, 8], [9, 10], [11, 12]]]
|
108 |
+
|
109 |
+
Create an N-dim array from a flat list with dimension shape:
|
110 |
+
|
111 |
+
>>> a = MutableDenseNDimArray([1, 2, 3, 4, 5, 6], (2, 3))
|
112 |
+
>>> a
|
113 |
+
[[1, 2, 3], [4, 5, 6]]
|
114 |
+
|
115 |
+
Create an N-dim array from a matrix:
|
116 |
+
|
117 |
+
>>> from sympy import Matrix
|
118 |
+
>>> a = Matrix([[1,2],[3,4]])
|
119 |
+
>>> a
|
120 |
+
Matrix([
|
121 |
+
[1, 2],
|
122 |
+
[3, 4]])
|
123 |
+
>>> b = MutableDenseNDimArray(a)
|
124 |
+
>>> b
|
125 |
+
[[1, 2], [3, 4]]
|
126 |
+
|
127 |
+
Arithmetic operations on N-dim arrays
|
128 |
+
|
129 |
+
>>> a = MutableDenseNDimArray([1, 1, 1, 1], (2, 2))
|
130 |
+
>>> b = MutableDenseNDimArray([4, 4, 4, 4], (2, 2))
|
131 |
+
>>> c = a + b
|
132 |
+
>>> c
|
133 |
+
[[5, 5], [5, 5]]
|
134 |
+
>>> a - b
|
135 |
+
[[-3, -3], [-3, -3]]
|
136 |
+
|
137 |
+
"""
|
138 |
+
|
139 |
+
_diff_wrt = True
|
140 |
+
is_scalar = False
|
141 |
+
|
142 |
+
def __new__(cls, iterable, shape=None, **kwargs):
|
143 |
+
from sympy.tensor.array import ImmutableDenseNDimArray
|
144 |
+
return ImmutableDenseNDimArray(iterable, shape, **kwargs)
|
145 |
+
|
146 |
+
def __getitem__(self, index):
|
147 |
+
raise NotImplementedError("A subclass of NDimArray should implement __getitem__")
|
148 |
+
|
149 |
+
def _parse_index(self, index):
|
150 |
+
if isinstance(index, (SYMPY_INTS, Integer)):
|
151 |
+
if index >= self._loop_size:
|
152 |
+
raise ValueError("Only a tuple index is accepted")
|
153 |
+
return index
|
154 |
+
|
155 |
+
if self._loop_size == 0:
|
156 |
+
raise ValueError("Index not valid with an empty array")
|
157 |
+
|
158 |
+
if len(index) != self._rank:
|
159 |
+
raise ValueError('Wrong number of array axes')
|
160 |
+
|
161 |
+
real_index = 0
|
162 |
+
# check if input index can exist in current indexing
|
163 |
+
for i in range(self._rank):
|
164 |
+
if (index[i] >= self.shape[i]) or (index[i] < -self.shape[i]):
|
165 |
+
raise ValueError('Index ' + str(index) + ' out of border')
|
166 |
+
if index[i] < 0:
|
167 |
+
real_index += 1
|
168 |
+
real_index = real_index*self.shape[i] + index[i]
|
169 |
+
|
170 |
+
return real_index
|
171 |
+
|
172 |
+
def _get_tuple_index(self, integer_index):
|
173 |
+
index = []
|
174 |
+
for i, sh in enumerate(reversed(self.shape)):
|
175 |
+
index.append(integer_index % sh)
|
176 |
+
integer_index //= sh
|
177 |
+
index.reverse()
|
178 |
+
return tuple(index)
|
179 |
+
|
180 |
+
def _check_symbolic_index(self, index):
|
181 |
+
# Check if any index is symbolic:
|
182 |
+
tuple_index = (index if isinstance(index, tuple) else (index,))
|
183 |
+
if any((isinstance(i, Expr) and (not i.is_number)) for i in tuple_index):
|
184 |
+
for i, nth_dim in zip(tuple_index, self.shape):
|
185 |
+
if ((i < 0) == True) or ((i >= nth_dim) == True):
|
186 |
+
raise ValueError("index out of range")
|
187 |
+
from sympy.tensor import Indexed
|
188 |
+
return Indexed(self, *tuple_index)
|
189 |
+
return None
|
190 |
+
|
191 |
+
def _setter_iterable_check(self, value):
|
192 |
+
