diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/dots.png b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/dots.png new file mode 100644 index 0000000000000000000000000000000000000000..2cb593b8e1cf68e429cc8402838c31f70be59afc --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/ndimage/tests/dots.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b20b56fadc7471c0694d3e8148d9e28a83d7967bac16bf8852094afea3950414 +size 2114 diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__init__.py b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..ca1a0f435498acbeb4dc2fbdadf0baac86efcaa1 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__init__.py @@ -0,0 +1,71 @@ +""" +Linear Solvers +============== + +The default solver is SuperLU (included in the scipy distribution), +which can solve real or complex linear systems in both single and +double precisions. It is automatically replaced by UMFPACK, if +available. Note that UMFPACK works in double precision only, so +switch it off by:: + + >>> from scipy.sparse.linalg import spsolve, use_solver + >>> use_solver(useUmfpack=False) + +to solve in the single precision. See also use_solver documentation. + +Example session:: + + >>> from scipy.sparse import csc_matrix, spdiags + >>> from numpy import array + >>> + >>> print("Inverting a sparse linear system:") + >>> print("The sparse matrix (constructed from diagonals):") + >>> a = spdiags([[1, 2, 3, 4, 5], [6, 5, 8, 9, 10]], [0, 1], 5, 5) + >>> b = array([1, 2, 3, 4, 5]) + >>> print("Solve: single precision complex:") + >>> use_solver( useUmfpack = False ) + >>> a = a.astype('F') + >>> x = spsolve(a, b) + >>> print(x) + >>> print("Error: ", a@x-b) + >>> + >>> print("Solve: double precision complex:") + >>> use_solver( useUmfpack = True ) + >>> a = a.astype('D') + >>> x = spsolve(a, b) + >>> print(x) + >>> print("Error: ", a@x-b) + >>> + >>> print("Solve: double precision:") + >>> a = a.astype('d') + >>> x = spsolve(a, b) + >>> print(x) + >>> print("Error: ", a@x-b) + >>> + >>> print("Solve: single precision:") + >>> use_solver( useUmfpack = False ) + >>> a = a.astype('f') + >>> x = spsolve(a, b.astype('f')) + >>> print(x) + >>> print("Error: ", a@x-b) + +""" + +#import umfpack +#__doc__ = '\n\n'.join( (__doc__, umfpack.__doc__) ) +#del umfpack + +from .linsolve import * +from ._superlu import SuperLU +from . import _add_newdocs +from . import linsolve + +__all__ = [ + 'MatrixRankWarning', 'SuperLU', 'factorized', + 'spilu', 'splu', 'spsolve', + 'spsolve_triangular', 'use_solver' +] + +from scipy._lib._testutils import PytestTester +test = PytestTester(__name__) +del PytestTester diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ee1c1a598a6930dc7cd1ed33646e52b5d8adb9bf Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__pycache__/_add_newdocs.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__pycache__/_add_newdocs.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b11220ee5f1e8054a701ace894c0c3c2b017c126 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__pycache__/_add_newdocs.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__pycache__/linsolve.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__pycache__/linsolve.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a3b5d4aa24b22a2c0eaba151054b60892ecfd1d9 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/__pycache__/linsolve.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/_add_newdocs.py b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/_add_newdocs.py new file mode 100644 index 0000000000000000000000000000000000000000..e7f7b1d16fd33b4beb5620e0a931a4c800d11cd4 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/_add_newdocs.py @@ -0,0 +1,153 @@ +from numpy.lib import add_newdoc + +add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU', + """ + LU factorization of a sparse matrix. + + Factorization is represented as:: + + Pr @ A @ Pc = L @ U + + To construct these `SuperLU` objects, call the `splu` and `spilu` + functions. + + Attributes + ---------- + shape + nnz + perm_c + perm_r + L + U + + Methods + ------- + solve + + Notes + ----- + + .. versionadded:: 0.14.0 + + Examples + -------- + The LU decomposition can be used to solve matrix equations. Consider: + + >>> import numpy as np + >>> from scipy.sparse import csc_matrix + >>> from scipy.sparse.linalg import splu + >>> A = csc_matrix([[1,2,0,4], [1,0,0,1], [1,0,2,1], [2,2,1,0.]]) + + This can be solved for a given right-hand side: + + >>> lu = splu(A) + >>> b = np.array([1, 2, 3, 4]) + >>> x = lu.solve(b) + >>> A.dot(x) + array([ 1., 2., 3., 4.]) + + The ``lu`` object also contains an explicit representation of the + decomposition. The permutations are represented as mappings of + indices: + + >>> lu.perm_r + array([2, 1, 3, 0], dtype=int32) # may vary + >>> lu.perm_c + array([0, 1, 3, 2], dtype=int32) # may vary + + The L and U factors are sparse matrices in CSC format: + + >>> lu.L.toarray() + array([[ 1. , 0. , 0. , 0. ], # may vary + [ 0.5, 1. , 0. , 0. ], + [ 0.5, -1. , 1. , 0. ], + [ 0.5, 1. , 0. , 1. ]]) + >>> lu.U.toarray() + array([[ 2. , 2. , 0. , 1. ], # may vary + [ 0. , -1. , 1. , -0.5], + [ 0. , 0. , 5. , -1. ], + [ 0. , 0. , 0. , 2. ]]) + + The permutation matrices can be constructed: + + >>> Pr = csc_matrix((np.ones(4), (lu.perm_r, np.arange(4)))) + >>> Pc = csc_matrix((np.ones(4), (np.arange(4), lu.perm_c))) + + We can reassemble the original matrix: + + >>> (Pr.T @ (lu.L @ lu.U) @ Pc.T).toarray() + array([[ 1., 2., 0., 4.], + [ 1., 0., 0., 1.], + [ 1., 0., 2., 1.], + [ 2., 2., 1., 0.]]) + """) + +add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU', ('solve', + """ + solve(rhs[, trans]) + + Solves linear system of equations with one or several right-hand sides. + + Parameters + ---------- + rhs : ndarray, shape (n,) or (n, k) + Right hand side(s) of equation + trans : {'N', 'T', 'H'}, optional + Type of system to solve:: + + 'N': A @ x == rhs (default) + 'T': A^T @ x == rhs + 'H': A^H @ x == rhs + + i.e., normal, transposed, and hermitian conjugate. + + Returns + ------- + x : ndarray, shape ``rhs.shape`` + Solution vector(s) + """)) + +add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU', ('L', + """ + Lower triangular factor with unit diagonal as a + `scipy.sparse.csc_matrix`. + + .. versionadded:: 0.14.0 + """)) + +add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU', ('U', + """ + Upper triangular factor as a `scipy.sparse.csc_matrix`. + + .. versionadded:: 0.14.0 + """)) + +add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU', ('shape', + """ + Shape of the original matrix as a tuple of ints. + """)) + +add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU', ('nnz', + """ + Number of nonzero elements in the matrix. + """)) + +add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU', ('perm_c', + """ + Permutation Pc represented as an array of indices. + + The column permutation matrix can be reconstructed via: + + >>> Pc = np.zeros((n, n)) + >>> Pc[np.arange(n), perm_c] = 1 + """)) + +add_newdoc('scipy.sparse.linalg._dsolve._superlu', 'SuperLU', ('perm_r', + """ + Permutation Pr represented as an array of indices. + + The row permutation matrix can be reconstructed via: + + >>> Pr = np.zeros((n, n)) + >>> Pr[perm_r, np.arange(n)] = 1 + """)) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/_superlu.cpython-310-x86_64-linux-gnu.so b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/_superlu.cpython-310-x86_64-linux-gnu.so new file mode 100644 index 0000000000000000000000000000000000000000..96a77687bf5e9eb05d5e2d58b19a9cce3acd4234 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/_superlu.cpython-310-x86_64-linux-gnu.so differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py new file mode 100644 index 0000000000000000000000000000000000000000..e37721c76c133ee3ddbd44a6df03dfd99ee41e06 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py @@ -0,0 +1,746 @@ +from warnings import warn + +import numpy as np +from numpy import asarray +from scipy.sparse import (issparse, + SparseEfficiencyWarning, csc_matrix, csr_matrix) +from scipy.sparse._sputils import is_pydata_spmatrix, convert_pydata_sparse_to_scipy +from scipy.linalg import LinAlgError +import copy + +from . import _superlu + +noScikit = False +try: + import scikits.umfpack as umfpack +except ImportError: + noScikit = True + +useUmfpack = not noScikit + +__all__ = ['use_solver', 'spsolve', 'splu', 'spilu', 'factorized', + 'MatrixRankWarning', 'spsolve_triangular'] + + +class MatrixRankWarning(UserWarning): + pass + + +def use_solver(**kwargs): + """ + Select default sparse direct solver to be used. + + Parameters + ---------- + useUmfpack : bool, optional + Use UMFPACK [1]_, [2]_, [3]_, [4]_. over SuperLU. Has effect only + if ``scikits.umfpack`` is installed. Default: True + assumeSortedIndices : bool, optional + Allow UMFPACK to skip the step of sorting indices for a CSR/CSC matrix. + Has effect only if useUmfpack is True and ``scikits.umfpack`` is + installed. Default: False + + Notes + ----- + The default sparse solver is UMFPACK when available + (``scikits.umfpack`` is installed). This can be changed by passing + useUmfpack = False, which then causes the always present SuperLU + based solver to be used. + + UMFPACK requires a CSR/CSC matrix to have sorted column/row indices. If + sure that the matrix fulfills this, pass ``assumeSortedIndices=True`` + to gain some speed. + + References + ---------- + .. [1] T. A. Davis, Algorithm 832: UMFPACK - an unsymmetric-pattern + multifrontal method with a column pre-ordering strategy, ACM + Trans. on Mathematical Software, 30(2), 2004, pp. 196--199. + https://dl.acm.org/doi/abs/10.1145/992200.992206 + + .. [2] T. A. Davis, A column pre-ordering strategy for the + unsymmetric-pattern multifrontal method, ACM Trans. + on Mathematical Software, 30(2), 2004, pp. 165--195. + https://dl.acm.org/doi/abs/10.1145/992200.992205 + + .. [3] T. A. Davis and I. S. Duff, A combined unifrontal/multifrontal + method for unsymmetric sparse matrices, ACM Trans. on + Mathematical Software, 25(1), 1999, pp. 1--19. + https://doi.org/10.1145/305658.287640 + + .. [4] T. A. Davis and I. S. Duff, An unsymmetric-pattern multifrontal + method for sparse LU factorization, SIAM J. Matrix Analysis and + Computations, 18(1), 1997, pp. 140--158. + https://doi.org/10.1137/S0895479894246905T. + + Examples + -------- + >>> import numpy as np + >>> from scipy.sparse.linalg import use_solver, spsolve + >>> from scipy.sparse import csc_matrix + >>> R = np.random.randn(5, 5) + >>> A = csc_matrix(R) + >>> b = np.random.randn(5) + >>> use_solver(useUmfpack=False) # enforce superLU over UMFPACK + >>> x = spsolve(A, b) + >>> np.allclose(A.dot(x), b) + True + >>> use_solver(useUmfpack=True) # reset umfPack usage to default + """ + if 'useUmfpack' in kwargs: + globals()['useUmfpack'] = kwargs['useUmfpack'] + if useUmfpack and 'assumeSortedIndices' in kwargs: + umfpack.configure(assumeSortedIndices=kwargs['assumeSortedIndices']) + +def _get_umf_family(A): + """Get umfpack family string given the sparse matrix dtype.""" + _families = { + (np.float64, np.int32): 'di', + (np.complex128, np.int32): 'zi', + (np.float64, np.int64): 'dl', + (np.complex128, np.int64): 'zl' + } + + # A.dtype.name can only be "float64" or + # "complex128" in control flow + f_type = getattr(np, A.dtype.name) + # control flow may allow for more index + # types to get through here + i_type = getattr(np, A.indices.dtype.name) + + try: + family = _families[(f_type, i_type)] + + except KeyError as e: + msg = ('only float64 or complex128 matrices with int32 or int64 ' + f'indices are supported! (got: matrix: {f_type}, indices: {i_type})') + raise ValueError(msg) from e + + # See gh-8278. Considered converting only if + # A.shape[0]*A.shape[1] > np.iinfo(np.int32).max, + # but that didn't always fix the issue. + family = family[0] + "l" + A_new = copy.copy(A) + A_new.indptr = np.asarray(A.indptr, dtype=np.int64) + A_new.indices = np.asarray(A.indices, dtype=np.int64) + + return family, A_new + +def _safe_downcast_indices(A): + # check for safe downcasting + max_value = np.iinfo(np.intc).max + + if A.indptr[-1] > max_value: # indptr[-1] is max b/c indptr always sorted + raise ValueError("indptr values too large for SuperLU") + + if max(*A.shape) > max_value: # only check large enough arrays + if np.any(A.indices > max_value): + raise ValueError("indices values too large for SuperLU") + + indices = A.indices.astype(np.intc, copy=False) + indptr = A.indptr.astype(np.intc, copy=False) + return indices, indptr + +def spsolve(A, b, permc_spec=None, use_umfpack=True): + """Solve the sparse linear system Ax=b, where b may be a vector or a matrix. + + Parameters + ---------- + A : ndarray or sparse matrix + The square matrix A will be converted into CSC or CSR form + b : ndarray or sparse matrix + The matrix or vector representing the right hand side of the equation. + If a vector, b.shape must be (n,) or (n, 1). + permc_spec : str, optional + How to permute the columns of the matrix for sparsity preservation. + (default: 'COLAMD') + + - ``NATURAL``: natural ordering. + - ``MMD_ATA``: minimum degree ordering on the structure of A^T A. + - ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A. + - ``COLAMD``: approximate minimum degree column ordering [1]_, [2]_. + + use_umfpack : bool, optional + if True (default) then use UMFPACK for the solution [3]_, [4]_, [5]_, + [6]_ . This is only referenced if b is a vector and + ``scikits.umfpack`` is installed. + + Returns + ------- + x : ndarray or sparse matrix + the solution of the sparse linear equation. + If b is a vector, then x is a vector of size A.shape[1] + If b is a matrix, then x is a matrix of size (A.shape[1], b.shape[1]) + + Notes + ----- + For solving the matrix expression AX = B, this solver assumes the resulting + matrix X is sparse, as is often the case for very sparse inputs. If the + resulting X is dense, the construction of this sparse result will be + relatively expensive. In that case, consider converting A to a dense + matrix and using scipy.linalg.solve or its variants. + + References + ---------- + .. [1] T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, Algorithm 836: + COLAMD, an approximate column minimum degree ordering algorithm, + ACM Trans. on Mathematical Software, 30(3), 2004, pp. 377--380. + :doi:`10.1145/1024074.1024080` + + .. [2] T. A. Davis, J. R. Gilbert, S. Larimore, E. Ng, A column approximate + minimum degree ordering algorithm, ACM Trans. on Mathematical + Software, 30(3), 2004, pp. 353--376. :doi:`10.1145/1024074.1024079` + + .. [3] T. A. Davis, Algorithm 832: UMFPACK - an unsymmetric-pattern + multifrontal method with a column pre-ordering strategy, ACM + Trans. on Mathematical Software, 30(2), 2004, pp. 196--199. + https://dl.acm.org/doi/abs/10.1145/992200.992206 + + .. [4] T. A. Davis, A column pre-ordering strategy for the + unsymmetric-pattern multifrontal method, ACM Trans. + on Mathematical Software, 30(2), 2004, pp. 165--195. + https://dl.acm.org/doi/abs/10.1145/992200.992205 + + .. [5] T. A. Davis and I. S. Duff, A combined unifrontal/multifrontal + method for unsymmetric sparse matrices, ACM Trans. on + Mathematical Software, 25(1), 1999, pp. 1--19. + https://doi.org/10.1145/305658.287640 + + .. [6] T. A. Davis and I. S. Duff, An unsymmetric-pattern multifrontal + method for sparse LU factorization, SIAM J. Matrix Analysis and + Computations, 18(1), 1997, pp. 140--158. + https://doi.org/10.1137/S0895479894246905T. + + + Examples + -------- + >>> import numpy as np + >>> from scipy.sparse import csc_matrix + >>> from scipy.sparse.linalg import spsolve + >>> A = csc_matrix([[3, 2, 0], [1, -1, 0], [0, 5, 1]], dtype=float) + >>> B = csc_matrix([[2, 0], [-1, 0], [2, 0]], dtype=float) + >>> x = spsolve(A, B) + >>> np.allclose(A.dot(x).toarray(), B.toarray()) + True + """ + is_pydata_sparse = is_pydata_spmatrix(b) + pydata_sparse_cls = b.__class__ if is_pydata_sparse else None + A = convert_pydata_sparse_to_scipy(A) + b = convert_pydata_sparse_to_scipy(b) + + if not (issparse(A) and A.format in ("csc", "csr")): + A = csc_matrix(A) + warn('spsolve requires A be CSC or CSR matrix format', + SparseEfficiencyWarning, stacklevel=2) + + # b is a vector only if b have shape (n,) or (n, 1) + b_is_sparse = issparse(b) + if not b_is_sparse: + b = asarray(b) + b_is_vector = ((b.ndim == 1) or (b.ndim == 2 and b.shape[1] == 1)) + + # sum duplicates for non-canonical format + A.sum_duplicates() + A = A._asfptype() # upcast to a floating point format + result_dtype = np.promote_types(A.dtype, b.dtype) + if A.dtype != result_dtype: + A = A.astype(result_dtype) + if b.dtype != result_dtype: + b = b.astype(result_dtype) + + # validate input shapes + M, N = A.shape + if (M != N): + raise ValueError(f"matrix must be square (has shape {(M, N)})") + + if M != b.shape[0]: + raise ValueError(f"matrix - rhs dimension mismatch ({A.shape} - {b.shape[0]})") + + use_umfpack = use_umfpack and useUmfpack + + if b_is_vector and use_umfpack: + if b_is_sparse: + b_vec = b.toarray() + else: + b_vec = b + b_vec = asarray(b_vec, dtype=A.dtype).ravel() + + if noScikit: + raise RuntimeError('Scikits.umfpack not installed.') + + if A.dtype.char not in 'dD': + raise ValueError("convert matrix data to double, please, using" + " .astype(), or set linsolve.useUmfpack = False") + + umf_family, A = _get_umf_family(A) + umf = umfpack.UmfpackContext(umf_family) + x = umf.linsolve(umfpack.UMFPACK_A, A, b_vec, + autoTranspose=True) + else: + if b_is_vector and b_is_sparse: + b = b.toarray() + b_is_sparse = False + + if not b_is_sparse: + if A.format == "csc": + flag = 1 # CSC format + else: + flag = 0 # CSR format + + indices = A.indices.astype(np.intc, copy=False) + indptr = A.indptr.astype(np.intc, copy=False) + options = dict(ColPerm=permc_spec) + x, info = _superlu.gssv(N, A.nnz, A.data, indices, indptr, + b, flag, options=options) + if info != 0: + warn("Matrix is exactly singular", MatrixRankWarning, stacklevel=2) + x.fill(np.nan) + if b_is_vector: + x = x.ravel() + else: + # b is sparse + Afactsolve = factorized(A) + + if not (b.format == "csc" or is_pydata_spmatrix(b)): + warn('spsolve is more efficient when sparse b ' + 'is in the CSC matrix format', + SparseEfficiencyWarning, stacklevel=2) + b = csc_matrix(b) + + # Create a sparse output matrix by repeatedly applying + # the sparse factorization to solve columns of b. + data_segs = [] + row_segs = [] + col_segs = [] + for j in range(b.shape[1]): + # TODO: replace this with + # bj = b[:, j].toarray().ravel() + # once 1D sparse arrays are supported. + # That is a slightly faster code path. + bj = b[:, [j]].toarray().ravel() + xj = Afactsolve(bj) + w = np.flatnonzero(xj) + segment_length = w.shape[0] + row_segs.append(w) + col_segs.append(np.full(segment_length, j, dtype=int)) + data_segs.append(np.asarray(xj[w], dtype=A.dtype)) + sparse_data = np.concatenate(data_segs) + sparse_row = np.concatenate(row_segs) + sparse_col = np.concatenate(col_segs) + x = A.__class__((sparse_data, (sparse_row, sparse_col)), + shape=b.shape, dtype=A.dtype) + + if is_pydata_sparse: + x = pydata_sparse_cls.from_scipy_sparse(x) + + return x + + +def splu(A, permc_spec=None, diag_pivot_thresh=None, + relax=None, panel_size=None, options=dict()): + """ + Compute the LU decomposition of a sparse, square matrix. + + Parameters + ---------- + A : sparse matrix + Sparse matrix to factorize. Most efficient when provided in CSC + format. Other formats will be converted to CSC before factorization. + permc_spec : str, optional + How to permute the columns of the matrix for sparsity preservation. + (default: 'COLAMD') + + - ``NATURAL``: natural ordering. + - ``MMD_ATA``: minimum degree ordering on the structure of A^T A. + - ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A. + - ``COLAMD``: approximate minimum degree column ordering + + diag_pivot_thresh : float, optional + Threshold used for a diagonal entry to be an acceptable pivot. + See SuperLU user's guide for details [1]_ + relax : int, optional + Expert option for customizing the degree of relaxing supernodes. + See SuperLU user's guide for details [1]_ + panel_size : int, optional + Expert option for customizing the panel size. + See SuperLU user's guide for details [1]_ + options : dict, optional + Dictionary containing additional expert options to SuperLU. + See SuperLU user guide [1]_ (section 2.4 on the 'Options' argument) + for more details. For example, you can specify + ``options=dict(Equil=False, IterRefine='SINGLE'))`` + to turn equilibration off and perform a single iterative refinement. + + Returns + ------- + invA : scipy.sparse.linalg.SuperLU + Object, which has a ``solve`` method. + + See also + -------- + spilu : incomplete LU decomposition + + Notes + ----- + This function uses the SuperLU library. + + References + ---------- + .. [1] SuperLU https://portal.nersc.gov/project/sparse/superlu/ + + Examples + -------- + >>> import numpy as np + >>> from scipy.sparse import csc_matrix + >>> from scipy.sparse.linalg import splu + >>> A = csc_matrix([[1., 0., 0.], [5., 0., 2.], [0., -1., 0.]], dtype=float) + >>> B = splu(A) + >>> x = np.array([1., 2., 3.], dtype=float) + >>> B.solve(x) + array([ 1. , -3. , -1.5]) + >>> A.dot(B.solve(x)) + array([ 1., 2., 3.]) + >>> B.solve(A.dot(x)) + array([ 1., 2., 3.]) + """ + + if is_pydata_spmatrix(A): + def csc_construct_func(*a, cls=type(A)): + return cls.from_scipy_sparse(csc_matrix(*a)) + A = A.to_scipy_sparse().tocsc() + else: + csc_construct_func = csc_matrix + + if not (issparse(A) and A.format == "csc"): + A = csc_matrix(A) + warn('splu converted its input to CSC format', + SparseEfficiencyWarning, stacklevel=2) + + # sum duplicates for non-canonical format + A.sum_duplicates() + A = A._asfptype() # upcast to a floating point format + + M, N = A.shape + if (M != N): + raise ValueError("can only factor square matrices") # is this true? + + indices, indptr = _safe_downcast_indices(A) + + _options = dict(DiagPivotThresh=diag_pivot_thresh, ColPerm=permc_spec, + PanelSize=panel_size, Relax=relax) + if options is not None: + _options.update(options) + + # Ensure that no column permutations are applied + if (_options["ColPerm"] == "NATURAL"): + _options["SymmetricMode"] = True + + return _superlu.gstrf(N, A.nnz, A.data, indices, indptr, + csc_construct_func=csc_construct_func, + ilu=False, options=_options) + + +def spilu(A, drop_tol=None, fill_factor=None, drop_rule=None, permc_spec=None, + diag_pivot_thresh=None, relax=None, panel_size=None, options=None): + """ + Compute an incomplete LU decomposition for a sparse, square matrix. + + The resulting object is an approximation to the inverse of `A`. + + Parameters + ---------- + A : (N, N) array_like + Sparse matrix to factorize. Most efficient when provided in CSC format. + Other formats will be converted to CSC before factorization. + drop_tol : float, optional + Drop tolerance (0 <= tol <= 1) for an incomplete LU decomposition. + (default: 1e-4) + fill_factor : float, optional + Specifies the fill ratio upper bound (>= 1.0) for ILU. (default: 10) + drop_rule : str, optional + Comma-separated string of drop rules to use. + Available rules: ``basic``, ``prows``, ``column``, ``area``, + ``secondary``, ``dynamic``, ``interp``. (Default: ``basic,area``) + + See SuperLU documentation for details. + + Remaining other options + Same as for `splu` + + Returns + ------- + invA_approx : scipy.sparse.linalg.SuperLU + Object, which has a ``solve`` method. + + See also + -------- + splu : complete LU decomposition + + Notes + ----- + To improve the better approximation to the inverse, you may need to + increase `fill_factor` AND decrease `drop_tol`. + + This function uses the SuperLU library. + + Examples + -------- + >>> import numpy as np + >>> from scipy.sparse import csc_matrix + >>> from scipy.sparse.linalg import spilu + >>> A = csc_matrix([[1., 0., 0.], [5., 0., 2.], [0., -1., 0.]], dtype=float) + >>> B = spilu(A) + >>> x = np.array([1., 2., 3.], dtype=float) + >>> B.solve(x) + array([ 1. , -3. , -1.5]) + >>> A.dot(B.solve(x)) + array([ 1., 2., 3.]) + >>> B.solve(A.dot(x)) + array([ 1., 2., 3.]) + """ + + if is_pydata_spmatrix(A): + def csc_construct_func(*a, cls=type(A)): + return cls.from_scipy_sparse(csc_matrix(*a)) + A = A.to_scipy_sparse().tocsc() + else: + csc_construct_func = csc_matrix + + if not (issparse(A) and A.format == "csc"): + A = csc_matrix(A) + warn('spilu converted its input to CSC format', + SparseEfficiencyWarning, stacklevel=2) + + # sum duplicates for non-canonical format + A.sum_duplicates() + A = A._asfptype() # upcast to a floating point format + + M, N = A.shape + if (M != N): + raise ValueError("can only factor square matrices") # is this true? + + indices, indptr = _safe_downcast_indices(A) + + _options = dict(ILU_DropRule=drop_rule, ILU_DropTol=drop_tol, + ILU_FillFactor=fill_factor, + DiagPivotThresh=diag_pivot_thresh, ColPerm=permc_spec, + PanelSize=panel_size, Relax=relax) + if options is not None: + _options.update(options) + + # Ensure that no column permutations are applied + if (_options["ColPerm"] == "NATURAL"): + _options["SymmetricMode"] = True + + return _superlu.gstrf(N, A.nnz, A.data, indices, indptr, + csc_construct_func=csc_construct_func, + ilu=True, options=_options) + + +def factorized(A): + """ + Return a function for solving a sparse linear system, with A pre-factorized. + + Parameters + ---------- + A : (N, N) array_like + Input. A in CSC format is most efficient. A CSR format matrix will + be converted to CSC before factorization. + + Returns + ------- + solve : callable + To solve the linear system of equations given in `A`, the `solve` + callable should be passed an ndarray of shape (N,). + + Examples + -------- + >>> import numpy as np + >>> from scipy.sparse.linalg import factorized + >>> from scipy.sparse import csc_matrix + >>> A = np.array([[ 3. , 2. , -1. ], + ... [ 2. , -2. , 4. ], + ... [-1. , 0.5, -1. ]]) + >>> solve = factorized(csc_matrix(A)) # Makes LU decomposition. + >>> rhs1 = np.array([1, -2, 0]) + >>> solve(rhs1) # Uses the LU factors. + array([ 1., -2., -2.]) + + """ + if is_pydata_spmatrix(A): + A = A.to_scipy_sparse().tocsc() + + if useUmfpack: + if noScikit: + raise RuntimeError('Scikits.umfpack not installed.') + + if not (issparse(A) and A.format == "csc"): + A = csc_matrix(A) + warn('splu converted its input to CSC format', + SparseEfficiencyWarning, stacklevel=2) + + A = A._asfptype() # upcast to a floating point format + + if A.dtype.char not in 'dD': + raise ValueError("convert matrix data to double, please, using" + " .astype(), or set linsolve.useUmfpack = False") + + umf_family, A = _get_umf_family(A) + umf = umfpack.UmfpackContext(umf_family) + + # Make LU decomposition. + umf.numeric(A) + + def solve(b): + with np.errstate(divide="ignore", invalid="ignore"): + # Ignoring warnings with numpy >= 1.23.0, see gh-16523 + result = umf.solve(umfpack.UMFPACK_A, A, b, autoTranspose=True) + + return result + + return solve + else: + return splu(A).solve + + +def spsolve_triangular(A, b, lower=True, overwrite_A=False, overwrite_b=False, + unit_diagonal=False): + """ + Solve the equation ``A x = b`` for `x`, assuming A is a triangular matrix. + + Parameters + ---------- + A : (M, M) sparse matrix + A sparse square triangular matrix. Should be in CSR format. + b : (M,) or (M, N) array_like + Right-hand side matrix in ``A x = b`` + lower : bool, optional + Whether `A` is a lower or upper triangular matrix. + Default is lower triangular matrix. + overwrite_A : bool, optional + Allow changing `A`. The indices of `A` are going to be sorted and zero + entries are going to be removed. + Enabling gives a performance gain. Default is False. + overwrite_b : bool, optional + Allow overwriting data in `b`. + Enabling gives a performance gain. Default is False. + If `overwrite_b` is True, it should be ensured that + `b` has an appropriate dtype to be able to store the result. + unit_diagonal : bool, optional + If True, diagonal elements of `a` are assumed to be 1 and will not be + referenced. + + .. versionadded:: 1.4.0 + + Returns + ------- + x : (M,) or (M, N) ndarray + Solution to the system ``A x = b``. Shape of return matches shape + of `b`. + + Raises + ------ + LinAlgError + If `A` is singular or not triangular. + ValueError + If shape of `A` or shape of `b` do not match the requirements. + + Notes + ----- + .. versionadded:: 0.19.0 + + Examples + -------- + >>> import numpy as np + >>> from scipy.sparse import csr_matrix + >>> from scipy.sparse.linalg import spsolve_triangular + >>> A = csr_matrix([[3, 0, 0], [1, -1, 0], [2, 0, 1]], dtype=float) + >>> B = np.array([[2, 0], [-1, 0], [2, 0]], dtype=float) + >>> x = spsolve_triangular(A, B) + >>> np.allclose(A.dot(x), B) + True + """ + + if is_pydata_spmatrix(A): + A = A.to_scipy_sparse().tocsr() + + # Check the input for correct type and format. + if not (issparse(A) and A.format == "csr"): + warn('CSR matrix format is required. Converting to CSR matrix.', + SparseEfficiencyWarning, stacklevel=2) + A = csr_matrix(A) + elif not overwrite_A: + A = A.copy() + + if A.shape[0] != A.shape[1]: + raise ValueError( + f'A must be a square matrix but its shape is {A.shape}.') + + # sum duplicates for non-canonical format + A.sum_duplicates() + + b = np.asanyarray(b) + + if b.ndim not in [1, 2]: + raise ValueError( + f'b must have 1 or 2 dims but its shape is {b.shape}.') + if A.shape[0] != b.shape[0]: + raise ValueError( + 'The size of the dimensions of A must be equal to ' + 'the size of the first dimension of b but the shape of A is ' + f'{A.shape} and the shape of b is {b.shape}.' + ) + + # Init x as (a copy of) b. + x_dtype = np.result_type(A.data, b, np.float64) + if overwrite_b: + if np.can_cast(b.dtype, x_dtype, casting='same_kind'): + x = b + else: + raise ValueError( + f'Cannot overwrite b (dtype {b.dtype}) with result ' + f'of type {x_dtype}.' + ) + else: + x = b.astype(x_dtype, copy=True) + + # Choose forward or backward order. + if lower: + row_indices = range(len(b)) + else: + row_indices = range(len(b) - 1, -1, -1) + + # Fill x iteratively. + for i in row_indices: + + # Get indices for i-th row. + indptr_start = A.indptr[i] + indptr_stop = A.indptr[i + 1] + + if lower: + A_diagonal_index_row_i = indptr_stop - 1 + A_off_diagonal_indices_row_i = slice(indptr_start, indptr_stop - 1) + else: + A_diagonal_index_row_i = indptr_start + A_off_diagonal_indices_row_i = slice(indptr_start + 1, indptr_stop) + + # Check regularity and triangularity of A. + if not unit_diagonal and (indptr_stop <= indptr_start + or A.indices[A_diagonal_index_row_i] < i): + raise LinAlgError( + f'A is singular: diagonal {i} is zero.') + if not unit_diagonal and A.indices[A_diagonal_index_row_i] > i: + raise LinAlgError( + 'A is not triangular: A[{}, {}] is nonzero.' + ''.format(i, A.indices[A_diagonal_index_row_i])) + + # Incorporate off-diagonal entries. + A_column_indices_in_row_i = A.indices[A_off_diagonal_indices_row_i] + A_values_in_row_i = A.data[A_off_diagonal_indices_row_i] + x[i] -= np.dot(x[A_column_indices_in_row_i].T, A_values_in_row_i) + + # Compute i-th entry of x. + if not unit_diagonal: + x[i] /= A.data[A_diagonal_index_row_i] + + return x diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/tests/__init__.py b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/tests/__pycache__/test_linsolve.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/tests/__pycache__/test_linsolve.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ebbe0f29d947d3533706f4f326b4e2960f732c40 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/tests/__pycache__/test_linsolve.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/tests/test_linsolve.py b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/tests/test_linsolve.py new file mode 100644 index 0000000000000000000000000000000000000000..f1684b562ff20812a4280e3bdbac2f56086c5b1d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_dsolve/tests/test_linsolve.py @@ -0,0 +1,805 @@ +import sys +import threading + +import numpy as np +from numpy import array, finfo, arange, eye, all, unique, ones, dot +import numpy.random as random +from numpy.testing import ( + assert_array_almost_equal, assert_almost_equal, + assert_equal, assert_array_equal, assert_, assert_allclose, + assert_warns, suppress_warnings) +import pytest +from pytest import raises as assert_raises + +import scipy.linalg +from scipy.linalg import norm, inv +from scipy.sparse import (spdiags, SparseEfficiencyWarning, csc_matrix, + csr_matrix, identity, issparse, dok_matrix, lil_matrix, bsr_matrix) +from scipy.sparse.linalg import SuperLU +from scipy.sparse.linalg._dsolve import (spsolve, use_solver, splu, spilu, + MatrixRankWarning, _superlu, spsolve_triangular, factorized) +import scipy.sparse + +from scipy._lib._testutils import check_free_memory +from scipy._lib._util import ComplexWarning + + +sup_sparse_efficiency = suppress_warnings() +sup_sparse_efficiency.filter(SparseEfficiencyWarning) + +# scikits.umfpack is not a SciPy dependency but it is optionally used in +# dsolve, so check whether it's available +try: + import scikits.umfpack as umfpack + has_umfpack = True +except ImportError: + has_umfpack = False + +def toarray(a): + if issparse(a): + return a.toarray() + else: + return a + + +def setup_bug_8278(): + N = 2 ** 6 + h = 1/N + Ah1D = scipy.sparse.diags([-1, 2, -1], [-1, 0, 1], + shape=(N-1, N-1))/(h**2) + eyeN = scipy.sparse.eye(N - 1) + A = (scipy.sparse.kron(eyeN, scipy.sparse.kron(eyeN, Ah1D)) + + scipy.sparse.kron(eyeN, scipy.sparse.kron(Ah1D, eyeN)) + + scipy.sparse.kron(Ah1D, scipy.sparse.kron(eyeN, eyeN))) + b = np.random.rand((N-1)**3) + return A, b + + +class TestFactorized: + def setup_method(self): + n = 5 + d = arange(n) + 1 + self.n = n + self.A = spdiags((d, 2*d, d[::-1]), (-3, 0, 5), n, n).tocsc() + random.seed(1234) + + def _check_singular(self): + A = csc_matrix((5,5), dtype='d') + b = ones(5) + assert_array_almost_equal(0. * b, factorized(A)(b)) + + def _check_non_singular(self): + # Make a diagonal dominant, to make sure it is not singular + n = 5 + a = csc_matrix(random.rand(n, n)) + b = ones(n) + + expected = splu(a).solve(b) + assert_array_almost_equal(factorized(a)(b), expected) + + def test_singular_without_umfpack(self): + use_solver(useUmfpack=False) + with assert_raises(RuntimeError, match="Factor is exactly singular"): + self._check_singular() + + @pytest.mark.skipif(not has_umfpack, reason="umfpack not available") + def test_singular_with_umfpack(self): + use_solver(useUmfpack=True) + with suppress_warnings() as sup: + sup.filter(RuntimeWarning, "divide by zero encountered in double_scalars") + assert_warns(umfpack.UmfpackWarning, self._check_singular) + + def test_non_singular_without_umfpack(self): + use_solver(useUmfpack=False) + self._check_non_singular() + + @pytest.mark.skipif(not has_umfpack, reason="umfpack not available") + def test_non_singular_with_umfpack(self): + use_solver(useUmfpack=True) + self._check_non_singular() + + def test_cannot_factorize_nonsquare_matrix_without_umfpack(self): + use_solver(useUmfpack=False) + msg = "can only factor square matrices" + with assert_raises(ValueError, match=msg): + factorized(self.A[:, :4]) + + @pytest.mark.skipif(not has_umfpack, reason="umfpack not available") + def test_factorizes_nonsquare_matrix_with_umfpack(self): + use_solver(useUmfpack=True) + # does not raise + factorized(self.A[:,:4]) + + def test_call_with_incorrectly_sized_matrix_without_umfpack(self): + use_solver(useUmfpack=False) + solve = factorized(self.A) + b = random.rand(4) + B = random.rand(4, 3) + BB = random.rand(self.n, 3, 9) + + with assert_raises(ValueError, match="is of incompatible size"): + solve(b) + with assert_raises(ValueError, match="is of incompatible size"): + solve(B) + with assert_raises(ValueError, + match="object too deep for desired array"): + solve(BB) + + @pytest.mark.skipif(not has_umfpack, reason="umfpack not available") + def test_call_with_incorrectly_sized_matrix_with_umfpack(self): + use_solver(useUmfpack=True) + solve = factorized(self.A) + b = random.rand(4) + B = random.rand(4, 3) + BB = random.rand(self.n, 3, 9) + + # does not raise + solve(b) + msg = "object too deep for desired array" + with assert_raises(ValueError, match=msg): + solve(B) + with assert_raises(ValueError, match=msg): + solve(BB) + + def test_call_with_cast_to_complex_without_umfpack(self): + use_solver(useUmfpack=False) + solve = factorized(self.A) + b = random.rand(4) + for t in [np.complex64, np.complex128]: + with assert_raises(TypeError, match="Cannot cast array data"): + solve(b.astype(t)) + + @pytest.mark.skipif(not has_umfpack, reason="umfpack not available") + def test_call_with_cast_to_complex_with_umfpack(self): + use_solver(useUmfpack=True) + solve = factorized(self.A) + b = random.rand(4) + for t in [np.complex64, np.complex128]: + assert_warns(ComplexWarning, solve, b.astype(t)) + + @pytest.mark.skipif(not has_umfpack, reason="umfpack not available") + def test_assume_sorted_indices_flag(self): + # a sparse matrix with unsorted indices + unsorted_inds = np.array([2, 0, 1, 0]) + data = np.array([10, 16, 5, 0.4]) + indptr = np.array([0, 1, 2, 4]) + A = csc_matrix((data, unsorted_inds, indptr), (3, 3)) + b = ones(3) + + # should raise when incorrectly assuming indices are sorted + use_solver(useUmfpack=True, assumeSortedIndices=True) + with assert_raises(RuntimeError, + match="UMFPACK_ERROR_invalid_matrix"): + factorized(A) + + # should sort indices and succeed when not assuming indices are sorted + use_solver(useUmfpack=True, assumeSortedIndices=False) + expected = splu(A.copy()).solve(b) + + assert_equal(A.has_sorted_indices, 0) + assert_array_almost_equal(factorized(A)(b), expected) + + @pytest.mark.slow + @pytest.mark.skipif(not has_umfpack, reason="umfpack not available") + def test_bug_8278(self): + check_free_memory(8000) + use_solver(useUmfpack=True) + A, b = setup_bug_8278() + A = A.tocsc() + f = factorized(A) + x = f(b) + assert_array_almost_equal(A @ x, b) + + +class TestLinsolve: + def setup_method(self): + use_solver(useUmfpack=False) + + def test_singular(self): + A = csc_matrix((5,5), dtype='d') + b = array([1, 2, 3, 4, 5],dtype='d') + with suppress_warnings() as sup: + sup.filter(MatrixRankWarning, "Matrix is exactly singular") + x = spsolve(A, b) + assert_(not np.isfinite(x).any()) + + def test_singular_gh_3312(self): + # "Bad" test case that leads SuperLU to call LAPACK with invalid + # arguments. Check that it fails moderately gracefully. + ij = np.array([(17, 0), (17, 6), (17, 12), (10, 13)], dtype=np.int32) + v = np.array([0.284213, 0.94933781, 0.15767017, 0.38797296]) + A = csc_matrix((v, ij.T), shape=(20, 20)) + b = np.arange(20) + + try: + # should either raise a runtime error or return value + # appropriate for singular input (which yields the warning) + with suppress_warnings() as sup: + sup.filter(MatrixRankWarning, "Matrix is exactly singular") + x = spsolve(A, b) + assert not np.isfinite(x).any() + except RuntimeError: + pass + + @pytest.mark.parametrize('format', ['csc', 'csr']) + @pytest.mark.parametrize('idx_dtype', [np.int32, np.int64]) + def test_twodiags(self, format: str, idx_dtype: np.dtype): + A = spdiags([[1, 2, 3, 4, 5], [6, 5, 8, 9, 10]], [0, 1], 5, 5, + format=format) + b = array([1, 2, 3, 4, 5]) + + # condition number of A + cond_A = norm(A.toarray(), 2) * norm(inv(A.toarray()), 2) + + for t in ['f','d','F','D']: + eps = finfo(t).eps # floating point epsilon + b = b.astype(t) + Asp = A.astype(t) + Asp.indices = Asp.indices.astype(idx_dtype, copy=False) + Asp.indptr = Asp.indptr.astype(idx_dtype, copy=False) + + x = spsolve(Asp, b) + assert_(norm(b - Asp@x) < 10 * cond_A * eps) + + def test_bvector_smoketest(self): + Adense = array([[0., 1., 1.], + [1., 0., 1.], + [0., 0., 1.]]) + As = csc_matrix(Adense) + random.seed(1234) + x = random.randn(3) + b = As@x + x2 = spsolve(As, b) + + assert_array_almost_equal(x, x2) + + def test_bmatrix_smoketest(self): + Adense = array([[0., 1., 1.], + [1., 0., 1.], + [0., 0., 1.]]) + As = csc_matrix(Adense) + random.seed(1234) + x = random.randn(3, 4) + Bdense = As.dot(x) + Bs = csc_matrix(Bdense) + x2 = spsolve(As, Bs) + assert_array_almost_equal(x, x2.toarray()) + + @sup_sparse_efficiency + def test_non_square(self): + # A is not square. + A = ones((3, 4)) + b = ones((4, 1)) + assert_raises(ValueError, spsolve, A, b) + # A2 and b2 have incompatible shapes. + A2 = csc_matrix(eye(3)) + b2 = array([1.0, 2.0]) + assert_raises(ValueError, spsolve, A2, b2) + + @sup_sparse_efficiency + def test_example_comparison(self): + row = array([0,0,1,2,2,2]) + col = array([0,2,2,0,1,2]) + data = array([1,2,3,-4,5,6]) + sM = csr_matrix((data,(row,col)), shape=(3,3), dtype=float) + M = sM.toarray() + + row = array([0,0,1,1,0,0]) + col = array([0,2,1,1,0,0]) + data = array([1,1,1,1,1,1]) + sN = csr_matrix((data, (row,col)), shape=(3,3), dtype=float) + N = sN.toarray() + + sX = spsolve(sM, sN) + X = scipy.linalg.solve(M, N) + + assert_array_almost_equal(X, sX.toarray()) + + @sup_sparse_efficiency + @pytest.mark.skipif(not has_umfpack, reason="umfpack not available") + def test_shape_compatibility(self): + use_solver(useUmfpack=True) + A = csc_matrix([[1., 0], [0, 2]]) + bs = [ + [1, 6], + array([1, 6]), + [[1], [6]], + array([[1], [6]]), + csc_matrix([[1], [6]]), + csr_matrix([[1], [6]]), + dok_matrix([[1], [6]]), + bsr_matrix([[1], [6]]), + array([[1., 2., 3.], [6., 8., 10.]]), + csc_matrix([[1., 2., 3.], [6., 8., 10.]]), + csr_matrix([[1., 2., 3.], [6., 8., 10.]]), + dok_matrix([[1., 2., 3.], [6., 8., 10.]]), + bsr_matrix([[1., 2., 3.], [6., 8., 10.]]), + ] + + for b in bs: + x = np.linalg.solve(A.toarray(), toarray(b)) + for spmattype in [csc_matrix, csr_matrix, dok_matrix, lil_matrix]: + x1 = spsolve(spmattype(A), b, use_umfpack=True) + x2 = spsolve(spmattype(A), b, use_umfpack=False) + + # check solution + if x.ndim == 2 and x.shape[1] == 1: + # interprets also these as "vectors" + x = x.ravel() + + assert_array_almost_equal(toarray(x1), x, + err_msg=repr((b, spmattype, 1))) + assert_array_almost_equal(toarray(x2), x, + err_msg=repr((b, spmattype, 2))) + + # dense vs. sparse output ("vectors" are always dense) + if issparse(b) and x.ndim > 1: + assert_(issparse(x1), repr((b, spmattype, 1))) + assert_(issparse(x2), repr((b, spmattype, 2))) + else: + assert_(isinstance(x1, np.ndarray), repr((b, spmattype, 1))) + assert_(isinstance(x2, np.ndarray), repr((b, spmattype, 2))) + + # check output shape + if x.ndim == 1: + # "vector" + assert_equal(x1.shape, (A.shape[1],)) + assert_equal(x2.shape, (A.shape[1],)) + else: + # "matrix" + assert_equal(x1.shape, x.shape) + assert_equal(x2.shape, x.shape) + + A = csc_matrix((3, 3)) + b = csc_matrix((1, 3)) + assert_raises(ValueError, spsolve, A, b) + + @sup_sparse_efficiency + def test_ndarray_support(self): + A = array([[1., 2.], [2., 0.]]) + x = array([[1., 1.], [0.5, -0.5]]) + b = array([[2., 0.], [2., 2.]]) + + assert_array_almost_equal(x, spsolve(A, b)) + + def test_gssv_badinput(self): + N = 10 + d = arange(N) + 1.0 + A = spdiags((d, 2*d, d[::-1]), (-3, 0, 5), N, N) + + for spmatrix in (csc_matrix, csr_matrix): + A = spmatrix(A) + b = np.arange(N) + + def not_c_contig(x): + return x.repeat(2)[::2] + + def not_1dim(x): + return x[:,None] + + def bad_type(x): + return x.astype(bool) + + def too_short(x): + return x[:-1] + + badops = [not_c_contig, not_1dim, bad_type, too_short] + + for badop in badops: + msg = f"{spmatrix!r} {badop!r}" + # Not C-contiguous + assert_raises((ValueError, TypeError), _superlu.gssv, + N, A.nnz, badop(A.data), A.indices, A.indptr, + b, int(spmatrix == csc_matrix), err_msg=msg) + assert_raises((ValueError, TypeError), _superlu.gssv, + N, A.nnz, A.data, badop(A.indices), A.indptr, + b, int(spmatrix == csc_matrix), err_msg=msg) + assert_raises((ValueError, TypeError), _superlu.gssv, + N, A.nnz, A.data, A.indices, badop(A.indptr), + b, int(spmatrix == csc_matrix), err_msg=msg) + + def test_sparsity_preservation(self): + ident = csc_matrix([ + [1, 0, 0], + [0, 1, 0], + [0, 0, 1]]) + b = csc_matrix([ + [0, 1], + [1, 0], + [0, 0]]) + x = spsolve(ident, b) + assert_equal(ident.nnz, 3) + assert_equal(b.nnz, 2) + assert_equal(x.nnz, 2) + assert_allclose(x.A, b.A, atol=1e-12, rtol=1e-12) + + def test_dtype_cast(self): + A_real = scipy.sparse.csr_matrix([[1, 2, 0], + [0, 0, 3], + [4, 0, 5]]) + A_complex = scipy.sparse.csr_matrix([[1, 2, 0], + [0, 0, 3], + [4, 0, 5 + 1j]]) + b_real = np.array([1,1,1]) + b_complex = np.array([1,1,1]) + 1j*np.array([1,1,1]) + x = spsolve(A_real, b_real) + assert_(np.issubdtype(x.dtype, np.floating)) + x = spsolve(A_real, b_complex) + assert_(np.issubdtype(x.dtype, np.complexfloating)) + x = spsolve(A_complex, b_real) + assert_(np.issubdtype(x.dtype, np.complexfloating)) + x = spsolve(A_complex, b_complex) + assert_(np.issubdtype(x.dtype, np.complexfloating)) + + @pytest.mark.slow + @pytest.mark.skipif(not has_umfpack, reason="umfpack not available") + def test_bug_8278(self): + check_free_memory(8000) + use_solver(useUmfpack=True) + A, b = setup_bug_8278() + x = spsolve(A, b) + assert_array_almost_equal(A @ x, b) + + +class TestSplu: + def setup_method(self): + use_solver(useUmfpack=False) + n = 40 + d = arange(n) + 1 + self.n = n + self.A = spdiags((d, 2*d, d[::-1]), (-3, 0, 5), n, n, format='csc') + random.seed(1234) + + def _smoketest(self, spxlu, check, dtype, idx_dtype): + if np.issubdtype(dtype, np.complexfloating): + A = self.A + 1j*self.A.T + else: + A = self.A + + A = A.astype(dtype) + A.indices = A.indices.astype(idx_dtype, copy=False) + A.indptr = A.indptr.astype(idx_dtype, copy=False) + lu = spxlu(A) + + rng = random.RandomState(1234) + + # Input shapes + for k in [None, 1, 2, self.n, self.n+2]: + msg = f"k={k!r}" + + if k is None: + b = rng.rand(self.n) + else: + b = rng.rand(self.n, k) + + if np.issubdtype(dtype, np.complexfloating): + b = b + 1j*rng.rand(*b.shape) + b = b.astype(dtype) + + x = lu.solve(b) + check(A, b, x, msg) + + x = lu.solve(b, 'T') + check(A.T, b, x, msg) + + x = lu.solve(b, 'H') + check(A.T.conj(), b, x, msg) + + @sup_sparse_efficiency + def test_splu_smoketest(self): + self._internal_test_splu_smoketest() + + def _internal_test_splu_smoketest(self): + # Check that splu works at all + def check(A, b, x, msg=""): + eps = np.finfo(A.dtype).eps + r = A @ x + assert_(abs(r - b).max() < 1e3*eps, msg) + + for dtype in [np.float32, np.float64, np.complex64, np.complex128]: + for idx_dtype in [np.int32, np.int64]: + self._smoketest(splu, check, dtype, idx_dtype) + + @sup_sparse_efficiency + def test_spilu_smoketest(self): + self._internal_test_spilu_smoketest() + + def _internal_test_spilu_smoketest(self): + errors = [] + + def check(A, b, x, msg=""): + r = A @ x + err = abs(r - b).max() + assert_(err < 1e-2, msg) + if b.dtype in (np.float64, np.complex128): + errors.append(err) + + for dtype in [np.float32, np.float64, np.complex64, np.complex128]: + for idx_dtype in [np.int32, np.int64]: + self._smoketest(spilu, check, dtype, idx_dtype) + + assert_(max(errors) > 1e-5) + + @sup_sparse_efficiency + def test_spilu_drop_rule(self): + # Test passing in the drop_rule argument to spilu. + A = identity(2) + + rules = [ + b'basic,area'.decode('ascii'), # unicode + b'basic,area', # ascii + [b'basic', b'area'.decode('ascii')] + ] + for rule in rules: + # Argument should be accepted + assert_(isinstance(spilu(A, drop_rule=rule), SuperLU)) + + def test_splu_nnz0(self): + A = csc_matrix((5,5), dtype='d') + assert_raises(RuntimeError, splu, A) + + def test_spilu_nnz0(self): + A = csc_matrix((5,5), dtype='d') + assert_raises(RuntimeError, spilu, A) + + def test_splu_basic(self): + # Test basic splu functionality. + n = 30 + rng = random.RandomState(12) + a = rng.rand(n, n) + a[a < 0.95] = 0 + # First test with a singular matrix + a[:, 0] = 0 + a_ = csc_matrix(a) + # Matrix is exactly singular + assert_raises(RuntimeError, splu, a_) + + # Make a diagonal dominant, to make sure it is not singular + a += 4*eye(n) + a_ = csc_matrix(a) + lu = splu(a_) + b = ones(n) + x = lu.solve(b) + assert_almost_equal(dot(a, x), b) + + def test_splu_perm(self): + # Test the permutation vectors exposed by splu. + n = 30 + a = random.random((n, n)) + a[a < 0.95] = 0 + # Make a diagonal dominant, to make sure it is not singular + a += 4*eye(n) + a_ = csc_matrix(a) + lu = splu(a_) + # Check that the permutation indices do belong to [0, n-1]. + for perm in (lu.perm_r, lu.perm_c): + assert_(all(perm > -1)) + assert_(all(perm < n)) + assert_equal(len(unique(perm)), len(perm)) + + # Now make a symmetric, and test that the two permutation vectors are + # the same + # Note: a += a.T relies on undefined behavior. + a = a + a.T + a_ = csc_matrix(a) + lu = splu(a_) + assert_array_equal(lu.perm_r, lu.perm_c) + + @pytest.mark.parametrize("splu_fun, rtol", [(splu, 1e-7), (spilu, 1e-1)]) + def test_natural_permc(self, splu_fun, rtol): + # Test that the "NATURAL" permc_spec does not permute the matrix + np.random.seed(42) + n = 500 + p = 0.01 + A = scipy.sparse.random(n, n, p) + x = np.random.rand(n) + # Make A diagonal dominant to make sure it is not singular + A += (n+1)*scipy.sparse.identity(n) + A_ = csc_matrix(A) + b = A_ @ x + + # without permc_spec, permutation is not identity + lu = splu_fun(A_) + assert_(np.any(lu.perm_c != np.arange(n))) + + # with permc_spec="NATURAL", permutation is identity + lu = splu_fun(A_, permc_spec="NATURAL") + assert_array_equal(lu.perm_c, np.arange(n)) + + # Also, lu decomposition is valid + x2 = lu.solve(b) + assert_allclose(x, x2, rtol=rtol) + + @pytest.mark.skipif(not hasattr(sys, 'getrefcount'), reason="no sys.getrefcount") + def test_lu_refcount(self): + # Test that we are keeping track of the reference count with splu. + n = 30 + a = random.random((n, n)) + a[a < 0.95] = 0 + # Make a diagonal dominant, to make sure it is not singular + a += 4*eye(n) + a_ = csc_matrix(a) + lu = splu(a_) + + # And now test that we don't have a refcount bug + rc = sys.getrefcount(lu) + for attr in ('perm_r', 'perm_c'): + perm = getattr(lu, attr) + assert_equal(sys.getrefcount(lu), rc + 1) + del perm + assert_equal(sys.getrefcount(lu), rc) + + def test_bad_inputs(self): + A = self.A.tocsc() + + assert_raises(ValueError, splu, A[:,:4]) + assert_raises(ValueError, spilu, A[:,:4]) + + for lu in [splu(A), spilu(A)]: + b = random.rand(42) + B = random.rand(42, 3) + BB = random.rand(self.n, 3, 9) + assert_raises(ValueError, lu.solve, b) + assert_raises(ValueError, lu.solve, B) + assert_raises(ValueError, lu.solve, BB) + assert_raises(TypeError, lu.solve, + b.astype(np.complex64)) + assert_raises(TypeError, lu.solve, + b.astype(np.complex128)) + + @sup_sparse_efficiency + def test_superlu_dlamch_i386_nan(self): + # SuperLU 4.3 calls some functions returning floats without + # declaring them. On i386@linux call convention, this fails to + # clear floating point registers after call. As a result, NaN + # can appear in the next floating point operation made. + # + # Here's a test case that triggered the issue. + n = 8 + d = np.arange(n) + 1 + A = spdiags((d, 2*d, d[::-1]), (-3, 0, 5), n, n) + A = A.astype(np.float32) + spilu(A) + A = A + 1j*A + B = A.A + assert_(not np.isnan(B).any()) + + @sup_sparse_efficiency + def test_lu_attr(self): + + def check(dtype, complex_2=False): + A = self.A.astype(dtype) + + if complex_2: + A = A + 1j*A.T + + n = A.shape[0] + lu = splu(A) + + # Check that the decomposition is as advertised + + Pc = np.zeros((n, n)) + Pc[np.arange(n), lu.perm_c] = 1 + + Pr = np.zeros((n, n)) + Pr[lu.perm_r, np.arange(n)] = 1 + + Ad = A.toarray() + lhs = Pr.dot(Ad).dot(Pc) + rhs = (lu.L @ lu.U).toarray() + + eps = np.finfo(dtype).eps + + assert_allclose(lhs, rhs, atol=100*eps) + + check(np.float32) + check(np.float64) + check(np.complex64) + check(np.complex128) + check(np.complex64, True) + check(np.complex128, True) + + @pytest.mark.slow + @sup_sparse_efficiency + def test_threads_parallel(self): + oks = [] + + def worker(): + try: + self.test_splu_basic() + self._internal_test_splu_smoketest() + self._internal_test_spilu_smoketest() + oks.append(True) + except Exception: + pass + + threads = [threading.Thread(target=worker) + for k in range(20)] + for t in threads: + t.start() + for t in threads: + t.join() + + assert_equal(len(oks), 20) + + +class TestSpsolveTriangular: + def setup_method(self): + use_solver(useUmfpack=False) + + def test_zero_diagonal(self): + n = 5 + rng = np.random.default_rng(43876432987) + A = rng.standard_normal((n, n)) + b = np.arange(n) + A = scipy.sparse.tril(A, k=0, format='csr') + + x = spsolve_triangular(A, b, unit_diagonal=True, lower=True) + + A.setdiag(1) + assert_allclose(A.dot(x), b) + + # Regression test from gh-15199 + A = np.array([[0, 0, 0], [1, 0, 0], [1, 1, 0]], dtype=np.float64) + b = np.array([1., 2., 3.]) + with suppress_warnings() as sup: + sup.filter(SparseEfficiencyWarning, "CSR matrix format is") + spsolve_triangular(A, b, unit_diagonal=True) + + def test_singular(self): + n = 5 + A = csr_matrix((n, n)) + b = np.arange(n) + for lower in (True, False): + assert_raises(scipy.linalg.LinAlgError, + spsolve_triangular, A, b, lower=lower) + + @sup_sparse_efficiency + def test_bad_shape(self): + # A is not square. + A = np.zeros((3, 4)) + b = ones((4, 1)) + assert_raises(ValueError, spsolve_triangular, A, b) + # A2 and b2 have incompatible shapes. + A2 = csr_matrix(eye(3)) + b2 = array([1.0, 2.0]) + assert_raises(ValueError, spsolve_triangular, A2, b2) + + @sup_sparse_efficiency + def test_input_types(self): + A = array([[1., 0.], [1., 2.]]) + b = array([[2., 0.], [2., 2.]]) + for matrix_type in (array, csc_matrix, csr_matrix): + x = spsolve_triangular(matrix_type(A), b, lower=True) + assert_array_almost_equal(A.dot(x), b) + + @pytest.mark.slow + @pytest.mark.timeout(120) # prerelease_deps_coverage_64bit_blas job + @sup_sparse_efficiency + def test_random(self): + def random_triangle_matrix(n, lower=True): + A = scipy.sparse.random(n, n, density=0.1, format='coo') + if lower: + A = scipy.sparse.tril(A) + else: + A = scipy.sparse.triu(A) + A = A.tocsr(copy=False) + for i in range(n): + A[i, i] = np.random.rand() + 1 + return A + + np.random.seed(1234) + for lower in (True, False): + for n in (10, 10**2, 10**3): + A = random_triangle_matrix(n, lower=lower) + for m in (1, 10): + for b in (np.random.rand(n, m), + np.random.randint(-9, 9, (n, m)), + np.random.randint(-9, 9, (n, m)) + + np.random.randint(-9, 9, (n, m)) * 1j): + x = spsolve_triangular(A, b, lower=lower) + assert_array_almost_equal(A.dot(x), b) + x = spsolve_triangular(A, b, lower=lower, + unit_diagonal=True) + A.setdiag(1) + assert_array_almost_equal(A.dot(x), b) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/__init__.py b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..25278d34ecd3353d409a25f7a94797902fe6ef93 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/__init__.py @@ -0,0 +1,22 @@ +""" +Sparse Eigenvalue Solvers +------------------------- + +The submodules of sparse.linalg._eigen: + 1. lobpcg: Locally Optimal Block Preconditioned Conjugate Gradient Method + +""" +from .arpack import * +from .lobpcg import * +from ._svds import svds + +from . import arpack + +__all__ = [ + 'ArpackError', 'ArpackNoConvergence', + 'eigs', 'eigsh', 'lobpcg', 'svds' +] + +from scipy._lib._testutils import PytestTester +test = PytestTester(__name__) +del PytestTester diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e81317dabab89bfbc46a3ff61f9b305ba9a78e54 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/__pycache__/_svds.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/__pycache__/_svds.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..aaa6fbc518cd00ef85691ae3a1acf6101be0e3cb Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/__pycache__/_svds.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/__pycache__/_svds_doc.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/__pycache__/_svds_doc.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bc683d696a4439d02e39265ad26779a3829e5704 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/__pycache__/_svds_doc.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/_svds_doc.py b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/_svds_doc.py new file mode 100644 index 0000000000000000000000000000000000000000..3de1b76d6d4dc437bfbee8faf8171f2dfa2377fa --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/_svds_doc.py @@ -0,0 +1,400 @@ +def _svds_arpack_doc(A, k=6, ncv=None, tol=0, which='LM', v0=None, + maxiter=None, return_singular_vectors=True, + solver='arpack', random_state=None): + """ + Partial singular value decomposition of a sparse matrix using ARPACK. + + Compute the largest or smallest `k` singular values and corresponding + singular vectors of a sparse matrix `A`. The order in which the singular + values are returned is not guaranteed. + + In the descriptions below, let ``M, N = A.shape``. + + Parameters + ---------- + A : sparse matrix or LinearOperator + Matrix to decompose. + k : int, optional + Number of singular values and singular vectors to compute. + Must satisfy ``1 <= k <= min(M, N) - 1``. + Default is 6. + ncv : int, optional + The number of Lanczos vectors generated. + The default is ``min(n, max(2*k + 1, 20))``. + If specified, must satistify ``k + 1 < ncv < min(M, N)``; ``ncv > 2*k`` + is recommended. + tol : float, optional + Tolerance for singular values. Zero (default) means machine precision. + which : {'LM', 'SM'} + Which `k` singular values to find: either the largest magnitude ('LM') + or smallest magnitude ('SM') singular values. + v0 : ndarray, optional + The starting vector for iteration: + an (approximate) left singular vector if ``N > M`` and a right singular + vector otherwise. Must be of length ``min(M, N)``. + Default: random + maxiter : int, optional + Maximum number of Arnoldi update iterations allowed; + default is ``min(M, N) * 10``. + return_singular_vectors : {True, False, "u", "vh"} + Singular values are always computed and returned; this parameter + controls the computation and return of singular vectors. + + - ``True``: return singular vectors. + - ``False``: do not return singular vectors. + - ``"u"``: if ``M <= N``, compute only the left singular vectors and + return ``None`` for the right singular vectors. Otherwise, compute + all singular vectors. + - ``"vh"``: if ``M > N``, compute only the right singular vectors and + return ``None`` for the left singular vectors. Otherwise, compute + all singular vectors. + + solver : {'arpack', 'propack', 'lobpcg'}, optional + This is the solver-specific documentation for ``solver='arpack'``. + :ref:`'lobpcg' ` and + :ref:`'propack' ` + are also supported. + random_state : {None, int, `numpy.random.Generator`, + `numpy.random.RandomState`}, optional + + Pseudorandom number generator state used to generate resamples. + + If `random_state` is ``None`` (or `np.random`), the + `numpy.random.RandomState` singleton is used. + If `random_state` is an int, a new ``RandomState`` instance is used, + seeded with `random_state`. + If `random_state` is already a ``Generator`` or ``RandomState`` + instance then that instance is used. + options : dict, optional + A dictionary of solver-specific options. No solver-specific options + are currently supported; this parameter is reserved for future use. + + Returns + ------- + u : ndarray, shape=(M, k) + Unitary matrix having left singular vectors as columns. + s : ndarray, shape=(k,) + The singular values. + vh : ndarray, shape=(k, N) + Unitary matrix having right singular vectors as rows. + + Notes + ----- + This is a naive implementation using ARPACK as an eigensolver + on ``A.conj().T @ A`` or ``A @ A.conj().T``, depending on which one is more + efficient. + + Examples + -------- + Construct a matrix ``A`` from singular values and vectors. + + >>> import numpy as np + >>> from scipy.stats import ortho_group + >>> from scipy.sparse import csc_matrix, diags + >>> from scipy.sparse.linalg import svds + >>> rng = np.random.default_rng() + >>> orthogonal = csc_matrix(ortho_group.rvs(10, random_state=rng)) + >>> s = [0.0001, 0.001, 3, 4, 5] # singular values + >>> u = orthogonal[:, :5] # left singular vectors + >>> vT = orthogonal[:, 5:].T # right singular vectors + >>> A = u @ diags(s) @ vT + + With only three singular values/vectors, the SVD approximates the original + matrix. + + >>> u2, s2, vT2 = svds(A, k=3, solver='arpack') + >>> A2 = u2 @ np.diag(s2) @ vT2 + >>> np.allclose(A2, A.toarray(), atol=1e-3) + True + + With all five singular values/vectors, we can reproduce the original + matrix. + + >>> u3, s3, vT3 = svds(A, k=5, solver='arpack') + >>> A3 = u3 @ np.diag(s3) @ vT3 + >>> np.allclose(A3, A.toarray()) + True + + The singular values match the expected singular values, and the singular + vectors are as expected up to a difference in sign. + + >>> (np.allclose(s3, s) and + ... np.allclose(np.abs(u3), np.abs(u.toarray())) and + ... np.allclose(np.abs(vT3), np.abs(vT.toarray()))) + True + + The singular vectors are also orthogonal. + + >>> (np.allclose(u3.T @ u3, np.eye(5)) and + ... np.allclose(vT3 @ vT3.T, np.eye(5))) + True + """ + pass + + +def _svds_lobpcg_doc(A, k=6, ncv=None, tol=0, which='LM', v0=None, + maxiter=None, return_singular_vectors=True, + solver='lobpcg', random_state=None): + """ + Partial singular value decomposition of a sparse matrix using LOBPCG. + + Compute the largest or smallest `k` singular values and corresponding + singular vectors of a sparse matrix `A`. The order in which the singular + values are returned is not guaranteed. + + In the descriptions below, let ``M, N = A.shape``. + + Parameters + ---------- + A : sparse matrix or LinearOperator + Matrix to decompose. + k : int, default: 6 + Number of singular values and singular vectors to compute. + Must satisfy ``1 <= k <= min(M, N) - 1``. + ncv : int, optional + Ignored. + tol : float, optional + Tolerance for singular values. Zero (default) means machine precision. + which : {'LM', 'SM'} + Which `k` singular values to find: either the largest magnitude ('LM') + or smallest magnitude ('SM') singular values. + v0 : ndarray, optional + If `k` is 1, the starting vector for iteration: + an (approximate) left singular vector if ``N > M`` and a right singular + vector otherwise. Must be of length ``min(M, N)``. + Ignored otherwise. + Default: random + maxiter : int, default: 20 + Maximum number of iterations. + return_singular_vectors : {True, False, "u", "vh"} + Singular values are always computed and returned; this parameter + controls the computation and return of singular vectors. + + - ``True``: return singular vectors. + - ``False``: do not return singular vectors. + - ``"u"``: if ``M <= N``, compute only the left singular vectors and + return ``None`` for the right singular vectors. Otherwise, compute + all singular vectors. + - ``"vh"``: if ``M > N``, compute only the right singular vectors and + return ``None`` for the left singular vectors. Otherwise, compute + all singular vectors. + + solver : {'arpack', 'propack', 'lobpcg'}, optional + This is the solver-specific documentation for ``solver='lobpcg'``. + :ref:`'arpack' ` and + :ref:`'propack' ` + are also supported. + random_state : {None, int, `numpy.random.Generator`, + `numpy.random.RandomState`}, optional + + Pseudorandom number generator state used to generate resamples. + + If `random_state` is ``None`` (or `np.random`), the + `numpy.random.RandomState` singleton is used. + If `random_state` is an int, a new ``RandomState`` instance is used, + seeded with `random_state`. + If `random_state` is already a ``Generator`` or ``RandomState`` + instance then that instance is used. + options : dict, optional + A dictionary of solver-specific options. No solver-specific options + are currently supported; this parameter is reserved for future use. + + Returns + ------- + u : ndarray, shape=(M, k) + Unitary matrix having left singular vectors as columns. + s : ndarray, shape=(k,) + The singular values. + vh : ndarray, shape=(k, N) + Unitary matrix having right singular vectors as rows. + + Notes + ----- + This is a naive implementation using LOBPCG as an eigensolver + on ``A.conj().T @ A`` or ``A @ A.conj().T``, depending on which one is more + efficient. + + Examples + -------- + Construct a matrix ``A`` from singular values and vectors. + + >>> import numpy as np + >>> from scipy.stats import ortho_group + >>> from scipy.sparse import csc_matrix, diags + >>> from scipy.sparse.linalg import svds + >>> rng = np.random.default_rng() + >>> orthogonal = csc_matrix(ortho_group.rvs(10, random_state=rng)) + >>> s = [0.0001, 0.001, 3, 4, 5] # singular values + >>> u = orthogonal[:, :5] # left singular vectors + >>> vT = orthogonal[:, 5:].T # right singular vectors + >>> A = u @ diags(s) @ vT + + With only three singular values/vectors, the SVD approximates the original + matrix. + + >>> u2, s2, vT2 = svds(A, k=3, solver='lobpcg') + >>> A2 = u2 @ np.diag(s2) @ vT2 + >>> np.allclose(A2, A.toarray(), atol=1e-3) + True + + With all five singular values/vectors, we can reproduce the original + matrix. + + >>> u3, s3, vT3 = svds(A, k=5, solver='lobpcg') + >>> A3 = u3 @ np.diag(s3) @ vT3 + >>> np.allclose(A3, A.toarray()) + True + + The singular values match the expected singular values, and the singular + vectors are as expected up to a difference in sign. + + >>> (np.allclose(s3, s) and + ... np.allclose(np.abs(u3), np.abs(u.todense())) and + ... np.allclose(np.abs(vT3), np.abs(vT.todense()))) + True + + The singular vectors are also orthogonal. + + >>> (np.allclose(u3.T @ u3, np.eye(5)) and + ... np.allclose(vT3 @ vT3.T, np.eye(5))) + True + + """ + pass + + +def _svds_propack_doc(A, k=6, ncv=None, tol=0, which='LM', v0=None, + maxiter=None, return_singular_vectors=True, + solver='propack', random_state=None): + """ + Partial singular value decomposition of a sparse matrix using PROPACK. + + Compute the largest or smallest `k` singular values and corresponding + singular vectors of a sparse matrix `A`. The order in which the singular + values are returned is not guaranteed. + + In the descriptions below, let ``M, N = A.shape``. + + Parameters + ---------- + A : sparse matrix or LinearOperator + Matrix to decompose. If `A` is a ``LinearOperator`` + object, it must define both ``matvec`` and ``rmatvec`` methods. + k : int, default: 6 + Number of singular values and singular vectors to compute. + Must satisfy ``1 <= k <= min(M, N)``. + ncv : int, optional + Ignored. + tol : float, optional + The desired relative accuracy for computed singular values. + Zero (default) means machine precision. + which : {'LM', 'SM'} + Which `k` singular values to find: either the largest magnitude ('LM') + or smallest magnitude ('SM') singular values. Note that choosing + ``which='SM'`` will force the ``irl`` option to be set ``True``. + v0 : ndarray, optional + Starting vector for iterations: must be of length ``A.shape[0]``. + If not specified, PROPACK will generate a starting vector. + maxiter : int, optional + Maximum number of iterations / maximal dimension of the Krylov + subspace. Default is ``10 * k``. + return_singular_vectors : {True, False, "u", "vh"} + Singular values are always computed and returned; this parameter + controls the computation and return of singular vectors. + + - ``True``: return singular vectors. + - ``False``: do not return singular vectors. + - ``"u"``: compute only the left singular vectors; return ``None`` for + the right singular vectors. + - ``"vh"``: compute only the right singular vectors; return ``None`` + for the left singular vectors. + + solver : {'arpack', 'propack', 'lobpcg'}, optional + This is the solver-specific documentation for ``solver='propack'``. + :ref:`'arpack' ` and + :ref:`'lobpcg' ` + are also supported. + random_state : {None, int, `numpy.random.Generator`, + `numpy.random.RandomState`}, optional + + Pseudorandom number generator state used to generate resamples. + + If `random_state` is ``None`` (or `np.random`), the + `numpy.random.RandomState` singleton is used. + If `random_state` is an int, a new ``RandomState`` instance is used, + seeded with `random_state`. + If `random_state` is already a ``Generator`` or ``RandomState`` + instance then that instance is used. + options : dict, optional + A dictionary of solver-specific options. No solver-specific options + are currently supported; this parameter is reserved for future use. + + Returns + ------- + u : ndarray, shape=(M, k) + Unitary matrix having left singular vectors as columns. + s : ndarray, shape=(k,) + The singular values. + vh : ndarray, shape=(k, N) + Unitary matrix having right singular vectors as rows. + + Notes + ----- + This is an interface to the Fortran library PROPACK [1]_. + The current default is to run with IRL mode disabled unless seeking the + smallest singular values/vectors (``which='SM'``). + + References + ---------- + + .. [1] Larsen, Rasmus Munk. "PROPACK-Software for large and sparse SVD + calculations." Available online. URL + http://sun.stanford.edu/~rmunk/PROPACK (2004): 2008-2009. + + Examples + -------- + Construct a matrix ``A`` from singular values and vectors. + + >>> import numpy as np + >>> from scipy.stats import ortho_group + >>> from scipy.sparse import csc_matrix, diags + >>> from scipy.sparse.linalg import svds + >>> rng = np.random.default_rng() + >>> orthogonal = csc_matrix(ortho_group.rvs(10, random_state=rng)) + >>> s = [0.0001, 0.001, 3, 4, 5] # singular values + >>> u = orthogonal[:, :5] # left singular vectors + >>> vT = orthogonal[:, 5:].T # right singular vectors + >>> A = u @ diags(s) @ vT + + With only three singular values/vectors, the SVD approximates the original + matrix. + + >>> u2, s2, vT2 = svds(A, k=3, solver='propack') + >>> A2 = u2 @ np.diag(s2) @ vT2 + >>> np.allclose(A2, A.todense(), atol=1e-3) + True + + With all five singular values/vectors, we can reproduce the original + matrix. + + >>> u3, s3, vT3 = svds(A, k=5, solver='propack') + >>> A3 = u3 @ np.diag(s3) @ vT3 + >>> np.allclose(A3, A.todense()) + True + + The singular values match the expected singular values, and the singular + vectors are as expected up to a difference in sign. + + >>> (np.allclose(s3, s) and + ... np.allclose(np.abs(u3), np.abs(u.toarray())) and + ... np.allclose(np.abs(vT3), np.abs(vT.toarray()))) + True + + The singular vectors are also orthogonal. + + >>> (np.allclose(u3.T @ u3, np.eye(5)) and + ... np.allclose(vT3 @ vT3.T, np.eye(5))) + True + + """ + pass diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/COPYING b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/COPYING new file mode 100644 index 0000000000000000000000000000000000000000..e87667e1b8c178e53c6a7c6268ebc09ab4b0476c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/COPYING @@ -0,0 +1,45 @@ + +BSD Software License + +Pertains to ARPACK and P_ARPACK + +Copyright (c) 1996-2008 Rice University. +Developed by D.C. Sorensen, R.B. Lehoucq, C. Yang, and K. Maschhoff. +All rights reserved. + +Arpack has been renamed to arpack-ng. + +Copyright (c) 2001-2011 - Scilab Enterprises +Updated by Allan Cornet, Sylvestre Ledru. + +Copyright (c) 2010 - Jordi Gutiérrez Hermoso (Octave patch) + +Copyright (c) 2007 - Sébastien Fabbro (gentoo patch) + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: + +- Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + +- Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer listed + in this license in the documentation and/or other materials + provided with the distribution. + +- Neither the name of the copyright holders nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/__init__.py b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..679b94480d7ff5a11e037ffb758f2214c6e5097f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/__init__.py @@ -0,0 +1,20 @@ +""" +Eigenvalue solver using iterative methods. + +Find k eigenvectors and eigenvalues of a matrix A using the +Arnoldi/Lanczos iterative methods from ARPACK [1]_,[2]_. + +These methods are most useful for large sparse matrices. + + - eigs(A,k) + - eigsh(A,k) + +References +---------- +.. [1] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/ +.. [2] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE: + Solution of Large Scale Eigenvalue Problems by Implicitly Restarted + Arnoldi Methods. SIAM, Philadelphia, PA, 1998. + +""" +from .arpack import * diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..979ecab7c733675c0516bfa41ef82c82ffee94ff Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/__pycache__/arpack.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/__pycache__/arpack.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..96077c2a4856ba87f1b86d0112f71b0845f5c301 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/__pycache__/arpack.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/_arpack.cpython-310-x86_64-linux-gnu.so b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/_arpack.cpython-310-x86_64-linux-gnu.so new file mode 100644 index 0000000000000000000000000000000000000000..2037f64d51527318b00afd5bd9c3fc4552a75721 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/_arpack.cpython-310-x86_64-linux-gnu.so differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/arpack.py b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/arpack.py new file mode 100644 index 0000000000000000000000000000000000000000..f7a6fa218ca462212f1ed8a2fc0bd0037cf9d44b --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/arpack.py @@ -0,0 +1,1702 @@ +""" +Find a few eigenvectors and eigenvalues of a matrix. + + +Uses ARPACK: https://github.com/opencollab/arpack-ng + +""" +# Wrapper implementation notes +# +# ARPACK Entry Points +# ------------------- +# The entry points to ARPACK are +# - (s,d)seupd : single and double precision symmetric matrix +# - (s,d,c,z)neupd: single,double,complex,double complex general matrix +# This wrapper puts the *neupd (general matrix) interfaces in eigs() +# and the *seupd (symmetric matrix) in eigsh(). +# There is no specialized interface for complex Hermitian matrices. +# To find eigenvalues of a complex Hermitian matrix you +# may use eigsh(), but eigsh() will simply call eigs() +# and return the real part of the eigenvalues thus obtained. + +# Number of eigenvalues returned and complex eigenvalues +# ------------------------------------------------------ +# The ARPACK nonsymmetric real and double interface (s,d)naupd return +# eigenvalues and eigenvectors in real (float,double) arrays. +# Since the eigenvalues and eigenvectors are, in general, complex +# ARPACK puts the real and imaginary parts in consecutive entries +# in real-valued arrays. This wrapper puts the real entries +# into complex data types and attempts to return the requested eigenvalues +# and eigenvectors. + + +# Solver modes +# ------------ +# ARPACK and handle shifted and shift-inverse computations +# for eigenvalues by providing a shift (sigma) and a solver. + +import numpy as np +import warnings +from scipy.sparse.linalg._interface import aslinearoperator, LinearOperator +from scipy.sparse import eye, issparse +from scipy.linalg import eig, eigh, lu_factor, lu_solve +from scipy.sparse._sputils import isdense, is_pydata_spmatrix +from scipy.sparse.linalg import gmres, splu +from scipy._lib._util import _aligned_zeros +from scipy._lib._threadsafety import ReentrancyLock + +from . import _arpack +arpack_int = _arpack.timing.nbx.dtype + +__docformat__ = "restructuredtext en" + +__all__ = ['eigs', 'eigsh', 'ArpackError', 'ArpackNoConvergence'] + + +_type_conv = {'f': 's', 'd': 'd', 'F': 'c', 'D': 'z'} +_ndigits = {'f': 5, 'd': 12, 'F': 5, 'D': 12} + +DNAUPD_ERRORS = { + 0: "Normal exit.", + 1: "Maximum number of iterations taken. " + "All possible eigenvalues of OP has been found. IPARAM(5) " + "returns the number of wanted converged Ritz values.", + 2: "No longer an informational error. Deprecated starting " + "with release 2 of ARPACK.", + 3: "No shifts could be applied during a cycle of the " + "Implicitly restarted Arnoldi iteration. One possibility " + "is to increase the size of NCV relative to NEV. ", + -1: "N must be positive.", + -2: "NEV must be positive.", + -3: "NCV-NEV >= 2 and less than or equal to N.", + -4: "The maximum number of Arnoldi update iterations allowed " + "must be greater than zero.", + -5: " WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'", + -6: "BMAT must be one of 'I' or 'G'.", + -7: "Length of private work array WORKL is not sufficient.", + -8: "Error return from LAPACK eigenvalue calculation;", + -9: "Starting vector is zero.", + -10: "IPARAM(7) must be 1,2,3,4.", + -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", + -12: "IPARAM(1) must be equal to 0 or 1.", + -13: "NEV and WHICH = 'BE' are incompatible.", + -9999: "Could not build an Arnoldi factorization. " + "IPARAM(5) returns the size of the current Arnoldi " + "factorization. The user is advised to check that " + "enough workspace and array storage has been allocated." +} + +SNAUPD_ERRORS = DNAUPD_ERRORS + +ZNAUPD_ERRORS = DNAUPD_ERRORS.copy() +ZNAUPD_ERRORS[-10] = "IPARAM(7) must be 1,2,3." + +CNAUPD_ERRORS = ZNAUPD_ERRORS + +DSAUPD_ERRORS = { + 0: "Normal exit.", + 1: "Maximum number of iterations taken. " + "All possible eigenvalues of OP has been found.", + 2: "No longer an informational error. Deprecated starting with " + "release 2 of ARPACK.", + 3: "No shifts could be applied during a cycle of the Implicitly " + "restarted Arnoldi iteration. One possibility is to increase " + "the size of NCV relative to NEV. ", + -1: "N must be positive.", + -2: "NEV must be positive.", + -3: "NCV must be greater than NEV and less than or equal to N.", + -4: "The maximum number of Arnoldi update iterations allowed " + "must be greater than zero.", + -5: "WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.", + -6: "BMAT must be one of 'I' or 'G'.", + -7: "Length of private work array WORKL is not sufficient.", + -8: "Error return from trid. eigenvalue calculation; " + "Informational error from LAPACK routine dsteqr .", + -9: "Starting vector is zero.", + -10: "IPARAM(7) must be 1,2,3,4,5.", + -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", + -12: "IPARAM(1) must be equal to 0 or 1.", + -13: "NEV and WHICH = 'BE' are incompatible. ", + -9999: "Could not build an Arnoldi factorization. " + "IPARAM(5) returns the size of the current Arnoldi " + "factorization. The user is advised to check that " + "enough workspace and array storage has been allocated.", +} + +SSAUPD_ERRORS = DSAUPD_ERRORS + +DNEUPD_ERRORS = { + 0: "Normal exit.", + 1: "The Schur form computed by LAPACK routine dlahqr " + "could not be reordered by LAPACK routine dtrsen. " + "Re-enter subroutine dneupd with IPARAM(5)NCV and " + "increase the size of the arrays DR and DI to have " + "dimension at least dimension NCV and allocate at least NCV " + "columns for Z. NOTE: Not necessary if Z and V share " + "the same space. Please notify the authors if this error" + "occurs.", + -1: "N must be positive.", + -2: "NEV must be positive.", + -3: "NCV-NEV >= 2 and less than or equal to N.", + -5: "WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'", + -6: "BMAT must be one of 'I' or 'G'.", + -7: "Length of private work WORKL array is not sufficient.", + -8: "Error return from calculation of a real Schur form. " + "Informational error from LAPACK routine dlahqr .", + -9: "Error return from calculation of eigenvectors. " + "Informational error from LAPACK routine dtrevc.", + -10: "IPARAM(7) must be 1,2,3,4.", + -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", + -12: "HOWMNY = 'S' not yet implemented", + -13: "HOWMNY must be one of 'A' or 'P' if RVEC = .true.", + -14: "DNAUPD did not find any eigenvalues to sufficient " + "accuracy.", + -15: "DNEUPD got a different count of the number of converged " + "Ritz values than DNAUPD got. This indicates the user " + "probably made an error in passing data from DNAUPD to " + "DNEUPD or that the data was modified before entering " + "DNEUPD", +} + +SNEUPD_ERRORS = DNEUPD_ERRORS.copy() +SNEUPD_ERRORS[1] = ("The Schur form computed by LAPACK routine slahqr " + "could not be reordered by LAPACK routine strsen . " + "Re-enter subroutine dneupd with IPARAM(5)=NCV and " + "increase the size of the arrays DR and DI to have " + "dimension at least dimension NCV and allocate at least " + "NCV columns for Z. NOTE: Not necessary if Z and V share " + "the same space. Please notify the authors if this error " + "occurs.") +SNEUPD_ERRORS[-14] = ("SNAUPD did not find any eigenvalues to sufficient " + "accuracy.") +SNEUPD_ERRORS[-15] = ("SNEUPD got a different count of the number of " + "converged Ritz values than SNAUPD got. This indicates " + "the user probably made an error in passing data from " + "SNAUPD to SNEUPD or that the data was modified before " + "entering SNEUPD") + +ZNEUPD_ERRORS = {0: "Normal exit.", + 1: "The Schur form computed by LAPACK routine csheqr " + "could not be reordered by LAPACK routine ztrsen. " + "Re-enter subroutine zneupd with IPARAM(5)=NCV and " + "increase the size of the array D to have " + "dimension at least dimension NCV and allocate at least " + "NCV columns for Z. NOTE: Not necessary if Z and V share " + "the same space. Please notify the authors if this error " + "occurs.", + -1: "N must be positive.", + -2: "NEV must be positive.", + -3: "NCV-NEV >= 1 and less than or equal to N.", + -5: "WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'", + -6: "BMAT must be one of 'I' or 'G'.", + -7: "Length of private work WORKL array is not sufficient.", + -8: "Error return from LAPACK eigenvalue calculation. " + "This should never happened.", + -9: "Error return from calculation of eigenvectors. " + "Informational error from LAPACK routine ztrevc.", + -10: "IPARAM(7) must be 1,2,3", + -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", + -12: "HOWMNY = 'S' not yet implemented", + -13: "HOWMNY must be one of 'A' or 'P' if RVEC = .true.", + -14: "ZNAUPD did not find any eigenvalues to sufficient " + "accuracy.", + -15: "ZNEUPD got a different count of the number of " + "converged Ritz values than ZNAUPD got. This " + "indicates the user probably made an error in passing " + "data from ZNAUPD to ZNEUPD or that the data was " + "modified before entering ZNEUPD" + } + +CNEUPD_ERRORS = ZNEUPD_ERRORS.copy() +CNEUPD_ERRORS[-14] = ("CNAUPD did not find any eigenvalues to sufficient " + "accuracy.") +CNEUPD_ERRORS[-15] = ("CNEUPD got a different count of the number of " + "converged Ritz values than CNAUPD got. This indicates " + "the user probably made an error in passing data from " + "CNAUPD to CNEUPD or that the data was modified before " + "entering CNEUPD") + +DSEUPD_ERRORS = { + 0: "Normal exit.", + -1: "N must be positive.", + -2: "NEV must be positive.", + -3: "NCV must be greater than NEV and less than or equal to N.", + -5: "WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.", + -6: "BMAT must be one of 'I' or 'G'.", + -7: "Length of private work WORKL array is not sufficient.", + -8: ("Error return from trid. eigenvalue calculation; " + "Information error from LAPACK routine dsteqr."), + -9: "Starting vector is zero.", + -10: "IPARAM(7) must be 1,2,3,4,5.", + -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", + -12: "NEV and WHICH = 'BE' are incompatible.", + -14: "DSAUPD did not find any eigenvalues to sufficient accuracy.", + -15: "HOWMNY must be one of 'A' or 'S' if RVEC = .true.", + -16: "HOWMNY = 'S' not yet implemented", + -17: ("DSEUPD got a different count of the number of converged " + "Ritz values than DSAUPD got. This indicates the user " + "probably made an error in passing data from DSAUPD to " + "DSEUPD or that the data was modified before entering " + "DSEUPD.") +} + +SSEUPD_ERRORS = DSEUPD_ERRORS.copy() +SSEUPD_ERRORS[-14] = ("SSAUPD did not find any eigenvalues " + "to sufficient accuracy.") +SSEUPD_ERRORS[-17] = ("SSEUPD got a different count of the number of " + "converged " + "Ritz values than SSAUPD got. This indicates the user " + "probably made an error in passing data from SSAUPD to " + "SSEUPD or that the data was modified before entering " + "SSEUPD.") + +_SAUPD_ERRORS = {'d': DSAUPD_ERRORS, + 's': SSAUPD_ERRORS} +_NAUPD_ERRORS = {'d': DNAUPD_ERRORS, + 's': SNAUPD_ERRORS, + 'z': ZNAUPD_ERRORS, + 'c': CNAUPD_ERRORS} +_SEUPD_ERRORS = {'d': DSEUPD_ERRORS, + 's': SSEUPD_ERRORS} +_NEUPD_ERRORS = {'d': DNEUPD_ERRORS, + 's': SNEUPD_ERRORS, + 'z': ZNEUPD_ERRORS, + 'c': CNEUPD_ERRORS} + +# accepted values of parameter WHICH in _SEUPD +_SEUPD_WHICH = ['LM', 'SM', 'LA', 'SA', 'BE'] + +# accepted values of parameter WHICH in _NAUPD +_NEUPD_WHICH = ['LM', 'SM', 'LR', 'SR', 'LI', 'SI'] + + +class ArpackError(RuntimeError): + """ + ARPACK error + """ + + def __init__(self, info, infodict=_NAUPD_ERRORS): + msg = infodict.get(info, "Unknown error") + RuntimeError.__init__(self, "ARPACK error %d: %s" % (info, msg)) + + +class ArpackNoConvergence(ArpackError): + """ + ARPACK iteration did not converge + + Attributes + ---------- + eigenvalues : ndarray + Partial result. Converged eigenvalues. + eigenvectors : ndarray + Partial result. Converged eigenvectors. + + """ + + def __init__(self, msg, eigenvalues, eigenvectors): + ArpackError.__init__(self, -1, {-1: msg}) + self.eigenvalues = eigenvalues + self.eigenvectors = eigenvectors + + +def choose_ncv(k): + """ + Choose number of lanczos vectors based on target number + of singular/eigen values and vectors to compute, k. + """ + return max(2 * k + 1, 20) + + +class _ArpackParams: + def __init__(self, n, k, tp, mode=1, sigma=None, + ncv=None, v0=None, maxiter=None, which="LM", tol=0): + if k <= 0: + raise ValueError("k must be positive, k=%d" % k) + + if maxiter is None: + maxiter = n * 10 + if maxiter <= 0: + raise ValueError("maxiter must be positive, maxiter=%d" % maxiter) + + if tp not in 'fdFD': + raise ValueError("matrix type must be 'f', 'd', 'F', or 'D'") + + if v0 is not None: + # ARPACK overwrites its initial resid, make a copy + self.resid = np.array(v0, copy=True) + info = 1 + else: + # ARPACK will use a random initial vector. + self.resid = np.zeros(n, tp) + info = 0 + + if sigma is None: + #sigma not used + self.sigma = 0 + else: + self.sigma = sigma + + if ncv is None: + ncv = choose_ncv(k) + ncv = min(ncv, n) + + self.v = np.zeros((n, ncv), tp) # holds Ritz vectors + self.iparam = np.zeros(11, arpack_int) + + # set solver mode and parameters + ishfts = 1 + self.mode = mode + self.iparam[0] = ishfts + self.iparam[2] = maxiter + self.iparam[3] = 1 + self.iparam[6] = mode + + self.n = n + self.tol = tol + self.k = k + self.maxiter = maxiter + self.ncv = ncv + self.which = which + self.tp = tp + self.info = info + + self.converged = False + self.ido = 0 + + def _raise_no_convergence(self): + msg = "No convergence (%d iterations, %d/%d eigenvectors converged)" + k_ok = self.iparam[4] + num_iter = self.iparam[2] + try: + ev, vec = self.extract(True) + except ArpackError as err: + msg = f"{msg} [{err}]" + ev = np.zeros((0,)) + vec = np.zeros((self.n, 0)) + k_ok = 0 + raise ArpackNoConvergence(msg % (num_iter, k_ok, self.k), ev, vec) + + +class _SymmetricArpackParams(_ArpackParams): + def __init__(self, n, k, tp, matvec, mode=1, M_matvec=None, + Minv_matvec=None, sigma=None, + ncv=None, v0=None, maxiter=None, which="LM", tol=0): + # The following modes are supported: + # mode = 1: + # Solve the standard eigenvalue problem: + # A*x = lambda*x : + # A - symmetric + # Arguments should be + # matvec = left multiplication by A + # M_matvec = None [not used] + # Minv_matvec = None [not used] + # + # mode = 2: + # Solve the general eigenvalue problem: + # A*x = lambda*M*x + # A - symmetric + # M - symmetric positive definite + # Arguments should be + # matvec = left multiplication by A + # M_matvec = left multiplication by M + # Minv_matvec = left multiplication by M^-1 + # + # mode = 3: + # Solve the general eigenvalue problem in shift-invert mode: + # A*x = lambda*M*x + # A - symmetric + # M - symmetric positive semi-definite + # Arguments should be + # matvec = None [not used] + # M_matvec = left multiplication by M + # or None, if M is the identity + # Minv_matvec = left multiplication by [A-sigma*M]^-1 + # + # mode = 4: + # Solve the general eigenvalue problem in Buckling mode: + # A*x = lambda*AG*x + # A - symmetric positive semi-definite + # AG - symmetric indefinite + # Arguments should be + # matvec = left multiplication by A + # M_matvec = None [not used] + # Minv_matvec = left multiplication by [A-sigma*AG]^-1 + # + # mode = 5: + # Solve the general eigenvalue problem in Cayley-transformed mode: + # A*x = lambda*M*x + # A - symmetric + # M - symmetric positive semi-definite + # Arguments should be + # matvec = left multiplication by A + # M_matvec = left multiplication by M + # or None, if M is the identity + # Minv_matvec = left multiplication by [A-sigma*M]^-1 + if mode == 1: + if matvec is None: + raise ValueError("matvec must be specified for mode=1") + if M_matvec is not None: + raise ValueError("M_matvec cannot be specified for mode=1") + if Minv_matvec is not None: + raise ValueError("Minv_matvec cannot be specified for mode=1") + + self.OP = matvec + self.B = lambda x: x + self.bmat = 'I' + elif mode == 2: + if matvec is None: + raise ValueError("matvec must be specified for mode=2") + if M_matvec is None: + raise ValueError("M_matvec must be specified for mode=2") + if Minv_matvec is None: + raise ValueError("Minv_matvec must be specified for mode=2") + + self.OP = lambda x: Minv_matvec(matvec(x)) + self.OPa = Minv_matvec + self.OPb = matvec + self.B = M_matvec + self.bmat = 'G' + elif mode == 3: + if matvec is not None: + raise ValueError("matvec must not be specified for mode=3") + if Minv_matvec is None: + raise ValueError("Minv_matvec must be specified for mode=3") + + if M_matvec is None: + self.OP = Minv_matvec + self.OPa = Minv_matvec + self.B = lambda x: x + self.bmat = 'I' + else: + self.OP = lambda x: Minv_matvec(M_matvec(x)) + self.OPa = Minv_matvec + self.B = M_matvec + self.bmat = 'G' + elif mode == 4: + if matvec is None: + raise ValueError("matvec must be specified for mode=4") + if M_matvec is not None: + raise ValueError("M_matvec must not be specified for mode=4") + if Minv_matvec is None: + raise ValueError("Minv_matvec must be specified for mode=4") + self.OPa = Minv_matvec + self.OP = lambda x: self.OPa(matvec(x)) + self.B = matvec + self.bmat = 'G' + elif mode == 5: + if matvec is None: + raise ValueError("matvec must be specified for mode=5") + if Minv_matvec is None: + raise ValueError("Minv_matvec must be specified for mode=5") + + self.OPa = Minv_matvec + self.A_matvec = matvec + + if M_matvec is None: + self.OP = lambda x: Minv_matvec(matvec(x) + sigma * x) + self.B = lambda x: x + self.bmat = 'I' + else: + self.OP = lambda x: Minv_matvec(matvec(x) + + sigma * M_matvec(x)) + self.B = M_matvec + self.bmat = 'G' + else: + raise ValueError("mode=%i not implemented" % mode) + + if which not in _SEUPD_WHICH: + raise ValueError("which must be one of %s" + % ' '.join(_SEUPD_WHICH)) + if k >= n: + raise ValueError("k must be less than ndim(A), k=%d" % k) + + _ArpackParams.__init__(self, n, k, tp, mode, sigma, + ncv, v0, maxiter, which, tol) + + if self.ncv > n or self.ncv <= k: + raise ValueError("ncv must be k= n - 1: + raise ValueError("k must be less than ndim(A)-1, k=%d" % k) + + _ArpackParams.__init__(self, n, k, tp, mode, sigma, + ncv, v0, maxiter, which, tol) + + if self.ncv > n or self.ncv <= k + 1: + raise ValueError("ncv must be k+1 k, so we'll + # throw out this case. + nreturned -= 1 + i += 1 + + else: + # real matrix, mode 3 or 4, imag(sigma) is nonzero: + # see remark 3 in neupd.f + # Build complex eigenvalues from real and imaginary parts + i = 0 + while i <= k: + if abs(d[i].imag) == 0: + d[i] = np.dot(zr[:, i], self.matvec(zr[:, i])) + else: + if i < k: + z[:, i] = zr[:, i] + 1.0j * zr[:, i + 1] + z[:, i + 1] = z[:, i].conjugate() + d[i] = ((np.dot(zr[:, i], + self.matvec(zr[:, i])) + + np.dot(zr[:, i + 1], + self.matvec(zr[:, i + 1]))) + + 1j * (np.dot(zr[:, i], + self.matvec(zr[:, i + 1])) + - np.dot(zr[:, i + 1], + self.matvec(zr[:, i])))) + d[i + 1] = d[i].conj() + i += 1 + else: + #last eigenvalue is complex: the imaginary part of + # the eigenvector has not been returned + #this can only happen if nreturned > k, so we'll + # throw out this case. + nreturned -= 1 + i += 1 + + # Now we have k+1 possible eigenvalues and eigenvectors + # Return the ones specified by the keyword "which" + + if nreturned <= k: + # we got less or equal as many eigenvalues we wanted + d = d[:nreturned] + z = z[:, :nreturned] + else: + # we got one extra eigenvalue (likely a cc pair, but which?) + if self.mode in (1, 2): + rd = d + elif self.mode in (3, 4): + rd = 1 / (d - self.sigma) + + if self.which in ['LR', 'SR']: + ind = np.argsort(rd.real) + elif self.which in ['LI', 'SI']: + # for LI,SI ARPACK returns largest,smallest + # abs(imaginary) (complex pairs come together) + ind = np.argsort(abs(rd.imag)) + else: + ind = np.argsort(abs(rd)) + + if self.which in ['LR', 'LM', 'LI']: + ind = ind[-k:][::-1] + elif self.which in ['SR', 'SM', 'SI']: + ind = ind[:k] + + d = d[ind] + z = z[:, ind] + else: + # complex is so much simpler... + d, z, ierr =\ + self._arpack_extract(return_eigenvectors, + howmny, sselect, self.sigma, workev, + self.bmat, self.which, k, self.tol, self.resid, + self.v, self.iparam, self.ipntr, + self.workd, self.workl, self.rwork, ierr) + + if ierr != 0: + raise ArpackError(ierr, infodict=self.extract_infodict) + + k_ok = self.iparam[4] + d = d[:k_ok] + z = z[:, :k_ok] + + if return_eigenvectors: + return d, z + else: + return d + + +def _aslinearoperator_with_dtype(m): + m = aslinearoperator(m) + if not hasattr(m, 'dtype'): + x = np.zeros(m.shape[1]) + m.dtype = (m * x).dtype + return m + + +class SpLuInv(LinearOperator): + """ + SpLuInv: + helper class to repeatedly solve M*x=b + using a sparse LU-decomposition of M + """ + + def __init__(self, M): + self.M_lu = splu(M) + self.shape = M.shape + self.dtype = M.dtype + self.isreal = not np.issubdtype(self.dtype, np.complexfloating) + + def _matvec(self, x): + # careful here: splu.solve will throw away imaginary + # part of x if M is real + x = np.asarray(x) + if self.isreal and np.issubdtype(x.dtype, np.complexfloating): + return (self.M_lu.solve(np.real(x).astype(self.dtype)) + + 1j * self.M_lu.solve(np.imag(x).astype(self.dtype))) + else: + return self.M_lu.solve(x.astype(self.dtype)) + + +class LuInv(LinearOperator): + """ + LuInv: + helper class to repeatedly solve M*x=b + using an LU-decomposition of M + """ + + def __init__(self, M): + self.M_lu = lu_factor(M) + self.shape = M.shape + self.dtype = M.dtype + + def _matvec(self, x): + return lu_solve(self.M_lu, x) + + +def gmres_loose(A, b, tol): + """ + gmres with looser termination condition. + """ + b = np.asarray(b) + min_tol = 1000 * np.sqrt(b.size) * np.finfo(b.dtype).eps + return gmres(A, b, rtol=max(tol, min_tol), atol=0) + + +class IterInv(LinearOperator): + """ + IterInv: + helper class to repeatedly solve M*x=b + using an iterative method. + """ + + def __init__(self, M, ifunc=gmres_loose, tol=0): + self.M = M + if hasattr(M, 'dtype'): + self.dtype = M.dtype + else: + x = np.zeros(M.shape[1]) + self.dtype = (M * x).dtype + self.shape = M.shape + + if tol <= 0: + # when tol=0, ARPACK uses machine tolerance as calculated + # by LAPACK's _LAMCH function. We should match this + tol = 2 * np.finfo(self.dtype).eps + self.ifunc = ifunc + self.tol = tol + + def _matvec(self, x): + b, info = self.ifunc(self.M, x, tol=self.tol) + if info != 0: + raise ValueError("Error in inverting M: function " + "%s did not converge (info = %i)." + % (self.ifunc.__name__, info)) + return b + + +class IterOpInv(LinearOperator): + """ + IterOpInv: + helper class to repeatedly solve [A-sigma*M]*x = b + using an iterative method + """ + + def __init__(self, A, M, sigma, ifunc=gmres_loose, tol=0): + self.A = A + self.M = M + self.sigma = sigma + + def mult_func(x): + return A.matvec(x) - sigma * M.matvec(x) + + def mult_func_M_None(x): + return A.matvec(x) - sigma * x + + x = np.zeros(A.shape[1]) + if M is None: + dtype = mult_func_M_None(x).dtype + self.OP = LinearOperator(self.A.shape, + mult_func_M_None, + dtype=dtype) + else: + dtype = mult_func(x).dtype + self.OP = LinearOperator(self.A.shape, + mult_func, + dtype=dtype) + self.shape = A.shape + + if tol <= 0: + # when tol=0, ARPACK uses machine tolerance as calculated + # by LAPACK's _LAMCH function. We should match this + tol = 2 * np.finfo(self.OP.dtype).eps + self.ifunc = ifunc + self.tol = tol + + def _matvec(self, x): + b, info = self.ifunc(self.OP, x, tol=self.tol) + if info != 0: + raise ValueError("Error in inverting [A-sigma*M]: function " + "%s did not converge (info = %i)." + % (self.ifunc.__name__, info)) + return b + + @property + def dtype(self): + return self.OP.dtype + + +def _fast_spmatrix_to_csc(A, hermitian=False): + """Convert sparse matrix to CSC (by transposing, if possible)""" + if (A.format == "csr" and hermitian + and not np.issubdtype(A.dtype, np.complexfloating)): + return A.T + elif is_pydata_spmatrix(A): + # No need to convert + return A + else: + return A.tocsc() + + +def get_inv_matvec(M, hermitian=False, tol=0): + if isdense(M): + return LuInv(M).matvec + elif issparse(M) or is_pydata_spmatrix(M): + M = _fast_spmatrix_to_csc(M, hermitian=hermitian) + return SpLuInv(M).matvec + else: + return IterInv(M, tol=tol).matvec + + +def get_OPinv_matvec(A, M, sigma, hermitian=False, tol=0): + if sigma == 0: + return get_inv_matvec(A, hermitian=hermitian, tol=tol) + + if M is None: + #M is the identity matrix + if isdense(A): + if (np.issubdtype(A.dtype, np.complexfloating) + or np.imag(sigma) == 0): + A = np.copy(A) + else: + A = A + 0j + A.flat[::A.shape[1] + 1] -= sigma + return LuInv(A).matvec + elif issparse(A) or is_pydata_spmatrix(A): + A = A - sigma * eye(A.shape[0]) + A = _fast_spmatrix_to_csc(A, hermitian=hermitian) + return SpLuInv(A).matvec + else: + return IterOpInv(_aslinearoperator_with_dtype(A), + M, sigma, tol=tol).matvec + else: + if ((not isdense(A) and not issparse(A) and not is_pydata_spmatrix(A)) or + (not isdense(M) and not issparse(M) and not is_pydata_spmatrix(A))): + return IterOpInv(_aslinearoperator_with_dtype(A), + _aslinearoperator_with_dtype(M), + sigma, tol=tol).matvec + elif isdense(A) or isdense(M): + return LuInv(A - sigma * M).matvec + else: + OP = A - sigma * M + OP = _fast_spmatrix_to_csc(OP, hermitian=hermitian) + return SpLuInv(OP).matvec + + +# ARPACK is not threadsafe or reentrant (SAVE variables), so we need a +# lock and a re-entering check. +_ARPACK_LOCK = ReentrancyLock("Nested calls to eigs/eighs not allowed: " + "ARPACK is not re-entrant") + + +def eigs(A, k=6, M=None, sigma=None, which='LM', v0=None, + ncv=None, maxiter=None, tol=0, return_eigenvectors=True, + Minv=None, OPinv=None, OPpart=None): + """ + Find k eigenvalues and eigenvectors of the square matrix A. + + Solves ``A @ x[i] = w[i] * x[i]``, the standard eigenvalue problem + for w[i] eigenvalues with corresponding eigenvectors x[i]. + + If M is specified, solves ``A @ x[i] = w[i] * M @ x[i]``, the + generalized eigenvalue problem for w[i] eigenvalues + with corresponding eigenvectors x[i] + + Parameters + ---------- + A : ndarray, sparse matrix or LinearOperator + An array, sparse matrix, or LinearOperator representing + the operation ``A @ x``, where A is a real or complex square matrix. + k : int, optional + The number of eigenvalues and eigenvectors desired. + `k` must be smaller than N-1. It is not possible to compute all + eigenvectors of a matrix. + M : ndarray, sparse matrix or LinearOperator, optional + An array, sparse matrix, or LinearOperator representing + the operation M@x for the generalized eigenvalue problem + + A @ x = w * M @ x. + + M must represent a real symmetric matrix if A is real, and must + represent a complex Hermitian matrix if A is complex. For best + results, the data type of M should be the same as that of A. + Additionally: + + If `sigma` is None, M is positive definite + + If sigma is specified, M is positive semi-definite + + If sigma is None, eigs requires an operator to compute the solution + of the linear equation ``M @ x = b``. This is done internally via a + (sparse) LU decomposition for an explicit matrix M, or via an + iterative solver for a general linear operator. Alternatively, + the user can supply the matrix or operator Minv, which gives + ``x = Minv @ b = M^-1 @ b``. + sigma : real or complex, optional + Find eigenvalues near sigma using shift-invert mode. This requires + an operator to compute the solution of the linear system + ``[A - sigma * M] @ x = b``, where M is the identity matrix if + unspecified. This is computed internally via a (sparse) LU + decomposition for explicit matrices A & M, or via an iterative + solver if either A or M is a general linear operator. + Alternatively, the user can supply the matrix or operator OPinv, + which gives ``x = OPinv @ b = [A - sigma * M]^-1 @ b``. + For a real matrix A, shift-invert can either be done in imaginary + mode or real mode, specified by the parameter OPpart ('r' or 'i'). + Note that when sigma is specified, the keyword 'which' (below) + refers to the shifted eigenvalues ``w'[i]`` where: + + If A is real and OPpart == 'r' (default), + ``w'[i] = 1/2 * [1/(w[i]-sigma) + 1/(w[i]-conj(sigma))]``. + + If A is real and OPpart == 'i', + ``w'[i] = 1/2i * [1/(w[i]-sigma) - 1/(w[i]-conj(sigma))]``. + + If A is complex, ``w'[i] = 1/(w[i]-sigma)``. + + v0 : ndarray, optional + Starting vector for iteration. + Default: random + ncv : int, optional + The number of Lanczos vectors generated + `ncv` must be greater than `k`; it is recommended that ``ncv > 2*k``. + Default: ``min(n, max(2*k + 1, 20))`` + which : str, ['LM' | 'SM' | 'LR' | 'SR' | 'LI' | 'SI'], optional + Which `k` eigenvectors and eigenvalues to find: + + 'LM' : largest magnitude + + 'SM' : smallest magnitude + + 'LR' : largest real part + + 'SR' : smallest real part + + 'LI' : largest imaginary part + + 'SI' : smallest imaginary part + + When sigma != None, 'which' refers to the shifted eigenvalues w'[i] + (see discussion in 'sigma', above). ARPACK is generally better + at finding large values than small values. If small eigenvalues are + desired, consider using shift-invert mode for better performance. + maxiter : int, optional + Maximum number of Arnoldi update iterations allowed + Default: ``n*10`` + tol : float, optional + Relative accuracy for eigenvalues (stopping criterion) + The default value of 0 implies machine precision. + return_eigenvectors : bool, optional + Return eigenvectors (True) in addition to eigenvalues + Minv : ndarray, sparse matrix or LinearOperator, optional + See notes in M, above. + OPinv : ndarray, sparse matrix or LinearOperator, optional + See notes in sigma, above. + OPpart : {'r' or 'i'}, optional + See notes in sigma, above + + Returns + ------- + w : ndarray + Array of k eigenvalues. + v : ndarray + An array of `k` eigenvectors. + ``v[:, i]`` is the eigenvector corresponding to the eigenvalue w[i]. + + Raises + ------ + ArpackNoConvergence + When the requested convergence is not obtained. + The currently converged eigenvalues and eigenvectors can be found + as ``eigenvalues`` and ``eigenvectors`` attributes of the exception + object. + + See Also + -------- + eigsh : eigenvalues and eigenvectors for symmetric matrix A + svds : singular value decomposition for a matrix A + + Notes + ----- + This function is a wrapper to the ARPACK [1]_ SNEUPD, DNEUPD, CNEUPD, + ZNEUPD, functions which use the Implicitly Restarted Arnoldi Method to + find the eigenvalues and eigenvectors [2]_. + + References + ---------- + .. [1] ARPACK Software, https://github.com/opencollab/arpack-ng + .. [2] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE: + Solution of Large Scale Eigenvalue Problems by Implicitly Restarted + Arnoldi Methods. SIAM, Philadelphia, PA, 1998. + + Examples + -------- + Find 6 eigenvectors of the identity matrix: + + >>> import numpy as np + >>> from scipy.sparse.linalg import eigs + >>> id = np.eye(13) + >>> vals, vecs = eigs(id, k=6) + >>> vals + array([ 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j]) + >>> vecs.shape + (13, 6) + + """ + if A.shape[0] != A.shape[1]: + raise ValueError(f'expected square matrix (shape={A.shape})') + if M is not None: + if M.shape != A.shape: + raise ValueError(f'wrong M dimensions {M.shape}, should be {A.shape}') + if np.dtype(M.dtype).char.lower() != np.dtype(A.dtype).char.lower(): + warnings.warn('M does not have the same type precision as A. ' + 'This may adversely affect ARPACK convergence', + stacklevel=2) + + n = A.shape[0] + + if k <= 0: + raise ValueError("k=%d must be greater than 0." % k) + + if k >= n - 1: + warnings.warn("k >= N - 1 for N * N square matrix. " + "Attempting to use scipy.linalg.eig instead.", + RuntimeWarning, stacklevel=2) + + if issparse(A): + raise TypeError("Cannot use scipy.linalg.eig for sparse A with " + "k >= N - 1. Use scipy.linalg.eig(A.toarray()) or" + " reduce k.") + if isinstance(A, LinearOperator): + raise TypeError("Cannot use scipy.linalg.eig for LinearOperator " + "A with k >= N - 1.") + if isinstance(M, LinearOperator): + raise TypeError("Cannot use scipy.linalg.eig for LinearOperator " + "M with k >= N - 1.") + + return eig(A, b=M, right=return_eigenvectors) + + if sigma is None: + matvec = _aslinearoperator_with_dtype(A).matvec + + if OPinv is not None: + raise ValueError("OPinv should not be specified " + "with sigma = None.") + if OPpart is not None: + raise ValueError("OPpart should not be specified with " + "sigma = None or complex A") + + if M is None: + #standard eigenvalue problem + mode = 1 + M_matvec = None + Minv_matvec = None + if Minv is not None: + raise ValueError("Minv should not be " + "specified with M = None.") + else: + #general eigenvalue problem + mode = 2 + if Minv is None: + Minv_matvec = get_inv_matvec(M, hermitian=True, tol=tol) + else: + Minv = _aslinearoperator_with_dtype(Minv) + Minv_matvec = Minv.matvec + M_matvec = _aslinearoperator_with_dtype(M).matvec + else: + #sigma is not None: shift-invert mode + if np.issubdtype(A.dtype, np.complexfloating): + if OPpart is not None: + raise ValueError("OPpart should not be specified " + "with sigma=None or complex A") + mode = 3 + elif OPpart is None or OPpart.lower() == 'r': + mode = 3 + elif OPpart.lower() == 'i': + if np.imag(sigma) == 0: + raise ValueError("OPpart cannot be 'i' if sigma is real") + mode = 4 + else: + raise ValueError("OPpart must be one of ('r','i')") + + matvec = _aslinearoperator_with_dtype(A).matvec + if Minv is not None: + raise ValueError("Minv should not be specified when sigma is") + if OPinv is None: + Minv_matvec = get_OPinv_matvec(A, M, sigma, + hermitian=False, tol=tol) + else: + OPinv = _aslinearoperator_with_dtype(OPinv) + Minv_matvec = OPinv.matvec + if M is None: + M_matvec = None + else: + M_matvec = _aslinearoperator_with_dtype(M).matvec + + params = _UnsymmetricArpackParams(n, k, A.dtype.char, matvec, mode, + M_matvec, Minv_matvec, sigma, + ncv, v0, maxiter, which, tol) + + with _ARPACK_LOCK: + while not params.converged: + params.iterate() + + return params.extract(return_eigenvectors) + + +def eigsh(A, k=6, M=None, sigma=None, which='LM', v0=None, + ncv=None, maxiter=None, tol=0, return_eigenvectors=True, + Minv=None, OPinv=None, mode='normal'): + """ + Find k eigenvalues and eigenvectors of the real symmetric square matrix + or complex Hermitian matrix A. + + Solves ``A @ x[i] = w[i] * x[i]``, the standard eigenvalue problem for + w[i] eigenvalues with corresponding eigenvectors x[i]. + + If M is specified, solves ``A @ x[i] = w[i] * M @ x[i]``, the + generalized eigenvalue problem for w[i] eigenvalues + with corresponding eigenvectors x[i]. + + Note that there is no specialized routine for the case when A is a complex + Hermitian matrix. In this case, ``eigsh()`` will call ``eigs()`` and return the + real parts of the eigenvalues thus obtained. + + Parameters + ---------- + A : ndarray, sparse matrix or LinearOperator + A square operator representing the operation ``A @ x``, where ``A`` is + real symmetric or complex Hermitian. For buckling mode (see below) + ``A`` must additionally be positive-definite. + k : int, optional + The number of eigenvalues and eigenvectors desired. + `k` must be smaller than N. It is not possible to compute all + eigenvectors of a matrix. + + Returns + ------- + w : array + Array of k eigenvalues. + v : array + An array representing the `k` eigenvectors. The column ``v[:, i]`` is + the eigenvector corresponding to the eigenvalue ``w[i]``. + + Other Parameters + ---------------- + M : An N x N matrix, array, sparse matrix, or linear operator representing + the operation ``M @ x`` for the generalized eigenvalue problem + + A @ x = w * M @ x. + + M must represent a real symmetric matrix if A is real, and must + represent a complex Hermitian matrix if A is complex. For best + results, the data type of M should be the same as that of A. + Additionally: + + If sigma is None, M is symmetric positive definite. + + If sigma is specified, M is symmetric positive semi-definite. + + In buckling mode, M is symmetric indefinite. + + If sigma is None, eigsh requires an operator to compute the solution + of the linear equation ``M @ x = b``. This is done internally via a + (sparse) LU decomposition for an explicit matrix M, or via an + iterative solver for a general linear operator. Alternatively, + the user can supply the matrix or operator Minv, which gives + ``x = Minv @ b = M^-1 @ b``. + sigma : real + Find eigenvalues near sigma using shift-invert mode. This requires + an operator to compute the solution of the linear system + ``[A - sigma * M] x = b``, where M is the identity matrix if + unspecified. This is computed internally via a (sparse) LU + decomposition for explicit matrices A & M, or via an iterative + solver if either A or M is a general linear operator. + Alternatively, the user can supply the matrix or operator OPinv, + which gives ``x = OPinv @ b = [A - sigma * M]^-1 @ b``. + Note that when sigma is specified, the keyword 'which' refers to + the shifted eigenvalues ``w'[i]`` where: + + if mode == 'normal', ``w'[i] = 1 / (w[i] - sigma)``. + + if mode == 'cayley', ``w'[i] = (w[i] + sigma) / (w[i] - sigma)``. + + if mode == 'buckling', ``w'[i] = w[i] / (w[i] - sigma)``. + + (see further discussion in 'mode' below) + v0 : ndarray, optional + Starting vector for iteration. + Default: random + ncv : int, optional + The number of Lanczos vectors generated ncv must be greater than k and + smaller than n; it is recommended that ``ncv > 2*k``. + Default: ``min(n, max(2*k + 1, 20))`` + which : str ['LM' | 'SM' | 'LA' | 'SA' | 'BE'] + If A is a complex Hermitian matrix, 'BE' is invalid. + Which `k` eigenvectors and eigenvalues to find: + + 'LM' : Largest (in magnitude) eigenvalues. + + 'SM' : Smallest (in magnitude) eigenvalues. + + 'LA' : Largest (algebraic) eigenvalues. + + 'SA' : Smallest (algebraic) eigenvalues. + + 'BE' : Half (k/2) from each end of the spectrum. + + When k is odd, return one more (k/2+1) from the high end. + When sigma != None, 'which' refers to the shifted eigenvalues ``w'[i]`` + (see discussion in 'sigma', above). ARPACK is generally better + at finding large values than small values. If small eigenvalues are + desired, consider using shift-invert mode for better performance. + maxiter : int, optional + Maximum number of Arnoldi update iterations allowed. + Default: ``n*10`` + tol : float + Relative accuracy for eigenvalues (stopping criterion). + The default value of 0 implies machine precision. + Minv : N x N matrix, array, sparse matrix, or LinearOperator + See notes in M, above. + OPinv : N x N matrix, array, sparse matrix, or LinearOperator + See notes in sigma, above. + return_eigenvectors : bool + Return eigenvectors (True) in addition to eigenvalues. + This value determines the order in which eigenvalues are sorted. + The sort order is also dependent on the `which` variable. + + For which = 'LM' or 'SA': + If `return_eigenvectors` is True, eigenvalues are sorted by + algebraic value. + + If `return_eigenvectors` is False, eigenvalues are sorted by + absolute value. + + For which = 'BE' or 'LA': + eigenvalues are always sorted by algebraic value. + + For which = 'SM': + If `return_eigenvectors` is True, eigenvalues are sorted by + algebraic value. + + If `return_eigenvectors` is False, eigenvalues are sorted by + decreasing absolute value. + + mode : string ['normal' | 'buckling' | 'cayley'] + Specify strategy to use for shift-invert mode. This argument applies + only for real-valued A and sigma != None. For shift-invert mode, + ARPACK internally solves the eigenvalue problem + ``OP @ x'[i] = w'[i] * B @ x'[i]`` + and transforms the resulting Ritz vectors x'[i] and Ritz values w'[i] + into the desired eigenvectors and eigenvalues of the problem + ``A @ x[i] = w[i] * M @ x[i]``. + The modes are as follows: + + 'normal' : + OP = [A - sigma * M]^-1 @ M, + B = M, + w'[i] = 1 / (w[i] - sigma) + + 'buckling' : + OP = [A - sigma * M]^-1 @ A, + B = A, + w'[i] = w[i] / (w[i] - sigma) + + 'cayley' : + OP = [A - sigma * M]^-1 @ [A + sigma * M], + B = M, + w'[i] = (w[i] + sigma) / (w[i] - sigma) + + The choice of mode will affect which eigenvalues are selected by + the keyword 'which', and can also impact the stability of + convergence (see [2] for a discussion). + + Raises + ------ + ArpackNoConvergence + When the requested convergence is not obtained. + + The currently converged eigenvalues and eigenvectors can be found + as ``eigenvalues`` and ``eigenvectors`` attributes of the exception + object. + + See Also + -------- + eigs : eigenvalues and eigenvectors for a general (nonsymmetric) matrix A + svds : singular value decomposition for a matrix A + + Notes + ----- + This function is a wrapper to the ARPACK [1]_ SSEUPD and DSEUPD + functions which use the Implicitly Restarted Lanczos Method to + find the eigenvalues and eigenvectors [2]_. + + References + ---------- + .. [1] ARPACK Software, https://github.com/opencollab/arpack-ng + .. [2] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE: + Solution of Large Scale Eigenvalue Problems by Implicitly Restarted + Arnoldi Methods. SIAM, Philadelphia, PA, 1998. + + Examples + -------- + >>> import numpy as np + >>> from scipy.sparse.linalg import eigsh + >>> identity = np.eye(13) + >>> eigenvalues, eigenvectors = eigsh(identity, k=6) + >>> eigenvalues + array([1., 1., 1., 1., 1., 1.]) + >>> eigenvectors.shape + (13, 6) + + """ + # complex Hermitian matrices should be solved with eigs + if np.issubdtype(A.dtype, np.complexfloating): + if mode != 'normal': + raise ValueError("mode=%s cannot be used with " + "complex matrix A" % mode) + if which == 'BE': + raise ValueError("which='BE' cannot be used with complex matrix A") + elif which == 'LA': + which = 'LR' + elif which == 'SA': + which = 'SR' + ret = eigs(A, k, M=M, sigma=sigma, which=which, v0=v0, + ncv=ncv, maxiter=maxiter, tol=tol, + return_eigenvectors=return_eigenvectors, Minv=Minv, + OPinv=OPinv) + + if return_eigenvectors: + return ret[0].real, ret[1] + else: + return ret.real + + if A.shape[0] != A.shape[1]: + raise ValueError(f'expected square matrix (shape={A.shape})') + if M is not None: + if M.shape != A.shape: + raise ValueError(f'wrong M dimensions {M.shape}, should be {A.shape}') + if np.dtype(M.dtype).char.lower() != np.dtype(A.dtype).char.lower(): + warnings.warn('M does not have the same type precision as A. ' + 'This may adversely affect ARPACK convergence', + stacklevel=2) + + n = A.shape[0] + + if k <= 0: + raise ValueError("k must be greater than 0.") + + if k >= n: + warnings.warn("k >= N for N * N square matrix. " + "Attempting to use scipy.linalg.eigh instead.", + RuntimeWarning, stacklevel=2) + + if issparse(A): + raise TypeError("Cannot use scipy.linalg.eigh for sparse A with " + "k >= N. Use scipy.linalg.eigh(A.toarray()) or" + " reduce k.") + if isinstance(A, LinearOperator): + raise TypeError("Cannot use scipy.linalg.eigh for LinearOperator " + "A with k >= N.") + if isinstance(M, LinearOperator): + raise TypeError("Cannot use scipy.linalg.eigh for LinearOperator " + "M with k >= N.") + + return eigh(A, b=M, eigvals_only=not return_eigenvectors) + + if sigma is None: + A = _aslinearoperator_with_dtype(A) + matvec = A.matvec + + if OPinv is not None: + raise ValueError("OPinv should not be specified " + "with sigma = None.") + if M is None: + #standard eigenvalue problem + mode = 1 + M_matvec = None + Minv_matvec = None + if Minv is not None: + raise ValueError("Minv should not be " + "specified with M = None.") + else: + #general eigenvalue problem + mode = 2 + if Minv is None: + Minv_matvec = get_inv_matvec(M, hermitian=True, tol=tol) + else: + Minv = _aslinearoperator_with_dtype(Minv) + Minv_matvec = Minv.matvec + M_matvec = _aslinearoperator_with_dtype(M).matvec + else: + # sigma is not None: shift-invert mode + if Minv is not None: + raise ValueError("Minv should not be specified when sigma is") + + # normal mode + if mode == 'normal': + mode = 3 + matvec = None + if OPinv is None: + Minv_matvec = get_OPinv_matvec(A, M, sigma, + hermitian=True, tol=tol) + else: + OPinv = _aslinearoperator_with_dtype(OPinv) + Minv_matvec = OPinv.matvec + if M is None: + M_matvec = None + else: + M = _aslinearoperator_with_dtype(M) + M_matvec = M.matvec + + # buckling mode + elif mode == 'buckling': + mode = 4 + if OPinv is None: + Minv_matvec = get_OPinv_matvec(A, M, sigma, + hermitian=True, tol=tol) + else: + Minv_matvec = _aslinearoperator_with_dtype(OPinv).matvec + matvec = _aslinearoperator_with_dtype(A).matvec + M_matvec = None + + # cayley-transform mode + elif mode == 'cayley': + mode = 5 + matvec = _aslinearoperator_with_dtype(A).matvec + if OPinv is None: + Minv_matvec = get_OPinv_matvec(A, M, sigma, + hermitian=True, tol=tol) + else: + Minv_matvec = _aslinearoperator_with_dtype(OPinv).matvec + if M is None: + M_matvec = None + else: + M_matvec = _aslinearoperator_with_dtype(M).matvec + + # unrecognized mode + else: + raise ValueError("unrecognized mode '%s'" % mode) + + params = _SymmetricArpackParams(n, k, A.dtype.char, matvec, mode, + M_matvec, Minv_matvec, sigma, + ncv, v0, maxiter, which, tol) + + with _ARPACK_LOCK: + while not params.converged: + params.iterate() + + return params.extract(return_eigenvectors) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/tests/__init__.py b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/tests/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/tests/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b9d30bc4ba81c07d3c9f418167789ac52bdefc20 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/tests/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/tests/__pycache__/test_arpack.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/tests/__pycache__/test_arpack.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1deec61a4e0b3f9c5346344e730b6d2d5f63945d Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/tests/__pycache__/test_arpack.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/tests/test_arpack.py b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/tests/test_arpack.py new file mode 100644 index 0000000000000000000000000000000000000000..1cf73f28e21d4f29d067ae84bf63e5291acbe810 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/arpack/tests/test_arpack.py @@ -0,0 +1,718 @@ +__usage__ = """ +To run tests locally: + python tests/test_arpack.py [-l] [-v] + +""" + +import threading +import itertools + +import numpy as np + +from numpy.testing import assert_allclose, assert_equal, suppress_warnings +from pytest import raises as assert_raises +import pytest + +from numpy import dot, conj, random +from scipy.linalg import eig, eigh +from scipy.sparse import csc_matrix, csr_matrix, diags, rand +from scipy.sparse.linalg import LinearOperator, aslinearoperator +from scipy.sparse.linalg._eigen.arpack import (eigs, eigsh, arpack, + ArpackNoConvergence) + + +from scipy._lib._gcutils import assert_deallocated, IS_PYPY + + +# precision for tests +_ndigits = {'f': 3, 'd': 11, 'F': 3, 'D': 11} + + +def _get_test_tolerance(type_char, mattype=None, D_type=None, which=None): + """ + Return tolerance values suitable for a given test: + + Parameters + ---------- + type_char : {'f', 'd', 'F', 'D'} + Data type in ARPACK eigenvalue problem + mattype : {csr_matrix, aslinearoperator, asarray}, optional + Linear operator type + + Returns + ------- + tol + Tolerance to pass to the ARPACK routine + rtol + Relative tolerance for outputs + atol + Absolute tolerance for outputs + + """ + + rtol = {'f': 3000 * np.finfo(np.float32).eps, + 'F': 3000 * np.finfo(np.float32).eps, + 'd': 2000 * np.finfo(np.float64).eps, + 'D': 2000 * np.finfo(np.float64).eps}[type_char] + atol = rtol + tol = 0 + + if mattype is aslinearoperator and type_char in ('f', 'F'): + # iterative methods in single precision: worse errors + # also: bump ARPACK tolerance so that the iterative method converges + tol = 30 * np.finfo(np.float32).eps + rtol *= 5 + + if mattype is csr_matrix and type_char in ('f', 'F'): + # sparse in single precision: worse errors + rtol *= 5 + + if ( + which in ('LM', 'SM', 'LA') + and D_type.name == "gen-hermitian-Mc" + ): + if type_char == 'F': + # missing case 1, 2, and more, from PR 14798 + rtol *= 5 + + if type_char == 'D': + # missing more cases, from PR 14798 + rtol *= 10 + atol *= 10 + + return tol, rtol, atol + + +def generate_matrix(N, complex_=False, hermitian=False, + pos_definite=False, sparse=False): + M = np.random.random((N, N)) + if complex_: + M = M + 1j * np.random.random((N, N)) + + if hermitian: + if pos_definite: + if sparse: + i = np.arange(N) + j = np.random.randint(N, size=N-2) + i, j = np.meshgrid(i, j) + M[i, j] = 0 + M = np.dot(M.conj(), M.T) + else: + M = np.dot(M.conj(), M.T) + if sparse: + i = np.random.randint(N, size=N * N // 4) + j = np.random.randint(N, size=N * N // 4) + ind = np.nonzero(i == j) + j[ind] = (j[ind] + 1) % N + M[i, j] = 0 + M[j, i] = 0 + else: + if sparse: + i = np.random.randint(N, size=N * N // 2) + j = np.random.randint(N, size=N * N // 2) + M[i, j] = 0 + return M + + +def generate_matrix_symmetric(N, pos_definite=False, sparse=False): + M = np.random.random((N, N)) + + M = 0.5 * (M + M.T) # Make M symmetric + + if pos_definite: + Id = N * np.eye(N) + if sparse: + M = csr_matrix(M) + M += Id + else: + if sparse: + M = csr_matrix(M) + + return M + + +def assert_allclose_cc(actual, desired, **kw): + """Almost equal or complex conjugates almost equal""" + try: + assert_allclose(actual, desired, **kw) + except AssertionError: + assert_allclose(actual, conj(desired), **kw) + + +def argsort_which(eigenvalues, typ, k, which, + sigma=None, OPpart=None, mode=None): + """Return sorted indices of eigenvalues using the "which" keyword + from eigs and eigsh""" + if sigma is None: + reval = np.round(eigenvalues, decimals=_ndigits[typ]) + else: + if mode is None or mode == 'normal': + if OPpart is None: + reval = 1. / (eigenvalues - sigma) + elif OPpart == 'r': + reval = 0.5 * (1. / (eigenvalues - sigma) + + 1. / (eigenvalues - np.conj(sigma))) + elif OPpart == 'i': + reval = -0.5j * (1. / (eigenvalues - sigma) + - 1. / (eigenvalues - np.conj(sigma))) + elif mode == 'cayley': + reval = (eigenvalues + sigma) / (eigenvalues - sigma) + elif mode == 'buckling': + reval = eigenvalues / (eigenvalues - sigma) + else: + raise ValueError("mode='%s' not recognized" % mode) + + reval = np.round(reval, decimals=_ndigits[typ]) + + if which in ['LM', 'SM']: + ind = np.argsort(abs(reval)) + elif which in ['LR', 'SR', 'LA', 'SA', 'BE']: + ind = np.argsort(np.real(reval)) + elif which in ['LI', 'SI']: + # for LI,SI ARPACK returns largest,smallest abs(imaginary) why? + if typ.islower(): + ind = np.argsort(abs(np.imag(reval))) + else: + ind = np.argsort(np.imag(reval)) + else: + raise ValueError("which='%s' is unrecognized" % which) + + if which in ['LM', 'LA', 'LR', 'LI']: + return ind[-k:] + elif which in ['SM', 'SA', 'SR', 'SI']: + return ind[:k] + elif which == 'BE': + return np.concatenate((ind[:k//2], ind[k//2-k:])) + + +def eval_evec(symmetric, d, typ, k, which, v0=None, sigma=None, + mattype=np.asarray, OPpart=None, mode='normal'): + general = ('bmat' in d) + + if symmetric: + eigs_func = eigsh + else: + eigs_func = eigs + + if general: + err = ("error for {}:general, typ={}, which={}, sigma={}, " + "mattype={}, OPpart={}, mode={}".format(eigs_func.