applied-ai-018 commited on
Commit
1423071
·
verified ·
1 Parent(s): dc9dbdd

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/torch/_lazy/closure.py +134 -0
  2. env-llmeval/lib/python3.10/site-packages/torch/_lazy/device_context.py +25 -0
  3. env-llmeval/lib/python3.10/site-packages/torch/_lazy/ir_cache.py +13 -0
  4. env-llmeval/lib/python3.10/site-packages/torch/_lazy/metrics.py +21 -0
  5. env-llmeval/lib/python3.10/site-packages/torch/_lazy/ts_backend.py +6 -0
  6. env-llmeval/lib/python3.10/site-packages/torch/cpu/__pycache__/__init__.cpython-310.pyc +0 -0
  7. env-llmeval/lib/python3.10/site-packages/torch/cpu/amp/__init__.py +1 -0
  8. env-llmeval/lib/python3.10/site-packages/torch/cpu/amp/__pycache__/__init__.cpython-310.pyc +0 -0
  9. env-llmeval/lib/python3.10/site-packages/torch/cpu/amp/__pycache__/autocast_mode.cpython-310.pyc +0 -0
  10. env-llmeval/lib/python3.10/site-packages/torch/cpu/amp/autocast_mode.py +43 -0
  11. env-llmeval/lib/python3.10/site-packages/torch/optim/__init__.py +39 -0
  12. env-llmeval/lib/python3.10/site-packages/torch/optim/__init__.pyi +15 -0
  13. env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/__init__.cpython-310.pyc +0 -0
  14. env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/_functional.cpython-310.pyc +0 -0
  15. env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/adadelta.cpython-310.pyc +0 -0
  16. env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/adagrad.cpython-310.pyc +0 -0
  17. env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/adam.cpython-310.pyc +0 -0
  18. env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/adamax.cpython-310.pyc +0 -0
  19. env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/adamw.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/asgd.cpython-310.pyc +0 -0
  21. env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/lbfgs.cpython-310.pyc +0 -0
  22. env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/lr_scheduler.cpython-310.pyc +0 -0
  23. env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/nadam.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/optimizer.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/radam.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/rmsprop.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/rprop.cpython-310.pyc +0 -0
  28. env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/sgd.cpython-310.pyc +0 -0
  29. env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/sparse_adam.cpython-310.pyc +0 -0
  30. env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/swa_utils.cpython-310.pyc +0 -0
  31. env-llmeval/lib/python3.10/site-packages/torch/optim/_functional.py +79 -0
  32. env-llmeval/lib/python3.10/site-packages/torch/optim/_multi_tensor/__init__.py +28 -0
  33. env-llmeval/lib/python3.10/site-packages/torch/optim/_multi_tensor/__pycache__/__init__.cpython-310.pyc +0 -0
  34. env-llmeval/lib/python3.10/site-packages/torch/optim/adadelta.pyi +11 -0
  35. env-llmeval/lib/python3.10/site-packages/torch/optim/adagrad.py +383 -0
  36. env-llmeval/lib/python3.10/site-packages/torch/optim/adagrad.pyi +12 -0
  37. env-llmeval/lib/python3.10/site-packages/torch/optim/adam.py +658 -0
  38. env-llmeval/lib/python3.10/site-packages/torch/optim/adam.pyi +22 -0
  39. env-llmeval/lib/python3.10/site-packages/torch/optim/adamw.pyi +22 -0
  40. env-llmeval/lib/python3.10/site-packages/torch/optim/lbfgs.py +478 -0
  41. env-llmeval/lib/python3.10/site-packages/torch/optim/nadam.py +473 -0
  42. env-llmeval/lib/python3.10/site-packages/torch/optim/nadam.pyi +15 -0
  43. env-llmeval/lib/python3.10/site-packages/torch/optim/radam.pyi +14 -0
  44. env-llmeval/lib/python3.10/site-packages/torch/optim/rmsprop.pyi +13 -0
  45. env-llmeval/lib/python3.10/site-packages/torch/optim/rprop.py +335 -0
  46. env-llmeval/lib/python3.10/site-packages/torch/optim/rprop.pyi +12 -0
  47. env-llmeval/lib/python3.10/site-packages/torch/optim/sparse_adam.py +154 -0
  48. env-llmeval/lib/python3.10/site-packages/torch/optim/swa_utils.pyi +32 -0
  49. env-llmeval/lib/python3.10/site-packages/torch/package/__init__.py +12 -0
  50. env-llmeval/lib/python3.10/site-packages/torch/package/__pycache__/__init__.cpython-310.pyc +0 -0
env-llmeval/lib/python3.10/site-packages/torch/_lazy/closure.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import threading
3
+ from queue import Empty as EmptyQueue, Queue
4
+
5
+ from torch._lazy.device_context import get_device_context
6
+
7
+
8
+ class ClosureHandler:
9
+ def __init__(self):
10
+ pass
11
+
12
+ def run(self, closure):
13
+ """Run closure function
14
+
15
+ Args:
16
+ closure: callable function to run
17
+ """
18
+ closure()
19
+
20
+ def __call__(self, closures):
21
+ for closure in closures:
22
+ self.run(closure)
23
+
24
+
25
+ class AsyncClosureHandler(ClosureHandler):
26
+ """Handler for Asynchronous Step Closures
27
+ Args:
28
+ max_queue_size: The maximum length of the closure queue after which
29
+ the training loop will block until closures are evaluated.
30
+ By default, a reasonable limit of a maximum of 100 on the queue.
31
+ This value can be set using the `XLA_MAX_ASYNC_QUEUE` environment
32
+ variable.
33
+ """
34
+
35
+ def __init__(self, max_queue_size=100):
36
+ super().__init__()
37
+ self._closure_queue: Queue = Queue(
38
+ int(os.environ.get("LTC_MAX_ASYNC_QUEUE", max_queue_size))
39
+ )
40
+ self._closure_exception: Queue = Queue()
41
+ self._closure_lock = threading.Lock()
42
+ self._closure_event_loop_finished = threading.Event()
43
+ self._closure_event_loop = None
44
+
45
+ def start_event_loop(self):
46
+ """Start closure event loop if not started"""
47
+ if self._closure_event_loop is None:
48
+
49
+ def event_loop():
50
+ # Run loop until closure event is set and closure queue is empty
51
+ while True:
52
+ try:
53
+ closure = self._closure_queue.get(block=True, timeout=3)
54
+ closure()
55
+ self._closure_queue.task_done()
56
+ except EmptyQueue:
57
+ with self._closure_lock:
58
+ if self._closure_queue.empty():
59
+ self._closure_event_loop_finished.set()
60
+ return
61
+ except Exception as e:
62
+ self._closure_exception.put(e)
63
+ return
64
+
65
+ self._closure_event_loop = threading.Thread(target=event_loop)
66
+ self._closure_event_loop.start()
67
+
68
+ def run(self, closure):
69
+ with self._closure_lock:
70
+ self._closure_queue.put(closure, block=True)
71
+ if (
72
+ self._closure_event_loop is None
73
+ or not self._closure_event_loop.is_alive()
74
+ ):
75
+ try:
76
+ e = self._closure_exception.get(block=False)
77
+ raise RuntimeError(
78
+ "Cannot run asynchronous closure due to previously raised exception"
79
+ ) from e
80
+ except EmptyQueue:
81
+ self._closure_event_loop = None
82
+ self.start_event_loop()
83
+
84
+
85
+ def add_step_closure(closure, args=(), run_async=False):
86
+ """Adds a closure to the list of the ones to be run at the end of the step.
87
+ Many times during model training there is the need to print/report (print to
88
+ console, post to tensorboard, etc...) information which require the content of
89
+ intermediary tensors to be inspected.
90
+ Inspecting different tensors content in different points of the model code
91
+ requires many executions and typically causes performance issues.
92
+ Adding a step closure will ensure that it will be run after the barrier, when
93
+ all the live tensors will be already materialized to device data.
94
+ Live tensors which will include the ones captured by the closure arguments.
95
+ So using `add_step_closure()` will ensure a single execution will be
96
+ performed, even when multiple closures are queued, requiring multiple tensors
97
+ to be inspected.
98
+ Step closures will be run sequentially in the order they have been queued.
99
+ Note that even though using this API the execution will be optimized, it is
100
+ advised to throttle the printing/reporting events once every N steps.
101
+ Args:
102
+ closure (callable): The function to be called.
103
+ args (tuple): The arguments to be passed to the closure.
104
+ run_async: If True, run the closure asynchronously.
105
+ """
106
+ devctx = get_device_context()
107
+ closures_type = "async_step_closures" if run_async else "step_closures"
108
+ step_closures = getattr(devctx, closures_type, None)
109
+ if step_closures is None:
110
+ step_closures = []
111
+ setattr(devctx, closures_type, step_closures)
112
+ step_closures.append(lambda a=args: closure(*a))
113
+
114
+
115
+ def run_step_closures():
116
+ devctx = get_device_context()
117
+ async_step_closures = getattr(devctx, "async_step_closures", None)
118
+ if async_step_closures is not None:
119
+ devctx.async_step_closures = []
120
+ async_closure_handler = getattr(devctx, "async_closure_handler", None)
121
+ if async_closure_handler is None:
122
+ async_closure_handler = AsyncClosureHandler()
123
+ devctx.async_closure_handler = async_closure_handler
124
+ async_closure_handler(async_step_closures)
125
+
126
+ step_closures = getattr(devctx, "step_closures", None)
127
+ if step_closures is not None:
128
+ devctx.step_closures = []
129
+ closure_handler = getattr(devctx, "closure_handler", None)
130
+ if closure_handler is None:
131
+ closure_handler = ClosureHandler()
132
+ devctx.closure_handler = closure_handler
133
+ closure_handler(step_closures)
134
+ return devctx
env-llmeval/lib/python3.10/site-packages/torch/_lazy/device_context.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import threading
2
+ from typing import Any, Dict
3
+
4
+ import torch._C._lazy
5
+
6
+
7
+ class DeviceContext:
8
+ _CONTEXTS: Dict[str, Any] = dict()
9
+ _CONTEXTS_LOCK = threading.Lock()
10
+
11
+ def __init__(self, device):
12
+ self.device = device
13
+
14
+
15
+ def get_device_context(device=None):
16
+ if device is None:
17
+ device = torch._C._lazy._get_default_device_type()
18
+ else:
19
+ device = str(device)
20
+ with DeviceContext._CONTEXTS_LOCK:
21
+ devctx = DeviceContext._CONTEXTS.get(device, None)
22
+ if devctx is None:
23
+ devctx = DeviceContext(device)
24
+ DeviceContext._CONTEXTS[device] = devctx
25
+ return devctx
env-llmeval/lib/python3.10/site-packages/torch/_lazy/ir_cache.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch._C._lazy
2
+
3
+
4
+ def dump(dot_file_name: str):
5
+ """Dump TrieCache in the dot format"""
6
+ return torch._C._lazy._dump_ir_cache(dot_file_name)
7
+
8
+
9
+ def reset():
10
+ """Clear TrieCache. This is needed in testing to avoid
11
+ node reusing between different tests.
12
+ """
13
+ return torch._C._lazy._clear_ir_cache()
env-llmeval/lib/python3.10/site-packages/torch/_lazy/metrics.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch._C._lazy
2
+
3
+
4
+ def reset():
5
+ """Resets all metric counters."""
6
+ torch._C._lazy._reset_metrics()
7
+
8
+
9
+ def counter_names():
10
+ """Retrieves all the currently active counter names."""
11
+ return torch._C._lazy._counter_names()
12
+
13
+
14
+ def counter_value(name: str):
15
+ """Return the value of the counter with the speficied name"""
16
+ return torch._C._lazy._counter_value(name)
17
+
18
+
19
+ def metrics_report():
20
+ """Return the combined (lazy core and backend) metric report"""
21
+ return torch._C._lazy._metrics_report()
env-llmeval/lib/python3.10/site-packages/torch/_lazy/ts_backend.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ import torch._C._lazy_ts_backend
2
+
3
+
4
+ def init():
5
+ """Initializes the lazy Torchscript backend"""
6
+ torch._C._lazy_ts_backend._init()
env-llmeval/lib/python3.10/site-packages/torch/cpu/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (4.83 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/cpu/amp/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .autocast_mode import autocast
env-llmeval/lib/python3.10/site-packages/torch/cpu/amp/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (224 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/torch/cpu/amp/__pycache__/autocast_mode.cpython-310.pyc ADDED
Binary file (1.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/cpu/amp/autocast_mode.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any
2
+
3
+ import torch
4
+
5
+ __all__ = ["autocast"]
6
+
7
+
8
+ class autocast(torch.amp.autocast_mode.autocast):
9
+ r"""
10
+ See :class:`torch.autocast`.
11
+ ``torch.cpu.amp.autocast(args...)`` is equivalent to ``torch.autocast("cpu", args...)``
12
+ """
13
+
14
+ def __init__(
15
+ self,
16
+ enabled: bool = True,
17
+ dtype: torch.dtype = torch.bfloat16,
18
+ cache_enabled: bool = True,
19
+ ):
20
+ if torch._jit_internal.is_scripting():
21
+ self._enabled = enabled
22
+ self.device = "cpu"
23
+ self.fast_dtype = dtype
24
+ return
25
+ super().__init__(
26
+ "cpu", enabled=enabled, dtype=dtype, cache_enabled=cache_enabled
27
+ )
28
+
29
+ def __enter__(self):
30
+ if torch._jit_internal.is_scripting():
31
+ return self
32
+ return super().__enter__()
33
+
34
+ # TODO: discuss a unified TorchScript-friendly API for autocast
35
+ def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any): # type: ignore[override]
36
+ if torch._jit_internal.is_scripting():
37
+ return
38
+ return super().__exit__(exc_type, exc_val, exc_tb)
39
+
40
+ def __call__(self, func):
41
+ if torch._jit_internal.is_scripting():
42
+ return func
43
+ return super().__call__(func)
env-llmeval/lib/python3.10/site-packages/torch/optim/__init__.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ :mod:`torch.optim` is a package implementing various optimization algorithms.
3
+
4
+ Most commonly used methods are already supported, and the interface is general
5
+ enough, so that more sophisticated ones can also be easily integrated in the
6
+ future.
7
+ """
8
+
9
+ from .adadelta import Adadelta
10
+ from .adagrad import Adagrad
11
+ from .adam import Adam
12
+ from .adamw import AdamW
13
+ from .sparse_adam import SparseAdam
14
+ from .adamax import Adamax
15
+ from .asgd import ASGD
16
+ from .sgd import SGD
17
+ from .radam import RAdam
18
+ from .rprop import Rprop
19
+ from .rmsprop import RMSprop
20
+ from .optimizer import Optimizer
21
+ from .nadam import NAdam
22
+ from .lbfgs import LBFGS
23
+ from . import lr_scheduler
24
+ from . import swa_utils
25
+
26
+ del adadelta
27
+ del adagrad
28
+ del adam
29
+ del adamw
30
+ del sparse_adam
31
+ del adamax
32
+ del asgd
33
+ del sgd
34
+ del radam
35
+ del rprop
36
+ del rmsprop
37
+ del optimizer
38
+ del nadam
39
+ del lbfgs
env-llmeval/lib/python3.10/site-packages/torch/optim/__init__.pyi ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from . import lr_scheduler as lr_scheduler, swa_utils as swa_utils
2
+ from .adadelta import Adadelta as Adadelta
3
+ from .adagrad import Adagrad as Adagrad
4
+ from .adam import Adam as Adam
5
+ from .adamax import Adamax as Adamax
6
+ from .adamw import AdamW as AdamW
7
+ from .asgd import ASGD as ASGD
8
+ from .lbfgs import LBFGS as LBFGS
9
+ from .nadam import NAdam as NAdam
10
+ from .optimizer import Optimizer as Optimizer
11
+ from .radam import RAdam as RAdam
12
+ from .rmsprop import RMSprop as RMSprop
13
+ from .rprop import Rprop as Rprop
14
+ from .sgd import SGD as SGD
15
+ from .sparse_adam import SparseAdam as SparseAdam
env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.08 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/_functional.cpython-310.pyc ADDED
Binary file (2.09 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/adadelta.cpython-310.pyc ADDED
Binary file (8.53 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/adagrad.cpython-310.pyc ADDED
Binary file (10.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/adam.cpython-310.pyc ADDED
Binary file (16.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/adamax.cpython-310.pyc ADDED
Binary file (9.68 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/adamw.cpython-310.pyc ADDED
Binary file (16.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/asgd.cpython-310.pyc ADDED
Binary file (8.09 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/lbfgs.cpython-310.pyc ADDED
Binary file (8.86 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/lr_scheduler.cpython-310.pyc ADDED
Binary file (67 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/nadam.cpython-310.pyc ADDED
Binary file (13.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/optimizer.cpython-310.pyc ADDED
Binary file (34.3 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/radam.cpython-310.pyc ADDED
Binary file (12.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/rmsprop.cpython-310.pyc ADDED
Binary file (10.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/rprop.cpython-310.pyc ADDED
Binary file (9.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/sgd.cpython-310.pyc ADDED
Binary file (10.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/sparse_adam.cpython-310.pyc ADDED
Binary file (6.19 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/optim/__pycache__/swa_utils.cpython-310.pyc ADDED
Binary file (15.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/optim/_functional.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ r"""Functional interface."""