from sympy.matrices.matrices import MatrixBase
|
193 |
+
if isinstance(value, (Iterable, MatrixBase, NDimArray)):
|
194 |
+
raise NotImplementedError
|
195 |
+
|
196 |
+
@classmethod
|
197 |
+
def _scan_iterable_shape(cls, iterable):
|
198 |
+
def f(pointer):
|
199 |
+
if not isinstance(pointer, Iterable):
|
200 |
+
return [pointer], ()
|
201 |
+
|
202 |
+
if len(pointer) == 0:
|
203 |
+
return [], (0,)
|
204 |
+
|
205 |
+
result = []
|
206 |
+
elems, shapes = zip(*[f(i) for i in pointer])
|
207 |
+
if len(set(shapes)) != 1:
|
208 |
+
raise ValueError("could not determine shape unambiguously")
|
209 |
+
for i in elems:
|
210 |
+
result.extend(i)
|
211 |
+
return result, (len(shapes),)+shapes[0]
|
212 |
+
|
213 |
+
return f(iterable)
|
214 |
+
|
215 |
+
@classmethod
|
216 |
+
def _handle_ndarray_creation_inputs(cls, iterable=None, shape=None, **kwargs):
|
217 |
+
from sympy.matrices.matrices import MatrixBase
|
218 |
+
from sympy.tensor.array import SparseNDimArray
|
219 |
+
|
220 |
+
if shape is None:
|
221 |
+
if iterable is None:
|
222 |
+
shape = ()
|
223 |
+
iterable = ()
|
224 |
+
# Construction of a sparse array from a sparse array
|
225 |
+
elif isinstance(iterable, SparseNDimArray):
|
226 |
+
return iterable._shape, iterable._sparse_array
|
227 |
+
|
228 |
+
# Construct N-dim array from another N-dim array:
|
229 |
+
elif isinstance(iterable, NDimArray):
|
230 |
+
shape = iterable.shape
|
231 |
+
|
232 |
+
# Construct N-dim array from an iterable (numpy arrays included):
|
233 |
+
elif isinstance(iterable, Iterable):
|
234 |
+
iterable, shape = cls._scan_iterable_shape(iterable)
|
235 |
+
|
236 |
+
# Construct N-dim array from a Matrix:
|
237 |
+
elif isinstance(iterable, MatrixBase):
|
238 |
+
shape = iterable.shape
|
239 |
+
|
240 |
+
else:
|
241 |
+
shape = ()
|
242 |
+
iterable = (iterable,)
|
243 |
+
|
244 |
+
if isinstance(iterable, (Dict, dict)) and shape is not None:
|
245 |
+
new_dict = iterable.copy()
|
246 |
+
for k, v in new_dict.items():
|
247 |
+
if isinstance(k, (tuple, Tuple)):
|
248 |
+
new_key = 0
|
249 |
+
for i, idx in enumerate(k):
|
250 |
+
new_key = new_key * shape[i] + idx
|
251 |
+
iterable[new_key] = iterable[k]
|
252 |
+
del iterable[k]
|
253 |
+
|
254 |
+
if isinstance(shape, (SYMPY_INTS, Integer)):
|
255 |
+
shape = (shape,)
|
256 |
+
|
257 |
+
if not all(isinstance(dim, (SYMPY_INTS, Integer)) for dim in shape):
|
258 |
+
raise TypeError("Shape should contain integers only.")
|
259 |
+
|
260 |
+
return tuple(shape), iterable
|
261 |
+
|
262 |
+
def __len__(self):
|
263 |
+
"""Overload common function len(). Returns number of elements in array.
|
264 |
+
|
265 |
+
Examples
|
266 |
+
========
|
267 |
+
|
268 |
+
>>> from sympy import MutableDenseNDimArray
|
269 |
+
>>> a = MutableDenseNDimArray.zeros(3, 3)
|
270 |
+
>>> a
|
271 |
+
[[0, 0, 0], [0, 0, 0], [0, 0, 0]]
|
272 |
+
>>> len(a)
|
273 |
+
9
|
274 |
+
|
275 |
+
"""
|
276 |
+
return self._loop_size
|
277 |
+
|
278 |
+
@property
|
279 |
+
def shape(self):
|
280 |
+
"""
|
281 |
+
Returns array shape (dimension).