__name__, + typ, which, sigma, + mattype.__name__, + OPpart, mode)) + else: + err = ("error for {}:standard, typ={}, which={}, sigma={}, " + "mattype={}, OPpart={}, mode={}".format(eigs_func.__name__, + typ, which, sigma, + mattype.__name__, + OPpart, mode)) + + a = d['mat'].astype(typ) + ac = mattype(a) + + if general: + b = d['bmat'].astype(typ) + bc = mattype(b) + + # get exact eigenvalues + exact_eval = d['eval'].astype(typ.upper()) + ind = argsort_which(exact_eval, typ, k, which, + sigma, OPpart, mode) + exact_eval = exact_eval[ind] + + # compute arpack eigenvalues + kwargs = dict(which=which, v0=v0, sigma=sigma) + if eigs_func is eigsh: + kwargs['mode'] = mode + else: + kwargs['OPpart'] = OPpart + + # compute suitable tolerances + kwargs['tol'], rtol, atol = _get_test_tolerance(typ, mattype, d, which) + # on rare occasions, ARPACK routines return results that are proper + # eigenvalues and -vectors, but not necessarily the ones requested in + # the parameter which. This is inherent to the Krylov methods, and + # should not be treated as a failure. If such a rare situation + # occurs, the calculation is tried again (but at most a few times). + ntries = 0 + while ntries < 5: + # solve + if general: + try: + eigenvalues, evec = eigs_func(ac, k, bc, **kwargs) + except ArpackNoConvergence: + kwargs['maxiter'] = 20*a.shape[0] + eigenvalues, evec = eigs_func(ac, k, bc, **kwargs) + else: + try: + eigenvalues, evec = eigs_func(ac, k, **kwargs) + except ArpackNoConvergence: + kwargs['maxiter'] = 20*a.shape[0] + eigenvalues, evec = eigs_func(ac, k, **kwargs) + + ind = argsort_which(eigenvalues, typ, k, which, + sigma, OPpart, mode) + eigenvalues = eigenvalues[ind] + evec = evec[:, ind] + + try: + # check eigenvalues + assert_allclose_cc(eigenvalues, exact_eval, rtol=rtol, atol=atol, + err_msg=err) + check_evecs = True + except AssertionError: + check_evecs = False + ntries += 1 + + if check_evecs: + # check eigenvectors + LHS = np.dot(a, evec) + if general: + RHS = eigenvalues * np.dot(b, evec) + else: + RHS = eigenvalues * evec + + assert_allclose(LHS, RHS, rtol=rtol, atol=atol, err_msg=err) + break + + # check eigenvalues + assert_allclose_cc(eigenvalues, exact_eval, rtol=rtol, atol=atol, err_msg=err) + + +class DictWithRepr(dict): + def __init__(self, name): + self.name = name + + def __repr__(self): + return "<%s>" % self.name + + +class SymmetricParams: + def __init__(self): + self.eigs = eigsh + self.which = ['LM', 'SM', 'LA', 'SA', 'BE'] + self.mattypes = [csr_matrix, aslinearoperator, np.asarray] + self.sigmas_modes = {None: ['normal'], + 0.5: ['normal', 'buckling', 'cayley']} + + # generate matrices + # these should all be float32 so that the eigenvalues + # are the same in float32 and float64 + N = 6 + np.random.seed(2300) + Ar = generate_matrix(N, hermitian=True, + pos_definite=True).astype('f').astype('d') + M = generate_matrix(N, hermitian=True, + pos_definite=True).astype('f').astype('d') + Ac = generate_matrix(N, hermitian=True, pos_definite=True, + complex_=True).astype('F').astype('D') + Mc = generate_matrix(N, hermitian=True, pos_definite=True, + complex_=True).astype('F').astype('D') + v0 = np.random.random(N) + + # standard symmetric problem + SS = DictWithRepr("std-symmetric") + SS['mat'] = Ar + SS['v0'] = v0 + SS['eval'] = eigh(SS['mat'], eigvals_only=True) + + # general symmetric problem + GS = DictWithRepr("gen-symmetric") + GS['mat'] = Ar + GS['bmat'] = M + GS['v0'] = v0 + GS['eval'] = eigh(GS['mat'], GS['bmat'], eigvals_only=True) + + # standard hermitian problem + SH = DictWithRepr("std-hermitian") + SH['mat'] = Ac + SH['v0'] = v0 + SH['eval'] = eigh(SH['mat'], eigvals_only=True) + + # general hermitian problem + GH = DictWithRepr("gen-hermitian") + GH['mat'] = Ac + GH['bmat'] = M + GH['v0'] = v0 + GH['eval'] = eigh(GH['mat'], GH['bmat'], eigvals_only=True) + + # general hermitian problem with hermitian M + GHc = DictWithRepr("gen-hermitian-Mc") + GHc['mat'] = Ac + GHc['bmat'] = Mc + GHc['v0'] = v0 + GHc['eval'] = eigh(GHc['mat'], GHc['bmat'], eigvals_only=True) + + self.real_test_cases = [SS, GS] + self.complex_test_cases = [SH, GH, GHc] + + +class NonSymmetricParams: + def __init__(self): + self.eigs = eigs + self.which = ['LM', 'LR', 'LI'] # , 'SM', 'LR', 'SR', 'LI', 'SI'] + self.mattypes = [csr_matrix, aslinearoperator, np.asarray] + self.sigmas_OPparts = {None: [None], + 0.1: ['r'], + 0.1 + 0.1j: ['r', 'i']} + + # generate matrices + # these should all be float32 so that the eigenvalues + # are the same in float32 and float64 + N = 6 + np.random.seed(2300) + Ar = generate_matrix(N).astype('f').astype('d') + M = generate_matrix(N, hermitian=True, + pos_definite=True).astype('f').astype('d') + Ac = generate_matrix(N, complex_=True).astype('F').astype('D') + v0 = np.random.random(N) + + # standard real nonsymmetric problem + SNR = DictWithRepr("std-real-nonsym") + SNR['mat'] = Ar + SNR['v0'] = v0 + SNR['eval'] = eig(SNR['mat'], left=False, right=False) + + # general real nonsymmetric problem + GNR = DictWithRepr("gen-real-nonsym") + GNR['mat'] = Ar + GNR['bmat'] = M + GNR['v0'] = v0 + GNR['eval'] = eig(GNR['mat'], GNR['bmat'], left=False, right=False) + + # standard complex nonsymmetric problem + SNC = DictWithRepr("std-cmplx-nonsym") + SNC['mat'] = Ac + SNC['v0'] = v0 + SNC['eval'] = eig(SNC['mat'], left=False, right=False) + + # general complex nonsymmetric problem + GNC = DictWithRepr("gen-cmplx-nonsym") + GNC['mat'] = Ac + GNC['bmat'] = M + GNC['v0'] = v0 + GNC['eval'] = eig(GNC['mat'], GNC['bmat'], left=False, right=False) + + self.real_test_cases = [SNR, GNR] + self.complex_test_cases = [SNC, GNC] + + +def test_symmetric_modes(): + params = SymmetricParams() + k = 2 + symmetric = True + for D in params.real_test_cases: + for typ in 'fd': + for which in params.which: + for mattype in params.mattypes: + for (sigma, modes) in params.sigmas_modes.items(): + for mode in modes: + eval_evec(symmetric, D, typ, k, which, + None, sigma, mattype, None, mode) + + +def test_hermitian_modes(): + params = SymmetricParams() + k = 2 + symmetric = True + for D in params.complex_test_cases: + for typ in 'FD': + for which in params.which: + if which == 'BE': + continue # BE invalid for complex + for mattype in params.mattypes: + for sigma in params.sigmas_modes: + eval_evec(symmetric, D, typ, k, which, + None, sigma, mattype) + + +def test_symmetric_starting_vector(): + params = SymmetricParams() + symmetric = True + for k in [1, 2, 3, 4, 5]: + for D in params.real_test_cases: + for typ in 'fd': + v0 = random.rand(len(D['v0'])).astype(typ) + eval_evec(symmetric, D, typ, k, 'LM', v0) + + +def test_symmetric_no_convergence(): + np.random.seed(1234) + m = generate_matrix(30, hermitian=True, pos_definite=True) + tol, rtol, atol = _get_test_tolerance('d') + try: + w, v = eigsh(m, 4, which='LM', v0=m[:, 0], maxiter=5, tol=tol, ncv=9) + raise AssertionError("Spurious no-error exit") + except ArpackNoConvergence as err: + k = len(err.eigenvalues) + if k <= 0: + raise AssertionError("Spurious no-eigenvalues-found case") from err + w, v = err.eigenvalues, err.eigenvectors + assert_allclose(dot(m, v), w * v, rtol=rtol, atol=atol) + + +def test_real_nonsymmetric_modes(): + params = NonSymmetricParams() + k = 2 + symmetric = False + for D in params.real_test_cases: + for typ in 'fd': + for which in params.which: + for mattype in params.mattypes: + for sigma, OPparts in params.sigmas_OPparts.items(): + for OPpart in OPparts: + eval_evec(symmetric, D, typ, k, which, + None, sigma, mattype, OPpart) + + +def test_complex_nonsymmetric_modes(): + params = NonSymmetricParams() + k = 2 + symmetric = False + for D in params.complex_test_cases: + for typ in 'DF': + for which in params.which: + for mattype in params.mattypes: + for sigma in params.sigmas_OPparts: + eval_evec(symmetric, D, typ, k, which, + None, sigma, mattype) + + +def test_standard_nonsymmetric_starting_vector(): + params = NonSymmetricParams() + sigma = None + symmetric = False + for k in [1, 2, 3, 4]: + for d in params.complex_test_cases: + for typ in 'FD': + A = d['mat'] + n = A.shape[0] + v0 = random.rand(n).astype(typ) + eval_evec(symmetric, d, typ, k, "LM", v0, sigma) + + +def test_general_nonsymmetric_starting_vector(): + params = NonSymmetricParams() + sigma = None + symmetric = False + for k in [1, 2, 3, 4]: + for d in params.complex_test_cases: + for typ in 'FD': + A = d['mat'] + n = A.shape[0] + v0 = random.rand(n).astype(typ) + eval_evec(symmetric, d, typ, k, "LM", v0, sigma) + + +def test_standard_nonsymmetric_no_convergence(): + np.random.seed(1234) + m = generate_matrix(30, complex_=True) + tol, rtol, atol = _get_test_tolerance('d') + try: + w, v = eigs(m, 4, which='LM', v0=m[:, 0], maxiter=5, tol=tol) + raise AssertionError("Spurious no-error exit") + except ArpackNoConvergence as err: + k = len(err.eigenvalues) + if k <= 0: + raise AssertionError("Spurious no-eigenvalues-found case") from err + w, v = err.eigenvalues, err.eigenvectors + for ww, vv in zip(w, v.T): + assert_allclose(dot(m, vv), ww * vv, rtol=rtol, atol=atol) + + +def test_eigen_bad_shapes(): + # A is not square. + A = csc_matrix(np.zeros((2, 3))) + assert_raises(ValueError, eigs, A) + + +def test_eigen_bad_kwargs(): + # Test eigen on wrong keyword argument + A = csc_matrix(np.zeros((8, 8))) + assert_raises(ValueError, eigs, A, which='XX') + + +def test_ticket_1459_arpack_crash(): + for dtype in [np.float32, np.float64]: + # This test does not seem to catch the issue for float32, + # but we made the same fix there, just to be sure + + N = 6 + k = 2 + + np.random.seed(2301) + A = np.random.random((N, N)).astype(dtype) + v0 = np.array([-0.71063568258907849895, -0.83185111795729227424, + -0.34365925382227402451, 0.46122533684552280420, + -0.58001341115969040629, -0.78844877570084292984e-01], + dtype=dtype) + + # Should not crash: + evals, evecs = eigs(A, k, v0=v0) + + +@pytest.mark.skipif(IS_PYPY, reason="Test not meaningful on PyPy") +def test_linearoperator_deallocation(): + # Check that the linear operators used by the Arpack wrappers are + # deallocatable by reference counting -- they are big objects, so + # Python's cyclic GC may not collect them fast enough before + # running out of memory if eigs/eigsh are called in a tight loop. + + M_d = np.eye(10) + M_s = csc_matrix(M_d) + M_o = aslinearoperator(M_d) + + with assert_deallocated(lambda: arpack.SpLuInv(M_s)): + pass + with assert_deallocated(lambda: arpack.LuInv(M_d)): + pass + with assert_deallocated(lambda: arpack.IterInv(M_s)): + pass + with assert_deallocated(lambda: arpack.IterOpInv(M_o, None, 0.3)): + pass + with assert_deallocated(lambda: arpack.IterOpInv(M_o, M_o, 0.3)): + pass + +def test_parallel_threads(): + results = [] + v0 = np.random.rand(50) + + def worker(): + x = diags([1, -2, 1], [-1, 0, 1], shape=(50, 50)) + w, v = eigs(x, k=3, v0=v0) + results.append(w) + + w, v = eigsh(x, k=3, v0=v0) + results.append(w) + + threads = [threading.Thread(target=worker) for k in range(10)] + for t in threads: + t.start() + for t in threads: + t.join() + + worker() + + for r in results: + assert_allclose(r, results[-1]) + + +def test_reentering(): + # Just some linear operator that calls eigs recursively + def A_matvec(x): + x = diags([1, -2, 1], [-1, 0, 1], shape=(50, 50)) + w, v = eigs(x, k=1) + return v / w[0] + A = LinearOperator(matvec=A_matvec, dtype=float, shape=(50, 50)) + + # The Fortran code is not reentrant, so this fails (gracefully, not crashing) + assert_raises(RuntimeError, eigs, A, k=1) + assert_raises(RuntimeError, eigsh, A, k=1) + + +def test_regression_arpackng_1315(): + # Check that issue arpack-ng/#1315 is not present. + # Adapted from arpack-ng/TESTS/bug_1315_single.c + # If this fails, then the installed ARPACK library is faulty. + + for dtype in [np.float32, np.float64]: + np.random.seed(1234) + + w0 = np.arange(1, 1000+1).astype(dtype) + A = diags([w0], [0], shape=(1000, 1000)) + + v0 = np.random.rand(1000).astype(dtype) + w, v = eigs(A, k=9, ncv=2*9+1, which="LM", v0=v0) + + assert_allclose(np.sort(w), np.sort(w0[-9:]), + rtol=1e-4) + + +def test_eigs_for_k_greater(): + # Test eigs() for k beyond limits. + A_sparse = diags([1, -2, 1], [-1, 0, 1], shape=(4, 4)) # sparse + A = generate_matrix(4, sparse=False) + M_dense = np.random.random((4, 4)) + M_sparse = generate_matrix(4, sparse=True) + M_linop = aslinearoperator(M_dense) + eig_tuple1 = eig(A, b=M_dense) + eig_tuple2 = eig(A, b=M_sparse) + + with suppress_warnings() as sup: + sup.filter(RuntimeWarning) + + assert_equal(eigs(A, M=M_dense, k=3), eig_tuple1) + assert_equal(eigs(A, M=M_dense, k=4), eig_tuple1) + assert_equal(eigs(A, M=M_dense, k=5), eig_tuple1) + assert_equal(eigs(A, M=M_sparse, k=5), eig_tuple2) + + # M as LinearOperator + assert_raises(TypeError, eigs, A, M=M_linop, k=3) + + # Test 'A' for different types + assert_raises(TypeError, eigs, aslinearoperator(A), k=3) + assert_raises(TypeError, eigs, A_sparse, k=3) + + +def test_eigsh_for_k_greater(): + # Test eigsh() for k beyond limits. + A_sparse = diags([1, -2, 1], [-1, 0, 1], shape=(4, 4)) # sparse + A = generate_matrix(4, sparse=False) + M_dense = generate_matrix_symmetric(4, pos_definite=True) + M_sparse = generate_matrix_symmetric(4, pos_definite=True, sparse=True) + M_linop = aslinearoperator(M_dense) + eig_tuple1 = eigh(A, b=M_dense) + eig_tuple2 = eigh(A, b=M_sparse) + + with suppress_warnings() as sup: + sup.filter(RuntimeWarning) + + assert_equal(eigsh(A, M=M_dense, k=4), eig_tuple1) + assert_equal(eigsh(A, M=M_dense, k=5), eig_tuple1) + assert_equal(eigsh(A, M=M_sparse, k=5), eig_tuple2) + + # M as LinearOperator + assert_raises(TypeError, eigsh, A, M=M_linop, k=4) + + # Test 'A' for different types + assert_raises(TypeError, eigsh, aslinearoperator(A), k=4) + assert_raises(TypeError, eigsh, A_sparse, M=M_dense, k=4) + + +def test_real_eigs_real_k_subset(): + np.random.seed(1) + + n = 10 + A = rand(n, n, density=0.5) + A.data *= 2 + A.data -= 1 + + v0 = np.ones(n) + + whichs = ['LM', 'SM', 'LR', 'SR', 'LI', 'SI'] + dtypes = [np.float32, np.float64] + + for which, sigma, dtype in itertools.product(whichs, [None, 0, 5], dtypes): + prev_w = np.array([], dtype=dtype) + eps = np.finfo(dtype).eps + for k in range(1, 9): + w, z = eigs(A.astype(dtype), k=k, which=which, sigma=sigma, + v0=v0.astype(dtype), tol=0) + assert_allclose(np.linalg.norm(A.dot(z) - z * w), 0, atol=np.sqrt(eps)) + + # Check that the set of eigenvalues for `k` is a subset of that for `k+1` + dist = abs(prev_w[:,None] - w).min(axis=1) + assert_allclose(dist, 0, atol=np.sqrt(eps)) + + prev_w = w + + # Check sort order + if sigma is None: + d = w + else: + d = 1 / (w - sigma) + + if which == 'LM': + # ARPACK is systematic for 'LM', but sort order + # appears not well defined for other modes + assert np.all(np.diff(abs(d)) <= 1e-6) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/__init__.py b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..6ab5330361a6bcc2a8403f9b3788aedae750d57f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/__init__.py @@ -0,0 +1,16 @@ +""" +Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG) + +LOBPCG is a preconditioned eigensolver for large symmetric positive definite +(SPD) generalized eigenproblems. + +Call the function lobpcg - see help for lobpcg.lobpcg. + +""" +from .lobpcg import * + +__all__ = [s for s in dir() if not s.startswith('_')] + +from scipy._lib._testutils import PytestTester +test = PytestTester(__name__) +del PytestTester diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ef5b322bd6d88c35528cb3aaaba3848ca73b37e9 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/__pycache__/lobpcg.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/__pycache__/lobpcg.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9ca09fac9899b20c74da6aa5de659aeeef38ed93 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/__pycache__/lobpcg.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py new file mode 100644 index 0000000000000000000000000000000000000000..2e4cfc155675fff7b36bda24b7c63cf70456e0db --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/lobpcg.py @@ -0,0 +1,1112 @@ +""" +Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG). + +References +---------- +.. [1] A. V. Knyazev (2001), + Toward the Optimal Preconditioned Eigensolver: Locally Optimal + Block Preconditioned Conjugate Gradient Method. + SIAM Journal on Scientific Computing 23, no. 2, + pp. 517-541. :doi:`10.1137/S1064827500366124` + +.. [2] A. V. Knyazev, I. Lashuk, M. E. Argentati, and E. Ovchinnikov (2007), + Block Locally Optimal Preconditioned Eigenvalue Xolvers (BLOPEX) + in hypre and PETSc. :arxiv:`0705.2626` + +.. [3] A. V. Knyazev's C and MATLAB implementations: + https://github.com/lobpcg/blopex +""" + +import warnings +import numpy as np +from scipy.linalg import (inv, eigh, cho_factor, cho_solve, + cholesky, LinAlgError) +from scipy.sparse.linalg import LinearOperator +from scipy.sparse import issparse + +__all__ = ["lobpcg"] + + +def _report_nonhermitian(M, name): + """ + Report if `M` is not a Hermitian matrix given its type. + """ + from scipy.linalg import norm + + md = M - M.T.conj() + nmd = norm(md, 1) + tol = 10 * np.finfo(M.dtype).eps + tol = max(tol, tol * norm(M, 1)) + if nmd > tol: + warnings.warn( + f"Matrix {name} of the type {M.dtype} is not Hermitian: " + f"condition: {nmd} < {tol} fails.", + UserWarning, stacklevel=4 + ) + +def _as2d(ar): + """ + If the input array is 2D return it, if it is 1D, append a dimension, + making it a column vector. + """ + if ar.ndim == 2: + return ar + else: # Assume 1! + aux = np.asarray(ar) + aux.shape = (ar.shape[0], 1) + return aux + + +def _makeMatMat(m): + if m is None: + return None + elif callable(m): + return lambda v: m(v) + else: + return lambda v: m @ v + + +def _matmul_inplace(x, y, verbosityLevel=0): + """Perform 'np.matmul' in-place if possible. + + If some sufficient conditions for inplace matmul are met, do so. + Otherwise try inplace update and fall back to overwrite if that fails. + """ + if x.flags["CARRAY"] and x.shape[1] == y.shape[1] and x.dtype == y.dtype: + # conditions where we can guarantee that inplace updates will work; + # i.e. x is not a view/slice, x & y have compatible dtypes, and the + # shape of the result of x @ y matches the shape of x. + np.matmul(x, y, out=x) + else: + # ideally, we'd have an exhaustive list of conditions above when + # inplace updates are possible; since we don't, we opportunistically + # try if it works, and fall back to overwriting if necessary + try: + np.matmul(x, y, out=x) + except Exception: + if verbosityLevel: + warnings.warn( + "Inplace update of x = x @ y failed, " + "x needs to be overwritten.", + UserWarning, stacklevel=3 + ) + x = x @ y + return x + + +def _applyConstraints(blockVectorV, factYBY, blockVectorBY, blockVectorY): + """Changes blockVectorV in-place.""" + YBV = blockVectorBY.T.conj() @ blockVectorV + tmp = cho_solve(factYBY, YBV) + blockVectorV -= blockVectorY @ tmp + + +def _b_orthonormalize(B, blockVectorV, blockVectorBV=None, + verbosityLevel=0): + """in-place B-orthonormalize the given block vector using Cholesky.""" + if blockVectorBV is None: + if B is None: + blockVectorBV = blockVectorV + else: + try: + blockVectorBV = B(blockVectorV) + except Exception as e: + if verbosityLevel: + warnings.warn( + f"Secondary MatMul call failed with error\n" + f"{e}\n", + UserWarning, stacklevel=3 + ) + return None, None, None + if blockVectorBV.shape != blockVectorV.shape: + raise ValueError( + f"The shape {blockVectorV.shape} " + f"of the orthogonalized matrix not preserved\n" + f"and changed to {blockVectorBV.shape} " + f"after multiplying by the secondary matrix.\n" + ) + + VBV = blockVectorV.T.conj() @ blockVectorBV + try: + # VBV is a Cholesky factor from now on... + VBV = cholesky(VBV, overwrite_a=True) + VBV = inv(VBV, overwrite_a=True) + blockVectorV = _matmul_inplace( + blockVectorV, VBV, + verbosityLevel=verbosityLevel + ) + if B is not None: + blockVectorBV = _matmul_inplace( + blockVectorBV, VBV, + verbosityLevel=verbosityLevel + ) + return blockVectorV, blockVectorBV, VBV + except LinAlgError: + if verbosityLevel: + warnings.warn( + "Cholesky has failed.", + UserWarning, stacklevel=3 + ) + return None, None, None + + +def _get_indx(_lambda, num, largest): + """Get `num` indices into `_lambda` depending on `largest` option.""" + ii = np.argsort(_lambda) + if largest: + ii = ii[:-num - 1:-1] + else: + ii = ii[:num] + + return ii + + +def _handle_gramA_gramB_verbosity(gramA, gramB, verbosityLevel): + if verbosityLevel: + _report_nonhermitian(gramA, "gramA") + _report_nonhermitian(gramB, "gramB") + + +def lobpcg( + A, + X, + B=None, + M=None, + Y=None, + tol=None, + maxiter=None, + largest=True, + verbosityLevel=0, + retLambdaHistory=False, + retResidualNormsHistory=False, + restartControl=20, +): + """Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG). + + LOBPCG is a preconditioned eigensolver for large real symmetric and complex + Hermitian definite generalized eigenproblems. + + Parameters + ---------- + A : {sparse matrix, ndarray, LinearOperator, callable object} + The Hermitian linear operator of the problem, usually given by a + sparse matrix. Often called the "stiffness matrix". + X : ndarray, float32 or float64 + Initial approximation to the ``k`` eigenvectors (non-sparse). + If `A` has ``shape=(n,n)`` then `X` must have ``shape=(n,k)``. + B : {sparse matrix, ndarray, LinearOperator, callable object} + Optional. By default ``B = None``, which is equivalent to identity. + The right hand side operator in a generalized eigenproblem if present. + Often called the "mass matrix". Must be Hermitian positive definite. + M : {sparse matrix, ndarray, LinearOperator, callable object} + Optional. By default ``M = None``, which is equivalent to identity. + Preconditioner aiming to accelerate convergence. + Y : ndarray, float32 or float64, default: None + An ``n-by-sizeY`` ndarray of constraints with ``sizeY < n``. + The iterations will be performed in the ``B``-orthogonal complement + of the column-space of `Y`. `Y` must be full rank if present. + tol : scalar, optional + The default is ``tol=n*sqrt(eps)``. + Solver tolerance for the stopping criterion. + maxiter : int, default: 20 + Maximum number of iterations. + largest : bool, default: True + When True, solve for the largest eigenvalues, otherwise the smallest. + verbosityLevel : int, optional + By default ``verbosityLevel=0`` no output. + Controls the solver standard/screen output. + retLambdaHistory : bool, default: False + Whether to return iterative eigenvalue history. + retResidualNormsHistory : bool, default: False + Whether to return iterative history of residual norms. + restartControl : int, optional. + Iterations restart if the residuals jump ``2**restartControl`` times + compared to the smallest recorded in ``retResidualNormsHistory``. + The default is ``restartControl=20``, making the restarts rare for + backward compatibility. + + Returns + ------- + lambda : ndarray of the shape ``(k, )``. + Array of ``k`` approximate eigenvalues. + v : ndarray of the same shape as ``X.shape``. + An array of ``k`` approximate eigenvectors. + lambdaHistory : ndarray, optional. + The eigenvalue history, if `retLambdaHistory` is ``True``. + ResidualNormsHistory : ndarray, optional. + The history of residual norms, if `retResidualNormsHistory` + is ``True``. + + Notes + ----- + The iterative loop runs ``maxit=maxiter`` (20 if ``maxit=None``) + iterations at most and finishes earlier if the tolerance is met. + Breaking backward compatibility with the previous version, LOBPCG + now returns the block of iterative vectors with the best accuracy rather + than the last one iterated, as a cure for possible divergence. + + If ``X.dtype == np.float32`` and user-provided operations/multiplications + by `A`, `B`, and `M` all preserve the ``np.float32`` data type, + all the calculations and the output are in ``np.float32``. + + The size of the iteration history output equals to the number of the best + (limited by `maxit`) iterations plus 3: initial, final, and postprocessing. + + If both `retLambdaHistory` and `retResidualNormsHistory` are ``True``, + the return tuple has the following format + ``(lambda, V, lambda history, residual norms history)``. + + In the following ``n`` denotes the matrix size and ``k`` the number + of required eigenvalues (smallest or largest). + + The LOBPCG code internally solves eigenproblems of the size ``3k`` on every + iteration by calling the dense eigensolver `eigh`, so if ``k`` is not + small enough compared to ``n``, it makes no sense to call the LOBPCG code. + Moreover, if one calls the LOBPCG algorithm for ``5k > n``, it would likely + break internally, so the code calls the standard function `eigh` instead. + It is not that ``n`` should be large for the LOBPCG to work, but rather the + ratio ``n / k`` should be large. It you call LOBPCG with ``k=1`` + and ``n=10``, it works though ``n`` is small. The method is intended + for extremely large ``n / k``. + + The convergence speed depends basically on three factors: + + 1. Quality of the initial approximations `X` to the seeking eigenvectors. + Randomly distributed around the origin vectors work well if no better + choice is known. + + 2. Relative separation of the desired eigenvalues from the rest + of the eigenvalues. One can vary ``k`` to improve the separation. + + 3. Proper preconditioning to shrink the spectral spread. + For example, a rod vibration test problem (under tests + directory) is ill-conditioned for large ``n``, so convergence will be + slow, unless efficient preconditioning is used. For this specific + problem, a good simple preconditioner function would be a linear solve + for `A`, which is easy to code since `A` is tridiagonal. + + References + ---------- + .. [1] A. V. Knyazev (2001), + Toward the Optimal Preconditioned Eigensolver: Locally Optimal + Block Preconditioned Conjugate Gradient Method. + SIAM Journal on Scientific Computing 23, no. 2, + pp. 517-541. :doi:`10.1137/S1064827500366124` + + .. [2] A. V. Knyazev, I. Lashuk, M. E. Argentati, and E. Ovchinnikov + (2007), Block Locally Optimal Preconditioned Eigenvalue Xolvers + (BLOPEX) in hypre and PETSc. :arxiv:`0705.2626` + + .. [3] A. V. Knyazev's C and MATLAB implementations: + https://github.com/lobpcg/blopex + + Examples + -------- + Our first example is minimalistic - find the largest eigenvalue of + a diagonal matrix by solving the non-generalized eigenvalue problem + ``A x = lambda x`` without constraints or preconditioning. + + >>> import numpy as np + >>> from scipy.sparse import spdiags + >>> from scipy.sparse.linalg import LinearOperator, aslinearoperator + >>> from scipy.sparse.linalg import lobpcg + + The square matrix size is + + >>> n = 100 + + and its diagonal entries are 1, ..., 100 defined by + + >>> vals = np.arange(1, n + 1).astype(np.int16) + + The first mandatory input parameter in this test is + the sparse diagonal matrix `A` + of the eigenvalue problem ``A x = lambda x`` to solve. + + >>> A = spdiags(vals, 0, n, n) + >>> A = A.astype(np.int16) + >>> A.toarray() + array([[ 1, 0, 0, ..., 0, 0, 0], + [ 0, 2, 0, ..., 0, 0, 0], + [ 0, 0, 3, ..., 0, 0, 0], + ..., + [ 0, 0, 0, ..., 98, 0, 0], + [ 0, 0, 0, ..., 0, 99, 0], + [ 0, 0, 0, ..., 0, 0, 100]], dtype=int16) + + The second mandatory input parameter `X` is a 2D array with the + row dimension determining the number of requested eigenvalues. + `X` is an initial guess for targeted eigenvectors. + `X` must have linearly independent columns. + If no initial approximations available, randomly oriented vectors + commonly work best, e.g., with components normally distributed + around zero or uniformly distributed on the interval [-1 1]. + Setting the initial approximations to dtype ``np.float32`` + forces all iterative values to dtype ``np.float32`` speeding up + the run while still allowing accurate eigenvalue computations. + + >>> k = 1 + >>> rng = np.random.default_rng() + >>> X = rng.normal(size=(n, k)) + >>> X = X.astype(np.float32) + + >>> eigenvalues, _ = lobpcg(A, X, maxiter=60) + >>> eigenvalues + array([100.]) + >>> eigenvalues.dtype + dtype('float32') + + `lobpcg` needs only access the matrix product with `A` rather + then the matrix itself. Since the matrix `A` is diagonal in + this example, one can write a function of the matrix product + ``A @ X`` using the diagonal values ``vals`` only, e.g., by + element-wise multiplication with broadcasting in the lambda-function + + >>> A_lambda = lambda X: vals[:, np.newaxis] * X + + or the regular function + + >>> def A_matmat(X): + ... return vals[:, np.newaxis] * X + + and use the handle to one of these callables as an input + + >>> eigenvalues, _ = lobpcg(A_lambda, X, maxiter=60) + >>> eigenvalues + array([100.]) + >>> eigenvalues, _ = lobpcg(A_matmat, X, maxiter=60) + >>> eigenvalues + array([100.]) + + The traditional callable `LinearOperator` is no longer + necessary but still supported as the input to `lobpcg`. + Specifying ``matmat=A_matmat`` explicitly improves performance. + + >>> A_lo = LinearOperator((n, n), matvec=A_matmat, matmat=A_matmat, dtype=np.int16) + >>> eigenvalues, _ = lobpcg(A_lo, X, maxiter=80) + >>> eigenvalues + array([100.]) + + The least efficient callable option is `aslinearoperator`: + + >>> eigenvalues, _ = lobpcg(aslinearoperator(A), X, maxiter=80) + >>> eigenvalues + array([100.]) + + We now switch to computing the three smallest eigenvalues specifying + + >>> k = 3 + >>> X = np.random.default_rng().normal(size=(n, k)) + + and ``largest=False`` parameter + + >>> eigenvalues, _ = lobpcg(A, X, largest=False, maxiter=80) + >>> print(eigenvalues) + [1. 2. 3.] + + The next example illustrates computing 3 smallest eigenvalues of + the same matrix `A` given by the function handle ``A_matmat`` but + with constraints and preconditioning. + + Constraints - an optional input parameter is a 2D array comprising + of column vectors that the eigenvectors must be orthogonal to + + >>> Y = np.eye(n, 3) + + The preconditioner acts as the inverse of `A` in this example, but + in the reduced precision ``np.float32`` even though the initial `X` + and thus all iterates and the output are in full ``np.float64``. + + >>> inv_vals = 1./vals + >>> inv_vals = inv_vals.astype(np.float32) + >>> M = lambda X: inv_vals[:, np.newaxis] * X + + Let us now solve the eigenvalue problem for the matrix `A` first + without preconditioning requesting 80 iterations + + >>> eigenvalues, _ = lobpcg(A_matmat, X, Y=Y, largest=False, maxiter=80) + >>> eigenvalues + array([4., 5., 6.]) + >>> eigenvalues.dtype + dtype('float64') + + With preconditioning we need only 20 iterations from the same `X` + + >>> eigenvalues, _ = lobpcg(A_matmat, X, Y=Y, M=M, largest=False, maxiter=20) + >>> eigenvalues + array([4., 5., 6.]) + + Note that the vectors passed in `Y` are the eigenvectors of the 3 + smallest eigenvalues. The results returned above are orthogonal to those. + + The primary matrix `A` may be indefinite, e.g., after shifting + ``vals`` by 50 from 1, ..., 100 to -49, ..., 50, we still can compute + the 3 smallest or largest eigenvalues. + + >>> vals = vals - 50 + >>> X = rng.normal(size=(n, k)) + >>> eigenvalues, _ = lobpcg(A_matmat, X, largest=False, maxiter=99) + >>> eigenvalues + array([-49., -48., -47.]) + >>> eigenvalues, _ = lobpcg(A_matmat, X, largest=True, maxiter=99) + >>> eigenvalues + array([50., 49., 48.]) + + """ + blockVectorX = X + bestblockVectorX = blockVectorX + blockVectorY = Y + residualTolerance = tol + if maxiter is None: + maxiter = 20 + + bestIterationNumber = maxiter + + sizeY = 0 + if blockVectorY is not None: + if len(blockVectorY.shape) != 2: + warnings.warn( + f"Expected rank-2 array for argument Y, instead got " + f"{len(blockVectorY.shape)}, " + f"so ignore it and use no constraints.", + UserWarning, stacklevel=2 + ) + blockVectorY = None + else: + sizeY = blockVectorY.shape[1] + + # Block size. + if blockVectorX is None: + raise ValueError("The mandatory initial matrix X cannot be None") + if len(blockVectorX.shape) != 2: + raise ValueError("expected rank-2 array for argument X") + + n, sizeX = blockVectorX.shape + + # Data type of iterates, determined by X, must be inexact + if not np.issubdtype(blockVectorX.dtype, np.inexact): + warnings.warn( + f"Data type for argument X is {blockVectorX.dtype}, " + f"which is not inexact, so casted to np.float32.", + UserWarning, stacklevel=2 + ) + blockVectorX = np.asarray(blockVectorX, dtype=np.float32) + + if retLambdaHistory: + lambdaHistory = np.zeros((maxiter + 3, sizeX), + dtype=blockVectorX.dtype) + if retResidualNormsHistory: + residualNormsHistory = np.zeros((maxiter + 3, sizeX), + dtype=blockVectorX.dtype) + + if verbosityLevel: + aux = "Solving " + if B is None: + aux += "standard" + else: + aux += "generalized" + aux += " eigenvalue problem with" + if M is None: + aux += "out" + aux += " preconditioning\n\n" + aux += "matrix size %d\n" % n + aux += "block size %d\n\n" % sizeX + if blockVectorY is None: + aux += "No constraints\n\n" + else: + if sizeY > 1: + aux += "%d constraints\n\n" % sizeY + else: + aux += "%d constraint\n\n" % sizeY + print(aux) + + if (n - sizeY) < (5 * sizeX): + warnings.warn( + f"The problem size {n} minus the constraints size {sizeY} " + f"is too small relative to the block size {sizeX}. " + f"Using a dense eigensolver instead of LOBPCG iterations." + f"No output of the history of the iterations.", + UserWarning, stacklevel=2 + ) + + sizeX = min(sizeX, n) + + if blockVectorY is not None: + raise NotImplementedError( + "The dense eigensolver does not support constraints." + ) + + # Define the closed range of indices of eigenvalues to return. + if largest: + eigvals = (n - sizeX, n - 1) + else: + eigvals = (0, sizeX - 1) + + try: + if isinstance(A, LinearOperator): + A = A(np.eye(n, dtype=int)) + elif callable(A): + A = A(np.eye(n, dtype=int)) + if A.shape != (n, n): + raise ValueError( + f"The shape {A.shape} of the primary matrix\n" + f"defined by a callable object is wrong.\n" + ) + elif issparse(A): + A = A.toarray() + else: + A = np.asarray(A) + except Exception as e: + raise Exception( + f"Primary MatMul call failed with error\n" + f"{e}\n") + + if B is not None: + try: + if isinstance(B, LinearOperator): + B = B(np.eye(n, dtype=int)) + elif callable(B): + B = B(np.eye(n, dtype=int)) + if B.shape != (n, n): + raise ValueError( + f"The shape {B.shape} of the secondary matrix\n" + f"defined by a callable object is wrong.\n" + ) + elif issparse(B): + B = B.toarray() + else: + B = np.asarray(B) + except Exception as e: + raise Exception( + f"Secondary MatMul call failed with error\n" + f"{e}\n") + + try: + vals, vecs = eigh(A, + B, + subset_by_index=eigvals, + check_finite=False) + if largest: + # Reverse order to be compatible with eigs() in 'LM' mode. + vals = vals[::-1] + vecs = vecs[:, ::-1] + + return vals, vecs + except Exception as e: + raise Exception( + f"Dense eigensolver failed with error\n" + f"{e}\n" + ) + + if (residualTolerance is None) or (residualTolerance <= 0.0): + residualTolerance = np.sqrt(np.finfo(blockVectorX.dtype).eps) * n + + A = _makeMatMat(A) + B = _makeMatMat(B) + M = _makeMatMat(M) + + # Apply constraints to X. + if blockVectorY is not None: + + if B is not None: + blockVectorBY = B(blockVectorY) + if blockVectorBY.shape != blockVectorY.shape: + raise ValueError( + f"The shape {blockVectorY.shape} " + f"of the constraint not preserved\n" + f"and changed to {blockVectorBY.shape} " + f"after multiplying by the secondary matrix.\n" + ) + else: + blockVectorBY = blockVectorY + + # gramYBY is a dense array. + gramYBY = blockVectorY.T.conj() @ blockVectorBY + try: + # gramYBY is a Cholesky factor from now on... + gramYBY = cho_factor(gramYBY, overwrite_a=True) + except LinAlgError as e: + raise ValueError("Linearly dependent constraints") from e + + _applyConstraints(blockVectorX, gramYBY, blockVectorBY, blockVectorY) + + ## + # B-orthonormalize X. + blockVectorX, blockVectorBX, _ = _b_orthonormalize( + B, blockVectorX, verbosityLevel=verbosityLevel) + if blockVectorX is None: + raise ValueError("Linearly dependent initial approximations") + + ## + # Compute the initial Ritz vectors: solve the eigenproblem. + blockVectorAX = A(blockVectorX) + if blockVectorAX.shape != blockVectorX.shape: + raise ValueError( + f"The shape {blockVectorX.shape} " + f"of the initial approximations not preserved\n" + f"and changed to {blockVectorAX.shape} " + f"after multiplying by the primary matrix.\n" + ) + + gramXAX = blockVectorX.T.conj() @ blockVectorAX + + _lambda, eigBlockVector = eigh(gramXAX, check_finite=False) + ii = _get_indx(_lambda, sizeX, largest) + _lambda = _lambda[ii] + if retLambdaHistory: + lambdaHistory[0, :] = _lambda + + eigBlockVector = np.asarray(eigBlockVector[:, ii]) + blockVectorX = _matmul_inplace( + blockVectorX, eigBlockVector, + verbosityLevel=verbosityLevel + ) + blockVectorAX = _matmul_inplace( + blockVectorAX, eigBlockVector, + verbosityLevel=verbosityLevel + ) + if B is not None: + blockVectorBX = _matmul_inplace( + blockVectorBX, eigBlockVector, + verbosityLevel=verbosityLevel + ) + + ## + # Active index set. + activeMask = np.ones((sizeX,), dtype=bool) + + ## + # Main iteration loop. + + blockVectorP = None # set during iteration + blockVectorAP = None + blockVectorBP = None + + smallestResidualNorm = np.abs(np.finfo(blockVectorX.dtype).max) + + iterationNumber = -1 + restart = True + forcedRestart = False + explicitGramFlag = False + while iterationNumber < maxiter: + iterationNumber += 1 + + if B is not None: + aux = blockVectorBX * _lambda[np.newaxis, :] + else: + aux = blockVectorX * _lambda[np.newaxis, :] + + blockVectorR = blockVectorAX - aux + + aux = np.sum(blockVectorR.conj() * blockVectorR, 0) + residualNorms = np.sqrt(np.abs(aux)) + if retResidualNormsHistory: + residualNormsHistory[iterationNumber, :] = residualNorms + residualNorm = np.sum(np.abs(residualNorms)) / sizeX + + if residualNorm < smallestResidualNorm: + smallestResidualNorm = residualNorm + bestIterationNumber = iterationNumber + bestblockVectorX = blockVectorX + elif residualNorm > 2**restartControl * smallestResidualNorm: + forcedRestart = True + blockVectorAX = A(blockVectorX) + if blockVectorAX.shape != blockVectorX.shape: + raise ValueError( + f"The shape {blockVectorX.shape} " + f"of the restarted iterate not preserved\n" + f"and changed to {blockVectorAX.shape} " + f"after multiplying by the primary matrix.\n" + ) + if B is not None: + blockVectorBX = B(blockVectorX) + if blockVectorBX.shape != blockVectorX.shape: + raise ValueError( + f"The shape {blockVectorX.shape} " + f"of the restarted iterate not preserved\n" + f"and changed to {blockVectorBX.shape} " + f"after multiplying by the secondary matrix.\n" + ) + + ii = np.where(residualNorms > residualTolerance, True, False) + activeMask = activeMask & ii + currentBlockSize = activeMask.sum() + + if verbosityLevel: + print(f"iteration {iterationNumber}") + print(f"current block size: {currentBlockSize}") + print(f"eigenvalue(s):\n{_lambda}") + print(f"residual norm(s):\n{residualNorms}") + + if currentBlockSize == 0: + break + + activeBlockVectorR = _as2d(blockVectorR[:, activeMask]) + + if iterationNumber > 0: + activeBlockVectorP = _as2d(blockVectorP[:, activeMask]) + activeBlockVectorAP = _as2d(blockVectorAP[:, activeMask]) + if B is not None: + activeBlockVectorBP = _as2d(blockVectorBP[:, activeMask]) + + if M is not None: + # Apply preconditioner T to the active residuals. + activeBlockVectorR = M(activeBlockVectorR) + + ## + # Apply constraints to the preconditioned residuals. + if blockVectorY is not None: + _applyConstraints(activeBlockVectorR, + gramYBY, + blockVectorBY, + blockVectorY) + + ## + # B-orthogonalize the preconditioned residuals to X. + if B is not None: + activeBlockVectorR = activeBlockVectorR - ( + blockVectorX @ + (blockVectorBX.T.conj() @ activeBlockVectorR) + ) + else: + activeBlockVectorR = activeBlockVectorR - ( + blockVectorX @ + (blockVectorX.T.conj() @ activeBlockVectorR) + ) + + ## + # B-orthonormalize the preconditioned residuals. + aux = _b_orthonormalize( + B, activeBlockVectorR, verbosityLevel=verbosityLevel) + activeBlockVectorR, activeBlockVectorBR, _ = aux + + if activeBlockVectorR is None: + warnings.warn( + f"Failed at iteration {iterationNumber} with accuracies " + f"{residualNorms}\n not reaching the requested " + f"tolerance {residualTolerance}.", + UserWarning, stacklevel=2 + ) + break + activeBlockVectorAR = A(activeBlockVectorR) + + if iterationNumber > 0: + if B is not None: + aux = _b_orthonormalize( + B, activeBlockVectorP, activeBlockVectorBP, + verbosityLevel=verbosityLevel + ) + activeBlockVectorP, activeBlockVectorBP, invR = aux + else: + aux = _b_orthonormalize(B, activeBlockVectorP, + verbosityLevel=verbosityLevel) + activeBlockVectorP, _, invR = aux + # Function _b_orthonormalize returns None if Cholesky fails + if activeBlockVectorP is not None: + activeBlockVectorAP = _matmul_inplace( + activeBlockVectorAP, invR, + verbosityLevel=verbosityLevel + ) + restart = forcedRestart + else: + restart = True + + ## + # Perform the Rayleigh Ritz Procedure: + # Compute symmetric Gram matrices: + + if activeBlockVectorAR.dtype == "float32": + myeps = 1 + else: + myeps = np.sqrt(np.finfo(activeBlockVectorR.dtype).eps) + + if residualNorms.max() > myeps and not explicitGramFlag: + explicitGramFlag = False + else: + # Once explicitGramFlag, forever explicitGramFlag. + explicitGramFlag = True + + # Shared memory assignments to simplify the code + if B is None: + blockVectorBX = blockVectorX + activeBlockVectorBR = activeBlockVectorR + if not restart: + activeBlockVectorBP = activeBlockVectorP + + # Common submatrices: + gramXAR = np.dot(blockVectorX.T.conj(), activeBlockVectorAR) + gramRAR = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorAR) + + gramDtype = activeBlockVectorAR.dtype + if explicitGramFlag: + gramRAR = (gramRAR + gramRAR.T.conj()) / 2 + gramXAX = np.dot(blockVectorX.T.conj(), blockVectorAX) + gramXAX = (gramXAX + gramXAX.T.conj()) / 2 + gramXBX = np.dot(blockVectorX.T.conj(), blockVectorBX) + gramRBR = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorBR) + gramXBR = np.dot(blockVectorX.T.conj(), activeBlockVectorBR) + else: + gramXAX = np.diag(_lambda).astype(gramDtype) + gramXBX = np.eye(sizeX, dtype=gramDtype) + gramRBR = np.eye(currentBlockSize, dtype=gramDtype) + gramXBR = np.zeros((sizeX, currentBlockSize), dtype=gramDtype) + + if not restart: + gramXAP = np.dot(blockVectorX.T.conj(), activeBlockVectorAP) + gramRAP = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorAP) + gramPAP = np.dot(activeBlockVectorP.T.conj(), activeBlockVectorAP) + gramXBP = np.dot(blockVectorX.T.conj(), activeBlockVectorBP) + gramRBP = np.dot(activeBlockVectorR.T.conj(), activeBlockVectorBP) + if explicitGramFlag: + gramPAP = (gramPAP + gramPAP.T.conj()) / 2 + gramPBP = np.dot(activeBlockVectorP.T.conj(), + activeBlockVectorBP) + else: + gramPBP = np.eye(currentBlockSize, dtype=gramDtype) + + gramA = np.block( + [ + [gramXAX, gramXAR, gramXAP], + [gramXAR.T.conj(), gramRAR, gramRAP], + [gramXAP.T.conj(), gramRAP.T.conj(), gramPAP], + ] + ) + gramB = np.block( + [ + [gramXBX, gramXBR, gramXBP], + [gramXBR.T.conj(), gramRBR, gramRBP], + [gramXBP.T.conj(), gramRBP.T.conj(), gramPBP], + ] + ) + + _handle_gramA_gramB_verbosity(gramA, gramB, verbosityLevel) + + try: + _lambda, eigBlockVector = eigh(gramA, + gramB, + check_finite=False) + except LinAlgError as e: + # raise ValueError("eigh failed in lobpcg iterations") from e + if verbosityLevel: + warnings.warn( + f"eigh failed at iteration {iterationNumber} \n" + f"with error {e} causing a restart.\n", + UserWarning, stacklevel=2 + ) + # try again after dropping the direction vectors P from RR + restart = True + + if restart: + gramA = np.block([[gramXAX, gramXAR], [gramXAR.T.conj(), gramRAR]]) + gramB = np.block([[gramXBX, gramXBR], [gramXBR.T.conj(), gramRBR]]) + + _handle_gramA_gramB_verbosity(gramA, gramB, verbosityLevel) + + try: + _lambda, eigBlockVector = eigh(gramA, + gramB, + check_finite=False) + except LinAlgError as e: + # raise ValueError("eigh failed in lobpcg iterations") from e + warnings.warn( + f"eigh failed at iteration {iterationNumber} with error\n" + f"{e}\n", + UserWarning, stacklevel=2 + ) + break + + ii = _get_indx(_lambda, sizeX, largest) + _lambda = _lambda[ii] + eigBlockVector = eigBlockVector[:, ii] + if retLambdaHistory: + lambdaHistory[iterationNumber + 1, :] = _lambda + + # Compute Ritz vectors. + if B is not None: + if not restart: + eigBlockVectorX = eigBlockVector[:sizeX] + eigBlockVectorR = eigBlockVector[sizeX: + sizeX + currentBlockSize] + eigBlockVectorP = eigBlockVector[sizeX + currentBlockSize:] + + pp = np.dot(activeBlockVectorR, eigBlockVectorR) + pp += np.dot(activeBlockVectorP, eigBlockVectorP) + + app = np.dot(activeBlockVectorAR, eigBlockVectorR) + app += np.dot(activeBlockVectorAP, eigBlockVectorP) + + bpp = np.dot(activeBlockVectorBR, eigBlockVectorR) + bpp += np.dot(activeBlockVectorBP, eigBlockVectorP) + else: + eigBlockVectorX = eigBlockVector[:sizeX] + eigBlockVectorR = eigBlockVector[sizeX:] + + pp = np.dot(activeBlockVectorR, eigBlockVectorR) + app = np.dot(activeBlockVectorAR, eigBlockVectorR) + bpp = np.dot(activeBlockVectorBR, eigBlockVectorR) + + blockVectorX = np.dot(blockVectorX, eigBlockVectorX) + pp + blockVectorAX = np.dot(blockVectorAX, eigBlockVectorX) + app + blockVectorBX = np.dot(blockVectorBX, eigBlockVectorX) + bpp + + blockVectorP, blockVectorAP, blockVectorBP = pp, app, bpp + + else: + if not restart: + eigBlockVectorX = eigBlockVector[:sizeX] + eigBlockVectorR = eigBlockVector[sizeX: + sizeX + currentBlockSize] + eigBlockVectorP = eigBlockVector[sizeX + currentBlockSize:] + + pp = np.dot(activeBlockVectorR, eigBlockVectorR) + pp += np.dot(activeBlockVectorP, eigBlockVectorP) + + app = np.dot(activeBlockVectorAR, eigBlockVectorR) + app += np.dot(activeBlockVectorAP, eigBlockVectorP) + else: + eigBlockVectorX = eigBlockVector[:sizeX] + eigBlockVectorR = eigBlockVector[sizeX:] + + pp = np.dot(activeBlockVectorR, eigBlockVectorR) + app = np.dot(activeBlockVectorAR, eigBlockVectorR) + + blockVectorX = np.dot(blockVectorX, eigBlockVectorX) + pp + blockVectorAX = np.dot(blockVectorAX, eigBlockVectorX) + app + + blockVectorP, blockVectorAP = pp, app + + if B is not None: + aux = blockVectorBX * _lambda[np.newaxis, :] + else: + aux = blockVectorX * _lambda[np.newaxis, :] + + blockVectorR = blockVectorAX - aux + + aux = np.sum(blockVectorR.conj() * blockVectorR, 0) + residualNorms = np.sqrt(np.abs(aux)) + # Use old lambda in case of early loop exit. + if retLambdaHistory: + lambdaHistory[iterationNumber + 1, :] = _lambda + if retResidualNormsHistory: + residualNormsHistory[iterationNumber + 1, :] = residualNorms + residualNorm = np.sum(np.abs(residualNorms)) / sizeX + if residualNorm < smallestResidualNorm: + smallestResidualNorm = residualNorm + bestIterationNumber = iterationNumber + 1 + bestblockVectorX = blockVectorX + + if np.max(np.abs(residualNorms)) > residualTolerance: + warnings.warn( + f"Exited at iteration {iterationNumber} with accuracies \n" + f"{residualNorms}\n" + f"not reaching the requested tolerance {residualTolerance}.\n" + f"Use iteration {bestIterationNumber} instead with accuracy \n" + f"{smallestResidualNorm}.\n", + UserWarning, stacklevel=2 + ) + + if verbosityLevel: + print(f"Final iterative eigenvalue(s):\n{_lambda}") + print(f"Final iterative residual norm(s):\n{residualNorms}") + + blockVectorX = bestblockVectorX + # Making eigenvectors "exactly" satisfy the blockVectorY constrains + if blockVectorY is not None: + _applyConstraints(blockVectorX, + gramYBY, + blockVectorBY, + blockVectorY) + + # Making eigenvectors "exactly" othonormalized by final "exact" RR + blockVectorAX = A(blockVectorX) + if blockVectorAX.shape != blockVectorX.shape: + raise ValueError( + f"The shape {blockVectorX.shape} " + f"of the postprocessing iterate not preserved\n" + f"and changed to {blockVectorAX.shape} " + f"after multiplying by the primary matrix.\n" + ) + gramXAX = np.dot(blockVectorX.T.conj(), blockVectorAX) + + blockVectorBX = blockVectorX + if B is not None: + blockVectorBX = B(blockVectorX) + if blockVectorBX.shape != blockVectorX.shape: + raise ValueError( + f"The shape {blockVectorX.shape} " + f"of the postprocessing iterate not preserved\n" + f"and changed to {blockVectorBX.shape} " + f"after multiplying by the secondary matrix.\n" + ) + + gramXBX = np.dot(blockVectorX.T.conj(), blockVectorBX) + _handle_gramA_gramB_verbosity(gramXAX, gramXBX, verbosityLevel) + gramXAX = (gramXAX + gramXAX.T.conj()) / 2 + gramXBX = (gramXBX + gramXBX.T.conj()) / 2 + try: + _lambda, eigBlockVector = eigh(gramXAX, + gramXBX, + check_finite=False) + except LinAlgError as e: + raise ValueError("eigh has failed in lobpcg postprocessing") from e + + ii = _get_indx(_lambda, sizeX, largest) + _lambda = _lambda[ii] + eigBlockVector = np.asarray(eigBlockVector[:, ii]) + + blockVectorX = np.dot(blockVectorX, eigBlockVector) + blockVectorAX = np.dot(blockVectorAX, eigBlockVector) + + if B is not None: + blockVectorBX = np.dot(blockVectorBX, eigBlockVector) + aux = blockVectorBX * _lambda[np.newaxis, :] + else: + aux = blockVectorX * _lambda[np.newaxis, :] + + blockVectorR = blockVectorAX - aux + + aux = np.sum(blockVectorR.conj() * blockVectorR, 0) + residualNorms = np.sqrt(np.abs(aux)) + + if retLambdaHistory: + lambdaHistory[bestIterationNumber + 1, :] = _lambda + if retResidualNormsHistory: + residualNormsHistory[bestIterationNumber + 1, :] = residualNorms + + if retLambdaHistory: + lambdaHistory = lambdaHistory[ + : bestIterationNumber + 2, :] + if retResidualNormsHistory: + residualNormsHistory = residualNormsHistory[ + : bestIterationNumber + 2, :] + + if np.max(np.abs(residualNorms)) > residualTolerance: + warnings.warn( + f"Exited postprocessing with accuracies \n" + f"{residualNorms}\n" + f"not reaching the requested tolerance {residualTolerance}.", + UserWarning, stacklevel=2 + ) + + if verbosityLevel: + print(f"Final postprocessing eigenvalue(s):\n{_lambda}") + print(f"Final residual norm(s):\n{residualNorms}") + + if retLambdaHistory: + lambdaHistory = np.vsplit(lambdaHistory, np.shape(lambdaHistory)[0]) + lambdaHistory = [np.squeeze(i) for i in lambdaHistory] + if retResidualNormsHistory: + residualNormsHistory = np.vsplit(residualNormsHistory, + np.shape(residualNormsHistory)[0]) + residualNormsHistory = [np.squeeze(i) for i in residualNormsHistory] + + if retLambdaHistory: + if retResidualNormsHistory: + return _lambda, blockVectorX, lambdaHistory, residualNormsHistory + else: + return _lambda, blockVectorX, lambdaHistory + else: + if retResidualNormsHistory: + return _lambda, blockVectorX, residualNormsHistory + else: + return _lambda, blockVectorX diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests/__init__.py b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..55765f2297e13cd3c7b367d541f581f6e80a200f Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests/__pycache__/test_lobpcg.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests/__pycache__/test_lobpcg.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..312cfa755a9ac9a22d4617d890622e58f9b834b0 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests/__pycache__/test_lobpcg.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py new file mode 100644 index 0000000000000000000000000000000000000000..4b060d77d1f7531b50b86e79a9132ef2ef7d506d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/lobpcg/tests/test_lobpcg.py @@ -0,0 +1,645 @@ +""" Test functions for the sparse.linalg._eigen.lobpcg module +""" + +import itertools +import platform +import sys +import pytest +import numpy as np +from numpy import ones, r_, diag +from numpy.testing import (assert_almost_equal, assert_equal, + assert_allclose, assert_array_less) + +from scipy import sparse +from scipy.linalg import eig, eigh, toeplitz, orth +from scipy.sparse import spdiags, diags, eye, csr_matrix +from scipy.sparse.linalg import eigs, LinearOperator +from scipy.sparse.linalg._eigen.lobpcg import lobpcg +from scipy.sparse.linalg._eigen.lobpcg.lobpcg import _b_orthonormalize +from scipy._lib._util import np_long, np_ulong + +_IS_32BIT = (sys.maxsize < 2**32) + +INT_DTYPES = {np.intc, np_long, np.longlong, np.uintc, np_ulong, np.ulonglong} +# np.half is unsupported on many test systems so excluded +REAL_DTYPES = {np.float32, np.float64, np.longdouble} +COMPLEX_DTYPES = {np.complex64, np.complex128, np.clongdouble} +# use sorted list to ensure fixed order of tests +VDTYPES = sorted(REAL_DTYPES ^ COMPLEX_DTYPES, key=str) +MDTYPES = sorted(INT_DTYPES ^ REAL_DTYPES ^ COMPLEX_DTYPES, key=str) + + +def sign_align(A, B): + """Align signs of columns of A match those of B: column-wise remove + sign of A by multiplying with its sign then multiply in sign of B. + """ + return np.array([col_A * np.sign(col_A[0]) * np.sign(col_B[0]) + for col_A, col_B in zip(A.T, B.T)]).T + +def ElasticRod(n): + """Build the matrices for the generalized eigenvalue problem of the + fixed-free elastic rod vibration model. + """ + L = 1.0 + le = L/n + rho = 7.85e3 + S = 1.e-4 + E = 2.1e11 + mass = rho*S*le/6. + k = E*S/le + A = k*(diag(r_[2.*ones(n-1), 1])-diag(ones(n-1), 1)-diag(ones(n-1), -1)) + B = mass*(diag(r_[4.*ones(n-1), 2])+diag(ones(n-1), 1)+diag(ones(n-1), -1)) + return A, B + + +def MikotaPair(n): + """Build a pair of full diagonal matrices for the generalized eigenvalue + problem. The Mikota pair acts as a nice test since the eigenvalues are the + squares of the integers n, n=1,2,... + """ + x = np.arange(1, n+1) + B = diag(1./x) + y = np.arange(n-1, 0, -1) + z = np.arange(2*n-1, 0, -2) + A = diag(z)-diag(y, -1)-diag(y, 1) + return A, B + + +def compare_solutions(A, B, m): + """Check eig vs. lobpcg consistency. + """ + n = A.shape[0] + rnd = np.random.RandomState(0) + V = rnd.random((n, m)) + X = orth(V) + eigvals, _ = lobpcg(A, X, B=B, tol=1e-2, maxiter=50, largest=False) + eigvals.sort() + w, _ = eig(A, b=B) + w.sort() + assert_almost_equal(w[:int(m/2)], eigvals[:int(m/2)], decimal=2) + + +def test_Small(): + A, B = ElasticRod(10) + with pytest.warns(UserWarning, match="The problem size"): + compare_solutions(A, B, 10) + A, B = MikotaPair(10) + with pytest.warns(UserWarning, match="The problem size"): + compare_solutions(A, B, 10) + + +def test_ElasticRod(): + A, B = ElasticRod(20) + msg = "Exited at iteration.*|Exited postprocessing with accuracies.*" + with pytest.warns(UserWarning, match=msg): + compare_solutions(A, B, 2) + + +def test_MikotaPair(): + A, B = MikotaPair(20) + compare_solutions(A, B, 2) + + +@pytest.mark.parametrize("n", [50]) +@pytest.mark.parametrize("m", [1, 2, 10]) +@pytest.mark.parametrize("Vdtype", sorted(REAL_DTYPES, key=str)) +@pytest.mark.parametrize("Bdtype", sorted(REAL_DTYPES, key=str)) +@pytest.mark.parametrize("BVdtype", sorted(REAL_DTYPES, key=str)) +def test_b_orthonormalize(n, m, Vdtype, Bdtype, BVdtype): + """Test B-orthonormalization by Cholesky with callable 'B'. + The function '_b_orthonormalize' is key in LOBPCG but may + lead to numerical instabilities. The input vectors are often + badly scaled, so the function needs scale-invariant Cholesky; + see https://netlib.org/lapack/lawnspdf/lawn14.pdf. + """ + rnd = np.random.RandomState(0) + X = rnd.standard_normal((n, m)).astype(Vdtype) + Xcopy = np.copy(X) + vals = np.arange(1, n+1, dtype=float) + B = diags([vals], [0], (n, n)).astype(Bdtype) + BX = B @ X + BX = BX.astype(BVdtype) + dtype = min(X.dtype, B.dtype, BX.dtype) + # np.longdouble tol cannot be achieved on most systems + atol = m * n * max(np.finfo(dtype).eps, np.finfo(np.float64).eps) + + Xo, BXo, _ = _b_orthonormalize(lambda v: B @ v, X, BX) + # Check in-place. + assert_equal(X, Xo) + assert_equal(id(X), id(Xo)) + assert_equal(BX, BXo) + assert_equal(id(BX), id(BXo)) + # Check BXo. + assert_allclose(B @ Xo, BXo, atol=atol, rtol=atol) + # Check B-orthonormality + assert_allclose(Xo.T.conj() @ B @ Xo, np.identity(m), + atol=atol, rtol=atol) + # Repeat without BX in outputs + X = np.copy(Xcopy) + Xo1, BXo1, _ = _b_orthonormalize(lambda v: B @ v, X) + assert_allclose(Xo, Xo1, atol=atol, rtol=atol) + assert_allclose(BXo, BXo1, atol=atol, rtol=atol) + # Check in-place. + assert_equal(X, Xo1) + assert_equal(id(X), id(Xo1)) + # Check BXo1. + assert_allclose(B @ Xo1, BXo1, atol=atol, rtol=atol) + + # Introduce column-scaling in X. + scaling = 1.0 / np.geomspace(10, 1e10, num=m) + X = Xcopy * scaling + X = X.astype(Vdtype) + BX = B @ X + BX = BX.astype(BVdtype) + # Check scaling-invariance of Cholesky-based orthonormalization + Xo1, BXo1, _ = _b_orthonormalize(lambda v: B @ v, X, BX) + # The output should be the same, up the signs of the columns. + Xo1 = sign_align(Xo1, Xo) + assert_allclose(Xo, Xo1, atol=atol, rtol=atol) + BXo1 = sign_align(BXo1, BXo) + assert_allclose(BXo, BXo1, atol=atol, rtol=atol) + + +@pytest.mark.filterwarnings("ignore:Exited at iteration 0") +@pytest.mark.filterwarnings("ignore:Exited postprocessing") +def test_nonhermitian_warning(capsys): + """Check the warning of a Ritz matrix being not Hermitian + by feeding a non-Hermitian input matrix. + Also check stdout since verbosityLevel=1 and lack of stderr. + """ + n = 10 + X = np.arange(n * 2).reshape(n, 2).astype(np.float32) + A = np.arange(n * n).reshape(n, n).astype(np.float32) + with pytest.warns(UserWarning, match="Matrix gramA"): + _, _ = lobpcg(A, X, verbosityLevel=1, maxiter=0) + out, err = capsys.readouterr() # Capture output + assert out.startswith("Solving standard eigenvalue") # Test stdout + assert err == '' # Test empty stderr + # Make the matrix symmetric and the UserWarning disappears. + A += A.T + _, _ = lobpcg(A, X, verbosityLevel=1, maxiter=0) + out, err = capsys.readouterr() # Capture output + assert out.startswith("Solving standard eigenvalue") # Test stdout + assert err == '' # Test empty stderr + + +def test_regression(): + """Check the eigenvalue of the identity matrix is one. + """ + # https://mail.python.org/pipermail/scipy-user/2010-October/026944.html + n = 10 + X = np.ones((n, 1)) + A = np.identity(n) + w, _ = lobpcg(A, X) + assert_allclose(w, [1]) + + +@pytest.mark.filterwarnings("ignore:The problem size") +@pytest.mark.parametrize('n, m, m_excluded', [(30, 4, 3), (4, 2, 0)]) +def test_diagonal(n, m, m_excluded): + """Test ``m - m_excluded`` eigenvalues and eigenvectors of + diagonal matrices of the size ``n`` varying matrix formats: + dense array, spare matrix, and ``LinearOperator`` for both + matrixes in the generalized eigenvalue problem ``Av = cBv`` + and for the preconditioner. + """ + rnd = np.random.RandomState(0) + + # Define the generalized eigenvalue problem Av = cBv + # where (c, v) is a generalized eigenpair, + # A is the diagonal matrix whose entries are 1,...n, + # B is the identity matrix. + vals = np.arange(1, n+1, dtype=float) + A_s = diags([vals], [0], (n, n)) + A_a = A_s.toarray() + + def A_f(x): + return A_s @ x + + A_lo = LinearOperator(matvec=A_f, + matmat=A_f, + shape=(n, n), dtype=float) + + B_a = eye(n) + B_s = csr_matrix(B_a) + + def B_f(x): + return B_a @ x + + B_lo = LinearOperator(matvec=B_f, + matmat=B_f, + shape=(n, n), dtype=float) + + # Let the preconditioner M be the inverse of A. + M_s = diags([1./vals], [0], (n, n)) + M_a = M_s.toarray() + + def M_f(x): + return M_s @ x + + M_lo = LinearOperator(matvec=M_f, + matmat=M_f, + shape=(n, n), dtype=float) + + # Pick random initial vectors. + X = rnd.normal(size=(n, m)) + + # Require that the returned eigenvectors be in the orthogonal complement + # of the first few standard basis vectors. + if m_excluded > 0: + Y = np.eye(n, m_excluded) + else: + Y = None + + for A in [A_a, A_s, A_lo]: + for B in [B_a, B_s, B_lo]: + for M in [M_a, M_s, M_lo]: + eigvals, vecs = lobpcg(A, X, B, M=M, Y=Y, + maxiter=40, largest=False) + + assert_allclose(eigvals, np.arange(1+m_excluded, + 1+m_excluded+m)) + _check_eigen(A, eigvals, vecs, rtol=1e-3, atol=1e-3) + + +def _check_eigen(M, w, V, rtol=1e-8, atol=1e-14): + """Check if the eigenvalue residual is small. + """ + mult_wV = np.multiply(w, V) + dot_MV = M.dot(V) + assert_allclose(mult_wV, dot_MV, rtol=rtol, atol=atol) + + +def _check_fiedler(n, p): + """Check the Fiedler vector computation. + """ + # This is not necessarily the recommended way to find the Fiedler vector. + col = np.zeros(n) + col[1] = 1 + A = toeplitz(col) + D = np.diag(A.sum(axis=1)) + L = D - A + # Compute the full eigendecomposition using tricks, e.g. + # http://www.cs.yale.edu/homes/spielman/561/2009/lect02-09.pdf + tmp = np.pi * np.arange(n) / n + analytic_w = 2 * (1 - np.cos(tmp)) + analytic_V = np.cos(np.outer(np.arange(n) + 1/2, tmp)) + _check_eigen(L, analytic_w, analytic_V) + # Compute the full eigendecomposition using eigh. + eigh_w, eigh_V = eigh(L) + _check_eigen(L, eigh_w, eigh_V) + # Check that the first eigenvalue is near zero and that the rest agree. + assert_array_less(np.abs([eigh_w[0], analytic_w[0]]), 1e-14) + assert_allclose(eigh_w[1:], analytic_w[1:]) + + # Check small lobpcg eigenvalues. + X = analytic_V[:, :p] + lobpcg_w, lobpcg_V = lobpcg(L, X, largest=False) + assert_equal(lobpcg_w.shape, (p,)) + assert_equal(lobpcg_V.shape, (n, p)) + _check_eigen(L, lobpcg_w, lobpcg_V) + assert_array_less(np.abs(np.min(lobpcg_w)), 1e-14) + assert_allclose(np.sort(lobpcg_w)[1:], analytic_w[1:p]) + + # Check large lobpcg eigenvalues. + X = analytic_V[:, -p:] + lobpcg_w, lobpcg_V = lobpcg(L, X, largest=True) + assert_equal(lobpcg_w.shape, (p,)) + assert_equal(lobpcg_V.shape, (n, p)) + _check_eigen(L, lobpcg_w, lobpcg_V) + assert_allclose(np.sort(lobpcg_w), analytic_w[-p:]) + + # Look for the Fiedler vector using good but not exactly correct guesses. + fiedler_guess = np.concatenate((np.ones(n//2), -np.ones(n-n//2))) + X = np.vstack((np.ones(n), fiedler_guess)).T + lobpcg_w, _ = lobpcg(L, X, largest=False) + # Mathematically, the smaller eigenvalue should be zero + # and the larger should be the algebraic connectivity. + lobpcg_w = np.sort(lobpcg_w) + assert_allclose(lobpcg_w, analytic_w[:2], atol=1e-14) + + +def test_fiedler_small_8(): + """Check the dense workaround path for small matrices. + """ + # This triggers the dense path because 8 < 2*5. + with pytest.warns(UserWarning, match="The problem size"): + _check_fiedler(8, 2) + + +def test_fiedler_large_12(): + """Check the dense workaround path avoided for non-small matrices. + """ + # This does not trigger the dense path, because 2*5 <= 12. + _check_fiedler(12, 2) + + +@pytest.mark.filterwarnings("ignore:Failed at iteration") +@pytest.mark.filterwarnings("ignore:Exited at iteration") +@pytest.mark.filterwarnings("ignore:Exited postprocessing") +def test_failure_to_run_iterations(): + """Check that the code exits gracefully without breaking. Issue #10974. + The code may or not issue a warning, filtered out. Issue #15935, #17954. + """ + rnd = np.random.RandomState(0) + X = rnd.standard_normal((100, 10)) + A = X @ X.T + Q = rnd.standard_normal((X.shape[0], 4)) + eigenvalues, _ = lobpcg(A, Q, maxiter=40, tol=1e-12) + assert np.max(eigenvalues) > 0 + + +def test_failure_to_run_iterations_nonsymmetric(): + """Check that the code exists gracefully without breaking + if the matrix in not symmetric. + """ + A = np.zeros((10, 10)) + A[0, 1] = 1 + Q = np.ones((10, 1)) + msg = "Exited at iteration 2|Exited postprocessing with accuracies.*" + with pytest.warns(UserWarning, match=msg): + eigenvalues, _ = lobpcg(A, Q, maxiter=20) + assert np.max(eigenvalues) > 0 + + +@pytest.mark.filterwarnings("ignore:The problem size") +def test_hermitian(): + """Check complex-value Hermitian cases. + """ + rnd = np.random.RandomState(0) + + sizes = [3, 12] + ks = [1, 2] + gens = [True, False] + + for s, k, gen, dh, dx, db in ( + itertools.product(sizes, ks, gens, gens, gens, gens) + ): + H = rnd.random((s, s)) + 1.j * rnd.random((s, s)) + H = 10 * np.eye(s) + H + H.T.conj() + H = H.astype(np.complex128) if dh else H.astype(np.complex64) + + X = rnd.standard_normal((s, k)) + X = X + 1.j * rnd.standard_normal((s, k)) + X = X.astype(np.complex128) if dx else X.astype(np.complex64) + + if not gen: + B = np.eye(s) + w, v = lobpcg(H, X, maxiter=99, verbosityLevel=0) + # Also test mixing complex H with real B. + wb, _ = lobpcg(H, X, B, maxiter=99, verbosityLevel=0) + assert_allclose(w, wb, rtol=1e-6) + w0, _ = eigh(H) + else: + B = rnd.random((s, s)) + 1.j * rnd.random((s, s)) + B = 10 * np.eye(s) + B.dot(B.T.conj()) + B = B.astype(np.complex128) if db else B.astype(np.complex64) + w, v = lobpcg(H, X, B, maxiter=99, verbosityLevel=0) + w0, _ = eigh(H, B) + + for wx, vx in zip(w, v.T): + # Check eigenvector + assert_allclose(np.linalg.norm(H.dot(vx) - B.dot(vx) * wx) + / np.linalg.norm(H.dot(vx)), + 0, atol=5e-2, rtol=0) + + # Compare eigenvalues + j = np.argmin(abs(w0 - wx)) + assert_allclose(wx, w0[j], rtol=1e-4) + + +# The n=5 case tests the alternative small matrix code path that uses eigh(). +@pytest.mark.filterwarnings("ignore:The problem size") +@pytest.mark.parametrize('n, atol', [(20, 1e-3), (5, 1e-8)]) +def test_eigs_consistency(n, atol): + """Check eigs vs. lobpcg consistency. + """ + vals = np.arange(1, n+1, dtype=np.float64) + A = spdiags(vals, 0, n, n) + rnd = np.random.RandomState(0) + X = rnd.standard_normal((n, 2)) + lvals, lvecs = lobpcg(A, X, largest=True, maxiter=100) + vals, _ = eigs(A, k=2) + + _check_eigen(A, lvals, lvecs, atol=atol, rtol=0) + assert_allclose(np.sort(vals), np.sort(lvals), atol=1e-14) + + +def test_verbosity(): + """Check that nonzero verbosity level code runs. + """ + rnd = np.random.RandomState(0) + X = rnd.standard_normal((10, 10)) + A = X @ X.T + Q = rnd.standard_normal((X.shape[0], 1)) + msg = "Exited at iteration.*|Exited postprocessing with accuracies.*" + with pytest.warns(UserWarning, match=msg): + _, _ = lobpcg(A, Q, maxiter=3, verbosityLevel=9) + + +@pytest.mark.xfail(_IS_32BIT and sys.platform == 'win32', + reason="tolerance violation on windows") +@pytest.mark.xfail(platform.machine() == 'ppc64le', + reason="fails on ppc64le") +@pytest.mark.filterwarnings("ignore:Exited postprocessing") +def test_tolerance_float32(): + """Check lobpcg for attainable tolerance in float32. + """ + rnd = np.random.RandomState(0) + n = 50 + m = 3 + vals = -np.arange(1, n + 1) + A = diags([vals], [0], (n, n)) + A = A.astype(np.float32) + X = rnd.standard_normal((n, m)) + X = X.astype(np.float32) + eigvals, _ = lobpcg(A, X, tol=1.25e-5, maxiter=50, verbosityLevel=0) + assert_allclose(eigvals, -np.arange(1, 1 + m), atol=2e-5, rtol=1e-5) + + +@pytest.mark.parametrize("vdtype", VDTYPES) +@pytest.mark.parametrize("mdtype", MDTYPES) +@pytest.mark.parametrize("arr_type", [np.array, + sparse.csr_matrix, + sparse.coo_matrix]) +def test_dtypes(vdtype, mdtype, arr_type): + """Test lobpcg in various dtypes. + """ + rnd = np.random.RandomState(0) + n = 12 + m = 2 + A = arr_type(np.diag(np.arange(1, n + 1)).astype(mdtype)) + X = rnd.random((n, m)) + X = X.astype(vdtype) + eigvals, eigvecs = lobpcg(A, X, tol=1e-2, largest=False) + assert_allclose(eigvals, np.arange(1, 1 + m), atol=1e-1) + # eigenvectors must be nearly real in any case + assert_allclose(np.sum(np.abs(eigvecs - eigvecs.conj())), 0, atol=1e-2) + + +@pytest.mark.filterwarnings("ignore:Exited at iteration") +@pytest.mark.filterwarnings("ignore:Exited postprocessing") +def test_inplace_warning(): + """Check lobpcg gives a warning in '_b_orthonormalize' + that in-place orthogonalization is impossible due to dtype mismatch. + """ + rnd = np.random.RandomState(0) + n = 6 + m = 1 + vals = -np.arange(1, n + 1) + A = diags([vals], [0], (n, n)) + A = A.astype(np.cdouble) + X = rnd.standard_normal((n, m)) + with pytest.warns(UserWarning, match="Inplace update"): + eigvals, _ = lobpcg(A, X, maxiter=2, verbosityLevel=1) + + +def test_maxit(): + """Check lobpcg if maxit=maxiter runs maxiter iterations and + if maxit=None runs 20 iterations (the default) + by checking the size of the iteration history output, which should + be the number of iterations plus 3 (initial, final, and postprocessing) + typically when maxiter is small and the choice of the best is passive. + """ + rnd = np.random.RandomState(0) + n = 50 + m = 4 + vals = -np.arange(1, n + 1) + A = diags([vals], [0], (n, n)) + A = A.astype(np.float32) + X = rnd.standard_normal((n, m)) + X = X.astype(np.float64) + msg = "Exited at iteration.*|Exited postprocessing with accuracies.*" + for maxiter in range(1, 4): + with pytest.warns(UserWarning, match=msg): + _, _, l_h, r_h = lobpcg(A, X, tol=1e-8, maxiter=maxiter, + retLambdaHistory=True, + retResidualNormsHistory=True) + assert_allclose(np.shape(l_h)[0], maxiter+3) + assert_allclose(np.shape(r_h)[0], maxiter+3) + with pytest.warns(UserWarning, match=msg): + l, _, l_h, r_h = lobpcg(A, X, tol=1e-8, + retLambdaHistory=True, + retResidualNormsHistory=True) + assert_allclose(np.shape(l_h)[0], 20+3) + assert_allclose(np.shape(r_h)[0], 20+3) + # Check that eigenvalue output is the last one in history + assert_allclose(l, l_h[-1]) + # Make sure that both history outputs are lists + assert isinstance(l_h, list) + assert isinstance(r_h, list) + # Make sure that both history lists are arrays-like + assert_allclose(np.shape(l_h), np.shape(np.asarray(l_h))) + assert_allclose(np.shape(r_h), np.shape(np.asarray(r_h))) + + +@pytest.mark.slow +@pytest.mark.parametrize("n", [15]) +@pytest.mark.parametrize("m", [1, 2]) +@pytest.mark.filterwarnings("ignore:Exited at iteration") +@pytest.mark.filterwarnings("ignore:Exited postprocessing") +def test_diagonal_data_types(n, m): + """Check lobpcg for diagonal matrices for all matrix types. + Constraints are imposed, so a dense eigensolver eig cannot run. + """ + rnd = np.random.RandomState(0) + # Define the generalized eigenvalue problem Av = cBv + # where (c, v) is a generalized eigenpair, + # and where we choose A and B to be diagonal. + vals = np.arange(1, n + 1) + + # list_sparse_format = ['bsr', 'coo', 'csc', 'csr', 'dia', 'dok', 'lil'] + list_sparse_format = ['coo'] + sparse_formats = len(list_sparse_format) + for s_f_i, s_f in enumerate(list_sparse_format): + + As64 = diags([vals * vals], [0], (n, n), format=s_f) + As32 = As64.astype(np.float32) + Af64 = As64.toarray() + Af32 = Af64.astype(np.float32) + + def As32f(x): + return As32 @ x + As32LO = LinearOperator(matvec=As32f, + matmat=As32f, + shape=(n, n), + dtype=As32.dtype) + + listA = [Af64, As64, Af32, As32, As32f, As32LO, lambda v: As32 @ v] + + Bs64 = diags([vals], [0], (n, n), format=s_f) + Bf64 = Bs64.toarray() + Bs32 = Bs64.astype(np.float32) + + def Bs32f(x): + return Bs32 @ x + Bs32LO = LinearOperator(matvec=Bs32f, + matmat=Bs32f, + shape=(n, n), + dtype=Bs32.dtype) + listB = [Bf64, Bs64, Bs32, Bs32f, Bs32LO, lambda v: Bs32 @ v] + + # Define the preconditioner function as LinearOperator. + Ms64 = diags([1./vals], [0], (n, n), format=s_f) + + def Ms64precond(x): + return Ms64 @ x + Ms64precondLO = LinearOperator(matvec=Ms64precond, + matmat=Ms64precond, + shape=(n, n), + dtype=Ms64.dtype) + Mf64 = Ms64.toarray() + + def Mf64precond(x): + return Mf64 @ x + Mf64precondLO = LinearOperator(matvec=Mf64precond, + matmat=Mf64precond, + shape=(n, n), + dtype=Mf64.dtype) + Ms32 = Ms64.astype(np.float32) + + def Ms32precond(x): + return Ms32 @ x + Ms32precondLO = LinearOperator(matvec=Ms32precond, + matmat=Ms32precond, + shape=(n, n), + dtype=Ms32.dtype) + Mf32 = Ms32.toarray() + + def Mf32precond(x): + return Mf32 @ x + Mf32precondLO = LinearOperator(matvec=Mf32precond, + matmat=Mf32precond, + shape=(n, n), + dtype=Mf32.dtype) + listM = [None, Ms64, Ms64precondLO, Mf64precondLO, Ms64precond, + Ms32, Ms32precondLO, Mf32precondLO, Ms32precond] + + # Setup matrix of the initial approximation to the eigenvectors + # (cannot be sparse array). + Xf64 = rnd.random((n, m)) + Xf32 = Xf64.astype(np.float32) + listX = [Xf64, Xf32] + + # Require that the returned eigenvectors be in the orthogonal complement + # of the first few standard basis vectors (cannot be sparse array). + m_excluded = 3 + Yf64 = np.eye(n, m_excluded, dtype=float) + Yf32 = np.eye(n, m_excluded, dtype=np.float32) + listY = [Yf64, Yf32] + + tests = list(itertools.product(listA, listB, listM, listX, listY)) + # This is one of the slower tests because there are >1,000 configs + # to test here, instead of checking product of all input, output types + # test each configuration for the first sparse format, and then + # for one additional sparse format. this takes 2/7=30% as long as + # testing all configurations for all sparse formats. + if s_f_i > 0: + tests = tests[s_f_i - 1::sparse_formats-1] + + for A, B, M, X, Y in tests: + eigvals, _ = lobpcg(A, X, B=B, M=M, Y=Y, tol=1e-4, + maxiter=100, largest=False) + assert_allclose(eigvals, + np.arange(1 + m_excluded, 1 + m_excluded + m), + atol=1e-5) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/tests/__init__.py b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/tests/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/tests/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..35c39b9cc86dd6673cd5ef9338250954da230644 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/tests/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/tests/__pycache__/test_svds.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/tests/__pycache__/test_svds.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..66b18749c1a5d97e12c2c2530b5b40c049152fe6 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/tests/__pycache__/test_svds.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py new file mode 100644 index 0000000000000000000000000000000000000000..7d467b7684b47504702f2f59334c944be2fbe0d3 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/sparse/linalg/_eigen/tests/test_svds.py @@ -0,0 +1,862 @@ +import re +import copy +import numpy as np + +from numpy.testing import assert_allclose, assert_equal, assert_array_equal +import pytest + +from scipy.linalg import svd, null_space +from scipy.sparse import csc_matrix, issparse, spdiags, random +from scipy.sparse.linalg import LinearOperator, aslinearoperator +from scipy.sparse.linalg import svds +from scipy.sparse.linalg._eigen.arpack import ArpackNoConvergence + + +# --- Helper Functions / Classes --- + + +def sorted_svd(m, k, which='LM'): + # Compute svd of a dense matrix m, and return singular vectors/values + # sorted. + if issparse(m): + m = m.toarray() + u, s, vh = svd(m) + if which == 'LM': + ii = np.argsort(s)[-k:] + elif which == 'SM': + ii = np.argsort(s)[:k] + else: + raise ValueError(f"unknown which={which!r}") + + return u[:, ii], s[ii], vh[ii] + + +def _check_svds(A, k, u, s, vh, which="LM", check_usvh_A=False, + check_svd=True, atol=1e-10, rtol=1e-7): + n, m = A.shape + + # Check shapes. + assert_equal(u.shape, (n, k)) + assert_equal(s.shape, (k,)) + assert_equal(vh.shape, (k, m)) + + # Check that the original matrix can be reconstituted. + A_rebuilt = (u*s).dot(vh) + assert_equal(A_rebuilt.shape, A.shape) + if check_usvh_A: + assert_allclose(A_rebuilt, A, atol=atol, rtol=rtol) + + # Check that u is a semi-orthogonal matrix. + uh_u = np.dot(u.T.conj(), u) + assert_equal(uh_u.shape, (k, k)) + assert_allclose(uh_u, np.identity(k), atol=atol, rtol=rtol) + + # Check that vh is a semi-orthogonal matrix. + vh_v = np.dot(vh, vh.T.conj()) + assert_equal(vh_v.shape, (k, k)) + assert_allclose(vh_v, np.identity(k), atol=atol, rtol=rtol) + + # Check that scipy.sparse.linalg.svds ~ scipy.linalg.svd + if check_svd: + u2, s2, vh2 = sorted_svd(A, k, which) + assert_allclose(np.abs(u), np.abs(u2), atol=atol, rtol=rtol) + assert_allclose(s, s2, atol=atol, rtol=rtol) + assert_allclose(np.abs(vh), np.abs(vh2), atol=atol, rtol=rtol) + + +def _check_svds_n(A, k, u, s, vh, which="LM", check_res=True, + check_svd=True, atol=1e-10, rtol=1e-7): + n, m = A.shape + + # Check shapes. + assert_equal(u.shape, (n, k)) + assert_equal(s.shape, (k,)) + assert_equal(vh.shape, (k, m)) + + # Check that u is a semi-orthogonal matrix. + uh_u = np.dot(u.T.conj(), u) + assert_equal(uh_u.shape, (k, k)) + error = np.sum(np.abs(uh_u - np.identity(k))) / (k * k) + assert_allclose(error, 0.0, atol=atol, rtol=rtol) + + # Check that vh is a semi-orthogonal matrix. + vh_v = np.dot(vh, vh.T.conj()) + assert_equal(vh_v.shape, (k, k)) + error = np.sum(np.abs(vh_v - np.identity(k))) / (k * k) + assert_allclose(error, 0.0, atol=atol, rtol=rtol) + + # Check residuals + if check_res: + ru = A.T.conj() @ u - vh.T.conj() * s + rus = np.sum(np.abs(ru)) / (n * k) + rvh = A @ vh.T.conj() - u * s + rvhs = np.sum(np.abs(rvh)) / (m * k) + assert_allclose(rus, 0.0, atol=atol, rtol=rtol) + assert_allclose(rvhs, 0.0, atol=atol, rtol=rtol) + + # Check that scipy.sparse.linalg.svds ~ scipy.linalg.svd + if check_svd: + u2, s2, vh2 = sorted_svd(A, k, which) + assert_allclose(s, s2, atol=atol, rtol=rtol) + A_rebuilt_svd = (u2*s2).dot(vh2) + A_rebuilt = (u*s).dot(vh) + assert_equal(A_rebuilt.shape, A.shape) + error = np.sum(np.abs(A_rebuilt_svd - A_rebuilt)) / (k * k) + assert_allclose(error, 0.0, atol=atol, rtol=rtol) + + +class CheckingLinearOperator(LinearOperator): + def __init__(self, A): + self.A = A + self.dtype = A.dtype + self.shape = A.shape + + def _matvec(self, x): + assert_equal(max(x.shape), np.size(x)) + return self.A.dot(x) + + def _rmatvec(self, x): + assert_equal(max(x.shape), np.size(x)) + return self.A.T.conjugate().dot(x) + + +# --- Test Input Validation --- +# Tests input validation on parameters `k` and `which`. +# Needs better input validation checks for all other parameters. + +class SVDSCommonTests: + + solver = None + + # some of these IV tests could run only once, say with solver=None + + _A_empty_msg = "`A` must not be empty." + _A_dtype_msg = "`A` must be of floating or complex floating data type" + _A_type_msg = "type not understood" + _A_ndim_msg = "array must have ndim <= 2" + _A_validation_inputs = [ + (np.asarray([[]]), ValueError, _A_empty_msg), + (np.asarray([[1, 2], [3, 4]]), ValueError, _A_dtype_msg), + ("hi", TypeError, _A_type_msg), + (np.asarray([[[1., 2.], [3., 4.]]]), ValueError, _A_ndim_msg)] + + @pytest.mark.parametrize("args", _A_validation_inputs) + def test_svds_input_validation_A(self, args): + A, error_type, message = args + with pytest.raises(error_type, match=message): + svds(A, k=1, solver=self.solver) + + @pytest.mark.parametrize("k", [-1, 0, 3, 4, 5, 1.5, "1"]) + def test_svds_input_validation_k_1(self, k): + rng = np.random.default_rng(0) + A = rng.random((4, 3)) + + # propack can do complete SVD + if self.solver == 'propack' and k == 3: + res = svds(A, k=k, solver=self.solver, random_state=0) + _check_svds(A, k, *res, check_usvh_A=True, check_svd=True) + return + + message = ("`k` must be an integer satisfying") + with pytest.raises(ValueError, match=message): + svds(A, k=k, solver=self.solver) + + def test_svds_input_validation_k_2(self): + # I think the stack trace is reasonable when `k` can't be converted + # to an int. + message = "int() argument must be a" + with pytest.raises(TypeError, match=re.escape(message)): + svds(np.eye(10), k=[], solver=self.solver) + + message = "invalid literal for int()" + with pytest.raises(ValueError, match=message): + svds(np.eye(10), k="hi", solver=self.solver) + + @pytest.mark.parametrize("tol", (-1, np.inf, np.nan)) + def test_svds_input_validation_tol_1(self, tol): + message = "`tol` must be a non-negative floating point value." + with pytest.raises(ValueError, match=message): + svds(np.eye(10), tol=tol, solver=self.solver) + + @pytest.mark.parametrize("tol", ([], 'hi')) + def test_svds_input_validation_tol_2(self, tol): + # I think the stack trace is reasonable here + message = "'<' not supported between instances" + with pytest.raises(TypeError, match=message): + svds(np.eye(10), tol=tol, solver=self.solver) + + @pytest.mark.parametrize("which", ('LA', 'SA', 'ekki', 0)) + def test_svds_input_validation_which(self, which): + # Regression test for a github issue. + # https://github.com/scipy/scipy/issues/4590 + # Function was not checking for eigenvalue type and unintended + # values could be returned. + with pytest.raises(ValueError, match="`which` must be in"): + svds(np.eye(10), which=which, solver=self.solver) + + @pytest.mark.parametrize("transpose", (True, False)) + @pytest.mark.parametrize("n", range(4, 9)) + def test_svds_input_validation_v0_1(self, transpose, n): + rng = np.random.default_rng(0) + A = rng.random((5, 7)) + v0 = rng.random(n) + if transpose: + A = A.T + k = 2 + message = "`v0` must have shape" + + required_length = (A.shape[0] if self.solver == 'propack' + else min(A.shape)) + if n != required_length: + with pytest.raises(ValueError, match=message): + svds(A, k=k, v0=v0, solver=self.solver) + + def test_svds_input_validation_v0_2(self): + A = np.ones((10, 10)) + v0 = np.ones((1, 10)) + message = "`v0` must have shape" + with pytest.raises(ValueError, match=message): + svds(A, k=1, v0=v0, solver=self.solver) + + @pytest.mark.parametrize("v0", ("hi", 1, np.ones(10, dtype=int))) + def test_svds_input_validation_v0_3(self, v0): + A = np.ones((10, 10)) + message = "`v0` must be of floating or complex floating data type." + with pytest.raises(ValueError, match=message): + svds(A, k=1, v0=v0, solver=self.solver) + + @pytest.mark.parametrize("maxiter", (-1, 0, 5.5)) + def test_svds_input_validation_maxiter_1(self, maxiter): + message = ("`maxiter` must be a positive integer.") + with pytest.raises(ValueError, match=message): + svds(np.eye(10), maxiter=maxiter, solver=self.solver) + + def test_svds_input_validation_maxiter_2(self): + # I think the stack trace is reasonable when `k` can't be converted + # to an int. + message = "int() argument must be a" + with pytest.raises(TypeError, match=re.escape(message)): + svds(np.eye(10), maxiter=[], solver=self.solver) + + message = "invalid literal for int()" + with pytest.raises(ValueError, match=message): + svds(np.eye(10), maxiter="hi", solver=self.solver) + + @pytest.mark.parametrize("rsv", ('ekki', 10)) + def test_svds_input_validation_return_singular_vectors(self, rsv): + message = "`return_singular_vectors` must be in" + with pytest.raises(ValueError, match=message): + svds(np.eye(10), return_singular_vectors=rsv, solver=self.solver) + + # --- Test Parameters --- + + @pytest.mark.parametrize("k", [3, 5]) + @pytest.mark.parametrize("which", ["LM", "SM"]) + def test_svds_parameter_k_which(self, k, which): + # check that the `k` parameter sets the number of eigenvalues/ + # eigenvectors returned. + # Also check that the `which` parameter sets whether the largest or + # smallest eigenvalues are returned + rng = np.random.default_rng(0) + A = rng.random((10, 10)) + if self.solver == 'lobpcg': + with pytest.warns(UserWarning, match="The problem size"): + res = svds(A, k=k, which=which, solver=self.solver, + random_state=0) + else: + res = svds(A, k=k, which=which, solver=self.solver, + random_state=0) + _check_svds(A, k, *res, which=which, atol=8e-10) + + @pytest.mark.filterwarnings("ignore:Exited", + reason="Ignore LOBPCG early exit.") + # loop instead of parametrize for simplicity + def test_svds_parameter_tol(self): + # check the effect of the `tol` parameter on solver accuracy by solving + # the same problem with varying `tol` and comparing the eigenvalues + # against ground truth computed + n = 100 # matrix size + k = 3 # number of eigenvalues to check + + # generate a random, sparse-ish matrix + # effect isn't apparent for matrices that are too small + rng = np.random.default_rng(0) + A = rng.random((n, n)) + A[A > .1] = 0 + A = A @ A.T + + _, s, _ = svd(A) # calculate ground truth + + # calculate the error as a function of `tol` + A = csc_matrix(A) + + def err(tol): + _, s2, _ = svds(A, k=k, v0=np.ones(n), maxiter=1000, + solver=self.solver, tol=tol, random_state=0) + return np.linalg.norm((s2 - s[k-1::-1])/s[k-1::-1]) + + tols = [1e-4, 1e-2, 1e0] # tolerance levels to check + # for 'arpack' and 'propack', accuracies make discrete steps + accuracies = {'propack': [1e-12, 1e-6, 1e-4], + 'arpack': [2.5e-15, 1e-10, 1e-10], + 'lobpcg': [2e-12, 4e-2, 2]} + + for tol, accuracy in zip(tols, accuracies[self.solver]): + error = err(tol) + assert error < accuracy + + def test_svd_v0(self): + # check that the `v0` parameter affects the solution + n = 100 + k = 1 + # If k != 1, LOBPCG needs more initial vectors, which are generated + # with random_state, so it does not pass w/ k >= 2. + # For some other values of `n`, the AssertionErrors are not raised + # with different v0s, which is reasonable. + + rng = np.random.default_rng(0) + A = rng.random((n, n)) + + # with the same v0, solutions are the same, and they are accurate + # v0 takes precedence over random_state + v0a = rng.random(n) + res1a = svds(A, k, v0=v0a, solver=self.solver, random_state=0) + res2a = svds(A, k, v0=v0a, solver=self.solver, random_state=1) + for idx in range(3): + assert_allclose(res1a[idx], res2a[idx], rtol=1e-15, atol=2e-16) + _check_svds(A, k, *res1a) + + # with the same v0, solutions are the same, and they are accurate + v0b = rng.random(n) + res1b = svds(A, k, v0=v0b, solver=self.solver, random_state=2) + res2b = svds(A, k, v0=v0b, solver=self.solver, random_state=3) + for idx in range(3): + assert_allclose(res1b[idx], res2b[idx], rtol=1e-15, atol=2e-16) + _check_svds(A, k, *res1b) + + # with different v0, solutions can be numerically different + message = "Arrays are not equal" + with pytest.raises(AssertionError, match=message): + assert_equal(res1a, res1b) + + def test_svd_random_state(self): + # check that the `random_state` parameter affects the solution + # Admittedly, `n` and `k` are chosen so that all solver pass all + # these checks. That's a tall order, since LOBPCG doesn't want to + # achieve the desired accuracy and ARPACK often returns the same + # singular values/vectors for different v0. + n = 100 + k = 1 + + rng = np.random.default_rng(0) + A = rng.random((n, n)) + + # with the same random_state, solutions are the same and accurate + res1a = svds(A, k, solver=self.solver, random_state=0) + res2a = svds(A, k, solver=self.solver, random_state=0) + for idx in range(3): + assert_allclose(res1a[idx], res2a[idx], rtol=1e-15, atol=2e-16) + _check_svds(A, k, *res1a) + + # with the same random_state, solutions are the same and accurate + res1b = svds(A, k, solver=self.solver, random_state=1) + res2b = svds(A, k, solver=self.solver, random_state=1) + for idx in range(3): + assert_allclose(res1b[idx], res2b[idx], rtol=1e-15, atol=2e-16) + _check_svds(A, k, *res1b) + + # with different random_state, solutions can be numerically different + message = "Arrays are not equal" + with pytest.raises(AssertionError, match=message): + assert_equal(res1a, res1b) + + @pytest.mark.parametrize("random_state", (0, 1, + np.random.RandomState(0), + np.random.default_rng(0))) + def test_svd_random_state_2(self, random_state): + n = 100 + k = 1 + + rng = np.random.default_rng(0) + A = rng.random((n, n)) + + random_state_2 = copy.deepcopy(random_state) + + # with the same random_state, solutions are the same and accurate + res1a = svds(A, k, solver=self.solver, random_state=random_state) + res2a = svds(A, k, solver=self.solver, random_state=random_state_2) + for idx in range(3): + assert_allclose(res1a[idx], res2a[idx], rtol=1e-15, atol=2e-16) + _check_svds(A, k, *res1a) + + @pytest.mark.parametrize("random_state", (None, + np.random.RandomState(0), + np.random.default_rng(0))) + @pytest.mark.filterwarnings("ignore:Exited", + reason="Ignore LOBPCG early exit.") + def test_svd_random_state_3(self, random_state): + n = 100 + k = 5 + + rng = np.random.default_rng(0) + A = rng.random((n, n)) + + random_state = copy.deepcopy(random_state) + + # random_state in different state produces accurate - but not + # not necessarily identical - results + res1a = svds(A, k, solver=self.solver, random_state=random_state, maxiter=1000) + res2a = svds(A, k, solver=self.solver, random_state=random_state, maxiter=1000) + _check_svds(A, k, *res1a, atol=2e-7) + _check_svds(A, k, *res2a, atol=2e-7) + + message = "Arrays are not equal" + with pytest.raises(AssertionError, match=message): + assert_equal(res1a, res2a) + + @pytest.mark.filterwarnings("ignore:Exited postprocessing") + def test_svd_maxiter(self): + # check that maxiter works as expected: should not return accurate + # solution after 1 iteration, but should with default `maxiter` + A = np.diag(np.arange(9)).astype(np.float64) + k = 1 + u, s, vh = sorted_svd(A, k) + # Use default maxiter by default + maxiter = None + + if self.solver == 'arpack': + message = "ARPACK error -1: No convergence" + with pytest.raises(ArpackNoConvergence, match=message): + svds(A, k, ncv=3, maxiter=1, solver=self.solver) + elif self.solver == 'lobpcg': + # Set maxiter higher so test passes without changing + # default and breaking backward compatibility (gh-20221) + maxiter = 30 + with pytest.warns(UserWarning, match="Exited at iteration"): + svds(A, k, maxiter=1, solver=self.solver) + elif self.solver == 'propack': + message = "k=1 singular triplets did not converge within" + with pytest.raises(np.linalg.LinAlgError, match=message): + svds(A, k, maxiter=1, solver=self.solver) + + ud, sd, vhd = svds(A, k, solver=self.solver, maxiter=maxiter, + random_state=0) + _check_svds(A, k, ud, sd, vhd, atol=1e-8) + assert_allclose(np.abs(ud), np.abs(u), atol=1e-8) + assert_allclose(np.abs(vhd), np.abs(vh), atol=1e-8) + assert_allclose(np.abs(sd), np.abs(s), atol=1e-9) + + @pytest.mark.parametrize("rsv", (True, False, 'u', 'vh')) + @pytest.mark.parametrize("shape", ((5, 7), (6, 6), (7, 5))) + def test_svd_return_singular_vectors(self, rsv, shape): + # check that the return_singular_vectors parameter works as expected + rng = np.random.default_rng(0) + A = rng.random(shape) + k = 2 + M, N = shape + u, s, vh = sorted_svd(A, k) + + respect_u = True if self.solver == 'propack' else M <= N + respect_vh = True if self.solver == 'propack' else M > N + + if self.solver == 'lobpcg': + with pytest.warns(UserWarning, match="The problem size"): + if rsv is False: + s2 = svds(A, k, return_singular_vectors=rsv, + solver=self.solver, random_state=rng) + assert_allclose(s2, s) + elif rsv == 'u' and respect_u: + u2, s2, vh2 = svds(A, k, return_singular_vectors=rsv, + solver=self.solver, random_state=rng) + assert_allclose(np.abs(u2), np.abs(u)) + assert_allclose(s2, s) + assert vh2 is None + elif rsv == 'vh' and respect_vh: + u2, s2, vh2 = svds(A, k, return_singular_vectors=rsv, + solver=self.solver, random_state=rng) + assert u2 is None + assert_allclose(s2, s) + assert_allclose(np.abs(vh2), np.abs(vh)) + else: + u2, s2, vh2 = svds(A, k, return_singular_vectors=rsv, + solver=self.solver, random_state=rng) + if u2 is not None: + assert_allclose(np.abs(u2), np.abs(u)) + assert_allclose(s2, s) + if vh2 is not None: + assert_allclose(np.abs(vh2), np.abs(vh)) + else: + if rsv is False: + s2 = svds(A, k, return_singular_vectors=rsv, + solver=self.solver, random_state=rng) + assert_allclose(s2, s) + elif rsv == 'u' and respect_u: + u2, s2, vh2 = svds(A, k, return_singular_vectors=rsv, + solver=self.solver, random_state=rng) + assert_allclose(np.abs(u2), np.abs(u)) + assert_allclose(s2, s) + assert vh2 is None + elif rsv == 'vh' and respect_vh: + u2, s2, vh2 = svds(A, k, return_singular_vectors=rsv, + solver=self.solver, random_state=rng) + assert u2 is None + assert_allclose(s2, s) + assert_allclose(np.abs(vh2), np.abs(vh)) + else: + u2, s2, vh2 = svds(A, k, return_singular_vectors=rsv, + solver=self.solver, random_state=rng) + if u2 is not None: + assert_allclose(np.abs(u2), np.abs(u)) + assert_allclose(s2, s) + if vh2 is not None: + assert_allclose(np.abs(vh2), np.abs(vh)) + + # --- Test Basic Functionality --- + # Tests the accuracy of each solver for real and complex matrices provided + # as list, dense array, sparse matrix, and LinearOperator. + + A1 = [[1, 2, 3], [3, 4, 3], [1 + 1j, 0, 2], [0, 0, 1]] + A2 = [[1, 2, 3, 8 + 5j], [3 - 2j, 4, 3, 5], [1, 0, 2, 3], [0, 0, 1, 0]] + + @pytest.mark.filterwarnings("ignore:k >= N - 1", + reason="needed to demonstrate #16725") + @pytest.mark.parametrize('A', (A1, A2)) + @pytest.mark.parametrize('k', range(1, 5)) + # PROPACK fails a lot if @pytest.mark.parametrize('which', ("SM", "LM")) + @pytest.mark.parametrize('real', (True, False)) + @pytest.mark.parametrize('transpose', (False, True)) + # In gh-14299, it was suggested the `svds` should _not_ work with lists + @pytest.mark.parametrize('lo_type', (np.asarray, csc_matrix, + aslinearoperator)) + def test_svd_simple(self, A, k, real, transpose, lo_type): + + A = np.asarray(A) + A = np.real(A) if real else A + A = A.T if transpose else A + A2 = lo_type(A) + + # could check for the appropriate errors, but that is tested above + if k > min(A.shape): + pytest.skip("`k` cannot be greater than `min(A.shape)`") + if self.solver != 'propack' and k >= min(A.shape): + pytest.skip("Only PROPACK supports complete SVD") + if self.solver == 'arpack' and not real and k == min(A.shape) - 1: + pytest.skip("#16725") + + atol = 3e-10 + if self.solver == 'propack': + atol = 3e-9 # otherwise test fails on Linux aarch64 (see gh-19855) + + if self.solver == 'lobpcg': + with pytest.warns(UserWarning, match="The problem size"): + u, s, vh = svds(A2, k, solver=self.solver, random_state=0) + else: + u, s, vh = svds(A2, k, solver=self.solver, random_state=0) + _check_svds(A, k, u, s, vh, atol=atol) + + def test_svd_linop(self): + solver = self.solver + + nmks = [(6, 7, 3), + (9, 5, 4), + (10, 8, 5)] + + def reorder(args): + U, s, VH = args + j = np.argsort(s) + return U[:, j], s[j], VH[j, :] + + for n, m, k in nmks: + # Test svds on a LinearOperator. + A = np.random.RandomState(52).randn(n, m) + L = CheckingLinearOperator(A) + + if solver == 'propack': + v0 = np.ones(n) + else: + v0 = np.ones(min(A.shape)) + if solver == 'lobpcg': + with pytest.warns(UserWarning, match="The problem size"): + U1, s1, VH1 = reorder(svds(A, k, v0=v0, solver=solver, + random_state=0)) + U2, s2, VH2 = reorder(svds(L, k, v0=v0, solver=solver, + random_state=0)) + else: + U1, s1, VH1 = reorder(svds(A, k, v0=v0, solver=solver, + random_state=0)) + U2, s2, VH2 = reorder(svds(L, k, v0=v0, solver=solver, + random_state=0)) + + assert_allclose(np.abs(U1), np.abs(U2)) + assert_allclose(s1, s2) + assert_allclose(np.abs(VH1), np.abs(VH2)) + assert_allclose(np.dot(U1, np.dot(np.diag(s1), VH1)), + np.dot(U2, np.dot(np.diag(s2), VH2))) + + # Try again with which="SM". + A = np.random.RandomState(1909).randn(n, m) + L = CheckingLinearOperator(A) + + # TODO: arpack crashes when v0=v0, which="SM" + kwargs = {'v0': v0} if solver not in {None, 'arpack'} else {} + if self.solver == 'lobpcg': + with pytest.warns(UserWarning, match="The problem size"): + U1, s1, VH1 = reorder(svds(A, k, which="SM", solver=solver, + random_state=0, **kwargs)) + U2, s2, VH2 = reorder(svds(L, k, which="SM", solver=solver, + random_state=0, **kwargs)) + else: + U1, s1, VH1 = reorder(svds(A, k, which="SM", solver=solver, + random_state=0, **kwargs)) + U2, s2, VH2 = reorder(svds(L, k, which="SM", solver=solver, + random_state=0, **kwargs)) + + assert_allclose(np.abs(U1), np.abs(U2)) + assert_allclose(s1 + 1, s2 + 1) + assert_allclose(np.abs(VH1), np.abs(VH2)) + assert_allclose(np.dot(U1, np.dot(np.diag(s1), VH1)), + np.dot(U2, np.dot(np.diag(s2), VH2))) + + if k < min(n, m) - 1: + # Complex input and explicit which="LM". + for (dt, eps) in [(complex, 1e-7), (np.complex64, 3e-3)]: + rng = np.random.RandomState(1648) + A = (rng.randn(n, m) + 1j * rng.randn(n, m)).astype(dt) + L = CheckingLinearOperator(A) + + if self.solver == 'lobpcg': + with pytest.warns(UserWarning, + match="The problem size"): + U1, s1, VH1 = reorder(svds(A, k, which="LM", + solver=solver, + random_state=0)) + U2, s2, VH2 = reorder(svds(L, k, which="LM", + solver=solver, + random_state=0)) + else: + U1, s1, VH1 = reorder(svds(A, k, which="LM", + solver=solver, + random_state=0)) + U2, s2, VH2 = reorder(svds(L, k, which="LM", + solver=solver, + random_state=0)) + + assert_allclose(np.abs(U1), np.abs(U2), rtol=eps) + assert_allclose(s1, s2, rtol=eps) + assert_allclose(np.abs(VH1), np.abs(VH2), rtol=eps) + assert_allclose(np.dot(U1, np.dot(np.diag(s1), VH1)), + np.dot(U2, np.dot(np.diag(s2), VH2)), + rtol=eps) + + SHAPES = ((100, 100), (100, 101), (101, 100)) + + @pytest.mark.filterwarnings("ignore:Exited at iteration") + @pytest.mark.filterwarnings("ignore:Exited postprocessing") + @pytest.mark.parametrize("shape", SHAPES) + # ARPACK supports only dtype float, complex, or np.float32 + @pytest.mark.parametrize("dtype", (float, complex, np.float32)) + def test_small_sigma_sparse(self, shape, dtype): + # https://github.com/scipy/scipy/pull/11829 + solver = self.solver + # 2do: PROPACK fails orthogonality of singular vectors + # if dtype == complex and self.solver == 'propack': + # pytest.skip("PROPACK unsupported for complex dtype") + rng = np.random.default_rng(0) + k = 5 + (m, n) = shape + S = random(m, n, density=0.1, random_state=rng) + if dtype == complex: + S = + 1j * random(m, n, density=0.1, random_state=rng) + e = np.ones(m) + e[0:5] *= 1e1 ** np.arange(-5, 0, 1) + S = spdiags(e, 0, m, m) @ S + S = S.astype(dtype) + u, s, vh = svds(S, k, which='SM', solver=solver, maxiter=1000, + random_state=0) + c_svd = False # partial SVD can be different from full SVD + _check_svds_n(S, k, u, s, vh, which="SM", check_svd=c_svd, atol=2e-1) + + # --- Test Edge Cases --- + # Checks a few edge cases. + + @pytest.mark.parametrize("shape", ((6, 5), (5, 5), (5, 6))) + @pytest.mark.parametrize("dtype", (float, complex)) + def test_svd_LM_ones_matrix(self, shape, dtype): + # Check that svds can deal with matrix_rank less than k in LM mode. + k = 3 + n, m = shape + A = np.ones((n, m), dtype=dtype) + + if self.solver == 'lobpcg': + with pytest.warns(UserWarning, match="The problem size"): + U, s, VH = svds(A, k, solver=self.solver, random_state=0) + else: + U, s, VH = svds(A, k, solver=self.solver, random_state=0) + + _check_svds(A, k, U, s, VH, check_usvh_A=True, check_svd=False) + + # Check that the largest singular value is near sqrt(n*m) + # and the other singular values have been forced to zero. + assert_allclose(np.max(s), np.sqrt(n*m)) + s = np.array(sorted(s)[:-1]) + 1 + z = np.ones_like(s) + assert_allclose(s, z) + + @pytest.mark.filterwarnings("ignore:k >= N - 1", + reason="needed to demonstrate #16725") + @pytest.mark.parametrize("shape", ((3, 4), (4, 4), (4, 3), (4, 2))) + @pytest.mark.parametrize("dtype", (float, complex)) + def test_zero_matrix(self, shape, dtype): + # Check that svds can deal with matrices containing only zeros; + # see https://github.com/scipy/scipy/issues/3452/ + # shape = (4, 2) is included because it is the particular case + # reported in the issue + k = 1 + n, m = shape + A = np.zeros((n, m), dtype=dtype) + + if (self.solver == 'arpack' and dtype is complex + and k == min(A.shape) - 1): + pytest.skip("#16725") + + if self.solver == 'propack': + pytest.skip("PROPACK failures unrelated to PR #16712") + + if self.solver == 'lobpcg': + with pytest.warns(UserWarning, match="The problem size"): + U, s, VH = svds(A, k, solver=self.solver, random_state=0) + else: + U, s, VH = svds(A, k, solver=self.solver, random_state=0) + + # Check some generic properties of svd. + _check_svds(A, k, U, s, VH, check_usvh_A=True, check_svd=False) + + # Check that the singular values are zero. + assert_array_equal(s, 0) + + @pytest.mark.parametrize("shape", ((20, 20), (20, 21), (21, 20))) + # ARPACK supports only dtype float, complex, or np.float32 + @pytest.mark.parametrize("dtype", (float, complex, np.float32)) + @pytest.mark.filterwarnings("ignore:Exited", + reason="Ignore LOBPCG early exit.") + def test_small_sigma(self, shape, dtype): + rng = np.random.default_rng(179847540) + A = rng.random(shape).astype(dtype) + u, _, vh = svd(A, full_matrices=False) + if dtype == np.float32: + e = 10.0 + else: + e = 100.0 + t = e**(-np.arange(len(vh))).astype(dtype) + A = (u*t).dot(vh) + k = 4 + u, s, vh = svds(A, k, solver=self.solver, maxiter=100, random_state=0) + t = np.sum(s > 0) + assert_equal(t, k) + # LOBPCG needs larger atol and rtol to pass + _check_svds_n(A, k, u, s, vh, atol=1e-3, rtol=1e0, check_svd=False) + + # ARPACK supports only dtype float, complex, or np.float32 + @pytest.mark.filterwarnings("ignore:The problem size") + @pytest.mark.parametrize("dtype", (float, complex, np.float32)) + def test_small_sigma2(self, dtype): + rng = np.random.default_rng(179847540) + # create a 10x10 singular matrix with a 4-dim null space + dim = 4 + size = 10 + x = rng.random((size, size-dim)) + y = x[:, :dim] * rng.random(dim) + mat = np.hstack((x, y)) + mat = mat.astype(dtype) + + nz = null_space(mat) + assert_equal(nz.shape[1], dim) + + # Tolerances atol and rtol adjusted to pass np.float32 + # Use non-sparse svd + u, s, vh = svd(mat) + # Singular values are 0: + assert_allclose(s[-dim:], 0, atol=1e-6, rtol=1e0) + # Smallest right singular vectors in null space: + assert_allclose(mat @ vh[-dim:, :].T, 0, atol=1e-6, rtol=1e0) + + # Smallest singular values should be 0 + sp_mat = csc_matrix(mat) + su, ss, svh = svds(sp_mat, k=dim, which='SM', solver=self.solver, + random_state=0) + # Smallest dim singular values are 0: + assert_allclose(ss, 0, atol=1e-5, rtol=1e0) + # Smallest singular vectors via svds in null space: + n, m = mat.shape + if n < m: # else the assert fails with some libraries unclear why + assert_allclose(sp_mat.transpose() @ su, 0, atol=1e-5, rtol=1e0) + assert_allclose(sp_mat @ svh.T, 0, atol=1e-5, rtol=1e0) + +# --- Perform tests with each solver --- + + +class Test_SVDS_once: + @pytest.mark.parametrize("solver", ['ekki', object]) + def test_svds_input_validation_solver(self, solver): + message = "solver must be one of" + with pytest.raises(ValueError, match=message): + svds(np.ones((3, 4)), k=2, solver=solver) + + +class Test_SVDS_ARPACK(SVDSCommonTests): + + def setup_method(self): + self.solver = 'arpack' + + @pytest.mark.parametrize("ncv", list(range(-1, 8)) + [4.5, "5"]) + def test_svds_input_validation_ncv_1(self, ncv): + rng = np.random.default_rng(0) + A = rng.random((6, 7)) + k = 3 + if ncv in {4, 5}: + u, s, vh = svds(A, k=k, ncv=ncv, solver=self.solver, random_state=0) + # partial decomposition, so don't check that u@diag(s)@vh=A; + # do check that scipy.sparse.linalg.svds ~ scipy.linalg.svd + _check_svds(A, k, u, s, vh) + else: + message = ("`ncv` must be an integer satisfying") + with pytest.raises(ValueError, match=message): + svds(A, k=k, ncv=ncv, solver=self.solver) + + def test_svds_input_validation_ncv_2(self): + # I think the stack trace is reasonable when `ncv` can't be converted + # to an int. + message = "int() argument must be a" + with pytest.raises(TypeError, match=re.escape(message)): + svds(np.eye(10), ncv=[], solver=self.solver) + + message = "invalid literal for int()" + with pytest.raises(ValueError, match=message): + svds(np.eye(10), ncv="hi", solver=self.solver) + + # I can't see a robust relationship between `ncv` and relevant outputs + # (e.g. accuracy, time), so no test of the parameter. + + +class Test_SVDS_LOBPCG(SVDSCommonTests): + + def setup_method(self): + self.solver = 'lobpcg' + + +class Test_SVDS_PROPACK(SVDSCommonTests): + + def setup_method(self): + self.solver = 'propack' + + def test_svd_LM_ones_matrix(self): + message = ("PROPACK does not return orthonormal singular vectors " + "associated with zero singular values.") + # There are some other issues with this matrix of all ones, e.g. + # `which='sm'` and `k=1` returns the largest singular value + pytest.xfail(message) + + def test_svd_LM_zeros_matrix(self): + message = ("PROPACK does not return orthonormal singular vectors " + "associated with zero singular values.") + pytest.xfail(message) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/__init__.py b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..9e9bc7aa18fc4a8d1b4452a71ecae6b2395dde0f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/__init__.py @@ -0,0 +1,129 @@ +""" +============================================================= +Spatial algorithms and data structures (:mod:`scipy.spatial`) +============================================================= + +.. currentmodule:: scipy.spatial + +.. toctree:: + :hidden: + + spatial.distance + +Spatial transformations +======================= + +These are contained in the `scipy.spatial.transform` submodule. + +Nearest-neighbor queries +======================== +.. autosummary:: + :toctree: generated/ + + KDTree -- class for efficient nearest-neighbor queries + cKDTree -- class for efficient nearest-neighbor queries (faster implementation) + Rectangle + +Distance metrics +================ + +Distance metrics are contained in the :mod:`scipy.spatial.distance` submodule. + +Delaunay triangulation, convex hulls, and Voronoi diagrams +========================================================== + +.. autosummary:: + :toctree: generated/ + + Delaunay -- compute Delaunay triangulation of input points + ConvexHull -- compute a convex hull for input points + Voronoi -- compute a Voronoi diagram hull from input points + SphericalVoronoi -- compute a Voronoi diagram from input points on the surface of a sphere + HalfspaceIntersection -- compute the intersection points of input halfspaces + +Plotting helpers +================ + +.. autosummary:: + :toctree: generated/ + + delaunay_plot_2d -- plot 2-D triangulation + convex_hull_plot_2d -- plot 2-D convex hull + voronoi_plot_2d -- plot 2-D Voronoi diagram + +.. seealso:: :ref:`Tutorial ` + + +Simplex representation +====================== +The simplices (triangles, tetrahedra, etc.) appearing in the Delaunay +tessellation (N-D simplices), convex hull facets, and Voronoi ridges +(N-1-D simplices) are represented in the following scheme:: + + tess = Delaunay(points) + hull = ConvexHull(points) + voro = Voronoi(points) + + # coordinates of the jth vertex of the ith simplex + tess.points[tess.simplices[i, j], :] # tessellation element + hull.points[hull.simplices[i, j], :] # convex hull facet + voro.vertices[voro.ridge_vertices[i, j], :] # ridge between Voronoi cells + +For Delaunay triangulations and convex hulls, the neighborhood +structure of the simplices satisfies the condition: +``tess.neighbors[i,j]`` is the neighboring simplex of the ith +simplex, opposite to the ``j``-vertex. It is -1 in case of no neighbor. + +Convex hull facets also define a hyperplane equation:: + + (hull.equations[i,:-1] * coord).sum() + hull.equations[i,-1] == 0 + +Similar hyperplane equations for the Delaunay triangulation correspond +to the convex hull facets on the corresponding N+1-D +paraboloid. + +The Delaunay triangulation objects offer a method for locating the +simplex containing a given point, and barycentric coordinate +computations. + +Functions +--------- + +.. autosummary:: + :toctree: generated/ + + tsearch + distance_matrix + minkowski_distance + minkowski_distance_p + procrustes + geometric_slerp + +Warnings / Errors used in :mod:`scipy.spatial` +---------------------------------------------- +.. autosummary:: + :toctree: generated/ + + QhullError +""" # noqa: E501 + +from ._kdtree import * +from ._ckdtree import * +from ._qhull import * +from ._spherical_voronoi import SphericalVoronoi +from ._plotutils import * +from ._procrustes import procrustes +from ._geometric_slerp import geometric_slerp + +# Deprecated namespaces, to be removed in v2.0.0 +from . import ckdtree, kdtree, qhull + +__all__ = [s for s in dir() if not s.startswith('_')] + +from . import distance, transform + +__all__ += ['distance', 'transform'] + +from scipy._lib._testutils import PytestTester +test = PytestTester(__name__) +del PytestTester diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_ckdtree.pyi b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_ckdtree.pyi new file mode 100644 index 0000000000000000000000000000000000000000..42670067a38c3021d20aeb39bb04920ab9ccde24 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_ckdtree.pyi @@ -0,0 +1,214 @@ +from __future__ import annotations +from typing import ( + Any, + Generic, + overload, + TypeVar, +) + +import numpy as np +import numpy.typing as npt +from scipy.sparse import coo_matrix, dok_matrix + +from typing import Literal + +# TODO: Replace `ndarray` with a 1D float64 array when possible +_BoxType = TypeVar("_BoxType", None, npt.NDArray[np.float64]) + +# Copied from `numpy.typing._scalar_like._ScalarLike` +# TODO: Expand with 0D arrays once we have shape support +_ArrayLike0D = bool | int | float | complex | str | bytes | np.generic + +_WeightType = npt.ArrayLike | tuple[npt.ArrayLike | None, npt.ArrayLike | None] + +class cKDTreeNode: + @property + def data_points(self) -> npt.NDArray[np.float64]: ... + @property + def indices(self) -> npt.NDArray[np.intp]: ... + + # These are read-only attributes in cython, which behave like properties + @property + def level(self) -> int: ... + @property + def split_dim(self) -> int: ... + @property + def children(self) -> int: ... + @property + def start_idx(self) -> int: ... + @property + def end_idx(self) -> int: ... + @property + def split(self) -> float: ... + @property + def lesser(self) -> cKDTreeNode | None: ... + @property + def greater(self) -> cKDTreeNode | None: ... + +class cKDTree(Generic[_BoxType]): + @property + def n(self) -> int: ... + @property + def m(self) -> int: ... + @property + def leafsize(self) -> int: ... + @property + def size(self) -> int: ... + @property + def tree(self) -> cKDTreeNode: ... + + # These are read-only attributes in cython, which behave like properties + @property + def data(self) -> npt.NDArray[np.float64]: ... + @property + def maxes(self) -> npt.NDArray[np.float64]: ... + @property + def mins(self) -> npt.NDArray[np.float64]: ... + @property + def indices(self) -> npt.NDArray[np.float64]: ... + @property + def boxsize(self) -> _BoxType: ... + + # NOTE: In practice `__init__` is used as constructor, not `__new__`. + # The latter gives us more flexibility in setting the generic parameter + # though. + @overload + def __new__( # type: ignore[misc] + cls, + data: npt.ArrayLike, + leafsize: int = ..., + compact_nodes: bool = ..., + copy_data: bool = ..., + balanced_tree: bool = ..., + boxsize: None = ..., + ) -> cKDTree[None]: ... + @overload + def __new__( + cls, + data: npt.ArrayLike, + leafsize: int = ..., + compact_nodes: bool = ..., + copy_data: bool = ..., + balanced_tree: bool = ..., + boxsize: npt.ArrayLike = ..., + ) -> cKDTree[npt.NDArray[np.float64]]: ... + + # TODO: returns a 2-tuple of scalars if `x.ndim == 1` and `k == 1`, + # returns a 2-tuple of arrays otherwise + def query( + self, + x: npt.ArrayLike, + k: npt.ArrayLike = ..., + eps: float = ..., + p: float = ..., + distance_upper_bound: float = ..., + workers: int | None = ..., + ) -> tuple[Any, Any]: ... + + # TODO: returns a list scalars if `x.ndim <= 1`, + # returns an object array of lists otherwise + def query_ball_point( + self, + x: npt.ArrayLike, + r: npt.ArrayLike, + p: float, + eps: float = ..., + workers: int | None = ..., + return_sorted: bool | None = ..., + return_length: bool = ... + ) -> Any: ... + + def query_ball_tree( + self, + other: cKDTree, + r: float, + p: float, + eps: float = ..., + ) -> list[list[int]]: ... + + @overload + def query_pairs( # type: ignore[misc] + self, + r: float, + p: float = ..., + eps: float = ..., + output_type: Literal["set"] = ..., + ) -> set[tuple[int, int]]: ... + @overload + def query_pairs( + self, + r: float, + p: float = ..., + eps: float = ..., + output_type: Literal["ndarray"] = ..., + ) -> npt.NDArray[np.intp]: ... + + @overload + def count_neighbors( # type: ignore[misc] + self, + other: cKDTree, + r: _ArrayLike0D, + p: float = ..., + weights: None | tuple[None, None] = ..., + cumulative: bool = ..., + ) -> int: ... + @overload + def count_neighbors( # type: ignore[misc] + self, + other: cKDTree, + r: _ArrayLike0D, + p: float = ..., + weights: _WeightType = ..., + cumulative: bool = ..., + ) -> np.float64: ... + @overload + def count_neighbors( # type: ignore[misc] + self, + other: cKDTree, + r: npt.ArrayLike, + p: float = ..., + weights: None | tuple[None, None] = ..., + cumulative: bool = ..., + ) -> npt.NDArray[np.intp]: ... + @overload + def count_neighbors( + self, + other: cKDTree, + r: npt.ArrayLike, + p: float = ..., + weights: _WeightType = ..., + cumulative: bool = ..., + ) -> npt.NDArray[np.float64]: ... + + @overload + def sparse_distance_matrix( # type: ignore[misc] + self, + other: cKDTree, + max_distance: float, + p: float = ..., + output_type: Literal["dok_matrix"] = ..., + ) -> dok_matrix: ... + @overload + def sparse_distance_matrix( # type: ignore[misc] + self, + other: cKDTree, + max_distance: float, + p: float = ..., + output_type: Literal["coo_matrix"] = ..., + ) -> coo_matrix: ... + @overload + def sparse_distance_matrix( # type: ignore[misc] + self, + other: cKDTree, + max_distance: float, + p: float = ..., + output_type: Literal["dict"] = ..., + ) -> dict[tuple[int, int], float]: ... + @overload + def sparse_distance_matrix( + self, + other: cKDTree, + max_distance: float, + p: float = ..., + output_type: Literal["ndarray"] = ..., + ) -> npt.NDArray[np.void]: ... diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_distance_pybind.cpython-310-x86_64-linux-gnu.so b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_distance_pybind.cpython-310-x86_64-linux-gnu.so new file mode 100644 index 0000000000000000000000000000000000000000..99ffc166ce8e80f318c574bc4934b13a7a2a92ac Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_distance_pybind.cpython-310-x86_64-linux-gnu.so differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_distance_wrap.cpython-310-x86_64-linux-gnu.so b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_distance_wrap.cpython-310-x86_64-linux-gnu.so new file mode 100644 index 0000000000000000000000000000000000000000..b3d611710c12736c9f7f6cc901fdbf151432b5db Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_distance_wrap.cpython-310-x86_64-linux-gnu.so differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_geometric_slerp.py b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_geometric_slerp.py new file mode 100644 index 0000000000000000000000000000000000000000..c3a7a81a1209bff2b1758aa2d6a5248a3d4360fd --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_geometric_slerp.py @@ -0,0 +1,240 @@ +from __future__ import annotations + +__all__ = ['geometric_slerp'] + +import warnings +from typing import TYPE_CHECKING + +import numpy as np +from scipy.spatial.distance import euclidean + +if TYPE_CHECKING: + import numpy.typing as npt + + +def _geometric_slerp(start, end, t): + # create an orthogonal basis using QR decomposition + basis = np.vstack([start, end]) + Q, R = np.linalg.qr(basis.T) + signs = 2 * (np.diag(R) >= 0) - 1 + Q = Q.T * signs.T[:, np.newaxis] + R = R.T * signs.T[:, np.newaxis] + + # calculate the angle between `start` and `end` + c = np.dot(start, end) + s = np.linalg.det(R) + omega = np.arctan2(s, c) + + # interpolate + start, end = Q + s = np.sin(t * omega) + c = np.cos(t * omega) + return start * c[:, np.newaxis] + end * s[:, np.newaxis] + + +def geometric_slerp( + start: npt.ArrayLike, + end: npt.ArrayLike, + t: npt.ArrayLike, + tol: float = 1e-7, +) -> np.ndarray: + """ + Geometric spherical linear interpolation. + + The interpolation occurs along a unit-radius + great circle arc in arbitrary dimensional space. + + Parameters + ---------- + start : (n_dimensions, ) array-like + Single n-dimensional input coordinate in a 1-D array-like + object. `n` must be greater than 1. + end : (n_dimensions, ) array-like + Single n-dimensional input coordinate in a 1-D array-like + object. `n` must be greater than 1. + t : float or (n_points,) 1D array-like + A float or 1D array-like of doubles representing interpolation + parameters, with values required in the inclusive interval + between 0 and 1. A common approach is to generate the array + with ``np.linspace(0, 1, n_pts)`` for linearly spaced points. + Ascending, descending, and scrambled orders are permitted. + tol : float + The absolute tolerance for determining if the start and end + coordinates are antipodes. + + Returns + ------- + result : (t.size, D) + An array of doubles containing the interpolated + spherical path and including start and + end when 0 and 1 t are used. The + interpolated values should correspond to the + same sort order provided in the t array. The result + may be 1-dimensional if ``t`` is a float. + + Raises + ------ + ValueError + If ``start`` and ``end`` are antipodes, not on the + unit n-sphere, or for a variety of degenerate conditions. + + See Also + -------- + scipy.spatial.transform.Slerp : 3-D Slerp that works with quaternions + + Notes + ----- + The implementation is based on the mathematical formula provided in [1]_, + and the first known presentation of this algorithm, derived from study of + 4-D geometry, is credited to Glenn Davis in a footnote of the original + quaternion Slerp publication by Ken Shoemake [2]_. + + .. versionadded:: 1.5.0 + + References + ---------- + .. [1] https://en.wikipedia.org/wiki/Slerp#Geometric_Slerp + .. [2] Ken Shoemake (1985) Animating rotation with quaternion curves. + ACM SIGGRAPH Computer Graphics, 19(3): 245-254. + + Examples + -------- + Interpolate four linearly-spaced values on the circumference of + a circle spanning 90 degrees: + + >>> import numpy as np + >>> from scipy.spatial import geometric_slerp + >>> import matplotlib.pyplot as plt + >>> fig = plt.figure() + >>> ax = fig.add_subplot(111) + >>> start = np.array([1, 0]) + >>> end = np.array([0, 1]) + >>> t_vals = np.linspace(0, 1, 4) + >>> result = geometric_slerp(start, + ... end, + ... t_vals) + + The interpolated results should be at 30 degree intervals + recognizable on the unit circle: + + >>> ax.scatter(result[...,0], result[...,1], c='k') + >>> circle = plt.Circle((0, 0), 1, color='grey') + >>> ax.add_artist(circle) + >>> ax.set_aspect('equal') + >>> plt.show() + + Attempting to interpolate between antipodes on a circle is + ambiguous because there are two possible paths, and on a + sphere there are infinite possible paths on the geodesic surface. + Nonetheless, one of the ambiguous paths is returned along + with a warning: + + >>> opposite_pole = np.array([-1, 0]) + >>> with np.testing.suppress_warnings() as sup: + ... sup.filter(UserWarning) + ... geometric_slerp(start, + ... opposite_pole, + ... t_vals) + array([[ 1.00000000e+00, 0.00000000e+00], + [ 5.00000000e-01, 8.66025404e-01], + [-5.00000000e-01, 8.66025404e-01], + [-1.00000000e+00, 1.22464680e-16]]) + + Extend the original example to a sphere and plot interpolation + points in 3D: + + >>> from mpl_toolkits.mplot3d import proj3d + >>> fig = plt.figure() + >>> ax = fig.add_subplot(111, projection='3d') + + Plot the unit sphere for reference (optional): + + >>> u = np.linspace(0, 2 * np.pi, 100) + >>> v = np.linspace(0, np.pi, 100) + >>> x = np.outer(np.cos(u), np.sin(v)) + >>> y = np.outer(np.sin(u), np.sin(v)) + >>> z = np.outer(np.ones(np.size(u)), np.cos(v)) + >>> ax.plot_surface(x, y, z, color='y', alpha=0.1) + + Interpolating over a larger number of points + may provide the appearance of a smooth curve on + the surface of the sphere, which is also useful + for discretized integration calculations on a + sphere surface: + + >>> start = np.array([1, 0, 0]) + >>> end = np.array([0, 0, 1]) + >>> t_vals = np.linspace(0, 1, 200) + >>> result = geometric_slerp(start, + ... end, + ... t_vals) + >>> ax.plot(result[...,0], + ... result[...,1], + ... result[...,2], + ... c='k') + >>> plt.show() + """ + + start = np.asarray(start, dtype=np.float64) + end = np.asarray(end, dtype=np.float64) + t = np.asarray(t) + + if t.ndim > 1: + raise ValueError("The interpolation parameter " + "value must be one dimensional.") + + if start.ndim != 1 or end.ndim != 1: + raise ValueError("Start and end coordinates " + "must be one-dimensional") + + if start.size != end.size: + raise ValueError("The dimensions of start and " + "end must match (have same size)") + + if start.size < 2 or end.size < 2: + raise ValueError("The start and end coordinates must " + "both be in at least two-dimensional " + "space") + + if np.array_equal(start, end): + return np.linspace(start, start, t.size) + + # for points that violate equation for n-sphere + for coord in [start, end]: + if not np.allclose(np.linalg.norm(coord), 1.0, + rtol=1e-9, + atol=0): + raise ValueError("start and end are not" + " on a unit n-sphere") + + if not isinstance(tol, float): + raise ValueError("tol must be a float") + else: + tol = np.fabs(tol) + + coord_dist = euclidean(start, end) + + # diameter of 2 within tolerance means antipodes, which is a problem + # for all unit n-spheres (even the 0-sphere would have an ambiguous path) + if np.allclose(coord_dist, 2.0, rtol=0, atol=tol): + warnings.warn("start and end are antipodes " + "using the specified tolerance; " + "this may cause ambiguous slerp paths", + stacklevel=2) + + t = np.asarray(t, dtype=np.float64) + + if t.size == 0: + return np.empty((0, start.size)) + + if t.min() < 0 or t.max() > 1: + raise ValueError("interpolation parameter must be in [0, 1]") + + if t.ndim == 0: + return _geometric_slerp(start, + end, + np.atleast_1d(t)).ravel() + else: + return _geometric_slerp(start, + end, + t) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_hausdorff.cpython-310-x86_64-linux-gnu.so b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_hausdorff.cpython-310-x86_64-linux-gnu.so new file mode 100644 index 0000000000000000000000000000000000000000..1e6713a98fd52ddada559eb735801c97824afd3a Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_hausdorff.cpython-310-x86_64-linux-gnu.so differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_kdtree.py b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_kdtree.py new file mode 100644 index 0000000000000000000000000000000000000000..f65412e9e4ad3a0e0da3876c861430d678fe858c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_kdtree.py @@ -0,0 +1,920 @@ +# Copyright Anne M. Archibald 2008 +# Released under the scipy license +import numpy as np +from ._ckdtree import cKDTree, cKDTreeNode + +__all__ = ['minkowski_distance_p', 'minkowski_distance', + 'distance_matrix', + 'Rectangle', 'KDTree'] + + +def minkowski_distance_p(x, y, p=2): + """Compute the pth power of the L**p distance between two arrays. + + For efficiency, this function computes the L**p distance but does + not extract the pth root. If `p` is 1 or infinity, this is equal to + the actual L**p distance. + + The last dimensions of `x` and `y` must be the same length. Any + other dimensions must be compatible for broadcasting. + + Parameters + ---------- + x : (..., K) array_like + Input array. + y : (..., K) array_like + Input array. + p : float, 1 <= p <= infinity + Which Minkowski p-norm to use. + + Returns + ------- + dist : ndarray + pth power of the distance between the input arrays. + + Examples + -------- + >>> from scipy.spatial import minkowski_distance_p + >>> minkowski_distance_p([[0, 0], [0, 0]], [[1, 1], [0, 1]]) + array([2, 1]) + + """ + x = np.asarray(x) + y = np.asarray(y) + + # Find smallest common datatype with float64 (return type of this + # function) - addresses #10262. + # Don't just cast to float64 for complex input case. + common_datatype = np.promote_types(np.promote_types(x.dtype, y.dtype), + 'float64') + + # Make sure x and y are NumPy arrays of correct datatype. + x = x.astype(common_datatype) + y = y.astype(common_datatype) + + if p == np.inf: + return np.amax(np.abs(y-x), axis=-1) + elif p == 1: + return np.sum(np.abs(y-x), axis=-1) + else: + return np.sum(np.abs(y-x)**p, axis=-1) + + +def minkowski_distance(x, y, p=2): + """Compute the L**p distance between two arrays. + + The last dimensions of `x` and `y` must be the same length. Any + other dimensions must be compatible for broadcasting. + + Parameters + ---------- + x : (..., K) array_like + Input array. + y : (..., K) array_like + Input array. + p : float, 1 <= p <= infinity + Which Minkowski p-norm to use. + + Returns + ------- + dist : ndarray + Distance between the input arrays. + + Examples + -------- + >>> from scipy.spatial import minkowski_distance + >>> minkowski_distance([[0, 0], [0, 0]], [[1, 1], [0, 1]]) + array([ 1.41421356, 1. ]) + + """ + x = np.asarray(x) + y = np.asarray(y) + if p == np.inf or p == 1: + return minkowski_distance_p(x, y, p) + else: + return minkowski_distance_p(x, y, p)**(1./p) + + +class Rectangle: + """Hyperrectangle class. + + Represents a Cartesian product of intervals. + """ + def __init__(self, maxes, mins): + """Construct a hyperrectangle.""" + self.maxes = np.maximum(maxes,mins).astype(float) + self.mins = np.minimum(maxes,mins).astype(float) + self.m, = self.maxes.shape + + def __repr__(self): + return "" % list(zip(self.mins, self.maxes)) + + def volume(self): + """Total volume.""" + return np.prod(self.maxes-self.mins) + + def split(self, d, split): + """Produce two hyperrectangles by splitting. + + In general, if you need to compute maximum and minimum + distances to the children, it can be done more efficiently + by updating the maximum and minimum distances to the parent. + + Parameters + ---------- + d : int + Axis to split hyperrectangle along. + split : float + Position along axis `d` to split at. + + """ + mid = np.copy(self.maxes) + mid[d] = split + less = Rectangle(self.mins, mid) + mid = np.copy(self.mins) + mid[d] = split + greater = Rectangle(mid, self.maxes) + return less, greater + + def min_distance_point(self, x, p=2.): + """ + Return the minimum distance between input and points in the + hyperrectangle. + + Parameters + ---------- + x : array_like + Input. + p : float, optional + Input. + + """ + return minkowski_distance( + 0, np.maximum(0, np.maximum(self.mins-x, x-self.maxes)), + p + ) + + def max_distance_point(self, x, p=2.): + """ + Return the maximum distance between input and points in the hyperrectangle. + + Parameters + ---------- + x : array_like + Input array. + p : float, optional + Input. + + """ + return minkowski_distance(0, np.maximum(self.maxes-x, x-self.mins), p) + + def min_distance_rectangle(self, other, p=2.): + """ + Compute the minimum distance between points in the two hyperrectangles. + + Parameters + ---------- + other : hyperrectangle + Input. + p : float + Input. + + """ + return minkowski_distance( + 0, + np.maximum(0, np.maximum(self.mins-other.maxes, + other.mins-self.maxes)), + p + ) + + def max_distance_rectangle(self, other, p=2.): + """ + Compute the maximum distance between points in the two hyperrectangles. + + Parameters + ---------- + other : hyperrectangle + Input. + p : float, optional + Input. + + """ + return minkowski_distance( + 0, np.maximum(self.maxes-other.mins, other.maxes-self.mins), p) + + +class KDTree(cKDTree): + """kd-tree for quick nearest-neighbor lookup. + + This class provides an index into a set of k-dimensional points + which can be used to rapidly look up the nearest neighbors of any + point. + + Parameters + ---------- + data : array_like, shape (n,m) + The n data points of dimension m to be indexed. This array is + not copied unless this is necessary to produce a contiguous + array of doubles, and so modifying this data will result in + bogus results. The data are also copied if the kd-tree is built + with copy_data=True. + leafsize : positive int, optional + The number of points at which the algorithm switches over to + brute-force. Default: 10. + compact_nodes : bool, optional + If True, the kd-tree is built to shrink the hyperrectangles to + the actual data range. This usually gives a more compact tree that + is robust against degenerated input data and gives faster queries + at the expense of longer build time. Default: True. + copy_data : bool, optional + If True the data is always copied to protect the kd-tree against + data corruption. Default: False. + balanced_tree : bool, optional + If True, the median is used to split the hyperrectangles instead of + the midpoint. This usually gives a more compact tree and + faster queries at the expense of longer build time. Default: True. + boxsize : array_like or scalar, optional + Apply a m-d toroidal topology to the KDTree.. The topology is generated + by :math:`x_i + n_i L_i` where :math:`n_i` are integers and :math:`L_i` + is the boxsize along i-th dimension. The input data shall be wrapped + into :math:`[0, L_i)`. A ValueError is raised if any of the data is + outside of this bound. + + Notes + ----- + The algorithm used is described in Maneewongvatana and Mount 1999. + The general idea is that the kd-tree is a binary tree, each of whose + nodes represents an axis-aligned hyperrectangle. Each node specifies + an axis and splits the set of points based on whether their coordinate + along that axis is greater than or less than a particular value. + + During construction, the axis and splitting point are chosen by the + "sliding midpoint" rule, which ensures that the cells do not all + become long and thin. + + The tree can be queried for the r closest neighbors of any given point + (optionally returning only those within some maximum distance of the + point). It can also be queried, with a substantial gain in efficiency, + for the r approximate closest neighbors. + + For large dimensions (20 is already large) do not expect this to run + significantly faster than brute force. High-dimensional nearest-neighbor + queries are a substantial open problem in computer science. + + Attributes + ---------- + data : ndarray, shape (n,m) + The n data points of dimension m to be indexed. This array is + not copied unless this is necessary to produce a contiguous + array of doubles. The data are also copied if the kd-tree is built + with `copy_data=True`. + leafsize : positive int + The number of points at which the algorithm switches over to + brute-force. + m : int + The dimension of a single data-point. + n : int + The number of data points. + maxes : ndarray, shape (m,) + The maximum value in each dimension of the n data points. + mins : ndarray, shape (m,) + The minimum value in each dimension of the n data points. + size : int + The number of nodes in the tree. + + """ + + class node: + @staticmethod + def _create(ckdtree_node=None): + """Create either an inner or leaf node, wrapping a cKDTreeNode instance""" + if ckdtree_node is None: + return KDTree.node(ckdtree_node) + elif ckdtree_node.split_dim == -1: + return KDTree.leafnode(ckdtree_node) + else: + return KDTree.innernode(ckdtree_node) + + def __init__(self, ckdtree_node=None): + if ckdtree_node is None: + ckdtree_node = cKDTreeNode() + self._node = ckdtree_node + + def __lt__(self, other): + return id(self) < id(other) + + def __gt__(self, other): + return id(self) > id(other) + + def __le__(self, other): + return id(self) <= id(other) + + def __ge__(self, other): + return id(self) >= id(other) + + def __eq__(self, other): + return id(self) == id(other) + + class leafnode(node): + @property + def idx(self): + return self._node.indices + + @property + def children(self): + return self._node.children + + class innernode(node): + def __init__(self, ckdtreenode): + assert isinstance(ckdtreenode, cKDTreeNode) + super().