2
+ import math
3
+ from torch import Tensor
4
+ from typing import List
5
+
6
+ from .adadelta import adadelta # type: ignore[attr-defined] # noqa: F401
7
+ from .adagrad import adagrad, _make_sparse # type: ignore[attr-defined] # noqa: F401
8
+ from .adam import adam # type: ignore[attr-defined] # noqa: F401
9
+ from .adamw import adamw # type: ignore[attr-defined] # noqa: F401
10
+ from .adamax import adamax # type: ignore[attr-defined] # noqa: F401
11
+ from .asgd import asgd # type: ignore[attr-defined] # noqa: F401
12
+ from .nadam import nadam # type: ignore[attr-defined] # noqa: F401
13
+ from .radam import radam # type: ignore[attr-defined] # noqa: F401
14
+ from .rmsprop import rmsprop # type: ignore[attr-defined] # noqa: F401
15
+ from .rprop import rprop # type: ignore[attr-defined] # noqa: F401
16
+ from .sgd import sgd # type: ignore[attr-defined] # noqa: F401
17
+
18
+
19
+ # TODO: use foreach API in optim._functional to do all the computation
20
+
21
+
22
+ def sparse_adam(params: List[Tensor],
23
+ grads: List[Tensor],
24
+ exp_avgs: List[Tensor],
25
+ exp_avg_sqs: List[Tensor],
26
+ state_steps: List[int],
27
+ *,
28
+ eps: float,
29
+ beta1: float,
30
+ beta2: float,
31
+ lr: float,
32
+ maximize: bool):
33
+ r"""Functional API that performs Sparse Adam algorithm computation.
34
+
35
+ See :class:`~torch.optim.SparseAdam` for details.
36
+ """
37
+ for i, param in enumerate(params):
38
+ grad = grads[i]
39
+ grad = grad if not maximize else -grad
40
+ grad = grad.coalesce() # the update is non-linear so indices must be unique
41
+ grad_indices = grad._indices()
42
+ grad_values = grad._values()
43
+ if grad_values.numel() == 0:
44
+ # Skip update for empty grad
45
+ continue
46
+ size = grad.size()
47
+
48
+ exp_avg = exp_avgs[i]
49
+ exp_avg_sq = exp_avg_sqs[i]
50
+ step = state_steps[i]
51
+
52
+
53
+ def make_sparse(values):
54
+ constructor = grad.new
55
+ if grad_indices.dim() == 0 or values.dim() == 0:
56
+ return constructor().resize_as_(grad)
57
+ return constructor(grad_indices, values, size)
58
+
59
+ # Decay the first and second moment running average coefficient
60
+ # old <- b * old + (1 - b) * new
61
+ # <==> old += (1 - b) * (new - old)
62
+ old_exp_avg_values = exp_avg.sparse_mask(grad)._values()
63
+ exp_avg_update_values = grad_values.sub(old_exp_avg_values).mul_(1 - beta1)
64
+ exp_avg.add_(make_sparse(exp_avg_update_values))
65
+ old_exp_avg_sq_values = exp_avg_sq.sparse_mask(grad)._values()
66
+ exp_avg_sq_update_values = grad_values.pow(2).sub_(old_exp_avg_sq_values).mul_(1 - beta2)
67
+ exp_avg_sq.add_(make_sparse(exp_avg_sq_update_values))
68
+
69
+ # Dense addition again is intended, avoiding another sparse_mask
70
+ numer = exp_avg_update_values.add_(old_exp_avg_values)
71
+ exp_avg_sq_update_values.add_(old_exp_avg_sq_values)
72
+ denom = exp_avg_sq_update_values.sqrt_().add_(eps)
73
+ del exp_avg_update_values, exp_avg_sq_update_values
74
+
75
+ bias_correction1 = 1 - beta1 ** step
76
+ bias_correction2 = 1 - beta2 ** step
77
+ step_size = lr * math.sqrt(bias_correction2) / bias_correction1
78
+
79
+ param.add_(make_sparse(-step_size * numer.div_(denom)))
env-llmeval/lib/python3.10/site-packages/torch/optim/_multi_tensor/__init__.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ :mod:`torch.optim._multi_tensor` is a package implementing various optimization algorithms.
3
+ Most commonly used methods are already supported, and the interface is general
4
+ enough, so that more sophisticated ones can be also easily integrated in the
5
+ future.
6
+ """
7
+ from functools import partialmethod
8
+ from torch import optim
9
+
10
+ def partialclass(cls, *args, **kwargs):
11
+
12
+ class NewCls(cls):
13
+ __init__ = partialmethod(cls.__init__, *args, **kwargs)
14
+
15
+ return NewCls
16
+
17
+
18
+ Adam = partialclass(optim.Adam, foreach=True)
19
+ AdamW = partialclass(optim.AdamW, foreach=True)
20
+ NAdam = partialclass(optim.NAdam, foreach=True)
21
+ SGD = partialclass(optim.SGD, foreach=True)
22
+ RAdam = partialclass(optim.RAdam, foreach=True)
23
+ RMSprop = partialclass(optim.RMSprop, foreach=True)
24
+ Rprop = partialclass(optim.Rprop, foreach=True)
25
+ ASGD = partialclass(optim.ASGD, foreach=True)
26
+ Adamax = partialclass(optim.Adamax, foreach=True)
27
+ Adadelta = partialclass(optim.Adadelta, foreach=True)
28
+ Adagrad = partialclass(optim.Adagrad, foreach=True)
env-llmeval/lib/python3.10/site-packages/torch/optim/_multi_tensor/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.18 kB). View file
 
env-llmeval/lib/python3.10/site-packages/torch/optim/adadelta.pyi ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .optimizer import Optimizer, ParamsT
2
+
3
+ class Adadelta(Optimizer):
4
+ def __init__(
5
+ self,
6
+ params: ParamsT,
7
+ lr: float = ...,
8
+ rho: float = ...,
9
+ eps: float = ...,
10
+ weight_decay: float = ...,
11
+ ) -> None: ...
env-llmeval/lib/python3.10/site-packages/torch/optim/adagrad.py ADDED
@@ -0,0 +1,383 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import Tensor
3
+
4
+ from .optimizer import (Optimizer, _use_grad_for_differentiable, _get_value, _view_as_real,
5
+ _default_to_fused_or_foreach, _differentiable_doc, _foreach_doc, _maximize_doc)
6
+ from typing import List, Optional
7
+
8
+ __all__ = ["Adagrad", "adagrad"]
9
+
10
+
11
+ class Adagrad(Optimizer):
12
+ def __init__(
13
+ self,
14
+ params,
15
+ lr=1e-2,
16
+ lr_decay=0,
17
+ weight_decay=0,
18
+ initial_accumulator_value=0,
19
+ eps=1e-10,
20
+ foreach: Optional[bool] = None,
21
+ *,
22
+ maximize: bool = False,
23
+ differentiable: bool = False,
24
+ ):
25
+ if not 0.0 <= lr:
26
+ raise ValueError(f"Invalid learning rate: {lr}")
27
+ if not 0.0 <= lr_decay:
28
+ raise ValueError(f"Invalid lr_decay value: {lr_decay}")
29
+ if not 0.0 <= weight_decay:
30
+ raise ValueError(f"Invalid weight_decay value: {weight_decay}")
31
+ if not 0.0 <= initial_accumulator_value:
32
+ raise ValueError(
33
+ f"Invalid initial_accumulator_value value: {initial_accumulator_value}"
34
+ )
35
+ if not 0.0 <= eps:
36
+ raise ValueError(f"Invalid epsilon value: {eps}")
37
+
38
+ defaults = dict(
39
+ lr=lr,
40
+ lr_decay=lr_decay,
41
+ eps=eps,
42
+ weight_decay=weight_decay,
43
+ initial_accumulator_value=initial_accumulator_value,
44
+ foreach=foreach,
45
+ maximize=maximize,
46
+ differentiable=differentiable,
47
+ )
48
+ super().__init__(params, defaults)
49
+
50
+ for group in self.param_groups:
51
+ for p in group["params"]:
52
+ state = self.state[p]
53
+ state["step"] = torch.tensor(0.0, dtype=torch.float32)
54
+ init_value = (
55
+ complex(initial_accumulator_value, initial_accumulator_value)
56
+ if torch.is_complex(p)
57
+ else initial_accumulator_value
58
+ )
59
+ state["sum"] = torch.full_like(
60
+ p, init_value, memory_format=torch.preserve_format
61
+ )
62
+
63
+ def __setstate__(self, state):
64
+ super().__setstate__(state)
65
+ for group in self.param_groups:
66
+ group.setdefault("foreach", None)
67
+ group.setdefault("maximize", False)
68
+ group.setdefault("differentiable", False)
69
+
70
+ state_values = list(self.state.values())
71
+ step_is_tensor = (len(state_values) != 0) and torch.is_tensor(
72
+ state_values[0]["step"]
73
+ )
74
+ if not step_is_tensor:
75
+ for s in state_values:
76
+ s["step"] = torch.tensor(float(s["step"]), dtype=torch.float32)
77
+
78
+ def share_memory(self):
79
+ for group in self.param_groups:
80
+ for p in group["params"]:
81
+ state = self.state[p]
82
+ state["sum"].share_memory_()
83
+
84
+ def _init_group(self, group, params_with_grad, grads, state_sums, state_steps):
85
+ has_sparse_grad, has_complex = False, False
86
+ for p in group["params"]:
87
+ if p.grad is not None:
88
+ has_sparse_grad |= p.grad.is_sparse
89
+ has_complex |= torch.is_complex(p)
90
+ params_with_grad.append(p)
91
+ grads.append(p.grad)
92
+ state = self.state[p]
93
+ state_sums.append(state["sum"])
94
+ state_steps.append(state["step"])
95
+
96
+ return has_sparse_grad, has_complex
97
+
98
+ @_use_grad_for_differentiable
99
+ def step(self, closure=None):
100
+ """Perform a single optimization step.
101
+
102
+ Args:
103
+ closure (Callable, optional): A closure that reevaluates the model
104
+ and returns the loss.
105
+ """
106
+ loss = None
107
+
108
+ if closure is not None:
109
+ with torch.enable_grad():
110
+ loss = closure()
111
+
112
+ for group in self.param_groups:
113
+ params_with_grad = []
114
+ grads = []
115
+ state_sums = []
116
+ state_steps = []
117
+
118
+ has_sparse_grad, has_complex = self._init_group(group, params_with_grad, grads, state_sums, state_steps)
119
+
120
+ adagrad(
121
+ params_with_grad,
122
+ grads,
123
+ state_sums,
124
+ state_steps,
125
+ lr=group["lr"],
126
+ weight_decay=group["weight_decay"],
127
+ lr_decay=group["lr_decay"],
128
+ eps=group["eps"],
129
+ has_sparse_grad=has_sparse_grad,
130
+ foreach=group["foreach"],
131
+ maximize=group["maximize"],
132
+ differentiable=group["differentiable"],
133
+ has_complex=has_complex,
134
+ )
135
+
136
+ return loss
137
+
138
+
139
+ Adagrad.__doc__ = r"""Implements Adagrad algorithm.
140
+
141
+ .. math::
142
+ \begin{aligned}
143
+ &\rule{110mm}{0.4pt} \\
144
+ &\textbf{input} : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)}, \: f(\theta)
145
+ \text{ (objective)}, \: \lambda \text{ (weight decay)}, \\
146
+ &\hspace{12mm} \tau \text{ (initial accumulator value)}, \: \eta\text{ (lr decay)}\\
147
+ &\textbf{initialize} : state\_sum_0 \leftarrow 0 \\[-1.ex]
148
+ &\rule{110mm}{0.4pt} \\
149
+ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
150
+ &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
151
+ &\hspace{5mm} \tilde{\gamma} \leftarrow \gamma / (1 +(t-1) \eta) \\
152
+ &\hspace{5mm} \textbf{if} \: \lambda \neq 0 \\
153
+ &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\
154
+ &\hspace{5mm}state\_sum_t \leftarrow state\_sum_{t-1} + g^2_t \\
155
+ &\hspace{5mm}\theta_t \leftarrow
156
+ \theta_{t-1}- \tilde{\gamma} \frac{g_t}{\sqrt{state\_sum_t}+\epsilon} \\
157
+ &\rule{110mm}{0.4pt} \\[-1.ex]
158
+ &\bf{return} \: \theta_t \\[-1.ex]
159
+ &\rule{110mm}{0.4pt} \\[-1.ex]
160
+ \end{aligned}
161
+
162
+ For further details regarding the algorithm we refer to `Adaptive Subgradient Methods for Online Learning
163
+ and Stochastic Optimization`_.
164
+ """ + fr"""
165
+ Args:
166
+ params (iterable): iterable of parameters to optimize or dicts defining
167
+ parameter groups
168
+ lr (float, optional): learning rate (default: 1e-2)
169
+ lr_decay (float, optional): learning rate decay (default: 0)
170
+ weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
171
+ eps (float, optional): term added to the denominator to improve
172
+ numerical stability (default: 1e-10)
173
+ {_foreach_doc}
174
+ {_maximize_doc}
175
+ {_differentiable_doc}
176
+
177
+ .. _Adaptive Subgradient Methods for Online Learning and Stochastic
178
+ Optimization: http://jmlr.org/papers/v12/duchi11a.html
179
+
180
+ """
181
+
182
+
183
+ def adagrad(
184
+ params: List[Tensor],
185
+ grads: List[Tensor],
186
+ state_sums: List[Tensor],
187
+ state_steps: List[Tensor],
188
+ # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
189
+ # setting these as kwargs for now as functional API is compiled by torch/distributed/optim
190
+ has_sparse_grad: bool = None,
191
+ foreach: Optional[bool] = None,
192
+ differentiable: bool = False,
193
+ has_complex: bool = False,
194
+ *,
195
+ lr: float,
196
+ weight_decay: float,
197
+ lr_decay: float,
198
+ eps: float,
199
+ maximize: bool,
200
+ ):
201
+ r"""Functional API that performs Adagrad algorithm computation.
202
+
203
+ See :class:`~torch.optim.Adagrad` for details.