|
282 |
+
|
283 |
+
Examples
|
284 |
+
========
|
285 |
+
|
286 |
+
>>> from sympy import MutableDenseNDimArray
|
287 |
+
>>> a = MutableDenseNDimArray.zeros(3, 3)
|
288 |
+
>>> a.shape
|
289 |
+
(3, 3)
|
290 |
+
|
291 |
+
"""
|
292 |
+
return self._shape
|
293 |
+
|
294 |
+
def rank(self):
|
295 |
+
"""
|
296 |
+
Returns rank of array.
|
297 |
+
|
298 |
+
Examples
|
299 |
+
========
|
300 |
+
|
301 |
+
>>> from sympy import MutableDenseNDimArray
|
302 |
+
>>> a = MutableDenseNDimArray.zeros(3,4,5,6,3)
|
303 |
+
>>> a.rank()
|
304 |
+
5
|
305 |
+
|
306 |
+
"""
|
307 |
+
return self._rank
|
308 |
+
|
309 |
+
def diff(self, *args, **kwargs):
|
310 |
+
"""
|
311 |
+
Calculate the derivative of each element in the array.
|
312 |
+
|
313 |
+
Examples
|
314 |
+
========
|
315 |
+
|
316 |
+
>>> from sympy import ImmutableDenseNDimArray
|
317 |
+
>>> from sympy.abc import x, y
|
318 |
+
>>> M = ImmutableDenseNDimArray([[x, y], [1, x*y]])
|
319 |
+
>>> M.diff(x)
|
320 |
+
[[1, 0], [0, y]]
|
321 |
+
|
322 |
+
"""
|
323 |
+
from sympy.tensor.array.array_derivatives import ArrayDerivative
|
324 |
+
kwargs.setdefault('evaluate', True)
|
325 |
+
return ArrayDerivative(self.as_immutable(), *args, **kwargs)
|
326 |
+
|
327 |
+
def _eval_derivative(self, base):
|
328 |
+
# Types are (base: scalar, self: array)
|
329 |
+
return self.applyfunc(lambda x: base.diff(x))
|
330 |
+
|
331 |
+
def _eval_derivative_n_times(self, s, n):
|
332 |
+
return Basic._eval_derivative_n_times(self, s, n)
|
333 |
+
|
334 |
+
def applyfunc(self, f):
|
335 |
+
"""Apply a function to each element of the N-dim array.
|
336 |
+
|
337 |
+
Examples
|
338 |
+
========
|
339 |
+
|
340 |
+
>>> from sympy import ImmutableDenseNDimArray
|
341 |
+
>>> m = ImmutableDenseNDimArray([i*2+j for i in range(2) for j in range(2)], (2, 2))
|
342 |
+
>>> m
|
343 |
+
[[0, 1], [2, 3]]
|
344 |
+
>>> m.applyfunc(lambda i: 2*i)
|
345 |
+
[[0, 2], [4, 6]]
|
346 |
+
"""
|
347 |
+
from sympy.tensor.array import SparseNDimArray
|
348 |
+
from sympy.tensor.array.arrayop import Flatten
|
349 |
+
|
350 |
+
if isinstance(self, SparseNDimArray) and f(S.Zero) == 0:
|
351 |
+
return type(self)({k: f(v) for k, v in self._sparse_array.items() if f(v) != 0}, self.shape)
|
352 |
+
|
353 |
+
return type(self)(map(f, Flatten(self)), self.shape)
|
354 |
+
|
355 |
+
def _sympystr(self, printer):
|
356 |
+
def f(sh, shape_left, i, j):
|
357 |
+
if len(shape_left) == 1:
|
358 |
+
return "["+", ".join([printer._print(self[self._get_tuple_index(e)]) for e in range(i, j)])+"]"
|
359 |
+
|
360 |
+
sh //= shape_left[0]
|
361 |
+
return "[" + ", ".join([f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh) for e in range(shape_left[0])]) + "]" # + "\n"*len(shape_left)
|
362 |
+
|
363 |
+
if self.rank() == 0:
|
364 |
+
return printer._print(self[()])
|
365 |
+
|
366 |
+
return f(self._loop_size, self.shape, 0, self._loop_size)
|
367 |
+
|
368 |
+
def tolist(self):
|
369 |
+
"""
|
370 |
+
Converting MutableDenseNDimArray to one-dim list
|
371 |
+
|
372 |
+
Examples
|
373 |
+
========
|
374 |
+
|
375 |
+
