,...).",
+ )
+ distributed_args.add_argument(
+ "--max_restarts",
+ type=int,
+ default=0,
+ help="Maximum number of worker group restarts before failing.",
+ )
+ distributed_args.add_argument(
+ "--monitor_interval",
+ type=float,
+ default=5,
+ help="Interval, in seconds, to monitor the state of workers.",
+ )
+ parser.add_argument(
+ "-m",
+ "--module",
+ action="store_true",
+ help="Change each process to interpret the launch script as a Python module, executing with the same behavior as 'python -m'.",
+ )
+ parser.add_argument(
+ "--no_python",
+ action="store_true",
+ help="Skip prepending the training script with 'python' - just execute it directly. Useful when the script is not a Python script.",
+ )
+
+ # TPU arguments
+ tpu_args = parser.add_argument_group("TPU", "Arguments related to TPU.")
+ tpu_args.add_argument(
+ "--tpu_cluster",
+ action="store_true",
+ dest="tpu_use_cluster",
+ help="Whether to use a GCP TPU pod for training.",
+ )
+ tpu_args.add_argument(
+ "--no_tpu_cluster",
+ action="store_false",
+ dest="tpu_use_cluster",
+ help="Should not be passed explicitly, this is for internal use only.",
+ )
+ tpu_args.add_argument(
+ "--tpu_use_sudo",
+ action="store_true",
+ help="Whether to use `sudo` when running the TPU training script in each pod.",
+ )
+ tpu_args.add_argument(
+ "--vm",
+ type=str,
+ action="append",
+ help=(
+ "List of single Compute VM instance names. "
+ "If not provided we assume usage of instance groups. For TPU pods."
+ ),
+ )
+ tpu_args.add_argument(
+ "--env",
+ type=str,
+ action="append",
+ help="List of environment variables to set on the Compute VM instances. For TPU pods.",
+ )
+ tpu_args.add_argument(
+ "--main_training_function",
+ type=str,
+ default=None,
+ help="The name of the main function to be executed in your script (only for TPU training).",
+ )
+ tpu_args.add_argument(
+ "--downcast_bf16",
+ action="store_true",
+ help="Whether when using bf16 precision on TPUs if both float and double tensors are cast to bfloat16 or if double tensors remain as float32.",
+ )
+
+ # DeepSpeed arguments
+ deepspeed_args = parser.add_argument_group("DeepSpeed Arguments", "Arguments related to DeepSpeed.")
+ deepspeed_args.add_argument(
+ "--deepspeed_config_file",
+ default=None,
+ type=str,
+ help="DeepSpeed config file.",
+ )
+ deepspeed_args.add_argument(
+ "--zero_stage",
+ default=None,
+ type=int,
+ help="DeepSpeed's ZeRO optimization stage (useful only when `use_deepspeed` flag is passed). "
+ "If unspecified, will default to `2`.",
+ )
+ deepspeed_args.add_argument(
+ "--offload_optimizer_device",
+ default=None,
+ type=str,
+ help="Decides where (none|cpu|nvme) to offload optimizer states (useful only when `use_deepspeed` flag is passed). "
+ "If unspecified, will default to 'none'.",
+ )
+ deepspeed_args.add_argument(
+ "--offload_param_device",
+ default=None,
+ type=str,
+ help="Decides where (none|cpu|nvme) to offload parameters (useful only when `use_deepspeed` flag is passed). "
+ "If unspecified, will default to 'none'.",
+ )
+ deepspeed_args.add_argument(
+ "--offload_optimizer_nvme_path",
+ default=None,
+ type=str,
+ help="Decides Nvme Path to offload optimizer states (useful only when `use_deepspeed` flag is passed). "
+ "If unspecified, will default to 'none'.",
+ )
+ deepspeed_args.add_argument(
+ "--offload_param_nvme_path",
+ default=None,
+ type=str,
+ help="Decides Nvme Path to offload parameters (useful only when `use_deepspeed` flag is passed). "
+ "If unspecified, will default to 'none'.",
+ )
+ deepspeed_args.add_argument(
+ "--gradient_accumulation_steps",
+ default=None,
+ type=int,
+ help="No of gradient_accumulation_steps used in your training script (useful only when `use_deepspeed` flag is passed). "
+ "If unspecified, will default to `1`.",
+ )
+ deepspeed_args.add_argument(
+ "--gradient_clipping",
+ default=None,
+ type=float,
+ help="gradient clipping value used in your training script (useful only when `use_deepspeed` flag is passed). "
+ "If unspecified, will default to `1.0`.",
+ )
+ deepspeed_args.add_argument(
+ "--zero3_init_flag",
+ default=None,
+ type=str,
+ help="Decides Whether (true|false) to enable `deepspeed.zero.Init` for constructing massive models. "
+ "Only applicable with DeepSpeed ZeRO Stage-3. If unspecified, will default to `true`.",
+ )
+ deepspeed_args.add_argument(
+ "--zero3_save_16bit_model",
+ default=None,
+ type=str,
+ help="Decides Whether (true|false) to save 16-bit model weights when using ZeRO Stage-3. "
+ "Only applicable with DeepSpeed ZeRO Stage-3. If unspecified, will default to `false`.",
+ )
+ deepspeed_args.add_argument(
+ "--deepspeed_hostfile",
+ default=None,
+ type=str,
+ help="DeepSpeed hostfile for configuring multi-node compute resources.",
+ )
+ deepspeed_args.add_argument(
+ "--deepspeed_exclusion_filter",
+ default=None,
+ type=str,
+ help="DeepSpeed exclusion filter string when using mutli-node setup.",
+ )
+ deepspeed_args.add_argument(
+ "--deepspeed_inclusion_filter",
+ default=None,
+ type=str,
+ help="DeepSpeed inclusion filter string when using mutli-node setup.",
+ )
+ deepspeed_args.add_argument(
+ "--deepspeed_multinode_launcher",
+ default=None,
+ type=str,
+ help="DeepSpeed multi-node launcher to use. If unspecified, will default to `pdsh`.",
+ )
+ deepspeed_args.add_argument(
+ "--deepspeed_moe_layer_cls_names",
+ default=None,
+ type=str,
+ help="comma-separated list of transformer MoE layer class names (case-sensitive) to wrap ,e.g, `MixtralSparseMoeBlock`, `Qwen2MoeSparseMoeBlock`, `JetMoEAttention,JetMoEBlock` ..."
+ " (useful only when `use_deepspeed` flag is passed).",
+ )
+
+ # fsdp arguments
+ fsdp_args = parser.add_argument_group("FSDP Arguments", "Arguments related to Fully Shared Data Parallelism.")
+ fsdp_args.add_argument(
+ "--fsdp_offload_params",
+ default="false",
+ type=str,
+ help="Decides Whether (true|false) to offload parameters and gradients to CPU. (useful only when `use_fsdp` flag is passed).",
+ )
+ fsdp_args.add_argument(
+ "--fsdp_min_num_params",
+ type=int,
+ default=1e8,
+ help="FSDP's minimum number of parameters for Default Auto Wrapping. (useful only when `use_fsdp` flag is passed).",
+ )
+ fsdp_args.add_argument(
+ "--fsdp_sharding_strategy",
+ type=str,
+ default="FULL_SHARD",
+ help="FSDP's Sharding Strategy. (useful only when `use_fsdp` flag is passed).",
+ )
+ fsdp_args.add_argument(
+ "--fsdp_auto_wrap_policy",
+ type=str,
+ default=None,
+ help="FSDP's auto wrap policy. (useful only when `use_fsdp` flag is passed).",
+ )
+ fsdp_args.add_argument(
+ "--fsdp_transformer_layer_cls_to_wrap",
+ default=None,
+ type=str,
+ help="Transformer layer class name (case-sensitive) to wrap ,e.g, `BertLayer`, `GPTJBlock`, `T5Block` .... "
+ "(useful only when `use_fsdp` flag is passed).",
+ )
+ fsdp_args.add_argument(
+ "--fsdp_backward_prefetch_policy",
+ default=None,
+ type=str,
+ help="This argument is deprecated and will be removed in version 0.27.0 of 🤗 Accelerate. Use `fsdp_backward_prefetch` instead.",
+ )
+ fsdp_args.add_argument(
+ "--fsdp_backward_prefetch",
+ default=None,
+ type=str,
+ help="FSDP's backward prefetch policy. (useful only when `use_fsdp` flag is passed).",
+ )
+ fsdp_args.add_argument(
+ "--fsdp_state_dict_type",
+ default=None,
+ type=str,
+ help="FSDP's state dict type. (useful only when `use_fsdp` flag is passed).",
+ )
+ fsdp_args.add_argument(
+ "--fsdp_forward_prefetch",
+ default="false",
+ type=str,
+ help="If True, then FSDP explicitly prefetches the next upcoming "
+ "all-gather while executing in the forward pass (useful only when `use_fsdp` flag is passed).",
+ )
+ fsdp_args.add_argument(
+ "--fsdp_use_orig_params",
+ default="true",
+ type=str,
+ help="If True, allows non-uniform `requires_grad` during init, which means support for interspersed frozen and trainable paramteres."
+ " (useful only when `use_fsdp` flag is passed).",
+ )
+ fsdp_args.add_argument(
+ "--fsdp_cpu_ram_efficient_loading",
+ default="true",
+ type=str,
+ help="If True, only the first process loads the pretrained model checkoint while all other processes have empty weights. "
+ "Only applicable for 🤗 Transformers. When using this, `--fsdp_sync_module_states` needs to True. "
+ "(useful only when `use_fsdp` flag is passed).",
+ )
+ fsdp_args.add_argument(
+ "--fsdp_sync_module_states",
+ default="true",
+ type=str,
+ help="If True, each individually wrapped FSDP unit will broadcast module parameters from rank 0."
+ " (useful only when `use_fsdp` flag is passed).",
+ )
+
+ # megatron_lm args
+ megatron_lm_args = parser.add_argument_group("Megatron-LM Arguments", "Arguments related to Megatron-LM.")
+ megatron_lm_args.add_argument(
+ "--megatron_lm_tp_degree",
+ type=int,
+ default=1,
+ help="Megatron-LM's Tensor Parallelism (TP) degree. (useful only when `use_megatron_lm` flag is passed).",
+ )
+ megatron_lm_args.add_argument(
+ "--megatron_lm_pp_degree",
+ type=int,
+ default=1,
+ help="Megatron-LM's Pipeline Parallelism (PP) degree. (useful only when `use_megatron_lm` flag is passed).",
+ )
+ megatron_lm_args.add_argument(
+ "--megatron_lm_num_micro_batches",
+ type=int,
+ default=None,
+ help="Megatron-LM's number of micro batches when PP degree > 1. (useful only when `use_megatron_lm` flag is passed).",
+ )
+ megatron_lm_args.add_argument(
+ "--megatron_lm_sequence_parallelism",
+ default=None,
+ type=str,
+ help="Decides Whether (true|false) to enable Sequence Parallelism when TP degree > 1. "
+ "(useful only when `use_megatron_lm` flag is passed).",
+ )
+ megatron_lm_args.add_argument(
+ "--megatron_lm_recompute_activations",
+ default=None,
+ type=str,
+ help="Decides Whether (true|false) to enable Selective Activation Recomputation. "
+ "(useful only when `use_megatron_lm` flag is passed).",
+ )
+ megatron_lm_args.add_argument(
+ "--megatron_lm_use_distributed_optimizer",
+ default=None,
+ type=str,
+ help="Decides Whether (true|false) to use distributed optimizer "
+ "which shards optimizer state and gradients across Data Pralellel (DP) ranks. "
+ "(useful only when `use_megatron_lm` flag is passed).",
+ )
+ megatron_lm_args.add_argument(
+ "--megatron_lm_gradient_clipping",
+ default=1.0,
+ type=float,
+ help="Megatron-LM's gradient clipping value based on global L2 Norm (0 to disable). "
+ "(useful only when `use_megatron_lm` flag is passed).",
+ )
+
+ # AWS arguments
+ aws_args = parser.add_argument_group("AWS Arguments", "Arguments related to AWS.")
+ aws_args.add_argument(
+ "--aws_access_key_id",
+ type=str,
+ default=None,
+ help="The AWS_ACCESS_KEY_ID used to launch the Amazon SageMaker training job",
+ )
+ aws_args.add_argument(
+ "--aws_secret_access_key",
+ type=str,
+ default=None,
+ help="The AWS_SECRET_ACCESS_KEY used to launch the Amazon SageMaker training job.",
+ )
+ parser.add_argument(
+ "--debug",
+ action="store_true",
+ help="Whether to print out the torch.distributed stack trace when something fails.",
+ )
+ parser.add_argument(
+ "training_script",
+ type=str,
+ help=(
+ "The full path to the script to be launched in parallel, followed by all the arguments for the training "
+ "script."
+ ),
+ )
+
+ # MPI arguments
+ mpirun_args = parser.add_argument_group("MPI Arguments", "Arguments related to mpirun for Multi-CPU")
+ mpirun_args.add_argument(
+ "--mpirun_hostfile",
+ type=str,
+ default=None,
+ help="Location for a hostfile for using Accelerate to launch a multi-CPU training job with mpirun. This will "
+ "get passed to the MPI --hostfile or -f parameter, depending on which MPI program is installed.",
+ )
+ mpirun_args.add_argument(
+ "--mpirun_ccl",
+ type=int,
+ default=1,
+ help="The number of oneCCL worker threads when using Accelerate to launch multi-CPU training with mpirun.",
+ )
+
+ # Other arguments of the training scripts
+ parser.add_argument("training_script_args", nargs=argparse.REMAINDER, help="Arguments of the training script.")
+
+ if subparsers is not None:
+ parser.set_defaults(func=launch_command)
+ return parser
+
+
+def simple_launcher(args):
+ cmd, current_env = prepare_simple_launcher_cmd_env(args)
+
+ process = subprocess.Popen(cmd, env=current_env)
+ process.wait()
+ if process.returncode != 0:
+ if not args.quiet:
+ raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd)
+ else:
+ sys.exit(1)
+
+
+def multi_gpu_launcher(args):
+ import torch.distributed.run as distrib_run
+
+ current_env = prepare_multi_gpu_env(args)
+ if not check_cuda_p2p_ib_support():
+ message = "Using RTX 4000 series which doesn't support faster communication speedups. Ensuring P2P and IB communications are disabled."
+ warn = False
+ if "NCCL_P2P_DISABLE" not in current_env:
+ current_env["NCCL_P2P_DISABLE"] = "1"
+ warn = True
+ if "NCCL_IB_DISABLE" not in current_env:
+ current_env["NCCL_IB_DISABLE"] = "1"
+ warn = True
+ if warn:
+ logger.warning(message)
+
+ debug = getattr(args, "debug", False)
+ args = _filter_args(
+ args,
+ distrib_run.get_args_parser(),
+ ["--training_script", args.training_script, "--training_script_args", args.training_script_args],
+ )
+
+ with patch_environment(**current_env):
+ try:
+ distrib_run.run(args)
+ except Exception:
+ if is_rich_available() and debug:
+ console = get_console()
+ console.print("\n[bold red]Using --debug, `torch.distributed` Stack Trace:[/bold red]")
+ console.print_exception(suppress=[__file__], show_locals=False)
+ else:
+ raise
+
+
+def deepspeed_launcher(args):
+ import torch.distributed.run as distrib_run
+
+ if not is_deepspeed_available():
+ raise ImportError("DeepSpeed is not installed => run `pip3 install deepspeed` or build it from source.")
+ else:
+ from deepspeed.launcher.runner import DEEPSPEED_ENVIRONMENT_NAME
+
+ cmd, current_env = prepare_deepspeed_cmd_env(args)
+ if not check_cuda_p2p_ib_support():
+ message = "Using RTX 4000 series which doesn't support faster communication speedups. Ensuring P2P and IB communications are disabled."
+ warn = False
+ if "NCCL_P2P_DISABLE" not in current_env:
+ current_env["NCCL_P2P_DISABLE"] = "1"
+ warn = True
+ if "NCCL_IB_DISABLE" not in current_env:
+ current_env["NCCL_IB_DISABLE"] = "1"
+ warn = True
+ if warn:
+ logger.warning(message)
+
+ if args.num_machines > 1 and args.deepspeed_multinode_launcher != DEEPSPEED_MULTINODE_LAUNCHERS[1]:
+ with open(DEEPSPEED_ENVIRONMENT_NAME, "a") as f:
+ valid_env_items = convert_dict_to_env_variables(current_env)
+ if len(valid_env_items) > 1:
+ f.writelines(valid_env_items)
+
+ process = subprocess.Popen(cmd, env=current_env)
+ process.wait()
+ if process.returncode != 0:
+ if not args.quiet:
+ raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd)
+ else:
+ sys.exit(1)
+ else:
+ debug = getattr(args, "debug", False)
+ args = _filter_args(
+ args,
+ distrib_run.get_args_parser(),
+ ["--training_script", args.training_script, "--training_script_args", args.training_script_args],
+ )
+ with patch_environment(**current_env):
+ try:
+ distrib_run.run(args)
+ except Exception:
+ if is_rich_available() and debug:
+ console = get_console()
+ console.print("\n[bold red]Using --debug, `torch.distributed` Stack Trace:[/bold red]")
+ console.print_exception(suppress=[__file__], show_locals=False)
+ else:
+ raise
+
+
+def tpu_launcher(args):
+ import torch_xla.distributed.xla_multiprocessing as xmp
+
+ if args.no_python:
+ raise ValueError("--no_python cannot be used with TPU launcher")
+
+ args, current_env = prepare_tpu(args, {})
+
+ if args.module:
+ mod_name = args.training_script
+ else:
+ # Import training_script as a module
+ script_path = Path(args.training_script)
+ sys.path.append(str(script_path.parent.resolve()))
+ mod_name = script_path.stem
+
+ mod = importlib.import_module(mod_name)
+ if not hasattr(mod, args.main_training_function):
+ raise ValueError(
+ f"Your training script should have a function named {args.main_training_function}, or you should pass a "
+ "different value to `--main_training_function`."
+ )
+
+ # Patch sys.argv
+ sys.argv = [mod.__file__] + args.training_script_args
+
+ main_function = getattr(mod, args.main_training_function)
+ with patch_environment(**current_env):
+ xmp.spawn(PrepareForLaunch(main_function), args=(), nprocs=args.num_processes)
+
+
+def tpu_pod_launcher(args):
+ from torch_xla.distributed import xla_dist
+
+ current_env = {}
+ args, current_env = prepare_tpu(args, current_env, True)
+ debug = getattr(args, "debug", False)
+
+ training_script = args.training_script
+ training_script_args = args.training_script_args
+ new_args = _filter_args(
+ args, xla_dist.get_args_parser(), ["--tpu", args.tpu_name, "--positional", "", "--restart-tpuvm-pod-server"]
+ )
+
+ if args.tpu_use_sudo:
+ new_cmd = ["sudo"]
+ else:
+ new_cmd = []
+
+ new_cmd += [
+ "accelerate-launch",
+ "--tpu",
+ "--no_tpu_cluster",
+ "--num_machines",
+ "1",
+ "--mixed_precision",
+ "no",
+ "--dynamo_backend",
+ "no",
+ "--num_processes",
+ str(args.num_processes),
+ "--main_training_function",
+ str(args.main_training_function),
+ training_script,
+ ] + training_script_args
+
+ new_args.positional = new_cmd
+ bad_flags = ""
+ for arg in vars(new_args):
+ if arg.startswith("docker_"):
+ value = getattr(new_args, arg)
+ if value != "" and value is not None:
+ bad_flags += f'{arg}="{value}"\n'
+ if bad_flags != "":
+ raise ValueError(
+ f"Docker containers are not supported for TPU pod launcher currently, please remove the following flags:\n{bad_flags}"
+ )
+ new_args.env = [f"{k}={v}" for k, v in current_env.items()]
+ new_args.env.append("ACCELERATE_IN_TPU_POD=1")
+ try:
+ xla_dist.resolve_and_execute(new_args)
+ except Exception:
+ if is_rich_available() and debug:
+ console = get_console()
+ console.print("\n[bold red]Using --debug, `torch_xla.xla_dist` Stack Trace:[/bold red]")
+ console.print_exception(suppress=[__file__], show_locals=False)
+ else:
+ raise
+
+
+def sagemaker_launcher(sagemaker_config: SageMakerConfig, args):
+ if not is_sagemaker_available():
+ raise ImportError(
+ "Please install sagemaker to be able to launch training on Amazon SageMaker with `pip install accelerate[sagemaker]`"
+ )
+ if args.module or args.no_python:
+ raise ValueError(
+ "SageMaker requires a python training script file and cannot be used with --module or --no_python"
+ )
+
+ from sagemaker.huggingface import HuggingFace
+
+ args, sagemaker_inputs = prepare_sagemager_args_inputs(sagemaker_config, args)
+
+ huggingface_estimator = HuggingFace(**args)
+
+ huggingface_estimator.fit(inputs=sagemaker_inputs)
+ print(f"You can find your model data at: {huggingface_estimator.model_data}")
+
+
+def _validate_launch_command(args):
+ # Sanity checks
+ if sum([args.multi_gpu, args.cpu, args.tpu, args.use_deepspeed, args.use_fsdp]) > 1:
+ raise ValueError(
+ "You can only use one of `--cpu`, `--multi_gpu`, `--tpu`, `--use_deepspeed`, `--use_fsdp` at a time."
+ )
+ if args.multi_gpu and (args.num_processes is not None) and (args.num_processes < 2):
+ raise ValueError("You need to use at least 2 processes to use `--multi_gpu`.")
+
+ defaults = None
+ warned = []
+ mp_from_config_flag = False
+ # Get the default from the config file.
+ if args.config_file is not None or os.path.isfile(default_config_file) and not args.cpu:
+ defaults = load_config_from_file(args.config_file)
+ if (
+ not args.multi_gpu
+ and not args.tpu
+ and not args.tpu_use_cluster
+ and not args.use_deepspeed
+ and not args.use_fsdp
+ and not args.use_megatron_lm
+ ):
+ args.use_deepspeed = defaults.distributed_type == DistributedType.DEEPSPEED
+ args.multi_gpu = (
+ True
+ if defaults.distributed_type
+ in (
+ DistributedType.MULTI_GPU,
+ DistributedType.MULTI_NPU,
+ DistributedType.MULTI_MLU,
+ DistributedType.MULTI_XPU,
+ )
+ else False
+ )
+ args.tpu = defaults.distributed_type == DistributedType.XLA
+ args.use_fsdp = defaults.distributed_type == DistributedType.FSDP
+ args.use_megatron_lm = defaults.distributed_type == DistributedType.MEGATRON_LM
+ args.tpu_use_cluster = defaults.tpu_use_cluster if args.tpu else False
+ if args.gpu_ids is None:
+ if defaults.gpu_ids is not None:
+ args.gpu_ids = defaults.gpu_ids
+ else:
+ args.gpu_ids = "all"
+
+ if args.multi_gpu and args.num_machines is None:
+ args.num_machines = defaults.num_machines
+
+ if len(args.gpu_ids.split(",")) < 2 and (args.gpu_ids != "all") and args.multi_gpu and args.num_machines <= 1:
+ raise ValueError(
+ "Less than two GPU ids were configured and tried to run on on multiple GPUs. "
+ "Please ensure at least two are specified for `--gpu_ids`, or use `--gpu_ids='all'`."
+ )
+ if defaults.compute_environment == ComputeEnvironment.LOCAL_MACHINE:
+ # Update args with the defaults
+ for name, attr in defaults.__dict__.items():
+ if isinstance(attr, dict):
+ for k in defaults.deepspeed_config:
+ setattr(args, k, defaults.deepspeed_config[k])
+ for k in defaults.fsdp_config:
+ arg_to_set = k
+ if "fsdp" not in arg_to_set:
+ arg_to_set = "fsdp_" + arg_to_set
+ setattr(args, arg_to_set, defaults.fsdp_config[k])
+ for k in defaults.megatron_lm_config:
+ setattr(args, k, defaults.megatron_lm_config[k])
+ for k in defaults.dynamo_config:
+ setattr(args, k, defaults.dynamo_config[k])
+ for k in defaults.ipex_config:
+ setattr(args, k, defaults.ipex_config[k])
+ for k in defaults.mpirun_config:
+ setattr(args, k, defaults.mpirun_config[k])
+ continue
+
+ # Those args are handled separately
+ if (
+ name not in ["compute_environment", "mixed_precision", "distributed_type"]
+ and getattr(args, name, None) is None
+ ):
+ setattr(args, name, attr)
+ if not args.debug:
+ args.debug = defaults.debug
+
+ if not args.mixed_precision:
+ if defaults.mixed_precision is None:
+ args.mixed_precision = "no"
+ else:
+ args.mixed_precision = defaults.mixed_precision
+ mp_from_config_flag = True
+ else:
+ if args.use_cpu or (args.use_xpu and torch.xpu.is_available()):
+ native_amp = is_torch_version(">=", "1.10")
+ else:
+ native_amp = is_bf16_available(True)
+ if (
+ args.mixed_precision == "bf16"
+ and not native_amp
+ and not (args.tpu and is_torch_xla_available(check_is_tpu=True))
+ ):
+ raise ValueError("bf16 mixed precision requires PyTorch >= 1.10 and a supported device.")
+
+ # Silently set the default here
+ if args.dynamo_backend is None:
+ args.dynamo_backend = "no"
+ else:
+ if args.num_processes is None:
+ if args.use_xpu and is_xpu_available():
+ args.num_processes = torch.xpu.device_count()
+ elif is_mlu_available():
+ args.num_processes = torch.mlu.device_count()
+ elif is_npu_available():
+ args.num_processes = torch.npu.device_count()
+ else:
+ args.num_processes = torch.cuda.device_count()
+ warned.append(f"\t`--num_processes` was set to a value of `{args.num_processes}`")
+ if args.debug is None:
+ args.debug = False
+ if not args.multi_gpu and (
+ (args.use_xpu and is_xpu_available() and torch.xpu.device_count() > 1)
+ or (is_mlu_available() and torch.mlu.device_count() > 1)
+ or (is_npu_available() and torch.npu.device_count() > 1)
+ or (torch.cuda.device_count() > 1)
+ ):
+ warned.append(
+ "\t\tMore than one GPU was found, enabling multi-GPU training.\n"
+ "\t\tIf this was unintended please pass in `--num_processes=1`."
+ )
+ args.multi_gpu = True
+ if args.num_machines is None:
+ warned.append("\t`--num_machines` was set to a value of `1`")
+ args.num_machines = 1
+ if args.mixed_precision is None:
+ warned.append("\t`--mixed_precision` was set to a value of `'no'`")
+ args.mixed_precision = "no"
+ if not hasattr(args, "use_cpu"):
+ args.use_cpu = args.cpu
+ if args.dynamo_backend is None:
+ warned.append("\t`--dynamo_backend` was set to a value of `'no'`")
+ args.dynamo_backend = "no"
+ if args.debug:
+ logger.debug("Running script in debug mode, expect distributed operations to be slightly slower.")
+
+ is_aws_env_disabled = defaults is None or (
+ defaults is not None and defaults.compute_environment != ComputeEnvironment.AMAZON_SAGEMAKER
+ )
+ if is_aws_env_disabled and args.num_cpu_threads_per_process is None:
+ args.num_cpu_threads_per_process = 1
+ if args.use_cpu and args.num_processes >= 1:
+ local_size = get_int_from_env(
+ ["MPI_LOCALNRANKS", "OMPI_COMM_WORLD_LOCAL_SIZE", "MV2_COMM_WORLD_LOCAL_SIZE"], 1
+ )
+ threads_per_process = int(psutil.cpu_count(logical=False) / local_size)
+ if threads_per_process > 1:
+ args.num_cpu_threads_per_process = threads_per_process
+ warned.append(
+ f"\t`--num_cpu_threads_per_process` was set to `{args.num_cpu_threads_per_process}` to improve out-of-box performance when training on CPUs"
+ )
+
+ if any(warned):
+ message = "The following values were not passed to `accelerate launch` and had defaults used instead:\n"
+ message += "\n".join(warned)
+ message += (
+ "\nTo avoid this warning pass in values for each of the problematic parameters or run `accelerate config`."
+ )
+ logger.warning(message)
+ return args, defaults, mp_from_config_flag
+
+
+def launch_command(args):
+ args, defaults, mp_from_config_flag = _validate_launch_command(args)
+ # Use the proper launcher
+ if args.use_deepspeed and not args.cpu:
+ args.deepspeed_fields_from_accelerate_config = list(defaults.deepspeed_config.keys()) if defaults else []
+ if mp_from_config_flag:
+ args.deepspeed_fields_from_accelerate_config.append("mixed_precision")
+ args.deepspeed_fields_from_accelerate_config = ",".join(args.deepspeed_fields_from_accelerate_config)
+ deepspeed_launcher(args)
+ elif args.use_fsdp and not args.cpu:
+ multi_gpu_launcher(args)
+ elif args.use_megatron_lm and not args.cpu:
+ multi_gpu_launcher(args)
+ elif args.multi_gpu and not args.cpu:
+ multi_gpu_launcher(args)
+ elif args.tpu and not args.cpu:
+ if args.tpu_use_cluster:
+ tpu_pod_launcher(args)
+ else:
+ tpu_launcher(args)
+ elif defaults is not None and defaults.compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
+ sagemaker_launcher(defaults, args)
+ else:
+ simple_launcher(args)
+
+
+def main():
+ parser = launch_command_parser()
+ args = parser.parse_args()
+ launch_command(args)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__init__.py b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..c2c851cc0b192ab8207d3fa68d7409868c84354c
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__init__.py
@@ -0,0 +1,14 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from .selection_menu import BulletMenu
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7ad095e78cec41160e8b844cdbecc42a456fc256
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/cursor.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/cursor.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..975d1b667cdb3231f9d72f0f1bad26431de73ef1
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/cursor.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/helpers.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/helpers.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f1430b721b5997dc819d4b336e43d257d90151fe
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/helpers.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/input.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/input.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..33d1eb1884383df404c7349b55570483dd5b28f3
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/input.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/keymap.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/keymap.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..53cbb8275837cec2039aaba2d60b52a63b2a03c7
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/keymap.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/selection_menu.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/selection_menu.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..10e9490c450bf007f8413825029a3d4a3a369e6a
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/__pycache__/selection_menu.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/cursor.py b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/cursor.py
new file mode 100644
index 0000000000000000000000000000000000000000..c1f0bb7b68025ae4fe0c2c76c095eb36b4e64f2c
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/cursor.py
@@ -0,0 +1,65 @@
+# Copyright 2022 The HuggingFace Team and Brian Chao. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+A utility for showing and hiding the terminal cursor on Windows and Linux, based on https://github.com/bchao1/bullet
+"""
+
+import os
+import sys
+from contextlib import contextmanager
+
+
+# Windows only
+if os.name == "nt":
+ import ctypes
+ import msvcrt # noqa
+
+ class CursorInfo(ctypes.Structure):
+ # _fields is a specific attr expected by ctypes
+ _fields_ = [("size", ctypes.c_int), ("visible", ctypes.c_byte)]
+
+
+def hide_cursor():
+ if os.name == "nt":
+ ci = CursorInfo()
+ handle = ctypes.windll.kernel32.GetStdHandle(-11)
+ ctypes.windll.kernel32.GetConsoleCursorInfo(handle, ctypes.byref(ci))
+ ci.visible = False
+ ctypes.windll.kernel32.SetConsoleCursorInfo(handle, ctypes.byref(ci))
+ elif os.name == "posix":
+ sys.stdout.write("\033[?25l")
+ sys.stdout.flush()
+
+
+def show_cursor():
+ if os.name == "nt":
+ ci = CursorInfo()
+ handle = ctypes.windll.kernel32.GetStdHandle(-11)
+ ctypes.windll.kernel32.GetConsoleCursorInfo(handle, ctypes.byref(ci))
+ ci.visible = True
+ ctypes.windll.kernel32.SetConsoleCursorInfo(handle, ctypes.byref(ci))
+ elif os.name == "posix":
+ sys.stdout.write("\033[?25h")
+ sys.stdout.flush()
+
+
+@contextmanager
+def hide():
+ "Context manager to hide the terminal cursor"
+ try:
+ hide_cursor()
+ yield
+ finally:
+ show_cursor()
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/helpers.py b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/helpers.py
new file mode 100644
index 0000000000000000000000000000000000000000..de46f37ddcf4591167e3e01791391e4b1729034f
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/helpers.py
@@ -0,0 +1,59 @@
+# Copyright 2022 The HuggingFace Team and Brian Chao. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+A variety of helper functions and constants when dealing with terminal menu choices, based on
+https://github.com/bchao1/bullet
+"""
+
+import enum
+import shutil
+import sys
+
+
+TERMINAL_WIDTH, _ = shutil.get_terminal_size()
+
+CURSOR_TO_CHAR = {"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"}
+
+
+class Direction(enum.Enum):
+ UP = 0
+ DOWN = 1
+
+
+def forceWrite(content, end=""):
+ sys.stdout.write(str(content) + end)
+ sys.stdout.flush()
+
+
+def writeColor(content, color, end=""):
+ forceWrite(f"\u001b[{color}m{content}\u001b[0m", end)
+
+
+def reset_cursor():
+ forceWrite("\r")
+
+
+def move_cursor(num_lines: int, direction: str):
+ forceWrite(f"\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}")
+
+
+def clear_line():
+ forceWrite(" " * TERMINAL_WIDTH)
+ reset_cursor()
+
+
+def linebreak():
+ reset_cursor()
+ forceWrite("-" * TERMINAL_WIDTH)
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/input.py b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/input.py
new file mode 100644
index 0000000000000000000000000000000000000000..2690f86aa61f7ac648f4a9c2040a34ee35147201
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/input.py
@@ -0,0 +1,86 @@
+# Copyright 2022 The HuggingFace Team and Brian Chao. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+This file contains utilities for handling input from the user and registering specific keys to specific functions,
+based on https://github.com/bchao1/bullet
+"""
+
+from typing import List
+
+from .keymap import KEYMAP, get_character
+
+
+def mark(key: str):
+ """
+ Mark the function with the key code so it can be handled in the register
+ """
+
+ def decorator(func):
+ handle = getattr(func, "handle_key", [])
+ handle += [key]
+ func.handle_key = handle
+ return func
+
+ return decorator
+
+
+def mark_multiple(*keys: List[str]):
+ """
+ Mark the function with the key codes so it can be handled in the register
+ """
+
+ def decorator(func):
+ handle = getattr(func, "handle_key", [])
+ handle += keys
+ func.handle_key = handle
+ return func
+
+ return decorator
+
+
+class KeyHandler(type):
+ """
+ Metaclass that adds the key handlers to the class
+ """
+
+ def __new__(cls, name, bases, attrs):
+ new_cls = super().__new__(cls, name, bases, attrs)
+ if not hasattr(new_cls, "key_handler"):
+ new_cls.key_handler = {}
+ new_cls.handle_input = KeyHandler.handle_input
+
+ for value in attrs.values():
+ handled_keys = getattr(value, "handle_key", [])
+ for key in handled_keys:
+ new_cls.key_handler[key] = value
+ return new_cls
+
+ @staticmethod
+ def handle_input(cls):
+ "Finds and returns the selected character if it exists in the handler"
+ char = get_character()
+ if char != KEYMAP["undefined"]:
+ char = ord(char)
+ handler = cls.key_handler.get(char)
+ if handler:
+ cls.current_selection = char
+ return handler(cls)
+ else:
+ return None
+
+
+def register(cls):
+ """Adds KeyHandler metaclass to the class"""
+ return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy())
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/keymap.py b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/keymap.py
new file mode 100644
index 0000000000000000000000000000000000000000..787db12860fe21c6786dda69c34fcccab114f2f8
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/keymap.py
@@ -0,0 +1,133 @@
+# Copyright 2022 The HuggingFace Team and Brian Chao. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+Utilities relating to parsing raw characters from the keyboard, based on https://github.com/bchao1/bullet
+"""
+
+import os
+import string
+import sys
+
+
+ARROW_KEY_FLAG = 1 << 8
+
+KEYMAP = {
+ "tab": ord("\t"),
+ "newline": ord("\r"),
+ "esc": 27,
+ "up": 65 + ARROW_KEY_FLAG,
+ "down": 66 + ARROW_KEY_FLAG,
+ "right": 67 + ARROW_KEY_FLAG,
+ "left": 68 + ARROW_KEY_FLAG,
+ "mod_int": 91,
+ "undefined": sys.maxsize,
+ "interrupt": 3,
+ "insert": 50,
+ "delete": 51,
+ "pg_up": 53,
+ "pg_down": 54,
+}
+
+KEYMAP["arrow_begin"] = KEYMAP["up"]
+KEYMAP["arrow_end"] = KEYMAP["left"]
+
+if sys.platform == "win32":
+ WIN_CH_BUFFER = []
+ WIN_KEYMAP = {
+ b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG,
+ b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG,
+ b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG,
+ b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG,
+ b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG,
+ b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG,
+ b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG,
+ b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG,
+ }
+
+for i in range(10):
+ KEYMAP[str(i)] = ord(str(i))
+
+
+def get_raw_chars():
+ "Gets raw characters from inputs"
+ if os.name == "nt":
+ import msvcrt
+
+ encoding = "mbcs"
+ # Flush the keyboard buffer
+ while msvcrt.kbhit():
+ msvcrt.getch()
+ if len(WIN_CH_BUFFER) == 0:
+ # Read the keystroke
+ ch = msvcrt.getch()
+
+ # If it is a prefix char, get second part
+ if ch in (b"\x00", b"\xe0"):
+ ch2 = ch + msvcrt.getch()
+ # Translate actual Win chars to bullet char types
+ try:
+ chx = chr(WIN_KEYMAP[ch2])
+ WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"]))
+ WIN_CH_BUFFER.append(chx)
+ if ord(chx) in (
+ KEYMAP["insert"] - 1 << 9,
+ KEYMAP["delete"] - 1 << 9,
+ KEYMAP["pg_up"] - 1 << 9,
+ KEYMAP["pg_down"] - 1 << 9,
+ ):
+ WIN_CH_BUFFER.append(chr(126))
+ ch = chr(KEYMAP["esc"])
+ except KeyError:
+ ch = ch2[1]
+ else:
+ ch = ch.decode(encoding)
+ else:
+ ch = WIN_CH_BUFFER.pop(0)
+ elif os.name == "posix":
+ import termios
+ import tty
+
+ fd = sys.stdin.fileno()
+ old_settings = termios.tcgetattr(fd)
+ try:
+ tty.setraw(fd)
+ ch = sys.stdin.read(1)
+ finally:
+ termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
+ return ch
+
+
+def get_character():
+ "Gets a character from the keyboard and returns the key code"
+ char = get_raw_chars()
+ if ord(char) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
+ return char
+
+ elif ord(char) == KEYMAP["esc"]:
+ combo = get_raw_chars()
+ if ord(combo) == KEYMAP["mod_int"]:
+ key = get_raw_chars()
+ if ord(key) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(key) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
+ return chr(ord(key) + ARROW_KEY_FLAG)
+ else:
+ return KEYMAP["undefined"]
+ else:
+ return get_raw_chars()
+
+ else:
+ if char in string.printable:
+ return char
+ else:
+ return KEYMAP["undefined"]
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/selection_menu.py b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/selection_menu.py
new file mode 100644
index 0000000000000000000000000000000000000000..ee9a771a54ef666ee46b67ae6c75fb957d49efdd
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/menu/selection_menu.py
@@ -0,0 +1,144 @@
+# Copyright 2022 The HuggingFace Team and Brian Chao. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+"""
+Main driver for the selection menu, based on https://github.com/bchao1/bullet
+"""
+
+import builtins
+import sys
+
+from ...utils.imports import _is_package_available
+from . import cursor, input
+from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor
+from .keymap import KEYMAP
+
+
+in_colab = False
+try:
+ in_colab = _is_package_available("google.colab")
+except ModuleNotFoundError:
+ pass
+
+
+@input.register
+class BulletMenu:
+ """
+ A CLI menu to select a choice from a list of choices using the keyboard.
+ """
+
+ def __init__(self, prompt: str = None, choices: list = []):
+ self.position = 0
+ self.choices = choices
+ self.prompt = prompt
+ if sys.platform == "win32":
+ self.arrow_char = "*"
+ else:
+ self.arrow_char = "➔ "
+
+ def write_choice(self, index, end: str = ""):
+ if sys.platform != "win32":
+ writeColor(self.choices[index], 32, end)
+ else:
+ forceWrite(self.choices[index], end)
+
+ def print_choice(self, index: int):
+ "Prints the choice at the given index"
+ if index == self.position:
+ forceWrite(f" {self.arrow_char} ")
+ self.write_choice(index)
+ else:
+ forceWrite(f" {self.choices[index]}")
+ reset_cursor()
+
+ def move_direction(self, direction: Direction, num_spaces: int = 1):
+ "Should not be directly called, used to move a direction of either up or down"
+ old_position = self.position
+ if direction == Direction.DOWN:
+ if self.position + 1 >= len(self.choices):
+ return
+ self.position += num_spaces
+ else:
+ if self.position - 1 < 0:
+ return
+ self.position -= num_spaces
+ clear_line()
+ self.print_choice(old_position)
+ move_cursor(num_spaces, direction.name)
+ self.print_choice(self.position)
+
+ @input.mark(KEYMAP["up"])
+ def move_up(self):
+ self.move_direction(Direction.UP)
+
+ @input.mark(KEYMAP["down"])
+ def move_down(self):
+ self.move_direction(Direction.DOWN)
+
+ @input.mark(KEYMAP["newline"])
+ def select(self):
+ move_cursor(len(self.choices) - self.position, "DOWN")
+ return self.position
+
+ @input.mark(KEYMAP["interrupt"])
+ def interrupt(self):
+ move_cursor(len(self.choices) - self.position, "DOWN")
+ raise KeyboardInterrupt
+
+ @input.mark_multiple(*[KEYMAP[str(number)] for number in range(10)])
+ def select_row(self):
+ index = int(chr(self.current_selection))
+ movement = index - self.position
+ if index == self.position:
+ return
+ if index < len(self.choices):
+ if self.position > index:
+ self.move_direction(Direction.UP, -movement)
+ elif self.position < index:
+ self.move_direction(Direction.DOWN, movement)
+ else:
+ return
+ else:
+ return
+
+ def run(self, default_choice: int = 0):
+ "Start the menu and return the selected choice"
+ if self.prompt:
+ linebreak()
+ forceWrite(self.prompt, "\n")
+ if in_colab:
+ forceWrite("Please input a choice index (starting from 0), and press enter", "\n")
+ else:
+ forceWrite("Please select a choice using the arrow or number keys, and selecting with enter", "\n")
+ self.position = default_choice
+ for i in range(len(self.choices)):
+ self.print_choice(i)
+ forceWrite("\n")
+ move_cursor(len(self.choices) - self.position, "UP")
+ with cursor.hide():
+ while True:
+ if in_colab:
+ try:
+ choice = int(builtins.input())
+ except ValueError:
+ choice = default_choice
+ else:
+ choice = self.handle_input()
+ if choice is not None:
+ reset_cursor()
+ for _ in range(len(self.choices) + 1):
+ move_cursor(1, "UP")
+ clear_line()
+ self.write_choice(choice, "\n")
+ return choice
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/commands/test.py b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/test.py
new file mode 100644
index 0000000000000000000000000000000000000000..a0d2f7bcf14727aa13e3438f4cd6e6f140f5bb2f
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/test.py
@@ -0,0 +1,65 @@
+#!/usr/bin/env python
+
+# Copyright 2021 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import argparse
+
+from accelerate.test_utils import execute_subprocess_async, path_in_accelerate_package
+
+
+def test_command_parser(subparsers=None):
+ if subparsers is not None:
+ parser = subparsers.add_parser("test")
+ else:
+ parser = argparse.ArgumentParser("Accelerate test command")
+
+ parser.add_argument(
+ "--config_file",
+ default=None,
+ help=(
+ "The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
+ "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
+ "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
+ "with 'huggingface'."
+ ),
+ )
+
+ if subparsers is not None:
+ parser.set_defaults(func=test_command)
+ return parser
+
+
+def test_command(args):
+ script_name = path_in_accelerate_package("test_utils", "scripts", "test_script.py")
+
+ if args.config_file is None:
+ test_args = [script_name]
+ else:
+ test_args = f"--config_file={args.config_file} {script_name}".split()
+
+ cmd = ["accelerate-launch"] + test_args
+ result = execute_subprocess_async(cmd)
+ if result.returncode == 0:
+ print("Test is a success! You are ready for your distributed training!")
+
+
+def main():
+ parser = test_command_parser()
+ args = parser.parse_args()
+ test_command(args)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/commands/tpu.py b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/tpu.py
new file mode 100644
index 0000000000000000000000000000000000000000..fc0f07bf8697bfdb6484d3bf817f2e18b1313b00
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/tpu.py
@@ -0,0 +1,157 @@
+#!/usr/bin/env python
+
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import argparse
+import os
+import subprocess
+
+from packaging.version import Version, parse
+
+from accelerate.commands.config.config_args import default_config_file, load_config_from_file
+
+
+_description = "Run commands across TPU VMs for initial setup before running `accelerate launch`."
+
+
+def tpu_command_parser(subparsers=None):
+ if subparsers is not None:
+ parser = subparsers.add_parser("tpu-config", description=_description)
+ else:
+ parser = argparse.ArgumentParser("Accelerate tpu-config command", description=_description)
+ # Core arguments
+ config_args = parser.add_argument_group(
+ "Config Arguments", "Arguments that can be configured through `accelerate config`."
+ )
+ config_args.add_argument(
+ "--config_file",
+ type=str,
+ default=None,
+ help="Path to the config file to use for accelerate.",
+ )
+ config_args.add_argument(
+ "--tpu_name",
+ default=None,
+ help="The name of the TPU to use. If not specified, will use the TPU specified in the config file.",
+ )
+ config_args.add_argument(
+ "--tpu_zone",
+ default=None,
+ help="The zone of the TPU to use. If not specified, will use the zone specified in the config file.",
+ )
+ pod_args = parser.add_argument_group("TPU Arguments", "Arguments for options ran inside the TPU.")
+ pod_args.add_argument(
+ "--use_alpha",
+ action="store_true",
+ help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.",
+ )
+ pod_args.add_argument(
+ "--command_file",
+ default=None,
+ help="The path to the file containing the commands to run on the pod on startup.",
+ )
+ pod_args.add_argument(
+ "--command",
+ action="append",
+ nargs="+",
+ help="A command to run on the pod. Can be passed multiple times.",
+ )
+ pod_args.add_argument(
+ "--install_accelerate",
+ action="store_true",
+ help="Whether to install accelerate on the pod. Defaults to False.",
+ )
+ pod_args.add_argument(
+ "--accelerate_version",
+ default="latest",
+ help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.",
+ )
+ pod_args.add_argument(
+ "--debug", action="store_true", help="If set, will print the command that would be run instead of running it."
+ )
+
+ if subparsers is not None:
+ parser.set_defaults(func=tpu_command_launcher)
+ return parser
+
+
+def tpu_command_launcher(args):
+ defaults = None
+
+ # Get the default from the config file if it exists.
+ if args.config_file is not None or os.path.isfile(default_config_file):
+ defaults = load_config_from_file(args.config_file)
+ if not args.command_file and defaults.command_file is not None and not args.command:
+ args.command_file = defaults.command_file
+ if not args.command and defaults.commands is not None:
+ args.command = defaults.commands
+ if not args.tpu_name:
+ args.tpu_name = defaults.tpu_name
+ if not args.tpu_zone:
+ args.tpu_zone = defaults.tpu_zone
+ if args.accelerate_version == "dev":
+ args.accelerate_version = "git+https://github.com/huggingface/accelerate.git"
+ elif args.accelerate_version == "latest":
+ args.accelerate_version = "accelerate -U"
+ elif isinstance(parse(args.accelerate_version), Version):
+ args.accelerate_version = f"accelerate=={args.accelerate_version}"
+
+ if not args.command_file and not args.command:
+ raise ValueError("You must specify either a command file or a command to run on the pod.")
+
+ if args.command_file:
+ with open(args.command_file) as f:
+ args.command = [f.read().splitlines()]
+
+ # To turn list of lists into list of strings
+ if isinstance(args.command[0], list):
+ args.command = [line for cmd in args.command for line in cmd]
+ # Default to the shared folder and install accelerate
+ new_cmd = ["cd /usr/share"]
+ if args.install_accelerate:
+ new_cmd += [f"pip install {args.accelerate_version}"]
+ new_cmd += args.command
+ args.command = "; ".join(new_cmd)
+
+ # Then send it to gcloud
+ # Eventually try to use google-api-core to do this instead of subprocess
+ cmd = ["gcloud"]
+ if args.use_alpha:
+ cmd += ["alpha"]
+ cmd += [
+ "compute",
+ "tpus",
+ "tpu-vm",
+ "ssh",
+ args.tpu_name,
+ "--zone",
+ args.tpu_zone,
+ "--command",
+ args.command,
+ "--worker",
+ "all",
+ ]
+ if args.debug:
+ print(f"Running {' '.join(cmd)}")
+ return
+ subprocess.run(cmd)
+ print("Successfully setup pod.")
+
+
+def main():
+ parser = tpu_command_parser()
+ args = parser.parse_args()
+
+ tpu_command_launcher(args)
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/commands/utils.py b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..b65215fac7666b475af98b17e264ef6701239bc1
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/accelerate/commands/utils.py
@@ -0,0 +1,120 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import argparse
+
+
+class _StoreAction(argparse.Action):
+ """
+ Custom action that allows for `-` or `_` to be passed in for an argument.
+ """
+
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ new_option_strings = []
+ for option_string in self.option_strings:
+ new_option_strings.append(option_string)
+ if "_" in option_string[2:]:
+ # Add `-` version to the option string
+ new_option_strings.append(option_string.replace("_", "-"))
+ self.option_strings = new_option_strings
+
+ def __call__(self, parser, namespace, values, option_string=None):
+ setattr(namespace, self.dest, values)
+
+
+class _StoreConstAction(_StoreAction):
+ """
+ Same as `argparse._StoreConstAction` but uses the custom `_StoreAction`.
+ """
+
+ def __init__(self, option_strings, dest, const, default=None, required=False, help=None):
+ super().__init__(
+ option_strings=option_strings,
+ dest=dest,
+ nargs=0,
+ const=const,
+ default=default,
+ required=required,
+ help=help,
+ )
+
+ def __call__(self, parser, namespace, values, option_string=None):
+ setattr(namespace, self.dest, self.const)
+
+
+class _StoreTrueAction(_StoreConstAction):
+ """
+ Same as `argparse._StoreTrueAction` but uses the custom `_StoreConstAction`.
+ """
+
+ def __init__(
+ self,
+ option_strings,
+ dest,
+ default=None,
+ required=False,
+ help=None,
+ ):
+ super().__init__(
+ option_strings=option_strings, dest=dest, const=True, default=default, required=required, help=help
+ )
+
+
+class CustomArgumentGroup(argparse._ArgumentGroup):
+ """
+ Custom argument group that allows for the use of `-` or `_` in arguments passed and overrides the help for each
+ when applicable.
+ """
+
+ def _add_action(self, action):
+ args = vars(action)
+ if isinstance(action, argparse._StoreTrueAction):
+ action = _StoreTrueAction(
+ args["option_strings"], args["dest"], args["default"], args["required"], args["help"]
+ )
+ elif isinstance(action, argparse._StoreConstAction):
+ action = _StoreConstAction(
+ args["option_strings"],
+ args["dest"],
+ args["const"],
+ args["default"],
+ args["required"],
+ args["help"],
+ )
+ elif isinstance(action, argparse._StoreAction):
+ action = _StoreAction(**args)
+ action = super()._add_action(action)
+ return action
+
+
+class CustomArgumentParser(argparse.ArgumentParser):
+ """
+ Custom argument parser that allows for the use of `-` or `_` in arguments passed and overrides the help for each
+ when applicable.
+ """
+
+ def add_argument(self, *args, **kwargs):
+ if "action" in kwargs:
+ # Translate action -> class
+ if kwargs["action"] == "store_true":
+ kwargs["action"] = _StoreTrueAction
+ else:
+ kwargs["action"] = _StoreAction
+ super().add_argument(*args, **kwargs)
+
+ def add_argument_group(self, *args, **kwargs):
+ group = CustomArgumentGroup(self, *args, **kwargs)
+ self._action_groups.append(group)
+ return group
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/data_loader.py b/llmeval-env/lib/python3.10/site-packages/accelerate/data_loader.py
new file mode 100644
index 0000000000000000000000000000000000000000..fcf6631f1622bb7845efcac0ba1acf09e108dc5c
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/accelerate/data_loader.py
@@ -0,0 +1,1149 @@
+# Copyright 2021 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import math
+from contextlib import suppress
+from typing import Callable, List, Optional, Union
+
+import torch
+from torch.utils.data import BatchSampler, DataLoader, IterableDataset, RandomSampler
+
+from .logging import get_logger
+from .state import AcceleratorState, DistributedType, GradientState, is_torch_xla_available
+from .utils import (
+ RNGType,
+ broadcast,
+ broadcast_object_list,
+ concatenate,
+ find_batch_size,
+ get_data_structure,
+ initialize_tensors,
+ is_torch_version,
+ send_to_device,
+ slice_tensors,
+ synchronize_rng_states,
+)
+
+
+logger = get_logger(__name__)
+
+# kwargs of the DataLoader in min version 1.4.0.
+_PYTORCH_DATALOADER_KWARGS = {
+ "batch_size": 1,
+ "shuffle": False,
+ "sampler": None,
+ "batch_sampler": None,
+ "num_workers": 0,
+ "collate_fn": None,
+ "pin_memory": False,
+ "drop_last": False,
+ "timeout": 0,
+ "worker_init_fn": None,
+ "multiprocessing_context": None,
+ "generator": None,
+ "prefetch_factor": 2,
+ "persistent_workers": False,
+}
+
+# kwargs added after by version
+_PYTORCH_DATALOADER_ADDITIONAL_KWARGS = {}
+
+for v, additional_kwargs in _PYTORCH_DATALOADER_ADDITIONAL_KWARGS.items():
+ if is_torch_version(">=", v):
+ _PYTORCH_DATALOADER_KWARGS.update(additional_kwargs)
+
+
+class SeedableRandomSampler(RandomSampler):
+ """
+ Same as a random sampler, except that in `__iter__` a seed can be used.
+
+ Needed specifically in distributed cases, when the random generator for each GPU needs to start from the same seed
+ and be fully reproducable on multiple iterations.
+
+ If a custom `generator` is passed, it will rely on its initial seed as well as the current iteration it is on
+ (stored in `self.epoch`).
+ """
+
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ self.epoch = 0
+ self.initial_seed = torch.random.initial_seed()
+
+ def __iter__(self):
+ if self.generator is None:
+ self.generator = torch.Generator()
+ self.generator.manual_seed(self.initial_seed)
+
+ # Allow `self.epoch` to modify the seed of the generator
+ seed = self.epoch + self.initial_seed
+ # print("Setting seed at epoch", self.epoch, seed)
+ self.generator.manual_seed(seed)
+ yield from super().__iter__()
+ self.set_epoch(self.epoch + 1)
+
+ def set_epoch(self, epoch: int):
+ "Sets the current iteration of the sampler."
+ self.epoch = epoch
+
+
+class BatchSamplerShard(BatchSampler):
+ """
+ Wraps a PyTorch `BatchSampler` to generate batches for one of the processes only. Instances of this class will
+ always yield a number of batches that is a round multiple of `num_processes` and that all have the same size.
+ Depending on the value of the `drop_last` attribute of the batch sampler passed, it will either stop the iteration
+ at the first batch that would be too small / not present on all processes or loop with indices from the beginning.
+
+ Args:
+ batch_sampler (`torch.utils.data.sampler.BatchSampler`):
+ The batch sampler to split in several shards.
+ num_processes (`int`, *optional*, defaults to 1):
+ The number of processes running concurrently.
+ process_index (`int`, *optional*, defaults to 0):
+ The index of the current process.
+ split_batches (`bool`, *optional*, defaults to `False`):
+ Whether the shards should be created by splitting a batch to give a piece of it on each process, or by
+ yielding different full batches on each process.
+
+ On two processes with a sampler of `[[0, 1, 2, 3], [4, 5, 6, 7]]`, this will result in:
+
+ - the sampler on process 0 to yield `[0, 1, 2, 3]` and the sampler on process 1 to yield `[4, 5, 6, 7]` if
+ this argument is set to `False`.
+ - the sampler on process 0 to yield `[0, 1]` then `[4, 5]` and the sampler on process 1 to yield `[2, 3]`
+ then `[6, 7]` if this argument is set to `True`.
+ even_batches (`bool`, *optional*, defaults to `True`):
+ Whether or not to loop back at the beginning of the sampler when the number of samples is not a round
+ multiple of (original batch size / number of processes).
+
+
+
+ `BatchSampler`s with varying batch sizes are not enabled by default. To enable this behaviour, set `even_batches`
+ equal to `False`
+
+ """
+
+ def __init__(
+ self,
+ batch_sampler: BatchSampler,
+ num_processes: int = 1,
+ process_index: int = 0,
+ split_batches: bool = False,
+ even_batches: bool = True,
+ ):
+ if split_batches and batch_sampler.batch_size % num_processes != 0:
+ raise ValueError(
+ f"To use `BatchSamplerShard` in `split_batches` mode, the batch size ({batch_sampler.batch_size}) "
+ f"needs to be a round multiple of the number of processes ({num_processes})."
+ )
+ self.batch_sampler = batch_sampler
+ self.num_processes = num_processes
+ self.process_index = process_index
+ self.split_batches = split_batches
+ self.even_batches = even_batches
+ self.batch_size = getattr(batch_sampler, "batch_size", None)
+ self.drop_last = getattr(batch_sampler, "drop_last", False)
+ if self.batch_size is None and self.even_batches:
+ raise ValueError(
+ "You need to use `even_batches=False` when the batch sampler has no batch size. If you "
+ "are not calling this method directly, set `accelerator.even_batches=False` instead."
+ )
+
+ @property
+ def total_length(self):
+ return len(self.batch_sampler)
+
+ def __len__(self):
+ if self.split_batches:
+ # Split batches does not change the length of the batch sampler
+ return len(self.batch_sampler)
+ if len(self.batch_sampler) % self.num_processes == 0:
+ # If the length is a round multiple of the number of processes, it's easy.
+ return len(self.batch_sampler) // self.num_processes
+ length = len(self.batch_sampler) // self.num_processes
+ if self.drop_last:
+ # Same if we drop the remainder.
+ return length
+ elif self.even_batches:
+ # When we even batches we always get +1
+ return length + 1
+ else:
+ # Otherwise it depends on the process index.
+ return length + 1 if self.process_index < len(self.batch_sampler) % self.num_processes else length
+
+ def __iter__(self):
+ return self._iter_with_split() if self.split_batches else self._iter_with_no_split()
+
+ def _iter_with_split(self):
+ initial_data = []
+ batch_length = self.batch_sampler.batch_size // self.num_processes
+ for idx, batch in enumerate(self.batch_sampler):
+ if idx == 0:
+ initial_data = batch
+ if len(batch) == self.batch_size:
+ # If the batch is full, we yield the part of it this process is responsible of.
+ yield batch[batch_length * self.process_index : batch_length * (self.process_index + 1)]
+
+ # If drop_last is True of the last batch was full, iteration is over, otherwise...
+ if not self.drop_last and len(initial_data) > 0 and len(batch) < self.batch_size:
+ if not self.even_batches:
+ if len(batch) > batch_length * self.process_index:
+ yield batch[batch_length * self.process_index : batch_length * (self.process_index + 1)]
+ else:
+ # For degenerate cases where the dataset has less than num_process * batch_size samples
+ while len(initial_data) < self.batch_size:
+ initial_data += initial_data
+ batch = batch + initial_data
+ yield batch[batch_length * self.process_index : batch_length * (self.process_index + 1)]
+
+ def _iter_with_no_split(self):
+ initial_data = []
+ batch_to_yield = []
+ for idx, batch in enumerate(self.batch_sampler):
+ # We gather the initial indices in case we need to circle back at the end.
+ if not self.drop_last and idx < self.num_processes:
+ initial_data += batch
+ # We identify the batch to yield but wait until we ar sure every process gets a full batch before actually
+ # yielding it.
+ if idx % self.num_processes == self.process_index:
+ batch_to_yield = batch
+ if idx % self.num_processes == self.num_processes - 1 and (
+ self.batch_size is None or len(batch) == self.batch_size
+ ):
+ yield batch_to_yield
+ batch_to_yield = []
+
+ # If drop_last is True, iteration is over, otherwise...
+ if not self.drop_last and len(initial_data) > 0:
+ if not self.even_batches:
+ if len(batch_to_yield) > 0:
+ yield batch_to_yield
+ else:
+ # ... we yield the complete batch we had saved before if it has the proper length
+ if len(batch_to_yield) == self.batch_size:
+ yield batch_to_yield
+
+ # For degenerate cases where the dataset has less than num_process * batch_size samples
+ while len(initial_data) < self.num_processes * self.batch_size:
+ initial_data += initial_data
+
+ # If the last batch seen was of the proper size, it has been yielded by its process so we move to the next
+ if len(batch) == self.batch_size:
+ batch = []
+ idx += 1
+
+ # Make sure we yield a multiple of self.num_processes batches
+ cycle_index = 0
+ while idx % self.num_processes != 0 or len(batch) > 0:
+ end_index = cycle_index + self.batch_size - len(batch)
+ batch += initial_data[cycle_index:end_index]
+ if idx % self.num_processes == self.process_index:
+ yield batch
+ cycle_index = end_index
+ batch = []
+ idx += 1
+
+
+class IterableDatasetShard(IterableDataset):
+ """
+ Wraps a PyTorch `IterableDataset` to generate samples for one of the processes only. Instances of this class will
+ always yield a number of samples that is a round multiple of the actual batch size (depending of the value of
+ `split_batches`, this is either `batch_size` or `batch_size x num_processes`). Depending on the value of the
+ `drop_last` attribute of the batch sampler passed, it will either stop the iteration at the first batch that would
+ be too small or loop with indices from the beginning.
+
+ Args:
+ dataset (`torch.utils.data.dataset.IterableDataset`):
+ The batch sampler to split in several shards.
+ batch_size (`int`, *optional*, defaults to 1):
+ The size of the batches per shard (if `split_batches=False`) or the size of the batches (if
+ `split_batches=True`).
+ drop_last (`bool`, *optional*, defaults to `False`):
+ Whether or not to drop the last incomplete batch or complete the last batches by using the samples from the
+ beginning.
+ num_processes (`int`, *optional*, defaults to 1):
+ The number of processes running concurrently.
+ process_index (`int`, *optional*, defaults to 0):
+ The index of the current process.
+ split_batches (`bool`, *optional*, defaults to `False`):
+ Whether the shards should be created by splitting a batch to give a piece of it on each process, or by
+ yielding different full batches on each process.
+
+ On two processes with an iterable dataset yielding of `[0, 1, 2, 3, 4, 5, 6, 7]`, this will result in:
+
+ - the shard on process 0 to yield `[0, 1, 2, 3]` and the shard on process 1 to yield `[4, 5, 6, 7]` if this
+ argument is set to `False`.
+ - the shard on process 0 to yield `[0, 1, 4, 5]` and the sampler on process 1 to yield `[2, 3, 6, 7]` if
+ this argument is set to `True`.
+ """
+
+ def __init__(
+ self,
+ dataset: IterableDataset,
+ batch_size: int = 1,
+ drop_last: bool = False,
+ num_processes: int = 1,
+ process_index: int = 0,
+ split_batches: bool = False,
+ ):
+ if split_batches and batch_size > 1 and batch_size % num_processes != 0:
+ raise ValueError(
+ f"To use `IterableDatasetShard` in `split_batches` mode, the batch size ({batch_size}) "
+ f"needs to be a round multiple of the number of processes ({num_processes})."
+ )
+ self.dataset = dataset
+ self.batch_size = batch_size
+ self.drop_last = drop_last
+ self.num_processes = num_processes
+ self.process_index = process_index
+ self.split_batches = split_batches
+
+ def set_epoch(self, epoch):
+ self.epoch = epoch
+ if hasattr(self.dataset, "set_epoch"):
+ self.dataset.set_epoch(epoch)
+
+ def __len__(self):
+ # We will just raise the downstream error if the underlying dataset is not sized
+ if self.drop_last:
+ return (len(self.dataset) // (self.batch_size * self.num_processes)) * self.batch_size
+ else:
+ return math.ceil(len(self.dataset) / (self.batch_size * self.num_processes)) * self.batch_size
+
+ def __iter__(self):
+ if (
+ not hasattr(self.dataset, "set_epoch")
+ and hasattr(self.dataset, "generator")
+ and isinstance(self.dataset.generator, torch.Generator)
+ ):
+ self.dataset.generator.manual_seed(self.epoch)
+ real_batch_size = self.batch_size if self.split_batches else (self.batch_size * self.num_processes)
+ process_batch_size = (self.batch_size // self.num_processes) if self.split_batches else self.batch_size
+ process_slice = range(self.process_index * process_batch_size, (self.process_index + 1) * process_batch_size)
+
+ first_batch = None
+ current_batch = []
+ for element in self.dataset:
+ current_batch.append(element)
+ # Wait to have a full batch before yielding elements.
+ if len(current_batch) == real_batch_size:
+ for i in process_slice:
+ yield current_batch[i]
+ if first_batch is None:
+ first_batch = current_batch.copy()
+ current_batch = []
+
+ # Finished if drop_last is True, otherwise complete the last batch with elements from the beginning.
+ if not self.drop_last and len(current_batch) > 0:
+ if first_batch is None:
+ first_batch = current_batch.copy()
+ while len(current_batch) < real_batch_size:
+ current_batch += first_batch
+ for i in process_slice:
+ yield current_batch[i]
+
+
+class DataLoaderStateMixin:
+ """
+ Mixin class that adds a state to a `DataLoader` to keep track of the status inside the dataloader such as at the
+ end of the iteration, the number of items in the dataset in the last batch relative to the batch size, and other
+ useful information that might be needed.
+
+ **Available attributes:**
+
+ - **end_of_dataloader** (`bool`) -- Whether at the last iteration or batch
+ - **remainder** (`int`) -- The number of items that are remaining in the last batch, relative to the total
+ batch size
+
+ """
+
+ def __init_subclass__(cls, **kwargs):
+ cls.end_of_dataloader = False
+ cls.remainder = -1
+
+ def reset(self):
+ self.end_of_dataloader = False
+ self.remainder = -1
+
+ def begin(self):
+ "Prepares the gradient state for the current dataloader"
+ self.reset()
+ with suppress(Exception):
+ if not self._drop_last:
+ length = getattr(self.dataset, "total_dataset_length", len(self.dataset))
+ self.remainder = length % self.total_batch_size
+ self.gradient_state._add_dataloader(self)
+
+ def end(self):
+ "Cleans up the gradient state after exiting the dataloader"
+ self.gradient_state._remove_dataloader(self)
+
+
+class DataLoaderShard(DataLoader, DataLoaderStateMixin):
+ """
+ Subclass of a PyTorch `DataLoader` that will deal with device placement and current distributed setup.
+
+ Args:
+ dataset (`torch.utils.data.dataset.Dataset`):
+ The dataset to use to build this datalaoder.
+ device (`torch.device`, *optional*):
+ If passed, the device to put all batches on.
+ rng_types (list of `str` or [`~utils.RNGType`]):
+ The list of random number generators to synchronize at the beginning of each iteration. Should be one or
+ several of:
+
+ - `"torch"`: the base torch random number generator
+ - `"cuda"`: the CUDA random number generator (GPU only)
+ - `"xla"`: the XLA random number generator (TPU only)
+ - `"generator"`: an optional `torch.Generator`
+ synchronized_generator (`torch.Generator`, *optional*):
+ A random number generator to keep synchronized across processes.
+ skip_batches (`int`, *optional*, defaults to 0):
+ The number of batches to skip at the beginning.
+ **kwargs (additional keyword arguments, *optional*):
+ All other keyword arguments to pass to the regular `DataLoader` initialization.
+
+ **Available attributes:**
+
+ - **total_batch_size** (`int`) -- Total batch size of the dataloader across all processes.
+ Equal to the original batch size when `split_batches=True`; otherwise the original batch size * the total
+ number of processes
+
+ - **total_dataset_length** (`int`) -- Total length of the inner dataset across all processes.
+ """
+
+ def __init__(
+ self,
+ dataset,
+ device=None,
+ rng_types=None,
+ synchronized_generator=None,
+ skip_batches=0,
+ _drop_last: bool = False,
+ _non_blocking: bool = False,
+ **kwargs,
+ ):
+ super().__init__(dataset, **kwargs)
+ self.device = device
+ self.rng_types = rng_types
+ self.synchronized_generator = synchronized_generator
+ self.skip_batches = skip_batches
+ self.gradient_state = GradientState()
+ self._drop_last = _drop_last
+ self._non_blocking = _non_blocking
+ self.iteration = 0
+
+ def __iter__(self):
+ if self.rng_types is not None:
+ synchronize_rng_states(self.rng_types, self.synchronized_generator)
+ self.begin()
+
+ self.set_epoch(self.iteration)
+ dataloader_iter = super().__iter__()
+ # We iterate one batch ahead to check when we are at the end
+ try:
+ current_batch = next(dataloader_iter)
+ except StopIteration:
+ yield
+
+ batch_index = 0
+ while True:
+ try:
+ # But we still move it to the device so it is done before `StopIteration` is reached
+ if self.device is not None:
+ current_batch = send_to_device(current_batch, self.device, non_blocking=self._non_blocking)
+ next_batch = next(dataloader_iter)
+ if batch_index >= self.skip_batches:
+ yield current_batch
+ batch_index += 1
+ current_batch = next_batch
+ except StopIteration:
+ self.end_of_dataloader = True
+ if batch_index >= self.skip_batches:
+ yield current_batch
+ break
+
+ self.iteration += 1
+ self.end()
+
+ def set_epoch(self, epoch: int):
+ # In case it is manually passed in, the user can set it to what they like
+ if self.iteration != epoch:
+ self.iteration = epoch
+ if hasattr(self.batch_sampler, "sampler") and hasattr(self.batch_sampler.sampler, "set_epoch"):
+ self.batch_sampler.sampler.set_epoch(epoch)
+ # We support if a custom `Dataset` implementation has `set_epoch`
+ # or in general HF datasets `Datasets`
+ elif hasattr(self.dataset, "set_epoch"):
+ self.dataset.set_epoch(epoch)
+
+ @property
+ def total_batch_size(self):
+ batch_sampler = self.sampler if isinstance(self.sampler, BatchSampler) else self.batch_sampler
+ return (
+ batch_sampler.batch_size
+ if getattr(batch_sampler, "split_batches", False)
+ else (batch_sampler.batch_size * getattr(batch_sampler, "num_processes", 1))
+ )
+
+ @property
+ def total_dataset_length(self):
+ if hasattr(self.dataset, "total_length"):
+ return self.dataset.total_length
+ else:
+ return len(self.dataset)
+
+ def get_sampler(self):
+ return get_sampler(self)
+
+ def set_sampler(self, sampler):
+ sampler_is_batch_sampler = isinstance(self.sampler, BatchSampler)
+ if sampler_is_batch_sampler:
+ self.sampler.sampler = sampler
+ else:
+ self.batch_sampler.sampler = sampler
+ if hasattr(self.batch_sampler, "batch_sampler"):
+ self.batch_sampler.batch_sampler.sampler = sampler
+
+
+if is_torch_xla_available():
+ import torch_xla.distributed.parallel_loader as xpl
+
+ class MpDeviceLoaderWrapper(xpl.MpDeviceLoader):
+ """
+ Wrapper for the xpl.MpDeviceLoader class that knows the total batch size.
+
+ XLA preloading threads will all call DataLoaderShard's __iter__(). Remove rng_types from DataLoaderShard to
+ prevent it from using the XLA device in the preloading threads, and synchronize the RNG once from the main
+ thread only.
+
+ **Available attributes:**
+
+ - **total_batch_size** (`int`) -- Total batch size of the dataloader across all processes.
+ Equal to the original batch size when `split_batches=True`; otherwise the original batch size * the total
+ number of processes
+
+ - **total_dataset_length** (`int`) -- Total length of the inner dataset across all processes.
+ """
+
+ def __init__(self, dataloader: DataLoaderShard, device: torch.device):
+ super().__init__(dataloader, device)
+ self._rng_types = self._loader.rng_types
+ self._loader.rng_types = None
+
+ def __iter__(self):
+ if self._rng_types is not None:
+ synchronize_rng_states(self._rng_types, self._loader.synchronized_generator)
+
+ return super().__iter__()
+
+ @property
+ def total_batch_size(self):
+ return self._loader.total_batch_size
+
+ @property
+ def total_dataset_length(self):
+ return self._loader.total_dataset_length
+
+ @property
+ def batch_sampler(self):
+ return self._loader.batch_sampler
+
+
+class DataLoaderDispatcher(DataLoader, DataLoaderStateMixin):
+ """
+ Subclass of a PyTorch `DataLoader` that will iterate and preprocess on process 0 only, then dispatch on each
+ process their part of the batch.
+
+ Args:
+ split_batches (`bool`, *optional*, defaults to `False`):
+ Whether the resulting `DataLoader` should split the batches of the original data loader across devices or
+ yield full batches (in which case it will yield batches starting at the `process_index`-th and advancing of
+ `num_processes` batches at each iteration). Another way to see this is that the observed batch size will be
+ the same as the initial `dataloader` if this option is set to `True`, the batch size of the initial
+ `dataloader` multiplied by `num_processes` otherwise. Setting this option to `True` requires that the batch
+ size of the `dataloader` is a round multiple of `batch_size`.
+ skip_batches (`int`, *optional*, defaults to 0):
+ The number of batches to skip at the beginning of an iteration.
+
+ **Available attributes:**
+
+ - **total_batch_size** (`int`) -- Total batch size of the dataloader across all processes.
+ Equal to the original batch size when `split_batches=True`; otherwise the original batch size * the total
+ number of processes
+
+ - **total_dataset_length** (`int`) -- Total length of the inner dataset across all processes.
