Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- llmeval-env/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_cnn_infer.so.8 +3 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/autotune_process.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/comm_analysis.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/comms.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/config.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/coordinate_descent_tuner.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/decomposition.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/dependencies.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/freezing.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/fx_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/graph.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/hooks.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/index_propagation.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/ir.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/lowering.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/ops_handler.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/optimize_indexing.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/pattern_matcher.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/scheduler.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/select_algorithm.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/sizevars.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/test_case.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/test_operators.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/triton_helpers.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/virtualized.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/cpp.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/triton_foreach.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/triton_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/aoti_runtime/implementation.cpp +87 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/aoti_runtime/interface.cpp +354 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/common.py +1755 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cpp.py +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cpp_prefix.h +595 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cpp_wrapper_cpu.py +1851 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cpp_wrapper_cuda.py +328 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cuda_cpp_scheduling.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cuda_env.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cuda_kernel.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cuda_template.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cutlass_epilogue_gen.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cutlass_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/device_op_overrides.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/gemm_template.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cutlass_lib_extensions/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cutlass_lib_extensions/__pycache__/gemm_operation_extensions.cpython-310.pyc +0 -0
.gitattributes
CHANGED
@@ -199,3 +199,4 @@ llmeval-env/lib/python3.10/site-packages/pandas/_libs/tslibs/offsets.cpython-310
|
|
199 |
llmeval-env/lib/python3.10/site-packages/pandas/_libs/hashtable.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
200 |
llmeval-env/lib/python3.10/site-packages/nvidia/cublas/lib/libcublasLt.so.12 filter=lfs diff=lfs merge=lfs -text
|
201 |
llmeval-env/lib/python3.10/site-packages/safetensors/_safetensors_rust.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
|
|
|
199 |
llmeval-env/lib/python3.10/site-packages/pandas/_libs/hashtable.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
200 |
llmeval-env/lib/python3.10/site-packages/nvidia/cublas/lib/libcublasLt.so.12 filter=lfs diff=lfs merge=lfs -text
|
201 |
llmeval-env/lib/python3.10/site-packages/safetensors/_safetensors_rust.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
202 |
+
llmeval-env/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_cnn_infer.so.8 filter=lfs diff=lfs merge=lfs -text
|
llmeval-env/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_cnn_infer.so.8
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7db8a17d2c21a6f4684d99a073ca791c6600dbbbfc45e7b786ad8e42d0cf118b
|
3 |
+
size 647553136
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (3.76 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/autotune_process.cpython-310.pyc
ADDED
Binary file (18 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/comm_analysis.cpython-310.pyc
ADDED
Binary file (5.16 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/comms.cpython-310.pyc
ADDED
Binary file (9.99 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/config.cpython-310.pyc
ADDED
Binary file (10.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/coordinate_descent_tuner.cpython-310.pyc
ADDED
Binary file (7.26 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/decomposition.cpython-310.pyc
ADDED
Binary file (16.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/dependencies.cpython-310.pyc
ADDED
Binary file (18.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/freezing.cpython-310.pyc
ADDED
Binary file (9.31 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/fx_utils.cpython-310.pyc
ADDED
Binary file (7.11 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/graph.cpython-310.pyc
ADDED
Binary file (34.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/hooks.cpython-310.pyc
ADDED
Binary file (797 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/index_propagation.cpython-310.pyc
ADDED
Binary file (10.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/ir.cpython-310.pyc
ADDED
Binary file (223 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/lowering.cpython-310.pyc
ADDED
Binary file (145 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/ops_handler.cpython-310.pyc
ADDED
Binary file (26 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/optimize_indexing.cpython-310.pyc
ADDED
Binary file (2.66 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/pattern_matcher.cpython-310.pyc
ADDED
Binary file (48.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/scheduler.cpython-310.pyc
ADDED
Binary file (77 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/select_algorithm.cpython-310.pyc
ADDED
Binary file (33.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/sizevars.cpython-310.pyc
ADDED
Binary file (21.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/test_case.cpython-310.pyc
ADDED
Binary file (1.91 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/test_operators.cpython-310.pyc
ADDED
Binary file (1.28 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/triton_helpers.cpython-310.pyc
ADDED
Binary file (7.94 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (45.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/__pycache__/virtualized.cpython-310.pyc
ADDED
Binary file (15 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/cpp.cpython-310.pyc
ADDED
Binary file (119 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/triton_foreach.cpython-310.pyc
ADDED
Binary file (7.97 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/__pycache__/triton_utils.cpython-310.pyc
ADDED
Binary file (3.57 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/aoti_runtime/implementation.cpp
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// NOTE: Like interface.cpp, this file will be copied into AOTInductor
|
2 |
+
// generated output. This file is intended to keep implementation
|
3 |
+
// details separate from the implementation of the AOTI public
|
4 |
+
// interface. Note also that #includes should go into interface.cpp
|
5 |
+
// for simplicity of maintenance.
|
6 |
+
|
7 |
+
namespace torch {
|
8 |
+
namespace aot_inductor {
|
9 |
+
template <typename T>
|
10 |
+
void convert_output_to_handle(
|
11 |
+
const ArrayRefTensor<T>& output,
|
12 |
+
AtenTensorHandle& handle) {
|
13 |
+
handle = output.expensiveCopyToTensor();
|
14 |
+
}
|
15 |
+
|
16 |
+
template <typename... Ts, std::size_t... Is>
|
17 |
+
void convert_outputs_to_handles_helper(
|
18 |
+
const std::tuple<ArrayRefTensor<Ts>...>& outputs,
|
19 |
+
AtenTensorHandle* output_handles,
|
20 |
+
std::index_sequence<Is...>) {
|
21 |
+
(convert_output_to_handle(std::get<Is>(outputs), output_handles[Is]), ...);
|
22 |
+
}
|
23 |
+
template <typename... Ts>
|
24 |
+
void convert_outputs_to_handles(
|
25 |
+
const std::tuple<ArrayRefTensor<Ts>...>& outputs,
|
26 |
+
AtenTensorHandle* output_handles) {
|
27 |
+
convert_outputs_to_handles_helper(
|
28 |
+
outputs, output_handles, std::make_index_sequence<sizeof...(Ts)>());
|
29 |
+
}
|
30 |
+
|
31 |
+
template <typename T>
|
32 |
+
void convert_handle_to_arrayref_tensor(
|
33 |
+
AtenTensorHandle handle,
|
34 |
+
ArrayRefTensor<T>& input) {
|
35 |
+
void* data_ptr;
|
36 |
+
AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_get_data_ptr(handle, &data_ptr));
|
37 |
+
int64_t dim;
|
38 |
+
AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_get_dim(handle, &dim));
|
39 |
+
int64_t numel;
|
40 |
+
AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_get_numel(handle, &numel));
|
41 |
+
int64_t* sizes;
|
42 |
+
AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_get_sizes(handle, &sizes));
|
43 |
+
int64_t* strides;
|
44 |
+
AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_get_strides(handle, &strides));
|
45 |
+
int32_t dtype;
|
46 |
+
AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_get_dtype(handle, &dtype));
|
47 |
+
int32_t device_type;
|
48 |
+
AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_get_device_type(handle, &device_type));
|
49 |
+
int32_t device_index;
|
50 |
+
AOTI_TORCH_ERROR_CODE_CHECK(
|
51 |
+
aoti_torch_get_device_index(handle, &device_index));
|
52 |
+
|
53 |
+
input = ArrayRefTensor<T>(
|
54 |
+
MiniArrayRef<T>(reinterpret_cast<T*>(data_ptr), numel),
|
55 |
+
MiniArrayRef<const int64_t>(sizes, dim),
|
56 |
+
MiniArrayRef<const int64_t>(strides, dim),
|
57 |
+
device_type,
|
58 |
+
device_index);
|
59 |
+
}
|
60 |
+
|
61 |
+
template <typename... Ts, std::size_t... Is>
|
62 |
+
void convert_handles_to_inputs_helper(
|
63 |
+
AtenTensorHandle* input_handles,
|
64 |
+
std::tuple<ArrayRefTensor<Ts>...>& inputs,
|
65 |
+
std::index_sequence<Is...>) {
|
66 |
+
(convert_handle_to_arrayref_tensor(input_handles[Is], std::get<Is>(inputs)),
|
67 |
+
...);
|
68 |
+
}
|
69 |
+
|
70 |
+
template <typename... Ts>
|
71 |
+
void convert_handles_to_inputs(
|
72 |
+
AtenTensorHandle* input_handles,
|
73 |
+
std::tuple<ArrayRefTensor<Ts>...>& inputs) {
|
74 |
+
convert_handles_to_inputs_helper(
|
75 |
+
input_handles, inputs, std::make_index_sequence<sizeof...(Ts)>());
|
76 |
+
}
|
77 |
+
|
78 |
+
template <typename T>
|
79 |
+
void assert_numel(const ArrayRefTensor<T>& tensor, int64_t numel) {
|
80 |
+
if (tensor.numel() != numel) {
|
81 |
+
std::stringstream err;
|
82 |
+
err << "incorrect numel for input tensor. expected " << numel << ", got " << tensor.numel();
|
83 |
+
throw std::runtime_error(err.str());
|
84 |
+
}
|
85 |
+
}
|
86 |
+
} // namespace aot_inductor
|
87 |
+
} // namespace torch
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/aoti_runtime/interface.cpp
ADDED
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <torch/csrc/inductor/aoti_runtime/arrayref_tensor.h>
|
2 |
+
#include <torch/csrc/inductor/aoti_runtime/interface.h>
|
3 |
+
#include <torch/csrc/inductor/aoti_runtime/model_container.h>
|
4 |
+
#include <torch/csrc/inductor/aoti_runtime/scalar_to_tensor.h>
|
5 |
+
#include <torch/csrc/inductor/aoti_runtime/thread_local.h>
|
6 |
+
|
7 |
+
#include <iostream>
|
8 |
+
#include <sstream>
|
9 |
+
#include <stdexcept>
|
10 |
+
#include <vector>
|
11 |
+
|
12 |
+
#define CONVERT_EXCEPTION_TO_ERROR_CODE(...) \
|
13 |
+
try { \
|
14 |
+
__VA_ARGS__ \
|
15 |
+
} catch (const std::exception& e) { \
|
16 |
+
std::cerr << "Error: " << e.what() << std::endl; \
|
17 |
+
return AOTI_RUNTIME_FAILURE; \
|
18 |
+
} catch (...) { \
|
19 |
+
std::cerr << "Unknown exception occurred." << std::endl; \
|
20 |
+
return AOTI_RUNTIME_FAILURE; \
|
21 |
+
} \
|
22 |
+
return AOTI_RUNTIME_SUCCESS;
|
23 |
+
|
24 |
+
#define AOTI_VECTOR_SIZE_CHECK(actual_size, expected_size, name) \
|
25 |
+
do { \
|
26 |
+
AOTI_RUNTIME_CHECK( \
|
27 |
+
actual_size == expected_size, \
|
28 |
+
"expected " + std::string(name) + " vector size to be " + \
|
29 |
+
std::to_string(expected_size) + ", but got " + \
|
30 |
+
std::to_string(actual_size)); \
|
31 |
+
} while (0)
|
32 |
+
|
33 |
+
// AOTInductor uses at::addmm_out, which doesn't supports
|
34 |
+
// arguments that requires gradient. For this reason, we
|
35 |
+
// enforce no_grad context for run APIs.
|
36 |
+
//
|
37 |
+
// A RAII, thread local (!) guard that enables or disables grad mode upon
|
38 |
+
// construction, and sets it back to the original value upon destruction.
|
39 |
+
struct AOTINoGradGuard {
|
40 |
+
AOTINoGradGuard() : prev_mode(aoti_torch_grad_mode_is_enabled()) {
|
41 |
+
aoti_torch_grad_mode_set_enabled(false);
|
42 |
+
}
|
43 |
+
~AOTINoGradGuard() {
|
44 |
+
aoti_torch_grad_mode_set_enabled(prev_mode);
|
45 |
+
}
|
46 |
+
bool prev_mode;
|
47 |
+
};
|
48 |
+
|
49 |
+
extern "C" {
|
50 |
+
|
51 |
+
AOTIRuntimeError AOTInductorModelContainerCreate(
|
52 |
+
AOTInductorModelContainerHandle* container_handle,
|
53 |
+
size_t num_models,
|
54 |
+
bool is_cpu,
|
55 |
+
const char* cubin_dir) {
|
56 |
+
return AOTInductorModelContainerCreateWithDevice(
|
57 |
+
container_handle,
|
58 |
+
num_models,
|
59 |
+
is_cpu ? "cpu" : "cuda",
|
60 |
+
cubin_dir);
|
61 |
+
}
|
62 |
+
|
63 |
+
AOTIRuntimeError AOTInductorModelContainerCreateWithDevice(
|
64 |
+
AOTInductorModelContainerHandle* container_handle,
|
65 |
+
size_t num_models,
|
66 |
+
const char* device_str,
|
67 |
+
const char* cubin_dir) {
|
68 |
+
if (num_models == 0) {
|
69 |
+
std::cerr << "Error: num_models must be positive, but got 0" << std::endl;
|
70 |
+
return AOTI_RUNTIME_FAILURE;
|
71 |
+
}
|
72 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
73 |
+
std::optional<std::string> cubin_dir_opt;
|
74 |
+
if (cubin_dir != nullptr) {
|
75 |
+
cubin_dir_opt.emplace(cubin_dir);
|
76 |
+
}
|
77 |
+
auto* container = new torch::aot_inductor::AOTInductorModelContainer(
|
78 |
+
num_models, std::string(device_str), cubin_dir_opt);
|
79 |
+
*container_handle =
|
80 |
+
reinterpret_cast<AOTInductorModelContainerHandle>(container);
|
81 |
+
})
|
82 |
+
}
|
83 |
+
|
84 |
+
AOTIRuntimeError AOTInductorModelContainerDelete(
|
85 |
+
AOTInductorModelContainerHandle container_handle) {
|
86 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
87 |
+
auto* container =
|
88 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModelContainer*>(
|
89 |
+
container_handle);
|
90 |
+
delete container;
|
91 |
+
});
|
92 |
+
}
|
93 |
+
|
94 |
+
AOTIRuntimeError AOTInductorModelContainerRun(
|
95 |
+
AOTInductorModelContainerHandle container_handle,
|
96 |
+
AtenTensorHandle* input_handles, // array of input AtenTensorHandle; handles
|
97 |
+
// are stolen; the array itself is borrowed
|
98 |
+
size_t num_inputs,
|
99 |
+
AtenTensorHandle*
|
100 |
+
output_handles, // array for writing output AtenTensorHandle; handles
|
101 |
+
// will be stolen by the caller; the array itself is
|
102 |
+
// borrowed
|
103 |
+
size_t num_outputs,
|
104 |
+
AOTInductorStreamHandle stream_handle,
|
105 |
+
AOTIProxyExecutorHandle proxy_executor_handle) {
|
106 |
+
auto* container =
|
107 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModelContainer*>(
|
108 |
+
container_handle);
|
109 |
+
AOTI_VECTOR_SIZE_CHECK(num_inputs, container->num_inputs(), "inputs");
|
110 |
+
AOTI_VECTOR_SIZE_CHECK(num_outputs, container->num_outputs(), "outputs");
|
111 |
+
|
112 |
+
auto stream =
|
113 |
+
reinterpret_cast<torch::aot_inductor::DeviceStreamType>(stream_handle);
|
114 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
115 |
+
AOTINoGradGuard guard;
|
116 |
+
container->run(
|
117 |
+
input_handles, output_handles, stream, proxy_executor_handle);
|
118 |
+
})
|
119 |
+
}
|
120 |
+
|
121 |
+
AOTIRuntimeError AOTInductorModelContainerGetNumConstants(
|
122 |
+
AOTInductorModelContainerHandle container_handle,
|
123 |
+
size_t* num_constants) {
|
124 |
+
auto* container =
|
125 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModelContainer*>(
|
126 |
+
container_handle);
|
127 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE(
|
128 |
+
{ *num_constants = container->num_constants(); })
|
129 |
+
}
|
130 |
+
|
131 |
+
AOTIRuntimeError AOTInductorModelContainerGetConstantName(
|
132 |
+
AOTInductorModelContainerHandle container_handle,
|
133 |
+
size_t idx,
|
134 |
+
const char** name) {
|
135 |
+
auto* container =
|
136 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModelContainer*>(
|
137 |
+
container_handle);
|
138 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE(
|
139 |
+
{ *name = container->constant_name(idx); })
|
140 |
+
}
|
141 |
+
|
142 |
+
AOTIRuntimeError AOTInductorModelContainerGetConstantOriginalFQN(
|
143 |
+
AOTInductorModelContainerHandle container_handle,
|
144 |
+
size_t idx,
|
145 |
+
const char** original_fqn) {
|
146 |
+
auto* container =
|
147 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModelContainer*>(
|
148 |
+
container_handle);
|
149 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE(
|
150 |
+
{ *original_fqn = container->constant_original_fqn(idx); })
|
151 |
+
}
|
152 |
+
|
153 |
+
AOTIRuntimeError AOTInductorModelContainerGetConstantFromFolded(
|
154 |
+
AOTInductorModelContainerHandle container_handle,
|
155 |
+
size_t idx,
|
156 |
+
bool* from_folded) {
|
157 |
+
auto* container =
|
158 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModelContainer*>(container_handle);
|
159 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({ *from_folded = container->constant_from_folded(idx); })
|
160 |
+
}
|
161 |
+
|
162 |
+
AOTIRuntimeError AOTInductorModelContainerGetConstantDtype(
|
163 |
+
AOTInductorModelContainerHandle container_handle,
|
164 |
+
size_t idx,
|
165 |
+
int32_t* dtype) {
|
166 |
+
auto* container =
|
167 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModelContainer*>(
|
168 |
+
container_handle);
|
169 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE(
|
170 |
+
{ *dtype = container->constant_dtype(idx); })
|
171 |
+
}
|
172 |
+
|
173 |
+
AOTIRuntimeError AOTInductorModelContainerUpdateConstantBuffer(
|
174 |
+
AOTInductorModelContainerHandle container_handle,
|
175 |
+
AOTInductorConstantMapHandle constant_map_handle,
|
176 |
+
bool use_inactive,
|
177 |
+
bool validate_full_update) {
|
178 |
+
auto* container =
|
179 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModelContainer*>(
|
180 |
+
container_handle);
|
181 |
+
auto input_map = reinterpret_cast<std::unordered_map<std::string, AtenTensorHandle>*>(constant_map_handle);
|
182 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
183 |
+
container->update_constant_buffer(
|
184 |
+
*input_map, use_inactive, validate_full_update);
|
185 |
+
})
|
186 |
+
}
|
187 |
+
|
188 |
+
AOTIRuntimeError AOTInductorModelContainerUpdateInactiveConstantBuffer(
|
189 |
+
AOTInductorModelContainerHandle container_handle,
|
190 |
+
AOTInductorConstantMapHandle constant_map_handle) {
|
191 |
+
return AOTInductorModelContainerUpdateConstantBuffer(container_handle,
|
192 |
+
constant_map_handle,
|
193 |
+
/*use_inactive*/ true,
|
194 |
+
/*validate_full_update*/ true);
|
195 |
+
}
|
196 |
+
|
197 |
+
AOTIRuntimeError AOTInductorModelContainerRunConstantFolding(
|
198 |
+
AOTInductorModelContainerHandle container_handle,
|
199 |
+
bool use_inactive,
|
200 |
+
AOTInductorStreamHandle stream_handle,
|
201 |
+
AOTIProxyExecutorHandle proxy_executor_handle) {
|
202 |
+
auto* container =
|
203 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModelContainer*>(
|
204 |
+
container_handle);
|
205 |
+
auto stream =
|
206 |
+
reinterpret_cast<torch::aot_inductor::DeviceStreamType>(stream_handle);
|
207 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
208 |
+
AOTINoGradGuard guard;
|
209 |
+
container->run_const_fold(use_inactive, stream, proxy_executor_handle);
|
210 |
+
})
|
211 |
+
}
|
212 |
+
|
213 |
+
AOTIRuntimeError AOTInductorModelContainerSwapConstantBuffer(
|
214 |
+
AOTInductorModelContainerHandle container_handle) {
|
215 |
+
auto* container =
|
216 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModelContainer*>(
|
217 |
+
container_handle);
|
218 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
219 |
+
container->swap_constant_buffer();
|
220 |
+
})
|
221 |
+
}
|
222 |
+
|
223 |
+
AOTIRuntimeError AOTInductorModelContainerGetNumInputs(
|
224 |
+
AOTInductorModelContainerHandle container_handle,
|
225 |
+
size_t* ret_num_inputs) {
|
226 |
+
auto* container =
|
227 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModelContainer*>(
|
228 |
+
container_handle);
|
229 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE(
|
230 |
+
{ *ret_num_inputs = container->num_inputs(); })
|
231 |
+
}
|
232 |
+
|
233 |
+
AOTIRuntimeError AOTInductorModelContainerGetInputName(
|
234 |
+
AOTInductorModelContainerHandle container_handle,
|
235 |
+
size_t input_idx,
|
236 |
+
const char** ret_input_names) {
|
237 |
+
auto* container =
|
238 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModelContainer*>(
|
239 |
+
container_handle);
|
240 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE(
|
241 |
+
{ *ret_input_names = container->input_name(input_idx); })
|
242 |
+
}
|
243 |
+
|
244 |
+
AOTIRuntimeError AOTInductorModelContainerGetNumOutputs(
|
245 |
+
AOTInductorModelContainerHandle container_handle,
|
246 |
+
size_t* ret_num_outputs) {
|
247 |
+
auto* container =
|
248 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModelContainer*>(
|
249 |
+
container_handle);
|
250 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE(
|
251 |
+
{ *ret_num_outputs = container->num_outputs(); })
|
252 |
+
}
|
253 |
+
|
254 |
+
AOTIRuntimeError AOTInductorModelContainerGetOutputName(
|
255 |
+
AOTInductorModelContainerHandle container_handle,
|
256 |
+
size_t output_idx,
|
257 |
+
const char** ret_output_names) {
|
258 |
+
auto* container =
|
259 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModelContainer*>(
|
260 |
+
container_handle);
|
261 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE(
|
262 |
+
{ *ret_output_names = container->output_name(output_idx); })
|
263 |
+
}
|
264 |
+
|
265 |
+
AOTIRuntimeError AOTInductorModelContainerGetCallSpec(
|
266 |
+
AOTInductorModelContainerHandle container_handle,
|
267 |
+
const char** in_spec,
|
268 |
+
const char** out_spec) {
|
269 |
+
auto* container =
|
270 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModelContainer*>(
|
271 |
+
container_handle);
|
272 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
273 |
+
*in_spec = container->get_in_spec();
|
274 |
+
*out_spec = container->get_out_spec();
|
275 |
+
})
|
276 |
+
}
|
277 |
+
|
278 |
+
AOTIRuntimeError AOTInductorModelCreate(
|
279 |
+
AOTInductorModelHandle* model_handle,
|
280 |
+
AOTInductorConstantMapHandle constant_map_handle){
|
281 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
282 |
+
auto constant_map = std::make_shared<torch::aot_inductor::ConstantMap>();
|
283 |
+
auto constant_array = std::make_shared<std::vector<torch::aot_inductor::ConstantHandle>>();
|
284 |
+
auto input_map = reinterpret_cast<std::unordered_map<std::string, AtenTensorHandle>*>(constant_map_handle);
|
285 |
+
|
286 |
+
auto model = new torch::aot_inductor::AOTInductorModel(
|
287 |
+
constant_map,
|
288 |
+
constant_array,
|
289 |
+
"cpu", // device_str is hardcoded, as AOTInductorModelCreate is only use for CPU models
|
290 |
+
""
|
291 |
+
);
|
292 |
+
|
293 |
+
if (input_map) {
|
294 |
+
for (auto const& kv : *input_map) {
|
295 |
+
constant_map->emplace(kv.first, kv.second);
|
296 |
+
}
|
297 |
+
} else {
|
298 |
+
model->load_constants();
|
299 |
+
}
|
300 |
+
|
301 |
+
*model_handle = reinterpret_cast<AOTInductorModelHandle>(model);
|
302 |
+
})}
|
303 |
+
|
304 |
+
AOTIRuntimeError AOTInductorModelRun(
|
305 |
+
AOTInductorModelHandle model_handle,
|
306 |
+
AtenTensorHandle* input_handles,
|
307 |
+
AtenTensorHandle* output_handles) {
|
308 |
+
auto model =
|
309 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModel*>(model_handle);
|
310 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
311 |
+
AOTINoGradGuard guard;
|
312 |
+
model->run_impl(
|
313 |
+
input_handles,
|
314 |
+
output_handles,
|
315 |
+
(torch::aot_inductor::DeviceStreamType) nullptr,
|
316 |
+
nullptr);
|
317 |
+
})
|
318 |
+
}
|
319 |
+
|
320 |
+
AOTIRuntimeError AOTInductorModelDelete(AOTInductorModelHandle model_handle){
|
321 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
322 |
+
auto model = reinterpret_cast<torch::aot_inductor::AOTInductorModel*>(
|
323 |
+
model_handle);
|
324 |
+
delete model;
|
325 |
+
})}
|
326 |
+
|
327 |
+
AOTIRuntimeError AOTInductorModelGetNumOutputs(
|
328 |
+
AOTInductorModelHandle model_handle,
|
329 |
+
size_t* ret_num_outputs) {
|
330 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
331 |
+
auto model = reinterpret_cast<torch::aot_inductor::AOTInductorModel*>(model_handle);
|
332 |
+
*ret_num_outputs = model->num_outputs();
|
333 |
+
})
|
334 |
+
}
|
335 |
+
|
336 |
+
AOTIRuntimeError AOTInductorModelUpdateConstantsMap(
|
337 |
+
AOTInductorModelHandle model_handle,
|
338 |
+
AOTInductorConstantMapHandle constant_map_handle) {
|
339 |
+
auto model =
|
340 |
+
reinterpret_cast<torch::aot_inductor::AOTInductorModel*>(model_handle);
|
341 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
342 |
+
auto constant_map = std::make_shared<torch::aot_inductor::ConstantMap>();
|
343 |
+
auto input_map =
|
344 |
+
reinterpret_cast<std::unordered_map<std::string, AtenTensorHandle>*>(
|
345 |
+
constant_map_handle);
|
346 |
+
|
347 |
+
for (auto const& kv : *input_map) {
|
348 |
+
constant_map->emplace(kv.first, kv.second);
|
349 |
+
}
|
350 |
+
model->update_constants_map(std::move(constant_map));
|
351 |
+
})
|
352 |
+
}
|
353 |
+
|
354 |
+
} // extern "C"
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/common.py
ADDED
@@ -0,0 +1,1755 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import dataclasses
|
3 |
+
import functools
|
4 |
+
import itertools
|
5 |
+
import logging
|
6 |
+
import operator
|
7 |
+
import re
|
8 |
+
from itertools import chain
|
9 |
+
from typing import (
|
10 |
+
Any,
|
11 |
+
Callable,
|
12 |
+
ClassVar,
|
13 |
+
Dict,
|
14 |
+
List,
|
15 |
+
NamedTuple,
|
16 |
+
Optional,
|
17 |
+
Set,
|
18 |
+
Tuple,
|
19 |
+
TYPE_CHECKING,
|
20 |
+
Union,
|
21 |
+
)
|
22 |
+
|
23 |
+
import sympy
|
24 |
+
from sympy.printing.printer import Printer
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.fx
|
28 |
+
from torch._prims_common import ELEMENTWISE_TYPE_PROMOTION_KIND
|
29 |
+
from torch.utils import _pytree as pytree
|
30 |
+
from torch.utils._sympy.value_ranges import ValueRanges
|
31 |
+
|
32 |
+
from .. import config, metrics
|
33 |
+
from ..utils import (
|
34 |
+
DeferredLineBase,
|
35 |
+
do_bench,
|
36 |
+
free_symbol_startswith,
|
37 |
+
IndentedBuffer,
|
38 |
+
sympy_dot,
|
39 |
+
sympy_index_symbol,
|
40 |
+
sympy_subs,
|
41 |
+
unique,
|
42 |
+
)
|
43 |
+
from ..virtualized import ops, OpsHandler, OpsValue, ReductionType, StoreMode, V
|
44 |
+
|
45 |
+
if TYPE_CHECKING:
|
46 |
+
from ..ir import TensorBox
|
47 |
+
|
48 |
+
schedule_log = torch._logging.getArtifactLogger(__name__, "schedule")
|
49 |
+
|
50 |
+
|
51 |
+
def data_type_logger(msg):
|
52 |
+
if schedule_log.isEnabledFor(logging.DEBUG):
|
53 |
+
schedule_log.debug("Data type propagation: %s", msg)
|
54 |
+
|
55 |
+
|
56 |
+
@dataclasses.dataclass
|
57 |
+
class WorkspaceArg:
|
58 |
+
"""A temporary buffer used for a single kernel, then discarded.
|
59 |
+
|
60 |
+
Not registered as a traditional buffer since there are no users,
|
61 |
+
so it would be dead code eliminated.