>>> from sympy import MutableDenseNDimArray
|
376 |
+
>>> a = MutableDenseNDimArray([1, 2, 3, 4], (2, 2))
|
377 |
+
>>> a
|
378 |
+
[[1, 2], [3, 4]]
|
379 |
+
>>> b = a.tolist()
|
380 |
+
>>> b
|
381 |
+
[[1, 2], [3, 4]]
|
382 |
+
"""
|
383 |
+
|
384 |
+
def f(sh, shape_left, i, j):
|
385 |
+
if len(shape_left) == 1:
|
386 |
+
return [self[self._get_tuple_index(e)] for e in range(i, j)]
|
387 |
+
result = []
|
388 |
+
sh //= shape_left[0]
|
389 |
+
for e in range(shape_left[0]):
|
390 |
+
result.append(f(sh, shape_left[1:], i+e*sh, i+(e+1)*sh))
|
391 |
+
return result
|
392 |
+
|
393 |
+
return f(self._loop_size, self.shape, 0, self._loop_size)
|
394 |
+
|
395 |
+
def __add__(self, other):
|
396 |
+
from sympy.tensor.array.arrayop import Flatten
|
397 |
+
|
398 |
+
if not isinstance(other, NDimArray):
|
399 |
+
return NotImplemented
|
400 |
+
|
401 |
+
if self.shape != other.shape:
|
402 |
+
raise ValueError("array shape mismatch")
|
403 |
+
result_list = [i+j for i,j in zip(Flatten(self), Flatten(other))]
|
404 |
+
|
405 |
+
return type(self)(result_list, self.shape)
|
406 |
+
|
407 |
+
def __sub__(self, other):
|
408 |
+
from sympy.tensor.array.arrayop import Flatten
|
409 |
+
|
410 |
+
if not isinstance(other, NDimArray):
|
411 |
+
return NotImplemented
|
412 |
+
|
413 |
+
if self.shape != other.shape:
|
414 |
+
raise ValueError("array shape mismatch")
|
415 |
+
result_list = [i-j for i,j in zip(Flatten(self), Flatten(other))]
|
416 |
+
|
417 |
+
return type(self)(result_list, self.shape)
|
418 |
+
|
419 |
+
def __mul__(self, other):
|
420 |
+
from sympy.matrices.matrices import MatrixBase
|
421 |
+
from sympy.tensor.array import SparseNDimArray
|
422 |
+
from sympy.tensor.array.arrayop import Flatten
|
423 |
+
|
424 |
+
if isinstance(other, (Iterable, NDimArray, MatrixBase)):
|
425 |
+
raise ValueError("scalar expected, use tensorproduct(...) for tensorial product")
|
426 |
+
|
427 |
+
other = sympify(other)
|
428 |
+
if isinstance(self, SparseNDimArray):
|
429 |
+
if other.is_zero:
|
430 |
+
return type(self)({}, self.shape)
|
431 |
+
return type(self)({k: other*v for (k, v) in self._sparse_array.items()}, self.shape)
|
432 |
+
|
433 |
+
result_list = [i*other for i in Flatten(self)]
|
434 |
+
return type(self)(result_list, self.shape)
|
435 |
+
|
436 |
+
def __rmul__(self, other):
|
437 |
+
from sympy.matrices.matrices import MatrixBase
|
438 |
+
from sympy.tensor.array import SparseNDimArray
|
439 |
+
from sympy.tensor.array.arrayop import Flatten
|
440 |
+
|
441 |
+
if isinstance(other, (Iterable, NDimArray, MatrixBase)):
|
442 |
+
raise ValueError("scalar expected, use tensorproduct(...) for tensorial product")
|
443 |
+
|
444 |
+
other = sympify(other)
|
445 |
+
if isinstance(self, SparseNDimArray):
|
446 |
+
if other.is_zero:
|
447 |
+
return type(self)({}, self.shape)
|
448 |
+
return type(self)({k: other*v for (k, v) in self._sparse_array.items()}, self.shape)
|
449 |
+
|
450 |
+
result_list = [other*i for i in Flatten(self)]
|
451 |
+
return type(self)(result_list, self.shape)
|
452 |
+
|
453 |
+