__init__(ckdtreenode) + self.less = KDTree.node._create(ckdtreenode.lesser) + self.greater = KDTree.node._create(ckdtreenode.greater) + + @property + def split_dim(self): + return self._node.split_dim + + @property + def split(self): + return self._node.split + + @property + def children(self): + return self._node.children + + @property + def tree(self): + if not hasattr(self, "_tree"): + self._tree = KDTree.node._create(super().tree) + + return self._tree + + def __init__(self, data, leafsize=10, compact_nodes=True, copy_data=False, + balanced_tree=True, boxsize=None): + data = np.asarray(data) + if data.dtype.kind == 'c': + raise TypeError("KDTree does not work with complex data") + + # Note KDTree has different default leafsize from cKDTree + super().__init__(data, leafsize, compact_nodes, copy_data, + balanced_tree, boxsize) + + def query( + self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf, workers=1): + r"""Query the kd-tree for nearest neighbors. + + Parameters + ---------- + x : array_like, last dimension self.m + An array of points to query. + k : int or Sequence[int], optional + Either the number of nearest neighbors to return, or a list of the + k-th nearest neighbors to return, starting from 1. + eps : nonnegative float, optional + Return approximate nearest neighbors; the kth returned value + is guaranteed to be no further than (1+eps) times the + distance to the real kth nearest neighbor. + p : float, 1<=p<=infinity, optional + Which Minkowski p-norm to use. + 1 is the sum-of-absolute-values distance ("Manhattan" distance). + 2 is the usual Euclidean distance. + infinity is the maximum-coordinate-difference distance. + A large, finite p may cause a ValueError if overflow can occur. + distance_upper_bound : nonnegative float, optional + Return only neighbors within this distance. This is used to prune + tree searches, so if you are doing a series of nearest-neighbor + queries, it may help to supply the distance to the nearest neighbor + of the most recent point. + workers : int, optional + Number of workers to use for parallel processing. If -1 is given + all CPU threads are used. Default: 1. + + .. versionadded:: 1.6.0 + + Returns + ------- + d : float or array of floats + The distances to the nearest neighbors. + If ``x`` has shape ``tuple+(self.m,)``, then ``d`` has shape + ``tuple+(k,)``. + When k == 1, the last dimension of the output is squeezed. + Missing neighbors are indicated with infinite distances. + Hits are sorted by distance (nearest first). + + .. versionchanged:: 1.9.0 + Previously if ``k=None``, then `d` was an object array of + shape ``tuple``, containing lists of distances. This behavior + has been removed, use `query_ball_point` instead. + + i : integer or array of integers + The index of each neighbor in ``self.data``. + ``i`` is the same shape as d. + Missing neighbors are indicated with ``self.n``. + + Examples + -------- + + >>> import numpy as np + >>> from scipy.spatial import KDTree + >>> x, y = np.mgrid[0:5, 2:8] + >>> tree = KDTree(np.c_[x.ravel(), y.ravel()]) + + To query the nearest neighbours and return squeezed result, use + + >>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=1) + >>> print(dd, ii, sep='\n') + [2. 0.2236068] + [ 0 13] + + To query the nearest neighbours and return unsqueezed result, use + + >>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=[1]) + >>> print(dd, ii, sep='\n') + [[2. ] + [0.2236068]] + [[ 0] + [13]] + + To query the second nearest neighbours and return unsqueezed result, + use + + >>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=[2]) + >>> print(dd, ii, sep='\n') + [[2.23606798] + [0.80622577]] + [[ 6] + [19]] + + To query the first and second nearest neighbours, use + + >>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=2) + >>> print(dd, ii, sep='\n') + [[2. 2.23606798] + [0.2236068 0.80622577]] + [[ 0 6] + [13 19]] + + or, be more specific + + >>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=[1, 2]) + >>> print(dd, ii, sep='\n') + [[2. 2.23606798] + [0.2236068 0.80622577]] + [[ 0 6] + [13 19]] + + """ + x = np.asarray(x) + if x.dtype.kind == 'c': + raise TypeError("KDTree does not work with complex data") + + if k is None: + raise ValueError("k must be an integer or a sequence of integers") + + d, i = super().query(x, k, eps, p, distance_upper_bound, workers) + if isinstance(i, int): + i = np.intp(i) + return d, i + + def query_ball_point(self, x, r, p=2., eps=0, workers=1, + return_sorted=None, return_length=False): + """Find all points within distance r of point(s) x. + + Parameters + ---------- + x : array_like, shape tuple + (self.m,) + The point or points to search for neighbors of. + r : array_like, float + The radius of points to return, must broadcast to the length of x. + p : float, optional + Which Minkowski p-norm to use. Should be in the range [1, inf]. + A finite large p may cause a ValueError if overflow can occur. + eps : nonnegative float, optional + Approximate search. Branches of the tree are not explored if their + nearest points are further than ``r / (1 + eps)``, and branches are + added in bulk if their furthest points are nearer than + ``r * (1 + eps)``. + workers : int, optional + Number of jobs to schedule for parallel processing. If -1 is given + all processors are used. Default: 1. + + .. versionadded:: 1.6.0 + return_sorted : bool, optional + Sorts returned indices if True and does not sort them if False. If + None, does not sort single point queries, but does sort + multi-point queries which was the behavior before this option + was added. + + .. versionadded:: 1.6.0 + return_length : bool, optional + Return the number of points inside the radius instead of a list + of the indices. + + .. versionadded:: 1.6.0 + + Returns + ------- + results : list or array of lists + If `x` is a single point, returns a list of the indices of the + neighbors of `x`. If `x` is an array of points, returns an object + array of shape tuple containing lists of neighbors. + + Notes + ----- + If you have many points whose neighbors you want to find, you may save + substantial amounts of time by putting them in a KDTree and using + query_ball_tree. + + Examples + -------- + >>> import numpy as np + >>> from scipy import spatial + >>> x, y = np.mgrid[0:5, 0:5] + >>> points = np.c_[x.ravel(), y.ravel()] + >>> tree = spatial.KDTree(points) + >>> sorted(tree.query_ball_point([2, 0], 1)) + [5, 10, 11, 15] + + Query multiple points and plot the results: + + >>> import matplotlib.pyplot as plt + >>> points = np.asarray(points) + >>> plt.plot(points[:,0], points[:,1], '.') + >>> for results in tree.query_ball_point(([2, 0], [3, 3]), 1): + ... nearby_points = points[results] + ... plt.plot(nearby_points[:,0], nearby_points[:,1], 'o') + >>> plt.margins(0.1, 0.1) + >>> plt.show() + + """ + x = np.asarray(x) + if x.dtype.kind == 'c': + raise TypeError("KDTree does not work with complex data") + return super().query_ball_point( + x, r, p, eps, workers, return_sorted, return_length) + + def query_ball_tree(self, other, r, p=2., eps=0): + """ + Find all pairs of points between `self` and `other` whose distance is + at most r. + + Parameters + ---------- + other : KDTree instance + The tree containing points to search against. + r : float + The maximum distance, has to be positive. + p : float, optional + Which Minkowski norm to use. `p` has to meet the condition + ``1 <= p <= infinity``. + eps : float, optional + Approximate search. Branches of the tree are not explored + if their nearest points are further than ``r/(1+eps)``, and + branches are added in bulk if their furthest points are nearer + than ``r * (1+eps)``. `eps` has to be non-negative. + + Returns + ------- + results : list of lists + For each element ``self.data[i]`` of this tree, ``results[i]`` is a + list of the indices of its neighbors in ``other.data``. + + Examples + -------- + You can search all pairs of points between two kd-trees within a distance: + + >>> import matplotlib.pyplot as plt + >>> import numpy as np + >>> from scipy.spatial import KDTree + >>> rng = np.random.default_rng() + >>> points1 = rng.random((15, 2)) + >>> points2 = rng.random((15, 2)) + >>> plt.figure(figsize=(6, 6)) + >>> plt.plot(points1[:, 0], points1[:, 1], "xk", markersize=14) + >>> plt.plot(points2[:, 0], points2[:, 1], "og", markersize=14) + >>> kd_tree1 = KDTree(points1) + >>> kd_tree2 = KDTree(points2) + >>> indexes = kd_tree1.query_ball_tree(kd_tree2, r=0.2) + >>> for i in range(len(indexes)): + ... for j in indexes[i]: + ... plt.plot([points1[i, 0], points2[j, 0]], + ... [points1[i, 1], points2[j, 1]], "-r") + >>> plt.show() + + """ + return super().query_ball_tree(other, r, p, eps) + + def query_pairs(self, r, p=2., eps=0, output_type='set'): + """Find all pairs of points in `self` whose distance is at most r. + + Parameters + ---------- + r : positive float + The maximum distance. + p : float, optional + Which Minkowski norm to use. `p` has to meet the condition + ``1 <= p <= infinity``. + eps : float, optional + Approximate search. Branches of the tree are not explored + if their nearest points are further than ``r/(1+eps)``, and + branches are added in bulk if their furthest points are nearer + than ``r * (1+eps)``. `eps` has to be non-negative. + output_type : string, optional + Choose the output container, 'set' or 'ndarray'. Default: 'set' + + .. versionadded:: 1.6.0 + + Returns + ------- + results : set or ndarray + Set of pairs ``(i,j)``, with ``i < j``, for which the corresponding + positions are close. If output_type is 'ndarray', an ndarry is + returned instead of a set. + + Examples + -------- + You can search all pairs of points in a kd-tree within a distance: + + >>> import matplotlib.pyplot as plt + >>> import numpy as np + >>> from scipy.spatial import KDTree + >>> rng = np.random.default_rng() + >>> points = rng.random((20, 2)) + >>> plt.figure(figsize=(6, 6)) + >>> plt.plot(points[:, 0], points[:, 1], "xk", markersize=14) + >>> kd_tree = KDTree(points) + >>> pairs = kd_tree.query_pairs(r=0.2) + >>> for (i, j) in pairs: + ... plt.plot([points[i, 0], points[j, 0]], + ... [points[i, 1], points[j, 1]], "-r") + >>> plt.show() + + """ + return super().query_pairs(r, p, eps, output_type) + + def count_neighbors(self, other, r, p=2., weights=None, cumulative=True): + """Count how many nearby pairs can be formed. + + Count the number of pairs ``(x1,x2)`` can be formed, with ``x1`` drawn + from ``self`` and ``x2`` drawn from ``other``, and where + ``distance(x1, x2, p) <= r``. + + Data points on ``self`` and ``other`` are optionally weighted by the + ``weights`` argument. (See below) + + This is adapted from the "two-point correlation" algorithm described by + Gray and Moore [1]_. See notes for further discussion. + + Parameters + ---------- + other : KDTree + The other tree to draw points from, can be the same tree as self. + r : float or one-dimensional array of floats + The radius to produce a count for. Multiple radii are searched with + a single tree traversal. + If the count is non-cumulative(``cumulative=False``), ``r`` defines + the edges of the bins, and must be non-decreasing. + p : float, optional + 1<=p<=infinity. + Which Minkowski p-norm to use. + Default 2.0. + A finite large p may cause a ValueError if overflow can occur. + weights : tuple, array_like, or None, optional + If None, the pair-counting is unweighted. + If given as a tuple, weights[0] is the weights of points in + ``self``, and weights[1] is the weights of points in ``other``; + either can be None to indicate the points are unweighted. + If given as an array_like, weights is the weights of points in + ``self`` and ``other``. For this to make sense, ``self`` and + ``other`` must be the same tree. If ``self`` and ``other`` are two + different trees, a ``ValueError`` is raised. + Default: None + + .. versionadded:: 1.6.0 + cumulative : bool, optional + Whether the returned counts are cumulative. When cumulative is set + to ``False`` the algorithm is optimized to work with a large number + of bins (>10) specified by ``r``. When ``cumulative`` is set to + True, the algorithm is optimized to work with a small number of + ``r``. Default: True + + .. versionadded:: 1.6.0 + + Returns + ------- + result : scalar or 1-D array + The number of pairs. For unweighted counts, the result is integer. + For weighted counts, the result is float. + If cumulative is False, ``result[i]`` contains the counts with + ``(-inf if i == 0 else r[i-1]) < R <= r[i]`` + + Notes + ----- + Pair-counting is the basic operation used to calculate the two point + correlation functions from a data set composed of position of objects. + + Two point correlation function measures the clustering of objects and + is widely used in cosmology to quantify the large scale structure + in our Universe, but it may be useful for data analysis in other fields + where self-similar assembly of objects also occur. + + The Landy-Szalay estimator for the two point correlation function of + ``D`` measures the clustering signal in ``D``. [2]_ + + For example, given the position of two sets of objects, + + - objects ``D`` (data) contains the clustering signal, and + + - objects ``R`` (random) that contains no signal, + + .. math:: + + \\xi(r) = \\frac{ - 2 f + f^2}{f^2}, + + where the brackets represents counting pairs between two data sets + in a finite bin around ``r`` (distance), corresponding to setting + `cumulative=False`, and ``f = float(len(D)) / float(len(R))`` is the + ratio between number of objects from data and random. + + The algorithm implemented here is loosely based on the dual-tree + algorithm described in [1]_. We switch between two different + pair-cumulation scheme depending on the setting of ``cumulative``. + The computing time of the method we use when for + ``cumulative == False`` does not scale with the total number of bins. + The algorithm for ``cumulative == True`` scales linearly with the + number of bins, though it is slightly faster when only + 1 or 2 bins are used. [5]_. + + As an extension to the naive pair-counting, + weighted pair-counting counts the product of weights instead + of number of pairs. + Weighted pair-counting is used to estimate marked correlation functions + ([3]_, section 2.2), + or to properly calculate the average of data per distance bin + (e.g. [4]_, section 2.1 on redshift). + + .. [1] Gray and Moore, + "N-body problems in statistical learning", + Mining the sky, 2000, + https://arxiv.org/abs/astro-ph/0012333 + + .. [2] Landy and Szalay, + "Bias and variance of angular correlation functions", + The Astrophysical Journal, 1993, + http://adsabs.harvard.edu/abs/1993ApJ...412...64L + + .. [3] Sheth, Connolly and Skibba, + "Marked correlations in galaxy formation models", + Arxiv e-print, 2005, + https://arxiv.org/abs/astro-ph/0511773 + + .. [4] Hawkins, et al., + "The 2dF Galaxy Redshift Survey: correlation functions, + peculiar velocities and the matter density of the Universe", + Monthly Notices of the Royal Astronomical Society, 2002, + http://adsabs.harvard.edu/abs/2003MNRAS.346...78H + + .. [5] https://github.com/scipy/scipy/pull/5647#issuecomment-168474926 + + Examples + -------- + You can count neighbors number between two kd-trees within a distance: + + >>> import numpy as np + >>> from scipy.spatial import KDTree + >>> rng = np.random.default_rng() + >>> points1 = rng.random((5, 2)) + >>> points2 = rng.random((5, 2)) + >>> kd_tree1 = KDTree(points1) + >>> kd_tree2 = KDTree(points2) + >>> kd_tree1.count_neighbors(kd_tree2, 0.2) + 1 + + This number is same as the total pair number calculated by + `query_ball_tree`: + + >>> indexes = kd_tree1.query_ball_tree(kd_tree2, r=0.2) + >>> sum([len(i) for i in indexes]) + 1 + + """ + return super().count_neighbors(other, r, p, weights, cumulative) + + def sparse_distance_matrix( + self, other, max_distance, p=2., output_type='dok_matrix'): + """Compute a sparse distance matrix. + + Computes a distance matrix between two KDTrees, leaving as zero + any distance greater than max_distance. + + Parameters + ---------- + other : KDTree + + max_distance : positive float + + p : float, 1<=p<=infinity + Which Minkowski p-norm to use. + A finite large p may cause a ValueError if overflow can occur. + + output_type : string, optional + Which container to use for output data. Options: 'dok_matrix', + 'coo_matrix', 'dict', or 'ndarray'. Default: 'dok_matrix'. + + .. versionadded:: 1.6.0 + + Returns + ------- + result : dok_matrix, coo_matrix, dict or ndarray + Sparse matrix representing the results in "dictionary of keys" + format. If a dict is returned the keys are (i,j) tuples of indices. + If output_type is 'ndarray' a record array with fields 'i', 'j', + and 'v' is returned, + + Examples + -------- + You can compute a sparse distance matrix between two kd-trees: + + >>> import numpy as np + >>> from scipy.spatial import KDTree + >>> rng = np.random.default_rng() + >>> points1 = rng.random((5, 2)) + >>> points2 = rng.random((5, 2)) + >>> kd_tree1 = KDTree(points1) + >>> kd_tree2 = KDTree(points2) + >>> sdm = kd_tree1.sparse_distance_matrix(kd_tree2, 0.3) + >>> sdm.toarray() + array([[0. , 0. , 0.12295571, 0. , 0. ], + [0. , 0. , 0. , 0. , 0. ], + [0.28942611, 0. , 0. , 0.2333084 , 0. ], + [0. , 0. , 0. , 0. , 0. ], + [0.24617575, 0.29571802, 0.26836782, 0. , 0. ]]) + + You can check distances above the `max_distance` are zeros: + + >>> from scipy.spatial import distance_matrix + >>> distance_matrix(points1, points2) + array([[0.56906522, 0.39923701, 0.12295571, 0.8658745 , 0.79428925], + [0.37327919, 0.7225693 , 0.87665969, 0.32580855, 0.75679479], + [0.28942611, 0.30088013, 0.6395831 , 0.2333084 , 0.33630734], + [0.31994999, 0.72658602, 0.71124834, 0.55396483, 0.90785663], + [0.24617575, 0.29571802, 0.26836782, 0.57714465, 0.6473269 ]]) + + """ + return super().sparse_distance_matrix( + other, max_distance, p, output_type) + + +def distance_matrix(x, y, p=2, threshold=1000000): + """Compute the distance matrix. + + Returns the matrix of all pair-wise distances. + + Parameters + ---------- + x : (M, K) array_like + Matrix of M vectors in K dimensions. + y : (N, K) array_like + Matrix of N vectors in K dimensions. + p : float, 1 <= p <= infinity + Which Minkowski p-norm to use. + threshold : positive int + If ``M * N * K`` > `threshold`, algorithm uses a Python loop instead + of large temporary arrays. + + Returns + ------- + result : (M, N) ndarray + Matrix containing the distance from every vector in `x` to every vector + in `y`. + + Examples + -------- + >>> from scipy.spatial import distance_matrix + >>> distance_matrix([[0,0],[0,1]], [[1,0],[1,1]]) + array([[ 1. , 1.41421356], + [ 1.41421356, 1. ]]) + + """ + + x = np.asarray(x) + m, k = x.shape + y = np.asarray(y) + n, kk = y.shape + + if k != kk: + raise ValueError(f"x contains {k}-dimensional vectors but y contains " + f"{kk}-dimensional vectors") + + if m*n*k <= threshold: + return minkowski_distance(x[:,np.newaxis,:],y[np.newaxis,:,:],p) + else: + result = np.empty((m,n),dtype=float) # FIXME: figure out the best dtype + if m < n: + for i in range(m): + result[i,:] = minkowski_distance(x[i],y,p) + else: + for j in range(n): + result[:,j] = minkowski_distance(x,y[j],p) + return result diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_plotutils.py b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_plotutils.py new file mode 100644 index 0000000000000000000000000000000000000000..9e7e0998a5a75d0cab18effc1ca05ede708c0f0a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_plotutils.py @@ -0,0 +1,270 @@ +import numpy as np +from scipy._lib.decorator import decorator as _decorator + +__all__ = ['delaunay_plot_2d', 'convex_hull_plot_2d', 'voronoi_plot_2d'] + + +@_decorator +def _held_figure(func, obj, ax=None, **kw): + import matplotlib.pyplot as plt + + if ax is None: + fig = plt.figure() + ax = fig.gca() + return func(obj, ax=ax, **kw) + + # As of matplotlib 2.0, the "hold" mechanism is deprecated. + # When matplotlib 1.x is no longer supported, this check can be removed. + was_held = getattr(ax, 'ishold', lambda: True)() + if was_held: + return func(obj, ax=ax, **kw) + try: + ax.hold(True) + return func(obj, ax=ax, **kw) + finally: + ax.hold(was_held) + + +def _adjust_bounds(ax, points): + margin = 0.1 * np.ptp(points, axis=0) + xy_min = points.min(axis=0) - margin + xy_max = points.max(axis=0) + margin + ax.set_xlim(xy_min[0], xy_max[0]) + ax.set_ylim(xy_min[1], xy_max[1]) + + +@_held_figure +def delaunay_plot_2d(tri, ax=None): + """ + Plot the given Delaunay triangulation in 2-D + + Parameters + ---------- + tri : scipy.spatial.Delaunay instance + Triangulation to plot + ax : matplotlib.axes.Axes instance, optional + Axes to plot on + + Returns + ------- + fig : matplotlib.figure.Figure instance + Figure for the plot + + See Also + -------- + Delaunay + matplotlib.pyplot.triplot + + Notes + ----- + Requires Matplotlib. + + Examples + -------- + + >>> import numpy as np + >>> import matplotlib.pyplot as plt + >>> from scipy.spatial import Delaunay, delaunay_plot_2d + + The Delaunay triangulation of a set of random points: + + >>> rng = np.random.default_rng() + >>> points = rng.random((30, 2)) + >>> tri = Delaunay(points) + + Plot it: + + >>> _ = delaunay_plot_2d(tri) + >>> plt.show() + + """ + if tri.points.shape[1] != 2: + raise ValueError("Delaunay triangulation is not 2-D") + + x, y = tri.points.T + ax.plot(x, y, 'o') + ax.triplot(x, y, tri.simplices.copy()) + + _adjust_bounds(ax, tri.points) + + return ax.figure + + +@_held_figure +def convex_hull_plot_2d(hull, ax=None): + """ + Plot the given convex hull diagram in 2-D + + Parameters + ---------- + hull : scipy.spatial.ConvexHull instance + Convex hull to plot + ax : matplotlib.axes.Axes instance, optional + Axes to plot on + + Returns + ------- + fig : matplotlib.figure.Figure instance + Figure for the plot + + See Also + -------- + ConvexHull + + Notes + ----- + Requires Matplotlib. + + + Examples + -------- + + >>> import numpy as np + >>> import matplotlib.pyplot as plt + >>> from scipy.spatial import ConvexHull, convex_hull_plot_2d + + The convex hull of a random set of points: + + >>> rng = np.random.default_rng() + >>> points = rng.random((30, 2)) + >>> hull = ConvexHull(points) + + Plot it: + + >>> _ = convex_hull_plot_2d(hull) + >>> plt.show() + + """ + from matplotlib.collections import LineCollection + + if hull.points.shape[1] != 2: + raise ValueError("Convex hull is not 2-D") + + ax.plot(hull.points[:, 0], hull.points[:, 1], 'o') + line_segments = [hull.points[simplex] for simplex in hull.simplices] + ax.add_collection(LineCollection(line_segments, + colors='k', + linestyle='solid')) + _adjust_bounds(ax, hull.points) + + return ax.figure + + +@_held_figure +def voronoi_plot_2d(vor, ax=None, **kw): + """ + Plot the given Voronoi diagram in 2-D + + Parameters + ---------- + vor : scipy.spatial.Voronoi instance + Diagram to plot + ax : matplotlib.axes.Axes instance, optional + Axes to plot on + show_points : bool, optional + Add the Voronoi points to the plot. + show_vertices : bool, optional + Add the Voronoi vertices to the plot. + line_colors : string, optional + Specifies the line color for polygon boundaries + line_width : float, optional + Specifies the line width for polygon boundaries + line_alpha : float, optional + Specifies the line alpha for polygon boundaries + point_size : float, optional + Specifies the size of points + + Returns + ------- + fig : matplotlib.figure.Figure instance + Figure for the plot + + See Also + -------- + Voronoi + + Notes + ----- + Requires Matplotlib. + + Examples + -------- + >>> import numpy as np + >>> import matplotlib.pyplot as plt + >>> from scipy.spatial import Voronoi, voronoi_plot_2d + + Create a set of points for the example: + + >>> rng = np.random.default_rng() + >>> points = rng.random((10,2)) + + Generate the Voronoi diagram for the points: + + >>> vor = Voronoi(points) + + Use `voronoi_plot_2d` to plot the diagram: + + >>> fig = voronoi_plot_2d(vor) + + Use `voronoi_plot_2d` to plot the diagram again, with some settings + customized: + + >>> fig = voronoi_plot_2d(vor, show_vertices=False, line_colors='orange', + ... line_width=2, line_alpha=0.6, point_size=2) + >>> plt.show() + + """ + from matplotlib.collections import LineCollection + + if vor.points.shape[1] != 2: + raise ValueError("Voronoi diagram is not 2-D") + + if kw.get('show_points', True): + point_size = kw.get('point_size', None) + ax.plot(vor.points[:, 0], vor.points[:, 1], '.', markersize=point_size) + if kw.get('show_vertices', True): + ax.plot(vor.vertices[:, 0], vor.vertices[:, 1], 'o') + + line_colors = kw.get('line_colors', 'k') + line_width = kw.get('line_width', 1.0) + line_alpha = kw.get('line_alpha', 1.0) + + center = vor.points.mean(axis=0) + ptp_bound = np.ptp(vor.points, axis=0) + + finite_segments = [] + infinite_segments = [] + for pointidx, simplex in zip(vor.ridge_points, vor.ridge_vertices): + simplex = np.asarray(simplex) + if np.all(simplex >= 0): + finite_segments.append(vor.vertices[simplex]) + else: + i = simplex[simplex >= 0][0] # finite end Voronoi vertex + + t = vor.points[pointidx[1]] - vor.points[pointidx[0]] # tangent + t /= np.linalg.norm(t) + n = np.array([-t[1], t[0]]) # normal + + midpoint = vor.points[pointidx].mean(axis=0) + direction = np.sign(np.dot(midpoint - center, n)) * n + if (vor.furthest_site): + direction = -direction + aspect_factor = abs(ptp_bound.max() / ptp_bound.min()) + far_point = vor.vertices[i] + direction * ptp_bound.max() * aspect_factor + + infinite_segments.append([vor.vertices[i], far_point]) + + ax.add_collection(LineCollection(finite_segments, + colors=line_colors, + lw=line_width, + alpha=line_alpha, + linestyle='solid')) + ax.add_collection(LineCollection(infinite_segments, + colors=line_colors, + lw=line_width, + alpha=line_alpha, + linestyle='dashed')) + + _adjust_bounds(ax, vor.points) + + return ax.figure diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_procrustes.py b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_procrustes.py new file mode 100644 index 0000000000000000000000000000000000000000..ec460056ca06ebdff007423f91577cbd8f22e24c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_procrustes.py @@ -0,0 +1,132 @@ +""" +This module provides functions to perform full Procrustes analysis. + +This code was originally written by Justin Kucynski and ported over from +scikit-bio by Yoshiki Vazquez-Baeza. +""" + +import numpy as np +from scipy.linalg import orthogonal_procrustes + + +__all__ = ['procrustes'] + + +def procrustes(data1, data2): + r"""Procrustes analysis, a similarity test for two data sets. + + Each input matrix is a set of points or vectors (the rows of the matrix). + The dimension of the space is the number of columns of each matrix. Given + two identically sized matrices, procrustes standardizes both such that: + + - :math:`tr(AA^{T}) = 1`. + + - Both sets of points are centered around the origin. + + Procrustes ([1]_, [2]_) then applies the optimal transform to the second + matrix (including scaling/dilation, rotations, and reflections) to minimize + :math:`M^{2}=\sum(data1-data2)^{2}`, or the sum of the squares of the + pointwise differences between the two input datasets. + + This function was not designed to handle datasets with different numbers of + datapoints (rows). If two data sets have different dimensionality + (different number of columns), simply add columns of zeros to the smaller + of the two. + + Parameters + ---------- + data1 : array_like + Matrix, n rows represent points in k (columns) space `data1` is the + reference data, after it is standardised, the data from `data2` will be + transformed to fit the pattern in `data1` (must have >1 unique points). + data2 : array_like + n rows of data in k space to be fit to `data1`. Must be the same + shape ``(numrows, numcols)`` as data1 (must have >1 unique points). + + Returns + ------- + mtx1 : array_like + A standardized version of `data1`. + mtx2 : array_like + The orientation of `data2` that best fits `data1`. Centered, but not + necessarily :math:`tr(AA^{T}) = 1`. + disparity : float + :math:`M^{2}` as defined above. + + Raises + ------ + ValueError + If the input arrays are not two-dimensional. + If the shape of the input arrays is different. + If the input arrays have zero columns or zero rows. + + See Also + -------- + scipy.linalg.orthogonal_procrustes + scipy.spatial.distance.directed_hausdorff : Another similarity test + for two data sets + + Notes + ----- + - The disparity should not depend on the order of the input matrices, but + the output matrices will, as only the first output matrix is guaranteed + to be scaled such that :math:`tr(AA^{T}) = 1`. + + - Duplicate data points are generally ok, duplicating a data point will + increase its effect on the procrustes fit. + + - The disparity scales as the number of points per input matrix. + + References + ---------- + .. [1] Krzanowski, W. J. (2000). "Principles of Multivariate analysis". + .. [2] Gower, J. C. (1975). "Generalized procrustes analysis". + + Examples + -------- + >>> import numpy as np + >>> from scipy.spatial import procrustes + + The matrix ``b`` is a rotated, shifted, scaled and mirrored version of + ``a`` here: + + >>> a = np.array([[1, 3], [1, 2], [1, 1], [2, 1]], 'd') + >>> b = np.array([[4, -2], [4, -4], [4, -6], [2, -6]], 'd') + >>> mtx1, mtx2, disparity = procrustes(a, b) + >>> round(disparity) + 0.0 + + """ + mtx1 = np.array(data1, dtype=np.float64, copy=True) + mtx2 = np.array(data2, dtype=np.float64, copy=True) + + if mtx1.ndim != 2 or mtx2.ndim != 2: + raise ValueError("Input matrices must be two-dimensional") + if mtx1.shape != mtx2.shape: + raise ValueError("Input matrices must be of same shape") + if mtx1.size == 0: + raise ValueError("Input matrices must be >0 rows and >0 cols") + + # translate all the data to the origin + mtx1 -= np.mean(mtx1, 0) + mtx2 -= np.mean(mtx2, 0) + + norm1 = np.linalg.norm(mtx1) + norm2 = np.linalg.norm(mtx2) + + if norm1 == 0 or norm2 == 0: + raise ValueError("Input matrices must contain >1 unique points") + + # change scaling of data (in rows) such that trace(mtx*mtx') = 1 + mtx1 /= norm1 + mtx2 /= norm2 + + # transform mtx2 to minimize disparity + R, s = orthogonal_procrustes(mtx1, mtx2) + mtx2 = np.dot(mtx2, R.T) * s + + # measure the dissimilarity between the two datasets + disparity = np.sum(np.square(mtx1 - mtx2)) + + return mtx1, mtx2, disparity + diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_qhull.pyi b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_qhull.pyi new file mode 100644 index 0000000000000000000000000000000000000000..416128eab5f53cdc8f45c422bcc140451223bd3f --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_qhull.pyi @@ -0,0 +1,213 @@ +''' +Static type checking stub file for scipy/spatial/qhull.pyx +''' + + +import numpy as np +from numpy.typing import ArrayLike, NDArray +from typing_extensions import final + +class QhullError(RuntimeError): + ... + +@final +class _Qhull: + # Read-only cython attribute that behaves, more or less, like a property + @property + def ndim(self) -> int: ... + mode_option: bytes + options: bytes + furthest_site: bool + + def __init__( + self, + mode_option: bytes, + points: NDArray[np.float64], + options: None | bytes = ..., + required_options: None | bytes = ..., + furthest_site: bool = ..., + incremental: bool = ..., + interior_point: None | NDArray[np.float64] = ..., + ) -> None: ... + def check_active(self) -> None: ... + def close(self) -> None: ... + def get_points(self) -> NDArray[np.float64]: ... + def add_points( + self, + points: ArrayLike, + interior_point: ArrayLike = ... + ) -> None: ... + def get_paraboloid_shift_scale(self) -> tuple[float, float]: ... + def volume_area(self) -> tuple[float, float]: ... + def triangulate(self) -> None: ... + def get_simplex_facet_array(self) -> tuple[ + NDArray[np.intc], + NDArray[np.intc], + NDArray[np.float64], + NDArray[np.intc], + NDArray[np.intc], + ]: ... + def get_hull_points(self) -> NDArray[np.float64]: ... + def get_hull_facets(self) -> tuple[ + list[list[int]], + NDArray[np.float64], + ]: ... + def get_voronoi_diagram(self) -> tuple[ + NDArray[np.float64], + NDArray[np.intc], + list[list[int]], + list[list[int]], + NDArray[np.intp], + ]: ... + def get_extremes_2d(self) -> NDArray[np.intc]: ... + +def _get_barycentric_transforms( + points: NDArray[np.float64], + simplices: NDArray[np.intc], + eps: float +) -> NDArray[np.float64]: ... + +class _QhullUser: + ndim: int + npoints: int + min_bound: NDArray[np.float64] + max_bound: NDArray[np.float64] + + def __init__(self, qhull: _Qhull, incremental: bool = ...) -> None: ... + def close(self) -> None: ... + def _update(self, qhull: _Qhull) -> None: ... + def _add_points( + self, + points: ArrayLike, + restart: bool = ..., + interior_point: ArrayLike = ... + ) -> None: ... + +class Delaunay(_QhullUser): + furthest_site: bool + paraboloid_scale: float + paraboloid_shift: float + simplices: NDArray[np.intc] + neighbors: NDArray[np.intc] + equations: NDArray[np.float64] + coplanar: NDArray[np.intc] + good: NDArray[np.intc] + nsimplex: int + vertices: NDArray[np.intc] + + def __init__( + self, + points: ArrayLike, + furthest_site: bool = ..., + incremental: bool = ..., + qhull_options: None | str = ... + ) -> None: ... + def _update(self, qhull: _Qhull) -> None: ... + def add_points( + self, + points: ArrayLike, + restart: bool = ... + ) -> None: ... + @property + def points(self) -> NDArray[np.float64]: ... + @property + def transform(self) -> NDArray[np.float64]: ... + @property + def vertex_to_simplex(self) -> NDArray[np.intc]: ... + @property + def vertex_neighbor_vertices(self) -> tuple[ + NDArray[np.intc], + NDArray[np.intc], + ]: ... + @property + def convex_hull(self) -> NDArray[np.intc]: ... + def find_simplex( + self, + xi: ArrayLike, + bruteforce: bool = ..., + tol: float = ... + ) -> NDArray[np.intc]: ... + def plane_distance(self, xi: ArrayLike) -> NDArray[np.float64]: ... + def lift_points(self, x: ArrayLike) -> NDArray[np.float64]: ... + +def tsearch(tri: Delaunay, xi: ArrayLike) -> NDArray[np.intc]: ... +def _copy_docstr(dst: object, src: object) -> None: ... + +class ConvexHull(_QhullUser): + simplices: NDArray[np.intc] + neighbors: NDArray[np.intc] + equations: NDArray[np.float64] + coplanar: NDArray[np.intc] + good: None | NDArray[np.bool_] + volume: float + area: float + nsimplex: int + + def __init__( + self, + points: ArrayLike, + incremental: bool = ..., + qhull_options: None | str = ... + ) -> None: ... + def _update(self, qhull: _Qhull) -> None: ... + def add_points(self, points: ArrayLike, + restart: bool = ...) -> None: ... + @property + def points(self) -> NDArray[np.float64]: ... + @property + def vertices(self) -> NDArray[np.intc]: ... + +class Voronoi(_QhullUser): + vertices: NDArray[np.float64] + ridge_points: NDArray[np.intc] + ridge_vertices: list[list[int]] + regions: list[list[int]] + point_region: NDArray[np.intp] + furthest_site: bool + + def __init__( + self, + points: ArrayLike, + furthest_site: bool = ..., + incremental: bool = ..., + qhull_options: None | str = ... + ) -> None: ... + def _update(self, qhull: _Qhull) -> None: ... + def add_points( + self, + points: ArrayLike, + restart: bool = ... + ) -> None: ... + @property + def points(self) -> NDArray[np.float64]: ... + @property + def ridge_dict(self) -> dict[tuple[int, int], list[int]]: ... + +class HalfspaceIntersection(_QhullUser): + interior_point: NDArray[np.float64] + dual_facets: list[list[int]] + dual_equations: NDArray[np.float64] + dual_points: NDArray[np.float64] + dual_volume: float + dual_area: float + intersections: NDArray[np.float64] + ndim: int + nineq: int + + def __init__( + self, + halfspaces: ArrayLike, + interior_point: ArrayLike, + incremental: bool = ..., + qhull_options: None | str = ... + ) -> None: ... + def _update(self, qhull: _Qhull) -> None: ... + def add_halfspaces( + self, + halfspaces: ArrayLike, + restart: bool = ... + ) -> None: ... + @property + def halfspaces(self) -> NDArray[np.float64]: ... + @property + def dual_vertices(self) -> NDArray[np.integer]: ... diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_spherical_voronoi.py b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_spherical_voronoi.py new file mode 100644 index 0000000000000000000000000000000000000000..6b9ba82429235469ada83de917d8f9d65d1a4088 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_spherical_voronoi.py @@ -0,0 +1,341 @@ +""" +Spherical Voronoi Code + +.. versionadded:: 0.18.0 + +""" +# +# Copyright (C) Tyler Reddy, Ross Hemsley, Edd Edmondson, +# Nikolai Nowaczyk, Joe Pitt-Francis, 2015. +# +# Distributed under the same BSD license as SciPy. +# + +import numpy as np +import scipy +from . import _voronoi +from scipy.spatial import cKDTree + +__all__ = ['SphericalVoronoi'] + + +def calculate_solid_angles(R): + """Calculates the solid angles of plane triangles. Implements the method of + Van Oosterom and Strackee [VanOosterom]_ with some modifications. Assumes + that input points have unit norm.""" + # Original method uses a triple product `R1 . (R2 x R3)` for the numerator. + # This is equal to the determinant of the matrix [R1 R2 R3], which can be + # computed with better stability. + numerator = np.linalg.det(R) + denominator = 1 + (np.einsum('ij,ij->i', R[:, 0], R[:, 1]) + + np.einsum('ij,ij->i', R[:, 1], R[:, 2]) + + np.einsum('ij,ij->i', R[:, 2], R[:, 0])) + return np.abs(2 * np.arctan2(numerator, denominator)) + + +class SphericalVoronoi: + """ Voronoi diagrams on the surface of a sphere. + + .. versionadded:: 0.18.0 + + Parameters + ---------- + points : ndarray of floats, shape (npoints, ndim) + Coordinates of points from which to construct a spherical + Voronoi diagram. + radius : float, optional + Radius of the sphere (Default: 1) + center : ndarray of floats, shape (ndim,) + Center of sphere (Default: origin) + threshold : float + Threshold for detecting duplicate points and + mismatches between points and sphere parameters. + (Default: 1e-06) + + Attributes + ---------- + points : double array of shape (npoints, ndim) + the points in `ndim` dimensions to generate the Voronoi diagram from + radius : double + radius of the sphere + center : double array of shape (ndim,) + center of the sphere + vertices : double array of shape (nvertices, ndim) + Voronoi vertices corresponding to points + regions : list of list of integers of shape (npoints, _ ) + the n-th entry is a list consisting of the indices + of the vertices belonging to the n-th point in points + + Methods + ------- + calculate_areas + Calculates the areas of the Voronoi regions. For 2D point sets, the + regions are circular arcs. The sum of the areas is `2 * pi * radius`. + For 3D point sets, the regions are spherical polygons. The sum of the + areas is `4 * pi * radius**2`. + + Raises + ------ + ValueError + If there are duplicates in `points`. + If the provided `radius` is not consistent with `points`. + + Notes + ----- + The spherical Voronoi diagram algorithm proceeds as follows. The Convex + Hull of the input points (generators) is calculated, and is equivalent to + their Delaunay triangulation on the surface of the sphere [Caroli]_. + The Convex Hull neighbour information is then used to + order the Voronoi region vertices around each generator. The latter + approach is substantially less sensitive to floating point issues than + angle-based methods of Voronoi region vertex sorting. + + Empirical assessment of spherical Voronoi algorithm performance suggests + quadratic time complexity (loglinear is optimal, but algorithms are more + challenging to implement). + + References + ---------- + .. [Caroli] Caroli et al. Robust and Efficient Delaunay triangulations of + points on or close to a sphere. Research Report RR-7004, 2009. + + .. [VanOosterom] Van Oosterom and Strackee. The solid angle of a plane + triangle. IEEE Transactions on Biomedical Engineering, + 2, 1983, pp 125--126. + + See Also + -------- + Voronoi : Conventional Voronoi diagrams in N dimensions. + + Examples + -------- + Do some imports and take some points on a cube: + + >>> import numpy as np + >>> import matplotlib.pyplot as plt + >>> from scipy.spatial import SphericalVoronoi, geometric_slerp + >>> from mpl_toolkits.mplot3d import proj3d + >>> # set input data + >>> points = np.array([[0, 0, 1], [0, 0, -1], [1, 0, 0], + ... [0, 1, 0], [0, -1, 0], [-1, 0, 0], ]) + + Calculate the spherical Voronoi diagram: + + >>> radius = 1 + >>> center = np.array([0, 0, 0]) + >>> sv = SphericalVoronoi(points, radius, center) + + Generate plot: + + >>> # sort vertices (optional, helpful for plotting) + >>> sv.sort_vertices_of_regions() + >>> t_vals = np.linspace(0, 1, 2000) + >>> fig = plt.figure() + >>> ax = fig.add_subplot(111, projection='3d') + >>> # plot the unit sphere for reference (optional) + >>> u = np.linspace(0, 2 * np.pi, 100) + >>> v = np.linspace(0, np.pi, 100) + >>> x = np.outer(np.cos(u), np.sin(v)) + >>> y = np.outer(np.sin(u), np.sin(v)) + >>> z = np.outer(np.ones(np.size(u)), np.cos(v)) + >>> ax.plot_surface(x, y, z, color='y', alpha=0.1) + >>> # plot generator points + >>> ax.scatter(points[:, 0], points[:, 1], points[:, 2], c='b') + >>> # plot Voronoi vertices + >>> ax.scatter(sv.vertices[:, 0], sv.vertices[:, 1], sv.vertices[:, 2], + ... c='g') + >>> # indicate Voronoi regions (as Euclidean polygons) + >>> for region in sv.regions: + ... n = len(region) + ... for i in range(n): + ... start = sv.vertices[region][i] + ... end = sv.vertices[region][(i + 1) % n] + ... result = geometric_slerp(start, end, t_vals) + ... ax.plot(result[..., 0], + ... result[..., 1], + ... result[..., 2], + ... c='k') + >>> ax.azim = 10 + >>> ax.elev = 40 + >>> _ = ax.set_xticks([]) + >>> _ = ax.set_yticks([]) + >>> _ = ax.set_zticks([]) + >>> fig.set_size_inches(4, 4) + >>> plt.show() + + """ + def __init__(self, points, radius=1, center=None, threshold=1e-06): + + if radius is None: + raise ValueError('`radius` is `None`. ' + 'Please provide a floating point number ' + '(i.e. `radius=1`).') + + self.radius = float(radius) + self.points = np.array(points).astype(np.float64) + self._dim = self.points.shape[1] + if center is None: + self.center = np.zeros(self._dim) + else: + self.center = np.array(center, dtype=float) + + # test degenerate input + self._rank = np.linalg.matrix_rank(self.points - self.points[0], + tol=threshold * self.radius) + if self._rank < self._dim: + raise ValueError(f"Rank of input points must be at least {self._dim}") + + if cKDTree(self.points).query_pairs(threshold * self.radius): + raise ValueError("Duplicate generators present.") + + radii = np.linalg.norm(self.points - self.center, axis=1) + max_discrepancy = np.abs(radii - self.radius).max() + if max_discrepancy >= threshold * self.radius: + raise ValueError("Radius inconsistent with generators.") + + self._calc_vertices_regions() + + def _calc_vertices_regions(self): + """ + Calculates the Voronoi vertices and regions of the generators stored + in self.points. The vertices will be stored in self.vertices and the + regions in self.regions. + + This algorithm was discussed at PyData London 2015 by + Tyler Reddy, Ross Hemsley and Nikolai Nowaczyk + """ + # get Convex Hull + conv = scipy.spatial.ConvexHull(self.points) + # get circumcenters of Convex Hull triangles from facet equations + # for 3D input circumcenters will have shape: (2N-4, 3) + self.vertices = self.radius * conv.equations[:, :-1] + self.center + self._simplices = conv.simplices + # calculate regions from triangulation + # for 3D input simplex_indices will have shape: (2N-4,) + simplex_indices = np.arange(len(self._simplices)) + # for 3D input tri_indices will have shape: (6N-12,) + tri_indices = np.column_stack([simplex_indices] * self._dim).ravel() + # for 3D input point_indices will have shape: (6N-12,) + point_indices = self._simplices.ravel() + # for 3D input indices will have shape: (6N-12,) + indices = np.argsort(point_indices, kind='mergesort') + # for 3D input flattened_groups will have shape: (6N-12,) + flattened_groups = tri_indices[indices].astype(np.intp) + # intervals will have shape: (N+1,) + intervals = np.cumsum(np.bincount(point_indices + 1)) + # split flattened groups to get nested list of unsorted regions + groups = [list(flattened_groups[intervals[i]:intervals[i + 1]]) + for i in range(len(intervals) - 1)] + self.regions = groups + + def sort_vertices_of_regions(self): + """Sort indices of the vertices to be (counter-)clockwise ordered. + + Raises + ------ + TypeError + If the points are not three-dimensional. + + Notes + ----- + For each region in regions, it sorts the indices of the Voronoi + vertices such that the resulting points are in a clockwise or + counterclockwise order around the generator point. + + This is done as follows: Recall that the n-th region in regions + surrounds the n-th generator in points and that the k-th + Voronoi vertex in vertices is the circumcenter of the k-th triangle + in self._simplices. For each region n, we choose the first triangle + (=Voronoi vertex) in self._simplices and a vertex of that triangle + not equal to the center n. These determine a unique neighbor of that + triangle, which is then chosen as the second triangle. The second + triangle will have a unique vertex not equal to the current vertex or + the center. This determines a unique neighbor of the second triangle, + which is then chosen as the third triangle and so forth. We proceed + through all the triangles (=Voronoi vertices) belonging to the + generator in points and obtain a sorted version of the vertices + of its surrounding region. + """ + if self._dim != 3: + raise TypeError("Only supported for three-dimensional point sets") + _voronoi.sort_vertices_of_regions(self._simplices, self.regions) + + def _calculate_areas_3d(self): + self.sort_vertices_of_regions() + sizes = [len(region) for region in self.regions] + csizes = np.cumsum(sizes) + num_regions = csizes[-1] + + # We create a set of triangles consisting of one point and two Voronoi + # vertices. The vertices of each triangle are adjacent in the sorted + # regions list. + point_indices = [i for i, size in enumerate(sizes) + for j in range(size)] + + nbrs1 = np.array([r for region in self.regions for r in region]) + + # The calculation of nbrs2 is a vectorized version of: + # np.array([r for region in self.regions for r in np.roll(region, 1)]) + nbrs2 = np.roll(nbrs1, 1) + indices = np.roll(csizes, 1) + indices[0] = 0 + nbrs2[indices] = nbrs1[csizes - 1] + + # Normalize points and vertices. + pnormalized = (self.points - self.center) / self.radius + vnormalized = (self.vertices - self.center) / self.radius + + # Create the complete set of triangles and calculate their solid angles + triangles = np.hstack([pnormalized[point_indices], + vnormalized[nbrs1], + vnormalized[nbrs2] + ]).reshape((num_regions, 3, 3)) + triangle_solid_angles = calculate_solid_angles(triangles) + + # Sum the solid angles of the triangles in each region + solid_angles = np.cumsum(triangle_solid_angles)[csizes - 1] + solid_angles[1:] -= solid_angles[:-1] + + # Get polygon areas using A = omega * r**2 + return solid_angles * self.radius**2 + + def _calculate_areas_2d(self): + # Find start and end points of arcs + arcs = self.points[self._simplices] - self.center + + # Calculate the angle subtended by arcs + d = np.sum((arcs[:, 1] - arcs[:, 0]) ** 2, axis=1) + theta = np.arccos(1 - (d / (2 * (self.radius ** 2)))) + + # Get areas using A = r * theta + areas = self.radius * theta + + # Correct arcs which go the wrong way (single-hemisphere inputs) + signs = np.sign(np.einsum('ij,ij->i', arcs[:, 0], + self.vertices - self.center)) + indices = np.where(signs < 0) + areas[indices] = 2 * np.pi * self.radius - areas[indices] + return areas + + def calculate_areas(self): + """Calculates the areas of the Voronoi regions. + + For 2D point sets, the regions are circular arcs. The sum of the areas + is `2 * pi * radius`. + + For 3D point sets, the regions are spherical polygons. The sum of the + areas is `4 * pi * radius**2`. + + .. versionadded:: 1.5.0 + + Returns + ------- + areas : double array of shape (npoints,) + The areas of the Voronoi regions. + """ + if self._dim == 2: + return self._calculate_areas_2d() + elif self._dim == 3: + return self._calculate_areas_3d() + else: + raise TypeError("Only supported for 2D and 3D point sets") diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_voronoi.cpython-310-x86_64-linux-gnu.so b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_voronoi.cpython-310-x86_64-linux-gnu.so new file mode 100644 index 0000000000000000000000000000000000000000..9bef11278f0426ef4aeebc3d570ebb97efb3070e Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_voronoi.cpython-310-x86_64-linux-gnu.so differ diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_voronoi.pyi b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_voronoi.pyi new file mode 100644 index 0000000000000000000000000000000000000000..c7c361ff69414d50a6ebcfe2c837025b60083940 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_voronoi.pyi @@ -0,0 +1,4 @@ + +import numpy as np + +def sort_vertices_of_regions(simplices: np.ndarray, regions: list[list[int]]) -> None: ... # noqa: E501 diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/ckdtree.py b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/ckdtree.py new file mode 100644 index 0000000000000000000000000000000000000000..b838f29cc0d9af6dfd672a15a0337ca680f9eeaf --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/ckdtree.py @@ -0,0 +1,27 @@ +# This file is not meant for public use and will be removed in SciPy v2.0.0. +# Use the `scipy.spatial` namespace for importing the functions +# included below. + +from scipy._lib.deprecation import _sub_module_deprecation + + +__all__ = [ # noqa: F822 + 'cKDTree', + 'cKDTreeNode', + 'coo_entries', + 'operator', + 'ordered_pairs', + 'os', + 'scipy', + 'threading', +] + + +def __dir__(): + return __all__ + + +def __getattr__(name): + return _sub_module_deprecation(sub_package="spatial", module="ckdtree", + private_modules=["_ckdtree"], all=__all__, + attribute=name) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/distance.py b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/distance.py new file mode 100644 index 0000000000000000000000000000000000000000..d57a0472953b4d91888bf0def7b6a3f007c4c3b7 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/distance.py @@ -0,0 +1,2993 @@ +""" +Distance computations (:mod:`scipy.spatial.distance`) +===================================================== + +.. sectionauthor:: Damian Eads + +Function reference +------------------ + +Distance matrix computation from a collection of raw observation vectors +stored in a rectangular array. + +.. autosummary:: + :toctree: generated/ + + pdist -- pairwise distances between observation vectors. + cdist -- distances between two collections of observation vectors + squareform -- convert distance matrix to a condensed one and vice versa + directed_hausdorff -- directed Hausdorff distance between arrays + +Predicates for checking the validity of distance matrices, both +condensed and redundant. Also contained in this module are functions +for computing the number of observations in a distance matrix. + +.. autosummary:: + :toctree: generated/ + + is_valid_dm -- checks for a valid distance matrix + is_valid_y -- checks for a valid condensed distance matrix + num_obs_dm -- # of observations in a distance matrix + num_obs_y -- # of observations in a condensed distance matrix + +Distance functions between two numeric vectors ``u`` and ``v``. Computing +distances over a large collection of vectors is inefficient for these +functions. Use ``pdist`` for this purpose. + +.. autosummary:: + :toctree: generated/ + + braycurtis -- the Bray-Curtis distance. + canberra -- the Canberra distance. + chebyshev -- the Chebyshev distance. + cityblock -- the Manhattan distance. + correlation -- the Correlation distance. + cosine -- the Cosine distance. + euclidean -- the Euclidean distance. + jensenshannon -- the Jensen-Shannon distance. + mahalanobis -- the Mahalanobis distance. + minkowski -- the Minkowski distance. + seuclidean -- the normalized Euclidean distance. + sqeuclidean -- the squared Euclidean distance. + +Distance functions between two boolean vectors (representing sets) ``u`` and +``v``. As in the case of numerical vectors, ``pdist`` is more efficient for +computing the distances between all pairs. + +.. autosummary:: + :toctree: generated/ + + dice -- the Dice dissimilarity. + hamming -- the Hamming distance. + jaccard -- the Jaccard distance. + kulczynski1 -- the Kulczynski 1 distance. + rogerstanimoto -- the Rogers-Tanimoto dissimilarity. + russellrao -- the Russell-Rao dissimilarity. + sokalmichener -- the Sokal-Michener dissimilarity. + sokalsneath -- the Sokal-Sneath dissimilarity. + yule -- the Yule dissimilarity. + +:func:`hamming` also operates over discrete numerical vectors. +""" + +# Copyright (C) Damian Eads, 2007-2008. New BSD License. + +__all__ = [ + 'braycurtis', + 'canberra', + 'cdist', + 'chebyshev', + 'cityblock', + 'correlation', + 'cosine', + 'dice', + 'directed_hausdorff', + 'euclidean', + 'hamming', + 'is_valid_dm', + 'is_valid_y', + 'jaccard', + 'jensenshannon', + 'kulczynski1', + 'mahalanobis', + 'minkowski', + 'num_obs_dm', + 'num_obs_y', + 'pdist', + 'rogerstanimoto', + 'russellrao', + 'seuclidean', + 'sokalmichener', + 'sokalsneath', + 'sqeuclidean', + 'squareform', + 'yule' +] + + +import math +import warnings +import numpy as np +import dataclasses + +from typing import Optional, Callable + +from functools import partial +from scipy._lib._util import _asarray_validated + +from . import _distance_wrap +from . import _hausdorff +from ..linalg import norm +from ..special import rel_entr + +from . import _distance_pybind + + +def _copy_array_if_base_present(a): + """Copy the array if its base points to a parent array.""" + if a.base is not None: + return a.copy() + return a + + +def _correlation_cdist_wrap(XA, XB, dm, **kwargs): + XA = XA - XA.mean(axis=1, keepdims=True) + XB = XB - XB.mean(axis=1, keepdims=True) + _distance_wrap.cdist_cosine_double_wrap(XA, XB, dm, **kwargs) + + +def _correlation_pdist_wrap(X, dm, **kwargs): + X2 = X - X.mean(axis=1, keepdims=True) + _distance_wrap.pdist_cosine_double_wrap(X2, dm, **kwargs) + + +def _convert_to_type(X, out_type): + return np.ascontiguousarray(X, dtype=out_type) + + +def _nbool_correspond_all(u, v, w=None): + if u.dtype == v.dtype == bool and w is None: + not_u = ~u + not_v = ~v + nff = (not_u & not_v).sum() + nft = (not_u & v).sum() + ntf = (u & not_v).sum() + ntt = (u & v).sum() + else: + dtype = np.result_type(int, u.dtype, v.dtype) + u = u.astype(dtype) + v = v.astype(dtype) + not_u = 1.0 - u + not_v = 1.0 - v + if w is not None: + not_u = w * not_u + u = w * u + nff = (not_u * not_v).sum() + nft = (not_u * v).sum() + ntf = (u * not_v).sum() + ntt = (u * v).sum() + return (nff, nft, ntf, ntt) + + +def _nbool_correspond_ft_tf(u, v, w=None): + if u.dtype == v.dtype == bool and w is None: + not_u = ~u + not_v = ~v + nft = (not_u & v).sum() + ntf = (u & not_v).sum() + else: + dtype = np.result_type(int, u.dtype, v.dtype) + u = u.astype(dtype) + v = v.astype(dtype) + not_u = 1.0 - u + not_v = 1.0 - v + if w is not None: + not_u = w * not_u + u = w * u + nft = (not_u * v).sum() + ntf = (u * not_v).sum() + return (nft, ntf) + + +def _validate_cdist_input(XA, XB, mA, mB, n, metric_info, **kwargs): + # get supported types + types = metric_info.types + # choose best type + typ = types[types.index(XA.dtype)] if XA.dtype in types else types[0] + # validate data + XA = _convert_to_type(XA, out_type=typ) + XB = _convert_to_type(XB, out_type=typ) + + # validate kwargs + _validate_kwargs = metric_info.validator + if _validate_kwargs: + kwargs = _validate_kwargs((XA, XB), mA + mB, n, **kwargs) + return XA, XB, typ, kwargs + + +def _validate_weight_with_size(X, m, n, **kwargs): + w = kwargs.pop('w', None) + if w is None: + return kwargs + + if w.ndim != 1 or w.shape[0] != n: + raise ValueError("Weights must have same size as input vector. " + f"{w.shape[0]} vs. {n}") + + kwargs['w'] = _validate_weights(w) + return kwargs + + +def _validate_hamming_kwargs(X, m, n, **kwargs): + w = kwargs.get('w', np.ones((n,), dtype='double')) + + if w.ndim != 1 or w.shape[0] != n: + raise ValueError( + "Weights must have same size as input vector. %d vs. %d" % (w.shape[0], n) + ) + + kwargs['w'] = _validate_weights(w) + return kwargs + + +def _validate_mahalanobis_kwargs(X, m, n, **kwargs): + VI = kwargs.pop('VI', None) + if VI is None: + if m <= n: + # There are fewer observations than the dimension of + # the observations. + raise ValueError("The number of observations (%d) is too " + "small; the covariance matrix is " + "singular. For observations with %d " + "dimensions, at least %d observations " + "are required." % (m, n, n + 1)) + if isinstance(X, tuple): + X = np.vstack(X) + CV = np.atleast_2d(np.cov(X.astype(np.float64, copy=False).T)) + VI = np.linalg.inv(CV).T.copy() + kwargs["VI"] = _convert_to_double(VI) + return kwargs + + +def _validate_minkowski_kwargs(X, m, n, **kwargs): + kwargs = _validate_weight_with_size(X, m, n, **kwargs) + if 'p' not in kwargs: + kwargs['p'] = 2. + else: + if kwargs['p'] <= 0: + raise ValueError("p must be greater than 0") + + return kwargs + + +def _validate_pdist_input(X, m, n, metric_info, **kwargs): + # get supported types + types = metric_info.types + # choose best type + typ = types[types.index(X.dtype)] if X.dtype in types else types[0] + # validate data + X = _convert_to_type(X, out_type=typ) + + # validate kwargs + _validate_kwargs = metric_info.validator + if _validate_kwargs: + kwargs = _validate_kwargs(X, m, n, **kwargs) + return X, typ, kwargs + + +def _validate_seuclidean_kwargs(X, m, n, **kwargs): + V = kwargs.pop('V', None) + if V is None: + if isinstance(X, tuple): + X = np.vstack(X) + V = np.var(X.astype(np.float64, copy=False), axis=0, ddof=1) + else: + V = np.asarray(V, order='c') + if len(V.shape) != 1: + raise ValueError('Variance vector V must ' + 'be one-dimensional.') + if V.shape[0] != n: + raise ValueError('Variance vector V must be of the same ' + 'dimension as the vectors on which the distances ' + 'are computed.') + kwargs['V'] = _convert_to_double(V) + return kwargs + + +def _validate_vector(u, dtype=None): + # XXX Is order='c' really necessary? + u = np.asarray(u, dtype=dtype, order='c') + if u.ndim == 1: + return u + raise ValueError("Input vector should be 1-D.") + + +def _validate_weights(w, dtype=np.float64): + w = _validate_vector(w, dtype=dtype) + if np.any(w < 0): + raise ValueError("Input weights should be all non-negative") + return w + + +def directed_hausdorff(u, v, seed=0): + """ + Compute the directed Hausdorff distance between two 2-D arrays. + + Distances between pairs are calculated using a Euclidean metric. + + Parameters + ---------- + u : (M,N) array_like + Input array with M points in N dimensions. + v : (O,N) array_like + Input array with O points in N dimensions. + seed : int or None, optional + Local `numpy.random.RandomState` seed. Default is 0, a random + shuffling of u and v that guarantees reproducibility. + + Returns + ------- + d : double + The directed Hausdorff distance between arrays `u` and `v`, + + index_1 : int + index of point contributing to Hausdorff pair in `u` + + index_2 : int + index of point contributing to Hausdorff pair in `v` + + Raises + ------ + ValueError + An exception is thrown if `u` and `v` do not have + the same number of columns. + + See Also + -------- + scipy.spatial.procrustes : Another similarity test for two data sets + + Notes + ----- + Uses the early break technique and the random sampling approach + described by [1]_. Although worst-case performance is ``O(m * o)`` + (as with the brute force algorithm), this is unlikely in practice + as the input data would have to require the algorithm to explore + every single point interaction, and after the algorithm shuffles + the input points at that. The best case performance is O(m), which + is satisfied by selecting an inner loop distance that is less than + cmax and leads to an early break as often as possible. The authors + have formally shown that the average runtime is closer to O(m). + + .. versionadded:: 0.19.0 + + References + ---------- + .. [1] A. A. Taha and A. Hanbury, "An efficient algorithm for + calculating the exact Hausdorff distance." IEEE Transactions On + Pattern Analysis And Machine Intelligence, vol. 37 pp. 2153-63, + 2015. + + Examples + -------- + Find the directed Hausdorff distance between two 2-D arrays of + coordinates: + + >>> from scipy.spatial.distance import directed_hausdorff + >>> import numpy as np + >>> u = np.array([(1.0, 0.0), + ... (0.0, 1.0), + ... (-1.0, 0.0), + ... (0.0, -1.0)]) + >>> v = np.array([(2.0, 0.0), + ... (0.0, 2.0), + ... (-2.0, 0.0), + ... (0.0, -4.0)]) + + >>> directed_hausdorff(u, v)[0] + 2.23606797749979 + >>> directed_hausdorff(v, u)[0] + 3.0 + + Find the general (symmetric) Hausdorff distance between two 2-D + arrays of coordinates: + + >>> max(directed_hausdorff(u, v)[0], directed_hausdorff(v, u)[0]) + 3.0 + + Find the indices of the points that generate the Hausdorff distance + (the Hausdorff pair): + + >>> directed_hausdorff(v, u)[1:] + (3, 3) + + """ + u = np.asarray(u, dtype=np.float64, order='c') + v = np.asarray(v, dtype=np.float64, order='c') + if u.shape[1] != v.shape[1]: + raise ValueError('u and v need to have the same ' + 'number of columns') + result = _hausdorff.directed_hausdorff(u, v, seed) + return result + + +def minkowski(u, v, p=2, w=None): + """ + Compute the Minkowski distance between two 1-D arrays. + + The Minkowski distance between 1-D arrays `u` and `v`, + is defined as + + .. math:: + + {\\|u-v\\|}_p = (\\sum{|u_i - v_i|^p})^{1/p}. + + + \\left(\\sum{w_i(|(u_i - v_i)|^p)}\\right)^{1/p}. + + Parameters + ---------- + u : (N,) array_like + Input array. + v : (N,) array_like + Input array. + p : scalar + The order of the norm of the difference :math:`{\\|u-v\\|}_p`. Note + that for :math:`0 < p < 1`, the triangle inequality only holds with + an additional multiplicative factor, i.e. it is only a quasi-metric. + w : (N,) array_like, optional + The weights for each value in `u` and `v`. Default is None, + which gives each value a weight of 1.0 + + Returns + ------- + minkowski : double + The Minkowski distance between vectors `u` and `v`. + + Examples + -------- + >>> from scipy.spatial import distance + >>> distance.minkowski([1, 0, 0], [0, 1, 0], 1) + 2.0 + >>> distance.minkowski([1, 0, 0], [0, 1, 0], 2) + 1.4142135623730951 + >>> distance.minkowski([1, 0, 0], [0, 1, 0], 3) + 1.2599210498948732 + >>> distance.minkowski([1, 1, 0], [0, 1, 0], 1) + 1.0 + >>> distance.minkowski([1, 1, 0], [0, 1, 0], 2) + 1.0 + >>> distance.minkowski([1, 1, 0], [0, 1, 0], 3) + 1.0 + + """ + u = _validate_vector(u) + v = _validate_vector(v) + if p <= 0: + raise ValueError("p must be greater than 0") + u_v = u - v + if w is not None: + w = _validate_weights(w) + if p == 1: + root_w = w + elif p == 2: + # better precision and speed + root_w = np.sqrt(w) + elif p == np.inf: + root_w = (w != 0) + else: + root_w = np.power(w, 1/p) + u_v = root_w * u_v + dist = norm(u_v, ord=p) + return dist + + +def euclidean(u, v, w=None): + """ + Computes the Euclidean distance between two 1-D arrays. + + The Euclidean distance between 1-D arrays `u` and `v`, is defined as + + .. math:: + + {\\|u-v\\|}_2 + + \\left(\\sum{(w_i |(u_i - v_i)|^2)}\\right)^{1/2} + + Parameters + ---------- + u : (N,) array_like + Input array. + v : (N,) array_like + Input array. + w : (N,) array_like, optional + The weights for each value in `u` and `v`. Default is None, + which gives each value a weight of 1.0 + + Returns + ------- + euclidean : double + The Euclidean distance between vectors `u` and `v`. + + Examples + -------- + >>> from scipy.spatial import distance + >>> distance.euclidean([1, 0, 0], [0, 1, 0]) + 1.4142135623730951 + >>> distance.euclidean([1, 1, 0], [0, 1, 0]) + 1.0 + + """ + return minkowski(u, v, p=2, w=w) + + +def sqeuclidean(u, v, w=None): + """ + Compute the squared Euclidean distance between two 1-D arrays. + + The squared Euclidean distance between `u` and `v` is defined as + + .. math:: + + \\sum_i{w_i |u_i - v_i|^2} + + Parameters + ---------- + u : (N,) array_like + Input array. + v : (N,) array_like + Input array. + w : (N,) array_like, optional + The weights for each value in `u` and `v`. Default is None, + which gives each value a weight of 1.0 + + Returns + ------- + sqeuclidean : double + The squared Euclidean distance between vectors `u` and `v`. + + Examples + -------- + >>> from scipy.spatial import distance + >>> distance.sqeuclidean([1, 0, 0], [0, 1, 0]) + 2.0 + >>> distance.sqeuclidean([1, 1, 0], [0, 1, 0]) + 1.0 + + """ + # Preserve float dtypes, but convert everything else to np.float64 + # for stability. + utype, vtype = None, None + if not (hasattr(u, "dtype") and np.issubdtype(u.dtype, np.inexact)): + utype = np.float64 + if not (hasattr(v, "dtype") and np.issubdtype(v.dtype, np.inexact)): + vtype = np.float64 + + u = _validate_vector(u, dtype=utype) + v = _validate_vector(v, dtype=vtype) + u_v = u - v + u_v_w = u_v # only want weights applied once + if w is not None: + w = _validate_weights(w) + u_v_w = w * u_v + return np.dot(u_v, u_v_w) + + +def correlation(u, v, w=None, centered=True): + """ + Compute the correlation distance between two 1-D arrays. + + The correlation distance between `u` and `v`, is + defined as + + .. math:: + + 1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})} + {{\\|(u - \\bar{u})\\|}_2 {\\|(v - \\bar{v})\\|}_2} + + where :math:`\\bar{u}` is the mean of the elements of `u` + and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`. + + Parameters + ---------- + u : (N,) array_like + Input array. + v : (N,) array_like + Input array. + w : (N,) array_like, optional + The weights for each value in `u` and `v`. Default is None, + which gives each value a weight of 1.0 + centered : bool, optional + If True, `u` and `v` will be centered. Default is True. + + Returns + ------- + correlation : double + The correlation distance between 1-D array `u` and `v`. + + Examples + -------- + Find the correlation between two arrays. + + >>> from scipy.spatial.distance import correlation + >>> correlation([1, 0, 1], [1, 1, 0]) + 1.5 + + Using a weighting array, the correlation can be calculated as: + + >>> correlation([1, 0, 1], [1, 1, 0], w=[0.9, 0.1, 0.1]) + 1.1 + + If centering is not needed, the correlation can be calculated as: + + >>> correlation([1, 0, 1], [1, 1, 0], centered=False) + 0.5 + """ + u = _validate_vector(u) + v = _validate_vector(v) + if w is not None: + w = _validate_weights(w) + w = w / w.sum() + if centered: + if w is not None: + umu = np.dot(u, w) + vmu = np.dot(v, w) + else: + umu = np.mean(u) + vmu = np.mean(v) + u = u - umu + v = v - vmu + if w is not None: + vw = v * w + uw = u * w + else: + vw, uw = v, u + uv = np.dot(u, vw) + uu = np.dot(u, uw) + vv = np.dot(v, vw) + dist = 1.0 - uv / math.sqrt(uu * vv) + # Clip the result to avoid rounding error + return np.clip(dist, 0.0, 2.0) + + +def cosine(u, v, w=None): + """ + Compute the Cosine distance between 1-D arrays. + + The Cosine distance between `u` and `v`, is defined as + + .. math:: + + 1 - \\frac{u \\cdot v} + {\\|u\\|_2 \\|v\\|_2}. + + where :math:`u \\cdot v` is the dot product of :math:`u` and + :math:`v`. + + Parameters + ---------- + u : (N,) array_like + Input array. + v : (N,) array_like + Input array. + w : (N,) array_like, optional + The weights for each value in `u` and `v`. Default is None, + which gives each value a weight of 1.0 + + Returns + ------- + cosine : double + The Cosine distance between vectors `u` and `v`. + + Examples + -------- + >>> from scipy.spatial import distance + >>> distance.cosine([1, 0, 0], [0, 1, 0]) + 1.0 + >>> distance.cosine([100, 0, 0], [0, 1, 0]) + 1.0 + >>> distance.cosine([1, 1, 0], [0, 1, 0]) + 0.29289321881345254 + + """ + # cosine distance is also referred to as 'uncentered correlation', + # or 'reflective correlation' + return correlation(u, v, w=w, centered=False) + + +def hamming(u, v, w=None): + """ + Compute the Hamming distance between two 1-D arrays. + + The Hamming distance between 1-D arrays `u` and `v`, is simply the + proportion of disagreeing components in `u` and `v`. If `u` and `v` are + boolean vectors, the Hamming distance is + + .. math:: + + \\frac{c_{01} + c_{10}}{n} + + where :math:`c_{ij}` is the number of occurrences of + :math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for + :math:`k < n`. + + Parameters + ---------- + u : (N,) array_like + Input array. + v : (N,) array_like + Input array. + w : (N,) array_like, optional + The weights for each value in `u` and `v`. Default is None, + which gives each value a weight of 1.0 + + Returns + ------- + hamming : double + The Hamming distance between vectors `u` and `v`. + + Examples + -------- + >>> from scipy.spatial import distance + >>> distance.hamming([1, 0, 0], [0, 1, 0]) + 0.66666666666666663 + >>> distance.hamming([1, 0, 0], [1, 1, 0]) + 0.33333333333333331 + >>> distance.hamming([1, 0, 0], [2, 0, 0]) + 0.33333333333333331 + >>> distance.hamming([1, 0, 0], [3, 0, 0]) + 0.33333333333333331 + + """ + u = _validate_vector(u) + v = _validate_vector(v) + if u.shape != v.shape: + raise ValueError('The 1d arrays must have equal lengths.') + u_ne_v = u != v + if w is not None: + w = _validate_weights(w) + if w.shape != u.shape: + raise ValueError("'w' should have the same length as 'u' and 'v'.") + w = w / w.sum() + return np.dot(u_ne_v, w) + return np.mean(u_ne_v) + + +def jaccard(u, v, w=None): + """ + Compute the Jaccard-Needham dissimilarity between two boolean 1-D arrays. + + The Jaccard-Needham dissimilarity between 1-D boolean arrays `u` and `v`, + is defined as + + .. math:: + + \\frac{c_{TF} + c_{FT}} + {c_{TT} + c_{FT} + c_{TF}} + + where :math:`c_{ij}` is the number of occurrences of + :math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for + :math:`k < n`. + + Parameters + ---------- + u : (N,) array_like, bool + Input array. + v : (N,) array_like, bool + Input array. + w : (N,) array_like, optional + The weights for each value in `u` and `v`. Default is None, + which gives each value a weight of 1.0 + + Returns + ------- + jaccard : double + The Jaccard distance between vectors `u` and `v`. + + Notes + ----- + When both `u` and `v` lead to a `0/0` division i.e. there is no overlap + between the items in the vectors the returned distance is 0. See the + Wikipedia page on the Jaccard index [1]_, and this paper [2]_. + + .. versionchanged:: 1.2.0 + Previously, when `u` and `v` lead to a `0/0` division, the function + would return NaN. This was changed to return 0 instead. + + References + ---------- + .. [1] https://en.wikipedia.org/wiki/Jaccard_index + .. [2] S. Kosub, "A note on the triangle inequality for the Jaccard + distance", 2016, :arxiv:`1612.02696` + + Examples + -------- + >>> from scipy.spatial import distance + >>> distance.jaccard([1, 0, 0], [0, 1, 0]) + 1.0 + >>> distance.jaccard([1, 0, 0], [1, 1, 0]) + 0.5 + >>> distance.jaccard([1, 0, 0], [1, 2, 0]) + 0.5 + >>> distance.jaccard([1, 0, 0], [1, 1, 1]) + 0.66666666666666663 + + """ + u = _validate_vector(u) + v = _validate_vector(v) + + nonzero = np.bitwise_or(u != 0, v != 0) + unequal_nonzero = np.bitwise_and((u != v), nonzero) + if w is not None: + w = _validate_weights(w) + nonzero = w * nonzero + unequal_nonzero = w * unequal_nonzero + a = np.float64(unequal_nonzero.sum()) + b = np.float64(nonzero.sum()) + return (a / b) if b != 0 else 0 + + +def kulczynski1(u, v, *, w=None): + """ + Compute the Kulczynski 1 dissimilarity between two boolean 1-D arrays. + + The Kulczynski 1 dissimilarity between two boolean 1-D arrays `u` and `v` + of length ``n``, is defined as + + .. math:: + + \\frac{c_{11}} + {c_{01} + c_{10}} + + where :math:`c_{ij}` is the number of occurrences of + :math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for + :math:`k \\in {0, 1, ..., n-1}`. + + Parameters + ---------- + u : (N,) array_like, bool + Input array. + v : (N,) array_like, bool + Input array. + w : (N,) array_like, optional + The weights for each value in `u` and `v`. Default is None, + which gives each value a weight of 1.0 + + Returns + ------- + kulczynski1 : float + The Kulczynski 1 distance between vectors `u` and `v`. + + Notes + ----- + This measure has a minimum value of 0 and no upper limit. + It is un-defined when there are no non-matches. + + .. versionadded:: 1.8.0 + + References + ---------- + .. [1] Kulczynski S. et al. Bulletin + International de l'Academie Polonaise des Sciences + et des Lettres, Classe des Sciences Mathematiques + et Naturelles, Serie B (Sciences Naturelles). 1927; + Supplement II: 57-203. + + Examples + -------- + >>> from scipy.spatial import distance + >>> distance.kulczynski1([1, 0, 0], [0, 1, 0]) + 0.0 + >>> distance.kulczynski1([True, False, False], [True, True, False]) + 1.0 + >>> distance.kulczynski1([True, False, False], [True]) + 0.5 + >>> distance.kulczynski1([1, 0, 0], [3, 1, 0]) + -3.0 + + """ + u = _validate_vector(u) + v = _validate_vector(v) + if w is not None: + w = _validate_weights(w) + (_, nft, ntf, ntt) = _nbool_correspond_all(u, v, w=w) + + return ntt / (ntf + nft) + + +def seuclidean(u, v, V): + """ + Return the standardized Euclidean distance between two 1-D arrays. + + The standardized Euclidean distance between two n-vectors `u` and `v` is + + .. math:: + + \\sqrt{\\sum\\limits_i \\frac{1}{V_i} \\left(u_i-v_i \\right)^2} + + ``V`` is the variance vector; ``V[I]`` is the variance computed over all the i-th + components of the points. If not passed, it is automatically computed. + + Parameters + ---------- + u : (N,) array_like + Input array. + v : (N,) array_like + Input array. + V : (N,) array_like + `V` is an 1-D array of component variances. It is usually computed + among a larger collection vectors. + + Returns + ------- + seuclidean : double + The standardized Euclidean distance between vectors `u` and `v`. + + Examples + -------- + >>> from scipy.spatial import distance + >>> distance.seuclidean([1, 0, 0], [0, 1, 0], [0.1, 0.1, 0.1]) + 4.4721359549995796 + >>> distance.seuclidean([1, 0, 0], [0, 1, 0], [1, 0.1, 0.1]) + 3.3166247903553998 + >>> distance.seuclidean([1, 0, 0], [0, 1, 0], [10, 0.1, 0.1]) + 3.1780497164141406 + + """ + u = _validate_vector(u) + v = _validate_vector(v) + V = _validate_vector(V, dtype=np.float64) + if V.shape[0] != u.shape[0] or u.shape[0] != v.shape[0]: + raise TypeError('V must be a 1-D array of the same dimension ' + 'as u and v.') + return euclidean(u, v, w=1/V) + + +def cityblock(u, v, w=None): + """ + Compute the City Block (Manhattan) distance. + + Computes the Manhattan distance between two 1-D arrays `u` and `v`, + which is defined as + + .. math:: + + \\sum_i {\\left| u_i - v_i \\right|}. + + Parameters + ---------- + u : (N,) array_like + Input array. + v : (N,) array_like + Input array. + w : (N,) array_like, optional + The weights for each value in `u` and `v`. Default is None, + which gives each value a weight of 1.0 + + Returns + ------- + cityblock : double + The City Block (Manhattan) distance between vectors `u` and `v`. + + Examples + -------- + >>> from scipy.spatial import distance + >>> distance.cityblock([1, 0, 0], [0, 1, 0]) + 2 + >>> distance.cityblock([1, 0, 0], [0, 2, 0]) + 3 + >>> distance.cityblock([1, 0, 0], [1, 1, 0]) + 1 + + """ + u = _validate_vector(u) + v = _validate_vector(v) + l1_diff = abs(u - v) + if w is not None: + w = _validate_weights(w) + l1_diff = w * l1_diff + return l1_diff.sum() + + +def mahalanobis(u, v, VI): + """ + Compute the Mahalanobis distance between two 1-D arrays. + + The Mahalanobis distance between 1-D arrays `u` and `v`, is defined as + + .. math:: + + \\sqrt{ (u-v) V^{-1} (u-v)^T } + + where ``V`` is the covariance matrix. Note that the argument `VI` + is the inverse of ``V``. + + Parameters + ---------- + u : (N,) array_like + Input array. + v : (N,) array_like + Input array. + VI : array_like + The inverse of the covariance matrix. + + Returns + ------- + mahalanobis : double + The Mahalanobis distance between vectors `u` and `v`. + + Examples + -------- + >>> from scipy.spatial import distance + >>> iv = [[1, 0.5, 0.5], [0.5, 1, 0.5], [0.5, 0.5, 1]] + >>> distance.mahalanobis([1, 0, 0], [0, 1, 0], iv) + 1.0 + >>> distance.mahalanobis([0, 2, 0], [0, 1, 0], iv) + 1.0 + >>> distance.mahalanobis([2, 0, 0], [0, 1, 0], iv) + 1.7320508075688772 + + """ + u = _validate_vector(u) + v = _validate_vector(v) + VI = np.atleast_2d(VI) + delta = u - v + m = np.dot(np.dot(delta, VI), delta) + return np.sqrt(m) + + +def chebyshev(u, v, w=None): + """ + Compute the Chebyshev distance. + + Computes the Chebyshev distance between two 1-D arrays `u` and `v`, + which is defined as + + .. math:: + + \\max_i {|u_i-v_i|}. + + Parameters + ---------- + u : (N,) array_like + Input vector. + v : (N,) array_like + Input vector. + w : (N,) array_like, optional + Unused, as 'max' is a weightless operation. Here for API consistency. + + Returns + ------- + chebyshev : double + The Chebyshev distance between vectors `u` and `v`. + + Examples + -------- + >>> from scipy.spatial import distance + >>> distance.chebyshev([1, 0, 0], [0, 1, 0]) + 1 + >>> distance.chebyshev([1, 1, 0], [0, 1, 0]) + 1 + + """ + u = _validate_vector(u) + v = _validate_vector(v) + if w is not None: + w = _validate_weights(w) + has_weight = w > 0 + if has_weight.sum() < w.size: + u = u[has_weight] + v = v[has_weight] + return max(abs(u - v)) + + +def braycurtis(u, v, w=None): + """ + Compute the Bray-Curtis distance between two 1-D arrays. + + Bray-Curtis distance is defined as + + .. math:: + + \\sum{|u_i-v_i|} / \\sum{|u_i+v_i|} + + The Bray-Curtis distance is in the range [0, 1] if all coordinates are + positive, and is undefined if the inputs are of length zero. + + Parameters + ---------- + u : (N,) array_like + Input array. + v : (N,) array_like + Input array. + w : (N,) array_like, optional + The weights for each value in `u` and `v`. Default is None, + which gives each value a weight of 1.0 + + Returns + ------- + braycurtis : double + The Bray-Curtis distance between 1-D arrays `u` and `v`. + + Examples + -------- + >>> from scipy.spatial import distance + >>> distance.braycurtis([1, 0, 0], [0, 1, 0]) + 1.0 + >>> distance.braycurtis([1, 1, 0], [0, 1, 0]) + 0.33333333333333331 + + """ + u = _validate_vector(u) + v = _validate_vector(v, dtype=np.float64) + l1_diff = abs(u - v) + l1_sum = abs(u + v) + if w is not None: + w = _validate_weights(w) + l1_diff = w * l1_diff + l1_sum = w * l1_sum + return l1_diff.sum() / l1_sum.sum() + + +def canberra(u, v, w=None): + """ + Compute the Canberra distance between two 1-D arrays. + + The Canberra distance is defined as + + .. math:: + + d(u,v) = \\sum_i \\frac{|u_i-v_i|} + {|u_i|+|v_i|}. + + Parameters + ---------- + u : (N,) array_like + Input array. + v : (N,) array_like + Input array. + w : (N,) array_like, optional + The weights for each value in `u` and `v`. Default is None, + which gives each value a weight of 1.0 + + Returns + ------- + canberra : double + The Canberra distance between vectors `u` and `v`. + + Notes + ----- + When `u[i]` and `v[i]` are 0 for given i, then the fraction 0/0 = 0 is + used in the calculation. + + Examples + -------- + >>> from scipy.spatial import distance + >>> distance.canberra([1, 0, 0], [0, 1, 0]) + 2.0 + >>> distance.canberra([1, 1, 0], [0, 1, 0]) + 1.0 + + """ + u = _validate_vector(u) + v = _validate_vector(v, dtype=np.float64) + if w is not None: + w = _validate_weights(w) + with np.errstate(invalid='ignore'): + abs_uv = abs(u - v) + abs_u = abs(u) + abs_v = abs(v) + d = abs_uv / (abs_u + abs_v) + if w is not None: + d = w * d + d = np.nansum(d) + return d + + +def jensenshannon(p, q, base=None, *, axis=0, keepdims=False): + """ + Compute the Jensen-Shannon distance (metric) between + two probability arrays. This is the square root + of the Jensen-Shannon divergence. + + The Jensen-Shannon distance between two probability + vectors `p` and `q` is defined as, + + .. math:: + + \\sqrt{\\frac{D(p \\parallel m) + D(q \\parallel m)}{2}} + + where :math:`m` is the pointwise mean of :math:`p` and :math:`q` + and :math:`D` is the Kullback-Leibler divergence. + + This routine will normalize `p` and `q` if they don't sum to 1.0. + + Parameters + ---------- + p : (N,) array_like + left probability vector + q : (N,) array_like + right probability vector + base : double, optional + the base of the logarithm used to compute the output + if not given, then the routine uses the default base of + scipy.stats.entropy. + axis : int, optional + Axis along which the Jensen-Shannon distances are computed. The default + is 0. + + .. versionadded:: 1.7.0 + keepdims : bool, optional + If this is set to `True`, the reduced axes are left in the + result as dimensions with size one. With this option, + the result will broadcast correctly against the input array. + Default is False. + + .. versionadded:: 1.7.0 + + Returns + ------- + js : double or ndarray + The Jensen-Shannon distances between `p` and `q` along the `axis`. + + Notes + ----- + + .. versionadded:: 1.2.0 + + Examples + -------- + >>> from scipy.spatial import distance + >>> import numpy as np + >>> distance.jensenshannon([1.0, 0.0, 0.0], [0.0, 1.0, 0.0], 2.0) + 1.0 + >>> distance.jensenshannon([1.0, 0.0], [0.5, 0.5]) + 0.46450140402245893 + >>> distance.jensenshannon([1.0, 0.0, 0.0], [1.0, 0.0, 0.0]) + 0.0 + >>> a = np.array([[1, 2, 3, 4], + ... [5, 6, 7, 8], + ... [9, 10, 11, 12]]) + >>> b = np.array([[13, 14, 15, 16], + ... [17, 18, 19, 20], + ... [21, 22, 23, 24]]) + >>> distance.jensenshannon(a, b, axis=0) + array([0.1954288, 0.1447697, 0.1138377, 0.0927636]) + >>> distance.jensenshannon(a, b, axis=1) + array([0.1402339, 0.0399106, 0.0201815]) + + """ + p = np.asarray(p) + q = np.asarray(q) + p = p / np.sum(p, axis=axis, keepdims=True) + q = q / np.sum(q, axis=axis, keepdims=True) + m = (p + q) / 2.0 + left = rel_entr(p, m) + right = rel_entr(q, m) + left_sum = np.sum(left, axis=axis, keepdims=keepdims) + right_sum = np.sum(right, axis=axis, keepdims=keepdims) + js = left_sum + right_sum + if base is not None: + js /= np.log(base) + return np.sqrt(js / 2.0) + + +def yule(u, v, w=None): + """ + Compute the Yule dissimilarity between two boolean 1-D arrays. + + The Yule dissimilarity is defined as + + .. math:: + + \\frac{R}{c_{TT} * c_{FF} + \\frac{R}{2}} + + where :math:`c_{ij}` is the number of occurrences of + :math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for + :math:`k < n` and :math:`R = 2.0 * c_{TF} * c_{FT}`. + + Parameters + ---------- + u : (N,) array_like, bool + Input array. + v : (N,) array_like, bool + Input array. + w : (N,) array_like, optional + The weights for each value in `u` and `v`. Default is None, + which gives each value a weight of 1.0 + + Returns + ------- + yule : double + The Yule dissimilarity between vectors `u` and `v`. + + Examples + -------- + >>> from scipy.spatial import distance + >>> distance.yule([1, 0, 0], [0, 1, 0]) + 2.0 + >>> distance.yule([1, 1, 0], [0, 1, 0]) + 0.0 + + """ + u = _validate_vector(u) + v = _validate_vector(v) + if w is not None: + w = _validate_weights(w) + (nff, nft, ntf, ntt) = _nbool_correspond_all(u, v, w=w) + half_R = ntf * nft + if half_R == 0: + return 0.0 + else: + return float(2.0 * half_R / (ntt * nff + half_R)) + + +def dice(u, v, w=None): + """ + Compute the Dice dissimilarity between two boolean 1-D arrays. + + The Dice dissimilarity between `u` and `v`, is + + .. math:: + + \\frac{c_{TF} + c_{FT}} + {2c_{TT} + c_{FT} + c_{TF}} + + where :math:`c_{ij}` is the number of occurrences of + :math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for + :math:`k < n`. + + Parameters + ---------- + u : (N,) array_like, bool + Input 1-D array. + v : (N,) array_like, bool + Input 1-D array. + w : (N,) array_like, optional + The weights for each value in `u` and `v`. Default is None, + which gives each value a weight of 1.0 + + Returns + ------- + dice : double + The Dice dissimilarity between 1-D arrays `u` and `v`. + + Notes + ----- + This function computes the Dice dissimilarity index. To compute the + Dice similarity index, convert one to the other with similarity = + 1 - dissimilarity. + + Examples + -------- + >>> from scipy.spatial import distance + >>> distance.dice([1, 0, 0], [0, 1, 0]) + 1.0 + >>> distance.dice([1, 0, 0], [1, 1, 0]) + 0.3333333333333333 + >>> distance.dice([1, 0, 0], [2, 0, 0]) + -0.3333333333333333 + + """ + u = _validate_vector(u) + v = _validate_vector(v) + if w is not None: + w = _validate_weights(w) + if u.dtype == v.dtype == bool and w is None: + ntt = (u & v).sum() + else: + dtype = np.result_type(int, u.dtype, v.dtype) + u = u.astype(dtype) + v = v.astype(dtype) + if w is None: + ntt = (u * v).sum() + else: + ntt = (u * v * w).sum() + (nft, ntf) = _nbool_correspond_ft_tf(u, v, w=w) + return float((ntf + nft) / np.array(2.0 * ntt + ntf + nft)) + + +def rogerstanimoto(u, v, w=None): + """ + Compute the Rogers-Tanimoto dissimilarity between two boolean 1-D arrays. + + The Rogers-Tanimoto dissimilarity between two boolean 1-D arrays + `u` and `v`, is defined as + + .. math:: + \\frac{R} + {c_{TT} + c_{FF} + R} + + where :math:`c_{ij}` is the number of occurrences of + :math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for + :math:`k < n` and :math:`R = 2(c_{TF} + c_{FT})`. + + Parameters + ---------- + u : (N,) array_like, bool + Input array. + v : (N,) array_like, bool + Input array. + w : (N,) array_like, optional + The weights for each value in `u` and `v`. Default is None, + which gives each value a weight of 1.0 + + Returns + ------- + rogerstanimoto : double + The Rogers-Tanimoto dissimilarity between vectors + `u` and `v`. + + Examples + -------- + >>> from scipy.spatial import distance + >>> distance.rogerstanimoto([1, 0, 0], [0, 1, 0]) + 0.8 + >>> distance.rogerstanimoto([1, 0, 0], [1, 1, 0]) + 0.5 + >>> distance.rogerstanimoto([1, 0, 0], [2, 0, 0]) + -1.0 + + """ + u = _validate_vector(u) + v = _validate_vector(v) + if w is not None: + w = _validate_weights(w) + (nff, nft, ntf, ntt) = _nbool_correspond_all(u, v, w=w) + return float(2.0 * (ntf + nft)) / float(ntt + nff + (2.0 * (ntf + nft))) + + +def russellrao(u, v, w=None): + """ + Compute the Russell-Rao dissimilarity between two boolean 1-D arrays. + + The Russell-Rao dissimilarity between two boolean 1-D arrays, `u` and + `v`, is defined as + + .. math:: + + \\frac{n - c_{TT}} + {n} + + where :math:`c_{ij}` is the number of occurrences of + :math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for + :math:`k < n`. + + Parameters + ---------- + u : (N,) array_like, bool + Input array. + v : (N,) array_like, bool + Input array. + w : (N,) array_like, optional + The weights for each value in `u` and `v`. Default is None, + which gives each value a weight of 1.0 + + Returns + ------- + russellrao : double + The Russell-Rao dissimilarity between vectors `u` and `v`. + + Examples + -------- + >>> from scipy.spatial import distance + >>> distance.russellrao([1, 0, 0], [0, 1, 0]) + 1.0 + >>> distance.russellrao([1, 0, 0], [1, 1, 0]) + 0.6666666666666666 + >>> distance.russellrao([1, 0, 0], [2, 0, 0]) + 0.3333333333333333 + + """ + u = _validate_vector(u) + v = _validate_vector(v) + if u.dtype == v.dtype == bool and w is None: + ntt = (u & v).sum() + n = float(len(u)) + elif w is None: + ntt = (u * v).sum() + n = float(len(u)) + else: + w = _validate_weights(w) + ntt = (u * v * w).sum() + n = w.sum() + return float(n - ntt) / n + + +def sokalmichener(u, v, w=None): + """ + Compute the Sokal-Michener dissimilarity between two boolean 1-D arrays. + + The Sokal-Michener dissimilarity between boolean 1-D arrays `u` and `v`, + is defined as + + .. math:: + + \\frac{R} + {S + R} + + where :math:`c_{ij}` is the number of occurrences of + :math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for + :math:`k < n`, :math:`R = 2 * (c_{TF} + c_{FT})` and + :math:`S = c_{FF} + c_{TT}`. + + Parameters + ---------- + u : (N,) array_like, bool + Input array. + v : (N,) array_like, bool + Input array. + w : (N,) array_like, optional + The weights for each value in `u` and `v`. Default is None, + which gives each value a weight of 1.0 + + Returns + ------- + sokalmichener : double + The Sokal-Michener dissimilarity between vectors `u` and `v`. + + Examples + -------- + >>> from scipy.spatial import distance + >>> distance.sokalmichener([1, 0, 0], [0, 1, 0]) + 0.8 + >>> distance.sokalmichener([1, 0, 0], [1, 1, 0]) + 0.5 + >>> distance.sokalmichener([1, 0, 0], [2, 0, 0]) + -1.0 + + """ + u = _validate_vector(u) + v = _validate_vector(v) + if w is not None: + w = _validate_weights(w) + nff, nft, ntf, ntt = _nbool_correspond_all(u, v, w=w) + return float(2.0 * (ntf + nft)) / float(ntt + nff + 2.0 * (ntf + nft)) + + +def sokalsneath(u, v, w=None): + """ + Compute the Sokal-Sneath dissimilarity between two boolean 1-D arrays. + + The Sokal-Sneath dissimilarity between `u` and `v`, + + .. math:: + + \\frac{R} + {c_{TT} + R} + + where :math:`c_{ij}` is the number of occurrences of + :math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for + :math:`k < n` and :math:`R = 2(c_{TF} + c_{FT})`. + + Parameters + ---------- + u : (N,) array_like, bool + Input array. + v : (N,) array_like, bool + Input array. + w : (N,) array_like, optional + The weights for each value in `u` and `v`. Default is None, + which gives each value a weight of 1.0 + + Returns + ------- + sokalsneath : double + The Sokal-Sneath dissimilarity between vectors `u` and `v`. + + Examples + -------- + >>> from scipy.spatial import distance + >>> distance.sokalsneath([1, 0, 0], [0, 1, 0]) + 1.0 + >>> distance.sokalsneath([1, 0, 0], [1, 1, 0]) + 0.66666666666666663 + >>> distance.sokalsneath([1, 0, 0], [2, 1, 0]) + 0.0 + >>> distance.sokalsneath([1, 0, 0], [3, 1, 0]) + -2.0 + + """ + u = _validate_vector(u) + v = _validate_vector(v) + if u.dtype == v.dtype == bool and w is None: + ntt = (u & v).sum() + elif w is None: + ntt = (u * v).sum() + else: + w = _validate_weights(w) + ntt = (u * v * w).sum() + (nft, ntf) = _nbool_correspond_ft_tf(u, v, w=w) + denom = np.array(ntt + 2.0 * (ntf + nft)) + if not denom.any(): + raise ValueError('Sokal-Sneath dissimilarity is not defined for ' + 'vectors that are entirely false.') + return float(2.0 * (ntf + nft)) / denom + + +_convert_to_double = partial(_convert_to_type, out_type=np.float64) +_convert_to_bool = partial(_convert_to_type, out_type=bool) + +# adding python-only wrappers to _distance_wrap module +_distance_wrap.pdist_correlation_double_wrap = _correlation_pdist_wrap +_distance_wrap.cdist_correlation_double_wrap = _correlation_cdist_wrap + + +@dataclasses.dataclass(frozen=True) +class CDistMetricWrapper: + metric_name: str + + def __call__(self, XA, XB, *, out=None, **kwargs): + XA = np.ascontiguousarray(XA) + XB = np.ascontiguousarray(XB) + mA, n = XA.shape + mB, _ = XB.shape + metric_name = self.metric_name + metric_info = _METRICS[metric_name] + XA, XB, typ, kwargs = _validate_cdist_input( + XA, XB, mA, mB, n, metric_info, **kwargs) + + w = kwargs.pop('w', None) + if w is not None: + metric = metric_info.dist_func + return _cdist_callable( + XA, XB, metric=metric, out=out, w=w, **kwargs) + + dm = _prepare_out_argument(out, np.float64, (mA, mB)) + # get cdist wrapper + cdist_fn = getattr(_distance_wrap, f'cdist_{metric_name}_{typ}_wrap') + cdist_fn(XA, XB, dm, **kwargs) + return dm + + +@dataclasses.dataclass(frozen=True) +class PDistMetricWrapper: + metric_name: str + + def __call__(self, X, *, out=None, **kwargs): + X = np.ascontiguousarray(X) + m, n = X.shape + metric_name = self.metric_name + metric_info = _METRICS[metric_name] + X, typ, kwargs = _validate_pdist_input( + X, m, n, metric_info, **kwargs) + out_size = (m * (m - 1)) // 2 + w = kwargs.pop('w', None) + if w is not None: + metric = metric_info.dist_func + return _pdist_callable( + X, metric=metric, out=out, w=w, **kwargs) + + dm = _prepare_out_argument(out, np.float64, (out_size,)) + # get pdist wrapper + pdist_fn = getattr(_distance_wrap, f'pdist_{metric_name}_{typ}_wrap') + pdist_fn(X, dm, **kwargs) + return dm + + +@dataclasses.dataclass(frozen=True) +class MetricInfo: + # Name of python distance function + canonical_name: str + # All aliases, including canonical_name + aka: set[str] + # unvectorized distance function + dist_func: Callable + # Optimized cdist function + cdist_func: Callable + # Optimized pdist function + pdist_func: Callable + # function that checks kwargs and computes default values: + # f(X, m, n, **kwargs) + validator: Optional[Callable] = None + # list of supported types: + # X (pdist) and XA (cdist) are used to choose the type. if there is no + # match the first type is used. Default double + types: list[str] = dataclasses.field(default_factory=lambda: ['double']) + # true if out array must be C-contiguous + requires_contiguous_out: bool = True + + +# Registry of implemented metrics: +_METRIC_INFOS = [ + MetricInfo( + canonical_name='braycurtis', + aka={'braycurtis'}, + dist_func=braycurtis, + cdist_func=_distance_pybind.cdist_braycurtis, + pdist_func=_distance_pybind.pdist_braycurtis, + ), + MetricInfo( + canonical_name='canberra', + aka={'canberra'}, + dist_func=canberra, + cdist_func=_distance_pybind.cdist_canberra, + pdist_func=_distance_pybind.pdist_canberra, + ), + MetricInfo( + canonical_name='chebyshev', + aka={'chebychev', 'chebyshev', 'cheby', 'cheb', 'ch'}, + dist_func=chebyshev, + cdist_func=_distance_pybind.cdist_chebyshev, + pdist_func=_distance_pybind.pdist_chebyshev, + ), + MetricInfo( + canonical_name='cityblock', + aka={'cityblock', 'cblock', 'cb', 'c'}, + dist_func=cityblock, + cdist_func=_distance_pybind.cdist_cityblock, + pdist_func=_distance_pybind.pdist_cityblock, + ), + MetricInfo( + canonical_name='correlation', + aka={'correlation', 'co'}, + dist_func=correlation, + cdist_func=CDistMetricWrapper('correlation'), + pdist_func=PDistMetricWrapper('correlation'), + ), + MetricInfo( + canonical_name='cosine', + aka={'cosine', 'cos'}, + dist_func=cosine, + cdist_func=CDistMetricWrapper('cosine'), + pdist_func=PDistMetricWrapper('cosine'), + ), + MetricInfo( + canonical_name='dice', + aka={'dice'}, + types=['bool'], + dist_func=dice, + cdist_func=_distance_pybind.cdist_dice, + pdist_func=_distance_pybind.pdist_dice, + ), + MetricInfo( + canonical_name='euclidean', + aka={'euclidean', 'euclid', 'eu', 'e'}, + dist_func=euclidean, + cdist_func=_distance_pybind.cdist_euclidean, + pdist_func=_distance_pybind.pdist_euclidean, + ), + MetricInfo( + canonical_name='hamming', + aka={'matching', 'hamming', 'hamm', 'ha', 'h'}, + types=['double', 'bool'], + validator=_validate_hamming_kwargs, + dist_func=hamming, + cdist_func=_distance_pybind.cdist_hamming, + pdist_func=_distance_pybind.pdist_hamming, + ), + MetricInfo( + canonical_name='jaccard', + aka={'jaccard', 'jacc', 'ja', 'j'}, + types=['double', 'bool'], + dist_func=jaccard, + cdist_func=_distance_pybind.cdist_jaccard, + pdist_func=_distance_pybind.pdist_jaccard, + ), + MetricInfo( + canonical_name='jensenshannon', + aka={'jensenshannon', 'js'}, + dist_func=jensenshannon, + cdist_func=CDistMetricWrapper('jensenshannon'), + pdist_func=PDistMetricWrapper('jensenshannon'), + ), + MetricInfo( + canonical_name='kulczynski1', + aka={'kulczynski1'}, + types=['bool'], + dist_func=kulczynski1, + cdist_func=_distance_pybind.cdist_kulczynski1, + pdist_func=_distance_pybind.pdist_kulczynski1, + ), + MetricInfo( + canonical_name='mahalanobis', + aka={'mahalanobis', 'mahal', 'mah'}, + validator=_validate_mahalanobis_kwargs, + dist_func=mahalanobis, + cdist_func=CDistMetricWrapper('mahalanobis'), + pdist_func=PDistMetricWrapper('mahalanobis'), + ), + MetricInfo( + canonical_name='minkowski', + aka={'minkowski', 'mi', 'm', 'pnorm'}, + validator=_validate_minkowski_kwargs, + dist_func=minkowski, + cdist_func=_distance_pybind.cdist_minkowski, + pdist_func=_distance_pybind.pdist_minkowski, + ), + MetricInfo( + canonical_name='rogerstanimoto', + aka={'rogerstanimoto'}, + types=['bool'], + dist_func=rogerstanimoto, + cdist_func=_distance_pybind.cdist_rogerstanimoto, + pdist_func=_distance_pybind.pdist_rogerstanimoto, + ), + MetricInfo( + canonical_name='russellrao', + aka={'russellrao'}, + types=['bool'], + dist_func=russellrao, + cdist_func=_distance_pybind.cdist_russellrao, + pdist_func=_distance_pybind.pdist_russellrao, + ), + MetricInfo( + canonical_name='seuclidean', + aka={'seuclidean', 'se', 's'}, + validator=_validate_seuclidean_kwargs, + dist_func=seuclidean, + cdist_func=CDistMetricWrapper('seuclidean'), + pdist_func=PDistMetricWrapper('seuclidean'), + ), + MetricInfo( + canonical_name='sokalmichener', + aka={'sokalmichener'}, + types=['bool'], + dist_func=sokalmichener, + cdist_func=_distance_pybind.cdist_sokalmichener, + pdist_func=_distance_pybind.pdist_sokalmichener, + ), + MetricInfo( + canonical_name='sokalsneath', + aka={'sokalsneath'}, + types=['bool'], + dist_func=sokalsneath, + cdist_func=_distance_pybind.cdist_sokalsneath, + pdist_func=_distance_pybind.pdist_sokalsneath, + ), + MetricInfo( + canonical_name='sqeuclidean', + aka={'sqeuclidean', 'sqe', 'sqeuclid'}, + dist_func=sqeuclidean, + cdist_func=_distance_pybind.cdist_sqeuclidean, + pdist_func=_distance_pybind.pdist_sqeuclidean, + ), + MetricInfo( + canonical_name='yule', + aka={'yule'}, + types=['bool'], + dist_func=yule, + cdist_func=_distance_pybind.cdist_yule, + pdist_func=_distance_pybind.pdist_yule, + ), +] + +_METRICS = {info.canonical_name: info for info in _METRIC_INFOS} +_METRIC_ALIAS = {alias: info + for info in _METRIC_INFOS + for alias in info.aka} + +_METRICS_NAMES = list(_METRICS.keys()) + +_TEST_METRICS = {'test_' + info.canonical_name: info for info in _METRIC_INFOS} + + +def pdist(X, metric='euclidean', *, out=None, **kwargs): + """ + Pairwise distances between observations in n-dimensional space. + + See Notes for common calling conventions. + + Parameters + ---------- + X : array_like + An m by n array of m original observations in an + n-dimensional space. + metric : str or function, optional + The distance metric to use. The distance function can + be 'braycurtis', 'canberra', 'chebyshev', 'cityblock', + 'correlation', 'cosine', 'dice', 'euclidean', 'hamming', + 'jaccard', 'jensenshannon', 'kulczynski1', + 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', + 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', + 'sqeuclidean', 'yule'. + out : ndarray, optional + The output array. + If not None, condensed distance matrix Y is stored in this array. + **kwargs : dict, optional + Extra arguments to `metric`: refer to each metric documentation for a + list of all possible arguments. + + Some possible arguments: + + p : scalar + The p-norm to apply for Minkowski, weighted and unweighted. + Default: 2. + + w : ndarray + The weight vector for metrics that support weights (e.g., Minkowski). + + V : ndarray + The variance vector for standardized Euclidean. + Default: var(X, axis=0, ddof=1) + + VI : ndarray + The inverse of the covariance matrix for Mahalanobis. + Default: inv(cov(X.T)).T + + Returns + ------- + Y : ndarray + Returns a condensed distance matrix Y. For each :math:`i` and :math:`j` + (where :math:`i 0` (note + that this is only a quasi-metric if :math:`0 < p < 1`). + + 3. ``Y = pdist(X, 'cityblock')`` + + Computes the city block or Manhattan distance between the + points. + + 4. ``Y = pdist(X, 'seuclidean', V=None)`` + + Computes the standardized Euclidean distance. The standardized + Euclidean distance between two n-vectors ``u`` and ``v`` is + + .. math:: + + \\sqrt{\\sum {(u_i-v_i)^2 / V[x_i]}} + + + V is the variance vector; V[i] is the variance computed over all + the i'th components of the points. If not passed, it is + automatically computed. + + 5. ``Y = pdist(X, 'sqeuclidean')`` + + Computes the squared Euclidean distance :math:`\\|u-v\\|_2^2` between + the vectors. + + 6. ``Y = pdist(X, 'cosine')`` + + Computes the cosine distance between vectors u and v, + + .. math:: + + 1 - \\frac{u \\cdot v} + {{\\|u\\|}_2 {\\|v\\|}_2} + + where :math:`\\|*\\|_2` is the 2-norm of its argument ``*``, and + :math:`u \\cdot v` is the dot product of ``u`` and ``v``. + + 7. ``Y = pdist(X, 'correlation')`` + + Computes the correlation distance between vectors u and v. This is + + .. math:: + + 1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})} + {{\\|(u - \\bar{u})\\|}_2 {\\|(v - \\bar{v})\\|}_2} + + where :math:`\\bar{v}` is the mean of the elements of vector v, + and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`. + + 8. ``Y = pdist(X, 'hamming')`` + + Computes the normalized Hamming distance, or the proportion of + those vector elements between two n-vectors ``u`` and ``v`` + which disagree. To save memory, the matrix ``X`` can be of type + boolean. + + 9. ``Y = pdist(X, 'jaccard')`` + + Computes the Jaccard distance between the points. Given two + vectors, ``u`` and ``v``, the Jaccard distance is the + proportion of those elements ``u[i]`` and ``v[i]`` that + disagree. + + 10. ``Y = pdist(X, 'jensenshannon')`` + + Computes the Jensen-Shannon distance between two probability arrays. + Given two probability vectors, :math:`p` and :math:`q`, the + Jensen-Shannon distance is + + .. math:: + + \\sqrt{\\frac{D(p \\parallel m) + D(q \\parallel m)}{2}} + + where :math:`m` is the pointwise mean of :math:`p` and :math:`q` + and :math:`D` is the Kullback-Leibler divergence. + + 11. ``Y = pdist(X, 'chebyshev')`` + + Computes the Chebyshev distance between the points. The + Chebyshev distance between two n-vectors ``u`` and ``v`` is the + maximum norm-1 distance between their respective elements. More + precisely, the distance is given by + + .. math:: + + d(u,v) = \\max_i {|u_i-v_i|} + + 12. ``Y = pdist(X, 'canberra')`` + + Computes the Canberra distance between the points. The + Canberra distance between two points ``u`` and ``v`` is + + .. math:: + + d(u,v) = \\sum_i \\frac{|u_i-v_i|} + {|u_i|+|v_i|} + + + 13. ``Y = pdist(X, 'braycurtis')`` + + Computes the Bray-Curtis distance between the points. The + Bray-Curtis distance between two points ``u`` and ``v`` is + + + .. math:: + + d(u,v) = \\frac{\\sum_i {|u_i-v_i|}} + {\\sum_i {|u_i+v_i|}} + + 14. ``Y = pdist(X, 'mahalanobis', VI=None)`` + + Computes the Mahalanobis distance between the points. The + Mahalanobis distance between two points ``u`` and ``v`` is + :math:`\\sqrt{(u-v)(1/V)(u-v)^T}` where :math:`(1/V)` (the ``VI`` + variable) is the inverse covariance. If ``VI`` is not None, + ``VI`` will be used as the inverse covariance matrix. + + 15. ``Y = pdist(X, 'yule')`` + + Computes the Yule distance between each pair of boolean + vectors. (see yule function documentation) + + 16. ``Y = pdist(X, 'matching')`` + + Synonym for 'hamming'. + + 17. ``Y = pdist(X, 'dice')`` + + Computes the Dice distance between each pair of boolean + vectors. (see dice function documentation) + + 18. ``Y = pdist(X, 'kulczynski1')`` + + Computes the kulczynski1 distance between each pair of + boolean vectors. (see kulczynski1 function documentation) + + 19. ``Y = pdist(X, 'rogerstanimoto')`` + + Computes the Rogers-Tanimoto distance between each pair of + boolean vectors. (see rogerstanimoto function documentation) + + 20. ``Y = pdist(X, 'russellrao')`` + + Computes the Russell-Rao distance between each pair of + boolean vectors. (see russellrao function documentation) + + 21. ``Y = pdist(X, 'sokalmichener')`` + + Computes the Sokal-Michener distance between each pair of + boolean vectors. (see sokalmichener function documentation) + + 22. ``Y = pdist(X, 'sokalsneath')`` + + Computes the Sokal-Sneath distance between each pair of + boolean vectors. (see sokalsneath function documentation) + + 23. ``Y = pdist(X, 'kulczynski1')`` + + Computes the Kulczynski 1 distance between each pair of + boolean vectors. (see kulczynski1 function documentation) + + 24. ``Y = pdist(X, f)`` + + Computes the distance between all pairs of vectors in X + using the user supplied 2-arity function f. For example, + Euclidean distance between the vectors could be computed + as follows:: + + dm = pdist(X, lambda u, v: np.sqrt(((u-v)**2).sum())) + + Note that you should avoid passing a reference to one of + the distance functions defined in this library. For example,:: + + dm = pdist(X, sokalsneath) + + would calculate the pair-wise distances between the vectors in + X using the Python function sokalsneath. This would result in + sokalsneath being called :math:`{n \\choose 2}` times, which + is inefficient. Instead, the optimized C version is more + efficient, and we call it using the following syntax.:: + + dm = pdist(X, 'sokalsneath') + + Examples + -------- + >>> import numpy as np + >>> from scipy.spatial.distance import pdist + + ``x`` is an array of five points in three-dimensional space. + + >>> x = np.array([[2, 0, 2], [2, 2, 3], [-2, 4, 5], [0, 1, 9], [2, 2, 4]]) + + ``pdist(x)`` with no additional arguments computes the 10 pairwise + Euclidean distances: + + >>> pdist(x) + array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949, + 6.40312424, 1. , 5.38516481, 4.58257569, 5.47722558]) + + The following computes the pairwise Minkowski distances with ``p = 3.5``: + + >>> pdist(x, metric='minkowski', p=3.5) + array([2.04898923, 5.1154929 , 7.02700737, 2.43802731, 4.19042714, + 6.03956994, 1. , 4.45128103, 4.10636143, 5.0619695 ]) + + The pairwise city block or Manhattan distances: + + >>> pdist(x, metric='cityblock') + array([ 3., 11., 10., 4., 8., 9., 1., 9., 7., 8.]) + + """ + # You can also call this as: + # Y = pdist(X, 'test_abc') + # where 'abc' is the metric being tested. This computes the distance + # between all pairs of vectors in X using the distance metric 'abc' but + # with a more succinct, verifiable, but less efficient implementation. + + X = _asarray_validated(X, sparse_ok=False, objects_ok=True, mask_ok=True, + check_finite=False) + + s = X.shape + if len(s) != 2: + raise ValueError('A 2-dimensional array must be passed.') + + m, n = s + + if callable(metric): + mstr = getattr(metric, '__name__', 'UnknownCustomMetric') + metric_info = _METRIC_ALIAS.get(mstr, None) + + if metric_info is not None: + X, typ, kwargs = _validate_pdist_input( + X, m, n, metric_info, **kwargs) + + return _pdist_callable(X, metric=metric, out=out, **kwargs) + elif isinstance(metric, str): + mstr = metric.lower() + metric_info = _METRIC_ALIAS.get(mstr, None) + + if metric_info is not None: + pdist_fn = metric_info.pdist_func + return pdist_fn(X, out=out, **kwargs) + elif mstr.startswith("test_"): + metric_info = _TEST_METRICS.get(mstr, None) + if metric_info is None: + raise ValueError(f'Unknown "Test" Distance Metric: {mstr[5:]}') + X, typ, kwargs = _validate_pdist_input( + X, m, n, metric_info, **kwargs) + return _pdist_callable( + X, metric=metric_info.dist_func, out=out, **kwargs) + else: + raise ValueError('Unknown Distance Metric: %s' % mstr) + else: + raise TypeError('2nd argument metric must be a string identifier ' + 'or a function.') + + +def squareform(X, force="no", checks=True): + """ + Convert a vector-form distance vector to a square-form distance + matrix, and vice-versa. + + Parameters + ---------- + X : array_like + Either a condensed or redundant distance matrix. + force : str, optional + As with MATLAB(TM), if force is equal to ``'tovector'`` or + ``'tomatrix'``, the input will be treated as a distance matrix or + distance vector respectively. + checks : bool, optional + If set to False, no checks will be made for matrix + symmetry nor zero diagonals. This is useful if it is known that + ``X - X.T1`` is small and ``diag(X)`` is close to zero. + These values are ignored any way so they do not disrupt the + squareform transformation. + + Returns + ------- + Y : ndarray + If a condensed distance matrix is passed, a redundant one is + returned, or if a redundant one is passed, a condensed distance + matrix is returned. + + Notes + ----- + 1. ``v = squareform(X)`` + + Given a square n-by-n symmetric distance matrix ``X``, + ``v = squareform(X)`` returns a ``n * (n-1) / 2`` + (i.e. binomial coefficient n choose 2) sized vector `v` + where :math:`v[{n \\choose 2} - {n-i \\choose 2} + (j-i-1)]` + is the distance between distinct points ``i`` and ``j``. + If ``X`` is non-square or asymmetric, an error is raised. + + 2. ``X = squareform(v)`` + + Given a ``n * (n-1) / 2`` sized vector ``v`` + for some integer ``n >= 1`` encoding distances as described, + ``X = squareform(v)`` returns a n-by-n distance matrix ``X``. + The ``X[i, j]`` and ``X[j, i]`` values are set to + :math:`v[{n \\choose 2} - {n-i \\choose 2} + (j-i-1)]` + and all diagonal elements are zero. + + In SciPy 0.19.0, ``squareform`` stopped casting all input types to + float64, and started returning arrays of the same dtype as the input. + + Examples + -------- + >>> import numpy as np + >>> from scipy.spatial.distance import pdist, squareform + + ``x`` is an array of five points in three-dimensional space. + + >>> x = np.array([[2, 0, 2], [2, 2, 3], [-2, 4, 5], [0, 1, 9], [2, 2, 4]]) + + ``pdist(x)`` computes the Euclidean distances between each pair of + points in ``x``. The distances are returned in a one-dimensional + array with length ``5*(5 - 1)/2 = 10``. + + >>> distvec = pdist(x) + >>> distvec + array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949, + 6.40312424, 1. , 5.38516481, 4.58257569, 5.47722558]) + + ``squareform(distvec)`` returns the 5x5 distance matrix. + + >>> m = squareform(distvec) + >>> m + array([[0. , 2.23606798, 6.40312424, 7.34846923, 2.82842712], + [2.23606798, 0. , 4.89897949, 6.40312424, 1. ], + [6.40312424, 4.89897949, 0. , 5.38516481, 4.58257569], + [7.34846923, 6.40312424, 5.38516481, 0. , 5.47722558], + [2.82842712, 1. , 4.58257569, 5.47722558, 0. ]]) + + When given a square distance matrix ``m``, ``squareform(m)`` returns + the one-dimensional condensed distance vector associated with the + matrix. In this case, we recover ``distvec``. + + >>> squareform(m) + array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949, + 6.40312424, 1. , 5.38516481, 4.58257569, 5.47722558]) + """ + X = np.ascontiguousarray(X) + + s = X.shape + + if force.lower() == 'tomatrix': + if len(s) != 1: + raise ValueError("Forcing 'tomatrix' but input X is not a " + "distance vector.") + elif force.lower() == 'tovector': + if len(s) != 2: + raise ValueError("Forcing 'tovector' but input X is not a " + "distance matrix.") + + # X = squareform(v) + if len(s) == 1: + if s[0] == 0: + return np.zeros((1, 1), dtype=X.dtype) + + # Grab the closest value to the square root of the number + # of elements times 2 to see if the number of elements + # is indeed a binomial coefficient. + d = int(np.ceil(np.sqrt(s[0] * 2))) + + # Check that v is of valid dimensions. + if d * (d - 1) != s[0] * 2: + raise ValueError('Incompatible vector size. It must be a binomial ' + 'coefficient n choose 2 for some integer n >= 2.') + + # Allocate memory for the distance matrix. + M = np.zeros((d, d), dtype=X.dtype) + + # Since the C code does not support striding using strides. + # The dimensions are used instead. + X = _copy_array_if_base_present(X) + + # Fill in the values of the distance matrix. + _distance_wrap.to_squareform_from_vector_wrap(M, X) + + # Return the distance matrix. + return M + elif len(s) == 2: + if s[0] != s[1]: + raise ValueError('The matrix argument must be square.') + if checks: + is_valid_dm(X, throw=True, name='X') + + # One-side of the dimensions is set here. + d = s[0] + + if d <= 1: + return np.array([], dtype=X.dtype) + + # Create a vector. + v = np.zeros((d * (d - 1)) // 2, dtype=X.dtype) + + # Since the C code does not support striding using strides. + # The dimensions are used instead. + X = _copy_array_if_base_present(X) + + # Convert the vector to squareform. + _distance_wrap.to_vector_from_squareform_wrap(X, v) + return v + else: + raise ValueError(('The first argument must be one or two dimensional ' + 'array. A %d-dimensional array is not ' + 'permitted') % len(s)) + + +def is_valid_dm(D, tol=0.0, throw=False, name="D", warning=False): + """ + Return True if input array is a valid distance matrix. + + Distance matrices must be 2-dimensional numpy arrays. + They must have a zero-diagonal, and they must be symmetric. + + Parameters + ---------- + D : array_like + The candidate object to test for validity. + tol : float, optional + The distance matrix should be symmetric. `tol` is the maximum + difference between entries ``ij`` and ``ji`` for the distance + metric to be considered symmetric. + throw : bool, optional + An exception is thrown if the distance matrix passed is not valid. + name : str, optional + The name of the variable to checked. This is useful if + throw is set to True so the offending variable can be identified + in the exception message when an exception is thrown. + warning : bool, optional + Instead of throwing an exception, a warning message is + raised. + + Returns + ------- + valid : bool + True if the variable `D` passed is a valid distance matrix. + + Notes + ----- + Small numerical differences in `D` and `D.T` and non-zeroness of + the diagonal are ignored if they are within the tolerance specified + by `tol`. + + Examples + -------- + >>> import numpy as np + >>> from scipy.spatial.distance import is_valid_dm + + This matrix is a valid distance matrix. + + >>> d = np.array([[0.0, 1.1, 1.2, 1.3], + ... [1.1, 0.0, 1.0, 1.4], + ... [1.2, 1.0, 0.0, 1.5], + ... [1.3, 1.4, 1.5, 0.0]]) + >>> is_valid_dm(d) + True + + In the following examples, the input is not a valid distance matrix. + + Not square: + + >>> is_valid_dm([[0, 2, 2], [2, 0, 2]]) + False + + Nonzero diagonal element: + + >>> is_valid_dm([[0, 1, 1], [1, 2, 3], [1, 3, 0]]) + False + + Not symmetric: + + >>> is_valid_dm([[0, 1, 3], [2, 0, 1], [3, 1, 0]]) + False + + """ + D = np.asarray(D, order='c') + valid = True + try: + s = D.shape + if len(D.shape) != 2: + if name: + raise ValueError(('Distance matrix \'%s\' must have shape=2 ' + '(i.e. be two-dimensional).') % name) + else: + raise ValueError('Distance matrix must have shape=2 (i.e. ' + 'be two-dimensional).') + if tol == 0.0: + if not (D == D.T).all(): + if name: + raise ValueError(('Distance matrix \'%s\' must be ' + 'symmetric.') % name) + else: + raise ValueError('Distance matrix must be symmetric.') + if not (D[range(0, s[0]), range(0, s[0])] == 0).all(): + if name: + raise ValueError(('Distance matrix \'%s\' diagonal must ' + 'be zero.') % name) + else: + raise ValueError('Distance matrix diagonal must be zero.') + else: + if not (D - D.T <= tol).all(): + if name: + raise ValueError(f'Distance matrix \'{name}\' must be ' + f'symmetric within tolerance {tol:5.5f}.') + else: + raise ValueError('Distance matrix must be symmetric within ' + 'tolerance %5.5f.' % tol) + if not (D[range(0, s[0]), range(0, s[0])] <= tol).all(): + if name: + raise ValueError(f'Distance matrix \'{name}\' diagonal must be ' + f'close to zero within tolerance {tol:5.5f}.') + else: + raise ValueError(('Distance matrix \'{}\' diagonal must be close ' + 'to zero within tolerance {:5.5f}.').format(*tol)) + except Exception as e: + if throw: + raise + if warning: + warnings.warn(str(e), stacklevel=2) + valid = False + return valid + + +def is_valid_y(y, warning=False, throw=False, name=None): + """ + Return True if the input array is a valid condensed distance matrix. + + Condensed distance matrices must be 1-dimensional numpy arrays. + Their length must be a binomial coefficient :math:`{n \\choose 2}` + for some positive integer n. + + Parameters + ---------- + y : array_like + The condensed distance matrix. + warning : bool, optional + Invokes a warning if the variable passed is not a valid + condensed distance matrix. The warning message explains why + the distance matrix is not valid. `name` is used when + referencing the offending variable. + throw : bool, optional + Throws an exception if the variable passed is not a valid + condensed distance matrix. + name : bool, optional + Used when referencing the offending variable in the + warning or exception message. + + Returns + ------- + bool + True if the input array is a valid condensed distance matrix, + False otherwise. + + Examples + -------- + >>> from scipy.spatial.distance import is_valid_y + + This vector is a valid condensed distance matrix. The length is 6, + which corresponds to ``n = 4``, since ``4*(4 - 1)/2`` is 6. + + >>> v = [1.0, 1.2, 1.0, 0.5, 1.3, 0.9] + >>> is_valid_y(v) + True + + An input vector with length, say, 7, is not a valid condensed distance + matrix. + + >>> is_valid_y([1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7]) + False + + """ + y = np.asarray(y, order='c') + valid = True + try: + if len(y.shape) != 1: + if name: + raise ValueError(('Condensed distance matrix \'%s\' must ' + 'have shape=1 (i.e. be one-dimensional).') + % name) + else: + raise ValueError('Condensed distance matrix must have shape=1 ' + '(i.e. be one-dimensional).') + n = y.shape[0] + d = int(np.ceil(np.sqrt(n * 2))) + if (d * (d - 1) / 2) != n: + if name: + raise ValueError(('Length n of condensed distance matrix ' + '\'%s\' must be a binomial coefficient, i.e.' + 'there must be a k such that ' + '(k \\choose 2)=n)!') % name) + else: + raise ValueError('Length n of condensed distance matrix must ' + 'be a binomial coefficient, i.e. there must ' + 'be a k such that (k \\choose 2)=n)!') + except Exception as e: + if throw: + raise + if warning: + warnings.warn(str(e), stacklevel=2) + valid = False + return valid + + +def num_obs_dm(d): + """ + Return the number of original observations that correspond to a + square, redundant distance matrix. + + Parameters + ---------- + d : array_like + The target distance matrix. + + Returns + ------- + num_obs_dm : int + The number of observations in the redundant distance matrix. + + Examples + -------- + Find the number of original observations corresponding + to a square redundant distance matrix d. + + >>> from scipy.spatial.distance import num_obs_dm + >>> d = [[0, 100, 200], [100, 0, 150], [200, 150, 0]] + >>> num_obs_dm(d) + 3 + """ + d = np.asarray(d, order='c') + is_valid_dm(d, tol=np.inf, throw=True, name='d') + return d.shape[0] + + +def num_obs_y(Y): + """ + Return the number of original observations that correspond to a + condensed distance matrix. + + Parameters + ---------- + Y : array_like + Condensed distance matrix. + + Returns + ------- + n : int + The number of observations in the condensed distance matrix `Y`. + + Examples + -------- + Find the number of original observations corresponding to a + condensed distance matrix Y. + + >>> from scipy.spatial.distance import num_obs_y + >>> Y = [1, 2, 3.5, 7, 10, 4] + >>> num_obs_y(Y) + 4 + """ + Y = np.asarray(Y, order='c') + is_valid_y(Y, throw=True, name='Y') + k = Y.shape[0] + if k == 0: + raise ValueError("The number of observations cannot be determined on " + "an empty distance matrix.") + d = int(np.ceil(np.sqrt(k * 2))) + if (d * (d - 1) / 2) != k: + raise ValueError("Invalid condensed distance matrix passed. Must be " + "some k where k=(n choose 2) for some n >= 2.") + return d + + +def _prepare_out_argument(out, dtype, expected_shape): + if out is None: + return np.empty(expected_shape, dtype=dtype) + + if out.shape != expected_shape: + raise ValueError("Output array has incorrect shape.") + if not out.flags.c_contiguous: + raise ValueError("Output array must be C-contiguous.") + if out.dtype != np.float64: + raise ValueError("Output array must be double type.") + return out + + +def _pdist_callable(X, *, out, metric, **kwargs): + n = X.shape[0] + out_size = (n * (n - 1)) // 2 + dm = _prepare_out_argument(out, np.float64, (out_size,)) + k = 0 + for i in range(X.shape[0] - 1): + for j in range(i + 1, X.shape[0]): + dm[k] = metric(X[i], X[j], **kwargs) + k += 1 + return dm + + +def _cdist_callable(XA, XB, *, out, metric, **kwargs): + mA = XA.shape[0] + mB = XB.shape[0] + dm = _prepare_out_argument(out, np.float64, (mA, mB)) + for i in range(mA): + for j in range(mB): + dm[i, j] = metric(XA[i], XB[j], **kwargs) + return dm + + +def cdist(XA, XB, metric='euclidean', *, out=None, **kwargs): + """ + Compute distance between each pair of the two collections of inputs. + + See Notes for common calling conventions. + + Parameters + ---------- + XA : array_like + An :math:`m_A` by :math:`n` array of :math:`m_A` + original observations in an :math:`n`-dimensional space. + Inputs are converted to float type. + XB : array_like + An :math:`m_B` by :math:`n` array of :math:`m_B` + original observations in an :math:`n`-dimensional space. + Inputs are converted to float type. + metric : str or callable, optional + The distance metric to use. If a string, the distance function can be + 'braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation', + 'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'jensenshannon', + 'kulczynski1', 'mahalanobis', 'matching', 'minkowski', + 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', + 'sokalsneath', 'sqeuclidean', 'yule'. + **kwargs : dict, optional + Extra arguments to `metric`: refer to each metric documentation for a + list of all possible arguments. + + Some possible arguments: + + p : scalar + The p-norm to apply for Minkowski, weighted and unweighted. + Default: 2. + + w : array_like + The weight vector for metrics that support weights (e.g., Minkowski). + + V : array_like + The variance vector for standardized Euclidean. + Default: var(vstack([XA, XB]), axis=0, ddof=1) + + VI : array_like + The inverse of the covariance matrix for Mahalanobis. + Default: inv(cov(vstack([XA, XB].T))).T + + out : ndarray + The output array + If not None, the distance matrix Y is stored in this array. + + Returns + ------- + Y : ndarray + A :math:`m_A` by :math:`m_B` distance matrix is returned. + For each :math:`i` and :math:`j`, the metric + ``dist(u=XA[i], v=XB[j])`` is computed and stored in the + :math:`ij` th entry. + + Raises + ------ + ValueError + An exception is thrown if `XA` and `XB` do not have + the same number of columns. + + Notes + ----- + The following are common calling conventions: + + 1. ``Y = cdist(XA, XB, 'euclidean')`` + + Computes the distance between :math:`m` points using + Euclidean distance (2-norm) as the distance metric between the + points. The points are arranged as :math:`m` + :math:`n`-dimensional row vectors in the matrix X. + + 2. ``Y = cdist(XA, XB, 'minkowski', p=2.)