+ """
+
+ def __init__(
+ self,
+ dataset,
+ split_batches: bool = False,
+ skip_batches=0,
+ _drop_last: bool = False,
+ _non_blocking: bool = False,
+ slice_fn=None,
+ **kwargs,
+ ):
+ shuffle = False
+ if is_torch_version(">=", "1.11.0"):
+ from torch.utils.data.datapipes.iter.combinatorics import ShufflerIterDataPipe
+
+ # We need to save the shuffling state of the DataPipe
+ if isinstance(dataset, ShufflerIterDataPipe):
+ shuffle = dataset._shuffle_enabled
+ super().__init__(dataset, **kwargs)
+ self.split_batches = split_batches
+ if shuffle:
+ torch.utils.data.graph_settings.apply_shuffle_settings(dataset, shuffle=shuffle)
+
+ self.gradient_state = GradientState()
+ self.state = AcceleratorState()
+ self._drop_last = _drop_last
+ self._non_blocking = _non_blocking
+ self.skip_batches = skip_batches
+
+ self.slice_fn = slice_tensors if slice_fn is None else slice_fn
+ self.iteration = 0
+
+ def _fetch_batches(self, iterator):
+ batches, batch = None, None
+ # On process 0, we gather the batch to dispatch.
+ if self.state.process_index == 0:
+ try:
+ if self.split_batches:
+ # One batch of the main iterator is dispatched and split.
+ batch = next(iterator)
+ else:
+ # num_processes batches of the main iterator are concatenated then dispatched and split.
+ # We add the batches one by one so we have the remainder available when drop_last=False.
+ batches = []
+ for _ in range(self.state.num_processes):
+ batches.append(next(iterator))
+ try:
+ batch = concatenate(batches, dim=0)
+ except RuntimeError as e:
+ raise RuntimeError(
+ "You can't use batches of different size with `dispatch_batches=True` or when using an `IterableDataset`."
+ "either pass `dispatch_batches=False` and have each process fetch its own batch "
+ " or pass `split_batches=True`. By doing so, the main process will fetch a full batch and "
+ "slice it into `num_processes` batches for each process."
+ ) from e
+ # In both cases, we need to get the structure of the batch that we will broadcast on other
+ # processes to initialize the tensors with the right shape.
+ # data_structure, stop_iteration
+ batch_info = [get_data_structure(batch), False]
+ except StopIteration:
+ batch_info = [None, True]
+ else:
+ batch_info = [None, self._stop_iteration]
+ # This is inplace, so after this instruction, every process has the same `batch_info` as process 0.
+ broadcast_object_list(batch_info)
+ self._stop_iteration = batch_info[1]
+ if self._stop_iteration:
+ # If drop_last is False and split_batches is False, we may have a remainder to take care of.
+ if not self.split_batches and not self._drop_last:
+ if self.state.process_index == 0 and len(batches) > 0:
+ batch = concatenate(batches, dim=0)
+ batch_info = [get_data_structure(batch), False]
+ else:
+ batch_info = [None, True]
+ broadcast_object_list(batch_info)
+ return batch, batch_info
+
+ def __iter__(self):
+ self.begin()
+ self.set_epoch(self.iteration)
+ main_iterator = None
+ if is_torch_version(">=", "2.0.1"):
+ # NOTE PyTorch DataLoader adds forward compatibilities for DataPipes, which broadcasts
+ # shared seed to all dist processes. Thus, we need to create iterator for all dist processes.
+ # But, we only iterate through the DataLoader on process 0.
+ main_iterator = super().__iter__()
+ elif self.state.process_index == 0:
+ main_iterator = super().__iter__()
+ stop_iteration = False
+ self._stop_iteration = False
+ first_batch = None
+ next_batch, next_batch_info = self._fetch_batches(main_iterator)
+ batch_index = 0
+ while not stop_iteration:
+ batch, batch_info = next_batch, next_batch_info
+
+ if self.state.process_index != 0:
+ # Initialize tensors on other processes than process 0.
+ batch = initialize_tensors(batch_info[0])
+ batch = send_to_device(batch, self.state.device, non_blocking=self._non_blocking)
+ # Broadcast the batch before splitting it.
+ batch = broadcast(batch, from_process=0)
+
+ if not self._drop_last and first_batch is None:
+ # We keep at least num processes elements of the first batch to be able to complete the last batch
+ first_batch = self.slice_fn(
+ batch,
+ slice(0, self.state.num_processes),
+ process_index=self.state.process_index,
+ num_processes=self.state.num_processes,
+ )
+
+ if batch is None:
+ raise ValueError(
+ f"Batch does not contain any data (`{batch}`). At the end of all iterable data available before expected stop iteration."
+ )
+
+ observed_batch_size = find_batch_size(batch)
+ batch_size = observed_batch_size // self.state.num_processes
+
+ stop_iteration = self._stop_iteration
+ if not stop_iteration:
+ # We may still be at the end of the dataloader without knowing it yet: if there is nothing left in
+ # the dataloader since the number of batches is a round multiple of the number of processes.
+ next_batch, next_batch_info = self._fetch_batches(main_iterator)
+ # next_batch_info[0] is None when there are no more batches, otherwise we still need to process them.
+ if self._stop_iteration and next_batch_info[0] is None:
+ stop_iteration = True
+
+ if not self._drop_last and stop_iteration and observed_batch_size % self.state.num_processes != 0:
+ # If the last batch is not complete, let's add the first batch to it.
+ batch = concatenate([batch, first_batch], dim=0)
+ # Batch size computation above is wrong, it's off by 1 so we fix it.
+ batch_size += 1
+
+ data_slice = slice(self.state.process_index * batch_size, (self.state.process_index + 1) * batch_size)
+ batch = self.slice_fn(
+ batch,
+ data_slice,
+ process_index=self.state.process_index,
+ num_processes=self.state.num_processes,
+ )
+
+ if stop_iteration:
+ self.end_of_dataloader = True
+ self.remainder = observed_batch_size
+ if batch_index >= self.skip_batches:
+ yield batch
+ batch_index += 1
+ self.iteration += 1
+ self.end()
+
+ def set_epoch(self, epoch: int):
+ # In case it is manually passed in, the user can set it to what they like
+ if self.iteration != epoch:
+ self.iteration = epoch
+ if hasattr(self.batch_sampler.sampler, "set_epoch"):
+ self.batch_sampler.sampler.set_epoch(epoch)
+ elif hasattr(self.dataset, "set_epoch"):
+ self.dataset.set_epoch(epoch)
+
+ def __len__(self):
+ whole_length = super().__len__()
+ if self.split_batches:
+ return whole_length
+ elif self._drop_last:
+ return whole_length // self.state.num_processes
+ else:
+ return math.ceil(whole_length / self.state.num_processes)
+
+ @property
+ def total_batch_size(self):
+ return (
+ self.dataset.batch_size if self.split_batches else (self.dataset.batch_size * self.dataset.num_processes)
+ )
+
+ @property
+ def total_dataset_length(self):
+ return len(self.dataset)
+
+ def get_sampler(self):
+ return get_sampler(self)
+
+ def set_sampler(self, sampler):
+ sampler_is_batch_sampler = isinstance(self.sampler, BatchSampler)
+ if sampler_is_batch_sampler:
+ self.sampler.sampler = sampler
+ else:
+ self.batch_sampler.sampler = sampler
+ if hasattr(self.batch_sampler, "batch_sampler"):
+ self.batch_sampler.batch_sampler.sampler = sampler
+
+
+def get_sampler(dataloader):
+ """
+ Get the sampler associated to the dataloader
+
+ Args:
+ dataloader (`torch.utils.data.dataloader.DataLoader`):
+ The data loader to split across several devices.
+ Returns:
+ `torch.utils.data.Sampler`: The sampler associated to the dataloader
+ """
+ sampler_is_batch_sampler = isinstance(dataloader.sampler, BatchSampler)
+ if sampler_is_batch_sampler:
+ sampler = getattr(dataloader.sampler, "sampler", None)
+ else:
+ sampler = getattr(dataloader.batch_sampler, "sampler", None)
+ return sampler
+
+
+def prepare_data_loader(
+ dataloader: DataLoader,
+ device: Optional[torch.device] = None,
+ num_processes: Optional[int] = None,
+ process_index: Optional[int] = None,
+ split_batches: bool = False,
+ put_on_device: bool = False,
+ rng_types: Optional[List[Union[str, RNGType]]] = None,
+ dispatch_batches: Optional[bool] = None,
+ even_batches: bool = True,
+ slice_fn_for_dispatch: Optional[Callable] = None,
+ use_seedable_sampler: bool = False,
+ non_blocking: bool = False,
+) -> DataLoader:
+ """
+ Wraps a PyTorch `DataLoader` to generate batches for one of the processes only.
+
+ Depending on the value of the `drop_last` attribute of the `dataloader` passed, it will either stop the iteration
+ at the first batch that would be too small / not present on all processes or loop with indices from the beginning.
+
+ Args:
+ dataloader (`torch.utils.data.dataloader.DataLoader`):
+ The data loader to split across several devices.
+ device (`torch.device`):
+ The target device for the returned `DataLoader`.
+ num_processes (`int`, *optional*):
+ The number of processes running concurrently. Will default to the value given by
+ [`~state.AcceleratorState`].
+ process_index (`int`, *optional*):
+ The index of the current process. Will default to the value given by [`~state.AcceleratorState`].
+ split_batches (`bool`, *optional*, defaults to `False`):
+ Whether the resulting `DataLoader` should split the batches of the original data loader across devices or
+ yield full batches (in which case it will yield batches starting at the `process_index`-th and advancing of
+ `num_processes` batches at each iteration).
+
+ Another way to see this is that the observed batch size will be the same as the initial `dataloader` if
+ this option is set to `True`, the batch size of the initial `dataloader` multiplied by `num_processes`
+ otherwise.
+
+ Setting this option to `True` requires that the batch size of the `dataloader` is a round multiple of
+ `batch_size`.
+ put_on_device (`bool`, *optional*, defaults to `False`):
+ Whether or not to put the batches on `device` (only works if the batches are nested list, tuples or
+ dictionaries of tensors).
+ rng_types (list of `str` or [`~utils.RNGType`]):
+ The list of random number generators to synchronize at the beginning of each iteration. Should be one or
+ several of:
+
+ - `"torch"`: the base torch random number generator
+ - `"cuda"`: the CUDA random number generator (GPU only)
+ - `"xla"`: the XLA random number generator (TPU only)
+ - `"generator"`: the `torch.Generator` of the sampler (or batch sampler if there is no sampler in your
+ dataloader) or of the iterable dataset (if it exists) if the underlying dataset is of that type.
+
+ dispatch_batches (`bool`, *optional*):
+ If set to `True`, the datalaoder prepared is only iterated through on the main process and then the batches
+ are split and broadcast to each process. Will default to `True` when the underlying dataset is an
+ `IterableDataset`, `False` otherwise.
+ even_batches (`bool`, *optional*, defaults to `True`):
+ If set to `True`, in cases where the total batch size across all processes does not exactly divide the
+ dataset, samples at the start of the dataset will be duplicated so the batch can be divided equally among
+ all workers.
+ slice_fn_for_dispatch (`Callable`, *optional*`):
+ If passed, this function will be used to slice tensors across `num_processes`. Will default to
+ [`~utils.slice_tensors`]. This argument is used only when `dispatch_batches` is set to `True` and will be
+ ignored otherwise.
+ use_seedable_sampler (`bool`, *optional*, defaults to `False`):
+ Whether to use the [`~data_loader.SeedableRandomSampler`] instead of a `RandomSampler` for better
+ reproducability. Comes at a cost of potentially different performances due to different shuffling
+ algorithms but ensures results will be the *exact* same. Should be paired with `set_seed()` at every
+ `self.set_epoch`
+ non_blocking (`bool`, *optional*, defaults to `False`):
+ If set to `True`, dataloader will utilize non-blocking host-to-device transfers. If the dataloader has
+ `pin_memory` set to `True`, this will help to increase overlap between data transfer and computations.
+
+
+ Returns:
+ `torch.utils.data.dataloader.DataLoader`: A new data loader that will yield the portion of the batches
+
+
+
+ `BatchSampler`s with varying batch sizes are not enabled by default. To enable this behaviour, set `even_batches`
+ equal to `False`
+
+
+ """
+ if dispatch_batches is None:
+ if not put_on_device:
+ dispatch_batches = False
+ else:
+ dispatch_batches = isinstance(dataloader.dataset, IterableDataset)
+
+ if dispatch_batches and not put_on_device:
+ raise ValueError("Using `dispatch_batches=True` requires `put_on_device=True`.")
+ # Grab defaults from AcceleratorState
+ state = AcceleratorState()
+ if num_processes is None:
+ num_processes = state.num_processes
+ if process_index is None:
+ process_index = state.process_index
+
+ # Sanity check
+ if split_batches:
+ if dataloader.batch_size is not None:
+ batch_size_for_check = dataloader.batch_size
+ else:
+ # For custom batch_sampler
+ if hasattr(dataloader.batch_sampler, "batch_size"):
+ batch_size_for_check = dataloader.batch_sampler.batch_size
+ else:
+ raise ValueError(
+ "In order to use `split_batches==True` you must have a `batch_size` attribute either in the passed "
+ "`dataloader` or `dataloader.batch_sampler` objects, and it has to return a natural number. "
+ "Your `dataloader.batch_size` is None and `dataloader.batch_sampler` "
+ f"(`{type(dataloader.batch_sampler)}`) does not have the `batch_size` attribute set."
+ )
+
+ if batch_size_for_check > 1 and batch_size_for_check % num_processes != 0:
+ raise ValueError(
+ f"To use a `DataLoader` in `split_batches` mode, the batch size ({dataloader.batch_size}) "
+ f"needs to be a round multiple of the number of processes ({num_processes})."
+ )
+
+ new_dataset = dataloader.dataset
+ # Iterable dataset doesn't like batch_sampler, but data_loader creates a default one for it
+ new_batch_sampler = dataloader.batch_sampler if not isinstance(new_dataset, IterableDataset) else None
+ sampler_is_batch_sampler = isinstance(dataloader.sampler, BatchSampler)
+ synchronized_generator = None
+
+ sampler = get_sampler(dataloader)
+ if isinstance(sampler, RandomSampler) and use_seedable_sampler:
+ # When iterating through the dataloader during distributed processes
+ # we want to ensure that on each process we are iterating through the same
+ # samples in the same order if a seed is set. This requires a tweak
+ # to the `torch.utils.data.RandomSampler` class (if used).
+ sampler = SeedableRandomSampler(
+ data_source=sampler.data_source,
+ replacement=sampler.replacement,
+ num_samples=sampler._num_samples,
+ generator=getattr(sampler, "generator", torch.Generator()),
+ )
+
+ if isinstance(dataloader.sampler, RandomSampler) and state.distributed_type == DistributedType.XLA:
+ # isinstance(dataloader.sampler, RandomSampler) indicates the original dataloader has `shuffle` enabled.
+ generator = torch.Generator().manual_seed(42)
+ dataloader.generator = generator
+ dataloader.sampler.generator = generator
+ # No change if no multiprocess
+ if (num_processes != 1 or state.distributed_type == DistributedType.MEGATRON_LM) and not dispatch_batches:
+ if isinstance(new_dataset, IterableDataset):
+ if getattr(dataloader.dataset, "generator", None) is not None:
+ synchronized_generator = dataloader.dataset.generator
+ new_dataset = IterableDatasetShard(
+ new_dataset,
+ batch_size=dataloader.batch_size,
+ drop_last=dataloader.drop_last,
+ num_processes=num_processes,
+ process_index=process_index,
+ split_batches=split_batches,
+ )
+ else:
+ if not use_seedable_sampler and hasattr(sampler, "generator"):
+ if sampler.generator is None:
+ sampler.generator = torch.Generator()
+ synchronized_generator = sampler.generator
+ batch_sampler = dataloader.sampler if sampler_is_batch_sampler else dataloader.batch_sampler
+ new_batch_sampler = BatchSamplerShard(
+ batch_sampler,
+ num_processes=num_processes,
+ process_index=process_index,
+ split_batches=split_batches,
+ even_batches=even_batches,
+ )
+
+ # We ignore all of those since they are all dealt with by our new_batch_sampler
+ ignore_kwargs = [
+ "batch_size",
+ "shuffle",
+ "sampler",
+ "batch_sampler",
+ "drop_last",
+ ]
+
+ if rng_types is not None and synchronized_generator is None and "generator" in rng_types:
+ rng_types.remove("generator")
+
+ kwargs = {
+ k: getattr(dataloader, k, _PYTORCH_DATALOADER_KWARGS[k])
+ for k in _PYTORCH_DATALOADER_KWARGS
+ if k not in ignore_kwargs
+ }
+
+ # Need to provide batch_size as batch_sampler is None for Iterable dataset
+ if new_batch_sampler is None:
+ kwargs["drop_last"] = dataloader.drop_last
+ kwargs["batch_size"] = (
+ dataloader.batch_size // num_processes if split_batches and not dispatch_batches else dataloader.batch_size
+ )
+ if dispatch_batches:
+ kwargs.pop("generator")
+ dataloader = DataLoaderDispatcher(
+ new_dataset,
+ split_batches=split_batches,
+ batch_sampler=new_batch_sampler,
+ _drop_last=dataloader.drop_last,
+ _non_blocking=non_blocking,
+ slice_fn=slice_fn_for_dispatch,
+ **kwargs,
+ )
+ elif sampler_is_batch_sampler:
+ dataloader = DataLoaderShard(
+ new_dataset,
+ device=device if put_on_device and state.distributed_type != DistributedType.XLA else None,
+ sampler=new_batch_sampler,
+ batch_size=dataloader.batch_size,
+ rng_types=rng_types,
+ _drop_last=dataloader.drop_last,
+ _non_blocking=non_blocking,
+ synchronized_generator=synchronized_generator,
+ **kwargs,
+ )
+ else:
+ dataloader = DataLoaderShard(
+ new_dataset,
+ device=device if put_on_device and state.distributed_type != DistributedType.XLA else None,
+ batch_sampler=new_batch_sampler,
+ rng_types=rng_types,
+ synchronized_generator=synchronized_generator,
+ _drop_last=dataloader.drop_last,
+ _non_blocking=non_blocking,
+ **kwargs,
+ )
+
+ if isinstance(sampler, SeedableRandomSampler) and use_seedable_sampler:
+ dataloader.set_sampler(sampler)
+ if state.distributed_type == DistributedType.XLA:
+ return MpDeviceLoaderWrapper(dataloader, device)
+ return dataloader
+
+
+class SkipBatchSampler(BatchSampler):
+ """
+ A `torch.utils.data.BatchSampler` that skips the first `n` batches of another `torch.utils.data.BatchSampler`.
+ """
+
+ def __init__(self, batch_sampler, skip_batches=0):
+ self.batch_sampler = batch_sampler
+ self.skip_batches = skip_batches
+
+ def __iter__(self):
+ for index, samples in enumerate(self.batch_sampler):
+ if index >= self.skip_batches:
+ yield samples
+
+ @property
+ def total_length(self):
+ return len(self.batch_sampler)
+
+ def __len__(self):
+ return len(self.batch_sampler) - self.skip_batches
+
+
+class SkipDataLoader(DataLoader):
+ """
+ Subclass of a PyTorch `DataLoader` that will skip the first batches.
+
+ Args:
+ dataset (`torch.utils.data.dataset.Dataset`):
+ The dataset to use to build this datalaoder.
+ skip_batches (`int`, *optional*, defaults to 0):
+ The number of batches to skip at the beginning.
+ kwargs:
+ All other keyword arguments to pass to the regular `DataLoader` initialization.
+ """
+
+ def __init__(self, dataset, skip_batches=0, **kwargs):
+ super().__init__(dataset, **kwargs)
+ self.skip_batches = skip_batches
+
+ def __iter__(self):
+ for index, batch in enumerate(super().__iter__()):
+ if index >= self.skip_batches:
+ yield batch
+
+
+def skip_first_batches(dataloader, num_batches=0):
+ """
+ Creates a `torch.utils.data.DataLoader` that will efficiently skip the first `num_batches`.
+ """
+ dataset = dataloader.dataset
+ sampler_is_batch_sampler = False
+ if isinstance(dataset, IterableDataset):
+ new_batch_sampler = None
+ else:
+ sampler_is_batch_sampler = isinstance(dataloader.sampler, BatchSampler)
+ batch_sampler = dataloader.sampler if sampler_is_batch_sampler else dataloader.batch_sampler
+ new_batch_sampler = SkipBatchSampler(batch_sampler, skip_batches=num_batches)
+
+ # We ignore all of those since they are all dealt with by our new_batch_sampler
+ ignore_kwargs = [
+ "batch_size",
+ "shuffle",
+ "sampler",
+ "batch_sampler",
+ "drop_last",
+ ]
+
+ kwargs = {
+ k: getattr(dataloader, k, _PYTORCH_DATALOADER_KWARGS[k])
+ for k in _PYTORCH_DATALOADER_KWARGS
+ if k not in ignore_kwargs
+ }
+
+ # Need to provide batch_size as batch_sampler is None for Iterable dataset
+ if new_batch_sampler is None:
+ kwargs["drop_last"] = dataloader.drop_last
+ kwargs["batch_size"] = dataloader.batch_size
+
+ if isinstance(dataloader, DataLoaderDispatcher):
+ if new_batch_sampler is None:
+ # Need to manually skip batches in the dataloader
+ kwargs["skip_batches"] = num_batches
+ dataloader = DataLoaderDispatcher(
+ dataset,
+ split_batches=dataloader.split_batches,
+ batch_sampler=new_batch_sampler,
+ _drop_last=dataloader._drop_last,
+ **kwargs,
+ )
+ elif isinstance(dataloader, DataLoaderShard):
+ if new_batch_sampler is None:
+ # Need to manually skip batches in the dataloader
+ kwargs["skip_batches"] = num_batches
+ elif sampler_is_batch_sampler:
+ kwargs["sampler"] = new_batch_sampler
+ kwargs["batch_size"] = dataloader.batch_size
+ else:
+ kwargs["batch_sampler"] = new_batch_sampler
+ dataloader = DataLoaderShard(
+ dataset,
+ device=dataloader.device,
+ rng_types=dataloader.rng_types,
+ synchronized_generator=dataloader.synchronized_generator,
+ **kwargs,
+ )
+ else:
+ if new_batch_sampler is None:
+ # Need to manually skip batches in the dataloader
+ dataloader = SkipDataLoader(dataset, skip_batches=num_batches, **kwargs)
+ else:
+ dataloader = DataLoader(dataset, batch_sampler=new_batch_sampler, **kwargs)
+
+ return dataloader
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/hooks.py b/llmeval-env/lib/python3.10/site-packages/accelerate/hooks.py
new file mode 100644
index 0000000000000000000000000000000000000000..e9a4b384f3cac39e7bedabb1f5e7c0320aae6a7f
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/accelerate/hooks.py
@@ -0,0 +1,709 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import functools
+from typing import Dict, List, Mapping, Optional, Union
+
+import torch
+import torch.nn as nn
+
+from .state import PartialState
+from .utils import (
+ PrefixedDataset,
+ find_device,
+ named_module_tensors,
+ send_to_device,
+ set_module_tensor_to_device,
+)
+from .utils.modeling import get_non_persistent_buffers
+from .utils.other import recursive_getattr
+
+
+class ModelHook:
+ """
+ A hook that contains callbacks to be executed just before and after the forward method of a model. The difference
+ with PyTorch existing hooks is that they get passed along the kwargs.
+
+ Class attribute:
+ - **no_grad** (`bool`, *optional*, defaults to `False`) -- Whether or not to execute the actual forward pass under
+ the `torch.no_grad()` context manager.
+ """
+
+ no_grad = False
+
+ def init_hook(self, module):
+ """
+ To be executed when the hook is attached to the module.
+
+ Args:
+ module (`torch.nn.Module`): The module attached to this hook.
+ """
+ return module
+
+ def pre_forward(self, module, *args, **kwargs):
+ """
+ To be executed just before the forward method of the model.
+
+ Args:
+ module (`torch.nn.Module`): The module whose forward pass will be executed just after this event.
+ args (`Tuple[Any]`): The positional arguments passed to the module.
+ kwargs (`Dict[Str, Any]`): The keyword arguments passed to the module.
+
+ Returns:
+ `Tuple[Tuple[Any], Dict[Str, Any]]`: A tuple with the treated `args` and `kwargs`.
+ """
+ return args, kwargs
+
+ def post_forward(self, module, output):
+ """
+ To be executed just after the forward method of the model.
+
+ Args:
+ module (`torch.nn.Module`): The module whose forward pass been executed just before this event.
+ output (`Any`): The output of the module.
+
+ Returns:
+ `Any`: The processed `output`.
+ """
+ return output
+
+ def detach_hook(self, module):
+ """
+ To be executed when the hook is detached from a module.
+
+ Args:
+ module (`torch.nn.Module`): The module detached from this hook.
+ """
+ return module
+
+
+class SequentialHook(ModelHook):
+ """
+ A hook that can contain several hooks and iterates through them at each event.
+ """
+
+ def __init__(self, *hooks):
+ self.hooks = hooks
+
+ def init_hook(self, module):
+ for hook in self.hooks:
+ module = hook.init_hook(module)
+ return module
+
+ def pre_forward(self, module, *args, **kwargs):
+ for hook in self.hooks:
+ args, kwargs = hook.pre_forward(module, *args, **kwargs)
+ return args, kwargs
+
+ def post_forward(self, module, output):
+ for hook in self.hooks:
+ output = hook.post_forward(module, output)
+ return output
+
+ def detach_hook(self, module):
+ for hook in self.hooks:
+ module = hook.detach_hook(module)
+ return module
+
+
+def add_hook_to_module(module: nn.Module, hook: ModelHook, append: bool = False):
+ """
+ Adds a hook to a given module. This will rewrite the `forward` method of the module to include the hook, to remove
+ this behavior and restore the original `forward` method, use `remove_hook_from_module`.
+
+
+
+ If the module already contains a hook, this will replace it with the new hook passed by default. To chain two hooks
+ together, pass `append=True`, so it chains the current and new hook into an instance of the `SequentialHook` class.
+
+
+
+ Args:
+ module (`torch.nn.Module`):
+ The module to attach a hook to.
+ hook (`ModelHook`):
+ The hook to attach.
+ append (`bool`, *optional*, defaults to `False`):
+ Whether the hook should be chained with an existing one (if module already contains a hook) or not.
+
+ Returns:
+ `torch.nn.Module`: The same module, with the hook attached (the module is modified in place, so the result can
+ be discarded).
+ """
+
+ if append and (getattr(module, "_hf_hook", None) is not None):
+ old_hook = module._hf_hook
+ remove_hook_from_module(module)
+ hook = SequentialHook(old_hook, hook)
+
+ if hasattr(module, "_hf_hook") and hasattr(module, "_old_forward"):
+ # If we already put some hook on this module, we replace it with the new one.
+ old_forward = module._old_forward
+ else:
+ old_forward = module.forward
+ module._old_forward = old_forward
+
+ module = hook.init_hook(module)
+ module._hf_hook = hook
+
+ def new_forward(module, *args, **kwargs):
+ args, kwargs = module._hf_hook.pre_forward(module, *args, **kwargs)
+ if module._hf_hook.no_grad:
+ with torch.no_grad():
+ output = module._old_forward(*args, **kwargs)
+ else:
+ output = module._old_forward(*args, **kwargs)
+ return module._hf_hook.post_forward(module, output)
+
+ # Overriding a GraphModuleImpl forward freezes the forward call and later modifications on the graph will fail.
+ # Reference: https://pytorch.slack.com/archives/C3PDTEV8E/p1705929610405409
+ if "GraphModuleImpl" in str(type(module)):
+ module.__class__.forward = functools.update_wrapper(functools.partial(new_forward, module), old_forward)
+ else:
+ module.forward = functools.update_wrapper(functools.partial(new_forward, module), old_forward)
+
+ return module
+
+
+def remove_hook_from_module(module: nn.Module, recurse=False):
+ """
+ Removes any hook attached to a module via `add_hook_to_module`.
+
+ Args:
+ module (`torch.nn.Module`): The module to attach a hook to.
+ recurse (`bool`, **optional**): Whether to remove the hooks recursively
+
+ Returns:
+ `torch.nn.Module`: The same module, with the hook detached (the module is modified in place, so the result can
+ be discarded).
+ """
+
+ if hasattr(module, "_hf_hook"):
+ module._hf_hook.detach_hook(module)
+ delattr(module, "_hf_hook")
+
+ if hasattr(module, "_old_forward"):
+ # Overriding a GraphModuleImpl forward freezes the forward call and later modifications on the graph will fail.
+ # Reference: https://pytorch.slack.com/archives/C3PDTEV8E/p1705929610405409
+ if "GraphModuleImpl" in str(type(module)):
+ module.__class__.forward = module._old_forward
+ else:
+ module.forward = module._old_forward
+ delattr(module, "_old_forward")
+
+ if recurse:
+ for child in module.children():
+ remove_hook_from_module(child, recurse)
+
+ return module
+
+
+class AlignDevicesHook(ModelHook):
+ """
+ A generic `ModelHook` that ensures inputs and model weights are on the same device for the forward pass of the
+ associated module, potentially offloading the weights after the forward pass.
+
+ Args:
+ execution_device (`torch.device`, *optional*):
+ The device on which inputs and model weights should be placed before the forward pass.
+ offload (`bool`, *optional*, defaults to `False`):
+ Whether or not the weights should be offloaded after the forward pass.
+ io_same_device (`bool`, *optional*, defaults to `False`):
+ Whether or not the output should be placed on the same device as the input was.
+ weights_map (`Mapping[str, torch.Tensor]`, *optional*):
+ When the model weights are offloaded, a (potentially lazy) map from param names to the tensor values.
+ offload_buffers (`bool`, *optional*, defaults to `False`):
+ Whether or not to include the associated module's buffers when offloading.
+ place_submodules (`bool`, *optional*, defaults to `False`):
+ Whether to place the submodules on `execution_device` during the `init_hook` event.
+ """
+
+ def __init__(
+ self,
+ execution_device: Optional[Union[int, str, torch.device]] = None,
+ offload: bool = False,
+ io_same_device: bool = False,
+ weights_map: Optional[Mapping] = None,
+ offload_buffers: bool = False,
+ place_submodules: bool = False,
+ skip_keys: Optional[Union[str, List[str]]] = None,
+ tied_params_map: Optional[Dict[int, Dict[torch.device, torch.Tensor]]] = None,
+ ):
+ self.execution_device = execution_device
+ self.offload = offload
+ self.io_same_device = io_same_device
+ self.weights_map = weights_map
+ self.offload_buffers = offload_buffers
+ self.place_submodules = place_submodules
+ self.skip_keys = skip_keys
+
+ # Will contain the input device when `io_same_device=True`.
+ self.input_device = None
+ self.param_original_devices = {}
+ self.buffer_original_devices = {}
+ self.tied_params_names = set()
+
+ # The hook pre_forward/post_forward need to have knowledge of this dictionary, as with offloading we want to avoid duplicating memory
+ # for tied weights already loaded on the target execution device.
+ self.tied_params_map = tied_params_map
+
+ def __repr__(self):
+ return (
+ f"AlignDevicesHook(execution_device={self.execution_device}, offload={self.offload}, "
+ f"io_same_device={self.io_same_device}, offload_buffers={self.offload_buffers}, "
+ f"place_submodules={self.place_submodules}, skip_keys={repr(self.skip_keys)})"
+ )
+
+ def init_hook(self, module):
+ # In case the AlignDevicesHook is on meta device, ignore tied weights as data_ptr() is then always zero.
+ if self.execution_device == "meta" or self.execution_device == torch.device("meta"):
+ self.tied_params_map = None
+
+ if not self.offload and self.execution_device is not None:
+ for name, _ in named_module_tensors(module, recurse=self.place_submodules):
+ set_module_tensor_to_device(module, name, self.execution_device, tied_params_map=self.tied_params_map)
+ elif self.offload:
+ self.original_devices = {
+ name: param.device for name, param in named_module_tensors(module, recurse=self.place_submodules)
+ }
+ if self.weights_map is None:
+ self.weights_map = {
+ name: param.to("cpu")
+ for name, param in named_module_tensors(
+ module, include_buffers=self.offload_buffers, recurse=self.place_submodules
+ )
+ }
+ for name, _ in named_module_tensors(
+ module, include_buffers=self.offload_buffers, recurse=self.place_submodules, remove_non_persistent=True
+ ):
+ # When using disk offloading, we can not rely on `weights_map[name].data_ptr()` as the reference pointer,
+ # as we have no guarantee that safetensors' `file.get_tensor()` will always give the same pointer.
+ # As we have no reliable way to track the shared data pointer of tied weights in this case, we use tied_params_names: List[str]
+ # to add on the fly pointers to `tied_params_map` in the pre_forward call.
+ if (
+ self.tied_params_map is not None
+ and recursive_getattr(module, name).data_ptr() in self.tied_params_map
+ ):
+ self.tied_params_names.add(name)
+
+ set_module_tensor_to_device(module, name, "meta")
+
+ if not self.offload_buffers and self.execution_device is not None:
+ for name, _ in module.named_buffers(recurse=self.place_submodules):
+ set_module_tensor_to_device(
+ module, name, self.execution_device, tied_params_map=self.tied_params_map
+ )
+ elif self.offload_buffers and self.execution_device is not None:
+ for name in get_non_persistent_buffers(module, recurse=self.place_submodules):
+ set_module_tensor_to_device(
+ module, name, self.execution_device, tied_params_map=self.tied_params_map
+ )
+
+ return module
+
+ def pre_forward(self, module, *args, **kwargs):
+ if self.io_same_device:
+ self.input_device = find_device([args, kwargs])
+ if self.offload:
+ self.tied_pointers_to_remove = set()
+
+ for name, _ in named_module_tensors(
+ module,
+ include_buffers=self.offload_buffers,
+ recurse=self.place_submodules,
+ remove_non_persistent=True,
+ ):
+ fp16_statistics = None
+ value = self.weights_map[name]
+ if "weight" in name and name.replace("weight", "SCB") in self.weights_map.keys():
+ if value.dtype == torch.int8:
+ fp16_statistics = self.weights_map[name.replace("weight", "SCB")]
+
+ # In case we are using offloading with tied weights, we need to keep track of the offloaded weights
+ # that are loaded on device at this point, as we will need to remove them as well from the dictionary
+ # self.tied_params_map in order to allow to free memory.
+ if name in self.tied_params_names and value.data_ptr() not in self.tied_params_map:
+ self.tied_params_map[value.data_ptr()] = {}
+
+ if (
+ value is not None
+ and self.tied_params_map is not None
+ and value.data_ptr() in self.tied_params_map
+ and self.execution_device not in self.tied_params_map[value.data_ptr()]
+ ):
+ self.tied_pointers_to_remove.add((value.data_ptr(), self.execution_device))
+
+ set_module_tensor_to_device(
+ module,
+ name,
+ self.execution_device,
+ value=value,
+ fp16_statistics=fp16_statistics,
+ tied_params_map=self.tied_params_map,
+ )
+
+ return send_to_device(args, self.execution_device), send_to_device(
+ kwargs, self.execution_device, skip_keys=self.skip_keys
+ )
+
+ def post_forward(self, module, output):
+ if self.offload:
+ for name, _ in named_module_tensors(
+ module,
+ include_buffers=self.offload_buffers,
+ recurse=self.place_submodules,
+ remove_non_persistent=True,
+ ):
+ set_module_tensor_to_device(module, name, "meta")
+ if type(module).__name__ == "Linear8bitLt":
+ module.state.SCB = None
+ module.state.CxB = None
+
+ # We may have loaded tied weights into self.tied_params_map (avoiding to load them several times in e.g. submodules): remove them from
+ # this dictionary to allow the garbage collector to do its job.
+ for value_pointer, device in self.tied_pointers_to_remove:
+ del self.tied_params_map[value_pointer][device]
+ self.tied_pointers_to_remove = set()
+
+ if self.io_same_device and self.input_device is not None:
+ output = send_to_device(output, self.input_device, skip_keys=self.skip_keys)
+
+ return output
+
+ def detach_hook(self, module):
+ if self.offload:
+ for name, device in self.original_devices.items():
+ if device != torch.device("meta"):
+ set_module_tensor_to_device(module, name, device, value=self.weights_map.get(name, None))
+ return module
+
+
+def attach_execution_device_hook(
+ module: torch.nn.Module,
+ execution_device: Union[int, str, torch.device],
+ skip_keys: Optional[Union[str, List[str]]] = None,
+ preload_module_classes: Optional[List[str]] = None,
+ tied_params_map: Optional[Dict[int, Dict[torch.device, torch.Tensor]]] = None,
+):
+ """
+ Recursively attaches `AlignDevicesHook` to all submodules of a given model to make sure they have the right
+ execution device
+
+ Args:
+ module (`torch.nn.Module`):
+ The module where we want to attach the hooks.
+ execution_device (`int`, `str` or `torch.device`):
+ The device on which inputs and model weights should be placed before the forward pass.
+ skip_keys (`str` or `List[str]`, *optional*):
+ A list of keys to ignore when moving inputs or outputs between devices.
+ preload_module_classes (`List[str]`, *optional*):
+ A list of classes whose instances should load all their weights (even in the submodules) at the beginning
+ of the forward. This should only be used for classes that have submodules which are registered but not
+ called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
+ `dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
+ tied_params_map (Optional[Dict[int, Dict[torch.device, torch.Tensor]]], *optional*, defaults to `None`):
+ A map of data pointers to dictionaries of devices to already dispatched tied weights. For a given execution
+ device, this parameter is useful to reuse the first available pointer of a shared weight for all others,
+ instead of duplicating memory.
+ """
+ if not hasattr(module, "_hf_hook") and len(module.state_dict()) > 0:
+ add_hook_to_module(
+ module,
+ AlignDevicesHook(execution_device, skip_keys=skip_keys, tied_params_map=tied_params_map),
+ )
+
+ # Break the recursion if we get to a preload module.
+ if preload_module_classes is not None and module.__class__.__name__ in preload_module_classes:
+ return
+
+ for child in module.children():
+ attach_execution_device_hook(child, execution_device, tied_params_map=tied_params_map)
+
+
+def attach_align_device_hook(
+ module: torch.nn.Module,
+ execution_device: Optional[torch.device] = None,
+ offload: bool = False,
+ weights_map: Optional[Mapping] = None,
+ offload_buffers: bool = False,
+ module_name: str = "",
+ skip_keys: Optional[Union[str, List[str]]] = None,
+ preload_module_classes: Optional[List[str]] = None,
+ tied_params_map: Optional[Dict[int, Dict[torch.device, torch.Tensor]]] = None,
+):
+ """
+ Recursively attaches `AlignDevicesHook` to all submodules of a given model that have direct parameters and/or
+ buffers.
+
+ Args:
+ module (`torch.nn.Module`):
+ The module where we want to attach the hooks.
+ execution_device (`torch.device`, *optional*):
+ The device on which inputs and model weights should be placed before the forward pass.
+ offload (`bool`, *optional*, defaults to `False`):
+ Whether or not the weights should be offloaded after the forward pass.
+ weights_map (`Mapping[str, torch.Tensor]`, *optional*):
+ When the model weights are offloaded, a (potentially lazy) map from param names to the tensor values.
+ offload_buffers (`bool`, *optional*, defaults to `False`):
+ Whether or not to include the associated module's buffers when offloading.
+ module_name (`str`, *optional*, defaults to `""`):
+ The name of the module.
+ skip_keys (`str` or `List[str]`, *optional*):
+ A list of keys to ignore when moving inputs or outputs between devices.
+ preload_module_classes (`List[str]`, *optional*):
+ A list of classes whose instances should load all their weights (even in the submodules) at the beginning
+ of the forward. This should only be used for classes that have submodules which are registered but not
+ called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
+ `dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
+ tied_params_map (Optional[Dict[int, Dict[torch.device, torch.Tensor]]], *optional*, defaults to `None`):
+ A map of data pointers to dictionaries of devices to already dispatched tied weights. For a given execution
+ device, this parameter is useful to reuse the first available pointer of a shared weight for all others,
+ instead of duplicating memory.
+ """
+ # Attach the hook on this module if it has any direct tensor.
+ directs = named_module_tensors(module)
+ full_offload = (
+ offload and preload_module_classes is not None and module.__class__.__name__ in preload_module_classes
+ )
+
+ if len(list(directs)) > 0 or full_offload:
+ if weights_map is not None:
+ prefix = f"{module_name}." if len(module_name) > 0 else ""
+ prefixed_weights_map = PrefixedDataset(weights_map, prefix)
+ else:
+ prefixed_weights_map = None
+ hook = AlignDevicesHook(
+ execution_device=execution_device,
+ offload=offload,
+ weights_map=prefixed_weights_map,
+ offload_buffers=offload_buffers,
+ place_submodules=full_offload,
+ skip_keys=skip_keys,
+ tied_params_map=tied_params_map,
+ )
+ add_hook_to_module(module, hook, append=True)
+
+ # We stop the recursion in case we hit the full offload.
+ if full_offload:
+ return
+
+ # Recurse on all children of the module.
+ for child_name, child in module.named_children():
+ child_name = f"{module_name}.{child_name}" if len(module_name) > 0 else child_name
+ attach_align_device_hook(
+ child,
+ execution_device=execution_device,
+ offload=offload,
+ weights_map=weights_map,
+ offload_buffers=offload_buffers,
+ module_name=child_name,
+ preload_module_classes=preload_module_classes,
+ skip_keys=skip_keys,
+ tied_params_map=tied_params_map,
+ )
+
+
+def remove_hook_from_submodules(module: nn.Module):
+ """
+ Recursively removes all hooks attached on the submodules of a given model.
+
+ Args:
+ module (`torch.nn.Module`): The module on which to remove all hooks.
+ """
+ remove_hook_from_module(module)
+ for child in module.children():
+ remove_hook_from_submodules(child)
+
+
+def attach_align_device_hook_on_blocks(
+ module: nn.Module,
+ execution_device: Optional[Union[torch.device, Dict[str, torch.device]]] = None,
+ offload: Union[bool, Dict[str, bool]] = False,
+ weights_map: Mapping = None,
+ offload_buffers: bool = False,
+ module_name: str = "",
+ skip_keys: Optional[Union[str, List[str]]] = None,
+ preload_module_classes: Optional[List[str]] = None,
+ tied_params_map: Optional[Dict[int, Dict[torch.device, torch.Tensor]]] = None,
+):
+ """
+ Attaches `AlignDevicesHook` to all blocks of a given model as needed.
+
+ Args:
+ module (`torch.nn.Module`):
+ The module where we want to attach the hooks.
+ execution_device (`torch.device` or `Dict[str, torch.device]`, *optional*):
+ The device on which inputs and model weights should be placed before the forward pass. It can be one device
+ for the whole module, or a dictionary mapping module name to device.
+ offload (`bool`, *optional*, defaults to `False`):
+ Whether or not the weights should be offloaded after the forward pass. It can be one boolean for the whole
+ module, or a dictionary mapping module name to boolean.
+ weights_map (`Mapping[str, torch.Tensor]`, *optional*):
+ When the model weights are offloaded, a (potentially lazy) map from param names to the tensor values.
+ offload_buffers (`bool`, *optional*, defaults to `False`):
+ Whether or not to include the associated module's buffers when offloading.
+ module_name (`str`, *optional*, defaults to `""`):
+ The name of the module.
+ skip_keys (`str` or `List[str]`, *optional*):
+ A list of keys to ignore when moving inputs or outputs between devices.
+ preload_module_classes (`List[str]`, *optional*):
+ A list of classes whose instances should load all their weights (even in the submodules) at the beginning
+ of the forward. This should only be used for classes that have submodules which are registered but not
+ called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
+ `dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
+ tied_params_map (Optional[Dict[int, Dict[torch.device, torch.Tensor]]], *optional*, defaults to `None`):
+ A map of data pointers to dictionaries of devices to already dispatched tied weights. For a given execution
+ device, this parameter is useful to reuse the first available pointer of a shared weight for all others,
+ instead of duplicating memory.
+ """
+ # If one device and one offload, we've got one hook.
+ if not isinstance(execution_device, Mapping) and not isinstance(offload, dict):
+ if not offload:
+ hook = AlignDevicesHook(
+ execution_device=execution_device,
+ io_same_device=True,
+ skip_keys=skip_keys,
+ place_submodules=True,
+ tied_params_map=tied_params_map,
+ )
+ add_hook_to_module(module, hook)
+ else:
+ attach_align_device_hook(
+ module,
+ execution_device=execution_device,
+ offload=True,
+ weights_map=weights_map,
+ offload_buffers=offload_buffers,
+ module_name=module_name,
+ skip_keys=skip_keys,
+ tied_params_map=tied_params_map,
+ )
+ return
+
+ if not isinstance(execution_device, Mapping):
+ execution_device = {key: execution_device for key in offload.keys()}
+ if not isinstance(offload, Mapping):
+ offload = {key: offload for key in execution_device.keys()}
+
+ if module_name in execution_device and module_name in offload and not offload[module_name]:
+ hook = AlignDevicesHook(
+ execution_device=execution_device[module_name],
+ offload_buffers=offload_buffers,
+ io_same_device=(module_name == ""),
+ place_submodules=True,
+ skip_keys=skip_keys,
+ tied_params_map=tied_params_map,
+ )
+ add_hook_to_module(module, hook)
+ attach_execution_device_hook(module, execution_device[module_name], tied_params_map=tied_params_map)
+ elif module_name in execution_device and module_name in offload:
+ attach_align_device_hook(
+ module,
+ execution_device=execution_device[module_name],
+ offload=True,
+ weights_map=weights_map,
+ offload_buffers=offload_buffers,
+ module_name=module_name,
+ skip_keys=skip_keys,
+ preload_module_classes=preload_module_classes,
+ tied_params_map=tied_params_map,
+ )
+ if not hasattr(module, "_hf_hook"):
+ hook = AlignDevicesHook(
+ execution_device=execution_device[module_name],
+ io_same_device=(module_name == ""),
+ skip_keys=skip_keys,
+ tied_params_map=tied_params_map,
+ )
+ add_hook_to_module(module, hook)
+ attach_execution_device_hook(
+ module,
+ execution_device[module_name],
+ preload_module_classes=preload_module_classes,
+ skip_keys=skip_keys,
+ tied_params_map=tied_params_map,
+ )
+ elif module_name == "":
+ hook = AlignDevicesHook(
+ execution_device=execution_device.get(""),
+ io_same_device=True,
+ skip_keys=skip_keys,
+ tied_params_map=tied_params_map,
+ )
+ add_hook_to_module(module, hook)
+
+ for child_name, child in module.named_children():
+ child_name = f"{module_name}.{child_name}" if len(module_name) > 0 else child_name
+ attach_align_device_hook_on_blocks(
+ child,
+ execution_device=execution_device,
+ offload=offload,
+ weights_map=weights_map,
+ offload_buffers=offload_buffers,
+ module_name=child_name,
+ preload_module_classes=preload_module_classes,
+ skip_keys=skip_keys,
+ tied_params_map=tied_params_map,
+ )
+
+
+class CpuOffload(ModelHook):
+ """
+ Offloads a model on the CPU until its forward pass is called. The model will not be offloaded back to the CPU after
+ the forward, the user needs to call the `init_hook` method again for this.
+
+ Args:
+ execution_device(`str`, `int` or `torch.device`, *optional*):
+ The device on which the model should be executed. Will default to the MPS device if it's available, then
+ GPU 0 if there is a GPU, and finally to the CPU.
+ prev_module_hook (`UserCpuOffloadHook`, *optional*):
+ The hook sent back by [`cpu_offload_with_hook`] for a previous model in the pipeline you are running. If
+ passed, its offload method will be called just before the forward of the model to which this hook is
+ attached.
+ """
+
+ def __init__(
+ self,
+ execution_device: Optional[Union[str, int, torch.device]] = None,
+ prev_module_hook: Optional["UserCpuOffloadHook"] = None,
+ ):
+ self.prev_module_hook = prev_module_hook
+
+ self.execution_device = execution_device if execution_device is not None else PartialState().default_device
+
+ def init_hook(self, module):
+ return module.to("cpu")
+
+ def pre_forward(self, module, *args, **kwargs):
+ if self.prev_module_hook is not None:
+ self.prev_module_hook.offload()
+ module.to(self.execution_device)
+ return send_to_device(args, self.execution_device), send_to_device(kwargs, self.execution_device)
+
+
+class UserCpuOffloadHook:
+ """
+ A simple hook grouping a model and a `ModelHook`, which provides easy APIs for to call the init method of the hook
+ or remove it entirely.
+ """
+
+ def __init__(self, model, hook):
+ self.model = model
+ self.hook = hook
+
+ def offload(self):
+ self.hook.init_hook(self.model)
+
+ def remove(self):
+ remove_hook_from_module(self.model)
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/inference.py b/llmeval-env/lib/python3.10/site-packages/accelerate/inference.py
new file mode 100644
index 0000000000000000000000000000000000000000..cf4cf15017938e34867d4eeaad120745051ab385
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/accelerate/inference.py
@@ -0,0 +1,188 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import math
+from types import MethodType
+from typing import Any, Dict, List, Optional, Tuple, Union
+
+from .state import PartialState
+from .utils import (
+ calculate_maximum_sizes,
+ convert_bytes,
+ copy_tensor_to_devices,
+ ignorant_find_batch_size,
+ infer_auto_device_map,
+ is_pippy_available,
+ pad_input_tensors,
+ send_to_device,
+)
+
+
+if is_pippy_available():
+ from pippy.IR import Pipe, PipeSplitWrapper, annotate_split_points
+ from pippy.PipelineStage import PipelineStage
+
+
+def generate_device_map(model, num_processes: int = 1, no_split_module_classes=None, max_memory: dict = None):
+ """
+ Calculates the device map for `model` with an offset for PiPPy
+ """
+ if num_processes == 1:
+ return infer_auto_device_map(model, no_split_module_classes=no_split_module_classes, clean_result=False)
+ if max_memory is None:
+ model_size, shared = calculate_maximum_sizes(model)
+
+ # Split into `n` chunks for each GPU
+ memory = (model_size + shared[0]) / num_processes
+ memory = convert_bytes(memory)
+ value, ending = memory.split(" ")
+
+ # Add a chunk to deal with potential extra shared memory instances
+ memory = math.ceil(float(value)) * 1.1
+ memory = f"{memory} {ending}"
+ max_memory = {i: memory for i in range(num_processes)}
+ device_map = infer_auto_device_map(
+ model,
+ max_memory=max_memory,
+ no_split_module_classes=no_split_module_classes,
+ clean_result=False,
+ )
+ return device_map
+
+
+def find_pippy_batch_size(args, kwargs):
+ found_batch_size = None
+ if args is not None:
+ for arg in args:
+ found_batch_size = ignorant_find_batch_size(arg)
+ if found_batch_size is not None:
+ break
+ if kwargs is not None and found_batch_size is None:
+ for kwarg in kwargs.values():
+ found_batch_size = ignorant_find_batch_size(kwarg)
+ if found_batch_size is not None:
+ break
+ return found_batch_size
+
+
+def build_pipeline(model, split_points, args, kwargs, num_chunks):
+ """
+ Attaches the split points to the model based on `self.device_map` and generates a `PipelineStage`. Requires passing
+ in needed `args` and `kwargs` as the model needs on the CPU.
+
+ Users can pass in custom `num_chunks` as an optional hyper-parameter. By default will use
+ `AcceleratorState.num_processes`
+ """
+ # We need to annotate the split points in the model for PiPPy
+ state = PartialState()
+ annotate_split_points(model, {split_point: PipeSplitWrapper.SplitPoint.BEGINNING for split_point in split_points})
+ found_batch_size = find_pippy_batch_size(args, kwargs)
+ if found_batch_size != num_chunks:
+ if args is not None:
+ args = pad_input_tensors(args, found_batch_size, num_chunks)
+ if kwargs is not None:
+ kwargs = pad_input_tensors(kwargs, found_batch_size, num_chunks)
+ pipe = Pipe.from_tracing(model, num_chunks=num_chunks, example_args=args, example_kwargs=kwargs)
+ stage = PipelineStage(pipe, state.local_process_index, device=state.device)
+
+ return stage
+
+
+def pippy_forward(forward, num_chunks, gather_output, *args, **kwargs):
+ state = PartialState()
+ output = None
+
+ if state.num_processes == 1:
+ output = forward(*args, **kwargs)
+ elif state.is_local_main_process:
+ found_batch_size = find_pippy_batch_size(args, kwargs)
+ if found_batch_size is None:
+ raise ValueError("Could not find batch size from args or kwargs")
+ else:
+ if found_batch_size != num_chunks:
+ args = pad_input_tensors(args, found_batch_size, num_chunks)
+ kwargs = pad_input_tensors(kwargs, found_batch_size, num_chunks)
+ forward(*args, **kwargs)
+ elif state.is_last_process:
+ output = forward()
+ else:
+ forward()
+ if gather_output:
+ # Each node will get a copy of the full output which is only on the last GPU
+ output = copy_tensor_to_devices(output)
+ return output
+
+
+def prepare_pippy(
+ model,
+ split_points: Optional[Union[str, List[str]]] = "auto",
+ no_split_module_classes: Optional[List[str]] = None,
+ example_args: Optional[Tuple[Any]] = (),
+ example_kwargs: Optional[Dict[str, Any]] = None,
+ num_chunks: Optional[int] = None,
+ gather_output: Optional[bool] = False,
+):
+ """
+ Wraps `model` for pipeline parallel inference.
+
+ Args:
+ model (`torch.nn.Module`):
+ A model we want to split for pipeline-parallel inference
+ split_points (`str` or `List[str]`, defaults to 'auto'):
+ How to generate the split points and chunk the model across each GPU. 'auto' will find the best balanced
+ split given any model. Should be a list of layer names in the model to split by otherwise.
+ no_split_module_classes (`List[str]`):
+ A list of class names for layers we don't want to be split.
+ example_args (tuple of model inputs):
+ The expected inputs for the model that uses order-based inputs. Recommended to use this method if possible.
+ example_kwargs (dict of model inputs)
+ The expected inputs for the model that uses dictionary-based inputs. This is a *highly* limiting structure
+ that requires the same keys be present at *all* inference calls. Not recommended unless the prior condition
+ is true for all cases.
+ num_chunks (`int`, defaults to the number of available GPUs):
+ The number of different stages the Pipeline will have. By default it will assign one chunk per GPU, but
+ this can be tuned and played with. In general one should have num_chunks >= num_gpus.
+ gather_output (`bool`, defaults to `False`):
+ If `True`, the output from the last GPU (which holds the true outputs) is sent across to all GPUs.
+ """
+ if not is_pippy_available():
+ raise ImportError(
+ "`pippy` was not found to be installed on your system. Please "
+ "install using `pip install torchpippy` or ensure you have at least version 0.2.0"
+ )
+ state = PartialState()
+ example_args = send_to_device(example_args, "cpu")
+ example_kwargs = send_to_device(example_kwargs, "cpu")
+ if num_chunks is None:
+ num_chunks = state.num_processes
+ if split_points == "auto":
+ device_map = generate_device_map(model, num_chunks, no_split_module_classes=no_split_module_classes)
+ split_points = []
+ for i in range(1, num_chunks):
+ split_points.append(next(k for k, v in device_map.items() if v == i))
+ model.hf_split_points = split_points
+ stage = build_pipeline(model, split_points, example_args, example_kwargs, num_chunks)
+ model._original_forward = model.forward
+ model._original_call = model.__call__
+ model.pippy_stage = stage
+ model.hf_split_points = split_points
+
+ def forward(*args, **kwargs):
+ return pippy_forward(stage.forward, num_chunks, gather_output, *args, **kwargs)
+
+ # To act like a decorator so that it can be popped when doing `extract_model_from_parallel`
+ # Note: creates an infinite recursion loop with `generate`
+ model_forward = MethodType(forward, model)
+ forward.__wrapped__ = model_forward
+ model.forward = forward
+ return model
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/launchers.py b/llmeval-env/lib/python3.10/site-packages/accelerate/launchers.py
new file mode 100644
index 0000000000000000000000000000000000000000..0265b25187f813356cfb49768097d6cf2599b0d3
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/accelerate/launchers.py
@@ -0,0 +1,258 @@
+# Copyright 2021 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import os
+import sys
+import tempfile
+
+import torch
+
+from .state import AcceleratorState, PartialState
+from .utils import (
+ PrecisionType,
+ PrepareForLaunch,
+ are_libraries_initialized,
+ check_cuda_p2p_ib_support,
+ get_gpu_info,
+ is_mps_available,
+ patch_environment,
+)
+
+
+def test_launch():
+ "Verify a `PartialState` can be initialized."
+ _ = PartialState()
+
+
+def notebook_launcher(
+ function,
+ args=(),
+ num_processes=None,
+ mixed_precision="no",
+ use_port="29500",
+ master_addr="127.0.0.1",
+ node_rank=0,
+ num_nodes=1,
+):
+ """
+ Launches a training function, using several processes or multiple nodes if it's possible in the current environment
+ (TPU with multiple cores for instance).
+
+
+
+ To use this function absolutely zero calls to a CUDA device must be made in the notebook session before calling. If
+ any have been made, you will need to restart the notebook and make sure no cells use any CUDA capability.
+
+ Setting `ACCELERATE_DEBUG_MODE="1"` in your environment will run a test before truly launching to ensure that none
+ of those calls have been made.
+
+
+
+ Args:
+ function (`Callable`):
+ The training function to execute. If it accepts arguments, the first argument should be the index of the
+ process run.
+ args (`Tuple`):
+ Tuple of arguments to pass to the function (it will receive `*args`).
+ num_processes (`int`, *optional*):
+ The number of processes to use for training. Will default to 8 in Colab/Kaggle if a TPU is available, to
+ the number of GPUs available otherwise.
+ mixed_precision (`str`, *optional*, defaults to `"no"`):
+ If `fp16` or `bf16`, will use mixed precision training on multi-GPU.
+ use_port (`str`, *optional*, defaults to `"29500"`):
+ The port to use to communicate between processes when launching a multi-GPU training.
+ master_addr (`str`, *optional*, defaults to `"127.0.0.1"`):
+ The address to use for communication between processes.
+ node_rank (`int`, *optional*, defaults to 0):
+ The rank of the current node.
+ num_nodes (`int`, *optional*, defaults to 1):
+ The number of nodes to use for training.
+
+ Example:
+
+ ```python
+ # Assume this is defined in a Jupyter Notebook on an instance with two GPUs
+ from accelerate import notebook_launcher
+
+
+ def train(*args):
+ # Your training function here
+ ...
+
+
+ notebook_launcher(train, args=(arg1, arg2), num_processes=2, mixed_precision="fp16")
+ ```
+ """
+ # Are we in a google colab or a Kaggle Kernel?
+ in_colab = False
+ in_kaggle = False
+ if any(key.startswith("KAGGLE") for key in os.environ.keys()):
+ in_kaggle = True
+ elif "IPython" in sys.modules:
+ in_colab = "google.colab" in str(sys.modules["IPython"].get_ipython())
+
+ try:
+ mixed_precision = PrecisionType(mixed_precision.lower())
+ except ValueError:
+ raise ValueError(
+ f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}."
+ )
+
+ if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME", None) is not None):
+ # TPU launch
+ import torch_xla.distributed.xla_multiprocessing as xmp
+
+ if len(AcceleratorState._shared_state) > 0:
+ raise ValueError(
+ "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside "
+ "your training function. Restart your notebook and make sure no cells initializes an "
+ "`Accelerator`."
+ )
+ if num_processes is None:
+ num_processes = 8
+
+ launcher = PrepareForLaunch(function, distributed_type="TPU")
+ print(f"Launching a training on {num_processes} TPU cores.")
+ xmp.spawn(launcher, args=args, nprocs=num_processes, start_method="fork")
+ elif in_colab and get_gpu_info()[1] < 2:
+ # No need for a distributed launch otherwise as it's either CPU or one GPU.
+ if torch.cuda.is_available():
+ print("Launching training on one GPU.")
+ else:
+ print("Launching training on one CPU.")
+ function(*args)
+ else:
+ if num_processes is None:
+ raise ValueError(
+ "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call."
+ )
+ if node_rank >= num_nodes:
+ raise ValueError("The node_rank must be less than the number of nodes.")
+ if num_processes > 1:
+ # Multi-GPU launch
+ from torch.multiprocessing import start_processes
+ from torch.multiprocessing.spawn import ProcessRaisedException
+
+ if len(AcceleratorState._shared_state) > 0:
+ raise ValueError(
+ "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized "
+ "inside your training function. Restart your notebook and make sure no cells initializes an "
+ "`Accelerator`."
+ )
+ # Check for specific libraries known to initialize CUDA that users constantly use
+ problematic_imports = are_libraries_initialized("bitsandbytes")
+ if len(problematic_imports) > 0:
+ err = (
+ "Could not start distributed process. Libraries known to initialize CUDA upon import have been "
+ "imported already. Please keep these imports inside your training function to try and help with this:"
+ )
+ for lib_name in problematic_imports:
+ err += f"\n\t* `{lib_name}`"
+ raise RuntimeError(err)
+
+ patched_env = dict(
+ nproc=num_processes,
+ node_rank=node_rank,
+ world_size=num_nodes * num_processes,
+ master_addr=master_addr,
+ master_port=use_port,
+ mixed_precision=mixed_precision,
+ )
+
+ # Check for CUDA P2P and IB issues
+ if not check_cuda_p2p_ib_support():
+ patched_env["nccl_p2p_disable"] = "1"
+ patched_env["nccl_ib_disable"] = "1"
+
+ # torch.distributed will expect a few environment variable to be here. We set the ones common to each
+ # process here (the other ones will be set be the launcher).
+ with patch_environment(**patched_env):
+ # First dummy launch
+ if os.environ.get("ACCELERATE_DEBUG_MODE", "false").lower() == "true":
+ launcher = PrepareForLaunch(test_launch, distributed_type="MULTI_GPU")
+ try:
+ start_processes(launcher, args=(), nprocs=num_processes, start_method="fork")
+ except ProcessRaisedException as e:
+ err = "An issue was found when verifying a stable environment for the notebook launcher."
+ if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]:
+ raise RuntimeError(
+ f"{err}"
+ "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. "
+ "Please review your imports and test them when running the `notebook_launcher()` to identify "
+ "which one is problematic and causing CUDA to be initialized."
+ ) from e
+ else:
+ raise RuntimeError(f"{err} The following error was raised: {e}") from e
+ # Now the actual launch
+ launcher = PrepareForLaunch(function, distributed_type="MULTI_GPU")
+ print(f"Launching training on {num_processes} GPUs.")
+ try:
+ start_processes(launcher, args=args, nprocs=num_processes, start_method="fork")
+ except ProcessRaisedException as e:
+ if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]:
+ raise RuntimeError(
+ "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. "
+ "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. "
+ "Please review your imports and test them when running the `notebook_launcher()` to identify "
+ "which one is problematic and causing CUDA to be initialized."
+ ) from e
+ else:
+ raise RuntimeError(f"An issue was found when launching the training: {e}") from e
+
+ else:
+ # No need for a distributed launch otherwise as it's either CPU, GPU or MPS.
+ if is_mps_available():
+ os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
+ print("Launching training on MPS.")
+ elif torch.cuda.is_available():
+ print("Launching training on one GPU.")
+ else:
+ print("Launching training on CPU.")
+ function(*args)
+
+
+def debug_launcher(function, args=(), num_processes=2):
+ """
+ Launches a training function using several processes on CPU for debugging purposes.
+
+
+
+ This function is provided for internal testing and debugging, but it's not intended for real trainings. It will
+ only use the CPU.
+
+
+
+ Args:
+ function (`Callable`):
+ The training function to execute.
+ args (`Tuple`):
+ Tuple of arguments to pass to the function (it will receive `*args`).
+ num_processes (`int`, *optional*, defaults to 2):
+ The number of processes to use for training.
+ """
+ from torch.multiprocessing import start_processes
+
+ with tempfile.NamedTemporaryFile() as tmp_file:
+ # torch.distributed will expect a few environment variable to be here. We set the ones common to each
+ # process here (the other ones will be set be the launcher).
+ with patch_environment(
+ world_size=num_processes,
+ master_addr="127.0.0.1",
+ master_port="29500",
+ accelerate_mixed_precision="no",
+ accelerate_debug_rdv_file=tmp_file.name,
+ accelerate_use_cpu="yes",
+ ):
+ launcher = PrepareForLaunch(function, debug=True)
+ start_processes(launcher, args=args, nprocs=num_processes, start_method="fork")
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/local_sgd.py b/llmeval-env/lib/python3.10/site-packages/accelerate/local_sgd.py
new file mode 100644
index 0000000000000000000000000000000000000000..7f2657fcc8b057b4396cf299e6cf681fa7b83aa8
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/accelerate/local_sgd.py
@@ -0,0 +1,102 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import torch
+
+from accelerate import Accelerator, DistributedType
+
+
+class LocalSGD:
+ """
+ A helper class to support local SGD on top of Accelerator. It simply runs a given number of updates independently
+ on each device, and averages model weights every K synchronization step.
+
+ It should be used only in the multi-GPU (or multi-CPU) setup without extensions such as DeepSpeed. In particular,
+ this is a simple implementation that cannot support scenarios such as model parallelism.
+
+
+ Although we are not aware of the true origins of this simple approach, the idea of local SGD is quite old and goes
+ back to at least:
+
+ Zhang, J., De Sa, C., Mitliagkas, I., & Ré, C. (2016). [Parallel SGD: When does averaging help?. arXiv preprint
+ arXiv:1606.07365.](https://arxiv.org/abs/1606.07365)
+
+ We credit the term Local SGD to the following paper (but there might be earlier references we are not aware of).
+
+ Stich, Sebastian Urban. ["Local SGD Converges Fast and Communicates Little." ICLR 2019-International Conference on
+ Learning Representations. No. CONF. 2019.](https://arxiv.org/abs/1805.09767)
+
+ """
+
+ def __enter__(self):
+ if self.enabled:
+ self.model_sync_obj = self.model.no_sync()
+ self.model_sync_obj.__enter__()
+
+ return self
+
+ def __exit__(self, type, value, tb):
+ if self.enabled:
+ # Average all models on exit
+ self._sync_and_avg_model_params()
+ self.model_sync_obj.__exit__(type, value, tb)
+
+ def __init__(self, accelerator: Accelerator, model: torch.nn.Module, local_sgd_steps: int, enabled: bool = True):
+ """
+ Constructor.
+
+ Args:
+ model (`torch.nn.Module):
+ The model whose parameters we need to average.
+ accelerator (`Accelerator`):
+ Accelerator object.
+ local_sgd_steps (`int`):
+ A number of local SGD steps (before model parameters are synchronized).
+ enabled (`bool):
+ Local SGD is disabled if this parameter set to `False`.
+ """
+ if accelerator.distributed_type not in [
+ DistributedType.NO,
+ DistributedType.MULTI_CPU,
+ DistributedType.MULTI_GPU,
+ DistributedType.MULTI_MLU,
+ DistributedType.MULTI_NPU,
+ ]:
+ raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)")
+ self.enabled = enabled and accelerator.distributed_type != DistributedType.NO
+ self.num_steps = 0
+ if self.enabled:
+ self.accelerator = accelerator
+ self.model = model
+ self.local_sgd_steps = local_sgd_steps
+
+ def step(self):
+ """
+ This function makes a "step" and synchronizes model parameters if necessary.
+ """
+ self.num_steps += 1
+ if not self.enabled:
+ return
+
+ if self.num_steps % self.local_sgd_steps == 0:
+ self._sync_and_avg_model_params()
+
+ def _sync_and_avg_model_params(self):
+ """
+ Synchronize + Average model parameters across all GPUs
+ """
+
+ self.accelerator.wait_for_everyone()
+ with self.accelerator.autocast():
+ for param in self.model.parameters():
+ param.data = self.accelerator.reduce(param.data, reduction="mean")
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/logging.py b/llmeval-env/lib/python3.10/site-packages/accelerate/logging.py
new file mode 100644
index 0000000000000000000000000000000000000000..ebb8c1eb830e54e3f2870cb3a84afd33b7631ea6
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/accelerate/logging.py
@@ -0,0 +1,123 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import functools
+import logging
+import os
+
+from .state import PartialState
+
+
+class MultiProcessAdapter(logging.LoggerAdapter):
+ """
+ An adapter to assist with logging in multiprocess.
+
+ `log` takes in an additional `main_process_only` kwarg, which dictates whether it should be called on all processes
+ or only the main executed one. Default is `main_process_only=True`.
+
+ Does not require an `Accelerator` object to be created first.
+ """
+
+ @staticmethod
+ def _should_log(main_process_only):
+ "Check if log should be performed"
+ state = PartialState()
+ return not main_process_only or (main_process_only and state.is_main_process)
+
+ def log(self, level, msg, *args, **kwargs):
+ """
+ Delegates logger call after checking if we should log.
+
+ Accepts a new kwarg of `main_process_only`, which will dictate whether it will be logged across all processes
+ or only the main executed one. Default is `True` if not passed
+
+ Also accepts "in_order", which if `True` makes the processes log one by one, in order. This is much easier to
+ read, but comes at the cost of sometimes needing to wait for the other processes. Default is `False` to not
+ break with the previous behavior.
+
+ `in_order` is ignored if `main_process_only` is passed.
+ """
+ if PartialState._shared_state == {}:
+ raise RuntimeError(
+ "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility."
+ )
+ main_process_only = kwargs.pop("main_process_only", True)
+ in_order = kwargs.pop("in_order", False)
+
+ if self.isEnabledFor(level):
+ if self._should_log(main_process_only):
+ msg, kwargs = self.process(msg, kwargs)
+ self.logger.log(level, msg, *args, **kwargs)
+
+ elif in_order:
+ state = PartialState()
+ for i in range(state.num_processes):
+ if i == state.process_index:
+ msg, kwargs = self.process(msg, kwargs)
+ self.logger.log(level, msg, *args, **kwargs)
+ state.wait_for_everyone()
+
+ @functools.lru_cache(None)
+ def warning_once(self, *args, **kwargs):
+ """
+ This method is identical to `logger.warning()`, but will emit the warning with the same message only once
+
+ Note: The cache is for the function arguments, so 2 different callers using the same arguments will hit the
+ cache. The assumption here is that all warning messages are unique across the code. If they aren't then need to
+ switch to another type of cache that includes the caller frame information in the hashing function.
+ """
+ self.warning(*args, **kwargs)
+
+
+def get_logger(name: str, log_level: str = None):
+ """
+ Returns a `logging.Logger` for `name` that can handle multiprocessing.
+
+ If a log should be called on all processes, pass `main_process_only=False` If a log should be called on all
+ processes and in order, also pass `in_order=True`
+
+ Args:
+ name (`str`):
+ The name for the logger, such as `__file__`
+ log_level (`str`, *optional*):
+ The log level to use. If not passed, will default to the `LOG_LEVEL` environment variable, or `INFO` if not
+
+ Example:
+
+ ```python
+ >>> from accelerate.logging import get_logger
+ >>> from accelerate import Accelerator
+
+ >>> logger = get_logger(__name__)
+
+ >>> accelerator = Accelerator()
+ >>> logger.info("My log", main_process_only=False)
+ >>> logger.debug("My log", main_process_only=True)
+
+ >>> logger = get_logger(__name__, log_level="DEBUG")
+ >>> logger.info("My log")
+ >>> logger.debug("My second log")
+
+ >>> array = ["a", "b", "c", "d"]
+ >>> letter_at_rank = array[accelerator.process_index]
+ >>> logger.info(letter_at_rank, in_order=True)
+ ```
+ """
+ if log_level is None:
+ log_level = os.environ.get("ACCELERATE_LOG_LEVEL", None)
+ logger = logging.getLogger(name)
+ if log_level is not None:
+ logger.setLevel(log_level.upper())
+ logger.root.setLevel(log_level.upper())
+ return MultiProcessAdapter(logger, {})
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/memory_utils.py b/llmeval-env/lib/python3.10/site-packages/accelerate/memory_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..fa2e2c8b9d7d0064c3e5e282737a7ad6919bde29
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/accelerate/memory_utils.py
@@ -0,0 +1,22 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import warnings
+
+
+warnings.warn(
+ "memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: "
+ "`from accelerate import find_executable_batch_size` to avoid this warning.",
+ FutureWarning,
+)
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/optimizer.py b/llmeval-env/lib/python3.10/site-packages/accelerate/optimizer.py
new file mode 100644
index 0000000000000000000000000000000000000000..3230aa6606eb2f43b0ca72fdca64ce6d6aa01bdb
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/accelerate/optimizer.py
@@ -0,0 +1,214 @@
+# Copyright 2021 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import inspect
+import warnings
+
+import torch
+
+from .state import AcceleratorState, GradientState
+from .utils import DistributedType, honor_type, is_lomo_available, is_torch_xla_available
+
+
+if is_torch_xla_available():
+ import torch_xla.core.xla_model as xm
+
+
+def move_to_device(state, device):
+ if isinstance(state, (list, tuple)):
+ return honor_type(state, (move_to_device(t, device) for t in state))
+ elif isinstance(state, dict):
+ return type(state)({k: move_to_device(v, device) for k, v in state.items()})
+ elif isinstance(state, torch.Tensor):
+ return state.to(device)
+ return state
+
+
+class AcceleratedOptimizer(torch.optim.Optimizer):
+ """
+ Internal wrapper around a torch optimizer.
+
+ Conditionally will perform `step` and `zero_grad` if gradients should be synchronized when performing gradient
+ accumulation.
+
+ Args:
+ optimizer (`torch.optim.optimizer.Optimizer`):
+ The optimizer to wrap.
+ device_placement (`bool`, *optional*, defaults to `True`):
+ Whether or not the optimizer should handle device placement. If so, it will place the state dictionary of
+ `optimizer` on the right device.
+ scaler (`torch.cuda.amp.grad_scaler.GradScaler`, *optional*):
+ The scaler to use in the step function if training with mixed precision.