def __truediv__(self, other):
|
454 |
+
from sympy.matrices.matrices import MatrixBase
|
455 |
+
from sympy.tensor.array import SparseNDimArray
|
456 |
+
from sympy.tensor.array.arrayop import Flatten
|
457 |
+
|
458 |
+
if isinstance(other, (Iterable, NDimArray, MatrixBase)):
|
459 |
+
raise ValueError("scalar expected")
|
460 |
+
|
461 |
+
other = sympify(other)
|
462 |
+
if isinstance(self, SparseNDimArray) and other != S.Zero:
|
463 |
+
return type(self)({k: v/other for (k, v) in self._sparse_array.items()}, self.shape)
|
464 |
+
|
465 |
+
result_list = [i/other for i in Flatten(self)]
|
466 |
+
return type(self)(result_list, self.shape)
|
467 |
+
|
468 |
+
def __rtruediv__(self, other):
|
469 |
+
raise NotImplementedError('unsupported operation on NDimArray')
|
470 |
+
|
471 |
+
def __neg__(self):
|
472 |
+
from sympy.tensor.array import SparseNDimArray
|
473 |
+
from sympy.tensor.array.arrayop import Flatten
|
474 |
+
|
475 |
+
if isinstance(self, SparseNDimArray):
|
476 |
+
return type(self)({k: -v for (k, v) in self._sparse_array.items()}, self.shape)
|
477 |
+
|
478 |
+
result_list = [-i for i in Flatten(self)]
|
479 |
+
return type(self)(result_list, self.shape)
|
480 |
+
|
481 |
+
def __iter__(self):
|
482 |
+
def iterator():
|
483 |
+
if self._shape:
|
484 |
+
for i in range(self._shape[0]):
|
485 |
+
yield self[i]
|
486 |
+
else:
|
487 |
+
yield self[()]
|
488 |
+
|
489 |
+
return iterator()
|
490 |
+
|
491 |
+
def __eq__(self, other):
|
492 |
+
"""
|
493 |
+
NDimArray instances can be compared to each other.
|
494 |
+
Instances equal if they have same shape and data.
|
495 |
+
|
496 |
+
Examples
|
497 |
+
========
|
498 |
+
|
499 |
+
>>> from sympy import MutableDenseNDimArray
|
500 |
+
>>> a = MutableDenseNDimArray.zeros(2, 3)
|
501 |
+
>>> b = MutableDenseNDimArray.zeros(2, 3)
|
502 |
+
>>> a == b
|
503 |
+
True
|
504 |
+
>>> c = a.reshape(3, 2)
|
505 |
+
>>> c == b
|
506 |
+
False
|
507 |
+
>>> a[0,0] = 1
|
508 |
+
>>> b[0,0] = 2
|
509 |
+
>>> a == b
|
510 |
+
False
|
511 |
+
"""
|
512 |
+
from sympy.tensor.array import SparseNDimArray
|
513 |
+
if not isinstance(other, NDimArray):
|
514 |
+
return False
|
515 |
+
|
516 |
+
if not self.shape == other.shape:
|
517 |
+
return False
|
518 |
+
|
519 |
+
if isinstance(self, SparseNDimArray) and isinstance(other, SparseNDimArray):
|
520 |
+
return dict(self._sparse_array) == dict(other._sparse_array)
|
521 |
+
|
522 |
+
return list(self) == list(other)
|
523 |
+
|
524 |
+
def __ne__(self, other):
|
525 |
+
return not self == other
|
526 |
+
|
527 |
+
def _eval_transpose(self):
|
528 |
+
if self.rank() != 2:
|
529 |
+
raise ValueError("array rank not 2")
|
530 |
+
from .arrayop import permutedims
|
531 |
+
return permutedims(self, (1, 0))
|
532 |
+
|
533 |
+
def transpose(self):
|
534 |
+
return self._eval_transpose()
|
535 |
+
|
536 |
+
def _eval_conjugate(self):
|
537 |
+
from sympy.tensor.array.arrayop import Flatten
|
538 |
+
|
539 |
+
return self.func([i.conjugate() for i in Flatten(self)], self.shape)
|
540 |
+
|
541 |
+
def conjugate(self):
|
542 |
+
