applied-ai-018 commited on
Commit
125290e
·
verified ·
1 Parent(s): 6544e08

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/sympy/matrices/__init__.py +71 -0
  2. llmeval-env/lib/python3.10/site-packages/sympy/matrices/benchmarks/__init__.py +0 -0
  3. llmeval-env/lib/python3.10/site-packages/sympy/matrices/benchmarks/__pycache__/__init__.cpython-310.pyc +0 -0
  4. llmeval-env/lib/python3.10/site-packages/sympy/matrices/benchmarks/__pycache__/bench_matrix.cpython-310.pyc +0 -0
  5. llmeval-env/lib/python3.10/site-packages/sympy/matrices/benchmarks/bench_matrix.py +21 -0
  6. llmeval-env/lib/python3.10/site-packages/sympy/matrices/common.py +3227 -0
  7. llmeval-env/lib/python3.10/site-packages/sympy/matrices/decompositions.py +1629 -0
  8. llmeval-env/lib/python3.10/site-packages/sympy/matrices/dense.py +1090 -0
  9. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__init__.py +62 -0
  10. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/_shape.py +102 -0
  11. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/adjoint.py +61 -0
  12. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/applyfunc.py +204 -0
  13. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/blockmatrix.py +979 -0
  14. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/companion.py +56 -0
  15. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/determinant.py +141 -0
  16. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/diagonal.py +220 -0
  17. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/dotproduct.py +55 -0
  18. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/factorizations.py +62 -0
  19. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/fourier.py +91 -0
  20. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/funcmatrix.py +118 -0
  21. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/hadamard.py +464 -0
  22. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/inverse.py +103 -0
  23. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/matadd.py +155 -0
  24. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/matexpr.py +885 -0
  25. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/matmul.py +498 -0
  26. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/matpow.py +142 -0
  27. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/permutation.py +303 -0
  28. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/sets.py +67 -0
  29. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/slice.py +114 -0
  30. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/special.py +299 -0
  31. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__init__.py +0 -0
  32. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_adjoint.py +34 -0
  33. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_applyfunc.py +118 -0
  34. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_blockmatrix.py +445 -0
  35. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_companion.py +48 -0
  36. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_derivatives.py +477 -0
  37. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_determinant.py +62 -0
  38. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_diagonal.py +156 -0
  39. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_dotproduct.py +35 -0
  40. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_factorizations.py +29 -0
  41. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_fourier.py +44 -0
  42. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_funcmatrix.py +56 -0
  43. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_hadamard.py +141 -0
  44. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_indexing.py +299 -0
  45. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_inverse.py +62 -0
  46. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_kronecker.py +150 -0
  47. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_matadd.py +58 -0
  48. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_matexpr.py +567 -0
  49. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_matmul.py +186 -0
  50. llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_matpow.py +217 -0
llmeval-env/lib/python3.10/site-packages/sympy/matrices/__init__.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """A module that handles matrices.
2
+
3
+ Includes functions for fast creating matrices like zero, one/eye, random
4
+ matrix, etc.
5
+ """
6
+ from .common import ShapeError, NonSquareMatrixError, MatrixKind
7
+ from .dense import (
8
+ GramSchmidt, casoratian, diag, eye, hessian, jordan_cell,
9
+ list2numpy, matrix2numpy, matrix_multiply_elementwise, ones,
10
+ randMatrix, rot_axis1, rot_axis2, rot_axis3, rot_ccw_axis1,
11
+ rot_ccw_axis2, rot_ccw_axis3, rot_givens,
12
+ symarray, wronskian, zeros)
13
+ from .dense import MutableDenseMatrix
14
+ from .matrices import DeferredVector, MatrixBase
15
+
16
+ MutableMatrix = MutableDenseMatrix
17
+ Matrix = MutableMatrix
18
+
19
+ from .sparse import MutableSparseMatrix
20
+ from .sparsetools import banded
21
+ from .immutable import ImmutableDenseMatrix, ImmutableSparseMatrix
22
+
23
+ ImmutableMatrix = ImmutableDenseMatrix
24
+ SparseMatrix = MutableSparseMatrix
25
+
26
+ from .expressions import (
27
+ MatrixSlice, BlockDiagMatrix, BlockMatrix, FunctionMatrix, Identity,
28
+ Inverse, MatAdd, MatMul, MatPow, MatrixExpr, MatrixSymbol, Trace,
29
+ Transpose, ZeroMatrix, OneMatrix, blockcut, block_collapse, matrix_symbols, Adjoint,
30
+ hadamard_product, HadamardProduct, HadamardPower, Determinant, det,
31
+ diagonalize_vector, DiagMatrix, DiagonalMatrix, DiagonalOf, trace,
32
+ DotProduct, kronecker_product, KroneckerProduct,
33
+ PermutationMatrix, MatrixPermute, MatrixSet, Permanent, per)
34
+
35
+ from .utilities import dotprodsimp
36
+
37
+ __all__ = [
38
+ 'ShapeError', 'NonSquareMatrixError', 'MatrixKind',
39
+
40
+ 'GramSchmidt', 'casoratian', 'diag', 'eye', 'hessian', 'jordan_cell',
41
+ 'list2numpy', 'matrix2numpy', 'matrix_multiply_elementwise', 'ones',
42
+ 'randMatrix', 'rot_axis1', 'rot_axis2', 'rot_axis3', 'symarray',
43
+ 'wronskian', 'zeros', 'rot_ccw_axis1', 'rot_ccw_axis2', 'rot_ccw_axis3',
44
+ 'rot_givens',
45
+
46
+ 'MutableDenseMatrix',
47
+
48
+ 'DeferredVector', 'MatrixBase',
49
+
50
+ 'Matrix', 'MutableMatrix',
51
+
52
+ 'MutableSparseMatrix',
53
+
54
+ 'banded',
55
+
56
+ 'ImmutableDenseMatrix', 'ImmutableSparseMatrix',
57
+
58
+ 'ImmutableMatrix', 'SparseMatrix',
59
+
60
+ 'MatrixSlice', 'BlockDiagMatrix', 'BlockMatrix', 'FunctionMatrix',
61
+ 'Identity', 'Inverse', 'MatAdd', 'MatMul', 'MatPow', 'MatrixExpr',
62
+ 'MatrixSymbol', 'Trace', 'Transpose', 'ZeroMatrix', 'OneMatrix',
63
+ 'blockcut', 'block_collapse', 'matrix_symbols', 'Adjoint',
64
+ 'hadamard_product', 'HadamardProduct', 'HadamardPower', 'Determinant',
65
+ 'det', 'diagonalize_vector', 'DiagMatrix', 'DiagonalMatrix',
66
+ 'DiagonalOf', 'trace', 'DotProduct', 'kronecker_product',
67
+ 'KroneckerProduct', 'PermutationMatrix', 'MatrixPermute', 'MatrixSet',
68
+ 'Permanent', 'per',
69
+
70
+ 'dotprodsimp',
71
+ ]
llmeval-env/lib/python3.10/site-packages/sympy/matrices/benchmarks/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/sympy/matrices/benchmarks/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (198 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/benchmarks/__pycache__/bench_matrix.cpython-310.pyc ADDED
Binary file (906 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/sympy/matrices/benchmarks/bench_matrix.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import Integer
2
+ from sympy.matrices.dense import (eye, zeros)
3
+
4
+ i3 = Integer(3)
5
+ M = eye(100)
6
+
7
+
8
+ def timeit_Matrix__getitem_ii():
9
+ M[3, 3]
10
+
11
+
12
+ def timeit_Matrix__getitem_II():
13
+ M[i3, i3]
14
+
15
+
16
+ def timeit_Matrix__getslice():
17
+ M[:, :]
18
+
19
+
20
+ def timeit_Matrix_zeronm():
21
+ zeros(100, 100)
llmeval-env/lib/python3.10/site-packages/sympy/matrices/common.py ADDED
@@ -0,0 +1,3227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Basic methods common to all matrices to be used
3
+ when creating more advanced matrices (e.g., matrices over rings,
4
+ etc.).
5
+ """
6
+
7
+ from collections import defaultdict
8
+ from collections.abc import Iterable
9
+ from inspect import isfunction
10
+ from functools import reduce
11
+
12
+ from sympy.assumptions.refine import refine
13
+ from sympy.core import SympifyError, Add
14
+ from sympy.core.basic import Atom
15
+ from sympy.core.decorators import call_highest_priority
16
+ from sympy.core.kind import Kind, NumberKind
17
+ from sympy.core.logic import fuzzy_and, FuzzyBool
18
+ from sympy.core.mod import Mod
19
+ from sympy.core.singleton import S
20
+ from sympy.core.symbol import Symbol
21
+ from sympy.core.sympify import sympify
22
+ from sympy.functions.elementary.complexes import Abs, re, im
23
+ from .utilities import _dotprodsimp, _simplify
24
+ from sympy.polys.polytools import Poly
25
+ from sympy.utilities.iterables import flatten, is_sequence
26
+ from sympy.utilities.misc import as_int, filldedent
27
+ from sympy.tensor.array import NDimArray
28
+
29
+ from .utilities import _get_intermediate_simp_bool
30
+
31
+
32
+ class MatrixError(Exception):
33
+ pass
34
+
35
+
36
+ class ShapeError(ValueError, MatrixError):
37
+ """Wrong matrix shape"""
38
+ pass
39
+
40
+
41
+ class NonSquareMatrixError(ShapeError):
42
+ pass
43
+
44
+
45
+ class NonInvertibleMatrixError(ValueError, MatrixError):
46
+ """The matrix in not invertible (division by multidimensional zero error)."""
47
+ pass
48
+
49
+
50
+ class NonPositiveDefiniteMatrixError(ValueError, MatrixError):
51
+ """The matrix is not a positive-definite matrix."""
52
+ pass
53
+
54
+
55
+ class MatrixRequired:
56
+ """All subclasses of matrix objects must implement the
57
+ required matrix properties listed here."""
58
+ rows = None # type: int
59
+ cols = None # type: int
60
+ _simplify = None
61
+
62
+ @classmethod
63
+ def _new(cls, *args, **kwargs):
64
+ """`_new` must, at minimum, be callable as
65
+ `_new(rows, cols, mat) where mat is a flat list of the
66
+ elements of the matrix."""
67
+ raise NotImplementedError("Subclasses must implement this.")
68
+
69
+ def __eq__(self, other):
70
+ raise NotImplementedError("Subclasses must implement this.")
71
+
72
+ def __getitem__(self, key):
73
+ """Implementations of __getitem__ should accept ints, in which
74
+ case the matrix is indexed as a flat list, tuples (i,j) in which
75
+ case the (i,j) entry is returned, slices, or mixed tuples (a,b)
76
+ where a and b are any combination of slices and integers."""
77
+ raise NotImplementedError("Subclasses must implement this.")
78
+
79
+ def __len__(self):
80
+ """The total number of entries in the matrix."""
81
+ raise NotImplementedError("Subclasses must implement this.")
82
+
83
+ @property
84
+ def shape(self):
85
+ raise NotImplementedError("Subclasses must implement this.")
86
+
87
+
88
+ class MatrixShaping(MatrixRequired):
89
+ """Provides basic matrix shaping and extracting of submatrices"""
90
+
91
+ def _eval_col_del(self, col):
92
+ def entry(i, j):
93
+ return self[i, j] if j < col else self[i, j + 1]
94
+ return self._new(self.rows, self.cols - 1, entry)
95
+
96
+ def _eval_col_insert(self, pos, other):
97
+
98
+ def entry(i, j):
99
+ if j < pos:
100
+ return self[i, j]
101
+ elif pos <= j < pos + other.cols:
102
+ return other[i, j - pos]
103
+ return self[i, j - other.cols]
104
+
105
+ return self._new(self.rows, self.cols + other.cols, entry)
106
+
107
+ def _eval_col_join(self, other):
108
+ rows = self.rows
109
+
110
+ def entry(i, j):
111
+ if i < rows:
112
+ return self[i, j]
113
+ return other[i - rows, j]
114
+
115
+ return classof(self, other)._new(self.rows + other.rows, self.cols,
116
+ entry)
117
+
118
+ def _eval_extract(self, rowsList, colsList):
119
+ mat = list(self)
120
+ cols = self.cols
121
+ indices = (i * cols + j for i in rowsList for j in colsList)
122
+ return self._new(len(rowsList), len(colsList),
123
+ [mat[i] for i in indices])
124
+
125
+ def _eval_get_diag_blocks(self):
126
+ sub_blocks = []
127
+
128
+ def recurse_sub_blocks(M):
129
+ i = 1
130
+ while i <= M.shape[0]:
131
+ if i == 1:
132
+ to_the_right = M[0, i:]
133
+ to_the_bottom = M[i:, 0]
134
+ else:
135
+ to_the_right = M[:i, i:]
136
+ to_the_bottom = M[i:, :i]
137
+ if any(to_the_right) or any(to_the_bottom):
138
+ i += 1
139
+ continue
140
+ else:
141
+ sub_blocks.append(M[:i, :i])
142
+ if M.shape == M[:i, :i].shape:
143
+ return
144
+ else:
145
+ recurse_sub_blocks(M[i:, i:])
146
+ return
147
+
148
+ recurse_sub_blocks(self)
149
+ return sub_blocks
150
+
151
+ def _eval_row_del(self, row):
152
+ def entry(i, j):
153
+ return self[i, j] if i < row else self[i + 1, j]
154
+ return self._new(self.rows - 1, self.cols, entry)
155
+
156
+ def _eval_row_insert(self, pos, other):
157
+ entries = list(self)
158
+ insert_pos = pos * self.cols
159
+ entries[insert_pos:insert_pos] = list(other)
160
+ return self._new(self.rows + other.rows, self.cols, entries)
161
+
162
+ def _eval_row_join(self, other):
163
+ cols = self.cols
164
+
165
+ def entry(i, j):
166
+ if j < cols:
167
+ return self[i, j]
168
+ return other[i, j - cols]
169
+
170
+ return classof(self, other)._new(self.rows, self.cols + other.cols,
171
+ entry)
172
+
173
+ def _eval_tolist(self):
174
+ return [list(self[i,:]) for i in range(self.rows)]
175
+
176
+ def _eval_todok(self):
177
+ dok = {}
178
+ rows, cols = self.shape
179
+ for i in range(rows):
180
+ for j in range(cols):
181
+ val = self[i, j]
182
+ if val != self.zero:
183
+ dok[i, j] = val
184
+ return dok
185
+
186
+ def _eval_vec(self):
187
+ rows = self.rows
188
+
189
+ def entry(n, _):
190
+ # we want to read off the columns first
191
+ j = n // rows
192
+ i = n - j * rows
193
+ return self[i, j]
194
+
195
+ return self._new(len(self), 1, entry)
196
+
197
+ def _eval_vech(self, diagonal):
198
+ c = self.cols
199
+ v = []
200
+ if diagonal:
201
+ for j in range(c):
202
+ for i in range(j, c):
203
+ v.append(self[i, j])
204
+ else:
205
+ for j in range(c):
206
+ for i in range(j + 1, c):
207
+ v.append(self[i, j])
208
+ return self._new(len(v), 1, v)
209
+
210
+ def col_del(self, col):
211
+ """Delete the specified column."""
212
+ if col < 0:
213
+ col += self.cols
214
+ if not 0 <= col < self.cols:
215
+ raise IndexError("Column {} is out of range.".format(col))
216
+ return self._eval_col_del(col)
217
+
218
+ def col_insert(self, pos, other):
219
+ """Insert one or more columns at the given column position.
220
+
221
+ Examples
222
+ ========
223
+
224
+ >>> from sympy import zeros, ones
225
+ >>> M = zeros(3)
226
+ >>> V = ones(3, 1)
227
+ >>> M.col_insert(1, V)
228
+ Matrix([
229
+ [0, 1, 0, 0],
230
+ [0, 1, 0, 0],
231
+ [0, 1, 0, 0]])
232
+
233
+ See Also
234
+ ========
235
+
236
+ col
237
+ row_insert
238
+ """
239
+ # Allows you to build a matrix even if it is null matrix
240
+ if not self:
241
+ return type(self)(other)
242
+
243
+ pos = as_int(pos)
244
+
245
+ if pos < 0:
246
+ pos = self.cols + pos
247
+ if pos < 0:
248
+ pos = 0
249
+ elif pos > self.cols:
250
+ pos = self.cols
251
+
252
+ if self.rows != other.rows:
253
+ raise ShapeError(
254
+ "The matrices have incompatible number of rows ({} and {})"
255
+ .format(self.rows, other.rows))
256
+
257
+ return self._eval_col_insert(pos, other)
258
+
259
+ def col_join(self, other):
260
+ """Concatenates two matrices along self's last and other's first row.
261
+
262
+ Examples
263
+ ========
264
+
265
+ >>> from sympy import zeros, ones
266
+ >>> M = zeros(3)
267
+ >>> V = ones(1, 3)
268
+ >>> M.col_join(V)
269
+ Matrix([
270
+ [0, 0, 0],
271
+ [0, 0, 0],
272
+ [0, 0, 0],
273
+ [1, 1, 1]])
274
+
275
+ See Also
276
+ ========
277
+
278
+ col
279
+ row_join
280
+ """
281
+ # A null matrix can always be stacked (see #10770)
282
+ if self.rows == 0 and self.cols != other.cols:
283
+ return self._new(0, other.cols, []).col_join(other)
284
+
285
+ if self.cols != other.cols:
286
+ raise ShapeError(
287
+ "The matrices have incompatible number of columns ({} and {})"
288
+ .format(self.cols, other.cols))
289
+ return self._eval_col_join(other)
290
+
291
+ def col(self, j):
292
+ """Elementary column selector.
293
+
294
+ Examples
295
+ ========
296
+
297
+ >>> from sympy import eye
298
+ >>> eye(2).col(0)
299
+ Matrix([
300
+ [1],
301
+ [0]])
302
+
303
+ See Also
304
+ ========
305
+
306
+ row
307
+ col_del
308
+ col_join
309
+ col_insert
310
+ """
311
+ return self[:, j]
312
+
313
+ def extract(self, rowsList, colsList):
314
+ r"""Return a submatrix by specifying a list of rows and columns.
315
+ Negative indices can be given. All indices must be in the range
316
+ $-n \le i < n$ where $n$ is the number of rows or columns.
317
+
318
+ Examples
319
+ ========
320
+
321
+ >>> from sympy import Matrix
322
+ >>> m = Matrix(4, 3, range(12))
323
+ >>> m
324
+ Matrix([
325
+ [0, 1, 2],
326
+ [3, 4, 5],
327
+ [6, 7, 8],
328
+ [9, 10, 11]])
329
+ >>> m.extract([0, 1, 3], [0, 1])
330
+ Matrix([
331
+ [0, 1],
332
+ [3, 4],
333
+ [9, 10]])
334
+
335
+ Rows or columns can be repeated:
336
+
337
+ >>> m.extract([0, 0, 1], [-1])
338
+ Matrix([
339
+ [2],
340
+ [2],
341
+ [5]])
342
+
343
+ Every other row can be taken by using range to provide the indices:
344
+
345
+ >>> m.extract(range(0, m.rows, 2), [-1])
346
+ Matrix([
347
+ [2],
348
+ [8]])
349
+
350
+ RowsList or colsList can also be a list of booleans, in which case
351
+ the rows or columns corresponding to the True values will be selected:
352
+
353
+ >>> m.extract([0, 1, 2, 3], [True, False, True])
354
+ Matrix([
355
+ [0, 2],
356
+ [3, 5],
357
+ [6, 8],
358
+ [9, 11]])
359
+ """
360
+
361
+ if not is_sequence(rowsList) or not is_sequence(colsList):
362
+ raise TypeError("rowsList and colsList must be iterable")
363
+ # ensure rowsList and colsList are lists of integers
364
+ if rowsList and all(isinstance(i, bool) for i in rowsList):
365
+ rowsList = [index for index, item in enumerate(rowsList) if item]
366
+ if colsList and all(isinstance(i, bool) for i in colsList):
367
+ colsList = [index for index, item in enumerate(colsList) if item]
368
+
369
+ # ensure everything is in range
370
+ rowsList = [a2idx(k, self.rows) for k in rowsList]
371
+ colsList = [a2idx(k, self.cols) for k in colsList]
372
+
373
+ return self._eval_extract(rowsList, colsList)
374
+
375
+ def get_diag_blocks(self):
376
+ """Obtains the square sub-matrices on the main diagonal of a square matrix.
377
+
378
+ Useful for inverting symbolic matrices or solving systems of
379
+ linear equations which may be decoupled by having a block diagonal
380
+ structure.
381
+
382
+ Examples
383
+ ========
384
+
385
+ >>> from sympy import Matrix
386
+ >>> from sympy.abc import x, y, z
387
+ >>> A = Matrix([[1, 3, 0, 0], [y, z*z, 0, 0], [0, 0, x, 0], [0, 0, 0, 0]])
388
+ >>> a1, a2, a3 = A.get_diag_blocks()
389
+ >>> a1
390
+ Matrix([
391
+ [1, 3],
392
+ [y, z**2]])
393
+ >>> a2
394
+ Matrix([[x]])
395
+ >>> a3
396
+ Matrix([[0]])
397
+
398
+ """
399
+ return self._eval_get_diag_blocks()
400
+
401
+ @classmethod
402
+ def hstack(cls, *args):
403
+ """Return a matrix formed by joining args horizontally (i.e.
404
+ by repeated application of row_join).
405
+
406
+ Examples
407
+ ========
408
+
409
+ >>> from sympy import Matrix, eye
410
+ >>> Matrix.hstack(eye(2), 2*eye(2))
411
+ Matrix([
412
+ [1, 0, 2, 0],
413
+ [0, 1, 0, 2]])
414
+ """
415
+ if len(args) == 0:
416
+ return cls._new()
417
+
418
+ kls = type(args[0])
419
+ return reduce(kls.row_join, args)
420
+
421
+ def reshape(self, rows, cols):
422
+ """Reshape the matrix. Total number of elements must remain the same.
423
+
424
+ Examples
425
+ ========
426
+
427
+ >>> from sympy import Matrix
428
+ >>> m = Matrix(2, 3, lambda i, j: 1)
429
+ >>> m
430
+ Matrix([
431
+ [1, 1, 1],
432
+ [1, 1, 1]])
433
+ >>> m.reshape(1, 6)
434
+ Matrix([[1, 1, 1, 1, 1, 1]])
435
+ >>> m.reshape(3, 2)
436
+ Matrix([
437
+ [1, 1],
438
+ [1, 1],
439
+ [1, 1]])
440
+
441
+ """
442
+ if self.rows * self.cols != rows * cols:
443
+ raise ValueError("Invalid reshape parameters %d %d" % (rows, cols))
444
+ return self._new(rows, cols, lambda i, j: self[i * cols + j])
445
+
446
+ def row_del(self, row):
447
+ """Delete the specified row."""
448
+ if row < 0:
449
+ row += self.rows
450
+ if not 0 <= row < self.rows:
451
+ raise IndexError("Row {} is out of range.".format(row))
452
+
453
+ return self._eval_row_del(row)
454
+
455
+ def row_insert(self, pos, other):
456
+ """Insert one or more rows at the given row position.
457
+
458
+ Examples
459
+ ========
460
+
461
+ >>> from sympy import zeros, ones
462
+ >>> M = zeros(3)
463
+ >>> V = ones(1, 3)
464
+ >>> M.row_insert(1, V)
465
+ Matrix([
466
+ [0, 0, 0],
467
+ [1, 1, 1],
468
+ [0, 0, 0],
469
+ [0, 0, 0]])
470
+
471
+ See Also
472
+ ========
473
+
474
+ row
475
+ col_insert
476
+ """
477
+ # Allows you to build a matrix even if it is null matrix
478
+ if not self:
479
+ return self._new(other)
480
+
481
+ pos = as_int(pos)
482
+
483
+ if pos < 0:
484
+ pos = self.rows + pos
485
+ if pos < 0:
486
+ pos = 0
487
+ elif pos > self.rows:
488
+ pos = self.rows
489
+
490
+ if self.cols != other.cols:
491
+ raise ShapeError(
492
+ "The matrices have incompatible number of columns ({} and {})"
493
+ .format(self.cols, other.cols))
494
+
495
+ return self._eval_row_insert(pos, other)
496
+
497
+ def row_join(self, other):
498
+ """Concatenates two matrices along self's last and rhs's first column
499
+
500
+ Examples
501
+ ========
502
+
503
+ >>> from sympy import zeros, ones
504
+ >>> M = zeros(3)
505
+ >>> V = ones(3, 1)
506
+ >>> M.row_join(V)
507
+ Matrix([
508
+ [0, 0, 0, 1],
509
+ [0, 0, 0, 1],
510
+ [0, 0, 0, 1]])
511
+
512
+ See Also
513
+ ========
514
+
515
+ row
516
+ col_join
517
+ """
518
+ # A null matrix can always be stacked (see #10770)
519
+ if self.cols == 0 and self.rows != other.rows:
520
+ return self._new(other.rows, 0, []).row_join(other)
521
+
522
+ if self.rows != other.rows:
523
+ raise ShapeError(
524
+ "The matrices have incompatible number of rows ({} and {})"
525
+ .format(self.rows, other.rows))
526
+ return self._eval_row_join(other)
527
+
528
+ def diagonal(self, k=0):
529
+ """Returns the kth diagonal of self. The main diagonal
530
+ corresponds to `k=0`; diagonals above and below correspond to
531
+ `k > 0` and `k < 0`, respectively. The values of `self[i, j]`
532
+ for which `j - i = k`, are returned in order of increasing
533
+ `i + j`, starting with `i + j = |k|`.
534
+
535
+ Examples
536
+ ========
537
+
538
+ >>> from sympy import Matrix
539
+ >>> m = Matrix(3, 3, lambda i, j: j - i); m
540
+ Matrix([
541
+ [ 0, 1, 2],
542
+ [-1, 0, 1],
543
+ [-2, -1, 0]])
544
+ >>> _.diagonal()
545
+ Matrix([[0, 0, 0]])
546
+ >>> m.diagonal(1)
547
+ Matrix([[1, 1]])
548
+ >>> m.diagonal(-2)
549
+ Matrix([[-2]])
550
+
551
+ Even though the diagonal is returned as a Matrix, the element
552
+ retrieval can be done with a single index:
553
+
554
+ >>> Matrix.diag(1, 2, 3).diagonal()[1] # instead of [0, 1]
555
+ 2
556
+
557
+ See Also
558
+ ========
559
+
560
+ diag
561
+ """
562
+ rv = []
563
+ k = as_int(k)
564
+ r = 0 if k > 0 else -k
565
+ c = 0 if r else k
566
+ while True:
567
+ if r == self.rows or c == self.cols:
568
+ break
569
+ rv.append(self[r, c])
570
+ r += 1
571
+ c += 1
572
+ if not rv:
573
+ raise ValueError(filldedent('''
574
+ The %s diagonal is out of range [%s, %s]''' % (
575
+ k, 1 - self.rows, self.cols - 1)))
576
+ return self._new(1, len(rv), rv)
577
+
578
+ def row(self, i):
579
+ """Elementary row selector.
580
+
581
+ Examples
582
+ ========
583
+
584
+ >>> from sympy import eye
585
+ >>> eye(2).row(0)
586
+ Matrix([[1, 0]])
587
+
588
+ See Also
589
+ ========
590
+
591
+ col
592
+ row_del
593
+ row_join
594
+ row_insert
595
+ """
596
+ return self[i, :]
597
+
598
+ @property
599
+ def shape(self):
600
+ """The shape (dimensions) of the matrix as the 2-tuple (rows, cols).
601
+
602
+ Examples
603
+ ========
604
+
605
+ >>> from sympy import zeros
606
+ >>> M = zeros(2, 3)
607
+ >>> M.shape
608
+ (2, 3)
609
+ >>> M.rows
610
+ 2
611
+ >>> M.cols
612
+ 3
613
+ """
614
+ return (self.rows, self.cols)
615
+
616
+ def todok(self):
617
+ """Return the matrix as dictionary of keys.
618
+
619
+ Examples
620
+ ========
621
+
622
+ >>> from sympy import Matrix
623
+ >>> M = Matrix.eye(3)
624
+ >>> M.todok()
625
+ {(0, 0): 1, (1, 1): 1, (2, 2): 1}
626
+ """
627
+ return self._eval_todok()
628
+
629
+ def tolist(self):
630
+ """Return the Matrix as a nested Python list.
631
+
632
+ Examples
633
+ ========
634
+
635
+ >>> from sympy import Matrix, ones
636
+ >>> m = Matrix(3, 3, range(9))
637
+ >>> m
638
+ Matrix([
639
+ [0, 1, 2],
640
+ [3, 4, 5],
641
+ [6, 7, 8]])
642
+ >>> m.tolist()
643
+ [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
644
+ >>> ones(3, 0).tolist()
645
+ [[], [], []]
646
+
647
+ When there are no rows then it will not be possible to tell how
648
+ many columns were in the original matrix:
649
+
650
+ >>> ones(0, 3).tolist()
651
+ []
652
+
653
+ """
654
+ if not self.rows:
655
+ return []
656
+ if not self.cols:
657
+ return [[] for i in range(self.rows)]
658
+ return self._eval_tolist()
659
+
660
+ def todod(M):
661
+ """Returns matrix as dict of dicts containing non-zero elements of the Matrix
662
+
663
+ Examples
664
+ ========
665
+
666
+ >>> from sympy import Matrix
667
+ >>> A = Matrix([[0, 1],[0, 3]])
668
+ >>> A
669
+ Matrix([
670
+ [0, 1],
671
+ [0, 3]])
672
+ >>> A.todod()
673
+ {0: {1: 1}, 1: {1: 3}}
674
+
675
+
676
+ """
677
+ rowsdict = {}
678
+ Mlol = M.tolist()
679
+ for i, Mi in enumerate(Mlol):
680
+ row = {j: Mij for j, Mij in enumerate(Mi) if Mij}
681
+ if row:
682
+ rowsdict[i] = row
683
+ return rowsdict
684
+
685
+ def vec(self):
686
+ """Return the Matrix converted into a one column matrix by stacking columns
687
+
688
+ Examples
689
+ ========
690
+
691
+ >>> from sympy import Matrix
692
+ >>> m=Matrix([[1, 3], [2, 4]])
693
+ >>> m
694
+ Matrix([
695
+ [1, 3],
696
+ [2, 4]])
697
+ >>> m.vec()
698
+ Matrix([
699
+ [1],
700
+ [2],
701
+ [3],
702
+ [4]])
703
+
704
+ See Also
705
+ ========
706
+
707
+ vech
708
+ """
709
+ return self._eval_vec()
710
+
711
+ def vech(self, diagonal=True, check_symmetry=True):
712
+ """Reshapes the matrix into a column vector by stacking the
713
+ elements in the lower triangle.
714
+
715
+ Parameters
716
+ ==========
717
+
718
+ diagonal : bool, optional
719
+ If ``True``, it includes the diagonal elements.
720
+
721
+ check_symmetry : bool, optional
722
+ If ``True``, it checks whether the matrix is symmetric.
723
+
724
+ Examples
725
+ ========
726
+
727
+ >>> from sympy import Matrix
728
+ >>> m=Matrix([[1, 2], [2, 3]])
729
+ >>> m
730
+ Matrix([
731
+ [1, 2],
732
+ [2, 3]])
733
+ >>> m.vech()
734
+ Matrix([
735
+ [1],
736
+ [2],
737
+ [3]])
738
+ >>> m.vech(diagonal=False)
739
+ Matrix([[2]])
740
+
741
+ Notes
742
+ =====
743
+
744
+ This should work for symmetric matrices and ``vech`` can
745
+ represent symmetric matrices in vector form with less size than
746
+ ``vec``.
747
+
748
+ See Also
749
+ ========
750
+
751
+ vec
752
+ """
753
+ if not self.is_square:
754
+ raise NonSquareMatrixError
755
+
756
+ if check_symmetry and not self.is_symmetric():
757
+ raise ValueError("The matrix is not symmetric.")
758
+
759
+ return self._eval_vech(diagonal)
760
+
761
+ @classmethod
762
+ def vstack(cls, *args):
763
+ """Return a matrix formed by joining args vertically (i.e.
764
+ by repeated application of col_join).
765
+
766
+ Examples
767
+ ========
768
+
769
+ >>> from sympy import Matrix, eye
770
+ >>> Matrix.vstack(eye(2), 2*eye(2))
771
+ Matrix([
772
+ [1, 0],
773
+ [0, 1],
774
+ [2, 0],
775
+ [0, 2]])
776
+ """
777
+ if len(args) == 0:
778
+ return cls._new()
779
+
780
+ kls = type(args[0])
781
+ return reduce(kls.col_join, args)
782
+
783
+
784
+ class MatrixSpecial(MatrixRequired):
785
+ """Construction of special matrices"""
786
+
787
+ @classmethod
788
+ def _eval_diag(cls, rows, cols, diag_dict):
789
+ """diag_dict is a defaultdict containing
790
+ all the entries of the diagonal matrix."""
791
+ def entry(i, j):
792
+ return diag_dict[(i, j)]
793
+ return cls._new(rows, cols, entry)
794
+
795
+ @classmethod
796
+ def _eval_eye(cls, rows, cols):
797
+ vals = [cls.zero]*(rows*cols)
798
+ vals[::cols+1] = [cls.one]*min(rows, cols)
799
+ return cls._new(rows, cols, vals, copy=False)
800
+
801
+ @classmethod
802
+ def _eval_jordan_block(cls, size: int, eigenvalue, band='upper'):
803
+ if band == 'lower':
804
+ def entry(i, j):
805
+ if i == j:
806
+ return eigenvalue
807
+ elif j + 1 == i:
808
+ return cls.one
809
+ return cls.zero
810
+ else:
811
+ def entry(i, j):
812
+ if i == j:
813
+ return eigenvalue
814
+ elif i + 1 == j:
815
+ return cls.one
816
+ return cls.zero
817
+ return cls._new(size, size, entry)
818
+
819
+ @classmethod
820
+ def _eval_ones(cls, rows, cols):
821
+ def entry(i, j):
822
+ return cls.one
823
+ return cls._new(rows, cols, entry)
824
+
825
+ @classmethod
826
+ def _eval_zeros(cls, rows, cols):
827
+ return cls._new(rows, cols, [cls.zero]*(rows*cols), copy=False)
828
+
829
+ @classmethod
830
+ def _eval_wilkinson(cls, n):
831
+ def entry(i, j):
832
+ return cls.one if i + 1 == j else cls.zero
833
+
834
+ D = cls._new(2*n + 1, 2*n + 1, entry)
835
+
836
+ wminus = cls.diag(list(range(-n, n + 1)), unpack=True) + D + D.T
837
+ wplus = abs(cls.diag(list(range(-n, n + 1)), unpack=True)) + D + D.T
838
+
839
+ return wminus, wplus
840
+
841
+ @classmethod
842
+ def diag(kls, *args, strict=False, unpack=True, rows=None, cols=None, **kwargs):
843
+ """Returns a matrix with the specified diagonal.
844
+ If matrices are passed, a block-diagonal matrix
845
+ is created (i.e. the "direct sum" of the matrices).
846
+
847
+ kwargs
848
+ ======
849
+
850
+ rows : rows of the resulting matrix; computed if
851
+ not given.
852
+
853
+ cols : columns of the resulting matrix; computed if
854
+ not given.
855
+
856
+ cls : class for the resulting matrix
857
+
858
+ unpack : bool which, when True (default), unpacks a single
859
+ sequence rather than interpreting it as a Matrix.
860
+
861
+ strict : bool which, when False (default), allows Matrices to
862
+ have variable-length rows.
863
+
864
+ Examples
865
+ ========
866
+
867
+ >>> from sympy import Matrix
868
+ >>> Matrix.diag(1, 2, 3)
869
+ Matrix([
870
+ [1, 0, 0],
871
+ [0, 2, 0],
872
+ [0, 0, 3]])
873
+
874
+ The current default is to unpack a single sequence. If this is
875
+ not desired, set `unpack=False` and it will be interpreted as
876
+ a matrix.
877
+
878
+ >>> Matrix.diag([1, 2, 3]) == Matrix.diag(1, 2, 3)
879
+ True
880
+
881
+ When more than one element is passed, each is interpreted as
882
+ something to put on the diagonal. Lists are converted to
883
+ matrices. Filling of the diagonal always continues from
884
+ the bottom right hand corner of the previous item: this
885
+ will create a block-diagonal matrix whether the matrices
886
+ are square or not.
887
+
888
+ >>> col = [1, 2, 3]
889
+ >>> row = [[4, 5]]
890
+ >>> Matrix.diag(col, row)
891
+ Matrix([
892
+ [1, 0, 0],
893
+ [2, 0, 0],
894
+ [3, 0, 0],
895
+ [0, 4, 5]])
896
+
897
+ When `unpack` is False, elements within a list need not all be
898
+ of the same length. Setting `strict` to True would raise a
899
+ ValueError for the following:
900
+
901
+ >>> Matrix.diag([[1, 2, 3], [4, 5], [6]], unpack=False)
902
+ Matrix([
903
+ [1, 2, 3],
904
+ [4, 5, 0],
905
+ [6, 0, 0]])
906
+
907
+ The type of the returned matrix can be set with the ``cls``
908
+ keyword.
909
+
910
+ >>> from sympy import ImmutableMatrix
911
+ >>> from sympy.utilities.misc import func_name
912
+ >>> func_name(Matrix.diag(1, cls=ImmutableMatrix))
913
+ 'ImmutableDenseMatrix'
914
+
915
+ A zero dimension matrix can be used to position the start of
916
+ the filling at the start of an arbitrary row or column:
917
+
918
+ >>> from sympy import ones
919
+ >>> r2 = ones(0, 2)
920
+ >>> Matrix.diag(r2, 1, 2)
921
+ Matrix([
922
+ [0, 0, 1, 0],
923
+ [0, 0, 0, 2]])
924
+
925
+ See Also
926
+ ========
927
+ eye
928
+ diagonal
929
+ .dense.diag
930
+ .expressions.blockmatrix.BlockMatrix
931
+ .sparsetools.banded
932
+ """
933
+ from sympy.matrices.matrices import MatrixBase
934
+ from sympy.matrices.dense import Matrix
935
+ from sympy.matrices import SparseMatrix
936
+ klass = kwargs.get('cls', kls)
937
+ if unpack and len(args) == 1 and is_sequence(args[0]) and \
938
+ not isinstance(args[0], MatrixBase):
939
+ args = args[0]
940
+
941
+ # fill a default dict with the diagonal entries
942
+ diag_entries = defaultdict(int)
943
+ rmax = cmax = 0 # keep track of the biggest index seen
944
+ for m in args:
945
+ if isinstance(m, list):
946
+ if strict:
947
+ # if malformed, Matrix will raise an error
948
+ _ = Matrix(m)
949
+ r, c = _.shape
950
+ m = _.tolist()
951
+ else:
952
+ r, c, smat = SparseMatrix._handle_creation_inputs(m)
953
+ for (i, j), _ in smat.items():
954
+ diag_entries[(i + rmax, j + cmax)] = _
955
+ m = [] # to skip process below
956
+ elif hasattr(m, 'shape'): # a Matrix
957
+ # convert to list of lists
958
+ r, c = m.shape
959
+ m = m.tolist()
960
+ else: # in this case, we're a single value
961
+ diag_entries[(rmax, cmax)] = m
962
+ rmax += 1
963
+ cmax += 1
964
+ continue
965
+ # process list of lists
966
+ for i, mi in enumerate(m):
967
+ for j, _ in enumerate(mi):
968
+ diag_entries[(i + rmax, j + cmax)] = _
969
+ rmax += r
970
+ cmax += c
971
+ if rows is None:
972
+ rows, cols = cols, rows
973
+ if rows is None:
974
+ rows, cols = rmax, cmax
975
+ else:
976
+ cols = rows if cols is None else cols
977
+ if rows < rmax or cols < cmax:
978
+ raise ValueError(filldedent('''
979
+ The constructed matrix is {} x {} but a size of {} x {}
980
+ was specified.'''.format(rmax, cmax, rows, cols)))
981
+ return klass._eval_diag(rows, cols, diag_entries)
982
+
983
+ @classmethod
984
+ def eye(kls, rows, cols=None, **kwargs):
985
+ """Returns an identity matrix.
986
+
987
+ Parameters
988
+ ==========
989
+
990
+ rows : rows of the matrix
991
+ cols : cols of the matrix (if None, cols=rows)
992
+
993
+ kwargs
994
+ ======
995
+ cls : class of the returned matrix
996
+ """
997
+ if cols is None:
998
+ cols = rows
999
+ if rows < 0 or cols < 0:
1000
+ raise ValueError("Cannot create a {} x {} matrix. "
1001
+ "Both dimensions must be positive".format(rows, cols))
1002
+ klass = kwargs.get('cls', kls)
1003
+ rows, cols = as_int(rows), as_int(cols)
1004
+
1005
+ return klass._eval_eye(rows, cols)
1006
+
1007
+ @classmethod
1008
+ def jordan_block(kls, size=None, eigenvalue=None, *, band='upper', **kwargs):
1009
+ """Returns a Jordan block
1010
+
1011
+ Parameters
1012
+ ==========
1013
+
1014
+ size : Integer, optional
1015
+ Specifies the shape of the Jordan block matrix.
1016
+
1017
+ eigenvalue : Number or Symbol
1018
+ Specifies the value for the main diagonal of the matrix.
1019
+
1020
+ .. note::
1021
+ The keyword ``eigenval`` is also specified as an alias
1022
+ of this keyword, but it is not recommended to use.
1023
+
1024
+ We may deprecate the alias in later release.
1025
+
1026
+ band : 'upper' or 'lower', optional
1027
+ Specifies the position of the off-diagonal to put `1` s on.
1028
+
1029
+ cls : Matrix, optional
1030
+ Specifies the matrix class of the output form.
1031
+
1032
+ If it is not specified, the class type where the method is
1033
+ being executed on will be returned.
1034
+
1035
+ Returns
1036
+ =======
1037
+
1038
+ Matrix
1039
+ A Jordan block matrix.
1040
+
1041
+ Raises
1042
+ ======
1043
+
1044
+ ValueError
1045
+ If insufficient arguments are given for matrix size
1046
+ specification, or no eigenvalue is given.
1047
+
1048
+ Examples
1049
+ ========
1050
+
1051
+ Creating a default Jordan block:
1052
+
1053
+ >>> from sympy import Matrix
1054
+ >>> from sympy.abc import x
1055
+ >>> Matrix.jordan_block(4, x)
1056
+ Matrix([
1057
+ [x, 1, 0, 0],
1058
+ [0, x, 1, 0],
1059
+ [0, 0, x, 1],
1060
+ [0, 0, 0, x]])
1061
+
1062
+ Creating an alternative Jordan block matrix where `1` is on
1063
+ lower off-diagonal:
1064
+
1065
+ >>> Matrix.jordan_block(4, x, band='lower')
1066
+ Matrix([
1067
+ [x, 0, 0, 0],
1068
+ [1, x, 0, 0],
1069
+ [0, 1, x, 0],
1070
+ [0, 0, 1, x]])
1071
+
1072
+ Creating a Jordan block with keyword arguments
1073
+
1074
+ >>> Matrix.jordan_block(size=4, eigenvalue=x)
1075
+ Matrix([
1076
+ [x, 1, 0, 0],
1077
+ [0, x, 1, 0],
1078
+ [0, 0, x, 1],
1079
+ [0, 0, 0, x]])
1080
+
1081
+ References
1082
+ ==========
1083
+
1084
+ .. [1] https://en.wikipedia.org/wiki/Jordan_matrix
1085
+ """
1086
+ klass = kwargs.pop('cls', kls)
1087
+
1088
+ eigenval = kwargs.get('eigenval', None)
1089
+ if eigenvalue is None and eigenval is None:
1090
+ raise ValueError("Must supply an eigenvalue")
1091
+ elif eigenvalue != eigenval and None not in (eigenval, eigenvalue):
1092
+ raise ValueError(
1093
+ "Inconsistent values are given: 'eigenval'={}, "
1094
+ "'eigenvalue'={}".format(eigenval, eigenvalue))
1095
+ else:
1096
+ if eigenval is not None:
1097
+ eigenvalue = eigenval
1098
+
1099
+ if size is None:
1100
+ raise ValueError("Must supply a matrix size")
1101
+
1102
+ size = as_int(size)
1103
+ return klass._eval_jordan_block(size, eigenvalue, band)
1104
+
1105
+ @classmethod
1106
+ def ones(kls, rows, cols=None, **kwargs):
1107
+ """Returns a matrix of ones.
1108
+
1109
+ Parameters
1110
+ ==========
1111
+
1112
+ rows : rows of the matrix
1113
+ cols : cols of the matrix (if None, cols=rows)
1114
+
1115
+ kwargs
1116
+ ======
1117
+ cls : class of the returned matrix
1118
+ """
1119
+ if cols is None:
1120
+ cols = rows
1121
+ klass = kwargs.get('cls', kls)
1122
+ rows, cols = as_int(rows), as_int(cols)
1123
+
1124
+ return klass._eval_ones(rows, cols)
1125
+
1126
+ @classmethod
1127
+ def zeros(kls, rows, cols=None, **kwargs):
1128
+ """Returns a matrix of zeros.
1129
+
1130
+ Parameters
1131
+ ==========
1132
+
1133
+ rows : rows of the matrix
1134
+ cols : cols of the matrix (if None, cols=rows)
1135
+
1136
+ kwargs
1137
+ ======
1138
+ cls : class of the returned matrix
1139
+ """
1140
+ if cols is None:
1141
+ cols = rows
1142
+ if rows < 0 or cols < 0:
1143
+ raise ValueError("Cannot create a {} x {} matrix. "
1144
+ "Both dimensions must be positive".format(rows, cols))
1145
+ klass = kwargs.get('cls', kls)
1146
+ rows, cols = as_int(rows), as_int(cols)
1147
+
1148
+ return klass._eval_zeros(rows, cols)
1149
+
1150
+ @classmethod
1151
+ def companion(kls, poly):
1152
+ """Returns a companion matrix of a polynomial.
1153
+
1154
+ Examples
1155
+ ========
1156
+
1157
+ >>> from sympy import Matrix, Poly, Symbol, symbols
1158
+ >>> x = Symbol('x')
1159
+ >>> c0, c1, c2, c3, c4 = symbols('c0:5')
1160
+ >>> p = Poly(c0 + c1*x + c2*x**2 + c3*x**3 + c4*x**4 + x**5, x)
1161
+ >>> Matrix.companion(p)
1162
+ Matrix([
1163
+ [0, 0, 0, 0, -c0],
1164
+ [1, 0, 0, 0, -c1],
1165
+ [0, 1, 0, 0, -c2],
1166
+ [0, 0, 1, 0, -c3],
1167
+ [0, 0, 0, 1, -c4]])
1168
+ """
1169
+ poly = kls._sympify(poly)
1170
+ if not isinstance(poly, Poly):
1171
+ raise ValueError("{} must be a Poly instance.".format(poly))
1172
+ if not poly.is_monic:
1173
+ raise ValueError("{} must be a monic polynomial.".format(poly))
1174
+ if not poly.is_univariate:
1175
+ raise ValueError(
1176
+ "{} must be a univariate polynomial.".format(poly))
1177
+
1178
+ size = poly.degree()
1179
+ if not size >= 1:
1180
+ raise ValueError(
1181
+ "{} must have degree not less than 1.".format(poly))
1182
+
1183
+ coeffs = poly.all_coeffs()
1184
+ def entry(i, j):
1185
+ if j == size - 1:
1186
+ return -coeffs[-1 - i]
1187
+ elif i == j + 1:
1188
+ return kls.one
1189
+ return kls.zero
1190
+ return kls._new(size, size, entry)
1191
+
1192
+
1193
+ @classmethod
1194
+ def wilkinson(kls, n, **kwargs):
1195
+ """Returns two square Wilkinson Matrix of size 2*n + 1
1196
+ $W_{2n + 1}^-, W_{2n + 1}^+ =$ Wilkinson(n)
1197
+
1198
+ Examples
1199
+ ========
1200
+
1201
+ >>> from sympy import Matrix
1202
+ >>> wminus, wplus = Matrix.wilkinson(3)
1203
+ >>> wminus
1204
+ Matrix([
1205
+ [-3, 1, 0, 0, 0, 0, 0],
1206
+ [ 1, -2, 1, 0, 0, 0, 0],
1207
+ [ 0, 1, -1, 1, 0, 0, 0],
1208
+ [ 0, 0, 1, 0, 1, 0, 0],
1209
+ [ 0, 0, 0, 1, 1, 1, 0],
1210
+ [ 0, 0, 0, 0, 1, 2, 1],
1211
+ [ 0, 0, 0, 0, 0, 1, 3]])
1212
+ >>> wplus
1213
+ Matrix([
1214
+ [3, 1, 0, 0, 0, 0, 0],
1215
+ [1, 2, 1, 0, 0, 0, 0],
1216
+ [0, 1, 1, 1, 0, 0, 0],
1217
+ [0, 0, 1, 0, 1, 0, 0],
1218
+ [0, 0, 0, 1, 1, 1, 0],
1219
+ [0, 0, 0, 0, 1, 2, 1],
1220
+ [0, 0, 0, 0, 0, 1, 3]])
1221
+
1222
+ References
1223
+ ==========
1224
+
1225
+ .. [1] https://blogs.mathworks.com/cleve/2013/04/15/wilkinsons-matrices-2/
1226
+ .. [2] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Claredon Press, Oxford, 1965, 662 pp.
1227
+
1228
+ """
1229
+ klass = kwargs.get('cls', kls)
1230
+ n = as_int(n)
1231
+ return klass._eval_wilkinson(n)
1232
+
1233
+ class MatrixProperties(MatrixRequired):
1234
+ """Provides basic properties of a matrix."""
1235
+
1236
+ def _eval_atoms(self, *types):
1237
+ result = set()
1238
+ for i in self:
1239
+ result.update(i.atoms(*types))
1240
+ return result
1241
+
1242
+ def _eval_free_symbols(self):
1243
+ return set().union(*(i.free_symbols for i in self if i))
1244
+
1245
+ def _eval_has(self, *patterns):
1246
+ return any(a.has(*patterns) for a in self)
1247
+
1248
+ def _eval_is_anti_symmetric(self, simpfunc):
1249
+ if not all(simpfunc(self[i, j] + self[j, i]).is_zero for i in range(self.rows) for j in range(self.cols)):
1250
+ return False
1251
+ return True
1252
+
1253
+ def _eval_is_diagonal(self):
1254
+ for i in range(self.rows):
1255
+ for j in range(self.cols):
1256
+ if i != j and self[i, j]:
1257
+ return False
1258
+ return True
1259
+
1260
+ # _eval_is_hermitian is called by some general SymPy
1261
+ # routines and has a different *args signature. Make
1262
+ # sure the names don't clash by adding `_matrix_` in name.
1263
+ def _eval_is_matrix_hermitian(self, simpfunc):
1264
+ mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i].conjugate()))
1265
+ return mat.is_zero_matrix
1266
+
1267
+ def _eval_is_Identity(self) -> FuzzyBool:
1268
+ def dirac(i, j):
1269
+ if i == j:
1270
+ return 1
1271
+ return 0
1272
+
1273
+ return all(self[i, j] == dirac(i, j)
1274
+ for i in range(self.rows)
1275
+ for j in range(self.cols))
1276
+
1277
+ def _eval_is_lower_hessenberg(self):
1278
+ return all(self[i, j].is_zero
1279
+ for i in range(self.rows)
1280
+ for j in range(i + 2, self.cols))
1281
+
1282
+ def _eval_is_lower(self):
1283
+ return all(self[i, j].is_zero
1284
+ for i in range(self.rows)
1285
+ for j in range(i + 1, self.cols))
1286
+
1287
+ def _eval_is_symbolic(self):
1288
+ return self.has(Symbol)
1289
+
1290
+ def _eval_is_symmetric(self, simpfunc):
1291
+ mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i]))
1292
+ return mat.is_zero_matrix
1293
+
1294
+ def _eval_is_zero_matrix(self):
1295
+ if any(i.is_zero == False for i in self):
1296
+ return False
1297
+ if any(i.is_zero is None for i in self):
1298
+ return None
1299
+ return True
1300
+
1301
+ def _eval_is_upper_hessenberg(self):
1302
+ return all(self[i, j].is_zero
1303
+ for i in range(2, self.rows)
1304
+ for j in range(min(self.cols, (i - 1))))
1305
+
1306
+ def _eval_values(self):
1307
+ return [i for i in self if not i.is_zero]
1308
+
1309
+ def _has_positive_diagonals(self):
1310
+ diagonal_entries = (self[i, i] for i in range(self.rows))
1311
+ return fuzzy_and(x.is_positive for x in diagonal_entries)
1312
+
1313
+ def _has_nonnegative_diagonals(self):
1314
+ diagonal_entries = (self[i, i] for i in range(self.rows))
1315
+ return fuzzy_and(x.is_nonnegative for x in diagonal_entries)
1316
+
1317
+ def atoms(self, *types):
1318
+ """Returns the atoms that form the current object.
1319
+
1320
+ Examples
1321
+ ========
1322
+
1323
+ >>> from sympy.abc import x, y
1324
+ >>> from sympy import Matrix
1325
+ >>> Matrix([[x]])
1326
+ Matrix([[x]])
1327
+ >>> _.atoms()
1328
+ {x}
1329
+ >>> Matrix([[x, y], [y, x]])
1330
+ Matrix([
1331
+ [x, y],
1332
+ [y, x]])
1333
+ >>> _.atoms()
1334
+ {x, y}
1335
+ """
1336
+
1337
+ types = tuple(t if isinstance(t, type) else type(t) for t in types)
1338
+ if not types:
1339
+ types = (Atom,)
1340
+ return self._eval_atoms(*types)
1341
+
1342
+ @property
1343
+ def free_symbols(self):
1344
+ """Returns the free symbols within the matrix.
1345
+
1346
+ Examples
1347
+ ========
1348
+
1349
+ >>> from sympy.abc import x
1350
+ >>> from sympy import Matrix
1351
+ >>> Matrix([[x], [1]]).free_symbols
1352
+ {x}
1353
+ """
1354
+ return self._eval_free_symbols()
1355
+
1356
+ def has(self, *patterns):
1357
+ """Test whether any subexpression matches any of the patterns.
1358
+
1359
+ Examples
1360
+ ========
1361
+
1362
+ >>> from sympy import Matrix, SparseMatrix, Float
1363
+ >>> from sympy.abc import x, y
1364
+ >>> A = Matrix(((1, x), (0.2, 3)))
1365
+ >>> B = SparseMatrix(((1, x), (0.2, 3)))
1366
+ >>> A.has(x)
1367
+ True
1368
+ >>> A.has(y)
1369
+ False
1370
+ >>> A.has(Float)
1371
+ True
1372
+ >>> B.has(x)
1373
+ True
1374
+ >>> B.has(y)
1375
+ False
1376
+ >>> B.has(Float)
1377
+ True
1378
+ """
1379
+ return self._eval_has(*patterns)
1380
+
1381
+ def is_anti_symmetric(self, simplify=True):
1382
+ """Check if matrix M is an antisymmetric matrix,
1383
+ that is, M is a square matrix with all M[i, j] == -M[j, i].
1384
+
1385
+ When ``simplify=True`` (default), the sum M[i, j] + M[j, i] is
1386
+ simplified before testing to see if it is zero. By default,
1387
+ the SymPy simplify function is used. To use a custom function
1388
+ set simplify to a function that accepts a single argument which
1389
+ returns a simplified expression. To skip simplification, set
1390
+ simplify to False but note that although this will be faster,
1391
+ it may induce false negatives.
1392
+
1393
+ Examples
1394
+ ========
1395
+
1396
+ >>> from sympy import Matrix, symbols
1397
+ >>> m = Matrix(2, 2, [0, 1, -1, 0])
1398
+ >>> m
1399
+ Matrix([
1400
+ [ 0, 1],
1401
+ [-1, 0]])
1402
+ >>> m.is_anti_symmetric()
1403
+ True
1404
+ >>> x, y = symbols('x y')
1405
+ >>> m = Matrix(2, 3, [0, 0, x, -y, 0, 0])
1406
+ >>> m
1407
+ Matrix([
1408
+ [ 0, 0, x],
1409
+ [-y, 0, 0]])
1410
+ >>> m.is_anti_symmetric()
1411
+ False
1412
+
1413
+ >>> from sympy.abc import x, y
1414
+ >>> m = Matrix(3, 3, [0, x**2 + 2*x + 1, y,
1415
+ ... -(x + 1)**2, 0, x*y,
1416
+ ... -y, -x*y, 0])
1417
+
1418
+ Simplification of matrix elements is done by default so even
1419
+ though two elements which should be equal and opposite would not
1420
+ pass an equality test, the matrix is still reported as
1421
+ anti-symmetric:
1422
+
1423
+ >>> m[0, 1] == -m[1, 0]
1424
+ False
1425
+ >>> m.is_anti_symmetric()
1426
+ True
1427
+
1428
+ If ``simplify=False`` is used for the case when a Matrix is already
1429
+ simplified, this will speed things up. Here, we see that without
1430
+ simplification the matrix does not appear anti-symmetric:
1431
+
1432
+ >>> m.is_anti_symmetric(simplify=False)
1433
+ False
1434
+
1435
+ But if the matrix were already expanded, then it would appear
1436
+ anti-symmetric and simplification in the is_anti_symmetric routine
1437
+ is not needed:
1438
+
1439
+ >>> m = m.expand()
1440
+ >>> m.is_anti_symmetric(simplify=False)
1441
+ True
1442
+ """
1443
+ # accept custom simplification
1444
+ simpfunc = simplify
1445
+ if not isfunction(simplify):
1446
+ simpfunc = _simplify if simplify else lambda x: x
1447
+
1448
+ if not self.is_square:
1449
+ return False
1450
+ return self._eval_is_anti_symmetric(simpfunc)
1451
+
1452
+ def is_diagonal(self):
1453
+ """Check if matrix is diagonal,
1454
+ that is matrix in which the entries outside the main diagonal are all zero.
1455
+
1456
+ Examples
1457
+ ========
1458
+
1459
+ >>> from sympy import Matrix, diag
1460
+ >>> m = Matrix(2, 2, [1, 0, 0, 2])
1461
+ >>> m
1462
+ Matrix([
1463
+ [1, 0],
1464
+ [0, 2]])
1465
+ >>> m.is_diagonal()
1466
+ True
1467
+
1468
+ >>> m = Matrix(2, 2, [1, 1, 0, 2])
1469
+ >>> m
1470
+ Matrix([
1471
+ [1, 1],
1472
+ [0, 2]])
1473
+ >>> m.is_diagonal()
1474
+ False
1475
+
1476
+ >>> m = diag(1, 2, 3)
1477
+ >>> m
1478
+ Matrix([
1479
+ [1, 0, 0],
1480
+ [0, 2, 0],
1481
+ [0, 0, 3]])
1482
+ >>> m.is_diagonal()
1483
+ True
1484
+
1485
+ See Also
1486
+ ========
1487
+
1488
+ is_lower
1489
+ is_upper
1490
+ sympy.matrices.matrices.MatrixEigen.is_diagonalizable
1491
+ diagonalize
1492
+ """
1493
+ return self._eval_is_diagonal()
1494
+
1495
+ @property
1496
+ def is_weakly_diagonally_dominant(self):
1497
+ r"""Tests if the matrix is row weakly diagonally dominant.
1498
+
1499
+ Explanation
1500
+ ===========
1501
+
1502
+ A $n, n$ matrix $A$ is row weakly diagonally dominant if
1503
+
1504
+ .. math::
1505
+ \left|A_{i, i}\right| \ge \sum_{j = 0, j \neq i}^{n-1}
1506
+ \left|A_{i, j}\right| \quad {\text{for all }}
1507
+ i \in \{ 0, ..., n-1 \}
1508
+
1509
+ Examples
1510
+ ========
1511
+
1512
+ >>> from sympy import Matrix
1513
+ >>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]])
1514
+ >>> A.is_weakly_diagonally_dominant
1515
+ True
1516
+
1517
+ >>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]])
1518
+ >>> A.is_weakly_diagonally_dominant
1519
+ False
1520
+
1521
+ >>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]])
1522
+ >>> A.is_weakly_diagonally_dominant
1523
+ True
1524
+
1525
+ Notes
1526
+ =====
1527
+
1528
+ If you want to test whether a matrix is column diagonally
1529
+ dominant, you can apply the test after transposing the matrix.
1530
+ """
1531
+ if not self.is_square:
1532
+ return False
1533
+
1534
+ rows, cols = self.shape
1535
+
1536
+ def test_row(i):
1537
+ summation = self.zero
1538
+ for j in range(cols):
1539
+ if i != j:
1540
+ summation += Abs(self[i, j])
1541
+ return (Abs(self[i, i]) - summation).is_nonnegative
1542
+
1543
+ return fuzzy_and(test_row(i) for i in range(rows))
1544
+
1545
+ @property
1546
+ def is_strongly_diagonally_dominant(self):
1547
+ r"""Tests if the matrix is row strongly diagonally dominant.
1548
+
1549
+ Explanation
1550
+ ===========
1551
+
1552
+ A $n, n$ matrix $A$ is row strongly diagonally dominant if
1553
+
1554
+ .. math::
1555
+ \left|A_{i, i}\right| > \sum_{j = 0, j \neq i}^{n-1}
1556
+ \left|A_{i, j}\right| \quad {\text{for all }}
1557
+ i \in \{ 0, ..., n-1 \}
1558
+
1559
+ Examples
1560
+ ========
1561
+
1562
+ >>> from sympy import Matrix
1563
+ >>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]])
1564
+ >>> A.is_strongly_diagonally_dominant
1565
+ False
1566
+
1567
+ >>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]])
1568
+ >>> A.is_strongly_diagonally_dominant
1569
+ False
1570
+
1571
+ >>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]])
1572
+ >>> A.is_strongly_diagonally_dominant
1573
+ True
1574
+
1575
+ Notes
1576
+ =====
1577
+
1578
+ If you want to test whether a matrix is column diagonally
1579
+ dominant, you can apply the test after transposing the matrix.
1580
+ """
1581
+ if not self.is_square:
1582
+ return False
1583
+
1584
+ rows, cols = self.shape
1585
+
1586
+ def test_row(i):
1587
+ summation = self.zero
1588
+ for j in range(cols):
1589
+ if i != j:
1590
+ summation += Abs(self[i, j])
1591
+ return (Abs(self[i, i]) - summation).is_positive
1592
+
1593
+ return fuzzy_and(test_row(i) for i in range(rows))
1594
+
1595
+ @property
1596
+ def is_hermitian(self):
1597
+ """Checks if the matrix is Hermitian.
1598
+
1599
+ In a Hermitian matrix element i,j is the complex conjugate of
1600
+ element j,i.
1601
+
1602
+ Examples
1603
+ ========
1604
+
1605
+ >>> from sympy import Matrix
1606
+ >>> from sympy import I
1607
+ >>> from sympy.abc import x
1608
+ >>> a = Matrix([[1, I], [-I, 1]])
1609
+ >>> a
1610
+ Matrix([
1611
+ [ 1, I],
1612
+ [-I, 1]])
1613
+ >>> a.is_hermitian
1614
+ True
1615
+ >>> a[0, 0] = 2*I
1616
+ >>> a.is_hermitian
1617
+ False
1618
+ >>> a[0, 0] = x
1619
+ >>> a.is_hermitian
1620
+ >>> a[0, 1] = a[1, 0]*I
1621
+ >>> a.is_hermitian
1622
+ False
1623
+ """
1624
+ if not self.is_square:
1625
+ return False
1626
+
1627
+ return self._eval_is_matrix_hermitian(_simplify)
1628
+
1629
+ @property
1630
+ def is_Identity(self) -> FuzzyBool:
1631
+ if not self.is_square:
1632
+ return False
1633
+ return self._eval_is_Identity()
1634
+
1635
+ @property
1636
+ def is_lower_hessenberg(self):
1637
+ r"""Checks if the matrix is in the lower-Hessenberg form.
1638
+
1639
+ The lower hessenberg matrix has zero entries
1640
+ above the first superdiagonal.
1641
+
1642
+ Examples
1643
+ ========
1644
+
1645
+ >>> from sympy import Matrix
1646
+ >>> a = Matrix([[1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]])
1647
+ >>> a
1648
+ Matrix([
1649
+ [1, 2, 0, 0],
1650
+ [5, 2, 3, 0],
1651
+ [3, 4, 3, 7],
1652
+ [5, 6, 1, 1]])
1653
+ >>> a.is_lower_hessenberg
1654
+ True
1655
+
1656
+ See Also
1657
+ ========
1658
+
1659
+ is_upper_hessenberg
1660
+ is_lower
1661
+ """
1662
+ return self._eval_is_lower_hessenberg()
1663
+
1664
+ @property
1665
+ def is_lower(self):
1666
+ """Check if matrix is a lower triangular matrix. True can be returned
1667
+ even if the matrix is not square.
1668
+
1669
+ Examples
1670
+ ========
1671
+
1672
+ >>> from sympy import Matrix
1673
+ >>> m = Matrix(2, 2, [1, 0, 0, 1])
1674
+ >>> m
1675
+ Matrix([
1676
+ [1, 0],
1677
+ [0, 1]])
1678
+ >>> m.is_lower
1679
+ True
1680
+
1681
+ >>> m = Matrix(4, 3, [0, 0, 0, 2, 0, 0, 1, 4, 0, 6, 6, 5])
1682
+ >>> m
1683
+ Matrix([
1684
+ [0, 0, 0],
1685
+ [2, 0, 0],
1686
+ [1, 4, 0],
1687
+ [6, 6, 5]])
1688
+ >>> m.is_lower
1689
+ True
1690
+
1691
+ >>> from sympy.abc import x, y
1692
+ >>> m = Matrix(2, 2, [x**2 + y, y**2 + x, 0, x + y])
1693
+ >>> m
1694
+ Matrix([
1695
+ [x**2 + y, x + y**2],
1696
+ [ 0, x + y]])
1697
+ >>> m.is_lower
1698
+ False
1699
+
1700
+ See Also
1701
+ ========
1702
+
1703
+ is_upper
1704
+ is_diagonal
1705
+ is_lower_hessenberg
1706
+ """
1707
+ return self._eval_is_lower()
1708
+
1709
+ @property
1710
+ def is_square(self):
1711
+ """Checks if a matrix is square.
1712
+
1713
+ A matrix is square if the number of rows equals the number of columns.
1714
+ The empty matrix is square by definition, since the number of rows and
1715
+ the number of columns are both zero.
1716
+
1717
+ Examples
1718
+ ========
1719
+
1720
+ >>> from sympy import Matrix
1721
+ >>> a = Matrix([[1, 2, 3], [4, 5, 6]])
1722
+ >>> b = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
1723
+ >>> c = Matrix([])
1724
+ >>> a.is_square
1725
+ False
1726
+ >>> b.is_square
1727
+ True
1728
+ >>> c.is_square
1729
+ True
1730
+ """
1731
+ return self.rows == self.cols
1732
+
1733
+ def is_symbolic(self):
1734
+ """Checks if any elements contain Symbols.
1735
+
1736
+ Examples
1737
+ ========
1738
+
1739
+ >>> from sympy import Matrix
1740
+ >>> from sympy.abc import x, y
1741
+ >>> M = Matrix([[x, y], [1, 0]])
1742
+ >>> M.is_symbolic()
1743
+ True
1744
+
1745
+ """
1746
+ return self._eval_is_symbolic()
1747
+
1748
+ def is_symmetric(self, simplify=True):
1749
+ """Check if matrix is symmetric matrix,
1750
+ that is square matrix and is equal to its transpose.
1751
+
1752
+ By default, simplifications occur before testing symmetry.
1753
+ They can be skipped using 'simplify=False'; while speeding things a bit,
1754
+ this may however induce false negatives.
1755
+
1756
+ Examples
1757
+ ========
1758
+
1759
+ >>> from sympy import Matrix
1760
+ >>> m = Matrix(2, 2, [0, 1, 1, 2])
1761
+ >>> m
1762
+ Matrix([
1763
+ [0, 1],
1764
+ [1, 2]])
1765
+ >>> m.is_symmetric()
1766
+ True
1767
+
1768
+ >>> m = Matrix(2, 2, [0, 1, 2, 0])
1769
+ >>> m
1770
+ Matrix([
1771
+ [0, 1],
1772
+ [2, 0]])
1773
+ >>> m.is_symmetric()
1774
+ False
1775
+
1776
+ >>> m = Matrix(2, 3, [0, 0, 0, 0, 0, 0])
1777
+ >>> m
1778
+ Matrix([
1779
+ [0, 0, 0],
1780
+ [0, 0, 0]])
1781
+ >>> m.is_symmetric()
1782
+ False
1783
+
1784
+ >>> from sympy.abc import x, y
1785
+ >>> m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2, 2, 0, y, 0, 3])
1786
+ >>> m
1787
+ Matrix([
1788
+ [ 1, x**2 + 2*x + 1, y],
1789
+ [(x + 1)**2, 2, 0],
1790
+ [ y, 0, 3]])
1791
+ >>> m.is_symmetric()
1792
+ True
1793
+
1794
+ If the matrix is already simplified, you may speed-up is_symmetric()
1795
+ test by using 'simplify=False'.
1796
+
1797
+ >>> bool(m.is_symmetric(simplify=False))
1798
+ False
1799
+ >>> m1 = m.expand()
1800
+ >>> m1.is_symmetric(simplify=False)
1801
+ True
1802
+ """
1803
+ simpfunc = simplify
1804
+ if not isfunction(simplify):
1805
+ simpfunc = _simplify if simplify else lambda x: x
1806
+
1807
+ if not self.is_square:
1808
+ return False
1809
+
1810
+ return self._eval_is_symmetric(simpfunc)
1811
+
1812
+ @property
1813
+ def is_upper_hessenberg(self):
1814
+ """Checks if the matrix is the upper-Hessenberg form.
1815
+
1816
+ The upper hessenberg matrix has zero entries
1817
+ below the first subdiagonal.
1818
+
1819
+ Examples
1820
+ ========
1821
+
1822
+ >>> from sympy import Matrix
1823
+ >>> a = Matrix([[1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]])
1824
+ >>> a
1825
+ Matrix([
1826
+ [1, 4, 2, 3],
1827
+ [3, 4, 1, 7],
1828
+ [0, 2, 3, 4],
1829
+ [0, 0, 1, 3]])
1830
+ >>> a.is_upper_hessenberg
1831
+ True
1832
+
1833
+ See Also
1834
+ ========
1835
+
1836
+ is_lower_hessenberg
1837
+ is_upper
1838
+ """
1839
+ return self._eval_is_upper_hessenberg()
1840
+
1841
+ @property
1842
+ def is_upper(self):
1843
+ """Check if matrix is an upper triangular matrix. True can be returned
1844
+ even if the matrix is not square.
1845
+
1846
+ Examples
1847
+ ========
1848
+
1849
+ >>> from sympy import Matrix
1850
+ >>> m = Matrix(2, 2, [1, 0, 0, 1])
1851
+ >>> m
1852
+ Matrix([
1853
+ [1, 0],
1854
+ [0, 1]])
1855
+ >>> m.is_upper
1856
+ True
1857
+
1858
+ >>> m = Matrix(4, 3, [5, 1, 9, 0, 4, 6, 0, 0, 5, 0, 0, 0])
1859
+ >>> m
1860
+ Matrix([
1861
+ [5, 1, 9],
1862
+ [0, 4, 6],
1863
+ [0, 0, 5],
1864
+ [0, 0, 0]])
1865
+ >>> m.is_upper
1866
+ True
1867
+
1868
+ >>> m = Matrix(2, 3, [4, 2, 5, 6, 1, 1])
1869
+ >>> m
1870
+ Matrix([
1871
+ [4, 2, 5],
1872
+ [6, 1, 1]])
1873
+ >>> m.is_upper
1874
+ False
1875
+
1876
+ See Also
1877
+ ========
1878
+
1879
+ is_lower
1880
+ is_diagonal
1881
+ is_upper_hessenberg
1882
+ """
1883
+ return all(self[i, j].is_zero
1884
+ for i in range(1, self.rows)
1885
+ for j in range(min(i, self.cols)))
1886
+
1887
+ @property
1888
+ def is_zero_matrix(self):
1889
+ """Checks if a matrix is a zero matrix.
1890
+
1891
+ A matrix is zero if every element is zero. A matrix need not be square
1892
+ to be considered zero. The empty matrix is zero by the principle of
1893
+ vacuous truth. For a matrix that may or may not be zero (e.g.