204
+ """
205
+ if not all(isinstance(t, torch.Tensor) for t in state_steps):
206
+ raise RuntimeError(
207
+ "API has changed, `state_steps` argument must contain a list of singleton tensors"
208
+ )
209
+
210
+ if foreach is None:
211
+ _, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False)
212
+
213
+ if foreach and torch.jit.is_scripting():
214
+ raise RuntimeError("torch.jit.script not supported with foreach optimizers")
215
+
216
+ if foreach and not torch.jit.is_scripting():
217
+ func = _multi_tensor_adagrad
218
+ else:
219
+ func = _single_tensor_adagrad
220
+
221
+ func(
222
+ params,
223
+ grads,
224
+ state_sums,
225
+ state_steps,
226
+ lr=lr,
227
+ weight_decay=weight_decay,
228
+ lr_decay=lr_decay,
229
+ eps=eps,
230
+ has_sparse_grad=has_sparse_grad,
231
+ maximize=maximize,
232
+ differentiable=differentiable,
233
+ has_complex=has_complex,
234
+ )
235
+
236
+
237
+ def _make_sparse(grad, grad_indices, values):
238
+ size = grad.size()
239
+ if grad_indices.numel() == 0 or values.numel() == 0:
240
+ return torch.empty_like(grad)
241
+ return torch.sparse_coo_tensor(grad_indices, values, size)
242
+
243
+
244
+ def _single_tensor_adagrad(
245
+ params: List[Tensor],
246
+ grads: List[Tensor],
247
+ state_sums: List[Tensor],
248
+ state_steps: List[Tensor],
249
+ *,
250
+ lr: float,
251
+ weight_decay: float,
252
+ lr_decay: float,
253
+ eps: float,
254
+ has_sparse_grad: bool,
255
+ maximize: bool,
256
+ differentiable: bool,
257
+ has_complex: bool,
258
+ ):
259
+
260
+ for (param, grad, state_sum, step_t) in zip(params, grads, state_sums, state_steps):
261
+ # update step
262
+ step_t += 1
263
+ step = _get_value(step_t)
264
+ grad = grad if not maximize else -grad
265
+
266
+ if weight_decay != 0:
267
+ if grad.is_sparse:
268
+ raise RuntimeError(
269
+ "weight_decay option is not compatible with sparse gradients"
270
+ )
271
+ grad = grad.add(param, alpha=weight_decay)
272
+
273
+ clr = lr / (1 + (step - 1) * lr_decay)
274
+
275
+ if grad.is_sparse:
276
+ grad = grad.coalesce() # the update is non-linear so indices must be unique
277
+ grad_indices = grad._indices()
278
+ grad_values = grad._values()
279
+
280
+ state_sum.add_(_make_sparse(grad, grad_indices, grad_values.pow(2)))
281
+ std = state_sum.sparse_mask(grad)
282
+ std_values = std._values().sqrt_().add_(eps)
283
+ param.add_(
284
+ _make_sparse(grad, grad_indices, grad_values / std_values), alpha=-clr
285
+ )
286
+ else:
287
+ is_complex = torch.is_complex(param)
288
+ if is_complex:
289
+ grad = torch.view_as_real(grad)
290
+ state_sum = torch.view_as_real(state_sum)
291
+ param = torch.view_as_real(param)
292
+ state_sum.addcmul_(grad, grad, value=1)
293
+ if differentiable:
294
+ std = state_sum.sqrt() + eps
295
+ else:
296
+ std = state_sum.sqrt().add_(eps)
297
+ param.addcdiv_(grad, std, value=-clr)
298
+ if is_complex:
299
+ param = torch.view_as_complex(param)
300
+ state_sum = torch.view_as_complex(state_sum)
301
+
302
+
303
+ def _multi_tensor_adagrad(
304
+ params: List[Tensor],
305
+ grads: List[Tensor],
306
+ state_sums: List[Tensor],
307
+ state_steps: List[Tensor],
308
+ *,
309
+ lr: float,
310
+ weight_decay: float,
311
+ lr_decay: float,
312
+ eps: float,
313
+ has_sparse_grad: bool,
314
+ maximize: bool,
315
+ differentiable: bool,
316
+ has_complex: bool,
317
+ ):
318
+
319
+ assert not differentiable, "_foreach ops don't support autograd"
320
+
321
+ # Foreach functions will throw errors if given empty lists
322
+ if len(params) == 0:
323
+ return
324
+
325
+ grouped_tensorlists = Optimizer._group_tensors_by_device_and_dtype([params, grads, state_sums, state_steps])
326
+ for ((device_params, device_grads, device_state_sums, device_state_steps), _) in grouped_tensorlists.values():
327
+ device_has_sparse_grad = has_sparse_grad and any(grad.is_sparse for grad in device_grads)
328
+
329
+ if device_has_sparse_grad:
330
+ _single_tensor_adagrad(
331
+ device_params,
332
+ device_grads,
333
+ device_state_sums,
334
+ device_state_steps,
335
+ lr=lr,
336
+ weight_decay=weight_decay,
337
+ lr_decay=lr_decay,
338
+ eps=eps,
339
+ has_sparse_grad=True,
340
+ maximize=False,
341
+ differentiable=differentiable,
342
+ has_complex=has_complex,
343
+ )
344
+ continue
345
+
346
+ if maximize:
347
+ device_grads = torch._foreach_neg(device_grads)
348
+
349
+ # Handle complex parameters
350
+ if has_complex:
351
+ _view_as_real(device_params, device_grads, device_state_sums)
352
+
353
+ # Update steps
354
+ # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
355
+ # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
356
+ # wrapped it once now. The alpha is required to assure we go to the right overload.
357
+ if device_state_steps[0].is_cpu:
358
+ torch._foreach_add_(device_state_steps, torch.tensor(1.0, device='cpu'), alpha=1.0)
359
+ else:
360
+ torch._foreach_add_(device_state_steps, 1)
361
+
362
+ if weight_decay != 0:
363
+ # Re-use the intermediate memory (device_grads) already allocated for maximize
364
+ if maximize:
365
+ torch._foreach_add_(device_grads, device_params, alpha=weight_decay)
366
+ else:
367
+ device_grads = torch._foreach_add(device_grads, device_params, alpha=weight_decay)
368
+
369
+ minus_clr = [-lr / (1 + (_get_value(step) - 1) * lr_decay) for step in device_state_steps]
370
+
371
+ torch._foreach_addcmul_(device_state_sums, device_grads, device_grads, value=1)
372
+
373
+ std = torch._foreach_sqrt(device_state_sums)
374
+ torch._foreach_add_(std, eps)
375
+
376
+ if weight_decay != 0 or maximize:
377
+ # Again, re-use the intermediate memory (device_grads) already allocated
378
+ torch._foreach_mul_(device_grads, minus_clr)
379
+ numerator = device_grads
380
+ else:
381
+ numerator = torch._foreach_mul(device_grads, minus_clr)
382
+
383
+ torch._foreach_addcdiv_(device_params, numerator, std)
env-llmeval/lib/python3.10/site-packages/torch/optim/adagrad.pyi ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .optimizer import Optimizer, ParamsT
2
+
3
+ class Adagrad(Optimizer):
4
+ def __init__(
5
+ self,
6
+ params: ParamsT,
7
+ lr: float = ...,
8
+ lr_decay: float = ...,
9
+ weight_decay: float = ...,
10
+ initial_accumulator_value: float = ...,
11
+ eps: float = ...,
12
+ ) -> None: ...
env-llmeval/lib/python3.10/site-packages/torch/optim/adam.py ADDED
@@ -0,0 +1,658 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional, Union, Tuple
2
+
3
+ import torch
4
+ from torch import Tensor
5
+ from .optimizer import (Optimizer, ParamsT, _use_grad_for_differentiable, _get_value,
6
+ _stack_if_compiling, _dispatch_sqrt, _default_to_fused_or_foreach,
7
+ _capturable_doc, _differentiable_doc, _foreach_doc, _fused_doc,
8
+ _maximize_doc, _view_as_real)
9
+ from torch.utils._foreach_utils import _get_fused_kernels_supported_devices
10
+
11
+ __all__ = ['Adam', 'adam']
12
+
13
+
14
+ class Adam(Optimizer):
15
+ def __init__(self,
16
+ params: ParamsT,
17
+ lr: Union[float, Tensor] = 1e-3,
18
+ betas: Tuple[float, float] = (0.9, 0.999),
19
+ eps: float = 1e-8,
20
+ weight_decay: float = 0,
21
+ amsgrad: bool = False,
22
+ *,
23
+ foreach: Optional[bool] = None,
24
+ maximize: bool = False,
25
+ capturable: bool = False,
26
+ differentiable: bool = False,
27
+ fused: Optional[bool] = None):
28
+ if not 0.0 <= lr:
29
+ raise ValueError(f"Invalid learning rate: {lr}")
30
+ if isinstance(lr, Tensor) and foreach and not capturable:
31
+ raise ValueError("lr as a Tensor is not supported for capturable=False and foreach=True")
32
+ if not 0.0 <= eps:
33
+ raise ValueError(f"Invalid epsilon value: {eps}")
34
+ if not 0.0 <= betas[0] < 1.0:
35
+ raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
36
+ if not 0.0 <= betas[1] < 1.0:
37
+ raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
38
+ if not 0.0 <= weight_decay:
39
+ raise ValueError(f"Invalid weight_decay value: {weight_decay}")
40
+
41
+ defaults = dict(lr=lr, betas=betas, eps=eps,
42
+ weight_decay=weight_decay, amsgrad=amsgrad,
43
+ maximize=maximize, foreach=foreach, capturable=capturable,
44
+ differentiable=differentiable, fused=fused)
45
+ super().__init__(params, defaults)
46
+
47
+ if fused:
48
+ if differentiable:
49
+ raise RuntimeError("`fused` does not support `differentiable`")
50
+ self._step_supports_amp_scaling = True
51
+ # TODO(crcrpar): [low prec params & their higher prec copy]
52
+ # Support AMP with FP16/BF16 model params which would need
53
+ # higher prec copy of params to do update math in higher prec to
54
+ # alleviate the loss of information.
55
+ fused_supported_devices = _get_fused_kernels_supported_devices()
56
+ if not all(
57
+ p.device.type in fused_supported_devices and
58
+ torch.is_floating_point(p) for pg in self.param_groups for p in pg['params']
59
+ ):
60
+ raise RuntimeError("`fused=True` requires all the params to be floating point Tensors of "
61
+ f"supported devices: {fused_supported_devices}.")
62
+ if foreach:
63
+ raise RuntimeError("`fused` and `foreach` cannot be `True` together.")
64
+
65
+ def __setstate__(self, state):
66
+ super().__setstate__(state)
67
+ for group in self.param_groups:
68
+ group.setdefault('amsgrad', False)
69
+ group.setdefault('maximize', False)
70
+ group.setdefault('foreach', None)
71
+ group.setdefault('capturable', False)
72
+ group.setdefault('differentiable', False)
73
+ group.setdefault('fused', None)
74
+ state_values = list(self.state.values())
75
+ step_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['step'])
76
+ if not step_is_tensor:
77
+ for s in state_values:
78
+ s['step'] = torch.tensor(float(s['step']), dtype=torch.float32)
79
+
80
+ def _init_group(
81
+ self,
82
+ group,
83
+ params_with_grad,
84
+ grads,
85
+ exp_avgs,
86
+ exp_avg_sqs,
87
+ max_exp_avg_sqs,
88
+ state_steps
89
+ ):
90
+ has_complex = False
91
+ for p in group['params']:
92
+ if p.grad is not None:
93
+ has_complex |= torch.is_complex(p)
94
+ params_with_grad.append(p)
95
+ if p.grad.is_sparse:
96
+ raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
97
+ grads.append(p.grad)
98
+
99
+ state = self.state[p]
100
+ # Lazy state initialization
101
+ if len(state) == 0:
102
+ # note(crcrpar): [special device hosting for step]
103
+ # Deliberately host `step` on CPU if both capturable and fused are off.
104
+ # This is because kernel launches are costly on CUDA and XLA.
105
+ state['step'] = (
106
+ torch.zeros((), dtype=torch.float32, device=p.device)
107
+ if group['capturable'] or group['fused']
108
+ else torch.tensor(0.0, dtype=torch.float32)
109
+ )
110
+ # Exponential moving average of gradient values
111
+ state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
112
+ # Exponential moving average of squared gradient values
113
+ state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
114
+ if group['amsgrad']:
115
+ # Maintains max of all exp. moving avg. of sq. grad. values
116
+ state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
117
+
118
+ exp_avgs.append(state['exp_avg'])
119
+ exp_avg_sqs.append(state['exp_avg_sq'])
120
+
121
+ if group['amsgrad']:
122
+ max_exp_avg_sqs.append(state['max_exp_avg_sq'])
123
+ if group['differentiable'] and state['step'].requires_grad:
124
+ raise RuntimeError('`requires_grad` is not supported for `step` in differentiable mode')
125
+
126
+ # Foreach without capturable does not support a tensor lr
127
+ if group['foreach'] and torch.is_tensor(group['lr']) and not group['capturable']:
128
+ raise RuntimeError('lr as a Tensor is not supported for capturable=False and foreach=True')
129
+
130
+ state_steps.append(state['step'])
131
+ return has_complex
132
+
133
+ @_use_grad_for_differentiable
134
+ def step(self, closure=None):
135
+ """Perform a single optimization step.
136
+
137
+ Args:
138
+ closure (Callable, optional): A closure that reevaluates the model
139
+ and returns the loss.
140
+ """
141
+ self._cuda_graph_capture_health_check()
142
+
143
+ loss = None
144
+ if closure is not None:
145
+ with torch.enable_grad():
146
+ loss = closure()
147
+
148
+ for group in self.param_groups:
149
+ params_with_grad = []
150
+ grads = []
151
+ exp_avgs = []
152
+ exp_avg_sqs = []
153
+ max_exp_avg_sqs = []
154
+ state_steps = []
155
+ beta1, beta2 = group['betas']
156
+
157
+ has_complex = self._init_group(
158
+ group,
159
+ params_with_grad,
160
+ grads,
161
+ exp_avgs,
162
+ exp_avg_sqs,
163
+ max_exp_avg_sqs,
164
+ state_steps)
165
+
166
+ adam(
167
+ params_with_grad,
168
+ grads,
169
+ exp_avgs,
170
+ exp_avg_sqs,
171
+ max_exp_avg_sqs,
172
+ state_steps,
173
+ amsgrad=group['amsgrad'],
174
+ has_complex=has_complex,
175
+ beta1=beta1,
176
+ beta2=beta2,
177
+ lr=group['lr'],
178
+ weight_decay=group['weight_decay'],
179
+ eps=group['eps'],
180
+ maximize=group['maximize'],
181
+ foreach=group['foreach'],
182
+ capturable=group['capturable'],
183
+ differentiable=group['differentiable'],
184
+ fused=group['fused'],
185
+ grad_scale=getattr(self, "grad_scale", None),
186
+ found_inf=getattr(self, "found_inf", None),
187
+ )
188
+
189
+ return loss
190
+
191
+
192
+ Adam.__doc__ = r"""Implements Adam algorithm.
193
+
194
+ .. math::
195
+ \begin{aligned}
196
+ &\rule{110mm}{0.4pt} \\
197
+ &\textbf{input} : \gamma \text{ (lr)}, \beta_1, \beta_2
198
+ \text{ (betas)},\theta_0 \text{ (params)},f(\theta) \text{ (objective)} \\
199
+ &\hspace{13mm} \lambda \text{ (weight decay)}, \: \textit{amsgrad},
200
+ \:\textit{maximize} \\
201
+ &\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)},
202
+ v_0\leftarrow 0 \text{ (second moment)},\: \widehat{v_0}^{max}\leftarrow 0\\[-1.ex]
203
+ &\rule{110mm}{0.4pt} \\
204
+ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
205
+
206
+ &\hspace{5mm}\textbf{if} \: \textit{maximize}: \\
207
+ &\hspace{10mm}g_t \leftarrow -\nabla_{\theta} f_t (\theta_{t-1}) \\
208
+ &\hspace{5mm}\textbf{else} \\
209
+ &\hspace{10mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
210
+ &\hspace{5mm}\textbf{if} \: \lambda \neq 0 \\
211
+ &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\
212
+ &\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\
213
+ &\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\
214
+ &\hspace{5mm}\widehat{m_t} \leftarrow m_t/\big(1-\beta_1^t \big) \\
215
+ &\hspace{5mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \\
216
+ &\hspace{5mm}\textbf{if} \: amsgrad \\
217
+ &\hspace{10mm}\widehat{v_t}^{max} \leftarrow \mathrm{max}(\widehat{v_t}^{max},
218
+ \widehat{v_t}) \\
219
+ &\hspace{10mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t}/
220
+ \big(\sqrt{\widehat{v_t}^{max}} + \epsilon \big) \\
221
+ &\hspace{5mm}\textbf{else} \\
222
+ &\hspace{10mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t}/
223
+ \big(\sqrt{\widehat{v_t}} + \epsilon \big) \\
224
+ &\rule{110mm}{0.4pt} \\[-1.ex]
225
+ &\bf{return} \: \theta_t \\[-1.ex]
226
+ &\rule{110mm}{0.4pt} \\[-1.ex]
227
+ \end{aligned}
228
+
229
+ For further details regarding the algorithm we refer to `Adam: A Method for Stochastic Optimization`_.
230
+ """ + fr"""
231
+ Args:
232
+ params (iterable): iterable of parameters to optimize or dicts defining
233
+ parameter groups
234
+ lr (float, Tensor, optional): learning rate (default: 1e-3). A tensor LR
235
+ is not yet supported for all our implementations. Please use a float
236
+ LR if you are not also specifying fused=True or capturable=True.
237
+ betas (Tuple[float, float], optional): coefficients used for computing
238
+ running averages of gradient and its square (default: (0.9, 0.999))
239
+ eps (float, optional): term added to the denominator to improve
240
+ numerical stability (default: 1e-8)
241
+ weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
242
+ amsgrad (bool, optional): whether to use the AMSGrad variant of this
243
+ algorithm from the paper `On the Convergence of Adam and Beyond`_
244
+ (default: False)
245
+ {_foreach_doc}
246
+ {_maximize_doc}
247
+ {_capturable_doc}
248
+ {_differentiable_doc}
249
+ {_fused_doc}
250
+ .. _Adam\: A Method for Stochastic Optimization:
251
+ https://arxiv.org/abs/1412.6980
252
+ .. _On the Convergence of Adam and Beyond:
253
+ https://openreview.net/forum?id=ryQu7f-RZ
254
+
255
+ """
256
+
257
+
258
+ def adam(params: List[Tensor],
259
+ grads: List[Tensor],
260
+ exp_avgs: List[Tensor],
261
+ exp_avg_sqs: List[Tensor],
262
+ max_exp_avg_sqs: List[Tensor],
263
+ state_steps: List[Tensor],
264
+ # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
265
+ # setting this as kwarg for now as functional API is compiled by torch/distributed/optim
266
+ foreach: Optional[bool] = None,
267
+ capturable: bool = False,
268
+ differentiable: bool = False,
269
+ fused: Optional[bool] = None,
270
+ grad_scale: Optional[Tensor] = None,
271
+ found_inf: Optional[Tensor] = None,
272
+ has_complex: bool = False,
273
+ *,
274
+ amsgrad: bool,
275
+ beta1: float,
276
+ beta2: float,
277
+ lr: Union[float, Tensor],
278
+ weight_decay: float,
279
+ eps: float,
280
+ maximize: bool):
281
+ r"""Functional API that performs Adam algorithm computation.