return self._eval_conjugate()
|
543 |
+
|
544 |
+
def _eval_adjoint(self):
|
545 |
+
return self.transpose().conjugate()
|
546 |
+
|
547 |
+
def adjoint(self):
|
548 |
+
return self._eval_adjoint()
|
549 |
+
|
550 |
+
def _slice_expand(self, s, dim):
|
551 |
+
if not isinstance(s, slice):
|
552 |
+
return (s,)
|
553 |
+
start, stop, step = s.indices(dim)
|
554 |
+
return [start + i*step for i in range((stop-start)//step)]
|
555 |
+
|
556 |
+
def _get_slice_data_for_array_access(self, index):
|
557 |
+
sl_factors = [self._slice_expand(i, dim) for (i, dim) in zip(index, self.shape)]
|
558 |
+
eindices = itertools.product(*sl_factors)
|
559 |
+
return sl_factors, eindices
|
560 |
+
|
561 |
+
def _get_slice_data_for_array_assignment(self, index, value):
|
562 |
+
if not isinstance(value, NDimArray):
|
563 |
+
value = type(self)(value)
|
564 |
+
sl_factors, eindices = self._get_slice_data_for_array_access(index)
|
565 |
+
slice_offsets = [min(i) if isinstance(i, list) else None for i in sl_factors]
|
566 |
+
# TODO: add checks for dimensions for `value`?
|
567 |
+
return value, eindices, slice_offsets
|
568 |
+
|
569 |
+
@classmethod
|
570 |
+
def _check_special_bounds(cls, flat_list, shape):
|
571 |
+
if shape == () and len(flat_list) != 1:
|
572 |
+
raise ValueError("arrays without shape need one scalar value")
|
573 |
+
if shape == (0,) and len(flat_list) > 0:
|
574 |
+
raise ValueError("if array shape is (0,) there cannot be elements")
|
575 |
+
|
576 |
+
def _check_index_for_getitem(self, index):
|
577 |
+
if isinstance(index, (SYMPY_INTS, Integer, slice)):
|
578 |
+
index = (index,)
|
579 |
+
|
580 |
+
if len(index) < self.rank():
|
581 |
+
index = tuple(index) + \
|
582 |
+
tuple(slice(None) for i in range(len(index), self.rank()))
|
583 |
+
|
584 |
+
if len(index) > self.rank():
|
585 |
+
raise ValueError('Dimension of index greater than rank of array')
|
586 |
+
|
587 |
+
return index
|
588 |
+
|
589 |
+
|
590 |
+
class ImmutableNDimArray(NDimArray, Basic):
|
591 |
+
_op_priority = 11.0
|
592 |
+
|
593 |
+
def __hash__(self):
|
594 |
+
return Basic.__hash__(self)
|
595 |
+
|
596 |
+
def as_immutable(self):
|
597 |
+
return self
|
598 |
+
|
599 |
+
def as_mutable(self):
|
600 |
+
raise NotImplementedError("abstract method")
|
llmeval-env/lib/python3.10/site-packages/sympy/tensor/array/sparse_ndim_array.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.basic import Basic
|
2 |
+
from sympy.core.containers import (Dict, Tuple)
|
3 |
+
from sympy.core.singleton import S
|
4 |
+
from sympy.core.sympify import _sympify
|
5 |
+
from sympy.tensor.array.mutable_ndim_array import MutableNDimArray
|
6 |
+
from sympy.tensor.array.ndim_array import NDimArray, ImmutableNDimArray
|
7 |
+
from sympy.utilities.iterables import flatten
|
8 |
+
|
9 |
+
import functools
|
10 |
+
|
11 |
+
class SparseNDimArray(NDimArray):
|
12 |
+
|
13 |
+
def __new__(self, *args, **kwargs):
|
14 |
+
return ImmutableSparseNDimArray(*args, **kwargs)
|
15 |
+
|
16 |
+
def __getitem__(self, index):
|
17 |
+
"""
|
18 |
+
Get an element from a sparse N-dim array.