1894
+ contains a symbol), this will be None
1895
+
1896
+ Examples
1897
+ ========
1898
+
1899
+ >>> from sympy import Matrix, zeros
1900
+ >>> from sympy.abc import x
1901
+ >>> a = Matrix([[0, 0], [0, 0]])
1902
+ >>> b = zeros(3, 4)
1903
+ >>> c = Matrix([[0, 1], [0, 0]])
1904
+ >>> d = Matrix([])
1905
+ >>> e = Matrix([[x, 0], [0, 0]])
1906
+ >>> a.is_zero_matrix
1907
+ True
1908
+ >>> b.is_zero_matrix
1909
+ True
1910
+ >>> c.is_zero_matrix
1911
+ False
1912
+ >>> d.is_zero_matrix
1913
+ True
1914
+ >>> e.is_zero_matrix
1915
+ """
1916
+ return self._eval_is_zero_matrix()
1917
+
1918
+ def values(self):
1919
+ """Return non-zero values of self."""
1920
+ return self._eval_values()
1921
+
1922
+
1923
+ class MatrixOperations(MatrixRequired):
1924
+ """Provides basic matrix shape and elementwise
1925
+ operations. Should not be instantiated directly."""
1926
+
1927
+ def _eval_adjoint(self):
1928
+ return self.transpose().conjugate()
1929
+
1930
+ def _eval_applyfunc(self, f):
1931
+ out = self._new(self.rows, self.cols, [f(x) for x in self])
1932
+ return out
1933
+
1934
+ def _eval_as_real_imag(self): # type: ignore
1935
+ return (self.applyfunc(re), self.applyfunc(im))
1936
+
1937
+ def _eval_conjugate(self):
1938
+ return self.applyfunc(lambda x: x.conjugate())
1939
+
1940
+ def _eval_permute_cols(self, perm):
1941
+ # apply the permutation to a list
1942
+ mapping = list(perm)
1943
+
1944
+ def entry(i, j):
1945
+ return self[i, mapping[j]]
1946
+
1947
+ return self._new(self.rows, self.cols, entry)
1948
+
1949
+ def _eval_permute_rows(self, perm):
1950
+ # apply the permutation to a list
1951
+ mapping = list(perm)
1952
+
1953
+ def entry(i, j):
1954
+ return self[mapping[i], j]
1955
+
1956
+ return self._new(self.rows, self.cols, entry)
1957
+
1958
+ def _eval_trace(self):
1959
+ return sum(self[i, i] for i in range(self.rows))
1960
+
1961
+ def _eval_transpose(self):
1962
+ return self._new(self.cols, self.rows, lambda i, j: self[j, i])
1963
+
1964
+ def adjoint(self):
1965
+ """Conjugate transpose or Hermitian conjugation."""
1966
+ return self._eval_adjoint()
1967
+
1968
+ def applyfunc(self, f):
1969
+ """Apply a function to each element of the matrix.
1970
+
1971
+ Examples
1972
+ ========
1973
+
1974
+ >>> from sympy import Matrix
1975
+ >>> m = Matrix(2, 2, lambda i, j: i*2+j)
1976
+ >>> m
1977
+ Matrix([
1978
+ [0, 1],
1979
+ [2, 3]])
1980
+ >>> m.applyfunc(lambda i: 2*i)
1981
+ Matrix([
1982
+ [0, 2],
1983
+ [4, 6]])
1984
+
1985
+ """
1986
+ if not callable(f):
1987
+ raise TypeError("`f` must be callable.")
1988
+
1989
+ return self._eval_applyfunc(f)
1990
+
1991
+ def as_real_imag(self, deep=True, **hints):
1992
+ """Returns a tuple containing the (real, imaginary) part of matrix."""
1993
+ # XXX: Ignoring deep and hints...
1994
+ return self._eval_as_real_imag()
1995
+
1996
+ def conjugate(self):
1997
+ """Return the by-element conjugation.
1998
+
1999
+ Examples
2000
+ ========
2001
+
2002
+ >>> from sympy import SparseMatrix, I
2003
+ >>> a = SparseMatrix(((1, 2 + I), (3, 4), (I, -I)))
2004
+ >>> a
2005
+ Matrix([
2006
+ [1, 2 + I],
2007
+ [3, 4],
2008
+ [I, -I]])
2009
+ >>> a.C
2010
+ Matrix([
2011
+ [ 1, 2 - I],
2012
+ [ 3, 4],
2013
+ [-I, I]])
2014
+
2015
+ See Also
2016
+ ========
2017
+
2018
+ transpose: Matrix transposition
2019
+ H: Hermite conjugation
2020
+ sympy.matrices.matrices.MatrixBase.D: Dirac conjugation
2021
+ """
2022
+ return self._eval_conjugate()
2023
+
2024
+ def doit(self, **hints):
2025
+ return self.applyfunc(lambda x: x.doit(**hints))
2026
+
2027
+ def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False):
2028
+ """Apply evalf() to each element of self."""
2029
+ options = {'subs':subs, 'maxn':maxn, 'chop':chop, 'strict':strict,
2030
+ 'quad':quad, 'verbose':verbose}
2031
+ return self.applyfunc(lambda i: i.evalf(n, **options))
2032
+
2033
+ def expand(self, deep=True, modulus=None, power_base=True, power_exp=True,
2034
+ mul=True, log=True, multinomial=True, basic=True, **hints):
2035
+ """Apply core.function.expand to each entry of the matrix.
2036
+
2037
+ Examples
2038
+ ========
2039
+
2040
+ >>> from sympy.abc import x
2041
+ >>> from sympy import Matrix
2042
+ >>> Matrix(1, 1, [x*(x+1)])
2043
+ Matrix([[x*(x + 1)]])
2044
+ >>> _.expand()
2045
+ Matrix([[x**2 + x]])
2046
+
2047
+ """
2048
+ return self.applyfunc(lambda x: x.expand(
2049
+ deep, modulus, power_base, power_exp, mul, log, multinomial, basic,
2050
+ **hints))
2051
+
2052
+ @property
2053
+ def H(self):
2054
+ """Return Hermite conjugate.
2055
+
2056
+ Examples
2057
+ ========
2058
+
2059
+ >>> from sympy import Matrix, I
2060
+ >>> m = Matrix((0, 1 + I, 2, 3))
2061
+ >>> m
2062
+ Matrix([
2063
+ [ 0],
2064
+ [1 + I],
2065
+ [ 2],
2066
+ [ 3]])
2067
+ >>> m.H
2068
+ Matrix([[0, 1 - I, 2, 3]])
2069
+
2070
+ See Also
2071
+ ========
2072
+
2073
+ conjugate: By-element conjugation
2074
+ sympy.matrices.matrices.MatrixBase.D: Dirac conjugation
2075
+ """
2076
+ return self.T.C
2077
+
2078
+ def permute(self, perm, orientation='rows', direction='forward'):
2079
+ r"""Permute the rows or columns of a matrix by the given list of
2080
+ swaps.
2081
+
2082
+ Parameters
2083
+ ==========
2084
+
2085
+ perm : Permutation, list, or list of lists
2086
+ A representation for the permutation.
2087
+
2088
+ If it is ``Permutation``, it is used directly with some
2089
+ resizing with respect to the matrix size.
2090
+
2091
+ If it is specified as list of lists,
2092
+ (e.g., ``[[0, 1], [0, 2]]``), then the permutation is formed
2093
+ from applying the product of cycles. The direction how the
2094
+ cyclic product is applied is described in below.
2095
+
2096
+ If it is specified as a list, the list should represent
2097
+ an array form of a permutation. (e.g., ``[1, 2, 0]``) which
2098
+ would would form the swapping function
2099
+ `0 \mapsto 1, 1 \mapsto 2, 2\mapsto 0`.
2100
+
2101
+ orientation : 'rows', 'cols'
2102
+ A flag to control whether to permute the rows or the columns
2103
+
2104
+ direction : 'forward', 'backward'
2105
+ A flag to control whether to apply the permutations from
2106
+ the start of the list first, or from the back of the list
2107
+ first.
2108
+
2109
+ For example, if the permutation specification is
2110
+ ``[[0, 1], [0, 2]]``,
2111
+
2112
+ If the flag is set to ``'forward'``, the cycle would be
2113
+ formed as `0 \mapsto 2, 2 \mapsto 1, 1 \mapsto 0`.
2114
+
2115
+ If the flag is set to ``'backward'``, the cycle would be
2116
+ formed as `0 \mapsto 1, 1 \mapsto 2, 2 \mapsto 0`.
2117
+
2118
+ If the argument ``perm`` is not in a form of list of lists,
2119
+ this flag takes no effect.
2120
+
2121
+ Examples
2122
+ ========
2123
+
2124
+ >>> from sympy import eye
2125
+ >>> M = eye(3)
2126
+ >>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='forward')
2127
+ Matrix([
2128
+ [0, 0, 1],
2129
+ [1, 0, 0],
2130
+ [0, 1, 0]])
2131
+
2132
+ >>> from sympy import eye
2133
+ >>> M = eye(3)
2134
+ >>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='backward')
2135
+ Matrix([
2136
+ [0, 1, 0],
2137
+ [0, 0, 1],
2138
+ [1, 0, 0]])
2139
+
2140
+ Notes
2141
+ =====
2142
+
2143
+ If a bijective function
2144
+ `\sigma : \mathbb{N}_0 \rightarrow \mathbb{N}_0` denotes the
2145
+ permutation.
2146
+
2147
+ If the matrix `A` is the matrix to permute, represented as
2148
+ a horizontal or a vertical stack of vectors:
2149
+
2150
+ .. math::
2151
+ A =
2152
+ \begin{bmatrix}
2153
+ a_0 \\ a_1 \\ \vdots \\ a_{n-1}
2154
+ \end{bmatrix} =
2155
+ \begin{bmatrix}
2156
+ \alpha_0 & \alpha_1 & \cdots & \alpha_{n-1}
2157
+ \end{bmatrix}
2158
+
2159
+ If the matrix `B` is the result, the permutation of matrix rows
2160
+ is defined as:
2161
+
2162
+ .. math::
2163
+ B := \begin{bmatrix}
2164
+ a_{\sigma(0)} \\ a_{\sigma(1)} \\ \vdots \\ a_{\sigma(n-1)}
2165
+ \end{bmatrix}
2166
+
2167
+ And the permutation of matrix columns is defined as:
2168
+
2169
+ .. math::
2170
+ B := \begin{bmatrix}
2171
+ \alpha_{\sigma(0)} & \alpha_{\sigma(1)} &
2172
+ \cdots & \alpha_{\sigma(n-1)}
2173
+ \end{bmatrix}
2174
+ """
2175
+ from sympy.combinatorics import Permutation
2176
+
2177
+ # allow british variants and `columns`
2178
+ if direction == 'forwards':
2179
+ direction = 'forward'
2180
+ if direction == 'backwards':
2181
+ direction = 'backward'
2182
+ if orientation == 'columns':
2183
+ orientation = 'cols'
2184
+
2185
+ if direction not in ('forward', 'backward'):
2186
+ raise TypeError("direction='{}' is an invalid kwarg. "
2187
+ "Try 'forward' or 'backward'".format(direction))
2188
+ if orientation not in ('rows', 'cols'):
2189
+ raise TypeError("orientation='{}' is an invalid kwarg. "
2190
+ "Try 'rows' or 'cols'".format(orientation))
2191
+
2192
+ if not isinstance(perm, (Permutation, Iterable)):
2193
+ raise ValueError(
2194
+ "{} must be a list, a list of lists, "
2195
+ "or a SymPy permutation object.".format(perm))
2196
+
2197
+ # ensure all swaps are in range
2198
+ max_index = self.rows if orientation == 'rows' else self.cols
2199
+ if not all(0 <= t <= max_index for t in flatten(list(perm))):
2200
+ raise IndexError("`swap` indices out of range.")
2201
+
2202
+ if perm and not isinstance(perm, Permutation) and \
2203
+ isinstance(perm[0], Iterable):
2204
+ if direction == 'forward':
2205
+ perm = list(reversed(perm))
2206
+ perm = Permutation(perm, size=max_index+1)
2207
+ else:
2208
+ perm = Permutation(perm, size=max_index+1)
2209
+
2210
+ if orientation == 'rows':
2211
+ return self._eval_permute_rows(perm)
2212
+ if orientation == 'cols':
2213
+ return self._eval_permute_cols(perm)
2214
+
2215
+ def permute_cols(self, swaps, direction='forward'):
2216
+ """Alias for
2217
+ ``self.permute(swaps, orientation='cols', direction=direction)``
2218
+
2219
+ See Also
2220
+ ========
2221
+
2222
+ permute
2223
+ """
2224
+ return self.permute(swaps, orientation='cols', direction=direction)
2225
+
2226
+ def permute_rows(self, swaps, direction='forward'):
2227
+ """Alias for
2228
+ ``self.permute(swaps, orientation='rows', direction=direction)``
2229
+
2230
+ See Also
2231
+ ========
2232
+
2233
+ permute
2234
+ """
2235
+ return self.permute(swaps, orientation='rows', direction=direction)
2236
+
2237
+ def refine(self, assumptions=True):
2238
+ """Apply refine to each element of the matrix.
2239
+
2240
+ Examples
2241
+ ========
2242
+
2243
+ >>> from sympy import Symbol, Matrix, Abs, sqrt, Q
2244
+ >>> x = Symbol('x')
2245
+ >>> Matrix([[Abs(x)**2, sqrt(x**2)],[sqrt(x**2), Abs(x)**2]])
2246
+ Matrix([
2247
+ [ Abs(x)**2, sqrt(x**2)],
2248
+ [sqrt(x**2), Abs(x)**2]])
2249
+ >>> _.refine(Q.real(x))
2250
+ Matrix([
2251
+ [ x**2, Abs(x)],
2252
+ [Abs(x), x**2]])
2253
+
2254
+ """
2255
+ return self.applyfunc(lambda x: refine(x, assumptions))
2256
+
2257
+ def replace(self, F, G, map=False, simultaneous=True, exact=None):
2258
+ """Replaces Function F in Matrix entries with Function G.
2259
+
2260
+ Examples
2261
+ ========
2262
+
2263
+ >>> from sympy import symbols, Function, Matrix
2264
+ >>> F, G = symbols('F, G', cls=Function)
2265
+ >>> M = Matrix(2, 2, lambda i, j: F(i+j)) ; M
2266
+ Matrix([
2267
+ [F(0), F(1)],
2268
+ [F(1), F(2)]])
2269
+ >>> N = M.replace(F,G)
2270
+ >>> N
2271
+ Matrix([
2272
+ [G(0), G(1)],
2273
+ [G(1), G(2)]])
2274
+ """
2275
+ return self.applyfunc(
2276
+ lambda x: x.replace(F, G, map=map, simultaneous=simultaneous, exact=exact))
2277
+
2278
+ def rot90(self, k=1):
2279
+ """Rotates Matrix by 90 degrees
2280
+
2281
+ Parameters
2282
+ ==========
2283
+
2284
+ k : int
2285
+ Specifies how many times the matrix is rotated by 90 degrees
2286
+ (clockwise when positive, counter-clockwise when negative).
2287
+
2288
+ Examples
2289
+ ========
2290
+
2291
+ >>> from sympy import Matrix, symbols
2292
+ >>> A = Matrix(2, 2, symbols('a:d'))
2293
+ >>> A
2294
+ Matrix([
2295
+ [a, b],
2296
+ [c, d]])
2297
+
2298
+ Rotating the matrix clockwise one time:
2299
+
2300
+ >>> A.rot90(1)
2301
+ Matrix([
2302
+ [c, a],
2303
+ [d, b]])
2304
+
2305
+ Rotating the matrix anticlockwise two times:
2306
+
2307
+ >>> A.rot90(-2)
2308
+ Matrix([
2309
+ [d, c],
2310
+ [b, a]])
2311
+ """
2312
+
2313
+ mod = k%4
2314
+ if mod == 0:
2315
+ return self
2316
+ if mod == 1:
2317
+ return self[::-1, ::].T
2318
+ if mod == 2:
2319
+ return self[::-1, ::-1]
2320
+ if mod == 3:
2321
+ return self[::, ::-1].T
2322
+
2323
+ def simplify(self, **kwargs):
2324
+ """Apply simplify to each element of the matrix.
2325
+
2326
+ Examples
2327
+ ========
2328
+
2329
+ >>> from sympy.abc import x, y
2330
+ >>> from sympy import SparseMatrix, sin, cos
2331
+ >>> SparseMatrix(1, 1, [x*sin(y)**2 + x*cos(y)**2])
2332
+ Matrix([[x*sin(y)**2 + x*cos(y)**2]])
2333
+ >>> _.simplify()
2334
+ Matrix([[x]])
2335
+ """
2336
+ return self.applyfunc(lambda x: x.simplify(**kwargs))
2337
+
2338
+ def subs(self, *args, **kwargs): # should mirror core.basic.subs
2339
+ """Return a new matrix with subs applied to each entry.
2340
+
2341
+ Examples
2342
+ ========
2343
+
2344
+ >>> from sympy.abc import x, y
2345
+ >>> from sympy import SparseMatrix, Matrix
2346
+ >>> SparseMatrix(1, 1, [x])
2347
+ Matrix([[x]])
2348
+ >>> _.subs(x, y)
2349
+ Matrix([[y]])
2350
+ >>> Matrix(_).subs(y, x)
2351
+ Matrix([[x]])
2352
+ """
2353
+
2354
+ if len(args) == 1 and not isinstance(args[0], (dict, set)) and iter(args[0]) and not is_sequence(args[0]):
2355
+ args = (list(args[0]),)
2356
+
2357
+ return self.applyfunc(lambda x: x.subs(*args, **kwargs))
2358
+
2359
+ def trace(self):
2360
+ """
2361
+ Returns the trace of a square matrix i.e. the sum of the
2362
+ diagonal elements.
2363
+
2364
+ Examples
2365
+ ========
2366
+
2367
+ >>> from sympy import Matrix
2368
+ >>> A = Matrix(2, 2, [1, 2, 3, 4])
2369
+ >>> A.trace()
2370
+ 5
2371
+
2372
+ """
2373
+ if self.rows != self.cols:
2374
+ raise NonSquareMatrixError()
2375
+ return self._eval_trace()
2376
+
2377
+ def transpose(self):
2378
+ """
2379
+ Returns the transpose of the matrix.
2380
+
2381
+ Examples
2382
+ ========
2383
+
2384
+ >>> from sympy import Matrix
2385
+ >>> A = Matrix(2, 2, [1, 2, 3, 4])
2386
+ >>> A.transpose()
2387
+ Matrix([
2388
+ [1, 3],
2389
+ [2, 4]])
2390
+
2391
+ >>> from sympy import Matrix, I
2392
+ >>> m=Matrix(((1, 2+I), (3, 4)))
2393
+ >>> m
2394
+ Matrix([
2395
+ [1, 2 + I],
2396
+ [3, 4]])
2397
+ >>> m.transpose()
2398
+ Matrix([
2399
+ [ 1, 3],
2400
+ [2 + I, 4]])
2401
+ >>> m.T == m.transpose()
2402
+ True
2403
+
2404
+ See Also
2405
+ ========
2406
+
2407
+ conjugate: By-element conjugation
2408
+
2409
+ """
2410
+ return self._eval_transpose()
2411
+
2412
+ @property
2413
+ def T(self):
2414
+ '''Matrix transposition'''
2415
+ return self.transpose()
2416
+
2417
+ @property
2418
+ def C(self):
2419
+ '''By-element conjugation'''
2420
+ return self.conjugate()
2421
+
2422
+ def n(self, *args, **kwargs):
2423
+ """Apply evalf() to each element of self."""
2424
+ return self.evalf(*args, **kwargs)
2425
+
2426
+ def xreplace(self, rule): # should mirror core.basic.xreplace
2427
+ """Return a new matrix with xreplace applied to each entry.
2428
+
2429
+ Examples
2430
+ ========
2431
+
2432
+ >>> from sympy.abc import x, y
2433
+ >>> from sympy import SparseMatrix, Matrix
2434
+ >>> SparseMatrix(1, 1, [x])
2435
+ Matrix([[x]])
2436
+ >>> _.xreplace({x: y})
2437
+ Matrix([[y]])
2438
+ >>> Matrix(_).xreplace({y: x})
2439
+ Matrix([[x]])
2440
+ """
2441
+ return self.applyfunc(lambda x: x.xreplace(rule))
2442
+
2443
+ def _eval_simplify(self, **kwargs):
2444
+ # XXX: We can't use self.simplify here as mutable subclasses will
2445
+ # override simplify and have it return None
2446
+ return MatrixOperations.simplify(self, **kwargs)
2447
+
2448
+ def _eval_trigsimp(self, **opts):
2449
+ from sympy.simplify.trigsimp import trigsimp
2450
+ return self.applyfunc(lambda x: trigsimp(x, **opts))
2451
+
2452
+ def upper_triangular(self, k=0):
2453
+ """Return the elements on and above the kth diagonal of a matrix.
2454
+ If k is not specified then simply returns upper-triangular portion
2455
+ of a matrix
2456
+
2457
+ Examples
2458
+ ========
2459
+
2460
+ >>> from sympy import ones
2461
+ >>> A = ones(4)
2462
+ >>> A.upper_triangular()
2463
+ Matrix([
2464
+ [1, 1, 1, 1],
2465
+ [0, 1, 1, 1],
2466
+ [0, 0, 1, 1],
2467
+ [0, 0, 0, 1]])
2468
+
2469
+ >>> A.upper_triangular(2)
2470
+ Matrix([
2471
+ [0, 0, 1, 1],
2472
+ [0, 0, 0, 1],
2473
+ [0, 0, 0, 0],
2474
+ [0, 0, 0, 0]])
2475
+
2476
+ >>> A.upper_triangular(-1)
2477
+ Matrix([
2478
+ [1, 1, 1, 1],
2479
+ [1, 1, 1, 1],
2480
+ [0, 1, 1, 1],
2481
+ [0, 0, 1, 1]])
2482
+
2483
+ """
2484
+
2485
+ def entry(i, j):
2486
+ return self[i, j] if i + k <= j else self.zero
2487
+
2488
+ return self._new(self.rows, self.cols, entry)
2489
+
2490
+
2491
+ def lower_triangular(self, k=0):
2492
+ """Return the elements on and below the kth diagonal of a matrix.
2493
+ If k is not specified then simply returns lower-triangular portion
2494
+ of a matrix
2495
+
2496
+ Examples
2497
+ ========
2498
+
2499
+ >>> from sympy import ones
2500
+ >>> A = ones(4)
2501
+ >>> A.lower_triangular()
2502
+ Matrix([
2503
+ [1, 0, 0, 0],
2504
+ [1, 1, 0, 0],
2505
+ [1, 1, 1, 0],
2506
+ [1, 1, 1, 1]])
2507
+
2508
+ >>> A.lower_triangular(-2)
2509
+ Matrix([
2510
+ [0, 0, 0, 0],
2511
+ [0, 0, 0, 0],
2512
+ [1, 0, 0, 0],
2513
+ [1, 1, 0, 0]])
2514
+
2515
+ >>> A.lower_triangular(1)
2516
+ Matrix([
2517
+ [1, 1, 0, 0],
2518
+ [1, 1, 1, 0],
2519
+ [1, 1, 1, 1],
2520
+ [1, 1, 1, 1]])
2521
+
2522
+ """
2523
+
2524
+ def entry(i, j):
2525
+ return self[i, j] if i + k >= j else self.zero
2526
+
2527
+ return self._new(self.rows, self.cols, entry)
2528
+
2529
+
2530
+
2531
+ class MatrixArithmetic(MatrixRequired):
2532
+ """Provides basic matrix arithmetic operations.
2533
+ Should not be instantiated directly."""
2534
+
2535
+ _op_priority = 10.01
2536
+
2537
+ def _eval_Abs(self):
2538
+ return self._new(self.rows, self.cols, lambda i, j: Abs(self[i, j]))
2539
+
2540
+ def _eval_add(self, other):
2541
+ return self._new(self.rows, self.cols,
2542
+ lambda i, j: self[i, j] + other[i, j])
2543
+
2544
+ def _eval_matrix_mul(self, other):
2545
+ def entry(i, j):
2546
+ vec = [self[i,k]*other[k,j] for k in range(self.cols)]
2547
+ try:
2548
+ return Add(*vec)
2549
+ except (TypeError, SympifyError):
2550
+ # Some matrices don't work with `sum` or `Add`
2551
+ # They don't work with `sum` because `sum` tries to add `0`
2552
+ # Fall back to a safe way to multiply if the `Add` fails.
2553
+ return reduce(lambda a, b: a + b, vec)
2554
+
2555
+ return self._new(self.rows, other.cols, entry)
2556
+
2557
+ def _eval_matrix_mul_elementwise(self, other):
2558
+ return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other[i,j])
2559
+
2560
+ def _eval_matrix_rmul(self, other):
2561
+ def entry(i, j):
2562
+ return sum(other[i,k]*self[k,j] for k in range(other.cols))
2563
+ return self._new(other.rows, self.cols, entry)
2564
+
2565
+ def _eval_pow_by_recursion(self, num):
2566
+ if num == 1:
2567
+ return self
2568
+
2569
+ if num % 2 == 1:
2570
+ a, b = self, self._eval_pow_by_recursion(num - 1)
2571
+ else:
2572
+ a = b = self._eval_pow_by_recursion(num // 2)
2573
+
2574
+ return a.multiply(b)
2575
+
2576
+ def _eval_pow_by_cayley(self, exp):
2577
+ from sympy.discrete.recurrences import linrec_coeffs
2578
+ row = self.shape[0]
2579
+ p = self.charpoly()
2580
+
2581
+ coeffs = (-p).all_coeffs()[1:]
2582
+ coeffs = linrec_coeffs(coeffs, exp)
2583
+ new_mat = self.eye(row)
2584
+ ans = self.zeros(row)
2585
+
2586
+ for i in range(row):
2587
+ ans += coeffs[i]*new_mat
2588
+ new_mat *= self
2589
+
2590
+ return ans
2591
+
2592
+ def _eval_pow_by_recursion_dotprodsimp(self, num, prevsimp=None):
2593
+ if prevsimp is None:
2594
+ prevsimp = [True]*len(self)
2595
+
2596
+ if num == 1:
2597
+ return self
2598
+
2599
+ if num % 2 == 1:
2600
+ a, b = self, self._eval_pow_by_recursion_dotprodsimp(num - 1,
2601
+ prevsimp=prevsimp)
2602
+ else:
2603
+ a = b = self._eval_pow_by_recursion_dotprodsimp(num // 2,
2604
+ prevsimp=prevsimp)
2605
+
2606
+ m = a.multiply(b, dotprodsimp=False)
2607
+ lenm = len(m)
2608
+ elems = [None]*lenm
2609
+
2610
+ for i in range(lenm):
2611
+ if prevsimp[i]:
2612
+ elems[i], prevsimp[i] = _dotprodsimp(m[i], withsimp=True)
2613
+ else:
2614
+ elems[i] = m[i]
2615
+
2616
+ return m._new(m.rows, m.cols, elems)
2617
+
2618
+ def _eval_scalar_mul(self, other):
2619
+ return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other)
2620
+
2621
+ def _eval_scalar_rmul(self, other):
2622
+ return self._new(self.rows, self.cols, lambda i, j: other*self[i,j])
2623
+
2624
+ def _eval_Mod(self, other):
2625
+ return self._new(self.rows, self.cols, lambda i, j: Mod(self[i, j], other))
2626
+
2627
+ # Python arithmetic functions
2628
+ def __abs__(self):
2629
+ """Returns a new matrix with entry-wise absolute values."""
2630
+ return self._eval_Abs()
2631
+
2632
+ @call_highest_priority('__radd__')
2633
+ def __add__(self, other):
2634
+ """Return self + other, raising ShapeError if shapes do not match."""
2635
+ if isinstance(other, NDimArray): # Matrix and array addition is currently not implemented
2636
+ return NotImplemented
2637
+ other = _matrixify(other)
2638
+ # matrix-like objects can have shapes. This is
2639
+ # our first sanity check.
2640
+ if hasattr(other, 'shape'):
2641
+ if self.shape != other.shape:
2642
+ raise ShapeError("Matrix size mismatch: %s + %s" % (
2643
+ self.shape, other.shape))
2644
+
2645
+ # honest SymPy matrices defer to their class's routine
2646
+ if getattr(other, 'is_Matrix', False):
2647
+ # call the highest-priority class's _eval_add
2648
+ a, b = self, other
2649
+ if a.__class__ != classof(a, b):
2650
+ b, a = a, b
2651
+ return a._eval_add(b)
2652
+ # Matrix-like objects can be passed to CommonMatrix routines directly.
2653
+ if getattr(other, 'is_MatrixLike', False):
2654
+ return MatrixArithmetic._eval_add(self, other)
2655
+
2656
+ raise TypeError('cannot add %s and %s' % (type(self), type(other)))
2657
+
2658
+ @call_highest_priority('__rtruediv__')
2659
+ def __truediv__(self, other):
2660
+ return self * (self.one / other)
2661
+
2662
+ @call_highest_priority('__rmatmul__')
2663
+ def __matmul__(self, other):
2664
+ other = _matrixify(other)
2665
+ if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False):
2666
+ return NotImplemented
2667
+
2668
+ return self.__mul__(other)
2669
+
2670
+ def __mod__(self, other):
2671
+ return self.applyfunc(lambda x: x % other)
2672
+
2673
+ @call_highest_priority('__rmul__')
2674
+ def __mul__(self, other):
2675
+ """Return self*other where other is either a scalar or a matrix
2676
+ of compatible dimensions.
2677
+
2678
+ Examples
2679
+ ========
2680
+
2681
+ >>> from sympy import Matrix
2682
+ >>> A = Matrix([[1, 2, 3], [4, 5, 6]])
2683
+ >>> 2*A == A*2 == Matrix([[2, 4, 6], [8, 10, 12]])
2684
+ True
2685
+ >>> B = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
2686
+ >>> A*B
2687
+ Matrix([
2688
+ [30, 36, 42],
2689
+ [66, 81, 96]])
2690
+ >>> B*A
2691
+ Traceback (most recent call last):
2692
+ ...
2693
+ ShapeError: Matrices size mismatch.
2694
+ >>>
2695
+
2696
+ See Also
2697
+ ========
2698
+
2699
+ matrix_multiply_elementwise
2700
+ """
2701
+
2702
+ return self.multiply(other)
2703
+
2704
+ def multiply(self, other, dotprodsimp=None):
2705
+ """Same as __mul__() but with optional simplification.
2706
+
2707
+ Parameters
2708
+ ==========
2709
+
2710
+ dotprodsimp : bool, optional
2711
+ Specifies whether intermediate term algebraic simplification is used
2712
+ during matrix multiplications to control expression blowup and thus
2713
+ speed up calculation. Default is off.
2714
+ """
2715
+
2716
+ isimpbool = _get_intermediate_simp_bool(False, dotprodsimp)
2717
+ other = _matrixify(other)
2718
+ # matrix-like objects can have shapes. This is
2719
+ # our first sanity check. Double check other is not explicitly not a Matrix.
2720
+ if (hasattr(other, 'shape') and len(other.shape) == 2 and
2721
+ (getattr(other, 'is_Matrix', True) or
2722
+ getattr(other, 'is_MatrixLike', True))):
2723
+ if self.shape[1] != other.shape[0]:
2724
+ raise ShapeError("Matrix size mismatch: %s * %s." % (
2725
+ self.shape, other.shape))
2726
+
2727
+ # honest SymPy matrices defer to their class's routine
2728
+ if getattr(other, 'is_Matrix', False):
2729
+ m = self._eval_matrix_mul(other)
2730
+ if isimpbool:
2731
+ return m._new(m.rows, m.cols, [_dotprodsimp(e) for e in m])
2732
+ return m
2733
+
2734
+ # Matrix-like objects can be passed to CommonMatrix routines directly.
2735
+ if getattr(other, 'is_MatrixLike', False):
2736
+ return MatrixArithmetic._eval_matrix_mul(self, other)
2737
+
2738
+ # if 'other' is not iterable then scalar multiplication.
2739
+ if not isinstance(other, Iterable):
2740
+ try:
2741
+ return self._eval_scalar_mul(other)
2742
+ except TypeError:
2743
+ pass
2744
+
2745
+ return NotImplemented
2746
+
2747
+ def multiply_elementwise(self, other):
2748
+ """Return the Hadamard product (elementwise product) of A and B
2749
+
2750
+ Examples
2751
+ ========
2752
+
2753
+ >>> from sympy import Matrix
2754
+ >>> A = Matrix([[0, 1, 2], [3, 4, 5]])
2755
+ >>> B = Matrix([[1, 10, 100], [100, 10, 1]])
2756
+ >>> A.multiply_elementwise(B)
2757
+ Matrix([
2758
+ [ 0, 10, 200],
2759
+ [300, 40, 5]])
2760
+
2761
+ See Also
2762
+ ========
2763
+
2764
+ sympy.matrices.matrices.MatrixBase.cross
2765
+ sympy.matrices.matrices.MatrixBase.dot
2766
+ multiply
2767
+ """
2768
+ if self.shape != other.shape:
2769
+ raise ShapeError("Matrix shapes must agree {} != {}".format(self.shape, other.shape))
2770
+
2771
+ return self._eval_matrix_mul_elementwise(other)
2772
+
2773
+ def __neg__(self):
2774
+ return self._eval_scalar_mul(-1)
2775
+
2776
+ @call_highest_priority('__rpow__')
2777
+ def __pow__(self, exp):
2778
+ """Return self**exp a scalar or symbol."""
2779
+
2780
+ return self.pow(exp)
2781
+
2782
+
2783
+ def pow(self, exp, method=None):
2784
+ r"""Return self**exp a scalar or symbol.
2785
+
2786
+ Parameters
2787
+ ==========
2788
+
2789
+ method : multiply, mulsimp, jordan, cayley
2790
+ If multiply then it returns exponentiation using recursion.
2791
+ If jordan then Jordan form exponentiation will be used.
2792
+ If cayley then the exponentiation is done using Cayley-Hamilton
2793
+ theorem.
2794
+ If mulsimp then the exponentiation is done using recursion
2795
+ with dotprodsimp. This specifies whether intermediate term
2796
+ algebraic simplification is used during naive matrix power to
2797
+ control expression blowup and thus speed up calculation.
2798
+ If None, then it heuristically decides which method to use.
2799
+
2800
+ """
2801
+
2802
+ if method is not None and method not in ['multiply', 'mulsimp', 'jordan', 'cayley']:
2803
+ raise TypeError('No such method')
2804
+ if self.rows != self.cols:
2805
+ raise NonSquareMatrixError()
2806
+ a = self
2807
+ jordan_pow = getattr(a, '_matrix_pow_by_jordan_blocks', None)
2808
+ exp = sympify(exp)
2809
+
2810
+ if exp.is_zero:
2811
+ return a._new(a.rows, a.cols, lambda i, j: int(i == j))
2812
+ if exp == 1:
2813
+ return a
2814
+
2815
+ diagonal = getattr(a, 'is_diagonal', None)
2816
+ if diagonal is not None and diagonal():
2817
+ return a._new(a.rows, a.cols, lambda i, j: a[i,j]**exp if i == j else 0)
2818
+
2819
+ if exp.is_Number and exp % 1 == 0:
2820
+ if a.rows == 1:
2821
+ return a._new([[a[0]**exp]])
2822
+ if exp < 0:
2823
+ exp = -exp
2824
+ a = a.inv()
2825
+ # When certain conditions are met,
2826
+ # Jordan block algorithm is faster than
2827
+ # computation by recursion.
2828
+ if method == 'jordan':
2829
+ try:
2830
+ return jordan_pow(exp)
2831
+ except MatrixError:
2832
+ if method == 'jordan':
2833
+ raise
2834
+
2835
+ elif method == 'cayley':
2836
+ if not exp.is_Number or exp % 1 != 0:
2837
+ raise ValueError("cayley method is only valid for integer powers")
2838
+ return a._eval_pow_by_cayley(exp)
2839
+
2840
+ elif method == "mulsimp":
2841
+ if not exp.is_Number or exp % 1 != 0:
2842
+ raise ValueError("mulsimp method is only valid for integer powers")
2843
+ return a._eval_pow_by_recursion_dotprodsimp(exp)
2844
+
2845
+ elif method == "multiply":
2846
+ if not exp.is_Number or exp % 1 != 0:
2847
+ raise ValueError("multiply method is only valid for integer powers")
2848
+ return a._eval_pow_by_recursion(exp)
2849
+
2850
+ elif method is None and exp.is_Number and exp % 1 == 0:
2851
+ # Decide heuristically which method to apply
2852
+ if a.rows == 2 and exp > 100000:
2853
+ return jordan_pow(exp)
2854
+ elif _get_intermediate_simp_bool(True, None):
2855
+ return a._eval_pow_by_recursion_dotprodsimp(exp)
2856
+ elif exp > 10000:
2857
+ return a._eval_pow_by_cayley(exp)
2858
+ else:
2859
+ return a._eval_pow_by_recursion(exp)
2860
+
2861
+ if jordan_pow:
2862
+ try:
2863
+ return jordan_pow(exp)
2864
+ except NonInvertibleMatrixError:
2865
+ # Raised by jordan_pow on zero determinant matrix unless exp is
2866
+ # definitely known to be a non-negative integer.
2867
+ # Here we raise if n is definitely not a non-negative integer
2868
+ # but otherwise we can leave this as an unevaluated MatPow.
2869
+ if exp.is_integer is False or exp.is_nonnegative is False:
2870
+ raise
2871
+
2872
+ from sympy.matrices.expressions import MatPow
2873
+ return MatPow(a, exp)
2874
+
2875
+ @call_highest_priority('__add__')
2876
+ def __radd__(self, other):
2877
+ return self + other
2878
+
2879
+ @call_highest_priority('__matmul__')
2880
+ def __rmatmul__(self, other):
2881
+ other = _matrixify(other)
2882
+ if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False):
2883
+ return NotImplemented
2884
+
2885
+ return self.__rmul__(other)
2886
+
2887
+ @call_highest_priority('__mul__')
2888
+ def __rmul__(self, other):
2889
+ return self.rmultiply(other)
2890
+
2891
+ def rmultiply(self, other, dotprodsimp=None):
2892
+ """Same as __rmul__() but with optional simplification.
2893
+
2894
+ Parameters
2895
+ ==========
2896
+
2897
+ dotprodsimp : bool, optional
2898
+ Specifies whether intermediate term algebraic simplification is used
2899
+ during matrix multiplications to control expression blowup and thus
2900
+ speed up calculation. Default is off.
2901
+ """
2902
+ isimpbool = _get_intermediate_simp_bool(False, dotprodsimp)
2903
+ other = _matrixify(other)
2904
+ # matrix-like objects can have shapes. This is
2905
+ # our first sanity check. Double check other is not explicitly not a Matrix.
2906
+ if (hasattr(other, 'shape') and len(other.shape) == 2 and
2907
+ (getattr(other, 'is_Matrix', True) or
2908
+ getattr(other, 'is_MatrixLike', True))):
2909
+ if self.shape[0] != other.shape[1]:
2910
+ raise ShapeError("Matrix size mismatch.")
2911
+
2912
+ # honest SymPy matrices defer to their class's routine
2913
+ if getattr(other, 'is_Matrix', False):
2914
+ m = self._eval_matrix_rmul(other)
2915
+ if isimpbool:
2916
+ return m._new(m.rows, m.cols, [_dotprodsimp(e) for e in m])
2917
+ return m
2918
+ # Matrix-like objects can be passed to CommonMatrix routines directly.
2919
+ if getattr(other, 'is_MatrixLike', False):
2920
+ return MatrixArithmetic._eval_matrix_rmul(self, other)
2921
+
2922
+ # if 'other' is not iterable then scalar multiplication.
2923
+ if not isinstance(other, Iterable):
2924
+ try:
2925
+ return self._eval_scalar_rmul(other)
2926
+ except TypeError:
2927
+ pass
2928
+
2929
+ return NotImplemented
2930
+
2931
+ @call_highest_priority('__sub__')
2932
+ def __rsub__(self, a):
2933
+ return (-self) + a
2934
+
2935
+ @call_highest_priority('__rsub__')
2936
+ def __sub__(self, a):
2937
+ return self + (-a)
2938
+
2939
+ class MatrixCommon(MatrixArithmetic, MatrixOperations, MatrixProperties,
2940
+ MatrixSpecial, MatrixShaping):
2941
+ """All common matrix operations including basic arithmetic, shaping,
2942
+ and special matrices like `zeros`, and `eye`."""
2943
+ _diff_wrt = True # type: bool
2944
+
2945
+
2946
+ class _MinimalMatrix:
2947
+ """Class providing the minimum functionality
2948
+ for a matrix-like object and implementing every method
2949
+ required for a `MatrixRequired`. This class does not have everything
2950
+ needed to become a full-fledged SymPy object, but it will satisfy the
2951
+ requirements of anything inheriting from `MatrixRequired`. If you wish
2952
+ to make a specialized matrix type, make sure to implement these
2953
+ methods and properties with the exception of `__init__` and `__repr__`
2954
+ which are included for convenience."""
2955
+
2956
+ is_MatrixLike = True
2957
+ _sympify = staticmethod(sympify)
2958
+ _class_priority = 3
2959
+ zero = S.Zero
2960
+ one = S.One
2961
+
2962
+ is_Matrix = True
2963
+ is_MatrixExpr = False
2964
+
2965
+ @classmethod
2966
+ def _new(cls, *args, **kwargs):
2967
+ return cls(*args, **kwargs)
2968
+
2969
+ def __init__(self, rows, cols=None, mat=None, copy=False):
2970
+ if isfunction(mat):
2971
+ # if we passed in a function, use that to populate the indices
2972
+ mat = [mat(i, j) for i in range(rows) for j in range(cols)]
2973
+ if cols is None and mat is None:
2974
+ mat = rows
2975
+ rows, cols = getattr(mat, 'shape', (rows, cols))
2976
+ try:
2977
+ # if we passed in a list of lists, flatten it and set the size
2978
+ if cols is None and mat is None:
2979
+ mat = rows
2980
+ cols = len(mat[0])
2981
+ rows = len(mat)
2982
+ mat = [x for l in mat for x in l]
2983
+ except (IndexError, TypeError):
2984
+ pass
2985
+ self.mat = tuple(self._sympify(x) for x in mat)
2986
+ self.rows, self.cols = rows, cols
2987
+ if self.rows is None or self.cols is None:
2988
+ raise NotImplementedError("Cannot initialize matrix with given parameters")
2989
+
2990
+ def __getitem__(self, key):
2991
+ def _normalize_slices(row_slice, col_slice):
2992
+ """Ensure that row_slice and col_slice do not have
2993
+ `None` in their arguments. Any integers are converted
2994
+ to slices of length 1"""
2995
+ if not isinstance(row_slice, slice):
2996
+ row_slice = slice(row_slice, row_slice + 1, None)
2997
+ row_slice = slice(*row_slice.indices(self.rows))
2998
+
2999
+ if not isinstance(col_slice, slice):
3000
+ col_slice = slice(col_slice, col_slice + 1, None)
3001
+ col_slice = slice(*col_slice.indices(self.cols))
3002
+
3003
+ return (row_slice, col_slice)
3004
+
3005
+ def _coord_to_index(i, j):
3006
+ """Return the index in _mat corresponding
3007
+ to the (i,j) position in the matrix. """
3008
+ return i * self.cols + j
3009
+
3010
+ if isinstance(key, tuple):
3011
+ i, j = key
3012
+ if isinstance(i, slice) or isinstance(j, slice):
3013
+ # if the coordinates are not slices, make them so
3014
+ # and expand the slices so they don't contain `None`
3015
+ i, j = _normalize_slices(i, j)
3016
+
3017
+ rowsList, colsList = list(range(self.rows))[i], \
3018
+ list(range(self.cols))[j]
3019
+ indices = (i * self.cols + j for i in rowsList for j in
3020
+ colsList)
3021
+ return self._new(len(rowsList), len(colsList),
3022
+ [self.mat[i] for i in indices])
3023
+
3024
+ # if the key is a tuple of ints, change
3025
+ # it to an array index
3026
+ key = _coord_to_index(i, j)
3027
+ return self.mat[key]
3028
+
3029
+ def __eq__(self, other):
3030
+ try:
3031
+ classof(self, other)
3032
+ except TypeError:
3033
+ return False
3034
+ return (
3035
+ self.shape == other.shape and list(self) == list(other))
3036
+
3037
+ def __len__(self):
3038
+ return self.rows*self.cols
3039
+
3040
+ def __repr__(self):
3041
+ return "_MinimalMatrix({}, {}, {})".format(self.rows, self.cols,
3042
+ self.mat)
3043
+
3044
+ @property
3045
+ def shape(self):
3046
+ return (self.rows, self.cols)
3047
+
3048
+
3049
+ class _CastableMatrix: # this is needed here ONLY FOR TESTS.
3050
+ def as_mutable(self):
3051
+ return self
3052
+
3053
+ def as_immutable(self):
3054
+ return self
3055
+
3056
+
3057
+ class _MatrixWrapper:
3058
+ """Wrapper class providing the minimum functionality for a matrix-like
3059
+ object: .rows, .cols, .shape, indexability, and iterability. CommonMatrix
3060
+ math operations should work on matrix-like objects. This one is intended for
3061
+ matrix-like objects which use the same indexing format as SymPy with respect
3062
+ to returning matrix elements instead of rows for non-tuple indexes.
3063
+ """
3064
+
3065
+ is_Matrix = False # needs to be here because of __getattr__
3066
+ is_MatrixLike = True
3067
+
3068
+ def __init__(self, mat, shape):
3069
+ self.mat = mat
3070
+ self.shape = shape
3071
+ self.rows, self.cols = shape
3072
+
3073
+ def __getitem__(self, key):
3074
+ if isinstance(key, tuple):
3075
+ return sympify(self.mat.__getitem__(key))
3076
+
3077
+ return sympify(self.mat.__getitem__((key // self.rows, key % self.cols)))
3078
+
3079
+ def __iter__(self): # supports numpy.matrix and numpy.array
3080
+ mat = self.mat
3081
+ cols = self.cols
3082
+
3083
+ return iter(sympify(mat[r, c]) for r in range(self.rows) for c in range(cols))
3084
+
3085
+
3086
+ class MatrixKind(Kind):
3087
+ """
3088
+ Kind for all matrices in SymPy.
3089
+
3090
+ Basic class for this kind is ``MatrixBase`` and ``MatrixExpr``,
3091
+ but any expression representing the matrix can have this.
3092
+
3093
+ Parameters
3094
+ ==========
3095
+
3096
+ element_kind : Kind
3097
+ Kind of the element. Default is
3098
+ :class:`sympy.core.kind.NumberKind`,
3099
+ which means that the matrix contains only numbers.
3100
+
3101
+ Examples
3102
+ ========
3103
+
3104
+ Any instance of matrix class has ``MatrixKind``:
3105
+
3106
+ >>> from sympy import MatrixSymbol
3107
+ >>> A = MatrixSymbol('A', 2,2)
3108
+ >>> A.kind
3109
+ MatrixKind(NumberKind)
3110
+
3111
+ Although expression representing a matrix may be not instance of
3112
+ matrix class, it will have ``MatrixKind`` as well:
3113
+
3114
+ >>> from sympy import MatrixExpr, Integral
3115
+ >>> from sympy.abc import x
3116
+ >>> intM = Integral(A, x)
3117
+ >>> isinstance(intM, MatrixExpr)
3118
+ False
3119
+ >>> intM.kind
3120
+ MatrixKind(NumberKind)
3121
+
3122
+ Use ``isinstance()`` to check for ``MatrixKind`` without specifying
3123
+ the element kind. Use ``is`` with specifying the element kind:
3124
+
3125
+ >>> from sympy import Matrix
3126
+ >>> from sympy.core import NumberKind
3127
+ >>> from sympy.matrices import MatrixKind
3128
+ >>> M = Matrix([1, 2])
3129
+ >>> isinstance(M.kind, MatrixKind)
3130
+ True
3131
+ >>> M.kind is MatrixKind(NumberKind)
3132
+ True
3133
+
3134
+ See Also
3135
+ ========
3136
+
3137
+ sympy.core.kind.NumberKind
3138
+ sympy.core.kind.UndefinedKind
3139
+ sympy.core.containers.TupleKind
3140
+ sympy.sets.sets.SetKind
3141
+
3142
+ """
3143
+ def __new__(cls, element_kind=NumberKind):
3144
+ obj = super().__new__(cls, element_kind)
3145
+ obj.element_kind = element_kind
3146
+ return obj
3147
+
3148
+ def __repr__(self):
3149
+ return "MatrixKind(%s)" % self.element_kind
3150
+
3151
+
3152
+ def _matrixify(mat):
3153
+ """If `mat` is a Matrix or is matrix-like,
3154
+ return a Matrix or MatrixWrapper object. Otherwise
3155
+ `mat` is passed through without modification."""
3156
+
3157
+ if getattr(mat, 'is_Matrix', False) or getattr(mat, 'is_MatrixLike', False):
3158
+ return mat
3159
+
3160
+ if not(getattr(mat, 'is_Matrix', True) or getattr(mat, 'is_MatrixLike', True)):
3161
+ return mat
3162
+
3163
+ shape = None
3164
+
3165
+ if hasattr(mat, 'shape'): # numpy, scipy.sparse
3166
+ if len(mat.shape) == 2:
3167
+ shape = mat.shape
3168
+ elif hasattr(mat, 'rows') and hasattr(mat, 'cols'): # mpmath
3169
+ shape = (mat.rows, mat.cols)
3170
+
3171
+ if shape:
3172
+ return _MatrixWrapper(mat, shape)
3173
+
3174
+ return mat
3175
+
3176
+
3177
+ def a2idx(j, n=None):
3178
+ """Return integer after making positive and validating against n."""
3179
+ if not isinstance(j, int):
3180
+ jindex = getattr(j, '__index__', None)
3181
+ if jindex is not None:
3182
+ j = jindex()
3183
+ else:
3184
+ raise IndexError("Invalid index a[%r]" % (j,))
3185
+ if n is not None:
3186
+ if j < 0:
3187
+ j += n
3188
+ if not (j >= 0 and j < n):
3189
+ raise IndexError("Index out of range: a[%s]" % (j,))
3190
+ return int(j)
3191
+
3192
+
3193
+ def classof(A, B):
3194
+ """
3195
+ Get the type of the result when combining matrices of different types.
3196
+
3197
+ Currently the strategy is that immutability is contagious.
3198
+
3199
+ Examples
3200
+ ========
3201
+
3202
+ >>> from sympy import Matrix, ImmutableMatrix
3203
+ >>> from sympy.matrices.common import classof
3204
+ >>> M = Matrix([[1, 2], [3, 4]]) # a Mutable Matrix
3205
+ >>> IM = ImmutableMatrix([[1, 2], [3, 4]])
3206
+ >>> classof(M, IM)
3207
+ <class 'sympy.matrices.immutable.ImmutableDenseMatrix'>
3208
+ """
3209
+ priority_A = getattr(A, '_class_priority', None)
3210
+ priority_B = getattr(B, '_class_priority', None)
3211
+ if None not in (priority_A, priority_B):
3212
+ if A._class_priority > B._class_priority:
3213
+ return A.__class__
3214
+ else:
3215
+ return B.__class__
3216
+
3217
+ try:
3218
+ import numpy
3219
+ except ImportError:
3220
+ pass
3221
+ else:
3222
+ if isinstance(A, numpy.ndarray):
3223
+ return B.__class__
3224
+ if isinstance(B, numpy.ndarray):
3225
+ return A.__class__
3226
+
3227
+ raise TypeError("Incompatible classes %s, %s" % (A.__class__, B.__class__))
llmeval-env/lib/python3.10/site-packages/sympy/matrices/decompositions.py ADDED
@@ -0,0 +1,1629 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+
3
+ from sympy.core import S
4
+ from sympy.core.function import expand_mul
5
+ from sympy.functions.elementary.miscellaneous import Min, sqrt
6
+ from sympy.functions.elementary.complexes import sign
7
+
8
+ from .common import NonSquareMatrixError, NonPositiveDefiniteMatrixError
9
+ from .utilities import _get_intermediate_simp, _iszero
10
+ from .determinant import _find_reasonable_pivot_naive
11
+
12
+
13
+ def _rank_decomposition(M, iszerofunc=_iszero, simplify=False):
14
+ r"""Returns a pair of matrices (`C`, `F`) with matching rank
15
+ such that `A = C F`.
16
+
17
+ Parameters
18
+ ==========
19
+
20
+ iszerofunc : Function, optional
21
+ A function used for detecting whether an element can
22
+ act as a pivot. ``lambda x: x.is_zero`` is used by default.
23
+
24
+ simplify : Bool or Function, optional
25
+ A function used to simplify elements when looking for a
26
+ pivot. By default SymPy's ``simplify`` is used.
27
+
28
+ Returns
29
+ =======
30
+
31
+ (C, F) : Matrices
32
+ `C` and `F` are full-rank matrices with rank as same as `A`,
33
+ whose product gives `A`.
34
+
35
+ See Notes for additional mathematical details.
36
+
37
+ Examples
38
+ ========
39
+
40
+ >>> from sympy import Matrix
41
+ >>> A = Matrix([
42
+ ... [1, 3, 1, 4],
43
+ ... [2, 7, 3, 9],
44
+ ... [1, 5, 3, 1],
45
+ ... [1, 2, 0, 8]
46
+ ... ])
47
+ >>> C, F = A.rank_decomposition()
48
+ >>> C
49
+ Matrix([
50
+ [1, 3, 4],
51
+ [2, 7, 9],
52
+ [1, 5, 1],
53
+ [1, 2, 8]])
54
+ >>> F
55
+ Matrix([
56
+ [1, 0, -2, 0],
57
+ [0, 1, 1, 0],
58
+ [0, 0, 0, 1]])
59
+ >>> C * F == A
60
+ True
61
+
62
+ Notes
63
+ =====
64
+
65
+ Obtaining `F`, an RREF of `A`, is equivalent to creating a
66
+ product
67
+
68
+ .. math::
69
+ E_n E_{n-1} ... E_1 A = F
70
+
71
+ where `E_n, E_{n-1}, \dots, E_1` are the elimination matrices or
72
+ permutation matrices equivalent to each row-reduction step.
73
+
74
+ The inverse of the same product of elimination matrices gives
75
+ `C`:
76
+
77
+ .. math::
78
+ C = \left(E_n E_{n-1} \dots E_1\right)^{-1}
79
+
80
+ It is not necessary, however, to actually compute the inverse:
81
+ the columns of `C` are those from the original matrix with the
82
+ same column indices as the indices of the pivot columns of `F`.
83
+
84
+ References
85
+ ==========
86
+
87
+ .. [1] https://en.wikipedia.org/wiki/Rank_factorization
88
+
89
+ .. [2] Piziak, R.; Odell, P. L. (1 June 1999).
90
+ "Full Rank Factorization of Matrices".
91
+ Mathematics Magazine. 72 (3): 193. doi:10.2307/2690882
92
+
93
+ See Also
94
+ ========
95
+
96
+ sympy.matrices.matrices.MatrixReductions.rref
97
+ """
98
+
99
+ F, pivot_cols = M.rref(simplify=simplify, iszerofunc=iszerofunc,
100
+ pivots=True)
101
+ rank = len(pivot_cols)
102
+
103
+ C = M.extract(range(M.rows), pivot_cols)
104
+ F = F[:rank, :]
105
+
106
+ return C, F
107
+
108
+
109
+ def _liupc(M):
110
+ """Liu's algorithm, for pre-determination of the Elimination Tree of
111
+ the given matrix, used in row-based symbolic Cholesky factorization.
112
+
113
+ Examples
114
+ ========
115
+
116
+ >>> from sympy import SparseMatrix
117
+ >>> S = SparseMatrix([
118
+ ... [1, 0, 3, 2],
119
+ ... [0, 0, 1, 0],
120
+ ... [4, 0, 0, 5],
121
+ ... [0, 6, 7, 0]])
122
+ >>> S.liupc()
123
+ ([[0], [], [0], [1, 2]], [4, 3, 4, 4])
124
+
125
+ References
126
+ ==========
127
+
128
+ .. [1] Symbolic Sparse Cholesky Factorization using Elimination Trees,
129
+ Jeroen Van Grondelle (1999)
130
+ https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582
131
+ """
132
+ # Algorithm 2.4, p 17 of reference
133
+
134
+ # get the indices of the elements that are non-zero on or below diag
135
+ R = [[] for r in range(M.rows)]
136
+
137
+ for r, c, _ in M.row_list():
138
+ if c <= r:
139
+ R[r].append(c)
140
+
141
+ inf = len(R) # nothing will be this large
142
+ parent = [inf]*M.rows
143
+ virtual = [inf]*M.rows
144
+
145
+ for r in range(M.rows):
146
+ for c in R[r][:-1]:
147
+ while virtual[c] < r:
148
+ t = virtual[c]
149
+ virtual[c] = r
150
+ c = t
151
+
152
+ if virtual[c] == inf:
153
+ parent[c] = virtual[c] = r
154
+
155
+ return R, parent
156
+
157
+ def _row_structure_symbolic_cholesky(M):
158
+ """Symbolic cholesky factorization, for pre-determination of the
159
+ non-zero structure of the Cholesky factororization.
160
+
161
+ Examples
162
+ ========
163
+
164
+ >>> from sympy import SparseMatrix
165
+ >>> S = SparseMatrix([
166
+ ... [1, 0, 3, 2],
167
+ ... [0, 0, 1, 0],
168
+ ... [4, 0, 0, 5],
169
+ ... [0, 6, 7, 0]])
170
+ >>> S.row_structure_symbolic_cholesky()
171
+ [[0], [], [0], [1, 2]]
172
+
173
+ References
174
+ ==========
175
+
176
+ .. [1] Symbolic Sparse Cholesky Factorization using Elimination Trees,
177
+ Jeroen Van Grondelle (1999)
178
+ https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582
179
+ """
180
+
181
+ R, parent = M.liupc()
182
+ inf = len(R) # this acts as infinity
183
+ Lrow = copy.deepcopy(R)
184
+
185
+ for k in range(M.rows):
186
+ for j in R[k]:
187
+ while j != inf and j != k:
188
+ Lrow[k].append(j)
189
+ j = parent[j]
190
+
191
+ Lrow[k] = sorted(set(Lrow[k]))
192
+
193
+ return Lrow
194
+
195
+
196
+ def _cholesky(M, hermitian=True):
197
+ """Returns the Cholesky-type decomposition L of a matrix A
198
+ such that L * L.H == A if hermitian flag is True,
199
+ or L * L.T == A if hermitian is False.
200
+
201
+ A must be a Hermitian positive-definite matrix if hermitian is True,
202
+ or a symmetric matrix if it is False.
203
+
204
+ Examples
205
+ ========
206
+
207
+ >>> from sympy import Matrix
208
+ >>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
209
+ >>> A.cholesky()
210
+ Matrix([
211
+ [ 5, 0, 0],
212
+ [ 3, 3, 0],
213
+ [-1, 1, 3]])
214
+ >>> A.cholesky() * A.cholesky().T
215
+ Matrix([
216
+ [25, 15, -5],
217
+ [15, 18, 0],
218
+ [-5, 0, 11]])
219
+
220
+ The matrix can have complex entries:
221
+
222
+ >>> from sympy import I
223
+ >>> A = Matrix(((9, 3*I), (-3*I, 5)))
224
+ >>> A.cholesky()
225
+ Matrix([
226
+ [ 3, 0],
227
+ [-I, 2]])
228
+ >>> A.cholesky() * A.cholesky().H
229
+ Matrix([
230
+ [ 9, 3*I],
231
+ [-3*I, 5]])
232
+
233
+ Non-hermitian Cholesky-type decomposition may be useful when the
234
+ matrix is not positive-definite.
235
+
236
+ >>> A = Matrix([[1, 2], [2, 1]])
237
+ >>> L = A.cholesky(hermitian=False)
238
+ >>> L
239
+ Matrix([
240
+ [1, 0],
241
+ [2, sqrt(3)*I]])
242
+ >>> L*L.T == A
243
+ True
244
+
245
+ See Also
246
+ ========
247
+
248
+ sympy.matrices.dense.DenseMatrix.LDLdecomposition
249
+ sympy.matrices.matrices.MatrixBase.LUdecomposition
250
+ QRdecomposition
251
+ """
252
+
253
+ from .dense import MutableDenseMatrix
254
+
255
+ if not M.is_square:
256
+ raise NonSquareMatrixError("Matrix must be square.")
257
+ if hermitian and not M.is_hermitian:
258
+ raise ValueError("Matrix must be Hermitian.")
259
+ if not hermitian and not M.is_symmetric():
260
+ raise ValueError("Matrix must be symmetric.")
261
+
262
+ L = MutableDenseMatrix.zeros(M.rows, M.rows)
263
+
264
+ if hermitian:
265
+ for i in range(M.rows):
266
+ for j in range(i):
267
+ L[i, j] = ((1 / L[j, j])*(M[i, j] -
268
+ sum(L[i, k]*L[j, k].conjugate() for k in range(j))))
269
+
270
+ Lii2 = (M[i, i] -
271
+ sum(L[i, k]*L[i, k].conjugate() for k in range(i)))
272
+
273
+ if Lii2.is_positive is False:
274
+ raise NonPositiveDefiniteMatrixError(
275
+ "Matrix must be positive-definite")
276
+
277
+ L[i, i] = sqrt(Lii2)
278
+
279
+ else:
280
+ for i in range(M.rows):
281
+ for j in range(i):
282
+ L[i, j] = ((1 / L[j, j])*(M[i, j] -
283
+ sum(L[i, k]*L[j, k] for k in range(j))))
284
+
285
+ L[i, i] = sqrt(M[i, i] -
286
+ sum(L[i, k]**2 for k in range(i)))
287
+
288
+ return M._new(L)
289
+
290
+ def _cholesky_sparse(M, hermitian=True):
291
+ """
292
+ Returns the Cholesky decomposition L of a matrix A
293
+ such that L * L.T = A
294
+
295
+ A must be a square, symmetric, positive-definite
296
+ and non-singular matrix
297
+
298
+ Examples
299
+ ========
300
+
301
+ >>> from sympy import SparseMatrix
302
+ >>> A = SparseMatrix(((25,15,-5),(15,18,0),(-5,0,11)))
303
+ >>> A.cholesky()
304
+ Matrix([
305
+ [ 5, 0, 0],
306
+ [ 3, 3, 0],
307
+ [-1, 1, 3]])
308
+ >>> A.cholesky() * A.cholesky().T == A
309
+ True
310
+
311
+ The matrix can have complex entries:
312
+
313
+ >>> from sympy import I
314
+ >>> A = SparseMatrix(((9, 3*I), (-3*I, 5)))
315
+ >>> A.cholesky()
316
+ Matrix([
317
+ [ 3, 0],
318
+ [-I, 2]])
319
+ >>> A.cholesky() * A.cholesky().H
320
+ Matrix([
321
+ [ 9, 3*I],
322
+ [-3*I, 5]])
323
+
324
+ Non-hermitian Cholesky-type decomposition may be useful when the
325
+ matrix is not positive-definite.
326
+
327
+ >>> A = SparseMatrix([[1, 2], [2, 1]])
328
+ >>> L = A.cholesky(hermitian=False)
329
+ >>> L
330
+ Matrix([
331
+ [1, 0],
332
+ [2, sqrt(3)*I]])
333
+ >>> L*L.T == A
334
+ True
335
+
336
+ See Also
337
+ ========
338
+
339
+ sympy.matrices.sparse.SparseMatrix.LDLdecomposition
340
+ sympy.matrices.matrices.MatrixBase.LUdecomposition
341
+ QRdecomposition
342
+ """
343
+
344
+ from .dense import MutableDenseMatrix
345
+
346
+ if not M.is_square:
347
+ raise NonSquareMatrixError("Matrix must be square.")
348
+ if hermitian and not M.is_hermitian:
349
+ raise ValueError("Matrix must be Hermitian.")
350
+ if not hermitian and not M.is_symmetric():
351
+ raise ValueError("Matrix must be symmetric.")
352
+
353
+ dps = _get_intermediate_simp(expand_mul, expand_mul)
354
+ Crowstruc = M.row_structure_symbolic_cholesky()
355
+ C = MutableDenseMatrix.zeros(M.rows)
356
+
357
+ for i in range(len(Crowstruc)):
358
+ for j in Crowstruc[i]:
359
+ if i != j:
360
+ C[i, j] = M[i, j]
361
+ summ = 0
362
+
363
+ for p1 in Crowstruc[i]:
364
+ if p1 < j:
365
+ for p2 in Crowstruc[j]:
366
+ if p2 < j:
367
+ if p1 == p2:
368
+ if hermitian:
369
+ summ += C[i, p1]*C[j, p1].conjugate()
370
+ else:
371
+ summ += C[i, p1]*C[j, p1]
372
+ else:
373
+ break
374
+ else:
375
+ break
376
+
377
+ C[i, j] = dps((C[i, j] - summ) / C[j, j])
378
+
379
+ else: # i == j
380
+ C[j, j] = M[j, j]
381
+ summ = 0
382
+
383
+ for k in Crowstruc[j]:
384
+ if k < j:
385
+ if hermitian:
386
+ summ += C[j, k]*C[j, k].conjugate()
387
+ else:
388
+ summ += C[j, k]**2
389
+ else:
390
+ break
391
+
392
+ Cjj2 = dps(C[j, j] - summ)
393
+
394
+ if hermitian and Cjj2.is_positive is False:
395
+ raise NonPositiveDefiniteMatrixError(
396
+ "Matrix must be positive-definite")
397
+
398
+ C[j, j] = sqrt(Cjj2)
399
+
400
+ return M._new(C)
401
+
402
+
403
+ def _LDLdecomposition(M, hermitian=True):
404
+ """Returns the LDL Decomposition (L, D) of matrix A,
405
+ such that L * D * L.H == A if hermitian flag is True, or
406
+ L * D * L.T == A if hermitian is False.
407
+ This method eliminates the use of square root.
408
+ Further this ensures that all the diagonal entries of L are 1.
409
+ A must be a Hermitian positive-definite matrix if hermitian is True,
410
+ or a symmetric matrix otherwise.
411
+
412
+ Examples
413
+ ========
414
+
415
+ >>> from sympy import Matrix, eye
416
+ >>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
417
+ >>> L, D = A.LDLdecomposition()
418
+ >>> L
419
+ Matrix([
420
+ [ 1, 0, 0],
421
+ [ 3/5, 1, 0],
422
+ [-1/5, 1/3, 1]])
423
+ >>> D
424
+ Matrix([
425
+ [25, 0, 0],
426
+ [ 0, 9, 0],
427
+ [ 0, 0, 9]])
428
+ >>> L * D * L.T * A.inv() == eye(A.rows)
429
+ True
430
+
431
+ The matrix can have complex entries:
432
+
433
+ >>> from sympy import I
434
+ >>> A = Matrix(((9, 3*I), (-3*I, 5)))
435
+ >>> L, D = A.LDLdecomposition()
436
+ >>> L
437
+ Matrix([
438
+ [ 1, 0],
439
+ [-I/3, 1]])
440
+ >>> D
441
+ Matrix([
442
+ [9, 0],
443
+ [0, 4]])
444
+ >>> L*D*L.H == A
445
+ True
446
+
447
+ See Also
448
+ ========
449
+
450
+ sympy.matrices.dense.DenseMatrix.cholesky
451
+ sympy.matrices.matrices.MatrixBase.LUdecomposition
452
+ QRdecomposition
453
+ """
454
+
455
+ from .dense import MutableDenseMatrix
456
+
457
+ if not M.is_square:
458
+ raise NonSquareMatrixError("Matrix must be square.")
459
+ if hermitian and not M.is_hermitian:
460
+ raise ValueError("Matrix must be Hermitian.")
461
+ if not hermitian and not M.is_symmetric():
462
+ raise ValueError("Matrix must be symmetric.")
463
+
464
+ D = MutableDenseMatrix.zeros(M.rows, M.rows)
465
+ L = MutableDenseMatrix.eye(M.rows)
466
+
467
+ if hermitian:
468
+ for i in range(M.rows):
469
+ for j in range(i):
470
+ L[i, j] = (1 / D[j, j])*(M[i, j] - sum(
471
+ L[i, k]*L[j, k].conjugate()*D[k, k] for k in range(j)))
472
+
473
+ D[i, i] = (M[i, i] -
474
+ sum(L[i, k]*L[i, k].conjugate()*D[k, k] for k in range(i)))
475
+
476
+ if D[i, i].is_positive is False:
477
+ raise NonPositiveDefiniteMatrixError(
478
+ "Matrix must be positive-definite")
479
+
480
+ else:
481
+ for i in range(M.rows):
482
+ for j in range(i):
483
+ L[i, j] = (1 / D[j, j])*(M[i, j] - sum(
484
+ L[i, k]*L[j, k]*D[k, k] for k in range(j)))
485
+
486
+ D[i, i] = M[i, i] - sum(L[i, k]**2*D[k, k] for k in range(i))
487
+
488
+ return M._new(L), M._new(D)
489
+
490
+ def _LDLdecomposition_sparse(M, hermitian=True):
491
+ """
492
+ Returns the LDL Decomposition (matrices ``L`` and ``D``) of matrix
493
+ ``A``, such that ``L * D * L.T == A``. ``A`` must be a square,
494
+ symmetric, positive-definite and non-singular.
495
+
496
+ This method eliminates the use of square root and ensures that all
497
+ the diagonal entries of L are 1.
498
+
499
+ Examples
500
+ ========
501
+
502
+ >>> from sympy import SparseMatrix
503
+ >>> A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
504
+ >>> L, D = A.LDLdecomposition()
505
+ >>> L
506
+ Matrix([
507
+ [ 1, 0, 0],
508
+ [ 3/5, 1, 0],
509
+ [-1/5, 1/3, 1]])
510
+ >>> D
511
+ Matrix([
512
+ [25, 0, 0],
513
+ [ 0, 9, 0],
514
+ [ 0, 0, 9]])
515
+ >>> L * D * L.T == A
516
+ True
517
+
518
+ """
519
+
520
+ from .dense import MutableDenseMatrix
521
+
522
+ if not M.is_square:
523
+ raise NonSquareMatrixError("Matrix must be square.")
524
+ if hermitian and not M.is_hermitian:
525
+ raise ValueError("Matrix must be Hermitian.")
526
+ if not hermitian and not M.is_symmetric():
527
+ raise ValueError("Matrix must be symmetric.")
528
+
529
+ dps = _get_intermediate_simp(expand_mul, expand_mul)
530
+ Lrowstruc = M.row_structure_symbolic_cholesky()
531
+ L = MutableDenseMatrix.eye(M.rows)
532
+ D = MutableDenseMatrix.zeros(M.rows, M.cols)
533
+
534
+ for i in range(len(Lrowstruc)):
535
+ for j in Lrowstruc[i]:
536
+ if i != j:
537
+ L[i, j] = M[i, j]
538
+ summ = 0
539
+
540
+ for p1 in Lrowstruc[i]:
541
+ if p1 < j:
542
+ for p2 in Lrowstruc[j]:
543
+ if p2 < j:
544
+ if p1 == p2:
545
+ if hermitian:
546
+ summ += L[i, p1]*L[j, p1].conjugate()*D[p1, p1]
547
+ else:
548
+ summ += L[i, p1]*L[j, p1]*D[p1, p1]
549
+ else:
550
+ break
551
+ else:
552
+ break
553
+
554
+ L[i, j] = dps((L[i, j] - summ) / D[j, j])
555
+
556
+ else: # i == j
557
+ D[i, i] = M[i, i]
558
+ summ = 0
559
+
560
+ for k in Lrowstruc[i]:
561
+ if k < i:
562
+ if hermitian:
563
+ summ += L[i, k]*L[i, k].conjugate()*D[k, k]
564
+ else:
565
+ summ += L[i, k]**2*D[k, k]
566
+ else:
567
+ break
568
+
569
+ D[i, i] = dps(D[i, i] - summ)
570
+
571
+ if hermitian and D[i, i].is_positive is False:
572
+ raise NonPositiveDefiniteMatrixError(
573
+ "Matrix must be positive-definite")
574
+
575
+ return M._new(L), M._new(D)
576
+
577
+
578
+ def _LUdecomposition(M, iszerofunc=_iszero, simpfunc=None, rankcheck=False):
579
+ """Returns (L, U, perm) where L is a lower triangular matrix with unit
580
+ diagonal, U is an upper triangular matrix, and perm is a list of row
581
+ swap index pairs. If A is the original matrix, then
582
+ ``A = (L*U).permuteBkwd(perm)``, and the row permutation matrix P such
583
+ that $P A = L U$ can be computed by ``P = eye(A.rows).permuteFwd(perm)``.