282
+
283
+ See :class:`~torch.optim.Adam` for details.
284
+ """
285
+ # Respect when the user inputs False/True for foreach or fused. We only want to change
286
+ # the default when neither have been user-specified. Note that we default to foreach
287
+ # and pass False to use_fused. This is not a mistake--we want to give the fused impl
288
+ # bake-in time before making it the default, even if it is typically faster.
289
+ if fused is None and foreach is None:
290
+ _, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False)
291
+ # Do not flip on foreach for the unsupported case where lr is a Tensor and capturable=False.
292
+ if foreach and isinstance(lr, Tensor) and not capturable:
293
+ foreach = False
294
+ if fused is None:
295
+ fused = False
296
+ if foreach is None:
297
+ foreach = False
298
+
299
+ # this check is slow during compilation, so we skip it
300
+ # if it's strictly needed we can add this check back in dynamo
301
+ if not torch._utils.is_compiling() and not all(isinstance(t, torch.Tensor) for t in state_steps):
302
+ raise RuntimeError("API has changed, `state_steps` argument must contain a list of singleton tensors")
303
+
304
+ if foreach and torch.jit.is_scripting():
305
+ raise RuntimeError('torch.jit.script not supported with foreach optimizers')
306
+ if fused and torch.jit.is_scripting():
307
+ raise RuntimeError("torch.jit.script not supported with fused optimizers")
308
+
309
+ if fused and not torch.jit.is_scripting():
310
+ func = _fused_adam
311
+ elif foreach and not torch.jit.is_scripting():
312
+ func = _multi_tensor_adam
313
+ else:
314
+ func = _single_tensor_adam
315
+
316
+ func(params,
317
+ grads,
318
+ exp_avgs,
319
+ exp_avg_sqs,
320
+ max_exp_avg_sqs,
321
+ state_steps,
322
+ amsgrad=amsgrad,
323
+ has_complex=has_complex,
324
+ beta1=beta1,
325
+ beta2=beta2,
326
+ lr=lr,
327
+ weight_decay=weight_decay,
328
+ eps=eps,
329
+ maximize=maximize,
330
+ capturable=capturable,
331
+ differentiable=differentiable,
332
+ grad_scale=grad_scale,
333
+ found_inf=found_inf)
334
+
335
+
336
+ def _single_tensor_adam(params: List[Tensor],
337
+ grads: List[Tensor],
338
+ exp_avgs: List[Tensor],
339
+ exp_avg_sqs: List[Tensor],
340
+ max_exp_avg_sqs: List[Tensor],
341
+ state_steps: List[Tensor],
342
+ grad_scale: Optional[Tensor],
343
+ found_inf: Optional[Tensor],
344
+ *,
345
+ amsgrad: bool,
346
+ has_complex: bool,
347
+ beta1: float,
348
+ beta2: float,
349
+ lr: Union[float, Tensor],
350
+ weight_decay: float,
351
+ eps: float,
352
+ maximize: bool,
353
+ capturable: bool,
354
+ differentiable: bool):
355
+
356
+ assert grad_scale is None and found_inf is None
357
+
358
+ if torch.jit.is_scripting():
359
+ # this assert is due to JIT being dumb and not realizing that the ops below
360
+ # have overloads to handle both float and Tensor lrs, so we just assert it's
361
+ # a float since most people using JIT are using floats
362
+ assert isinstance(lr, float)
363
+
364
+ for i, param in enumerate(params):
365
+ grad = grads[i] if not maximize else -grads[i]
366
+ exp_avg = exp_avgs[i]
367
+ exp_avg_sq = exp_avg_sqs[i]
368
+ step_t = state_steps[i]
369
+
370
+ # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
371
+ if not torch._utils.is_compiling() and capturable:
372
+ assert (
373
+ (param.is_cuda and step_t.is_cuda) or (param.is_xla and step_t.is_xla)
374
+ ), "If capturable=True, params and state_steps must be CUDA or XLA tensors."
375
+
376
+ # update step
377
+ step_t += 1
378
+
379
+ if weight_decay != 0:
380
+ grad = grad.add(param, alpha=weight_decay)
381
+
382
+ if torch.is_complex(param):
383
+ grad = torch.view_as_real(grad)
384
+ exp_avg = torch.view_as_real(exp_avg)
385
+ exp_avg_sq = torch.view_as_real(exp_avg_sq)
386
+ if amsgrad:
387
+ max_exp_avg_sqs[i] = torch.view_as_real(max_exp_avg_sqs[i])
388
+ param = torch.view_as_real(param)
389
+
390
+ # Decay the first and second moment running average coefficient
391
+ exp_avg.lerp_(grad, 1 - beta1)
392
+ exp_avg_sq.mul_(beta2).addcmul_(grad, grad.conj(), value=1 - beta2)
393
+
394
+ if capturable or differentiable:
395
+ step = step_t
396
+
397
+ bias_correction1 = 1 - beta1 ** step
398
+ bias_correction2 = 1 - beta2 ** step
399
+
400
+ step_size = lr / bias_correction1
401
+ step_size_neg = step_size.neg()
402
+
403
+ bias_correction2_sqrt = bias_correction2.sqrt()
404
+
405
+ if amsgrad:
406
+ # Maintains the maximum of all 2nd moment running avg. till now
407
+ if differentiable:
408
+ max_exp_avg_sq = max_exp_avg_sqs[i].clone()
409
+ else:
410
+ max_exp_avg_sq = max_exp_avg_sqs[i]
411
+
412
+ max_exp_avg_sqs[i].copy_(torch.maximum(max_exp_avg_sq, exp_avg_sq))
413
+
414
+ # Uses the max. for normalizing running avg. of gradient
415
+ # Folds in (admittedly ugly) 1-elem step_size math here to avoid extra param-set-sized read+write
416
+ # (can't fold it into addcdiv_ below because addcdiv_ requires value is a Number, not a Tensor)
417
+ denom = (max_exp_avg_sqs[i].sqrt() / (bias_correction2_sqrt * step_size_neg)).add_(eps / step_size_neg)
418
+ else:
419
+ denom = (exp_avg_sq.sqrt() / (bias_correction2_sqrt * step_size_neg)).add_(eps / step_size_neg)
420
+
421
+ param.addcdiv_(exp_avg, denom)
422
+ else:
423
+ step = _get_value(step_t)
424
+
425
+ bias_correction1 = 1 - beta1 ** step
426
+ bias_correction2 = 1 - beta2 ** step
427
+
428
+ step_size = lr / bias_correction1
429
+
430
+ bias_correction2_sqrt = _dispatch_sqrt(bias_correction2)
431
+
432
+ if amsgrad:
433
+ # Maintains the maximum of all 2nd moment running avg. till now
434
+ torch.maximum(max_exp_avg_sqs[i], exp_avg_sq, out=max_exp_avg_sqs[i])
435
+
436
+ # Use the max. for normalizing running avg. of gradient
437
+ denom = (max_exp_avg_sqs[i].sqrt() / bias_correction2_sqrt).add_(eps)
438
+ else:
439
+ denom = (exp_avg_sq.sqrt() / bias_correction2_sqrt).add_(eps)
440
+
441
+ param.addcdiv_(exp_avg, denom, value=-step_size)
442
+
443
+ # Lastly, switch back to complex view
444
+ if amsgrad and torch.is_complex(params[i]):
445
+ max_exp_avg_sqs[i] = torch.view_as_complex(max_exp_avg_sqs[i])
446
+
447
+
448
+ def _multi_tensor_adam(params: List[Tensor],
449
+ grads: List[Tensor],
450
+ exp_avgs: List[Tensor],
451
+ exp_avg_sqs: List[Tensor],
452
+ max_exp_avg_sqs: List[Tensor],
453
+ state_steps: List[Tensor],
454
+ grad_scale: Optional[Tensor],
455
+ found_inf: Optional[Tensor],
456
+ *,
457
+ amsgrad: bool,
458
+ has_complex: bool,
459
+ beta1: float,
460
+ beta2: float,
461
+ lr: Union[float, Tensor],
462
+ weight_decay: float,
463
+ eps: float,
464
+ maximize: bool,
465
+ capturable: bool,
466
+ differentiable: bool):
467
+ if len(params) == 0:
468
+ return
469
+
470
+ if isinstance(lr, Tensor) and not capturable:
471
+ raise RuntimeError("lr as a Tensor is not supported for capturable=False and foreach=True")
472
+
473
+ # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
474
+ if not torch._utils.is_compiling() and capturable:
475
+ assert all(p.is_cuda and step.is_cuda for p, step in zip(params, state_steps)), \
476
+ "If capturable=True, params and state_steps must be CUDA tensors."
477
+
478
+ assert grad_scale is None and found_inf is None
479
+
480
+ assert not differentiable, "_foreach ops don't support autograd"
481
+
482
+ grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
483
+ [params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps])
484
+ for ((
485
+ device_params,
486
+ device_grads,
487
+ device_exp_avgs,
488
+ device_exp_avg_sqs,
489
+ device_max_exp_avg_sqs,
490
+ device_state_steps,
491
+ ), _) in grouped_tensors.values():
492
+
493
+ if maximize:
494
+ device_grads = torch._foreach_neg(device_grads)
495
+
496
+ # Handle complex parameters
497
+ if has_complex:
498
+ if amsgrad:
499
+ _view_as_real(device_params, device_grads, device_exp_avgs, device_exp_avg_sqs, device_max_exp_avg_sqs)
500
+ else:
501
+ _view_as_real(device_params, device_grads, device_exp_avgs, device_exp_avg_sqs)
502
+
503
+ # Update steps
504
+ # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
505
+ # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
506
+ # wrapped it once now. The alpha is required to assure we go to the right overload.
507
+ if device_state_steps[0].is_cpu:
508
+ torch._foreach_add_(device_state_steps, torch.tensor(1.0, device='cpu'), alpha=1.0)
509
+ else:
510
+ torch._foreach_add_(device_state_steps, 1)
511
+
512
+ if weight_decay != 0:
513
+ # Re-use the intermediate memory (device_grads) already allocated for maximize
514
+ if maximize:
515
+ torch._foreach_add_(device_grads, device_params, alpha=weight_decay)
516
+ else:
517
+ device_grads = torch._foreach_add(device_grads, device_params, alpha=weight_decay)
518
+
519
+ # Decay the first and second moment running average coefficient
520
+ torch._foreach_lerp_(device_exp_avgs, device_grads, 1 - beta1)
521
+
522
+ torch._foreach_mul_(device_exp_avg_sqs, beta2)
523
+ torch._foreach_addcmul_(device_exp_avg_sqs, device_grads, device_grads, 1 - beta2)
524
+
525
+ # Delete the local intermediate since it won't be used anymore to save on peak memory
526
+ del device_grads
527
+
528
+ if capturable:
529
+ bias_correction1 = torch._foreach_pow(beta1, device_state_steps)
530
+ bias_correction2 = torch._foreach_pow(beta2, device_state_steps)
531
+ # foreach_sub doesn't allow a scalar as the first arg
532
+ torch._foreach_sub_(bias_correction1, 1)
533
+ torch._foreach_sub_(bias_correction2, 1)
534
+ # we do not negate bias_correction1 as it'll need to be negated later anyway
535
+ torch._foreach_neg_(bias_correction2)
536
+
537
+ # foreach_div doesn't allow a scalar as the first arg
538
+ torch._foreach_div_(bias_correction1, lr)
539
+ torch._foreach_reciprocal_(bias_correction1)
540
+
541
+ torch._foreach_sqrt_(bias_correction2)
542
+
543
+ # Re-assign for clarity as we maintain minimal intermediates: we'll have
544
+ # step_size = - lr / (1 - beta1 ^ t) where t = num_steps
545
+ # bias_correction2_sqrt = sqrt(1 - beta2 ^ t)
546
+ step_size = bias_correction1
547
+ bias_correction2_sqrt = bias_correction2
548
+
549
+ if amsgrad:
550
+ # Maintains the maximum of all 2nd moment running avg. till now
551
+ torch._foreach_maximum_(device_max_exp_avg_sqs, device_exp_avg_sqs) # type: ignore[assignment]
552
+
553
+ # Set intermediate to the max. for normalizing running avg. of gradient when amsgrad
554
+ exp_avg_sq_sqrt = torch._foreach_sqrt(device_max_exp_avg_sqs)
555
+ else:
556
+ exp_avg_sq_sqrt = torch._foreach_sqrt(device_exp_avg_sqs)
557
+
558
+ torch._foreach_div_(exp_avg_sq_sqrt, bias_correction2_sqrt)
559
+ torch._foreach_add_(exp_avg_sq_sqrt, eps)
560
+ torch._foreach_div_(exp_avg_sq_sqrt, step_size)
561
+
562
+ # at this point, exp_avg_sq_sqrt = - (1 - beta^t) * [sqrt(exp_avg_sq / (1 - beta2^t)) + eps] / lr
563
+ torch._foreach_addcdiv_(device_params, device_exp_avgs, exp_avg_sq_sqrt)
564
+ else:
565
+ bias_correction1 = [1 - beta1 ** _get_value(step) for step in device_state_steps]
566
+ bias_correction2 = [1 - beta2 ** _get_value(step) for step in device_state_steps]
567
+
568
+ step_size = _stack_if_compiling([(lr / bc) * -1 for bc in bias_correction1])
569
+
570
+ bias_correction2_sqrt = [_dispatch_sqrt(bc) for bc in bias_correction2]
571
+
572
+ if amsgrad:
573
+ # Maintains the maximum of all 2nd moment running avg. till now
574
+ torch._foreach_maximum_(device_max_exp_avg_sqs, device_exp_avg_sqs)
575
+
576
+ # Use the max. for normalizing running avg. of gradient
577
+ exp_avg_sq_sqrt = torch._foreach_sqrt(device_max_exp_avg_sqs)
578
+ else:
579
+ exp_avg_sq_sqrt = torch._foreach_sqrt(device_exp_avg_sqs)
580
+
581
+ torch._foreach_div_(exp_avg_sq_sqrt, bias_correction2_sqrt)
582
+ torch._foreach_add_(exp_avg_sq_sqrt, eps)
583
+ torch._foreach_addcdiv_(device_params, device_exp_avgs, exp_avg_sq_sqrt, step_size)
584
+
585
+
586
+ def _fused_adam(
587
+ params: List[Tensor],
588
+ grads: List[Tensor],
589
+ exp_avgs: List[Tensor],
590
+ exp_avg_sqs: List[Tensor],
591
+ max_exp_avg_sqs: List[Tensor],
592
+ state_steps: List[Tensor],
593
+ grad_scale: Optional[Tensor],
594
+ found_inf: Optional[Tensor],
595
+ *,
596
+ amsgrad: bool,
597
+ has_complex: bool, # Needed for consistency.
598
+ beta1: float,
599
+ beta2: float,
600
+ lr: Union[float, Tensor],
601
+ weight_decay: float,
602
+ eps: float,
603
+ maximize: bool,
604
+ capturable: bool, # Needed for consistency.
605
+ differentiable: bool,
606
+ ) -> None:
607
+ if not params:
608
+ return
609
+ if differentiable:
610
+ raise RuntimeError("Adam with fused=True does not support differentiable=True")
611
+
612
+ grad_scale_dict = {grad_scale.device: grad_scale} if grad_scale is not None else None
613
+ found_inf_dict = {found_inf.device: found_inf} if found_inf is not None else None
614
+
615
+ # We only shuffle around the lr when it is a Tensor and on CUDA, otherwise, we prefer
616
+ # treating it as a scalar.