|
62 |
+
"""
|
63 |
+
|
64 |
+
nbytes: sympy.Expr
|
65 |
+
zero_fill: bool
|
66 |
+
|
67 |
+
|
68 |
+
@dataclasses.dataclass
|
69 |
+
class TensorArg:
|
70 |
+
name: str
|
71 |
+
buffer: str
|
72 |
+
dtype: torch.dtype
|
73 |
+
offset: sympy.Expr = sympy.Integer(0)
|
74 |
+
|
75 |
+
|
76 |
+
@dataclasses.dataclass
|
77 |
+
class SizeArg:
|
78 |
+
name: str
|
79 |
+
expr: sympy.Expr
|
80 |
+
|
81 |
+
|
82 |
+
@dataclasses.dataclass
|
83 |
+
class DeviceCodegen:
|
84 |
+
scheduling: type
|
85 |
+
wrapper_codegen: type
|
86 |
+
|
87 |
+
|
88 |
+
KernelArgType = Union[WorkspaceArg, TensorArg, SizeArg]
|
89 |
+
|
90 |
+
device_codegens: Dict[str, DeviceCodegen] = {}
|
91 |
+
|
92 |
+
|
93 |
+
class DeviceOpOverrides:
|
94 |
+
def import_get_raw_stream_as(self, name):
|
95 |
+
raise NotImplementedError()
|
96 |
+
|
97 |
+
def set_device(self, device_idx):
|
98 |
+
raise NotImplementedError()
|
99 |
+
|
100 |
+
def synchronize(self):
|
101 |
+
raise NotImplementedError()
|
102 |
+
|
103 |
+
def device_guard(self, device_idx):
|
104 |
+
raise NotImplementedError()
|
105 |
+
|
106 |
+
|
107 |
+
device_op_overrides_dict: Dict[str, DeviceOpOverrides] = {}
|
108 |
+
|
109 |
+
|
110 |
+
# The code generated by Inductor consists of two main parts: kernel code and wrapper code.
|
111 |
+
# For any new backend looking to integrate with Inductor, customization of these two main
|
112 |
+
# parts are necessary to generate its specific code.
|
113 |
+
#
|
114 |
+
# Kernel code generation is determined by different Scheduling. Consequently, a new
|
115 |
+
# backend needs to provide a custom Scheduling for its unique kernel code generation. Currently,
|
116 |
+
# CppScheduling and TritonScheduling serve the C++/OpenMP and Triton backends, respectively.
|
117 |
+
#
|
118 |
+
# For the Wrapper, Inductor provides a WrapperCodeGen class to generate the Python wrapper code
|
119 |
+
# that bridges kernels. This allows out-of-tree backends to inherit from WrapperCodeGen,
|
120 |
+
# and override specific member functions to create backend-specific Python wrapper code.
|
121 |
+
#
|
122 |
+
# Other classes, such as CppKernel and TritonKernel, used for code generation, typically form part
|
123 |
+
# of the logic for either Scheduling or WrapperCodeGen. So the Scheduling and WrapperCodeGen interfaces
|
124 |
+
# provide flexibility to the backend. A backend can choose to implement these classes from scratch,
|
125 |
+
# or reuse them by extending and overriding as necessary. And Inductor provides the registration API,
|
126 |
+
# register_backend_for_device, to equip a new backend at runtime.
|
127 |
+
#
|
128 |
+
# Intel has developed a new backend on top of Triton to support Intel GPUs, leveraging these interfaces.
|
129 |
+
# This backend can be used as a reference:
|
130 |
+
# https://github.com/intel/intel-extension-for-pytorch/blob/5dcc9d57e5422cf295e1a1ee97896d6b6a554a85/intel_extension_for_pytorch/_inductor/__init__.py#L9
|
131 |
+
def register_backend_for_device(
|
132 |
+
device: str, device_scheduling: type, device_wrapper_codegen: type
|
133 |
+
):
|
134 |
+
device_codegens[device] = DeviceCodegen(device_scheduling, device_wrapper_codegen)
|
135 |
+
|
136 |
+
|
137 |
+
def get_scheduling_for_device(device: str):
|
138 |
+
return device_codegens[device].scheduling if device in device_codegens else None
|
139 |
+
|
140 |
+
|
141 |
+
def get_wrapper_codegen_for_device(device: str):
|
142 |
+
return (
|
143 |
+
device_codegens[device].wrapper_codegen if device in device_codegens else None
|
144 |
+
)
|
145 |
+
|
146 |
+
|
147 |
+
def index_prevent_reordering(index: List[sympy.Expr], index_vars, sizes):
|
148 |
+
from ..ir import FlexibleLayout
|
149 |
+
|
150 |
+
# added contiguous index prevents reordering
|
151 |
+
return [*index, sympy_dot(index_vars, FlexibleLayout.contiguous_strides(sizes))]
|
152 |
+
|
153 |
+
|
154 |
+
def register_device_op_overrides(device: str, device_op_overrides: DeviceOpOverrides):
|
155 |
+
device_op_overrides_dict[device] = device_op_overrides
|
156 |
+
|
157 |
+
|
158 |
+
def get_device_op_overrides(device: str):
|
159 |
+
assert isinstance(device, str)
|
160 |
+
|
161 |
+
if not device_op_overrides_dict.keys():
|
162 |
+
from .cuda import device_op_overrides # noqa: F401
|
163 |
+
|
164 |
+
if device in device_op_overrides_dict.keys():
|
165 |
+
return device_op_overrides_dict[device]
|
166 |
+
|
167 |
+
return DeviceOpOverrides()
|
168 |
+
|
169 |
+
|
170 |
+
@functools.lru_cache(None)
|
171 |
+
def boolean_ops():
|
172 |
+
return (
|
173 |
+
"is_inf",
|
174 |
+
"is_nan",
|
175 |
+
"bitwise_xor",
|
176 |
+
"logical_not",
|
177 |
+
"signbit",
|
178 |
+
"le",
|
179 |
+
"lt",
|
180 |
+
"ge",
|
181 |
+
"gt",
|
182 |
+
"eq",
|
183 |
+
"ne",
|
184 |
+
)
|
185 |
+
|
186 |
+
|
187 |
+
DTYPE_TO_COMPUTATION_DTYPE = {
|
188 |
+
torch.bfloat16: torch.float,
|
189 |
+
torch.float16: torch.float,
|
190 |
+
**{
|
191 |
+
dtype: dtype
|
192 |
+
for dtype in [
|
193 |
+
torch.bool,
|
194 |
+
torch.float32,
|
195 |
+
torch.float64,
|
196 |
+
torch.int8,
|
197 |
+
torch.int16,
|
198 |
+
torch.int32,
|
199 |
+
torch.int64,
|
200 |
+
torch.uint8,
|
201 |
+
torch.uint16,
|
202 |
+
torch.uint32,
|
203 |
+
torch.uint64,
|
204 |
+
]
|
205 |
+
},
|
206 |
+
}
|
207 |
+
|
208 |
+
|
209 |
+
class DataTypePropagation:
|
210 |
+
def __init__(self, body) -> None:
|
211 |
+
self.body = body
|
212 |
+
self.graphs: Dict[Union[Callable[..., Any], str], Any] = {
|
213 |
+
"root": body.root_block.graph
|
214 |
+
}
|
215 |
+
for k, v in body.subblocks.items():
|
216 |
+
self.graphs[k] = v.graph
|
217 |
+
|
218 |
+
def deduce_node_dtype_by_inputs(self, node: torch.fx.Node):
|
219 |
+
inputs = node.all_input_nodes
|
220 |
+
input_nodes = [
|
221 |
+
n for n in inputs if isinstance(n, torch.fx.Node) and n.op != "placeholder"
|
222 |
+
]
|
223 |
+
if len(input_nodes) == 0:
|
224 |
+
return None
|
225 |
+
|
226 |
+
all_input_nodes_propogated = all(
|
227 |
+
OptimizationContext.key in n.meta
|
228 |
+
and n.meta[OptimizationContext.key].dtype is not None
|
229 |
+
for n in input_nodes
|
230 |
+
)
|
231 |
+
if not all_input_nodes_propogated:
|
232 |
+
return None
|
233 |
+
|
234 |
+
return functools.reduce(
|
235 |
+
torch.promote_types,
|
236 |
+
[n.meta[OptimizationContext.key].dtype for n in input_nodes],
|
237 |
+
)
|
238 |
+
|
239 |
+
def deduce_node_dtype_by_subgraph(self, node: torch.fx.Node):
|
240 |
+
sub_graph = self.graphs[node.target]
|
241 |
+
dtype = self.propagate_graph(sub_graph)
|
242 |
+
assert dtype
|
243 |
+
return dtype
|
244 |
+
|
245 |
+
def deduce_node_dtype(self, node: torch.fx.Node):
|
246 |
+
if node.target in boolean_ops():
|
247 |
+
return torch.bool
|
248 |
+
|
249 |
+
if node.op == "placeholder":
|
250 |
+
return None
|
251 |
+
|
252 |
+
if node.target == "output":
|
253 |
+
# we can infer output node if it only have 1 arg
|
254 |
+
if len(node.args) != 1:
|
255 |
+
return None
|
256 |
+
|
257 |
+
if node.target in (
|
258 |
+
"to_dtype",
|
259 |
+
"index_expr",
|
260 |
+
):
|
261 |
+
return node.args[-1]
|
262 |
+
|
263 |
+
if node.target in (
|
264 |
+
"rand",
|
265 |
+
"randn",
|
266 |
+
):
|
267 |
+
return torch.float
|
268 |
+
|
269 |
+
if node.target in (
|
270 |
+
"get_index",
|
271 |
+
"index_expr",
|
272 |
+
):
|
273 |
+
return torch.int64
|
274 |
+
|
275 |
+
if node.target in (
|
276 |
+
"load",
|
277 |
+
"store",
|
278 |
+
"store_reduction",
|
279 |
+
):
|
280 |
+
buf_name = node.args[1]
|
281 |
+
return V.graph.get_dtype(buf_name) # type: ignore[arg-type]
|
282 |
+
|
283 |
+
if node.target == operator.getitem:
|
284 |
+
return self.deduce_node_dtype(node.args[0]) # type: ignore[arg-type]
|
285 |
+
|
286 |
+
assert isinstance(node.target, str)
|
287 |
+
|
288 |
+
if node.target == "reduction":
|
289 |
+
return node.args[1]
|
290 |
+
|
291 |
+
if node.target == "constant":
|
292 |
+
return DTYPE_TO_COMPUTATION_DTYPE[node.args[-1]] # type: ignore[index]
|
293 |
+
|
294 |
+
if node.target.startswith("masked_subblock"):
|
295 |
+
return self.deduce_node_dtype_by_subgraph(node)
|
296 |
+
|
297 |
+
return self.deduce_node_dtype_by_inputs(node)
|
298 |
+
|
299 |
+
def propagate_graph(self, graph: torch.fx.Graph):
|
300 |
+
assert graph.nodes
|
301 |
+
graph_dtype = None
|
302 |
+
# For masked_subblock, we use output's dtype to represent
|
303 |
+
# the dtype of this subgraph. For other cases, graph_dtype
|
304 |
+
# might be None
|
305 |
+
for node in graph.nodes:
|
306 |
+
if OptimizationContext.key in node.meta:
|
307 |
+
opt_ctx = node.meta[OptimizationContext.key]
|
308 |
+
else:
|
309 |
+
opt_ctx = OptimizationContext()
|
310 |
+
|
311 |
+
opt_ctx.dtype = self.deduce_node_dtype(node)
|
312 |
+
node.meta[OptimizationContext.key] = opt_ctx
|
313 |
+
if node.target == "output":
|
314 |
+
graph_dtype = opt_ctx.dtype
|
315 |
+
return graph_dtype
|
316 |
+
|
317 |
+
def propagate(self):
|
318 |
+
self.propagate_graph(self.graphs["root"])
|
319 |
+
|
320 |
+
@classmethod
|
321 |
+
def propagate_loopbody(cls, body):
|
322 |
+
return cls(body).propagate()
|
323 |
+
|
324 |
+
@classmethod
|
325 |
+
def propagate_scheduler_node(cls, node):
|
326 |
+
from ..ir import LoopBody
|
327 |
+
from ..scheduler import SchedulerNode
|
328 |
+
|
329 |
+
assert isinstance(node, SchedulerNode)
|
330 |
+
assert isinstance(node._body, LoopBody)
|
331 |
+
DataTypePropagation.propagate_loopbody(node._body)
|
332 |
+
|
333 |
+
|
334 |
+
class ExprPrinter(Printer):
|
335 |
+
@staticmethod
|
336 |
+
def paren(string):
|
337 |
+
def all_in_parens(string):
|
338 |
+
if string[0] != "(" or len(string) < 2:
|
339 |
+
return False
|
340 |
+
count = 1
|
341 |
+
for i, char in enumerate(string[1:]):
|
342 |
+
if char == "(":
|
343 |
+
count += 1
|
344 |
+
elif char == ")":
|
345 |
+
count -= 1
|
346 |
+
if count == 0 and i != len(string) - 2:
|
347 |
+
return False
|
348 |
+
assert count == 0
|
349 |
+
return True
|
350 |
+
|
351 |
+
if (
|
352 |
+
isinstance(string, CSEVariable)
|
353 |
+
or re.match(r"^[a-z0-9_.]+$", string, re.I)
|
354 |
+
or re.match(r"^\([^)]*\)$", string, re.I)
|
355 |
+
or string == ""
|
356 |
+
):
|
357 |
+
return string
|
358 |
+
# don't put extra parens for strings that are already wrapped in parens
|
359 |
+
if all_in_parens(string):
|
360 |
+
return string
|
361 |
+
return f"({string})"
|
362 |
+
|
363 |
+
def _print_Infinity(self, expr):
|
364 |
+
return "math.inf"
|
365 |
+
|
366 |
+
def _print_NegativeInfinity(self, expr):
|
367 |
+
return "-math.inf"
|
368 |
+
|
369 |
+
def _print_Relational(self, expr):
|
370 |
+
return f" {expr.rel_op} ".join(map(self.paren, map(self._print, expr.args)))
|
371 |
+
|
372 |
+
def _print_Mul(self, expr):
|
373 |
+
return "*".join(map(self.paren, map(self._print, expr.args)))
|
374 |
+
|
375 |
+
def _print_Add(self, expr):
|
376 |
+
return " + ".join(map(self.paren, map(self._print, expr.args)))
|
377 |
+
|
378 |
+
def _print_Mod(self, expr):
|
379 |
+
return " % ".join(map(self.paren, map(self._print, expr.args)))
|
380 |
+
|
381 |
+
def _print_FloorDiv(self, expr):
|
382 |
+
raise NotImplementedError(f"_print_FloorDiv not implemented for {type(self)}")
|
383 |
+
|
384 |
+
def _print_CleanDiv(self, expr):
|
385 |
+
return self._print_FloorDiv(expr)
|
386 |
+
|
387 |
+
def _print_GreaterThan(self, expr):
|
388 |
+
# GreaterThan: >=
|
389 |
+
# StrictlyGreaterThan: >
|
390 |
+
# Go figure...
|
391 |
+
return " >= ".join(map(self.paren, map(self._print, expr.args)))
|
392 |
+
|
393 |
+
def _print_align(self, expr):
|
394 |
+
assert len(expr.args) == 1
|
395 |
+
return f"align({self._print(expr.args[0])})"
|
396 |
+
|
397 |
+
|
398 |
+
class PythonPrinter(ExprPrinter):
|
399 |
+
def _print_ModularIndexing(self, expr):
|
400 |
+
x, div, mod = expr.args
|
401 |
+
x = self.paren(self.doprint(x))
|
402 |
+
div = self.paren(self.doprint(div))
|
403 |
+
mod = self.paren(self.doprint(mod))
|
404 |
+
if div != "1":
|
405 |
+
x = f"({x} // {div})"
|
406 |
+
return f"{x} % {mod}"
|
407 |
+
|
408 |
+
def _print_FloorDiv(self, expr):
|
409 |
+
x, div = expr.args
|
410 |
+
x = self.paren(self.doprint(x))
|
411 |
+
div = self.paren(self.doprint(div))
|
412 |
+
return f"({x} // {div})"
|
413 |
+
|
414 |
+
def _helper_sqrt(self, expr):
|
415 |
+
return f"math.sqrt({self._print(expr)})"
|
416 |
+
|
417 |
+
def _print_Pow(self, expr):
|
418 |
+
# Pow() confuses triton
|
419 |
+
base, exp = expr.args
|
420 |
+
# NB: Remember this is sizevar computation! You don't typically
|
421 |
+
# expect to have to do floating point computation including exponents
|
422 |
+
# in sizevar compute. Instead of adding support for floating
|
423 |
+
# point pow, you should make upstream retranslate the Sympy expression
|
424 |
+
# into Tensor expressions earlier and do that instead.
|
425 |
+
if exp == 0.5:
|
426 |
+
return self._helper_sqrt(base)
|
427 |
+
elif exp == -0.5:
|
428 |
+
return "1/" + self._helper_sqrt(base)
|
429 |
+
base = self._print(base)
|
430 |
+
assert exp == int(exp), exp
|
431 |
+
exp = int(exp)
|
432 |
+
if exp > 0:
|
433 |
+
return "*".join([self.paren(base)] * exp)
|
434 |
+
elif exp < 0:
|
435 |
+
return "1/" + self.paren("*".join([self.paren(base)] * abs(exp)))
|
436 |
+
else: # exp == 0
|
437 |
+
return "1"
|
438 |
+
|
439 |
+
def _print_floor(self, expr):
|
440 |
+
assert len(expr.args) == 1
|
441 |
+
return f"math.floor({self._print(expr.args[0])})"
|
442 |
+
|
443 |
+
def _print_ceiling(self, expr):
|
444 |
+
assert len(expr.args) == 1
|
445 |
+
return f"math.ceil({self._print(expr.args[0])})"
|
446 |
+
|
447 |
+
def _print_Abs(self, expr):
|
448 |
+
assert len(expr.args) == 1
|
449 |
+
return f"abs({self._print(expr.args[0])})"
|
450 |
+
|
451 |
+
def _print_Max(self, expr):
|
452 |
+
assert len(expr.args) >= 2
|
453 |
+
return f"max({', '.join(map(self._print, expr.args))})"
|
454 |
+
|
455 |
+
def _print_Min(self, expr):
|
456 |
+
assert len(expr.args) >= 2
|
457 |
+
return f"min({', '.join(map(self._print, expr.args))})"
|
458 |
+
|
459 |
+
def _print_cos(self, expr):
|
460 |
+
assert len(expr.args) == 1
|
461 |
+
return f"math.cos({self._print(expr.args[0])})"
|
462 |
+
|
463 |
+
def _print_cosh(self, expr):
|
464 |
+
assert len(expr.args) == 1
|
465 |
+
return f"math.cosh({self._print(expr.args[0])})"
|
466 |
+
|
467 |
+
def _print_acos(self, expr):
|
468 |
+
assert len(expr.args) == 1
|
469 |
+
return f"math.acos({self._print(expr.args[0])})"
|
470 |
+
|
471 |
+
def _print_sin(self, expr):
|
472 |
+
assert len(expr.args) == 1
|
473 |
+
return f"math.sin({self._print(expr.args[0])})"
|
474 |
+
|
475 |
+
def _print_sinh(self, expr):
|
476 |
+
assert len(expr.args) == 1
|
477 |
+
return f"math.sinh({self._print(expr.args[0])})"
|
478 |
+
|
479 |
+
def _print_asin(self, expr):
|
480 |
+
assert len(expr.args) == 1
|
481 |
+
return f"math.asin({self._print(expr.args[0])})"
|
482 |
+
|
483 |
+
def _print_tan(self, expr):
|
484 |
+
assert len(expr.args) == 1
|
485 |
+
return f"math.tan({self._print(expr.args[0])})"
|
486 |
+
|
487 |
+
def _print_tanh(self, expr):
|
488 |
+
assert len(expr.args) == 1
|
489 |
+
return f"math.tanh({self._print(expr.args[0])})"
|
490 |
+
|
491 |
+
def _print_atan(self, expr):
|
492 |
+
assert len(expr.args) == 1
|
493 |
+
return f"math.atan({self._print(expr.args[0])})"
|
494 |
+
|
495 |
+
def _print_Round(self, expr):
|
496 |
+
assert len(expr.args) == 1
|
497 |
+
return f"round({self._print(expr.args[0])})"
|
498 |
+
|
499 |
+
def _print_RoundDecimal(self, expr):
|
500 |
+
assert len(expr.args) == 2
|
501 |
+
number, ndigits = expr.args
|
502 |
+
assert isinstance(ndigits, sympy.Integer)
|
503 |
+
return f"round({self._print(number)}, {ndigits})"
|
504 |
+
|
505 |
+
|
506 |
+
class OpOverrides:
|
507 |
+
def __init__(self, parent):
|
508 |
+
super().__init__()
|
509 |
+
self._parent = parent
|
510 |
+
|
511 |
+
def __getattr__(self, item):
|
512 |
+
return getattr(self._parent, item)
|
513 |
+
|
514 |
+
@staticmethod
|
515 |
+
def identity(value):
|
516 |
+
# used to trigger cse
|
517 |
+
return value
|
518 |
+
|
519 |
+
@staticmethod
|
520 |
+
def constant(value, dtype):
|
521 |
+
return repr(value)
|
522 |
+
|
523 |
+
@staticmethod
|
524 |
+
def reciprocal(x):
|
525 |
+
return ops.truediv("1", x)
|
526 |
+
|
527 |
+
@staticmethod
|
528 |
+
def square(x):
|
529 |
+
return ops.mul(x, x)
|
530 |
+
|
531 |
+
@staticmethod
|
532 |
+
def bitwise_not(x):
|
533 |
+
return f"~{ExprPrinter.paren(x)}"
|
534 |
+
|
535 |
+
@staticmethod
|
536 |
+
def logical_not(a):
|
537 |
+
return f"{ExprPrinter.paren(a)} == 0"
|
538 |
+
|
539 |
+
@staticmethod
|
540 |
+
def bitwise_and(x, y):
|
541 |
+
return f"{ExprPrinter.paren(x)} & {ExprPrinter.paren(y)}"
|
542 |
+
|
543 |
+
@staticmethod
|
544 |
+
def bitwise_or(x, y):
|
545 |
+
return f"{ExprPrinter.paren(x)} | {ExprPrinter.paren(y)}"
|
546 |
+
|
547 |
+
@staticmethod
|
548 |
+
def bitwise_xor(x, y):
|
549 |
+
return f"{ExprPrinter.paren(x)} ^ {ExprPrinter.paren(y)}"
|
550 |
+
|
551 |
+
@staticmethod
|
552 |
+
def bitwise_left_shift(x, y):
|
553 |
+
return f"{ExprPrinter.paren(x)} << {ExprPrinter.paren(y)}"
|
554 |
+
|
555 |
+
@staticmethod
|
556 |
+
def bitwise_right_shift(x, y):
|
557 |
+
return f"{ExprPrinter.paren(x)} >> {ExprPrinter.paren(y)}"
|
558 |
+
|
559 |
+
@staticmethod
|
560 |
+
def remainder(a, b):
|
561 |
+
r = ops.mod(a, b)
|
562 |
+
return ops.where(f"(({r} != 0) & (({r} < 0) != ({b} < 0)))", ops.add(r, b), r)
|
563 |
+
|
564 |
+
@staticmethod
|
565 |
+
def load_seed(name, offset):
|
566 |
+
return ops.load(name, sympy.Integer(offset))
|
567 |
+
|
568 |
+
@classmethod
|
569 |
+
def _initialize_pointwise_overrides(cls, target):
|
570 |
+
assert target in {"triton", "cpp", "cppvec"}, target
|
571 |
+
|
572 |
+
def pointwise_factory_1(impl):
|
573 |
+
def func(x):
|
574 |
+
return impl.format(x=x)
|
575 |
+
|
576 |
+
return func
|
577 |
+
|
578 |
+
def pointwise_factory_2(impl):
|
579 |
+
def func(x, y):
|
580 |
+
return impl.format(x=x, y=y)
|
581 |
+
|
582 |
+
return func
|
583 |
+
|
584 |
+
for funcname, data in pointwise_overrides_data.items():
|
585 |
+
impl = getattr(data, target)
|
586 |
+
if isinstance(impl, str):
|
587 |
+
nof_args = 2 if "{y}" in impl else 1
|
588 |
+
# extend the following dictionary with factory
|
589 |
+
# functions for a specific number of arguments as
|
590 |
+
# needed:
|
591 |
+
factory = {1: pointwise_factory_1, 2: pointwise_factory_2}[nof_args]
|
592 |
+
setattr(cls, funcname, staticmethod(factory(impl)))
|
593 |
+
|
594 |
+
|
595 |
+
@dataclasses.dataclass
|
596 |
+
class OverridesData:
|
597 |
+
name: str
|
598 |
+
cpp: str
|
599 |
+
triton: Optional[str] = None # None when not impl in libdevice/triton
|
600 |
+
cppvec: Optional[str] = None # None when not impl in aten/.../vec
|
601 |
+
type_promotion_kind: ELEMENTWISE_TYPE_PROMOTION_KIND = (
|
602 |
+
ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT
|
603 |
+
)
|
604 |
+
|
605 |
+
|
606 |
+
pointwise_overrides_data: Dict[str, OverridesData] = dict(
|
607 |
+
airy_ai=OverridesData(
|
608 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
609 |
+
cpp="airy_ai_forward({x})",
|
610 |
+
name="special_airy_ai",
|
611 |
+
),
|
612 |
+
bessel_j0=OverridesData(
|
613 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
614 |
+
cpp="bessel_j0_forward({x})",
|
615 |
+
triton="libdevice.j0({x})",
|
616 |
+
name="special_bessel_j0",
|
617 |
+
),
|
618 |
+
bessel_j1=OverridesData(
|
619 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
620 |
+
cpp="bessel_j1_forward({x})",
|
621 |
+
triton="libdevice.j1({x})",
|
622 |
+
name="special_bessel_j1",
|
623 |
+
),
|
624 |
+
bessel_y0=OverridesData(
|
625 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
626 |
+
cpp="bessel_y0_forward({x})",
|
627 |
+
triton="libdevice.y0({x})",
|
628 |
+
name="special_bessel_y0",
|
629 |
+
),
|
630 |
+
bessel_y1=OverridesData(
|
631 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
632 |
+
cpp="bessel_y1_forward({x})",
|
633 |
+
triton="libdevice.y1({x})",
|
634 |
+
name="special_bessel_y1",
|
635 |
+
),
|
636 |
+
digamma=OverridesData(
|
637 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
638 |
+
cpp="calc_digamma({x})",
|
639 |
+
cppvec="{x}.digamma()",
|
640 |
+
name="digamma",
|
641 |
+
),
|
642 |
+
# no cpp nor triton implementation for entr, it is defined as decomposition
|
643 |
+
# erf, erfc
|
644 |
+
erfcx=OverridesData(
|
645 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
646 |
+
cpp="calc_erfcx({x})",
|
647 |
+
triton="libdevice.erfcx({x})",
|
648 |
+
name="special_erfcx",
|
649 |
+
),
|
650 |
+
# erfinv, exp2, expit, gammaln
|
651 |
+
igamma=OverridesData(
|
652 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
653 |
+
cpp="calc_igamma({x}, {y})",
|
654 |
+
name="igamma",
|
655 |
+
),
|
656 |
+
igammac=OverridesData(
|
657 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
658 |
+
cpp="calc_igammac({x}, {y})",
|
659 |
+
name="igammac",
|
660 |
+
),
|
661 |
+
gammainc=OverridesData(
|
662 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
663 |
+
cpp="calc_igamma({x}, {y})",
|
664 |
+
name="special_gammainc",
|
665 |
+
),
|
666 |
+
gammaincc=OverridesData(
|
667 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
668 |
+
cpp="calc_igammac({x}, {y})",
|
669 |
+
name="special_gammaincc",
|
670 |
+
),
|
671 |
+
i0=OverridesData(
|
672 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
673 |
+
cpp="calc_i0({x})",
|
674 |
+
triton="libdevice.cyl_bessel_i0({x})",
|
675 |
+
cppvec="{x}.i0()",
|
676 |
+
name="i0",
|
677 |
+
),
|
678 |
+
i0e=OverridesData(
|
679 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
680 |
+
cpp="calc_i0e({x})",
|
681 |
+
cppvec="{x}.i0e()",
|
682 |
+
name="special_i0e",
|
683 |
+
),
|
684 |
+
i1=OverridesData(
|
685 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
686 |
+
cpp="calc_i1({x})",
|
687 |
+
triton="libdevice.cyl_bessel_i1({x})",
|
688 |
+
name="special_i1",
|
689 |
+
),
|
690 |
+
i1e=OverridesData(
|
691 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
692 |
+
cpp="calc_i1e({x})",
|
693 |
+
name="special_i1e",
|
694 |
+
),
|
695 |
+
log_ndtr=OverridesData(
|
696 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
697 |
+
cpp="calc_log_ndtr({x})",
|
698 |
+
name="special_log_ndtr",
|
699 |
+
),
|
700 |
+
# logit
|
701 |
+
modified_bessel_i0=OverridesData(
|
702 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
703 |
+
cpp="modified_bessel_i0_forward({x})",
|
704 |
+
triton="libdevice.cyl_bessel_i0({x})",
|
705 |
+
name="special_modified_bessel_i0",
|
706 |
+
),
|
707 |
+
modified_bessel_i1=OverridesData(
|
708 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
709 |
+
cpp="modified_bessel_i1_forward({x})",
|
710 |
+
triton="libdevice.cyl_bessel_i1({x})",
|
711 |
+
name="special_modified_bessel_i1",
|
712 |
+
),
|
713 |
+
modified_bessel_k0=OverridesData(
|
714 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
715 |
+
cpp="modified_bessel_k0_forward({x})",
|
716 |
+
name="special_modified_bessel_k0",
|
717 |
+
),
|
718 |
+
modified_bessel_k1=OverridesData(
|
719 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
720 |
+
cpp="modified_bessel_k1_forward({x})",
|
721 |
+
name="special_modified_bessel_k1",
|
722 |
+
),
|
723 |
+
# multigamma
|
724 |
+
ndtr=OverridesData(
|
725 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
726 |
+
cpp="calc_ndtr({x})",
|
727 |
+
name="special_ndtr",
|
728 |
+
),
|
729 |
+
ndtri=OverridesData(
|
730 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
731 |
+
cpp="calc_ndtri({x})",
|
732 |
+
name="special_ndtri",
|
733 |
+
),
|
734 |
+
polygamma=OverridesData(
|
735 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
736 |
+
cpp="calc_polygamma({y}, {x})",
|
737 |
+
name="polygamma",
|
738 |
+
),
|
739 |
+
# psi - alias to digamma
|
740 |
+
# round
|
741 |
+
scaled_modified_bessel_k0=OverridesData(
|
742 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
743 |
+
cpp="scaled_modified_bessel_k0_forward({x})",
|
744 |
+
name="special_scaled_modified_bessel_k0",
|
745 |
+
),
|
746 |
+
scaled_modified_bessel_k1=OverridesData(
|
747 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
748 |
+
cpp="scaled_modified_bessel_k1_forward({x})",
|
749 |
+
name="special_scaled_modified_bessel_k1",
|
750 |
+
),
|
751 |
+
# sinc
|
752 |
+
spherical_bessel_j0=OverridesData(
|
753 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
754 |
+
cpp="spherical_bessel_j0_forward({x})",
|
755 |
+
name="special_spherical_bessel_j0",
|
756 |
+
),
|
757 |
+
zeta=OverridesData(
|
758 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
759 |
+
cpp="zeta({x}, {y})",
|
760 |
+
name="special_zeta",
|
761 |
+
),
|
762 |
+
chebyshev_polynomial_t=OverridesData(
|
763 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
764 |
+
cpp="chebyshev_polynomial_t_forward({x}, {y})",
|
765 |
+
name="special_chebyshev_polynomial_t",
|
766 |
+
),
|
767 |
+
chebyshev_polynomial_u=OverridesData(
|
768 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
769 |
+
cpp="chebyshev_polynomial_u_forward({x}, {y})",
|
770 |
+
name="special_chebyshev_polynomial_u",
|
771 |
+
),
|
772 |
+
chebyshev_polynomial_v=OverridesData(
|
773 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
774 |
+
cpp="chebyshev_polynomial_v_forward({x}, {y})",
|
775 |
+
name="special_chebyshev_polynomial_v",
|
776 |
+
),
|
777 |
+
chebyshev_polynomial_w=OverridesData(
|
778 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
779 |
+
cpp="chebyshev_polynomial_w_forward({x}, {y})",
|
780 |
+
name="special_chebyshev_polynomial_w",
|
781 |
+
),
|
782 |
+
legendre_polynomial_p=OverridesData(
|
783 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
784 |
+
cpp="legendre_polynomial_p_forward({x}, {y})",
|
785 |
+
name="special_legendre_polynomial_p",
|
786 |
+
),
|
787 |
+
shifted_chebyshev_polynomial_t=OverridesData(
|
788 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
789 |
+
cpp="shifted_chebyshev_polynomial_t_forward({x}, {y})",
|
790 |
+
name="special_shifted_chebyshev_polynomial_t",
|
791 |
+
),
|
792 |
+
shifted_chebyshev_polynomial_u=OverridesData(
|
793 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
794 |
+
cpp="shifted_chebyshev_polynomial_u_forward({x}, {y})",
|
795 |
+
name="special_shifted_chebyshev_polynomial_u",
|
796 |
+
),
|
797 |
+
shifted_chebyshev_polynomial_v=OverridesData(
|
798 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
799 |
+
cpp="shifted_chebyshev_polynomial_v_forward({x}, {y})",
|
800 |
+
name="special_shifted_chebyshev_polynomial_v",
|
801 |
+
),
|
802 |
+
shifted_chebyshev_polynomial_w=OverridesData(
|
803 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
804 |
+
cpp="shifted_chebyshev_polynomial_w_forward({x}, {y})",
|
805 |
+
name="special_shifted_chebyshev_polynomial_w",
|
806 |
+
),
|
807 |
+
hermite_polynomial_h=OverridesData(
|
808 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
809 |
+
cpp="hermite_polynomial_h_forward({x}, {y})",
|
810 |
+
name="special_hermite_polynomial_h",
|
811 |
+
),
|
812 |
+
hermite_polynomial_he=OverridesData(
|
813 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
814 |
+
cpp="hermite_polynomial_he_forward({x}, {y})",
|
815 |
+
name="special_hermite_polynomial_he",
|
816 |
+
),
|
817 |
+
laguerre_polynomial_l=OverridesData(
|
818 |
+
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
|
819 |
+
cpp="laguerre_polynomial_l_forward({x}, {y})",
|
820 |
+
name="special_laguerre_polynomial_l",
|
821 |
+
),
|
822 |
+
)
|
823 |
+
|
824 |
+
|
825 |
+
# Use mypy to check protocol implemented correctly
|
826 |
+
def _typecheck_OpOverrides(h: OpOverrides) -> OpsHandler[str]:
|
827 |
+
return h
|
828 |
+
|
829 |
+
|
830 |
+
class DeferredLine(DeferredLineBase):
|
831 |
+
"""A line that can be 'unwritten' by adding name to V.graph.removed_buffers"""
|
832 |
+
|
833 |
+
def __init__(self, name, line):
|
834 |
+
super().__init__(line)
|
835 |
+
self.name = name
|
836 |
+
assert not isinstance(line, DeferredLineBase)
|
837 |
+
|
838 |
+
def __call__(self):
|
839 |
+
if all(
|
840 |
+
self.name not in x
|
841 |
+
for x in (
|
842 |
+
V.graph.removed_buffers,
|
843 |