584
+
585
+ See documentation for LUCombined for details about the keyword argument
586
+ rankcheck, iszerofunc, and simpfunc.
587
+
588
+ Parameters
589
+ ==========
590
+
591
+ rankcheck : bool, optional
592
+ Determines if this function should detect the rank
593
+ deficiency of the matrixis and should raise a
594
+ ``ValueError``.
595
+
596
+ iszerofunc : function, optional
597
+ A function which determines if a given expression is zero.
598
+
599
+ The function should be a callable that takes a single
600
+ SymPy expression and returns a 3-valued boolean value
601
+ ``True``, ``False``, or ``None``.
602
+
603
+ It is internally used by the pivot searching algorithm.
604
+ See the notes section for a more information about the
605
+ pivot searching algorithm.
606
+
607
+ simpfunc : function or None, optional
608
+ A function that simplifies the input.
609
+
610
+ If this is specified as a function, this function should be
611
+ a callable that takes a single SymPy expression and returns
612
+ an another SymPy expression that is algebraically
613
+ equivalent.
614
+
615
+ If ``None``, it indicates that the pivot search algorithm
616
+ should not attempt to simplify any candidate pivots.
617
+
618
+ It is internally used by the pivot searching algorithm.
619
+ See the notes section for a more information about the
620
+ pivot searching algorithm.
621
+
622
+ Examples
623
+ ========
624
+
625
+ >>> from sympy import Matrix
626
+ >>> a = Matrix([[4, 3], [6, 3]])
627
+ >>> L, U, _ = a.LUdecomposition()
628
+ >>> L
629
+ Matrix([
630
+ [ 1, 0],
631
+ [3/2, 1]])
632
+ >>> U
633
+ Matrix([
634
+ [4, 3],
635
+ [0, -3/2]])
636
+
637
+ See Also
638
+ ========
639
+
640
+ sympy.matrices.dense.DenseMatrix.cholesky
641
+ sympy.matrices.dense.DenseMatrix.LDLdecomposition
642
+ QRdecomposition
643
+ LUdecomposition_Simple
644
+ LUdecompositionFF
645
+ LUsolve
646
+ """
647
+
648
+ combined, p = M.LUdecomposition_Simple(iszerofunc=iszerofunc,
649
+ simpfunc=simpfunc, rankcheck=rankcheck)
650
+
651
+ # L is lower triangular ``M.rows x M.rows``
652
+ # U is upper triangular ``M.rows x M.cols``
653
+ # L has unit diagonal. For each column in combined, the subcolumn
654
+ # below the diagonal of combined is shared by L.
655
+ # If L has more columns than combined, then the remaining subcolumns
656
+ # below the diagonal of L are zero.
657
+ # The upper triangular portion of L and combined are equal.
658
+ def entry_L(i, j):
659
+ if i < j:
660
+ # Super diagonal entry
661
+ return M.zero
662
+ elif i == j:
663
+ return M.one
664
+ elif j < combined.cols:
665
+ return combined[i, j]
666
+
667
+ # Subdiagonal entry of L with no corresponding
668
+ # entry in combined
669
+ return M.zero
670
+
671
+ def entry_U(i, j):
672
+ return M.zero if i > j else combined[i, j]
673
+
674
+ L = M._new(combined.rows, combined.rows, entry_L)
675
+ U = M._new(combined.rows, combined.cols, entry_U)
676
+
677
+ return L, U, p
678
+
679
+ def _LUdecomposition_Simple(M, iszerofunc=_iszero, simpfunc=None,
680
+ rankcheck=False):
681
+ r"""Compute the PLU decomposition of the matrix.
682
+
683
+ Parameters
684
+ ==========
685
+
686
+ rankcheck : bool, optional
687
+ Determines if this function should detect the rank
688
+ deficiency of the matrixis and should raise a
689
+ ``ValueError``.
690
+
691
+ iszerofunc : function, optional
692
+ A function which determines if a given expression is zero.
693
+
694
+ The function should be a callable that takes a single
695
+ SymPy expression and returns a 3-valued boolean value
696
+ ``True``, ``False``, or ``None``.
697
+
698
+ It is internally used by the pivot searching algorithm.
699
+ See the notes section for a more information about the
700
+ pivot searching algorithm.
701
+
702
+ simpfunc : function or None, optional
703
+ A function that simplifies the input.
704
+
705
+ If this is specified as a function, this function should be
706
+ a callable that takes a single SymPy expression and returns
707
+ an another SymPy expression that is algebraically
708
+ equivalent.
709
+
710
+ If ``None``, it indicates that the pivot search algorithm
711
+ should not attempt to simplify any candidate pivots.
712
+
713
+ It is internally used by the pivot searching algorithm.
714
+ See the notes section for a more information about the
715
+ pivot searching algorithm.
716
+
717
+ Returns
718
+ =======
719
+
720
+ (lu, row_swaps) : (Matrix, list)
721
+ If the original matrix is a $m, n$ matrix:
722
+
723
+ *lu* is a $m, n$ matrix, which contains result of the
724
+ decomposition in a compressed form. See the notes section
725
+ to see how the matrix is compressed.
726
+
727
+ *row_swaps* is a $m$-element list where each element is a
728
+ pair of row exchange indices.
729
+
730
+ ``A = (L*U).permute_backward(perm)``, and the row
731
+ permutation matrix $P$ from the formula $P A = L U$ can be
732
+ computed by ``P=eye(A.row).permute_forward(perm)``.
733
+
734
+ Raises
735
+ ======
736
+
737
+ ValueError
738
+ Raised if ``rankcheck=True`` and the matrix is found to
739
+ be rank deficient during the computation.
740
+
741
+ Notes
742
+ =====
743
+
744
+ About the PLU decomposition:
745
+
746
+ PLU decomposition is a generalization of a LU decomposition
747
+ which can be extended for rank-deficient matrices.
748
+
749
+ It can further be generalized for non-square matrices, and this
750
+ is the notation that SymPy is using.
751
+
752
+ PLU decomposition is a decomposition of a $m, n$ matrix $A$ in
753
+ the form of $P A = L U$ where
754
+
755
+ * $L$ is a $m, m$ lower triangular matrix with unit diagonal
756
+ entries.
757
+ * $U$ is a $m, n$ upper triangular matrix.
758
+ * $P$ is a $m, m$ permutation matrix.
759
+
760
+ So, for a square matrix, the decomposition would look like:
761
+
762
+ .. math::
763
+ L = \begin{bmatrix}
764
+ 1 & 0 & 0 & \cdots & 0 \\
765
+ L_{1, 0} & 1 & 0 & \cdots & 0 \\
766
+ L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 \\
767
+ \vdots & \vdots & \vdots & \ddots & \vdots \\
768
+ L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & 1
769
+ \end{bmatrix}
770
+
771
+ .. math::
772
+ U = \begin{bmatrix}
773
+ U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\
774
+ 0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\
775
+ 0 & 0 & U_{2, 2} & \cdots & U_{2, n-1} \\
776
+ \vdots & \vdots & \vdots & \ddots & \vdots \\
777
+ 0 & 0 & 0 & \cdots & U_{n-1, n-1}
778
+ \end{bmatrix}
779
+
780
+ And for a matrix with more rows than the columns,
781
+ the decomposition would look like:
782
+
783
+ .. math::
784
+ L = \begin{bmatrix}
785
+ 1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
786
+ L_{1, 0} & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
787
+ L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 & 0 & \cdots & 0 \\
788
+ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots
789
+ & \vdots \\
790
+ L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & 1 & 0
791
+ & \cdots & 0 \\
792
+ L_{n, 0} & L_{n, 1} & L_{n, 2} & \cdots & L_{n, n-1} & 1
793
+ & \cdots & 0 \\
794
+ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots
795
+ & \ddots & \vdots \\
796
+ L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & L_{m-1, n-1}
797
+ & 0 & \cdots & 1 \\
798
+ \end{bmatrix}
799
+
800
+ .. math::
801
+ U = \begin{bmatrix}
802
+ U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\
803
+ 0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\
804
+ 0 & 0 & U_{2, 2} & \cdots & U_{2, n-1} \\
805
+ \vdots & \vdots & \vdots & \ddots & \vdots \\
806
+ 0 & 0 & 0 & \cdots & U_{n-1, n-1} \\
807
+ 0 & 0 & 0 & \cdots & 0 \\
808
+ \vdots & \vdots & \vdots & \ddots & \vdots \\
809
+ 0 & 0 & 0 & \cdots & 0
810
+ \end{bmatrix}
811
+
812
+ Finally, for a matrix with more columns than the rows, the
813
+ decomposition would look like:
814
+
815
+ .. math::
816
+ L = \begin{bmatrix}
817
+ 1 & 0 & 0 & \cdots & 0 \\
818
+ L_{1, 0} & 1 & 0 & \cdots & 0 \\
819
+ L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 \\
820
+ \vdots & \vdots & \vdots & \ddots & \vdots \\
821
+ L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & 1
822
+ \end{bmatrix}
823
+
824
+ .. math::
825
+ U = \begin{bmatrix}
826
+ U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, m-1}
827
+ & \cdots & U_{0, n-1} \\
828
+ 0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, m-1}
829
+ & \cdots & U_{1, n-1} \\
830
+ 0 & 0 & U_{2, 2} & \cdots & U_{2, m-1}
831
+ & \cdots & U_{2, n-1} \\
832
+ \vdots & \vdots & \vdots & \ddots & \vdots
833
+ & \cdots & \vdots \\
834
+ 0 & 0 & 0 & \cdots & U_{m-1, m-1}
835
+ & \cdots & U_{m-1, n-1} \\
836
+ \end{bmatrix}
837
+
838
+ About the compressed LU storage:
839
+
840
+ The results of the decomposition are often stored in compressed
841
+ forms rather than returning $L$ and $U$ matrices individually.
842
+
843
+ It may be less intiuitive, but it is commonly used for a lot of
844
+ numeric libraries because of the efficiency.
845
+
846
+ The storage matrix is defined as following for this specific
847
+ method:
848
+
849
+ * The subdiagonal elements of $L$ are stored in the subdiagonal
850
+ portion of $LU$, that is $LU_{i, j} = L_{i, j}$ whenever
851
+ $i > j$.
852
+ * The elements on the diagonal of $L$ are all 1, and are not
853
+ explicitly stored.
854
+ * $U$ is stored in the upper triangular portion of $LU$, that is
855
+ $LU_{i, j} = U_{i, j}$ whenever $i <= j$.
856
+ * For a case of $m > n$, the right side of the $L$ matrix is
857
+ trivial to store.
858
+ * For a case of $m < n$, the below side of the $U$ matrix is
859
+ trivial to store.
860
+
861
+ So, for a square matrix, the compressed output matrix would be:
862
+
863
+ .. math::
864
+ LU = \begin{bmatrix}
865
+ U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\
866
+ L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\
867
+ L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, n-1} \\
868
+ \vdots & \vdots & \vdots & \ddots & \vdots \\
869
+ L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & U_{n-1, n-1}
870
+ \end{bmatrix}
871
+
872
+ For a matrix with more rows than the columns, the compressed
873
+ output matrix would be:
874
+
875
+ .. math::
876
+ LU = \begin{bmatrix}
877
+ U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\
878
+ L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\
879
+ L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, n-1} \\
880
+ \vdots & \vdots & \vdots & \ddots & \vdots \\
881
+ L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots
882
+ & U_{n-1, n-1} \\
883
+ \vdots & \vdots & \vdots & \ddots & \vdots \\
884
+ L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots
885
+ & L_{m-1, n-1} \\
886
+ \end{bmatrix}
887
+
888
+ For a matrix with more columns than the rows, the compressed
889
+ output matrix would be:
890
+
891
+ .. math::
892
+ LU = \begin{bmatrix}
893
+ U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, m-1}
894
+ & \cdots & U_{0, n-1} \\
895
+ L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, m-1}
896
+ & \cdots & U_{1, n-1} \\
897
+ L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, m-1}
898
+ & \cdots & U_{2, n-1} \\
899
+ \vdots & \vdots & \vdots & \ddots & \vdots
900
+ & \cdots & \vdots \\
901
+ L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & U_{m-1, m-1}
902
+ & \cdots & U_{m-1, n-1} \\
903
+ \end{bmatrix}
904
+
905
+ About the pivot searching algorithm:
906
+
907
+ When a matrix contains symbolic entries, the pivot search algorithm
908
+ differs from the case where every entry can be categorized as zero or
909
+ nonzero.
910
+ The algorithm searches column by column through the submatrix whose
911
+ top left entry coincides with the pivot position.
912
+ If it exists, the pivot is the first entry in the current search
913
+ column that iszerofunc guarantees is nonzero.
914
+ If no such candidate exists, then each candidate pivot is simplified
915
+ if simpfunc is not None.
916
+ The search is repeated, with the difference that a candidate may be
917
+ the pivot if ``iszerofunc()`` cannot guarantee that it is nonzero.
918
+ In the second search the pivot is the first candidate that
919
+ iszerofunc can guarantee is nonzero.
920
+ If no such candidate exists, then the pivot is the first candidate
921
+ for which iszerofunc returns None.
922
+ If no such candidate exists, then the search is repeated in the next
923
+ column to the right.
924
+ The pivot search algorithm differs from the one in ``rref()``, which
925
+ relies on ``_find_reasonable_pivot()``.
926
+ Future versions of ``LUdecomposition_simple()`` may use
927
+ ``_find_reasonable_pivot()``.
928
+
929
+ See Also
930
+ ========
931
+
932
+ sympy.matrices.matrices.MatrixBase.LUdecomposition
933
+ LUdecompositionFF
934
+ LUsolve
935
+ """
936
+
937
+ if rankcheck:
938
+ # https://github.com/sympy/sympy/issues/9796
939
+ pass
940
+
941
+ if S.Zero in M.shape:
942
+ # Define LU decomposition of a matrix with no entries as a matrix
943
+ # of the same dimensions with all zero entries.
944
+ return M.zeros(M.rows, M.cols), []
945
+
946
+ dps = _get_intermediate_simp()
947
+ lu = M.as_mutable()
948
+ row_swaps = []
949
+
950
+ pivot_col = 0
951
+
952
+ for pivot_row in range(0, lu.rows - 1):
953
+ # Search for pivot. Prefer entry that iszeropivot determines
954
+ # is nonzero, over entry that iszeropivot cannot guarantee
955
+ # is zero.
956
+ # XXX ``_find_reasonable_pivot`` uses slow zero testing. Blocked by bug #10279
957
+ # Future versions of LUdecomposition_simple can pass iszerofunc and simpfunc
958
+ # to _find_reasonable_pivot().
959
+ # In pass 3 of _find_reasonable_pivot(), the predicate in ``if x.equals(S.Zero):``
960
+ # calls sympy.simplify(), and not the simplification function passed in via
961
+ # the keyword argument simpfunc.
962
+ iszeropivot = True
963
+
964
+ while pivot_col != M.cols and iszeropivot:
965
+ sub_col = (lu[r, pivot_col] for r in range(pivot_row, M.rows))
966
+
967
+ pivot_row_offset, pivot_value, is_assumed_non_zero, ind_simplified_pairs =\
968
+ _find_reasonable_pivot_naive(sub_col, iszerofunc, simpfunc)
969
+
970
+ iszeropivot = pivot_value is None
971
+
972
+ if iszeropivot:
973
+ # All candidate pivots in this column are zero.
974
+ # Proceed to next column.
975
+ pivot_col += 1
976
+
977
+ if rankcheck and pivot_col != pivot_row:
978
+ # All entries including and below the pivot position are
979
+ # zero, which indicates that the rank of the matrix is
980
+ # strictly less than min(num rows, num cols)
981
+ # Mimic behavior of previous implementation, by throwing a
982
+ # ValueError.
983
+ raise ValueError("Rank of matrix is strictly less than"
984
+ " number of rows or columns."
985
+ " Pass keyword argument"
986
+ " rankcheck=False to compute"
987
+ " the LU decomposition of this matrix.")
988
+
989
+ candidate_pivot_row = None if pivot_row_offset is None else pivot_row + pivot_row_offset
990
+
991
+ if candidate_pivot_row is None and iszeropivot:
992
+ # If candidate_pivot_row is None and iszeropivot is True
993
+ # after pivot search has completed, then the submatrix
994
+ # below and to the right of (pivot_row, pivot_col) is
995
+ # all zeros, indicating that Gaussian elimination is
996
+ # complete.
997
+ return lu, row_swaps
998
+
999
+ # Update entries simplified during pivot search.
1000
+ for offset, val in ind_simplified_pairs:
1001
+ lu[pivot_row + offset, pivot_col] = val
1002
+
1003
+ if pivot_row != candidate_pivot_row:
1004
+ # Row swap book keeping:
1005
+ # Record which rows were swapped.
1006
+ # Update stored portion of L factor by multiplying L on the
1007
+ # left and right with the current permutation.
1008
+ # Swap rows of U.
1009
+ row_swaps.append([pivot_row, candidate_pivot_row])
1010
+
1011
+ # Update L.
1012
+ lu[pivot_row, 0:pivot_row], lu[candidate_pivot_row, 0:pivot_row] = \
1013
+ lu[candidate_pivot_row, 0:pivot_row], lu[pivot_row, 0:pivot_row]
1014
+
1015
+ # Swap pivot row of U with candidate pivot row.
1016
+ lu[pivot_row, pivot_col:lu.cols], lu[candidate_pivot_row, pivot_col:lu.cols] = \
1017
+ lu[candidate_pivot_row, pivot_col:lu.cols], lu[pivot_row, pivot_col:lu.cols]
1018
+
1019
+ # Introduce zeros below the pivot by adding a multiple of the
1020
+ # pivot row to a row under it, and store the result in the
1021
+ # row under it.
1022
+ # Only entries in the target row whose index is greater than
1023
+ # start_col may be nonzero.
1024
+ start_col = pivot_col + 1
1025
+
1026
+ for row in range(pivot_row + 1, lu.rows):
1027
+ # Store factors of L in the subcolumn below
1028
+ # (pivot_row, pivot_row).
1029
+ lu[row, pivot_row] = \
1030
+ dps(lu[row, pivot_col]/lu[pivot_row, pivot_col])
1031
+
1032
+ # Form the linear combination of the pivot row and the current
1033
+ # row below the pivot row that zeros the entries below the pivot.
1034
+ # Employing slicing instead of a loop here raises
1035
+ # NotImplementedError: Cannot add Zero to MutableSparseMatrix
1036
+ # in sympy/matrices/tests/test_sparse.py.
1037
+ # c = pivot_row + 1 if pivot_row == pivot_col else pivot_col
1038
+ for c in range(start_col, lu.cols):
1039
+ lu[row, c] = dps(lu[row, c] - lu[row, pivot_row]*lu[pivot_row, c])
1040
+
1041
+ if pivot_row != pivot_col:
1042
+ # matrix rank < min(num rows, num cols),
1043
+ # so factors of L are not stored directly below the pivot.
1044
+ # These entries are zero by construction, so don't bother
1045
+ # computing them.
1046
+ for row in range(pivot_row + 1, lu.rows):
1047
+ lu[row, pivot_col] = M.zero
1048
+
1049
+ pivot_col += 1
1050
+
1051
+ if pivot_col == lu.cols:
1052
+ # All candidate pivots are zero implies that Gaussian
1053
+ # elimination is complete.
1054
+ return lu, row_swaps
1055
+
1056
+ if rankcheck:
1057
+ if iszerofunc(
1058
+ lu[Min(lu.rows, lu.cols) - 1, Min(lu.rows, lu.cols) - 1]):
1059
+ raise ValueError("Rank of matrix is strictly less than"
1060
+ " number of rows or columns."
1061
+ " Pass keyword argument"
1062
+ " rankcheck=False to compute"
1063
+ " the LU decomposition of this matrix.")
1064
+
1065
+ return lu, row_swaps
1066
+
1067
+ def _LUdecompositionFF(M):
1068
+ """Compute a fraction-free LU decomposition.
1069
+
1070
+ Returns 4 matrices P, L, D, U such that PA = L D**-1 U.
1071
+ If the elements of the matrix belong to some integral domain I, then all
1072
+ elements of L, D and U are guaranteed to belong to I.
1073
+
1074
+ See Also
1075
+ ========
1076
+
1077
+ sympy.matrices.matrices.MatrixBase.LUdecomposition
1078
+ LUdecomposition_Simple
1079
+ LUsolve
1080
+
1081
+ References
1082
+ ==========
1083
+
1084
+ .. [1] W. Zhou & D.J. Jeffrey, "Fraction-free matrix factors: new forms
1085
+ for LU and QR factors". Frontiers in Computer Science in China,
1086
+ Vol 2, no. 1, pp. 67-80, 2008.
1087
+ """
1088
+
1089
+ from sympy.matrices import SparseMatrix
1090
+
1091
+ zeros = SparseMatrix.zeros
1092
+ eye = SparseMatrix.eye
1093
+ n, m = M.rows, M.cols
1094
+ U, L, P = M.as_mutable(), eye(n), eye(n)
1095
+ DD = zeros(n, n)
1096
+ oldpivot = 1
1097
+
1098
+ for k in range(n - 1):
1099
+ if U[k, k] == 0:
1100
+ for kpivot in range(k + 1, n):
1101
+ if U[kpivot, k]:
1102
+ break
1103
+ else:
1104
+ raise ValueError("Matrix is not full rank")
1105
+
1106
+ U[k, k:], U[kpivot, k:] = U[kpivot, k:], U[k, k:]
1107
+ L[k, :k], L[kpivot, :k] = L[kpivot, :k], L[k, :k]
1108
+ P[k, :], P[kpivot, :] = P[kpivot, :], P[k, :]
1109
+
1110
+ L [k, k] = Ukk = U[k, k]
1111
+ DD[k, k] = oldpivot * Ukk
1112
+
1113
+ for i in range(k + 1, n):
1114
+ L[i, k] = Uik = U[i, k]
1115
+
1116
+ for j in range(k + 1, m):
1117
+ U[i, j] = (Ukk * U[i, j] - U[k, j] * Uik) / oldpivot
1118
+
1119
+ U[i, k] = 0
1120
+
1121
+ oldpivot = Ukk
1122
+
1123
+ DD[n - 1, n - 1] = oldpivot
1124
+
1125
+ return P, L, DD, U
1126
+
1127
+ def _singular_value_decomposition(A):
1128
+ r"""Returns a Condensed Singular Value decomposition.
1129
+
1130
+ Explanation
1131
+ ===========
1132
+
1133
+ A Singular Value decomposition is a decomposition in the form $A = U \Sigma V$
1134
+ where
1135
+
1136
+ - $U, V$ are column orthogonal matrix.
1137
+ - $\Sigma$ is a diagonal matrix, where the main diagonal contains singular
1138
+ values of matrix A.
1139
+
1140
+ A column orthogonal matrix satisfies
1141
+ $\mathbb{I} = U^H U$ while a full orthogonal matrix satisfies
1142
+ relation $\mathbb{I} = U U^H = U^H U$ where $\mathbb{I}$ is an identity
1143
+ matrix with matching dimensions.
1144
+
1145
+ For matrices which are not square or are rank-deficient, it is
1146
+ sufficient to return a column orthogonal matrix because augmenting
1147
+ them may introduce redundant computations.
1148
+ In condensed Singular Value Decomposition we only return column orthogonal
1149
+ matrices because of this reason
1150
+
1151
+ If you want to augment the results to return a full orthogonal
1152
+ decomposition, you should use the following procedures.
1153
+
1154
+ - Augment the $U, V$ matrices with columns that are orthogonal to every
1155
+ other columns and make it square.
1156
+ - Augment the $\Sigma$ matrix with zero rows to make it have the same
1157
+ shape as the original matrix.
1158
+
1159
+ The procedure will be illustrated in the examples section.
1160
+
1161
+ Examples
1162
+ ========
1163
+
1164
+ we take a full rank matrix first:
1165
+
1166
+ >>> from sympy import Matrix
1167
+ >>> A = Matrix([[1, 2],[2,1]])
1168
+ >>> U, S, V = A.singular_value_decomposition()
1169
+ >>> U
1170
+ Matrix([
1171
+ [ sqrt(2)/2, sqrt(2)/2],
1172
+ [-sqrt(2)/2, sqrt(2)/2]])
1173
+ >>> S
1174
+ Matrix([
1175
+ [1, 0],
1176
+ [0, 3]])
1177
+ >>> V
1178
+ Matrix([
1179
+ [-sqrt(2)/2, sqrt(2)/2],
1180
+ [ sqrt(2)/2, sqrt(2)/2]])
1181
+
1182
+ If a matrix if square and full rank both U, V
1183
+ are orthogonal in both directions
1184
+
1185
+ >>> U * U.H
1186
+ Matrix([
1187
+ [1, 0],
1188
+ [0, 1]])
1189
+ >>> U.H * U
1190
+ Matrix([
1191
+ [1, 0],
1192
+ [0, 1]])
1193
+
1194
+ >>> V * V.H
1195
+ Matrix([
1196
+ [1, 0],
1197
+ [0, 1]])
1198
+ >>> V.H * V
1199
+ Matrix([
1200
+ [1, 0],
1201
+ [0, 1]])
1202
+ >>> A == U * S * V.H
1203
+ True
1204
+
1205
+ >>> C = Matrix([
1206
+ ... [1, 0, 0, 0, 2],
1207
+ ... [0, 0, 3, 0, 0],
1208
+ ... [0, 0, 0, 0, 0],
1209
+ ... [0, 2, 0, 0, 0],
1210
+ ... ])
1211
+ >>> U, S, V = C.singular_value_decomposition()
1212
+
1213
+ >>> V.H * V
1214
+ Matrix([
1215
+ [1, 0, 0],
1216
+ [0, 1, 0],
1217
+ [0, 0, 1]])
1218
+ >>> V * V.H
1219
+ Matrix([
1220
+ [1/5, 0, 0, 0, 2/5],
1221
+ [ 0, 1, 0, 0, 0],
1222
+ [ 0, 0, 1, 0, 0],
1223
+ [ 0, 0, 0, 0, 0],
1224
+ [2/5, 0, 0, 0, 4/5]])
1225
+
1226
+ If you want to augment the results to be a full orthogonal
1227
+ decomposition, you should augment $V$ with an another orthogonal
1228
+ column.
1229
+
1230
+ You are able to append an arbitrary standard basis that are linearly
1231
+ independent to every other columns and you can run the Gram-Schmidt
1232
+ process to make them augmented as orthogonal basis.
1233
+
1234
+ >>> V_aug = V.row_join(Matrix([[0,0,0,0,1],
1235
+ ... [0,0,0,1,0]]).H)
1236
+ >>> V_aug = V_aug.QRdecomposition()[0]
1237
+ >>> V_aug
1238
+ Matrix([
1239
+ [0, sqrt(5)/5, 0, -2*sqrt(5)/5, 0],
1240
+ [1, 0, 0, 0, 0],
1241
+ [0, 0, 1, 0, 0],
1242
+ [0, 0, 0, 0, 1],
1243
+ [0, 2*sqrt(5)/5, 0, sqrt(5)/5, 0]])
1244
+ >>> V_aug.H * V_aug
1245
+ Matrix([
1246
+ [1, 0, 0, 0, 0],
1247
+ [0, 1, 0, 0, 0],
1248
+ [0, 0, 1, 0, 0],
1249
+ [0, 0, 0, 1, 0],
1250
+ [0, 0, 0, 0, 1]])
1251
+ >>> V_aug * V_aug.H
1252
+ Matrix([
1253
+ [1, 0, 0, 0, 0],
1254
+ [0, 1, 0, 0, 0],
1255
+ [0, 0, 1, 0, 0],
1256
+ [0, 0, 0, 1, 0],
1257
+ [0, 0, 0, 0, 1]])
1258
+
1259
+ Similarly we augment U
1260
+
1261
+ >>> U_aug = U.row_join(Matrix([0,0,1,0]))
1262
+ >>> U_aug = U_aug.QRdecomposition()[0]
1263
+ >>> U_aug
1264
+ Matrix([
1265
+ [0, 1, 0, 0],
1266
+ [0, 0, 1, 0],
1267
+ [0, 0, 0, 1],
1268
+ [1, 0, 0, 0]])
1269
+
1270
+ >>> U_aug.H * U_aug
1271
+ Matrix([
1272
+ [1, 0, 0, 0],
1273
+ [0, 1, 0, 0],
1274
+ [0, 0, 1, 0],
1275
+ [0, 0, 0, 1]])
1276
+ >>> U_aug * U_aug.H
1277
+ Matrix([
1278
+ [1, 0, 0, 0],
1279
+ [0, 1, 0, 0],
1280
+ [0, 0, 1, 0],
1281
+ [0, 0, 0, 1]])
1282
+
1283
+ We add 2 zero columns and one row to S
1284
+
1285
+ >>> S_aug = S.col_join(Matrix([[0,0,0]]))
1286
+ >>> S_aug = S_aug.row_join(Matrix([[0,0,0,0],
1287
+ ... [0,0,0,0]]).H)
1288
+ >>> S_aug
1289
+ Matrix([
1290
+ [2, 0, 0, 0, 0],
1291
+ [0, sqrt(5), 0, 0, 0],
1292
+ [0, 0, 3, 0, 0],
1293
+ [0, 0, 0, 0, 0]])
1294
+
1295
+
1296
+
1297
+ >>> U_aug * S_aug * V_aug.H == C
1298
+ True
1299
+
1300
+ """
1301
+
1302
+ AH = A.H
1303
+ m, n = A.shape
1304
+ if m >= n:
1305
+ V, S = (AH * A).diagonalize()
1306
+
1307
+ ranked = []
1308
+ for i, x in enumerate(S.diagonal()):
1309
+ if not x.is_zero:
1310
+ ranked.append(i)
1311
+
1312
+ V = V[:, ranked]
1313
+
1314
+ Singular_vals = [sqrt(S[i, i]) for i in range(S.rows) if i in ranked]
1315
+
1316
+ S = S.zeros(len(Singular_vals))
1317
+
1318
+ for i, sv in enumerate(Singular_vals):
1319
+ S[i, i] = sv
1320
+
1321
+ V, _ = V.QRdecomposition()
1322
+ U = A * V * S.inv()
1323
+ else:
1324
+ U, S = (A * AH).diagonalize()
1325
+
1326
+ ranked = []
1327
+ for i, x in enumerate(S.diagonal()):
1328
+ if not x.is_zero:
1329
+ ranked.append(i)
1330
+
1331
+ U = U[:, ranked]
1332
+ Singular_vals = [sqrt(S[i, i]) for i in range(S.rows) if i in ranked]
1333
+
1334
+ S = S.zeros(len(Singular_vals))
1335
+
1336
+ for i, sv in enumerate(Singular_vals):
1337
+ S[i, i] = sv
1338
+
1339
+ U, _ = U.QRdecomposition()
1340
+ V = AH * U * S.inv()
1341
+
1342
+ return U, S, V
1343
+
1344
+ def _QRdecomposition_optional(M, normalize=True):
1345
+ def dot(u, v):
1346
+ return u.dot(v, hermitian=True)
1347
+
1348
+ dps = _get_intermediate_simp(expand_mul, expand_mul)
1349
+
1350
+ A = M.as_mutable()
1351
+ ranked = []
1352
+
1353
+ Q = A
1354
+ R = A.zeros(A.cols)
1355
+
1356
+ for j in range(A.cols):
1357
+ for i in range(j):
1358
+ if Q[:, i].is_zero_matrix:
1359
+ continue
1360
+
1361
+ R[i, j] = dot(Q[:, i], Q[:, j]) / dot(Q[:, i], Q[:, i])
1362
+ R[i, j] = dps(R[i, j])
1363
+ Q[:, j] -= Q[:, i] * R[i, j]
1364
+
1365
+ Q[:, j] = dps(Q[:, j])
1366
+ if Q[:, j].is_zero_matrix is not True:
1367
+ ranked.append(j)
1368
+ R[j, j] = M.one
1369
+
1370
+ Q = Q.extract(range(Q.rows), ranked)
1371
+ R = R.extract(ranked, range(R.cols))
1372
+
1373
+ if normalize:
1374
+ # Normalization
1375
+ for i in range(Q.cols):
1376
+ norm = Q[:, i].norm()
1377
+ Q[:, i] /= norm
1378
+ R[i, :] *= norm
1379
+
1380
+ return M.__class__(Q), M.__class__(R)
1381
+
1382
+
1383
+ def _QRdecomposition(M):
1384
+ r"""Returns a QR decomposition.
1385
+
1386
+ Explanation
1387
+ ===========
1388
+
1389
+ A QR decomposition is a decomposition in the form $A = Q R$
1390
+ where
1391
+
1392
+ - $Q$ is a column orthogonal matrix.
1393
+ - $R$ is a upper triangular (trapezoidal) matrix.
1394
+
1395
+ A column orthogonal matrix satisfies
1396
+ $\mathbb{I} = Q^H Q$ while a full orthogonal matrix satisfies
1397
+ relation $\mathbb{I} = Q Q^H = Q^H Q$ where $I$ is an identity
1398
+ matrix with matching dimensions.
1399
+
1400
+ For matrices which are not square or are rank-deficient, it is
1401
+ sufficient to return a column orthogonal matrix because augmenting
1402
+ them may introduce redundant computations.
1403
+ And an another advantage of this is that you can easily inspect the
1404
+ matrix rank by counting the number of columns of $Q$.
1405
+
1406
+ If you want to augment the results to return a full orthogonal
1407
+ decomposition, you should use the following procedures.
1408
+
1409
+ - Augment the $Q$ matrix with columns that are orthogonal to every
1410
+ other columns and make it square.
1411
+ - Augment the $R$ matrix with zero rows to make it have the same
1412
+ shape as the original matrix.
1413
+
1414
+ The procedure will be illustrated in the examples section.
1415
+
1416
+ Examples
1417
+ ========
1418
+
1419
+ A full rank matrix example:
1420
+
1421
+ >>> from sympy import Matrix
1422
+ >>> A = Matrix([[12, -51, 4], [6, 167, -68], [-4, 24, -41]])
1423
+ >>> Q, R = A.QRdecomposition()
1424
+ >>> Q
1425
+ Matrix([
1426
+ [ 6/7, -69/175, -58/175],
1427
+ [ 3/7, 158/175, 6/175],
1428
+ [-2/7, 6/35, -33/35]])
1429
+ >>> R
1430
+ Matrix([
1431
+ [14, 21, -14],
1432
+ [ 0, 175, -70],
1433
+ [ 0, 0, 35]])
1434
+
1435
+ If the matrix is square and full rank, the $Q$ matrix becomes
1436
+ orthogonal in both directions, and needs no augmentation.
1437
+
1438
+ >>> Q * Q.H
1439
+ Matrix([
1440
+ [1, 0, 0],
1441
+ [0, 1, 0],
1442
+ [0, 0, 1]])
1443
+ >>> Q.H * Q
1444
+ Matrix([
1445
+ [1, 0, 0],
1446
+ [0, 1, 0],
1447
+ [0, 0, 1]])
1448
+
1449
+ >>> A == Q*R
1450
+ True
1451
+
1452
+ A rank deficient matrix example:
1453
+
1454
+ >>> A = Matrix([[12, -51, 0], [6, 167, 0], [-4, 24, 0]])
1455
+ >>> Q, R = A.QRdecomposition()
1456
+ >>> Q
1457
+ Matrix([
1458
+ [ 6/7, -69/175],
1459
+ [ 3/7, 158/175],
1460
+ [-2/7, 6/35]])
1461
+ >>> R
1462
+ Matrix([
1463
+ [14, 21, 0],
1464
+ [ 0, 175, 0]])
1465
+
1466
+ QRdecomposition might return a matrix Q that is rectangular.
1467
+ In this case the orthogonality condition might be satisfied as
1468
+ $\mathbb{I} = Q.H*Q$ but not in the reversed product
1469
+ $\mathbb{I} = Q * Q.H$.
1470
+
1471
+ >>> Q.H * Q
1472
+ Matrix([
1473
+ [1, 0],
1474
+ [0, 1]])
1475
+ >>> Q * Q.H
1476
+ Matrix([
1477
+ [27261/30625, 348/30625, -1914/6125],
1478
+ [ 348/30625, 30589/30625, 198/6125],
1479
+ [ -1914/6125, 198/6125, 136/1225]])
1480
+
1481
+ If you want to augment the results to be a full orthogonal
1482
+ decomposition, you should augment $Q$ with an another orthogonal
1483
+ column.
1484
+
1485
+ You are able to append an arbitrary standard basis that are linearly
1486
+ independent to every other columns and you can run the Gram-Schmidt
1487
+ process to make them augmented as orthogonal basis.
1488
+
1489
+ >>> Q_aug = Q.row_join(Matrix([0, 0, 1]))
1490
+ >>> Q_aug = Q_aug.QRdecomposition()[0]
1491
+ >>> Q_aug
1492
+ Matrix([
1493
+ [ 6/7, -69/175, 58/175],
1494
+ [ 3/7, 158/175, -6/175],
1495
+ [-2/7, 6/35, 33/35]])
1496
+ >>> Q_aug.H * Q_aug
1497
+ Matrix([
1498
+ [1, 0, 0],
1499
+ [0, 1, 0],
1500
+ [0, 0, 1]])
1501
+ >>> Q_aug * Q_aug.H
1502
+ Matrix([
1503
+ [1, 0, 0],
1504
+ [0, 1, 0],
1505
+ [0, 0, 1]])
1506
+
1507
+ Augmenting the $R$ matrix with zero row is straightforward.
1508
+
1509
+ >>> R_aug = R.col_join(Matrix([[0, 0, 0]]))
1510
+ >>> R_aug
1511
+ Matrix([
1512
+ [14, 21, 0],
1513
+ [ 0, 175, 0],
1514
+ [ 0, 0, 0]])
1515
+ >>> Q_aug * R_aug == A
1516
+ True
1517
+
1518
+ A zero matrix example:
1519
+
1520
+ >>> from sympy import Matrix
1521
+ >>> A = Matrix.zeros(3, 4)
1522
+ >>> Q, R = A.QRdecomposition()
1523
+
1524
+ They may return matrices with zero rows and columns.
1525
+
1526
+ >>> Q
1527
+ Matrix(3, 0, [])
1528
+ >>> R
1529
+ Matrix(0, 4, [])
1530
+ >>> Q*R
1531
+ Matrix([
1532
+ [0, 0, 0, 0],
1533
+ [0, 0, 0, 0],
1534
+ [0, 0, 0, 0]])
1535
+
1536
+ As the same augmentation rule described above, $Q$ can be augmented
1537
+ with columns of an identity matrix and $R$ can be augmented with
1538
+ rows of a zero matrix.
1539
+
1540
+ >>> Q_aug = Q.row_join(Matrix.eye(3))
1541
+ >>> R_aug = R.col_join(Matrix.zeros(3, 4))
1542
+ >>> Q_aug * Q_aug.T
1543
+ Matrix([
1544
+ [1, 0, 0],
1545
+ [0, 1, 0],
1546
+ [0, 0, 1]])
1547
+ >>> R_aug
1548
+ Matrix([
1549
+ [0, 0, 0, 0],
1550
+ [0, 0, 0, 0],
1551
+ [0, 0, 0, 0]])
1552
+ >>> Q_aug * R_aug == A
1553
+ True
1554
+
1555
+ See Also
1556
+ ========
1557
+
1558
+ sympy.matrices.dense.DenseMatrix.cholesky
1559
+ sympy.matrices.dense.DenseMatrix.LDLdecomposition
1560
+ sympy.matrices.matrices.MatrixBase.LUdecomposition
1561
+ QRsolve
1562
+ """
1563
+ return _QRdecomposition_optional(M, normalize=True)
1564
+
1565
+ def _upper_hessenberg_decomposition(A):
1566
+ """Converts a matrix into Hessenberg matrix H.
1567
+
1568
+ Returns 2 matrices H, P s.t.
1569
+ $P H P^{T} = A$, where H is an upper hessenberg matrix
1570
+ and P is an orthogonal matrix
1571
+
1572
+ Examples
1573
+ ========
1574
+
1575
+ >>> from sympy import Matrix
1576
+ >>> A = Matrix([
1577
+ ... [1,2,3],
1578
+ ... [-3,5,6],
1579
+ ... [4,-8,9],
1580
+ ... ])
1581
+ >>> H, P = A.upper_hessenberg_decomposition()
1582
+ >>> H
1583
+ Matrix([
1584
+ [1, 6/5, 17/5],
1585
+ [5, 213/25, -134/25],
1586
+ [0, 216/25, 137/25]])
1587
+ >>> P
1588
+ Matrix([
1589
+ [1, 0, 0],
1590
+ [0, -3/5, 4/5],
1591
+ [0, 4/5, 3/5]])
1592
+ >>> P * H * P.H == A
1593
+ True
1594
+
1595
+
1596
+ References
1597
+ ==========
1598
+
1599
+ .. [#] https://mathworld.wolfram.com/HessenbergDecomposition.html
1600
+ """
1601
+
1602
+ M = A.as_mutable()
1603
+
1604
+ if not M.is_square:
1605
+ raise NonSquareMatrixError("Matrix must be square.")
1606
+
1607
+ n = M.cols
1608
+ P = M.eye(n)
1609
+ H = M
1610
+
1611
+ for j in range(n - 2):
1612
+
1613
+ u = H[j + 1:, j]
1614
+
1615
+ if u[1:, :].is_zero_matrix:
1616
+ continue
1617
+
1618
+ if sign(u[0]) != 0:
1619
+ u[0] = u[0] + sign(u[0]) * u.norm()
1620
+ else:
1621
+ u[0] = u[0] + u.norm()
1622
+
1623
+ v = u / u.norm()
1624
+
1625
+ H[j + 1:, :] = H[j + 1:, :] - 2 * v * (v.H * H[j + 1:, :])
1626
+ H[:, j + 1:] = H[:, j + 1:] - (H[:, j + 1:] * (2 * v)) * v.H
1627
+ P[:, j + 1:] = P[:, j + 1:] - (P[:, j + 1:] * (2 * v)) * v.H
1628
+
1629
+ return H, P
llmeval-env/lib/python3.10/site-packages/sympy/matrices/dense.py ADDED
@@ -0,0 +1,1090 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+
3
+ from sympy.core.basic import Basic
4
+ from sympy.core.singleton import S
5
+ from sympy.core.symbol import Symbol
6
+ from sympy.core.sympify import sympify
7
+ from sympy.functions.elementary.trigonometric import cos, sin
8
+ from sympy.utilities.decorator import doctest_depends_on
9
+ from sympy.utilities.exceptions import sympy_deprecation_warning
10
+ from sympy.utilities.iterables import is_sequence
11
+
12
+ from .common import ShapeError
13
+ from .decompositions import _cholesky, _LDLdecomposition
14
+ from .matrices import MatrixBase
15
+ from .repmatrix import MutableRepMatrix, RepMatrix
16
+ from .solvers import _lower_triangular_solve, _upper_triangular_solve
17
+
18
+
19
+ def _iszero(x):
20
+ """Returns True if x is zero."""
21
+ return x.is_zero
22
+
23
+
24
+ class DenseMatrix(RepMatrix):
25
+ """Matrix implementation based on DomainMatrix as the internal representation"""
26
+
27
+ #
28
+ # DenseMatrix is a superclass for both MutableDenseMatrix and
29
+ # ImmutableDenseMatrix. Methods shared by both classes but not for the
30
+ # Sparse classes should be implemented here.
31
+ #
32
+
33
+ is_MatrixExpr = False # type: bool
34
+
35
+ _op_priority = 10.01
36
+ _class_priority = 4
37
+
38
+ @property
39
+ def _mat(self):
40
+ sympy_deprecation_warning(
41
+ """
42
+ The private _mat attribute of Matrix is deprecated. Use the
43
+ .flat() method instead.
44
+ """,
45
+ deprecated_since_version="1.9",
46
+ active_deprecations_target="deprecated-private-matrix-attributes"
47
+ )
48
+
49
+ return self.flat()
50
+
51
+ def _eval_inverse(self, **kwargs):
52
+ return self.inv(method=kwargs.get('method', 'GE'),
53
+ iszerofunc=kwargs.get('iszerofunc', _iszero),
54
+ try_block_diag=kwargs.get('try_block_diag', False))
55
+
56
+ def as_immutable(self):
57
+ """Returns an Immutable version of this Matrix
58
+ """
59
+ from .immutable import ImmutableDenseMatrix as cls
60
+ return cls._fromrep(self._rep.copy())
61
+
62
+ def as_mutable(self):
63
+ """Returns a mutable version of this matrix
64
+
65
+ Examples
66
+ ========
67
+
68
+ >>> from sympy import ImmutableMatrix
69
+ >>> X = ImmutableMatrix([[1, 2], [3, 4]])
70
+ >>> Y = X.as_mutable()
71
+ >>> Y[1, 1] = 5 # Can set values in Y
72
+ >>> Y
73
+ Matrix([
74
+ [1, 2],
75
+ [3, 5]])
76
+ """
77
+ return Matrix(self)
78
+
79
+ def cholesky(self, hermitian=True):
80
+ return _cholesky(self, hermitian=hermitian)
81
+
82
+ def LDLdecomposition(self, hermitian=True):
83
+ return _LDLdecomposition(self, hermitian=hermitian)
84
+
85
+ def lower_triangular_solve(self, rhs):
86
+ return _lower_triangular_solve(self, rhs)
87
+
88
+ def upper_triangular_solve(self, rhs):
89
+ return _upper_triangular_solve(self, rhs)
90
+
91
+ cholesky.__doc__ = _cholesky.__doc__
92
+ LDLdecomposition.__doc__ = _LDLdecomposition.__doc__
93
+ lower_triangular_solve.__doc__ = _lower_triangular_solve.__doc__
94
+ upper_triangular_solve.__doc__ = _upper_triangular_solve.__doc__
95
+
96
+
97
+ def _force_mutable(x):
98
+ """Return a matrix as a Matrix, otherwise return x."""
99
+ if getattr(x, 'is_Matrix', False):
100
+ return x.as_mutable()
101
+ elif isinstance(x, Basic):
102
+ return x
103
+ elif hasattr(x, '__array__'):
104
+ a = x.__array__()
105
+ if len(a.shape) == 0:
106
+ return sympify(a)
107
+ return Matrix(x)
108
+ return x
109
+
110
+
111
+ class MutableDenseMatrix(DenseMatrix, MutableRepMatrix):
112
+
113
+ def simplify(self, **kwargs):
114
+ """Applies simplify to the elements of a matrix in place.
115
+
116
+ This is a shortcut for M.applyfunc(lambda x: simplify(x, ratio, measure))
117
+
118
+ See Also
119
+ ========
120
+
121
+ sympy.simplify.simplify.simplify
122
+ """
123
+ from sympy.simplify.simplify import simplify as _simplify
124
+ for (i, j), element in self.todok().items():
125
+ self[i, j] = _simplify(element, **kwargs)
126
+
127
+
128
+ MutableMatrix = Matrix = MutableDenseMatrix
129
+
130
+ ###########
131
+ # Numpy Utility Functions:
132
+ # list2numpy, matrix2numpy, symmarray
133
+ ###########
134
+
135
+
136
+ def list2numpy(l, dtype=object): # pragma: no cover
137
+ """Converts Python list of SymPy expressions to a NumPy array.
138
+
139
+ See Also
140
+ ========
141
+
142
+ matrix2numpy
143
+ """
144
+ from numpy import empty
145
+ a = empty(len(l), dtype)
146
+ for i, s in enumerate(l):
147
+ a[i] = s
148
+ return a
149
+
150
+
151
+ def matrix2numpy(m, dtype=object): # pragma: no cover
152
+ """Converts SymPy's matrix to a NumPy array.
153
+
154
+ See Also
155
+ ========
156
+
157
+ list2numpy
158
+ """
159
+ from numpy import empty
160
+ a = empty(m.shape, dtype)
161
+ for i in range(m.rows):
162
+ for j in range(m.cols):
163
+ a[i, j] = m[i, j]
164
+ return a
165
+
166
+
167
+ ###########
168
+ # Rotation matrices:
169
+ # rot_givens, rot_axis[123], rot_ccw_axis[123]
170
+ ###########
171
+
172
+
173
+ def rot_givens(i, j, theta, dim=3):
174
+ r"""Returns a a Givens rotation matrix, a a rotation in the
175
+ plane spanned by two coordinates axes.
176
+
177
+ Explanation
178
+ ===========
179
+
180
+ The Givens rotation corresponds to a generalization of rotation
181
+ matrices to any number of dimensions, given by:
182
+
183
+ .. math::
184
+ G(i, j, \theta) =
185
+ \begin{bmatrix}
186
+ 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\
187
+ \vdots & \ddots & \vdots & & \vdots & & \vdots \\
188
+ 0 & \cdots & c & \cdots & -s & \cdots & 0 \\
189
+ \vdots & & \vdots & \ddots & \vdots & & \vdots \\
190
+ 0 & \cdots & s & \cdots & c & \cdots & 0 \\
191
+ \vdots & & \vdots & & \vdots & \ddots & \vdots \\
192
+ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1
193
+ \end{bmatrix}
194
+
195
+ Where $c = \cos(\theta)$ and $s = \sin(\theta)$ appear at the intersections
196
+ ``i``\th and ``j``\th rows and columns.
197
+
198
+ For fixed ``i > j``\, the non-zero elements of a Givens matrix are
199
+ given by:
200
+
201
+ - $g_{kk} = 1$ for $k \ne i,\,j$
202
+ - $g_{kk} = c$ for $k = i,\,j$
203
+ - $g_{ji} = -g_{ij} = -s$
204
+
205
+ Parameters
206
+ ==========
207
+
208
+ i : int between ``0`` and ``dim - 1``
209
+ Represents first axis
210
+ j : int between ``0`` and ``dim - 1``
211
+ Represents second axis
212
+ dim : int bigger than 1
213
+ Number of dimentions. Defaults to 3.
214
+
215
+ Examples
216
+ ========
217
+
218
+ >>> from sympy import pi, rot_givens
219
+
220
+ A counterclockwise rotation of pi/3 (60 degrees) around
221
+ the third axis (z-axis):
222
+
223
+ >>> rot_givens(1, 0, pi/3)
224
+ Matrix([
225
+ [ 1/2, -sqrt(3)/2, 0],
226
+ [sqrt(3)/2, 1/2, 0],
227
+ [ 0, 0, 1]])
228
+
229
+ If we rotate by pi/2 (90 degrees):
230
+
231
+ >>> rot_givens(1, 0, pi/2)
232
+ Matrix([
233
+ [0, -1, 0],
234
+ [1, 0, 0],
235
+ [0, 0, 1]])
236
+
237
+ This can be generalized to any number
238
+ of dimensions:
239
+
240
+ >>> rot_givens(1, 0, pi/2, dim=4)
241
+ Matrix([
242
+ [0, -1, 0, 0],
243
+ [1, 0, 0, 0],
244
+ [0, 0, 1, 0],
245
+ [0, 0, 0, 1]])
246
+
247
+ References
248
+ ==========
249
+
250
+ .. [1] https://en.wikipedia.org/wiki/Givens_rotation
251
+
252
+ See Also
253
+ ========
254
+
255
+ rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
256
+ about the 1-axis (clockwise around the x axis)
257
+ rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
258
+ about the 2-axis (clockwise around the y axis)
259
+ rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
260
+ about the 3-axis (clockwise around the z axis)
261
+ rot_ccw_axis1: Returns a rotation matrix for a rotation of theta (in radians)
262
+ about the 1-axis (counterclockwise around the x axis)
263
+ rot_ccw_axis2: Returns a rotation matrix for a rotation of theta (in radians)
264
+ about the 2-axis (counterclockwise around the y axis)
265
+ rot_ccw_axis3: Returns a rotation matrix for a rotation of theta (in radians)
266
+ about the 3-axis (counterclockwise around the z axis)
267
+ """
268
+ if not isinstance(dim, int) or dim < 2:
269
+ raise ValueError('dim must be an integer biggen than one, '
270
+ 'got {}.'.format(dim))
271
+
272
+ if i == j:
273
+ raise ValueError('i and j must be different, '
274
+ 'got ({}, {})'.format(i, j))
275
+
276
+ for ij in [i, j]:
277
+ if not isinstance(ij, int) or ij < 0 or ij > dim - 1:
278
+ raise ValueError('i and j must be integers between 0 and '
279
+ '{}, got i={} and j={}.'.format(dim-1, i, j))
280
+
281
+ theta = sympify(theta)
282
+ c = cos(theta)
283
+ s = sin(theta)
284
+ M = eye(dim)
285
+ M[i, i] = c
286
+ M[j, j] = c
287
+ M[i, j] = s
288
+ M[j, i] = -s
289
+ return M
290
+
291
+
292
+ def rot_axis3(theta):
293
+ r"""Returns a rotation matrix for a rotation of theta (in radians)
294
+ about the 3-axis.
295
+
296
+ Explanation
297
+ ===========
298
+
299
+ For a right-handed coordinate system, this corresponds to a
300
+ clockwise rotation around the `z`-axis, given by:
301
+
302
+ .. math::
303
+
304
+ R = \begin{bmatrix}
305
+ \cos(\theta) & \sin(\theta) & 0 \\
306
+ -\sin(\theta) & \cos(\theta) & 0 \\
307
+ 0 & 0 & 1
308
+ \end{bmatrix}
309
+
310
+ Examples
311
+ ========
312
+
313
+ >>> from sympy import pi, rot_axis3
314
+
315
+ A rotation of pi/3 (60 degrees):
316
+
317
+ >>> theta = pi/3
318
+ >>> rot_axis3(theta)
319
+ Matrix([
320
+ [ 1/2, sqrt(3)/2, 0],
321
+ [-sqrt(3)/2, 1/2, 0],
322
+ [ 0, 0, 1]])
323
+
324
+ If we rotate by pi/2 (90 degrees):
325
+
326
+ >>> rot_axis3(pi/2)
327
+ Matrix([
328
+ [ 0, 1, 0],
329
+ [-1, 0, 0],
330
+ [ 0, 0, 1]])
331
+
332
+ See Also
333
+ ========
334
+
335
+ rot_givens: Returns a Givens rotation matrix (generalized rotation for
336
+ any number of dimensions)
337
+ rot_ccw_axis3: Returns a rotation matrix for a rotation of theta (in radians)
338
+ about the 3-axis (counterclockwise around the z axis)
339
+ rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
340
+ about the 1-axis (clockwise around the x axis)
341
+ rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
342
+ about the 2-axis (clockwise around the y axis)
343
+ """
344
+ return rot_givens(0, 1, theta, dim=3)
345
+
346
+
347
+ def rot_axis2(theta):
348
+ r"""Returns a rotation matrix for a rotation of theta (in radians)
349
+ about the 2-axis.
350
+
351
+ Explanation
352
+ ===========
353
+
354
+ For a right-handed coordinate system, this corresponds to a
355
+ clockwise rotation around the `y`-axis, given by:
356
+
357
+ .. math::
358
+
359
+ R = \begin{bmatrix}
360
+ \cos(\theta) & 0 & -\sin(\theta) \\
361
+ 0 & 1 & 0 \\
362
+ \sin(\theta) & 0 & \cos(\theta)
363
+ \end{bmatrix}
364
+
365
+ Examples
366
+ ========
367
+
368
+ >>> from sympy import pi, rot_axis2
369
+
370
+ A rotation of pi/3 (60 degrees):
371
+
372
+ >>> theta = pi/3
373
+ >>> rot_axis2(theta)
374
+ Matrix([
375
+ [ 1/2, 0, -sqrt(3)/2],
376
+ [ 0, 1, 0],
377
+ [sqrt(3)/2, 0, 1/2]])
378
+
379
+ If we rotate by pi/2 (90 degrees):
380
+
381
+ >>> rot_axis2(pi/2)
382
+ Matrix([
383
+ [0, 0, -1],
384
+ [0, 1, 0],
385
+ [1, 0, 0]])
386
+
387
+ See Also
388
+ ========
389
+
390
+ rot_givens: Returns a Givens rotation matrix (generalized rotation for
391
+ any number of dimensions)
392
+ rot_ccw_axis2: Returns a rotation matrix for a rotation of theta (in radians)
393
+ about the 2-axis (clockwise around the y axis)
394
+ rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
395
+ about the 1-axis (counterclockwise around the x axis)
396
+ rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
397
+ about the 3-axis (counterclockwise around the z axis)
398
+ """
399
+ return rot_givens(2, 0, theta, dim=3)
400
+
401
+
402
+ def rot_axis1(theta):
403
+ r"""Returns a rotation matrix for a rotation of theta (in radians)
404
+ about the 1-axis.
405
+
406
+ Explanation
407
+ ===========
408
+
409
+ For a right-handed coordinate system, this corresponds to a
410
+ clockwise rotation around the `x`-axis, given by:
411
+
412
+ .. math::
413
+
414
+ R = \begin{bmatrix}
415
+ 1 & 0 & 0 \\
416
+ 0 & \cos(\theta) & \sin(\theta) \\
417
+ 0 & -\sin(\theta) & \cos(\theta)
418
+ \end{bmatrix}
419
+
420
+ Examples
421
+ ========
422
+
423
+ >>> from sympy import pi, rot_axis1
424
+
425
+ A rotation of pi/3 (60 degrees):
426
+
427
+ >>> theta = pi/3
428
+ >>> rot_axis1(theta)
429
+ Matrix([
430
+ [1, 0, 0],
431
+ [0, 1/2, sqrt(3)/2],
432
+ [0, -sqrt(3)/2, 1/2]])
433
+
434
+ If we rotate by pi/2 (90 degrees):
435
+
436
+ >>> rot_axis1(pi/2)
437
+ Matrix([
438
+ [1, 0, 0],
439
+ [0, 0, 1],
440
+ [0, -1, 0]])
441
+
442
+ See Also
443
+ ========
444
+
445
+ rot_givens: Returns a Givens rotation matrix (generalized rotation for
446
+ any number of dimensions)
447
+ rot_ccw_axis1: Returns a rotation matrix for a rotation of theta (in radians)
448
+ about the 1-axis (counterclockwise around the x axis)
449
+ rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
450
+ about the 2-axis (clockwise around the y axis)
451
+ rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
452
+ about the 3-axis (clockwise around the z axis)
453
+ """
454
+ return rot_givens(1, 2, theta, dim=3)
455
+
456
+
457
+ def rot_ccw_axis3(theta):
458
+ r"""Returns a rotation matrix for a rotation of theta (in radians)
459
+ about the 3-axis.
460
+
461
+ Explanation
462
+ ===========
463
+
464
+ For a right-handed coordinate system, this corresponds to a
465
+ counterclockwise rotation around the `z`-axis, given by:
466
+
467
+ .. math::
468
+
469
+ R = \begin{bmatrix}
470
+ \cos(\theta) & -\sin(\theta) & 0 \\
471
+ \sin(\theta) & \cos(\theta) & 0 \\
472
+ 0 & 0 & 1
473
+ \end{bmatrix}
474
+
475
+ Examples
476
+ ========
477
+
478
+ >>> from sympy import pi, rot_ccw_axis3
479
+
480
+ A rotation of pi/3 (60 degrees):
481
+
482
+ >>> theta = pi/3
483
+ >>> rot_ccw_axis3(theta)
484
+ Matrix([
485
+ [ 1/2, -sqrt(3)/2, 0],
486
+ [sqrt(3)/2, 1/2, 0],
487
+ [ 0, 0, 1]])
488
+
489
+ If we rotate by pi/2 (90 degrees):
490
+
491
+ >>> rot_ccw_axis3(pi/2)
492
+ Matrix([
493
+ [0, -1, 0],
494
+ [1, 0, 0],
495
+ [0, 0, 1]])
496
+
497
+ See Also
498
+ ========
499
+
500
+ rot_givens: Returns a Givens rotation matrix (generalized rotation for
501
+ any number of dimensions)
502
+ rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
503
+ about the 3-axis (clockwise around the z axis)
504
+ rot_ccw_axis1: Returns a rotation matrix for a rotation of theta (in radians)
505
+ about the 1-axis (counterclockwise around the x axis)
506
+ rot_ccw_axis2: Returns a rotation matrix for a rotation of theta (in radians)
507
+ about the 2-axis (counterclockwise around the y axis)
508
+ """
509
+ return rot_givens(1, 0, theta, dim=3)
510
+
511
+
512
+ def rot_ccw_axis2(theta):
513
+ r"""Returns a rotation matrix for a rotation of theta (in radians)
514
+ about the 2-axis.
515
+
516
+ Explanation
517
+ ===========
518
+
519
+ For a right-handed coordinate system, this corresponds to a
520
+ counterclockwise rotation around the `y`-axis, given by:
521
+
522
+ .. math::
523
+
524
+ R = \begin{bmatrix}
525
+ \cos(\theta) & 0 & \sin(\theta) \\
526
+ 0 & 1 & 0 \\
527
+ -\sin(\theta) & 0 & \cos(\theta)
528
+ \end{bmatrix}
529
+
530
+ Examples
531
+ ========
532
+
533
+ >>> from sympy import pi, rot_ccw_axis2
534
+
535
+ A rotation of pi/3 (60 degrees):
536
+
537
+ >>> theta = pi/3
538
+ >>> rot_ccw_axis2(theta)
539
+ Matrix([
540
+ [ 1/2, 0, sqrt(3)/2],
541
+ [ 0, 1, 0],
542
+ [-sqrt(3)/2, 0, 1/2]])
543
+
544
+ If we rotate by pi/2 (90 degrees):
545
+
546
+ >>> rot_ccw_axis2(pi/2)
547
+ Matrix([
548
+ [ 0, 0, 1],
549
+ [ 0, 1, 0],
550
+ [-1, 0, 0]])
551
+
552
+ See Also
553
+ ========
554
+
555
+ rot_givens: Returns a Givens rotation matrix (generalized rotation for
556
+ any number of dimensions)
557
+ rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
558
+ about the 2-axis (clockwise around the y axis)
559
+ rot_ccw_axis1: Returns a rotation matrix for a rotation of theta (in radians)
560
+ about the 1-axis (counterclockwise around the x axis)
561
+ rot_ccw_axis3: Returns a rotation matrix for a rotation of theta (in radians)
562
+ about the 3-axis (counterclockwise around the z axis)
563
+ """
564
+ return rot_givens(0, 2, theta, dim=3)
565
+
566
+
567
+ def rot_ccw_axis1(theta):
568
+ r"""Returns a rotation matrix for a rotation of theta (in radians)
569
+ about the 1-axis.
570
+
571
+ Explanation
572
+ ===========
573
+
574
+ For a right-handed coordinate system, this corresponds to a
575
+ counterclockwise rotation around the `x`-axis, given by:
576
+
577
+ .. math::
578
+
579
+ R = \begin{bmatrix}
580
+ 1 & 0 & 0 \\
581
+ 0 & \cos(\theta) & -\sin(\theta) \\
582
+ 0 & \sin(\theta) & \cos(\theta)
583
+ \end{bmatrix}
584
+
585
+ Examples
586
+ ========
587
+
588
+ >>> from sympy import pi, rot_ccw_axis1
589
+
590
+ A rotation of pi/3 (60 degrees):
591
+
592
+ >>> theta = pi/3
593
+ >>> rot_ccw_axis1(theta)
594
+ Matrix([
595
+ [1, 0, 0],
596
+ [0, 1/2, -sqrt(3)/2],
597
+ [0, sqrt(3)/2, 1/2]])
598
+
599
+ If we rotate by pi/2 (90 degrees):
600
+
601
+ >>> rot_ccw_axis1(pi/2)
602
+ Matrix([
603
+ [1, 0, 0],
604
+ [0, 0, -1],
605
+ [0, 1, 0]])
606
+
607
+ See Also
608
+ ========
609
+
610
+ rot_givens: Returns a Givens rotation matrix (generalized rotation for
611
+ any number of dimensions)
612
+ rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
613
+ about the 1-axis (clockwise around the x axis)
614
+ rot_ccw_axis2: Returns a rotation matrix for a rotation of theta (in radians)
615
+ about the 2-axis (counterclockwise around the y axis)
616
+ rot_ccw_axis3: Returns a rotation matrix for a rotation of theta (in radians)
617
+ about the 3-axis (counterclockwise around the z axis)
618
+ """
619
+ return rot_givens(2, 1, theta, dim=3)
620
+
621
+
622
+ @doctest_depends_on(modules=('numpy',))
623
+ def symarray(prefix, shape, **kwargs): # pragma: no cover
624
+ r"""Create a numpy ndarray of symbols (as an object array).
625
+
626
+ The created symbols are named ``prefix_i1_i2_``... You should thus provide a
627
+ non-empty prefix if you want your symbols to be unique for different output
628
+ arrays, as SymPy symbols with identical names are the same object.
629
+
630
+ Parameters
631
+ ----------
632
+
633
+ prefix : string
634
+ A prefix prepended to the name of every symbol.
635
+
636
+ shape : int or tuple
637
+ Shape of the created array. If an int, the array is one-dimensional; for
638
+ more than one dimension the shape must be a tuple.
639
+
640
+ \*\*kwargs : dict
641
+ keyword arguments passed on to Symbol
642
+
643
+ Examples
644
+ ========
645
+ These doctests require numpy.
646
+
647
+ >>> from sympy import symarray
648
+ >>> symarray('', 3)
649
+ [_0 _1 _2]
650
+
651
+ If you want multiple symarrays to contain distinct symbols, you *must*
652
+ provide unique prefixes:
653
+
654
+ >>> a = symarray('', 3)
655
+ >>> b = symarray('', 3)
656
+ >>> a[0] == b[0]
657
+ True
658
+ >>> a = symarray('a', 3)
659
+ >>> b = symarray('b', 3)
660
+ >>> a[0] == b[0]
661
+ False
662
+
663
+ Creating symarrays with a prefix:
664
+
665
+ >>> symarray('a', 3)
666
+ [a_0 a_1 a_2]
667
+
668
+ For more than one dimension, the shape must be given as a tuple:
669
+
670
+ >>> symarray('a', (2, 3))
671
+ [[a_0_0 a_0_1 a_0_2]
672
+ [a_1_0 a_1_1 a_1_2]]
673
+ >>> symarray('a', (2, 3, 2))
674
+ [[[a_0_0_0 a_0_0_1]
675
+ [a_0_1_0 a_0_1_1]
676
+ [a_0_2_0 a_0_2_1]]
677
+ <BLANKLINE>
678
+ [[a_1_0_0 a_1_0_1]
679
+ [a_1_1_0 a_1_1_1]
680
+ [a_1_2_0 a_1_2_1]]]
681
+
682
+ For setting assumptions of the underlying Symbols:
683
+
684
+ >>> [s.is_real for s in symarray('a', 2, real=True)]
685
+ [True, True]
686
+ """
687
+ from numpy import empty, ndindex
688
+ arr = empty(shape, dtype=object)
689
+ for index in ndindex(shape):
690
+ arr[index] = Symbol('%s_%s' % (prefix, '_'.join(map(str, index))),
691
+ **kwargs)
692
+ return arr
693
+
694
+
695
+ ###############
696
+ # Functions
697
+ ###############
698
+
699
+ def casoratian(seqs, n, zero=True):
700
+ """Given linear difference operator L of order 'k' and homogeneous
701
+ equation Ly = 0 we want to compute kernel of L, which is a set
702
+ of 'k' sequences: a(n), b(n), ... z(n).
703
+
704
+ Solutions of L are linearly independent iff their Casoratian,
705
+ denoted as C(a, b, ..., z), do not vanish for n = 0.
706
+
707
+ Casoratian is defined by k x k determinant::
708
+
709
+ + a(n) b(n) . . . z(n) +
710
+ | a(n+1) b(n+1) . . . z(n+1) |
711
+ | . . . . |
712
+ | . . . . |
713
+ | . . . . |
714
+ + a(n+k-1) b(n+k-1) . . . z(n+k-1) +
715
+
716
+ It proves very useful in rsolve_hyper() where it is applied
717
+ to a generating set of a recurrence to factor out linearly
718
+ dependent solutions and return a basis:
719
+
720
+ >>> from sympy import Symbol, casoratian, factorial
721
+ >>> n = Symbol('n', integer=True)
722
+
723
+ Exponential and factorial are linearly independent:
724
+
725
+ >>> casoratian([2**n, factorial(n)], n) != 0
726
+ True
727
+
728
+ """
729
+
730
+ seqs = list(map(sympify, seqs))
731
+
732
+ if not zero:
733
+ f = lambda i, j: seqs[j].subs(n, n + i)
734
+ else:
735
+ f = lambda i, j: seqs[j].subs(n, i)
736
+
737
+ k = len(seqs)
738
+
739
+ return Matrix(k, k, f).det()
740
+
741
+
742
+ def eye(*args, **kwargs):
743
+ """Create square identity matrix n x n
744
+
745
+ See Also
746
+ ========
747
+
748
+ diag
749
+ zeros
750
+ ones
751
+ """
752
+
753
+ return Matrix.eye(*args, **kwargs)
754
+
755
+
756
+ def diag(*values, strict=True, unpack=False, **kwargs):
757
+ """Returns a matrix with the provided values placed on the
758
+ diagonal. If non-square matrices are included, they will
759
+ produce a block-diagonal matrix.
760
+
761
+ Examples
762
+ ========
763
+
764
+ This version of diag is a thin wrapper to Matrix.diag that differs
765
+ in that it treats all lists like matrices -- even when a single list
766
+ is given. If this is not desired, either put a `*` before the list or
767
+ set `unpack=True`.
768
+
769
+ >>> from sympy import diag
770
+
771
+ >>> diag([1, 2, 3], unpack=True) # = diag(1,2,3) or diag(*[1,2,3])
772
+ Matrix([
773
+ [1, 0, 0],
774
+ [0, 2, 0],
775
+ [0, 0, 3]])
776
+
777
+ >>> diag([1, 2, 3]) # a column vector
778
+ Matrix([
779
+ [1],
780
+ [2],
781
+ [3]])
782
+
783
+ See Also
784
+ ========
785
+ .common.MatrixCommon.eye
786
+ .common.MatrixCommon.diagonal
787
+ .common.MatrixCommon.diag
788
+ .expressions.blockmatrix.BlockMatrix
789
+ """
790
+ return Matrix.diag(*values, strict=strict, unpack=unpack, **kwargs)
791
+
792
+
793
+ def GramSchmidt(vlist, orthonormal=False):
794
+ """Apply the Gram-Schmidt process to a set of vectors.
795
+
796
+ Parameters
797
+ ==========
798
+
799
+ vlist : List of Matrix
800
+ Vectors to be orthogonalized for.
801
+
802
+ orthonormal : Bool, optional
803
+ If true, return an orthonormal basis.
804
+
805
+ Returns
806
+ =======
807
+
808
+ vlist : List of Matrix
809
+ Orthogonalized vectors
810
+
811
+ Notes
812
+ =====
813
+
814
+ This routine is mostly duplicate from ``Matrix.orthogonalize``,
815
+ except for some difference that this always raises error when
816
+ linearly dependent vectors are found, and the keyword ``normalize``
817
+ has been named as ``orthonormal`` in this function.
818
+
819
+ See Also
820
+ ========
821
+
822
+ .matrices.MatrixSubspaces.orthogonalize
823
+
824
+ References
825
+ ==========
826
+
827
+ .. [1] https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
828
+ """
829
+ return MutableDenseMatrix.orthogonalize(
830
+ *vlist, normalize=orthonormal, rankcheck=True
831
+ )
832
+
833
+
834
+ def hessian(f, varlist, constraints=()):
835
+ """Compute Hessian matrix for a function f wrt parameters in varlist
836
+ which may be given as a sequence or a row/column vector. A list of
837
+ constraints may optionally be given.
838
+
839
+ Examples
840
+ ========
841
+
842
+ >>> from sympy import Function, hessian, pprint
843
+ >>> from sympy.abc import x, y
844
+ >>> f = Function('f')(x, y)
845
+ >>> g1 = Function('g')(x, y)
846
+ >>> g2 = x**2 + 3*y
847
+ >>> pprint(hessian(f, (x, y), [g1, g2]))
848
+ [ d d ]
849
+ [ 0 0 --(g(x, y)) --(g(x, y)) ]
850
+ [ dx dy ]
851
+ [ ]
852
+ [ 0 0 2*x 3 ]
853
+ [ ]
854
+ [ 2 2 ]
855
+ [d d d ]
856
+ [--(g(x, y)) 2*x ---(f(x, y)) -----(f(x, y))]
857
+ [dx 2 dy dx ]
858
+ [ dx ]
859
+ [ ]
860
+ [ 2 2 ]
861
+ [d d d ]
862
+ [--(g(x, y)) 3 -----(f(x, y)) ---(f(x, y)) ]
863
+ [dy dy dx 2 ]
864
+ [ dy ]
865
+
866
+ References
867
+ ==========
868
+
869
+ .. [1] https://en.wikipedia.org/wiki/Hessian_matrix
870
+
871
+ See Also
872
+ ========
873
+
874
+ sympy.matrices.matrices.MatrixCalculus.jacobian
875
+ wronskian
876
+ """
877
+ # f is the expression representing a function f, return regular matrix
878
+ if isinstance(varlist, MatrixBase):
879
+ if 1 not in varlist.shape:
880
+ raise ShapeError("`varlist` must be a column or row vector.")