+ """
+
+ def __init__(self, optimizer, device_placement=True, scaler=None):
+ self.optimizer = optimizer
+ self.scaler = scaler
+ self.accelerator_state = AcceleratorState()
+ self.gradient_state = GradientState()
+ self.device_placement = device_placement
+ self._is_overflow = False
+
+ if self.scaler is not None:
+ self._accelerate_step_called = False
+ self._optimizer_original_step_method = self.optimizer.step
+ self._optimizer_patched_step_method = patch_optimizer_step(self, self.optimizer.step)
+
+ # Handle device placement
+ if device_placement:
+ state_dict = self.optimizer.state_dict()
+ if self.accelerator_state.distributed_type == DistributedType.XLA:
+ xm.send_cpu_data_to_device(state_dict, self.accelerator_state.device)
+ else:
+ state_dict = move_to_device(state_dict, self.accelerator_state.device)
+ self.optimizer.load_state_dict(state_dict)
+
+ @property
+ def state(self):
+ return self.optimizer.state
+
+ @state.setter
+ def state(self, state):
+ self.optimizer.state = state
+
+ @property
+ def param_groups(self):
+ return self.optimizer.param_groups
+
+ @param_groups.setter
+ def param_groups(self, param_groups):
+ self.optimizer.param_groups = param_groups
+
+ @property
+ def defaults(self):
+ return self.optimizer.defaults
+
+ @defaults.setter
+ def defaults(self, defaults):
+ self.optimizer.defaults = defaults
+
+ def add_param_group(self, param_group):
+ self.optimizer.add_param_group(param_group)
+
+ def load_state_dict(self, state_dict):
+ if self.accelerator_state.distributed_type == DistributedType.XLA and self.device_placement:
+ xm.send_cpu_data_to_device(state_dict, self.accelerator_state.device)
+ self.optimizer.load_state_dict(state_dict)
+
+ def state_dict(self):
+ return self.optimizer.state_dict()
+
+ def zero_grad(self, set_to_none=None):
+ if self.gradient_state.sync_gradients:
+ accept_arg = "set_to_none" in inspect.signature(self.optimizer.zero_grad).parameters
+ if accept_arg:
+ if set_to_none is None:
+ set_to_none = True
+ self.optimizer.zero_grad(set_to_none=set_to_none)
+ else:
+ if set_to_none is not None:
+ raise ValueError("`set_to_none` for Optimizer.zero_grad` is not supported by this optimizer.")
+ self.optimizer.zero_grad()
+
+ def train(self):
+ """
+ Sets the optimizer to "train" mode. Useful for optimizers like `schedule_free`
+ """
+ return self.optimizer.train()
+
+ def eval(self):
+ """
+ Sets the optimizer to "eval" mode. Useful for optimizers like `schedule_free`
+ """
+ return self.optimizer.eval()
+
+ def step(self, closure=None):
+ if is_lomo_available():
+ from lomo_optim import AdaLomo, Lomo
+
+ if (
+ not self.gradient_state.is_xla_gradients_synced
+ and self.accelerator_state.distributed_type == DistributedType.XLA
+ ):
+ gradients = xm._fetch_gradients(self.optimizer)
+ xm.all_reduce("sum", gradients, scale=1.0 / xm.xrt_world_size())
+ self.gradient_state.is_xla_gradients_synced = True
+
+ if is_lomo_available():
+ # `step` should be a no-op for LOMO optimizers.
+ if isinstance(self.optimizer, (Lomo, AdaLomo)):
+ return
+
+ if self.gradient_state.sync_gradients:
+ if self.scaler is not None:
+ self.optimizer.step = self._optimizer_patched_step_method
+
+ self.scaler.step(self.optimizer, closure)
+ self.scaler.update()
+
+ if not self._accelerate_step_called:
+ # If the optimizer step was skipped, gradient overflow was detected.
+ self._is_overflow = True
+ else:
+ self._is_overflow = False
+ # Reset the step method to the original one
+ self.optimizer.step = self._optimizer_original_step_method
+ # Reset the indicator
+ self._accelerate_step_called = False
+ else:
+ self.optimizer.step(closure)
+ if self.accelerator_state.distributed_type == DistributedType.XLA:
+ self.gradient_state.is_xla_gradients_synced = False
+
+ def _switch_parameters(self, parameters_map):
+ for param_group in self.optimizer.param_groups:
+ param_group["params"] = [parameters_map.get(p, p) for p in param_group["params"]]
+
+ @property
+ def is_overflow(self):
+ """Whether or not the optimizer step was done, or skipped because of gradient overflow."""
+ warnings.warn(
+ "The `is_overflow` property is deprecated and will be removed in version 1.0 of Accelerate use "
+ "`optimizer.step_was_skipped` instead.",
+ FutureWarning,
+ )
+ return self._is_overflow
+
+ @property
+ def step_was_skipped(self):
+ """Whether or not the optimizer step was skipped."""
+ return self._is_overflow
+
+ def __getstate__(self):
+ _ignored_keys = [
+ "_accelerate_step_called",
+ "_optimizer_original_step_method",
+ "_optimizer_patched_step_method",
+ ]
+ return {k: v for k, v in self.__dict__.items() if k not in _ignored_keys}
+
+ def __setstate__(self, state):
+ self.__dict__.update(state)
+ if self.scaler is not None:
+ self._accelerate_step_called = False
+ self._optimizer_original_step_method = self.optimizer.step
+ self._optimizer_patched_step_method = patch_optimizer_step(self, self.optimizer.step)
+
+
+def patch_optimizer_step(accelerated_optimizer: AcceleratedOptimizer, method):
+ def patched_step(*args, **kwargs):
+ accelerated_optimizer._accelerate_step_called = True
+ return method(*args, **kwargs)
+
+ return patched_step
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/scheduler.py b/llmeval-env/lib/python3.10/site-packages/accelerate/scheduler.py
new file mode 100644
index 0000000000000000000000000000000000000000..1fa8a13f238afd7b908ee8e8cb8e0620f48d4ff8
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/accelerate/scheduler.py
@@ -0,0 +1,98 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
+
+import warnings
+
+from .state import AcceleratorState, GradientState
+
+
+warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler")
+
+
+class AcceleratedScheduler:
+ """
+ A wrapper around a learning rate scheduler that will only step when the optimizer(s) have a training step. Useful
+ to avoid making a scheduler step too fast when gradients went overflow and there was no training step (in mixed
+ precision training)
+
+ When performing gradient accumulation scheduler lengths should not be changed accordingly, Accelerate will always
+ step the scheduler to account for it.
+
+ Args:
+ scheduler (`torch.optim.lr_scheduler._LRScheduler`):
+ The scheduler to wrap.
+ optimizers (one or a list of `torch.optim.Optimizer`):
+ The optimizers used.
+ step_with_optimizer (`bool`, *optional*, defaults to `True`):
+ Whether or not the scheduler should be stepped at each optimizer step.
+ split_batches (`bool`, *optional*, defaults to `False`):
+ Whether or not the dataloaders split one batch across the different processes (so batch size is the same
+ regardless of the number of processes) or create batches on each process (so batch size is the original
+ batch size multiplied by the number of processes).
+ """
+
+ def __init__(self, scheduler, optimizers, step_with_optimizer: bool = True, split_batches: bool = False):
+ self.scheduler = scheduler
+ self.optimizers = optimizers if isinstance(optimizers, (list, tuple)) else [optimizers]
+ self.split_batches = split_batches
+ self.step_with_optimizer = step_with_optimizer
+ self.gradient_state = GradientState()
+
+ def step(self, *args, **kwargs):
+ if not self.step_with_optimizer:
+ # No link between scheduler and optimizer -> just step
+ self.scheduler.step(*args, **kwargs)
+ return
+
+ # Otherwise, first make sure the optimizer was stepped.
+ if not self.gradient_state.sync_gradients:
+ if self.gradient_state.adjust_scheduler:
+ self.scheduler._step_count += 1
+ return
+
+ for opt in self.optimizers:
+ if opt.step_was_skipped:
+ return
+ if self.split_batches:
+ # Split batches -> the training dataloader batch size is not changed so one step per training step
+ self.scheduler.step(*args, **kwargs)
+ else:
+ # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
+ # num_processes steps per training step
+ num_processes = AcceleratorState().num_processes
+ for _ in range(num_processes):
+ # Special case when using OneCycle and `drop_last` was not used
+ if hasattr(self.scheduler, "total_steps"):
+ if self.scheduler._step_count <= self.scheduler.total_steps:
+ self.scheduler.step(*args, **kwargs)
+ else:
+ self.scheduler.step(*args, **kwargs)
+
+ # Passthroughs
+ def get_last_lr(self):
+ return self.scheduler.get_last_lr()
+
+ def state_dict(self):
+ return self.scheduler.state_dict()
+
+ def load_state_dict(self, state_dict):
+ self.scheduler.load_state_dict(state_dict)
+
+ def get_lr(self):
+ return self.scheduler.get_lr()
+
+ def print_lr(self, *args, **kwargs):
+ return self.scheduler.print_lr(*args, **kwargs)
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/state.py b/llmeval-env/lib/python3.10/site-packages/accelerate/state.py
new file mode 100644
index 0000000000000000000000000000000000000000..f39884c5eae482ae89caf07d85f9c8462b6b7d27
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/accelerate/state.py
@@ -0,0 +1,1208 @@
+# Copyright 2021 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from __future__ import annotations
+
+import logging
+import math
+import os
+import threading
+import warnings
+from contextlib import contextmanager
+from functools import partial
+from typing import Any, Callable, Optional
+
+import torch
+
+from .utils import (
+ DistributedType,
+ DynamoBackend,
+ GradientAccumulationPlugin,
+ check_cuda_p2p_ib_support,
+ check_fp8_capability,
+ get_ccl_version,
+ get_cpu_distributed_information,
+ get_int_from_env,
+ is_ccl_available,
+ is_datasets_available,
+ is_deepspeed_available,
+ is_fp8_available,
+ is_ipex_available,
+ is_mlu_available,
+ is_mps_available,
+ is_npu_available,
+ is_torch_xla_available,
+ is_xpu_available,
+ parse_choice_from_env,
+ parse_flag_from_env,
+ set_numa_affinity,
+)
+from .utils.dataclasses import SageMakerDistributedType
+
+
+if is_torch_xla_available():
+ import torch_xla.core.xla_model as xm
+
+if is_mlu_available(check_device=False):
+ import torch_mlu # noqa: F401
+
+if is_npu_available(check_device=False):
+ import torch_npu # noqa: F401
+
+logger = logging.getLogger(__name__)
+
+
+def is_initialized() -> bool:
+ """
+ Checks if the `AcceleratorState` has been initialized from `Accelerator`. Same as `AcceleratorState.initialized`,
+ but works as a module method.
+ """
+ return AcceleratorState._shared_state != {}
+
+
+# Lambda function that does nothing
+def do_nothing(*args, **kwargs):
+ return None
+
+
+class ThreadLocalSharedDict(threading.local):
+ """
+ Descriptor that holds a dict shared between instances of a class in the same thread.
+
+ Note: Descriptors have slightly different semantics than just a dict field on its own.
+ `PartialState(...)._shared_state` and `PartialState._shared_state` (instance vs class) give the same value: the
+ underlying _storage dict. Likewise, `PartialState(...)._shared_state = {...}` overrides the _storage dict inside
+ the descriptor as you would expect. However, `PartialState._shared_state = {}` actually replaces the descriptor
+ object with a dict instead Thus, you should modify the _storage dict in-place (e.g. `_shared_state.clear()`).
+
+ See Python documentation for an explanation of descriptors: https://docs.python.org/3/howto/descriptor.html
+
+ This is required for using PyTorch/XLA with PJRT in multithreaded mode (required for TPU v2 and v3).
+
+ See https://github.com/pytorch/xla/blob/r2.0/docs/pjrt.md#multithreading-on-tpu-v2v3
+ """
+
+ def __init__(self, thread_local: bool = False):
+ self._storage = {}
+
+ def __get__(self, obj, objtype=None):
+ return self._storage
+
+ def __set__(self, obj, value):
+ self._storage = value
+
+
+# Prefer global shared dictionary, except when using TPU.
+SharedDict = dict if not is_torch_xla_available() else ThreadLocalSharedDict
+
+
+# Inspired by Alex Martelli's 'Borg'.
+class PartialState:
+ """
+ Singleton class that has information about the current training environment and functions to help with process
+ control. Designed to be used when only process control and device execution states are needed. Does *not* need to
+ be initialized from `Accelerator`.
+
+ Args:
+ cpu (`bool`, *optional*):
+ Whether or not to force the script to execute on CPU. Will ignore any accelerators available if set to
+ `True` and force the execution on the CPU.
+ kwargs (additional keyword arguments, *optional*):
+ Additional keyword arguments to pass to the relevent `init_process_group` function. Valid `kwargs` can be
+ found in [`utils.InitProcessGroupKwargs`]. See the example section for detailed usage.
+
+ **Available attributes:**
+
+ - **device** (`torch.device`) -- The device to use.
+ - **distributed_type** ([`~accelerate.state.DistributedType`]) -- The type of distributed environment currently
+ in use.
+ - **local_process_index** (`int`) -- The index of the current process on the current server.
+ - **mixed_precision** (`str`) -- Whether or not the current script will use mixed precision, and if so the type
+ of mixed precision being performed. (Choose from 'no','fp16','bf16 or 'fp8').
+ - **num_processes** (`int`) -- The number of processes currently launched in parallel.
+ - **process_index** (`int`) -- The index of the current process.
+ - **is_last_process** (`bool`) -- Whether or not the current process is the last one.
+ - **is_main_process** (`bool`) -- Whether or not the current process is the main one.
+ - **is_local_main_process** (`bool`) -- Whether or not the current process is the main one on the local node.
+ - **debug** (`bool`) -- Whether or not the current script is being run in debug mode.
+
+ Example:
+ ```python
+ from accelerate.utils import InitProcessGroupKwargs
+
+ # To include `InitProcessGroupKwargs`, init then call `.to_kwargs()`
+ kwargs = InitProcessGroupKwargs(...).to_kwargs()
+ state = PartialState(**kwargs)
+ ```
+ """
+
+ _shared_state = SharedDict()
+ _known_attrs = [
+ "_cpu",
+ "_mixed_precision",
+ "_shared_state",
+ "backend",
+ "debug",
+ "device",
+ "distributed_type",
+ "fork_launched",
+ "local_process_index",
+ "num_processes",
+ "process_index",
+ ]
+
+ def __init__(self, cpu: bool = False, **kwargs):
+ self.__dict__ = self._shared_state
+ if not self.initialized:
+ self._cpu = cpu
+ self.backend = None
+ env_device = os.environ.get("ACCELERATE_TORCH_DEVICE", None)
+ self.device = torch.device(env_device) if env_device is not None else None
+ self.debug = parse_flag_from_env("ACCELERATE_DEBUG_MODE")
+ use_sagemaker_dp = kwargs.pop("_use_sagemaker_dp", None)
+ dist_information = None
+ if use_sagemaker_dp is None:
+ use_sagemaker_dp = (
+ os.environ.get("ACCELERATE_USE_SAGEMAKER", "false") == "true"
+ and os.environ.get("ACCELERATE_SAGEMAKER_DISTRIBUTED_TYPE") != SageMakerDistributedType.NO
+ )
+
+ # Sets up self.backend + imports
+ original_backend = kwargs.pop("backend", None)
+ backend, distributed_type = self._prepare_backend(cpu, use_sagemaker_dp, original_backend)
+ if original_backend is not None and backend != original_backend:
+ raise ValueError("Your assigned backend {original_backend} is not avaliable, please use {backend}")
+ self.backend = backend
+ self.distributed_type = distributed_type
+ use_deepspeed = False
+ if not cpu and self.backend != "xla":
+ if int(os.environ.get("LOCAL_RANK", -1)) != -1:
+ # Deal with spawning deepspeed
+ if os.environ.get("ACCELERATE_USE_DEEPSPEED", "false") == "true":
+ if not is_deepspeed_available():
+ raise ImportError(
+ "DeepSpeed is not available => install it using `pip3 install deepspeed` or build it from source"
+ )
+ from deepspeed import comm as dist
+
+ if is_xpu_available() and is_ccl_available():
+ os.environ["CCL_PROCESS_LAUNCHER"] = "none"
+ os.environ["CCL_LOCAL_SIZE"] = os.environ.get("LOCAL_WORLD_SIZE", "1")
+ os.environ["CCL_LOCAL_RANK"] = os.environ.get("LOCAL_RANK", "0")
+
+ if not dist.is_initialized():
+ dist.init_distributed(dist_backend=self.backend, auto_mpi_discovery=False, **kwargs)
+ # We need to flag to `use_deepspeed` to be True to override `distributed_type` later
+ use_deepspeed = True
+ # Deal with all other backends but XPU and CPU, that gets handled special later
+ elif (
+ self.distributed_type not in (DistributedType.MULTI_XPU, DistributedType.MULTI_CPU)
+ and not torch.distributed.is_initialized()
+ ):
+ torch.distributed.init_process_group(backend=self.backend, **kwargs)
+ # XPU and CPU require special env configs to be set
+ if self.distributed_type in (DistributedType.MULTI_XPU, DistributedType.MULTI_CPU):
+ dist_information = get_cpu_distributed_information()
+ os.environ["RANK"] = str(dist_information.rank)
+ os.environ["WORLD_SIZE"] = str(dist_information.world_size)
+ os.environ["LOCAL_RANK"] = str(dist_information.local_rank)
+ os.environ["LOCAL_WORLD_SIZE"] = str(dist_information.local_world_size)
+ if self.backend == "ccl" and self.distributed_type == DistributedType.MULTI_XPU:
+ os.environ["CCL_PROCESS_LAUNCHER"] = "none"
+ os.environ["CCL_LOCAL_SIZE"] = os.environ["LOCAL_WORLD_SIZE"]
+ os.environ["CCL_LOCAL_RANK"] = os.environ["LOCAL_RANK"]
+ if not os.environ.get("MASTER_PORT", None):
+ os.environ["MASTER_PORT"] = "29500"
+ if (
+ not os.environ.get("MASTER_ADDR", None)
+ and dist_information.local_world_size != dist_information.world_size
+ and self.backend != "mpi"
+ ):
+ raise ValueError(
+ "Tried to launch on distributed with multinode, but `MASTER_ADDR` env was not set, "
+ "please try exporting rank 0's hostname as `MASTER_ADDR`"
+ )
+ kwargs["rank"] = dist_information.rank
+ kwargs["world_size"] = dist_information.world_size
+
+ if (
+ self.distributed_type == DistributedType.MULTI_CPU
+ and get_int_from_env(["OMP_NUM_THREADS", "OMP_NUM_THREADS"], 0) > 0
+ ):
+ import psutil
+
+ num_cpu_threads_per_process = int(
+ psutil.cpu_count(logical=False) / dist_information.local_world_size
+ )
+ if num_cpu_threads_per_process == 0:
+ num_cpu_threads_per_process = 1
+ torch.set_num_threads(num_cpu_threads_per_process)
+ warnings.warn(
+ f"OMP_NUM_THREADS/MKL_NUM_THREADS unset, we set it at {num_cpu_threads_per_process} to improve oob"
+ " performance."
+ )
+
+ if not torch.distributed.is_initialized():
+ torch.distributed.init_process_group(backend=self.backend, **kwargs)
+
+ # No backend == no distributed training
+ if self.backend is None:
+ self.distributed_type = DistributedType.NO
+ self.num_processes = 1
+ self.process_index = 0
+ self.local_process_index = 0
+ elif self.backend == "xla":
+ # XLA needs device setting first for `set_replication`
+ self.set_device()
+ xm.set_replication(self.device, xm.get_xla_supported_devices())
+ self.num_processes = xm.xrt_world_size()
+ self.process_index = xm.get_ordinal()
+ if is_torch_xla_available(check_is_tpu=True):
+ self.local_process_index = xm.get_local_ordinal()
+ else:
+ self.local_process_index = int(os.environ.get("LOCAL_RANK", -1))
+ else:
+ self.num_processes = torch.distributed.get_world_size()
+ self.process_index = torch.distributed.get_rank()
+ self.local_process_index = (
+ int(os.environ.get("LOCAL_RANK", -1)) if dist_information is None else dist_information.local_rank
+ )
+ self.set_device()
+ # Now we can change to deepseed
+ if use_deepspeed:
+ self.distributed_type = DistributedType.DEEPSPEED
+
+ # Set CPU affinity if enabled
+ if parse_flag_from_env("ACCELERATE_CPU_AFFINITY", False):
+ set_numa_affinity(self.local_process_index)
+
+ # Check for old RTX 4000's that can't use P2P or IB and are on old drivers
+ if self.device.type == "cuda" and not check_cuda_p2p_ib_support():
+ if "NCCL_P2P_DISABLE" not in os.environ or "NCCL_IB_DISABLE" not in os.environ:
+ raise NotImplementedError(
+ "Using RTX 4000 series doesn't support faster communication broadband via P2P or IB. "
+ 'Please set `NCCL_P2P_DISABLE="1"` and `NCCL_IB_DISABLE="1" or use `accelerate launch` which '
+ "will do this automatically."
+ )
+ # Important: This should be the *only* code outside of `self.initialized!`
+ self.fork_launched = parse_flag_from_env("FORK_LAUNCHED", 0)
+
+ def __repr__(self) -> str:
+ return (
+ f"Distributed environment: {self.distributed_type}{(' Backend: ' + self.backend) if self.backend else ''}\n"
+ f"Num processes: {self.num_processes}\n"
+ f"Process index: {self.process_index}\n"
+ f"Local process index: {self.local_process_index}\n"
+ f"Device: {self.device}\n"
+ )
+
+ @staticmethod
+ def _reset_state():
+ "Resets `_shared_state`, is used internally and should not be called"
+ PartialState._shared_state.clear()
+
+ @property
+ def initialized(self) -> bool:
+ "Returns whether the `PartialState` has been initialized"
+ return self._shared_state != {}
+
+ @property
+ def use_distributed(self):
+ """
+ Whether the Accelerator is configured for distributed training
+ """
+ return self.distributed_type != DistributedType.NO and self.num_processes > 1
+
+ @property
+ def is_last_process(self) -> bool:
+ "Returns whether the current process is the last one"
+ return self.process_index == self.num_processes - 1
+
+ @property
+ def is_main_process(self) -> bool:
+ "Returns whether the current process is the main process"
+ return (
+ self.process_index == 0 if self.distributed_type != DistributedType.MEGATRON_LM else self.is_last_process
+ )
+
+ @property
+ def is_local_main_process(self) -> bool:
+ "Returns whether the current process is the main process on the local node"
+ return (
+ self.local_process_index == 0
+ if self.distributed_type != DistributedType.MEGATRON_LM
+ else self.is_last_process
+ )
+
+ def wait_for_everyone(self):
+ """
+ Will stop the execution of the current process until every other process has reached that point (so this does
+ nothing when the script is only run in one process). Useful to do before saving a model.
+
+ Example:
+
+ ```python
+ >>> # Assuming two GPU processes
+ >>> import time
+ >>> from accelerate.state import PartialState
+
+ >>> state = PartialState()
+ >>> if state.is_main_process:
+ ... time.sleep(2)
+ >>> else:
+ ... print("I'm waiting for the main process to finish its sleep...")
+ >>> state.wait_for_everyone()
+ >>> # Should print on every process at the same time
+ >>> print("Everyone is here")
+ ```
+ """
+ if self.distributed_type in (
+ DistributedType.MULTI_GPU,
+ DistributedType.MULTI_MLU,
+ DistributedType.MULTI_NPU,
+ DistributedType.MULTI_XPU,
+ DistributedType.MULTI_CPU,
+ DistributedType.DEEPSPEED,
+ DistributedType.FSDP,
+ ):
+ torch.distributed.barrier()
+ elif self.distributed_type == DistributedType.XLA:
+ xm.rendezvous("accelerate.utils.wait_for_everyone")
+
+ def _goes_first(self, is_main: bool):
+ if not is_main:
+ self.wait_for_everyone()
+
+ yield
+
+ if is_main:
+ self.wait_for_everyone()
+
+ @contextmanager
+ def split_between_processes(self, inputs: list | tuple | dict | torch.Tensor, apply_padding: bool = False):
+ """
+ Splits `input` between `self.num_processes` quickly and can be then used on that process. Useful when doing
+ distributed inference, such as with different prompts.
+
+ Note that when using a `dict`, all keys need to have the same number of elements.
+
+ Args:
+ inputs (`list`, `tuple`, `torch.Tensor`, `dict` of `list`/`tuple`/`torch.Tensor`, or `datasets.Dataset`):
+ The input to split between processes.
+ apply_padding (`bool`, `optional`, defaults to `False`):
+ Whether to apply padding by repeating the last element of the input so that all processes have the same
+ number of elements. Useful when trying to perform actions such as `gather()` on the outputs or passing
+ in less inputs than there are processes. If so, just remember to drop the padded elements afterwards.
+
+
+ Example:
+
+ ```python
+ # Assume there are two processes
+ from accelerate import PartialState
+
+ state = PartialState()
+ with state.split_between_processes(["A", "B", "C"]) as inputs:
+ print(inputs)
+ # Process 0
+ ["A", "B"]
+ # Process 1
+ ["C"]
+
+ with state.split_between_processes(["A", "B", "C"], apply_padding=True) as inputs:
+ print(inputs)
+ # Process 0
+ ["A", "B"]
+ # Process 1
+ ["C", "C"]
+ ```
+ """
+ if self.num_processes == 1:
+ yield inputs
+ return
+ length = len(inputs)
+ # Nested dictionary of any types
+ if isinstance(inputs, dict):
+ length = len(inputs[list(inputs.keys())[0]])
+ if not all(len(v) == length for v in inputs.values()):
+ raise ValueError("All values in the dictionary must have the same length")
+ num_samples_per_process = math.ceil(length / self.num_processes)
+ start_index = self.process_index * num_samples_per_process
+ end_index = start_index + num_samples_per_process
+ if (len(inputs) % self.num_processes != 0) and (self.process_index == self.num_processes - 1):
+ end_index = length
+
+ def _split_values(inputs, start_index, end_index):
+ if isinstance(inputs, (list, tuple, torch.Tensor)):
+ if start_index >= len(inputs):
+ result = inputs[-1:]
+ else:
+ result = inputs[start_index:end_index]
+ if apply_padding:
+ if isinstance(result, torch.Tensor):
+ from accelerate.utils import pad_across_processes, send_to_device
+
+ # The tensor needs to be on the device before we can pad it
+ tensorized_result = send_to_device(result, self.device)
+ result = pad_across_processes(tensorized_result, pad_index=inputs[-1])
+ else:
+ result += [result[-1]] * (num_samples_per_process - len(result))
+ return result
+ elif isinstance(inputs, dict):
+ for key in inputs.keys():
+ inputs[key] = _split_values(inputs[key], start_index, end_index)
+ return inputs
+ else:
+ if is_datasets_available():
+ from datasets import Dataset
+
+ if isinstance(inputs, Dataset):
+ if start_index >= len(inputs):
+ start_index = len(inputs) - 1
+ if end_index > len(inputs):
+ end_index = len(inputs)
+ result_idcs = list(range(start_index, end_index))
+ if apply_padding:
+ result_idcs += [end_index - 1] * (num_samples_per_process - len(result_idcs))
+ return inputs.select(result_idcs)
+ return inputs
+
+ yield _split_values(inputs, start_index, end_index)
+
+ @contextmanager
+ def main_process_first(self):
+ """
+ Lets the main process go first inside a with block.
+
+ The other processes will enter the with block after the main process exits.
+
+ Example:
+
+ ```python
+ >>> from accelerate import Accelerator
+
+ >>> accelerator = Accelerator()
+ >>> with accelerator.main_process_first():
+ ... # This will be printed first by process 0 then in a seemingly
+ ... # random order by the other processes.
+ ... print(f"This will be printed by process {accelerator.process_index}")
+ ```
+ """
+ yield from self._goes_first(self.is_main_process)
+
+ @contextmanager
+ def local_main_process_first(self):
+ """
+ Lets the local main process go inside a with block.
+
+ The other processes will enter the with block after the main process exits.
+
+ Example:
+
+ ```python
+ >>> from accelerate.state import PartialState
+
+ >>> state = PartialState()
+ >>> with state.local_main_process_first():
+ ... # This will be printed first by local process 0 then in a seemingly
+ ... # random order by the other processes.
+ ... print(f"This will be printed by process {state.local_process_index}")
+ ```
+ """
+ yield from self._goes_first(self.is_local_main_process)
+
+ def on_main_process(self, function: Callable[..., Any] = None):
+ """
+ Decorator that only runs the decorated function on the main process.
+
+ Args:
+ function (`Callable`): The function to decorate.
+
+ Example:
+
+ ```python
+ >>> from accelerate.state import PartialState
+
+ >>> state = PartialState()
+
+
+ >>> @state.on_main_process
+ ... def print_something():
+ ... print("This will be printed by process 0 only.")
+
+
+ >>> print_something()
+ "This will be printed by process 0 only"
+ ```
+ """
+ if not self.initialized:
+ raise ValueError("The `PartialState` or `Accelerator` must be initialized before calling this function.")
+ if self.is_main_process or not self.use_distributed:
+ return function
+ return do_nothing
+
+ def on_local_main_process(self, function: Callable[..., Any] = None):
+ """
+ Decorator that only runs the decorated function on the local main process.
+
+ Args:
+ function (`Callable`): The function to decorate.
+
+ Example:
+ ```python
+ # Assume we have 2 servers with 4 processes each.
+ from accelerate.state import PartialState
+
+ state = PartialState()
+
+
+ @state.on_local_main_process
+ def print_something():
+ print("This will be printed by process 0 only on each server.")
+
+
+ print_something()
+ # On server 1:
+ "This will be printed by process 0 only"
+ # On server 2:
+ "This will be printed by process 0 only"
+ ```
+ """
+ if self.is_local_main_process or not self.use_distributed:
+ return function
+ return do_nothing
+
+ def on_last_process(self, function: Callable[..., Any]):
+ """
+ Decorator that only runs the decorated function on the last process.
+
+ Args:
+ function (`Callable`): The function to decorate.
+
+ Example:
+ ```python
+ # Assume we have 4 processes.
+ from accelerate.state import PartialState
+
+ state = PartialState()
+
+
+ @state.on_last_process
+ def print_something():
+ print(f"Printed on process {state.process_index}")
+
+
+ print_something()
+ "Printed on process 3"
+ ```
+ """
+ if self.is_last_process or not self.use_distributed:
+ return function
+ return do_nothing
+
+ def on_process(self, function: Callable[..., Any] = None, process_index: int = None):
+ """
+ Decorator that only runs the decorated function on the process with the given index.
+
+ Args:
+ function (`Callable`, `optional`):
+ The function to decorate.
+ process_index (`int`, `optional`):
+ The index of the process on which to run the function.
+
+ Example:
+ ```python
+ # Assume we have 4 processes.
+ from accelerate.state import PartialState
+
+ state = PartialState()
+
+
+ @state.on_process(process_index=2)
+ def print_something():
+ print(f"Printed on process {state.process_index}")
+
+
+ print_something()
+ "Printed on process 2"
+ ```
+ """
+ if function is None:
+ return partial(self.on_process, process_index=process_index)
+ if (self.process_index == process_index) or (not self.use_distributed):
+ return function
+ return do_nothing
+
+ def on_local_process(self, function: Callable[..., Any] = None, local_process_index: int = None):
+ """
+ Decorator that only runs the decorated function on the process with the given index on the current node.
+
+ Args:
+ function (`Callable`, *optional*):
+ The function to decorate.
+ local_process_index (`int`, *optional*):
+ The index of the local process on which to run the function.
+
+ Example:
+ ```python
+ # Assume we have 2 servers with 4 processes each.
+ from accelerate import Accelerator
+
+ accelerator = Accelerator()
+
+
+ @accelerator.on_local_process(local_process_index=2)
+ def print_something():
+ print(f"Printed on process {accelerator.local_process_index}")
+
+
+ print_something()
+ # On server 1:
+ "Printed on process 2"
+ # On server 2:
+ "Printed on process 2"
+ ```
+ """
+ if function is None:
+ return partial(self.on_local_process, local_process_index=local_process_index)
+ if (self.local_process_index == local_process_index) or (not self.use_distributed):
+ return function
+ return do_nothing
+
+ def print(self, *args, **kwargs):
+ if self.is_local_main_process:
+ print(*args, **kwargs)
+
+ @property
+ def default_device(self) -> torch.device:
+ """
+ Returns the default device which is:
+ - MPS if `torch.backends.mps.is_available()` and `torch.backends.mps.is_built()` both return True.
+ - CUDA if `torch.cuda.is_available()`
+ - MLU if `is_mlu_available()`
+ - NPU if `is_npu_available()`
+ - CPU otherwise
+ """
+ if is_mps_available():
+ os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
+ return torch.device("mps")
+ elif is_mlu_available():
+ return torch.device("mlu")
+ elif torch.cuda.is_available():
+ return torch.device("cuda")
+ elif is_xpu_available():
+ return torch.device("xpu:0")
+ elif is_npu_available():
+ return torch.device("npu")
+ else:
+ return torch.device("cpu")
+
+ def _prepare_backend(
+ self, cpu: bool = False, sagemaker_dp=False, backend: str = None
+ ) -> tuple[str, DistributedType]:
+ "Prepares any imports needed before initializing the distributed backend and sets `self.backend` properly"
+ distributed_type = None
+ if sagemaker_dp:
+ import smdistributed.dataparallel.torch.torch_smddp # noqa
+
+ backend = "smddp"
+ distributed_type = DistributedType.MULTI_GPU
+ elif is_torch_xla_available():
+ backend = "xla"
+ distributed_type = DistributedType.XLA
+ elif int(os.environ.get("LOCAL_RANK", -1)) != -1 and not cpu:
+ if is_mlu_available():
+ backend = "cncl"
+ distributed_type = DistributedType.MULTI_MLU
+ elif torch.cuda.is_available():
+ if backend is None:
+ backend = "nccl"
+ distributed_type = DistributedType.MULTI_GPU
+ elif is_npu_available():
+ backend = "hccl"
+ distributed_type = DistributedType.MULTI_NPU
+
+ if distributed_type is None and (
+ int(os.environ.get("LOCAL_RANK", -1)) != -1
+ or get_int_from_env(["PMI_SIZE", "OMPI_COMM_WORLD_SIZE", "MV2_COMM_WORLD_SIZE", "WORLD_SIZE"], 1) > 1
+ ):
+ if not cpu and is_xpu_available():
+ distributed_type = DistributedType.MULTI_XPU
+ else:
+ distributed_type = DistributedType.MULTI_CPU
+
+ if (
+ backend in (None, "ccl")
+ and is_ccl_available()
+ and (get_int_from_env(["CCL_WORKER_COUNT"], 0) > 0 or distributed_type == DistributedType.MULTI_XPU)
+ ):
+ if get_ccl_version() >= "1.12":
+ import oneccl_bindings_for_pytorch # noqa: F401
+ else:
+ import torch_ccl # noqa: F401
+
+ backend = "ccl"
+ elif backend in (None, "mpi") and torch.distributed.is_mpi_available():
+ backend = "mpi"
+ else:
+ backend = "gloo"
+ if distributed_type is None:
+ distributed_type = DistributedType.NO
+
+ return backend, distributed_type
+
+ def set_device(self):
+ """
+ Sets the device in `self.device` to the current distributed environment.
+ """
+ if self.device is not None:
+ return
+ if self.distributed_type == DistributedType.NO:
+ self.device = torch.device("cpu") if self._cpu else self.default_device
+ return
+ device = str(self.distributed_type).split(".")[-1].replace("MULTI_", "").lower()
+ if device not in ("cpu", "gpu", "mlu", "npu", "xpu", "xla"):
+ raise ValueError(
+ f"Can't set device for {self.distributed_type} ({device}), verify we should be calling `_set_device()` for it!"
+ )
+ if device == "xla":
+ self.device = xm.xla_device()
+ else:
+ if device == "gpu":
+ device = "cuda"
+ self.device = torch.device(device, self.local_process_index)
+ if self.device is not None:
+ if device == "xpu":
+ torch.xpu.set_device(self.device)
+ elif device == "mlu":
+ torch.mlu.set_device(self.device)
+ elif device == "npu":
+ torch.npu.set_device(self.device)
+ elif device == "cuda":
+ torch.cuda.set_device(self.device)
+
+ def __getattr__(self, name: str):
+ # By this point we know that no attributes of `self` contain `name`,
+ # so we just modify the error message
+ if name in self._known_attrs:
+ raise AttributeError(
+ f"`PartialState` object has no attribute `{name}`. "
+ "This happens if `PartialState._reset_state()` was called and "
+ "an `Accelerator` or `PartialState` was not reinitialized."
+ )
+ # Raise a typical AttributeError
+ raise AttributeError(f"'PartialState' object has no attribute '{name}'")
+
+
+class AcceleratorState:
+ """
+ Singleton class that has information about the current training environment.
+
+ **Available attributes:**
+
+ - **device** (`torch.device`) -- The device to use.
+ - **distributed_type** ([`~accelerate.state.DistributedType`]) -- The type of distributed environment currently
+ in use.
+ - **initialized** (`bool`) -- Whether or not the `AcceleratorState` has been initialized from `Accelerator`.
+ - **local_process_index** (`int`) -- The index of the current process on the current server.
+ - **mixed_precision** (`str`) -- Whether or not the current script will use mixed precision, and if so the type
+ of mixed precision being performed. (Choose from 'no','fp16','bf16 or 'fp8').
+ - **num_processes** (`int`) -- The number of processes currently launched in parallel.
+ - **process_index** (`int`) -- The index of the current process.
+ - **is_last_process** (`bool`) -- Whether or not the current process is the last one.
+ - **is_main_process** (`bool`) -- Whether or not the current process is the main one.
+ - **is_local_main_process** (`bool`) -- Whether or not the current process is the main one on the local node.
+ - **debug** (`bool`) -- Whether or not the current script is being run in debug mode.
+ """
+
+ _shared_state = SharedDict()
+ _known_attrs = PartialState._known_attrs + [
+ "deepspeed_plugin",
+ "use_ipex",
+ "fsdp_plugin",
+ "megatron_lm_plugin",
+ "dynamo_plugin",
+ ]
+
+ def __init__(
+ self,
+ mixed_precision: str = None,
+ cpu: bool = False,
+ dynamo_plugin=None,
+ deepspeed_plugin=None,
+ fsdp_plugin=None,
+ megatron_lm_plugin=None,
+ _from_accelerator: bool = False,
+ **kwargs,
+ ):
+ self.__dict__ = self._shared_state
+ if parse_flag_from_env("ACCELERATE_USE_CPU"):
+ cpu = True
+ if PartialState._shared_state == {}:
+ PartialState(cpu, **kwargs)
+ self.__dict__.update(PartialState._shared_state)
+ self._check_initialized(mixed_precision, cpu)
+ if not self.initialized:
+ self.deepspeed_plugin = None
+ self.use_ipex = None
+ mixed_precision = (
+ parse_choice_from_env("ACCELERATE_MIXED_PRECISION", "no")
+ if mixed_precision is None
+ else mixed_precision.lower()
+ )
+ if mixed_precision == "fp8":
+ if not is_fp8_available():
+ raise ValueError(
+ "Using `fp8` precision requires `transformer_engine` or `MS-AMP` to be installed."
+ )
+ elif not check_fp8_capability():
+ logger.warning(
+ f"The current device has compute capability of {torch.cuda.get_device_capability()} which is "
+ "insufficient for FP8 mixed precision training (requires a GPU Hopper/Ada Lovelace "
+ "or higher, compute capability of 8.9 or higher). Will use FP16 instead."
+ )
+ mixed_precision = "fp16"
+
+ self.dynamo_plugin = dynamo_plugin
+ if not _from_accelerator:
+ raise ValueError(
+ "Please make sure to properly initialize your accelerator via `accelerator = Accelerator()` "
+ "before using any functionality from the `accelerate` library."
+ )
+ # deepspeed handles mixed_precision using deepspeed_config
+ self._mixed_precision = "no" if self.distributed_type == DistributedType.DEEPSPEED else mixed_precision
+ if self.distributed_type == DistributedType.XLA and is_torch_xla_available(check_is_tpu=True):
+ if mixed_precision == "bf16":
+ if os.environ.get("ACCELERATE_DOWNCAST_BF16"):
+ os.environ["XLA_USE_BF16"] = str(0)
+ os.environ["XLA_DOWNCAST_BF16"] = str(1)
+ self.downcast_bfloat = True
+ else:
+ os.environ["XLA_USE_BF16"] = str(1)
+ os.environ["XLA_DOWNCAST_BF16"] = str(0)
+ self.downcast_bfloat = False
+ elif os.environ.get("ACCELERATE_USE_DEEPSPEED", "false") == "true" and not cpu:
+ self.deepspeed_plugin = deepspeed_plugin
+ elif self.distributed_type in [
+ DistributedType.MULTI_GPU,
+ DistributedType.MULTI_MLU,
+ DistributedType.MULTI_NPU,
+ DistributedType.MULTI_XPU,
+ ]:
+ if os.environ.get("ACCELERATE_USE_FSDP", "false") == "true":
+ self.distributed_type = DistributedType.FSDP
+ if self._mixed_precision != "no":
+ fsdp_plugin.set_mixed_precision(self._mixed_precision)
+ self.fsdp_plugin = fsdp_plugin
+ if os.environ.get("ACCELERATE_USE_MEGATRON_LM", "false") == "true" and self.distributed_type not in [
+ DistributedType.MULTI_XPU,
+ ]:
+ self.distributed_type = DistributedType.MEGATRON_LM
+ megatron_lm_plugin.set_mixed_precision(self._mixed_precision)
+ self.megatron_lm_plugin = megatron_lm_plugin
+ elif self.distributed_type in [DistributedType.MULTI_CPU, DistributedType.MULTI_XPU, DistributedType.NO]:
+ if is_ipex_available():
+ # check if user disables it explicitly
+ self.use_ipex = parse_flag_from_env("ACCELERATE_USE_IPEX", default=True)
+ else:
+ self.use_ipex = False
+ if (
+ self.dynamo_plugin.backend != DynamoBackend.NO
+ and self._mixed_precision == "no"
+ and self.device.type == "cuda"
+ ):
+ torch.backends.cuda.matmul.allow_tf32 = True
+ PartialState._shared_state["distributed_type"] = self.distributed_type
+
+ @property
+ def initialized(self) -> bool:
+ return self._shared_state != PartialState._shared_state
+
+ def __repr__(self):
+ repr = PartialState().__repr__() + f"\nMixed precision type: {self.mixed_precision}\n"
+ if self.distributed_type == DistributedType.DEEPSPEED:
+ repr += f"ds_config: {self.deepspeed_plugin.deepspeed_config}\n"
+ return repr
+
+ def _check_initialized(self, mixed_precision=None, cpu=None):
+ "Checks if a modification is trying to be made and the `AcceleratorState` has already been initialized"
+ if self.initialized:
+ err = "AcceleratorState has already been initialized and cannot be changed, restart your runtime completely and pass `{flag}` to `Accelerator()`."
+ if cpu and self.device.type != "cpu":
+ raise ValueError(err.format(flag="cpu=True"))
+ if (
+ mixed_precision is not None
+ and mixed_precision != self._mixed_precision
+ and self.distributed_type != DistributedType.DEEPSPEED
+ ):
+ raise ValueError(err.format(flag=f"mixed_precision='{mixed_precision}'"))
+
+ # For backward compatibility
+ @property
+ def use_fp16(self):
+ warnings.warn(
+ "The `use_fp16` property is deprecated and will be removed in version 1.0 of Accelerate use "
+ "`AcceleratorState.mixed_precision == 'fp16'` instead.",
+ FutureWarning,
+ )
+ return self._mixed_precision != "no"
+
+ @property
+ def mixed_precision(self):
+ if self.distributed_type == DistributedType.DEEPSPEED:
+ config = self.deepspeed_plugin.deepspeed_config
+ if config.get("fp16", {}).get("enabled", False):
+ mixed_precision = "fp16"
+ elif config.get("bf16", {}).get("enabled", False):
+ mixed_precision = "bf16"
+ else:
+ mixed_precision = "no"
+ else:
+ mixed_precision = self._mixed_precision
+ return mixed_precision
+
+ @staticmethod
+ def _reset_state(reset_partial_state: bool = False):
+ "Resets `_shared_state`, is used internally and should not be called"
+ AcceleratorState._shared_state.clear()
+ if reset_partial_state:
+ PartialState._reset_state()
+
+ @property
+ def use_distributed(self):
+ """
+ Whether the Accelerator is configured for distributed training
+ """
+ return PartialState().use_distributed
+
+ @property
+ def is_last_process(self) -> bool:
+ "Returns whether the current process is the last one"
+ return PartialState().is_last_process
+
+ @property
+ def is_main_process(self) -> bool:
+ "Returns whether the current process is the main process"
+ return PartialState().is_main_process
+
+ @property
+ def is_local_main_process(self) -> bool:
+ "Returns whether the current process is the main process on the local node"
+ return PartialState().is_local_main_process
+
+ def wait_for_everyone(self):
+ PartialState().wait_for_everyone()
+
+ @contextmanager
+ def split_between_processes(self, inputs: list | tuple | dict | torch.Tensor, apply_padding: bool = False):
+ """
+ Splits `input` between `self.num_processes` quickly and can be then used on that process. Useful when doing
+ distributed inference, such as with different prompts.
+
+ Note that when using a `dict`, all keys need to have the same number of elements.
+
+ Args:
+ inputs (`list`, `tuple`, `torch.Tensor`, or `dict` of `list`/`tuple`/`torch.Tensor`):
+ The input to split between processes.
+ apply_padding (`bool`, `optional`, defaults to `False`):
+ Whether to apply padding by repeating the last element of the input so that all processes have the same
+ number of elements. Useful when trying to perform actions such as `gather()` on the outputs or passing
+ in less inputs than there are processes. If so, just remember to drop the padded elements afterwards.
+
+
+ Example:
+
+ ```python
+ # Assume there are two processes
+ from accelerate.state import AcceleratorState
+
+ state = AcceleratorState()
+ with state.split_between_processes(["A", "B", "C"]) as inputs:
+ print(inputs)
+ # Process 0
+ ["A", "B"]
+ # Process 1
+ ["C"]
+
+ with state.split_between_processes(["A", "B", "C"], apply_padding=True) as inputs:
+ print(inputs)
+ # Process 0
+ ["A", "B"]
+ # Process 1
+ ["C", "C"]
+ ```
+ """
+ with PartialState().split_between_processes(inputs, apply_padding=apply_padding) as inputs:
+ yield inputs
+
+ @contextmanager
+ def main_process_first(self):
+ """
+ Lets the main process go first inside a with block.
+
+ The other processes will enter the with block after the main process exits.
+ """
+ with PartialState().main_process_first():
+ yield
+
+ @contextmanager
+ def local_main_process_first(self):
+ """
+ Lets the local main process go inside a with block.
+
+ The other processes will enter the with block after the main process exits.
+ """
+ with PartialState().local_main_process_first():
+ yield
+
+ def print(self, *args, **kwargs):
+ PartialState().print(*args, **kwargs)
+
+ def __getattr__(self, name: str):
+ # By this point we know that no attributes of `self` contain `name`,
+ # so we just modify the error message
+ if name in self._known_attrs:
+ raise AttributeError(
+ f"`AcceleratorState` object has no attribute `{name}`. "
+ "This happens if `AcceleratorState._reset_state()` was called and "
+ "an `Accelerator` or `PartialState` was not reinitialized."
+ )
+ # Raise a typical AttributeError
+ raise AttributeError(f"'AcceleratorState' object has no attribute '{name}'")
+
+
+class GradientState:
+ """
+ Singleton class that has information related to gradient synchronization for gradient accumulation
+
+ **Available attributes:**
+
+ - **end_of_dataloader** (`bool`) -- Whether we have reached the end the current dataloader
+ - **remainder** (`int`) -- The number of extra samples that were added from padding the dataloader
+ - **sync_gradients** (`bool`) -- Whether the gradients should be synced across all devices
+ - **active_dataloader** (`Optional[DataLoader]`) -- The dataloader that is currently being iterated over
+ - **dataloader_references** (`List[Optional[DataLoader]]`) -- A list of references to the dataloaders that are
+ being iterated over
+ - **num_steps** (`int`) -- The number of steps to accumulate over
+ - **adjust_scheduler** (`bool`) -- Whether the scheduler should be adjusted to account for the gradient
+ accumulation
+ - **sync_with_dataloader** (`bool`) -- Whether the gradients should be synced at the end of the dataloader
+ iteration and the number of total steps reset
+ - **is_xla_gradients_synced** (`bool`) -- Whether the XLA gradients have been synchronized. It is initialized
+ as false. Once gradients have been reduced before the optimizer step, this flag is set to true. Subsequently,
+ after each step, the flag is reset to false. FSDP will always synchronize the gradients, hence
+ is_xla_gradients_synced is always true.
+ """
+
+ _shared_state = SharedDict()
+
+ def __init__(self, gradient_accumulation_plugin: Optional[GradientAccumulationPlugin] = None):
+ self.__dict__ = self._shared_state
+ if not self.initialized:
+ self.sync_gradients = True
+ self.active_dataloader = None
+ self.dataloader_references = [None]
+ self.plugin_kwargs = (
+ gradient_accumulation_plugin.to_kwargs() if gradient_accumulation_plugin is not None else {}
+ )
+ self._is_xla_gradients_synced = False
+
+ # Plugin args are different and can be updated
+ if gradient_accumulation_plugin is not None and self.plugin_kwargs != gradient_accumulation_plugin.to_kwargs():
+ self.plugin_kwargs = gradient_accumulation_plugin.to_kwargs()
+
+ @property
+ def num_steps(self) -> int:
+ "Returns the number of steps to accumulate over"
+ return self.plugin_kwargs.get("num_steps", 1)
+
+ @property
+ def adjust_scheduler(self) -> bool:
+ "Returns whether the scheduler should be adjusted"
+ return self.plugin_kwargs.get("adjust_scheduler", False)
+
+ @property
+ def sync_with_dataloader(self) -> bool:
+ "Returns whether the gradients should be synced at the end of the dataloader iteration and the number of total steps reset"
+ return self.plugin_kwargs.get("sync_with_dataloader", True)
+
+ @property
+ def initialized(self) -> bool:
+ "Returns whether the `GradientState` has been initialized"
+ return GradientState._shared_state != {}
+
+ @property
+ def end_of_dataloader(self) -> bool:
+ "Returns whether we have reached the end of the current dataloader"
+ if not self.in_dataloader:
+ return False
+ return self.active_dataloader.end_of_dataloader
+
+ @property
+ def remainder(self) -> int:
+ "Returns the number of extra samples that were added from padding the dataloader"
+ if not self.in_dataloader:
+ return -1
+ return self.active_dataloader.remainder
+
+ def __repr__(self):
+ return (
+ f"Sync Gradients: {self.sync_gradients}\n"
+ f"At end of current dataloader: {self.end_of_dataloader}\n"
+ f"Extra samples added: {self.remainder}\n"
+ f"Gradient accumulation plugin: {self.plugin_kwargs}\n"
+ )
+
+ @property
+ def is_xla_gradients_synced(self):
+ "Returns the value of is_xla_gradients_synced. FSDP will always synchronize the gradients, hence is_xla_gradients_synced is always true."
+ if parse_flag_from_env("ACCELERATE_USE_FSDP", default=False):
+ return True
+ return self._is_xla_gradients_synced
+
+ @is_xla_gradients_synced.setter
+ def is_xla_gradients_synced(self, is_synced):
+ "Set the _is_xla_gradients_synced attribute."
+ self._is_xla_gradients_synced = is_synced
+
+ def _set_sync_gradients(self, sync_gradients):
+ "Private function that sets whether gradients should be synchronized. Users should not have to call this."
+ self.sync_gradients = sync_gradients
+ # Allow grad-sync to automatically work on TPUs
+ if (
+ self.sync_gradients
+ and is_torch_xla_available(check_is_tpu=True)
+ and PartialState().distributed_type == DistributedType.XLA
+ ):
+ xm.mark_step()
+
+ def _add_dataloader(self, dataloader):
+ "Private function that adds a dataloader to `self.dataloader_references` and sets `in_dataloader` to `True`. Users should not have to call this."
+ self.active_dataloader = dataloader
+ self.dataloader_references.append(self.active_dataloader)
+
+ def _remove_dataloader(self, dataloader):
+ "Private function that removes a dataloader from `self.dataloader_references` and sets `in_dataloader` to `False` if there are no more dataloaders. Users should not have to call this."
+ self.dataloader_references.remove(dataloader)
+ self.active_dataloader = self.dataloader_references[-1]
+
+ @property
+ def in_dataloader(self) -> bool:
+ "Returns whether the current process is in a dataloader"
+ return self.active_dataloader is not None
+
+ @staticmethod
+ def _reset_state():
+ "Resets `_shared_state`, is used internally and should not be called"
+ GradientState._shared_state.clear()
diff --git a/llmeval-env/lib/python3.10/site-packages/accelerate/tracking.py b/llmeval-env/lib/python3.10/site-packages/accelerate/tracking.py
new file mode 100644
index 0000000000000000000000000000000000000000..5efba19bc6769d9c70ea8b17b8da784b908f529f
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/accelerate/tracking.py
@@ -0,0 +1,1023 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# Expectation:
+# Provide a project dir name, then each type of logger gets stored in project/{`logging_dir`}
+
+import json
+import os
+import time
+from functools import wraps
+from typing import Any, Dict, List, Optional, Union
+
+import yaml
+
+from .logging import get_logger
+from .state import PartialState
+from .utils import (
+ LoggerType,
+ is_aim_available,
+ is_clearml_available,
+ is_comet_ml_available,
+ is_dvclive_available,
+ is_mlflow_available,
+ is_tensorboard_available,
+ is_wandb_available,
+ listify,
+)
+
+
+_available_trackers = []
+
+if is_tensorboard_available():
+ _available_trackers.append(LoggerType.TENSORBOARD)
+
+if is_wandb_available():
+ _available_trackers.append(LoggerType.WANDB)
+
+if is_comet_ml_available():
+ _available_trackers.append(LoggerType.COMETML)
+
+if is_aim_available():
+ _available_trackers.append(LoggerType.AIM)
+
+if is_mlflow_available():
+ _available_trackers.append(LoggerType.MLFLOW)
+
+if is_clearml_available():
+ _available_trackers.append(LoggerType.CLEARML)
+
+if is_dvclive_available():
+ _available_trackers.append(LoggerType.DVCLIVE)
+
+logger = get_logger(__name__)
+
+
+def on_main_process(function):
+ """
+ Decorator to selectively run the decorated function on the main process only based on the `main_process_only`
+ attribute in a class.
+
+ Checks at function execution rather than initialization time, not triggering the initialization of the
+ `PartialState`.
+ """
+
+ @wraps(function)
+ def execute_on_main_process(self, *args, **kwargs):
+ if getattr(self, "main_process_only", False):
+ return PartialState().on_main_process(function)(self, *args, **kwargs)
+ else:
+ return function(self, *args, **kwargs)
+
+ return execute_on_main_process
+
+
+def get_available_trackers():
+ "Returns a list of all supported available trackers in the system"
+ return _available_trackers
+
+
+class GeneralTracker:
+ """
+ A base Tracker class to be used for all logging integration implementations.
+
+ Each function should take in `**kwargs` that will automatically be passed in from a base dictionary provided to
+ [`Accelerator`].
+
+ Should implement `name`, `requires_logging_directory`, and `tracker` properties such that:
+
+ `name` (`str`): String representation of the tracker class name, such as "TensorBoard" `requires_logging_directory`
+ (`bool`): Whether the logger requires a directory to store their logs. `tracker` (`object`): Should return internal
+ tracking mechanism used by a tracker class (such as the `run` for wandb)
+
+ Implementations can also include a `main_process_only` (`bool`) attribute to toggle if relevent logging, init, and
+ other functions should occur on the main process or across all processes (by default will use `True`)
+ """
+
+ main_process_only = True
+
+ def __init__(self, _blank=False):
+ if not _blank:
+ err = ""
+ if not hasattr(self, "name"):
+ err += "`name`"
+ if not hasattr(self, "requires_logging_directory"):
+ if len(err) > 0:
+ err += ", "
+ err += "`requires_logging_directory`"
+
+ # as tracker is a @property that relies on post-init
+ if "tracker" not in dir(self):
+ if len(err) > 0:
+ err += ", "
+ err += "`tracker`"
+ if len(err) > 0:
+ raise NotImplementedError(
+ f"The implementation for this tracker class is missing the following "
+ f"required attributes. Please define them in the class definition: "
+ f"{err}"
+ )
+
+ def store_init_configuration(self, values: dict):
+ """
+ Logs `values` as hyperparameters for the run. Implementations should use the experiment configuration
+ functionality of a tracking API.
+
+ Args:
+ values (Dictionary `str` to `bool`, `str`, `float` or `int`):
+ Values to be stored as initial hyperparameters as key-value pairs. The values need to have type `bool`,
+ `str`, `float`, `int`, or `None`.
+ """
+ pass
+
+ def log(self, values: dict, step: Optional[int], **kwargs):
+ """
+ Logs `values` to the current run. Base `log` implementations of a tracking API should go in here, along with
+ special behavior for the `step parameter.
+
+ Args:
+ values (Dictionary `str` to `str`, `float`, or `int`):
+ Values to be logged as key-value pairs. The values need to have type `str`, `float`, or `int`.
+ step (`int`, *optional*):
+ The run step. If included, the log will be affiliated with this step.
+ """
+ pass
+
+ def finish(self):
+ """
+ Should run any finalizing functions within the tracking API. If the API should not have one, just don't
+ overwrite that method.
+ """
+ pass
+
+
+class TensorBoardTracker(GeneralTracker):
+ """
+ A `Tracker` class that supports `tensorboard`. Should be initialized at the start of your script.
+
+ Args:
+ run_name (`str`):
+ The name of the experiment run
+ logging_dir (`str`, `os.PathLike`):
+ Location for TensorBoard logs to be stored.
+ **kwargs (additional keyword arguments, *optional*):
+ Additional key word arguments passed along to the `tensorboard.SummaryWriter.__init__` method.
+ """
+
+ name = "tensorboard"
+ requires_logging_directory = True
+
+ @on_main_process
+ def __init__(self, run_name: str, logging_dir: Union[str, os.PathLike], **kwargs):
+ try:
+ from torch.utils import tensorboard
+ except ModuleNotFoundError:
+ import tensorboardX as tensorboard
+ super().__init__()
+ self.run_name = run_name
+ self.logging_dir = os.path.join(logging_dir, run_name)
+ self.writer = tensorboard.SummaryWriter(self.logging_dir, **kwargs)
+ logger.debug(f"Initialized TensorBoard project {self.run_name} logging to {self.logging_dir}")
+ logger.debug(
+ "Make sure to log any initial configurations with `self.store_init_configuration` before training!"
+ )
+
+ @property
+ def tracker(self):
+ return self.writer
+
+ @on_main_process
+ def store_init_configuration(self, values: dict):
+ """
+ Logs `values` as hyperparameters for the run. Should be run at the beginning of your experiment. Stores the
+ hyperparameters in a yaml file for future use.
+
+ Args:
+ values (Dictionary `str` to `bool`, `str`, `float` or `int`):
+ Values to be stored as initial hyperparameters as key-value pairs. The values need to have type `bool`,
+ `str`, `float`, `int`, or `None`.
+ """
+ self.writer.add_hparams(values, metric_dict={})
+ self.writer.flush()
+ project_run_name = time.time()
+ dir_name = os.path.join(self.logging_dir, str(project_run_name))
+ os.makedirs(dir_name, exist_ok=True)
+ with open(os.path.join(dir_name, "hparams.yml"), "w") as outfile:
+ try:
+ yaml.dump(values, outfile)
+ except yaml.representer.RepresenterError:
+ logger.error("Serialization to store hyperparameters failed")
+ raise
+ logger.debug("Stored initial configuration hyperparameters to TensorBoard and hparams yaml file")
+
+ @on_main_process
+ def log(self, values: dict, step: Optional[int] = None, **kwargs):
+ """
+ Logs `values` to the current run.
+
+ Args:
+ values (Dictionary `str` to `str`, `float`, `int` or `dict` of `str` to `float`/`int`):
+ Values to be logged as key-value pairs. The values need to have type `str`, `float`, `int` or `dict` of
+ `str` to `float`/`int`.
+ step (`int`, *optional*):
+ The run step. If included, the log will be affiliated with this step.
+ kwargs:
+ Additional key word arguments passed along to either `SummaryWriter.add_scaler`,
+ `SummaryWriter.add_text`, or `SummaryWriter.add_scalers` method based on the contents of `values`.
+ """
+ values = listify(values)
+ for k, v in values.items():
+ if isinstance(v, (int, float)):
+ self.writer.add_scalar(k, v, global_step=step, **kwargs)
+ elif isinstance(v, str):
+ self.writer.add_text(k, v, global_step=step, **kwargs)
+ elif isinstance(v, dict):
+ self.writer.add_scalars(k, v, global_step=step, **kwargs)
+ self.writer.flush()
+ logger.debug("Successfully logged to TensorBoard")
+
+ @on_main_process
+ def log_images(self, values: dict, step: Optional[int], **kwargs):
+ """
+ Logs `images` to the current run.
+
+ Args:
+ values (Dictionary `str` to `List` of `np.ndarray` or `PIL.Image`):
+ Values to be logged as key-value pairs. The values need to have type `List` of `np.ndarray` or
+ step (`int`, *optional*):
+ The run step. If included, the log will be affiliated with this step.
+ kwargs:
+ Additional key word arguments passed along to the `SummaryWriter.add_image` method.
+ """
+ for k, v in values.items():
+ self.writer.add_images(k, v, global_step=step, **kwargs)
+ logger.debug("Successfully logged images to TensorBoard")
+
+ @on_main_process
+ def finish(self):
+ """
+ Closes `TensorBoard` writer
+ """
+ self.writer.close()
+ logger.debug("TensorBoard writer closed")
+
+
+class WandBTracker(GeneralTracker):
+ """
+ A `Tracker` class that supports `wandb`. Should be initialized at the start of your script.
+
+ Args:
+ run_name (`str`):
+ The name of the experiment run.
+ **kwargs (additional keyword arguments, *optional*):
+ Additional key word arguments passed along to the `wandb.init` method.
+ """
+
+ name = "wandb"
+ requires_logging_directory = False
+ main_process_only = False
+
+ @on_main_process
+ def __init__(self, run_name: str, **kwargs):
+ super().__init__()
+ self.run_name = run_name
+
+ import wandb
+
+ self.run = wandb.init(project=self.run_name, **kwargs)
+ logger.debug(f"Initialized WandB project {self.run_name}")
+ logger.debug(
+ "Make sure to log any initial configurations with `self.store_init_configuration` before training!"
+ )
+
+ @property
+ def tracker(self):
+ return self.run
+
+ @on_main_process
+ def store_init_configuration(self, values: dict):
+ """
+ Logs `values` as hyperparameters for the run. Should be run at the beginning of your experiment.
+
+ Args:
+ values (Dictionary `str` to `bool`, `str`, `float` or `int`):
+ Values to be stored as initial hyperparameters as key-value pairs. The values need to have type `bool`,
+ `str`, `float`, `int`, or `None`.
+ """
+ import wandb
+
+ wandb.config.update(values, allow_val_change=True)
+ logger.debug("Stored initial configuration hyperparameters to WandB")
+
+ @on_main_process
+ def log(self, values: dict, step: Optional[int] = None, **kwargs):
+ """
+ Logs `values` to the current run.
+
+ Args:
+ values (Dictionary `str` to `str`, `float`, `int` or `dict` of `str` to `float`/`int`):
+ Values to be logged as key-value pairs. The values need to have type `str`, `float`, `int` or `dict` of
+ `str` to `float`/`int`.
+ step (`int`, *optional*):
+ The run step. If included, the log will be affiliated with this step.
+ kwargs:
+ Additional key word arguments passed along to the `wandb.log` method.
+ """
+ self.run.log(values, step=step, **kwargs)
+ logger.debug("Successfully logged to WandB")
+
+ @on_main_process
+ def log_images(self, values: dict, step: Optional[int] = None, **kwargs):
+ """
+ Logs `images` to the current run.
+
+ Args:
+ values (Dictionary `str` to `List` of `np.ndarray` or `PIL.Image`):
+ Values to be logged as key-value pairs. The values need to have type `List` of `np.ndarray` or
+ step (`int`, *optional*):
+ The run step. If included, the log will be affiliated with this step.
+ kwargs:
+ Additional key word arguments passed along to the `wandb.log` method.
+ """
+ import wandb
+
+ for k, v in values.items():
+ self.log({k: [wandb.Image(image) for image in v]}, step=step, **kwargs)
+ logger.debug("Successfully logged images to WandB")
+
+ @on_main_process
+ def log_table(
+ self,
+ table_name: str,
+ columns: List[str] = None,
+ data: List[List[Any]] = None,
+ dataframe: Any = None,
+ step: Optional[int] = None,
+ **kwargs,
+ ):
+ """
+ Log a Table containing any object type (text, image, audio, video, molecule, html, etc). Can be defined either
+ with `columns` and `data` or with `dataframe`.
+
+ Args:
+ table_name (`str`):
+ The name to give to the logged table on the wandb workspace
+ columns (list of `str`, *optional*):
+ The name of the columns on the table
+ data (List of List of Any data type, *optional*):
+ The data to be logged in the table
+ dataframe (Any data type, *optional*):
+ The data to be logged in the table
+ step (`int`, *optional*):
+ The run step. If included, the log will be affiliated with this step.
+ """
+ import wandb
+
+ values = {table_name: wandb.Table(columns=columns, data=data, dataframe=dataframe)}
+ self.log(values, step=step, **kwargs)
+
+ @on_main_process
+ def finish(self):
+ """
+ Closes `wandb` writer
+ """
+ self.run.finish()
+ logger.debug("WandB run closed")
+
+
+class CometMLTracker(GeneralTracker):
+ """
+ A `Tracker` class that supports `comet_ml`. Should be initialized at the start of your script.
+
+ API keys must be stored in a Comet config file.
+
+ Args:
+ run_name (`str`):
+ The name of the experiment run.
+ **kwargs (additional keyword arguments, *optional*):
+ Additional key word arguments passed along to the `Experiment.__init__` method.
+ """
+
+ name = "comet_ml"
+ requires_logging_directory = False
+
+ @on_main_process
+ def __init__(self, run_name: str, **kwargs):
+ super().__init__()
+ self.run_name = run_name
+
+ from comet_ml import Experiment
+
+ self.writer = Experiment(project_name=run_name, **kwargs)
+ logger.debug(f"Initialized CometML project {self.run_name}")
+ logger.debug(
+ "Make sure to log any initial configurations with `self.store_init_configuration` before training!"
+ )
+
+ @property
+ def tracker(self):
+ return self.writer
+
+ @on_main_process
+ def store_init_configuration(self, values: dict):
+ """
+ Logs `values` as hyperparameters for the run. Should be run at the beginning of your experiment.
+
+ Args:
+ values (Dictionary `str` to `bool`, `str`, `float` or `int`):
+ Values to be stored as initial hyperparameters as key-value pairs. The values need to have type `bool`,
+ `str`, `float`, `int`, or `None`.
+ """
+ self.writer.log_parameters(values)
+ logger.debug("Stored initial configuration hyperparameters to CometML")
+
+ @on_main_process
+ def log(self, values: dict, step: Optional[int] = None, **kwargs):
+ """
+ Logs `values` to the current run.
+
+ Args:
+ values (Dictionary `str` to `str`, `float`, `int` or `dict` of `str` to `float`/`int`):
+ Values to be logged as key-value pairs. The values need to have type `str`, `float`, `int` or `dict` of
+ `str` to `float`/`int`.
+ step (`int`, *optional*):
+ The run step. If included, the log will be affiliated with this step.
+ kwargs:
+ Additional key word arguments passed along to either `Experiment.log_metric`, `Experiment.log_other`,
+ or `Experiment.log_metrics` method based on the contents of `values`.
+ """
+ if step is not None:
+ self.writer.set_step(step)
+ for k, v in values.items():
+ if isinstance(v, (int, float)):
+ self.writer.log_metric(k, v, step=step, **kwargs)
+ elif isinstance(v, str):
+ self.writer.log_other(k, v, **kwargs)
+ elif isinstance(v, dict):
+ self.writer.log_metrics(v, step=step, **kwargs)
+ logger.debug("Successfully logged to CometML")
+
+ @on_main_process
+ def finish(self):
+ """
+ Closes `comet-ml` writer
+ """
+ self.writer.end()
+ logger.debug("CometML run closed")
+
+
+class AimTracker(GeneralTracker):
+ """
+ A `Tracker` class that supports `aim`. Should be initialized at the start of your script.
+
+ Args:
+ run_name (`str`):
+ The name of the experiment run.
+ **kwargs (additional keyword arguments, *optional*):
+ Additional key word arguments passed along to the `Run.__init__` method.
+ """
+
+ name = "aim"
+ requires_logging_directory = True
+
+ @on_main_process
+ def __init__(self, run_name: str, logging_dir: Optional[Union[str, os.PathLike]] = ".", **kwargs):
+ self.run_name = run_name
+
+ from aim import Run
+
+ self.writer = Run(repo=logging_dir, **kwargs)
+ self.writer.name = self.run_name
+ logger.debug(f"Initialized Aim project {self.run_name}")
+ logger.debug(
+ "Make sure to log any initial configurations with `self.store_init_configuration` before training!"
+ )
+
+ @property
+ def tracker(self):
+ return self.writer
+
+ @on_main_process
+ def store_init_configuration(self, values: dict):
+ """
+ Logs `values` as hyperparameters for the run. Should be run at the beginning of your experiment.
+
+ Args:
+ values (`dict`):
+ Values to be stored as initial hyperparameters as key-value pairs.
+ """
+ self.writer["hparams"] = values
+
+ @on_main_process
+ def log(self, values: dict, step: Optional[int], **kwargs):
+ """
+ Logs `values` to the current run.
+
+ Args:
+ values (`dict`):
+ Values to be logged as key-value pairs.
+ step (`int`, *optional*):
+ The run step. If included, the log will be affiliated with this step.
+ kwargs:
+ Additional key word arguments passed along to the `Run.track` method.
+ """
+ # Note: replace this with the dictionary support when merged
+ for key, value in values.items():
+ self.writer.track(value, name=key, step=step, **kwargs)
+
+ @on_main_process
+ def log_images(self, values: dict, step: Optional[int] = None, kwargs: Optional[Dict[str, dict]] = None):
+ """
+ Logs `images` to the current run.
+
+ Args:
+ values (`Dict[str, Union[np.ndarray, PIL.Image, Tuple[np.ndarray, str], Tuple[PIL.Image, str]]]`):
+ Values to be logged as key-value pairs. The values need to have type `np.ndarray` or PIL.Image. If a
+ tuple is provided, the first element should be the image and the second element should be the caption.
+ step (`int`, *optional*):
+ The run step. If included, the log will be affiliated with this step.
+ kwargs (`Dict[str, dict]`):
+ Additional key word arguments passed along to the `Run.Image` and `Run.track` method specified by the
+ keys `aim_image` and `track`, respectively.
+ """
+ import aim
+
+ aim_image_kw = {}
+ track_kw = {}
+
+ if kwargs is not None:
+ aim_image_kw = kwargs.get("aim_image", {})
+ track_kw = kwargs.get("track", {})
+
+ for key, value in values.items():
+ if isinstance(value, tuple):
+ img, caption = value
+ else:
+ img, caption = value, ""
+ aim_image = aim.Image(img, caption=caption, **aim_image_kw)
+ self.writer.track(aim_image, name=key, step=step, **track_kw)
+
+ @on_main_process
+ def finish(self):
+ """
+ Closes `aim` writer
+ """
+ self.writer.close()
+
+
+class MLflowTracker(GeneralTracker):
+ """
+ A `Tracker` class that supports `mlflow`. Should be initialized at the start of your script.
+
+ Args:
+ experiment_name (`str`, *optional*):
+ Name of the experiment. Environment variable MLFLOW_EXPERIMENT_NAME has priority over this argument.
+ logging_dir (`str` or `os.PathLike`, defaults to `"."`):
+ Location for mlflow logs to be stored.
+ run_id (`str`, *optional*):
+ If specified, get the run with the specified UUID and log parameters and metrics under that run. The run’s
+ end time is unset and its status is set to running, but the run’s other attributes (source_version,
+ source_type, etc.) are not changed. Environment variable MLFLOW_RUN_ID has priority over this argument.
+ tags (`Dict[str, str]`, *optional*):
+ An optional `dict` of `str` keys and values, or a `str` dump from a `dict`, to set as tags on the run. If a
+ run is being resumed, these tags are set on the resumed run. If a new run is being created, these tags are
+ set on the new run. Environment variable MLFLOW_TAGS has priority over this argument.
+ nested_run (`bool`, *optional*, defaults to `False`):
+ Controls whether run is nested in parent run. True creates a nested run. Environment variable
+ MLFLOW_NESTED_RUN has priority over this argument.
+ run_name (`str`, *optional*):
+ Name of new run (stored as a mlflow.runName tag). Used only when `run_id` is unspecified.
+ description (`str`, *optional*):
+ An optional string that populates the description box of the run. If a run is being resumed, the
+ description is set on the resumed run. If a new run is being created, the description is set on the new
+ run.
+ """
+
+ name = "mlflow"
+ requires_logging_directory = False
+
+ @on_main_process
+ def __init__(
+ self,
+ experiment_name: str = None,
+ logging_dir: Optional[Union[str, os.PathLike]] = None,
+ run_id: Optional[str] = None,
+ tags: Optional[Union[Dict[str, Any], str]] = None,
+ nested_run: Optional[bool] = False,
+ run_name: Optional[str] = None,
+ description: Optional[str] = None,
+ ):
+ experiment_name = os.environ.get("MLFLOW_EXPERIMENT_NAME", experiment_name)
+ run_id = os.environ.get("MLFLOW_RUN_ID", run_id)
+ tags = os.environ.get("MLFLOW_TAGS", tags)
+ if isinstance(tags, str):
+ tags = json.loads(tags)
+
+ nested_run = os.environ.get("MLFLOW_NESTED_RUN", nested_run)
+
+ import mlflow
+
+ exps = mlflow.search_experiments(filter_string=f"name = '{experiment_name}'")
+ if len(exps) > 0:
+ if len(exps) > 1:
+ logger.warning("Multiple experiments with the same name found. Using first one.")