617
+ lr_dict = {lr.device: lr} if isinstance(lr, Tensor) and str(lr.device) != "cpu" else None
618
+
619
+ grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
620
+ [params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps])
621
+ for (device, _), ((device_params,
622
+ device_grads,
623
+ device_exp_avgs,
624
+ device_exp_avg_sqs,
625
+ device_max_exp_avg_sqs,
626
+ device_state_steps,), _) in grouped_tensors.items():
627
+ device_grad_scale, device_found_inf = None, None
628
+ if grad_scale is not None:
629
+ if device not in grad_scale_dict:
630
+ grad_scale_dict[device] = grad_scale.to(device, non_blocking=True)
631
+ device_grad_scale = grad_scale_dict[device]
632
+ if found_inf is not None:
633
+ if found_inf not in found_inf_dict:
634
+ found_inf_dict[device] = found_inf.to(device, non_blocking=True)
635
+ device_found_inf = found_inf_dict[device]
636
+ if lr_dict is not None and device not in lr_dict:
637
+ lr_dict[device] = lr.to(device=device, non_blocking=True)
638
+ lr = lr_dict[device]
639
+ torch._foreach_add_(device_state_steps, 1)
640
+ torch._fused_adam_(
641
+ device_params,
642
+ device_grads,
643
+ device_exp_avgs,
644
+ device_exp_avg_sqs,
645
+ device_max_exp_avg_sqs,
646
+ device_state_steps,
647
+ amsgrad=amsgrad,
648
+ lr=lr,
649
+ beta1=beta1,
650
+ beta2=beta2,
651
+ weight_decay=weight_decay,
652
+ eps=eps,
653
+ maximize=maximize,
654
+ grad_scale=device_grad_scale,
655
+ found_inf=device_found_inf,
656
+ )
657
+ if device_found_inf is not None:
658
+ torch._foreach_sub_(device_state_steps, [device_found_inf] * len(device_state_steps))
env-llmeval/lib/python3.10/site-packages/torch/optim/adam.pyi ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Tuple, Union
2
+
3
+ from torch import Tensor
4
+
5
+ from .optimizer import Optimizer, ParamsT
6
+
7
+ class Adam(Optimizer):
8
+ def __init__(
9
+ self,
10
+ params: ParamsT,
11
+ lr: Union[float, Tensor] = 1e-3,
12
+ betas: Tuple[float, float] = (0.9, 0.999),
13
+ eps: float = 1e-8,
14
+ weight_decay: float = 0,
15
+ amsgrad: bool = False,
16
+ *,
17
+ foreach: Optional[bool] = None,
18
+ maximize: bool = False,
19
+ capturable: bool = False,
20
+ differentiable: bool = False,
21
+ fused: Optional[bool] = None,
22
+ ) -> None: ...
env-llmeval/lib/python3.10/site-packages/torch/optim/adamw.pyi ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Tuple, Union
2
+
3
+ from torch import Tensor
4
+
5
+ from .optimizer import Optimizer, ParamsT
6
+
7
+ class AdamW(Optimizer):
8
+ def __init__(
9
+ self,
10
+ params: ParamsT,
11
+ lr: Union[float, Tensor] = 1e-3,
12
+ betas: Tuple[float, float] = (0.9, 0.999),
13
+ eps: float = 1e-8,
14
+ weight_decay: float = 1e-2,
15
+ amsgrad: bool = False,
16
+ *,
17
+ maximize: bool = False,
18
+ foreach: Optional[bool] = None,
19
+ capturable: bool = False,
20
+ differentiable: bool = False,
21
+ fused: Optional[bool] = None,
22
+ ) -> None: ...
env-llmeval/lib/python3.10/site-packages/torch/optim/lbfgs.py ADDED
@@ -0,0 +1,478 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from functools import reduce
3
+ from .optimizer import Optimizer
4
+
5
+ __all__ = ['LBFGS']
6
+
7
+ def _cubic_interpolate(x1, f1, g1, x2, f2, g2, bounds=None):
8
+ # ported from https://github.com/torch/optim/blob/master/polyinterp.lua
9
+ # Compute bounds of interpolation area
10
+ if bounds is not None:
11
+ xmin_bound, xmax_bound = bounds
12
+ else:
13
+ xmin_bound, xmax_bound = (x1, x2) if x1 <= x2 else (x2, x1)
14
+
15
+ # Code for most common case: cubic interpolation of 2 points
16
+ # w/ function and derivative values for both
17
+ # Solution in this case (where x2 is the farthest point):
18
+ # d1 = g1 + g2 - 3*(f1-f2)/(x1-x2);
19
+ # d2 = sqrt(d1^2 - g1*g2);
20
+ # min_pos = x2 - (x2 - x1)*((g2 + d2 - d1)/(g2 - g1 + 2*d2));
21
+ # t_new = min(max(min_pos,xmin_bound),xmax_bound);
22
+ d1 = g1 + g2 - 3 * (f1 - f2) / (x1 - x2)
23
+ d2_square = d1**2 - g1 * g2
24
+ if d2_square >= 0:
25
+ d2 = d2_square.sqrt()
26
+ if x1 <= x2:
27
+ min_pos = x2 - (x2 - x1) * ((g2 + d2 - d1) / (g2 - g1 + 2 * d2))
28
+ else:
29
+ min_pos = x1 - (x1 - x2) * ((g1 + d2 - d1) / (g1 - g2 + 2 * d2))
30
+ return min(max(min_pos, xmin_bound), xmax_bound)
31
+ else:
32
+ return (xmin_bound + xmax_bound) / 2.
33
+
34
+
35
+ def _strong_wolfe(obj_func,
36
+ x,
37
+ t,
38
+ d,
39
+ f,
40
+ g,
41
+ gtd,
42
+ c1=1e-4,
43
+ c2=0.9,
44
+ tolerance_change=1e-9,
45
+ max_ls=25):
46
+ # ported from https://github.com/torch/optim/blob/master/lswolfe.lua
47
+ d_norm = d.abs().max()
48
+ g = g.clone(memory_format=torch.contiguous_format)
49
+ # evaluate objective and gradient using initial step
50
+ f_new, g_new = obj_func(x, t, d)
51
+ ls_func_evals = 1
52
+ gtd_new = g_new.dot(d)
53
+
54
+ # bracket an interval containing a point satisfying the Wolfe criteria
55
+ t_prev, f_prev, g_prev, gtd_prev = 0, f, g, gtd
56
+ done = False
57
+ ls_iter = 0
58
+ while ls_iter < max_ls:
59
+ # check conditions
60
+ if f_new > (f + c1 * t * gtd) or (ls_iter > 1 and f_new >= f_prev):
61
+ bracket = [t_prev, t]
62
+ bracket_f = [f_prev, f_new]
63
+ bracket_g = [g_prev, g_new.clone(memory_format=torch.contiguous_format)]
64
+ bracket_gtd = [gtd_prev, gtd_new]
65
+ break
66
+
67
+ if abs(gtd_new) <= -c2 * gtd:
68
+ bracket = [t]
69
+ bracket_f = [f_new]
70
+ bracket_g = [g_new]
71
+ done = True
72
+ break
73
+
74
+ if gtd_new >= 0:
75
+ bracket = [t_prev, t]
76
+ bracket_f = [f_prev, f_new]
77
+ bracket_g = [g_prev, g_new.clone(memory_format=torch.contiguous_format)]
78
+ bracket_gtd = [gtd_prev, gtd_new]
79
+ break
80
+
81
+ # interpolate
82
+ min_step = t + 0.01 * (t - t_prev)
83
+ max_step = t * 10
84
+ tmp = t
85
+ t = _cubic_interpolate(
86
+ t_prev,
87
+ f_prev,
88
+ gtd_prev,
89
+ t,
90
+ f_new,
91
+ gtd_new,
92
+ bounds=(min_step, max_step))
93
+
94
+ # next step
95
+ t_prev = tmp
96
+ f_prev = f_new
97
+ g_prev = g_new.clone(memory_format=torch.contiguous_format)
98
+ gtd_prev = gtd_new
99
+ f_new, g_new = obj_func(x, t, d)
100
+ ls_func_evals += 1
101
+ gtd_new = g_new.dot(d)
102
+ ls_iter += 1
103
+
104
+ # reached max number of iterations?
105
+ if ls_iter == max_ls:
106
+ bracket = [0, t]
107
+ bracket_f = [f, f_new]
108
+ bracket_g = [g, g_new]
109
+
110
+ # zoom phase: we now have a point satisfying the criteria, or
111
+ # a bracket around it. We refine the bracket until we find the
112
+ # exact point satisfying the criteria
113
+ insuf_progress = False
114
+ # find high and low points in bracket
115
+ low_pos, high_pos = (0, 1) if bracket_f[0] <= bracket_f[-1] else (1, 0)
116
+ while not done and ls_iter < max_ls:
117
+ # line-search bracket is so small
118
+ if abs(bracket[1] - bracket[0]) * d_norm < tolerance_change:
119
+ break
120
+
121
+ # compute new trial value
122
+ t = _cubic_interpolate(bracket[0], bracket_f[0], bracket_gtd[0],
123
+ bracket[1], bracket_f[1], bracket_gtd[1])
124
+
125
+ # test that we are making sufficient progress:
126
+ # in case `t` is so close to boundary, we mark that we are making
127
+ # insufficient progress, and if
128
+ # + we have made insufficient progress in the last step, or
129
+ # + `t` is at one of the boundary,
130
+ # we will move `t` to a position which is `0.1 * len(bracket)`
131
+ # away from the nearest boundary point.
132
+ eps = 0.1 * (max(bracket) - min(bracket))
133
+ if min(max(bracket) - t, t - min(bracket)) < eps:
134
+ # interpolation close to boundary
135
+ if insuf_progress or t >= max(bracket) or t <= min(bracket):
136
+ # evaluate at 0.1 away from boundary
137
+ if abs(t - max(bracket)) < abs(t - min(bracket)):
138
+ t = max(bracket) - eps
139
+ else:
140
+ t = min(bracket) + eps
141
+ insuf_progress = False
142
+ else:
143
+ insuf_progress = True
144
+ else:
145
+ insuf_progress = False
146
+
147
+ # Evaluate new point
148
+ f_new, g_new = obj_func(x, t, d)
149
+ ls_func_evals += 1
150
+ gtd_new = g_new.dot(d)
151
+ ls_iter += 1
152
+
153
+ if f_new > (f + c1 * t * gtd) or f_new >= bracket_f[low_pos]:
154
+ # Armijo condition not satisfied or not lower than lowest point
155
+ bracket[high_pos] = t
156
+ bracket_f[high_pos] = f_new
157
+ bracket_g[high_pos] = g_new.clone(memory_format=torch.contiguous_format)
158
+ bracket_gtd[high_pos] = gtd_new
159
+ low_pos, high_pos = (0, 1) if bracket_f[0] <= bracket_f[1] else (1, 0)
160
+ else:
161
+ if abs(gtd_new) <= -c2 * gtd:
162
+ # Wolfe conditions satisfied
163
+ done = True
164
+ elif gtd_new * (bracket[high_pos] - bracket[low_pos]) >= 0:
165
+ # old high becomes new low
166
+ bracket[high_pos] = bracket[low_pos]
167
+ bracket_f[high_pos] = bracket_f[low_pos]
168
+ bracket_g[high_pos] = bracket_g[low_pos]
169
+ bracket_gtd[high_pos] = bracket_gtd[low_pos]
170
+
171
+ # new point becomes new low
172
+ bracket[low_pos] = t
173
+ bracket_f[low_pos] = f_new
174
+ bracket_g[low_pos] = g_new.clone(memory_format=torch.contiguous_format)
175
+ bracket_gtd[low_pos] = gtd_new
176
+
177
+ # return stuff
178
+ t = bracket[low_pos]
179
+ f_new = bracket_f[low_pos]
180
+ g_new = bracket_g[low_pos]
181
+ return f_new, g_new, t, ls_func_evals
182
+
183
+
184
+ class LBFGS(Optimizer):
185
+ """Implements L-BFGS algorithm.
186
+
187
+ Heavily inspired by `minFunc
188
+ <https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html>`_.
189
+
190
+ .. warning::
191
+ This optimizer doesn't support per-parameter options and parameter
192
+ groups (there can be only one).
193
+
194
+ .. warning::
195
+ Right now all parameters have to be on a single device. This will be
196
+ improved in the future.
197
+
198
+ .. note::
199
+ This is a very memory intensive optimizer (it requires additional
200
+ ``param_bytes * (history_size + 1)`` bytes). If it doesn't fit in memory
201
+ try reducing the history size, or use a different algorithm.
202
+
203
+ Args:
204
+ lr (float): learning rate (default: 1)
205
+ max_iter (int): maximal number of iterations per optimization step
206
+ (default: 20)
207
+ max_eval (int): maximal number of function evaluations per optimization
208
+ step (default: max_iter * 1.25).
209
+ tolerance_grad (float): termination tolerance on first order optimality
210
+ (default: 1e-7).
211
+ tolerance_change (float): termination tolerance on function
212
+ value/parameter changes (default: 1e-9).
213
+ history_size (int): update history size (default: 100).
214
+ line_search_fn (str): either 'strong_wolfe' or None (default: None).
215
+ """
216
+
217
+ def __init__(self,
218
+ params,
219
+ lr=1,
220
+ max_iter=20,
221
+ max_eval=None,
222
+ tolerance_grad=1e-7,
223
+ tolerance_change=1e-9,
224
+ history_size=100,
225
+ line_search_fn=None):
226
+ if max_eval is None:
227
+ max_eval = max_iter * 5 // 4
228
+ defaults = dict(
229
+ lr=lr,
230
+ max_iter=max_iter,
231
+ max_eval=max_eval,
232
+ tolerance_grad=tolerance_grad,
233
+ tolerance_change=tolerance_change,
234
+ history_size=history_size,
235
+ line_search_fn=line_search_fn)
236
+ super().__init__(params, defaults)
237
+
238
+ if len(self.param_groups) != 1:
239
+ raise ValueError("LBFGS doesn't support per-parameter options "
240
+ "(parameter groups)")
241
+
242
+ self._params = self.param_groups[0]['params']
243
+ self._numel_cache = None
244
+
245
+ def _numel(self):
246
+ if self._numel_cache is None:
247
+ self._numel_cache = reduce(lambda total, p: total + p.numel(), self._params, 0)
248
+ return self._numel_cache
249
+
250
+ def _gather_flat_grad(self):
251
+ views = []
252
+ for p in self._params:
253
+ if p.grad is None:
254
+ view = p.new(p.numel()).zero_()
255
+ elif p.grad.is_sparse:
256
+ view = p.grad.to_dense().view(-1)
257
+ else:
258
+ view = p.grad.view(-1)
259
+ views.append(view)
260
+ return torch.cat(views, 0)
261
+
262
+ def _add_grad(self, step_size, update):
263
+ offset = 0
264
+ for p in self._params:
265
+ numel = p.numel()
266
+ # view as to avoid deprecated pointwise semantics
267
+ p.add_(update[offset:offset + numel].view_as(p), alpha=step_size)
268
+ offset += numel
269
+ assert offset == self._numel()
270
+
271
+ def _clone_param(self):
272
+ return [p.clone(memory_format=torch.contiguous_format) for p in self._params]
273
+
274
+ def _set_param(self, params_data):
275
+ for p, pdata in zip(self._params, params_data):
276
+ p.copy_(pdata)
277
+
278
+ def _directional_evaluate(self, closure, x, t, d):
279
+ self._add_grad(t, d)
280
+ loss = float(closure())
281
+ flat_grad = self._gather_flat_grad()
282
+ self._set_param(x)
283
+ return loss, flat_grad
284
+
285
+ @torch.no_grad()
286
+ def step(self, closure):
287
+ """Perform a single optimization step.
288
+
289
+ Args:
290
+ closure (Callable): A closure that reevaluates the model
291
+ and returns the loss.