881
+ if varlist.cols == 1:
882
+ varlist = varlist.T
883
+ varlist = varlist.tolist()[0]
884
+ if is_sequence(varlist):
885
+ n = len(varlist)
886
+ if not n:
887
+ raise ShapeError("`len(varlist)` must not be zero.")
888
+ else:
889
+ raise ValueError("Improper variable list in hessian function")
890
+ if not getattr(f, 'diff'):
891
+ # check differentiability
892
+ raise ValueError("Function `f` (%s) is not differentiable" % f)
893
+ m = len(constraints)
894
+ N = m + n
895
+ out = zeros(N)
896
+ for k, g in enumerate(constraints):
897
+ if not getattr(g, 'diff'):
898
+ # check differentiability
899
+ raise ValueError("Function `f` (%s) is not differentiable" % f)
900
+ for i in range(n):
901
+ out[k, i + m] = g.diff(varlist[i])
902
+ for i in range(n):
903
+ for j in range(i, n):
904
+ out[i + m, j + m] = f.diff(varlist[i]).diff(varlist[j])
905
+ for i in range(N):
906
+ for j in range(i + 1, N):
907
+ out[j, i] = out[i, j]
908
+ return out
909
+
910
+
911
+ def jordan_cell(eigenval, n):
912
+ """
913
+ Create a Jordan block:
914
+
915
+ Examples
916
+ ========
917
+
918
+ >>> from sympy import jordan_cell
919
+ >>> from sympy.abc import x
920
+ >>> jordan_cell(x, 4)
921
+ Matrix([
922
+ [x, 1, 0, 0],
923
+ [0, x, 1, 0],
924
+ [0, 0, x, 1],
925
+ [0, 0, 0, x]])
926
+ """
927
+
928
+ return Matrix.jordan_block(size=n, eigenvalue=eigenval)
929
+
930
+
931
+ def matrix_multiply_elementwise(A, B):
932
+ """Return the Hadamard product (elementwise product) of A and B
933
+
934
+ >>> from sympy import Matrix, matrix_multiply_elementwise
935
+ >>> A = Matrix([[0, 1, 2], [3, 4, 5]])
936
+ >>> B = Matrix([[1, 10, 100], [100, 10, 1]])
937
+ >>> matrix_multiply_elementwise(A, B)
938
+ Matrix([
939
+ [ 0, 10, 200],
940
+ [300, 40, 5]])
941
+
942
+ See Also
943
+ ========
944
+
945
+ sympy.matrices.common.MatrixCommon.__mul__
946
+ """
947
+ return A.multiply_elementwise(B)
948
+
949
+
950
+ def ones(*args, **kwargs):
951
+ """Returns a matrix of ones with ``rows`` rows and ``cols`` columns;
952
+ if ``cols`` is omitted a square matrix will be returned.
953
+
954
+ See Also
955
+ ========
956
+
957
+ zeros
958
+ eye
959
+ diag
960
+ """
961
+
962
+ if 'c' in kwargs:
963
+ kwargs['cols'] = kwargs.pop('c')
964
+
965
+ return Matrix.ones(*args, **kwargs)
966
+
967
+
968
+ def randMatrix(r, c=None, min=0, max=99, seed=None, symmetric=False,
969
+ percent=100, prng=None):
970
+ """Create random matrix with dimensions ``r`` x ``c``. If ``c`` is omitted
971
+ the matrix will be square. If ``symmetric`` is True the matrix must be
972
+ square. If ``percent`` is less than 100 then only approximately the given
973
+ percentage of elements will be non-zero.
974
+
975
+ The pseudo-random number generator used to generate matrix is chosen in the
976
+ following way.
977
+
978
+ * If ``prng`` is supplied, it will be used as random number generator.
979
+ It should be an instance of ``random.Random``, or at least have
980
+ ``randint`` and ``shuffle`` methods with same signatures.
981
+ * if ``prng`` is not supplied but ``seed`` is supplied, then new
982
+ ``random.Random`` with given ``seed`` will be created;
983
+ * otherwise, a new ``random.Random`` with default seed will be used.
984
+
985
+ Examples
986
+ ========
987
+
988
+ >>> from sympy import randMatrix
989
+ >>> randMatrix(3) # doctest:+SKIP
990
+ [25, 45, 27]
991
+ [44, 54, 9]
992
+ [23, 96, 46]
993
+ >>> randMatrix(3, 2) # doctest:+SKIP
994
+ [87, 29]
995
+ [23, 37]
996
+ [90, 26]
997
+ >>> randMatrix(3, 3, 0, 2) # doctest:+SKIP
998
+ [0, 2, 0]
999
+ [2, 0, 1]
1000
+ [0, 0, 1]
1001
+ >>> randMatrix(3, symmetric=True) # doctest:+SKIP
1002
+ [85, 26, 29]
1003
+ [26, 71, 43]
1004
+ [29, 43, 57]
1005
+ >>> A = randMatrix(3, seed=1)
1006
+ >>> B = randMatrix(3, seed=2)
1007
+ >>> A == B
1008
+ False
1009
+ >>> A == randMatrix(3, seed=1)
1010
+ True
1011
+ >>> randMatrix(3, symmetric=True, percent=50) # doctest:+SKIP
1012
+ [77, 70, 0],
1013
+ [70, 0, 0],
1014
+ [ 0, 0, 88]
1015
+ """
1016
+ # Note that ``Random()`` is equivalent to ``Random(None)``
1017
+ prng = prng or random.Random(seed)
1018
+
1019
+ if c is None:
1020
+ c = r
1021
+
1022
+ if symmetric and r != c:
1023
+ raise ValueError('For symmetric matrices, r must equal c, but %i != %i' % (r, c))
1024
+
1025
+ ij = range(r * c)
1026
+ if percent != 100:
1027
+ ij = prng.sample(ij, int(len(ij)*percent // 100))
1028
+
1029
+ m = zeros(r, c)
1030
+
1031
+ if not symmetric:
1032
+ for ijk in ij:
1033
+ i, j = divmod(ijk, c)
1034
+ m[i, j] = prng.randint(min, max)
1035
+ else:
1036
+ for ijk in ij:
1037
+ i, j = divmod(ijk, c)
1038
+ if i <= j:
1039
+ m[i, j] = m[j, i] = prng.randint(min, max)
1040
+
1041
+ return m
1042
+
1043
+
1044
+ def wronskian(functions, var, method='bareiss'):
1045
+ """
1046
+ Compute Wronskian for [] of functions
1047
+
1048
+ ::
1049
+
1050
+ | f1 f2 ... fn |
1051
+ | f1' f2' ... fn' |
1052
+ | . . . . |
1053
+ W(f1, ..., fn) = | . . . . |
1054
+ | . . . . |
1055
+ | (n) (n) (n) |
1056
+ | D (f1) D (f2) ... D (fn) |
1057
+
1058
+ see: https://en.wikipedia.org/wiki/Wronskian
1059
+
1060
+ See Also
1061
+ ========
1062
+
1063
+ sympy.matrices.matrices.MatrixCalculus.jacobian
1064
+ hessian
1065
+ """
1066
+
1067
+ functions = [sympify(f) for f in functions]
1068
+ n = len(functions)
1069
+ if n == 0:
1070
+ return S.One
1071
+ W = Matrix(n, n, lambda i, j: functions[i].diff(var, j))
1072
+ return W.det(method)
1073
+
1074
+
1075
+ def zeros(*args, **kwargs):
1076
+ """Returns a matrix of zeros with ``rows`` rows and ``cols`` columns;
1077
+ if ``cols`` is omitted a square matrix will be returned.
1078
+
1079
+ See Also
1080
+ ========
1081
+
1082
+ ones
1083
+ eye
1084
+ diag
1085
+ """
1086
+
1087
+ if 'c' in kwargs:
1088
+ kwargs['cols'] = kwargs.pop('c')
1089
+
1090
+ return Matrix.zeros(*args, **kwargs)
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/__init__.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ A module which handles Matrix Expressions """
2
+
3
+ from .slice import MatrixSlice
4
+ from .blockmatrix import BlockMatrix, BlockDiagMatrix, block_collapse, blockcut
5
+ from .companion import CompanionMatrix
6
+ from .funcmatrix import FunctionMatrix
7
+ from .inverse import Inverse
8
+ from .matadd import MatAdd
9
+ from .matexpr import MatrixExpr, MatrixSymbol, matrix_symbols
10
+ from .matmul import MatMul
11
+ from .matpow import MatPow
12
+ from .trace import Trace, trace
13
+ from .determinant import Determinant, det, Permanent, per
14
+ from .transpose import Transpose
15
+ from .adjoint import Adjoint
16
+ from .hadamard import hadamard_product, HadamardProduct, hadamard_power, HadamardPower
17
+ from .diagonal import DiagonalMatrix, DiagonalOf, DiagMatrix, diagonalize_vector
18
+ from .dotproduct import DotProduct
19
+ from .kronecker import kronecker_product, KroneckerProduct, combine_kronecker
20
+ from .permutation import PermutationMatrix, MatrixPermute
21
+ from .sets import MatrixSet
22
+ from .special import ZeroMatrix, Identity, OneMatrix
23
+
24
+ __all__ = [
25
+ 'MatrixSlice',
26
+
27
+ 'BlockMatrix', 'BlockDiagMatrix', 'block_collapse', 'blockcut',
28
+ 'FunctionMatrix',
29
+
30
+ 'CompanionMatrix',
31
+
32
+ 'Inverse',
33
+
34
+ 'MatAdd',
35
+
36
+ 'Identity', 'MatrixExpr', 'MatrixSymbol', 'ZeroMatrix', 'OneMatrix',
37
+ 'matrix_symbols', 'MatrixSet',
38
+
39
+ 'MatMul',
40
+
41
+ 'MatPow',
42
+
43
+ 'Trace', 'trace',
44
+
45
+ 'Determinant', 'det',
46
+
47
+ 'Transpose',
48
+
49
+ 'Adjoint',
50
+
51
+ 'hadamard_product', 'HadamardProduct', 'hadamard_power', 'HadamardPower',
52
+
53
+ 'DiagonalMatrix', 'DiagonalOf', 'DiagMatrix', 'diagonalize_vector',
54
+
55
+ 'DotProduct',
56
+
57
+ 'kronecker_product', 'KroneckerProduct', 'combine_kronecker',
58
+
59
+ 'PermutationMatrix', 'MatrixPermute',
60
+
61
+ 'Permanent', 'per'
62
+ ]
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/_shape.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.relational import Eq
2
+ from sympy.core.expr import Expr
3
+ from sympy.core.numbers import Integer
4
+ from sympy.logic.boolalg import Boolean, And
5
+ from sympy.matrices.expressions.matexpr import MatrixExpr
6
+ from sympy.matrices.common import ShapeError
7
+ from typing import Union
8
+
9
+
10
+ def is_matadd_valid(*args: MatrixExpr) -> Boolean:
11
+ """Return the symbolic condition how ``MatAdd``, ``HadamardProduct``
12
+ makes sense.
13
+
14
+ Parameters
15
+ ==========
16
+
17
+ args
18
+ The list of arguments of matrices to be tested for.
19
+
20
+ Examples
21
+ ========
22
+
23
+ >>> from sympy import MatrixSymbol, symbols
24
+ >>> from sympy.matrices.expressions._shape import is_matadd_valid
25
+
26
+ >>> m, n, p, q = symbols('m n p q')
27
+ >>> A = MatrixSymbol('A', m, n)
28
+ >>> B = MatrixSymbol('B', p, q)
29
+ >>> is_matadd_valid(A, B)
30
+ Eq(m, p) & Eq(n, q)
31
+ """
32
+ rows, cols = zip(*(arg.shape for arg in args))
33
+ return And(
34
+ *(Eq(i, j) for i, j in zip(rows[:-1], rows[1:])),
35
+ *(Eq(i, j) for i, j in zip(cols[:-1], cols[1:])),
36
+ )
37
+
38
+
39
+ def is_matmul_valid(*args: Union[MatrixExpr, Expr]) -> Boolean:
40
+ """Return the symbolic condition how ``MatMul`` makes sense
41
+
42
+ Parameters
43
+ ==========
44
+
45
+ args
46
+ The list of arguments of matrices and scalar expressions to be tested
47
+ for.
48
+
49
+ Examples
50
+ ========
51
+
52
+ >>> from sympy import MatrixSymbol, symbols
53
+ >>> from sympy.matrices.expressions._shape import is_matmul_valid
54
+
55
+ >>> m, n, p, q = symbols('m n p q')
56
+ >>> A = MatrixSymbol('A', m, n)
57
+ >>> B = MatrixSymbol('B', p, q)
58
+ >>> is_matmul_valid(A, B)
59
+ Eq(n, p)
60
+ """
61
+ rows, cols = zip(*(arg.shape for arg in args if isinstance(arg, MatrixExpr)))
62
+ return And(*(Eq(i, j) for i, j in zip(cols[:-1], rows[1:])))
63
+
64
+
65
+ def is_square(arg: MatrixExpr, /) -> Boolean:
66
+ """Return the symbolic condition how the matrix is assumed to be square
67
+
68
+ Parameters
69
+ ==========
70
+
71
+ arg
72
+ The matrix to be tested for.
73
+
74
+ Examples
75
+ ========
76
+
77
+ >>> from sympy import MatrixSymbol, symbols
78
+ >>> from sympy.matrices.expressions._shape import is_square
79
+
80
+ >>> m, n = symbols('m n')
81
+ >>> A = MatrixSymbol('A', m, n)
82
+ >>> is_square(A)
83
+ Eq(m, n)
84
+ """
85
+ return Eq(arg.rows, arg.cols)
86
+
87
+
88
+ def validate_matadd_integer(*args: MatrixExpr) -> None:
89
+ """Validate matrix shape for addition only for integer values"""
90
+ rows, cols = zip(*(x.shape for x in args))
91
+ if len(set(filter(lambda x: isinstance(x, (int, Integer)), rows))) > 1:
92
+ raise ShapeError(f"Matrices have mismatching shape: {rows}")
93
+ if len(set(filter(lambda x: isinstance(x, (int, Integer)), cols))) > 1:
94
+ raise ShapeError(f"Matrices have mismatching shape: {cols}")
95
+
96
+
97
+ def validate_matmul_integer(*args: MatrixExpr) -> None:
98
+ """Validate matrix shape for multiplication only for integer values"""
99
+ for A, B in zip(args[:-1], args[1:]):
100
+ i, j = A.cols, B.rows
101
+ if isinstance(i, (int, Integer)) and isinstance(j, (int, Integer)) and i != j:
102
+ raise ShapeError("Matrices are not aligned", i, j)
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/adjoint.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import Basic
2
+ from sympy.functions import adjoint, conjugate
3
+ from sympy.matrices.expressions.transpose import transpose
4
+ from sympy.matrices.expressions.matexpr import MatrixExpr
5
+
6
+
7
+ class Adjoint(MatrixExpr):
8
+ """
9
+ The Hermitian adjoint of a matrix expression.
10
+
11
+ This is a symbolic object that simply stores its argument without
12
+ evaluating it. To actually compute the adjoint, use the ``adjoint()``
13
+ function.
14
+
15
+ Examples
16
+ ========
17
+
18
+ >>> from sympy import MatrixSymbol, Adjoint, adjoint
19
+ >>> A = MatrixSymbol('A', 3, 5)
20
+ >>> B = MatrixSymbol('B', 5, 3)
21
+ >>> Adjoint(A*B)
22
+ Adjoint(A*B)
23
+ >>> adjoint(A*B)
24
+ Adjoint(B)*Adjoint(A)
25
+ >>> adjoint(A*B) == Adjoint(A*B)
26
+ False
27
+ >>> adjoint(A*B) == Adjoint(A*B).doit()
28
+ True
29
+ """
30
+ is_Adjoint = True
31
+
32
+ def doit(self, **hints):
33
+ arg = self.arg
34
+ if hints.get('deep', True) and isinstance(arg, Basic):
35
+ return adjoint(arg.doit(**hints))
36
+ else:
37
+ return adjoint(self.arg)
38
+
39
+ @property
40
+ def arg(self):
41
+ return self.args[0]
42
+
43
+ @property
44
+ def shape(self):
45
+ return self.arg.shape[::-1]
46
+
47
+ def _entry(self, i, j, **kwargs):
48
+ return conjugate(self.arg._entry(j, i, **kwargs))
49
+
50
+ def _eval_adjoint(self):
51
+ return self.arg
52
+
53
+ def _eval_conjugate(self):
54
+ return transpose(self.arg)
55
+
56
+ def _eval_trace(self):
57
+ from sympy.matrices.expressions.trace import Trace
58
+ return conjugate(Trace(self.arg))
59
+
60
+ def _eval_transpose(self):
61
+ return conjugate(self.arg)
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/applyfunc.py ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.expr import ExprBuilder
2
+ from sympy.core.function import (Function, FunctionClass, Lambda)
3
+ from sympy.core.symbol import Dummy
4
+ from sympy.core.sympify import sympify, _sympify
5
+ from sympy.matrices.expressions import MatrixExpr
6
+ from sympy.matrices.matrices import MatrixBase
7
+
8
+
9
+ class ElementwiseApplyFunction(MatrixExpr):
10
+ r"""
11
+ Apply function to a matrix elementwise without evaluating.
12
+
13
+ Examples
14
+ ========
15
+
16
+ It can be created by calling ``.applyfunc(<function>)`` on a matrix
17
+ expression:
18
+
19
+ >>> from sympy import MatrixSymbol
20
+ >>> from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
21
+ >>> from sympy import exp
22
+ >>> X = MatrixSymbol("X", 3, 3)
23
+ >>> X.applyfunc(exp)
24
+ Lambda(_d, exp(_d)).(X)
25
+
26
+ Otherwise using the class constructor:
27
+
28
+ >>> from sympy import eye
29
+ >>> expr = ElementwiseApplyFunction(exp, eye(3))
30
+ >>> expr
31
+ Lambda(_d, exp(_d)).(Matrix([
32
+ [1, 0, 0],
33
+ [0, 1, 0],
34
+ [0, 0, 1]]))
35
+ >>> expr.doit()
36
+ Matrix([
37
+ [E, 1, 1],
38
+ [1, E, 1],
39
+ [1, 1, E]])
40
+
41
+ Notice the difference with the real mathematical functions:
42
+
43
+ >>> exp(eye(3))
44
+ Matrix([
45
+ [E, 0, 0],
46
+ [0, E, 0],
47
+ [0, 0, E]])
48
+ """
49
+
50
+ def __new__(cls, function, expr):
51
+ expr = _sympify(expr)
52
+ if not expr.is_Matrix:
53
+ raise ValueError("{} must be a matrix instance.".format(expr))
54
+
55
+ if expr.shape == (1, 1):
56
+ # Check if the function returns a matrix, in that case, just apply
57
+ # the function instead of creating an ElementwiseApplyFunc object:
58
+ ret = function(expr)
59
+ if isinstance(ret, MatrixExpr):
60
+ return ret
61
+
62
+ if not isinstance(function, (FunctionClass, Lambda)):
63
+ d = Dummy('d')
64
+ function = Lambda(d, function(d))
65
+
66
+ function = sympify(function)
67
+ if not isinstance(function, (FunctionClass, Lambda)):
68
+ raise ValueError(
69
+ "{} should be compatible with SymPy function classes."
70
+ .format(function))
71
+
72
+ if 1 not in function.nargs:
73
+ raise ValueError(
74
+ '{} should be able to accept 1 arguments.'.format(function))
75
+
76
+ if not isinstance(function, Lambda):
77
+ d = Dummy('d')
78
+ function = Lambda(d, function(d))
79
+
80
+ obj = MatrixExpr.__new__(cls, function, expr)
81
+ return obj
82
+
83
+ @property
84
+ def function(self):
85
+ return self.args[0]
86
+
87
+ @property
88
+ def expr(self):
89
+ return self.args[1]
90
+
91
+ @property
92
+ def shape(self):
93
+ return self.expr.shape
94
+
95
+ def doit(self, **hints):
96
+ deep = hints.get("deep", True)
97
+ expr = self.expr
98
+ if deep:
99
+ expr = expr.doit(**hints)
100
+ function = self.function
101
+ if isinstance(function, Lambda) and function.is_identity:
102
+ # This is a Lambda containing the identity function.
103
+ return expr
104
+ if isinstance(expr, MatrixBase):
105
+ return expr.applyfunc(self.function)
106
+ elif isinstance(expr, ElementwiseApplyFunction):
107
+ return ElementwiseApplyFunction(
108
+ lambda x: self.function(expr.function(x)),
109
+ expr.expr
110
+ ).doit(**hints)
111
+ else:
112
+ return self
113
+
114
+ def _entry(self, i, j, **kwargs):
115
+ return self.function(self.expr._entry(i, j, **kwargs))
116
+
117
+ def _get_function_fdiff(self):
118
+ d = Dummy("d")
119
+ function = self.function(d)
120
+ fdiff = function.diff(d)
121
+ if isinstance(fdiff, Function):
122
+ fdiff = type(fdiff)
123
+ else:
124
+ fdiff = Lambda(d, fdiff)
125
+ return fdiff
126
+
127
+ def _eval_derivative(self, x):
128
+ from sympy.matrices.expressions.hadamard import hadamard_product
129
+ dexpr = self.expr.diff(x)
130
+ fdiff = self._get_function_fdiff()
131
+ return hadamard_product(
132
+ dexpr,
133
+ ElementwiseApplyFunction(fdiff, self.expr)
134
+ )
135
+
136
+ def _eval_derivative_matrix_lines(self, x):
137
+ from sympy.matrices.expressions.special import Identity
138
+ from sympy.tensor.array.expressions.array_expressions import ArrayContraction
139
+ from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal
140
+ from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
141
+
142
+ fdiff = self._get_function_fdiff()
143
+ lr = self.expr._eval_derivative_matrix_lines(x)
144
+ ewdiff = ElementwiseApplyFunction(fdiff, self.expr)
145
+ if 1 in x.shape:
146
+ # Vector:
147
+ iscolumn = self.shape[1] == 1
148
+ for i in lr:
149
+ if iscolumn:
150
+ ptr1 = i.first_pointer
151
+ ptr2 = Identity(self.shape[1])
152
+ else:
153
+ ptr1 = Identity(self.shape[0])
154
+ ptr2 = i.second_pointer
155
+
156
+ subexpr = ExprBuilder(
157
+ ArrayDiagonal,
158
+ [
159
+ ExprBuilder(
160
+ ArrayTensorProduct,
161
+ [
162
+ ewdiff,
163
+ ptr1,
164
+ ptr2,
165
+ ]
166
+ ),
167
+ (0, 2) if iscolumn else (1, 4)
168
+ ],
169
+ validator=ArrayDiagonal._validate
170
+ )
171
+ i._lines = [subexpr]
172
+ i._first_pointer_parent = subexpr.args[0].args
173
+ i._first_pointer_index = 1
174
+ i._second_pointer_parent = subexpr.args[0].args
175
+ i._second_pointer_index = 2
176
+ else:
177
+ # Matrix case:
178
+ for i in lr:
179
+ ptr1 = i.first_pointer
180
+ ptr2 = i.second_pointer
181
+ newptr1 = Identity(ptr1.shape[1])
182
+ newptr2 = Identity(ptr2.shape[1])
183
+ subexpr = ExprBuilder(
184
+ ArrayContraction,
185
+ [
186
+ ExprBuilder(
187
+ ArrayTensorProduct,
188
+ [ptr1, newptr1, ewdiff, ptr2, newptr2]
189
+ ),
190
+ (1, 2, 4),
191
+ (5, 7, 8),
192
+ ],
193
+ validator=ArrayContraction._validate
194
+ )
195
+ i._first_pointer_parent = subexpr.args[0].args
196
+ i._first_pointer_index = 1
197
+ i._second_pointer_parent = subexpr.args[0].args
198
+ i._second_pointer_index = 4
199
+ i._lines = [subexpr]
200
+ return lr
201
+
202
+ def _eval_transpose(self):
203
+ from sympy.matrices.expressions.transpose import Transpose
204
+ return self.func(self.function, Transpose(self.expr).doit())
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/blockmatrix.py ADDED
@@ -0,0 +1,979 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.assumptions.ask import (Q, ask)
2
+ from sympy.core import Basic, Add, Mul, S
3
+ from sympy.core.sympify import _sympify
4
+ from sympy.functions import adjoint
5
+ from sympy.functions.elementary.complexes import re, im
6
+ from sympy.strategies import typed, exhaust, condition, do_one, unpack
7
+ from sympy.strategies.traverse import bottom_up
8
+ from sympy.utilities.iterables import is_sequence, sift
9
+ from sympy.utilities.misc import filldedent
10
+
11
+ from sympy.matrices import Matrix, ShapeError
12
+ from sympy.matrices.common import NonInvertibleMatrixError
13
+ from sympy.matrices.expressions.determinant import det, Determinant
14
+ from sympy.matrices.expressions.inverse import Inverse
15
+ from sympy.matrices.expressions.matadd import MatAdd
16
+ from sympy.matrices.expressions.matexpr import MatrixExpr, MatrixElement
17
+ from sympy.matrices.expressions.matmul import MatMul
18
+ from sympy.matrices.expressions.matpow import MatPow
19
+ from sympy.matrices.expressions.slice import MatrixSlice
20
+ from sympy.matrices.expressions.special import ZeroMatrix, Identity
21
+ from sympy.matrices.expressions.trace import trace
22
+ from sympy.matrices.expressions.transpose import Transpose, transpose
23
+
24
+
25
+ class BlockMatrix(MatrixExpr):
26
+ """A BlockMatrix is a Matrix comprised of other matrices.
27
+
28
+ The submatrices are stored in a SymPy Matrix object but accessed as part of
29
+ a Matrix Expression
30
+
31
+ >>> from sympy import (MatrixSymbol, BlockMatrix, symbols,
32
+ ... Identity, ZeroMatrix, block_collapse)
33
+ >>> n,m,l = symbols('n m l')
34
+ >>> X = MatrixSymbol('X', n, n)
35
+ >>> Y = MatrixSymbol('Y', m, m)
36
+ >>> Z = MatrixSymbol('Z', n, m)
37
+ >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m,n), Y]])
38
+ >>> print(B)
39
+ Matrix([
40
+ [X, Z],
41
+ [0, Y]])
42
+
43
+ >>> C = BlockMatrix([[Identity(n), Z]])
44
+ >>> print(C)
45
+ Matrix([[I, Z]])
46
+
47
+ >>> print(block_collapse(C*B))
48
+ Matrix([[X, Z + Z*Y]])
49
+
50
+ Some matrices might be comprised of rows of blocks with
51
+ the matrices in each row having the same height and the
52
+ rows all having the same total number of columns but
53
+ not having the same number of columns for each matrix
54
+ in each row. In this case, the matrix is not a block
55
+ matrix and should be instantiated by Matrix.
56
+
57
+ >>> from sympy import ones, Matrix
58
+ >>> dat = [
59
+ ... [ones(3,2), ones(3,3)*2],
60
+ ... [ones(2,3)*3, ones(2,2)*4]]
61
+ ...
62
+ >>> BlockMatrix(dat)
63
+ Traceback (most recent call last):
64
+ ...
65
+ ValueError:
66
+ Although this matrix is comprised of blocks, the blocks do not fill
67
+ the matrix in a size-symmetric fashion. To create a full matrix from
68
+ these arguments, pass them directly to Matrix.
69
+ >>> Matrix(dat)
70
+ Matrix([
71
+ [1, 1, 2, 2, 2],
72
+ [1, 1, 2, 2, 2],
73
+ [1, 1, 2, 2, 2],
74
+ [3, 3, 3, 4, 4],
75
+ [3, 3, 3, 4, 4]])
76
+
77
+ See Also
78
+ ========
79
+ sympy.matrices.matrices.MatrixBase.irregular
80
+ """
81
+ def __new__(cls, *args, **kwargs):
82
+ from sympy.matrices.immutable import ImmutableDenseMatrix
83
+ isMat = lambda i: getattr(i, 'is_Matrix', False)
84
+ if len(args) != 1 or \
85
+ not is_sequence(args[0]) or \
86
+ len({isMat(r) for r in args[0]}) != 1:
87
+ raise ValueError(filldedent('''
88
+ expecting a sequence of 1 or more rows
89
+ containing Matrices.'''))
90
+ rows = args[0] if args else []
91
+ if not isMat(rows):
92
+ if rows and isMat(rows[0]):
93
+ rows = [rows] # rows is not list of lists or []
94
+ # regularity check
95
+ # same number of matrices in each row
96
+ blocky = ok = len({len(r) for r in rows}) == 1
97
+ if ok:
98
+ # same number of rows for each matrix in a row
99
+ for r in rows:
100
+ ok = len({i.rows for i in r}) == 1
101
+ if not ok:
102
+ break
103
+ blocky = ok
104
+ if ok:
105
+ # same number of cols for each matrix in each col
106
+ for c in range(len(rows[0])):
107
+ ok = len({rows[i][c].cols
108
+ for i in range(len(rows))}) == 1
109
+ if not ok:
110
+ break
111
+ if not ok:
112
+ # same total cols in each row
113
+ ok = len({
114
+ sum([i.cols for i in r]) for r in rows}) == 1
115
+ if blocky and ok:
116
+ raise ValueError(filldedent('''
117
+ Although this matrix is comprised of blocks,
118
+ the blocks do not fill the matrix in a
119
+ size-symmetric fashion. To create a full matrix
120
+ from these arguments, pass them directly to
121
+ Matrix.'''))
122
+ raise ValueError(filldedent('''
123
+ When there are not the same number of rows in each
124
+ row's matrices or there are not the same number of
125
+ total columns in each row, the matrix is not a
126
+ block matrix. If this matrix is known to consist of
127
+ blocks fully filling a 2-D space then see
128
+ Matrix.irregular.'''))
129
+ mat = ImmutableDenseMatrix(rows, evaluate=False)
130
+ obj = Basic.__new__(cls, mat)
131
+ return obj
132
+
133
+ @property
134
+ def shape(self):
135
+ numrows = numcols = 0
136
+ M = self.blocks
137
+ for i in range(M.shape[0]):
138
+ numrows += M[i, 0].shape[0]
139
+ for i in range(M.shape[1]):
140
+ numcols += M[0, i].shape[1]
141
+ return (numrows, numcols)
142
+
143
+ @property
144
+ def blockshape(self):
145
+ return self.blocks.shape
146
+
147
+ @property
148
+ def blocks(self):
149
+ return self.args[0]
150
+
151
+ @property
152
+ def rowblocksizes(self):
153
+ return [self.blocks[i, 0].rows for i in range(self.blockshape[0])]
154
+
155
+ @property
156
+ def colblocksizes(self):
157
+ return [self.blocks[0, i].cols for i in range(self.blockshape[1])]
158
+
159
+ def structurally_equal(self, other):
160
+ return (isinstance(other, BlockMatrix)
161
+ and self.shape == other.shape
162
+ and self.blockshape == other.blockshape
163
+ and self.rowblocksizes == other.rowblocksizes
164
+ and self.colblocksizes == other.colblocksizes)
165
+
166
+ def _blockmul(self, other):
167
+ if (isinstance(other, BlockMatrix) and
168
+ self.colblocksizes == other.rowblocksizes):
169
+ return BlockMatrix(self.blocks*other.blocks)
170
+
171
+ return self * other
172
+
173
+ def _blockadd(self, other):
174
+ if (isinstance(other, BlockMatrix)
175
+ and self.structurally_equal(other)):
176
+ return BlockMatrix(self.blocks + other.blocks)
177
+
178
+ return self + other
179
+
180
+ def _eval_transpose(self):
181
+ # Flip all the individual matrices
182
+ matrices = [transpose(matrix) for matrix in self.blocks]
183
+ # Make a copy
184
+ M = Matrix(self.blockshape[0], self.blockshape[1], matrices)
185
+ # Transpose the block structure
186
+ M = M.transpose()
187
+ return BlockMatrix(M)
188
+
189
+ def _eval_adjoint(self):
190
+ # Adjoint all the individual matrices
191
+ matrices = [adjoint(matrix) for matrix in self.blocks]
192
+ # Make a copy
193
+ M = Matrix(self.blockshape[0], self.blockshape[1], matrices)
194
+ # Transpose the block structure
195
+ M = M.transpose()
196
+ return BlockMatrix(M)
197
+
198
+ def _eval_trace(self):
199
+ if self.rowblocksizes == self.colblocksizes:
200
+ return Add(*[trace(self.blocks[i, i])
201
+ for i in range(self.blockshape[0])])
202
+ raise NotImplementedError(
203
+ "Can't perform trace of irregular blockshape")
204
+
205
+ def _eval_determinant(self):
206
+ if self.blockshape == (1, 1):
207
+ return det(self.blocks[0, 0])
208
+ if self.blockshape == (2, 2):
209
+ [[A, B],
210
+ [C, D]] = self.blocks.tolist()
211
+ if ask(Q.invertible(A)):
212
+ return det(A)*det(D - C*A.I*B)
213
+ elif ask(Q.invertible(D)):
214
+ return det(D)*det(A - B*D.I*C)
215
+ return Determinant(self)
216
+
217
+ def _eval_as_real_imag(self):
218
+ real_matrices = [re(matrix) for matrix in self.blocks]
219
+ real_matrices = Matrix(self.blockshape[0], self.blockshape[1], real_matrices)
220
+
221
+ im_matrices = [im(matrix) for matrix in self.blocks]
222
+ im_matrices = Matrix(self.blockshape[0], self.blockshape[1], im_matrices)
223
+
224
+ return (BlockMatrix(real_matrices), BlockMatrix(im_matrices))
225
+
226
+ def transpose(self):
227
+ """Return transpose of matrix.
228
+
229
+ Examples
230
+ ========
231
+
232
+ >>> from sympy import MatrixSymbol, BlockMatrix, ZeroMatrix
233
+ >>> from sympy.abc import m, n
234
+ >>> X = MatrixSymbol('X', n, n)
235
+ >>> Y = MatrixSymbol('Y', m, m)
236
+ >>> Z = MatrixSymbol('Z', n, m)
237
+ >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m,n), Y]])
238
+ >>> B.transpose()
239
+ Matrix([
240
+ [X.T, 0],
241
+ [Z.T, Y.T]])
242
+ >>> _.transpose()
243
+ Matrix([
244
+ [X, Z],
245
+ [0, Y]])
246
+ """
247
+ return self._eval_transpose()
248
+
249
+ def schur(self, mat = 'A', generalized = False):
250
+ """Return the Schur Complement of the 2x2 BlockMatrix
251
+
252
+ Parameters
253
+ ==========
254
+
255
+ mat : String, optional
256
+ The matrix with respect to which the
257
+ Schur Complement is calculated. 'A' is
258
+ used by default
259
+
260
+ generalized : bool, optional
261
+ If True, returns the generalized Schur
262
+ Component which uses Moore-Penrose Inverse
263
+
264
+ Examples
265
+ ========
266
+
267
+ >>> from sympy import symbols, MatrixSymbol, BlockMatrix
268
+ >>> m, n = symbols('m n')
269
+ >>> A = MatrixSymbol('A', n, n)
270
+ >>> B = MatrixSymbol('B', n, m)
271
+ >>> C = MatrixSymbol('C', m, n)
272
+ >>> D = MatrixSymbol('D', m, m)
273
+ >>> X = BlockMatrix([[A, B], [C, D]])
274
+
275
+ The default Schur Complement is evaluated with "A"
276
+
277
+ >>> X.schur()
278
+ -C*A**(-1)*B + D
279
+ >>> X.schur('D')
280
+ A - B*D**(-1)*C
281
+
282
+ Schur complement with non-invertible matrices is not
283
+ defined. Instead, the generalized Schur complement can
284
+ be calculated which uses the Moore-Penrose Inverse. To
285
+ achieve this, `generalized` must be set to `True`
286
+
287
+ >>> X.schur('B', generalized=True)
288
+ C - D*(B.T*B)**(-1)*B.T*A
289
+ >>> X.schur('C', generalized=True)
290
+ -A*(C.T*C)**(-1)*C.T*D + B
291
+
292
+ Returns
293
+ =======
294
+
295
+ M : Matrix
296
+ The Schur Complement Matrix
297
+
298
+ Raises
299
+ ======
300
+
301
+ ShapeError
302
+ If the block matrix is not a 2x2 matrix
303
+
304
+ NonInvertibleMatrixError
305
+ If given matrix is non-invertible
306
+
307
+ References
308
+ ==========
309
+
310
+ .. [1] Wikipedia Article on Schur Component : https://en.wikipedia.org/wiki/Schur_complement
311
+
312
+ See Also
313
+ ========
314
+
315
+ sympy.matrices.matrices.MatrixBase.pinv
316
+ """
317
+
318
+ if self.blockshape == (2, 2):
319
+ [[A, B],
320
+ [C, D]] = self.blocks.tolist()
321
+ d={'A' : A, 'B' : B, 'C' : C, 'D' : D}
322
+ try:
323
+ inv = (d[mat].T*d[mat]).inv()*d[mat].T if generalized else d[mat].inv()
324
+ if mat == 'A':
325
+ return D - C * inv * B
326
+ elif mat == 'B':
327
+ return C - D * inv * A
328
+ elif mat == 'C':
329
+ return B - A * inv * D
330
+ elif mat == 'D':
331
+ return A - B * inv * C
332
+ #For matrices where no sub-matrix is square
333
+ return self
334
+ except NonInvertibleMatrixError:
335
+ raise NonInvertibleMatrixError('The given matrix is not invertible. Please set generalized=True \
336
+ to compute the generalized Schur Complement which uses Moore-Penrose Inverse')
337
+ else:
338
+ raise ShapeError('Schur Complement can only be calculated for 2x2 block matrices')
339
+
340
+ def LDUdecomposition(self):
341
+ """Returns the Block LDU decomposition of
342
+ a 2x2 Block Matrix
343
+
344
+ Returns
345
+ =======
346
+
347
+ (L, D, U) : Matrices
348
+ L : Lower Diagonal Matrix
349
+ D : Diagonal Matrix
350
+ U : Upper Diagonal Matrix
351
+
352
+ Examples
353
+ ========
354
+
355
+ >>> from sympy import symbols, MatrixSymbol, BlockMatrix, block_collapse
356
+ >>> m, n = symbols('m n')
357
+ >>> A = MatrixSymbol('A', n, n)
358
+ >>> B = MatrixSymbol('B', n, m)
359
+ >>> C = MatrixSymbol('C', m, n)
360
+ >>> D = MatrixSymbol('D', m, m)
361
+ >>> X = BlockMatrix([[A, B], [C, D]])
362
+ >>> L, D, U = X.LDUdecomposition()
363
+ >>> block_collapse(L*D*U)
364
+ Matrix([
365
+ [A, B],
366
+ [C, D]])
367
+
368
+ Raises
369
+ ======
370
+
371
+ ShapeError
372
+ If the block matrix is not a 2x2 matrix
373
+
374
+ NonInvertibleMatrixError
375
+ If the matrix "A" is non-invertible
376
+
377
+ See Also
378
+ ========
379
+ sympy.matrices.expressions.blockmatrix.BlockMatrix.UDLdecomposition
380
+ sympy.matrices.expressions.blockmatrix.BlockMatrix.LUdecomposition
381
+ """
382
+ if self.blockshape == (2,2):
383
+ [[A, B],
384
+ [C, D]] = self.blocks.tolist()
385
+ try:
386
+ AI = A.I
387
+ except NonInvertibleMatrixError:
388
+ raise NonInvertibleMatrixError('Block LDU decomposition cannot be calculated when\
389
+ "A" is singular')
390
+ Ip = Identity(B.shape[0])
391
+ Iq = Identity(B.shape[1])
392
+ Z = ZeroMatrix(*B.shape)
393
+ L = BlockMatrix([[Ip, Z], [C*AI, Iq]])
394
+ D = BlockDiagMatrix(A, self.schur())
395
+ U = BlockMatrix([[Ip, AI*B],[Z.T, Iq]])
396
+ return L, D, U
397
+ else:
398
+ raise ShapeError("Block LDU decomposition is supported only for 2x2 block matrices")
399
+
400
+ def UDLdecomposition(self):
401
+ """Returns the Block UDL decomposition of
402
+ a 2x2 Block Matrix
403
+
404
+ Returns
405
+ =======
406
+
407
+ (U, D, L) : Matrices
408
+ U : Upper Diagonal Matrix
409
+ D : Diagonal Matrix
410
+ L : Lower Diagonal Matrix
411
+
412
+ Examples
413
+ ========
414
+
415
+ >>> from sympy import symbols, MatrixSymbol, BlockMatrix, block_collapse
416
+ >>> m, n = symbols('m n')
417
+ >>> A = MatrixSymbol('A', n, n)
418
+ >>> B = MatrixSymbol('B', n, m)
419
+ >>> C = MatrixSymbol('C', m, n)
420
+ >>> D = MatrixSymbol('D', m, m)
421
+ >>> X = BlockMatrix([[A, B], [C, D]])
422
+ >>> U, D, L = X.UDLdecomposition()
423
+ >>> block_collapse(U*D*L)
424
+ Matrix([
425
+ [A, B],
426
+ [C, D]])
427
+
428
+ Raises
429
+ ======
430
+
431
+ ShapeError
432
+ If the block matrix is not a 2x2 matrix
433
+
434
+ NonInvertibleMatrixError
435
+ If the matrix "D" is non-invertible
436
+
437
+ See Also
438
+ ========
439
+ sympy.matrices.expressions.blockmatrix.BlockMatrix.LDUdecomposition
440
+ sympy.matrices.expressions.blockmatrix.BlockMatrix.LUdecomposition
441
+ """
442
+ if self.blockshape == (2,2):
443
+ [[A, B],
444
+ [C, D]] = self.blocks.tolist()
445
+ try:
446
+ DI = D.I
447
+ except NonInvertibleMatrixError:
448
+ raise NonInvertibleMatrixError('Block UDL decomposition cannot be calculated when\
449
+ "D" is singular')
450
+ Ip = Identity(A.shape[0])
451
+ Iq = Identity(B.shape[1])
452
+ Z = ZeroMatrix(*B.shape)
453
+ U = BlockMatrix([[Ip, B*DI], [Z.T, Iq]])
454
+ D = BlockDiagMatrix(self.schur('D'), D)
455
+ L = BlockMatrix([[Ip, Z],[DI*C, Iq]])
456
+ return U, D, L
457
+ else:
458
+ raise ShapeError("Block UDL decomposition is supported only for 2x2 block matrices")
459
+
460
+ def LUdecomposition(self):
461
+ """Returns the Block LU decomposition of
462
+ a 2x2 Block Matrix
463
+
464
+ Returns
465
+ =======
466
+
467
+ (L, U) : Matrices
468
+ L : Lower Diagonal Matrix
469
+ U : Upper Diagonal Matrix
470
+
471
+ Examples
472
+ ========
473
+
474
+ >>> from sympy import symbols, MatrixSymbol, BlockMatrix, block_collapse
475
+ >>> m, n = symbols('m n')
476
+ >>> A = MatrixSymbol('A', n, n)
477
+ >>> B = MatrixSymbol('B', n, m)
478
+ >>> C = MatrixSymbol('C', m, n)
479
+ >>> D = MatrixSymbol('D', m, m)
480
+ >>> X = BlockMatrix([[A, B], [C, D]])
481
+ >>> L, U = X.LUdecomposition()
482
+ >>> block_collapse(L*U)
483
+ Matrix([
484
+ [A, B],
485
+ [C, D]])
486
+
487
+ Raises
488
+ ======
489
+
490
+ ShapeError
491
+ If the block matrix is not a 2x2 matrix
492
+
493
+ NonInvertibleMatrixError
494
+ If the matrix "A" is non-invertible
495
+
496
+ See Also
497
+ ========
498
+ sympy.matrices.expressions.blockmatrix.BlockMatrix.UDLdecomposition
499
+ sympy.matrices.expressions.blockmatrix.BlockMatrix.LDUdecomposition
500
+ """
501
+ if self.blockshape == (2,2):
502
+ [[A, B],
503
+ [C, D]] = self.blocks.tolist()
504
+ try:
505
+ A = A**0.5
506
+ AI = A.I
507
+ except NonInvertibleMatrixError:
508
+ raise NonInvertibleMatrixError('Block LU decomposition cannot be calculated when\
509
+ "A" is singular')
510
+ Z = ZeroMatrix(*B.shape)
511
+ Q = self.schur()**0.5
512
+ L = BlockMatrix([[A, Z], [C*AI, Q]])
513
+ U = BlockMatrix([[A, AI*B],[Z.T, Q]])
514
+ return L, U
515
+ else:
516
+ raise ShapeError("Block LU decomposition is supported only for 2x2 block matrices")
517
+
518
+ def _entry(self, i, j, **kwargs):
519
+ # Find row entry
520
+ orig_i, orig_j = i, j
521
+ for row_block, numrows in enumerate(self.rowblocksizes):
522
+ cmp = i < numrows
523
+ if cmp == True:
524
+ break
525
+ elif cmp == False:
526
+ i -= numrows
527
+ elif row_block < self.blockshape[0] - 1:
528
+ # Can't tell which block and it's not the last one, return unevaluated
529
+ return MatrixElement(self, orig_i, orig_j)
530
+ for col_block, numcols in enumerate(self.colblocksizes):
531
+ cmp = j < numcols
532
+ if cmp == True:
533
+ break
534
+ elif cmp == False:
535
+ j -= numcols
536
+ elif col_block < self.blockshape[1] - 1:
537
+ return MatrixElement(self, orig_i, orig_j)
538
+ return self.blocks[row_block, col_block][i, j]
539
+
540
+ @property
541
+ def is_Identity(self):
542
+ if self.blockshape[0] != self.blockshape[1]:
543
+ return False
544
+ for i in range(self.blockshape[0]):
545
+ for j in range(self.blockshape[1]):
546
+ if i==j and not self.blocks[i, j].is_Identity:
547
+ return False
548
+ if i!=j and not self.blocks[i, j].is_ZeroMatrix:
549
+ return False
550
+ return True
551
+
552
+ @property
553
+ def is_structurally_symmetric(self):
554
+ return self.rowblocksizes == self.colblocksizes
555
+
556
+ def equals(self, other):
557
+ if self == other:
558
+ return True
559
+ if (isinstance(other, BlockMatrix) and self.blocks == other.blocks):
560
+ return True
561
+ return super().equals(other)
562
+
563
+
564
+ class BlockDiagMatrix(BlockMatrix):
565
+ """A sparse matrix with block matrices along its diagonals
566
+
567
+ Examples
568
+ ========
569
+
570
+ >>> from sympy import MatrixSymbol, BlockDiagMatrix, symbols
571
+ >>> n, m, l = symbols('n m l')
572
+ >>> X = MatrixSymbol('X', n, n)
573
+ >>> Y = MatrixSymbol('Y', m, m)
574
+ >>> BlockDiagMatrix(X, Y)
575
+ Matrix([
576
+ [X, 0],
577
+ [0, Y]])
578
+
579
+ Notes
580
+ =====
581
+
582
+ If you want to get the individual diagonal blocks, use
583
+ :meth:`get_diag_blocks`.
584
+
585
+ See Also
586
+ ========
587
+
588
+ sympy.matrices.dense.diag
589
+ """
590
+ def __new__(cls, *mats):
591
+ return Basic.__new__(BlockDiagMatrix, *[_sympify(m) for m in mats])
592
+
593
+ @property
594
+ def diag(self):
595
+ return self.args
596
+
597
+ @property
598
+ def blocks(self):
599
+ from sympy.matrices.immutable import ImmutableDenseMatrix
600
+ mats = self.args
601
+ data = [[mats[i] if i == j else ZeroMatrix(mats[i].rows, mats[j].cols)
602
+ for j in range(len(mats))]
603
+ for i in range(len(mats))]
604
+ return ImmutableDenseMatrix(data, evaluate=False)
605
+
606
+ @property
607
+ def shape(self):
608
+ return (sum(block.rows for block in self.args),
609
+ sum(block.cols for block in self.args))
610
+
611
+ @property
612
+ def blockshape(self):
613
+ n = len(self.args)
614
+ return (n, n)
615
+
616
+ @property
617
+ def rowblocksizes(self):
618
+ return [block.rows for block in self.args]
619
+
620
+ @property
621
+ def colblocksizes(self):
622
+ return [block.cols for block in self.args]
623
+
624
+ def _all_square_blocks(self):
625
+ """Returns true if all blocks are square"""
626
+ return all(mat.is_square for mat in self.args)
627
+
628
+ def _eval_determinant(self):
629
+ if self._all_square_blocks():
630
+ return Mul(*[det(mat) for mat in self.args])
631
+ # At least one block is non-square. Since the entire matrix must be square we know there must
632
+ # be at least two blocks in this matrix, in which case the entire matrix is necessarily rank-deficient
633
+ return S.Zero
634
+
635
+ def _eval_inverse(self, expand='ignored'):
636
+ if self._all_square_blocks():
637
+ return BlockDiagMatrix(*[mat.inverse() for mat in self.args])
638
+ # See comment in _eval_determinant()
639
+ raise NonInvertibleMatrixError('Matrix det == 0; not invertible.')
640
+
641
+ def _eval_transpose(self):
642
+ return BlockDiagMatrix(*[mat.transpose() for mat in self.args])
643
+
644
+ def _blockmul(self, other):
645
+ if (isinstance(other, BlockDiagMatrix) and
646
+ self.colblocksizes == other.rowblocksizes):
647
+ return BlockDiagMatrix(*[a*b for a, b in zip(self.args, other.args)])
648
+ else:
649
+ return BlockMatrix._blockmul(self, other)
650
+
651
+ def _blockadd(self, other):
652
+ if (isinstance(other, BlockDiagMatrix) and
653
+ self.blockshape == other.blockshape and
654
+ self.rowblocksizes == other.rowblocksizes and
655
+ self.colblocksizes == other.colblocksizes):
656
+ return BlockDiagMatrix(*[a + b for a, b in zip(self.args, other.args)])
657
+ else:
658
+ return BlockMatrix._blockadd(self, other)
659
+
660
+ def get_diag_blocks(self):
661
+ """Return the list of diagonal blocks of the matrix.
662
+
663
+ Examples
664
+ ========
665
+
666
+ >>> from sympy import BlockDiagMatrix, Matrix
667
+
668
+ >>> A = Matrix([[1, 2], [3, 4]])
669
+ >>> B = Matrix([[5, 6], [7, 8]])
670
+ >>> M = BlockDiagMatrix(A, B)
671
+
672
+ How to get diagonal blocks from the block diagonal matrix:
673
+
674
+ >>> diag_blocks = M.get_diag_blocks()
675
+ >>> diag_blocks[0]
676
+ Matrix([
677
+ [1, 2],
678
+ [3, 4]])
679
+ >>> diag_blocks[1]
680
+ Matrix([
681
+ [5, 6],
682
+ [7, 8]])
683
+ """
684
+ return self.args
685
+
686
+
687
+ def block_collapse(expr):
688
+ """Evaluates a block matrix expression
689
+
690
+ >>> from sympy import MatrixSymbol, BlockMatrix, symbols, Identity, ZeroMatrix, block_collapse
691
+ >>> n,m,l = symbols('n m l')
692
+ >>> X = MatrixSymbol('X', n, n)
693
+ >>> Y = MatrixSymbol('Y', m, m)
694
+ >>> Z = MatrixSymbol('Z', n, m)
695
+ >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m, n), Y]])
696
+ >>> print(B)
697
+ Matrix([
698
+ [X, Z],
699
+ [0, Y]])
700
+
701
+ >>> C = BlockMatrix([[Identity(n), Z]])
702
+ >>> print(C)
703
+ Matrix([[I, Z]])
704
+
705
+ >>> print(block_collapse(C*B))
706
+ Matrix([[X, Z + Z*Y]])
707
+ """
708
+ from sympy.strategies.util import expr_fns
709
+
710
+ hasbm = lambda expr: isinstance(expr, MatrixExpr) and expr.has(BlockMatrix)
711
+
712
+ conditioned_rl = condition(
713
+ hasbm,
714
+ typed(
715
+ {MatAdd: do_one(bc_matadd, bc_block_plus_ident),
716
+ MatMul: do_one(bc_matmul, bc_dist),
717
+ MatPow: bc_matmul,
718
+ Transpose: bc_transpose,
719
+ Inverse: bc_inverse,
720
+ BlockMatrix: do_one(bc_unpack, deblock)}
721
+ )
722
+ )
723
+
724
+ rule = exhaust(
725
+ bottom_up(
726
+ exhaust(conditioned_rl),
727
+ fns=expr_fns
728
+ )
729
+ )
730
+
731
+ result = rule(expr)
732
+ doit = getattr(result, 'doit', None)
733
+ if doit is not None:
734
+ return doit()
735
+ else:
736
+ return result
737
+
738
+ def bc_unpack(expr):
739
+ if expr.blockshape == (1, 1):
740
+ return expr.blocks[0, 0]
741
+ return expr
742
+
743
+ def bc_matadd(expr):
744
+ args = sift(expr.args, lambda M: isinstance(M, BlockMatrix))
745
+ blocks = args[True]
746
+ if not blocks:
747
+ return expr
748
+
749
+ nonblocks = args[False]
750
+ block = blocks[0]
751
+ for b in blocks[1:]:
752
+ block = block._blockadd(b)
753
+ if nonblocks:
754
+ return MatAdd(*nonblocks) + block
755
+ else:
756
+ return block
757
+
758
+ def bc_block_plus_ident(expr):
759
+ idents = [arg for arg in expr.args if arg.is_Identity]
760
+ if not idents:
761
+ return expr
762
+
763
+ blocks = [arg for arg in expr.args if isinstance(arg, BlockMatrix)]
764
+ if (blocks and all(b.structurally_equal(blocks[0]) for b in blocks)
765
+ and blocks[0].is_structurally_symmetric):
766
+ block_id = BlockDiagMatrix(*[Identity(k)
767
+ for k in blocks[0].rowblocksizes])
768
+ rest = [arg for arg in expr.args if not arg.is_Identity and not isinstance(arg, BlockMatrix)]
769
+ return MatAdd(block_id * len(idents), *blocks, *rest).doit()
770
+
771
+ return expr
772
+
773
+ def bc_dist(expr):
774
+ """ Turn a*[X, Y] into [a*X, a*Y] """
775
+ factor, mat = expr.as_coeff_mmul()
776
+ if factor == 1:
777
+ return expr
778
+
779
+ unpacked = unpack(mat)
780
+
781
+ if isinstance(unpacked, BlockDiagMatrix):
782
+ B = unpacked.diag
783
+ new_B = [factor * mat for mat in B]
784
+ return BlockDiagMatrix(*new_B)
785
+ elif isinstance(unpacked, BlockMatrix):
786
+ B = unpacked.blocks
787
+ new_B = [
788
+ [factor * B[i, j] for j in range(B.cols)] for i in range(B.rows)]
789
+ return BlockMatrix(new_B)
790
+ return expr
791
+
792
+
793
+ def bc_matmul(expr):
794
+ if isinstance(expr, MatPow):
795
+ if expr.args[1].is_Integer:
796
+ factor, matrices = (1, [expr.args[0]]*expr.args[1])
797
+ else:
798
+ return expr
799
+ else:
800
+ factor, matrices = expr.as_coeff_matrices()
801
+
802
+ i = 0
803
+ while (i+1 < len(matrices)):
804
+ A, B = matrices[i:i+2]
805
+ if isinstance(A, BlockMatrix) and isinstance(B, BlockMatrix):
806
+ matrices[i] = A._blockmul(B)
807
+ matrices.pop(i+1)
808
+ elif isinstance(A, BlockMatrix):
809
+ matrices[i] = A._blockmul(BlockMatrix([[B]]))
810
+ matrices.pop(i+1)
811
+ elif isinstance(B, BlockMatrix):
812
+ matrices[i] = BlockMatrix([[A]])._blockmul(B)
813
+ matrices.pop(i+1)
814
+ else:
815
+ i+=1
816
+ return MatMul(factor, *matrices).doit()
817
+
818
+ def bc_transpose(expr):
819
+ collapse = block_collapse(expr.arg)
820
+ return collapse._eval_transpose()
821
+
822
+
823
+ def bc_inverse(expr):
824
+ if isinstance(expr.arg, BlockDiagMatrix):
825
+ return expr.inverse()
826
+
827
+ expr2 = blockinverse_1x1(expr)
828
+ if expr != expr2:
829
+ return expr2
830
+ return blockinverse_2x2(Inverse(reblock_2x2(expr.arg)))
831
+
832
+ def blockinverse_1x1(expr):
833
+ if isinstance(expr.arg, BlockMatrix) and expr.arg.blockshape == (1, 1):
834
+ mat = Matrix([[expr.arg.blocks[0].inverse()]])
835
+ return BlockMatrix(mat)
836
+ return expr
837
+
838
+
839
+ def blockinverse_2x2(expr):
840
+ if isinstance(expr.arg, BlockMatrix) and expr.arg.blockshape == (2, 2):
841
+ # See: Inverses of 2x2 Block Matrices, Tzon-Tzer Lu and Sheng-Hua Shiou
842
+ [[A, B],
843
+ [C, D]] = expr.arg.blocks.tolist()
844
+
845
+ formula = _choose_2x2_inversion_formula(A, B, C, D)
846
+ if formula != None:
847
+ MI = expr.arg.schur(formula).I
848
+ if formula == 'A':
849
+ AI = A.I
850
+ return BlockMatrix([[AI + AI * B * MI * C * AI, -AI * B * MI], [-MI * C * AI, MI]])
851
+ if formula == 'B':
852
+ BI = B.I
853
+ return BlockMatrix([[-MI * D * BI, MI], [BI + BI * A * MI * D * BI, -BI * A * MI]])
854
+ if formula == 'C':
855
+ CI = C.I
856
+ return BlockMatrix([[-CI * D * MI, CI + CI * D * MI * A * CI], [MI, -MI * A * CI]])
857
+ if formula == 'D':
858
+ DI = D.I
859
+ return BlockMatrix([[MI, -MI * B * DI], [-DI * C * MI, DI + DI * C * MI * B * DI]])
860
+
861
+ return expr
862
+
863
+
864
+ def _choose_2x2_inversion_formula(A, B, C, D):
865
+ """
866
+ Assuming [[A, B], [C, D]] would form a valid square block matrix, find
867
+ which of the classical 2x2 block matrix inversion formulas would be
868
+ best suited.
869
+
870
+ Returns 'A', 'B', 'C', 'D' to represent the algorithm involving inversion
871
+ of the given argument or None if the matrix cannot be inverted using
872
+ any of those formulas.
873
+ """
874
+ # Try to find a known invertible matrix. Note that the Schur complement
875
+ # is currently not being considered for this
876
+ A_inv = ask(Q.invertible(A))
877
+ if A_inv == True:
878
+ return 'A'
879
+ B_inv = ask(Q.invertible(B))
880
+ if B_inv == True:
881
+ return 'B'
882
+ C_inv = ask(Q.invertible(C))
883
+ if C_inv == True:
884
+ return 'C'
885
+ D_inv = ask(Q.invertible(D))
886
+ if D_inv == True:
887
+ return 'D'
888
+ # Otherwise try to find a matrix that isn't known to be non-invertible
889
+ if A_inv != False:
890
+ return 'A'
891
+ if B_inv != False:
892
+ return 'B'
893
+ if C_inv != False:
894
+ return 'C'
895
+ if D_inv != False:
896
+ return 'D'
897
+ return None
898
+
899
+
900
+ def deblock(B):
901
+ """ Flatten a BlockMatrix of BlockMatrices """
902
+ if not isinstance(B, BlockMatrix) or not B.blocks.has(BlockMatrix):
903
+ return B
904
+ wrap = lambda x: x if isinstance(x, BlockMatrix) else BlockMatrix([[x]])
905
+ bb = B.blocks.applyfunc(wrap) # everything is a block
906
+
907
+ try:
908
+ MM = Matrix(0, sum(bb[0, i].blocks.shape[1] for i in range(bb.shape[1])), [])
909
+ for row in range(0, bb.shape[0]):
910
+ M = Matrix(bb[row, 0].blocks)
911
+ for col in range(1, bb.shape[1]):
912
+ M = M.row_join(bb[row, col].blocks)
913
+ MM = MM.col_join(M)
914
+
915
+ return BlockMatrix(MM)
916
+ except ShapeError:
917
+ return B
918
+
919
+
920
+ def reblock_2x2(expr):
921
+ """
922
+ Reblock a BlockMatrix so that it has 2x2 blocks of block matrices. If
923
+ possible in such a way that the matrix continues to be invertible using the
924
+ classical 2x2 block inversion formulas.
925
+ """
926
+ if not isinstance(expr, BlockMatrix) or not all(d > 2 for d in expr.blockshape):
927
+ return expr
928
+
929
+ BM = BlockMatrix # for brevity's sake
930
+ rowblocks, colblocks = expr.blockshape
931
+ blocks = expr.blocks
932
+ for i in range(1, rowblocks):
933
+ for j in range(1, colblocks):
934
+ # try to split rows at i and cols at j
935
+ A = bc_unpack(BM(blocks[:i, :j]))
936
+ B = bc_unpack(BM(blocks[:i, j:]))
937
+ C = bc_unpack(BM(blocks[i:, :j]))
938
+ D = bc_unpack(BM(blocks[i:, j:]))
939
+
940
+ formula = _choose_2x2_inversion_formula(A, B, C, D)
941
+ if formula is not None:
942
+ return BlockMatrix([[A, B], [C, D]])
943
+
944
+ # else: nothing worked, just split upper left corner
945
+ return BM([[blocks[0, 0], BM(blocks[0, 1:])],
946
+ [BM(blocks[1:, 0]), BM(blocks[1:, 1:])]])
947
+
948
+
949
+ def bounds(sizes):
950
+ """ Convert sequence of numbers into pairs of low-high pairs
951
+
952
+ >>> from sympy.matrices.expressions.blockmatrix import bounds
953
+ >>> bounds((1, 10, 50))
954
+ [(0, 1), (1, 11), (11, 61)]
955
+ """
956
+ low = 0
957
+ rv = []
958
+ for size in sizes:
959
+ rv.append((low, low + size))
960
+ low += size
961
+ return rv
962
+
963
+ def blockcut(expr, rowsizes, colsizes):
964
+ """ Cut a matrix expression into Blocks
965
+
966
+ >>> from sympy import ImmutableMatrix, blockcut
967
+ >>> M = ImmutableMatrix(4, 4, range(16))
968
+ >>> B = blockcut(M, (1, 3), (1, 3))
969
+ >>> type(B).__name__
970
+ 'BlockMatrix'
971
+ >>> ImmutableMatrix(B.blocks[0, 1])
972
+ Matrix([[1, 2, 3]])
973
+ """
974
+
975
+ rowbounds = bounds(rowsizes)
976
+ colbounds = bounds(colsizes)
977
+ return BlockMatrix([[MatrixSlice(expr, rowbound, colbound)
978
+ for colbound in colbounds]
979
+ for rowbound in rowbounds])
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/companion.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.singleton import S
2
+ from sympy.core.sympify import _sympify
3
+ from sympy.polys.polytools import Poly
4
+
5
+ from .matexpr import MatrixExpr
6
+
7
+
8
+ class CompanionMatrix(MatrixExpr):
9
+ """A symbolic companion matrix of a polynomial.
10
+
11
+ Examples
12
+ ========
13
+
14
+ >>> from sympy import Poly, Symbol, symbols
15
+ >>> from sympy.matrices.expressions import CompanionMatrix
16
+ >>> x = Symbol('x')
17
+ >>> c0, c1, c2, c3, c4 = symbols('c0:5')
18
+ >>> p = Poly(c0 + c1*x + c2*x**2 + c3*x**3 + c4*x**4 + x**5, x)
19
+ >>> CompanionMatrix(p)
20
+ CompanionMatrix(Poly(x**5 + c4*x**4 + c3*x**3 + c2*x**2 + c1*x + c0,
21
+ x, domain='ZZ[c0,c1,c2,c3,c4]'))
22
+ """
23
+ def __new__(cls, poly):
24
+ poly = _sympify(poly)
25
+ if not isinstance(poly, Poly):
26
+ raise ValueError("{} must be a Poly instance.".format(poly))
27
+ if not poly.is_monic:
28
+ raise ValueError("{} must be a monic polynomial.".format(poly))
29
+ if not poly.is_univariate:
30
+ raise ValueError(
31
+ "{} must be a univariate polynomial.".format(poly))
32
+ if not poly.degree() >= 1:
33
+ raise ValueError(
34
+ "{} must have degree not less than 1.".format(poly))
35
+
36
+ return super().__new__(cls, poly)
37
+
38
+
39
+ @property
40
+ def shape(self):
41
+ poly = self.args[0]
42
+ size = poly.degree()
43
+ return size, size
44
+
45
+
46
+ def _entry(self, i, j):
47
+ if j == self.cols - 1:
48
+ return -self.args[0].all_coeffs()[-1 - i]
49
+ elif i == j + 1:
50
+ return S.One
51
+ return S.Zero
52
+
53
+
54
+ def as_explicit(self):
55
+ from sympy.matrices.immutable import ImmutableDenseMatrix
56
+ return ImmutableDenseMatrix.companion(self.args[0])
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/determinant.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.basic import Basic
2
+ from sympy.core.expr import Expr
3
+ from sympy.core.singleton import S
4
+ from sympy.core.sympify import sympify
5
+ from sympy.matrices.common import NonSquareMatrixError
6
+
7
+
8
+ class Determinant(Expr):
9
+ """Matrix Determinant
10
+
11
+ Represents the determinant of a matrix expression.
12
+
13
+ Examples
14
+ ========
15
+
16
+ >>> from sympy import MatrixSymbol, Determinant, eye
17
+ >>> A = MatrixSymbol('A', 3, 3)
18
+ >>> Determinant(A)
19
+ Determinant(A)
20
+ >>> Determinant(eye(3)).doit()
21
+ 1
22
+ """
23
+ is_commutative = True
24
+
25
+ def __new__(cls, mat):
26
+ mat = sympify(mat)
27
+ if not mat.is_Matrix:
28
+ raise TypeError("Input to Determinant, %s, not a matrix" % str(mat))
29
+
30
+ if mat.is_square is False:
31
+ raise NonSquareMatrixError("Det of a non-square matrix")
32
+
33
+ return Basic.__new__(cls, mat)
34
+
35
+ @property
36
+ def arg(self):
37
+ return self.args[0]
38
+
39
+ @property
40
+ def kind(self):
41
+ return self.arg.kind.element_kind
42
+
43
+ def doit(self, expand=False, **hints):
44
+ try:
45
+ return self.arg._eval_determinant()
46
+ except (AttributeError, NotImplementedError):
47
+ return self
48
+
49
+ def det(matexpr):
50
+ """ Matrix Determinant
51
+
52
+ Examples
53
+ ========
54
+
55
+ >>> from sympy import MatrixSymbol, det, eye
56
+ >>> A = MatrixSymbol('A', 3, 3)
57
+ >>> det(A)
58
+ Determinant(A)
59
+ >>> det(eye(3))
60
+ 1
61
+ """
62
+
63
+ return Determinant(matexpr).doit()
64
+
65
+ class Permanent(Expr):
66
+ """Matrix Permanent
67
+
68
+ Represents the permanent of a matrix expression.
69
+
70
+ Examples
71
+ ========
72
+
73
+ >>> from sympy import MatrixSymbol, Permanent, ones
74
+ >>> A = MatrixSymbol('A', 3, 3)
75
+ >>> Permanent(A)
76
+ Permanent(A)
77
+ >>> Permanent(ones(3, 3)).doit()
78
+ 6
79
+ """
80
+
81
+ def __new__(cls, mat):
82
+ mat = sympify(mat)
83
+ if not mat.is_Matrix:
84
+ raise TypeError("Input to Permanent, %s, not a matrix" % str(mat))
85
+
86
+ return Basic.__new__(cls, mat)
87
+
88
+ @property
89
+ def arg(self):
90
+ return self.args[0]
91
+
92
+ def doit(self, expand=False, **hints):
93
+ try:
94
+ return self.arg.per()
95
+ except (AttributeError, NotImplementedError):
96
+ return self
97
+
98
+ def per(matexpr):
99
+ """ Matrix Permanent
100
+
101
+ Examples
102
+ ========
103
+
104
+ >>> from sympy import MatrixSymbol, Matrix, per, ones
105
+ >>> A = MatrixSymbol('A', 3, 3)
106
+ >>> per(A)
107
+ Permanent(A)
108
+ >>> per(ones(5, 5))
109
+ 120
110
+ >>> M = Matrix([1, 2, 5])
111
+ >>> per(M)
112
+ 8
113
+ """
114
+
115
+ return Permanent(matexpr).doit()
116
+
117
+ from sympy.assumptions.ask import ask, Q
118
+ from sympy.assumptions.refine import handlers_dict
119
+
120
+
121
+ def refine_Determinant(expr, assumptions):
122
+ """
123
+ >>> from sympy import MatrixSymbol, Q, assuming, refine, det
124
+ >>> X = MatrixSymbol('X', 2, 2)
125
+ >>> det(X)
126
+ Determinant(X)
127
+ >>> with assuming(Q.orthogonal(X)):
128
+ ... print(refine(det(X)))
129
+ 1
130
+ """
131
+ if ask(Q.orthogonal(expr.arg), assumptions):
132
+ return S.One
133
+ elif ask(Q.singular(expr.arg), assumptions):
134
+ return S.Zero
135
+ elif ask(Q.unit_triangular(expr.arg), assumptions):
136
+ return S.One
137
+
138
+ return expr
139
+
140
+
141
+ handlers_dict['Determinant'] = refine_Determinant
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/diagonal.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.sympify import _sympify
2
+
3
+ from sympy.matrices.expressions import MatrixExpr
4
+ from sympy.core import S, Eq, Ge
5
+ from sympy.core.mul import Mul
6
+ from sympy.functions.special.tensor_functions import KroneckerDelta
7
+
8
+
9
+ class DiagonalMatrix(MatrixExpr):
10
+ """DiagonalMatrix(M) will create a matrix expression that
11
+ behaves as though all off-diagonal elements,
12
+ `M[i, j]` where `i != j`, are zero.
13
+
14
+ Examples
15
+ ========
16
+
17
+ >>> from sympy import MatrixSymbol, DiagonalMatrix, Symbol
18
+ >>> n = Symbol('n', integer=True)
19
+ >>> m = Symbol('m', integer=True)
20
+ >>> D = DiagonalMatrix(MatrixSymbol('x', 2, 3))
21
+ >>> D[1, 2]
22
+ 0
23
+ >>> D[1, 1]
24
+ x[1, 1]
25
+
26
+ The length of the diagonal -- the lesser of the two dimensions of `M` --
27
+ is accessed through the `diagonal_length` property:
28
+
29
+ >>> D.diagonal_length
30
+ 2
31
+ >>> DiagonalMatrix(MatrixSymbol('x', n + 1, n)).diagonal_length
32
+ n
33
+
34
+ When one of the dimensions is symbolic the other will be treated as
35
+ though it is smaller:
36
+
37
+ >>> tall = DiagonalMatrix(MatrixSymbol('x', n, 3))
38
+ >>> tall.diagonal_length
39
+ 3
40
+ >>> tall[10, 1]
41
+ 0
42
+
43
+ When the size of the diagonal is not known, a value of None will
44
+ be returned:
45
+
46
+ >>> DiagonalMatrix(MatrixSymbol('x', n, m)).diagonal_length is None
47
+ True
48
+
49
+ """
50
+ arg = property(lambda self: self.args[0])
51
+
52
+ shape = property(lambda self: self.arg.shape) # type:ignore
53
+
54
+ @property
55
+ def diagonal_length(self):
56
+ r, c = self.shape
57
+ if r.is_Integer and c.is_Integer:
58
+ m = min(r, c)
59
+ elif r.is_Integer and not c.is_Integer:
60
+ m = r
61
+ elif c.is_Integer and not r.is_Integer:
62
+ m = c
63
+ elif r == c:
64
+ m = r
65
+ else:
66
+ try:
67
+ m = min(r, c)
68
+ except TypeError:
69
+ m = None
70
+ return m
71
+
72
+ def _entry(self, i, j, **kwargs):
73
+ if self.diagonal_length is not None:
74
+ if Ge(i, self.diagonal_length) is S.true:
75
+ return S.Zero
76
+ elif Ge(j, self.diagonal_length) is S.true:
77
+ return S.Zero
78
+ eq = Eq(i, j)
79
+ if eq is S.true:
80
+ return self.arg[i, i]
81
+ elif eq is S.false:
82
+ return S.Zero
83
+ return self.arg[i, j]*KroneckerDelta(i, j)
84
+
85
+
86
+ class DiagonalOf(MatrixExpr):
87
+ """DiagonalOf(M) will create a matrix expression that
88
+ is equivalent to the diagonal of `M`, represented as
89
+ a single column matrix.