`` + + Computes the distances using the Minkowski distance + :math:`\\|u-v\\|_p` (:math:`p`-norm) where :math:`p > 0` (note + that this is only a quasi-metric if :math:`0 < p < 1`). + + 3. ``Y = cdist(XA, XB, 'cityblock')`` + + Computes the city block or Manhattan distance between the + points. + + 4. ``Y = cdist(XA, XB, 'seuclidean', V=None)`` + + Computes the standardized Euclidean distance. The standardized + Euclidean distance between two n-vectors ``u`` and ``v`` is + + .. math:: + + \\sqrt{\\sum {(u_i-v_i)^2 / V[x_i]}}. + + V is the variance vector; V[i] is the variance computed over all + the i'th components of the points. If not passed, it is + automatically computed. + + 5. ``Y = cdist(XA, XB, 'sqeuclidean')`` + + Computes the squared Euclidean distance :math:`\\|u-v\\|_2^2` between + the vectors. + + 6. ``Y = cdist(XA, XB, 'cosine')`` + + Computes the cosine distance between vectors u and v, + + .. math:: + + 1 - \\frac{u \\cdot v} + {{\\|u\\|}_2 {\\|v\\|}_2} + + where :math:`\\|*\\|_2` is the 2-norm of its argument ``*``, and + :math:`u \\cdot v` is the dot product of :math:`u` and :math:`v`. + + 7. ``Y = cdist(XA, XB, 'correlation')`` + + Computes the correlation distance between vectors u and v. This is + + .. math:: + + 1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})} + {{\\|(u - \\bar{u})\\|}_2 {\\|(v - \\bar{v})\\|}_2} + + where :math:`\\bar{v}` is the mean of the elements of vector v, + and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`. + + + 8. ``Y = cdist(XA, XB, 'hamming')`` + + Computes the normalized Hamming distance, or the proportion of + those vector elements between two n-vectors ``u`` and ``v`` + which disagree. To save memory, the matrix ``X`` can be of type + boolean. + + 9. ``Y = cdist(XA, XB, 'jaccard')`` + + Computes the Jaccard distance between the points. Given two + vectors, ``u`` and ``v``, the Jaccard distance is the + proportion of those elements ``u[i]`` and ``v[i]`` that + disagree where at least one of them is non-zero. + + 10. ``Y = cdist(XA, XB, 'jensenshannon')`` + + Computes the Jensen-Shannon distance between two probability arrays. + Given two probability vectors, :math:`p` and :math:`q`, the + Jensen-Shannon distance is + + .. math:: + + \\sqrt{\\frac{D(p \\parallel m) + D(q \\parallel m)}{2}} + + where :math:`m` is the pointwise mean of :math:`p` and :math:`q` + and :math:`D` is the Kullback-Leibler divergence. + + 11. ``Y = cdist(XA, XB, 'chebyshev')`` + + Computes the Chebyshev distance between the points. The + Chebyshev distance between two n-vectors ``u`` and ``v`` is the + maximum norm-1 distance between their respective elements. More + precisely, the distance is given by + + .. math:: + + d(u,v) = \\max_i {|u_i-v_i|}. + + 12. ``Y = cdist(XA, XB, 'canberra')`` + + Computes the Canberra distance between the points. The + Canberra distance between two points ``u`` and ``v`` is + + .. math:: + + d(u,v) = \\sum_i \\frac{|u_i-v_i|} + {|u_i|+|v_i|}. + + 13. ``Y = cdist(XA, XB, 'braycurtis')`` + + Computes the Bray-Curtis distance between the points. The + Bray-Curtis distance between two points ``u`` and ``v`` is + + + .. math:: + + d(u,v) = \\frac{\\sum_i (|u_i-v_i|)} + {\\sum_i (|u_i+v_i|)} + + 14. ``Y = cdist(XA, XB, 'mahalanobis', VI=None)`` + + Computes the Mahalanobis distance between the points. The + Mahalanobis distance between two points ``u`` and ``v`` is + :math:`\\sqrt{(u-v)(1/V)(u-v)^T}` where :math:`(1/V)` (the ``VI`` + variable) is the inverse covariance. If ``VI`` is not None, + ``VI`` will be used as the inverse covariance matrix. + + 15. ``Y = cdist(XA, XB, 'yule')`` + + Computes the Yule distance between the boolean + vectors. (see `yule` function documentation) + + 16. ``Y = cdist(XA, XB, 'matching')`` + + Synonym for 'hamming'. + + 17. ``Y = cdist(XA, XB, 'dice')`` + + Computes the Dice distance between the boolean vectors. (see + `dice` function documentation) + + 18. ``Y = cdist(XA, XB, 'kulczynski1')`` + + Computes the kulczynski distance between the boolean + vectors. (see `kulczynski1` function documentation) + + 19. ``Y = cdist(XA, XB, 'rogerstanimoto')`` + + Computes the Rogers-Tanimoto distance between the boolean + vectors. (see `rogerstanimoto` function documentation) + + 20. ``Y = cdist(XA, XB, 'russellrao')`` + + Computes the Russell-Rao distance between the boolean + vectors. (see `russellrao` function documentation) + + 21. ``Y = cdist(XA, XB, 'sokalmichener')`` + + Computes the Sokal-Michener distance between the boolean + vectors. (see `sokalmichener` function documentation) + + 22. ``Y = cdist(XA, XB, 'sokalsneath')`` + + Computes the Sokal-Sneath distance between the vectors. (see + `sokalsneath` function documentation) + + 23. ``Y = cdist(XA, XB, f)`` + + Computes the distance between all pairs of vectors in X + using the user supplied 2-arity function f. For example, + Euclidean distance between the vectors could be computed + as follows:: + + dm = cdist(XA, XB, lambda u, v: np.sqrt(((u-v)**2).sum())) + + Note that you should avoid passing a reference to one of + the distance functions defined in this library. For example,:: + + dm = cdist(XA, XB, sokalsneath) + + would calculate the pair-wise distances between the vectors in + X using the Python function `sokalsneath`. This would result in + sokalsneath being called :math:`{n \\choose 2}` times, which + is inefficient. Instead, the optimized C version is more + efficient, and we call it using the following syntax:: + + dm = cdist(XA, XB, 'sokalsneath') + + Examples + -------- + Find the Euclidean distances between four 2-D coordinates: + + >>> from scipy.spatial import distance + >>> import numpy as np + >>> coords = [(35.0456, -85.2672), + ... (35.1174, -89.9711), + ... (35.9728, -83.9422), + ... (36.1667, -86.7833)] + >>> distance.cdist(coords, coords, 'euclidean') + array([[ 0. , 4.7044, 1.6172, 1.8856], + [ 4.7044, 0. , 6.0893, 3.3561], + [ 1.6172, 6.0893, 0. , 2.8477], + [ 1.8856, 3.3561, 2.8477, 0. ]]) + + + Find the Manhattan distance from a 3-D point to the corners of the unit + cube: + + >>> a = np.array([[0, 0, 0], + ... [0, 0, 1], + ... [0, 1, 0], + ... [0, 1, 1], + ... [1, 0, 0], + ... [1, 0, 1], + ... [1, 1, 0], + ... [1, 1, 1]]) + >>> b = np.array([[ 0.1, 0.2, 0.4]]) + >>> distance.cdist(a, b, 'cityblock') + array([[ 0.7], + [ 0.9], + [ 1.3], + [ 1.5], + [ 1.5], + [ 1.7], + [ 2.1], + [ 2.3]]) + + """ + # You can also call this as: + # Y = cdist(XA, XB, 'test_abc') + # where 'abc' is the metric being tested. This computes the distance + # between all pairs of vectors in XA and XB using the distance metric 'abc' + # but with a more succinct, verifiable, but less efficient implementation. + + XA = np.asarray(XA) + XB = np.asarray(XB) + + s = XA.shape + sB = XB.shape + + if len(s) != 2: + raise ValueError('XA must be a 2-dimensional array.') + if len(sB) != 2: + raise ValueError('XB must be a 2-dimensional array.') + if s[1] != sB[1]: + raise ValueError('XA and XB must have the same number of columns ' + '(i.e. feature dimension.)') + + mA = s[0] + mB = sB[0] + n = s[1] + + if callable(metric): + mstr = getattr(metric, '__name__', 'Unknown') + metric_info = _METRIC_ALIAS.get(mstr, None) + if metric_info is not None: + XA, XB, typ, kwargs = _validate_cdist_input( + XA, XB, mA, mB, n, metric_info, **kwargs) + return _cdist_callable(XA, XB, metric=metric, out=out, **kwargs) + elif isinstance(metric, str): + mstr = metric.lower() + metric_info = _METRIC_ALIAS.get(mstr, None) + if metric_info is not None: + cdist_fn = metric_info.cdist_func + return cdist_fn(XA, XB, out=out, **kwargs) + elif mstr.startswith("test_"): + metric_info = _TEST_METRICS.get(mstr, None) + if metric_info is None: + raise ValueError(f'Unknown "Test" Distance Metric: {mstr[5:]}') + XA, XB, typ, kwargs = _validate_cdist_input( + XA, XB, mA, mB, n, metric_info, **kwargs) + return _cdist_callable( + XA, XB, metric=metric_info.dist_func, out=out, **kwargs) + else: + raise ValueError('Unknown Distance Metric: %s' % mstr) + else: + raise TypeError('2nd argument metric must be a string identifier ' + 'or a function.') diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/distance.pyi b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/distance.pyi new file mode 100644 index 0000000000000000000000000000000000000000..0e231b46dd3b2d248e54d1259b384b9e48facd9a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/distance.pyi @@ -0,0 +1,211 @@ +from __future__ import annotations +from typing import (overload, Any, SupportsFloat, Literal, Protocol, SupportsIndex) + +import numpy as np +from numpy.typing import ArrayLike, NDArray + +# Anything that can be parsed by `np.float64.__init__` and is thus +# compatible with `ndarray.__setitem__` (for a float64 array) +_FloatValue = None | str | bytes | SupportsFloat | SupportsIndex + +class _MetricCallback1(Protocol): + def __call__( + self, __XA: NDArray[Any], __XB: NDArray[Any] + ) -> _FloatValue: ... + +class _MetricCallback2(Protocol): + def __call__( + self, __XA: NDArray[Any], __XB: NDArray[Any], **kwargs: Any + ) -> _FloatValue: ... + +# TODO: Use a single protocol with a parameter specification variable +# once available (PEP 612) +_MetricCallback = _MetricCallback1 | _MetricCallback2 + +_MetricKind = Literal[ + 'braycurtis', + 'canberra', + 'chebychev', 'chebyshev', 'cheby', 'cheb', 'ch', + 'cityblock', 'cblock', 'cb', 'c', + 'correlation', 'co', + 'cosine', 'cos', + 'dice', + 'euclidean', 'euclid', 'eu', 'e', + 'hamming', 'hamm', 'ha', 'h', + 'minkowski', 'mi', 'm', 'pnorm', + 'jaccard', 'jacc', 'ja', 'j', + 'jensenshannon', 'js', + 'kulczynski1', + 'mahalanobis', 'mahal', 'mah', + 'rogerstanimoto', + 'russellrao', + 'seuclidean', 'se', 's', + 'sokalmichener', + 'sokalsneath', + 'sqeuclidean', 'sqe', 'sqeuclid', + 'yule', +] + +# Function annotations + +def braycurtis( + u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... +) -> np.float64: ... + +def canberra( + u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... +) -> np.float64: ... + +# TODO: Add `metric`-specific overloads +# Returns a float64 or float128 array, depending on the input dtype +@overload +def cdist( + XA: ArrayLike, + XB: ArrayLike, + metric: _MetricKind = ..., + *, + out: None | NDArray[np.floating[Any]] = ..., + p: float = ..., + w: ArrayLike | None = ..., + V: ArrayLike | None = ..., + VI: ArrayLike | None = ..., +) -> NDArray[np.floating[Any]]: ... +@overload +def cdist( + XA: ArrayLike, + XB: ArrayLike, + metric: _MetricCallback, + *, + out: None | NDArray[np.floating[Any]] = ..., + **kwargs: Any, +) -> NDArray[np.floating[Any]]: ... + +# TODO: Wait for dtype support; the return type is +# dependent on the input arrays dtype +def chebyshev( + u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... +) -> Any: ... + +# TODO: Wait for dtype support; the return type is +# dependent on the input arrays dtype +def cityblock( + u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... +) -> Any: ... + +def correlation( + u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ..., centered: bool = ... +) -> np.float64: ... + +def cosine( + u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... +) -> np.float64: ... + +def dice( + u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... +) -> float: ... + +def directed_hausdorff( + u: ArrayLike, v: ArrayLike, seed: int | None = ... +) -> tuple[float, int, int]: ... + +def euclidean( + u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... +) -> float: ... + +def hamming( + u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... +) -> np.float64: ... + +def is_valid_dm( + D: ArrayLike, + tol: float = ..., + throw: bool = ..., + name: str | None = ..., + warning: bool = ..., +) -> bool: ... + +def is_valid_y( + y: ArrayLike, + warning: bool = ..., + throw: bool = ..., + name: str | None = ..., +) -> bool: ... + +def jaccard( + u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... +) -> np.float64: ... + +def jensenshannon( + p: ArrayLike, q: ArrayLike, base: float | None = ... +) -> np.float64: ... + +def kulczynski1( + u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... +) -> np.float64: ... + +def mahalanobis( + u: ArrayLike, v: ArrayLike, VI: ArrayLike +) -> np.float64: ... + +def minkowski( + u: ArrayLike, v: ArrayLike, p: float = ..., w: ArrayLike | None = ... +) -> float: ... + +def num_obs_dm(d: ArrayLike) -> int: ... + +def num_obs_y(Y: ArrayLike) -> int: ... + +# TODO: Add `metric`-specific overloads +@overload +def pdist( + X: ArrayLike, + metric: _MetricKind = ..., + *, + out: None | NDArray[np.floating[Any]] = ..., + p: float = ..., + w: ArrayLike | None = ..., + V: ArrayLike | None = ..., + VI: ArrayLike | None = ..., +) -> NDArray[np.floating[Any]]: ... +@overload +def pdist( + X: ArrayLike, + metric: _MetricCallback, + *, + out: None | NDArray[np.floating[Any]] = ..., + **kwargs: Any, +) -> NDArray[np.floating[Any]]: ... + +def seuclidean( + u: ArrayLike, v: ArrayLike, V: ArrayLike +) -> float: ... + +def sokalmichener( + u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... +) -> float: ... + +def sokalsneath( + u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... +) -> np.float64: ... + +def sqeuclidean( + u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... +) -> np.float64: ... + +def squareform( + X: ArrayLike, + force: Literal["no", "tomatrix", "tovector"] = ..., + checks: bool = ..., +) -> NDArray[Any]: ... + +def rogerstanimoto( + u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... +) -> float: ... + +def russellrao( + u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... +) -> float: ... + +def yule( + u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ... +) -> float: ... diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/kdtree.py b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/kdtree.py new file mode 100644 index 0000000000000000000000000000000000000000..c0a6bab41e94733fccbb96313db6fcd868d284ea --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/kdtree.py @@ -0,0 +1,26 @@ +# This file is not meant for public use and will be removed in SciPy v2.0.0. +# Use the `scipy.spatial` namespace for importing the functions +# included below. + +from scipy._lib.deprecation import _sub_module_deprecation + + +__all__ = [ # noqa: F822 + 'KDTree', + 'Rectangle', + 'cKDTree', + 'cKDTreeNode', + 'distance_matrix', + 'minkowski_distance', + 'minkowski_distance_p', +] + + +def __dir__(): + return __all__ + + +def __getattr__(name): + return _sub_module_deprecation(sub_package="spatial", module="kdtree", + private_modules=["_kdtree"], all=__all__, + attribute=name) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/qhull.py b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/qhull.py new file mode 100644 index 0000000000000000000000000000000000000000..a8d51bf239bfe48077e66a36bcbf59f6dbadaf95 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/qhull.py @@ -0,0 +1,25 @@ +# This file is not meant for public use and will be removed in SciPy v2.0.0. +# Use the `scipy.spatial` namespace for importing the functions +# included below. + +from scipy._lib.deprecation import _sub_module_deprecation + + +__all__ = [ # noqa: F822 + 'ConvexHull', + 'Delaunay', + 'HalfspaceIntersection', + 'QhullError', + 'Voronoi', + 'tsearch', +] + + +def __dir__(): + return __all__ + + +def __getattr__(name): + return _sub_module_deprecation(sub_package="spatial", module="qhull", + private_modules=["_qhull"], all=__all__, + attribute=name) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/__init__.py b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/iris.txt b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/iris.txt new file mode 100644 index 0000000000000000000000000000000000000000..4d78390c2596beb41b1abff651a729e4e964c36e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/iris.txt @@ -0,0 +1,150 @@ +5.099999999999999645e+00 3.500000000000000000e+00 1.399999999999999911e+00 2.000000000000000111e-01 +4.900000000000000355e+00 3.000000000000000000e+00 1.399999999999999911e+00 2.000000000000000111e-01 +4.700000000000000178e+00 3.200000000000000178e+00 1.300000000000000044e+00 2.000000000000000111e-01 +4.599999999999999645e+00 3.100000000000000089e+00 1.500000000000000000e+00 2.000000000000000111e-01 +5.000000000000000000e+00 3.600000000000000089e+00 1.399999999999999911e+00 2.000000000000000111e-01 +5.400000000000000355e+00 3.899999999999999911e+00 1.699999999999999956e+00 4.000000000000000222e-01 +4.599999999999999645e+00 3.399999999999999911e+00 1.399999999999999911e+00 2.999999999999999889e-01 +5.000000000000000000e+00 3.399999999999999911e+00 1.500000000000000000e+00 2.000000000000000111e-01 +4.400000000000000355e+00 2.899999999999999911e+00 1.399999999999999911e+00 2.000000000000000111e-01 +4.900000000000000355e+00 3.100000000000000089e+00 1.500000000000000000e+00 1.000000000000000056e-01 +5.400000000000000355e+00 3.700000000000000178e+00 1.500000000000000000e+00 2.000000000000000111e-01 +4.799999999999999822e+00 3.399999999999999911e+00 1.600000000000000089e+00 2.000000000000000111e-01 +4.799999999999999822e+00 3.000000000000000000e+00 1.399999999999999911e+00 1.000000000000000056e-01 +4.299999999999999822e+00 3.000000000000000000e+00 1.100000000000000089e+00 1.000000000000000056e-01 +5.799999999999999822e+00 4.000000000000000000e+00 1.199999999999999956e+00 2.000000000000000111e-01 +5.700000000000000178e+00 4.400000000000000355e+00 1.500000000000000000e+00 4.000000000000000222e-01 +5.400000000000000355e+00 3.899999999999999911e+00 1.300000000000000044e+00 4.000000000000000222e-01 +5.099999999999999645e+00 3.500000000000000000e+00 1.399999999999999911e+00 2.999999999999999889e-01 +5.700000000000000178e+00 3.799999999999999822e+00 1.699999999999999956e+00 2.999999999999999889e-01 +5.099999999999999645e+00 3.799999999999999822e+00 1.500000000000000000e+00 2.999999999999999889e-01 +5.400000000000000355e+00 3.399999999999999911e+00 1.699999999999999956e+00 2.000000000000000111e-01 +5.099999999999999645e+00 3.700000000000000178e+00 1.500000000000000000e+00 4.000000000000000222e-01 +4.599999999999999645e+00 3.600000000000000089e+00 1.000000000000000000e+00 2.000000000000000111e-01 +5.099999999999999645e+00 3.299999999999999822e+00 1.699999999999999956e+00 5.000000000000000000e-01 +4.799999999999999822e+00 3.399999999999999911e+00 1.899999999999999911e+00 2.000000000000000111e-01 +5.000000000000000000e+00 3.000000000000000000e+00 1.600000000000000089e+00 2.000000000000000111e-01 +5.000000000000000000e+00 3.399999999999999911e+00 1.600000000000000089e+00 4.000000000000000222e-01 +5.200000000000000178e+00 3.500000000000000000e+00 1.500000000000000000e+00 2.000000000000000111e-01 +5.200000000000000178e+00 3.399999999999999911e+00 1.399999999999999911e+00 2.000000000000000111e-01 +4.700000000000000178e+00 3.200000000000000178e+00 1.600000000000000089e+00 2.000000000000000111e-01 +4.799999999999999822e+00 3.100000000000000089e+00 1.600000000000000089e+00 2.000000000000000111e-01 +5.400000000000000355e+00 3.399999999999999911e+00 1.500000000000000000e+00 4.000000000000000222e-01 +5.200000000000000178e+00 4.099999999999999645e+00 1.500000000000000000e+00 1.000000000000000056e-01 +5.500000000000000000e+00 4.200000000000000178e+00 1.399999999999999911e+00 2.000000000000000111e-01 +4.900000000000000355e+00 3.100000000000000089e+00 1.500000000000000000e+00 1.000000000000000056e-01 +5.000000000000000000e+00 3.200000000000000178e+00 1.199999999999999956e+00 2.000000000000000111e-01 +5.500000000000000000e+00 3.500000000000000000e+00 1.300000000000000044e+00 2.000000000000000111e-01 +4.900000000000000355e+00 3.100000000000000089e+00 1.500000000000000000e+00 1.000000000000000056e-01 +4.400000000000000355e+00 3.000000000000000000e+00 1.300000000000000044e+00 2.000000000000000111e-01 +5.099999999999999645e+00 3.399999999999999911e+00 1.500000000000000000e+00 2.000000000000000111e-01 +5.000000000000000000e+00 3.500000000000000000e+00 1.300000000000000044e+00 2.999999999999999889e-01 +4.500000000000000000e+00 2.299999999999999822e+00 1.300000000000000044e+00 2.999999999999999889e-01 +4.400000000000000355e+00 3.200000000000000178e+00 1.300000000000000044e+00 2.000000000000000111e-01 +5.000000000000000000e+00 3.500000000000000000e+00 1.600000000000000089e+00 5.999999999999999778e-01 +5.099999999999999645e+00 3.799999999999999822e+00 1.899999999999999911e+00 4.000000000000000222e-01 +4.799999999999999822e+00 3.000000000000000000e+00 1.399999999999999911e+00 2.999999999999999889e-01 +5.099999999999999645e+00 3.799999999999999822e+00 1.600000000000000089e+00 2.000000000000000111e-01 +4.599999999999999645e+00 3.200000000000000178e+00 1.399999999999999911e+00 2.000000000000000111e-01 +5.299999999999999822e+00 3.700000000000000178e+00 1.500000000000000000e+00 2.000000000000000111e-01 +5.000000000000000000e+00 3.299999999999999822e+00 1.399999999999999911e+00 2.000000000000000111e-01 +7.000000000000000000e+00 3.200000000000000178e+00 4.700000000000000178e+00 1.399999999999999911e+00 +6.400000000000000355e+00 3.200000000000000178e+00 4.500000000000000000e+00 1.500000000000000000e+00 +6.900000000000000355e+00 3.100000000000000089e+00 4.900000000000000355e+00 1.500000000000000000e+00 +5.500000000000000000e+00 2.299999999999999822e+00 4.000000000000000000e+00 1.300000000000000044e+00 +6.500000000000000000e+00 2.799999999999999822e+00 4.599999999999999645e+00 1.500000000000000000e+00 +5.700000000000000178e+00 2.799999999999999822e+00 4.500000000000000000e+00 1.300000000000000044e+00 +6.299999999999999822e+00 3.299999999999999822e+00 4.700000000000000178e+00 1.600000000000000089e+00 +4.900000000000000355e+00 2.399999999999999911e+00 3.299999999999999822e+00 1.000000000000000000e+00 +6.599999999999999645e+00 2.899999999999999911e+00 4.599999999999999645e+00 1.300000000000000044e+00 +5.200000000000000178e+00 2.700000000000000178e+00 3.899999999999999911e+00 1.399999999999999911e+00 +5.000000000000000000e+00 2.000000000000000000e+00 3.500000000000000000e+00 1.000000000000000000e+00 +5.900000000000000355e+00 3.000000000000000000e+00 4.200000000000000178e+00 1.500000000000000000e+00 +6.000000000000000000e+00 2.200000000000000178e+00 4.000000000000000000e+00 1.000000000000000000e+00 +6.099999999999999645e+00 2.899999999999999911e+00 4.700000000000000178e+00 1.399999999999999911e+00 +5.599999999999999645e+00 2.899999999999999911e+00 3.600000000000000089e+00 1.300000000000000044e+00 +6.700000000000000178e+00 3.100000000000000089e+00 4.400000000000000355e+00 1.399999999999999911e+00 +5.599999999999999645e+00 3.000000000000000000e+00 4.500000000000000000e+00 1.500000000000000000e+00 +5.799999999999999822e+00 2.700000000000000178e+00 4.099999999999999645e+00 1.000000000000000000e+00 +6.200000000000000178e+00 2.200000000000000178e+00 4.500000000000000000e+00 1.500000000000000000e+00 +5.599999999999999645e+00 2.500000000000000000e+00 3.899999999999999911e+00 1.100000000000000089e+00 +5.900000000000000355e+00 3.200000000000000178e+00 4.799999999999999822e+00 1.800000000000000044e+00 +6.099999999999999645e+00 2.799999999999999822e+00 4.000000000000000000e+00 1.300000000000000044e+00 +6.299999999999999822e+00 2.500000000000000000e+00 4.900000000000000355e+00 1.500000000000000000e+00 +6.099999999999999645e+00 2.799999999999999822e+00 4.700000000000000178e+00 1.199999999999999956e+00 +6.400000000000000355e+00 2.899999999999999911e+00 4.299999999999999822e+00 1.300000000000000044e+00 +6.599999999999999645e+00 3.000000000000000000e+00 4.400000000000000355e+00 1.399999999999999911e+00 +6.799999999999999822e+00 2.799999999999999822e+00 4.799999999999999822e+00 1.399999999999999911e+00 +6.700000000000000178e+00 3.000000000000000000e+00 5.000000000000000000e+00 1.699999999999999956e+00 +6.000000000000000000e+00 2.899999999999999911e+00 4.500000000000000000e+00 1.500000000000000000e+00 +5.700000000000000178e+00 2.600000000000000089e+00 3.500000000000000000e+00 1.000000000000000000e+00 +5.500000000000000000e+00 2.399999999999999911e+00 3.799999999999999822e+00 1.100000000000000089e+00 +5.500000000000000000e+00 2.399999999999999911e+00 3.700000000000000178e+00 1.000000000000000000e+00 +5.799999999999999822e+00 2.700000000000000178e+00 3.899999999999999911e+00 1.199999999999999956e+00 +6.000000000000000000e+00 2.700000000000000178e+00 5.099999999999999645e+00 1.600000000000000089e+00 +5.400000000000000355e+00 3.000000000000000000e+00 4.500000000000000000e+00 1.500000000000000000e+00 +6.000000000000000000e+00 3.399999999999999911e+00 4.500000000000000000e+00 1.600000000000000089e+00 +6.700000000000000178e+00 3.100000000000000089e+00 4.700000000000000178e+00 1.500000000000000000e+00 +6.299999999999999822e+00 2.299999999999999822e+00 4.400000000000000355e+00 1.300000000000000044e+00 +5.599999999999999645e+00 3.000000000000000000e+00 4.099999999999999645e+00 1.300000000000000044e+00 +5.500000000000000000e+00 2.500000000000000000e+00 4.000000000000000000e+00 1.300000000000000044e+00 +5.500000000000000000e+00 2.600000000000000089e+00 4.400000000000000355e+00 1.199999999999999956e+00 +6.099999999999999645e+00 3.000000000000000000e+00 4.599999999999999645e+00 1.399999999999999911e+00 +5.799999999999999822e+00 2.600000000000000089e+00 4.000000000000000000e+00 1.199999999999999956e+00 +5.000000000000000000e+00 2.299999999999999822e+00 3.299999999999999822e+00 1.000000000000000000e+00 +5.599999999999999645e+00 2.700000000000000178e+00 4.200000000000000178e+00 1.300000000000000044e+00 +5.700000000000000178e+00 3.000000000000000000e+00 4.200000000000000178e+00 1.199999999999999956e+00 +5.700000000000000178e+00 2.899999999999999911e+00 4.200000000000000178e+00 1.300000000000000044e+00 +6.200000000000000178e+00 2.899999999999999911e+00 4.299999999999999822e+00 1.300000000000000044e+00 +5.099999999999999645e+00 2.500000000000000000e+00 3.000000000000000000e+00 1.100000000000000089e+00 +5.700000000000000178e+00 2.799999999999999822e+00 4.099999999999999645e+00 1.300000000000000044e+00 +6.299999999999999822e+00 3.299999999999999822e+00 6.000000000000000000e+00 2.500000000000000000e+00 +5.799999999999999822e+00 2.700000000000000178e+00 5.099999999999999645e+00 1.899999999999999911e+00 +7.099999999999999645e+00 3.000000000000000000e+00 5.900000000000000355e+00 2.100000000000000089e+00 +6.299999999999999822e+00 2.899999999999999911e+00 5.599999999999999645e+00 1.800000000000000044e+00 +6.500000000000000000e+00 3.000000000000000000e+00 5.799999999999999822e+00 2.200000000000000178e+00 +7.599999999999999645e+00 3.000000000000000000e+00 6.599999999999999645e+00 2.100000000000000089e+00 +4.900000000000000355e+00 2.500000000000000000e+00 4.500000000000000000e+00 1.699999999999999956e+00 +7.299999999999999822e+00 2.899999999999999911e+00 6.299999999999999822e+00 1.800000000000000044e+00 +6.700000000000000178e+00 2.500000000000000000e+00 5.799999999999999822e+00 1.800000000000000044e+00 +7.200000000000000178e+00 3.600000000000000089e+00 6.099999999999999645e+00 2.500000000000000000e+00 +6.500000000000000000e+00 3.200000000000000178e+00 5.099999999999999645e+00 2.000000000000000000e+00 +6.400000000000000355e+00 2.700000000000000178e+00 5.299999999999999822e+00 1.899999999999999911e+00 +6.799999999999999822e+00 3.000000000000000000e+00 5.500000000000000000e+00 2.100000000000000089e+00 +5.700000000000000178e+00 2.500000000000000000e+00 5.000000000000000000e+00 2.000000000000000000e+00 +5.799999999999999822e+00 2.799999999999999822e+00 5.099999999999999645e+00 2.399999999999999911e+00 +6.400000000000000355e+00 3.200000000000000178e+00 5.299999999999999822e+00 2.299999999999999822e+00 +6.500000000000000000e+00 3.000000000000000000e+00 5.500000000000000000e+00 1.800000000000000044e+00 +7.700000000000000178e+00 3.799999999999999822e+00 6.700000000000000178e+00 2.200000000000000178e+00 +7.700000000000000178e+00 2.600000000000000089e+00 6.900000000000000355e+00 2.299999999999999822e+00 +6.000000000000000000e+00 2.200000000000000178e+00 5.000000000000000000e+00 1.500000000000000000e+00 +6.900000000000000355e+00 3.200000000000000178e+00 5.700000000000000178e+00 2.299999999999999822e+00 +5.599999999999999645e+00 2.799999999999999822e+00 4.900000000000000355e+00 2.000000000000000000e+00 +7.700000000000000178e+00 2.799999999999999822e+00 6.700000000000000178e+00 2.000000000000000000e+00 +6.299999999999999822e+00 2.700000000000000178e+00 4.900000000000000355e+00 1.800000000000000044e+00 +6.700000000000000178e+00 3.299999999999999822e+00 5.700000000000000178e+00 2.100000000000000089e+00 +7.200000000000000178e+00 3.200000000000000178e+00 6.000000000000000000e+00 1.800000000000000044e+00 +6.200000000000000178e+00 2.799999999999999822e+00 4.799999999999999822e+00 1.800000000000000044e+00 +6.099999999999999645e+00 3.000000000000000000e+00 4.900000000000000355e+00 1.800000000000000044e+00 +6.400000000000000355e+00 2.799999999999999822e+00 5.599999999999999645e+00 2.100000000000000089e+00 +7.200000000000000178e+00 3.000000000000000000e+00 5.799999999999999822e+00 1.600000000000000089e+00 +7.400000000000000355e+00 2.799999999999999822e+00 6.099999999999999645e+00 1.899999999999999911e+00 +7.900000000000000355e+00 3.799999999999999822e+00 6.400000000000000355e+00 2.000000000000000000e+00 +6.400000000000000355e+00 2.799999999999999822e+00 5.599999999999999645e+00 2.200000000000000178e+00 +6.299999999999999822e+00 2.799999999999999822e+00 5.099999999999999645e+00 1.500000000000000000e+00 +6.099999999999999645e+00 2.600000000000000089e+00 5.599999999999999645e+00 1.399999999999999911e+00 +7.700000000000000178e+00 3.000000000000000000e+00 6.099999999999999645e+00 2.299999999999999822e+00 +6.299999999999999822e+00 3.399999999999999911e+00 5.599999999999999645e+00 2.399999999999999911e+00 +6.400000000000000355e+00 3.100000000000000089e+00 5.500000000000000000e+00 1.800000000000000044e+00 +6.000000000000000000e+00 3.000000000000000000e+00 4.799999999999999822e+00 1.800000000000000044e+00 +6.900000000000000355e+00 3.100000000000000089e+00 5.400000000000000355e+00 2.100000000000000089e+00 +6.700000000000000178e+00 3.100000000000000089e+00 5.599999999999999645e+00 2.399999999999999911e+00 +6.900000000000000355e+00 3.100000000000000089e+00 5.099999999999999645e+00 2.299999999999999822e+00 +5.799999999999999822e+00 2.700000000000000178e+00 5.099999999999999645e+00 1.899999999999999911e+00 +6.799999999999999822e+00 3.200000000000000178e+00 5.900000000000000355e+00 2.299999999999999822e+00 +6.700000000000000178e+00 3.299999999999999822e+00 5.700000000000000178e+00 2.500000000000000000e+00 +6.700000000000000178e+00 3.000000000000000000e+00 5.200000000000000178e+00 2.299999999999999822e+00 +6.299999999999999822e+00 2.500000000000000000e+00 5.000000000000000000e+00 1.899999999999999911e+00 +6.500000000000000000e+00 3.000000000000000000e+00 5.200000000000000178e+00 2.000000000000000000e+00 +6.200000000000000178e+00 3.399999999999999911e+00 5.400000000000000355e+00 2.299999999999999822e+00 +5.900000000000000355e+00 3.000000000000000000e+00 5.099999999999999645e+00 1.800000000000000044e+00 diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt new file mode 100644 index 0000000000000000000000000000000000000000..6722928a4a4491c74d3fef5205276b532b15dcbf --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cityblock-ml-iris.txt @@ -0,0 +1 @@ + 7.0000000e-01 8.0000000e-01 1.0000000e+00 2.0000000e-01 1.2000000e+00 7.0000000e-01 3.0000000e-01 1.3000000e+00 8.0000000e-01 6.0000000e-01 6.0000000e-01 9.0000000e-01 1.7000000e+00 1.4000000e+00 1.8000000e+00 1.0000000e+00 1.0000000e-01 1.3000000e+00 5.0000000e-01 7.0000000e-01 5.0000000e-01 1.0000000e+00 8.0000000e-01 9.0000000e-01 8.0000000e-01 6.0000000e-01 2.0000000e-01 2.0000000e-01 9.0000000e-01 9.0000000e-01 7.0000000e-01 9.0000000e-01 1.1000000e+00 8.0000000e-01 6.0000000e-01 5.0000000e-01 8.0000000e-01 1.3000000e+00 2.0000000e-01 3.0000000e-01 2.0000000e+00 1.1000000e+00 7.0000000e-01 1.0000000e+00 9.0000000e-01 5.0000000e-01 8.0000000e-01 5.0000000e-01 3.0000000e-01 6.7000000e+00 6.0000000e+00 7.0000000e+00 5.3000000e+00 6.6000000e+00 5.5000000e+00 6.1000000e+00 4.0000000e+00 6.4000000e+00 4.6000000e+00 4.5000000e+00 5.4000000e+00 5.6000000e+00 6.1000000e+00 4.4000000e+00 6.2000000e+00 5.4000000e+00 5.0000000e+00 6.8000000e+00 4.9000000e+00 6.1000000e+00 5.4000000e+00 7.0000000e+00 6.0000000e+00 5.9000000e+00 6.2000000e+00 7.0000000e+00 7.2000000e+00 5.9000000e+00 4.4000000e+00 4.8000000e+00 4.6000000e+00 5.0000000e+00 6.8000000e+00 5.2000000e+00 5.5000000e+00 6.6000000e+00 6.5000000e+00 4.8000000e+00 5.1000000e+00 5.3000000e+00 5.9000000e+00 5.2000000e+00 4.0000000e+00 5.2000000e+00 4.9000000e+00 5.1000000e+00 5.7000000e+00 3.5000000e+00 5.1000000e+00 8.3000000e+00 6.9000000e+00 8.9000000e+00 7.6000000e+00 8.3000000e+00 1.0100000e+01 5.8000000e+00 9.3000000e+00 8.6000000e+00 9.2000000e+00 7.2000000e+00 7.7000000e+00 8.2000000e+00 7.0000000e+00 7.3000000e+00 7.6000000e+00 7.6000000e+00 1.0200000e+01 1.1100000e+01 7.1000000e+00 8.5000000e+00 6.5000000e+00 1.0400000e+01 7.1000000e+00 8.0000000e+00 8.6000000e+00 6.8000000e+00 6.6000000e+00 8.1000000e+00 8.4000000e+00 9.4000000e+00 9.9000000e+00 8.2000000e+00 6.9000000e+00 7.3000000e+00 9.9000000e+00 7.7000000e+00 7.4000000e+00 6.4000000e+00 8.1000000e+00 8.4000000e+00 8.0000000e+00 6.9000000e+00 8.6000000e+00 8.4000000e+00 8.0000000e+00 7.5000000e+00 7.5000000e+00 7.3000000e+00 6.6000000e+00 5.0000000e-01 5.0000000e-01 7.0000000e-01 1.9000000e+00 8.0000000e-01 6.0000000e-01 6.0000000e-01 3.0000000e-01 1.3000000e+00 7.0000000e-01 2.0000000e-01 1.0000000e+00 2.1000000e+00 2.5000000e+00 1.7000000e+00 8.0000000e-01 2.0000000e+00 1.2000000e+00 1.2000000e+00 1.2000000e+00 1.3000000e+00 1.1000000e+00 1.0000000e+00 3.0000000e-01 9.0000000e-01 9.0000000e-01 7.0000000e-01 6.0000000e-01 4.0000000e-01 1.2000000e+00 1.6000000e+00 1.8000000e+00 3.0000000e-01 5.0000000e-01 1.2000000e+00 3.0000000e-01 6.0000000e-01 7.0000000e-01 8.0000000e-01 1.3000000e+00 8.0000000e-01 1.2000000e+00 1.7000000e+00 2.0000000e-01 1.2000000e+00 5.0000000e-01 1.2000000e+00 4.0000000e-01 6.8000000e+00 6.1000000e+00 6.9000000e+00 5.0000000e+00 6.3000000e+00 5.2000000e+00 6.4000000e+00 3.3000000e+00 6.1000000e+00 4.3000000e+00 4.0000000e+00 5.1000000e+00 5.3000000e+00 5.8000000e+00 4.1000000e+00 6.1000000e+00 5.1000000e+00 4.7000000e+00 6.5000000e+00 4.6000000e+00 6.2000000e+00 5.1000000e+00 6.7000000e+00 5.7000000e+00 5.6000000e+00 5.9000000e+00 6.7000000e+00 6.9000000e+00 5.6000000e+00 4.1000000e+00 4.5000000e+00 4.3000000e+00 4.7000000e+00 6.5000000e+00 4.9000000e+00 6.0000000e+00 6.5000000e+00 6.2000000e+00 4.5000000e+00 4.8000000e+00 5.0000000e+00 5.6000000e+00 4.9000000e+00 3.5000000e+00 4.9000000e+00 4.6000000e+00 4.8000000e+00 5.4000000e+00 3.2000000e+00 4.8000000e+00 8.6000000e+00 6.6000000e+00 8.6000000e+00 7.3000000e+00 8.0000000e+00 9.8000000e+00 5.1000000e+00 9.0000000e+00 8.3000000e+00 9.9000000e+00 7.3000000e+00 7.4000000e+00 7.9000000e+00 6.7000000e+00 7.0000000e+00 7.7000000e+00 7.3000000e+00 1.0900000e+01 1.0800000e+01 6.8000000e+00 8.6000000e+00 6.2000000e+00 1.0100000e+01 6.8000000e+00 8.3000000e+00 8.7000000e+00 6.5000000e+00 6.3000000e+00 7.8000000e+00 8.1000000e+00 9.1000000e+00 1.0600000e+01 7.9000000e+00 6.6000000e+00 7.0000000e+00 9.6000000e+00 8.2000000e+00 7.3000000e+00 6.1000000e+00 8.0000000e+00 8.3000000e+00 7.9000000e+00 6.6000000e+00 8.7000000e+00 8.7000000e+00 7.7000000e+00 7.2000000e+00 7.2000000e+00 7.8000000e+00 6.3000000e+00 4.0000000e-01 8.0000000e-01 2.0000000e+00 5.0000000e-01 7.0000000e-01 7.0000000e-01 6.0000000e-01 1.4000000e+00 6.0000000e-01 5.0000000e-01 9.0000000e-01 2.0000000e+00 2.6000000e+00 1.6000000e+00 9.0000000e-01 2.1000000e+00 1.3000000e+00 1.3000000e+00 1.3000000e+00 8.0000000e-01 1.2000000e+00 9.0000000e-01 8.0000000e-01 1.0000000e+00 1.0000000e+00 8.0000000e-01 3.0000000e-01 5.0000000e-01 1.3000000e+00 1.7000000e+00 1.9000000e+00 6.0000000e-01 4.0000000e-01 1.1000000e+00 6.0000000e-01 5.0000000e-01 8.0000000e-01 7.0000000e-01 1.2000000e+00 3.0000000e-01 1.3000000e+00 1.8000000e+00 5.0000000e-01 1.3000000e+00 2.0000000e-01 1.3000000e+00 5.0000000e-01 6.9000000e+00 6.2000000e+00 7.2000000e+00 5.5000000e+00 6.8000000e+00 5.7000000e+00 6.5000000e+00 3.8000000e+00 6.6000000e+00 4.8000000e+00 4.5000000e+00 5.6000000e+00 5.8000000e+00 6.3000000e+00 4.6000000e+00 6.4000000e+00 5.6000000e+00 5.2000000e+00 7.0000000e+00 5.1000000e+00 6.3000000e+00 5.6000000e+00 7.2000000e+00 6.2000000e+00 6.1000000e+00 6.4000000e+00 7.2000000e+00 7.4000000e+00 6.1000000e+00 4.6000000e+00 5.0000000e+00 4.8000000e+00 5.2000000e+00 7.0000000e+00 5.4000000e+00 6.1000000e+00 6.8000000e+00 6.7000000e+00 5.0000000e+00 5.3000000e+00 5.5000000e+00 6.1000000e+00 5.4000000e+00 4.0000000e+00 5.4000000e+00 5.1000000e+00 5.3000000e+00 5.9000000e+00 3.7000000e+00 5.3000000e+00 8.7000000e+00 7.1000000e+00 9.1000000e+00 7.8000000e+00 8.5000000e+00 1.0300000e+01 5.6000000e+00 9.5000000e+00 8.8000000e+00 1.0000000e+01 7.4000000e+00 7.9000000e+00 8.4000000e+00 7.2000000e+00 7.5000000e+00 7.8000000e+00 7.8000000e+00 1.1000000e+01 1.1300000e+01 7.3000000e+00 8.7000000e+00 6.7000000e+00 1.0600000e+01 7.3000000e+00 8.4000000e+00 8.8000000e+00 7.0000000e+00 6.8000000e+00 8.3000000e+00 8.6000000e+00 9.6000000e+00 1.0700000e+01 8.4000000e+00 7.1000000e+00 7.5000000e+00 1.0100000e+01 8.3000000e+00 7.6000000e+00 6.6000000e+00 8.3000000e+00 8.6000000e+00 8.2000000e+00 7.1000000e+00 8.8000000e+00 8.8000000e+00 8.2000000e+00 7.7000000e+00 7.7000000e+00 7.9000000e+00 6.8000000e+00 1.0000000e+00 2.0000000e+00 5.0000000e-01 7.0000000e-01 5.0000000e-01 4.0000000e-01 1.4000000e+00 6.0000000e-01 5.0000000e-01 9.0000000e-01 2.4000000e+00 2.6000000e+00 2.0000000e+00 1.1000000e+00 2.1000000e+00 1.3000000e+00 1.3000000e+00 1.3000000e+00 1.0000000e+00 1.2000000e+00 9.0000000e-01 6.0000000e-01 1.0000000e+00 1.0000000e+00 1.0000000e+00 3.0000000e-01 3.0000000e-01 1.3000000e+00 1.7000000e+00 2.1000000e+00 4.0000000e-01 8.0000000e-01 1.5000000e+00 4.0000000e-01 5.0000000e-01 8.0000000e-01 1.1000000e+00 1.2000000e+00 5.0000000e-01 1.3000000e+00 1.8000000e+00 5.0000000e-01 1.3000000e+00 2.0000000e-01 1.3000000e+00 7.0000000e-01 6.9000000e+00 6.2000000e+00 7.0000000e+00 5.3000000e+00 6.6000000e+00 5.5000000e+00 6.5000000e+00 3.6000000e+00 6.4000000e+00 4.6000000e+00 4.3000000e+00 5.4000000e+00 5.6000000e+00 6.1000000e+00 4.4000000e+00 6.2000000e+00 5.4000000e+00 5.0000000e+00 6.8000000e+00 4.9000000e+00 6.3000000e+00 5.4000000e+00 7.0000000e+00 6.0000000e+00 5.9000000e+00 6.2000000e+00 7.0000000e+00 7.2000000e+00 5.9000000e+00 4.4000000e+00 4.8000000e+00 4.6000000e+00 5.0000000e+00 6.8000000e+00 5.2000000e+00 6.1000000e+00 6.6000000e+00 6.5000000e+00 4.8000000e+00 5.1000000e+00 5.3000000e+00 5.9000000e+00 5.2000000e+00 3.8000000e+00 5.2000000e+00 4.9000000e+00 5.1000000e+00 5.7000000e+00 3.5000000e+00 5.1000000e+00 8.7000000e+00 6.9000000e+00 8.9000000e+00 7.6000000e+00 8.3000000e+00 1.0100000e+01 5.4000000e+00 9.3000000e+00 8.6000000e+00 1.0000000e+01 7.4000000e+00 7.7000000e+00 8.2000000e+00 7.0000000e+00 7.3000000e+00 7.8000000e+00 7.6000000e+00 1.1000000e+01 1.1100000e+01 7.1000000e+00 8.7000000e+00 6.5000000e+00 1.0400000e+01 7.1000000e+00 8.4000000e+00 8.8000000e+00 6.8000000e+00 6.6000000e+00 8.1000000e+00 8.4000000e+00 9.4000000e+00 1.0700000e+01 8.2000000e+00 6.9000000e+00 7.3000000e+00 9.9000000e+00 8.3000000e+00 7.4000000e+00 6.4000000e+00 8.1000000e+00 8.4000000e+00 8.0000000e+00 6.9000000e+00 8.8000000e+00 8.8000000e+00 8.0000000e+00 7.5000000e+00 7.5000000e+00 7.9000000e+00 6.6000000e+00 1.2000000e+00 7.0000000e-01 3.0000000e-01 1.3000000e+00 8.0000000e-01 6.0000000e-01 6.0000000e-01 9.0000000e-01 1.7000000e+00 1.4000000e+00 1.8000000e+00 1.0000000e+00 3.0000000e-01 1.3000000e+00 5.0000000e-01 9.0000000e-01 5.0000000e-01 8.0000000e-01 1.0000000e+00 9.0000000e-01 8.0000000e-01 6.0000000e-01 4.0000000e-01 4.0000000e-01 9.0000000e-01 9.0000000e-01 9.0000000e-01 9.0000000e-01 1.1000000e+00 8.0000000e-01 6.0000000e-01 7.0000000e-01 8.0000000e-01 1.3000000e+00 4.0000000e-01 3.0000000e-01 2.0000000e+00 1.1000000e+00 7.0000000e-01 1.0000000e+00 9.0000000e-01 5.0000000e-01 8.0000000e-01 5.0000000e-01 3.0000000e-01 6.9000000e+00 6.2000000e+00 7.2000000e+00 5.5000000e+00 6.8000000e+00 5.7000000e+00 6.3000000e+00 4.0000000e+00 6.6000000e+00 4.8000000e+00 4.5000000e+00 5.6000000e+00 5.8000000e+00 6.3000000e+00 4.6000000e+00 6.4000000e+00 5.6000000e+00 5.2000000e+00 7.0000000e+00 5.1000000e+00 6.3000000e+00 5.6000000e+00 7.2000000e+00 6.2000000e+00 6.1000000e+00 6.4000000e+00 7.2000000e+00 7.4000000e+00 6.1000000e+00 4.6000000e+00 5.0000000e+00 4.8000000e+00 5.2000000e+00 7.0000000e+00 5.4000000e+00 5.7000000e+00 6.8000000e+00 6.7000000e+00 5.0000000e+00 5.3000000e+00 5.5000000e+00 6.1000000e+00 5.4000000e+00 4.0000000e+00 5.4000000e+00 5.1000000e+00 5.3000000e+00 5.9000000e+00 3.7000000e+00 5.3000000e+00 8.5000000e+00 7.1000000e+00 9.1000000e+00 7.8000000e+00 8.5000000e+00 1.0300000e+01 5.8000000e+00 9.5000000e+00 8.8000000e+00 9.2000000e+00 7.4000000e+00 7.9000000e+00 8.4000000e+00 7.2000000e+00 7.5000000e+00 7.8000000e+00 7.8000000e+00 1.0200000e+01 1.1300000e+01 7.3000000e+00 8.7000000e+00 6.7000000e+00 1.0600000e+01 7.3000000e+00 8.2000000e+00 8.8000000e+00 7.0000000e+00 6.8000000e+00 8.3000000e+00 8.6000000e+00 9.6000000e+00 9.9000000e+00 8.4000000e+00 7.1000000e+00 7.5000000e+00 1.0100000e+01 7.9000000e+00 7.6000000e+00 6.6000000e+00 8.3000000e+00 8.6000000e+00 8.2000000e+00 7.1000000e+00 8.8000000e+00 8.6000000e+00 8.2000000e+00 7.7000000e+00 7.7000000e+00 7.5000000e+00 6.8000000e+00 1.7000000e+00 1.3000000e+00 2.5000000e+00 1.8000000e+00 6.0000000e-01 1.4000000e+00 2.1000000e+00 2.9000000e+00 1.2000000e+00 1.0000000e+00 4.0000000e-01 1.1000000e+00 5.0000000e-01 7.0000000e-01 7.0000000e-01 7.0000000e-01 2.0000000e+00 1.0000000e+00 1.5000000e+00 1.6000000e+00 1.0000000e+00 1.0000000e+00 1.2000000e+00 1.7000000e+00 1.7000000e+00 7.0000000e-01 9.0000000e-01 9.0000000e-01 1.8000000e+00 1.8000000e+00 1.1000000e+00 1.8000000e+00 2.5000000e+00 1.2000000e+00 1.3000000e+00 3.0000000e+00 2.3000000e+00 1.1000000e+00 6.0000000e-01 1.9000000e+00 7.0000000e-01 2.0000000e+00 7.0000000e-01 1.5000000e+00 6.3000000e+00 5.6000000e+00 6.6000000e+00 4.9000000e+00 6.2000000e+00 5.1000000e+00 5.7000000e+00 4.2000000e+00 6.0000000e+00 4.6000000e+00 4.7000000e+00 5.0000000e+00 5.2000000e+00 5.7000000e+00 4.0000000e+00 5.8000000e+00 5.0000000e+00 4.6000000e+00 6.4000000e+00 4.5000000e+00 5.7000000e+00 5.0000000e+00 6.6000000e+00 5.6000000e+00 5.5000000e+00 5.8000000e+00 6.6000000e+00 6.8000000e+00 5.5000000e+00 4.0000000e+00 4.4000000e+00 4.2000000e+00 4.6000000e+00 6.4000000e+00 4.8000000e+00 5.1000000e+00 6.2000000e+00 6.1000000e+00 4.4000000e+00 4.7000000e+00 4.9000000e+00 5.5000000e+00 4.8000000e+00 4.2000000e+00 4.8000000e+00 4.5000000e+00 4.7000000e+00 5.3000000e+00 3.7000000e+00 4.7000000e+00 7.9000000e+00 6.5000000e+00 8.5000000e+00 7.2000000e+00 7.9000000e+00 9.7000000e+00 6.0000000e+00 8.9000000e+00 8.2000000e+00 8.6000000e+00 6.8000000e+00 7.3000000e+00 7.8000000e+00 6.6000000e+00 6.9000000e+00 7.2000000e+00 7.2000000e+00 9.2000000e+00 1.0700000e+01 6.7000000e+00 8.1000000e+00 6.1000000e+00 1.0000000e+01 6.7000000e+00 7.6000000e+00 8.2000000e+00 6.4000000e+00 6.2000000e+00 7.7000000e+00 8.0000000e+00 9.0000000e+00 8.9000000e+00 7.8000000e+00 6.5000000e+00 6.9000000e+00 9.5000000e+00 7.3000000e+00 7.0000000e+00 6.0000000e+00 7.7000000e+00 8.0000000e+00 7.6000000e+00 6.5000000e+00 8.2000000e+00 8.0000000e+00 7.6000000e+00 7.1000000e+00 7.1000000e+00 6.9000000e+00 6.2000000e+00 6.0000000e-01 8.0000000e-01 9.0000000e-01 1.3000000e+00 5.0000000e-01 8.0000000e-01 1.2000000e+00 2.1000000e+00 2.3000000e+00 1.5000000e+00 6.0000000e-01 1.8000000e+00 1.0000000e+00 1.2000000e+00 1.0000000e+00 7.0000000e-01 1.1000000e+00 8.0000000e-01 1.1000000e+00 7.0000000e-01 9.0000000e-01 7.0000000e-01 6.0000000e-01 8.0000000e-01 1.0000000e+00 1.6000000e+00 1.8000000e+00 9.0000000e-01 9.0000000e-01 1.2000000e+00 9.0000000e-01 8.0000000e-01 7.0000000e-01 6.0000000e-01 1.3000000e+00 6.0000000e-01 1.0000000e+00 1.5000000e+00 6.0000000e-01 1.2000000e+00 3.0000000e-01 1.2000000e+00 6.0000000e-01 7.0000000e+00 6.3000000e+00 7.3000000e+00 5.6000000e+00 6.9000000e+00 5.8000000e+00 6.4000000e+00 3.9000000e+00 6.7000000e+00 4.9000000e+00 4.6000000e+00 5.7000000e+00 5.9000000e+00 6.4000000e+00 4.7000000e+00 6.5000000e+00 5.7000000e+00 5.3000000e+00 7.1000000e+00 5.2000000e+00 6.4000000e+00 5.7000000e+00 7.3000000e+00 6.3000000e+00 6.2000000e+00 6.5000000e+00 7.3000000e+00 7.5000000e+00 6.2000000e+00 4.7000000e+00 5.1000000e+00 4.9000000e+00 5.3000000e+00 7.1000000e+00 5.5000000e+00 5.8000000e+00 6.9000000e+00 6.8000000e+00 5.1000000e+00 5.4000000e+00 5.6000000e+00 6.2000000e+00 5.5000000e+00 4.1000000e+00 5.5000000e+00 5.2000000e+00 5.4000000e+00 6.0000000e+00 3.8000000e+00 5.4000000e+00 8.6000000e+00 7.2000000e+00 9.2000000e+00 7.9000000e+00 8.6000000e+00 1.0400000e+01 5.7000000e+00 9.6000000e+00 8.9000000e+00 9.7000000e+00 7.5000000e+00 8.0000000e+00 8.5000000e+00 7.3000000e+00 7.6000000e+00 7.9000000e+00 7.9000000e+00 1.0700000e+01 1.1400000e+01 7.4000000e+00 8.8000000e+00 6.8000000e+00 1.0700000e+01 7.4000000e+00 8.3000000e+00 8.9000000e+00 7.1000000e+00 6.9000000e+00 8.4000000e+00 8.7000000e+00 9.7000000e+00 1.0400000e+01 8.5000000e+00 7.2000000e+00 7.6000000e+00 1.0200000e+01 8.0000000e+00 7.7000000e+00 6.7000000e+00 8.4000000e+00 8.7000000e+00 8.3000000e+00 7.2000000e+00 8.9000000e+00 8.7000000e+00 8.3000000e+00 7.8000000e+00 7.8000000e+00 7.6000000e+00 6.9000000e+00 1.2000000e+00 5.0000000e-01 7.0000000e-01 3.0000000e-01 8.0000000e-01 1.6000000e+00 1.7000000e+00 1.9000000e+00 1.3000000e+00 4.0000000e-01 1.4000000e+00 6.0000000e-01 6.0000000e-01 6.0000000e-01 1.1000000e+00 7.0000000e-01 6.0000000e-01 5.0000000e-01 3.0000000e-01 3.0000000e-01 3.0000000e-01 6.0000000e-01 6.0000000e-01 6.0000000e-01 1.0000000e+00 1.4000000e+00 5.0000000e-01 5.0000000e-01 8.0000000e-01 5.0000000e-01 1.2000000e+00 1.0000000e-01 4.0000000e-01 1.9000000e+00 1.0000000e+00 6.0000000e-01 1.1000000e+00 8.0000000e-01 6.0000000e-01 7.0000000e-01 6.0000000e-01 2.0000000e-01 6.6000000e+00 5.9000000e+00 6.9000000e+00 5.2000000e+00 6.5000000e+00 5.4000000e+00 6.0000000e+00 3.7000000e+00 6.3000000e+00 4.5000000e+00 4.2000000e+00 5.3000000e+00 5.5000000e+00 6.0000000e+00 4.3000000e+00 6.1000000e+00 5.3000000e+00 4.9000000e+00 6.7000000e+00 4.8000000e+00 6.0000000e+00 5.3000000e+00 6.9000000e+00 5.9000000e+00 5.8000000e+00 6.1000000e+00 6.9000000e+00 7.1000000e+00 5.8000000e+00 4.3000000e+00 4.7000000e+00 4.5000000e+00 4.9000000e+00 6.7000000e+00 5.1000000e+00 5.4000000e+00 6.5000000e+00 6.4000000e+00 4.7000000e+00 5.0000000e+00 5.2000000e+00 5.8000000e+00 5.1000000e+00 3.7000000e+00 5.1000000e+00 4.8000000e+00 5.0000000e+00 5.6000000e+00 3.4000000e+00 5.0000000e+00 8.2000000e+00 6.8000000e+00 8.8000000e+00 7.5000000e+00 8.2000000e+00 1.0000000e+01 5.5000000e+00 9.2000000e+00 8.5000000e+00 9.3000000e+00 7.1000000e+00 7.6000000e+00 8.1000000e+00 6.9000000e+00 7.2000000e+00 7.5000000e+00 7.5000000e+00 1.0300000e+01 1.1000000e+01 7.0000000e+00 8.4000000e+00 6.4000000e+00 1.0300000e+01 7.0000000e+00 7.9000000e+00 8.5000000e+00 6.7000000e+00 6.5000000e+00 8.0000000e+00 8.3000000e+00 9.3000000e+00 1.0000000e+01 8.1000000e+00 6.8000000e+00 7.2000000e+00 9.8000000e+00 7.6000000e+00 7.3000000e+00 6.3000000e+00 8.0000000e+00 8.3000000e+00 7.9000000e+00 6.8000000e+00 8.5000000e+00 8.3000000e+00 7.9000000e+00 7.4000000e+00 7.4000000e+00 7.2000000e+00 6.5000000e+00 9.0000000e-01 1.9000000e+00 1.1000000e+00 6.0000000e-01 6.0000000e-01 2.7000000e+00 3.1000000e+00 2.3000000e+00 1.4000000e+00 2.6000000e+00 1.8000000e+00 1.8000000e+00 1.8000000e+00 1.3000000e+00 1.7000000e+00 1.4000000e+00 9.0000000e-01 1.5000000e+00 1.5000000e+00 1.3000000e+00 8.0000000e-01 8.0000000e-01 1.8000000e+00 2.2000000e+00 2.4000000e+00 9.0000000e-01 1.1000000e+00 1.8000000e+00 9.0000000e-01 2.0000000e-01 1.3000000e+00 1.4000000e+00 9.0000000e-01 4.0000000e-01 1.8000000e+00 2.3000000e+00 6.0000000e-01 1.8000000e+00 5.0000000e-01 1.8000000e+00 1.0000000e+00 7.4000000e+00 6.7000000e+00 7.5000000e+00 5.4000000e+00 6.7000000e+00 5.6000000e+00 7.0000000e+00 3.7000000e+00 6.5000000e+00 4.7000000e+00 4.4000000e+00 5.7000000e+00 5.7000000e+00 6.2000000e+00 4.5000000e+00 6.7000000e+00 5.7000000e+00 5.1000000e+00 6.9000000e+00 5.0000000e+00 6.8000000e+00 5.5000000e+00 7.1000000e+00 6.1000000e+00 6.0000000e+00 6.5000000e+00 7.1000000e+00 7.5000000e+00 6.0000000e+00 4.5000000e+00 4.9000000e+00 4.7000000e+00 5.1000000e+00 6.9000000e+00 5.5000000e+00 6.6000000e+00 7.1000000e+00 6.6000000e+00 5.1000000e+00 5.2000000e+00 5.4000000e+00 6.2000000e+00 5.3000000e+00 3.9000000e+00 5.3000000e+00 5.2000000e+00 5.2000000e+00 5.8000000e+00 3.6000000e+00 5.2000000e+00 9.2000000e+00 7.0000000e+00 9.2000000e+00 7.7000000e+00 8.6000000e+00 1.0400000e+01 5.5000000e+00 9.4000000e+00 8.7000000e+00 1.0500000e+01 7.9000000e+00 7.8000000e+00 8.5000000e+00 7.1000000e+00 7.4000000e+00 8.3000000e+00 7.9000000e+00 1.1500000e+01 1.1200000e+01 7.2000000e+00 9.2000000e+00 6.6000000e+00 1.0500000e+01 7.2000000e+00 8.9000000e+00 9.3000000e+00 6.9000000e+00 6.9000000e+00 8.2000000e+00 8.7000000e+00 9.5000000e+00 1.1200000e+01 8.3000000e+00 7.0000000e+00 7.4000000e+00 1.0200000e+01 8.8000000e+00 7.9000000e+00 6.7000000e+00 8.6000000e+00 8.9000000e+00 8.5000000e+00 7.0000000e+00 9.3000000e+00 9.3000000e+00 8.3000000e+00 7.6000000e+00 7.8000000e+00 8.4000000e+00 6.9000000e+00 1.2000000e+00 6.0000000e-01 3.0000000e-01 1.1000000e+00 2.2000000e+00 2.4000000e+00 1.8000000e+00 9.0000000e-01 1.9000000e+00 1.1000000e+00 1.1000000e+00 1.1000000e+00 1.4000000e+00 1.0000000e+00 9.0000000e-01 4.0000000e-01 8.0000000e-01 8.0000000e-01 8.0000000e-01 5.0000000e-01 3.0000000e-01 1.1000000e+00 1.3000000e+00 1.9000000e+00 0.0000000e+00 6.0000000e-01 1.3000000e+00 0.0000000e+00 9.0000000e-01 6.0000000e-01 9.0000000e-01 1.6000000e+00 9.0000000e-01 1.1000000e+00 1.6000000e+00 5.0000000e-01 1.1000000e+00 6.0000000e-01 1.1000000e+00 5.0000000e-01 6.7000000e+00 6.0000000e+00 6.8000000e+00 5.1000000e+00 6.4000000e+00 5.3000000e+00 6.3000000e+00 3.4000000e+00 6.2000000e+00 4.4000000e+00 4.1000000e+00 5.2000000e+00 5.4000000e+00 5.9000000e+00 4.2000000e+00 6.0000000e+00 5.2000000e+00 4.8000000e+00 6.6000000e+00 4.7000000e+00 6.1000000e+00 5.2000000e+00 6.8000000e+00 5.8000000e+00 5.7000000e+00 6.0000000e+00 6.8000000e+00 7.0000000e+00 5.7000000e+00 4.2000000e+00 4.6000000e+00 4.4000000e+00 4.8000000e+00 6.6000000e+00 5.0000000e+00 5.9000000e+00 6.4000000e+00 6.3000000e+00 4.6000000e+00 4.9000000e+00 5.1000000e+00 5.7000000e+00 5.0000000e+00 3.6000000e+00 5.0000000e+00 4.7000000e+00 4.9000000e+00 5.5000000e+00 3.3000000e+00 4.9000000e+00 8.5000000e+00 6.7000000e+00 8.7000000e+00 7.4000000e+00 8.1000000e+00 9.9000000e+00 5.2000000e+00 9.1000000e+00 8.4000000e+00 9.8000000e+00 7.2000000e+00 7.5000000e+00 8.0000000e+00 6.8000000e+00 7.1000000e+00 7.6000000e+00 7.4000000e+00 1.0800000e+01 1.0900000e+01 6.9000000e+00 8.5000000e+00 6.3000000e+00 1.0200000e+01 6.9000000e+00 8.2000000e+00 8.6000000e+00 6.6000000e+00 6.4000000e+00 7.9000000e+00 8.2000000e+00 9.2000000e+00 1.0500000e+01 8.0000000e+00 6.7000000e+00 7.1000000e+00 9.7000000e+00 8.1000000e+00 7.2000000e+00 6.2000000e+00 7.9000000e+00 8.2000000e+00 7.8000000e+00 6.7000000e+00 8.6000000e+00 8.6000000e+00 7.8000000e+00 7.3000000e+00 7.3000000e+00 7.7000000e+00 6.4000000e+00 1.0000000e+00 1.5000000e+00 2.3000000e+00 1.0000000e+00 1.2000000e+00 6.0000000e-01 7.0000000e-01 7.0000000e-01 5.0000000e-01 5.0000000e-01 5.0000000e-01 1.4000000e+00 1.2000000e+00 1.3000000e+00 1.2000000e+00 1.0000000e+00 4.0000000e-01 6.0000000e-01 1.3000000e+00 1.3000000e+00 5.0000000e-01 7.0000000e-01 7.0000000e-01 1.2000000e+00 1.2000000e+00 5.0000000e-01 1.2000000e+00 1.9000000e+00 6.0000000e-01 9.0000000e-01 2.6000000e+00 1.7000000e+00 1.1000000e+00 1.0000000e+00 1.5000000e+00 5.0000000e-01 1.4000000e+00 1.0000000e-01 9.0000000e-01 6.5000000e+00 5.8000000e+00 6.8000000e+00 5.1000000e+00 6.4000000e+00 5.3000000e+00 5.9000000e+00 4.4000000e+00 6.2000000e+00 4.8000000e+00 4.9000000e+00 5.2000000e+00 5.4000000e+00 5.9000000e+00 4.2000000e+00 6.0000000e+00 5.2000000e+00 4.8000000e+00 6.6000000e+00 4.7000000e+00 5.9000000e+00 5.2000000e+00 6.8000000e+00 5.8000000e+00 5.7000000e+00 6.0000000e+00 6.8000000e+00 7.0000000e+00 5.7000000e+00 4.2000000e+00 4.6000000e+00 4.4000000e+00 4.8000000e+00 6.6000000e+00 5.0000000e+00 5.3000000e+00 6.4000000e+00 6.3000000e+00 4.6000000e+00 4.9000000e+00 5.1000000e+00 5.7000000e+00 5.0000000e+00 4.4000000e+00 5.0000000e+00 4.7000000e+00 4.9000000e+00 5.5000000e+00 3.9000000e+00 4.9000000e+00 8.1000000e+00 6.7000000e+00 8.7000000e+00 7.4000000e+00 8.1000000e+00 9.9000000e+00 6.2000000e+00 9.1000000e+00 8.4000000e+00 8.8000000e+00 7.0000000e+00 7.5000000e+00 8.0000000e+00 6.8000000e+00 7.1000000e+00 7.4000000e+00 7.4000000e+00 9.6000000e+00 1.0900000e+01 6.9000000e+00 8.3000000e+00 6.3000000e+00 1.0200000e+01 6.9000000e+00 7.8000000e+00 8.4000000e+00 6.6000000e+00 6.4000000e+00 7.9000000e+00 8.2000000e+00 9.2000000e+00 9.3000000e+00 8.0000000e+00 6.7000000e+00 7.1000000e+00 9.7000000e+00 7.5000000e+00 7.2000000e+00 6.2000000e+00 7.9000000e+00 8.2000000e+00 7.8000000e+00 6.7000000e+00 8.4000000e+00 8.2000000e+00 7.8000000e+00 7.3000000e+00 7.3000000e+00 7.1000000e+00 6.4000000e+00 7.0000000e-01 1.5000000e+00 2.0000000e+00 2.2000000e+00 1.6000000e+00 7.0000000e-01 1.5000000e+00 9.0000000e-01 7.0000000e-01 9.0000000e-01 1.0000000e+00 8.0000000e-01 3.0000000e-01 6.0000000e-01 4.0000000e-01 6.0000000e-01 6.0000000e-01 3.0000000e-01 3.0000000e-01 9.0000000e-01 1.3000000e+00 1.7000000e+00 6.0000000e-01 8.0000000e-01 1.1000000e+00 6.0000000e-01 1.1000000e+00 4.0000000e-01 7.0000000e-01 1.8000000e+00 9.0000000e-01 7.0000000e-01 1.2000000e+00 7.0000000e-01 7.0000000e-01 6.0000000e-01 9.0000000e-01 5.0000000e-01 6.7000000e+00 6.0000000e+00 7.0000000e+00 5.3000000e+00 6.6000000e+00 5.5000000e+00 6.1000000e+00 3.6000000e+00 6.4000000e+00 4.6000000e+00 4.3000000e+00 5.4000000e+00 5.6000000e+00 6.1000000e+00 4.4000000e+00 6.2000000e+00 5.4000000e+00 5.0000000e+00 6.8000000e+00 4.9000000e+00 6.1000000e+00 5.4000000e+00 7.0000000e+00 6.0000000e+00 5.9000000e+00 6.2000000e+00 7.0000000e+00 7.2000000e+00 5.9000000e+00 4.4000000e+00 4.8000000e+00 4.6000000e+00 5.0000000e+00 6.8000000e+00 5.2000000e+00 5.5000000e+00 6.6000000e+00 6.5000000e+00 4.8000000e+00 5.1000000e+00 5.3000000e+00 5.9000000e+00 5.2000000e+00 3.8000000e+00 5.2000000e+00 4.9000000e+00 5.1000000e+00 5.7000000e+00 3.5000000e+00 5.1000000e+00 8.3000000e+00 6.9000000e+00 8.9000000e+00 7.6000000e+00 8.3000000e+00 1.0100000e+01 5.4000000e+00 9.3000000e+00 8.6000000e+00 9.4000000e+00 7.2000000e+00 7.7000000e+00 8.2000000e+00 7.0000000e+00 7.3000000e+00 7.6000000e+00 7.6000000e+00 1.0400000e+01 1.1100000e+01 7.1000000e+00 8.5000000e+00 6.5000000e+00 1.0400000e+01 7.1000000e+00 8.0000000e+00 8.6000000e+00 6.8000000e+00 6.6000000e+00 8.1000000e+00 8.4000000e+00 9.4000000e+00 1.0100000e+01 8.2000000e+00 6.9000000e+00 7.3000000e+00 9.9000000e+00 7.7000000e+00 7.4000000e+00 6.4000000e+00 8.1000000e+00 8.4000000e+00 8.0000000e+00 6.9000000e+00 8.6000000e+00 8.4000000e+00 8.0000000e+00 7.5000000e+00 7.5000000e+00 7.3000000e+00 6.6000000e+00 8.0000000e-01 2.3000000e+00 2.7000000e+00 1.9000000e+00 1.0000000e+00 2.2000000e+00 1.4000000e+00 1.4000000e+00 1.4000000e+00 1.3000000e+00 1.3000000e+00 1.0000000e+00 5.0000000e-01 1.1000000e+00 1.1000000e+00 9.0000000e-01 6.0000000e-01 4.0000000e-01 1.4000000e+00 1.6000000e+00 2.0000000e+00 3.0000000e-01 7.0000000e-01 1.4000000e+00 3.0000000e-01 6.0000000e-01 9.0000000e-01 1.0000000e+00 1.3000000e+00 8.0000000e-01 1.4000000e+00 1.9000000e+00 2.0000000e-01 1.4000000e+00 5.0000000e-01 1.4000000e+00 6.0000000e-01 7.0000000e+00 6.3000000e+00 7.1000000e+00 5.2000000e+00 6.5000000e+00 5.4000000e+00 6.6000000e+00 3.5000000e+00 6.3000000e+00 4.5000000e+00 4.2000000e+00 5.3000000e+00 5.5000000e+00 6.0000000e+00 4.3000000e+00 6.3000000e+00 5.3000000e+00 4.9000000e+00 6.7000000e+00 4.8000000e+00 6.4000000e+00 5.3000000e+00 6.9000000e+00 5.9000000e+00 5.8000000e+00 6.1000000e+00 6.9000000e+00 7.1000000e+00 5.8000000e+00 4.3000000e+00 4.7000000e+00 4.5000000e+00 4.9000000e+00 6.7000000e+00 5.1000000e+00 6.2000000e+00 6.7000000e+00 6.4000000e+00 4.7000000e+00 5.0000000e+00 5.2000000e+00 5.8000000e+00 5.1000000e+00 3.7000000e+00 5.1000000e+00 4.8000000e+00 5.0000000e+00 5.6000000e+00 3.4000000e+00 5.0000000e+00 8.8000000e+00 6.8000000e+00 8.8000000e+00 7.5000000e+00 8.2000000e+00 1.0000000e+01 5.3000000e+00 9.2000000e+00 8.5000000e+00 1.0100000e+01 7.5000000e+00 7.6000000e+00 8.1000000e+00 6.9000000e+00 7.2000000e+00 7.9000000e+00 7.5000000e+00 1.1100000e+01 1.1000000e+01 7.0000000e+00 8.8000000e+00 6.4000000e+00 1.0300000e+01 7.0000000e+00 8.5000000e+00 8.9000000e+00 6.7000000e+00 6.5000000e+00 8.0000000e+00 8.3000000e+00 9.3000000e+00 1.0800000e+01 8.1000000e+00 6.8000000e+00 7.2000000e+00 9.8000000e+00 8.4000000e+00 7.5000000e+00 6.3000000e+00 8.2000000e+00 8.5000000e+00 8.1000000e+00 6.8000000e+00 8.9000000e+00 8.9000000e+00 7.9000000e+00 7.4000000e+00 7.4000000e+00 8.0000000e+00 6.5000000e+00 2.7000000e+00 3.5000000e+00 2.5000000e+00 1.8000000e+00 3.0000000e+00 2.2000000e+00 2.2000000e+00 2.2000000e+00 1.1000000e+00 2.1000000e+00 1.8000000e+00 1.3000000e+00 1.9000000e+00 1.9000000e+00 1.7000000e+00 1.2000000e+00 1.2000000e+00 2.2000000e+00 2.4000000e+00 2.8000000e+00 1.1000000e+00 1.1000000e+00 2.0000000e+00 1.1000000e+00 4.0000000e-01 1.7000000e+00 1.6000000e+00 1.3000000e+00 6.0000000e-01 2.2000000e+00 2.7000000e+00 1.0000000e+00 2.2000000e+00 9.0000000e-01 2.2000000e+00 1.4000000e+00 7.8000000e+00 7.1000000e+00 7.9000000e+00 6.0000000e+00 7.3000000e+00 6.2000000e+00 7.4000000e+00 4.3000000e+00 7.1000000e+00 5.3000000e+00 5.0000000e+00 6.1000000e+00 6.3000000e+00 6.8000000e+00 5.1000000e+00 7.1000000e+00 6.1000000e+00 5.7000000e+00 7.5000000e+00 5.6000000e+00 7.2000000e+00 6.1000000e+00 7.7000000e+00 6.7000000e+00 6.6000000e+00 6.9000000e+00 7.7000000e+00 7.9000000e+00 6.6000000e+00 5.1000000e+00 5.5000000e+00 5.3000000e+00 5.7000000e+00 7.5000000e+00 5.9000000e+00 7.0000000e+00 7.5000000e+00 7.2000000e+00 5.5000000e+00 5.8000000e+00 6.0000000e+00 6.6000000e+00 5.9000000e+00 4.5000000e+00 5.9000000e+00 5.6000000e+00 5.8000000e+00 6.4000000e+00 4.2000000e+00 5.8000000e+00 9.6000000e+00 7.6000000e+00 9.6000000e+00 8.3000000e+00 9.0000000e+00 1.0800000e+01 6.1000000e+00 1.0000000e+01 9.3000000e+00 1.0900000e+01 8.3000000e+00 8.4000000e+00 8.9000000e+00 7.7000000e+00 8.0000000e+00 8.7000000e+00 8.3000000e+00 1.1900000e+01 1.1800000e+01 7.8000000e+00 9.6000000e+00 7.2000000e+00 1.1100000e+01 7.8000000e+00 9.3000000e+00 9.7000000e+00 7.5000000e+00 7.3000000e+00 8.8000000e+00 9.1000000e+00 1.0100000e+01 1.1600000e+01 8.9000000e+00 7.6000000e+00 8.0000000e+00 1.0600000e+01 9.2000000e+00 8.3000000e+00 7.1000000e+00 9.0000000e+00 9.3000000e+00 8.9000000e+00 7.6000000e+00 9.7000000e+00 9.7000000e+00 8.7000000e+00 8.2000000e+00 8.2000000e+00 8.8000000e+00 7.3000000e+00 1.0000000e+00 8.0000000e-01 1.5000000e+00 9.0000000e-01 1.3000000e+00 1.5000000e+00 1.5000000e+00 1.8000000e+00 2.2000000e+00 2.3000000e+00 2.2000000e+00 2.0000000e+00 1.4000000e+00 1.4000000e+00 2.3000000e+00 2.3000000e+00 1.5000000e+00 1.1000000e+00 7.0000000e-01 2.2000000e+00 1.6000000e+00 9.0000000e-01 2.2000000e+00 2.5000000e+00 1.6000000e+00 1.5000000e+00 3.2000000e+00 2.3000000e+00 2.1000000e+00 1.8000000e+00 2.3000000e+00 1.3000000e+00 2.2000000e+00 1.1000000e+00 1.7000000e+00 6.7000000e+00 6.0000000e+00 7.0000000e+00 5.9000000e+00 6.6000000e+00 5.7000000e+00 6.1000000e+00 5.4000000e+00 6.4000000e+00 5.8000000e+00 5.9000000e+00 5.4000000e+00 5.6000000e+00 6.1000000e+00 4.8000000e+00 6.2000000e+00 5.8000000e+00 5.0000000e+00 6.8000000e+00 5.3000000e+00 6.1000000e+00 5.4000000e+00 7.0000000e+00 6.0000000e+00 5.9000000e+00 6.2000000e+00 7.0000000e+00 7.2000000e+00 5.9000000e+00 4.6000000e+00 5.4000000e+00 5.2000000e+00 5.0000000e+00 6.8000000e+00 6.0000000e+00 5.5000000e+00 6.6000000e+00 6.5000000e+00 5.2000000e+00 5.7000000e+00 5.9000000e+00 5.9000000e+00 5.2000000e+00 5.4000000e+00 5.6000000e+00 5.1000000e+00 5.3000000e+00 5.7000000e+00 4.9000000e+00 5.3000000e+00 8.3000000e+00 6.9000000e+00 8.9000000e+00 7.6000000e+00 8.3000000e+00 1.0100000e+01 7.2000000e+00 9.3000000e+00 8.6000000e+00 9.0000000e+00 7.2000000e+00 7.7000000e+00 8.2000000e+00 7.2000000e+00 7.3000000e+00 7.6000000e+00 7.6000000e+00 9.6000000e+00 1.1100000e+01 7.1000000e+00 8.5000000e+00 6.9000000e+00 1.0400000e+01 7.1000000e+00 8.0000000e+00 8.6000000e+00 6.8000000e+00 6.6000000e+00 8.1000000e+00 8.4000000e+00 9.4000000e+00 9.3000000e+00 8.2000000e+00 6.9000000e+00 7.3000000e+00 9.9000000e+00 7.7000000e+00 7.4000000e+00 6.4000000e+00 8.1000000e+00 8.4000000e+00 8.0000000e+00 6.9000000e+00 8.6000000e+00 8.4000000e+00 8.0000000e+00 7.5000000e+00 7.5000000e+00 7.3000000e+00 6.6000000e+00 1.0000000e+00 1.7000000e+00 9.0000000e-01 1.3000000e+00 1.7000000e+00 1.3000000e+00 2.6000000e+00 2.0000000e+00 2.5000000e+00 2.4000000e+00 1.8000000e+00 1.6000000e+00 1.8000000e+00 2.5000000e+00 2.5000000e+00 1.3000000e+00 1.1000000e+00 7.0000000e-01 2.4000000e+00 2.4000000e+00 1.5000000e+00 2.4000000e+00 3.1000000e+00 1.8000000e+00 1.9000000e+00 3.6000000e+00 2.9000000e+00 1.9000000e+00 1.6000000e+00 2.5000000e+00 1.5000000e+00 2.6000000e+00 1.3000000e+00 2.1000000e+00 6.7000000e+00 6.0000000e+00 7.0000000e+00 5.7000000e+00 6.6000000e+00 5.5000000e+00 6.1000000e+00 5.2000000e+00 6.4000000e+00 5.6000000e+00 5.7000000e+00 5.4000000e+00 5.6000000e+00 6.1000000e+00 4.6000000e+00 6.2000000e+00 5.6000000e+00 5.0000000e+00 6.8000000e+00 5.1000000e+00 6.1000000e+00 5.4000000e+00 7.0000000e+00 6.0000000e+00 5.9000000e+00 6.2000000e+00 7.0000000e+00 7.2000000e+00 5.9000000e+00 4.4000000e+00 5.2000000e+00 5.0000000e+00 5.0000000e+00 6.8000000e+00 5.8000000e+00 5.5000000e+00 6.6000000e+00 6.5000000e+00 5.0000000e+00 5.5000000e+00 5.7000000e+00 5.9000000e+00 5.2000000e+00 5.2000000e+00 5.4000000e+00 4.9000000e+00 5.1000000e+00 5.7000000e+00 4.7000000e+00 5.1000000e+00 8.3000000e+00 6.9000000e+00 8.9000000e+00 7.6000000e+00 8.3000000e+00 1.0100000e+01 7.0000000e+00 9.3000000e+00 8.6000000e+00 9.0000000e+00 7.2000000e+00 7.7000000e+00 8.2000000e+00 7.0000000e+00 7.3000000e+00 7.6000000e+00 7.6000000e+00 9.6000000e+00 1.1100000e+01 7.1000000e+00 8.5000000e+00 6.7000000e+00 1.0400000e+01 7.1000000e+00 8.0000000e+00 8.6000000e+00 6.8000000e+00 6.6000000e+00 8.1000000e+00 8.4000000e+00 9.4000000e+00 9.3000000e+00 8.2000000e+00 6.9000000e+00 7.3000000e+00 9.9000000e+00 7.7000000e+00 7.4000000e+00 6.4000000e+00 8.1000000e+00 8.4000000e+00 8.0000000e+00 6.9000000e+00 8.6000000e+00 8.4000000e+00 8.0000000e+00 7.5000000e+00 7.5000000e+00 7.3000000e+00 6.6000000e+00 9.0000000e-01 9.0000000e-01 7.0000000e-01 1.1000000e+00 7.0000000e-01 1.6000000e+00 1.4000000e+00 1.9000000e+00 1.8000000e+00 1.2000000e+00 1.0000000e+00 1.0000000e+00 1.9000000e+00 1.9000000e+00 7.0000000e-01 9.0000000e-01 7.0000000e-01 1.8000000e+00 1.4000000e+00 7.0000000e-01 1.8000000e+00 2.1000000e+00 1.2000000e+00 9.0000000e-01 2.6000000e+00 1.9000000e+00 1.3000000e+00 1.0000000e+00 1.7000000e+00 9.0000000e-01 1.8000000e+00 7.0000000e-01 1.3000000e+00 6.7000000e+00 6.0000000e+00 7.0000000e+00 5.3000000e+00 6.6000000e+00 5.5000000e+00 6.1000000e+00 4.6000000e+00 6.4000000e+00 5.0000000e+00 5.1000000e+00 5.4000000e+00 5.6000000e+00 6.1000000e+00 4.4000000e+00 6.2000000e+00 5.4000000e+00 5.0000000e+00 6.8000000e+00 4.9000000e+00 6.1000000e+00 5.4000000e+00 7.0000000e+00 6.0000000e+00 5.9000000e+00 6.2000000e+00 7.0000000e+00 7.2000000e+00 5.9000000e+00 4.4000000e+00 4.8000000e+00 4.6000000e+00 5.0000000e+00 6.8000000e+00 5.2000000e+00 5.5000000e+00 6.6000000e+00 6.5000000e+00 4.8000000e+00 5.1000000e+00 5.3000000e+00 5.9000000e+00 5.2000000e+00 4.6000000e+00 5.2000000e+00 4.9000000e+00 5.1000000e+00 5.7000000e+00 4.1000000e+00 5.1000000e+00 8.3000000e+00 6.9000000e+00 8.9000000e+00 7.6000000e+00 8.3000000e+00 1.0100000e+01 6.4000000e+00 9.3000000e+00 8.6000000e+00 9.0000000e+00 7.2000000e+00 7.7000000e+00 8.2000000e+00 7.0000000e+00 7.3000000e+00 7.6000000e+00 7.6000000e+00 9.6000000e+00 1.1100000e+01 7.1000000e+00 8.5000000e+00 6.5000000e+00 1.0400000e+01 7.1000000e+00 8.0000000e+00 8.6000000e+00 6.8000000e+00 6.6000000e+00 8.1000000e+00 8.4000000e+00 9.4000000e+00 9.3000000e+00 8.2000000e+00 6.9000000e+00 7.3000000e+00 9.9000000e+00 7.7000000e+00 7.4000000e+00 6.4000000e+00 8.1000000e+00 8.4000000e+00 8.0000000e+00 6.9000000e+00 8.6000000e+00 8.4000000e+00 8.0000000e+00 7.5000000e+00 7.5000000e+00 7.3000000e+00 6.6000000e+00 1.2000000e+00 4.0000000e-01 8.0000000e-01 4.0000000e-01 1.1000000e+00 7.0000000e-01 1.0000000e+00 9.0000000e-01 5.0000000e-01 3.0000000e-01 3.0000000e-01 1.0000000e+00 1.0000000e+00 6.0000000e-01 1.0000000e+00 1.2000000e+00 9.0000000e-01 7.0000000e-01 6.0000000e-01 9.0000000e-01 1.4000000e+00 3.0000000e-01 2.0000000e-01 1.9000000e+00 1.2000000e+00 6.0000000e-01 9.0000000e-01 8.0000000e-01 6.0000000e-01 9.0000000e-01 6.0000000e-01 4.0000000e-01 6.6000000e+00 5.9000000e+00 6.9000000e+00 5.2000000e+00 6.5000000e+00 5.4000000e+00 6.0000000e+00 3.9000000e+00 6.3000000e+00 4.5000000e+00 4.4000000e+00 5.3000000e+00 5.5000000e+00 6.0000000e+00 4.3000000e+00 6.1000000e+00 5.3000000e+00 4.9000000e+00 6.7000000e+00 4.8000000e+00 6.0000000e+00 5.3000000e+00 6.9000000e+00 5.9000000e+00 5.8000000e+00 6.1000000e+00 6.9000000e+00 7.1000000e+00 5.8000000e+00 4.3000000e+00 4.7000000e+00 4.5000000e+00 4.9000000e+00 6.7000000e+00 5.1000000e+00 5.4000000e+00 6.5000000e+00 6.4000000e+00 4.7000000e+00 5.0000000e+00 5.2000000e+00 5.8000000e+00 5.1000000e+00 3.9000000e+00 5.1000000e+00 4.8000000e+00 5.0000000e+00 5.6000000e+00 3.4000000e+00 5.0000000e+00 8.2000000e+00 6.8000000e+00 8.8000000e+00 7.5000000e+00 8.2000000e+00 1.0000000e+01 5.7000000e+00 9.2000000e+00 8.5000000e+00 9.1000000e+00 7.1000000e+00 7.6000000e+00 8.1000000e+00 6.9000000e+00 7.2000000e+00 7.5000000e+00 7.5000000e+00 1.0100000e+01 1.1000000e+01 7.0000000e+00 8.4000000e+00 6.4000000e+00 1.0300000e+01 7.0000000e+00 7.9000000e+00 8.5000000e+00 6.7000000e+00 6.5000000e+00 8.0000000e+00 8.3000000e+00 9.3000000e+00 9.8000000e+00 8.1000000e+00 6.8000000e+00 7.2000000e+00 9.8000000e+00 7.6000000e+00 7.3000000e+00 6.3000000e+00 8.0000000e+00 8.3000000e+00 7.9000000e+00 6.8000000e+00 8.5000000e+00 8.3000000e+00 7.9000000e+00 7.4000000e+00 7.4000000e+00 7.2000000e+00 6.5000000e+00 8.0000000e-01 8.0000000e-01 1.0000000e+00 2.1000000e+00 1.3000000e+00 1.6000000e+00 1.7000000e+00 1.3000000e+00 1.1000000e+00 1.3000000e+00 1.8000000e+00 1.8000000e+00 1.0000000e+00 1.2000000e+00 1.0000000e+00 1.9000000e+00 1.9000000e+00 1.0000000e+00 1.9000000e+00 2.6000000e+00 1.3000000e+00 1.4000000e+00 3.1000000e+00 2.4000000e+00 1.4000000e+00 9.0000000e-01 2.0000000e+00 8.0000000e-01 2.1000000e+00 8.0000000e-01 1.6000000e+00 6.0000000e+00 5.3000000e+00 6.3000000e+00 5.0000000e+00 5.9000000e+00 4.8000000e+00 5.4000000e+00 4.5000000e+00 5.7000000e+00 4.9000000e+00 5.0000000e+00 4.7000000e+00 4.9000000e+00 5.4000000e+00 3.9000000e+00 5.5000000e+00 4.9000000e+00 4.3000000e+00 6.1000000e+00 4.4000000e+00 5.4000000e+00 4.7000000e+00 6.3000000e+00 5.3000000e+00 5.2000000e+00 5.5000000e+00 6.3000000e+00 6.5000000e+00 5.2000000e+00 3.7000000e+00 4.5000000e+00 4.3000000e+00 4.3000000e+00 6.1000000e+00 5.1000000e+00 4.8000000e+00 5.9000000e+00 5.8000000e+00 4.3000000e+00 4.8000000e+00 5.0000000e+00 5.2000000e+00 4.5000000e+00 4.5000000e+00 4.7000000e+00 4.2000000e+00 4.4000000e+00 5.0000000e+00 4.0000000e+00 4.4000000e+00 7.6000000e+00 6.2000000e+00 8.2000000e+00 6.9000000e+00 7.6000000e+00 9.4000000e+00 6.3000000e+00 8.6000000e+00 7.9000000e+00 8.3000000e+00 6.5000000e+00 7.0000000e+00 7.5000000e+00 6.3000000e+00 6.6000000e+00 6.9000000e+00 6.9000000e+00 8.9000000e+00 1.0400000e+01 6.4000000e+00 7.8000000e+00 6.0000000e+00 9.7000000e+00 6.4000000e+00 7.3000000e+00 7.9000000e+00 6.1000000e+00 5.9000000e+00 7.4000000e+00 7.7000000e+00 8.7000000e+00 8.6000000e+00 7.5000000e+00 6.2000000e+00 6.6000000e+00 9.2000000e+00 7.0000000e+00 6.7000000e+00 5.7000000e+00 7.4000000e+00 7.7000000e+00 7.3000000e+00 6.2000000e+00 7.9000000e+00 7.7000000e+00 7.3000000e+00 6.8000000e+00 6.8000000e+00 6.6000000e+00 5.9000000e+00 1.0000000e+00 2.0000000e-01 1.3000000e+00 9.0000000e-01 1.2000000e+00 1.1000000e+00 7.0000000e-01 5.0000000e-01 7.0000000e-01 1.2000000e+00 1.2000000e+00 8.0000000e-01 6.0000000e-01 1.0000000e+00 1.1000000e+00 1.1000000e+00 1.0000000e+00 1.1000000e+00 1.8000000e+00 5.0000000e-01 6.0000000e-01 2.3000000e+00 1.6000000e+00 8.0000000e-01 5.0000000e-01 1.2000000e+00 2.0000000e-01 1.3000000e+00 4.0000000e-01 8.0000000e-01 6.8000000e+00 6.1000000e+00 7.1000000e+00 5.4000000e+00 6.7000000e+00 5.6000000e+00 6.2000000e+00 4.1000000e+00 6.5000000e+00 4.7000000e+00 4.6000000e+00 5.5000000e+00 5.7000000e+00 6.2000000e+00 4.5000000e+00 6.3000000e+00 5.5000000e+00 5.1000000e+00 6.9000000e+00 5.0000000e+00 6.2000000e+00 5.5000000e+00 7.1000000e+00 6.1000000e+00 6.0000000e+00 6.3000000e+00 7.1000000e+00 7.3000000e+00 6.0000000e+00 4.5000000e+00 4.9000000e+00 4.7000000e+00 5.1000000e+00 6.9000000e+00 5.3000000e+00 5.6000000e+00 6.7000000e+00 6.6000000e+00 4.9000000e+00 5.2000000e+00 5.4000000e+00 6.0000000e+00 5.3000000e+00 4.1000000e+00 5.3000000e+00 5.0000000e+00 5.2000000e+00 5.8000000e+00 3.6000000e+00 5.2000000e+00 8.4000000e+00 7.0000000e+00 9.0000000e+00 7.7000000e+00 8.4000000e+00 1.0200000e+01 5.9000000e+00 9.4000000e+00 8.7000000e+00 9.1000000e+00 7.3000000e+00 7.8000000e+00 8.3000000e+00 7.1000000e+00 7.4000000e+00 7.7000000e+00 7.7000000e+00 9.7000000e+00 1.1200000e+01 7.2000000e+00 8.6000000e+00 6.6000000e+00 1.0500000e+01 7.2000000e+00 8.1000000e+00 8.7000000e+00 6.9000000e+00 6.7000000e+00 8.2000000e+00 8.5000000e+00 9.5000000e+00 9.4000000e+00 8.3000000e+00 7.0000000e+00 7.4000000e+00 1.0000000e+01 7.8000000e+00 7.5000000e+00 6.5000000e+00 8.2000000e+00 8.5000000e+00 8.1000000e+00 7.0000000e+00 8.7000000e+00 8.5000000e+00 8.1000000e+00 7.6000000e+00 7.6000000e+00 7.4000000e+00 6.7000000e+00 1.0000000e+00 1.7000000e+00 7.0000000e-01 8.0000000e-01 9.0000000e-01 7.0000000e-01 5.0000000e-01 5.0000000e-01 1.0000000e+00 1.0000000e+00 4.0000000e-01 1.2000000e+00 1.2000000e+00 1.1000000e+00 1.1000000e+00 6.0000000e-01 1.1000000e+00 1.8000000e+00 5.0000000e-01 1.0000000e+00 2.5000000e+00 1.6000000e+00 1.0000000e+00 1.1000000e+00 1.4000000e+00 8.0000000e-01 1.3000000e+00 6.0000000e-01 8.0000000e-01 6.0000000e+00 5.3000000e+00 6.3000000e+00 4.6000000e+00 5.9000000e+00 4.8000000e+00 5.4000000e+00 3.9000000e+00 5.7000000e+00 4.3000000e+00 4.4000000e+00 4.7000000e+00 4.9000000e+00 5.4000000e+00 3.7000000e+00 5.5000000e+00 4.7000000e+00 4.3000000e+00 6.1000000e+00 4.2000000e+00 5.4000000e+00 4.7000000e+00 6.3000000e+00 5.3000000e+00 5.2000000e+00 5.5000000e+00 6.3000000e+00 6.5000000e+00 5.2000000e+00 3.7000000e+00 4.1000000e+00 3.9000000e+00 4.3000000e+00 6.1000000e+00 4.5000000e+00 4.8000000e+00 5.9000000e+00 5.8000000e+00 4.1000000e+00 4.4000000e+00 4.6000000e+00 5.2000000e+00 4.5000000e+00 3.9000000e+00 4.5000000e+00 4.2000000e+00 4.4000000e+00 5.0000000e+00 3.4000000e+00 4.4000000e+00 7.6000000e+00 6.2000000e+00 8.2000000e+00 6.9000000e+00 7.6000000e+00 9.4000000e+00 5.7000000e+00 8.6000000e+00 7.9000000e+00 8.7000000e+00 6.5000000e+00 7.0000000e+00 7.5000000e+00 6.3000000e+00 6.6000000e+00 6.9000000e+00 6.9000000e+00 9.7000000e+00 1.0400000e+01 6.4000000e+00 7.8000000e+00 5.8000000e+00 9.7000000e+00 6.4000000e+00 7.3000000e+00 7.9000000e+00 6.1000000e+00 5.9000000e+00 7.4000000e+00 7.7000000e+00 8.7000000e+00 9.4000000e+00 7.5000000e+00 6.2000000e+00 6.6000000e+00 9.2000000e+00 7.0000000e+00 6.7000000e+00 5.7000000e+00 7.4000000e+00 7.7000000e+00 7.3000000e+00 6.2000000e+00 7.9000000e+00 7.7000000e+00 7.3000000e+00 6.8000000e+00 6.8000000e+00 6.6000000e+00 5.9000000e+00 1.3000000e+00 7.0000000e-01 1.2000000e+00 1.1000000e+00 5.0000000e-01 5.0000000e-01 7.0000000e-01 1.2000000e+00 1.2000000e+00 6.0000000e-01 8.0000000e-01 1.2000000e+00 1.1000000e+00 1.1000000e+00 1.0000000e+00 1.1000000e+00 1.8000000e+00 5.0000000e-01 6.0000000e-01 2.3000000e+00 1.6000000e+00 6.0000000e-01 5.0000000e-01 1.2000000e+00 4.0000000e-01 1.3000000e+00 4.0000000e-01 8.0000000e-01 6.6000000e+00 5.9000000e+00 6.9000000e+00 5.2000000e+00 6.5000000e+00 5.4000000e+00 6.0000000e+00 3.9000000e+00 6.3000000e+00 4.5000000e+00 4.4000000e+00 5.3000000e+00 5.5000000e+00 6.0000000e+00 4.3000000e+00 6.1000000e+00 5.3000000e+00 4.9000000e+00 6.7000000e+00 4.8000000e+00 6.0000000e+00 5.3000000e+00 6.9000000e+00 5.9000000e+00 5.8000000e+00 6.1000000e+00 6.9000000e+00 7.1000000e+00 5.8000000e+00 4.3000000e+00 4.7000000e+00 4.5000000e+00 4.9000000e+00 6.7000000e+00 5.1000000e+00 5.4000000e+00 6.5000000e+00 6.4000000e+00 4.7000000e+00 5.0000000e+00 5.2000000e+00 5.8000000e+00 5.1000000e+00 3.9000000e+00 5.1000000e+00 4.8000000e+00 5.0000000e+00 5.6000000e+00 3.4000000e+00 5.0000000e+00 8.2000000e+00 6.8000000e+00 8.8000000e+00 7.5000000e+00 8.2000000e+00 1.0000000e+01 5.7000000e+00 9.2000000e+00 8.5000000e+00 8.9000000e+00 7.1000000e+00 7.6000000e+00 8.1000000e+00 6.9000000e+00 7.2000000e+00 7.5000000e+00 7.5000000e+00 9.7000000e+00 1.1000000e+01 7.0000000e+00 8.4000000e+00 6.4000000e+00 1.0300000e+01 7.0000000e+00 7.9000000e+00 8.5000000e+00 6.7000000e+00 6.5000000e+00 8.0000000e+00 8.3000000e+00 9.3000000e+00 9.4000000e+00 8.1000000e+00 6.8000000e+00 7.2000000e+00 9.8000000e+00 7.6000000e+00 7.3000000e+00 6.3000000e+00 8.0000000e+00 8.3000000e+00 7.9000000e+00 6.8000000e+00 8.5000000e+00 8.3000000e+00 7.9000000e+00 7.4000000e+00 7.4000000e+00 7.2000000e+00 6.5000000e+00 1.8000000e+00 1.3000000e+00 1.6000000e+00 1.4000000e+00 1.2000000e+00 1.2000000e+00 1.1000000e+00 1.3000000e+00 1.7000000e+00 1.7000000e+00 1.9000000e+00 1.4000000e+00 1.0000000e+00 1.3000000e+00 1.4000000e+00 1.1000000e+00 1.2000000e+00 9.0000000e-01 1.8000000e+00 9.0000000e-01 1.5000000e+00 1.8000000e+00 1.3000000e+00 1.3000000e+00 8.0000000e-01 1.3000000e+00 1.1000000e+00 7.7000000e+00 7.0000000e+00 8.0000000e+00 6.3000000e+00 7.6000000e+00 6.5000000e+00 7.1000000e+00 4.6000000e+00 7.4000000e+00 5.6000000e+00 5.3000000e+00 6.4000000e+00 6.6000000e+00 7.1000000e+00 5.4000000e+00 7.2000000e+00 6.4000000e+00 6.0000000e+00 7.8000000e+00 5.9000000e+00 7.1000000e+00 6.4000000e+00 8.0000000e+00 7.0000000e+00 6.9000000e+00 7.2000000e+00 8.0000000e+00 8.2000000e+00 6.9000000e+00 5.4000000e+00 5.8000000e+00 5.6000000e+00 6.0000000e+00 7.8000000e+00 6.2000000e+00 6.5000000e+00 7.6000000e+00 7.5000000e+00 5.8000000e+00 6.1000000e+00 6.3000000e+00 6.9000000e+00 6.2000000e+00 4.8000000e+00 6.2000000e+00 5.9000000e+00 6.1000000e+00 6.7000000e+00 4.5000000e+00 6.1000000e+00 9.3000000e+00 7.9000000e+00 9.9000000e+00 8.6000000e+00 9.3000000e+00 1.1100000e+01 6.4000000e+00 1.0300000e+01 9.6000000e+00 1.0000000e+01 8.2000000e+00 8.7000000e+00 9.2000000e+00 8.0000000e+00 8.3000000e+00 8.6000000e+00 8.6000000e+00 1.1000000e+01 1.2100000e+01 8.1000000e+00 9.5000000e+00 7.5000000e+00 1.1400000e+01 8.1000000e+00 9.0000000e+00 9.6000000e+00 7.8000000e+00 7.6000000e+00 9.1000000e+00 9.4000000e+00 1.0400000e+01 1.0700000e+01 9.2000000e+00 7.9000000e+00 8.3000000e+00 1.0900000e+01 8.7000000e+00 8.4000000e+00 7.4000000e+00 9.1000000e+00 9.4000000e+00 9.0000000e+00 7.9000000e+00 9.6000000e+00 9.4000000e+00 9.0000000e+00 8.5000000e+00 8.5000000e+00 8.3000000e+00 7.6000000e+00 9.0000000e-01 8.0000000e-01 4.0000000e-01 8.0000000e-01 8.0000000e-01 9.0000000e-01 9.0000000e-01 7.0000000e-01 1.5000000e+00 1.9000000e+00 1.0000000e+00 1.0000000e+00 1.3000000e+00 1.0000000e+00 1.7000000e+00 6.0000000e-01 9.0000000e-01 2.2000000e+00 1.5000000e+00 5.0000000e-01 8.0000000e-01 1.1000000e+00 9.0000000e-01 1.2000000e+00 1.1000000e+00 7.0000000e-01 5.9000000e+00 5.2000000e+00 6.2000000e+00 4.5000000e+00 5.8000000e+00 4.7000000e+00 5.3000000e+00 3.2000000e+00 5.6000000e+00 3.8000000e+00 3.7000000e+00 4.6000000e+00 4.8000000e+00 5.3000000e+00 3.6000000e+00 5.4000000e+00 4.6000000e+00 4.2000000e+00 6.0000000e+00 4.1000000e+00 5.3000000e+00 4.6000000e+00 6.2000000e+00 5.2000000e+00 5.1000000e+00 5.4000000e+00 6.2000000e+00 6.4000000e+00 5.1000000e+00 3.6000000e+00 4.0000000e+00 3.8000000e+00 4.2000000e+00 6.0000000e+00 4.4000000e+00 4.9000000e+00 5.8000000e+00 5.7000000e+00 4.0000000e+00 4.3000000e+00 4.5000000e+00 5.1000000e+00 4.4000000e+00 3.2000000e+00 4.4000000e+00 4.1000000e+00 4.3000000e+00 4.9000000e+00 2.7000000e+00 4.3000000e+00 7.5000000e+00 6.1000000e+00 8.1000000e+00 6.8000000e+00 7.5000000e+00 9.3000000e+00 5.0000000e+00 8.5000000e+00 7.8000000e+00 8.8000000e+00 6.4000000e+00 6.9000000e+00 7.4000000e+00 6.2000000e+00 6.5000000e+00 6.8000000e+00 6.8000000e+00 9.8000000e+00 1.0300000e+01 6.3000000e+00 7.7000000e+00 5.7000000e+00 9.6000000e+00 6.3000000e+00 7.2000000e+00 7.8000000e+00 6.0000000e+00 5.8000000e+00 7.3000000e+00 7.6000000e+00 8.6000000e+00 9.5000000e+00 7.4000000e+00 6.1000000e+00 6.5000000e+00 9.1000000e+00 7.1000000e+00 6.6000000e+00 5.6000000e+00 7.3000000e+00 7.6000000e+00 7.2000000e+00 6.1000000e+00 7.8000000e+00 7.6000000e+00 7.2000000e+00 6.7000000e+00 6.7000000e+00 6.7000000e+00 5.8000000e+00 9.0000000e-01 7.0000000e-01 9.0000000e-01 9.0000000e-01 6.0000000e-01 6.0000000e-01 1.2000000e+00 1.6000000e+00 2.0000000e+00 9.0000000e-01 1.1000000e+00 1.4000000e+00 9.0000000e-01 1.4000000e+00 7.0000000e-01 1.0000000e+00 2.1000000e+00 1.2000000e+00 1.0000000e+00 9.0000000e-01 1.0000000e+00 1.0000000e+00 9.0000000e-01 1.2000000e+00 8.0000000e-01 6.4000000e+00 5.7000000e+00 6.7000000e+00 5.0000000e+00 6.3000000e+00 5.2000000e+00 5.8000000e+00 3.3000000e+00 6.1000000e+00 4.3000000e+00 4.0000000e+00 5.1000000e+00 5.3000000e+00 5.8000000e+00 4.1000000e+00 5.9000000e+00 5.1000000e+00 4.7000000e+00 6.5000000e+00 4.6000000e+00 5.8000000e+00 5.1000000e+00 6.7000000e+00 5.7000000e+00 5.6000000e+00 5.9000000e+00 6.7000000e+00 6.9000000e+00 5.6000000e+00 4.1000000e+00 4.5000000e+00 4.3000000e+00 4.7000000e+00 6.5000000e+00 4.9000000e+00 5.2000000e+00 6.3000000e+00 6.2000000e+00 4.5000000e+00 4.8000000e+00 5.0000000e+00 5.6000000e+00 4.9000000e+00 3.5000000e+00 4.9000000e+00 4.6000000e+00 4.8000000e+00 5.4000000e+00 3.2000000e+00 4.8000000e+00 8.0000000e+00 6.6000000e+00 8.6000000e+00 7.3000000e+00 8.0000000e+00 9.8000000e+00 5.1000000e+00 9.0000000e+00 8.3000000e+00 9.1000000e+00 6.9000000e+00 7.4000000e+00 7.9000000e+00 6.7000000e+00 7.0000000e+00 7.3000000e+00 7.3000000e+00 1.0100000e+01 1.0800000e+01 6.8000000e+00 8.2000000e+00 6.2000000e+00 1.0100000e+01 6.8000000e+00 7.7000000e+00 8.3000000e+00 6.5000000e+00 6.3000000e+00 7.8000000e+00 8.1000000e+00 9.1000000e+00 9.8000000e+00 7.9000000e+00 6.6000000e+00 7.0000000e+00 9.6000000e+00 7.4000000e+00 7.1000000e+00 6.1000000e+00 7.8000000e+00 8.1000000e+00 7.7000000e+00 6.6000000e+00 8.3000000e+00 8.1000000e+00 7.7000000e+00 7.2000000e+00 7.2000000e+00 7.0000000e+00 6.3000000e+00 6.0000000e-01 8.0000000e-01 8.0000000e-01 5.0000000e-01 3.0000000e-01 1.1000000e+00 1.5000000e+00 1.9000000e+00 4.0000000e-01 6.0000000e-01 1.3000000e+00 4.0000000e-01 9.0000000e-01 6.0000000e-01 9.0000000e-01 1.6000000e+00 1.1000000e+00 9.0000000e-01 1.4000000e+00 5.0000000e-01 9.0000000e-01 8.0000000e-01 1.1000000e+00 5.0000000e-01 6.5000000e+00 5.8000000e+00 6.6000000e+00 4.7000000e+00 6.0000000e+00 4.9000000e+00 6.1000000e+00 3.2000000e+00 5.8000000e+00 4.0000000e+00 3.7000000e+00 4.8000000e+00 5.0000000e+00 5.5000000e+00 3.8000000e+00 5.8000000e+00 4.8000000e+00 4.4000000e+00 6.2000000e+00 4.3000000e+00 5.9000000e+00 4.8000000e+00 6.4000000e+00 5.4000000e+00 5.3000000e+00 5.6000000e+00 6.4000000e+00 6.6000000e+00 5.3000000e+00 3.8000000e+00 4.2000000e+00 4.0000000e+00 4.4000000e+00 6.2000000e+00 4.6000000e+00 5.7000000e+00 6.2000000e+00 5.9000000e+00 4.2000000e+00 4.5000000e+00 4.7000000e+00 5.3000000e+00 4.6000000e+00 3.2000000e+00 4.6000000e+00 4.3000000e+00 4.5000000e+00 5.1000000e+00 2.9000000e+00 4.5000000e+00 8.3000000e+00 6.3000000e+00 8.3000000e+00 7.0000000e+00 7.7000000e+00 9.5000000e+00 5.0000000e+00 8.7000000e+00 8.0000000e+00 9.6000000e+00 7.0000000e+00 7.1000000e+00 7.6000000e+00 6.4000000e+00 6.7000000e+00 7.4000000e+00 7.0000000e+00 1.0600000e+01 1.0500000e+01 6.5000000e+00 8.3000000e+00 5.9000000e+00 9.8000000e+00 6.5000000e+00 8.0000000e+00 8.4000000e+00 6.2000000e+00 6.0000000e+00 7.5000000e+00 7.8000000e+00 8.8000000e+00 1.0300000e+01 7.6000000e+00 6.3000000e+00 6.7000000e+00 9.3000000e+00 7.9000000e+00 7.0000000e+00 5.8000000e+00 7.7000000e+00 8.0000000e+00 7.6000000e+00 6.3000000e+00 8.4000000e+00 8.4000000e+00 7.4000000e+00 6.9000000e+00 6.9000000e+00 7.5000000e+00 6.0000000e+00 6.0000000e-01 6.0000000e-01 7.0000000e-01 7.0000000e-01 5.0000000e-01 1.3000000e+00 1.7000000e+00 8.0000000e-01 8.0000000e-01 1.1000000e+00 8.0000000e-01 1.5000000e+00 4.0000000e-01 5.0000000e-01 2.0000000e+00 1.3000000e+00 3.0000000e-01 8.0000000e-01 9.0000000e-01 7.0000000e-01 1.0000000e+00 9.0000000e-01 5.0000000e-01 6.3000000e+00 5.6000000e+00 6.6000000e+00 4.9000000e+00 6.2000000e+00 5.1000000e+00 5.7000000e+00 3.4000000e+00 6.0000000e+00 4.2000000e+00 3.9000000e+00 5.0000000e+00 5.2000000e+00 5.7000000e+00 4.0000000e+00 5.8000000e+00 5.0000000e+00 4.6000000e+00 6.4000000e+00 4.5000000e+00 5.7000000e+00 5.0000000e+00 6.6000000e+00 5.6000000e+00 5.5000000e+00 5.8000000e+00 6.6000000e+00 6.8000000e+00 5.5000000e+00 4.0000000e+00 4.4000000e+00 4.2000000e+00 4.6000000e+00 6.4000000e+00 4.8000000e+00 5.1000000e+00 6.2000000e+00 6.1000000e+00 4.4000000e+00 4.7000000e+00 4.9000000e+00 5.5000000e+00 4.8000000e+00 3.4000000e+00 4.8000000e+00 4.5000000e+00 4.7000000e+00 5.3000000e+00 3.1000000e+00 4.7000000e+00 7.9000000e+00 6.5000000e+00 8.5000000e+00 7.2000000e+00 7.9000000e+00 9.7000000e+00 5.2000000e+00 8.9000000e+00 8.2000000e+00 9.0000000e+00 6.8000000e+00 7.3000000e+00 7.8000000e+00 6.6000000e+00 6.9000000e+00 7.2000000e+00 7.2000000e+00 1.0000000e+01 1.0700000e+01 6.7000000e+00 8.1000000e+00 6.1000000e+00 1.0000000e+01 6.7000000e+00 7.6000000e+00 8.2000000e+00 6.4000000e+00 6.2000000e+00 7.7000000e+00 8.0000000e+00 9.0000000e+00 9.7000000e+00 7.8000000e+00 6.5000000e+00 6.9000000e+00 9.5000000e+00 7.3000000e+00 7.0000000e+00 6.0000000e+00 7.7000000e+00 8.0000000e+00 7.6000000e+00 6.5000000e+00 8.2000000e+00 8.0000000e+00 7.6000000e+00 7.1000000e+00 7.1000000e+00 6.9000000e+00 6.2000000e+00 2.0000000e-01 9.0000000e-01 9.0000000e-01 5.0000000e-01 7.0000000e-01 1.1000000e+00 8.0000000e-01 8.0000000e-01 5.0000000e-01 8.0000000e-01 1.5000000e+00 2.0000000e-01 5.0000000e-01 2.2000000e+00 1.3000000e+00 7.0000000e-01 1.0000000e+00 1.1000000e+00 5.0000000e-01 1.0000000e+00 3.0000000e-01 5.0000000e-01 6.5000000e+00 5.8000000e+00 6.8000000e+00 5.1000000e+00 6.4000000e+00 5.3000000e+00 5.9000000e+00 4.0000000e+00 6.2000000e+00 4.4000000e+00 4.5000000e+00 5.2000000e+00 5.4000000e+00 5.9000000e+00 4.2000000e+00 6.0000000e+00 5.2000000e+00 4.8000000e+00 6.6000000e+00 4.7000000e+00 5.9000000e+00 5.2000000e+00 6.8000000e+00 5.8000000e+00 5.7000000e+00 6.0000000e+00 6.8000000e+00 7.0000000e+00 5.7000000e+00 4.2000000e+00 4.6000000e+00 4.4000000e+00 4.8000000e+00 6.6000000e+00 5.0000000e+00 5.3000000e+00 6.4000000e+00 6.3000000e+00 4.6000000e+00 4.9000000e+00 5.1000000e+00 5.7000000e+00 5.0000000e+00 4.0000000e+00 5.0000000e+00 4.7000000e+00 4.9000000e+00 5.5000000e+00 3.5000000e+00 4.9000000e+00 8.1000000e+00 6.7000000e+00 8.7000000e+00 7.4000000e+00 8.1000000e+00 9.9000000e+00 5.8000000e+00 9.1000000e+00 8.4000000e+00 9.0000000e+00 7.0000000e+00 7.5000000e+00 8.0000000e+00 6.8000000e+00 7.1000000e+00 7.4000000e+00 7.4000000e+00 1.0000000e+01 1.0900000e+01 6.9000000e+00 8.3000000e+00 6.3000000e+00 1.0200000e+01 6.9000000e+00 7.8000000e+00 8.4000000e+00 6.6000000e+00 6.4000000e+00 7.9000000e+00 8.2000000e+00 9.2000000e+00 9.7000000e+00 8.0000000e+00 6.7000000e+00 7.1000000e+00 9.7000000e+00 7.5000000e+00 7.2000000e+00 6.2000000e+00 7.9000000e+00 8.2000000e+00 7.8000000e+00 6.7000000e+00 8.4000000e+00 8.2000000e+00 7.8000000e+00 7.3000000e+00 7.3000000e+00 7.1000000e+00 6.4000000e+00 9.0000000e-01 9.0000000e-01 5.0000000e-01 9.0000000e-01 1.1000000e+00 8.0000000e-01 6.0000000e-01 5.0000000e-01 8.0000000e-01 1.3000000e+00 2.0000000e-01 5.0000000e-01 2.0000000e+00 1.1000000e+00 9.0000000e-01 1.2000000e+00 9.0000000e-01 7.0000000e-01 8.0000000e-01 5.0000000e-01 3.0000000e-01 6.5000000e+00 5.8000000e+00 6.8000000e+00 5.1000000e+00 6.4000000e+00 5.3000000e+00 5.9000000e+00 4.0000000e+00 6.2000000e+00 4.4000000e+00 4.5000000e+00 5.2000000e+00 5.4000000e+00 5.9000000e+00 4.2000000e+00 6.0000000e+00 5.2000000e+00 4.8000000e+00 6.6000000e+00 4.7000000e+00 5.9000000e+00 5.2000000e+00 6.8000000e+00 5.8000000e+00 5.7000000e+00 6.0000000e+00 6.8000000e+00 7.0000000e+00 5.7000000e+00 4.2000000e+00 4.6000000e+00 4.4000000e+00 4.8000000e+00 6.6000000e+00 5.0000000e+00 5.3000000e+00 6.4000000e+00 6.3000000e+00 4.6000000e+00 4.9000000e+00 5.1000000e+00 5.7000000e+00 5.0000000e+00 4.0000000e+00 5.0000000e+00 4.7000000e+00 4.9000000e+00 5.5000000e+00 3.5000000e+00 4.9000000e+00 8.1000000e+00 6.7000000e+00 8.7000000e+00 7.4000000e+00 8.1000000e+00 9.9000000e+00 5.8000000e+00 9.1000000e+00 8.4000000e+00 9.2000000e+00 7.0000000e+00 7.5000000e+00 8.0000000e+00 6.8000000e+00 7.1000000e+00 7.4000000e+00 7.4000000e+00 1.0200000e+01 1.0900000e+01 6.9000000e+00 8.3000000e+00 6.3000000e+00 1.0200000e+01 6.9000000e+00 7.8000000e+00 8.4000000e+00 6.6000000e+00 6.4000000e+00 7.9000000e+00 8.2000000e+00 9.2000000e+00 9.9000000e+00 8.0000000e+00 6.7000000e+00 7.1000000e+00 9.7000000e+00 7.5000000e+00 7.2000000e+00 6.2000000e+00 7.9000000e+00 8.2000000e+00 7.8000000e+00 6.7000000e+00 8.4000000e+00 8.2000000e+00 7.8000000e+00 7.3000000e+00 7.3000000e+00 7.1000000e+00 6.4000000e+00 2.0000000e-01 1.2000000e+00 1.6000000e+00 2.0000000e+00 5.0000000e-01 7.0000000e-01 1.4000000e+00 5.0000000e-01 8.0000000e-01 7.0000000e-01 1.0000000e+00 1.5000000e+00 6.0000000e-01 1.0000000e+00 1.5000000e+00 6.0000000e-01 1.0000000e+00 3.0000000e-01 1.2000000e+00 6.0000000e-01 6.6000000e+00 5.9000000e+00 6.9000000e+00 5.2000000e+00 6.5000000e+00 5.4000000e+00 6.2000000e+00 3.5000000e+00 6.3000000e+00 4.5000000e+00 4.2000000e+00 5.3000000e+00 5.5000000e+00 6.0000000e+00 4.3000000e+00 6.1000000e+00 5.3000000e+00 4.9000000e+00 6.7000000e+00 4.8000000e+00 6.0000000e+00 5.3000000e+00 6.9000000e+00 5.9000000e+00 5.8000000e+00 6.1000000e+00 6.9000000e+00 7.1000000e+00 5.8000000e+00 4.3000000e+00 4.7000000e+00 4.5000000e+00 4.9000000e+00 6.7000000e+00 5.1000000e+00 5.8000000e+00 6.5000000e+00 6.4000000e+00 4.7000000e+00 5.0000000e+00 5.2000000e+00 5.8000000e+00 5.1000000e+00 3.7000000e+00 5.1000000e+00 4.8000000e+00 5.0000000e+00 5.6000000e+00 3.4000000e+00 5.0000000e+00 8.4000000e+00 6.8000000e+00 8.8000000e+00 7.5000000e+00 8.2000000e+00 1.0000000e+01 5.3000000e+00 9.2000000e+00 8.5000000e+00 9.7000000e+00 7.1000000e+00 7.6000000e+00 8.1000000e+00 6.9000000e+00 7.2000000e+00 7.5000000e+00 7.5000000e+00 1.0700000e+01 1.1000000e+01 7.0000000e+00 8.4000000e+00 6.4000000e+00 1.0300000e+01 7.0000000e+00 8.1000000e+00 8.5000000e+00 6.7000000e+00 6.5000000e+00 8.0000000e+00 8.3000000e+00 9.3000000e+00 1.0400000e+01 8.1000000e+00 6.8000000e+00 7.2000000e+00 9.8000000e+00 8.0000000e+00 7.3000000e+00 6.3000000e+00 8.0000000e+00 8.3000000e+00 7.9000000e+00 6.8000000e+00 8.5000000e+00 8.5000000e+00 7.9000000e+00 7.4000000e+00 7.4000000e+00 7.6000000e+00 6.5000000e+00 1.2000000e+00 1.6000000e+00 2.0000000e+00 3.0000000e-01 7.0000000e-01 1.4000000e+00 3.0000000e-01 8.0000000e-01 7.0000000e-01 1.0000000e+00 1.5000000e+00 8.0000000e-01 1.0000000e+00 1.5000000e+00 4.0000000e-01 1.0000000e+00 5.0000000e-01 1.2000000e+00 6.0000000e-01 6.6000000e+00 5.9000000e+00 6.7000000e+00 5.0000000e+00 6.3000000e+00 5.2000000e+00 6.2000000e+00 3.3000000e+00 6.1000000e+00 4.3000000e+00 4.0000000e+00 5.1000000e+00 5.3000000e+00 5.8000000e+00 4.1000000e+00 5.9000000e+00 5.1000000e+00 4.7000000e+00 6.5000000e+00 4.6000000e+00 6.0000000e+00 5.1000000e+00 6.7000000e+00 5.7000000e+00 5.6000000e+00 5.9000000e+00 6.7000000e+00 6.9000000e+00 5.6000000e+00 4.1000000e+00 4.5000000e+00 4.3000000e+00 4.7000000e+00 6.5000000e+00 4.9000000e+00 5.8000000e+00 6.3000000e+00 6.2000000e+00 4.5000000e+00 4.8000000e+00 5.0000000e+00 5.6000000e+00 4.9000000e+00 3.5000000e+00 4.9000000e+00 4.6000000e+00 4.8000000e+00 5.4000000e+00 3.2000000e+00 4.8000000e+00 8.4000000e+00 6.6000000e+00 8.6000000e+00 7.3000000e+00 8.0000000e+00 9.8000000e+00 5.1000000e+00 9.0000000e+00 8.3000000e+00 9.7000000e+00 7.1000000e+00 7.4000000e+00 7.9000000e+00 6.7000000e+00 7.0000000e+00 7.5000000e+00 7.3000000e+00 1.0700000e+01 1.0800000e+01 6.8000000e+00 8.4000000e+00 6.2000000e+00 1.0100000e+01 6.8000000e+00 8.1000000e+00 8.5000000e+00 6.5000000e+00 6.3000000e+00 7.8000000e+00 8.1000000e+00 9.1000000e+00 1.0400000e+01 7.9000000e+00 6.6000000e+00 7.0000000e+00 9.6000000e+00 8.0000000e+00 7.1000000e+00 6.1000000e+00 7.8000000e+00 8.1000000e+00 7.7000000e+00 6.6000000e+00 8.5000000e+00 8.5000000e+00 7.7000000e+00 7.2000000e+00 7.2000000e+00 7.6000000e+00 6.3000000e+00 1.2000000e+00 1.2000000e+00 1.1000000e+00 1.1000000e+00 6.0000000e-01 1.1000000e+00 1.8000000e+00 5.0000000e-01 8.0000000e-01 2.3000000e+00 1.6000000e+00 8.0000000e-01 1.1000000e+00 1.2000000e+00 1.0000000e+00 1.3000000e+00 6.0000000e-01 8.0000000e-01 6.0000000e+00 5.3000000e+00 6.3000000e+00 4.6000000e+00 5.9000000e+00 4.8000000e+00 5.4000000e+00 3.9000000e+00 5.7000000e+00 4.3000000e+00 4.4000000e+00 4.7000000e+00 4.9000000e+00 5.4000000e+00 3.7000000e+00 5.5000000e+00 4.7000000e+00 4.3000000e+00 6.1000000e+00 4.2000000e+00 5.4000000e+00 4.7000000e+00 6.3000000e+00 5.3000000e+00 5.2000000e+00 5.5000000e+00 6.3000000e+00 6.5000000e+00 5.2000000e+00 3.7000000e+00 4.1000000e+00 3.9000000e+00 4.3000000e+00 6.1000000e+00 4.5000000e+00 4.8000000e+00 5.9000000e+00 5.8000000e+00 4.1000000e+00 4.4000000e+00 4.6000000e+00 5.2000000e+00 4.5000000e+00 3.9000000e+00 4.5000000e+00 4.2000000e+00 4.4000000e+00 5.0000000e+00 3.4000000e+00 4.4000000e+00 7.6000000e+00 6.2000000e+00 8.2000000e+00 6.9000000e+00 7.6000000e+00 9.4000000e+00 5.7000000e+00 8.6000000e+00 7.9000000e+00 8.7000000e+00 6.5000000e+00 7.0000000e+00 7.5000000e+00 6.3000000e+00 6.6000000e+00 6.9000000e+00 6.9000000e+00 9.7000000e+00 1.0400000e+01 6.4000000e+00 7.8000000e+00 5.8000000e+00 9.7000000e+00 6.4000000e+00 7.3000000e+00 7.9000000e+00 6.1000000e+00 5.9000000e+00 7.4000000e+00 7.7000000e+00 8.7000000e+00 9.4000000e+00 7.5000000e+00 6.2000000e+00 6.6000000e+00 9.2000000e+00 7.0000000e+00 6.7000000e+00 5.7000000e+00 7.4000000e+00 7.7000000e+00 7.3000000e+00 6.2000000e+00 7.9000000e+00 7.7000000e+00 7.3000000e+00 6.8000000e+00 6.8000000e+00 6.6000000e+00 5.9000000e+00 6.0000000e-01 1.3000000e+00 1.5000000e+00 1.2000000e+00 1.3000000e+00 2.2000000e+00 9.0000000e-01 1.2000000e+00 2.9000000e+00 2.0000000e+00 1.4000000e+00 1.1000000e+00 1.8000000e+00 6.0000000e-01 1.7000000e+00 6.0000000e-01 1.2000000e+00 7.2000000e+00 6.5000000e+00 7.5000000e+00 5.8000000e+00 7.1000000e+00 6.0000000e+00 6.6000000e+00 4.7000000e+00 6.9000000e+00 5.1000000e+00 5.2000000e+00 5.9000000e+00 6.1000000e+00 6.6000000e+00 4.9000000e+00 6.7000000e+00 5.9000000e+00 5.5000000e+00 7.3000000e+00 5.4000000e+00 6.6000000e+00 5.9000000e+00 7.5000000e+00 6.5000000e+00 6.4000000e+00 6.7000000e+00 7.5000000e+00 7.7000000e+00 6.4000000e+00 4.9000000e+00 5.3000000e+00 5.1000000e+00 5.5000000e+00 7.3000000e+00 5.7000000e+00 6.0000000e+00 7.1000000e+00 7.0000000e+00 5.3000000e+00 5.6000000e+00 5.8000000e+00 6.4000000e+00 5.7000000e+00 4.7000000e+00 5.7000000e+00 5.4000000e+00 5.6000000e+00 6.2000000e+00 4.2000000e+00 5.6000000e+00 8.8000000e+00 7.4000000e+00 9.4000000e+00 8.1000000e+00 8.8000000e+00 1.0600000e+01 6.5000000e+00 9.8000000e+00 9.1000000e+00 9.5000000e+00 7.7000000e+00 8.2000000e+00 8.7000000e+00 7.5000000e+00 7.8000000e+00 8.1000000e+00 8.1000000e+00 1.0100000e+01 1.1600000e+01 7.6000000e+00 9.0000000e+00 7.0000000e+00 1.0900000e+01 7.6000000e+00 8.5000000e+00 9.1000000e+00 7.3000000e+00 7.1000000e+00 8.6000000e+00 8.9000000e+00 9.9000000e+00 9.8000000e+00 8.7000000e+00 7.4000000e+00 7.8000000e+00 1.0400000e+01 8.2000000e+00 7.9000000e+00 6.9000000e+00 8.6000000e+00 8.9000000e+00 8.5000000e+00 7.4000000e+00 9.1000000e+00 8.9000000e+00 8.5000000e+00 8.0000000e+00 8.0000000e+00 7.8000000e+00 7.1000000e+00 1.9000000e+00 1.7000000e+00 8.0000000e-01 1.9000000e+00 2.4000000e+00 1.3000000e+00 1.4000000e+00 3.1000000e+00 2.2000000e+00 1.8000000e+00 1.5000000e+00 2.0000000e+00 1.0000000e+00 1.9000000e+00 8.0000000e-01 1.4000000e+00 7.0000000e+00 6.3000000e+00 7.3000000e+00 5.6000000e+00 6.9000000e+00 5.8000000e+00 6.4000000e+00 5.1000000e+00 6.7000000e+00 5.5000000e+00 5.6000000e+00 5.7000000e+00 5.9000000e+00 6.4000000e+00 4.7000000e+00 6.5000000e+00 5.7000000e+00 5.3000000e+00 7.1000000e+00 5.2000000e+00 6.4000000e+00 5.7000000e+00 7.3000000e+00 6.3000000e+00 6.2000000e+00 6.5000000e+00 7.3000000e+00 7.5000000e+00 6.2000000e+00 4.7000000e+00 5.1000000e+00 4.9000000e+00 5.3000000e+00 7.1000000e+00 5.7000000e+00 5.8000000e+00 6.9000000e+00 6.8000000e+00 5.1000000e+00 5.4000000e+00 5.6000000e+00 6.2000000e+00 5.5000000e+00 5.1000000e+00 5.5000000e+00 5.2000000e+00 5.4000000e+00 6.0000000e+00 4.6000000e+00 5.4000000e+00 8.6000000e+00 7.2000000e+00 9.2000000e+00 7.9000000e+00 8.6000000e+00 1.0400000e+01 6.9000000e+00 9.6000000e+00 8.9000000e+00 9.3000000e+00 7.5000000e+00 8.0000000e+00 8.5000000e+00 7.3000000e+00 7.6000000e+00 7.9000000e+00 7.9000000e+00 9.9000000e+00 1.1400000e+01 7.4000000e+00 8.8000000e+00 6.8000000e+00 1.0700000e+01 7.4000000e+00 8.3000000e+00 8.9000000e+00 7.1000000e+00 6.9000000e+00 8.4000000e+00 8.7000000e+00 9.7000000e+00 9.6000000e+00 8.5000000e+00 7.2000000e+00 7.6000000e+00 1.0200000e+01 8.0000000e+00 7.7000000e+00 6.7000000e+00 8.4000000e+00 8.7000000e+00 8.3000000e+00 7.2000000e+00 8.9000000e+00 8.7000000e+00 8.3000000e+00 7.8000000e+00 7.8000000e+00 7.6000000e+00 6.9000000e+00 6.0000000e-01 1.3000000e+00 0.0000000e+00 9.0000000e-01 6.0000000e-01 9.0000000e-01 1.6000000e+00 9.0000000e-01 1.1000000e+00 1.6000000e+00 5.0000000e-01 1.1000000e+00 6.0000000e-01 1.1000000e+00 5.0000000e-01 6.7000000e+00 6.0000000e+00 6.8000000e+00 5.1000000e+00 6.4000000e+00 5.3000000e+00 6.3000000e+00 3.4000000e+00 6.2000000e+00 4.4000000e+00 4.1000000e+00 5.2000000e+00 5.4000000e+00 5.9000000e+00 4.2000000e+00 6.0000000e+00 5.2000000e+00 4.8000000e+00 6.6000000e+00 4.7000000e+00 6.1000000e+00 5.2000000e+00 6.8000000e+00 5.8000000e+00 5.7000000e+00 6.0000000e+00 6.8000000e+00 7.0000000e+00 5.7000000e+00 4.2000000e+00 4.6000000e+00 4.4000000e+00 4.8000000e+00 6.6000000e+00 5.0000000e+00 5.9000000e+00 6.4000000e+00 6.3000000e+00 4.6000000e+00 4.9000000e+00 5.1000000e+00 5.7000000e+00 5.0000000e+00 3.6000000e+00 5.0000000e+00 4.7000000e+00 4.9000000e+00 5.5000000e+00 3.3000000e+00 4.9000000e+00 8.5000000e+00 6.7000000e+00 8.7000000e+00 7.4000000e+00 8.1000000e+00 9.9000000e+00 5.2000000e+00 9.1000000e+00 8.4000000e+00 9.8000000e+00 7.2000000e+00 7.5000000e+00 8.0000000e+00 6.8000000e+00 7.1000000e+00 7.6000000e+00 7.4000000e+00 1.0800000e+01 1.0900000e+01 6.9000000e+00 8.5000000e+00 6.3000000e+00 1.0200000e+01 6.9000000e+00 8.2000000e+00 8.6000000e+00 6.6000000e+00 6.4000000e+00 7.9000000e+00 8.2000000e+00 9.2000000e+00 1.0500000e+01 8.0000000e+00 6.7000000e+00 7.1000000e+00 9.7000000e+00 8.1000000e+00 7.2000000e+00 6.2000000e+00 7.9000000e+00 8.2000000e+00 7.8000000e+00 6.7000000e+00 8.6000000e+00 8.6000000e+00 7.8000000e+00 7.3000000e+00 7.3000000e+00 7.7000000e+00 6.4000000e+00 9.0000000e-01 6.0000000e-01 9.0000000e-01 6.0000000e-01 5.0000000e-01 1.6000000e+00 7.0000000e-01 1.1000000e+00 1.6000000e+00 7.0000000e-01 1.1000000e+00 6.0000000e-01 1.1000000e+00 3.0000000e-01 6.7000000e+00 6.0000000e+00 7.0000000e+00 5.3000000e+00 6.6000000e+00 5.5000000e+00 6.3000000e+00 3.8000000e+00 6.4000000e+00 4.6000000e+00 4.3000000e+00 5.4000000e+00 5.6000000e+00 6.1000000e+00 4.4000000e+00 6.2000000e+00 5.4000000e+00 5.0000000e+00 6.8000000e+00 4.9000000e+00 6.1000000e+00 5.4000000e+00 7.0000000e+00 6.0000000e+00 5.9000000e+00 6.2000000e+00 7.0000000e+00 7.2000000e+00 5.9000000e+00 4.4000000e+00 4.8000000e+00 4.6000000e+00 5.0000000e+00 6.8000000e+00 5.2000000e+00 5.9000000e+00 6.6000000e+00 6.5000000e+00 4.8000000e+00 5.1000000e+00 5.3000000e+00 5.9000000e+00 5.2000000e+00 3.8000000e+00 5.2000000e+00 4.9000000e+00 5.1000000e+00 5.7000000e+00 3.5000000e+00 5.1000000e+00 8.5000000e+00 6.9000000e+00 8.9000000e+00 7.6000000e+00 8.3000000e+00 1.0100000e+01 5.6000000e+00 9.3000000e+00 8.6000000e+00 9.8000000e+00 7.2000000e+00 7.7000000e+00 8.2000000e+00 7.0000000e+00 7.3000000e+00 7.6000000e+00 7.6000000e+00 1.0800000e+01 1.1100000e+01 7.1000000e+00 8.5000000e+00 6.5000000e+00 1.0400000e+01 7.1000000e+00 8.2000000e+00 8.6000000e+00 6.8000000e+00 6.6000000e+00 8.1000000e+00 8.4000000e+00 9.4000000e+00 1.0500000e+01 8.2000000e+00 6.9000000e+00 7.3000000e+00 9.9000000e+00 8.1000000e+00 7.4000000e+00 6.4000000e+00 8.1000000e+00 8.4000000e+00 8.0000000e+00 6.9000000e+00 8.6000000e+00 8.6000000e+00 8.0000000e+00 7.5000000e+00 7.5000000e+00 7.7000000e+00 6.6000000e+00 1.3000000e+00 1.6000000e+00 7.0000000e-01 6.0000000e-01 2.3000000e+00 1.4000000e+00 1.2000000e+00 1.5000000e+00 1.4000000e+00 1.0000000e+00 1.3000000e+00 6.0000000e-01 8.0000000e-01 6.4000000e+00 5.7000000e+00 6.7000000e+00 5.0000000e+00 6.3000000e+00 5.2000000e+00 5.8000000e+00 4.5000000e+00 6.1000000e+00 4.9000000e+00 5.0000000e+00 5.1000000e+00 5.3000000e+00 5.8000000e+00 4.1000000e+00 5.9000000e+00 5.1000000e+00 4.7000000e+00 6.5000000e+00 4.6000000e+00 5.8000000e+00 5.1000000e+00 6.7000000e+00 5.7000000e+00 5.6000000e+00 5.9000000e+00 6.7000000e+00 6.9000000e+00 5.6000000e+00 4.1000000e+00 4.5000000e+00 4.3000000e+00 4.7000000e+00 6.5000000e+00 5.1000000e+00 5.2000000e+00 6.3000000e+00 6.2000000e+00 4.5000000e+00 4.8000000e+00 5.0000000e+00 5.6000000e+00 4.9000000e+00 4.5000000e+00 4.9000000e+00 4.6000000e+00 4.8000000e+00 5.4000000e+00 4.0000000e+00 4.8000000e+00 8.0000000e+00 6.6000000e+00 8.6000000e+00 7.3000000e+00 8.0000000e+00 9.8000000e+00 6.3000000e+00 9.0000000e+00 8.3000000e+00 8.9000000e+00 6.9000000e+00 7.4000000e+00 7.9000000e+00 6.7000000e+00 7.0000000e+00 7.3000000e+00 7.3000000e+00 9.9000000e+00 1.0800000e+01 6.8000000e+00 8.2000000e+00 6.2000000e+00 1.0100000e+01 6.8000000e+00 7.7000000e+00 8.3000000e+00 6.5000000e+00 6.3000000e+00 7.8000000e+00 8.1000000e+00 9.1000000e+00 9.6000000e+00 7.9000000e+00 6.6000000e+00 7.0000000e+00 9.6000000e+00 7.4000000e+00 7.1000000e+00 6.1000000e+00 7.8000000e+00 8.1000000e+00 7.7000000e+00 6.6000000e+00 8.3000000e+00 8.1000000e+00 7.7000000e+00 7.2000000e+00 7.2000000e+00 7.0000000e+00 6.3000000e+00 9.0000000e-01 6.0000000e-01 9.0000000e-01 1.6000000e+00 9.0000000e-01 1.1000000e+00 1.6000000e+00 5.0000000e-01 1.1000000e+00 6.0000000e-01 1.1000000e+00 5.0000000e-01 6.7000000e+00 6.0000000e+00 6.8000000e+00 5.1000000e+00 6.4000000e+00 5.3000000e+00 6.3000000e+00 3.4000000e+00 6.2000000e+00 4.4000000e+00 4.1000000e+00 5.2000000e+00 5.4000000e+00 5.9000000e+00 4.2000000e+00 6.0000000e+00 5.2000000e+00 4.8000000e+00 6.6000000e+00 4.7000000e+00 6.1000000e+00 5.2000000e+00 6.8000000e+00 5.8000000e+00 5.7000000e+00 6.0000000e+00 6.8000000e+00 7.0000000e+00 5.7000000e+00 4.2000000e+00 4.6000000e+00 4.4000000e+00 4.8000000e+00 6.6000000e+00 5.0000000e+00 5.9000000e+00 6.4000000e+00 6.3000000e+00 4.6000000e+00 4.9000000e+00 5.1000000e+00 5.7000000e+00 5.0000000e+00 3.6000000e+00 5.0000000e+00 4.7000000e+00 4.9000000e+00 5.5000000e+00 3.3000000e+00 4.9000000e+00 8.5000000e+00 6.7000000e+00 8.7000000e+00 7.4000000e+00 8.1000000e+00 9.9000000e+00 5.2000000e+00 9.1000000e+00 8.4000000e+00 9.8000000e+00 7.2000000e+00 7.5000000e+00 8.0000000e+00 6.8000000e+00 7.1000000e+00 7.6000000e+00 7.4000000e+00 1.0800000e+01 1.0900000e+01 6.9000000e+00 8.5000000e+00 6.3000000e+00 1.0200000e+01 6.9000000e+00 8.2000000e+00 8.6000000e+00 6.6000000e+00 6.4000000e+00 7.9000000e+00 8.2000000e+00 9.2000000e+00 1.0500000e+01 8.0000000e+00 6.7000000e+00 7.1000000e+00 9.7000000e+00 8.1000000e+00 7.2000000e+00 6.2000000e+00 7.9000000e+00 8.2000000e+00 7.8000000e+00 6.7000000e+00 8.6000000e+00 8.6000000e+00 7.8000000e+00 7.3000000e+00 7.3000000e+00 7.7000000e+00 6.4000000e+00 1.3000000e+00 1.2000000e+00 9.0000000e-01 2.0000000e-01 1.8000000e+00 2.3000000e+00 6.0000000e-01 1.8000000e+00 5.0000000e-01 1.8000000e+00 1.0000000e+00 7.4000000e+00 6.7000000e+00 7.5000000e+00 5.6000000e+00 6.9000000e+00 5.8000000e+00 7.0000000e+00 3.9000000e+00 6.7000000e+00 4.9000000e+00 4.6000000e+00 5.7000000e+00 5.9000000e+00 6.4000000e+00 4.7000000e+00 6.7000000e+00 5.7000000e+00 5.3000000e+00 7.1000000e+00 5.2000000e+00 6.8000000e+00 5.7000000e+00 7.3000000e+00 6.3000000e+00 6.2000000e+00 6.5000000e+00 7.3000000e+00 7.5000000e+00 6.2000000e+00 4.7000000e+00 5.1000000e+00 4.9000000e+00 5.3000000e+00 7.1000000e+00 5.5000000e+00 6.6000000e+00 7.1000000e+00 6.8000000e+00 5.1000000e+00 5.4000000e+00 5.6000000e+00 6.2000000e+00 5.5000000e+00 4.1000000e+00 5.5000000e+00 5.2000000e+00 5.4000000e+00 6.0000000e+00 3.8000000e+00 5.4000000e+00 9.2000000e+00 7.2000000e+00 9.2000000e+00 7.9000000e+00 8.6000000e+00 1.0400000e+01 5.7000000e+00 9.6000000e+00 8.9000000e+00 1.0500000e+01 7.9000000e+00 8.0000000e+00 8.5000000e+00 7.3000000e+00 7.6000000e+00 8.3000000e+00 7.9000000e+00 1.1500000e+01 1.1400000e+01 7.4000000e+00 9.2000000e+00 6.8000000e+00 1.0700000e+01 7.4000000e+00 8.9000000e+00 9.3000000e+00 7.1000000e+00 6.9000000e+00 8.4000000e+00 8.7000000e+00 9.7000000e+00 1.1200000e+01 8.5000000e+00 7.2000000e+00 7.6000000e+00 1.0200000e+01 8.8000000e+00 7.9000000e+00 6.7000000e+00 8.6000000e+00 8.9000000e+00 8.5000000e+00 7.2000000e+00 9.3000000e+00 9.3000000e+00 8.3000000e+00 7.8000000e+00 7.8000000e+00 8.4000000e+00 6.9000000e+00 5.0000000e-01 2.0000000e+00 1.1000000e+00 7.0000000e-01 1.0000000e+00 9.0000000e-01 5.0000000e-01 8.0000000e-01 5.0000000e-01 3.0000000e-01 6.5000000e+00 5.8000000e+00 6.8000000e+00 5.1000000e+00 6.4000000e+00 5.3000000e+00 5.9000000e+00 3.8000000e+00 6.2000000e+00 4.4000000e+00 4.3000000e+00 5.2000000e+00 5.4000000e+00 5.9000000e+00 4.2000000e+00 6.0000000e+00 5.2000000e+00 4.8000000e+00 6.6000000e+00 4.7000000e+00 5.9000000e+00 5.2000000e+00 6.8000000e+00 5.8000000e+00 5.7000000e+00 6.0000000e+00 6.8000000e+00 7.0000000e+00 5.7000000e+00 4.2000000e+00 4.6000000e+00 4.4000000e+00 4.8000000e+00 6.6000000e+00 5.0000000e+00 5.3000000e+00 6.4000000e+00 6.3000000e+00 4.6000000e+00 4.9000000e+00 5.1000000e+00 5.7000000e+00 5.0000000e+00 3.8000000e+00 5.0000000e+00 4.7000000e+00 4.9000000e+00 5.5000000e+00 3.3000000e+00 4.9000000e+00 8.1000000e+00 6.7000000e+00 8.7000000e+00 7.4000000e+00 8.1000000e+00 9.9000000e+00 5.6000000e+00 9.1000000e+00 8.4000000e+00 9.2000000e+00 7.0000000e+00 7.5000000e+00 8.0000000e+00 6.8000000e+00 7.1000000e+00 7.4000000e+00 7.4000000e+00 1.0200000e+01 1.0900000e+01 6.9000000e+00 8.3000000e+00 6.3000000e+00 1.0200000e+01 6.9000000e+00 7.8000000e+00 8.4000000e+00 6.6000000e+00 6.4000000e+00 7.9000000e+00 8.2000000e+00 9.2000000e+00 9.9000000e+00 8.0000000e+00 6.7000000e+00 7.1000000e+00 9.7000000e+00 7.5000000e+00 7.2000000e+00 6.2000000e+00 7.9000000e+00 8.2000000e+00 7.8000000e+00 6.7000000e+00 8.4000000e+00 8.2000000e+00 7.8000000e+00 7.3000000e+00 7.3000000e+00 7.1000000e+00 6.4000000e+00 1.7000000e+00 1.0000000e+00 6.0000000e-01 1.1000000e+00 8.0000000e-01 8.0000000e-01 9.0000000e-01 8.0000000e-01 4.0000000e-01 6.8000000e+00 6.1000000e+00 7.1000000e+00 5.4000000e+00 6.7000000e+00 5.6000000e+00 6.2000000e+00 3.9000000e+00 6.5000000e+00 4.7000000e+00 4.4000000e+00 5.5000000e+00 5.7000000e+00 6.2000000e+00 4.5000000e+00 6.3000000e+00 5.5000000e+00 5.1000000e+00 6.9000000e+00 5.0000000e+00 6.2000000e+00 5.5000000e+00 7.1000000e+00 6.1000000e+00 6.0000000e+00 6.3000000e+00 7.1000000e+00 7.3000000e+00 6.0000000e+00 4.5000000e+00 4.9000000e+00 4.7000000e+00 5.1000000e+00 6.9000000e+00 5.3000000e+00 5.6000000e+00 6.7000000e+00 6.6000000e+00 4.9000000e+00 5.2000000e+00 5.4000000e+00 6.0000000e+00 5.3000000e+00 3.9000000e+00 5.3000000e+00 5.0000000e+00 5.2000000e+00 5.8000000e+00 3.6000000e+00 5.2000000e+00 8.4000000e+00 7.0000000e+00 9.0000000e+00 7.7000000e+00 8.4000000e+00 1.0200000e+01 5.7000000e+00 9.4000000e+00 8.7000000e+00 9.3000000e+00 7.3000000e+00 7.8000000e+00 8.3000000e+00 7.1000000e+00 7.4000000e+00 7.7000000e+00 7.7000000e+00 1.0300000e+01 1.1200000e+01 7.2000000e+00 8.6000000e+00 6.6000000e+00 1.0500000e+01 7.2000000e+00 8.1000000e+00 8.7000000e+00 6.9000000e+00 6.7000000e+00 8.2000000e+00 8.5000000e+00 9.5000000e+00 1.0000000e+01 8.3000000e+00 7.0000000e+00 7.4000000e+00 1.0000000e+01 7.8000000e+00 7.5000000e+00 6.5000000e+00 8.2000000e+00 8.5000000e+00 8.1000000e+00 7.0000000e+00 8.7000000e+00 8.5000000e+00 8.1000000e+00 7.6000000e+00 7.6000000e+00 7.4000000e+00 6.7000000e+00 1.1000000e+00 2.3000000e+00 2.8000000e+00 1.1000000e+00 2.5000000e+00 1.2000000e+00 2.5000000e+00 1.7000000e+00 7.9000000e+00 7.2000000e+00 8.0000000e+00 4.7000000e+00 7.0000000e+00 5.9000000e+00 7.5000000e+00 3.2000000e+00 7.0000000e+00 4.8000000e+00 3.7000000e+00 6.2000000e+00 5.0000000e+00 6.7000000e+00 5.0000000e+00 7.2000000e+00 6.2000000e+00 5.2000000e+00 6.2000000e+00 4.7000000e+00 7.3000000e+00 5.8000000e+00 6.8000000e+00 6.4000000e+00 6.5000000e+00 7.0000000e+00 7.4000000e+00 8.0000000e+00 6.5000000e+00 4.4000000e+00 4.4000000e+00 4.2000000e+00 5.2000000e+00 7.0000000e+00 6.0000000e+00 7.1000000e+00 7.6000000e+00 5.9000000e+00 5.6000000e+00 4.9000000e+00 5.3000000e+00 6.7000000e+00 5.2000000e+00 3.2000000e+00 5.4000000e+00 5.7000000e+00 5.7000000e+00 6.3000000e+00 3.3000000e+00 5.5000000e+00 9.7000000e+00 7.1000000e+00 9.7000000e+00 8.2000000e+00 9.1000000e+00 1.0900000e+01 5.2000000e+00 9.9000000e+00 8.4000000e+00 1.1000000e+01 8.4000000e+00 7.9000000e+00 9.0000000e+00 6.8000000e+00 7.7000000e+00 8.8000000e+00 8.4000000e+00 1.2000000e+01 1.1100000e+01 6.5000000e+00 9.7000000e+00 6.9000000e+00 1.0800000e+01 7.3000000e+00 9.4000000e+00 9.8000000e+00 7.2000000e+00 7.4000000e+00 8.5000000e+00 9.2000000e+00 9.8000000e+00 1.1700000e+01 8.6000000e+00 7.3000000e+00 7.3000000e+00 1.0700000e+01 9.3000000e+00 8.4000000e+00 7.2000000e+00 9.1000000e+00 9.4000000e+00 9.0000000e+00 7.1000000e+00 9.8000000e+00 9.8000000e+00 8.8000000e+00 7.3000000e+00 8.3000000e+00 8.9000000e+00 7.4000000e+00 1.6000000e+00 2.1000000e+00 8.0000000e-01 1.6000000e+00 3.0000000e-01 1.6000000e+00 8.0000000e-01 7.2000000e+00 6.5000000e+00 7.5000000e+00 5.8000000e+00 7.1000000e+00 6.0000000e+00 6.8000000e+00 4.1000000e+00 6.9000000e+00 5.1000000e+00 4.8000000e+00 5.9000000e+00 6.1000000e+00 6.6000000e+00 4.9000000e+00 6.7000000e+00 5.9000000e+00 5.5000000e+00 7.3000000e+00 5.4000000e+00 6.6000000e+00 5.9000000e+00 7.5000000e+00 6.5000000e+00 6.4000000e+00 6.7000000e+00 7.5000000e+00 7.7000000e+00 6.4000000e+00 4.9000000e+00 5.3000000e+00 5.1000000e+00 5.5000000e+00 7.3000000e+00 5.7000000e+00 6.4000000e+00 7.1000000e+00 7.0000000e+00 5.3000000e+00 5.6000000e+00 5.8000000e+00 6.4000000e+00 5.7000000e+00 4.3000000e+00 5.7000000e+00 5.4000000e+00 5.6000000e+00 6.2000000e+00 4.0000000e+00 5.6000000e+00 9.0000000e+00 7.4000000e+00 9.4000000e+00 8.1000000e+00 8.8000000e+00 1.0600000e+01 5.9000000e+00 9.8000000e+00 9.1000000e+00 1.0300000e+01 7.7000000e+00 8.2000000e+00 8.7000000e+00 7.5000000e+00 7.8000000e+00 8.1000000e+00 8.1000000e+00 1.1300000e+01 1.1600000e+01 7.6000000e+00 9.0000000e+00 7.0000000e+00 1.0900000e+01 7.6000000e+00 8.7000000e+00 9.1000000e+00 7.3000000e+00 7.1000000e+00 8.6000000e+00 8.9000000e+00 9.9000000e+00 1.1000000e+01 8.7000000e+00 7.4000000e+00 7.8000000e+00 1.0400000e+01 8.6000000e+00 7.9000000e+00 6.9000000e+00 8.6000000e+00 8.9000000e+00 8.5000000e+00 7.4000000e+00 9.1000000e+00 9.1000000e+00 8.5000000e+00 8.0000000e+00 8.0000000e+00 8.2000000e+00 7.1000000e+00 9.0000000e-01 1.2000000e+00 8.0000000e-01 1.3000000e+00 1.0000000e+00 8.0000000e-01 6.2000000e+00 5.5000000e+00 6.5000000e+00 4.8000000e+00 6.1000000e+00 5.0000000e+00 5.6000000e+00 3.3000000e+00 5.9000000e+00 4.1000000e+00 3.8000000e+00 4.9000000e+00 5.1000000e+00 5.6000000e+00 3.9000000e+00 5.7000000e+00 4.9000000e+00 4.5000000e+00 6.3000000e+00 4.4000000e+00 5.6000000e+00 4.9000000e+00 6.5000000e+00 5.5000000e+00 5.4000000e+00 5.7000000e+00 6.5000000e+00 6.7000000e+00 5.4000000e+00 3.9000000e+00 4.3000000e+00 4.1000000e+00 4.5000000e+00 6.3000000e+00 4.7000000e+00 5.0000000e+00 6.1000000e+00 6.0000000e+00 4.3000000e+00 4.6000000e+00 4.8000000e+00 5.4000000e+00 4.7000000e+00 3.3000000e+00 4.7000000e+00 4.4000000e+00 4.6000000e+00 5.2000000e+00 3.0000000e+00 4.6000000e+00 7.8000000e+00 6.4000000e+00 8.4000000e+00 7.1000000e+00 7.8000000e+00 9.6000000e+00 5.1000000e+00 8.8000000e+00 8.1000000e+00 8.7000000e+00 6.7000000e+00 7.2000000e+00 7.7000000e+00 6.5000000e+00 6.8000000e+00 7.1000000e+00 7.1000000e+00 9.7000000e+00 1.0600000e+01 6.6000000e+00 8.0000000e+00 6.0000000e+00 9.9000000e+00 6.6000000e+00 7.5000000e+00 8.1000000e+00 6.3000000e+00 6.1000000e+00 7.6000000e+00 7.9000000e+00 8.9000000e+00 9.4000000e+00 7.7000000e+00 6.4000000e+00 6.8000000e+00 9.4000000e+00 7.2000000e+00 6.9000000e+00 5.9000000e+00 7.6000000e+00 7.9000000e+00 7.5000000e+00 6.4000000e+00 8.1000000e+00 7.9000000e+00 7.5000000e+00 7.0000000e+00 7.0000000e+00 6.8000000e+00 6.1000000e+00 1.7000000e+00 5.0000000e-01 1.8000000e+00 9.0000000e-01 1.3000000e+00 6.3000000e+00 5.6000000e+00 6.6000000e+00 4.9000000e+00 6.2000000e+00 5.1000000e+00 5.7000000e+00 3.6000000e+00 6.0000000e+00 4.2000000e+00 4.1000000e+00 5.0000000e+00 5.2000000e+00 5.7000000e+00 4.0000000e+00 5.8000000e+00 5.0000000e+00 4.6000000e+00 6.4000000e+00 4.5000000e+00 5.7000000e+00 5.0000000e+00 6.6000000e+00 5.6000000e+00 5.5000000e+00 5.8000000e+00 6.6000000e+00 6.8000000e+00 5.5000000e+00 4.0000000e+00 4.4000000e+00 4.2000000e+00 4.6000000e+00 6.4000000e+00 4.8000000e+00 5.1000000e+00 6.2000000e+00 6.1000000e+00 4.4000000e+00 4.7000000e+00 4.9000000e+00 5.5000000e+00 4.8000000e+00 3.6000000e+00 4.8000000e+00 4.5000000e+00 4.7000000e+00 5.3000000e+00 3.1000000e+00 4.7000000e+00 7.9000000e+00 6.5000000e+00 8.5000000e+00 7.2000000e+00 7.9000000e+00 9.7000000e+00 5.4000000e+00 8.9000000e+00 8.2000000e+00 8.6000000e+00 6.8000000e+00 7.3000000e+00 7.8000000e+00 6.6000000e+00 6.9000000e+00 7.2000000e+00 7.2000000e+00 9.2000000e+00 1.0700000e+01 6.7000000e+00 8.1000000e+00 6.1000000e+00 1.0000000e+01 6.7000000e+00 7.6000000e+00 8.2000000e+00 6.4000000e+00 6.2000000e+00 7.7000000e+00 8.0000000e+00 9.0000000e+00 8.9000000e+00 7.8000000e+00 6.5000000e+00 6.9000000e+00 9.5000000e+00 7.3000000e+00 7.0000000e+00 6.0000000e+00 7.7000000e+00 8.0000000e+00 7.6000000e+00 6.5000000e+00 8.2000000e+00 8.0000000e+00 7.6000000e+00 7.1000000e+00 7.1000000e+00 6.9000000e+00 6.2000000e+00 1.4000000e+00 5.0000000e-01 1.4000000e+00 6.0000000e-01 6.8000000e+00 6.1000000e+00 6.9000000e+00 5.0000000e+00 6.3000000e+00 5.2000000e+00 6.4000000e+00 3.3000000e+00 6.1000000e+00 4.3000000e+00 4.0000000e+00 5.1000000e+00 5.3000000e+00 5.8000000e+00 4.1000000e+00 6.1000000e+00 5.1000000e+00 4.7000000e+00 6.5000000e+00 4.6000000e+00 6.2000000e+00 5.1000000e+00 6.7000000e+00 5.7000000e+00 5.6000000e+00 5.9000000e+00 6.7000000e+00 6.9000000e+00 5.6000000e+00 4.1000000e+00 4.5000000e+00 4.3000000e+00 4.7000000e+00 6.5000000e+00 4.9000000e+00 6.0000000e+00 6.5000000e+00 6.2000000e+00 4.5000000e+00 4.8000000e+00 5.0000000e+00 5.6000000e+00 4.9000000e+00 3.5000000e+00 4.9000000e+00 4.6000000e+00 4.8000000e+00 5.4000000e+00 3.2000000e+00 4.8000000e+00 8.6000000e+00 6.6000000e+00 8.6000000e+00 7.3000000e+00 8.0000000e+00 9.8000000e+00 5.1000000e+00 9.0000000e+00 8.3000000e+00 9.9000000e+00 7.3000000e+00 7.4000000e+00 7.9000000e+00 6.7000000e+00 7.0000000e+00 7.7000000e+00 7.3000000e+00 1.0900000e+01 1.0800000e+01 6.8000000e+00 8.6000000e+00 6.2000000e+00 1.0100000e+01 6.8000000e+00 8.3000000e+00 8.7000000e+00 6.5000000e+00 6.3000000e+00 7.8000000e+00 8.1000000e+00 9.1000000e+00 1.0600000e+01 7.9000000e+00 6.6000000e+00 7.0000000e+00 9.6000000e+00 8.2000000e+00 7.3000000e+00 6.1000000e+00 8.0000000e+00 8.3000000e+00 7.9000000e+00 6.6000000e+00 8.7000000e+00 8.7000000e+00 7.7000000e+00 7.2000000e+00 7.2000000e+00 7.8000000e+00 6.3000000e+00 1.3000000e+00 4.0000000e-01 8.0000000e-01 6.8000000e+00 6.1000000e+00 7.1000000e+00 5.4000000e+00 6.7000000e+00 5.6000000e+00 6.2000000e+00 4.1000000e+00 6.5000000e+00 4.7000000e+00 4.6000000e+00 5.5000000e+00 5.7000000e+00 6.2000000e+00 4.5000000e+00 6.3000000e+00 5.5000000e+00 5.1000000e+00 6.9000000e+00 5.0000000e+00 6.2000000e+00 5.5000000e+00 7.1000000e+00 6.1000000e+00 6.0000000e+00 6.3000000e+00 7.1000000e+00 7.3000000e+00 6.0000000e+00 4.5000000e+00 4.9000000e+00 4.7000000e+00 5.1000000e+00 6.9000000e+00 5.3000000e+00 5.6000000e+00 6.7000000e+00 6.6000000e+00 4.9000000e+00 5.2000000e+00 5.4000000e+00 6.0000000e+00 5.3000000e+00 4.1000000e+00 5.3000000e+00 5.0000000e+00 5.2000000e+00 5.8000000e+00 3.6000000e+00 5.2000000e+00 8.4000000e+00 7.0000000e+00 9.0000000e+00 7.7000000e+00 8.4000000e+00 1.0200000e+01 5.9000000e+00 9.4000000e+00 8.7000000e+00 9.1000000e+00 7.3000000e+00 7.8000000e+00 8.3000000e+00 7.1000000e+00 7.4000000e+00 7.7000000e+00 7.7000000e+00 9.7000000e+00 1.1200000e+01 7.2000000e+00 8.6000000e+00 6.6000000e+00 1.0500000e+01 7.2000000e+00 8.1000000e+00 8.7000000e+00 6.9000000e+00 6.7000000e+00 8.2000000e+00 8.5000000e+00 9.5000000e+00 9.4000000e+00 8.3000000e+00 7.0000000e+00 7.4000000e+00 1.0000000e+01 7.8000000e+00 7.5000000e+00 6.5000000e+00 8.2000000e+00 8.5000000e+00 8.1000000e+00 7.0000000e+00 8.7000000e+00 8.5000000e+00 8.1000000e+00 7.6000000e+00 7.6000000e+00 7.4000000e+00 6.7000000e+00 1.3000000e+00 5.0000000e-01 6.9000000e+00 6.2000000e+00 7.2000000e+00 5.5000000e+00 6.8000000e+00 5.7000000e+00 6.5000000e+00 3.8000000e+00 6.6000000e+00 4.8000000e+00 4.5000000e+00 5.6000000e+00 5.8000000e+00 6.3000000e+00 4.6000000e+00 6.4000000e+00 5.6000000e+00 5.2000000e+00 7.0000000e+00 5.1000000e+00 6.3000000e+00 5.6000000e+00 7.2000000e+00 6.2000000e+00 6.1000000e+00 6.4000000e+00 7.2000000e+00 7.4000000e+00 6.1000000e+00 4.6000000e+00 5.0000000e+00 4.8000000e+00 5.2000000e+00 7.0000000e+00 5.4000000e+00 6.1000000e+00 6.8000000e+00 6.7000000e+00 5.0000000e+00 5.3000000e+00 5.5000000e+00 6.1000000e+00 5.4000000e+00 4.0000000e+00 5.4000000e+00 5.1000000e+00 5.3000000e+00 5.9000000e+00 3.7000000e+00 5.3000000e+00 8.7000000e+00 7.1000000e+00 9.1000000e+00 7.8000000e+00 8.5000000e+00 1.0300000e+01 5.6000000e+00 9.5000000e+00 8.8000000e+00 1.0000000e+01 7.4000000e+00 7.9000000e+00 8.4000000e+00 7.2000000e+00 7.5000000e+00 7.8000000e+00 7.8000000e+00 1.1000000e+01 1.1300000e+01 7.3000000e+00 8.7000000e+00 6.7000000e+00 1.0600000e+01 7.3000000e+00 8.4000000e+00 8.8000000e+00 7.0000000e+00 6.8000000e+00 8.3000000e+00 8.6000000e+00 9.6000000e+00 1.0700000e+01 8.4000000e+00 7.1000000e+00 7.5000000e+00 1.0100000e+01 8.3000000e+00 7.6000000e+00 6.6000000e+00 8.3000000e+00 8.6000000e+00 8.2000000e+00 7.1000000e+00 8.8000000e+00 8.8000000e+00 8.2000000e+00 7.7000000e+00 7.7000000e+00 7.9000000e+00 6.8000000e+00 8.0000000e-01 6.6000000e+00 5.9000000e+00 6.9000000e+00 5.2000000e+00 6.5000000e+00 5.4000000e+00 6.0000000e+00 4.3000000e+00 6.3000000e+00 4.7000000e+00 4.8000000e+00 5.3000000e+00 5.5000000e+00 6.0000000e+00 4.3000000e+00 6.1000000e+00 5.3000000e+00 4.9000000e+00 6.7000000e+00 4.8000000e+00 6.0000000e+00 5.3000000e+00 6.9000000e+00 5.9000000e+00 5.8000000e+00 6.1000000e+00 6.9000000e+00 7.1000000e+00 5.8000000e+00 4.3000000e+00 4.7000000e+00 4.5000000e+00 4.9000000e+00 6.7000000e+00 5.1000000e+00 5.4000000e+00 6.5000000e+00 6.4000000e+00 4.7000000e+00 5.0000000e+00 5.2000000e+00 5.8000000e+00 5.1000000e+00 4.3000000e+00 5.1000000e+00 4.8000000e+00 5.0000000e+00 5.6000000e+00 3.8000000e+00 5.0000000e+00 8.2000000e+00 6.8000000e+00 8.8000000e+00 7.5000000e+00 8.2000000e+00 1.0000000e+01 6.1000000e+00 9.2000000e+00 8.5000000e+00 8.9000000e+00 7.1000000e+00 7.6000000e+00 8.1000000e+00 6.9000000e+00 7.2000000e+00 7.5000000e+00 7.5000000e+00 9.7000000e+00 1.1000000e+01 7.0000000e+00 8.4000000e+00 6.4000000e+00 1.0300000e+01 7.0000000e+00 7.9000000e+00 8.5000000e+00 6.7000000e+00 6.5000000e+00 8.0000000e+00 8.3000000e+00 9.3000000e+00 9.4000000e+00 8.1000000e+00 6.8000000e+00 7.2000000e+00 9.8000000e+00 7.6000000e+00 7.3000000e+00 6.3000000e+00 8.0000000e+00 8.3000000e+00 7.9000000e+00 6.8000000e+00 8.5000000e+00 8.3000000e+00 7.9000000e+00 7.4000000e+00 7.4000000e+00 7.2000000e+00 6.5000000e+00 6.6000000e+00 5.9000000e+00 6.9000000e+00 5.2000000e+00 6.5000000e+00 5.4000000e+00 6.0000000e+00 3.7000000e+00 6.3000000e+00 4.5000000e+00 4.2000000e+00 5.3000000e+00 5.5000000e+00 6.0000000e+00 4.3000000e+00 6.1000000e+00 5.3000000e+00 4.9000000e+00 6.7000000e+00 4.8000000e+00 6.0000000e+00 5.3000000e+00 6.9000000e+00 5.9000000e+00 5.8000000e+00 6.1000000e+00 6.9000000e+00 7.1000000e+00 5.8000000e+00 4.3000000e+00 4.7000000e+00 4.5000000e+00 4.9000000e+00 6.7000000e+00 5.1000000e+00 5.6000000e+00 6.5000000e+00 6.4000000e+00 4.7000000e+00 5.0000000e+00 5.2000000e+00 5.8000000e+00 5.1000000e+00 3.7000000e+00 5.1000000e+00 4.8000000e+00 5.0000000e+00 5.6000000e+00 3.4000000e+00 5.0000000e+00 8.2000000e+00 6.8000000e+00 8.8000000e+00 7.5000000e+00 8.2000000e+00 1.0000000e+01 5.5000000e+00 9.2000000e+00 8.5000000e+00 9.5000000e+00 7.1000000e+00 7.6000000e+00 8.1000000e+00 6.9000000e+00 7.2000000e+00 7.5000000e+00 7.5000000e+00 1.0500000e+01 1.1000000e+01 7.0000000e+00 8.4000000e+00 6.4000000e+00 1.0300000e+01 7.0000000e+00 7.9000000e+00 8.5000000e+00 6.7000000e+00 6.5000000e+00 8.0000000e+00 8.3000000e+00 9.3000000e+00 1.0200000e+01 8.1000000e+00 6.8000000e+00 7.2000000e+00 9.8000000e+00 7.8000000e+00 7.3000000e+00 6.3000000e+00 8.0000000e+00 8.3000000e+00 7.9000000e+00 6.8000000e+00 8.5000000e+00 8.3000000e+00 7.9000000e+00 7.4000000e+00 7.4000000e+00 7.4000000e+00 6.5000000e+00 9.0000000e-01 5.0000000e-01 3.2000000e+00 1.1000000e+00 2.0000000e+00 1.0000000e+00 4.7000000e+00 9.0000000e-01 3.1000000e+00 4.8000000e+00 1.9000000e+00 3.1000000e+00 1.2000000e+00 2.9000000e+00 7.0000000e-01 1.9000000e+00 2.7000000e+00 2.1000000e+00 3.2000000e+00 1.6000000e+00 2.1000000e+00 1.7000000e+00 1.5000000e+00 1.4000000e+00 9.0000000e-01 7.0000000e-01 1.1000000e+00 1.6000000e+00 3.5000000e+00 3.5000000e+00 3.7000000e+00 2.7000000e+00 2.1000000e+00 2.1000000e+00 1.6000000e+00 5.0000000e-01 2.0000000e+00 2.3000000e+00 3.0000000e+00 2.6000000e+00 1.2000000e+00 2.7000000e+00 4.7000000e+00 2.5000000e+00 2.2000000e+00 2.2000000e+00 1.6000000e+00 4.6000000e+00 2.4000000e+00 3.2000000e+00 2.6000000e+00 2.2000000e+00 2.3000000e+00 2.6000000e+00 3.4000000e+00 3.3000000e+00 2.6000000e+00 