+
V.kernel.removed_buffers,
|
844 |
+
V.graph.inplaced_to_remove,
|
845 |
+
V.kernel.inplaced_to_remove,
|
846 |
+
)
|
847 |
+
):
|
848 |
+
return self.line
|
849 |
+
return None
|
850 |
+
|
851 |
+
def _new_line(self, line):
|
852 |
+
return DeferredLine(self.name, line)
|
853 |
+
|
854 |
+
|
855 |
+
class BracesBuffer(IndentedBuffer):
|
856 |
+
def indent(self, offset=1):
|
857 |
+
@contextlib.contextmanager
|
858 |
+
def ctx():
|
859 |
+
for _ in range(offset):
|
860 |
+
self.writeline("{")
|
861 |
+
self._indent += 1
|
862 |
+
for _ in range(-offset):
|
863 |
+
self._indent -= 1
|
864 |
+
self.writeline("}")
|
865 |
+
yield
|
866 |
+
for _ in range(-offset):
|
867 |
+
self.writeline("{")
|
868 |
+
self._indent += 1
|
869 |
+
for _ in range(offset):
|
870 |
+
self._indent -= 1
|
871 |
+
self.writeline("}")
|
872 |
+
|
873 |
+
return ctx()
|
874 |
+
|
875 |
+
|
876 |
+
class InplacedBuffer(NamedTuple):
|
877 |
+
inner_name: str
|
878 |
+
other_names: List[str]
|
879 |
+
|
880 |
+
|
881 |
+
class KernelArgs:
|
882 |
+
@staticmethod
|
883 |
+
def _lookup(prefix, odict, name):
|
884 |
+
assert isinstance(name, (str, sympy.Symbol))
|
885 |
+
if name not in odict:
|
886 |
+
odict[name] = f"{prefix}{len(odict)}"
|
887 |
+
return odict[name]
|
888 |
+
|
889 |
+
def __init__(self, sizevars=None):
|
890 |
+
self.input_buffers = dict()
|
891 |
+
self.output_buffers = dict()
|
892 |
+
self.inplace_buffers = dict()
|
893 |
+
self.sizevars = sizevars or dict()
|
894 |
+
self.workspace_arg = None
|
895 |
+
|
896 |
+
def __repr__(self):
|
897 |
+
return "KernelArgs({})".format(
|
898 |
+
", ".join(
|
899 |
+
map(
|
900 |
+
repr,
|
901 |
+
[
|
902 |
+
self.input_buffers,
|
903 |
+
self.output_buffers,
|
904 |
+
self.inplace_buffers,
|
905 |
+
self.sizevars,
|
906 |
+
],
|
907 |
+
)
|
908 |
+
)
|
909 |
+
)
|
910 |
+
|
911 |
+
def _buffer_is_marked_removed(self, name):
|
912 |
+
return isinstance(name, str) and name.startswith("REMOVED")
|
913 |
+
|
914 |
+
def input(self, name):
|
915 |
+
if V.graph.scheduler:
|
916 |
+
name = V.graph.scheduler.mutation_real_name.get(name, name)
|
917 |
+
assert name not in V.graph.removed_buffers, name
|
918 |
+
if name in self.output_buffers:
|
919 |
+
return self.output_buffers[name]
|
920 |
+
if name in self.inplace_buffers:
|
921 |
+
return self.inplace_buffers[name].inner_name
|
922 |
+
if name.startswith("seed"):
|
923 |
+
return self._lookup("seed", self.input_buffers, name)
|
924 |
+
return self._lookup("in_ptr", self.input_buffers, name)
|
925 |
+
|
926 |
+
def output(self, name):
|
927 |
+
if V.graph.scheduler:
|
928 |
+
name = V.graph.scheduler.mutation_real_name.get(name, name)
|
929 |
+
assert name not in V.graph.removed_buffers, name
|
930 |
+
if name in self.inplace_buffers:
|
931 |
+
return self.inplace_buffers[name].inner_name
|
932 |
+
return self._lookup("out_ptr", self.output_buffers, name)
|
933 |
+
|
934 |
+
def make_inplace(self, input_name, output_name):
|
935 |
+
assert output_name not in self.inplace_buffers
|
936 |
+
if input_name in self.inplace_buffers:
|
937 |
+
buf = self.inplace_buffers[input_name]
|
938 |
+
buf.other_names.append(output_name)
|
939 |
+
self.inplace_buffers[output_name] = buf
|
940 |
+
else:
|
941 |
+
buf = InplacedBuffer(
|
942 |
+
f"in_out_ptr{len(unique(self.inplace_buffers.values()))}",
|
943 |
+
[input_name, output_name],
|
944 |
+
)
|
945 |
+
self.inplace_buffers[input_name] = buf
|
946 |
+
self.inplace_buffers[output_name] = buf
|
947 |
+
|
948 |
+
def workspace(self, nbytes: sympy.Expr, zero_fill: bool):
|
949 |
+
if self.workspace_arg is None:
|
950 |
+
self.workspace_arg = WorkspaceArg(nbytes, zero_fill)
|
951 |
+
return "ws_ptr", 0
|
952 |
+
|
953 |
+
offset = self.workspace_arg.nbytes
|
954 |
+
zero_fill = zero_fill or self.workspace_arg.zero_fill
|
955 |
+
self.workspace_arg = WorkspaceArg(offset + nbytes, zero_fill)
|
956 |
+
return "ws_ptr", offset
|
957 |
+
|
958 |
+
def seed_offset(self, name, value):
|
959 |
+
if value in self.sizevars:
|
960 |
+
return self.sizevars[value]
|
961 |
+
if name in self.sizevars.values():
|
962 |
+
name = (
|
963 |
+
f"{name}{sum(1 for v in self.sizevars.values() if v.startswith(name))}"
|
964 |
+
)
|
965 |
+
self.sizevars[value] = name
|
966 |
+
return name
|
967 |
+
|
968 |
+
def size(self, name):
|
969 |
+
if str(name) == "seed":
|
970 |
+
self.sizevars["seed"] = "seed"
|
971 |
+
return "seed"
|
972 |
+
return self._lookup("ks", self.sizevars, name)
|
973 |
+
|
974 |
+
def call_names(self):
|
975 |
+
return chain(
|
976 |
+
self.input_buffers.keys(), self.output_buffers.keys(), self.sizevars.keys()
|
977 |
+
)
|
978 |
+
|
979 |
+
def wrap_ptr_arg(self, buf, dtype):
|
980 |
+
return buf
|
981 |
+
|
982 |
+
def wrap_size_arg(self, size):
|
983 |
+
return str(size)
|
984 |
+
|
985 |
+
def cpp_argdefs(self):
|
986 |
+
from .cpp import DTYPE_TO_CPP, INDEX_TYPE
|
987 |
+
|
988 |
+
call_args = []
|
989 |
+
arg_defs = []
|
990 |
+
arg_types = []
|
991 |
+
for inplaced in unique(self.inplace_buffers.values()):
|
992 |
+
if self._buffer_is_marked_removed(inplaced):
|
993 |
+
continue
|
994 |
+
outer = inplaced.other_names[-1]
|
995 |
+
inner = inplaced.inner_name
|
996 |
+
dtype = V.graph.get_dtype(outer)
|
997 |
+
cpp_dtype = DTYPE_TO_CPP[dtype]
|
998 |
+
arg_defs.append(f"{cpp_dtype}* {inner}")
|
999 |
+
call_args.append(self.wrap_ptr_arg(outer, dtype))
|
1000 |
+
arg_types.append(f"{cpp_dtype}*")
|
1001 |
+
for outer, inner in self.input_buffers.items():
|
1002 |
+
if outer in self.inplace_buffers:
|
1003 |
+
continue
|
1004 |
+
dtype = V.graph.get_dtype(outer)
|
1005 |
+
cpp_dtype = DTYPE_TO_CPP[dtype]
|
1006 |
+
arg_defs.append(f"const {cpp_dtype}* {inner}")
|
1007 |
+
call_args.append(self.wrap_ptr_arg(outer, dtype))
|
1008 |
+
arg_types.append(f"const {cpp_dtype}*")
|
1009 |
+
for outer, inner in self.output_buffers.items():
|
1010 |
+
if outer in self.inplace_buffers or self._buffer_is_marked_removed(inner):
|
1011 |
+
continue
|
1012 |
+
dtype = V.graph.get_dtype(outer)
|
1013 |
+
cpp_dtype = DTYPE_TO_CPP[dtype]
|
1014 |
+
arg_defs.append(f"{cpp_dtype}* {inner}")
|
1015 |
+
call_args.append(self.wrap_ptr_arg(outer, dtype))
|
1016 |
+
arg_types.append(f"{cpp_dtype}*")
|
1017 |
+
for outer, inner in self.sizevars.items():
|
1018 |
+
arg_defs.append(f"const {INDEX_TYPE} {inner}")
|
1019 |
+
call_args.append(self.wrap_size_arg(outer))
|
1020 |
+
arg_types.append(f"const {INDEX_TYPE}")
|
1021 |
+
if V.graph.wrapper_code:
|
1022 |
+
V.graph.wrapper_code.ensure_size_computed(outer)
|
1023 |
+
assert self.workspace_arg is None, "Workspace not supported on CPU "
|
1024 |
+
return arg_defs, call_args, arg_types
|
1025 |
+
|
1026 |
+
def python_argdefs(self):
|
1027 |
+
arg_defs = []
|
1028 |
+
call_args = []
|
1029 |
+
precompile_args: List[Union[TensorArg, SizeArg, WorkspaceArg]] = []
|
1030 |
+
for inplaced in unique(self.inplace_buffers.values()):
|
1031 |
+
if self._buffer_is_marked_removed(inplaced):
|
1032 |
+
continue
|
1033 |
+
arg_defs.append(inplaced.inner_name)
|
1034 |
+
call_args.append(inplaced.other_names[-1])
|
1035 |
+
precompile_args.append(
|
1036 |
+
TensorArg(
|
1037 |
+
name=inplaced.inner_name,
|
1038 |
+
buffer=inplaced.other_names[-1],
|
1039 |
+
dtype=V.graph.get_dtype(inplaced.other_names[-1]),
|
1040 |
+
)
|
1041 |
+
)
|
1042 |
+
for outer, inner in chain(
|
1043 |
+
self.input_buffers.items(), self.output_buffers.items()
|
1044 |
+
):
|
1045 |
+
if outer in self.inplace_buffers or self._buffer_is_marked_removed(inner):
|
1046 |
+
continue
|
1047 |
+
arg_defs.append(inner)
|
1048 |
+
call_args.append(outer)
|
1049 |
+
precompile_args.append(
|
1050 |
+
TensorArg(
|
1051 |
+
name=inner,
|
1052 |
+
buffer=outer,
|
1053 |
+
dtype=V.graph.get_dtype(outer),
|
1054 |
+
)
|
1055 |
+
)
|
1056 |
+
for outer, inner in self.sizevars.items():
|
1057 |
+
arg_defs.append(inner)
|
1058 |
+
call_args.append(outer)
|
1059 |
+
precompile_args.append(SizeArg(inner, outer))
|
1060 |
+
if V.graph.wrapper_code:
|
1061 |
+
V.graph.wrapper_code.ensure_size_computed(outer)
|
1062 |
+
if self.workspace_arg is not None:
|
1063 |
+
arg_defs.append("ws_ptr")
|
1064 |
+
call_args.append("workspace")
|
1065 |
+
precompile_args.append(self.workspace_arg)
|
1066 |
+
|
1067 |
+
return arg_defs, call_args, precompile_args
|
1068 |
+
|
1069 |
+
def aliases(self):
|
1070 |
+
for inplaced in unique(self.inplace_buffers.values()):
|
1071 |
+
if self._buffer_is_marked_removed(inplaced):
|
1072 |
+
continue
|
1073 |
+
for other in inplaced.other_names:
|
1074 |
+
if (
|
1075 |
+
other in V.graph.inplaced_to_remove
|
1076 |
+
or other in V.kernel.inplaced_to_remove
|
1077 |
+
):
|
1078 |
+
continue
|
1079 |
+
if other in self.input_buffers:
|
1080 |
+
yield self.input_buffers[other], inplaced.inner_name
|
1081 |
+
if other in self.output_buffers:
|
1082 |
+
yield self.output_buffers[other], inplaced.inner_name
|
1083 |
+
|
1084 |
+
def is_removed(self, name):
|
1085 |
+
def _is_removed(name, buffers):
|
1086 |
+
return name not in buffers or self._buffer_is_marked_removed(buffers[name])
|
1087 |
+
|
1088 |
+
return _is_removed(name, self.output_buffers) and _is_removed(
|
1089 |
+
name, self.inplace_buffers
|
1090 |
+
)
|
1091 |
+
|
1092 |
+
# Includes inplace buffers, excludes removed buffers. Essentially,
|
1093 |
+
# after you do a call into this kernel, which buffers actually contain
|
1094 |
+
# updated data? Modeled off of python_argdefs.
|
1095 |
+
def live_output_buffers(self):
|
1096 |
+
live_outs = set()
|
1097 |
+
for inplaced in unique(self.inplace_buffers.values()):
|
1098 |
+
if self._buffer_is_marked_removed(inplaced):
|
1099 |
+
continue
|
1100 |
+
live_outs.add(inplaced.other_names[-1])
|
1101 |
+
for outer, inner in self.output_buffers.items():
|
1102 |
+
if outer in self.inplace_buffers or self._buffer_is_marked_removed(inner):
|
1103 |
+
continue
|
1104 |
+
live_outs.add(outer)
|
1105 |
+
return live_outs
|
1106 |
+
|
1107 |
+
|
1108 |
+
class CSEVariable:
|
1109 |
+
"""A CSEVariable is just a name for an expression but it is useful to be able to annotate them on a backend dependent basis.
|
1110 |
+
To do so, the backends can simply overload `Kernel.create_cse_var`
|
1111 |
+
The "CSEVariable.update_on_args" method gives you a hook for annotations
|
1112 |
+
See example of TritonCSEVariable in triton.py
|
1113 |
+
"""
|
1114 |
+
|
1115 |
+
def __init__(self, name, bounds: ValueRanges[Any]):
|
1116 |
+
assert isinstance(bounds, ValueRanges)
|
1117 |
+
self.name = name
|
1118 |
+
self.bounds = bounds
|
1119 |
+
|
1120 |
+
def __str__(self):
|
1121 |
+
return self.name
|
1122 |
+
|
1123 |
+
def __hash__(self) -> int:
|
1124 |
+
return hash(self.name)
|
1125 |
+
|
1126 |
+
def __eq__(self, other) -> bool:
|
1127 |
+
return type(other) == type(self) and other.name == self.name
|
1128 |
+
|
1129 |
+
def update_on_args(self, name, args, kwargs):
|
1130 |
+
pass
|
1131 |
+
|
1132 |
+
|
1133 |
+
class CppWrapperKernelArgs(KernelArgs):
|
1134 |
+
def wrap_ptr_arg(self, buf, dtype):
|
1135 |
+
from .cpp import DTYPE_TO_CPP
|
1136 |
+
|
1137 |
+
if config.abi_compatible:
|
1138 |
+
# In the abi_compatible model, we just return the buf here.
|
1139 |
+
# We will form correct call args later in wrapper.generate_kernel_all.
|
1140 |
+
return buf
|
1141 |
+
else:
|
1142 |
+
return f"({DTYPE_TO_CPP[dtype]}*)({buf}.data_ptr())"
|
1143 |
+
|
1144 |
+
def wrap_size_arg(self, size):
|
1145 |
+
return f"{size}"
|
1146 |
+
|
1147 |
+
|
1148 |
+
class CSE:
|
1149 |
+
"""Common subexpression elimination"""
|
1150 |
+
|
1151 |
+
def __init__(
|
1152 |
+
self,
|
1153 |
+
prefix="",
|
1154 |
+
suffix="",
|
1155 |
+
name_prefix="tmp",
|
1156 |
+
iter_buffers=None,
|
1157 |
+
store_cache=None,
|
1158 |
+
reduction_cache=None,
|
1159 |
+
varname_map=None,
|
1160 |
+
):
|
1161 |
+
self.prefix = prefix
|
1162 |
+
self.suffix = suffix
|
1163 |
+
self.cache = {}
|
1164 |
+
self.name_prefix = name_prefix
|
1165 |
+
self.store_cache = store_cache or {}
|
1166 |
+
self.reduction_cache = reduction_cache or {}
|
1167 |
+
self.iter_buffer_ids = iter_buffers or itertools.count()
|
1168 |
+
self.invalidated_stores = set()
|
1169 |
+
self.varname_map = varname_map or {}
|
1170 |
+
|
1171 |
+
def invalidate(self, keep_vars: Set[str]):
|
1172 |
+
for name, tmp in list(self.store_cache.items()):
|
1173 |
+
if tmp not in keep_vars:
|
1174 |
+
del self.store_cache[name]
|
1175 |
+
self.invalidated_stores.add(name)
|
1176 |
+
self.cache = {k: v for k, v in self.cache.items() if v in keep_vars}
|
1177 |
+
|
1178 |
+
def clone(self):
|
1179 |
+
# Note(fdrocha): reduction_cache is not being cloned, not sure if this is intentional
|
1180 |
+
return CSE(
|
1181 |
+
prefix=self.prefix,
|
1182 |
+
suffix=self.suffix,
|
1183 |
+
name_prefix=self.name_prefix,
|
1184 |
+
iter_buffers=self.iter_buffer_ids,
|
1185 |
+
store_cache=self.store_cache,
|
1186 |
+
varname_map=self.varname_map,
|
1187 |
+
)
|
1188 |
+
|
1189 |
+
def generate(
|
1190 |
+
self,
|
1191 |
+
buffer: IndentedBuffer,
|
1192 |
+
expr: Union[str, CSEVariable, OpsValue, IndentedBuffer],
|
1193 |
+
*,
|
1194 |
+
bounds: ValueRanges[Any] = ValueRanges.unknown(),
|
1195 |
+
write=True,
|
1196 |
+
assignment=True,
|
1197 |
+
) -> CSEVariable:
|
1198 |
+
if isinstance(expr, OpsValue):
|
1199 |
+
expr = expr.value
|
1200 |
+
|
1201 |
+
assert isinstance(expr, (str, CSEVariable, IndentedBuffer)), type(expr)
|
1202 |
+
assert write or assignment
|
1203 |
+
if isinstance(expr, CSEVariable):
|
1204 |
+
# If the expressions were always created with all the information, we could
|
1205 |
+
# assert expr.bounds == bounds, but sometimes the expression is created
|
1206 |
+
# with the loose ValueRanges.unknown(), so we need to tighten the bounds
|
1207 |
+
expr.bounds = expr.bounds.tighten(bounds)
|
1208 |
+
return expr
|
1209 |
+
cache_key = expr.getvalue() if isinstance(expr, IndentedBuffer) else expr
|
1210 |
+
var = self.cache.get(cache_key, None)
|
1211 |
+
if not var:
|
1212 |
+
var = self.newvar(bounds) if assignment else None
|
1213 |
+
self.cache[cache_key] = var
|
1214 |
+
if write:
|
1215 |
+
if V.kernel.current_node:
|
1216 |
+
V.kernel.current_node.codegen_originating_info(
|
1217 |
+
buffer, only_once=True
|
1218 |
+
)
|
1219 |
+
if isinstance(expr, IndentedBuffer):
|
1220 |
+
if assignment:
|
1221 |
+
buffer.writeline(f"{self.prefix}{var} =")
|
1222 |
+
buffer.splice(expr)
|
1223 |
+
buffer.writeline(self.suffix)
|
1224 |
+
else:
|
1225 |
+
if assignment:
|
1226 |
+
line = f"{self.prefix}{var} = {expr}{self.suffix}"
|
1227 |
+
else:
|
1228 |
+
line = f"{expr}{self.suffix}"
|
1229 |
+
buffer.writeline(line)
|
1230 |
+
else:
|
1231 |
+
var.bounds = var.bounds.tighten(bounds)
|
1232 |
+
|
1233 |
+
return var
|
1234 |
+
|
1235 |
+
def newvar(self, bounds: ValueRanges[Any] = ValueRanges.unknown()) -> CSEVariable:
|
1236 |
+
var_name = f"{self.name_prefix}{next(self.iter_buffer_ids)}"
|
1237 |
+
var = V.kernel.create_cse_var(var_name, bounds)
|
1238 |
+
self.varname_map[var_name] = var
|
1239 |
+
return var
|
1240 |
+
|
1241 |
+
|
1242 |
+
class IndirectAssertLine(DeferredLineBase):
|
1243 |
+
def __init__(self, line, assert_fn, var, mask, size_map):
|
1244 |
+
self.var = var
|
1245 |
+
self.mask = mask
|
1246 |
+
self.line = line
|
1247 |
+
self.assert_fn = assert_fn
|
1248 |
+
self.size_map = size_map
|
1249 |
+
|
1250 |
+
def __call__(self):
|
1251 |
+
size, size_str = self.size_map[(self.var, self.mask)]
|
1252 |
+
|
1253 |
+
# We assert if we've not been able to prove the bound
|
1254 |
+
assert_min = (self.var.bounds.lower >= 0) != sympy.true
|
1255 |
+
assert_max = (self.var.bounds.upper < size) != sympy.true
|
1256 |
+
|
1257 |
+
# FooBar interview question
|
1258 |
+
if not (assert_min or assert_max):
|
1259 |
+
return None
|
1260 |
+
elif assert_min and assert_max:
|
1261 |
+
# The conditions need to be in parens because of Python's operator precedence.
|
1262 |
+
# It'd be less error-prone to use and/or/not, which is suported by triton
|
1263 |
+
cond = f"(0 <= {self.var}) & ({self.var} < {size_str})"
|
1264 |
+
cond_print = f"0 <= {self.var} < {size_str}"
|
1265 |
+
elif assert_min:
|
1266 |
+
cond = f"0 <= {self.var}"
|
1267 |
+
cond_print = cond
|
1268 |
+
else:
|
1269 |
+
assert assert_max
|
1270 |
+
cond = f"{self.var} < {size_str}"
|
1271 |
+
cond_print = cond
|
1272 |
+
|
1273 |
+
if self.mask:
|
1274 |
+
cond = f"({cond}) | ~{self.mask}"
|
1275 |
+
return self.line.format(
|
1276 |
+
assert_fn=self.assert_fn, cond=cond, cond_print=cond_print
|
1277 |
+
)
|
1278 |
+
|
1279 |
+
def _new_line(self, line):
|
1280 |
+
return IndirectAssertLine(
|
1281 |
+
line, self.assert_fn, self.var, self.mask, self.size_map
|
1282 |
+
)
|
1283 |
+
|
1284 |
+
|
1285 |
+
class CodeGen:
|
1286 |
+
def __init__(self):
|
1287 |
+
super().__init__()
|
1288 |
+
self.exit_stack = contextlib.ExitStack()
|
1289 |
+
|
1290 |
+
def __enter__(self):
|
1291 |
+
self.exit_stack.__enter__()
|
1292 |
+
return self
|
1293 |
+
|
1294 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
1295 |
+
self.exit_stack.__exit__(exc_type, exc_val, exc_tb)
|
1296 |
+
|
1297 |
+
|
1298 |
+
class Kernel(CodeGen):
|
1299 |
+
newvar_prefix = ""
|
1300 |
+
suffix = ""
|
1301 |
+
overrides: Optional[Callable[[OpsHandler[Any]], OpsHandler[Any]]] = None
|
1302 |
+
# TODO: these look dead, but with all the getattr it's hard to tell...
|
1303 |
+
load_format: None = None
|
1304 |
+
store_format: None = None
|
1305 |
+
|
1306 |
+
def __init__(self, args=None, increase_kernel_count=True):
|
1307 |
+
super().__init__()
|
1308 |
+
if increase_kernel_count:
|
1309 |
+
metrics.generated_kernel_count += 1
|
1310 |
+
self.args = args or KernelArgs()
|
1311 |
+
self.loads = IndentedBuffer()
|
1312 |
+
self.compute = IndentedBuffer()
|
1313 |
+
self.stores = IndentedBuffer()
|
1314 |
+
self.cse: CSE = CSE(self.newvar_prefix, self.suffix)
|
1315 |
+
self.must_keep_buffers = set()
|
1316 |
+
self.store_buffer_names = set()
|
1317 |
+
self._load_mask = None
|
1318 |
+
# set in set_current_node
|
1319 |
+
self.current_node = None
|
1320 |
+
self.node_to_bounds: Optional[Dict[torch.fx.Node, ValueRanges[Any]]] = None
|
1321 |
+
# Upper bounds for indirect_indexing and their str representation
|
1322 |
+
# NB: None, None is never stored in map, but it is the assumed
|
1323 |
+
# "not set" value for the dict
|
1324 |
+
self.indirect_max_sizes: Dict[
|
1325 |
+
Tuple[CSEVariable, str], Union[Tuple[sympy.Expr, str], Tuple[None, None]]
|
1326 |
+
] = {}
|
1327 |
+
|
1328 |
+
self.removed_buffers = set()
|
1329 |
+
self.inplaced_to_remove = set()
|
1330 |
+
|
1331 |
+
# key: the buffer to write
|
1332 |
+
# value: the buffer to read and whose memory can be reused for
|
1333 |
+
# the buffer specified by key
|
1334 |
+
self.inplace_update_buffers = dict()
|
1335 |
+
# Set minimum number of elements processed per thread.
|
1336 |
+
self.min_elem_per_thread = 1
|
1337 |
+
self.kernel_name = None
|
1338 |
+
|
1339 |
+
@contextlib.contextmanager
|
1340 |
+
def set_current_node(self, node):
|
1341 |
+
prior = self.current_node
|
1342 |
+
self.current_node = node
|
1343 |
+
self.node_to_bounds = node._body.bounds().get_bounds()
|
1344 |
+
try:
|
1345 |
+
yield
|
1346 |
+
finally:
|
1347 |
+
self.current_node = prior
|
1348 |
+
|
1349 |
+
@contextlib.contextmanager
|
1350 |
+
def swap_buffers(self, lb, cb=None, sb=None):
|
1351 |
+
if cb is None:
|
1352 |
+
cb = lb
|
1353 |
+
loads = self.loads
|
1354 |
+
compute = self.compute
|
1355 |
+
stores = self.stores
|
1356 |
+
cse = self.cse
|
1357 |
+
self.loads = lb
|
1358 |
+
self.compute = cb
|
1359 |
+
self.stores = sb
|
1360 |
+
self.cse = cse.clone()
|
1361 |
+
try:
|
1362 |
+
yield
|
1363 |
+
finally:
|
1364 |
+
self.loads = loads
|
1365 |
+
self.compute = compute
|
1366 |
+
self.stores = stores
|
1367 |
+
self.cse = cse
|
1368 |
+
|
1369 |
+
def load(self, name: str, index: sympy.Expr) -> CSEVariable:
|
1370 |
+
raise NotImplementedError()
|
1371 |
+
|
1372 |
+
def indirect_load(self, name: str, index: sympy.Expr):
|
1373 |
+
"""A load the depends on an index we have read"""
|
1374 |
+
prior = self.loads
|
1375 |
+
try:
|
1376 |
+
# put the load in the compute section as it might have deps
|
1377 |
+
self.loads = self.compute
|
1378 |
+
return self.load(name, index)
|
1379 |
+
finally:
|
1380 |
+
self.loads = prior
|
1381 |
+
|
1382 |
+
def store_reduction(self, name: str, index: sympy.Expr, value: CSEVariable):
|
1383 |
+
raise NotImplementedError()
|
1384 |
+
|
1385 |
+
def store(
|
1386 |
+
self, name: str, index: sympy.Expr, value: CSEVariable, mode: StoreMode = None
|
1387 |
+
) -> None:
|
1388 |
+
raise NotImplementedError()
|
1389 |
+
|
1390 |
+
def reduction(
|
1391 |
+
self,
|
1392 |
+
dtype: torch.dtype,
|
1393 |
+
src_dtype: torch.dtype,
|
1394 |
+
reduction_type: ReductionType,
|
1395 |
+
value: Union[CSEVariable, Tuple[CSEVariable, ...]],
|
1396 |
+
) -> Union[CSEVariable, Tuple[CSEVariable, ...]]:
|
1397 |
+
raise NotImplementedError()
|
1398 |
+
|
1399 |
+
def scan(
|
1400 |
+
self,
|
1401 |
+
dtype: torch.dtype,
|
1402 |
+
combine_fn: Callable[[CSEVariable, CSEVariable], CSEVariable],
|
1403 |
+
value: CSEVariable,
|
1404 |
+
init: int,
|
1405 |
+
) -> CSEVariable:
|
1406 |
+
raise NotImplementedError()
|
1407 |
+
|
1408 |
+
def bucketize(
|
1409 |
+
self,
|
1410 |
+
values: CSEVariable,
|
1411 |
+
offsets_name: str,
|
1412 |
+
offsets_size: sympy.Expr,
|
1413 |
+
indexing_dtype: torch.dtype,
|
1414 |
+
right: bool,
|
1415 |
+
) -> CSEVariable:
|
1416 |
+
"""
|
1417 |
+
See [Note: Inductor bucketize op]
|
1418 |
+
"""
|
1419 |
+
raise NotImplementedError()
|
1420 |
+
|
1421 |
+
@property
|
1422 |
+
def assert_function(self) -> str:
|
1423 |
+
raise NotImplementedError()
|
1424 |
+
|
1425 |
+
def index_to_str(self, index: sympy.Expr) -> str:
|
1426 |
+
raise NotImplementedError()
|
1427 |
+
|
1428 |
+
def __enter__(self):
|
1429 |
+
# TODO: hoist this to top level
|
1430 |
+
class CSEProxy:
|
1431 |
+
self.name = "CSEProxy"
|
1432 |
+
|
1433 |
+
@staticmethod
|
1434 |
+
def __getattr__(name: str) -> Callable[..., CSEVariable]: # type: ignore[misc]
|
1435 |
+
def inner(*args, **kwargs):
|
1436 |
+
# TritonTemplateKernel has no current_node
|
1437 |
+
buf_bounds = ValueRanges.unknown()
|
1438 |
+
if hasattr(V.interpreter, "current_node"):
|
1439 |
+
fx_node = V.interpreter.current_node
|
1440 |
+
assert isinstance(self.node_to_bounds, dict)
|
1441 |
+
buf_bounds = self.node_to_bounds.get(
|
1442 |
+
fx_node, ValueRanges.unknown()
|
1443 |
+
)
|
1444 |
+
|
1445 |
+
value = getattr(parent_handler, name)(*args, **kwargs) # type: ignore[has-type]
|
1446 |
+
|
1447 |
+
def do_cse(v):
|
1448 |
+
csevar = self.cse.generate(self.compute, v, bounds=buf_bounds)
|
1449 |
+
csevar.update_on_args(name, args, kwargs)
|
1450 |
+
return csevar
|
1451 |
+
|
1452 |
+
return pytree.tree_map(do_cse, value)
|
1453 |
+
|
1454 |
+
return inner
|
1455 |
+
|
1456 |
+
@staticmethod
|
1457 |
+
def indirect_indexing(
|
1458 |
+
var: CSEVariable, size: sympy.Expr, check: bool = True
|
1459 |
+
):
|
1460 |
+
# Skip CSE since this doesn't return an expression
|
1461 |
+
|
1462 |
+
if var.bounds.lower < 0: # type: ignore[operator]
|
1463 |
+
new_bounds = ValueRanges.unknown()
|
1464 |
+
if var.bounds != ValueRanges.unknown() and isinstance(
|
1465 |
+
size, sympy.Number
|
1466 |
+
):
|
1467 |
+
# Take the negative part of the bound and add size to it
|
1468 |
+
# Then take union of that and the positive part
|
1469 |
+
# This is a tighter bound than that of a generic ops.where, as we have info on the cond
|
1470 |
+
neg = var.bounds & ValueRanges(-sympy.oo, -1)
|
1471 |
+
new_bounds = ValueRanges(neg.lower + size, neg.upper + size)
|
1472 |
+
# We don't have a good way of representing the empty range
|
1473 |
+
if var.bounds.upper >= 0: # type: ignore[operator]
|
1474 |
+
pos = var.bounds & ValueRanges(0, sympy.oo)
|
1475 |
+
new_bounds = new_bounds | pos
|
1476 |
+
|
1477 |
+
stm = ops.add(var, self.rename_indexing(size))
|
1478 |
+
# Mixed negative and non-negative
|
1479 |
+
if var.bounds.upper >= 0: # type: ignore[operator]
|
1480 |
+
lt = ops.lt(var, "0")
|
1481 |
+
stm = ops.where(lt, stm, var)
|
1482 |
+
new_var = self.cse.generate(self.compute, stm, bounds=new_bounds)
|
1483 |
+
|
1484 |
+
new_var.update_on_args("index_wrap", (var,), {})
|
1485 |
+
var = new_var
|
1486 |
+
|
1487 |
+
if self.generate_assert(check):
|
1488 |
+
mask = self.load_mask(var)
|
1489 |
+
|
1490 |
+
# An assertion line may have been written already, if so just
|
1491 |
+
# update the max size.
|
1492 |
+
map_key = (var, mask)
|
1493 |
+
existing_size, _ = self.indirect_max_sizes.get(
|
1494 |
+
map_key, (None, None)
|
1495 |
+
)
|
1496 |
+
if existing_size is not None:
|
1497 |
+
size = sympy.Min(size, existing_size)
|
1498 |
+
else:
|
1499 |
+
line = (
|
1500 |
+
'{assert_fn}({cond}, "index out of bounds: {cond_print}")'
|
1501 |
+
)
|
1502 |
+
self.compute.writeline(
|
1503 |
+
IndirectAssertLine(
|
1504 |
+
line,
|
1505 |
+
self.assert_function,
|
1506 |
+
var,
|
1507 |
+
mask,
|
1508 |
+
self.indirect_max_sizes,
|
1509 |
+
)
|
1510 |
+
)
|
1511 |
+
|
1512 |
+
self.indirect_max_sizes[map_key] = (size, self.index_to_str(size))
|
1513 |
+
return sympy_index_symbol(str(var))
|
1514 |
+
|
1515 |
+
@staticmethod
|
1516 |
+
def load(name: str, index: sympy.Expr) -> CSEVariable:
|
1517 |
+
if name in self.cse.invalidated_stores:
|
1518 |
+
# A load from an invalidated store requires us to
|
1519 |
+
# keep the actual buffer around
|
1520 |
+
V.kernel.must_keep_buffers.add(name)
|
1521 |
+
if free_symbol_startswith(index, "tmp"):
|
1522 |
+
return self.indirect_load(name, index)
|
1523 |
+
store_cache = self.cse.store_cache
|
1524 |
+
if name in store_cache:
|
1525 |
+
return store_cache[name]
|
1526 |
+
return self.load(name, index)
|
1527 |
+
|
1528 |
+
@staticmethod
|
1529 |
+
def store(
|
1530 |
+
name: str, index: sympy.Expr, value: CSEVariable, mode: StoreMode = None
|
1531 |
+
) -> None:
|
1532 |
+
self.store_buffer_names.add(name)
|
1533 |
+
if mode is None:
|
1534 |
+
self.cse.store_cache[name] = value
|
1535 |
+
if self.current_node:
|
1536 |
+
for other_name in self.current_node.get_mutations():
|
1537 |
+
self.cse.store_cache[other_name] = value
|
1538 |
+
if name not in V.graph.removed_buffers:
|
1539 |
+
return self.store(name, index, value, mode=mode)
|
1540 |
+
else:
|
1541 |
+
return None # type: ignore[return-value]
|
1542 |
+
|
1543 |
+
@staticmethod
|
1544 |
+
def store_reduction(name: str, index: sympy.Expr, value: CSEVariable):
|
1545 |
+
self.store_buffer_names.add(name)
|
1546 |
+
self.cse.store_cache[name] = value
|
1547 |
+
if self.current_node:
|
1548 |
+
for other_name in self.current_node.get_mutations():
|
1549 |
+
self.cse.store_cache[other_name] = value
|
1550 |
+
|
1551 |
+
if name not in V.graph.removed_buffers:
|
1552 |
+
return self.store_reduction(name, index, value)
|
1553 |
+
|
1554 |
+
@staticmethod
|
1555 |
+
def reduction(
|
1556 |
+
dtype: torch.dtype,
|
1557 |
+
src_dtype: torch.dtype,
|
1558 |
+
reduction_type: ReductionType,
|
1559 |
+
value: Union[CSEVariable, Tuple[CSEVariable, ...]],
|
1560 |
+
) -> Union[CSEVariable, Tuple[CSEVariable, ...]]:
|
1561 |
+
return self.reduction(dtype, src_dtype, reduction_type, value)
|
1562 |
+
|
1563 |
+
@staticmethod
|
1564 |
+
def scan(
|
1565 |
+
dtype: torch.dtype,
|
1566 |
+
combine_fn: Callable[[CSEVariable, CSEVariable], CSEVariable],
|
1567 |
+
value: CSEVariable,
|
1568 |
+
init: int,
|
1569 |
+
) -> CSEVariable:
|
1570 |
+
return self.scan(dtype, combine_fn, value, init)
|
1571 |
+
|
1572 |
+
@staticmethod
|
1573 |
+
def bucketize(
|
1574 |
+
values: CSEVariable,
|
1575 |
+
offsets_name: str,
|
1576 |
+
offsets_size: sympy.Expr,
|
1577 |
+
indexing_dtype: torch.dtype,
|
1578 |
+
right: bool,
|
1579 |
+
) -> CSEVariable:
|
1580 |
+
"""
|
1581 |
+
[Note: Inductor bucketize op]
|
1582 |
+
|
1583 |
+
Given values (tensor) and offsets_name (reference to the name of a 1D
|
1584 |
+
tensor), calculate the bucket that each value belongs to.