292
+ """
293
+ assert len(self.param_groups) == 1
294
+
295
+ # Make sure the closure is always called with grad enabled
296
+ closure = torch.enable_grad()(closure)
297
+
298
+ group = self.param_groups[0]
299
+ lr = group['lr']
300
+ max_iter = group['max_iter']
301
+ max_eval = group['max_eval']
302
+ tolerance_grad = group['tolerance_grad']
303
+ tolerance_change = group['tolerance_change']
304
+ line_search_fn = group['line_search_fn']
305
+ history_size = group['history_size']
306
+
307
+ # NOTE: LBFGS has only global state, but we register it as state for
308
+ # the first param, because this helps with casting in load_state_dict
309
+ state = self.state[self._params[0]]
310
+ state.setdefault('func_evals', 0)
311
+ state.setdefault('n_iter', 0)
312
+
313
+ # evaluate initial f(x) and df/dx
314
+ orig_loss = closure()
315
+ loss = float(orig_loss)
316
+ current_evals = 1
317
+ state['func_evals'] += 1
318
+
319
+ flat_grad = self._gather_flat_grad()
320
+ opt_cond = flat_grad.abs().max() <= tolerance_grad
321
+
322
+ # optimal condition
323
+ if opt_cond:
324
+ return orig_loss
325
+
326
+ # tensors cached in state (for tracing)
327
+ d = state.get('d')
328
+ t = state.get('t')
329
+ old_dirs = state.get('old_dirs')
330
+ old_stps = state.get('old_stps')
331
+ ro = state.get('ro')
332
+ H_diag = state.get('H_diag')
333
+ prev_flat_grad = state.get('prev_flat_grad')
334
+ prev_loss = state.get('prev_loss')
335
+
336
+ n_iter = 0
337
+ # optimize for a max of max_iter iterations
338
+ while n_iter < max_iter:
339
+ # keep track of nb of iterations
340
+ n_iter += 1
341
+ state['n_iter'] += 1
342
+
343
+ ############################################################
344
+ # compute gradient descent direction
345
+ ############################################################
346
+ if state['n_iter'] == 1:
347
+ d = flat_grad.neg()
348
+ old_dirs = []
349
+ old_stps = []
350
+ ro = []
351
+ H_diag = 1
352
+ else:
353
+ # do lbfgs update (update memory)
354
+ y = flat_grad.sub(prev_flat_grad)
355
+ s = d.mul(t)
356
+ ys = y.dot(s) # y*s
357
+ if ys > 1e-10:
358
+ # updating memory
359
+ if len(old_dirs) == history_size:
360
+ # shift history by one (limited-memory)
361
+ old_dirs.pop(0)
362
+ old_stps.pop(0)
363
+ ro.pop(0)
364
+
365
+ # store new direction/step
366
+ old_dirs.append(y)
367
+ old_stps.append(s)
368
+ ro.append(1. / ys)
369
+
370
+ # update scale of initial Hessian approximation
371
+ H_diag = ys / y.dot(y) # (y*y)
372
+
373
+ # compute the approximate (L-BFGS) inverse Hessian
374
+ # multiplied by the gradient
375
+ num_old = len(old_dirs)
376
+
377
+ if 'al' not in state:
378
+ state['al'] = [None] * history_size
379
+ al = state['al']
380
+
381
+ # iteration in L-BFGS loop collapsed to use just one buffer
382
+ q = flat_grad.neg()
383
+ for i in range(num_old - 1, -1, -1):
384
+ al[i] = old_stps[i].dot(q) * ro[i]
385
+ q.add_(old_dirs[i], alpha=-al[i])
386
+
387
+ # multiply by initial Hessian
388
+ # r/d is the final direction
389
+ d = r = torch.mul(q, H_diag)
390
+ for i in range(num_old):
391
+ be_i = old_dirs[i].dot(r) * ro[i]
392
+ r.add_(old_stps[i], alpha=al[i] - be_i)
393
+
394
+ if prev_flat_grad is None:
395
+ prev_flat_grad = flat_grad.clone(memory_format=torch.contiguous_format)
396
+ else:
397
+ prev_flat_grad.copy_(flat_grad)
398
+ prev_loss = loss
399
+
400
+ ############################################################
401
+ # compute step length
402
+ ############################################################
403
+ # reset initial guess for step size
404
+ if state['n_iter'] == 1:
405
+ t = min(1., 1. / flat_grad.abs().sum()) * lr
406
+ else:
407
+ t = lr
408
+
409
+ # directional derivative
410
+ gtd = flat_grad.dot(d) # g * d
411
+
412
+ # directional derivative is below tolerance
413
+ if gtd > -tolerance_change:
414
+ break
415
+
416
+ # optional line search: user function
417
+ ls_func_evals = 0
418
+ if line_search_fn is not None:
419
+ # perform line search, using user function
420
+ if line_search_fn != "strong_wolfe":
421
+ raise RuntimeError("only 'strong_wolfe' is supported")
422
+ else:
423
+ x_init = self._clone_param()
424
+
425
+ def obj_func(x, t, d):
426
+ return self._directional_evaluate(closure, x, t, d)
427
+
428
+ loss, flat_grad, t, ls_func_evals = _strong_wolfe(
429
+ obj_func, x_init, t, d, loss, flat_grad, gtd)
430
+ self._add_grad(t, d)
431
+ opt_cond = flat_grad.abs().max() <= tolerance_grad
432
+ else:
433
+ # no line search, simply move with fixed-step
434
+ self._add_grad(t, d)
435
+ if n_iter != max_iter:
436
+ # re-evaluate function only if not in last iteration
437
+ # the reason we do this: in a stochastic setting,
438
+ # no use to re-evaluate that function here
439
+ with torch.enable_grad():
440
+ loss = float(closure())
441
+ flat_grad = self._gather_flat_grad()
442
+ opt_cond = flat_grad.abs().max() <= tolerance_grad
443
+ ls_func_evals = 1
444
+
445
+ # update func eval
446
+ current_evals += ls_func_evals
447
+ state['func_evals'] += ls_func_evals
448
+
449
+ ############################################################
450
+ # check conditions
451
+ ############################################################
452
+ if n_iter == max_iter:
453
+ break
454
+
455
+ if current_evals >= max_eval:
456
+ break
457
+
458
+ # optimal condition
459
+ if opt_cond:
460
+ break
461
+
462
+ # lack of progress
463
+ if d.mul(t).abs().max() <= tolerance_change:
464
+ break
465
+
466
+ if abs(loss - prev_loss) < tolerance_change:
467
+ break
468
+
469
+ state['d'] = d
470
+ state['t'] = t
471
+ state['old_dirs'] = old_dirs
472
+ state['old_stps'] = old_stps
473
+ state['ro'] = ro
474
+ state['H_diag'] = H_diag
475
+ state['prev_flat_grad'] = prev_flat_grad
476
+ state['prev_loss'] = prev_loss
477
+
478
+ return orig_loss
env-llmeval/lib/python3.10/site-packages/torch/optim/nadam.py ADDED
@@ -0,0 +1,473 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import Tensor
3
+ from .optimizer import (Optimizer, _use_grad_for_differentiable, _get_value, _dispatch_sqrt, _stack_if_compiling,
4
+ _capturable_doc, _differentiable_doc, _foreach_doc, _default_to_fused_or_foreach, _view_as_real)
5
+ from typing import List, Optional
6
+
7
+ __all__ = ['NAdam', 'nadam']
8
+
9
+ class NAdam(Optimizer):
10
+ def __init__(self, params, lr=2e-3, betas=(0.9, 0.999), eps=1e-8,
11
+ weight_decay=0, momentum_decay=4e-3, decoupled_weight_decay: bool = False,
12
+ *, foreach: Optional[bool] = None, capturable: bool = False,
13
+ differentiable: bool = False):
14
+ if not 0.0 <= lr:
15
+ raise ValueError(f"Invalid learning rate: {lr}")
16
+ if not 0.0 <= eps:
17
+ raise ValueError(f"Invalid epsilon value: {eps}")
18
+ if not 0.0 <= betas[0] < 1.0:
19
+ raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
20
+ if not 0.0 <= betas[1] < 1.0:
21
+ raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
22
+ if not 0.0 <= weight_decay:
23
+ raise ValueError(f"Invalid weight_decay value: {weight_decay}")
24
+ if not 0.0 <= momentum_decay:
25
+ raise ValueError(f"Invalid momentum_decay value: {momentum_decay}")
26
+ defaults = dict(lr=lr, betas=betas, eps=eps,
27
+ weight_decay=weight_decay, momentum_decay=momentum_decay,
28
+ decoupled_weight_decay=decoupled_weight_decay,
29
+ foreach=foreach, capturable=capturable, differentiable=differentiable)
30
+ super().__init__(params, defaults)
31
+
32
+ def __setstate__(self, state):
33
+ super().__setstate__(state)
34
+ for group in self.param_groups:
35
+ group.setdefault('foreach', None)
36
+ group.setdefault('capturable', False)
37
+ group.setdefault('differentiable', False)
38
+ group.setdefault('decoupled_weight_decay', False)
39
+ state_values = list(self.state.values())
40
+ step_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['step'])
41
+ if not step_is_tensor:
42
+ for s in state_values:
43
+ s['step'] = torch.tensor(float(s['step']), dtype=torch.float32)
44
+ mu_product_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['mu_product'])
45
+ if not mu_product_is_tensor:
46
+ for s in state_values:
47
+ s['mu_product'] = torch.tensor(s['mu_product'], dtype=torch.float32)
48
+
49
+ def _init_group(self, group, params_with_grad, grads, exp_avgs, exp_avg_sqs, mu_products, state_steps):
50
+ has_complex = False
51
+ for p in group['params']:
52
+ if p.grad is not None:
53
+ has_complex |= torch.is_complex(p)
54
+ params_with_grad.append(p)
55
+ if p.grad.is_sparse:
56
+ raise RuntimeError('NAdam does not support sparse gradients')
57
+ grads.append(p.grad)
58
+
59
+ state = self.state[p]
60
+ # Lazy state initialization
61
+ if len(state) == 0:
62
+ # note(crcrpar): [special device hosting for step]
63
+ # Deliberately host `step` and `mu_product` on CPU if capturable is False.
64
+ # This is because kernel launches are costly on CUDA and XLA.
65
+ state['step'] = (
66
+ torch.zeros((), dtype=torch.float32, device=p.device)
67
+ if group['capturable'] else torch.tensor(0.0, dtype=torch.float32)
68
+ )
69
+ state['mu_product'] = (
70
+ torch.ones((), dtype=torch.float32, device=p.device)
71
+ if group['capturable'] else torch.tensor(1.0, dtype=torch.float32)
72
+ )
73
+ # Exponential moving average of gradient values
74
+ state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
75
+ # Exponential moving average of squared gradient values
76
+ state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
77
+
78
+ exp_avgs.append(state['exp_avg'])
79
+ exp_avg_sqs.append(state['exp_avg_sq'])
80
+ mu_products.append(state['mu_product'])
81
+ state_steps.append(state['step'])
82
+ return has_complex
83
+
84
+ @_use_grad_for_differentiable
85
+ def step(self, closure=None):
86
+ """Performs a single optimization step.
87
+
88
+ Args:
89
+ closure (Callable, optional): A closure that reevaluates the model
90
+ and returns the loss.
91
+ """
92
+ self._cuda_graph_capture_health_check()
93
+
94
+ loss = None
95
+ if closure is not None:
96
+ with torch.enable_grad():
97
+ loss = closure()
98
+
99
+ for group in self.param_groups:
100
+ params_with_grad = []
101
+ grads = []
102
+ exp_avgs = []
103
+ exp_avg_sqs = []
104
+ mu_products = []
105
+ state_steps = []
106
+ beta1, beta2 = group['betas']
107
+
108
+ has_complex = self._init_group(group, params_with_grad, grads, exp_avgs, exp_avg_sqs, mu_products, state_steps)
109
+
110
+ nadam(params_with_grad,
111
+ grads,
112
+ exp_avgs,
113
+ exp_avg_sqs,
114
+ mu_products,
115
+ state_steps,
116
+ beta1=beta1,
117
+ beta2=beta2,
118
+ lr=group['lr'],
119
+ weight_decay=group['weight_decay'],
120
+ momentum_decay=group['momentum_decay'],
121
+ eps=group['eps'],
122
+ decoupled_weight_decay=group['decoupled_weight_decay'],
123
+ foreach=group['foreach'],
124
+ capturable=group['capturable'],
125
+ differentiable=group['differentiable'],
126
+ has_complex=has_complex)
127
+
128
+ return loss
129
+
130
+ NAdam.__doc__ = r"""Implements NAdam algorithm.
131
+
132
+ .. math::
133
+ \begin{aligned}
134
+ &\rule{110mm}{0.4pt} \\
135
+ &\textbf{input} : \gamma_t \text{ (lr)}, \: \beta_1,\beta_2 \text{ (betas)},
136
+ \: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)} \\
137
+ &\hspace{13mm} \: \lambda \text{ (weight decay)}, \:\psi \text{ (momentum decay)} \\
138
+ &\hspace{13mm} \: \textit{decoupled\_weight\_decay} \\
139
+ &\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)},
140
+ v_0 \leftarrow 0 \text{ ( second moment)} \\[-1.ex]
141
+ &\rule{110mm}{0.4pt} \\
142
+ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
143
+ &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
144
+ &\hspace{5mm} \theta_t \leftarrow \theta_{t-1} \\
145
+ &\hspace{5mm} \textbf{if} \: \lambda \neq 0 \\
146
+ &\hspace{10mm}\textbf{if} \: \textit{decoupled\_weight\_decay} \\
147
+ &\hspace{15mm} \theta_t \leftarrow \theta_{t-1} - \gamma \lambda \theta_{t-1} \\
148
+ &\hspace{10mm}\textbf{else} \\
149
+ &\hspace{15mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\
150
+ &\hspace{5mm} \mu_t \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{t \psi} \big) \\
151
+ &\hspace{5mm} \mu_{t+1} \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{(t+1)\psi}\big)\\
152
+ &\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\
153
+ &\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\
154
+ &\hspace{5mm}\widehat{m_t} \leftarrow \mu_{t+1} m_t/(1-\prod_{i=1}^{t+1}\mu_i)\\[-1.ex]
155
+ & \hspace{11mm} + (1-\mu_t) g_t /(1-\prod_{i=1}^{t} \mu_{i}) \\
156
+ &\hspace{5mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \\
157
+ &\hspace{5mm}\theta_t \leftarrow \theta_t - \gamma \widehat{m_t}/
158
+ \big(\sqrt{\widehat{v_t}} + \epsilon \big) \\
159
+ &\rule{110mm}{0.4pt} \\[-1.ex]
160
+ &\bf{return} \: \theta_t \\[-1.ex]
161
+ &\rule{110mm}{0.4pt} \\[-1.ex]
162
+ \end{aligned}
163
+
164
+ For further details regarding the algorithm we refer to `Incorporating Nesterov Momentum into Adam`_.
165
+ """ + fr"""
166
+ Args:
167
+ params (iterable): iterable of parameters to optimize or dicts defining
168
+ parameter groups
169
+ lr (float, optional): learning rate (default: 2e-3)
170
+ betas (Tuple[float, float], optional): coefficients used for computing
171
+ running averages of gradient and its square (default: (0.9, 0.999))
172
+ eps (float, optional): term added to the denominator to improve
173
+ numerical stability (default: 1e-8)
174
+ weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
175
+ momentum_decay (float, optional): momentum momentum_decay (default: 4e-3)
176
+ decoupled_weight_decay (bool, optional): whether to use decoupled weight
177
+ decay as in AdamW to obtain NAdamW (default: False)
178
+ {_foreach_doc}
179
+ {_capturable_doc}
180
+ {_differentiable_doc}
181
+
182
+ .. _Incorporating Nesterov Momentum into Adam:
183
+ https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
184
+ .. _Decoupled Weight Decay Regularization:
185
+ https://arxiv.org/abs/1711.05101
186
+
187
+ """
188
+
189
+
190
+ def nadam(params: List[Tensor],
191
+ grads: List[Tensor],
192
+ exp_avgs: List[Tensor],
193
+ exp_avg_sqs: List[Tensor],
194
+ mu_products: List[Tensor],
195
+ state_steps: List[Tensor],
196
+ # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
197
+ # setting this as kwarg for now as functional API is compiled by torch/distributed/optim
198
+ decoupled_weight_decay: bool = False,
199
+ foreach: Optional[bool] = None,
200
+ capturable: bool = False,
201
+ differentiable: bool = False,
202
+ has_complex: bool = False,
203
+ *,
204
+ beta1: float,
205
+ beta2: float,
206
+ lr: float,
207
+ weight_decay: float,
208
+ momentum_decay: float,
209
+ eps: float):
210
+ r"""Functional API that performs NAdam algorithm computation.
211
+
212
+ See :class:`~torch.optim.NAdam` for details.
213
+ """
214
+
215
+
216
+ if not all(isinstance(t, torch.Tensor) for t in state_steps):
217
+ raise RuntimeError("API has changed, `state_steps` argument must contain a list of singleton tensors")
218
+
219
+ if not all(isinstance(t, torch.Tensor) for t in mu_products):
220
+ raise RuntimeError("API has changed, `mu_products` argument must contain a list of singleton tensors")
221
+
222
+ if foreach is None:
223
+ _, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False)
224
+
225
+ if foreach and torch.jit.is_scripting():
226
+ raise RuntimeError('torch.jit.script not supported with foreach optimizers')
227
+
228
+ if foreach and not torch.jit.is_scripting():
229
+ func = _multi_tensor_nadam
230
+ else:
231
+ func = _single_tensor_nadam
232
+
233
+ func(params,
234
+ grads,
235
+ exp_avgs,
236
+ exp_avg_sqs,
237
+ mu_products,
238
+ state_steps,
239
+ beta1=beta1,
240
+ beta2=beta2,
241
+ lr=lr,
242
+ weight_decay=weight_decay,
243
+ momentum_decay=momentum_decay,
244
+ decoupled_weight_decay=decoupled_weight_decay,
245
+ eps=eps,
246
+ capturable=capturable,
247
+ differentiable=differentiable,
248
+ has_complex=has_complex)
249
+
250
+
251
+ def _single_tensor_nadam(params: List[Tensor],
252
+ grads: List[Tensor],
253
+ exp_avgs: List[Tensor],
254
+ exp_avg_sqs: List[Tensor],
255
+ mu_products: List[Tensor],
256
+ state_steps: List[Tensor],
257
+ *,
258
+ beta1: float,
259
+ beta2: float,
260
+ lr: float,
261
+ weight_decay: float,
262
+ momentum_decay: float,
263
+ eps: float,
264
+ decoupled_weight_decay: bool,
265
+ capturable: bool,
266
+ differentiable: bool,
267
+ has_complex: bool):
268
+
269
+ for i, param in enumerate(params):
270
+ grad = grads[i]
271
+ exp_avg = exp_avgs[i]
272
+ exp_avg_sq = exp_avg_sqs[i]
273
+ mu_product = mu_products[i]
274
+ step_t = state_steps[i]
275
+
276
+ if torch.is_complex(param):
277
+ param = torch.view_as_real(param)
278
+ grad = torch.view_as_real(grad)
279
+ exp_avg = torch.view_as_real(exp_avg)
280
+ exp_avg_sq = torch.view_as_real(exp_avg_sq)
281
+
282
+ # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
283
+ if not torch._utils.is_compiling() and capturable:
284
+ assert (
285
+ (param.is_cuda and mu_product.is_cuda and step_t.is_cuda) or (param.is_xla and mu_product.is_xla and step_t.is_xla)
286
+ ), "If capturable=True, params, mu_products, and state_steps must be CUDA or XLA tensors."