+ experiment_id = exps[0].experiment_id
+ else:
+ experiment_id = mlflow.create_experiment(
+ name=experiment_name,
+ artifact_location=logging_dir,
+ tags=tags,
+ )
+
+ self.active_run = mlflow.start_run(
+ run_id=run_id,
+ experiment_id=experiment_id,
+ run_name=run_name,
+ nested=nested_run,
+ tags=tags,
+ description=description,
+ )
+
+ logger.debug(f"Initialized mlflow experiment {experiment_name}")
+ logger.debug(
+ "Make sure to log any initial configurations with `self.store_init_configuration` before training!"
+ )
+
+ @property
+ def tracker(self):
+ return self.active_run
+
+ @on_main_process
+ def store_init_configuration(self, values: dict):
+ """
+ Logs `values` as hyperparameters for the run. Should be run at the beginning of your experiment.
+
+ Args:
+ values (`dict`):
+ Values to be stored as initial hyperparameters as key-value pairs.
+ """
+ import mlflow
+
+ for name, value in list(values.items()):
+ # internally, all values are converted to str in MLflow
+ if len(str(value)) > mlflow.utils.validation.MAX_PARAM_VAL_LENGTH:
+ logger.warning_once(
+ f'Accelerate is attempting to log a value of "{value}" for key "{name}" as a parameter. MLflow\'s'
+ f" log_param() only accepts values no longer than {mlflow.utils.validation.MAX_PARAM_VAL_LENGTH} characters so we dropped this attribute."
+ )
+ del values[name]
+
+ values_list = list(values.items())
+
+ # MLflow cannot log more than 100 values in one go, so we have to split it
+ for i in range(0, len(values_list), mlflow.utils.validation.MAX_PARAMS_TAGS_PER_BATCH):
+ mlflow.log_params(dict(values_list[i : i + mlflow.utils.validation.MAX_PARAMS_TAGS_PER_BATCH]))
+
+ logger.debug("Stored initial configuration hyperparameters to MLflow")
+
+ @on_main_process
+ def log(self, values: dict, step: Optional[int]):
+ """
+ Logs `values` to the current run.
+
+ Args:
+ values (`dict`):
+ Values to be logged as key-value pairs.
+ step (`int`, *optional*):
+ The run step. If included, the log will be affiliated with this step.
+ """
+ metrics = {}
+ for k, v in values.items():
+ if isinstance(v, (int, float)):
+ metrics[k] = v
+ else:
+ logger.warning_once(
+ f'MLflowTracker is attempting to log a value of "{v}" of type {type(v)} for key "{k}" as a metric. '
+ "MLflow's log_metric() only accepts float and int types so we dropped this attribute."
+ )
+ import mlflow
+
+ mlflow.log_metrics(metrics, step=step)
+ logger.debug("Successfully logged to mlflow")
+
+ @on_main_process
+ def finish(self):
+ """
+ End the active MLflow run.
+ """
+ import mlflow
+
+ mlflow.end_run()
+
+
+class ClearMLTracker(GeneralTracker):
+ """
+ A `Tracker` class that supports `clearml`. Should be initialized at the start of your script.
+
+ Args:
+ run_name (`str`, *optional*):
+ Name of the experiment. Environment variables `CLEARML_PROJECT` and `CLEARML_TASK` have priority over this
+ argument.
+ **kwargs (additional keyword arguments, *optional*):
+ Kwargs passed along to the `Task.__init__` method.
+ """
+
+ name = "clearml"
+ requires_logging_directory = False
+
+ @on_main_process
+ def __init__(self, run_name: str = None, **kwargs):
+ from clearml import Task
+
+ current_task = Task.current_task()
+ self._initialized_externally = False
+ if current_task:
+ self._initialized_externally = True
+ self.task = current_task
+ return
+
+ kwargs.setdefault("project_name", os.environ.get("CLEARML_PROJECT", run_name))
+ kwargs.setdefault("task_name", os.environ.get("CLEARML_TASK", run_name))
+ self.task = Task.init(**kwargs)
+
+ @property
+ def tracker(self):
+ return self.task
+
+ @on_main_process
+ def store_init_configuration(self, values: dict):
+ """
+ Connect configuration dictionary to the Task object. Should be run at the beginning of your experiment.
+
+ Args:
+ values (`dict`):
+ Values to be stored as initial hyperparameters as key-value pairs.
+ """
+ return self.task.connect_configuration(values)
+
+ @on_main_process
+ def log(self, values: Dict[str, Union[int, float]], step: Optional[int] = None, **kwargs):
+ """
+ Logs `values` dictionary to the current run. The dictionary keys must be strings. The dictionary values must be
+ ints or floats
+
+ Args:
+ values (`Dict[str, Union[int, float]]`):
+ Values to be logged as key-value pairs. If the key starts with 'eval_'/'test_'/'train_', the value will
+ be reported under the 'eval'/'test'/'train' series and the respective prefix will be removed.
+ Otherwise, the value will be reported under the 'train' series, and no prefix will be removed.
+ step (`int`, *optional*):
+ If specified, the values will be reported as scalars, with the iteration number equal to `step`.
+ Otherwise they will be reported as single values.
+ kwargs:
+ Additional key word arguments passed along to the `clearml.Logger.report_single_value` or
+ `clearml.Logger.report_scalar` methods.
+ """
+ clearml_logger = self.task.get_logger()
+ for k, v in values.items():
+ if not isinstance(v, (int, float)):
+ logger.warning_once(
+ "Accelerator is attempting to log a value of "
+ f'"{v}" of type {type(v)} for key "{k}" as a scalar. '
+ "This invocation of ClearML logger's report_scalar() "
+ "is incorrect so we dropped this attribute."
+ )
+ continue
+ if step is None:
+ clearml_logger.report_single_value(name=k, value=v, **kwargs)
+ continue
+ title, series = ClearMLTracker._get_title_series(k)
+ clearml_logger.report_scalar(title=title, series=series, value=v, iteration=step, **kwargs)
+
+ @on_main_process
+ def log_images(self, values: dict, step: Optional[int] = None, **kwargs):
+ """
+ Logs `images` to the current run.
+
+ Args:
+ values (`Dict[str, List[Union[np.ndarray, PIL.Image]]`):
+ Values to be logged as key-value pairs. The values need to have type `List` of `np.ndarray` or
+ step (`int`, *optional*):
+ The run step. If included, the log will be affiliated with this step.
+ kwargs:
+ Additional key word arguments passed along to the `clearml.Logger.report_image` method.
+ """
+ clearml_logger = self.task.get_logger()
+ for k, v in values.items():
+ title, series = ClearMLTracker._get_title_series(k)
+ clearml_logger.report_image(title=title, series=series, iteration=step, image=v, **kwargs)
+
+ @on_main_process
+ def log_table(
+ self,
+ table_name: str,
+ columns: List[str] = None,
+ data: List[List[Any]] = None,
+ dataframe: Any = None,
+ step: Optional[int] = None,
+ **kwargs,
+ ):
+ """
+ Log a Table to the task. Can be defined eitherwith `columns` and `data` or with `dataframe`.
+
+ Args:
+ table_name (`str`):
+ The name of the table
+ columns (list of `str`, *optional*):
+ The name of the columns on the table
+ data (List of List of Any data type, *optional*):
+ The data to be logged in the table. If `columns` is not specified, then the first entry in data will be
+ the name of the columns of the table
+ dataframe (Any data type, *optional*):
+ The data to be logged in the table
+ step (`int`, *optional*):
+ The run step. If included, the log will be affiliated with this step.
+ kwargs:
+ Additional key word arguments passed along to the `clearml.Logger.report_table` method.
+ """
+ to_report = dataframe
+ if dataframe is None:
+ if data is None:
+ raise ValueError(
+ "`ClearMLTracker.log_table` requires that `data` to be supplied if `dataframe` is `None`"
+ )
+ to_report = [columns] + data if columns else data
+ title, series = ClearMLTracker._get_title_series(table_name)
+ self.task.get_logger().report_table(title=title, series=series, table_plot=to_report, iteration=step, **kwargs)
+
+ @on_main_process
+ def finish(self):
+ """
+ Close the ClearML task. If the task was initialized externally (e.g. by manually calling `Task.init`), this
+ function is a noop
+ """
+ if self.task and not self._initialized_externally:
+ self.task.close()
+
+ @staticmethod
+ def _get_title_series(name):
+ for prefix in ["eval", "test", "train"]:
+ if name.startswith(prefix + "_"):
+ return name[len(prefix) + 1 :], prefix
+ return name, "train"
+
+
+class DVCLiveTracker(GeneralTracker):
+ """
+ A `Tracker` class that supports `dvclive`. Should be initialized at the start of your script.
+
+ Args:
+ run_name (`str`, *optional*):
+ Ignored for dvclive. See `kwargs` instead.
+ kwargs:
+ Additional key word arguments passed along to [`dvclive.Live()`](https://dvc.org/doc/dvclive/live).
+
+ Example:
+
+ ```py
+ from accelerate import Accelerator
+
+ accelerator = Accelerator(log_with="dvclive")
+ accelerator.init_trackers(project_name="my_project", init_kwargs={"dvclive": {"dir": "my_directory"}})
+ ```
+ """
+
+ name = "dvclive"
+ requires_logging_directory = False
+
+ @on_main_process
+ def __init__(self, run_name: Optional[str] = None, live: Optional[Any] = None, **kwargs):
+ from dvclive import Live
+
+ super().__init__()
+ self.live = live if live is not None else Live(**kwargs)
+
+ @property
+ def tracker(self):
+ return self.live
+
+ @on_main_process
+ def store_init_configuration(self, values: dict):
+ """
+ Logs `values` as hyperparameters for the run. Should be run at the beginning of your experiment. Stores the
+ hyperparameters in a yaml file for future use.
+
+ Args:
+ values (Dictionary `str` to `bool`, `str`, `float`, `int`, or a List or Dict of those types):
+ Values to be stored as initial hyperparameters as key-value pairs. The values need to have type `bool`,
+ `str`, `float`, or `int`.
+ """
+ self.live.log_params(values)
+
+ @on_main_process
+ def log(self, values: dict, step: Optional[int] = None, **kwargs):
+ """
+ Logs `values` to the current run.
+
+ Args:
+ values (Dictionary `str` to `str`, `float`, or `int`):
+ Values to be logged as key-value pairs. The values need to have type `str`, `float`, or `int`.
+ step (`int`, *optional*):
+ The run step. If included, the log will be affiliated with this step.
+ kwargs:
+ Additional key word arguments passed along to `dvclive.Live.log_metric()`.
+ """
+ from dvclive.plots import Metric
+
+ if step is not None:
+ self.live.step = step
+ for k, v in values.items():
+ if Metric.could_log(v):
+ self.live.log_metric(k, v, **kwargs)
+ else:
+ logger.warning_once(
+ "Accelerator attempted to log a value of "
+ f'"{v}" of type {type(v)} for key "{k}" as a scalar. '
+ "This invocation of DVCLive's Live.log_metric() "
+ "is incorrect so we dropped this attribute."
+ )
+ self.live.next_step()
+
+ @on_main_process
+ def finish(self):
+ """
+ Closes `dvclive.Live()`.
+ """
+ self.live.end()
+
+
+LOGGER_TYPE_TO_CLASS = {
+ "aim": AimTracker,
+ "comet_ml": CometMLTracker,
+ "mlflow": MLflowTracker,
+ "tensorboard": TensorBoardTracker,
+ "wandb": WandBTracker,
+ "clearml": ClearMLTracker,
+ "dvclive": DVCLiveTracker,
+}
+
+
+def filter_trackers(
+ log_with: List[Union[str, LoggerType, GeneralTracker]],
+ logging_dir: Union[str, os.PathLike] = None,
+):
+ """
+ Takes in a list of potential tracker types and checks that:
+ - The tracker wanted is available in that environment
+ - Filters out repeats of tracker types
+ - If `all` is in `log_with`, will return all trackers in the environment
+ - If a tracker requires a `logging_dir`, ensures that `logging_dir` is not `None`
+
+ Args:
+ log_with (list of `str`, [`~utils.LoggerType`] or [`~tracking.GeneralTracker`], *optional*):
+ A list of loggers to be setup for experiment tracking. Should be one or several of:
+
+ - `"all"`
+ - `"tensorboard"`
+ - `"wandb"`
+ - `"comet_ml"`
+ - `"mlflow"`
+ - `"dvclive"`
+ If `"all"` is selected, will pick up all available trackers in the environment and initialize them. Can
+ also accept implementations of `GeneralTracker` for custom trackers, and can be combined with `"all"`.
+ logging_dir (`str`, `os.PathLike`, *optional*):
+ A path to a directory for storing logs of locally-compatible loggers.
+ """
+ loggers = []
+ if log_with is not None:
+ if not isinstance(log_with, (list, tuple)):
+ log_with = [log_with]
+ if "all" in log_with or LoggerType.ALL in log_with:
+ loggers = [o for o in log_with if issubclass(type(o), GeneralTracker)] + get_available_trackers()
+ else:
+ for log_type in log_with:
+ if log_type not in LoggerType and not issubclass(type(log_type), GeneralTracker):
+ raise ValueError(f"Unsupported logging capability: {log_type}. Choose between {LoggerType.list()}")
+ if issubclass(type(log_type), GeneralTracker):
+ loggers.append(log_type)
+ else:
+ log_type = LoggerType(log_type)
+ if log_type not in loggers:
+ if log_type in get_available_trackers():
+ tracker_init = LOGGER_TYPE_TO_CLASS[str(log_type)]
+ if tracker_init.requires_logging_directory:
+ if logging_dir is None:
+ raise ValueError(
+ f"Logging with `{log_type}` requires a `logging_dir` to be passed in."
+ )
+ loggers.append(log_type)
+ else:
+ logger.debug(f"Tried adding logger {log_type}, but package is unavailable in the system.")
+
+ return loggers
diff --git a/llmeval-env/lib/python3.10/site-packages/attrs/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/attrs/__pycache__/__init__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8913ee7b59bfb7618355927d94da0e627a274834
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/attrs/__pycache__/__init__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/attrs/__pycache__/converters.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/attrs/__pycache__/converters.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4dc613020826ac5f4392d42323176291aa652d92
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/attrs/__pycache__/converters.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/attrs/__pycache__/exceptions.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/attrs/__pycache__/exceptions.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..50d4eb783a212966b037c09630be046fb3680d8f
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/attrs/__pycache__/exceptions.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/attrs/__pycache__/filters.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/attrs/__pycache__/filters.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7dde6afdca441df2bc2a4d6ef15d40eb9f5fb46f
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/attrs/__pycache__/filters.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/attrs/__pycache__/setters.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/attrs/__pycache__/setters.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b9f39e3421dd62046f46c757cf7ff5ed137edd3f
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/attrs/__pycache__/setters.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/attrs/__pycache__/validators.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/attrs/__pycache__/validators.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fa913c8966a4df87ba3118913529773108a0e12c
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/attrs/__pycache__/validators.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/attrs/exceptions.py b/llmeval-env/lib/python3.10/site-packages/attrs/exceptions.py
new file mode 100644
index 0000000000000000000000000000000000000000..3323f9d2112c54b203763d45b455bd5abbe020f6
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/attrs/exceptions.py
@@ -0,0 +1,3 @@
+# SPDX-License-Identifier: MIT
+
+from attr.exceptions import * # noqa: F403
diff --git a/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/__diff.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/__diff.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5a2a019c34c0b1bbb046fe01737be08d0e592ec8
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/__diff.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/__info__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/__info__.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..0ea17e94c65c6ce43f633d012de1b76f79f5f721
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/__info__.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/_dill.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/_dill.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..fca7f608241b6d0142f147c715fa34df75f6e802
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/_dill.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/_objects.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/_objects.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..bb1145d59614a78f14aa114cbbc2b19dc5a24c34
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/_objects.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/_shims.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/_shims.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..4c75660cf5cf223882837cf1bb801dbd03cb128d
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/_shims.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/detect.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/detect.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..6c835117389f93674e9e492cd0b371ea15e335f0
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/detect.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/session.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/session.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..04408714f9d9b51cb7b37791859df0c16cde9b3a
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/session.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/temp.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/temp.cpython-310.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b57c5cc790ebe1826e8affaedcd886b59df662f9
Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/dill/__pycache__/temp.cpython-310.pyc differ
diff --git a/llmeval-env/lib/python3.10/site-packages/evaluate-0.4.2.dist-info/INSTALLER b/llmeval-env/lib/python3.10/site-packages/evaluate-0.4.2.dist-info/INSTALLER
new file mode 100644
index 0000000000000000000000000000000000000000..a1b589e38a32041e49332e5e81c2d363dc418d68
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/evaluate-0.4.2.dist-info/INSTALLER
@@ -0,0 +1 @@
+pip
diff --git a/llmeval-env/lib/python3.10/site-packages/evaluate-0.4.2.dist-info/LICENSE b/llmeval-env/lib/python3.10/site-packages/evaluate-0.4.2.dist-info/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..d645695673349e3947e8e5ae42332d0ac3164cd7
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/evaluate-0.4.2.dist-info/LICENSE
@@ -0,0 +1,202 @@
+
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+ Copyright [yyyy] [name of copyright owner]
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
diff --git a/llmeval-env/lib/python3.10/site-packages/evaluate-0.4.2.dist-info/METADATA b/llmeval-env/lib/python3.10/site-packages/evaluate-0.4.2.dist-info/METADATA
new file mode 100644
index 0000000000000000000000000000000000000000..a9c497799bc34129eaba30ad2ae2047a4d84260c
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/evaluate-0.4.2.dist-info/METADATA
@@ -0,0 +1,201 @@
+Metadata-Version: 2.1
+Name: evaluate
+Version: 0.4.2
+Summary: HuggingFace community-driven open-source library of evaluation
+Home-page: https://github.com/huggingface/evaluate
+Author: HuggingFace Inc.
+Author-email: leandro@huggingface.co
+License: Apache 2.0
+Download-URL: https://github.com/huggingface/evaluate/tags
+Keywords: metrics machine learning evaluate evaluation
+Platform: UNKNOWN
+Classifier: Development Status :: 5 - Production/Stable
+Classifier: Intended Audience :: Developers
+Classifier: Intended Audience :: Education
+Classifier: Intended Audience :: Science/Research
+Classifier: License :: OSI Approved :: Apache Software License
+Classifier: Operating System :: OS Independent
+Classifier: Programming Language :: Python :: 3
+Classifier: Programming Language :: Python :: 3.8
+Classifier: Programming Language :: Python :: 3.9
+Classifier: Programming Language :: Python :: 3.10
+Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
+Requires-Python: >=3.8.0
+Description-Content-Type: text/markdown
+License-File: LICENSE
+Requires-Dist: datasets >=2.0.0
+Requires-Dist: numpy >=1.17
+Requires-Dist: dill
+Requires-Dist: pandas
+Requires-Dist: requests >=2.19.0
+Requires-Dist: tqdm >=4.62.1
+Requires-Dist: xxhash
+Requires-Dist: multiprocess
+Requires-Dist: fsspec[http] >=2021.05.0
+Requires-Dist: huggingface-hub >=0.7.0
+Requires-Dist: packaging
+Requires-Dist: importlib-metadata ; python_version < "3.8"
+Provides-Extra: dev
+Requires-Dist: absl-py ; extra == 'dev'
+Requires-Dist: charcut >=1.1.1 ; extra == 'dev'
+Requires-Dist: cer >=1.2.0 ; extra == 'dev'
+Requires-Dist: nltk ; extra == 'dev'
+Requires-Dist: pytest ; extra == 'dev'
+Requires-Dist: pytest-datadir ; extra == 'dev'
+Requires-Dist: pytest-xdist ; extra == 'dev'
+Requires-Dist: tensorflow !=2.6.0,!=2.6.1,<=2.10,>=2.3 ; extra == 'dev'
+Requires-Dist: torch ; extra == 'dev'
+Requires-Dist: accelerate ; extra == 'dev'
+Requires-Dist: bert-score >=0.3.6 ; extra == 'dev'
+Requires-Dist: rouge-score >=0.1.2 ; extra == 'dev'
+Requires-Dist: sacrebleu ; extra == 'dev'
+Requires-Dist: sacremoses ; extra == 'dev'
+Requires-Dist: scipy >=1.10.0 ; extra == 'dev'
+Requires-Dist: seqeval ; extra == 'dev'
+Requires-Dist: scikit-learn ; extra == 'dev'
+Requires-Dist: jiwer ; extra == 'dev'
+Requires-Dist: sentencepiece ; extra == 'dev'
+Requires-Dist: transformers ; extra == 'dev'
+Requires-Dist: mauve-text ; extra == 'dev'
+Requires-Dist: trectools ; extra == 'dev'
+Requires-Dist: toml >=0.10.1 ; extra == 'dev'
+Requires-Dist: requests-file >=1.5.1 ; extra == 'dev'
+Requires-Dist: tldextract >=3.1.0 ; extra == 'dev'
+Requires-Dist: texttable >=1.6.3 ; extra == 'dev'
+Requires-Dist: unidecode >=1.3.4 ; extra == 'dev'
+Requires-Dist: Werkzeug >=1.0.1 ; extra == 'dev'
+Requires-Dist: six ~=1.15.0 ; extra == 'dev'
+Requires-Dist: black ~=22.0 ; extra == 'dev'
+Requires-Dist: flake8 >=3.8.3 ; extra == 'dev'
+Requires-Dist: isort >=5.0.0 ; extra == 'dev'
+Requires-Dist: pyyaml >=5.3.1 ; extra == 'dev'
+Provides-Extra: docs
+Requires-Dist: s3fs ; extra == 'docs'
+Provides-Extra: evaluator
+Requires-Dist: transformers ; extra == 'evaluator'
+Requires-Dist: scipy >=1.7.1 ; extra == 'evaluator'
+Provides-Extra: quality
+Requires-Dist: black ~=22.0 ; extra == 'quality'
+Requires-Dist: flake8 >=3.8.3 ; extra == 'quality'
+Requires-Dist: isort >=5.0.0 ; extra == 'quality'
+Requires-Dist: pyyaml >=5.3.1 ; extra == 'quality'
+Provides-Extra: template
+Requires-Dist: cookiecutter ; extra == 'template'
+Requires-Dist: gradio >=3.0.0 ; extra == 'template'
+Provides-Extra: tensorflow
+Requires-Dist: tensorflow !=2.6.0,!=2.6.1,>=2.2.0 ; extra == 'tensorflow'
+Provides-Extra: tensorflow_gpu
+Requires-Dist: tensorflow-gpu !=2.6.0,!=2.6.1,>=2.2.0 ; extra == 'tensorflow_gpu'
+Provides-Extra: tests
+Requires-Dist: absl-py ; extra == 'tests'
+Requires-Dist: charcut >=1.1.1 ; extra == 'tests'
+Requires-Dist: cer >=1.2.0 ; extra == 'tests'
+Requires-Dist: nltk ; extra == 'tests'
+Requires-Dist: pytest ; extra == 'tests'
+Requires-Dist: pytest-datadir ; extra == 'tests'
+Requires-Dist: pytest-xdist ; extra == 'tests'
+Requires-Dist: tensorflow !=2.6.0,!=2.6.1,<=2.10,>=2.3 ; extra == 'tests'
+Requires-Dist: torch ; extra == 'tests'
+Requires-Dist: accelerate ; extra == 'tests'
+Requires-Dist: bert-score >=0.3.6 ; extra == 'tests'
+Requires-Dist: rouge-score >=0.1.2 ; extra == 'tests'
+Requires-Dist: sacrebleu ; extra == 'tests'
+Requires-Dist: sacremoses ; extra == 'tests'
+Requires-Dist: scipy >=1.10.0 ; extra == 'tests'
+Requires-Dist: seqeval ; extra == 'tests'
+Requires-Dist: scikit-learn ; extra == 'tests'
+Requires-Dist: jiwer ; extra == 'tests'
+Requires-Dist: sentencepiece ; extra == 'tests'
+Requires-Dist: transformers ; extra == 'tests'
+Requires-Dist: mauve-text ; extra == 'tests'
+Requires-Dist: trectools ; extra == 'tests'
+Requires-Dist: toml >=0.10.1 ; extra == 'tests'
+Requires-Dist: requests-file >=1.5.1 ; extra == 'tests'
+Requires-Dist: tldextract >=3.1.0 ; extra == 'tests'
+Requires-Dist: texttable >=1.6.3 ; extra == 'tests'
+Requires-Dist: unidecode >=1.3.4 ; extra == 'tests'
+Requires-Dist: Werkzeug >=1.0.1 ; extra == 'tests'
+Requires-Dist: six ~=1.15.0 ; extra == 'tests'
+Provides-Extra: torch
+Requires-Dist: torch ; extra == 'torch'
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+🤗 Evaluate is a library that makes evaluating and comparing models and reporting their performance easier and more standardized.
+
+It currently contains:
+
+- **implementations of dozens of popular metrics**: the existing metrics cover a variety of tasks spanning from NLP to Computer Vision, and include dataset-specific metrics for datasets. With a simple command like `accuracy = load("accuracy")`, get any of these metrics ready to use for evaluating a ML model in any framework (Numpy/Pandas/PyTorch/TensorFlow/JAX).
+- **comparisons and measurements**: comparisons are used to measure the difference between models and measurements are tools to evaluate datasets.
+- **an easy way of adding new evaluation modules to the 🤗 Hub**: you can create new evaluation modules and push them to a dedicated Space in the 🤗 Hub with `evaluate-cli create [metric name]`, which allows you to see easily compare different metrics and their outputs for the same sets of references and predictions.
+
+[🎓 **Documentation**](https://huggingface.co/docs/evaluate/)
+
+🔎 **Find a [metric](https://huggingface.co/evaluate-metric), [comparison](https://huggingface.co/evaluate-comparison), [measurement](https://huggingface.co/evaluate-measurement) on the Hub**
+
+[🌟 **Add a new evaluation module**](https://huggingface.co/docs/evaluate/)
+
+🤗 Evaluate also has lots of useful features like:
+
+- **Type checking**: the input types are checked to make sure that you are using the right input formats for each metric
+- **Metric cards**: each metrics comes with a card that describes the values, limitations and their ranges, as well as providing examples of their usage and usefulness.
+- **Community metrics:** Metrics live on the Hugging Face Hub and you can easily add your own metrics for your project or to collaborate with others.
+
+
+# Installation
+
+## With pip
+
+🤗 Evaluate can be installed from PyPi and has to be installed in a virtual environment (venv or conda for instance)
+
+```bash
+pip install evaluate
+```
+
+# Usage
+
+🤗 Evaluate's main methods are:
+
+- `evaluate.list_evaluation_modules()` to list the available metrics, comparisons and measurements
+- `evaluate.load(module_name, **kwargs)` to instantiate an evaluation module
+- `results = module.compute(*kwargs)` to compute the result of an evaluation module
+
+# Adding a new evaluation module
+
+First install the necessary dependencies to create a new metric with the following command:
+```bash
+pip install evaluate[template]
+```
+Then you can get started with the following command which will create a new folder for your metric and display the necessary steps:
+```bash
+evaluate-cli create "Awesome Metric"
+```
+See this [step-by-step guide](https://huggingface.co/docs/evaluate/creating_and_sharing) in the documentation for detailed instructions.
+
+## Credits
+
+Thanks to [@marella](https://github.com/marella) for letting us use the `evaluate` namespace on PyPi previously used by his [library](https://github.com/marella/evaluate).
+
+
diff --git a/llmeval-env/lib/python3.10/site-packages/evaluate-0.4.2.dist-info/RECORD b/llmeval-env/lib/python3.10/site-packages/evaluate-0.4.2.dist-info/RECORD
new file mode 100644
index 0000000000000000000000000000000000000000..ba33177c3595e96397a002904346b67c003f148f
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/evaluate-0.4.2.dist-info/RECORD
@@ -0,0 +1,64 @@
+../../../bin/evaluate-cli,sha256=dRGA6d7NGT1TqpsZkE6O4Cp55DLklOgvRQ9WDz6w8tc,263
+evaluate-0.4.2.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
+evaluate-0.4.2.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
+evaluate-0.4.2.dist-info/METADATA,sha256=kx50-JaxQsGbQh_BcF3rsIiA2q6uNuDiTn9Q5OIsBxw,9349
+evaluate-0.4.2.dist-info/RECORD,,
+evaluate-0.4.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
+evaluate-0.4.2.dist-info/entry_points.txt,sha256=m2P3heof0lsg47nq6tYW_yUtxTfimd3RuD26Yk8KMkM,70
+evaluate-0.4.2.dist-info/top_level.txt,sha256=wBEoxird-u8p4OKDwq5z9rlfH-ybeez8rjaKNLNJ3B0,9
+evaluate/__init__.py,sha256=z7vL4diCrdE-vd-oUY15dyao3kbc4H_9VvA2-T3jJuU,1754
+evaluate/__pycache__/__init__.cpython-310.pyc,,
+evaluate/__pycache__/config.cpython-310.pyc,,
+evaluate/__pycache__/hub.cpython-310.pyc,,
+evaluate/__pycache__/info.cpython-310.pyc,,
+evaluate/__pycache__/inspect.cpython-310.pyc,,
+evaluate/__pycache__/loading.cpython-310.pyc,,
+evaluate/__pycache__/module.cpython-310.pyc,,
+evaluate/__pycache__/naming.cpython-310.pyc,,
+evaluate/__pycache__/saving.cpython-310.pyc,,
+evaluate/__pycache__/visualization.cpython-310.pyc,,
+evaluate/commands/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+evaluate/commands/__pycache__/__init__.cpython-310.pyc,,
+evaluate/commands/__pycache__/evaluate_cli.cpython-310.pyc,,
+evaluate/commands/evaluate_cli.py,sha256=w7GWb48JPjoC0BX7Jn12qtxQUBYOlZNhdg4YegA93Fw,4491
+evaluate/config.py,sha256=g4g-S6hVAw0Ys9As7gKaFP66pZeh8hoJJ5GEXaLSWV8,6648
+evaluate/evaluation_suite/__init__.py,sha256=TjcFihBDf_ZQAoIjSXPEC0iFBeEC_LFqCfXKbrkyhWs,4941
+evaluate/evaluation_suite/__pycache__/__init__.cpython-310.pyc,,
+evaluate/evaluator/__init__.py,sha256=JoWqRP-qCgNzDre6nO8zpJ2Iyp0eUkN7eDKPOPUXz2g,5788
+evaluate/evaluator/__pycache__/__init__.cpython-310.pyc,,
+evaluate/evaluator/__pycache__/audio_classification.cpython-310.pyc,,
+evaluate/evaluator/__pycache__/automatic_speech_recognition.cpython-310.pyc,,
+evaluate/evaluator/__pycache__/base.cpython-310.pyc,,
+evaluate/evaluator/__pycache__/image_classification.cpython-310.pyc,,
+evaluate/evaluator/__pycache__/question_answering.cpython-310.pyc,,
+evaluate/evaluator/__pycache__/text2text_generation.cpython-310.pyc,,
+evaluate/evaluator/__pycache__/text_classification.cpython-310.pyc,,
+evaluate/evaluator/__pycache__/text_generation.cpython-310.pyc,,
+evaluate/evaluator/__pycache__/token_classification.cpython-310.pyc,,
+evaluate/evaluator/__pycache__/utils.cpython-310.pyc,,
+evaluate/evaluator/audio_classification.py,sha256=v5myOnm0PN8BWVnm4nWCzcyklaLtdnbOS3EJ09TPFhg,5804
+evaluate/evaluator/automatic_speech_recognition.py,sha256=jOveYJXsH-t5SzGe7FzXhnHeDKFhqWZUtK3S1l9XYus,4392
+evaluate/evaluator/base.py,sha256=--M302w8Bea6u6iYCc9dGFZL1wDIRGd7uUorhcmUAus,22881
+evaluate/evaluator/image_classification.py,sha256=RJ7NUS91hjZkr5JqhqtYsr5dxBkChA3Qim6An8fHT50,4751
+evaluate/evaluator/question_answering.py,sha256=ArF5BKfE9J9uC-q1GQwbvkAHw1ThgA997ERKmPS-Z4g,9566
+evaluate/evaluator/text2text_generation.py,sha256=M2itKYfIz9z_9J-Y7sXyx4HKMhQbdYwbv8oThSw8Yzw,9676
+evaluate/evaluator/text_classification.py,sha256=g1MUwa3TCUCUBGvZDmdeJ_l8BAOgbn0Q0y4TDvep8Uk,6676
+evaluate/evaluator/text_generation.py,sha256=4ZnHweTUpvNZhaprewTPms__00I8Tnje586ZDCG_ZlU,2679
+evaluate/evaluator/token_classification.py,sha256=XMzteW1coN2e3KWmpWj-OGafj22pzMa7UiHylooirHk,11546
+evaluate/evaluator/utils.py,sha256=HDKdLWLHtfpP-Hhe9cf1TFVIRsmfNgLHifDcGYujKZs,2451
+evaluate/hub.py,sha256=ZX6VYZU0EkjTWmABuJ6Zg6oHXIT2dHkHy0u8RgyL9UQ,4550
+evaluate/info.py,sha256=l5gXfqHhj77-XvFhz57Mns-Ev-lNJsLxsyYPHPvSzj0,5490
+evaluate/inspect.py,sha256=vVSCLr7HWLxIpXzwpDPuiE5XwiP5QQ82oGkdok7aO7o,4969
+evaluate/loading.py,sha256=P5MjZvrGHRgOE6jVPnyCNWOpbY-iPz_kLIydZjiNT7Q,35219
+evaluate/module.py,sha256=A1awyHek5mxi5kREJjnEQSv14HDTrl7dYyOrytinGg0,46417
+evaluate/naming.py,sha256=Lpw8JmoJfiWs4xDUMEDzcIKO9Nw9RS2lzjeuUP-9acA,2827
+evaluate/saving.py,sha256=UoixNIHmWEceJREvGZlJNViVjRkgNf3MRflwnnhnNUA,2159
+evaluate/utils/__init__.py,sha256=kdFi2pVFSXm_y4EvvuQNnlPUkOPmGLNtc9YTfxAmdsI,1201
+evaluate/utils/__pycache__/__init__.cpython-310.pyc,,
+evaluate/utils/__pycache__/file_utils.cpython-310.pyc,,
+evaluate/utils/__pycache__/gradio.cpython-310.pyc,,
+evaluate/utils/__pycache__/logging.cpython-310.pyc,,
+evaluate/utils/file_utils.py,sha256=uGkXJYWQBKNALhdxktpQ_844jCjKLFQg6l_3KKK2zGI,22602
+evaluate/utils/gradio.py,sha256=UXGRxiPsJ41Xm5gGF7Jf_1vTOPopE_wDoBIyBS0S8d4,4434
+evaluate/utils/logging.py,sha256=nRy963i3_-H0Qcer6ETgnTFiJoQhojSiapeXQ9-eUyk,6698
+evaluate/visualization.py,sha256=m-mD6vxOIQ-_KXTues2tB4r7c4jdygBybHJeidP-jgw,9293
diff --git a/llmeval-env/lib/python3.10/site-packages/evaluate-0.4.2.dist-info/WHEEL b/llmeval-env/lib/python3.10/site-packages/evaluate-0.4.2.dist-info/WHEEL
new file mode 100644
index 0000000000000000000000000000000000000000..bab98d675883cc7567a79df485cd7b4f015e376f
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/evaluate-0.4.2.dist-info/WHEEL
@@ -0,0 +1,5 @@
+Wheel-Version: 1.0
+Generator: bdist_wheel (0.43.0)
+Root-Is-Purelib: true
+Tag: py3-none-any
+
diff --git a/llmeval-env/lib/python3.10/site-packages/evaluate-0.4.2.dist-info/entry_points.txt b/llmeval-env/lib/python3.10/site-packages/evaluate-0.4.2.dist-info/entry_points.txt
new file mode 100644
index 0000000000000000000000000000000000000000..cbb3e69c055695cd6dccee54dec460f319c3fd25
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/evaluate-0.4.2.dist-info/entry_points.txt
@@ -0,0 +1,3 @@
+[console_scripts]
+evaluate-cli = evaluate.commands.evaluate_cli:main
+
diff --git a/llmeval-env/lib/python3.10/site-packages/evaluate-0.4.2.dist-info/top_level.txt b/llmeval-env/lib/python3.10/site-packages/evaluate-0.4.2.dist-info/top_level.txt
new file mode 100644
index 0000000000000000000000000000000000000000..e6adde7833123ecc7f347ea1f5492568989dfd45
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/evaluate-0.4.2.dist-info/top_level.txt
@@ -0,0 +1 @@
+evaluate
diff --git a/llmeval-env/lib/python3.10/site-packages/sympy-1.12.dist-info/RECORD b/llmeval-env/lib/python3.10/site-packages/sympy-1.12.dist-info/RECORD
new file mode 100644
index 0000000000000000000000000000000000000000..884a6b026f336ab7610b8bb608739ced3f64efe7
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/sympy-1.12.dist-info/RECORD
@@ -0,0 +1,2932 @@
+../../../bin/isympy,sha256=6ew7uHi3lJexh9yurWZtOPBvnSVb4gINoJCS5Gk4YB4,239
+../../../share/man/man1/isympy.1,sha256=9DZdSOIQLikrATHlbkdDZ04LBQigZDUE0_oCXBDvdBs,6659
+__pycache__/isympy.cpython-310.pyc,,
+isympy.py,sha256=gAoHa7OM0y9G5IBO7wO-uTpD-CPnd6sbmjJ_GGB0yzg,11207
+sympy-1.12.dist-info/AUTHORS,sha256=wlSBGC-YWljenH44cUwI510RfR4iTZamMi_aKjJwpUU,48572
+sympy-1.12.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
+sympy-1.12.dist-info/LICENSE,sha256=B6XpgZ9ye0mGrSgpx6KaYyDUJXX3IOsk1xt_71c6AoY,7885
+sympy-1.12.dist-info/METADATA,sha256=PsPCJVJrEv6F-QpnHbsxepSvVwxvt2rx2RmuTXXrJqY,12577
+sympy-1.12.dist-info/RECORD,,
+sympy-1.12.dist-info/WHEEL,sha256=pkctZYzUS4AYVn6dJ-7367OJZivF2e8RA9b_ZBjif18,92
+sympy-1.12.dist-info/entry_points.txt,sha256=Sp-vLJom4PRlhGfY6RpUre7SjYm33JNq9NCwCGeW-fQ,39
+sympy-1.12.dist-info/top_level.txt,sha256=elXb5xfjLdjgSSoQFk4_2Qu3lp2CIaglF9MQtfIoH7o,13
+sympy/__init__.py,sha256=85o5Yfq2EeAiES9e85A0ZD6n9GvrpanvEdUeu-V5e2w,29005
+sympy/__pycache__/__init__.cpython-310.pyc,,
+sympy/__pycache__/abc.cpython-310.pyc,,
+sympy/__pycache__/conftest.cpython-310.pyc,,
+sympy/__pycache__/galgebra.cpython-310.pyc,,
+sympy/__pycache__/release.cpython-310.pyc,,
+sympy/__pycache__/this.cpython-310.pyc,,
+sympy/abc.py,sha256=P1iQKfXl7Iut6Z5Y97QmGr_UqiAZ6qR-eoRMtYacGfA,3748
+sympy/algebras/__init__.py,sha256=7PRGOW30nlMOTeUPR7iy8l5xGoE2yCBEfRbjqDKWOgU,62
+sympy/algebras/__pycache__/__init__.cpython-310.pyc,,
+sympy/algebras/__pycache__/quaternion.cpython-310.pyc,,
+sympy/algebras/quaternion.py,sha256=RjAU_1jKNq7LQl4Iuf0BhQ2NtbbCOL3Ytyr_PPjxxlQ,47563
+sympy/algebras/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/algebras/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/algebras/tests/__pycache__/test_quaternion.cpython-310.pyc,,
+sympy/algebras/tests/test_quaternion.py,sha256=WTnJxcMkapyNR4QYJFisbwc2kStw2ZYQuEV3hNalhYE,15921
+sympy/assumptions/__init__.py,sha256=PFS8djTqiNbGVMjg7PaPjEfwmjyZVfioXiRVzqqA3E0,550
+sympy/assumptions/__pycache__/__init__.cpython-310.pyc,,
+sympy/assumptions/__pycache__/ask.cpython-310.pyc,,
+sympy/assumptions/__pycache__/ask_generated.cpython-310.pyc,,
+sympy/assumptions/__pycache__/assume.cpython-310.pyc,,
+sympy/assumptions/__pycache__/cnf.cpython-310.pyc,,
+sympy/assumptions/__pycache__/facts.cpython-310.pyc,,
+sympy/assumptions/__pycache__/refine.cpython-310.pyc,,
+sympy/assumptions/__pycache__/satask.cpython-310.pyc,,
+sympy/assumptions/__pycache__/sathandlers.cpython-310.pyc,,
+sympy/assumptions/__pycache__/wrapper.cpython-310.pyc,,
+sympy/assumptions/ask.py,sha256=MQZg3JiVEvaZuzMlOUeXjPLuAQlhb5-QNDU8Mw5mNnI,18800
+sympy/assumptions/ask_generated.py,sha256=DSsSGSwjV0K3ASMvWvatFEXviYKXR-1xPwySPsLL-c4,17083
+sympy/assumptions/assume.py,sha256=_gcFc4h_YGs9-tshoD0gmLl_RtPivDQWMWhWWLX9seo,14606
+sympy/assumptions/cnf.py,sha256=axPy2EMLHkIX83_kcsKoRFlpq3x_0YxOEjzt7FHgxc4,12706
+sympy/assumptions/facts.py,sha256=q0SDVbzmU46_8mf63Uao5pYE4MgyrhR9vn94QJqQSv8,7609
+sympy/assumptions/handlers/__init__.py,sha256=lvjAfPdz0MDjTxjuzbBSGBco2OmpZRiGixSG0oaiZi0,330
+sympy/assumptions/handlers/__pycache__/__init__.cpython-310.pyc,,
+sympy/assumptions/handlers/__pycache__/calculus.cpython-310.pyc,,
+sympy/assumptions/handlers/__pycache__/common.cpython-310.pyc,,
+sympy/assumptions/handlers/__pycache__/matrices.cpython-310.pyc,,
+sympy/assumptions/handlers/__pycache__/ntheory.cpython-310.pyc,,
+sympy/assumptions/handlers/__pycache__/order.cpython-310.pyc,,
+sympy/assumptions/handlers/__pycache__/sets.cpython-310.pyc,,
+sympy/assumptions/handlers/calculus.py,sha256=ul36wLjxrU_LUxEWX63dWklWHgHWw5xVT0d7BkZCdFE,7198
+sympy/assumptions/handlers/common.py,sha256=sW_viw2xdO9Klqf31x3YlYcGlhgRj52HV1JFmwrgtb4,4064
+sympy/assumptions/handlers/matrices.py,sha256=Gdauk2xk1hKPRr4i6RpvOMHtDnyVD34x1OyhL-Oh8Hc,22321
+sympy/assumptions/handlers/ntheory.py,sha256=2i-EhgO9q1LfDLzN3BZVzHNfaXSsce131XtBr5TEh2I,7213
+sympy/assumptions/handlers/order.py,sha256=Y6Txiykbj4gkibX0mrcUUlhtRWE27p-4lpG4WACX3Ik,12222
+sympy/assumptions/handlers/sets.py,sha256=2Jh2G6Ce1qz9Imzv5et_v-sMxY62j3rFdnp1UZ_PGB8,23818
+sympy/assumptions/predicates/__init__.py,sha256=q1C7iWpvdDymEUZNyzJvZLsLtgwSkYtCixME-fYyIDw,110
+sympy/assumptions/predicates/__pycache__/__init__.cpython-310.pyc,,
+sympy/assumptions/predicates/__pycache__/calculus.cpython-310.pyc,,
+sympy/assumptions/predicates/__pycache__/common.cpython-310.pyc,,
+sympy/assumptions/predicates/__pycache__/matrices.cpython-310.pyc,,
+sympy/assumptions/predicates/__pycache__/ntheory.cpython-310.pyc,,
+sympy/assumptions/predicates/__pycache__/order.cpython-310.pyc,,
+sympy/assumptions/predicates/__pycache__/sets.cpython-310.pyc,,
+sympy/assumptions/predicates/calculus.py,sha256=vFnlYVYZVd6D9OwA7-3bDK_Q0jf2iCZCZiMlWenw0Vg,1889
+sympy/assumptions/predicates/common.py,sha256=zpByACpa_tF0nVNB0J_rJehnXkHtkxhchn1DvkVVS-s,2279
+sympy/assumptions/predicates/matrices.py,sha256=X3vbkEf3zwJLyanEjf6ijYXuRfFfSv-yatl1tJ25wDk,12142
+sympy/assumptions/predicates/ntheory.py,sha256=wvFNFSf0S4egbY7REw0V0ANC03CuiRU9PLmdi16VfHo,2546
+sympy/assumptions/predicates/order.py,sha256=ZI4u_WfusMPAEsMFawkSN9QvaMwI3-Jt3-U_xIcGl_8,9508
+sympy/assumptions/predicates/sets.py,sha256=anp-DeJaU2nun3K4O71G_fbqpETozSKynRGuLhiO8xI,8937
+sympy/assumptions/refine.py,sha256=GlC16HC3VNtCHFZNul1tnDCNPy-iOPKZBGjpTbTlbh4,11950
+sympy/assumptions/relation/__init__.py,sha256=t2tZNEIK7w-xXshRQIRL8tIyiNe1W5fMhN7QNRPnQFo,261
+sympy/assumptions/relation/__pycache__/__init__.cpython-310.pyc,,
+sympy/assumptions/relation/__pycache__/binrel.cpython-310.pyc,,
+sympy/assumptions/relation/__pycache__/equality.cpython-310.pyc,,
+sympy/assumptions/relation/binrel.py,sha256=3iwnSEE53-vRsPv-bOnjydgOkCpbB12FTFR_sQ3CwvE,6313
+sympy/assumptions/relation/equality.py,sha256=RbwztgBBVlnfc9-M-IYKonybITSr8WdqWQqwlp2j3V8,7160
+sympy/assumptions/satask.py,sha256=ld_ZWQlxh9R3ElMUBjnqVfwEJ2irPYtJ6vV5mWdzSs0,11280
+sympy/assumptions/sathandlers.py,sha256=Uu_ur8XtxUH5uaAlfGQHEyx2S1-3Q00EFmezDYaGxT0,9428
+sympy/assumptions/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/assumptions/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/assumptions/tests/__pycache__/test_assumptions_2.cpython-310.pyc,,
+sympy/assumptions/tests/__pycache__/test_context.cpython-310.pyc,,
+sympy/assumptions/tests/__pycache__/test_matrices.cpython-310.pyc,,
+sympy/assumptions/tests/__pycache__/test_query.cpython-310.pyc,,
+sympy/assumptions/tests/__pycache__/test_refine.cpython-310.pyc,,
+sympy/assumptions/tests/__pycache__/test_satask.cpython-310.pyc,,
+sympy/assumptions/tests/__pycache__/test_sathandlers.cpython-310.pyc,,
+sympy/assumptions/tests/__pycache__/test_wrapper.cpython-310.pyc,,
+sympy/assumptions/tests/test_assumptions_2.py,sha256=oNgIDOoW-GpBbXxbtw05SWnE8I7sGislYmB3MDogwB4,1070
+sympy/assumptions/tests/test_context.py,sha256=I5gES7AY9_vz1-CEaCchy4MXABtX85ncNkvoRuLskG8,1153
+sympy/assumptions/tests/test_matrices.py,sha256=nzSofuawc18hNe9Nj0dN_lTeDwa2KbPjt4K2rvb3xmw,12258
+sympy/assumptions/tests/test_query.py,sha256=teHsXTfPw_q4197tXcz2Ov-scVxDHP-T_LpcELmOMnI,97999
+sympy/assumptions/tests/test_refine.py,sha256=bHxYUnCOEIzA1yPU3B2xbU9JZfhDv6RkmPm8esetisQ,8834
+sympy/assumptions/tests/test_satask.py,sha256=IIqqIxzkLfANpTNBKEsCGCp3Bm8zmDnYd23woqKh9EE,15741
+sympy/assumptions/tests/test_sathandlers.py,sha256=jMCZQb3G6pVQ5MHaSTWV_0eULHaCF8Mowu12Ll72rgs,1842
+sympy/assumptions/tests/test_wrapper.py,sha256=iE32j83rrerCz85HHt2hTolgJkqb44KddfEpI3H1Fb8,1159
+sympy/assumptions/wrapper.py,sha256=nZ3StKi-Q0q_HmdwpzZEcE7WQFcVtnB28QBvYe_O220,5514
+sympy/benchmarks/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/benchmarks/__pycache__/__init__.cpython-310.pyc,,
+sympy/benchmarks/__pycache__/bench_discrete_log.cpython-310.pyc,,
+sympy/benchmarks/__pycache__/bench_meijerint.cpython-310.pyc,,
+sympy/benchmarks/__pycache__/bench_symbench.cpython-310.pyc,,
+sympy/benchmarks/bench_discrete_log.py,sha256=CNchIJ5HFMPpNlVZh2vOU0GgQ3bse6hqyqDovpDHlKE,2473
+sympy/benchmarks/bench_meijerint.py,sha256=dSNdZhoc8a4h50wRtbOxLwpmgUiuMFpe6ytTLURcplY,11610
+sympy/benchmarks/bench_symbench.py,sha256=UMD3eYf_Poht0qxjdH2_axGwwON6cZo1Sp700Ci1M1M,2997
+sympy/calculus/__init__.py,sha256=IWDc6qPbEcWyTm9QM6V8vSAs-5OtGNijimykoWz3Clc,828
+sympy/calculus/__pycache__/__init__.cpython-310.pyc,,
+sympy/calculus/__pycache__/accumulationbounds.cpython-310.pyc,,
+sympy/calculus/__pycache__/euler.cpython-310.pyc,,
+sympy/calculus/__pycache__/finite_diff.cpython-310.pyc,,
+sympy/calculus/__pycache__/singularities.cpython-310.pyc,,
+sympy/calculus/__pycache__/util.cpython-310.pyc,,
+sympy/calculus/accumulationbounds.py,sha256=DpFXDYbjSxx0icrx1HagArBeyVx5aSAX83vYuXSGMRI,28692
+sympy/calculus/euler.py,sha256=0QrHD9TYKlSZuO8drnU3bUFJrSu8v5SncqtkRSWLjGM,3436
+sympy/calculus/finite_diff.py,sha256=X7qZJ5GmHlHKokUUMFoaQqrqX2jLRq4b7W2G5aWntzM,17053
+sympy/calculus/singularities.py,sha256=ctVHpnE4Z7iE6tNAssMWmdXu9qWXOXzVJasLxC-cToQ,11757
+sympy/calculus/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/calculus/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/calculus/tests/__pycache__/test_accumulationbounds.cpython-310.pyc,,
+sympy/calculus/tests/__pycache__/test_euler.cpython-310.pyc,,
+sympy/calculus/tests/__pycache__/test_finite_diff.cpython-310.pyc,,
+sympy/calculus/tests/__pycache__/test_singularities.cpython-310.pyc,,
+sympy/calculus/tests/__pycache__/test_util.cpython-310.pyc,,
+sympy/calculus/tests/test_accumulationbounds.py,sha256=a_Ry2nKX5WbhSe1Bk2k0W6-VWOpVTg0FnA9u8rNSIV4,11195
+sympy/calculus/tests/test_euler.py,sha256=YWpts4pWSiYEwRsi5DLQ16JgC9109-9NKZIL_IO6_Aw,2683
+sympy/calculus/tests/test_finite_diff.py,sha256=V52uNDNvarcK_FXnWrPZjifFMRWTy_2H4lt3FmvA4W4,7760
+sympy/calculus/tests/test_singularities.py,sha256=zVCHJyjVFw9xpQ_EFCsA33zBGwCQ8gSeLtbLGA9t0uQ,4215
+sympy/calculus/tests/test_util.py,sha256=S5_YEGW0z7xzzthShrSsg2wAmzE9mR4u4Ndzuzw_Gx8,15034
+sympy/calculus/util.py,sha256=ViXMvleQIIStquHN01CpTUPYxu3jgC57GaCOkuXRsoU,26097
+sympy/categories/__init__.py,sha256=XiKBVC6pbDED-OVtNlSH-fGB8dB_jWLqwCEO7wBTAyA,984
+sympy/categories/__pycache__/__init__.cpython-310.pyc,,
+sympy/categories/__pycache__/baseclasses.cpython-310.pyc,,
+sympy/categories/__pycache__/diagram_drawing.cpython-310.pyc,,
+sympy/categories/baseclasses.py,sha256=G3wCiNCgNiTLLFZxGLd2ZFmnsbiRxhapSfZWlWSC508,31411
+sympy/categories/diagram_drawing.py,sha256=W88A89uDs8qKZlxVLqWuqmEOBwTMomtl_u8sFe9wqdU,95500
+sympy/categories/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/categories/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/categories/tests/__pycache__/test_baseclasses.cpython-310.pyc,,
+sympy/categories/tests/__pycache__/test_drawing.cpython-310.pyc,,
+sympy/categories/tests/test_baseclasses.py,sha256=SwD6QsfSlrEdpD2dbkcN62CPVIRP5SadjCplLrMAoa8,5767
+sympy/categories/tests/test_drawing.py,sha256=IELPpadmnQyQ2x5a5qHC8ioq5kfT1UnAl4h1vO3gbqg,27848
+sympy/codegen/__init__.py,sha256=sQcJsyLyoRh9ccOPhv2eZ-wHjQrArByOON9ndj-MYgQ,974
+sympy/codegen/__pycache__/__init__.cpython-310.pyc,,
+sympy/codegen/__pycache__/abstract_nodes.cpython-310.pyc,,
+sympy/codegen/__pycache__/algorithms.cpython-310.pyc,,
+sympy/codegen/__pycache__/approximations.cpython-310.pyc,,
+sympy/codegen/__pycache__/ast.cpython-310.pyc,,
+sympy/codegen/__pycache__/cfunctions.cpython-310.pyc,,
+sympy/codegen/__pycache__/cnodes.cpython-310.pyc,,
+sympy/codegen/__pycache__/cutils.cpython-310.pyc,,
+sympy/codegen/__pycache__/cxxnodes.cpython-310.pyc,,
+sympy/codegen/__pycache__/fnodes.cpython-310.pyc,,
+sympy/codegen/__pycache__/futils.cpython-310.pyc,,
+sympy/codegen/__pycache__/matrix_nodes.cpython-310.pyc,,
+sympy/codegen/__pycache__/numpy_nodes.cpython-310.pyc,,
+sympy/codegen/__pycache__/pynodes.cpython-310.pyc,,
+sympy/codegen/__pycache__/pyutils.cpython-310.pyc,,
+sympy/codegen/__pycache__/rewriting.cpython-310.pyc,,
+sympy/codegen/__pycache__/scipy_nodes.cpython-310.pyc,,
+sympy/codegen/abstract_nodes.py,sha256=TY4ecftqnym5viYInnb59zGPPFXdeSGQwi--xTz6Pvo,490
+sympy/codegen/algorithms.py,sha256=_isSQBzQzn1xKkYhYEF7nVK1sCa7n78Qo5AoCeNs8eU,5056
+sympy/codegen/approximations.py,sha256=UnVbikz2vjJo8DtE02ipa6ZEsCe5lXOT_r16F5ByW4Q,6447
+sympy/codegen/ast.py,sha256=tBRSHBvDz4_Z_FiFy1d48x1URHPtAVCJUiwQihpc5zA,56374
+sympy/codegen/cfunctions.py,sha256=SGLPIMgGE9o9RhaThTgVcmnFCKbxNZvukqp3uvqv0Vw,11812
+sympy/codegen/cnodes.py,sha256=ZFBxHsRBUcQ14EJRURZXh9EjTsSSJGwmWubfmpE0-p4,2823
+sympy/codegen/cutils.py,sha256=vlzMs8OkC5Bu4sIP-AF2mYf_tIo7Uo4r2DAI_LNhZzM,383
+sympy/codegen/cxxnodes.py,sha256=Om-EBfYduFF97tgXOF68rr8zYbngem9kBRm9SJiKLSM,342
+sympy/codegen/fnodes.py,sha256=P7I-TD-4H4Dr4bxFNS7p46OD9bi32l8SpFEezVWutSY,18931
+sympy/codegen/futils.py,sha256=k-mxMJKr_Q_afTy6NrKNl_N2XQLBmSdZAssO5hBonNY,1792
+sympy/codegen/matrix_nodes.py,sha256=Hhip0cbBj27i-4JwVinkEt4PHRbAIe5ERxwyywoSJm8,2089
+sympy/codegen/numpy_nodes.py,sha256=23inRIlvAF2wzaJGhi1NUg8R7NRbhtDrqICDZN909jw,3137
+sympy/codegen/pynodes.py,sha256=Neo1gFQ9kC31T-gH8TeeCaDDNaDe5deIP97MRZFgMHk,243
+sympy/codegen/pyutils.py,sha256=HfF6SP710Y7yExZcSesI0usVaDiWdEPEmMtyMD3JtOY,838
+sympy/codegen/rewriting.py,sha256=EeSOC-fawTxFiueMIuMlSFPuES_97hhxC2hjoZ_6pPQ,11591
+sympy/codegen/scipy_nodes.py,sha256=hYlxtGyTM0Z64Nazm1TeMZ3Y8dMsiD_HNhNvbU9eiQY,2508
+sympy/codegen/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/codegen/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/codegen/tests/__pycache__/test_abstract_nodes.cpython-310.pyc,,
+sympy/codegen/tests/__pycache__/test_algorithms.cpython-310.pyc,,
+sympy/codegen/tests/__pycache__/test_applications.cpython-310.pyc,,
+sympy/codegen/tests/__pycache__/test_approximations.cpython-310.pyc,,
+sympy/codegen/tests/__pycache__/test_ast.cpython-310.pyc,,
+sympy/codegen/tests/__pycache__/test_cfunctions.cpython-310.pyc,,
+sympy/codegen/tests/__pycache__/test_cnodes.cpython-310.pyc,,
+sympy/codegen/tests/__pycache__/test_cxxnodes.cpython-310.pyc,,
+sympy/codegen/tests/__pycache__/test_fnodes.cpython-310.pyc,,
+sympy/codegen/tests/__pycache__/test_numpy_nodes.cpython-310.pyc,,
+sympy/codegen/tests/__pycache__/test_pynodes.cpython-310.pyc,,
+sympy/codegen/tests/__pycache__/test_pyutils.cpython-310.pyc,,
+sympy/codegen/tests/__pycache__/test_rewriting.cpython-310.pyc,,
+sympy/codegen/tests/__pycache__/test_scipy_nodes.cpython-310.pyc,,
+sympy/codegen/tests/test_abstract_nodes.py,sha256=a_GKf3FpeNN8zfMc-V8AaSrQtEI1oiLfJOco2VKiSKI,451
+sympy/codegen/tests/test_algorithms.py,sha256=gvDTHZnC_lZ4Uvt7BTSfjMuDTyM0Bilm-sWMUpSM06I,4700
+sympy/codegen/tests/test_applications.py,sha256=DWDpSsiVQy7S6pjnBSErWxDpPDRRLL8ncTMWWwaI3R4,2189
+sympy/codegen/tests/test_approximations.py,sha256=SZpOUzahb_bJOceD0DLdmeiw-jN37OPmf5TRp1dyRgM,2035
+sympy/codegen/tests/test_ast.py,sha256=aAWk-yAVVNAmFMkyUlYBbVA8mPlTFqULOtmXMEi3LO8,21688
+sympy/codegen/tests/test_cfunctions.py,sha256=EuRwj9U00iLc2--qtY2YD7TpICndQ0gVsCXTYHrIFhQ,4613
+sympy/codegen/tests/test_cnodes.py,sha256=FlI5XP39K3kC1QWKQ-QKkzNQw8TROjj5mKXJhK1UU2c,3039
+sympy/codegen/tests/test_cxxnodes.py,sha256=5OwN8D_ZtKN9z5uNeUwbUkyAGzNLrTgIKUlcRWmOSpE,366
+sympy/codegen/tests/test_fnodes.py,sha256=r206n8YM0D1vFP0vdjUaAR7QRpmUWw8VmqSMFxh8FU8,6643
+sympy/codegen/tests/test_numpy_nodes.py,sha256=VcG7eGVlzx9sSKRp1n9zfK0NjigxY5WOW6F_nQnnnSs,1658
+sympy/codegen/tests/test_pynodes.py,sha256=Gso18KKzSwA-1AHC55SgHPAfH1GrGUCGaN6QR7iuEO0,432
+sympy/codegen/tests/test_pyutils.py,sha256=jr5QGvUP0M1Rr2_7vHTazlMaJOoMHztqFTxT6EkBcb4,285
+sympy/codegen/tests/test_rewriting.py,sha256=ELPziNI3CsJ4VS7mUbk4QWyG_94FbgZCdBKieMN20Vc,15852
+sympy/codegen/tests/test_scipy_nodes.py,sha256=LBWpjTRfgWN5NLTchLZEp6m7IMtu7HbiKoztLc6KNGY,1495
+sympy/combinatorics/__init__.py,sha256=Dx9xakpHuTIgy4G8zVjAY6pTu8J9_K3d_jKPizRMdVo,1500
+sympy/combinatorics/__pycache__/__init__.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/coset_table.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/fp_groups.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/free_groups.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/galois.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/generators.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/graycode.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/group_constructs.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/group_numbers.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/homomorphisms.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/named_groups.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/partitions.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/pc_groups.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/perm_groups.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/permutations.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/polyhedron.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/prufer.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/rewritingsystem.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/rewritingsystem_fsm.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/schur_number.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/subsets.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/tensor_can.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/testutil.cpython-310.pyc,,
+sympy/combinatorics/__pycache__/util.cpython-310.pyc,,
+sympy/combinatorics/coset_table.py,sha256=A3O5l1tkFmF1mEqiab08eBcR6lAdiqKJ2uPao3Ucvlk,42935
+sympy/combinatorics/fp_groups.py,sha256=QjeCEGBfTBbMZd-WpCOY5iEUyt8O7eJXa3RDLfMC7wk,47800
+sympy/combinatorics/free_groups.py,sha256=OnsEnMF6eehIFdM5m7RHkc9R_LFIahGJL3bAEv1pR6k,39534
+sympy/combinatorics/galois.py,sha256=0kz71xGJDKgJm-9dXr4YTMkfaHPowCUImpK9x-n3VNU,17863
+sympy/combinatorics/generators.py,sha256=vUIe0FgHGVFA5omJH-qHQP6NmqmnuVVV8n2RFnpTrKc,7481
+sympy/combinatorics/graycode.py,sha256=xbtr8AaFYb4SMmwUi7mf7913U87jH-XEYF_3pGZfj0o,11207
+sympy/combinatorics/group_constructs.py,sha256=IKx12_yWJqEQ7g-oBuAWd5VRLbCOWyL0LG4PQu43BS8,2021
+sympy/combinatorics/group_numbers.py,sha256=QuB-EvXmTulg5MuI4aLE3GlmFNTGKulAP-DQW9TBXU4,3073
+sympy/combinatorics/homomorphisms.py,sha256=s8bzIv4liVXwqJT2IuYPseQW4MBW2-zDpdHUXQsf7dU,18828
+sympy/combinatorics/named_groups.py,sha256=zd_C9epKDrMG0drafGUcHuuJJkcMaDt1Nf2ik4NXNq8,8378
+sympy/combinatorics/partitions.py,sha256=ZXqVmVNjmauhMeiTWtCCqOP38b9MJg7UlBdZa-7aICQ,20841
+sympy/combinatorics/pc_groups.py,sha256=IROCLM63p4ATazWsK9qRxmx8bZjoMhWxOrTm0Q5RRpo,21351
+sympy/combinatorics/perm_groups.py,sha256=mhAE82DSVM7x2YoS4ADdwLoWxzuGLVOjeaVGJnz9EY8,185087
+sympy/combinatorics/permutations.py,sha256=2f63LyIytpdDUbPyv44DqcGUJxtbfMEJFpyGuSq4xoY,87647
+sympy/combinatorics/polyhedron.py,sha256=OYRMNVwTxT97p4sG4EScl4a2QnBIvyutIPFBzxAfCLU,35942
+sympy/combinatorics/prufer.py,sha256=v-lHZN2ZhjOTS3_jLjw44Q9F7suS3VdgXThh1Sg6CRI,12086
+sympy/combinatorics/rewritingsystem.py,sha256=XTQUZpLIr6H1UBLao_ni1UAoIMB8V5Bpfp8BBCV9g5c,17097