90
+
91
+ Examples
92
+ ========
93
+
94
+ >>> from sympy import MatrixSymbol, DiagonalOf, Symbol
95
+ >>> n = Symbol('n', integer=True)
96
+ >>> m = Symbol('m', integer=True)
97
+ >>> x = MatrixSymbol('x', 2, 3)
98
+ >>> diag = DiagonalOf(x)
99
+ >>> diag.shape
100
+ (2, 1)
101
+
102
+ The diagonal can be addressed like a matrix or vector and will
103
+ return the corresponding element of the original matrix:
104
+
105
+ >>> diag[1, 0] == diag[1] == x[1, 1]
106
+ True
107
+
108
+ The length of the diagonal -- the lesser of the two dimensions of `M` --
109
+ is accessed through the `diagonal_length` property:
110
+
111
+ >>> diag.diagonal_length
112
+ 2
113
+ >>> DiagonalOf(MatrixSymbol('x', n + 1, n)).diagonal_length
114
+ n
115
+
116
+ When only one of the dimensions is symbolic the other will be
117
+ treated as though it is smaller:
118
+
119
+ >>> dtall = DiagonalOf(MatrixSymbol('x', n, 3))
120
+ >>> dtall.diagonal_length
121
+ 3
122
+
123
+ When the size of the diagonal is not known, a value of None will
124
+ be returned:
125
+
126
+ >>> DiagonalOf(MatrixSymbol('x', n, m)).diagonal_length is None
127
+ True
128
+
129
+ """
130
+ arg = property(lambda self: self.args[0])
131
+ @property
132
+ def shape(self):
133
+ r, c = self.arg.shape
134
+ if r.is_Integer and c.is_Integer:
135
+ m = min(r, c)
136
+ elif r.is_Integer and not c.is_Integer:
137
+ m = r
138
+ elif c.is_Integer and not r.is_Integer:
139
+ m = c
140
+ elif r == c:
141
+ m = r
142
+ else:
143
+ try:
144
+ m = min(r, c)
145
+ except TypeError:
146
+ m = None
147
+ return m, S.One
148
+
149
+ @property
150
+ def diagonal_length(self):
151
+ return self.shape[0]
152
+
153
+ def _entry(self, i, j, **kwargs):
154
+ return self.arg._entry(i, i, **kwargs)
155
+
156
+
157
+ class DiagMatrix(MatrixExpr):
158
+ """
159
+ Turn a vector into a diagonal matrix.
160
+ """
161
+ def __new__(cls, vector):
162
+ vector = _sympify(vector)
163
+ obj = MatrixExpr.__new__(cls, vector)
164
+ shape = vector.shape
165
+ dim = shape[1] if shape[0] == 1 else shape[0]
166
+ if vector.shape[0] != 1:
167
+ obj._iscolumn = True
168
+ else:
169
+ obj._iscolumn = False
170
+ obj._shape = (dim, dim)
171
+ obj._vector = vector
172
+ return obj
173
+
174
+ @property
175
+ def shape(self):
176
+ return self._shape
177
+
178
+ def _entry(self, i, j, **kwargs):
179
+ if self._iscolumn:
180
+ result = self._vector._entry(i, 0, **kwargs)
181
+ else:
182
+ result = self._vector._entry(0, j, **kwargs)
183
+ if i != j:
184
+ result *= KroneckerDelta(i, j)
185
+ return result
186
+
187
+ def _eval_transpose(self):
188
+ return self
189
+
190
+ def as_explicit(self):
191
+ from sympy.matrices.dense import diag
192
+ return diag(*list(self._vector.as_explicit()))
193
+
194
+ def doit(self, **hints):
195
+ from sympy.assumptions import ask, Q
196
+ from sympy.matrices.expressions.matmul import MatMul
197
+ from sympy.matrices.expressions.transpose import Transpose
198
+ from sympy.matrices.dense import eye
199
+ from sympy.matrices.matrices import MatrixBase
200
+ vector = self._vector
201
+ # This accounts for shape (1, 1) and identity matrices, among others:
202
+ if ask(Q.diagonal(vector)):
203
+ return vector
204
+ if isinstance(vector, MatrixBase):
205
+ ret = eye(max(vector.shape))
206
+ for i in range(ret.shape[0]):
207
+ ret[i, i] = vector[i]
208
+ return type(vector)(ret)
209
+ if vector.is_MatMul:
210
+ matrices = [arg for arg in vector.args if arg.is_Matrix]
211
+ scalars = [arg for arg in vector.args if arg not in matrices]
212
+ if scalars:
213
+ return Mul.fromiter(scalars)*DiagMatrix(MatMul.fromiter(matrices).doit()).doit()
214
+ if isinstance(vector, Transpose):
215
+ vector = vector.arg
216
+ return DiagMatrix(vector)
217
+
218
+
219
+ def diagonalize_vector(vector):
220
+ return DiagMatrix(vector).doit()
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/dotproduct.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import Basic, Expr
2
+ from sympy.core.sympify import _sympify
3
+ from sympy.matrices.expressions.transpose import transpose
4
+
5
+
6
+ class DotProduct(Expr):
7
+ """
8
+ Dot product of vector matrices
9
+
10
+ The input should be two 1 x n or n x 1 matrices. The output represents the
11
+ scalar dotproduct.
12
+
13
+ This is similar to using MatrixElement and MatMul, except DotProduct does
14
+ not require that one vector to be a row vector and the other vector to be
15
+ a column vector.
16
+
17
+ >>> from sympy import MatrixSymbol, DotProduct
18
+ >>> A = MatrixSymbol('A', 1, 3)
19
+ >>> B = MatrixSymbol('B', 1, 3)
20
+ >>> DotProduct(A, B)
21
+ DotProduct(A, B)
22
+ >>> DotProduct(A, B).doit()
23
+ A[0, 0]*B[0, 0] + A[0, 1]*B[0, 1] + A[0, 2]*B[0, 2]
24
+ """
25
+
26
+ def __new__(cls, arg1, arg2):
27
+ arg1, arg2 = _sympify((arg1, arg2))
28
+
29
+ if not arg1.is_Matrix:
30
+ raise TypeError("Argument 1 of DotProduct is not a matrix")
31
+ if not arg2.is_Matrix:
32
+ raise TypeError("Argument 2 of DotProduct is not a matrix")
33
+ if not (1 in arg1.shape):
34
+ raise TypeError("Argument 1 of DotProduct is not a vector")
35
+ if not (1 in arg2.shape):
36
+ raise TypeError("Argument 2 of DotProduct is not a vector")
37
+
38
+ if set(arg1.shape) != set(arg2.shape):
39
+ raise TypeError("DotProduct arguments are not the same length")
40
+
41
+ return Basic.__new__(cls, arg1, arg2)
42
+
43
+ def doit(self, expand=False, **hints):
44
+ if self.args[0].shape == self.args[1].shape:
45
+ if self.args[0].shape[0] == 1:
46
+ mul = self.args[0]*transpose(self.args[1])
47
+ else:
48
+ mul = transpose(self.args[0])*self.args[1]
49
+ else:
50
+ if self.args[0].shape[0] == 1:
51
+ mul = self.args[0]*self.args[1]
52
+ else:
53
+ mul = transpose(self.args[0])*transpose(self.args[1])
54
+
55
+ return mul[0]
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/factorizations.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.matrices.expressions import MatrixExpr
2
+ from sympy.assumptions.ask import Q
3
+
4
+ class Factorization(MatrixExpr):
5
+ arg = property(lambda self: self.args[0])
6
+ shape = property(lambda self: self.arg.shape) # type: ignore
7
+
8
+ class LofLU(Factorization):
9
+ @property
10
+ def predicates(self):
11
+ return (Q.lower_triangular,)
12
+ class UofLU(Factorization):
13
+ @property
14
+ def predicates(self):
15
+ return (Q.upper_triangular,)
16
+
17
+ class LofCholesky(LofLU): pass
18
+ class UofCholesky(UofLU): pass
19
+
20
+ class QofQR(Factorization):
21
+ @property
22
+ def predicates(self):
23
+ return (Q.orthogonal,)
24
+ class RofQR(Factorization):
25
+ @property
26
+ def predicates(self):
27
+ return (Q.upper_triangular,)
28
+
29
+ class EigenVectors(Factorization):
30
+ @property
31
+ def predicates(self):
32
+ return (Q.orthogonal,)
33
+ class EigenValues(Factorization):
34
+ @property
35
+ def predicates(self):
36
+ return (Q.diagonal,)
37
+
38
+ class UofSVD(Factorization):
39
+ @property
40
+ def predicates(self):
41
+ return (Q.orthogonal,)
42
+ class SofSVD(Factorization):
43
+ @property
44
+ def predicates(self):
45
+ return (Q.diagonal,)
46
+ class VofSVD(Factorization):
47
+ @property
48
+ def predicates(self):
49
+ return (Q.orthogonal,)
50
+
51
+
52
+ def lu(expr):
53
+ return LofLU(expr), UofLU(expr)
54
+
55
+ def qr(expr):
56
+ return QofQR(expr), RofQR(expr)
57
+
58
+ def eig(expr):
59
+ return EigenValues(expr), EigenVectors(expr)
60
+
61
+ def svd(expr):
62
+ return UofSVD(expr), SofSVD(expr), VofSVD(expr)
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/fourier.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.sympify import _sympify
2
+ from sympy.matrices.expressions import MatrixExpr
3
+ from sympy.core.numbers import I
4
+ from sympy.core.singleton import S
5
+ from sympy.functions.elementary.exponential import exp
6
+ from sympy.functions.elementary.miscellaneous import sqrt
7
+
8
+
9
+ class DFT(MatrixExpr):
10
+ r"""
11
+ Returns a discrete Fourier transform matrix. The matrix is scaled
12
+ with :math:`\frac{1}{\sqrt{n}}` so that it is unitary.
13
+
14
+ Parameters
15
+ ==========
16
+
17
+ n : integer or Symbol
18
+ Size of the transform.
19
+
20
+ Examples
21
+ ========
22
+
23
+ >>> from sympy.abc import n
24
+ >>> from sympy.matrices.expressions.fourier import DFT
25
+ >>> DFT(3)
26
+ DFT(3)
27
+ >>> DFT(3).as_explicit()
28
+ Matrix([
29
+ [sqrt(3)/3, sqrt(3)/3, sqrt(3)/3],
30
+ [sqrt(3)/3, sqrt(3)*exp(-2*I*pi/3)/3, sqrt(3)*exp(2*I*pi/3)/3],
31
+ [sqrt(3)/3, sqrt(3)*exp(2*I*pi/3)/3, sqrt(3)*exp(-2*I*pi/3)/3]])
32
+ >>> DFT(n).shape
33
+ (n, n)
34
+
35
+ References
36
+ ==========
37
+
38
+ .. [1] https://en.wikipedia.org/wiki/DFT_matrix
39
+
40
+ """
41
+
42
+ def __new__(cls, n):
43
+ n = _sympify(n)
44
+ cls._check_dim(n)
45
+
46
+ obj = super().__new__(cls, n)
47
+ return obj
48
+
49
+ n = property(lambda self: self.args[0]) # type: ignore
50
+ shape = property(lambda self: (self.n, self.n)) # type: ignore
51
+
52
+ def _entry(self, i, j, **kwargs):
53
+ w = exp(-2*S.Pi*I/self.n)
54
+ return w**(i*j) / sqrt(self.n)
55
+
56
+ def _eval_inverse(self):
57
+ return IDFT(self.n)
58
+
59
+
60
+ class IDFT(DFT):
61
+ r"""
62
+ Returns an inverse discrete Fourier transform matrix. The matrix is scaled
63
+ with :math:`\frac{1}{\sqrt{n}}` so that it is unitary.
64
+
65
+ Parameters
66
+ ==========
67
+
68
+ n : integer or Symbol
69
+ Size of the transform
70
+
71
+ Examples
72
+ ========
73
+
74
+ >>> from sympy.matrices.expressions.fourier import DFT, IDFT
75
+ >>> IDFT(3)
76
+ IDFT(3)
77
+ >>> IDFT(4)*DFT(4)
78
+ I
79
+
80
+ See Also
81
+ ========
82
+
83
+ DFT
84
+
85
+ """
86
+ def _entry(self, i, j, **kwargs):
87
+ w = exp(-2*S.Pi*I/self.n)
88
+ return w**(-i*j) / sqrt(self.n)
89
+
90
+ def _eval_inverse(self):
91
+ return DFT(self.n)
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/funcmatrix.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .matexpr import MatrixExpr
2
+ from sympy.core.function import FunctionClass, Lambda
3
+ from sympy.core.symbol import Dummy
4
+ from sympy.core.sympify import _sympify, sympify
5
+ from sympy.matrices import Matrix
6
+ from sympy.functions.elementary.complexes import re, im
7
+
8
+
9
+ class FunctionMatrix(MatrixExpr):
10
+ """Represents a matrix using a function (``Lambda``) which gives
11
+ outputs according to the coordinates of each matrix entries.
12
+
13
+ Parameters
14
+ ==========
15
+
16
+ rows : nonnegative integer. Can be symbolic.
17
+
18
+ cols : nonnegative integer. Can be symbolic.
19
+
20
+ lamda : Function, Lambda or str
21
+ If it is a SymPy ``Function`` or ``Lambda`` instance,
22
+ it should be able to accept two arguments which represents the
23
+ matrix coordinates.
24
+
25
+ If it is a pure string containing Python ``lambda`` semantics,
26
+ it is interpreted by the SymPy parser and casted into a SymPy
27
+ ``Lambda`` instance.
28
+
29
+ Examples
30
+ ========
31
+
32
+ Creating a ``FunctionMatrix`` from ``Lambda``:
33
+
34
+ >>> from sympy import FunctionMatrix, symbols, Lambda, MatPow
35
+ >>> i, j, n, m = symbols('i,j,n,m')
36
+ >>> FunctionMatrix(n, m, Lambda((i, j), i + j))
37
+ FunctionMatrix(n, m, Lambda((i, j), i + j))
38
+
39
+ Creating a ``FunctionMatrix`` from a SymPy function:
40
+
41
+ >>> from sympy import KroneckerDelta
42
+ >>> X = FunctionMatrix(3, 3, KroneckerDelta)
43
+ >>> X.as_explicit()
44
+ Matrix([
45
+ [1, 0, 0],
46
+ [0, 1, 0],
47
+ [0, 0, 1]])
48
+
49
+ Creating a ``FunctionMatrix`` from a SymPy undefined function:
50
+
51
+ >>> from sympy import Function
52
+ >>> f = Function('f')
53
+ >>> X = FunctionMatrix(3, 3, f)
54
+ >>> X.as_explicit()
55
+ Matrix([
56
+ [f(0, 0), f(0, 1), f(0, 2)],
57
+ [f(1, 0), f(1, 1), f(1, 2)],
58
+ [f(2, 0), f(2, 1), f(2, 2)]])
59
+
60
+ Creating a ``FunctionMatrix`` from Python ``lambda``:
61
+
62
+ >>> FunctionMatrix(n, m, 'lambda i, j: i + j')
63
+ FunctionMatrix(n, m, Lambda((i, j), i + j))
64
+
65
+ Example of lazy evaluation of matrix product:
66
+
67
+ >>> Y = FunctionMatrix(1000, 1000, Lambda((i, j), i + j))
68
+ >>> isinstance(Y*Y, MatPow) # this is an expression object
69
+ True
70
+ >>> (Y**2)[10,10] # So this is evaluated lazily
71
+ 342923500
72
+
73
+ Notes
74
+ =====
75
+
76
+ This class provides an alternative way to represent an extremely
77
+ dense matrix with entries in some form of a sequence, in a most
78
+ sparse way.
79
+ """
80
+ def __new__(cls, rows, cols, lamda):
81
+ rows, cols = _sympify(rows), _sympify(cols)
82
+ cls._check_dim(rows)
83
+ cls._check_dim(cols)
84
+
85
+ lamda = sympify(lamda)
86
+ if not isinstance(lamda, (FunctionClass, Lambda)):
87
+ raise ValueError(
88
+ "{} should be compatible with SymPy function classes."
89
+ .format(lamda))
90
+
91
+ if 2 not in lamda.nargs:
92
+ raise ValueError(
93
+ '{} should be able to accept 2 arguments.'.format(lamda))
94
+
95
+ if not isinstance(lamda, Lambda):
96
+ i, j = Dummy('i'), Dummy('j')
97
+ lamda = Lambda((i, j), lamda(i, j))
98
+
99
+ return super().__new__(cls, rows, cols, lamda)
100
+
101
+ @property
102
+ def shape(self):
103
+ return self.args[0:2]
104
+
105
+ @property
106
+ def lamda(self):
107
+ return self.args[2]
108
+
109
+ def _entry(self, i, j, **kwargs):
110
+ return self.lamda(i, j)
111
+
112
+ def _eval_trace(self):
113
+ from sympy.matrices.expressions.trace import Trace
114
+ from sympy.concrete.summations import Sum
115
+ return Trace(self).rewrite(Sum).doit()
116
+
117
+ def _eval_as_real_imag(self):
118
+ return (re(Matrix(self)), im(Matrix(self)))
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/hadamard.py ADDED
@@ -0,0 +1,464 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import Counter
2
+
3
+ from sympy.core import Mul, sympify
4
+ from sympy.core.add import Add
5
+ from sympy.core.expr import ExprBuilder
6
+ from sympy.core.sorting import default_sort_key
7
+ from sympy.functions.elementary.exponential import log
8
+ from sympy.matrices.expressions.matexpr import MatrixExpr
9
+ from sympy.matrices.expressions._shape import validate_matadd_integer as validate
10
+ from sympy.matrices.expressions.special import ZeroMatrix, OneMatrix
11
+ from sympy.strategies import (
12
+ unpack, flatten, condition, exhaust, rm_id, sort
13
+ )
14
+ from sympy.utilities.exceptions import sympy_deprecation_warning
15
+
16
+
17
+ def hadamard_product(*matrices):
18
+ """
19
+ Return the elementwise (aka Hadamard) product of matrices.
20
+
21
+ Examples
22
+ ========
23
+
24
+ >>> from sympy import hadamard_product, MatrixSymbol
25
+ >>> A = MatrixSymbol('A', 2, 3)
26
+ >>> B = MatrixSymbol('B', 2, 3)
27
+ >>> hadamard_product(A)
28
+ A
29
+ >>> hadamard_product(A, B)
30
+ HadamardProduct(A, B)
31
+ >>> hadamard_product(A, B)[0, 1]
32
+ A[0, 1]*B[0, 1]
33
+ """
34
+ if not matrices:
35
+ raise TypeError("Empty Hadamard product is undefined")
36
+ if len(matrices) == 1:
37
+ return matrices[0]
38
+ return HadamardProduct(*matrices).doit()
39
+
40
+
41
+ class HadamardProduct(MatrixExpr):
42
+ """
43
+ Elementwise product of matrix expressions
44
+
45
+ Examples
46
+ ========
47
+
48
+ Hadamard product for matrix symbols:
49
+
50
+ >>> from sympy import hadamard_product, HadamardProduct, MatrixSymbol
51
+ >>> A = MatrixSymbol('A', 5, 5)
52
+ >>> B = MatrixSymbol('B', 5, 5)
53
+ >>> isinstance(hadamard_product(A, B), HadamardProduct)
54
+ True
55
+
56
+ Notes
57
+ =====
58
+
59
+ This is a symbolic object that simply stores its argument without
60
+ evaluating it. To actually compute the product, use the function
61
+ ``hadamard_product()`` or ``HadamardProduct.doit``
62
+ """
63
+ is_HadamardProduct = True
64
+
65
+ def __new__(cls, *args, evaluate=False, check=None):
66
+ args = list(map(sympify, args))
67
+ if len(args) == 0:
68
+ # We currently don't have a way to support one-matrices of generic dimensions:
69
+ raise ValueError("HadamardProduct needs at least one argument")
70
+
71
+ if not all(isinstance(arg, MatrixExpr) for arg in args):
72
+ raise TypeError("Mix of Matrix and Scalar symbols")
73
+
74
+ if check is not None:
75
+ sympy_deprecation_warning(
76
+ "Passing check to HadamardProduct is deprecated and the check argument will be removed in a future version.",
77
+ deprecated_since_version="1.11",
78
+ active_deprecations_target='remove-check-argument-from-matrix-operations')
79
+
80
+ if check is not False:
81
+ validate(*args)
82
+
83
+ obj = super().__new__(cls, *args)
84
+ if evaluate:
85
+ obj = obj.doit(deep=False)
86
+ return obj
87
+
88
+ @property
89
+ def shape(self):
90
+ return self.args[0].shape
91
+
92
+ def _entry(self, i, j, **kwargs):
93
+ return Mul(*[arg._entry(i, j, **kwargs) for arg in self.args])
94
+
95
+ def _eval_transpose(self):
96
+ from sympy.matrices.expressions.transpose import transpose
97
+ return HadamardProduct(*list(map(transpose, self.args)))
98
+
99
+ def doit(self, **hints):
100
+ expr = self.func(*(i.doit(**hints) for i in self.args))
101
+ # Check for explicit matrices:
102
+ from sympy.matrices.matrices import MatrixBase
103
+ from sympy.matrices.immutable import ImmutableMatrix
104
+
105
+ explicit = [i for i in expr.args if isinstance(i, MatrixBase)]
106
+ if explicit:
107
+ remainder = [i for i in expr.args if i not in explicit]
108
+ expl_mat = ImmutableMatrix([
109
+ Mul.fromiter(i) for i in zip(*explicit)
110
+ ]).reshape(*self.shape)
111
+ expr = HadamardProduct(*([expl_mat] + remainder))
112
+
113
+ return canonicalize(expr)
114
+
115
+ def _eval_derivative(self, x):
116
+ terms = []
117
+ args = list(self.args)
118
+ for i in range(len(args)):
119
+ factors = args[:i] + [args[i].diff(x)] + args[i+1:]
120
+ terms.append(hadamard_product(*factors))
121
+ return Add.fromiter(terms)
122
+
123
+ def _eval_derivative_matrix_lines(self, x):
124
+ from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal
125
+ from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
126
+ from sympy.matrices.expressions.matexpr import _make_matrix
127
+
128
+ with_x_ind = [i for i, arg in enumerate(self.args) if arg.has(x)]
129
+ lines = []
130
+ for ind in with_x_ind:
131
+ left_args = self.args[:ind]
132
+ right_args = self.args[ind+1:]
133
+
134
+ d = self.args[ind]._eval_derivative_matrix_lines(x)
135
+ hadam = hadamard_product(*(right_args + left_args))
136
+ diagonal = [(0, 2), (3, 4)]
137
+ diagonal = [e for j, e in enumerate(diagonal) if self.shape[j] != 1]
138
+ for i in d:
139
+ l1 = i._lines[i._first_line_index]
140
+ l2 = i._lines[i._second_line_index]
141
+ subexpr = ExprBuilder(
142
+ ArrayDiagonal,
143
+ [
144
+ ExprBuilder(
145
+ ArrayTensorProduct,
146
+ [
147
+ ExprBuilder(_make_matrix, [l1]),
148
+ hadam,
149
+ ExprBuilder(_make_matrix, [l2]),
150
+ ]
151
+ ),
152
+ *diagonal],
153
+
154
+ )
155
+ i._first_pointer_parent = subexpr.args[0].args[0].args
156
+ i._first_pointer_index = 0
157
+ i._second_pointer_parent = subexpr.args[0].args[2].args
158
+ i._second_pointer_index = 0
159
+ i._lines = [subexpr]
160
+ lines.append(i)
161
+
162
+ return lines
163
+
164
+
165
+ # TODO Implement algorithm for rewriting Hadamard product as diagonal matrix
166
+ # if matmul identy matrix is multiplied.
167
+ def canonicalize(x):
168
+ """Canonicalize the Hadamard product ``x`` with mathematical properties.
169
+
170
+ Examples
171
+ ========
172
+
173
+ >>> from sympy import MatrixSymbol, HadamardProduct
174
+ >>> from sympy import OneMatrix, ZeroMatrix
175
+ >>> from sympy.matrices.expressions.hadamard import canonicalize
176
+ >>> from sympy import init_printing
177
+ >>> init_printing(use_unicode=False)
178
+
179
+ >>> A = MatrixSymbol('A', 2, 2)
180
+ >>> B = MatrixSymbol('B', 2, 2)
181
+ >>> C = MatrixSymbol('C', 2, 2)
182
+
183
+ Hadamard product associativity:
184
+
185
+ >>> X = HadamardProduct(A, HadamardProduct(B, C))
186
+ >>> X
187
+ A.*(B.*C)
188
+ >>> canonicalize(X)
189
+ A.*B.*C
190
+
191
+ Hadamard product commutativity:
192
+
193
+ >>> X = HadamardProduct(A, B)
194
+ >>> Y = HadamardProduct(B, A)
195
+ >>> X
196
+ A.*B
197
+ >>> Y
198
+ B.*A
199
+ >>> canonicalize(X)
200
+ A.*B
201
+ >>> canonicalize(Y)
202
+ A.*B
203
+
204
+ Hadamard product identity:
205
+
206
+ >>> X = HadamardProduct(A, OneMatrix(2, 2))
207
+ >>> X
208
+ A.*1
209
+ >>> canonicalize(X)
210
+ A
211
+
212
+ Absorbing element of Hadamard product:
213
+
214
+ >>> X = HadamardProduct(A, ZeroMatrix(2, 2))
215
+ >>> X
216
+ A.*0
217
+ >>> canonicalize(X)
218
+ 0
219
+
220
+ Rewriting to Hadamard Power
221
+
222
+ >>> X = HadamardProduct(A, A, A)
223
+ >>> X
224
+ A.*A.*A
225
+ >>> canonicalize(X)
226
+ .3
227
+ A
228
+
229
+ Notes
230
+ =====
231
+
232
+ As the Hadamard product is associative, nested products can be flattened.
233
+
234
+ The Hadamard product is commutative so that factors can be sorted for
235
+ canonical form.
236
+
237
+ A matrix of only ones is an identity for Hadamard product,
238
+ so every matrices of only ones can be removed.
239
+
240
+ Any zero matrix will make the whole product a zero matrix.
241
+
242
+ Duplicate elements can be collected and rewritten as HadamardPower
243
+
244
+ References
245
+ ==========
246
+
247
+ .. [1] https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
248
+ """
249
+ # Associativity
250
+ rule = condition(
251
+ lambda x: isinstance(x, HadamardProduct),
252
+ flatten
253
+ )
254
+ fun = exhaust(rule)
255
+ x = fun(x)
256
+
257
+ # Identity
258
+ fun = condition(
259
+ lambda x: isinstance(x, HadamardProduct),
260
+ rm_id(lambda x: isinstance(x, OneMatrix))
261
+ )
262
+ x = fun(x)
263
+
264
+ # Absorbing by Zero Matrix
265
+ def absorb(x):
266
+ if any(isinstance(c, ZeroMatrix) for c in x.args):
267
+ return ZeroMatrix(*x.shape)
268
+ else:
269
+ return x
270
+ fun = condition(
271
+ lambda x: isinstance(x, HadamardProduct),
272
+ absorb
273
+ )
274
+ x = fun(x)
275
+
276
+ # Rewriting with HadamardPower
277
+ if isinstance(x, HadamardProduct):
278
+ tally = Counter(x.args)
279
+
280
+ new_arg = []
281
+ for base, exp in tally.items():
282
+ if exp == 1:
283
+ new_arg.append(base)
284
+ else:
285
+ new_arg.append(HadamardPower(base, exp))
286
+
287
+ x = HadamardProduct(*new_arg)
288
+
289
+ # Commutativity
290
+ fun = condition(
291
+ lambda x: isinstance(x, HadamardProduct),
292
+ sort(default_sort_key)
293
+ )
294
+ x = fun(x)
295
+
296
+ # Unpacking
297
+ x = unpack(x)
298
+ return x
299
+
300
+
301
+ def hadamard_power(base, exp):
302
+ base = sympify(base)
303
+ exp = sympify(exp)
304
+ if exp == 1:
305
+ return base
306
+ if not base.is_Matrix:
307
+ return base**exp
308
+ if exp.is_Matrix:
309
+ raise ValueError("cannot raise expression to a matrix")
310
+ return HadamardPower(base, exp)
311
+
312
+
313
+ class HadamardPower(MatrixExpr):
314
+ r"""
315
+ Elementwise power of matrix expressions
316
+
317
+ Parameters
318
+ ==========
319
+
320
+ base : scalar or matrix
321
+
322
+ exp : scalar or matrix
323
+
324
+ Notes
325
+ =====
326
+
327
+ There are four definitions for the hadamard power which can be used.
328
+ Let's consider `A, B` as `(m, n)` matrices, and `a, b` as scalars.
329
+
330
+ Matrix raised to a scalar exponent:
331
+
332
+ .. math::
333
+ A^{\circ b} = \begin{bmatrix}
334
+ A_{0, 0}^b & A_{0, 1}^b & \cdots & A_{0, n-1}^b \\
335
+ A_{1, 0}^b & A_{1, 1}^b & \cdots & A_{1, n-1}^b \\
336
+ \vdots & \vdots & \ddots & \vdots \\
337
+ A_{m-1, 0}^b & A_{m-1, 1}^b & \cdots & A_{m-1, n-1}^b
338
+ \end{bmatrix}
339
+
340
+ Scalar raised to a matrix exponent:
341
+
342
+ .. math::
343
+ a^{\circ B} = \begin{bmatrix}
344
+ a^{B_{0, 0}} & a^{B_{0, 1}} & \cdots & a^{B_{0, n-1}} \\
345
+ a^{B_{1, 0}} & a^{B_{1, 1}} & \cdots & a^{B_{1, n-1}} \\
346
+ \vdots & \vdots & \ddots & \vdots \\
347
+ a^{B_{m-1, 0}} & a^{B_{m-1, 1}} & \cdots & a^{B_{m-1, n-1}}
348
+ \end{bmatrix}
349
+
350
+ Matrix raised to a matrix exponent:
351
+
352
+ .. math::
353
+ A^{\circ B} = \begin{bmatrix}
354
+ A_{0, 0}^{B_{0, 0}} & A_{0, 1}^{B_{0, 1}} &
355
+ \cdots & A_{0, n-1}^{B_{0, n-1}} \\
356
+ A_{1, 0}^{B_{1, 0}} & A_{1, 1}^{B_{1, 1}} &
357
+ \cdots & A_{1, n-1}^{B_{1, n-1}} \\
358
+ \vdots & \vdots &
359
+ \ddots & \vdots \\
360
+ A_{m-1, 0}^{B_{m-1, 0}} & A_{m-1, 1}^{B_{m-1, 1}} &
361
+ \cdots & A_{m-1, n-1}^{B_{m-1, n-1}}
362
+ \end{bmatrix}
363
+
364
+ Scalar raised to a scalar exponent:
365
+
366
+ .. math::
367
+ a^{\circ b} = a^b
368
+ """
369
+
370
+ def __new__(cls, base, exp):
371
+ base = sympify(base)
372
+ exp = sympify(exp)
373
+
374
+ if base.is_scalar and exp.is_scalar:
375
+ return base ** exp
376
+
377
+ if isinstance(base, MatrixExpr) and isinstance(exp, MatrixExpr):
378
+ validate(base, exp)
379
+
380
+ obj = super().__new__(cls, base, exp)
381
+ return obj
382
+
383
+ @property
384
+ def base(self):
385
+ return self._args[0]
386
+
387
+ @property
388
+ def exp(self):
389
+ return self._args[1]
390
+
391
+ @property
392
+ def shape(self):
393
+ if self.base.is_Matrix:
394
+ return self.base.shape
395
+ return self.exp.shape
396
+
397
+ def _entry(self, i, j, **kwargs):
398
+ base = self.base
399
+ exp = self.exp
400
+
401
+ if base.is_Matrix:
402
+ a = base._entry(i, j, **kwargs)
403
+ elif base.is_scalar:
404
+ a = base
405
+ else:
406
+ raise ValueError(
407
+ 'The base {} must be a scalar or a matrix.'.format(base))
408
+
409
+ if exp.is_Matrix:
410
+ b = exp._entry(i, j, **kwargs)
411
+ elif exp.is_scalar:
412
+ b = exp
413
+ else:
414
+ raise ValueError(
415
+ 'The exponent {} must be a scalar or a matrix.'.format(exp))
416
+
417
+ return a ** b
418
+
419
+ def _eval_transpose(self):
420
+ from sympy.matrices.expressions.transpose import transpose
421
+ return HadamardPower(transpose(self.base), self.exp)
422
+
423
+ def _eval_derivative(self, x):
424
+ dexp = self.exp.diff(x)
425
+ logbase = self.base.applyfunc(log)
426
+ dlbase = logbase.diff(x)
427
+ return hadamard_product(
428
+ dexp*logbase + self.exp*dlbase,
429
+ self
430
+ )
431
+
432
+ def _eval_derivative_matrix_lines(self, x):
433
+ from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
434
+ from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal
435
+ from sympy.matrices.expressions.matexpr import _make_matrix
436
+
437
+ lr = self.base._eval_derivative_matrix_lines(x)
438
+ for i in lr:
439
+ diagonal = [(1, 2), (3, 4)]
440
+ diagonal = [e for j, e in enumerate(diagonal) if self.base.shape[j] != 1]
441
+ l1 = i._lines[i._first_line_index]
442
+ l2 = i._lines[i._second_line_index]
443
+ subexpr = ExprBuilder(
444
+ ArrayDiagonal,
445
+ [
446
+ ExprBuilder(
447
+ ArrayTensorProduct,
448
+ [
449
+ ExprBuilder(_make_matrix, [l1]),
450
+ self.exp*hadamard_power(self.base, self.exp-1),
451
+ ExprBuilder(_make_matrix, [l2]),
452
+ ]
453
+ ),
454
+ *diagonal],
455
+ validator=ArrayDiagonal._validate
456
+ )
457
+ i._first_pointer_parent = subexpr.args[0].args[0].args
458
+ i._first_pointer_index = 0
459
+ i._first_line_index = 0
460
+ i._second_pointer_parent = subexpr.args[0].args[2].args
461
+ i._second_pointer_index = 0
462
+ i._second_line_index = 0
463
+ i._lines = [subexpr]
464
+ return lr
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/inverse.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.sympify import _sympify
2
+ from sympy.core import S, Basic
3
+
4
+ from sympy.matrices.common import NonSquareMatrixError
5
+ from sympy.matrices.expressions.matpow import MatPow
6
+
7
+
8
+ class Inverse(MatPow):
9
+ """
10
+ The multiplicative inverse of a matrix expression
11
+
12
+ This is a symbolic object that simply stores its argument without
13
+ evaluating it. To actually compute the inverse, use the ``.inverse()``
14
+ method of matrices.
15
+
16
+ Examples
17
+ ========
18
+
19
+ >>> from sympy import MatrixSymbol, Inverse
20
+ >>> A = MatrixSymbol('A', 3, 3)
21
+ >>> B = MatrixSymbol('B', 3, 3)
22
+ >>> Inverse(A)
23
+ A**(-1)
24
+ >>> A.inverse() == Inverse(A)
25
+ True
26
+ >>> (A*B).inverse()
27
+ B**(-1)*A**(-1)
28
+ >>> Inverse(A*B)
29
+ (A*B)**(-1)
30
+
31
+ """
32
+ is_Inverse = True
33
+ exp = S.NegativeOne
34
+
35
+ def __new__(cls, mat, exp=S.NegativeOne):
36
+ # exp is there to make it consistent with
37
+ # inverse.func(*inverse.args) == inverse
38
+ mat = _sympify(mat)
39
+ exp = _sympify(exp)
40
+ if not mat.is_Matrix:
41
+ raise TypeError("mat should be a matrix")
42
+ if mat.is_square is False:
43
+ raise NonSquareMatrixError("Inverse of non-square matrix %s" % mat)
44
+ return Basic.__new__(cls, mat, exp)
45
+
46
+ @property
47
+ def arg(self):
48
+ return self.args[0]
49
+
50
+ @property
51
+ def shape(self):
52
+ return self.arg.shape
53
+
54
+ def _eval_inverse(self):
55
+ return self.arg
56
+
57
+ def _eval_determinant(self):
58
+ from sympy.matrices.expressions.determinant import det
59
+ return 1/det(self.arg)
60
+
61
+ def doit(self, **hints):
62
+ if 'inv_expand' in hints and hints['inv_expand'] == False:
63
+ return self
64
+
65
+ arg = self.arg
66
+ if hints.get('deep', True):
67
+ arg = arg.doit(**hints)
68
+
69
+ return arg.inverse()
70
+
71
+ def _eval_derivative_matrix_lines(self, x):
72
+ arg = self.args[0]
73
+ lines = arg._eval_derivative_matrix_lines(x)
74
+ for line in lines:
75
+ line.first_pointer *= -self.T
76
+ line.second_pointer *= self
77
+ return lines
78
+
79
+
80
+ from sympy.assumptions.ask import ask, Q
81
+ from sympy.assumptions.refine import handlers_dict
82
+
83
+
84
+ def refine_Inverse(expr, assumptions):
85
+ """
86
+ >>> from sympy import MatrixSymbol, Q, assuming, refine
87
+ >>> X = MatrixSymbol('X', 2, 2)
88
+ >>> X.I
89
+ X**(-1)
90
+ >>> with assuming(Q.orthogonal(X)):
91
+ ... print(refine(X.I))
92
+ X.T
93
+ """
94
+ if ask(Q.orthogonal(expr), assumptions):
95
+ return expr.arg.T
96
+ elif ask(Q.unitary(expr), assumptions):
97
+ return expr.arg.conjugate()
98
+ elif ask(Q.singular(expr), assumptions):
99
+ raise ValueError("Inverse of singular matrix %s" % expr.arg)
100
+
101
+ return expr
102
+
103
+ handlers_dict['Inverse'] = refine_Inverse
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/matadd.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import reduce
2
+ import operator
3
+
4
+ from sympy.core import Basic, sympify
5
+ from sympy.core.add import add, Add, _could_extract_minus_sign
6
+ from sympy.core.sorting import default_sort_key
7
+ from sympy.functions import adjoint
8
+ from sympy.matrices.matrices import MatrixBase
9
+ from sympy.matrices.expressions.transpose import transpose
10
+ from sympy.strategies import (rm_id, unpack, flatten, sort, condition,
11
+ exhaust, do_one, glom)
12
+ from sympy.matrices.expressions.matexpr import MatrixExpr
13
+ from sympy.matrices.expressions.special import ZeroMatrix, GenericZeroMatrix
14
+ from sympy.matrices.expressions._shape import validate_matadd_integer as validate
15
+ from sympy.utilities.iterables import sift
16
+ from sympy.utilities.exceptions import sympy_deprecation_warning
17
+
18
+ # XXX: MatAdd should perhaps not subclass directly from Add
19
+ class MatAdd(MatrixExpr, Add):
20
+ """A Sum of Matrix Expressions
21
+
22
+ MatAdd inherits from and operates like SymPy Add
23
+
24
+ Examples
25
+ ========
26
+
27
+ >>> from sympy import MatAdd, MatrixSymbol
28
+ >>> A = MatrixSymbol('A', 5, 5)
29
+ >>> B = MatrixSymbol('B', 5, 5)
30
+ >>> C = MatrixSymbol('C', 5, 5)
31
+ >>> MatAdd(A, B, C)
32
+ A + B + C
33
+ """
34
+ is_MatAdd = True
35
+
36
+ identity = GenericZeroMatrix()
37
+
38
+ def __new__(cls, *args, evaluate=False, check=None, _sympify=True):
39
+ if not args:
40
+ return cls.identity
41
+
42
+ # This must be removed aggressively in the constructor to avoid
43
+ # TypeErrors from GenericZeroMatrix().shape
44
+ args = list(filter(lambda i: cls.identity != i, args))
45
+ if _sympify:
46
+ args = list(map(sympify, args))
47
+
48
+ if not all(isinstance(arg, MatrixExpr) for arg in args):
49
+ raise TypeError("Mix of Matrix and Scalar symbols")
50
+
51
+ obj = Basic.__new__(cls, *args)
52
+
53
+ if check is not None:
54
+ sympy_deprecation_warning(
55
+ "Passing check to MatAdd is deprecated and the check argument will be removed in a future version.",
56
+ deprecated_since_version="1.11",
57
+ active_deprecations_target='remove-check-argument-from-matrix-operations')
58
+
59
+ if check is not False:
60
+ validate(*args)
61
+
62
+ if evaluate:
63
+ obj = cls._evaluate(obj)
64
+
65
+ return obj
66
+
67
+ @classmethod
68
+ def _evaluate(cls, expr):
69
+ return canonicalize(expr)
70
+
71
+ @property
72
+ def shape(self):
73
+ return self.args[0].shape
74
+
75
+ def could_extract_minus_sign(self):
76
+ return _could_extract_minus_sign(self)
77
+
78
+ def expand(self, **kwargs):
79
+ expanded = super(MatAdd, self).expand(**kwargs)
80
+ return self._evaluate(expanded)
81
+
82
+ def _entry(self, i, j, **kwargs):
83
+ return Add(*[arg._entry(i, j, **kwargs) for arg in self.args])
84
+
85
+ def _eval_transpose(self):
86
+ return MatAdd(*[transpose(arg) for arg in self.args]).doit()
87
+
88
+ def _eval_adjoint(self):
89
+ return MatAdd(*[adjoint(arg) for arg in self.args]).doit()
90
+
91
+ def _eval_trace(self):
92
+ from .trace import trace
93
+ return Add(*[trace(arg) for arg in self.args]).doit()
94
+
95
+ def doit(self, **hints):
96
+ deep = hints.get('deep', True)
97
+ if deep:
98
+ args = [arg.doit(**hints) for arg in self.args]
99
+ else:
100
+ args = self.args
101
+ return canonicalize(MatAdd(*args))
102
+
103
+ def _eval_derivative_matrix_lines(self, x):
104
+ add_lines = [arg._eval_derivative_matrix_lines(x) for arg in self.args]
105
+ return [j for i in add_lines for j in i]
106
+
107
+ add.register_handlerclass((Add, MatAdd), MatAdd)
108
+
109
+
110
+ factor_of = lambda arg: arg.as_coeff_mmul()[0]
111
+ matrix_of = lambda arg: unpack(arg.as_coeff_mmul()[1])
112
+ def combine(cnt, mat):
113
+ if cnt == 1:
114
+ return mat
115
+ else:
116
+ return cnt * mat
117
+
118
+
119
+ def merge_explicit(matadd):
120
+ """ Merge explicit MatrixBase arguments
121
+
122
+ Examples
123
+ ========
124
+
125
+ >>> from sympy import MatrixSymbol, eye, Matrix, MatAdd, pprint
126
+ >>> from sympy.matrices.expressions.matadd import merge_explicit
127
+ >>> A = MatrixSymbol('A', 2, 2)
128
+ >>> B = eye(2)
129
+ >>> C = Matrix([[1, 2], [3, 4]])
130
+ >>> X = MatAdd(A, B, C)
131
+ >>> pprint(X)
132
+ [1 0] [1 2]
133
+ A + [ ] + [ ]
134
+ [0 1] [3 4]
135
+ >>> pprint(merge_explicit(X))
136
+ [2 2]
137
+ A + [ ]
138
+ [3 5]
139
+ """
140
+ groups = sift(matadd.args, lambda arg: isinstance(arg, MatrixBase))
141
+ if len(groups[True]) > 1:
142
+ return MatAdd(*(groups[False] + [reduce(operator.add, groups[True])]))
143
+ else:
144
+ return matadd
145
+
146
+
147
+ rules = (rm_id(lambda x: x == 0 or isinstance(x, ZeroMatrix)),
148
+ unpack,
149
+ flatten,
150
+ glom(matrix_of, factor_of, combine),
151
+ merge_explicit,
152
+ sort(default_sort_key))
153
+
154
+ canonicalize = exhaust(condition(lambda x: isinstance(x, MatAdd),
155
+ do_one(*rules)))
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/matexpr.py ADDED
@@ -0,0 +1,885 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from functools import wraps
3
+
4
+ from sympy.core import S, Integer, Basic, Mul, Add
5
+ from sympy.core.assumptions import check_assumptions
6
+ from sympy.core.decorators import call_highest_priority
7
+ from sympy.core.expr import Expr, ExprBuilder
8
+ from sympy.core.logic import FuzzyBool
9
+ from sympy.core.symbol import Str, Dummy, symbols, Symbol
10
+ from sympy.core.sympify import SympifyError, _sympify
11
+ from sympy.external.gmpy import SYMPY_INTS
12
+ from sympy.functions import conjugate, adjoint
13
+ from sympy.functions.special.tensor_functions import KroneckerDelta
14
+ from sympy.matrices.common import NonSquareMatrixError
15
+ from sympy.matrices.matrices import MatrixKind, MatrixBase
16
+ from sympy.multipledispatch import dispatch
17
+ from sympy.utilities.misc import filldedent
18
+
19
+
20
+ def _sympifyit(arg, retval=None):
21
+ # This version of _sympifyit sympifies MutableMatrix objects
22
+ def deco(func):
23
+ @wraps(func)
24
+ def __sympifyit_wrapper(a, b):
25
+ try:
26
+ b = _sympify(b)
27
+ return func(a, b)
28
+ except SympifyError:
29
+ return retval
30
+
31
+ return __sympifyit_wrapper
32
+
33
+ return deco
34
+
35
+
36
+ class MatrixExpr(Expr):
37
+ """Superclass for Matrix Expressions
38
+
39
+ MatrixExprs represent abstract matrices, linear transformations represented
40
+ within a particular basis.
41
+
42
+ Examples
43
+ ========
44
+
45
+ >>> from sympy import MatrixSymbol
46
+ >>> A = MatrixSymbol('A', 3, 3)
47
+ >>> y = MatrixSymbol('y', 3, 1)
48
+ >>> x = (A.T*A).I * A * y
49
+
50
+ See Also
51
+ ========
52
+
53
+ MatrixSymbol, MatAdd, MatMul, Transpose, Inverse
54
+ """
55
+ __slots__: tuple[str, ...] = ()
56
+
57
+ # Should not be considered iterable by the
58
+ # sympy.utilities.iterables.iterable function. Subclass that actually are
59
+ # iterable (i.e., explicit matrices) should set this to True.
60
+ _iterable = False
61
+
62
+ _op_priority = 11.0
63
+
64
+ is_Matrix: bool = True
65
+ is_MatrixExpr: bool = True
66
+ is_Identity: FuzzyBool = None
67
+ is_Inverse = False
68
+ is_Transpose = False
69
+ is_ZeroMatrix = False
70
+ is_MatAdd = False
71
+ is_MatMul = False
72
+
73
+ is_commutative = False
74
+ is_number = False
75
+ is_symbol = False
76
+ is_scalar = False
77
+
78
+ kind: MatrixKind = MatrixKind()
79
+
80
+ def __new__(cls, *args, **kwargs):
81
+ args = map(_sympify, args)
82
+ return Basic.__new__(cls, *args, **kwargs)
83
+
84
+ # The following is adapted from the core Expr object
85
+
86
+ @property
87
+ def shape(self) -> tuple[Expr, Expr]:
88
+ raise NotImplementedError
89
+
90
+ @property
91
+ def _add_handler(self):
92
+ return MatAdd
93
+
94
+ @property
95
+ def _mul_handler(self):
96
+ return MatMul
97
+
98
+ def __neg__(self):
99
+ return MatMul(S.NegativeOne, self).doit()
100
+
101
+ def __abs__(self):
102
+ raise NotImplementedError
103
+
104
+ @_sympifyit('other', NotImplemented)
105
+ @call_highest_priority('__radd__')
106
+ def __add__(self, other):
107
+ return MatAdd(self, other).doit()
108
+
109
+ @_sympifyit('other', NotImplemented)
110
+ @call_highest_priority('__add__')
111
+ def __radd__(self, other):
112
+ return MatAdd(other, self).doit()
113
+
114
+ @_sympifyit('other', NotImplemented)
115
+ @call_highest_priority('__rsub__')
116
+ def __sub__(self, other):
117
+ return MatAdd(self, -other).doit()
118
+
119
+ @_sympifyit('other', NotImplemented)
120
+ @call_highest_priority('__sub__')
121
+ def __rsub__(self, other):
122
+ return MatAdd(other, -self).doit()
123
+
124
+ @_sympifyit('other', NotImplemented)
125
+ @call_highest_priority('__rmul__')
126
+ def __mul__(self, other):
127
+ return MatMul(self, other).doit()
128
+
129
+ @_sympifyit('other', NotImplemented)
130
+ @call_highest_priority('__rmul__')
131
+ def __matmul__(self, other):
132
+ return MatMul(self, other).doit()
133
+
134
+ @_sympifyit('other', NotImplemented)
135
+ @call_highest_priority('__mul__')
136
+ def __rmul__(self, other):
137
+ return MatMul(other, self).doit()
138
+
139
+ @_sympifyit('other', NotImplemented)
140
+ @call_highest_priority('__mul__')
141
+ def __rmatmul__(self, other):
142
+ return MatMul(other, self).doit()
143
+
144
+ @_sympifyit('other', NotImplemented)
145
+ @call_highest_priority('__rpow__')
146
+ def __pow__(self, other):
147
+ return MatPow(self, other).doit()
148
+
149
+ @_sympifyit('other', NotImplemented)
150
+ @call_highest_priority('__pow__')
151
+ def __rpow__(self, other):
152
+ raise NotImplementedError("Matrix Power not defined")
153
+
154
+ @_sympifyit('other', NotImplemented)
155
+ @call_highest_priority('__rtruediv__')
156
+ def __truediv__(self, other):
157
+ return self * other**S.NegativeOne
158
+
159
+ @_sympifyit('other', NotImplemented)
160
+ @call_highest_priority('__truediv__')
161
+ def __rtruediv__(self, other):
162
+ raise NotImplementedError()
163
+ #return MatMul(other, Pow(self, S.NegativeOne))
164
+
165
+ @property
166
+ def rows(self):
167
+ return self.shape[0]
168
+
169
+ @property
170
+ def cols(self):
171
+ return self.shape[1]
172
+
173
+ @property
174
+ def is_square(self) -> bool | None:
175
+ rows, cols = self.shape
176
+ if isinstance(rows, Integer) and isinstance(cols, Integer):
177
+ return rows == cols
178
+ if rows == cols:
179
+ return True
180
+ return None
181
+
182
+ def _eval_conjugate(self):
183
+ from sympy.matrices.expressions.adjoint import Adjoint
184
+ return Adjoint(Transpose(self))
185
+
186
+ def as_real_imag(self, deep=True, **hints):
187
+ return self._eval_as_real_imag()
188
+
189
+ def _eval_as_real_imag(self):
190
+ real = S.Half * (self + self._eval_conjugate())
191
+ im = (self - self._eval_conjugate())/(2*S.ImaginaryUnit)
192
+ return (real, im)
193
+
194
+ def _eval_inverse(self):
195
+ return Inverse(self)
196
+
197
+ def _eval_determinant(self):
198
+ return Determinant(self)
199
+
200
+ def _eval_transpose(self):
201
+ return Transpose(self)
202
+
203
+ def _eval_power(self, exp):
204
+ """
205
+ Override this in sub-classes to implement simplification of powers. The cases where the exponent
206
+ is -1, 0, 1 are already covered in MatPow.doit(), so implementations can exclude these cases.
207
+ """
208
+ return MatPow(self, exp)
209
+
210
+ def _eval_simplify(self, **kwargs):
211
+ if self.is_Atom:
212
+ return self
213
+ else:
214
+ from sympy.simplify import simplify
215
+ return self.func(*[simplify(x, **kwargs) for x in self.args])
216
+
217
+ def _eval_adjoint(self):
218
+ from sympy.matrices.expressions.adjoint import Adjoint
219
+ return Adjoint(self)
220
+
221
+ def _eval_derivative_n_times(self, x, n):
222
+ return Basic._eval_derivative_n_times(self, x, n)
223
+
224
+ def _eval_derivative(self, x):
225
+ # `x` is a scalar:
226
+ if self.has(x):
227
+ # See if there are other methods using it:
228
+ return super()._eval_derivative(x)
229
+ else:
230
+ return ZeroMatrix(*self.shape)
231
+
232
+ @classmethod
233
+ def _check_dim(cls, dim):
234
+ """Helper function to check invalid matrix dimensions"""
235
+ ok = check_assumptions(dim, integer=True, nonnegative=True)
236
+ if ok is False:
237
+ raise ValueError(
238
+ "The dimension specification {} should be "
239
+ "a nonnegative integer.".format(dim))
240
+
241
+
242
+ def _entry(self, i, j, **kwargs):
243
+ raise NotImplementedError(
244
+ "Indexing not implemented for %s" % self.__class__.__name__)
245
+
246
+ def adjoint(self):
247
+ return adjoint(self)
248
+
249
+ def as_coeff_Mul(self, rational=False):
250
+ """Efficiently extract the coefficient of a product."""
251
+ return S.One, self
252
+
253
+ def conjugate(self):
254
+ return conjugate(self)
255
+
256
+ def transpose(self):
257
+ from sympy.matrices.expressions.transpose import transpose
258
+ return transpose(self)
259
+
260
+ @property
261
+ def T(self):
262
+ '''Matrix transposition'''
263
+ return self.transpose()
264
+
265
+ def inverse(self):
266
+ if self.is_square is False:
267
+ raise NonSquareMatrixError('Inverse of non-square matrix')
268
+ return self._eval_inverse()
269
+
270
+ def inv(self):
271
+ return self.inverse()
272
+
273
+ def det(self):
274
+ from sympy.matrices.expressions.determinant import det
275
+ return det(self)
276
+
277
+ @property
278
+ def I(self):
279
+ return self.inverse()
280
+
281
+ def valid_index(self, i, j):
282
+ def is_valid(idx):
283
+ return isinstance(idx, (int, Integer, Symbol, Expr))
284
+ return (is_valid(i) and is_valid(j) and
285
+ (self.rows is None or
286
+ (i >= -self.rows) != False and (i < self.rows) != False) and
287
+ (j >= -self.cols) != False and (j < self.cols) != False)
288
+
289
+ def __getitem__(self, key):
290
+ if not isinstance(key, tuple) and isinstance(key, slice):
291
+ from sympy.matrices.expressions.slice import MatrixSlice
292
+ return MatrixSlice(self, key, (0, None, 1))
293
+ if isinstance(key, tuple) and len(key) == 2:
294
+ i, j = key
295
+ if isinstance(i, slice) or isinstance(j, slice):
296
+ from sympy.matrices.expressions.slice import MatrixSlice
297
+ return MatrixSlice(self, i, j)
298
+ i, j = _sympify(i), _sympify(j)
299
+ if self.valid_index(i, j) != False:
300
+ return self._entry(i, j)
301
+ else:
302
+ raise IndexError("Invalid indices (%s, %s)" % (i, j))
303
+ elif isinstance(key, (SYMPY_INTS, Integer)):
304
+ # row-wise decomposition of matrix
305
+ rows, cols = self.shape
306
+ # allow single indexing if number of columns is known
307
+ if not isinstance(cols, Integer):
308
+ raise IndexError(filldedent('''
309
+ Single indexing is only supported when the number
310
+ of columns is known.'''))
311
+ key = _sympify(key)
312
+ i = key // cols
313
+ j = key % cols
314
+ if self.valid_index(i, j) != False:
315
+ return self._entry(i, j)
316
+ else:
317
+ raise IndexError("Invalid index %s" % key)
318
+ elif isinstance(key, (Symbol, Expr)):
319
+ raise IndexError(filldedent('''
320
+ Only integers may be used when addressing the matrix
321
+ with a single index.'''))
322
+ raise IndexError("Invalid index, wanted %s[i,j]" % self)
323
+
324
+ def _is_shape_symbolic(self) -> bool:
325
+ return (not isinstance(self.rows, (SYMPY_INTS, Integer))
326
+ or not isinstance(self.cols, (SYMPY_INTS, Integer)))
327
+
328
+ def as_explicit(self):
329
+ """
330
+ Returns a dense Matrix with elements represented explicitly
331
+
332
+ Returns an object of type ImmutableDenseMatrix.
333
+
334
+ Examples
335
+ ========
336
+
337
+ >>> from sympy import Identity
338
+ >>> I = Identity(3)
339
+ >>> I
340
+ I
341
+ >>> I.as_explicit()
342
+ Matrix([
343
+ [1, 0, 0],
344
+ [0, 1, 0],
345
+ [0, 0, 1]])
346
+
347
+ See Also
348
+ ========
349
+ as_mutable: returns mutable Matrix type
350
+
351
+ """
352
+ if self._is_shape_symbolic():
353
+ raise ValueError(
354
+ 'Matrix with symbolic shape '
355
+ 'cannot be represented explicitly.')
356
+ from sympy.matrices.immutable import ImmutableDenseMatrix
357
+ return ImmutableDenseMatrix([[self[i, j]
358
+ for j in range(self.cols)]
359
+ for i in range(self.rows)])
360
+
361
+ def as_mutable(self):
362
+ """
363
+ Returns a dense, mutable matrix with elements represented explicitly
364
+
365
+ Examples
366
+ ========
367
+
368
+ >>> from sympy import Identity
369
+ >>> I = Identity(3)
370
+ >>> I
371
+ I
372
+ >>> I.shape
373
+ (3, 3)
374
+ >>> I.as_mutable()
375
+ Matrix([
376
+ [1, 0, 0],
377
+ [0, 1, 0],
378
+ [0, 0, 1]])
379
+
380
+ See Also
381
+ ========
382
+ as_explicit: returns ImmutableDenseMatrix
383
+ """
384
+ return self.as_explicit().as_mutable()
385
+
386
+ def __array__(self):
387
+ from numpy import empty
388
+ a = empty(self.shape, dtype=object)
389
+ for i in range(self.rows):
390
+ for j in range(self.cols):
391
+ a[i, j] = self[i, j]
392
+ return a
393
+
394
+ def equals(self, other):
395
+ """
396
+ Test elementwise equality between matrices, potentially of different
397
+ types
398
+
399
+ >>> from sympy import Identity, eye
400
+ >>> Identity(3).equals(eye(3))
401
+ True
402
+ """
403
+ return self.as_explicit().equals(other)
404
+
405
+ def canonicalize(self):
406
+ return self
407
+
408
+ def as_coeff_mmul(self):
409
+ return S.One, MatMul(self)
410
+
411
+ @staticmethod
412
+ def from_index_summation(expr, first_index=None, last_index=None, dimensions=None):
413
+ r"""
414
+ Parse expression of matrices with explicitly summed indices into a
415
+ matrix expression without indices, if possible.
416
+
417
+ This transformation expressed in mathematical notation:
418
+
419
+ `\sum_{j=0}^{N-1} A_{i,j} B_{j,k} \Longrightarrow \mathbf{A}\cdot \mathbf{B}`
420
+
421
+ Optional parameter ``first_index``: specify which free index to use as
422
+ the index starting the expression.
423
+
424
+ Examples
425
+ ========
426
+
427
+ >>> from sympy import MatrixSymbol, MatrixExpr, Sum
428
+ >>> from sympy.abc import i, j, k, l, N
429
+ >>> A = MatrixSymbol("A", N, N)
430
+ >>> B = MatrixSymbol("B", N, N)
431
+ >>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1))
432
+ >>> MatrixExpr.from_index_summation(expr)
433
+ A*B
434
+
435
+ Transposition is detected:
436
+
437
+ >>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1))
438
+ >>> MatrixExpr.from_index_summation(expr)
439
+ A.T*B
440
+
441
+ Detect the trace:
442
+
443
+ >>> expr = Sum(A[i, i], (i, 0, N-1))
444
+ >>> MatrixExpr.from_index_summation(expr)
445
+ Trace(A)
446
+
447
+ More complicated expressions:
448
+
449
+ >>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1))
450
+ >>> MatrixExpr.from_index_summation(expr)
451
+ A*B.T*A.T
452
+ """
453
+ from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array
454
+ from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
455
+ first_indices = []
456
+ if first_index is not None:
457
+ first_indices.append(first_index)
458
+ if last_index is not None:
459
+ first_indices.append(last_index)
460
+ arr = convert_indexed_to_array(expr, first_indices=first_indices)
461
+ return convert_array_to_matrix(arr)
462
+
463
+ def applyfunc(self, func):
464
+ from .applyfunc import ElementwiseApplyFunction
465
+ return ElementwiseApplyFunction(func, self)
466
+
467
+
468
+ @dispatch(MatrixExpr, Expr)
469
+ def _eval_is_eq(lhs, rhs): # noqa:F811
470
+ return False
471
+
472
+ @dispatch(MatrixExpr, MatrixExpr) # type: ignore
473
+ def _eval_is_eq(lhs, rhs): # noqa:F811
474
+ if lhs.shape != rhs.shape:
475
+ return False
476
+ if (lhs - rhs).is_ZeroMatrix:
477
+ return True
478
+
479
+ def get_postprocessor(cls):
480
+ def _postprocessor(expr):
481
+ # To avoid circular imports, we can't have MatMul/MatAdd on the top level
482
+ mat_class = {Mul: MatMul, Add: MatAdd}[cls]
483
+ nonmatrices = []
484
+ matrices = []
485
+ for term in expr.args:
486
+ if isinstance(term, MatrixExpr):
487
+ matrices.append(term)
488
+ else:
489
+ nonmatrices.append(term)
490
+
491
+ if not matrices:
492
+ return cls._from_args(nonmatrices)
493
+
494
+ if nonmatrices:
495
+ if cls == Mul:
496
+ for i in range(len(matrices)):
497
+ if not matrices[i].is_MatrixExpr:
498
+ # If one of the matrices explicit, absorb the scalar into it
499
+ # (doit will combine all explicit matrices into one, so it
500
+ # doesn't matter which)
501
+ matrices[i] = matrices[i].__mul__(cls._from_args(nonmatrices))
502
+ nonmatrices = []
503
+ break
504
+
505
+ else:
506
+ # Maintain the ability to create Add(scalar, matrix) without
507
+ # raising an exception. That way different algorithms can
508
+ # replace matrix expressions with non-commutative symbols to
509
+ # manipulate them like non-commutative scalars.
510
+ return cls._from_args(nonmatrices + [mat_class(*matrices).doit(deep=False)])
511
+
512
+ if mat_class == MatAdd:
513
+ return mat_class(*matrices).doit(deep=False)
514
+ return mat_class(cls._from_args(nonmatrices), *matrices).doit(deep=False)
515
+ return _postprocessor
516
+
517
+
518
+ Basic._constructor_postprocessor_mapping[MatrixExpr] = {
519
+ "Mul": [get_postprocessor(Mul)],
520
+ "Add": [get_postprocessor(Add)],
521
+ }
522
+
523
+
524
+ def _matrix_derivative(expr, x, old_algorithm=False):
525
+
526
+ if isinstance(expr, MatrixBase) or isinstance(x, MatrixBase):
527
+ # Do not use array expressions for explicit matrices:
528
+ old_algorithm = True
529
+
530
+ if old_algorithm:
531
+ return _matrix_derivative_old_algorithm(expr, x)
532
+
533
+ from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
534
+ from sympy.tensor.array.expressions.arrayexpr_derivatives import array_derive
535
+ from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
536
+
537
+ array_expr = convert_matrix_to_array(expr)
538
+ diff_array_expr = array_derive(array_expr, x)
539
+ diff_matrix_expr = convert_array_to_matrix(diff_array_expr)
540
+ return diff_matrix_expr
541
+
542
+
543
+ def _matrix_derivative_old_algorithm(expr, x):
544
+ from sympy.tensor.array.array_derivatives import ArrayDerivative
545
+ lines = expr._eval_derivative_matrix_lines(x)
546
+
547
+ parts = [i.build() for i in lines]
548
+
549
+ from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
550
+
551
+ parts = [[convert_array_to_matrix(j) for j in i] for i in parts]
552
+
553
+ def _get_shape(elem):
554
+ if isinstance(elem, MatrixExpr):
555
+ return elem.shape
556
+ return 1, 1
557
+
558
+ def get_rank(parts):
559
+ return sum([j not in (1, None) for i in parts for j in _get_shape(i)])
560
+
561
+ ranks = [get_rank(i) for i in parts]
562
+ rank = ranks[0]
563
+
564
+ def contract_one_dims(parts):
565
+ if len(parts) == 1:
566
+ return parts[0]
567
+ else:
568
+ p1, p2 = parts[:2]
569
+ if p2.is_Matrix:
570
+ p2 = p2.T
571
+ if p1 == Identity(1):
572
+ pbase = p2
573
+ elif p2 == Identity(1):
574
+ pbase = p1
575
+ else:
576
+ pbase = p1*p2
577
+ if len(parts) == 2:
578
+ return pbase
579
+ else: # len(parts) > 2
580
+ if pbase.is_Matrix:
581
+ raise ValueError("")
582
+ return pbase*Mul.fromiter(parts[2:])
583
+
584
+ if rank <= 2:
585
+ return Add.fromiter([contract_one_dims(i) for i in parts])
586
+
587
+ return ArrayDerivative(expr, x)
588
+
589
+
590
+ class MatrixElement(Expr):
591
+ parent = property(lambda self: self.args[0])
592
+ i = property(lambda self: self.args[1])
593
+ j = property(lambda self: self.args[2])
594
+ _diff_wrt = True
595
+ is_symbol = True
596
+ is_commutative = True
597
+
598
+ def __new__(cls, name, n, m):
599
+ n, m = map(_sympify, (n, m))
600
+ from sympy.matrices.matrices import MatrixBase
601
+ if isinstance(name, str):
602
+ name = Symbol(name)
603
+ else:
604
+ if isinstance(name, MatrixBase):
605
+ if n.is_Integer and m.is_Integer:
606
+ return name[n, m]
607
+ name = _sympify(name) # change mutable into immutable
608
+ else:
609
+ name = _sympify(name)
610
+ if not isinstance(name.kind, MatrixKind):
611
+ raise TypeError("First argument of MatrixElement should be a matrix")
612
+ if not getattr(name, 'valid_index', lambda n, m: True)(n, m):
613
+ raise IndexError('indices out of range')
614
+ obj = Expr.__new__(cls, name, n, m)
615
+ return obj
616
+
617
+ @property
618
+ def symbol(self):
619
+ return self.args[0]
620
+
621
+ def doit(self, **hints):
622
+ deep = hints.get('deep', True)
623
+ if deep:
624
+ args = [arg.doit(**hints) for arg in self.args]
625
+ else:
626
+ args = self.args
627
+ return args[0][args[1], args[2]]
628
+
629
+ @property
630
+ def indices(self):
631
+ return self.args[1:]
632
+
633
+ def _eval_derivative(self, v):
634
+
635
+ if not isinstance(v, MatrixElement):
636
+ from sympy.matrices.matrices import MatrixBase
637
+ if isinstance(self.parent, MatrixBase):
638
+ return self.parent.diff(v)[self.i, self.j]
639
+ return S.Zero
640
+
641
+ M = self.args[0]
642
+
643
+ m, n = self.parent.shape
644
+
645
+ if M == v.args[0]:
646
+ return KroneckerDelta(self.args[1], v.args[1], (0, m-1)) * \
647
+ KroneckerDelta(self.args[2], v.args[2], (0, n-1))
648
+
649
+ if isinstance(M, Inverse):
650
+ from sympy.concrete.summations import Sum
651
+ i, j = self.args[1:]
652
+ i1, i2 = symbols("z1, z2", cls=Dummy)
653
+ Y = M.args[0]
654
+ r1, r2 = Y.shape
655
+ return -Sum(M[i, i1]*Y[i1, i2].diff(v)*M[i2, j], (i1, 0, r1-1), (i2, 0, r2-1))
656
+
657
+ if self.has(v.args[0]):
658
+ return None
659
+
660
+ return S.Zero
661
+
662
+
663
+ class MatrixSymbol(MatrixExpr):
664
+ """Symbolic representation of a Matrix object
665
+
666
+ Creates a SymPy Symbol to represent a Matrix. This matrix has a shape and
667
+ can be included in Matrix Expressions
668
+
669
+ Examples
670
+ ========
671
+
672
+ >>> from sympy import MatrixSymbol, Identity
673
+ >>> A = MatrixSymbol('A', 3, 4) # A 3 by 4 Matrix
674
+ >>> B = MatrixSymbol('B', 4, 3) # A 4 by 3 Matrix
675
+ >>> A.shape
676
+ (3, 4)
677
+ >>> 2*A*B + Identity(3)
678
+ I + 2*A*B
679
+ """
680
+ is_commutative = False
681
+ is_symbol = True
682
+ _diff_wrt = True
683
+
684
+ def __new__(cls, name, n, m):
685
+ n, m = _sympify(n), _sympify(m)
686
+
687
+ cls._check_dim(m)
688
+ cls._check_dim(n)
689
+
690
+ if isinstance(name, str):
691
+ name = Str(name)
692
+ obj = Basic.__new__(cls, name, n, m)
693
+ return obj
694
+
695
+ @property
696
+ def shape(self):
697
+ return self.args[1], self.args[2]
698
+
699
+ @property
700
+ def name(self):
701
+ return self.args[0].name
702
+
703
+ def _entry(self, i, j, **kwargs):
704
+ return MatrixElement(self, i, j)
705
+
706
+ @property
707
+ def free_symbols(self):
708
+ return {self}
709
+
710
+ def _eval_simplify(self, **kwargs):
711
+ return self
712
+
713
+ def _eval_derivative(self, x):
714
+ # x is a scalar:
715
+ return ZeroMatrix(self.shape[0], self.shape[1])
716
+
717
+ def _eval_derivative_matrix_lines(self, x):
718
+ if self != x:
719
+ first = ZeroMatrix(x.shape[0], self.shape[0]) if self.shape[0] != 1 else S.Zero
720
+ second = ZeroMatrix(x.shape[1], self.shape[1]) if self.shape[1] != 1 else S.Zero
721
+ return [_LeftRightArgs(
722
+ [first, second],
723
+ )]
724
+ else:
725
+ first = Identity(self.shape[0]) if self.shape[0] != 1 else S.One
726
+ second = Identity(self.shape[1]) if self.shape[1] != 1 else S.One
727
+ return [_LeftRightArgs(
728
+ [first, second],
729
+ )]
730
+
731
+
732
+ def matrix_symbols(expr):
733
+ return [sym for sym in expr.free_symbols if sym.is_Matrix]
734
+
735
+
736
+ class _LeftRightArgs:
737
+ r"""
738
+ Helper class to compute matrix derivatives.
739
+
740
+ The logic: when an expression is derived by a matrix `X_{mn}`, two lines of
741
+ matrix multiplications are created: the one contracted to `m` (first line),
742
+ and the one contracted to `n` (second line).
743
+
744
+ Transposition flips the side by which new matrices are connected to the
745
+ lines.
746
+
747
+ The trace connects the end of the two lines.