2.5000000e+00 3.1000000e+00 1.5000000e+00 2.2000000e+00 1.9000000e+00 2.9000000e+00 3.0000000e+00 2.1000000e+00 1.9000000e+00 4.1000000e+00 4.4000000e+00 2.4000000e+00 2.0000000e+00 2.6000000e+00 3.7000000e+00 1.8000000e+00 2.1000000e+00 1.9000000e+00 1.7000000e+00 1.7000000e+00 2.6000000e+00 1.7000000e+00 2.7000000e+00 3.8000000e+00 2.7000000e+00 1.6000000e+00 2.4000000e+00 3.2000000e+00 2.8000000e+00 1.9000000e+00 1.7000000e+00 1.6000000e+00 2.3000000e+00 1.5000000e+00 2.6000000e+00 2.3000000e+00 2.5000000e+00 1.9000000e+00 2.2000000e+00 1.8000000e+00 2.6000000e+00 2.1000000e+00 1.0000000e+00 2.5000000e+00 6.0000000e-01 1.3000000e+00 5.0000000e-01 4.0000000e+00 8.0000000e-01 2.4000000e+00 4.1000000e+00 1.0000000e+00 2.4000000e+00 9.0000000e-01 2.2000000e+00 6.0000000e-01 1.0000000e+00 2.0000000e+00 1.2000000e+00 2.5000000e+00 1.1000000e+00 1.4000000e+00 1.2000000e+00 1.2000000e+00 7.0000000e-01 6.0000000e-01 1.2000000e+00 1.2000000e+00 7.0000000e-01 2.8000000e+00 2.8000000e+00 3.0000000e+00 2.0000000e+00 1.6000000e+00 1.2000000e+00 7.0000000e-01 6.0000000e-01 1.3000000e+00 1.6000000e+00 2.3000000e+00 1.9000000e+00 7.0000000e-01 2.0000000e+00 4.0000000e+00 1.8000000e+00 1.5000000e+00 1.5000000e+00 9.0000000e-01 3.9000000e+00 1.7000000e+00 2.7000000e+00 2.1000000e+00 2.9000000e+00 1.8000000e+00 2.3000000e+00 4.1000000e+00 2.4000000e+00 3.3000000e+00 2.6000000e+00 3.8000000e+00 1.2000000e+00 1.7000000e+00 2.2000000e+00 2.4000000e+00 2.5000000e+00 1.6000000e+00 1.6000000e+00 4.8000000e+00 5.1000000e+00 1.9000000e+00 2.5000000e+00 2.1000000e+00 4.4000000e+00 1.3000000e+00 2.2000000e+00 2.6000000e+00 1.2000000e+00 1.2000000e+00 2.1000000e+00 2.4000000e+00 3.4000000e+00 4.5000000e+00 2.2000000e+00 1.1000000e+00 2.1000000e+00 3.9000000e+00 2.3000000e+00 1.4000000e+00 1.2000000e+00 2.1000000e+00 2.4000000e+00 2.0000000e+00 2.1000000e+00 2.6000000e+00 2.6000000e+00 2.0000000e+00 1.7000000e+00 1.5000000e+00 2.1000000e+00 1.6000000e+00 3.3000000e+00 1.0000000e+00 2.1000000e+00 1.1000000e+00 4.8000000e+00 1.0000000e+00 3.2000000e+00 4.9000000e+00 1.8000000e+00 3.2000000e+00 1.3000000e+00 3.0000000e+00 8.0000000e-01 1.8000000e+00 2.8000000e+00 2.0000000e+00 3.3000000e+00 1.5000000e+00 2.2000000e+00 1.2000000e+00 1.6000000e+00 1.5000000e+00 1.0000000e+00 6.0000000e-01 6.0000000e-01 1.5000000e+00 3.6000000e+00 3.6000000e+00 3.8000000e+00 2.8000000e+00 1.6000000e+00 2.0000000e+00 1.7000000e+00 4.0000000e-01 2.1000000e+00 2.4000000e+00 3.1000000e+00 2.7000000e+00 1.3000000e+00 2.8000000e+00 4.8000000e+00 2.6000000e+00 2.3000000e+00 2.3000000e+00 1.7000000e+00 4.7000000e+00 2.5000000e+00 2.9000000e+00 2.1000000e+00 1.9000000e+00 1.8000000e+00 2.1000000e+00 3.1000000e+00 3.2000000e+00 2.3000000e+00 2.0000000e+00 3.0000000e+00 1.2000000e+00 1.7000000e+00 1.4000000e+00 2.4000000e+00 2.5000000e+00 1.8000000e+00 1.4000000e+00 4.0000000e+00 4.1000000e+00 1.9000000e+00 1.7000000e+00 2.1000000e+00 3.4000000e+00 1.3000000e+00 1.8000000e+00 1.8000000e+00 1.4000000e+00 1.2000000e+00 2.1000000e+00 1.4000000e+00 2.4000000e+00 3.7000000e+00 2.2000000e+00 1.1000000e+00 2.1000000e+00 2.9000000e+00 2.5000000e+00 1.4000000e+00 1.4000000e+00 1.1000000e+00 1.8000000e+00 1.0000000e+00 2.1000000e+00 2.0000000e+00 2.2000000e+00 1.4000000e+00 1.7000000e+00 1.3000000e+00 2.3000000e+00 1.6000000e+00 2.3000000e+00 1.2000000e+00 2.8000000e+00 1.7000000e+00 2.3000000e+00 9.0000000e-01 1.6000000e+00 1.5000000e+00 9.0000000e-01 2.0000000e+00 1.1000000e+00 2.5000000e+00 1.5000000e+00 1.1000000e+00 1.5000000e+00 6.0000000e-01 2.6000000e+00 1.1000000e+00 2.1000000e+00 1.9000000e+00 1.8000000e+00 2.3000000e+00 2.7000000e+00 3.3000000e+00 1.8000000e+00 1.3000000e+00 5.0000000e-01 7.0000000e-01 9.0000000e-01 2.3000000e+00 1.5000000e+00 2.4000000e+00 2.9000000e+00 1.2000000e+00 9.0000000e-01 2.0000000e-01 8.0000000e-01 2.0000000e+00 7.0000000e-01 1.5000000e+00 7.0000000e-01 1.2000000e+00 1.0000000e+00 1.6000000e+00 1.8000000e+00 8.0000000e-01 5.0000000e+00 2.4000000e+00 5.0000000e+00 3.5000000e+00 4.4000000e+00 6.2000000e+00 1.7000000e+00 5.2000000e+00 3.7000000e+00 6.3000000e+00 3.7000000e+00 3.2000000e+00 4.3000000e+00 2.1000000e+00 3.0000000e+00 4.1000000e+00 3.7000000e+00 7.3000000e+00 6.4000000e+00 1.8000000e+00 5.0000000e+00 2.2000000e+00 6.1000000e+00 2.6000000e+00 4.7000000e+00 5.1000000e+00 2.5000000e+00 2.7000000e+00 3.8000000e+00 4.5000000e+00 5.1000000e+00 7.0000000e+00 3.9000000e+00 2.6000000e+00 2.6000000e+00 6.0000000e+00 4.6000000e+00 3.7000000e+00 2.5000000e+00 4.4000000e+00 4.7000000e+00 4.3000000e+00 2.4000000e+00 5.1000000e+00 5.1000000e+00 4.1000000e+00 2.6000000e+00 3.6000000e+00 4.2000000e+00 2.7000000e+00 1.1000000e+00 9.0000000e-01 3.8000000e+00 4.0000000e-01 2.2000000e+00 3.9000000e+00 1.2000000e+00 2.2000000e+00 7.0000000e-01 2.2000000e+00 8.0000000e-01 1.2000000e+00 1.8000000e+00 1.0000000e+00 2.3000000e+00 1.5000000e+00 1.2000000e+00 8.0000000e-01 8.0000000e-01 7.0000000e-01 6.0000000e-01 6.0000000e-01 1.0000000e+00 7.0000000e-01 2.6000000e+00 2.6000000e+00 2.8000000e+00 1.8000000e+00 1.2000000e+00 1.4000000e+00 1.3000000e+00 6.0000000e-01 1.1000000e+00 1.8000000e+00 2.1000000e+00 1.7000000e+00 7.0000000e-01 1.8000000e+00 3.8000000e+00 1.6000000e+00 1.7000000e+00 1.5000000e+00 9.0000000e-01 3.7000000e+00 1.5000000e+00 3.1000000e+00 1.7000000e+00 2.7000000e+00 1.6000000e+00 2.1000000e+00 3.9000000e+00 2.2000000e+00 2.9000000e+00 2.0000000e+00 4.0000000e+00 1.4000000e+00 1.3000000e+00 2.0000000e+00 2.0000000e+00 2.1000000e+00 2.0000000e+00 1.4000000e+00 5.0000000e+00 4.5000000e+00 1.5000000e+00 2.7000000e+00 1.7000000e+00 3.8000000e+00 9.0000000e-01 2.4000000e+00 2.8000000e+00 8.0000000e-01 1.2000000e+00 1.7000000e+00 2.2000000e+00 2.8000000e+00 4.7000000e+00 1.8000000e+00 7.0000000e-01 1.7000000e+00 3.7000000e+00 2.7000000e+00 1.6000000e+00 1.2000000e+00 2.1000000e+00 2.4000000e+00 2.0000000e+00 1.7000000e+00 2.8000000e+00 2.8000000e+00 1.8000000e+00 1.3000000e+00 1.3000000e+00 2.5000000e+00 1.6000000e+00 1.6000000e+00 2.7000000e+00 1.1000000e+00 1.3000000e+00 2.8000000e+00 9.0000000e-01 1.7000000e+00 8.0000000e-01 1.1000000e+00 1.5000000e+00 5.0000000e-01 9.0000000e-01 1.3000000e+00 1.2000000e+00 1.4000000e+00 9.0000000e-01 1.5000000e+00 7.0000000e-01 1.0000000e+00 1.3000000e+00 1.5000000e+00 2.1000000e+00 6.0000000e-01 1.5000000e+00 1.5000000e+00 1.7000000e+00 9.0000000e-01 1.3000000e+00 7.0000000e-01 1.2000000e+00 1.7000000e+00 1.2000000e+00 7.0000000e-01 1.0000000e+00 6.0000000e-01 8.0000000e-01 9.0000000e-01 2.7000000e+00 5.0000000e-01 6.0000000e-01 4.0000000e-01 8.0000000e-01 2.6000000e+00 4.0000000e-01 3.8000000e+00 1.4000000e+00 3.8000000e+00 2.3000000e+00 3.2000000e+00 5.0000000e+00 1.5000000e+00 4.0000000e+00 3.1000000e+00 5.1000000e+00 2.5000000e+00 2.2000000e+00 3.1000000e+00 1.5000000e+00 1.8000000e+00 2.9000000e+00 2.5000000e+00 6.1000000e+00 5.6000000e+00 1.6000000e+00 3.8000000e+00 1.2000000e+00 4.9000000e+00 1.6000000e+00 3.5000000e+00 3.9000000e+00 1.3000000e+00 1.5000000e+00 2.6000000e+00 3.3000000e+00 3.9000000e+00 5.8000000e+00 2.7000000e+00 1.4000000e+00 1.8000000e+00 4.8000000e+00 3.4000000e+00 2.5000000e+00 1.3000000e+00 3.2000000e+00 3.5000000e+00 3.1000000e+00 1.4000000e+00 3.9000000e+00 3.9000000e+00 2.9000000e+00 2.0000000e+00 2.4000000e+00 3.0000000e+00 1.5000000e+00 4.3000000e+00 1.1000000e+00 2.7000000e+00 4.4000000e+00 1.3000000e+00 2.7000000e+00 8.0000000e-01 2.5000000e+00 1.1000000e+00 1.3000000e+00 2.3000000e+00 1.5000000e+00 2.8000000e+00 8.0000000e-01 1.7000000e+00 1.1000000e+00 1.1000000e+00 1.2000000e+00 1.1000000e+00 1.3000000e+00 1.1000000e+00 1.0000000e+00 3.1000000e+00 3.1000000e+00 3.3000000e+00 2.3000000e+00 1.3000000e+00 1.5000000e+00 6.0000000e-01 7.0000000e-01 1.6000000e+00 1.9000000e+00 2.6000000e+00 2.2000000e+00 8.0000000e-01 2.3000000e+00 4.3000000e+00 2.1000000e+00 1.8000000e+00 1.8000000e+00 1.2000000e+00 4.2000000e+00 2.0000000e+00 2.2000000e+00 1.8000000e+00 2.8000000e+00 1.5000000e+00 2.2000000e+00 4.0000000e+00 2.5000000e+00 3.2000000e+00 2.5000000e+00 3.5000000e+00 1.1000000e+00 1.6000000e+00 2.1000000e+00 2.1000000e+00 2.2000000e+00 1.5000000e+00 1.5000000e+00 4.5000000e+00 5.0000000e+00 1.8000000e+00 2.4000000e+00 1.8000000e+00 4.3000000e+00 1.0000000e+00 1.9000000e+00 2.5000000e+00 9.0000000e-01 9.0000000e-01 2.0000000e+00 2.3000000e+00 3.3000000e+00 4.2000000e+00 2.1000000e+00 1.0000000e+00 2.0000000e+00 3.8000000e+00 1.8000000e+00 1.3000000e+00 9.0000000e-01 2.0000000e+00 2.3000000e+00 1.9000000e+00 1.8000000e+00 2.5000000e+00 2.3000000e+00 1.9000000e+00 1.4000000e+00 1.4000000e+00 1.6000000e+00 1.3000000e+00 3.8000000e+00 1.6000000e+00 7.0000000e-01 3.0000000e+00 2.0000000e+00 3.5000000e+00 1.8000000e+00 4.0000000e+00 3.0000000e+00 2.0000000e+00 3.2000000e+00 1.5000000e+00 4.1000000e+00 2.6000000e+00 3.6000000e+00 3.2000000e+00 3.3000000e+00 3.8000000e+00 4.2000000e+00 4.8000000e+00 3.3000000e+00 1.2000000e+00 1.2000000e+00 1.0000000e+00 2.0000000e+00 3.8000000e+00 2.8000000e+00 3.9000000e+00 4.4000000e+00 2.9000000e+00 2.4000000e+00 1.7000000e+00 2.1000000e+00 3.5000000e+00 2.0000000e+00 2.0000000e-01 2.2000000e+00 2.5000000e+00 2.5000000e+00 3.1000000e+00 7.0000000e-01 2.3000000e+00 6.5000000e+00 3.9000000e+00 6.5000000e+00 5.0000000e+00 5.9000000e+00 7.7000000e+00 2.0000000e+00 6.7000000e+00 5.2000000e+00 7.8000000e+00 5.2000000e+00 4.7000000e+00 5.8000000e+00 3.6000000e+00 4.5000000e+00 5.6000000e+00 5.2000000e+00 8.8000000e+00 7.9000000e+00 3.5000000e+00 6.5000000e+00 3.7000000e+00 7.6000000e+00 4.1000000e+00 6.2000000e+00 6.6000000e+00 4.0000000e+00 4.2000000e+00 5.3000000e+00 6.0000000e+00 6.6000000e+00 8.5000000e+00 5.4000000e+00 4.1000000e+00 4.1000000e+00 7.5000000e+00 6.1000000e+00 5.2000000e+00 4.0000000e+00 5.9000000e+00 6.2000000e+00 5.8000000e+00 3.9000000e+00 6.6000000e+00 6.6000000e+00 5.6000000e+00 4.1000000e+00 5.1000000e+00 5.7000000e+00 4.2000000e+00 2.4000000e+00 3.9000000e+00 1.4000000e+00 2.2000000e+00 7.0000000e-01 2.0000000e+00 6.0000000e-01 1.4000000e+00 1.8000000e+00 1.4000000e+00 2.3000000e+00 1.7000000e+00 1.2000000e+00 1.2000000e+00 8.0000000e-01 5.0000000e-01 4.0000000e-01 6.0000000e-01 1.0000000e+00 9.0000000e-01 2.6000000e+00 2.6000000e+00 2.8000000e+00 1.8000000e+00 1.6000000e+00 1.6000000e+00 1.5000000e+00 6.0000000e-01 1.1000000e+00 1.6000000e+00 2.1000000e+00 1.7000000e+00 7.0000000e-01 1.8000000e+00 3.8000000e+00 1.6000000e+00 1.5000000e+00 1.3000000e+00 7.0000000e-01 3.7000000e+00 1.5000000e+00 3.3000000e+00 2.1000000e+00 2.7000000e+00 1.8000000e+00 2.3000000e+00 3.9000000e+00 2.6000000e+00 2.9000000e+00 2.2000000e+00 4.0000000e+00 1.6000000e+00 1.7000000e+00 2.0000000e+00 2.4000000e+00 2.5000000e+00 2.2000000e+00 1.6000000e+00 5.0000000e+00 4.7000000e+00 1.9000000e+00 2.7000000e+00 2.1000000e+00 4.0000000e+00 1.3000000e+00 2.4000000e+00 2.8000000e+00 1.2000000e+00 1.4000000e+00 2.1000000e+00 2.2000000e+00 3.0000000e+00 4.7000000e+00 2.2000000e+00 1.1000000e+00 1.9000000e+00 3.7000000e+00 2.9000000e+00 1.8000000e+00 1.4000000e+00 2.1000000e+00 2.4000000e+00 2.0000000e+00 2.1000000e+00 2.8000000e+00 2.8000000e+00 1.8000000e+00 1.7000000e+00 1.5000000e+00 2.7000000e+00 1.8000000e+00 1.7000000e+00 1.4000000e+00 1.8000000e+00 1.9000000e+00 1.0000000e+00 2.4000000e+00 1.4000000e+00 1.2000000e+00 2.2000000e+00 9.0000000e-01 2.5000000e+00 1.2000000e+00 2.4000000e+00 2.0000000e+00 1.9000000e+00 2.2000000e+00 2.6000000e+00 3.2000000e+00 1.7000000e+00 1.4000000e+00 1.0000000e+00 1.2000000e+00 8.0000000e-01 2.2000000e+00 1.2000000e+00 2.3000000e+00 2.8000000e+00 2.1000000e+00 1.0000000e+00 7.0000000e-01 1.1000000e+00 1.9000000e+00 1.0000000e+00 1.6000000e+00 8.0000000e-01 1.3000000e+00 1.1000000e+00 1.7000000e+00 1.5000000e+00 9.0000000e-01 4.9000000e+00 2.3000000e+00 4.9000000e+00 3.4000000e+00 4.3000000e+00 6.1000000e+00 1.4000000e+00 5.1000000e+00 4.0000000e+00 6.2000000e+00 3.6000000e+00 3.1000000e+00 4.2000000e+00 2.4000000e+00 2.9000000e+00 4.0000000e+00 3.6000000e+00 7.2000000e+00 6.5000000e+00 2.5000000e+00 4.9000000e+00 2.1000000e+00 6.0000000e+00 2.5000000e+00 4.6000000e+00 5.0000000e+00 2.4000000e+00 2.6000000e+00 3.7000000e+00 4.4000000e+00 5.0000000e+00 6.9000000e+00 3.8000000e+00 2.5000000e+00 2.7000000e+00 5.9000000e+00 4.5000000e+00 3.6000000e+00 2.4000000e+00 4.3000000e+00 4.6000000e+00 4.2000000e+00 2.3000000e+00 5.0000000e+00 5.0000000e+00 4.0000000e+00 2.9000000e+00 3.5000000e+00 4.1000000e+00 2.6000000e+00 3.1000000e+00 1.7000000e+00 3.6000000e+00 1.9000000e+00 4.1000000e+00 3.1000000e+00 2.1000000e+00 2.9000000e+00 1.6000000e+00 4.2000000e+00 2.7000000e+00 3.7000000e+00 3.3000000e+00 3.4000000e+00 3.9000000e+00 4.3000000e+00 4.9000000e+00 3.4000000e+00 1.3000000e+00 1.3000000e+00 1.1000000e+00 2.1000000e+00 3.9000000e+00 2.9000000e+00 4.0000000e+00 4.5000000e+00 2.8000000e+00 2.5000000e+00 1.8000000e+00 2.2000000e+00 3.6000000e+00 2.1000000e+00 5.0000000e-01 2.3000000e+00 2.6000000e+00 2.6000000e+00 3.2000000e+00 1.2000000e+00 2.4000000e+00 6.6000000e+00 4.0000000e+00 6.6000000e+00 5.1000000e+00 6.0000000e+00 7.8000000e+00 2.3000000e+00 6.8000000e+00 5.3000000e+00 7.9000000e+00 5.3000000e+00 4.8000000e+00 5.9000000e+00 3.7000000e+00 4.6000000e+00 5.7000000e+00 5.3000000e+00 8.9000000e+00 8.0000000e+00 3.2000000e+00 6.6000000e+00 3.8000000e+00 7.7000000e+00 4.2000000e+00 6.3000000e+00 6.7000000e+00 4.1000000e+00 4.3000000e+00 5.4000000e+00 6.1000000e+00 6.7000000e+00 8.6000000e+00 5.5000000e+00 4.2000000e+00 4.2000000e+00 7.6000000e+00 6.2000000e+00 5.3000000e+00 4.1000000e+00 6.0000000e+00 6.3000000e+00 5.9000000e+00 4.0000000e+00 6.7000000e+00 6.7000000e+00 5.7000000e+00 4.2000000e+00 5.2000000e+00 5.8000000e+00 4.3000000e+00 1.6000000e+00 9.0000000e-01 1.2000000e+00 1.2000000e+00 6.0000000e-01 1.0000000e+00 1.4000000e+00 1.5000000e+00 1.1000000e+00 8.0000000e-01 1.6000000e+00 1.2000000e+00 9.0000000e-01 1.0000000e+00 1.8000000e+00 1.8000000e+00 5.0000000e-01 1.8000000e+00 1.8000000e+00 2.0000000e+00 1.0000000e+00 1.4000000e+00 8.0000000e-01 9.0000000e-01 1.4000000e+00 1.5000000e+00 6.0000000e-01 1.3000000e+00 1.3000000e+00 7.0000000e-01 1.0000000e+00 3.0000000e+00 8.0000000e-01 5.0000000e-01 5.0000000e-01 7.0000000e-01 2.9000000e+00 7.0000000e-01 3.5000000e+00 1.7000000e+00 3.5000000e+00 2.2000000e+00 2.9000000e+00 4.7000000e+00 2.0000000e+00 3.9000000e+00 3.2000000e+00 4.8000000e+00 2.2000000e+00 2.3000000e+00 2.8000000e+00 2.0000000e+00 2.1000000e+00 2.6000000e+00 2.2000000e+00 5.8000000e+00 5.7000000e+00 1.7000000e+00 3.5000000e+00 1.7000000e+00 5.0000000e+00 1.7000000e+00 3.2000000e+00 3.6000000e+00 1.4000000e+00 1.2000000e+00 2.7000000e+00 3.0000000e+00 4.0000000e+00 5.5000000e+00 2.8000000e+00 1.5000000e+00 2.1000000e+00 4.5000000e+00 3.1000000e+00 2.2000000e+00 1.0000000e+00 2.9000000e+00 3.2000000e+00 2.8000000e+00 1.7000000e+00 3.6000000e+00 3.6000000e+00 2.6000000e+00 2.1000000e+00 2.1000000e+00 2.7000000e+00 1.2000000e+00 1.9000000e+00 1.8000000e+00 2.4000000e+00 2.2000000e+00 8.0000000e-01 1.2000000e+00 9.0000000e-01 2.7000000e+00 1.0000000e+00 2.0000000e+00 1.6000000e+00 1.7000000e+00 2.2000000e+00 2.6000000e+00 3.2000000e+00 1.7000000e+00 1.2000000e+00 1.0000000e+00 1.0000000e+00 1.0000000e+00 2.2000000e+00 2.4000000e+00 2.3000000e+00 2.8000000e+00 1.1000000e+00 1.6000000e+00 1.1000000e+00 1.5000000e+00 1.9000000e+00 8.0000000e-01 1.8000000e+00 1.4000000e+00 1.5000000e+00 1.5000000e+00 1.5000000e+00 2.3000000e+00 1.3000000e+00 4.9000000e+00 2.7000000e+00 4.9000000e+00 3.4000000e+00 4.3000000e+00 6.1000000e+00 2.6000000e+00 5.1000000e+00 3.6000000e+00 6.2000000e+00 3.6000000e+00 3.1000000e+00 4.2000000e+00 2.6000000e+00 3.3000000e+00 4.0000000e+00 3.6000000e+00 7.2000000e+00 6.3000000e+00 1.5000000e+00 4.9000000e+00 2.9000000e+00 6.0000000e+00 2.5000000e+00 4.6000000e+00 5.0000000e+00 2.4000000e+00 2.6000000e+00 3.7000000e+00 4.4000000e+00 5.0000000e+00 6.9000000e+00 3.8000000e+00 2.5000000e+00 2.5000000e+00 5.9000000e+00 4.5000000e+00 3.6000000e+00 2.4000000e+00 4.3000000e+00 4.6000000e+00 4.2000000e+00 2.7000000e+00 5.0000000e+00 5.0000000e+00 4.0000000e+00 2.5000000e+00 3.5000000e+00 4.1000000e+00 2.8000000e+00 1.7000000e+00 1.1000000e+00 9.0000000e-01 1.5000000e+00 1.1000000e+00 2.0000000e+00 1.0000000e+00 9.0000000e-01 9.0000000e-01 3.0000000e-01 8.0000000e-01 9.0000000e-01 9.0000000e-01 1.3000000e+00 4.0000000e-01 2.3000000e+00 2.3000000e+00 2.5000000e+00 1.5000000e+00 9.0000000e-01 1.1000000e+00 1.0000000e+00 9.0000000e-01 1.2000000e+00 1.3000000e+00 1.8000000e+00 1.4000000e+00 2.0000000e-01 1.5000000e+00 3.5000000e+00 1.3000000e+00 1.2000000e+00 1.0000000e+00 6.0000000e-01 3.4000000e+00 1.2000000e+00 3.0000000e+00 1.4000000e+00 3.0000000e+00 1.5000000e+00 2.4000000e+00 4.2000000e+00 2.1000000e+00 3.2000000e+00 2.5000000e+00 4.3000000e+00 1.7000000e+00 1.6000000e+00 2.3000000e+00 1.7000000e+00 1.8000000e+00 2.1000000e+00 1.7000000e+00 5.3000000e+00 5.0000000e+00 1.2000000e+00 3.0000000e+00 1.4000000e+00 4.3000000e+00 1.0000000e+00 2.7000000e+00 3.1000000e+00 7.0000000e-01 7.0000000e-01 2.0000000e+00 2.5000000e+00 3.3000000e+00 5.0000000e+00 2.1000000e+00 8.0000000e-01 1.2000000e+00 4.0000000e+00 2.6000000e+00 1.7000000e+00 7.0000000e-01 2.4000000e+00 2.7000000e+00 2.3000000e+00 1.4000000e+00 3.1000000e+00 3.1000000e+00 2.1000000e+00 1.4000000e+00 1.6000000e+00 2.2000000e+00 1.1000000e+00 2.2000000e+00 1.2000000e+00 1.2000000e+00 2.4000000e+00 9.0000000e-01 2.3000000e+00 1.0000000e+00 2.6000000e+00 1.8000000e+00 1.5000000e+00 2.0000000e+00 2.6000000e+00 3.0000000e+00 1.5000000e+00 8.0000000e-01 1.0000000e+00 1.0000000e+00 8.0000000e-01 2.4000000e+00 1.4000000e+00 2.1000000e+00 2.6000000e+00 2.1000000e+00 6.0000000e-01 9.0000000e-01 1.3000000e+00 1.7000000e+00 1.0000000e+00 1.8000000e+00 8.0000000e-01 9.0000000e-01 7.0000000e-01 1.3000000e+00 1.7000000e+00 7.0000000e-01 4.7000000e+00 2.5000000e+00 4.7000000e+00 3.2000000e+00 4.1000000e+00 5.9000000e+00 2.4000000e+00 4.9000000e+00 4.2000000e+00 6.0000000e+00 3.4000000e+00 3.3000000e+00 4.0000000e+00 2.6000000e+00 2.9000000e+00 3.8000000e+00 3.4000000e+00 7.0000000e+00 6.7000000e+00 2.7000000e+00 4.7000000e+00 2.1000000e+00 6.0000000e+00 2.7000000e+00 4.4000000e+00 4.8000000e+00 2.4000000e+00 2.4000000e+00 3.7000000e+00 4.2000000e+00 5.0000000e+00 6.7000000e+00 3.8000000e+00 2.5000000e+00 2.9000000e+00 5.7000000e+00 4.3000000e+00 3.4000000e+00 2.2000000e+00 4.1000000e+00 4.4000000e+00 4.0000000e+00 2.5000000e+00 4.8000000e+00 4.8000000e+00 3.8000000e+00 3.1000000e+00 3.3000000e+00 3.9000000e+00 2.4000000e+00 1.4000000e+00 2.0000000e+00 1.6000000e+00 2.5000000e+00 1.7000000e+00 1.4000000e+00 1.6000000e+00 1.4000000e+00 7.0000000e-01 2.0000000e-01 8.0000000e-01 1.0000000e+00 1.1000000e+00 2.8000000e+00 2.8000000e+00 3.0000000e+00 2.0000000e+00 2.0000000e+00 1.6000000e+00 1.3000000e+00 4.0000000e-01 1.3000000e+00 1.6000000e+00 2.3000000e+00 1.9000000e+00 9.0000000e-01 2.0000000e+00 4.0000000e+00 1.8000000e+00 1.5000000e+00 1.5000000e+00 9.0000000e-01 3.9000000e+00 1.7000000e+00 3.3000000e+00 2.5000000e+00 2.7000000e+00 2.2000000e+00 2.5000000e+00 3.9000000e+00 2.8000000e+00 3.1000000e+00 2.4000000e+00 3.8000000e+00 1.6000000e+00 2.1000000e+00 2.0000000e+00 2.8000000e+00 2.9000000e+00 2.2000000e+00 1.8000000e+00 4.8000000e+00 4.9000000e+00 2.3000000e+00 2.5000000e+00 2.5000000e+00 4.2000000e+00 1.7000000e+00 2.2000000e+00 2.6000000e+00 1.6000000e+00 1.6000000e+00 2.5000000e+00 2.2000000e+00 3.2000000e+00 4.5000000e+00 2.6000000e+00 1.5000000e+00 2.3000000e+00 3.7000000e+00 2.9000000e+00 1.8000000e+00 1.6000000e+00 1.9000000e+00 2.2000000e+00 1.8000000e+00 2.5000000e+00 2.6000000e+00 2.6000000e+00 1.8000000e+00 2.1000000e+00 1.7000000e+00 2.7000000e+00 2.0000000e+00 1.4000000e+00 1.4000000e+00 1.5000000e+00 1.1000000e+00 1.4000000e+00 1.6000000e+00 1.2000000e+00 1.3000000e+00 1.2000000e+00 1.8000000e+00 1.8000000e+00 5.0000000e-01 2.0000000e+00 1.8000000e+00 2.0000000e+00 1.4000000e+00 1.4000000e+00 2.0000000e-01 9.0000000e-01 1.4000000e+00 1.7000000e+00 6.0000000e-01 1.3000000e+00 9.0000000e-01 7.0000000e-01 1.4000000e+00 3.0000000e+00 8.0000000e-01 7.0000000e-01 7.0000000e-01 1.1000000e+00 2.9000000e+00 9.0000000e-01 3.5000000e+00 1.5000000e+00 3.5000000e+00 2.2000000e+00 2.9000000e+00 4.7000000e+00 1.4000000e+00 3.9000000e+00 3.2000000e+00 4.8000000e+00 2.2000000e+00 2.3000000e+00 2.8000000e+00 1.6000000e+00 1.9000000e+00 2.6000000e+00 2.2000000e+00 5.8000000e+00 5.7000000e+00 1.7000000e+00 3.5000000e+00 1.1000000e+00 5.0000000e+00 1.7000000e+00 3.2000000e+00 3.6000000e+00 1.4000000e+00 1.2000000e+00 2.7000000e+00 3.0000000e+00 4.0000000e+00 5.5000000e+00 2.8000000e+00 1.5000000e+00 2.1000000e+00 4.5000000e+00 3.1000000e+00 2.2000000e+00 1.0000000e+00 2.9000000e+00 3.2000000e+00 2.8000000e+00 1.5000000e+00 3.6000000e+00 3.6000000e+00 2.6000000e+00 2.1000000e+00 2.1000000e+00 2.7000000e+00 1.2000000e+00 1.8000000e+00 7.0000000e-01 2.1000000e+00 8.0000000e-01 2.0000000e+00 1.2000000e+00 1.3000000e+00 1.8000000e+00 2.2000000e+00 2.8000000e+00 1.3000000e+00 8.0000000e-01 1.0000000e+00 1.0000000e+00 4.0000000e-01 1.8000000e+00 1.6000000e+00 1.9000000e+00 2.4000000e+00 1.5000000e+00 8.0000000e-01 9.0000000e-01 9.0000000e-01 1.5000000e+00 4.0000000e-01 2.0000000e+00 6.0000000e-01 7.0000000e-01 7.0000000e-01 1.1000000e+00 2.1000000e+00 5.0000000e-01 4.5000000e+00 1.9000000e+00 4.5000000e+00 3.0000000e+00 3.9000000e+00 5.7000000e+00 2.2000000e+00 4.7000000e+00 3.6000000e+00 5.8000000e+00 3.2000000e+00 2.7000000e+00 3.8000000e+00 2.2000000e+00 2.5000000e+00 3.6000000e+00 3.2000000e+00 6.8000000e+00 6.1000000e+00 2.1000000e+00 4.5000000e+00 2.1000000e+00 5.6000000e+00 2.1000000e+00 4.2000000e+00 4.6000000e+00 2.0000000e+00 2.2000000e+00 3.3000000e+00 4.0000000e+00 4.6000000e+00 6.5000000e+00 3.4000000e+00 2.1000000e+00 2.3000000e+00 5.5000000e+00 4.1000000e+00 3.2000000e+00 2.0000000e+00 3.9000000e+00 4.2000000e+00 3.8000000e+00 1.9000000e+00 4.6000000e+00 4.6000000e+00 3.6000000e+00 2.5000000e+00 3.1000000e+00 3.7000000e+00 2.2000000e+00 1.9000000e+00 1.9000000e+00 1.4000000e+00 8.0000000e-01 1.2000000e+00 1.3000000e+00 1.4000000e+00 1.6000000e+00 2.0000000e+00 9.0000000e-01 2.4000000e+00 2.0000000e+00 2.2000000e+00 1.8000000e+00 1.4000000e+00 1.6000000e+00 1.5000000e+00 1.6000000e+00 5.0000000e-01 2.0000000e+00 1.7000000e+00 1.5000000e+00 1.1000000e+00 1.6000000e+00 3.0000000e+00 1.6000000e+00 1.9000000e+00 1.7000000e+00 1.1000000e+00 3.3000000e+00 1.7000000e+00 3.7000000e+00 1.9000000e+00 3.7000000e+00 2.2000000e+00 3.1000000e+00 4.9000000e+00 1.8000000e+00 3.9000000e+00 2.4000000e+00 5.0000000e+00 2.4000000e+00 1.9000000e+00 3.0000000e+00 1.8000000e+00 2.5000000e+00 2.8000000e+00 2.4000000e+00 6.0000000e+00 5.1000000e+00 7.0000000e-01 3.7000000e+00 2.1000000e+00 4.8000000e+00 1.3000000e+00 3.4000000e+00 3.8000000e+00 1.2000000e+00 1.6000000e+00 2.5000000e+00 3.2000000e+00 3.8000000e+00 5.7000000e+00 2.6000000e+00 1.3000000e+00 1.7000000e+00 4.7000000e+00 3.3000000e+00 2.4000000e+00 1.6000000e+00 3.1000000e+00 3.4000000e+00 3.0000000e+00 1.9000000e+00 3.8000000e+00 3.8000000e+00 2.8000000e+00 1.3000000e+00 2.3000000e+00 2.9000000e+00 2.0000000e+00 2.6000000e+00 1.1000000e+00 2.1000000e+00 1.7000000e+00 1.8000000e+00 2.3000000e+00 2.7000000e+00 3.3000000e+00 1.8000000e+00 7.0000000e-01 3.0000000e-01 5.0000000e-01 5.0000000e-01 2.3000000e+00 1.7000000e+00 2.4000000e+00 2.9000000e+00 1.6000000e+00 9.0000000e-01 4.0000000e-01 8.0000000e-01 2.0000000e+00 5.0000000e-01 1.5000000e+00 7.0000000e-01 1.0000000e+00 1.0000000e+00 1.6000000e+00 1.4000000e+00 8.0000000e-01 5.0000000e+00 2.4000000e+00 5.0000000e+00 3.5000000e+00 4.4000000e+00 6.2000000e+00 1.9000000e+00 5.2000000e+00 3.7000000e+00 6.3000000e+00 3.7000000e+00 3.2000000e+00 4.3000000e+00 2.1000000e+00 3.0000000e+00 4.1000000e+00 3.7000000e+00 7.3000000e+00 6.4000000e+00 2.2000000e+00 5.0000000e+00 2.2000000e+00 6.1000000e+00 2.6000000e+00 4.7000000e+00 5.1000000e+00 2.5000000e+00 2.7000000e+00 3.8000000e+00 4.5000000e+00 5.1000000e+00 7.0000000e+00 3.9000000e+00 2.6000000e+00 2.6000000e+00 6.0000000e+00 4.6000000e+00 3.7000000e+00 2.5000000e+00 4.4000000e+00 4.7000000e+00 4.3000000e+00 2.4000000e+00 5.1000000e+00 5.1000000e+00 4.1000000e+00 2.6000000e+00 3.6000000e+00 4.2000000e+00 2.7000000e+00 1.9000000e+00 1.5000000e+00 1.3000000e+00 1.8000000e+00 1.7000000e+00 1.7000000e+00 1.3000000e+00 1.0000000e+00 2.9000000e+00 2.9000000e+00 3.1000000e+00 2.1000000e+00 1.1000000e+00 1.3000000e+00 8.0000000e-01 1.3000000e+00 2.2000000e+00 1.7000000e+00 2.4000000e+00 2.0000000e+00 1.0000000e+00 2.1000000e+00 4.1000000e+00 1.9000000e+00 1.6000000e+00 1.6000000e+00 1.6000000e+00 4.0000000e+00 1.8000000e+00 2.4000000e+00 1.0000000e+00 2.8000000e+00 1.5000000e+00 2.2000000e+00 4.0000000e+00 2.1000000e+00 3.2000000e+00 2.5000000e+00 3.7000000e+00 1.1000000e+00 1.6000000e+00 2.1000000e+00 1.3000000e+00 1.4000000e+00 1.5000000e+00 1.5000000e+00 4.7000000e+00 5.0000000e+00 1.6000000e+00 2.4000000e+00 1.0000000e+00 4.3000000e+00 1.0000000e+00 2.1000000e+00 2.5000000e+00 7.0000000e-01 5.0000000e-01 2.0000000e+00 2.7000000e+00 3.3000000e+00 4.4000000e+00 2.1000000e+00 1.4000000e+00 2.0000000e+00 3.8000000e+00 2.0000000e+00 1.3000000e+00 3.0000000e-01 2.0000000e+00 2.3000000e+00 1.9000000e+00 1.0000000e+00 2.5000000e+00 2.5000000e+00 1.9000000e+00 1.4000000e+00 1.4000000e+00 1.6000000e+00 5.0000000e-01 1.6000000e+00 8.0000000e-01 7.0000000e-01 1.2000000e+00 1.6000000e+00 2.2000000e+00 9.0000000e-01 1.4000000e+00 1.4000000e+00 1.6000000e+00 6.0000000e-01 1.6000000e+00 1.6000000e+00 1.5000000e+00 1.8000000e+00 1.1000000e+00 8.0000000e-01 9.0000000e-01 1.3000000e+00 9.0000000e-01 6.0000000e-01 2.6000000e+00 8.0000000e-01 9.0000000e-01 7.0000000e-01 5.0000000e-01 2.5000000e+00 5.0000000e-01 3.9000000e+00 2.1000000e+00 3.9000000e+00 2.4000000e+00 3.3000000e+00 5.1000000e+00 2.4000000e+00 4.1000000e+00 3.2000000e+00 5.2000000e+00 2.6000000e+00 2.3000000e+00 3.2000000e+00 2.4000000e+00 2.5000000e+00 3.0000000e+00 2.6000000e+00 6.2000000e+00 5.7000000e+00 1.9000000e+00 3.9000000e+00 2.1000000e+00 5.0000000e+00 1.7000000e+00 3.6000000e+00 4.0000000e+00 1.4000000e+00 1.6000000e+00 2.7000000e+00 3.4000000e+00 4.0000000e+00 5.9000000e+00 2.8000000e+00 1.5000000e+00 1.9000000e+00 4.9000000e+00 3.5000000e+00 2.6000000e+00 1.6000000e+00 3.3000000e+00 3.6000000e+00 3.2000000e+00 2.1000000e+00 4.0000000e+00 4.0000000e+00 3.0000000e+00 2.1000000e+00 2.5000000e+00 3.1000000e+00 2.0000000e+00 1.0000000e+00 1.3000000e+00 1.4000000e+00 1.0000000e+00 1.2000000e+00 1.1000000e+00 2.6000000e+00 2.4000000e+00 2.6000000e+00 2.0000000e+00 8.0000000e-01 1.8000000e+00 1.7000000e+00 1.2000000e+00 9.0000000e-01 2.2000000e+00 1.9000000e+00 1.7000000e+00 1.1000000e+00 1.8000000e+00 3.6000000e+00 1.8000000e+00 2.1000000e+00 1.9000000e+00 1.3000000e+00 3.5000000e+00 1.9000000e+00 2.9000000e+00 1.3000000e+00 2.9000000e+00 1.4000000e+00 2.3000000e+00 4.1000000e+00 2.0000000e+00 3.1000000e+00 1.6000000e+00 4.2000000e+00 1.6000000e+00 1.1000000e+00 2.2000000e+00 1.2000000e+00 1.9000000e+00 2.0000000e+00 1.6000000e+00 5.2000000e+00 4.3000000e+00 7.0000000e-01 2.9000000e+00 1.5000000e+00 4.0000000e+00 5.0000000e-01 2.6000000e+00 3.0000000e+00 8.0000000e-01 1.0000000e+00 1.7000000e+00 2.4000000e+00 3.0000000e+00 4.9000000e+00 1.8000000e+00 5.0000000e-01 1.1000000e+00 3.9000000e+00 2.5000000e+00 1.6000000e+00 1.2000000e+00 2.3000000e+00 2.6000000e+00 2.2000000e+00 1.3000000e+00 3.0000000e+00 3.0000000e+00 2.0000000e+00 5.0000000e-01 1.5000000e+00 2.3000000e+00 1.4000000e+00 9.0000000e-01 1.2000000e+00 1.0000000e+00 1.6000000e+00 7.0000000e-01 2.0000000e+00 2.0000000e+00 2.2000000e+00 1.2000000e+00 1.0000000e+00 1.4000000e+00 1.3000000e+00 1.2000000e+00 1.1000000e+00 1.4000000e+00 1.7000000e+00 1.1000000e+00 5.0000000e-01 1.2000000e+00 3.2000000e+00 1.2000000e+00 1.1000000e+00 1.1000000e+00 7.0000000e-01 3.1000000e+00 1.1000000e+00 3.3000000e+00 1.5000000e+00 3.3000000e+00 1.8000000e+00 2.7000000e+00 4.5000000e+00 2.2000000e+00 3.5000000e+00 2.6000000e+00 4.6000000e+00 2.0000000e+00 1.7000000e+00 2.6000000e+00 1.8000000e+00 1.9000000e+00 2.4000000e+00 2.0000000e+00 5.6000000e+00 5.1000000e+00 1.3000000e+00 3.3000000e+00 1.5000000e+00 4.4000000e+00 1.1000000e+00 3.0000000e+00 3.4000000e+00 8.0000000e-01 1.0000000e+00 2.1000000e+00 2.8000000e+00 3.4000000e+00 5.3000000e+00 2.2000000e+00 9.0000000e-01 1.3000000e+00 4.3000000e+00 2.9000000e+00 2.0000000e+00 1.0000000e+00 2.7000000e+00 3.0000000e+00 2.6000000e+00 1.5000000e+00 3.4000000e+00 3.4000000e+00 2.4000000e+00 1.5000000e+00 1.9000000e+00 2.5000000e+00 1.4000000e+00 5.0000000e-01 1.1000000e+00 1.5000000e+00 8.0000000e-01 2.1000000e+00 2.1000000e+00 2.3000000e+00 1.3000000e+00 1.7000000e+00 1.5000000e+00 1.4000000e+00 1.1000000e+00 8.0000000e-01 1.1000000e+00 1.6000000e+00 1.4000000e+00 8.0000000e-01 1.3000000e+00 3.3000000e+00 1.1000000e+00 1.0000000e+00 8.0000000e-01 2.0000000e-01 3.2000000e+00 1.0000000e+00 3.4000000e+00 2.2000000e+00 3.2000000e+00 1.9000000e+00 2.6000000e+00 4.4000000e+00 2.5000000e+00 3.4000000e+00 2.7000000e+00 4.5000000e+00 1.9000000e+00 1.8000000e+00 2.5000000e+00 2.5000000e+00 2.6000000e+00 2.3000000e+00 1.9000000e+00 5.5000000e+00 5.2000000e+00 2.0000000e+00 3.2000000e+00 2.2000000e+00 4.5000000e+00 1.4000000e+00 2.9000000e+00 3.3000000e+00 1.3000000e+00 1.5000000e+00 2.2000000e+00 2.7000000e+00 3.5000000e+00 5.2000000e+00 2.3000000e+00 1.2000000e+00 2.0000000e+00 4.2000000e+00 3.0000000e+00 1.9000000e+00 1.5000000e+00 2.6000000e+00 2.9000000e+00 2.5000000e+00 2.2000000e+00 3.3000000e+00 3.3000000e+00 2.3000000e+00 1.8000000e+00 1.8000000e+00 2.8000000e+00 1.9000000e+00 8.0000000e-01 1.0000000e+00 9.0000000e-01 2.6000000e+00 2.6000000e+00 2.8000000e+00 1.8000000e+00 1.8000000e+00 1.4000000e+00 1.3000000e+00 6.0000000e-01 1.1000000e+00 1.4000000e+00 2.1000000e+00 1.7000000e+00 7.0000000e-01 1.8000000e+00 3.8000000e+00 1.6000000e+00 1.3000000e+00 1.3000000e+00 7.0000000e-01 3.7000000e+00 1.5000000e+00 3.3000000e+00 2.3000000e+00 2.7000000e+00 2.0000000e+00 2.3000000e+00 3.9000000e+00 2.6000000e+00 3.1000000e+00 2.4000000e+00 4.0000000e+00 1.6000000e+00 1.9000000e+00 2.0000000e+00 2.6000000e+00 2.7000000e+00 2.2000000e+00 1.6000000e+00 5.0000000e+00 4.9000000e+00 2.1000000e+00 2.7000000e+00 2.3000000e+00 4.2000000e+00 1.5000000e+00 2.4000000e+00 2.8000000e+00 1.4000000e+00 1.4000000e+00 2.3000000e+00 2.2000000e+00 3.2000000e+00 4.7000000e+00 2.4000000e+00 1.3000000e+00 2.1000000e+00 3.7000000e+00 2.9000000e+00 1.8000000e+00 1.4000000e+00 2.1000000e+00 2.4000000e+00 2.0000000e+00 2.3000000e+00 2.8000000e+00 2.8000000e+00 1.8000000e+00 1.9000000e+00 1.5000000e+00 2.7000000e+00 1.8000000e+00 8.0000000e-01 1.3000000e+00 3.0000000e+00 3.0000000e+00 3.2000000e+00 2.2000000e+00 1.4000000e+00 2.0000000e+00 1.9000000e+00 6.0000000e-01 1.5000000e+00 2.2000000e+00 2.5000000e+00 2.1000000e+00 1.1000000e+00 2.2000000e+00 4.2000000e+00 2.0000000e+00 2.1000000e+00 1.9000000e+00 1.3000000e+00 4.1000000e+00 1.9000000e+00 3.3000000e+00 1.9000000e+00 2.3000000e+00 1.8000000e+00 2.3000000e+00 3.5000000e+00 2.8000000e+00 2.5000000e+00 1.8000000e+00 3.6000000e+00 1.6000000e+00 1.5000000e+00 1.6000000e+00 2.2000000e+00 2.3000000e+00 2.2000000e+00 1.6000000e+00 4.6000000e+00 4.1000000e+00 1.7000000e+00 2.3000000e+00 1.9000000e+00 3.4000000e+00 1.1000000e+00 2.2000000e+00 2.4000000e+00 1.0000000e+00 1.4000000e+00 1.9000000e+00 1.8000000e+00 2.4000000e+00 4.3000000e+00 2.0000000e+00 9.0000000e-01 1.7000000e+00 3.3000000e+00 2.9000000e+00 1.8000000e+00 1.4000000e+00 1.7000000e+00 2.2000000e+00 1.6000000e+00 1.9000000e+00 2.4000000e+00 2.6000000e+00 1.6000000e+00 1.5000000e+00 1.5000000e+00 2.7000000e+00 1.8000000e+00 1.5000000e+00 3.6000000e+00 3.6000000e+00 3.8000000e+00 2.8000000e+00 1.2000000e+00 2.0000000e+00 1.7000000e+00 6.0000000e-01 2.1000000e+00 2.4000000e+00 3.1000000e+00 2.7000000e+00 1.3000000e+00 2.8000000e+00 4.8000000e+00 2.6000000e+00 2.3000000e+00 2.3000000e+00 1.7000000e+00 4.7000000e+00 2.5000000e+00 2.5000000e+00 1.5000000e+00 1.7000000e+00 1.2000000e+00 1.5000000e+00 2.9000000e+00 2.8000000e+00 2.1000000e+00 1.4000000e+00 3.0000000e+00 8.0000000e-01 1.1000000e+00 1.0000000e+00 1.8000000e+00 1.9000000e+00 1.4000000e+00 8.0000000e-01 4.0000000e+00 3.9000000e+00 1.7000000e+00 1.7000000e+00 1.7000000e+00 3.2000000e+00 9.0000000e-01 1.4000000e+00 1.8000000e+00 1.0000000e+00 8.0000000e-01 1.5000000e+00 1.4000000e+00 2.2000000e+00 3.7000000e+00 1.6000000e+00 9.0000000e-01 1.9000000e+00 2.7000000e+00 2.1000000e+00 1.0000000e+00 1.0000000e+00 1.1000000e+00 1.4000000e+00 1.0000000e+00 1.5000000e+00 1.8000000e+00 1.8000000e+00 8.0000000e-01 1.1000000e+00 7.0000000e-01 1.9000000e+00 1.0000000e+00 2.1000000e+00 2.1000000e+00 2.3000000e+00 1.3000000e+00 9.0000000e-01 7.0000000e-01 6.0000000e-01 1.1000000e+00 1.2000000e+00 1.1000000e+00 1.6000000e+00 1.2000000e+00 4.0000000e-01 1.3000000e+00 3.3000000e+00 1.1000000e+00 1.0000000e+00 8.0000000e-01 6.0000000e-01 3.2000000e+00 1.0000000e+00 3.2000000e+00 1.4000000e+00 3.2000000e+00 1.7000000e+00 2.6000000e+00 4.4000000e+00 1.7000000e+00 3.4000000e+00 2.7000000e+00 4.5000000e+00 1.9000000e+00 1.8000000e+00 2.5000000e+00 1.7000000e+00 1.8000000e+00 2.3000000e+00 1.9000000e+00 5.5000000e+00 5.2000000e+00 1.2000000e+00 3.2000000e+00 1.4000000e+00 4.5000000e+00 1.2000000e+00 2.9000000e+00 3.3000000e+00 9.0000000e-01 9.0000000e-01 2.2000000e+00 2.7000000e+00 3.5000000e+00 5.2000000e+00 2.3000000e+00 1.0000000e+00 1.6000000e+00 4.2000000e+00 2.8000000e+00 1.9000000e+00 7.0000000e-01 2.6000000e+00 2.9000000e+00 2.5000000e+00 1.4000000e+00 3.3000000e+00 3.3000000e+00 2.3000000e+00 1.6000000e+00 1.8000000e+00 2.4000000e+00 1.1000000e+00 8.0000000e-01 6.0000000e-01 8.0000000e-01 2.6000000e+00 2.2000000e+00 2.7000000e+00 3.2000000e+00 2.1000000e+00 1.4000000e+00 1.1000000e+00 1.3000000e+00 2.3000000e+00 8.0000000e-01 1.2000000e+00 1.2000000e+00 1.3000000e+00 1.3000000e+00 1.9000000e+00 1.3000000e+00 1.1000000e+00 5.3000000e+00 2.7000000e+00 5.3000000e+00 3.8000000e+00 4.7000000e+00 6.5000000e+00 2.6000000e+00 5.5000000e+00 4.2000000e+00 6.6000000e+00 4.0000000e+00 3.5000000e+00 4.6000000e+00 2.6000000e+00 3.3000000e+00 4.4000000e+00 4.0000000e+00 7.6000000e+00 6.7000000e+00 2.7000000e+00 5.3000000e+00 2.7000000e+00 6.4000000e+00 2.9000000e+00 5.0000000e+00 5.4000000e+00 2.8000000e+00 3.0000000e+00 4.1000000e+00 4.8000000e+00 5.4000000e+00 7.3000000e+00 4.2000000e+00 2.9000000e+00 2.9000000e+00 6.3000000e+00 4.9000000e+00 4.0000000e+00 2.8000000e+00 4.7000000e+00 5.0000000e+00 4.6000000e+00 2.7000000e+00 5.4000000e+00 5.4000000e+00 4.4000000e+00 3.1000000e+00 3.9000000e+00 4.5000000e+00 3.0000000e+00 2.0000000e-01 8.0000000e-01 2.6000000e+00 1.8000000e+00 2.7000000e+00 3.2000000e+00 1.7000000e+00 1.2000000e+00 5.0000000e-01 9.0000000e-01 2.3000000e+00 8.0000000e-01 1.2000000e+00 1.0000000e+00 1.3000000e+00 1.3000000e+00 1.9000000e+00 1.3000000e+00 1.1000000e+00 5.3000000e+00 2.7000000e+00 5.3000000e+00 3.8000000e+00 4.7000000e+00 6.5000000e+00 2.0000000e+00 5.5000000e+00 4.0000000e+00 6.6000000e+00 4.0000000e+00 3.5000000e+00 4.6000000e+00 2.4000000e+00 3.3000000e+00 4.4000000e+00 4.0000000e+00 7.6000000e+00 6.7000000e+00 2.3000000e+00 5.3000000e+00 2.5000000e+00 6.4000000e+00 2.9000000e+00 5.0000000e+00 5.4000000e+00 2.8000000e+00 3.0000000e+00 4.1000000e+00 4.8000000e+00 5.4000000e+00 7.3000000e+00 4.2000000e+00 2.9000000e+00 2.9000000e+00 6.3000000e+00 4.9000000e+00 4.0000000e+00 2.8000000e+00 4.7000000e+00 5.0000000e+00 4.6000000e+00 2.7000000e+00 5.4000000e+00 5.4000000e+00 4.4000000e+00 2.9000000e+00 3.9000000e+00 4.5000000e+00 3.0000000e+00 1.0000000e+00 2.8000000e+00 2.0000000e+00 2.9000000e+00 3.4000000e+00 1.9000000e+00 1.4000000e+00 7.0000000e-01 1.1000000e+00 2.5000000e+00 1.0000000e+00 1.0000000e+00 1.2000000e+00 1.5000000e+00 1.5000000e+00 2.1000000e+00 1.3000000e+00 1.3000000e+00 5.5000000e+00 2.9000000e+00 5.5000000e+00 4.0000000e+00 4.9000000e+00 6.7000000e+00 2.2000000e+00 5.7000000e+00 4.2000000e+00 6.8000000e+00 4.2000000e+00 3.7000000e+00 4.8000000e+00 2.6000000e+00 3.5000000e+00 4.6000000e+00 4.2000000e+00 7.8000000e+00 6.9000000e+00 2.5000000e+00 5.5000000e+00 2.7000000e+00 6.6000000e+00 3.1000000e+00 5.2000000e+00 5.6000000e+00 3.0000000e+00 3.2000000e+00 4.3000000e+00 5.0000000e+00 5.6000000e+00 7.5000000e+00 4.4000000e+00 3.1000000e+00 3.1000000e+00 6.5000000e+00 5.1000000e+00 4.2000000e+00 3.0000000e+00 4.9000000e+00 5.2000000e+00 4.8000000e+00 2.9000000e+00 5.6000000e+00 5.6000000e+00 4.6000000e+00 3.1000000e+00 4.1000000e+00 4.7000000e+00 3.2000000e+00 1.8000000e+00 1.6000000e+00 1.9000000e+00 2.4000000e+00 1.5000000e+00 8.0000000e-01 7.0000000e-01 9.0000000e-01 1.5000000e+00 2.0000000e-01 2.0000000e+00 6.0000000e-01 7.0000000e-01 7.0000000e-01 1.1000000e+00 1.9000000e+00 5.0000000e-01 4.5000000e+00 1.9000000e+00 4.5000000e+00 3.0000000e+00 3.9000000e+00 5.7000000e+00 2.2000000e+00 4.7000000e+00 3.6000000e+00 5.8000000e+00 3.2000000e+00 2.7000000e+00 3.8000000e+00 2.2000000e+00 2.5000000e+00 3.6000000e+00 3.2000000e+00 6.8000000e+00 6.1000000e+00 2.1000000e+00 4.5000000e+00 2.1000000e+00 5.6000000e+00 2.1000000e+00 4.2000000e+00 4.6000000e+00 2.0000000e+00 2.2000000e+00 3.3000000e+00 4.0000000e+00 4.6000000e+00 6.5000000e+00 3.4000000e+00 2.1000000e+00 2.3000000e+00 5.5000000e+00 4.1000000e+00 3.2000000e+00 2.0000000e+00 3.9000000e+00 4.2000000e+00 3.8000000e+00 1.9000000e+00 4.6000000e+00 4.6000000e+00 3.6000000e+00 2.5000000e+00 3.1000000e+00 3.7000000e+00 2.2000000e+00 1.6000000e+00 1.3000000e+00 1.6000000e+00 1.7000000e+00 2.0000000e+00 2.1000000e+00 1.7000000e+00 1.1000000e+00 1.8000000e+00 3.8000000e+00 1.6000000e+00 1.9000000e+00 1.7000000e+00 1.5000000e+00 3.7000000e+00 1.7000000e+00 2.7000000e+00 5.0000000e-01 2.7000000e+00 1.2000000e+00 2.1000000e+00 3.9000000e+00 2.0000000e+00 2.9000000e+00 1.8000000e+00 4.0000000e+00 1.4000000e+00 9.0000000e-01 2.0000000e+00 1.0000000e+00 1.1000000e+00 1.8000000e+00 1.4000000e+00 5.0000000e+00 4.3000000e+00 7.0000000e-01 2.7000000e+00 1.1000000e+00 3.8000000e+00 7.0000000e-01 2.4000000e+00 2.8000000e+00 8.0000000e-01 8.0000000e-01 1.5000000e+00 2.2000000e+00 2.8000000e+00 4.7000000e+00 1.6000000e+00 5.0000000e-01 9.0000000e-01 3.7000000e+00 2.3000000e+00 1.4000000e+00 8.0000000e-01 2.1000000e+00 2.4000000e+00 2.0000000e+00 5.0000000e-01 2.8000000e+00 2.8000000e+00 1.8000000e+00 9.0000000e-01 1.3000000e+00 1.9000000e+00 6.0000000e-01 1.1000000e+00 1.6000000e+00 1.9000000e+00 8.0000000e-01 1.3000000e+00 9.0000000e-01 9.0000000e-01 1.6000000e+00 2.8000000e+00 1.0000000e+00 9.0000000e-01 9.0000000e-01 1.3000000e+00 2.7000000e+00 1.1000000e+00 3.7000000e+00 1.7000000e+00 3.7000000e+00 2.4000000e+00 3.1000000e+00 4.9000000e+00 1.2000000e+00 4.1000000e+00 3.4000000e+00 5.0000000e+00 2.4000000e+00 2.5000000e+00 3.0000000e+00 1.8000000e+00 2.1000000e+00 2.8000000e+00 2.4000000e+00 6.0000000e+00 5.9000000e+00 1.9000000e+00 3.7000000e+00 1.3000000e+00 5.2000000e+00 1.9000000e+00 3.4000000e+00 3.8000000e+00 1.6000000e+00 1.4000000e+00 2.9000000e+00 3.2000000e+00 4.2000000e+00 5.7000000e+00 3.0000000e+00 1.7000000e+00 2.3000000e+00 4.7000000e+00 3.3000000e+00 2.4000000e+00 1.2000000e+00 3.1000000e+00 3.4000000e+00 3.0000000e+00 1.7000000e+00 3.8000000e+00 3.8000000e+00 2.8000000e+00 2.3000000e+00 2.3000000e+00 2.9000000e+00 1.4000000e+00 1.3000000e+00 1.8000000e+00 1.5000000e+00 2.2000000e+00 1.8000000e+00 8.0000000e-01 1.9000000e+00 3.9000000e+00 1.7000000e+00 1.4000000e+00 1.4000000e+00 1.2000000e+00 3.8000000e+00 1.6000000e+00 2.8000000e+00 1.8000000e+00 3.4000000e+00 2.1000000e+00 2.8000000e+00 4.6000000e+00 2.1000000e+00 3.8000000e+00 3.1000000e+00 3.9000000e+00 1.7000000e+00 2.2000000e+00 2.7000000e+00 2.1000000e+00 2.2000000e+00 2.1000000e+00 2.1000000e+00 4.9000000e+00 5.6000000e+00 1.8000000e+00 3.0000000e+00 1.8000000e+00 4.9000000e+00 1.6000000e+00 2.5000000e+00 3.1000000e+00 1.3000000e+00 1.1000000e+00 2.6000000e+00 2.9000000e+00 3.9000000e+00 4.6000000e+00 2.7000000e+00 1.6000000e+00 2.2000000e+00 4.4000000e+00 2.2000000e+00 1.9000000e+00 9.0000000e-01 2.6000000e+00 2.9000000e+00 2.5000000e+00 1.8000000e+00 3.1000000e+00 2.9000000e+00 2.5000000e+00 2.0000000e+00 2.0000000e+00 1.8000000e+00 1.3000000e+00 1.7000000e+00 2.0000000e+00 2.7000000e+00 2.3000000e+00 9.0000000e-01 2.4000000e+00 4.4000000e+00 2.2000000e+00 1.9000000e+00 1.9000000e+00 1.3000000e+00 4.3000000e+00 2.1000000e+00 2.9000000e+00 2.1000000e+00 2.3000000e+00 1.8000000e+00 2.1000000e+00 3.5000000e+00 2.8000000e+00 2.7000000e+00 2.0000000e+00 3.4000000e+00 1.2000000e+00 1.7000000e+00 1.6000000e+00 2.4000000e+00 2.5000000e+00 1.8000000e+00 1.4000000e+00 4.4000000e+00 4.5000000e+00 1.9000000e+00 2.1000000e+00 2.1000000e+00 3.8000000e+00 1.3000000e+00 1.8000000e+00 2.2000000e+00 1.2000000e+00 1.2000000e+00 2.1000000e+00 1.8000000e+00 2.8000000e+00 4.1000000e+00 2.2000000e+00 1.1000000e+00 2.1000000e+00 3.3000000e+00 2.5000000e+00 1.4000000e+00 1.2000000e+00 1.5000000e+00 1.8000000e+00 1.4000000e+00 2.1000000e+00 2.2000000e+00 2.2000000e+00 1.4000000e+00 1.7000000e+00 1.3000000e+00 2.3000000e+00 1.6000000e+00 1.7000000e+00 1.4000000e+00 1.2000000e+00 1.2000000e+00 1.3000000e+00 2.7000000e+00 1.3000000e+00 1.6000000e+00 1.4000000e+00 8.0000000e-01 3.0000000e+00 1.4000000e+00 3.8000000e+00 2.2000000e+00 3.8000000e+00 2.3000000e+00 3.2000000e+00 5.0000000e+00 2.1000000e+00 4.0000000e+00 2.5000000e+00 5.1000000e+00 2.5000000e+00 2.0000000e+00 3.1000000e+00 2.1000000e+00 2.8000000e+00 2.9000000e+00 2.5000000e+00 6.1000000e+00 5.2000000e+00 1.2000000e+00 3.8000000e+00 2.4000000e+00 4.9000000e+00 1.4000000e+00 3.5000000e+00 3.9000000e+00 1.5000000e+00 1.9000000e+00 2.6000000e+00 3.3000000e+00 3.9000000e+00 5.8000000e+00 2.7000000e+00 1.4000000e+00 1.8000000e+00 4.8000000e+00 3.4000000e+00 2.5000000e+00 1.9000000e+00 3.2000000e+00 3.5000000e+00 3.1000000e+00 2.2000000e+00 3.9000000e+00 3.9000000e+00 2.9000000e+00 1.4000000e+00 2.4000000e+00 3.2000000e+00 2.3000000e+00 7.0000000e-01 9.0000000e-01 1.1000000e+00 8.0000000e-01 2.4000000e+00 4.0000000e-01 3.0000000e-01 3.0000000e-01 9.0000000e-01 2.3000000e+00 3.0000000e-01 4.1000000e+00 2.1000000e+00 4.1000000e+00 2.8000000e+00 3.5000000e+00 5.3000000e+00 2.0000000e+00 4.5000000e+00 3.8000000e+00 5.4000000e+00 2.8000000e+00 2.9000000e+00 3.4000000e+00 2.2000000e+00 2.5000000e+00 3.2000000e+00 2.8000000e+00 6.4000000e+00 6.3000000e+00 2.3000000e+00 4.1000000e+00 1.7000000e+00 5.6000000e+00 2.3000000e+00 3.8000000e+00 4.2000000e+00 2.0000000e+00 1.8000000e+00 3.3000000e+00 3.6000000e+00 4.6000000e+00 6.1000000e+00 3.4000000e+00 2.1000000e+00 2.5000000e+00 5.1000000e+00 3.7000000e+00 2.8000000e+00 1.6000000e+00 3.5000000e+00 3.8000000e+00 3.4000000e+00 2.1000000e+00 4.2000000e+00 4.2000000e+00 3.2000000e+00 2.7000000e+00 2.7000000e+00 3.3000000e+00 1.8000000e+00 6.0000000e-01 1.8000000e+00 5.0000000e-01 1.7000000e+00 5.0000000e-01 1.0000000e+00 8.0000000e-01 1.4000000e+00 1.6000000e+00 6.0000000e-01 4.8000000e+00 2.2000000e+00 4.8000000e+00 3.3000000e+00 4.2000000e+00 6.0000000e+00 1.5000000e+00 5.0000000e+00 3.5000000e+00 6.1000000e+00 3.5000000e+00 3.0000000e+00 4.1000000e+00 1.9000000e+00 2.8000000e+00 3.9000000e+00 3.5000000e+00 7.1000000e+00 6.2000000e+00 2.0000000e+00 4.8000000e+00 2.0000000e+00 5.9000000e+00 2.4000000e+00 4.5000000e+00 4.9000000e+00 2.3000000e+00 2.5000000e+00 3.6000000e+00 4.3000000e+00 4.9000000e+00 6.8000000e+00 3.7000000e+00 2.4000000e+00 2.4000000e+00 5.8000000e+00 4.4000000e+00 3.5000000e+00 2.3000000e+00 4.2000000e+00 4.5000000e+00 4.1000000e+00 2.2000000e+00 4.9000000e+00 4.9000000e+00 3.9000000e+00 2.4000000e+00 3.4000000e+00 4.0000000e+00 2.5000000e+00 1.4000000e+00 7.0000000e-01 2.1000000e+00 5.0000000e-01 8.0000000e-01 8.0000000e-01 1.2000000e+00 2.0000000e+00 8.0000000e-01 4.4000000e+00 1.8000000e+00 4.4000000e+00 2.9000000e+00 3.8000000e+00 5.6000000e+00 1.3000000e+00 4.6000000e+00 3.3000000e+00 5.7000000e+00 3.1000000e+00 2.6000000e+00 3.7000000e+00 1.7000000e+00 2.4000000e+00 3.5000000e+00 3.1000000e+00 6.7000000e+00 5.8000000e+00 1.8000000e+00 4.4000000e+00 1.6000000e+00 5.5000000e+00 2.0000000e+00 4.1000000e+00 4.5000000e+00 1.9000000e+00 2.1000000e+00 3.2000000e+00 3.9000000e+00 4.5000000e+00 6.4000000e+00 3.3000000e+00 2.0000000e+00 2.0000000e+00 5.4000000e+00 4.0000000e+00 3.1000000e+00 1.9000000e+00 3.8000000e+00 4.1000000e+00 3.7000000e+00 1.8000000e+00 4.5000000e+00 4.5000000e+00 3.5000000e+00 2.2000000e+00 3.0000000e+00 3.6000000e+00 2.1000000e+00 1.5000000e+00 3.5000000e+00 1.3000000e+00 1.0000000e+00 1.0000000e+00 6.0000000e-01 3.4000000e+00 1.2000000e+00 3.0000000e+00 1.6000000e+00 3.0000000e+00 1.7000000e+00 2.4000000e+00 4.2000000e+00 2.1000000e+00 3.4000000e+00 2.7000000e+00 4.3000000e+00 1.7000000e+00 1.8000000e+00 2.3000000e+00 1.9000000e+00 2.0000000e+00 2.1000000e+00 1.7000000e+00 5.3000000e+00 5.2000000e+00 1.4000000e+00 3.0000000e+00 1.6000000e+00 4.5000000e+00 1.2000000e+00 2.7000000e+00 3.1000000e+00 9.0000000e-01 7.0000000e-01 2.2000000e+00 2.5000000e+00 3.5000000e+00 5.0000000e+00 2.3000000e+00 1.0000000e+00 1.4000000e+00 4.0000000e+00 2.6000000e+00 1.7000000e+00 7.0000000e-01 2.4000000e+00 2.7000000e+00 2.3000000e+00 1.6000000e+00 3.1000000e+00 3.1000000e+00 2.1000000e+00 1.6000000e+00 1.6000000e+00 2.2000000e+00 1.1000000e+00 2.0000000e+00 6.0000000e-01 7.0000000e-01 7.0000000e-01 1.1000000e+00 1.9000000e+00 5.0000000e-01 4.5000000e+00 1.9000000e+00 4.5000000e+00 3.0000000e+00 3.9000000e+00 5.7000000e+00 2.0000000e+00 4.7000000e+00 3.4000000e+00 5.8000000e+00 3.2000000e+00 2.7000000e+00 3.8000000e+00 2.0000000e+00 2.5000000e+00 3.6000000e+00 3.2000000e+00 6.8000000e+00 5.9000000e+00 1.9000000e+00 4.5000000e+00 2.1000000e+00 5.6000000e+00 2.1000000e+00 4.2000000e+00 4.6000000e+00 2.0000000e+00 2.2000000e+00 3.3000000e+00 4.0000000e+00 4.6000000e+00 6.5000000e+00 3.4000000e+00 2.1000000e+00 2.1000000e+00 5.5000000e+00 4.1000000e+00 3.2000000e+00 2.0000000e+00 3.9000000e+00 4.2000000e+00 3.8000000e+00 1.9000000e+00 4.6000000e+00 4.6000000e+00 3.6000000e+00 2.3000000e+00 3.1000000e+00 3.7000000e+00 2.2000000e+00 2.2000000e+00 2.5000000e+00 2.5000000e+00 3.1000000e+00 7.0000000e-01 2.3000000e+00 6.5000000e+00 3.9000000e+00 6.5000000e+00 5.0000000e+00 5.9000000e+00 7.7000000e+00 2.2000000e+00 6.7000000e+00 5.2000000e+00 7.8000000e+00 5.2000000e+00 4.7000000e+00 5.8000000e+00 3.6000000e+00 4.5000000e+00 5.6000000e+00 5.2000000e+00 8.8000000e+00 7.9000000e+00 3.3000000e+00 6.5000000e+00 3.7000000e+00 7.6000000e+00 4.1000000e+00 6.2000000e+00 6.6000000e+00 4.0000000e+00 4.2000000e+00 5.3000000e+00 6.0000000e+00 6.6000000e+00 8.5000000e+00 5.4000000e+00 4.1000000e+00 4.1000000e+00 7.5000000e+00 6.1000000e+00 5.2000000e+00 4.0000000e+00 5.9000000e+00 6.2000000e+00 5.8000000e+00 3.9000000e+00 6.6000000e+00 6.6000000e+00 5.6000000e+00 4.1000000e+00 5.1000000e+00 5.7000000e+00 4.2000000e+00 5.0000000e-01 3.0000000e-01 9.0000000e-01 2.1000000e+00 3.0000000e-01 4.3000000e+00 1.7000000e+00 4.3000000e+00 2.8000000e+00 3.7000000e+00 5.5000000e+00 1.6000000e+00 4.5000000e+00 3.4000000e+00 5.6000000e+00 3.0000000e+00 2.5000000e+00 3.6000000e+00 1.8000000e+00 2.3000000e+00 3.4000000e+00 3.0000000e+00 6.6000000e+00 5.9000000e+00 1.9000000e+00 4.3000000e+00 1.5000000e+00 5.4000000e+00 1.9000000e+00 4.0000000e+00 4.4000000e+00 1.8000000e+00 2.0000000e+00 3.1000000e+00 3.8000000e+00 4.4000000e+00 6.3000000e+00 3.2000000e+00 1.9000000e+00 2.1000000e+00 5.3000000e+00 3.9000000e+00 3.0000000e+00 1.8000000e+00 3.7000000e+00 4.0000000e+00 3.6000000e+00 1.7000000e+00 4.4000000e+00 4.4000000e+00 3.4000000e+00 2.3000000e+00 2.9000000e+00 3.5000000e+00 2.0000000e+00 2.0000000e-01 8.0000000e-01 2.4000000e+00 4.0000000e-01 4.0000000e+00 2.0000000e+00 4.0000000e+00 2.7000000e+00 3.4000000e+00 5.2000000e+00 2.1000000e+00 4.4000000e+00 3.7000000e+00 5.3000000e+00 2.7000000e+00 2.8000000e+00 3.3000000e+00 2.1000000e+00 2.4000000e+00 3.1000000e+00 2.7000000e+00 6.3000000e+00 6.2000000e+00 2.2000000e+00 4.0000000e+00 1.8000000e+00 5.5000000e+00 2.2000000e+00 3.7000000e+00 4.1000000e+00 1.9000000e+00 1.7000000e+00 3.2000000e+00 3.5000000e+00 4.5000000e+00 6.0000000e+00 3.3000000e+00 2.0000000e+00 2.4000000e+00 5.0000000e+00 3.6000000e+00 2.7000000e+00 1.5000000e+00 3.4000000e+00 3.7000000e+00 3.3000000e+00 2.0000000e+00 4.1000000e+00 4.1000000e+00 3.1000000e+00 2.6000000e+00 2.6000000e+00 3.2000000e+00 1.7000000e+00 6.0000000e-01 2.4000000e+00 2.0000000e-01 4.0000000e+00 1.8000000e+00 4.0000000e+00 2.5000000e+00 3.4000000e+00 5.2000000e+00 1.9000000e+00 4.2000000e+00 3.5000000e+00 5.3000000e+00 2.7000000e+00 2.6000000e+00 3.3000000e+00 1.9000000e+00 2.2000000e+00 3.1000000e+00 2.7000000e+00 6.3000000e+00 6.0000000e+00 2.0000000e+00 4.0000000e+00 1.6000000e+00 5.3000000e+00 2.0000000e+00 3.7000000e+00 4.1000000e+00 1.7000000e+00 1.7000000e+00 3.0000000e+00 3.5000000e+00 4.3000000e+00 6.0000000e+00 3.1000000e+00 1.8000000e+00 2.2000000e+00 5.0000000e+00 3.6000000e+00 2.7000000e+00 1.5000000e+00 3.4000000e+00 3.7000000e+00 3.3000000e+00 1.8000000e+00 4.1000000e+00 4.1000000e+00 3.1000000e+00 2.4000000e+00 2.6000000e+00 3.2000000e+00 1.7000000e+00 3.0000000e+00 8.0000000e-01 3.4000000e+00 2.0000000e+00 3.4000000e+00 1.9000000e+00 2.8000000e+00 4.6000000e+00 2.3000000e+00 3.6000000e+00 2.9000000e+00 4.7000000e+00 2.1000000e+00 2.0000000e+00 2.7000000e+00 2.3000000e+00 2.4000000e+00 2.5000000e+00 2.1000000e+00 5.7000000e+00 5.4000000e+00 1.8000000e+00 3.4000000e+00 2.0000000e+00 4.7000000e+00 1.4000000e+00 3.1000000e+00 3.5000000e+00 1.1000000e+00 1.3000000e+00 2.4000000e+00 2.9000000e+00 3.7000000e+00 5.4000000e+00 2.5000000e+00 1.2000000e+00 1.8000000e+00 4.4000000e+00 3.0000000e+00 2.1000000e+00 1.3000000e+00 2.8000000e+00 3.1000000e+00 2.7000000e+00 2.0000000e+00 3.5000000e+00 3.5000000e+00 2.5000000e+00 1.8000000e+00 2.0000000e+00 2.6000000e+00 1.7000000e+00 2.2000000e+00 6.4000000e+00 3.8000000e+00 6.4000000e+00 4.9000000e+00 5.8000000e+00 7.6000000e+00 2.3000000e+00 6.6000000e+00 5.1000000e+00 7.7000000e+00 5.1000000e+00 4.6000000e+00 5.7000000e+00 3.5000000e+00 4.4000000e+00 5.5000000e+00 5.1000000e+00 8.7000000e+00 7.8000000e+00 3.6000000e+00 6.4000000e+00 3.6000000e+00 7.5000000e+00 4.0000000e+00 6.1000000e+00 6.5000000e+00 3.9000000e+00 4.1000000e+00 5.2000000e+00 5.9000000e+00 6.5000000e+00 8.4000000e+00 5.3000000e+00 4.0000000e+00 4.0000000e+00 7.4000000e+00 6.0000000e+00 5.1000000e+00 3.9000000e+00 5.8000000e+00 6.1000000e+00 5.7000000e+00 3.8000000e+00 6.5000000e+00 6.5000000e+00 5.5000000e+00 4.0000000e+00 5.0000000e+00 5.6000000e+00 4.1000000e+00 4.2000000e+00 1.8000000e+00 4.2000000e+00 2.7000000e+00 3.6000000e+00 5.4000000e+00 1.9000000e+00 4.4000000e+00 3.5000000e+00 5.5000000e+00 2.9000000e+00 2.6000000e+00 3.5000000e+00 1.9000000e+00 2.2000000e+00 3.3000000e+00 2.9000000e+00 6.5000000e+00 6.0000000e+00 2.0000000e+00 4.2000000e+00 1.6000000e+00 5.3000000e+00 2.0000000e+00 3.9000000e+00 4.3000000e+00 1.7000000e+00 1.9000000e+00 3.0000000e+00 3.7000000e+00 4.3000000e+00 6.2000000e+00 3.1000000e+00 1.8000000e+00 2.2000000e+00 5.2000000e+00 3.8000000e+00 2.9000000e+00 1.7000000e+00 3.6000000e+00 3.9000000e+00 3.5000000e+00 1.8000000e+00 4.3000000e+00 4.3000000e+00 3.3000000e+00 2.4000000e+00 2.8000000e+00 3.4000000e+00 1.9000000e+00 2.6000000e+00 1.6000000e+00 1.5000000e+00 1.0000000e+00 2.6000000e+00 4.5000000e+00 2.4000000e+00 2.1000000e+00 1.3000000e+00 1.7000000e+00 2.0000000e+00 1.7000000e+00 2.9000000e+00 2.0000000e+00 1.1000000e+00 1.7000000e+00 2.9000000e+00 3.2000000e+00 3.4000000e+00 1.2000000e+00 2.8000000e+00 3.1000000e+00 2.4000000e+00 1.1000000e+00 1.7000000e+00 2.5000000e+00 2.3000000e+00 1.4000000e+00 2.3000000e+00 2.3000000e+00 3.0000000e+00 1.3000000e+00 2.4000000e+00 2.4000000e+00 2.0000000e+00 6.0000000e-01 1.5000000e+00 2.5000000e+00 1.8000000e+00 1.1000000e+00 1.9000000e+00 2.6000000e+00 9.0000000e-01 7.0000000e-01 1.7000000e+00 2.4000000e+00 1.8000000e+00 1.0000000e+00 2.3000000e+00 2.6000000e+00 1.3000000e+00 2.0000000e+00 3.8000000e+00 1.9000000e+00 3.0000000e+00 1.9000000e+00 3.9000000e+00 1.3000000e+00 8.0000000e-01 1.9000000e+00 5.0000000e-01 6.0000000e-01 1.7000000e+00 1.5000000e+00 4.9000000e+00 4.2000000e+00 1.2000000e+00 2.6000000e+00 6.0000000e-01 3.7000000e+00 8.0000000e-01 2.3000000e+00 2.9000000e+00 9.0000000e-01 9.0000000e-01 1.4000000e+00 2.7000000e+00 2.7000000e+00 4.6000000e+00 1.5000000e+00 1.0000000e+00 1.4000000e+00 3.6000000e+00 2.2000000e+00 1.5000000e+00 9.0000000e-01 2.0000000e+00 2.3000000e+00 1.9000000e+00 0.0000000e+00 2.7000000e+00 2.7000000e+00 1.7000000e+00 8.0000000e-01 1.2000000e+00 1.8000000e+00 5.0000000e-01 1.5000000e+00 8.0000000e-01 1.2000000e+00 4.5000000e+00 1.0000000e+00 1.3000000e+00 1.3000000e+00 1.7000000e+00 1.8000000e+00 7.0000000e-01 2.9000000e+00 2.6000000e+00 1.7000000e+00 1.3000000e+00 2.3000000e+00 2.2000000e+00 3.4000000e+00 8.0000000e-01 2.8000000e+00 1.7000000e+00 2.4000000e+00 9.0000000e-01 7.0000000e-01 2.5000000e+00 2.3000000e+00 1.2000000e+00 7.0000000e-01 9.0000000e-01 2.2000000e+00 1.3000000e+00 2.4000000e+00 2.4000000e+00 1.0000000e+00 1.8000000e+00 1.5000000e+00 2.5000000e+00 8.0000000e-01 1.1000000e+00 1.3000000e+00 2.6000000e+00 7.0000000e-01 1.3000000e+00 1.3000000e+00 2.4000000e+00 1.4000000e+00 2.0000000e+00 2.3000000e+00 9.0000000e-01 2.7000000e+00 3.0000000e+00 1.7000000e+00 1.0000000e+00 2.8000000e+00 1.2000000e+00 7.0000000e-01 1.0000000e+00 1.8000000e+00 1.7000000e+00 1.2000000e+00 4.0000000e-01 3.8000000e+00 3.5000000e+00 1.9000000e+00 1.5000000e+00 1.7000000e+00 2.8000000e+00 9.0000000e-01 1.2000000e+00 1.6000000e+00 1.0000000e+00 1.0000000e+00 5.0000000e-01 1.4000000e+00 1.8000000e+00 3.5000000e+00 6.0000000e-01 9.0000000e-01 9.0000000e-01 2.5000000e+00 1.1000000e+00 4.0000000e-01 1.2000000e+00 1.3000000e+00 1.2000000e+00 1.8000000e+00 1.3000000e+00 1.6000000e+00 1.6000000e+00 1.4000000e+00 1.1000000e+00 9.0000000e-01 1.3000000e+00 1.0000000e+00 2.0000000e+00 3.9000000e+00 1.8000000e+00 1.1000000e+00 1.9000000e+00 1.1000000e+00 1.2000000e+00 7.0000000e-01 2.3000000e+00 1.8000000e+00 9.0000000e-01 7.0000000e-01 2.9000000e+00 2.8000000e+00 2.8000000e+00 8.0000000e-01 2.2000000e+00 2.5000000e+00 1.8000000e+00 7.0000000e-01 1.5000000e+00 1.9000000e+00 1.7000000e+00 6.0000000e-01 1.3000000e+00 1.7000000e+00 3.0000000e+00 5.0000000e-01 1.8000000e+00 1.8000000e+00 1.6000000e+00 1.0000000e+00 9.0000000e-01 1.9000000e+00 1.0000000e+00 7.0000000e-01 1.3000000e+00 2.0000000e+00 7.0000000e-01 9.0000000e-01 9.0000000e-01 1.8000000e+00 8.0000000e-01 1.2000000e+00 1.7000000e+00 5.7000000e+00 1.0000000e+00 2.5000000e+00 1.9000000e+00 2.9000000e+00 3.0000000e+00 1.9000000e+00 4.1000000e+00 3.8000000e+00 2.9000000e+00 2.5000000e+00 1.1000000e+00 1.0000000e+00 4.6000000e+00 2.0000000e+00 4.0000000e+00 5.0000000e-01 3.6000000e+00 2.1000000e+00 1.5000000e+00 3.7000000e+00 3.5000000e+00 2.4000000e+00 1.7000000e+00 1.1000000e+00 1.4000000e+00 2.5000000e+00 3.6000000e+00 3.6000000e+00 8.0000000e-01 3.0000000e+00 2.7000000e+00 3.7000000e+00 2.0000000e+00 2.3000000e+00 2.5000000e+00 3.8000000e+00 1.9000000e+00 2.5000000e+00 2.5000000e+00 3.6000000e+00 2.6000000e+00 3.2000000e+00 3.5000000e+00 4.7000000e+00 3.2000000e+00 5.8000000e+00 3.2000000e+00 2.7000000e+00 3.8000000e+00 1.6000000e+00 2.5000000e+00 3.6000000e+00 3.2000000e+00 6.8000000e+00 5.9000000e+00 2.1000000e+00 4.5000000e+00 1.7000000e+00 5.6000000e+00 2.1000000e+00 4.2000000e+00 4.6000000e+00 2.0000000e+00 2.2000000e+00 3.3000000e+00 4.2000000e+00 4.6000000e+00 6.5000000e+00 3.4000000e+00 2.5000000e+00 2.7000000e+00 5.5000000e+00 4.1000000e+00 3.2000000e+00 2.0000000e+00 3.9000000e+00 4.2000000e+00 3.8000000e+00 1.9000000e+00 4.6000000e+00 4.6000000e+00 3.6000000e+00 2.1000000e+00 3.1000000e+00 3.7000000e+00 2.2000000e+00 1.5000000e+00 1.7000000e+00 2.5000000e+00 2.2000000e+00 1.7000000e+00 3.5000000e+00 3.4000000e+00 2.7000000e+00 1.7000000e+00 2.1000000e+00 1.8000000e+00 3.6000000e+00 1.8000000e+00 3.4000000e+00 1.1000000e+00 2.6000000e+00 1.9000000e+00 7.0000000e-01 2.7000000e+00 2.7000000e+00 2.0000000e+00 9.0000000e-01 5.0000000e-01 1.8000000e+00 2.1000000e+00 2.6000000e+00 2.6000000e+00 1.2000000e+00 2.8000000e+00 1.9000000e+00 2.9000000e+00 1.8000000e+00 2.1000000e+00 2.3000000e+00 3.0000000e+00 1.7000000e+00 2.3000000e+00 2.3000000e+00 2.8000000e+00 2.2000000e+00 3.0000000e+00 2.7000000e+00 2.6000000e+00 1.8000000e+00 1.1000000e+00 1.2000000e+00 2.0000000e+00 2.5000000e+00 2.0000000e+00 1.0000000e+00 3.6000000e+00 2.7000000e+00 2.1000000e+00 1.5000000e+00 2.5000000e+00 2.4000000e+00 1.5000000e+00 1.2000000e+00 1.4000000e+00 1.8000000e+00 2.0000000e+00 1.1000000e+00 1.2000000e+00 1.4000000e+00 3.3000000e+00 1.2000000e+00 1.7000000e+00 1.3000000e+00 2.3000000e+00 2.1000000e+00 1.2000000e+00 2.2000000e+00 1.5000000e+00 1.4000000e+00 2.0000000e+00 1.9000000e+00 1.4000000e+00 1.6000000e+00 1.6000000e+00 1.3000000e+00 1.5000000e+00 2.3000000e+00 2.0000000e+00 2.6000000e+00 3.1000000e+00 2.0000000e+00 4.2000000e+00 3.3000000e+00 2.2000000e+00 2.6000000e+00 1.6000000e+00 2.5000000e+00 4.7000000e+00 1.3000000e+00 4.1000000e+00 2.4000000e+00 3.7000000e+00 1.6000000e+00 1.2000000e+00 3.8000000e+00 3.6000000e+00 2.5000000e+00 1.8000000e+00 1.6000000e+00 1.7000000e+00 2.4000000e+00 3.7000000e+00 3.7000000e+00 1.3000000e+00 1.7000000e+00 2.6000000e+00 3.8000000e+00 1.9000000e+00 1.6000000e+00 2.0000000e+00 3.9000000e+00 1.2000000e+00 1.2000000e+00 2.2000000e+00 3.7000000e+00 2.7000000e+00 2.1000000e+00 3.6000000e+00 9.0000000e-01 1.0000000e+00 1.6000000e+00 1.5000000e+00 6.0000000e-01 8.0000000e-01 3.6000000e+00 3.9000000e+00 2.1000000e+00 1.3000000e+00 1.5000000e+00 3.2000000e+00 1.1000000e+00 1.0000000e+00 1.8000000e+00 1.2000000e+00 1.0000000e+00 1.1000000e+00 2.0000000e+00 2.4000000e+00 3.3000000e+00 1.2000000e+00 1.1000000e+00 2.1000000e+00 2.7000000e+00 1.3000000e+00 8.0000000e-01 1.2000000e+00 9.0000000e-01 1.2000000e+00 8.0000000e-01 1.3000000e+00 1.4000000e+00 1.4000000e+00 8.0000000e-01 1.1000000e+00 3.0000000e-01 1.1000000e+00 1.0000000e+00 1.1000000e+00 1.3000000e+00 1.4000000e+00 9.0000000e-01 7.0000000e-01 4.1000000e+00 3.4000000e+00 1.6000000e+00 1.8000000e+00 1.4000000e+00 2.9000000e+00 6.0000000e-01 1.5000000e+00 2.1000000e+00 9.0000000e-01 1.1000000e+00 6.0000000e-01 1.9000000e+00 1.9000000e+00 3.8000000e+00 7.0000000e-01 8.0000000e-01 1.2000000e+00 2.8000000e+00 1.6000000e+00 7.0000000e-01 1.3000000e+00 1.2000000e+00 1.5000000e+00 1.5000000e+00 8.0000000e-01 1.9000000e+00 1.9000000e+00 1.1000000e+00 6.0000000e-01 6.0000000e-01 1.4000000e+00 1.1000000e+00 2.2000000e+00 1.9000000e+00 1.0000000e+00 6.0000000e-01 3.0000000e+00 2.9000000e+00 2.7000000e+00 7.0000000e-01 2.1000000e+00 2.4000000e+00 1.7000000e+00 6.0000000e-01 1.4000000e+00 1.8000000e+00 1.6000000e+00 7.0000000e-01 1.2000000e+00 1.6000000e+00 2.9000000e+00 8.0000000e-01 1.7000000e+00 1.9000000e+00 1.7000000e+00 1.3000000e+00 8.0000000e-01 1.8000000e+00 3.0000000e-01 6.0000000e-01 8.0000000e-01 1.9000000e+00 8.0000000e-01 1.0000000e+00 6.0000000e-01 1.7000000e+00 7.0000000e-01 1.3000000e+00 1.6000000e+00 9.0000000e-01 2.0000000e+00 2.0000000e+00 5.2000000e+00 4.3000000e+00 1.1000000e+00 2.9000000e+00 5.0000000e-01 4.0000000e+00 1.1000000e+00 2.6000000e+00 3.4000000e+00 1.2000000e+00 1.2000000e+00 1.7000000e+00 3.2000000e+00 3.2000000e+00 4.9000000e+00 1.8000000e+00 1.5000000e+00 1.7000000e+00 3.9000000e+00 2.5000000e+00 2.0000000e+00 1.2000000e+00 2.3000000e+00 2.6000000e+00 2.2000000e+00 5.0000000e-01 3.0000000e+00 3.0000000e+00 2.0000000e+00 7.0000000e-01 1.5000000e+00 2.1000000e+00 1.0000000e+00 1.3000000e+00 1.9000000e+00 4.7000000e+00 4.0000000e+00 1.8000000e+00 2.2000000e+00 8.0000000e-01 3.9000000e+00 1.4000000e+00 2.3000000e+00 3.3000000e+00 1.3000000e+00 1.3000000e+00 1.4000000e+00 3.1000000e+00 3.1000000e+00 4.8000000e+00 1.3000000e+00 1.4000000e+00 2.0000000e+00 3.2000000e+00 1.6000000e+00 1.9000000e+00 1.3000000e+00 2.0000000e+00 1.7000000e+00 1.5000000e+00 6.0000000e-01 2.3000000e+00 2.1000000e+00 1.3000000e+00 1.4000000e+00 1.4000000e+00 1.4000000e+00 9.0000000e-01 1.0000000e+00 3.4000000e+00 3.5000000e+00 2.5000000e+00 9.0000000e-01 1.9000000e+00 3.4000000e+00 1.5000000e+00 1.0000000e+00 2.0000000e+00 1.6000000e+00 1.4000000e+00 9.0000000e-01 2.2000000e+00 2.6000000e+00 3.5000000e+00 8.0000000e-01 1.5000000e+00 2.1000000e+00 2.3000000e+00 7.0000000e-01 8.0000000e-01 1.6000000e+00 9.0000000e-01 8.0000000e-01 8.0000000e-01 1.7000000e+00 1.0000000e+00 1.0000000e+00 6.0000000e-01 1.5000000e+00 7.0000000e-01 5.0000000e-01 1.4000000e+00 3.6000000e+00 3.5000000e+00 2.1000000e+00 1.3000000e+00 1.9000000e+00 2.8000000e+00 1.1000000e+00 1.0000000e+00 1.4000000e+00 1.2000000e+00 1.0000000e+00 7.0000000e-01 1.2000000e+00 1.8000000e+00 3.3000000e+00 8.0000000e-01 1.1000000e+00 1.3000000e+00 2.3000000e+00 1.3000000e+00 2.0000000e-01 1.2000000e+00 9.0000000e-01 1.0000000e+00 1.4000000e+00 1.5000000e+00 1.4000000e+00 1.4000000e+00 1.0000000e+00 1.3000000e+00 5.0000000e-01 1.3000000e+00 1.0000000e+00 1.5000000e+00 5.7000000e+00 2.5000000e+00 5.1000000e+00 1.2000000e+00 4.7000000e+00 2.6000000e+00 2.2000000e+00 4.8000000e+00 4.6000000e+00 3.5000000e+00 2.8000000e+00 2.2000000e+00 7.0000000e-01 3.4000000e+00 4.7000000e+00 4.7000000e+00 1.5000000e+00 3.1000000e+00 3.6000000e+00 4.8000000e+00 2.9000000e+00 3.0000000e+00 3.2000000e+00 4.9000000e+00 2.4000000e+00 2.8000000e+00 3.4000000e+00 4.7000000e+00 3.7000000e+00 3.3000000e+00 4.6000000e+00 4.8000000e+00 2.6000000e+00 4.6000000e+00 7.0000000e-01 4.0000000e+00 3.1000000e+00 2.5000000e+00 4.3000000e+00 4.5000000e+00 3.0000000e+00 2.7000000e+00 1.7000000e+00 2.2000000e+00 2.9000000e+00 4.2000000e+00 3.8000000e+00 1.2000000e+00 3.6000000e+00 3.7000000e+00 4.7000000e+00 3.0000000e+00 2.9000000e+00 3.1000000e+00 4.2000000e+00 2.5000000e+00 3.1000000e+00 3.1000000e+00 3.8000000e+00 3.6000000e+00 3.8000000e+00 4.5000000e+00 3.4000000e+00 1.6000000e+00 4.5000000e+00 1.2000000e+00 3.1000000e+00 3.5000000e+00 1.3000000e+00 1.3000000e+00 2.2000000e+00 2.9000000e+00 3.5000000e+00 5.4000000e+00 2.3000000e+00 1.0000000e+00 1.2000000e+00 4.4000000e+00 3.0000000e+00 2.1000000e+00 1.3000000e+00 2.8000000e+00 3.1000000e+00 2.7000000e+00 1.2000000e+00 3.5000000e+00 3.5000000e+00 2.5000000e+00 1.0000000e+00 2.0000000e+00 2.6000000e+00 1.3000000e+00 2.8000000e+00 2.5000000e+00 2.4000000e+00 5.0000000e-01 1.1000000e+00 2.5000000e+00 2.3000000e+00 1.2000000e+00 1.3000000e+00 1.7000000e+00 2.6000000e+00 1.1000000e+00 2.4000000e+00 2.4000000e+00 1.4000000e+00 1.0000000e+00 1.3000000e+00 2.5000000e+00 6.0000000e-01 5.0000000e-01 7.0000000e-01 2.6000000e+00 3.0000000e-01 5.0000000e-01 9.0000000e-01 2.4000000e+00 1.4000000e+00 1.2000000e+00 2.3000000e+00 3.9000000e+00 1.0000000e+00 2.5000000e+00 3.3000000e+00 9.0000000e-01 9.0000000e-01 1.6000000e+00 3.1000000e+00 3.1000000e+00 4.8000000e+00 1.7000000e+00 1.4000000e+00 2.0000000e+00 3.8000000e+00 2.4000000e+00 1.9000000e+00 9.0000000e-01 2.2000000e+00 2.5000000e+00 2.1000000e+00 6.0000000e-01 2.9000000e+00 2.9000000e+00 1.9000000e+00 1.2000000e+00 1.4000000e+00 2.0000000e+00 9.0000000e-01 3.5000000e+00 2.6000000e+00 1.8000000e+00 3.6000000e+00 3.8000000e+00 2.5000000e+00 2.0000000e+00 1.0000000e+00 1.5000000e+00 2.6000000e+00 3.5000000e+00 3.5000000e+00 1.1000000e+00 3.5000000e+00 3.0000000e+00 4.0000000e+00 2.5000000e+00 2.8000000e+00 3.0000000e+00 3.7000000e+00 2.4000000e+00 3.0000000e+00 3.0000000e+00 3.5000000e+00 2.9000000e+00 3.7000000e+00 3.8000000e+00 2.1000000e+00 2.5000000e+00 3.0000000e-01 5.0000000e-01 1.2000000e+00 2.3000000e+00 2.5000000e+00 4.4000000e+00 1.3000000e+00 6.0000000e-01 1.4000000e+00 3.4000000e+00 2.0000000e+00 1.1000000e+00 7.0000000e-01 1.8000000e+00 2.1000000e+00 1.7000000e+00 8.0000000e-01 2.5000000e+00 2.5000000e+00 1.5000000e+00 4.0000000e-01 1.0000000e+00 1.8000000e+00 9.0000000e-01 1.2000000e+00 2.2000000e+00 2.0000000e+00 9.0000000e-01 1.4000000e+00 1.8000000e+00 2.5000000e+00 1.0000000e+00 2.1000000e+00 2.1000000e+00 1.9000000e+00 9.0000000e-01 1.0000000e+00 2.2000000e+00 7.0000000e-01 6.0000000e-01 1.2000000e+00 2.3000000e+00 6.0000000e-01 4.0000000e-01 1.0000000e+00 2.1000000e+00 1.1000000e+00 1.1000000e+00 2.0000000e+00 2.6000000e+00 2.4000000e+00 1.9000000e+00 6.0000000e-01 8.0000000e-01 1.9000000e+00 2.0000000e+00 2.5000000e+00 2.5000000e+00 1.3000000e+00 2.1000000e+00 1.4000000e+00 2.6000000e+00 1.3000000e+00 1.6000000e+00 1.8000000e+00 2.9000000e+00 1.0000000e+00 1.6000000e+00 2.0000000e+00 2.7000000e+00 1.9000000e+00 2.3000000e+00 2.4000000e+00 4.0000000e-01 1.3000000e+00 2.4000000e+00 2.6000000e+00 4.5000000e+00 1.4000000e+00 7.0000000e-01 1.5000000e+00 3.5000000e+00 2.1000000e+00 1.2000000e+00 4.0000000e-01 1.9000000e+00 2.2000000e+00 1.8000000e+00 9.0000000e-01 2.6000000e+00 2.6000000e+00 1.6000000e+00 7.0000000e-01 1.1000000e+00 1.7000000e+00 8.0000000e-01 1.5000000e+00 2.2000000e+00 2.8000000e+00 4.3000000e+00 1.6000000e+00 9.0000000e-01 1.5000000e+00 3.3000000e+00 1.9000000e+00 1.0000000e+00 2.0000000e-01 1.7000000e+00 2.0000000e+00 1.6000000e+00 9.0000000e-01 2.4000000e+00 2.4000000e+00 1.4000000e+00 9.0000000e-01 9.0000000e-01 1.5000000e+00 4.0000000e-01 1.7000000e+00 1.7000000e+00 3.4000000e+00 1.0000000e-01 1.2000000e+00 1.2000000e+00 2.2000000e+00 1.0000000e+00 7.0000000e-01 1.7000000e+00 1.0000000e+00 9.0000000e-01 1.5000000e+00 1.4000000e+00 1.3000000e+00 1.3000000e+00 1.1000000e+00 1.2000000e+00 8.0000000e-01 1.2000000e+00 1.5000000e+00 1.0000000e+00 2.5000000e+00 1.8000000e+00 1.9000000e+00 1.9000000e+00 1.5000000e+00 2.3000000e+00 1.4000000e+00 2.4000000e+00 1.3000000e+00 1.6000000e+00 1.8000000e+00 2.7000000e+00 1.4000000e+00 1.8000000e+00 1.8000000e+00 2.5000000e+00 1.7000000e+00 2.5000000e+00 2.2000000e+00 1.9000000e+00 1.8000000e+00 2.5000000e+00 2.5000000e+00 9.0000000e-01 2.7000000e+00 2.0000000e+00 3.0000000e+00 1.7000000e+00 2.0000000e+00 2.2000000e+00 2.7000000e+00 1.6000000e+00 2.2000000e+00 2.2000000e+00 2.5000000e+00 2.1000000e+00 2.9000000e+00 2.8000000e+00 3.5000000e+00 4.4000000e+00 4.4000000e+00 1.6000000e+00 3.2000000e+00 3.3000000e+00 4.5000000e+00 2.8000000e+00 3.1000000e+00 3.3000000e+00 4.6000000e+00 2.5000000e+00 2.9000000e+00 3.5000000e+00 4.4000000e+00 3.4000000e+00 3.4000000e+00 4.3000000e+00 1.3000000e+00 1.3000000e+00 2.1000000e+00 9.0000000e-01 8.0000000e-01 1.8000000e+00 1.1000000e+00 8.0000000e-01 1.4000000e+00 1.5000000e+00 1.2000000e+00 1.2000000e+00 1.0000000e+00 1.3000000e+00 9.0000000e-01 1.1000000e+00 1.6000000e+00 1.0000000e+00 3.4000000e+00 2.0000000e+00 1.1000000e+00 1.1000000e+00 1.8000000e+00 2.1000000e+00 1.7000000e+00 1.0000000e+00 2.5000000e+00 2.5000000e+00 1.5000000e+00 8.0000000e-01 1.0000000e+00 1.8000000e+00 9.0000000e-01 3.4000000e+00 2.0000000e+00 1.3000000e+00 1.7000000e+00 2.2000000e+00 2.1000000e+00 2.7000000e+00 1.4000000e+00 2.5000000e+00 2.5000000e+00 2.3000000e+00 1.4000000e+00 1.8000000e+00 2.0000000e+00 1.5000000e+00 2.4000000e+00 2.5000000e+00 3.5000000e+00 1.8000000e+00 1.7000000e+00 1.9000000e+00 3.6000000e+00 1.3000000e+00 1.9000000e+00 1.9000000e+00 3.4000000e+00 2.4000000e+00 2.6000000e+00 3.3000000e+00 1.1000000e+00 2.1000000e+00 1.4000000e+00 7.0000000e-01 1.5000000e+00 2.2000000e+00 1.1000000e+00 7.0000000e-01 1.3000000e+00 2.0000000e+00 1.4000000e+00 4.0000000e-01 1.9000000e+00 1.2000000e+00 9.0000000e-01 1.0000000e+00 1.4000000e+00 1.5000000e+00 1.4000000e+00 1.4000000e+00 1.2000000e+00 1.3000000e+00 7.0000000e-01 1.1000000e+00 1.0000000e+00 1.9000000e+00 2.2000000e+00 1.8000000e+00 9.0000000e-01 2.6000000e+00 2.6000000e+00 1.6000000e+00 1.1000000e+00 1.1000000e+00 1.7000000e+00 4.0000000e-01 7.0000000e-01 5.0000000e-01 2.0000000e+00 9.0000000e-01 1.1000000e+00 7.0000000e-01 1.8000000e+00 8.0000000e-01 1.2000000e+00 1.7000000e+00 8.0000000e-01 2.3000000e+00 6.0000000e-01 4.0000000e-01 6.0000000e-01 2.1000000e+00 1.1000000e+00 1.1000000e+00 2.0000000e+00 1.9000000e+00 1.0000000e+00 1.2000000e+00 4.0000000e-01 1.7000000e+00 9.0000000e-01 1.3000000e+00 1.6000000e+00 2.7000000e+00 2.7000000e+00 1.7000000e+00 8.0000000e-01 1.2000000e+00 1.8000000e+00 5.0000000e-01 6.0000000e-01 1.0000000e+00 2.5000000e+00 1.5000000e+00 1.3000000e+00 2.4000000e+00 1.0000000e+00 2.5000000e+00 1.5000000e+00 1.1000000e+00 2.4000000e+00 1.5000000e+00 5.0000000e-01 1.1000000e+00 1.4000000e+00 1.0000000e+00 1.8000000e+00 1.1000000e+00 1.2000000e+00 9.0000000e-01 1.5000000e+00 diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-correlation-ml.txt b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-correlation-ml.txt new file mode 100644 index 0000000000000000000000000000000000000000..2a17a2a8fb002493fff38c7ed059668867768a7e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-correlation-ml.txt @@ -0,0 +1 @@ + 9.2507465e-01 9.6528566e-01 8.7255441e-01 1.1287379e+00 8.7318727e-01 1.0767102e+00 9.1419676e-01 1.1503304e+00 9.8074509e-01 1.0135025e+00 1.0495025e+00 9.4794536e-01 9.6829273e-01 1.1345767e+00 1.1048008e+00 9.2407796e-01 1.0228634e+00 9.3853195e-01 9.9377619e-01 1.0407662e+00 9.5048989e-01 9.0465688e-01 9.8056930e-01 8.9777156e-01 9.6357127e-01 9.3864452e-01 9.9754613e-01 9.7271356e-01 8.4383151e-01 9.6981983e-01 9.7510267e-01 1.0112663e+00 7.8730400e-01 1.0299498e+00 9.9307979e-01 9.0239520e-01 8.5428231e-01 8.8972742e-01 8.5933162e-01 9.6625934e-01 9.4175449e-01 9.9120729e-01 1.0503963e+00 8.8223053e-01 1.3261434e+00 1.1063209e+00 8.4058398e-01 1.0844267e+00 1.1153093e+00 1.0092643e+00 8.9585237e-01 1.0599818e+00 1.2321707e+00 1.1359624e+00 8.3503556e-01 1.1792243e+00 7.9159781e-01 1.0830419e+00 1.2181870e+00 9.9888500e-01 1.0227144e+00 6.8557277e-01 9.6836193e-01 1.1061227e+00 1.0883453e+00 9.5681974e-01 9.9436299e-01 1.0304323e+00 1.1273949e+00 1.0735563e+00 1.0582583e+00 9.6040272e-01 1.0032137e+00 8.4900547e-01 1.1035351e+00 8.7867480e-01 9.6433176e-01 9.1850122e-01 8.9337435e-01 1.0449390e+00 8.9639384e-01 9.6704971e-01 1.0084258e+00 1.0528587e+00 1.1764481e+00 1.0913280e+00 1.0136672e+00 1.2737156e+00 9.5130359e-01 1.0367909e+00 1.1983402e+00 1.1319901e+00 1.1117462e+00 1.0343695e+00 1.0838628e+00 7.5266057e-01 1.0763316e+00 8.8067924e-01 9.6734383e-01 9.8800551e-01 1.2265742e+00 7.8833055e-01 1.0338670e+00 8.6666625e-01 9.9039950e-01 9.7142684e-01 9.3138616e-01 8.5849977e-01 8.5486301e-01 1.0516028e+00 1.1105313e+00 9.5943505e-01 9.8845171e-01 1.0566288e+00 9.9712198e-01 9.5545756e-01 1.1817974e+00 9.9128482e-01 1.0117892e+00 1.0979115e+00 1.0493943e+00 9.1318848e-01 9.3157311e-01 8.7073304e-01 1.2459441e+00 9.3412689e-01 1.0482297e+00 9.4224032e-01 9.5134153e-01 9.0857493e-01 9.7264161e-01 8.2900820e-01 9.3140549e-01 1.1330242e+00 1.0333002e+00 1.0117861e+00 1.2053255e+00 8.5291396e-01 1.0148928e+00 8.6641379e-01 9.7080819e-01 9.5457159e-01 9.5207457e-01 9.3539674e-01 9.0769069e-01 9.5322590e-01 1.1181803e+00 9.9765614e-01 7.5370610e-01 1.0807114e+00 1.0804601e+00 9.0214124e-01 8.7101998e-01 1.0167435e+00 1.2045936e+00 8.7300539e-01 1.1054300e+00 7.9145574e-01 1.0279340e+00 8.7623462e-01 1.0034756e+00 1.0386933e+00 9.3910970e-01 1.0028455e+00 9.9868824e-01 9.8752945e-01 9.8319327e-01 1.3110209e+00 8.6180633e-01 1.0993856e+00 8.5912563e-01 1.1303979e+00 9.8690459e-01 9.6910090e-01 9.1456819e-01 1.1525339e+00 1.1064552e+00 1.1062255e+00 9.7226683e-01 1.1091447e+00 1.1072238e+00 9.6544444e-01 9.6681036e-01 9.3247685e-01 9.6854634e-01 1.1035119e+00 1.1317148e+00 9.5557793e-01 9.8908485e-01 7.4873648e-01 diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cosine-ml-iris.txt b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cosine-ml-iris.txt new file mode 100644 index 0000000000000000000000000000000000000000..8b705b348fc3de5041ad9e3d6a1686af61046b2a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-cosine-ml-iris.txt @@ -0,0 +1 @@ + 1.4208365e-03 1.2652718e-05 8.9939315e-04 2.4232332e-04 9.9747033e-04 9.2045721e-04 2.2040648e-04 8.6480051e-04 1.2354911e-03 5.3650090e-06 1.0275886e-03 1.1695784e-03 2.3556571e-04 1.4590172e-03 1.8981327e-03 1.0939621e-03 1.2392314e-04 3.5850877e-04 8.6078038e-04 1.4490833e-03 8.4059347e-04 3.2873982e-03 2.7359832e-03 4.1316044e-03 2.7719149e-03 1.1814143e-03 1.1431285e-04 2.3850299e-04 1.3446247e-03 1.6406549e-03 1.2070654e-03 2.2241257e-03 1.4969348e-03 1.2354911e-03 7.6154552e-04 9.0853884e-04 1.2354911e-03 1.5825612e-04 2.3716586e-04 2.5806020e-04 8.5870759e-03 4.3447170e-04 2.6103416e-03 3.4026094e-03 1.2625429e-03 1.0000714e-03 2.7088099e-04 4.6161202e-05 1.7993015e-04 7.1619641e-02 7.4013940e-02 8.2336355e-02 9.3599031e-02 8.6542298e-02 9.2667602e-02 8.0934616e-02 6.7002415e-02 7.9695318e-02 8.3991107e-02 8.8330128e-02 7.6449243e-02 8.6123390e-02 9.1414445e-02 5.9767596e-02 6.8589764e-02 9.2363748e-02 7.5261304e-02 1.0768528e-01 7.8250149e-02 9.7383870e-02 6.9410330e-02 1.0895936e-01 9.1644587e-02 7.2677910e-02 7.2208930e-02 8.7635618e-02 9.3586395e-02 8.7700193e-02 5.8825053e-02 7.9271072e-02 7.4136423e-02 7.0977606e-02 1.1670751e-01 9.6691498e-02 7.7157266e-02 7.8793137e-02 9.6187418e-02 7.4355610e-02 8.6677009e-02 9.7286808e-02 8.5214421e-02 7.7419803e-02 6.8888638e-02 8.6192502e-02 7.4757686e-02 7.8851331e-02 7.5042247e-02 5.2484298e-02 7.8023694e-02 1.3991867e-01 1.2655756e-01 1.2099780e-01 1.2515784e-01 1.3134370e-01 1.3306336e-01 1.2911903e-01 1.2854613e-01 1.3655327e-01 1.1601604e-01 9.9632498e-02 1.2063863e-01 1.1404742e-01 1.3409335e-01 1.3451976e-01 1.1368563e-01 1.1469397e-01 1.1505768e-01 1.5479411e-01 1.2906390e-01 1.1634186e-01 1.2299625e-01 1.3892070e-01 1.0732534e-01 1.1401190e-01 1.1254699e-01 1.0266168e-01 1.0210743e-01 1.3111378e-01 1.0950615e-01 1.2501276e-01 1.0108759e-01 1.3297245e-01 1.0624129e-01 1.3360037e-01 1.2002867e-01 1.2233784e-01 1.1387071e-01 1.0061412e-01 1.0649150e-01 1.2174429e-01 1.0147290e-01 1.2655756e-01 1.2438709e-01 1.2138109e-01 1.1044406e-01 1.1910000e-01 1.0821359e-01 1.1609070e-01 1.1329724e-01 1.2085473e-03 1.2060695e-03 2.7592041e-03 3.0736184e-03 3.7201033e-03 1.0861043e-03 7.3910902e-04 3.4790667e-04 1.3491546e-03 2.4493052e-03 1.8482587e-04 2.3308566e-03 3.8997403e-03 6.3069928e-03 4.1362617e-03 1.5079538e-03 7.4890015e-04 4.0049414e-03 3.0763412e-04 3.2877725e-03 8.6909088e-03 1.8863199e-03 4.7592122e-03 4.5180751e-04 1.7148301e-03 8.8703626e-04 5.7128783e-04 1.7151033e-03 8.4814176e-04 4.7551630e-04 6.9313334e-03 5.8126778e-03 3.4790667e-04 9.7078221e-04 1.0390338e-03 3.4790667e-04 1.1371495e-03 7.0598263e-04 2.3100870e-03 3.1332241e-03 2.9870115e-03 3.7693564e-03 5.5008337e-03 2.0081767e-04 3.9261497e-03 1.6237803e-03 1.7731168e-03 5.9153033e-04 5.9997244e-02 6.3706418e-02 7.0131342e-02 8.0131815e-02 7.3670020e-02 8.1412444e-02 7.1132932e-02 5.6572408e-02 6.7223691e-02 7.3993918e-02 7.4363256e-02 6.6371013e-02 7.1106157e-02 7.9730716e-02 5.0610503e-02 5.7285563e-02 8.2536028e-02 6.3695818e-02 9.1877918e-02 6.6044079e-02 8.7700525e-02 5.7975072e-02 9.4407127e-02 7.9385033e-02 6.0900938e-02 6.0521931e-02 7.4070557e-02 8.1073873e-02 7.6438218e-02 4.7634460e-02 6.6728846e-02 6.1732271e-02 5.9656897e-02 1.0363139e-01 8.7312695e-02 6.8806126e-02 6.7142432e-02 8.0911573e-02 6.5091322e-02 7.4541034e-02 8.5313436e-02 7.4229332e-02 6.5328348e-02 5.7461491e-02 7.4891760e-02 6.5136264e-02 6.8598864e-02 6.3641018e-02 4.2790811e-02 6.7276779e-02 1.2872765e-01 1.1385917e-01 1.0708423e-01 1.1221780e-01 1.1844388e-01 1.1798239e-01 1.1767648e-01 1.1356773e-01 1.2073038e-01 1.0467824e-01 8.8441784e-02 1.0671832e-01 1.0091826e-01 1.2051300e-01 1.2244533e-01 1.0247664e-01 1.0203920e-01 1.0334656e-01 1.3764340e-01 1.1314999e-01 1.0390175e-01 1.1148602e-01 1.2274267e-01 9.3929112e-02 1.0239198e-01 9.9372667e-02 9.0109024e-02 9.0770318e-02 1.1749345e-01 9.5509620e-02 1.0956056e-01 8.9331297e-02 1.1936188e-01 9.3207628e-02 1.1935153e-01 1.0516553e-01 1.1204585e-01 1.0191688e-01 8.9582588e-02 9.3806716e-02 1.0922100e-01 8.9087100e-02 1.1385917e-01 1.1193127e-01 1.0978099e-01 9.7766696e-02 1.0448839e-01 9.5849546e-02 1.0619992e-01 1.0212555e-01 7.8301662e-04 3.3186074e-04 9.6097551e-04 9.6384587e-04 1.7160230e-04 7.1714495e-04 1.0915291e-03 1.4406904e-05 9.9431295e-04 1.0280837e-03 3.4520010e-04 1.6070142e-03 2.0814960e-03 1.1810349e-03 9.3270090e-05 2.4892291e-04 9.5000112e-04 1.2447556e-03 8.3736374e-04 3.6303226e-03 2.4141846e-03 3.9965261e-03 2.4688022e-03 1.0115165e-03 6.9871786e-05 1.7487334e-04 1.2251185e-03 1.4398826e-03 9.8199498e-04 2.5137187e-03 1.7466742e-03 1.0915291e-03 7.0690363e-04 8.5846505e-04 1.0915291e-03 1.0992291e-04 1.6427013e-04 2.8562896e-04 8.0123750e-03 5.0490687e-04 2.4076078e-03 3.3222239e-03 1.0270492e-03 1.0987887e-03 2.4862356e-04 7.8815959e-05 1.1120052e-04 7.0071463e-02 7.2494258e-02 8.0694698e-02 9.1816479e-02 8.4823937e-02 9.1055284e-02 7.9406161e-02 6.5540015e-02 7.8075821e-02 8.2418924e-02 8.6586217e-02 7.4908999e-02 8.4375857e-02 8.9771433e-02 5.8365951e-02 6.7055640e-02 9.0792516e-02 7.3755504e-02 1.0570869e-01 7.6652799e-02 9.5758989e-02 6.7858347e-02 1.0707149e-01 9.0015148e-02 7.1111432e-02 7.0634591e-02 8.5909852e-02 9.1841705e-02 8.6060650e-02 5.7382885e-02 7.7642663e-02 7.2560884e-02 6.9439824e-02 1.1486601e-01 9.5132094e-02 7.5722276e-02 7.7186494e-02 9.4329550e-02 7.2913445e-02 8.4999890e-02 9.5631654e-02 8.3632299e-02 7.5814411e-02 6.7360493e-02 8.4581854e-02 7.3324210e-02 7.7335911e-02 7.3484711e-02 5.1093482e-02 7.6474851e-02 1.3800148e-01 1.2463801e-01 1.1904450e-01 1.2328593e-01 1.2938789e-01 1.3104169e-01 1.2726294e-01 1.2658511e-01 1.3448678e-01 1.1418055e-01 9.7888383e-02 1.1868360e-01 1.1213978e-01 1.3206545e-01 1.3251384e-01 1.1184454e-01 1.1286955e-01 1.1328841e-01 1.5256500e-01 1.2703121e-01 1.1444439e-01 1.2112577e-01 1.3684054e-01 1.0544428e-01 1.1220824e-01 1.1073079e-01 1.0084086e-01 1.0036834e-01 1.2912019e-01 1.0768201e-01 1.2300696e-01 9.9385216e-02 1.3095409e-01 1.0446385e-01 1.3171213e-01 1.1800444e-01 1.2052688e-01 1.1209190e-01 9.8892088e-02 1.0463359e-01 1.1979721e-01 9.9600101e-02 1.2463801e-01 1.2247195e-01 1.1948197e-01 1.0852184e-01 1.1709036e-01 1.0637133e-01 1.1433097e-01 1.1154058e-01 1.2829581e-03 8.6520525e-04 1.3042912e-03 2.3052671e-04 6.0609671e-05 6.1408538e-04 7.9384016e-04 2.5551469e-04 9.4346154e-04 1.8930050e-03 4.6203036e-03 3.8649853e-03 3.3273220e-03 9.7135787e-04 2.5836286e-04 1.6395377e-03 4.6720392e-04 1.3833444e-03 6.8585778e-03 1.1817616e-03 1.4184724e-03 1.2935682e-03 4.4534899e-04 4.3337262e-04 9.9734142e-04 6.2957380e-05 2.1802414e-04 1.3452346e-03 3.6759458e-03 3.7514511e-03 6.1408538e-04 2.3527566e-03 2.5967147e-03 6.1408538e-04 3.1896708e-04 3.0643540e-04 1.7034162e-03 7.0964884e-03 1.0371098e-03 1.9760564e-03 1.6993217e-03 9.2490489e-04 1.2129757e-03 2.8785057e-04 7.8777499e-04 6.4144968e-04 5.7636535e-02 5.9786679e-02 6.7275391e-02 7.7706661e-02 7.1288776e-02 7.6308806e-02 6.5987844e-02 5.3398709e-02 6.4839697e-02 6.8887148e-02 7.2874646e-02 6.2111692e-02 7.1088473e-02 7.5274214e-02 4.7295630e-02 5.5048251e-02 7.6266639e-02 6.0532100e-02 9.0997542e-02 6.3501941e-02 8.1155480e-02 5.5841790e-02 9.1620605e-02 7.5304976e-02 5.8627379e-02 5.8302297e-02 7.2188128e-02 7.7632065e-02 7.2128571e-02 4.6353347e-02 6.4522763e-02 5.9860052e-02 5.7075256e-02 9.8501473e-02 8.0208982e-02 6.2676929e-02 6.4117314e-02 8.0306154e-02 5.9903400e-02 7.1264506e-02 8.0454669e-02 6.9667510e-02 6.2855874e-02 5.5234852e-02 7.0611788e-02 6.0083969e-02 6.3933681e-02 6.0638614e-02 4.1119113e-02 6.3291748e-02 1.2072945e-01 1.0797760e-01 1.0284307e-01 1.0630032e-01 1.1246316e-01 1.1377579e-01 1.1035397e-01 1.0939330e-01 1.1704519e-01 9.8543065e-02 8.3389076e-02 1.0253622e-01 9.6610654e-02 1.1523295e-01 1.1624035e-01 9.6621030e-02 9.6718555e-02 9.7003685e-02 1.3426257e-01 1.1013293e-01 9.8838972e-02 1.0496266e-01 1.1920082e-01 9.0400878e-02 9.6352086e-02 9.4617133e-02 8.6118226e-02 8.5443225e-02 1.1226469e-01 9.1815383e-02 1.0642172e-01 8.4132371e-02 1.1413570e-01 8.8823115e-02 1.1373227e-01 1.0228600e-01 1.0454965e-01 9.5917796e-02 8.4129252e-02 8.9732713e-02 1.0404039e-01 8.5714179e-02 1.0797760e-01 1.0611357e-01 1.0375975e-01 9.3828435e-02 1.0141953e-01 9.1231247e-02 9.8764813e-02 9.5558448e-02 7.0033377e-04 3.9650610e-04 5.3529876e-04 1.4703029e-03 2.2471049e-03 2.6137215e-04 9.1585095e-04 2.3098853e-03 3.2779352e-04 1.7003275e-03 9.5035099e-04 8.4163249e-04 3.6423601e-04 8.6760304e-04 2.6110376e-04 2.4965606e-03 5.0990123e-04 2.2208392e-03 3.4995017e-03 3.9813106e-03 4.2652650e-03 1.4776191e-03 5.3856223e-04 9.6152184e-04 1.6178695e-03 2.4296336e-03 2.2824176e-03 1.0483334e-03 6.6735604e-04 2.2471049e-03 1.7166964e-03 1.9224889e-03 2.2471049e-03 4.4953685e-04 7.5090712e-04 3.1050470e-04 1.1530910e-02 8.0837373e-05 2.6173161e-03 2.7612054e-03 2.3974656e-03 3.9140870e-04 3.5730731e-04 1.1232648e-04 8.0278741e-04 7.4728046e-02 7.6441141e-02 8.5477412e-02 9.7141382e-02 8.9947057e-02 9.5081677e-02 8.2962705e-02 6.9633999e-02 8.3013931e-02 8.6069979e-02 9.2215558e-02 7.8736928e-02 9.0603515e-02 9.4074986e-02 6.2034704e-02 7.1640320e-02 9.4150759e-02 7.8195110e-02 1.1214391e-01 8.1468219e-02 9.9059263e-02 7.2514318e-02 1.1269547e-01 9.4545020e-02 7.5842542e-02 7.5358360e-02 9.1332869e-02 9.6662705e-02 9.0277244e-02 6.2066860e-02 8.2644288e-02 7.7554694e-02 7.3959493e-02 1.1955630e-01 9.8181734e-02 7.8602674e-02 8.1755435e-02 1.0058819e-01 7.6248524e-02 8.9701900e-02 9.9938282e-02 8.7676596e-02 8.0619290e-02 7.1976555e-02 8.8793557e-02 7.6779152e-02 8.1107438e-02 7.7952944e-02 5.5245517e-02 8.0550459e-02 1.4162183e-01 1.2912349e-01 1.2423521e-01 1.2779447e-01 1.3393410e-01 1.3660889e-01 1.3105158e-01 1.3208577e-01 1.4040000e-01 1.1817736e-01 1.0200650e-01 1.2388995e-01 1.1706801e-01 1.3699958e-01 1.3682207e-01 1.1586916e-01 1.1739162e-01 1.1729454e-01 1.5902469e-01 1.3308573e-01 1.1901641e-01 1.2511327e-01 1.4289089e-01 1.1059070e-01 1.1627926e-01 1.1550831e-01 1.0561378e-01 1.0446495e-01 1.3405102e-01 1.1291439e-01 1.2888996e-01 1.0359625e-01 1.3590097e-01 1.0925250e-01 1.3665207e-01 1.2379539e-01 1.2392962e-01 1.1624448e-01 1.0286550e-01 1.0945264e-01 1.2440339e-01 1.0449561e-01 1.2912349e-01 1.2690130e-01 1.2362142e-01 1.1341467e-01 1.2276171e-01 1.1097585e-01 1.1759891e-01 1.1534218e-01 1.3143808e-04 7.3710840e-04 1.1313742e-03 2.6277162e-03 9.9332749e-04 4.8298989e-04 2.9659782e-03 1.8303797e-03 3.9657692e-03 1.4753738e-03 1.6266891e-03 7.0233916e-04 8.0313831e-04 3.4526160e-04 2.3291483e-03 1.3867759e-04 4.2228272e-03 1.6991343e-03 2.3223655e-03 3.8453210e-03 4.2904903e-04 9.9302567e-04 1.7706867e-03 9.4981017e-04 1.8259864e-03 2.0820613e-03 2.1473879e-03 2.0420431e-03 2.6277162e-03 3.0779094e-03 3.4332541e-03 2.6277162e-03 6.3280964e-04 1.0576914e-03 9.5198627e-04 1.0925795e-02 3.7286463e-04 7.9546610e-04 9.1841431e-04 2.1468126e-03 4.9129575e-04 4.3562197e-04 7.5083238e-04 1.3686608e-03 6.3901299e-02 6.4740623e-02 7.3708779e-02 8.4613714e-02 7.7866771e-02 8.2261058e-02 7.0449151e-02 5.8874682e-02 7.1767088e-02 7.3210535e-02 8.0660949e-02 6.6601983e-02 8.0033785e-02 8.1391959e-02 5.1369939e-02 6.0897790e-02 8.0716992e-02 6.7403323e-02 9.9203670e-02 7.0276809e-02 8.4922276e-02 6.1688045e-02 9.9339240e-02 8.2362360e-02 6.4928234e-02 6.4360101e-02 7.9641814e-02 8.3721620e-02 7.7549963e-02 5.2617898e-02 7.1414187e-02 6.6946935e-02 6.3031902e-02 1.0509118e-01 8.4332170e-02 6.6064468e-02 7.0064616e-02 8.8758294e-02 6.4379548e-02 7.7371173e-02 8.7052850e-02 7.5305342e-02 6.9340944e-02 6.1339869e-02 7.6377320e-02 6.5179636e-02 6.9093895e-02 6.6669498e-02 4.5609365e-02 6.8684945e-02 1.2445912e-01 1.1341836e-01 1.0935772e-01 1.1262566e-01 1.1789507e-01 1.2147174e-01 1.1488682e-01 1.1752559e-01 1.2531063e-01 1.0271865e-01 8.7888567e-02 1.0902443e-01 1.0234160e-01 1.2080033e-01 1.1990073e-01 1.0043696e-01 1.0286413e-01 1.0252340e-01 1.4292168e-01 1.1866325e-01 1.0381139e-01 1.0919240e-01 1.2785249e-01 9.6570465e-02 1.0127523e-01 1.0149554e-01 9.1688518e-02 9.0323099e-02 1.1822766e-01 9.9584713e-02 1.1452014e-01 9.0018133e-02 1.1983081e-01 9.5741335e-02 1.2190290e-01 1.0915996e-01 1.0773474e-01 1.0161859e-01 8.8729453e-02 9.5169428e-02 1.0868349e-01 9.0278091e-02 1.1341836e-01 1.1118524e-01 1.0767597e-01 9.8555096e-02 1.0809822e-01 9.6490550e-02 1.0179914e-01 1.0040847e-01 9.0953179e-04 1.6478123e-03 3.1324421e-03 9.3747882e-04 6.8074049e-04 3.4285457e-03 1.4256139e-03 3.3141786e-03 8.1135619e-04 1.2040955e-03 7.3894006e-04 1.1469835e-03 5.4914496e-05 3.0238895e-03 1.1512346e-04 2.9874978e-03 2.7356591e-03 2.9755481e-03 4.8570629e-03 9.8132331e-04 1.1267736e-03 1.9187302e-03 1.4320892e-03 2.5472569e-03 2.7129147e-03 1.2621760e-03 1.1868918e-03 3.1324421e-03 3.1260816e-03 3.4622842e-03 3.1324421e-03 7.8737454e-04 1.2923124e-03 7.7291736e-04 1.2676988e-02 1.5795155e-04 1.4073300e-03 1.3093851e-03 2.8558230e-03 2.3589004e-04 5.3160641e-04 6.3306680e-04 1.5563919e-03 6.9394652e-02 7.0160248e-02 7.9549278e-02 9.0909253e-02 8.3929778e-02 8.8133516e-02 7.5949213e-02 6.4094635e-02 7.7538115e-02 7.8838295e-02 8.6828513e-02 7.2078729e-02 8.6190925e-02 8.7328483e-02 5.6305232e-02 6.6307663e-02 8.6433769e-02 7.2861306e-02 1.0610432e-01 7.5977192e-02 9.0782134e-02 6.7147548e-02 1.0605640e-01 8.8295560e-02 7.0476640e-02 6.9912539e-02 8.5755505e-02 8.9909894e-02 8.3415192e-02 5.7694397e-02 7.7198547e-02 7.2551886e-02 6.8485682e-02 1.1174631e-01 9.0047290e-02 7.1258462e-02 7.5770197e-02 9.5276007e-02 6.9606963e-02 8.3332111e-02 9.3091350e-02 8.1019819e-02 7.5041473e-02 6.6748030e-02 8.2172293e-02 7.0413691e-02 7.4567733e-02 7.2221920e-02 5.0422561e-02 7.4234075e-02 1.3135838e-01 1.2029572e-01 1.1630277e-01 1.1941581e-01 1.2489530e-01 1.2871814e-01 1.2159882e-01 1.2460620e-01 1.3270425e-01 1.0925415e-01 9.4076611e-02 1.1596894e-01 1.0908894e-01 1.2799150e-01 1.2695158e-01 1.0694484e-01 1.0944639e-01 1.0895711e-01 1.5084375e-01 1.2591962e-01 1.1052596e-01 1.1587184e-01 1.3530738e-01 1.0320818e-01 1.0775506e-01 1.0806337e-01 9.8123191e-02 9.6541726e-02 1.2533326e-01 1.0616585e-01 1.2166800e-01 9.6181548e-02 1.2699662e-01 1.0216112e-01 1.2885603e-01 1.1626103e-01 1.1421827e-01 1.0807124e-01 9.4882428e-02 1.0171954e-01 1.1554226e-01 9.6763759e-02 1.2029572e-01 1.1801757e-01 1.1438908e-01 1.0525128e-01 1.1515210e-01 1.0301668e-01 1.0810316e-01 1.0676998e-01 2.4407151e-04 6.8243680e-04 1.6882982e-04 4.2217018e-04 8.1245396e-04 8.1915702e-04 2.7980568e-03 2.6783721e-03 2.0076713e-03 3.3526400e-04 9.3506008e-05 1.0407900e-03 7.3148476e-04 9.1895790e-04 4.8425923e-03 1.7878106e-03 2.5638304e-03 1.8092053e-03 6.2482332e-04 4.5470127e-05 3.8680919e-04 4.8577398e-04 7.0932539e-04 1.0773286e-03 2.7081281e-03 2.3916675e-03 6.8243680e-04 1.3234869e-03 1.5152295e-03 6.8243680e-04 1.7279927e-05 4.4719936e-05 7.6774714e-04 7.6386402e-03 5.1509749e-04 2.1386706e-03 2.3673979e-03 8.8641907e-04 8.8317423e-04 5.7646989e-05 1.8767975e-04 1.8238427e-04 6.4591491e-02 6.6891146e-02 7.4787553e-02 8.5653640e-02 7.8909235e-02 8.4481757e-02 7.3468926e-02 6.0165176e-02 7.2232139e-02 7.6459237e-02 8.0572670e-02 6.9287036e-02 7.8547451e-02 8.3338681e-02 5.3514192e-02 6.1787978e-02 8.4336540e-02 6.7840538e-02 9.9351761e-02 7.0839680e-02 8.9318727e-02 6.2598635e-02 1.0029777e-01 8.3444651e-02 6.5618944e-02 6.5228710e-02 7.9886645e-02 8.5622882e-02 7.9922508e-02 5.2526388e-02 7.1863670e-02 6.6948234e-02 6.3994975e-02 1.0763490e-01 8.8479248e-02 6.9931400e-02 7.1440370e-02 8.8224815e-02 6.7118281e-02 7.8968665e-02 8.8858891e-02 7.7432758e-02 7.0109240e-02 6.2023845e-02 7.8396402e-02 6.7393801e-02 7.1380489e-02 6.7813026e-02 4.6767795e-02 7.0645561e-02 1.3044475e-01 1.1734304e-01 1.1197394e-01 1.1577499e-01 1.2198760e-01 1.2346289e-01 1.1982320e-01 1.1899008e-01 1.2683842e-01 1.0736476e-01 9.1564623e-02 1.1164167e-01 1.0538958e-01 1.2475783e-01 1.2551509e-01 1.0524662e-01 1.0574315e-01 1.0607279e-01 1.4459461e-01 1.1962188e-01 1.0766800e-01 1.1407280e-01 1.2909426e-01 9.8905414e-02 1.0524346e-01 1.0359925e-01 9.4433579e-02 9.3820759e-02 1.2176744e-01 1.0065671e-01 1.1574436e-01 9.2625059e-02 1.2364363e-01 9.7538593e-02 1.2367543e-01 1.1121391e-01 1.1355049e-01 1.0493323e-01 9.2419908e-02 9.8167154e-02 1.1298864e-01 9.3668541e-02 1.1734304e-01 1.1533257e-01 1.1267510e-01 1.0222063e-01 1.1031800e-01 9.9779829e-02 1.0752614e-01 1.0448251e-01 3.8330702e-04 7.6710204e-04 5.4934344e-04 6.1141025e-04 1.8880070e-03 4.3782366e-03 4.2558302e-03 3.3445116e-03 9.0730658e-04 1.6460272e-04 1.9935351e-03 2.2277110e-04 1.5935452e-03 7.2001884e-03 1.0201171e-03 1.9163397e-03 8.7300929e-04 4.6754224e-04 3.6671499e-04 7.4258415e-04 2.1567602e-04 1.3361003e-04 9.1168360e-04 4.3156597e-03 4.1158943e-03 3.8330702e-04 1.9019978e-03 2.1146706e-03 3.8330702e-04 3.1982857e-04 2.1854146e-04 1.6719903e-03 5.9155088e-03 1.3110961e-03 2.0595508e-03 2.2774590e-03 5.2912957e-04 1.6598142e-03 4.0619000e-04 8.5702191e-04 4.6128261e-04 5.7335316e-02 5.9791552e-02 6.7034247e-02 7.7315388e-02 7.0912461e-02 7.6541197e-02 6.6231857e-02 5.3290914e-02 6.4524455e-02 6.9096848e-02 7.2330829e-02 6.2164647e-02 7.0266106e-02 7.5359485e-02 4.7211115e-02 5.4717217e-02 7.6724195e-02 6.0437574e-02 9.0217835e-02 6.3227153e-02 8.1624838e-02 5.5479636e-02 9.1272977e-02 7.5343817e-02 5.8299412e-02 5.7952393e-02 7.1727180e-02 7.7451339e-02 7.2165967e-02 4.5880845e-02 6.4164650e-02 5.9464600e-02 5.6817377e-02 9.8638775e-02 8.0838937e-02 6.3146715e-02 6.3916551e-02 7.9536591e-02 6.0201366e-02 7.1084400e-02 8.0631146e-02 6.9793274e-02 6.2554472e-02 5.4911579e-02 7.0667171e-02 6.0374722e-02 6.4102637e-02 6.0460719e-02 4.0707229e-02 6.3307106e-02 1.2135312e-01 1.0820155e-01 1.0273439e-01 1.0658023e-01 1.1268914e-01 1.1365695e-01 1.1088857e-01 1.0931070e-01 1.1680946e-01 9.8829208e-02 8.3503653e-02 1.0241354e-01 9.6518124e-02 1.1527856e-01 1.1644011e-01 9.6835948e-02 9.6892604e-02 9.7403729e-02 1.3389056e-01 1.0978147e-01 9.8889679e-02 1.0531384e-01 1.1893855e-01 9.0170315e-02 9.6654705e-02 9.4696682e-02 8.5999457e-02 8.5628213e-02 1.1232778e-01 9.1692367e-02 1.0609783e-01 8.4336563e-02 1.1417833e-01 8.8845800e-02 1.1399156e-01 1.0186496e-01 1.0510756e-01 9.6245658e-02 8.4341961e-02 8.9608741e-02 1.0408154e-01 8.5412047e-02 1.0820155e-01 1.0631639e-01 1.0398240e-01 9.3623884e-02 1.0104040e-01 9.1224725e-02 9.9332091e-02 9.5993921e-02 1.1067957e-03 1.4791390e-03 7.1256747e-05 2.0377231e-03 4.3755431e-03 5.9630791e-03 4.4970379e-03 1.5921641e-03 6.4984761e-04 3.3935862e-03 1.2039709e-04 3.0970780e-03 8.3950153e-03 2.1890332e-03 3.1326528e-03 5.0256002e-04 1.6389584e-03 6.4717383e-04 7.1019942e-04 8.9864077e-04 3.8255378e-04 1.2286350e-03 5.5229901e-03 5.1766813e-03 0.0000000e+00 1.5860612e-03 1.6773969e-03 0.0000000e+00 8.4337656e-04 4.6746407e-04 2.4549978e-03 4.7529836e-03 2.3235808e-03 4.0683267e-03 4.3260986e-03 6.7336618e-04 2.8454658e-03 1.0918918e-03 1.3756658e-03 5.7784546e-04 5.9573290e-02 6.3070670e-02 6.9597309e-02 7.9911457e-02 7.3480528e-02 7.9923883e-02 7.0144874e-02 5.5923876e-02 6.6635620e-02 7.3192589e-02 7.4096565e-02 6.5836734e-02 7.1022277e-02 7.8555696e-02 5.0423423e-02 5.7089619e-02 8.1093473e-02 6.2483167e-02 9.2251714e-02 6.5399221e-02 8.6573432e-02 5.7873871e-02 9.3861710e-02 7.7914479e-02 6.0545459e-02 6.0328179e-02 7.3725736e-02 8.0652769e-02 7.5662466e-02 4.7500835e-02 6.6267157e-02 6.1219907e-02 5.9246920e-02 1.0235525e-01 8.5584812e-02 6.7627185e-02 6.6676399e-02 8.1028522e-02 6.3874534e-02 7.4037098e-02 8.3735875e-02 7.3091049e-02 6.4875922e-02 5.7134332e-02 7.3898502e-02 6.3669341e-02 6.7483654e-02 6.3032151e-02 4.3195391e-02 6.6465430e-02 1.2757303e-01 1.1294171e-01 1.0654531e-01 1.1074736e-01 1.1756538e-01 1.1705185e-01 1.1633100e-01 1.1230305e-01 1.1988948e-01 1.0404710e-01 8.7981667e-02 1.0622547e-01 1.0061669e-01 1.2008497e-01 1.2242153e-01 1.0217012e-01 1.0084187e-01 1.0181343e-01 1.3714147e-01 1.1243585e-01 1.0356517e-01 1.1071692e-01 1.2181923e-01 9.3742899e-02 1.0137566e-01 9.8085445e-02 8.9840814e-02 8.9979544e-02 1.1682155e-01 9.4340727e-02 1.0893096e-01 8.8036209e-02 1.1887723e-01 9.1995894e-02 1.1718099e-01 1.0529554e-01 1.1115622e-01 1.0048991e-01 8.8823715e-02 9.3647258e-02 1.0909883e-01 8.9729548e-02 1.1294171e-01 1.1121254e-01 1.0947844e-01 9.8164553e-02 1.0458423e-01 9.5468337e-02 1.0529433e-01 1.0077315e-01 9.3075268e-04 1.0661545e-03 2.6597529e-04 1.6036733e-03 2.0280056e-03 1.2436972e-03 1.5688801e-04 3.1850165e-04 8.9411637e-04 1.3235015e-03 8.8731482e-04 3.4816593e-03 2.6719247e-03 3.9091992e-03 2.6159373e-03 1.1443019e-03 7.9601608e-05 2.3028989e-04 1.2135551e-03 1.4956336e-03 1.2137749e-03 2.2449952e-03 1.5932074e-03 1.1067957e-03 8.0827056e-04 9.5525701e-04 1.1067957e-03 1.2520454e-04 1.8684214e-04 3.3283736e-04 8.4659292e-03 4.3428627e-04 2.6431662e-03 3.3043825e-03 1.2192723e-03 9.6672170e-04 2.2673224e-04 4.0165289e-05 1.5556464e-04 7.0885985e-02 7.3312749e-02 8.1555170e-02 9.2789394e-02 8.5768022e-02 9.1811327e-02 8.0210428e-02 6.6299983e-02 7.8898236e-02 8.3277528e-02 8.7497229e-02 7.5768419e-02 8.5268176e-02 9.0575828e-02 5.9182538e-02 6.7899308e-02 9.1577973e-02 7.4436351e-02 1.0683101e-01 7.7459472e-02 9.6638219e-02 6.8724317e-02 1.0805306e-01 9.0746123e-02 7.1944393e-02 7.1498544e-02 8.6811878e-02 9.2796163e-02 8.6929388e-02 5.8156140e-02 7.8485798e-02 7.3355880e-02 7.0259533e-02 1.1577796e-01 9.5890635e-02 7.6480264e-02 7.8047377e-02 9.5335392e-02 7.3634293e-02 8.5899063e-02 9.6384778e-02 8.4415996e-02 7.6657094e-02 6.8177250e-02 8.5395861e-02 7.3990972e-02 7.8093423e-02 7.4294151e-02 5.1950910e-02 7.7279181e-02 1.3907744e-01 1.2568112e-01 1.2011323e-01 1.2420710e-01 1.3046004e-01 1.3207399e-01 1.2824918e-01 1.2752552e-01 1.3553911e-01 1.1524115e-01 9.8893820e-02 1.1975932e-01 1.1323008e-01 1.3322963e-01 1.3377253e-01 1.1295596e-01 1.1379378e-01 1.1416138e-01 1.5374990e-01 1.2806482e-01 1.1555054e-01 1.2219358e-01 1.3787989e-01 1.0651347e-01 1.1318026e-01 1.1161431e-01 1.0188137e-01 1.0132199e-01 1.3022140e-01 1.0855236e-01 1.2404638e-01 1.0022528e-01 1.3210134e-01 1.0532767e-01 1.3250558e-01 1.1917979e-01 1.2157791e-01 1.1297631e-01 9.9847302e-02 1.0571550e-01 1.2097128e-01 1.0080768e-01 1.2568112e-01 1.2354605e-01 1.2062969e-01 1.0973133e-01 1.1825900e-01 1.0742526e-01 1.1535080e-01 1.1244756e-01 1.9470856e-03 1.8498175e-03 4.7714250e-03 2.8358661e-03 3.0255426e-03 1.1308587e-03 6.7035566e-04 9.3284570e-04 1.3935241e-03 9.8369983e-04 5.6854836e-03 1.9144361e-03 1.0961099e-03 2.6770659e-03 6.7637792e-04 7.3922961e-04 1.6168588e-03 1.9795771e-04 8.8027763e-04 2.3819907e-03 2.3199642e-03 2.7913184e-03 1.4791390e-03 3.2257382e-03 3.5250868e-03 1.4791390e-03 4.9791374e-04 7.0216560e-04 1.6800207e-03 1.0022835e-02 5.5855445e-04 1.9786373e-03 9.4684044e-04 1.9956071e-03 4.5593799e-04 2.5049818e-04 7.2992180e-04 1.1563910e-03 6.0779252e-02 6.2273308e-02 7.0462169e-02 8.1326510e-02 7.4767830e-02 7.8734546e-02 6.8077240e-02 5.6059538e-02 6.8181020e-02 7.1050105e-02 7.6799016e-02 6.4482663e-02 7.5580358e-02 7.7962233e-02 4.9642606e-02 5.8153068e-02 7.8105114e-02 6.3436311e-02 9.5564553e-02 6.6739850e-02 8.2930379e-02 5.9008492e-02 9.5418848e-02 7.8187143e-02 6.1832470e-02 6.1508833e-02 7.5927040e-02 8.0793818e-02 7.4771898e-02 4.9618073e-02 6.7927507e-02 6.3289271e-02 6.0099335e-02 1.0140473e-01 8.1745663e-02 6.4187383e-02 6.7135505e-02 8.4768567e-02 6.1827019e-02 7.4354928e-02 8.3103529e-02 7.2159743e-02 6.6094709e-02 5.8361788e-02 7.3251937e-02 6.2103535e-02 6.6220430e-02 6.3584868e-02 4.3971154e-02 6.5863068e-02 1.2260074e-01 1.1066837e-01 1.0619606e-01 1.0899833e-01 1.1518894e-01 1.1739848e-01 1.1240635e-01 1.1296742e-01 1.2096568e-01 1.0086214e-01 8.5896751e-02 1.0590639e-01 9.9771313e-02 1.1830710e-01 1.1878365e-01 9.8989344e-02 9.9484141e-02 9.9300506e-02 1.3860781e-01 1.1421784e-01 1.0167360e-01 1.0723785e-01 1.2323222e-01 9.3791376e-02 9.8729091e-02 9.7617417e-02 8.9196630e-02 8.7906597e-02 1.1533851e-01 9.5241683e-02 1.1037299e-01 8.6684313e-02 1.1722334e-01 9.1866320e-02 1.1676032e-01 1.0620321e-01 1.0631345e-01 9.8352717e-02 8.6492752e-02 9.2837846e-02 1.0689111e-01 8.8947496e-02 1.1066837e-01 1.0877202e-01 1.0619549e-01 9.7005210e-02 1.0523294e-01 9.4129616e-02 1.0043708e-01 9.7689504e-02 1.8508011e-03 3.7513322e-03 6.0039368e-03 4.2304138e-03 1.5191600e-03 7.2789043e-04 3.6236504e-03 2.5132214e-04 3.2740913e-03 8.1034702e-03 2.4941139e-03 4.0964229e-03 6.0206143e-04 1.9190323e-03 6.6472571e-04 5.1664338e-04 1.3616103e-03 7.0613265e-04 1.0312088e-03 5.8211090e-03 5.1401914e-03 7.1256747e-05 1.1045080e-03 1.1556192e-03 7.1256747e-05 9.3818356e-04 5.1597856e-04 2.2957469e-03 4.3308939e-03 2.5276111e-03 4.3800580e-03 5.1684770e-03 5.8668191e-04 3.2395561e-03 1.2942225e-03 1.4104695e-03 4.9075437e-04 6.2060492e-02 6.5820549e-02 7.2324527e-02 8.2688153e-02 7.6151035e-02 8.3216525e-02 7.3194172e-02 5.8477367e-02 6.9270609e-02 7.6249005e-02 7.6681852e-02 6.8643243e-02 7.3331578e-02 8.1706941e-02 5.2792718e-02 5.9477668e-02 8.4501232e-02 6.5244243e-02 9.4903309e-02 6.8042766e-02 9.0018791e-02 6.0245936e-02 9.6930604e-02 8.1064051e-02 6.3026851e-02 6.2769846e-02 7.6368221e-02 8.3589775e-02 7.8680956e-02 4.9590571e-02 6.8853459e-02 6.3691512e-02 6.1750809e-02 1.0592213e-01 8.9183264e-02 7.0750492e-02 6.9363027e-02 8.3535040e-02 6.6868103e-02 7.6873580e-02 8.7073732e-02 7.6162997e-02 6.7469442e-02 5.9546534e-02 7.6928171e-02 6.6694450e-02 7.0471384e-02 6.5682900e-02 4.5133798e-02 6.9312951e-02 1.3167296e-01 1.1664541e-01 1.0993682e-01 1.1453374e-01 1.2132631e-01 1.2063781e-01 1.2028602e-01 1.1588513e-01 1.2343288e-01 1.0759677e-01 9.1184353e-02 1.0959799e-01 1.0389171e-01 1.2371908e-01 1.2606621e-01 1.0559841e-01 1.0439417e-01 1.0553794e-01 1.4077951e-01 1.1579171e-01 1.0695513e-01 1.1441431e-01 1.2538100e-01 9.6825962e-02 1.0496558e-01 1.0155971e-01 9.2933277e-02 9.3305204e-02 1.2046243e-01 9.7626604e-02 1.1224568e-01 9.1421248e-02 1.2250398e-01 9.5336276e-02 1.2112681e-01 1.0839632e-01 1.1495562e-01 1.0414545e-01 9.2136906e-02 9.6777242e-02 1.1252211e-01 9.2559606e-02 1.1664541e-01 1.1484781e-01 1.1301462e-01 1.0121871e-01 1.0770332e-01 9.8720694e-02 1.0901533e-01 1.0446815e-01 7.8277898e-04 1.7490530e-03 1.0345024e-03 5.6185312e-04 1.1591486e-03 1.1405764e-03 2.5549089e-03 1.4484284e-03 2.2580494e-03 4.5713265e-03 5.6870335e-03 4.1902203e-03 2.4320876e-03 6.0369458e-04 6.2286369e-04 2.4521502e-03 2.9038905e-03 2.2436415e-03 1.7675525e-03 9.5896000e-04 2.0377231e-03 8.9090360e-04 9.7827632e-04 2.0377231e-03 7.4516940e-04 8.4824201e-04 4.3724648e-04 1.0582513e-02 7.1366344e-04 4.1221085e-03 4.7945036e-03 2.3833891e-03 1.3170043e-03 8.5049004e-04 2.9093352e-04 6.7142903e-04 7.9558936e-02 8.2158081e-02 9.0820201e-02 1.0264403e-01 9.5277746e-02 1.0150997e-01 8.9387659e-02 7.4718776e-02 8.7974881e-02 9.2637642e-02 9.6993873e-02 8.4761019e-02 9.4485044e-02 1.0025701e-01 6.7224195e-02 7.6433848e-02 1.0126400e-01 8.3185627e-02 1.1729605e-01 8.6461029e-02 1.0658954e-01 7.7314215e-02 1.1857784e-01 1.0034666e-01 8.0683042e-02 8.0237049e-02 9.6300382e-02 1.0267579e-01 9.6489769e-02 6.6032956e-02 8.7552344e-02 8.2099586e-02 7.8915667e-02 1.2662250e-01 1.0571935e-01 8.5387558e-02 8.7148938e-02 1.0518820e-01 8.2417845e-02 9.5416475e-02 1.0627769e-01 9.3794810e-02 8.5650752e-02 7.6704239e-02 9.4843643e-02 8.2753514e-02 8.7142105e-02 8.3165683e-02 5.9528971e-02 8.6320416e-02 1.5080041e-01 1.3699340e-01 1.3123407e-01 1.3538631e-01 1.4196949e-01 1.4361623e-01 1.3957348e-01 1.3881335e-01 1.4720194e-01 1.2611020e-01 1.0906565e-01 1.3086970e-01 1.2408176e-01 1.4489915e-01 1.4541581e-01 1.2374159e-01 1.2456922e-01 1.2489938e-01 1.6613145e-01 1.3940980e-01 1.2649129e-01 1.3333884e-01 1.4960338e-01 1.1706680e-01 1.2394226e-01 1.2226369e-01 1.1222236e-01 1.1158045e-01 1.4175176e-01 1.1903032e-01 1.3525827e-01 1.1036833e-01 1.4372294e-01 1.1569638e-01 1.4384978e-01 1.3029466e-01 1.3261278e-01 1.2368173e-01 1.1003418e-01 1.1624174e-01 1.3214763e-01 1.1113124e-01 1.3699340e-01 1.3478604e-01 1.3174332e-01 1.2045775e-01 1.2933910e-01 1.1801062e-01 1.2611372e-01 1.2312584e-01 2.4038804e-03 9.9356679e-04 1.6379146e-03 2.9968879e-03 2.7777132e-03 5.0292552e-03 2.9485139e-03 1.7810659e-03 7.1187929e-03 1.0385224e-02 6.8192179e-03 4.7007047e-03 2.2536066e-03 1.6978265e-03 5.5995030e-03 5.8830752e-03 3.3086218e-03 3.5101479e-03 1.6089784e-03 4.3755431e-03 1.0574938e-03 1.0592785e-03 4.3755431e-03 2.5472554e-03 2.6641717e-03 1.0704333e-03 1.2070572e-02 2.4953874e-03 6.0785955e-03 8.5181088e-03 3.9627930e-03 3.6619699e-03 2.9233174e-03 1.7757672e-03 2.0595965e-03 9.0904959e-02 9.3846404e-02 1.0296173e-01 1.1510418e-01 1.0729700e-01 1.1521099e-01 1.0181822e-01 8.5988795e-02 1.0000742e-01 1.0504161e-01 1.0917671e-01 9.6459196e-02 1.0622808e-01 1.1358449e-01 7.7434068e-02 8.7329703e-02 1.1478646e-01 9.5582611e-02 1.2982843e-01 9.8465917e-02 1.1998512e-01 8.8160180e-02 1.3221652e-01 1.1399918e-01 9.2024225e-02 9.1371105e-02 1.0854159e-01 1.1533865e-01 1.0916600e-01 7.6158175e-02 9.9423258e-02 9.3687045e-02 9.0204262e-02 1.4138542e-01 1.1970815e-01 9.7663366e-02 9.8994798e-02 1.1736337e-01 9.4681982e-02 1.0777767e-01 1.2034441e-01 1.0671033e-01 9.7400706e-02 8.7763928e-02 1.0767516e-01 9.5332473e-02 9.9630913e-02 9.4930517e-02 6.8563663e-02 9.8462875e-02 1.6617515e-01 1.5176730e-01 1.4543395e-01 1.5072522e-01 1.5691405e-01 1.5882414e-01 1.5479314e-01 1.5416358e-01 1.6247914e-01 1.3996762e-01 1.2197918e-01 1.4500225e-01 1.3765005e-01 1.5950314e-01 1.5937612e-01 1.3710080e-01 1.3913130e-01 1.3976637e-01 1.8183098e-01 1.5420823e-01 1.4014252e-01 1.4766552e-01 1.6507182e-01 1.3020370e-01 1.3818766e-01 1.3684571e-01 1.2517707e-01 1.2500429e-01 1.5651711e-01 1.3335007e-01 1.4978001e-01 1.2432862e-01 1.5834992e-01 1.2988375e-01 1.6032290e-01 1.4373178e-01 1.4688056e-01 1.3840222e-01 1.2332107e-01 1.2926358e-01 1.4578293e-01 1.2292671e-01 1.5176730e-01 1.4922075e-01 1.4546636e-01 1.3299550e-01 1.4276363e-01 1.3134387e-01 1.4008961e-01 1.3766630e-01 5.7728358e-04 1.6620505e-03 3.0662753e-03 5.1693417e-04 6.0968463e-03 8.4744633e-04 8.7364721e-04 5.8106642e-03 6.7399476e-03 8.6083103e-03 3.1702748e-03 2.7104978e-03 3.3164143e-03 4.2509190e-03 5.8084215e-03 4.6709776e-03 9.8526568e-04 3.6786909e-04 5.9630791e-03 3.9566796e-03 4.2657824e-03 5.9630791e-03 2.3876668e-03 3.1383576e-03 1.0693622e-03 1.7187016e-02 9.8571152e-04 3.1367899e-03 3.7448988e-03 5.3108404e-03 1.2637202e-03 2.1359423e-03 1.6418787e-03 3.1352541e-03 8.3834616e-02 8.4243676e-02 9.4832859e-02 1.0703873e-01 9.9466934e-02 1.0403376e-01 9.0316788e-02 7.7914871e-02 9.2850027e-02 9.3299365e-02 1.0296391e-01 8.6082003e-02 1.0248600e-01 1.0318273e-01 6.8824902e-02 8.0299100e-02 1.0157055e-01 8.7955506e-02 1.2341155e-01 9.1142100e-02 1.0580332e-01 8.1173197e-02 1.2350931e-01 1.0460831e-01 8.4991511e-02 8.4254332e-02 1.0174542e-01 1.0573929e-01 9.8648070e-02 7.1061471e-02 9.2438015e-02 8.7508516e-02 8.2750270e-02 1.2928539e-01 1.0529438e-01 8.4835976e-02 9.0594121e-02 1.1204138e-01 8.3577196e-02 9.8754999e-02 1.0957368e-01 9.6258171e-02 8.9990776e-02 8.0898906e-02 9.7508458e-02 8.4744426e-02 8.9161769e-02 8.6853262e-02 6.2377571e-02 8.8830405e-02 1.4853162e-01 1.3772455e-01 1.3389458e-01 1.3729951e-01 1.4254710e-01 1.4753124e-01 1.3874272e-01 1.4343376e-01 1.5191156e-01 1.2542851e-01 1.0950060e-01 1.3351960e-01 1.2589032e-01 1.4575308e-01 1.4361388e-01 1.2273259e-01 1.2665814e-01 1.2593062e-01 1.7100462e-01 1.4482556e-01 1.2707776e-01 1.3245591e-01 1.5480441e-01 1.1982038e-01 1.2429326e-01 1.2550864e-01 1.1421155e-01 1.1236837e-01 1.4320023e-01 1.2379599e-01 1.4017288e-01 1.1252737e-01 1.4478118e-01 1.1925773e-01 1.4807486e-01 1.3379535e-01 1.3019772e-01 1.2505772e-01 1.1047444e-01 1.1793234e-01 1.3214851e-01 1.1203286e-01 1.3772455e-01 1.3511133e-01 1.3062456e-01 1.2117415e-01 1.3256036e-01 1.1928977e-01 1.2368263e-01 1.2328316e-01 7.8697050e-04 2.0732289e-03 9.4315564e-04 4.6001401e-03 8.4240364e-04 1.3015708e-03 4.6297460e-03 7.5292997e-03 6.5572401e-03 2.5566943e-03 1.7941741e-03 1.8226799e-03 3.9920133e-03 4.8070278e-03 2.6490734e-03 2.2737423e-03 8.3198965e-04 4.4970379e-03 1.8707122e-03 2.0801746e-03 4.4970379e-03 1.6864362e-03 2.1518496e-03 3.0908897e-04 1.2802000e-02 1.1444166e-03 2.7605116e-03 4.8428825e-03 3.3840997e-03 1.9469936e-03 1.7958172e-03 1.1565833e-03 1.8697862e-03 8.2127567e-02 8.3518119e-02 9.3314949e-02 1.0506408e-01 9.7541782e-02 1.0397584e-01 9.0341739e-02 7.6817337e-02 9.1083710e-02 9.3231274e-02 1.0048418e-01 8.5524503e-02 9.9112893e-02 1.0267345e-01 6.7846626e-02 7.8515797e-02 1.0225403e-01 8.6849217e-02 1.2022955e-01 8.9502113e-02 1.0655817e-01 7.9297559e-02 1.2165144e-01 1.0391861e-01 8.3203942e-02 8.2410584e-02 9.9528824e-02 1.0443382e-01 9.8019721e-02 6.8818975e-02 9.0543610e-02 8.5485551e-02 8.1186134e-02 1.2894588e-01 1.0651601e-01 8.5580315e-02 8.9213768e-02 1.0886353e-01 8.3754339e-02 9.7441118e-02 1.0932583e-01 9.5882843e-02 8.8282134e-02 7.9128322e-02 9.6917266e-02 8.4873719e-02 8.8927957e-02 8.5532654e-02 6.0384203e-02 8.8123284e-02 1.4980593e-01 1.3770759e-01 1.3282368e-01 1.3741111e-01 1.4254251e-01 1.4639384e-01 1.3970199e-01 1.4238069e-01 1.5040197e-01 1.2563911e-01 1.0916002e-01 1.3240724e-01 1.2489275e-01 1.4520334e-01 1.4360899e-01 1.2274102e-01 1.2644577e-01 1.2642535e-01 1.6908994e-01 1.4294672e-01 1.2654652e-01 1.3286867e-01 1.5320101e-01 1.1837980e-01 1.2451917e-01 1.2497748e-01 1.1312705e-01 1.1222677e-01 1.4268257e-01 1.2261254e-01 1.3839073e-01 1.1239899e-01 1.4421566e-01 1.1854547e-01 1.4805458e-01 1.3176737e-01 1.3127552e-01 1.2532607e-01 1.1042618e-01 1.1684289e-01 1.3160924e-01 1.1043724e-01 1.3770759e-01 1.3504379e-01 1.3066174e-01 1.1987723e-01 1.3066578e-01 1.1856367e-01 1.2478710e-01 1.2391087e-01 3.0983409e-04 7.5828890e-04 1.5917755e-03 4.8958816e-04 3.3744944e-03 2.1101097e-03 4.2400870e-03 2.8698866e-03 7.9583168e-04 2.4610899e-04 3.6436132e-04 1.4311801e-03 1.7294514e-03 8.6738167e-04 2.6111809e-03 1.6704106e-03 1.5921641e-03 8.6161593e-04 1.0547029e-03 1.5921641e-03 2.0427868e-04 3.5845705e-04 1.2194863e-04 8.2981219e-03 4.9180195e-04 1.7380522e-03 3.0734607e-03 1.0728608e-03 1.1397310e-03 3.4603128e-04 1.9200118e-04 2.8845040e-04 6.9779438e-02 7.1836392e-02 8.0319868e-02 9.1354890e-02 8.4353236e-02 9.0635736e-02 7.8599311e-02 6.5140986e-02 7.7899100e-02 8.1486701e-02 8.6472565e-02 7.4062042e-02 8.4619349e-02 8.9336326e-02 5.7575298e-02 6.6635212e-02 8.9946961e-02 7.3779929e-02 1.0532587e-01 7.6464940e-02 9.4587006e-02 6.7402630e-02 1.0673169e-01 8.9925800e-02 7.0797999e-02 7.0219100e-02 8.5721997e-02 9.1187854e-02 8.5377890e-02 5.7235173e-02 7.7431768e-02 7.2498793e-02 6.9063158e-02 1.1428266e-01 9.4218471e-02 7.4725647e-02 7.6703845e-02 9.4228329e-02 7.2261001e-02 8.4462132e-02 9.5360997e-02 8.3133678e-02 7.5506963e-02 6.7041127e-02 8.4070372e-02 7.2903149e-02 7.6784460e-02 7.3115143e-02 5.0413571e-02 7.5926129e-02 1.3636539e-01 1.2353657e-01 1.1821263e-01 1.2258303e-01 1.2822457e-01 1.3051322e-01 1.2599517e-01 1.2631512e-01 1.3406707e-01 1.1278003e-01 9.6722933e-02 1.1783731e-01 1.1110860e-01 1.3080317e-01 1.3063996e-01 1.1029647e-01 1.1216341e-01 1.1248813e-01 1.5199693e-01 1.2674108e-01 1.1318561e-01 1.1969790e-01 1.3653036e-01 1.0458853e-01 1.1112582e-01 1.1028100e-01 9.9890110e-02 9.9356661e-02 1.2805612e-01 1.0750038e-01 1.2261289e-01 9.8791075e-02 1.2975191e-01 1.0408196e-01 1.3162969e-01 1.1713290e-01 1.1886116e-01 1.1132823e-01 9.7814075e-02 1.0357451e-01 1.1833994e-01 9.8179977e-02 1.2353657e-01 1.2124412e-01 1.1787602e-01 1.0709455e-01 1.1618054e-01 1.0529428e-01 1.1269702e-01 1.1053049e-01 1.3650135e-03 5.3926014e-04 9.6875216e-04 5.5085642e-03 1.1951469e-03 2.8096772e-03 1.4033998e-03 3.8702395e-04 1.0970323e-04 3.3218009e-04 5.6326785e-04 5.8024795e-04 5.6723773e-04 3.5935032e-03 3.0059920e-03 6.4984761e-04 1.1677062e-03 1.3673782e-03 6.4984761e-04 7.6378345e-05 6.3488092e-05 8.1586688e-04 6.3954323e-03 8.4458294e-04 1.6959745e-03 2.5316364e-03 4.4648839e-04 1.3649198e-03 2.1646092e-04 4.0910219e-04 1.5323026e-04 6.2114649e-02 6.4461203e-02 7.2168083e-02 8.2712554e-02 7.6067484e-02 8.2127836e-02 7.1085856e-02 5.7869953e-02 6.9689694e-02 7.3941980e-02 7.7755077e-02 6.6772898e-02 7.5730146e-02 8.0858032e-02 5.1159438e-02 5.9263906e-02 8.1982206e-02 6.5662191e-02 9.5957099e-02 6.8346124e-02 8.6755825e-02 6.0017643e-02 9.7272303e-02 8.1103209e-02 6.3092478e-02 6.2637310e-02 7.7107544e-02 8.2765719e-02 7.7320565e-02 5.0179546e-02 6.9272103e-02 6.4477670e-02 6.1520691e-02 1.0482403e-01 8.6201836e-02 6.7723532e-02 6.8849001e-02 8.5128110e-02 6.4954612e-02 7.6260237e-02 8.6474261e-02 7.5037042e-02 6.7540885e-02 5.9554295e-02 7.5917230e-02 6.5334858e-02 6.9084098e-02 6.5352935e-02 4.4308417e-02 6.8222624e-02 1.2733314e-01 1.1424612e-01 1.0876932e-01 1.1294180e-01 1.1881213e-01 1.2027633e-01 1.1690957e-01 1.1601884e-01 1.2357066e-01 1.0430113e-01 8.8647048e-02 1.0842142e-01 1.0217893e-01 1.2134270e-01 1.2195833e-01 1.0207761e-01 1.0292571e-01 1.0341320e-01 1.4095409e-01 1.1639921e-01 1.0445121e-01 1.1097871e-01 1.2583780e-01 9.5736690e-02 1.0236688e-01 1.0085185e-01 9.1372067e-02 9.1009848e-02 1.1849408e-01 9.7905297e-02 1.1253291e-01 9.0050809e-02 1.2026601e-01 9.4848068e-02 1.2106318e-01 1.0772883e-01 1.1055160e-01 1.0223795e-01 8.9621067e-02 9.5003079e-02 1.0961118e-01 9.0242843e-02 1.1424612e-01 1.1217935e-01 1.0939970e-01 9.8767943e-02 1.0686010e-01 9.6691216e-02 1.0462140e-01 1.0177309e-01 3.4212913e-03 2.0350185e-04 2.2645835e-03 3.4346676e-03 3.6178579e-03 5.4115677e-03 1.4013939e-03 1.2010586e-03 1.9342083e-03 1.8303919e-03 3.0241355e-03 3.0182648e-03 8.7783530e-04 7.3200159e-04 3.3935862e-03 3.0016113e-03 3.3110105e-03 3.3935862e-03 9.0468402e-04 1.4291912e-03 6.5529771e-04 1.3482371e-02 1.1883350e-04 1.9129351e-03 1.8189821e-03 3.2224845e-03 2.2840556e-04 6.5009173e-04 5.8224397e-04 1.6275063e-03 7.3184911e-02 7.4026716e-02 8.3609924e-02 9.5240271e-02 8.8102740e-02 9.2390529e-02 7.9966102e-02 6.7767341e-02 8.1513618e-02 8.2938634e-02 9.0997666e-02 7.6011769e-02 9.0234918e-02 9.1578032e-02 5.9804069e-02 7.0034281e-02 9.0682677e-02 7.6686753e-02 1.1071727e-01 7.9918092e-02 9.5151478e-02 7.0899518e-02 1.1069472e-01 9.2509702e-02 7.4297007e-02 7.3732579e-02 8.9920224e-02 9.4250688e-02 8.7608739e-02 6.1121885e-02 8.1169501e-02 7.6375843e-02 7.2267735e-02 1.1652820e-01 9.4360734e-02 7.5150369e-02 7.9755441e-02 9.9609504e-02 7.3443983e-02 8.7507436e-02 9.7438140e-02 8.5130511e-02 7.8978434e-02 7.0471516e-02 8.6314807e-02 7.4241923e-02 7.8526940e-02 7.6102189e-02 5.3711374e-02 7.8190521e-02 1.3653802e-01 1.2528995e-01 1.2121146e-01 1.2435019e-01 1.2997976e-01 1.3382130e-01 1.2659694e-01 1.2959353e-01 1.3786369e-01 1.1404399e-01 9.8548323e-02 1.2087284e-01 1.1387348e-01 1.3314978e-01 1.3209550e-01 1.1169631e-01 1.1419600e-01 1.1368838e-01 1.5633317e-01 1.3093427e-01 1.1535002e-01 1.2078800e-01 1.4049523e-01 1.0785716e-01 1.1249675e-01 1.1275652e-01 1.0267406e-01 1.0105332e-01 1.3042827e-01 1.1078233e-01 1.2662105e-01 1.0064162e-01 1.3213313e-01 1.0672611e-01 1.3386868e-01 1.2116827e-01 1.1908244e-01 1.1278797e-01 9.9360911e-02 1.0635497e-01 1.2047378e-01 1.0130606e-01 1.2528995e-01 1.2297832e-01 1.1929072e-01 1.0997770e-01 1.2004306e-01 1.0767864e-01 1.1284273e-01 1.1147304e-01 2.8709378e-03 9.0791333e-03 1.3407674e-03 2.7138923e-03 2.4677711e-04 1.1444972e-03 7.6121265e-04 8.8810957e-04 7.0009018e-04 1.4757411e-04 9.0393445e-04 6.0883361e-03 5.6961877e-03 1.2039709e-04 1.8816976e-03 2.0265121e-03 1.2039709e-04 8.6239061e-04 5.2686780e-04 2.5538294e-03 4.1367540e-03 2.4461852e-03 3.1968429e-03 3.7345867e-03 3.8813913e-04 2.9749715e-03 1.1153685e-03 1.5845430e-03 6.9221070e-04 5.5493017e-02 5.8687008e-02 6.5182775e-02 7.5153394e-02 6.8882837e-02 7.5289957e-02 6.5516107e-02 5.1904720e-02 6.2434251e-02 6.8395322e-02 6.9725101e-02 6.1264247e-02 6.7000659e-02 7.3915045e-02 4.6337454e-02 5.2993228e-02 7.6203506e-02 5.8574285e-02 8.7235787e-02 6.1228310e-02 8.1349394e-02 5.3727422e-02 8.8860415e-02 7.3529860e-02 5.6419133e-02 5.6136434e-02 6.9314277e-02 7.5768587e-02 7.0921131e-02 4.3887190e-02 6.2047408e-02 5.7247874e-02 5.5122668e-02 9.7063471e-02 8.0589157e-02 6.3015465e-02 6.2273448e-02 7.6485434e-02 5.9534434e-02 6.9400424e-02 7.9100961e-02 6.8556756e-02 6.0632063e-02 5.3105900e-02 6.9320431e-02 5.9485747e-02 6.3075829e-02 5.8812039e-02 3.9389619e-02 6.2057390e-02 1.2120786e-01 1.0709958e-01 1.0095433e-01 1.0522389e-01 1.1158919e-01 1.1144992e-01 1.1038844e-01 1.0698853e-01 1.1429410e-01 9.8230586e-02 8.2643326e-02 1.0062987e-01 9.5029365e-02 1.1396256e-01 1.1592889e-01 9.6297509e-02 9.5506831e-02 9.6444702e-02 1.3110088e-01 1.0707131e-01 9.7795782e-02 1.0475251e-01 1.1626300e-01 8.8405248e-02 9.5813058e-02 9.2970070e-02 8.4549021e-02 8.4699662e-02 1.1089247e-01 8.9470273e-02 1.0356569e-01 8.3077190e-02 1.1281589e-01 8.7056416e-02 1.1197016e-01 9.9670877e-02 1.0510107e-01 9.5157512e-02 8.3537128e-02 8.8197538e-02 1.0308982e-01 8.4141549e-02 1.0709958e-01 1.0532428e-01 1.0341164e-01 9.2382015e-02 9.8953568e-02 8.9983057e-02 9.9390435e-02 9.5301345e-02 3.0771633e-03 2.2394953e-03 3.5785600e-03 4.5455517e-03 7.4728021e-04 1.0553655e-03 1.6471751e-03 1.6255623e-03 2.5337657e-03 2.0402330e-03 1.9207121e-03 1.4230439e-03 3.0970780e-03 2.6131629e-03 2.9423829e-03 3.0970780e-03 7.3620931e-04 1.2096052e-03 5.1210113e-04 1.1445573e-02 3.3743120e-04 9.3762253e-04 1.6709589e-03 2.3328362e-03 6.4367426e-04 6.1292579e-04 6.6980522e-04 1.3596425e-03 6.8771058e-02 6.9631829e-02 7.8939123e-02 9.0076585e-02 8.3106206e-02 8.8021023e-02 7.5587788e-02 6.3613086e-02 7.6977857e-02 7.8355410e-02 8.6058485e-02 7.1477483e-02 8.5350309e-02 8.7042060e-02 5.5585563e-02 6.5564323e-02 8.6285657e-02 7.2679829e-02 1.0489589e-01 7.5454083e-02 9.0429367e-02 6.6346194e-02 1.0535674e-01 8.8189227e-02 6.9809235e-02 6.9152322e-02 8.5027647e-02 8.9182145e-02 8.2908995e-02 5.6974544e-02 7.6567724e-02 7.1978204e-02 6.7853368e-02 1.1142320e-01 9.0045691e-02 7.1019587e-02 7.5131918e-02 9.4265212e-02 6.9407495e-02 8.2681448e-02 9.3017444e-02 8.0734547e-02 7.4408554e-02 6.6081064e-02 8.1800498e-02 7.0361312e-02 7.4293705e-02 7.1683996e-02 4.9412056e-02 7.3791248e-02 1.3087381e-01 1.1972349e-01 1.1554097e-01 1.1917243e-01 1.2428472e-01 1.2815053e-01 1.2126029e-01 1.2425112e-01 1.3208038e-01 1.0854852e-01 9.3334993e-02 1.1518188e-01 1.0821021e-01 1.2711496e-01 1.2583624e-01 1.0606084e-01 1.0908141e-01 1.0877992e-01 1.4997249e-01 1.2525272e-01 1.0965413e-01 1.1522136e-01 1.3472784e-01 1.0229252e-01 1.0728052e-01 1.0776484e-01 9.7267064e-02 9.5981774e-02 1.2460839e-01 1.0582154e-01 1.2096134e-01 9.5922459e-02 1.2615683e-01 1.0184377e-01 1.2900688e-01 1.1512576e-01 1.1363761e-01 1.0783825e-01 9.4308496e-02 1.0078579e-01 1.1452781e-01 9.5389301e-02 1.1972349e-01 1.1733679e-01 1.1347632e-01 1.0398208e-01 1.1403752e-01 1.0220157e-01 1.0755302e-01 1.0649118e-01 1.0147620e-02 1.1247381e-02 1.2064168e-02 6.5374061e-03 4.5897505e-03 4.8228518e-03 7.5563629e-03 9.2308338e-03 7.2321889e-03 1.6011806e-03 5.3396772e-04 8.3950153e-03 4.7739373e-03 4.9472694e-03 8.3950153e-03 4.4998786e-03 5.2439437e-03 2.2809748e-03 2.1071898e-02 2.7056396e-03 6.9610435e-03 7.8780829e-03 8.1126375e-03 3.2257880e-03 4.3393216e-03 3.1425928e-03 4.9174647e-03 1.0007131e-01 1.0106593e-01 1.1217080e-01 1.2532148e-01 1.1715442e-01 1.2248393e-01 1.0792073e-01 9.3860583e-02 1.0976919e-01 1.1122163e-01 1.2044721e-01 1.0322968e-01 1.1921347e-01 1.2149913e-01 8.4186074e-02 9.6291408e-02 1.2023049e-01 1.0442285e-01 1.4247402e-01 1.0795998e-01 1.2499239e-01 9.7246530e-02 1.4298267e-01 1.2269113e-01 1.0132833e-01 1.0059203e-01 1.1928692e-01 1.2425009e-01 1.1675840e-01 8.5744895e-02 1.0931412e-01 1.0376332e-01 9.9002718e-02 1.4971116e-01 1.2434000e-01 1.0215677e-01 1.0769100e-01 1.2998610e-01 1.0050022e-01 1.1660891e-01 1.2830083e-01 1.1408155e-01 1.0679553e-01 9.6866698e-02 1.1540492e-01 1.0158690e-01 1.0644304e-01 1.0354221e-01 7.6665035e-02 1.0598765e-01 1.7102185e-01 1.5912057e-01 1.5467066e-01 1.5843570e-01 1.6430112e-01 1.6898961e-01 1.6040927e-01 1.6442765e-01 1.7347908e-01 1.4613872e-01 1.2882261e-01 1.5426961e-01 1.4623773e-01 1.6767510e-01 1.6569930e-01 1.4326884e-01 1.4700928e-01 1.4639344e-01 1.9375995e-01 1.6572948e-01 1.4772209e-01 1.5370280e-01 1.7644069e-01 1.3951457e-01 1.4477511e-01 1.4552738e-01 1.3362833e-01 1.3186831e-01 1.6485780e-01 1.4332228e-01 1.6088049e-01 1.3176893e-01 1.6660706e-01 1.3873049e-01 1.6938110e-01 1.5434218e-01 1.5143663e-01 1.4540553e-01 1.2987912e-01 1.3768917e-01 1.5323248e-01 1.3136310e-01 1.5912057e-01 1.5638588e-01 1.5175254e-01 1.4128505e-01 1.5308268e-01 1.3923812e-01 1.4444485e-01 1.4370095e-01 2.6770864e-03 1.6033718e-03 4.5840441e-04 2.0276877e-03 2.4561050e-03 1.2787767e-03 1.0310968e-03 1.1138996e-03 7.3996134e-03 6.8122401e-03 2.1890332e-03 3.7576667e-03 4.1081994e-03 2.1890332e-03 1.7366871e-03 1.7496571e-03 3.0804223e-03 5.2624414e-03 3.0566387e-03 8.7139687e-04 2.3320271e-03 9.5854356e-04 3.5582665e-03 1.9033529e-03 2.7781156e-03 2.0582238e-03 4.8466175e-02 5.0119607e-02 5.7333122e-02 6.6635612e-02 6.0625611e-02 6.6546613e-02 5.6002103e-02 4.4610205e-02 5.5428894e-02 5.8355341e-02 6.2731565e-02 5.1936578e-02 6.1589720e-02 6.5254921e-02 3.8121898e-02 4.5707178e-02 6.5954438e-02 5.2310619e-02 7.8737277e-02 5.4221486e-02 6.9833666e-02 4.6306978e-02 8.0104533e-02 6.6061691e-02 4.9289042e-02 4.8703396e-02 6.2029842e-02 6.6459215e-02 6.1626890e-02 3.8139914e-02 5.4977441e-02 5.0955269e-02 4.7810568e-02 8.6879401e-02 6.9864176e-02 5.2960539e-02 5.4195866e-02 6.9397405e-02 5.0805294e-02 6.0771100e-02 7.0699543e-02 5.9928918e-02 5.3277849e-02 4.6137567e-02 6.0647902e-02 5.1507184e-02 5.4535520e-02 5.1271651e-02 3.2182295e-02 5.3653922e-02 1.0655841e-01 9.4809862e-02 8.9943103e-02 9.4257768e-02 9.8930460e-02 1.0102907e-01 9.7318001e-02 9.7573045e-02 1.0420091e-01 8.5339961e-02 7.1237738e-02 8.9593643e-02 8.3615246e-02 1.0099568e-01 1.0093948e-01 8.3072610e-02 8.4968711e-02 8.5464008e-02 1.2001752e-01 9.7755169e-02 8.5475001e-02 9.1482164e-02 1.0648093e-01 7.7912530e-02 8.4002788e-02 8.3421922e-02 7.3855173e-02 7.3645673e-02 9.8656580e-02 8.1073912e-02 9.4018658e-02 7.3420060e-02 1.0008227e-01 7.8012093e-02 1.0282145e-01 8.8787179e-02 9.1014600e-02 8.4377747e-02 7.2315249e-02 7.7005472e-02 8.9946277e-02 7.2132565e-02 9.4809862e-02 9.2717682e-02 8.9711332e-02 7.9921256e-02 8.7947099e-02 7.8589830e-02 8.5634568e-02 8.3685774e-02 3.6322977e-03 2.1046334e-03 3.2662345e-03 4.7576391e-03 8.8436254e-04 1.6169936e-03 5.0909036e-03 5.3937261e-03 6.9592372e-03 3.1326528e-03 7.3963134e-03 7.8155750e-03 3.1326528e-03 2.8162695e-03 2.9888005e-03 5.3841195e-03 1.1640832e-02 3.1058623e-03 3.5268449e-03 8.9518404e-04 4.1579453e-03 2.4418843e-03 2.3174283e-03 3.5804624e-03 3.9289766e-03 4.8779386e-02 4.9807262e-02 5.7295117e-02 6.7429274e-02 6.1528729e-02 6.3805672e-02 5.4672352e-02 4.4305273e-02 5.5263563e-02 5.7527840e-02 6.3439356e-02 5.1886311e-02 6.2844358e-02 6.3392021e-02 3.9105833e-02 4.6659036e-02 6.3315061e-02 5.0431450e-02 8.1151197e-02 5.3901750e-02 6.8036856e-02 4.7518043e-02 7.9948453e-02 6.3397617e-02 4.9788208e-02 4.9648688e-02 6.2516012e-02 6.6678586e-02 6.0874148e-02 3.9322135e-02 5.5164136e-02 5.1029588e-02 4.8159012e-02 8.4641068e-02 6.6410487e-02 5.1100232e-02 5.4352465e-02 7.1152366e-02 4.8870866e-02 6.0790663e-02 6.7705030e-02 5.8185400e-02 5.3489810e-02 4.6729049e-02 5.9304859e-02 4.8888831e-02 5.2875044e-02 5.1050585e-02 3.4854587e-02 5.2844524e-02 1.0451993e-01 9.3506986e-02 8.9732041e-02 9.1442484e-02 9.7717353e-02 9.9707944e-02 9.4802947e-02 9.5351404e-02 1.0312713e-01 8.4850971e-02 7.1294232e-02 8.9511382e-02 8.4075688e-02 1.0102482e-01 1.0205801e-01 8.3487981e-02 8.2948462e-02 8.2499658e-02 1.1982484e-01 9.7067919e-02 8.5815629e-02 9.0584285e-02 1.0517734e-01 7.8728615e-02 8.2465362e-02 8.1175179e-02 7.4451161e-02 7.2780961e-02 9.8027119e-02 7.9186352e-02 9.3572539e-02 7.1178913e-02 9.9960717e-02 7.6001190e-02 9.8069469e-02 9.0444802e-02 8.9768862e-02 8.1715688e-02 7.1540326e-02 7.7885383e-02 9.0855680e-02 7.5245252e-02 9.3506986e-02 9.1968167e-02 9.0109483e-02 8.2320804e-02 8.9509517e-02 7.8843854e-02 8.4366358e-02 8.1217849e-02 2.0130888e-03 1.8101212e-03 1.7679630e-03 1.5452657e-03 5.1945438e-04 1.2854163e-03 8.7808919e-03 8.2238558e-03 5.0256002e-04 2.7264330e-03 2.8467434e-03 5.0256002e-04 1.9812707e-03 1.4461308e-03 4.1136119e-03 2.5737383e-03 4.2121435e-03 4.2634118e-03 5.2197085e-03 6.4299253e-04 4.8925560e-03 2.3856210e-03 3.0302048e-03 1.5954763e-03 5.0938593e-02 5.4618269e-02 6.0341206e-02 6.9748949e-02 6.3744319e-02 7.0794949e-02 6.1613026e-02 4.7841585e-02 5.7516679e-02 6.4388046e-02 6.4176559e-02 5.7259869e-02 6.1078980e-02 6.9247074e-02 4.2780731e-02 4.8566082e-02 7.2247187e-02 5.4065395e-02 8.0844343e-02 5.6422768e-02 7.7401119e-02 4.9239970e-02 8.2976560e-02 6.8666014e-02 5.1795393e-02 5.1539865e-02 6.3922410e-02 7.0731007e-02 6.6410587e-02 3.9578438e-02 5.7098964e-02 5.2392525e-02 5.0683886e-02 9.1729236e-02 7.6796353e-02 5.9700691e-02 5.7658559e-02 7.0380963e-02 5.5891948e-02 6.4553084e-02 7.4314140e-02 6.4188376e-02 5.5862752e-02 4.8638731e-02 6.4818200e-02 5.5721441e-02 5.9023587e-02 5.4325379e-02 3.5659427e-02 5.7806321e-02 1.1646754e-01 1.0183406e-01 9.5237923e-02 9.9907095e-02 1.0622089e-01 1.0525522e-01 1.0561297e-01 1.0087833e-01 1.0779948e-01 9.3522115e-02 7.8070592e-02 9.4910280e-02 8.9633058e-02 1.0829781e-01 1.1081740e-01 9.1634033e-02 9.0337246e-02 9.1650208e-02 1.2399805e-01 1.0057671e-01 9.2649910e-02 9.9949877e-02 1.0962952e-01 8.2940269e-02 9.1028259e-02 8.7623472e-02 7.9432792e-02 8.0075100e-02 1.0524078e-01 8.3828651e-02 9.7259211e-02 7.8329945e-02 1.0714828e-01 8.1794698e-02 1.0616577e-01 9.3567438e-02 1.0077628e-01 9.0271060e-02 7.9035426e-02 8.3003648e-02 9.7873414e-02 7.9050596e-02 1.0183406e-01 1.0015100e-01 9.8558964e-02 8.7141498e-02 9.2951123e-02 8.4912476e-02 9.5252034e-02 9.0710349e-02 8.3242342e-04 1.3658963e-03 5.7230018e-04 8.1918836e-04 9.7205318e-04 4.1873206e-03 3.8010080e-03 1.6389584e-03 2.5918915e-03 2.9169588e-03 1.6389584e-03 5.6093257e-04 7.3131385e-04 1.3995850e-03 7.2853070e-03 1.1548608e-03 5.6661765e-04 1.3645766e-03 9.0462881e-04 1.5033145e-03 5.7640672e-04 1.1086000e-03 1.0041867e-03 5.6613254e-02 5.8073267e-02 6.6069758e-02 7.6238332e-02 6.9820331e-02 7.5150667e-02 6.4021588e-02 5.2221754e-02 6.4043055e-02 6.6631628e-02 7.2118099e-02 6.0001482e-02 7.1017077e-02 7.4033042e-02 4.5299125e-02 5.3744092e-02 7.4268794e-02 6.0257552e-02 8.9540407e-02 6.2698279e-02 7.8447791e-02 5.4448716e-02 9.0401373e-02 7.4795629e-02 5.7546133e-02 5.6993841e-02 7.1300530e-02 7.5820775e-02 7.0342915e-02 4.5615196e-02 6.3638314e-02 5.9296597e-02 5.5885275e-02 9.6910282e-02 7.8117499e-02 6.0390425e-02 6.2700176e-02 7.9484269e-02 5.8304382e-02 6.9718471e-02 7.9589842e-02 6.8316048e-02 6.1785991e-02 5.4151233e-02 6.9205713e-02 5.8981505e-02 6.2496988e-02 5.9482310e-02 3.9268283e-02 6.1808750e-02 1.1700097e-01 1.0528100e-01 1.0062122e-01 1.0448643e-01 1.0962576e-01 1.1218593e-01 1.0740486e-01 1.0838294e-01 1.1564442e-01 9.5242357e-02 8.0565058e-02 1.0027898e-01 9.3976493e-02 1.1211413e-01 1.1185843e-01 9.2981806e-02 9.4878465e-02 9.5039709e-02 1.3246555e-01 1.0898490e-01 9.5760022e-02 1.0161372e-01 1.1802422e-01 8.8109745e-02 9.3746381e-02 9.3301915e-02 8.3669649e-02 8.2970713e-02 1.0958444e-01 9.1015393e-02 1.0506496e-01 8.2570171e-02 1.1114727e-01 8.7646381e-02 1.1324005e-01 9.9872205e-02 1.0076379e-01 9.4009317e-02 8.1526386e-02 8.7041367e-02 1.0052094e-01 8.2193042e-02 1.0528100e-01 1.0314067e-01 9.9984788e-02 9.0308392e-02 9.8939123e-02 8.8538901e-02 9.5061969e-02 9.3157351e-02 1.7227462e-04 7.9314599e-04 8.9844173e-04 8.9518090e-04 2.8880348e-03 2.3244520e-03 6.4717383e-04 8.8327223e-04 1.0385020e-03 6.4717383e-04 4.2082433e-05 2.2535838e-05 6.1632160e-04 7.2421116e-03 6.3599645e-04 2.4204146e-03 3.0244507e-03 7.7555952e-04 1.1490838e-03 1.6721205e-04 1.6116507e-04 5.3985478e-05 6.6593275e-02 6.9140456e-02 7.6991415e-02 8.7909276e-02 8.1079796e-02 8.7140283e-02 7.5972851e-02 6.2229264e-02 7.4340995e-02 7.8983123e-02 8.2638003e-02 7.1602020e-02 8.0355120e-02 8.5886853e-02 5.5471847e-02 6.3724100e-02 8.7131187e-02 7.0026001e-02 1.0150375e-01 7.2956045e-02 9.2179245e-02 6.4526163e-02 1.0277569e-01 8.5954479e-02 6.7618774e-02 6.7207904e-02 8.2005017e-02 8.8025831e-02 8.2391127e-02 5.4193907e-02 7.3937560e-02 6.8913785e-02 6.6018815e-02 1.1053450e-01 9.1432865e-02 7.2512462e-02 7.3622571e-02 9.0228640e-02 6.9559505e-02 8.1277678e-02 9.1538587e-02 7.9923144e-02 7.2198625e-02 6.3968343e-02 8.0855092e-02 6.9835377e-02 7.3807917e-02 6.9953549e-02 4.8370205e-02 7.2961708e-02 1.3388298e-01 1.2040855e-01 1.1476271e-01 1.1886295e-01 1.2510613e-01 1.2637598e-01 1.2310531e-01 1.2187125e-01 1.2970708e-01 1.1033742e-01 9.4233672e-02 1.1441687e-01 1.0810566e-01 1.2778743e-01 1.2861773e-01 1.0813836e-01 1.0864380e-01 1.0911947e-01 1.4755823e-01 1.2232653e-01 1.1049966e-01 1.1716689e-01 1.3196625e-01 1.0144926e-01 1.0821364e-01 1.0641029e-01 9.6993665e-02 9.6571345e-02 1.2478057e-01 1.0328932e-01 1.1842664e-01 