+sympy/combinatorics/rewritingsystem_fsm.py,sha256=CKGhLqyvxY0mlmy8_Hb4WzkSdWYPUaU2yZYhz-0iZ5w,2433
+sympy/combinatorics/schur_number.py,sha256=YdsyA7n_z9tyfRTSRfIjEjtnGo5EuDGBMUS09AQ2MxU,4437
+sympy/combinatorics/subsets.py,sha256=oxuExuGyFnvunkmktl-vBYiLbiN66A2Q2MyzwWfy46A,16047
+sympy/combinatorics/tensor_can.py,sha256=h6NTaH99oG0g1lVxhShBY2Fc4IwXyMUc0Ih31KI6kFw,40776
+sympy/combinatorics/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/combinatorics/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/combinatorics/tests/__pycache__/test_coset_table.cpython-310.pyc,,
+sympy/combinatorics/tests/__pycache__/test_fp_groups.cpython-310.pyc,,
+sympy/combinatorics/tests/__pycache__/test_free_groups.cpython-310.pyc,,
+sympy/combinatorics/tests/__pycache__/test_galois.cpython-310.pyc,,
+sympy/combinatorics/tests/__pycache__/test_generators.cpython-310.pyc,,
+sympy/combinatorics/tests/__pycache__/test_graycode.cpython-310.pyc,,
+sympy/combinatorics/tests/__pycache__/test_group_constructs.cpython-310.pyc,,
+sympy/combinatorics/tests/__pycache__/test_group_numbers.cpython-310.pyc,,
+sympy/combinatorics/tests/__pycache__/test_homomorphisms.cpython-310.pyc,,
+sympy/combinatorics/tests/__pycache__/test_named_groups.cpython-310.pyc,,
+sympy/combinatorics/tests/__pycache__/test_partitions.cpython-310.pyc,,
+sympy/combinatorics/tests/__pycache__/test_pc_groups.cpython-310.pyc,,
+sympy/combinatorics/tests/__pycache__/test_perm_groups.cpython-310.pyc,,
+sympy/combinatorics/tests/__pycache__/test_permutations.cpython-310.pyc,,
+sympy/combinatorics/tests/__pycache__/test_polyhedron.cpython-310.pyc,,
+sympy/combinatorics/tests/__pycache__/test_prufer.cpython-310.pyc,,
+sympy/combinatorics/tests/__pycache__/test_rewriting.cpython-310.pyc,,
+sympy/combinatorics/tests/__pycache__/test_schur_number.cpython-310.pyc,,
+sympy/combinatorics/tests/__pycache__/test_subsets.cpython-310.pyc,,
+sympy/combinatorics/tests/__pycache__/test_tensor_can.cpython-310.pyc,,
+sympy/combinatorics/tests/__pycache__/test_testutil.cpython-310.pyc,,
+sympy/combinatorics/tests/__pycache__/test_util.cpython-310.pyc,,
+sympy/combinatorics/tests/test_coset_table.py,sha256=cEUF0OH6SNhN_kh069wMsq6h4eSVqbDLghrg2r9Ht48,28474
+sympy/combinatorics/tests/test_fp_groups.py,sha256=7ATMwzPvAoWiH7Cex-D63nmlOa20h70zO5TWGVisFwM,9969
+sympy/combinatorics/tests/test_free_groups.py,sha256=h3tPyjMA79M9QMc0rOlgVXU31lZ0s_xoY_YIVsVz0Fg,6161
+sympy/combinatorics/tests/test_galois.py,sha256=w35JRx8lmlXCdzUBNdocgATPYWBOEZ6LH-tAxOPwCQ8,2763
+sympy/combinatorics/tests/test_generators.py,sha256=6YpOp0i5PRGtySPNZseQ8mjSXbwpfGfz0hDB4kfk40Q,3567
+sympy/combinatorics/tests/test_graycode.py,sha256=pI4e7Y615d5Bmmxui6fdEeyca6j6KSD0YmeychV6ORk,2800
+sympy/combinatorics/tests/test_group_constructs.py,sha256=jJLwMdhuUalKv4Aql9SzV2utK8Ex-IYdMecggr95pi8,450
+sympy/combinatorics/tests/test_group_numbers.py,sha256=nRxK4R8Cdq4Ni9e_6n4fRjir3VBOmXMzAIXnlRNQD3Y,989
+sympy/combinatorics/tests/test_homomorphisms.py,sha256=UwBj5loCuZAiuvmqy5VAbwhCQTph8o6BzTaGrH0rzB4,3745
+sympy/combinatorics/tests/test_named_groups.py,sha256=tsuDVGv4iHGEZ0BVR87_ENhyAfZvFIl0M6Dv_HX1VoY,1931
+sympy/combinatorics/tests/test_partitions.py,sha256=oppszKJLLSpcEzHgespIveSmEC3fDZ0qkus1k7MBt4E,4097
+sympy/combinatorics/tests/test_pc_groups.py,sha256=wfkY_ilpG0XWrhaWMVK6r7yWMeXfM8WNTyti5oE9bdk,2728
+sympy/combinatorics/tests/test_perm_groups.py,sha256=t-bERPQXU4pKAEHR3caHemGMnQ2qh9leIOz0-hB8vjo,41191
+sympy/combinatorics/tests/test_permutations.py,sha256=IfOxSCY18glt_8lqovnjtXyz9OX02ZQaUE47aCUzKIA,20149
+sympy/combinatorics/tests/test_polyhedron.py,sha256=3SWkFQKeF-p1QWP4Iu9NIA1oTxAFo1BLRrrLerBFAhw,4180
+sympy/combinatorics/tests/test_prufer.py,sha256=OTJp0NxjiVswWkOuCIlnGFU2Gw4noRsrPpUJtp2XhEs,2649
+sympy/combinatorics/tests/test_rewriting.py,sha256=3COHq74k6knt2rqE7hfd4ZP_6whf0Kg14tYxFmTtYrI,1787
+sympy/combinatorics/tests/test_schur_number.py,sha256=wg13uTumFltWIGbVg_PEr6nhXIru19UWitsEZiakoRI,1727
+sympy/combinatorics/tests/test_subsets.py,sha256=6pyhLYV5HuXvx63r-gGVHr8LSrGRXcpDudhFn9fBqX8,2635
+sympy/combinatorics/tests/test_tensor_can.py,sha256=olH5D5wwTBOkZXjtqvLO6RKbvCG9KoMVK4__wDe95N4,24676
+sympy/combinatorics/tests/test_testutil.py,sha256=uJlO09XgD-tImCWu1qkajiC07rK3GoN91v3_OqT5-qo,1729
+sympy/combinatorics/tests/test_util.py,sha256=sOYMWHxlbM0mqalqA7jNrYMm8DKcf_GwL5YBjs96_C4,4499
+sympy/combinatorics/testutil.py,sha256=Nw0En7kI9GMjca287aht1HNaTjBFv8ulq0E1rgtpO6Q,11152
+sympy/combinatorics/util.py,sha256=LIu_8__RKMv8EfXAfkr08UKYSMq5hGJBLHyDSS5nd-8,16297
+sympy/concrete/__init__.py,sha256=2HDmg3VyLgM_ZPw3XsGpkOClGiQnyTlUNHSwVTtizA0,144
+sympy/concrete/__pycache__/__init__.cpython-310.pyc,,
+sympy/concrete/__pycache__/delta.cpython-310.pyc,,
+sympy/concrete/__pycache__/expr_with_intlimits.cpython-310.pyc,,
+sympy/concrete/__pycache__/expr_with_limits.cpython-310.pyc,,
+sympy/concrete/__pycache__/gosper.cpython-310.pyc,,
+sympy/concrete/__pycache__/guess.cpython-310.pyc,,
+sympy/concrete/__pycache__/products.cpython-310.pyc,,
+sympy/concrete/__pycache__/summations.cpython-310.pyc,,
+sympy/concrete/delta.py,sha256=xDtz1yXnd-WRIu3nnJFBIrA01PLOUT3XU1znPeVATU0,9958
+sympy/concrete/expr_with_intlimits.py,sha256=vj4PjttB9xE5aUYu37R1A4_KtGgxcPa65jzjv8-krsc,11352
+sympy/concrete/expr_with_limits.py,sha256=txn7gbh-Yqw0-ZBGvN9iFNsPW13wD2z7alf8EyQVZ4U,21832
+sympy/concrete/gosper.py,sha256=3q8gkZz_oAeBOBUfObMvwArBkBKYReHR0prVXMIqrNE,5557
+sympy/concrete/guess.py,sha256=Ha12uphLNfo3AbfsGy85JsPxhbiAXJemwpz9QXRtp48,17472
+sympy/concrete/products.py,sha256=s6E_Z0KuHx8MzbJzaJo2NP5aTpgIo3-oqGwgYh_osnE,18608
+sympy/concrete/summations.py,sha256=jhmU5WCz98Oon3oosHUsM8sp6ErjPGCz25rbKn5hqS8,55371
+sympy/concrete/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/concrete/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/concrete/tests/__pycache__/test_delta.cpython-310.pyc,,
+sympy/concrete/tests/__pycache__/test_gosper.cpython-310.pyc,,
+sympy/concrete/tests/__pycache__/test_guess.cpython-310.pyc,,
+sympy/concrete/tests/__pycache__/test_products.cpython-310.pyc,,
+sympy/concrete/tests/__pycache__/test_sums_products.cpython-310.pyc,,
+sympy/concrete/tests/test_delta.py,sha256=uI7xjMx7JuVb3kkN7cLR6_pGsKS4Ulq22p-Z9oti5Jc,23869
+sympy/concrete/tests/test_gosper.py,sha256=ZHiZfYGCeCS9I-0oqN6sFbiYa-284GeFoGsNbhIWq4I,7987
+sympy/concrete/tests/test_guess.py,sha256=TPW6Hy11Po6VLZG_dx95x3sMBYl5kcQH8wjJ6TOtu-k,3370
+sympy/concrete/tests/test_products.py,sha256=caYc-xlEIrX9I_A-KPQdwp5oDprVJSbfcOaKg_qUnsM,14521
+sympy/concrete/tests/test_sums_products.py,sha256=0ti3g4D8hBpvpsSrc2CYIRxVwqLORKO5K88offDwKfM,64458
+sympy/conftest.py,sha256=3vg-GlDw8Y8MGoa324FoRJR3HaRaJhZpiXdTTVoNAoI,2245
+sympy/core/__init__.py,sha256=LQBkB1S-CYmQ3P24ei_kHcsMwtbDobn3BqzJQ-rJ1Hs,3050
+sympy/core/__pycache__/__init__.cpython-310.pyc,,
+sympy/core/__pycache__/_print_helpers.cpython-310.pyc,,
+sympy/core/__pycache__/add.cpython-310.pyc,,
+sympy/core/__pycache__/alphabets.cpython-310.pyc,,
+sympy/core/__pycache__/assumptions.cpython-310.pyc,,
+sympy/core/__pycache__/assumptions_generated.cpython-310.pyc,,
+sympy/core/__pycache__/backend.cpython-310.pyc,,
+sympy/core/__pycache__/basic.cpython-310.pyc,,
+sympy/core/__pycache__/cache.cpython-310.pyc,,
+sympy/core/__pycache__/compatibility.cpython-310.pyc,,
+sympy/core/__pycache__/containers.cpython-310.pyc,,
+sympy/core/__pycache__/core.cpython-310.pyc,,
+sympy/core/__pycache__/coreerrors.cpython-310.pyc,,
+sympy/core/__pycache__/decorators.cpython-310.pyc,,
+sympy/core/__pycache__/evalf.cpython-310.pyc,,
+sympy/core/__pycache__/expr.cpython-310.pyc,,
+sympy/core/__pycache__/exprtools.cpython-310.pyc,,
+sympy/core/__pycache__/facts.cpython-310.pyc,,
+sympy/core/__pycache__/function.cpython-310.pyc,,
+sympy/core/__pycache__/kind.cpython-310.pyc,,
+sympy/core/__pycache__/logic.cpython-310.pyc,,
+sympy/core/__pycache__/mod.cpython-310.pyc,,
+sympy/core/__pycache__/mul.cpython-310.pyc,,
+sympy/core/__pycache__/multidimensional.cpython-310.pyc,,
+sympy/core/__pycache__/numbers.cpython-310.pyc,,
+sympy/core/__pycache__/operations.cpython-310.pyc,,
+sympy/core/__pycache__/parameters.cpython-310.pyc,,
+sympy/core/__pycache__/power.cpython-310.pyc,,
+sympy/core/__pycache__/random.cpython-310.pyc,,
+sympy/core/__pycache__/relational.cpython-310.pyc,,
+sympy/core/__pycache__/rules.cpython-310.pyc,,
+sympy/core/__pycache__/singleton.cpython-310.pyc,,
+sympy/core/__pycache__/sorting.cpython-310.pyc,,
+sympy/core/__pycache__/symbol.cpython-310.pyc,,
+sympy/core/__pycache__/sympify.cpython-310.pyc,,
+sympy/core/__pycache__/trace.cpython-310.pyc,,
+sympy/core/__pycache__/traversal.cpython-310.pyc,,
+sympy/core/_print_helpers.py,sha256=GQo9dI_BvAJtYHVFFfmroNr0L8d71UeI-tU7SGJgctk,2388
+sympy/core/add.py,sha256=9VDeDODPv3Y72EWa4Xiypy3i67DzbNlPUYAEZXhEwEw,43747
+sympy/core/alphabets.py,sha256=vWBs2atOvfRK6Xfg6hc5IKiB7s_0sZIiVJpcCUJL0N4,266
+sympy/core/assumptions.py,sha256=P7c11DL5VD_94v1Dc5LofIy6Atrth7FZp03rDr4ftQ4,23582
+sympy/core/assumptions_generated.py,sha256=0TJKYIHSIFyQcVHZdIHZ19b7tqst_sY7iZwjKzcvZBM,42817
+sympy/core/backend.py,sha256=AUgGtYmz0mIoVmjKVMAa5ZzlC1p5anxk-N4Sy7pePNo,3842
+sympy/core/basic.py,sha256=1wRiJLAILhJK2uVTAtuxlCFWKXCKT-PECXve4rfXWs0,72857
+sympy/core/benchmarks/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/core/benchmarks/__pycache__/__init__.cpython-310.pyc,,
+sympy/core/benchmarks/__pycache__/bench_arit.cpython-310.pyc,,
+sympy/core/benchmarks/__pycache__/bench_assumptions.cpython-310.pyc,,
+sympy/core/benchmarks/__pycache__/bench_basic.cpython-310.pyc,,
+sympy/core/benchmarks/__pycache__/bench_expand.cpython-310.pyc,,
+sympy/core/benchmarks/__pycache__/bench_numbers.cpython-310.pyc,,
+sympy/core/benchmarks/__pycache__/bench_sympify.cpython-310.pyc,,
+sympy/core/benchmarks/bench_arit.py,sha256=gfrnvKSXLCaUoFFxMgJhnLUp7rG9Pa_YT7OKgOrPP8E,412
+sympy/core/benchmarks/bench_assumptions.py,sha256=evfZzTgOUUvvvlK0DRdDZQRqxIlGLfJYzKu8QDMxSks,177
+sympy/core/benchmarks/bench_basic.py,sha256=YF0tTJ_AN_Wz11qidzM4bIhlwEhEqVc-IGVGrUx6SaA,210
+sympy/core/benchmarks/bench_expand.py,sha256=xgQYQMwqgXJtKajM4JVhuL-7AW8TLY-vdBpO6uyMDoQ,427
+sympy/core/benchmarks/bench_numbers.py,sha256=fvcbOkslXdADqiX_amiL-BEUtrXBfdiTZeOtbiI2auI,1105
+sympy/core/benchmarks/bench_sympify.py,sha256=G5iGInhhbkkxSY2pS08BNG945m9m4eZlNT1aJutGt5M,138
+sympy/core/cache.py,sha256=AyG7kganyV0jVx-aNBEUFogqRLHQqqFn8xU3ZSfJoaM,6172
+sympy/core/compatibility.py,sha256=XQH7ezmRi6l3R23qMHN2wfA-YMRWbh2YYjPY7LRo3lo,1145
+sympy/core/containers.py,sha256=ic6uSNItz5JgL8Dx8T87gcnpiGwOxvf6FaQVgIRWWoo,11315
+sympy/core/core.py,sha256=3pIrJokfb2Rn8S2XudM3JyQVEqY1vZhSEZ-1tkUmqYg,1797
+sympy/core/coreerrors.py,sha256=OKpJwk_yE3ZMext49R-QwtTudZaXZbmTspaq1ZMMpAU,272
+sympy/core/decorators.py,sha256=de6eYm3D_YdEW1rEKOIES_aEyvbjqRM98I67l8QGGVU,8217
+sympy/core/evalf.py,sha256=HL9frdDL3OXiF08CXISADkmCx7_KjcAt_nYu4m_IKyM,61889
+sympy/core/expr.py,sha256=_lGEDOkQX57uMh275-NGY3Mus6lrQP-cCW_b6xngy_w,142568
+sympy/core/exprtools.py,sha256=mCUxyyQZDSceU7eHPxV3C0mBUWI4a2Qz_LhZxJ5FXY8,51459
+sympy/core/facts.py,sha256=54pFKhJwEzU8LkO7rL25TwGjIb5y5CvZleHEy_TpD68,19546
+sympy/core/function.py,sha256=TuxxpFyc9y5s5dQH3hZnjEovhoZM0nDQNPjfKw5I4ug,115552
+sympy/core/kind.py,sha256=9kQvtDxm-SSRGi-155XsBl_rs-oN_7dw7fNNT3mDu2Q,11540
+sympy/core/logic.py,sha256=Ai2_N-pUmHngJN3usiMTNO6kfLWFVQa3WOet3VhehE8,10865
+sympy/core/mod.py,sha256=survk3e5EyNifVHKpqLZ5NUobFdS0-wEYN4XoUkzMI8,7484
+sympy/core/mul.py,sha256=d7TAZK5YQWT7dsHt84y-2K9Q17FUxi6ilpfgd0GPZ30,78458
+sympy/core/multidimensional.py,sha256=NWX1okybO_nZCl9IhIOE8QYalY1WoC0zlzsvBg_E1eE,4233
+sympy/core/numbers.py,sha256=yNkmRw8ehaQWREJAYv61YP2pGkXy1yAo7ehGrXTVamY,139169
+sympy/core/operations.py,sha256=vasCAsT4aU9XJxfrEGjL-zeVIl2FsI1ktzVtPaJq_0c,25185
+sympy/core/parameters.py,sha256=09LVewtoOyKABQvYeMaJuc-HG7TjJusyT_WMw5NQDDs,3733
+sympy/core/power.py,sha256=WYVmJPNPFsaxeec2D2M_Tb9vUrIG3K8CiAqHca1YVPE,77148
+sympy/core/random.py,sha256=miFdVpNKfutbkpYiIOzG9kVNUm5GTk-_nnmQqUhVDZs,6647
+sympy/core/relational.py,sha256=XcPZ8xUKl8pMAcGk9OBYssCcTH-7lueak2WrsTpzs8g,50608
+sympy/core/rules.py,sha256=AJuZztmYKZ_yUITLZB6rhZjDy6ROBCtajcYqPa50sjc,1496
+sympy/core/singleton.py,sha256=0TrQk5Q4U-GvSXTe4Emih6B2JJg2WMu_u0pSj92wqVA,6542
+sympy/core/sorting.py,sha256=ynZfmQPXWq5Te6WOz6CzaR8crlJfcfKTP24gzVf-QF0,10671
+sympy/core/symbol.py,sha256=eciLIZCLMlmBKBF5XcJqVRYXf2Z3M13kQ3dJ_-ok43g,28555
+sympy/core/sympify.py,sha256=pZuEWvH-kcUGNq0epaVm11G8cmXZQtMyoeoywBVcbYU,20399
+sympy/core/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/core/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_args.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_arit.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_assumptions.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_basic.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_cache.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_compatibility.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_complex.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_constructor_postprocessor.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_containers.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_count_ops.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_diff.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_equal.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_eval.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_evalf.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_expand.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_expr.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_exprtools.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_facts.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_function.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_kind.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_logic.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_match.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_multidimensional.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_noncommutative.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_numbers.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_operations.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_parameters.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_power.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_priority.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_random.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_relational.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_rules.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_singleton.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_sorting.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_subs.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_symbol.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_sympify.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_traversal.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_truediv.cpython-310.pyc,,
+sympy/core/tests/__pycache__/test_var.cpython-310.pyc,,
+sympy/core/tests/test_args.py,sha256=IeGS8dWg2nM8LncK-_XH4yuCyoBjSIHgemDGEpiVEnc,178389
+sympy/core/tests/test_arit.py,sha256=DwlTHtg2BllVwn0lGNJs89TsKgeAf7wdrXCZR7BkfGo,77847
+sympy/core/tests/test_assumptions.py,sha256=MjJdF_ymVL6mtgQx-aSr_rsNNxaTi2pHFLjyaPCBq5Q,41573
+sympy/core/tests/test_basic.py,sha256=cgAhl2-bLXBkx2EaV5KtnY7-MKOEL9Mov25JUoAmLSo,9496
+sympy/core/tests/test_cache.py,sha256=p6Ci75a_T-bBXE_5HVxRKla62uSay_0Vuf57gUuH6sI,2001
+sympy/core/tests/test_compatibility.py,sha256=7pvNUEGIcRrfWl3doqHlm3AdNkGlcChO69gos3Fk09A,240
+sympy/core/tests/test_complex.py,sha256=koNGFMt6UMmzahJADSja_eD24gr-GG5gGCtyDgCRtPI,21906
+sympy/core/tests/test_constructor_postprocessor.py,sha256=0d7vbVuKi3GCm3PKLtiNqv_Au7v6RYt1rzRdHiD08tM,2441
+sympy/core/tests/test_containers.py,sha256=bFaqu8Bu82-rpgpNEPU4-R3rGwhqNdlLlWCqtHsBqN0,7434
+sympy/core/tests/test_count_ops.py,sha256=eIA2WvCuWKXVBJEGfWoJrn6WfUshX_NXttrrfyLbNnI,5665
+sympy/core/tests/test_diff.py,sha256=6j4Vk9UCNRv8Oyx_4iv1ePjocwBg7_-3ftrSJ8u0cPo,5421
+sympy/core/tests/test_equal.py,sha256=RoOJuu4kMe4Rkk7eNyVOJov5S1770YHiVAiziNIKd2o,1678
+sympy/core/tests/test_eval.py,sha256=o0kZn3oaMidVYdNjeZYtx4uUKBoE3A2tWn2NS4hu72Q,2366
+sympy/core/tests/test_evalf.py,sha256=ShOta18xc-jFlSnnlHhyWsDumLyQRr91YiC1j_gL9Sw,28307
+sympy/core/tests/test_expand.py,sha256=-Rl7sRQevvVBMck3jSA8kg6jgvWeI2yxh9cbSuy0fOA,13383
+sympy/core/tests/test_expr.py,sha256=RRZ7r-AltCCz7Cxfun8is5xVVUklXjbBfDVDoFopAf0,76520
+sympy/core/tests/test_exprtools.py,sha256=L7fi319z1EeFag6pH8myqDQYQ32H193QLKMdqlxACsY,19021
+sympy/core/tests/test_facts.py,sha256=YEZMZ-116VFnFqJ48h9bQsF2flhiB65trnZvJsRSh_o,11579
+sympy/core/tests/test_function.py,sha256=vVoXYyGzdTO3EtlRu0sONxjB3fprXxZ7_9Ve6HdH84s,51420
+sympy/core/tests/test_kind.py,sha256=NLJbwCpugzlNbaSyUlbb6NHoT_9dHuoXj023EDQMrNI,2048
+sympy/core/tests/test_logic.py,sha256=_YKSIod6Q0oIz9lDs78UQQrv9LU-uKaztd7w8LWwuwY,5634
+sympy/core/tests/test_match.py,sha256=2ewD4Ao9cYNvbt2TAId8oZCU0GCNWsSDx4qO5-_Xhwc,22716
+sympy/core/tests/test_multidimensional.py,sha256=Fr-lagme3lwLrBpdaWP7O7oPezhIatn5X8fYYs-8bN8,848
+sympy/core/tests/test_noncommutative.py,sha256=IkGPcvLO4ACVj5LMT2IUgyj68F1RBvMKbm01iqTOK04,4436
+sympy/core/tests/test_numbers.py,sha256=AgFd3RJAMakI6AxCDzfOrGgSX7UeAjxvPHs3Rzk2ns4,75434
+sympy/core/tests/test_operations.py,sha256=mRxftKlrxxrn3zS3UPwqkF6Nr15l5Cv6j3c2RJX46s4,2859
+sympy/core/tests/test_parameters.py,sha256=lRZSShirTW7GRfYgU3A3LRlW79xEPqi62XtoJeaMuDs,2799
+sympy/core/tests/test_power.py,sha256=LptUWHOYrFfNg1-8cNEMxDoQzCdDtguihgVoGb0QC9M,24434
+sympy/core/tests/test_priority.py,sha256=g9dGW-qT647yL4uk1D_v3M2S8rgV1Wi4JBUFyTSwUt4,3190
+sympy/core/tests/test_random.py,sha256=H58NfH5BYeQ3RIscbDct6SZkHQVRJjichVUSuSrhvAU,1233
+sympy/core/tests/test_relational.py,sha256=jebPjr32VQsL-W3laOMxKuYkyo9SFpkdXrTFfqDL3e4,42972
+sympy/core/tests/test_rules.py,sha256=iwmMX7hxC_73CuX9BizeAci-cO4JDq-y1sicKBXEGA4,349
+sympy/core/tests/test_singleton.py,sha256=xLJJgXwmkbKhsot_qTs-o4dniMjHUh3_va0xsA5h-KA,3036
+sympy/core/tests/test_sorting.py,sha256=6BZKYqUedAR-jeHcIgsJelJHFWuougml2c1NNilxGZg,902
+sympy/core/tests/test_subs.py,sha256=7ITJFDplgWBRImkcHfjRdnHqaKgjTxWb4j4WoRysvR8,30106
+sympy/core/tests/test_symbol.py,sha256=zYhPWsdyQp7_NiLVthpoCB1RyP9pmJcNlTdTN2kMdfY,13043
+sympy/core/tests/test_sympify.py,sha256=gVUNWYtarpDrx3vk4r0Vjnrijr21YgHUUSfJmeyabCo,27866
+sympy/core/tests/test_traversal.py,sha256=cmgvMW8G-LZ20ZXy-wg5Vz5ogI_oq2p2bJSwMy9IMF0,4311
+sympy/core/tests/test_truediv.py,sha256=RYfJX39-mNhekRE3sj5TGFZXKra4ML9vGvObsRYuD3k,854
+sympy/core/tests/test_var.py,sha256=hexP-0q2nN9h_dyhKLCuvqFXgLC9e_Hroni8Ldb16Ko,1594
+sympy/core/trace.py,sha256=9WC8p3OpBL6TdHmZWMDK9jaCG-16f4uZV2VptduVH98,348
+sympy/core/traversal.py,sha256=M-ZMt-DRUgyZed_I1gikxEbSYEJLwi7mwpjd-_iFKC8,8962
+sympy/crypto/__init__.py,sha256=i8GcbScXhIPbMEe7uuMgXqh_cU2mZm2f6hspIgmW5uM,2158
+sympy/crypto/__pycache__/__init__.cpython-310.pyc,,
+sympy/crypto/__pycache__/crypto.cpython-310.pyc,,
+sympy/crypto/crypto.py,sha256=Qb0O_f78q-CtHabvHS7VRJmncbkuqowWTF3_drmMgxI,89426
+sympy/crypto/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/crypto/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/crypto/tests/__pycache__/test_crypto.cpython-310.pyc,,
+sympy/crypto/tests/test_crypto.py,sha256=-GJYezqcuQ3KUq_IqCEJAWa-zWAPWFku2WdLj7Aonrc,19763
+sympy/diffgeom/__init__.py,sha256=cWj4N7AfNgrYcGIBexX-UrWxfd1bP9DTNqUmLWUJ9nA,991
+sympy/diffgeom/__pycache__/__init__.cpython-310.pyc,,
+sympy/diffgeom/__pycache__/diffgeom.cpython-310.pyc,,
+sympy/diffgeom/__pycache__/rn.cpython-310.pyc,,
+sympy/diffgeom/diffgeom.py,sha256=CCkZEwNcJYrmhyuBVr94KwMFjHsbL6mOJZ2f5aGcARU,72322
+sympy/diffgeom/rn.py,sha256=kvgth6rNJWt94kzVospZwiH53C-s4VSiorktQNmMobQ,6264
+sympy/diffgeom/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/diffgeom/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/diffgeom/tests/__pycache__/test_class_structure.cpython-310.pyc,,
+sympy/diffgeom/tests/__pycache__/test_diffgeom.cpython-310.pyc,,
+sympy/diffgeom/tests/__pycache__/test_function_diffgeom_book.cpython-310.pyc,,
+sympy/diffgeom/tests/__pycache__/test_hyperbolic_space.cpython-310.pyc,,
+sympy/diffgeom/tests/test_class_structure.py,sha256=LbRyxhhp-NnnfJ2gTn1SdlgCBQn2rhyB7xApOgcd_rM,1048
+sympy/diffgeom/tests/test_diffgeom.py,sha256=3BepCr6ned-4C_3me4zScu06HXG9Qx_dBBxIpiXAvy4,14145
+sympy/diffgeom/tests/test_function_diffgeom_book.py,sha256=0YU63iHyY6O-4LR9lRS5kLZMpcMpuNxEsgqtXALV7ic,5258
+sympy/diffgeom/tests/test_hyperbolic_space.py,sha256=c4xQJ_bBS4xrMj3pfx1Ms3oC2_LwuJuNYXNZxs-cVG8,2598
+sympy/discrete/__init__.py,sha256=A_Seud0IRr2gPYlz6JMQZa3sBhRL3O7gVqhIvMRRvE0,772
+sympy/discrete/__pycache__/__init__.cpython-310.pyc,,
+sympy/discrete/__pycache__/convolutions.cpython-310.pyc,,
+sympy/discrete/__pycache__/recurrences.cpython-310.pyc,,
+sympy/discrete/__pycache__/transforms.cpython-310.pyc,,
+sympy/discrete/convolutions.py,sha256=xeXCLxPSpBNfrKNlPGGpuU3D9Azf0uR01OpDGCOAALg,14505
+sympy/discrete/recurrences.py,sha256=FqU5QG4qNNLSVBqcpL7HtKa7rQOlmHMXDQRzHZ_P_s0,5124
+sympy/discrete/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/discrete/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/discrete/tests/__pycache__/test_convolutions.cpython-310.pyc,,
+sympy/discrete/tests/__pycache__/test_recurrences.cpython-310.pyc,,
+sympy/discrete/tests/__pycache__/test_transforms.cpython-310.pyc,,
+sympy/discrete/tests/test_convolutions.py,sha256=m6LrKCMIeNeuicfuMMFG3-Ke-7oyjTsD1QRbKdTRVYk,16626
+sympy/discrete/tests/test_recurrences.py,sha256=s5ZEZQ262gcnBLpCjJVmeKlTKQByRTQBrc-N9p_4W8c,3019
+sympy/discrete/tests/test_transforms.py,sha256=vEORFaPvxmPSsw0f4Z2hLEN1wD0FdyQOYHDEY9aVm5A,5546
+sympy/discrete/transforms.py,sha256=lf-n6IN881uCfTUAxPNjdUaSguiRbYW0omuR96vKNlE,11681
+sympy/external/__init__.py,sha256=C6s4654Elc_X-D9UgI2cUQWiQyGDt9LG3IKUc8qqzuo,578
+sympy/external/__pycache__/__init__.cpython-310.pyc,,
+sympy/external/__pycache__/gmpy.cpython-310.pyc,,
+sympy/external/__pycache__/importtools.cpython-310.pyc,,
+sympy/external/__pycache__/pythonmpq.cpython-310.pyc,,
+sympy/external/gmpy.py,sha256=V3Z0HQyg7SOgviwOvBik8dUtSxO6yiNqFqjARnjTO3I,2982
+sympy/external/importtools.py,sha256=Q7tS2cdGZ9a4NI_1sgGuoVcSDv_rIk-Av0BpFTa6EzA,7671
+sympy/external/pythonmpq.py,sha256=WOMTvHxYLXNp_vQ1F3jE_haeRlnGicbRlCTOp4ZNuo8,11243
+sympy/external/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/external/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/external/tests/__pycache__/test_autowrap.cpython-310.pyc,,
+sympy/external/tests/__pycache__/test_codegen.cpython-310.pyc,,
+sympy/external/tests/__pycache__/test_importtools.cpython-310.pyc,,
+sympy/external/tests/__pycache__/test_numpy.cpython-310.pyc,,
+sympy/external/tests/__pycache__/test_pythonmpq.cpython-310.pyc,,
+sympy/external/tests/__pycache__/test_scipy.cpython-310.pyc,,
+sympy/external/tests/test_autowrap.py,sha256=tRDOkHdndNTmsa9sGjlZ1lFIh1rL2Awck4ec1iolb7c,9755
+sympy/external/tests/test_codegen.py,sha256=zOgdevzcR5pK73FnXe3Su_2D6cuvrkP2FMqsro83G-c,12676
+sympy/external/tests/test_importtools.py,sha256=KrfontKYv11UvpazQ0vS1qyhxIvgZrCOXh1JFeACjeo,1394
+sympy/external/tests/test_numpy.py,sha256=7-YWZ--nbVX0h_rzah18AEjiz7JyvEzjHtklhwaAGhI,10123
+sympy/external/tests/test_pythonmpq.py,sha256=L_FdZmmk5N-VEivE_O_qZa98BZhT1WSxRfdmG817bA0,5797
+sympy/external/tests/test_scipy.py,sha256=CVaw7D0-6DORgg78Q6b35SNKn05PlKwWJuqXOuU-qdY,1172
+sympy/functions/__init__.py,sha256=fxnbVbZruEHXQxB5DaQTC6k1Qi8BrWaQ3LwBuSZZryk,5229
+sympy/functions/__pycache__/__init__.cpython-310.pyc,,
+sympy/functions/combinatorial/__init__.py,sha256=WqXI3qU_TTJ7nJA8m3Z-7ZAYKoApT8f9Xs0u2bTwy_c,53
+sympy/functions/combinatorial/__pycache__/__init__.cpython-310.pyc,,
+sympy/functions/combinatorial/__pycache__/factorials.cpython-310.pyc,,
+sympy/functions/combinatorial/__pycache__/numbers.cpython-310.pyc,,
+sympy/functions/combinatorial/factorials.py,sha256=OkQ_U2FhDCU0wnpLWyK4f6HMup-EAxh1fsQns74hYjE,37546
+sympy/functions/combinatorial/numbers.py,sha256=iXGk2kGB866puhbfk49KfFogYW8lUVTk_tm_nQw_gg4,83429
+sympy/functions/combinatorial/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/functions/combinatorial/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/functions/combinatorial/tests/__pycache__/test_comb_factorials.cpython-310.pyc,,
+sympy/functions/combinatorial/tests/__pycache__/test_comb_numbers.cpython-310.pyc,,
+sympy/functions/combinatorial/tests/test_comb_factorials.py,sha256=aM7qyHno3THToCxy2HMo1SJlINm4Pj7SjoLtALl6DJ0,26176
+sympy/functions/combinatorial/tests/test_comb_numbers.py,sha256=COdo810q8vjVyHiOYsgD5TcAE4G3bQUzQXlEroDWsj0,34317
+sympy/functions/elementary/__init__.py,sha256=Fj8p5qE-Rr1lqAyHI0aSgC3RYX56O-gWwo6wu-eUQYA,50
+sympy/functions/elementary/__pycache__/__init__.cpython-310.pyc,,
+sympy/functions/elementary/__pycache__/_trigonometric_special.cpython-310.pyc,,
+sympy/functions/elementary/__pycache__/complexes.cpython-310.pyc,,
+sympy/functions/elementary/__pycache__/exponential.cpython-310.pyc,,
+sympy/functions/elementary/__pycache__/hyperbolic.cpython-310.pyc,,
+sympy/functions/elementary/__pycache__/integers.cpython-310.pyc,,
+sympy/functions/elementary/__pycache__/miscellaneous.cpython-310.pyc,,
+sympy/functions/elementary/__pycache__/piecewise.cpython-310.pyc,,
+sympy/functions/elementary/__pycache__/trigonometric.cpython-310.pyc,,
+sympy/functions/elementary/_trigonometric_special.py,sha256=PiQ1eg280vWAnSaMMw6RheEJI0oIiwYa4K_sHmUWEgc,7245
+sympy/functions/elementary/benchmarks/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/functions/elementary/benchmarks/__pycache__/__init__.cpython-310.pyc,,
+sympy/functions/elementary/benchmarks/__pycache__/bench_exp.cpython-310.pyc,,
+sympy/functions/elementary/benchmarks/bench_exp.py,sha256=PFBYa9eMovH5XOFN5XTxWr1VDj1EBoKwn4mAtj-_DdM,185
+sympy/functions/elementary/complexes.py,sha256=wwyEdwEaTyps_ZPEA667W7b_VLdYwaZ2cdE2vd5d5NI,43263
+sympy/functions/elementary/exponential.py,sha256=UrXHbvLi3r-uxLw_XYWiEUAnWVF5agcgDDkqWyA_r5Q,42694
+sympy/functions/elementary/hyperbolic.py,sha256=YEnCb_IbSgyUxicldCV61qCcPTrPt-eTexR_c6LRpv8,66628
+sympy/functions/elementary/integers.py,sha256=hM3NvuUHfTH-V8tGHc2ocOwGyXhsLe1gWO_8KJGw0So,19074
+sympy/functions/elementary/miscellaneous.py,sha256=TAIoqthhfqx_wlcNbDdDHpLQrosWxX_nGy48BJk3R_w,27933
+sympy/functions/elementary/piecewise.py,sha256=o8y2TUKcn9varebhrcZSQQg-DOqjJHR2aP02CohgDEo,57858
+sympy/functions/elementary/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/functions/elementary/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/functions/elementary/tests/__pycache__/test_complexes.cpython-310.pyc,,
+sympy/functions/elementary/tests/__pycache__/test_exponential.cpython-310.pyc,,
+sympy/functions/elementary/tests/__pycache__/test_hyperbolic.cpython-310.pyc,,
+sympy/functions/elementary/tests/__pycache__/test_integers.cpython-310.pyc,,
+sympy/functions/elementary/tests/__pycache__/test_interface.cpython-310.pyc,,
+sympy/functions/elementary/tests/__pycache__/test_miscellaneous.cpython-310.pyc,,
+sympy/functions/elementary/tests/__pycache__/test_piecewise.cpython-310.pyc,,
+sympy/functions/elementary/tests/__pycache__/test_trigonometric.cpython-310.pyc,,
+sympy/functions/elementary/tests/test_complexes.py,sha256=nUSm7w9s2H_F1g8FB841ZoL0skV95PGV5w4_x8Ygh3Q,33513
+sympy/functions/elementary/tests/test_exponential.py,sha256=r8pqvffIEsu8K8VKeXCSsH4IXUJKzDa2wdx-pClsdmk,29566
+sympy/functions/elementary/tests/test_hyperbolic.py,sha256=gz7Is98WR0hCrZwDkocpi2CYWn6FqX11OzGCtpzvbZI,53361
+sympy/functions/elementary/tests/test_integers.py,sha256=g7FE4C8d8BuyZApycbQbq5uPs81eyR_4YdwP6A2P1Gc,20930
+sympy/functions/elementary/tests/test_interface.py,sha256=dBHnagyfDEXsQWlxVzWpqgCBdiJM0oUIv2QONbEYo9s,2054
+sympy/functions/elementary/tests/test_miscellaneous.py,sha256=eCL30UmsusBhjvqICQNmToa1aJTML8fXav1L1J6b7FU,17148
+sympy/functions/elementary/tests/test_piecewise.py,sha256=OOSlqsR7ZZG7drmSO7v5PlrPcbrqpv7sEt6h8pLNYyU,61520
+sympy/functions/elementary/tests/test_trigonometric.py,sha256=xsf5N30ILb_mdpx6Cb5E0o1QY5V4impDX2wqANJnXBE,86394
+sympy/functions/elementary/trigonometric.py,sha256=gnerAnDl9qfqxzvhMr2E5tRdq1GiBfdut6OLxRwuwTc,113966
+sympy/functions/special/__init__.py,sha256=5pjIq_RVCMsuCe1b-FlwIty30KxoUowZYKLmpIT9KHQ,59
+sympy/functions/special/__pycache__/__init__.cpython-310.pyc,,
+sympy/functions/special/__pycache__/bessel.cpython-310.pyc,,
+sympy/functions/special/__pycache__/beta_functions.cpython-310.pyc,,
+sympy/functions/special/__pycache__/bsplines.cpython-310.pyc,,
+sympy/functions/special/__pycache__/delta_functions.cpython-310.pyc,,
+sympy/functions/special/__pycache__/elliptic_integrals.cpython-310.pyc,,
+sympy/functions/special/__pycache__/error_functions.cpython-310.pyc,,
+sympy/functions/special/__pycache__/gamma_functions.cpython-310.pyc,,
+sympy/functions/special/__pycache__/hyper.cpython-310.pyc,,
+sympy/functions/special/__pycache__/mathieu_functions.cpython-310.pyc,,
+sympy/functions/special/__pycache__/polynomials.cpython-310.pyc,,
+sympy/functions/special/__pycache__/singularity_functions.cpython-310.pyc,,
+sympy/functions/special/__pycache__/spherical_harmonics.cpython-310.pyc,,
+sympy/functions/special/__pycache__/tensor_functions.cpython-310.pyc,,
+sympy/functions/special/__pycache__/zeta_functions.cpython-310.pyc,,
+sympy/functions/special/benchmarks/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/functions/special/benchmarks/__pycache__/__init__.cpython-310.pyc,,
+sympy/functions/special/benchmarks/__pycache__/bench_special.cpython-310.pyc,,
+sympy/functions/special/benchmarks/bench_special.py,sha256=wzAoKTccuEaG4xrEYTlYfIJuLi3kUTMTEJ9iA113Wog,164
+sympy/functions/special/bessel.py,sha256=3q5Ti0vVqSPQZ9oSZovJNAviFWuOXLUMbJvpRkdTxWs,63415
+sympy/functions/special/beta_functions.py,sha256=NXwFSRAtpoVkSybCUqicQDKqc8SNBeq3SOB1QS-Ge84,12603
+sympy/functions/special/bsplines.py,sha256=GxW_6tXuiuWap-pc4T0v1PMcfw8FXaq3mSEf50OkLoU,10152
+sympy/functions/special/delta_functions.py,sha256=NPneFMqLdwwMGZweS5C-Bok6ch1roYyO481ZNOiWp8I,19866
+sympy/functions/special/elliptic_integrals.py,sha256=rn4asENf-mFTc-iTpMOht-E-q_-vmhNc0Bd4xMPGfOE,14694
+sympy/functions/special/error_functions.py,sha256=syaTdbOA7xJBtMuuDSFZsOerSc2-Z5pm77SQ7Qn_eCU,77081
+sympy/functions/special/gamma_functions.py,sha256=OjPRUlD9wXr0XfBhn3Ocbwpey7Qd0H1JPyHeZkevxSc,42596
+sympy/functions/special/hyper.py,sha256=aby7IOWh0OtlCclHWv0cz3-cqKvuSIVHvQ8qFgOtQs8,37290
+sympy/functions/special/mathieu_functions.py,sha256=-3EsPJHwU1upnYz5rsc1Zy43aPpjXD1Nnmn2yA9LS6U,6606
+sympy/functions/special/polynomials.py,sha256=PBrr6UpHvs_FtYsTD_y2jre2tYNcqneOGwkm1omY2jk,46718
+sympy/functions/special/singularity_functions.py,sha256=5yDHvwQN16YS0L7C0kj34XI3o0q-_k4OgxIURo_9SZQ,7988
+sympy/functions/special/spherical_harmonics.py,sha256=Ivwi76IeFMZhukm_TnvJYT4QEqyW2DrGF5rj4_B-dJg,10997
+sympy/functions/special/tensor_functions.py,sha256=ZzMc93n_4Y4L-WVd9nmMh0nZQPYMB7uKqcnaFdupEXE,12277
+sympy/functions/special/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/functions/special/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/functions/special/tests/__pycache__/test_bessel.cpython-310.pyc,,
+sympy/functions/special/tests/__pycache__/test_beta_functions.cpython-310.pyc,,
+sympy/functions/special/tests/__pycache__/test_bsplines.cpython-310.pyc,,
+sympy/functions/special/tests/__pycache__/test_delta_functions.cpython-310.pyc,,
+sympy/functions/special/tests/__pycache__/test_elliptic_integrals.cpython-310.pyc,,
+sympy/functions/special/tests/__pycache__/test_error_functions.cpython-310.pyc,,
+sympy/functions/special/tests/__pycache__/test_gamma_functions.cpython-310.pyc,,
+sympy/functions/special/tests/__pycache__/test_hyper.cpython-310.pyc,,
+sympy/functions/special/tests/__pycache__/test_mathieu.cpython-310.pyc,,
+sympy/functions/special/tests/__pycache__/test_singularity_functions.cpython-310.pyc,,
+sympy/functions/special/tests/__pycache__/test_spec_polynomials.cpython-310.pyc,,
+sympy/functions/special/tests/__pycache__/test_spherical_harmonics.cpython-310.pyc,,
+sympy/functions/special/tests/__pycache__/test_tensor_functions.cpython-310.pyc,,
+sympy/functions/special/tests/__pycache__/test_zeta_functions.cpython-310.pyc,,
+sympy/functions/special/tests/test_bessel.py,sha256=Gx6cjelB0aXGDKMwG5O-wpPjyt6rFJVaNenNmD5Qb3E,34191
+sympy/functions/special/tests/test_beta_functions.py,sha256=yxfgu-wmNEeMfaFABiDHYmuZpZup9FTp0ZYerlc6hhc,3786
+sympy/functions/special/tests/test_bsplines.py,sha256=6UYg7IqXTi8fcSOut8TEzNVkxIA4ff-CyG22qJnbIYA,7145
+sympy/functions/special/tests/test_delta_functions.py,sha256=8xhSWG4SLL86z1QKFfLk_3b--bCrxjvCaxHlODBVToE,7138
+sympy/functions/special/tests/test_elliptic_integrals.py,sha256=AazZYMow9szbvC_WfK10c5j-LQRAzno6V1WJCbtp4MU,6860
+sympy/functions/special/tests/test_error_functions.py,sha256=0U78aiO9zvGOrqQ7tiVTUhqnpj0FDD9shNb-8AOhp68,31222
+sympy/functions/special/tests/test_gamma_functions.py,sha256=exHmFEtyZMJhVYTWFSBlMZhWdhQk6M2cjgNkvImD7o4,29910
+sympy/functions/special/tests/test_hyper.py,sha256=El56dyyIzJkyBV_1gH-bGX8iF6Jzn0EhpmJEK57gvKs,15990
+sympy/functions/special/tests/test_mathieu.py,sha256=pqoFbnC84NDL6EQkigFtx5OQ1RFYppckTjzsm9XT0PY,1282
+sympy/functions/special/tests/test_singularity_functions.py,sha256=tqMJQIOOsBrveXctXPkPFIYdThG-wwKsjfdRHshEpfw,5467
+sympy/functions/special/tests/test_spec_polynomials.py,sha256=wuiZaR_LwaM8SlNuGl3B1p4eOHC_-zZVSXMPNfzKRB4,19561
+sympy/functions/special/tests/test_spherical_harmonics.py,sha256=pUFtFpNPBnJTdnqou0jniSchijyh1rdzKv8H24RT9FU,3850
+sympy/functions/special/tests/test_tensor_functions.py,sha256=bblSDkPABZ6N1j1Rb2Bb5TZIzZoK1D8ks3fHizi69ZI,5546
+sympy/functions/special/tests/test_zeta_functions.py,sha256=2r59_aC0QOXQsBNXqxsHPr2PkJExusI6qvSydZBPbfw,10474
+sympy/functions/special/zeta_functions.py,sha256=IdshdejjEv60nNZ4gQOVG0RIgxyo22psmglxZnzwHHw,24064
+sympy/galgebra.py,sha256=yEosUPSnhLp9a1NWXvpCLoU20J6TQ58XNIvw07POkVk,123
+sympy/geometry/__init__.py,sha256=BU2MiKm8qJyZJ_hz1qC-3nFJTPEcuvx4hYd02jHjqSM,1240
+sympy/geometry/__pycache__/__init__.cpython-310.pyc,,
+sympy/geometry/__pycache__/curve.cpython-310.pyc,,
+sympy/geometry/__pycache__/ellipse.cpython-310.pyc,,
+sympy/geometry/__pycache__/entity.cpython-310.pyc,,
+sympy/geometry/__pycache__/exceptions.cpython-310.pyc,,
+sympy/geometry/__pycache__/line.cpython-310.pyc,,
+sympy/geometry/__pycache__/parabola.cpython-310.pyc,,
+sympy/geometry/__pycache__/plane.cpython-310.pyc,,
+sympy/geometry/__pycache__/point.cpython-310.pyc,,
+sympy/geometry/__pycache__/polygon.cpython-310.pyc,,
+sympy/geometry/__pycache__/util.cpython-310.pyc,,
+sympy/geometry/curve.py,sha256=F7b6XrlhUZ0QWLDoZJVojWfC5LeyOU-69OTFnYAREg8,10170
+sympy/geometry/ellipse.py,sha256=MMuWG_YOUngfW5137yu6iAOugjRxehrfkgidvD1J6RM,50851
+sympy/geometry/entity.py,sha256=fvHhtSb6RvE6v-8yMyCNvm0ekLPoO7EO9J8TEsGyQGU,20668
+sympy/geometry/exceptions.py,sha256=XtUMA44UTdrBWt771jegFC-TXsobhDiI-10TDH_WNFM,131
+sympy/geometry/line.py,sha256=JSc0dcjKV2m1R6b7tIaPjffhdGz3ZdtjFKvsH72Luqo,78343
+sympy/geometry/parabola.py,sha256=JalFtxCzBR8oE09agrzDtpGI9hrP4GJ-4zkg2r8Yj94,10707
+sympy/geometry/plane.py,sha256=A-CgWLjFC9k_OjyqJFaq7kDAdsSqmYET4aZl_eH2U10,26928
+sympy/geometry/point.py,sha256=8DtGkhQUyleVIi5WfptZOEk2zn0kwVAZv5aeNI498tg,36652
+sympy/geometry/polygon.py,sha256=hI1bRJdjCgsSKlPejO69z65LKO9iakcHx9ftJfSSLFA,81664
+sympy/geometry/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/geometry/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/geometry/tests/__pycache__/test_curve.cpython-310.pyc,,
+sympy/geometry/tests/__pycache__/test_ellipse.cpython-310.pyc,,
+sympy/geometry/tests/__pycache__/test_entity.cpython-310.pyc,,
+sympy/geometry/tests/__pycache__/test_geometrysets.cpython-310.pyc,,
+sympy/geometry/tests/__pycache__/test_line.cpython-310.pyc,,
+sympy/geometry/tests/__pycache__/test_parabola.cpython-310.pyc,,
+sympy/geometry/tests/__pycache__/test_plane.cpython-310.pyc,,
+sympy/geometry/tests/__pycache__/test_point.cpython-310.pyc,,
+sympy/geometry/tests/__pycache__/test_polygon.cpython-310.pyc,,
+sympy/geometry/tests/__pycache__/test_util.cpython-310.pyc,,
+sympy/geometry/tests/test_curve.py,sha256=xL4uRWAal4mXZxuQhcs9QOhs6MheCbFNyH1asq_a2IQ,4479
+sympy/geometry/tests/test_ellipse.py,sha256=oe9Bvye-kLjdhP3bwJPB0N1-wDL3cmVwYLhEhrGAPHk,25735
+sympy/geometry/tests/test_entity.py,sha256=0pBKdmRIETq0pJYjxRj34B0j-o56f4iqzJy9J4buU7U,3897
+sympy/geometry/tests/test_geometrysets.py,sha256=vvOWrFrJuNAFgbrVh1wPY94o-H-85FWlnIyyo2Kst9c,1911
+sympy/geometry/tests/test_line.py,sha256=D2yAOzCt80dmd7hP_l2A7aaWS8Mtw7RCkqA99L7McXI,37421
+sympy/geometry/tests/test_parabola.py,sha256=kd0RU5sGOcfp6jgwgXMtvT2B6kG1-M3-iGOLnUJfZOw,6150
+sympy/geometry/tests/test_plane.py,sha256=QRcfoDsJtCtcvjFb18hBEHupycLgAT2OohF6GpNShyQ,12525
+sympy/geometry/tests/test_point.py,sha256=YO67zimsEVO07KGyLJVTVWa9795faGXJoFFcd2K4azc,16412
+sympy/geometry/tests/test_polygon.py,sha256=79iBkQjpX-CdO1mtMaX3lGvVfkopBiFhLC3QfWCreWA,27138
+sympy/geometry/tests/test_util.py,sha256=-LXPTiibkSQ0TO7ia6a-NYfMm2OJxw15Er7tr99dTVU,6204
+sympy/geometry/util.py,sha256=ZMXFHU2sxVAvc4_ywomdJC67hHCU-EyJN2SzW5TB9Zw,20170
+sympy/holonomic/__init__.py,sha256=BgHIokaSOo3nwJlGO_caJHz37n6yoA8GeM9Xjn4zMpc,784
+sympy/holonomic/__pycache__/__init__.cpython-310.pyc,,
+sympy/holonomic/__pycache__/holonomic.cpython-310.pyc,,
+sympy/holonomic/__pycache__/holonomicerrors.cpython-310.pyc,,
+sympy/holonomic/__pycache__/numerical.cpython-310.pyc,,
+sympy/holonomic/__pycache__/recurrence.cpython-310.pyc,,
+sympy/holonomic/holonomic.py,sha256=XxLDC4TG_6ddHMQ5yZNWNJFb6s7n5Tg09kbufyiwVVw,94849
+sympy/holonomic/holonomicerrors.py,sha256=qDyUoGbrRjPtVax4SeEEf_o6-264mASEZO_rZETXH5o,1193
+sympy/holonomic/numerical.py,sha256=m35A7jO54xMNgA4w5Edn1i_SHbXWBlpQTRLMR8GgbZE,2730
+sympy/holonomic/recurrence.py,sha256=JFgSOT3hu6d7Mh9sdqvSxC3RxlVlH_cygsXpsX97YMY,10987
+sympy/holonomic/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/holonomic/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/holonomic/tests/__pycache__/test_holonomic.cpython-310.pyc,,
+sympy/holonomic/tests/__pycache__/test_recurrence.cpython-310.pyc,,
+sympy/holonomic/tests/test_holonomic.py,sha256=MrN7GVk7_zFWwDSfIhtD3FgoFgmFGlTpjOnnIzdP010,34760
+sympy/holonomic/tests/test_recurrence.py,sha256=HEbA3yCnIw4IDFV1rb3GjmM4SCDDZL7aYRlD7PWuQFg,1056
+sympy/integrals/__init__.py,sha256=aZr2Qn6i-gvFGH_5Hl_SRn2-Bd9Sf4zQdwo9VGLSeNY,1844
+sympy/integrals/__pycache__/__init__.cpython-310.pyc,,
+sympy/integrals/__pycache__/deltafunctions.cpython-310.pyc,,
+sympy/integrals/__pycache__/heurisch.cpython-310.pyc,,
+sympy/integrals/__pycache__/integrals.cpython-310.pyc,,
+sympy/integrals/__pycache__/intpoly.cpython-310.pyc,,
+sympy/integrals/__pycache__/laplace.cpython-310.pyc,,
+sympy/integrals/__pycache__/manualintegrate.cpython-310.pyc,,
+sympy/integrals/__pycache__/meijerint.cpython-310.pyc,,
+sympy/integrals/__pycache__/meijerint_doc.cpython-310.pyc,,
+sympy/integrals/__pycache__/prde.cpython-310.pyc,,
+sympy/integrals/__pycache__/quadrature.cpython-310.pyc,,
+sympy/integrals/__pycache__/rationaltools.cpython-310.pyc,,
+sympy/integrals/__pycache__/rde.cpython-310.pyc,,
+sympy/integrals/__pycache__/risch.cpython-310.pyc,,
+sympy/integrals/__pycache__/singularityfunctions.cpython-310.pyc,,
+sympy/integrals/__pycache__/transforms.cpython-310.pyc,,
+sympy/integrals/__pycache__/trigonometry.cpython-310.pyc,,
+sympy/integrals/benchmarks/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/integrals/benchmarks/__pycache__/__init__.cpython-310.pyc,,
+sympy/integrals/benchmarks/__pycache__/bench_integrate.cpython-310.pyc,,
+sympy/integrals/benchmarks/__pycache__/bench_trigintegrate.cpython-310.pyc,,
+sympy/integrals/benchmarks/bench_integrate.py,sha256=vk6wAO1bqzFT9oW4qsW7nKGfc_gP0XaB5PMYKx5339Q,396
+sympy/integrals/benchmarks/bench_trigintegrate.py,sha256=8XU3uB3mcavigvzHQZA7H1sHI32zgT-9RkSnLa-Y3Vc,305
+sympy/integrals/deltafunctions.py,sha256=ysIQLdRBcG_YR-bVDoxt-sxEVU8TG77oSgM-J0gI0mE,7435
+sympy/integrals/heurisch.py,sha256=R3G0RXskAxXum4CyQ1AV1BNeVbcmvp_Ipg0mOcDFRPo,26296
+sympy/integrals/integrals.py,sha256=bC0WtE12WsV7WFzmZrKzct2nAbHUdbq6dKytpY7ZtlY,64606
+sympy/integrals/intpoly.py,sha256=qs1fQrEMKbsXwgfkBDUpEZ9f7x65Bdua8KS2lLBtLv4,43274
+sympy/integrals/laplace.py,sha256=eL7HjKsSLAspdo8BswrYADs2wd2U-9YEkinSD5JVjow,63518
+sympy/integrals/manualintegrate.py,sha256=E7NaMsl02Hy2lHU8mPcxNSsCQnQjVNPJqDrMyEOkAKw,75469
+sympy/integrals/meijerint.py,sha256=Yf80w6COiqdrvYLyMwS1P2-SGsNR1B7cqCmaERhx76U,80746
+sympy/integrals/meijerint_doc.py,sha256=mGlIu2CLmOulSGiN7n7kQ9w2DTcQfExJPaf-ee6HXlY,1165
+sympy/integrals/prde.py,sha256=VL_JEu6Bqhl8wSML1UY9nilOjafhkjFenVGCVV1pVbc,52021
+sympy/integrals/quadrature.py,sha256=6Bg3JmlIjIduIfaGfNVcwNfSrgEiLOszcN8WPzsXNqE,17064
+sympy/integrals/rationaltools.py,sha256=1OMhRhMBQ7igw2_YX5WR4q69QB_H0zMtGFtUkcbVD3Q,10922
+sympy/integrals/rde.py,sha256=AuiPDqP2awC4UlWJrsfNCn1l3OAQuZl64WI-lE2M5Ds,27392
+sympy/integrals/risch.py,sha256=S9r1kKx6WoJHomPWgNL2KCe73GWS8jIJ0AZt95QwBFI,67674
+sympy/integrals/singularityfunctions.py,sha256=BegUcpUW96FY9f8Yn0jHjK0LjCkM28NnCVg5S9cTWwU,2227
+sympy/integrals/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/integrals/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/integrals/tests/__pycache__/test_deltafunctions.cpython-310.pyc,,
+sympy/integrals/tests/__pycache__/test_failing_integrals.cpython-310.pyc,,
+sympy/integrals/tests/__pycache__/test_heurisch.cpython-310.pyc,,
+sympy/integrals/tests/__pycache__/test_integrals.cpython-310.pyc,,
+sympy/integrals/tests/__pycache__/test_intpoly.cpython-310.pyc,,
+sympy/integrals/tests/__pycache__/test_laplace.cpython-310.pyc,,
+sympy/integrals/tests/__pycache__/test_lineintegrals.cpython-310.pyc,,
+sympy/integrals/tests/__pycache__/test_manual.cpython-310.pyc,,
+sympy/integrals/tests/__pycache__/test_meijerint.cpython-310.pyc,,
+sympy/integrals/tests/__pycache__/test_prde.cpython-310.pyc,,
+sympy/integrals/tests/__pycache__/test_quadrature.cpython-310.pyc,,
+sympy/integrals/tests/__pycache__/test_rationaltools.cpython-310.pyc,,
+sympy/integrals/tests/__pycache__/test_rde.cpython-310.pyc,,
+sympy/integrals/tests/__pycache__/test_risch.cpython-310.pyc,,
+sympy/integrals/tests/__pycache__/test_singularityfunctions.cpython-310.pyc,,
+sympy/integrals/tests/__pycache__/test_transforms.cpython-310.pyc,,
+sympy/integrals/tests/__pycache__/test_trigonometry.cpython-310.pyc,,
+sympy/integrals/tests/test_deltafunctions.py,sha256=ivFjS-WlLQ4aMqjVS7ZzMChP2Mmw_JUPnwI9otiLnvs,3709
+sympy/integrals/tests/test_failing_integrals.py,sha256=hQJc23KfK0bUmbj4W3C04QdJ0K17_ghMVfTLuKjUBPc,7074
+sympy/integrals/tests/test_heurisch.py,sha256=r4RjbSRYScuzMXA_EjrxalO1T1G0i5ZsAmDQcrhFU3s,12468
+sympy/integrals/tests/test_integrals.py,sha256=jwaCvWJoW_5_CTkDDBJeRDtLCUHdYzyzs-f7GyJDaVc,77122
+sympy/integrals/tests/test_intpoly.py,sha256=NzGhkR2pUMfd8lIU2cFR9bFa0J89RzpHs3zDggAWtXo,37445
+sympy/integrals/tests/test_laplace.py,sha256=FQoGfwyNoIwqdVc5Nk_RcOIJU70EaW-ipmoQtq7nFLk,28893
+sympy/integrals/tests/test_lineintegrals.py,sha256=zcPJ2n7DYt9KsgAe38t0gq3ARApUlb-kBahLThuRcq8,450
+sympy/integrals/tests/test_manual.py,sha256=arqxMdxUJkFIoy98rOirOTIwj623wHx9NqoupZLqkU8,33231
+sympy/integrals/tests/test_meijerint.py,sha256=jglmmX-AtkvwJgqQafBOKdaygrm14QJ8H-NfheNpFME,32265
+sympy/integrals/tests/test_prde.py,sha256=2BZmEDasdx_3l64-9hioArysDj6Nl520GpQN2xnEE_A,16360
+sympy/integrals/tests/test_quadrature.py,sha256=iFMdqck36gkL-yksLflawIOYmw-0PzO2tFj_qdK6Hjg,19919
+sympy/integrals/tests/test_rationaltools.py,sha256=6sNOkkZmOvCAPTwXrdU6hehDFleXYyakheX2KQaUHWY,5299
+sympy/integrals/tests/test_rde.py,sha256=4d3vJupa-hRN4yNDISY8IC3rSI_cZW5BbtxoZm14y-Y,9571
+sympy/integrals/tests/test_risch.py,sha256=HaWg0JnErdrNzNmVfyz2Zz4XAgZPVVpZPt6Map3sQ58,38630
+sympy/integrals/tests/test_singularityfunctions.py,sha256=CSrHie59_NjNZ9B2GaHzKPNsMzxm5Kh6GuxlYk8zTuI,1266
+sympy/integrals/tests/test_transforms.py,sha256=Of9XEpzwB0CGy722z41oOdUEbfmAscsAhMute2_8oeA,27077
+sympy/integrals/tests/test_trigonometry.py,sha256=moMYr_Prc7gaYPjBK0McLjRpTEes2veUlN0vGv9UyEA,3869
+sympy/integrals/transforms.py,sha256=R625sYSQkNC1s9MiFdk0JzROTmoYjhgBTxoFE5Pc3rQ,51636
+sympy/integrals/trigonometry.py,sha256=iOoBDGFDZx8PNbgL3XeZEd80I8ro0WAizNuC4P-u8x0,11083
+sympy/interactive/__init__.py,sha256=yokwEO2HF3eN2Xu65JSpUUsN4iYmPvvU4m_64f3Q33o,251
+sympy/interactive/__pycache__/__init__.cpython-310.pyc,,
+sympy/interactive/__pycache__/printing.cpython-310.pyc,,
+sympy/interactive/__pycache__/session.cpython-310.pyc,,
+sympy/interactive/__pycache__/traversal.cpython-310.pyc,,
+sympy/interactive/printing.py,sha256=j7iVj-AhX3qBrQibPKtDNTMToCGhF6UKTdpUO8ME5CM,22700
+sympy/interactive/session.py,sha256=sG546e0mAtT0OrFkYNVM7QGvkWrDhAQZ5E1hfx03iBQ,15329
+sympy/interactive/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/interactive/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/interactive/tests/__pycache__/test_interactive.cpython-310.pyc,,
+sympy/interactive/tests/__pycache__/test_ipython.cpython-310.pyc,,
+sympy/interactive/tests/test_interactive.py,sha256=Pbopy9lODrd_P46_xxlWxLwqPfG6_4J3CWWC4IqfDL4,485
+sympy/interactive/tests/test_ipython.py,sha256=iYNmuETjveHBVpOywyv_jStQWkFwf1GuEBjoZUVhxK4,11799
+sympy/interactive/traversal.py,sha256=XbccdO6msNAvrG6FFJl2n4XmIiRISnvda4QflfEPg7U,3189
+sympy/liealgebras/__init__.py,sha256=K8tw7JqG33_y6mYl1LTr8ZNtKH5L21BqkjCHfLhP4aA,79
+sympy/liealgebras/__pycache__/__init__.cpython-310.pyc,,
+sympy/liealgebras/__pycache__/cartan_matrix.cpython-310.pyc,,
+sympy/liealgebras/__pycache__/cartan_type.cpython-310.pyc,,
+sympy/liealgebras/__pycache__/dynkin_diagram.cpython-310.pyc,,
+sympy/liealgebras/__pycache__/root_system.cpython-310.pyc,,
+sympy/liealgebras/__pycache__/type_a.cpython-310.pyc,,
+sympy/liealgebras/__pycache__/type_b.cpython-310.pyc,,
+sympy/liealgebras/__pycache__/type_c.cpython-310.pyc,,
+sympy/liealgebras/__pycache__/type_d.cpython-310.pyc,,
+sympy/liealgebras/__pycache__/type_e.cpython-310.pyc,,
+sympy/liealgebras/__pycache__/type_f.cpython-310.pyc,,
+sympy/liealgebras/__pycache__/type_g.cpython-310.pyc,,
+sympy/liealgebras/__pycache__/weyl_group.cpython-310.pyc,,
+sympy/liealgebras/cartan_matrix.py,sha256=yr2LoZi_Gxmu-EMKgFuPOPNMYPOsxucLAS6oRpSYi2U,524
+sympy/liealgebras/cartan_type.py,sha256=xLklg8Y5s40je6sXwmLmG9iyYi9YEk9KoxTSFz1GtdI,1790
+sympy/liealgebras/dynkin_diagram.py,sha256=ZzGuBGNOJ3lPDdJDs4n8hvGbz6wLhC5mwb8zFkDmyPw,535
+sympy/liealgebras/root_system.py,sha256=GwWc4iploE7ogS9LTOkkjsij1mbPMQxbV2_pvNriYbE,6727
+sympy/liealgebras/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/liealgebras/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/liealgebras/tests/__pycache__/test_cartan_matrix.cpython-310.pyc,,
+sympy/liealgebras/tests/__pycache__/test_cartan_type.cpython-310.pyc,,
+sympy/liealgebras/tests/__pycache__/test_dynkin_diagram.cpython-310.pyc,,
+sympy/liealgebras/tests/__pycache__/test_root_system.cpython-310.pyc,,
+sympy/liealgebras/tests/__pycache__/test_type_A.cpython-310.pyc,,
+sympy/liealgebras/tests/__pycache__/test_type_B.cpython-310.pyc,,
+sympy/liealgebras/tests/__pycache__/test_type_C.cpython-310.pyc,,
+sympy/liealgebras/tests/__pycache__/test_type_D.cpython-310.pyc,,
+sympy/liealgebras/tests/__pycache__/test_type_E.cpython-310.pyc,,
+sympy/liealgebras/tests/__pycache__/test_type_F.cpython-310.pyc,,
+sympy/liealgebras/tests/__pycache__/test_type_G.cpython-310.pyc,,
+sympy/liealgebras/tests/__pycache__/test_weyl_group.cpython-310.pyc,,
+sympy/liealgebras/tests/test_cartan_matrix.py,sha256=KCsakn0fHKHRbIUcrUkHBIKkudl3_ISUdHrfJy-UOd4,303
+sympy/liealgebras/tests/test_cartan_type.py,sha256=t5PvYYDXbNIFL3CV59Je7SBIAeLLf-W3mOINPUoHK6E,339
+sympy/liealgebras/tests/test_dynkin_diagram.py,sha256=DSixbnt_yd0zrhKzXW_XqkXWXYe1Dk2MmXN-Rjb1dGg,260
+sympy/liealgebras/tests/test_root_system.py,sha256=YmGBdUeJ4PkLSfAfRgTF7GW62RCEd5nH27FSX9UaG5Q,927
+sympy/liealgebras/tests/test_type_A.py,sha256=x7QmpjxsGmXol-IYVtN1lmIOmM3HLYwpX1tSG5h6FMM,657
+sympy/liealgebras/tests/test_type_B.py,sha256=Gw0GP24wP2rPn38Wwla9W7BwWH4JtCGpaprZb5W6JVY,642
+sympy/liealgebras/tests/test_type_C.py,sha256=ysSy-vzE9lNwzAunrmvnFkLBoJwF7W2On7QpqS6RI1s,927
+sympy/liealgebras/tests/test_type_D.py,sha256=qrO4oCjrjkp1uDvrNtbgANVyaOExqOLNtIpIxD1uH0U,764
+sympy/liealgebras/tests/test_type_E.py,sha256=suG6DaZ2R74ovnJrY6GGyiu9A6FjUkouRNUFPnEczqk,775
+sympy/liealgebras/tests/test_type_F.py,sha256=yUQJ7LzTemv4Cd1XW_dr3x7KEI07BahsWAyJfXLS1eA,1378
+sympy/liealgebras/tests/test_type_G.py,sha256=wVa6qcAHbdrc9dA63samexHL35cWWJS606pom-6mH2Q,548
+sympy/liealgebras/tests/test_weyl_group.py,sha256=HrzojRECbhNUsdLFQAXYnJEt8LfktOSJZuqVE45aRnc,1501
+sympy/liealgebras/type_a.py,sha256=l5SUJknj1xLgwRVMuOsVmwbcxY2V6PU59jBtssylKH4,4314
+sympy/liealgebras/type_b.py,sha256=50xdcrec1nFFtyUWOmP2Qm9ZW1zpbrgwbz_YPKp55Go,4563
+sympy/liealgebras/type_c.py,sha256=bXGqPiLN3x4NAsM-ZHKJPxFO6RY7lDZUckCarIODEi0,4439
+sympy/liealgebras/type_d.py,sha256=Rgh7KpI5FQnDai6KVfoz_TREYaKxqvINDXu6Zdu-7EQ,4694
+sympy/liealgebras/type_e.py,sha256=Uf-QzI-6bRJeI91stGHsiesknwBEVYIjZaiNP-2bIiY,9780
+sympy/liealgebras/type_f.py,sha256=boKDhOxRcAWDBHsEYk4j14vUvT0mO3UkRq6QzqoPOes,4417
+sympy/liealgebras/type_g.py,sha256=Ife98dGPtarGd-ii8hJbXdB0SMsct4okDkSX2wLN8XI,2965
+sympy/liealgebras/weyl_group.py,sha256=5YFA8qC4GWDM0WLNR_6VgpuNFZDfyDA7fBFjBcZaLgA,14557
+sympy/logic/__init__.py,sha256=RfoXrq9MESnXdL7PkwpYEfWeaxH6wBPHiE4zCgLKvk0,456
+sympy/logic/__pycache__/__init__.cpython-310.pyc,,
+sympy/logic/__pycache__/boolalg.cpython-310.pyc,,
+sympy/logic/__pycache__/inference.cpython-310.pyc,,
+sympy/logic/algorithms/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/logic/algorithms/__pycache__/__init__.cpython-310.pyc,,
+sympy/logic/algorithms/__pycache__/dpll.cpython-310.pyc,,
+sympy/logic/algorithms/__pycache__/dpll2.cpython-310.pyc,,
+sympy/logic/algorithms/__pycache__/minisat22_wrapper.cpython-310.pyc,,
+sympy/logic/algorithms/__pycache__/pycosat_wrapper.cpython-310.pyc,,
+sympy/logic/algorithms/dpll.py,sha256=zqiZDm1oD5sNxFqm_0Hen6NjfILIDp5uRgEOad1vYXI,9188
+sympy/logic/algorithms/dpll2.py,sha256=UbBxJjiUaqBbQPaivtrv3ZhNNuHHdUsJ5Us2vy8QmxA,20317
+sympy/logic/algorithms/minisat22_wrapper.py,sha256=uINcvkIHGWYJb8u-Q0OgnSgaHfVUd9tYYFbBAVNiASo,1317
+sympy/logic/algorithms/pycosat_wrapper.py,sha256=0vNFTbu9-YhSfjwYTsZsP_Z4HM8WpL11-xujLBS1kYg,1207
+sympy/logic/boolalg.py,sha256=-t3WrVge-B7WmoUF25BfOxK15rsC0tIfigdcCcgvbdQ,114180
+sympy/logic/inference.py,sha256=18eETh6ObPCteJJgrrtrkCK031ymDQdvQbveaUymCcM,8542
+sympy/logic/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/logic/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/logic/tests/__pycache__/test_boolalg.cpython-310.pyc,,
+sympy/logic/tests/__pycache__/test_dimacs.cpython-310.pyc,,
+sympy/logic/tests/__pycache__/test_inference.cpython-310.pyc,,
+sympy/logic/tests/test_boolalg.py,sha256=L6hUEjRIhn2Dh65BDXifDrgXHuvBoATT89-6dYZHzgo,48838
+sympy/logic/tests/test_dimacs.py,sha256=EK_mA_k9zBLcQLTOKTZVrGhnGuQNza5mwXDQD_f-X1c,3886
+sympy/logic/tests/test_inference.py,sha256=DOlgb4clEULjMBp0cG3ZdCrXN8vFdxJZmSDf-13bWSA,13246
+sympy/logic/utilities/__init__.py,sha256=WTn2vBgHcmhONRWI79PdMYNk8UxYDzsxRlZWuc-wtNI,55
+sympy/logic/utilities/__pycache__/__init__.cpython-310.pyc,,
+sympy/logic/utilities/__pycache__/dimacs.cpython-310.pyc,,
+sympy/logic/utilities/dimacs.py,sha256=aaHdXUOD8kZHWbTzuZc6c5xMM8O1oHbRxyOxPpVMMdQ,1663
+sympy/matrices/__init__.py,sha256=BUbgKPUXTwvrhDbQjjG6c3jFBwmQ0WfRiMQTTFnPL90,2611
+sympy/matrices/__pycache__/__init__.cpython-310.pyc,,
+sympy/matrices/__pycache__/common.cpython-310.pyc,,
+sympy/matrices/__pycache__/decompositions.cpython-310.pyc,,
+sympy/matrices/__pycache__/dense.cpython-310.pyc,,
+sympy/matrices/__pycache__/determinant.cpython-310.pyc,,
+sympy/matrices/__pycache__/eigen.cpython-310.pyc,,
+sympy/matrices/__pycache__/graph.cpython-310.pyc,,
+sympy/matrices/__pycache__/immutable.cpython-310.pyc,,
+sympy/matrices/__pycache__/inverse.cpython-310.pyc,,
+sympy/matrices/__pycache__/matrices.cpython-310.pyc,,
+sympy/matrices/__pycache__/normalforms.cpython-310.pyc,,
+sympy/matrices/__pycache__/reductions.cpython-310.pyc,,
+sympy/matrices/__pycache__/repmatrix.cpython-310.pyc,,
+sympy/matrices/__pycache__/solvers.cpython-310.pyc,,
+sympy/matrices/__pycache__/sparse.cpython-310.pyc,,
+sympy/matrices/__pycache__/sparsetools.cpython-310.pyc,,
+sympy/matrices/__pycache__/subspaces.cpython-310.pyc,,
+sympy/matrices/__pycache__/utilities.cpython-310.pyc,,