287
+
288
+ # update step
289
+ step_t += 1
290
+
291
+ if capturable:
292
+ step = step_t
293
+ else:
294
+ step = _get_value(step_t)
295
+
296
+ bias_correction2 = 1 - beta2 ** step
297
+
298
+ if weight_decay != 0:
299
+ if decoupled_weight_decay:
300
+ # Perform stepweight decay
301
+ param.mul_(1 - lr * weight_decay)
302
+ else:
303
+ grad = grad.add(param, alpha=weight_decay)
304
+
305
+ # calculate the momentum cache \mu^{t} and \mu^{t+1}
306
+ mu = beta1 * (1. - 0.5 * (0.96 ** (step * momentum_decay)))
307
+ mu_next = beta1 * (1. - 0.5 * (0.96 ** ((step + 1) * momentum_decay)))
308
+
309
+ # update mu_product
310
+ mu_product *= mu
311
+
312
+ # decay the first and second moment running average coefficient
313
+ exp_avg.lerp_(grad, 1 - beta1)
314
+ exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
315
+ denom = exp_avg_sq.div(bias_correction2).sqrt()
316
+
317
+ if differentiable or capturable:
318
+ denom = denom.add(eps)
319
+ # Make autograd track the operations
320
+ # by updating the grad and exp_avg directly and not using the
321
+ # scalar "value" argument of addcdiv.
322
+ mu_product_next = mu_product * mu_next
323
+ grad = grad * (-lr * (1. - mu) / (1. - mu_product))
324
+ exp_avg = exp_avg * (-lr * mu_next / (1. - mu_product_next))
325
+ param.addcdiv_(grad, denom)
326
+ param.addcdiv_(exp_avg, denom)
327
+ else:
328
+ mu_product_next = _get_value(mu_product) * mu_next
329
+ denom.add_(eps)
330
+ param.addcdiv_(grad, denom, value=(-lr * (1. - mu) / (1. - _get_value(mu_product))))
331
+ param.addcdiv_(exp_avg, denom, value=(-lr * mu_next) / (1. - mu_product_next))
332
+
333
+
334
+ def _multi_tensor_nadam(params: List[Tensor],
335
+ grads: List[Tensor],
336
+ exp_avgs: List[Tensor],
337
+ exp_avg_sqs: List[Tensor],
338
+ mu_products: List[Tensor],
339
+ state_steps: List[Tensor],
340
+ *,
341
+ beta1: float,
342
+ beta2: float,
343
+ lr: float,
344
+ weight_decay: float,
345
+ momentum_decay: float,
346
+ eps: float,
347
+ decoupled_weight_decay: bool,
348
+ capturable: bool,
349
+ differentiable: bool,
350
+ has_complex: bool):
351
+
352
+ if len(params) == 0:
353
+ return
354
+
355
+ assert not differentiable, "_foreach ops don't support autograd"
356
+
357
+ # If compiling, the compiler will handle cudagraph checks, see note [torch.compile x capturable]
358
+ if not torch._utils.is_compiling() and capturable:
359
+ assert all(p.is_cuda and mp.is_cuda and step.is_cuda
360
+ for p, mp, step in zip(params, mu_products, state_steps)), \
361
+ "If capturable=True, params, mu_products, and state_steps must be CUDA tensors."
362
+
363
+
364
+ grouped_tensors = Optimizer._group_tensors_by_device_and_dtype([params, grads, exp_avgs, exp_avg_sqs, mu_products, state_steps])
365
+ for ((grouped_params, grouped_grads, grouped_exp_avgs,
366
+ grouped_exp_avg_sqs, grouped_mu_products, grouped_state_steps), _) in grouped_tensors.values():
367
+
368
+ # handle complex
369
+ if has_complex:
370
+ _view_as_real(grouped_params, grouped_grads, grouped_exp_avgs, grouped_exp_avg_sqs)
371
+
372
+ # Update steps
373
+ # If steps are on CPU, foreach will fall back to the slow path, which is a for-loop calling t.add(1) over
374
+ # and over. 1 will then be wrapped into a Tensor over and over again, which is slower than if we just
375
+ # wrapped it once now. The alpha is required to assure we go to the right overload.
376
+ if grouped_state_steps[0].is_cpu:
377
+ torch._foreach_add_(grouped_state_steps, torch.tensor(1.0, device='cpu'), alpha=1.0)
378
+ else:
379
+ torch._foreach_add_(grouped_state_steps, 1)
380
+
381
+ if weight_decay != 0:
382
+ if decoupled_weight_decay:
383
+ # Perform stepweight decay
384
+ torch._foreach_mul_(grouped_params, 1 - lr * weight_decay)
385
+ else:
386
+ grouped_grads = torch._foreach_add(grouped_grads, grouped_params, alpha=weight_decay)
387
+
388
+ # Decay the first and second moment running average coefficient
389
+ torch._foreach_lerp_(grouped_exp_avgs, grouped_grads, 1 - beta1)
390
+
391
+ torch._foreach_mul_(grouped_exp_avg_sqs, beta2)
392
+ torch._foreach_addcmul_(grouped_exp_avg_sqs, grouped_grads, grouped_grads, 1 - beta2)
393
+
394
+ exp_avg_sq_sqrt = torch._foreach_sqrt(grouped_exp_avg_sqs)
395
+
396
+ if capturable:
397
+ # mus will be beta1 * (1 - 0.5 * 0.96 ** (step * momentum_decay))
398
+ exponent = torch._foreach_mul(grouped_state_steps, momentum_decay)
399
+ mus = torch._foreach_pow(0.96, exponent)
400
+ torch._foreach_mul_(mus, -0.5)
401
+ torch._foreach_add_(mus, 1.0)
402
+ torch._foreach_mul_(mus, beta1)
403
+
404
+ # mu_nexts will be beta1 * (1 - 0.5 * 0.96 ** ((step + 1) * momentum_decay))
405
+ torch._foreach_add_(exponent, momentum_decay)
406
+ mu_nexts = torch._foreach_pow(0.96, exponent)
407
+ torch._foreach_mul_(mu_nexts, -0.5)
408
+ torch._foreach_add_(mu_nexts, 1.0)
409
+ torch._foreach_mul_(mu_nexts, beta1)
410
+
411
+ # save peak memory as we don't need exponent anymore
412
+ del exponent
413
+
414
+ bias_correction_sqrt = torch._foreach_pow(beta2, grouped_state_steps)
415
+ # foreach_sub doesn't allow a scalar as the first arg
416
+ torch._foreach_sub_(bias_correction_sqrt, 1.0)
417
+ torch._foreach_neg_(bias_correction_sqrt)
418
+ torch._foreach_sqrt_(bias_correction_sqrt)
419
+ else:
420
+ bias_correction_sqrt = [_dispatch_sqrt(1 - beta2 ** _get_value(step)) for step in grouped_state_steps]
421
+ mus = [beta1 * (1. - 0.5 * (0.96 ** (_get_value(step) * momentum_decay))) for step in grouped_state_steps]
422
+ mu_nexts = [beta1 * (1. - 0.5 * (0.96 ** ((_get_value(step) + 1) * momentum_decay)))
423
+ for step in grouped_state_steps]
424
+
425
+ # update mu_products
426
+ torch._foreach_mul_(grouped_mu_products, mus)
427
+
428
+ torch._foreach_div_(exp_avg_sq_sqrt, bias_correction_sqrt)
429
+ torch._foreach_add_(exp_avg_sq_sqrt, eps)
430
+
431
+ # explicitly delete bias_correction refs to save memory
432
+ del bias_correction_sqrt
433
+
434
+ if capturable:
435
+ # Build up the step_size multiplier for grad, reusing mus' memory
436
+ torch._foreach_sub_(mus, 1.0)
437
+ torch._foreach_mul_(mus, lr)
438
+ # foreach_sub doesn't allow a scalar as the first arg
439
+ denom = torch._foreach_sub(grouped_mu_products, 1.0)
440
+ torch._foreach_neg_(denom)
441
+ torch._foreach_div_(mus, denom)
442
+ # - lr * (1 - mu) / (1 - mu_product)
443
+ step_size_grads = mus
444
+ # explicitly delete denom to save memory
445
+ del denom
446
+
447
+ # Build up the step_size multiplier for exp_avg, reusing mu_nexts' memory
448
+ denom = torch._foreach_mul(grouped_mu_products, mu_nexts)
449
+ torch._foreach_mul_(mu_nexts, lr)
450
+ # foreach_sub doesn't allow a scalar as the first arg, but it's okay because
451
+ # we need a negative here anyway
452
+ torch._foreach_sub_(denom, 1.0)
453
+ torch._foreach_div_(mu_nexts, denom)
454
+ # - lr * mu_next / (1 - mu_product * mu_next)
455
+ step_size_expavg = mu_nexts
456
+ # explicitly delete denom to save memory
457
+ del denom
458
+
459
+ # we cannot inplace into step_size_grads cuz it is a list of ScalarTensors
460
+ # and mul'ing with grouped_grads will result in a list of bigger Tensors
461
+ numerator = torch._foreach_mul(step_size_grads, grouped_grads)
462
+ torch._foreach_addcmul_(numerator, step_size_expavg, grouped_exp_avgs)
463
+
464
+ # finally, update params
465
+ torch._foreach_addcdiv_(grouped_params, numerator, exp_avg_sq_sqrt)
466
+ else:
467
+ step_size_grads = _stack_if_compiling([(lr * (1. - mu) / (1. - _get_value(mu_product))) * -1
468
+ for mu_product, mu in zip(grouped_mu_products, mus)])
469
+ step_size_expavg = _stack_if_compiling([(lr * mu_next / (1. - _get_value(mu_product) * mu_next)) * -1
470
+ for mu_product, mu_next in zip(grouped_mu_products, mu_nexts)])
471
+
472
+ torch._foreach_addcdiv_(grouped_params, grouped_grads, exp_avg_sq_sqrt, step_size_grads)
473
+ torch._foreach_addcdiv_(grouped_params, grouped_exp_avgs, exp_avg_sq_sqrt, step_size_expavg)
env-llmeval/lib/python3.10/site-packages/torch/optim/nadam.pyi ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple
2
+
3
+ from .optimizer import Optimizer, ParamsT
4
+
5
+ class NAdam(Optimizer):
6
+ def __init__(
7
+ self,
8
+ params: ParamsT,
9
+ lr: float = ...,
10
+ betas: Tuple[float, float] = ...,
11
+ eps: float = ...,
12
+ weight_decay: float = ...,
13
+ momentum_decay: float = ...,
14
+ decoupled_weight_decay: bool = ...,
15
+ ) -> None: ...
env-llmeval/lib/python3.10/site-packages/torch/optim/radam.pyi ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple
2
+
3
+ from .optimizer import Optimizer, ParamsT
4
+
5
+ class RAdam(Optimizer):
6
+ def __init__(
7
+ self,
8
+ params: ParamsT,
9
+ lr: float = ...,
10
+ betas: Tuple[float, float] = ...,
11
+ eps: float = ...,
12
+ weight_decay: float = ...,
13
+ decoupled_weight_decay: bool = ...,
14
+ ) -> None: ...
env-llmeval/lib/python3.10/site-packages/torch/optim/rmsprop.pyi ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .optimizer import Optimizer, ParamsT
2
+
3
+ class RMSprop(Optimizer):
4
+ def __init__(
5
+ self,
6
+ params: ParamsT,
7
+ lr: float = ...,
8
+ alpha: float = ...,
9
+ eps: float = ...,
10
+ weight_decay: float = ...,
11
+ momentum: float = ...,
12
+ centered: bool = ...,
13
+ ) -> None: ...
env-llmeval/lib/python3.10/site-packages/torch/optim/rprop.py ADDED
@@ -0,0 +1,335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import Tensor
3
+ from .optimizer import (Optimizer, _use_grad_for_differentiable, _default_to_fused_or_foreach,
4
+ _differentiable_doc, _foreach_doc, _maximize_doc, _view_as_real)
5
+ from typing import List, Optional
6
+
7
+ __all__ = ["Rprop", "rprop"]
8
+
9
+
10
+ class Rprop(Optimizer):
11
+ def __init__(
12
+ self,
13
+ params,
14
+ lr=1e-2,
15
+ etas=(0.5, 1.2),
16
+ step_sizes=(1e-6, 50),
17
+ *,
18
+ foreach: Optional[bool] = None,
19
+ maximize: bool = False,
20
+ differentiable: bool = False,
21
+ ):
22
+ if not 0.0 <= lr:
23
+ raise ValueError(f"Invalid learning rate: {lr}")
24
+ if not 0.0 < etas[0] < 1.0 < etas[1]:
25
+ raise ValueError(f"Invalid eta values: {etas[0]}, {etas[1]}")
26
+
27
+ defaults = dict(
28
+ lr=lr,
29
+ etas=etas,
30
+ step_sizes=step_sizes,
31
+ foreach=foreach,
32
+ maximize=maximize,
33
+ differentiable=differentiable,
34
+ )
35
+ super().__init__(params, defaults)
36
+
37
+ def __setstate__(self, state):
38
+ super().__setstate__(state)
39
+ for group in self.param_groups:
40
+ group.setdefault("foreach", None)
41
+ group.setdefault("maximize", False)
42
+ group.setdefault("differentiable", False)
43
+
44
+ def _init_group(self, group, params, grads, prevs, step_sizes):
45
+ has_complex = False
46
+ for p in group["params"]:
47
+ if p.grad is None:
48
+ continue
49
+ has_complex |= torch.is_complex(p)
50
+ params.append(p)
51
+ grad = p.grad
52
+ if grad.is_sparse:
53
+ raise RuntimeError("Rprop does not support sparse gradients")
54
+
55
+ grads.append(grad)
56
+ state = self.state[p]
57
+
58
+ # State initialization
59
+ if len(state) == 0:
60
+ state["step"] = 0
61
+ state["prev"] = torch.zeros_like(
62
+ p, memory_format=torch.preserve_format
63
+ )
64
+ if p.dtype.is_complex:
65
+ # Complex Number should be as if they are two independent real numbers.
66
+ # Hence the step_size shouldn't be zero for imaginary part.
67
+ state["step_size"] = (
68
+ grad.new()
69
+ .resize_as_(grad)
70
+ .fill_(complex(group["lr"], group["lr"]))
71
+ )
72
+ else:
73
+ state["step_size"] = (
74
+ grad.new().resize_as_(grad).fill_(group["lr"])
75
+ )
76
+
77
+ prevs.append(state["prev"])
78
+ step_sizes.append(state["step_size"])
79
+
80
+ state["step"] += 1
81
+ return has_complex
82
+
83
+ @_use_grad_for_differentiable
84
+ def step(self, closure=None):
85
+ """Performs a single optimization step.
86
+
87
+ Args:
88
+ closure (Callable, optional): A closure that reevaluates the model
89
+ and returns the loss.
90
+ """
91
+ loss = None
92
+ if closure is not None:
93
+ with torch.enable_grad():
94
+ loss = closure()
95
+
96
+ for group in self.param_groups:
97
+ params = []
98
+ grads = []
99
+ prevs = []
100
+ step_sizes = []
101
+ etaminus, etaplus = group["etas"]
102
+ step_size_min, step_size_max = group["step_sizes"]
103
+ foreach = group["foreach"]
104
+ maximize = group["maximize"]
105
+
106
+ has_complex = self._init_group(group, params, grads, prevs, step_sizes)
107
+
108
+ rprop(
109
+ params,
110
+ grads,
111
+ prevs,
112
+ step_sizes,
113
+ step_size_min=step_size_min,
114
+ step_size_max=step_size_max,
115
+ etaminus=etaminus,
116
+ etaplus=etaplus,
117
+ foreach=foreach,
118
+ maximize=maximize,
119
+ differentiable=group["differentiable"],
120
+ has_complex=has_complex,
121
+ )
122
+
123
+ return loss
124
+
125
+
126
+ Rprop.__doc__ = r"""Implements the resilient backpropagation algorithm.