|
1585 |
+
|
1586 |
+
e.g. for values [-1, 0, 1, 2, 3, 4, 5, 9], offsets [0, 4, 4, 8], right=True
|
1587 |
+
return = [ 0, 1, 1, 1, 1, 3, 3, 4].
|
1588 |
+
|
1589 |
+
When right == False, bucket i refers to range (offsets[i], offsets[i+1]].
|
1590 |
+
When right == True, bucket i refers to range [offsets[i], offsets[i+1]).
|
1591 |
+
|
1592 |
+
Offsets must be non-decreasing or the result is undefined.
|
1593 |
+
"""
|
1594 |
+
return self.bucketize(
|
1595 |
+
values, offsets_name, offsets_size, indexing_dtype, right
|
1596 |
+
)
|
1597 |
+
|
1598 |
+
# Use mypy to check protocol implemented correctly
|
1599 |
+
def _typecheck_CSEProxy(h: CSEProxy) -> OpsHandler[CSEVariable]:
|
1600 |
+
return h
|
1601 |
+
|
1602 |
+
super().__enter__()
|
1603 |
+
assert self.overrides
|
1604 |
+
parent_handler = self.overrides(V.get_ops_handler())
|
1605 |
+
self.exit_stack.enter_context(V.set_ops_handler(CSEProxy()))
|
1606 |
+
self.exit_stack.enter_context(V.set_kernel_handler(self))
|
1607 |
+
return self
|
1608 |
+
|
1609 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
1610 |
+
"""
|
1611 |
+
Note that V.graph.scheduler can be None when codegening triton template
|
1612 |
+
kernels.
|
1613 |
+
"""
|
1614 |
+
if V.graph.scheduler:
|
1615 |
+
V.graph.scheduler.remove_kernel_local_buffers()
|
1616 |
+
super().__exit__(exc_type, exc_val, exc_tb)
|
1617 |
+
|
1618 |
+
def generate_assert(self, check):
|
1619 |
+
return (check or config.debug_index_asserts) and config.assert_indirect_indexing
|
1620 |
+
|
1621 |
+
def load_mask(self, var) -> str:
|
1622 |
+
# only the triton kernel requires mask
|
1623 |
+
return ""
|
1624 |
+
|
1625 |
+
def rename_indexing(self, index) -> sympy.Expr:
|
1626 |
+
# adds the necessary kernel args for index expressions
|
1627 |
+
# and renames variables in index expressions to kernel arg names
|
1628 |
+
if isinstance(index, (list, tuple)):
|
1629 |
+
return [self.rename_indexing(x) for x in index] # type: ignore[return-value]
|
1630 |
+
index = V.graph.sizevars.simplify(index)
|
1631 |
+
sorted_symbols = sorted(index.free_symbols, key=lambda s: s.name)
|
1632 |
+
replacements = {
|
1633 |
+
x: self.args.size(x)
|
1634 |
+
for x in sorted_symbols
|
1635 |
+
if x.name.startswith(("s", "u", "ps"))
|
1636 |
+
or (x.name.startswith("i") and not x.name.startswith("idx"))
|
1637 |
+
}
|
1638 |
+
return sympy_subs(index, replacements)
|
1639 |
+
|
1640 |
+
def create_cse_var(self, *args, **kwargs):
|
1641 |
+
return CSEVariable(*args, **kwargs)
|
1642 |
+
|
1643 |
+
|
1644 |
+
@dataclasses.dataclass
|
1645 |
+
class OptimizationContext:
|
1646 |
+
key: ClassVar[str] = "opt_ctx"
|
1647 |
+
|
1648 |
+
# Load value as mask
|
1649 |
+
is_load_as_mask: bool = False
|
1650 |
+
|
1651 |
+
dtype: Optional[torch.dtype] = None
|
1652 |
+
ops_name: str = ""
|
1653 |
+
|
1654 |
+
# Load uint8/int8 value as float32
|
1655 |
+
is_load_int8_as_float: bool = False
|
1656 |
+
|
1657 |
+
|
1658 |
+
@functools.lru_cache(None)
|
1659 |
+
def jinja2_env():
|
1660 |
+
try:
|
1661 |
+
import jinja2
|
1662 |
+
|
1663 |
+
return jinja2.Environment(
|
1664 |
+
undefined=jinja2.StrictUndefined,
|
1665 |
+
)
|
1666 |
+
except ImportError:
|
1667 |
+
return None
|
1668 |
+
|
1669 |
+
|
1670 |
+
PrimitiveInfoType = Union[int, float, bool, str, List[Union[int, str, float, bool]]]
|
1671 |
+
|
1672 |
+
|
1673 |
+
class ChoiceCaller:
|
1674 |
+
"""
|
1675 |
+
Represents a possible choice used in autotune_process.py.
|
1676 |
+
During autotuning, self.benchmark() is first called to get benchmark result,
|
1677 |
+
and if this choice is selected, self.output_node() is called to get the output_node.
|
1678 |
+
|
1679 |
+
Children classes: TritonTemplateCaller, CUDATemplateCaller.
|
1680 |
+
"""
|
1681 |
+
|
1682 |
+
def __init__(self, name, input_nodes, layout):
|
1683 |
+
super().__init__()
|
1684 |
+
self.name = name
|
1685 |
+
self.layout = layout
|
1686 |
+
self.input_nodes = input_nodes
|
1687 |
+
|
1688 |
+
def benchmark(self, *args, out) -> float:
|
1689 |
+
algo = self.to_callable()
|
1690 |
+
return do_bench(lambda: algo(*args, out=out))
|
1691 |
+
|
1692 |
+
def call_name(self) -> str:
|
1693 |
+
raise NotImplementedError()
|
1694 |
+
|
1695 |
+
def to_callable(self):
|
1696 |
+
raise NotImplementedError()
|
1697 |
+
|
1698 |
+
def hash_key(self) -> str:
|
1699 |
+
raise NotImplementedError()
|
1700 |
+
|
1701 |
+
def output_node(self) -> "TensorBox":
|
1702 |
+
raise NotImplementedError()
|
1703 |
+
|
1704 |
+
def info_dict(self) -> Dict[str, Union[PrimitiveInfoType, List[PrimitiveInfoType]]]:
|
1705 |
+
"""Information returned here is logged to the autotune log file when that is enabled."""
|
1706 |
+
return {}
|
1707 |
+
|
1708 |
+
|
1709 |
+
class KernelTemplate:
|
1710 |
+
"""
|
1711 |
+
Base class for defining kernel templates.
|
1712 |
+
|
1713 |
+
Children classes: TritonTemplate, CUDATemplate
|
1714 |
+
"""
|
1715 |
+
|
1716 |
+
@staticmethod
|
1717 |
+
def _template_from_string(source):
|
1718 |
+
env = jinja2_env()
|
1719 |
+
if env is not None:
|
1720 |
+
return env.from_string(source)
|
1721 |
+
return None
|
1722 |
+
|
1723 |
+
@staticmethod
|
1724 |
+
def _fake_get_dtype(fake_out):
|
1725 |
+
_get_dtype_real = V.graph.get_dtype
|
1726 |
+
|
1727 |
+
def get_dtype(name):
|
1728 |
+
if name == fake_out.get_name():
|
1729 |
+
return fake_out.get_dtype()
|
1730 |
+
return _get_dtype_real(name)
|
1731 |
+
|
1732 |
+
return get_dtype
|
1733 |
+
|
1734 |
+
def __init__(self, name: str):
|
1735 |
+
self.name = name
|
1736 |
+
|
1737 |
+
def maybe_append_choice(self, choices, **kwargs):
|
1738 |
+
"""
|
1739 |
+
Maybe generates a new ChoiceCaller and appends it into existing choices.
|
1740 |
+
|
1741 |
+
choices: A list of ChoiceCallers.
|
1742 |
+
kwargs: Additional kwargs to be passed to self.generate() to generate a new ChoiceCaller.
|
1743 |
+
"""
|
1744 |
+
|
1745 |
+
try:
|
1746 |
+
choices.append(self.generate(**kwargs))
|
1747 |
+
except NotImplementedError:
|
1748 |
+
pass
|
1749 |
+
|
1750 |
+
def generate(self, **kwargs) -> ChoiceCaller:
|
1751 |
+
"""
|
1752 |
+
Generates a ChoiceCaller instance from the given arguments.
|
1753 |
+
"""
|
1754 |
+
|
1755 |
+
raise NotImplementedError()
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cpp.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cpp_prefix.h
ADDED
@@ -0,0 +1,595 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
#include <algorithm>
|
4 |
+
#include <atomic>
|
5 |
+
#include <cmath>
|
6 |
+
#include <cstdlib>
|
7 |
+
#include <limits>
|
8 |
+
#include <omp.h>
|
9 |
+
|
10 |
+
#include <ATen/NumericUtils.h>
|
11 |
+
#include <ATen/core/PhiloxRNGEngine.h>
|
12 |
+
#include <ATen/native/Math.h>
|
13 |
+
|
14 |
+
#include <c10/util/Float8_e4m3fn.h>
|
15 |
+
#include <c10/util/Float8_e5m2.h>
|
16 |
+
#include <c10/util/BFloat16.h>
|
17 |
+
#include <c10/util/BFloat16-math.h>
|
18 |
+
#include <c10/util/generic_math.h>
|
19 |
+
#include <c10/util/Half.h>
|
20 |
+
#include <c10/util/TypeCast.h>
|
21 |
+
|
22 |
+
#if defined(CPU_CAPABILITY_AVX512) || defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_ZVECTOR)
|
23 |
+
#define INDUCTOR_USE_VECTOR_TYPES() 1
|
24 |
+
#else
|
25 |
+
#define INDUCTOR_USE_VECTOR_TYPES() 0
|
26 |
+
#endif
|
27 |
+
|
28 |
+
#if INDUCTOR_USE_VECTOR_TYPES()
|
29 |
+
#include <ATen/cpu/vec/functional.h>
|
30 |
+
#include <ATen/cpu/vec/vec.h>
|
31 |
+
#include <ATen/cpu/vec/vec_n.h>
|
32 |
+
#endif
|
33 |
+
|
34 |
+
typedef at::Half half;
|
35 |
+
typedef at::BFloat16 bfloat16;
|
36 |
+
|
37 |
+
typedef at::Float8_e4m3fn float8_e4m3fn;
|
38 |
+
typedef at::Float8_e5m2 float8_e5m2;
|
39 |
+
|
40 |
+
template <typename T>
|
41 |
+
struct Welford {
|
42 |
+
T mean = T(0);
|
43 |
+
T m2 = T(0);
|
44 |
+
T weight = T(0);
|
45 |
+
};
|
46 |
+
|
47 |
+
|
48 |
+
template <typename T>
|
49 |
+
struct IsVecType: std::false_type {};
|
50 |
+
|
51 |
+
#if INDUCTOR_USE_VECTOR_TYPES()
|
52 |
+
template <typename T>
|
53 |
+
struct IsVecType<at::vec::Vectorized<T>>: std::true_type {};
|
54 |
+
#endif
|
55 |
+
|
56 |
+
template <typename T>
|
57 |
+
Welford<T> welford_combine(const Welford<T> &a, const Welford<T> &b) {
|
58 |
+
if constexpr (!IsVecType<T>::value) {
|
59 |
+
if (a.weight == 0) {
|
60 |
+
return b;
|
61 |
+
}
|
62 |
+
if (b.weight == 0) {
|
63 |
+
return a;
|
64 |
+
}
|
65 |
+
}
|
66 |
+
auto delta = b.mean - a.mean;
|
67 |
+
auto new_weight = a.weight + b.weight;
|
68 |
+
auto wb_over_w = b.weight / new_weight;
|
69 |
+
if constexpr (IsVecType<T>::value) {
|
70 |
+
// Guard against division by zero
|
71 |
+
wb_over_w = T::blendv(wb_over_w, T(0), new_weight == T(0));
|
72 |
+
}
|
73 |
+
auto result = Welford<T>{
|
74 |
+
a.mean + delta * wb_over_w,
|
75 |
+
a.m2 + b.m2 + delta * delta * a.weight * wb_over_w,
|
76 |
+
new_weight
|
77 |
+
};
|
78 |
+
return result;
|
79 |
+
}
|
80 |
+
|
81 |
+
template <typename T>
|
82 |
+
Welford<T> welford_combine(const Welford<T> &acc, T data) {
|
83 |
+
// Add a single data point
|
84 |
+
auto delta = data - acc.mean;
|
85 |
+
auto new_weight = acc.weight + T(1);
|
86 |
+
auto new_mean = acc.mean + delta / new_weight;
|
87 |
+
auto new_delta = data - new_mean;
|
88 |
+
auto result = Welford<T>{
|
89 |
+
new_mean,
|
90 |
+
acc.m2 + delta * new_delta,
|
91 |
+
new_weight
|
92 |
+
};
|
93 |
+
return result;
|
94 |
+
}
|
95 |
+
|
96 |
+
// Refer to https://github.com/pytorch/pytorch/blob/b5b36cf0c4e1958f1ff25120f5d4beeef3288187/
|
97 |
+
// aten/src/ATen/native/SharedReduceOps.h#L419-L445
|
98 |
+
template <typename scalar_t>
|
99 |
+
inline bool greater_or_nan(scalar_t a, scalar_t b, int64_t idx_a, int64_t idx_b) {
|
100 |
+
// If (a == b), then choose the one with lower idx, else max(a, b)
|
101 |
+
if (at::_isnan(a)) {
|
102 |
+
if (at::_isnan(b)) {
|
103 |
+
return idx_a < idx_b;
|
104 |
+
}
|
105 |
+
return true;
|
106 |
+
}
|
107 |
+
return (a == b) ? idx_a < idx_b : (a > b);
|
108 |
+
}
|
109 |
+
|
110 |
+
template <typename scalar_t>
|
111 |
+
inline bool less_or_nan(scalar_t a, scalar_t b, int64_t idx_a, int64_t idx_b) {
|
112 |
+
// If (a == b), then choose the one with lower idx, else min(a, b)
|
113 |
+
if (at::_isnan(a)) {
|
114 |
+
if (at::_isnan(b)) {
|
115 |
+
return idx_a < idx_b;
|
116 |
+
}
|
117 |
+
return true;
|
118 |
+
}
|
119 |
+
return (a == b) ? idx_a < idx_b : (a < b);
|
120 |
+
}
|
121 |
+
|
122 |
+
#if INDUCTOR_USE_VECTOR_TYPES()
|
123 |
+
template <typename scalar_t>
|
124 |
+
inline at::vec::Vectorized<scalar_t> vec_shuffle_down(at::vec::Vectorized<scalar_t> x, size_t n) {
|
125 |
+
using Vec = at::vec::Vectorized<scalar_t>;
|
126 |
+
alignas(alignof(Vec)) scalar_t array[Vec::size()];
|
127 |
+
x.store(array);
|
128 |
+
for (size_t i = 0; i + n < Vec::size(); i += 2 * n) {
|
129 |
+
array[i] = array[i + n];
|
130 |
+
}
|
131 |
+
return Vec::loadu(array);
|
132 |
+
}
|
133 |
+
|
134 |
+
#ifdef CPU_CAPABILITY_AVX2
|
135 |
+
inline at::vec::Vectorized<float> vec_shuffle_down(at::vec::Vectorized<float> x, size_t n) {
|
136 |
+
using vec_t = at::vec::Vectorized<float>;
|
137 |
+
#define SHUFFLE_MASK(z, y, x, w) ((z << 6) | (y << 4) | (x << 2) | w)
|
138 |
+
switch (n) {
|
139 |
+
case 1:
|
140 |
+
return vec_t(_mm256_permute_ps(x, SHUFFLE_MASK(1, 1, 3, 3)));
|
141 |
+
case 2:
|
142 |
+
return vec_t(_mm256_permute_ps(x, SHUFFLE_MASK(2, 2, 2, 2)));
|
143 |
+
case 4:
|
144 |
+
return vec_t(_mm256_permute2f128_ps(x, x, SHUFFLE_MASK(1, 1, 1, 1)));
|
145 |
+
}
|
146 |
+
TORCH_CHECK(false, "Unhandled vec_shuffle_down value ", n);
|
147 |
+
}
|
148 |
+
#endif
|
149 |
+
|
150 |
+
template <typename scalar_t>
|
151 |
+
Welford<scalar_t> welford_vec_reduce_all(Welford<at::vec::Vectorized<scalar_t>> acc) {
|
152 |
+
using Vec = at::vec::Vectorized<scalar_t>;
|
153 |
+
for (size_t n = 1; n < Vec::size(); n *= 2) {
|
154 |
+
auto shuffled = Welford<Vec>{
|
155 |
+
vec_shuffle_down(acc.mean, n),
|
156 |
+
vec_shuffle_down(acc.m2, n),
|
157 |
+
vec_shuffle_down(acc.weight, n)
|
158 |
+
};
|
159 |
+
acc = welford_combine(acc, shuffled);
|
160 |
+
}
|
161 |
+
|
162 |
+
Welford<scalar_t> result;
|
163 |
+
alignas(alignof(Vec)) scalar_t array[Vec::size()];
|
164 |
+
acc.mean.store(array);
|
165 |
+
result.mean = array[0];
|
166 |
+
|
167 |
+
acc.m2.store(array);
|
168 |
+
result.m2 = array[0];
|
169 |
+
|
170 |
+
acc.weight.store(array);
|
171 |
+
result.weight = array[0];
|
172 |
+
|
173 |
+
return result;
|
174 |
+
}
|
175 |
+
#endif
|
176 |
+
|
177 |
+
|
178 |
+
template <typename T, typename U> inline typename std::common_type<T, U>::type mod(T a, U b) { return a % b; }
|
179 |
+
template <> inline float mod(float a, float b) { return std::fmod(a, b); }
|
180 |
+
template <> inline double mod(double a, double b) { return std::fmod(a, b); }
|
181 |
+
|
182 |
+
template <typename scalar_t>
|
183 |
+
inline scalar_t max_propagate_nan(scalar_t a, scalar_t b) {
|
184 |
+
if (at::_isnan(a)) {
|
185 |
+
return a;
|
186 |
+
}
|
187 |
+
return a > b ? a : b;
|
188 |
+
}
|
189 |
+
|
190 |
+
template <typename scalar_t>
|
191 |
+
inline scalar_t min_propagate_nan(scalar_t a, scalar_t b) {
|
192 |
+
if (at::_isnan(a)) {
|
193 |
+
return a;
|
194 |
+
}
|
195 |
+
return a < b ? a : b;
|
196 |
+
}
|
197 |
+
|
198 |
+
constexpr float uint32_to_uniform_float(uint32_t value) {
|
199 |
+
// maximum value such that `MAX_INT * scale < 1.0` (with float rounding)
|
200 |
+
constexpr float scale = 4.6566127342e-10;
|
201 |
+
return static_cast<float>(value & 0x7FFFFFFF) * scale;
|
202 |
+
}
|
203 |
+
|
204 |
+
float normalized_rand_cpu(uint32_t seed, uint32_t offset) {
|
205 |
+
return uint32_to_uniform_float(at::Philox4_32(seed, 0, offset)());
|
206 |
+
}
|
207 |
+
|
208 |
+
float randn_cpu(uint32_t seed, uint32_t offset) {
|
209 |
+
at::Philox4_32 engine(seed, 0, offset);
|
210 |
+
return engine.randn(10);
|
211 |
+
}
|
212 |
+
|
213 |
+
int64_t randint64_cpu(uint32_t seed, uint32_t offset, int64_t low, int64_t high) {
|
214 |
+
auto gen = at::Philox4_32(seed, 0, offset);
|
215 |
+
uint64_t r0 = gen();
|
216 |
+
uint64_t r1 = gen();
|
217 |
+
uint64_t result = r0 | (r1 << 32);
|
218 |
+
return static_cast<int64_t>(result % (high - low)) + low;
|
219 |
+
}
|
220 |
+
|
221 |
+
template <typename T> struct AsIntegerType { typedef T type; };
|
222 |
+
template <> struct AsIntegerType<float> { typedef uint32_t type; };
|
223 |
+
template <> struct AsIntegerType<double> { typedef uint64_t type; };
|
224 |
+
template <> struct AsIntegerType<bfloat16> { typedef uint16_t type; };
|
225 |
+
|
226 |
+
template <typename T>
|
227 |
+
typename std::enable_if<!std::is_reduced_floating_point<T>::value, T>::type
|
228 |
+
inline fetch_value(volatile T *addr) {
|
229 |
+
return *addr;
|
230 |
+
}
|
231 |
+
|
232 |
+
template <typename T>
|
233 |
+
typename std::enable_if<std::is_reduced_floating_point<T>::value, T>::type
|
234 |
+
inline fetch_value(volatile T *addr) {
|
235 |
+
return T(addr->x, T::from_bits());
|
236 |
+
}
|
237 |
+
|
238 |
+
template <typename T>
|
239 |
+
typename std::enable_if<!std::is_integral<T>::value>::type
|
240 |
+
atomic_add(volatile T *addr, T offset) {
|
241 |
+
typedef typename AsIntegerType<T>::type alt_type;
|
242 |
+
|
243 |
+
static_assert(sizeof(std::atomic<alt_type>) == sizeof(T),
|
244 |
+
"std::atomic issue");
|
245 |
+
|
246 |
+
alt_type expected;
|
247 |
+
|
248 |
+
alt_type desired;
|
249 |
+
|
250 |
+
std::atomic<alt_type> *atomic_addr = (std::atomic<alt_type> *)addr;
|
251 |
+
do {
|
252 |
+
T val = fetch_value(addr);
|
253 |
+
reinterpret_cast<T *>(&expected)[0] = val;
|
254 |
+
reinterpret_cast<T *>(&desired)[0] = val + offset;
|
255 |
+
} while (!atomic_addr->compare_exchange_weak(expected, desired,
|
256 |
+
std::memory_order_relaxed));
|
257 |
+
}
|
258 |
+
|
259 |
+
// Since C++20 float is supported by fetch_add, but the performance may not
|
260 |
+
// better than compare_exchange_weak, which can be checked by microbenchmark
|
261 |
+
// inductor_cpu_atomic.py
|
262 |
+
template <typename T>
|
263 |
+
typename std::enable_if<std::is_integral<T>::value>::type
|
264 |
+
atomic_add(volatile T *addr, T offset) {
|
265 |
+
static_assert(sizeof(std::atomic<T>) == sizeof(T),
|
266 |
+
"std::atomic issue");
|
267 |
+
std::atomic<T> *atomic_addr = (std::atomic<T> *)addr;
|
268 |
+
atomic_addr->fetch_add(offset, std::memory_order_relaxed);
|
269 |
+
}
|
270 |
+
|
271 |
+
// This function is used to convert bool or uint8 to float mask for
|
272 |
+
// vectorization. The caller needs to make sure the src represents TRUE/FALSE
|
273 |
+
// correctly.