+sympy/matrices/benchmarks/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/matrices/benchmarks/__pycache__/__init__.cpython-310.pyc,,
+sympy/matrices/benchmarks/__pycache__/bench_matrix.cpython-310.pyc,,
+sympy/matrices/benchmarks/bench_matrix.py,sha256=vGMlg-2il2cFeAWrf0NJ6pzPX3Yd3ZQMxFgQ4q5ILQE,306
+sympy/matrices/common.py,sha256=LnBG-5vXn6c8Oe9C-Q4ziQvNyJSu5l_4DirQ-VZ2rfM,93370
+sympy/matrices/decompositions.py,sha256=MYLr-Qt5wZTDBrnVmBAudOM5QYIgkXWtLDA0coLWk50,48074
+sympy/matrices/dense.py,sha256=cTAq0K3GnLBiNkCgZNVr9rLt8H3rrnyhHaeLc_YTBok,30375
+sympy/matrices/determinant.py,sha256=IxURxqbmux4jXwkIXMm0cxJ3oygY6InrqkVo4ZnD-nk,30118
+sympy/matrices/eigen.py,sha256=7vgLspYAIVmiFtVJ9wNiVLKrQSTGhqLtPR_wqdX0WRc,39786
+sympy/matrices/expressions/__init__.py,sha256=IMqXCSsPh0Vp_MC9HZTudA5DGM4WBq_yB-Bst0azyM8,1692
+sympy/matrices/expressions/__pycache__/__init__.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/_shape.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/adjoint.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/applyfunc.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/blockmatrix.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/companion.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/determinant.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/diagonal.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/dotproduct.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/factorizations.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/fourier.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/funcmatrix.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/hadamard.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/inverse.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/kronecker.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/matadd.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/matexpr.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/matmul.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/matpow.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/permutation.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/sets.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/slice.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/special.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/trace.cpython-310.pyc,,
+sympy/matrices/expressions/__pycache__/transpose.cpython-310.pyc,,
+sympy/matrices/expressions/_shape.py,sha256=fgKRp_3LrDvFYBYz2M0BqTbjAlKLtx6Gpy9g78wHpVQ,3058
+sympy/matrices/expressions/adjoint.py,sha256=CbkYP2Hi9JVb7WO5HiCE14fwOn16fT3Le5HfV30cpCQ,1572
+sympy/matrices/expressions/applyfunc.py,sha256=wFgcMOp6uakZ6wkkF7mB7GwM35GS5SGzXz1LCeJbemE,6749
+sympy/matrices/expressions/blockmatrix.py,sha256=eKQ4GlVm4_6i2bah7T95qtJdXWLJJ28yry27ajGGfIo,31809
+sympy/matrices/expressions/companion.py,sha256=lXUJRbjQR6e1mdHQdJwNIJXMW80XmKbOVqNvUXjB57U,1705
+sympy/matrices/expressions/determinant.py,sha256=wmtIB5q1_cJpnHSSsQT2MjE6wJdDV1RtZudGOzDJmG4,3173
+sympy/matrices/expressions/diagonal.py,sha256=NtIFAfpoI_jhElfkJ6WCxc4r9iWN8VBOR3LLxKEzJsE,6326
+sympy/matrices/expressions/dotproduct.py,sha256=sKdUhwVKTB3LEvd8xMwCDexNoQ1Dz43DCYsmm3UwFWw,1911
+sympy/matrices/expressions/factorizations.py,sha256=zFNjMBsJqhsIcDD8Me4W8-Q-TV89WptfG3Dd9yK_tPE,1456
+sympy/matrices/expressions/fourier.py,sha256=dvaftgB9jgkR_8ETyhzyVLtf1ZJu_wQC-ZbpTYMXZGE,2094
+sympy/matrices/expressions/funcmatrix.py,sha256=q6R75wLn0UdV4xJdVJUrNaofV1k1egXLLQdBeZcPtiY,3520
+sympy/matrices/expressions/hadamard.py,sha256=S-vY0RFuV7Xyf6kBwgQiGXJnci7j5gpxN8nazW1IGwE,13918
+sympy/matrices/expressions/inverse.py,sha256=ZJSzuTgKz01zmb3dnmFKn6AmR6gXd_5zEYzHkk8cF2o,2732
+sympy/matrices/expressions/kronecker.py,sha256=_JPrC-FruT4N2Sgl4hQdjThjFFfHsHGTLubvU4m3uvU,13398
+sympy/matrices/expressions/matadd.py,sha256=LwznSmZRJQt_sDeq_lcXsUXlSyrcE8J-cwgvi9saUDg,4771
+sympy/matrices/expressions/matexpr.py,sha256=1pswXMAOjYk3YwUhPxCoax2lIZ1rQgnskPdlE1gWhHY,27471
+sympy/matrices/expressions/matmul.py,sha256=bewNxpEnQ0WaVzHzpVgfF_5VHdBLroewZbBAxJTvHgE,15586
+sympy/matrices/expressions/matpow.py,sha256=gF0cscUBvOuAzsGbzN6VgkMPSgz_2_3wShl67B6YGo8,4916
+sympy/matrices/expressions/permutation.py,sha256=gGIht-JI1zWyZz7VPvm5S1Ae2i-P0WUAJl3euLRXWtM,8046
+sympy/matrices/expressions/sets.py,sha256=KxGHZ-4p4nALQBj2f1clG43lB4qYu6M2P0zpubiH-ik,2001
+sympy/matrices/expressions/slice.py,sha256=aNdY1Ey4VJR-UCvoORX2kh2DmA6QjOp-waENvWg8WVE,3355
+sympy/matrices/expressions/special.py,sha256=UH0sOc_XhRHaW5ERyVVHtNTlmfHYiUdRmYzXjcSbCzE,7495
+sympy/matrices/expressions/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/matrices/expressions/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_adjoint.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_applyfunc.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_blockmatrix.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_companion.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_derivatives.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_determinant.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_diagonal.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_dotproduct.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_factorizations.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_fourier.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_funcmatrix.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_hadamard.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_indexing.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_inverse.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_kronecker.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_matadd.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_matexpr.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_matmul.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_matpow.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_permutation.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_sets.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_slice.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_special.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_trace.cpython-310.pyc,,
+sympy/matrices/expressions/tests/__pycache__/test_transpose.cpython-310.pyc,,
+sympy/matrices/expressions/tests/test_adjoint.py,sha256=cxOc334yNSI9MazhG9HT8s1OCXjkDWr3Zj2JnyHS3Z4,1065
+sympy/matrices/expressions/tests/test_applyfunc.py,sha256=mxTJaoB4Ze50lk-2TgVopmrrbuQbEqUsZwc3K1H8w-Q,3522
+sympy/matrices/expressions/tests/test_blockmatrix.py,sha256=EHJWm2dniNmf1CfODQSPm_HCCV77Ia0FbeNigsYJXZY,15695
+sympy/matrices/expressions/tests/test_companion.py,sha256=Lam6r-cSOokjhSlJws55Kq-gL5_pHfeV_Xuvmn5PkRU,1657
+sympy/matrices/expressions/tests/test_derivatives.py,sha256=9mBeaAZDX7-JbYs6tMClNuGDygETVN_dCXSlHmyAhwg,15991
+sympy/matrices/expressions/tests/test_determinant.py,sha256=QutUKtr35GCZ4iS2H1WTzMwa0jAvL0prcS82Untgr5k,1989
+sympy/matrices/expressions/tests/test_diagonal.py,sha256=3L6Vs_Yr36a8dgIqAeIcNEf0xcVyeyGhANNu0dlIpwI,4516
+sympy/matrices/expressions/tests/test_dotproduct.py,sha256=Zkv2N6oRPm0-sN4PFwsVFrM5Y_qv4x2gWqQQQD86hBY,1171
+sympy/matrices/expressions/tests/test_factorizations.py,sha256=6UPA_UhCL5JPbaQCOatMnxhGnQ-aIHmb3lXqbwrSoIE,786
+sympy/matrices/expressions/tests/test_fourier.py,sha256=0eD69faoHXBcuQ7g2Q31fqs-gyR_Xfe-gv-7DXhJh_c,1638
+sympy/matrices/expressions/tests/test_funcmatrix.py,sha256=zmOEcXHCK2MziwVBJb7iq9Q-Lbl4bbCQ_RAk27c7qUU,2381
+sympy/matrices/expressions/tests/test_hadamard.py,sha256=WDelP7lQ9KqsalOOlWHaZq38nTijkRUMAXMcAvU42SM,4610
+sympy/matrices/expressions/tests/test_indexing.py,sha256=wwYQa7LNlzhBA5fU50gPyE8cqaJf0s3O70PUx4eNCEA,12038
+sympy/matrices/expressions/tests/test_inverse.py,sha256=33Ui_vXZBJR1gMirb8c5xHDnx2jpVjWoVpYmVuZQoJg,2060
+sympy/matrices/expressions/tests/test_kronecker.py,sha256=e5H6av3ioOn8jkjyDBrT3NEmCkyHbN6ZEHOlyB9OYLk,5366
+sympy/matrices/expressions/tests/test_matadd.py,sha256=DkK_RuIFA9H9HoWcegtPWRHfQNg17h5CfqUD26E8u8E,1862
+sympy/matrices/expressions/tests/test_matexpr.py,sha256=lBuqWCwSevU7JL66eoHWrxL5gIvaWmkminDoqFmpyKA,17409
+sympy/matrices/expressions/tests/test_matmul.py,sha256=MuMIzP-ouiuRuTU5PmBtU-Xk_0Btu4mym-C20M8lN58,5963
+sympy/matrices/expressions/tests/test_matpow.py,sha256=3tRbEmZi2gZTmkBm7mAWUDbX4jwEfC8tC4kYoOuzaUg,7304
+sympy/matrices/expressions/tests/test_permutation.py,sha256=93Cqjj2k3aoR3ayMJLdJUa5h1u87bRRxT3I8B4FQsvU,5607
+sympy/matrices/expressions/tests/test_sets.py,sha256=x60NRXGjxS_AE37jGFAOvZdKlWW5m4X0C3OzIukftAM,1410
+sympy/matrices/expressions/tests/test_slice.py,sha256=C7OGAQQTz0YZxZCa7g0m8_0Bqq8jaPRa22JHVSqK7tY,2027
+sympy/matrices/expressions/tests/test_special.py,sha256=Mhg71vnjjb4fm0jZgjDoWW8rAJMBeh8aDCM75gjEpKQ,6496
+sympy/matrices/expressions/tests/test_trace.py,sha256=fRlrw9CfdO3z3SI4TQb1fCUb_zVAndbtyOErEeCTCQ0,3383
+sympy/matrices/expressions/tests/test_transpose.py,sha256=P3wPPRywKnrAppX6gssgD66v0RIcolxqDkCaKGGPVcM,1987
+sympy/matrices/expressions/trace.py,sha256=Iqg3wgO7tTTVZGo1qbXKn99qTss-5znAW6-lLrhuIIs,5348
+sympy/matrices/expressions/transpose.py,sha256=SnfU_CE3_dBQkbi_SkPGqsE8eDgstYuplx7XDxKJIyA,2691
+sympy/matrices/graph.py,sha256=O73INKAbTpnzNdZ7y08ow9U2CmApdn7S9NEsA9LR-XQ,9076
+sympy/matrices/immutable.py,sha256=3NWY8oHiTGdWQR6AfZpg2fOtjRc1KH75yxkITNzCcPg,5425
+sympy/matrices/inverse.py,sha256=pGDQ3-iG9oTMEIuCwrFe0X5lxkvZSF-iMzod8zTv1OA,11409
+sympy/matrices/matrices.py,sha256=thx6Ks7DAts1FUB3l3cu4s3HRJ952mGNlXstLVvR4jM,75508
+sympy/matrices/normalforms.py,sha256=KiiKxxnYEaoA75UJjYFGqVLipgraNlG3Dlh9E2c1Q7k,3808
+sympy/matrices/reductions.py,sha256=GmXqmi3mgxi-jUiSx-B8xN0M7qLLovdDDTzjoMZvQR0,10781
+sympy/matrices/repmatrix.py,sha256=JIt55DuimIz7xN0WjdPzZhQmYbaqnDOT5xCRowPR2pY,21962
+sympy/matrices/solvers.py,sha256=IDDTmTY9FTZsbTwPC4oVG_0ZV8v6ey0JbhCFHulNm2E,22764
+sympy/matrices/sparse.py,sha256=KFRkfQ6iyLekYMc-0VJffNKzf7EeFvIk2zRsFoQwwcI,14675
+sympy/matrices/sparsetools.py,sha256=tzI541P8QW_v1eVJAXgOlo_KK1Xp6u1geawX_tdlBxY,9182
+sympy/matrices/subspaces.py,sha256=uLo4qnP0xvFcFo5hhf6g7pHSHiRbcQ1ATDKwGBxW7CE,3761
+sympy/matrices/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/matrices/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/matrices/tests/__pycache__/test_commonmatrix.cpython-310.pyc,,
+sympy/matrices/tests/__pycache__/test_decompositions.cpython-310.pyc,,
+sympy/matrices/tests/__pycache__/test_determinant.cpython-310.pyc,,
+sympy/matrices/tests/__pycache__/test_eigen.cpython-310.pyc,,
+sympy/matrices/tests/__pycache__/test_graph.cpython-310.pyc,,
+sympy/matrices/tests/__pycache__/test_immutable.cpython-310.pyc,,
+sympy/matrices/tests/__pycache__/test_interactions.cpython-310.pyc,,
+sympy/matrices/tests/__pycache__/test_matrices.cpython-310.pyc,,
+sympy/matrices/tests/__pycache__/test_normalforms.cpython-310.pyc,,
+sympy/matrices/tests/__pycache__/test_reductions.cpython-310.pyc,,
+sympy/matrices/tests/__pycache__/test_solvers.cpython-310.pyc,,
+sympy/matrices/tests/__pycache__/test_sparse.cpython-310.pyc,,
+sympy/matrices/tests/__pycache__/test_sparsetools.cpython-310.pyc,,
+sympy/matrices/tests/__pycache__/test_subspaces.cpython-310.pyc,,
+sympy/matrices/tests/test_commonmatrix.py,sha256=9xvYBhxFJm020OhVDKWIj-m1PGtkvHFwtV7iL67SdUI,38564
+sympy/matrices/tests/test_decompositions.py,sha256=SvjGIKZawYyotzbbwpwpcC7fV-nZRNlDwRhq1AL2AQ0,14417
+sympy/matrices/tests/test_determinant.py,sha256=RYmf2bLWtk8nuyIJuhRpSIFklsfVtAGa2gx2AvAi2TU,13350
+sympy/matrices/tests/test_eigen.py,sha256=guJ56Hd33ScYp2DPLMQ-mj6WtG7JbRB5pvJLv6SeP-0,22773
+sympy/matrices/tests/test_graph.py,sha256=ckfGDCg2M6gluv9XFnfURga8gxd2HTL7aX281s6wy6c,3213
+sympy/matrices/tests/test_immutable.py,sha256=qV1L1i8RWX3ihJx3J-M07s_thfXmuUA1wIRfQnUbqyA,4618
+sympy/matrices/tests/test_interactions.py,sha256=RKQsDDiwuEZxL7-bTJR_ue7DKGbCZYl7pvjjgE7EyEY,2066
+sympy/matrices/tests/test_matrices.py,sha256=WHL_ngSJgL_R4CBPACf4GPfand2bOGvVhjHcjJyFCY4,144201
+sympy/matrices/tests/test_normalforms.py,sha256=JQvFfp53MW8cJhxEkyNvsMmhhD7FVncAkjuGMXu5Fok,3009
+sympy/matrices/tests/test_reductions.py,sha256=xbB-_vbF9IYIzvkaOjsVeFfJHRk3buFRNdxKGZvuZXE,13951
+sympy/matrices/tests/test_solvers.py,sha256=hsbvtRyBhLzTxX62AYqDTn7bltGanT1NwYUecUPEViE,20386
+sympy/matrices/tests/test_sparse.py,sha256=GvXN6kBVldjqoR8WN8I_PjblKhRmyRWvVuLUgZEgugY,23281
+sympy/matrices/tests/test_sparsetools.py,sha256=pjQR6UaEMR92NolB_IGZ9Umk6FPZjvI0vk1Fd4H_C5I,4877
+sympy/matrices/tests/test_subspaces.py,sha256=vnuIyKbViZMa-AHCZ3PI9HbCL_t-LNI70gwbZvzRtzw,3839
+sympy/matrices/utilities.py,sha256=mMnNsDTxGKqiG0JATsM4W9b5jglhacy-vmRw2aZojgY,2117
+sympy/multipledispatch/__init__.py,sha256=aV2NC2cO_KmD6QFiwy4oC1D8fm3pFuPbaiTMeWmNWak,259
+sympy/multipledispatch/__pycache__/__init__.cpython-310.pyc,,
+sympy/multipledispatch/__pycache__/conflict.cpython-310.pyc,,
+sympy/multipledispatch/__pycache__/core.cpython-310.pyc,,
+sympy/multipledispatch/__pycache__/dispatcher.cpython-310.pyc,,
+sympy/multipledispatch/__pycache__/utils.cpython-310.pyc,,
+sympy/multipledispatch/conflict.py,sha256=rR6tKn58MfhMMKZ4ZrhVduylXd9f5PjT2TpzM9LMB6o,2117
+sympy/multipledispatch/core.py,sha256=I4WOnmu1VtlaCnn2oD9R2-xckkYLRZPNFEWtCOTAYfM,2261
+sympy/multipledispatch/dispatcher.py,sha256=A2I4upt4qNollXGpwzrqg7M0oKHJhZx1BUMIBnjRIow,12226
+sympy/multipledispatch/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/multipledispatch/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/multipledispatch/tests/__pycache__/test_conflict.cpython-310.pyc,,
+sympy/multipledispatch/tests/__pycache__/test_core.cpython-310.pyc,,
+sympy/multipledispatch/tests/__pycache__/test_dispatcher.cpython-310.pyc,,
+sympy/multipledispatch/tests/test_conflict.py,sha256=msNVSiikuPOqsEm_MMGmjsNbA2CAR0F1FZaHskzzo04,1786
+sympy/multipledispatch/tests/test_core.py,sha256=UfH_7cyvZ6PHjdH8vmLG49CG7E30W8uxm3FthuMc1Jk,4048
+sympy/multipledispatch/tests/test_dispatcher.py,sha256=saJPpGXLpLOuRfw-ekzZGzY-Rys0NsS5ke0n33i9j0U,6228
+sympy/multipledispatch/utils.py,sha256=39wB9i8jNhlLFZyCTFnioLx5N_CNWv4r5VZwKrxswIE,3097
+sympy/ntheory/__init__.py,sha256=MBs5Tdw5xAgNMlCdN8fSLiIswQudZibIbHjI9L5BEds,2746
+sympy/ntheory/__pycache__/__init__.cpython-310.pyc,,
+sympy/ntheory/__pycache__/bbp_pi.cpython-310.pyc,,
+sympy/ntheory/__pycache__/continued_fraction.cpython-310.pyc,,
+sympy/ntheory/__pycache__/digits.cpython-310.pyc,,
+sympy/ntheory/__pycache__/ecm.cpython-310.pyc,,
+sympy/ntheory/__pycache__/egyptian_fraction.cpython-310.pyc,,
+sympy/ntheory/__pycache__/elliptic_curve.cpython-310.pyc,,
+sympy/ntheory/__pycache__/factor_.cpython-310.pyc,,
+sympy/ntheory/__pycache__/generate.cpython-310.pyc,,
+sympy/ntheory/__pycache__/modular.cpython-310.pyc,,
+sympy/ntheory/__pycache__/multinomial.cpython-310.pyc,,
+sympy/ntheory/__pycache__/partitions_.cpython-310.pyc,,
+sympy/ntheory/__pycache__/primetest.cpython-310.pyc,,
+sympy/ntheory/__pycache__/qs.cpython-310.pyc,,
+sympy/ntheory/__pycache__/residue_ntheory.cpython-310.pyc,,
+sympy/ntheory/bbp_pi.py,sha256=p4OLH6B7CFmpTQPM2DNvxWW3T-PYNha5EPAE649i_tA,5252
+sympy/ntheory/continued_fraction.py,sha256=-GA1fzvgK7h8Bad_1NN0majRhwIQEg2zZDPuKSHAVYA,10109
+sympy/ntheory/digits.py,sha256=xFzoMyAC36fLR5OvtTetoXUSvhNTbP3HKY_co8RUEr4,3688
+sympy/ntheory/ecm.py,sha256=3ot2F6V8TSsaFEZndxxDDyqnT0jQ67Xdq0e3cuea_UE,10618
+sympy/ntheory/egyptian_fraction.py,sha256=hW886hPWJtARqgZIrH1WjZFC0uvf9CHxMIn0X9MWZro,6923
+sympy/ntheory/elliptic_curve.py,sha256=zDRjICf4p3PPfdxKWrPeTcMbAMqPvrZmK2rk9JAbh60,11510
+sympy/ntheory/factor_.py,sha256=5Oqd9QvsW4MR_eH--wbpmoa502yhoLM4g-9gPh5eYKc,75815
+sympy/ntheory/generate.py,sha256=42BWhzsUNv2k3pqdzWyAHAPPydPIaxHkmTIV-8rVSAk,29411
+sympy/ntheory/modular.py,sha256=fA3_ovJcPqrwT2bPjmd4cSGPDyVG6HSM9oP07HP1R_s,7650
+sympy/ntheory/multinomial.py,sha256=rbm3STjgfRbNVbcPeH69qtWktthSCk0sC373NuDM6fU,5073
+sympy/ntheory/partitions_.py,sha256=mE-PQKxaEM20AJJiCgkfhuCAruPbrtnHq3Ad2WrBSM8,5975
+sympy/ntheory/primetest.py,sha256=2qI-5HR_CowK2iH07B4XE2anXxkhSDWw7PPcQkOy70g,20951
+sympy/ntheory/qs.py,sha256=QzIJFHjFG2ncIpoJ7CGMzJ6HudVqB2RNp2yBHBjkSz8,18474
+sympy/ntheory/residue_ntheory.py,sha256=qNJSoRFKAcAcRet5rv3nSF7p3BJJXk9ewJxIDdg1lSE,40653
+sympy/ntheory/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/ntheory/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/ntheory/tests/__pycache__/test_bbp_pi.cpython-310.pyc,,
+sympy/ntheory/tests/__pycache__/test_continued_fraction.cpython-310.pyc,,
+sympy/ntheory/tests/__pycache__/test_digits.cpython-310.pyc,,
+sympy/ntheory/tests/__pycache__/test_ecm.cpython-310.pyc,,
+sympy/ntheory/tests/__pycache__/test_egyptian_fraction.cpython-310.pyc,,
+sympy/ntheory/tests/__pycache__/test_elliptic_curve.cpython-310.pyc,,
+sympy/ntheory/tests/__pycache__/test_factor_.cpython-310.pyc,,
+sympy/ntheory/tests/__pycache__/test_generate.cpython-310.pyc,,
+sympy/ntheory/tests/__pycache__/test_modular.cpython-310.pyc,,
+sympy/ntheory/tests/__pycache__/test_multinomial.cpython-310.pyc,,
+sympy/ntheory/tests/__pycache__/test_partitions.cpython-310.pyc,,
+sympy/ntheory/tests/__pycache__/test_primetest.cpython-310.pyc,,
+sympy/ntheory/tests/__pycache__/test_qs.cpython-310.pyc,,
+sympy/ntheory/tests/__pycache__/test_residue.cpython-310.pyc,,
+sympy/ntheory/tests/test_bbp_pi.py,sha256=-RXXkqMUfVCYeO9HonldOOISDKDaUYCCe5CUgK18L3o,9433
+sympy/ntheory/tests/test_continued_fraction.py,sha256=gfQfLuLVFn-bmEPBcgnU-f0VibJiY8hAEl0FO4V3iVU,3052
+sympy/ntheory/tests/test_digits.py,sha256=jC8GCQVJelFcHMApf5TZU1KXP2oBp48lkkD0bM2TLCo,1182
+sympy/ntheory/tests/test_ecm.py,sha256=Hy9pYRZPuFm7yrGVRs2ob_w3YY3bMEENH_hkDh947UE,2303
+sympy/ntheory/tests/test_egyptian_fraction.py,sha256=tpHcwteuuQAahcPqvgBm4Mwq-efzcHOn8mldijynjlE,2378
+sympy/ntheory/tests/test_elliptic_curve.py,sha256=wc0EOsGo-qGpdevRq1o64htwTOT_YSUzUfyhJC-JVbg,624
+sympy/ntheory/tests/test_factor_.py,sha256=Z1RvrqLttbgp3ZhfJZtCZmUV7GehKGQDSUEEdF0CSSA,25024
+sympy/ntheory/tests/test_generate.py,sha256=ALKzLAcCPIMTr3JC6RJHuOYd6z0aFVaF5-e481icYe8,8069
+sympy/ntheory/tests/test_modular.py,sha256=g73sUXtYNxzbDcq5UnMWT8NodAU8unwRj_E-PpvJqDs,1425
+sympy/ntheory/tests/test_multinomial.py,sha256=8uuj6XlatNyIILOpjJap13CMZmDwrCyGKn9LiIUiLV0,2344
+sympy/ntheory/tests/test_partitions.py,sha256=AkmDpR0IFxo0ret91tRPYUqrgQfQ367okTt2Ee2Vm60,507
+sympy/ntheory/tests/test_primetest.py,sha256=1Pkoi-TNxvB0oT1J5_YXryabyiGgPeXigS_vo_4x_v8,7062
+sympy/ntheory/tests/test_qs.py,sha256=ZCWiWiUULzLDTCz6CsolmVAdvZMZrz3wFrZXd-GtHfM,4481
+sympy/ntheory/tests/test_residue.py,sha256=t3-yaWmZvfkQpjUDqOzgwnTFO0je7BkEU2QKpA-pttU,12884
+sympy/parsing/__init__.py,sha256=KHuyDeHY1ifpVxT4aTOhomazCBYVIrKWd28jqp6YNJ8,125
+sympy/parsing/__pycache__/__init__.cpython-310.pyc,,
+sympy/parsing/__pycache__/ast_parser.cpython-310.pyc,,
+sympy/parsing/__pycache__/mathematica.cpython-310.pyc,,
+sympy/parsing/__pycache__/maxima.cpython-310.pyc,,
+sympy/parsing/__pycache__/sym_expr.cpython-310.pyc,,
+sympy/parsing/__pycache__/sympy_parser.cpython-310.pyc,,
+sympy/parsing/ast_parser.py,sha256=PWuAoNPZ6-C8HCYYGCG9tMCgwuMzi_ebyIqFSJCqk6k,2724
+sympy/parsing/autolev/Autolev.g4,sha256=980mo25mLWrQFmhRIg-aqIalUuwktYYaBGTXZ5_XZwA,4195
+sympy/parsing/autolev/__init__.py,sha256=sp5hzv5siVW3xUmhkp0S0iaA0Cz-PVB0HO1zC04pxYs,3611
+sympy/parsing/autolev/__pycache__/__init__.cpython-310.pyc,,
+sympy/parsing/autolev/__pycache__/_build_autolev_antlr.cpython-310.pyc,,
+sympy/parsing/autolev/__pycache__/_listener_autolev_antlr.cpython-310.pyc,,
+sympy/parsing/autolev/__pycache__/_parse_autolev_antlr.cpython-310.pyc,,
+sympy/parsing/autolev/_antlr/__init__.py,sha256=MQ4ZacpTuP-NmruFXKdWLQatoeVJQ8SaBQ2DnYvtyE8,203
+sympy/parsing/autolev/_antlr/__pycache__/__init__.cpython-310.pyc,,
+sympy/parsing/autolev/_antlr/__pycache__/autolevlexer.cpython-310.pyc,,
+sympy/parsing/autolev/_antlr/__pycache__/autolevlistener.cpython-310.pyc,,
+sympy/parsing/autolev/_antlr/__pycache__/autolevparser.cpython-310.pyc,,
+sympy/parsing/autolev/_antlr/autolevlexer.py,sha256=K7HF_-5dUyAIv1_7GkhTmxqSCanEhCpzJG8fayAEB3Q,13609
+sympy/parsing/autolev/_antlr/autolevlistener.py,sha256=EDb3XkH9Y7CLzxGM-tY-nGqxMGfBHVkqKdVCPxABgRE,12821
+sympy/parsing/autolev/_antlr/autolevparser.py,sha256=BZYJ7IkurRmm44S50pYp_9JHCjT8fr1w5HeksAEPjtg,106291
+sympy/parsing/autolev/_build_autolev_antlr.py,sha256=XOR44PCPo234I_Z1QnneSArY8aPpp4xP4-dycMalQQw,2590
+sympy/parsing/autolev/_listener_autolev_antlr.py,sha256=P5XTo2UjkyDyx4d9kpmWIm6BoCXyOiED9s8Tr3w3Am4,104758
+sympy/parsing/autolev/_parse_autolev_antlr.py,sha256=b9hIaluJUd1V2XIAp1erak6U-c-CwKyDLH1UkYQuvKE,1736
+sympy/parsing/autolev/test-examples/README.txt,sha256=0C4m_nLROeV5J8nMfm3RYEfYgQJqmlHZaCpVD24boQY,528
+sympy/parsing/autolev/test-examples/__pycache__/ruletest1.cpython-310.pyc,,
+sympy/parsing/autolev/test-examples/__pycache__/ruletest10.cpython-310.pyc,,
+sympy/parsing/autolev/test-examples/__pycache__/ruletest11.cpython-310.pyc,,
+sympy/parsing/autolev/test-examples/__pycache__/ruletest12.cpython-310.pyc,,
+sympy/parsing/autolev/test-examples/__pycache__/ruletest2.cpython-310.pyc,,
+sympy/parsing/autolev/test-examples/__pycache__/ruletest3.cpython-310.pyc,,
+sympy/parsing/autolev/test-examples/__pycache__/ruletest4.cpython-310.pyc,,
+sympy/parsing/autolev/test-examples/__pycache__/ruletest5.cpython-310.pyc,,
+sympy/parsing/autolev/test-examples/__pycache__/ruletest6.cpython-310.pyc,,
+sympy/parsing/autolev/test-examples/__pycache__/ruletest7.cpython-310.pyc,,
+sympy/parsing/autolev/test-examples/__pycache__/ruletest8.cpython-310.pyc,,
+sympy/parsing/autolev/test-examples/__pycache__/ruletest9.cpython-310.pyc,,
+sympy/parsing/autolev/test-examples/pydy-example-repo/__pycache__/chaos_pendulum.cpython-310.pyc,,
+sympy/parsing/autolev/test-examples/pydy-example-repo/__pycache__/double_pendulum.cpython-310.pyc,,
+sympy/parsing/autolev/test-examples/pydy-example-repo/__pycache__/mass_spring_damper.cpython-310.pyc,,
+sympy/parsing/autolev/test-examples/pydy-example-repo/__pycache__/non_min_pendulum.cpython-310.pyc,,
+sympy/parsing/autolev/test-examples/pydy-example-repo/chaos_pendulum.al,sha256=HpTcX2wXzLqmgpp8fcSqNweKjxljk43iYK0wQmBbCDI,690
+sympy/parsing/autolev/test-examples/pydy-example-repo/chaos_pendulum.py,sha256=FSu4TP2BDTQjzYhMkcpRhXbb3kAD27XCyO_EoL55Ack,2274
+sympy/parsing/autolev/test-examples/pydy-example-repo/double_pendulum.al,sha256=wjeeRdCS3Es6ldX9Ug5Du1uaijUTyoXpfTqmhL0uYfk,427
+sympy/parsing/autolev/test-examples/pydy-example-repo/double_pendulum.py,sha256=uU9azTUGrY15BSDtw5T_V-7gmjyhHbXslzkmwBvFjGk,1583
+sympy/parsing/autolev/test-examples/pydy-example-repo/mass_spring_damper.al,sha256=Gf7OhgRlwqUEXq7rkfbf89yWA23u4uIUJ-buXTyOuXM,505
+sympy/parsing/autolev/test-examples/pydy-example-repo/mass_spring_damper.py,sha256=9ReCAqcUH5HYBgHmop9h5Zx54mfScWZN5L5F6rCHk4w,1366
+sympy/parsing/autolev/test-examples/pydy-example-repo/non_min_pendulum.al,sha256=p5v40h1nVFrWNqnB0K7GiNQT0b-MqwayYjZxXOY4M8M,362
+sympy/parsing/autolev/test-examples/pydy-example-repo/non_min_pendulum.py,sha256=DdxcWrm3HMQuyyY3Pk6sKHb4RXhQEM_EKY3HYZCP8ec,1503
+sympy/parsing/autolev/test-examples/ruletest1.al,sha256=mDJ02Q1Qm-ShVmGoyjzSfgDJHUOuDrsUg3YMnkpKdUw,176
+sympy/parsing/autolev/test-examples/ruletest1.py,sha256=eIKEFzEwkCFhPF0GTmf6SLuxXT384GqdCJnhiL2U0BQ,555
+sympy/parsing/autolev/test-examples/ruletest10.al,sha256=jKpV8BgX91iQsQDLFOJyaS396AyE5YQlUMxih5o9RK0,781
+sympy/parsing/autolev/test-examples/ruletest10.py,sha256=I1tsQcSAW6wqIguF-7lwlj9D4YZ8kCZqPqTKPUHR9oI,2726
+sympy/parsing/autolev/test-examples/ruletest11.al,sha256=j_q7giq2KIuXVRLWwNlwIlpbhNO6SqBMnLGLcxIkzwk,188
+sympy/parsing/autolev/test-examples/ruletest11.py,sha256=dYTRtXvMDXHiKzXHD2Sh0fcEukob3wr_GbSeqaZrrO8,475
+sympy/parsing/autolev/test-examples/ruletest12.al,sha256=drr2NLrK1ewn4FjMppXycpAUNbZEQ0IAMsdVx8nxk6I,185
+sympy/parsing/autolev/test-examples/ruletest12.py,sha256=ZG36s3PnkT0aKBM9Nx6H0sdJrtoLwaebU9386YSUql8,472
+sympy/parsing/autolev/test-examples/ruletest2.al,sha256=d-QjPpW0lzugaGBg8F6pDl_5sZHOR_EDJ8EvWLcz4FY,237
+sympy/parsing/autolev/test-examples/ruletest2.py,sha256=jrJfb0Jk2FP4GS5pDa0UB5ph0ijEVd1X8meKeZrTVng,820
+sympy/parsing/autolev/test-examples/ruletest3.al,sha256=1TAaOe8GI8-yBWJddfIxwnvScHNmOjSzSaQn0RS_v5k,308
+sympy/parsing/autolev/test-examples/ruletest3.py,sha256=O3K3IQo-HCjAIOSkfz3bDlst7dVUiRwhOZ0q_3jb5LU,1574
+sympy/parsing/autolev/test-examples/ruletest4.al,sha256=qPGlPbdDRrzTDUBeWydAIa7mbjs2o3uX938QAsWJ7Qk,302
+sympy/parsing/autolev/test-examples/ruletest4.py,sha256=WHod5yzKF4TNbEf4Yfxmx9WnimA7NOXqtTjZXR8FsP0,682
+sympy/parsing/autolev/test-examples/ruletest5.al,sha256=VuiKjiFmLK3uEdho0m3pk-n0qm4SNLoLPMRJqjMJ4GY,516
+sympy/parsing/autolev/test-examples/ruletest5.py,sha256=WvUtno1D3BrmFNPYYIBKR_gOA-PaHoxLlSTNDX67dcQ,1991
+sympy/parsing/autolev/test-examples/ruletest6.al,sha256=-HwgTmh_6X3wHjo3PQi7378t8YdizRJClc5Eb5DmjhE,703
+sympy/parsing/autolev/test-examples/ruletest6.py,sha256=vEO0jMOD-KIevAcVexmpvac0MGjN7O_dNipOBJJNzF0,1473
+sympy/parsing/autolev/test-examples/ruletest7.al,sha256=wR9S9rTzO9fyKL6Ofgwzw8XCFCV_p2hBpYotC8TvADI,773
+sympy/parsing/autolev/test-examples/ruletest7.py,sha256=_XvMrMe5r9RLopTrIqMGLhaYvHL1qjteWz9CKcotCL8,1696
+sympy/parsing/autolev/test-examples/ruletest8.al,sha256=P7Nu3Pq2R1mKcuFRc9dRO5jJ1_e5fwWdtqYG8NHVVds,682
+sympy/parsing/autolev/test-examples/ruletest8.py,sha256=8tgbwJ-ir0wiOCsgIFCAu4uD8SieYRrLoLzEfae5YQY,2690
+sympy/parsing/autolev/test-examples/ruletest9.al,sha256=txtZ5RH2p1FvAe6etwetSCH8rLktnpk5z0W72sCOdAA,755
+sympy/parsing/autolev/test-examples/ruletest9.py,sha256=GtqV-Wq2GGJzfblMscAz-KXCzs0P_4XqvA3FIdlPe04,1965
+sympy/parsing/c/__init__.py,sha256=J9CvkNRY-qy6CA06GZYuwTuxdnqas6oUP2g0qLztGro,65
+sympy/parsing/c/__pycache__/__init__.cpython-310.pyc,,
+sympy/parsing/c/__pycache__/c_parser.cpython-310.pyc,,
+sympy/parsing/c/c_parser.py,sha256=o7UohvD8V6feJr74sIbx2NNAyZOLFNJDHtiUPg_rUeg,39331
+sympy/parsing/fortran/__init__.py,sha256=KraiVw2qxIgYeMRTFjs1vkMi-hqqDkxUBv8Rc2gwkCI,73
+sympy/parsing/fortran/__pycache__/__init__.cpython-310.pyc,,
+sympy/parsing/fortran/__pycache__/fortran_parser.cpython-310.pyc,,
+sympy/parsing/fortran/fortran_parser.py,sha256=RpNQR3eNx5vgfzdt0nEZDCB56kF__SnYMaqWN3zla00,11483
+sympy/parsing/latex/LICENSE.txt,sha256=AHvDClj6QKmW53IEcSDeTq8x9REOT5w7X5P8374urKE,1075
+sympy/parsing/latex/LaTeX.g4,sha256=fG0ZUQPwYQOIbcyaPDAkGvcfGs3ZwwMB8ZnKW5yHUDY,5821
+sympy/parsing/latex/__init__.py,sha256=10TctFMpk3AolsniTJR5rQr19QXNqVTx-rl8ZFkHC4s,991
+sympy/parsing/latex/__pycache__/__init__.cpython-310.pyc,,
+sympy/parsing/latex/__pycache__/_build_latex_antlr.cpython-310.pyc,,
+sympy/parsing/latex/__pycache__/_parse_latex_antlr.cpython-310.pyc,,
+sympy/parsing/latex/__pycache__/errors.cpython-310.pyc,,
+sympy/parsing/latex/_antlr/__init__.py,sha256=TAb79senorEsoYLCLwUa8wg8AUCHzmmZ7tLdi0XGNaE,384
+sympy/parsing/latex/_antlr/__pycache__/__init__.cpython-310.pyc,,
+sympy/parsing/latex/_antlr/__pycache__/latexlexer.cpython-310.pyc,,
+sympy/parsing/latex/_antlr/__pycache__/latexparser.cpython-310.pyc,,
+sympy/parsing/latex/_antlr/latexlexer.py,sha256=Y1hmY1VGL5FTSSlToTRQydPnyaLLNy1mDSWx76HaYwM,30502
+sympy/parsing/latex/_antlr/latexparser.py,sha256=ZvonpvTS3vLSOVpas88M3CfNnUhPUDsCCPPk4wBYUGE,123655
+sympy/parsing/latex/_build_latex_antlr.py,sha256=id_4pbcI4nAa0tHumN0lZX0Ubb-BaJ3czGwiQR_jZPE,2777
+sympy/parsing/latex/_parse_latex_antlr.py,sha256=3iUHktfORn60D5SBpRNjSSaxuKlmzEBI5-DilfkkRQ0,20525
+sympy/parsing/latex/errors.py,sha256=adSpvQyWjTLsbN_2KHJ4HuXpY7_U9noeWiG0lskYLgE,45
+sympy/parsing/mathematica.py,sha256=AX5q_9bDARtC0w3bFNmhNKGqe3X7NlprZEvMCbV_vMs,39282
+sympy/parsing/maxima.py,sha256=DhTnXRSAceijyA1OAm86c6TyW9-aeUVoZEELGu0oZtY,1835
+sympy/parsing/sym_expr.py,sha256=-hxarp961eyLtuwUhbg3D3qzy06HrEPZEYpGVcJzAv0,8895
+sympy/parsing/sympy_parser.py,sha256=QA9TRHZwqQ8kqfOPA4EeHfKz1dCqpBppRtVTE61IpO0,43814
+sympy/parsing/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/parsing/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/parsing/tests/__pycache__/test_ast_parser.cpython-310.pyc,,
+sympy/parsing/tests/__pycache__/test_autolev.cpython-310.pyc,,
+sympy/parsing/tests/__pycache__/test_c_parser.cpython-310.pyc,,
+sympy/parsing/tests/__pycache__/test_fortran_parser.cpython-310.pyc,,
+sympy/parsing/tests/__pycache__/test_implicit_multiplication_application.cpython-310.pyc,,
+sympy/parsing/tests/__pycache__/test_latex.cpython-310.pyc,,
+sympy/parsing/tests/__pycache__/test_latex_deps.cpython-310.pyc,,
+sympy/parsing/tests/__pycache__/test_mathematica.cpython-310.pyc,,
+sympy/parsing/tests/__pycache__/test_maxima.cpython-310.pyc,,
+sympy/parsing/tests/__pycache__/test_sym_expr.cpython-310.pyc,,
+sympy/parsing/tests/__pycache__/test_sympy_parser.cpython-310.pyc,,
+sympy/parsing/tests/test_ast_parser.py,sha256=lcT8w7mn6UEZ8T-xfA4TqG4Mt7JxY00oHhOW7JtHQfY,803
+sympy/parsing/tests/test_autolev.py,sha256=tQuUFa8YqVdsHPOcUhAwlMKB8Uk08HejDhDCda8lXs0,6647
+sympy/parsing/tests/test_c_parser.py,sha256=yIYdfnaHX9Z93-Cmf6x9C7eysQ-y3_lU-6CGRXN4WL8,154665
+sympy/parsing/tests/test_fortran_parser.py,sha256=SGbawrJ4a780TJAFVMONc7Y3Y8VYgVqsIHxVGaicbxE,11828
+sympy/parsing/tests/test_implicit_multiplication_application.py,sha256=nPzLKcAJJaoZgdLoq1_CXhiWKFBH--p4t6dq4I3sV9A,7448
+sympy/parsing/tests/test_latex.py,sha256=khNyIVANKnQFIE6hR3UdSqlzYdZWDtO0vs6TxhpWDUI,11503
+sympy/parsing/tests/test_latex_deps.py,sha256=oe5vm2eIKn05ZiCcXUaO8X6HCcRmN1qCuTsz6tB7Qrk,426
+sympy/parsing/tests/test_mathematica.py,sha256=ma9YM-Cti4hMhjZym5RMGaesxaWki6p29QROJ4oSs4E,13166
+sympy/parsing/tests/test_maxima.py,sha256=iIwnFm0lYD0-JcraUIymogqEMN3ji0c-0JeNFFGTEDs,1987
+sympy/parsing/tests/test_sym_expr.py,sha256=-wNR7GwvJHVmPSZxSuAuoX1_FJk83O0tcDi09qYY6Jk,5668
+sympy/parsing/tests/test_sympy_parser.py,sha256=5__CszZfy8DAl5JzfsLGsDECRjdT20a3p9cwYBXvAh8,12253
+sympy/physics/__init__.py,sha256=F_yvUMCuBq3HR-3Ai6W4oktBsXRg8KdutFLwT9FFJlY,220
+sympy/physics/__pycache__/__init__.cpython-310.pyc,,
+sympy/physics/__pycache__/hydrogen.cpython-310.pyc,,
+sympy/physics/__pycache__/matrices.cpython-310.pyc,,
+sympy/physics/__pycache__/paulialgebra.cpython-310.pyc,,
+sympy/physics/__pycache__/pring.cpython-310.pyc,,
+sympy/physics/__pycache__/qho_1d.cpython-310.pyc,,
+sympy/physics/__pycache__/secondquant.cpython-310.pyc,,
+sympy/physics/__pycache__/sho.cpython-310.pyc,,
+sympy/physics/__pycache__/wigner.cpython-310.pyc,,
+sympy/physics/continuum_mechanics/__init__.py,sha256=moVrcsEw_a8db69dtuwE-aquZ1TAJc7JxHukrYnJuyM,89
+sympy/physics/continuum_mechanics/__pycache__/__init__.cpython-310.pyc,,
+sympy/physics/continuum_mechanics/__pycache__/beam.cpython-310.pyc,,
+sympy/physics/continuum_mechanics/__pycache__/truss.cpython-310.pyc,,
+sympy/physics/continuum_mechanics/beam.py,sha256=i3BcVzCsC9AUPjyAcPd5Lfwcpb_9bz9V-cO6N2WlkLU,148566
+sympy/physics/continuum_mechanics/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/physics/continuum_mechanics/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/physics/continuum_mechanics/tests/__pycache__/test_beam.cpython-310.pyc,,
+sympy/physics/continuum_mechanics/tests/__pycache__/test_truss.cpython-310.pyc,,
+sympy/physics/continuum_mechanics/tests/test_beam.py,sha256=IubYZzOkQ9dBcyR_rLA9FxUkFZ_x1BX16MKUvyJaOkE,26879
+sympy/physics/continuum_mechanics/tests/test_truss.py,sha256=dsjtXQoBXcFDacKc55DbZST1L69XGKN0TMtCBnHN5hY,3368
+sympy/physics/continuum_mechanics/truss.py,sha256=C9JPSDutXBS4QFmdqcsClFCtdN9tdGauPD8TYQ4_NF0,28496
+sympy/physics/control/__init__.py,sha256=Z5cPVgXd8BAdxX9iqyLLVyk2n2ry_jiMBHo6crMeLFA,1027
+sympy/physics/control/__pycache__/__init__.cpython-310.pyc,,
+sympy/physics/control/__pycache__/control_plots.cpython-310.pyc,,
+sympy/physics/control/__pycache__/lti.cpython-310.pyc,,
+sympy/physics/control/control_plots.py,sha256=Q25egDhUs-xrlh5oy4ZBlnOqF5pJtQ1SRo28r5nnudY,32222
+sympy/physics/control/lti.py,sha256=EquvSYF2ifqnFfYsnoJuAsRrZHQIm7f6LwmZGbmbW-M,114652
+sympy/physics/control/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/physics/control/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/physics/control/tests/__pycache__/test_control_plots.cpython-310.pyc,,
+sympy/physics/control/tests/__pycache__/test_lti.cpython-310.pyc,,
+sympy/physics/control/tests/test_control_plots.py,sha256=EDTfKI08wacHtYFKf7HeBi43msqqAvMOhTWf-8RJu3k,15728
+sympy/physics/control/tests/test_lti.py,sha256=QPuNpHlSquTX14-r4YbhNfxh32x_D17jAxtO2aQn5GA,59908
+sympy/physics/hep/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/physics/hep/__pycache__/__init__.cpython-310.pyc,,
+sympy/physics/hep/__pycache__/gamma_matrices.cpython-310.pyc,,
+sympy/physics/hep/gamma_matrices.py,sha256=WlSHLUtMU7NrgLyKEvTntMSYxMZq1r_6o2kqUEAdPaA,24253
+sympy/physics/hep/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/physics/hep/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/physics/hep/tests/__pycache__/test_gamma_matrices.cpython-310.pyc,,
+sympy/physics/hep/tests/test_gamma_matrices.py,sha256=iKqICj0bP7EK0sSuYFsPdPkDTbHGa6J_LMPZAzv1j4o,14722
+sympy/physics/hydrogen.py,sha256=R2wnNi1xB-WTQ8Z9aPUhX9Z8mQ8TdhCM1JAZIkyXgjw,7594
+sympy/physics/matrices.py,sha256=jHfbWkzL2myFt-39kodQo5wPubBxNZKXlljuSxZL4bE,3836
+sympy/physics/mechanics/__init__.py,sha256=57XHPOZF3y2-dLcrfwECEgjFthUYeQncmft3GZYKyOY,2033
+sympy/physics/mechanics/__pycache__/__init__.cpython-310.pyc,,
+sympy/physics/mechanics/__pycache__/body.cpython-310.pyc,,
+sympy/physics/mechanics/__pycache__/functions.cpython-310.pyc,,
+sympy/physics/mechanics/__pycache__/joint.cpython-310.pyc,,
+sympy/physics/mechanics/__pycache__/jointsmethod.cpython-310.pyc,,
+sympy/physics/mechanics/__pycache__/kane.cpython-310.pyc,,
+sympy/physics/mechanics/__pycache__/lagrange.cpython-310.pyc,,
+sympy/physics/mechanics/__pycache__/linearize.cpython-310.pyc,,
+sympy/physics/mechanics/__pycache__/method.cpython-310.pyc,,
+sympy/physics/mechanics/__pycache__/models.cpython-310.pyc,,
+sympy/physics/mechanics/__pycache__/particle.cpython-310.pyc,,
+sympy/physics/mechanics/__pycache__/rigidbody.cpython-310.pyc,,
+sympy/physics/mechanics/__pycache__/system.cpython-310.pyc,,
+sympy/physics/mechanics/body.py,sha256=eqQbmsPOZnad0aH326N_FfZZWtzs4IIvbugwfkLlHtQ,19088
+sympy/physics/mechanics/functions.py,sha256=GbhUZWZD0HqLGh03ojXfnATxM-oxM708AmFtCgOjJFE,25557
+sympy/physics/mechanics/joint.py,sha256=hTBI8wd7ylnRgR1hrW-Xg9pTiFHBNgA6j5MWfTJMzdU,82739
+sympy/physics/mechanics/jointsmethod.py,sha256=FmccW8429JLfg9-Gxc4oeekrPi2ig77gYZJ2x7qVzMA,8530
+sympy/physics/mechanics/kane.py,sha256=L-imRN4zBCtFXajjyQ4-2peMULqysCbVEUq69JpQbgA,30567
+sympy/physics/mechanics/lagrange.py,sha256=_BM2q2euBxiVj-5OVMOkuzu9D012MP5AC6LnOENwbX0,18338
+sympy/physics/mechanics/linearize.py,sha256=sEX52OQP-pJ_pIlw8oVv01oQPeHiPf0LCm1GMuIn1Yo,15615
+sympy/physics/mechanics/method.py,sha256=2vFRhA79ra4HR6AzVBHMr3oNncrcqgLLMRqdyif0DrI,660
+sympy/physics/mechanics/models.py,sha256=9q1g3I2xYpuTMi-v9geswEqxJWTP3RjcOquRfzMhHzM,6463
+sympy/physics/mechanics/particle.py,sha256=F-pPvcmfxdacZxSIwnaXJ-W9KslIEnCw7ljCLlxVk4Y,7577
+sympy/physics/mechanics/rigidbody.py,sha256=YTWj-awmWw-OZQQ6wn_HxrTnmSu0Hvhd1TJxRVU62LI,11192
+sympy/physics/mechanics/system.py,sha256=Un6ep47tygf1Vdp-8G2WS6uT-FCqOBRwrDUdonFd_vA,18671
+sympy/physics/mechanics/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/physics/mechanics/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/physics/mechanics/tests/__pycache__/test_body.cpython-310.pyc,,
+sympy/physics/mechanics/tests/__pycache__/test_functions.cpython-310.pyc,,
+sympy/physics/mechanics/tests/__pycache__/test_joint.cpython-310.pyc,,
+sympy/physics/mechanics/tests/__pycache__/test_jointsmethod.cpython-310.pyc,,
+sympy/physics/mechanics/tests/__pycache__/test_kane.cpython-310.pyc,,
+sympy/physics/mechanics/tests/__pycache__/test_kane2.cpython-310.pyc,,
+sympy/physics/mechanics/tests/__pycache__/test_kane3.cpython-310.pyc,,
+sympy/physics/mechanics/tests/__pycache__/test_kane4.cpython-310.pyc,,
+sympy/physics/mechanics/tests/__pycache__/test_lagrange.cpython-310.pyc,,
+sympy/physics/mechanics/tests/__pycache__/test_lagrange2.cpython-310.pyc,,
+sympy/physics/mechanics/tests/__pycache__/test_linearize.cpython-310.pyc,,
+sympy/physics/mechanics/tests/__pycache__/test_method.cpython-310.pyc,,
+sympy/physics/mechanics/tests/__pycache__/test_models.cpython-310.pyc,,
+sympy/physics/mechanics/tests/__pycache__/test_particle.cpython-310.pyc,,
+sympy/physics/mechanics/tests/__pycache__/test_rigidbody.cpython-310.pyc,,
+sympy/physics/mechanics/tests/__pycache__/test_system.cpython-310.pyc,,
+sympy/physics/mechanics/tests/test_body.py,sha256=fV3dp94uFbE7ZHb7DkD0fJ1UgbSdc1NVVy0yRuYZfuk,11213
+sympy/physics/mechanics/tests/test_functions.py,sha256=W1k7uhYHs1Ayvtr4q8P_S8cUiwOuaz-UdE1svV4WpCQ,11033
+sympy/physics/mechanics/tests/test_joint.py,sha256=fordUBSC7clvKTuKCtb-KhrOGUonMF1w-91G-pawzKk,53035
+sympy/physics/mechanics/tests/test_jointsmethod.py,sha256=0soorl_p-tVwRx0jWreexWLXBk3v13ZnW9vJ0U6t6Pg,8935
+sympy/physics/mechanics/tests/test_kane.py,sha256=rFhtyVrr4Tifdwwgq-vedU8BneLPa_zVcUNWpHAiEvA,20599
+sympy/physics/mechanics/tests/test_kane2.py,sha256=3MweQ_qfbyc8WqcSvvj7iKQLRdMlki9S6uNyd8ZIDN0,19111
+sympy/physics/mechanics/tests/test_kane3.py,sha256=rc4BwlH3VGV21UH_s6I9y1CwHBwvdy3xvkEDS3lAJHQ,14432
+sympy/physics/mechanics/tests/test_kane4.py,sha256=a7CFmnz-MFbQbfop_tAhRUAHk7BJZEfa9PlcX2K8Y0Y,4722
+sympy/physics/mechanics/tests/test_lagrange.py,sha256=iuHomulBF8MafLeorKGaLHUEF8CvFhXcxEtN0hk1akM,10119
+sympy/physics/mechanics/tests/test_lagrange2.py,sha256=HCnDemnFD1r3DIT4oWnypcsZKvF1BA96_MMYHE7Q_xo,1413
+sympy/physics/mechanics/tests/test_linearize.py,sha256=G4XdGFp6lIUwNJ6qm77X24ZPKgGcyxYBuCv61WeROXM,11826
+sympy/physics/mechanics/tests/test_method.py,sha256=L7CnsvbQC-U7ijbSZdu7DEr03p88OLj4IPvFJ_3kCDo,154
+sympy/physics/mechanics/tests/test_models.py,sha256=X7lrxTIWuTP7GgpYyGVmOG48zG4UDWV99FACXFO5VMA,5091
+sympy/physics/mechanics/tests/test_particle.py,sha256=j66nmXM7R_TSxr2Z1xywQKD-al1z62I15ozPaywN1n0,2153
+sympy/physics/mechanics/tests/test_rigidbody.py,sha256=QvAAtofAqA4oQaYvxN1gK7QJf6TGrI3TqY5fHjbP200,5247
+sympy/physics/mechanics/tests/test_system.py,sha256=vRxvOH56wuWRTygmTcJJZAlB6Bw2Vlhcr9q6A526_WA,8713
+sympy/physics/optics/__init__.py,sha256=0UmqIt2-u8WwNkAqsnOVt9VlkB9K0CRIJYiQaltJ73w,1647
+sympy/physics/optics/__pycache__/__init__.cpython-310.pyc,,
+sympy/physics/optics/__pycache__/gaussopt.cpython-310.pyc,,
+sympy/physics/optics/__pycache__/medium.cpython-310.pyc,,
+sympy/physics/optics/__pycache__/polarization.cpython-310.pyc,,
+sympy/physics/optics/__pycache__/utils.cpython-310.pyc,,
+sympy/physics/optics/__pycache__/waves.cpython-310.pyc,,
+sympy/physics/optics/gaussopt.py,sha256=xMoYUyPyh2ycyNj5gomy_0PkNKKHa9XRlE39mZUQaqI,20892
+sympy/physics/optics/medium.py,sha256=cys0tWGi1VCPWMTZuKadcN_bToz_bqKsDHSEVzuV3CE,7124
+sympy/physics/optics/polarization.py,sha256=mIrZiOVXetGtKkLxl8Llaf2Z9coWenf6JKrClh4W8yU,21434
+sympy/physics/optics/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/physics/optics/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/physics/optics/tests/__pycache__/test_gaussopt.cpython-310.pyc,,
+sympy/physics/optics/tests/__pycache__/test_medium.cpython-310.pyc,,
+sympy/physics/optics/tests/__pycache__/test_polarization.cpython-310.pyc,,
+sympy/physics/optics/tests/__pycache__/test_utils.cpython-310.pyc,,
+sympy/physics/optics/tests/__pycache__/test_waves.cpython-310.pyc,,
+sympy/physics/optics/tests/test_gaussopt.py,sha256=QMXJw_6mFCC3918b-pc_4b_zgO8Hsk7_SBvMupbEi5I,4222
+sympy/physics/optics/tests/test_medium.py,sha256=RxG7N3lzmCO_8hIoKyPnDKffmk8QFzA9yamu1_mr_dE,2194
+sympy/physics/optics/tests/test_polarization.py,sha256=81MzyA29HZckg_Ss-88-5o0g9augDqCr_LwcJIiXuA0,2605
+sympy/physics/optics/tests/test_utils.py,sha256=SjicjAptcZGwuX-ib_Lq7PlGONotvo2XJ4p3JA9iNVI,8553
+sympy/physics/optics/tests/test_waves.py,sha256=PeFfrl7MBkWBHdc796sDDYDuhGepat3DQk7PmyTXVnw,3397
+sympy/physics/optics/utils.py,sha256=qoSlzujMTHDxIZvBQPJ_cF2PxB-awyXVqCndriUd-PQ,22154
+sympy/physics/optics/waves.py,sha256=Iw-9gGksvWhPmQ_VepmI90ekKyzHdPlq6U41wdM4ikI,10042
+sympy/physics/paulialgebra.py,sha256=1r_qDBbVyl836qIXlVDdoF89Z9wedGvWIkHAbwQaK-4,6002
+sympy/physics/pring.py,sha256=SCMGGIcEhVoD7dwhY7_NWL1iKwo7OfgKdmm2Ok_9Xl0,2240
+sympy/physics/qho_1d.py,sha256=ZXemUsa_b0rLtPVTUkgAkZQ1Ecu2eIZxaiNSSXW0PDk,2005
+sympy/physics/quantum/__init__.py,sha256=RA2xbM7GhFq3dVNTna3odlTJYHqNerxjNeZ1kwigHiw,1705
+sympy/physics/quantum/__pycache__/__init__.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/anticommutator.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/boson.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/cartesian.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/cg.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/circuitplot.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/circuitutils.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/commutator.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/constants.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/dagger.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/density.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/fermion.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/gate.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/grover.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/hilbert.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/identitysearch.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/innerproduct.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/matrixcache.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/matrixutils.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/operator.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/operatorordering.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/operatorset.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/pauli.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/piab.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/qapply.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/qasm.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/qexpr.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/qft.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/qubit.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/represent.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/sho1d.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/shor.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/spin.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/state.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/tensorproduct.cpython-310.pyc,,
+sympy/physics/quantum/__pycache__/trace.cpython-310.pyc,,
+sympy/physics/quantum/anticommutator.py,sha256=TH0mPF3Dk9mL5fa2heuampDpwWFxxh3HCcg4g2uNQ_E,4446
+sympy/physics/quantum/boson.py,sha256=cEH8dcPXunognApc69Y6TSJRMZ63P20No6tB2xGHynQ,6313
+sympy/physics/quantum/cartesian.py,sha256=9R9VDYLV1Xe-GkA9TQbj8PVlBLaD0fF6KXfHJ1ze5as,9092
+sympy/physics/quantum/cg.py,sha256=hPkgraNAWHIC-b0Pr0IwiY_gfR9pthQC6IuNI89J4dI,23331
+sympy/physics/quantum/circuitplot.py,sha256=SacQMhPyDhizKmGRNEs1vtXph8lR6bMn5bVJI4rJiXg,11799
+sympy/physics/quantum/circuitutils.py,sha256=mrQNUDbwM3LV1NZ1EqVpXyOY2mOXCBVZW7cQTiCxUaM,13882
+sympy/physics/quantum/commutator.py,sha256=7IiNnFYxxi9EfElCFtMLEQccb6nB-jIeq4x3IlIqzKs,7521
+sympy/physics/quantum/constants.py,sha256=20VRATCkSprSnGFR5ejvMEYlWwEcv1B-dE3RPqPTQ9k,1420
+sympy/physics/quantum/dagger.py,sha256=KOeHXb52hvR1IbeNwlNU30KPiD9xv7S1a2dowkQqBLM,2428
+sympy/physics/quantum/density.py,sha256=vCH8c4Fu5lcrT0PsuBqEK7eWnyHtCRwVx4wSh3f07ME,9743
+sympy/physics/quantum/fermion.py,sha256=9umlSpm6pKoplH7hRRHbuwvkvdM98A9GGNZ6yeNJf_o,4506
+sympy/physics/quantum/gate.py,sha256=T_VkbtJEN0rbOB8wrlZFkI7NU1XJ2MGyEx9PX3GCV_4,42487
+sympy/physics/quantum/grover.py,sha256=Cu2EPTOWpfyxYMVOdGBZez8SBZ2i2QEUmHnTiPPSi-M,10454
+sympy/physics/quantum/hilbert.py,sha256=qrja92vF7BUeSyHOLKVX8-XKcPGT7QaQMWrqWXjRNus,19632
+sympy/physics/quantum/identitysearch.py,sha256=Zh_ji5J0YeAy2AezsQcHV9W2icWoaa3ZwTbfjCCQmJo,27607
+sympy/physics/quantum/innerproduct.py,sha256=K4tmyWYMlgzkTTXjs82PzEC8VU4jm2J6Qic4YmAM7SQ,4279
+sympy/physics/quantum/matrixcache.py,sha256=S6fPkkYmfX8ELBOc9EST-8XnQ1gtpSOBfd2KwLGKdYo,3587
+sympy/physics/quantum/matrixutils.py,sha256=D5ipMBRCh2NsxIy4F6ZLQAF4Y84-2rKKC-czCVZ22Ds,8213
+sympy/physics/quantum/operator.py,sha256=zxPohzuo4H_veqo_Lkws1mN5mKufKlK5JZrgpxQXABM,19311
+sympy/physics/quantum/operatorordering.py,sha256=smjToA0lj6he22d9R61EL2FSNXFz9oTIF8x5UOd4RNs,11597
+sympy/physics/quantum/operatorset.py,sha256=W8rYUrh167nkZcoXCTFscZ1ZvBT6WXkMfmKzRks3edE,9598
+sympy/physics/quantum/pauli.py,sha256=lzxWFHXqxKWRiYK99QCo9zuVG9eVXiB8vFya7TvrVxQ,17250
+sympy/physics/quantum/piab.py,sha256=Zjb2cRGniVDV6e35gjP4uEpI4w0C7YGQIEXReaq_z-E,1912
+sympy/physics/quantum/qapply.py,sha256=E6hH0w7pMHaXOixT3FWkcBJm56Yoi8B93wedgcH3XQY,7147
+sympy/physics/quantum/qasm.py,sha256=UWpcUIBgkK55SmEBZlpmz-1KGHZvW7dNeSVG8tHr44A,6288
+sympy/physics/quantum/qexpr.py,sha256=UD2gBfjYRnHcqKYk-Jhex8dOoxNProadx154vejvtB4,14005
+sympy/physics/quantum/qft.py,sha256=Iy6yd41lENuCeU5jLXY7O3E_Sc3SAHCN3X5bE0sQiiU,6352
+sympy/physics/quantum/qubit.py,sha256=OyVzGFycgwyn8ZvsCNYsuDmG801JurfKwlKxVDHIBCo,26007
+sympy/physics/quantum/represent.py,sha256=b_mEm3q-gZbIV5x5Vl6pzfyJytqlp_a98xpfse2AfgI,18707
+sympy/physics/quantum/sho1d.py,sha256=ZroR_FjxmjOmDcd0Fm04vWKTGCpvLaEu4NiuplKm708,20867
+sympy/physics/quantum/shor.py,sha256=nHT2m4msS5gyQLYPIo2X6XcF7y0pTRZYJUYxZG0YCUk,5504
+sympy/physics/quantum/spin.py,sha256=3h9uGC5vJcnu3qRzXnZr-nUNyHkC4AvIOB-rBmbliJ4,72948
+sympy/physics/quantum/state.py,sha256=ISVtxmQjQL28neAcvyLDD6QJtLAFPwotCBeArPmDuFc,30975
+sympy/physics/quantum/tensorproduct.py,sha256=uBpy2037T1bCxZsiFoIAzHQru2Yi2Om8PFDtdCq5Nas,14960
+sympy/physics/quantum/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/physics/quantum/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_anticommutator.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_boson.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_cartesian.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_cg.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_circuitplot.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_circuitutils.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_commutator.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_constants.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_dagger.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_density.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_fermion.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_gate.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_grover.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_hilbert.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_identitysearch.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_innerproduct.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_matrixutils.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_operator.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_operatorordering.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_operatorset.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_pauli.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_piab.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_printing.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_qapply.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_qasm.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_qexpr.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_qft.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_qubit.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_represent.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_sho1d.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_shor.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_spin.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_state.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_tensorproduct.cpython-310.pyc,,
+sympy/physics/quantum/tests/__pycache__/test_trace.cpython-310.pyc,,
+sympy/physics/quantum/tests/test_anticommutator.py,sha256=ckWHKwQFiAMWcDaYSa_26vi_GIsvs32_0O62I5lGsr8,1304
+sympy/physics/quantum/tests/test_boson.py,sha256=BZjdrZ-F1QhyhDqfK4Zc1VEFBJi1PeiPjMpfBcHekfo,1676
+sympy/physics/quantum/tests/test_cartesian.py,sha256=b8eBLwmL8ize-a30TMDkoWuDym02PvBjr7ayfLwaR_I,4112
+sympy/physics/quantum/tests/test_cg.py,sha256=pw14QQ6XBTkK35021E_nDqcvXdOi4bLiPlkddyE865s,8878
+sympy/physics/quantum/tests/test_circuitplot.py,sha256=c3v9wUzLHUH-eBVGj6_broVhHkioNwpaaApTDAJEflU,2096
+sympy/physics/quantum/tests/test_circuitutils.py,sha256=GrJAWRQVH_l8EIHrj1ve2jtxske72IriQ3lo94fqrVQ,13187
+sympy/physics/quantum/tests/test_commutator.py,sha256=keBstGDpNITFRr06uVFrka_Lje56g6oFoJQEpZXmnYw,2727
+sympy/physics/quantum/tests/test_constants.py,sha256=KBmYPIF49Sq34lbzbFCZRYWSyIdhnR3AK3q-VbU6grU,338
+sympy/physics/quantum/tests/test_dagger.py,sha256=PR19goU60RXL3aU3hU2CJ3VyrlGeP6x_531nI9mqvm8,2009
+sympy/physics/quantum/tests/test_density.py,sha256=EyxiEgyc0nDSweJwI0JUwta7gZ81TVHCl7YDEosTrvI,9718
+sympy/physics/quantum/tests/test_fermion.py,sha256=bFaOWjPHv5HNR10Jvk4i9muJ3MQIyznPWZMtDCtKrZM,1135
+sympy/physics/quantum/tests/test_gate.py,sha256=7oBX1HoWnrYtHjABRoqv_wQDB9B829E99fdcJzaqawM,12496
+sympy/physics/quantum/tests/test_grover.py,sha256=uze62AG6H4x2MYJJA-EY3NtkqwvrDIQ2kONuvIRQiZ4,3640
+sympy/physics/quantum/tests/test_hilbert.py,sha256=IGP6rc2-b3we9dRDbpRniFAhQwp_TYtMfFzxusAprx0,2643
+sympy/physics/quantum/tests/test_identitysearch.py,sha256=3YGrXCsFLhLtN5MRyT5ZF8ELrSdkvDKTv6xKM4i2ims,17745
+sympy/physics/quantum/tests/test_innerproduct.py,sha256=37tT8p6MhHjAYeoay1Zyv7gCs-DeZQi4VdwUH2IffDE,1483
+sympy/physics/quantum/tests/test_matrixutils.py,sha256=3wmKKRhfRuwdQWitWE2mJEHr-TUKn6ixNb_wPWs8wRw,4116
+sympy/physics/quantum/tests/test_operator.py,sha256=BZNYANH2w2xfOkqFA3oIS_Kl1KnwnDUroV7d9lQ3IdY,8164
+sympy/physics/quantum/tests/test_operatorordering.py,sha256=CNMvvTNGNSIXPGLaYjxAOFKk-2Tn4yp3L9w-hc1IMnE,1402
+sympy/physics/quantum/tests/test_operatorset.py,sha256=DNfBeYBa_58kSG7PM5Ilo6xnzek8lSiAGX01uMFRYqI,2628
+sympy/physics/quantum/tests/test_pauli.py,sha256=Bhsx_gj5cpYv4BhVJRQohxlKk_rcp4jHtSRlTP-m_xs,4940
+sympy/physics/quantum/tests/test_piab.py,sha256=8ndnzyIsjF4AOu_9k6Yqap_1XUDTbiGnv7onJdrZBWA,1086
+sympy/physics/quantum/tests/test_printing.py,sha256=wR45NMA2w242-qnAlMjyOPj2yvwDbCKuBDh_V2sekr8,30294
+sympy/physics/quantum/tests/test_qapply.py,sha256=uHw3Crt5Lv0t6TV9jxmNwPVbiWGzFMaLZ8TJZfB1-Mg,6022
+sympy/physics/quantum/tests/test_qasm.py,sha256=ZvMjiheWBceSmIM9LHOL5fiFUl6HsUo8puqdzywrhkc,2976
+sympy/physics/quantum/tests/test_qexpr.py,sha256=emcGEqQeCv-kVJxyfX66TZxahJ8pYznFLE1fyyzeZGc,1517
+sympy/physics/quantum/tests/test_qft.py,sha256=CQWIKZFSpkUe5X7AF27EqVwZ4l0Zqycl3bdYgVZj3Hs,1861
+sympy/physics/quantum/tests/test_qubit.py,sha256=LQNaOuvXc-glRifQBlsXattAQB-yKHvmNMw68_JoM_c,8957
+sympy/physics/quantum/tests/test_represent.py,sha256=rEc_cirIJvoU1xANuOTkMjJHdr6DluP4J9sWD2D8Xpc,5166
+sympy/physics/quantum/tests/test_sho1d.py,sha256=nc75ZE5XXtrc88OcfB5mAGh01Wpf3d4Rbsu8vLJPTC8,4684
+sympy/physics/quantum/tests/test_shor.py,sha256=3a3GCg6V5_mlJ2bltoXinGMGvlSxpq7GluapD_3SZaQ,666
+sympy/physics/quantum/tests/test_spin.py,sha256=LOIPNGWalfPLL7DNAaiLCp4J_G1mZpUYmTCNx3kjqgw,344807
+sympy/physics/quantum/tests/test_state.py,sha256=UjfOdwRzNXHK0AMhEaI431eMNjVUK7glqiGxOXJEC50,6741
+sympy/physics/quantum/tests/test_tensorproduct.py,sha256=UncgjQFeJX3BOdHy8UYbb_Lwit67CfNuwLaFYRmyKUI,4703
+sympy/physics/quantum/tests/test_trace.py,sha256=dbpTXcJArWRR_Hh5JTuy2GJIfgjVo6zS20o5mdVEGH4,3057
+sympy/physics/quantum/trace.py,sha256=2ZqN9IEsz3LKHTLV8ZDwTK0sM5PfwL0p2sYet0N7Gis,6397
+sympy/physics/secondquant.py,sha256=FvAm6mVUVVRxaYPzqn4qwhkZCvN8LA8xUFKjnkMpPdw,90400
+sympy/physics/sho.py,sha256=K8P9FAdZr6UfQKYZO9TlhDUqUd3YsMekXCsKy2HhaY0,2480
+sympy/physics/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/physics/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/physics/tests/__pycache__/test_clebsch_gordan.cpython-310.pyc,,
+sympy/physics/tests/__pycache__/test_hydrogen.cpython-310.pyc,,
+sympy/physics/tests/__pycache__/test_paulialgebra.cpython-310.pyc,,
+sympy/physics/tests/__pycache__/test_physics_matrices.cpython-310.pyc,,
+sympy/physics/tests/__pycache__/test_pring.cpython-310.pyc,,
+sympy/physics/tests/__pycache__/test_qho_1d.cpython-310.pyc,,
+sympy/physics/tests/__pycache__/test_secondquant.cpython-310.pyc,,
+sympy/physics/tests/__pycache__/test_sho.cpython-310.pyc,,
+sympy/physics/tests/test_clebsch_gordan.py,sha256=HdmpjVHZ1JandoZrGwFb7YshkmEkcvt3jLLVxZ13UvA,8563
+sympy/physics/tests/test_hydrogen.py,sha256=kohRIR6JojE_GWYnlzLsMMgdhoKd8whazs0mq7cCTQc,4987
+sympy/physics/tests/test_paulialgebra.py,sha256=tyshEMsLNPR4iYzoAbPGZRZ-e_8t7GDP_xyjRyhepeQ,1477