|
19 |
+
|
20 |
+
Examples
|
21 |
+
========
|
22 |
+
|
23 |
+
>>> from sympy import MutableSparseNDimArray
|
24 |
+
>>> a = MutableSparseNDimArray(range(4), (2, 2))
|
25 |
+
>>> a
|
26 |
+
[[0, 1], [2, 3]]
|
27 |
+
>>> a[0, 0]
|
28 |
+
0
|
29 |
+
>>> a[1, 1]
|
30 |
+
3
|
31 |
+
>>> a[0]
|
32 |
+
[0, 1]
|
33 |
+
>>> a[1]
|
34 |
+
[2, 3]
|
35 |
+
|
36 |
+
Symbolic indexing:
|
37 |
+
|
38 |
+
>>> from sympy.abc import i, j
|
39 |
+
>>> a[i, j]
|
40 |
+
[[0, 1], [2, 3]][i, j]
|
41 |
+
|
42 |
+
Replace `i` and `j` to get element `(0, 0)`:
|
43 |
+
|
44 |
+
>>> a[i, j].subs({i: 0, j: 0})
|
45 |
+
0
|
46 |
+
|
47 |
+
"""
|
48 |
+
syindex = self._check_symbolic_index(index)
|
49 |
+
if syindex is not None:
|
50 |
+
return syindex
|
51 |
+
|
52 |
+
index = self._check_index_for_getitem(index)
|
53 |
+
|
54 |
+
# `index` is a tuple with one or more slices:
|
55 |
+
if isinstance(index, tuple) and any(isinstance(i, slice) for i in index):
|
56 |
+
sl_factors, eindices = self._get_slice_data_for_array_access(index)
|
57 |
+
array = [self._sparse_array.get(self._parse_index(i), S.Zero) for i in eindices]
|
58 |
+
nshape = [len(el) for i, el in enumerate(sl_factors) if isinstance(index[i], slice)]
|
59 |
+
return type(self)(array, nshape)
|
60 |
+
else:
|
61 |
+
index = self._parse_index(index)
|
62 |
+
return self._sparse_array.get(index, S.Zero)
|
63 |
+
|
64 |
+
@classmethod
|
65 |
+
def zeros(cls, *shape):
|
66 |
+
"""
|
67 |
+
Return a sparse N-dim array of zeros.
|
68 |
+
"""
|
69 |
+
return cls({}, shape)
|
70 |
+
|
71 |
+
def tomatrix(self):
|
72 |
+
"""
|
73 |
+
Converts MutableDenseNDimArray to Matrix. Can convert only 2-dim array, else will raise error.
|
74 |
+
|
75 |
+
Examples
|
76 |
+
========
|
77 |
+
|
78 |
+
>>> from sympy import MutableSparseNDimArray
|
79 |
+
>>> a = MutableSparseNDimArray([1 for i in range(9)], (3, 3))
|
80 |
+
>>> b = a.tomatrix()
|
81 |
+
>>> b
|
82 |
+
Matrix([
|
83 |
+
[1, 1, 1],
|
84 |
+
[1, 1, 1],
|
85 |
+
[1, 1, 1]])
|
86 |
+
"""
|
87 |
+
from sympy.matrices import SparseMatrix
|
88 |
+
if self.rank() != 2:
|
89 |
+
raise ValueError('Dimensions must be of size of 2')
|
90 |
+
|
91 |
+
mat_sparse = {}
|
92 |
+
for key, value in self._sparse_array.items():
|
93 |
+
mat_sparse[self._get_tuple_index(key)] = value
|
94 |
+
|
95 |
+
return SparseMatrix(self.shape[0], self.shape[1], mat_sparse)
|
96 |
+
|
97 |
+
def reshape(self, *newshape):
|
98 |
+
new_total_size = functools.reduce(lambda x,y: x*y, newshape)
|
99 |
+
if new_total_size != self._loop_size:
|
100 |
+
raise ValueError("Invalid reshape parameters " + newshape)
|
101 |
+
|
102 |
+
return type(self)(self._sparse_array, newshape)
|
103 |
+
|
104 |
+
class ImmutableSparseNDimArray(SparseNDimArray, ImmutableNDimArray): # type: ignore
|
105 |
+
|
106 |
+
def __new__(cls, iterable=None, shape=None, **kwargs):
|
107 |
+
shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs)
|
108 |
+
shape = Tuple(*map(_sympify, shape))
|
109 |
+
cls._check_special_bounds(flat_list, shape)
|
110 |
+
loop_size = functools.reduce(lambda x,y: x*y, shape) if shape else len(flat_list)