|
274 |
+
template <typename T>
|
275 |
+
inline float flag_to_float_scalar(T src) {
|
276 |
+
float ret;
|
277 |
+
*(uint32_t*)(&ret) = src ? 0xFFFFFFFF : 0;
|
278 |
+
return ret;
|
279 |
+
}
|
280 |
+
|
281 |
+
#if defined(CPU_CAPABILITY_AVX512) || defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_ZVECTOR)
|
282 |
+
|
283 |
+
inline at::vec::Vectorized<float> masked_load(const float* src, at::vec::Vectorized<float> mask) {
|
284 |
+
# if defined(CPU_CAPABILITY_AVX512)
|
285 |
+
at::vec::Vectorized<float> zero_vec(0);
|
286 |
+
auto all_ones = _mm512_set1_epi32(0xFFFFFFFF);
|
287 |
+
auto mmask = _mm512_cmp_epi32_mask(_mm512_castps_si512(mask), all_ones, _MM_CMPINT_EQ);
|
288 |
+
return _mm512_mask_loadu_ps(zero_vec, mmask, src);
|
289 |
+
# elif defined(CPU_CAPABILITY_AVX2)
|
290 |
+
auto all_ones = _mm256_set1_epi32(0xFFFFFFFF);
|
291 |
+
auto mmask = _mm256_cmpeq_epi32(_mm256_castps_si256(mask), all_ones);
|
292 |
+
return _mm256_maskload_ps(src, mmask);
|
293 |
+
# elif defined(CPU_CAPABILITY_ZVECTOR)
|
294 |
+
auto result = at::vec::Vectorized<float>::loadu(src);
|
295 |
+
return (result & mask);
|
296 |
+
# else
|
297 |
+
# error Unsupported vectorization CPU capability
|
298 |
+
# endif
|
299 |
+
}
|
300 |
+
|
301 |
+
template <typename T>
|
302 |
+
typename std::enable_if<std::is_same<T, bfloat16>::value || std::is_same<T, half>::value, at::vec::Vectorized<T>>::type
|
303 |
+
inline masked_load(const T* src, at::vec::Vectorized<float> mask) {
|
304 |
+
# if defined(CPU_CAPABILITY_AVX512)
|
305 |
+
auto all_ones = _mm512_set1_epi32(0xFFFFFFFF);
|
306 |
+
auto mmask = _mm512_cmp_epi32_mask(_mm512_castps_si512(mask), all_ones, _MM_CMPINT_EQ);
|
307 |
+
auto zero = _mm256_set1_epi16(0);
|
308 |
+
auto temp = _mm256_mask_loadu_epi16(zero, mmask, src);
|
309 |
+
return _mm512_inserti32x8(_mm512_castsi256_si512(temp), zero, 1);
|
310 |
+
# elif defined(CPU_CAPABILITY_AVX2)
|
311 |
+
auto all_ones = _mm256_set1_epi32(0xFFFFFFFF);
|
312 |
+
auto mmask_vec = _mm256_cmpeq_epi32(_mm256_castps_si256(mask), all_ones);
|
313 |
+
__at_align__ uint32_t mmask[8];
|
314 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(mmask), mmask_vec);
|
315 |
+
__at_align__ uint16_t result[16];
|
316 |
+
for (auto i = 0; i < 8; i++) {
|
317 |
+
result[i] = mmask[i] == 0xFFFFFFFF ? src[i].x: uint16_t(0);
|
318 |
+
}
|
319 |
+
return at::vec::Vectorized<T>::loadu(result);
|
320 |
+
# elif defined(CPU_CAPABILITY_ZVECTOR)
|
321 |
+
auto result = at::vec::Vectorized<T>::loadu(src, 8);
|
322 |
+
uint32_t maskdata[8] = { 0 };
|
323 |
+
uint16_t maskdata_dest[16] = { 0 };
|
324 |
+
mask.store(maskdata);
|
325 |
+
for (auto i = 0; i < 8; i++) {
|
326 |
+
maskdata_dest[i] = (maskdata[i] == 0xFFFFFFFF) ? 0xFFFF: 0;
|
327 |
+
}
|
328 |
+
auto maskvector = at::vec::Vectorized<T>::loadu(maskdata_dest);
|
329 |
+
return (result & maskvector);
|
330 |
+
# else
|
331 |
+
# error Unsupported vectorization CPU capability
|
332 |
+
# endif
|
333 |
+
}
|
334 |
+
|
335 |
+
template <typename T>
|
336 |
+
typename std::enable_if<std::is_same<T, uint8_t>::value || std::is_same<T, int8_t>::value, at::vec::Vectorized<T>>::type
|
337 |
+
inline masked_load(const T* src, at::vec::Vectorized<float> mask) {
|
338 |
+
# if defined(CPU_CAPABILITY_AVX512)
|
339 |
+
auto all_ones = _mm512_set1_epi32(0xFFFFFFFF);
|
340 |
+
auto mmask = _mm512_cmp_epi32_mask(_mm512_castps_si512(mask), all_ones, _MM_CMPINT_EQ);
|
341 |
+
auto zero = _mm_set1_epi8(0);
|
342 |
+
auto temp = _mm_mask_loadu_epi8(zero, mmask, src);
|
343 |
+
return _mm512_inserti64x2(_mm512_set1_epi32(0), temp, 0);
|
344 |
+
# elif defined(CPU_CAPABILITY_AVX2)
|
345 |
+
auto all_ones = _mm256_set1_epi32(0xFFFFFFFF);
|
346 |
+
auto mmask_vec = _mm256_cmpeq_epi32(_mm256_castps_si256(mask), all_ones);
|
347 |
+
__at_align__ uint32_t mmask[8];
|
348 |
+
_mm256_storeu_si256(reinterpret_cast<__m256i*>(mmask), mmask_vec);
|
349 |
+
__at_align__ T result[32];
|
350 |
+
for (auto i = 0; i < 8; i++) {
|
351 |
+
result[i] = mmask[i] == 0xFFFFFFFF ? src[i]: T(0);
|
352 |
+
}
|
353 |
+
return at::vec::Vectorized<T>::loadu(result);
|
354 |
+
# elif defined(CPU_CAPABILITY_ZVECTOR)
|
355 |
+
auto result = at::vec::Vectorized<T>::loadu(src, 8);
|
356 |
+
uint32_t maskdata[8];
|
357 |
+
T maskdata_dest[32] = { 0 };
|
358 |
+
mask.store(maskdata);
|
359 |
+
for (auto i = 0; i < 8; i++) {
|
360 |
+
maskdata_dest[i] = (maskdata[i] == 0xFFFFFFFF) ? 0xFF: 0;
|
361 |
+
}
|
362 |
+
auto maskvector = at::vec::Vectorized<T>::loadu(maskdata_dest);
|
363 |
+
return (result & maskvector);
|
364 |
+
# else
|
365 |
+
# error Unsupported vectorization CPU capability
|
366 |
+
# endif
|
367 |
+
}
|
368 |
+
|
369 |
+
template <typename T>
|
370 |
+
inline at::vec::Vectorized<float> flag_to_float_vec(const T* src) {
|
371 |
+
__at_align__ float dst_tmp[at::vec::Vectorized<float>::size()];
|
372 |
+
#pragma unroll
|
373 |
+
for (int64_t i = 0; i < at::vec::Vectorized<float>::size(); i++) {
|
374 |
+
dst_tmp[i] = flag_to_float_scalar(src[i]);
|
375 |
+
}
|
376 |
+
return at::vec::Vectorized<float>::loadu(dst_tmp);
|
377 |
+
}
|
378 |
+
|
379 |
+
template <typename scalar_t>
|
380 |
+
inline at::vec::Vectorized<float> cvt_lowp_fp_to_fp32(
|
381 |
+
at::vec::Vectorized<scalar_t> src) {
|
382 |
+
at::vec::Vectorized<float> res_vec1(0);
|
383 |
+
at::vec::Vectorized<float> res_vec2(0);
|
384 |
+
std::tie(res_vec1, res_vec2) = at::vec::convert_to_float<scalar_t>(src);
|
385 |
+
return res_vec1;
|
386 |
+
}
|
387 |
+
|
388 |
+
template <typename scalar_t>
|
389 |
+
inline at::vec::Vectorized<scalar_t> cvt_fp32_to_lowp_fp(
|
390 |
+
at::vec::Vectorized<float> src) {
|
391 |
+
return at::vec::convert_from_float<scalar_t>(src, src);
|
392 |
+
}
|
393 |
+
|
394 |
+
inline at::vec::Vectorized<float> mask_convert_to_float(at::vec::Vectorized<float> src) {
|
395 |
+
auto zeros = at::vec::Vectorized<float>(0);
|
396 |
+
auto ones = at::vec::Vectorized<float>(1);
|
397 |
+
return at::vec::Vectorized<float>::blendv(zeros, ones, src);
|
398 |
+
}
|
399 |
+
|
400 |
+
template <typename scalar_t>
|
401 |
+
inline
|
402 |
+
typename std::enable_if<std::is_same<scalar_t, bfloat16>::value || std::is_same<scalar_t, half>::value, at::vec::Vectorized<scalar_t>>::type
|
403 |
+
mask_convert_to_lowp(at::vec::Vectorized<float> src) {
|
404 |
+
auto fp_vec = mask_convert_to_float(src);
|
405 |
+
return cvt_fp32_to_lowp_fp<scalar_t>(fp_vec);
|
406 |
+
}
|
407 |
+
|
408 |
+
template <typename SRC>
|
409 |
+
inline at::vec::Vectorized<float> vec_convert_to_mask(at::vec::Vectorized<SRC> src) {
|
410 |
+
assert(
|
411 |
+
at::vec::Vectorized<float>::size() == at::vec::Vectorized<SRC>::size());
|
412 |
+
at::vec::Vectorized<float> res_vec(0);
|
413 |
+
__at_align__ float dst_tmp[at::vec::Vectorized<float>::size()];
|
414 |
+
__at_align__ SRC src_tmp[at::vec::Vectorized<SRC>::size()];
|
415 |
+
src.store(src_tmp);
|
416 |
+
|
417 |
+
#pragma unroll
|
418 |
+
for (int i = 0; i < at::vec::Vectorized<float>::size(); i++) {
|
419 |
+
*(uint32_t*)(dst_tmp + i) = src_tmp[i] ? 0xFFFFFFFF : 0;
|
420 |
+
}
|
421 |
+
|
422 |
+
return res_vec.loadu(dst_tmp);
|
423 |
+
}
|
424 |
+
|
425 |
+
template <typename SRC>
|
426 |
+
inline at::vec::Vectorized<float> to_float_mask(at::vec::Vectorized<SRC> src) {
|
427 |
+
return vec_convert_to_mask(src);
|
428 |
+
}
|
429 |
+
|
430 |
+
#if defined(CPU_CAPABILITY_AVX512) || defined(CPU_CAPABILITY_AVX2)
|
431 |
+
template <>
|
432 |
+
inline at::vec::Vectorized<float> to_float_mask(at::vec::Vectorized<int> src) {
|
433 |
+
#if defined(CPU_CAPABILITY_AVX2)
|
434 |
+
return at::vec::Vectorized<float>(_mm256_castsi256_ps(src));
|
435 |
+
#else
|
436 |
+
return at::vec::Vectorized<float>(_mm512_castsi512_ps(src));
|
437 |
+
#endif
|
438 |
+
}
|
439 |
+
#endif
|
440 |
+
|
441 |
+
template <>
|
442 |
+
inline at::vec::Vectorized<float> to_float_mask(at::vec::Vectorized<float> src) {
|
443 |
+
return src;
|
444 |
+
}
|
445 |
+
|
446 |
+
inline at::vec::Vectorized<float> to_float_mask(int src) {
|
447 |
+
union {
|
448 |
+
float fmask;
|
449 |
+
uint32_t imask;
|
450 |
+
} mask;
|
451 |
+
mask.imask = src ? 0xFFFFFFFF : 0;
|
452 |
+
return at::vec::Vectorized<float>(mask.fmask);
|
453 |
+
}
|
454 |
+
|
455 |
+
inline bool all_zero(at::vec::Vectorized<float> src) {
|
456 |
+
# if defined(CPU_CAPABILITY_AVX512)
|
457 |
+
auto src_int = _mm512_castps_si512(src);
|
458 |
+
__mmask16 mask = _mm512_test_epi32_mask(src_int, src_int);
|
459 |
+
return mask == 0;
|
460 |
+
# elif defined(CPU_CAPABILITY_AVX2)
|
461 |
+
return _mm256_testz_ps(src, src);
|
462 |
+
# else
|
463 |
+
__at_align__ int mask[at::vec::Vectorized<float>::size()];
|
464 |
+
src.store(mask);
|
465 |
+
for (int i = 0; i < at::vec::Vectorized<float>::size(); i++) {
|
466 |
+
if (mask[i] != 0) {
|
467 |
+
return false;
|
468 |
+
}
|
469 |
+
}
|
470 |
+
return true;
|
471 |
+
# endif
|
472 |
+
}
|
473 |
+
|
474 |
+
inline bool vector_lane_mask_check(at::vec::Vectorized<float> src, int lane) {
|
475 |
+
# if defined(CPU_CAPABILITY_AVX512)
|
476 |
+
return _mm512_movepi32_mask(_mm512_castps_si512(src)) & (1 << lane);
|
477 |
+
# elif defined(CPU_CAPABILITY_AVX2)
|
478 |
+
return _mm256_movemask_ps(src) & (1 << lane);
|
479 |
+
# else
|
480 |
+
__at_align__ int mask[at::vec::Vectorized<float>::size()];
|
481 |
+
src.store(mask);
|
482 |
+
return mask[lane] != 0;
|
483 |
+
# endif
|
484 |
+
}
|
485 |
+
|
486 |
+
inline at::vec::Vectorized<float> cvt_int64_to_fp32(at::vec::VectorizedN<int64_t,2> src) {
|
487 |
+
# if defined(CPU_CAPABILITY_AVX512)
|
488 |
+
auto low = _mm512_cvtepi64_ps(src[0]);
|
489 |
+
auto high = _mm512_cvtepi64_ps(src[1]);
|
490 |
+
return _mm512_insertf32x8(_mm512_castps256_ps512(low), high, 1);
|
491 |
+
# elif defined(CPU_CAPABILITY_AVX2)
|
492 |
+
auto low_double = at::vec::convert_to_fp_of_same_size<double>(src[0]);
|
493 |
+
auto low = _mm256_cvtpd_ps(low_double);
|
494 |
+
auto high_double = at::vec::convert_to_fp_of_same_size<double>(src[1]);
|
495 |
+
auto high = _mm256_cvtpd_ps(high_double);
|
496 |
+
return _mm256_insertf128_ps(_mm256_castps128_ps256(low), high, 1);
|
497 |
+
# else
|
498 |
+
constexpr int float_vec_size = at::vec::Vectorized<float>::size();
|
499 |
+
constexpr int int64_vec_size = at::vec::Vectorized<int64_t>::size();
|
500 |
+
__at_align__ float result[float_vec_size];
|
501 |
+
__at_align__ int64_t src_buf[int64_vec_size];
|
502 |
+
for (int i = 0; i < 2; i++) {
|
503 |
+
src[i].store(src_buf + i * int64_vec_size);
|
504 |
+
for (int j = 0; j < int64_vec_size; j++) {
|
505 |
+
result[i * int64_vec_size + j] = static_cast<float>(src_buf[i * int64_vec_size + j]);
|
506 |
+
}
|
507 |
+
}
|
508 |
+
return at::vec::Vectorized<float>::loadu(result);
|
509 |
+
# endif
|
510 |
+
}
|
511 |
+
|
512 |
+
inline at::vec::VectorizedN<int64_t,2> cvt_fp32_to_int64(at::vec::Vectorized<float> src) {
|
513 |
+
at::vec::VectorizedN<int64_t,2> result;
|
514 |
+
# if defined(CPU_CAPABILITY_AVX512)
|
515 |
+
result[0] = _mm512_cvt_roundps_epi64(_mm512_castps512_ps256(src), _MM_FROUND_TO_ZERO |_MM_FROUND_NO_EXC);
|
516 |
+
result[1] = _mm512_cvt_roundps_epi64(_mm512_extractf32x8_ps(src, 1), _MM_FROUND_TO_ZERO |_MM_FROUND_NO_EXC);
|
517 |
+
# elif defined(CPU_CAPABILITY_AVX2)
|
518 |
+
auto int32_vec = at::vec::convert_to_int_of_same_size(src);
|
519 |
+
result[0] = _mm256_cvtepi32_epi64(_mm256_castsi256_si128(int32_vec));
|
520 |
+
result[1] = _mm256_cvtepi32_epi64(_mm256_extracti128_si256(int32_vec, 1));
|
521 |
+
# else
|
522 |
+
constexpr int float_vec_size = at::vec::Vectorized<float>::size();
|
523 |
+
constexpr int int64_vec_size = at::vec::Vectorized<int64_t>::size();
|
524 |
+
__at_align__ float src_buf[float_vec_size];
|
525 |
+
__at_align__ int64_t result_buf[int64_vec_size];
|
526 |
+
src.store(src_buf);
|
527 |
+
for (int i = 0; i < 2; i++) {
|
528 |
+
for (int j = 0; j < int64_vec_size; j++) {
|
529 |
+
result_buf[j] = static_cast<int64_t>(src_buf[i * int64_vec_size + j]);
|
530 |
+
}
|
531 |
+
result[i] = at::vec::Vectorized<int64_t>::loadu(result_buf);
|
532 |
+
}
|
533 |
+
# endif
|
534 |
+
return result;
|
535 |
+
}
|
536 |
+
|
537 |
+
inline at::vec::Vectorized<int32_t> cvt_int64_to_int32(at::vec::VectorizedN<int64_t,2> src) {
|
538 |
+
# if defined(CPU_CAPABILITY_AVX512)
|
539 |
+
auto low = _mm512_cvtepi64_epi32(src[0]);
|
540 |
+
auto high = _mm512_cvtepi64_epi32(src[1]);
|
541 |
+
return _mm512_inserti32x8(_mm512_castsi256_si512(low), high, 1);
|
542 |
+
# elif defined(CPU_CAPABILITY_AVX2)
|
543 |
+
auto low = _mm256_shuffle_epi32(src[0], _MM_SHUFFLE(2, 0, 2, 0));
|
544 |
+
auto high = _mm256_shuffle_epi32(src[1], _MM_SHUFFLE(2, 0, 2, 0));
|
545 |
+
auto low_perm = _mm256_permute4x64_epi64(low, _MM_SHUFFLE(3, 1, 2, 0));
|
546 |
+
auto high_perm = _mm256_permute4x64_epi64(high, _MM_SHUFFLE(3, 1, 2, 0));
|
547 |
+
return _mm256_blend_epi32(low_perm, high_perm, 0xF0);
|
548 |
+
# else
|
549 |
+
constexpr int int32_vec_size = at::vec::Vectorized<int32_t>::size();
|
550 |
+
constexpr int int64_vec_size = at::vec::Vectorized<int64_t>::size();
|
551 |
+
__at_align__ int32_t result[int32_vec_size];
|
552 |
+
__at_align__ int64_t src_buf[int64_vec_size];
|
553 |
+
for (int i = 0; i < 2; i++) {
|
554 |
+
src[i].store(src_buf + i * int64_vec_size);
|
555 |
+
for (int j = 0; j < int64_vec_size; j++) {
|
556 |
+
result[i * int64_vec_size + j] = static_cast<int32_t>(src_buf[i * int64_vec_size + j]);
|
557 |
+
}
|
558 |
+
}
|
559 |
+
return at::vec::Vectorized<int32_t>::loadu(result);
|
560 |
+
# endif
|
561 |
+
}
|
562 |
+
|
563 |
+
inline at::vec::VectorizedN<int64_t,2> cvt_int32_to_int64(at::vec::Vectorized<int32_t> src) {
|
564 |
+
at::vec::VectorizedN<int64_t,2> result;
|
565 |
+
# if defined(CPU_CAPABILITY_AVX512)
|
566 |
+
result[0] = _mm512_cvtepi32_epi64(_mm512_castsi512_si256(src));
|
567 |
+
result[1] = _mm512_cvtepi32_epi64(_mm512_extracti32x8_epi32(src, 1));
|
568 |
+
# elif defined(CPU_CAPABILITY_AVX2)
|
569 |
+
result[0] = _mm256_cvtepi32_epi64(_mm256_castsi256_si128(src));
|
570 |
+
result[1] = _mm256_cvtepi32_epi64(_mm256_extracti128_si256(src, 1));
|
571 |
+
#else
|
572 |
+
constexpr int int32_vec_size = at::vec::Vectorized<int32_t>::size();
|
573 |
+
constexpr int int64_vec_size = at::vec::Vectorized<int64_t>::size();
|
574 |
+
__at_align__ int32_t src_buf[int32_vec_size];
|
575 |
+
__at_align__ int64_t result_buf[int64_vec_size];
|
576 |
+
src.store(src_buf);
|
577 |
+
for (int i = 0; i < 2; i++) {
|
578 |
+
for (int j = 0; j < int64_vec_size; j++) {
|
579 |
+
result_buf[j] = static_cast<int64_t>(src_buf[i * int64_vec_size + j]);
|
580 |
+
}
|
581 |
+
result[i] = at::vec::Vectorized<int64_t>::loadu(result_buf);
|
582 |
+
}
|
583 |
+
# endif
|
584 |
+
return result;
|
585 |
+
}
|
586 |
+
|
587 |
+
inline at::vec::VectorizedN<int64_t,2> mask_convert_to_int64(at::vec::Vectorized<float> src) {
|
588 |
+
return cvt_fp32_to_int64(mask_convert_to_float(src));
|
589 |
+
}
|
590 |
+
|
591 |
+
inline at::vec::Vectorized<float> to_float_mask(at::vec::VectorizedN<int64_t,2> src) {
|
592 |
+
return to_float_mask(cvt_int64_to_int32(src));
|
593 |
+
}
|
594 |
+
|
595 |
+
#endif
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cpp_wrapper_cpu.py
ADDED
@@ -0,0 +1,1851 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
from itertools import count
|
5 |
+
from typing import List, Optional, Tuple
|
6 |
+
|
7 |
+
import sympy
|
8 |
+
from sympy import Expr
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch._ops
|
12 |
+
from .. import config, ir
|
13 |
+
|
14 |
+
from ..codecache import CudaKernelParamCache
|
15 |
+
from ..utils import cache_on_self, sympy_product
|
16 |
+
from ..virtualized import V
|
17 |
+
from .common import IndentedBuffer
|
18 |
+
from .wrapper import EnterSubgraphLine, ExitSubgraphLine, pexpr, WrapperCodeGen
|
19 |
+
|
20 |
+
|
21 |
+
class CppWrapperCpu(WrapperCodeGen):
|
22 |
+
"""
|
23 |
+
Generates cpp wrapper for running on CPU and calls cpp kernels
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(self):
|
27 |
+
if not hasattr(self, "device"):
|
28 |
+
self.device = "cpu"
|
29 |
+
super().__init__()
|
30 |
+
self.declare = "auto "
|
31 |
+
self.declare_maybe_reference = "decltype(auto) "
|
32 |
+
self.ending = ";"
|
33 |
+
self.open_bracket = "{"
|
34 |
+
self.closed_bracket = "}"
|
35 |
+
self.comment = "//"
|
36 |
+
self.namespace = "at::"
|
37 |
+
self.none_str = "nullptr" if config.abi_compatible else "at::Tensor()"
|
38 |
+
self.extern_call_ops = set()
|
39 |
+
self.size = "sizes()"
|
40 |
+
self.stride = "strides()"
|
41 |
+
self.cuda = False
|
42 |
+
self.supports_intermediate_hooks = False
|
43 |
+
self.outputs_need_copy = set()
|
44 |
+
self.kernel_callsite_id = count()
|
45 |
+
self.int_array_id = count() # for int array local variable declarations
|
46 |
+
self.declared_int_array_vars = set()
|
47 |
+
self.tmp_tensor_id = count() # for tmp tensor local variable declarations
|
48 |
+
self.arg_var_id = count()
|
49 |
+
self.used_cached_devices = set()
|
50 |
+
self.used_cached_dtypes = set()
|
51 |
+
self.cached_output_id = count()
|
52 |
+
self.scalar_to_tensor_id = count()
|
53 |
+
|
54 |
+
from .cpp import cexpr, CppPrinter
|
55 |
+
|
56 |
+
self.expr_printer = cexpr
|
57 |
+
|
58 |
+
# CppPrinter sometimes calls at::native functions which causes problems in
|
59 |
+
# the ABI-compatible mode. Currently we are hitting this problem when codegen
|
60 |
+
# Grid computation expressions, but we my need to fix other size computation
|
61 |
+
# as well.
|
62 |
+
class GridExprCppPrinter(CppPrinter):
|
63 |
+
def _print_FloorDiv(self, expr):
|
64 |
+
x, div = expr.args
|
65 |
+
x = self.paren(self.doprint(x))
|
66 |
+
div = self.paren(self.doprint(div))
|
67 |
+
assert expr.is_integer, "Expect integers in GridExprPrinter"
|
68 |
+
return f"({x}/{div})"
|
69 |
+
|
70 |
+
self.grid_expr_printer = GridExprCppPrinter().doprint
|
71 |
+
|
72 |
+
def generate_kernel_call(
|
73 |
+
self,
|
74 |
+
name,
|
75 |
+
call_args,
|
76 |
+
grid=None,
|
77 |
+
device_index=None,
|
78 |
+
cuda=True,
|
79 |
+
triton=True,
|
80 |
+
arg_types=None,
|
81 |
+
grid_fn: str = "grid",
|
82 |
+
triton_meta=None,
|
83 |
+
):
|
84 |
+
"""
|
85 |
+
Generates kernel call code.
|
86 |
+
|
87 |
+
cuda: Defines whether the backend is GPU. Otherwise the backend is CPU.
|
88 |
+
|
89 |
+
triton: Defines whether the GPU backend uses Triton for codegen.
|
90 |
+
Otherwise it uses the CUDA language for codegen.
|
91 |
+
Only valid when cuda == True.
|
92 |
+
"""
|
93 |
+
if cuda:
|
94 |
+
return super().generate_kernel_call(
|
95 |
+
name,
|
96 |
+
call_args,
|
97 |
+
grid,
|
98 |
+
device_index,
|
99 |
+
cuda,
|
100 |
+
triton,
|
101 |
+
arg_types,
|
102 |
+
grid_fn,
|
103 |
+
)
|
104 |
+
else:
|
105 |
+
if config.abi_compatible:
|
106 |
+
assert arg_types is not None and len(call_args) == len(
|
107 |
+
arg_types
|
108 |
+
), "Mismatch call_args and arg_types in generate_kernel_call"
|
109 |
+
new_args = []
|
110 |
+
for idx, arg in enumerate(call_args):
|
111 |
+
if "*" in arg_types[idx]:
|
112 |
+
var_name = f"var_{next(self.arg_var_id)}"
|
113 |
+
self.writeline(
|
114 |
+
f"auto* {var_name} = get_data_ptr_wrapper({arg});"
|
115 |
+
)
|
116 |
+
new_args.append(f"({arg_types[idx]})({var_name})")
|
117 |
+
else:
|
118 |
+
# arg is a scalar
|
119 |
+
new_args.append(arg)
|
120 |
+
self.writeline(self.wrap_kernel_call(name, new_args))
|
121 |
+
else:
|
122 |
+
self.writeline(self.wrap_kernel_call(name, call_args))
|
123 |
+
|
124 |
+
def write_constant(self, name, hashed):
|
125 |
+
# include a hash so our code cache gives different constants different files
|
126 |
+
self.header.writeline(f"// {name} {hashed}")
|
127 |
+
|
128 |
+
def write_header(self):
|
129 |
+
if V.graph.is_const_graph:
|
130 |
+
# We do not write header for constant graph, it will be written by main module.
|
131 |
+
return
|
132 |
+
|
133 |
+
if V.graph.aot_mode:
|
134 |
+
for header_cpp_file in ("interface.cpp", "implementation.cpp"):
|
135 |
+
with open(
|
136 |
+
os.path.join(
|
137 |
+
os.path.dirname(__file__), "aoti_runtime", header_cpp_file
|
138 |
+
)
|
139 |
+
) as f:
|
140 |
+
self.header.splice(f.read())
|
141 |
+
else:
|
142 |
+
self.header.splice(
|
143 |
+
"""
|
144 |
+
import torch
|
145 |
+
from torch._inductor.codecache import CppWrapperCodeCache
|
146 |
+
|
147 |
+
cpp_wrapper_src = (
|
148 |
+
'''
|
149 |
+
"""
|
150 |
+
)
|
151 |
+
|
152 |
+
if config.abi_compatible:
|
153 |
+
if config.c_shim_version == "1":
|
154 |
+
self.header.splice("#include <torch/csrc/inductor/aoti_torch/c/shim.h>")
|
155 |
+
else:
|
156 |
+
self.header.splice(
|
157 |
+
f"#include <torch/csrc/inductor/aoti_torch/generated/c_shim_{self.device}.h>"
|
158 |
+
)
|
159 |
+
self.header.splice(
|
160 |
+
"""
|
161 |
+
#include <torch/csrc/inductor/aoti_runtime/arrayref_tensor.h>
|
162 |
+
#include <torch/csrc/inductor/aoti_runtime/thread_local.h>
|
163 |
+
#include <torch/csrc/inductor/aoti_runtime/scalar_to_tensor.h>
|
164 |
+
"""
|
165 |
+
)
|
166 |
+
if V.graph.aot_mode:
|
167 |
+
self.header.splice(
|
168 |
+
"""
|
169 |
+
#include <torch/csrc/inductor/aoti_runtime/model.h>
|
170 |
+
"""
|
171 |
+
)
|
172 |
+
else:
|
173 |
+
self.header.splice(
|
174 |
+
"""
|
175 |
+
#include <ATen/ATen.h>
|
176 |
+
#include <ATen/core/dispatch/Dispatcher.h>
|
177 |
+
#include <ATen/native/BinaryOps.h>
|
178 |
+
#include <torch/csrc/inductor/aoti_runtime/utils.h>
|
179 |
+
#include <torch/csrc/inductor/aoti_torch/tensor_converter.h>
|
180 |
+
#include <torch/csrc/inductor/inductor_ops.h>
|
181 |
+
#include <torch/types.h>
|
182 |
+
#include <ATen/ops/bernoulli_native.h>
|
183 |
+
|
184 |
+
#define reinterpret_tensor torch::inductor::_reinterpret_tensor
|
185 |
+
#define alloc_from_pool torch::inductor::_alloc_from_pool
|
186 |
+
"""
|
187 |
+
)
|
188 |
+
|
189 |
+
self.header.splice("#include <c10/util/generic_math.h>")
|
190 |
+
|
191 |
+
if not V.graph.aot_mode:
|
192 |
+
self.header.splice(
|
193 |
+
"""
|
194 |
+
#include <pybind11/pybind11.h>
|
195 |
+
|
196 |
+
using namespace torch::aot_inductor;
|
197 |
+
"""
|
198 |
+
)
|
199 |
+
|
200 |
+
from .memory_planning import ALIGN_BYTES
|
201 |
+
|
202 |
+
# Round up to the nearest multiple of ALIGN_BYTES
|
203 |
+
# ALIGN_BYTES must be a power of 2
|
204 |
+
self.header.splice(
|
205 |
+
f"""
|
206 |
+
[[maybe_unused]] static int64_t align(int64_t nbytes) {{
|
207 |
+
return (nbytes + {ALIGN_BYTES} - 1) & -{ALIGN_BYTES};
|
208 |
+
}}
|
209 |
+
"""
|
210 |
+
)
|
211 |
+
|
212 |
+
def mark_output_type(self):
|
213 |
+
# mark output type to unwrap tensor back to python scalar
|
214 |
+
from ..ir import ShapeAsConstantBuffer
|
215 |
+
|
216 |
+
output_is_tensor = dict()
|
217 |
+
for idx, x in enumerate(V.graph.graph_outputs):
|
218 |
+
if isinstance(x, ShapeAsConstantBuffer):
|
219 |
+
output_is_tensor[idx] = False
|
220 |
+
else:
|
221 |
+
output_is_tensor[idx] = True
|
222 |
+
|
223 |
+
self.output_is_tensor = output_is_tensor
|
224 |
+
|
225 |
+
def write_prefix(self):
|
226 |
+
if V.graph.is_const_graph:
|
227 |
+
# We do not write prefix for constant graph, it will be written by main module.
|
228 |
+
return
|
229 |
+
|
230 |
+
if V.graph.aot_mode:
|
231 |
+
self.prefix.writeline("namespace torch {")
|
232 |
+
self.prefix.writeline("namespace aot_inductor {")
|
233 |
+
|
234 |
+
def write_input_output_info(
|
235 |
+
self,
|
236 |
+
info_kind: str,
|
237 |
+
idx: int,
|
238 |
+
name: str,
|
239 |
+
):
|
240 |
+
self.prefix.writeline(f"""{info_kind}[{idx}].name = "{name}";""")
|
241 |
+
|
242 |
+
@staticmethod
|
243 |
+
def get_input_cpp_type(input):
|
244 |
+
assert config.use_minimal_arrayref_interface
|
245 |
+
from .cpp import DTYPE_TO_CPP
|
246 |
+
|
247 |
+
if isinstance(input, sympy.Expr):
|
248 |
+
from ..graph import may_get_constant_buffer_dtype
|
249 |
+
|
250 |
+
dtype = may_get_constant_buffer_dtype(input)
|
251 |
+
assert dtype is not None, f"Failed to get the dtype of sympy.Expr: {input}"
|
252 |
+
return DTYPE_TO_CPP[dtype]
|
253 |
+
return f"ArrayRefTensor<{DTYPE_TO_CPP[input.get_dtype()]}>"
|
254 |
+
|
255 |
+
def write_wrapper_decl(self):
|
256 |
+
inputs_len = len(V.graph.graph_inputs.keys())
|
257 |
+
if V.graph.aot_mode:
|
258 |
+
if config.use_minimal_arrayref_interface and not V.graph.is_const_graph:
|
259 |
+
from .cpp import DTYPE_TO_CPP
|
260 |
+
|
261 |
+
input_cpp_types = ", ".join(
|
262 |
+
f"{CppWrapperCpu.get_input_cpp_type(x)}"
|
263 |
+
for x in V.graph.graph_inputs.values()
|
264 |
+
)
|
265 |
+
|
266 |
+
output_arrayref_types = ", ".join(
|
267 |
+
f"ArrayRefTensor<{DTYPE_TO_CPP[x.get_dtype()]}>"
|
268 |
+
for x in V.graph.graph_outputs
|
269 |
+
)
|
270 |
+
|
271 |
+
self.prefix.splice(
|
272 |
+
f"""
|
273 |
+
using AOTInductorModelInputs = std::tuple<{input_cpp_types}>;
|
274 |
+
using AOTInductorModelOutputs = std::tuple<{output_arrayref_types}>;
|
275 |
+
"""
|
276 |
+
)
|
277 |
+
|
278 |
+
if V.graph.const_module:
|
279 |
+
self.header.splice(V.graph.const_module.wrapper_code.header)
|
280 |
+
self.prefix.splice(V.graph.const_code)
|
281 |
+
|
282 |
+
if V.graph.is_const_graph:
|
283 |
+
self.prefix.splice(
|
284 |
+
"""
|
285 |
+
void AOTInductorModel::_const_run_impl(
|
286 |
+
std::vector<AtenTensorHandle>& output_handles,
|
287 |
+
DeviceStreamType stream,
|
288 |
+
AOTIProxyExecutorHandle proxy_executor
|
289 |
+
) {
|
290 |
+
"""
|
291 |
+
)
|
292 |
+
else:
|
293 |
+
if not config.aot_inductor.use_runtime_constant_folding:
|
294 |
+
# If we do not split the constant graph, we'll just create
|
295 |
+
# an empty implementation when wrapping the main module.
|
296 |
+
self.prefix.splice(
|
297 |
+
"""
|
298 |
+
void AOTInductorModel::_const_run_impl(
|
299 |
+
std::vector<AtenTensorHandle>& output_handles,
|
300 |
+
DeviceStreamType stream,
|
301 |
+
AOTIProxyExecutorHandle proxy_executor
|
302 |
+
) {}
|
303 |
+
|
304 |
+
"""
|
305 |
+
)
|
306 |
+
|
307 |
+
run_impl_proto = """
|
308 |
+
void AOTInductorModel::run_impl(
|
309 |
+
AtenTensorHandle*
|
310 |
+
input_handles, // array of input AtenTensorHandle; handles
|
311 |
+
// are stolen; the array itself is borrowed
|
312 |
+
AtenTensorHandle*
|
313 |
+
output_handles, // array for writing output AtenTensorHandle; handles
|
314 |
+
// will be stolen by the caller; the array itself is
|
315 |
+
// borrowed
|
316 |
+
DeviceStreamType stream,
|
317 |
+
AOTIProxyExecutorHandle proxy_executor
|
318 |
+
) {
|
319 |
+
"""
|
320 |
+
if config.use_minimal_arrayref_interface:
|
321 |
+
self.prefix.splice(
|
322 |
+
"""
|
323 |
+
template <>
|
324 |
+
AOTInductorModelOutputs AOTInductorModel::run_impl_minimal_arrayref_interface<
|
325 |
+
AOTInductorModelInputs, AOTInductorModelOutputs>(
|
326 |
+
const AOTInductorModelInputs& inputs,
|
327 |
+
DeviceStreamType stream,
|
328 |
+
AOTIProxyExecutorHandle proxy_executor
|
329 |
+
) {
|
330 |
+
"""
|
331 |
+
)
|
332 |
+
self.suffix.splice(run_impl_proto)
|
333 |
+
self.suffix.splice(
|
334 |
+
"""
|
335 |
+
AOTInductorModelInputs inputs;
|
336 |
+
convert_handles_to_inputs(input_handles, inputs);
|
337 |
+
auto outputs = run_impl_minimal_arrayref_interface<AOTInductorModelInputs, AOTInductorModelOutputs>(
|
338 |
+
inputs, stream, proxy_executor);
|
339 |
+
// NOTE: outputs is full of ArrayRef to thread_local storage. If in the future we need this
|
340 |
+
// interface to perform well for a DSO using the minimal arrayref interface, all we need
|
341 |
+
// to do is provide ThreadLocalCachedTensor for each one!