9.5377765e-02 1.2666075e-01 1.0023484e-01 1.2682498e-01 1.1377681e-01 1.1674990e-01 1.0792126e-01 9.5167233e-02 1.0076949e-01 1.1586910e-01 9.6070623e-02 1.2040855e-01 1.1835687e-01 1.1566030e-01 1.0480317e-01 1.1289922e-01 1.0248125e-01 1.1065853e-01 1.0752770e-01 1.5518070e-03 1.3360426e-03 6.1855325e-04 3.8684575e-03 2.7981409e-03 7.1019942e-04 2.9249692e-04 3.8108588e-04 7.1019942e-04 3.4811331e-04 2.0628507e-04 6.8481588e-04 6.1413327e-03 1.2640084e-03 3.0810810e-03 4.5162171e-03 6.1490495e-04 2.0823475e-03 6.6391763e-04 4.5940617e-04 4.0824218e-05 6.8980444e-02 7.2049409e-02 7.9659630e-02 9.0518795e-02 8.3601945e-02 9.0707158e-02 7.9362725e-02 6.4838475e-02 7.6843708e-02 8.2367370e-02 8.4912050e-02 7.4621958e-02 8.2116380e-02 8.9210086e-02 5.7968714e-02 6.6009408e-02 9.1025554e-02 7.2793579e-02 1.0368926e-01 7.5498978e-02 9.6154006e-02 6.6776572e-02 1.0567953e-01 8.9202124e-02 6.9982422e-02 6.9528749e-02 8.4404562e-02 9.0968518e-02 8.5580442e-02 5.6059636e-02 7.6365493e-02 7.1188605e-02 6.8464233e-02 1.1430428e-01 9.5645657e-02 7.6165252e-02 7.6295454e-02 9.2254316e-02 7.2920975e-02 8.4113452e-02 9.5088632e-02 8.3209827e-02 7.4687466e-02 6.6271074e-02 8.4049660e-02 7.3195324e-02 7.7054222e-02 7.2597553e-02 5.0198701e-02 7.5958466e-02 1.3864088e-01 1.2443023e-01 1.1820696e-01 1.2296103e-01 1.2918980e-01 1.2996108e-01 1.2761885e-01 1.2545185e-01 1.3315049e-01 1.1429516e-01 9.7708479e-02 1.1783417e-01 1.1147502e-01 1.3162480e-01 1.3265015e-01 1.1194384e-01 1.1244164e-01 1.1326233e-01 1.5100180e-01 1.2549100e-01 1.1411167e-01 1.2131599e-01 1.3539430e-01 1.0451333e-01 1.1218678e-01 1.1003412e-01 1.0016268e-01 1.0019858e-01 1.2861591e-01 1.0655136e-01 1.2158527e-01 9.9029274e-02 1.3048234e-01 1.0368193e-01 1.3098775e-01 1.1671318e-01 1.2117898e-01 1.1194010e-01 9.8811276e-02 1.0398171e-01 1.1952683e-01 9.8904418e-02 1.2443023e-01 1.2231211e-01 1.1957927e-01 1.0792296e-01 1.1588914e-01 1.0590028e-01 1.1501774e-01 1.1169315e-01 2.7458883e-04 1.9079543e-03 3.8013798e-03 4.1957403e-03 8.9864077e-04 3.1780627e-03 3.4575366e-03 8.9864077e-04 6.1086528e-04 6.3429136e-04 2.2515700e-03 7.8191545e-03 1.2413621e-03 2.0952535e-03 1.3093150e-03 1.3748953e-03 1.2388833e-03 4.8114625e-04 1.1404059e-03 1.0969768e-03 5.5584260e-02 5.7510469e-02 6.4993010e-02 7.5368447e-02 6.9057379e-02 7.3499750e-02 6.3437246e-02 5.1298347e-02 6.2635149e-02 6.6332421e-02 7.0700793e-02 5.9790543e-02 6.9153134e-02 7.2596138e-02 4.5395419e-02 5.3097576e-02 7.3376441e-02 5.8208889e-02 8.8752390e-02 6.1292160e-02 7.8242185e-02 5.3906344e-02 8.8989869e-02 7.2610553e-02 5.6579969e-02 5.6297092e-02 6.9966539e-02 7.5157531e-02 6.9589413e-02 4.4676337e-02 6.2364995e-02 5.7806901e-02 5.5013010e-02 9.5419957e-02 7.7143847e-02 6.0075763e-02 6.1882505e-02 7.8193894e-02 5.7405077e-02 6.8884889e-02 7.7590521e-02 6.7073564e-02 6.0698980e-02 5.3256477e-02 6.8055547e-02 5.7544133e-02 6.1428351e-02 5.8436070e-02 3.9618229e-02 6.0914936e-02 1.1719371e-01 1.0478727e-01 9.9928933e-02 1.0301520e-01 1.0921839e-01 1.1065431e-01 1.0694189e-01 1.0626748e-01 1.1395294e-01 9.5522682e-02 8.0692317e-02 9.9640584e-02 9.3821909e-02 1.1210560e-01 1.1313776e-01 9.3722341e-02 9.3659306e-02 9.3792773e-02 1.3107147e-01 1.0721381e-01 9.5955259e-02 1.0180084e-01 1.1608360e-01 8.7786080e-02 9.3279943e-02 9.1618132e-02 8.3505928e-02 8.2622852e-02 1.0912386e-01 8.8978076e-02 1.0355009e-01 8.1236966e-02 1.1101306e-01 8.5950464e-02 1.1026035e-01 9.9640402e-02 1.0131013e-01 9.2768985e-02 8.1325904e-02 8.7087186e-02 1.0113076e-01 8.3368795e-02 1.0478727e-01 1.0299507e-01 1.0075649e-01 9.1267488e-02 9.8760345e-02 8.8473047e-02 9.5602739e-02 9.2388034e-02 1.3192990e-03 5.6049942e-03 5.6260410e-03 3.8255378e-04 2.7098321e-03 2.9260165e-03 3.8255378e-04 8.5873923e-04 6.4551657e-04 2.7466704e-03 5.2436473e-03 2.1741200e-03 2.6488612e-03 2.5599967e-03 7.2546074e-04 2.4454411e-03 9.4817109e-04 1.6251073e-03 9.8969141e-04 5.2867682e-02 5.5519966e-02 6.2241614e-02 7.2187515e-02 6.6023504e-02 7.1524895e-02 6.1872329e-02 4.9090525e-02 5.9694897e-02 6.4712456e-02 6.7154795e-02 5.7947928e-02 6.4972194e-02 7.0357979e-02 4.3573654e-02 5.0441816e-02 7.2068579e-02 5.5680796e-02 8.4591184e-02 5.8459303e-02 7.7051055e-02 5.1193288e-02 8.5601942e-02 7.0117829e-02 5.3803216e-02 5.3535941e-02 6.6621467e-02 7.2473708e-02 6.7439009e-02 4.1816308e-02 5.9366143e-02 5.4760331e-02 5.2431175e-02 9.2978431e-02 7.6152091e-02 5.9131458e-02 5.9321453e-02 7.4096463e-02 5.5985281e-02 6.6256786e-02 7.5362720e-02 6.5046998e-02 5.7885295e-02 5.0561408e-02 6.5880549e-02 5.5988437e-02 5.9621488e-02 5.5930673e-02 3.7267604e-02 5.8818934e-02 1.1596549e-01 1.0264359e-01 9.7070235e-02 1.0079872e-01 1.0704759e-01 1.0746690e-01 1.0547300e-01 1.0308827e-01 1.1044375e-01 9.3809882e-02 7.8755194e-02 9.6766957e-02 9.1194118e-02 1.0959636e-01 1.1126853e-01 9.1984794e-02 9.1378676e-02 9.2003603e-02 1.2714849e-01 1.0351897e-01 9.3695356e-02 1.0013450e-01 1.1244271e-01 8.4898325e-02 9.1456450e-02 8.9057498e-02 8.0952577e-02 8.0704372e-02 1.0658329e-01 8.5941483e-02 1.0000975e-01 7.9159793e-02 1.0848060e-01 8.3337337e-02 1.0760265e-01 9.6215589e-02 1.0020263e-01 9.0833970e-02 7.9520366e-02 8.4523201e-02 9.8885306e-02 8.0736144e-02 1.0264359e-01 1.0090595e-01 9.8957167e-02 8.8690158e-02 9.5447639e-02 8.6121379e-02 9.4585258e-02 9.0802578e-02 6.3934178e-03 4.8940589e-03 1.2286350e-03 9.0839358e-04 1.0654961e-03 1.2286350e-03 9.6426336e-04 7.9049403e-04 1.4335758e-03 3.9777866e-03 2.4355051e-03 2.0107867e-03 4.6162602e-03 1.1770386e-04 3.4806567e-03 1.4352123e-03 1.5474906e-03 6.2303871e-04 6.0828103e-02 6.3671616e-02 7.0896871e-02 8.0864907e-02 7.4298413e-02 8.2081782e-02 7.0784097e-02 5.7058421e-02 6.8417644e-02 7.3405222e-02 7.5846906e-02 6.5924537e-02 7.3406010e-02 8.0389200e-02 5.0100593e-02 5.7793778e-02 8.2174514e-02 6.5233957e-02 9.3014438e-02 6.7186690e-02 8.6645560e-02 5.8420934e-02 9.5569964e-02 8.0832485e-02 6.1703014e-02 6.1092740e-02 7.5364208e-02 8.1326732e-02 7.6506202e-02 4.8648267e-02 6.7850123e-02 6.3129543e-02 6.0279722e-02 1.0421037e-01 8.6793624e-02 6.7911943e-02 6.7612814e-02 8.2552902e-02 6.4996479e-02 7.4977087e-02 8.6383221e-02 7.4662447e-02 6.6198278e-02 5.8199721e-02 7.5325266e-02 6.5572089e-02 6.8824430e-02 6.4314329e-02 4.2494903e-02 6.7537432e-02 1.2698890e-01 1.1333529e-01 1.0720337e-01 1.1257147e-01 1.1782339e-01 1.1890376e-01 1.1671052e-01 1.1501886e-01 1.2195484e-01 1.0334755e-01 8.7523621e-02 1.0680449e-01 1.0051071e-01 1.1973768e-01 1.2022270e-01 1.0080013e-01 1.0231108e-01 1.0334772e-01 1.3872306e-01 1.1462175e-01 1.0296153e-01 1.1014449e-01 1.2423991e-01 9.3883877e-02 1.0176675e-01 1.0022558e-01 8.9772340e-02 9.0213298e-02 1.1713918e-01 9.6981953e-02 1.1075521e-01 8.9707194e-02 1.1871449e-01 9.4162640e-02 1.2118172e-01 1.0525415e-01 1.1008916e-01 1.0200908e-01 8.8850235e-02 9.3264552e-02 1.0788029e-01 8.7700151e-02 1.1333529e-01 1.1110284e-01 1.0804665e-01 9.6438203e-02 1.0447205e-01 9.5256431e-02 1.0425068e-01 1.0162139e-01 4.7487225e-04 5.5229901e-03 5.0553045e-03 5.3192416e-03 5.5229901e-03 2.6440955e-03 3.2948907e-03 2.1817756e-03 1.9232390e-02 1.0060949e-03 5.2893888e-03 3.6565664e-03 6.4838776e-03 7.5722530e-04 2.1347736e-03 1.7405562e-03 3.5508478e-03 8.4906111e-02 8.5684875e-02 9.5941240e-02 1.0863973e-01 1.0110388e-01 1.0421406e-01 9.1634377e-02 7.8911086e-02 9.3575504e-02 9.5023267e-02 1.0394314e-01 8.7940160e-02 1.0307352e-01 1.0372095e-01 7.0927620e-02 8.1814584e-02 1.0248405e-01 8.7682138e-02 1.2553590e-01 9.1822634e-02 1.0758552e-01 8.2848043e-02 1.2459059e-01 1.0427303e-01 8.6172494e-02 8.5771372e-02 1.0276107e-01 1.0743739e-01 1.0000507e-01 7.2180344e-02 9.3352407e-02 8.8118179e-02 8.3972299e-02 1.2999219e-01 1.0601815e-01 8.6245777e-02 9.1942699e-02 1.1341937e-01 8.4389659e-02 1.0016617e-01 1.0942619e-01 9.6927434e-02 9.1068024e-02 8.2112078e-02 9.8354950e-02 8.4918144e-02 8.9929197e-02 8.7860129e-02 6.4913483e-02 8.9916257e-02 1.5108513e-01 1.3966025e-01 1.3579363e-01 1.3800221e-01 1.4462965e-01 1.4853849e-01 1.4049017e-01 1.4366186e-01 1.5284247e-01 1.2813521e-01 1.1198929e-01 1.3549048e-01 1.2835377e-01 1.4847864e-01 1.4775011e-01 1.2601872e-01 1.2764409e-01 1.2670935e-01 1.7255531e-01 1.4567287e-01 1.2987249e-01 1.3506836e-01 1.5547286e-01 1.2211481e-01 1.2607603e-01 1.2598262e-01 1.1656479e-01 1.1426125e-01 1.4534374e-01 1.2395854e-01 1.4127350e-01 1.1320894e-01 1.4734853e-01 1.1969377e-01 1.4703899e-01 1.3646872e-01 1.3305975e-01 1.2588961e-01 1.1250545e-01 1.2058130e-01 1.3549735e-01 1.1610735e-01 1.3966025e-01 1.3745925e-01 1.3401818e-01 1.2501338e-01 1.3525796e-01 1.2173379e-01 1.2646805e-01 1.2458940e-01 5.1766813e-03 3.3038909e-03 3.5089109e-03 5.1766813e-03 2.1988415e-03 2.7782772e-03 1.0688451e-03 1.7030893e-02 8.9726872e-04 4.6231995e-03 4.6736672e-03 5.3382818e-03 1.1647725e-03 1.9758755e-03 1.2750935e-03 2.7128598e-03 8.7833448e-02 8.9010914e-02 9.9253982e-02 1.1183035e-01 1.0412107e-01 1.0885582e-01 9.5547284e-02 8.2028755e-02 9.6837094e-02 9.8811318e-02 1.0697473e-01 9.1242752e-02 1.0570232e-01 1.0798221e-01 7.3423587e-02 8.4439842e-02 1.0715501e-01 9.1521191e-02 1.2824419e-01 9.5124610e-02 1.1205287e-01 8.5389026e-02 1.2841576e-01 1.0878552e-01 8.9048303e-02 8.8474213e-02 1.0589810e-01 1.1091852e-01 1.0379001e-01 7.4413565e-02 9.6465402e-02 9.1132676e-02 8.6893608e-02 1.3487393e-01 1.1110410e-01 9.0320856e-02 9.5130800e-02 1.1613190e-01 8.8387927e-02 1.0357744e-01 1.1422195e-01 1.0103671e-01 9.4160592e-02 8.4870839e-02 1.0232030e-01 8.9160088e-02 9.3889889e-02 9.1104413e-02 6.6493231e-02 9.3508454e-02 1.5639991e-01 1.4440871e-01 1.3995325e-01 1.4327783e-01 1.4942424e-01 1.5327636e-01 1.4579380e-01 1.4864466e-01 1.5749945e-01 1.3242397e-01 1.1574188e-01 1.3959357e-01 1.3216131e-01 1.5281767e-01 1.5172347e-01 1.2991524e-01 1.3242882e-01 1.3190251e-01 1.7712896e-01 1.5002220e-01 1.3380600e-01 1.3964037e-01 1.6023126e-01 1.2562692e-01 1.3071698e-01 1.3077115e-01 1.2010966e-01 1.1841338e-01 1.4987755e-01 1.2848062e-01 1.4548859e-01 1.1783301e-01 1.5172346e-01 1.2426441e-01 1.5309487e-01 1.3983154e-01 1.3778354e-01 1.3093423e-01 1.1660453e-01 1.2409289e-01 1.3931059e-01 1.1865130e-01 1.4440871e-01 1.4196632e-01 1.3805465e-01 1.2801436e-01 1.3865562e-01 1.2553921e-01 1.3109454e-01 1.2958547e-01 1.5860612e-03 1.6773969e-03 0.0000000e+00 8.4337656e-04 4.6746407e-04 2.4549978e-03 4.7529836e-03 2.3235808e-03 4.0683267e-03 4.3260986e-03 6.7336618e-04 2.8454658e-03 1.0918918e-03 1.3756658e-03 5.7784546e-04 5.9573290e-02 6.3070670e-02 6.9597309e-02 7.9911457e-02 7.3480528e-02 7.9923883e-02 7.0144874e-02 5.5923876e-02 6.6635620e-02 7.3192589e-02 7.4096565e-02 6.5836734e-02 7.1022277e-02 7.8555696e-02 5.0423423e-02 5.7089619e-02 8.1093473e-02 6.2483167e-02 9.2251714e-02 6.5399221e-02 8.6573432e-02 5.7873871e-02 9.3861710e-02 7.7914479e-02 6.0545459e-02 6.0328179e-02 7.3725736e-02 8.0652769e-02 7.5662466e-02 4.7500835e-02 6.6267157e-02 6.1219907e-02 5.9246920e-02 1.0235525e-01 8.5584812e-02 6.7627185e-02 6.6676399e-02 8.1028522e-02 6.3874534e-02 7.4037098e-02 8.3735875e-02 7.3091049e-02 6.4875922e-02 5.7134332e-02 7.3898502e-02 6.3669341e-02 6.7483654e-02 6.3032151e-02 4.3195391e-02 6.6465430e-02 1.2757303e-01 1.1294171e-01 1.0654531e-01 1.1074736e-01 1.1756538e-01 1.1705185e-01 1.1633100e-01 1.1230305e-01 1.1988948e-01 1.0404710e-01 8.7981667e-02 1.0622547e-01 1.0061669e-01 1.2008497e-01 1.2242153e-01 1.0217012e-01 1.0084187e-01 1.0181343e-01 1.3714147e-01 1.1243585e-01 1.0356517e-01 1.1071692e-01 1.2181923e-01 9.3742899e-02 1.0137566e-01 9.8085445e-02 8.9840814e-02 8.9979544e-02 1.1682155e-01 9.4340727e-02 1.0893096e-01 8.8036209e-02 1.1887723e-01 9.1995894e-02 1.1718099e-01 1.0529554e-01 1.1115622e-01 1.0048991e-01 8.8823715e-02 9.3647258e-02 1.0909883e-01 8.9729548e-02 1.1294171e-01 1.1121254e-01 1.0947844e-01 9.8164553e-02 1.0458423e-01 9.5468337e-02 1.0529433e-01 1.0077315e-01 1.0959804e-05 1.5860612e-03 1.2066237e-03 9.8801305e-04 9.8752232e-04 6.0992006e-03 2.3026455e-03 4.3295194e-03 6.8464966e-03 1.1467011e-03 3.5017117e-03 1.7326793e-03 1.1803657e-03 5.4725577e-04 7.4912594e-02 7.8462634e-02 8.6080465e-02 9.7055695e-02 8.9913940e-02 9.8246196e-02 8.6359614e-02 7.0875411e-02 8.3096610e-02 8.9373603e-02 9.1095332e-02 8.1132274e-02 8.7784959e-02 9.6471287e-02 6.3584445e-02 7.1727351e-02 9.8741504e-02 7.9297358e-02 1.1001947e-01 8.1763635e-02 1.0392038e-01 7.2462318e-02 1.1283140e-01 9.6493172e-02 7.5904241e-02 7.5362083e-02 9.0691159e-02 9.7798442e-02 9.2550220e-02 6.1191529e-02 8.2519289e-02 7.7118501e-02 7.4418954e-02 1.2241546e-01 1.0373213e-01 8.3271349e-02 8.2617382e-02 9.8302252e-02 7.9806174e-02 9.0742202e-02 1.0274136e-01 9.0294649e-02 8.0841362e-02 7.2046648e-02 9.1054206e-02 8.0166072e-02 8.3952641e-02 7.8850217e-02 5.4962225e-02 8.2583735e-02 1.4771497e-01 1.3277361e-01 1.2596285e-01 1.3150244e-01 1.3764710e-01 1.3814813e-01 1.3643324e-01 1.3364709e-01 1.4127174e-01 1.2228442e-01 1.0501430e-01 1.2555100e-01 1.1896947e-01 1.3983185e-01 1.4080838e-01 1.1967635e-01 1.2050783e-01 1.2165153e-01 1.5932394e-01 1.3324590e-01 1.2180922e-01 1.2960297e-01 1.4356572e-01 1.1163860e-01 1.2028439e-01 1.1797002e-01 1.0728569e-01 1.0776505e-01 1.3685139e-01 1.1414077e-01 1.2924282e-01 1.0675126e-01 1.3867943e-01 1.1135088e-01 1.3991357e-01 1.2389778e-01 1.2963231e-01 1.2019755e-01 1.0634263e-01 1.1117491e-01 1.2727853e-01 1.0546335e-01 1.3277361e-01 1.3050496e-01 1.2753116e-01 1.1493738e-01 1.2310368e-01 1.1333277e-01 1.2330887e-01 1.1999903e-01 1.6773969e-03 1.4044930e-03 1.1476188e-03 1.1728210e-03 6.0850239e-03 2.5611449e-03 4.7720148e-03 7.3487783e-03 1.2981958e-03 3.8044610e-03 1.9624179e-03 1.3573639e-03 6.7050163e-04 7.5875383e-02 7.9591742e-02 8.7130965e-02 9.8136915e-02 9.0968214e-02 9.9474916e-02 8.7612410e-02 7.1886206e-02 8.4072967e-02 9.0657173e-02 9.2037661e-02 8.2322796e-02 8.8559519e-02 9.7661149e-02 6.4636714e-02 7.2692172e-02 1.0010765e-01 8.0266168e-02 1.1103798e-01 8.2745924e-02 1.0537406e-01 7.3430328e-02 1.1396572e-01 9.7599809e-02 7.6869874e-02 7.6340270e-02 9.1668858e-02 9.8974404e-02 9.3760611e-02 6.2005453e-02 8.3489209e-02 7.8020463e-02 7.5407355e-02 1.2375637e-01 1.0517097e-01 8.4594299e-02 8.3682974e-02 9.9214366e-02 8.1008204e-02 9.1862911e-02 1.0394615e-01 9.1478420e-02 8.1837398e-02 7.2994499e-02 9.2227696e-02 8.1322109e-02 8.5126430e-02 7.9879628e-02 5.5860810e-02 8.3714500e-02 1.4946173e-01 1.3427629e-01 1.2730802e-01 1.3293539e-01 1.3918009e-01 1.3947497e-01 1.3805161e-01 1.3491280e-01 1.4255824e-01 1.2381647e-01 1.0639120e-01 1.2689399e-01 1.2032986e-01 1.4134878e-01 1.4247553e-01 1.2120787e-01 1.2187456e-01 1.2309328e-01 1.6066767e-01 1.3444738e-01 1.2325830e-01 1.3118369e-01 1.4483072e-01 1.1290137e-01 1.2175315e-01 1.1925251e-01 1.0857610e-01 1.0914142e-01 1.3832403e-01 1.1530308e-01 1.3045824e-01 1.0804612e-01 1.4018015e-01 1.1257905e-01 1.4124338e-01 1.2516443e-01 1.3130183e-01 1.2160995e-01 1.0773181e-01 1.1250108e-01 1.2878318e-01 1.0678720e-01 1.3427629e-01 1.3201801e-01 1.2910620e-01 1.1632723e-01 1.2438544e-01 1.1469977e-01 1.2494953e-01 1.2148287e-01 8.4337656e-04 4.6746407e-04 2.4549978e-03 4.7529836e-03 2.3235808e-03 4.0683267e-03 4.3260986e-03 6.7336618e-04 2.8454658e-03 1.0918918e-03 1.3756658e-03 5.7784546e-04 5.9573290e-02 6.3070670e-02 6.9597309e-02 7.9911457e-02 7.3480528e-02 7.9923883e-02 7.0144874e-02 5.5923876e-02 6.6635620e-02 7.3192589e-02 7.4096565e-02 6.5836734e-02 7.1022277e-02 7.8555696e-02 5.0423423e-02 5.7089619e-02 8.1093473e-02 6.2483167e-02 9.2251714e-02 6.5399221e-02 8.6573432e-02 5.7873871e-02 9.3861710e-02 7.7914479e-02 6.0545459e-02 6.0328179e-02 7.3725736e-02 8.0652769e-02 7.5662466e-02 4.7500835e-02 6.6267157e-02 6.1219907e-02 5.9246920e-02 1.0235525e-01 8.5584812e-02 6.7627185e-02 6.6676399e-02 8.1028522e-02 6.3874534e-02 7.4037098e-02 8.3735875e-02 7.3091049e-02 6.4875922e-02 5.7134332e-02 7.3898502e-02 6.3669341e-02 6.7483654e-02 6.3032151e-02 4.3195391e-02 6.6465430e-02 1.2757303e-01 1.1294171e-01 1.0654531e-01 1.1074736e-01 1.1756538e-01 1.1705185e-01 1.1633100e-01 1.1230305e-01 1.1988948e-01 1.0404710e-01 8.7981667e-02 1.0622547e-01 1.0061669e-01 1.2008497e-01 1.2242153e-01 1.0217012e-01 1.0084187e-01 1.0181343e-01 1.3714147e-01 1.1243585e-01 1.0356517e-01 1.1071692e-01 1.2181923e-01 9.3742899e-02 1.0137566e-01 9.8085445e-02 8.9840814e-02 8.9979544e-02 1.1682155e-01 9.4340727e-02 1.0893096e-01 8.8036209e-02 1.1887723e-01 9.1995894e-02 1.1718099e-01 1.0529554e-01 1.1115622e-01 1.0048991e-01 8.8823715e-02 9.3647258e-02 1.0909883e-01 8.9729548e-02 1.1294171e-01 1.1121254e-01 1.0947844e-01 9.8164553e-02 1.0458423e-01 9.5468337e-02 1.0529433e-01 1.0077315e-01 6.2742331e-05 5.7500583e-04 7.7277880e-03 4.4752900e-04 1.9151463e-03 2.3881652e-03 8.6221368e-04 8.6997251e-04 5.7712764e-05 1.4261239e-04 1.6337476e-04 6.5357511e-02 6.7564930e-02 7.5599895e-02 8.6482524e-02 7.9693502e-02 8.5392044e-02 7.4152863e-02 6.0880360e-02 7.3094884e-02 7.7108408e-02 8.1483729e-02 6.9905750e-02 7.9537736e-02 8.4220614e-02 5.4020845e-02 6.2478782e-02 8.5095725e-02 6.8776984e-02 1.0023818e-01 7.1693803e-02 8.9974847e-02 6.3277271e-02 1.0126704e-01 8.4456284e-02 6.6380508e-02 6.5944304e-02 8.0776371e-02 8.6401760e-02 8.0678654e-02 5.3232214e-02 7.2705055e-02 6.7807498e-02 6.4728976e-02 1.0860574e-01 8.9250516e-02 7.0532132e-02 7.2192370e-02 8.9155393e-02 6.7825786e-02 7.9751674e-02 8.9848634e-02 7.8255825e-02 7.0908403e-02 6.2757363e-02 7.9213209e-02 6.8195297e-02 7.2146158e-02 6.8587288e-02 4.7220467e-02 7.1390990e-02 1.3114639e-01 1.1816523e-01 1.1284157e-01 1.1675611e-01 1.2280854e-01 1.2450964e-01 1.2061835e-01 1.2011904e-01 1.2793055e-01 1.0801409e-01 9.2203467e-02 1.1250005e-01 1.0614185e-01 1.2553294e-01 1.2604996e-01 1.0581394e-01 1.0665851e-01 1.0697400e-01 1.4569576e-01 1.2071369e-01 1.0835453e-01 1.1475367e-01 1.3023667e-01 9.9676180e-02 1.0601570e-01 1.0459446e-01 9.5152798e-02 9.4544535e-02 1.2261107e-01 1.0171679e-01 1.1677938e-01 9.3513090e-02 1.2443770e-01 9.8519974e-02 1.2493623e-01 1.1202254e-01 1.1414514e-01 1.0583616e-01 9.3110547e-02 9.8863035e-02 1.1361961e-01 9.4163495e-02 1.1816523e-01 1.1608967e-01 1.1325987e-01 1.0277556e-01 1.1111172e-01 1.0049112e-01 1.0810161e-01 1.0529258e-01 8.3201047e-04 6.6553558e-03 8.0817319e-04 2.3666253e-03 2.9401972e-03 6.0430641e-04 1.3109323e-03 2.0042209e-04 2.9042771e-04 6.4823857e-05 6.4369752e-02 6.6980839e-02 7.4622998e-02 8.5371818e-02 7.8644884e-02 8.4714120e-02 7.3778054e-02 6.0124143e-02 7.1976215e-02 7.6757894e-02 8.0112003e-02 6.9445381e-02 7.7800626e-02 8.3451231e-02 5.3558729e-02 6.1563285e-02 8.4824350e-02 6.7739660e-02 9.8727492e-02 7.0619990e-02 8.9865595e-02 6.2353086e-02 1.0002589e-01 8.3464224e-02 6.5377675e-02 6.4985443e-02 7.9506921e-02 8.5546781e-02 8.0035925e-02 5.2147031e-02 7.1577598e-02 6.6610625e-02 6.3822994e-02 1.0780225e-01 8.9119904e-02 7.0461434e-02 7.1328305e-02 8.7570443e-02 6.7451743e-02 7.8878318e-02 8.9018945e-02 7.7592264e-02 6.9886540e-02 6.1789581e-02 7.8498655e-02 6.7684600e-02 7.1587759e-02 6.7704325e-02 4.6526712e-02 7.0724596e-02 1.3117528e-01 1.1766016e-01 1.1197322e-01 1.1607657e-01 1.2231416e-01 1.2340084e-01 1.2042522e-01 1.1891967e-01 1.2666041e-01 1.0778594e-01 9.1812847e-02 1.1163169e-01 1.0543690e-01 1.2494830e-01 1.2593147e-01 1.0563286e-01 1.0596141e-01 1.0649455e-01 1.4431904e-01 1.1933022e-01 1.0786987e-01 1.1454955e-01 1.2887601e-01 9.8812977e-02 1.0562884e-01 1.0369928e-01 9.4451580e-02 9.4102215e-02 1.2194237e-01 1.0054711e-01 1.1549365e-01 9.2857172e-02 1.2382256e-01 9.7583400e-02 1.2385907e-01 1.1095947e-01 1.1423829e-01 1.0528942e-01 9.2735747e-02 9.8196145e-02 1.1321168e-01 9.3608756e-02 1.1766016e-01 1.1565299e-01 1.1307354e-01 1.0223904e-01 1.1010492e-01 9.9908851e-02 1.0821954e-01 1.0496782e-01 9.9295890e-03 5.3473138e-04 2.1693539e-03 3.7076821e-03 1.8222092e-03 1.2380588e-03 7.0429726e-04 3.2576994e-04 6.7027380e-04 7.5169669e-02 7.7062740e-02 8.6033367e-02 9.7417771e-02 9.0184218e-02 9.6534643e-02 8.3912481e-02 7.0270670e-02 8.3626528e-02 8.6844061e-02 9.2545497e-02 7.9257265e-02 9.0777176e-02 9.5235076e-02 6.2208659e-02 7.1858472e-02 9.5535449e-02 7.9390740e-02 1.1189093e-01 8.2130752e-02 1.0013922e-01 7.2643917e-02 1.1330079e-01 9.5998078e-02 7.6221141e-02 7.5580594e-02 9.1730689e-02 9.7114882e-02 9.1048046e-02 6.2224749e-02 8.3137120e-02 7.8094271e-02 7.4382594e-02 1.2083561e-01 9.9831872e-02 7.9711043e-02 8.2237066e-02 1.0057287e-01 7.7408745e-02 9.0227459e-02 1.0148848e-01 8.8790024e-02 8.1095637e-02 7.2322440e-02 8.9773416e-02 7.8184960e-02 8.2186791e-02 7.8567440e-02 5.4863235e-02 8.1347337e-02 1.4275245e-01 1.3005259e-01 1.2482271e-01 1.2925722e-01 1.3482920e-01 1.3759096e-01 1.3236924e-01 1.3338627e-01 1.4130888e-01 1.1880967e-01 1.0247320e-01 1.2443347e-01 1.1741517e-01 1.3747488e-01 1.3688510e-01 1.1618864e-01 1.1858835e-01 1.1879679e-01 1.5963135e-01 1.3387511e-01 1.1938532e-01 1.2588037e-01 1.4388488e-01 1.1083228e-01 1.1728514e-01 1.1680010e-01 1.0591970e-01 1.0525056e-01 1.3476053e-01 1.1410719e-01 1.2959057e-01 1.0487194e-01 1.3643100e-01 1.1046993e-01 1.3880755e-01 1.2375874e-01 1.2479172e-01 1.1764923e-01 1.0361548e-01 1.0965651e-01 1.2456830e-01 1.0392711e-01 1.3005259e-01 1.2763609e-01 1.2394348e-01 1.1308481e-01 1.2275352e-01 1.1138648e-01 1.1846972e-01 1.1666230e-01 1.1839370e-02 9.5901133e-03 1.3740734e-02 3.5338001e-03 1.3550011e-02 8.8526707e-03 9.4699409e-03 6.3350154e-03 4.8467987e-02 5.3749987e-02 5.7717889e-02 6.5676566e-02 6.0050880e-02 7.0693363e-02 6.1877604e-02 4.6729706e-02 5.4665912e-02 6.4242849e-02 5.9590174e-02 5.6493218e-02 5.5132102e-02 6.8254515e-02 4.1974046e-02 4.5979775e-02 7.3375693e-02 5.2912711e-02 7.3889063e-02 5.3879214e-02 7.8254066e-02 4.6403740e-02 7.8645675e-02 6.7578949e-02 4.9098308e-02 4.8671019e-02 5.9827034e-02 6.7861186e-02 6.5136324e-02 3.6759287e-02 5.3980965e-02 4.9365653e-02 4.8462917e-02 9.0010105e-02 7.8830145e-02 6.1496889e-02 5.5380536e-02 6.4107134e-02 5.6871111e-02 6.2034296e-02 7.3759034e-02 6.3674900e-02 5.3119604e-02 4.6143136e-02 6.3811294e-02 5.6759011e-02 5.9030859e-02 5.2419966e-02 3.3258744e-02 5.6880106e-02 1.1655832e-01 1.0005043e-01 9.1684275e-02 9.8727002e-02 1.0425490e-01 1.0138126e-01 1.0565129e-01 9.7538138e-02 1.0314095e-01 9.2386824e-02 7.6571607e-02 9.1274575e-02 8.6336607e-02 1.0505203e-01 1.0829773e-01 9.0077109e-02 8.8858206e-02 9.1549427e-02 1.1781623e-01 9.5530481e-02 9.0068051e-02 9.8963246e-02 1.0479240e-01 7.9118056e-02 9.0207341e-02 8.5766485e-02 7.6442113e-02 7.8991975e-02 1.0229780e-01 8.0971468e-02 9.2462279e-02 7.7616682e-02 1.0394880e-01 7.9854175e-02 1.0493060e-01 8.8086863e-02 1.0105189e-01 8.9771099e-02 7.8157448e-02 7.9782471e-02 9.4953430e-02 7.4768636e-02 1.0005043e-01 9.8253215e-02 9.6744777e-02 8.3113340e-02 8.7744069e-02 8.2353939e-02 9.5830913e-02 9.0799350e-02 2.1341759e-03 1.9110407e-03 2.4747400e-03 1.4759127e-04 2.6111423e-04 2.1389787e-04 9.9338048e-04 7.1511570e-02 7.2884660e-02 8.1954557e-02 9.3478761e-02 8.6419800e-02 9.0995738e-02 7.9065079e-02 6.6366318e-02 7.9643396e-02 8.2112775e-02 8.8849792e-02 7.5066735e-02 8.7600830e-02 9.0111864e-02 5.8883625e-02 6.8498056e-02 8.9863635e-02 7.4803608e-02 1.0853136e-01 7.8097142e-02 9.4627165e-02 6.9370599e-02 1.0871906e-01 9.0676026e-02 7.2617660e-02 7.2144076e-02 8.7900274e-02 9.2810262e-02 8.6387249e-02 5.9335633e-02 7.9309675e-02 7.4397587e-02 7.0710353e-02 1.1504320e-01 9.3692385e-02 7.4629165e-02 7.8263498e-02 9.7248749e-02 7.2487054e-02 8.6011897e-02 9.5823155e-02 8.3806772e-02 7.7264691e-02 6.8838121e-02 8.4948991e-02 7.3047820e-02 7.7341294e-02 7.4548923e-02 5.2558496e-02 7.6909140e-02 1.3627575e-01 1.2430643e-01 1.1978148e-01 1.2301688e-01 1.2902659e-01 1.3200226e-01 1.2597225e-01 1.2757685e-01 1.3584109e-01 1.1348127e-01 9.7761057e-02 1.1945082e-01 1.1270375e-01 1.3215934e-01 1.3182973e-01 1.1125522e-01 1.1287096e-01 1.1260483e-01 1.5425448e-01 1.2876341e-01 1.1448536e-01 1.2024528e-01 1.3833407e-01 1.0647529e-01 1.1163750e-01 1.1113351e-01 1.0149473e-01 1.0013701e-01 1.2927004e-01 1.0879101e-01 1.2459621e-01 9.9330508e-02 1.3108770e-01 1.0504760e-01 1.3186075e-01 1.1958837e-01 1.1892921e-01 1.1162833e-01 9.8541878e-02 1.0525098e-01 1.1976536e-01 1.0049727e-01 1.2430643e-01 1.2212353e-01 1.1885667e-01 1.0916600e-01 1.1853397e-01 1.0665478e-01 1.1270995e-01 1.1063603e-01 1.5750019e-03 2.3061943e-03 2.5267586e-03 1.8816551e-03 2.4916769e-03 2.6490348e-03 5.6749564e-02 5.7171493e-02 6.5939847e-02 7.5932398e-02 6.9508351e-02 7.4656451e-02 6.2624290e-02 5.2024188e-02 6.4437230e-02 6.4937043e-02 7.2745199e-02 5.8611781e-02 7.2652586e-02 7.3573688e-02 4.4171072e-02 5.3594578e-02 7.2641168e-02 6.1050608e-02 8.9566976e-02 6.3051224e-02 7.6010398e-02 5.4225638e-02 9.0321512e-02 7.5195114e-02 5.7639533e-02 5.6852233e-02 7.1710391e-02 7.4949900e-02 6.9318916e-02 4.6230253e-02 6.3971485e-02 6.0026157e-02 5.5798348e-02 9.5989279e-02 7.6232404e-02 5.8444003e-02 6.2302257e-02 8.0224536e-02 5.7278169e-02 6.9150783e-02 7.9467477e-02 6.7704503e-02 6.1864652e-02 5.4241616e-02 6.8592620e-02 5.8516944e-02 6.1759106e-02 5.9360348e-02 3.8591759e-02 6.1151978e-02 1.1324556e-01 1.0303819e-01 9.9201558e-02 1.0318500e-01 1.0721879e-01 1.1147036e-01 1.0460948e-01 1.0828938e-01 1.1523751e-01 9.2280249e-02 7.8300492e-02 9.8832112e-02 9.2088327e-02 1.0954453e-01 1.0774163e-01 8.9704304e-02 9.3649245e-02 9.3477002e-02 1.3171389e-01 1.0896793e-01 9.3248418e-02 9.8534682e-02 1.1788866e-01 8.6730988e-02 9.1550165e-02 9.2743651e-02 8.2023117e-02 8.1036634e-02 1.0749375e-01 9.1211084e-02 1.0479473e-01 8.1639608e-02 1.0872731e-01 8.7298316e-02 1.1342725e-01 9.8507274e-02 9.7018335e-02 9.2572028e-02 7.9424005e-02 8.5123740e-02 9.7519007e-02 7.9504622e-02 1.0303819e-01 1.0060889e-01 9.6540999e-02 8.7528391e-02 9.7464514e-02 8.6517419e-02 9.1407615e-02 9.1076579e-02 4.2759888e-03 1.3998823e-03 1.8495751e-03 2.8301386e-03 3.7334484e-03 5.5009109e-02 5.4964037e-02 6.3820777e-02 7.4331569e-02 6.8062522e-02 7.0406681e-02 5.9595322e-02 4.9880526e-02 6.2237804e-02 6.2265151e-02 7.1113130e-02 5.6594278e-02 7.1451534e-02 6.9994053e-02 4.3126676e-02 5.2381128e-02 6.8520339e-02 5.7597897e-02 8.9058557e-02 6.0751652e-02 7.2510768e-02 5.3201106e-02 8.7849614e-02 7.0985642e-02 5.6028788e-02 5.5591108e-02 6.9920676e-02 7.2931234e-02 6.6633349e-02 4.5295849e-02 6.2044642e-02 5.8063752e-02 5.4097801e-02 9.1903182e-02 7.1473709e-02 5.5091248e-02 6.0376704e-02 7.9310761e-02 5.3854777e-02 6.7042056e-02 7.4968513e-02 6.4284932e-02 5.9983090e-02 5.2745182e-02 6.5463515e-02 5.4553279e-02 5.8476643e-02 5.7183259e-02 3.8909009e-02 5.8515093e-02 1.0925308e-01 9.9624317e-02 9.6622305e-02 9.8607255e-02 1.0383961e-01 1.0792916e-01 1.0029496e-01 1.0408880e-01 1.1184636e-01 8.9608429e-02 7.6157674e-02 9.6354194e-02 9.0095873e-02 1.0708448e-01 1.0618312e-01 8.7751513e-02 8.9756663e-02 8.8888346e-02 1.2885985e-01 1.0591974e-01 9.1173391e-02 9.5499762e-02 1.1429851e-01 8.5048829e-02 8.8069568e-02 8.8675858e-02 8.0228990e-02 7.8160661e-02 1.0454059e-01 8.7419578e-02 1.0196835e-01 7.7696889e-02 1.0615601e-01 8.3458946e-02 1.0727792e-01 9.7348785e-02 9.3770662e-02 8.8214646e-02 7.6638467e-02 8.3519036e-02 9.5849316e-02 7.9674217e-02 9.9624317e-02 9.7643485e-02 9.4514516e-02 8.7075933e-02 9.6245490e-02 8.4428758e-02 8.8195121e-02 8.6900395e-02 3.3656636e-03 1.2813341e-03 1.5508786e-03 5.5126016e-04 5.7906981e-02 6.0932190e-02 6.7790041e-02 7.7661589e-02 7.1242410e-02 7.8649743e-02 6.7963400e-02 5.4275670e-02 6.5215187e-02 7.0651008e-02 7.2495968e-02 6.3298898e-02 6.9915496e-02 7.7039648e-02 4.7868354e-02 5.5074415e-02 7.9095397e-02 6.1872293e-02 8.9630734e-02 6.4010779e-02 8.3786653e-02 5.5727300e-02 9.1943867e-02 7.7179306e-02 5.8787276e-02 5.8290887e-02 7.2059853e-02 7.8226343e-02 7.3481150e-02 4.5978845e-02 6.4704253e-02 5.9980041e-02 5.7435326e-02 1.0050646e-01 8.3655459e-02 6.5308029e-02 6.4668898e-02 7.9130910e-02 6.2159352e-02 7.1908147e-02 8.2739305e-02 7.1488143e-02 6.3159434e-02 5.5376396e-02 7.2163727e-02 6.2508559e-02 6.5824794e-02 6.1340761e-02 4.0472995e-02 6.4599849e-02 1.2380425e-01 1.0993395e-01 1.0373859e-01 1.0879322e-01 1.1440237e-01 1.1495444e-01 1.1335001e-01 1.1089530e-01 1.1789001e-01 1.0041407e-01 8.4708778e-02 1.0336455e-01 9.7357032e-02 1.1642404e-01 1.1748667e-01 9.8081847e-02 9.8747663e-02 9.9805801e-02 1.3456454e-01 1.1060300e-01 9.9947092e-02 1.0709744e-01 1.2004751e-01 9.0729860e-02 9.8544296e-02 9.6489030e-02 8.6759859e-02 8.7175826e-02 1.1367288e-01 9.3122372e-02 1.0688813e-01 8.6280635e-02 1.1536030e-01 9.0496365e-02 1.1670380e-01 1.0195807e-01 1.0724940e-01 9.8472199e-02 8.5899722e-02 9.0288199e-02 1.0497525e-01 8.5251170e-02 1.0993395e-01 1.0787024e-01 1.0524763e-01 9.3789157e-02 1.0121309e-01 9.2226653e-02 1.0148816e-01 9.8306001e-02 5.0782435e-04 6.2020689e-04 1.6756986e-03 7.0476887e-02 7.1501157e-02 8.0709837e-02 9.2336294e-02 8.5349594e-02 8.8954923e-02 7.7301298e-02 6.5155686e-02 7.8476830e-02 8.0402665e-02 8.7884855e-02 7.3650267e-02 8.6974315e-02 8.8299731e-02 5.7895678e-02 6.7595783e-02 8.7665774e-02 7.3314500e-02 1.0776923e-01 7.6895020e-02 9.2474273e-02 6.8514181e-02 1.0728576e-01 8.8812805e-02 7.1614033e-02 7.1214401e-02 8.6845407e-02 9.1428310e-02 8.4778392e-02 5.8702706e-02 7.8223013e-02 7.3389903e-02 6.9650470e-02 1.1290739e-01 9.1229062e-02 7.2678536e-02 7.7045799e-02 9.6518176e-02 7.0683794e-02 8.4677029e-02 9.3753287e-02 8.2039996e-02 7.6152676e-02 6.7885263e-02 8.3273481e-02 7.1166737e-02 7.5618620e-02 7.3311647e-02 5.2129744e-02 7.5414559e-02 1.3361288e-01 1.2212885e-01 1.1803753e-01 1.2062983e-01 1.2681873e-01 1.3003785e-01 1.2339855e-01 1.2552093e-01 1.3397302e-01 1.1145011e-01 9.6072866e-02 1.1773621e-01 1.1108813e-01 1.3021606e-01 1.2991222e-01 1.0941117e-01 1.1074904e-01 1.1019635e-01 1.5245649e-01 1.2709803e-01 1.1272646e-01 1.1805571e-01 1.3644429e-01 1.0507143e-01 1.0948152e-01 1.0908044e-01 1.0002018e-01 9.8259510e-02 1.2725753e-01 1.0697349e-01 1.2296793e-01 9.7285465e-02 1.2913723e-01 1.0312519e-01 1.2920697e-01 1.1832381e-01 1.1655849e-01 1.0932054e-01 9.6669076e-02 1.0377916e-01 1.1803847e-01 9.9488230e-02 1.2212885e-01 1.2004765e-01 1.1693776e-01 1.0790940e-01 1.1723226e-01 1.0500092e-01 1.1038445e-01 1.0827603e-01 1.5232780e-04 4.0007181e-04 6.5289213e-02 6.7204649e-02 7.5443787e-02 8.6444762e-02 7.9660759e-02 8.4749914e-02 7.3546883e-02 6.0641799e-02 7.3012359e-02 7.6531840e-02 8.1598668e-02 6.9499172e-02 7.9923854e-02 8.3724381e-02 5.3799024e-02 6.2453508e-02 8.4253942e-02 6.8486788e-02 1.0054294e-01 7.1576362e-02 8.9122210e-02 6.3281093e-02 1.0114322e-01 8.3993466e-02 6.6335786e-02 6.5925957e-02 8.0814161e-02 8.6165539e-02 8.0247902e-02 5.3368917e-02 7.2666724e-02 6.7816556e-02 6.4623203e-02 1.0800053e-01 8.8235002e-02 6.9728892e-02 7.2010954e-02 8.9470933e-02 6.7181463e-02 7.9529500e-02 8.9243318e-02 7.7739806e-02 7.0823200e-02 6.2720078e-02 7.8762930e-02 6.7548169e-02 7.1608713e-02 6.8390856e-02 4.7339693e-02 7.1004341e-02 1.3006516e-01 1.1747357e-01 1.1247378e-01 1.1599806e-01 1.2210677e-01 1.2411360e-01 1.1962941e-01 1.1968938e-01 1.2763702e-01 1.0730056e-01 9.1685935e-02 1.1214725e-01 1.0578284e-01 1.2500364e-01 1.2540001e-01 1.0518188e-01 1.0602704e-01 1.0612761e-01 1.4550231e-01 1.2054520e-01 1.0786099e-01 1.1396219e-01 1.2996046e-01 9.9460763e-02 1.0527691e-01 1.0405039e-01 9.4844256e-02 9.3945852e-02 1.2206303e-01 1.0136794e-01 1.1659636e-01 9.2882126e-02 1.2391115e-01 9.8044098e-02 1.2415930e-01 1.1196299e-01 1.1316845e-01 1.0506061e-01 9.2491851e-02 9.8554383e-02 1.1313163e-01 9.4057839e-02 1.1747357e-01 1.1542880e-01 1.1260458e-01 1.0255212e-01 1.1101490e-01 1.0006494e-01 1.0712947e-01 1.0442482e-01 3.2637736e-04 7.1228332e-02 7.3360309e-02 8.1848237e-02 9.3197783e-02 8.6156854e-02 9.1733116e-02 8.0052769e-02 6.6468809e-02 7.9277125e-02 8.3130576e-02 8.8073461e-02 7.5751270e-02 8.6114214e-02 9.0610516e-02 5.9264749e-02 6.8242422e-02 9.1255768e-02 7.4667198e-02 1.0756842e-01 7.7803425e-02 9.6260495e-02 6.9087389e-02 1.0845861e-01 9.0870006e-02 7.2305626e-02 7.1861030e-02 8.7311178e-02 9.3009359e-02 8.6960677e-02 5.8641082e-02 7.8892851e-02 7.3809649e-02 7.0554233e-02 1.1577001e-01 9.5424873e-02 7.6110400e-02 7.8288785e-02 9.6097634e-02 7.3451146e-02 8.6123272e-02 9.6377446e-02 8.4403314e-02 7.7003085e-02 6.8529959e-02 8.5437768e-02 7.3849362e-02 7.8032414e-02 7.4531055e-02 5.2299301e-02 7.7339214e-02 1.3853845e-01 1.2553252e-01 1.2026484e-01 1.2407451e-01 1.3030382e-01 1.3228892e-01 1.2783055e-01 1.2774776e-01 1.3586522e-01 1.1498861e-01 9.8800101e-02 1.1991948e-01 1.1333278e-01 1.3320266e-01 1.3352807e-01 1.1273476e-01 1.1373642e-01 1.1391093e-01 1.5417322e-01 1.2849633e-01 1.1550662e-01 1.2189074e-01 1.3824515e-01 1.0674666e-01 1.1296262e-01 1.1166908e-01 1.0200786e-01 1.0119861e-01 1.3020916e-01 1.0880524e-01 1.2443747e-01 1.0015009e-01 1.3208523e-01 1.0543261e-01 1.3248948e-01 1.1957063e-01 1.2107326e-01 1.1278773e-01 9.9690412e-02 1.0583253e-01 1.2090813e-01 1.0100447e-01 1.2553252e-01 1.2339293e-01 1.2039941e-01 1.0985773e-01 1.1861026e-01 1.0744824e-01 1.1483872e-01 1.1213527e-01 6.6878313e-02 6.9715409e-02 7.7364528e-02 8.8171063e-02 8.1336125e-02 8.7984980e-02 7.6788970e-02 6.2680317e-02 7.4638540e-02 7.9773718e-02 8.2744330e-02 7.2225777e-02 8.0191157e-02 8.6590874e-02 5.5913229e-02 6.3969698e-02 8.8177048e-02 7.0519412e-02 1.0143390e-01 7.3287383e-02 9.3242485e-02 6.4744474e-02 1.0311960e-01 8.6619094e-02 6.7881619e-02 6.7447267e-02 8.2187438e-02 8.8483348e-02 8.3036483e-02 5.4275541e-02 7.4193034e-02 6.9119612e-02 6.6341718e-02 1.1134910e-01 9.2648103e-02 7.3522039e-02 7.4021876e-02 9.0141442e-02 7.0408618e-02 8.1718494e-02 9.2345175e-02 8.0646828e-02 7.2501162e-02 6.4223536e-02 8.1515678e-02 7.0682605e-02 7.4552513e-02 7.0364536e-02 4.8478235e-02 7.3560525e-02 1.3517901e-01 1.2131760e-01 1.1535330e-01 1.1982809e-01 1.2602646e-01 1.2698846e-01 1.2430464e-01 1.2251062e-01 1.3021845e-01 1.1127258e-01 9.4973617e-02 1.1499323e-01 1.0869119e-01 1.2854331e-01 1.2950169e-01 1.0899747e-01 1.0948608e-01 1.1017110e-01 1.4797664e-01 1.2271397e-01 1.1121974e-01 1.1817834e-01 1.3245873e-01 1.0189203e-01 1.0916690e-01 1.0716280e-01 9.7527876e-02 9.7386912e-02 1.2555051e-01 1.0384747e-01 1.1883003e-01 9.6216108e-02 1.2741273e-01 1.0091958e-01 1.2779606e-01 1.1407020e-01 1.1794445e-01 1.0890370e-01 9.6003260e-02 1.0130628e-01 1.1658801e-01 9.6417670e-02 1.2131760e-01 1.1923852e-01 1.1654354e-01 1.0526503e-01 1.1322934e-01 1.0313209e-01 1.1184758e-01 1.0860395e-01 7.4548764e-04 4.1909104e-04 1.5729317e-03 7.9277531e-04 2.5985333e-03 2.1157871e-03 2.6363318e-04 2.7214324e-04 2.5006701e-03 1.1999234e-03 1.3641574e-03 2.4228657e-03 1.9193080e-03 1.5580763e-03 9.1547441e-05 4.2498838e-03 5.1587623e-04 4.4451535e-03 1.9710136e-04 5.9468529e-03 1.1637586e-04 4.0879090e-03 1.9577278e-03 7.5438506e-06 5.1321994e-05 9.5746588e-04 1.8362275e-03 1.6353958e-03 8.5567943e-04 2.3534169e-04 2.0155706e-04 2.8744085e-05 6.6464816e-03 6.0500135e-03 3.7609984e-03 3.0183871e-04 2.6908058e-03 1.8208811e-03 9.2994693e-04 3.0287331e-03 1.4489077e-03 1.1766146e-04 3.4058119e-05 1.3255619e-03 1.5104843e-03 1.2375803e-03 1.2042792e-04 2.2770079e-03 7.0925866e-04 1.7863102e-02 1.0250835e-02 7.3485693e-03 9.3316539e-03 1.1683662e-02 1.0169272e-02 1.2909901e-02 9.0217168e-03 1.1005819e-02 9.1383359e-03 4.6331293e-03 7.2658380e-03 6.2625155e-03 1.2163934e-02 1.5604510e-02 9.0849374e-03 6.4499430e-03 7.6430735e-03 1.6734199e-02 8.8633570e-03 7.8095179e-03 1.1083442e-02 1.1720144e-02 4.3192019e-03 7.6217573e-03 5.4833250e-03 3.8602370e-03 4.7396014e-03 1.0813609e-02 4.4772013e-03 7.7667524e-03 3.8237256e-03 1.1654961e-02 4.0471444e-03 1.1640132e-02 6.9842505e-03 1.3199398e-02 6.9808241e-03 4.8195688e-03 4.8204301e-03 9.7963275e-03 5.3012133e-03 1.0250835e-02 1.0025463e-02 1.1016974e-02 6.8718627e-03 6.8391566e-03 5.4173007e-03 1.1780352e-02 7.9156890e-03 7.3587704e-04 1.9839586e-03 1.2219042e-03 1.5405721e-03 4.1726993e-04 3.7297590e-04 1.1835574e-03 6.1737386e-04 2.7177989e-03 1.1395438e-04 5.3634867e-03 1.2095802e-03 9.5552631e-04 7.0211590e-04 1.8297765e-03 1.3098829e-03 5.8522900e-03 1.0011765e-03 2.8317516e-03 7.2859483e-04 4.4710316e-03 2.0244176e-03 7.6733040e-04 6.7685529e-04 2.1301657e-03 1.3518842e-03 6.1205846e-04 2.4644310e-03 1.1938153e-03 1.5975309e-03 5.1076446e-04 5.2791382e-03 3.0339660e-03 1.1907842e-03 3.5011674e-04 4.7257393e-03 3.5465173e-04 7.3647426e-04 2.3478030e-03 5.8214999e-04 7.6861523e-04 8.1449121e-04 5.9893306e-04 4.9750178e-04 2.3193980e-04 3.6882491e-04 2.8017975e-03 9.9802686e-05 1.3102890e-02 7.5969761e-03 6.0828162e-03 7.3064415e-03 8.8657957e-03 9.3996859e-03 9.1529212e-03 8.6958624e-03 1.0707084e-02 5.8653516e-03 2.3848099e-03 6.0110419e-03 4.6435179e-03 9.5841132e-03 1.1495876e-02 5.7351815e-03 4.7762002e-03 5.2279685e-03 1.6343054e-02 9.1684398e-03 5.3835136e-03 7.5338144e-03 1.1677909e-02 3.4411805e-03 4.9237859e-03 4.5530879e-03 2.5678146e-03 2.5808970e-03 8.5897045e-03 4.5950787e-03 7.8389611e-03 2.4182455e-03 9.2053995e-03 3.4479875e-03 1.0780684e-02 6.4366206e-03 8.7029459e-03 4.8244677e-03 2.4820766e-03 3.2994674e-03 6.9725103e-03 3.6004536e-03 7.5969761e-03 7.2055876e-03 7.4680636e-03 4.8244418e-03 6.1219436e-03 3.5524443e-03 7.3785563e-03 5.0327851e-03 4.5958248e-04 1.4323573e-04 1.2376608e-03 1.4854110e-03 8.9326822e-04 1.4516004e-04 1.6538068e-03 6.5338340e-04 1.1299287e-03 2.4074626e-03 6.9551596e-04 2.6949476e-03 7.2730987e-04 2.7608296e-03 6.5430290e-04 2.7448595e-03 1.4433165e-04 4.0981488e-03 7.0217976e-04 2.0017194e-03 8.4737221e-04 3.5875154e-04 4.2590326e-04 3.7194881e-04 5.5222558e-04 6.3134375e-04 2.4465093e-03 1.5551077e-04 5.7141821e-04 4.4617793e-04 3.7751002e-03 4.2307180e-03 3.3297057e-03 8.4238856e-05 1.8060244e-03 1.6735237e-03 1.3470834e-04 1.4289074e-03 6.1420964e-04 1.0488316e-04 6.6710002e-04 4.5037482e-04 1.3817339e-03 8.2351922e-04 1.8947713e-04 4.2527867e-03 4.2014447e-04 1.3415184e-02 6.6868372e-03 4.2910287e-03 5.8862692e-03 7.8406972e-03 6.4938295e-03 9.0912854e-03 5.6561218e-03 7.2322567e-03 6.1641630e-03 2.7540356e-03 4.2344365e-03 3.5847503e-03 8.2354910e-03 1.1610160e-02 6.2859853e-03 3.6577005e-03 4.7344286e-03 1.2033367e-02 5.6148647e-03 4.9101139e-03 7.6703569e-03 7.8664866e-03 2.1500523e-03 4.7726337e-03 2.9188064e-03 1.9107921e-03 2.6804057e-03 7.0603390e-03 2.2776004e-03 4.6992435e-03 1.8838392e-03 7.7943774e-03 1.9124732e-03 7.9102721e-03 4.1636243e-03 9.7823337e-03 4.1721395e-03 2.8414673e-03 2.6224860e-03 6.5787438e-03 3.5255969e-03 6.6868372e-03 6.5865547e-03 7.7526002e-03 4.4665713e-03 4.0404299e-03 3.0508638e-03 8.7371106e-03 5.0758684e-03 1.4741381e-04 1.6125952e-03 2.5451963e-03 2.5693849e-03 7.6673984e-04 2.4419486e-03 4.9090126e-04 2.2351893e-03 2.2914219e-03 9.4806103e-04 4.8625587e-03 2.0262116e-03 3.3701508e-03 1.9166326e-03 1.0683081e-03 9.0452408e-04 4.3648468e-03 1.8983778e-03 7.0324108e-04 1.1499379e-03 1.4013722e-03 1.4463883e-03 3.0992383e-04 2.7889447e-04 9.9370768e-04 4.4215550e-03 7.4609763e-04 1.5322654e-03 1.6670592e-03 2.5458750e-03 4.8164855e-03 4.9491294e-03 7.9622502e-04 9.3705610e-04 3.2918730e-03 3.3244867e-04 1.4917733e-03 1.2997427e-03 8.4964648e-04 1.9833350e-03 9.7663737e-04 3.0207145e-03 1.9767871e-03 1.2186915e-03 6.6584952e-03 1.4294810e-03 1.1447125e-02 4.9138585e-03 2.4483433e-03 4.3479747e-03 5.8020082e-03 4.0665925e-03 7.5951000e-03 3.6015682e-03 4.5184530e-03 5.0362911e-03 2.3873447e-03 2.3916463e-03 2.1166084e-03 5.8005881e-03 9.3326086e-03 5.1921662e-03 2.5583136e-03 3.9040792e-03 8.1942534e-03 3.2098756e-03 3.4610228e-03 6.2351763e-03 5.0378736e-03 9.3974884e-04 3.8135545e-03 1.8905878e-03 1.0935023e-03 2.2739982e-03 4.8352649e-03 1.2660181e-03 2.5068904e-03 1.6511455e-03 5.4229770e-03 1.1989559e-03 6.1054655e-03 2.0081796e-03 8.6788304e-03 3.3159020e-03 2.5546078e-03 1.5534900e-03 4.7975700e-03 2.5264412e-03 4.9138585e-03 4.8875866e-03 6.2264786e-03 3.0375207e-03 1.9750388e-03 2.0217929e-03 8.0063599e-03 4.3571190e-03 1.6611913e-03 2.0167984e-03 1.5438876e-03 3.6494229e-04 2.0217253e-03 4.6462511e-04 1.5312613e-03 2.1707116e-03 9.6955753e-04 3.3920004e-03 1.0848877e-03 3.2679078e-03 1.3217642e-03 1.7681092e-03 4.3634818e-04 4.3762590e-03 9.8982281e-04 1.4702047e-03 1.2309511e-03 6.6753502e-04 6.7519636e-04 2.4877587e-04 3.8105160e-04 8.2183923e-04 3.0399429e-03 3.2267433e-04 8.9534104e-04 8.4272052e-04 3.5139014e-03 4.8234985e-03 4.1432495e-03 3.0463297e-04 1.2193814e-03 2.4923401e-03 1.7011388e-04 1.7584273e-03 1.0444437e-03 3.3026408e-04 1.0723664e-03 7.7198092e-04 2.2859213e-03 1.4276818e-03 5.7687029e-04 4.8466907e-03 8.6936394e-04 1.2850654e-02 6.1088154e-03 3.5569698e-03 5.5719646e-03 7.1488198e-03 5.6571014e-03 8.7634622e-03 5.0674178e-03 6.2538450e-03 5.7468537e-03 2.5694606e-03 3.4855366e-03 2.9211508e-03 7.2454781e-03 1.0560745e-02 5.7784909e-03 3.4230741e-03 4.7152707e-03 1.0513823e-02 4.7114505e-03 4.2697686e-03 7.1803873e-03 6.8688743e-03 1.5447042e-03 4.5401495e-03 2.7361382e-03 1.4855517e-03 2.5857007e-03 6.2270622e-03 2.0576267e-03 3.8519560e-03 2.0130817e-03 6.8461641e-03 1.8250891e-03 7.7109246e-03 3.0910476e-03 9.4645289e-03 4.1075164e-03 2.7837137e-03 2.0667492e-03 5.7442304e-03 2.7416306e-03 6.1088154e-03 5.9744542e-03 7.0784056e-03 3.5969994e-03 3.0144395e-03 2.5834027e-03 8.5675229e-03 5.0446428e-03 9.3410747e-04 2.6108336e-03 1.8631164e-03 1.0514258e-03 2.7757095e-03 1.6027319e-03 5.9009151e-03 9.3507643e-05 4.8585250e-03 3.2279691e-03 7.0814372e-04 1.8064210e-03 4.7021523e-03 1.7906187e-03 1.7438865e-03 3.2726931e-03 2.1092470e-03 4.4199215e-04 2.5742583e-03 2.7576288e-03 2.1865740e-03 8.5954487e-04 4.3875130e-04 6.2385517e-03 2.0706463e-03 2.9895922e-03 2.4900150e-03 1.5452115e-03 1.2972442e-03 2.2089282e-03 1.3825902e-03 4.4047937e-03 1.3378707e-03 8.5528525e-04 1.4287812e-04 2.3200710e-04 1.9018574e-03 3.1193134e-03 2.7835858e-04 1.0440284e-03 6.7774868e-04 1.6434489e-03 8.2787646e-03 9.1805293e-04 8.2830461e-03 3.6334874e-03 2.7936555e-03 2.6701226e-03 4.5417785e-03 4.4199379e-03 4.7638022e-03 3.6853341e-03 5.4544340e-03 3.4799734e-03 1.6014887e-03 2.8117239e-03 2.4093914e-03 5.5035080e-03 8.3987820e-03 4.0331795e-03 1.3946498e-03 1.6013776e-03 9.9231424e-03 4.6841468e-03 3.0824955e-03 4.3724199e-03 6.0877536e-03 1.8755546e-03 2.0838499e-03 1.1387331e-03 1.4636530e-03 1.0937142e-03 4.3877001e-03 1.4753015e-03 3.8552640e-03 2.5868499e-04 5.1223304e-03 7.0168484e-04 4.3920187e-03 3.9679568e-03 5.8082286e-03 1.3720301e-03 1.2437314e-03 1.9911684e-03 4.5361159e-03 3.9571028e-03 3.6334874e-03 3.7423473e-03 5.0666856e-03 3.9975266e-03 3.7265040e-03 1.8650355e-03 5.0595778e-03 1.9211780e-03 1.4802848e-03 2.3288314e-03 6.8065434e-05 4.0423471e-03 2.2193959e-04 7.6466779e-03 9.2054349e-04 2.1021154e-03 2.1770952e-03 5.4412625e-04 2.3412508e-03 6.7735470e-03 2.1146424e-03 1.1473823e-03 2.2087962e-03 4.4699141e-03 2.0616206e-03 2.1327263e-03 2.0380999e-03 3.2539726e-03 1.3598045e-03 3.9670027e-04 4.8634117e-03 2.4197901e-03 3.2204932e-03 1.7622064e-03 3.8856461e-03 1.2334789e-03 4.0452577e-04 1.0887743e-03 6.2435560e-03 2.0292084e-04 1.0829901e-03 1.7786841e-03 4.1228310e-04 1.8859956e-03 2.3286589e-03 5.1772577e-04 4.9172870e-04 2.0007065e-04 1.2918676e-03 5.0330599e-03 3.9898095e-04 9.4287570e-03 5.3866372e-03 4.8647393e-03 5.2819054e-03 6.4598280e-03 8.0073865e-03 6.1852254e-03 7.5566712e-03 9.5128884e-03 3.7267827e-03 1.2843714e-03 4.8237356e-03 3.5085400e-03 7.3800011e-03 8.6672418e-03 3.7373665e-03 3.3006522e-03 3.2553459e-03 1.4768796e-02 8.5372346e-03 3.7597131e-03 5.0208833e-03 1.0540608e-02 2.9216135e-03 2.9987594e-03 3.5026889e-03 1.9346800e-03 1.3415748e-03 6.5619943e-03 4.2356898e-03 7.2096387e-03 1.4370251e-03 7.0771420e-03 2.7742326e-03 8.9575949e-03 5.8574207e-03 5.7119619e-03 3.0499081e-03 1.2067939e-03 2.4757916e-03 5.0772246e-03 3.1235792e-03 5.3866372e-03 5.0347068e-03 5.1609892e-03 3.8212989e-03 5.4644467e-03 2.4256658e-03 4.6018293e-03 2.9278326e-03 8.9754714e-04 1.9308173e-03 2.4780225e-03 8.6351250e-04 4.2337045e-03 2.1236680e-03 7.2381764e-04 2.1294516e-04 3.5897400e-03 7.7335429e-04 6.4715989e-03 7.0701488e-04 5.1814848e-03 2.9010443e-04 5.5409554e-03 2.4566735e-03 3.3429771e-04 3.2970103e-04 2.0470962e-03 2.3835444e-03 1.6383998e-03 1.0044594e-03 8.9092263e-04 8.3257442e-04 1.5048347e-04 7.3947599e-03 5.1765389e-03 2.4819362e-03 5.2929628e-04 4.5409213e-03 9.8467896e-04 1.3414871e-03 3.3640577e-03 1.3544701e-03 5.6680732e-04 2.1931945e-04 1.3672243e-03 8.5440953e-04 8.3314842e-04 2.6161270e-04 1.7366856e-03 5.2799539e-04 1.7649847e-02 1.0764587e-02 8.4383096e-03 9.9924928e-03 1.2273825e-02 1.1788899e-02 1.2850999e-02 1.0630699e-02 1.2964118e-02 9.0438994e-03 4.5288546e-03 8.3580766e-03 6.9988358e-03 1.3044370e-02 1.5771615e-02 8.9276151e-03 7.0025139e-03 7.7681345e-03 1.9248623e-02 1.0890288e-02 8.2148016e-03 1.1050411e-02 1.3845989e-02 5.2067991e-03 7.6819868e-03 6.2976924e-03 4.3733262e-03 4.7066273e-03 1.1733076e-02 5.6953630e-03 9.5825887e-03 4.0184455e-03 1.2555508e-02 4.8201445e-03 1.2938333e-02 8.5012649e-03 1.2613331e-02 7.2187981e-03 4.6491251e-03 5.3739269e-03 1.0213138e-02 5.7106829e-03 1.0764587e-02 1.0424589e-02 1.1013685e-02 7.3861586e-03 8.2413252e-03 5.8213434e-03 1.1031181e-02 7.7860554e-03 2.6482878e-03 4.2794287e-04 1.8319104e-03 1.5871773e-03 1.2340260e-03 2.9761573e-03 6.4181441e-04 3.9337040e-03 3.6570436e-04 2.9155752e-03 1.3382816e-05 5.6692471e-03 6.4631376e-04 2.4262663e-03 1.0063227e-03 2.3414789e-04 3.8352406e-04 2.6670153e-04 1.1841642e-03 1.3362953e-03 1.8214422e-03 1.1939941e-05 1.6841308e-04 4.0205285e-04 4.8423454e-03 5.6256276e-03 4.4224155e-03 3.0861840e-04 1.5326607e-03 2.2893524e-03 5.4845532e-04 1.9363566e-03 1.1483728e-03 6.7060376e-05 4.8890125e-04 9.7136579e-04 1.7676633e-03 1.3375465e-03 2.5372175e-04 4.0846507e-03 8.2917869e-04 1.6077651e-02 8.4460632e-03 5.5177458e-03 7.2638972e-03 9.7215743e-03 7.5597148e-03 1.1218034e-02 6.4234899e-03 8.1582316e-03 8.1119193e-03 4.1520915e-03 5.4624397e-03 4.9276011e-03 1.0142169e-02 1.4194600e-02 8.3023965e-03 4.8434975e-03 6.1466052e-03 1.3239048e-02 6.2447391e-03 6.5902144e-03 9.7724034e-03 8.6919298e-03 3.1454944e-03 6.3952659e-03 3.7622934e-03 3.0039560e-03 4.0045050e-03 8.7466217e-03 2.6847018e-03 5.4026497e-03 2.7900002e-03 9.6269482e-03 2.5687827e-03 8.7444600e-03 5.2241473e-03 1.2215015e-02 5.4919656e-03 4.2251052e-03 3.8716574e-03 8.5147448e-03 4.9424074e-03 8.4460632e-03 8.4294916e-03 9.9304629e-03 6.0757927e-03 5.1533590e-03 4.4115457e-03 1.1061881e-02 6.6918878e-03 4.2077380e-03 2.8084601e-04 8.0255307e-03 1.0009734e-03 2.4531898e-03 2.5259126e-03 4.7784400e-04 2.9272193e-03 6.4204523e-03 2.4613181e-03 8.1446100e-04 2.5131313e-03 4.2288269e-03 2.3479589e-03 2.4787654e-03 2.3219118e-03 3.4016339e-03 1.1923522e-03 3.6609993e-04 5.5309499e-03 2.7130308e-03 3.6876750e-03 2.1157012e-03 3.5197143e-03 1.1211667e-03 5.0040735e-04 1.2581494e-03 6.2453424e-03 4.9316252e-04 1.0956505e-03 1.9034882e-03 5.6262931e-04 2.1623642e-03 2.7381233e-03 6.2275542e-04 9.1647472e-04 4.3469066e-04 1.6016964e-03 5.5073116e-03 6.0170029e-04 8.2861929e-03 4.5965840e-03 4.2124912e-03 4.7715416e-03 5.5699315e-03 7.3813594e-03 5.3659110e-03 7.1660104e-03 8.8786575e-03 2.9267242e-03 8.0445420e-04 4.1635703e-03 2.8364579e-03 6.3397911e-03 7.3211567e-03 2.8639086e-03 2.8974680e-03 2.8626073e-03 1.3776826e-02 8.0525608e-03 2.9632152e-03 4.1293440e-03 9.9396499e-03 2.4124505e-03 2.4179141e-03 3.2613675e-03 1.4673422e-03 9.3714862e-04 5.6839580e-03 4.1506352e-03 6.7187933e-03 1.3083992e-03 6.0861850e-03 2.6486423e-03 8.7285257e-03 5.1099460e-03 4.7657924e-03 2.6722144e-03 7.9417630e-04 1.8862622e-03 4.0883053e-03 2.3510235e-03 4.5965840e-03 4.1923613e-03 4.1490574e-03 2.9383782e-03 4.7171745e-03 1.8344857e-03 3.7646957e-03 2.4446440e-03 3.4307781e-03 6.9180223e-04 1.9272484e-03 5.2229584e-03 1.7410764e-03 5.5262484e-03 1.3512624e-03 1.2930220e-03 5.9265821e-04 7.2336834e-03 1.6622228e-03 1.4643809e-03 1.4579196e-03 1.0665934e-03 1.2486050e-03 4.3399433e-05 1.3778574e-03 2.2390179e-03 3.1206766e-03 3.9982611e-04 7.0342073e-04 1.4793565e-03 4.5495005e-03 7.4063181e-03 6.9037801e-03 1.1215419e-03 3.4551859e-04 4.3750592e-03 1.0242073e-03 2.4559606e-03 2.2544417e-03 6.9180223e-04 1.5393939e-03 1.8990091e-03 3.7039856e-03 2.8782332e-03 1.2534261e-03 6.1345149e-03 2.1154370e-03 1.6389445e-02 8.1714731e-03 4.6971245e-03 6.9480013e-03 9.2874957e-03 6.0735661e-03 1.1557043e-02 5.0795005e-03 6.2695782e-03 8.5942939e-03 4.8981354e-03 4.6386510e-03 4.5456138e-03 9.3051239e-03 1.4039626e-02 8.8459552e-03 4.7683489e-03 6.5513763e-03 1.0462868e-02 4.3969158e-03 6.5113261e-03 1.0098096e-02 6.6155737e-03 2.7131547e-03 6.8044529e-03 3.4785563e-03 3.0414918e-03 4.6799978e-03 7.9508909e-03 2.0423594e-03 3.8146379e-03 3.3303959e-03 8.7946774e-03 2.4271150e-03 7.7798359e-03 3.9016462e-03 1.3149131e-02 5.7850137e-03 5.0633237e-03 3.7856360e-03 8.3083336e-03 4.9921128e-03 8.1714731e-03 8.2786520e-03 1.0189399e-02 5.8912773e-03 3.9649361e-03 4.4771942e-03 1.2268673e-02 7.3587328e-03 6.5787312e-03 1.3233357e-03 1.1455828e-03 1.2416155e-03 1.4002549e-03 2.1211045e-03 6.2047866e-03 1.6380421e-03 2.0343353e-03 1.2366343e-03 4.6737502e-03 2.4960613e-03 1.3635919e-03 1.1869805e-03 2.7420392e-03 1.3311387e-03 5.4030547e-04 3.4496369e-03 1.8301986e-03 2.4543913e-03 1.0360218e-03 4.9823495e-03 2.4358984e-03 7.7653049e-04 6.6085729e-04 5.4666528e-03 3.6251211e-04 9.0034369e-04 2.5308489e-03 6.8325669e-04 1.3068439e-03 1.4466712e-03 7.0328570e-04 7.2909544e-04 3.3427965e-04 8.2319726e-04 3.3236658e-03 2.7101948e-04 1.1415097e-02 6.6763180e-03 5.5975222e-03 6.7637660e-03 7.8425097e-03 9.1076654e-03 7.9396677e-03 8.6849227e-03 1.0537825e-02 4.7340864e-03 1.6981356e-03 5.5204544e-03 4.0238168e-03 8.5090240e-03 9.7837063e-03 4.5130967e-03 4.3644743e-03 4.6397935e-03 1.5929686e-02 9.2384755e-03 4.4702915e-03 6.2885333e-03 1.1607431e-02 3.1082253e-03 4.1080254e-03 4.4476701e-03 2.1448891e-03 1.9903866e-03 7.7241343e-03 4.8610346e-03 7.8308568e-03 2.2349743e-03 8.1986845e-03 3.4906235e-03 1.0785042e-02 6.0455598e-03 7.1678534e-03 4.3085958e-03 1.8327850e-03 2.7372439e-03 5.8248161e-03 2.8157351e-03 6.6763180e-03 6.1912806e-03 6.1165743e-03 3.9060199e-03 5.6854050e-03 2.9112999e-03 5.9286549e-03 4.2459890e-03 4.7261943e-03 7.5564450e-03 3.0589295e-03 9.9138151e-03 2.5436162e-03 2.3081715e-03 1.8344588e-03 1.2327595e-02 2.9913447e-03 3.4407458e-03 3.5166367e-03 2.2912956e-03 2.5985157e-03 1.0536407e-03 4.0148201e-03 5.3033668e-03 3.3636231e-03 1.5135209e-03 1.3379167e-03 2.9432336e-03 8.2210569e-03 1.2378534e-02 1.1256214e-02 3.0883819e-03 6.3877121e-04 7.6741777e-03 3.3091271e-03 5.2745018e-03 5.1312091e-03 2.0746888e-03 2.6973394e-03 4.6616800e-03 6.5765736e-03 5.8096774e-03 2.9820979e-03 7.3187243e-03 4.6783172e-03 2.3410581e-02 1.3144529e-02 8.3391705e-03 1.1305315e-02 1.4457465e-02 9.3485129e-03 1.7555848e-02 7.8838497e-03 9.1347689e-03 1.4043414e-02 9.2390419e-03 8.2683227e-03 8.4558564e-03 1.4291672e-02 2.0441558e-02 1.4348706e-02 8.7091477e-03 1.1171095e-02 1.3577182e-02 6.6301175e-03 1.1191012e-02 1.5865943e-02 9.2559664e-03 5.8683930e-03 1.1694065e-02 6.7001372e-03 6.5334334e-03 8.9560518e-03 1.2574664e-02 4.2523471e-03 6.2343724e-03 6.8791672e-03 1.3649249e-02 5.2782119e-03 1.1089361e-02 6.8777652e-03 1.9771053e-02 1.0157447e-02 9.4893989e-03 7.5319640e-03 1.3411350e-02 8.8625592e-03 1.3144529e-02 1.3390278e-02 1.5951074e-02 1.0173619e-02 7.0905829e-03 8.5554531e-03 1.8741319e-02 1.2400067e-02 4.2985441e-03 2.4763265e-03 1.0193789e-03 1.4380091e-03 3.6495663e-03 1.2003820e-03 2.0584975e-03 2.4845352e-03 1.6034070e-03 3.3059261e-04 1.8671770e-03 2.0088877e-03 1.4284810e-03 4.3098388e-04 2.3514979e-04 5.2698749e-03 1.3824059e-03 2.2360501e-03 1.8501267e-03 1.6468815e-03 1.8319470e-03 2.4154150e-03 8.5423988e-04 3.3259702e-03 1.3633177e-03 3.9750527e-04 2.1357310e-04 1.4089375e-04 1.2605369e-03 2.3906980e-03 1.0696291e-04 1.0906412e-03 5.9076498e-04 1.1304618e-03 7.2732511e-03 6.4012947e-04 8.9598694e-03 3.8314732e-03 2.5915433e-03 2.9763427e-03 4.7600376e-03 4.3053173e-03 5.3266981e-03 3.6190516e-03 5.2272723e-03 3.6549051e-03 1.5047575e-03 2.5888356e-03 2.1634980e-03 5.5055672e-03 8.5050147e-03 4.0885074e-03 1.5151975e-03 1.9844585e-03 9.6042351e-03 4.2899092e-03 2.9941597e-03 4.6609860e-03 5.8520656e-03 1.4443089e-03 2.3092039e-03 1.1621771e-03 1.1296414e-03 1.1169479e-03 4.4204603e-03 1.2641450e-03 3.4620250e-03 3.4971048e-04 5.1226200e-03 6.2752047e-04 4.7853928e-03 3.3731886e-03 6.3070664e-03 1.6662334e-03 1.2828407e-03 1.6597311e-03 4.4397739e-03 3.3292201e-03 3.8314732e-03 3.8867782e-03 5.1669823e-03 3.5417199e-03 3.1734550e-03 1.6842820e-03 5.5385508e-03 2.3108610e-03 1.0105990e-03 4.7523926e-03 2.9847642e-03 9.7105522e-03 2.6675945e-03 5.8410645e-03 1.0628436e-03 8.9773521e-03 5.4199214e-03 1.6519449e-03 1.3847497e-03 4.5932482e-03 4.2245140e-03 3.0278103e-03 1.7095869e-03 2.8675709e-03 2.8000554e-03 1.2095222e-03 1.0633409e-02 6.3588443e-03 2.3146826e-03 1.8579783e-03 7.7501487e-03 1.5279559e-03 3.0361588e-03 6.2292475e-03 2.9996444e-03 2.2092276e-03 1.2670329e-03 3.0585508e-03 1.9631739e-03 1.9448597e-03 1.6026176e-03 7.3057463e-04 1.6268750e-03 1.9360609e-02 1.3271536e-02 1.1367917e-02 1.3356276e-02 1.4871782e-02 1.6028245e-02 1.4980963e-02 1.5218503e-02 1.7630002e-02 1.0242398e-02 5.4451367e-03 1.1236806e-02 9.0841292e-03 1.5577818e-02 1.6739427e-02 9.6435556e-03 9.8426714e-03 1.0341095e-02 2.4442578e-02 1.5482723e-02 9.8424496e-03 1.2530745e-02 1.8870958e-02 7.3605563e-03 9.5556413e-03 9.6316193e-03 6.0281749e-03 6.1257342e-03 1.4596779e-02 9.4938425e-03 1.3739836e-02 6.3629397e-03 1.5181016e-02 7.9755348e-03 1.8111593e-02 1.1305790e-02 1.3376686e-02 9.8378125e-03 5.8135644e-03 6.9819428e-03 1.1631750e-02 6.1445613e-03 1.3271536e-02 1.2517306e-02 1.1992997e-02 8.3045136e-03 1.0906252e-02 7.4644491e-03 1.1536762e-02 9.7524154e-03 4.5852486e-03 9.8595493e-04 5.1231602e-03 5.3641159e-04 6.1291344e-03 9.0289414e-06 4.9719488e-03 2.7623691e-03 1.0135570e-04 4.9630072e-05 1.4573369e-03 2.2050307e-03 1.9067713e-03 6.5935996e-04 5.5655703e-04 4.9349156e-04 5.3910141e-05 7.6334144e-03 6.4541501e-03 3.6168243e-03 4.5600228e-04 3.3337204e-03 1.8551457e-03 1.2329546e-03 3.8576017e-03 1.8263928e-03 3.4082293e-04 2.8939589e-05 1.6992773e-03 1.7320592e-03 1.4340517e-03 2.7567571e-04 1.5103910e-03 8.5202938e-04 1.8535044e-02 1.1041503e-02 8.1659733e-03 1.0422568e-02 1.2515324e-02 1.1445689e-02 1.3674148e-02 1.0415137e-02 1.2394915e-02 9.4870366e-03 4.7984401e-03 8.0611256e-03 6.7876377e-03 1.2924053e-02 1.5886474e-02 9.2445598e-03 7.3109344e-03 8.4847047e-03 1.8293716e-02 1.0175519e-02 8.2306422e-03 1.1561315e-02 1.3225081e-02 4.8091709e-03 8.1976852e-03 6.4746796e-03 4.2076714e-03 5.1007444e-03 1.1683626e-02 5.5527590e-03 8.9342726e-03 4.4973686e-03 1.2442734e-02 4.9468838e-03 1.3343592e-02 7.6599210e-03 1.3497447e-02 7.8132331e-03 5.1004820e-03 5.1592495e-03 1.0155636e-02 5.1788357e-03 1.1041503e-02 1.0666367e-02 1.1283660e-02 6.9627068e-03 7.4793969e-03 5.8082013e-03 1.1981463e-02 8.5614846e-03 3.8688652e-03 7.5179133e-03 3.7407669e-03 3.1676786e-04 4.6173801e-03 4.2799166e-03 2.2501511e-03 4.2413983e-03 4.2204030e-03 4.6109813e-03 1.7937707e-03 8.2328963e-04 8.3021324e-03 4.1326900e-03 5.3767829e-03 3.8579826e-03 2.3734756e-03 1.6523409e-04 8.8835369e-04 2.5288831e-03 7.6911436e-03 1.1035999e-03 1.9572002e-03 1.3626197e-03 8.4501724e-04 3.6117590e-03 4.7013989e-03 1.0056440e-03 1.3674472e-03 9.9055737e-04 2.9505217e-03 8.8795046e-03 1.5067108e-03 6.0099517e-03 3.2148697e-03 3.5475051e-03 3.0620571e-03 4.0315627e-03 6.0415844e-03 3.4044063e-03 5.7826017e-03 7.5784861e-03 2.1065729e-03 8.8233953e-04 3.5528527e-03 2.5792431e-03 5.1245213e-03 6.2842876e-03 2.4095844e-03 1.8446522e-03 1.4167723e-03 1.2151930e-02 7.2262167e-03 2.4839286e-03 2.9019075e-03 8.5383029e-03 2.6181282e-03 1.4064800e-03 2.3288946e-03 1.7187301e-03 6.4203056e-04 4.4078979e-03 3.6116427e-03 6.0606537e-03 7.3312980e-04 4.8772717e-03 2.0701887e-03 6.3495233e-03 5.1782781e-03 3.3738477e-03 1.3922890e-03 5.6378115e-04 2.0528392e-03 3.5526857e-03 3.4142665e-03 3.2148697e-03 3.0384066e-03 3.3899600e-03 3.3852248e-03 4.7610217e-03 1.6939002e-03 2.6027995e-03 1.1563987e-03 4.9937739e-03 2.8043563e-04 6.0192505e-03 1.1047123e-03 3.7340869e-03 9.3891763e-04 5.7693223e-04 8.5742923e-04 1.1063653e-03 2.1518410e-03 1.7873418e-03 1.8443813e-03 4.7874237e-04 4.0562362e-04 6.3806313e-04 5.6896950e-03 5.3990383e-03 4.0838955e-03 7.6270784e-04 3.0255235e-03 1.8702287e-03 1.2256654e-03 1.9416278e-03 1.1863062e-03 4.8488269e-04 7.2384993e-04 1.1782779e-03 1.1397261e-03 1.1824844e-03 4.5012569e-04 4.3416102e-03 9.3532010e-04 1.7514227e-02 9.8600607e-03 7.1630436e-03 8.1480968e-03 1.1292909e-02 9.1710206e-03 1.2255610e-02 7.6051240e-03 9.9403988e-03 9.4620221e-03 5.2227781e-03 7.1398046e-03 6.5861173e-03 1.2201906e-02 1.6541006e-02 9.8696183e-03 5.7022093e-03 6.6806000e-03 1.5779735e-02 7.9447125e-03 8.2548534e-03 1.1179561e-02 1.0455124e-02 4.7301378e-03 7.3678164e-03 4.4876356e-03 4.3705173e-03 4.8557182e-03 1.0520487e-02 3.4331839e-03 7.0769130e-03 3.1675776e-03 1.1611243e-02 3.1862426e-03 9.1961094e-03 7.4495828e-03 1.3429738e-02 6.1002834e-03 5.0525215e-03 5.4421147e-03 1.0502545e-02 7.0546448e-03 9.8600607e-03 9.9581080e-03 1.1708746e-02 8.2306703e-03 7.3218404e-03 5.8241089e-03 1.2089443e-02 7.3253099e-03 3.2913459e-03 8.4499731e-03 4.8569537e-03 8.0216351e-04 3.5049401e-03 4.1209949e-03 4.1951632e-03 1.4430192e-03 2.1132422e-03 3.9581533e-03 7.7606295e-03 2.8139659e-03 3.8070595e-03 4.7702994e-03 3.8227367e-03 9.3108167e-03 1.0381275e-02 3.5346820e-03 5.2926972e-04 8.0977990e-03 2.5864687e-03 3.9952884e-03 4.6152713e-03 3.2808967e-03 5.0209478e-03 3.9992007e-03 7.6245140e-03 5.9395645e-03 4.2477403e-03 1.1072543e-02 4.9514063e-03 1.3733574e-02 6.2131974e-03 2.8230097e-03 5.6455623e-03 6.8638978e-03 3.4892544e-03 9.9148605e-03 3.2690483e-03 3.3086076e-03 7.4423917e-03 5.1197423e-03 2.7541244e-03 3.1219477e-03 6.1841097e-03 1.0726676e-02 7.6421585e-03 4.1594455e-03 6.2994749e-03 5.6115691e-03 2.0176931e-03 4.9542156e-03 8.4395555e-03 3.5502322e-03 1.8230265e-03 6.1478670e-03 3.1652703e-03 2.7049802e-03 4.9489115e-03 5.3042297e-03 1.9463142e-03 1.6986432e-03 4.1722516e-03 5.8173968e-03 2.6602408e-03 6.4952123e-03 1.5042394e-03 1.1842312e-02 5.5188608e-03 5.4735640e-03 2.9735027e-03 6.0829501e-03 4.0306925e-03 6.2131974e-03 6.3472325e-03 8.2596987e-03 4.2451973e-03 1.6828229e-03 3.7151898e-03 1.1574575e-02 7.1331719e-03 5.4811265e-03 5.5565221e-04 2.6852359e-03 1.0154324e-03 1.7597013e-04 3.1956114e-04 3.9523878e-04 1.2388706e-03 1.2655903e-03 1.6805675e-03 3.2406061e-05 1.6284558e-04 3.0055489e-04 4.9827743e-03 5.3992645e-03 4.0722394e-03 2.5388663e-04 1.8315484e-03 2.0093416e-03 5.5333384e-04 1.9333559e-03 1.0417210e-03 4.5631651e-05 3.9213732e-04 8.9628584e-04 1.5141190e-03 1.1540120e-03 1.6596111e-04 3.8108192e-03 6.9068728e-04 1.6110144e-02 8.5829426e-03 5.7514563e-03 7.4081873e-03 9.8865471e-03 7.9109476e-03 1.1246146e-02 6.7496818e-03 8.5805974e-03 8.1149529e-03 4.1088457e-03 5.6967153e-03 5.0837880e-03 1.0378372e-02 1.4309813e-02 8.2945922e-03 4.9454249e-03 6.1635386e-03 1.3817928e-02 6.6600542e-03 6.6926476e-03 9.8029996e-03 9.1474450e-03 3.3107453e-03 6.4113962e-03 3.9012077e-03 3.0861181e-03 3.9737498e-03 8.9756426e-03 2.8871345e-03 5.7720900e-03 2.7832463e-03 9.8623531e-03 2.6826772e-03 9.0033513e-03 5.5466456e-03 1.2137789e-02 5.5287165e-03 4.1655510e-03 3.9755943e-03 8.6395601e-03 5.0222445e-03 8.5829426e-03 8.5444862e-03 9.9728516e-03 6.1969528e-03 5.4521508e-03 4.4886104e-03 1.0936532e-02 6.6624227e-03 6.0879321e-03 5.2071133e-03 3.8816096e-03 5.8831678e-03 5.7002681e-03 6.1926865e-03 2.4416494e-03 1.5149583e-03 1.0539677e-02 5.8224280e-03 7.4292172e-03 5.4190952e-03 2.7168224e-03 2.8895677e-04 1.2473682e-03 3.7477469e-03 9.3088565e-03 2.0944009e-03 2.9293124e-03 2.5720420e-03 1.8897161e-03 5.1660356e-03 6.4102501e-03 2.0138936e-03 2.7413840e-03 2.0664916e-03 4.4338085e-03 1.0353410e-02 2.6118482e-03 4.2150650e-03 2.5222817e-03 3.4164904e-03 3.0582580e-03 3.1593359e-03 6.2318287e-03 2.3862805e-03 6.4839490e-03 7.9101598e-03 1.0920878e-03 5.4699759e-04 3.4046237e-03 2.2291279e-03 4.0543858e-03 4.2004727e-03 1.1970351e-03 2.0117915e-03 1.4112028e-03 1.1968526e-02 7.9088029e-03 1.7082776e-03 1.7239090e-03 9.0238817e-03 2.6874577e-03 9.4975956e-04 2.9722514e-03 1.7009640e-03 5.1343341e-04 3.7130353e-03 4.7806054e-03 6.6267337e-03 1.3220831e-03 3.9245747e-03 2.9403206e-03 7.2757164e-03 5.0266602e-03 1.8157078e-03 1.4701768e-03 3.5054511e-04 1.7883207e-03 2.3616946e-03 2.6617941e-03 2.5222817e-03 2.1723972e-03 1.9530095e-03 2.4533627e-03 4.5559375e-03 1.3609168e-03 1.2016297e-03 8.2861882e-04 4.8139327e-03 2.8209366e-03 1.1052349e-04 3.7194090e-05 1.3880093e-03 2.0960687e-03 1.8746430e-03 7.3307377e-04 5.4600497e-04 5.2531656e-04 7.7399437e-05 7.5260309e-03 6.5039124e-03 3.6958100e-03 4.3794778e-04 3.1691974e-03 1.9589162e-03 1.1747018e-03 3.8950000e-03 1.8610625e-03 3.3531102e-04 5.6607375e-05 1.7087501e-03 1.8728452e-03 1.4997100e-03 3.0123700e-04 1.5391826e-03 8.8147902e-04 1.8294246e-02 1.0829571e-02 7.9341800e-03 1.0299926e-02 1.2275737e-02 1.1220530e-02 1.3508784e-02 1.0262914e-02 1.2147087e-02 9.2823036e-03 4.6531594e-03 7.8245831e-03 6.5524640e-03 1.2610156e-02 1.5512672e-02 9.0061844e-03 7.1992659e-03 8.4158356e-03 1.7921554e-02 9.9492079e-03 7.9854978e-03 1.1342596e-02 1.2982212e-02 4.5954373e-03 8.0580657e-03 6.3922041e-03 4.0251341e-03 4.9895677e-03 1.1418706e-02 5.4787432e-03 8.7107499e-03 4.4679304e-03 1.2142235e-02 4.8867636e-03 1.3297934e-02 7.3458933e-03 1.3299484e-02 7.7358341e-03 4.9917221e-03 4.9413674e-03 9.8545070e-03 4.8770063e-03 1.0829571e-02 1.0435652e-02 1.1007902e-02 6.6474718e-03 7.1727397e-03 5.6106947e-03 1.1815640e-02 8.4729744e-03 1.5166983e-03 3.8470717e-03 4.0414722e-03 1.3464004e-03 1.0521554e-03 2.2256122e-03 8.2355212e-03 2.4972654e-03 3.6758320e-03 4.2952040e-03 1.2466978e-03 5.4237685e-03 7.4233145e-03 2.7434894e-03 1.3920410e-03 5.6705580e-03 1.6006987e-03 1.4795623e-03 2.5504964e-03 2.8217649e-03 4.8039535e-03 2.1716992e-03 5.1387834e-03 3.8511647e-03 3.4066344e-03 1.1638730e-02 3.4223746e-03 9.4998939e-03 3.3659956e-03 1.1438717e-03 2.4828929e-03 3.9653407e-03 1.5796312e-03 5.9993003e-03 1.2126234e-03 1.7377370e-03 4.6402796e-03 3.0884931e-03 1.1351744e-03 1.5562166e-03 3.9244608e-03 8.1556610e-03 5.1855221e-03 1.5226783e-03 2.8914073e-03 4.3431210e-03 9.2550137e-04 2.9272754e-03 5.3162687e-03 2.0104865e-03 7.9177243e-04 3.1975522e-03 8.1317449e-04 1.3785091e-03 2.5714969e-03 2.9511423e-03 2.8161529e-04 5.9442405e-04 1.5991249e-03 3.5615321e-03 5.8433150e-04 3.1011353e-03 9.7656296e-04 8.0983113e-03 2.3700003e-03 3.0461348e-03 1.6450583e-03 4.0872867e-03 3.5603497e-03 3.3659956e-03 3.6518311e-03 5.6844228e-03 3.2852236e-03 1.0303385e-03 1.9470044e-03 7.8778855e-03 3.7000111e-03 1.9300708e-03 2.2574717e-03 1.1284358e-03 1.0646979e-03 1.0312076e-03 5.0621817e-03 1.2060164e-03 1.8000639e-03 2.0650564e-03 2.1487796e-03 3.2333878e-03 4.0195479e-03 1.2411974e-03 2.7183002e-03 2.2726383e-03 8.5094120e-04 2.4056963e-04 6.3782113e-04 1.2937611e-03 2.4889893e-03 5.9722053e-04 1.5621785e-03 1.2375553e-03 1.3358412e-03 8.1240216e-03 1.2311022e-03 1.1517636e-02 5.2909227e-03 3.4509195e-03 3.7153220e-03 6.3154320e-03 4.5407961e-03 7.2027738e-03 3.4054800e-03 5.2043334e-03 5.7490488e-03 3.1731637e-03 3.4719309e-03 3.4347027e-03 7.1701181e-03 1.1379612e-02 6.4467389e-03 2.2692649e-03 2.9960956e-03 9.7363741e-03 4.0178908e-03 4.7338729e-03 6.7982603e-03 5.6061060e-03 2.3699712e-03 3.8192855e-03 1.4133848e-03 2.2956056e-03 2.5088406e-03 5.7314562e-03 9.5862581e-04 3.4107092e-03 9.7091810e-04 6.6778472e-03 7.6184177e-04 4.3247639e-03 4.2032521e-03 8.9746527e-03 2.5881501e-03 2.8171688e-03 3.0086239e-03 6.5256052e-03 5.3225794e-03 5.2909227e-03 5.5860698e-03 7.6013097e-03 5.5376614e-03 4.0938335e-03 3.1000848e-03 8.1789436e-03 3.7376243e-03 3.2267663e-05 8.3707549e-04 1.6905622e-03 1.5718936e-03 9.3681209e-04 1.8762095e-04 1.9684682e-04 4.1277465e-05 6.4440482e-03 6.0518000e-03 3.8422414e-03 2.6274935e-04 2.4665214e-03 1.9088192e-03 8.3864343e-04 2.9786928e-03 1.4388393e-03 8.3975474e-05 5.3416679e-05 1.2919166e-03 1.6159093e-03 1.2740163e-03 1.2266042e-04 2.3692761e-03 7.1636545e-04 1.7563748e-02 9.9676420e-03 7.0439691e-03 9.1049407e-03 1.1370346e-02 9.8276989e-03 1.2673450e-02 8.7383729e-03 1.0632094e-02 8.9036592e-03 4.4721835e-03 6.9588127e-03 5.9822651e-03 1.1786793e-02 1.5215597e-02 8.8361414e-03 6.2553172e-03 7.4909328e-03 1.6226352e-02 8.5173085e-03 7.5296182e-03 1.0823312e-02 1.1340207e-02 4.0626163e-03 7.4274805e-03 5.3041231e-03 3.6467217e-03 4.5925766e-03 1.0472609e-02 4.2980846e-03 7.4369871e-03 3.7248522e-03 1.1287932e-02 3.8978058e-03 1.1428778e-02 6.6149115e-03 1.2975959e-02 6.8214468e-03 4.6824073e-03 4.5741646e-03 9.4691004e-03 5.0187206e-03 9.9676420e-03 9.7385546e-03 1.0722589e-02 6.5565379e-03 6.4801586e-03 5.1854796e-03 1.1596572e-02 7.7633670e-03 9.9158601e-04 1.6686143e-03 1.5457871e-03 9.5071878e-04 3.0701864e-04 3.6362811e-04 4.2548991e-05 6.6288818e-03 6.0417331e-03 3.6564704e-03 2.5834714e-04 2.6458983e-03 1.8764428e-03 8.4820574e-04 3.2578450e-03 1.5209238e-03 1.5090465e-04 6.1935165e-05 1.3587649e-03 1.7158299e-03 1.3006818e-03 1.6628415e-04 2.0535582e-03 7.1188329e-04 1.7324639e-02 9.9147481e-03 7.0600417e-03 9.2840701e-03 1.1302120e-02 1.0064078e-02 1.2589616e-02 9.1080261e-03 1.0920912e-02 8.6425556e-03 4.2412792e-03 6.9624194e-03 5.8567924e-03 1.1639501e-02 1.4739829e-02 8.4651679e-03 6.3684651e-03 7.5923014e-03 1.6475338e-02 8.8252851e-03 7.3097093e-03 1.0588424e-02 1.1694482e-02 3.9807447e-03 7.3452100e-03 5.5353092e-03 3.5104587e-03 4.4753907e-03 1.0430724e-02 4.6273816e-03 7.6755144e-03 3.8450588e-03 1.1170257e-02 4.1281664e-03 1.1986478e-02 6.5423939e-03 1.2634016e-02 6.9257811e-03 4.5247923e-03 4.3922796e-03 9.1553155e-03 4.5676871e-03 9.9147481e-03 9.5995789e-03 1.0353234e-02 6.1627903e-03 6.3902007e-03 5.0235520e-03 1.1247115e-02 7.7428181e-03 9.7824889e-04 1.6624661e-03 3.0059873e-03 2.5249972e-04 6.2343657e-04 1.1719366e-03 4.0275459e-03 6.3575546e-03 5.8712921e-03 7.5872446e-04 5.6741436e-04 3.5908637e-03 6.4996051e-04 1.9776689e-03 1.6840088e-03 4.6219818e-04 1.2917587e-03 1.3743184e-03 3.0187893e-03 2.2373182e-03 9.0828703e-04 5.7426890e-03 1.5775049e-03 1.5168309e-02 7.4080646e-03 4.2538993e-03 6.3033105e-03 8.5100385e-03 5.7899432e-03 1.0520014e-02 4.8624768e-03 6.1169570e-03 7.6384090e-03 4.1091153e-03 4.1981402e-03 3.9923041e-03 8.6172736e-03 1.2997087e-02 7.8717119e-03 4.1667776e-03 5.7584992e-03 1.0387455e-02 4.3546484e-03 5.7746712e-03 9.1054055e-03 6.5301937e-03 2.3054088e-03 5.9614728e-03 3.0379183e-03 2.5067124e-03 3.9126904e-03 7.3239330e-03 1.8370981e-03 3.7021481e-03 2.7152943e-03 8.1304066e-03 2.0347479e-03 7.4172182e-03 3.6502880e-03 1.1915038e-02 5.0530642e-03 4.2458688e-03 3.2213237e-03 7.5116191e-03 4.3860606e-03 7.4080646e-03 7.4726409e-03 9.2071058e-03 5.2421868e-03 3.6675370e-03 3.8308993e-03 1.1024145e-02 6.4520833e-03 3.0133930e-04 5.1037905e-03 1.2017859e-03 2.1951761e-03 1.7686888e-03 1.8224411e-03 2.8788865e-03 3.1740291e-03 7.0420689e-04 2.2350252e-03 2.1605967e-03 1.6074282e-04 9.9312132e-04 6.3910600e-04 1.1068342e-03 2.2522084e-03 4.2563220e-04 2.1383582e-03 1.1781524e-03 1.1965920e-03 6.6826197e-03 8.9701315e-04 8.8374021e-03 3.5249181e-03 1.9006375e-03 3.2674819e-03 4.3522253e-03 3.8602822e-03 5.5032387e-03 3.5903574e-03 4.6280025e-03 3.2207897e-03 1.0860964e-03 1.8528751e-03 1.3287556e-03 4.5637650e-03 7.2040689e-03 3.3452381e-03 1.6438459e-03 2.5042800e-03 8.4078534e-03 3.6412189e-03 2.1968551e-03 4.2884610e-03 5.3072049e-03 5.5962180e-04 2.2924485e-03 1.3972917e-03 4.1775124e-04 1.0120628e-03 3.7672964e-03 1.3901921e-03 2.7802443e-03 7.8074497e-04 4.2513803e-03 8.6439557e-04 5.7017672e-03 1.9558095e-03 6.1305769e-03 2.0764524e-03 1.1750038e-03 7.8121442e-04 3.3536027e-03 1.6840705e-03 3.5249181e-03 3.4031938e-03 4.3169071e-03 2.0323666e-03 1.8104373e-03 1.0313169e-03 5.4663596e-03 2.6797009e-03 4.7017751e-03 1.4050521e-03 2.2967640e-03 1.4490557e-03 2.3196093e-03 1.7015479e-03 1.5767700e-03 5.5713099e-04 3.7392678e-03 8.9324098e-04 2.5002761e-04 8.6482380e-04 1.3585049e-04 1.1239692e-03 1.9761479e-03 8.2927740e-05 9.6014531e-04 3.4965263e-04 8.9552257e-04 5.7645956e-03 3.1975366e-04 8.7743211e-03 4.0156462e-03 2.9085611e-03 3.7265804e-03 4.9611690e-03 5.3200137e-03 5.4291747e-03 4.9090444e-03 6.4181467e-03 3.1699225e-03 9.0457257e-04 2.8707306e-03 2.0343345e-03 5.5511033e-03 7.6886258e-03 3.2962764e-03 1.9800100e-03 2.4033904e-03 1.0905558e-02 5.4434884e-03 2.6411651e-03 4.3219947e-03 7.2333465e-03 1.3483652e-03 2.2580657e-03 1.9023537e-03 8.2889320e-04 8.3511491e-04 4.6996589e-03 2.2192064e-03 4.3941392e-03 6.5409726e-04 5.2313685e-03 1.2879740e-03 6.5768476e-03 3.4674432e-03 5.6567012e-03 2.0849532e-03 8.7522015e-04 1.2925162e-03 3.9107304e-03 2.2116014e-03 4.0156462e-03 3.8265815e-03 4.4724719e-03 2.6832503e-03 3.2108081e-03 1.3825243e-03 4.7909587e-03 2.3944351e-03 1.6956470e-03 1.0108236e-03 9.3414345e-04 1.2241588e-02 1.0680036e-02 6.4457112e-03 2.1113831e-03 4.8851719e-03 3.9417362e-03 3.5304281e-03 6.9169294e-03 4.3255103e-03 1.5489174e-03 5.9380000e-04 4.2050996e-03 3.5612837e-03 3.5981180e-03 1.5473563e-03 1.0469113e-03 2.7881158e-03 2.6084642e-02 1.6915515e-02 1.3046936e-02 1.5813114e-02 1.8728660e-02 1.6622622e-02 2.0172358e-02 1.5047933e-02 1.7480656e-02 1.5121187e-02 8.9988271e-03 1.2921567e-02 1.1505555e-02 1.9202447e-02 2.2948431e-02 1.4807179e-02 1.1989561e-02 1.3522703e-02 2.4353472e-02 1.4534512e-02 1.3492376e-02 1.7699736e-02 1.8260951e-02 8.7551977e-03 1.3397972e-02 1.0605977e-02 8.1065177e-03 9.3705995e-03 1.7600384e-02 8.9170386e-03 1.3238432e-02 8.2394556e-03 1.8591466e-02 8.5466794e-03 1.8371580e-02 1.2139358e-02 2.0015536e-02 1.2667833e-02 9.3753580e-03 9.4099897e-03 1.5925767e-02 9.2577085e-03 1.6915515e-02 1.6530549e-02 1.7369847e-02 1.1736690e-02 1.2003814e-02 1.0321540e-02 1.8104120e-02 1.3766972e-02 1.5141485e-04 3.6186411e-04 5.0640473e-03 5.8846843e-03 4.5372473e-03 2.9889995e-04 1.4503455e-03 2.4048820e-03 5.6473356e-04 2.1694139e-03 1.2760726e-03 5.0001009e-05 4.2762331e-04 1.0752642e-03 1.9285330e-03 1.4459840e-03 2.6007132e-04 3.8461838e-03 8.8079628e-04 1.6321310e-02 8.6239000e-03 5.6156570e-03 7.5378743e-03 9.9017513e-03 7.7506746e-03 1.1476827e-02 6.6644304e-03 8.3385285e-03 8.2160708e-03 4.1911289e-03 5.5513041e-03 4.9688023e-03 1.0246372e-02 1.4224144e-02 8.3426053e-03 5.0473242e-03 6.4114140e-03 1.3391748e-02 6.3862951e-03 6.6425216e-03 9.9154668e-03 8.8906649e-03 3.1510729e-03 6.5653256e-03 3.9767727e-03 3.0148559e-03 4.1087786e-03 8.8891438e-03 2.8692574e-03 5.5219515e-03 2.9822205e-03 9.7392578e-03 2.7559926e-03 9.1569917e-03 5.1978118e-03 1.2376315e-02 5.7353587e-03 4.3202502e-03 3.8711781e-03 8.5388416e-03 4.7844327e-03 8.6239000e-03 8.5671038e-03 9.9856257e-03 5.9819812e-03 5.1316831e-03 4.4550423e-03 1.1213210e-02 6.9205612e-03 3.8131057e-04 6.7888158e-03 7.3363003e-03 5.3694436e-03 6.8516623e-04 1.8924051e-03 2.8895525e-03 1.2584203e-03 3.1106561e-03 1.9851820e-03 2.2993360e-04 3.0705767e-04 1.8065799e-03 2.2681792e-03 1.9895114e-03 4.4561501e-04 3.2950230e-03 1.3536253e-03 1.9442033e-02 1.0986408e-02 7.5586116e-03 9.6139706e-03 1.2432885e-02 9.8077912e-03 1.4077548e-02 8.4254038e-03 1.0370813e-02 1.0478515e-02 5.7856689e-03 7.4894276e-03 6.8497491e-03 1.2864462e-02 1.7242156e-02 1.0603978e-02 6.8089917e-03 8.2980029e-03 1.5941696e-02 8.0862824e-03 8.7712331e-03 1.2406133e-02 1.0894930e-02 4.6791769e-03 8.5829625e-03 5.4740472e-03 4.5017704e-03 5.7029968e-03 1.1309070e-02 4.0232333e-03 7.1989285e-03 4.2761837e-03 1.2289743e-02 4.0060693e-03 1.1002553e-02 7.0316526e-03 1.5021687e-02 7.5484658e-03 5.9167328e-03 5.5390768e-03 1.0934157e-02 6.4525090e-03 1.0986408e-02 1.0943118e-02 1.2502015e-02 7.9589531e-03 6.9802991e-03 6.2208864e-03 1.3663387e-02 8.8999016e-03 6.6062542e-03 5.5827314e-03 3.2137911e-03 2.4648342e-04 3.0882054e-03 1.4855278e-03 8.8238305e-04 3.0312113e-03 1.3048774e-03 1.7074342e-04 4.2409993e-05 1.2055084e-03 1.2882692e-03 1.0204762e-03 8.9780466e-05 2.0467514e-03 5.4370125e-04 1.7241595e-02 9.9776023e-03 7.2970604e-03 9.2205394e-03 1.1400153e-02 1.0313298e-02 1.2454804e-02 9.2538420e-03 1.1254653e-02 8.6534668e-03 4.2479840e-03 7.2108683e-03 6.0807502e-03 1.1908599e-02 1.4998922e-02 8.5435101e-03 6.3304436e-03 7.3992448e-03 1.7031719e-02 9.1810782e-03 7.4786833e-03 1.0592315e-02 1.2037933e-02 4.2382770e-03 7.2750145e-03 5.5074473e-03 3.6741461e-03 4.4146887e-03 1.0634443e-02 4.6823366e-03 8.0104480e-03 3.6842552e-03 1.1424845e-02 4.0945647e-03 1.1857190e-02 7.0169427e-03 1.2513676e-02 6.7752703e-03 4.4459599e-03 4.6022279e-03 9.3965771e-03 4.9465269e-03 9.9776023e-03 9.6902181e-03 1.0478640e-02 6.5221232e-03 6.8355801e-03 5.1573625e-03 1.1079009e-02 7.5518079e-03 2.6192775e-03 5.9216859e-03 4.3727502e-03 5.1296754e-03 5.3199310e-03 2.7670517e-03 1.1371035e-03 2.6020928e-03 5.1188394e-03 7.5382072e-03 2.4476107e-03 5.0616317e-03 3.9293810e-03 5.2302586e-03 1.5095801e-02 4.1435464e-03 4.4658108e-03 8.7058429e-04 4.4660793e-04 2.5555941e-04 1.2381894e-03 8.7244097e-04 2.0362511e-03 8.1311609e-04 1.5164656e-03 1.9481959e-03 1.9017569e-03 4.9004150e-04 8.1438359e-04 1.7141435e-03 4.7093504e-03 2.7065864e-03 6.0393489e-05 4.2915211e-04 3.9373776e-03 1.5669301e-03 1.2950596e-03 2.1025536e-03 1.9522193e-03 1.0322026e-03 8.4218839e-04 9.2905490e-05 1.2346326e-03 1.1781032e-03 9.8002670e-04 7.9339756e-04 1.1328834e-03 6.2948320e-04 1.4629322e-03 3.9084846e-04 1.4164544e-03 1.5298834e-03 3.8721999e-03 2.7001180e-04 1.5287601e-03 1.2669024e-03 2.1037534e-03 3.7134859e-03 8.7058429e-04 1.1775044e-03 2.8495857e-03 2.7086756e-03 1.4023687e-03 1.0191451e-03 3.8647977e-03 9.3179883e-04 1.2988786e-03 3.9786961e-03 9.7659791e-03 1.8948352e-03 3.2059058e-03 1.9902291e-03 1.7004118e-03 5.2879179e-03 6.5830280e-03 1.9368261e-03 2.2268965e-03 1.8962421e-03 4.4774419e-03 1.1162650e-02 2.6447647e-03 4.9365528e-03 3.0323131e-03 3.9972109e-03 2.9343480e-03 3.7523678e-03 6.3980393e-03 2.7120874e-03 6.2404178e-03 8.0807935e-03 1.9416596e-03 1.3024398e-03 4.0245181e-03 3.0697725e-03 5.0283287e-03 5.8270256e-03 2.3505477e-03 2.0375391e-03 1.2652208e-03 1.2527532e-02 8.0556250e-03 2.6750700e-03 2.5225228e-03 9.0764566e-03 3.4699713e-03 1.3308823e-03 2.7664696e-03 2.4678015e-03 9.5729618e-04 4.3858320e-03 4.4729680e-03 6.8828714e-03 1.1547480e-03 4.8183810e-03 2.7179325e-03 6.3087897e-03 6.0843336e-03 2.6715726e-03 1.3701564e-03 8.5085504e-04 2.7129190e-03 3.6187454e-03 4.3357364e-03 3.0323131e-03 2.8888833e-03 3.1752051e-03 4.0026050e-03 5.6110347e-03 2.1520192e-03 2.0021167e-03 9.3001678e-04 2.6139835e-03 9.7625461e-03 4.3820793e-04 2.7906691e-03 3.4740135e-03 1.5471352e-03 3.7324822e-03 3.8774805e-03 1.8049144e-03 1.0166909e-03 9.6586952e-04 2.7620874e-03 5.6379477e-03 1.4267399e-03 9.9420936e-03 6.9534902e-03 7.2046628e-03 7.1611325e-03 8.0864542e-03 1.1050679e-02 7.0236664e-03 1.0684883e-02 1.2982713e-02 4.4982901e-03 2.1523458e-03 7.1621069e-03 5.3786825e-03 9.3055499e-03 9.5487861e-03 4.3879387e-03 5.0693092e-03 4.4931267e-03 1.8805226e-02 1.2143973e-02 5.1616364e-03 5.8432704e-03 1.4239876e-02 5.0396297e-03 4.0643450e-03 5.6688069e-03 3.5911389e-03 2.3422208e-03 8.6067938e-03 6.9700590e-03 1.0540875e-02 2.8498735e-03 9.0488233e-03 4.9258801e-03 1.1781603e-02 8.6822745e-03 5.8089260e-03 4.4337196e-03 2.0267056e-03 4.1354243e-03 6.4148025e-03 4.4976834e-03 6.9534902e-03 6.4275292e-03 5.9584428e-03 5.3006657e-03 8.1437729e-03 3.9023880e-03 4.5299634e-03 3.7988456e-03 2.5123066e-03 1.1946309e-03 2.0097566e-04 1.7928786e-03 5.7143349e-04 1.2667176e-04 4.6644872e-04 4.4712161e-04 1.0683378e-03 5.7468992e-04 7.6554900e-05 3.3664265e-03 2.0582490e-04 1.3553574e-02 7.1051776e-03 4.8941009e-03 6.5257957e-03 8.3098959e-03 7.5373275e-03 9.3233389e-03 6.7621473e-03 8.4467156e-03 6.1291129e-03 2.5944515e-03 4.8248569e-03 3.9028342e-03 8.7515124e-03 1.1627531e-02 6.1178515e-03 4.1203288e-03 5.0572182e-03 1.3529172e-02 6.7984240e-03 5.0687125e-03 7.7357162e-03 9.2015610e-03 2.4873418e-03 4.9175701e-03 3.5355888e-03 2.0473249e-03 2.6605314e-03 7.6511613e-03 3.0628424e-03 5.7307078e-03 2.1169019e-03 8.3320524e-03 2.4574218e-03 9.1102030e-03 4.8098810e-03 9.5736130e-03 4.5225384e-03 2.7314130e-03 2.7690856e-03 6.7080946e-03 3.3506310e-03 7.1051776e-03 6.8798895e-03 7.7001955e-03 4.4569824e-03 4.6305164e-03 3.1848752e-03 8.4170139e-03 5.2045050e-03 6.9296246e-03 2.1360002e-03 3.7784686e-03 3.9888330e-03 1.9332806e-03 3.1165972e-03 3.4622240e-03 6.1843155e-03 4.9689115e-03 2.8276933e-03 8.4143362e-03 3.9488633e-03 1.7390613e-02 8.6823566e-03 4.7125346e-03 7.5297389e-03 9.6551734e-03 5.6073015e-03 1.2632980e-02 4.7967985e-03 5.4595549e-03 9.6779905e-03 6.1919843e-03 4.6437798e-03 4.8811137e-03 9.2634464e-03 1.4470481e-02 9.9239882e-03 5.5116951e-03 7.7393895e-03 8.8498403e-03 3.6104684e-03 7.0913900e-03 1.1068993e-02 5.6668826e-03 3.0002631e-03 7.9032607e-03 4.0760726e-03 3.7279027e-03 5.9729084e-03 7.9919733e-03 2.3383845e-03 3.2272638e-03 4.6096764e-03 8.7690968e-03 3.1364844e-03 7.9578373e-03 3.3962632e-03 1.4631125e-02 6.8663759e-03 6.4834920e-03 4.3461235e-03 8.7377082e-03 5.5255283e-03 8.6823566e-03 8.8561968e-03 1.1024987e-02 6.2645608e-03 3.5745084e-03 5.1960404e-03 1.3983177e-02 8.7265781e-03 1.5360474e-03 2.2738132e-03 6.3957013e-04 1.8470485e-03 1.9436948e-03 8.2753134e-04 1.4870044e-04 1.8575051e-04 1.1511457e-03 4.1570185e-03 4.2481246e-04 1.2022631e-02 7.4558885e-03 6.7319225e-03 7.0097246e-03 8.7236579e-03 1.0059866e-02 8.2686681e-03 9.2543911e-03 1.1644804e-02 5.5866311e-03 2.5062451e-03 6.6946690e-03 5.2622870e-03 9.8836223e-03 1.1452219e-02 5.6355000e-03 4.7339621e-03 4.6436729e-03 1.7620106e-02 1.0378141e-02 5.6675320e-03 7.1003305e-03 1.2674455e-02 4.3836233e-03 4.5891805e-03 4.7259960e-03 3.2437023e-03 2.5249532e-03 8.8366518e-03 5.2434703e-03 8.9867759e-03 2.2946416e-03 9.5089828e-03 3.7537168e-03 1.0503141e-02 7.8427036e-03 7.7804598e-03 4.4127994e-03 2.3620086e-03 3.9941388e-03 7.2903223e-03 4.7424240e-03 7.4558885e-03 7.1215300e-03 7.3539364e-03 5.7328206e-03 7.4284923e-03 3.9643246e-03 6.4306545e-03 4.3729078e-03 1.0852360e-03 3.9664584e-04 4.5123208e-04 1.2414442e-03 2.3150826e-04 1.4183402e-03 7.0426023e-04 4.8163546e-04 5.0741189e-03 3.9595383e-04 1.0937070e-02 5.0339955e-03 3.1168119e-03 4.5426488e-03 6.0432452e-03 5.3182662e-03 7.1300333e-03 4.7641753e-03 6.1358685e-03 4.4885462e-03 1.6916118e-03 3.0636842e-03 2.3987749e-03 6.3937387e-03 9.2584560e-03 4.5899059e-03 2.5786937e-03 3.4750392e-03 1.0541835e-02 4.8350707e-03 3.4370915e-03 5.7977832e-03 6.8277961e-03 1.3144796e-03 3.3638906e-03 2.1338739e-03 1.0504939e-03 1.6413828e-03 5.4173620e-03 1.8780432e-03 3.9014661e-03 1.1794316e-03 6.0207953e-03 1.3473818e-03 6.9135169e-03 3.1440431e-03 7.6724602e-03 2.9974710e-03 1.7751706e-03 1.5977690e-03 4.8531144e-03 2.4494451e-03 5.0339955e-03 4.8947958e-03 5.8464391e-03 3.1299587e-03 2.9881785e-03 1.9161069e-03 6.7804975e-03 3.6799724e-03 6.0827379e-04 2.1616612e-03 3.6536587e-03 6.0346559e-04 1.7560211e-03 1.3150048e-03 2.0808595e-03 9.6848049e-03 1.5050304e-03 8.5509882e-03 3.4934050e-03 2.3873070e-03 2.2266374e-03 4.3437966e-03 3.4432000e-03 4.8822411e-03 2.6118729e-03 4.2515298e-03 3.9280244e-03 2.1763551e-03 2.4215318e-03 2.3726469e-03 5.2469603e-03 8.8156975e-03 4.6543689e-03 1.1653780e-03 1.5634616e-03 8.3770205e-03 3.5034084e-03 3.2683461e-03 4.7014835e-03 4.7252691e-03 1.7941232e-03 2.2843067e-03 6.9328893e-04 1.6436639e-03 1.4866860e-03 4.0234517e-03 7.8970448e-04 2.8726545e-03 3.0564882e-04 4.8340126e-03 3.3681970e-04 3.2031086e-03 3.4962764e-03 6.5051951e-03 1.2935806e-03 1.7549327e-03 2.1673002e-03 4.7736712e-03 4.5514956e-03 3.4934050e-03 3.7661841e-03 5.5497035e-03 4.3927525e-03 3.3294822e-03 2.0638533e-03 5.8922322e-03 2.1421877e-03 1.0254014e-03 1.7967204e-03 2.4056491e-05 4.9606070e-04 1.5493043e-04 7.3786851e-04 5.7634641e-03 2.2821239e-04 9.8983432e-03 4.8234579e-03 3.6558248e-03 4.1003359e-03 5.8726550e-03 5.9033047e-03 6.1776943e-03 5.1708698e-03 7.0154090e-03 4.1004756e-03 1.5716690e-03 3.6383691e-03 2.8864008e-03 6.7180252e-03 9.3042807e-03 4.3918407e-03 2.3314998e-03 2.6748196e-03 1.1913776e-02 5.9266374e-03 3.6227612e-03 5.2997514e-03 7.7658365e-03 2.0655115e-03 2.8598574e-03 2.0567764e-03 1.5031818e-03 1.3330059e-03 5.6389436e-03 2.2318728e-03 4.9186471e-03 7.3077456e-04 6.3335619e-03 1.3529510e-03 6.4463256e-03 4.4695359e-03 6.6841393e-03 2.3650796e-03 1.3974597e-03 2.1137539e-03 5.1383865e-03 3.4413190e-03 4.8234579e-03 4.7468419e-03 5.6953492e-03 3.9468482e-03 4.2095924e-03 2.1520165e-03 5.7168561e-03 2.8181362e-03 2.6785665e-04 8.6267880e-04 1.5080867e-03 1.0657562e-03 9.1259932e-05 3.2834346e-03 5.6400090e-04 1.5768182e-02 8.4481987e-03 5.6912110e-03 7.5460195e-03 9.7379656e-03 8.1209399e-03 1.1078194e-02 7.1125751e-03 8.8544675e-03 7.7247994e-03 3.7380313e-03 5.6213520e-03 4.8502413e-03 1.0137958e-02 1.3681745e-02 7.7719782e-03 4.9953780e-03 6.2009166e-03 1.4059422e-02 6.9488117e-03 6.3504999e-03 9.4504672e-03 9.5001122e-03 3.1213299e-03 6.2307927e-03 4.0875652e-03 2.8287725e-03 3.7400310e-03 8.8571631e-03 3.1845212e-03 5.9757813e-03 2.8285304e-03 9.6559261e-03 2.8616391e-03 9.5937311e-03 5.3787128e-03 1.1658427e-02 5.5682032e-03 3.8827352e-03 3.6680728e-03 8.1913042e-03 4.3904219e-03 8.4481987e-03 8.3060404e-03 9.4592722e-03 5.6422254e-03 5.2631423e-03 4.2070121e-03 1.0442544e-02 6.5544595e-03 1.6777879e-03 1.6905742e-03 1.4559893e-03 2.3696578e-04 1.7661444e-03 8.8626613e-04 1.8929605e-02 1.1198434e-02 8.2126916e-03 1.0357192e-02 1.2691977e-02 1.1286676e-02 1.3897779e-02 1.0124890e-02 1.2174180e-02 9.8437553e-03 5.0898821e-03 8.1181082e-03 6.9678076e-03 1.3160374e-02 1.6460126e-02 9.6980805e-03 7.2881507e-03 8.4988687e-03 1.8112744e-02 9.9154333e-03 8.5214392e-03 1.1906445e-02 1.2939064e-02 4.9240987e-03 8.3797448e-03 6.3232280e-03 4.3836801e-03 5.2916266e-03 1.1816149e-02 5.2785357e-03 8.7418147e-03 4.4568647e-03 1.2648763e-02 4.7832566e-03 1.2911612e-02 7.7565330e-03 1.3968530e-02 7.8153448e-03 5.3323341e-03 5.3832666e-03 1.0542156e-02 5.6397042e-03 1.1198434e-02 1.0902962e-02 1.1744032e-02 7.3882415e-03 7.5970260e-03 6.0277743e-03 1.2454722e-02 8.6970669e-03 6.8936185e-04 2.4185836e-04 6.5755985e-04 5.6966351e-03 2.3035735e-04 9.8692354e-03 4.6426684e-03 3.3219514e-03 3.9792968e-03 5.6658817e-03 5.5182925e-03 6.1624599e-03 4.8454827e-03 6.5522795e-03 4.0009447e-03 1.4714328e-03 3.2975731e-03 2.5896752e-03 6.3872309e-03 9.0422907e-03 4.2582444e-03 2.2027730e-03 2.6736829e-03 1.1276803e-02 5.4428314e-03 3.3876877e-03 5.2005260e-03 7.2827649e-03 1.7342875e-03 2.7931367e-03 1.8984292e-03 1.2582586e-03 1.2661063e-03 5.3418398e-03 1.9890109e-03 4.4646783e-03 7.0136727e-04 6.0091268e-03 1.2000111e-03 6.3087140e-03 3.9600850e-03 6.7054154e-03 2.3290598e-03 1.3528267e-03 1.8394373e-03 4.8617299e-03 3.0806223e-03 4.6426684e-03 4.5595872e-03 5.5227532e-03 3.5904469e-03 3.7269772e-03 1.9354221e-03 5.7786823e-03 2.8379142e-03 1.6160265e-04 9.1316164e-04 4.5133200e-03 3.9636483e-04 1.2999342e-02 7.7990273e-03 6.7507696e-03 6.8565065e-03 9.1164934e-03 9.6187705e-03 8.8289255e-03 8.5171572e-03 1.1041936e-02 6.3870800e-03 3.1070828e-03 6.7336821e-03 5.5817760e-03 1.0377938e-02 1.2745315e-02 6.6393015e-03 4.6463353e-03 4.6865341e-03 1.7095703e-02 9.6546615e-03 6.2703784e-03 7.8942299e-03 1.1919237e-02 4.5195099e-03 4.9936591e-03 4.3235727e-03 3.5370732e-03 2.9138150e-03 9.0955590e-03 4.5162367e-03 8.4195838e-03 2.1592479e-03 9.9327314e-03 3.3056202e-03 9.5169563e-03 7.9097267e-03 8.9017922e-03 4.4124132e-03 2.8482486e-03 4.3995745e-03 8.1140558e-03 5.6448175e-03 7.7990273e-03 7.6396844e-03 8.3822247e-03 6.5839845e-03 7.5512097e-03 4.3854717e-03 7.5528676e-03 4.6977929e-03 6.1532842e-04 4.4755911e-03 9.8852555e-05 1.1287330e-02 6.2297232e-03 5.1189561e-03 5.6158860e-03 7.4118621e-03 7.9100135e-03 7.4458980e-03 7.1082862e-03 9.2159095e-03 4.9487763e-03 1.9996447e-03 5.0869737e-03 4.0020507e-03 8.3714289e-03 1.0564909e-02 5.1004357e-03 3.5205852e-03 3.7366566e-03 1.4679778e-02 7.9564069e-03 4.6553854e-03 6.3553187e-03 1.0091302e-02 3.0597107e-03 3.7953264e-03 3.3093658e-03 2.2411736e-03 1.9075393e-03 7.2834604e-03 3.5416682e-03 6.7651117e-03 1.4482690e-03 7.9807479e-03 2.4205104e-03 8.4840253e-03 5.9704010e-03 7.4790367e-03 3.4333236e-03 1.8691676e-03 2.9457380e-03 6.2606998e-03 3.9378134e-03 6.2297232e-03 6.0227040e-03 6.6475915e-03 4.7553767e-03 5.6493596e-03 2.9997214e-03 6.2979764e-03 3.7014773e-03 2.9064840e-03 2.5951953e-04 1.5239927e-02 8.3975944e-03 6.0152535e-03 7.5736149e-03 9.7205279e-03 8.7194769e-03 1.0665619e-02 7.7107157e-03 9.6513260e-03 7.3495285e-03 3.4129734e-03 5.9493098e-03 4.9891659e-03 1.0300134e-02 1.3429483e-02 7.3762928e-03 4.9967161e-03 5.9349958e-03 1.5151045e-02 7.8143476e-03 6.2821596e-03 9.0873094e-03 1.0390318e-02 3.3768176e-03 5.9427925e-03 4.2522990e-03 2.8707879e-03 3.4399883e-03 9.0442431e-03 3.6087055e-03 6.7269934e-03 2.6557188e-03 9.8316941e-03 3.0241465e-03 9.9672648e-03 5.9844482e-03 1.0964814e-02 5.3765757e-03 3.5060112e-03 3.7251338e-03 8.1205003e-03 4.4033527e-03 8.3975944e-03 8.1986819e-03 9.1329776e-03 5.6810271e-03 5.8010063e-03 4.1618459e-03 9.6695634e-03 6.1457695e-03 3.7030792e-03 2.6425725e-02 1.8599298e-02 1.5467357e-02 1.8635118e-02 2.0442342e-02 2.0541696e-02 2.1259986e-02 1.9510831e-02 2.1931276e-02 1.5294793e-02 9.1682566e-03 1.5285848e-02 1.2953400e-02 2.0823480e-02 2.2513198e-02 1.4419732e-02 1.4350471e-02 1.5480442e-02 2.9209010e-02 1.9066274e-02 1.4266029e-02 1.8093335e-02 2.3152907e-02 1.0464507e-02 1.4480769e-02 1.3685178e-02 9.2298310e-03 1.0125817e-02 1.9700965e-02 1.2730523e-02 1.7262155e-02 1.0225203e-02 2.0352884e-02 1.1535854e-02 2.3443654e-02 1.4503051e-02 1.9462802e-02 1.4723300e-02 9.8246219e-03 1.0395301e-02 1.6330792e-02 8.8773452e-03 1.8599298e-02 1.7720786e-02 1.7175716e-02 1.1774527e-02 1.4190018e-02 1.1287889e-02 1.7334951e-02 1.4959707e-02 1.2176711e-02 6.5819636e-03 5.0346277e-03 6.0397395e-03 7.7827629e-03 7.8599708e-03 8.1942510e-03 7.0899174e-03 9.0304038e-03 5.3331159e-03 2.1084043e-03 4.9833227e-03 3.9086435e-03 8.5223444e-03 1.0895531e-02 5.3819973e-03 3.7720778e-03 4.2725796e-03 1.4381123e-02 7.5978371e-03 4.7474248e-03 6.8472012e-03 9.8808760e-03 2.7678758e-03 4.1999833e-03 3.4360629e-03 2.0712504e-03 2.1185414e-03 7.4497841e-03 3.4016631e-03 6.4264729e-03 1.6858980e-03 8.1251590e-03 2.4514173e-03 8.9161864e-03 5.4840504e-03 8.2209587e-03 3.8745808e-03 2.1076714e-03 2.7824071e-03 6.3561971e-03 3.5186798e-03 6.5819636e-03 6.3377454e-03 6.9667686e-03 4.4964760e-03 5.2124475e-03 2.9917795e-03 7.0285944e-03 4.2716151e-03 1.5675754e-03 4.2437140e-03 2.9528525e-03 1.2801911e-03 5.5300675e-03 5.2313183e-04 7.0373258e-03 7.0028853e-03 1.5817688e-03 4.6017698e-03 4.2905415e-03 3.9763653e-03 1.7507004e-03 9.8088526e-04 2.0205251e-03 3.8651167e-03 2.8498196e-03 8.0083780e-03 8.7219602e-03 2.5429883e-03 8.6090275e-04 7.9906965e-03 6.1518285e-03 2.2097973e-03 5.7963314e-03 5.7460009e-03 4.2262969e-03 2.1872477e-03 8.9731860e-03 7.8793225e-03 5.8991938e-03 1.8999235e-03 7.1341168e-03 7.0170212e-03 6.4409068e-03 6.9062404e-04 3.2402506e-03 4.2346770e-03 4.9489360e-03 1.9844891e-03 6.6121605e-03 1.5675754e-03 1.4409377e-03 1.2937675e-03 4.5154908e-03 6.0031850e-03 4.0189646e-03 1.2526895e-03 2.2326743e-03 6.7976748e-04 4.4251056e-04 5.1964468e-05 1.5314410e-03 4.7093005e-04 2.2872076e-03 2.4409680e-03 6.1996952e-04 1.8531872e-03 7.0675084e-04 7.4672595e-04 2.9977980e-04 1.6320684e-03 1.1279305e-03 6.4871929e-04 6.2074215e-04 4.0109945e-03 3.1610099e-03 4.6600326e-04 4.3207236e-04 3.1187047e-03 1.7495883e-03 3.8892953e-04 1.4972893e-03 1.7881991e-03 1.3932149e-03 1.6264024e-04 3.1616233e-03 2.5553184e-03 1.9652949e-03 2.4129313e-04 2.2301817e-03 3.0218268e-03 1.9168834e-03 1.5054952e-03 6.4024254e-04 1.6084351e-03 1.4082859e-03 5.9336508e-04 3.2376306e-03 1.1102230e-16 6.3653022e-05 8.5949029e-04 1.8263557e-03 1.6881339e-03 9.7411877e-04 1.7845049e-03 6.1330704e-04 7.1368649e-04 9.0151789e-04 6.1896245e-04 2.2461726e-03 1.0406196e-03 1.1172454e-03 1.6730261e-03 1.8311894e-03 1.8071232e-06 2.5364008e-04 8.3907159e-04 3.3874526e-03 2.1375798e-03 4.5487046e-04 1.1672957e-03 2.8115805e-03 1.2138761e-03 7.0446879e-04 1.8201572e-03 1.6098088e-03 5.2152529e-04 1.0325997e-03 6.5974667e-04 9.0603694e-04 1.4060118e-03 4.3618665e-04 1.3469029e-03 7.5850938e-04 1.4500880e-03 6.7416609e-04 1.0299923e-03 2.5247687e-03 4.1453726e-04 3.7399848e-03 9.2294426e-04 1.7551096e-03 7.2749277e-04 1.1614195e-03 2.4439916e-03 6.7976748e-04 8.1575962e-04 2.1038526e-03 1.4799615e-03 3.3653084e-04 6.6936205e-04 3.8899674e-03 1.5033836e-03 6.1892938e-04 8.9565267e-04 1.1187414e-03 1.0854623e-03 1.6238473e-03 1.6997610e-03 2.5416419e-03 7.7939556e-04 1.2163589e-03 1.1645635e-03 3.7479516e-03 2.5673270e-03 2.8413719e-04 3.4882680e-04 3.5538869e-03 2.1358644e-03 1.3529179e-03 1.5262264e-03 2.0757398e-03 1.9224937e-03 7.7565401e-04 6.3114517e-04 2.1204969e-03 1.7089017e-03 5.9516371e-04 1.8253945e-03 1.7466546e-03 1.3725400e-03 9.7938279e-04 1.2586511e-03 1.2414457e-03 2.1946939e-03 3.0180258e-03 3.2655328e-04 2.0574339e-03 1.9692598e-03 1.9049224e-03 4.6812273e-03 4.4251056e-04 7.9383810e-04 2.4056659e-03 3.2171363e-03 2.0291670e-03 1.5121604e-03 3.2358269e-03 7.8092419e-04 1.6056499e-03 4.5150817e-04 2.5183573e-03 2.4854849e-03 8.1663583e-04 2.4301739e-03 9.3222022e-04 1.0572824e-03 1.7339381e-04 1.3855383e-03 1.3424761e-03 1.0242405e-03 9.7281350e-04 3.6981982e-03 3.3860618e-03 6.8052310e-04 4.8835842e-04 3.1532670e-03 2.2405021e-03 6.9163264e-04 1.9828394e-03 2.3495346e-03 1.9517373e-03 1.3548451e-04 3.7877283e-03 2.8247707e-03 2.6466102e-03 1.4866617e-04 2.8614588e-03 3.2185979e-03 2.1613637e-03 1.5430396e-03 1.0217871e-03 2.1845781e-03 1.8662401e-03 6.6257305e-04 3.7358116e-03 5.1964468e-05 1.2907411e-04 9.1062515e-04 2.1316335e-03 1.9388777e-03 1.3908595e-03 1.9526372e-03 9.5243046e-04 3.3534848e-03 2.1612689e-04 1.1409237e-04 3.7511533e-03 4.4135123e-03 6.6848080e-04 1.6638889e-03 1.5639090e-03 5.3797969e-03 4.6512834e-03 1.2304041e-03 2.1424312e-03 1.1209148e-03 3.9967200e-04 2.4397061e-03 3.5566606e-03 2.8773633e-04 1.9980195e-03 2.5921392e-03 1.0825130e-03 2.8538916e-03 3.5346603e-03 9.3770297e-04 1.4682668e-03 3.5169417e-04 2.8507687e-03 1.3414178e-03 1.7057263e-03 1.1395352e-03 1.1778138e-03 6.0686882e-03 1.8828714e-03 4.1140616e-03 2.6499598e-03 2.9837515e-03 5.4227271e-03 1.5314410e-03 2.0381041e-03 4.2816261e-03 3.9075302e-03 1.2227927e-03 2.5264748e-03 6.5268770e-03 2.9950818e-03 4.2523782e-03 4.6456758e-03 7.0284879e-04 2.6206169e-03 2.2973667e-03 2.1186617e-03 1.0662204e-03 1.4771683e-03 1.2714179e-03 1.6200996e-03 9.3400517e-04 6.3864823e-03 5.7928278e-03 1.2702417e-03 3.0680262e-04 5.4794582e-03 3.6431092e-03 7.0967201e-04 2.9368020e-03 3.3273895e-03 2.1071133e-03 1.0635659e-03 5.3575283e-03 5.0378701e-03 2.9935636e-03 1.0701915e-03 3.8904013e-03 4.2643219e-03 4.2480632e-03 6.5030200e-04 1.1722241e-03 2.1985353e-03 2.8568074e-03 1.2361632e-03 4.8426872e-03 4.7093005e-04 4.8520973e-04 9.1253531e-04 3.1519557e-03 3.8819044e-03 2.1030647e-03 9.4974174e-04 6.5992898e-04 2.7415573e-04 4.6934818e-03 4.8265016e-03 1.1075187e-03 2.2246224e-03 2.7094103e-03 7.2547386e-03 5.7651516e-03 1.2879775e-03 2.2498412e-03 1.7969640e-03 2.9988677e-04 3.2873557e-03 4.6281528e-03 3.4411066e-04 2.2557578e-03 3.0860670e-03 7.9349579e-04 3.1195585e-03 3.7700064e-03 1.7729958e-03 8.2927671e-04 3.1955044e-04 2.5127017e-03 2.3924363e-03 1.2355886e-03 6.3306711e-04 1.7271405e-03 7.3517242e-03 1.9482896e-03 4.3986367e-03 3.1257329e-03 4.1788193e-03 6.3227646e-03 2.2872076e-03 2.9291555e-03 5.5970414e-03 4.9483109e-03 1.7952206e-03 3.0186434e-03 7.6597710e-03 3.3340783e-03 5.0895780e-03 5.6951678e-03 1.1683986e-03 2.4173290e-03 2.2930538e-03 6.6766405e-03 6.0598142e-03 2.0196993e-03 3.2103351e-03 7.1260012e-04 2.1040770e-04 3.4457175e-03 4.8676879e-03 4.7880714e-05 2.6160358e-03 3.7638559e-03 1.6534967e-03 3.7166920e-03 4.7397184e-03 1.5966719e-03 1.7314841e-03 3.1225254e-04 3.8216967e-03 2.0442457e-03 2.2822879e-03 1.3421268e-03 1.4265946e-03 7.7649269e-03 2.8740126e-03 5.4160448e-03 3.5155679e-03 4.0306705e-03 6.4534752e-03 2.4409680e-03 3.0445932e-03 5.6145787e-03 4.8826195e-03 1.5492752e-03 3.4872724e-03 8.3107496e-03 4.2635519e-03 8.0787158e-04 1.6588755e-03 9.5088926e-04 1.1215622e-03 1.1319394e-03 1.0749073e-04 1.3651148e-03 1.0419898e-03 7.3951172e-03 5.6721517e-03 2.8717807e-04 1.2167194e-04 6.0929710e-03 1.9467902e-03 2.7497575e-04 2.6021687e-03 1.4711384e-03 7.6653532e-04 1.1979861e-03 4.6497866e-03 4.6528613e-03 2.0491908e-03 1.1214382e-03 3.1087470e-03 5.8331337e-03 2.9008505e-03 5.1851355e-04 1.1077981e-03 7.4180273e-04 1.1189833e-03 3.3213225e-04 1.9786092e-03 6.1996952e-04 3.2630432e-04 1.6788710e-04 1.0717507e-03 2.5327575e-03 6.9916673e-04 4.8860962e-04 5.0860173e-04 1.7852918e-03 8.1925898e-04 2.7637031e-03 3.4415701e-03 7.6048751e-04 1.3454814e-03 1.4168273e-03 9.1102129e-03 5.4634531e-03 7.0608839e-04 1.5253323e-03 6.6930140e-03 9.6900708e-04 7.0882160e-04 2.0455668e-03 3.9468549e-04 1.1422246e-04 2.4972040e-03 3.2985277e-03 4.3265068e-03 9.6084950e-04 2.6351726e-03 1.9457490e-03 6.5435669e-03 2.5549327e-03 2.2787630e-03 1.2770395e-03 6.6117888e-05 4.1362061e-04 1.2709485e-03 9.0111668e-04 1.8531872e-03 1.4879007e-03 1.4236785e-03 8.2396190e-04 2.2228636e-03 3.0260473e-04 1.7887502e-03 9.8733924e-04 2.2593145e-04 8.4529966e-04 3.3545284e-03 2.0967474e-03 4.8795197e-04 1.2181976e-03 2.8660735e-03 1.2480152e-03 6.7735579e-04 1.8245752e-03 1.6711447e-03 4.7937341e-04 1.0455121e-03 6.9960603e-04 8.5898853e-04 1.3874556e-03 4.5677202e-04 1.3792343e-03 7.7973864e-04 1.4683104e-03 6.8342524e-04 1.0561802e-03 2.6555506e-03 3.7342452e-04 3.7432085e-03 9.6667604e-04 1.7304819e-03 6.7810292e-04 1.1254700e-03 2.3291425e-03 7.0675084e-04 8.2471895e-04 2.0738735e-03 1.3951480e-03 2.9534051e-04 6.3569311e-04 3.8846725e-03 1.5360581e-03 9.9102840e-04 2.6998600e-03 1.1403522e-03 5.9435819e-04 1.1584769e-03 4.5439398e-03 2.4115910e-03 2.2376231e-04 1.3051908e-03 3.1170665e-03 2.4639357e-04 6.5093729e-04 1.0408914e-03 3.2170646e-04 6.8086675e-04 7.3723950e-04 1.9464154e-03 1.6938542e-03 1.2010351e-03 8.6567601e-04 1.2605984e-03 4.0415296e-03 6.0024917e-04 2.8241029e-03 9.3145876e-04 8.7987159e-04 1.5390142e-04 6.1621791e-04 1.2031695e-03 7.4672595e-04 6.4561848e-04 1.3132954e-03 5.7671738e-04 4.3996999e-04 1.2646330e-04 2.7819647e-03 1.1571313e-03 1.1519638e-03 1.4945239e-03 1.5137092e-03 1.7542391e-03 3.0584682e-03 3.1624125e-03 6.9423087e-04 8.0741075e-04 2.9564986e-03 2.1264808e-03 1.1956222e-03 2.4834226e-03 2.4046990e-03 2.4389289e-03 1.1428932e-04 4.1572751e-03 2.6270682e-03 3.3826290e-03 1.0906814e-05 3.3779688e-03 3.9749243e-03 1.6265579e-03 2.0735613e-03 1.7238890e-03 2.6977636e-03 1.8191981e-03 5.1180139e-04 3.3068455e-03 2.9977980e-04 3.0495320e-04 9.6732841e-04 1.7461140e-03 1.4560452e-03 1.4920651e-03 2.5772801e-03 1.7019143e-03 1.0341988e-03 4.0085546e-03 3.6492138e-03 7.4340196e-03 7.9703529e-03 1.4966880e-03 7.8440192e-04 7.7789554e-03 4.4532033e-03 2.2360209e-03 5.9110335e-03 4.1723764e-03 3.6115483e-03 1.8645164e-03 8.6587941e-03 6.9790025e-03 5.9223579e-03 1.3508421e-03 6.9679643e-03 8.8100022e-03 4.3884451e-03 9.3956602e-04 3.8113149e-03 3.5744927e-03 3.3082295e-03 7.5316334e-04 3.6491972e-03 1.6320684e-03 1.1884181e-03 4.5803930e-04 2.1497659e-03 4.0210128e-03 2.8148066e-03 1.4099016e-03 2.8014283e-03 2.0075866e-03 1.7351697e-03 8.4094224e-03 6.5677927e-03 3.9418601e-04 3.5055970e-04 7.1718250e-03 2.0973679e-03 6.4851765e-04 3.3744442e-03 1.5292791e-03 9.4071576e-04 1.7144529e-03 5.4753391e-03 5.4188405e-03 2.5828658e-03 1.5301373e-03 3.8027206e-03 7.3328244e-03 3.1192913e-03 6.2731613e-04 1.7741918e-03 8.4678687e-04 1.1412463e-03 3.3683903e-04 1.4744098e-03 1.1279305e-03 6.7560808e-04 1.3395103e-04 7.7360874e-04 2.7301747e-03 8.0481079e-04 5.3215427e-04 1.0082007e-03 2.3386408e-04 4.5650335e-03 2.1085336e-03 8.9398060e-04 1.5597528e-03 2.5626398e-03 8.9643929e-04 4.6401620e-04 2.1474828e-04 9.4200330e-04 7.4363388e-04 8.8544521e-04 1.1214375e-03 1.5513223e-03 4.7369920e-04 1.2949283e-03 5.0107186e-04 1.9686134e-03 1.5839083e-03 3.0734994e-03 1.1037013e-04 1.0184869e-03 9.4459481e-04 1.6215035e-03 3.1102930e-03 6.4871929e-04 8.4571319e-04 2.1956968e-03 2.1853516e-03 1.4074387e-03 6.7079422e-04 3.0128980e-03 5.5375407e-04 5.9745601e-03 3.5596915e-03 1.0825427e-03 1.1193941e-03 3.8619013e-03 1.7868782e-03 2.6699310e-04 7.4652731e-04 1.5644519e-03 7.6914730e-04 1.1868249e-03 2.1537215e-03 2.8904145e-03 6.7050048e-04 1.5688544e-03 1.1553603e-03 2.3985919e-03 2.8520067e-03 2.1226295e-03 2.6532317e-05 9.5443067e-04 1.5325109e-03 1.7403036e-03 3.8293675e-03 6.2074215e-04 7.8759073e-04 1.8993585e-03 2.7454611e-03 2.5765044e-03 1.0363780e-03 2.0443972e-03 1.4335859e-04 1.4016332e-03 5.4805806e-03 6.7405649e-03 6.4579738e-04 5.1748633e-03 6.3487765e-03 4.3874825e-03 6.7084849e-03 8.1049162e-03 2.6677096e-03 4.6345484e-03 1.7447861e-03 7.4893653e-03 2.9062036e-03 5.4610122e-03 3.0610024e-03 2.8530196e-03 9.9111331e-03 5.6471487e-03 8.9070297e-03 6.1633735e-03 5.5983777e-03 9.1911029e-03 4.0109945e-03 4.6927139e-03 7.3914201e-03 7.0233589e-03 3.0645626e-03 6.1283907e-03 1.0939049e-02 7.1096522e-03 3.7615860e-03 5.7439366e-03 2.3434979e-04 2.1625792e-03 4.1436319e-03 1.4386017e-03 3.2647240e-03 4.5819077e-03 2.2920937e-03 1.0610016e-03 6.9564930e-05 3.4218787e-03 2.8472107e-03 1.7665885e-03 1.7134963e-03 1.2022963e-03 8.8958832e-03 3.1032776e-03 5.2642601e-03 3.2432815e-03 4.6032265e-03 6.0005810e-03 3.1610099e-03 3.7408101e-03 6.4052558e-03 4.8371122e-03 1.3589516e-03 3.3936977e-03 9.2321743e-03 4.6963171e-03 5.0386940e-04 4.2984797e-03 8.6973796e-04 3.5526497e-04 1.7666127e-03 7.2192984e-04 6.5802622e-04 6.6868074e-04 3.2431480e-03 2.9035420e-03 1.6594087e-03 6.4854242e-04 2.1612810e-03 4.9124735e-03 1.3725331e-03 1.5050690e-03 9.8777331e-04 7.5260407e-04 4.1403958e-04 1.4453279e-04 1.2645371e-03 4.6600326e-04 2.4792089e-04 4.5627999e-04 4.7560079e-04 1.1214322e-03 2.2091820e-04 1.5167980e-03 7.9735767e-04 5.8276719e-03 2.5886189e-03 4.3280198e-04 2.9205975e-03 2.2021650e-03 1.3597486e-03 9.5466012e-04 5.1915037e-03 4.8194588e-03 2.6659023e-03 8.3877743e-04 3.6595156e-03 5.4665486e-03 3.2603866e-03 3.5246614e-04 1.2546385e-03 1.3738455e-03 1.7317120e-03 4.0173517e-04 2.8852033e-03 4.3207236e-04 2.1872967e-04 1.7262684e-04 1.6274416e-03 2.8950267e-03 1.1933707e-03 5.1057942e-04 6.2761497e-04 3.2515433e-03 4.5844712e-03 2.0397580e-03 4.4892831e-03 5.6236454e-03 2.1663608e-03 1.9457792e-03 4.4715761e-04 4.4562273e-03 2.6795180e-03 2.6855442e-03 1.3224094e-03 1.8950095e-03 8.9432615e-03 3.4981521e-03 6.3671383e-03 4.3127165e-03 4.9533188e-03 7.5137514e-03 3.1187047e-03 3.8229023e-03 6.6814123e-03 5.8612561e-03 2.0597987e-03 4.3006086e-03 9.5397630e-03 5.0775992e-03 1.3692874e-03 9.6403546e-04 1.3966479e-04 8.6664284e-04 1.6597338e-03 1.3212159e-03 1.4578093e-03 1.0432500e-03 1.9220792e-03 8.7918940e-04 4.4168060e-03 5.0670419e-04 4.4696559e-03 1.4208846e-03 1.1004494e-03 1.6436932e-04 1.5507648e-03 1.1191058e-03 1.7495883e-03 1.6621469e-03 2.5414268e-03 8.8363295e-04 4.0096791e-04 3.3482530e-04 4.2345389e-03 1.9374158e-03 1.2770848e-03 1.0395507e-03 3.9095383e-04 9.2829494e-04 2.8992176e-03 3.2975300e-03 9.5393320e-04 1.0925514e-03 1.6776296e-03 3.8507253e-03 2.3805613e-03 1.2082502e-03 2.8135004e-04 4.7639114e-04 8.7356741e-04 7.4310336e-04 2.3860646e-03 3.8892953e-04 3.1610282e-04 8.0643344e-04 1.4728895e-03 2.0712058e-03 4.6512964e-04 1.1229948e-03 8.8791739e-05 1.1956364e-03 1.3055469e-03 1.5870433e-03 3.7223827e-04 1.0219838e-03 4.8252621e-04 2.1760282e-03 1.1580239e-04 1.5036929e-03 1.5974284e-03 4.9006747e-03 5.1331960e-04 1.6812595e-03 1.3616634e-03 2.7816530e-03 3.8434871e-03 1.4972893e-03 1.8359326e-03 3.6884416e-03 3.0552141e-03 1.4996272e-03 1.2110783e-03 4.7697841e-03 1.3648602e-03 3.9191527e-04 1.9808749e-03 1.8113262e-03 2.3841094e-03 7.8154360e-04 2.2164780e-03 1.0439462e-03 5.1766229e-03 1.1157470e-03 3.6934914e-03 1.2626931e-03 5.1659909e-04 5.8959899e-05 1.4097594e-03 7.9470954e-04 1.7881991e-03 1.5872251e-03 2.1165612e-03 7.0368642e-04 9.2823209e-04 1.5533041e-04 3.3160103e-03 1.5048956e-03 2.0235000e-03 2.4966081e-03 3.5807846e-03 4.7284012e-04 2.2730788e-03 1.2853266e-03 5.0519729e-03 2.3762808e-03 2.2444800e-03 6.5500299e-04 2.4750944e-05 4.4815197e-04 1.3292061e-03 1.4780836e-03 1.3932149e-03 1.1924273e-03 1.5277304e-03 1.1896691e-03 2.0673918e-03 2.5400150e-04 1.8225589e-03 5.4227610e-04 2.9880363e-03 1.8314313e-03 2.5238977e-03 5.5757663e-05 2.3698503e-03 2.8213423e-03 1.3040881e-03 2.4190319e-03 1.1221589e-03 2.3332880e-03 1.5386845e-03 7.3215728e-04 3.3801838e-03 1.6264024e-04 2.8457958e-04 1.3051710e-03 1.8856170e-03 1.1599202e-03 1.2252261e-03 2.8396493e-03 1.3307965e-03 7.9081662e-04 1.1208231e-03 3.7513747e-03 2.2532467e-04 1.8915999e-03 1.8066444e-03 7.8138393e-03 1.7396624e-03 2.9887611e-03 2.1626603e-03 4.5716343e-03 4.7705983e-03 3.1616233e-03 3.6125170e-03 5.9695278e-03 4.2653532e-03 1.8208998e-03 2.2513824e-03 7.5822521e-03 3.0950854e-03 2.6638425e-03 2.3329339e-03 1.2833498e-03 1.8503904e-03 7.6221882e-04 7.7332789e-03 2.4545666e-03 4.1819304e-03 2.3678329e-03 3.7122984e-03 4.8118232e-03 2.5553184e-03 3.0167737e-03 5.3596333e-03 3.8038292e-03 8.6990936e-04 2.5148680e-03 7.9707274e-03 3.8479364e-03 3.0845972e-03 3.4545687e-04 3.2912795e-03 2.5772857e-03 4.0614792e-03 4.9082550e-04 6.4992316e-04 1.0688017e-03 2.7640538e-03 2.9796108e-03 1.9652949e-03 2.0639503e-03 3.2701588e-03 2.6492756e-03 2.3500195e-03 8.8549039e-04 3.5901884e-03 9.2048730e-04 3.0276112e-03 3.6195589e-03 1.4632965e-03 2.1763560e-03 1.5224813e-03 2.5475111e-03 1.6768950e-03 5.4331181e-04 3.2527051e-03 2.4129313e-04 2.7799169e-04 1.0453548e-03 1.7267901e-03 1.3027778e-03 1.3633707e-03 2.6503970e-03 1.5759024e-03 2.1731558e-03 1.7887862e-03 5.7263386e-03 8.5148931e-04 1.6383081e-03 1.3458097e-03 3.3594814e-03 3.6389958e-03 2.2301817e-03 2.5225544e-03 4.3534713e-03 3.1787209e-03 1.6954559e-03 1.3061945e-03 5.4111697e-03 1.7803664e-03 4.1741292e-03 7.9197469e-03 2.2821957e-03 5.7150571e-03 5.2344879e-03 5.9478982e-03 9.4860449e-03 3.0218268e-03 3.9157169e-03 7.0424278e-03 7.6315025e-03 4.1845322e-03 4.7751866e-03 8.3019483e-03 3.6628005e-03 5.6294536e-03 2.4239872e-03 2.7647556e-03 9.2421646e-04 1.7874511e-03 2.0292522e-03 1.9168834e-03 1.9458286e-03 3.1481713e-03 1.3908818e-03 1.3324310e-05 1.1782972e-03 5.7639460e-03 3.2058410e-03 2.4140579e-03 2.0956665e-03 3.1463866e-03 1.2261330e-03 4.0134358e-03 1.5054952e-03 1.1240475e-03 4.7360391e-04 2.7309553e-03 5.1301270e-03 2.4137049e-03 8.9922816e-05 1.2592279e-03 8.6164876e-04 1.2616309e-03 1.6936265e-03 3.4914911e-03 6.4024254e-04 8.0798030e-04 1.9823430e-03 2.5037231e-03 2.1768005e-03 8.4515239e-04 2.3117307e-03 2.1993248e-04 5.6812764e-04 1.3931392e-03 1.4308209e-03 1.6084351e-03 1.3403960e-03 1.4811963e-03 1.2106398e-03 2.4235208e-03 3.5787719e-04 1.6247178e-03 6.1681362e-04 9.2162383e-04 6.4491663e-04 1.4082859e-03 1.1774797e-03 1.5785221e-03 4.0122185e-04 7.3237681e-04 6.4530654e-05 2.8852212e-03 1.3991525e-03 1.5175131e-03 5.9336508e-04 2.9036861e-04 2.0099198e-04 5.5129609e-04 1.5179733e-03 6.8841417e-04 1.3866758e-03 1.2880812e-03 3.2376306e-03 2.6196338e-03 2.0860993e-03 2.5676122e-04 1.7880288e-03 9.1594192e-04 3.5976292e-03 3.2249197e-03 6.3653022e-05 8.5949029e-04 1.8263557e-03 1.6881339e-03 9.7411877e-04 1.7845049e-03 6.1330704e-04 4.6521065e-04 1.3489557e-03 1.6857799e-03 7.7549379e-04 1.3461987e-03 6.0478443e-04 1.0485877e-03 2.7784351e-03 1.1708179e-03 5.9587066e-04 1.2049026e-03 1.1592978e-03 4.9960727e-04 2.5830270e-03 2.2390567e-03 9.5053595e-04 5.2396832e-03 2.8622802e-03 2.1952710e-03 8.7416055e-04 1.1307517e-03 diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-double-inp.txt b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-double-inp.txt new file mode 100644 index 0000000000000000000000000000000000000000..7a77021775ddb61d226aa8c4ba60f0af013e4a6c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-double-inp.txt @@ -0,0 +1,20 @@ +8.278938049410748956e-01 9.035293984476246987e-01 1.862188994679486731e-01 8.921151312310462433e-01 2.061859119379583216e-02 3.440636727385729676e-01 1.533779912830328662e-01 5.701372300009802663e-01 5.510020730211558915e-01 1.792362258426003496e-01 8.086175120876580857e-01 6.115487184317183189e-01 1.233471787164852618e-02 1.441643531871039663e-03 4.044309209045688913e-01 3.561398959499905148e-01 1.281985712929750720e-01 8.663300833847481508e-01 8.696027786291581352e-01 3.611727370363766454e-01 5.283537658772616830e-01 1.440241088090119526e-01 3.112457227138950566e-01 6.031280796897889873e-01 9.230324792742518047e-01 2.332121881136874908e-01 3.192652267403439659e-02 3.466206294995559656e-01 2.988687728046366399e-01 5.116749542048093513e-02 2.584975830914494344e-01 4.302023478042227289e-01 8.003972751713522849e-01 9.364931911368097328e-01 9.737098649964673891e-01 4.718038453972229762e-01 4.526591686607864817e-01 1.056485678520797666e-01 5.883019714285405710e-01 3.846092237676981274e-01 6.461500053435473845e-01 1.013239729848824933e-01 1.216151561651189761e-01 5.159668929484659827e-01 8.452074473510227115e-01 9.885170962247968873e-01 7.623883073490128615e-01 2.291163243615434997e-02 5.775530980802381364e-01 7.820699896828091635e-01 8.239186345842965942e-01 3.391800105260227571e-01 9.546318451614538292e-01 3.789677917867695367e-01 4.526533399649290690e-02 8.366786473238587707e-01 3.082636811049858094e-01 1.173936820793450853e-01 7.631994969169442200e-02 2.997416650722183329e-01 5.795208655160232203e-01 3.942350892542011431e-01 1.175126383297261379e-01 4.928232513950027149e-01 9.421293996225950096e-01 8.365391053841342295e-02 6.868059693571844093e-01 3.589527962429440722e-01 7.592939427166059962e-01 5.623849466131448649e-01 2.110746828032050715e-01 9.824683704668600859e-01 2.661230142246236996e-01 6.162272315007123469e-01 5.023254536607497656e-01 5.202854476669782624e-02 5.835090668842095596e-01 7.864642118889143552e-01 2.504012386867506823e-01 6.728308641135989365e-01 4.610793534576096420e-01 4.820508770515909980e-01 9.720403251022265989e-01 3.100069285263498120e-01 7.681017126461753275e-01 7.956539306007082146e-02 2.593389637887737464e-01 1.137852590403054531e-01 3.885303073284454012e-01 8.599094660075957686e-01 5.215167875918280682e-02 1.620908248572288102e-01 1.859236090457663249e-01 6.247716512610480555e-01 3.415128495520775020e-01 7.034903368378029320e-01 6.037564640019568163e-01 2.338969434423310290e-01 1.002104885609900187e-02 7.866058403969036217e-01 +8.033694116033356369e-01 8.653264545544031572e-01 7.468340410754038539e-01 6.362430919910603278e-01 5.120006306625468628e-02 9.503348372633585450e-01 4.697732609626817935e-01 4.221305288459429317e-01 3.153452119838391354e-01 2.991014843442657556e-01 1.190667967280257811e-01 3.486567714509342109e-01 8.289493649885054660e-01 8.454811050800014049e-01 9.149673018211901265e-01 7.708707837193897738e-01 2.640157732122547785e-01 2.107897022189605396e-01 4.207633055054439408e-01 6.719500284654699174e-01 1.458031684893063007e-01 1.800412735886125493e-02 8.402733435220011149e-02 4.206760156883160295e-02 1.376933515041314227e-01 1.716717341022133692e-01 1.788220727652158892e-01 8.224310433402118869e-01 7.729093666867475898e-01 2.064223621025984556e-01 9.592092036227207741e-01 8.312490243754996344e-01 6.673289360369902834e-01 4.632847903690773261e-02 7.643954098358983762e-01 9.359341525615098023e-01 1.914966319163026176e-01 4.536590469402868031e-01 8.640836016538007147e-01 3.941529178175462444e-02 5.602101995205478469e-01 9.263806161941660067e-01 1.555995325944817820e-01 6.172208102950116348e-01 6.335576752812099866e-01 9.766975460368043649e-02 4.475795689539874278e-02 3.248842796104995934e-01 5.700377122149502540e-01 9.066962967256807504e-01 5.458460621505676347e-01 6.833401285581487405e-01 2.887244409544044155e-01 1.316338647016834784e-01 2.325673305245992140e-01 4.150121963188406760e-01 3.834845466366055833e-01 8.149365773968725302e-01 1.867003849450201702e-01 3.170322173543018707e-01 6.832093662682684476e-01 1.729728518929105618e-01 9.236557359702636250e-01 9.152941252150086360e-01 7.224879983096620384e-01 8.557920626598064517e-01 5.344883059251644974e-01 4.876873274449112783e-01 8.308277804506420949e-01 3.916624489322212410e-01 3.459695122273966916e-01 4.033512499027409604e-01 6.555726444913008155e-01 7.138452409380238173e-01 1.683937314599968094e-01 1.769382143486440961e-01 7.588683655178136700e-01 3.750589892880819010e-01 7.525176245126207197e-01 6.083961152538303052e-01 1.145972309907993258e-01 6.239614485809552580e-01 1.307655482065895880e-01 8.530458750670916190e-01 4.801602070124768584e-01 8.168122189863546989e-02 3.793139622744635675e-01 1.496986997776840189e-01 7.129023878302899186e-01 6.830979237438047358e-01 7.635375943876505644e-01 1.824004963251233402e-01 5.764695848992339444e-01 8.865113248731604223e-01 5.784337085544002388e-01 9.700026628755119562e-01 7.318207347905059112e-01 3.851401393936705331e-01 1.774291851193399161e-01 9.763423229242296220e-01 +9.287178470949695175e-01 1.748282433617460718e-01 9.238531711586964734e-01 8.291274445125006443e-01 9.513259272578692416e-01 7.486316801165745494e-01 6.257378457524477300e-01 2.062711693536473101e-01 3.970721244184766130e-01 2.738325225026445597e-01 8.735038948299954642e-01 5.415282140033768066e-01 5.176317904298315398e-01 5.347036264518250093e-01 7.482056965410627258e-01 4.140672582824351800e-01 8.709067272363142376e-01 9.499605569181273079e-01 5.380266748336398619e-01 4.369252161707162241e-01 8.235722216228258397e-03 4.308187193646527691e-01 6.030581482859224129e-01 7.316831195156517920e-01 5.540499846834291420e-01 2.044203040111662872e-01 8.645251782981867583e-01 1.816095717570278545e-01 9.639119168018674966e-01 3.572031072322333634e-01 5.580226816834680248e-01 5.586629875016585478e-01 7.213854320902782780e-01 8.513998260042524580e-01 6.308764347277173723e-02 4.299855362100638567e-01 8.789303907444128150e-01 9.178850359236285783e-01 2.275205845091231582e-01 1.899395443939643213e-01 7.103070862773533944e-01 9.450015289553428399e-01 1.691856364522159595e-01 7.368719616877857925e-01 9.600189536623833231e-01 5.128846522932454244e-01 6.209162727118655578e-02 7.992250598838029907e-01 9.141050280518014937e-01 1.471297785256820978e-01 7.466162372930541524e-01 4.656107650642931084e-01 6.399324135161845728e-01 2.023617619481610230e-01 1.019104648900100996e-01 4.390693688536728700e-02 9.822620353006089600e-01 2.881951852926285529e-01 6.191575015960482098e-02 8.989580763251467932e-01 4.635958631890454429e-01 1.781973138114967270e-02 7.906911683818984571e-02 6.525270776225711167e-02 3.620583622807886925e-01 2.651673718940715796e-01 5.829372395929610651e-01 2.118159824373908595e-01 5.900287159143694504e-01 9.405929925178391215e-01 9.262415619063500971e-01 5.639581506302312475e-01 4.529556154689695635e-02 2.873819210518682166e-01 5.718545934306838996e-01 9.877670791317306742e-01 4.120364488714320927e-01 9.896078045634184583e-01 3.796586997026456523e-01 1.178183652203194098e-01 6.641068305236120795e-01 4.045960610587706618e-03 2.262690437428437340e-01 7.839938005832693957e-01 7.695391333937223743e-01 3.713918392552509884e-01 4.245533341514018399e-01 1.475072494020331915e-01 6.011975181419888514e-01 5.158174017998343741e-01 1.788706151398071764e-01 8.880707130134481986e-01 6.463351030474082659e-01 6.499920635615744624e-01 8.570273676455353318e-01 6.055019270899113515e-01 2.123561211054603159e-02 2.027688787664126968e-01 1.930834215328548487e-01 5.131906052747271518e-01 +2.599990881903107010e-01 6.767857524909899336e-01 7.188217446352963558e-01 3.037178903357997672e-01 4.252381412838680541e-01 4.070924411439535984e-02 8.426710493038247485e-02 8.301517457289483426e-01 8.254603255702420705e-01 7.258533909453509514e-01 9.958706809470796451e-01 1.323408451651194584e-01 8.523995455245143571e-01 2.572405385832454705e-02 4.715363690065482727e-01 7.920130365690022378e-01 7.613745641534582775e-01 5.108305991695683002e-01 7.908714335912382376e-01 4.641131983754837043e-01 3.112627109831845873e-01 4.218013908715474436e-01 3.291577909008427394e-01 2.538715054071232213e-01 1.362470842487485401e-01 2.716429790290709745e-01 1.485325814161112534e-01 4.514539027544387517e-01 6.900835128673067365e-01 7.793407072946112457e-02 5.938024345270752624e-01 1.497853829906865553e-01 5.399567982652856424e-01 1.419209916759478496e-03 7.719776132867679497e-01 3.130795105576239523e-01 6.670071611167494030e-01 8.900596881158256979e-01 8.011158503301568645e-01 7.089295605187424520e-01 4.671116382997058114e-01 6.682965170673403899e-01 6.524835265739736823e-02 5.454288420771494783e-01 7.751910790556310049e-01 8.192595541387335256e-01 3.098855848167891835e-01 3.689971355659119601e-01 8.666507475054133769e-01 2.749042684253171220e-01 3.566565602478318775e-01 4.838173174723044978e-01 1.032975933616413489e-01 5.063065339610417492e-02 5.791168455729079900e-01 3.573337411289496668e-01 6.714098909652352898e-01 2.917057662433912846e-01 2.654964332620638467e-01 7.171804039048814694e-01 3.314488637898249657e-01 5.230399837442840649e-01 6.866534136026025692e-02 1.252966394621071178e-01 5.349397882659551184e-01 2.841423847455760709e-01 4.158473635710734362e-01 7.197062989831272128e-01 5.123869045047864113e-01 8.675622821594339840e-01 8.097441845042540054e-01 7.317178252133832439e-01 3.300847596465853462e-01 5.922311859141077273e-01 8.852619511417836318e-02 2.673412917259408994e-01 6.878259052441990651e-01 3.223000927116328462e-01 8.859387123976615319e-01 5.722722388300067742e-01 8.254877606669521750e-01 5.705299682290687624e-01 7.046478734972855262e-01 1.316324413616759559e-01 3.056358395675535800e-01 2.396516834600909140e-01 2.041201422493257311e-01 1.610755140653103989e-01 1.617012564641111538e-01 4.449920510036902144e-01 2.731012972755201274e-01 7.826874666257994662e-01 5.193612375350010746e-01 8.688804522977213729e-01 3.742157602758655610e-02 6.649628920608219307e-01 5.978149424619171315e-01 5.345645500553952711e-01 9.443202650415919441e-01 6.105837075491723498e-01 +6.387761328141735584e-01 4.210087412162694109e-01 3.777306694964789324e-01 3.576349403292201634e-01 7.272699618880260619e-01 9.173392803607671731e-02 1.212535698300880593e-01 3.871229381194544183e-01 7.735150198351389284e-01 4.687200483013695962e-01 5.161778571874678923e-01 9.839646447226980674e-01 8.626932748911960713e-01 9.618485576577924245e-01 2.997996427525421170e-01 3.955404657388794654e-01 8.480126027102616870e-01 8.194992325050480808e-01 2.800213436873294492e-01 7.188391466620779324e-01 2.289766105875049584e-01 3.838547514028287644e-01 1.363553401061209369e-01 2.131328253542326134e-01 2.666779468144075960e-02 3.252883844200405994e-01 4.207860197469600605e-01 2.991365385037647595e-01 9.180779845534067229e-01 8.787338732192649937e-01 5.404510999105649471e-01 1.735493827761729335e-01 7.405224640747264386e-01 3.927355563629583157e-01 3.957109873399460298e-01 1.313029813325972128e-01 6.434498219738993274e-01 7.162213694578050127e-01 6.454998257494671821e-01 3.808124530008022424e-01 2.027201015737234435e-01 6.667632842770417900e-01 1.609491052365198405e-01 1.192413785409307536e-02 4.546773323526854815e-01 7.733541911050207940e-01 3.902525737195561284e-01 4.006023779897505133e-01 5.156517815815246930e-01 6.135685498584592112e-01 7.062153114980724844e-01 5.505858882117883324e-01 3.541308807182554919e-01 5.237151122342533771e-01 5.230649229131387745e-01 1.973541027697351957e-01 7.940327858595511712e-01 9.998588700623055603e-01 3.878271015153827994e-01 4.455006584967207139e-01 8.376414508056347907e-01 3.310833863524501597e-01 8.020469097392601832e-01 1.890327633084128989e-01 3.830289472395409511e-01 8.605040171046141051e-02 9.978185524023941433e-01 8.333890591892906263e-01 4.509013468741837061e-01 6.355778557686052599e-01 1.422515991097305088e-01 9.549891485963732940e-01 7.535776302868563148e-01 9.306005301880662106e-01 2.444330347211679522e-01 5.828218427569508142e-01 1.261938242968304591e-01 2.829188731405173352e-01 8.100246952078660190e-01 2.032739130996042975e-01 3.997268448390065565e-01 3.882777703107541667e-01 1.102505652624736765e-01 5.826634725328041498e-01 6.508734477956333864e-01 1.777287661702166011e-01 4.857051012052149286e-02 6.850537712379254351e-01 5.012281307761055071e-01 3.329154880061502286e-01 5.006261767216675374e-01 4.542081454976160115e-01 6.777801995399822532e-01 4.271303586474960445e-01 7.820470659692947413e-01 5.143462618485082904e-01 4.071273891563575997e-02 8.503383643856671226e-01 6.877485768345151795e-01 6.498843855014626580e-01 +5.539512747016193117e-01 6.329206647391879548e-01 2.798533500321682688e-01 4.825977295850051307e-01 7.625297023172977751e-01 9.081309101427640362e-01 4.124792086535029600e-01 3.647019658319609059e-01 7.529595202332928228e-02 3.072404010876803593e-01 7.890673660964639957e-01 4.079781478915127657e-01 1.440519120695739064e-01 2.538968953804546791e-01 1.595028243568367143e-01 9.066545851872198636e-02 6.367601114674349416e-01 7.622263643880089479e-02 3.015728236404162654e-01 2.424070469873378375e-01 5.711440390241000475e-01 5.717001375511508998e-01 2.237853674032181939e-01 7.112101625753678436e-01 4.321054197012103026e-01 2.505322169010260058e-02 5.877307077139551916e-01 4.415771174397812304e-01 3.766022855145171322e-01 9.803490652619811785e-01 1.229258314111529860e-01 8.108351868714478439e-01 8.558595456964329662e-01 2.168217533833206589e-01 2.034022719386595623e-01 8.687457137579783772e-01 9.013327195854559104e-01 8.156766512673154779e-01 2.717576187546973943e-01 1.756417893371479133e-01 7.555856977566548505e-01 6.708809351312817748e-01 8.998789237886926085e-01 1.936367585946979775e-01 7.949724635465026390e-01 3.164799312763589834e-01 5.493048513173155456e-01 1.608917269168268493e-01 3.048667492191803330e-01 5.599401537727016764e-01 5.779501360842279611e-01 1.296714605309662316e-01 9.160752328055997706e-01 8.058674476110374574e-01 4.385508937505578908e-01 9.212419718012100356e-01 2.249887451242467140e-01 6.283927745352599903e-01 3.778992451536005159e-01 3.571958698867505611e-03 7.276526470528231760e-01 9.051678673805297892e-01 8.465837072484881931e-01 4.548317505393462135e-02 3.189318261926020748e-01 4.446388607398673587e-01 4.292356336344156365e-01 4.203980977718795309e-01 4.698059253071955599e-01 6.151991200848159203e-01 8.479986139404802614e-01 9.870993262459623052e-01 3.164206525899861955e-01 6.464672171639846976e-01 8.508781429592480183e-01 4.733667503354813677e-01 8.076014176740163863e-01 6.671443255679101458e-01 6.639213267047979761e-01 3.681688930741919830e-01 4.679870252651611162e-01 1.790041740686979521e-01 8.446070273663058847e-01 3.350737544979878191e-01 6.600272349677447359e-01 4.356083218487936115e-01 7.995134167346013010e-01 9.083660261041469619e-01 9.743975306734570241e-01 8.144839650654719376e-01 6.865011984586443239e-01 1.709747281999153268e-01 8.534933687161740945e-01 9.494753729726415070e-01 8.140124992294850426e-01 8.936241255316055287e-01 9.087976860818796077e-01 9.030687493451383663e-02 4.025785149840914734e-01 9.592005611533803711e-01 +5.714058727476275523e-01 7.913573761505965365e-02 9.301773447377043036e-01 4.302822433307075256e-01 4.618892554175407783e-01 1.882471300213742760e-01 6.231472878215863487e-01 2.350437450940777717e-01 8.483410480771292894e-01 8.580803842040533036e-01 4.246398783388435350e-01 5.667321565946502604e-01 7.247417018955526480e-02 5.373984417482219333e-01 8.794242091541510931e-01 9.699025554453030162e-01 8.254197752548814160e-01 7.739723972867470492e-01 6.365819416181199841e-01 3.451230687021222820e-02 1.829102490094791644e-02 9.179618383026147965e-01 4.481667270072077214e-01 4.771270250445739380e-01 1.588469404953456454e-01 3.766332499200618633e-01 5.057026248713025751e-02 9.125900914275182352e-01 8.438133644246305076e-01 3.282972411719701222e-01 6.042003956122835584e-01 7.423456085393266290e-01 1.389012737541106546e-02 3.674754266702850991e-02 2.126646727703802586e-01 3.085666164246750887e-01 4.303440338750976757e-01 1.749037978865556342e-01 2.177699993322510519e-01 6.675614739991906355e-01 1.926533336347433512e-01 8.032010572660308600e-01 4.611412981769049679e-01 9.907201268457492827e-01 8.973785930837320235e-01 6.286342392657409128e-01 8.111266245859546364e-01 1.154230969025437092e-01 8.382880466301794176e-01 1.053753927827069115e-01 9.921712862234919328e-01 9.041662667920956631e-01 3.626267376021269362e-01 2.262225368932846425e-02 8.669003741626111204e-01 7.597054897704164089e-01 4.700318514995387442e-01 4.338185014241978665e-01 1.205425463362067573e-01 2.413879270602589111e-01 5.483334840461459025e-01 2.042653841254596925e-01 5.452588940366013270e-01 3.164646091706100339e-01 1.878958248945691301e-01 2.188622304737641855e-01 2.970982599823450698e-01 5.952148400199362976e-01 9.614251220149501176e-01 5.446813400697393392e-01 5.900748097930779146e-01 2.653062526715309621e-01 5.459933097767216692e-01 3.174185404661935550e-01 1.412133354129242457e-01 1.487441669790685594e-01 3.953776242211952674e-01 5.274261039692862418e-01 1.756132307607755072e-01 4.481942852746899630e-01 6.390660088765629521e-01 2.860380430081067571e-01 5.866902519902850166e-03 3.026687645174785946e-02 1.952533570196290924e-01 2.154769096186736066e-01 8.920573593276575064e-01 5.644513191915436767e-01 5.551464696654353492e-01 4.378199413349500579e-01 8.685737643974280608e-01 7.493934764293597173e-02 9.556749726352036234e-01 6.386433482536227890e-01 8.714694524097754691e-02 1.722786161701279628e-01 6.526867532768643176e-01 8.950304705281527662e-01 6.158198776753203152e-01 9.587176904005377809e-01 +7.705718397401561948e-01 3.165816092999733655e-01 4.334200859975760878e-01 8.639807015515663657e-01 5.576514209532534849e-03 2.456745447057938625e-01 1.664686313299922338e-01 9.637084729617834133e-01 1.083448720752323569e-01 1.865218070380464388e-01 3.730358890475884426e-01 5.015351872138350542e-01 7.420710795841709562e-01 4.919420674769692248e-01 3.426558201886464872e-02 8.669984854934246199e-01 2.204243734202966376e-01 4.109792246853891662e-01 4.361732572946559472e-01 6.819306998053020763e-02 9.986304248057148447e-01 4.119289455392274313e-01 8.533050041845835487e-01 3.416914861912183632e-01 6.522191951039880697e-01 4.162803668786793088e-01 9.051674379917418189e-02 4.552378661306888397e-02 2.122677193466918633e-01 7.461518531655018105e-01 4.654688019259497489e-01 7.877564083548750373e-01 4.518328005682387127e-01 7.173857464237374248e-01 6.940056370290903498e-02 2.804574410412373764e-01 6.095681113112718652e-01 3.680596478602831123e-01 1.814569150719304025e-01 6.505055517979729807e-01 2.759585245701871026e-01 1.429501104786028431e-01 7.813891153083207808e-02 8.925314279991185540e-01 6.692056941902108091e-01 1.915141341107173822e-01 5.750233129581091562e-01 2.051961006251528108e-01 3.849013692629975614e-01 9.503788222043518807e-01 7.690419386411734282e-01 9.978147530014782607e-01 1.719584162437415298e-01 4.890758882401113894e-01 7.195660736040896399e-01 2.485818040997200828e-01 9.706486601870933928e-01 5.182604282071262558e-01 8.082072245463804983e-01 4.889961284821118248e-01 8.042893959057633158e-01 3.200685313413229593e-01 8.983245016887355661e-01 2.811495336955205371e-01 3.986095833814048417e-01 8.607229214132059436e-01 4.827620119717191960e-01 6.715610252037491623e-01 9.330824374137768329e-01 7.537710530085762750e-01 9.840804224010484269e-01 2.319352541177217564e-01 9.569114943157627229e-01 5.821928104654411351e-01 6.700479524814679788e-01 5.663434680086896211e-01 8.851091082101365526e-01 6.800562815862243315e-01 3.578475213752868589e-01 2.900164669281133367e-01 8.379170683569914235e-02 9.929972839740475177e-02 5.946248553621906741e-01 1.991332889320840405e-01 8.115065723822508792e-01 2.023388190440008616e-01 4.056545651129230823e-01 2.966825350250481552e-01 7.457176343507545546e-01 9.856015771246517954e-01 2.264338016147812160e-01 8.366528670045663141e-01 6.116829813603242849e-01 2.605933184296719274e-01 5.765962146558850643e-01 5.064075092266390188e-01 5.499615769589756287e-01 9.240234698632640020e-01 7.169900155229913530e-02 3.544181364560751168e-01 +8.154844535553099627e-01 4.797965609394789777e-01 7.476703385713100447e-01 9.086708404761600910e-01 3.191752505450355937e-01 7.611128630021511965e-01 6.246790343299296611e-01 1.942001426217137006e-01 2.789860414631386565e-01 3.236359785042408621e-02 3.178191288741717413e-01 8.372264298357038337e-01 8.872692914664047636e-01 9.589758852077276963e-01 3.123722260380168425e-01 8.980164015338999439e-01 7.260784140459818348e-01 6.567013512265649222e-01 1.028743505926521529e-01 6.821705410750319443e-01 6.889838995316139858e-01 5.587525493094736007e-02 6.921487028366646310e-01 3.616312929861494885e-01 1.673758008792780583e-01 6.626504595920326146e-01 9.125680913222075086e-01 1.424077784972291871e-01 6.508496429060767197e-01 6.615417385775157477e-01 