|
111 |
+
|
112 |
+
# Sparse array:
|
113 |
+
if isinstance(flat_list, (dict, Dict)):
|
114 |
+
sparse_array = Dict(flat_list)
|
115 |
+
else:
|
116 |
+
sparse_array = {}
|
117 |
+
for i, el in enumerate(flatten(flat_list)):
|
118 |
+
if el != 0:
|
119 |
+
sparse_array[i] = _sympify(el)
|
120 |
+
|
121 |
+
sparse_array = Dict(sparse_array)
|
122 |
+
|
123 |
+
self = Basic.__new__(cls, sparse_array, shape, **kwargs)
|
124 |
+
self._shape = shape
|
125 |
+
self._rank = len(shape)
|
126 |
+
self._loop_size = loop_size
|
127 |
+
self._sparse_array = sparse_array
|
128 |
+
|
129 |
+
return self
|
130 |
+
|
131 |
+
def __setitem__(self, index, value):
|
132 |
+
raise TypeError("immutable N-dim array")
|
133 |
+
|
134 |
+
def as_mutable(self):
|
135 |
+
return MutableSparseNDimArray(self)
|
136 |
+
|
137 |
+
|
138 |
+
class MutableSparseNDimArray(MutableNDimArray, SparseNDimArray):
|
139 |
+
|
140 |
+
def __new__(cls, iterable=None, shape=None, **kwargs):
|
141 |
+
shape, flat_list = cls._handle_ndarray_creation_inputs(iterable, shape, **kwargs)
|
142 |
+
self = object.__new__(cls)
|
143 |
+
self._shape = shape
|
144 |
+
self._rank = len(shape)
|
145 |
+
self._loop_size = functools.reduce(lambda x,y: x*y, shape) if shape else len(flat_list)
|
146 |
+
|
147 |
+
# Sparse array:
|
148 |
+
if isinstance(flat_list, (dict, Dict)):
|
149 |
+
self._sparse_array = dict(flat_list)
|
150 |
+
return self
|
151 |
+
|
152 |
+
self._sparse_array = {}
|
153 |
+
|
154 |
+
for i, el in enumerate(flatten(flat_list)):
|
155 |
+
if el != 0:
|
156 |
+
self._sparse_array[i] = _sympify(el)
|
157 |
+
|
158 |
+
return self
|
159 |
+
|
160 |
+
def __setitem__(self, index, value):
|
161 |
+
"""Allows to set items to MutableDenseNDimArray.
|
162 |
+
|
163 |
+
Examples
|
164 |
+
========
|
165 |
+
|
166 |
+
>>> from sympy import MutableSparseNDimArray
|
167 |
+
>>> a = MutableSparseNDimArray.zeros(2, 2)
|
168 |
+
>>> a[0, 0] = 1
|
169 |
+
>>> a[1, 1] = 1
|
170 |
+
>>> a
|
171 |
+
[[1, 0], [0, 1]]
|
172 |
+
"""
|
173 |
+
if isinstance(index, tuple) and any(isinstance(i, slice) for i in index):
|
174 |
+
value, eindices, slice_offsets = self._get_slice_data_for_array_assignment(index, value)
|
175 |
+
for i in eindices:
|
176 |
+
other_i = [ind - j for ind, j in zip(i, slice_offsets) if j is not None]
|
177 |
+
other_value = value[other_i]
|
178 |
+
complete_index = self._parse_index(i)
|
179 |
+
if other_value != 0:
|
180 |
+
self._sparse_array[complete_index] = other_value
|
181 |
+
elif complete_index in self._sparse_array:
|
182 |
+
self._sparse_array.pop(complete_index)
|
183 |
+
else:
|
184 |
+
index = self._parse_index(index)
|
185 |
+
value = _sympify(value)
|
186 |
+
if value == 0 and index in self._sparse_array:
|
187 |
+
self._sparse_array.pop(index)
|
188 |
+
else:
|
189 |
+
self._sparse_array[index] = value
|
190 |
+
|
191 |
+
def as_immutable(self):
|
192 |
+
return ImmutableSparseNDimArray(self)
|
193 |
+
|
194 |
+
@property
|
195 |
+
def free_symbols(self):
|
196 |
+
return {i for j in self._sparse_array.values() for i in j.free_symbols}
|