|
342 |
+
convert_outputs_to_handles(outputs, output_handles);
|
343 |
+
}
|
344 |
+
"""
|
345 |
+
)
|
346 |
+
|
347 |
+
self.suffix.splice(
|
348 |
+
"""
|
349 |
+
extern "C" AOTIRuntimeError AOTInductorModelRunMinimalArrayrefInterface(
|
350 |
+
AOTInductorModelHandle model_handle,
|
351 |
+
const AOTInductorModelInputs& inputs,
|
352 |
+
AOTInductorModelOutputs& outputs) {
|
353 |
+
auto model = reinterpret_cast<torch::aot_inductor::AOTInductorModel*>(model_handle);
|
354 |
+
CONVERT_EXCEPTION_TO_ERROR_CODE({
|
355 |
+
outputs = model->run_impl_minimal_arrayref_interface<AOTInductorModelInputs, AOTInductorModelOutputs>(
|
356 |
+
inputs,
|
357 |
+
(torch::aot_inductor::DeviceStreamType)nullptr,
|
358 |
+
nullptr);
|
359 |
+
})
|
360 |
+
}
|
361 |
+
"""
|
362 |
+
)
|
363 |
+
else:
|
364 |
+
self.prefix.splice(run_impl_proto)
|
365 |
+
else:
|
366 |
+
self.prefix.splice(
|
367 |
+
"""
|
368 |
+
void inductor_entry_impl(
|
369 |
+
AtenTensorHandle*
|
370 |
+
input_handles, // array of input AtenTensorHandle; handles
|
371 |
+
// are stolen; the array itself is borrowed
|
372 |
+
AtenTensorHandle*
|
373 |
+
output_handles // array for writing output AtenTensorHandle; handles
|
374 |
+
// will be stolen by the caller; the array itself is
|
375 |
+
// borrowed)
|
376 |
+
) {
|
377 |
+
"""
|
378 |
+
)
|
379 |
+
with self.prefix.indent():
|
380 |
+
# assign inputs and outputs in both cases so the later codegen can be simplified
|
381 |
+
if not config.use_minimal_arrayref_interface:
|
382 |
+
if not V.graph.is_const_graph:
|
383 |
+
if V.graph.aot_mode:
|
384 |
+
num_args = len(V.graph.graph_inputs)
|
385 |
+
else:
|
386 |
+
# Weights are promoted in the JIT mode
|
387 |
+
num_args = len(V.graph.graph_inputs) + len(V.graph.constants)
|
388 |
+
self.prefix.splice(
|
389 |
+
"""
|
390 |
+
pybind11::gil_scoped_release release;
|
391 |
+
"""
|
392 |
+
)
|
393 |
+
|
394 |
+
if config.abi_compatible:
|
395 |
+
self.prefix.splice(
|
396 |
+
f"""
|
397 |
+
auto inputs = steal_from_raw_handles_to_raii_handles(input_handles, {num_args});
|
398 |
+
"""
|
399 |
+
)
|
400 |
+
else:
|
401 |
+
# This looks dumb, but can avoid creating two versions of code in the AOTInductor runtime.
|
402 |
+
self.prefix.splice(
|
403 |
+
f"""
|
404 |
+
auto inputs = alloc_tensors_by_stealing_from_handles(input_handles, {num_args});
|
405 |
+
"""
|
406 |
+
)
|
407 |
+
|
408 |
+
if inputs_len != 0:
|
409 |
+
for idx, input_key in enumerate(V.graph.graph_inputs.keys()):
|
410 |
+
if config.use_minimal_arrayref_interface:
|
411 |
+
self.prefix.writeline(
|
412 |
+
f"auto {input_key} = std::get<{idx}>(inputs);"
|
413 |
+
)
|
414 |
+
continue
|
415 |
+
# unwrap input tensor back to scalar
|
416 |
+
if isinstance(V.graph.graph_inputs[input_key], sympy.Expr):
|
417 |
+
from ..graph import may_get_constant_buffer_dtype
|
418 |
+
from .cpp import DTYPE_TO_CPP
|
419 |
+
|
420 |
+
dtype = may_get_constant_buffer_dtype(
|
421 |
+
V.graph.graph_inputs[input_key]
|
422 |
+
)
|
423 |
+
assert (
|
424 |
+
dtype is not None
|
425 |
+
), "Fails to get the dtype of the sympy.Expr"
|
426 |
+
cpp_dtype = DTYPE_TO_CPP[dtype]
|
427 |
+
if config.abi_compatible:
|
428 |
+
self.prefix.writeline(f"{cpp_dtype} {input_key};")
|
429 |
+
dtype_str = str(dtype).split(".")[-1]
|
430 |
+
self.prefix.writeline(
|
431 |
+
f"aoti_torch_item_{dtype_str}(inputs[{idx}], &{input_key});"
|
432 |
+
)
|
433 |
+
else:
|
434 |
+
self.prefix.writeline(
|
435 |
+
f"{cpp_dtype} {input_key} = inputs[{idx}].item<{cpp_dtype}>();"
|
436 |
+
)
|
437 |
+
else:
|
438 |
+
self.prefix.writeline(
|
439 |
+
f"auto {input_key} = std::move(inputs[{idx}]);"
|
440 |
+
)
|
441 |
+
|
442 |
+
assert all(
|
443 |
+
isinstance(v, torch.Tensor) for v in list(V.graph.constants.values())
|
444 |
+
), "Expect all constants to be Tensor"
|
445 |
+
for idx, constants_key in enumerate(V.graph.constants.keys()):
|
446 |
+
if V.graph.aot_mode:
|
447 |
+
# Weights are stored in constants_ and owned by RAIIAtenTensorHandle there.
|
448 |
+
# Don't call std::move here because it will cause constants_ to lose the ownership.
|
449 |
+
if config.abi_compatible:
|
450 |
+
self.prefix.writeline(
|
451 |
+
f"""auto {constants_key} = constants_->at({idx});"""
|
452 |
+
)
|
453 |
+
else:
|
454 |
+
self.prefix.writeline(
|
455 |
+
f"auto {constants_key} = *tensor_handle_to_tensor_pointer("
|
456 |
+
+ f"""constants_->at({idx}));"""
|
457 |
+
)
|
458 |
+
else:
|
459 |
+
# Append constants as inputs to the graph
|
460 |
+
constants_idx = inputs_len + idx
|
461 |
+
self.prefix.writeline(
|
462 |
+
f"auto {constants_key} = inputs[{constants_idx}];"
|
463 |
+
)
|
464 |
+
|
465 |
+
self.codegen_inputs(self.prefix, V.graph.graph_inputs)
|
466 |
+
|
467 |
+
if V.graph.aot_mode:
|
468 |
+
if not V.graph.is_const_graph:
|
469 |
+
if config.use_minimal_arrayref_interface:
|
470 |
+
# TODO: input shape checking for regular tensor interface as well?
|
471 |
+
self.codegen_input_numel_asserts()
|
472 |
+
else:
|
473 |
+
self.prefix.writeline("inputs.clear();")
|
474 |
+
self.prefix.writeline(
|
475 |
+
"auto& kernels = static_cast<AOTInductorModelKernels&>(*this->kernels_.get());"
|
476 |
+
)
|
477 |
+
|
478 |
+
def codegen_input_numel_asserts(self):
|
479 |
+
for name, buf in V.graph.graph_inputs.items():
|
480 |
+
if isinstance(buf, sympy.Expr):
|
481 |
+
continue
|
482 |
+
|
483 |
+
# comparing strides for 0 size tensor is tricky. Ignore them for now.
|
484 |
+
if sympy_product(buf.get_size()) == 0:
|
485 |
+
continue
|
486 |
+
numel = buf.get_numel()
|
487 |
+
self.prefix.writeline(f"assert_numel({name}, {numel});")
|
488 |
+
|
489 |
+
def codegen_input_size_var_decl(self, code: IndentedBuffer, name):
|
490 |
+
if config.abi_compatible:
|
491 |
+
code.writeline(f"int64_t* {name}_size;")
|
492 |
+
code.writeline(
|
493 |
+
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_get_sizes({name}, &{name}_size));"
|
494 |
+
)
|
495 |
+
else:
|
496 |
+
super().codegen_input_size_var_decl(code, name)
|
497 |
+
|
498 |
+
def codegen_input_stride_var_decl(self, code: IndentedBuffer, name):
|
499 |
+
if config.abi_compatible:
|
500 |
+
code.writeline(f"int64_t* {name}_stride;")
|
501 |
+
code.writeline(
|
502 |
+
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_get_strides({name}, &{name}_stride));"
|
503 |
+
)
|
504 |
+
else:
|
505 |
+
super().codegen_input_stride_var_decl(code, name)
|
506 |
+
|
507 |
+
def codegen_model_kernels(self):
|
508 |
+
self.prefix.writeline("namespace {")
|
509 |
+
self.prefix.writeline(
|
510 |
+
"class AOTInductorModelKernels : public AOTInductorModelKernelsBase {"
|
511 |
+
)
|
512 |
+
self.prefix.writeline(" public:")
|
513 |
+
declare_kernel = set(self.src_to_kernel.values())
|
514 |
+
declare_kernel.update(
|
515 |
+
entry[0] for entry in self.user_defined_kernel_cache.values()
|
516 |
+
)
|
517 |
+
if V.graph.const_module:
|
518 |
+
declare_kernel.update(
|
519 |
+
V.graph.const_module.wrapper_code.src_to_kernel.values()
|
520 |
+
)
|
521 |
+
for kernel in declare_kernel:
|
522 |
+
self.prefix.writeline(f" CUfunction {kernel}{{nullptr}};")
|
523 |
+
self.prefix.writeline("};")
|
524 |
+
self.prefix.writeline("} // namespace")
|
525 |
+
|
526 |
+
def codegen_model_constructor(self):
|
527 |
+
"""
|
528 |
+
// Generated code example
|
529 |
+
AOTInductorModel::AOTInductorModel()
|
530 |
+
: AOTInductorModelBase(4, 1) {
|
531 |
+
inputs_info_[0].name = "input0";
|
532 |
+
inputs_info_[0].dtype = "torch.float16";
|
533 |
+
...
|
534 |
+
constants_info_[0].name = "L__self___weight";
|
535 |
+
constants_info_[0].dtype = at::kFloat;
|
536 |
+
constants_info_[0].offset = 0;
|
537 |
+
constants_info_[0].data_size = 8192;
|
538 |
+
constants_info_[0].shape = {64, 32};
|
539 |
+
constants_info_[0].stride = {32, 1};
|
540 |
+
...
|
541 |
+
outputs_info_[0].name = "output0";
|
542 |
+
outputs_info_[0].dtype = "torch.float16";
|
543 |
+
}
|
544 |
+
"""
|
545 |
+
|
546 |
+
num_inputs = len(V.graph.graph_inputs)
|
547 |
+
num_outputs = len(V.graph.graph_outputs)
|
548 |
+
num_constants = len(V.graph.constants)
|
549 |
+
self.prefix.splice(
|
550 |
+
f"""
|
551 |
+
AOTInductorModel::AOTInductorModel(std::shared_ptr<ConstantMap> constants_map,
|
552 |
+
std::shared_ptr<std::vector<ConstantHandle>> constants_array,
|
553 |
+
const std::string& device_str,
|
554 |
+
std::optional<std::string> cubin_dir)
|
555 |
+
: AOTInductorModelBase({num_inputs}, {num_outputs}, {num_constants}, device_str, cubin_dir) {{
|
556 |
+
"""
|
557 |
+
)
|
558 |
+
|
559 |
+
with self.prefix.indent():
|
560 |
+
for idx, (name, inp) in enumerate(V.graph.graph_inputs.items()):
|
561 |
+
assert not isinstance(
|
562 |
+
inp, sympy.Expr
|
563 |
+
), f"input {name=} cannot be symbolic"
|
564 |
+
self.write_input_output_info("inputs_info_", idx, name)
|
565 |
+
|
566 |
+
for idx, (name, tensor) in enumerate(V.graph.constants.items()):
|
567 |
+
assert isinstance(tensor, torch.Tensor)
|
568 |
+
self.prefix.writeline(f"""constants_info_[{idx}].name = "{name}";""")
|
569 |
+
self.prefix.writeline(
|
570 |
+
f"constants_info_[{idx}].dtype = static_cast<int32_t>({self.codegen_dtype(tensor.dtype)});"
|
571 |
+
)
|
572 |
+
self.prefix.writeline(
|
573 |
+
f"constants_info_[{idx}].offset = {tensor.storage_offset()};"
|
574 |
+
)
|
575 |
+
self.prefix.writeline(
|
576 |
+
f"constants_info_[{idx}].data_size = {tensor.untyped_storage().nbytes()};"
|
577 |
+
)
|
578 |
+
from_folded = "true" if name in V.graph.folded_constants else "false"
|
579 |
+
self.prefix.writeline(
|
580 |
+
f"constants_info_[{idx}].from_folded = {from_folded};"
|
581 |
+
)
|
582 |
+
|
583 |
+
size_str = ", ".join([str(s) for s in tensor.size()])
|
584 |
+
self.prefix.writeline(f"constants_info_[{idx}].shape = {{{size_str}}};")
|
585 |
+
|
586 |
+
stride_str = ", ".join([str(s) for s in tensor.stride()])
|
587 |
+
self.prefix.writeline(
|
588 |
+
f"constants_info_[{idx}].stride = {{{stride_str}}};"
|
589 |
+
)
|
590 |
+
if name in V.graph.dynamo_flat_name_to_original_fqn:
|
591 |
+
original_fqn = V.graph.dynamo_flat_name_to_original_fqn.get(
|
592 |
+
name, name
|
593 |
+
)
|
594 |
+
elif name in V.graph.allocated_constant_name:
|
595 |
+
original_fqn = V.graph.allocated_constant_name[name]
|
596 |
+
else:
|
597 |
+
raise AssertionError("original_fqn must be set for constant")
|
598 |
+
self.prefix.writeline(
|
599 |
+
f"""constants_info_[{idx}].original_fqn = "{original_fqn}";"""
|
600 |
+
)
|
601 |
+
self.prefix.writeline("update_constants_map(std::move(constants_map));")
|
602 |
+
self.prefix.writeline("update_constants_array(std::move(constants_array));")
|
603 |
+
|
604 |
+
def escape_string(x):
|
605 |
+
return (
|
606 |
+
x.replace("\\", "\\\\")
|
607 |
+
.replace('"', '\\"')
|
608 |
+
.replace("\n", "\\n")
|
609 |
+
.replace("\t", "\\t")
|
610 |
+
)
|
611 |
+
|
612 |
+
self.prefix.writeline(
|
613 |
+
f'in_spec_ = "{escape_string(config.aot_inductor.serialized_in_spec)}";'
|
614 |
+
)
|
615 |
+
self.prefix.writeline(
|
616 |
+
f'out_spec_ = "{escape_string(config.aot_inductor.serialized_out_spec)}";'
|
617 |
+
)
|
618 |
+
|
619 |
+
for idx, output in enumerate(V.graph.graph_outputs):
|
620 |
+
assert not isinstance(
|
621 |
+
output, sympy.Expr
|
622 |
+
), f"output {name=} cannot be symbolic"
|
623 |
+
name = f"output{idx}"
|
624 |
+
self.write_input_output_info("outputs_info_", idx, name)
|
625 |
+
|
626 |
+
self.prefix.writeline(
|
627 |
+
"this->kernels_ = std::make_unique<AOTInductorModelKernels>();"
|
628 |
+
)
|
629 |
+
|
630 |
+
self.prefix.writeline("}")
|
631 |
+
|
632 |
+
def codegen_const_run_driver(self):
|
633 |
+
"""
|
634 |
+
// Generated code example
|
635 |
+
std::unordered_map<std::string, AtenTensorHandle> AOTInductorModel::const_run_impl(
|
636 |
+
DeviceStreamType stream,
|
637 |
+
AOTIProxyExecutorHandle proxy_executor,
|
638 |
+
bool initialization
|
639 |
+
) {
|
640 |
+
std::unordered_map<std::string, AtenTensorHandle> folded_constants_map;
|
641 |
+
std::vector<AtenTensorHandle> output_handles;
|
642 |
+
// build up output_handles over here.
|
643 |
+
_const_run_impl(output_handles, stream, proxy_executor);
|
644 |
+
// build up folded_constants_map
|
645 |
+
return folded_constants_map;
|
646 |
+
}
|
647 |
+
"""
|
648 |
+
|
649 |
+
self.prefix.splice(
|
650 |
+
"""
|
651 |
+
std::unordered_map<std::string, AtenTensorHandle> AOTInductorModel::const_run_impl(
|
652 |
+
DeviceStreamType stream,
|
653 |
+
AOTIProxyExecutorHandle proxy_executor,
|
654 |
+
bool initialization
|
655 |
+
) {
|
656 |
+
"""
|
657 |
+
)
|
658 |
+
if not config.aot_inductor.use_runtime_constant_folding:
|
659 |
+
self.prefix.splice(
|
660 |
+
"""
|
661 |
+
if (!initialization) {
|
662 |
+
std::cerr << "[WARNING] Calling constant_folding in model, but compiled with config: "
|
663 |
+
<< "aot_inductor.use_runtime_constant_folding=False\\n";
|
664 |
+
}
|
665 |
+
return {};
|
666 |
+
}
|
667 |
+
"""
|
668 |
+
)
|
669 |
+
return
|
670 |
+
|
671 |
+
with self.prefix.indent():
|
672 |
+
# This is a mapping to the index of constant folding graph's output
|
673 |
+
const_index_mapping: List[Optional[Tuple[int, str]]] = [None] * len(
|
674 |
+
V.graph.const_output_index
|
675 |
+
)
|
676 |
+
for idx, (name, _) in enumerate(V.graph.constants.items()):
|
677 |
+
if name in V.graph.const_output_index:
|
678 |
+
const_index_mapping[V.graph.const_output_index[name]] = (idx, name) # type: ignore[call-overload]
|
679 |
+
assert (
|
680 |
+
None not in const_index_mapping
|
681 |
+
), "Not all constant gets mapped for constant folding graph."
|
682 |
+
|
683 |
+
self.prefix.writeline(
|
684 |
+
f"""
|
685 |
+
std::unordered_map<std::string, AtenTensorHandle> folded_constants_map;
|
686 |
+
folded_constants_map.reserve({len(const_index_mapping)});
|
687 |
+
std::vector<AtenTensorHandle> output_handles({len(const_index_mapping)});
|
688 |
+
"""
|
689 |
+
)
|
690 |
+
|
691 |
+
self.prefix.splice(
|
692 |
+
"""
|
693 |
+
// The below assignment of output_handles to constants is not used directly.
|
694 |
+
// It's only used to memo the correspondence of handle and constants.
|
695 |
+
"""
|
696 |
+
)
|
697 |
+
|
698 |
+
for output_idx, (const_idx, _) in enumerate(const_index_mapping): # type: ignore[misc]
|
699 |
+
self.prefix.writeline(
|
700 |
+
f"output_handles[{output_idx}] = constants_->at({const_idx});"
|
701 |
+
)
|
702 |
+
|
703 |
+
self.prefix.writeline(
|
704 |
+
"_const_run_impl(output_handles, stream, proxy_executor);"
|
705 |
+
)
|
706 |
+
|
707 |
+
for output_idx, (_, const_name) in enumerate(const_index_mapping): # type: ignore[misc]
|
708 |
+
self.prefix.writeline(
|
709 |
+
f'folded_constants_map["{const_name}"] = output_handles[{output_idx}];'
|
710 |
+
)
|
711 |
+
self.prefix.writeline("return folded_constants_map;")
|
712 |
+
|
713 |
+
self.prefix.writeline("}")
|
714 |
+
|
715 |
+
def generate(self, is_inference):
|
716 |
+
if V.graph.aot_mode and not V.graph.is_const_graph:
|
717 |
+
self.codegen_model_kernels()
|
718 |
+
self.codegen_model_constructor()
|
719 |
+
self.codegen_const_run_driver()
|
720 |
+
self.write_wrapper_decl()
|
721 |
+
return super().generate(is_inference)
|
722 |
+
|
723 |
+
def finalize_prefix(self):
|
724 |
+
cached_dtypes_buffer = IndentedBuffer()
|
725 |
+
if config.abi_compatible:
|
726 |
+
for dtype in self.used_cached_dtypes:
|
727 |
+
cached_dtypes_buffer.writeline(f"CACHE_TORCH_DTYPE({dtype});")
|
728 |
+
for device in self.used_cached_devices:
|
729 |
+
cached_dtypes_buffer.writeline(f"CACHE_TORCH_DEVICE({device});")
|
730 |
+
cached_dtypes_buffer.splice(self.prefix)
|
731 |
+
self.prefix = cached_dtypes_buffer
|
732 |
+
|
733 |
+
def define_kernel(
|
734 |
+
self, name: str, kernel: str, metadata: Optional[str] = None, cuda=False
|
735 |
+
):
|
736 |
+
self.header.splice(f"\n{kernel}\n")
|
737 |
+
|
738 |
+
def codegen_scalar_to_tensor(self, output: str):
|
739 |
+
name = f"scalar_to_tensor_{next(self.scalar_to_tensor_id)}"
|
740 |
+
self.wrapper_call.writeline(
|
741 |
+
f"RAIIAtenTensorHandle {name} = scalar_to_tensor_handle({output});"
|
742 |
+
)
|
743 |
+
return name
|
744 |
+
|
745 |
+
@cache_on_self
|
746 |
+
def get_output_refs(self):
|
747 |
+
return [
|
748 |
+
f"torch::tensor({x.codegen_reference(self.wrapper_call)})"
|
749 |
+
if isinstance(x, ir.ShapeAsConstantBuffer) and not config.abi_compatible
|
750 |
+
else x.codegen_reference(self.wrapper_call)
|
751 |
+
for x in V.graph.graph_outputs
|
752 |
+
]
|
753 |
+
|
754 |
+
def generate_return(self, output_refs):
|
755 |
+
cst_names = V.graph.constants.keys()
|
756 |
+
arr_iface = (
|
757 |
+
not V.graph.is_const_graph and config.use_minimal_arrayref_interface
|
758 |
+
) # For brevity.
|
759 |
+
|
760 |
+
def use_thread_local_cached_output_tensor(idx, output):
|
761 |
+
cached_output_name = f"cached_output_{next(self.cached_output_id)}"
|
762 |
+
cache_type = "Array" if arr_iface else "Tensor"
|
763 |
+
self.wrapper_call.writeline(
|
764 |
+
f"thread_local ThreadLocalCachedOutput{cache_type}<std::decay_t<decltype({output})>> "
|
765 |
+
f"{cached_output_name}({output});"
|
766 |
+
)
|
767 |
+
if arr_iface:
|
768 |
+
self.wrapper_call.writeline(
|
769 |
+
f"{cached_output_name}.copy_data_from({output});"
|
770 |
+
)
|
771 |
+
output_entry = f"std::get<{idx}>(output_arrayref_tensors)"
|
772 |
+
element_type = f"std::decay_t<decltype({output_entry}.data()[0])>"
|
773 |
+
self.wrapper_call.writeline(
|
774 |
+
f"{output_entry} = {cached_output_name}.arrayref_tensor<{element_type}>();"
|
775 |
+
)
|
776 |
+
else:
|
777 |
+
self.wrapper_call.writeline(
|
778 |
+
f"{cached_output_name}.copy_data_from({output});"
|
779 |
+
)
|
780 |
+
self.wrapper_call.writeline(
|
781 |
+
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_new_uninitialized_tensor(&output_handles[{idx}]));"
|
782 |
+
)
|
783 |
+
self.wrapper_call.writeline(
|
784 |
+
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_assign_tensors({cached_output_name}.tensor(), "
|
785 |
+
f"output_handles[{idx}]));"
|
786 |
+
)
|
787 |
+
|
788 |
+
if arr_iface:
|
789 |
+
self.wrapper_call.writeline(
|
790 |
+
"AOTInductorModelOutputs output_arrayref_tensors;"
|
791 |
+
)
|
792 |
+
for idx, output in enumerate(output_refs):
|
793 |
+
if config.abi_compatible:
|
794 |
+
output_buffer = V.graph.graph_outputs[idx]
|
795 |
+
if isinstance(output_buffer, ir.ShapeAsConstantBuffer):
|
796 |
+
# Need to wrap scalar into tensor as the main function returns a vector of tensors
|
797 |
+
output_tensor = self.codegen_scalar_to_tensor(output)
|
798 |
+
self.wrapper_call.writeline(
|
799 |
+
f"output_handles[{idx}] = {output_tensor}.release();"
|
800 |
+
)
|
801 |
+
continue
|
802 |
+
|
803 |
+
output_is_tensor_handle_expr = (
|
804 |
+
f"std::is_same_v<std::decay_t<decltype({output})>,"
|
805 |
+
"RAIIAtenTensorHandle> || "
|
806 |
+
f"std::is_same_v<std::decay_t<decltype({output})>,"
|
807 |
+
"AtenTensorHandle> || "
|
808 |
+
f"std::is_same_v<std::decay_t<decltype({output})>,"
|
809 |
+
"ConstantHandle>"
|
810 |
+
)
|
811 |
+
self.wrapper_call.writeline(
|
812 |
+
f"if constexpr ({output_is_tensor_handle_expr}) {{"
|
813 |
+
)
|
814 |
+
with self.wrapper_call.indent():
|
815 |
+
if arr_iface:
|
816 |
+
cached_output_name = (
|
817 |
+
f"cached_output_{next(self.cached_output_id)}"
|
818 |
+
)
|
819 |
+
output_value_type = f"std::decay_t<decltype(std::get<{idx}>(output_arrayref_tensors).data()[0])>"
|
820 |
+
self.wrapper_call.writeline(
|
821 |
+
f"thread_local RAIIAtenTensorHandle {cached_output_name};"
|
822 |
+
)
|
823 |
+
if output in cst_names:
|
824 |
+
# NOTE(return_constant): In some rare cases where we return
|
825 |
+
# a constant, we have to return a copy of this constant,
|
826 |
+
# because (1) constants are not owned by the Model instance
|
827 |
+
# (2) constants remain the same cross inference runs,
|
828 |
+
# assuming they are not updated at runtime Basically, we
|
829 |
+
# cannot release or transfer the ownership of any original
|
830 |
+
# constant to the user.
|
831 |
+
self.wrapper_call.writeline(
|
832 |
+
f"AtenTensorHandle {cached_output_name}_tmp;"
|
833 |
+
)
|
834 |
+
self.wrapper_call.writeline(
|
835 |
+
f"aoti_torch_clone({output}, &{cached_output_name}_tmp);"
|
836 |
+
)
|
837 |
+
self.wrapper_call.writeline(
|
838 |
+
f"{cached_output_name} = {cached_output_name}_tmp;"
|
839 |
+
)
|
840 |
+
else:
|
841 |
+
self.wrapper_call.writeline(
|
842 |
+
f"{cached_output_name} = {output}.release();"
|
843 |
+
)
|
844 |
+
self.wrapper_call.writeline(
|
845 |
+
f"convert_handle_to_arrayref_tensor({cached_output_name}, "
|
846 |
+
f"std::get<{idx}>(output_arrayref_tensors));"
|
847 |
+
)
|
848 |
+
else:
|
849 |
+
if output in cst_names:
|
850 |
+
# See NOTE(return_constant) above.
|
851 |
+
self.wrapper_call.writeline(
|
852 |
+
f"aoti_torch_clone({output}, &output_handles[{idx}]);"
|
853 |
+
)
|
854 |
+
else:
|
855 |
+
self.wrapper_call.writeline(
|
856 |
+
f"output_handles[{idx}] = {output}.release();"
|
857 |
+
)
|
858 |
+
self.wrapper_call.writeline("} else {")
|
859 |
+
with self.wrapper_call.indent():
|
860 |
+
use_thread_local_cached_output_tensor(idx, output)
|
861 |
+
self.wrapper_call.writeline("}")
|
862 |
+
|
863 |
+
else:
|
864 |
+
assert (
|
865 |
+
not arr_iface
|
866 |
+
), "minimal ArrayRef interface is only supported in ABI-compatible mode"
|
867 |
+
if output in cst_names:
|
868 |
+
output_expr = f"{output}.clone()"
|
869 |
+
# See NOTE(return_constant) above.
|
870 |
+
else:
|
871 |
+
output_expr = output
|
872 |
+
self.wrapper_call.writeline(
|
873 |
+
f"output_handles[{idx}] = reinterpret_cast<AtenTensorHandle>("
|
874 |
+
+ f"new at::Tensor({output_expr}));"
|
875 |
+
)
|
876 |
+
if arr_iface:
|
877 |
+
self.wrapper_call.writeline("return output_arrayref_tensors;")
|
878 |
+
|
879 |
+
def generate_before_suffix(self, result):
|
880 |
+
if not V.graph.is_const_graph:
|
881 |
+
if V.graph.aot_mode:
|
882 |
+
result.writeline("} // AOTInductorModel::run_impl")
|
883 |
+
else:
|
884 |
+
result.writeline("} // inductor_entry_impl")
|
885 |
+
|
886 |
+
def generate_end(self, result):
|
887 |
+
if V.graph.aot_mode:
|
888 |
+
if V.graph.is_const_graph:
|
889 |
+
result.writeline("} // AOTInductorModel::_const_run_impl")
|
890 |
+
else:
|
891 |
+
result.writeline("} // namespace aot_inductor")
|
892 |
+
result.writeline("} // namespace torch")
|
893 |
+
return
|
894 |
+
|
895 |
+
result.writeline("'''\n)")
|
896 |
+
result.splice(
|
897 |
+
f"""
|
898 |
+
inductor_entry = CppWrapperCodeCache.load_pybinding(
|
899 |
+
["std::vector<at::Tensor>"], cpp_wrapper_src, {self.cuda}, {len(V.graph.graph_outputs)})
|
900 |
+
"""
|
901 |
+
)
|
902 |
+
|
903 |
+
# unwrap output tensor back to python scalar
|
904 |
+
if all(x for x in self.output_is_tensor.values()):
|
905 |
+
# If no ShapeAsConstantBuffer in the output, directly return the output as tensors
|
906 |
+
return_str = "return f(args_tensor)"
|
907 |
+
else:
|
908 |
+
outputs = [
|
909 |
+
f"outputs[{i}]" if self.output_is_tensor[i] else f"outputs[{i}].item()"
|
910 |
+
for i in range(len(V.graph.graph_outputs))
|
911 |
+
]
|
912 |
+
outputs_str = f"[{', '.join(outputs)}]"
|
913 |
+
return_str = f"""
|
914 |
+
outputs = f(args_tensor)
|
915 |
+
return {outputs_str}
|
916 |
+
"""
|
917 |
+
|
918 |
+
args_str = "args_tensor = [arg if isinstance(arg, torch.Tensor) else torch.tensor(arg) for arg in args]"
|
919 |
+
if V.graph.constants:
|
920 |
+
# Append constants to the input args for cpp wrapper.
|
921 |
+
# Python wrapper directly gets the value inside the wrapper call
|
922 |
+
# as a global variable passed when calling exec(code, mod.__dict__, mod.__dict__).
|
923 |
+
# For cpp wrapper, we need to pass this python value to the inductor_entry_impl function explicitly.
|
924 |
+
assert all(
|
925 |
+
isinstance(v, torch.Tensor) for v in list(V.graph.constants.values())
|
926 |
+
), "Expect all constants to be Tensor"
|
927 |
+
constants_str = f"[{', '.join(V.graph.constants.keys())}]"
|
928 |
+
args_str += f"""
|
929 |
+
constants_tensor = {constants_str}
|
930 |
+
args_tensor.extend(constants_tensor)
|
931 |
+
"""
|
932 |
+
|
933 |
+
# Wrap the func to support setting result._boxed_call = True
|
934 |
+
result.splice(
|
935 |
+
f"""
|
936 |
+
def _wrap_func(f):
|
937 |
+
def g(args):
|
938 |
+
{args_str}
|
939 |
+
{return_str}
|
940 |
+
return g
|
941 |
+
call = _wrap_func(inductor_entry)
|
942 |
+
"""
|
943 |
+
)
|
944 |
+
|
945 |
+
def generate_c_shim_extern_kernel_call(self, kernel, args):
|
946 |
+
# In the abi_compatible mode, we call fallback aten ops through a C shim layer
|
947 |
+
self.allow_stack_allocation = False
|
948 |
+
kernel_tokens = kernel.split("::")
|
949 |
+
kernel_suffix = kernel_tokens[-1]
|
950 |
+
if kernel_suffix == "call":
|
951 |
+
kernel_suffix = kernel_tokens[-2]
|
952 |
+
if config.c_shim_version == "1":
|
953 |
+
shim_fn = f"aoti_torch_{kernel_suffix}"
|
954 |
+
else:
|
955 |
+
shim_fn = f"aoti_torch_{self.device}_{kernel_suffix}"
|
956 |
+
|
957 |
+
# HACK: val_to_arg_str jams multiple arguments together using a comma. If that
|
958 |
+
# ever breaks, it needs to be reworked to be able to return multiple arguments,
|
959 |
+
# and the split-on-comma code here needs to be removed.
|
960 |
+
wrapped_args = []
|
961 |
+
for x in args:
|
962 |
+
pieces = x.split(", ")
|
963 |
+
for piece in pieces:
|
964 |
+
# We only really *need* convert_arrayref_tensor_to_tensor for
|
965 |
+
# ArrayRefTensors. The code flowing into here uses `0` for nullptr,
|
966 |
+
# which convert_arrayref_tensor_to_tensor would blindly coerce to int,
|
967 |
+
# so just avoid wrapping integers.
|
968 |
+
if not piece.isdigit():
|
969 |
+
piece = f"convert_arrayref_tensor_to_tensor({piece})"
|
970 |
+
wrapped_args.append(piece)
|
971 |
+
self.writeline(
|
972 |
+
f"AOTI_TORCH_ERROR_CODE_CHECK({shim_fn}({', '.join(wrapped_args)}));"
|
973 |
+
)
|
974 |
+
|
975 |
+
def generate_c_shim_extern_kernel_alloc(self, extern_kernel, args):
|
976 |
+
# registered output buffer name
|
977 |
+
name = extern_kernel.name
|
978 |
+
output_handle_name = f"{name}_handle"
|
979 |
+
self.writeline(f"AtenTensorHandle {output_handle_name};")
|
980 |
+
output_arg = f"&{output_handle_name}"
|
981 |
+
self.generate_c_shim_extern_kernel_call(
|
982 |
+
extern_kernel.get_kernel_name(), args + [output_arg]
|
983 |
+
)
|
984 |
+
self.writeline(f"RAIIAtenTensorHandle {name}({output_handle_name});")
|
985 |
+
|
986 |
+
def generate_extern_kernel_alloc(self, extern_kernel, args):
|
987 |
+
if config.abi_compatible:
|
988 |
+
self.generate_c_shim_extern_kernel_alloc(extern_kernel, args)
|
989 |
+
else:
|
990 |
+
super().generate_extern_kernel_alloc(extern_kernel, args)
|
991 |
+
|
992 |
+
def generate_c_shim_fallback_kernel(self, fallback_kernel, args):
|
993 |
+
output_args = []
|
994 |
+
output_raii_handles = []
|
995 |
+
output_name_base = fallback_kernel.get_name()
|
996 |
+
for idx, output in enumerate(fallback_kernel.outputs):
|
997 |
+
if isinstance(output, ir.MultiOutput):
|
998 |
+
name = f"{output.get_name()}"
|
999 |
+
output_handle_name = f"{name}_handle"
|
1000 |
+
if output.indices:
|
1001 |
+
assert (
|
1002 |
+
output.indices[0][1] == idx
|
1003 |
+
), f"expected {output.indices[0][1]=} == {idx=} for {output_name_base=}"
|
1004 |
+
self.writeline(f"AtenTensorHandle {output_handle_name};")
|
1005 |
+
output_args.append(f"&{output_handle_name}")
|
1006 |
+
output_raii_handles.append(
|
1007 |
+
f"RAIIAtenTensorHandle {name}({output_handle_name});"
|
1008 |
+
)
|
1009 |
+
elif isinstance(output, int):
|
1010 |
+
output_name = f"{output_name_base}_{idx}"
|
1011 |
+
self.writeline(f"int64_t {output_name} = {output};")
|
1012 |
+
output_args.append(f"&{output_name}")
|
1013 |
+
elif output is None:
|
1014 |
+
output_args.append("nullptr")
|
1015 |
+
else:
|
1016 |
+
raise NotImplementedError("unsupported type of {output=}")
|
1017 |
+
args = args + output_args
|
1018 |
+
assert (
|
1019 |
+
fallback_kernel.abi_compatible_kernel is not None
|
1020 |
+
), f"abi_compatible_kernel is None for {fallback_kernel.python_kernel_name=}"
|
1021 |
+
self.generate_c_shim_extern_kernel_call(
|
1022 |
+
fallback_kernel.abi_compatible_kernel, args
|
1023 |
+
)
|
1024 |
+
for raii_handle in output_raii_handles:
|
1025 |
+
self.writeline(raii_handle)
|
1026 |
+
|
1027 |
+
def generate_fallback_kernel(self, fallback_kernel, args):
|
1028 |
+
if config.abi_compatible:
|
1029 |
+
self.generate_c_shim_fallback_kernel(fallback_kernel, args)
|
1030 |
+
else:
|
1031 |
+
super().generate_fallback_kernel(fallback_kernel, args)
|
1032 |
+
|
1033 |
+
def generate_extern_kernel_out(self, output_view, codegen_reference, args, kernel):
|
1034 |
+
if output_view:
|
1035 |
+
output_as_strided = f"{output_view.codegen_reference()}"
|
1036 |
+
output_name = f"{output_view.get_name()}_as_strided"
|
1037 |
+
self.writeline(f"auto {output_name} = {output_as_strided};")
|
1038 |
+
|
1039 |
+
args.insert(0, output_name)
|
1040 |
+
else:
|
1041 |
+
args.insert(0, f"{codegen_reference}")
|
1042 |
+
|
1043 |
+
if config.abi_compatible:
|
1044 |
+
self.generate_c_shim_extern_kernel_call(kernel, args)
|
1045 |
+
else:
|
1046 |
+
self.writeline(self.wrap_kernel_call(kernel, args))
|
1047 |
+
|
1048 |
+
def generate_user_defined_triton_kernel(
|
1049 |
+
self, kernel_name, grid, configs, args, triton_meta
|
1050 |
+
):
|
1051 |
+
assert len(grid) != 0
|
1052 |
+
if len(grid) == 1:
|
1053 |
+
grid_decision = grid[0]
|
1054 |
+
else:
|
1055 |
+
meta = CudaKernelParamCache.get(kernel_name)
|
1056 |
+
assert meta is not None
|
1057 |
+
grid_decision = None
|
1058 |
+
for i, c in enumerate(configs):
|
1059 |
+
if all(arg == meta["meta"][key] for key, arg in c.kwargs.items()):
|
1060 |
+
grid_decision = grid[i]
|
1061 |
+
break
|
1062 |
+
assert grid_decision is not None
|
1063 |
+
|
1064 |
+
self.generate_kernel_call(
|
1065 |
+
kernel_name,
|
1066 |
+
args,
|
1067 |
+
grid=grid_decision,
|
1068 |
+
device_index=V.graph.scheduler.current_device.index,
|
1069 |
+
cuda=True,
|
1070 |
+
triton=True,
|
1071 |
+
triton_meta=triton_meta,
|
1072 |
+
)
|
1073 |
+
|
1074 |
+
def generate_scatter_fallback(
|
1075 |
+
self, output, inputs, kernel, python_kernel_name, src_is_tensor, reduce, kwargs
|
1076 |
+
):
|
1077 |
+
# TODO: support other overload for cpp wrapper and remove the below assertions
|
1078 |
+
if config.abi_compatible:
|
1079 |
+
# call the ABI shim function instead of the ATen one
|
1080 |
+
kernel = kernel.replace("at::", "aoti_torch_")
|
1081 |
+
line = f"{kernel}({output}, {','.join(map(str, inputs))}"
|
1082 |
+
if python_kernel_name == "aten.scatter_":
|
1083 |
+
if src_is_tensor:
|
1084 |
+
if reduce:
|
1085 |
+
line += f", {V.graph.wrapper_code.val_to_arg_str(reduce)}"
|
1086 |
+
else:
|
1087 |
+
assert (
|
1088 |
+
reduce is None
|
1089 |
+
), "Expect reduce to be None for aten.scatter_ with scalar src"
|
1090 |
+
else:
|
1091 |
+
line += f", {','.join(kwargs)}"
|
1092 |
+
line += f"){self.ending}"
|
1093 |
+
self.writeline(line)
|
1094 |
+
|
1095 |
+
def generate_index_put_fallback(self, kernel, x, indices, values, accumulate):
|
1096 |
+
if V.graph.aot_mode and V.graph.cpp_wrapper and config.abi_compatible:
|
1097 |
+
# See the comment in codegen_reinterpret_view about why having something like
|
1098 |
+
# RAIIAtenTensorHandle(tmp_tensor_handle_2) in a tmp array can cause the correponding
|
1099 |
+
# tensor prematurely deallocated, thus this std::vector().data() trick here.
|
1100 |
+
indices_str = (
|
1101 |
+
f"std::vector<AtenTensorHandle>{{{', '.join(indices)}}}.data()"
|
1102 |
+
)
|
1103 |
+
args = [x, indices_str, str(len(indices)), values, accumulate]
|
1104 |
+
else:
|
1105 |
+
indices_str = (
|
1106 |
+
f"{self.open_bracket}{', '.join(indices)}{self.closed_bracket}"
|
1107 |
+
)
|
1108 |
+
args = [x, indices_str, values, accumulate]
|
1109 |
+
|
1110 |
+
args.insert(0, x) # set x as the output tensor, this fallback mutates x.
|
1111 |
+
self.writeline(self.wrap_kernel_call(kernel, args))
|
1112 |
+
|
1113 |
+
def add_benchmark_harness(self, output):
|
1114 |
+
if V.graph.aot_mode:
|
1115 |
+
return
|
1116 |
+
super().add_benchmark_harness(output)
|
1117 |
+
|
1118 |
+
def codegen_sizevar(self, x: Expr) -> str:
|
1119 |
+
return self.expr_printer(V.graph.sizevars.simplify(x))
|
1120 |
+
|
1121 |
+
def codegen_tuple_access(self, basename: str, name: str, index: str) -> str:
|
1122 |
+
if config.abi_compatible:
|
1123 |
+
# in the abi_compatible mode, outputs are returned via arguments
|
1124 |
+
return name
|
1125 |
+
else:
|
1126 |
+
return f"std::get<{index}>({basename})"
|
1127 |
+
|
1128 |
+
def codegen_shape_tuple(self, shape: Tuple[Expr, ...]) -> str:
|
1129 |
+
parts = list(map(self.codegen_sizevar, shape))
|
1130 |
+
if len(parts) == 0:
|
1131 |
+
return "{}"
|
1132 |
+
if len(parts) == 1:
|
1133 |
+
return f"{{{parts[0]}, }}"
|
1134 |
+
return f"{{{', '.join(parts)}}}"
|
1135 |
+
|
1136 |
+
def codegen_dynamic_scalar(self, node):
|
1137 |
+
from .cpp import DTYPE_TO_ATEN, DTYPE_TO_CPP
|
1138 |
+
|
1139 |
+
(data,) = (t.codegen_reference() for t in node.inputs)
|
1140 |
+
if config.abi_compatible:
|
1141 |
+
dtype = node.inputs[0].get_dtype()
|
1142 |
+
dtype_str = str(dtype).split(".")[-1]
|
1143 |
+
self.writeline(f"{DTYPE_TO_CPP[dtype]} {node.sym};")
|
1144 |
+
self.writeline(f"aoti_torch_item_{dtype_str}({data}, &{node.sym});")
|
1145 |
+
# record in unbacked_symbol_decls so we won't generate a declaration of the symbol again
|
1146 |
+
self.unbacked_symbol_decls.add(str(node.sym))
|
1147 |
+
else:
|
1148 |
+
if node.is_bool:
|
1149 |
+
self.writeline(f"bool {node.sym} = {data}.item() ? 1 : 0;")
|
1150 |
+
else:
|
1151 |
+
convert_type = DTYPE_TO_ATEN[node.inputs[0].get_dtype()].replace(
|
1152 |
+
"at::k", "to"
|
1153 |
+
)
|
1154 |
+
self.writeline(f"auto {node.sym} = {data}.item().{convert_type}();")
|
1155 |
+
|
1156 |
+
def can_stack_allocate_buffer(self, buffer):
|
1157 |
+
return (
|
1158 |
+
self.allow_stack_allocation
|
1159 |
+
and buffer.get_device().type == "cpu"
|
1160 |
+
and self.can_prove_buffer_has_static_shape(buffer)
|
1161 |
+
and ir.is_contiguous_strides_for_shape(
|
1162 |
+
buffer.get_stride(), buffer.get_size()
|
1163 |
+
)
|
1164 |
+
)
|
1165 |
+
|
1166 |
+
def make_buffer_free(self, buffer):
|
1167 |
+
return (
|
1168 |
+
""
|
1169 |
+
if isinstance(buffer.get_layout(), ir.MultiOutputLayout)
|
1170 |
+
or (V.graph.aot_mode and buffer.get_name() in self.stack_allocated_buffers)
|
1171 |
+
or (
|
1172 |
+
config.use_minimal_arrayref_interface
|
1173 |
+
and V.graph.aot_mode
|
1174 |
+
and buffer.get_name() in V.graph.graph_inputs
|
1175 |
+
)
|
1176 |
+
else f"{buffer.get_name()}.reset();"
|
1177 |
+
)
|
1178 |
+
|
1179 |
+
def make_free_by_names(self, names_to_del: List[str]):
|
1180 |
+
return " ".join(f"{name}.reset();" for name in names_to_del)
|
1181 |
+
|
1182 |
+
def codegen_exact_buffer_reuse(self, old_name: str, new_name: str, del_line: str):
|
1183 |
+
if config.abi_compatible:
|
1184 |
+
return f"auto {new_name} = std::move({old_name}); // reuse"
|
1185 |
+
else:
|
1186 |
+
return super().codegen_exact_buffer_reuse(old_name, new_name, del_line)
|
1187 |
+
|
1188 |
+
def generate_profiler_mark_wrapper_call(self, stack):
|
1189 |
+
self.wrapper_call.writeline(
|
1190 |
+
'RECORD_FUNCTION("inductor_wrapper_call", c10::ArrayRef<c10::IValue>());'
|
1191 |
+
)
|
1192 |
+
|
1193 |
+
def write_triton_header_once(self):
|
1194 |
+
pass
|
1195 |
+
|
1196 |
+
def generate_start_graph(self):
|
1197 |
+
pass
|
1198 |
+
|
1199 |
+
def generate_end_graph(self):
|
1200 |
+
pass
|
1201 |
+
|
1202 |
+
def generate_inf_and_nan_checker(self, nodes):
|
1203 |
+
for buf in nodes.get_names():
|
1204 |
+
# TODO: Add buf name directly into check_inf_and_nan.
|
1205 |
+
self.writeline(
|
1206 |
+
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_check_inf_and_nan({buf}));"
|
1207 |
+
)
|
1208 |
+
|
1209 |
+
def codegen_device(self, device):
|
1210 |
+
if config.abi_compatible:
|
1211 |
+
self.used_cached_devices.add(device.type)
|
1212 |
+
return f"cached_torch_device_type_{device.type},{device.index if device.index else 0}"
|
1213 |
+
else:
|
1214 |
+
from .cpp import DEVICE_TO_ATEN
|
1215 |
+
|
1216 |
+
return (
|
1217 |
+
f"c10::Device({DEVICE_TO_ATEN[device.type]}, {device.index})"
|
1218 |
+
if device.index is not None
|
1219 |
+
else f"{DEVICE_TO_ATEN[device.type]}"
|
1220 |
+
)
|
1221 |
+
|
1222 |
+
def codegen_dtype(self, dtype):
|
1223 |
+
if config.abi_compatible:
|
1224 |
+
dtype_str = str(dtype).split(".")[-1]
|
1225 |
+
self.used_cached_dtypes.add(dtype_str)
|
1226 |
+
return f"cached_torch_dtype_{dtype_str}"
|
1227 |
+
else:
|
1228 |
+
from .cpp import DTYPE_TO_ATEN
|
1229 |
+
|
1230 |
+
return DTYPE_TO_ATEN[dtype]
|
1231 |
+
|
1232 |
+
@functools.lru_cache(None)
|
1233 |
+
def codegen_int_array_var(
|
1234 |
+
self,
|
1235 |
+
int_array: str,
|
1236 |
+
writer=None,
|
1237 |
+
known_statically=False,
|
1238 |
+
graph=None, # for per-graph caching
|
1239 |
+
):
|
1240 |
+
# Because the memory planning is done in two passes (see the implementation
|
1241 |
+
# of self.generate), the writeline behavior is different in the two passes.
|
1242 |
+
# As a result, the emitted int array declarations may appear in a later
|
1243 |
+
# position of the generated code, so the second pass codegen should not
|
1244 |
+
# reuse int array declarations generated in the first pass
|
1245 |
+
if writer is None:
|
1246 |
+
# The first pass codegen uses `self` as the writer
|
1247 |
+
writer = self
|
1248 |
+
|
1249 |
+
var = f"int_array_{next(self.int_array_id)}"
|
1250 |
+
if var not in self.declared_int_array_vars:
|
1251 |
+
self.declared_int_array_vars.add(var)
|
1252 |
+
if known_statically:
|
1253 |
+
writer.writeline(f"static constexpr int64_t {var}[] = {int_array};")
|
1254 |
+
else:
|
1255 |
+
writer.writeline(f"int64_t {var}[] = {int_array};")
|
1256 |
+
return var
|
1257 |
+
|
1258 |
+
def make_buffer_allocation(self, buffer):
|
1259 |
+
return self.make_allocation(
|
1260 |
+
buffer.get_name(),
|
1261 |
+
buffer.get_device(),
|
1262 |
+
buffer.get_dtype(),
|
1263 |
+
buffer.get_size(),
|
1264 |
+
buffer.get_stride(),
|
1265 |
+
buffer if self.can_stack_allocate_buffer(buffer) else None,
|
1266 |
+
)
|
1267 |
+
|
1268 |
+
def make_allocation(
|
1269 |
+
self, name, device, dtype, shape, stride, buffer_if_can_stack_allocate=None
|
1270 |
+
):
|
1271 |
+
orig_stride = stride
|
1272 |
+
device_str = self.codegen_device(device)
|
1273 |
+
dtype_code = self.codegen_dtype(dtype)
|
1274 |
+
size = self.codegen_shape_tuple(shape)
|
1275 |
+
stride = self.codegen_shape_tuple(orig_stride)
|
1276 |
+
if config.abi_compatible:
|
1277 |
+
size_array_var = self.codegen_int_array_var(
|
1278 |
+
size,
|
1279 |
+
self.wrapper_call,
|
1280 |
+
known_statically=self.is_statically_known_list_of_ints(shape),
|
1281 |
+
graph=self.get_codegened_graph(),
|
1282 |
+
)
|
1283 |
+
stride_array_var = self.codegen_int_array_var(
|
1284 |
+
stride,
|
1285 |
+
self.wrapper_call,
|
1286 |
+
known_statically=self.is_statically_known_list_of_ints(orig_stride),
|
1287 |
+
graph=self.get_codegened_graph(),
|
1288 |
+
)
|
1289 |
+
device_type, device_id = device_str.split(",")
|
1290 |
+
device_idx = "this->device_idx_" if V.graph.aot_mode else device_id
|
1291 |
+
if buffer_if_can_stack_allocate is not None:
|
1292 |
+
from .cpp import DTYPE_TO_CPP
|
1293 |
+
|
1294 |
+
self.stack_allocated_buffers[name] = buffer_if_can_stack_allocate
|
1295 |
+
cpp_type = DTYPE_TO_CPP[dtype]
|
1296 |
+
numel = buffer_if_can_stack_allocate.get_numel()
|
1297 |
+
# Note: we don't zero storage because empty_strided doesn't zero either.
|
1298 |
+
self.wrapper_call.writeline(f"{cpp_type} {name}_storage[{numel}];")
|
1299 |
+
args = [
|
1300 |
+
f"{name}_storage",
|
1301 |
+
size_array_var,
|
1302 |
+
stride_array_var,
|
1303 |
+
device_type,
|
1304 |
+
device_idx,
|
1305 |
+
]
|
1306 |
+
return f"ArrayRefTensor<{cpp_type}> {name}({', '.join(args)});"
|
1307 |
+
|
1308 |
+
args = [
|
1309 |
+
str(len(shape)),
|
1310 |
+
size_array_var,
|
1311 |
+
stride_array_var,
|
1312 |
+
dtype_code,
|
1313 |
+
device_type,
|
1314 |
+
device_idx,
|
1315 |
+
f"&{name}_handle",
|
1316 |
+
]
|
1317 |
+
|
1318 |
+
self.wrapper_call.writeline(f"AtenTensorHandle {name}_handle;")
|
1319 |
+
self.wrapper_call.writeline(
|
1320 |
+
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_empty_strided({', '.join(args)}));"
|
1321 |
+
)
|
1322 |
+
|
1323 |
+
return f"RAIIAtenTensorHandle {name}({name}_handle);"
|
1324 |
+
|
1325 |
+
if V.graph.aot_mode and device_str.startswith("c10::Device("):
|
1326 |
+
tensor_device = f"{device_str.split(',')[0]}, this->device_idx_)"
|
1327 |
+
else:
|
1328 |
+
tensor_device = device_str
|
1329 |
+
|
1330 |
+
if device.type == "cpu":
|
1331 |
+
return f"at::Tensor {name} = at::detail::empty_strided_cpu({size}, {stride}, {dtype_code});"
|
1332 |
+
if device.type == "cuda":
|
1333 |
+
return (
|
1334 |
+
f"at::Tensor {name} = at::detail::empty_strided_cuda("
|
1335 |
+
f"{size}, {stride}, {dtype_code}, c10::DeviceType::CUDA);"
|
1336 |
+
)
|
1337 |
+
return (
|
1338 |
+
f"{self.declare}{name} = {self.namespace}empty_strided("
|
1339 |
+
f"{size}, {stride}, at::TensorOptions({tensor_device}).dtype({dtype_code})){self.ending}"
|
1340 |
+
)
|
1341 |
+
|
1342 |
+
def codegen_alloc_from_pool(self, name, offset, dtype, shape, stride) -> str:
|
1343 |
+
if config.abi_compatible:
|
1344 |
+
size = self.codegen_shape_tuple(shape)
|
1345 |
+
stride = self.codegen_shape_tuple(stride)
|
1346 |
+
tmp_name = f"tmp_tensor_handle_{next(self.tmp_tensor_id)}"
|
1347 |
+
args = [
|
1348 |
+
name,
|
1349 |
+
pexpr(offset), # bytes not numel
|
1350 |
+
self.codegen_dtype(dtype),
|
1351 |
+
str(len(shape)),
|
1352 |
+
self.codegen_int_array_var(
|
1353 |
+
size, self.wrapper_call, graph=self.get_codegened_graph()
|
1354 |
+
),
|
1355 |
+
self.codegen_int_array_var(
|
1356 |
+
stride, self.wrapper_call, graph=self.get_codegened_graph()
|
1357 |
+
),
|
1358 |
+
f"&{tmp_name}",
|
1359 |
+
]
|
1360 |
+
self.wrapper_call.writeline(f"AtenTensorHandle {tmp_name};")
|
1361 |
+
self.wrapper_call.writeline(
|
1362 |
+
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch__alloc_from_pool({', '.join(args)}));"
|
1363 |
+
)
|
1364 |
+
return f"RAIIAtenTensorHandle({tmp_name})"
|
1365 |
+
|
1366 |
+
return "alloc_from_pool({})".format(
|
1367 |
+
", ".join(
|
1368 |
+
[
|
1369 |
+
name,
|
1370 |
+
pexpr(offset), # bytes not numel
|
1371 |
+
self.codegen_dtype(dtype),
|
1372 |
+
self.codegen_shape_tuple(shape),
|
1373 |
+
self.codegen_shape_tuple(stride),
|
1374 |
+
]
|
1375 |
+
)
|
1376 |
+
)
|
1377 |
+
|
1378 |
+
def codegen_reinterpret_view(
|
1379 |
+
self, data, size_list, stride_list, offset, writer
|
1380 |
+
) -> str:
|
1381 |
+
dim = str(len(size_list))
|
1382 |
+
size = self.codegen_shape_tuple(size_list)
|
1383 |
+
stride = self.codegen_shape_tuple(stride_list)
|
1384 |
+
offset = self.codegen_sizevar(offset)
|
1385 |
+
|
1386 |
+
if config.abi_compatible:
|
1387 |
+
tmp_name = f"tmp_tensor_handle_{next(self.tmp_tensor_id)}"
|
1388 |
+
# Because the memory planning is done in two passes (see the implementation
|
1389 |
+
# of self.generate), the writeline behavior is different in the two passes.
|
1390 |
+
if writer is None:
|
1391 |
+
writer = self
|
1392 |
+
|
1393 |
+
args = [
|
1394 |
+
f"{data.get_name()}",
|
1395 |
+
dim,
|
1396 |
+
self.codegen_int_array_var(
|
1397 |
+
size,
|
1398 |
+
writer,
|
1399 |
+
known_statically=self.is_statically_known_list_of_ints(size_list),
|
1400 |
+
graph=self.get_codegened_graph(),
|
1401 |
+
),
|
1402 |
+
self.codegen_int_array_var(
|
1403 |
+
stride,
|
1404 |
+
writer,
|
1405 |
+
known_statically=self.is_statically_known_list_of_ints(stride_list),
|
1406 |
+
graph=self.get_codegened_graph(),
|
1407 |
+
),
|
1408 |
+
offset,
|
1409 |
+
]
|
1410 |
+
|
1411 |
+
def gen_reinterpret_call(writer, args):
|
1412 |
+
writer.writeline(
|
1413 |
+
f"auto {tmp_name} = reinterpret_tensor_wrapper({', '.join(args)});"
|
1414 |
+
)
|
1415 |
+
|
1416 |
+
if (
|
1417 |
+
self.can_stack_allocate_buffer(data)
|
1418 |
+
and self.is_statically_known_list_of_ints(size_list)
|
1419 |
+
and self.is_statically_known_list_of_ints(stride_list)
|
1420 |
+
and ir.is_contiguous_strides_for_shape(stride_list, size_list)
|
1421 |
+
):
|
1422 |
+
gen_reinterpret_call(writer, args)
|
1423 |
+
return tmp_name
|
1424 |
+
|
1425 |
+
gen_reinterpret_call(writer, args)
|
1426 |
+
|
1427 |
+
# NB, the return handle here represents a temporary tensor, which will be automatically
|
1428 |
+
# released.
|
1429 |
+
# Here's a sample usage in the cpp wrapper code:
|
1430 |
+
# ```
|
1431 |
+
# aoti_torch_addmm_out(
|
1432 |
+
# buf1,
|
1433 |
+
# arg1_1,
|
1434 |
+
# RAIIAtenTensorHandle(tmp_tensor_handle_0),
|
1435 |
+
# buf0,
|
1436 |
+
# 1L,
|
1437 |
+
# 1L));
|
1438 |
+
# ```
|
1439 |
+
# RAIIAtenTensorHandle(tmp_tensor_handle_0) will be released after the call to addmm_out.
|
1440 |
+
# This could be problematic when it's used in a different pattern, for example:
|
1441 |
+
# ````
|
1442 |
+
# AtenTensorHandle tensor_args[] = {RAIIAtenTensorHandle(tmp_tensor_handle_2), buf5, buf6};
|
1443 |
+
# aoti_torch_proxy_executor_call_function(..., tensor_args);
|
1444 |
+
# ````
|
1445 |
+
# RAIIAtenTensorHandle(tmp_tensor_handle_2) will be invalid when it's used in the latter
|
1446 |
+
# kernel call.
|
1447 |
+
#
|
1448 |
+
# This is solved by updating the proxy_executor invocation to
|
1449 |
+
# ```
|
1450 |
+
# aoti_torch_proxy_executor_call_function(...,
|
1451 |
+
# std::vector<AtenTensorHandle>{
|
1452 |
+
# RAIIAtenTensorHandle(tmp_tensor_handle_2), buf5, buf6
|
1453 |
+
# }.data()
|
1454 |
+
# );
|
1455 |
+
# ```
|
1456 |
+
return f"wrap_with_raii_handle_if_needed({tmp_name})"
|
1457 |
+
else:
|
1458 |
+
args = [data.get_name(), size, stride, offset]
|
1459 |
+
return f"reinterpret_tensor({', '.join(args)})"
|
1460 |
+
|
1461 |
+
def codegen_device_copy(self, src, dst):
|
1462 |
+
if config.abi_compatible:
|
1463 |
+
self.writeline(
|
1464 |
+
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_tensor_copy_(expensive_copy_to_tensor_if_needed({src}), {dst}));"
|
1465 |
+
)
|
1466 |
+
else:
|
1467 |
+
self.writeline(f"{dst}.copy_({src});")
|
1468 |
+
|
1469 |
+
def codegen_multi_output(self, name, value):
|
1470 |
+
# in the abi_compatible mode, outputs are retrieved by passing
|
1471 |
+
# output pointers, so we skip its codegen here.
|
1472 |
+
if not config.abi_compatible:
|
1473 |
+
super().codegen_multi_output(name, value)
|
1474 |
+
|
1475 |
+
def codegen_subgraph_prefix(self, subgraph, outer_inputs, outer_outputs):
|
1476 |
+
for inner_input, outer_input in zip(subgraph.graph.graph_inputs, outer_inputs):
|
1477 |
+
if config.abi_compatible:
|
1478 |
+
# in ABI-compatible mode, we copy the underlying at::Tensor of the conditional
|
1479 |
+
# input (outer_input) into another at::Tensor to be used as a subgraph input
|
1480 |
+
# (inner_input) in the nested scope. we can't std::move here, as the codegened
|
1481 |
+
# outer input may be an expression / rvalue (e.g., reinterpret_view(x)), so we
|
1482 |
+
# can't necessarily std::move it back to the origin (x).
|
1483 |
+
self.writeline(f"AtenTensorHandle {inner_input}_handle;")
|
1484 |
+
self.writeline(
|
1485 |
+
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_assign_tensors_out({outer_input}, &{inner_input}_handle));"
|
1486 |
+
)
|
1487 |
+
self.writeline(
|
1488 |
+
f"RAIIAtenTensorHandle {inner_input}({inner_input}_handle);"
|
1489 |
+
)
|
1490 |
+
else:
|
1491 |
+
self.writeline(
|
1492 |
+
f"{self.declare}{inner_input} = {outer_input}{self.ending}"
|
1493 |
+
)
|
1494 |
+
|
1495 |
+
def codegen_subgraph_suffix(self, subgraph, outer_inputs, outer_outputs):
|
1496 |
+
for inner_output, outer_output in zip(
|
1497 |
+
subgraph.graph.graph_outputs, outer_outputs
|
1498 |
+
):
|
1499 |
+
src = inner_output.codegen_reference()
|
1500 |
+
if config.abi_compatible:
|
1501 |
+
# in ABI-compatible mode, we need to std::move subgraph output (inner_output)
|
1502 |
+
# to the conditional output (outer_output), as RAIIAtenTensorHandle's copy
|
1503 |
+
# constructor is deleted.
|
1504 |
+
src = f"std::move({src})"
|
1505 |
+
self.writeline(f"{outer_output} = {src}{self.ending}")
|
1506 |
+
|
1507 |
+
def codegen_conditional(self, conditional):
|
1508 |
+
name = conditional.get_name()
|
1509 |
+
outer_inputs = [f"{buf.codegen_reference()}" for buf in conditional.operands]
|
1510 |
+
if config.abi_compatible:
|
1511 |
+
outer_outputs = []
|
1512 |
+
for out in conditional.outputs:
|
1513 |
+
# in ABI-compatible mode, ir.MultiOutput is not codegened,
|
1514 |
+
# hence pre-declare output variables directly and separately
|
1515 |
+
self.writeline(f"RAIIAtenTensorHandle {out.get_name()};")
|
1516 |
+
outer_outputs.append(out.get_name())
|
1517 |
+
predicate = f"{conditional.predicate.get_name()}_scalar"
|
1518 |
+
self.writeline(f"bool {predicate};")
|
1519 |
+
# in ABI-compatible mode, we need to use the ABI shim function
|
1520 |
+
# to extract a C++ bool from the unrelying scalar bool Tensor
|
1521 |
+
self.writeline(
|
1522 |
+
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_item_bool({conditional.predicate.codegen_reference()}, &{predicate}));"
|
1523 |
+
)
|
1524 |
+
else:
|
1525 |
+
# in non-ABI-compatible mode, we can codegen the conditional outputs
|
1526 |
+
# as array of at::Tensor instances, as the ir.MultiOutput is codegened
|
1527 |
+
outer_outputs = [f"{name}[{i}]" for i in range(len(conditional.outputs))]
|
1528 |
+
self.writeline(f"at::Tensor {name}[{len(conditional.outputs)}];")
|
1529 |
+
predicate = f"{conditional.predicate.codegen_reference()}.item<bool>()"
|
1530 |
+
|
1531 |
+
self.writeline(f"if ({predicate}) {{")
|
1532 |
+
self.writeline(EnterSubgraphLine(self, conditional.true_subgraph.graph))
|
1533 |
+
self.codegen_subgraph(conditional.true_subgraph, outer_inputs, outer_outputs)
|
1534 |
+
self.writeline(ExitSubgraphLine(self))
|
1535 |
+
self.writeline("} else {")
|
1536 |
+
self.writeline(EnterSubgraphLine(self, conditional.false_subgraph.graph))
|
1537 |
+
self.codegen_subgraph(conditional.false_subgraph, outer_inputs, outer_outputs)
|
1538 |
+
self.writeline(ExitSubgraphLine(self))
|
1539 |
+
self.writeline("}")
|
1540 |
+
|
1541 |
+
def generate_extern_kernel_args_decl_if_needed(
|
1542 |
+
self, op_overload, raw_args, output_args
|
1543 |
+
):
|
1544 |
+
arg_types = [x.real_type for x in op_overload._schema.arguments]
|
1545 |
+
return_types = [x.type for x in op_overload._schema.returns]
|
1546 |
+
|
1547 |
+
new_tensor_args = []
|
1548 |
+
new_int_args = []
|
1549 |
+
|
1550 |
+
def fill_args(arg, arg_type):
|
1551 |
+
static_arg_types = (
|
1552 |
+
torch.FloatType,
|
1553 |
+
torch.BoolType,
|
1554 |
+
torch.StringType,
|
1555 |
+
torch.Type,
|
1556 |
+
torch.DeviceObjType,
|
1557 |
+
)
|
1558 |
+
inductor_tensor_buffers = (
|
1559 |
+
ir.Buffer,
|
1560 |
+
ir.ReinterpretView,
|
1561 |
+
)
|
1562 |
+
|
1563 |
+
if isinstance(arg_type, torch.TensorType):
|
1564 |
+
assert isinstance(arg, inductor_tensor_buffers), f"got {type(arg)}"
|
1565 |
+
new_tensor_args.append(f"{arg.codegen_reference()}")
|
1566 |
+
elif isinstance(arg_type, torch.IntType):
|
1567 |
+
# int
|
1568 |
+
new_int_args.append(str(arg))
|
1569 |
+
elif isinstance(arg_type, torch.SymIntType):
|
1570 |
+
# SymInt
|
1571 |
+
expr = arg.node.expr if isinstance(arg, torch.SymInt) else arg
|
1572 |
+
new_int_args.append(self.expr_printer(expr))
|
1573 |
+
elif isinstance(arg_type, torch.NumberType):
|
1574 |
+
# Scalar of type int
|
1575 |
+
assert isinstance(arg, (int, float, bool))
|
1576 |
+
# Only treat int Scalar as dynamic
|
1577 |
+
if isinstance(arg, int):
|
1578 |
+
new_int_args.append(str(arg))
|
1579 |
+
elif isinstance(arg_type, torch.ListType):
|
1580 |
+
assert isinstance(arg, (list, tuple))
|
1581 |
+
|
1582 |
+
# List[Tensor]
|
1583 |
+
if isinstance(arg_type.getElementType(), torch.TensorType):
|
1584 |
+
new_tensor_args.extend([f"{a.codegen_reference()}" for a in arg])
|
1585 |
+
# List[Optional[Tensor]]
|
1586 |
+
elif isinstance(
|
1587 |
+
arg_type.getElementType(), torch.OptionalType
|
1588 |
+
) and isinstance(
|
1589 |
+
arg_type.getElementType().getElementType(), torch.TensorType
|
1590 |
+
):
|
1591 |
+
new_tensor_args.extend(
|
1592 |
+
[f"{a.codegen_reference()}" for a in arg if a is not None]
|
1593 |
+
)
|
1594 |
+
# List[int]
|
1595 |
+
elif isinstance(arg_type.getElementType(), torch.IntType):
|
1596 |
+
new_int_args.extend([str(a) for a in arg])
|
1597 |
+
# List[SymInt]
|
1598 |
+
elif isinstance(arg_type.getElementType(), torch.SymIntType):
|
1599 |
+
expressions = [
|
1600 |
+
a.node.expr if isinstance(a, torch.SymInt) else a for a in arg
|
1601 |
+
]
|
1602 |
+
new_int_args.extend(
|
1603 |
+
[self.expr_printer(expr) for expr in expressions]
|
1604 |
+
)
|
1605 |
+
# List[Scalar]
|
1606 |
+
elif isinstance(arg_type.getElementType(), torch.NumberType):
|
1607 |
+
# Only treat int Scalar as dynamic
|
1608 |
+
is_int_type = [isinstance(a, int) for a in arg]
|
1609 |
+
if any(is_int_type):
|
1610 |
+
assert all(
|
1611 |
+
is_int_type
|
1612 |
+
), "AOTInductor only supports int scalars of the same type"
|
1613 |
+
new_int_args.extend([str(a) for a in arg])
|
1614 |
+
else:
|
1615 |
+
assert isinstance(
|
1616 |
+
arg_type.getElementType(), static_arg_types # type: ignore[arg-type]
|
1617 |
+
), f"Fall through arguments must be one of static_arg_types, got {type(arg_type)}"
|
1618 |
+
else:
|
1619 |
+
assert isinstance(
|
1620 |
+
arg_type, static_arg_types # type: ignore[arg-type]
|
1621 |
+
), f"Fall through arguments must be one of static_arg_types, got {type(arg_type)}"
|
1622 |
+
|
1623 |
+
for arg, arg_type in zip(raw_args, arg_types):
|
1624 |
+
if arg is not None:
|
1625 |
+
if isinstance(arg_type, torch.OptionalType):
|
1626 |
+
fill_args(arg, arg_type.getElementType())
|
1627 |
+
else:
|
1628 |
+
fill_args(arg, arg_type)
|
1629 |
+
|
1630 |
+
def fill_output_arg(arg, return_type):
|
1631 |
+
if isinstance(return_type, torch.TensorType):
|
1632 |
+
self.writeline(f"AtenTensorHandle {arg}_handle; // output buffer")
|
1633 |
+
self.writeline(
|
1634 |
+
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_new_uninitialized_tensor(&{arg}_handle));"
|
1635 |
+
)
|
1636 |
+
self.writeline(f"RAIIAtenTensorHandle {arg}({arg}_handle);")
|
1637 |
+
new_tensor_args.append(f"{arg}")
|
1638 |
+
elif isinstance(return_type, torch.SymIntType):
|
1639 |
+
raise NotImplementedError("NYI support for return type: SymInt")
|
1640 |
+
elif isinstance(return_type, torch.ListType) and isinstance(
|
1641 |
+
return_type.getElementType(), torch.SymIntType
|
1642 |
+
):
|
1643 |
+
raise NotImplementedError("NYI support for return type: List[SymInt]")
|
1644 |
+
else:
|
1645 |
+
raise AssertionError(f"Unsupported return type found: {return_type}")
|
1646 |
+
|
1647 |
+
# TODO: Only support tensor(s) returns for now, SymInt is not implemented yet
|
1648 |
+
for return_type in return_types:
|
1649 |
+
if isinstance(return_type, (torch.TensorType)):
|
1650 |
+
pass
|
1651 |
+
elif isinstance(return_type, torch.OptionalType):
|
1652 |
+
assert isinstance(return_type.getElementType(), torch.TensorType)
|
1653 |
+
elif isinstance(return_type, torch.ListType):
|
1654 |
+
assert isinstance(return_type.getElementType(), torch.TensorType)
|
1655 |
+
else:
|
1656 |
+
raise NotImplementedError(
|
1657 |
+
f"return type {return_type} is not yet supported."
|
1658 |
+
)
|
1659 |
+
|
1660 |
+
for output_arg in output_args:
|
1661 |
+
assert output_arg is not None, "Optional return types are not yet supported"
|
1662 |
+
if isinstance(output_arg, (list, tuple)):
|
1663 |
+
for out in output_arg:
|
1664 |
+
fill_output_arg(out, torch.TensorType.get())
|
1665 |
+
else:
|
1666 |
+
fill_output_arg(output_arg, torch.TensorType.get())
|
1667 |
+
|
1668 |
+
return new_tensor_args, new_int_args
|
1669 |
+
|
1670 |
+
def generate_extern_kernel_alloc_and_find_schema_if_needed(
|
1671 |
+
self,
|
1672 |
+
name,
|
1673 |
+
kernel,
|
1674 |
+
codegen_args,
|
1675 |
+
cpp_op_schema,
|
1676 |
+
cpp_kernel_key,
|
1677 |
+
cpp_kernel_overload_name="",
|
1678 |
+
op_overload=None,
|
1679 |
+
raw_args=None,
|
1680 |
+
outputs=None,
|
1681 |
+
):
|
1682 |
+
if config.is_fbcode():
|
1683 |
+
assert op_overload is not None
|
1684 |
+
assert raw_args is not None
|
1685 |
+
assert outputs is not None
|
1686 |
+
|
1687 |
+
return self.generate_extern_kernel_alloc_and_find_schema_if_needed_fbcode(
|
1688 |
+
name,
|
1689 |
+
cpp_kernel_key,
|
1690 |
+
op_overload,
|
1691 |
+
raw_args,
|
1692 |
+
outputs,
|
1693 |
+
)
|
1694 |
+
else:
|
1695 |
+
return self.generate_extern_kernel_alloc_and_find_schema_if_needed_oss(
|
1696 |
+
name,
|
1697 |
+
kernel,
|
1698 |
+
codegen_args,
|
1699 |
+
cpp_op_schema,
|
1700 |
+
cpp_kernel_key,
|
1701 |
+
cpp_kernel_overload_name,
|
1702 |
+
)
|
1703 |
+
|
1704 |
+
def generate_extern_kernel_alloc_and_find_schema_if_needed_oss(
|
1705 |
+
self,
|
1706 |
+
name,
|
1707 |
+
kernel,
|
1708 |
+
codegen_args,
|
1709 |
+
cpp_op_schema,
|
1710 |
+
cpp_kernel_key,
|
1711 |
+
cpp_kernel_overload_name="",
|
1712 |
+
):
|
1713 |
+
if cpp_kernel_key not in self.extern_call_ops:
|
1714 |
+
self.writeline(
|
1715 |
+
f"static auto op_{cpp_kernel_key} = c10::Dispatcher::singleton()"
|
1716 |
+
)
|
1717 |
+
self.writeline(
|
1718 |
+
f'\t.findSchemaOrThrow("{kernel}", "{cpp_kernel_overload_name}")'
|
1719 |
+
)
|
1720 |
+
self.writeline(f"\t.typed<{cpp_op_schema}>();")
|
1721 |
+
self.extern_call_ops.add(cpp_kernel_key)
|
1722 |
+
|
1723 |
+
self.writeline(
|
1724 |
+
f"auto {name} = op_{cpp_kernel_key}.call({', '.join(codegen_args)});"
|
1725 |
+
)
|
1726 |
+
|
1727 |
+
def generate_extern_kernel_alloc_and_find_schema_if_needed_fbcode(
|
1728 |
+
self,
|
1729 |
+
name,
|
1730 |
+
cpp_kernel_key,
|
1731 |
+
op_overload,
|
1732 |
+
raw_args, # contains both args and flatten kwargs
|
1733 |
+
outputs,
|
1734 |
+
):
|
1735 |
+
def extract_output_name(out):
|
1736 |
+
assert out is not None, "None, i.e. optional output is not supported"
|
1737 |
+
if isinstance(out, ir.MultiOutput):
|
1738 |
+
return out.get_name()
|
1739 |
+
elif isinstance(out, (list, tuple)):
|
1740 |
+
return type(out)(extract_output_name(o) for o in out)
|
1741 |
+
else:
|
1742 |
+
raise AssertionError(f"Unexpected output: {type(out)}")
|
1743 |
+
|
1744 |
+
# output_args has the same pytree structure as outputs
|
1745 |
+
output_args = extract_output_name(outputs)
|
1746 |
+
if isinstance(output_args, str):
|
1747 |
+
output_args = [output_args]
|
1748 |
+
|
1749 |
+
(
|
1750 |
+
tensor_call_args,
|
1751 |
+
int_call_args,
|
1752 |
+
) = self.generate_extern_kernel_args_decl_if_needed(
|
1753 |
+
op_overload, raw_args, output_args
|
1754 |
+
)
|
1755 |
+
|
1756 |
+
tensor_call_args_str = ", ".join(tensor_call_args)
|
1757 |
+
int_call_args_str = ", ".join(int_call_args)
|
1758 |
+
|
1759 |
+
extern_kernel_node_index = len(V.graph.extern_kernel_nodes) - 1
|
1760 |
+
|
1761 |
+
self.writeline(
|
1762 |
+
f"aoti_torch_proxy_executor_call_function(proxy_executor, "
|
1763 |
+
f"{extern_kernel_node_index}, "
|
1764 |
+
f"{len(int_call_args)}, "
|
1765 |
+
f"std::vector<int64_t>{{{int_call_args_str}}}.data(), "
|
1766 |
+
f"{len(tensor_call_args)}, "
|
1767 |
+
f"std::vector<AtenTensorHandle>{{{tensor_call_args_str}}}.data());"
|
1768 |
+
)
|
1769 |
+
|
1770 |
+
self.extern_call_ops.add(cpp_kernel_key)
|
1771 |
+
|
1772 |
+
def generate_reset_kernel_saved_flags(self):
|
1773 |
+
pass
|
1774 |
+
|
1775 |
+
def generate_save_uncompiled_kernels(self):
|
1776 |
+
pass
|
1777 |
+
|
1778 |
+
def val_to_cpp_arg_str(self, type_, val, is_legacy_abi) -> str:
|
1779 |
+
if (
|
1780 |
+
config.abi_compatible
|
1781 |
+
and not is_legacy_abi
|
1782 |
+
and isinstance(type_, torch.OptionalType)
|
1783 |
+
):
|
1784 |
+
if val is None:
|
1785 |
+
return "0" # nullptr is not available in C
|
1786 |
+
if not isinstance(type_.getElementType(), torch.TensorType):
|
1787 |
+
var_name = f"var_{next(self.arg_var_id)}"
|
1788 |
+
self.writeline(f"auto {var_name} = {self.val_to_arg_str(val)};")
|
1789 |
+
return f"&{var_name}"
|
1790 |
+
elif config.c_shim_version == "2":
|
1791 |
+
# Similar to other data type, use pointer to denote optional tensor arg in v2 C shim
|
1792 |
+
base_handle = self.val_to_arg_str(val)
|
1793 |
+
if "wrap_with_raii_handle_if_needed" in base_handle:
|
1794 |
+
# wrap_with_raii_handle_if_needed creates a temp RAIIAtenTensorHandle, so we need to
|
1795 |
+
# explicitly store it. Otherwise, it will be destroyed before the fallback kernel call.
|
1796 |
+
tmp_var_name = f"var_{next(self.arg_var_id)}"
|
1797 |
+
self.writeline(
|
1798 |
+
f"RAIIAtenTensorHandle {tmp_var_name} = {base_handle};"
|
1799 |
+
)
|
1800 |
+
base_handle = tmp_var_name
|
1801 |
+
var_name = f"var_{next(self.arg_var_id)}"
|
1802 |
+
self.writeline(f"AtenTensorHandle {var_name} = {base_handle}.get();")
|
1803 |
+
return f"&{var_name}"
|
1804 |
+
|
1805 |
+
return self.val_to_arg_str(val)
|
1806 |
+
|
1807 |
+
def val_to_arg_str(self, val) -> str:
|
1808 |
+
if val is None:
|
1809 |
+
# When None is passed as an argument, it represents an optional that does not contain a value.
|
1810 |
+
if config.abi_compatible:
|
1811 |
+
return "0" # nullptr is not available in C
|
1812 |
+
return "c10::nullopt"
|
1813 |
+
elif isinstance(val, bool):
|
1814 |
+
if config.abi_compatible:
|
1815 |
+
return "1" if val else "0"
|
1816 |
+
else:
|
1817 |
+
return "true" if val else "false"
|
1818 |
+
elif isinstance(val, int):
|
1819 |
+
# uint64_t is long on Linux, but long long on MacOS
|
1820 |
+
return f"{val}LL" if sys.platform == "darwin" else f"{val}L"
|
1821 |
+
elif isinstance(val, str):
|
1822 |
+
return f'"{val}"'
|
1823 |
+
elif isinstance(
|
1824 |
+
val, (ir.Buffer, ir.ReinterpretView, ir.StorageBox, ir.TensorBox)
|
1825 |
+
):
|
1826 |
+
return val.codegen_reference()
|
1827 |
+
elif isinstance(val, torch.device):
|
1828 |
+
return self.codegen_device(val)
|
1829 |
+
elif isinstance(val, torch.dtype):
|
1830 |
+
return self.codegen_dtype(val)
|
1831 |
+
elif isinstance(val, float) and val in [float("inf"), float("-inf")]:
|
1832 |
+
if val == float("inf"):
|
1833 |
+
return "std::numeric_limits<float>::infinity()"
|
1834 |
+
else:
|
1835 |
+
return "-std::numeric_limits<float>::infinity()"
|
1836 |
+
elif isinstance(val, (list, tuple)):
|
1837 |
+
# FIXME handle embedded optional types?
|
1838 |
+
result = f"{{{', '.join(self.val_to_arg_str(x) for x in val)}}}"
|
1839 |
+
if config.abi_compatible:
|
1840 |
+
static = self.is_statically_known_list_of_ints(val)
|
1841 |
+
# Need to pass the array length because we can't use std::vector
|
1842 |
+
int_var_array = self.codegen_int_array_var(
|
1843 |
+
result,
|
1844 |
+
known_statically=static,
|
1845 |
+
graph=self.get_codegened_graph(),
|
1846 |
+
)
|
1847 |
+
return f"{int_var_array}, {len(val)}"
|
1848 |
+
else:
|
1849 |
+
return result
|
1850 |
+
else:
|
1851 |
+
return repr(val)
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cpp_wrapper_cuda.py
ADDED
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import os
|
3 |
+
from itertools import chain, count
|
4 |
+
from typing import Any, List, Optional, TYPE_CHECKING
|
5 |
+
|
6 |
+
import sympy
|
7 |
+
|
8 |
+
from torch._inductor.codecache import get_cpp_wrapper_cubin_path_name
|
9 |
+
|
10 |
+
from .. import config
|
11 |
+
from ..codecache import CudaKernelParamCache
|
12 |
+
from ..triton_heuristics import grid as default_grid
|
13 |
+
from ..virtualized import V
|
14 |
+
from .cpp_wrapper_cpu import CppWrapperCpu
|
15 |
+
from .wrapper import SymbolicCallArg
|
16 |
+
|
17 |
+
if TYPE_CHECKING:
|
18 |
+
from ..graph import GraphLowering
|
19 |
+
|
20 |
+
|
21 |
+
def is_int(s: str) -> bool:
|
22 |
+
# Cpp code gen adds L at the end of ints
|
23 |
+
# Lets remove it for checking whether we have an int or not
|
24 |
+
if s and s[-1] == "L":
|
25 |
+
s = s[:-1]
|
26 |
+
try:
|
27 |
+
int(s)
|
28 |
+
except ValueError:
|
29 |
+
return False
|
30 |
+
except TypeError:
|
31 |
+
return False
|
32 |
+
return True
|
33 |
+
|
34 |
+
|
35 |
+
def is_float(s: str) -> bool:
|
36 |
+
try:
|
37 |
+
float(s)
|
38 |
+
except ValueError:
|
39 |
+
return False
|
40 |
+
return True
|
41 |
+
|
42 |
+
|
43 |
+
class CppWrapperCuda(CppWrapperCpu):
|
44 |
+
"""
|
45 |
+
Generates cpp wrapper for running on GPU and calls CUDA kernels
|
46 |
+
"""
|
47 |
+
|
48 |
+
def __init__(self):
|
49 |
+
self.device = "cuda"
|
50 |
+
super().__init__()
|
51 |
+
self.grid_id = count()
|
52 |
+
self.cuda = True
|
53 |
+
|
54 |
+
def write_header(self):
|
55 |
+
if V.graph.is_const_graph:
|
56 |
+
# We do not write header for constant graph, it will be written by main module.
|
57 |
+
return
|
58 |
+
|
59 |
+
super().write_header()
|
60 |
+
|
61 |
+
self.header.splice("#include <filesystem>")
|
62 |
+
if config.abi_compatible:
|
63 |
+
self.header.splice(
|
64 |
+
"#include <torch/csrc/inductor/aoti_runtime/utils_cuda.h>"
|
65 |
+
)
|
66 |
+
else:
|
67 |
+
self.header.splice(
|
68 |
+
"""
|
69 |
+
#include <c10/cuda/CUDAGuard.h>
|
70 |
+
#include <c10/cuda/CUDAStream.h>
|
71 |
+
#include <ATen/cuda/EmptyTensor.h>
|
72 |
+
"""
|
73 |
+
)
|
74 |
+
|
75 |
+
self.header.splice(
|
76 |
+
"""
|
77 |
+
#define CUDA_DRIVER_CHECK(EXPR) \\
|
78 |
+
do { \\
|
79 |
+
CUresult code = EXPR; \\
|
80 |
+
const char *msg; \\
|
81 |
+
cuGetErrorString(code, &msg); \\
|
82 |
+
if (code != CUDA_SUCCESS) { \\
|
83 |
+
throw std::runtime_error( \\
|
84 |
+
std::string("CUDA driver error: ") + \\
|
85 |
+
std::string(msg)); \\
|
86 |
+
} \\
|
87 |
+
} while (0);
|
88 |
+
|
89 |
+
namespace {
|
90 |
+
|
91 |
+
struct Grid {
|
92 |
+
Grid(uint32_t x, uint32_t y, uint32_t z)
|
93 |
+
: grid_x(x), grid_y(y), grid_z(z) {}
|
94 |
+
uint32_t grid_x;
|
95 |
+
uint32_t grid_y;
|
96 |
+
uint32_t grid_z;
|
97 |
+
|
98 |
+
bool is_non_zero() {
|
99 |
+
return grid_x > 0 && grid_y > 0 && grid_z > 0;
|
100 |
+
}
|
101 |
+
};
|
102 |
+
|
103 |
+
} // anonymous namespace
|
104 |
+
|
105 |
+
static inline CUfunction loadKernel(
|
106 |
+
std::string filePath,
|
107 |
+
const std::string &funcName,
|
108 |
+
uint32_t sharedMemBytes,
|
109 |
+
const std::optional<std::string> &cubinDir = std::nullopt) {
|
110 |
+
if (cubinDir) {
|
111 |
+
std::filesystem::path p1{*cubinDir};
|
112 |
+
std::filesystem::path p2{filePath};
|
113 |
+
filePath = (p1 / p2.filename()).string();
|
114 |
+
}
|
115 |
+
|
116 |
+
CUmodule mod;
|
117 |
+
CUfunction func;
|
118 |
+
CUDA_DRIVER_CHECK(cuModuleLoad(&mod, filePath.c_str()));
|
119 |
+
CUDA_DRIVER_CHECK(cuModuleGetFunction(&func, mod, funcName.c_str()));
|
120 |
+
if (sharedMemBytes > 0) {
|
121 |
+
CUDA_DRIVER_CHECK(cuFuncSetAttribute(
|
122 |
+
func,
|
123 |
+
CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES,
|
124 |
+
sharedMemBytes
|
125 |
+
))
|
126 |
+
}
|
127 |
+
return func;
|
128 |
+
}
|
129 |
+
|
130 |
+
static inline void launchKernel(
|
131 |
+
CUfunction func,
|
132 |
+
uint32_t gridX,
|
133 |
+
uint32_t gridY,
|
134 |
+
uint32_t gridZ,
|
135 |
+
uint32_t numWarps,
|
136 |
+
uint32_t sharedMemBytes,
|
137 |
+
void* args[],
|
138 |
+
cudaStream_t stream) {
|
139 |
+
CUDA_DRIVER_CHECK(cuLaunchKernel(
|
140 |
+
func, gridX, gridY, gridZ, 32*numWarps, 1, 1, sharedMemBytes, stream, args, nullptr
|
141 |
+
));
|
142 |
+
}
|
143 |
+
"""
|
144 |
+
)
|
145 |
+
|
146 |
+
def write_get_raw_stream(self, index, graph=None):
|
147 |
+
name = f"stream{index}"
|
148 |
+
self.writeline(f"cudaStream_t {name};")
|
149 |
+
self.writeline(
|
150 |
+
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_get_current_cuda_stream({index}, (void**)&{name}));"
|
151 |
+
)
|
152 |
+
return name
|
153 |
+
|
154 |
+
def define_kernel(
|
155 |
+
self, name: str, kernel: str, metadata: Optional[str] = None, cuda=True
|
156 |
+
):
|
157 |
+
if not cuda:
|
158 |
+
return super().define_kernel(name, kernel, metadata, cuda)
|
159 |
+
|
160 |
+
def generate(self, is_inference):
|
161 |
+
self.prefix.writeline("\n")
|
162 |
+
if not V.graph.aot_mode:
|
163 |
+
for kernel in chain(
|
164 |
+
self.src_to_kernel.values(),
|
165 |
+
[entry[0] for entry in self.user_defined_kernel_cache.values()],
|
166 |
+
):
|
167 |
+
self.prefix.writeline(f"static CUfunction {kernel} = nullptr;")
|
168 |
+
self.prefix.writeline("\n")
|
169 |
+
return super().generate(is_inference)
|
170 |
+
|
171 |
+
@functools.lru_cache(None)
|
172 |
+
def generate_load_kernel_once(
|
173 |
+
self,
|
174 |
+
name: str,
|
175 |
+
mangled_name: str,
|
176 |
+
cubin_path: str,
|
177 |
+
shared_mem: int,
|
178 |
+
graph: "GraphLowering", # for per-graph caching
|
179 |
+
):
|
180 |
+
if V.graph.aot_mode:
|
181 |
+
self.writeline(f"if (kernels.{name} == nullptr) {{")
|
182 |
+
self.writeline(
|
183 |
+
f""" kernels.{name} = loadKernel("{cubin_path}", "{mangled_name}", {shared_mem}, this->cubin_dir_);"""
|
184 |
+
)
|
185 |
+
self.writeline("}")
|
186 |
+
else:
|
187 |
+
self.writeline(f"if ({name} == nullptr) {{")
|
188 |
+
self.writeline(
|
189 |
+
f""" {name} = loadKernel("{cubin_path}", "{mangled_name}", {shared_mem});"""
|
190 |
+
)
|
191 |
+
self.writeline("}")
|
192 |
+
|
193 |
+
def generate_args_decl(self, call_args):
|
194 |
+
dynamic_symbols = V.graph.sizevars.free_symbols()
|
195 |
+
# TODO: only works for constant now, need type info
|
196 |
+
new_args = []
|
197 |
+
for arg in call_args:
|
198 |
+
var_name = f"var_{next(self.arg_var_id)}"
|
199 |
+
if isinstance(arg, (sympy.Integer, sympy.Symbol, SymbolicCallArg)):
|
200 |
+
self.writeline(f"auto {var_name} = {arg};")
|
201 |
+
elif isinstance(arg, sympy.Expr):
|
202 |
+
self.writeline(f"auto {var_name} = {self.expr_printer(arg)};")
|
203 |
+
elif is_int(arg):
|
204 |
+
self.writeline(f"int {var_name} = {arg};")
|
205 |
+
elif is_float(arg):
|
206 |
+
self.writeline(f"float {var_name} = {arg};")
|
207 |
+
elif any(str(arg) == s.name for s in dynamic_symbols):
|
208 |
+
self.writeline(f"auto {var_name} = {arg};")
|
209 |
+
elif arg == "nullptr":
|
210 |
+
self.writeline(f"auto {var_name} = nullptr;")
|
211 |
+
elif arg == "c10::nullopt":
|
212 |
+
self.writeline(f"auto {var_name} = c10::nullopt;")
|
213 |
+
else:
|
214 |
+
if config.abi_compatible:
|
215 |
+
self.writeline(f"CUdeviceptr {var_name};")
|
216 |
+
self.writeline(
|
217 |
+
f"AOTI_TORCH_ERROR_CODE_CHECK(aoti_torch_get_data_ptr({arg}, reinterpret_cast<void**>(&{var_name})));"
|
218 |
+
)
|
219 |
+
else:
|
220 |
+
self.writeline(
|
221 |
+
f"CUdeviceptr {var_name} = reinterpret_cast<CUdeviceptr>({arg}.data_ptr());"
|
222 |
+
)
|
223 |
+
new_args.append(f"&{var_name}")
|
224 |
+
|
225 |
+
return ", ".join(new_args)
|
226 |
+
|
227 |
+
def generate_default_grid(self, name: str, grid: List[Any], cuda: bool = True):
|
228 |
+
"""
|
229 |
+
Generate grid configs for launching a CUDA kernel using the grid
|
230 |
+
function from triton_heuristics.
|
231 |
+
"""
|
232 |
+
if not cuda:
|
233 |
+
return grid
|
234 |
+
assert isinstance(grid, list), f"expected {grid=} to be a list"
|
235 |
+
grid = [e.inner_expr if isinstance(e, SymbolicCallArg) else e for e in grid]
|
236 |
+
grid_fn = default_grid(*grid)
|
237 |
+
params = CudaKernelParamCache.get(name)
|
238 |
+
assert (
|
239 |
+
params is not None
|
240 |
+
), f"cuda kernel parameters for {name} should already exist at this moment, only found {CudaKernelParamCache.get_keys()}"
|
241 |
+
block_cfg = {
|
242 |
+
"XBLOCK": params["x_block"],
|
243 |
+
"YBLOCK": params["y_block"],
|
244 |
+
"ZBLOCK": params["z_block"],
|
245 |
+
}
|
246 |
+
return grid_fn(block_cfg)
|
247 |
+
|
248 |
+
def generate_kernel_call(
|
249 |
+
self,
|
250 |
+
name,
|
251 |
+
call_args,
|
252 |
+
grid=None,
|
253 |
+
device_index=None,
|
254 |
+
cuda=True,
|
255 |
+
triton=True,
|
256 |
+
arg_types=None,
|
257 |
+
grid_fn: str = "grid",
|
258 |
+
triton_meta=None,
|
259 |
+
):
|
260 |
+
if not cuda:
|
261 |
+
# Even in CppWrapperCuda, we may see cpp kernels
|
262 |
+
return super().generate_kernel_call(
|
263 |
+
name, call_args, grid, device_index, cuda, triton, arg_types
|
264 |
+
)
|
265 |
+
|
266 |
+
params = CudaKernelParamCache.get(name)
|
267 |
+
assert (
|
268 |
+
params is not None
|
269 |
+
), f"cuda kernel parameters for {name} should already exist at this moment"
|
270 |
+
mangled_name = params.get("mangled_name", None)
|
271 |
+
assert mangled_name is not None, "missing mangled_name"
|
272 |
+
cubin_path = params.get(get_cpp_wrapper_cubin_path_name(), None)
|
273 |
+
assert cubin_path is not None and os.path.exists(
|
274 |
+
cubin_path
|
275 |
+
), f"cubin file should already exist at this moment: {cubin_path}"
|
276 |
+
shared_mem = params.get("shared_mem", 0)
|
277 |
+
|
278 |
+
self.generate_load_kernel_once(
|
279 |
+
name, mangled_name, cubin_path, shared_mem, V.graph
|
280 |
+
)
|
281 |
+
|
282 |
+
# args with value 1 are added into equal_to_1 and constants
|
283 |
+
# in triton_meta (in the Python codegen) which makes them
|
284 |
+
# inlined in the PTX and compiled CUBIN
|
285 |
+
if (
|
286 |
+
triton_meta is not None
|
287 |
+
and "configs" in triton_meta
|
288 |
+
and triton_meta["configs"]
|
289 |
+
):
|
290 |
+
equal_to_1 = triton_meta["configs"][0].equal_to_1
|
291 |
+
call_args = [arg for i, arg in enumerate(call_args) if i not in equal_to_1]
|
292 |
+
|
293 |
+
call_args = self.generate_args_decl(call_args)
|
294 |
+
kernel_args_var = f"kernel_args_var_{next(self.kernel_callsite_id)}"
|
295 |
+
self.writeline(f"void* {kernel_args_var}[] = {{{call_args}}};")
|
296 |
+
stream = (
|
297 |
+
"stream"
|
298 |
+
if V.graph.aot_mode
|
299 |
+
else self.write_get_raw_stream(device_index, V.graph)
|
300 |
+
)
|
301 |
+
grid_name = f"{name}_grid_{next(self.grid_id)}"
|
302 |
+
assert isinstance(
|
303 |
+
grid, (list, tuple)
|
304 |
+
), f"expected grid to be a list or tuple but got: {grid=}"
|
305 |
+
|
306 |
+
grid = [V.graph.sizevars.simplify(item) for item in grid]
|
307 |
+
grid_uses_symbolic_shapes = any(item.free_symbols for item in grid)
|
308 |
+
grid_args = [self.grid_expr_printer(item) for item in grid]
|
309 |
+
grid_args_str = ", ".join(grid_args)
|
310 |
+
self.writeline(f"Grid {grid_name} = Grid({grid_args_str});")
|
311 |
+
|
312 |
+
if grid_uses_symbolic_shapes:
|
313 |
+
self.writeline(f"if ({grid_name}.is_non_zero()) {{")
|
314 |
+
kernel_var_name = f"kernels.{name}" if V.graph.aot_mode else name
|
315 |
+
self.writeline(
|
316 |
+
"launchKernel({}, {}, {}, {}, {}, {}, {}, {});".format(
|
317 |
+
kernel_var_name,
|
318 |
+
f"{grid_name}.grid_x",
|
319 |
+
f"{grid_name}.grid_y",
|
320 |
+
f"{grid_name}.grid_z",
|
321 |
+
params["num_warps"],
|
322 |
+
params["shared_mem"],
|
323 |
+
kernel_args_var,
|
324 |
+
stream,
|
325 |
+
)
|
326 |
+
)
|
327 |
+
if grid_uses_symbolic_shapes:
|
328 |
+
self.writeline("}")
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (201 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cuda_cpp_scheduling.cpython-310.pyc
ADDED
Binary file (7.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cuda_env.cpython-310.pyc
ADDED
Binary file (1.36 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cuda_kernel.cpython-310.pyc
ADDED
Binary file (12.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cuda_template.cpython-310.pyc
ADDED
Binary file (8.48 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cutlass_epilogue_gen.cpython-310.pyc
ADDED
Binary file (14.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/cutlass_utils.cpython-310.pyc
ADDED
Binary file (7.07 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/device_op_overrides.cpython-310.pyc
ADDED
Binary file (1.23 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/__pycache__/gemm_template.cpython-310.pyc
ADDED
Binary file (19.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cutlass_lib_extensions/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (224 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/torch/_inductor/codegen/cuda/cutlass_lib_extensions/__pycache__/gemm_operation_extensions.cpython-310.pyc
ADDED
Binary file (6.64 kB). View file
|
|