+sympy/physics/tests/test_physics_matrices.py,sha256=Dha8iQRhzxLcl7TKSA6QP0pnEcBoqtj_Ob6tx01SMwI,2948
+sympy/physics/tests/test_pring.py,sha256=XScQQO9RhRrlqSII_ZyyOUpE-zs-7wphSFCZq2OuFnE,1261
+sympy/physics/tests/test_qho_1d.py,sha256=LD9WU-Y5lW7bVM7MyCkSGW9MU2FZhVjMB5Zk848_q1M,1775
+sympy/physics/tests/test_secondquant.py,sha256=VgG8NzcFmIkhFbKZpbjjzV4W5JOaJHGj9Ut8ugWM2UM,48450
+sympy/physics/tests/test_sho.py,sha256=aIs1f3eo6hb4ErRU8xrr_h_yhTmRx-fQgv9n27SfsLM,693
+sympy/physics/units/__init__.py,sha256=DVvWy9qNRm742NFGcBpybFY20ZK3BU7DWNbLMTXYiFo,12386
+sympy/physics/units/__pycache__/__init__.cpython-310.pyc,,
+sympy/physics/units/__pycache__/dimensions.cpython-310.pyc,,
+sympy/physics/units/__pycache__/prefixes.cpython-310.pyc,,
+sympy/physics/units/__pycache__/quantities.cpython-310.pyc,,
+sympy/physics/units/__pycache__/unitsystem.cpython-310.pyc,,
+sympy/physics/units/__pycache__/util.cpython-310.pyc,,
+sympy/physics/units/definitions/__init__.py,sha256=F3RyZc1AjM2Ch5b27Tt-VYdZ1HAIWvhgtQQQTfMiN6w,7470
+sympy/physics/units/definitions/__pycache__/__init__.cpython-310.pyc,,
+sympy/physics/units/definitions/__pycache__/dimension_definitions.cpython-310.pyc,,
+sympy/physics/units/definitions/__pycache__/unit_definitions.cpython-310.pyc,,
+sympy/physics/units/definitions/dimension_definitions.py,sha256=5r_WDnyWFX0T8bTjDA6pnr5PqRKv5XGTm0LuJrZ6ffM,1745
+sympy/physics/units/definitions/unit_definitions.py,sha256=kldfMjhOFdJAbYgZiJPUFtyUVINovDf4XTTC0mkoiDU,14374
+sympy/physics/units/dimensions.py,sha256=B2jT7BEsyCSZmUxH6RYrP9gVGeXLn0nLhgMT9gFODW4,20911
+sympy/physics/units/prefixes.py,sha256=ENV04BUHeebXK2U8jf7ZQdYQ-dZUGm1K2m6BYwJYF2w,6224
+sympy/physics/units/quantities.py,sha256=r5E231CULmsSEM7Rh7zfcTPuR85_X0CwRCVU_nDsek0,4671
+sympy/physics/units/systems/__init__.py,sha256=jJuvdc15c83yl11IuvhyjijwOZ9m1JGgZOgKwKv2e2o,244
+sympy/physics/units/systems/__pycache__/__init__.cpython-310.pyc,,
+sympy/physics/units/systems/__pycache__/cgs.cpython-310.pyc,,
+sympy/physics/units/systems/__pycache__/length_weight_time.cpython-310.pyc,,
+sympy/physics/units/systems/__pycache__/mks.cpython-310.pyc,,
+sympy/physics/units/systems/__pycache__/mksa.cpython-310.pyc,,
+sympy/physics/units/systems/__pycache__/natural.cpython-310.pyc,,
+sympy/physics/units/systems/__pycache__/si.cpython-310.pyc,,
+sympy/physics/units/systems/cgs.py,sha256=gXbX8uuZo7lcYIENA-CpAnyS9WVQy-vRisxlQm-198A,3702
+sympy/physics/units/systems/length_weight_time.py,sha256=DXIDSWdhjfxGLA0ldOziWhwQjzTAs7-VQTNCHzDvCgY,7004
+sympy/physics/units/systems/mks.py,sha256=Z3eX9yWK9BdvEosCROK2qRKtKFYOjtQ50Jk6vFT7AQY,1546
+sympy/physics/units/systems/mksa.py,sha256=U8cSI-maIuLJRvpKLBuZA8V19LDRYVc2I40Rao-wvjk,2002
+sympy/physics/units/systems/natural.py,sha256=43Odvmtxdpbz8UcW_xoRE9ArJVVdF7dgdAN2ByDAXx4,909
+sympy/physics/units/systems/si.py,sha256=YBPUuovW3-JBDZYuStXXRaC8cfzE3En3K5MjNy5pLJk,14478
+sympy/physics/units/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/physics/units/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/physics/units/tests/__pycache__/test_dimensions.cpython-310.pyc,,
+sympy/physics/units/tests/__pycache__/test_dimensionsystem.cpython-310.pyc,,
+sympy/physics/units/tests/__pycache__/test_prefixes.cpython-310.pyc,,
+sympy/physics/units/tests/__pycache__/test_quantities.cpython-310.pyc,,
+sympy/physics/units/tests/__pycache__/test_unit_system_cgs_gauss.cpython-310.pyc,,
+sympy/physics/units/tests/__pycache__/test_unitsystem.cpython-310.pyc,,
+sympy/physics/units/tests/__pycache__/test_util.cpython-310.pyc,,
+sympy/physics/units/tests/test_dimensions.py,sha256=lzkgGfEXMHxB8Izv7nRTN2uOEPh65LXPYaG8Kr5H05o,6122
+sympy/physics/units/tests/test_dimensionsystem.py,sha256=s2_2RAJwOaPOTvyIiAO9SYap374ytZqWbatWkLCnbSU,2717
+sympy/physics/units/tests/test_prefixes.py,sha256=IFeF1tq9SkyqJLOLy5h42oMW7PDJ1QKtvyu0EbN3rxY,2198
+sympy/physics/units/tests/test_quantities.py,sha256=_OmQ1qBPud8-lVesvVNhQLrwRh9qp7rXMSGzqTtqCr0,20055
+sympy/physics/units/tests/test_unit_system_cgs_gauss.py,sha256=JepTWt8yGdtv5dQ2AKUKb9fxpuYqLWOp0oOmzov9vfY,3173
+sympy/physics/units/tests/test_unitsystem.py,sha256=1Xh78_8hbv-yP4ICWI_dUrOnk3cimlvP_VhO-EXOa7Q,3254
+sympy/physics/units/tests/test_util.py,sha256=f2pOxVLArai5EwRAriPh9rQdxIyhFpZ4v7WEB0CI-SI,8465
+sympy/physics/units/unitsystem.py,sha256=UXFcmQoI8Hl89v4ixEfh35g__o6AgQPzgvLJhCLIFtA,7618
+sympy/physics/units/util.py,sha256=dgMkwlaYWO2D1QwSpGKFfYluqzdN6TUp-aIgXo8-W1o,9602
+sympy/physics/vector/__init__.py,sha256=jZmrNB6ZfY7NOP8nx8GWcfI2Ixb2mv7lXuGHn63kyOw,985
+sympy/physics/vector/__pycache__/__init__.cpython-310.pyc,,
+sympy/physics/vector/__pycache__/dyadic.cpython-310.pyc,,
+sympy/physics/vector/__pycache__/fieldfunctions.cpython-310.pyc,,
+sympy/physics/vector/__pycache__/frame.cpython-310.pyc,,
+sympy/physics/vector/__pycache__/functions.cpython-310.pyc,,
+sympy/physics/vector/__pycache__/point.cpython-310.pyc,,
+sympy/physics/vector/__pycache__/printing.cpython-310.pyc,,
+sympy/physics/vector/__pycache__/vector.cpython-310.pyc,,
+sympy/physics/vector/dyadic.py,sha256=qDsDiWZ8nTOVKKjST3MasskWUvrv8o8CZeLTXfJjp6Y,19538
+sympy/physics/vector/fieldfunctions.py,sha256=1tzyV2iH6-UIPJ6W4UhgOZHTGxAbnWhmdTxbz12Z528,8593
+sympy/physics/vector/frame.py,sha256=5wHaV4FIAC0XjvX5ziFmBwB2P2wKPk1Sipb6ao6STn0,52933
+sympy/physics/vector/functions.py,sha256=Fp3Fx0donNUPj9rkZ03xFC8HhUys4UvogK69ah2Sd3o,24583
+sympy/physics/vector/point.py,sha256=9hUKwsM_5npy9FuDSHe9eiOLQLfmZZE49rVxwEhPT2U,20446
+sympy/physics/vector/printing.py,sha256=iQmyZQib-9Oa7_suxwHplJ9HW198LPGmptDldwqRl20,11792
+sympy/physics/vector/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/physics/vector/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/physics/vector/tests/__pycache__/test_dyadic.cpython-310.pyc,,
+sympy/physics/vector/tests/__pycache__/test_fieldfunctions.cpython-310.pyc,,
+sympy/physics/vector/tests/__pycache__/test_frame.cpython-310.pyc,,
+sympy/physics/vector/tests/__pycache__/test_functions.cpython-310.pyc,,
+sympy/physics/vector/tests/__pycache__/test_output.cpython-310.pyc,,
+sympy/physics/vector/tests/__pycache__/test_point.cpython-310.pyc,,
+sympy/physics/vector/tests/__pycache__/test_printing.cpython-310.pyc,,
+sympy/physics/vector/tests/__pycache__/test_vector.cpython-310.pyc,,
+sympy/physics/vector/tests/test_dyadic.py,sha256=09VKP_uSaiJny5LxNlkSMwU_LdQhZ6yGqoD1GG4dc2U,4292
+sympy/physics/vector/tests/test_fieldfunctions.py,sha256=FUjh18QzB6dXSau9iHutb36o28faSa7T9sB0icpja-M,5825
+sympy/physics/vector/tests/test_frame.py,sha256=sk4atyErDljoa9Q4YDDWoubBOxfkSXR3mKTmYAO_2vE,26102
+sympy/physics/vector/tests/test_functions.py,sha256=5gR01x9HlqM_DViSlu7Yf1m5NQWI2oqBe1a3dRkBcIc,20763
+sympy/physics/vector/tests/test_output.py,sha256=TFqso2YUb5zw4oX6H206Wu0XTwJZFKPY92gd68ktMN4,2631
+sympy/physics/vector/tests/test_point.py,sha256=B6Yk7K-ouyN-VBXycDJV4sOYrPyFf8a_Q-Ytx7vq1mo,12257
+sympy/physics/vector/tests/test_printing.py,sha256=kptiX3xy_xPSyg8f4xZ2jJnorynPvfTenOBtntsYXaY,10433
+sympy/physics/vector/tests/test_vector.py,sha256=Jm6DeizQxKY-CD7722--Ko073bcN4jJJ-geRoNkofs4,9458
+sympy/physics/vector/vector.py,sha256=o9Ov2GD6-_4eZwqpNkaB1DvCioSXAVtR0HFoRneNEEc,27533
+sympy/physics/wigner.py,sha256=4jYcv62gfHJGlJfYcbn06BFmNIs5JCiEBNnxUbg2Oyo,37605
+sympy/plotting/__init__.py,sha256=hAdOjai8-laj79rLJ2HZbiW1okXlz0p1ck-CoeNU6m8,526
+sympy/plotting/__pycache__/__init__.cpython-310.pyc,,
+sympy/plotting/__pycache__/experimental_lambdify.cpython-310.pyc,,
+sympy/plotting/__pycache__/plot.cpython-310.pyc,,
+sympy/plotting/__pycache__/plot_implicit.cpython-310.pyc,,
+sympy/plotting/__pycache__/textplot.cpython-310.pyc,,
+sympy/plotting/experimental_lambdify.py,sha256=wIvB02vdrI-nEJX3TqInsf0v8705JI5lcVgMJsJbtO0,22879
+sympy/plotting/intervalmath/__init__.py,sha256=fQV7sLZ9NHpZO5XGl2ZfqX56x-mdq-sYhtWEKLngHlU,479
+sympy/plotting/intervalmath/__pycache__/__init__.cpython-310.pyc,,
+sympy/plotting/intervalmath/__pycache__/interval_arithmetic.cpython-310.pyc,,
+sympy/plotting/intervalmath/__pycache__/interval_membership.cpython-310.pyc,,
+sympy/plotting/intervalmath/__pycache__/lib_interval.cpython-310.pyc,,
+sympy/plotting/intervalmath/interval_arithmetic.py,sha256=OibkI5I0i6_NpFd1HEl48d_R4PRWofUoOS4HYQBkVOc,15530
+sympy/plotting/intervalmath/interval_membership.py,sha256=1VpO1T7UjvPxcMySC5GhZl8-VM_DxIirSWC3ZGmxIAY,2385
+sympy/plotting/intervalmath/lib_interval.py,sha256=WY1qRtyub4MDJaZizw6cXQI5NMEIXBO9UEWPEI80aW8,14809
+sympy/plotting/intervalmath/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/plotting/intervalmath/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/plotting/intervalmath/tests/__pycache__/test_interval_functions.cpython-310.pyc,,
+sympy/plotting/intervalmath/tests/__pycache__/test_interval_membership.cpython-310.pyc,,
+sympy/plotting/intervalmath/tests/__pycache__/test_intervalmath.cpython-310.pyc,,
+sympy/plotting/intervalmath/tests/test_interval_functions.py,sha256=gdIo5z54tIbG8hDaGd3I8rBDP67oetMZWWdM-uvt1ec,9862
+sympy/plotting/intervalmath/tests/test_interval_membership.py,sha256=D1KjcrLxAwOmDEUqA-8TCqkFWGtmeerR9KwmzS7tyjk,4216
+sympy/plotting/intervalmath/tests/test_intervalmath.py,sha256=ndBMczrs6xYMN5RGnyCL9yq7pNUxrXHTSU1mdUsp5tU,9034
+sympy/plotting/plot.py,sha256=eTKGJmFyTycCNb6CquLGutB9d92PdlllxW1Wn0W6Q-k,92139
+sympy/plotting/plot_implicit.py,sha256=2kRJ0YRrsDKad8Q34UXdy4lOVGKh6LvL6LokPVDZN8A,15683
+sympy/plotting/pygletplot/__init__.py,sha256=DM7GURQbdSfcddHz23MxOShatBFc26tP_sd3G8pGCQE,3732
+sympy/plotting/pygletplot/__pycache__/__init__.cpython-310.pyc,,
+sympy/plotting/pygletplot/__pycache__/color_scheme.cpython-310.pyc,,
+sympy/plotting/pygletplot/__pycache__/managed_window.cpython-310.pyc,,
+sympy/plotting/pygletplot/__pycache__/plot.cpython-310.pyc,,
+sympy/plotting/pygletplot/__pycache__/plot_axes.cpython-310.pyc,,
+sympy/plotting/pygletplot/__pycache__/plot_camera.cpython-310.pyc,,
+sympy/plotting/pygletplot/__pycache__/plot_controller.cpython-310.pyc,,
+sympy/plotting/pygletplot/__pycache__/plot_curve.cpython-310.pyc,,
+sympy/plotting/pygletplot/__pycache__/plot_interval.cpython-310.pyc,,
+sympy/plotting/pygletplot/__pycache__/plot_mode.cpython-310.pyc,,
+sympy/plotting/pygletplot/__pycache__/plot_mode_base.cpython-310.pyc,,
+sympy/plotting/pygletplot/__pycache__/plot_modes.cpython-310.pyc,,
+sympy/plotting/pygletplot/__pycache__/plot_object.cpython-310.pyc,,
+sympy/plotting/pygletplot/__pycache__/plot_rotation.cpython-310.pyc,,
+sympy/plotting/pygletplot/__pycache__/plot_surface.cpython-310.pyc,,
+sympy/plotting/pygletplot/__pycache__/plot_window.cpython-310.pyc,,
+sympy/plotting/pygletplot/__pycache__/util.cpython-310.pyc,,
+sympy/plotting/pygletplot/color_scheme.py,sha256=NgPUamkldygfrIPj0LvC_1AzhscVtg18FSudElvFYB8,12522
+sympy/plotting/pygletplot/managed_window.py,sha256=N7AKtM7ELfIJLie6zvI-J6-OQRBnMZu6AL1USz7hFEk,3072
+sympy/plotting/pygletplot/plot.py,sha256=s-5AJB0KelHs9WGoFIVIdYrOoMXfdpnM5-G2cF8xzDQ,13352
+sympy/plotting/pygletplot/plot_axes.py,sha256=Q9YN8W0Hd1PeflHLvOvSZ-hxeLU4Kq3nUFLYDC0x0E8,8655
+sympy/plotting/pygletplot/plot_camera.py,sha256=yfkGg7TF3yPhhRUDhvPMT1uJgSboTwgAOtKOJdP7d8E,4001
+sympy/plotting/pygletplot/plot_controller.py,sha256=MroJJSPCbBDT8gGs_GdqpV_KHsllMNJpxx0MU3vKJV8,6941
+sympy/plotting/pygletplot/plot_curve.py,sha256=YwKA2lYC7IwCOQJaOVnww8AAG4P36cArgbC1iLV9OFI,2838
+sympy/plotting/pygletplot/plot_interval.py,sha256=doqr2wxnrED4MJDlkxQ07GFvaagX36HUb77ly_vIuKQ,5431
+sympy/plotting/pygletplot/plot_mode.py,sha256=Djq-ewVms_JoSriDpolDhhtttBJQdJO8BD4E0nyOWcQ,14156
+sympy/plotting/pygletplot/plot_mode_base.py,sha256=3z3WjeN7TTslHJevhr3X_7HRHPgUleYSngu6285lR6k,11502
+sympy/plotting/pygletplot/plot_modes.py,sha256=gKzJShz6OXa6EHKar8SuHWrELVznxg_s2d5IBQkkeYE,5352
+sympy/plotting/pygletplot/plot_object.py,sha256=qGtzcKup4It1CqZ2jxA7FnorCua4S9I-B_7I3SHBjcQ,330
+sympy/plotting/pygletplot/plot_rotation.py,sha256=K8MyudYRS2F-ku5blzkWg3q3goMDPUsXqzmHLDU2Uqc,1447
+sympy/plotting/pygletplot/plot_surface.py,sha256=C0q9tzDmxzC1IpWiNKY4llzcopx6dhotGOLpK1N9m3s,3803
+sympy/plotting/pygletplot/plot_window.py,sha256=5boC2Fkmk46-gWGqWzdTkPmTMNHHOpA0CnB9q946Hwc,4643
+sympy/plotting/pygletplot/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/plotting/pygletplot/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/plotting/pygletplot/tests/__pycache__/test_plotting.cpython-310.pyc,,
+sympy/plotting/pygletplot/tests/test_plotting.py,sha256=NisjR-yuBRJfQvjcb20skTR3yid2U3MhKHW6sy8RE10,2720
+sympy/plotting/pygletplot/util.py,sha256=mzQQgDDbp04B03KyJrossLp8Yq72RJzjp-3ArfjbMH8,4621
+sympy/plotting/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/plotting/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/plotting/tests/__pycache__/test_experimental_lambdify.cpython-310.pyc,,
+sympy/plotting/tests/__pycache__/test_plot.cpython-310.pyc,,
+sympy/plotting/tests/__pycache__/test_plot_implicit.cpython-310.pyc,,
+sympy/plotting/tests/__pycache__/test_textplot.cpython-310.pyc,,
+sympy/plotting/tests/test_experimental_lambdify.py,sha256=EYshdXA5tAGWolaDX-nHAolp7xIJN4Oqb1Uc1C1IhJI,3127
+sympy/plotting/tests/test_plot.py,sha256=HWledOPr2xKq3XFGr458Lc5c0wgf2e0IFa4j63bfdH0,25204
+sympy/plotting/tests/test_plot_implicit.py,sha256=gXXMvVCIlp3HeN12Ej636RnhNEmV3i5WnDA48rjRPOg,5804
+sympy/plotting/tests/test_region_and.png,sha256=EV0Lm4HtQPk_6eIWtPY4TPcQk-O7tkpdZIuLmFjGRaA,6864
+sympy/plotting/tests/test_region_not.png,sha256=3O_9_nPW149FMULEcT5RqI2-k2H3nHELbfJADt2cO8k,7939
+sympy/plotting/tests/test_region_or.png,sha256=5Bug09vyog-Cu3mky7pbtFjew5bMvbpe0ZXWsgDKfy4,8809
+sympy/plotting/tests/test_region_xor.png,sha256=kucVWBA9A98OpcR4did5aLXUyoq4z0O4C3PM6dliBSw,10002
+sympy/plotting/tests/test_textplot.py,sha256=VurTGeMjUfBLpLdoMqzJK9gbcShNb7f1OrAcRNyrtag,12761
+sympy/plotting/textplot.py,sha256=M3TEzIDV6l6CpMpPZcAVrO-Y_pYbRRCsbuPMGAaQEXs,4921
+sympy/polys/__init__.py,sha256=2ZG4bdqNChU1niEsfBNC57G9B51TLYxiDy5WG5_2kMc,5545
+sympy/polys/__pycache__/__init__.cpython-310.pyc,,
+sympy/polys/__pycache__/appellseqs.cpython-310.pyc,,
+sympy/polys/__pycache__/compatibility.cpython-310.pyc,,
+sympy/polys/__pycache__/constructor.cpython-310.pyc,,
+sympy/polys/__pycache__/densearith.cpython-310.pyc,,
+sympy/polys/__pycache__/densebasic.cpython-310.pyc,,
+sympy/polys/__pycache__/densetools.cpython-310.pyc,,
+sympy/polys/__pycache__/dispersion.cpython-310.pyc,,
+sympy/polys/__pycache__/distributedmodules.cpython-310.pyc,,
+sympy/polys/__pycache__/domainmatrix.cpython-310.pyc,,
+sympy/polys/__pycache__/euclidtools.cpython-310.pyc,,
+sympy/polys/__pycache__/factortools.cpython-310.pyc,,
+sympy/polys/__pycache__/fglmtools.cpython-310.pyc,,
+sympy/polys/__pycache__/fields.cpython-310.pyc,,
+sympy/polys/__pycache__/galoistools.cpython-310.pyc,,
+sympy/polys/__pycache__/groebnertools.cpython-310.pyc,,
+sympy/polys/__pycache__/heuristicgcd.cpython-310.pyc,,
+sympy/polys/__pycache__/modulargcd.cpython-310.pyc,,
+sympy/polys/__pycache__/monomials.cpython-310.pyc,,
+sympy/polys/__pycache__/multivariate_resultants.cpython-310.pyc,,
+sympy/polys/__pycache__/orderings.cpython-310.pyc,,
+sympy/polys/__pycache__/orthopolys.cpython-310.pyc,,
+sympy/polys/__pycache__/partfrac.cpython-310.pyc,,
+sympy/polys/__pycache__/polyclasses.cpython-310.pyc,,
+sympy/polys/__pycache__/polyconfig.cpython-310.pyc,,
+sympy/polys/__pycache__/polyerrors.cpython-310.pyc,,
+sympy/polys/__pycache__/polyfuncs.cpython-310.pyc,,
+sympy/polys/__pycache__/polymatrix.cpython-310.pyc,,
+sympy/polys/__pycache__/polyoptions.cpython-310.pyc,,
+sympy/polys/__pycache__/polyquinticconst.cpython-310.pyc,,
+sympy/polys/__pycache__/polyroots.cpython-310.pyc,,
+sympy/polys/__pycache__/polytools.cpython-310.pyc,,
+sympy/polys/__pycache__/polyutils.cpython-310.pyc,,
+sympy/polys/__pycache__/rationaltools.cpython-310.pyc,,
+sympy/polys/__pycache__/ring_series.cpython-310.pyc,,
+sympy/polys/__pycache__/rings.cpython-310.pyc,,
+sympy/polys/__pycache__/rootisolation.cpython-310.pyc,,
+sympy/polys/__pycache__/rootoftools.cpython-310.pyc,,
+sympy/polys/__pycache__/solvers.cpython-310.pyc,,
+sympy/polys/__pycache__/specialpolys.cpython-310.pyc,,
+sympy/polys/__pycache__/sqfreetools.cpython-310.pyc,,
+sympy/polys/__pycache__/subresultants_qq_zz.cpython-310.pyc,,
+sympy/polys/agca/__init__.py,sha256=fahpWoG_0LgoqOXBnDBJS16Jj1fE1_VKG7edM3qZ2HE,130
+sympy/polys/agca/__pycache__/__init__.cpython-310.pyc,,
+sympy/polys/agca/__pycache__/extensions.cpython-310.pyc,,
+sympy/polys/agca/__pycache__/homomorphisms.cpython-310.pyc,,
+sympy/polys/agca/__pycache__/ideals.cpython-310.pyc,,
+sympy/polys/agca/__pycache__/modules.cpython-310.pyc,,
+sympy/polys/agca/extensions.py,sha256=v3VmKWXQeyPuwNGyizfR6ZFb4GkRZ97xREHawuLWqpg,9168
+sympy/polys/agca/homomorphisms.py,sha256=gaMNV96pKUuYHZ8Bd7QOs27J1IbbJgkEjyWcTLe8GFI,21937
+sympy/polys/agca/ideals.py,sha256=8rh6iQt26zF0qKzHlfqGXKZzKuGY6Y5t9hBNVGG9v5M,10891
+sympy/polys/agca/modules.py,sha256=UZBnmvsQTHRkSVGdst6nksp9a07ZYD65eArjL91n3-Q,46946
+sympy/polys/agca/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/polys/agca/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/polys/agca/tests/__pycache__/test_extensions.cpython-310.pyc,,
+sympy/polys/agca/tests/__pycache__/test_homomorphisms.cpython-310.pyc,,
+sympy/polys/agca/tests/__pycache__/test_ideals.cpython-310.pyc,,
+sympy/polys/agca/tests/__pycache__/test_modules.cpython-310.pyc,,
+sympy/polys/agca/tests/test_extensions.py,sha256=i3IHQNXQByFMCvjjyd_hwwJSCiUj0z1rRwS9WFK2AFc,6455
+sympy/polys/agca/tests/test_homomorphisms.py,sha256=m0hFmcTzvZ8sZbbnWeENwzKyufpE9zWwZR-WCI4kdpU,4224
+sympy/polys/agca/tests/test_ideals.py,sha256=w76qXO-_HN6LQbV7l3h7gJZsM-DZ2io2X-kPWiHYRNw,3788
+sympy/polys/agca/tests/test_modules.py,sha256=HdfmcxdEVucEbtfmzVq8i_1wGojT5b5DE5VIfbTMx3k,13552
+sympy/polys/appellseqs.py,sha256=hWeDKsKnJuAuPN_5IU6m1okurAq9xMt3LQgMehcvBKQ,8305
+sympy/polys/benchmarks/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/polys/benchmarks/__pycache__/__init__.cpython-310.pyc,,
+sympy/polys/benchmarks/__pycache__/bench_galoispolys.cpython-310.pyc,,
+sympy/polys/benchmarks/__pycache__/bench_groebnertools.cpython-310.pyc,,
+sympy/polys/benchmarks/__pycache__/bench_solvers.cpython-310.pyc,,
+sympy/polys/benchmarks/bench_galoispolys.py,sha256=8RtN9ZQga2oxscVPPkMGB29Dz8UbskMS2szYtqZ69u0,1502
+sympy/polys/benchmarks/bench_groebnertools.py,sha256=YqGDCzewRszCye_GnneDXMRNB38ORSpVu_Jn0ELIySo,803
+sympy/polys/benchmarks/bench_solvers.py,sha256=gLrZguh6pE0E4_vM2GeOS5bHnrcSUQXqD0Qz9tItfmo,446778
+sympy/polys/compatibility.py,sha256=OkpZiIrD2u_1YB7dE2NJmhpt1UZoBNoX2JBY3q1Uixo,57743
+sympy/polys/constructor.py,sha256=4hqADMZrcLOsnzVebcZxnn3LJ7HdPIHReq0Qalf91EY,11371
+sympy/polys/densearith.py,sha256=6lkYHNpTPp2qq8qKBNiK9V-xNqLg0MYcoi_ksKaNBcg,34108
+sympy/polys/densebasic.py,sha256=H9DimmE5zLuEpzyYvTWBViBJTe5bbLj-1RefaAy2XXk,35922
+sympy/polys/densetools.py,sha256=q75QA1e0rH9TpVbTGIwRgeisNFt-7HiRcdPUEdHYN2E,25902
+sympy/polys/dispersion.py,sha256=s6GIYnGA6U9jhGP7YXQQS8G3byG4-kPbr55BR6p-iz4,5740
+sympy/polys/distributedmodules.py,sha256=t8pLIgDQs_dMecGXwybVYoLavofEy2DXhFS8N5gj5SU,21827
+sympy/polys/domainmatrix.py,sha256=FmNqklNFQR1WrQYtP2r7jypw2IQadNKGP14EaUaxUqI,310
+sympy/polys/domains/__init__.py,sha256=T6qPNkU1EJ6D5BnvyJSXJv4zeJ5MUT5RLsovMkkXS9E,1872
+sympy/polys/domains/__pycache__/__init__.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/algebraicfield.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/characteristiczero.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/complexfield.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/compositedomain.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/domain.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/domainelement.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/expressiondomain.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/expressionrawdomain.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/field.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/finitefield.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/fractionfield.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/gaussiandomains.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/gmpyfinitefield.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/gmpyintegerring.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/gmpyrationalfield.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/groundtypes.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/integerring.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/modularinteger.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/mpelements.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/old_fractionfield.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/old_polynomialring.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/polynomialring.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/pythonfinitefield.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/pythonintegerring.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/pythonrational.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/pythonrationalfield.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/quotientring.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/rationalfield.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/realfield.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/ring.cpython-310.pyc,,
+sympy/polys/domains/__pycache__/simpledomain.cpython-310.pyc,,
+sympy/polys/domains/algebraicfield.py,sha256=hg2F7SBrc0I-uqRa90ehtHiF6bCo_AB98XDHRRcGFZw,21556
+sympy/polys/domains/characteristiczero.py,sha256=vHYRUXPrfJzDF8wrd1KSFqG8WzwfITP_eweA-SHPVYA,382
+sympy/polys/domains/complexfield.py,sha256=2GjeNMebTXxLHDkKYqbrP-hZqBXHoc_Uv7kk7xIyPcw,4620
+sympy/polys/domains/compositedomain.py,sha256=wgw_yKwC5gHYWxRHEbVDeHOKQycFkZH0ZxhVES0AR04,1042
+sympy/polys/domains/domain.py,sha256=KOj3-sDzLox86n3Av2Vl6nExWszyWXkJz0-lDpXDwJ4,38006
+sympy/polys/domains/domainelement.py,sha256=IrG-Mzv_VlCAmE-hmJVH_d77TrsfyaGGfJVmU8FFvlY,860
+sympy/polys/domains/expressiondomain.py,sha256=rk2Vky-C5sQiOtkWbtxh1s5_aOALGCREzq-R6qxVZ-I,6924
+sympy/polys/domains/expressionrawdomain.py,sha256=cXarD2jXi97FGNiqNiDqQlX0g764EW2M1PEbrveImnY,1448
+sympy/polys/domains/field.py,sha256=tyOjEqABaOXXkaBEL0qLqyG4g5Ktnd782B_6xTCfia8,2591
+sympy/polys/domains/finitefield.py,sha256=yFU8-FvoDxGQ9Yo-mKlOqnB-91ctpz_TT0zLRmx-iQI,6025
+sympy/polys/domains/fractionfield.py,sha256=pKR3dfOOXqBIwf3jvRnaqgA-t1YYWdubCuz3yNnxepU,5945
+sympy/polys/domains/gaussiandomains.py,sha256=qkbqSXzumxwQq7QGAyvNsgJZlzF5MbvN2O9nz2li-kQ,17975
+sympy/polys/domains/gmpyfinitefield.py,sha256=C_Nd9GubSMBJmIe5vs_C2IuBT8YGFL4xgK4oixNCOrk,444
+sympy/polys/domains/gmpyintegerring.py,sha256=U6Ph1_5Ez5bXN4JcF2Tsq1FUDEwYsGx0nUT-gZDvO5U,3017
+sympy/polys/domains/gmpyrationalfield.py,sha256=dZjrfcWaUA-BHUtutzLOWPlOSNLYzBqSFeukER6L_bA,3178
+sympy/polys/domains/groundtypes.py,sha256=bHPHdmpFRBWe86TNMSsE6m5grvE0bQWLWnRGRBBxMpQ,1615
+sympy/polys/domains/integerring.py,sha256=T2MvIiEI3OPFoOQ5Ep3HgZhNU1evP-Wxu0oDVG7oJa8,6085
+sympy/polys/domains/modularinteger.py,sha256=bAUskiiX1j-n9SLx79jUCPOuO9mDNbzUcuijRcI7Hg4,5094
+sympy/polys/domains/mpelements.py,sha256=MxymxwlGBA3Px2FFyzISEtAnkVoxeq-bJM1fk2jkEts,4616
+sympy/polys/domains/old_fractionfield.py,sha256=6qVb4Zzfq8ArxDyghXwW5Vvw4SattdIt0HUx4WcnD8U,6178
+sympy/polys/domains/old_polynomialring.py,sha256=_Rengtf5vN3w9GJAsDFcN3yKbWjYqkTbsPdxbtbplnE,14914
+sympy/polys/domains/polynomialring.py,sha256=kStXSAtq1b5Tk3vrEze7_E8UMn8bF91Goh7hVzhtax0,6153
+sympy/polys/domains/pythonfinitefield.py,sha256=RYwDRg1zVLLGtJvVXvWhwUZjC91g8pXTwAjuQoWezks,460
+sympy/polys/domains/pythonintegerring.py,sha256=qUBqWBtP_faY-m2tJA07JQyCTdh27tXVBDD7vsKNUn4,2929
+sympy/polys/domains/pythonrational.py,sha256=M3VUGODh3MLElePjYtjt9b02ReMThw-XXpuQTkohgNs,548
+sympy/polys/domains/pythonrationalfield.py,sha256=x8BPkGKj0WPuwJzN2py5l9aAjHaY4djv65c4tzUTr3Y,2295
+sympy/polys/domains/quotientring.py,sha256=LBUIIpN3y3QPS6pFYWwqpca5ShoWDyaZbZ6PwDm_SmA,5866
+sympy/polys/domains/rationalfield.py,sha256=-4rLYoh3IhsURx09OtLR3A29NLDi_RO-QzWO3RGoy8Q,4869
+sympy/polys/domains/realfield.py,sha256=Wt5_y7HTDe8u1qGalhNhTT7Rw3CQiVkmgduQ7jcpD9c,3782
+sympy/polys/domains/ring.py,sha256=p66U2X58acSHLHxOTU6aJZ0Umdcu1qiGIUDtV8iJCD0,3236
+sympy/polys/domains/simpledomain.py,sha256=_K-Zz8Opf505r3eHSrbPAlnGiGSjY_O4Cwa4OTeOSoY,369
+sympy/polys/domains/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/polys/domains/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/polys/domains/tests/__pycache__/test_domains.cpython-310.pyc,,
+sympy/polys/domains/tests/__pycache__/test_polynomialring.cpython-310.pyc,,
+sympy/polys/domains/tests/__pycache__/test_quotientring.cpython-310.pyc,,
+sympy/polys/domains/tests/test_domains.py,sha256=1PsckHIBXMQFm-sgSDMjiUor2c-000iEZhqqPV9pfR4,43846
+sympy/polys/domains/tests/test_polynomialring.py,sha256=gW82jcxL2J5nKrA4iDCuk88K1bqpfAG7z32Y9191mKU,3312
+sympy/polys/domains/tests/test_quotientring.py,sha256=BYoq1CqI76RDSm0xQdp1v7Dv1n5sdcmes-b_y_AfW-0,1459
+sympy/polys/euclidtools.py,sha256=h8qC0ZsXf-ZKPLIMBaLV2aSCHDuXLQBczKZcU-J2BaE,41221
+sympy/polys/factortools.py,sha256=AghhwHVn_wJsEBBo-THmMIKT9zr-gBJlkLTctJrT_eY,38457
+sympy/polys/fglmtools.py,sha256=KYZuP4CxAN3KP6If3hM53HKM4S87rNU2HecwbYjWfOE,4302
+sympy/polys/fields.py,sha256=HEXUOH-bhYkTTXyev87LZPsyK3-aeqCmGRgErFiJzhA,21245
+sympy/polys/galoistools.py,sha256=cuwAArjtyoV4wfaQtX8fs4mz4ZXLuc6yKvHObyXgnw8,52133
+sympy/polys/groebnertools.py,sha256=NhK-XcFR9e4chDDJJ-diXb7XYuw9zcixFA_riomThPM,23342
+sympy/polys/heuristicgcd.py,sha256=rD3intgKCtAAMH3sqlgqbJL1XSq9QjfeG_MYzwCOek0,3732
+sympy/polys/matrices/__init__.py,sha256=ZaPJMi8l22d3F3rudS4NqzSt0xwxbs3uwnQwlhhR91o,397
+sympy/polys/matrices/__pycache__/__init__.cpython-310.pyc,,
+sympy/polys/matrices/__pycache__/_typing.cpython-310.pyc,,
+sympy/polys/matrices/__pycache__/ddm.cpython-310.pyc,,
+sympy/polys/matrices/__pycache__/dense.cpython-310.pyc,,
+sympy/polys/matrices/__pycache__/domainmatrix.cpython-310.pyc,,
+sympy/polys/matrices/__pycache__/domainscalar.cpython-310.pyc,,
+sympy/polys/matrices/__pycache__/eigen.cpython-310.pyc,,
+sympy/polys/matrices/__pycache__/exceptions.cpython-310.pyc,,
+sympy/polys/matrices/__pycache__/linsolve.cpython-310.pyc,,
+sympy/polys/matrices/__pycache__/lll.cpython-310.pyc,,
+sympy/polys/matrices/__pycache__/normalforms.cpython-310.pyc,,
+sympy/polys/matrices/__pycache__/sdm.cpython-310.pyc,,
+sympy/polys/matrices/_typing.py,sha256=ZMxO82uprk9lCq4ClHL-pg6_wOmmnLozg0sQhJrjbbk,319
+sympy/polys/matrices/ddm.py,sha256=a-NJkOmGtm0P8Y88e9frpxRwap-gGZluG07oDReeyTg,13586
+sympy/polys/matrices/dense.py,sha256=LcFY1OAEvIaXzdToD84VvU_DZmNwRSiZt3PA-6YCwMQ,8718
+sympy/polys/matrices/domainmatrix.py,sha256=KeXk7Q0vTweGAWZduZHo2u0RUl2g2EnPeCXgz-16vrQ,47889
+sympy/polys/matrices/domainscalar.py,sha256=zosOQfLeKsMpAv1sm-JHPneGmMTeELvAloNxKMkZ8Uo,3643
+sympy/polys/matrices/eigen.py,sha256=pvICWI8_r_usa0EFqlbz7I8ASzKMK2j2gn-65CmTSPU,2983
+sympy/polys/matrices/exceptions.py,sha256=ay3Lv21X3QqszysBN71xdr9KGQuC5kDBl90a2Sjx6pM,1351
+sympy/polys/matrices/linsolve.py,sha256=fuuS_NvFFw7vP7KEtkfursOtgJmnIWSv9PEZv56ovOE,7548
+sympy/polys/matrices/lll.py,sha256=8vWLPm3SaFDY5pAwawzb2paF29hmJBucVdxwqGEzcAk,3556
+sympy/polys/matrices/normalforms.py,sha256=SkrGcuvfi27Bb3UeU_HHtCU4HrPSZSz1Azh5p4TqZ68,13105
+sympy/polys/matrices/sdm.py,sha256=Y_GV0aMlJDDa452OA72EwxvwKQAA3NaZRGVRwqwbKTI,35571
+sympy/polys/matrices/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/polys/matrices/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/polys/matrices/tests/__pycache__/test_ddm.cpython-310.pyc,,
+sympy/polys/matrices/tests/__pycache__/test_dense.cpython-310.pyc,,
+sympy/polys/matrices/tests/__pycache__/test_domainmatrix.cpython-310.pyc,,
+sympy/polys/matrices/tests/__pycache__/test_domainscalar.cpython-310.pyc,,
+sympy/polys/matrices/tests/__pycache__/test_eigen.cpython-310.pyc,,
+sympy/polys/matrices/tests/__pycache__/test_linsolve.cpython-310.pyc,,
+sympy/polys/matrices/tests/__pycache__/test_lll.cpython-310.pyc,,
+sympy/polys/matrices/tests/__pycache__/test_normalforms.cpython-310.pyc,,
+sympy/polys/matrices/tests/__pycache__/test_sdm.cpython-310.pyc,,
+sympy/polys/matrices/tests/test_ddm.py,sha256=3tFhjkA1alE827Qiw9mAPlWkSgV3Sesrqeh-NxHXsA4,16640
+sympy/polys/matrices/tests/test_dense.py,sha256=Ig_SJ86pogur9AEfcetO_L01fy1WFhe-E9g9ngVTlxs,9483
+sympy/polys/matrices/tests/test_domainmatrix.py,sha256=IjRa6uCfAu1hm6XrN1fUUaAA2GeVxi5IgVaf4vZc4Lk,32371
+sympy/polys/matrices/tests/test_domainscalar.py,sha256=9HQL95XlxyXHNDf_UBN9t1da_9syRNZGOb7IKkmjn-U,3624
+sympy/polys/matrices/tests/test_eigen.py,sha256=T1lYZeW-0NwDxDOG6ZJLr-OICfxY2wa0fVHV2V6EXSk,3200
+sympy/polys/matrices/tests/test_linsolve.py,sha256=G1LCDkB3BDUuDzQuUxn4jCjqUSbCwMX_lfkVXDLe-k0,3334
+sympy/polys/matrices/tests/test_lll.py,sha256=Zg7rNTlywHgrhr9OYpRj5yW6t2JPzJvwcclCvRNc7xw,6480
+sympy/polys/matrices/tests/test_normalforms.py,sha256=_4Cm3EJxHh3TEwF278uB7WQZweFWFsx3j0zc2AZFgDI,3036
+sympy/polys/matrices/tests/test_sdm.py,sha256=H0oNZkNmwpP8i6UpysnkD7yave0E3YU3Z8dKGobSbOA,14000
+sympy/polys/modulargcd.py,sha256=vE57ZJv1iJNKHcRbFJBgG6Jytudweq3wyDB90yxtFCc,58664
+sympy/polys/monomials.py,sha256=R2o7vpjdZdpp57u-PrKw1REk_Cr9uoNcum1a8DnDHZg,18925
+sympy/polys/multivariate_resultants.py,sha256=G9NCKrb5MBoUshiB_QD86w6MwQAxLwOmc-_HFO_ZXdE,15265
+sympy/polys/numberfields/__init__.py,sha256=ZfhC9MyfGfGUz_DT_rXasB-M_P2zUiZXOJUNh_Gtm8c,538
+sympy/polys/numberfields/__pycache__/__init__.cpython-310.pyc,,
+sympy/polys/numberfields/__pycache__/basis.cpython-310.pyc,,
+sympy/polys/numberfields/__pycache__/exceptions.cpython-310.pyc,,
+sympy/polys/numberfields/__pycache__/galois_resolvents.cpython-310.pyc,,
+sympy/polys/numberfields/__pycache__/galoisgroups.cpython-310.pyc,,
+sympy/polys/numberfields/__pycache__/minpoly.cpython-310.pyc,,
+sympy/polys/numberfields/__pycache__/modules.cpython-310.pyc,,
+sympy/polys/numberfields/__pycache__/primes.cpython-310.pyc,,
+sympy/polys/numberfields/__pycache__/resolvent_lookup.cpython-310.pyc,,
+sympy/polys/numberfields/__pycache__/subfield.cpython-310.pyc,,
+sympy/polys/numberfields/__pycache__/utilities.cpython-310.pyc,,
+sympy/polys/numberfields/basis.py,sha256=IPA6cSwz-53ClQwo-wkmRzfx9pRX4iBhiggdLMVSgJ0,8261
+sympy/polys/numberfields/exceptions.py,sha256=IN36PiHvWvH5YOtWmU0EHSPiKhGryPezcOawdQmesMo,1668
+sympy/polys/numberfields/galois_resolvents.py,sha256=iGuCtXU5ZsoyHZVIbj7eh3ry_zhdAtUaV30Df7pT8WM,24858
+sympy/polys/numberfields/galoisgroups.py,sha256=_ORI7MYUyWhBuDsRL9W0olW5piJLkRNFsbRoJPPkryk,20665
+sympy/polys/numberfields/minpoly.py,sha256=uMMy3Ddui5_oNUBS55JNLF5xAZywfJzUjINmWRw3_EU,27716
+sympy/polys/numberfields/modules.py,sha256=pK69MtEb5BcrSWU9E9jtpVxGhEcR-5XB8_qatpskFVk,69117
+sympy/polys/numberfields/primes.py,sha256=9UHrJrIDPhAcNtqrDcqXIm9Z-Ch69W_gKGOBfDKduro,23967
+sympy/polys/numberfields/resolvent_lookup.py,sha256=qfLNKOz_WjtXwpVlfzy8EkD4gw12epx9npE9HsjyIdg,40411
+sympy/polys/numberfields/subfield.py,sha256=_s8u4a1y1L4HhoKEpoemSvNrXdW0Mh4YvrUOozq_lvc,16480
+sympy/polys/numberfields/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/polys/numberfields/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/polys/numberfields/tests/__pycache__/test_basis.cpython-310.pyc,,
+sympy/polys/numberfields/tests/__pycache__/test_galoisgroups.cpython-310.pyc,,
+sympy/polys/numberfields/tests/__pycache__/test_minpoly.cpython-310.pyc,,
+sympy/polys/numberfields/tests/__pycache__/test_modules.cpython-310.pyc,,
+sympy/polys/numberfields/tests/__pycache__/test_numbers.cpython-310.pyc,,
+sympy/polys/numberfields/tests/__pycache__/test_primes.cpython-310.pyc,,
+sympy/polys/numberfields/tests/__pycache__/test_subfield.cpython-310.pyc,,
+sympy/polys/numberfields/tests/__pycache__/test_utilities.cpython-310.pyc,,
+sympy/polys/numberfields/tests/test_basis.py,sha256=96BJ7e4oPDKXyvlRrUkiQxmHyjRGpOkAC7R3ln-jgNE,4580
+sympy/polys/numberfields/tests/test_galoisgroups.py,sha256=3LFuMbV92VBFlqqEqjh37oQvmG8cgZ0pFxDCXUoYRL4,5036
+sympy/polys/numberfields/tests/test_minpoly.py,sha256=IA0WH56vMXbSQpiml78jZes1M1XZSHDRARv5tM4VGTQ,22590
+sympy/polys/numberfields/tests/test_modules.py,sha256=GU4166j_hMlB22uWxxIjV_ON8RsyvpaN7Ly3eK8_m8Y,22926
+sympy/polys/numberfields/tests/test_numbers.py,sha256=M0vZIBnjPBHV4vFUnPBILaqiR_cgSuU50kFB-v7l1gA,5988
+sympy/polys/numberfields/tests/test_primes.py,sha256=JhcAkaQMgjkOSziQ2jZApJ8b8oviil5cUy0hfFqNmZg,9779
+sympy/polys/numberfields/tests/test_subfield.py,sha256=_aCbvukrahv-QyCwNT7EpTYC1u53yUlMhfGqV5GzW3Y,12215
+sympy/polys/numberfields/tests/test_utilities.py,sha256=T3YfFouXZNcBG2AfLEQ77Uqy-_TTufGTUsysmzUHNuA,3655
+sympy/polys/numberfields/utilities.py,sha256=aQBm_rgKxjHOCTktOYJ-aI5Cpb59IBvWJiyZCowcM-I,13081
+sympy/polys/orderings.py,sha256=IFieyj4LkFa7NDiGTZD3VwUY7mSN3GEjThKk0z5WJ1s,8500
+sympy/polys/orthopolys.py,sha256=Kjx3fSoLDpX-bXUlgkPQdOK_TutIidI0MHmJ-6cviKM,8526
+sympy/polys/partfrac.py,sha256=KzReYNMyYfgXUM-UFj67eQU7MQk6EsbfhVuf4_Tl_u0,14665
+sympy/polys/polyclasses.py,sha256=byf1JS2pYGCZXGvzaxnBC18r--jTf0OFqOjJxWy6z_U,54564
+sympy/polys/polyconfig.py,sha256=mgfFpp9SU159tA_PM2o04WZyzMoWfOtWZugRcHnP42c,1598
+sympy/polys/polyerrors.py,sha256=xByI-fqIHVYsYRm63NmHXlSSRCwSI9vZUoO-1Mf5Wlk,4744
+sympy/polys/polyfuncs.py,sha256=OEZpdYeHQADBJYqMw8JAyN4sw-jsJ6lzVH6m-CCoK8g,8547
+sympy/polys/polymatrix.py,sha256=83_9L66dbzVv0UfbPR3OTKtxZZ6sMaeOifMBPUDBeiM,9749
+sympy/polys/polyoptions.py,sha256=BqXFyhKVDoFRJlSSBb_jxOkWPzM2MpQ67BKiQR852A8,21721
+sympy/polys/polyquinticconst.py,sha256=mYLFWSBq3H3Y0I8cx76Z_xauLx1YeViC4xF6yWsSTPQ,96035
+sympy/polys/polyroots.py,sha256=etxwQFngxSLRgjRJ8AzPc28CCQm56xx9CRlp4MPwhl4,36995
+sympy/polys/polytools.py,sha256=H8xrnAGUu8Df_HStGD2wVpI-cKOhqEYlEECJ9ep3PHM,194263
+sympy/polys/polyutils.py,sha256=gGwRUZXAFv132f96uONc6Ybfh8xyyP9pAouNY6fX-uQ,16519
+sympy/polys/rationaltools.py,sha256=gkLu0YvsSJ2b04AOK7MV_rjp1m6exLkdqClOjrbBboo,2848
+sympy/polys/ring_series.py,sha256=qBKirsiZpM5x0ix4V5ntm7inynnahYCfVSgHZRCpccc,57766
+sympy/polys/rings.py,sha256=rparZxHTHV9j7Av3XUnAE2CSn1WglhXveO13IcuDljE,72970
+sympy/polys/rootisolation.py,sha256=vOvKe1Vi2uklmMB4qNy_EczSRzelMUqPB3o7qYdiWR0,64527
+sympy/polys/rootoftools.py,sha256=_rwgSXUkgg0bUsp949GiSz6ouoxuyysclg-fKGxRlYA,41040
+sympy/polys/solvers.py,sha256=CWrzPJNlosjhxScXzIHYZQwCjsLnkAgAeIgYrY92gbc,13519
+sympy/polys/specialpolys.py,sha256=B2vijl75zgUKUTY1HCqjB9BTDFf3FM8ugwkKGTB83XA,11038
+sympy/polys/sqfreetools.py,sha256=2Gdv9t9TNgdbnc-7XrpEhgYJfSvacHUyuE1aOWo9DXU,11464
+sympy/polys/subresultants_qq_zz.py,sha256=TDVS9-rEBXK88m4mAixuvPFMAXmn3MwKaSsGmq9oUCo,88261
+sympy/polys/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/polys/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_appellseqs.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_constructor.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_densearith.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_densebasic.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_densetools.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_dispersion.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_distributedmodules.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_euclidtools.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_factortools.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_fields.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_galoistools.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_groebnertools.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_heuristicgcd.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_injections.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_modulargcd.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_monomials.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_multivariate_resultants.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_orderings.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_orthopolys.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_partfrac.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_polyclasses.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_polyfuncs.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_polymatrix.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_polyoptions.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_polyroots.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_polytools.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_polyutils.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_pythonrational.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_rationaltools.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_ring_series.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_rings.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_rootisolation.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_rootoftools.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_solvers.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_specialpolys.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_sqfreetools.cpython-310.pyc,,
+sympy/polys/tests/__pycache__/test_subresultants_qq_zz.cpython-310.pyc,,
+sympy/polys/tests/test_appellseqs.py,sha256=YTERuRr30QtfxYR0erXvJG8D-INe9RaMFAF0ZM-H4Ks,3820
+sympy/polys/tests/test_constructor.py,sha256=U1LBjA881oG4A8oMXqZe0sZ42pmH7YpR_VSJjBNZz-w,6378
+sympy/polys/tests/test_densearith.py,sha256=1YBmEJTtPRWj4l39HMkFD6ffkU8h3pIs7lz-k_9XGYk,40428
+sympy/polys/tests/test_densebasic.py,sha256=vcoTscGRB1bef9UhclHcsKnBJp9baexjQ-enXq1-pKM,21477
+sympy/polys/tests/test_densetools.py,sha256=QM1Yt0hOHBnUTvdn14aFRUdfMQE9P2q1Hpzeud-n-ds,24572
+sympy/polys/tests/test_dispersion.py,sha256=8JfwjSNy7X74qJODMaVp1GSLprFiRDVt6XrYc_-omgQ,3183
+sympy/polys/tests/test_distributedmodules.py,sha256=dXmjhozX5Yzb7DsrtbdFTqAxi9Z1UZNJvGxj-vHM7cM,7639
+sympy/polys/tests/test_euclidtools.py,sha256=vEyj48eIjm6-KRQtThNfI4ic_VDNB6l7jMouxJAF9HE,19482
+sympy/polys/tests/test_factortools.py,sha256=MXOJfhjrLAu-UCyXg6YRMYAc7nkw6SAfkY66_RKG9Es,24560
+sympy/polys/tests/test_fields.py,sha256=vrdg27319R3Zro_idhQVxIeomN9P6mU3jHyX7HZKeMU,10245
+sympy/polys/tests/test_galoistools.py,sha256=btKRaqckjvyGOhCvIfwLtRDVG2Qiwo6CTnoPW8h4S9E,28130
+sympy/polys/tests/test_groebnertools.py,sha256=ZWHBcCCOVNwDxuJWg1WPo0krTHx1m1wTPi2cOYPsAT4,18584
+sympy/polys/tests/test_heuristicgcd.py,sha256=wsAKgOKuLYra14qMS8EUt_Pda_SoBfP90X2-Tv1WG7A,4031
+sympy/polys/tests/test_injections.py,sha256=EONGggBUNWaVSwi817CzLBYJgkTehFq8-m-Qdqes984,1286
+sympy/polys/tests/test_modulargcd.py,sha256=GE-24EnWOAQVYwgBb5PJzySX6EEJQs-q3HRFBWsXkTE,9042
+sympy/polys/tests/test_monomials.py,sha256=bY057IDFyVs864jcJ46ZITLv57xMKNfBVwBC-mnzJLA,10988
+sympy/polys/tests/test_multivariate_resultants.py,sha256=DJu8CcZ3xwx8njpjDeSOyhyxeqZYmhfb7dkSCU-ll7Y,9501
+sympy/polys/tests/test_orderings.py,sha256=bdsIsqJTFJCVyZNRMAGVDXVk79ldw9rmAGejS_lwKP0,4254
+sympy/polys/tests/test_orthopolys.py,sha256=UpJwPlmqZ3IZtWhaLcfhR5EyKj49_VpruRlI2dK_Awk,6379
+sympy/polys/tests/test_partfrac.py,sha256=78xlrvzvON2047j_DeQ0E8BBZg6Z1koJzksj5rQah9A,7096
+sympy/polys/tests/test_polyclasses.py,sha256=uUjLcfKrfW-EBB6N9ofESJgw4_QacKWN1fLa0etn6iY,13321
+sympy/polys/tests/test_polyfuncs.py,sha256=VbgCgCRE06dtSY9I9GSdPH9T52ETYYoxk4J3N1WBtd4,4520
+sympy/polys/tests/test_polymatrix.py,sha256=pl2VrN_d2XGOVHvvAnaNQzkdFTdQgjt9ePgo41soBRs,7353
+sympy/polys/tests/test_polyoptions.py,sha256=z9DUdt8K3lYkm4IyLH1Cv-TKe76HP-EyaRkZVsfWb6U,12416
+sympy/polys/tests/test_polyroots.py,sha256=LUh1A92dy93Ou2t2_650ujTqvC3DQK0qpl3QO7VZCrk,26809
+sympy/polys/tests/test_polytools.py,sha256=855XWTO3k68OALdT-PpsZ8ZfQepTsUEhDxU8dYyF1SE,126200
+sympy/polys/tests/test_polyutils.py,sha256=Qs3QQl0WYmTnkYE2ovTxdLeu6DYnWO_OoUmLwNDZzSw,11547
+sympy/polys/tests/test_pythonrational.py,sha256=vYMlOTuYvf-15P0nKTFm-uRrhUc-nCFEkqYFAPLxg08,4143
+sympy/polys/tests/test_rationaltools.py,sha256=wkvjzNP1IH-SdubNk5JJ7OWcY-zNF6z3t32kfp9Ncs0,2397
+sympy/polys/tests/test_ring_series.py,sha256=SCUiciL10XGGjxFuM6ulzA460XAUVRykW3HLb8RNsc0,24662
+sympy/polys/tests/test_rings.py,sha256=g3hl2fMJ6-X7-k9n3IBdOAtyqONbjYwTizlrFpWTR4M,45393
+sympy/polys/tests/test_rootisolation.py,sha256=x-n-T-Con-8phelNa05BPszkC_UCW1C0yAOwz658I60,32724
+sympy/polys/tests/test_rootoftools.py,sha256=psVf3YA1MMkeuVvn-IpmF_rc3AEhh8U4U09h6dEY9u0,21531
+sympy/polys/tests/test_solvers.py,sha256=LZwjEQKKpFdCr4hMaU0CoN650BqU-arsACJNOF7lOmk,13655
+sympy/polys/tests/test_specialpolys.py,sha256=vBEDCC82ccGvxsETR5xr3yQ70Ho_HUqv1Q970vWf44M,4995
+sympy/polys/tests/test_sqfreetools.py,sha256=QJdMLVvQOiPm8ZYr4OESV71d5Ag9QcK1dMUkYv3pY5o,4387
+sympy/polys/tests/test_subresultants_qq_zz.py,sha256=ro6-F0vJrR46syl5Q0zuXfXQzEREtlkWAeRV9xJE31Y,13138
+sympy/printing/__init__.py,sha256=ws2P2KshXpwfnij4zaU3lVzIFQOh7nSjLbrB50cVFcU,2264
+sympy/printing/__pycache__/__init__.cpython-310.pyc,,
+sympy/printing/__pycache__/aesaracode.cpython-310.pyc,,
+sympy/printing/__pycache__/c.cpython-310.pyc,,
+sympy/printing/__pycache__/codeprinter.cpython-310.pyc,,
+sympy/printing/__pycache__/conventions.cpython-310.pyc,,
+sympy/printing/__pycache__/cxx.cpython-310.pyc,,
+sympy/printing/__pycache__/defaults.cpython-310.pyc,,
+sympy/printing/__pycache__/dot.cpython-310.pyc,,
+sympy/printing/__pycache__/fortran.cpython-310.pyc,,
+sympy/printing/__pycache__/glsl.cpython-310.pyc,,
+sympy/printing/__pycache__/gtk.cpython-310.pyc,,
+sympy/printing/__pycache__/jscode.cpython-310.pyc,,
+sympy/printing/__pycache__/julia.cpython-310.pyc,,
+sympy/printing/__pycache__/lambdarepr.cpython-310.pyc,,
+sympy/printing/__pycache__/latex.cpython-310.pyc,,
+sympy/printing/__pycache__/llvmjitcode.cpython-310.pyc,,
+sympy/printing/__pycache__/maple.cpython-310.pyc,,
+sympy/printing/__pycache__/mathematica.cpython-310.pyc,,
+sympy/printing/__pycache__/mathml.cpython-310.pyc,,
+sympy/printing/__pycache__/numpy.cpython-310.pyc,,
+sympy/printing/__pycache__/octave.cpython-310.pyc,,
+sympy/printing/__pycache__/precedence.cpython-310.pyc,,
+sympy/printing/__pycache__/preview.cpython-310.pyc,,
+sympy/printing/__pycache__/printer.cpython-310.pyc,,
+sympy/printing/__pycache__/pycode.cpython-310.pyc,,
+sympy/printing/__pycache__/python.cpython-310.pyc,,
+sympy/printing/__pycache__/rcode.cpython-310.pyc,,
+sympy/printing/__pycache__/repr.cpython-310.pyc,,
+sympy/printing/__pycache__/rust.cpython-310.pyc,,
+sympy/printing/__pycache__/smtlib.cpython-310.pyc,,
+sympy/printing/__pycache__/str.cpython-310.pyc,,
+sympy/printing/__pycache__/tableform.cpython-310.pyc,,
+sympy/printing/__pycache__/tensorflow.cpython-310.pyc,,
+sympy/printing/__pycache__/theanocode.cpython-310.pyc,,
+sympy/printing/__pycache__/tree.cpython-310.pyc,,
+sympy/printing/aesaracode.py,sha256=aVXDMh_YDRsDwPbZMt8X73jjv4DW8g15M1M4TdNlqXQ,18227
+sympy/printing/c.py,sha256=dQ2ucrIGZGgYB6hS4gLIzFKDEYpfABNbP54lS7H6AIQ,26942
+sympy/printing/codeprinter.py,sha256=RkV88Z-SSCGkWJXuc_7pe2zoB-hRheBtJDDPEyK5acQ,35350
+sympy/printing/conventions.py,sha256=k6YRWHfvbLHJp1uKgQX-ySiOXSsXH8QJxC9fymYmcSM,2580
+sympy/printing/cxx.py,sha256=CtkngKi4o_z5XMbmzpa1eC1uUR9SCbuOIli9Zsnh4Rc,5737
+sympy/printing/defaults.py,sha256=YitLfIRfFH8ltNd18Y6YtBgq5H2te0wFKlHuIO4cvo8,135
+sympy/printing/dot.py,sha256=W0J798ZxBdlJercffBGnNDTp7J2tMdIYQkE_KIiyi3s,8274
+sympy/printing/fortran.py,sha256=JeDXvo6dL0-yG2nk9oiTmgBiWJZrjeZURsMcrFuSayo,28568
+sympy/printing/glsl.py,sha256=fYURb8NYRAxmbMQleFs-X2IWQ7uk5xHkJVhgskrFsbU,20537
+sympy/printing/gtk.py,sha256=ptnwYxJr5ox3LG4TCDbRIgxsCikaVvEzWBaqIpITUXc,466
+sympy/printing/jscode.py,sha256=EkGUqMH3qBAbLVbSSuYi4ZQ89G4xUImDT2nTAf3nn9E,12131
+sympy/printing/julia.py,sha256=iJqOPrHhqJjAc6UnT_8R7A5NFcn6ImE3mOTLS7X0bUY,23553
+sympy/printing/lambdarepr.py,sha256=BCx4eSdG8MQ8ZSUV1lWEd3CzbZ4IiMid-TTxPoV6FHU,8305
+sympy/printing/latex.py,sha256=ImSA8Ri3-30szn-FgMC4xTkrjnq9qlGisUhZtUiTyYE,121722
+sympy/printing/llvmjitcode.py,sha256=wa32lF5254AOPnbV9F5OvQTd1HOk0rfN-HUekcN1HmI,17164
+sympy/printing/maple.py,sha256=yEGhEsE_WkG4M6PpRdURw-FbsG-eVLL8d2-d3CUpkHk,10588
+sympy/printing/mathematica.py,sha256=9R-wXu1SR7Rp5hDFHdrRA0CPpADI58qeGoSxbAMpYP0,12701
+sympy/printing/mathml.py,sha256=BZNSIr05Hf3i2qBeNq0rGGEtHsChD2p8lfqg6GpRU5M,75290
+sympy/printing/numpy.py,sha256=X-MKcpT1u6Z6qaFKs6N17TQnzZMaeSMeKpJEru6Mhvo,19776
+sympy/printing/octave.py,sha256=31BmnCU-CCqllApOBJp5EPQCRO7hjU7hvYTqYxerPYg,25621
+sympy/printing/precedence.py,sha256=dK6ueqV6OOXg0qY9L-goOgbQarqVRygIYK5FQGTBPR8,5268
+sympy/printing/pretty/__init__.py,sha256=pJTe-DO4ctTlnjg1UvqyoeBY50B5znFjcGvivXRhM2U,344
+sympy/printing/pretty/__pycache__/__init__.cpython-310.pyc,,
+sympy/printing/pretty/__pycache__/pretty.cpython-310.pyc,,
+sympy/printing/pretty/__pycache__/pretty_symbology.cpython-310.pyc,,
+sympy/printing/pretty/__pycache__/stringpict.cpython-310.pyc,,
+sympy/printing/pretty/pretty.py,sha256=Yom39Yqxqb7mO0FxSRqsOmxSUvrwCaORdE4e_78YGIk,105281
+sympy/printing/pretty/pretty_symbology.py,sha256=nfBI-cLYLBP9VuZxb7DSWtFIg3vgDphNfV-uBtFDMIE,20208
+sympy/printing/pretty/stringpict.py,sha256=NuWPIg1wLFMu39Cxf09pgVKix_oY7zAWrPOBWVd_5Jc,19097
+sympy/printing/pretty/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/printing/pretty/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/printing/pretty/tests/__pycache__/test_pretty.cpython-310.pyc,,
+sympy/printing/pretty/tests/test_pretty.py,sha256=IC7BOUZ01_-WrqBvn3nEAL89UezKzucS8dNDAvDzAHY,184797
+sympy/printing/preview.py,sha256=FwN0_q52iU6idLNZNXo002gPNpVw_9xrxLifFnK_ssw,14104
+sympy/printing/printer.py,sha256=0-hGTS9IPEqqP3s2sW7cZWyBe6opGa1FzyIRhND6FkA,14479
+sympy/printing/pycode.py,sha256=L6SbgH4ulnqTKVvAUtaKCATX4XYLNK-rs2UAgVe-1Rw,24290
+sympy/printing/python.py,sha256=sJcUWJYaWX41EZVkhUmZqpLA2ITcYU65Qd1UKZXMdFo,3367
+sympy/printing/rcode.py,sha256=mgWYYacqkLiBblV60CRH1G6FC9FkZ0LOfAYs1NgxOHA,14282
+sympy/printing/repr.py,sha256=p9G_EeK2WkI__6LFEtWyL1KFHJLL1KTFUJsp7N5n6vk,11649
+sympy/printing/rust.py,sha256=OD9xYBoTk-yRhhtbCaxyceg1lsnCaUclp_NWW4uaNYY,21377
+sympy/printing/smtlib.py,sha256=sJ0-_Ns2vH45b5oEXIPJtIOG9lvCEqHlJRQzQoiVC44,19445
+sympy/printing/str.py,sha256=OEX6W7wBj1aJIiq39qFxstyWJxkAp08RzOLolXObeIM,33260
+sympy/printing/tableform.py,sha256=-1d1cwmnprJKPXpViTbQxpwy3wT7K8KjPD5HCyjbDGk,11799
+sympy/printing/tensorflow.py,sha256=KHdJMHMBOaJkHO8_uBfYRHeBW2VIziv_YYqIV30D-dA,7906
+sympy/printing/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/printing/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_aesaracode.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_c.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_codeprinter.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_conventions.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_cupy.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_cxx.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_dot.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_fortran.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_glsl.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_gtk.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_jax.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_jscode.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_julia.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_lambdarepr.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_latex.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_llvmjit.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_maple.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_mathematica.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_mathml.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_numpy.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_octave.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_precedence.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_preview.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_pycode.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_python.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_rcode.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_repr.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_rust.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_smtlib.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_str.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_tableform.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_tensorflow.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_theanocode.cpython-310.pyc,,
+sympy/printing/tests/__pycache__/test_tree.cpython-310.pyc,,
+sympy/printing/tests/test_aesaracode.py,sha256=s0pu_J7hfDJ4HttXP6cFM6fSUU1rHgga1SeAIdbNbAo,21016
+sympy/printing/tests/test_c.py,sha256=OrK5CxLbppwiOX2L-Whh9h7GC9XXueNkWhhF5ODaCnA,30804
+sympy/printing/tests/test_codeprinter.py,sha256=Bdh1RcusYzR7lTQ8s3Sik7zw_INivUcW2AS4dA0OCtg,1410
+sympy/printing/tests/test_conventions.py,sha256=yqPpU3F0WcbxImPBBAHd3YEZpkFGfcq_TLK4WN_gtP4,5257
+sympy/printing/tests/test_cupy.py,sha256=-hO52M1RJSQe0qSVSl6B1LudZIgaBMme0Nkd6dQGr6g,1858
+sympy/printing/tests/test_cxx.py,sha256=900VUfUpS55zfllYGQcpjdC4Wmcg4T8TV94Mr430NZc,2490
+sympy/printing/tests/test_dot.py,sha256=TSAtgGIgK_JbY-RMbQgUvnAI87SJqeJOqzcLjAobhKM,4648
+sympy/printing/tests/test_fortran.py,sha256=8L2zwZX8_QuNwcx24swcQUTvXYTO-5i-YrPL1hTRUVI,35518
+sympy/printing/tests/test_glsl.py,sha256=cfog9fp_EOFm_piJwqUcSvAIJ78bRwkFjecwr3ocCak,28421
+sympy/printing/tests/test_gtk.py,sha256=94gp1xRlPrFiALQGuqHnmh9xKrMxR52RQVkN0MXbUdA,500
+sympy/printing/tests/test_jax.py,sha256=B5GVZV9UxKeOmb4lzJHDkQXRbWQiLLD7w7Ze3sDrWHQ,10536
+sympy/printing/tests/test_jscode.py,sha256=ObahZne9lQbBiXyJZLohjQGdHsG2CnWCFOB8KbFOAqQ,11369
+sympy/printing/tests/test_julia.py,sha256=U7R9zOckGWy99f5StDFE9lMXkcEmMkGHzYj1UM1xzgc,13875
+sympy/printing/tests/test_lambdarepr.py,sha256=YU_lAQpiNHKJpBjZmgXr-unzOwS6Ss-u8sS2D_u-Mq0,6947
+sympy/printing/tests/test_latex.py,sha256=m8UBxuluF0fEYoLSOMM79VtwhEzkqIiouu6vsaZ1G4c,135670
+sympy/printing/tests/test_llvmjit.py,sha256=EGPeRisM60_TIVgnk7PTLSm5F-Aod_88zLjHPZwfyZ8,5344
+sympy/printing/tests/test_maple.py,sha256=te2l-yWWfklFHnaw-F2ik8q2dqES2cxrnE1voJxMGL0,13135
+sympy/printing/tests/test_mathematica.py,sha256=vijg7xfoelywL-ZhNuXFfDjM1FgaW_4liTBx1wzpkWk,10954
+sympy/printing/tests/test_mathml.py,sha256=x4IckrMxOlSzt6CxGFpHdN2l6OXl7zrcxIHwn-KxeS8,96209
+sympy/printing/tests/test_numpy.py,sha256=7fGncgPzvUbSjtltsu-kwiCFPv9tJlv2zPLRFo3ZkNw,10360
+sympy/printing/tests/test_octave.py,sha256=xIFRIXtTHcuU6ZhBW8Ht_KjUPewJoCEQ0b5GVVRyP7g,18728
+sympy/printing/tests/test_precedence.py,sha256=CS4L-WbI2ZuWLgbGATtF41--h0iGkfuE6dK5DYYiC5g,2787
+sympy/printing/tests/test_preview.py,sha256=dSVxiGqdNR6gbF40V4J2tGhQ-T4RDvSyGypHvYcPDYM,988
+sympy/printing/tests/test_pycode.py,sha256=nFeQHGQ9l-R2X_Q1snMFZP4KQ0M35V48P_j9kdahW4Q,15894
+sympy/printing/tests/test_python.py,sha256=HN7JkzQcKSnB6718i7kaEJZ5pYMqu56z1mSmHQGzY4k,8128
+sympy/printing/tests/test_rcode.py,sha256=PqYfr3akhhBcmswU3QLSFNyrmNTc92irTn0Wf_2jdv4,13779
+sympy/printing/tests/test_repr.py,sha256=sj3bAdBShn0itw2yYsAuDOuRPfKQSKJy2R8cPlLdDnY,12689
+sympy/printing/tests/test_rust.py,sha256=eZTYJ3zN5LEt8tl5KhADg1HwcrofhSQswagP_zcxoMw,11504
+sympy/printing/tests/test_smtlib.py,sha256=b4Ou4bTp8E_fFzlg6vQRpWowhxR-9SB88qA_yShXjhk,20934
+sympy/printing/tests/test_str.py,sha256=m-fw28ThIk0AcCz2_0HKgUNIwe9m3YGndcb4bJ28Leo,42262
+sympy/printing/tests/test_tableform.py,sha256=Ff5l1QL2HxN32WS_TdFhUAVqzop8YoWY3Uz1TThvVIM,5692
+sympy/printing/tests/test_tensorflow.py,sha256=p-Jx4Umby9k5t5umhus-0hkuTJN7C5kEbJL_l2KdyJA,15643
+sympy/printing/tests/test_theanocode.py,sha256=E36Fj72HxMK0e1pKTkoTpv9wI4UvwHdVufo-JA6dYq0,21394
+sympy/printing/tests/test_tree.py,sha256=_8PGAhWMQ_A0f2DQLdDeMrpxY19889P5Ih9H41RZn8s,6080
+sympy/printing/theanocode.py,sha256=3RxlOR4bRjMHOta6kvBk_ZuxKM3LZvPO8WYuxrtd38g,19028
+sympy/printing/tree.py,sha256=GxEF1WIflPNShlOrZc8AZch2I6GxDlbpImHqX61_P5o,3872
+sympy/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/release.py,sha256=iyi5eR6SKGqbP1Fp0_6p-darg5riTqiLfREzuz7g8UE,21
+sympy/sandbox/__init__.py,sha256=IaEVOYHaZ97OHEuto1UGthFuO35c0uvAZFZU23YyEaU,189
+sympy/sandbox/__pycache__/__init__.cpython-310.pyc,,
+sympy/sandbox/__pycache__/indexed_integrals.cpython-310.pyc,,
+sympy/sandbox/indexed_integrals.py,sha256=svh4xDIa8nGpDeH4TeRb49gG8miMvXpCzEarbor58EE,2141
+sympy/sandbox/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/sandbox/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/sandbox/tests/__pycache__/test_indexed_integrals.cpython-310.pyc,,
+sympy/sandbox/tests/test_indexed_integrals.py,sha256=UK2E2wg9EMwda4Vwpzyj3rmXs6ni33HqcbyaqAww6ww,1179
+sympy/series/__init__.py,sha256=DYG9oisjzYeS55dIUpQpbAFcoDz7Q81fZJw36PRGu14,766
+sympy/series/__pycache__/__init__.cpython-310.pyc,,
+sympy/series/__pycache__/acceleration.cpython-310.pyc,,