748
+ """
749
+
750
+ def __init__(self, lines, higher=S.One):
751
+ self._lines = list(lines)
752
+ self._first_pointer_parent = self._lines
753
+ self._first_pointer_index = 0
754
+ self._first_line_index = 0
755
+ self._second_pointer_parent = self._lines
756
+ self._second_pointer_index = 1
757
+ self._second_line_index = 1
758
+ self.higher = higher
759
+
760
+ @property
761
+ def first_pointer(self):
762
+ return self._first_pointer_parent[self._first_pointer_index]
763
+
764
+ @first_pointer.setter
765
+ def first_pointer(self, value):
766
+ self._first_pointer_parent[self._first_pointer_index] = value
767
+
768
+ @property
769
+ def second_pointer(self):
770
+ return self._second_pointer_parent[self._second_pointer_index]
771
+
772
+ @second_pointer.setter
773
+ def second_pointer(self, value):
774
+ self._second_pointer_parent[self._second_pointer_index] = value
775
+
776
+ def __repr__(self):
777
+ built = [self._build(i) for i in self._lines]
778
+ return "_LeftRightArgs(lines=%s, higher=%s)" % (
779
+ built,
780
+ self.higher,
781
+ )
782
+
783
+ def transpose(self):
784
+ self._first_pointer_parent, self._second_pointer_parent = self._second_pointer_parent, self._first_pointer_parent
785
+ self._first_pointer_index, self._second_pointer_index = self._second_pointer_index, self._first_pointer_index
786
+ self._first_line_index, self._second_line_index = self._second_line_index, self._first_line_index
787
+ return self
788
+
789
+ @staticmethod
790
+ def _build(expr):
791
+ if isinstance(expr, ExprBuilder):
792
+ return expr.build()
793
+ if isinstance(expr, list):
794
+ if len(expr) == 1:
795
+ return expr[0]
796
+ else:
797
+ return expr[0](*[_LeftRightArgs._build(i) for i in expr[1]])
798
+ else:
799
+ return expr
800
+
801
+ def build(self):
802
+ data = [self._build(i) for i in self._lines]
803
+ if self.higher != 1:
804
+ data += [self._build(self.higher)]
805
+ data = list(data)
806
+ return data
807
+
808
+ def matrix_form(self):
809
+ if self.first != 1 and self.higher != 1:
810
+ raise ValueError("higher dimensional array cannot be represented")
811
+
812
+ def _get_shape(elem):
813
+ if isinstance(elem, MatrixExpr):
814
+ return elem.shape
815
+ return (None, None)
816
+
817
+ if _get_shape(self.first)[1] != _get_shape(self.second)[1]:
818
+ # Remove one-dimensional identity matrices:
819
+ # (this is needed by `a.diff(a)` where `a` is a vector)
820
+ if _get_shape(self.second) == (1, 1):
821
+ return self.first*self.second[0, 0]
822
+ if _get_shape(self.first) == (1, 1):
823
+ return self.first[1, 1]*self.second.T
824
+ raise ValueError("incompatible shapes")
825
+ if self.first != 1:
826
+ return self.first*self.second.T
827
+ else:
828
+ return self.higher
829
+
830
+ def rank(self):
831
+ """
832
+ Number of dimensions different from trivial (warning: not related to
833
+ matrix rank).
834
+ """
835
+ rank = 0
836
+ if self.first != 1:
837
+ rank += sum([i != 1 for i in self.first.shape])
838
+ if self.second != 1:
839
+ rank += sum([i != 1 for i in self.second.shape])
840
+ if self.higher != 1:
841
+ rank += 2
842
+ return rank
843
+
844
+ def _multiply_pointer(self, pointer, other):
845
+ from ...tensor.array.expressions.array_expressions import ArrayTensorProduct
846
+ from ...tensor.array.expressions.array_expressions import ArrayContraction
847
+
848
+ subexpr = ExprBuilder(
849
+ ArrayContraction,
850
+ [
851
+ ExprBuilder(
852
+ ArrayTensorProduct,
853
+ [
854
+ pointer,
855
+ other
856
+ ]
857
+ ),
858
+ (1, 2)
859
+ ],
860
+ validator=ArrayContraction._validate
861
+ )
862
+
863
+ return subexpr
864
+
865
+ def append_first(self, other):
866
+ self.first_pointer *= other
867
+
868
+ def append_second(self, other):
869
+ self.second_pointer *= other
870
+
871
+
872
+ def _make_matrix(x):
873
+ from sympy.matrices.immutable import ImmutableDenseMatrix
874
+ if isinstance(x, MatrixExpr):
875
+ return x
876
+ return ImmutableDenseMatrix([[x]])
877
+
878
+
879
+ from .matmul import MatMul
880
+ from .matadd import MatAdd
881
+ from .matpow import MatPow
882
+ from .transpose import Transpose
883
+ from .inverse import Inverse
884
+ from .special import ZeroMatrix, Identity
885
+ from .determinant import Determinant
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/matmul.py ADDED
@@ -0,0 +1,498 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.assumptions.ask import ask, Q
2
+ from sympy.assumptions.refine import handlers_dict
3
+ from sympy.core import Basic, sympify, S
4
+ from sympy.core.mul import mul, Mul
5
+ from sympy.core.numbers import Number, Integer
6
+ from sympy.core.symbol import Dummy
7
+ from sympy.functions import adjoint
8
+ from sympy.strategies import (rm_id, unpack, typed, flatten, exhaust,
9
+ do_one, new)
10
+ from sympy.matrices.common import NonInvertibleMatrixError
11
+ from sympy.matrices.matrices import MatrixBase
12
+ from sympy.utilities.exceptions import sympy_deprecation_warning
13
+ from sympy.matrices.expressions._shape import validate_matmul_integer as validate
14
+
15
+ from .inverse import Inverse
16
+ from .matexpr import MatrixExpr
17
+ from .matpow import MatPow
18
+ from .transpose import transpose
19
+ from .permutation import PermutationMatrix
20
+ from .special import ZeroMatrix, Identity, GenericIdentity, OneMatrix
21
+
22
+
23
+ # XXX: MatMul should perhaps not subclass directly from Mul
24
+ class MatMul(MatrixExpr, Mul):
25
+ """
26
+ A product of matrix expressions
27
+
28
+ Examples
29
+ ========
30
+
31
+ >>> from sympy import MatMul, MatrixSymbol
32
+ >>> A = MatrixSymbol('A', 5, 4)
33
+ >>> B = MatrixSymbol('B', 4, 3)
34
+ >>> C = MatrixSymbol('C', 3, 6)
35
+ >>> MatMul(A, B, C)
36
+ A*B*C
37
+ """
38
+ is_MatMul = True
39
+
40
+ identity = GenericIdentity()
41
+
42
+ def __new__(cls, *args, evaluate=False, check=None, _sympify=True):
43
+ if not args:
44
+ return cls.identity
45
+
46
+ # This must be removed aggressively in the constructor to avoid
47
+ # TypeErrors from GenericIdentity().shape
48
+ args = list(filter(lambda i: cls.identity != i, args))
49
+ if _sympify:
50
+ args = list(map(sympify, args))
51
+ obj = Basic.__new__(cls, *args)
52
+ factor, matrices = obj.as_coeff_matrices()
53
+
54
+ if check is not None:
55
+ sympy_deprecation_warning(
56
+ "Passing check to MatMul is deprecated and the check argument will be removed in a future version.",
57
+ deprecated_since_version="1.11",
58
+ active_deprecations_target='remove-check-argument-from-matrix-operations')
59
+
60
+ if check is not False:
61
+ validate(*matrices)
62
+
63
+ if not matrices:
64
+ # Should it be
65
+ #
66
+ # return Basic.__neq__(cls, factor, GenericIdentity()) ?
67
+ return factor
68
+
69
+ if evaluate:
70
+ return cls._evaluate(obj)
71
+
72
+ return obj
73
+
74
+ @classmethod
75
+ def _evaluate(cls, expr):
76
+ return canonicalize(expr)
77
+
78
+ @property
79
+ def shape(self):
80
+ matrices = [arg for arg in self.args if arg.is_Matrix]
81
+ return (matrices[0].rows, matrices[-1].cols)
82
+
83
+ def _entry(self, i, j, expand=True, **kwargs):
84
+ # Avoid cyclic imports
85
+ from sympy.concrete.summations import Sum
86
+ from sympy.matrices.immutable import ImmutableMatrix
87
+
88
+ coeff, matrices = self.as_coeff_matrices()
89
+
90
+ if len(matrices) == 1: # situation like 2*X, matmul is just X
91
+ return coeff * matrices[0][i, j]
92
+
93
+ indices = [None]*(len(matrices) + 1)
94
+ ind_ranges = [None]*(len(matrices) - 1)
95
+ indices[0] = i
96
+ indices[-1] = j
97
+
98
+ def f():
99
+ counter = 1
100
+ while True:
101
+ yield Dummy("i_%i" % counter)
102
+ counter += 1
103
+
104
+ dummy_generator = kwargs.get("dummy_generator", f())
105
+
106
+ for i in range(1, len(matrices)):
107
+ indices[i] = next(dummy_generator)
108
+
109
+ for i, arg in enumerate(matrices[:-1]):
110
+ ind_ranges[i] = arg.shape[1] - 1
111
+ matrices = [arg._entry(indices[i], indices[i+1], dummy_generator=dummy_generator) for i, arg in enumerate(matrices)]
112
+ expr_in_sum = Mul.fromiter(matrices)
113
+ if any(v.has(ImmutableMatrix) for v in matrices):
114
+ expand = True
115
+ result = coeff*Sum(
116
+ expr_in_sum,
117
+ *zip(indices[1:-1], [0]*len(ind_ranges), ind_ranges)
118
+ )
119
+
120
+ # Don't waste time in result.doit() if the sum bounds are symbolic
121
+ if not any(isinstance(v, (Integer, int)) for v in ind_ranges):
122
+ expand = False
123
+ return result.doit() if expand else result
124
+
125
+ def as_coeff_matrices(self):
126
+ scalars = [x for x in self.args if not x.is_Matrix]
127
+ matrices = [x for x in self.args if x.is_Matrix]
128
+ coeff = Mul(*scalars)
129
+ if coeff.is_commutative is False:
130
+ raise NotImplementedError("noncommutative scalars in MatMul are not supported.")
131
+
132
+ return coeff, matrices
133
+
134
+ def as_coeff_mmul(self):
135
+ coeff, matrices = self.as_coeff_matrices()
136
+ return coeff, MatMul(*matrices)
137
+
138
+ def expand(self, **kwargs):
139
+ expanded = super(MatMul, self).expand(**kwargs)
140
+ return self._evaluate(expanded)
141
+
142
+ def _eval_transpose(self):
143
+ """Transposition of matrix multiplication.
144
+
145
+ Notes
146
+ =====
147
+
148
+ The following rules are applied.
149
+
150
+ Transposition for matrix multiplied with another matrix:
151
+ `\\left(A B\\right)^{T} = B^{T} A^{T}`
152
+
153
+ Transposition for matrix multiplied with scalar:
154
+ `\\left(c A\\right)^{T} = c A^{T}`
155
+
156
+ References
157
+ ==========
158
+
159
+ .. [1] https://en.wikipedia.org/wiki/Transpose
160
+ """
161
+ coeff, matrices = self.as_coeff_matrices()
162
+ return MatMul(
163
+ coeff, *[transpose(arg) for arg in matrices[::-1]]).doit()
164
+
165
+ def _eval_adjoint(self):
166
+ return MatMul(*[adjoint(arg) for arg in self.args[::-1]]).doit()
167
+
168
+ def _eval_trace(self):
169
+ factor, mmul = self.as_coeff_mmul()
170
+ if factor != 1:
171
+ from .trace import trace
172
+ return factor * trace(mmul.doit())
173
+ else:
174
+ raise NotImplementedError("Can't simplify any further")
175
+
176
+ def _eval_determinant(self):
177
+ from sympy.matrices.expressions.determinant import Determinant
178
+ factor, matrices = self.as_coeff_matrices()
179
+ square_matrices = only_squares(*matrices)
180
+ return factor**self.rows * Mul(*list(map(Determinant, square_matrices)))
181
+
182
+ def _eval_inverse(self):
183
+ if all(arg.is_square for arg in self.args if isinstance(arg, MatrixExpr)):
184
+ return MatMul(*(
185
+ arg.inverse() if isinstance(arg, MatrixExpr) else arg**-1
186
+ for arg in self.args[::-1]
187
+ )
188
+ ).doit()
189
+ return Inverse(self)
190
+
191
+ def doit(self, **hints):
192
+ deep = hints.get('deep', True)
193
+ if deep:
194
+ args = tuple(arg.doit(**hints) for arg in self.args)
195
+ else:
196
+ args = self.args
197
+
198
+ # treat scalar*MatrixSymbol or scalar*MatPow separately
199
+ expr = canonicalize(MatMul(*args))
200
+ return expr
201
+
202
+ # Needed for partial compatibility with Mul
203
+ def args_cnc(self, cset=False, warn=True, **kwargs):
204
+ coeff_c = [x for x in self.args if x.is_commutative]
205
+ coeff_nc = [x for x in self.args if not x.is_commutative]
206
+ if cset:
207
+ clen = len(coeff_c)
208
+ coeff_c = set(coeff_c)
209
+ if clen and warn and len(coeff_c) != clen:
210
+ raise ValueError('repeated commutative arguments: %s' %
211
+ [ci for ci in coeff_c if list(self.args).count(ci) > 1])
212
+ return [coeff_c, coeff_nc]
213
+
214
+ def _eval_derivative_matrix_lines(self, x):
215
+ from .transpose import Transpose
216
+ with_x_ind = [i for i, arg in enumerate(self.args) if arg.has(x)]
217
+ lines = []
218
+ for ind in with_x_ind:
219
+ left_args = self.args[:ind]
220
+ right_args = self.args[ind+1:]
221
+
222
+ if right_args:
223
+ right_mat = MatMul.fromiter(right_args)
224
+ else:
225
+ right_mat = Identity(self.shape[1])
226
+ if left_args:
227
+ left_rev = MatMul.fromiter([Transpose(i).doit() if i.is_Matrix else i for i in reversed(left_args)])
228
+ else:
229
+ left_rev = Identity(self.shape[0])
230
+
231
+ d = self.args[ind]._eval_derivative_matrix_lines(x)
232
+ for i in d:
233
+ i.append_first(left_rev)
234
+ i.append_second(right_mat)
235
+ lines.append(i)
236
+
237
+ return lines
238
+
239
+ mul.register_handlerclass((Mul, MatMul), MatMul)
240
+
241
+
242
+ # Rules
243
+ def newmul(*args):
244
+ if args[0] == 1:
245
+ args = args[1:]
246
+ return new(MatMul, *args)
247
+
248
+ def any_zeros(mul):
249
+ if any(arg.is_zero or (arg.is_Matrix and arg.is_ZeroMatrix)
250
+ for arg in mul.args):
251
+ matrices = [arg for arg in mul.args if arg.is_Matrix]
252
+ return ZeroMatrix(matrices[0].rows, matrices[-1].cols)
253
+ return mul
254
+
255
+ def merge_explicit(matmul):
256
+ """ Merge explicit MatrixBase arguments
257
+
258
+ >>> from sympy import MatrixSymbol, Matrix, MatMul, pprint
259
+ >>> from sympy.matrices.expressions.matmul import merge_explicit
260
+ >>> A = MatrixSymbol('A', 2, 2)
261
+ >>> B = Matrix([[1, 1], [1, 1]])
262
+ >>> C = Matrix([[1, 2], [3, 4]])
263
+ >>> X = MatMul(A, B, C)
264
+ >>> pprint(X)
265
+ [1 1] [1 2]
266
+ A*[ ]*[ ]
267
+ [1 1] [3 4]
268
+ >>> pprint(merge_explicit(X))
269
+ [4 6]
270
+ A*[ ]
271
+ [4 6]
272
+
273
+ >>> X = MatMul(B, A, C)
274
+ >>> pprint(X)
275
+ [1 1] [1 2]
276
+ [ ]*A*[ ]
277
+ [1 1] [3 4]
278
+ >>> pprint(merge_explicit(X))
279
+ [1 1] [1 2]
280
+ [ ]*A*[ ]
281
+ [1 1] [3 4]
282
+ """
283
+ if not any(isinstance(arg, MatrixBase) for arg in matmul.args):
284
+ return matmul
285
+ newargs = []
286
+ last = matmul.args[0]
287
+ for arg in matmul.args[1:]:
288
+ if isinstance(arg, (MatrixBase, Number)) and isinstance(last, (MatrixBase, Number)):
289
+ last = last * arg
290
+ else:
291
+ newargs.append(last)
292
+ last = arg
293
+ newargs.append(last)
294
+
295
+ return MatMul(*newargs)
296
+
297
+ def remove_ids(mul):
298
+ """ Remove Identities from a MatMul
299
+
300
+ This is a modified version of sympy.strategies.rm_id.
301
+ This is necesssary because MatMul may contain both MatrixExprs and Exprs
302
+ as args.
303
+
304
+ See Also
305
+ ========
306
+
307
+ sympy.strategies.rm_id
308
+ """
309
+ # Separate Exprs from MatrixExprs in args
310
+ factor, mmul = mul.as_coeff_mmul()
311
+ # Apply standard rm_id for MatMuls
312
+ result = rm_id(lambda x: x.is_Identity is True)(mmul)
313
+ if result != mmul:
314
+ return newmul(factor, *result.args) # Recombine and return
315
+ else:
316
+ return mul
317
+
318
+ def factor_in_front(mul):
319
+ factor, matrices = mul.as_coeff_matrices()
320
+ if factor != 1:
321
+ return newmul(factor, *matrices)
322
+ return mul
323
+
324
+ def combine_powers(mul):
325
+ r"""Combine consecutive powers with the same base into one, e.g.
326
+ $$A \times A^2 \Rightarrow A^3$$
327
+
328
+ This also cancels out the possible matrix inverses using the
329
+ knowledgebase of :class:`~.Inverse`, e.g.,
330
+ $$ Y \times X \times X^{-1} \Rightarrow Y $$
331
+ """
332
+ factor, args = mul.as_coeff_matrices()
333
+ new_args = [args[0]]
334
+
335
+ for i in range(1, len(args)):
336
+ A = new_args[-1]
337
+ B = args[i]
338
+
339
+ if isinstance(B, Inverse) and isinstance(B.arg, MatMul):
340
+ Bargs = B.arg.args
341
+ l = len(Bargs)
342
+ if list(Bargs) == new_args[-l:]:
343
+ new_args = new_args[:-l] + [Identity(B.shape[0])]
344
+ continue
345
+
346
+ if isinstance(A, Inverse) and isinstance(A.arg, MatMul):
347
+ Aargs = A.arg.args
348
+ l = len(Aargs)
349
+ if list(Aargs) == args[i:i+l]:
350
+ identity = Identity(A.shape[0])
351
+ new_args[-1] = identity
352
+ for j in range(i, i+l):
353
+ args[j] = identity
354
+ continue
355
+
356
+ if A.is_square == False or B.is_square == False:
357
+ new_args.append(B)
358
+ continue
359
+
360
+ if isinstance(A, MatPow):
361
+ A_base, A_exp = A.args
362
+ else:
363
+ A_base, A_exp = A, S.One
364
+
365
+ if isinstance(B, MatPow):
366
+ B_base, B_exp = B.args
367
+ else:
368
+ B_base, B_exp = B, S.One
369
+
370
+ if A_base == B_base:
371
+ new_exp = A_exp + B_exp
372
+ new_args[-1] = MatPow(A_base, new_exp).doit(deep=False)
373
+ continue
374
+ elif not isinstance(B_base, MatrixBase):
375
+ try:
376
+ B_base_inv = B_base.inverse()
377
+ except NonInvertibleMatrixError:
378
+ B_base_inv = None
379
+ if B_base_inv is not None and A_base == B_base_inv:
380
+ new_exp = A_exp - B_exp
381
+ new_args[-1] = MatPow(A_base, new_exp).doit(deep=False)
382
+ continue
383
+ new_args.append(B)
384
+
385
+ return newmul(factor, *new_args)
386
+
387
+ def combine_permutations(mul):
388
+ """Refine products of permutation matrices as the products of cycles.
389
+ """
390
+ args = mul.args
391
+ l = len(args)
392
+ if l < 2:
393
+ return mul
394
+
395
+ result = [args[0]]
396
+ for i in range(1, l):
397
+ A = result[-1]
398
+ B = args[i]
399
+ if isinstance(A, PermutationMatrix) and \
400
+ isinstance(B, PermutationMatrix):
401
+ cycle_1 = A.args[0]
402
+ cycle_2 = B.args[0]
403
+ result[-1] = PermutationMatrix(cycle_1 * cycle_2)
404
+ else:
405
+ result.append(B)
406
+
407
+ return MatMul(*result)
408
+
409
+ def combine_one_matrices(mul):
410
+ """
411
+ Combine products of OneMatrix
412
+
413
+ e.g. OneMatrix(2, 3) * OneMatrix(3, 4) -> 3 * OneMatrix(2, 4)
414
+ """
415
+ factor, args = mul.as_coeff_matrices()
416
+ new_args = [args[0]]
417
+
418
+ for B in args[1:]:
419
+ A = new_args[-1]
420
+ if not isinstance(A, OneMatrix) or not isinstance(B, OneMatrix):
421
+ new_args.append(B)
422
+ continue
423
+ new_args.pop()
424
+ new_args.append(OneMatrix(A.shape[0], B.shape[1]))
425
+ factor *= A.shape[1]
426
+
427
+ return newmul(factor, *new_args)
428
+
429
+ def distribute_monom(mul):
430
+ """
431
+ Simplify MatMul expressions but distributing
432
+ rational term to MatMul.
433
+
434
+ e.g. 2*(A+B) -> 2*A + 2*B
435
+ """
436
+ args = mul.args
437
+ if len(args) == 2:
438
+ from .matadd import MatAdd
439
+ if args[0].is_MatAdd and args[1].is_Rational:
440
+ return MatAdd(*[MatMul(mat, args[1]).doit() for mat in args[0].args])
441
+ if args[1].is_MatAdd and args[0].is_Rational:
442
+ return MatAdd(*[MatMul(args[0], mat).doit() for mat in args[1].args])
443
+ return mul
444
+
445
+ rules = (
446
+ distribute_monom, any_zeros, remove_ids, combine_one_matrices, combine_powers, unpack, rm_id(lambda x: x == 1),
447
+ merge_explicit, factor_in_front, flatten, combine_permutations)
448
+
449
+ canonicalize = exhaust(typed({MatMul: do_one(*rules)}))
450
+
451
+ def only_squares(*matrices):
452
+ """factor matrices only if they are square"""
453
+ if matrices[0].rows != matrices[-1].cols:
454
+ raise RuntimeError("Invalid matrices being multiplied")
455
+ out = []
456
+ start = 0
457
+ for i, M in enumerate(matrices):
458
+ if M.cols == matrices[start].rows:
459
+ out.append(MatMul(*matrices[start:i+1]).doit())
460
+ start = i+1
461
+ return out
462
+
463
+
464
+ def refine_MatMul(expr, assumptions):
465
+ """
466
+ >>> from sympy import MatrixSymbol, Q, assuming, refine
467
+ >>> X = MatrixSymbol('X', 2, 2)
468
+ >>> expr = X * X.T
469
+ >>> print(expr)
470
+ X*X.T
471
+ >>> with assuming(Q.orthogonal(X)):
472
+ ... print(refine(expr))
473
+ I
474
+ """
475
+ newargs = []
476
+ exprargs = []
477
+
478
+ for args in expr.args:
479
+ if args.is_Matrix:
480
+ exprargs.append(args)
481
+ else:
482
+ newargs.append(args)
483
+
484
+ last = exprargs[0]
485
+ for arg in exprargs[1:]:
486
+ if arg == last.T and ask(Q.orthogonal(arg), assumptions):
487
+ last = Identity(arg.shape[0])
488
+ elif arg == last.conjugate() and ask(Q.unitary(arg), assumptions):
489
+ last = Identity(arg.shape[0])
490
+ else:
491
+ newargs.append(last)
492
+ last = arg
493
+ newargs.append(last)
494
+
495
+ return MatMul(*newargs)
496
+
497
+
498
+ handlers_dict['MatMul'] = refine_MatMul
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/matpow.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .matexpr import MatrixExpr
2
+ from .special import Identity
3
+ from sympy.core import S
4
+ from sympy.core.expr import ExprBuilder
5
+ from sympy.core.cache import cacheit
6
+ from sympy.core.power import Pow
7
+ from sympy.core.sympify import _sympify
8
+ from sympy.matrices import MatrixBase
9
+ from sympy.matrices.common import NonSquareMatrixError
10
+
11
+
12
+ class MatPow(MatrixExpr):
13
+ def __new__(cls, base, exp, evaluate=False, **options):
14
+ base = _sympify(base)
15
+ if not base.is_Matrix:
16
+ raise TypeError("MatPow base should be a matrix")
17
+
18
+ if base.is_square is False:
19
+ raise NonSquareMatrixError("Power of non-square matrix %s" % base)
20
+
21
+ exp = _sympify(exp)
22
+ obj = super().__new__(cls, base, exp)
23
+
24
+ if evaluate:
25
+ obj = obj.doit(deep=False)
26
+
27
+ return obj
28
+
29
+ @property
30
+ def base(self):
31
+ return self.args[0]
32
+
33
+ @property
34
+ def exp(self):
35
+ return self.args[1]
36
+
37
+ @property
38
+ def shape(self):
39
+ return self.base.shape
40
+
41
+ @cacheit
42
+ def _get_explicit_matrix(self):
43
+ return self.base.as_explicit()**self.exp
44
+
45
+ def _entry(self, i, j, **kwargs):
46
+ from sympy.matrices.expressions import MatMul
47
+ A = self.doit()
48
+ if isinstance(A, MatPow):
49
+ # We still have a MatPow, make an explicit MatMul out of it.
50
+ if A.exp.is_Integer and A.exp.is_positive:
51
+ A = MatMul(*[A.base for k in range(A.exp)])
52
+ elif not self._is_shape_symbolic():
53
+ return A._get_explicit_matrix()[i, j]
54
+ else:
55
+ # Leave the expression unevaluated:
56
+ from sympy.matrices.expressions.matexpr import MatrixElement
57
+ return MatrixElement(self, i, j)
58
+ return A[i, j]
59
+
60
+ def doit(self, **hints):
61
+ if hints.get('deep', True):
62
+ base, exp = (arg.doit(**hints) for arg in self.args)
63
+ else:
64
+ base, exp = self.args
65
+
66
+ # combine all powers, e.g. (A ** 2) ** 3 -> A ** 6
67
+ while isinstance(base, MatPow):
68
+ exp *= base.args[1]
69
+ base = base.args[0]
70
+
71
+ if isinstance(base, MatrixBase):
72
+ # Delegate
73
+ return base ** exp
74
+
75
+ # Handle simple cases so that _eval_power() in MatrixExpr sub-classes can ignore them
76
+ if exp == S.One:
77
+ return base
78
+ if exp == S.Zero:
79
+ return Identity(base.rows)
80
+ if exp == S.NegativeOne:
81
+ from sympy.matrices.expressions import Inverse
82
+ return Inverse(base).doit(**hints)
83
+
84
+ eval_power = getattr(base, '_eval_power', None)
85
+ if eval_power is not None:
86
+ return eval_power(exp)
87
+
88
+ return MatPow(base, exp)
89
+
90
+ def _eval_transpose(self):
91
+ base, exp = self.args
92
+ return MatPow(base.T, exp)
93
+
94
+ def _eval_derivative(self, x):
95
+ return Pow._eval_derivative(self, x)
96
+
97
+ def _eval_derivative_matrix_lines(self, x):
98
+ from sympy.tensor.array.expressions.array_expressions import ArrayContraction
99
+ from ...tensor.array.expressions.array_expressions import ArrayTensorProduct
100
+ from .matmul import MatMul
101
+ from .inverse import Inverse
102
+ exp = self.exp
103
+ if self.base.shape == (1, 1) and not exp.has(x):
104
+ lr = self.base._eval_derivative_matrix_lines(x)
105
+ for i in lr:
106
+ subexpr = ExprBuilder(
107
+ ArrayContraction,
108
+ [
109
+ ExprBuilder(
110
+ ArrayTensorProduct,
111
+ [
112
+ Identity(1),
113
+ i._lines[0],
114
+ exp*self.base**(exp-1),
115
+ i._lines[1],
116
+ Identity(1),
117
+ ]
118
+ ),
119
+ (0, 3, 4), (5, 7, 8)
120
+ ],
121
+ validator=ArrayContraction._validate
122
+ )
123
+ i._first_pointer_parent = subexpr.args[0].args
124
+ i._first_pointer_index = 0
125
+ i._second_pointer_parent = subexpr.args[0].args
126
+ i._second_pointer_index = 4
127
+ i._lines = [subexpr]
128
+ return lr
129
+ if (exp > 0) == True:
130
+ newexpr = MatMul.fromiter([self.base for i in range(exp)])
131
+ elif (exp == -1) == True:
132
+ return Inverse(self.base)._eval_derivative_matrix_lines(x)
133
+ elif (exp < 0) == True:
134
+ newexpr = MatMul.fromiter([Inverse(self.base) for i in range(-exp)])
135
+ elif (exp == 0) == True:
136
+ return self.doit()._eval_derivative_matrix_lines(x)
137
+ else:
138
+ raise NotImplementedError("cannot evaluate %s derived by %s" % (self, x))
139
+ return newexpr._eval_derivative_matrix_lines(x)
140
+
141
+ def _eval_inverse(self):
142
+ return MatPow(self.base, -self.exp)
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/permutation.py ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import S
2
+ from sympy.core.sympify import _sympify
3
+ from sympy.functions import KroneckerDelta
4
+
5
+ from .matexpr import MatrixExpr
6
+ from .special import ZeroMatrix, Identity, OneMatrix
7
+
8
+
9
+ class PermutationMatrix(MatrixExpr):
10
+ """A Permutation Matrix
11
+
12
+ Parameters
13
+ ==========
14
+
15
+ perm : Permutation
16
+ The permutation the matrix uses.
17
+
18
+ The size of the permutation determines the matrix size.
19
+
20
+ See the documentation of
21
+ :class:`sympy.combinatorics.permutations.Permutation` for
22
+ the further information of how to create a permutation object.
23
+
24
+ Examples
25
+ ========
26
+
27
+ >>> from sympy import Matrix, PermutationMatrix
28
+ >>> from sympy.combinatorics import Permutation
29
+
30
+ Creating a permutation matrix:
31
+
32
+ >>> p = Permutation(1, 2, 0)
33
+ >>> P = PermutationMatrix(p)
34
+ >>> P = P.as_explicit()
35
+ >>> P
36
+ Matrix([
37
+ [0, 1, 0],
38
+ [0, 0, 1],
39
+ [1, 0, 0]])
40
+
41
+ Permuting a matrix row and column:
42
+
43
+ >>> M = Matrix([0, 1, 2])
44
+ >>> Matrix(P*M)
45
+ Matrix([
46
+ [1],
47
+ [2],
48
+ [0]])
49
+
50
+ >>> Matrix(M.T*P)
51
+ Matrix([[2, 0, 1]])
52
+
53
+ See Also
54
+ ========
55
+
56
+ sympy.combinatorics.permutations.Permutation
57
+ """
58
+
59
+ def __new__(cls, perm):
60
+ from sympy.combinatorics.permutations import Permutation
61
+
62
+ perm = _sympify(perm)
63
+ if not isinstance(perm, Permutation):
64
+ raise ValueError(
65
+ "{} must be a SymPy Permutation instance.".format(perm))
66
+
67
+ return super().__new__(cls, perm)
68
+
69
+ @property
70
+ def shape(self):
71
+ size = self.args[0].size
72
+ return (size, size)
73
+
74
+ @property
75
+ def is_Identity(self):
76
+ return self.args[0].is_Identity
77
+
78
+ def doit(self, **hints):
79
+ if self.is_Identity:
80
+ return Identity(self.rows)
81
+ return self
82
+
83
+ def _entry(self, i, j, **kwargs):
84
+ perm = self.args[0]
85
+ return KroneckerDelta(perm.apply(i), j)
86
+
87
+ def _eval_power(self, exp):
88
+ return PermutationMatrix(self.args[0] ** exp).doit()
89
+
90
+ def _eval_inverse(self):
91
+ return PermutationMatrix(self.args[0] ** -1)
92
+
93
+ _eval_transpose = _eval_adjoint = _eval_inverse
94
+
95
+ def _eval_determinant(self):
96
+ sign = self.args[0].signature()
97
+ if sign == 1:
98
+ return S.One
99
+ elif sign == -1:
100
+ return S.NegativeOne
101
+ raise NotImplementedError
102
+
103
+ def _eval_rewrite_as_BlockDiagMatrix(self, *args, **kwargs):
104
+ from sympy.combinatorics.permutations import Permutation
105
+ from .blockmatrix import BlockDiagMatrix
106
+
107
+ perm = self.args[0]
108
+ full_cyclic_form = perm.full_cyclic_form
109
+
110
+ cycles_picks = []
111
+
112
+ # Stage 1. Decompose the cycles into the blockable form.
113
+ a, b, c = 0, 0, 0
114
+ flag = False
115
+ for cycle in full_cyclic_form:
116
+ l = len(cycle)
117
+ m = max(cycle)
118
+
119
+ if not flag:
120
+ if m + 1 > a + l:
121
+ flag = True
122
+ temp = [cycle]
123
+ b = m
124
+ c = l
125
+ else:
126
+ cycles_picks.append([cycle])
127
+ a += l
128
+
129
+ else:
130
+ if m > b:
131
+ if m + 1 == a + c + l:
132
+ temp.append(cycle)
133
+ cycles_picks.append(temp)
134
+ flag = False
135
+ a = m+1
136
+ else:
137
+ b = m
138
+ temp.append(cycle)
139
+ c += l
140
+ else:
141
+ if b + 1 == a + c + l:
142
+ temp.append(cycle)
143
+ cycles_picks.append(temp)
144
+ flag = False
145
+ a = b+1
146
+ else:
147
+ temp.append(cycle)
148
+ c += l
149
+
150
+ # Stage 2. Normalize each decomposed cycles and build matrix.
151
+ p = 0
152
+ args = []
153
+ for pick in cycles_picks:
154
+ new_cycles = []
155
+ l = 0
156
+ for cycle in pick:
157
+ new_cycle = [i - p for i in cycle]
158
+ new_cycles.append(new_cycle)
159
+ l += len(cycle)
160
+ p += l
161
+ perm = Permutation(new_cycles)
162
+ mat = PermutationMatrix(perm)
163
+ args.append(mat)
164
+
165
+ return BlockDiagMatrix(*args)
166
+
167
+
168
+ class MatrixPermute(MatrixExpr):
169
+ r"""Symbolic representation for permuting matrix rows or columns.
170
+
171
+ Parameters
172
+ ==========
173
+
174
+ perm : Permutation, PermutationMatrix
175
+ The permutation to use for permuting the matrix.
176
+ The permutation can be resized to the suitable one,
177
+
178
+ axis : 0 or 1
179
+ The axis to permute alongside.
180
+ If `0`, it will permute the matrix rows.
181
+ If `1`, it will permute the matrix columns.
182
+
183
+ Notes
184
+ =====
185
+
186
+ This follows the same notation used in
187
+ :meth:`sympy.matrices.common.MatrixCommon.permute`.
188
+
189
+ Examples
190
+ ========
191
+
192
+ >>> from sympy import Matrix, MatrixPermute
193
+ >>> from sympy.combinatorics import Permutation
194
+
195
+ Permuting the matrix rows:
196
+
197
+ >>> p = Permutation(1, 2, 0)
198
+ >>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
199
+ >>> B = MatrixPermute(A, p, axis=0)
200
+ >>> B.as_explicit()
201
+ Matrix([
202
+ [4, 5, 6],
203
+ [7, 8, 9],
204
+ [1, 2, 3]])
205
+
206
+ Permuting the matrix columns:
207
+
208
+ >>> B = MatrixPermute(A, p, axis=1)
209
+ >>> B.as_explicit()
210
+ Matrix([
211
+ [2, 3, 1],
212
+ [5, 6, 4],
213
+ [8, 9, 7]])
214
+
215
+ See Also
216
+ ========
217
+
218
+ sympy.matrices.common.MatrixCommon.permute
219
+ """
220
+ def __new__(cls, mat, perm, axis=S.Zero):
221
+ from sympy.combinatorics.permutations import Permutation
222
+
223
+ mat = _sympify(mat)
224
+ if not mat.is_Matrix:
225
+ raise ValueError(
226
+ "{} must be a SymPy matrix instance.".format(perm))
227
+
228
+ perm = _sympify(perm)
229
+ if isinstance(perm, PermutationMatrix):
230
+ perm = perm.args[0]
231
+
232
+ if not isinstance(perm, Permutation):
233
+ raise ValueError(
234
+ "{} must be a SymPy Permutation or a PermutationMatrix " \
235
+ "instance".format(perm))
236
+
237
+ axis = _sympify(axis)
238
+ if axis not in (0, 1):
239
+ raise ValueError("The axis must be 0 or 1.")
240
+
241
+ mat_size = mat.shape[axis]
242
+ if mat_size != perm.size:
243
+ try:
244
+ perm = perm.resize(mat_size)
245
+ except ValueError:
246
+ raise ValueError(
247
+ "Size does not match between the permutation {} "
248
+ "and the matrix {} threaded over the axis {} "
249
+ "and cannot be converted."
250
+ .format(perm, mat, axis))
251
+
252
+ return super().__new__(cls, mat, perm, axis)
253
+
254
+ def doit(self, deep=True, **hints):
255
+ mat, perm, axis = self.args
256
+
257
+ if deep:
258
+ mat = mat.doit(deep=deep, **hints)
259
+ perm = perm.doit(deep=deep, **hints)
260
+
261
+ if perm.is_Identity:
262
+ return mat
263
+
264
+ if mat.is_Identity:
265
+ if axis is S.Zero:
266
+ return PermutationMatrix(perm)
267
+ elif axis is S.One:
268
+ return PermutationMatrix(perm**-1)
269
+
270
+ if isinstance(mat, (ZeroMatrix, OneMatrix)):
271
+ return mat
272
+
273
+ if isinstance(mat, MatrixPermute) and mat.args[2] == axis:
274
+ return MatrixPermute(mat.args[0], perm * mat.args[1], axis)
275
+
276
+ return self
277
+
278
+ @property
279
+ def shape(self):
280
+ return self.args[0].shape
281
+
282
+ def _entry(self, i, j, **kwargs):
283
+ mat, perm, axis = self.args
284
+
285
+ if axis == 0:
286
+ return mat[perm.apply(i), j]
287
+ elif axis == 1:
288
+ return mat[i, perm.apply(j)]
289
+
290
+ def _eval_rewrite_as_MatMul(self, *args, **kwargs):
291
+ from .matmul import MatMul
292
+
293
+ mat, perm, axis = self.args
294
+
295
+ deep = kwargs.get("deep", True)
296
+
297
+ if deep:
298
+ mat = mat.rewrite(MatMul)
299
+
300
+ if axis == 0:
301
+ return MatMul(PermutationMatrix(perm), mat)
302
+ elif axis == 1:
303
+ return MatMul(mat, PermutationMatrix(perm**-1))
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/sets.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.assumptions import check_assumptions
2
+ from sympy.core.logic import fuzzy_and
3
+ from sympy.core.sympify import _sympify
4
+ from sympy.matrices.common import MatrixKind
5
+ from sympy.sets.sets import Set, SetKind
6
+ from sympy.core.kind import NumberKind
7
+ from .matexpr import MatrixExpr
8
+
9
+
10
+ class MatrixSet(Set):
11
+ """
12
+ MatrixSet represents the set of matrices with ``shape = (n, m)`` over the
13
+ given set.
14
+
15
+ Examples
16
+ ========
17
+
18
+ >>> from sympy.matrices import MatrixSet
19
+ >>> from sympy import S, I, Matrix
20
+ >>> M = MatrixSet(2, 2, set=S.Reals)
21
+ >>> X = Matrix([[1, 2], [3, 4]])
22
+ >>> X in M
23
+ True
24
+ >>> X = Matrix([[1, 2], [I, 4]])
25
+ >>> X in M
26
+ False
27
+
28
+ """
29
+ is_empty = False
30
+
31
+ def __new__(cls, n, m, set):
32
+ n, m, set = _sympify(n), _sympify(m), _sympify(set)
33
+ cls._check_dim(n)
34
+ cls._check_dim(m)
35
+ if not isinstance(set, Set):
36
+ raise TypeError("{} should be an instance of Set.".format(set))
37
+ return Set.__new__(cls, n, m, set)
38
+
39
+ @property
40
+ def shape(self):
41
+ return self.args[:2]
42
+
43
+ @property
44
+ def set(self):
45
+ return self.args[2]
46
+
47
+ def _contains(self, other):
48
+ if not isinstance(other, MatrixExpr):
49
+ raise TypeError("{} should be an instance of MatrixExpr.".format(other))
50
+ if other.shape != self.shape:
51
+ are_symbolic = any(_sympify(x).is_Symbol for x in other.shape + self.shape)
52
+ if are_symbolic:
53
+ return None
54
+ return False
55
+ return fuzzy_and(self.set.contains(x) for x in other)
56
+
57
+ @classmethod
58
+ def _check_dim(cls, dim):
59
+ """Helper function to check invalid matrix dimensions"""
60
+ ok = check_assumptions(dim, integer=True, nonnegative=True)
61
+ if ok is False:
62
+ raise ValueError(
63
+ "The dimension specification {} should be "
64
+ "a nonnegative integer.".format(dim))
65
+
66
+ def _kind(self):
67
+ return SetKind(MatrixKind(NumberKind))
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/slice.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.matrices.expressions.matexpr import MatrixExpr
2
+ from sympy.core.basic import Basic
3
+ from sympy.core.containers import Tuple
4
+ from sympy.functions.elementary.integers import floor
5
+
6
+ def normalize(i, parentsize):
7
+ if isinstance(i, slice):
8
+ i = (i.start, i.stop, i.step)
9
+ if not isinstance(i, (tuple, list, Tuple)):
10
+ if (i < 0) == True:
11
+ i += parentsize
12
+ i = (i, i+1, 1)
13
+ i = list(i)
14
+ if len(i) == 2:
15
+ i.append(1)
16
+ start, stop, step = i
17
+ start = start or 0
18
+ if stop is None:
19
+ stop = parentsize
20
+ if (start < 0) == True:
21
+ start += parentsize
22
+ if (stop < 0) == True:
23
+ stop += parentsize
24
+ step = step or 1
25
+
26
+ if ((stop - start) * step < 1) == True:
27
+ raise IndexError()
28
+
29
+ return (start, stop, step)
30
+
31
+ class MatrixSlice(MatrixExpr):
32
+ """ A MatrixSlice of a Matrix Expression
33
+
34
+ Examples
35
+ ========
36
+
37
+ >>> from sympy import MatrixSlice, ImmutableMatrix
38
+ >>> M = ImmutableMatrix(4, 4, range(16))
39
+ >>> M
40
+ Matrix([
41
+ [ 0, 1, 2, 3],
42
+ [ 4, 5, 6, 7],
43
+ [ 8, 9, 10, 11],
44
+ [12, 13, 14, 15]])
45
+
46
+ >>> B = MatrixSlice(M, (0, 2), (2, 4))
47
+ >>> ImmutableMatrix(B)
48
+ Matrix([
49
+ [2, 3],
50
+ [6, 7]])
51
+ """
52
+ parent = property(lambda self: self.args[0])
53
+ rowslice = property(lambda self: self.args[1])
54
+ colslice = property(lambda self: self.args[2])
55
+
56
+ def __new__(cls, parent, rowslice, colslice):
57
+ rowslice = normalize(rowslice, parent.shape[0])
58
+ colslice = normalize(colslice, parent.shape[1])
59
+ if not (len(rowslice) == len(colslice) == 3):
60
+ raise IndexError()
61
+ if ((0 > rowslice[0]) == True or
62
+ (parent.shape[0] < rowslice[1]) == True or
63
+ (0 > colslice[0]) == True or
64
+ (parent.shape[1] < colslice[1]) == True):
65
+ raise IndexError()
66
+ if isinstance(parent, MatrixSlice):
67
+ return mat_slice_of_slice(parent, rowslice, colslice)
68
+ return Basic.__new__(cls, parent, Tuple(*rowslice), Tuple(*colslice))
69
+
70
+ @property
71
+ def shape(self):
72
+ rows = self.rowslice[1] - self.rowslice[0]
73
+ rows = rows if self.rowslice[2] == 1 else floor(rows/self.rowslice[2])
74
+ cols = self.colslice[1] - self.colslice[0]
75
+ cols = cols if self.colslice[2] == 1 else floor(cols/self.colslice[2])
76
+ return rows, cols
77
+
78
+ def _entry(self, i, j, **kwargs):
79
+ return self.parent._entry(i*self.rowslice[2] + self.rowslice[0],
80
+ j*self.colslice[2] + self.colslice[0],
81
+ **kwargs)
82
+
83
+ @property
84
+ def on_diag(self):
85
+ return self.rowslice == self.colslice
86
+
87
+
88
+ def slice_of_slice(s, t):
89
+ start1, stop1, step1 = s
90
+ start2, stop2, step2 = t
91
+
92
+ start = start1 + start2*step1
93
+ step = step1 * step2
94
+ stop = start1 + step1*stop2
95
+
96
+ if stop > stop1:
97
+ raise IndexError()
98
+
99
+ return start, stop, step
100
+
101
+
102
+ def mat_slice_of_slice(parent, rowslice, colslice):
103
+ """ Collapse nested matrix slices
104
+
105
+ >>> from sympy import MatrixSymbol
106
+ >>> X = MatrixSymbol('X', 10, 10)
107
+ >>> X[:, 1:5][5:8, :]
108
+ X[5:8, 1:5]
109
+ >>> X[1:9:2, 2:6][1:3, 2]
110
+ X[3:7:2, 4:5]
111
+ """
112
+ row = slice_of_slice(parent.rowslice, rowslice)
113
+ col = slice_of_slice(parent.colslice, colslice)
114
+ return MatrixSlice(parent.parent, row, col)
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/special.py ADDED
@@ -0,0 +1,299 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.assumptions.ask import ask, Q
2
+ from sympy.core.relational import Eq
3
+ from sympy.core.singleton import S
4
+ from sympy.core.sympify import _sympify
5
+ from sympy.functions.special.tensor_functions import KroneckerDelta
6
+ from sympy.matrices.common import NonInvertibleMatrixError
7
+ from .matexpr import MatrixExpr
8
+
9
+
10
+ class ZeroMatrix(MatrixExpr):
11
+ """The Matrix Zero 0 - additive identity
12
+
13
+ Examples
14
+ ========
15
+
16
+ >>> from sympy import MatrixSymbol, ZeroMatrix
17
+ >>> A = MatrixSymbol('A', 3, 5)
18
+ >>> Z = ZeroMatrix(3, 5)
19
+ >>> A + Z
20
+ A
21
+ >>> Z*A.T
22
+ 0
23
+ """
24
+ is_ZeroMatrix = True
25
+
26
+ def __new__(cls, m, n):
27
+ m, n = _sympify(m), _sympify(n)
28
+ cls._check_dim(m)
29
+ cls._check_dim(n)
30
+
31
+ return super().__new__(cls, m, n)
32
+
33
+ @property
34
+ def shape(self):
35
+ return (self.args[0], self.args[1])
36
+
37
+ def _eval_power(self, exp):
38
+ # exp = -1, 0, 1 are already handled at this stage
39
+ if (exp < 0) == True:
40
+ raise NonInvertibleMatrixError("Matrix det == 0; not invertible")
41
+ return self
42
+
43
+ def _eval_transpose(self):
44
+ return ZeroMatrix(self.cols, self.rows)
45
+
46
+ def _eval_adjoint(self):
47
+ return ZeroMatrix(self.cols, self.rows)
48
+
49
+ def _eval_trace(self):
50
+ return S.Zero
51
+
52
+ def _eval_determinant(self):
53
+ return S.Zero
54
+
55
+ def _eval_inverse(self):
56
+ raise NonInvertibleMatrixError("Matrix det == 0; not invertible.")
57
+
58
+ def _eval_as_real_imag(self):
59
+ return (self, self)
60
+
61
+ def _eval_conjugate(self):
62
+ return self
63
+
64
+ def _entry(self, i, j, **kwargs):
65
+ return S.Zero
66
+
67
+
68
+ class GenericZeroMatrix(ZeroMatrix):
69
+ """
70
+ A zero matrix without a specified shape
71
+
72
+ This exists primarily so MatAdd() with no arguments can return something
73
+ meaningful.
74
+ """
75
+ def __new__(cls):
76
+ # super(ZeroMatrix, cls) instead of super(GenericZeroMatrix, cls)
77
+ # because ZeroMatrix.__new__ doesn't have the same signature
78
+ return super(ZeroMatrix, cls).__new__(cls)
79
+
80
+ @property
81
+ def rows(self):
82
+ raise TypeError("GenericZeroMatrix does not have a specified shape")
83
+
84
+ @property
85
+ def cols(self):
86
+ raise TypeError("GenericZeroMatrix does not have a specified shape")
87
+
88
+ @property
89
+ def shape(self):
90
+ raise TypeError("GenericZeroMatrix does not have a specified shape")
91
+
92
+ # Avoid Matrix.__eq__ which might call .shape
93
+ def __eq__(self, other):
94
+ return isinstance(other, GenericZeroMatrix)
95
+
96
+ def __ne__(self, other):
97
+ return not (self == other)
98
+
99
+ def __hash__(self):
100
+ return super().__hash__()
101
+
102
+
103
+
104
+ class Identity(MatrixExpr):
105
+ """The Matrix Identity I - multiplicative identity
106
+
107
+ Examples
108
+ ========
109
+
110
+ >>> from sympy import Identity, MatrixSymbol
111
+ >>> A = MatrixSymbol('A', 3, 5)
112
+ >>> I = Identity(3)
113
+ >>> I*A
114
+ A
115
+ """
116
+
117
+ is_Identity = True
118
+
119
+ def __new__(cls, n):
120
+ n = _sympify(n)
121
+ cls._check_dim(n)
122
+
123
+ return super().__new__(cls, n)
124
+
125
+ @property
126
+ def rows(self):
127
+ return self.args[0]
128
+
129
+ @property
130
+ def cols(self):
131
+ return self.args[0]
132
+
133
+ @property
134
+ def shape(self):
135
+ return (self.args[0], self.args[0])
136
+
137
+ @property
138
+ def is_square(self):
139
+ return True
140
+
141
+ def _eval_transpose(self):
142
+ return self
143
+
144
+ def _eval_trace(self):
145
+ return self.rows
146
+
147
+ def _eval_inverse(self):
148
+ return self
149
+
150
+ def _eval_as_real_imag(self):
151
+ return (self, ZeroMatrix(*self.shape))
152
+
153
+ def _eval_conjugate(self):
154
+ return self
155
+
156
+ def _eval_adjoint(self):
157
+ return self
158
+
159
+ def _entry(self, i, j, **kwargs):
160
+ eq = Eq(i, j)
161
+ if eq is S.true:
162
+ return S.One
163
+ elif eq is S.false:
164
+ return S.Zero
165
+ return KroneckerDelta(i, j, (0, self.cols-1))
166
+
167
+ def _eval_determinant(self):
168
+ return S.One
169
+
170
+ def _eval_power(self, exp):
171
+ return self
172
+
173
+
174
+ class GenericIdentity(Identity):
175
+ """
176
+ An identity matrix without a specified shape
177
+
178
+ This exists primarily so MatMul() with no arguments can return something
179
+ meaningful.
180
+ """
181
+ def __new__(cls):
182
+ # super(Identity, cls) instead of super(GenericIdentity, cls) because
183
+ # Identity.__new__ doesn't have the same signature
184
+ return super(Identity, cls).__new__(cls)
185
+
186
+ @property
187
+ def rows(self):
188
+ raise TypeError("GenericIdentity does not have a specified shape")
189
+
190
+ @property
191
+ def cols(self):
192
+ raise TypeError("GenericIdentity does not have a specified shape")
193
+
194
+ @property
195
+ def shape(self):
196
+ raise TypeError("GenericIdentity does not have a specified shape")
197
+
198
+ @property
199
+ def is_square(self):
200
+ return True
201
+
202
+ # Avoid Matrix.__eq__ which might call .shape
203
+ def __eq__(self, other):
204
+ return isinstance(other, GenericIdentity)
205
+
206
+ def __ne__(self, other):
207
+ return not (self == other)
208
+
209
+ def __hash__(self):
210
+ return super().__hash__()
211
+
212
+
213
+ class OneMatrix(MatrixExpr):
214
+ """
215
+ Matrix whose all entries are ones.
216
+ """
217
+ def __new__(cls, m, n, evaluate=False):
218
+ m, n = _sympify(m), _sympify(n)
219
+ cls._check_dim(m)
220
+ cls._check_dim(n)
221
+
222
+ if evaluate:
223
+ condition = Eq(m, 1) & Eq(n, 1)
224
+ if condition == True:
225
+ return Identity(1)
226
+
227
+ obj = super().__new__(cls, m, n)
228
+ return obj
229
+
230
+ @property
231
+ def shape(self):
232
+ return self._args
233
+
234
+ @property
235
+ def is_Identity(self):
236
+ return self._is_1x1() == True
237
+
238
+ def as_explicit(self):
239
+ from sympy.matrices.immutable import ImmutableDenseMatrix
240
+ return ImmutableDenseMatrix.ones(*self.shape)
241
+
242
+ def doit(self, **hints):
243
+ args = self.args
244
+ if hints.get('deep', True):
245
+ args = [a.doit(**hints) for a in args]
246
+ return self.func(*args, evaluate=True)
247
+
248
+ def _eval_power(self, exp):
249
+ # exp = -1, 0, 1 are already handled at this stage
250
+ if self._is_1x1() == True:
251
+ return Identity(1)
252
+ if (exp < 0) == True:
253
+ raise NonInvertibleMatrixError("Matrix det == 0; not invertible")
254
+ if ask(Q.integer(exp)):
255
+ return self.shape[0] ** (exp - 1) * OneMatrix(*self.shape)
256
+ return super()._eval_power(exp)
257
+
258
+ def _eval_transpose(self):
259
+ return OneMatrix(self.cols, self.rows)
260
+
261
+ def _eval_adjoint(self):
262
+ return OneMatrix(self.cols, self.rows)
263
+
264
+ def _eval_trace(self):
265
+ return S.One*self.rows
266
+
267
+ def _is_1x1(self):
268
+ """Returns true if the matrix is known to be 1x1"""
269
+ shape = self.shape
270
+ return Eq(shape[0], 1) & Eq(shape[1], 1)
271
+
272
+ def _eval_determinant(self):
273
+ condition = self._is_1x1()
274
+ if condition == True:
275
+ return S.One
276
+ elif condition == False:
277
+ return S.Zero
278
+ else:
279
+ from sympy.matrices.expressions.determinant import Determinant
280
+ return Determinant(self)
281
+
282
+ def _eval_inverse(self):
283
+ condition = self._is_1x1()
284
+ if condition == True:
285
+ return Identity(1)
286
+ elif condition == False:
287
+ raise NonInvertibleMatrixError("Matrix det == 0; not invertible.")
288
+ else:
289
+ from .inverse import Inverse
290
+ return Inverse(self)
291
+
292
+ def _eval_as_real_imag(self):
293
+ return (self, ZeroMatrix(*self.shape))
294
+
295
+ def _eval_conjugate(self):
296
+ return self
297
+
298
+ def _entry(self, i, j, **kwargs):
299
+ return S.One
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_adjoint.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import symbols, S
2
+ from sympy.functions import adjoint, conjugate, transpose
3
+ from sympy.matrices.expressions import MatrixSymbol, Adjoint, trace, Transpose
4
+ from sympy.matrices import eye, Matrix
5
+
6
+ n, m, l, k, p = symbols('n m l k p', integer=True)
7
+ A = MatrixSymbol('A', n, m)
8
+ B = MatrixSymbol('B', m, l)
9
+ C = MatrixSymbol('C', n, n)
10
+
11
+
12
+ def test_adjoint():
13
+ Sq = MatrixSymbol('Sq', n, n)
14
+
15
+ assert Adjoint(A).shape == (m, n)
16
+ assert Adjoint(A*B).shape == (l, n)
17
+ assert adjoint(Adjoint(A)) == A
18
+ assert isinstance(Adjoint(Adjoint(A)), Adjoint)
19
+
20
+ assert conjugate(Adjoint(A)) == Transpose(A)
21
+ assert transpose(Adjoint(A)) == Adjoint(Transpose(A))
22
+
23
+ assert Adjoint(eye(3)).doit() == eye(3)
24
+
25
+ assert Adjoint(S(5)).doit() == S(5)
26
+
27
+ assert Adjoint(Matrix([[1, 2], [3, 4]])).doit() == Matrix([[1, 3], [2, 4]])
28
+
29
+ assert adjoint(trace(Sq)) == conjugate(trace(Sq))
30
+ assert trace(adjoint(Sq)) == conjugate(trace(Sq))
31
+
32
+ assert Adjoint(Sq)[0, 1] == conjugate(Sq[1, 0])
33
+
34
+ assert Adjoint(A*B).doit() == Adjoint(B) * Adjoint(A)
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_applyfunc.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.symbol import symbols, Dummy
2
+ from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
3
+ from sympy.core.function import Lambda
4
+ from sympy.functions.elementary.exponential import exp
5
+ from sympy.functions.elementary.trigonometric import sin
6
+ from sympy.matrices.dense import Matrix
7
+ from sympy.matrices.expressions.matexpr import MatrixSymbol
8
+ from sympy.matrices.expressions.matmul import MatMul
9
+ from sympy.simplify.simplify import simplify
10
+
11
+
12
+ X = MatrixSymbol("X", 3, 3)
13
+ Y = MatrixSymbol("Y", 3, 3)
14
+
15
+ k = symbols("k")
16
+ Xk = MatrixSymbol("X", k, k)
17
+
18
+ Xd = X.as_explicit()
19
+
20
+ x, y, z, t = symbols("x y z t")
21
+
22
+
23
+ def test_applyfunc_matrix():
24
+ x = Dummy('x')
25
+ double = Lambda(x, x**2)
26
+
27
+ expr = ElementwiseApplyFunction(double, Xd)
28
+ assert isinstance(expr, ElementwiseApplyFunction)
29
+ assert expr.doit() == Xd.applyfunc(lambda x: x**2)
30
+ assert expr.shape == (3, 3)
31
+ assert expr.func(*expr.args) == expr
32
+ assert simplify(expr) == expr
33
+ assert expr[0, 0] == double(Xd[0, 0])
34
+
35
+ expr = ElementwiseApplyFunction(double, X)
36
+ assert isinstance(expr, ElementwiseApplyFunction)
37
+ assert isinstance(expr.doit(), ElementwiseApplyFunction)
38
+ assert expr == X.applyfunc(double)
39
+ assert expr.func(*expr.args) == expr
40
+
41
+ expr = ElementwiseApplyFunction(exp, X*Y)
42
+ assert expr.expr == X*Y
43
+ assert expr.function.dummy_eq(Lambda(x, exp(x)))
44
+ assert expr.dummy_eq((X*Y).applyfunc(exp))
45
+ assert expr.func(*expr.args) == expr
46
+
47
+ assert isinstance(X*expr, MatMul)
48
+ assert (X*expr).shape == (3, 3)
49
+ Z = MatrixSymbol("Z", 2, 3)
50
+ assert (Z*expr).shape == (2, 3)
51
+
52
+ expr = ElementwiseApplyFunction(exp, Z.T)*ElementwiseApplyFunction(exp, Z)
53
+ assert expr.shape == (3, 3)
54
+ expr = ElementwiseApplyFunction(exp, Z)*ElementwiseApplyFunction(exp, Z.T)
55
+ assert expr.shape == (2, 2)
56
+
57
+ M = Matrix([[x, y], [z, t]])
58
+ expr = ElementwiseApplyFunction(sin, M)
59
+ assert isinstance(expr, ElementwiseApplyFunction)
60
+ assert expr.function.dummy_eq(Lambda(x, sin(x)))
61
+ assert expr.expr == M
62
+ assert expr.doit() == M.applyfunc(sin)
63
+ assert expr.doit() == Matrix([[sin(x), sin(y)], [sin(z), sin(t)]])
64
+ assert expr.func(*expr.args) == expr
65
+
66
+ expr = ElementwiseApplyFunction(double, Xk)
67
+ assert expr.doit() == expr
68
+ assert expr.subs(k, 2).shape == (2, 2)
69
+ assert (expr*expr).shape == (k, k)
70
+ M = MatrixSymbol("M", k, t)
71
+ expr2 = M.T*expr*M
72
+ assert isinstance(expr2, MatMul)
73
+ assert expr2.args[1] == expr
74
+ assert expr2.shape == (t, t)
75
+ expr3 = expr*M
76
+ assert expr3.shape == (k, t)
77
+
78
+ expr1 = ElementwiseApplyFunction(lambda x: x+1, Xk)
79
+ expr2 = ElementwiseApplyFunction(lambda x: x, Xk)
80
+ assert expr1 != expr2
81
+
82
+
83
+ def test_applyfunc_entry():
84
+
85
+ af = X.applyfunc(sin)
86
+ assert af[0, 0] == sin(X[0, 0])
87
+
88
+ af = Xd.applyfunc(sin)
89
+ assert af[0, 0] == sin(X[0, 0])
90
+
91
+
92
+ def test_applyfunc_as_explicit():
93
+
94
+ af = X.applyfunc(sin)
95
+ assert af.as_explicit() == Matrix([
96
+ [sin(X[0, 0]), sin(X[0, 1]), sin(X[0, 2])],
97
+ [sin(X[1, 0]), sin(X[1, 1]), sin(X[1, 2])],
98
+ [sin(X[2, 0]), sin(X[2, 1]), sin(X[2, 2])],
99
+ ])
100
+
101
+
102
+ def test_applyfunc_transpose():
103
+
104
+ af = Xk.applyfunc(sin)
105
+ assert af.T.dummy_eq(Xk.T.applyfunc(sin))
106
+
107
+
108
+ def test_applyfunc_shape_11_matrices():
109
+ M = MatrixSymbol("M", 1, 1)
110
+
111
+ double = Lambda(x, x*2)
112
+
113
+ expr = M.applyfunc(sin)
114
+ assert isinstance(expr, ElementwiseApplyFunction)
115
+
116
+ expr = M.applyfunc(double)
117
+ assert isinstance(expr, MatMul)
118
+ assert expr == 2*M
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_blockmatrix.py ADDED
@@ -0,0 +1,445 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.matrices.expressions.trace import Trace
2
+ from sympy.testing.pytest import raises, slow
3
+ from sympy.matrices.expressions.blockmatrix import (
4
+ block_collapse, bc_matmul, bc_block_plus_ident, BlockDiagMatrix,
5
+ BlockMatrix, bc_dist, bc_matadd, bc_transpose, bc_inverse,
6
+ blockcut, reblock_2x2, deblock)
7
+ from sympy.matrices.expressions import (MatrixSymbol, Identity,
8
+ Inverse, trace, Transpose, det, ZeroMatrix, OneMatrix)
9
+ from sympy.matrices.common import NonInvertibleMatrixError
10
+ from sympy.matrices import (
11
+ Matrix, ImmutableMatrix, ImmutableSparseMatrix)
12
+ from sympy.core import Tuple, symbols, Expr, S
13
+ from sympy.functions import transpose, im, re
14
+
15
+ i, j, k, l, m, n, p = symbols('i:n, p', integer=True)
16
+ A = MatrixSymbol('A', n, n)
17
+ B = MatrixSymbol('B', n, n)
18
+ C = MatrixSymbol('C', n, n)
19
+ D = MatrixSymbol('D', n, n)
20
+ G = MatrixSymbol('G', n, n)
21
+ H = MatrixSymbol('H', n, n)
22
+ b1 = BlockMatrix([[G, H]])
23
+ b2 = BlockMatrix([[G], [H]])
24
+
25
+ def test_bc_matmul():
26
+ assert bc_matmul(H*b1*b2*G) == BlockMatrix([[(H*G*G + H*H*H)*G]])
27
+
28
+ def test_bc_matadd():
29
+ assert bc_matadd(BlockMatrix([[G, H]]) + BlockMatrix([[H, H]])) == \
30
+ BlockMatrix([[G+H, H+H]])
31
+
32
+ def test_bc_transpose():
33
+ assert bc_transpose(Transpose(BlockMatrix([[A, B], [C, D]]))) == \
34
+ BlockMatrix([[A.T, C.T], [B.T, D.T]])
35
+
36
+ def test_bc_dist_diag():
37
+ A = MatrixSymbol('A', n, n)
38
+ B = MatrixSymbol('B', m, m)
39
+ C = MatrixSymbol('C', l, l)
40
+ X = BlockDiagMatrix(A, B, C)
41
+
42
+ assert bc_dist(X+X).equals(BlockDiagMatrix(2*A, 2*B, 2*C))
43
+
44
+ def test_block_plus_ident():
45
+ A = MatrixSymbol('A', n, n)
46
+ B = MatrixSymbol('B', n, m)
47
+ C = MatrixSymbol('C', m, n)
48
+ D = MatrixSymbol('D', m, m)
49
+ X = BlockMatrix([[A, B], [C, D]])
50
+ Z = MatrixSymbol('Z', n + m, n + m)
51
+ assert bc_block_plus_ident(X + Identity(m + n) + Z) == \
52
+ BlockDiagMatrix(Identity(n), Identity(m)) + X + Z
53
+
54
+ def test_BlockMatrix():
55
+ A = MatrixSymbol('A', n, m)
56
+ B = MatrixSymbol('B', n, k)
57
+ C = MatrixSymbol('C', l, m)
58
+ D = MatrixSymbol('D', l, k)
59
+ M = MatrixSymbol('M', m + k, p)
60
+ N = MatrixSymbol('N', l + n, k + m)
61
+ X = BlockMatrix(Matrix([[A, B], [C, D]]))
62
+
63
+ assert X.__class__(*X.args) == X
64
+
65
+ # block_collapse does nothing on normal inputs
66
+ E = MatrixSymbol('E', n, m)
67
+ assert block_collapse(A + 2*E) == A + 2*E
68
+ F = MatrixSymbol('F', m, m)
69
+ assert block_collapse(E.T*A*F) == E.T*A*F
70
+
71
+ assert X.shape == (l + n, k + m)
72
+ assert X.blockshape == (2, 2)
73
+ assert transpose(X) == BlockMatrix(Matrix([[A.T, C.T], [B.T, D.T]]))
74
+ assert transpose(X).shape == X.shape[::-1]
75
+
76
+ # Test that BlockMatrices and MatrixSymbols can still mix
77
+ assert (X*M).is_MatMul
78
+ assert X._blockmul(M).is_MatMul
79
+ assert (X*M).shape == (n + l, p)
80
+ assert (X + N).is_MatAdd
81
+ assert X._blockadd(N).is_MatAdd
82
+ assert (X + N).shape == X.shape
83
+
84
+ E = MatrixSymbol('E', m, 1)
85
+ F = MatrixSymbol('F', k, 1)
86
+
87
+ Y = BlockMatrix(Matrix([[E], [F]]))
88
+
89
+ assert (X*Y).shape == (l + n, 1)
90
+ assert block_collapse(X*Y).blocks[0, 0] == A*E + B*F
91
+ assert block_collapse(X*Y).blocks[1, 0] == C*E + D*F
92
+
93
+ # block_collapse passes down into container objects, transposes, and inverse
94
+ assert block_collapse(transpose(X*Y)) == transpose(block_collapse(X*Y))
95
+ assert block_collapse(Tuple(X*Y, 2*X)) == (
96
+ block_collapse(X*Y), block_collapse(2*X))
97
+
98
+ # Make sure that MatrixSymbols will enter 1x1 BlockMatrix if it simplifies
99
+ Ab = BlockMatrix([[A]])
100
+ Z = MatrixSymbol('Z', *A.shape)
101
+ assert block_collapse(Ab + Z) == A + Z
102
+
103
+ def test_block_collapse_explicit_matrices():
104
+ A = Matrix([[1, 2], [3, 4]])
105
+ assert block_collapse(BlockMatrix([[A]])) == A
106
+
107
+ A = ImmutableSparseMatrix([[1, 2], [3, 4]])
108
+ assert block_collapse(BlockMatrix([[A]])) == A
109
+
110
+ def test_issue_17624():
111
+ a = MatrixSymbol("a", 2, 2)
112
+ z = ZeroMatrix(2, 2)
113
+ b = BlockMatrix([[a, z], [z, z]])
114
+ assert block_collapse(b * b) == BlockMatrix([[a**2, z], [z, z]])
115
+ assert block_collapse(b * b * b) == BlockMatrix([[a**3, z], [z, z]])
116
+
117
+ def test_issue_18618():
118
+ A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
119
+ assert A == Matrix(BlockDiagMatrix(A))
120
+
121
+ def test_BlockMatrix_trace():
122
+ A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD']
123
+ X = BlockMatrix([[A, B], [C, D]])
124
+ assert trace(X) == trace(A) + trace(D)
125
+ assert trace(BlockMatrix([ZeroMatrix(n, n)])) == 0
126
+
127
+ def test_BlockMatrix_Determinant():
128
+ A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD']
129
+ X = BlockMatrix([[A, B], [C, D]])
130
+ from sympy.assumptions.ask import Q
131
+ from sympy.assumptions.assume import assuming
132
+ with assuming(Q.invertible(A)):
133
+ assert det(X) == det(A) * det(X.schur('A'))
134
+
135
+ assert isinstance(det(X), Expr)
136
+ assert det(BlockMatrix([A])) == det(A)
137
+ assert det(BlockMatrix([ZeroMatrix(n, n)])) == 0
138
+
139
+ def test_squareBlockMatrix():
140
+ A = MatrixSymbol('A', n, n)
141
+ B = MatrixSymbol('B', n, m)
142
+ C = MatrixSymbol('C', m, n)
143
+ D = MatrixSymbol('D', m, m)
144
+ X = BlockMatrix([[A, B], [C, D]])
145
+ Y = BlockMatrix([[A]])
146
+
147
+ assert X.is_square
148
+
149
+ Q = X + Identity(m + n)
150
+ assert (block_collapse(Q) ==
151
+ BlockMatrix([[A + Identity(n), B], [C, D + Identity(m)]]))
152
+
153
+ assert (X + MatrixSymbol('Q', n + m, n + m)).is_MatAdd
154
+ assert (X * MatrixSymbol('Q', n + m, n + m)).is_MatMul
155
+
156
+ assert block_collapse(Y.I) == A.I
157
+
158
+ assert isinstance(X.inverse(), Inverse)
159
+
160
+ assert not X.is_Identity
161
+
162
+ Z = BlockMatrix([[Identity(n), B], [C, D]])
163
+ assert not Z.is_Identity
164
+
165
+
166
+ def test_BlockMatrix_2x2_inverse_symbolic():
167
+ A = MatrixSymbol('A', n, m)
168
+ B = MatrixSymbol('B', n, k - m)
169
+ C = MatrixSymbol('C', k - n, m)
170
+ D = MatrixSymbol('D', k - n, k - m)
171
+ X = BlockMatrix([[A, B], [C, D]])
172
+ assert X.is_square and X.shape == (k, k)
173
+ assert isinstance(block_collapse(X.I), Inverse) # Can't invert when none of the blocks is square
174
+
175
+ # test code path where only A is invertible
176
+ A = MatrixSymbol('A', n, n)
177
+ B = MatrixSymbol('B', n, m)
178
+ C = MatrixSymbol('C', m, n)
179
+ D = ZeroMatrix(m, m)
180
+ X = BlockMatrix([[A, B], [C, D]])
181
+ assert block_collapse(X.inverse()) == BlockMatrix([
182
+ [A.I + A.I * B * X.schur('A').I * C * A.I, -A.I * B * X.schur('A').I],
183
+ [-X.schur('A').I * C * A.I, X.schur('A').I],
184
+ ])
185
+
186
+ # test code path where only B is invertible
187
+ A = MatrixSymbol('A', n, m)
188
+ B = MatrixSymbol('B', n, n)
189
+ C = ZeroMatrix(m, m)
190
+ D = MatrixSymbol('D', m, n)
191
+ X = BlockMatrix([[A, B], [C, D]])
192
+ assert block_collapse(X.inverse()) == BlockMatrix([
193
+ [-X.schur('B').I * D * B.I, X.schur('B').I],
194
+ [B.I + B.I * A * X.schur('B').I * D * B.I, -B.I * A * X.schur('B').I],
195
+ ])
196
+
197
+ # test code path where only C is invertible
198
+ A = MatrixSymbol('A', n, m)
199
+ B = ZeroMatrix(n, n)
200
+ C = MatrixSymbol('C', m, m)
201
+ D = MatrixSymbol('D', m, n)
202
+ X = BlockMatrix([[A, B], [C, D]])
203
+ assert block_collapse(X.inverse()) == BlockMatrix([
204
+ [-C.I * D * X.schur('C').I, C.I + C.I * D * X.schur('C').I * A * C.I],
205
+ [X.schur('C').I, -X.schur('C').I * A * C.I],
206
+ ])
207
+
208
+ # test code path where only D is invertible
209
+ A = ZeroMatrix(n, n)
210
+ B = MatrixSymbol('B', n, m)
211
+ C = MatrixSymbol('C', m, n)
212
+ D = MatrixSymbol('D', m, m)
213
+ X = BlockMatrix([[A, B], [C, D]])
214
+ assert block_collapse(X.inverse()) == BlockMatrix([
215
+ [X.schur('D').I, -X.schur('D').I * B * D.I],
216
+ [-D.I * C * X.schur('D').I, D.I + D.I * C * X.schur('D').I * B * D.I],
217
+ ])
218
+
219
+
220
+ def test_BlockMatrix_2x2_inverse_numeric():
221
+ """Test 2x2 block matrix inversion numerically for all 4 formulas"""
222
+ M = Matrix([[1, 2], [3, 4]])
223
+ # rank deficient matrices that have full rank when two of them combined
224
+ D1 = Matrix([[1, 2], [2, 4]])
225
+ D2 = Matrix([[1, 3], [3, 9]])
226
+ D3 = Matrix([[1, 4], [4, 16]])
227
+ assert D1.rank() == D2.rank() == D3.rank() == 1
228
+ assert (D1 + D2).rank() == (D2 + D3).rank() == (D3 + D1).rank() == 2
229
+
230
+ # Only A is invertible
231
+ K = BlockMatrix([[M, D1], [D2, D3]])
232
+ assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
233
+ # Only B is invertible
234
+ K = BlockMatrix([[D1, M], [D2, D3]])
235
+ assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
236
+ # Only C is invertible
237
+ K = BlockMatrix([[D1, D2], [M, D3]])
238
+ assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
239
+ # Only D is invertible
240
+ K = BlockMatrix([[D1, D2], [D3, M]])
241
+ assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv()
242
+
243
+
244
+ @slow
245
+ def test_BlockMatrix_3x3_symbolic():
246
+ # Only test one of these, instead of all permutations, because it's slow
247
+ rowblocksizes = (n, m, k)
248
+ colblocksizes = (m, k, n)
249
+ K = BlockMatrix([
250
+ [MatrixSymbol('M%s%s' % (rows, cols), rows, cols) for cols in colblocksizes]
251
+ for rows in rowblocksizes
252
+ ])
253
+ collapse = block_collapse(K.I)
254
+ assert isinstance(collapse, BlockMatrix)
255
+
256
+
257
+ def test_BlockDiagMatrix():
258
+ A = MatrixSymbol('A', n, n)
259
+ B = MatrixSymbol('B', m, m)
260
+ C = MatrixSymbol('C', l, l)
261
+ M = MatrixSymbol('M', n + m + l, n + m + l)
262
+
263
+ X = BlockDiagMatrix(A, B, C)
264
+ Y = BlockDiagMatrix(A, 2*B, 3*C)
265
+
266
+ assert X.blocks[1, 1] == B
267
+ assert X.shape == (n + m + l, n + m + l)
268
+ assert all(X.blocks[i, j].is_ZeroMatrix if i != j else X.blocks[i, j] in [A, B, C]
269
+ for i in range(3) for j in range(3))
270
+ assert X.__class__(*X.args) == X
271
+ assert X.get_diag_blocks() == (A, B, C)
272
+
273
+ assert isinstance(block_collapse(X.I * X), Identity)
274
+
275
+ assert bc_matmul(X*X) == BlockDiagMatrix(A*A, B*B, C*C)
276
+ assert block_collapse(X*X) == BlockDiagMatrix(A*A, B*B, C*C)
277
+ #XXX: should be == ??