9.654167310675311198e-01 5.536662974550183858e-01 7.092622144968085962e-03 6.694595400455760625e-01 1.828533619119211417e-01 3.421514408394116247e-01 1.242580151818144518e-01 9.888774797458224075e-01 9.777955172739735135e-01 4.271370765628749178e-01 1.211608384809655936e-01 1.580132417172936954e-01 3.242705395708289640e-01 3.268994391754735940e-01 5.213767653645562383e-03 4.475169480357120699e-01 9.593245219293577986e-01 6.994304536782350867e-01 7.063863152769014331e-01 8.381620829497931080e-01 2.760441799736219615e-01 3.755200946645842475e-01 3.627729621737311172e-01 9.518310606719182498e-01 3.577273025276901386e-01 3.991159901003488164e-01 4.187060513068554535e-01 7.422605403637314581e-01 6.697944269780702342e-01 6.020599837037767799e-01 1.571185850817550245e-01 7.519860911185742847e-01 6.635775704496444938e-01 9.487848173531471252e-01 7.900030232338028924e-01 4.143783957270819052e-01 5.618429740858444932e-01 3.737804619062014000e-01 6.179941187802344693e-01 6.553638605616040058e-01 1.009709416658691739e-01 4.935037098582963910e-01 5.485489972455533936e-01 1.024147956480448984e-01 1.195764707555347917e-01 4.910516327810896531e-01 3.551185778630389089e-01 3.857601645798814927e-01 2.074975219600547760e-01 2.084038664460790002e-01 5.268616653491025037e-01 6.948014877618717833e-01 6.179744044618615817e-01 7.063658085955483168e-01 7.925757227686872630e-01 6.199016959584816577e-01 1.163676037434490107e-01 7.425752264755586252e-01 5.403115665133301215e-01 2.546191951391015840e-01 6.961300925345208501e-01 4.003013072125547467e-01 5.906120962720950995e-02 5.879915846330325824e-01 1.213602408288709800e-01 3.801780679842765576e-01 1.731477742402802722e-01 4.624568816669496485e-01 3.304453744619206823e-01 8.810445876116090869e-02 +5.140190515373614932e-01 1.419225260054487459e-01 7.777845802285945354e-01 3.327562899409282071e-01 8.916875699762913943e-01 7.212852862736146564e-01 5.727327199433507321e-01 5.897820225918504189e-01 7.318614954542906892e-01 7.393985144455500480e-01 4.531340740296823100e-01 9.903061584426188224e-01 4.213350938331624773e-01 4.542342471963995987e-01 9.788786426453045530e-01 1.881707000343846303e-02 8.005433413647761176e-01 1.523502822273363755e-01 5.630164732287495921e-01 5.946603842470724599e-01 1.225547698678740582e-01 1.531136594724622491e-01 8.157973612638946825e-02 2.752046015644330490e-01 6.809045821946161370e-01 6.455289724528190387e-01 3.830356726830793646e-01 4.446144649678575034e-01 4.969038423960672191e-01 5.497873820641221432e-01 9.471879627821714331e-01 5.933046675329255448e-01 4.099233758501530378e-02 5.790409810134594659e-01 9.546095885251496549e-01 2.608616052375664074e-01 6.910160339170060562e-01 1.293709850476291168e-01 6.407264616302255078e-03 6.186037089828009261e-01 5.537861302543241049e-01 3.527421038298221845e-01 8.033232052121624944e-01 8.128114152830284711e-01 8.319982582278713235e-01 5.939566376046836460e-01 2.291090283499520597e-01 5.438101817725821130e-01 6.881146379117278888e-01 2.421968586304659166e-01 5.874047918543783275e-01 6.210102709484541794e-01 7.041387566450251212e-01 6.959223476278774134e-01 9.133877300988062498e-01 9.230647706207778525e-01 6.856884219815310155e-01 6.997988808693775820e-01 6.177944932528769417e-01 5.512902545683161515e-01 5.818280341729102911e-01 6.538267999985679646e-01 6.946673485935980219e-01 4.817938258357623571e-02 9.352008817207906333e-01 4.774162142215661042e-01 5.768063588692976529e-01 4.589648891483899540e-02 7.998946815651652997e-01 4.434260476954369201e-01 9.850053510925722566e-01 6.648626681529369309e-01 4.606293826856903140e-01 3.309042418210563774e-01 1.438901922508034614e-01 7.986559119276418484e-01 7.037818421334554042e-01 3.605119534240813772e-01 3.785959549258922641e-01 9.562491516841659100e-01 4.997955143590974147e-01 1.029540300938682762e-01 1.819017177001992502e-01 3.665425750262368831e-01 1.688063588370778412e-01 7.030735208313992901e-01 8.922375654244527610e-01 1.055706412056253152e-01 2.664739907746691561e-01 9.906029568647586325e-01 6.043845090140997911e-03 3.495786295043534775e-01 5.989441999519146131e-01 6.776147193866479679e-01 7.012991789852640601e-01 1.825838783477321536e-01 7.612293578749116385e-01 1.564769891240175292e-01 2.762157292905387251e-01 7.641900040015234818e-01 +4.746013333880729768e-01 7.609202966712714788e-01 2.537820854162747830e-01 1.709362234877408460e-01 1.886635378734374813e-01 2.439567014093724229e-02 7.640304718272151741e-01 3.483216170435471382e-01 7.744289278738043514e-01 4.190437573644867353e-01 5.319091476394965934e-02 8.580130976087452233e-01 6.259446446786639529e-01 8.793213970773006150e-01 2.441023074890465994e-01 7.753405549489799098e-01 8.760187573193888300e-01 5.946480724009295393e-02 2.873093046571124631e-01 8.710837851946537924e-01 9.103181731924696596e-01 6.534637257615111272e-01 4.128420398577182793e-01 4.905858108576378607e-01 6.178275806701372108e-02 6.368043900016381320e-01 2.865296941219959148e-01 6.371773028539067241e-01 4.924322796636745325e-01 1.709313290387282080e-01 1.856892551689268700e-01 9.592782603102242289e-01 5.402593764193130976e-02 7.287312244390512506e-01 5.679467572000697073e-01 6.255587794305905724e-02 3.069660218141317953e-01 1.089960430557104232e-01 5.550748245336984965e-01 2.555948886689661803e-01 4.140925514039996980e-01 1.180376445052062628e-01 8.832322629884041820e-01 7.784546946701487169e-02 3.177678935473182698e-01 6.681804863429485764e-02 7.047099396645268854e-01 4.133897376851528582e-01 5.600656990480865627e-01 3.883995683475501837e-01 4.459430113152932362e-01 4.214077227574740681e-01 4.763369230200156235e-01 2.701480661168440545e-01 4.296286564389811824e-01 9.601402258758658936e-01 6.326999441846863359e-01 2.442086919688498670e-01 8.407708423957936938e-01 3.626867985638081437e-01 3.641441713291436733e-01 7.932397565989488530e-01 8.902073520619256941e-01 1.929173010337000838e-01 7.309376779324568973e-01 7.305852858337777977e-01 6.510197444582447313e-01 9.512661608643838695e-01 8.461467164366111016e-01 9.245490147941206605e-01 2.658844813385705663e-01 9.538758859344749208e-01 8.215517204998477041e-01 8.217795540390903097e-01 7.569662091300560780e-01 6.262685322871274218e-01 5.597770510574888725e-01 8.155720175123675197e-01 8.545688745180864965e-01 8.986051518529034610e-01 2.477911506572628708e-01 8.462580108996445860e-01 6.065941220995090255e-01 6.500490804973033665e-01 1.120463882674053169e-01 9.299049132942927010e-02 1.388364074229719858e-02 5.901199124540731367e-01 2.795110110544174464e-02 1.644097083463245124e-01 5.341029647603202646e-01 5.276816677181681570e-01 5.439849107754858304e-01 5.371677986392331405e-02 4.515163125788429488e-01 5.036243367087100964e-01 5.721818679625961801e-01 5.271368612400184617e-03 7.720961020546839304e-01 9.015383457479009266e-01 +8.301526916287945701e-01 8.704609696144033348e-01 2.955689129581380303e-01 1.762209253489944727e-01 2.698172933050072553e-01 1.138095349991521399e-01 4.092588531860634760e-01 8.202978121681584467e-01 2.822241377079557356e-01 6.117376205659387223e-01 7.169923068016897938e-01 9.310256256264415331e-02 3.989664052931106708e-01 1.651874953308862803e-02 7.890202597932294282e-02 9.068686774810821305e-01 5.203866694486933842e-01 4.297748572844445336e-01 5.208786995443430712e-01 2.163224881365530816e-01 7.274307306357226111e-01 1.675784956180090823e-01 5.969822786565782691e-01 8.959750832846602453e-02 1.253794151891943764e-01 5.352628522116801291e-01 2.562706125890066300e-01 6.030433202137867044e-01 8.330717547440393833e-01 9.603613683422040914e-02 7.569714244468559450e-01 3.184801677796517128e-01 1.667069341164499896e-01 3.132470247801235619e-01 6.417752836394801097e-01 6.433909425912354152e-02 4.056860213146201710e-01 3.166772891331335327e-01 9.574059746098845247e-01 1.492907964460536974e-01 8.311513764927496162e-01 6.652928354977717396e-01 2.396804722185036374e-01 5.812361618600220270e-01 9.724228681350225445e-01 2.853983236378453414e-01 5.337719354896472979e-01 6.779446197712412081e-01 5.485102006140557540e-01 9.010109155962182648e-01 5.724439967467525037e-01 5.965540527411405947e-01 1.598667990086183321e-01 1.363934512727023041e-01 5.327536522697270405e-01 4.123866715061276222e-01 4.617251396918636841e-01 6.935944951381239898e-01 4.300337419593377453e-01 1.892407993760835128e-01 1.666936825594794724e-01 4.625634184864588772e-01 4.805197636774838355e-02 7.003542850133466224e-01 2.130226006716084974e-03 8.678863343041013367e-01 4.874478520451258623e-01 7.043560228741558848e-01 6.317719270475393722e-01 5.372392256296196766e-01 2.982649812986511995e-01 1.272558612133412037e-01 2.467337555730741983e-01 6.546893200021091097e-01 6.291921159383098150e-01 8.505920470407707379e-01 4.046520490181828578e-01 3.875732096593392795e-01 8.551517214319142024e-01 4.152602284179877090e-01 9.587779137989138611e-01 6.977437468944928112e-01 3.240620775541913634e-02 4.025873770391376061e-01 5.485549335619134270e-01 7.146066156157020455e-01 3.012702534568838519e-01 3.526414480395153594e-01 3.309707144485515284e-01 4.315687014460974913e-01 6.641934530697197747e-01 2.172886798352815507e-01 4.807480925564590057e-01 5.006795397998469177e-01 5.818100901154411586e-01 2.107716091585690732e-01 6.606606051140029301e-01 9.317629042790995797e-01 9.840326342340242061e-01 5.752000964817773898e-01 +9.843444595454536872e-01 1.339523968066913540e-02 6.082172659959028671e-03 7.828244785439336662e-01 5.069653703872761819e-01 2.804896494365415327e-01 2.112385836660957139e-02 6.016479440778699228e-02 7.457477935084961818e-01 3.445503949245375397e-01 4.063494277166557200e-01 8.630275274433116817e-01 5.948396018456146850e-01 1.400867933474212457e-01 6.997522422654076646e-01 5.766519767930851081e-01 5.419976500582250889e-01 7.474121304089603735e-01 2.951600193008566686e-01 7.980170422334191827e-01 1.829036799578199757e-01 6.317636496261300749e-01 2.812612231140887431e-02 5.464747656105657381e-01 3.909873503320924204e-01 4.940850205957293406e-01 8.157850130814222611e-01 5.111092739445756150e-01 9.336823640685747439e-01 7.157105167170837445e-01 7.778989455994214097e-01 1.398722535910470466e-01 5.642653936300449091e-01 3.218717164845980028e-01 9.717427501967056402e-01 3.665791984428700134e-01 3.874321311211759156e-02 9.437600858738082188e-02 5.679526822961932231e-01 5.141385991358327079e-01 7.497840799582222715e-02 5.736515309094968318e-01 1.928132849879083954e-01 6.924244068001785823e-01 1.748389677952593146e-01 4.469577663506929532e-01 1.738527450963387455e-01 7.195287763517190793e-01 8.861150811892871682e-01 1.058443750714600506e-01 1.941789362229970894e-01 9.188374820700584422e-02 7.706736301449305104e-01 6.718642548609364828e-01 5.981029087121966237e-01 4.832880127232569434e-01 3.073688779938709148e-01 5.156312334804930009e-01 1.777418420119527553e-01 8.885462205165685079e-01 4.486254681289014723e-02 1.345398129556140132e-01 7.467627984379916484e-01 4.384565546058830643e-01 7.217750080760946263e-01 3.949550352625393890e-01 4.307950907642028593e-01 6.087680934849041270e-01 3.294516167246774874e-01 1.316682090209408962e-01 1.824857738754404046e-01 5.332379826483617524e-01 3.567136182864261151e-02 1.976220743086236631e-01 5.849349042822560296e-01 1.133174406357483344e-01 7.711522754393199675e-01 8.557306786807005183e-01 3.038353471344266143e-01 4.422747047768413875e-01 2.537160404215925702e-01 2.372714099723788328e-01 5.906462765375103396e-01 4.849909323133470007e-01 2.692576210504484813e-01 4.540849506602829821e-01 9.664935719107857759e-01 2.044371576459835804e-01 4.505417469690352616e-01 7.110722322201217249e-01 3.051357995214963870e-01 8.978937034341526457e-01 6.090501112506481185e-01 6.595415779178889215e-01 6.565426836745864581e-01 6.565608489824376059e-01 2.679102664248229626e-01 3.819533138204529443e-01 6.609794961162380744e-01 2.289558446859882856e-01 +9.274935298374649140e-01 1.174096651033715855e-01 3.030761852629033637e-01 1.605508209527917174e-01 9.601854834873225775e-01 4.341959513718630648e-01 6.320768160802121560e-01 4.213429090614078110e-01 3.695553969042019160e-01 5.965457437116089556e-01 3.520335041155040479e-01 7.702703502247409961e-01 8.571112772962534709e-01 7.904077282532658844e-01 2.247339318352784554e-01 6.823720204503556097e-01 5.883435710582129996e-02 6.786037033312407596e-01 9.721137137641507886e-01 2.042576970668320557e-01 8.394085754806240862e-01 7.433082729552867862e-01 4.072614159870893147e-01 7.451483066617257123e-01 1.699472962789440045e-01 1.753052015584344314e-01 2.255269204788400428e-01 7.794755643807432799e-01 8.407732260470973662e-01 9.301182862857163558e-01 3.701995309382508648e-01 4.481909027604019657e-01 1.261889085033987001e-01 5.600591735875248833e-01 8.244692493969552061e-01 8.969188061645969601e-01 4.802217973423368313e-01 3.556164122713412201e-02 3.393317823164623270e-01 2.491242957582864292e-01 9.863253789366602797e-01 5.585415885291432625e-01 3.702350606362231344e-01 6.766101432620400535e-01 6.999259389475386284e-01 6.676108316872160220e-01 7.870681827507105544e-01 8.746765411259082024e-01 9.125268371282718727e-01 6.638849997061806452e-01 3.253268113800632522e-01 7.968625619248901337e-01 7.584122525443606211e-01 9.028886850768532701e-01 5.381622293189292083e-02 8.097562873320752752e-01 7.092942088208666895e-01 9.915538877968065323e-01 4.319294903327922652e-01 4.307127933969153721e-01 2.768507739641907772e-01 8.076253078288621046e-01 2.569233696442670967e-01 7.595893829724666979e-01 5.768081727897018673e-01 2.537536777625452045e-01 8.874419624636734616e-01 5.091705681832693342e-01 4.811826624992353585e-01 2.794462461940371290e-01 3.846927898276129021e-01 5.129562951959991679e-01 8.515004062224775794e-01 7.103144978683579858e-01 9.526388607201888847e-01 2.367905569592337889e-01 9.137336039323161740e-01 5.722969943101696710e-02 2.019723935481291255e-01 3.098764675203513619e-02 1.121146613918624357e-01 9.937693067724532314e-01 8.476717958861412772e-02 2.059652110343795917e-01 2.139791918759540446e-01 9.137860316709250919e-01 9.530862653366889425e-03 2.027843281683039400e-03 2.506229951837134484e-01 6.244523528392044165e-01 5.523937894075592325e-01 3.712168074031840792e-01 4.218847794299319665e-01 4.827576239387890711e-01 5.244634168840578425e-01 5.182241092381567604e-01 3.308639956263292881e-03 9.370528021570383448e-01 4.694554875029453012e-01 4.950447554541728135e-01 +1.525818111800841814e-01 4.708012184002630107e-02 3.899035965341954846e-01 3.928304521031263929e-01 5.602286661727436945e-01 9.738256658043862313e-01 9.404465779766183475e-01 5.750862754958349088e-01 9.547546956257608741e-01 2.750275291553152535e-01 1.682773435862793265e-01 5.865928471016079726e-04 8.543378154943809255e-01 3.547649971465383079e-01 5.058056647397523031e-01 9.116332486700751137e-02 7.534666421106954726e-01 3.082429494433007733e-01 4.527145111847344916e-01 5.456680635225539255e-01 2.504131242494785914e-01 2.509240770568589296e-01 3.949236999582302898e-01 8.782959620323271821e-03 2.474641132111736752e-01 8.229417958971670943e-01 3.444225768479134420e-01 4.000027489436257522e-01 4.247741954177396417e-01 2.497745404169693373e-02 4.325768602588443423e-01 7.336592463477830117e-01 7.667663267650381975e-02 4.179022553581047683e-01 8.745172741480690126e-01 9.417705509525042817e-02 2.807522782799587446e-01 8.212710101351362590e-01 2.211181944001613386e-01 4.319929503523877168e-01 1.858636923768219873e-02 6.737037795085246694e-01 7.997187114913413275e-01 2.976552505976116647e-01 3.272347030789168887e-01 5.550935453236346406e-01 9.224109746648162522e-01 3.192827922106745708e-01 3.500098324549234530e-01 7.821988386980260888e-01 4.478417135239194380e-01 1.580956175222456572e-01 5.300807813550156844e-01 5.806154798468634581e-01 9.456842911054151868e-01 7.688127895655872956e-01 8.456527833650537840e-01 1.784229089865225770e-01 8.114517450321339087e-01 8.062506298824222428e-01 2.113482500442499523e-01 2.629226789210241666e-01 6.478686221690072022e-01 6.006672861605766300e-02 7.013679843242253131e-01 8.784753961212666828e-01 3.487138165323044880e-02 4.928426758517070461e-01 5.976224683315064512e-01 7.629063997052759616e-01 2.761721278953045422e-01 7.240740503283805696e-01 6.131065729985127888e-01 1.630885615792579957e-01 8.473783868551159060e-01 8.347614542399306448e-02 8.137265626844719657e-01 8.512508664918938539e-01 2.777097816703766320e-01 1.729154355214796990e-01 2.203382750835449766e-01 6.134780912629795857e-01 3.524352564238901753e-01 5.370314860129862256e-01 8.013986113284543578e-02 2.555842138998117852e-01 6.553915758947851389e-01 9.679125599178584061e-01 2.549566319678178150e-01 4.008180804370896633e-01 9.145789951670967310e-01 2.787926039163850511e-01 8.599455912576436933e-02 9.637558000691170967e-02 8.274101203974880692e-01 1.803747268179315411e-01 2.175735407836230095e-01 7.825994939720237742e-01 7.928519890958951599e-02 8.707949373106749213e-01 +6.398420210047787160e-01 5.739624494012524059e-01 3.359672805578653998e-01 1.130399363175038641e-02 3.349439685346782269e-01 2.315484030880912147e-01 4.575228302577399875e-01 1.149494135594463229e-01 2.888244352925943836e-01 3.625470995156252485e-01 3.795973190611611203e-01 6.567047810450010736e-01 1.484039742710284715e-01 9.273251916560719676e-01 4.334256728976307871e-01 6.734771102219323513e-01 9.125080197222198430e-01 4.974393931097168542e-01 8.301481563280355136e-01 4.526450714147856047e-01 2.414236092573898151e-01 8.070129698367667359e-02 7.260400697427102923e-01 1.396509691839398215e-02 2.496450588391967429e-01 4.335741205447194435e-01 3.089314419194891803e-01 9.543503534526003307e-01 5.457977547458532364e-01 3.139663643587058406e-01 5.034762326753475792e-01 4.756788330475764104e-01 6.849334942793482428e-01 3.880666613022351052e-01 6.483446580176778218e-01 5.217503801099343530e-01 5.371145824070304720e-01 3.121260159429154468e-01 8.314121854062171968e-01 4.538695969561833410e-01 8.598896961203845724e-01 9.961993522734106099e-01 8.865717795946430613e-01 7.828987966783660379e-01 3.412415531643435695e-01 7.421170530151157685e-01 4.484104178639959359e-01 6.793217012099640462e-01 3.756179958191659951e-01 7.821287098222597933e-01 6.227726265188193722e-02 8.552983413221663112e-01 4.824668768009222619e-01 2.241531065858231031e-01 4.939536577599041856e-01 5.129566641128722182e-01 1.057984177672518511e-01 9.541452507300716146e-01 3.396646181755047511e-01 7.452588103611947901e-01 5.315559265659929311e-01 5.493475179850665358e-01 5.214824278139198466e-01 5.150075718147916204e-01 1.196075368500321146e-01 9.035665331176232495e-01 7.522653903639873185e-01 6.638708679914825384e-01 5.584174553800479446e-01 5.015819402508836511e-01 5.507698483308445248e-01 5.978677577011723976e-01 8.450418028759657529e-01 3.266677322748618995e-01 1.321610045897971819e-01 2.394354042746985600e-01 2.723972163557076831e-01 5.523301747352814539e-01 5.518043850608547185e-01 5.283968096837132755e-02 8.192733312104071297e-01 2.277106024970321219e-02 1.414998099027269252e-01 6.517281615256080851e-01 1.811694734825117781e-01 9.472370614713256920e-01 5.454497319021770485e-01 1.364119913158231556e-01 8.446142008509562871e-01 7.671725984742419069e-01 2.461161648406858804e-01 1.421724627107351369e-01 6.290652581179481118e-01 7.094144689448004248e-01 4.419656923472803367e-02 6.614741876652251440e-01 8.712193265403500586e-02 4.734931280852430202e-01 5.382037050480286133e-01 1.396459758005891283e-01 +9.709329844415439670e-01 8.998575745276288229e-01 9.151313462895852568e-01 6.920489275523904471e-01 2.892231405199537919e-01 6.750679746268205550e-01 5.515642485826798280e-01 1.065253097812824956e-01 2.957026803465776510e-01 8.937347659632134400e-01 9.800016515925590310e-01 7.745900896182087436e-01 1.570977683146633774e-01 1.482028765821026273e-01 2.111147779712029271e-01 9.683759902485811200e-01 6.550951580826911425e-01 8.728324682592377703e-01 5.044803166579884257e-01 8.285704754811143991e-01 1.693574499337324735e-02 6.032669995180495182e-02 1.687026879086964692e-01 7.701554026145973619e-01 1.429888016593102718e-01 5.881172815379975827e-02 9.704206919487038396e-01 4.450807650730836951e-01 1.597445784258376689e-01 9.849229394397314152e-01 4.220083573536804744e-01 9.357693600374825671e-01 2.313199262338369033e-01 4.556443403861323294e-01 2.590791012828855822e-01 8.438664994487065085e-01 5.519045677502344427e-01 4.702170125676508050e-01 6.814723205638187897e-01 7.418295483665861001e-01 3.684921032028853904e-01 1.501895844844561845e-01 4.214513377519605308e-01 8.600279963652578408e-01 6.625616611189292238e-01 5.200151456470966105e-01 7.881072743086801058e-01 2.771703241081423519e-01 9.034135930616548071e-01 5.848441705791300738e-01 8.341698181274771473e-01 1.966638677318299777e-01 7.059747894371543042e-01 7.013854316067694716e-01 1.828430942760242983e-01 4.745548949934464966e-01 6.306422394641082452e-01 7.760751707194470939e-01 9.813187212598396547e-01 2.293595795266353266e-01 7.749261876107090830e-01 2.384106107787011819e-01 9.721209688979495223e-01 2.715569353686980714e-01 2.915573577694993146e-01 3.579601509630966349e-01 3.085697512342830962e-01 4.070219981627976047e-01 1.989632411372218579e-01 7.330003339460906542e-01 5.397259604481572381e-01 6.931009942216573849e-01 1.385457419653816080e-01 1.140339999976658358e-01 3.980752590866034613e-01 9.471822621683767540e-01 5.476643721405823895e-01 6.824131903515884279e-02 5.844099130744569992e-01 2.346881692012994236e-01 9.436439228519653000e-01 4.855518260479008141e-02 8.157036123302675579e-01 1.169761256455048581e-01 5.532962903488753970e-01 1.100965596251435308e-01 9.789490602992410029e-01 8.433487462016989733e-01 1.272410782852178013e-01 2.885715258680641160e-01 7.990943955388217779e-01 1.565305358979097727e-01 9.160846960406943129e-02 8.521842244411678147e-01 4.474243106736998099e-01 3.843945818845087015e-01 4.710645906071458944e-01 2.398348154123419729e-01 6.435351435258193087e-01 7.656897921129046658e-01 +4.894328120406804539e-01 7.881019629214267574e-01 6.974585354155089512e-01 2.023858939857701156e-01 1.660984914264745926e-01 4.854517801734643534e-01 2.789848572630315715e-01 2.311636522410289718e-01 9.821076233980715608e-01 1.220641257408076052e-01 2.614036146663852866e-01 7.657560715165320220e-01 3.968360577545695378e-01 4.566023622802184434e-02 1.049701948619241598e-02 9.281162949127452766e-01 4.490137965769909201e-01 2.095846458383606725e-01 9.195504656719085679e-01 9.683515436855471004e-01 9.800174878114910060e-01 5.517610861380117804e-01 6.711570559348770670e-01 5.125258050287277989e-01 2.105581493613526423e-01 8.281813206544574868e-01 4.964783994807770995e-01 7.284974208756571645e-01 1.320629592816270348e-01 6.652194518096135045e-01 9.430156297917950958e-01 7.477263137894260003e-01 2.054087806450300979e-01 4.248209124837907247e-01 7.657518666018259257e-02 1.031614100713345028e-01 4.122242287567021712e-01 4.919658859336810686e-01 3.752650167259050651e-01 4.175771429986683270e-01 6.131376293448997927e-01 5.463797405837259591e-01 3.119918548921774004e-01 6.331762507678504459e-01 5.484632429281035559e-01 6.815448032785871302e-01 8.065695507425107991e-02 8.720129122297424207e-01 8.318188557125294480e-03 2.199323537180564170e-02 8.933872719887463454e-01 1.953120287872067706e-02 2.478721941404590234e-01 5.994061179859005994e-01 6.588362611693047155e-01 6.332808851020984564e-01 3.823849348043323326e-01 5.111091324899629251e-01 7.034808459110406531e-01 4.347681568463539481e-01 4.316973576672314961e-01 9.620411080123215664e-01 6.247837467655984467e-01 8.196961678222113301e-01 5.574601810887074294e-01 8.800635018469276094e-01 8.772255241161972528e-01 5.075275933138404527e-01 8.022583187266906224e-01 2.320670802521890286e-01 1.165626629103270195e-01 4.623759662685936744e-01 7.938327000737943617e-02 7.986374689793115378e-01 6.728842751465858862e-01 8.133909095059230765e-01 1.202639390769081329e-01 1.052937257108800262e-01 8.717600467040409473e-02 2.163819956545051104e-01 6.596483385763984852e-01 1.202843170392309258e-02 1.538789195854695091e-01 3.120247727263308901e-01 3.408168327248596308e-01 3.241861797851740556e-01 3.637074533655986208e-01 1.533669345890729119e-01 4.455921334699539660e-01 5.619140093874478437e-01 1.881731359879111887e-01 9.416670800570559052e-01 1.740018593664415247e-01 7.030242331869680505e-01 5.922055553954849172e-01 9.326211623391688077e-01 6.608322881013140027e-01 7.009721551241574478e-01 1.079126054675583202e-01 6.158176671761947940e-01 +5.185079639625639336e-01 9.613742991518259284e-01 5.555312825626229634e-01 2.647628827924735084e-01 6.003697207460141350e-01 5.392112376769145898e-01 6.781186965667050925e-01 9.908971748181496508e-01 4.124155872095397468e-01 9.814941401724619485e-02 2.684237785531295994e-02 1.774652505962848181e-01 1.707589529595294753e-01 4.640932098465534450e-01 2.882179883914587348e-01 7.276822905806898945e-01 6.145789546745269449e-01 1.100959863917608805e-01 6.798859723042820491e-01 9.096984032948918220e-01 3.971368455178179158e-01 2.959494950971321980e-01 3.742088799298171065e-02 1.960739526210202310e-01 7.536102695342027369e-01 6.680915510628401277e-01 4.136507204312135366e-01 3.613996339406737590e-01 3.605422038261204554e-01 7.098503555159476619e-01 8.093719147087541366e-01 6.344097009128880638e-01 3.990082448083617228e-01 2.805918009906902544e-01 7.078488167363675698e-01 9.969917259866583059e-01 9.442054998992396309e-01 1.329075240769165278e-01 6.810681350588387861e-02 8.503491437913293094e-01 8.347117439165431252e-01 2.381858201903953587e-01 7.884260706938626129e-01 7.109907917419661105e-01 6.390916681983604963e-02 6.174365227062991179e-01 5.085733343630816083e-01 1.716846139694149231e-01 9.065664924270055991e-02 5.625330757196970177e-01 3.539663480209681579e-01 8.937139525947165319e-01 3.981380511900556307e-02 7.403597927449541150e-01 3.803872284089604427e-02 6.729519695709765825e-01 5.306080908840085097e-01 2.091237680402112664e-01 5.902903662907804661e-01 2.094778612095482551e-01 7.323447855684165342e-01 3.644574495843493356e-01 2.006215478057034041e-01 3.737617545555030896e-01 5.253471759602216240e-01 4.287889547869583318e-01 7.086098806190446187e-01 4.510792335515292351e-01 6.383187180169215269e-01 8.779355722397681472e-01 4.221338898667141848e-01 6.375840144651815367e-01 8.683057298299173832e-01 6.093730356952498095e-01 9.297141161056151626e-01 7.770838342807246946e-01 6.549661287008456956e-02 2.835060738158660110e-01 4.474138867374952699e-01 8.530336387421445510e-01 3.160209657891883683e-01 8.301538680518486535e-01 6.646903097549101691e-01 7.187130118106234145e-01 1.651862041735395747e-01 9.578252676762609719e-01 6.490273812885494209e-02 9.777273484666341163e-01 8.930729829254262508e-01 9.851054752118463265e-01 4.094323402286751401e-01 1.139176240124337713e-01 7.612865863899589414e-01 2.266379302491570158e-01 6.998882496157835531e-01 9.945043379099228753e-01 7.111578056749194854e-01 7.806190603886183910e-01 3.410170920712443099e-01 9.446084168886822452e-01 +5.015172758330755931e-01 5.569527971282052237e-01 1.122406928736449094e-01 8.960352822124777461e-01 6.049568585854003810e-02 1.202196001338627918e-01 1.870314295763603196e-01 9.017590029396971296e-01 3.597904628087450485e-01 2.130941062746317671e-01 2.556281834629479111e-01 5.123669364829196438e-01 4.754061129282013409e-01 9.764470380372083369e-01 8.038663983900646848e-01 6.960491266420890666e-01 2.940135977911654264e-01 2.857282759910040326e-03 4.599343225832352999e-02 5.597554495210212977e-01 7.445266674304001908e-01 3.387528030535971180e-01 6.429542922125383031e-01 2.123331785532429627e-01 5.302332654117811739e-01 7.262555377662539557e-01 3.982425859900724507e-01 3.243388301740235402e-01 6.191064123738921898e-01 8.988047781373914580e-01 7.819700328765150088e-01 7.664269102804815992e-01 6.734095355422575757e-03 2.904762329148526945e-01 5.097537644843168625e-01 9.524734606001823423e-01 4.812869576591960463e-01 6.236868013640477493e-01 1.459170943214320726e-01 9.874505139403206844e-01 7.561708982837871407e-01 3.798591332432484924e-01 6.056633451375117438e-01 7.935708170258731764e-01 1.458141583518740569e-01 7.082511296391911237e-01 1.098798009731616343e-02 3.655618484905173160e-01 9.551862303858617009e-01 8.148959351152762487e-02 4.739306219219985294e-02 7.963357515359494876e-01 6.208332695202813944e-01 3.884182264923189409e-01 4.589167647950288531e-01 6.496652974138312775e-01 2.467528128074852889e-01 5.309593064844935206e-01 5.364606369543487574e-01 2.421352989851309756e-01 3.776834556696828660e-02 1.564861233558080267e-01 5.197231021782636740e-01 8.725375120634637494e-01 2.441225493455024820e-01 2.320363366041028330e-01 5.026358683423555185e-01 7.035766000474735771e-01 8.347805591467084563e-01 2.303229841813967393e-01 6.908373419683054850e-01 2.646662377366995056e-01 1.259467197942290007e-01 9.372770922994989595e-01 6.674216272867254940e-01 1.027944489143072238e-01 5.686267290346079806e-01 3.948222804451942958e-01 4.689706944496729868e-01 4.446117700449114807e-02 6.817992275557515081e-01 9.084821829413957106e-01 9.184021015315092518e-01 3.045815734169987632e-01 2.204958624923980537e-03 7.542672057172502553e-01 9.460844786545006269e-01 3.373139094575949848e-02 9.059565314915285494e-01 9.938525461318854504e-01 2.542072661725306437e-01 9.685734112479216229e-02 8.223629541824816203e-01 1.057429056898460118e-01 8.080679390260248063e-01 5.823014244609205914e-01 6.413551528031806725e-01 1.787341975438894170e-01 1.250471413912357388e-01 8.390281297596062782e-01 diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-jaccard-ml.txt b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-jaccard-ml.txt new file mode 100644 index 0000000000000000000000000000000000000000..a7570d8c3fbdf63bb2240c964941d9e48bc2ad3c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-jaccard-ml.txt @@ -0,0 +1 @@ + 6.5714286e-01 6.0563380e-01 6.3235294e-01 7.3972603e-01 6.0294118e-01 7.3611111e-01 6.4179104e-01 7.7631579e-01 6.4000000e-01 6.6197183e-01 6.6666667e-01 7.0000000e-01 6.4285714e-01 7.7464789e-01 7.1621622e-01 6.4285714e-01 6.8571429e-01 6.4383562e-01 6.6666667e-01 6.5384615e-01 6.6216216e-01 6.1971831e-01 6.5333333e-01 6.5277778e-01 6.7123288e-01 6.4383562e-01 6.5000000e-01 6.3513514e-01 6.0000000e-01 6.7123288e-01 6.3513514e-01 7.4324324e-01 5.5714286e-01 7.0512821e-01 6.3888889e-01 6.0000000e-01 5.6338028e-01 6.3157895e-01 6.0810811e-01 6.2337662e-01 6.4000000e-01 6.5789474e-01 6.3157895e-01 5.6962025e-01 7.5294118e-01 7.1250000e-01 6.2162162e-01 6.7500000e-01 7.2727273e-01 6.2337662e-01 6.2337662e-01 6.7948718e-01 6.5853659e-01 6.6250000e-01 6.3380282e-01 7.3417722e-01 6.0869565e-01 7.2000000e-01 7.5949367e-01 6.4556962e-01 6.3013699e-01 5.9420290e-01 6.2857143e-01 7.1794872e-01 7.3972603e-01 6.4864865e-01 6.4864865e-01 6.8918919e-01 6.6666667e-01 7.0512821e-01 6.2500000e-01 6.2318841e-01 6.6197183e-01 6.5277778e-01 6.9135802e-01 6.6216216e-01 6.6666667e-01 6.4285714e-01 6.6216216e-01 6.8115942e-01 6.2500000e-01 6.2500000e-01 7.3684211e-01 6.4473684e-01 7.3417722e-01 7.1052632e-01 6.3888889e-01 7.3417722e-01 6.5432099e-01 6.9230769e-01 7.1428571e-01 6.7567568e-01 6.7532468e-01 6.7605634e-01 6.5789474e-01 5.4285714e-01 6.9736842e-01 6.2337662e-01 6.6233766e-01 6.7605634e-01 7.0270270e-01 6.1842105e-01 6.7567568e-01 6.2318841e-01 6.7605634e-01 6.9333333e-01 7.1428571e-01 6.0000000e-01 6.0000000e-01 6.6197183e-01 6.9230769e-01 6.8000000e-01 7.2000000e-01 6.5384615e-01 6.5753425e-01 6.6197183e-01 7.1232877e-01 6.9333333e-01 7.5000000e-01 7.1052632e-01 6.7567568e-01 6.4285714e-01 6.0273973e-01 5.8571429e-01 6.9512195e-01 6.3013699e-01 6.8918919e-01 7.0270270e-01 6.6666667e-01 6.8571429e-01 6.6666667e-01 6.1111111e-01 7.0666667e-01 6.6666667e-01 6.5333333e-01 6.8674699e-01 7.0731707e-01 6.3636364e-01 6.3750000e-01 6.1643836e-01 6.5432099e-01 5.8441558e-01 5.8666667e-01 4.7297297e-01 5.5263158e-01 6.9736842e-01 6.9333333e-01 6.5789474e-01 5.7575758e-01 6.7532468e-01 7.0886076e-01 6.4383562e-01 5.8666667e-01 6.6233766e-01 7.5000000e-01 6.2500000e-01 7.7027027e-01 6.0563380e-01 6.8000000e-01 5.6716418e-01 6.7948718e-01 6.4864865e-01 6.1971831e-01 7.1428571e-01 6.5753425e-01 6.7567568e-01 6.6197183e-01 7.7108434e-01 6.6216216e-01 7.1232877e-01 6.4000000e-01 7.0886076e-01 6.0563380e-01 6.2337662e-01 6.2666667e-01 7.7922078e-01 7.2972973e-01 7.5342466e-01 5.7971014e-01 7.3333333e-01 7.0886076e-01 6.6216216e-01 6.4102564e-01 5.8904110e-01 7.3076923e-01 6.4102564e-01 7.1250000e-01 6.4473684e-01 5.9154930e-01 5.3424658e-01 diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-minkowski-3.2-ml-iris.txt b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-minkowski-3.2-ml-iris.txt new file mode 100644 index 0000000000000000000000000000000000000000..dc396c8c16032b9657101532f7e08e6aa04b2aea --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-minkowski-3.2-ml-iris.txt @@ -0,0 +1 @@ + 5.0817745e-01 4.4535192e-01 5.6700421e-01 1.2418578e-01 4.8927739e-01 5.0180477e-01 1.4096146e-01 8.1242502e-01 4.1586001e-01 3.2586371e-01 3.2586371e-01 5.2942799e-01 8.6137722e-01 7.7039952e-01 9.7270522e-01 4.5581864e-01 1.0000000e-01 6.3861009e-01 3.0546431e-01 3.7427929e-01 2.5251796e-01 5.6700421e-01 3.8776762e-01 5.2942799e-01 5.0905001e-01 2.5651975e-01 1.2418578e-01 1.2418578e-01 4.5470518e-01 4.5470518e-01 3.2816937e-01 6.0181382e-01 7.3457830e-01 4.1586001e-01 3.2586371e-01 4.0147421e-01 4.1586001e-01 7.6752131e-01 1.2418578e-01 1.4096146e-01 1.2396136e+00 7.1462831e-01 4.1449626e-01 5.3588338e-01 5.2942799e-01 3.2352160e-01 5.2862779e-01 2.5251796e-01 2.0656129e-01 3.5031395e+00 3.2158090e+00 3.6682165e+00 2.7164367e+00 3.3288934e+00 3.1477087e+00 3.4033622e+00 2.0308266e+00 3.3209346e+00 2.5912926e+00 2.3257069e+00 2.8912179e+00 2.7273721e+00 3.3660466e+00 2.2876649e+00 3.1664710e+00 3.1642132e+00 2.7448172e+00 3.2474124e+00 2.5734684e+00 3.5025969e+00 2.6980573e+00 3.5983434e+00 3.3515288e+00 3.0113552e+00 3.1469325e+00 3.5526357e+00 3.7475562e+00 3.1812462e+00 2.1818668e+00 2.4927109e+00 2.3909738e+00 2.5729378e+00 3.7711998e+00 3.1620401e+00 3.1916270e+00 3.4478147e+00 3.1312883e+00 2.7541224e+00 2.6886547e+00 3.0483897e+00 3.2685282e+00 2.6752185e+00 2.0587064e+00 2.8619072e+00 2.8416143e+00 2.8554471e+00 2.9845926e+00 1.7697734e+00 2.7640668e+00 4.7690606e+00 3.8067806e+00 4.6866422e+00 4.2843668e+00 4.5417384e+00 5.4120246e+00 3.2161426e+00 5.0569442e+00 4.5165793e+00 4.9462324e+00 3.8595100e+00 4.0249346e+00 4.2787236e+00 3.7387507e+00 3.9160762e+00 4.0938708e+00 4.2028863e+00 5.5316487e+00 5.7297286e+00 3.6968486e+00 4.5074741e+00 3.6330985e+00 5.5146761e+00 3.6293227e+00 4.4495340e+00 4.7599229e+00 3.5255287e+00 3.6076762e+00 4.3339547e+00 4.5590471e+00 4.8997298e+00 5.2856169e+00 4.3511402e+00 3.7760534e+00 4.2460554e+00 5.0103780e+00 4.3808704e+00 4.1939019e+00 3.5087649e+00 4.2018804e+00 4.4140402e+00 3.9807996e+00 3.8067806e+00 4.6775324e+00 4.5250934e+00 4.0376133e+00 3.7473276e+00 3.9523060e+00 4.1709262e+00 3.7872951e+00 2.5251796e-01 3.0546431e-01 6.0060595e-01 9.5035453e-01 4.4535192e-01 4.0293660e-01 5.0090417e-01 1.4096146e-01 7.6752131e-01 4.1449626e-01 1.2418578e-01 6.2024833e-01 1.1845977e+00 1.4700179e+00 9.4309624e-01 5.0905001e-01 1.0003617e+00 8.0358695e-01 5.8851328e-01 7.0826681e-01 6.6384020e-01 4.3456114e-01 5.6700421e-01 2.0656129e-01 4.2667565e-01 5.2942799e-01 4.4417983e-01 2.8192292e-01 2.1269358e-01 5.7324170e-01 1.1056650e+00 1.2393677e+00 1.4096146e-01 2.5251796e-01 6.8961791e-01 1.4096146e-01 5.0090417e-01 4.1449626e-01 5.0270183e-01 7.3535471e-01 5.0905001e-01 5.7324170e-01 8.5690100e-01 1.2418578e-01 8.0587320e-01 3.2352160e-01 7.3496673e-01 3.0275928e-01 3.5601468e+00 3.2472699e+00 3.7137483e+00 2.6693888e+00 3.3563815e+00 3.1472333e+00 3.4276314e+00 1.9506288e+00 3.3563695e+00 2.5739370e+00 2.1870094e+00 2.9033014e+00 2.6860278e+00 3.3789262e+00 2.2884830e+00 3.2153154e+00 3.1667333e+00 2.7423060e+00 3.2269725e+00 2.5465772e+00 3.5123782e+00 2.7147889e+00 3.6030381e+00 3.3619470e+00 3.0427908e+00 3.1888219e+00 3.5910272e+00 3.7805671e+00 3.1921903e+00 2.1611020e+00 2.4491518e+00 2.3430978e+00 2.5700421e+00 3.7741357e+00 3.1615131e+00 3.2084454e+00 3.4884789e+00 3.1228939e+00 2.7575407e+00 2.6617768e+00 3.0343591e+00 3.2842184e+00 2.6656374e+00 1.9595652e+00 2.8539100e+00 2.8474367e+00 2.8585579e+00 3.0059712e+00 1.6867642e+00 2.7634340e+00 4.7806735e+00 3.8055585e+00 4.7194850e+00 4.2963997e+00 4.5579706e+00 5.4507801e+00 3.1945300e+00 5.0903533e+00 4.5297786e+00 4.9814379e+00 3.8841455e+00 4.0376849e+00 4.3069372e+00 3.7284750e+00 3.9173293e+00 4.1124749e+00 4.2221165e+00 5.5759608e+00 5.7633066e+00 3.6758942e+00 4.5370189e+00 3.6312130e+00 5.5536680e+00 3.6416405e+00 4.4736906e+00 4.7961103e+00 3.5380868e+00 3.6203213e+00 4.3467079e+00 4.5977693e+00 4.9380624e+00 5.3421274e+00 4.3637834e+00 3.7899304e+00 4.2477635e+00 5.0602038e+00 4.3953045e+00 4.2110583e+00 3.5192753e+00 4.2358121e+00 4.4378207e+00 4.0189525e+00 3.8055585e+00 4.7017335e+00 4.5483787e+00 4.0656879e+00 3.7516222e+00 3.9742971e+00 4.1845313e+00 3.7939847e+00 2.1269358e-01 4.4535192e-01 8.9366705e-01 2.1845981e-01 3.4378533e-01 3.7427929e-01 2.5651975e-01 7.7039952e-01 3.2586371e-01 2.1845981e-01 4.2667565e-01 1.2113327e+00 1.3801284e+00 8.7175869e-01 4.4651726e-01 1.0719360e+00 6.5223271e-01 7.3813096e-01 5.7867728e-01 4.4535192e-01 5.2655962e-01 6.0611244e-01 3.8776762e-01 4.0176783e-01 5.3588338e-01 5.0905001e-01 3.0000000e-01 3.0546431e-01 7.1169738e-01 9.4309624e-01 1.1327825e+00 2.5651975e-01 3.0275928e-01 8.1067767e-01 2.5651975e-01 3.2352160e-01 4.2538717e-01 3.7427929e-01 9.0252542e-01 3.0000000e-01 5.1138698e-01 7.7869083e-01 2.1845981e-01 6.6384020e-01 1.2418578e-01 6.9325418e-01 3.0546431e-01 3.7098973e+00 3.3770904e+00 3.8553941e+00 2.7868575e+00 3.4895316e+00 3.2571492e+00 3.5499573e+00 2.0646687e+00 3.4944845e+00 2.6743800e+00 2.3196869e+00 3.0181476e+00 2.8270253e+00 3.4973911e+00 2.3997585e+00 3.3600102e+00 3.2716172e+00 2.8619072e+00 3.3597438e+00 2.6649106e+00 3.6203213e+00 2.8440609e+00 3.7280682e+00 3.4822008e+00 3.1786890e+00 3.3296038e+00 3.7325066e+00 3.9121945e+00 3.3084060e+00 2.2888897e+00 2.5683989e+00 2.4649412e+00 2.6906230e+00 3.8866112e+00 3.2625043e+00 3.3219248e+00 3.6264668e+00 3.2609948e+00 2.8656468e+00 2.7738624e+00 3.1430282e+00 3.4033622e+00 2.7865812e+00 2.0797392e+00 2.9638836e+00 2.9589097e+00 2.9695568e+00 3.1337459e+00 1.7991433e+00 2.8758936e+00 4.8875515e+00 3.9111857e+00 4.8490379e+00 4.4107143e+00 4.6725771e+00 5.5854254e+00 3.2933477e+00 5.2226262e+00 4.6541348e+00 5.1068487e+00 4.0049607e+00 4.1564977e+00 4.4321573e+00 3.8331006e+00 4.0161098e+00 4.2255639e+00 4.3417782e+00 5.7091264e+00 5.8970064e+00 3.7961619e+00 4.6611065e+00 3.7313856e+00 5.6903014e+00 3.7618406e+00 4.5942943e+00 4.9290197e+00 3.6553612e+00 3.7333492e+00 4.4613366e+00 4.7342792e+00 5.0749049e+00 5.4844039e+00 4.4774673e+00 3.9102500e+00 4.3611782e+00 5.2016658e+00 4.5034762e+00 4.3281161e+00 3.6300436e+00 4.3648112e+00 4.5562166e+00 4.1482002e+00 3.9111857e+00 4.8218416e+00 4.6648403e+00 4.1879434e+00 3.8717400e+00 4.0945154e+00 4.2919258e+00 3.9013483e+00 5.6700421e-01 9.9714776e-01 3.0546431e-01 4.4417983e-01 2.5251796e-01 3.0275928e-01 8.8835966e-01 3.2586371e-01 2.1845981e-01 4.4651726e-01 1.3360558e+00 1.5022608e+00 9.9714776e-01 5.6769031e-01 1.1765359e+00 7.6752131e-01 8.1354181e-01 6.9325418e-01 6.2092891e-01 5.4292906e-01 4.5470518e-01 4.0293660e-01 4.5581864e-01 6.4704320e-01 6.2024833e-01 1.4096146e-01 2.0656129e-01 8.1354181e-01 1.0574300e+00 1.2554784e+00 3.0275928e-01 4.4535192e-01 9.2264612e-01 3.0275928e-01 2.5251796e-01 5.2862779e-01 5.0592043e-01 8.0358695e-01 2.5251796e-01 5.6454040e-01 7.9878917e-01 2.1845981e-01 7.6752131e-01 1.2418578e-01 8.1242502e-01 4.1449626e-01 3.5875094e+00 3.2277825e+00 3.7190120e+00 2.6019240e+00 3.3414931e+00 3.0741797e+00 3.3904673e+00 1.8683030e+00 3.3506325e+00 2.4892190e+00 2.1209506e+00 2.8530088e+00 2.6606291e+00 3.3264150e+00 2.2345869e+00 3.2325480e+00 3.0894572e+00 2.6859989e+00 3.1954750e+00 2.4836725e+00 3.4467337e+00 2.6928468e+00 3.5602810e+00 3.3090659e+00 3.0346426e+00 3.1953687e+00 3.5930845e+00 3.7635112e+00 3.1392617e+00 2.1242643e+00 2.3839455e+00 2.2806773e+00 2.5225548e+00 3.7070070e+00 3.0760590e+00 3.1551922e+00 3.4865435e+00 3.1033781e+00 2.6867856e+00 2.5906376e+00 2.9536363e+00 3.2348458e+00 2.6148507e+00 1.8841403e+00 2.7819255e+00 2.7801917e+00 2.7920574e+00 2.9774862e+00 1.6195190e+00 2.7001131e+00 4.7151191e+00 3.7310738e+00 4.6963107e+00 4.2348119e+00 4.5036643e+00 5.4345951e+00 3.1040223e+00 5.0660245e+00 4.4858951e+00 4.9576471e+00 3.8485743e+00 3.9894963e+00 4.2781102e+00 3.6535208e+00 3.8473084e+00 4.0656969e+00 4.1736133e+00 5.5611269e+00 5.7439963e+00 3.6142694e+00 4.5082936e+00 3.5527533e+00 5.5400450e+00 3.5988819e+00 4.4321573e+00 4.7754556e+00 3.4913787e+00 3.5638529e+00 4.2915574e+00 4.5844335e+00 4.9269527e+00 5.3501611e+00 4.3091163e+00 3.7395252e+00 4.1763853e+00 5.0687940e+00 4.3363292e+00 4.1568278e+00 3.4594086e+00 4.2175903e+00 4.4004449e+00 4.0139427e+00 3.7310738e+00 4.6611132e+00 4.5083524e+00 4.0415593e+00 3.7070350e+00 3.9354060e+00 4.1243443e+00 3.7225506e+00 4.8927739e-01 4.1449626e-01 2.0656129e-01 8.1242502e-01 5.0270183e-01 4.0293660e-01 2.8192292e-01 6.0611244e-01 8.2305664e-01 8.2899253e-01 9.3824087e-01 4.5581864e-01 1.4096146e-01 7.1840099e-01 2.1845981e-01 4.5470518e-01 2.1845981e-01 4.9674312e-01 4.2418962e-01 5.1607523e-01 6.0551856e-01 2.8192292e-01 2.1269358e-01 2.4837156e-01 4.5470518e-01 5.1607523e-01 4.2667565e-01 5.0991930e-01 6.8917100e-01 5.0270183e-01 4.1312257e-01 5.0180477e-01 5.0270183e-01 7.4549115e-01 2.1269358e-01 1.4096146e-01 1.3190071e+00 6.4755655e-01 4.1449626e-01 5.1691876e-01 6.0611244e-01 2.5251796e-01 4.9674312e-01 3.0546431e-01 3.0000000e-01 3.5310961e+00 3.2313174e+00 3.6912396e+00 2.7363446e+00 3.3486156e+00 3.1550780e+00 3.4146950e+00 2.0587064e+00 3.3422688e+00 2.6000813e+00 2.3658814e+00 2.9005672e+00 2.7581254e+00 3.3764180e+00 2.2982662e+00 3.1914715e+00 3.1684808e+00 2.7581145e+00 3.2719146e+00 2.5906376e+00 3.5076679e+00 2.7164648e+00 3.6146980e+00 3.3629944e+00 3.0317688e+00 3.1699749e+00 3.5767944e+00 3.7653940e+00 3.1912695e+00 2.2046610e+00 2.5131017e+00 2.4132939e+00 2.5882494e+00 3.7797776e+00 3.1649733e+00 3.1986968e+00 3.4685882e+00 3.1575873e+00 2.7599092e+00 2.7031874e+00 3.0575551e+00 3.2787144e+00 2.6914804e+00 2.0914773e+00 2.8714673e+00 2.8482104e+00 2.8631525e+00 3.0002861e+00 1.8009624e+00 2.7738624e+00 4.7744685e+00 3.8132783e+00 4.7036953e+00 4.2925903e+00 4.5507995e+00 5.4317036e+00 3.2245243e+00 5.0748136e+00 4.5314818e+00 4.9621679e+00 3.8715927e+00 4.0372136e+00 4.2937599e+00 3.7469906e+00 3.9213497e+00 4.1030149e+00 4.2136261e+00 5.5512721e+00 5.7499082e+00 3.7127205e+00 4.5218897e+00 3.6377830e+00 5.5357771e+00 3.6429670e+00 4.4609633e+00 4.7775824e+00 3.5373240e+00 3.6158814e+00 4.3437318e+00 4.5790474e+00 4.9211035e+00 5.3110568e+00 4.3608329e+00 3.7876656e+00 4.2543813e+00 5.0356467e+00 4.3872625e+00 4.2028863e+00 3.5161021e+00 4.2189979e+00 4.4261470e+00 4.0000622e+00 3.8132783e+00 4.6893387e+00 4.5361087e+00 4.0527696e+00 3.7622948e+00 3.9645936e+00 4.1768667e+00 3.7924679e+00 8.6137722e-01 5.7867728e-01 1.2470767e+00 8.6361309e-01 2.8192292e-01 6.9369532e-01 9.8450810e-01 1.2949422e+00 5.7324170e-01 5.3588338e-01 4.0000000e-01 4.8135521e-01 3.0546431e-01 3.2816937e-01 5.0817745e-01 3.4378533e-01 9.4558103e-01 6.2024833e-01 6.9728513e-01 9.2288144e-01 5.6700421e-01 4.3691963e-01 5.4292906e-01 8.7202528e-01 8.9095811e-01 5.0817745e-01 3.6171588e-01 3.8934542e-01 8.6361309e-01 7.9878917e-01 5.0592043e-01 8.6361309e-01 1.1959482e+00 5.4292906e-01 5.6454040e-01 1.6807352e+00 1.1055064e+00 5.0592043e-01 3.2586371e-01 9.7779835e-01 3.2816937e-01 9.4558103e-01 2.8507955e-01 6.6827038e-01 3.1533911e+00 2.8840079e+00 3.3274872e+00 2.5335921e+00 3.0169509e+00 2.8661222e+00 3.0732956e+00 1.9492232e+00 3.0013391e+00 2.3437032e+00 2.3116343e+00 2.5873149e+00 2.5591371e+00 3.0631725e+00 2.0220740e+00 2.8270253e+00 2.8656468e+00 2.4892190e+00 3.0178921e+00 2.3656538e+00 3.1846482e+00 2.4132559e+00 3.3163294e+00 3.0590735e+00 2.6993871e+00 2.8174914e+00 3.2310326e+00 3.4162231e+00 2.8802219e+00 1.9932786e+00 2.3173648e+00 2.2314118e+00 2.3212593e+00 3.4779999e+00 2.8654680e+00 2.8662571e+00 3.1113805e+00 2.8927401e+00 2.4634131e+00 2.4685230e+00 2.7948819e+00 2.9596963e+00 2.4341346e+00 2.0039447e+00 2.6000813e+00 2.5498770e+00 2.5700421e+00 2.6813098e+00 1.7123398e+00 2.4913669e+00 4.4418755e+00 3.5123791e+00 4.3488707e+00 3.9713081e+00 4.2172545e+00 5.0700045e+00 2.9631582e+00 4.7239900e+00 4.2113881e+00 4.5979409e+00 3.5255287e+00 3.7162377e+00 3.9448212e+00 3.4598280e+00 3.6097419e+00 3.7620043e+00 3.8810240e+00 5.1822310e+00 5.3953096e+00 3.4508156e+00 4.1665786e+00 3.3353616e+00 5.1763300e+00 3.3260356e+00 4.1143832e+00 4.4201622e+00 3.2188998e+00 3.2929599e+00 4.0183758e+00 4.2229849e+00 4.5637045e+00 4.9290256e+00 4.0343724e+00 3.4708900e+00 3.9559935e+00 4.6576736e+00 4.0502252e+00 3.8718131e+00 3.1963475e+00 3.8610636e+00 4.0785553e+00 3.6345765e+00 3.5123791e+00 4.3416284e+00 4.1864302e+00 3.7018916e+00 3.4568305e+00 3.6254423e+00 3.8415026e+00 3.4775621e+00 4.0293660e-01 5.0905001e-01 3.8934542e-01 8.1130291e-01 2.5251796e-01 4.2538717e-01 4.8927739e-01 1.2406194e+00 1.3074132e+00 8.5233811e-01 5.0090417e-01 1.1185330e+00 5.6700421e-01 8.1099042e-01 5.3022554e-01 4.1449626e-01 5.3665999e-01 5.0905001e-01 5.0592043e-01 4.1449626e-01 6.0181382e-01 6.0060595e-01 2.5651975e-01 3.4583729e-01 8.0064372e-01 8.1558458e-01 1.0597541e+00 3.8934542e-01 4.2667565e-01 9.0074515e-01 3.8934542e-01 4.1586001e-01 5.0180477e-01 4.0293660e-01 1.1003197e+00 2.5651975e-01 4.5581864e-01 6.6539428e-01 4.1312257e-01 5.7324170e-01 2.0656129e-01 7.1504098e-01 4.0293660e-01 3.6583368e+00 3.3018939e+00 3.7934214e+00 2.7118627e+00 3.4196168e+00 3.1646752e+00 3.4663954e+00 1.9965608e+00 3.4302944e+00 2.5753574e+00 2.2837561e+00 2.9283888e+00 2.7788099e+00 3.4116298e+00 2.3101107e+00 3.3028359e+00 3.1719381e+00 2.7826178e+00 3.2957091e+00 2.5882494e+00 3.5217244e+00 2.7724782e+00 3.6509512e+00 3.3998935e+00 3.1126354e+00 3.2681313e+00 3.6719821e+00 3.8384263e+00 3.2202056e+00 2.2240476e+00 2.4960474e+00 2.3970928e+00 2.6119950e+00 3.7951491e+00 3.1592993e+00 3.2300555e+00 3.5604418e+00 3.2025128e+00 2.7701355e+00 2.6892823e+00 3.0524247e+00 3.3177721e+00 2.7092568e+00 2.0227167e+00 2.8731220e+00 2.8671099e+00 2.8775912e+00 3.0586720e+00 1.7332099e+00 2.7865812e+00 4.7866828e+00 3.8123695e+00 4.7714708e+00 4.3189924e+00 4.5796358e+00 5.5132325e+00 3.1921277e+00 5.1489022e+00 4.5737586e+00 5.0249531e+00 3.9185849e+00 4.0697987e+00 4.3502657e+00 3.7349501e+00 3.9102370e+00 4.1311343e+00 4.2548570e+00 5.6362307e+00 5.8240252e+00 3.7174048e+00 4.5773480e+00 3.6270581e+00 5.6209145e+00 3.6774027e+00 4.5072397e+00 4.8555167e+00 3.5675580e+00 3.6401392e+00 4.3693804e+00 4.6657186e+00 5.0062061e+00 5.4227201e+00 4.3844239e+00 3.8261182e+00 4.2718480e+00 5.1373047e+00 4.4043123e+00 4.2383633e+00 3.5347392e+00 4.2868650e+00 4.4668117e+00 4.0716645e+00 3.8123695e+00 4.7338066e+00 4.5734052e+00 4.1036179e+00 3.7882079e+00 4.0078491e+00 4.1922661e+00 3.8027591e+00 6.8961791e-01 3.0546431e-01 4.4417983e-01 2.0656129e-01 4.1586001e-01 7.6625946e-01 8.9687438e-01 1.0919712e+00 5.7867728e-01 1.5422108e-01 7.3851529e-01 4.0293660e-01 4.1312257e-01 3.2586371e-01 5.7257017e-01 3.2816937e-01 4.1312257e-01 4.0147421e-01 2.0656129e-01 2.0656129e-01 2.0656129e-01 3.2586371e-01 3.2586371e-01 4.1312257e-01 7.0437330e-01 8.5205778e-01 3.0546431e-01 3.2352160e-01 5.0905001e-01 3.0546431e-01 6.5172743e-01 1.0000000e-01 2.1269358e-01 1.1283882e+00 6.1092863e-01 4.0293660e-01 5.0592043e-01 4.1586001e-01 4.0293660e-01 4.1449626e-01 3.7255734e-01 1.2418578e-01 3.4445326e+00 3.1392617e+00 3.6011035e+00 2.6118700e+00 3.2516941e+00 3.0511838e+00 3.3218097e+00 1.9189245e+00 3.2468925e+00 2.4924452e+00 2.2081024e+00 2.8038661e+00 2.6291264e+00 3.2767369e+00 2.1964719e+00 3.1025274e+00 3.0696611e+00 2.6485861e+00 3.1554034e+00 2.4715204e+00 3.4135983e+00 2.6151245e+00 3.5092032e+00 3.2604423e+00 2.9354140e+00 3.0782101e+00 3.4818889e+00 3.6726568e+00 3.0922811e+00 2.0843471e+00 2.3874354e+00 2.2845234e+00 2.4794505e+00 3.6775470e+00 3.0659000e+00 3.1055388e+00 3.3775462e+00 3.0430948e+00 2.6597612e+00 2.5873149e+00 2.9471553e+00 3.1807044e+00 2.5795723e+00 1.9450499e+00 2.7640668e+00 2.7473221e+00 2.7611864e+00 2.9015702e+00 1.6626642e+00 2.6693888e+00 4.6823704e+00 3.7130994e+00 4.6117428e+00 4.1946425e+00 4.4565357e+00 5.3399939e+00 3.1168466e+00 4.9805386e+00 4.4303862e+00 4.8738189e+00 3.7806643e+00 3.9387918e+00 4.2018804e+00 3.6441274e+00 3.8290120e+00 4.0132700e+00 4.1177139e+00 5.4615788e+00 5.6559440e+00 3.5983434e+00 4.4321573e+00 3.5405803e+00 5.4429455e+00 3.5441556e+00 4.3687483e+00 4.6853394e+00 3.4399664e+00 3.5203203e+00 4.2473048e+00 4.4861009e+00 4.8281381e+00 5.2242271e+00 4.2652659e+00 3.6876909e+00 4.1503255e+00 4.9488209e+00 4.2966585e+00 4.1071698e+00 3.4205830e+00 4.1292490e+00 4.3363292e+00 3.9150359e+00 3.7130994e+00 4.5977729e+00 4.4473292e+00 3.9643224e+00 3.6603913e+00 3.8715927e+00 4.0861975e+00 3.6954796e+00 5.0991930e-01 1.1327825e+00 5.7257017e-01 4.0293660e-01 3.0811765e-01 1.5771666e+00 1.7488874e+00 1.2431040e+00 8.1273630e-01 1.4170618e+00 1.0106392e+00 1.0389435e+00 9.3824087e-01 7.3813096e-01 7.5976039e-01 6.6491075e-01 6.0611244e-01 6.9728513e-01 8.8861541e-01 8.5177726e-01 3.8776762e-01 4.2538717e-01 1.0346741e+00 1.2943100e+00 1.5015203e+00 5.0991930e-01 6.2482915e-01 1.1473003e+00 5.0991930e-01 1.2418578e-01 7.6752131e-01 7.4586719e-01 6.0181382e-01 3.0275928e-01 7.7869083e-01 1.0440187e+00 4.0293660e-01 1.0120221e+00 3.2352160e-01 1.0597541e+00 6.4704320e-01 3.7504939e+00 3.3717768e+00 3.8731169e+00 2.7062054e+00 3.4865562e+00 3.1921903e+00 3.5262546e+00 1.9522524e+00 3.5018009e+00 2.5914913e+00 2.1818668e+00 2.9807120e+00 2.7874290e+00 3.4557351e+00 2.3604042e+00 3.3915488e+00 3.2027420e+00 2.8150728e+00 3.3206640e+00 2.6018930e+00 3.5642457e+00 2.8360166e+00 3.6902583e+00 3.4394878e+00 3.1847477e+00 3.3503379e+00 3.7461474e+00 3.9068076e+00 3.2666666e+00 2.2590074e+00 2.4950353e+00 2.3935209e+00 2.6534332e+00 3.8259590e+00 3.1834936e+00 3.2834077e+00 3.6377049e+00 3.2390016e+00 2.8060305e+00 2.7012392e+00 3.0647279e+00 3.3658240e+00 2.7423171e+00 1.9645331e+00 2.8984764e+00 2.9033203e+00 2.9139413e+00 3.1189900e+00 1.7118795e+00 2.8228127e+00 4.8290847e+00 3.8416142e+00 4.8350745e+00 4.3569606e+00 4.6261788e+00 5.5774554e+00 3.1958228e+00 5.2067803e+00 4.6153241e+00 5.0947934e+00 3.9803199e+00 4.1159553e+00 4.4131159e+00 3.7587872e+00 3.9513472e+00 4.1881498e+00 4.3024754e+00 5.7071195e+00 5.8839539e+00 3.7280682e+00 4.6419531e+00 3.6578722e+00 5.6843788e+00 3.7276068e+00 4.5625120e+00 4.9179194e+00 3.6182608e+00 3.6866535e+00 4.4136707e+00 4.7307689e+00 5.0723886e+00 5.5062533e+00 4.4301849e+00 3.8690719e+00 4.2943891e+00 5.2192815e+00 4.4536259e+00 4.2828634e+00 3.5797958e+00 4.3570079e+00 4.5278761e+00 4.1542558e+00 3.8416142e+00 4.7899951e+00 4.6341170e+00 4.1740602e+00 3.8316735e+00 4.0656969e+00 4.2413113e+00 3.8376713e+00 6.8961791e-01 3.0811765e-01 1.4096146e-01 6.4755655e-01 1.1229906e+00 1.3835747e+00 8.6361309e-01 4.2667565e-01 9.4009473e-01 7.0784540e-01 5.3665999e-01 6.2482915e-01 6.3977563e-01 4.3691963e-01 4.4651726e-01 1.5422108e-01 3.7598397e-01 4.4535192e-01 3.7598397e-01 2.1845981e-01 1.4096146e-01 5.5419992e-01 1.0065841e+00 1.1474460e+00 0.0000000e+00 3.0811765e-01 6.5223271e-01 0.0000000e+00 5.0991930e-01 3.2586371e-01 4.2667565e-01 8.3172002e-01 5.0991930e-01 5.6769031e-01 7.5082357e-01 2.1845981e-01 7.0479928e-01 3.0811765e-01 6.4755655e-01 2.1845981e-01 3.4865562e+00 3.1726595e+00 3.6377960e+00 2.5987470e+00 3.2814045e+00 3.0627375e+00 3.3515846e+00 1.8841865e+00 3.2769379e+00 2.5038079e+00 2.1311468e+00 2.8311678e+00 2.6104387e+00 3.2962520e+00 2.2214438e+00 3.1433122e+00 3.0878634e+00 2.6552472e+00 3.1570103e+00 2.4668912e+00 3.4394878e+00 2.6411293e+00 3.5233648e+00 3.2747247e+00 2.9659871e+00 3.1154783e+00 3.5134741e+00 3.7059620e+00 3.1148696e+00 2.0851901e+00 2.3731428e+00 2.2655571e+00 2.4927109e+00 3.6920087e+00 3.0823446e+00 3.1337459e+00 3.4135200e+00 3.0481703e+00 2.6780487e+00 2.5874301e+00 2.9489507e+00 3.2027420e+00 2.5873149e+00 1.8973383e+00 2.7738355e+00 2.7632614e+00 2.7778954e+00 2.9269923e+00 1.6390769e+00 2.6848587e+00 4.7106706e+00 3.7313856e+00 4.6446321e+00 4.2142736e+00 4.4836580e+00 5.3716885e+00 3.1250284e+00 5.0074019e+00 4.4485220e+00 4.9128219e+00 3.8150636e+00 3.9624529e+00 4.2358121e+00 3.6602286e+00 3.8605980e+00 4.0488387e+00 4.1418643e+00 5.4970002e+00 5.6855224e+00 3.5964347e+00 4.4685630e+00 3.5634461e+00 5.4730406e+00 3.5693950e+00 4.3989089e+00 4.7150659e+00 3.4668130e+00 3.5464993e+00 4.2723380e+00 4.5155386e+00 4.8594290e+00 5.2647079e+00 4.2921213e+00 3.7064459e+00 4.1581964e+00 4.9913682e+00 4.3286007e+00 4.1303097e+00 3.4468286e+00 4.1669742e+00 4.3729308e+00 3.9624170e+00 3.7313856e+00 4.6297577e+00 4.4844827e+00 4.0056359e+00 3.6817961e+00 3.9035218e+00 4.1179678e+00 3.7164366e+00 6.2024833e-01 8.1304731e-01 1.1868139e+00 4.8036801e-01 7.1799256e-01 2.8192292e-01 3.2816937e-01 3.2816937e-01 3.0546431e-01 3.2352160e-01 3.2352160e-01 8.5205778e-01 4.8927739e-01 6.6384020e-01 7.3496673e-01 4.5581864e-01 2.4837156e-01 3.2586371e-01 7.6752131e-01 7.4549115e-01 3.2352160e-01 4.1449626e-01 5.0180477e-01 6.8961791e-01 5.8851328e-01 2.5251796e-01 6.8961791e-01 1.0919712e+00 3.7255734e-01 4.2667565e-01 1.4993782e+00 1.0344911e+00 5.0592043e-01 4.5581864e-01 8.1304731e-01 3.0546431e-01 8.5205778e-01 1.0000000e-01 4.9766035e-01 3.3472053e+00 3.0922811e+00 3.5254266e+00 2.6661987e+00 3.2094276e+00 3.0570957e+00 3.2869053e+00 2.0190980e+00 3.1913594e+00 2.5206151e+00 2.3403819e+00 2.7928582e+00 2.6680945e+00 3.2615924e+00 2.2070201e+00 3.0233425e+00 3.0716969e+00 2.6575076e+00 3.1694367e+00 2.5088543e+00 3.4030318e+00 2.5954147e+00 3.4988409e+00 3.2483608e+00 2.8891737e+00 3.0123702e+00 3.4182420e+00 3.6203759e+00 3.0811775e+00 2.1190324e+00 2.4416796e+00 2.3440712e+00 2.4897570e+00 3.6753309e+00 3.0715435e+00 3.0851463e+00 3.3123070e+00 3.0424689e+00 2.6625505e+00 2.6241824e+00 2.9689697e+00 3.1616811e+00 2.5961850e+00 2.0559262e+00 2.7803619e+00 2.7462372e+00 2.7639489e+00 2.8736288e+00 1.7674365e+00 2.6773131e+00 4.6660957e+00 3.7173526e+00 4.5567672e+00 4.1782968e+00 4.4326194e+00 5.2720689e+00 3.1469325e+00 4.9232255e+00 4.4057732e+00 4.8164157e+00 3.7433882e+00 3.9194796e+00 4.1567419e+00 3.6582432e+00 3.8303544e+00 3.9861488e+00 4.0892044e+00 5.3882212e+00 5.5946413e+00 3.6180819e+00 4.3839191e+00 3.5469476e+00 5.3734444e+00 3.5262672e+00 4.3306501e+00 4.6237863e+00 3.4237160e+00 3.5051302e+00 4.2288456e+00 4.4201622e+00 4.7609637e+00 5.1280035e+00 4.2469785e+00 3.6684143e+00 4.1480002e+00 4.8602572e+00 4.2765700e+00 4.0824098e+00 3.4092877e+00 4.0737132e+00 4.2991233e+00 3.8524190e+00 3.7173526e+00 4.5590471e+00 4.4107160e+00 3.9202843e+00 3.6509512e+00 3.8388884e+00 4.0680120e+00 3.6894983e+00 4.1449626e-01 6.6539428e-01 1.0717668e+00 1.1847335e+00 7.0776547e-01 3.2816937e-01 9.2095040e-01 4.4651726e-01 6.0060595e-01 3.8934542e-01 6.1092863e-01 3.7598397e-01 3.0000000e-01 4.1312257e-01 2.4837156e-01 4.0293660e-01 4.1312257e-01 2.0656129e-01 3.0000000e-01 6.0611244e-01 7.3535471e-01 9.3801395e-01 3.0811765e-01 4.2538717e-01 7.1462831e-01 3.0811765e-01 5.2574978e-01 3.0275928e-01 3.2816937e-01 1.1107977e+00 4.5470518e-01 4.1449626e-01 4.8927739e-01 4.1449626e-01 4.4417983e-01 2.8192292e-01 5.2942799e-01 2.5251796e-01 3.4297053e+00 3.0906838e+00 3.5704156e+00 2.5301680e+00 3.2062204e+00 2.9663489e+00 3.2615889e+00 1.8330979e+00 3.2074600e+00 2.4030878e+00 2.1292724e+00 2.7344480e+00 2.5716369e+00 3.2053511e+00 2.1242643e+00 3.0798277e+00 2.9831836e+00 2.5729378e+00 3.0964590e+00 2.3917863e+00 3.3353616e+00 2.5635110e+00 3.4441347e+00 3.1882407e+00 2.8938821e+00 3.0477086e+00 3.4484194e+00 3.6265826e+00 3.0209783e+00 2.0203134e+00 2.3063579e+00 2.2046610e+00 2.4100833e+00 3.5972040e+00 2.9748436e+00 3.0349291e+00 3.3414931e+00 2.9918962e+00 2.5764694e+00 2.5038051e+00 2.8573838e+00 3.1113597e+00 2.5079404e+00 1.8623849e+00 2.6799601e+00 2.6656374e+00 2.6804452e+00 2.8458006e+00 1.5870088e+00 2.5906376e+00 4.6056614e+00 3.6293396e+00 4.5625120e+00 4.1184849e+00 4.3862724e+00 5.2957861e+00 3.0253131e+00 4.9300368e+00 4.3656957e+00 4.8256905e+00 3.7228356e+00 3.8717400e+00 4.1487889e+00 3.5605424e+00 3.7509165e+00 3.9489970e+00 4.0502806e+00 5.4193574e+00 5.6096505e+00 3.5201263e+00 4.3797165e+00 3.4555095e+00 5.4004015e+00 3.4805320e+00 4.3069452e+00 4.6373516e+00 3.3738930e+00 3.4478147e+00 4.1762321e+00 4.4428877e+00 4.7870294e+00 5.1982218e+00 4.1948678e+00 3.6180819e+00 4.0668114e+00 4.9227056e+00 4.2245318e+00 4.0358897e+00 3.3459883e+00 4.0835979e+00 4.2783731e+00 3.8797354e+00 3.6293396e+00 4.5370189e+00 4.3879553e+00 3.9155334e+00 3.5955337e+00 3.8113970e+00 4.0131848e+00 3.6132595e+00 5.2862779e-01 1.2431040e+00 1.5013525e+00 9.7779835e-01 5.3588338e-01 1.0669582e+00 8.1385214e-01 6.6432544e-01 7.2823007e-01 6.5223271e-01 5.1138698e-01 5.6700421e-01 2.5251796e-01 4.6472023e-01 5.6769031e-01 4.9766035e-01 2.5651975e-01 2.1269358e-01 6.6432544e-01 1.1134787e+00 1.2632199e+00 1.4096146e-01 2.8507955e-01 7.6787403e-01 1.4096146e-01 4.0293660e-01 4.4651726e-01 5.1691876e-01 7.1840099e-01 4.1586001e-01 6.3108414e-01 8.7021234e-01 2.0000000e-01 8.1385214e-01 2.5251796e-01 7.6787403e-01 3.2586371e-01 3.6025735e+00 3.2810515e+00 3.7511944e+00 2.6894009e+00 3.3904673e+00 3.1636869e+00 3.4574937e+00 1.9666356e+00 3.3893691e+00 2.5954173e+00 2.1997395e+00 2.9322283e+00 2.7092568e+00 3.4012145e+00 2.3186758e+00 3.2568914e+00 3.1861493e+00 2.7595194e+00 3.2561045e+00 2.5646808e+00 3.5381764e+00 2.7476411e+00 3.6278993e+00 3.3809159e+00 3.0768226e+00 3.2277675e+00 3.6265617e+00 3.8150532e+00 3.2176230e+00 2.1864840e+00 2.4668912e+00 2.3596992e+00 2.5949561e+00 3.7935487e+00 3.1789378e+00 3.2360886e+00 3.5252258e+00 3.1522058e+00 2.7777040e+00 2.6819136e+00 3.0473722e+00 3.3079290e+00 2.6886547e+00 1.9757309e+00 2.8726212e+00 2.8654680e+00 2.8788483e+00 3.0349462e+00 1.7160413e+00 2.7852734e+00 4.8087107e+00 3.8282466e+00 4.7531334e+00 4.3176393e+00 4.5857287e+00 5.4831923e+00 3.2147850e+00 5.1185883e+00 4.5544260e+00 5.0194259e+00 3.9185849e+00 4.0655452e+00 4.3416283e+00 3.7535680e+00 3.9509795e+00 4.1478442e+00 4.2472736e+00 5.6096505e+00 5.7957776e+00 3.6945993e+00 4.5734622e+00 3.6568202e+00 5.5854254e+00 3.6720840e+00 4.5038991e+00 4.8262859e+00 3.5684917e+00 3.6474985e+00 4.3740189e+00 4.6282931e+00 4.9713928e+00 5.3806679e+00 4.3928114e+00 3.8121990e+00 4.2612863e+00 5.1032991e+00 4.4267055e+00 4.2347444e+00 3.5464871e+00 4.2738510e+00 4.4745238e+00 4.0663411e+00 3.8282466e+00 4.7338066e+00 4.5852690e+00 4.1075310e+00 3.7823897e+00 4.0070636e+00 4.2156933e+00 3.8157950e+00 1.6177449e+00 1.7454671e+00 1.2604558e+00 8.6361309e-01 1.4955532e+00 1.0118409e+00 1.1594648e+00 9.6204649e-01 6.2081167e-01 9.1750357e-01 8.7504951e-01 7.6752131e-01 8.0660588e-01 9.5965467e-01 9.2859317e-01 5.7324170e-01 6.2205176e-01 1.1313840e+00 1.2653669e+00 1.4930627e+00 6.4755655e-01 7.0479928e-01 1.2236003e+00 6.4755655e-01 2.1269358e-01 8.5105559e-01 7.7360126e-01 7.1169738e-01 2.5651975e-01 8.7229670e-01 1.1327578e+00 5.3588338e-01 1.0269295e+00 3.8934542e-01 1.1042097e+00 7.2823007e-01 4.0317004e+00 3.6659830e+00 4.1618561e+00 3.0123702e+00 3.7804276e+00 3.4970843e+00 3.8244351e+00 2.2591077e+00 3.7930789e+00 2.8953397e+00 2.4889124e+00 3.2809188e+00 3.0866488e+00 3.7578933e+00 2.6595288e+00 3.6754272e+00 3.5073435e+00 3.1173742e+00 3.6212723e+00 2.9065572e+00 3.8667462e+00 3.1302383e+00 3.9918403e+00 3.7416229e+00 3.4760444e+00 3.6375992e+00 4.0358101e+00 4.2016915e+00 3.5683934e+00 2.5569968e+00 2.8007817e+00 2.6989368e+00 2.9539253e+00 4.1306024e+00 3.4882801e+00 3.5831257e+00 3.9280671e+00 3.5362697e+00 3.1099883e+00 3.0065416e+00 3.3706887e+00 3.6672620e+00 3.0442126e+00 2.2719663e+00 3.2032390e+00 3.2071637e+00 3.2176230e+00 3.4155491e+00 2.0139971e+00 3.1260028e+00 5.1310217e+00 4.1456639e+00 5.1323742e+00 4.6609614e+00 4.9284761e+00 5.8739676e+00 3.4984873e+00 5.5048216e+00 4.9175276e+00 5.3898806e+00 4.2781762e+00 4.4176533e+00 4.7107211e+00 4.0621414e+00 4.2494597e+00 4.4865569e+00 4.6045396e+00 6.0012333e+00 6.1816086e+00 4.0339598e+00 4.9390284e+00 3.9601358e+00 5.9803696e+00 4.0277694e+00 4.8626276e+00 5.2147981e+00 3.9185849e+00 3.9887029e+00 4.7161140e+00 5.0257341e+00 5.3673499e+00 5.7939320e+00 4.7320534e+00 4.1713411e+00 4.5995433e+00 5.5085511e+00 4.7536729e+00 4.5857356e+00 3.8819510e+00 4.6519178e+00 4.8256399e+00 4.4430890e+00 4.1456639e+00 5.0898961e+00 4.9316646e+00 4.4680158e+00 4.1325542e+00 4.3648035e+00 4.5412859e+00 4.1418557e+00 4.5581864e-01 4.1586001e-01 7.7074935e-01 5.0991930e-01 7.1840099e-01 7.2486328e-01 7.3145860e-01 1.2122249e+00 9.2112464e-01 1.1384810e+00 1.1451403e+00 9.1163729e-01 7.0386584e-01 7.4855857e-01 1.2220203e+00 1.1947245e+00 6.6827038e-01 6.2081167e-01 3.4378533e-01 1.1229906e+00 9.9348625e-01 5.2942799e-01 1.1229906e+00 1.5344133e+00 8.2275389e-01 8.5233811e-01 1.8985661e+00 1.4692412e+00 8.9653332e-01 8.7420176e-01 1.2431040e+00 7.3813096e-01 1.2951131e+00 5.5419992e-01 9.3801395e-01 3.5789198e+00 3.3663244e+00 3.7753619e+00 3.0049442e+00 3.4909841e+00 3.3695525e+00 3.5654259e+00 2.3989172e+00 3.4663502e+00 2.8427326e+00 2.7185849e+00 3.0894572e+00 3.0108764e+00 3.5617386e+00 2.5173832e+00 3.2758681e+00 3.3732554e+00 2.9816791e+00 3.4895316e+00 2.8451507e+00 3.6905956e+00 2.8989400e+00 3.8036776e+00 3.5549103e+00 3.1734856e+00 3.2772927e+00 3.6834126e+00 3.8868430e+00 3.3809159e+00 2.4588872e+00 2.7850016e+00 2.6918796e+00 2.8113773e+00 3.9804187e+00 3.3742776e+00 3.3692592e+00 3.5726491e+00 3.3587234e+00 2.9691171e+00 2.9539253e+00 3.2926883e+00 3.4584304e+00 2.9217347e+00 2.4321061e+00 3.0988783e+00 3.0546600e+00 3.0736357e+00 3.1699903e+00 2.1306832e+00 2.9913743e+00 4.9420128e+00 4.0177712e+00 4.8123874e+00 4.4703485e+00 4.7113827e+00 5.5147622e+00 3.4715574e+00 5.1811127e+00 4.6944291e+00 5.0587041e+00 4.0117533e+00 4.2085851e+00 4.4199792e+00 3.9616570e+00 4.1103933e+00 4.2537610e+00 4.3721243e+00 5.6218420e+00 5.8419148e+00 3.9412893e+00 4.6390186e+00 3.8408636e+00 5.6159291e+00 3.8175051e+00 4.5984929e+00 4.8771654e+00 3.7143727e+00 3.7943375e+00 4.5141564e+00 4.6734732e+00 5.0086627e+00 5.3396700e+00 4.5298770e+00 3.9647930e+00 4.4561969e+00 5.0778756e+00 4.5477422e+00 4.3671210e+00 3.6996802e+00 4.3269400e+00 4.5602465e+00 4.0901232e+00 4.0177712e+00 4.8233796e+00 4.6689006e+00 4.1757336e+00 3.9466531e+00 4.1130674e+00 4.3408596e+00 3.9840684e+00 5.3588338e-01 9.7098574e-01 6.0611244e-01 7.4549115e-01 1.0101422e+00 8.1242502e-01 1.2342162e+00 1.1486378e+00 1.1959482e+00 1.4468211e+00 1.0906388e+00 9.4287188e-01 1.0346741e+00 1.3793330e+00 1.4148192e+00 1.0065841e+00 5.5419992e-01 2.8507955e-01 1.3835747e+00 1.2681309e+00 9.0679720e-01 1.3835747e+00 1.6801917e+00 1.0588560e+00 1.0122141e+00 2.2040881e+00 1.5564198e+00 1.0122141e+00 7.7553525e-01 1.4987155e+00 7.4893123e-01 1.4320120e+00 7.3813096e-01 1.1765359e+00 3.3186105e+00 3.0934278e+00 3.5115632e+00 2.9015832e+00 3.2557855e+00 3.1381850e+00 3.2787144e+00 2.3983798e+00 3.2261964e+00 2.6655261e+00 2.7738368e+00 2.8425716e+00 2.9377092e+00 3.3097860e+00 2.3365894e+00 3.0236933e+00 3.1147370e+00 2.7988444e+00 3.3431646e+00 2.7201960e+00 3.4033622e+00 2.7009102e+00 3.5863979e+00 3.3171611e+00 2.9439491e+00 3.0327979e+00 3.4475678e+00 3.6195561e+00 3.1337459e+00 2.3758157e+00 2.6957302e+00 2.6219409e+00 2.6429556e+00 3.7305206e+00 3.1152653e+00 3.0762634e+00 3.3088561e+00 3.2115055e+00 2.7318540e+00 2.8101506e+00 3.0967820e+00 3.1998457e+00 2.7619926e+00 2.4596921e+00 2.9002737e+00 2.8148869e+00 2.8449691e+00 2.9378173e+00 2.1723936e+00 2.7843048e+00 4.6358686e+00 3.7621042e+00 4.5316360e+00 4.1928583e+00 4.4221843e+00 5.2364242e+00 3.2682245e+00 4.9072991e+00 4.4428425e+00 4.7561724e+00 3.7219581e+00 3.9498605e+00 4.1390009e+00 3.7275066e+00 3.8377652e+00 3.9569614e+00 4.0917968e+00 5.3289557e+00 5.5738695e+00 3.7540308e+00 4.3457024e+00 3.5797958e+00 5.3465693e+00 3.5720882e+00 4.3012547e+00 4.5936468e+00 3.4616111e+00 3.5205889e+00 4.2389017e+00 4.4031390e+00 4.7432976e+00 5.0569442e+00 4.2531342e+00 3.7092459e+00 4.2038056e+00 4.8064634e+00 4.2402361e+00 4.0806404e+00 3.4276314e+00 4.0438546e+00 4.2676463e+00 3.8085992e+00 3.7621042e+00 4.5272919e+00 4.3667579e+00 3.8946701e+00 3.7163265e+00 3.8338395e+00 4.0342445e+00 3.7061759e+00 4.4651726e-01 4.4651726e-01 3.2816937e-01 5.7257017e-01 3.4378533e-01 8.2384013e-01 6.6432544e-01 8.0758367e-01 9.3048953e-01 5.8851328e-01 4.3691963e-01 5.1691876e-01 8.8062848e-01 8.9917007e-01 5.0817745e-01 3.6171588e-01 3.2816937e-01 8.6361309e-01 7.3851529e-01 4.1449626e-01 8.6361309e-01 1.1845977e+00 5.4292906e-01 4.9766035e-01 1.6754036e+00 1.0919712e+00 5.3309112e-01 6.2024833e-01 9.7098574e-01 3.8934542e-01 9.3824087e-01 2.8507955e-01 6.5223271e-01 3.5185448e+00 3.2633258e+00 3.6996953e+00 2.8710255e+00 3.3892942e+00 3.2497279e+00 3.4561374e+00 2.2371784e+00 3.3772302e+00 2.7023432e+00 2.5704711e+00 2.9638836e+00 2.8904978e+00 3.4483274e+00 2.3826791e+00 3.1954061e+00 3.2493673e+00 2.8645447e+00 3.3669805e+00 2.7184506e+00 3.5654259e+00 2.7812639e+00 3.6908684e+00 3.4451701e+00 3.0736340e+00 3.1881331e+00 3.6017790e+00 3.7914024e+00 3.2604423e+00 2.3308454e+00 2.6548674e+00 2.5630676e+00 2.6859989e+00 3.8615219e+00 3.2492317e+00 3.2498302e+00 3.4856775e+00 3.2460061e+00 2.8456767e+00 2.8220742e+00 3.1709561e+00 3.3452644e+00 2.7965957e+00 2.2780262e+00 2.9733693e+00 2.9362769e+00 2.9511072e+00 3.0600825e+00 1.9688013e+00 2.8661222e+00 4.8176767e+00 3.8889176e+00 4.7230291e+00 4.3578295e+00 4.5962942e+00 5.4442203e+00 3.3242177e+00 5.1039076e+00 4.5914416e+00 4.9653393e+00 3.8994399e+00 4.0931001e+00 4.3174903e+00 3.8262108e+00 3.9673816e+00 4.1302370e+00 4.2654212e+00 5.5551457e+00 5.7673205e+00 3.8189943e+00 4.5366342e+00 3.7059360e+00 5.5500825e+00 3.6985459e+00 4.4934936e+00 4.7995387e+00 3.5922369e+00 3.6724425e+00 4.3963259e+00 4.6010378e+00 4.9364818e+00 5.2936070e+00 4.4094664e+00 3.8558772e+00 4.3453589e+00 5.0159331e+00 4.4225169e+00 4.2579435e+00 3.5745624e+00 4.2301614e+00 4.4459076e+00 3.9875954e+00 3.8889176e+00 4.7169919e+00 4.5531173e+00 4.0619315e+00 3.8238093e+00 3.9999729e+00 4.2141826e+00 3.8611742e+00 6.3808075e-01 3.0275928e-01 3.7598397e-01 2.1269358e-01 5.6769031e-01 3.4378533e-01 5.3022554e-01 5.0991930e-01 2.1845981e-01 1.4096146e-01 1.4096146e-01 4.5581864e-01 4.5581864e-01 3.0811765e-01 6.0670504e-01 7.3496673e-01 4.2667565e-01 3.2816937e-01 4.0293660e-01 4.2667565e-01 7.6787403e-01 1.4096146e-01 1.2418578e-01 1.2394907e+00 7.1504098e-01 3.2586371e-01 5.2942799e-01 5.2862779e-01 3.2586371e-01 5.2942799e-01 2.5651975e-01 2.1269358e-01 3.4944845e+00 3.2032390e+00 3.6588207e+00 2.7040077e+00 3.3172489e+00 3.1387381e+00 3.3902207e+00 2.0195610e+00 3.3129652e+00 2.5744164e+00 2.3173648e+00 2.8753045e+00 2.7215057e+00 3.3565935e+00 2.2694598e+00 3.1556501e+00 3.1511848e+00 2.7390328e+00 3.2351115e+00 2.5646808e+00 3.4858646e+00 2.6854398e+00 3.5885398e+00 3.3452644e+00 3.0014619e+00 3.1359624e+00 3.5442447e+00 3.7351231e+00 3.1683717e+00 2.1722580e+00 2.4832809e+00 2.3831271e+00 2.5617005e+00 3.7607269e+00 3.1489919e+00 3.1764760e+00 3.4370400e+00 3.1222134e+00 2.7420671e+00 2.6759392e+00 3.0406669e+00 3.2584404e+00 2.6649106e+00 2.0477765e+00 2.8508344e+00 2.8325946e+00 2.8443188e+00 2.9745020e+00 1.7495699e+00 2.7521074e+00 4.7498176e+00 3.7908064e+00 4.6736601e+00 4.2736523e+00 4.5261084e+00 5.4025762e+00 3.1986968e+00 5.0495127e+00 4.5070435e+00 4.9284820e+00 3.8418637e+00 4.0108142e+00 4.2628455e+00 3.7198158e+00 3.8891307e+00 4.0719001e+00 4.1917075e+00 5.5215376e+00 5.7192826e+00 3.6876129e+00 4.4897240e+00 3.6129201e+00 5.5066558e+00 3.6138577e+00 4.4349731e+00 4.7514299e+00 3.5090368e+00 3.5920050e+00 4.3185209e+00 4.5521574e+00 4.8905855e+00 5.2768100e+00 4.3339547e+00 3.7672401e+00 4.2403934e+00 4.9963306e+00 4.3598652e+00 4.1826701e+00 3.4920978e+00 4.1853524e+00 4.3933832e+00 3.9574195e+00 3.7908064e+00 4.6611791e+00 4.5034762e+00 4.0149574e+00 3.7307866e+00 3.9355645e+00 4.1498459e+00 3.7732223e+00 6.0551856e-01 4.4535192e-01 6.0670504e-01 1.1765359e+00 6.9325418e-01 9.2288144e-01 9.3637892e-01 7.3535471e-01 5.3665999e-01 5.8914551e-01 1.0576043e+00 1.0106392e+00 4.5581864e-01 5.4292906e-01 4.5581864e-01 9.4009473e-01 8.6290690e-01 4.5581864e-01 9.4009473e-01 1.3885563e+00 6.5223271e-01 7.4740267e-01 1.7041201e+00 1.3421549e+00 7.2823007e-01 6.0611244e-01 1.0653845e+00 6.0121055e-01 1.1521791e+00 4.1586001e-01 7.7919451e-01 3.1037808e+00 2.8727295e+00 3.2914954e+00 2.5112138e+00 2.9950832e+00 2.8632951e+00 3.0711321e+00 1.9332545e+00 2.9709745e+00 2.3448578e+00 2.2688022e+00 2.5914913e+00 2.5183808e+00 3.0579528e+00 2.0217308e+00 2.7906520e+00 2.8719896e+00 2.4738237e+00 2.9926636e+00 2.3440712e+00 3.1967616e+00 2.3980102e+00 3.3005331e+00 3.0483897e+00 2.6752185e+00 2.7868575e+00 3.1931777e+00 3.3968373e+00 2.8794765e+00 1.9640287e+00 2.2899742e+00 2.1990648e+00 2.3082381e+00 3.4762640e+00 2.8726212e+00 2.8752807e+00 3.0841055e+00 2.8599559e+00 2.4658566e+00 2.4543822e+00 2.7852734e+00 2.9558536e+00 2.4184985e+00 1.9730073e+00 2.5941661e+00 2.5490308e+00 2.5692104e+00 2.6676432e+00 1.6855044e+00 2.4875166e+00 4.4549901e+00 3.5192877e+00 4.3283747e+00 3.9701062e+00 4.2192020e+00 5.0364062e+00 2.9740218e+00 4.6944291e+00 4.1953299e+00 4.5849301e+00 3.5249823e+00 3.7114178e+00 3.9340128e+00 3.4663826e+00 3.6308220e+00 3.7719045e+00 3.8752244e+00 5.1489675e+00 5.3620178e+00 3.4363773e+00 4.1584261e+00 3.3485848e+00 5.1375979e+00 3.3209346e+00 4.1101337e+00 4.3926615e+00 3.2186045e+00 3.2982828e+00 4.0192434e+00 4.1885158e+00 4.5274663e+00 4.8785522e+00 4.0373008e+00 3.4619693e+00 3.9494193e+00 4.6147130e+00 4.0642632e+00 3.8698115e+00 3.2042572e+00 3.8459316e+00 4.0795080e+00 3.6227082e+00 3.5192877e+00 4.3377723e+00 4.1907472e+00 3.6992844e+00 3.4507210e+00 3.6230931e+00 3.8568809e+00 3.4855556e+00 4.5581864e-01 1.2418578e-01 6.2660376e-01 5.1607523e-01 5.2655962e-01 8.0096515e-01 4.0438741e-01 3.0546431e-01 4.0438741e-01 6.4806901e-01 7.1504098e-01 4.4535192e-01 3.2586371e-01 4.9857388e-01 7.0784540e-01 6.2081167e-01 4.5581864e-01 7.0784540e-01 9.3824087e-01 4.0147421e-01 3.2586371e-01 1.5252485e+00 8.1558458e-01 3.7598397e-01 4.0147421e-01 8.1099042e-01 1.2418578e-01 6.9006418e-01 2.1269358e-01 5.0270183e-01 3.4104878e+00 3.1150013e+00 3.5735680e+00 2.6813198e+00 3.2413086e+00 3.0598576e+00 3.2985843e+00 2.0418831e+00 3.2329790e+00 2.5171713e+00 2.3816204e+00 2.7937685e+00 2.7102198e+00 3.2724336e+00 2.2054062e+00 3.0737397e+00 3.0650685e+00 2.6738621e+00 3.1983741e+00 2.5253420e+00 3.3951420e+00 2.6185785e+00 3.5201263e+00 3.2642011e+00 2.9245132e+00 3.0559405e+00 3.4672191e+00 3.6501426e+00 3.0869409e+00 2.1449779e+00 2.4611582e+00 2.3678836e+00 2.5038051e+00 3.6798850e+00 3.0627375e+00 3.0833417e+00 3.3518108e+00 3.0810282e+00 2.6595270e+00 2.6323570e+00 2.9747184e+00 3.1719581e+00 2.6119950e+00 2.0875308e+00 2.7837517e+00 2.7481947e+00 2.7653278e+00 2.8959432e+00 1.7918633e+00 2.6810089e+00 4.6579399e+00 3.7114178e+00 4.5860934e+00 4.1845117e+00 4.4368376e+00 5.3138890e+00 3.1392617e+00 4.9608959e+00 4.4280037e+00 4.8387532e+00 3.7530908e+00 3.9304148e+00 4.1764880e+00 3.6510310e+00 3.8111653e+00 3.9838913e+00 4.1019789e+00 5.4302306e+00 5.6352651e+00 3.6334268e+00 4.4011799e+00 3.5332521e+00 5.4201202e+00 3.5378545e+00 4.3430510e+00 4.6603717e+00 3.4302376e+00 3.5053533e+00 4.2335883e+00 4.4640423e+00 4.8059592e+00 5.1881280e+00 4.2497073e+00 3.6834126e+00 4.1572779e+00 4.9128775e+00 4.2687104e+00 4.0908836e+00 3.4061169e+00 4.0989195e+00 4.3064904e+00 3.8759115e+00 3.7114178e+00 4.5707958e+00 4.4147019e+00 3.9326468e+00 3.6624594e+00 3.8494244e+00 4.0586633e+00 3.6843892e+00 4.0176783e-01 9.3801395e-01 3.7427929e-01 6.0551856e-01 4.9766035e-01 4.1449626e-01 2.5251796e-01 3.2352160e-01 7.0437330e-01 6.2024833e-01 2.4837156e-01 7.0826681e-01 8.1099042e-01 5.3665999e-01 5.7257017e-01 4.0293660e-01 5.3665999e-01 1.0321505e+00 3.2352160e-01 4.9857388e-01 1.2654843e+00 1.0181000e+00 4.9857388e-01 4.6472023e-01 6.6432544e-01 4.4535192e-01 8.1354181e-01 3.2586371e-01 4.4535192e-01 3.1652953e+00 2.9034751e+00 3.3383293e+00 2.4277398e+00 3.0113552e+00 2.8500355e+00 3.0981427e+00 1.7594421e+00 2.9944056e+00 2.3105335e+00 2.0559262e+00 2.5987706e+00 2.4171653e+00 3.0605340e+00 2.0054351e+00 2.8372675e+00 2.8748086e+00 2.4385827e+00 2.9411544e+00 2.2761106e+00 3.2149087e+00 2.3896630e+00 3.2878368e+00 3.0415738e+00 2.6906230e+00 2.8216976e+00 3.2222602e+00 3.4304873e+00 2.8822802e+00 1.8816502e+00 2.1994544e+00 2.0961718e+00 2.2729984e+00 3.4713427e+00 2.8746311e+00 2.8977380e+00 3.1239380e+00 2.8149627e+00 2.4626518e+00 2.3988202e+00 2.7512943e+00 2.9634715e+00 2.3744738e+00 1.7861398e+00 2.5679553e+00 2.5438761e+00 2.5602722e+00 2.6724144e+00 1.5132025e+00 2.4693940e+00 4.4818617e+00 3.5188715e+00 4.3693901e+00 3.9814082e+00 4.2430316e+00 5.0846750e+00 2.9378173e+00 4.7308926e+00 4.2026915e+00 4.6369546e+00 3.5592955e+00 3.7219741e+00 3.9702025e+00 3.4565374e+00 3.6485303e+00 3.8059948e+00 3.8952692e+00 5.2045888e+00 5.4038637e+00 3.3942456e+00 4.2018404e+00 3.3550631e+00 5.1838582e+00 3.3280757e+00 4.1439346e+00 4.4349731e+00 3.2284912e+00 3.3133518e+00 4.0354963e+00 4.2293106e+00 4.5707958e+00 4.9486891e+00 4.0555804e+00 3.4667821e+00 3.9402495e+00 4.6817169e+00 4.0952984e+00 3.8891597e+00 3.2181054e+00 3.8906833e+00 4.1179678e+00 3.6792093e+00 3.5188715e+00 4.3738746e+00 4.2318888e+00 3.7415007e+00 3.4482727e+00 3.6509580e+00 3.8867812e+00 3.4956677e+00 6.2660376e-01 4.1449626e-01 4.8927739e-01 7.0479928e-01 3.0546431e-01 2.5251796e-01 3.2816937e-01 5.7324170e-01 6.2538346e-01 3.7255734e-01 4.4535192e-01 5.7324170e-01 6.2482915e-01 5.3665999e-01 4.3691963e-01 6.2482915e-01 8.7420176e-01 3.2352160e-01 2.5651975e-01 1.4293465e+00 7.7360126e-01 2.5651975e-01 4.0147421e-01 7.1504098e-01 2.1269358e-01 6.2660376e-01 2.4837156e-01 4.1586001e-01 3.4011512e+00 3.1015495e+00 3.5629124e+00 2.6446848e+00 3.2242409e+00 3.0444970e+00 3.2854349e+00 1.9922212e+00 3.2208624e+00 2.4875432e+00 2.3235341e+00 2.7738624e+00 2.6761538e+00 3.2590031e+00 2.1770137e+00 3.0609726e+00 3.0488669e+00 2.6564689e+00 3.1671679e+00 2.4967542e+00 3.3778209e+00 2.5968629e+00 3.5012162e+00 3.2523394e+00 2.9093820e+00 3.0417674e+00 3.4541339e+00 3.6357801e+00 3.0695657e+00 2.1117686e+00 2.4265922e+00 2.3324013e+00 2.4794505e+00 3.6641654e+00 3.0465086e+00 3.0686943e+00 3.3395333e+00 3.0541897e+00 2.6428278e+00 2.6018930e+00 2.9558536e+00 3.1589081e+00 2.5867906e+00 2.0334278e+00 2.7624503e+00 2.7347909e+00 2.7481947e+00 2.8804789e+00 1.7294430e+00 2.6604040e+00 4.6390099e+00 3.6904099e+00 4.5721680e+00 4.1717456e+00 4.4201622e+00 5.3038306e+00 3.1101376e+00 4.9521292e+00 4.4131751e+00 4.8218478e+00 3.7351231e+00 3.9119157e+00 4.1593600e+00 3.6239123e+00 3.7806200e+00 3.9616940e+00 4.0893976e+00 5.4208566e+00 5.6225133e+00 3.6099406e+00 4.3833809e+00 3.5087649e+00 5.4106224e+00 3.5167400e+00 4.3287713e+00 4.6517741e+00 3.4091049e+00 3.4875352e+00 4.2154392e+00 4.4559638e+00 4.7948032e+00 5.1800729e+00 4.2298456e+00 3.6705550e+00 4.1464752e+00 4.8981257e+00 4.2482702e+00 4.0788778e+00 3.3871264e+00 4.0817153e+00 4.2852718e+00 3.8517038e+00 3.6904099e+00 4.5544260e+00 4.3933832e+00 3.9084933e+00 3.6377874e+00 3.8310704e+00 4.0381483e+00 3.6684338e+00 7.9016429e-01 9.0454394e-01 7.7553525e-01 6.5633874e-01 6.8961791e-01 6.5172743e-01 6.4755655e-01 6.9325418e-01 8.5690100e-01 7.5871717e-01 9.8800009e-01 6.3977563e-01 5.0503591e-01 9.0852141e-01 6.3977563e-01 6.2482915e-01 6.2605182e-01 4.4651726e-01 1.3039319e+00 4.5470518e-01 6.8801986e-01 9.4492923e-01 6.5223271e-01 6.9325418e-01 4.9674312e-01 7.6752131e-01 5.2574978e-01 3.9950977e+00 3.6682165e+00 4.1454421e+00 3.1171350e+00 3.7869887e+00 3.5623665e+00 3.8418637e+00 2.4093459e+00 3.7913585e+00 2.9787373e+00 2.6930133e+00 3.3123070e+00 3.1668302e+00 3.7985007e+00 2.6980573e+00 3.6472316e+00 3.5682291e+00 3.1756360e+00 3.6828708e+00 2.9891564e+00 3.9102500e+00 3.1455588e+00 4.0375495e+00 3.7881557e+00 3.4756264e+00 3.6204175e+00 4.0288578e+00 4.2043522e+00 3.6069560e+00 2.6127852e+00 2.9004348e+00 2.8010550e+00 3.0013391e+00 4.1901031e+00 3.5584876e+00 3.6126340e+00 3.9170234e+00 3.5823448e+00 3.1646752e+00 3.0923554e+00 3.4563987e+00 3.7021702e+00 3.1018442e+00 2.4341346e+00 3.2724336e+00 3.2604423e+00 3.2715632e+00 3.4335342e+00 2.1375243e+00 3.1807243e+00 5.1732049e+00 4.2085267e+00 5.1402548e+00 4.7090394e+00 4.9640507e+00 5.8783901e+00 3.5970425e+00 5.5195747e+00 4.9586651e+00 5.3905797e+00 4.2919639e+00 4.4545908e+00 4.7214902e+00 4.1323720e+00 4.2962344e+00 4.5078390e+00 4.6379987e+00 5.9985593e+00 6.1927610e+00 4.1173292e+00 4.9467209e+00 4.0217355e+00 5.9855018e+00 4.0597680e+00 4.8845913e+00 5.2228901e+00 3.9505682e+00 4.0262006e+00 4.7557226e+00 5.0295898e+00 5.3695643e+00 5.7704875e+00 4.7697480e+00 4.2124808e+00 4.6690776e+00 5.4857949e+00 4.7867344e+00 4.6237863e+00 3.9220577e+00 4.6512574e+00 4.8397561e+00 4.4244727e+00 4.2085267e+00 5.1102370e+00 4.9464234e+00 4.4688286e+00 4.1733964e+00 4.3844239e+00 4.5752087e+00 4.1957914e+00 3.8934542e-01 3.7598397e-01 1.5422108e-01 3.4583729e-01 3.7598397e-01 4.4651726e-01 3.8934542e-01 3.2816937e-01 8.2929029e-01 9.3610001e-01 4.3691963e-01 5.3022554e-01 5.3309112e-01 4.3691963e-01 7.5976039e-01 3.2586371e-01 4.2667565e-01 1.0733200e+00 7.4777660e-01 2.1845981e-01 5.0905001e-01 4.3456114e-01 5.2942799e-01 5.5492130e-01 4.6472023e-01 3.7427929e-01 3.2191540e+00 2.9033203e+00 3.3725057e+00 2.3744738e+00 3.0162346e+00 2.8254861e+00 3.0850817e+00 1.6867642e+00 3.0206125e+00 2.2489449e+00 1.9859316e+00 2.5612285e+00 2.4037412e+00 3.0483897e+00 1.9482601e+00 2.8711841e+00 2.8361445e+00 2.4280197e+00 2.9151666e+00 2.2428341e+00 3.1709561e+00 2.3770599e+00 3.2772927e+00 3.0392407e+00 2.7044574e+00 2.8456337e+00 3.2543813e+00 3.4363773e+00 2.8560815e+00 1.8517858e+00 2.1570512e+00 2.0577182e+00 2.2449618e+00 3.4472201e+00 2.8333788e+00 2.8654874e+00 3.1455372e+00 2.8102985e+00 2.4278629e+00 2.3504126e+00 2.7240842e+00 2.9511072e+00 2.3468577e+00 1.7140774e+00 2.5325623e+00 2.5220817e+00 2.5303132e+00 2.6704164e+00 1.4096199e+00 2.4355523e+00 4.4339908e+00 3.4713427e+00 4.3742064e+00 3.9639546e+00 4.2144772e+00 5.1104621e+00 2.8721481e+00 4.7555981e+00 4.1997133e+00 4.6264002e+00 3.5337158e+00 3.6986235e+00 3.9580816e+00 3.3951420e+00 3.5651172e+00 3.7578933e+00 3.8852294e+00 5.2312618e+00 5.4232729e+00 3.3678461e+00 4.1846468e+00 3.2909043e+00 5.2164277e+00 3.3005331e+00 4.1286019e+00 4.4583488e+00 3.1948184e+00 3.2785487e+00 4.0052019e+00 4.2627019e+00 4.5989546e+00 4.9978258e+00 4.0193656e+00 3.4602150e+00 3.9315374e+00 4.7096962e+00 4.0441539e+00 3.8751788e+00 3.1769821e+00 3.8841455e+00 4.0829381e+00 3.6559398e+00 3.4713427e+00 4.3535851e+00 4.1922661e+00 3.7063225e+00 3.4135466e+00 3.6262912e+00 3.8337160e+00 3.4586921e+00 4.5470518e-01 3.4378533e-01 4.9766035e-01 5.6631629e-01 3.2586371e-01 3.7255734e-01 6.5172743e-01 7.6625946e-01 9.7356960e-01 4.4651726e-01 7.0784540e-01 8.1273630e-01 4.4651726e-01 6.8757066e-01 4.4417983e-01 6.0670504e-01 1.1521791e+00 6.5172743e-01 4.5581864e-01 4.5470518e-01 5.6700421e-01 4.8036801e-01 5.1607523e-01 5.8851328e-01 5.0905001e-01 3.1972361e+00 2.8360340e+00 3.3243092e+00 2.2696891e+00 2.9531300e+00 2.6835197e+00 2.9981183e+00 1.5916843e+00 2.9546153e+00 2.1366783e+00 1.9099663e+00 2.4717637e+00 2.3219731e+00 2.9300203e+00 1.8705419e+00 2.8448793e+00 2.7044574e+00 2.2951567e+00 2.8430073e+00 2.1220080e+00 3.0654291e+00 2.3117864e+00 3.1749624e+00 2.9091307e+00 2.6433897e+00 2.8065044e+00 3.2000771e+00 3.3714688e+00 2.7511201e+00 1.7679293e+00 2.0426611e+00 1.9423536e+00 2.1457242e+00 3.3172489e+00 2.6940968e+00 2.7682296e+00 3.0935247e+00 2.7391698e+00 2.2996943e+00 2.2360451e+00 2.5729378e+00 2.8382774e+00 2.2413445e+00 1.6312555e+00 2.4031247e+00 2.3848740e+00 2.4037412e+00 2.5843380e+00 1.3803845e+00 2.3178393e+00 4.3373464e+00 3.3555449e+00 4.3029534e+00 3.8394246e+00 4.1166152e+00 5.0345534e+00 2.7564428e+00 4.6628709e+00 4.0929284e+00 4.5724955e+00 3.4657942e+00 3.6038441e+00 3.8912788e+00 3.2935105e+00 3.4985926e+00 3.6938082e+00 3.7771525e+00 5.1600819e+00 5.3477989e+00 3.2453592e+00 4.1245629e+00 3.1885527e+00 5.1389533e+00 3.2183480e+00 4.0411872e+00 4.3734530e+00 3.1116430e+00 3.1793624e+00 3.9065553e+00 4.1815080e+00 4.5288943e+00 4.9506208e+00 3.9281139e+00 3.3421539e+00 3.7789119e+00 4.6812838e+00 3.9623295e+00 3.7603559e+00 3.0782101e+00 3.8325036e+00 4.0241284e+00 3.6474081e+00 3.3555449e+00 4.2739171e+00 4.1339606e+00 3.6720159e+00 3.3349237e+00 3.5512382e+00 3.7511837e+00 3.3364095e+00 4.1312257e-01 5.0905001e-01 4.2538717e-01 3.2352160e-01 2.0656129e-01 5.0592043e-01 1.1017858e+00 1.2234738e+00 1.5422108e-01 4.1312257e-01 6.3924842e-01 1.5422108e-01 6.1968386e-01 4.0293660e-01 5.2942799e-01 7.7919451e-01 6.2482915e-01 5.6631629e-01 8.1385214e-01 2.5251796e-01 8.0032200e-01 4.2538717e-01 7.1462831e-01 3.2352160e-01 3.3601225e+00 3.0492285e+00 3.5130686e+00 2.4784234e+00 3.1574358e+00 2.9495683e+00 3.2305582e+00 1.7639552e+00 3.1543365e+00 2.3872777e+00 2.0066796e+00 2.7104259e+00 2.4866453e+00 3.1794134e+00 2.0999661e+00 3.0164205e+00 2.9733298e+00 2.5409084e+00 3.0313923e+00 2.3496997e+00 3.3211033e+00 2.5173832e+00 3.4035007e+00 3.1599783e+00 2.8424094e+00 2.9896107e+00 3.3894792e+00 3.5821206e+00 2.9960387e+00 1.9633030e+00 2.2546134e+00 2.1472921e+00 2.3729779e+00 3.5766918e+00 2.9692947e+00 3.0147040e+00 3.2887803e+00 2.9233984e+00 2.5628362e+00 2.4694536e+00 2.8371552e+00 3.0850817e+00 2.4681135e+00 1.7749726e+00 2.6585961e+00 2.6493446e+00 2.6623632e+00 2.8060305e+00 1.5124582e+00 2.5679553e+00 4.5912390e+00 3.6144502e+00 4.5212874e+00 4.0982070e+00 4.3637125e+00 5.2494547e+00 3.0086587e+00 4.8875515e+00 4.3294620e+00 4.7880147e+00 3.6912876e+00 3.8418637e+00 4.1117747e+00 3.5413188e+00 3.7389462e+00 3.9250135e+00 4.0233529e+00 5.3754694e+00 5.5627643e+00 3.4785161e+00 4.3436980e+00 3.4455964e+00 5.3512930e+00 3.4471566e+00 4.2776053e+00 4.5941143e+00 3.3449470e+00 3.4269051e+00 4.1524717e+00 4.3946634e+00 4.7366258e+00 5.1414650e+00 4.1713411e+00 3.5895201e+00 4.0467919e+00 4.8635964e+00 4.2075047e+00 4.0127353e+00 3.3273395e+00 4.0411872e+00 4.2480617e+00 3.8321687e+00 3.6144502e+00 4.5072985e+00 4.3598062e+00 3.8780834e+00 3.5586316e+00 3.7805671e+00 3.9971028e+00 3.6003219e+00 2.5651975e-01 2.8192292e-01 3.4378533e-01 3.4378533e-01 4.0147421e-01 7.1840099e-01 8.5690100e-01 3.7598397e-01 4.2538717e-01 5.3665999e-01 3.7598397e-01 6.6827038e-01 2.1269358e-01 3.0546431e-01 1.1320702e+00 6.2988288e-01 2.0656129e-01 4.4535192e-01 4.2667565e-01 4.1449626e-01 4.3691963e-01 3.8934542e-01 2.5251796e-01 3.3428183e+00 3.0232018e+00 3.4944845e+00 2.4950353e+00 3.1381402e+00 2.9363801e+00 3.2027420e+00 1.8084630e+00 3.1409294e+00 2.3642733e+00 2.1113036e+00 2.6784604e+00 2.5283251e+00 3.1625374e+00 2.0667297e+00 2.9950041e+00 2.9473422e+00 2.5410503e+00 3.0407257e+00 2.3596992e+00 3.2858223e+00 2.4986337e+00 3.3960124e+00 3.1519721e+00 2.8255193e+00 2.9686973e+00 3.3765772e+00 3.5575681e+00 2.9720515e+00 1.9732878e+00 2.2758449e+00 2.1765379e+00 2.3630256e+00 3.5606213e+00 2.9432282e+00 2.9813163e+00 3.2672636e+00 2.9349850e+00 2.5393641e+00 2.4678343e+00 2.8348218e+00 3.0655803e+00 2.4649412e+00 1.8381372e+00 2.6459992e+00 2.6324803e+00 2.6428278e+00 2.7886501e+00 1.5384446e+00 2.5500177e+00 4.5509522e+00 3.5863729e+00 4.4953238e+00 4.0776551e+00 4.3319640e+00 5.2308062e+00 2.9880146e+00 4.8736353e+00 4.3174903e+00 4.7496159e+00 3.6545040e+00 3.8173510e+00 4.0797075e+00 3.5129177e+00 3.6850739e+00 3.8789949e+00 4.0011311e+00 5.3516635e+00 5.5447338e+00 3.4854203e+00 4.3070102e+00 3.4066692e+00 5.3366535e+00 3.4209331e+00 4.2472818e+00 4.5769661e+00 3.3144678e+00 3.3951450e+00 4.1229838e+00 4.3815083e+00 4.7200939e+00 5.1200990e+00 4.1381062e+00 3.5750015e+00 4.0416512e+00 4.8355880e+00 4.1628805e+00 3.9898962e+00 3.2934163e+00 4.0073765e+00 4.2053647e+00 3.7839552e+00 3.5863729e+00 4.4735121e+00 4.3145846e+00 3.8316735e+00 3.5355330e+00 3.7466071e+00 3.9521135e+00 3.5718733e+00 1.2418578e-01 5.2942799e-01 4.9766035e-01 2.5251796e-01 6.0060595e-01 7.1462831e-01 4.4535192e-01 3.8776762e-01 3.2352160e-01 4.4535192e-01 8.5434758e-01 1.2418578e-01 2.5251796e-01 1.2643026e+00 8.1354181e-01 4.1449626e-01 4.5581864e-01 5.6769031e-01 3.0546431e-01 6.2024833e-01 2.0656129e-01 2.5251796e-01 3.3898078e+00 3.1105347e+00 3.5575681e+00 2.6249526e+00 3.2229246e+00 3.0488669e+00 3.3004172e+00 1.9465831e+00 3.2118493e+00 2.4993166e+00 2.2473120e+00 2.7928582e+00 2.6296047e+00 3.2639046e+00 2.1933937e+00 3.0559188e+00 3.0673749e+00 2.6440180e+00 3.1486786e+00 2.4776707e+00 3.4056271e+00 2.5954147e+00 3.4958702e+00 3.2483608e+00 2.9041534e+00 3.0378828e+00 3.4425295e+00 3.6411503e+00 3.0811775e+00 2.0851901e+00 2.3997585e+00 2.2980893e+00 2.4741664e+00 3.6714798e+00 3.0661139e+00 3.0923102e+00 3.3390355e+00 3.0288896e+00 2.6566259e+00 2.5949561e+00 2.9511072e+00 3.1662394e+00 2.5768305e+00 1.9764051e+00 2.7650187e+00 2.7420671e+00 2.7570191e+00 2.8802219e+00 1.6913411e+00 2.6662783e+00 4.6723657e+00 3.7109297e+00 4.5802461e+00 4.1829734e+00 4.4414351e+00 5.3024507e+00 3.1246867e+00 4.9479218e+00 4.4123750e+00 4.8421359e+00 3.7582429e+00 3.9238367e+00 4.1750713e+00 3.6455011e+00 3.8262353e+00 3.9966275e+00 4.0997246e+00 5.4219259e+00 5.6210533e+00 3.5985833e+00 4.4045665e+00 3.5402439e+00 5.4041845e+00 3.5288526e+00 4.3467079e+00 4.6509698e+00 3.4261305e+00 3.5087649e+00 4.2340479e+00 4.4487072e+00 4.7898591e+00 5.1726632e+00 4.2521321e+00 3.6728562e+00 4.1446028e+00 4.9002452e+00 4.2845042e+00 4.0915924e+00 3.4110551e+00 4.0971854e+00 4.3142588e+00 3.8789274e+00 3.7109297e+00 4.5753785e+00 4.4261431e+00 3.9377466e+00 3.6482464e+00 3.8509694e+00 4.0749843e+00 3.6894983e+00 5.1607523e-01 4.5470518e-01 2.5251796e-01 7.0086313e-01 8.1067767e-01 3.7598397e-01 2.8192292e-01 3.0546431e-01 3.7598397e-01 8.2654509e-01 1.2418578e-01 2.1845981e-01 1.1754055e+00 8.0326782e-01 4.2667565e-01 5.7324170e-01 4.9766035e-01 4.1449626e-01 6.0551856e-01 3.0546431e-01 2.0656129e-01 3.4780839e+00 3.2028668e+00 3.6478832e+00 2.7001131e+00 3.3123070e+00 3.1424188e+00 3.3940268e+00 2.0081113e+00 3.3027430e+00 2.5846998e+00 2.2899742e+00 2.8843735e+00 2.7014135e+00 3.3579678e+00 2.2804674e+00 3.1447330e+00 3.1614572e+00 2.7347909e+00 3.2266676e+00 2.5600441e+00 3.4989115e+00 2.6835197e+00 3.5848035e+00 3.3425343e+00 2.9944056e+00 3.1272113e+00 3.5315985e+00 3.7321938e+00 3.1736230e+00 2.1642821e+00 2.4763086e+00 2.3729779e+00 2.5613679e+00 3.7645411e+00 3.1602773e+00 3.1861493e+00 3.4298218e+00 3.1090174e+00 2.7503801e+00 2.6773131e+00 3.0414782e+00 3.2606191e+00 2.6626548e+00 2.0308266e+00 2.8549070e+00 2.8371552e+00 2.8500790e+00 2.9720515e+00 1.7439430e+00 2.7570191e+00 4.7646254e+00 3.8019108e+00 4.6714768e+00 4.2777154e+00 4.5341669e+00 5.3940437e+00 3.2096520e+00 5.0408889e+00 4.5037829e+00 4.9318274e+00 3.8493108e+00 4.0147814e+00 4.2656755e+00 3.7323432e+00 3.9122146e+00 4.0862794e+00 4.1939019e+00 5.5136120e+00 5.7113100e+00 3.6836404e+00 4.4947801e+00 3.6298047e+00 5.4953655e+00 3.6181784e+00 4.4396174e+00 4.7440323e+00 3.5161021e+00 3.6013159e+00 4.3259034e+00 4.5411167e+00 4.8804165e+00 5.2620015e+00 4.3431589e+00 3.7666196e+00 4.2394195e+00 4.9871255e+00 4.3755778e+00 4.1864815e+00 3.5032323e+00 4.1868319e+00 4.4036244e+00 3.9638383e+00 3.8019108e+00 4.6672392e+00 4.5155386e+00 4.0245873e+00 3.7349501e+00 3.9420153e+00 4.1660972e+00 3.7835217e+00 1.2418578e-01 7.0826681e-01 9.4125538e-01 1.1340084e+00 2.1845981e-01 4.4417983e-01 8.2105460e-01 2.1845981e-01 3.8776762e-01 4.1449626e-01 4.2418962e-01 9.1075311e-01 3.7255734e-01 4.8036801e-01 6.6827038e-01 2.5651975e-01 6.4704320e-01 2.0656129e-01 6.8961791e-01 3.2586371e-01 3.4686627e+00 3.1154621e+00 3.6024772e+00 2.5108475e+00 3.2290313e+00 2.9704704e+00 3.2809332e+00 1.7903952e+00 3.2349033e+00 2.3960250e+00 2.0600195e+00 2.7476411e+00 2.5610667e+00 3.2181149e+00 2.1323638e+00 3.1154281e+00 2.9881598e+00 2.5786309e+00 3.0947136e+00 2.3839455e+00 3.3448197e+00 2.5821869e+00 3.4532666e+00 3.1998457e+00 2.9200439e+00 3.0794219e+00 3.4771054e+00 3.6510733e+00 3.0328831e+00 2.0197525e+00 2.2893157e+00 2.1858172e+00 2.4166535e+00 3.6030381e+00 2.9770247e+00 3.0492285e+00 3.3713329e+00 2.9974031e+00 2.5833316e+00 2.4944673e+00 2.8535197e+00 3.1260028e+00 2.5104998e+00 1.8109223e+00 2.6804452e+00 2.6742360e+00 2.6875169e+00 2.8656044e+00 1.5447938e+00 2.5961850e+00 4.6147552e+00 3.6320149e+00 4.5850999e+00 4.1288948e+00 4.3989089e+00 5.3208661e+00 3.0146208e+00 4.9525575e+00 4.3778283e+00 4.8485483e+00 3.7416375e+00 3.8836706e+00 4.1692394e+00 3.5584719e+00 3.7545764e+00 3.9635178e+00 4.0653249e+00 5.4465238e+00 5.6318041e+00 3.5148434e+00 4.4004449e+00 3.4571917e+00 5.4256316e+00 3.4931266e+00 4.3243671e+00 4.6617210e+00 3.3863989e+00 3.4595139e+00 4.1872611e+00 4.4691596e+00 4.8126955e+00 5.2323771e+00 4.2057897e+00 3.6309135e+00 4.0714444e+00 4.9544547e+00 4.2355968e+00 4.0495222e+00 3.3563815e+00 4.1075398e+00 4.2957899e+00 3.9065020e+00 3.6320149e+00 4.5543025e+00 4.4046818e+00 3.9362563e+00 3.6038441e+00 3.8285790e+00 4.0238937e+00 3.6204282e+00 6.2538346e-01 1.0167353e+00 1.1763980e+00 1.4096146e-01 4.1449626e-01 7.4740267e-01 1.4096146e-01 4.4535192e-01 3.7427929e-01 4.5581864e-01 8.2135873e-01 4.4535192e-01 5.0503591e-01 7.3145860e-01 2.1269358e-01 7.1421512e-01 2.5251796e-01 6.8961791e-01 2.8192292e-01 3.4295980e+00 3.0905489e+00 3.5700123e+00 2.4944673e+00 3.2020292e+00 2.9613737e+00 3.2617087e+00 1.7750284e+00 3.2049793e+00 2.3909366e+00 2.0308266e+00 2.7326472e+00 2.5286673e+00 3.2028668e+00 2.1181082e+00 3.0792693e+00 2.9816970e+00 2.5624932e+00 3.0681391e+00 2.3677174e+00 3.3352475e+00 2.5566444e+00 3.4334259e+00 3.1839972e+00 2.8907702e+00 3.0462904e+00 3.4448498e+00 3.6256155e+00 3.0181476e+00 1.9946242e+00 2.2719663e+00 2.1665831e+00 2.3980102e+00 3.5922217e+00 2.9733478e+00 3.0355056e+00 3.3410264e+00 2.9673667e+00 2.5744164e+00 2.4820750e+00 2.8455141e+00 3.1100045e+00 2.4920874e+00 1.7903952e+00 2.6704164e+00 2.6637326e+00 2.6767607e+00 2.8425716e+00 1.5257596e+00 2.5839288e+00 4.6057175e+00 3.6244539e+00 4.5619285e+00 4.1170543e+00 4.3856360e+00 5.2953657e+00 3.0110441e+00 4.9290739e+00 4.3593510e+00 4.8266994e+00 3.7227460e+00 3.8675033e+00 4.1480696e+00 3.5505922e+00 3.7479505e+00 3.9489183e+00 4.0495222e+00 5.4213759e+00 5.6069704e+00 3.4988409e+00 4.3796539e+00 3.4519560e+00 5.3990720e+00 3.4751739e+00 4.3070102e+00 4.6372963e+00 3.3701472e+00 3.4467337e+00 4.1738909e+00 4.4422690e+00 4.7852959e+00 5.2004339e+00 4.1925494e+00 3.6148707e+00 4.0613681e+00 4.9222119e+00 4.2248103e+00 4.0355816e+00 3.3448336e+00 4.0832977e+00 4.2781022e+00 3.8793995e+00 3.6244539e+00 4.5369609e+00 4.3880177e+00 3.9147164e+00 3.5857963e+00 3.8105301e+00 4.0134966e+00 3.6122845e+00 7.1799256e-01 8.0358695e-01 5.5419992e-01 4.6472023e-01 2.5651975e-01 5.5419992e-01 1.0198386e+00 3.2352160e-01 4.1586001e-01 1.2565757e+00 1.0054037e+00 4.1586001e-01 5.2574978e-01 6.4806901e-01 4.5581864e-01 8.0619006e-01 3.2586371e-01 4.1586001e-01 3.3274681e+00 3.0643176e+00 3.5031390e+00 2.5831315e+00 3.1734856e+00 3.0256804e+00 3.2593968e+00 1.9049236e+00 3.1662394e+00 2.4587503e+00 2.1948123e+00 2.7522526e+00 2.5874301e+00 3.2341367e+00 2.1493214e+00 2.9966141e+00 3.0389019e+00 2.6214821e+00 3.0978571e+00 2.4463233e+00 3.3673968e+00 2.5500177e+00 3.4578354e+00 3.2240818e+00 2.8578051e+00 2.9828212e+00 3.3905763e+00 3.5904118e+00 3.0455175e+00 2.0467937e+00 2.3640301e+00 2.2638728e+00 2.4385827e+00 3.6424937e+00 3.0387448e+00 3.0543001e+00 3.2867025e+00 2.9810914e+00 2.6291524e+00 2.5579619e+00 2.9291061e+00 3.1351569e+00 2.5421955e+00 1.9274228e+00 2.7359835e+00 2.7196686e+00 2.7293044e+00 2.8418790e+00 1.6234861e+00 2.6349941e+00 4.6268918e+00 3.6735954e+00 4.5276539e+00 4.1519514e+00 4.3981255e+00 5.2510005e+00 3.0847983e+00 4.9049143e+00 4.3738893e+00 4.7804645e+00 3.7059360e+00 3.8806135e+00 4.1210200e+00 3.6007179e+00 3.7674167e+00 3.9401211e+00 4.0632074e+00 5.3683319e+00 5.5675337e+00 3.5650560e+00 4.3467079e+00 3.4964385e+00 5.3534247e+00 3.4817971e+00 4.3007421e+00 4.6057628e+00 3.3796707e+00 3.4684743e+00 4.1910954e+00 4.4033511e+00 4.7374076e+00 5.1107389e+00 4.2056854e+00 3.6417452e+00 4.1251907e+00 4.8290847e+00 4.2339606e+00 4.0576409e+00 3.3702841e+00 4.0376849e+00 4.2550416e+00 3.8015574e+00 3.6735954e+00 4.5249462e+00 4.3662620e+00 3.8699102e+00 3.5979726e+00 3.8007870e+00 4.0252278e+00 3.6568095e+00 3.0811765e-01 1.0065841e+00 9.1075311e-01 6.2538346e-01 1.0065841e+00 1.2125198e+00 7.0086313e-01 6.1623531e-01 1.8279039e+00 1.0613462e+00 6.9369532e-01 4.8135521e-01 1.1149070e+00 3.0811765e-01 9.7098574e-01 4.0293660e-01 8.0358695e-01 3.4154940e+00 3.1439160e+00 3.5872997e+00 2.8054691e+00 3.2839149e+00 3.1127876e+00 3.3274872e+00 2.2159139e+00 3.2598167e+00 2.6167778e+00 2.5758644e+00 2.8523754e+00 2.8256291e+00 3.3122081e+00 2.3003824e+00 3.0947136e+00 3.1160876e+00 2.7384939e+00 3.2940867e+00 2.6281170e+00 3.4401593e+00 2.6851662e+00 3.5758474e+00 3.3024121e+00 2.9636544e+00 3.0850893e+00 3.4935692e+00 3.6787177e+00 3.1382691e+00 2.2643860e+00 2.5838312e+00 2.4957147e+00 2.5876691e+00 3.7272092e+00 3.1148696e+00 3.1192689e+00 3.3731473e+00 3.1641238e+00 2.7164367e+00 2.7371177e+00 3.0433470e+00 3.2094276e+00 2.6989752e+00 2.2729593e+00 2.8576425e+00 2.7954161e+00 2.8234677e+00 2.9407805e+00 1.9980146e+00 2.7511201e+00 4.6993349e+00 3.7716613e+00 4.6090409e+00 4.2170163e+00 4.4740971e+00 5.3233695e+00 3.2312218e+00 4.9715358e+00 4.4649192e+00 4.8634712e+00 3.7907269e+00 3.9777091e+00 4.2102908e+00 3.7293867e+00 3.8887827e+00 4.0321207e+00 4.1304736e+00 5.4336694e+00 5.6535520e+00 3.7088191e+00 4.4333012e+00 3.6017014e+00 5.4287623e+00 3.5939935e+00 4.3696884e+00 4.6684884e+00 3.4865359e+00 3.5518450e+00 4.2777882e+00 4.4716883e+00 4.8204359e+00 5.1830573e+00 4.2975164e+00 3.7189281e+00 4.1915116e+00 4.9282164e+00 4.3126073e+00 4.1182993e+00 3.4568393e+00 4.1297239e+00 4.3496867e+00 3.9207320e+00 3.7716613e+00 4.6018276e+00 4.4564872e+00 3.9827168e+00 3.7295388e+00 3.8905364e+00 4.1037903e+00 3.7281480e+00 1.1474460e+00 1.0344911e+00 7.0043186e-01 1.1474460e+00 1.4311891e+00 8.2654509e-01 7.6787403e-01 1.9730918e+00 1.3073038e+00 7.9878917e-01 6.2407309e-01 1.2632199e+00 5.0503591e-01 1.1833480e+00 5.0905001e-01 9.4080461e-01 3.4392518e+00 3.2008338e+00 3.6261197e+00 2.9076510e+00 3.3439089e+00 3.2073032e+00 3.3907558e+00 2.3329978e+00 3.3168472e+00 2.7081478e+00 2.6929215e+00 2.9283888e+00 2.9264154e+00 3.3942456e+00 2.3848677e+00 3.1312883e+00 3.2027420e+00 2.8385969e+00 3.3781905e+00 2.7324845e+00 3.5133135e+00 2.7602023e+00 3.6563535e+00 3.3905763e+00 3.0256209e+00 3.1312883e+00 3.5423793e+00 3.7299679e+00 3.2179031e+00 2.3661539e+00 2.6906231e+00 2.6054995e+00 2.6801752e+00 3.8138933e+00 3.2027420e+00 3.1888037e+00 3.4187265e+00 3.2459231e+00 2.8060305e+00 2.8359967e+00 3.1453916e+00 3.2886661e+00 2.7943622e+00 2.3874574e+00 2.9533314e+00 2.8877105e+00 2.9141136e+00 3.0147886e+00 2.0992326e+00 2.8425716e+00 4.7630756e+00 3.8535531e+00 4.6550014e+00 4.2947468e+00 4.5389196e+00 5.3632740e+00 3.3234239e+00 5.0232338e+00 4.5363757e+00 4.8985515e+00 3.8441304e+00 4.0476997e+00 4.2599433e+00 3.8106152e+00 3.9516603e+00 4.0850903e+00 4.1995425e+00 5.4671477e+00 5.6957748e+00 3.8037734e+00 4.4771379e+00 3.6783395e+00 5.4690202e+00 3.6632177e+00 4.4259826e+00 4.7160634e+00 3.5560806e+00 3.6239123e+00 4.3464973e+00 4.5187406e+00 4.8619146e+00 5.2001625e+00 4.3635746e+00 3.7979761e+00 4.2843668e+00 4.9451734e+00 4.3709882e+00 4.1899199e+00 3.5299194e+00 4.1707976e+00 4.3972344e+00 3.9457376e+00 3.8535531e+00 4.6546556e+00 4.5024055e+00 4.0227020e+00 3.8004969e+00 3.9484773e+00 4.1635108e+00 3.8079860e+00 3.0811765e-01 6.5223271e-01 0.0000000e+00 5.0991930e-01 3.2586371e-01 4.2667565e-01 8.3172002e-01 5.0991930e-01 5.6769031e-01 7.5082357e-01 2.1845981e-01 7.0479928e-01 3.0811765e-01 6.4755655e-01 2.1845981e-01 3.4865562e+00 3.1726595e+00 3.6377960e+00 2.5987470e+00 3.2814045e+00 3.0627375e+00 3.3515846e+00 1.8841865e+00 3.2769379e+00 2.5038079e+00 2.1311468e+00 2.8311678e+00 2.6104387e+00 3.2962520e+00 2.2214438e+00 3.1433122e+00 3.0878634e+00 2.6552472e+00 3.1570103e+00 2.4668912e+00 3.4394878e+00 2.6411293e+00 3.5233648e+00 3.2747247e+00 2.9659871e+00 3.1154783e+00 3.5134741e+00 3.7059620e+00 3.1148696e+00 2.0851901e+00 2.3731428e+00 2.2655571e+00 2.4927109e+00 3.6920087e+00 3.0823446e+00 3.1337459e+00 3.4135200e+00 3.0481703e+00 2.6780487e+00 2.5874301e+00 2.9489507e+00 3.2027420e+00 2.5873149e+00 1.8973383e+00 2.7738355e+00 2.7632614e+00 2.7778954e+00 2.9269923e+00 1.6390769e+00 2.6848587e+00 4.7106706e+00 3.7313856e+00 4.6446321e+00 4.2142736e+00 4.4836580e+00 5.3716885e+00 3.1250284e+00 5.0074019e+00 4.4485220e+00 4.9128219e+00 3.8150636e+00 3.9624529e+00 4.2358121e+00 3.6602286e+00 3.8605980e+00 4.0488387e+00 4.1418643e+00 5.4970002e+00 5.6855224e+00 3.5964347e+00 4.4685630e+00 3.5634461e+00 5.4730406e+00 3.5693950e+00 4.3989089e+00 4.7150659e+00 3.4668130e+00 3.5464993e+00 4.2723380e+00 4.5155386e+00 4.8594290e+00 5.2647079e+00 4.2921213e+00 3.7064459e+00 4.1581964e+00 4.9913682e+00 4.3286007e+00 4.1303097e+00 3.4468286e+00 4.1669742e+00 4.3729308e+00 3.9624170e+00 3.7313856e+00 4.6297577e+00 4.4844827e+00 4.0056359e+00 3.6817961e+00 3.9035218e+00 4.1179678e+00 3.7164366e+00 5.2942799e-01 3.0811765e-01 6.0611244e-01 3.2586371e-01 3.0546431e-01 9.4125538e-01 6.0060595e-01 5.2574978e-01 8.1558458e-01 2.8507955e-01 6.4755655e-01 4.1312257e-01 5.5419992e-01 2.0656129e-01 3.7045940e+00 3.4142500e+00 3.8690719e+00 2.8688189e+00 3.5226542e+00 3.3385842e+00 3.6010215e+00 2.1580776e+00 3.5196916e+00 2.7652601e+00 2.4083873e+00 3.0820950e+00 2.8783309e+00 3.5617386e+00 2.4693940e+00 3.3658240e+00 3.3558214e+00 2.9322808e+00 3.4112518e+00 2.7424260e+00 3.6945405e+00 2.8867565e+00 3.7848217e+00 3.5471494e+00 3.2076743e+00 3.3449470e+00 3.7498842e+00 3.9450818e+00 3.3735875e+00 2.3490515e+00 2.6490839e+00 2.5444216e+00 2.7549369e+00 3.9621873e+00 3.3527310e+00 3.3865418e+00 3.6475099e+00 3.3024121e+00 2.9459653e+00 2.8566322e+00 3.2311957e+00 3.4653703e+00 2.8535197e+00 2.1708533e+00 3.0455175e+00 3.0364473e+00 3.0465086e+00 3.1799184e+00 1.8842354e+00 2.9509414e+00 4.9594922e+00 3.9924292e+00 4.8844442e+00 4.4804205e+00 4.7354764e+00 5.6130421e+00 3.3873806e+00 5.2583931e+00 4.7090394e+00 5.1413739e+00 4.0532097e+00 4.2156327e+00 4.4735121e+00 3.9153764e+00 4.0928954e+00 4.2826383e+00 4.4004808e+00 5.7341534e+00 5.9271927e+00 3.8700742e+00 4.7016733e+00 3.8156003e+00 5.7155096e+00 3.8175051e+00 4.6462020e+00 4.9620553e+00 3.7143727e+00 3.8000004e+00 4.5254820e+00 4.7613782e+00 5.0991856e+00 5.4888822e+00 4.5411167e+00 3.9718373e+00 4.4397363e+00 5.2074442e+00 4.5701358e+00 4.3916992e+00 3.6996802e+00 4.3970196e+00 4.6045465e+00 4.1691696e+00 3.9924292e+00 4.8725396e+00 4.7150659e+00 4.2256400e+00 3.9292780e+00 4.1454529e+00 4.3599285e+00 3.9798670e+00 6.5223271e-01 1.1268457e+00 4.1449626e-01 5.0090417e-01 1.3784393e+00 1.1053488e+00 5.8851328e-01 6.6827038e-01 7.6787403e-01 4.8036801e-01 9.0852141e-01 2.8192292e-01 5.0905001e-01 3.5117473e+00 3.2719724e+00 3.6961290e+00 2.8060101e+00 3.3799936e+00 3.2401159e+00 3.4709594e+00 2.1293854e+00 3.3643376e+00 2.6848587e+00 2.4115946e+00 2.9723937e+00 2.7984009e+00 3.4455106e+00 2.3749088e+00 3.1913397e+00 3.2574960e+00 2.8320532e+00 3.3150921e+00 2.6637326e+00 3.5883493e+00 2.7640668e+00 3.6695251e+00 3.4317240e+00 3.0617355e+00 3.1820648e+00 3.5855784e+00 3.7950050e+00 3.2620096e+00 2.2645766e+00 2.5831070e+00 2.4810276e+00 2.6563403e+00 3.8575846e+00 3.2574960e+00 3.2718360e+00 3.4856613e+00 3.1913594e+00 2.8466990e+00 2.7801709e+00 3.1437608e+00 3.3466419e+00 2.7595194e+00 2.1498672e+00 2.9543365e+00 2.9330570e+00 2.9459653e+00 3.0511838e+00 1.8555964e+00 2.8534301e+00 4.8490742e+00 3.8962785e+00 4.7308926e+00 4.3643842e+00 4.6144072e+00 5.4442665e+00 3.3129652e+00 5.0997539e+00 4.5816539e+00 4.9883395e+00 3.9213002e+00 4.0961125e+00 4.3313403e+00 3.8279951e+00 4.0003537e+00 4.1625074e+00 4.2731561e+00 5.5604940e+00 5.7635900e+00 3.7812981e+00 4.5580745e+00 3.7236571e+00 5.5437155e+00 3.6992145e+00 4.5120086e+00 4.8012240e+00 3.5989213e+00 3.6872980e+00 4.4084575e+00 4.5949523e+00 4.9306472e+00 5.2918657e+00 4.4250143e+00 3.8510143e+00 4.3338058e+00 5.0198276e+00 4.4571663e+00 4.2687771e+00 3.5910375e+00 4.2454653e+00 4.4729144e+00 4.0139676e+00 3.8962785e+00 4.7377574e+00 4.5853438e+00 4.0877338e+00 3.8179781e+00 4.0161568e+00 4.2490407e+00 3.8755800e+00 5.0991930e-01 3.2586371e-01 4.2667565e-01 8.3172002e-01 5.0991930e-01 5.6769031e-01 7.5082357e-01 2.1845981e-01 7.0479928e-01 3.0811765e-01 6.4755655e-01 2.1845981e-01 3.4865562e+00 3.1726595e+00 3.6377960e+00 2.5987470e+00 3.2814045e+00 3.0627375e+00 3.3515846e+00 1.8841865e+00 3.2769379e+00 2.5038079e+00 2.1311468e+00 2.8311678e+00 2.6104387e+00 3.2962520e+00 2.2214438e+00 3.1433122e+00 3.0878634e+00 2.6552472e+00 3.1570103e+00 2.4668912e+00 3.4394878e+00 2.6411293e+00 3.5233648e+00 3.2747247e+00 2.9659871e+00 3.1154783e+00 3.5134741e+00 3.7059620e+00 3.1148696e+00 2.0851901e+00 2.3731428e+00 2.2655571e+00 2.4927109e+00 3.6920087e+00 3.0823446e+00 3.1337459e+00 3.4135200e+00 3.0481703e+00 2.6780487e+00 2.5874301e+00 2.9489507e+00 3.2027420e+00 2.5873149e+00 1.8973383e+00 2.7738355e+00 2.7632614e+00 2.7778954e+00 2.9269923e+00 1.6390769e+00 2.6848587e+00 4.7106706e+00 3.7313856e+00 4.6446321e+00 4.2142736e+00 4.4836580e+00 5.3716885e+00 3.1250284e+00 5.0074019e+00 4.4485220e+00 4.9128219e+00 3.8150636e+00 3.9624529e+00 4.2358121e+00 3.6602286e+00 3.8605980e+00 4.0488387e+00 4.1418643e+00 5.4970002e+00 5.6855224e+00 3.5964347e+00 4.4685630e+00 3.5634461e+00 5.4730406e+00 3.5693950e+00 4.3989089e+00 4.7150659e+00 3.4668130e+00 3.5464993e+00 4.2723380e+00 4.5155386e+00 4.8594290e+00 5.2647079e+00 4.2921213e+00 3.7064459e+00 4.1581964e+00 4.9913682e+00 4.3286007e+00 4.1303097e+00 3.4468286e+00 4.1669742e+00 4.3729308e+00 3.9624170e+00 3.7313856e+00 4.6297577e+00 4.4844827e+00 4.0056359e+00 3.6817961e+00 3.9035218e+00 4.1179678e+00 3.7164366e+00 7.3813096e-01 6.8961791e-01 7.0086313e-01 2.0000000e-01 7.3805807e-01 1.0030700e+00 4.0293660e-01 9.4352681e-01 2.5251796e-01 1.0120221e+00 6.2024833e-01 3.8265307e+00 3.4552560e+00 3.9537404e+00 2.8022534e+00 3.5701225e+00 3.2863508e+00 3.6126198e+00 2.0524386e+00 3.5845127e+00 2.6848587e+00 2.2888897e+00 3.0684384e+00 2.8791325e+00 3.5464993e+00 2.4469125e+00 3.4686755e+00 3.2961206e+00 2.9072057e+00 3.4107902e+00 2.6959009e+00 3.6545040e+00 2.9195876e+00 3.7806187e+00 3.5312474e+00 3.2669151e+00 3.4295849e+00 3.8277021e+00 3.9909030e+00 3.3562690e+00 2.3465937e+00 2.5906376e+00 2.4892531e+00 2.7423171e+00 3.9193693e+00 3.2780620e+00 3.3708389e+00 3.7190229e+00 3.3268984e+00 2.8983020e+00 2.7954161e+00 3.1611584e+00 3.4557351e+00 2.8328337e+00 2.0658700e+00 2.9919517e+00 2.9960210e+00 3.0059712e+00 3.2048547e+00 1.8038968e+00 2.9141136e+00 4.9189452e+00 3.9342203e+00 4.9208723e+00 4.4494735e+00 4.7160542e+00 5.6635213e+00 3.2909043e+00 5.2946188e+00 4.7062325e+00 5.1779277e+00 4.0657707e+00 4.2053647e+00 4.4986279e+00 3.8509694e+00 4.0384339e+00 4.2739171e+00 4.3927415e+00 5.7909894e+00 5.9706827e+00 3.8237409e+00 4.7267599e+00 3.7490739e+00 5.7704875e+00 3.8154018e+00 4.6503268e+00 5.0044958e+00 3.7060524e+00 3.7762575e+00 4.5037232e+00 4.8164539e+00 5.1574084e+00 5.5860081e+00 4.5195237e+00 3.9601358e+00 4.3901702e+00 5.2992055e+00 4.5412859e+00 4.3739561e+00 3.6694918e+00 4.4403343e+00 4.6130415e+00 4.2323959e+00 3.9342203e+00 4.8773871e+00 4.7190595e+00 4.2559866e+00 3.9201797e+00 4.1523445e+00 4.3289315e+00 3.9302319e+00 2.1845981e-01 1.1486378e+00 7.0784540e-01 4.0438741e-01 5.0503591e-01 4.4651726e-01 4.0147421e-01 5.0905001e-01 3.2352160e-01 1.4096146e-01 3.4156574e+00 3.1235447e+00 3.5778307e+00 2.6097685e+00 3.2346686e+00 3.0478400e+00 3.3101102e+00 1.9193093e+00 3.2270948e+00 2.4922287e+00 2.2081369e+00 2.7965957e+00 2.6184141e+00 3.2685282e+00 2.1916898e+00 3.0773654e+00 3.0673749e+00 2.6423274e+00 3.1444983e+00 2.4678343e+00 3.4088888e+00 2.6016025e+00 3.4988409e+00 3.2521427e+00 2.9171710e+00 3.0559188e+00 3.4597125e+00 3.6553612e+00 3.0847983e+00 2.0765921e+00 2.3848740e+00 2.2817008e+00 2.4722095e+00 3.6724425e+00 3.0650478e+00 3.0981264e+00 3.3567173e+00 3.0288896e+00 2.6566259e+00 2.5851693e+00 2.9455446e+00 3.1719381e+00 2.5729378e+00 1.9450955e+00 2.7611864e+00 2.7431084e+00 2.7570191e+00 2.8884401e+00 1.6625998e+00 2.6648989e+00 4.6768871e+00 3.7101281e+00 4.5948688e+00 4.1876541e+00 4.4480565e+00 5.3202405e+00 3.1169790e+00 4.9630576e+00 4.4189653e+00 4.8572313e+00 3.7684708e+00 3.9292780e+00 4.1872611e+00 3.6418662e+00 3.8262353e+00 4.0041417e+00 4.1076175e+00 5.4411191e+00 5.6370076e+00 3.5929878e+00 4.4174698e+00 3.5389106e+00 5.4223305e+00 3.5340177e+00 4.3569684e+00 4.6672392e+00 3.4309563e+00 3.5133135e+00 4.2392500e+00 4.4661721e+00 4.8075242e+00 5.1977119e+00 4.2572858e+00 3.6784045e+00 4.1454521e+00 4.9233665e+00 4.2900309e+00 4.0984960e+00 3.4145942e+00 4.1120703e+00 4.3243538e+00 3.8957047e+00 3.7101281e+00 4.5857922e+00 4.4360042e+00 3.9497198e+00 3.6509512e+00 3.8600234e+00 4.0800357e+00 3.6915258e+00 1.2223099e+00 6.2024833e-01 3.7255734e-01 6.2081167e-01 5.0905001e-01 3.7598397e-01 4.4651726e-01 3.4583729e-01 2.1269358e-01 3.6091470e+00 3.3105724e+00 3.7708932e+00 2.7979838e+00 3.4251430e+00 3.2391031e+00 3.4951642e+00 2.1075335e+00 3.4235403e+00 2.6687055e+00 2.3989464e+00 2.9762945e+00 2.8216056e+00 3.4603628e+00 2.3673218e+00 3.2680041e+00 3.2498302e+00 2.8414525e+00 3.3361912e+00 2.6626548e+00 3.5849794e+00 2.7906520e+00 3.6926714e+00 3.4497714e+00 3.1105675e+00 3.2468925e+00 3.6557661e+00 3.8432801e+00 3.2705166e+00 2.2719663e+00 2.5786309e+00 2.4784234e+00 2.6629602e+00 3.8619321e+00 3.2465133e+00 3.2780765e+00 3.5475145e+00 3.2266676e+00 2.8416143e+00 2.7719788e+00 3.1392934e+00 3.3624692e+00 2.7656089e+00 2.1335398e+00 2.9496515e+00 2.9338590e+00 2.9447165e+00 3.0808399e+00 1.8330979e+00 2.8520904e+00 4.8482992e+00 3.8884996e+00 4.7814945e+00 4.3763964e+00 4.6280797e+00 5.5131379e+00 3.2922206e+00 5.1594703e+00 4.6125121e+00 5.0342965e+00 3.9453171e+00 4.1137002e+00 4.3683295e+00 3.8151836e+00 3.9816719e+00 4.1715493e+00 4.2963195e+00 5.6322635e+00 5.8289682e+00 3.7874513e+00 4.5945190e+00 3.7079546e+00 5.6180203e+00 3.7164611e+00 4.5394421e+00 4.8614468e+00 3.6107037e+00 3.6929889e+00 4.4201622e+00 4.6634723e+00 5.0015266e+00 5.3906681e+00 4.4348302e+00 3.8718490e+00 4.3427947e+00 5.1078309e+00 4.4583488e+00 4.2864208e+00 3.5920050e+00 4.2919639e+00 4.4953238e+00 4.0619633e+00 3.8884996e+00 4.7650352e+00 4.6046026e+00 4.1173867e+00 3.8320624e+00 4.0389546e+00 4.2480032e+00 3.8727359e+00 9.0049692e-01 1.2307737e+00 1.5483011e+00 7.1462831e-01 1.5272277e+00 9.0074515e-01 1.4700179e+00 1.0331736e+00 3.7896333e+00 3.4304205e+00 3.9179666e+00 2.7683644e+00 3.5321772e+00 3.2685282e+00 3.5962433e+00 2.0250421e+00 3.5485736e+00 2.6642702e+00 2.2244833e+00 3.0435803e+00 2.8325748e+00 3.5230967e+00 2.4205131e+00 3.4307077e+00 3.2815626e+00 2.8843735e+00 3.3658240e+00 2.6687055e+00 3.6389628e+00 2.8830783e+00 3.7490739e+00 3.5087649e+00 3.2305801e+00 3.3908902e+00 3.7876239e+00 3.9561876e+00 3.3306114e+00 2.3112968e+00 2.5604155e+00 2.4585271e+00 2.7122813e+00 3.8971376e+00 3.2667813e+00 3.3674720e+00 3.6849783e+00 3.2837729e+00 2.8840079e+00 2.7685572e+00 3.1442943e+00 3.4335342e+00 2.8028287e+00 2.0286682e+00 2.9704704e+00 2.9822537e+00 2.9868163e+00 3.1741954e+00 1.7644184e+00 2.8908296e+00 4.8985114e+00 3.9102500e+00 4.8863496e+00 4.4272873e+00 4.6888407e+00 5.6294495e+00 3.2706756e+00 5.2636641e+00 4.6765452e+00 5.1547576e+00 4.0378383e+00 4.1743230e+00 4.4638518e+00 3.8230269e+00 4.0056625e+00 4.2450961e+00 4.3676124e+00 5.7745449e+00 5.9344852e+00 3.7932062e+00 4.6942925e+00 3.7245053e+00 5.7354045e+00 3.7814598e+00 4.6271849e+00 4.9763401e+00 3.6736483e+00 3.7511498e+00 4.4747039e+00 4.7841150e+00 5.1205765e+00 5.5660104e+00 4.4889834e+00 3.9348528e+00 4.3728356e+00 5.2548517e+00 4.5226167e+00 4.3526639e+00 3.6449787e+00 4.4041536e+00 4.5787890e+00 4.1879339e+00 3.9102500e+00 4.8490587e+00 4.6897155e+00 4.2150171e+00 3.8841455e+00 4.1203091e+00 4.3121165e+00 3.9109678e+00 6.7975091e-01 9.0056222e-01 4.1586001e-01 8.2275389e-01 2.0656129e-01 9.4287188e-01 6.0121055e-01 3.8264361e+00 3.4551376e+00 3.9537404e+00 2.8149627e+00 3.5710248e+00 3.2874334e+00 3.6122384e+00 2.0711789e+00 3.5849006e+00 2.6879715e+00 2.3281827e+00 3.0685922e+00 2.8946126e+00 3.5468964e+00 2.4478108e+00 3.4686755e+00 3.2962520e+00 2.9098194e+00 3.4214793e+00 2.7033034e+00 3.6543993e+00 2.9209919e+00 3.7841436e+00 3.5321717e+00 3.2673909e+00 3.4297053e+00 3.8284763e+00 3.9909892e+00 3.3567173e+00 2.3533545e+00 2.6019240e+00 2.5015675e+00 2.7452885e+00 3.9207248e+00 3.2781950e+00 3.3698144e+00 3.7190229e+00 3.3356294e+00 2.8984764e+00 2.8022534e+00 3.1646752e+00 3.4558535e+00 2.8373077e+00 2.0905239e+00 2.9944056e+00 2.9961831e+00 3.0065426e+00 3.2053509e+00 1.8216743e+00 2.9155237e+00 4.9187518e+00 3.9355645e+00 4.9209267e+00 4.4497146e+00 4.7161140e+00 5.6635613e+00 3.2956846e+00 5.2947833e+00 4.7084108e+00 5.1767384e+00 4.0656879e+00 4.2065257e+00 4.4986941e+00 3.8543544e+00 4.0391220e+00 4.2738429e+00 4.3928114e+00 5.7890564e+00 5.9715517e+00 3.8320624e+00 4.7267005e+00 3.7498842e+00 5.7708014e+00 3.8168398e+00 4.6501080e+00 5.0044433e+00 3.7068836e+00 3.7763550e+00 4.5042646e+00 4.8165110e+00 5.1578102e+00 5.5839155e+00 4.5200609e+00 3.9608542e+00 4.3918790e+00 5.2992517e+00 4.5407542e+00 4.3739561e+00 3.6695956e+00 4.4403343e+00 4.6130415e+00 4.2323959e+00 3.9355645e+00 4.8773316e+00 4.7188476e+00 4.2560614e+00 3.9234348e+00 4.1524235e+00 4.3283407e+00 3.9303212e+00 3.8934542e-01 5.4292906e-01 4.4535192e-01 5.3309112e-01 4.5581864e-01 4.2538717e-01 3.3319064e+00 3.0058998e+00 3.4822680e+00 2.4967542e+00 3.1249915e+00 2.9284660e+00 3.1836200e+00 1.8265014e+00 3.1331426e+00 2.3481462e+00 2.1458939e+00 2.6572703e+00 2.5437119e+00 3.1519721e+00 2.0470220e+00 2.9815576e+00 2.9302134e+00 2.5421955e+00 3.0374850e+00 2.3632684e+00 3.2598750e+00 2.4873223e+00 3.3884269e+00 3.1477087e+00 2.8156804e+00 2.9556616e+00 3.3682605e+00 3.5401725e+00 2.9561205e+00 1.9790422e+00 2.2832934e+00 2.1885968e+00 2.3571494e+00 3.5486864e+00 2.9260462e+00 2.9587612e+00 3.2530866e+00 2.9361879e+00 2.5256527e+00 2.4631898e+00 2.8325946e+00 3.0534395e+00 2.4619105e+00 1.8618589e+00 2.6377354e+00 2.6235630e+00 2.6314198e+00 2.7785210e+00 1.5475473e+00 2.5392051e+00 4.5179415e+00 3.5641186e+00 4.4752183e+00 4.0626016e+00 4.3069105e+00 5.2164277e+00 2.9689697e+00 4.8634846e+00 4.3067423e+00 4.7194915e+00 3.6262912e+00 3.7979761e+00 4.0547736e+00 3.4875352e+00 3.6400497e+00 3.8418637e+00 3.9849753e+00 5.3352888e+00 5.5294519e+00 3.4830211e+00 4.2776053e+00 3.3760149e+00 5.3253207e+00 3.4004918e+00 4.2238184e+00 4.5645220e+00 3.2914954e+00 3.3718862e+00 4.0995928e+00 4.3725648e+00 4.7075069e+00 5.1063282e+00 4.1113292e+00 3.5651462e+00 4.0375056e+00 4.8132427e+00 4.1268905e+00 3.9732869e+00 3.2685282e+00 3.9810803e+00 4.1706050e+00 3.7449914e+00 3.5641186e+00 4.4464848e+00 4.2774083e+00 3.7941767e+00 3.5148434e+00 3.7206115e+00 3.9162695e+00 3.5510950e+00 8.6137722e-01 3.2352160e-01 7.6166891e-01 4.2667565e-01 6.2660376e-01 3.0634640e+00 2.7392828e+00 3.2125175e+00 2.3391296e+00 2.8734025e+00 2.6707502e+00 2.9145708e+00 1.7569738e+00 2.8671376e+00 2.1479276e+00 2.1308063e+00 2.4108292e+00 2.3854031e+00 2.8851564e+00 1.8368900e+00 2.7201546e+00 2.6724144e+00 2.2982662e+00 2.8483417e+00 2.1701312e+00 3.0045018e+00 2.2531409e+00 3.1444983e+00 2.8783309e+00 2.5586145e+00 2.6967931e+00 3.1073497e+00 3.2779401e+00 2.7018605e+00 1.8104298e+00 2.1219691e+00 2.0368741e+00 2.1367260e+00 3.2905600e+00 2.6692615e+00 2.6939411e+00 2.9863438e+00 2.7320931e+00 2.2698938e+00 2.2722516e+00 2.5933163e+00 2.7845473e+00 2.2472326e+00 1.8195937e+00 2.4037412e+00 2.3571494e+00 2.3781826e+00 2.5200525e+00 1.5411691e+00 2.3001580e+00 4.2694227e+00 3.3237039e+00 4.2115652e+00 3.7930080e+00 4.0498216e+00 4.9425633e+00 2.7652100e+00 4.5847429e+00 4.0464464e+00 4.4666326e+00 3.3738930e+00 3.5479683e+00 3.8004969e+00 3.2711669e+00 3.4346585e+00 3.6043418e+00 3.7146255e+00 5.0600559e+00 5.2639977e+00 3.2609948e+00 4.0260071e+00 3.1481222e+00 5.0506841e+00 3.1599876e+00 3.9594081e+00 4.2851208e+00 3.0501817e+00 3.1181310e+00 3.8476631e+00 4.0931004e+00 4.4378867e+00 4.8317916e+00 3.8652515e+00 3.2970551e+00 3.7653550e+00 4.5583070e+00 3.8836720e+00 3.7008091e+00 3.0188386e+00 3.7282629e+00 3.9300286e+00 3.5186510e+00 3.3237039e+00 4.1891573e+00 4.0376133e+00 3.5648733e+00 3.2885200e+00 3.4693398e+00 3.6732275e+00 3.2917360e+00 8.1385214e-01 2.5251796e-01 7.6787403e-01 3.2586371e-01 3.5846101e+00 3.2546607e+00 3.7315988e+00 2.6609901e+00 3.3659358e+00 3.1439065e+00 3.4298218e+00 1.9383545e+00 3.3723944e+00 2.5580763e+00 2.1777421e+00 2.8983020e+00 2.6954219e+00 3.3808052e+00 2.2790175e+00 3.2344170e+00 3.1579733e+00 2.7462372e+00 3.2292608e+00 2.5444216e+00 3.5028333e+00 2.7205595e+00 3.6067948e+00 3.3670797e+00 3.0557792e+00 3.2048395e+00 3.6088607e+00 3.7891577e+00 3.1900581e+00 2.1641873e+00 2.4447974e+00 2.3408917e+00 2.5700421e+00 3.7710363e+00 3.1506190e+00 3.2040124e+00 3.5027314e+00 3.1322650e+00 2.7512730e+00 2.6533250e+00 3.0299528e+00 3.2862185e+00 2.6656374e+00 1.9477421e+00 2.8481000e+00 2.8454952e+00 2.8544453e+00 3.0132514e+00 1.6658308e+00 2.7590026e+00 4.7688362e+00 3.7943375e+00 4.7263320e+00 4.2949506e+00 4.5532150e+00 5.4636648e+00 3.1768366e+00 5.1030228e+00 4.5342701e+00 4.9831843e+00 3.8820426e+00 4.0358897e+00 4.3088496e+00 3.7133362e+00 3.8949006e+00 4.1025163e+00 4.2237423e+00 5.5888590e+00 5.7742361e+00 3.6743314e+00 4.5370189e+00 3.6141649e+00 5.5687868e+00 3.6395551e+00 4.4736906e+00 4.8085584e+00 3.5338163e+00 3.6144782e+00 4.3417782e+00 4.6138035e+00 4.9524148e+00 5.3625968e+00 4.3570317e+00 3.7932922e+00 4.2488997e+00 5.0747397e+00 4.3832471e+00 4.2110583e+00 3.5113289e+00 4.2399031e+00 4.4320962e+00 4.0189525e+00 3.7943375e+00 4.7000551e+00 4.5409269e+00 4.0612006e+00 3.7475562e+00 3.9722979e+00 4.1719819e+00 3.7859347e+00 6.9325418e-01 2.1269358e-01 5.0905001e-01 3.3337914e+00 3.0376046e+00 3.4948415e+00 2.6099670e+00 3.1641230e+00 2.9745020e+00 3.2202056e+00 1.9796375e+00 3.1511769e+00 2.4469125e+00 2.3235342e+00 2.7196435e+00 2.6337042e+00 3.1881331e+00 2.1375243e+00 2.9985516e+00 2.9847499e+00 2.5867906e+00 3.1255136e+00 2.4464131e+00 3.3203249e+00 2.5432298e+00 3.4386456e+00 3.1757436e+00 2.8453413e+00 2.9797458e+00 3.3872988e+00 3.5731577e+00 3.0079222e+00 2.0710306e+00 2.3862284e+00 2.2923690e+00 2.4260574e+00 3.5964347e+00 2.9822786e+00 3.0067893e+00 3.2740296e+00 3.0040546e+00 2.5786309e+00 2.5579141e+00 2.8891491e+00 3.0885642e+00 2.5333642e+00 2.0283816e+00 2.7031874e+00 2.6626548e+00 2.6835197e+00 2.8149627e+00 1.7472675e+00 2.6016025e+00 4.5864727e+00 3.6358644e+00 4.5092329e+00 4.1008711e+00 4.3608329e+00 5.2329560e+00 3.0685922e+00 4.8761643e+00 4.3448624e+00 4.7688607e+00 3.6817961e+00 3.8534030e+00 4.1033021e+00 3.5811154e+00 3.7530357e+00 3.9183591e+00 4.0199092e+00 5.3504583e+00 5.5556442e+00 3.5517562e+00 4.3306939e+00 3.4641481e+00 5.3377017e+00 3.4637450e+00 4.2663890e+00 4.5772917e+00 3.3571533e+00 3.4296698e+00 4.1575709e+00 4.3797497e+00 4.7253427e+00 5.1097682e+00 4.1763898e+00 3.5983434e+00 4.0666282e+00 4.8419079e+00 4.2005634e+00 4.0083071e+00 3.3318481e+00 4.0278210e+00 4.2396851e+00 3.8171357e+00 3.6358644e+00 4.4969460e+00 4.3490518e+00 3.8705614e+00 3.5905415e+00 3.7766172e+00 3.9906340e+00 3.6052686e+00 7.6752131e-01 4.0147421e-01 3.6660608e+00 3.3135273e+00 3.8017611e+00 2.7018605e+00 3.4275679e+00 3.1699903e+00 3.4789136e+00 1.9730403e+00 3.4358679e+00 2.5840983e+00 2.2331309e+00 2.9422991e+00 2.7581254e+00 3.4189217e+00 2.3233512e+00 3.3121677e+00 3.1836200e+00 2.7812918e+00 3.2896000e+00 2.5816639e+00 3.5379744e+00 2.7795823e+00 3.6532797e+00 3.4029480e+00 3.1195329e+00 3.2770643e+00 3.6772238e+00 3.8493740e+00 3.2305582e+00 2.2173292e+00 2.4840285e+00 2.3814525e+00 2.6148507e+00 3.8019334e+00 3.1710836e+00 3.2447990e+00 3.5700242e+00 3.1955870e+00 2.7803619e+00 2.6879415e+00 3.0521985e+00 3.3264150e+00 2.7089627e+00 1.9908167e+00 2.8775912e+00 2.8744403e+00 2.8857836e+00 3.0658390e+00 1.7171798e+00 2.7936066e+00 4.8056033e+00 3.8247106e+00 4.7834029e+00 4.3283723e+00 4.5943507e+00 5.5219241e+00 3.2001457e+00 5.1552806e+00 4.5786596e+00 5.0423887e+00 3.9353963e+00 4.0804944e+00 4.3648743e+00 3.7469906e+00 3.9346929e+00 4.1523445e+00 4.2650653e+00 5.6468786e+00 5.8321617e+00 3.7127205e+00 4.5943003e+00 3.6444925e+00 5.6275915e+00 3.6885686e+00 4.5212945e+00 4.8635596e+00 3.5807904e+00 3.6545040e+00 4.3827087e+00 4.6717461e+00 5.0136174e+00 5.4320857e+00 4.3994790e+00 3.8323332e+00 4.2736523e+00 5.1501184e+00 4.4249262e+00 4.2490074e+00 3.5500567e+00 4.3022895e+00 4.4864974e+00 4.0933482e+00 3.8247106e+00 4.7495571e+00 4.5943072e+00 4.1245629e+00 3.7976741e+00 4.0232438e+00 4.2129603e+00 3.8158144e+00 4.4535192e-01 3.3681634e+00 3.1015495e+00 3.5417515e+00 2.6663854e+00 3.2198557e+00 3.0579528e+00 3.2934163e+00 2.0153916e+00 3.2040320e+00 2.5204039e+00 2.3388377e+00 2.7956674e+00 2.6725726e+00 3.2655357e+00 2.2078644e+00 3.0402181e+00 3.0721050e+00 2.6595270e+00 3.1749624e+00 2.5094912e+00 3.4048516e+00 2.6019240e+00 3.5045178e+00 3.2523394e+00 2.8999277e+00 3.0267460e+00 3.4333346e+00 3.6317584e+00 3.0844423e+00 2.1209506e+00 2.4419061e+00 2.3443191e+00 2.4920874e+00 3.6775470e+00 3.0715602e+00 3.0884019e+00 3.3261336e+00 3.0501817e+00 2.6631094e+00 2.6243758e+00 2.9691171e+00 3.1659032e+00 2.5983106e+00 2.0538718e+00 2.7808700e+00 2.7473221e+00 2.7650187e+00 2.8804789e+00 1.7660585e+00 2.6784604e+00 4.6691123e+00 3.7183181e+00 4.5689156e+00 4.1821417e+00 4.4377562e+00 5.2873851e+00 3.1455384e+00 4.9362269e+00 4.4131751e+00 4.8285697e+00 3.7508315e+00 3.9249912e+00 4.1665786e+00 3.6588207e+00 3.8312584e+00 3.9914600e+00 4.0953360e+00 5.4042844e+00 5.6094349e+00 3.6203759e+00 4.3940519e+00 3.5472449e+00 5.3896044e+00 3.5318477e+00 4.3383367e+00 4.6370771e+00 3.4283809e+00 3.5084967e+00 4.2335104e+00 4.4348302e+00 4.7765764e+00 5.1494118e+00 4.2515997e+00 3.6735311e+00 4.1503255e+00 4.8803856e+00 4.2802235e+00 4.0874500e+00 3.4119017e+00 4.0856134e+00 4.3069340e+00 3.8658667e+00 3.7183181e+00 4.5670800e+00 4.4180998e+00 3.9298460e+00 3.6561219e+00 3.8459316e+00 4.0712063e+00 3.6910219e+00 3.5300704e+00 3.2300705e+00 3.6894189e+00 2.6906230e+00 3.3402581e+00 3.1455455e+00 3.4142500e+00 1.9871921e+00 3.3364095e+00 2.5801041e+00 2.2579027e+00 2.8953397e+00 2.7040361e+00 3.3706887e+00 2.2848507e+00 3.1889632e+00 3.1641787e+00 2.7405950e+00 3.2351115e+00 2.5567836e+00 3.5066271e+00 2.7031874e+00 3.5985833e+00 3.3547156e+00 3.0245025e+00 3.1656773e+00 3.5695690e+00 3.7624530e+00 3.1847809e+00 2.1665831e+00 2.4678343e+00 2.3636654e+00 2.5680682e+00 3.7710578e+00 3.1606607e+00 3.1985717e+00 3.4665002e+00 3.1244487e+00 2.7540755e+00 2.6724144e+00 3.0392407e+00 3.2747247e+00 2.6671530e+00 2.0066796e+00 2.8554471e+00 2.8427684e+00 2.8549070e+00 2.9928504e+00 1.7230625e+00 2.7611864e+00 4.7742557e+00 3.8047268e+00 4.7018935e+00 4.2892152e+00 4.5488617e+00 5.4303909e+00 3.2037606e+00 5.0724791e+00 4.5217060e+00 4.9623634e+00 3.8707551e+00 4.0296740e+00 4.2915574e+00 3.7321091e+00 3.9154512e+00 4.1022778e+00 4.2113304e+00 5.5520135e+00 5.7453700e+00 3.6849669e+00 4.5212945e+00 3.6308222e+00 5.5330176e+00 3.6335075e+00 4.4607162e+00 4.7770551e+00 3.5299194e+00 3.6126659e+00 4.3390241e+00 4.5771358e+00 4.9175276e+00 5.3118739e+00 4.3561658e+00 3.7812981e+00 4.2455646e+00 5.0340960e+00 4.3872001e+00 4.2015182e+00 3.5126820e+00 4.2176412e+00 4.4249262e+00 3.9985367e+00 3.8047268e+00 4.6887893e+00 4.5358705e+00 4.0502685e+00 3.7475470e+00 3.9619683e+00 4.1767972e+00 3.7895730e+00 6.0611244e-01 2.1845981e-01 1.6212669e+00 5.6769031e-01 1.3103855e+00 7.0437330e-01 2.2923690e+00 4.4651726e-01 1.8497891e+00 2.2196852e+00 1.1283882e+00 1.3099706e+00 9.0827783e-01 1.5790055e+00 3.7427929e-01 1.4018200e+00 1.2701139e+00 1.1341579e+00 1.5133392e+00 1.1134787e+00 1.0264409e+00 8.7202528e-01 9.2264612e-01 6.6432544e-01 4.5470518e-01 4.1449626e-01 4.3456114e-01 1.0085601e+00 1.5838351e+00 1.6415861e+00 1.6742876e+00 1.3140585e+00 1.0496979e+00 1.6013574e+00 1.0054037e+00 3.0546431e-01 1.0168833e+00 1.4293465e+00 1.5774037e+00 1.5278635e+00 9.0252542e-01 1.2994764e+00 2.2231652e+00 1.4317371e+00 1.3207609e+00 1.3224963e+00 8.3649708e-01 2.2607507e+00 1.3421549e+00 1.5412452e+00 1.2539702e+00 1.2643026e+00 1.0324775e+00 1.2342162e+00 1.9387309e+00 2.1209313e+00 1.6105602e+00 1.1912106e+00 1.5832517e+00 7.2486328e-01 8.5585239e-01 9.4009473e-01 1.3873503e+00 1.3945703e+00 1.0313560e+00 8.7720955e-01 2.0658700e+00 2.2655571e+00 1.2460824e+00 1.1834841e+00 1.4368020e+00 2.0378171e+00 7.9878917e-01 1.0960883e+00 1.3102767e+00 8.5105559e-01 9.2480363e-01 1.0805899e+00 1.1043883e+00 1.4313279e+00 1.8006336e+00 1.1235486e+00 7.6625946e-01 1.1633029e+00 1.5390703e+00 1.2493717e+00 9.0965328e-01 1.0182895e+00 8.6983677e-01 1.1880428e+00 9.2095040e-01 1.2539702e+00 1.3335022e+00 1.3109705e+00 9.5035453e-01 9.2112464e-01 7.6166891e-01 1.1418127e+00 1.1276971e+00 5.6700421e-01 1.1449732e+00 4.0293660e-01 7.3813096e-01 2.1845981e-01 1.7551534e+00 3.4583729e-01 1.2603076e+00 1.7354460e+00 5.3588338e-01 1.0777972e+00 3.8934542e-01 1.0669582e+00 3.0811765e-01 8.0294841e-01 7.8768770e-01 1.0018083e+00 1.0175773e+00 5.5419992e-01 5.9426792e-01 7.3496673e-01 4.8927739e-01 3.4378533e-01 2.5651975e-01 5.2655962e-01 5.4292906e-01 4.4417983e-01 1.1634384e+00 1.1527805e+00 1.2020363e+00 8.1521713e-01 7.2526325e-01 1.0018083e+00 4.1449626e-01 3.2586371e-01 9.0277242e-01 8.3172002e-01 1.0440187e+00 9.7779835e-01 3.2816937e-01 8.1521713e-01 1.7083888e+00 8.6361309e-01 7.3145860e-01 7.3145860e-01 3.6171588e-01 1.7816674e+00 7.6914805e-01 1.6177449e+00 8.3060013e-01 1.4732400e+00 1.1107977e+00 1.3546017e+00 2.2147080e+00 1.5404344e+00 1.8624350e+00 1.3603471e+00 1.7544191e+00 6.8961791e-01 8.7478495e-01 1.0733200e+00 9.5271386e-01 1.0466623e+00 9.9348625e-01 1.0085601e+00 2.3452277e+00 2.5288464e+00 1.0480665e+00 1.3130641e+00 8.9653332e-01 2.3282127e+00 5.8914551e-01 1.2436109e+00 1.5625142e+00 4.8927739e-01 4.8927739e-01 1.1593224e+00 1.3813076e+00 1.7138020e+00 2.1603815e+00 1.1866786e+00 6.4755655e-01 1.1521791e+00 1.8620175e+00 1.2565757e+00 1.0067784e+00 4.8927739e-01 1.0056742e+00 1.2594846e+00 9.3049742e-01 8.3060013e-01 1.4762619e+00 1.3817041e+00 9.4558103e-01 7.9613242e-01 7.7074935e-01 1.0627606e+00 7.0776547e-01 1.5593809e+00 4.8036801e-01 1.2165505e+00 6.1151102e-01 2.2871743e+00 4.0176783e-01 1.7963441e+00 2.1851225e+00 1.0906388e+00 1.2884575e+00 8.0619006e-01 1.6156775e+00 5.0905001e-01 1.3093850e+00 1.2434795e+00 1.0262547e+00 1.4875372e+00 1.0069726e+00 1.0669582e+00 7.4511469e-01 8.2384013e-01 6.9728513e-01 5.3022554e-01 3.0811765e-01 2.5651975e-01 9.2264612e-01 1.6478667e+00 1.6180636e+00 1.6694817e+00 1.3199714e+00 9.2288144e-01 1.5068702e+00 9.2859317e-01 2.4837156e-01 9.3238528e-01 1.3813076e+00 1.5238543e+00 1.4346522e+00 8.1130291e-01 1.2794849e+00 2.2234347e+00 1.3629833e+00 1.2671726e+00 1.2652657e+00 8.1810461e-01 2.3116343e+00 1.2988558e+00 1.3410314e+00 1.1276971e+00 1.0590298e+00 8.2552685e-01 1.0264409e+00 1.7485421e+00 2.0171203e+00 1.4118594e+00 9.7949166e-01 1.3980896e+00 5.7324170e-01 6.6317860e-01 7.4586719e-01 1.2603076e+00 1.2604558e+00 8.7504951e-01 6.6432544e-01 1.8915404e+00 2.0711789e+00 1.1178264e+00 9.9368623e-01 1.3223897e+00 1.8515012e+00 6.6384020e-01 8.9303452e-01 1.1107977e+00 7.2823007e-01 8.1099042e-01 8.7170815e-01 9.0876485e-01 1.2370832e+00 1.6626615e+00 9.2112464e-01 6.2482915e-01 9.7377870e-01 1.3752391e+00 1.0720678e+00 7.0386584e-01 9.0876485e-01 6.8917100e-01 1.0120221e+00 8.0294841e-01 1.1276971e+00 1.1329323e+00 1.1353806e+00 8.1385214e-01 7.7588000e-01 5.8914551e-01 9.8054887e-01 1.0085601e+00 1.0879524e+00 6.2605182e-01 1.2079117e+00 8.2305664e-01 1.1903922e+00 4.4651726e-01 6.5648056e-01 7.4164639e-01 5.2942799e-01 8.9852394e-01 6.4755655e-01 1.3035649e+00 7.7074935e-01 4.8135521e-01 7.7074935e-01 2.5651975e-01 1.1022599e+00 6.8917100e-01 1.0627606e+00 8.6290690e-01 9.7759114e-01 1.1868139e+00 1.3969297e+00 1.4333755e+00 7.6166891e-01 5.6075294e-01 2.5251796e-01 3.7427929e-01 4.4651726e-01 1.1444449e+00 7.7074935e-01 1.1571858e+00 1.3491011e+00 8.2624515e-01 7.0086313e-01 2.0000000e-01 4.4535192e-01 8.9852394e-01 3.7427929e-01 7.7885297e-01 4.1449626e-01 7.0826681e-01 6.1092863e-01 8.2275389e-01 1.0198386e+00 5.0905001e-01 2.2002582e+00 1.1640914e+00 2.2347161e+00 1.6833015e+00 1.9584639e+00 2.9773446e+00 7.2852070e-01 2.5984158e+00 1.9494155e+00 2.5625921e+00 1.4644662e+00 1.4491244e+00 