127
+
128
+ .. math::
129
+ \begin{aligned}
130
+ &\rule{110mm}{0.4pt} \\
131
+ &\textbf{input} : \theta_0 \in \mathbf{R}^d \text{ (params)},f(\theta)
132
+ \text{ (objective)}, \\
133
+ &\hspace{13mm} \eta_{+/-} \text{ (etaplus, etaminus)}, \Gamma_{max/min}
134
+ \text{ (step sizes)} \\
135
+ &\textbf{initialize} : g^0_{prev} \leftarrow 0,
136
+ \: \eta_0 \leftarrow \text{lr (learning rate)} \\
137
+ &\rule{110mm}{0.4pt} \\
138
+ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
139
+ &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
140
+ &\hspace{5mm} \textbf{for} \text{ } i = 0, 1, \ldots, d-1 \: \mathbf{do} \\
141
+ &\hspace{10mm} \textbf{if} \: g^i_{prev} g^i_t > 0 \\
142
+ &\hspace{15mm} \eta^i_t \leftarrow \mathrm{min}(\eta^i_{t-1} \eta_{+},
143
+ \Gamma_{max}) \\
144
+ &\hspace{10mm} \textbf{else if} \: g^i_{prev} g^i_t < 0 \\
145
+ &\hspace{15mm} \eta^i_t \leftarrow \mathrm{max}(\eta^i_{t-1} \eta_{-},
146
+ \Gamma_{min}) \\
147
+ &\hspace{15mm} g^i_t \leftarrow 0 \\
148
+ &\hspace{10mm} \textbf{else} \: \\
149
+ &\hspace{15mm} \eta^i_t \leftarrow \eta^i_{t-1} \\
150
+ &\hspace{5mm}\theta_t \leftarrow \theta_{t-1}- \eta_t \mathrm{sign}(g_t) \\
151
+ &\hspace{5mm}g_{prev} \leftarrow g_t \\
152
+ &\rule{110mm}{0.4pt} \\[-1.ex]
153
+ &\bf{return} \: \theta_t \\[-1.ex]
154
+ &\rule{110mm}{0.4pt} \\[-1.ex]
155
+ \end{aligned}
156
+
157
+ For further details regarding the algorithm we refer to the paper
158
+ `A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm
159
+ <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.1417>`_.
160
+ """ + fr"""
161
+ Args:
162
+ params (iterable): iterable of parameters to optimize or dicts defining
163
+ parameter groups
164
+ lr (float, optional): learning rate (default: 1e-2)
165
+ etas (Tuple[float, float], optional): pair of (etaminus, etaplus), that
166
+ are multiplicative increase and decrease factors
167
+ (default: (0.5, 1.2))
168
+ step_sizes (Tuple[float, float], optional): a pair of minimal and
169
+ maximal allowed step sizes (default: (1e-6, 50))
170
+ {_foreach_doc}
171
+ {_maximize_doc}
172
+ {_differentiable_doc}
173
+
174
+ """
175
+
176
+ def rprop(
177
+ params: List[Tensor],
178
+ grads: List[Tensor],
179
+ prevs: List[Tensor],
180
+ step_sizes: List[Tensor],
181
+ # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
182
+ # setting this as kwarg for now as functional API is compiled by torch/distributed/optim
183
+ foreach: Optional[bool] = None,
184
+ maximize: bool = False,
185
+ differentiable: bool = False,
186
+ has_complex: bool = False,
187
+ *,
188
+ step_size_min: float,
189
+ step_size_max: float,
190
+ etaminus: float,
191
+ etaplus: float,
192
+ ):
193
+ r"""Functional API that performs rprop algorithm computation.
194
+
195
+ See :class:`~torch.optim.Rprop` for details.
196
+ """
197
+
198
+ if foreach is None:
199
+ _, foreach = _default_to_fused_or_foreach(params, differentiable, use_fused=False)
200
+
201
+ if foreach and torch.jit.is_scripting():
202
+ raise RuntimeError("torch.jit.script not supported with foreach optimizers")
203
+
204
+ if foreach and not torch.jit.is_scripting():
205
+ func = _multi_tensor_rprop
206
+ else:
207
+ func = _single_tensor_rprop
208
+
209
+ func(
210
+ params,
211
+ grads,
212
+ prevs,
213
+ step_sizes,
214
+ step_size_min=step_size_min,
215
+ step_size_max=step_size_max,
216
+ etaminus=etaminus,
217
+ etaplus=etaplus,
218
+ maximize=maximize,
219
+ differentiable=differentiable,
220
+ has_complex=has_complex,
221
+ )
222
+
223
+
224
+ def _single_tensor_rprop(
225
+ params: List[Tensor],
226
+ grads: List[Tensor],
227
+ prevs: List[Tensor],
228
+ step_sizes: List[Tensor],
229
+ *,
230
+ step_size_min: float,
231
+ step_size_max: float,
232
+ etaminus: float,
233
+ etaplus: float,
234
+ maximize: bool,
235
+ differentiable: bool,
236
+ has_complex: bool,
237
+ ):
238
+
239
+ for i, param in enumerate(params):
240
+ grad = grads[i]
241
+ grad = grad if not maximize else -grad
242
+ prev = prevs[i]
243
+ step_size = step_sizes[i]
244
+
245
+ if torch.is_complex(param):
246
+ grad = torch.view_as_real(grad)
247
+ prev = torch.view_as_real(prev)
248
+ param = torch.view_as_real(param)
249
+ step_size = torch.view_as_real(step_size)
250
+ if differentiable:
251
+ sign = grad.mul(prev.clone()).sign()
252
+ else:
253
+ sign = grad.mul(prev).sign()
254
+ sign[sign.gt(0)] = etaplus
255
+ sign[sign.lt(0)] = etaminus
256
+ sign[sign.eq(0)] = 1
257
+
258
+ # update stepsizes with step size updates
259
+ step_size.mul_(sign).clamp_(step_size_min, step_size_max)
260
+
261
+ # for dir<0, dfdx=0
262
+ # for dir>=0 dfdx=dfdx
263
+ grad = grad.clone(memory_format=torch.preserve_format)
264
+ grad[sign.eq(etaminus)] = 0
265
+
266
+ # update parameters
267
+ param.addcmul_(grad.sign(), step_size, value=-1)
268
+ prev.copy_(grad)
269
+
270
+
271
+ def _multi_tensor_rprop(
272
+ params: List[Tensor],
273
+ grads: List[Tensor],
274
+ prevs: List[Tensor],
275
+ step_sizes: List[Tensor],
276
+ *,
277
+ step_size_min: float,
278
+ step_size_max: float,
279
+ etaminus: float,
280
+ etaplus: float,
281
+ maximize: bool,
282
+ differentiable: bool,
283
+ has_complex: bool,
284
+ ):
285
+
286
+ if len(params) == 0:
287
+ return
288
+
289
+ assert not differentiable, "_foreach ops don't support autograd"
290
+
291
+ grouped_tensors = Optimizer._group_tensors_by_device_and_dtype([params, grads, prevs, step_sizes])
292
+ for ((grouped_params, grouped_grads, grouped_prevs, grouped_step_sizes), _) in grouped_tensors.values():
293
+ # Handle complex params
294
+ if has_complex:
295
+ _view_as_real(grouped_params, grouped_grads, grouped_prevs, grouped_step_sizes)
296
+
297
+ signs = torch._foreach_mul(grouped_grads, grouped_prevs)
298
+ if maximize:
299
+ torch._foreach_neg_(signs)
300
+
301
+ # At the end of the step, grouped_prevs will contain the current grads, so we reuse
302
+ # grouped_prevs memory instead of creating a new buffer, but, for clarity, we reassign
303
+ # to keep referring to the buffer as grouped_grads.
304
+ torch._foreach_copy_(grouped_prevs, grouped_grads)
305
+ if maximize:
306
+ torch._foreach_neg_(grouped_prevs)
307
+ grouped_grads = grouped_prevs
308
+
309
+ torch._foreach_sign_(signs)
310
+ for sign in signs:
311
+ sign[sign.gt(0)] = etaplus
312
+ sign[sign.lt(0)] = etaminus
313
+ sign[sign.eq(0)] = 1
314
+
315
+ # update stepsizes with step size updates
316
+ torch._foreach_mul_(grouped_step_sizes, signs)
317
+ for step_size in grouped_step_sizes:
318
+ step_size.clamp_(step_size_min, step_size_max)
319
+
320
+ # for dir<0, dfdx=0
321
+ # for dir>=0 dfdx=dfdx
322
+ grouped_grads = list(grouped_grads)
323
+ for i in range(len(grouped_grads)):
324
+ grouped_grads[i][signs[i].eq(etaminus)] = 0
325
+
326
+ # explicitly del signs as it's not used after here to save memory
327
+ del signs
328
+
329
+ # update parameters
330
+ grad_signs = [grad.sign() for grad in grouped_grads]
331
+ torch._foreach_addcmul_(grouped_params, grad_signs, grouped_step_sizes, value=-1)
332
+
333
+ # Logically, you may expect grouped_prevs to get updated to grouped_grads, but that's
334
+ # basically already happened since we've been using grouped_prevs' memory to store
335
+ # updated grouped_grads!
env-llmeval/lib/python3.10/site-packages/torch/optim/rprop.pyi ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple
2
+
3
+ from .optimizer import Optimizer, ParamsT
4
+
5
+ class Rprop(Optimizer):
6
+ def __init__(
7
+ self,
8
+ params: ParamsT,
9
+ lr: float = ...,
10
+ etas: Tuple[float, float] = ...,
11
+ step_sizes: Tuple[float, float] = ...,
12
+ ) -> None: ...
env-llmeval/lib/python3.10/site-packages/torch/optim/sparse_adam.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from . import _functional as F
3
+ from .optimizer import Optimizer, _maximize_doc
4
+
5
+ __all__ = ['SparseAdam']
6
+
7
+ class SparseAdam(Optimizer):
8
+ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, maximize: bool = False):
9
+ if not 0.0 < lr:
10
+ raise ValueError(f"Invalid learning rate: {lr}")
11
+ if not 0.0 < eps:
12
+ raise ValueError(f"Invalid epsilon value: {eps}")
13
+ if not 0.0 <= betas[0] < 1.0:
14
+ raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
15
+ if not 0.0 <= betas[1] < 1.0:
16
+ raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
17
+
18
+ defaults = dict(lr=lr, betas=betas, eps=eps, maximize=maximize)
19
+ super().__init__(params, defaults)
20
+
21
+ sparse_params = []
22
+ for index, param_group in enumerate(self.param_groups):
23
+ assert isinstance(param_group, dict), f"param_groups must be a list of dicts, but got {type(param_group)}"
24
+ # given param group, convert given params to a list first before iterating
25
+ for d_index, d_param in enumerate(param_group['params']):
26
+ if d_param.is_sparse:
27
+ sparse_params.append([index, d_index])
28
+ if sparse_params:
29
+ raise ValueError(
30
+ f"Sparse params at indices {sparse_params}: SparseAdam requires dense parameter tensors"
31
+ )
32
+
33
+
34
+ @torch.no_grad()
35
+ def step(self, closure=None):
36
+ """Perform a single optimization step.
37
+
38
+ Args:
39
+ closure (Callable, optional): A closure that reevaluates the model
40
+ and returns the loss.
41
+ """
42
+ loss = None
43
+ if closure is not None:
44
+ with torch.enable_grad():
45
+ loss = closure()
46
+
47
+ for group in self.param_groups:
48
+ params_with_grad = []
49
+ grads = []
50
+ exp_avgs = []
51
+ exp_avg_sqs = []
52
+ state_steps = []
53
+ eps = group['eps']
54
+ lr = group['lr']
55
+ beta1, beta2 = group['betas']
56
+ maximize = group.get('maximize', False)
57
+
58
+ for p in group['params']:
59
+ if p.grad is not None:
60
+ params_with_grad.append(p)
61
+ if not p.grad.is_sparse:
62
+ raise RuntimeError('SparseAdam does not support dense gradients, please consider Adam instead')
63
+ grads.append(p.grad)
64
+
65
+ state = self.state[p]
66
+
67
+ # State initialization
68
+ if len(state) == 0:
69
+ state['step'] = 0
70
+ # Exponential moving average of gradient values
71
+ state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
72
+ # Exponential moving average of squared gradient values
73
+ state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
74
+
75
+ exp_avgs.append(state['exp_avg'])
76
+ exp_avg_sqs.append(state['exp_avg_sq'])
77
+
78
+ # update the steps for each param group update
79
+ state['step'] += 1
80
+ # record the step after step update
81
+ state_steps.append(state['step'])
82
+
83
+ F.sparse_adam(params_with_grad,
84
+ grads,
85
+ exp_avgs,
86
+ exp_avg_sqs,
87
+ state_steps,
88
+ beta1=beta1,
89
+ beta2=beta2,
90
+ lr=group['lr'],
91
+ eps=group['eps'],
92
+ maximize=maximize)
93
+
94
+ return loss
95
+
96
+ SparseAdam.__doc__ = fr"""SparseAdam implements a masked version of the Adam algorithm
97
+ suitable for sparse gradients. Currently, due to implementation constraints (explained
98
+ below), SparseAdam is only intended for a narrow subset of use cases, specifically
99
+ parameters of a dense layout with gradients of a sparse layout. This occurs in a
100
+ special case where the module backwards produces grads already in a sparse layout.
101
+ One example NN module that behaves as such is ``nn.Embedding(sparse=True)``.
102
+
103
+ SparseAdam approximates the Adam algorithm by masking out the parameter and moment
104
+ updates corresponding to the zero values in the gradients. Whereas the Adam algorithm
105
+ will update the first moment, the second moment, and the parameters based on all values
106
+ of the gradients, SparseAdam only updates the moments and parameters corresponding
107
+ to the non-zero values of the gradients.
108
+
109
+ A simplified way of thinking about the `intended` implementation is as such:
110
+
111
+ 1. Create a mask of the non-zero values in the sparse gradients. For example,
112
+ if your gradient looks like [0, 5, 0, 0, 9], the mask would be [0, 1, 0, 0, 1].
113
+ 2. Apply this mask over the running moments and do computation on only the
114
+ non-zero values.
115
+ 3. Apply this mask over the parameters and only apply an update on non-zero values.
116
+
117
+ In actuality, we use sparse layout Tensors to optimize this approximation, which means the
118
+ more gradients that are masked by not being materialized, the more performant the optimization.
119
+ Since we rely on using sparse layout tensors, we infer that any materialized value in the
120
+ sparse layout is non-zero and we do NOT actually verify that all values are not zero!
121
+ It is important to not conflate a semantically sparse tensor (a tensor where many
122
+ of its values are zeros) with a sparse layout tensor (a tensor where ``.is_sparse``
123
+ returns ``True``). The SparseAdam approximation is intended for `semantically` sparse
124
+ tensors and the sparse layout is only a implementation detail. A clearer implementation
125
+ would be to use MaskedTensors, but those are experimental.
126
+
127
+
128
+ .. note::
129
+
130
+ If you suspect your gradients are semantically sparse (but do not have sparse
131
+ layout), this variant may not be the best for you. Ideally, you want to avoid
132
+ materializing anything that is suspected to be sparse in the first place, since
133
+ needing to convert all your grads from dense layout to sparse layout may outweigh
134
+ the performance gain. Here, using Adam may be the best alternative, unless you
135
+ can easily rig up your module to output sparse grads similar to
136
+ ``nn.Embedding(sparse=True)``. If you insist on converting your grads, you can do
137
+ so by manually overriding your parameters' ``.grad`` fields with their sparse
138
+ equivalents before calling ``.step()``.
139
+
140
+
141
+ Args:
142
+ params (iterable): iterable of parameters to optimize or dicts defining
143
+ parameter groups
144
+ lr (float, optional): learning rate (default: 1e-3)
145
+ betas (Tuple[float, float], optional): coefficients used for computing
146
+ running averages of gradient and its square (default: (0.9, 0.999))
147
+ eps (float, optional): term added to the denominator to improve
148
+ numerical stability (default: 1e-8)
149
+ {_maximize_doc}
150
+
151
+ .. _Adam\: A Method for Stochastic Optimization:
152
+ https://arxiv.org/abs/1412.6980
153
+
154
+ """
env-llmeval/lib/python3.10/site-packages/torch/optim/swa_utils.pyi ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Callable, Iterable, Union
2
+
3
+ from torch import device, Tensor
4
+ from torch.nn.modules import Module
5
+ from .lr_scheduler import _LRScheduler
6
+ from .optimizer import Optimizer
7
+
8
+ class AveragedModel(Module):
9
+ def __init__(
10
+ self,
11
+ model: Module,
12
+ device: Union[int, device] = ...,
13
+ avg_fn: Callable[[Tensor, Tensor, int], Tensor] = ...,
14
+ use_buffers: bool = ...,
15
+ ) -> None: ...
16
+ def update_parameters(self, model: Module) -> None: ...
17
+
18
+ def update_bn(
19
+ loader: Iterable[Any],
20
+ model: Module,
21
+ device: Union[int, device] = ...,
22
+ ) -> None: ...
23
+
24
+ class SWALR(_LRScheduler):
25
+ def __init__(
26
+ self,
27
+ optimizer: Optimizer,
28
+ swa_lr: float,
29
+ anneal_epochs: int,
30
+ anneal_strategy: str,
31
+ last_epoch: int = ...,
32
+ ) -> None: ...
env-llmeval/lib/python3.10/site-packages/torch/package/__init__.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .analyze.is_from_package import is_from_package
2
+ from .file_structure_representation import Directory
3
+ from .glob_group import GlobGroup
4
+ from .importer import (
5
+ Importer,
6
+ ObjMismatchError,
7
+ ObjNotFoundError,
8
+ OrderedImporter,
9
+ sys_importer,
10
+ )
11
+ from .package_exporter import EmptyMatchError, PackageExporter, PackagingError
12
+ from .package_importer import PackageImporter
env-llmeval/lib/python3.10/site-packages/torch/package/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (655 Bytes). View file