278
+ assert block_collapse(X + X).equals(BlockDiagMatrix(2*A, 2*B, 2*C))
279
+ assert block_collapse(X*Y) == BlockDiagMatrix(A*A, 2*B*B, 3*C*C)
280
+ assert block_collapse(X + Y) == BlockDiagMatrix(2*A, 3*B, 4*C)
281
+
282
+ # Ensure that BlockDiagMatrices can still interact with normal MatrixExprs
283
+ assert (X*(2*M)).is_MatMul
284
+ assert (X + (2*M)).is_MatAdd
285
+
286
+ assert (X._blockmul(M)).is_MatMul
287
+ assert (X._blockadd(M)).is_MatAdd
288
+
289
+ def test_BlockDiagMatrix_nonsquare():
290
+ A = MatrixSymbol('A', n, m)
291
+ B = MatrixSymbol('B', k, l)
292
+ X = BlockDiagMatrix(A, B)
293
+ assert X.shape == (n + k, m + l)
294
+ assert X.shape == (n + k, m + l)
295
+ assert X.rowblocksizes == [n, k]
296
+ assert X.colblocksizes == [m, l]
297
+ C = MatrixSymbol('C', n, m)
298
+ D = MatrixSymbol('D', k, l)
299
+ Y = BlockDiagMatrix(C, D)
300
+ assert block_collapse(X + Y) == BlockDiagMatrix(A + C, B + D)
301
+ assert block_collapse(X * Y.T) == BlockDiagMatrix(A * C.T, B * D.T)
302
+ raises(NonInvertibleMatrixError, lambda: BlockDiagMatrix(A, C.T).inverse())
303
+
304
+ def test_BlockDiagMatrix_determinant():
305
+ A = MatrixSymbol('A', n, n)
306
+ B = MatrixSymbol('B', m, m)
307
+ assert det(BlockDiagMatrix()) == 1
308
+ assert det(BlockDiagMatrix(A)) == det(A)
309
+ assert det(BlockDiagMatrix(A, B)) == det(A) * det(B)
310
+
311
+ # non-square blocks
312
+ C = MatrixSymbol('C', m, n)
313
+ D = MatrixSymbol('D', n, m)
314
+ assert det(BlockDiagMatrix(C, D)) == 0
315
+
316
+ def test_BlockDiagMatrix_trace():
317
+ assert trace(BlockDiagMatrix()) == 0
318
+ assert trace(BlockDiagMatrix(ZeroMatrix(n, n))) == 0
319
+ A = MatrixSymbol('A', n, n)
320
+ assert trace(BlockDiagMatrix(A)) == trace(A)
321
+ B = MatrixSymbol('B', m, m)
322
+ assert trace(BlockDiagMatrix(A, B)) == trace(A) + trace(B)
323
+
324
+ # non-square blocks
325
+ C = MatrixSymbol('C', m, n)
326
+ D = MatrixSymbol('D', n, m)
327
+ assert isinstance(trace(BlockDiagMatrix(C, D)), Trace)
328
+
329
+ def test_BlockDiagMatrix_transpose():
330
+ A = MatrixSymbol('A', n, m)
331
+ B = MatrixSymbol('B', k, l)
332
+ assert transpose(BlockDiagMatrix()) == BlockDiagMatrix()
333
+ assert transpose(BlockDiagMatrix(A)) == BlockDiagMatrix(A.T)
334
+ assert transpose(BlockDiagMatrix(A, B)) == BlockDiagMatrix(A.T, B.T)
335
+
336
+ def test_issue_2460():
337
+ bdm1 = BlockDiagMatrix(Matrix([i]), Matrix([j]))
338
+ bdm2 = BlockDiagMatrix(Matrix([k]), Matrix([l]))
339
+ assert block_collapse(bdm1 + bdm2) == BlockDiagMatrix(Matrix([i + k]), Matrix([j + l]))
340
+
341
+ def test_blockcut():
342
+ A = MatrixSymbol('A', n, m)
343
+ B = blockcut(A, (n/2, n/2), (m/2, m/2))
344
+ assert B == BlockMatrix([[A[:n/2, :m/2], A[:n/2, m/2:]],
345
+ [A[n/2:, :m/2], A[n/2:, m/2:]]])
346
+
347
+ M = ImmutableMatrix(4, 4, range(16))
348
+ B = blockcut(M, (2, 2), (2, 2))
349
+ assert M == ImmutableMatrix(B)
350
+
351
+ B = blockcut(M, (1, 3), (2, 2))
352
+ assert ImmutableMatrix(B.blocks[0, 1]) == ImmutableMatrix([[2, 3]])
353
+
354
+ def test_reblock_2x2():
355
+ B = BlockMatrix([[MatrixSymbol('A_%d%d'%(i,j), 2, 2)
356
+ for j in range(3)]
357
+ for i in range(3)])
358
+ assert B.blocks.shape == (3, 3)
359
+
360
+ BB = reblock_2x2(B)
361
+ assert BB.blocks.shape == (2, 2)
362
+
363
+ assert B.shape == BB.shape
364
+ assert B.as_explicit() == BB.as_explicit()
365
+
366
+ def test_deblock():
367
+ B = BlockMatrix([[MatrixSymbol('A_%d%d'%(i,j), n, n)
368
+ for j in range(4)]
369
+ for i in range(4)])
370
+
371
+ assert deblock(reblock_2x2(B)) == B
372
+
373
+ def test_block_collapse_type():
374
+ bm1 = BlockDiagMatrix(ImmutableMatrix([1]), ImmutableMatrix([2]))
375
+ bm2 = BlockDiagMatrix(ImmutableMatrix([3]), ImmutableMatrix([4]))
376
+
377
+ assert bm1.T.__class__ == BlockDiagMatrix
378
+ assert block_collapse(bm1 - bm2).__class__ == BlockDiagMatrix
379
+ assert block_collapse(Inverse(bm1)).__class__ == BlockDiagMatrix
380
+ assert block_collapse(Transpose(bm1)).__class__ == BlockDiagMatrix
381
+ assert bc_transpose(Transpose(bm1)).__class__ == BlockDiagMatrix
382
+ assert bc_inverse(Inverse(bm1)).__class__ == BlockDiagMatrix
383
+
384
+ def test_invalid_block_matrix():
385
+ raises(ValueError, lambda: BlockMatrix([
386
+ [Identity(2), Identity(5)],
387
+ ]))
388
+ raises(ValueError, lambda: BlockMatrix([
389
+ [Identity(n), Identity(m)],
390
+ ]))
391
+ raises(ValueError, lambda: BlockMatrix([
392
+ [ZeroMatrix(n, n), ZeroMatrix(n, n)],
393
+ [ZeroMatrix(n, n - 1), ZeroMatrix(n, n + 1)],
394
+ ]))
395
+ raises(ValueError, lambda: BlockMatrix([
396
+ [ZeroMatrix(n - 1, n), ZeroMatrix(n, n)],
397
+ [ZeroMatrix(n + 1, n), ZeroMatrix(n, n)],
398
+ ]))
399
+
400
+ def test_block_lu_decomposition():
401
+ A = MatrixSymbol('A', n, n)
402
+ B = MatrixSymbol('B', n, m)
403
+ C = MatrixSymbol('C', m, n)
404
+ D = MatrixSymbol('D', m, m)
405
+ X = BlockMatrix([[A, B], [C, D]])
406
+
407
+ #LDU decomposition
408
+ L, D, U = X.LDUdecomposition()
409
+ assert block_collapse(L*D*U) == X
410
+
411
+ #UDL decomposition
412
+ U, D, L = X.UDLdecomposition()
413
+ assert block_collapse(U*D*L) == X
414
+
415
+ #LU decomposition
416
+ L, U = X.LUdecomposition()
417
+ assert block_collapse(L*U) == X
418
+
419
+ def test_issue_21866():
420
+ n = 10
421
+ I = Identity(n)
422
+ O = ZeroMatrix(n, n)
423
+ A = BlockMatrix([[ I, O, O, O ],
424
+ [ O, I, O, O ],
425
+ [ O, O, I, O ],
426
+ [ I, O, O, I ]])
427
+ Ainv = block_collapse(A.inv())
428
+ AinvT = BlockMatrix([[ I, O, O, O ],
429
+ [ O, I, O, O ],
430
+ [ O, O, I, O ],
431
+ [ -I, O, O, I ]])
432
+ assert Ainv == AinvT
433
+
434
+
435
+ def test_adjoint_and_special_matrices():
436
+ A = Identity(3)
437
+ B = OneMatrix(3, 2)
438
+ C = ZeroMatrix(2, 3)
439
+ D = Identity(2)
440
+ X = BlockMatrix([[A, B], [C, D]])
441
+ X2 = BlockMatrix([[A, S.ImaginaryUnit*B], [C, D]])
442
+ assert X.adjoint() == BlockMatrix([[A, ZeroMatrix(3, 2)], [OneMatrix(2, 3), D]])
443
+ assert re(X) == X
444
+ assert X2.adjoint() == BlockMatrix([[A, ZeroMatrix(3, 2)], [-S.ImaginaryUnit*OneMatrix(2, 3), D]])
445
+ assert im(X2) == BlockMatrix([[ZeroMatrix(3, 3), OneMatrix(3, 2)], [ZeroMatrix(2, 3), ZeroMatrix(2, 2)]])
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_companion.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.expr import unchanged
2
+ from sympy.core.symbol import Symbol, symbols
3
+ from sympy.matrices.immutable import ImmutableDenseMatrix
4
+ from sympy.matrices.expressions.companion import CompanionMatrix
5
+ from sympy.polys.polytools import Poly
6
+ from sympy.testing.pytest import raises
7
+
8
+
9
+ def test_creation():
10
+ x = Symbol('x')
11
+ y = Symbol('y')
12
+ raises(ValueError, lambda: CompanionMatrix(1))
13
+ raises(ValueError, lambda: CompanionMatrix(Poly([1], x)))
14
+ raises(ValueError, lambda: CompanionMatrix(Poly([2, 1], x)))
15
+ raises(ValueError, lambda: CompanionMatrix(Poly(x*y, [x, y])))
16
+ assert unchanged(CompanionMatrix, Poly([1, 2, 3], x))
17
+
18
+
19
+ def test_shape():
20
+ c0, c1, c2 = symbols('c0:3')
21
+ x = Symbol('x')
22
+ assert CompanionMatrix(Poly([1, c0], x)).shape == (1, 1)
23
+ assert CompanionMatrix(Poly([1, c1, c0], x)).shape == (2, 2)
24
+ assert CompanionMatrix(Poly([1, c2, c1, c0], x)).shape == (3, 3)
25
+
26
+
27
+ def test_entry():
28
+ c0, c1, c2 = symbols('c0:3')
29
+ x = Symbol('x')
30
+ A = CompanionMatrix(Poly([1, c2, c1, c0], x))
31
+ assert A[0, 0] == 0
32
+ assert A[1, 0] == 1
33
+ assert A[1, 1] == 0
34
+ assert A[2, 1] == 1
35
+ assert A[0, 2] == -c0
36
+ assert A[1, 2] == -c1
37
+ assert A[2, 2] == -c2
38
+
39
+
40
+ def test_as_explicit():
41
+ c0, c1, c2 = symbols('c0:3')
42
+ x = Symbol('x')
43
+ assert CompanionMatrix(Poly([1, c0], x)).as_explicit() == \
44
+ ImmutableDenseMatrix([-c0])
45
+ assert CompanionMatrix(Poly([1, c1, c0], x)).as_explicit() == \
46
+ ImmutableDenseMatrix([[0, -c0], [1, -c1]])
47
+ assert CompanionMatrix(Poly([1, c2, c1, c0], x)).as_explicit() == \
48
+ ImmutableDenseMatrix([[0, 0, -c0], [1, 0, -c1], [0, 1, -c2]])
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_derivatives.py ADDED
@@ -0,0 +1,477 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Some examples have been taken from:
3
+
4
+ http://www.math.uwaterloo.ca/~hwolkowi//matrixcookbook.pdf
5
+ """
6
+ from sympy import KroneckerProduct
7
+ from sympy.combinatorics import Permutation
8
+ from sympy.concrete.summations import Sum
9
+ from sympy.core.numbers import Rational
10
+ from sympy.core.singleton import S
11
+ from sympy.core.symbol import symbols
12
+ from sympy.functions.elementary.exponential import (exp, log)
13
+ from sympy.functions.elementary.miscellaneous import sqrt
14
+ from sympy.functions.elementary.trigonometric import (cos, sin, tan)
15
+ from sympy.functions.special.tensor_functions import KroneckerDelta
16
+ from sympy.matrices.expressions.determinant import Determinant
17
+ from sympy.matrices.expressions.diagonal import DiagMatrix
18
+ from sympy.matrices.expressions.hadamard import (HadamardPower, HadamardProduct, hadamard_product)
19
+ from sympy.matrices.expressions.inverse import Inverse
20
+ from sympy.matrices.expressions.matexpr import MatrixSymbol
21
+ from sympy.matrices.expressions.special import OneMatrix
22
+ from sympy.matrices.expressions.trace import Trace
23
+ from sympy.matrices.expressions.matadd import MatAdd
24
+ from sympy.matrices.expressions.matmul import MatMul
25
+ from sympy.matrices.expressions.special import (Identity, ZeroMatrix)
26
+ from sympy.tensor.array.array_derivatives import ArrayDerivative
27
+ from sympy.matrices.expressions import hadamard_power
28
+ from sympy.tensor.array.expressions.array_expressions import ArrayAdd, ArrayTensorProduct, PermuteDims
29
+
30
+ i, j, k = symbols("i j k")
31
+ m, n = symbols("m n")
32
+
33
+ X = MatrixSymbol("X", k, k)
34
+ x = MatrixSymbol("x", k, 1)
35
+ y = MatrixSymbol("y", k, 1)
36
+
37
+ A = MatrixSymbol("A", k, k)
38
+ B = MatrixSymbol("B", k, k)
39
+ C = MatrixSymbol("C", k, k)
40
+ D = MatrixSymbol("D", k, k)
41
+
42
+ a = MatrixSymbol("a", k, 1)
43
+ b = MatrixSymbol("b", k, 1)
44
+ c = MatrixSymbol("c", k, 1)
45
+ d = MatrixSymbol("d", k, 1)
46
+
47
+
48
+ KDelta = lambda i, j: KroneckerDelta(i, j, (0, k-1))
49
+
50
+
51
+ def _check_derivative_with_explicit_matrix(expr, x, diffexpr, dim=2):
52
+ # TODO: this is commented because it slows down the tests.
53
+ return
54
+
55
+ expr = expr.xreplace({k: dim})
56
+ x = x.xreplace({k: dim})
57
+ diffexpr = diffexpr.xreplace({k: dim})
58
+
59
+ expr = expr.as_explicit()
60
+ x = x.as_explicit()
61
+ diffexpr = diffexpr.as_explicit()
62
+
63
+ assert expr.diff(x).reshape(*diffexpr.shape).tomatrix() == diffexpr
64
+
65
+
66
+ def test_matrix_derivative_by_scalar():
67
+ assert A.diff(i) == ZeroMatrix(k, k)
68
+ assert (A*(X + B)*c).diff(i) == ZeroMatrix(k, 1)
69
+ assert x.diff(i) == ZeroMatrix(k, 1)
70
+ assert (x.T*y).diff(i) == ZeroMatrix(1, 1)
71
+ assert (x*x.T).diff(i) == ZeroMatrix(k, k)
72
+ assert (x + y).diff(i) == ZeroMatrix(k, 1)
73
+ assert hadamard_power(x, 2).diff(i) == ZeroMatrix(k, 1)
74
+ assert hadamard_power(x, i).diff(i).dummy_eq(
75
+ HadamardProduct(x.applyfunc(log), HadamardPower(x, i)))
76
+ assert hadamard_product(x, y).diff(i) == ZeroMatrix(k, 1)
77
+ assert hadamard_product(i*OneMatrix(k, 1), x, y).diff(i) == hadamard_product(x, y)
78
+ assert (i*x).diff(i) == x
79
+ assert (sin(i)*A*B*x).diff(i) == cos(i)*A*B*x
80
+ assert x.applyfunc(sin).diff(i) == ZeroMatrix(k, 1)
81
+ assert Trace(i**2*X).diff(i) == 2*i*Trace(X)
82
+
83
+ mu = symbols("mu")
84
+ expr = (2*mu*x)
85
+ assert expr.diff(x) == 2*mu*Identity(k)
86
+
87
+
88
+ def test_one_matrix():
89
+ assert MatMul(x.T, OneMatrix(k, 1)).diff(x) == OneMatrix(k, 1)
90
+
91
+
92
+ def test_matrix_derivative_non_matrix_result():
93
+ # This is a 4-dimensional array:
94
+ I = Identity(k)
95
+ AdA = PermuteDims(ArrayTensorProduct(I, I), Permutation(3)(1, 2))
96
+ assert A.diff(A) == AdA
97
+ assert A.T.diff(A) == PermuteDims(ArrayTensorProduct(I, I), Permutation(3)(1, 2, 3))
98
+ assert (2*A).diff(A) == PermuteDims(ArrayTensorProduct(2*I, I), Permutation(3)(1, 2))
99
+ assert MatAdd(A, A).diff(A) == ArrayAdd(AdA, AdA)
100
+ assert (A + B).diff(A) == AdA
101
+
102
+
103
+ def test_matrix_derivative_trivial_cases():
104
+ # Cookbook example 33:
105
+ # TODO: find a way to represent a four-dimensional zero-array:
106
+ assert X.diff(A) == ArrayDerivative(X, A)
107
+
108
+
109
+ def test_matrix_derivative_with_inverse():
110
+
111
+ # Cookbook example 61:
112
+ expr = a.T*Inverse(X)*b
113
+ assert expr.diff(X) == -Inverse(X).T*a*b.T*Inverse(X).T
114
+
115
+ # Cookbook example 62:
116
+ expr = Determinant(Inverse(X))
117
+ # Not implemented yet:
118
+ # assert expr.diff(X) == -Determinant(X.inv())*(X.inv()).T
119
+
120
+ # Cookbook example 63:
121
+ expr = Trace(A*Inverse(X)*B)
122
+ assert expr.diff(X) == -(X**(-1)*B*A*X**(-1)).T
123
+
124
+ # Cookbook example 64:
125
+ expr = Trace(Inverse(X + A))
126
+ assert expr.diff(X) == -(Inverse(X + A)).T**2
127
+
128
+
129
+ def test_matrix_derivative_vectors_and_scalars():
130
+
131
+ assert x.diff(x) == Identity(k)
132
+ assert x[i, 0].diff(x[m, 0]).doit() == KDelta(m, i)
133
+
134
+ assert x.T.diff(x) == Identity(k)
135
+
136
+ # Cookbook example 69:
137
+ expr = x.T*a
138
+ assert expr.diff(x) == a
139
+ assert expr[0, 0].diff(x[m, 0]).doit() == a[m, 0]
140
+ expr = a.T*x
141
+ assert expr.diff(x) == a
142
+
143
+ # Cookbook example 70:
144
+ expr = a.T*X*b
145
+ assert expr.diff(X) == a*b.T
146
+
147
+ # Cookbook example 71:
148
+ expr = a.T*X.T*b
149
+ assert expr.diff(X) == b*a.T
150
+
151
+ # Cookbook example 72:
152
+ expr = a.T*X*a
153
+ assert expr.diff(X) == a*a.T
154
+ expr = a.T*X.T*a
155
+ assert expr.diff(X) == a*a.T
156
+
157
+ # Cookbook example 77:
158
+ expr = b.T*X.T*X*c
159
+ assert expr.diff(X) == X*b*c.T + X*c*b.T
160
+
161
+ # Cookbook example 78:
162
+ expr = (B*x + b).T*C*(D*x + d)
163
+ assert expr.diff(x) == B.T*C*(D*x + d) + D.T*C.T*(B*x + b)
164
+
165
+ # Cookbook example 81:
166
+ expr = x.T*B*x
167
+ assert expr.diff(x) == B*x + B.T*x
168
+
169
+ # Cookbook example 82:
170
+ expr = b.T*X.T*D*X*c
171
+ assert expr.diff(X) == D.T*X*b*c.T + D*X*c*b.T
172
+
173
+ # Cookbook example 83:
174
+ expr = (X*b + c).T*D*(X*b + c)
175
+ assert expr.diff(X) == D*(X*b + c)*b.T + D.T*(X*b + c)*b.T
176
+ assert str(expr[0, 0].diff(X[m, n]).doit()) == \
177
+ 'b[n, 0]*Sum((c[_i_1, 0] + Sum(X[_i_1, _i_3]*b[_i_3, 0], (_i_3, 0, k - 1)))*D[_i_1, m], (_i_1, 0, k - 1)) + Sum((c[_i_2, 0] + Sum(X[_i_2, _i_4]*b[_i_4, 0], (_i_4, 0, k - 1)))*D[m, _i_2]*b[n, 0], (_i_2, 0, k - 1))'
178
+
179
+ # See https://github.com/sympy/sympy/issues/16504#issuecomment-1018339957
180
+ expr = x*x.T*x
181
+ I = Identity(k)
182
+ assert expr.diff(x) == KroneckerProduct(I, x.T*x) + 2*x*x.T
183
+
184
+
185
+ def test_matrix_derivatives_of_traces():
186
+
187
+ expr = Trace(A)*A
188
+ I = Identity(k)
189
+ assert expr.diff(A) == ArrayAdd(ArrayTensorProduct(I, A), PermuteDims(ArrayTensorProduct(Trace(A)*I, I), Permutation(3)(1, 2)))
190
+ assert expr[i, j].diff(A[m, n]).doit() == (
191
+ KDelta(i, m)*KDelta(j, n)*Trace(A) +
192
+ KDelta(m, n)*A[i, j]
193
+ )
194
+
195
+ ## First order:
196
+
197
+ # Cookbook example 99:
198
+ expr = Trace(X)
199
+ assert expr.diff(X) == Identity(k)
200
+ assert expr.rewrite(Sum).diff(X[m, n]).doit() == KDelta(m, n)
201
+
202
+ # Cookbook example 100:
203
+ expr = Trace(X*A)
204
+ assert expr.diff(X) == A.T
205
+ assert expr.rewrite(Sum).diff(X[m, n]).doit() == A[n, m]
206
+
207
+ # Cookbook example 101:
208
+ expr = Trace(A*X*B)
209
+ assert expr.diff(X) == A.T*B.T
210
+ assert expr.rewrite(Sum).diff(X[m, n]).doit().dummy_eq((A.T*B.T)[m, n])
211
+
212
+ # Cookbook example 102:
213
+ expr = Trace(A*X.T*B)
214
+ assert expr.diff(X) == B*A
215
+
216
+ # Cookbook example 103:
217
+ expr = Trace(X.T*A)
218
+ assert expr.diff(X) == A
219
+
220
+ # Cookbook example 104:
221
+ expr = Trace(A*X.T)
222
+ assert expr.diff(X) == A
223
+
224
+ # Cookbook example 105:
225
+ # TODO: TensorProduct is not supported
226
+ #expr = Trace(TensorProduct(A, X))
227
+ #assert expr.diff(X) == Trace(A)*Identity(k)
228
+
229
+ ## Second order:
230
+
231
+ # Cookbook example 106:
232
+ expr = Trace(X**2)
233
+ assert expr.diff(X) == 2*X.T
234
+
235
+ # Cookbook example 107:
236
+ expr = Trace(X**2*B)
237
+ assert expr.diff(X) == (X*B + B*X).T
238
+ expr = Trace(MatMul(X, X, B))
239
+ assert expr.diff(X) == (X*B + B*X).T
240
+
241
+ # Cookbook example 108:
242
+ expr = Trace(X.T*B*X)
243
+ assert expr.diff(X) == B*X + B.T*X
244
+
245
+ # Cookbook example 109:
246
+ expr = Trace(B*X*X.T)
247
+ assert expr.diff(X) == B*X + B.T*X
248
+
249
+ # Cookbook example 110:
250
+ expr = Trace(X*X.T*B)
251
+ assert expr.diff(X) == B*X + B.T*X
252
+
253
+ # Cookbook example 111:
254
+ expr = Trace(X*B*X.T)
255
+ assert expr.diff(X) == X*B.T + X*B
256
+
257
+ # Cookbook example 112:
258
+ expr = Trace(B*X.T*X)
259
+ assert expr.diff(X) == X*B.T + X*B
260
+
261
+ # Cookbook example 113:
262
+ expr = Trace(X.T*X*B)
263
+ assert expr.diff(X) == X*B.T + X*B
264
+
265
+ # Cookbook example 114:
266
+ expr = Trace(A*X*B*X)
267
+ assert expr.diff(X) == A.T*X.T*B.T + B.T*X.T*A.T
268
+
269
+ # Cookbook example 115:
270
+ expr = Trace(X.T*X)
271
+ assert expr.diff(X) == 2*X
272
+ expr = Trace(X*X.T)
273
+ assert expr.diff(X) == 2*X
274
+
275
+ # Cookbook example 116:
276
+ expr = Trace(B.T*X.T*C*X*B)
277
+ assert expr.diff(X) == C.T*X*B*B.T + C*X*B*B.T
278
+
279
+ # Cookbook example 117:
280
+ expr = Trace(X.T*B*X*C)
281
+ assert expr.diff(X) == B*X*C + B.T*X*C.T
282
+
283
+ # Cookbook example 118:
284
+ expr = Trace(A*X*B*X.T*C)
285
+ assert expr.diff(X) == A.T*C.T*X*B.T + C*A*X*B
286
+
287
+ # Cookbook example 119:
288
+ expr = Trace((A*X*B + C)*(A*X*B + C).T)
289
+ assert expr.diff(X) == 2*A.T*(A*X*B + C)*B.T
290
+
291
+ # Cookbook example 120:
292
+ # TODO: no support for TensorProduct.
293
+ # expr = Trace(TensorProduct(X, X))
294
+ # expr = Trace(X)*Trace(X)
295
+ # expr.diff(X) == 2*Trace(X)*Identity(k)
296
+
297
+ # Higher Order
298
+
299
+ # Cookbook example 121:
300
+ expr = Trace(X**k)
301
+ #assert expr.diff(X) == k*(X**(k-1)).T
302
+
303
+ # Cookbook example 122:
304
+ expr = Trace(A*X**k)
305
+ #assert expr.diff(X) == # Needs indices
306
+
307
+ # Cookbook example 123:
308
+ expr = Trace(B.T*X.T*C*X*X.T*C*X*B)
309
+ assert expr.diff(X) == C*X*X.T*C*X*B*B.T + C.T*X*B*B.T*X.T*C.T*X + C*X*B*B.T*X.T*C*X + C.T*X*X.T*C.T*X*B*B.T
310
+
311
+ # Other
312
+
313
+ # Cookbook example 124:
314
+ expr = Trace(A*X**(-1)*B)
315
+ assert expr.diff(X) == -Inverse(X).T*A.T*B.T*Inverse(X).T
316
+
317
+ # Cookbook example 125:
318
+ expr = Trace(Inverse(X.T*C*X)*A)
319
+ # Warning: result in the cookbook is equivalent if B and C are symmetric:
320
+ assert expr.diff(X) == - X.inv().T*A.T*X.inv()*C.inv().T*X.inv().T - X.inv().T*A*X.inv()*C.inv()*X.inv().T
321
+
322
+ # Cookbook example 126:
323
+ expr = Trace((X.T*C*X).inv()*(X.T*B*X))
324
+ assert expr.diff(X) == -2*C*X*(X.T*C*X).inv()*X.T*B*X*(X.T*C*X).inv() + 2*B*X*(X.T*C*X).inv()
325
+
326
+ # Cookbook example 127:
327
+ expr = Trace((A + X.T*C*X).inv()*(X.T*B*X))
328
+ # Warning: result in the cookbook is equivalent if B and C are symmetric:
329
+ assert expr.diff(X) == B*X*Inverse(A + X.T*C*X) - C*X*Inverse(A + X.T*C*X)*X.T*B*X*Inverse(A + X.T*C*X) - C.T*X*Inverse(A.T + (C*X).T*X)*X.T*B.T*X*Inverse(A.T + (C*X).T*X) + B.T*X*Inverse(A.T + (C*X).T*X)
330
+
331
+
332
+ def test_derivatives_of_complicated_matrix_expr():
333
+ expr = a.T*(A*X*(X.T*B + X*A) + B.T*X.T*(a*b.T*(X*D*X.T + X*(X.T*B + A*X)*D*B - X.T*C.T*A)*B + B*(X*D.T + B*A*X*A.T - 3*X*D))*B + 42*X*B*X.T*A.T*(X + X.T))*b
334
+ result = (B*(B*A*X*A.T - 3*X*D + X*D.T) + a*b.T*(X*(A*X + X.T*B)*D*B + X*D*X.T - X.T*C.T*A)*B)*B*b*a.T*B.T + B**2*b*a.T*B.T*X.T*a*b.T*X*D + 42*A*X*B.T*X.T*a*b.T + B*D*B**3*b*a.T*B.T*X.T*a*b.T*X + B*b*a.T*A*X + a*b.T*(42*X + 42*X.T)*A*X*B.T + b*a.T*X*B*a*b.T*B.T**2*X*D.T + b*a.T*X*B*a*b.T*B.T**3*D.T*(B.T*X + X.T*A.T) + 42*b*a.T*X*B*X.T*A.T + A.T*(42*X + 42*X.T)*b*a.T*X*B + A.T*B.T**2*X*B*a*b.T*B.T*A + A.T*a*b.T*(A.T*X.T + B.T*X) + A.T*X.T*b*a.T*X*B*a*b.T*B.T**3*D.T + B.T*X*B*a*b.T*B.T*D - 3*B.T*X*B*a*b.T*B.T*D.T - C.T*A*B**2*b*a.T*B.T*X.T*a*b.T + X.T*A.T*a*b.T*A.T
335
+ assert expr.diff(X) == result
336
+
337
+
338
+ def test_mixed_deriv_mixed_expressions():
339
+
340
+ expr = 3*Trace(A)
341
+ assert expr.diff(A) == 3*Identity(k)
342
+
343
+ expr = k
344
+ deriv = expr.diff(A)
345
+ assert isinstance(deriv, ZeroMatrix)
346
+ assert deriv == ZeroMatrix(k, k)
347
+
348
+ expr = Trace(A)**2
349
+ assert expr.diff(A) == (2*Trace(A))*Identity(k)
350
+
351
+ expr = Trace(A)*A
352
+ I = Identity(k)
353
+ assert expr.diff(A) == ArrayAdd(ArrayTensorProduct(I, A), PermuteDims(ArrayTensorProduct(Trace(A)*I, I), Permutation(3)(1, 2)))
354
+
355
+ expr = Trace(Trace(A)*A)
356
+ assert expr.diff(A) == (2*Trace(A))*Identity(k)
357
+
358
+ expr = Trace(Trace(Trace(A)*A)*A)
359
+ assert expr.diff(A) == (3*Trace(A)**2)*Identity(k)
360
+
361
+
362
+ def test_derivatives_matrix_norms():
363
+
364
+ expr = x.T*y
365
+ assert expr.diff(x) == y
366
+ assert expr[0, 0].diff(x[m, 0]).doit() == y[m, 0]
367
+
368
+ expr = (x.T*y)**S.Half
369
+ assert expr.diff(x) == y/(2*sqrt(x.T*y))
370
+
371
+ expr = (x.T*x)**S.Half
372
+ assert expr.diff(x) == x*(x.T*x)**Rational(-1, 2)
373
+
374
+ expr = (c.T*a*x.T*b)**S.Half
375
+ assert expr.diff(x) == b*a.T*c/sqrt(c.T*a*x.T*b)/2
376
+
377
+ expr = (c.T*a*x.T*b)**Rational(1, 3)
378
+ assert expr.diff(x) == b*a.T*c*(c.T*a*x.T*b)**Rational(-2, 3)/3
379
+
380
+ expr = (a.T*X*b)**S.Half
381
+ assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*b.T
382
+
383
+ expr = d.T*x*(a.T*X*b)**S.Half*y.T*c
384
+ assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*x.T*d*y.T*c*b.T
385
+
386
+
387
+ def test_derivatives_elementwise_applyfunc():
388
+
389
+ expr = x.applyfunc(tan)
390
+ assert expr.diff(x).dummy_eq(
391
+ DiagMatrix(x.applyfunc(lambda x: tan(x)**2 + 1)))
392
+ assert expr[i, 0].diff(x[m, 0]).doit() == (tan(x[i, 0])**2 + 1)*KDelta(i, m)
393
+ _check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
394
+
395
+ expr = (i**2*x).applyfunc(sin)
396
+ assert expr.diff(i).dummy_eq(
397
+ HadamardProduct((2*i)*x, (i**2*x).applyfunc(cos)))
398
+ assert expr[i, 0].diff(i).doit() == 2*i*x[i, 0]*cos(i**2*x[i, 0])
399
+ _check_derivative_with_explicit_matrix(expr, i, expr.diff(i))
400
+
401
+ expr = (log(i)*A*B).applyfunc(sin)
402
+ assert expr.diff(i).dummy_eq(
403
+ HadamardProduct(A*B/i, (log(i)*A*B).applyfunc(cos)))
404
+ _check_derivative_with_explicit_matrix(expr, i, expr.diff(i))
405
+
406
+ expr = A*x.applyfunc(exp)
407
+ # TODO: restore this result (currently returning the transpose):
408
+ # assert expr.diff(x).dummy_eq(DiagMatrix(x.applyfunc(exp))*A.T)
409
+ _check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
410
+
411
+ expr = x.T*A*x + k*y.applyfunc(sin).T*x
412
+ assert expr.diff(x).dummy_eq(A.T*x + A*x + k*y.applyfunc(sin))
413
+ _check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
414
+
415
+ expr = x.applyfunc(sin).T*y
416
+ # TODO: restore (currently returning the transpose):
417
+ # assert expr.diff(x).dummy_eq(DiagMatrix(x.applyfunc(cos))*y)
418
+ _check_derivative_with_explicit_matrix(expr, x, expr.diff(x))
419
+
420
+ expr = (a.T * X * b).applyfunc(sin)
421
+ assert expr.diff(X).dummy_eq(a*(a.T*X*b).applyfunc(cos)*b.T)
422
+ _check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
423
+
424
+ expr = a.T * X.applyfunc(sin) * b
425
+ assert expr.diff(X).dummy_eq(
426
+ DiagMatrix(a)*X.applyfunc(cos)*DiagMatrix(b))
427
+ _check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
428
+
429
+ expr = a.T * (A*X*B).applyfunc(sin) * b
430
+ assert expr.diff(X).dummy_eq(
431
+ A.T*DiagMatrix(a)*(A*X*B).applyfunc(cos)*DiagMatrix(b)*B.T)
432
+ _check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
433
+
434
+ expr = a.T * (A*X*b).applyfunc(sin) * b.T
435
+ # TODO: not implemented
436
+ #assert expr.diff(X) == ...
437
+ #_check_derivative_with_explicit_matrix(expr, X, expr.diff(X))
438
+
439
+ expr = a.T*A*X.applyfunc(sin)*B*b
440
+ assert expr.diff(X).dummy_eq(
441
+ HadamardProduct(A.T * a * b.T * B.T, X.applyfunc(cos)))
442
+
443
+ expr = a.T * (A*X.applyfunc(sin)*B).applyfunc(log) * b
444
+ # TODO: wrong
445
+ # assert expr.diff(X) == A.T*DiagMatrix(a)*(A*X.applyfunc(sin)*B).applyfunc(Lambda(k, 1/k))*DiagMatrix(b)*B.T
446
+
447
+ expr = a.T * (X.applyfunc(sin)).applyfunc(log) * b
448
+ # TODO: wrong
449
+ # assert expr.diff(X) == DiagMatrix(a)*X.applyfunc(sin).applyfunc(Lambda(k, 1/k))*DiagMatrix(b)
450
+
451
+
452
+ def test_derivatives_of_hadamard_expressions():
453
+
454
+ # Hadamard Product
455
+
456
+ expr = hadamard_product(a, x, b)
457
+ assert expr.diff(x) == DiagMatrix(hadamard_product(b, a))
458
+
459
+ expr = a.T*hadamard_product(A, X, B)*b
460
+ assert expr.diff(X) == HadamardProduct(a*b.T, A, B)
461
+
462
+ # Hadamard Power
463
+
464
+ expr = hadamard_power(x, 2)
465
+ assert expr.diff(x).doit() == 2*DiagMatrix(x)
466
+
467
+ expr = hadamard_power(x.T, 2)
468
+ assert expr.diff(x).doit() == 2*DiagMatrix(x)
469
+
470
+ expr = hadamard_power(x, S.Half)
471
+ assert expr.diff(x) == S.Half*DiagMatrix(hadamard_power(x, Rational(-1, 2)))
472
+
473
+ expr = hadamard_power(a.T*X*b, 2)
474
+ assert expr.diff(X) == 2*a*a.T*X*b*b.T
475
+
476
+ expr = hadamard_power(a.T*X*b, S.Half)
477
+ assert expr.diff(X) == a/(2*sqrt(a.T*X*b))*b.T
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_determinant.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import S, symbols
2
+ from sympy.matrices import eye, ones, Matrix, ShapeError
3
+ from sympy.matrices.expressions import (
4
+ Identity, MatrixExpr, MatrixSymbol, Determinant,
5
+ det, per, ZeroMatrix, Transpose,
6
+ Permanent
7
+ )
8
+ from sympy.matrices.expressions.special import OneMatrix
9
+ from sympy.testing.pytest import raises
10
+ from sympy.assumptions.ask import Q
11
+ from sympy.assumptions.refine import refine
12
+
13
+ n = symbols('n', integer=True)
14
+ A = MatrixSymbol('A', n, n)
15
+ B = MatrixSymbol('B', n, n)
16
+ C = MatrixSymbol('C', 3, 4)
17
+
18
+
19
+ def test_det():
20
+ assert isinstance(Determinant(A), Determinant)
21
+ assert not isinstance(Determinant(A), MatrixExpr)
22
+ raises(ShapeError, lambda: Determinant(C))
23
+ assert det(eye(3)) == 1
24
+ assert det(Matrix(3, 3, [1, 3, 2, 4, 1, 3, 2, 5, 2])) == 17
25
+ _ = A / det(A) # Make sure this is possible
26
+
27
+ raises(TypeError, lambda: Determinant(S.One))
28
+
29
+ assert Determinant(A).arg is A
30
+
31
+ def test_eval_determinant():
32
+ assert det(Identity(n)) == 1
33
+ assert det(ZeroMatrix(n, n)) == 0
34
+ assert det(OneMatrix(n, n)) == Determinant(OneMatrix(n, n))
35
+ assert det(OneMatrix(1, 1)) == 1
36
+ assert det(OneMatrix(2, 2)) == 0
37
+ assert det(Transpose(A)) == det(A)
38
+
39
+
40
+ def test_refine():
41
+ assert refine(det(A), Q.orthogonal(A)) == 1
42
+ assert refine(det(A), Q.singular(A)) == 0
43
+ assert refine(det(A), Q.unit_triangular(A)) == 1
44
+ assert refine(det(A), Q.normal(A)) == det(A)
45
+
46
+
47
+ def test_commutative():
48
+ det_a = Determinant(A)
49
+ det_b = Determinant(B)
50
+ assert det_a.is_commutative
51
+ assert det_b.is_commutative
52
+ assert det_a * det_b == det_b * det_a
53
+
54
+ def test_permanent():
55
+ assert isinstance(Permanent(A), Permanent)
56
+ assert not isinstance(Permanent(A), MatrixExpr)
57
+ assert isinstance(Permanent(C), Permanent)
58
+ assert Permanent(ones(3, 3)).doit() == 6
59
+ _ = C / per(C)
60
+ assert per(Matrix(3, 3, [1, 3, 2, 4, 1, 3, 2, 5, 2])) == 103
61
+ raises(TypeError, lambda: Permanent(S.One))
62
+ assert Permanent(A).arg is A
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_diagonal.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.matrices.expressions import MatrixSymbol
2
+ from sympy.matrices.expressions.diagonal import DiagonalMatrix, DiagonalOf, DiagMatrix, diagonalize_vector
3
+ from sympy.assumptions.ask import (Q, ask)
4
+ from sympy.core.symbol import Symbol
5
+ from sympy.functions.special.tensor_functions import KroneckerDelta
6
+ from sympy.matrices.dense import Matrix
7
+ from sympy.matrices.expressions.matmul import MatMul
8
+ from sympy.matrices.expressions.special import Identity
9
+ from sympy.testing.pytest import raises
10
+
11
+
12
+ n = Symbol('n')
13
+ m = Symbol('m')
14
+
15
+
16
+ def test_DiagonalMatrix():
17
+ x = MatrixSymbol('x', n, m)
18
+ D = DiagonalMatrix(x)
19
+ assert D.diagonal_length is None
20
+ assert D.shape == (n, m)
21
+
22
+ x = MatrixSymbol('x', n, n)
23
+ D = DiagonalMatrix(x)
24
+ assert D.diagonal_length == n
25
+ assert D.shape == (n, n)
26
+ assert D[1, 2] == 0
27
+ assert D[1, 1] == x[1, 1]
28
+ i = Symbol('i')
29
+ j = Symbol('j')
30
+ x = MatrixSymbol('x', 3, 3)
31
+ ij = DiagonalMatrix(x)[i, j]
32
+ assert ij != 0
33
+ assert ij.subs({i:0, j:0}) == x[0, 0]
34
+ assert ij.subs({i:0, j:1}) == 0
35
+ assert ij.subs({i:1, j:1}) == x[1, 1]
36
+ assert ask(Q.diagonal(D)) # affirm that D is diagonal
37
+
38
+ x = MatrixSymbol('x', n, 3)
39
+ D = DiagonalMatrix(x)
40
+ assert D.diagonal_length == 3
41
+ assert D.shape == (n, 3)
42
+ assert D[2, m] == KroneckerDelta(2, m)*x[2, m]
43
+ assert D[3, m] == 0
44
+ raises(IndexError, lambda: D[m, 3])
45
+
46
+ x = MatrixSymbol('x', 3, n)
47
+ D = DiagonalMatrix(x)
48
+ assert D.diagonal_length == 3
49
+ assert D.shape == (3, n)
50
+ assert D[m, 2] == KroneckerDelta(m, 2)*x[m, 2]
51
+ assert D[m, 3] == 0
52
+ raises(IndexError, lambda: D[3, m])
53
+
54
+ x = MatrixSymbol('x', n, m)
55
+ D = DiagonalMatrix(x)
56
+ assert D.diagonal_length is None
57
+ assert D.shape == (n, m)
58
+ assert D[m, 4] != 0
59
+
60
+ x = MatrixSymbol('x', 3, 4)
61
+ assert [DiagonalMatrix(x)[i] for i in range(12)] == [
62
+ x[0, 0], 0, 0, 0, 0, x[1, 1], 0, 0, 0, 0, x[2, 2], 0]
63
+
64
+ # shape is retained, issue 12427
65
+ assert (
66
+ DiagonalMatrix(MatrixSymbol('x', 3, 4))*
67
+ DiagonalMatrix(MatrixSymbol('x', 4, 2))).shape == (3, 2)
68
+
69
+
70
+ def test_DiagonalOf():
71
+ x = MatrixSymbol('x', n, n)
72
+ d = DiagonalOf(x)
73
+ assert d.shape == (n, 1)
74
+ assert d.diagonal_length == n
75
+ assert d[2, 0] == d[2] == x[2, 2]
76
+
77
+ x = MatrixSymbol('x', n, m)
78
+ d = DiagonalOf(x)
79
+ assert d.shape == (None, 1)
80
+ assert d.diagonal_length is None
81
+ assert d[2, 0] == d[2] == x[2, 2]
82
+
83
+ d = DiagonalOf(MatrixSymbol('x', 4, 3))
84
+ assert d.shape == (3, 1)
85
+ d = DiagonalOf(MatrixSymbol('x', n, 3))
86
+ assert d.shape == (3, 1)
87
+ d = DiagonalOf(MatrixSymbol('x', 3, n))
88
+ assert d.shape == (3, 1)
89
+ x = MatrixSymbol('x', n, m)
90
+ assert [DiagonalOf(x)[i] for i in range(4)] ==[
91
+ x[0, 0], x[1, 1], x[2, 2], x[3, 3]]
92
+
93
+
94
+ def test_DiagMatrix():
95
+ x = MatrixSymbol('x', n, 1)
96
+ d = DiagMatrix(x)
97
+ assert d.shape == (n, n)
98
+ assert d[0, 1] == 0
99
+ assert d[0, 0] == x[0, 0]
100
+
101
+ a = MatrixSymbol('a', 1, 1)
102
+ d = diagonalize_vector(a)
103
+ assert isinstance(d, MatrixSymbol)
104
+ assert a == d
105
+ assert diagonalize_vector(Identity(3)) == Identity(3)
106
+ assert DiagMatrix(Identity(3)).doit() == Identity(3)
107
+ assert isinstance(DiagMatrix(Identity(3)), DiagMatrix)
108
+
109
+ # A diagonal matrix is equal to its transpose:
110
+ assert DiagMatrix(x).T == DiagMatrix(x)
111
+ assert diagonalize_vector(x.T) == DiagMatrix(x)
112
+
113
+ dx = DiagMatrix(x)
114
+ assert dx[0, 0] == x[0, 0]
115
+ assert dx[1, 1] == x[1, 0]
116
+ assert dx[0, 1] == 0
117
+ assert dx[0, m] == x[0, 0]*KroneckerDelta(0, m)
118
+
119
+ z = MatrixSymbol('z', 1, n)
120
+ dz = DiagMatrix(z)
121
+ assert dz[0, 0] == z[0, 0]
122
+ assert dz[1, 1] == z[0, 1]
123
+ assert dz[0, 1] == 0
124
+ assert dz[0, m] == z[0, m]*KroneckerDelta(0, m)
125
+
126
+ v = MatrixSymbol('v', 3, 1)
127
+ dv = DiagMatrix(v)
128
+ assert dv.as_explicit() == Matrix([
129
+ [v[0, 0], 0, 0],
130
+ [0, v[1, 0], 0],
131
+ [0, 0, v[2, 0]],
132
+ ])
133
+
134
+ v = MatrixSymbol('v', 1, 3)
135
+ dv = DiagMatrix(v)
136
+ assert dv.as_explicit() == Matrix([
137
+ [v[0, 0], 0, 0],
138
+ [0, v[0, 1], 0],
139
+ [0, 0, v[0, 2]],
140
+ ])
141
+
142
+ dv = DiagMatrix(3*v)
143
+ assert dv.args == (3*v,)
144
+ assert dv.doit() == 3*DiagMatrix(v)
145
+ assert isinstance(dv.doit(), MatMul)
146
+
147
+ a = MatrixSymbol("a", 3, 1).as_explicit()
148
+ expr = DiagMatrix(a)
149
+ result = Matrix([
150
+ [a[0, 0], 0, 0],
151
+ [0, a[1, 0], 0],
152
+ [0, 0, a[2, 0]],
153
+ ])
154
+ assert expr.doit() == result
155
+ expr = DiagMatrix(a.T)
156
+ assert expr.doit() == result
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_dotproduct.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.expr import unchanged
2
+ from sympy.core.mul import Mul
3
+ from sympy.matrices import Matrix
4
+ from sympy.matrices.expressions.matexpr import MatrixSymbol
5
+ from sympy.matrices.expressions.dotproduct import DotProduct
6
+ from sympy.testing.pytest import raises
7
+
8
+
9
+ A = Matrix(3, 1, [1, 2, 3])
10
+ B = Matrix(3, 1, [1, 3, 5])
11
+ C = Matrix(4, 1, [1, 2, 4, 5])
12
+ D = Matrix(2, 2, [1, 2, 3, 4])
13
+
14
+ def test_docproduct():
15
+ assert DotProduct(A, B).doit() == 22
16
+ assert DotProduct(A.T, B).doit() == 22
17
+ assert DotProduct(A, B.T).doit() == 22
18
+ assert DotProduct(A.T, B.T).doit() == 22
19
+
20
+ raises(TypeError, lambda: DotProduct(1, A))
21
+ raises(TypeError, lambda: DotProduct(A, 1))
22
+ raises(TypeError, lambda: DotProduct(A, D))
23
+ raises(TypeError, lambda: DotProduct(D, A))
24
+
25
+ raises(TypeError, lambda: DotProduct(B, C).doit())
26
+
27
+ def test_dotproduct_symbolic():
28
+ A = MatrixSymbol('A', 3, 1)
29
+ B = MatrixSymbol('B', 3, 1)
30
+
31
+ dot = DotProduct(A, B)
32
+ assert dot.is_scalar == True
33
+ assert unchanged(Mul, 2, dot)
34
+ # XXX Fix forced evaluation for arithmetics with matrix expressions
35
+ assert dot * A == (A[0, 0]*B[0, 0] + A[1, 0]*B[1, 0] + A[2, 0]*B[2, 0])*A
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_factorizations.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.matrices.expressions.factorizations import lu, LofCholesky, qr, svd
2
+ from sympy.assumptions.ask import (Q, ask)
3
+ from sympy.core.symbol import Symbol
4
+ from sympy.matrices.expressions.matexpr import MatrixSymbol
5
+
6
+ n = Symbol('n')
7
+ X = MatrixSymbol('X', n, n)
8
+
9
+ def test_LU():
10
+ L, U = lu(X)
11
+ assert L.shape == U.shape == X.shape
12
+ assert ask(Q.lower_triangular(L))
13
+ assert ask(Q.upper_triangular(U))
14
+
15
+ def test_Cholesky():
16
+ LofCholesky(X)
17
+
18
+ def test_QR():
19
+ Q_, R = qr(X)
20
+ assert Q_.shape == R.shape == X.shape
21
+ assert ask(Q.orthogonal(Q_))
22
+ assert ask(Q.upper_triangular(R))
23
+
24
+ def test_svd():
25
+ U, S, V = svd(X)
26
+ assert U.shape == S.shape == V.shape == X.shape
27
+ assert ask(Q.orthogonal(U))
28
+ assert ask(Q.orthogonal(V))
29
+ assert ask(Q.diagonal(S))
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_fourier.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.assumptions.ask import (Q, ask)
2
+ from sympy.core.numbers import (I, Rational)
3
+ from sympy.core.singleton import S
4
+ from sympy.functions.elementary.complexes import Abs
5
+ from sympy.functions.elementary.exponential import exp
6
+ from sympy.functions.elementary.miscellaneous import sqrt
7
+ from sympy.simplify.simplify import simplify
8
+ from sympy.core.symbol import symbols
9
+ from sympy.matrices.expressions.fourier import DFT, IDFT
10
+ from sympy.matrices import det, Matrix, Identity
11
+ from sympy.testing.pytest import raises
12
+
13
+
14
+ def test_dft_creation():
15
+ assert DFT(2)
16
+ assert DFT(0)
17
+ raises(ValueError, lambda: DFT(-1))
18
+ raises(ValueError, lambda: DFT(2.0))
19
+ raises(ValueError, lambda: DFT(2 + 1j))
20
+
21
+ n = symbols('n')
22
+ assert DFT(n)
23
+ n = symbols('n', integer=False)
24
+ raises(ValueError, lambda: DFT(n))
25
+ n = symbols('n', negative=True)
26
+ raises(ValueError, lambda: DFT(n))
27
+
28
+
29
+ def test_dft():
30
+ n, i, j = symbols('n i j')
31
+ assert DFT(4).shape == (4, 4)
32
+ assert ask(Q.unitary(DFT(4)))
33
+ assert Abs(simplify(det(Matrix(DFT(4))))) == 1
34
+ assert DFT(n)*IDFT(n) == Identity(n)
35
+ assert DFT(n)[i, j] == exp(-2*S.Pi*I/n)**(i*j) / sqrt(n)
36
+
37
+
38
+ def test_dft2():
39
+ assert DFT(1).as_explicit() == Matrix([[1]])
40
+ assert DFT(2).as_explicit() == 1/sqrt(2)*Matrix([[1,1],[1,-1]])
41
+ assert DFT(4).as_explicit() == Matrix([[S.Half, S.Half, S.Half, S.Half],
42
+ [S.Half, -I/2, Rational(-1,2), I/2],
43
+ [S.Half, Rational(-1,2), S.Half, Rational(-1,2)],
44
+ [S.Half, I/2, Rational(-1,2), -I/2]])
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_funcmatrix.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import symbols, Lambda
2
+ from sympy.functions import KroneckerDelta
3
+ from sympy.matrices import Matrix
4
+ from sympy.matrices.expressions import FunctionMatrix, MatrixExpr, Identity
5
+ from sympy.testing.pytest import raises, warns
6
+ from sympy.utilities.exceptions import SymPyDeprecationWarning
7
+
8
+
9
+ def test_funcmatrix_creation():
10
+ i, j, k = symbols('i j k')
11
+ assert FunctionMatrix(2, 2, Lambda((i, j), 0))
12
+ assert FunctionMatrix(0, 0, Lambda((i, j), 0))
13
+
14
+ raises(ValueError, lambda: FunctionMatrix(-1, 0, Lambda((i, j), 0)))
15
+ raises(ValueError, lambda: FunctionMatrix(2.0, 0, Lambda((i, j), 0)))
16
+ raises(ValueError, lambda: FunctionMatrix(2j, 0, Lambda((i, j), 0)))
17
+ raises(ValueError, lambda: FunctionMatrix(0, -1, Lambda((i, j), 0)))
18
+ raises(ValueError, lambda: FunctionMatrix(0, 2.0, Lambda((i, j), 0)))
19
+ raises(ValueError, lambda: FunctionMatrix(0, 2j, Lambda((i, j), 0)))
20
+
21
+ raises(ValueError, lambda: FunctionMatrix(2, 2, Lambda(i, 0)))
22
+ with warns(SymPyDeprecationWarning, test_stacklevel=False):
23
+ # This raises a deprecation warning from sympify()
24
+ raises(ValueError, lambda: FunctionMatrix(2, 2, lambda i, j: 0))
25
+ raises(ValueError, lambda: FunctionMatrix(2, 2, Lambda((i,), 0)))
26
+ raises(ValueError, lambda: FunctionMatrix(2, 2, Lambda((i, j, k), 0)))
27
+ raises(ValueError, lambda: FunctionMatrix(2, 2, i+j))
28
+ assert FunctionMatrix(2, 2, "lambda i, j: 0") == \
29
+ FunctionMatrix(2, 2, Lambda((i, j), 0))
30
+
31
+ m = FunctionMatrix(2, 2, KroneckerDelta)
32
+ assert m.as_explicit() == Identity(2).as_explicit()
33
+ assert m.args[2].dummy_eq(Lambda((i, j), KroneckerDelta(i, j)))
34
+
35
+ n = symbols('n')
36
+ assert FunctionMatrix(n, n, Lambda((i, j), 0))
37
+ n = symbols('n', integer=False)
38
+ raises(ValueError, lambda: FunctionMatrix(n, n, Lambda((i, j), 0)))
39
+ n = symbols('n', negative=True)
40
+ raises(ValueError, lambda: FunctionMatrix(n, n, Lambda((i, j), 0)))
41
+
42
+
43
+ def test_funcmatrix():
44
+ i, j = symbols('i,j')
45
+ X = FunctionMatrix(3, 3, Lambda((i, j), i - j))
46
+ assert X[1, 1] == 0
47
+ assert X[1, 2] == -1
48
+ assert X.shape == (3, 3)
49
+ assert X.rows == X.cols == 3
50
+ assert Matrix(X) == Matrix(3, 3, lambda i, j: i - j)
51
+ assert isinstance(X*X + X, MatrixExpr)
52
+
53
+
54
+ def test_replace_issue():
55
+ X = FunctionMatrix(3, 3, KroneckerDelta)
56
+ assert X.replace(lambda x: True, lambda x: x) == X
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_hadamard.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.matrices.dense import Matrix, eye
2
+ from sympy.matrices.common import ShapeError
3
+ from sympy.matrices.expressions.matadd import MatAdd
4
+ from sympy.matrices.expressions.special import Identity, OneMatrix, ZeroMatrix
5
+ from sympy.core import symbols
6
+ from sympy.testing.pytest import raises, warns_deprecated_sympy
7
+
8
+ from sympy.matrices import MatrixSymbol
9
+ from sympy.matrices.expressions import (HadamardProduct, hadamard_product, HadamardPower, hadamard_power)
10
+
11
+ n, m, k = symbols('n,m,k')
12
+ Z = MatrixSymbol('Z', n, n)
13
+ A = MatrixSymbol('A', n, m)
14
+ B = MatrixSymbol('B', n, m)
15
+ C = MatrixSymbol('C', m, k)
16
+
17
+
18
+ def test_HadamardProduct():
19
+ assert HadamardProduct(A, B, A).shape == A.shape
20
+
21
+ raises(TypeError, lambda: HadamardProduct(A, n))
22
+ raises(TypeError, lambda: HadamardProduct(A, 1))
23
+
24
+ assert HadamardProduct(A, 2*B, -A)[1, 1] == \
25
+ -2 * A[1, 1] * B[1, 1] * A[1, 1]
26
+
27
+ mix = HadamardProduct(Z*A, B)*C
28
+ assert mix.shape == (n, k)
29
+
30
+ assert set(HadamardProduct(A, B, A).T.args) == {A.T, A.T, B.T}
31
+
32
+
33
+ def test_HadamardProduct_isnt_commutative():
34
+ assert HadamardProduct(A, B) != HadamardProduct(B, A)
35
+
36
+
37
+ def test_mixed_indexing():
38
+ X = MatrixSymbol('X', 2, 2)
39
+ Y = MatrixSymbol('Y', 2, 2)
40
+ Z = MatrixSymbol('Z', 2, 2)
41
+
42
+ assert (X*HadamardProduct(Y, Z))[0, 0] == \
43
+ X[0, 0]*Y[0, 0]*Z[0, 0] + X[0, 1]*Y[1, 0]*Z[1, 0]
44
+
45
+
46
+ def test_canonicalize():
47
+ X = MatrixSymbol('X', 2, 2)
48
+ Y = MatrixSymbol('Y', 2, 2)
49
+ with warns_deprecated_sympy():
50
+ expr = HadamardProduct(X, check=False)
51
+ assert isinstance(expr, HadamardProduct)
52
+ expr2 = expr.doit() # unpack is called
53
+ assert isinstance(expr2, MatrixSymbol)
54
+ Z = ZeroMatrix(2, 2)
55
+ U = OneMatrix(2, 2)
56
+ assert HadamardProduct(Z, X).doit() == Z
57
+ assert HadamardProduct(U, X, X, U).doit() == HadamardPower(X, 2)
58
+ assert HadamardProduct(X, U, Y).doit() == HadamardProduct(X, Y)
59
+ assert HadamardProduct(X, Z, U, Y).doit() == Z
60
+
61
+
62
+ def test_hadamard():
63
+ m, n, p = symbols('m, n, p', integer=True)
64
+ A = MatrixSymbol('A', m, n)
65
+ B = MatrixSymbol('B', m, n)
66
+ X = MatrixSymbol('X', m, m)
67
+ I = Identity(m)
68
+
69
+ raises(TypeError, lambda: hadamard_product())
70
+ assert hadamard_product(A) == A
71
+ assert isinstance(hadamard_product(A, B), HadamardProduct)
72
+ assert hadamard_product(A, B).doit() == hadamard_product(A, B)
73
+ assert hadamard_product(X, I) == HadamardProduct(I, X)
74
+ assert isinstance(hadamard_product(X, I), HadamardProduct)
75
+
76
+ a = MatrixSymbol("a", k, 1)
77
+ expr = MatAdd(ZeroMatrix(k, 1), OneMatrix(k, 1))
78
+ expr = HadamardProduct(expr, a)
79
+ assert expr.doit() == a
80
+
81
+ raises(ValueError, lambda: HadamardProduct())
82
+
83
+
84
+ def test_hadamard_product_with_explicit_mat():
85
+ A = MatrixSymbol("A", 3, 3).as_explicit()
86
+ B = MatrixSymbol("B", 3, 3).as_explicit()
87
+ X = MatrixSymbol("X", 3, 3)
88
+ expr = hadamard_product(A, B)
89
+ ret = Matrix([i*j for i, j in zip(A, B)]).reshape(3, 3)
90
+ assert expr == ret
91
+ expr = hadamard_product(A, X, B)
92
+ assert expr == HadamardProduct(ret, X)
93
+ expr = hadamard_product(eye(3), A)
94
+ assert expr == Matrix([[A[0, 0], 0, 0], [0, A[1, 1], 0], [0, 0, A[2, 2]]])
95
+ expr = hadamard_product(eye(3), eye(3))
96
+ assert expr == eye(3)
97
+
98
+
99
+ def test_hadamard_power():
100
+ m, n, p = symbols('m, n, p', integer=True)
101
+ A = MatrixSymbol('A', m, n)
102
+
103
+ assert hadamard_power(A, 1) == A
104
+ assert isinstance(hadamard_power(A, 2), HadamardPower)
105
+ assert hadamard_power(A, n).T == hadamard_power(A.T, n)
106
+ assert hadamard_power(A, n)[0, 0] == A[0, 0]**n
107
+ assert hadamard_power(m, n) == m**n
108
+ raises(ValueError, lambda: hadamard_power(A, A))
109
+
110
+
111
+ def test_hadamard_power_explicit():
112
+ A = MatrixSymbol('A', 2, 2)
113
+ B = MatrixSymbol('B', 2, 2)
114
+ a, b = symbols('a b')
115
+
116
+ assert HadamardPower(a, b) == a**b
117
+
118
+ assert HadamardPower(a, B).as_explicit() == \
119
+ Matrix([
120
+ [a**B[0, 0], a**B[0, 1]],
121
+ [a**B[1, 0], a**B[1, 1]]])
122
+
123
+ assert HadamardPower(A, b).as_explicit() == \
124
+ Matrix([
125
+ [A[0, 0]**b, A[0, 1]**b],
126
+ [A[1, 0]**b, A[1, 1]**b]])
127
+
128
+ assert HadamardPower(A, B).as_explicit() == \
129
+ Matrix([
130
+ [A[0, 0]**B[0, 0], A[0, 1]**B[0, 1]],
131
+ [A[1, 0]**B[1, 0], A[1, 1]**B[1, 1]]])
132
+
133
+
134
+ def test_shape_error():
135
+ A = MatrixSymbol('A', 2, 3)
136
+ B = MatrixSymbol('B', 3, 3)
137
+ raises(ShapeError, lambda: HadamardProduct(A, B))
138
+ raises(ShapeError, lambda: HadamardPower(A, B))
139
+ A = MatrixSymbol('A', 3, 2)
140
+ raises(ShapeError, lambda: HadamardProduct(A, B))
141
+ raises(ShapeError, lambda: HadamardPower(A, B))
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_indexing.py ADDED
@@ -0,0 +1,299 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.concrete.summations import Sum
2
+ from sympy.core.symbol import symbols, Symbol, Dummy
3
+ from sympy.functions.elementary.miscellaneous import sqrt
4
+ from sympy.functions.special.tensor_functions import KroneckerDelta
5
+ from sympy.matrices.dense import eye
6
+ from sympy.matrices.expressions.blockmatrix import BlockMatrix
7
+ from sympy.matrices.expressions.hadamard import HadamardPower
8
+ from sympy.matrices.expressions.matexpr import (MatrixSymbol,
9
+ MatrixExpr, MatrixElement)
10
+ from sympy.matrices.expressions.matpow import MatPow
11
+ from sympy.matrices.expressions.special import (ZeroMatrix, Identity,
12
+ OneMatrix)
13
+ from sympy.matrices.expressions.trace import Trace, trace
14
+ from sympy.matrices.immutable import ImmutableMatrix
15
+ from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
16
+ from sympy.testing.pytest import XFAIL, raises
17
+
18
+ k, l, m, n = symbols('k l m n', integer=True)
19
+ i, j = symbols('i j', integer=True)
20
+
21
+ W = MatrixSymbol('W', k, l)
22
+ X = MatrixSymbol('X', l, m)
23
+ Y = MatrixSymbol('Y', l, m)
24
+ Z = MatrixSymbol('Z', m, n)
25
+
26
+ X1 = MatrixSymbol('X1', m, m)
27
+ X2 = MatrixSymbol('X2', m, m)
28
+ X3 = MatrixSymbol('X3', m, m)
29
+ X4 = MatrixSymbol('X4', m, m)
30
+
31
+ A = MatrixSymbol('A', 2, 2)
32
+ B = MatrixSymbol('B', 2, 2)
33
+ x = MatrixSymbol('x', 1, 2)
34
+ y = MatrixSymbol('x', 2, 1)
35
+
36
+
37
+ def test_symbolic_indexing():
38
+ x12 = X[1, 2]
39
+ assert all(s in str(x12) for s in ['1', '2', X.name])
40
+ # We don't care about the exact form of this. We do want to make sure
41
+ # that all of these features are present
42
+
43
+
44
+ def test_add_index():
45
+ assert (X + Y)[i, j] == X[i, j] + Y[i, j]
46
+
47
+
48
+ def test_mul_index():
49
+ assert (A*y)[0, 0] == A[0, 0]*y[0, 0] + A[0, 1]*y[1, 0]
50
+ assert (A*B).as_mutable() == (A.as_mutable() * B.as_mutable())
51
+ X = MatrixSymbol('X', n, m)
52
+ Y = MatrixSymbol('Y', m, k)
53
+
54
+ result = (X*Y)[4,2]
55
+ expected = Sum(X[4, i]*Y[i, 2], (i, 0, m - 1))
56
+ assert result.args[0].dummy_eq(expected.args[0], i)
57
+ assert result.args[1][1:] == expected.args[1][1:]
58
+
59
+
60
+ def test_pow_index():
61
+ Q = MatPow(A, 2)
62
+ assert Q[0, 0] == A[0, 0]**2 + A[0, 1]*A[1, 0]
63
+ n = symbols("n")
64
+ Q2 = A**n
65
+ assert Q2[0, 0] == 2*(
66
+ -sqrt((A[0, 0] + A[1, 1])**2 - 4*A[0, 0]*A[1, 1] +
67
+ 4*A[0, 1]*A[1, 0])/2 + A[0, 0]/2 + A[1, 1]/2
68
+ )**n * \
69
+ A[0, 1]*A[1, 0]/(
70
+ (sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] +
71
+ A[1, 1]**2) + A[0, 0] - A[1, 1])*
72
+ sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] + A[1, 1]**2)
73
+ ) - 2*(
74
+ sqrt((A[0, 0] + A[1, 1])**2 - 4*A[0, 0]*A[1, 1] +
75
+ 4*A[0, 1]*A[1, 0])/2 + A[0, 0]/2 + A[1, 1]/2
76
+ )**n * A[0, 1]*A[1, 0]/(
77
+ (-sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] +
78
+ A[1, 1]**2) + A[0, 0] - A[1, 1])*
79
+ sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] + A[1, 1]**2)
80
+ )
81
+
82
+
83
+ def test_transpose_index():
84
+ assert X.T[i, j] == X[j, i]
85
+
86
+
87
+ def test_Identity_index():
88
+ I = Identity(3)
89
+ assert I[0, 0] == I[1, 1] == I[2, 2] == 1
90
+ assert I[1, 0] == I[0, 1] == I[2, 1] == 0
91
+ assert I[i, 0].delta_range == (0, 2)
92
+ raises(IndexError, lambda: I[3, 3])
93
+
94
+
95
+ def test_block_index():
96
+ I = Identity(3)
97
+ Z = ZeroMatrix(3, 3)
98
+ B = BlockMatrix([[I, I], [I, I]])
99
+ e3 = ImmutableMatrix(eye(3))
100
+ BB = BlockMatrix([[e3, e3], [e3, e3]])
101
+ assert B[0, 0] == B[3, 0] == B[0, 3] == B[3, 3] == 1
102
+ assert B[4, 3] == B[5, 1] == 0
103
+
104
+ BB = BlockMatrix([[e3, e3], [e3, e3]])
105
+ assert B.as_explicit() == BB.as_explicit()
106
+
107
+ BI = BlockMatrix([[I, Z], [Z, I]])
108
+
109
+ assert BI.as_explicit().equals(eye(6))
110
+
111
+
112
+ def test_block_index_symbolic():
113
+ # Note that these matrices may be zero-sized and indices may be negative, which causes
114
+ # all naive simplifications given in the comments to be invalid
115
+ A1 = MatrixSymbol('A1', n, k)
116
+ A2 = MatrixSymbol('A2', n, l)
117
+ A3 = MatrixSymbol('A3', m, k)
118
+ A4 = MatrixSymbol('A4', m, l)
119
+ A = BlockMatrix([[A1, A2], [A3, A4]])
120
+ assert A[0, 0] == MatrixElement(A, 0, 0) # Cannot be A1[0, 0]
121
+ assert A[n - 1, k - 1] == A1[n - 1, k - 1]
122
+ assert A[n, k] == A4[0, 0]
123
+ assert A[n + m - 1, 0] == MatrixElement(A, n + m - 1, 0) # Cannot be A3[m - 1, 0]
124
+ assert A[0, k + l - 1] == MatrixElement(A, 0, k + l - 1) # Cannot be A2[0, l - 1]
125
+ assert A[n + m - 1, k + l - 1] == MatrixElement(A, n + m - 1, k + l - 1) # Cannot be A4[m - 1, l - 1]
126
+ assert A[i, j] == MatrixElement(A, i, j)
127
+ assert A[n + i, k + j] == MatrixElement(A, n + i, k + j) # Cannot be A4[i, j]
128
+ assert A[n - i - 1, k - j - 1] == MatrixElement(A, n - i - 1, k - j - 1) # Cannot be A1[n - i - 1, k - j - 1]
129
+
130
+
131
+ def test_block_index_symbolic_nonzero():
132
+ # All invalid simplifications from test_block_index_symbolic() that become valid if all
133
+ # matrices have nonzero size and all indices are nonnegative
134
+ k, l, m, n = symbols('k l m n', integer=True, positive=True)
135
+ i, j = symbols('i j', integer=True, nonnegative=True)
136
+ A1 = MatrixSymbol('A1', n, k)
137
+ A2 = MatrixSymbol('A2', n, l)
138
+ A3 = MatrixSymbol('A3', m, k)
139
+ A4 = MatrixSymbol('A4', m, l)
140
+ A = BlockMatrix([[A1, A2], [A3, A4]])
141
+ assert A[0, 0] == A1[0, 0]
142
+ assert A[n + m - 1, 0] == A3[m - 1, 0]
143
+ assert A[0, k + l - 1] == A2[0, l - 1]
144
+ assert A[n + m - 1, k + l - 1] == A4[m - 1, l - 1]
145
+ assert A[i, j] == MatrixElement(A, i, j)
146
+ assert A[n + i, k + j] == A4[i, j]
147
+ assert A[n - i - 1, k - j - 1] == A1[n - i - 1, k - j - 1]
148
+ assert A[2 * n, 2 * k] == A4[n, k]
149
+
150
+
151
+ def test_block_index_large():
152
+ n, m, k = symbols('n m k', integer=True, positive=True)
153
+ i = symbols('i', integer=True, nonnegative=True)
154
+ A1 = MatrixSymbol('A1', n, n)
155