+sympy/series/__pycache__/approximants.cpython-310.pyc,,
+sympy/series/__pycache__/aseries.cpython-310.pyc,,
+sympy/series/__pycache__/formal.cpython-310.pyc,,
+sympy/series/__pycache__/fourier.cpython-310.pyc,,
+sympy/series/__pycache__/gruntz.cpython-310.pyc,,
+sympy/series/__pycache__/kauers.cpython-310.pyc,,
+sympy/series/__pycache__/limits.cpython-310.pyc,,
+sympy/series/__pycache__/limitseq.cpython-310.pyc,,
+sympy/series/__pycache__/order.cpython-310.pyc,,
+sympy/series/__pycache__/residues.cpython-310.pyc,,
+sympy/series/__pycache__/sequences.cpython-310.pyc,,
+sympy/series/__pycache__/series.cpython-310.pyc,,
+sympy/series/__pycache__/series_class.cpython-310.pyc,,
+sympy/series/acceleration.py,sha256=9VTCOEOgIyOvcwjY5ZT_c4kWE-f_bL79iz_T3WGis94,3357
+sympy/series/approximants.py,sha256=tE-hHuoW62QJHDA3WhRlXaTkokCAODs1vXgjirhOYiQ,3181
+sympy/series/aseries.py,sha256=cHVGRQaza4ayqI6ji6OHNkdQEMV7Bko4f4vug2buEQY,255
+sympy/series/benchmarks/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/series/benchmarks/__pycache__/__init__.cpython-310.pyc,,
+sympy/series/benchmarks/__pycache__/bench_limit.cpython-310.pyc,,
+sympy/series/benchmarks/__pycache__/bench_order.cpython-310.pyc,,
+sympy/series/benchmarks/bench_limit.py,sha256=2PtdeeJtD6qyEvt9HFNvyTnMM8phFZRjscgnb4fHndU,173
+sympy/series/benchmarks/bench_order.py,sha256=iC8sQJ0lLlTgiXltAyLzSCQ-3490cf-c6NFiIU44JSk,207
+sympy/series/formal.py,sha256=CtRziTUItAd8G9z__jJ9s7dRIHAOdeHajdPmNB3HRgY,51772
+sympy/series/fourier.py,sha256=dzVo4VZ8OkD9YSbBEYQudpcHcEdVMG7LfnIRTMd4Lzg,22885
+sympy/series/gruntz.py,sha256=Iex_MRKqixBX7cehe-Wro-4fNreoXBsFIjcoUvsijG8,24544
+sympy/series/kauers.py,sha256=PzD0MATMNjLjPi9GW5GQGL6Uqc2UT-uPwnzhi7TkJH8,1720
+sympy/series/limits.py,sha256=D_lAe-Y0V1n5W3JztWs34tUasTTFgNqQi4MuPZc5oJk,12820
+sympy/series/limitseq.py,sha256=WM1Lh3RXhSZM1gQaJrhWnUtYEgJunLujIEw1gmtVhYw,7752
+sympy/series/order.py,sha256=bKvLPG0QwPl3a7Qw-SMQEjkpyaTxxye7pvC27-jvt80,19255
+sympy/series/residues.py,sha256=k46s_fFfIHdJZqfst-B_-X1R-SAWs_rR9MQH7a9JLtg,2213
+sympy/series/sequences.py,sha256=S2_GtHiPY9q2BpzbVgJsD4pBf_e4yWveEwluX9rSHF4,35589
+sympy/series/series.py,sha256=crSkQK1wA6FQAKI1islG6rpAzvWlz1gZZPx2Awp43Qg,1861
+sympy/series/series_class.py,sha256=033NJ5Re8AS4eq-chmfct3-Lz2vBqdFqXtnrbxswTx0,2918
+sympy/series/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/series/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/series/tests/__pycache__/test_approximants.cpython-310.pyc,,
+sympy/series/tests/__pycache__/test_aseries.cpython-310.pyc,,
+sympy/series/tests/__pycache__/test_demidovich.cpython-310.pyc,,
+sympy/series/tests/__pycache__/test_formal.cpython-310.pyc,,
+sympy/series/tests/__pycache__/test_fourier.cpython-310.pyc,,
+sympy/series/tests/__pycache__/test_gruntz.cpython-310.pyc,,
+sympy/series/tests/__pycache__/test_kauers.cpython-310.pyc,,
+sympy/series/tests/__pycache__/test_limits.cpython-310.pyc,,
+sympy/series/tests/__pycache__/test_limitseq.cpython-310.pyc,,
+sympy/series/tests/__pycache__/test_lseries.cpython-310.pyc,,
+sympy/series/tests/__pycache__/test_nseries.cpython-310.pyc,,
+sympy/series/tests/__pycache__/test_order.cpython-310.pyc,,
+sympy/series/tests/__pycache__/test_residues.cpython-310.pyc,,
+sympy/series/tests/__pycache__/test_sequences.cpython-310.pyc,,
+sympy/series/tests/__pycache__/test_series.cpython-310.pyc,,
+sympy/series/tests/test_approximants.py,sha256=KViHMW1dPXn7xaPYhtTQ9L_WtLLkoIic6yfFnwZ8Q70,1012
+sympy/series/tests/test_aseries.py,sha256=LblW4hBDVhigX9YvNc_HFvMm8nJMSTAT9PcUK3p-9HU,2371
+sympy/series/tests/test_demidovich.py,sha256=JGYacqJMEqHS6oT2AYs9d7iutIEb32PkJs9EJqOHxcQ,4947
+sympy/series/tests/test_formal.py,sha256=k2rqySJg6WnPSwcDyQBG7041bJxXdiYZt-KSs_IAso0,22495
+sympy/series/tests/test_fourier.py,sha256=Dknk64RWGNO8kXmpy2RRIbT8b-0CjL_35QcBugReW38,5891
+sympy/series/tests/test_gruntz.py,sha256=CRRAlU0JLygDL7pHnxfILSDAQ6UbJfaKZrClAdGB1iE,16060
+sympy/series/tests/test_kauers.py,sha256=Z85FhfXOOVki0HNGeK5BEBZOpkuB6SnKK3FqfK1-aLQ,1102
+sympy/series/tests/test_limits.py,sha256=yMw_5X2GLXybVHHMnQ0H0Nx8sXWPYK9EH8boSZBOYwo,44263
+sympy/series/tests/test_limitseq.py,sha256=QjEF99sYEDqfY7ULz1qjQTo6e0lIRUCflEOBgiDYRVA,5691
+sympy/series/tests/test_lseries.py,sha256=GlQvlBlD9wh02PPBP6zU83wmhurvGUFTuCRp44B4uI4,1875
+sympy/series/tests/test_nseries.py,sha256=uzhzYswSOe9Gh_nWKeO69tvGPMLd-9tqk4HBYX8JIm4,18284
+sympy/series/tests/test_order.py,sha256=BGB1j0vmSMS8lGwSVmBOc9apI1NM82quFwF2Hhr2bDE,16500
+sympy/series/tests/test_residues.py,sha256=pT9xzPqtmfKGSbLLAxgDVZLTSy3TOxyfq3thTJs2VLw,3178
+sympy/series/tests/test_sequences.py,sha256=Oyq32yQZnGNQDS2uJ3by3bZ-y4G9c9BFfdQTcVuW2RM,11161
+sympy/series/tests/test_series.py,sha256=rsSCpDWpZQGMo0RfrkCS5XOl--wVFmIyZcaYUoaFXdc,15478
+sympy/sets/__init__.py,sha256=3vjCm4v2esbpsVPY0ROwTXMETxns_66bG4FCIFZ96oM,1026
+sympy/sets/__pycache__/__init__.cpython-310.pyc,,
+sympy/sets/__pycache__/conditionset.cpython-310.pyc,,
+sympy/sets/__pycache__/contains.cpython-310.pyc,,
+sympy/sets/__pycache__/fancysets.cpython-310.pyc,,
+sympy/sets/__pycache__/ordinals.cpython-310.pyc,,
+sympy/sets/__pycache__/powerset.cpython-310.pyc,,
+sympy/sets/__pycache__/setexpr.cpython-310.pyc,,
+sympy/sets/__pycache__/sets.cpython-310.pyc,,
+sympy/sets/conditionset.py,sha256=mBxxVHIFt9UfddAyvwfd-uVsM5fisNUSvBdNWH5QN_A,7825
+sympy/sets/contains.py,sha256=1jXxAFsl2ivXlT9SsGOM7s1uvS2UKEuWzNYA_bTtS6U,1234
+sympy/sets/fancysets.py,sha256=kVDkGbp316dFdR5GMWLtreltBFot8G39XM_xLvG1TkU,48118
+sympy/sets/handlers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/sets/handlers/__pycache__/__init__.cpython-310.pyc,,
+sympy/sets/handlers/__pycache__/add.cpython-310.pyc,,
+sympy/sets/handlers/__pycache__/comparison.cpython-310.pyc,,
+sympy/sets/handlers/__pycache__/functions.cpython-310.pyc,,
+sympy/sets/handlers/__pycache__/intersection.cpython-310.pyc,,
+sympy/sets/handlers/__pycache__/issubset.cpython-310.pyc,,
+sympy/sets/handlers/__pycache__/mul.cpython-310.pyc,,
+sympy/sets/handlers/__pycache__/power.cpython-310.pyc,,
+sympy/sets/handlers/__pycache__/union.cpython-310.pyc,,
+sympy/sets/handlers/add.py,sha256=_ucFvxuDv9wsmKxGkCDUERtYk3I_tQxjZjY3ZkroWs0,1863
+sympy/sets/handlers/comparison.py,sha256=WfT_vLrOkvPqRg2mf7gziVs_6cLg0kOTEFv-Nb1zIvo,1601
+sympy/sets/handlers/functions.py,sha256=jYSFqFNH6mXbKFPgvIAIGY8BhbLPo1dAvcNg4MxmCaI,8381
+sympy/sets/handlers/intersection.py,sha256=rIdRTqFQzbsa0NGepzWmfoKhAd87aEqxONdOgujR_0A,16633
+sympy/sets/handlers/issubset.py,sha256=azka_5eOaUro3r3v72PmET0oY8-aaoJkzVEK7kuqXCA,4739
+sympy/sets/handlers/mul.py,sha256=XFbkOw4PDQumaOEUlHeQLvjhIom0f3iniSYv_Kau-xw,1842
+sympy/sets/handlers/power.py,sha256=84N3dIus7r09XV7PF_RiEpFRw1y5tOGD34WKzSM9F-4,3186
+sympy/sets/handlers/union.py,sha256=lrAdydqExnALUjM0dnoM-7JAZqtbgLb46Y2GGmFtQdw,4225
+sympy/sets/ordinals.py,sha256=GSyaBq7BHJC3pvgoCDoUKZQ0IE2VXyHtx6_g5OS64W4,7641
+sympy/sets/powerset.py,sha256=vIGnSYKngEPEt6V-6beDOXAOY9ugDLJ8fXOx5H9JJck,2913
+sympy/sets/setexpr.py,sha256=jMOQigDscLTrFPXvHqo1ODVRG9BqC4yn38Ej4m6WPa0,3019
+sympy/sets/sets.py,sha256=Ma1U85BlQq_VwQZzu5aVVrqK9h0f7iwsltfOleqRnUE,79027
+sympy/sets/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/sets/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/sets/tests/__pycache__/test_conditionset.cpython-310.pyc,,
+sympy/sets/tests/__pycache__/test_contains.cpython-310.pyc,,
+sympy/sets/tests/__pycache__/test_fancysets.cpython-310.pyc,,
+sympy/sets/tests/__pycache__/test_ordinals.cpython-310.pyc,,
+sympy/sets/tests/__pycache__/test_powerset.cpython-310.pyc,,
+sympy/sets/tests/__pycache__/test_setexpr.cpython-310.pyc,,
+sympy/sets/tests/__pycache__/test_sets.cpython-310.pyc,,
+sympy/sets/tests/test_conditionset.py,sha256=4FdbXxobY286r5UtrCbcQPqaFIycsdlbtNO2vJmzsEI,11352
+sympy/sets/tests/test_contains.py,sha256=SYiiiedUpAevS0I2gBQ8JEWrhRBmGsvOAxjGLPRe_gg,1559
+sympy/sets/tests/test_fancysets.py,sha256=GsRbQGZK_KAGp9aIBs6TLWlLzDNJvzkrzjzdUFMhRb8,51685
+sympy/sets/tests/test_ordinals.py,sha256=L4DYc6ByQMDwJGFzJC3YhfSrVk5auW7pf4QYpJ5xY7w,2637
+sympy/sets/tests/test_powerset.py,sha256=nFvDGlhAf0wG-pZnPkgJjfwDHrTwdro3MYIinwyxn94,4805
+sympy/sets/tests/test_setexpr.py,sha256=E--SjYVzrmau0EbD8g4NTqp6aLD8qHzIuI7sAfuWxpY,14797
+sympy/sets/tests/test_sets.py,sha256=9Upkysel9pewUn77Rowv0Ct8jKduZgW2lutpGKBnQj4,66659
+sympy/simplify/__init__.py,sha256=MH1vkwHq0J5tNm7ss8V6v-mjrDGUXwfOsariIwfi38c,1274
+sympy/simplify/__pycache__/__init__.cpython-310.pyc,,
+sympy/simplify/__pycache__/combsimp.cpython-310.pyc,,
+sympy/simplify/__pycache__/cse_main.cpython-310.pyc,,
+sympy/simplify/__pycache__/cse_opts.cpython-310.pyc,,
+sympy/simplify/__pycache__/epathtools.cpython-310.pyc,,
+sympy/simplify/__pycache__/fu.cpython-310.pyc,,
+sympy/simplify/__pycache__/gammasimp.cpython-310.pyc,,
+sympy/simplify/__pycache__/hyperexpand.cpython-310.pyc,,
+sympy/simplify/__pycache__/hyperexpand_doc.cpython-310.pyc,,
+sympy/simplify/__pycache__/powsimp.cpython-310.pyc,,
+sympy/simplify/__pycache__/radsimp.cpython-310.pyc,,
+sympy/simplify/__pycache__/ratsimp.cpython-310.pyc,,
+sympy/simplify/__pycache__/simplify.cpython-310.pyc,,
+sympy/simplify/__pycache__/sqrtdenest.cpython-310.pyc,,
+sympy/simplify/__pycache__/traversaltools.cpython-310.pyc,,
+sympy/simplify/__pycache__/trigsimp.cpython-310.pyc,,
+sympy/simplify/combsimp.py,sha256=XZOyP8qxowsXNbrtdUiinUFTUau4DZvivmd--Cw8Jnk,3605
+sympy/simplify/cse_main.py,sha256=4TJ15SSMyLa1rBp3FswVpkSmUDsu3uMxBkaUlyU9xZM,31349
+sympy/simplify/cse_opts.py,sha256=ZTCaOdOrgtifWxQmFzyngrLq9uwzByBdiSS5mE-DDoE,1618
+sympy/simplify/epathtools.py,sha256=YEeS5amYseT1nC4bHqyyemrjAE1qlhWz0ISXJk5I8Xo,10173
+sympy/simplify/fu.py,sha256=fgEyS5xWwvEUDWDkA7nco9k96NDxmjf3AHrP6Yc1zsg,61835
+sympy/simplify/gammasimp.py,sha256=n-TDIl7W_8RPSvpRTk8XiRSvYDBpzh55xxxWBpdXrfI,18609
+sympy/simplify/hyperexpand.py,sha256=TCqQwNyLflSgkGbuhVAohoXcMr1Dc9OgdXzeROC78Go,84437
+sympy/simplify/hyperexpand_doc.py,sha256=E8AD0mj8ULtelDSUkmJKJY7kYm5fVfCL4QH_DX65qEw,521
+sympy/simplify/powsimp.py,sha256=ThrrYTEIwQnd1cOfw-_p6ydRb1e2-7K5CU7dJpXTx-Y,26577
+sympy/simplify/radsimp.py,sha256=rE5fKX7Rf744zH_ybaTdytGNDPmGtEnd8oD9btuM_cU,41028
+sympy/simplify/ratsimp.py,sha256=s8K5jmxvPoYw8DVIpW0-h-brHlWi3a3Xj7DQoKJUjl8,7686
+sympy/simplify/simplify.py,sha256=VNAkKbQc_Mr4wxKTNfhOP4US4FccKMNI07Avj4axcQc,72902
+sympy/simplify/sqrtdenest.py,sha256=Ee1_NGJmWMG2fn2906PpyC79W-dZQdsSLNjkiT4gi1Q,21635
+sympy/simplify/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/simplify/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/simplify/tests/__pycache__/test_combsimp.cpython-310.pyc,,
+sympy/simplify/tests/__pycache__/test_cse.cpython-310.pyc,,
+sympy/simplify/tests/__pycache__/test_epathtools.cpython-310.pyc,,
+sympy/simplify/tests/__pycache__/test_fu.cpython-310.pyc,,
+sympy/simplify/tests/__pycache__/test_function.cpython-310.pyc,,
+sympy/simplify/tests/__pycache__/test_gammasimp.cpython-310.pyc,,
+sympy/simplify/tests/__pycache__/test_hyperexpand.cpython-310.pyc,,
+sympy/simplify/tests/__pycache__/test_powsimp.cpython-310.pyc,,
+sympy/simplify/tests/__pycache__/test_radsimp.cpython-310.pyc,,
+sympy/simplify/tests/__pycache__/test_ratsimp.cpython-310.pyc,,
+sympy/simplify/tests/__pycache__/test_rewrite.cpython-310.pyc,,
+sympy/simplify/tests/__pycache__/test_simplify.cpython-310.pyc,,
+sympy/simplify/tests/__pycache__/test_sqrtdenest.cpython-310.pyc,,
+sympy/simplify/tests/__pycache__/test_trigsimp.cpython-310.pyc,,
+sympy/simplify/tests/test_combsimp.py,sha256=O95WSxCvo2fDQs-UlarAcSf0_8M3PuTR76lhREDoNA8,2958
+sympy/simplify/tests/test_cse.py,sha256=pXDjx2yrL1YlT0ddzUJnZn3a1zD-Ch6I1C4TPtK9Nlk,25299
+sympy/simplify/tests/test_epathtools.py,sha256=ugsQlfuK6POiixdeit63QovsVAlG5JyCaPlPp0j35LE,3525
+sympy/simplify/tests/test_fu.py,sha256=Xqv8OyB_z3GrDUa9YdxyY98vq_XrwiMKzwMpqKx8XFQ,18651
+sympy/simplify/tests/test_function.py,sha256=gzdcSFObuDzVFJDdAgmERtZJvG38WNSmclPAdG8OaPQ,2199
+sympy/simplify/tests/test_gammasimp.py,sha256=32cPRmtG-_Mz9g02lmmn-PWDD3J_Ku6sxLxIUU7WqxE,5320
+sympy/simplify/tests/test_hyperexpand.py,sha256=tkrRq3zeOjXlH88kGiPgPHC3TTr5Y4BboC3bqDssKJc,40851
+sympy/simplify/tests/test_powsimp.py,sha256=CG5H_xSbtwZakjLzL-EEg-T9j2GOUylCU5YgLsbHm2A,14313
+sympy/simplify/tests/test_radsimp.py,sha256=7GjCVKP_nyS8s36Oxwmw6TiPRY0fG3aZP9Rd3oSksTY,18789
+sympy/simplify/tests/test_ratsimp.py,sha256=uRq7AGI957LeLOmYIXMqKkstQylK09xMYJRUflT8a-s,2210
+sympy/simplify/tests/test_rewrite.py,sha256=LZj4V6a95GJj1o3NlKRoHMk7sWGPASFlw24nsm4z43k,1127
+sympy/simplify/tests/test_simplify.py,sha256=7t9yEQCj53nrir-lItM0BSKZPgueDpul3H-Bsp-Bcu8,41565
+sympy/simplify/tests/test_sqrtdenest.py,sha256=4zRtDQVGpKRRBYSAnEF5pSM0AR_fAMumONu2Ocb3tqg,7470
+sympy/simplify/tests/test_trigsimp.py,sha256=vG5PDTDNOuFypT7H9DSMjIollPqkKdNhWv5FBj6vFnE,19949
+sympy/simplify/traversaltools.py,sha256=pn_t9Yrk_SL1X0vl-zVR6yZaxkY25D4MwTBv4ywnD1Y,409
+sympy/simplify/trigsimp.py,sha256=CasB3mOMniKbNiBDJU-SjyIFxNCKIWkgFLEsbOYlRSA,46856
+sympy/solvers/__init__.py,sha256=cqnpjbmL0YQNal_aQ-AFeCNkU1eHCpC17uaJ-Jo8COQ,2210
+sympy/solvers/__pycache__/__init__.cpython-310.pyc,,
+sympy/solvers/__pycache__/bivariate.cpython-310.pyc,,
+sympy/solvers/__pycache__/decompogen.cpython-310.pyc,,
+sympy/solvers/__pycache__/deutils.cpython-310.pyc,,
+sympy/solvers/__pycache__/inequalities.cpython-310.pyc,,
+sympy/solvers/__pycache__/pde.cpython-310.pyc,,
+sympy/solvers/__pycache__/polysys.cpython-310.pyc,,
+sympy/solvers/__pycache__/recurr.cpython-310.pyc,,
+sympy/solvers/__pycache__/solvers.cpython-310.pyc,,
+sympy/solvers/__pycache__/solveset.cpython-310.pyc,,
+sympy/solvers/benchmarks/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/solvers/benchmarks/__pycache__/__init__.cpython-310.pyc,,
+sympy/solvers/benchmarks/__pycache__/bench_solvers.cpython-310.pyc,,
+sympy/solvers/benchmarks/bench_solvers.py,sha256=ZVK2TIW0XjWRDBex054ymmVlSBQw-RIBhEL1wS2ZAmU,288
+sympy/solvers/bivariate.py,sha256=yrlo0AoY_MtXHP1j0qKV4UgAhSXBBpvHHRnDJuCFsC8,17869
+sympy/solvers/decompogen.py,sha256=dWQla7hp7A4RqI2a0qRNQLWNPEuur68lD3dVTyktdBU,3757
+sympy/solvers/deutils.py,sha256=6dCIoZqX8mFz77SpT1DOM_I5yvdwU1tUMnTbA2vjYME,10309
+sympy/solvers/diophantine/__init__.py,sha256=I1p3uj3kFQv20cbsZ34K5rNCx1_pDS7JwHUCFstpBgs,128
+sympy/solvers/diophantine/__pycache__/__init__.cpython-310.pyc,,
+sympy/solvers/diophantine/__pycache__/diophantine.cpython-310.pyc,,
+sympy/solvers/diophantine/diophantine.py,sha256=oU1NhMmD2Eyzl_H5mMZw90-rxxU4A4MnwvrDswukk-8,120229
+sympy/solvers/diophantine/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/solvers/diophantine/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/solvers/diophantine/tests/__pycache__/test_diophantine.cpython-310.pyc,,
+sympy/solvers/diophantine/tests/test_diophantine.py,sha256=mB79JLU5qe-9EM33USi8LmNLJjKrNuZ8TpPxaBz7gVw,42265
+sympy/solvers/inequalities.py,sha256=2IZlzDBYx8lWmW_7PVnIpTw6_FuYFsJLKvYna3nurA4,33098
+sympy/solvers/ode/__init__.py,sha256=I7RKwCcaoerflUm5i3ZDJgBIOnkhBjb83BCHcVcFqfM,468
+sympy/solvers/ode/__pycache__/__init__.cpython-310.pyc,,
+sympy/solvers/ode/__pycache__/hypergeometric.cpython-310.pyc,,
+sympy/solvers/ode/__pycache__/lie_group.cpython-310.pyc,,
+sympy/solvers/ode/__pycache__/nonhomogeneous.cpython-310.pyc,,
+sympy/solvers/ode/__pycache__/ode.cpython-310.pyc,,
+sympy/solvers/ode/__pycache__/riccati.cpython-310.pyc,,
+sympy/solvers/ode/__pycache__/single.cpython-310.pyc,,
+sympy/solvers/ode/__pycache__/subscheck.cpython-310.pyc,,
+sympy/solvers/ode/__pycache__/systems.cpython-310.pyc,,
+sympy/solvers/ode/hypergeometric.py,sha256=kizvLgjzX1VUZ1n84uT6tlOs_8NfQBW1JZVo0fJLkdM,10048
+sympy/solvers/ode/lie_group.py,sha256=tGCy_KAMuKa4gb4JR084Qy0VKu9qU1BoYBgreDX5D9Q,39242
+sympy/solvers/ode/nonhomogeneous.py,sha256=SyQVXK3BB1gEZlcK1q5LueWvpyo-U600tdnpV_87QbE,18231
+sympy/solvers/ode/ode.py,sha256=Zt6XrqtQTEPa5a7lj-r0HJ8tZoS-lJNgt8J_3kHrqyg,145088
+sympy/solvers/ode/riccati.py,sha256=Ma2sEij9Ns3onj35F7PMOLAXsFG4NAcPjP-Qp5Spt4s,30748
+sympy/solvers/ode/single.py,sha256=UtDMHdaKSYKCOfanLiwG3tAzqov5eG51fV_5dGq_agI,109468
+sympy/solvers/ode/subscheck.py,sha256=CIPca_qTxL9z5oaD2e2NrgME0eVQgF9PabZndcVqHZM,16130
+sympy/solvers/ode/systems.py,sha256=jjhV_7GdP-kpqM8Kk3xlR1Dss5rvWCC839wguTnFLhI,71526
+sympy/solvers/ode/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/solvers/ode/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/solvers/ode/tests/__pycache__/test_lie_group.cpython-310.pyc,,
+sympy/solvers/ode/tests/__pycache__/test_ode.cpython-310.pyc,,
+sympy/solvers/ode/tests/__pycache__/test_riccati.cpython-310.pyc,,
+sympy/solvers/ode/tests/__pycache__/test_single.cpython-310.pyc,,
+sympy/solvers/ode/tests/__pycache__/test_subscheck.cpython-310.pyc,,
+sympy/solvers/ode/tests/__pycache__/test_systems.cpython-310.pyc,,
+sympy/solvers/ode/tests/test_lie_group.py,sha256=vg1yy_-a5x1Xm2IcVkEi5cD2uA5wE5gjqpfBwkV1vZc,5319
+sympy/solvers/ode/tests/test_ode.py,sha256=WsDeiS1cxO4NCDNJa99NMAqysPsOrKTQ0c6aY_u2vjc,48311
+sympy/solvers/ode/tests/test_riccati.py,sha256=-2C79UTh6WGwT8GjQ_YwdzlBrQU45f-NT7y0s1vdo8c,29352
+sympy/solvers/ode/tests/test_single.py,sha256=RV6Dl3MjY1dOQwNZk7hveZUzz8Gft6plRuIr7FmG58c,99983
+sympy/solvers/ode/tests/test_subscheck.py,sha256=Gzwc9h9n6zlNOhJ8Qh6fQDeB8ghaRmgv3ktBAfPJx-U,12468
+sympy/solvers/ode/tests/test_systems.py,sha256=Lkq84sR3pSw75d_pTAkm2_0gY45pCTKWmKmrO2zbov8,129359
+sympy/solvers/pde.py,sha256=FRFnEbD7ZJOcy8-q1LZ5NvYRt4Fu4Avf5Xe6Xk6pWoo,35659
+sympy/solvers/polysys.py,sha256=SQw-W8d5VHBfF81EYVFbcSSVUrsIHG9a9YzbkUaKIqc,13202
+sympy/solvers/recurr.py,sha256=DyssZuOyemoC6J1cWq635O7zkg1WLHrR7KGoM-gNy0g,25389
+sympy/solvers/solvers.py,sha256=bVtrpSn5jmko1ik6_JXD2rYW5ZRNKnboT0OiBDRbFRw,136170
+sympy/solvers/solveset.py,sha256=KySAjWzQfiEnVpXRHSCGh8Gq2ObJWOZf7OMmssZR5qU,141021
+sympy/solvers/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/solvers/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/solvers/tests/__pycache__/test_constantsimp.cpython-310.pyc,,
+sympy/solvers/tests/__pycache__/test_decompogen.cpython-310.pyc,,
+sympy/solvers/tests/__pycache__/test_inequalities.cpython-310.pyc,,
+sympy/solvers/tests/__pycache__/test_numeric.cpython-310.pyc,,
+sympy/solvers/tests/__pycache__/test_pde.cpython-310.pyc,,
+sympy/solvers/tests/__pycache__/test_polysys.cpython-310.pyc,,
+sympy/solvers/tests/__pycache__/test_recurr.cpython-310.pyc,,
+sympy/solvers/tests/__pycache__/test_solvers.cpython-310.pyc,,
+sympy/solvers/tests/__pycache__/test_solveset.cpython-310.pyc,,
+sympy/solvers/tests/test_constantsimp.py,sha256=9Feugsg9jD2BwQiG4EFpb9fORyst6JdBmZqq2GaOgH8,8707
+sympy/solvers/tests/test_decompogen.py,sha256=7GUsDQQZtYbZIK0p0UxsOuNEJxEt4IHeOSsem_k-k0U,2943
+sympy/solvers/tests/test_inequalities.py,sha256=MuSP5v1kFL7eH_CSqOPhl6xDd1GuwRBWcZQSCwBy6Bg,20688
+sympy/solvers/tests/test_numeric.py,sha256=EeqGECpAsHoaXulCsOEJ6zAFn5i8iDy52Uo67awFAII,4738
+sympy/solvers/tests/test_pde.py,sha256=UGP3uWjF8pKQgfPifmdfvS5URVmzSg6m2NkS7LGzmio,9257
+sympy/solvers/tests/test_polysys.py,sha256=P1Jk79CAYB85L-O3KRJKpsqvwVJgqqJ_u44NigGWsaA,6873
+sympy/solvers/tests/test_recurr.py,sha256=-OeghSg16GFN70y_RUXC6CF6VU_b7NXaKDbejtRSocg,11418
+sympy/solvers/tests/test_solvers.py,sha256=hbJtihDVJQfRngUOBSz4OtV8HIkojkg528UNGtVAmr8,104484
+sympy/solvers/tests/test_solveset.py,sha256=YXl1lfZ1xnYrk_Dt4DY1gZuY9a0A5V462TPgqNfIPXk,134515
+sympy/stats/__init__.py,sha256=aNs_difmTw7e2GIfLGaPLpS-mXlttrrB3TVFPDSdGwU,8471
+sympy/stats/__pycache__/__init__.cpython-310.pyc,,
+sympy/stats/__pycache__/compound_rv.cpython-310.pyc,,
+sympy/stats/__pycache__/crv.cpython-310.pyc,,
+sympy/stats/__pycache__/crv_types.cpython-310.pyc,,
+sympy/stats/__pycache__/drv.cpython-310.pyc,,
+sympy/stats/__pycache__/drv_types.cpython-310.pyc,,
+sympy/stats/__pycache__/error_prop.cpython-310.pyc,,
+sympy/stats/__pycache__/frv.cpython-310.pyc,,
+sympy/stats/__pycache__/frv_types.cpython-310.pyc,,
+sympy/stats/__pycache__/joint_rv.cpython-310.pyc,,
+sympy/stats/__pycache__/joint_rv_types.cpython-310.pyc,,
+sympy/stats/__pycache__/matrix_distributions.cpython-310.pyc,,
+sympy/stats/__pycache__/random_matrix.cpython-310.pyc,,
+sympy/stats/__pycache__/random_matrix_models.cpython-310.pyc,,
+sympy/stats/__pycache__/rv.cpython-310.pyc,,
+sympy/stats/__pycache__/rv_interface.cpython-310.pyc,,
+sympy/stats/__pycache__/stochastic_process.cpython-310.pyc,,
+sympy/stats/__pycache__/stochastic_process_types.cpython-310.pyc,,
+sympy/stats/__pycache__/symbolic_multivariate_probability.cpython-310.pyc,,
+sympy/stats/__pycache__/symbolic_probability.cpython-310.pyc,,
+sympy/stats/compound_rv.py,sha256=SO1KXJ0aHGbD5y9QA8o6qOHbio3ua8wyO2Rsh0Hnw48,7965
+sympy/stats/crv.py,sha256=VK7jvYiQH523ar6QvLzV_k67u0ghcCrrWlBgt3cMdaw,20979
+sympy/stats/crv_types.py,sha256=TDANQNWz_fcSq7RzyMzxEKeidlHEmzdhunmxnuGlZNk,120259
+sympy/stats/drv.py,sha256=ewxYnUlCyvaF5ceMpziiz4e6FAgknzP5cC1ZVvQ_YLE,11995
+sympy/stats/drv_types.py,sha256=q7MjAtpLjO2nFxnQOKfw_Ipf2-gYzlavbqrEcUjMQlw,19288
+sympy/stats/error_prop.py,sha256=a-H6GZEidsiP_4-iNw7nSD99AMyN6DNHsSl0IUZGIAs,3315
+sympy/stats/frv.py,sha256=C4FHAVuckxdVnXGlmT957At5xdOLVYvH76KgL44TR38,16876
+sympy/stats/frv_types.py,sha256=MP1byJwusjZKRmzsy0fMBRkzScurG2-q58puaF6TF0U,23224
+sympy/stats/joint_rv.py,sha256=DcixlO2Ml4gnwMmZk2VTegiHVq88DkLdQlOTQ57SQtc,15963
+sympy/stats/joint_rv_types.py,sha256=Yx_TL9Xx862SZo8MofErvVh-fptL9UTzalDUbnW26Lg,30633
+sympy/stats/matrix_distributions.py,sha256=3OricwEMM_NU8b2lJxoiSTml7kvqrNQ6IUIn9Xy_DsY,21953
+sympy/stats/random_matrix.py,sha256=NmzLC5JMDWI2TvH8tY6go8lYyHmqcZ-B7sSIO7z7oAk,1028
+sympy/stats/random_matrix_models.py,sha256=7i5XAUYxt-ekmP5KDMaytUlmCvxglEspoWbswSf82tE,15328
+sympy/stats/rv.py,sha256=r8G52PBmkfrVJtHUWEw1dPiBSrwTYagRdyzAweftjqk,54464
+sympy/stats/rv_interface.py,sha256=8KeUP2YG_1g4OYPrwSdZyq4R0mOO52qqBX-D225WbUg,13939
+sympy/stats/sampling/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/stats/sampling/__pycache__/__init__.cpython-310.pyc,,
+sympy/stats/sampling/__pycache__/sample_numpy.cpython-310.pyc,,
+sympy/stats/sampling/__pycache__/sample_pymc.cpython-310.pyc,,
+sympy/stats/sampling/__pycache__/sample_scipy.cpython-310.pyc,,
+sympy/stats/sampling/sample_numpy.py,sha256=B4ZC7ZBrSD6ICQT468rOy-xrOgQDuecsHa0zJesAeYE,4229
+sympy/stats/sampling/sample_pymc.py,sha256=9g-n04aXSFc6F7FJ5zTYtHHL6W8-26g1nrgtamJc3Hw,2995
+sympy/stats/sampling/sample_scipy.py,sha256=ysqpDy8bp1RMH0g5FFgMmp2SQuXGFkcSH7JDZEpiZ8w,6329
+sympy/stats/sampling/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/stats/sampling/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/stats/sampling/tests/__pycache__/test_sample_continuous_rv.cpython-310.pyc,,
+sympy/stats/sampling/tests/__pycache__/test_sample_discrete_rv.cpython-310.pyc,,
+sympy/stats/sampling/tests/__pycache__/test_sample_finite_rv.cpython-310.pyc,,
+sympy/stats/sampling/tests/test_sample_continuous_rv.py,sha256=Gh8hFN1hFFsthEv9wP2ZdgghQfaEnE8n7HlmyXXhN1E,5708
+sympy/stats/sampling/tests/test_sample_discrete_rv.py,sha256=jd2qnr4ABqpFcJrGcUpnTsN1z1d1prVvwUkG965oFeA,3319
+sympy/stats/sampling/tests/test_sample_finite_rv.py,sha256=dWwrFePw8eX2rBheAXi1AVxr_gqBD63VZKfW81hNoQc,3061
+sympy/stats/stochastic_process.py,sha256=pDz0rbKXTiaNmMmmz70dP3F_KWL_XhoCKFHYBNt1QeU,2312
+sympy/stats/stochastic_process_types.py,sha256=S2y3qCs7AO1EkQltN_OYkB4PsamQqcIjcPu_181wFqY,88608
+sympy/stats/symbolic_multivariate_probability.py,sha256=4wwyTYywD3TQ43Isv5KDtg-7jCyF-SW5xR5JeeqEfFM,10446
+sympy/stats/symbolic_probability.py,sha256=m0-p5hTGU2Ey7uBQrB7LSPgTvS0C8Fr-SA9d2BAX6Mk,23019
+sympy/stats/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/stats/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/stats/tests/__pycache__/test_compound_rv.cpython-310.pyc,,
+sympy/stats/tests/__pycache__/test_continuous_rv.cpython-310.pyc,,
+sympy/stats/tests/__pycache__/test_discrete_rv.cpython-310.pyc,,
+sympy/stats/tests/__pycache__/test_error_prop.cpython-310.pyc,,
+sympy/stats/tests/__pycache__/test_finite_rv.cpython-310.pyc,,
+sympy/stats/tests/__pycache__/test_joint_rv.cpython-310.pyc,,
+sympy/stats/tests/__pycache__/test_matrix_distributions.cpython-310.pyc,,
+sympy/stats/tests/__pycache__/test_mix.cpython-310.pyc,,
+sympy/stats/tests/__pycache__/test_random_matrix.cpython-310.pyc,,
+sympy/stats/tests/__pycache__/test_rv.cpython-310.pyc,,
+sympy/stats/tests/__pycache__/test_stochastic_process.cpython-310.pyc,,
+sympy/stats/tests/__pycache__/test_symbolic_multivariate.cpython-310.pyc,,
+sympy/stats/tests/__pycache__/test_symbolic_probability.cpython-310.pyc,,
+sympy/stats/tests/test_compound_rv.py,sha256=2927chbHTThA34Ki-ji319QT7ajQ1ueC640Mga-18ZA,6263
+sympy/stats/tests/test_continuous_rv.py,sha256=j3SFC2-4a6X2JObL3JU8znQkRXOGxz2a9XPlGPoBku0,55665
+sympy/stats/tests/test_discrete_rv.py,sha256=kr3MjfI02cPvQrQISwmsIDEEh2gpMnzZsjMd5TOhAl0,10676
+sympy/stats/tests/test_error_prop.py,sha256=xKAkw3F5XJ72xiDREI7PkyReWNVW_89CD_mjOY_diDY,1933
+sympy/stats/tests/test_finite_rv.py,sha256=JHYgY4snFF5t9qcnQfKaN5zaGsO7_SuNR7Tq234W4No,20413
+sympy/stats/tests/test_joint_rv.py,sha256=W28rCRYczv5Jax7k-bj7OveT-y-AP4q-kRR0-LNaWX0,18653
+sympy/stats/tests/test_matrix_distributions.py,sha256=9daJUiSGaLq34TeZfB-xPqC8xz6vECGrm0DdBZaQPyY,8857
+sympy/stats/tests/test_mix.py,sha256=Cplnw06Ki96Y_4fx6Bu7lUXjxoIfX7tNJasm9SOz5wQ,3991
+sympy/stats/tests/test_random_matrix.py,sha256=CiD1hV25MGHwTfHGaoaehGD3iJ4lqNYi-ZiwReO6CVk,5842
+sympy/stats/tests/test_rv.py,sha256=Bp7UwffIMO7oc8UnFV11yYGcXUjSa0NhsuOgQaNRMt8,12959
+sympy/stats/tests/test_stochastic_process.py,sha256=ufbFxlJ6El6YH7JDztMlrOjXKzrOvEyLGK30j1_lNjw,39335
+sympy/stats/tests/test_symbolic_multivariate.py,sha256=0qXWQUjBU6N5yiNO09B3QB8RfAiLBSCJ0R5n0Eo2-lQ,5576
+sympy/stats/tests/test_symbolic_probability.py,sha256=k5trScMiwSgl9dzJt30BV-t0KuYcyD-s9HtT2-hVhQ0,9398
+sympy/strategies/__init__.py,sha256=XaTAPqDoi6527juvR8LLN1mv6ZcslDrGloTTBMjJzxA,1402
+sympy/strategies/__pycache__/__init__.cpython-310.pyc,,
+sympy/strategies/__pycache__/core.cpython-310.pyc,,
+sympy/strategies/__pycache__/rl.cpython-310.pyc,,
+sympy/strategies/__pycache__/tools.cpython-310.pyc,,
+sympy/strategies/__pycache__/traverse.cpython-310.pyc,,
+sympy/strategies/__pycache__/tree.cpython-310.pyc,,
+sympy/strategies/__pycache__/util.cpython-310.pyc,,
+sympy/strategies/branch/__init__.py,sha256=xxbMwR2LzLcQWsH9ss8ddE99VHFJTY-cYiR6xhO3tj0,356
+sympy/strategies/branch/__pycache__/__init__.cpython-310.pyc,,
+sympy/strategies/branch/__pycache__/core.cpython-310.pyc,,
+sympy/strategies/branch/__pycache__/tools.cpython-310.pyc,,
+sympy/strategies/branch/__pycache__/traverse.cpython-310.pyc,,
+sympy/strategies/branch/core.py,sha256=QiXSa7uhvmUBTLyUwBQHrYkWlOceKh5p4kVD90VnCKM,2759
+sympy/strategies/branch/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/strategies/branch/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/strategies/branch/tests/__pycache__/test_core.cpython-310.pyc,,
+sympy/strategies/branch/tests/__pycache__/test_tools.cpython-310.pyc,,
+sympy/strategies/branch/tests/__pycache__/test_traverse.cpython-310.pyc,,
+sympy/strategies/branch/tests/test_core.py,sha256=23KQWJxC_2T1arwMAkt9pY1ZtG59avlxTZcVTn81UPI,2246
+sympy/strategies/branch/tests/test_tools.py,sha256=4BDkqVqrTlsivQ0PldQr6PjVZsAikc39tSxGAQA3ir8,942
+sympy/strategies/branch/tests/test_traverse.py,sha256=6rikMnZdamSzww1sSiM-aQwqa4lQrpM-DpOU9XCbiOQ,1322
+sympy/strategies/branch/tools.py,sha256=tvv3IjmQGNYbo-slCbbDf_rylZd537wvLcpdBtT-bbY,357
+sympy/strategies/branch/traverse.py,sha256=7iBViQdNpKu-AHoFED7_C9KBSyYcQBfLGopEJQbNtvk,799
+sympy/strategies/core.py,sha256=nsH6LZgyc_aslv4Na5XvJMEizC6uSzscRlVW91k1pu4,3956
+sympy/strategies/rl.py,sha256=I2puD2khbCmO3e9_ngUnclLgk1c-xBHeUf-bZu5haLM,4403
+sympy/strategies/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/strategies/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/strategies/tests/__pycache__/test_core.cpython-310.pyc,,
+sympy/strategies/tests/__pycache__/test_rl.cpython-310.pyc,,
+sympy/strategies/tests/__pycache__/test_tools.cpython-310.pyc,,
+sympy/strategies/tests/__pycache__/test_traverse.cpython-310.pyc,,
+sympy/strategies/tests/__pycache__/test_tree.cpython-310.pyc,,
+sympy/strategies/tests/test_core.py,sha256=42XHlv1hN1S1QPEf2r9pddZ2EQL6o4FEPQvfo-UmXcw,2152
+sympy/strategies/tests/test_rl.py,sha256=wm0L6pdvddBgRcwhpiSk-nCgyzVGickfnOCkmHWS0j4,1949
+sympy/strategies/tests/test_tools.py,sha256=UdMojFIn3f1b2x2iRGv1Wfnwdso-Kl57GTyjCU_DjzQ,875
+sympy/strategies/tests/test_traverse.py,sha256=jWuZhYEt-F18_rxEMhn6OgGQ1GNs-dM_GFZ2F5nHs2I,2082
+sympy/strategies/tests/test_tree.py,sha256=9NL948rt6i9tYU6CQz9VNxE6l1begQs-MxP2euzE3Sc,2400
+sympy/strategies/tools.py,sha256=ERASzEP2SP-EcJ8p-4XyREYB15q3t81x1cyamJ-M880,1368
+sympy/strategies/traverse.py,sha256=DhPnBJ5Rw_xzhGiBtSciTyV-H2zhlxgjYVjrNH-gLyk,1183
+sympy/strategies/tree.py,sha256=ggnP9l3NIpJsssBMVKr4-yM_m8uCkrkm191ZC6MfZjc,3770
+sympy/strategies/util.py,sha256=2fbR813IY4IYco5mBoGJLu5z88OhXmwuIxgOO9IvZO4,361
+sympy/tensor/__init__.py,sha256=VMNXCRSayigQT6a3cvf5M_M-wdV-KSil_JbAmHcuUQc,870
+sympy/tensor/__pycache__/__init__.cpython-310.pyc,,
+sympy/tensor/__pycache__/functions.cpython-310.pyc,,
+sympy/tensor/__pycache__/index_methods.cpython-310.pyc,,
+sympy/tensor/__pycache__/indexed.cpython-310.pyc,,
+sympy/tensor/__pycache__/tensor.cpython-310.pyc,,
+sympy/tensor/__pycache__/toperators.cpython-310.pyc,,
+sympy/tensor/array/__init__.py,sha256=lTT1EwV5tb3WAvmmS_mIjhCSWSLiB0NNPW4n9_3fu0k,8244
+sympy/tensor/array/__pycache__/__init__.cpython-310.pyc,,
+sympy/tensor/array/__pycache__/array_comprehension.cpython-310.pyc,,
+sympy/tensor/array/__pycache__/array_derivatives.cpython-310.pyc,,
+sympy/tensor/array/__pycache__/arrayop.cpython-310.pyc,,
+sympy/tensor/array/__pycache__/dense_ndim_array.cpython-310.pyc,,
+sympy/tensor/array/__pycache__/mutable_ndim_array.cpython-310.pyc,,
+sympy/tensor/array/__pycache__/ndim_array.cpython-310.pyc,,
+sympy/tensor/array/__pycache__/sparse_ndim_array.cpython-310.pyc,,
+sympy/tensor/array/array_comprehension.py,sha256=01PTIbkAGaq0CDcaI_2KsaMnYm1nxQ8sFAiHHcc__gw,12262
+sympy/tensor/array/array_derivatives.py,sha256=BWQC43h2WieqJgaCqhLV39BXN22Gb6zcy_BXerdVixA,4811
+sympy/tensor/array/arrayop.py,sha256=UYKdKQZgDsXtDopymWS8QM7FZcxR1O0D_cbt-Kjx7yM,18395
+sympy/tensor/array/dense_ndim_array.py,sha256=Ie8qVMJyp2Tsq7aVhmZpPX8X-KTlF9uaxkQfTzCZ9z8,6433
+sympy/tensor/array/expressions/__init__.py,sha256=OUMJjZY7HtWJL0ygqkdWC8LdCqibJZhHCfYeXu-eB4E,7045
+sympy/tensor/array/expressions/__pycache__/__init__.cpython-310.pyc,,
+sympy/tensor/array/expressions/__pycache__/array_expressions.cpython-310.pyc,,
+sympy/tensor/array/expressions/__pycache__/arrayexpr_derivatives.cpython-310.pyc,,
+sympy/tensor/array/expressions/__pycache__/conv_array_to_indexed.cpython-310.pyc,,
+sympy/tensor/array/expressions/__pycache__/conv_array_to_matrix.cpython-310.pyc,,
+sympy/tensor/array/expressions/__pycache__/conv_indexed_to_array.cpython-310.pyc,,
+sympy/tensor/array/expressions/__pycache__/conv_matrix_to_array.cpython-310.pyc,,
+sympy/tensor/array/expressions/__pycache__/from_array_to_indexed.cpython-310.pyc,,
+sympy/tensor/array/expressions/__pycache__/from_array_to_matrix.cpython-310.pyc,,
+sympy/tensor/array/expressions/__pycache__/from_indexed_to_array.cpython-310.pyc,,
+sympy/tensor/array/expressions/__pycache__/from_matrix_to_array.cpython-310.pyc,,
+sympy/tensor/array/expressions/__pycache__/utils.cpython-310.pyc,,
+sympy/tensor/array/expressions/array_expressions.py,sha256=Gc0ADM3i-6sFoQTsgRHs7dRpmdH0XYVj8z9iS80vEoQ,77022
+sympy/tensor/array/expressions/arrayexpr_derivatives.py,sha256=W9-bY2LL83lLSNHXItzqjOgvf-HIDbUXPoVw8uOymcg,6249
+sympy/tensor/array/expressions/conv_array_to_indexed.py,sha256=BIwlQr7RKC8bZN3mR8ICC5TYOC9uasYcV0Zc1VNKmiE,445
+sympy/tensor/array/expressions/conv_array_to_matrix.py,sha256=85YZBTZI4o9dJtKDJXXug_lJVLG8dT_22AT7l7DKoyE,416
+sympy/tensor/array/expressions/conv_indexed_to_array.py,sha256=EyW52TplBxIx25mUDvI_5Tzc8LD6Mnp6XNW9wIw9pH4,254
+sympy/tensor/array/expressions/conv_matrix_to_array.py,sha256=XYyqt0NsQSrgNpEkr8xTGeUhR7ZYeNljVFfVEF1K7vA,250
+sympy/tensor/array/expressions/from_array_to_indexed.py,sha256=3YIcsAzWVWQRJYQS90uPvSl2dM7ZqLV_qt7E9-uYU28,3936
+sympy/tensor/array/expressions/from_array_to_matrix.py,sha256=OHkMM_yOLP6C1aAIZB-lPbz4AYS9i2shhFXGFBi9_Lc,41355
+sympy/tensor/array/expressions/from_indexed_to_array.py,sha256=RUcKemmrwuK5RFRr19YSPVMCOkZfLAWlbbB56u8Wi0g,11187
+sympy/tensor/array/expressions/from_matrix_to_array.py,sha256=yIY1RupF9-FVV3jZLsqWxZ1ckoE1-HkQyM8cQIm4_Gs,3929
+sympy/tensor/array/expressions/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/tensor/array/expressions/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/tensor/array/expressions/tests/__pycache__/test_array_expressions.cpython-310.pyc,,
+sympy/tensor/array/expressions/tests/__pycache__/test_arrayexpr_derivatives.cpython-310.pyc,,
+sympy/tensor/array/expressions/tests/__pycache__/test_as_explicit.cpython-310.pyc,,
+sympy/tensor/array/expressions/tests/__pycache__/test_convert_array_to_indexed.cpython-310.pyc,,
+sympy/tensor/array/expressions/tests/__pycache__/test_convert_array_to_matrix.cpython-310.pyc,,
+sympy/tensor/array/expressions/tests/__pycache__/test_convert_indexed_to_array.cpython-310.pyc,,
+sympy/tensor/array/expressions/tests/__pycache__/test_convert_matrix_to_array.cpython-310.pyc,,
+sympy/tensor/array/expressions/tests/__pycache__/test_deprecated_conv_modules.cpython-310.pyc,,
+sympy/tensor/array/expressions/tests/test_array_expressions.py,sha256=QUAdxQ9TvBpDEAZoJpLSWwbqjmuflPe3xBRP30lFZr0,31262
+sympy/tensor/array/expressions/tests/test_arrayexpr_derivatives.py,sha256=lpC4ly6MJLDRBcVt3GcP3H6ke9bI-o3VULw0xyF5QbY,2470
+sympy/tensor/array/expressions/tests/test_as_explicit.py,sha256=nOjFKXCqYNu2O7Szc1TD1x1bsUchPRAG3nGlNGEd1Yg,2568
+sympy/tensor/array/expressions/tests/test_convert_array_to_indexed.py,sha256=6yNxGXH6BX5607FTjMkwR2t9wNVlEhV8JMSh4UIWux8,2500
+sympy/tensor/array/expressions/tests/test_convert_array_to_matrix.py,sha256=2vkSep9CPKYrQQS0u8Ayn_sc7yek1zwzjjCWK5cfYe8,29311
+sympy/tensor/array/expressions/tests/test_convert_indexed_to_array.py,sha256=RVEG_qUsXiBH9gHtWp2-9pMC4J2aLc4iUdzBFM0QyTw,8615
+sympy/tensor/array/expressions/tests/test_convert_matrix_to_array.py,sha256=G2g5E0l-FABwYyQowbKKvLcEI8NViJXaYLW3eUEcvjw,4595
+sympy/tensor/array/expressions/tests/test_deprecated_conv_modules.py,sha256=DG8IoUtxCy2acWjUHUUKu4bRsTxXbeFLFjKMLA2GdLY,1216
+sympy/tensor/array/expressions/utils.py,sha256=Rn58boHHUEoBZFtinDpruLWFBkNBwgkVQ4c9m7Nym1o,3939
+sympy/tensor/array/mutable_ndim_array.py,sha256=M0PTt8IOIcVXqQPWe2N50sm4Eq2bodRXV4Vkd08crXk,277
+sympy/tensor/array/ndim_array.py,sha256=_UYVi2vd1zI0asXN7B53e0mp2plgVT5xvB71A_L63Ao,19060
+sympy/tensor/array/sparse_ndim_array.py,sha256=4nD_Hg-JdC_1mYQTohmKFfL5M1Ugdq0fpnDUILkTtq8,6387
+sympy/tensor/array/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/tensor/array/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/tensor/array/tests/__pycache__/test_array_comprehension.cpython-310.pyc,,
+sympy/tensor/array/tests/__pycache__/test_array_derivatives.cpython-310.pyc,,
+sympy/tensor/array/tests/__pycache__/test_arrayop.cpython-310.pyc,,
+sympy/tensor/array/tests/__pycache__/test_immutable_ndim_array.cpython-310.pyc,,
+sympy/tensor/array/tests/__pycache__/test_mutable_ndim_array.cpython-310.pyc,,
+sympy/tensor/array/tests/__pycache__/test_ndim_array.cpython-310.pyc,,
+sympy/tensor/array/tests/__pycache__/test_ndim_array_conversions.cpython-310.pyc,,
+sympy/tensor/array/tests/test_array_comprehension.py,sha256=32n8ZKV4_5DeJ0F7fM_Xo0i0mx6m9w3uWUI2a6OXhzY,4750
+sympy/tensor/array/tests/test_array_derivatives.py,sha256=3O2nD4_d1TFP75qcGJ8XD4DwfPblFzKhY6fAgNQ9KJ0,1609
+sympy/tensor/array/tests/test_arrayop.py,sha256=WahGcUnArsAo9eaMqGT7_AjKons0WgFzLOWTtNvnSEI,25844
+sympy/tensor/array/tests/test_immutable_ndim_array.py,sha256=9ji_14szn-qoL6DQ5muzIFNaXefT7n55PFigXoFwk50,15823
+sympy/tensor/array/tests/test_mutable_ndim_array.py,sha256=rFFa0o0AJYgPNnpqijl91Vb9EW2kgHGQc6cu9f1fIvY,13070
+sympy/tensor/array/tests/test_ndim_array.py,sha256=KH-9LAME3ldVIu5n7Vd_Xr36dN4frCdiF9qZdBWETu0,2232
+sympy/tensor/array/tests/test_ndim_array_conversions.py,sha256=CUGDCbCcslACy3Ngq-zoig9JnO4yHTw3IPcKy0FnRpw,648
+sympy/tensor/functions.py,sha256=3jkzxjMvHHsWchz-0wvuOSFvkNqnoG5knknPCEsZ1bk,4166
+sympy/tensor/index_methods.py,sha256=dcX9kNKLHi_XXkFHBPS-fcM-PaeYKkX80jmzxC0siiQ,15434
+sympy/tensor/indexed.py,sha256=dLic-2CMpPXItLsJCjIUrRDEio-mH2Dcu3H0NgRo3Do,24660
+sympy/tensor/tensor.py,sha256=MEUQJM7NA40rzlZTV1D5PBR_SdIf7K3bVT2ixzqkYKw,165096
+sympy/tensor/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/tensor/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/tensor/tests/__pycache__/test_functions.cpython-310.pyc,,
+sympy/tensor/tests/__pycache__/test_index_methods.cpython-310.pyc,,
+sympy/tensor/tests/__pycache__/test_indexed.cpython-310.pyc,,
+sympy/tensor/tests/__pycache__/test_printing.cpython-310.pyc,,
+sympy/tensor/tests/__pycache__/test_tensor.cpython-310.pyc,,
+sympy/tensor/tests/__pycache__/test_tensor_element.cpython-310.pyc,,
+sympy/tensor/tests/__pycache__/test_tensor_operators.cpython-310.pyc,,
+sympy/tensor/tests/test_functions.py,sha256=rBBHjJIUA2oR83UgEJ_GIASDWfTZXDzOllmcO90XYDU,1552
+sympy/tensor/tests/test_index_methods.py,sha256=Pu951z4yYYMOXBKcNteH63hTAxmNX8702nSQH_pciFE,7112
+sympy/tensor/tests/test_indexed.py,sha256=pCvqmScU0oQxx44qm9T3MkKIXKgVFRDkSHLDhSNqOIY,16157
+sympy/tensor/tests/test_printing.py,sha256=sUx_rChNTWFKPNwVl296QXO-d4-yemDJnkEHFislsmc,424
+sympy/tensor/tests/test_tensor.py,sha256=JybH2AAbEGNob44I6vl7uiiy_VpmR4O4gKCZOfwDPWE,75044
+sympy/tensor/tests/test_tensor_element.py,sha256=1dF96FtqUGaJzethw23vJIj3H5KdxsU1Xyd4DU54EB4,908
+sympy/tensor/tests/test_tensor_operators.py,sha256=sOwu-U28098Lg0iV_9RfYxvJ8wAd5Rk6_vAivWdkc9Q,17945
+sympy/tensor/toperators.py,sha256=fniTUpdYz0OvtNnFgrHINedX86FxVcxfKj9l_l1p9Rw,8840
+sympy/testing/__init__.py,sha256=YhdM87Kfsci8340HmKrXVmA4y0z_VeUN5QQbwAOvEbg,139
+sympy/testing/__pycache__/__init__.cpython-310.pyc,,
+sympy/testing/__pycache__/matrices.cpython-310.pyc,,
+sympy/testing/__pycache__/pytest.cpython-310.pyc,,
+sympy/testing/__pycache__/quality_unicode.cpython-310.pyc,,
+sympy/testing/__pycache__/randtest.cpython-310.pyc,,
+sympy/testing/__pycache__/runtests.cpython-310.pyc,,
+sympy/testing/__pycache__/tmpfiles.cpython-310.pyc,,
+sympy/testing/matrices.py,sha256=VWBPdjIUYNHE7fdbYcmQwQTYcIWpOP9tFn9A0rGCBmE,216
+sympy/testing/pytest.py,sha256=VsbyFXAwDHWc69AxJZBml7U_Mun6kS5NutziSH6l-RE,13142
+sympy/testing/quality_unicode.py,sha256=aJma-KtrKgusUL1jz5IADz7q6vc70rsfbT9NtxJDeV4,3318
+sympy/testing/randtest.py,sha256=IKDFAm8b72Z1OkT7vpgnZjaW5LsSU_wf6g35sCkq9I0,562
+sympy/testing/runtests.py,sha256=QbirfrvKseYmrM2kLjHHhNGNgO6DsHJS1ncuH5PnPT4,88921
+sympy/testing/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/testing/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/testing/tests/__pycache__/diagnose_imports.cpython-310.pyc,,
+sympy/testing/tests/__pycache__/test_code_quality.cpython-310.pyc,,
+sympy/testing/tests/__pycache__/test_deprecated.cpython-310.pyc,,
+sympy/testing/tests/__pycache__/test_module_imports.cpython-310.pyc,,
+sympy/testing/tests/__pycache__/test_pytest.cpython-310.pyc,,
+sympy/testing/tests/diagnose_imports.py,sha256=ZtSLMYNT1-RUvPlCUpYzj97aE3NafvGgp0UzRXOPd0Q,9694
+sympy/testing/tests/test_code_quality.py,sha256=JTVznHG1HKBmy3Or4_gFjBlAi0L1BJ2wjgZLUu5zBa0,19237
+sympy/testing/tests/test_deprecated.py,sha256=wQZHs4wDNuK4flaKKLsJW6XRMtrVjMv_5rUP3WspgPA,183
+sympy/testing/tests/test_module_imports.py,sha256=5w6F6JW6K7lgpbB4X9Tj0Vw8AcNVlfaSuvbwKXJKD6c,1459
+sympy/testing/tests/test_pytest.py,sha256=iKO10Tvua1Xem6a22IWH4SDrpFfr-bM-rXx039Ua7YA,6778
+sympy/testing/tmpfiles.py,sha256=bF8ktKC9lDhS65gahB9hOewsZ378UkhLgq3QHiqWYXU,1042
+sympy/this.py,sha256=XfOkN5EIM2RuDxSm_q6k_R_WtkIoSy6PXWKp3aAXvoc,550
+sympy/unify/__init__.py,sha256=Upa9h7SSr9W1PXo0WkNESsGsMZ85rcWkeruBtkAi3Fg,293
+sympy/unify/__pycache__/__init__.cpython-310.pyc,,
+sympy/unify/__pycache__/core.cpython-310.pyc,,
+sympy/unify/__pycache__/rewrite.cpython-310.pyc,,
+sympy/unify/__pycache__/usympy.cpython-310.pyc,,
+sympy/unify/core.py,sha256=-BCNPPMdfZuhhIWqyn9pYJoO8yFPGDX78Hn2551ABuE,7037
+sympy/unify/rewrite.py,sha256=Emr8Uoum3gxKpMDqFHJIjx3xChArUIN6XIy6NPfCS8I,1798
+sympy/unify/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/unify/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/unify/tests/__pycache__/test_rewrite.cpython-310.pyc,,
+sympy/unify/tests/__pycache__/test_sympy.cpython-310.pyc,,
+sympy/unify/tests/__pycache__/test_unify.cpython-310.pyc,,
+sympy/unify/tests/test_rewrite.py,sha256=BgA8zmdz9Nw-Xbu4-w3UABeWypqLvmy9VzL744EmYtE,2002
+sympy/unify/tests/test_sympy.py,sha256=UCItZJNAx9dG5F7O27pyXUF1-e6aOwkZ-cVdB6SZFZc,5922
+sympy/unify/tests/test_unify.py,sha256=4TlgchV6NWuBekJx9RGlMjx3-UwonzgIYXDytb7sBRU,3029
+sympy/unify/usympy.py,sha256=6Kxx96FXSdqXimLseVK_FkYwy2vqWhNnxMVPMRShvy4,3964
+sympy/utilities/__init__.py,sha256=nbQhzII8dw5zd4hQJ2SUyriK5dOrqf-bbjy10XKQXPw,840
+sympy/utilities/__pycache__/__init__.cpython-310.pyc,,
+sympy/utilities/__pycache__/autowrap.cpython-310.pyc,,
+sympy/utilities/__pycache__/codegen.cpython-310.pyc,,
+sympy/utilities/__pycache__/decorator.cpython-310.pyc,,
+sympy/utilities/__pycache__/enumerative.cpython-310.pyc,,
+sympy/utilities/__pycache__/exceptions.cpython-310.pyc,,
+sympy/utilities/__pycache__/iterables.cpython-310.pyc,,
+sympy/utilities/__pycache__/lambdify.cpython-310.pyc,,
+sympy/utilities/__pycache__/magic.cpython-310.pyc,,
+sympy/utilities/__pycache__/matchpy_connector.cpython-310.pyc,,
+sympy/utilities/__pycache__/memoization.cpython-310.pyc,,
+sympy/utilities/__pycache__/misc.cpython-310.pyc,,
+sympy/utilities/__pycache__/pkgdata.cpython-310.pyc,,
+sympy/utilities/__pycache__/pytest.cpython-310.pyc,,
+sympy/utilities/__pycache__/randtest.cpython-310.pyc,,
+sympy/utilities/__pycache__/runtests.cpython-310.pyc,,
+sympy/utilities/__pycache__/source.cpython-310.pyc,,
+sympy/utilities/__pycache__/timeutils.cpython-310.pyc,,
+sympy/utilities/__pycache__/tmpfiles.cpython-310.pyc,,
+sympy/utilities/_compilation/__init__.py,sha256=uYUDPbwrMTbGEMVuago32EN_ix8fsi5M0SvcLOtwMOk,751
+sympy/utilities/_compilation/__pycache__/__init__.cpython-310.pyc,,
+sympy/utilities/_compilation/__pycache__/availability.cpython-310.pyc,,
+sympy/utilities/_compilation/__pycache__/compilation.cpython-310.pyc,,
+sympy/utilities/_compilation/__pycache__/runners.cpython-310.pyc,,
+sympy/utilities/_compilation/__pycache__/util.cpython-310.pyc,,
+sympy/utilities/_compilation/availability.py,sha256=ybxp3mboH5772JHTWKBN1D-cs6QxATQiaL4zJVV4RE0,2884
+sympy/utilities/_compilation/compilation.py,sha256=t6UrVUHDrk7im_mYXx8s7ZkyUEkllhx38u7AAk5Z1P8,21675
+sympy/utilities/_compilation/runners.py,sha256=mb8_rvyx68qekMx8yZZyBH5G7bX94QG6W3lJ17rBmGU,8974
+sympy/utilities/_compilation/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/utilities/_compilation/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/utilities/_compilation/tests/__pycache__/test_compilation.cpython-310.pyc,,
+sympy/utilities/_compilation/tests/test_compilation.py,sha256=MORW8RsdmQTgFpYR7PLRQ35gxFYup3ejQu0byiIxmig,1735
+sympy/utilities/_compilation/util.py,sha256=3ZVUy732fHXFm6oK2EE13M-tztpG5G5vy4FcJ-V3SwY,7928
+sympy/utilities/autowrap.py,sha256=MNoV81PCxJvlk9_aG87jUpWkGhn03WCCk0SPG54nRoc,41123
+sympy/utilities/codegen.py,sha256=WbFTgzQPlCf-0O-gk8X-r9pxMnz4j8roObFsCThVl4Q,81495
+sympy/utilities/decorator.py,sha256=RTwHzeF1N9WMe6apBkYM2vaJcDoP683Ze548S3T_NN8,10925
+sympy/utilities/enumerative.py,sha256=pYpty2YDgvF5LBrmiAVyiqpiqhfFeYTfQfS7sTQMNks,43621
+sympy/utilities/exceptions.py,sha256=g9fgLCjrkuYk-ImX_V42ve2XIayK01mWmlXKOIVmW_8,10571
+sympy/utilities/iterables.py,sha256=VpGyggsMbqd2CL2TRSX1Iozp1G4VMIPNS7FMME-hPAw,90920
+sympy/utilities/lambdify.py,sha256=2DLVtqwhws_PAPVzxS5nh7YVfICAdGKxYGVNQ9p9mrg,55149
+sympy/utilities/magic.py,sha256=ofrwi1-xwMWb4VCQOEIwe4J1QAwxOscigDq26uSn3iY,400
+sympy/utilities/matchpy_connector.py,sha256=045re8zEDdr70Ey39OWRq0xnM6OsKBISiu9SB4nJ90g,10068
+sympy/utilities/mathml/__init__.py,sha256=3AG_eTJ4I7071riTqesIi1A3bykCeIUES2CTEYxfrPI,2299
+sympy/utilities/mathml/__pycache__/__init__.cpython-310.pyc,,
+sympy/utilities/mathml/data/mmlctop.xsl,sha256=fi3CTNyg-mSscOGYBXLJv8veE_ItR_YTFMJ4jmjp6aE,114444
+sympy/utilities/mathml/data/mmltex.xsl,sha256=haX7emZOfD6_nbn5BjK93F-C85mSS8KogAbIBsW1aBA,137304
+sympy/utilities/mathml/data/simple_mmlctop.xsl,sha256=lhL-HXG_FfsJZhjeHbD7Ou8RnUaStI0-5VFcggsogjA,114432
+sympy/utilities/memoization.py,sha256=ZGOUUmwJCNRhHVZjTF4j65WjQ6VUoCeC1E8DkjryU00,1429
+sympy/utilities/misc.py,sha256=7N6LNt5N9eR2AK-_jmdOXXKhyhbW4kLRY8O5wYw3VgI,16007
+sympy/utilities/pkgdata.py,sha256=jt-hKL0xhxnDJDI9C2IXtH_QgYYtfq9fX9kJ3E7iang,1788
+sympy/utilities/pytest.py,sha256=F9TGNtoNvQUdlt5HYU084ITNmc7__7MBCSLLulBlM_Y,435
+sympy/utilities/randtest.py,sha256=aYUX_mgmQyfRdMjEOWaHM506CZ6WUK0eFuew0vFTwRs,430
+sympy/utilities/runtests.py,sha256=hYnDNiFNnDjQcXG04_3lzPFbUz6i0AUZ2rZ_RECVoDo,446
+sympy/utilities/source.py,sha256=ShIXRNtplSEfZNi5VDYD3yi6305eRz4TmchEOEvcicw,1127
+sympy/utilities/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/utilities/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/utilities/tests/__pycache__/test_autowrap.cpython-310.pyc,,
+sympy/utilities/tests/__pycache__/test_codegen.cpython-310.pyc,,
+sympy/utilities/tests/__pycache__/test_codegen_julia.cpython-310.pyc,,
+sympy/utilities/tests/__pycache__/test_codegen_octave.cpython-310.pyc,,
+sympy/utilities/tests/__pycache__/test_codegen_rust.cpython-310.pyc,,
+sympy/utilities/tests/__pycache__/test_decorator.cpython-310.pyc,,
+sympy/utilities/tests/__pycache__/test_deprecated.cpython-310.pyc,,
+sympy/utilities/tests/__pycache__/test_enumerative.cpython-310.pyc,,
+sympy/utilities/tests/__pycache__/test_exceptions.cpython-310.pyc,,
+sympy/utilities/tests/__pycache__/test_iterables.cpython-310.pyc,,
+sympy/utilities/tests/__pycache__/test_lambdify.cpython-310.pyc,,
+sympy/utilities/tests/__pycache__/test_matchpy_connector.cpython-310.pyc,,
+sympy/utilities/tests/__pycache__/test_mathml.cpython-310.pyc,,
+sympy/utilities/tests/__pycache__/test_misc.cpython-310.pyc,,
+sympy/utilities/tests/__pycache__/test_pickling.cpython-310.pyc,,
+sympy/utilities/tests/__pycache__/test_source.cpython-310.pyc,,
+sympy/utilities/tests/__pycache__/test_timeutils.cpython-310.pyc,,
+sympy/utilities/tests/__pycache__/test_wester.cpython-310.pyc,,
+sympy/utilities/tests/__pycache__/test_xxe.cpython-310.pyc,,
+sympy/utilities/tests/test_autowrap.py,sha256=NW20YQiJgEofZ0xr4Ggocix4fAsBmnyankmbxPf54Fk,14603
+sympy/utilities/tests/test_codegen.py,sha256=PLuSicBhnspClTiSeKCJgKd1NyU0qBkDRvQMrwm_gLc,55496
+sympy/utilities/tests/test_codegen_julia.py,sha256=kb3soJ1L7lTfZkYJKytfY_aKoHt6fkNjWhYblebzThw,18543
+sympy/utilities/tests/test_codegen_octave.py,sha256=_yd9uGKHZzwUFpderSa9E2cYqt8JMcEtBuN6U7_7bJ0,17833
+sympy/utilities/tests/test_codegen_rust.py,sha256=wJh6YmDfq8haGjJDniDaVUsDIKEj3rT_OB4r6uLI77Y,12323
+sympy/utilities/tests/test_decorator.py,sha256=VYUvzUrVI7I7MK0YZxLLEmEu4pV5dqaB1CLEJ8Ocav4,3705
+sympy/utilities/tests/test_deprecated.py,sha256=LRrZ2UxuXnK6Jwxl8vT0EdLT-q-7jLkTC69U9JjuYYU,489
+sympy/utilities/tests/test_enumerative.py,sha256=aUw6nbSzBp8h_pk35YZ_uzRncRoLYStblodeiDRFk6I,6089
+sympy/utilities/tests/test_exceptions.py,sha256=OKRa2yuHMtnVcnisu-xcaedi2RKsH9QrgU9exgoOK30,716
+sympy/utilities/tests/test_iterables.py,sha256=fPlgquV8GaZEIAjCwxE5DnXjGJUQlt6PGR7yj-gBLJ8,34905
+sympy/utilities/tests/test_lambdify.py,sha256=COnloXr7-MetPh-YonB1h6sEy5UkzBYWTdNuEGuduew,59594
+sympy/utilities/tests/test_matchpy_connector.py,sha256=dUfDfIdofKYufww29jV8mVQmglU1AnG2uEyREpNY7V0,4506
+sympy/utilities/tests/test_mathml.py,sha256=-6z1MRYEH4eYQi2_wt8zmdjwtt5Cn483zqsvD-o_r70,836
+sympy/utilities/tests/test_misc.py,sha256=TxjUNCosyCR5w1iJ6o77yKB4WBLyirVhOaALGYdkN9k,4726
+sympy/utilities/tests/test_pickling.py,sha256=JxsZSIVrXrscDwZ0Bvx4DkyLSEIyXUzoO96qrOx-5tU,23301
+sympy/utilities/tests/test_source.py,sha256=ObjrJxZFVhLgXjVmFHUy7bti9UPPgOh5Cptw8lHW9mM,289
+sympy/utilities/tests/test_timeutils.py,sha256=sCRC6BCSho1e9n4clke3QXHx4a3qYLru-bddS_sEmFA,337
+sympy/utilities/tests/test_wester.py,sha256=6_o3Dm4fT3R-TZEinuel2VFdZth0BOgPTPFYSEIcDX0,94546
+sympy/utilities/tests/test_xxe.py,sha256=xk1j0Dd96wsGYKRNDzXTW0hTQejGCfiZcEhYcYiqojg,66
+sympy/utilities/timeutils.py,sha256=DUtQYONkJnWjU2FvAbvxuRMkGmXpLMeaiOcH7R9Os9o,1968
+sympy/utilities/tmpfiles.py,sha256=yOjbs90sEtVc00YZyveyblT8zkwj4o70_RmuEKdKq_s,445
+sympy/vector/__init__.py,sha256=8a4cSQ1sJ5uirdMoHnV7SWXU3zJPKt_0ojona8C-p1Y,1909
+sympy/vector/__pycache__/__init__.cpython-310.pyc,,
+sympy/vector/__pycache__/basisdependent.cpython-310.pyc,,
+sympy/vector/__pycache__/coordsysrect.cpython-310.pyc,,
+sympy/vector/__pycache__/deloperator.cpython-310.pyc,,
+sympy/vector/__pycache__/dyadic.cpython-310.pyc,,
+sympy/vector/__pycache__/functions.cpython-310.pyc,,
+sympy/vector/__pycache__/implicitregion.cpython-310.pyc,,
+sympy/vector/__pycache__/integrals.cpython-310.pyc,,
+sympy/vector/__pycache__/operators.cpython-310.pyc,,
+sympy/vector/__pycache__/orienters.cpython-310.pyc,,
+sympy/vector/__pycache__/parametricregion.cpython-310.pyc,,
+sympy/vector/__pycache__/point.cpython-310.pyc,,
+sympy/vector/__pycache__/scalar.cpython-310.pyc,,
+sympy/vector/__pycache__/vector.cpython-310.pyc,,
+sympy/vector/basisdependent.py,sha256=BTTlFGRnZIvpvK_WEK4Tk_WZXEXYGosx9fWTuMO4M0o,11553
+sympy/vector/coordsysrect.py,sha256=1JV4GBgG99JKIWo2snYMMgIJCdob3XcwYqq9s8d6fA8,36859
+sympy/vector/deloperator.py,sha256=4BJNjmI342HkVRmeQkqauqvibKsf2HOuzknQTfQMkpg,3191
+sympy/vector/dyadic.py,sha256=IOyrgONyGDHPtG0RINcMgetAVMSOmYI5a99s-OwXBTA,8571
+sympy/vector/functions.py,sha256=auLfE1Su2kLtkRvlB_7Wol8O0_sqei1hojun3pkDRYI,15552
+sympy/vector/implicitregion.py,sha256=WrCIFuh_KZ6iEA7FZzYanZoUQuJ4gNBP3NeNKMxC0l0,16155
+sympy/vector/integrals.py,sha256=x8DrvKXPznE05JgnZ7I3IWLWrvFl9SEghGaFmHrBaE4,6837
+sympy/vector/operators.py,sha256=mI6d0eIxVcoDeH5PrhtPTzhxX_RXByX_4hjXeBTeq88,9521
+sympy/vector/orienters.py,sha256=EtWNWfOvAuy_wipam9SA7_muKSrsP-43UPRCCz56sb0,11798
+sympy/vector/parametricregion.py,sha256=3YyY0fkFNelR6ldi8XYRWpkFEvqY5-rFg_vT3NFute0,5932
+sympy/vector/point.py,sha256=ozYlInnlsmIpKBEr5Ui331T1lnAB5zS2_pHYh9k_eMs,4516
+sympy/vector/scalar.py,sha256=Z2f2wiK7BS73ctYTyNvn3gB74mXZuENpScLi_M1SpYg,1962
+sympy/vector/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
+sympy/vector/tests/__pycache__/__init__.cpython-310.pyc,,
+sympy/vector/tests/__pycache__/test_coordsysrect.cpython-310.pyc,,
+sympy/vector/tests/__pycache__/test_dyadic.cpython-310.pyc,,
+sympy/vector/tests/__pycache__/test_field_functions.cpython-310.pyc,,
+sympy/vector/tests/__pycache__/test_functions.cpython-310.pyc,,
+sympy/vector/tests/__pycache__/test_implicitregion.cpython-310.pyc,,
+sympy/vector/tests/__pycache__/test_integrals.cpython-310.pyc,,
+sympy/vector/tests/__pycache__/test_operators.cpython-310.pyc,,
+sympy/vector/tests/__pycache__/test_parametricregion.cpython-310.pyc,,
+sympy/vector/tests/__pycache__/test_printing.cpython-310.pyc,,
+sympy/vector/tests/__pycache__/test_vector.cpython-310.pyc,,
+sympy/vector/tests/test_coordsysrect.py,sha256=q9n9OIG_CpD4KQN20dzwRZIXoMv7VSgp8fHmVnkZfr0,19595
+sympy/vector/tests/test_dyadic.py,sha256=f1R-BL_63VBbc0XgEX_LYzV_3OupYd4hp5RzRk6dAbI,4949
+sympy/vector/tests/test_field_functions.py,sha256=v9l8Ex8K2MsPGxqAPhpEgu6WAo6wS6qvdWLKQMxgE4A,14094
+sympy/vector/tests/test_functions.py,sha256=Bs2sekdDJyw_wrUpG7vZQGH0y0S4C4AbxGSpeU_8C2s,8050
+sympy/vector/tests/test_implicitregion.py,sha256=wVilD5H-MhHiW58QT6P5U7uT79JdKHm9D7JgZoi6BE4,4028
+sympy/vector/tests/test_integrals.py,sha256=BVRhrr_JeAsCKv_E-kA2jaXB8ZXTfj7nkNgT5o-XOJc,5093
+sympy/vector/tests/test_operators.py,sha256=KexUWvc_Nwp2HWrEbhxiO7MeaFxYlckrp__Tkwg-wmU,1613
+sympy/vector/tests/test_parametricregion.py,sha256=OfKapF9A_g9X6JxgYc0UfxIhwXzRERzaj-EijQCJONw,4009
+sympy/vector/tests/test_printing.py,sha256=3BeW55iQ4qXdfDTFqptE2ufJPJIBOzdfIYVx84n_EwA,7708
+sympy/vector/tests/test_vector.py,sha256=Mo88Jgmy3CuSQz25WSH34EnZSs_JBY7E-OKPO2SjhPc,7861
+sympy/vector/vector.py,sha256=pikmeLwkdW_6ed-Xo_U0_a2Om5TGSlfE4PijkRsJllc,17911
diff --git a/llmeval-env/lib/python3.10/site-packages/sympy-1.12.dist-info/WHEEL b/llmeval-env/lib/python3.10/site-packages/sympy-1.12.dist-info/WHEEL
new file mode 100644
index 0000000000000000000000000000000000000000..1f37c02f2eb2e26b306202feaccb31e522b8b169
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/sympy-1.12.dist-info/WHEEL
@@ -0,0 +1,5 @@
+Wheel-Version: 1.0
+Generator: bdist_wheel (0.40.0)
+Root-Is-Purelib: true
+Tag: py3-none-any
+