+ A2 = MatrixSymbol('A2', n, m)
156
+ A3 = MatrixSymbol('A3', n, k)
157
+ A4 = MatrixSymbol('A4', m, n)
158
+ A5 = MatrixSymbol('A5', m, m)
159
+ A6 = MatrixSymbol('A6', m, k)
160
+ A7 = MatrixSymbol('A7', k, n)
161
+ A8 = MatrixSymbol('A8', k, m)
162
+ A9 = MatrixSymbol('A9', k, k)
163
+ A = BlockMatrix([[A1, A2, A3], [A4, A5, A6], [A7, A8, A9]])
164
+ assert A[n + i, n + i] == MatrixElement(A, n + i, n + i)
165
+
166
+
167
+ @XFAIL
168
+ def test_block_index_symbolic_fail():
169
+ # To make this work, symbolic matrix dimensions would need to be somehow assumed nonnegative
170
+ # even if the symbols aren't specified as such. Then 2 * n < n would correctly evaluate to
171
+ # False in BlockMatrix._entry()
172
+ A1 = MatrixSymbol('A1', n, 1)
173
+ A2 = MatrixSymbol('A2', m, 1)
174
+ A = BlockMatrix([[A1], [A2]])
175
+ assert A[2 * n, 0] == A2[n, 0]
176
+
177
+
178
+ def test_slicing():
179
+ A.as_explicit()[0, :] # does not raise an error
180
+
181
+
182
+ def test_errors():
183
+ raises(IndexError, lambda: Identity(2)[1, 2, 3, 4, 5])
184
+ raises(IndexError, lambda: Identity(2)[[1, 2, 3, 4, 5]])
185
+
186
+
187
+ def test_matrix_expression_to_indices():
188
+ i, j = symbols("i, j")
189
+ i1, i2, i3 = symbols("i_1:4")
190
+
191
+ def replace_dummies(expr):
192
+ repl = {i: Symbol(i.name) for i in expr.atoms(Dummy)}
193
+ return expr.xreplace(repl)
194
+
195
+ expr = W*X*Z
196
+ assert replace_dummies(expr._entry(i, j)) == \
197
+ Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
198
+ assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr
199
+
200
+ expr = Z.T*X.T*W.T
201
+ assert replace_dummies(expr._entry(i, j)) == \
202
+ Sum(W[j, i2]*X[i2, i1]*Z[i1, i], (i1, 0, m-1), (i2, 0, l-1))
203
+ assert MatrixExpr.from_index_summation(expr._entry(i, j), i) == expr
204
+
205
+ expr = W*X*Z + W*Y*Z
206
+ assert replace_dummies(expr._entry(i, j)) == \
207
+ Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1)) +\
208
+ Sum(W[i, i1]*Y[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
209
+ assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr
210
+
211
+ expr = 2*W*X*Z + 3*W*Y*Z
212
+ assert replace_dummies(expr._entry(i, j)) == \
213
+ 2*Sum(W[i, i1]*X[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1)) +\
214
+ 3*Sum(W[i, i1]*Y[i1, i2]*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
215
+ assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr
216
+
217
+ expr = W*(X + Y)*Z
218
+ assert replace_dummies(expr._entry(i, j)) == \
219
+ Sum(W[i, i1]*(X[i1, i2] + Y[i1, i2])*Z[i2, j], (i1, 0, l-1), (i2, 0, m-1))
220
+ assert MatrixExpr.from_index_summation(expr._entry(i, j)) == expr
221
+
222
+ expr = A*B**2*A
223
+ #assert replace_dummies(expr._entry(i, j)) == \
224
+ # Sum(A[i, i1]*B[i1, i2]*B[i2, i3]*A[i3, j], (i1, 0, 1), (i2, 0, 1), (i3, 0, 1))
225
+
226
+ # Check that different dummies are used in sub-multiplications:
227
+ expr = (X1*X2 + X2*X1)*X3
228
+ assert replace_dummies(expr._entry(i, j)) == \
229
+ Sum((Sum(X1[i, i2] * X2[i2, i1], (i2, 0, m - 1)) + Sum(X1[i3, i1] * X2[i, i3], (i3, 0, m - 1))) * X3[
230
+ i1, j], (i1, 0, m - 1))
231
+
232
+
233
+ def test_matrix_expression_from_index_summation():
234
+ from sympy.abc import a,b,c,d
235
+ A = MatrixSymbol("A", k, k)
236
+ B = MatrixSymbol("B", k, k)
237
+ C = MatrixSymbol("C", k, k)
238
+ w1 = MatrixSymbol("w1", k, 1)
239
+
240
+ i0, i1, i2, i3, i4 = symbols("i0:5", cls=Dummy)
241
+
242
+ expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m-1))
243
+ assert MatrixExpr.from_index_summation(expr, a) == W*X*Z
244
+ expr = Sum(W.T[b,a]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m-1))
245
+ assert MatrixExpr.from_index_summation(expr, a) == W*X*Z
246
+ expr = Sum(A[b, a]*B[b, c]*C[c, d], (b, 0, k-1), (c, 0, k-1))
247
+ assert MatrixSymbol.from_index_summation(expr, a) == A.T*B*C
248
+ expr = Sum(A[b, a]*B[c, b]*C[c, d], (b, 0, k-1), (c, 0, k-1))
249
+ assert MatrixSymbol.from_index_summation(expr, a) == A.T*B.T*C
250
+ expr = Sum(C[c, d]*A[b, a]*B[c, b], (b, 0, k-1), (c, 0, k-1))
251
+ assert MatrixSymbol.from_index_summation(expr, a) == A.T*B.T*C
252
+ expr = Sum(A[a, b] + B[a, b], (a, 0, k-1), (b, 0, k-1))
253
+ assert MatrixExpr.from_index_summation(expr, a) == OneMatrix(1, k)*A*OneMatrix(k, 1) + OneMatrix(1, k)*B*OneMatrix(k, 1)
254
+ expr = Sum(A[a, b]**2, (a, 0, k - 1), (b, 0, k - 1))
255
+ assert MatrixExpr.from_index_summation(expr, a) == Trace(A * A.T)
256
+ expr = Sum(A[a, b]**3, (a, 0, k - 1), (b, 0, k - 1))
257
+ assert MatrixExpr.from_index_summation(expr, a) == Trace(HadamardPower(A.T, 2) * A)
258
+ expr = Sum((A[a, b] + B[a, b])*C[b, c], (b, 0, k-1))
259
+ assert MatrixExpr.from_index_summation(expr, a) == (A+B)*C
260
+ expr = Sum((A[a, b] + B[b, a])*C[b, c], (b, 0, k-1))
261
+ assert MatrixExpr.from_index_summation(expr, a) == (A+B.T)*C
262
+ expr = Sum(A[a, b]*A[b, c]*A[c, d], (b, 0, k-1), (c, 0, k-1))
263
+ assert MatrixExpr.from_index_summation(expr, a) == A**3
264
+ expr = Sum(A[a, b]*A[b, c]*B[c, d], (b, 0, k-1), (c, 0, k-1))
265
+ assert MatrixExpr.from_index_summation(expr, a) == A**2*B
266
+
267
+ # Parse the trace of a matrix:
268
+
269
+ expr = Sum(A[a, a], (a, 0, k-1))
270
+ assert MatrixExpr.from_index_summation(expr, None) == trace(A)
271
+ expr = Sum(A[a, a]*B[b, c]*C[c, d], (a, 0, k-1), (c, 0, k-1))
272
+ assert MatrixExpr.from_index_summation(expr, b) == trace(A)*B*C
273
+
274
+ # Check wrong sum ranges (should raise an exception):
275
+
276
+ ## Case 1: 0 to m instead of 0 to m-1
277
+ expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 0, m))
278
+ raises(ValueError, lambda: MatrixExpr.from_index_summation(expr, a))
279
+ ## Case 2: 1 to m-1 instead of 0 to m-1
280
+ expr = Sum(W[a,b]*X[b,c]*Z[c,d], (b, 0, l-1), (c, 1, m-1))
281
+ raises(ValueError, lambda: MatrixExpr.from_index_summation(expr, a))
282
+
283
+ # Parse nested sums:
284
+ expr = Sum(A[a, b]*Sum(B[b, c]*C[c, d], (c, 0, k-1)), (b, 0, k-1))
285
+ assert MatrixExpr.from_index_summation(expr, a) == A*B*C
286
+
287
+ # Test Kronecker delta:
288
+ expr = Sum(A[a, b]*KroneckerDelta(b, c)*B[c, d], (b, 0, k-1), (c, 0, k-1))
289
+ assert MatrixExpr.from_index_summation(expr, a) == A*B
290
+
291
+ expr = Sum(KroneckerDelta(i1, m)*KroneckerDelta(i2, n)*A[i, i1]*A[j, i2], (i1, 0, k-1), (i2, 0, k-1))
292
+ assert MatrixExpr.from_index_summation(expr, m) == ArrayTensorProduct(A.T, A)
293
+
294
+ # Test numbered indices:
295
+ expr = Sum(A[i1, i2]*w1[i2, 0], (i2, 0, k-1))
296
+ assert MatrixExpr.from_index_summation(expr, i1) == MatrixElement(A*w1, i1, 0)
297
+
298
+ expr = Sum(A[i1, i2]*B[i2, 0], (i2, 0, k-1))
299
+ assert MatrixExpr.from_index_summation(expr, i1) == MatrixElement(A*B, i1, 0)
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_inverse.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import symbols, S
2
+ from sympy.matrices.expressions import MatrixSymbol, Inverse, MatPow, ZeroMatrix, OneMatrix
3
+ from sympy.matrices.common import NonInvertibleMatrixError, NonSquareMatrixError
4
+ from sympy.matrices import eye, Identity
5
+ from sympy.testing.pytest import raises
6
+ from sympy.assumptions.ask import Q
7
+ from sympy.assumptions.refine import refine
8
+
9
+ n, m, l = symbols('n m l', integer=True)
10
+ A = MatrixSymbol('A', n, m)
11
+ B = MatrixSymbol('B', m, l)
12
+ C = MatrixSymbol('C', n, n)
13
+ D = MatrixSymbol('D', n, n)
14
+ E = MatrixSymbol('E', m, n)
15
+
16
+
17
+ def test_inverse():
18
+ assert Inverse(C).args == (C, S.NegativeOne)
19
+ assert Inverse(C).shape == (n, n)
20
+ assert Inverse(A*E).shape == (n, n)
21
+ assert Inverse(E*A).shape == (m, m)
22
+ assert Inverse(C).inverse() == C
23
+ assert Inverse(Inverse(C)).doit() == C
24
+ assert isinstance(Inverse(Inverse(C)), Inverse)
25
+
26
+ assert Inverse(*Inverse(E*A).args) == Inverse(E*A)
27
+
28
+ assert C.inverse().inverse() == C
29
+
30
+ assert C.inverse()*C == Identity(C.rows)
31
+
32
+ assert Identity(n).inverse() == Identity(n)
33
+ assert (3*Identity(n)).inverse() == Identity(n)/3
34
+
35
+ # Simplifies Muls if possible (i.e. submatrices are square)
36
+ assert (C*D).inverse() == D.I*C.I
37
+ # But still works when not possible
38
+ assert isinstance((A*E).inverse(), Inverse)
39
+ assert Inverse(C*D).doit(inv_expand=False) == Inverse(C*D)
40
+
41
+ assert Inverse(eye(3)).doit() == eye(3)
42
+ assert Inverse(eye(3)).doit(deep=False) == eye(3)
43
+
44
+ assert OneMatrix(1, 1).I == Identity(1)
45
+ assert isinstance(OneMatrix(n, n).I, Inverse)
46
+
47
+ def test_inverse_non_invertible():
48
+ raises(NonInvertibleMatrixError, lambda: ZeroMatrix(n, n).I)
49
+ raises(NonInvertibleMatrixError, lambda: OneMatrix(2, 2).I)
50
+
51
+ def test_refine():
52
+ assert refine(C.I, Q.orthogonal(C)) == C.T
53
+
54
+
55
+ def test_inverse_matpow_canonicalization():
56
+ A = MatrixSymbol('A', 3, 3)
57
+ assert Inverse(MatPow(A, 3)).doit() == MatPow(Inverse(A), 3).doit()
58
+
59
+
60
+ def test_nonsquare_error():
61
+ A = MatrixSymbol('A', 3, 4)
62
+ raises(NonSquareMatrixError, lambda: Inverse(A))
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_kronecker.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.mod import Mod
2
+ from sympy.core.numbers import I
3
+ from sympy.core.symbol import symbols
4
+ from sympy.functions.elementary.integers import floor
5
+ from sympy.matrices.dense import (Matrix, eye)
6
+ from sympy.matrices import MatrixSymbol, Identity
7
+ from sympy.matrices.expressions import det, trace
8
+
9
+ from sympy.matrices.expressions.kronecker import (KroneckerProduct,
10
+ kronecker_product,
11
+ combine_kronecker)
12
+
13
+
14
+ mat1 = Matrix([[1, 2 * I], [1 + I, 3]])
15
+ mat2 = Matrix([[2 * I, 3], [4 * I, 2]])
16
+
17
+ i, j, k, n, m, o, p, x = symbols('i,j,k,n,m,o,p,x')
18
+ Z = MatrixSymbol('Z', n, n)
19
+ W = MatrixSymbol('W', m, m)
20
+ A = MatrixSymbol('A', n, m)
21
+ B = MatrixSymbol('B', n, m)
22
+ C = MatrixSymbol('C', m, k)
23
+
24
+
25
+ def test_KroneckerProduct():
26
+ assert isinstance(KroneckerProduct(A, B), KroneckerProduct)
27
+ assert KroneckerProduct(A, B).subs(A, C) == KroneckerProduct(C, B)
28
+ assert KroneckerProduct(A, C).shape == (n*m, m*k)
29
+ assert (KroneckerProduct(A, C) + KroneckerProduct(-A, C)).is_ZeroMatrix
30
+ assert (KroneckerProduct(W, Z) * KroneckerProduct(W.I, Z.I)).is_Identity
31
+
32
+
33
+ def test_KroneckerProduct_identity():
34
+ assert KroneckerProduct(Identity(m), Identity(n)) == Identity(m*n)
35
+ assert KroneckerProduct(eye(2), eye(3)) == eye(6)
36
+
37
+
38
+ def test_KroneckerProduct_explicit():
39
+ X = MatrixSymbol('X', 2, 2)
40
+ Y = MatrixSymbol('Y', 2, 2)
41
+ kp = KroneckerProduct(X, Y)
42
+ assert kp.shape == (4, 4)
43
+ assert kp.as_explicit() == Matrix(
44
+ [
45
+ [X[0, 0]*Y[0, 0], X[0, 0]*Y[0, 1], X[0, 1]*Y[0, 0], X[0, 1]*Y[0, 1]],
46
+ [X[0, 0]*Y[1, 0], X[0, 0]*Y[1, 1], X[0, 1]*Y[1, 0], X[0, 1]*Y[1, 1]],
47
+ [X[1, 0]*Y[0, 0], X[1, 0]*Y[0, 1], X[1, 1]*Y[0, 0], X[1, 1]*Y[0, 1]],
48
+ [X[1, 0]*Y[1, 0], X[1, 0]*Y[1, 1], X[1, 1]*Y[1, 0], X[1, 1]*Y[1, 1]]
49
+ ]
50
+ )
51
+
52
+
53
+ def test_tensor_product_adjoint():
54
+ assert KroneckerProduct(I*A, B).adjoint() == \
55
+ -I*KroneckerProduct(A.adjoint(), B.adjoint())
56
+ assert KroneckerProduct(mat1, mat2).adjoint() == \
57
+ kronecker_product(mat1.adjoint(), mat2.adjoint())
58
+
59
+
60
+ def test_tensor_product_conjugate():
61
+ assert KroneckerProduct(I*A, B).conjugate() == \
62
+ -I*KroneckerProduct(A.conjugate(), B.conjugate())
63
+ assert KroneckerProduct(mat1, mat2).conjugate() == \
64
+ kronecker_product(mat1.conjugate(), mat2.conjugate())
65
+
66
+
67
+ def test_tensor_product_transpose():
68
+ assert KroneckerProduct(I*A, B).transpose() == \
69
+ I*KroneckerProduct(A.transpose(), B.transpose())
70
+ assert KroneckerProduct(mat1, mat2).transpose() == \
71
+ kronecker_product(mat1.transpose(), mat2.transpose())
72
+
73
+
74
+ def test_KroneckerProduct_is_associative():
75
+ assert kronecker_product(A, kronecker_product(
76
+ B, C)) == kronecker_product(kronecker_product(A, B), C)
77
+ assert kronecker_product(A, kronecker_product(
78
+ B, C)) == KroneckerProduct(A, B, C)
79
+
80
+
81
+ def test_KroneckerProduct_is_bilinear():
82
+ assert kronecker_product(x*A, B) == x*kronecker_product(A, B)
83
+ assert kronecker_product(A, x*B) == x*kronecker_product(A, B)
84
+
85
+
86
+ def test_KroneckerProduct_determinant():
87
+ kp = kronecker_product(W, Z)
88
+ assert det(kp) == det(W)**n * det(Z)**m
89
+
90
+
91
+ def test_KroneckerProduct_trace():
92
+ kp = kronecker_product(W, Z)
93
+ assert trace(kp) == trace(W)*trace(Z)
94
+
95
+
96
+ def test_KroneckerProduct_isnt_commutative():
97
+ assert KroneckerProduct(A, B) != KroneckerProduct(B, A)
98
+ assert KroneckerProduct(A, B).is_commutative is False
99
+
100
+
101
+ def test_KroneckerProduct_extracts_commutative_part():
102
+ assert kronecker_product(x * A, 2 * B) == x * \
103
+ 2 * KroneckerProduct(A, B)
104
+
105
+
106
+ def test_KroneckerProduct_inverse():
107
+ kp = kronecker_product(W, Z)
108
+ assert kp.inverse() == kronecker_product(W.inverse(), Z.inverse())
109
+
110
+
111
+ def test_KroneckerProduct_combine_add():
112
+ kp1 = kronecker_product(A, B)
113
+ kp2 = kronecker_product(C, W)
114
+ assert combine_kronecker(kp1*kp2) == kronecker_product(A*C, B*W)
115
+
116
+
117
+ def test_KroneckerProduct_combine_mul():
118
+ X = MatrixSymbol('X', m, n)
119
+ Y = MatrixSymbol('Y', m, n)
120
+ kp1 = kronecker_product(A, X)
121
+ kp2 = kronecker_product(B, Y)
122
+ assert combine_kronecker(kp1+kp2) == kronecker_product(A+B, X+Y)
123
+
124
+
125
+ def test_KroneckerProduct_combine_pow():
126
+ X = MatrixSymbol('X', n, n)
127
+ Y = MatrixSymbol('Y', n, n)
128
+ assert combine_kronecker(KroneckerProduct(
129
+ X, Y)**x) == KroneckerProduct(X**x, Y**x)
130
+ assert combine_kronecker(x * KroneckerProduct(X, Y)
131
+ ** 2) == x * KroneckerProduct(X**2, Y**2)
132
+ assert combine_kronecker(
133
+ x * (KroneckerProduct(X, Y)**2) * KroneckerProduct(A, B)) == x * KroneckerProduct(X**2 * A, Y**2 * B)
134
+ # cannot simplify because of non-square arguments to kronecker product:
135
+ assert combine_kronecker(KroneckerProduct(A, B.T) ** m) == KroneckerProduct(A, B.T) ** m
136
+
137
+
138
+ def test_KroneckerProduct_expand():
139
+ X = MatrixSymbol('X', n, n)
140
+ Y = MatrixSymbol('Y', n, n)
141
+
142
+ assert KroneckerProduct(X + Y, Y + Z).expand(kroneckerproduct=True) == \
143
+ KroneckerProduct(X, Y) + KroneckerProduct(X, Z) + \
144
+ KroneckerProduct(Y, Y) + KroneckerProduct(Y, Z)
145
+
146
+ def test_KroneckerProduct_entry():
147
+ A = MatrixSymbol('A', n, m)
148
+ B = MatrixSymbol('B', o, p)
149
+
150
+ assert KroneckerProduct(A, B)._entry(i, j) == A[Mod(floor(i/o), n), Mod(floor(j/p), m)]*B[Mod(i, o), Mod(j, p)]
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_matadd.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.matrices.expressions import MatrixSymbol, MatAdd, MatPow, MatMul
2
+ from sympy.matrices.expressions.special import GenericZeroMatrix, ZeroMatrix
3
+ from sympy.matrices.common import ShapeError
4
+ from sympy.matrices import eye, ImmutableMatrix
5
+ from sympy.core import Add, Basic, S
6
+ from sympy.core.add import add
7
+ from sympy.testing.pytest import XFAIL, raises
8
+
9
+ X = MatrixSymbol('X', 2, 2)
10
+ Y = MatrixSymbol('Y', 2, 2)
11
+
12
+ def test_evaluate():
13
+ assert MatAdd(X, X, evaluate=True) == add(X, X, evaluate=True) == MatAdd(X, X).doit()
14
+
15
+ def test_sort_key():
16
+ assert MatAdd(Y, X).doit().args == add(Y, X).doit().args == (X, Y)
17
+
18
+
19
+ def test_matadd_sympify():
20
+ assert isinstance(MatAdd(eye(1), eye(1)).args[0], Basic)
21
+ assert isinstance(add(eye(1), eye(1)).args[0], Basic)
22
+
23
+
24
+ def test_matadd_of_matrices():
25
+ assert MatAdd(eye(2), 4*eye(2), eye(2)).doit() == ImmutableMatrix(6*eye(2))
26
+ assert add(eye(2), 4*eye(2), eye(2)).doit() == ImmutableMatrix(6*eye(2))
27
+
28
+
29
+ def test_doit_args():
30
+ A = ImmutableMatrix([[1, 2], [3, 4]])
31
+ B = ImmutableMatrix([[2, 3], [4, 5]])
32
+ assert MatAdd(A, MatPow(B, 2)).doit() == A + B**2
33
+ assert MatAdd(A, MatMul(A, B)).doit() == A + A*B
34
+ assert (MatAdd(A, X, MatMul(A, B), Y, MatAdd(2*A, B)).doit() ==
35
+ add(A, X, MatMul(A, B), Y, add(2*A, B)).doit() ==
36
+ MatAdd(3*A + A*B + B, X, Y))
37
+
38
+
39
+ def test_generic_identity():
40
+ assert MatAdd.identity == GenericZeroMatrix()
41
+ assert MatAdd.identity != S.Zero
42
+
43
+
44
+ def test_zero_matrix_add():
45
+ assert Add(ZeroMatrix(2, 2), ZeroMatrix(2, 2)) == ZeroMatrix(2, 2)
46
+
47
+ @XFAIL
48
+ def test_matrix_Add_with_scalar():
49
+ raises(TypeError, lambda: Add(0, ZeroMatrix(2, 2)))
50
+
51
+
52
+ def test_shape_error():
53
+ A = MatrixSymbol('A', 2, 3)
54
+ B = MatrixSymbol('B', 3, 3)
55
+ raises(ShapeError, lambda: MatAdd(A, B))
56
+
57
+ A = MatrixSymbol('A', 3, 2)
58
+ raises(ShapeError, lambda: MatAdd(A, B))
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_matexpr.py ADDED
@@ -0,0 +1,567 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.concrete.summations import Sum
2
+ from sympy.core.exprtools import gcd_terms
3
+ from sympy.core.function import (diff, expand)
4
+ from sympy.core.relational import Eq
5
+ from sympy.core.symbol import (Dummy, Symbol, Str)
6
+ from sympy.functions.special.tensor_functions import KroneckerDelta
7
+ from sympy.matrices.dense import zeros
8
+ from sympy.polys.polytools import factor
9
+
10
+ from sympy.core import (S, symbols, Add, Mul, SympifyError, Rational,
11
+ Function)
12
+ from sympy.functions import sin, cos, tan, sqrt, cbrt, exp
13
+ from sympy.simplify import simplify
14
+ from sympy.matrices import (ImmutableMatrix, Inverse, MatAdd, MatMul,
15
+ MatPow, Matrix, MatrixExpr, MatrixSymbol,
16
+ SparseMatrix, Transpose, Adjoint, MatrixSet)
17
+ from sympy.matrices.common import NonSquareMatrixError
18
+ from sympy.matrices.expressions.determinant import Determinant, det
19
+ from sympy.matrices.expressions.matexpr import MatrixElement
20
+ from sympy.matrices.expressions.special import ZeroMatrix, Identity
21
+ from sympy.testing.pytest import raises, XFAIL
22
+
23
+
24
+ n, m, l, k, p = symbols('n m l k p', integer=True)
25
+ x = symbols('x')
26
+ A = MatrixSymbol('A', n, m)
27
+ B = MatrixSymbol('B', m, l)
28
+ C = MatrixSymbol('C', n, n)
29
+ D = MatrixSymbol('D', n, n)
30
+ E = MatrixSymbol('E', m, n)
31
+ w = MatrixSymbol('w', n, 1)
32
+
33
+
34
+ def test_matrix_symbol_creation():
35
+ assert MatrixSymbol('A', 2, 2)
36
+ assert MatrixSymbol('A', 0, 0)
37
+ raises(ValueError, lambda: MatrixSymbol('A', -1, 2))
38
+ raises(ValueError, lambda: MatrixSymbol('A', 2.0, 2))
39
+ raises(ValueError, lambda: MatrixSymbol('A', 2j, 2))
40
+ raises(ValueError, lambda: MatrixSymbol('A', 2, -1))
41
+ raises(ValueError, lambda: MatrixSymbol('A', 2, 2.0))
42
+ raises(ValueError, lambda: MatrixSymbol('A', 2, 2j))
43
+
44
+ n = symbols('n')
45
+ assert MatrixSymbol('A', n, n)
46
+ n = symbols('n', integer=False)
47
+ raises(ValueError, lambda: MatrixSymbol('A', n, n))
48
+ n = symbols('n', negative=True)
49
+ raises(ValueError, lambda: MatrixSymbol('A', n, n))
50
+
51
+
52
+ def test_matexpr_properties():
53
+ assert A.shape == (n, m)
54
+ assert (A * B).shape == (n, l)
55
+ assert A[0, 1].indices == (0, 1)
56
+ assert A[0, 0].symbol == A
57
+ assert A[0, 0].symbol.name == 'A'
58
+
59
+
60
+ def test_matexpr():
61
+ assert (x*A).shape == A.shape
62
+ assert (x*A).__class__ == MatMul
63
+ assert 2*A - A - A == ZeroMatrix(*A.shape)
64
+ assert (A*B).shape == (n, l)
65
+
66
+
67
+ def test_matexpr_subs():
68
+ A = MatrixSymbol('A', n, m)
69
+ B = MatrixSymbol('B', m, l)
70
+ C = MatrixSymbol('C', m, l)
71
+
72
+ assert A.subs(n, m).shape == (m, m)
73
+ assert (A*B).subs(B, C) == A*C
74
+ assert (A*B).subs(l, n).is_square
75
+
76
+ W = MatrixSymbol("W", 3, 3)
77
+ X = MatrixSymbol("X", 2, 2)
78
+ Y = MatrixSymbol("Y", 1, 2)
79
+ Z = MatrixSymbol("Z", n, 2)
80
+ # no restrictions on Symbol replacement
81
+ assert X.subs(X, Y) == Y
82
+ # it might be better to just change the name
83
+ y = Str('y')
84
+ assert X.subs(Str("X"), y).args == (y, 2, 2)
85
+ # it's ok to introduce a wider matrix
86
+ assert X[1, 1].subs(X, W) == W[1, 1]
87
+ # but for a given MatrixExpression, only change
88
+ # name if indexing on the new shape is valid.
89
+ # Here, X is 2,2; Y is 1,2 and Y[1, 1] is out
90
+ # of range so an error is raised
91
+ raises(IndexError, lambda: X[1, 1].subs(X, Y))
92
+ # here, [0, 1] is in range so the subs succeeds
93
+ assert X[0, 1].subs(X, Y) == Y[0, 1]
94
+ # and here the size of n will accept any index
95
+ # in the first position
96
+ assert W[2, 1].subs(W, Z) == Z[2, 1]
97
+ # but not in the second position
98
+ raises(IndexError, lambda: W[2, 2].subs(W, Z))
99
+ # any matrix should raise if invalid
100
+ raises(IndexError, lambda: W[2, 2].subs(W, zeros(2)))
101
+
102
+ A = SparseMatrix([[1, 2], [3, 4]])
103
+ B = Matrix([[1, 2], [3, 4]])
104
+ C, D = MatrixSymbol('C', 2, 2), MatrixSymbol('D', 2, 2)
105
+
106
+ assert (C*D).subs({C: A, D: B}) == MatMul(A, B)
107
+
108
+
109
+ def test_addition():
110
+ A = MatrixSymbol('A', n, m)
111
+ B = MatrixSymbol('B', n, m)
112
+
113
+ assert isinstance(A + B, MatAdd)
114
+ assert (A + B).shape == A.shape
115
+ assert isinstance(A - A + 2*B, MatMul)
116
+
117
+ raises(TypeError, lambda: A + 1)
118
+ raises(TypeError, lambda: 5 + A)
119
+ raises(TypeError, lambda: 5 - A)
120
+
121
+ assert A + ZeroMatrix(n, m) - A == ZeroMatrix(n, m)
122
+ raises(TypeError, lambda: ZeroMatrix(n, m) + S.Zero)
123
+
124
+
125
+ def test_multiplication():
126
+ A = MatrixSymbol('A', n, m)
127
+ B = MatrixSymbol('B', m, l)
128
+ C = MatrixSymbol('C', n, n)
129
+
130
+ assert (2*A*B).shape == (n, l)
131
+ assert (A*0*B) == ZeroMatrix(n, l)
132
+ assert (2*A).shape == A.shape
133
+
134
+ assert A * ZeroMatrix(m, m) * B == ZeroMatrix(n, l)
135
+
136
+ assert C * Identity(n) * C.I == Identity(n)
137
+
138
+ assert B/2 == S.Half*B
139
+ raises(NotImplementedError, lambda: 2/B)
140
+
141
+ A = MatrixSymbol('A', n, n)
142
+ B = MatrixSymbol('B', n, n)
143
+ assert Identity(n) * (A + B) == A + B
144
+
145
+ assert A**2*A == A**3
146
+ assert A**2*(A.I)**3 == A.I
147
+ assert A**3*(A.I)**2 == A
148
+
149
+
150
+ def test_MatPow():
151
+ A = MatrixSymbol('A', n, n)
152
+
153
+ AA = MatPow(A, 2)
154
+ assert AA.exp == 2
155
+ assert AA.base == A
156
+ assert (A**n).exp == n
157
+
158
+ assert A**0 == Identity(n)
159
+ assert A**1 == A
160
+ assert A**2 == AA
161
+ assert A**-1 == Inverse(A)
162
+ assert (A**-1)**-1 == A
163
+ assert (A**2)**3 == A**6
164
+ assert A**S.Half == sqrt(A)
165
+ assert A**Rational(1, 3) == cbrt(A)
166
+ raises(NonSquareMatrixError, lambda: MatrixSymbol('B', 3, 2)**2)
167
+
168
+
169
+ def test_MatrixSymbol():
170
+ n, m, t = symbols('n,m,t')
171
+ X = MatrixSymbol('X', n, m)
172
+ assert X.shape == (n, m)
173
+ raises(TypeError, lambda: MatrixSymbol('X', n, m)(t)) # issue 5855
174
+ assert X.doit() == X
175
+
176
+
177
+ def test_dense_conversion():
178
+ X = MatrixSymbol('X', 2, 2)
179
+ assert ImmutableMatrix(X) == ImmutableMatrix(2, 2, lambda i, j: X[i, j])
180
+ assert Matrix(X) == Matrix(2, 2, lambda i, j: X[i, j])
181
+
182
+
183
+ def test_free_symbols():
184
+ assert (C*D).free_symbols == {C, D}
185
+
186
+
187
+ def test_zero_matmul():
188
+ assert isinstance(S.Zero * MatrixSymbol('X', 2, 2), MatrixExpr)
189
+
190
+
191
+ def test_matadd_simplify():
192
+ A = MatrixSymbol('A', 1, 1)
193
+ assert simplify(MatAdd(A, ImmutableMatrix([[sin(x)**2 + cos(x)**2]]))) == \
194
+ MatAdd(A, Matrix([[1]]))
195
+
196
+
197
+ def test_matmul_simplify():
198
+ A = MatrixSymbol('A', 1, 1)
199
+ assert simplify(MatMul(A, ImmutableMatrix([[sin(x)**2 + cos(x)**2]]))) == \
200
+ MatMul(A, Matrix([[1]]))
201
+
202
+
203
+ def test_invariants():
204
+ A = MatrixSymbol('A', n, m)
205
+ B = MatrixSymbol('B', m, l)
206
+ X = MatrixSymbol('X', n, n)
207
+ objs = [Identity(n), ZeroMatrix(m, n), A, MatMul(A, B), MatAdd(A, A),
208
+ Transpose(A), Adjoint(A), Inverse(X), MatPow(X, 2), MatPow(X, -1),
209
+ MatPow(X, 0)]
210
+ for obj in objs:
211
+ assert obj == obj.__class__(*obj.args)
212
+
213
+
214
+ def test_matexpr_indexing():
215
+ A = MatrixSymbol('A', n, m)
216
+ A[1, 2]
217
+ A[l, k]
218
+ A[l + 1, k + 1]
219
+ A = MatrixSymbol('A', 2, 1)
220
+ for i in range(-2, 2):
221
+ for j in range(-1, 1):
222
+ A[i, j]
223
+
224
+
225
+ def test_single_indexing():
226
+ A = MatrixSymbol('A', 2, 3)
227
+ assert A[1] == A[0, 1]
228
+ assert A[int(1)] == A[0, 1]
229
+ assert A[3] == A[1, 0]
230
+ assert list(A[:2, :2]) == [A[0, 0], A[0, 1], A[1, 0], A[1, 1]]
231
+ raises(IndexError, lambda: A[6])
232
+ raises(IndexError, lambda: A[n])
233
+ B = MatrixSymbol('B', n, m)
234
+ raises(IndexError, lambda: B[1])
235
+ B = MatrixSymbol('B', n, 3)
236
+ assert B[3] == B[1, 0]
237
+
238
+
239
+ def test_MatrixElement_commutative():
240
+ assert A[0, 1]*A[1, 0] == A[1, 0]*A[0, 1]
241
+
242
+
243
+ def test_MatrixSymbol_determinant():
244
+ A = MatrixSymbol('A', 4, 4)
245
+ assert A.as_explicit().det() == A[0, 0]*A[1, 1]*A[2, 2]*A[3, 3] - \
246
+ A[0, 0]*A[1, 1]*A[2, 3]*A[3, 2] - A[0, 0]*A[1, 2]*A[2, 1]*A[3, 3] + \
247
+ A[0, 0]*A[1, 2]*A[2, 3]*A[3, 1] + A[0, 0]*A[1, 3]*A[2, 1]*A[3, 2] - \
248
+ A[0, 0]*A[1, 3]*A[2, 2]*A[3, 1] - A[0, 1]*A[1, 0]*A[2, 2]*A[3, 3] + \
249
+ A[0, 1]*A[1, 0]*A[2, 3]*A[3, 2] + A[0, 1]*A[1, 2]*A[2, 0]*A[3, 3] - \
250
+ A[0, 1]*A[1, 2]*A[2, 3]*A[3, 0] - A[0, 1]*A[1, 3]*A[2, 0]*A[3, 2] + \
251
+ A[0, 1]*A[1, 3]*A[2, 2]*A[3, 0] + A[0, 2]*A[1, 0]*A[2, 1]*A[3, 3] - \
252
+ A[0, 2]*A[1, 0]*A[2, 3]*A[3, 1] - A[0, 2]*A[1, 1]*A[2, 0]*A[3, 3] + \
253
+ A[0, 2]*A[1, 1]*A[2, 3]*A[3, 0] + A[0, 2]*A[1, 3]*A[2, 0]*A[3, 1] - \
254
+ A[0, 2]*A[1, 3]*A[2, 1]*A[3, 0] - A[0, 3]*A[1, 0]*A[2, 1]*A[3, 2] + \
255
+ A[0, 3]*A[1, 0]*A[2, 2]*A[3, 1] + A[0, 3]*A[1, 1]*A[2, 0]*A[3, 2] - \
256
+ A[0, 3]*A[1, 1]*A[2, 2]*A[3, 0] - A[0, 3]*A[1, 2]*A[2, 0]*A[3, 1] + \
257
+ A[0, 3]*A[1, 2]*A[2, 1]*A[3, 0]
258
+
259
+ B = MatrixSymbol('B', 4, 4)
260
+ assert Determinant(A + B).doit() == det(A + B) == (A + B).det()
261
+
262
+
263
+ def test_MatrixElement_diff():
264
+ assert (A[3, 0]*A[0, 0]).diff(A[0, 0]) == A[3, 0]
265
+
266
+
267
+ def test_MatrixElement_doit():
268
+ u = MatrixSymbol('u', 2, 1)
269
+ v = ImmutableMatrix([3, 5])
270
+ assert u[0, 0].subs(u, v).doit() == v[0, 0]
271
+
272
+
273
+ def test_identity_powers():
274
+ M = Identity(n)
275
+ assert MatPow(M, 3).doit() == M**3
276
+ assert M**n == M
277
+ assert MatPow(M, 0).doit() == M**2
278
+ assert M**-2 == M
279
+ assert MatPow(M, -2).doit() == M**0
280
+ N = Identity(3)
281
+ assert MatPow(N, 2).doit() == N**n
282
+ assert MatPow(N, 3).doit() == N
283
+ assert MatPow(N, -2).doit() == N**4
284
+ assert MatPow(N, 2).doit() == N**0
285
+
286
+
287
+ def test_Zero_power():
288
+ z1 = ZeroMatrix(n, n)
289
+ assert z1**4 == z1
290
+ raises(ValueError, lambda:z1**-2)
291
+ assert z1**0 == Identity(n)
292
+ assert MatPow(z1, 2).doit() == z1**2
293
+ raises(ValueError, lambda:MatPow(z1, -2).doit())
294
+ z2 = ZeroMatrix(3, 3)
295
+ assert MatPow(z2, 4).doit() == z2**4
296
+ raises(ValueError, lambda:z2**-3)
297
+ assert z2**3 == MatPow(z2, 3).doit()
298
+ assert z2**0 == Identity(3)
299
+ raises(ValueError, lambda:MatPow(z2, -1).doit())
300
+
301
+
302
+ def test_matrixelement_diff():
303
+ dexpr = diff((D*w)[k,0], w[p,0])
304
+
305
+ assert w[k, p].diff(w[k, p]) == 1
306
+ assert w[k, p].diff(w[0, 0]) == KroneckerDelta(0, k, (0, n-1))*KroneckerDelta(0, p, (0, 0))
307
+ _i_1 = Dummy("_i_1")
308
+ assert dexpr.dummy_eq(Sum(KroneckerDelta(_i_1, p, (0, n-1))*D[k, _i_1], (_i_1, 0, n - 1)))
309
+ assert dexpr.doit() == D[k, p]
310
+
311
+
312
+ def test_MatrixElement_with_values():
313
+ x, y, z, w = symbols("x y z w")
314
+ M = Matrix([[x, y], [z, w]])
315
+ i, j = symbols("i, j")
316
+ Mij = M[i, j]
317
+ assert isinstance(Mij, MatrixElement)
318
+ Ms = SparseMatrix([[2, 3], [4, 5]])
319
+ msij = Ms[i, j]
320
+ assert isinstance(msij, MatrixElement)
321
+ for oi, oj in [(0, 0), (0, 1), (1, 0), (1, 1)]:
322
+ assert Mij.subs({i: oi, j: oj}) == M[oi, oj]
323
+ assert msij.subs({i: oi, j: oj}) == Ms[oi, oj]
324
+ A = MatrixSymbol("A", 2, 2)
325
+ assert A[0, 0].subs(A, M) == x
326
+ assert A[i, j].subs(A, M) == M[i, j]
327
+ assert M[i, j].subs(M, A) == A[i, j]
328
+
329
+ assert isinstance(M[3*i - 2, j], MatrixElement)
330
+ assert M[3*i - 2, j].subs({i: 1, j: 0}) == M[1, 0]
331
+ assert isinstance(M[i, 0], MatrixElement)
332
+ assert M[i, 0].subs(i, 0) == M[0, 0]
333
+ assert M[0, i].subs(i, 1) == M[0, 1]
334
+
335
+ assert M[i, j].diff(x) == Matrix([[1, 0], [0, 0]])[i, j]
336
+
337
+ raises(ValueError, lambda: M[i, 2])
338
+ raises(ValueError, lambda: M[i, -1])
339
+ raises(ValueError, lambda: M[2, i])
340
+ raises(ValueError, lambda: M[-1, i])
341
+
342
+
343
+ def test_inv():
344
+ B = MatrixSymbol('B', 3, 3)
345
+ assert B.inv() == B**-1
346
+
347
+ # https://github.com/sympy/sympy/issues/19162
348
+ X = MatrixSymbol('X', 1, 1).as_explicit()
349
+ assert X.inv() == Matrix([[1/X[0, 0]]])
350
+
351
+ X = MatrixSymbol('X', 2, 2).as_explicit()
352
+ detX = X[0, 0]*X[1, 1] - X[0, 1]*X[1, 0]
353
+ invX = Matrix([[ X[1, 1], -X[0, 1]],
354
+ [-X[1, 0], X[0, 0]]]) / detX
355
+ assert X.inv() == invX
356
+
357
+
358
+ @XFAIL
359
+ def test_factor_expand():
360
+ A = MatrixSymbol("A", n, n)
361
+ B = MatrixSymbol("B", n, n)
362
+ expr1 = (A + B)*(C + D)
363
+ expr2 = A*C + B*C + A*D + B*D
364
+ assert expr1 != expr2
365
+ assert expand(expr1) == expr2
366
+ assert factor(expr2) == expr1
367
+
368
+ expr = B**(-1)*(A**(-1)*B**(-1) - A**(-1)*C*B**(-1))**(-1)*A**(-1)
369
+ I = Identity(n)
370
+ # Ideally we get the first, but we at least don't want a wrong answer
371
+ assert factor(expr) in [I - C, B**-1*(A**-1*(I - C)*B**-1)**-1*A**-1]
372
+
373
+
374
+ def test_issue_2749():
375
+ A = MatrixSymbol("A", 5, 2)
376
+ assert (A.T * A).I.as_explicit() == Matrix([[(A.T * A).I[0, 0], (A.T * A).I[0, 1]], \
377
+ [(A.T * A).I[1, 0], (A.T * A).I[1, 1]]])
378
+
379
+
380
+ def test_issue_2750():
381
+ x = MatrixSymbol('x', 1, 1)
382
+ assert (x.T*x).as_explicit()**-1 == Matrix([[x[0, 0]**(-2)]])
383
+
384
+
385
+ def test_issue_7842():
386
+ A = MatrixSymbol('A', 3, 1)
387
+ B = MatrixSymbol('B', 2, 1)
388
+ assert Eq(A, B) == False
389
+ assert Eq(A[1,0], B[1, 0]).func is Eq
390
+ A = ZeroMatrix(2, 3)
391
+ B = ZeroMatrix(2, 3)
392
+ assert Eq(A, B) == True
393
+
394
+
395
+ def test_issue_21195():
396
+ t = symbols('t')
397
+ x = Function('x')(t)
398
+ dx = x.diff(t)
399
+ exp1 = cos(x) + cos(x)*dx
400
+ exp2 = sin(x) + tan(x)*(dx.diff(t))
401
+ exp3 = sin(x)*sin(t)*(dx.diff(t)).diff(t)
402
+ A = Matrix([[exp1], [exp2], [exp3]])
403
+ B = Matrix([[exp1.diff(x)], [exp2.diff(x)], [exp3.diff(x)]])
404
+ assert A.diff(x) == B
405
+
406
+
407
+ def test_MatMul_postprocessor():
408
+ z = zeros(2)
409
+ z1 = ZeroMatrix(2, 2)
410
+ assert Mul(0, z) == Mul(z, 0) in [z, z1]
411
+
412
+ M = Matrix([[1, 2], [3, 4]])
413
+ Mx = Matrix([[x, 2*x], [3*x, 4*x]])
414
+ assert Mul(x, M) == Mul(M, x) == Mx
415
+
416
+ A = MatrixSymbol("A", 2, 2)
417
+ assert Mul(A, M) == MatMul(A, M)
418
+ assert Mul(M, A) == MatMul(M, A)
419
+ # Scalars should be absorbed into constant matrices
420
+ a = Mul(x, M, A)
421
+ b = Mul(M, x, A)
422
+ c = Mul(M, A, x)
423
+ assert a == b == c == MatMul(Mx, A)
424
+ a = Mul(x, A, M)
425
+ b = Mul(A, x, M)
426
+ c = Mul(A, M, x)
427
+ assert a == b == c == MatMul(A, Mx)
428
+ assert Mul(M, M) == M**2
429
+ assert Mul(A, M, M) == MatMul(A, M**2)
430
+ assert Mul(M, M, A) == MatMul(M**2, A)
431
+ assert Mul(M, A, M) == MatMul(M, A, M)
432
+
433
+ assert Mul(A, x, M, M, x) == MatMul(A, Mx**2)
434
+
435
+
436
+ @XFAIL
437
+ def test_MatAdd_postprocessor_xfail():
438
+ # This is difficult to get working because of the way that Add processes
439
+ # its args.
440
+ z = zeros(2)
441
+ assert Add(z, S.NaN) == Add(S.NaN, z)
442
+
443
+
444
+ def test_MatAdd_postprocessor():
445
+ # Some of these are nonsensical, but we do not raise errors for Add
446
+ # because that breaks algorithms that want to replace matrices with dummy
447
+ # symbols.
448
+
449
+ z = zeros(2)
450
+
451
+ assert Add(0, z) == Add(z, 0) == z
452
+
453
+ a = Add(S.Infinity, z)
454
+ assert a == Add(z, S.Infinity)
455
+ assert isinstance(a, Add)
456
+ assert a.args == (S.Infinity, z)
457
+
458
+ a = Add(S.ComplexInfinity, z)
459
+ assert a == Add(z, S.ComplexInfinity)
460
+ assert isinstance(a, Add)
461
+ assert a.args == (S.ComplexInfinity, z)
462
+
463
+ a = Add(z, S.NaN)
464
+ # assert a == Add(S.NaN, z) # See the XFAIL above
465
+ assert isinstance(a, Add)
466
+ assert a.args == (S.NaN, z)
467
+
468
+ M = Matrix([[1, 2], [3, 4]])
469
+ a = Add(x, M)
470
+ assert a == Add(M, x)
471
+ assert isinstance(a, Add)
472
+ assert a.args == (x, M)
473
+
474
+ A = MatrixSymbol("A", 2, 2)
475
+ assert Add(A, M) == Add(M, A) == A + M
476
+
477
+ # Scalars should be absorbed into constant matrices (producing an error)
478
+ a = Add(x, M, A)
479
+ assert a == Add(M, x, A) == Add(M, A, x) == Add(x, A, M) == Add(A, x, M) == Add(A, M, x)
480
+ assert isinstance(a, Add)
481
+ assert a.args == (x, A + M)
482
+
483
+ assert Add(M, M) == 2*M
484
+ assert Add(M, A, M) == Add(M, M, A) == Add(A, M, M) == A + 2*M
485
+
486
+ a = Add(A, x, M, M, x)
487
+ assert isinstance(a, Add)
488
+ assert a.args == (2*x, A + 2*M)
489
+
490
+
491
+ def test_simplify_matrix_expressions():
492
+ # Various simplification functions
493
+ assert type(gcd_terms(C*D + D*C)) == MatAdd
494
+ a = gcd_terms(2*C*D + 4*D*C)
495
+ assert type(a) == MatAdd
496
+ assert a.args == (2*C*D, 4*D*C)
497
+
498
+
499
+ def test_exp():
500
+ A = MatrixSymbol('A', 2, 2)
501
+ B = MatrixSymbol('B', 2, 2)
502
+ expr1 = exp(A)*exp(B)
503
+ expr2 = exp(B)*exp(A)
504
+ assert expr1 != expr2
505
+ assert expr1 - expr2 != 0
506
+ assert not isinstance(expr1, exp)
507
+ assert not isinstance(expr2, exp)
508
+
509
+
510
+ def test_invalid_args():
511
+ raises(SympifyError, lambda: MatrixSymbol(1, 2, 'A'))
512
+
513
+
514
+ def test_matrixsymbol_from_symbol():
515
+ # The label should be preserved during doit and subs
516
+ A_label = Symbol('A', complex=True)
517
+ A = MatrixSymbol(A_label, 2, 2)
518
+
519
+ A_1 = A.doit()
520
+ A_2 = A.subs(2, 3)
521
+ assert A_1.args == A.args
522
+ assert A_2.args[0] == A.args[0]
523
+
524
+
525
+ def test_as_explicit():
526
+ Z = MatrixSymbol('Z', 2, 3)
527
+ assert Z.as_explicit() == ImmutableMatrix([
528
+ [Z[0, 0], Z[0, 1], Z[0, 2]],
529
+ [Z[1, 0], Z[1, 1], Z[1, 2]],
530
+ ])
531
+ raises(ValueError, lambda: A.as_explicit())
532
+
533
+
534
+ def test_MatrixSet():
535
+ M = MatrixSet(2, 2, set=S.Reals)
536
+ assert M.shape == (2, 2)
537
+ assert M.set == S.Reals
538
+ X = Matrix([[1, 2], [3, 4]])
539
+ assert X in M
540
+ X = ZeroMatrix(2, 2)
541
+ assert X in M
542
+ raises(TypeError, lambda: A in M)
543
+ raises(TypeError, lambda: 1 in M)
544
+ M = MatrixSet(n, m, set=S.Reals)
545
+ assert A in M
546
+ raises(TypeError, lambda: C in M)
547
+ raises(TypeError, lambda: X in M)
548
+ M = MatrixSet(2, 2, set={1, 2, 3})
549
+ X = Matrix([[1, 2], [3, 4]])
550
+ Y = Matrix([[1, 2]])
551
+ assert (X in M) == S.false
552
+ assert (Y in M) == S.false
553
+ raises(ValueError, lambda: MatrixSet(2, -2, S.Reals))
554
+ raises(ValueError, lambda: MatrixSet(2.4, -1, S.Reals))
555
+ raises(TypeError, lambda: MatrixSet(2, 2, (1, 2, 3)))
556
+
557
+
558
+ def test_matrixsymbol_solving():
559
+ A = MatrixSymbol('A', 2, 2)
560
+ B = MatrixSymbol('B', 2, 2)
561
+ Z = ZeroMatrix(2, 2)
562
+ assert -(-A + B) - A + B == Z
563
+ assert (-(-A + B) - A + B).simplify() == Z
564
+ assert (-(-A + B) - A + B).expand() == Z
565
+ assert (-(-A + B) - A + B - Z).simplify() == Z
566
+ assert (-(-A + B) - A + B - Z).expand() == Z
567
+ assert (A*(A + B) + B*(A.T + B.T)).expand() == A**2 + A*B + B*A.T + B*B.T
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_matmul.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core import I, symbols, Basic, Mul, S
2
+ from sympy.core.mul import mul
3
+ from sympy.functions import adjoint, transpose
4
+ from sympy.matrices.common import ShapeError
5
+ from sympy.matrices import (Identity, Inverse, Matrix, MatrixSymbol, ZeroMatrix,
6
+ eye, ImmutableMatrix)
7
+ from sympy.matrices.expressions import Adjoint, Transpose, det, MatPow
8
+ from sympy.matrices.expressions.special import GenericIdentity
9
+ from sympy.matrices.expressions.matmul import (factor_in_front, remove_ids,
10
+ MatMul, combine_powers, any_zeros, unpack, only_squares)
11
+ from sympy.strategies import null_safe
12
+ from sympy.assumptions.ask import Q
13
+ from sympy.assumptions.refine import refine
14
+ from sympy.core.symbol import Symbol
15
+
16
+ from sympy.testing.pytest import XFAIL, raises
17
+
18
+ n, m, l, k = symbols('n m l k', integer=True)
19
+ x = symbols('x')
20
+ A = MatrixSymbol('A', n, m)
21
+ B = MatrixSymbol('B', m, l)
22
+ C = MatrixSymbol('C', n, n)
23
+ D = MatrixSymbol('D', n, n)
24
+ E = MatrixSymbol('E', m, n)
25
+
26
+ def test_evaluate():
27
+ assert MatMul(C, C, evaluate=True) == MatMul(C, C).doit()
28
+
29
+ def test_adjoint():
30
+ assert adjoint(A*B) == Adjoint(B)*Adjoint(A)
31
+ assert adjoint(2*A*B) == 2*Adjoint(B)*Adjoint(A)
32
+ assert adjoint(2*I*C) == -2*I*Adjoint(C)
33
+
34
+ M = Matrix(2, 2, [1, 2 + I, 3, 4])
35
+ MA = Matrix(2, 2, [1, 3, 2 - I, 4])
36
+ assert adjoint(M) == MA
37
+ assert adjoint(2*M) == 2*MA
38
+ assert adjoint(MatMul(2, M)) == MatMul(2, MA).doit()
39
+
40
+
41
+ def test_transpose():
42
+ assert transpose(A*B) == Transpose(B)*Transpose(A)
43
+ assert transpose(2*A*B) == 2*Transpose(B)*Transpose(A)
44
+ assert transpose(2*I*C) == 2*I*Transpose(C)
45
+
46
+ M = Matrix(2, 2, [1, 2 + I, 3, 4])
47
+ MT = Matrix(2, 2, [1, 3, 2 + I, 4])
48
+ assert transpose(M) == MT
49
+ assert transpose(2*M) == 2*MT
50
+ assert transpose(x*M) == x*MT
51
+ assert transpose(MatMul(2, M)) == MatMul(2, MT).doit()
52
+
53
+
54
+ def test_factor_in_front():
55
+ assert factor_in_front(MatMul(A, 2, B, evaluate=False)) ==\
56
+ MatMul(2, A, B, evaluate=False)
57
+
58
+
59
+ def test_remove_ids():
60
+ assert remove_ids(MatMul(A, Identity(m), B, evaluate=False)) == \
61
+ MatMul(A, B, evaluate=False)
62
+ assert null_safe(remove_ids)(MatMul(Identity(n), evaluate=False)) == \
63
+ MatMul(Identity(n), evaluate=False)
64
+
65
+
66
+ def test_combine_powers():
67
+ assert combine_powers(MatMul(D, Inverse(D), D, evaluate=False)) == \
68
+ MatMul(Identity(n), D, evaluate=False)
69
+ assert combine_powers(MatMul(B.T, Inverse(E*A), E, A, B, evaluate=False)) == \
70
+ MatMul(B.T, Identity(m), B, evaluate=False)
71
+ assert combine_powers(MatMul(A, E, Inverse(A*E), D, evaluate=False)) == \
72
+ MatMul(Identity(n), D, evaluate=False)
73
+
74
+
75
+ def test_any_zeros():
76
+ assert any_zeros(MatMul(A, ZeroMatrix(m, k), evaluate=False)) == \
77
+ ZeroMatrix(n, k)
78
+
79
+
80
+ def test_unpack():
81
+ assert unpack(MatMul(A, evaluate=False)) == A
82
+ x = MatMul(A, B)
83
+ assert unpack(x) == x
84
+
85
+
86
+ def test_only_squares():
87
+ assert only_squares(C) == [C]
88
+ assert only_squares(C, D) == [C, D]
89
+ assert only_squares(C, A, A.T, D) == [C, A*A.T, D]
90
+
91
+
92
+ def test_determinant():
93
+ assert det(2*C) == 2**n*det(C)
94
+ assert det(2*C*D) == 2**n*det(C)*det(D)
95
+ assert det(3*C*A*A.T*D) == 3**n*det(C)*det(A*A.T)*det(D)
96
+
97
+
98
+ def test_doit():
99
+ assert MatMul(C, 2, D).args == (C, 2, D)
100
+ assert MatMul(C, 2, D).doit().args == (2, C, D)
101
+ assert MatMul(C, Transpose(D*C)).args == (C, Transpose(D*C))
102
+ assert MatMul(C, Transpose(D*C)).doit(deep=True).args == (C, C.T, D.T)
103
+
104
+
105
+ def test_doit_drills_down():
106
+ X = ImmutableMatrix([[1, 2], [3, 4]])
107
+ Y = ImmutableMatrix([[2, 3], [4, 5]])
108
+ assert MatMul(X, MatPow(Y, 2)).doit() == X*Y**2
109
+ assert MatMul(C, Transpose(D*C)).doit().args == (C, C.T, D.T)
110
+
111
+
112
+ def test_doit_deep_false_still_canonical():
113
+ assert (MatMul(C, Transpose(D*C), 2).doit(deep=False).args ==
114
+ (2, C, Transpose(D*C)))
115
+
116
+
117
+ def test_matmul_scalar_Matrix_doit():
118
+ # Issue 9053
119
+ X = Matrix([[1, 2], [3, 4]])
120
+ assert MatMul(2, X).doit() == 2*X
121
+
122
+
123
+ def test_matmul_sympify():
124
+ assert isinstance(MatMul(eye(1), eye(1)).args[0], Basic)
125
+
126
+
127
+ def test_collapse_MatrixBase():
128
+ A = Matrix([[1, 1], [1, 1]])
129
+ B = Matrix([[1, 2], [3, 4]])
130
+ assert MatMul(A, B).doit() == ImmutableMatrix([[4, 6], [4, 6]])
131
+
132
+
133
+ def test_refine():
134
+ assert refine(C*C.T*D, Q.orthogonal(C)).doit() == D
135
+
136
+ kC = k*C
137
+ assert refine(kC*C.T, Q.orthogonal(C)).doit() == k*Identity(n)
138
+ assert refine(kC* kC.T, Q.orthogonal(C)).doit() == (k**2)*Identity(n)
139
+
140
+ def test_matmul_no_matrices():
141
+ assert MatMul(1) == 1
142
+ assert MatMul(n, m) == n*m
143
+ assert not isinstance(MatMul(n, m), MatMul)
144
+
145
+ def test_matmul_args_cnc():
146
+ assert MatMul(n, A, A.T).args_cnc() == [[n], [A, A.T]]
147
+ assert MatMul(A, A.T).args_cnc() == [[], [A, A.T]]
148
+
149
+ @XFAIL
150
+ def test_matmul_args_cnc_symbols():
151
+ # Not currently supported
152
+ a, b = symbols('a b', commutative=False)
153
+ assert MatMul(n, a, b, A, A.T).args_cnc() == [[n], [a, b, A, A.T]]
154
+ assert MatMul(n, a, A, b, A.T).args_cnc() == [[n], [a, A, b, A.T]]
155
+
156
+ def test_issue_12950():
157
+ M = Matrix([[Symbol("x")]]) * MatrixSymbol("A", 1, 1)
158
+ assert MatrixSymbol("A", 1, 1).as_explicit()[0]*Symbol('x') == M.as_explicit()[0]
159
+
160
+ def test_construction_with_Mul():
161
+ assert Mul(C, D) == MatMul(C, D)
162
+ assert Mul(D, C) == MatMul(D, C)
163
+
164
+ def test_construction_with_mul():
165
+ assert mul(C, D) == MatMul(C, D)
166
+ assert mul(D, C) == MatMul(D, C)
167
+ assert mul(C, D) != MatMul(D, C)
168
+
169
+ def test_generic_identity():
170
+ assert MatMul.identity == GenericIdentity()
171
+ assert MatMul.identity != S.One
172
+
173
+
174
+ def test_issue_23519():
175
+ N = Symbol("N", integer=True)
176
+ M1 = MatrixSymbol("M1", N, N)
177
+ M2 = MatrixSymbol("M2", N, N)
178
+ I = Identity(N)
179
+ z = (M2 + 2 * (M2 + I) * M1 + I)
180
+ assert z.coeff(M1) == 2*I + 2*M2
181
+
182
+
183
+ def test_shape_error():
184
+ A = MatrixSymbol('A', 2, 2)
185
+ B = MatrixSymbol('B', 3, 3)
186
+ raises(ShapeError, lambda: MatMul(A, B))
llmeval-env/lib/python3.10/site-packages/sympy/matrices/expressions/tests/test_matpow.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.functions.elementary.miscellaneous import sqrt
2
+ from sympy.simplify.powsimp import powsimp
3
+ from sympy.testing.pytest import raises
4
+ from sympy.core.expr import unchanged
5
+ from sympy.core import symbols, S
6
+ from sympy.matrices import Identity, MatrixSymbol, ImmutableMatrix, ZeroMatrix, OneMatrix, Matrix
7
+ from sympy.matrices.common import NonSquareMatrixError
8
+ from sympy.matrices.expressions import MatPow, MatAdd, MatMul
9
+ from sympy.matrices.expressions.inverse import Inverse
10
+ from sympy.matrices.expressions.matexpr import MatrixElement
11
+
12
+ n, m, l, k = symbols('n m l k', integer=True)
13
+ A = MatrixSymbol('A', n, m)
14
+ B = MatrixSymbol('B', m, l)
15
+ C = MatrixSymbol('C', n, n)
16
+ D = MatrixSymbol('D', n, n)
17
+ E = MatrixSymbol('E', m, n)
18
+
19
+
20
+ def test_entry_matrix():
21
+ X = ImmutableMatrix([[1, 2], [3, 4]])
22
+ assert MatPow(X, 0)[0, 0] == 1
23
+ assert MatPow(X, 0)[0, 1] == 0
24
+ assert MatPow(X, 1)[0, 0] == 1
25
+ assert MatPow(X, 1)[0, 1] == 2
26
+ assert MatPow(X, 2)[0, 0] == 7
27
+
28
+
29
+ def test_entry_symbol():
30
+ from sympy.concrete import Sum
31
+ assert MatPow(C, 0)[0, 0] == 1
32
+ assert MatPow(C, 0)[0, 1] == 0
33
+ assert MatPow(C, 1)[0, 0] == C[0, 0]
34
+ assert isinstance(MatPow(C, 2)[0, 0], Sum)
35
+ assert isinstance(MatPow(C, n)[0, 0], MatrixElement)
36
+
37
+
38
+ def test_as_explicit_symbol():
39
+ X = MatrixSymbol('X', 2, 2)
40
+ assert MatPow(X, 0).as_explicit() == ImmutableMatrix(Identity(2))
41
+ assert MatPow(X, 1).as_explicit() == X.as_explicit()
42
+ assert MatPow(X, 2).as_explicit() == (X.as_explicit())**2
43
+ assert MatPow(X, n).as_explicit() == ImmutableMatrix([
44
+ [(X ** n)[0, 0], (X ** n)[0, 1]],
45
+ [(X ** n)[1, 0], (X ** n)[1, 1]],
46
+ ])
47
+
48
+ a = MatrixSymbol("a", 3, 1)
49
+ b = MatrixSymbol("b", 3, 1)
50
+ c = MatrixSymbol("c", 3, 1)
51
+
52
+ expr = (a.T*b)**S.Half
53
+ assert expr.as_explicit() == Matrix([[sqrt(a[0, 0]*b[0, 0] + a[1, 0]*b[1, 0] + a[2, 0]*b[2, 0])]])
54
+
55
+ expr = c*(a.T*b)**S.Half
56
+ m = sqrt(a[0, 0]*b[0, 0] + a[1, 0]*b[1, 0] + a[2, 0]*b[2, 0])
57
+ assert expr.as_explicit() == Matrix([[c[0, 0]*m], [c[1, 0]*m], [c[2, 0]*m]])
58
+
59
+ expr = (a*b.T)**S.Half
60
+ denom = sqrt(a[0, 0]*b[0, 0] + a[1, 0]*b[1, 0] + a[2, 0]*b[2, 0])
61
+ expected = (a*b.T).as_explicit()/denom
62
+ assert expr.as_explicit() == expected
63
+
64
+ expr = X**-1
65
+ det = X[0, 0]*X[1, 1] - X[1, 0]*X[0, 1]
66
+ expected = Matrix([[X[1, 1], -X[0, 1]], [-X[1, 0], X[0, 0]]])/det
67
+ assert expr.as_explicit() == expected
68
+
69
+ expr = X**m
70
+ assert expr.as_explicit() == X.as_explicit()**m
71
+
72
+
73
+ def test_as_explicit_matrix():
74
+ A = ImmutableMatrix([[1, 2], [3, 4]])
75
+ assert MatPow(A, 0).as_explicit() == ImmutableMatrix(Identity(2))
76
+ assert MatPow(A, 1).as_explicit() == A
77
+ assert MatPow(A, 2).as_explicit() == A**2
78
+ assert MatPow(A, -1).as_explicit() == A.inv()
79
+ assert MatPow(A, -2).as_explicit() == (A.inv())**2
80
+ # less expensive than testing on a 2x2
81
+ A = ImmutableMatrix([4])
82
+ assert MatPow(A, S.Half).as_explicit() == A**S.Half
83
+
84
+
85
+ def test_doit_symbol():
86
+ assert MatPow(C, 0).doit() == Identity(n)
87
+ assert MatPow(C, 1).doit() == C
88
+ assert MatPow(C, -1).doit() == C.I
89
+ for r in [2, S.Half, S.Pi, n]:
90
+ assert MatPow(C, r).doit() == MatPow(C, r)
91
+
92
+
93
+ def test_doit_matrix():
94
+ X = ImmutableMatrix([[1, 2], [3, 4]])
95
+ assert MatPow(X, 0).doit() == ImmutableMatrix(Identity(2))
96
+ assert MatPow(X, 1).doit() == X
97
+ assert MatPow(X, 2).doit() == X**2
98
+ assert MatPow(X, -1).doit() == X.inv()
99
+ assert MatPow(X, -2).doit() == (X.inv())**2
100
+ # less expensive than testing on a 2x2
101
+ assert MatPow(ImmutableMatrix([4]), S.Half).doit() == ImmutableMatrix([2])
102
+ X = ImmutableMatrix([[0, 2], [0, 4]]) # det() == 0
103
+ raises(ValueError, lambda: MatPow(X,-1).doit())
104
+ raises(ValueError, lambda: MatPow(X,-2).doit())
105
+
106
+
107
+ def test_nonsquare():
108
+ A = MatrixSymbol('A', 2, 3)
109
+ B = ImmutableMatrix([[1, 2, 3], [4, 5, 6]])
110
+ for r in [-1, 0, 1, 2, S.Half, S.Pi, n]:
111
+ raises(NonSquareMatrixError, lambda: MatPow(A, r))
112
+ raises(NonSquareMatrixError, lambda: MatPow(B, r))
113
+
114
+
115
+ def test_doit_equals_pow(): #17179
116
+ X = ImmutableMatrix ([[1,0],[0,1]])
117
+ assert MatPow(X, n).doit() == X**n == X
118
+
119
+
120
+ def test_doit_nested_MatrixExpr():
121
+ X = ImmutableMatrix([[1, 2], [3, 4]])
122
+ Y = ImmutableMatrix([[2, 3], [4, 5]])
123
+ assert MatPow(MatMul(X, Y), 2).doit() == (X*Y)**2
124
+ assert MatPow(MatAdd(X, Y), 2).doit() == (X + Y)**2
125
+
126
+
127
+ def test_identity_power():
128
+ k = Identity(n)
129
+ assert MatPow(k, 4).doit() == k
130
+ assert MatPow(k, n).doit() == k
131
+ assert MatPow(k, -3).doit() == k
132
+ assert MatPow(k, 0).doit() == k
133
+ l = Identity(3)
134
+ assert MatPow(l, n).doit() == l
135
+ assert MatPow(l, -1).doit() == l
136
+ assert MatPow(l, 0).doit() == l
137
+
138
+
139
+ def test_zero_power():
140
+ z1 = ZeroMatrix(n, n)
141
+ assert MatPow(z1, 3).doit() == z1
142
+ raises(ValueError, lambda:MatPow(z1, -1).doit())
143
+ assert MatPow(z1, 0).doit() == Identity(n)
144
+ assert MatPow(z1, n).doit() == z1
145
+ raises(ValueError, lambda:MatPow(z1, -2).doit())
146
+ z2 = ZeroMatrix(4, 4)
147
+ assert MatPow(z2, n).doit() == z2
148
+ raises(ValueError, lambda:MatPow(z2, -3).doit())
149
+ assert MatPow(z2, 2).doit() == z2
150
+ assert MatPow(z2, 0).doit() == Identity(4)
151
+ raises(ValueError, lambda:MatPow(z2, -1).doit())
152
+
153
+
154
+ def test_OneMatrix_power():
155
+ o = OneMatrix(3, 3)
156
+ assert o ** 0 == Identity(3)
157
+ assert o ** 1 == o
158
+ assert o * o == o ** 2 == 3 * o
159
+ assert o * o * o == o ** 3 == 9 * o
160
+
161
+ o = OneMatrix(n, n)
162
+ assert o * o == o ** 2 == n * o
163
+ # powsimp necessary as n ** (n - 2) * n does not produce n ** (n - 1)
164
+ assert powsimp(o ** (n - 1) * o) == o ** n == n ** (n - 1) * o
165
+
166
+
167
+ def test_transpose_power():
168
+ from sympy.matrices.expressions.transpose import Transpose as TP
169
+
170
+ assert (C*D).T**5 == ((C*D)**5).T == (D.T * C.T)**5
171
+ assert ((C*D).T**5).T == (C*D)**5
172
+
173
+ assert (C.T.I.T)**7 == C**-7
174
+ assert (C.T**l).T**k == C**(l*k)
175
+
176
+ assert ((E.T * A.T)**5).T == (A*E)**5
177
+ assert ((A*E).T**5).T**7 == (A*E)**35
178
+ assert TP(TP(C**2 * D**3)**5).doit() == (C**2 * D**3)**5
179
+
180
+ assert ((D*C)**-5).T**-5 == ((D*C)**25).T
181
+ assert (((D*C)**l).T**k).T == (D*C)**(l*k)
182
+
183
+
184
+ def test_Inverse():
185
+ assert Inverse(MatPow(C, 0)).doit() == Identity(n)
186
+ assert Inverse(MatPow(C, 1)).doit() == Inverse(C)
187
+ assert Inverse(MatPow(C, 2)).doit() == MatPow(C, -2)
188
+ assert Inverse(MatPow(C, -1)).doit() == C
189
+
190
+ assert MatPow(Inverse(C), 0).doit() == Identity(n)
191
+ assert MatPow(Inverse(C), 1).doit() == Inverse(C)
192
+ assert MatPow(Inverse(C), 2).doit() == MatPow(C, -2)
193
+ assert MatPow(Inverse(C), -1).doit() == C
194
+
195
+
196
+ def test_combine_powers():
197
+ assert (C ** 1) ** 1 == C
198
+ assert (C ** 2) ** 3 == MatPow(C, 6)
199
+ assert (C ** -2) ** -3 == MatPow(C, 6)
200
+ assert (C ** -1) ** -1 == C
201
+ assert (((C ** 2) ** 3) ** 4) ** 5 == MatPow(C, 120)
202
+ assert (C ** n) ** n == C ** (n ** 2)
203
+
204
+
205
+ def test_unchanged():
206
+ assert unchanged(MatPow, C, 0)
207
+ assert unchanged(MatPow, C, 1)
208
+ assert unchanged(MatPow, Inverse(C), -1)
209
+ assert unchanged(Inverse, MatPow(C, -1), -1)
210
+ assert unchanged(MatPow, MatPow(C, -1), -1)
211
+ assert unchanged(MatPow, MatPow(C, 1), 1)
212
+
213
+
214
+ def test_no_exponentiation():
215
+ # if this passes, Pow.as_numer_denom should recognize
216
+ # MatAdd as exponent
217
+ raises(NotImplementedError, lambda: 3**(-2*C))