1.8190688e+00 1.0934620e+00 1.3861754e+00 1.6265426e+00 1.6626615e+00 3.1878246e+00 3.2549253e+00 1.0346741e+00 2.0606771e+00 1.0425476e+00 3.0882196e+00 1.1022599e+00 1.9692383e+00 2.3537589e+00 1.0082605e+00 1.0950112e+00 1.7332099e+00 2.1942739e+00 2.5032087e+00 3.0886055e+00 1.7538274e+00 1.2342162e+00 1.6237100e+00 2.7181432e+00 1.8926658e+00 1.6507294e+00 1.0082605e+00 1.8244836e+00 1.9254808e+00 1.7303440e+00 1.1640914e+00 2.1641182e+00 2.0565627e+00 1.6435752e+00 1.1782910e+00 1.4699978e+00 1.7142546e+00 1.2095267e+00 8.0326782e-01 5.0991930e-01 1.8350577e+00 2.1269358e-01 1.3537729e+00 1.7146525e+00 6.5172743e-01 8.5585239e-01 4.0438741e-01 1.1847335e+00 3.4583729e-01 9.0252542e-01 8.2372435e-01 6.2024833e-01 1.0324775e+00 6.6827038e-01 6.5172743e-01 3.8776762e-01 4.4535192e-01 3.2816937e-01 2.5651975e-01 3.2586371e-01 4.3691963e-01 5.0180477e-01 1.2342162e+00 1.1573546e+00 1.2172454e+00 8.7848692e-01 6.2205176e-01 1.1016264e+00 6.9006418e-01 3.2586371e-01 5.2371571e-01 9.4492923e-01 1.0646687e+00 1.0101422e+00 4.1449626e-01 8.2552685e-01 1.7679545e+00 9.2288144e-01 8.3888121e-01 8.2929029e-01 3.8934542e-01 1.8776878e+00 8.5434758e-01 1.5481649e+00 7.9613242e-01 1.3657247e+00 1.0085601e+00 1.2641849e+00 2.1002817e+00 1.6030661e+00 1.7482192e+00 1.2100024e+00 1.7005893e+00 6.6491075e-01 7.3535471e-01 9.7949166e-01 8.8358844e-01 1.0423677e+00 9.5498315e-01 9.1051084e-01 2.2737459e+00 2.4086493e+00 7.2486328e-01 1.2326306e+00 9.4832302e-01 2.2096958e+00 3.8934542e-01 1.1729895e+00 1.4561933e+00 3.8776762e-01 4.8927739e-01 1.0574300e+00 1.2643026e+00 1.5918956e+00 2.0914667e+00 1.0906388e+00 5.0817745e-01 1.0182895e+00 1.7457596e+00 1.2250414e+00 9.1663180e-01 5.4292906e-01 9.1750357e-01 1.1891470e+00 8.8358844e-01 7.9613242e-01 1.3916739e+00 1.3267389e+00 8.9303452e-01 5.3309112e-01 6.9325418e-01 1.0574013e+00 7.0776547e-01 7.0776547e-01 1.3071453e+00 9.0049692e-01 6.9006418e-01 1.2079117e+00 3.6171588e-01 7.1791510e-01 4.1586001e-01 9.0049692e-01 1.0069726e+00 2.5251796e-01 4.4651726e-01 6.9325418e-01 6.2538346e-01 5.9426792e-01 5.6631629e-01 6.6827038e-01 4.1449626e-01 7.0437330e-01 9.0277242e-01 1.1055069e+00 1.0496979e+00 3.2586371e-01 1.0083666e+00 7.4164639e-01 8.3888121e-01 6.0181382e-01 6.3861009e-01 3.4378533e-01 6.3808075e-01 1.0101422e+00 6.8961791e-01 4.1449626e-01 5.3588338e-01 2.5651975e-01 4.1586001e-01 5.0991930e-01 1.2869134e+00 3.0546431e-01 3.2586371e-01 3.0275928e-01 5.0905001e-01 1.5278635e+00 4.0000000e-01 1.7279861e+00 7.4586719e-01 1.7831878e+00 1.1718516e+00 1.4824233e+00 2.5111349e+00 8.3620494e-01 2.1256928e+00 1.4719311e+00 2.0814452e+00 1.0175773e+00 1.0014633e+00 1.3875139e+00 7.7885297e-01 1.1473003e+00 1.2144845e+00 1.1591754e+00 2.6773585e+00 2.7900071e+00 7.0776547e-01 1.6151673e+00 7.3496673e-01 2.6263773e+00 7.2526325e-01 1.4645804e+00 1.8755806e+00 6.3924842e-01 6.2407309e-01 1.2731262e+00 1.7507664e+00 2.0635966e+00 2.6116811e+00 1.3129189e+00 7.4855857e-01 1.1149070e+00 2.3160147e+00 1.4246028e+00 1.1229843e+00 5.6075294e-01 1.4120836e+00 1.5094575e+00 1.4108494e+00 7.4586719e-01 1.6884234e+00 1.6211869e+00 1.3017208e+00 8.1521713e-01 1.0401425e+00 1.2452704e+00 6.9728513e-01 1.8185955e+00 4.8135521e-01 1.2509218e+00 1.8049926e+00 5.8914551e-01 1.2205493e+00 4.2538717e-01 1.1912106e+00 4.6472023e-01 7.1840099e-01 8.9207714e-01 1.1017858e+00 1.1127329e+00 4.1586001e-01 7.8197925e-01 8.0326782e-01 5.7257017e-01 5.2655962e-01 4.3456114e-01 6.2660376e-01 4.8135521e-01 4.5581864e-01 1.3318128e+00 1.2468939e+00 1.3144065e+00 9.4935318e-01 6.6384020e-01 9.1075311e-01 3.2586371e-01 4.1449626e-01 1.0130748e+00 8.3280511e-01 1.0906119e+00 9.6204649e-01 3.4583729e-01 9.3296062e-01 1.7901543e+00 8.7170815e-01 7.3805807e-01 7.3805807e-01 5.2655962e-01 1.9041928e+00 8.1521713e-01 1.4138821e+00 7.3805807e-01 1.3166957e+00 9.2264612e-01 1.1533602e+00 2.0690479e+00 1.4700179e+00 1.7092525e+00 1.2231847e+00 1.5870088e+00 5.0592043e-01 7.5791688e-01 9.0575661e-01 9.1750357e-01 9.1802948e-01 8.1304731e-01 8.1638392e-01 2.1978861e+00 2.3802944e+00 1.1107977e+00 1.1386292e+00 7.9878917e-01 2.1900222e+00 6.1092863e-01 1.0480665e+00 1.4148192e+00 5.0991930e-01 3.6171588e-01 9.7825559e-01 1.2593659e+00 1.5912764e+00 2.0615043e+00 1.0056742e+00 5.6700421e-01 1.0137836e+00 1.7695175e+00 1.0597541e+00 8.0619006e-01 3.8934542e-01 8.6513410e-01 1.0755693e+00 8.4050231e-01 7.3805807e-01 1.2832075e+00 1.1947245e+00 8.0660588e-01 8.2105460e-01 5.9426792e-01 8.6983677e-01 5.3309112e-01 1.9083318e+00 6.7975091e-01 4.1449626e-01 1.2452704e+00 1.1763980e+00 1.6420607e+00 7.9016429e-01 1.9365498e+00 1.3172979e+00 1.0653845e+00 1.5684812e+00 8.1304731e-01 1.7169601e+00 1.2768639e+00 1.8804140e+00 1.6311692e+00 1.6315809e+00 1.8424891e+00 2.1489929e+00 2.2038673e+00 1.4613032e+00 8.0587320e-01 6.8961791e-01 6.4704320e-01 9.7949166e-01 1.9250543e+00 1.2802798e+00 1.5824669e+00 2.0485534e+00 1.5790055e+00 1.0078327e+00 8.2305664e-01 1.1498269e+00 1.5838351e+00 1.0137836e+00 1.2418578e-01 1.0230441e+00 1.1119327e+00 1.0941064e+00 1.4719311e+00 3.2816937e-01 1.0165138e+00 2.9338155e+00 1.9158303e+00 3.0455280e+00 2.4635485e+00 2.7430309e+00 3.7921012e+00 1.2632199e+00 3.4105293e+00 2.7619926e+00 3.3261421e+00 2.2045198e+00 2.2598424e+00 2.6204307e+00 1.8330979e+00 2.0701646e+00 2.3622531e+00 2.4525409e+00 3.9619101e+00 4.0743074e+00 1.8315269e+00 2.8475224e+00 1.7388184e+00 3.9054939e+00 1.9111264e+00 2.7377517e+00 3.1510494e+00 1.7964653e+00 1.8350071e+00 2.5277506e+00 2.9970778e+00 3.3196868e+00 3.8532018e+00 2.5453122e+00 2.0312250e+00 2.3887539e+00 3.5269824e+00 2.5986705e+00 2.4210417e+00 1.7228354e+00 2.6125646e+00 2.7062349e+00 2.4839132e+00 1.9158303e+00 2.9502077e+00 2.8139128e+00 2.4180244e+00 1.9947426e+00 2.2550764e+00 2.3956104e+00 1.9332869e+00 1.4468211e+00 1.8027242e+00 7.3851529e-01 9.0658670e-01 5.0180477e-01 1.2418578e+00 2.5651975e-01 1.0022010e+00 8.6361309e-01 7.3851529e-01 1.1055064e+00 7.8197925e-01 6.8961791e-01 4.8927739e-01 5.0270183e-01 3.2352160e-01 2.1269358e-01 2.5651975e-01 4.9857388e-01 6.0611244e-01 1.2633451e+00 1.2342162e+00 1.2794849e+00 9.3824087e-01 7.0776547e-01 1.2014753e+00 7.0429250e-01 2.5651975e-01 6.2482915e-01 1.0329901e+00 1.1593224e+00 1.1069580e+00 5.0180477e-01 8.9712482e-01 1.8394959e+00 1.0181000e+00 9.2095040e-01 9.2047746e-01 4.4417983e-01 1.9314297e+00 9.4103005e-01 1.6328100e+00 9.3238528e-01 1.3969297e+00 1.0389435e+00 1.3327491e+00 2.0961718e+00 1.7103548e+00 1.7405652e+00 1.2330392e+00 1.7474965e+00 7.7919451e-01 8.1810461e-01 1.0613462e+00 1.0417249e+00 1.2331989e+00 1.0974061e+00 9.4125538e-01 2.2568188e+00 2.4127176e+00 8.4050231e-01 1.3145067e+00 1.0960883e+00 2.1973666e+00 5.6075294e-01 1.2221471e+00 1.4467170e+00 5.7324170e-01 6.3977563e-01 1.1341579e+00 1.2436109e+00 1.5826476e+00 2.0476065e+00 1.1847335e+00 5.3665999e-01 1.0391247e+00 1.7521201e+00 1.3293211e+00 9.4492923e-01 6.9369532e-01 1.0019724e+00 1.3083079e+00 1.0406064e+00 9.3238528e-01 1.4580335e+00 1.4387122e+00 1.0576043e+00 7.0233835e-01 8.1304731e-01 1.1697902e+00 8.2372435e-01 7.6914805e-01 7.2823007e-01 8.7504951e-01 1.0611732e+00 4.5581864e-01 1.5204521e+00 6.6432544e-01 6.5172743e-01 1.0866092e+00 4.5470518e-01 1.0573285e+00 9.0074515e-01 1.3083079e+00 1.0613462e+00 1.2123540e+00 1.4190961e+00 1.6754036e+00 1.6596797e+00 8.9095811e-01 6.1947990e-01 4.2418962e-01 4.8927739e-01 6.0551856e-01 1.2951131e+00 6.2538346e-01 1.0030700e+00 1.5663312e+00 1.1396406e+00 4.5581864e-01 3.2816937e-01 5.3665999e-01 1.0166932e+00 6.0670504e-01 6.9167458e-01 4.4535192e-01 5.6075294e-01 5.3665999e-01 1.0182895e+00 9.1075311e-01 5.0991930e-01 2.2632657e+00 1.2601890e+00 2.4384530e+00 1.8269304e+00 2.0927845e+00 3.1870761e+00 6.4290921e-01 2.8096725e+00 2.1462316e+00 2.6900593e+00 1.5901181e+00 1.6364474e+00 2.0101738e+00 1.1729895e+00 1.4078246e+00 1.7083888e+00 1.8278268e+00 3.3435703e+00 3.4604677e+00 1.2331989e+00 2.2206574e+00 1.0719360e+00 3.3068858e+00 1.3163598e+00 2.0994872e+00 2.5539296e+00 1.1948578e+00 1.1991899e+00 1.8828324e+00 2.4245766e+00 2.7358293e+00 3.2702869e+00 1.8959565e+00 1.4312787e+00 1.7665622e+00 2.9527671e+00 1.9255490e+00 1.7860690e+00 1.0796583e+00 2.0205937e+00 2.0647798e+00 1.9168750e+00 1.2601890e+00 2.3069539e+00 2.1608869e+00 1.8128438e+00 1.3838212e+00 1.6376058e+00 1.7220696e+00 1.2768639e+00 1.2687651e+00 1.0344911e+00 1.5320003e+00 9.7779835e-01 1.8837258e+00 1.2979752e+00 1.0012667e+00 1.3957794e+00 7.2526325e-01 1.6850672e+00 1.2372418e+00 1.7004805e+00 1.4979666e+00 1.5611922e+00 1.7745022e+00 2.0153916e+00 2.0815027e+00 1.3830210e+00 8.1242502e-01 5.8914551e-01 5.7257017e-01 9.5676647e-01 1.7518264e+00 1.2724737e+00 1.6669115e+00 1.9675324e+00 1.4200435e+00 1.1136605e+00 7.1881659e-01 1.0072663e+00 1.5134954e+00 9.3238528e-01 3.2352160e-01 9.5222919e-01 1.1681971e+00 1.1043332e+00 1.4120836e+00 6.2205176e-01 1.0078327e+00 2.8028143e+00 1.7525933e+00 2.8815987e+00 2.2944257e+00 2.5825907e+00 3.6132031e+00 1.1179743e+00 3.2286633e+00 2.5673494e+00 3.2133201e+00 2.1127170e+00 2.0867931e+00 2.4721080e+00 1.6626615e+00 1.9456450e+00 2.2607446e+00 2.2983453e+00 3.8335668e+00 3.8818411e+00 1.6299374e+00 2.7127377e+00 1.6132118e+00 3.7182722e+00 1.7559391e+00 2.6123294e+00 2.9966900e+00 1.6625128e+00 1.7303440e+00 2.3560577e+00 2.8340159e+00 3.1407514e+00 3.7366777e+00 2.3765195e+00 1.8701780e+00 2.1933937e+00 3.3657099e+00 2.5066503e+00 2.2797241e+00 1.6331631e+00 2.4808010e+00 2.5698271e+00 2.3770285e+00 1.7525933e+00 2.8053367e+00 2.6963680e+00 2.2934334e+00 1.8202060e+00 2.1229819e+00 2.3231793e+00 1.8122257e+00 8.5462626e-01 5.0991930e-01 6.2538346e-01 8.0358695e-01 3.7255734e-01 5.3022554e-01 8.2105460e-01 6.0900723e-01 6.2482915e-01 3.0844217e-01 7.9580667e-01 5.4292906e-01 5.0991930e-01 7.0437330e-01 9.7270522e-01 9.9532071e-01 3.0546431e-01 7.9878917e-01 7.2343175e-01 7.8768770e-01 4.2418962e-01 9.0876485e-01 5.2862779e-01 4.4651726e-01 8.5205778e-01 7.4164639e-01 3.2586371e-01 5.7867728e-01 5.3309112e-01 4.1449626e-01 4.5581864e-01 1.2131545e+00 3.8776762e-01 3.2352160e-01 2.5251796e-01 3.2816937e-01 1.3221405e+00 2.8507955e-01 1.8873850e+00 9.2859317e-01 1.8730683e+00 1.4111029e+00 1.6550480e+00 2.6320302e+00 1.0406064e+00 2.2657813e+00 1.6658308e+00 2.1339968e+00 1.0072663e+00 1.1444449e+00 1.4417207e+00 8.9971984e-01 1.1192426e+00 1.2342162e+00 1.3367840e+00 2.7726042e+00 2.9277580e+00 9.9368623e-01 1.6694974e+00 7.8197925e-01 2.7493700e+00 7.5976039e-01 1.5849874e+00 1.9802196e+00 6.4290921e-01 7.1799256e-01 1.4445746e+00 1.8216794e+00 2.1462316e+00 2.6367554e+00 1.4616539e+00 9.2264612e-01 1.4088394e+00 2.3235034e+00 1.5120955e+00 1.3224963e+00 6.2024833e-01 1.4078246e+00 1.5587730e+00 1.2801437e+00 9.2859317e-01 1.8096161e+00 1.6710566e+00 1.2378278e+00 8.9653332e-01 1.0864449e+00 1.3071453e+00 9.0827783e-01 8.9159388e-01 7.7763126e-01 1.0417249e+00 9.1802948e-01 5.0905001e-01 6.2605182e-01 4.4651726e-01 1.2379511e+00 6.2024833e-01 9.5571254e-01 8.1558458e-01 7.5976039e-01 9.2944046e-01 1.0661822e+00 1.2662457e+00 8.2342214e-01 5.8851328e-01 5.1691876e-01 5.3588338e-01 5.1691876e-01 1.1717125e+00 9.6838716e-01 1.2601890e+00 1.1258723e+00 4.8135521e-01 8.3649708e-01 5.5419992e-01 6.2407309e-01 9.0965328e-01 4.2538717e-01 1.0906388e+00 5.9426792e-01 8.1638392e-01 7.3145860e-01 7.3145860e-01 1.1880428e+00 6.3861009e-01 2.2927296e+00 1.2766755e+00 2.1156916e+00 1.6869465e+00 1.9835684e+00 2.8209672e+00 1.2028939e+00 2.4458200e+00 1.8683030e+00 2.5149752e+00 1.4746001e+00 1.4371043e+00 1.7501772e+00 1.2500343e+00 1.5991931e+00 1.7211928e+00 1.6271057e+00 3.0580852e+00 3.1168283e+00 1.0328064e+00 2.0203543e+00 1.2344562e+00 2.9146252e+00 1.0941064e+00 1.9515265e+00 2.2002582e+00 1.0531192e+00 1.1790011e+00 1.7600233e+00 1.9895190e+00 2.3106402e+00 2.8876509e+00 1.7983401e+00 1.1763719e+00 1.6118154e+00 2.5100676e+00 2.0039716e+00 1.6449456e+00 1.1276917e+00 1.7245185e+00 1.9495298e+00 1.6638124e+00 1.2766755e+00 2.1512175e+00 2.1034605e+00 1.6449189e+00 1.1924295e+00 1.4645804e+00 1.8408873e+00 1.3037063e+00 1.1269972e+00 6.2482915e-01 5.0991930e-01 6.6827038e-01 7.0479928e-01 8.8358844e-01 4.5581864e-01 7.0086313e-01 4.2667565e-01 2.0656129e-01 4.4535192e-01 5.2942799e-01 7.0086313e-01 6.3861009e-01 2.1269358e-01 1.2261087e+00 1.0119857e+00 1.1001291e+00 8.1638392e-01 4.2667565e-01 7.0479928e-01 5.1691876e-01 6.0611244e-01 6.2538346e-01 6.9006418e-01 8.3812833e-01 6.4290921e-01 1.2418578e-01 7.3145860e-01 1.6044563e+00 6.2660376e-01 5.7324170e-01 5.6700421e-01 4.0293660e-01 1.7981158e+00 6.4806901e-01 1.5090287e+00 5.9426792e-01 1.4258804e+00 9.2264612e-01 1.2221471e+00 2.1613095e+00 1.2165505e+00 1.7814077e+00 1.1712156e+00 1.7475837e+00 7.0233835e-01 7.0776547e-01 1.0386594e+00 7.0233835e-01 1.0228981e+00 9.8450810e-01 8.5105559e-01 2.3257048e+00 2.4547248e+00 7.1504098e-01 1.2838690e+00 6.9369532e-01 2.2753334e+00 4.3691963e-01 1.1508502e+00 1.5109753e+00 4.0438741e-01 4.1449626e-01 1.0168833e+00 1.3670543e+00 1.6898941e+00 2.2253038e+00 1.0655560e+00 4.1586001e-01 9.0827783e-01 1.9262937e+00 1.2075315e+00 8.3888121e-01 4.0438741e-01 1.0401425e+00 1.2250414e+00 1.0755693e+00 5.9426792e-01 1.3866792e+00 1.3487634e+00 1.0056742e+00 5.9426792e-01 7.2526325e-01 1.0425476e+00 5.0592043e-01 1.2125198e+00 9.0252542e-01 5.4292906e-01 1.0679144e+00 4.5470518e-01 1.2307737e+00 5.6700421e-01 1.3629833e+00 1.1271488e+00 9.3592296e-01 1.1329323e+00 1.4903933e+00 1.5826638e+00 9.2264612e-01 3.7598397e-01 5.1691876e-01 5.3022554e-01 3.4583729e-01 1.5102079e+00 9.0478973e-01 9.6664346e-01 1.3678655e+00 1.0012667e+00 5.0090417e-01 4.9766035e-01 8.1130291e-01 1.0331736e+00 4.5581864e-01 7.6955924e-01 6.0551856e-01 6.0181382e-01 6.0060595e-01 8.1242502e-01 7.2852070e-01 5.0180477e-01 2.4944334e+00 1.5259640e+00 2.4897635e+00 2.0286682e+00 2.2758462e+00 3.2467454e+00 1.0417249e+00 2.8819633e+00 2.2804674e+00 2.7472449e+00 1.6234861e+00 1.7644184e+00 2.0587064e+00 1.4533724e+00 1.6559784e+00 1.8347926e+00 1.9605308e+00 3.3855928e+00 3.5452222e+00 1.4540815e+00 2.2852232e+00 1.3536716e+00 3.3617477e+00 1.3717027e+00 2.2096171e+00 2.5931780e+00 1.2603076e+00 1.3371180e+00 2.0643410e+00 2.4233813e+00 2.7521037e+00 3.2246201e+00 2.0784533e+00 1.5405106e+00 2.0088441e+00 2.9099860e+00 2.1140685e+00 1.9448322e+00 1.2330392e+00 2.0122105e+00 2.1687358e+00 1.8353933e+00 1.5259640e+00 2.4321505e+00 2.2783778e+00 1.8251179e+00 1.4795374e+00 1.7068208e+00 1.9049236e+00 1.5165339e+00 1.1004794e+00 9.4753140e-01 9.4125538e-01 1.1763719e+00 8.5105559e-01 6.6432544e-01 7.2526325e-01 6.4290921e-01 3.2816937e-01 1.2418578e-01 4.4535192e-01 6.2024833e-01 7.0479928e-01 1.2172454e+00 1.3021788e+00 1.3289150e+00 9.6141901e-01 8.9366705e-01 1.3003320e+00 7.1840099e-01 3.0275928e-01 8.2654509e-01 1.1056650e+00 1.2497790e+00 1.2234738e+00 6.0611244e-01 9.6141901e-01 1.8661545e+00 1.1149070e+00 1.0038051e+00 1.0038051e+00 5.0991930e-01 1.8886923e+00 1.0132664e+00 1.7427900e+00 1.0573285e+00 1.5462225e+00 1.2230220e+00 1.4700179e+00 2.2554582e+00 1.8183902e+00 1.9191337e+00 1.4359851e+00 1.8399871e+00 8.1558458e-01 9.6664346e-01 1.1754055e+00 1.1548215e+00 1.2523175e+00 1.1229906e+00 1.1149070e+00 2.3868096e+00 2.5734684e+00 1.0665149e+00 1.4148192e+00 1.1763719e+00 2.3591336e+00 6.6317860e-01 1.3545005e+00 1.6178623e+00 6.3735887e-01 7.2526325e-01 1.2709820e+00 1.4169523e+00 1.7425222e+00 2.1449779e+00 1.3015611e+00 7.4777660e-01 1.2601890e+00 1.8513630e+00 1.3897316e+00 1.1185330e+00 7.6625946e-01 1.0919712e+00 1.3783420e+00 1.0120221e+00 1.0573285e+00 1.5860263e+00 1.5022608e+00 1.0597541e+00 8.3060013e-01 8.9095811e-01 1.2107055e+00 9.5498315e-01 5.9426792e-01 8.8835966e-01 7.2486328e-01 4.3456114e-01 6.3108414e-01 7.9580667e-01 5.4292906e-01 8.0619006e-01 1.0003942e+00 1.2057554e+00 1.1282371e+00 4.0147421e-01 1.0482443e+00 8.3812833e-01 9.3049742e-01 6.4290921e-01 6.6432544e-01 2.0000000e-01 4.9766035e-01 1.1016264e+00 8.7202528e-01 4.1312257e-01 6.2660376e-01 4.4651726e-01 5.0180477e-01 5.9426792e-01 1.3172979e+00 3.8776762e-01 3.7427929e-01 3.2816937e-01 6.1151102e-01 1.5338492e+00 4.2667565e-01 1.6536633e+00 6.6827038e-01 1.8195408e+00 1.1798960e+00 1.4588731e+00 2.5552364e+00 7.7039952e-01 2.1764356e+00 1.5179392e+00 2.0659196e+00 1.0072663e+00 1.0165138e+00 1.4077317e+00 7.0523271e-01 9.7441804e-01 1.1290808e+00 1.1879078e+00 2.7003420e+00 2.8251568e+00 8.7478495e-01 1.6113870e+00 5.7257017e-01 2.6756977e+00 7.5976039e-01 1.4611141e+00 1.9290721e+00 6.4290921e-01 5.8851328e-01 1.2509218e+00 1.8216794e+00 2.1226924e+00 2.6556584e+00 1.2741904e+00 8.1527569e-01 1.1396406e+00 2.3658814e+00 1.3219975e+00 1.1377990e+00 4.8036801e-01 1.4418088e+00 1.4695582e+00 1.4097125e+00 6.6827038e-01 1.6762567e+00 1.5624022e+00 1.2731262e+00 8.4812820e-01 1.0423677e+00 1.1235486e+00 6.3808075e-01 7.0328431e-01 2.8507955e-01 9.7377870e-01 3.7598397e-01 8.9971984e-01 6.2538346e-01 6.2988288e-01 8.4591037e-01 1.1042097e+00 1.1949615e+00 5.7867728e-01 6.0121055e-01 4.2418962e-01 4.8036801e-01 2.4837156e-01 1.0588560e+00 6.3735887e-01 8.4050231e-01 1.0216438e+00 6.0900723e-01 3.8776762e-01 3.8934542e-01 3.8934542e-01 6.0900723e-01 2.1269358e-01 1.0100718e+00 3.2586371e-01 3.2816937e-01 3.2816937e-01 4.6472023e-01 1.1765359e+00 3.0546431e-01 2.1603815e+00 1.1833480e+00 2.0696037e+00 1.5733646e+00 1.8844302e+00 2.7913211e+00 1.0279631e+00 2.4069427e+00 1.8096161e+00 2.4013270e+00 1.3194762e+00 1.3641156e+00 1.6852518e+00 1.1847335e+00 1.5344133e+00 1.5901181e+00 1.5133392e+00 2.9601125e+00 3.0929882e+00 9.7994716e-01 1.9359434e+00 1.1341579e+00 2.8969791e+00 1.0267435e+00 1.8174459e+00 2.1353579e+00 9.5498315e-01 1.0067464e+00 1.6752254e+00 1.9600024e+00 2.3015655e+00 2.8161147e+00 1.7177705e+00 1.0636401e+00 1.5095556e+00 2.5229584e+00 1.8388413e+00 1.5016471e+00 9.4558103e-01 1.6620056e+00 1.8661202e+00 1.6246433e+00 1.1833480e+00 2.0524784e+00 1.9917352e+00 1.5896248e+00 1.1449732e+00 1.3635198e+00 1.6539414e+00 1.1377990e+00 7.8695083e-01 1.0194752e+00 6.9369532e-01 4.4535192e-01 6.2538346e-01 7.1169738e-01 8.2684479e-01 7.5791688e-01 8.9971984e-01 7.0394675e-01 1.0777972e+00 8.9366705e-01 9.7548738e-01 7.3805807e-01 6.9369532e-01 9.9348625e-01 1.2013436e+00 9.4287188e-01 2.1845981e-01 9.1163729e-01 7.8197925e-01 7.4777660e-01 8.0096515e-01 6.3735887e-01 1.5043029e+00 7.0776547e-01 8.7021234e-01 7.8197925e-01 7.0784540e-01 1.6629594e+00 7.2852070e-01 1.7521201e+00 7.5705927e-01 1.5812904e+00 1.1798960e+00 1.4306494e+00 2.2994849e+00 1.3047221e+00 1.9342059e+00 1.3259654e+00 2.0165210e+00 1.0919404e+00 8.7720955e-01 1.2180145e+00 7.1881659e-01 1.0466623e+00 1.2389598e+00 1.1426203e+00 2.5872805e+00 2.5766735e+00 5.0817745e-01 1.4924169e+00 8.3060013e-01 2.3982377e+00 5.8914551e-01 1.4728952e+00 1.7209381e+00 6.3808075e-01 8.3649708e-01 1.1916257e+00 1.5183917e+00 1.7983401e+00 2.4620092e+00 1.2174316e+00 7.4549115e-01 1.1136343e+00 1.9965599e+00 1.5255331e+00 1.1891470e+00 8.2384013e-01 1.2304904e+00 1.3937115e+00 1.1842231e+00 7.5705927e-01 1.6132118e+00 1.5725854e+00 1.1127329e+00 5.8914551e-01 9.8054887e-01 1.4089719e+00 9.0521488e-01 1.1043332e+00 5.3665999e-01 1.1040512e+00 8.6137722e-01 8.5335130e-01 1.0692258e+00 1.3395518e+00 1.4121163e+00 7.2343175e-01 4.0438741e-01 1.4096146e-01 2.1845981e-01 2.5251796e-01 1.2340567e+00 7.2852070e-01 1.0216438e+00 1.2599182e+00 7.7360126e-01 5.1607523e-01 2.1269358e-01 5.0270183e-01 8.3345577e-01 2.1845981e-01 7.4893123e-01 3.4378533e-01 5.3022554e-01 4.5581864e-01 6.9167458e-01 9.4080461e-01 3.4583729e-01 2.3056888e+00 1.2961380e+00 2.2790932e+00 1.7645599e+00 2.0520955e+00 3.0186066e+00 8.9827435e-01 2.6386155e+00 2.0191749e+00 2.5992685e+00 1.4843324e+00 1.5325189e+00 1.8691652e+00 1.2554784e+00 1.5582387e+00 1.7070813e+00 1.7171798e+00 3.2008583e+00 3.3121677e+00 1.1313840e+00 2.1147926e+00 1.1879078e+00 3.1280700e+00 1.1681971e+00 2.0145868e+00 2.3728666e+00 1.0720678e+00 1.1437669e+00 1.8347926e+00 2.2027051e+00 2.5315934e+00 3.0688850e+00 1.8636112e+00 1.2768639e+00 1.7126039e+00 2.7381221e+00 1.9739212e+00 1.7039473e+00 1.0573285e+00 1.8507968e+00 2.0095044e+00 1.7591313e+00 1.2961380e+00 2.2339736e+00 2.1358764e+00 1.7106141e+00 1.2731262e+00 1.5241199e+00 1.7828037e+00 1.2869134e+00 8.7720955e-01 7.4777660e-01 6.5223271e-01 7.1881659e-01 7.6914805e-01 9.3999899e-01 8.0619006e-01 4.2418962e-01 1.4104707e+00 1.2144845e+00 1.3128167e+00 1.0056742e+00 5.3665999e-01 5.6075294e-01 3.4583729e-01 8.1130291e-01 9.7730901e-01 7.8197925e-01 9.9089002e-01 8.0353565e-01 4.3691963e-01 9.6095130e-01 1.7110336e+00 7.7033318e-01 7.5196795e-01 7.0776547e-01 6.5648056e-01 1.8915404e+00 7.9878917e-01 1.2730931e+00 5.3022554e-01 1.4349259e+00 8.3620494e-01 1.0733200e+00 2.1767273e+00 1.0960883e+00 1.8048569e+00 1.2035173e+00 1.6539414e+00 6.2482915e-01 7.0523271e-01 1.0184370e+00 7.1169738e-01 6.6432544e-01 7.0480730e-01 8.1527569e-01 2.3116343e+00 2.4505705e+00 1.0085601e+00 1.2063335e+00 4.5581864e-01 2.3022338e+00 5.6700421e-01 1.0655560e+00 1.5550492e+00 4.4417983e-01 2.5251796e-01 8.8358844e-01 1.4559276e+00 1.7532140e+00 2.2755980e+00 8.9653332e-01 5.5160819e-01 9.1163729e-01 1.9862884e+00 9.1163729e-01 7.6752131e-01 2.0656129e-01 1.0632598e+00 1.0516761e+00 1.0391247e+00 5.3022554e-01 1.2756158e+00 1.1406052e+00 8.7720955e-01 7.3851529e-01 6.5633874e-01 7.0776547e-01 3.2352160e-01 9.1273187e-01 7.0043186e-01 3.7427929e-01 5.7324170e-01 9.3615100e-01 1.0733200e+00 5.0991930e-01 5.9426792e-01 6.5633874e-01 6.7975091e-01 3.0811765e-01 1.1056650e+00 7.7360126e-01 7.0429250e-01 8.2552685e-01 5.7257017e-01 5.0905001e-01 6.1968386e-01 6.5223271e-01 6.0611244e-01 3.2586371e-01 1.2028939e+00 5.0905001e-01 4.2667565e-01 4.1449626e-01 3.0546431e-01 1.2470767e+00 4.0147421e-01 2.1213832e+00 1.1521791e+00 2.0070710e+00 1.6126950e+00 1.8637576e+00 2.7490677e+00 1.2370832e+00 2.3910690e+00 1.8274132e+00 2.3004229e+00 1.1979861e+00 1.3368881e+00 1.5972416e+00 1.1093572e+00 1.3693737e+00 1.4644753e+00 1.5211725e+00 2.9013543e+00 3.0559175e+00 1.0590298e+00 1.8374244e+00 1.0423677e+00 2.8588399e+00 9.4309624e-01 1.7735968e+00 2.0979142e+00 8.5205778e-01 9.4287188e-01 1.6546836e+00 1.9109434e+00 2.2424413e+00 2.7118839e+00 1.6774684e+00 1.1029298e+00 1.6007141e+00 2.3898698e+00 1.7557336e+00 1.5191033e+00 8.5462626e-01 1.5344007e+00 1.7571295e+00 1.3898545e+00 1.1521791e+00 1.9987470e+00 1.8815752e+00 1.4085850e+00 1.0646687e+00 1.2740417e+00 1.5577803e+00 1.1296247e+00 4.0176783e-01 6.5223271e-01 6.3977563e-01 5.3022554e-01 5.7324170e-01 5.2574978e-01 1.4438552e+00 1.2221471e+00 1.3131724e+00 1.0406064e+00 3.4583729e-01 9.5943875e-01 9.2859317e-01 6.5172743e-01 5.1607523e-01 9.7548738e-01 1.0611732e+00 8.6137722e-01 5.3665999e-01 9.4854455e-01 1.8311457e+00 8.7420176e-01 8.7170815e-01 8.4050231e-01 6.5223271e-01 2.0303919e+00 8.9917007e-01 1.3866318e+00 5.7867728e-01 1.2002762e+00 7.4740267e-01 1.0440187e+00 1.9213397e+00 1.4087466e+00 1.5433565e+00 9.2836103e-01 1.6392533e+00 7.7360126e-01 5.0592043e-01 8.5585239e-01 6.8961791e-01 9.5035453e-01 9.5498315e-01 7.0776547e-01 2.1812146e+00 2.2081369e+00 3.7427929e-01 1.1335961e+00 7.7885297e-01 2.0291151e+00 3.2352160e-01 1.0661822e+00 1.3165513e+00 3.7598397e-01 5.3588338e-01 8.2305664e-01 1.1437730e+00 1.4415965e+00 2.0902718e+00 8.7848692e-01 3.2352160e-01 7.0479928e-01 1.6865203e+00 1.1904611e+00 7.5791688e-01 5.5492130e-01 8.9207714e-01 1.0805899e+00 9.6271042e-01 5.7867728e-01 1.2256881e+00 1.2481462e+00 8.8358844e-01 4.0147421e-01 6.4405773e-01 1.0887986e+00 5.9426792e-01 4.4651726e-01 5.4292906e-01 7.0437330e-01 7.0776547e-01 3.2816937e-01 1.2134101e+00 9.8820253e-01 1.0733200e+00 8.1099042e-01 4.9857388e-01 7.2172678e-01 6.5223271e-01 6.3808075e-01 5.3665999e-01 6.9369532e-01 8.2305664e-01 6.2482915e-01 2.5251796e-01 7.1799256e-01 1.5895397e+00 6.2205176e-01 5.7257017e-01 5.6769031e-01 4.0438741e-01 1.7935777e+00 6.4755655e-01 1.6267976e+00 7.4777660e-01 1.4807336e+00 9.7270522e-01 1.3173487e+00 2.1839601e+00 1.2277129e+00 1.7938033e+00 1.1948932e+00 1.8448199e+00 8.7383925e-01 8.2305664e-01 1.1418127e+00 8.4591037e-01 1.2153720e+00 1.1640914e+00 9.1163729e-01 2.3638833e+00 2.4815883e+00 6.3861009e-01 1.3946921e+00 8.5434758e-01 2.2902807e+00 6.1151102e-01 1.2452704e+00 1.5325394e+00 6.0121055e-01 6.1092863e-01 1.1228379e+00 1.3752705e+00 1.7103060e+00 2.2560685e+00 1.1879078e+00 4.5470518e-01 9.0454394e-01 1.9729066e+00 1.3650300e+00 9.0521488e-01 6.0670504e-01 1.1454006e+00 1.3674559e+00 1.2262704e+00 7.4777660e-01 1.4820085e+00 1.4947429e+00 1.1729895e+00 7.3145860e-01 8.7720955e-01 1.2163831e+00 6.5633874e-01 2.1845981e-01 5.6769031e-01 7.4777660e-01 4.2538717e-01 9.5099818e-01 9.7994716e-01 1.0119857e+00 6.5223271e-01 8.3888121e-01 1.0038051e+00 5.9426792e-01 4.6472023e-01 6.0121055e-01 8.0326782e-01 9.2836103e-01 9.0876485e-01 3.7598397e-01 6.3861009e-01 1.5602029e+00 8.0326782e-01 7.0129382e-01 7.0043186e-01 2.0000000e-01 1.6208239e+00 7.0437330e-01 1.8619092e+00 9.6271042e-01 1.6849072e+00 1.3188999e+00 1.5860263e+00 2.4084158e+00 1.5142414e+00 2.0543079e+00 1.5230852e+00 1.9980352e+00 9.4375082e-01 1.0588560e+00 1.3035649e+00 1.0035600e+00 1.2499342e+00 1.2459608e+00 1.2225634e+00 2.5586145e+00 2.7210925e+00 8.9366705e-01 1.5500052e+00 1.0014633e+00 2.5139485e+00 6.9369532e-01 1.4790710e+00 1.7580510e+00 6.2660376e-01 7.0429250e-01 1.3804167e+00 1.5625881e+00 1.8966943e+00 2.3518757e+00 1.4139741e+00 8.0358695e-01 1.3075101e+00 2.0455018e+00 1.5153654e+00 1.2234738e+00 6.6539428e-01 1.2342162e+00 1.5049644e+00 1.1591754e+00 9.6271042e-01 1.7107332e+00 1.6328100e+00 1.1880428e+00 8.3812833e-01 1.0106392e+00 1.3267389e+00 8.9767734e-01 4.2538717e-01 6.2024833e-01 6.0181382e-01 1.1431021e+00 1.1948932e+00 1.2269747e+00 8.6361309e-01 8.2552685e-01 1.2002640e+00 6.5223271e-01 3.0811765e-01 7.1462831e-01 1.0067784e+00 1.1396406e+00 1.1147518e+00 5.0817745e-01 8.5335130e-01 1.7711504e+00 1.0085601e+00 9.0454394e-01 9.0277242e-01 4.0438741e-01 1.8140813e+00 9.1075311e-01 1.7412567e+00 9.8054887e-01 1.5527694e+00 1.2155004e+00 1.4692412e+00 2.2702600e+00 1.7126039e+00 1.9279661e+00 1.4238090e+00 1.8539569e+00 8.1558458e-01 9.5035453e-01 1.1763980e+00 1.0621081e+00 1.2047214e+00 1.1205013e+00 1.1134787e+00 2.4108292e+00 2.5851693e+00 9.6095130e-01 1.4178113e+00 1.0879524e+00 2.3751496e+00 6.0900723e-01 1.3570688e+00 1.6277043e+00 5.7015910e-01 6.6491075e-01 1.2652657e+00 1.4292566e+00 1.7566567e+00 2.1846001e+00 1.2961380e+00 7.1840099e-01 1.2329148e+00 1.8795815e+00 1.3897316e+00 1.1149070e+00 6.8757066e-01 1.0960883e+00 1.3785366e+00 1.0168833e+00 9.8054887e-01 1.5871961e+00 1.5043071e+00 1.0597541e+00 7.7033318e-01 8.8861541e-01 1.2058675e+00 8.9134001e-01 3.4583729e-01 8.1130291e-01 1.5090287e+00 1.4644753e+00 1.5150043e+00 1.1847335e+00 8.1385214e-01 1.4041085e+00 8.9917007e-01 3.0811765e-01 6.6539428e-01 1.2643026e+00 1.3836712e+00 1.3112758e+00 7.0784540e-01 1.1353806e+00 2.0777059e+00 1.2396136e+00 1.1498269e+00 1.1474460e+00 6.9006418e-01 2.1775976e+00 1.1752673e+00 1.4613032e+00 1.0391247e+00 1.1810170e+00 8.7504951e-01 1.1390131e+00 1.8670836e+00 1.9048338e+00 1.5205305e+00 1.0228981e+00 1.5676403e+00 6.7975091e-01 6.6539428e-01 8.7175869e-01 1.1533602e+00 1.2459608e+00 9.7730901e-01 7.5082357e-01 2.0536508e+00 2.1838261e+00 8.9095811e-01 1.1306949e+00 1.2394907e+00 1.9665910e+00 5.6769031e-01 1.0425476e+00 1.2324706e+00 6.4704320e-01 7.3851529e-01 9.5476489e-01 1.0198386e+00 1.3510699e+00 1.8411319e+00 1.0100718e+00 5.2942799e-01 9.3801395e-01 1.5112621e+00 1.2002762e+00 7.7763126e-01 8.2899253e-01 8.2305664e-01 1.1377990e+00 9.1663180e-01 1.0391247e+00 1.2653669e+00 1.2757312e+00 9.2288144e-01 6.4405773e-01 6.6827038e-01 1.0851476e+00 9.3048953e-01 7.7074935e-01 1.6569692e+00 1.5391185e+00 1.6134578e+00 1.2794849e+00 7.1504098e-01 1.3197776e+00 7.9613242e-01 3.2586371e-01 8.6165877e-01 1.2653669e+00 1.4028652e+00 1.2701139e+00 6.6384020e-01 1.2172454e+00 2.1489775e+00 1.2262704e+00 1.1578646e+00 1.1452867e+00 7.9613242e-01 2.2808589e+00 1.1959482e+00 1.1500393e+00 9.1075311e-01 9.3999899e-01 6.4806901e-01 8.5434758e-01 1.6806723e+00 1.8184542e+00 1.3334814e+00 8.5205778e-01 1.2702636e+00 3.4583729e-01 4.3456114e-01 5.6700421e-01 1.0389435e+00 1.0122141e+00 6.4290921e-01 5.0905001e-01 1.8419636e+00 1.9902374e+00 9.3801395e-01 8.1810461e-01 1.1069580e+00 1.7940242e+00 4.4651726e-01 7.4740267e-01 1.0346741e+00 5.1691876e-01 6.0121055e-01 6.6827038e-01 8.5205778e-01 1.1776640e+00 1.6778021e+00 7.0776547e-01 4.2667565e-01 7.8695083e-01 1.3400806e+00 8.6165877e-01 5.3022554e-01 7.0437330e-01 5.0592043e-01 8.1273630e-01 6.0670504e-01 9.1075311e-01 9.7270522e-01 9.4352681e-01 6.0551856e-01 5.7257017e-01 3.4378533e-01 7.5705927e-01 8.0064372e-01 1.0450018e+00 8.4812820e-01 9.3847194e-01 6.2988288e-01 6.0611244e-01 6.0060595e-01 5.0090417e-01 7.0784540e-01 6.2538346e-01 5.0592043e-01 6.6932542e-01 5.5492130e-01 1.5422108e-01 5.6075294e-01 1.4235605e+00 4.6472023e-01 4.2418962e-01 3.8776762e-01 2.8192292e-01 1.5978583e+00 4.5581864e-01 1.6256459e+00 6.5633874e-01 1.5986180e+00 1.1106412e+00 1.3708966e+00 2.3519748e+00 1.1147518e+00 1.9798165e+00 1.3654173e+00 1.8856245e+00 7.7033318e-01 8.5335130e-01 1.1771643e+00 6.8076724e-01 9.7270522e-01 1.0165138e+00 1.0391247e+00 2.5081056e+00 2.6437138e+00 7.6716823e-01 1.4120836e+00 6.1947990e-01 2.4692682e+00 4.8927739e-01 1.3077572e+00 1.7030709e+00 3.8934542e-01 4.4651726e-01 1.1594648e+00 1.5551984e+00 1.8760773e+00 2.3977345e+00 1.1868139e+00 6.2024833e-01 1.1056650e+00 2.0821572e+00 1.2794849e+00 1.0244319e+00 3.7427929e-01 1.1646003e+00 1.3139135e+00 1.1119327e+00 6.5633874e-01 1.5344007e+00 1.4333755e+00 1.0386594e+00 6.3735887e-01 8.2372435e-01 1.0901359e+00 6.2081167e-01 3.4583729e-01 2.8192292e-01 4.1586001e-01 1.6237100e+00 1.0540105e+00 1.1816401e+00 1.4110536e+00 9.8450810e-01 6.6432544e-01 5.3665999e-01 9.0454394e-01 1.1389644e+00 5.0905001e-01 7.1799256e-01 7.1504098e-01 7.3813096e-01 7.2783368e-01 8.7021234e-01 6.9006418e-01 6.2482915e-01 2.6619364e+00 1.6754669e+00 2.5821869e+00 2.1421834e+00 2.4107926e+00 3.3209792e+00 1.2036484e+00 2.9531363e+00 2.3720162e+00 2.8824828e+00 1.7671769e+00 1.8842354e+00 2.1714345e+00 1.6176764e+00 1.8723516e+00 2.0134817e+00 2.0676751e+00 3.4808493e+00 3.6264553e+00 1.5230852e+00 2.4135751e+00 1.5351194e+00 3.4281547e+00 1.4948868e+00 2.3378347e+00 2.6680945e+00 1.3977032e+00 1.4832928e+00 2.1976523e+00 2.4795532e+00 2.8157449e+00 3.2956170e+00 2.2214438e+00 1.6336229e+00 2.1064881e+00 2.9775369e+00 2.2994849e+00 2.0603946e+00 1.3916739e+00 2.1189748e+00 2.3204945e+00 1.9672068e+00 1.6754669e+00 2.5635110e+00 2.4436082e+00 1.9753271e+00 1.6077195e+00 1.8374244e+00 2.0981613e+00 1.6585806e+00 1.2418578e-01 3.7598397e-01 1.3405045e+00 8.3812833e-01 1.1437669e+00 1.3915412e+00 8.9095811e-01 6.2538346e-01 2.5251796e-01 6.0611244e-01 9.6791960e-01 3.4583729e-01 6.2205176e-01 4.5581864e-01 6.5223271e-01 5.7867728e-01 8.2619017e-01 8.2654509e-01 4.6472023e-01 2.4061696e+00 1.3868130e+00 2.3985329e+00 1.8751958e+00 2.1591630e+00 3.1397173e+00 8.9852394e-01 2.7599154e+00 2.1335771e+00 2.7193241e+00 1.6021202e+00 1.6415861e+00 1.9851797e+00 1.3336069e+00 1.6224878e+00 1.8082080e+00 1.8350829e+00 3.3292261e+00 3.4297053e+00 1.2340567e+00 2.2298076e+00 1.2654843e+00 3.2489933e+00 1.2770118e+00 2.1337366e+00 2.4988032e+00 1.1786349e+00 1.2545301e+00 1.9393053e+00 2.3288114e+00 2.6536325e+00 3.2010862e+00 1.9648876e+00 1.3964978e+00 1.8188234e+00 2.8588023e+00 2.0766308e+00 1.8216743e+00 1.1634384e+00 1.9698860e+00 2.1147926e+00 1.8660999e+00 1.3868130e+00 2.3472906e+00 2.2417376e+00 1.8131734e+00 1.3752391e+00 1.6372749e+00 1.8856245e+00 1.3922071e+00 4.0176783e-01 1.4467170e+00 9.3049742e-01 1.2002762e+00 1.4411886e+00 9.4375082e-01 6.6432544e-01 3.7427929e-01 7.0784540e-01 1.0466623e+00 4.0176783e-01 5.6700421e-01 5.5492130e-01 6.9728513e-01 6.4405773e-01 8.7170815e-01 7.3535471e-01 5.3309112e-01 2.5193321e+00 1.5039793e+00 2.4895662e+00 1.9791576e+00 2.2673478e+00 3.2268480e+00 1.0014633e+00 2.8466240e+00 2.2303173e+00 2.8133325e+00 1.6962564e+00 1.7458338e+00 2.0805039e+00 1.4552205e+00 1.7454671e+00 1.9165907e+00 1.9332869e+00 3.4131779e+00 3.5208177e+00 1.3379696e+00 2.3275025e+00 1.3866044e+00 3.3340853e+00 1.3784233e+00 2.2317775e+00 2.5822073e+00 1.2828332e+00 1.3595018e+00 2.0485193e+00 2.4057315e+00 2.7355566e+00 3.2722484e+00 2.0762069e+00 1.4905436e+00 1.9191337e+00 2.9375895e+00 2.1864773e+00 1.9213461e+00 1.2702636e+00 2.0582667e+00 2.2206505e+00 1.9521784e+00 1.5039793e+00 2.4497583e+00 2.3480580e+00 1.9124077e+00 1.4817438e+00 1.7372199e+00 1.9937367e+00 1.5016471e+00 1.2122249e+00 6.7975091e-01 8.4050231e-01 1.0796583e+00 6.6539428e-01 3.4583729e-01 3.2816937e-01 5.2942799e-01 7.3145860e-01 1.2418578e-01 9.1163729e-01 3.2586371e-01 3.7427929e-01 3.2816937e-01 5.0592043e-01 1.0122141e+00 2.1845981e-01 2.2481791e+00 1.2631020e+00 2.1874158e+00 1.7295419e+00 1.9965608e+00 2.9333950e+00 1.0072663e+00 2.5632712e+00 1.9670002e+00 2.4858980e+00 1.3655398e+00 1.4724669e+00 1.7716601e+00 1.2125198e+00 1.4903113e+00 1.6105641e+00 1.6572339e+00 3.0940465e+00 3.2344170e+00 1.1332978e+00 2.0129643e+00 1.1341579e+00 3.0445772e+00 1.0864449e+00 1.9287276e+00 2.2802541e+00 9.8820253e-01 1.0688498e+00 1.7838044e+00 2.1039999e+00 2.4365934e+00 2.9349538e+00 1.8084630e+00 1.2266837e+00 1.7026843e+00 2.6138892e+00 1.8911946e+00 1.6476803e+00 9.7949166e-01 1.7305789e+00 1.9168750e+00 1.6065247e+00 1.2631020e+00 2.1541966e+00 2.0395401e+00 1.5896248e+00 1.1996741e+00 1.4306494e+00 1.6928004e+00 1.2436109e+00 7.5791688e-01 8.1242502e-01 7.6625946e-01 7.5976039e-01 1.0289803e+00 1.1332978e+00 7.9613242e-01 5.3665999e-01 1.1149070e+00 1.9007091e+00 9.2836103e-01 9.3610001e-01 9.1858284e-01 8.1638392e-01 2.1493214e+00 1.0132664e+00 1.1680362e+00 3.2352160e-01 1.2372418e+00 5.4292906e-01 8.7170815e-01 1.9366254e+00 1.1486378e+00 1.5564198e+00 8.7420176e-01 1.5682049e+00 6.6491075e-01 4.5470518e-01 8.8358844e-01 4.5581864e-01 8.0326782e-01 7.9878917e-01 5.9426792e-01 2.1460410e+00 2.1931311e+00 5.0180477e-01 1.0950112e+00 5.0592043e-01 2.0545952e+00 3.4378533e-01 9.3923979e-01 1.3512935e+00 3.4583729e-01 3.4583729e-01 6.6539428e-01 1.2670555e+00 1.5369942e+00 2.1465859e+00 7.2526325e-01 3.0546431e-01 5.0991930e-01 1.8206746e+00 9.8054887e-01 5.7015910e-01 3.8776762e-01 9.6664346e-01 9.9089002e-01 1.0262547e+00 3.2352160e-01 1.1127329e+00 1.1166017e+00 8.7848692e-01 3.8934542e-01 5.8914551e-01 8.8062848e-01 3.2586371e-01 6.4755655e-01 1.3011270e+00 1.0122141e+00 4.2538717e-01 6.2660376e-01 4.4651726e-01 7.0086313e-01 6.3735887e-01 1.2926374e+00 4.0176783e-01 4.2288438e-01 3.8934542e-01 8.0619006e-01 1.5230852e+00 4.6472023e-01 1.6933635e+00 7.0233835e-01 1.9584922e+00 1.2594846e+00 1.5411691e+00 2.6785768e+00 6.2605182e-01 2.3003744e+00 1.6284481e+00 2.1882128e+00 1.1729895e+00 1.1500393e+00 1.5577059e+00 7.1881659e-01 9.8985697e-01 1.2389598e+00 1.3108618e+00 2.8217641e+00 2.9357847e+00 9.3026633e-01 1.7457596e+00 5.7867728e-01 2.7994225e+00 9.3610001e-01 1.5801828e+00 2.0692197e+00 8.2384013e-01 7.4740267e-01 1.3410314e+00 1.9783833e+00 2.2683159e+00 2.8062463e+00 1.3610783e+00 9.7249562e-01 1.1868139e+00 2.5244698e+00 1.3852951e+00 1.2460824e+00 6.3808075e-01 1.6077195e+00 1.5873000e+00 1.5826476e+00 7.0233835e-01 1.7831878e+00 1.6667819e+00 1.4276261e+00 9.9519977e-01 1.1984588e+00 1.1903343e+00 7.0386584e-01 7.1840099e-01 1.1107977e+00 5.8624446e-01 9.8495853e-01 8.7504951e-01 4.1586001e-01 8.7720955e-01 1.5824669e+00 7.5976039e-01 5.5160819e-01 5.7741073e-01 5.4292906e-01 1.6736318e+00 6.7975091e-01 1.5883552e+00 8.2552685e-01 1.5948732e+00 1.1332978e+00 1.3595997e+00 2.3503762e+00 1.2554784e+00 1.9862884e+00 1.4596621e+00 1.8378727e+00 7.2852070e-01 9.6204649e-01 1.1697902e+00 9.6664346e-01 9.6271042e-01 9.5676647e-01 1.0496979e+00 2.4751922e+00 2.6546397e+00 1.2224367e+00 1.3843268e+00 7.2343175e-01 2.4751922e+00 7.5082357e-01 1.2832075e+00 1.7000773e+00 6.2988288e-01 5.0592043e-01 1.1833351e+00 1.5613251e+00 1.8886923e+00 2.3645560e+00 1.2016233e+00 7.5791688e-01 1.2125198e+00 2.0748074e+00 1.2155370e+00 1.0244319e+00 4.5470518e-01 1.1485394e+00 1.2770118e+00 1.0720678e+00 8.2552685e-01 1.5113992e+00 1.3835368e+00 1.0035600e+00 9.5571254e-01 8.2234151e-01 1.0120221e+00 6.5223271e-01 8.3888121e-01 1.1486378e+00 1.2994764e+00 1.2307737e+00 6.0181382e-01 1.0483827e+00 1.9867752e+00 1.1408504e+00 1.0391247e+00 1.0361698e+00 5.7867728e-01 2.0669733e+00 1.0646687e+00 1.4623898e+00 9.5866719e-01 1.2497790e+00 9.3048953e-01 1.1765359e+00 1.9666356e+00 1.8175297e+00 1.6242657e+00 1.1520347e+00 1.5603665e+00 5.7324170e-01 7.0233835e-01 8.8887100e-01 1.0919404e+00 1.1355826e+00 8.9712482e-01 8.1385214e-01 2.1052360e+00 2.2845234e+00 1.0166932e+00 1.1341579e+00 1.1332978e+00 2.0738150e+00 5.3309112e-01 1.0588560e+00 1.3224963e+00 5.5492130e-01 6.2538346e-01 9.8450810e-01 1.1271488e+00 1.4561933e+00 1.8911946e+00 1.0230441e+00 5.2574978e-01 1.0056742e+00 1.5916843e+00 1.1355826e+00 8.2105460e-01 7.1504098e-01 8.1527569e-01 1.1176720e+00 8.2899253e-01 9.5866719e-01 1.2943100e+00 1.2429818e+00 8.5205778e-01 7.0233835e-01 6.2660376e-01 9.8054887e-01 8.3649708e-01 8.7822463e-01 8.2899253e-01 8.1099042e-01 7.0826681e-01 5.8914551e-01 1.5042268e+00 7.3813096e-01 8.1558458e-01 7.4855857e-01 6.0121055e-01 1.6260946e+00 7.0386584e-01 1.8605327e+00 8.8503502e-01 1.6493191e+00 1.2601890e+00 1.5390703e+00 2.3592515e+00 1.4088394e+00 1.9940473e+00 1.4245508e+00 2.0716002e+00 1.1004436e+00 9.8820253e-01 1.2927814e+00 9.0056222e-01 1.2208301e+00 1.3194807e+00 1.1996741e+00 2.6153308e+00 2.6539963e+00 6.2538346e-01 1.5687169e+00 9.5271386e-01 2.4562038e+00 6.6491075e-01 1.5249255e+00 1.7538274e+00 6.6539428e-01 8.2619017e-01 1.3131724e+00 1.5409345e+00 1.8470010e+00 2.4533073e+00 1.3504603e+00 7.7039952e-01 1.2057554e+00 2.0352149e+00 1.6006330e+00 1.2331989e+00 8.0660588e-01 1.2747177e+00 1.5040391e+00 1.2426449e+00 8.8503502e-01 1.7019078e+00 1.6700310e+00 1.2144845e+00 7.4855857e-01 1.0401425e+00 1.4600567e+00 9.3296062e-01 5.0180477e-01 4.4651726e-01 6.2149089e-01 4.1586001e-01 1.0078327e+00 3.0275928e-01 1.4096146e-01 1.4096146e-01 6.0611244e-01 1.1536782e+00 2.0656129e-01 2.0491051e+00 1.0646687e+00 2.0979729e+00 1.5528443e+00 1.8279176e+00 2.8469870e+00 8.2234151e-01 2.4692682e+00 1.8399871e+00 2.3632803e+00 1.2493717e+00 1.3312249e+00 1.6756749e+00 1.0425476e+00 1.3092012e+00 1.4505265e+00 1.5123788e+00 2.9884772e+00 3.1361386e+00 1.0755693e+00 1.9017004e+00 9.3801395e-01 2.9635613e+00 9.8054887e-01 1.7833384e+00 2.1970231e+00 8.6513410e-01 8.9742724e-01 1.6159903e+00 2.0524973e+00 2.3760856e+00 2.8811560e+00 1.6399646e+00 1.0934620e+00 1.5205305e+00 2.5867433e+00 1.6928004e+00 1.4836711e+00 7.9580667e-01 1.6659943e+00 1.7839298e+00 1.5792930e+00 1.0646687e+00 2.0113485e+00 1.8901379e+00 1.5067717e+00 1.0950112e+00 1.3129189e+00 1.4875372e+00 1.0389435e+00 4.0293660e-01 8.0499049e-01 3.0546431e-01 7.8197925e-01 2.5251796e-01 5.1691876e-01 4.2538717e-01 7.4740267e-01 1.0181000e+00 3.2586371e-01 2.1717162e+00 1.1533602e+00 2.2234347e+00 1.6690840e+00 1.9433381e+00 2.9713636e+00 7.2486328e-01 2.5929835e+00 1.9489982e+00 2.5241649e+00 1.4089364e+00 1.4425304e+00 1.8012344e+00 1.0919712e+00 1.3726860e+00 1.5830057e+00 1.6408468e+00 3.1546522e+00 3.2544456e+00 1.0406064e+00 2.0352149e+00 1.0168833e+00 3.0859269e+00 1.0901359e+00 1.9325796e+00 2.3348454e+00 9.8054887e-01 1.0379132e+00 1.7250039e+00 2.1825260e+00 2.4995667e+00 3.0529994e+00 1.7458338e+00 1.2167151e+00 1.6214915e+00 2.7108297e+00 1.8418195e+00 1.6195190e+00 9.3847194e-01 1.7995863e+00 1.9034198e+00 1.7022897e+00 1.1533602e+00 2.1413027e+00 2.0233319e+00 1.6211869e+00 1.1770266e+00 1.4411886e+00 1.6502968e+00 1.1644030e+00 6.5633874e-01 4.4417983e-01 1.1332978e+00 2.1845981e-01 4.2538717e-01 3.4583729e-01 7.1504098e-01 1.4080793e+00 3.4583729e-01 1.8866180e+00 8.7848692e-01 1.9819543e+00 1.3312249e+00 1.6523803e+00 2.6988671e+00 6.9006418e-01 2.3100474e+00 1.6455737e+00 2.2934334e+00 1.2426449e+00 1.1905954e+00 1.5932297e+00 8.9095811e-01 1.2681309e+00 1.4065584e+00 1.3487634e+00 2.8835141e+00 2.9705897e+00 7.3805807e-01 1.8205354e+00 8.5462626e-01 2.8117234e+00 9.3049742e-01 1.6679957e+00 2.0758969e+00 8.4050231e-01 8.3060013e-01 1.4419145e+00 1.9521697e+00 2.2599493e+00 2.8310619e+00 1.4807336e+00 9.4558103e-01 1.2404967e+00 2.5235709e+00 1.6070713e+00 1.3102444e+00 7.5705927e-01 1.6281130e+00 1.7021627e+00 1.6240596e+00 8.7848692e-01 1.8790831e+00 1.8155245e+00 1.5040391e+00 1.0014633e+00 1.2481462e+00 1.4334902e+00 8.6165877e-01 6.6827038e-01 1.5475692e+00 5.8914551e-01 5.0503591e-01 4.9857388e-01 3.0811765e-01 1.7160413e+00 5.7324170e-01 1.5795964e+00 6.5648056e-01 1.4967461e+00 1.0182895e+00 1.3034549e+00 2.2380042e+00 1.2266837e+00 1.8619092e+00 1.2701139e+00 1.8007564e+00 7.2852070e-01 7.9016429e-01 1.0989735e+00 7.5705927e-01 1.0406064e+00 1.0184370e+00 9.3999899e-01 2.3886514e+00 2.5357185e+00 8.2684479e-01 1.3424112e+00 7.0776547e-01 2.3522207e+00 4.8927739e-01 1.2205493e+00 1.5832517e+00 4.2667565e-01 4.4417983e-01 1.0974061e+00 1.4319225e+00 1.7587110e+00 2.2711652e+00 1.1390131e+00 5.1691876e-01 1.0163549e+00 1.9782498e+00 1.2532075e+00 9.2859317e-01 4.1449626e-01 1.0852663e+00 1.2786117e+00 1.0887986e+00 6.5648056e-01 1.4596621e+00 1.3991741e+00 1.0313560e+00 6.6932542e-01 7.7553525e-01 1.0741917e+00 5.7257017e-01 9.4558103e-01 2.5651975e-01 4.1449626e-01 3.2816937e-01 4.8135521e-01 1.0908017e+00 2.1845981e-01 2.1701312e+00 1.1752673e+00 2.1084262e+00 1.6352583e+00 1.9101184e+00 2.8518881e+00 9.7825559e-01 2.4781934e+00 1.8745369e+00 2.4235816e+00 1.3078976e+00 1.3842113e+00 1.6965018e+00 1.1329323e+00 1.4319225e+00 1.5496439e+00 1.5691346e+00 3.0266197e+00 3.1503439e+00 1.0244319e+00 1.9425540e+00 1.0627606e+00 2.9623467e+00 1.0056742e+00 1.8539828e+00 2.2026387e+00 9.1163729e-01 9.9475949e-01 1.6952454e+00 2.0275673e+00 2.3581240e+00 2.8793190e+00 1.7227544e+00 1.1332978e+00 1.6029963e+00 2.5482247e+00 1.8278913e+00 1.5611067e+00 9.1163729e-01 1.6653066e+00 1.8462692e+00 1.5634147e+00 1.1752673e+00 2.0757295e+00 1.9739212e+00 1.5320003e+00 1.1179743e+00 1.3567326e+00 1.6362950e+00 1.1594648e+00 9.9475949e-01 1.1004436e+00 1.0720678e+00 1.4108494e+00 3.2816937e-01 9.8054887e-01 2.9240179e+00 1.9013501e+00 3.0016960e+00 2.4403742e+00 2.7185134e+00 3.7481490e+00 1.2643026e+00 3.3676733e+00 2.7249658e+00 3.2951180e+00 2.1701459e+00 2.2231652e+00 2.5778372e+00 1.8193838e+00 2.0594742e+00 2.3383666e+00 2.4210417e+00 3.9277558e+00 4.0319248e+00 1.8011138e+00 2.8105150e+00 1.7324239e+00 3.8595400e+00 1.8657887e+00 2.7098209e+00 3.1083486e+00 1.7551534e+00 1.8090259e+00 2.5002193e+00 2.9463843e+00 3.2688068e+00 3.8087204e+00 2.5182043e+00 1.9933741e+00 2.3692479e+00 3.4705738e+00 2.5885717e+00 2.3959721e+00 1.7005893e+00 2.5655126e+00 2.6734142e+00 2.4311441e+00 1.9013501e+00 2.9205331e+00 2.7876433e+00 2.3735872e+00 1.9516947e+00 2.2170194e+00 2.3879674e+00 1.9213461e+00 3.0546431e-01 2.0656129e-01 6.0611244e-01 1.2246352e+00 1.4096146e-01 1.9777274e+00 9.7249562e-01 2.0297383e+00 1.4616539e+00 1.7458338e+00 2.7737198e+00 7.5082357e-01 2.3931826e+00 1.7478866e+00 2.3213742e+00 1.2131545e+00 1.2498134e+00 1.6130724e+00 9.3824087e-01 1.2565757e+00 1.4029855e+00 1.4325768e+00 2.9414941e+00 3.0577671e+00 8.7720955e-01 1.8438146e+00 8.6956871e-01 2.8895427e+00 9.1310225e-01 1.7228354e+00 2.1321061e+00 8.0499049e-01 8.3345577e-01 1.5318874e+00 1.9898963e+00 2.3090270e+00 2.8491218e+00 1.5587730e+00 1.0122141e+00 1.4162017e+00 2.5326059e+00 1.6463627e+00 1.4047678e+00 7.3805807e-01 1.6165635e+00 1.7228488e+00 1.5520745e+00 9.7249562e-01 1.9420274e+00 1.8372522e+00 1.4628493e+00 1.0030700e+00 1.2523175e+00 1.4531349e+00 9.5571254e-01 1.2418578e-01 5.0270183e-01 1.2603076e+00 2.1269358e-01 1.9932786e+00 1.0168833e+00 1.9946994e+00 1.4557537e+00 1.7495699e+00 2.7337358e+00 9.0575661e-01 2.3519748e+00 1.7324239e+00 2.2796281e+00 1.1801240e+00 1.2450709e+00 1.5872286e+00 1.0267435e+00 1.3336069e+00 1.4152303e+00 1.4096199e+00 2.8778917e+00 3.0268604e+00 1.0067464e+00 1.8215944e+00 9.3824087e-01 2.8471683e+00 9.0658670e-01 1.6933635e+00 2.0801243e+00 8.0758367e-01 8.3783744e-01 1.5390703e+00 1.9310038e+00 2.2599493e+00 2.7651778e+00 1.5728839e+00 9.7949166e-01 1.4165336e+00 2.4822593e+00 1.6510537e+00 1.3842113e+00 7.5755387e-01 1.5773217e+00 1.7253276e+00 1.5255331e+00 1.0168833e+00 1.9287244e+00 1.8366596e+00 1.4599710e+00 1.0339865e+00 1.2378278e+00 1.4537266e+00 9.7249562e-01 5.0090417e-01 1.2507669e+00 1.2418578e-01 1.9589833e+00 9.7270522e-01 1.9792779e+00 1.4437673e+00 1.7230625e+00 2.7260686e+00 8.6012420e-01 2.3478326e+00 1.7190893e+00 2.2590861e+00 1.1454006e+00 1.2174316e+00 1.5614941e+00 9.5476489e-01 1.2555979e+00 1.3635198e+00 1.3969297e+00 2.8759951e+00 3.0161959e+00 9.4558103e-01 1.7925890e+00 8.6983677e-01 2.8416706e+00 8.6513410e-01 1.6742876e+00 2.0756986e+00 7.5871717e-01 7.9613242e-01 1.5107481e+00 1.9286915e+00 2.2531942e+00 2.7669732e+00 1.5384446e+00 9.7270522e-01 1.4111029e+00 2.4671050e+00 1.6105641e+00 1.3717027e+00 7.0429250e-01 1.5517600e+00 1.6837214e+00 1.4807336e+00 9.7270522e-01 1.9032219e+00 1.7953587e+00 1.4097072e+00 9.7855477e-01 1.2036484e+00 1.4110536e+00 9.4309624e-01 1.5090287e+00 5.0905001e-01 1.8619092e+00 9.1163729e-01 1.7230625e+00 1.3188999e+00 1.5883552e+00 2.4588872e+00 1.3193952e+00 2.0946464e+00 1.5338492e+00 2.0321740e+00 9.5099818e-01 1.0604511e+00 1.3277861e+00 9.3296062e-01 1.2221471e+00 1.2470767e+00 1.2266837e+00 2.6106370e+00 2.7667028e+00 8.7420176e-01 1.5746612e+00 8.9852394e-01 2.5679581e+00 6.9369532e-01 1.4905436e+00 1.8028753e+00 6.2149089e-01 6.9006418e-01 1.3813076e+00 1.6199747e+00 1.9552274e+00 2.4344864e+00 1.4148192e+00 8.0358695e-01 1.3039319e+00 2.1287551e+00 1.5153654e+00 1.2246352e+00 6.2660376e-01 1.2741904e+00 1.5160122e+00 1.2047214e+00 9.1163729e-01 1.7242097e+00 1.6420607e+00 1.2064640e+00 8.3812833e-01 1.0168833e+00 1.3257654e+00 8.6137722e-01 1.1533602e+00 3.1382691e+00 2.1485328e+00 3.1786790e+00 2.6799312e+00 2.9354140e+00 3.9353144e+00 1.5252485e+00 3.5658557e+00 2.9475994e+00 3.4455976e+00 2.3167786e+00 2.4320363e+00 2.7459122e+00 2.0598189e+00 2.2501104e+00 2.5013206e+00 2.6321552e+00 4.0910078e+00 4.2293986e+00 2.0521052e+00 2.9731112e+00 1.9619929e+00 4.0491656e+00 2.0481101e+00 2.8946126e+00 3.2860707e+00 1.9342059e+00 2.0025214e+00 2.7210925e+00 3.1148548e+00 3.4424959e+00 3.9360563e+00 2.7333517e+00 2.2078200e+00 2.6383936e+00 3.6047462e+00 2.7713578e+00 2.6121617e+00 1.8925840e+00 2.7075477e+00 2.8419886e+00 2.5215069e+00 2.1485328e+00 3.1102248e+00 2.9517129e+00 2.5041493e+00 2.1435335e+00 2.3887866e+00 2.5633372e+00 2.1544995e+00 2.0467316e+00 1.0576043e+00 2.0528819e+00 1.5379283e+00 1.8096161e+00 2.8029161e+00 8.6012420e-01 2.4272793e+00 1.8028753e+00 2.3372930e+00 1.2144845e+00 1.2985682e+00 1.6312555e+00 1.0166932e+00 1.3073038e+00 1.4333755e+00 1.4843487e+00 2.9588514e+00 3.0950947e+00 9.7949166e-01 1.8647706e+00 9.3615100e-01 2.9181741e+00 9.3049742e-01 1.7594421e+00 2.1522124e+00 8.2342214e-01 8.7720955e-01 1.5965946e+00 1.9973159e+00 2.3235032e+00 2.8379387e+00 1.6211988e+00 1.0588560e+00 1.5076049e+00 2.5254157e+00 1.6945041e+00 1.4637418e+00 7.8197925e-01 1.6130724e+00 1.7539916e+00 1.5193574e+00 1.0576043e+00 1.9849009e+00 1.8691652e+00 1.4607586e+00 1.0375119e+00 1.2741904e+00 1.4947429e+00 1.0361698e+00 1.0621081e+00 8.3649708e-01 7.6590510e-01 4.0176783e-01 1.3455136e+00 1.8827665e+00 1.1093572e+00 9.5676647e-01 9.0852141e-01 9.4309624e-01 8.9852394e-01 6.8076724e-01 1.2002762e+00 9.7825559e-01 7.0479928e-01 7.8197925e-01 1.4637418e+00 1.5390703e+00 1.4628493e+00 6.2538346e-01 1.2208301e+00 1.4754770e+00 1.2162549e+00 5.2574978e-01 1.0104465e+00 1.2832075e+00 1.1810170e+00 6.1947990e-01 1.1242402e+00 1.1718516e+00 1.6295015e+00 5.8914551e-01 1.2063335e+00 1.1879206e+00 1.4041085e+00 4.0293660e-01 7.7074935e-01 1.2709820e+00 7.7869083e-01 5.0592043e-01 9.7441804e-01 1.0621081e+00 5.0991930e-01 4.4417983e-01 8.3888121e-01 1.1770266e+00 8.6361309e-01 6.0670504e-01 1.0324775e+00 1.3844611e+00 6.2660376e-01 8.8695363e-01 2.0692197e+00 9.7441804e-01 1.6995747e+00 1.0122141e+00 1.6372749e+00 7.6752131e-01 6.0551856e-01 1.0244319e+00 2.1845981e-01 5.0090417e-01 7.2852070e-01 7.4777660e-01 2.2645802e+00 2.3019759e+00 5.7324170e-01 1.1833351e+00 2.5651975e-01 2.1907335e+00 5.0905001e-01 1.0330459e+00 1.5124582e+00 4.4651726e-01 3.8934542e-01 6.9369532e-01 1.4517959e+00 1.7036156e+00 2.3021295e+00 7.0429250e-01 5.6700421e-01 6.3977563e-01 1.9782093e+00 8.7229670e-01 6.8801986e-01 3.8934542e-01 1.1199472e+00 9.9519977e-01 1.1263042e+00 0.0000000e+00 1.1697902e+00 1.0851476e+00 9.2859317e-01 5.0905001e-01 7.1504098e-01 7.7763126e-01 3.0546431e-01 8.2135873e-01 6.0121055e-01 7.6716823e-01 2.3579605e+00 4.5581864e-01 5.8914551e-01 6.5223271e-01 8.9095811e-01 8.2552685e-01 4.4417983e-01 1.5124582e+00 1.3844611e+00 8.1810461e-01 6.6384020e-01 1.0516761e+00 1.0733200e+00 1.3725949e+00 3.0844217e-01 1.6183051e+00 8.9095811e-01 1.1426203e+00 4.5470518e-01 3.2816937e-01 1.2604558e+00 1.2459608e+00 7.1799256e-01 5.0180477e-01 3.6171588e-01 1.0269295e+00 7.1840099e-01 1.0531192e+00 1.1093572e+00 6.1092863e-01 8.4591037e-01 7.4777660e-01 1.3693737e+00 5.0905001e-01 4.8135521e-01 8.0619006e-01 1.3844611e+00 3.4378533e-01 5.3309112e-01 7.3813096e-01 1.0901359e+00 8.1273630e-01 9.6141901e-01 1.2978356e+00 4.2667565e-01 1.4573287e+00 1.5826638e+00 1.0904758e+00 5.0503591e-01 1.1258723e+00 5.4292906e-01 3.2816937e-01 5.3022554e-01 7.7869083e-01 7.5871717e-01 5.5492130e-01 2.1269358e-01 1.6596342e+00 1.6919202e+00 8.3280511e-01 7.0429250e-01 8.7202528e-01 1.5772389e+00 7.0394675e-01 5.2655962e-01 9.2836103e-01 8.0064372e-01 7.0437330e-01 3.0546431e-01 9.0478973e-01 1.1271488e+00 1.7235501e+00 4.0293660e-01 5.2942799e-01 4.5470518e-01 1.4317371e+00 6.8917100e-01 2.1269358e-01 8.1099042e-01 6.2988288e-01 6.5172743e-01 7.6166891e-01 6.2660376e-01 6.5648056e-01 7.6625946e-01 6.1947990e-01 6.4755655e-01 4.2667565e-01 6.2660376e-01 5.6700421e-01 1.2113327e+00 1.8396098e+00 8.7504951e-01 5.7257017e-01 8.3280511e-01 7.0784540e-01 5.5492130e-01 3.7427929e-01 1.0284501e+00 8.7420176e-01 5.0991930e-01 4.4417983e-01 1.4089719e+00 1.4387122e+00 1.1127329e+00 4.1586001e-01 1.1205013e+00 1.3344634e+00 9.3048953e-01 3.2816937e-01 7.4164639e-01 1.0244319e+00 9.3999899e-01 2.5651975e-01 8.1242502e-01 9.1858284e-01 1.4955532e+00 2.5251796e-01 8.7420176e-01 8.5335130e-01 1.2045536e+00 4.3691963e-01 4.4651726e-01 1.0480665e+00 4.9857388e-01 2.8507955e-01 7.3535471e-01 8.8695363e-01 3.2816937e-01 3.8934542e-01 6.0611244e-01 8.6361309e-01 6.0551856e-01 5.2655962e-01 8.3783744e-01 3.0351721e+00 4.2418962e-01 1.0941064e+00 7.5705927e-01 1.6559784e+00 1.5582387e+00 1.2112034e+00 2.1967372e+00 2.0692197e+00 1.5564198e+00 1.3693737e+00 8.0096515e-01 4.5581864e-01 2.0330276e+00 1.0137836e+00 2.3142399e+00 2.1845981e-01 1.9017011e+00 1.1228379e+00 6.6827038e-01 2.0223026e+00 1.9969203e+00 1.3792358e+00 8.7478495e-01 5.2371571e-01 8.1385214e-01 1.3793330e+00 1.7664528e+00 1.6569692e+00 5.0905001e-01 1.4644753e+00 1.4341959e+00 2.1204309e+00 1.2632199e+00 1.1880428e+00 1.5405106e+00 2.0692197e+00 9.4009473e-01 1.1355826e+00 1.4992973e+00 1.8311457e+00 1.5765737e+00 1.6311692e+00 1.9969203e+00 2.6670272e+00 1.9783833e+00 2.5784641e+00 1.6572339e+00 1.5613865e+00 1.9842916e+00 8.6110333e-01 1.0720678e+00 1.6180482e+00 1.7140774e+00 3.2123303e+00 3.2542669e+00 1.1332978e+00 2.1449779e+00 7.5976039e-01 3.1540626e+00 1.4088394e+00 1.9797139e+00 2.4825886e+00 1.3075101e+00 1.2330392e+00 1.6629594e+00 2.4148300e+00 2.6746409e+00 3.2573703e+00 1.6686069e+00 1.4322723e+00 1.4341959e+00 2.9471490e+00 1.6864366e+00 1.6385322e+00 1.1320702e+00 2.0632091e+00 1.9468380e+00 2.0389505e+00 9.7441804e-01 2.1303950e+00 2.0095672e+00 1.8517858e+00 1.4168607e+00 1.6483152e+00 1.5346983e+00 1.0866092e+00 7.2486328e-01 8.7202528e-01 1.2988558e+00 1.1847335e+00 8.6137722e-01 1.8265471e+00 1.7177705e+00 1.2107055e+00 9.9368623e-01 9.5866719e-01 7.3805807e-01 1.6506221e+00 7.3805807e-01 1.9449573e+00 5.0592043e-01 1.5350426e+00 7.8695083e-01 3.7427929e-01 1.6553809e+00 1.6249178e+00 1.0168833e+00 5.0991930e-01 2.1845981e-01 9.7270522e-01 1.0264409e+00 1.3817041e+00 1.2768639e+00 5.7324170e-01 1.1634384e+00 1.0611732e+00 1.7483574e+00 9.3048953e-01 9.0056222e-01 1.2340567e+00 1.6995747e+00 6.8076724e-01 9.1883539e-01 1.1718516e+00 1.4616896e+00 1.2125198e+00 1.2951888e+00 1.6249178e+00 1.2028939e+00 8.7420176e-01 5.3665999e-01 5.5492130e-01 1.1340084e+00 1.0720678e+00 8.3345577e-01 5.3588338e-01 1.5520745e+00 1.3258714e+00 9.5099818e-01 7.7074935e-01 1.2604558e+00 1.1891470e+00 9.2264612e-01 8.1099042e-01 7.7039952e-01 1.0389435e+00 1.0054794e+00 4.3456114e-01 6.2605182e-01 7.2823007e-01 1.5784191e+00 4.8927739e-01 7.5976039e-01 6.5223271e-01 1.0692258e+00 9.8985697e-01 6.3808075e-01 1.1178200e+00 6.6827038e-01 7.4855857e-01 8.6513410e-01 1.0122141e+00 7.6787403e-01 9.3615100e-01 7.5835500e-01 8.2654509e-01 6.9728513e-01 9.9519977e-01 9.7356960e-01 1.1306887e+00 1.2197188e+00 8.0353565e-01 1.7933375e+00 1.5916843e+00 1.0118409e+00 1.0089164e+00 7.0776547e-01 1.1591754e+00 1.8437762e+00 5.3309112e-01 1.8278913e+00 9.6838716e-01 1.4843324e+00 6.3735887e-01 7.3496673e-01 1.5570415e+00 1.5003972e+00 1.0421979e+00 9.7759114e-01 8.9070384e-01 7.8197925e-01 1.0329598e+00 1.4388174e+00 1.5204340e+00 6.9325418e-01 9.4309624e-01 1.0339865e+00 1.6134578e+00 8.0660588e-01 7.0523271e-01 1.0406064e+00 1.6372749e+00 5.1303949e-01 5.8851328e-01 1.0072663e+00 1.4951106e+00 1.0950112e+00 1.0934620e+00 1.5213929e+00 5.0991930e-01 4.5581864e-01 9.3615100e-01 7.6590510e-01 3.2586371e-01 4.2538717e-01 1.7942496e+00 1.9566981e+00 1.0636401e+00 6.6384020e-01 9.2264612e-01 1.7814077e+00 5.2371571e-01 6.0670504e-01 1.0120221e+00 4.8927739e-01 4.3691963e-01 5.6769031e-01 8.9366705e-01 1.1948578e+00 1.6982795e+00 5.7324170e-01 5.7257017e-01 8.3060013e-01 1.3824965e+00 5.7867728e-01 4.1586001e-01 5.4292906e-01 4.4651726e-01 5.7324170e-01 4.4535192e-01 7.6752131e-01 8.2105460e-01 6.9369532e-01 3.4583729e-01 7.0479928e-01 2.0656129e-01 4.3456114e-01 6.1092863e-01 4.6472023e-01 7.1840099e-01 6.9369532e-01 5.6631629e-01 3.2816937e-01 1.8058693e+00 1.8261179e+00 6.3735887e-01 7.0328431e-01 8.2684479e-01 1.6791597e+00 4.0293660e-01 6.6827038e-01 9.7377870e-01 5.0991930e-01 4.8135521e-01 3.2586371e-01 8.7021234e-01 1.1327825e+00 1.7839298e+00 3.7427929e-01 4.1586001e-01 5.5492130e-01 1.3916739e+00 7.7919451e-01 4.1449626e-01 5.8914551e-01 5.7324170e-01 6.0900723e-01 6.2407309e-01 6.0551856e-01 7.5705927e-01 7.8695083e-01 4.8135521e-01 3.2586371e-01 3.0811765e-01 7.3851529e-01 5.3665999e-01 1.1524979e+00 1.0244319e+00 4.3691963e-01 3.7255734e-01 1.4090646e+00 1.5060944e+00 1.0810263e+00 2.8507955e-01 1.2406194e+00 1.3336069e+00 7.1791510e-01 3.2586371e-01 5.9426792e-01 8.2552685e-01 8.2275389e-01 4.1449626e-01 5.8851328e-01 7.5196795e-01 1.3415658e+00 4.1586001e-01 7.2852070e-01 8.9159388e-01 9.7249562e-01 5.8914551e-01 4.4535192e-01 9.4352681e-01 1.4096146e-01 3.0811765e-01 4.1586001e-01 1.0244319e+00 4.2538717e-01 4.5581864e-01 3.2586371e-01 7.0869559e-01 3.7427929e-01 6.5223271e-01 9.2836103e-01 4.4651726e-01 8.8695363e-01 8.9971984e-01 2.4227359e+00 2.4243464e+00 5.5419992e-01 1.3235313e+00 3.0546431e-01 2.3149695e+00 6.1151102e-01 1.2036484e+00 1.6520677e+00 5.4292906e-01 5.7324170e-01 8.2305664e-01 1.5788188e+00 1.8238348e+00 2.4554026e+00 8.2552685e-01 7.0429250e-01 7.7588000e-01 2.0959492e+00 1.0466623e+00 8.6513410e-01 5.4292906e-01 1.2497790e+00 1.1215059e+00 1.2436109e+00 2.1845981e-01 1.3165513e+00 1.2256881e+00 1.0406064e+00 6.0060595e-01 8.5434758e-01 9.6664346e-01 5.1691876e-01 6.5223271e-01 8.4050231e-01 2.2451458e+00 2.2996030e+00 9.7270522e-01 1.1594648e+00 4.2538717e-01 2.1936248e+00 6.9369532e-01 1.0119857e+00 1.5297036e+00 6.6384020e-01 6.2988288e-01 7.0386584e-01 1.5113992e+00 1.7140171e+00 2.2868482e+00 6.9325418e-01 9.4080461e-01 1.0406064e+00 1.9734538e+00 7.5835500e-01 7.8695083e-01 6.2988288e-01 1.1158787e+00 9.4832302e-01 1.1055069e+00 5.0090417e-01 1.1452867e+00 1.0056742e+00 9.0277242e-01 6.3977563e-01 7.3851529e-01 6.6432544e-01 6.0611244e-01 5.1691876e-01 1.6983410e+00 1.8377590e+00 1.1500393e+00 5.6631629e-01 8.6012420e-01 1.6864433e+00 6.6539428e-01 4.5581864e-01 9.7356960e-01 6.6932542e-01 5.9426792e-01 4.5470518e-01 9.7548738e-01 1.1573546e+00 1.6772907e+00 4.4535192e-01 8.2929029e-01 9.8450810e-01 1.3812107e+00 3.2816937e-01 5.0905001e-01 6.6932542e-01 5.0991930e-01 3.7598397e-01 5.0905001e-01 7.2852070e-01 6.4704320e-01 4.5581864e-01 3.2586371e-01 7.4777660e-01 3.2816937e-01 2.5251796e-01 6.3108414e-01 1.5573817e+00 1.6420607e+00 9.0575661e-01 5.7867728e-01 9.7441804e-01 1.4917344e+00 6.2482915e-01 4.0176783e-01 7.7039952e-01 7.1799256e-01 6.4704320e-01 3.2816937e-01 7.1799256e-01 9.7270522e-01 1.5593809e+00 4.1586001e-01 4.6472023e-01 5.6454040e-01 1.2601890e+00 6.5223271e-01 1.2418578e-01 7.6716823e-01 4.4651726e-01 6.0670504e-01 6.1947990e-01 7.4777660e-01 5.9426792e-01 7.2172678e-01 5.3588338e-01 6.2660376e-01 3.2352160e-01 5.8914551e-01 6.4704320e-01 1.2013436e+00 2.3665136e+00 1.1771643e+00 2.4806944e+00 1.0018083e+00 2.1098467e+00 1.2627078e+00 8.8503502e-01 2.2024869e+00 2.1511385e+00 1.6189643e+00 1.1368070e+00 1.0688498e+00 3.4378533e-01 1.6188960e+00 1.9698860e+00 1.9254808e+00 8.8861541e-01 1.5832517e+00 1.5978297e+00 2.2712062e+00 1.4277162e+00 1.3610783e+00 1.6849072e+00 2.2645802e+00 1.1106525e+00 1.2665468e+00 1.6689743e+00 2.0995265e+00 1.7457596e+00 1.7532140e+00 2.1511385e+00 2.2712062e+00 1.3276804e+00 2.5485519e+00 3.4378533e-01 2.1870851e+00 1.4266198e+00 1.0379132e+00 2.3072128e+00 2.2736138e+00 1.6156775e+00 1.2095267e+00 8.3888121e-01 1.2277129e+00 1.6151153e+00 2.0528819e+00 1.8792214e+00 8.2624515e-01 1.7265353e+00 1.7004805e+00 2.3953564e+00 1.5733646e+00 1.4691764e+00 1.8497891e+00 2.3019759e+00 1.2238809e+00 1.4266198e+00 1.7962897e+00 2.1027465e+00 1.8635467e+00 1.9008621e+00 2.2439391e+00 1.3353353e+00 7.2526325e-01 2.1293320e+00 5.5492130e-01 1.2776560e+00 1.5193574e+00 6.2988288e-01 8.1130291e-01 8.6912228e-01 1.3752391e+00 1.6044563e+00 2.3474075e+00 9.1883539e-01 6.2024833e-01 6.4806901e-01 1.9000365e+00 1.3674559e+00 9.6664346e-01 8.1354181e-01 1.1751082e+00 1.2304904e+00 1.2256933e+00 5.7324170e-01 1.3628690e+00 1.4089364e+00 1.0866132e+00 4.8036801e-01 8.9971984e-01 1.3044654e+00 8.1130291e-01 1.3916739e+00 1.1500393e+00 9.6838716e-01 2.5251796e-01 5.5419992e-01 1.0573285e+00 1.0284501e+00 5.7324170e-01 7.1840099e-01 6.6317860e-01 1.1434428e+00 5.6769031e-01 9.7855477e-01 1.1106525e+00 8.2899253e-01 6.0670504e-01 6.2660376e-01 1.1449732e+00 3.2586371e-01 2.1845981e-01 6.0060595e-01 1.1833351e+00 2.0656129e-01 2.5251796e-01 5.1607523e-01 9.6324667e-01 5.9426792e-01 7.1799256e-01 1.0879524e+00 2.4372751e+00 7.0437330e-01 1.2331989e+00 1.7427900e+00 6.0611244e-01 5.1607523e-01 9.3615100e-01 1.6812503e+00 1.9411754e+00 2.5109747e+00 9.3801395e-01 7.7039952e-01 8.6513410e-01 2.2052183e+00 9.6324667e-01 8.9917007e-01 4.2667565e-01 1.3224963e+00 1.1912106e+00 1.3084046e+00 2.5651975e-01 1.3897316e+00 1.2541242e+00 1.1120775e+00 7.1504098e-01 9.1051084e-01 8.1521713e-01 3.6171588e-01 2.0209349e+00 1.2627078e+00 7.9878917e-01 2.1431239e+00 2.1198551e+00 1.5016009e+00 9.6141901e-01 6.2024833e-01 1.0083666e+00 1.5022608e+00 1.8803649e+00 1.7557336e+00 6.2482915e-01 1.6044563e+00 1.5582387e+00 2.2435182e+00 1.3836712e+00 1.3199714e+00 1.6568705e+00 2.1907335e+00 1.0796583e+00 1.2825987e+00 1.6205332e+00 1.9460721e+00 1.6995133e+00 1.7678302e+00 2.1198551e+00 9.1750357e-01 1.2756158e+00 1.4096146e-01 3.2352160e-01 7.1504098e-01 1.1242402e+00 1.4312787e+00 2.0223464e+00 7.3535471e-01 3.2586371e-01 7.3851529e-01 1.6386882e+00 9.4477932e-01 6.4755655e-01 3.7427929e-01 7.3805807e-01 8.6165877e-01 7.2852070e-01 5.0905001e-01 1.0922991e+00 1.0175773e+00 6.0900723e-01 2.1269358e-01 4.0176783e-01 8.2372435e-01 4.5470518e-01 5.5492130e-01 9.8495853e-01 9.0521488e-01 5.2942799e-01 6.3977563e-01 7.9878917e-01 1.2832075e+00 5.3022554e-01 8.3060013e-01 9.4500268e-01 1.0244319e+00 4.4651726e-01 4.0176783e-01 1.0230441e+00 3.4378533e-01 3.2586371e-01 6.1623531e-01 1.0330459e+00 2.5651975e-01 4.0000000e-01 5.3588338e-01 9.5676647e-01 5.3665999e-01 5.3665999e-01 9.0521488e-01 1.3865084e+00 1.3669552e+00 8.6012420e-01 2.8192292e-01 4.1586001e-01 8.4050231e-01 8.7383925e-01 1.1355826e+00 1.1712156e+00 6.2660376e-01 9.8985697e-01 8.5205778e-01 1.4909823e+00 6.3861009e-01 7.2526325e-01 9.4854455e-01 1.5124582e+00 5.6700421e-01 7.7919451e-01 8.9971984e-01 1.2483814e+00 9.4009473e-01 1.0879524e+00 1.4147273e+00 2.1269358e-01 8.1354181e-01 1.2441035e+00 1.5551238e+00 2.1137172e+00 8.2899253e-01 3.7427929e-01 8.2929029e-01 1.7587110e+00 9.6095130e-01 7.1799256e-01 2.4837156e-01 8.3280511e-01 9.3797093e-01 7.9016429e-01 4.4651726e-01 1.1833351e+00 1.0724413e+00 6.6932542e-01 3.2816937e-01 4.6472023e-01 8.0467258e-01 3.8776762e-01 7.3145860e-01 1.2564564e+00 1.5558094e+00 2.0983278e+00 7.5082357e-01 3.6171588e-01 7.6590510e-01 1.7862655e+00 8.4050231e-01 6.2024833e-01 1.2418578e-01 8.6137722e-01 8.9852394e-01 8.5462626e-01 3.8934542e-01 1.1192362e+00 1.0078327e+00 7.0386584e-01 5.0991930e-01 4.5470518e-01 6.6539428e-01 2.4837156e-01 8.5690100e-01 1.0344911e+00 1.6689743e+00 1.0000000e-01 6.8961791e-01 7.1799256e-01 1.3207609e+00 6.2024833e-01 3.7427929e-01 8.3888121e-01 5.3588338e-01 4.2288438e-01 6.4405773e-01 6.9369532e-01 5.3309112e-01 5.8914551e-01 4.6472023e-01 6.2538346e-01 4.1586001e-01 6.1623531e-01 6.4405773e-01 4.0176783e-01 1.0175773e+00 8.9303452e-01 1.0122141e+00 1.1161766e+00 7.7885297e-01 1.0755693e+00 8.1385214e-01 1.3792358e+00 5.8914551e-01 8.5462626e-01 8.7848692e-01 1.4517959e+00 7.3851529e-01 9.4854455e-01 8.6263408e-01 1.0941064e+00 8.3783744e-01 1.1172689e+00 1.3545005e+00 1.0391247e+00 1.0389435e+00 1.3163598e+00 1.3379696e+00 4.5470518e-01 1.1951875e+00 1.0632598e+00 1.6796759e+00 7.8197925e-01 8.3345577e-01 1.0540105e+00 1.7036156e+00 6.9167458e-01 8.8503502e-01 1.0279631e+00 1.3693737e+00 1.1192426e+00 1.3077572e+00 1.6183051e+00 1.6694974e+00 1.9094934e+00 1.9895190e+00 8.2384013e-01 1.6634400e+00 1.6218244e+00 2.2178691e+00 1.3008161e+00 1.3567326e+00 1.4994715e+00 2.3021295e+00 1.1763719e+00 1.3024224e+00 1.5535909e+00 2.0373882e+00 1.6756749e+00 1.7981158e+00 2.1739455e+00 7.6752131e-01 8.1354181e-01 1.3198846e+00 6.0611244e-01 4.4535192e-01 8.5335130e-01 5.3665999e-01 3.8776762e-01 6.3977563e-01 7.0429250e-01 5.2655962e-01 5.5492130e-01 4.5581864e-01 6.3861009e-01 4.2667565e-01 6.1151102e-01 6.6932542e-01 5.1691876e-01 1.5922648e+00 1.0054794e+00 4.8135521e-01 4.3456114e-01 7.6955924e-01 9.6664346e-01 8.9687438e-01 5.6700421e-01 1.0421979e+00 1.1001291e+00 8.2929029e-01 4.4535192e-01 5.1691876e-01 8.9712482e-01 4.5470518e-01 1.6914476e+00 1.1340084e+00 5.8914551e-01 8.5105559e-01 9.7548738e-01 1.0864449e+00 1.1160770e+00 6.3977563e-01 1.0720678e+00 1.2163831e+00 1.0047836e+00 6.9369532e-01 7.2343175e-01 1.0613462e+00 6.2407309e-01 1.4238090e+00 1.3511716e+00 1.9067300e+00 9.3824087e-01 1.0331736e+00 1.1327825e+00 1.9782093e+00 9.0454394e-01 1.0244319e+00 1.1833480e+00 1.5948732e+00 1.3360558e+00 1.5461469e+00 1.8900319e+00 6.2081167e-01 9.1750357e-01 6.4290921e-01 4.4417983e-01 7.0429250e-01 8.7229670e-01 5.3665999e-01 4.0438741e-01 5.6454040e-01 1.0054794e+00 5.7015910e-01 2.1269358e-01 7.5705927e-01 7.3496673e-01 5.2942799e-01 6.2024833e-01 6.6491075e-01 6.8801986e-01 6.1947990e-01 7.2172678e-01 5.5492130e-01 6.9006418e-01 3.2816937e-01 5.3665999e-01 5.6700421e-01 9.7779835e-01 1.0014633e+00 9.4854455e-01 3.8934542e-01 1.2342162e+00 1.1043332e+00 7.9580667e-01 5.3665999e-01 5.7257017e-01 7.2852070e-01 3.0275928e-01 3.4378533e-01 3.2352160e-01 1.1199472e+00 5.0991930e-01 4.6472023e-01 2.8507955e-01 7.7869083e-01 4.1586001e-01 7.1799256e-01 1.0132664e+00 5.0905001e-01 9.9519977e-01 3.0811765e-01 2.1269358e-01 4.0293660e-01 8.3060013e-01 5.0592043e-01 5.3665999e-01 9.3049742e-01 1.1263042e+00 8.0064372e-01 6.1623531e-01 2.1269358e-01 7.7588000e-01 4.4651726e-01 7.2783368e-01 1.0329901e+00 1.1697902e+00 1.0851476e+00 9.2859317e-01 5.0905001e-01 7.1504098e-01 7.7763126e-01 3.0546431e-01 2.5651975e-01 7.0437330e-01 1.0573285e+00 7.3145860e-01 6.9325418e-01 1.0901359e+00 5.3588338e-01 1.0175773e+00 6.4405773e-01 5.3665999e-01 1.0078327e+00 6.2407309e-01 3.2352160e-01 5.7257017e-01 8.5205778e-01 5.1691876e-01 9.4022486e-01 5.6769031e-01 4.8927739e-01 6.0611244e-01 6.0900723e-01 diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-minkowski-5.8-ml-iris.txt b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-minkowski-5.8-ml-iris.txt new file mode 100644 index 0000000000000000000000000000000000000000..aa26b0439f568f97c95bee1b04204f24c9a1f3e0 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-minkowski-5.8-ml-iris.txt @@ -0,0 +1 @@ + 5.0042326e-01 4.1210927e-01 5.2133179e-01 1.1269424e-01 4.2362917e-01 5.0001522e-01 1.2085435e-01 7.4262850e-01 4.0127250e-01 3.0482299e-01 3.0482299e-01 5.0436965e-01 8.0923926e-01 7.1629168e-01 9.1424701e-01 4.1317535e-01 1.0000000e-01 6.0366256e-01 3.0017653e-01 3.3813251e-01 2.2573593e-01 5.2133179e-01 3.4080442e-01 5.0436965e-01 5.0043084e-01 2.2608083e-01 1.1269424e-01 1.1269424e-01 4.1315633e-01 4.1315633e-01 3.0490481e-01 6.0000952e-01 7.0462550e-01 4.0127250e-01 3.0482299e-01 4.0002221e-01 4.0127250e-01 7.1621748e-01 1.1269424e-01 1.2085435e-01 1.2036864e+00 7.0088477e-01 4.0125062e-01 5.0476836e-01 5.0436965e-01 3.0474106e-01 5.0436235e-01 2.2573593e-01 2.0061436e-01 3.3243227e+00 3.1068812e+00 3.5145413e+00 2.6080595e+00 3.2075731e+00 3.1014454e+00 3.3055260e+00 1.9156198e+00 3.2079238e+00 2.5066441e+00 2.1498493e+00 2.8059664e+00 2.6093989e+00 3.3021953e+00 2.2070266e+00 3.0158454e+00 3.1034764e+00 2.7009878e+00 3.1081779e+00 2.5032992e+00 3.4074959e+00 2.6050088e+00 3.5035589e+00 3.3011884e+00 2.9065890e+00 3.0117336e+00 3.4118782e+00 3.6094426e+00 3.1038958e+00 2.1042326e+00 2.4058620e+00 2.3063407e+00 2.5029614e+00 3.7025335e+00 3.1034636e+00 3.1057006e+00 3.3110189e+00 3.0065909e+00 2.7025941e+00 2.6047974e+00 3.0013665e+00 3.2025221e+00 2.6029242e+00 1.9242109e+00 2.8024935e+00 2.8013151e+00 2.8022622e+00 2.9036582e+00 1.6267693e+00 2.7028014e+00 4.6144526e+00 3.7071079e+00 4.5121787e+00 4.2031939e+00 4.4087839e+00 5.2153194e+00 3.1086291e+00 4.9093646e+00 4.4044245e+00 4.7202040e+00 3.7119486e+00 3.9066365e+00 4.1123628e+00 3.6114402e+00 3.7307413e+00 3.9194642e+00 4.1043951e+00 5.3177489e+00 5.5157728e+00 3.6035661e+00 4.3162097e+00 3.5127031e+00 5.3163123e+00 3.5077296e+00 4.3088507e+00 4.6100803e+00 3.4082578e+00 3.5068380e+00 4.2080636e+00 4.4113183e+00 4.7149608e+00 5.0316727e+00 4.2105572e+00 3.7024462e+00 4.2007769e+00 4.7331529e+00 4.2173557e+00 4.1039096e+00 3.4076329e+00 4.0157626e+00 4.2194897e+00 3.7329396e+00 3.7071079e+00 4.5119962e+00 4.3218071e+00 3.8249612e+00 3.6093673e+00 3.8105293e+00 4.0166459e+00 3.7050109e+00 2.2573593e-01 3.0017653e-01 6.0000317e-01 9.0534502e-01 4.1210927e-01 4.0004442e-01 5.0000761e-01 1.2085435e-01 7.1621748e-01 4.0125062e-01 1.1269424e-01 6.0184622e-01 1.0776294e+00 1.4092540e+00 9.0508756e-01 5.0043084e-01 9.0181717e-01 8.0004602e-01 5.2491131e-01 7.0017011e-01 6.1119267e-01 3.6452132e-01 5.2133179e-01 2.0061436e-01 4.0246123e-01 5.0436965e-01 4.1209001e-01 2.4170870e-01 2.0121983e-01 5.2167829e-01 1.1001015e+00 1.2036862e+00 1.2085435e-01 2.2573593e-01 6.3164977e-01 1.2085435e-01 5.0000761e-01 4.0125062e-01 5.0002283e-01 7.0462844e-01 5.0043084e-01 5.2167829e-01 8.0888055e-01 1.1269424e-01 8.0008884e-01 3.0474106e-01 7.0462697e-01 3.0008832e-01 3.3416860e+00 3.1112912e+00 3.5249966e+00 2.6033557e+00 3.2127499e+00 3.1015178e+00 3.3078313e+00 1.9025708e+00 3.2150318e+00 2.5060738e+00 2.1061951e+00 2.8068283e+00 2.6040016e+00 3.3032134e+00 2.2072454e+00 3.0286102e+00 3.1035443e+00 2.7011973e+00 3.1070853e+00 2.5014549e+00 3.4078435e+00 2.6080511e+00 3.5048916e+00 3.3021665e+00 2.9125999e+00 3.0213627e+00 3.4211337e+00 3.6148618e+00 3.1047537e+00 2.1027003e+00 2.4016639e+00 2.3011929e+00 2.5032633e+00 3.7028303e+00 3.1034629e+00 3.1065984e+00 3.3192072e+00 3.0078209e+00 2.7027260e+00 2.6031664e+00 3.0009332e+00 3.2037232e+00 2.6027120e+00 1.9031578e+00 2.8022915e+00 2.8015662e+00 2.8024715e+00 2.9065359e+00 1.6099792e+00 2.7029416e+00 4.6149181e+00 3.7071538e+00 4.5172866e+00 4.2039132e+00 4.4099272e+00 5.2224057e+00 3.1078968e+00 4.9146298e+00 4.4063795e+00 4.7253524e+00 3.7145622e+00 3.9080413e+00 4.1161770e+00 3.6111646e+00 3.7308314e+00 3.9209137e+00 4.1060063e+00 5.3254977e+00 5.5222404e+00 3.6024247e+00 4.3201293e+00 3.5126957e+00 5.3240486e+00 3.5093499e+00 4.3111749e+00 4.6158382e+00 3.4095576e+00 3.5076152e+00 4.2090727e+00 4.4184242e+00 4.7227808e+00 5.0458491e+00 4.2115634e+00 3.7037441e+00 4.2010125e+00 4.7466313e+00 4.2180733e+00 4.1050714e+00 3.4081972e+00 4.0212972e+00 4.2220584e+00 3.7407842e+00 3.7071538e+00 4.5144444e+00 4.3240980e+00 3.8290678e+00 3.6105228e+00 3.8128297e+00 4.0172657e+00 3.7052380e+00 2.0121983e-01 4.1210927e-01 7.9153339e-01 2.0181667e-01 3.0915245e-01 3.3813251e-01 2.2608083e-01 7.1629168e-01 3.0482299e-01 2.0181667e-01 4.0246123e-01 1.1281267e+00 1.2633045e+00 7.8890721e-01 4.1212852e-01 1.0095370e+00 6.0964891e-01 7.0470720e-01 5.2201750e-01 4.1210927e-01 4.5784410e-01 6.0017982e-01 3.4080442e-01 3.4342562e-01 5.0476836e-01 5.0043084e-01 3.0000000e-01 3.0017653e-01 7.0025283e-01 9.0508756e-01 1.0426513e+00 2.2608083e-01 3.0008832e-01 8.0046605e-01 2.2608083e-01 3.0474106e-01 4.0243965e-01 3.3813251e-01 9.0002570e-01 3.0000000e-01 4.3213914e-01 6.8170466e-01 2.0181667e-01 6.1119267e-01 1.1269424e-01 6.3178534e-01 3.0017653e-01 3.4595765e+00 3.2168311e+00 3.6364650e+00 2.7037323e+00 3.3192099e+00 3.2017763e+00 3.4107328e+00 2.0033798e+00 3.3237063e+00 2.6050967e+00 2.2121910e+00 2.9077087e+00 2.7085154e+00 3.4047917e+00 2.3071665e+00 3.1428042e+00 3.2033135e+00 2.8024935e+00 3.2103481e+00 2.6021247e+00 3.5076152e+00 2.7127272e+00 3.6073242e+00 3.4038884e+00 3.0203881e+00 3.1325879e+00 3.5317021e+00 3.7210979e+00 3.2059139e+00 2.2051638e+00 2.5023084e+00 2.4021168e+00 2.6048201e+00 3.8033004e+00 3.2030448e+00 3.2074921e+00 3.4286399e+00 3.1131211e+00 2.8028008e+00 2.7031257e+00 3.1010004e+00 3.3055260e+00 2.7040740e+00 2.0050309e+00 2.9023862e+00 2.9020767e+00 2.9028421e+00 3.0107283e+00 1.7089863e+00 2.8033666e+00 4.7142986e+00 3.8066401e+00 4.6226512e+00 4.3047830e+00 4.5107876e+00 5.3296471e+00 3.2068572e+00 5.0203871e+00 4.5089338e+00 4.8299744e+00 3.8170042e+00 4.0095939e+00 4.2200398e+00 3.7100654e+00 3.8275330e+00 4.0209836e+00 4.2079639e+00 5.4332277e+00 5.6287689e+00 3.7032748e+00 4.4237036e+00 3.6112573e+00 5.4319232e+00 3.6111754e+00 4.4135512e+00 4.7221364e+00 3.5107924e+00 3.6081749e+00 4.3098514e+00 4.5261773e+00 4.8309399e+00 5.1593152e+00 4.3120751e+00 3.8056232e+00 4.3015640e+00 4.8592534e+00 4.3174320e+00 4.2064763e+00 3.5083248e+00 4.1268500e+00 4.3236383e+00 3.8471097e+00 3.8066401e+00 4.6166518e+00 4.4251081e+00 3.9318948e+00 3.7118930e+00 3.9150333e+00 4.1165034e+00 3.8051417e+00 5.2133179e-01 9.0160400e-01 3.0017653e-01 4.1209001e-01 2.2573593e-01 3.0008832e-01 8.2418002e-01 3.0482299e-01 2.0181667e-01 4.1212852e-01 1.2363278e+00 1.3741498e+00 9.0160400e-01 5.2133802e-01 1.1133986e+00 7.1621748e-01 8.0051036e-01 6.3178534e-01 5.6347121e-01 5.0517282e-01 4.1315633e-01 4.0004442e-01 4.1317535e-01 6.0948212e-01 6.0184622e-01 1.2085435e-01 2.0061436e-01 8.0051036e-01 1.0087250e+00 1.1527669e+00 3.0008832e-01 4.1210927e-01 9.0142636e-01 3.0008832e-01 2.2573593e-01 5.0436235e-01 4.5148429e-01 8.0004602e-01 2.2573593e-01 4.8342635e-01 7.2044167e-01 2.0181667e-01 7.1621748e-01 1.1269424e-01 7.4262850e-01 4.0125062e-01 3.2983364e+00 3.0300451e+00 3.4603347e+00 2.5053901e+00 3.1338090e+00 3.0030658e+00 3.2183845e+00 1.8040969e+00 3.1419971e+00 2.4075162e+00 2.0123013e+00 2.7132680e+00 2.5163999e+00 3.2086215e+00 2.1132077e+00 2.9750754e+00 3.0049127e+00 2.6055197e+00 3.0177719e+00 2.4040962e+00 3.3110162e+00 2.5253371e+00 3.4126529e+00 3.2074182e+00 2.8380954e+00 2.9580787e+00 3.3536443e+00 3.5347730e+00 3.0101869e+00 2.0123796e+00 2.3038195e+00 2.2036797e+00 2.4099203e+00 3.6051707e+00 3.0042758e+00 3.0123228e+00 3.2490712e+00 2.9241808e+00 2.6047889e+00 2.5049231e+00 2.9016211e+00 3.1100277e+00 2.5081992e+00 1.8056342e+00 2.7040060e+00 2.7039988e+00 2.7050721e+00 2.8205713e+00 1.5147271e+00 2.6060742e+00 4.5183778e+00 3.6090052e+00 4.4337691e+00 4.1072664e+00 4.3151164e+00 5.1425125e+00 3.0092613e+00 4.8303615e+00 4.3139066e+00 4.6422789e+00 3.6259317e+00 3.8146285e+00 4.0301568e+00 3.5133848e+00 3.6358680e+00 3.8290678e+00 4.0124919e+00 5.2471177e+00 5.4403962e+00 3.5051114e+00 4.2343452e+00 3.4149831e+00 5.2455706e+00 3.4177035e+00 4.2200398e+00 4.5335328e+00 3.3168776e+00 3.4123846e+00 4.1140176e+00 4.3402553e+00 4.6459028e+00 4.9843016e+00 4.1167964e+00 3.6096226e+00 4.1026403e+00 4.6849407e+00 4.1230798e+00 4.0100505e+00 3.3123688e+00 3.9407837e+00 4.1330547e+00 3.6700537e+00 3.6090052e+00 4.4237036e+00 4.2343452e+00 3.7463488e+00 3.5181052e+00 3.7227931e+00 3.9220791e+00 3.6072781e+00 4.2362917e-01 4.0125062e-01 2.0061436e-01 7.4262850e-01 5.0002283e-01 4.0004442e-01 2.4170870e-01 6.0017982e-01 7.4329527e-01 8.0250123e-01 8.5406674e-01 4.1317535e-01 1.2085435e-01 7.0096858e-01 2.0181667e-01 4.1315633e-01 2.0181667e-01 4.5077696e-01 3.6259865e-01 5.0084481e-01 6.0017665e-01 2.4170870e-01 2.0121983e-01 2.2538848e-01 4.1315633e-01 5.0084481e-01 4.0246123e-01 5.0043842e-01 6.3164729e-01 5.0002283e-01 4.0122873e-01 5.0001522e-01 5.0002283e-01 6.7616723e-01 2.0121983e-01 1.2085435e-01 1.3008771e+00 6.0948506e-01 4.0125062e-01 5.0085236e-01 6.0017982e-01 2.2573593e-01 4.5077696e-01 3.0017653e-01 3.0000000e-01 3.3320240e+00 3.1087192e+00 3.5191371e+00 2.6110181e+00 3.2098845e+00 3.1016129e+00 3.3064697e+00 1.9242109e+00 3.2110200e+00 2.5072065e+00 2.1702438e+00 2.8063347e+00 2.6144115e+00 3.3026483e+00 2.2074446e+00 3.0213781e+00 3.1035271e+00 2.7015967e+00 3.1108570e+00 2.5049231e+00 3.4076266e+00 2.6065485e+00 3.5045818e+00 3.3016829e+00 2.9091905e+00 3.0158857e+00 3.4160038e+00 3.6117923e+00 3.1042949e+00 2.1068047e+00 2.4087956e+00 2.3099309e+00 2.5038387e+00 3.7027671e+00 3.1034919e+00 3.1060428e+00 3.3145595e+00 3.0095593e+00 2.7026925e+00 2.6061038e+00 3.0017811e+00 3.2030205e+00 2.6039803e+00 1.9366876e+00 2.8028640e+00 2.8014482e+00 2.8024453e+00 2.9049136e+00 1.6388635e+00 2.7031257e+00 4.6146430e+00 3.7072412e+00 4.5144508e+00 4.2035048e+00 4.4092709e+00 5.2185448e+00 3.1091788e+00 4.9117351e+00 4.4054277e+00 4.7224997e+00 3.7130507e+00 3.9073151e+00 4.1140274e+00 3.6117351e+00 3.7308330e+00 3.9200674e+00 4.1050815e+00 5.3212796e+00 5.5187578e+00 3.6046347e+00 4.3179262e+00 3.5127783e+00 5.3198559e+00 3.5085510e+00 4.3098508e+00 4.6126513e+00 3.4088749e+00 3.5071604e+00 4.2085176e+00 4.4144980e+00 4.7185095e+00 5.0381903e+00 4.2110099e+00 3.7030413e+00 4.2009868e+00 4.7393218e+00 4.2176488e+00 4.1043951e+00 3.4078683e+00 4.0181902e+00 4.2205976e+00 3.7363838e+00 3.7072412e+00 4.5130595e+00 4.3227928e+00 3.8267408e+00 3.6102542e+00 3.8115096e+00 4.0168944e+00 3.7051079e+00 8.0923926e-01 5.2201750e-01 1.1270411e+00 8.0928056e-01 2.4170870e-01 6.3178782e-01 9.1471442e-01 1.1573074e+00 5.2167829e-01 5.0476836e-01 4.0000000e-01 4.2270142e-01 3.0017653e-01 3.0490481e-01 5.0042326e-01 3.0915245e-01 8.5440680e-01 6.0184622e-01 6.3192325e-01 9.0142681e-01 5.2133179e-01 4.0363334e-01 5.0517282e-01 7.8890806e-01 8.2421923e-01 5.0042326e-01 3.1328089e-01 3.4085233e-01 8.0928056e-01 7.2044167e-01 4.5148429e-01 8.0928056e-01 1.0782211e+00 5.0517282e-01 4.8342635e-01 1.6097492e+00 1.0215068e+00 4.5148429e-01 3.0482299e-01 9.1446938e-01 3.0490481e-01 8.5440680e-01 2.4195741e-01 6.1135434e-01 3.0143288e+00 2.8035152e+00 3.2080663e+00 2.3476141e+00 2.9053991e+00 2.8028019e+00 3.0030626e+00 1.7519158e+00 2.9045816e+00 2.2149484e+00 2.0887699e+00 2.5048522e+00 2.3645147e+00 3.0018766e+00 1.9120303e+00 2.7085154e+00 2.8028008e+00 2.4075162e+00 2.8284908e+00 2.2272457e+00 3.1054022e+00 2.3075573e+00 3.2060163e+00 3.0018874e+00 2.6044486e+00 2.7064438e+00 3.1073418e+00 3.3054063e+00 2.8034238e+00 1.8447840e+00 2.1492024e+00 2.0607272e+00 2.2122063e+00 3.4028104e+00 2.8028007e+00 2.8036182e+00 3.0057998e+00 2.7234787e+00 2.4027927e+00 2.3234132e+00 2.7070699e+00 2.9017335e+00 2.3151346e+00 1.8036834e+00 2.5072065e+00 2.5017313e+00 2.5032633e+00 2.6031823e+00 1.5292174e+00 2.4058519e+00 4.3116266e+00 3.4064593e+00 4.2076930e+00 3.9021503e+00 4.1063936e+00 4.9099401e+00 2.8141516e+00 4.6055969e+00 4.1036742e+00 4.4145324e+00 3.4082578e+00 3.6052799e+00 3.8082804e+00 3.3123693e+00 3.4273179e+00 3.6154977e+00 3.8026444e+00 5.0117750e+00 5.2107474e+00 3.3130198e+00 4.0114753e+00 3.2109395e+00 5.0107787e+00 3.2067490e+00 4.0058313e+00 4.3058539e+00 3.1067996e+00 3.2049797e+00 3.9061098e+00 4.1066170e+00 4.4095056e+00 4.7221364e+00 3.9082316e+00 3.4019453e+00 3.9014304e+00 4.4232188e+00 3.9139973e+00 3.8023591e+00 3.1057392e+00 3.7104219e+00 3.9150553e+00 3.4248402e+00 3.4064593e+00 4.2084919e+00 4.0172759e+00 3.5193527e+00 3.3100431e+00 3.5073655e+00 3.7133435e+00 3.4036743e+00 4.0004442e-01 5.0043084e-01 3.4085233e-01 8.0046764e-01 2.2573593e-01 4.0243965e-01 4.2362917e-01 1.2036925e+00 1.1896595e+00 8.0879776e-01 5.0000761e-01 1.1006371e+00 5.2133179e-01 8.0046685e-01 5.0437695e-01 4.0125062e-01 5.0477564e-01 5.0043084e-01 4.5148429e-01 4.0125062e-01 6.0000952e-01 6.0000317e-01 2.2608083e-01 3.0922892e-01 8.0000160e-01 7.4269314e-01 9.6572569e-01 3.4085233e-01 4.0246123e-01 9.0000136e-01 3.4085233e-01 4.0127250e-01 5.0001522e-01 4.0004442e-01 1.1000003e+00 2.2608083e-01 4.1317535e-01 5.7609230e-01 4.0122873e-01 5.2167829e-01 2.0061436e-01 7.0088627e-01 4.0004442e-01 3.3852404e+00 3.1245391e+00 3.5521657e+00 2.6057331e+00 3.2281303e+00 3.1021033e+00 3.3145497e+00 1.9088256e+00 3.2358110e+00 2.5040476e+00 2.1337832e+00 2.8091158e+00 2.6173653e+00 3.3068237e+00 2.2078368e+00 3.0635687e+00 3.1029264e+00 2.7045714e+00 3.1156892e+00 2.5038387e+00 3.4072735e+00 2.6199287e+00 3.5105217e+00 3.3061800e+00 2.9316687e+00 3.0488379e+00 3.4462681e+00 3.6292576e+00 3.1074604e+00 2.1103491e+00 2.4046650e+00 2.3052527e+00 2.5074705e+00 3.7037846e+00 3.1023805e+00 3.1087156e+00 3.3416864e+00 3.0212423e+00 2.7029308e+00 2.6036513e+00 3.0012006e+00 3.2078939e+00 2.6064541e+00 1.9145304e+00 2.8026114e+00 2.8028068e+00 2.8033825e+00 2.9167099e+00 1.6147493e+00 2.7040740e+00 4.6133719e+00 3.7058811e+00 4.5290217e+00 4.2056470e+00 4.4115634e+00 5.2381327e+00 3.1057013e+00 4.9271590e+00 4.4118721e+00 4.7354168e+00 3.7201124e+00 3.9113698e+00 4.1247181e+00 3.6087856e+00 3.7244383e+00 3.9212835e+00 4.1101783e+00 5.3422962e+00 5.5362181e+00 3.6046999e+00 4.3279835e+00 3.5095358e+00 5.3412086e+00 3.5135120e+00 4.3162096e+00 4.6297141e+00 3.4124092e+00 3.5088081e+00 4.2105763e+00 4.4358170e+00 4.7408876e+00 5.0762364e+00 4.2125085e+00 3.7079173e+00 4.2021973e+00 4.7752666e+00 4.2166536e+00 4.1080028e+00 3.4084548e+00 4.0338654e+00 4.2256165e+00 3.7563734e+00 3.7058811e+00 4.5190617e+00 4.3264209e+00 3.8360186e+00 3.6136974e+00 3.8177300e+00 4.0156240e+00 3.7048582e+00 6.3164977e-01 3.0017653e-01 4.1209001e-01 2.0061436e-01 4.0127250e-01 7.0911112e-01 8.2458409e-01 1.0207396e+00 5.2201750e-01 1.2699992e-01 7.0470867e-01 4.0004442e-01 4.0122873e-01 3.0482299e-01 5.2167208e-01 3.0490481e-01 4.0122873e-01 4.0002221e-01 2.0061436e-01 2.0061436e-01 2.0061436e-01 3.0482299e-01 3.0482299e-01 4.0122873e-01 7.0008584e-01 8.0879701e-01 3.0017653e-01 3.0474106e-01 5.0043084e-01 3.0017653e-01 6.0964597e-01 1.0000000e-01 2.0121983e-01 1.1019599e+00 6.0035305e-01 4.0004442e-01 4.5148429e-01 4.0127250e-01 4.0004442e-01 4.0125062e-01 3.3808272e-01 1.1269424e-01 3.2369541e+00 3.0101869e+00 3.4219340e+00 2.5073576e+00 3.1113295e+00 3.0016913e+00 3.2074921e+00 1.8128536e+00 3.1127326e+00 2.4076937e+00 2.0429861e+00 2.7074657e+00 2.5087337e+00 3.2029987e+00 2.1087640e+00 2.9250474e+00 3.0040848e+00 2.6011837e+00 3.0090716e+00 2.4029250e+00 3.3087901e+00 2.5074281e+00 3.4046875e+00 3.2018065e+00 2.8107271e+00 2.9185950e+00 3.3183094e+00 3.5134617e+00 3.0049285e+00 2.0041542e+00 2.3049133e+00 2.2050331e+00 2.4035997e+00 3.6030023e+00 3.0040438e+00 3.0070658e+00 3.2168317e+00 2.9083216e+00 2.6031436e+00 2.5048522e+00 2.9013423e+00 3.1034810e+00 2.5032729e+00 1.8201043e+00 2.7028014e+00 2.7016556e+00 2.7027522e+00 2.8056775e+00 1.5256523e+00 2.6033557e+00 4.5162553e+00 3.6081006e+00 4.4160732e+00 4.1039121e+00 4.3103378e+00 5.1203327e+00 3.0096880e+00 4.8129366e+00 4.3058720e+00 4.6249088e+00 3.6148619e+00 3.8081633e+00 4.0157626e+00 3.5129206e+00 3.6349703e+00 3.8226858e+00 4.0057080e+00 5.2232912e+00 5.4204287e+00 3.5035589e+00 4.2200398e+00 3.4145570e+00 5.2217206e+00 3.4096180e+00 4.2110197e+00 4.5140458e+00 3.3101076e+00 3.4081996e+00 4.1095117e+00 4.3161641e+00 4.6204721e+00 4.9419857e+00 4.1123051e+00 3.6033860e+00 4.1009647e+00 4.6434791e+00 4.1197833e+00 4.0049425e+00 3.3090452e+00 3.9205015e+00 4.1230798e+00 3.6413278e+00 3.6081006e+00 4.4145323e+00 4.2254713e+00 3.7302938e+00 3.5112285e+00 3.7130507e+00 3.9190472e+00 3.6058055e+00 5.0043842e-01 1.0426513e+00 5.2167208e-01 4.0004442e-01 3.0026460e-01 1.4542931e+00 1.5965783e+00 1.1269511e+00 7.4262964e-01 1.3253871e+00 9.3306807e-01 1.0032293e+00 8.5406674e-01 7.0470720e-01 7.0633229e-01 5.7608844e-01 6.0017982e-01 6.3192325e-01 8.2418071e-01 8.0879625e-01 3.4080442e-01 4.0243965e-01 1.0030871e+00 1.2189645e+00 1.3741465e+00 5.0043842e-01 6.0201716e-01 1.1055705e+00 5.0043842e-01 1.1269424e-01 7.1621748e-01 6.7616902e-01 6.0000952e-01 3.0008832e-01 6.8170466e-01 9.3735629e-01 4.0004442e-01 9.3308853e-01 3.0474106e-01 9.6572569e-01 6.0948212e-01 3.4311880e+00 3.1440065e+00 3.5828092e+00 2.6061623e+00 3.2490712e+00 3.1047537e+00 3.3265679e+00 1.9024467e+00 3.2610547e+00 2.5066443e+00 2.1042326e+00 2.8182771e+00 2.6268573e+00 3.3136174e+00 2.2177383e+00 3.1042292e+00 3.1056084e+00 2.7106185e+00 3.1258664e+00 2.5072166e+00 3.4123850e+00 2.6397031e+00 3.5191318e+00 3.3125861e+00 2.9569988e+00 3.0825000e+00 3.4750557e+00 3.6484459e+00 3.1148203e+00 2.1231535e+00 2.4058952e+00 2.3063814e+00 2.5167763e+00 3.7071732e+00 3.1042001e+00 3.1166462e+00 3.3690976e+00 3.0370401e+00 2.7067267e+00 2.6060811e+00 3.0024163e+00 3.2157547e+00 2.6139440e+00 1.9029771e+00 2.8056558e+00 2.8068283e+00 2.8077255e+00 2.9323793e+00 1.6119586e+00 2.7091848e+00 4.6187512e+00 3.7092298e+00 4.5442576e+00 4.2099019e+00 4.4180513e+00 5.2548586e+00 3.1079005e+00 4.9407795e+00 4.4195588e+00 4.7516511e+00 3.7329384e+00 3.9191954e+00 4.1389224e+00 3.6127211e+00 3.7328453e+00 3.9318950e+00 4.1174259e+00 5.3601143e+00 5.5513974e+00 3.6073242e+00 4.3425018e+00 3.5138357e+00 5.3586950e+00 3.5235095e+00 4.3257995e+00 4.6452056e+00 3.4217238e+00 3.5154314e+00 4.2169032e+00 4.4544908e+00 4.7602896e+00 5.1057502e+00 4.2193718e+00 3.7147036e+00 4.2043114e+00 4.8058872e+00 4.2239687e+00 4.1138950e+00 3.4146523e+00 4.0526593e+00 4.2382079e+00 3.7847403e+00 3.7092298e+00 4.5291248e+00 4.3385161e+00 3.8547029e+00 3.6228903e+00 3.8290678e+00 4.0228342e+00 3.7082809e+00 6.3164977e-01 3.0026460e-01 1.2085435e-01 6.0948506e-01 1.0143978e+00 1.3131369e+00 8.0928056e-01 4.0246123e-01 8.5409862e-01 7.0016860e-01 5.0477564e-01 6.0201716e-01 5.6595908e-01 4.0363334e-01 4.1212852e-01 1.2699992e-01 3.3818226e-01 4.1210927e-01 3.3818226e-01 2.0181667e-01 1.2085435e-01 5.0855077e-01 1.0001598e+00 1.1055707e+00 0.0000000e+00 3.0026460e-01 6.0964891e-01 0.0000000e+00 5.0043842e-01 3.0482299e-01 4.0246123e-01 8.0254500e-01 5.0043842e-01 5.2133802e-01 7.0556260e-01 2.0181667e-01 7.0008735e-01 3.0026460e-01 6.0948506e-01 2.0181667e-01 3.2490712e+00 3.0153168e+00 3.4297841e+00 2.5067523e+00 3.1166337e+00 3.0027816e+00 3.2112793e+00 1.8068048e+00 3.1183051e+00 2.4116924e+00 2.0138832e+00 2.7116615e+00 2.5059537e+00 3.2048192e+00 2.1144760e+00 2.9351753e+00 3.0063019e+00 2.6019122e+00 3.0106587e+00 2.4030297e+00 3.3125861e+00 2.5120719e+00 3.4068163e+00 3.2029877e+00 2.8162444e+00 2.9267417e+00 3.3252407e+00 3.5189464e+00 3.0077107e+00 2.0051350e+00 2.3037132e+00 2.2028146e+00 2.4058620e+00 3.6044981e+00 3.0062070e+00 3.0107283e+00 3.2237456e+00 2.9105093e+00 2.6052541e+00 2.5062865e+00 2.9018772e+00 3.1056084e+00 2.5048522e+00 1.8082911e+00 2.7043948e+00 2.7029415e+00 2.7046027e+00 2.8091099e+00 1.5248852e+00 2.6055127e+00 4.5209020e+00 3.6112573e+00 4.4212031e+00 4.1056541e+00 4.3138986e+00 5.1255338e+00 3.0133997e+00 4.8167235e+00 4.3081273e+00 4.6319211e+00 3.6205854e+00 3.8114965e+00 4.0212972e+00 3.5173798e+00 3.6449970e+00 3.8299342e+00 4.0081754e+00 5.2290121e+00 5.4254411e+00 3.5039202e+00 4.2264145e+00 3.4198378e+00 5.2270034e+00 3.4138008e+00 4.2149806e+00 4.5183778e+00 3.3145502e+00 3.4118179e+00 4.1129687e+00 4.3210760e+00 4.6261633e+00 4.9512603e+00 4.1165035e+00 3.6051692e+00 4.1014742e+00 4.6540056e+00 4.1257291e+00 4.0071257e+00 3.3129914e+00 3.9274863e+00 4.1301604e+00 3.6542046e+00 3.6112573e+00 4.4192311e+00 4.2328883e+00 3.7399948e+00 3.5155767e+00 3.7180846e+00 3.9250546e+00 3.6083191e+00 6.0184622e-01 7.4263078e-01 1.1138955e+00 4.2268438e-01 7.0096708e-01 2.4170870e-01 3.0490481e-01 3.0490481e-01 3.0017653e-01 3.0474106e-01 3.0474106e-01 8.0879701e-01 4.2362917e-01 6.1119267e-01 7.0462697e-01 4.1317535e-01 2.2538848e-01 3.0482299e-01 7.1621748e-01 6.7616723e-01 3.0474106e-01 4.0125062e-01 5.0001522e-01 6.3164977e-01 5.2491131e-01 2.2573593e-01 6.3164977e-01 1.0207396e+00 3.3808272e-01 4.0246123e-01 1.4180463e+00 1.0030868e+00 4.5148429e-01 4.1317535e-01 7.4263078e-01 3.0017653e-01 8.0879701e-01 1.0000000e-01 4.5078948e-01 3.2116783e+00 3.0049285e+00 3.4072983e+00 2.5182898e+00 3.1051604e+00 3.0020136e+00 3.2049016e+00 1.8469618e+00 3.1036832e+00 2.4099081e+00 2.1180493e+00 2.7068820e+00 2.5224740e+00 3.2021231e+00 2.1097449e+00 2.9077617e+00 3.0041462e+00 2.6022422e+00 3.0134290e+00 2.4087504e+00 3.3085101e+00 2.5050799e+00 3.4038679e+00 3.2010814e+00 2.8036959e+00 2.9060895e+00 3.3058271e+00 3.5063866e+00 3.0043212e+00 2.0122773e+00 2.3159426e+00 2.2186306e+00 2.4051454e+00 3.6029749e+00 3.0041461e+00 3.0062373e+00 3.2059465e+00 2.9096170e+00 2.6032656e+00 2.5097004e+00 2.9028411e+00 3.1023606e+00 2.5057847e+00 1.8685354e+00 2.7039990e+00 2.7016498e+00 2.7029428e+00 2.8028074e+00 1.5747520e+00 2.6039937e+00 4.5157550e+00 3.6083209e+00 4.4088451e+00 4.1031691e+00 4.3089952e+00 5.1095334e+00 3.0117336e+00 4.8052574e+00 4.3035619e+00 4.6175091e+00 3.6116958e+00 3.8067089e+00 4.0107159e+00 3.5138361e+00 3.6350483e+00 3.8210210e+00 4.0037985e+00 5.2113565e+00 5.4105254e+00 3.5063553e+00 4.2147222e+00 3.4147657e+00 5.2097995e+00 3.4081036e+00 4.2080425e+00 4.5057296e+00 3.3089414e+00 3.4074852e+00 4.1084282e+00 4.3058539e+00 4.6088153e+00 4.9193995e+00 4.1112251e+00 3.6020843e+00 4.1009356e+00 4.6223848e+00 4.1190046e+00 4.0036188e+00 3.3085886e+00 3.9129256e+00 4.1197933e+00 3.6305006e+00 3.6083209e+00 4.4113183e+00 4.2225427e+00 3.7249938e+00 3.5105217e+00 3.7103007e+00 3.9184088e+00 3.6056580e+00 4.0125062e-01 5.7609230e-01 1.0095367e+00 1.0776296e+00 6.3322667e-01 3.0490481e-01 9.0140221e-01 4.1212852e-01 6.0000317e-01 3.4085233e-01 6.0035305e-01 3.3818226e-01 3.0000000e-01 4.0122873e-01 2.2538848e-01 4.0004442e-01 4.0122873e-01 2.0061436e-01 3.0000000e-01 6.0017982e-01 7.0462844e-01 8.5406616e-01 3.0026460e-01 4.0243965e-01 7.0088477e-01 3.0026460e-01 4.5783248e-01 3.0008832e-01 3.0490481e-01 1.1002025e+00 4.1315633e-01 4.0125062e-01 4.2362917e-01 4.0125062e-01 4.1209001e-01 2.4170870e-01 5.0436965e-01 2.2573593e-01 3.1712557e+00 2.9203034e+00 3.3425817e+00 2.4092081e+00 3.0228582e+00 2.9024211e+00 3.1131137e+00 1.7168003e+00 3.0276611e+00 2.3094323e+00 1.9540727e+00 2.6109956e+00 2.4153242e+00 3.1056218e+00 2.0123796e+00 2.8520945e+00 2.9050328e+00 2.5029614e+00 2.9148948e+00 2.3042831e+00 3.2109395e+00 2.4161682e+00 3.3086859e+00 3.1042389e+00 2.7244207e+00 2.8394157e+00 3.2369857e+00 3.4247142e+00 2.9077271e+00 1.9085444e+00 2.2064916e+00 2.1068047e+00 2.3066817e+00 3.5042241e+00 2.9048033e+00 2.9102290e+00 3.1338090e+00 2.8169587e+00 2.5042601e+00 2.4061715e+00 2.8017212e+00 3.0065627e+00 2.4058322e+00 1.7261843e+00 2.6037439e+00 2.6027120e+00 2.6040234e+00 2.7127458e+00 1.4350761e+00 2.5049231e+00 4.4189015e+00 3.5095669e+00 4.3257995e+00 4.0057109e+00 4.2135057e+00 5.0324952e+00 2.9113810e+00 4.7221382e+00 4.2099962e+00 4.5353918e+00 3.5215862e+00 3.7118930e+00 3.9240025e+00 3.4150232e+00 3.5401623e+00 3.7282910e+00 3.9092259e+00 5.1365012e+00 5.3314853e+00 3.4049933e+00 4.1286955e+00 3.3168890e+00 5.1347989e+00 3.3143385e+00 4.1161770e+00 4.4243750e+00 3.2143454e+00 3.3110189e+00 4.0125032e+00 4.2289520e+00 4.5343227e+00 4.8661173e+00 4.0156353e+00 3.5063553e+00 4.0017163e+00 4.5675364e+00 4.0235140e+00 3.9076272e+00 3.2116700e+00 3.8321139e+00 4.0301570e+00 3.5598557e+00 3.5095669e+00 4.3201293e+00 4.1322798e+00 3.6413292e+00 3.4157005e+00 3.6188994e+00 3.8226858e+00 3.5071409e+00 5.0436235e-01 1.1269511e+00 1.4180734e+00 9.1446938e-01 5.0476836e-01 9.6593231e-01 8.0051115e-01 6.1119558e-01 7.0176271e-01 6.0964891e-01 4.3213914e-01 5.2133179e-01 2.2573593e-01 4.1420960e-01 5.2133802e-01 4.5078948e-01 2.2608083e-01 2.0121983e-01 6.1119558e-01 1.1005364e+00 1.2089192e+00 1.2085435e-01 2.4195741e-01 7.1621884e-01 1.2085435e-01 4.0004442e-01 4.1212852e-01 5.0085236e-01 7.0096858e-01 4.0127250e-01 5.6394820e-01 8.0967961e-01 2.0000000e-01 8.0051115e-01 2.2573593e-01 7.1621884e-01 3.0482299e-01 3.3545239e+00 3.1166331e+00 3.5333785e+00 2.6054739e+00 3.2183845e+00 3.1025789e+00 3.3116521e+00 1.9046783e+00 3.2211369e+00 2.5096353e+00 2.1074907e+00 2.8107054e+00 2.6064541e+00 3.3051050e+00 2.2121875e+00 3.0393610e+00 3.1054994e+00 2.7022579e+00 3.1107490e+00 2.5027328e+00 3.4112739e+00 2.6129479e+00 3.5073688e+00 3.3035252e+00 2.9185900e+00 3.0300451e+00 3.4286400e+00 3.6205854e+00 3.1074470e+00 2.1053074e+00 2.4030297e+00 2.3022754e+00 2.5057763e+00 3.7043108e+00 3.1053329e+00 3.1100313e+00 3.3265652e+00 3.0118276e+00 2.7046025e+00 2.6052853e+00 3.0016501e+00 3.2059133e+00 2.6047974e+00 1.9052628e+00 2.8038694e+00 2.8028007e+00 2.8041967e+00 2.9102290e+00 1.6179159e+00 2.7049931e+00 4.6192199e+00 3.7100254e+00 4.5225779e+00 4.2056438e+00 4.4133506e+00 5.2278849e+00 3.1114444e+00 4.9186970e+00 4.4088300e+00 4.7323336e+00 3.7201124e+00 3.9113387e+00 4.1217116e+00 3.6152935e+00 3.7397620e+00 3.9276515e+00 4.1085246e+00 5.3314853e+00 5.5274937e+00 3.6037456e+00 4.3264210e+00 3.5173586e+00 5.3296471e+00 3.5134601e+00 4.3151165e+00 4.6204664e+00 3.4137985e+00 3.5110031e+00 4.2123903e+00 4.4237218e+00 4.7288133e+00 5.0555470e+00 4.2155430e+00 3.7056457e+00 4.2016096e+00 4.7574592e+00 4.2235569e+00 4.1072664e+00 3.4118179e+00 4.0283196e+00 4.2288238e+00 3.7532858e+00 3.7100254e+00 4.5190617e+00 4.3311362e+00 3.8383398e+00 3.6148683e+00 3.8177286e+00 4.0227665e+00 3.7075359e+00 1.5237054e+00 1.5778323e+00 1.1528553e+00 8.0928056e-01 1.4109657e+00 9.0296858e-01 1.1060939e+00 8.5617086e-01 6.0184934e-01 8.2671175e-01 8.1112984e-01 7.1621748e-01 7.2113820e-01 9.0642722e-01 9.0166476e-01 5.2167829e-01 5.6347978e-01 1.1011719e+00 1.1531951e+00 1.3523685e+00 6.0948506e-01 7.0008735e-01 1.2012929e+00 6.0948506e-01 2.0121983e-01 8.0488008e-01 7.1636719e-01 7.0025283e-01 2.2608083e-01 7.4418186e-01 9.6702272e-01 5.0476836e-01 9.0657583e-01 3.4085233e-01 1.0214933e+00 7.0176271e-01 3.7102713e+00 3.4382051e+00 3.8712380e+00 2.9060895e+00 3.5425492e+00 3.4047913e+00 3.6240078e+00 2.2025238e+00 3.5521653e+00 2.8062729e+00 2.4042873e+00 3.1166330e+00 2.9229849e+00 3.6127194e+00 2.5155829e+00 3.3866455e+00 3.4056098e+00 3.0096888e+00 3.4232171e+00 2.8068501e+00 3.7118528e+00 2.9335034e+00 3.8176417e+00 3.6116893e+00 3.2480452e+00 3.3690976e+00 3.7643838e+00 3.9429243e+00 3.4137984e+00 2.4191998e+00 2.7057317e+00 2.6060678e+00 2.8148779e+00 4.0071259e+00 3.4042418e+00 3.4154455e+00 3.6592943e+00 3.3320889e+00 3.0065584e+00 2.9059779e+00 3.3025806e+00 3.5145393e+00 2.9126049e+00 2.2031052e+00 3.1056091e+00 3.1065947e+00 3.1074470e+00 3.2280982e+00 1.9100994e+00 3.0087060e+00 4.9179684e+00 4.0090033e+00 4.8406432e+00 4.5097222e+00 4.7173415e+00 5.5505575e+00 3.4073974e+00 5.2376127e+00 4.7184838e+00 5.0477042e+00 4.0301568e+00 4.2181242e+00 4.4357103e+00 3.9120615e+00 4.0296437e+00 4.2295175e+00 4.4165186e+00 5.6553854e+00 5.8478137e+00 3.9072483e+00 4.6391758e+00 3.8129545e+00 5.6540008e+00 3.8217034e+00 4.6242406e+00 4.9412981e+00 3.7201124e+00 3.8146271e+00 4.5162248e+00 4.7490801e+00 5.0547228e+00 5.3951639e+00 4.5184830e+00 4.0138270e+00 4.5043856e+00 5.0949990e+00 4.5225786e+00 4.4133506e+00 3.7138970e+00 4.3475342e+00 4.5353918e+00 4.0747727e+00 4.0090033e+00 4.8274110e+00 4.6357670e+00 4.1493188e+00 3.9212879e+00 4.1268500e+00 4.3214438e+00 4.0081754e+00 4.1317535e-01 4.0127250e-01 7.1629303e-01 5.0043842e-01 7.0096858e-01 6.3912709e-01 7.0184453e-01 1.2003596e+00 7.9871893e-01 1.0286506e+00 1.0433442e+00 8.2635069e-01 6.3309012e-01 6.7626502e-01 1.1286016e+00 1.0782105e+00 6.1135434e-01 6.0184934e-01 3.0915245e-01 1.0143978e+00 9.0155393e-01 5.0436965e-01 1.0143978e+00 1.4324323e+00 7.4329414e-01 8.0879776e-01 1.7570482e+00 1.4092511e+00 8.1343016e-01 7.8895472e-01 1.1269511e+00 7.0470720e-01 1.2189701e+00 5.0855077e-01 8.5406616e-01 3.5025396e+00 3.3027388e+00 3.7022129e+00 2.8281704e+00 3.4036672e+00 3.3025779e+00 3.5030234e+00 2.1725076e+00 3.4018155e+00 2.7109019e+00 2.4518621e+00 3.0049127e+00 2.8364042e+00 3.5019450e+00 2.4088882e+00 3.2025657e+00 3.3031143e+00 2.9050277e+00 3.3192099e+00 2.7159616e+00 3.6057054e+00 2.8056568e+00 3.7048624e+00 3.5016345e+00 3.1026586e+00 3.2026875e+00 3.6024856e+00 3.8034160e+00 3.3035252e+00 2.3226028e+00 2.6270968e+00 2.5319718e+00 2.7081195e+00 3.9029099e+00 3.3031170e+00 3.3039553e+00 3.5023855e+00 3.2150432e+00 2.9028412e+00 2.8148779e+00 3.2051933e+00 3.4018781e+00 2.8098127e+00 2.1974660e+00 3.0055598e+00 3.0017653e+00 3.0030650e+00 3.1026235e+00 1.9002712e+00 2.9047832e+00 4.8115512e+00 3.9065683e+00 4.7047990e+00 4.4023911e+00 4.6064349e+00 5.4038141e+00 3.3119500e+00 5.1019028e+00 4.6029848e+00 4.9110422e+00 3.9076509e+00 4.1051819e+00 4.3067850e+00 3.8114951e+00 3.9246405e+00 4.1145310e+00 4.3025710e+00 5.5046681e+00 5.7049556e+00 3.8098343e+00 4.5095384e+00 3.7106240e+00 5.5035834e+00 3.7063915e+00 4.5052925e+00 4.8020893e+00 3.6066590e+00 3.7052383e+00 4.4062090e+00 4.6017113e+00 4.9033376e+00 5.2065497e+00 4.4082090e+00 3.9018737e+00 4.4013937e+00 4.9097097e+00 4.4135256e+00 4.3024877e+00 3.6059708e+00 4.2076410e+00 4.4136664e+00 3.9189006e+00 3.9065683e+00 4.7076752e+00 4.5157700e+00 4.0166034e+00 3.8091065e+00 4.0069397e+00 4.2129114e+00 3.9040721e+00 5.0476836e-01 9.1422402e-01 6.0017982e-01 6.7616723e-01 1.0001903e+00 7.4262850e-01 1.1298636e+00 1.1055799e+00 1.0782211e+00 1.4043036e+00 1.0207260e+00 9.0508712e-01 1.0030871e+00 1.2632996e+00 1.3253497e+00 1.0001598e+00 5.0855077e-01 2.4195741e-01 1.3131369e+00 1.2089895e+00 9.0007572e-01 1.3131369e+00 1.5263518e+00 1.0087393e+00 9.3308891e-01 2.1138769e+00 1.4140515e+00 9.3308891e-01 6.8160885e-01 1.4180436e+00 6.7626681e-01 1.3018145e+00 7.0470720e-01 1.1133986e+00 3.2054626e+00 3.0041787e+00 3.4044439e+00 2.6382589e+00 3.1129223e+00 3.0138245e+00 3.2030205e+00 2.1566438e+00 3.1086927e+00 2.4554557e+00 2.5269479e+00 2.7127202e+00 2.6737930e+00 3.2074207e+00 2.1510232e+00 2.9068053e+00 3.0077106e+00 2.6369414e+00 3.0816280e+00 2.4971338e+00 3.3055260e+00 2.5325155e+00 3.4206210e+00 3.2100081e+00 2.8135926e+00 2.9088609e+00 3.3100014e+00 3.5053029e+00 3.0107283e+00 2.1554609e+00 2.4508792e+00 2.3794578e+00 2.4537333e+00 3.6090037e+00 3.0077114e+00 3.0034200e+00 3.2047284e+00 2.9729700e+00 2.6131590e+00 2.5821442e+00 2.9309340e+00 3.1060464e+00 2.5610212e+00 2.2285414e+00 2.7317035e+00 2.7106184e+00 2.7159615e+00 2.8134622e+00 1.9767345e+00 2.6270952e+00 4.5095106e+00 3.6117736e+00 4.4050179e+00 4.1034650e+00 4.3058769e+00 5.1048430e+00 3.0395885e+00 4.8030341e+00 4.3077256e+00 4.6095748e+00 3.6067573e+00 3.8091370e+00 4.0067454e+00 3.5235094e+00 3.6257071e+00 3.8125141e+00 4.0031827e+00 5.2054101e+00 5.4066794e+00 3.5404367e+00 4.2082468e+00 3.4146523e+00 5.2054259e+00 3.4138230e+00 4.2042865e+00 4.5025743e+00 3.3123786e+00 3.4067938e+00 4.1072911e+00 4.3032007e+00 4.6053784e+00 4.9093646e+00 4.1089590e+00 3.6062594e+00 4.1061436e+00 4.6117560e+00 4.1111295e+00 4.0026055e+00 3.3078313e+00 3.9072844e+00 4.1120111e+00 3.6177796e+00 3.6117736e+00 4.4064445e+00 4.2133758e+00 3.7157992e+00 3.5215805e+00 3.7072609e+00 3.9105673e+00 3.6051689e+00 4.1212852e-01 4.1212852e-01 3.0490481e-01 5.2167208e-01 3.0915245e-01 8.0097499e-01 6.1119558e-01 6.9518117e-01 9.0168933e-01 5.2491131e-01 4.0363334e-01 5.0085236e-01 7.8940551e-01 8.2462252e-01 5.0042326e-01 3.1328089e-01 3.0490481e-01 8.0928056e-01 7.0470867e-01 4.0125062e-01 8.0928056e-01 1.0776294e+00 5.0517282e-01 4.5078948e-01 1.6096629e+00 1.0207396e+00 4.5847767e-01 6.0184622e-01 9.1422402e-01 3.4085233e-01 8.5406674e-01 2.4195741e-01 6.0964891e-01 3.4079041e+00 3.2018548e+00 3.6045966e+00 2.7227151e+00 3.3029106e+00 3.2014779e+00 3.4016816e+00 2.0608234e+00 3.3024690e+00 2.6067721e+00 2.3393392e+00 2.9023862e+00 2.7310942e+00 3.4010299e+00 2.3048574e+00 3.1044057e+00 3.2014774e+00 2.8036023e+00 3.2152055e+00 2.6124447e+00 3.5030234e+00 2.7035171e+00 3.6034258e+00 3.4010358e+00 3.0022434e+00 3.1033306e+00 3.5041120e+00 3.7031277e+00 3.2018065e+00 2.2177966e+00 2.5220687e+00 2.4265152e+00 2.6055197e+00 3.8016494e+00 3.2014773e+00 3.2019092e+00 3.4031881e+00 3.1122360e+00 2.8013347e+00 2.7110046e+00 3.1036553e+00 3.3009330e+00 2.7070770e+00 2.0855888e+00 2.9035486e+00 2.9008500e+00 2.9016034e+00 3.0016038e+00 1.7857124e+00 2.8028019e+00 4.7076061e+00 3.8037955e+00 4.6049801e+00 4.3013465e+00 4.5040960e+00 5.3068325e+00 3.2075036e+00 5.0037550e+00 4.5023523e+00 4.8096009e+00 3.8048551e+00 4.0031892e+00 4.2051335e+00 3.7071735e+00 3.8161632e+00 4.0093901e+00 4.2016368e+00 5.4081547e+00 5.6075434e+00 3.7075525e+00 4.4072835e+00 3.6062405e+00 5.4074634e+00 3.6038441e+00 4.4036959e+00 4.7038247e+00 3.5038075e+00 3.6028345e+00 4.3038299e+00 4.5042394e+00 4.8062731e+00 5.1150203e+00 4.3051629e+00 3.8011413e+00 4.3008955e+00 4.8153681e+00 4.3087925e+00 4.2014602e+00 3.5032125e+00 4.1063865e+00 4.3094598e+00 3.8146853e+00 3.8037955e+00 4.6054982e+00 4.4109814e+00 3.9115832e+00 3.7058197e+00 3.9043917e+00 4.1081838e+00 3.8021570e+00 6.0365948e-01 3.0008832e-01 3.3818226e-01 2.0121983e-01 5.2133802e-01 3.0915245e-01 5.0437695e-01 5.0043842e-01 2.0181667e-01 1.2085435e-01 1.2085435e-01 4.1317535e-01 4.1317535e-01 3.0026460e-01 6.0018299e-01 7.0462697e-01 4.0246123e-01 3.0490481e-01 4.0004442e-01 4.0246123e-01 7.1621884e-01 1.2085435e-01 1.1269424e-01 1.2036863e+00 7.0088627e-01 3.0482299e-01 5.0436965e-01 5.0436235e-01 3.0482299e-01 5.0436965e-01 2.2608083e-01 2.0121983e-01 3.3237063e+00 3.1056091e+00 3.5138377e+00 2.6067805e+00 3.2064817e+00 3.1008890e+00 3.3041599e+00 1.9144935e+00 3.2074507e+00 2.5042498e+00 2.1492024e+00 2.8038903e+00 2.6091437e+00 3.3015588e+00 2.2041706e+00 3.0148613e+00 3.1021975e+00 2.7007716e+00 3.1069083e+00 2.5027328e+00 3.4052051e+00 2.6037226e+00 3.5028446e+00 3.3009330e+00 2.9058292e+00 3.0107430e+00 3.4113341e+00 3.6081814e+00 3.1026177e+00 2.1035154e+00 2.4051766e+00 2.3058791e+00 2.5019964e+00 3.7017412e+00 3.1021847e+00 3.1038570e+00 3.3100818e+00 3.0059450e+00 2.7015162e+00 2.6035107e+00 3.0009631e+00 3.2017847e+00 2.6021247e+00 1.9231085e+00 2.8015882e+00 2.8007533e+00 2.8013565e+00 2.9028946e+00 1.6222582e+00 2.7017239e+00 4.6112605e+00 3.7050457e+00 4.5107898e+00 4.2023583e+00 4.4067851e+00 5.2146266e+00 3.1060428e+00 4.9089682e+00 4.4037570e+00 4.7173415e+00 3.7092301e+00 3.9050336e+00 4.1101936e+00 3.6083379e+00 3.7235997e+00 3.9149881e+00 4.1034584e+00 5.3169366e+00 5.5149065e+00 3.6029421e+00 4.3133953e+00 3.5091580e+00 5.3158283e+00 3.5057369e+00 4.3071174e+00 4.6095441e+00 3.4059695e+00 3.5048429e+00 4.2061215e+00 4.4109767e+00 4.7143113e+00 5.0310424e+00 4.2080636e+00 3.7018984e+00 4.2005765e+00 4.7313463e+00 4.2134002e+00 4.1029723e+00 3.4053426e+00 4.0133308e+00 4.2155438e+00 3.7272780e+00 3.7050457e+00 4.5097224e+00 4.3174320e+00 3.8199266e+00 3.6070223e+00 3.8081328e+00 4.0126677e+00 3.7034791e+00 6.0017665e-01 4.1210927e-01 6.0018299e-01 1.1133986e+00 6.3178534e-01 9.0142681e-01 8.5403486e-01 7.0462844e-01 5.0477564e-01 5.2491734e-01 1.0087252e+00 9.3306807e-01 4.1317535e-01 5.0517282e-01 4.1317535e-01 8.5409862e-01 7.5503094e-01 4.1317535e-01 8.5409862e-01 1.3133231e+00 6.0964891e-01 7.0548138e-01 1.5640758e+00 1.3027556e+00 7.0176271e-01 6.0017982e-01 9.6591433e-01 6.0000635e-01 1.1056693e+00 4.0127250e-01 7.1700909e-01 3.0056049e+00 2.8037508e+00 3.2038047e+00 2.3350905e+00 2.9043042e+00 2.8024566e+00 3.0040963e+00 1.7133143e+00 2.9021652e+00 2.2134864e+00 2.0299551e+00 2.5066443e+00 2.3464211e+00 3.0020171e+00 1.9120296e+00 2.7041827e+00 2.8038683e+00 2.4047867e+00 2.8219468e+00 2.2186306e+00 3.1079220e+00 2.3063026e+00 3.2048524e+00 3.0013665e+00 2.6029242e+00 2.7037323e+00 3.1033714e+00 3.3046348e+00 2.8041978e+00 1.8296471e+00 2.1344310e+00 2.0421601e+00 2.2088481e+00 3.4030563e+00 2.8038694e+00 2.8056176e+00 3.0035303e+00 2.7166861e+00 2.4032760e+00 2.3173405e+00 2.7049931e+00 2.9020943e+00 2.3107074e+00 1.7540491e+00 2.5057744e+00 2.5017294e+00 2.5032614e+00 2.6027348e+00 1.4738792e+00 2.4051328e+00 4.3150879e+00 3.4081972e+00 4.2065765e+00 3.9027794e+00 4.1082339e+00 4.9060122e+00 2.8144592e+00 4.6029848e+00 4.1031680e+00 4.4149701e+00 3.4105998e+00 3.6062867e+00 3.8091132e+00 3.3145497e+00 3.4354252e+00 3.6203140e+00 3.8031346e+00 5.0073650e+00 5.2071845e+00 3.3100796e+00 4.0129286e+00 3.2145637e+00 5.0059527e+00 3.2079238e+00 4.0069158e+00 4.3033003e+00 3.1086424e+00 3.2069551e+00 3.9078313e+00 4.1030253e+00 4.4053246e+00 4.7120702e+00 3.9105941e+00 3.4019027e+00 3.9011588e+00 4.4155733e+00 3.9183552e+00 3.8030509e+00 3.1080886e+00 3.7106642e+00 3.9186175e+00 3.4279064e+00 3.4081972e+00 4.2100505e+00 4.0214626e+00 3.5236480e+00 3.3110446e+00 3.5093262e+00 3.7177968e+00 3.4052047e+00 4.1317535e-01 1.1269424e-01 5.6371422e-01 5.0084481e-01 4.5784410e-01 8.0000239e-01 4.0006662e-01 3.0017653e-01 4.0006662e-01 6.0948800e-01 7.0088627e-01 4.1210927e-01 3.0482299e-01 4.5080200e-01 7.0016860e-01 6.0184934e-01 4.1317535e-01 7.0016860e-01 8.5406674e-01 4.0002221e-01 3.0482299e-01 1.5012719e+00 7.4269314e-01 3.3818226e-01 4.0002221e-01 8.0046685e-01 1.1269424e-01 6.3165225e-01 2.0121983e-01 5.0002283e-01 3.2274206e+00 3.0066036e+00 3.4159337e+00 2.5238518e+00 3.1081931e+00 3.0018108e+00 3.2048307e+00 1.8672243e+00 3.1090333e+00 2.4088880e+00 2.1557835e+00 2.7050009e+00 2.5327574e+00 3.2021240e+00 2.1075767e+00 2.9175658e+00 3.0027966e+00 2.6034860e+00 3.0173373e+00 2.4124132e+00 3.3060311e+00 2.5063233e+00 3.4049933e+00 3.2016467e+00 2.8074882e+00 2.9128790e+00 3.3135401e+00 3.5094636e+00 3.0034944e+00 2.0185049e+00 2.3226176e+00 2.2272636e+00 2.4061715e+00 3.6025233e+00 3.0027816e+00 3.0045159e+00 3.2117473e+00 2.9147768e+00 2.6022650e+00 2.5117111e+00 2.9035536e+00 3.1022707e+00 2.5074705e+00 1.8959538e+00 2.7040250e+00 2.7012715e+00 2.7023320e+00 2.8040244e+00 1.6015419e+00 2.6035923e+00 4.5125057e+00 3.6062867e+00 4.4120448e+00 4.1027436e+00 4.3076126e+00 5.1160601e+00 3.0101869e+00 4.8099407e+00 4.3047534e+00 4.6192050e+00 3.6105351e+00 3.8061121e+00 4.0115220e+00 3.5110245e+00 3.6271576e+00 3.8169672e+00 4.0039490e+00 5.2185416e+00 5.4163883e+00 3.5078417e+00 4.2149895e+00 3.4109302e+00 5.2173835e+00 3.4072913e+00 4.2079670e+00 4.5106052e+00 3.3073674e+00 3.4056857e+00 4.1070396e+00 4.3122866e+00 4.6159499e+00 4.9341410e+00 4.1092167e+00 3.6024856e+00 4.1011078e+00 4.6347105e+00 4.1150272e+00 4.0033723e+00 3.3063033e+00 3.9150644e+00 4.1174503e+00 3.6310621e+00 3.6062867e+00 4.4108290e+00 4.2194920e+00 3.7226812e+00 3.5095242e+00 3.7093173e+00 3.9142888e+00 3.6040604e+00 3.4342562e-01 8.5406616e-01 3.3813251e-01 6.0017665e-01 4.5078948e-01 4.0125062e-01 2.2573593e-01 3.0474106e-01 7.0008584e-01 6.0184622e-01 2.2538848e-01 7.0017011e-01 8.0046685e-01 5.0477564e-01 5.2167208e-01 4.0004442e-01 5.0477564e-01 1.0016896e+00 3.0474106e-01 4.5080200e-01 1.1531953e+00 1.0008617e+00 4.5080200e-01 4.1420960e-01 6.1119558e-01 4.1210927e-01 8.0051036e-01 3.0482299e-01 4.1210927e-01 3.0158412e+00 2.8068284e+00 3.2097099e+00 2.3108757e+00 2.9065890e+00 2.8022000e+00 3.0066661e+00 1.6225614e+00 2.9048017e+00 2.2116239e+00 1.8685354e+00 2.5096708e+00 2.3100354e+00 3.0026666e+00 1.9136652e+00 2.7108290e+00 2.8056165e+00 2.4010446e+00 2.8094419e+00 2.2042326e+00 3.1114445e+00 2.3060252e+00 3.2036636e+00 3.0010404e+00 2.6048201e+00 2.7083838e+00 3.1074856e+00 3.3083888e+00 2.8056953e+00 1.8055938e+00 2.1074903e+00 2.0078120e+00 2.2044098e+00 3.4034897e+00 2.8056164e+00 2.8086638e+00 3.0080453e+00 2.7058598e+00 2.4044765e+00 2.3071636e+00 2.7018643e+00 2.9031229e+00 2.3040302e+00 1.6345914e+00 2.5039390e+00 2.5021287e+00 2.5037126e+00 2.6035547e+00 1.3485963e+00 2.4045982e+00 4.3195471e+00 3.4105069e+00 4.2110205e+00 3.9039624e+00 4.1112641e+00 4.9115281e+00 2.8134622e+00 4.6064153e+00 4.1040152e+00 4.4216160e+00 3.4153329e+00 3.6083651e+00 3.8136432e+00 3.3170079e+00 3.4454804e+00 3.6271127e+00 3.8048208e+00 5.0136911e+00 5.2125102e+00 3.3041886e+00 4.0185527e+00 3.2193583e+00 5.0117789e+00 3.2102572e+00 4.0101485e+00 4.3071174e+00 3.1116727e+00 3.2099137e+00 3.9105756e+00 4.1073261e+00 4.4108290e+00 4.7236350e+00 3.9141183e+00 3.4025037e+00 3.9008223e+00 4.4275986e+00 3.9240716e+00 3.8046112e+00 3.1114731e+00 3.7165788e+00 3.9250546e+00 3.4397950e+00 3.4105069e+00 4.2141201e+00 4.0283725e+00 3.5323888e+00 3.3126331e+00 3.5133654e+00 3.7236064e+00 3.4073749e+00 5.6371422e-01 4.0125062e-01 4.2362917e-01 7.0008735e-01 3.0017653e-01 2.2573593e-01 3.0490481e-01 5.2167829e-01 6.0202028e-01 3.3808272e-01 4.1210927e-01 5.2167829e-01 6.0201716e-01 5.0477564e-01 4.0363334e-01 6.0201716e-01 7.8895472e-01 3.0474106e-01 2.2608083e-01 1.4017696e+00 7.1636719e-01 2.2608083e-01 4.0002221e-01 7.0088627e-01 2.0121983e-01 5.6371422e-01 2.2538848e-01 4.0127250e-01 3.2269400e+00 3.0055754e+00 3.4153574e+00 2.5158464e+00 3.1070003e+00 3.0010043e+00 3.2037264e+00 1.8447764e+00 3.1084925e+00 2.4051329e+00 2.1169795e+00 2.7031257e+00 2.5230194e+00 3.2014729e+00 2.1040690e+00 2.9167440e+00 3.0016616e+00 2.6020655e+00 3.0122358e+00 2.4077390e+00 3.3040889e+00 2.5044039e+00 3.4036241e+00 3.2011770e+00 2.8066054e+00 2.9119764e+00 3.3128842e+00 3.5083774e+00 3.0022542e+00 2.0112442e+00 2.3146813e+00 2.2178117e+00 2.4035997e+00 3.6016272e+00 3.0016466e+00 3.0030180e+00 3.2109724e+00 2.9107838e+00 2.6012056e+00 2.5072166e+00 2.9020943e+00 3.1016037e+00 2.5045154e+00 1.8665804e+00 2.7022828e+00 2.7006623e+00 2.7012715e+00 2.8031364e+00 1.5665127e+00 2.6019940e+00 4.5096473e+00 3.6042722e+00 4.4108394e+00 4.1020090e+00 4.3058539e+00 5.1154681e+00 3.0065585e+00 4.8095984e+00 4.3039464e+00 4.6166518e+00 3.6081814e+00 3.8045576e+00 4.0096177e+00 3.5076367e+00 3.6204901e+00 3.8129595e+00 4.0031500e+00 5.2178509e+00 5.4155855e+00 3.5053718e+00 4.2125027e+00 3.4076329e+00 5.2169557e+00 3.4052726e+00 4.2064771e+00 4.5101686e+00 3.3051940e+00 3.4039470e+00 4.1052782e+00 4.3120002e+00 4.6153660e+00 4.9336188e+00 4.1069501e+00 3.6018985e+00 4.1007374e+00 4.6331222e+00 4.1114855e+00 4.0025890e+00 3.3042986e+00 3.9129418e+00 4.1139050e+00 3.6259501e+00 3.6042722e+00 4.4088300e+00 4.2155438e+00 3.7181244e+00 3.5068261e+00 3.7072136e+00 3.9107458e+00 3.6027359e+00 7.1779518e-01 9.0005048e-01 6.8160885e-01 6.0980961e-01 6.3164977e-01 6.0964597e-01 6.0948506e-01 6.3178534e-01 8.0888055e-01 6.5712813e-01 9.1552331e-01 5.6595908e-01 4.5147187e-01 9.0026543e-01 5.6595908e-01 6.0201716e-01 5.6370994e-01 4.1212852e-01 1.3000455e+00 4.1315633e-01 6.1830764e-01 9.0511169e-01 6.0964891e-01 6.3178534e-01 4.5077696e-01 7.1621748e-01 4.5783248e-01 3.7510248e+00 3.5145413e+00 3.9319585e+00 3.0060350e+00 3.6168418e+00 3.5015800e+00 3.7092301e+00 2.3098782e+00 3.6209185e+00 2.9036019e+00 2.5319798e+00 3.2059465e+00 3.0125595e+00 3.7043511e+00 2.6050088e+00 3.4362995e+00 3.5023713e+00 3.1027850e+00 3.5112541e+00 2.9034027e+00 3.8056232e+00 3.0109656e+00 3.9070007e+00 3.7037948e+00 3.3177283e+00 3.4278716e+00 3.8279200e+00 4.0185639e+00 3.5049370e+00 2.5063489e+00 2.8048596e+00 2.7053910e+00 2.9045816e+00 4.1028806e+00 3.5020661e+00 3.5059137e+00 3.7249599e+00 3.4134555e+00 3.1021033e+00 3.0035422e+00 3.4012314e+00 3.6049329e+00 3.0042977e+00 2.3151346e+00 3.2021240e+00 3.2018065e+00 3.2023319e+00 3.3095196e+00 2.0139907e+00 3.1028259e+00 5.0111326e+00 4.1049446e+00 4.9203200e+00 4.6042055e+00 4.8089555e+00 5.6273643e+00 3.5051449e+00 5.3190012e+00 4.8083867e+00 5.1260178e+00 4.1140184e+00 4.3082037e+00 4.5172930e+00 4.0074572e+00 4.1195081e+00 4.3162103e+00 4.5071301e+00 5.7305902e+00 5.9266306e+00 4.0041352e+00 4.7202045e+00 3.9078680e+00 5.7295930e+00 3.9093593e+00 4.7117434e+00 5.0203874e+00 3.8087102e+00 3.9064537e+00 4.6081315e+00 4.8239967e+00 5.1282911e+00 5.4538016e+00 4.6097450e+00 4.1052255e+00 4.6016323e+00 5.1527860e+00 4.6133719e+00 4.5057296e+00 3.8063301e+00 4.4231469e+00 4.6192070e+00 4.1384491e+00 4.1049446e+00 4.9142249e+00 4.7202041e+00 4.2256252e+00 4.0099717e+00 4.2125085e+00 4.4124585e+00 4.1039188e+00 3.4085233e-01 3.3818226e-01 1.2699992e-01 3.0922892e-01 3.3818226e-01 4.1212852e-01 3.4085233e-01 3.0490481e-01 8.0250202e-01 9.0192695e-01 4.0363334e-01 5.0437695e-01 4.5847767e-01 4.0363334e-01 7.0633229e-01 3.0482299e-01 4.0246123e-01 1.0095513e+00 7.0548283e-01 2.0181667e-01 5.0043084e-01 3.6452132e-01 5.0436965e-01 5.0855778e-01 4.1420960e-01 3.3813251e-01 3.0360001e+00 2.8068283e+00 3.2199554e+00 2.3040302e+00 2.9083228e+00 2.8004229e+00 3.0040677e+00 1.6099792e+00 2.9111118e+00 2.2023225e+00 1.8444678e+00 2.5026969e+00 2.3072196e+00 3.0013665e+00 1.9023442e+00 2.7227152e+00 2.8012528e+00 2.4005053e+00 2.8054838e+00 2.2013444e+00 3.1036553e+00 2.3040711e+00 3.2026875e+00 3.0010106e+00 2.6084695e+00 2.7159628e+00 3.1166009e+00 3.3100796e+00 2.8019019e+00 1.8020058e+00 2.1029252e+00 2.0034861e+00 2.2011906e+00 3.4011297e+00 2.8012319e+00 2.8028007e+00 3.0142197e+00 2.7060544e+00 2.4007552e+00 2.3017471e+00 2.7003774e+00 2.9016034e+00 2.3011979e+00 1.6179000e+00 2.5007284e+00 2.5003793e+00 2.5007008e+00 2.6035320e+00 1.3154932e+00 2.4008859e+00 4.3091529e+00 3.4034897e+00 4.2123904e+00 3.9018704e+00 4.1056542e+00 4.9181670e+00 2.8038684e+00 4.6114520e+00 4.1039624e+00 4.4180514e+00 3.4084525e+00 3.6042874e+00 3.8104403e+00 3.3060311e+00 3.4198458e+00 3.6127194e+00 3.8032956e+00 5.0208687e+00 5.2178587e+00 3.3018328e+00 4.0133297e+00 3.2067991e+00 5.0200323e+00 3.2048524e+00 4.0067585e+00 4.3122441e+00 3.1047671e+00 3.2036090e+00 3.9049697e+00 4.1148052e+00 4.4184267e+00 4.7404155e+00 3.9065727e+00 3.4018864e+00 3.9004186e+00 4.4392802e+00 3.9110280e+00 3.8025990e+00 3.1038577e+00 3.7145622e+00 3.9140895e+00 3.4287259e+00 3.4034897e+00 4.2090841e+00 4.0156240e+00 3.5189468e+00 3.3056781e+00 3.5073617e+00 3.7102604e+00 3.4023494e+00 4.1315633e-01 3.0915245e-01 4.5078948e-01 5.2132556e-01 3.0482299e-01 3.3808272e-01 6.0964597e-01 7.0911112e-01 8.6051414e-01 4.1212852e-01 7.0016860e-01 7.4262964e-01 4.1212852e-01 6.1830489e-01 4.1209001e-01 6.0018299e-01 1.1056693e+00 6.0964597e-01 4.1317535e-01 4.1315633e-01 5.2133179e-01 4.2268438e-01 5.0084481e-01 5.2491131e-01 5.0043084e-01 2.9115264e+00 2.6338022e+00 3.0658361e+00 2.1172959e+00 2.7373419e+00 2.6040822e+00 2.8212040e+00 1.4407364e+00 2.7450517e+00 2.0182279e+00 1.7116683e+00 2.3196029e+00 2.1285888e+00 2.8091316e+00 1.7264084e+00 2.5863714e+00 2.6084695e+00 2.2054529e+00 2.6248910e+00 2.0083311e+00 2.9174382e+00 2.1301354e+00 3.0136614e+00 2.8068911e+00 2.4421128e+00 2.5659281e+00 2.9581275e+00 3.1380442e+00 2.6129786e+00 1.6191482e+00 1.9129988e+00 1.8141046e+00 2.0129571e+00 3.2064817e+00 2.6080847e+00 2.6171503e+00 2.8540078e+00 2.5288353e+00 2.2078337e+00 2.1116321e+00 2.5029614e+00 2.7108347e+00 2.1109969e+00 1.4620239e+00 2.3067198e+00 2.3048725e+00 2.3072196e+00 2.4221911e+00 1.1960519e+00 2.2090466e+00 4.1263920e+00 3.2146438e+00 4.0362393e+00 3.7082866e+00 3.9191966e+00 4.7434452e+00 2.6190662e+00 4.4302264e+00 3.9142233e+00 4.2488425e+00 3.2328627e+00 3.4177609e+00 3.6349468e+00 3.1232336e+00 3.2606481e+00 3.4419771e+00 3.6135028e+00 4.8484858e+00 5.0414126e+00 3.1077602e+00 3.8409517e+00 3.0264502e+00 4.8462395e+00 3.0224855e+00 3.8231767e+00 4.1339850e+00 2.9228238e+00 3.0173096e+00 3.7181009e+00 3.9409635e+00 4.2473796e+00 4.5888422e+00 3.7226114e+00 3.2097424e+00 3.7024938e+00 4.2924779e+00 3.7339169e+00 3.6111693e+00 2.9185950e+00 3.5470876e+00 3.7434043e+00 3.2896416e+00 3.2146438e+00 4.0283196e+00 3.8460162e+00 3.3616756e+00 3.1242731e+00 3.3284650e+00 3.5333785e+00 3.2109426e+00 4.0122873e-01 5.0043084e-01 4.0243965e-01 3.0474106e-01 2.0061436e-01 4.5148429e-01 1.1000100e+00 1.2012928e+00 1.2699992e-01 4.0122873e-01 5.6595488e-01 1.2699992e-01 6.0184309e-01 4.0004442e-01 5.0436965e-01 7.1700909e-01 6.0201716e-01 5.2132556e-01 8.0051115e-01 2.2573593e-01 8.0000080e-01 4.0243965e-01 7.0088477e-01 3.0474106e-01 3.1428043e+00 2.9119661e+00 3.3252402e+00 2.4048325e+00 3.0131919e+00 2.9019362e+00 3.1087162e+00 1.7043719e+00 3.0148571e+00 2.3090280e+00 1.9099608e+00 2.6089255e+00 2.4039780e+00 3.1034773e+00 2.0109328e+00 2.8295063e+00 2.9047982e+00 2.5011632e+00 2.9079901e+00 2.3019339e+00 3.2101766e+00 2.4088882e+00 3.3051149e+00 3.1020645e+00 2.7127201e+00 2.8219255e+00 3.2211370e+00 3.4154432e+00 2.9057760e+00 1.9031964e+00 2.2023924e+00 2.1016800e+00 2.3040177e+00 3.5033831e+00 2.9047500e+00 2.9083094e+00 3.1195526e+00 2.8078790e+00 2.5037817e+00 2.4045555e+00 2.8012577e+00 3.0040677e+00 2.4032886e+00 1.7053664e+00 2.6031367e+00 2.6019751e+00 2.6032655e+00 2.7067267e+00 1.4186217e+00 2.5039390e+00 4.4180854e+00 3.5092124e+00 4.3179254e+00 4.0043989e+00 4.2115634e+00 5.0223341e+00 2.9108451e+00 4.7142986e+00 4.2064794e+00 4.5276385e+00 3.5169841e+00 3.7092301e+00 3.9177719e+00 3.4145764e+00 3.5398518e+00 3.7257231e+00 3.9064409e+00 5.1255523e+00 5.3223081e+00 3.4028319e+00 4.1224590e+00 3.3167394e+00 5.1238108e+00 3.3110167e+00 4.1123595e+00 4.4156295e+00 3.2116669e+00 3.3094499e+00 4.0106882e+00 4.2180724e+00 4.5227110e+00 4.8462592e+00 4.0138270e+00 3.5038530e+00 4.0010263e+00 4.5481710e+00 4.0222346e+00 3.9055783e+00 3.2104685e+00 3.8231767e+00 4.0259306e+00 3.5470873e+00 3.5092124e+00 4.3162096e+00 4.1285334e+00 3.6344358e+00 3.4126369e+00 3.6148618e+00 3.8215373e+00 3.5066394e+00 2.2608083e-01 2.4170870e-01 3.0915245e-01 3.0915245e-01 4.0002221e-01 7.0096858e-01 8.0888055e-01 3.3818226e-01 4.0243965e-01 5.0477564e-01 3.3818226e-01 6.1135434e-01 2.0121983e-01 3.0017653e-01 1.1020506e+00 6.0219099e-01 2.0061436e-01 4.1210927e-01 4.0246123e-01 4.0125062e-01 4.0363334e-01 3.4085233e-01 2.2573593e-01 3.1414744e+00 2.9090612e+00 3.3237063e+00 2.4058952e+00 3.0107723e+00 2.9007492e+00 3.1056084e+00 1.7139238e+00 3.0138400e+00 2.3035512e+00 1.9525301e+00 2.6040007e+00 2.4100386e+00 3.1020779e+00 2.0037730e+00 2.8273039e+00 2.9018637e+00 2.5009579e+00 2.9077468e+00 2.3022754e+00 3.2048985e+00 2.4059812e+00 3.3038272e+00 3.1015567e+00 2.7110304e+00 2.8196992e+00 3.2199879e+00 3.4126307e+00 2.9028597e+00 1.9035634e+00 2.2044603e+00 2.1052067e+00 2.3021298e+00 3.5016873e+00 2.9018153e+00 2.9040211e+00 3.1174676e+00 2.8083845e+00 2.5012694e+00 2.4028385e+00 2.8006965e+00 3.0024198e+00 2.4021168e+00 1.7233814e+00 2.6012647e+00 2.6007117e+00 2.6012056e+00 2.7050190e+00 1.4220898e+00 2.5015263e+00 4.4109742e+00 3.5045842e+00 4.3148937e+00 4.0025815e+00 4.2071337e+00 5.0208677e+00 2.9053047e+00 4.7134688e+00 4.2051335e+00 4.5213131e+00 3.5107904e+00 3.7056862e+00 3.9129303e+00 3.4076849e+00 3.5232606e+00 3.7154827e+00 3.9043905e+00 5.1238111e+00 5.3204854e+00 3.4027174e+00 4.1161770e+00 3.3085473e+00 5.1228006e+00 3.3065392e+00 4.1085246e+00 4.4144908e+00 3.2064337e+00 3.3048953e+00 4.0063737e+00 4.2173565e+00 4.5213359e+00 4.8449108e+00 4.0082529e+00 3.5026815e+00 4.0006690e+00 4.5442582e+00 4.0132894e+00 3.9035247e+00 3.2051958e+00 3.8177289e+00 4.0170262e+00 3.5340950e+00 3.5045842e+00 4.3111747e+00 4.1186693e+00 3.6228903e+00 3.4075338e+00 3.6094379e+00 3.8124787e+00 3.5031928e+00 1.1269424e-01 5.0436965e-01 4.5078948e-01 2.2573593e-01 6.0000317e-01 7.0088477e-01 4.1210927e-01 3.4080442e-01 3.0474106e-01 4.1210927e-01 8.0883841e-01 1.1269424e-01 2.2573593e-01 1.2089253e+00 8.0051036e-01 4.0125062e-01 4.1317535e-01 5.2133802e-01 3.0017653e-01 6.0184622e-01 2.0061436e-01 2.2573593e-01 3.2211375e+00 3.0065592e+00 3.4126307e+00 2.5097024e+00 3.1069750e+00 3.0016616e+00 3.2056674e+00 1.8201133e+00 3.1066333e+00 2.4080686e+00 2.0619186e+00 2.7068820e+00 2.5107632e+00 3.2022485e+00 2.1087015e+00 2.9137660e+00 3.0040552e+00 2.6010528e+00 3.0089164e+00 2.4039766e+00 3.3085605e+00 2.5050799e+00 3.4035383e+00 3.2010814e+00 2.8057187e+00 2.9102474e+00 3.3101488e+00 3.5088135e+00 3.0043212e+00 2.0051350e+00 2.3071665e+00 2.2078183e+00 2.4034084e+00 3.6027901e+00 3.0040510e+00 3.0064311e+00 3.2097125e+00 2.9065741e+00 2.6030847e+00 2.5057763e+00 2.9016034e+00 3.1025924e+00 2.5033702e+00 1.8310475e+00 2.7029487e+00 2.7015162e+00 2.7026433e+00 2.8034238e+00 1.5358653e+00 2.6032968e+00 4.5159027e+00 3.6080734e+00 4.4115652e+00 4.1033603e+00 4.3094200e+00 5.1138780e+00 3.0100866e+00 4.8082318e+00 4.3041941e+00 4.6203464e+00 3.6127197e+00 3.8070338e+00 4.0124958e+00 3.5130651e+00 3.6349183e+00 3.8215362e+00 4.0044029e+00 5.2162094e+00 5.4145184e+00 3.5039680e+00 4.2166537e+00 3.4145702e+00 5.2146334e+00 3.4083285e+00 4.2090727e+00 4.5089181e+00 3.3091123e+00 3.4076329e+00 4.1087140e+00 4.3098021e+00 4.6133860e+00 4.9287684e+00 4.1115100e+00 3.6023704e+00 4.1007820e+00 4.6309835e+00 4.1192351e+00 4.0040240e+00 3.3086516e+00 3.9156759e+00 4.1209257e+00 3.6344375e+00 3.6080734e+00 4.4124586e+00 4.2235561e+00 3.7268101e+00 3.5102374e+00 3.7111714e+00 3.9185866e+00 3.6056580e+00 5.0084481e-01 4.1315633e-01 2.2573593e-01 7.0000303e-01 8.0046605e-01 3.3818226e-01 2.4170870e-01 3.0017653e-01 3.3818226e-01 8.0245824e-01 1.1269424e-01 2.0181667e-01 1.1133897e+00 8.0004523e-01 4.0246123e-01 5.2167829e-01 4.5078948e-01 4.0125062e-01 6.0017665e-01 3.0017653e-01 2.0061436e-01 3.3182813e+00 3.1056085e+00 3.5110034e+00 2.6060742e+00 3.2059465e+00 3.1013637e+00 3.3048926e+00 1.9099680e+00 3.2056789e+00 2.5063346e+00 2.1344310e+00 2.8057704e+00 2.6059875e+00 3.3019214e+00 2.2068463e+00 3.0117188e+00 3.1034568e+00 2.7006623e+00 3.1063566e+00 2.5023073e+00 3.4074246e+00 2.6040822e+00 3.5028878e+00 3.3008913e+00 2.9048017e+00 3.0087102e+00 3.4087684e+00 3.6077011e+00 3.1036688e+00 2.1027637e+00 2.4039664e+00 2.3040177e+00 2.5024922e+00 3.7023994e+00 3.1034532e+00 3.1054994e+00 3.3083865e+00 3.0045919e+00 2.7025560e+00 2.6039937e+00 3.0011260e+00 3.2022183e+00 2.6023240e+00 1.9156198e+00 2.8022964e+00 2.8012577e+00 2.8021795e+00 2.9028597e+00 1.6190551e+00 2.7026433e+00 4.6143249e+00 3.7070367e+00 4.5103890e+00 4.2029881e+00 4.4084395e+00 5.2126509e+00 3.1082889e+00 4.9074567e+00 4.4036930e+00 4.7183734e+00 3.7111657e+00 3.9061763e+00 4.1111077e+00 3.6112621e+00 3.7306950e+00 3.9190472e+00 4.1039096e+00 5.3148048e+00 5.5132902e+00 3.6028435e+00 4.3148929e+00 3.5126667e+00 5.3133599e+00 3.5071916e+00 4.3081091e+00 4.6080296e+00 3.4078683e+00 3.5066415e+00 4.2077543e+00 4.4087821e+00 4.7120754e+00 5.0261502e+00 4.2102487e+00 3.7020547e+00 4.2006494e+00 4.7279956e+00 4.2171591e+00 4.1035746e+00 3.4074978e+00 4.0138994e+00 4.2186688e+00 3.7302926e+00 3.7070367e+00 4.5111938e+00 4.3210760e+00 3.8236433e+00 3.6087856e+00 3.8098356e+00 4.0164852e+00 3.7049593e+00 1.1269424e-01 7.0017011e-01 9.0506343e-01 1.0426636e+00 2.0181667e-01 4.1209001e-01 8.0093081e-01 2.0181667e-01 3.4080442e-01 4.0125062e-01 3.6259865e-01 9.0029064e-01 3.3808272e-01 4.2268438e-01 6.1135434e-01 2.2608083e-01 6.0948212e-01 2.0061436e-01 6.3164977e-01 3.0482299e-01 3.1902650e+00 2.9267417e+00 3.3545239e+00 2.4065479e+00 3.0300492e+00 2.9028462e+00 3.1166330e+00 1.7073273e+00 3.0369978e+00 2.3091363e+00 1.9242178e+00 2.6129479e+00 2.4148785e+00 3.1074477e+00 2.0138888e+00 2.8680310e+00 2.9053048e+00 2.5042875e+00 2.9165009e+00 2.3038195e+00 3.2116668e+00 2.4221589e+00 3.3110857e+00 3.1060464e+00 2.7333589e+00 2.8520935e+00 3.2480481e+00 3.4313924e+00 2.9094538e+00 1.9103596e+00 2.2042535e+00 2.1040084e+00 2.3086427e+00 3.5048916e+00 2.9048754e+00 2.9119661e+00 3.1440058e+00 2.8212158e+00 2.5048147e+00 2.4054865e+00 2.8016296e+00 3.0087060e+00 2.4071454e+00 1.7108740e+00 2.6040234e+00 2.6035022e+00 2.6047905e+00 2.7176633e+00 1.4222462e+00 2.5057847e+00 4.4195581e+00 3.5098289e+00 4.3311360e+00 4.0067587e+00 4.2149806e+00 5.0390074e+00 2.9109559e+00 4.7273232e+00 4.2124122e+00 4.5405876e+00 3.5250718e+00 3.7139027e+00 3.9284285e+00 3.4150426e+00 3.5404383e+00 3.7302923e+00 3.9113385e+00 5.1434691e+00 5.3373009e+00 3.4049076e+00 4.1330547e+00 3.3170101e+00 5.1417717e+00 3.3168869e+00 4.1189487e+00 4.4302240e+00 3.2165105e+00 3.3123688e+00 4.0139003e+00 4.2362095e+00 4.5418862e+00 4.8784553e+00 4.0170271e+00 3.5083268e+00 4.0022121e+00 4.5797332e+00 4.0245435e+00 3.9092247e+00 3.2127499e+00 3.8383398e+00 4.0332236e+00 3.5687055e+00 3.5098289e+00 4.3229228e+00 4.1350002e+00 3.6463113e+00 3.4177609e+00 3.6219569e+00 3.8236419e+00 3.5076152e+00 6.0202028e-01 1.0008471e+00 1.1133984e+00 1.2085435e-01 4.0125062e-01 7.0548138e-01 1.2085435e-01 4.1210927e-01 3.3813251e-01 4.1317535e-01 8.0093160e-01 4.1210927e-01 4.5147187e-01 7.0184453e-01 2.0121983e-01 7.0088326e-01 2.2573593e-01 6.3164977e-01 2.4170870e-01 3.1712556e+00 2.9203033e+00 3.3425812e+00 2.4054865e+00 3.0228150e+00 2.9023686e+00 3.1131138e+00 1.7053664e+00 3.0276460e+00 2.3090554e+00 1.9156198e+00 2.6109872e+00 2.4094445e+00 3.1056085e+00 2.0122722e+00 2.8520934e+00 2.9050277e+00 2.5027053e+00 2.9125192e+00 2.3027405e+00 3.2109394e+00 2.4160415e+00 3.3084146e+00 3.1042008e+00 2.7243956e+00 2.8394100e+00 3.2369546e+00 3.4247119e+00 2.9077087e+00 1.9065546e+00 2.2031052e+00 2.1025721e+00 2.3063026e+00 3.5041732e+00 2.9047982e+00 2.9102300e+00 3.1338083e+00 2.8152056e+00 2.5042498e+00 2.4049187e+00 2.8014068e+00 3.0065584e+00 2.4051787e+00 1.7073273e+00 2.6035320e+00 2.6027034e+00 2.6039922e+00 2.7127202e+00 1.4197348e+00 2.5048165e+00 4.4189015e+00 3.5095163e+00 4.3257988e+00 4.0057069e+00 4.2135049e+00 5.0324949e+00 2.9108796e+00 4.7221364e+00 4.2099109e+00 4.5353940e+00 3.5215862e+00 3.7118544e+00 3.9240013e+00 3.4147901e+00 3.5401421e+00 3.7282909e+00 3.9092247e+00 5.1365094e+00 5.3314710e+00 3.4038679e+00 4.1286955e+00 3.3168613e+00 5.1347955e+00 3.3142720e+00 4.1161770e+00 4.4243750e+00 3.2143132e+00 3.3110162e+00 4.0124921e+00 4.2289511e+00 4.5343165e+00 4.8661278e+00 4.0156242e+00 3.5063341e+00 4.0016595e+00 4.5675358e+00 4.0235142e+00 3.9076269e+00 3.2116668e+00 3.8321137e+00 4.0301568e+00 3.5598554e+00 3.5095163e+00 4.3201293e+00 4.1322798e+00 3.6413274e+00 3.4154677e+00 3.6188977e+00 3.8226861e+00 3.5071388e+00 7.0096708e-01 8.0004602e-01 5.0855077e-01 4.1420960e-01 2.2608083e-01 5.0855077e-01 1.0008768e+00 3.0474106e-01 4.0127250e-01 1.1527746e+00 1.0000457e+00 4.0127250e-01 4.5783248e-01 6.0948800e-01 4.1317535e-01 8.0008964e-01 3.0482299e-01 4.0127250e-01 3.2104685e+00 3.0024155e+00 3.4059092e+00 2.5048145e+00 3.1026586e+00 3.0005260e+00 3.2022151e+00 1.8108200e+00 3.1025924e+00 2.4028974e+00 2.0417688e+00 2.7025751e+00 2.5062865e+00 3.2007416e+00 2.1027376e+00 2.9057769e+00 3.0015388e+00 2.6003213e+00 3.0043084e+00 2.4017233e+00 3.3039365e+00 2.5015263e+00 3.4013673e+00 3.2002931e+00 2.8019179e+00 2.9040262e+00 3.3045112e+00 3.5038551e+00 3.0015958e+00 2.0020172e+00 2.3035509e+00 2.2041009e+00 2.4010446e+00 3.6011254e+00 3.0015387e+00 3.0025850e+00 3.2040849e+00 2.9029297e+00 2.6009614e+00 2.5022969e+00 2.9005699e+00 3.1008537e+00 2.5011717e+00 1.8179820e+00 2.7009799e+00 2.7004102e+00 2.7008225e+00 2.8010266e+00 1.5160787e+00 2.6010449e+00 4.5093548e+00 3.6039076e+00 4.4060847e+00 4.1014985e+00 4.3050076e+00 5.1081747e+00 3.0045274e+00 4.8044751e+00 4.3019076e+00 4.6117611e+00 3.6062405e+00 3.8032982e+00 4.0063634e+00 3.5066398e+00 3.6202705e+00 3.8119529e+00 4.0019489e+00 5.2097659e+00 5.4087506e+00 3.5019664e+00 4.2090727e+00 3.4073888e+00 5.2088330e+00 3.4037266e+00 4.2046087e+00 4.5046939e+00 3.3041077e+00 3.4034672e+00 4.1044794e+00 4.3051857e+00 4.6074982e+00 4.9181673e+00 4.1061528e+00 3.6008588e+00 4.1002763e+00 4.6187512e+00 4.1110303e+00 4.0017844e+00 3.3039580e+00 3.9080413e+00 4.1118167e+00 3.6188744e+00 3.6039076e+00 4.4067826e+00 4.2136946e+00 3.7147052e+00 3.5048712e+00 3.7054764e+00 3.9103830e+00 3.6025973e+00 3.0026460e-01 1.0001598e+00 9.0029064e-01 6.0202028e-01 1.0001598e+00 1.1281352e+00 7.0000303e-01 6.0052920e-01 1.8012962e+00 9.6574369e-01 6.3178782e-01 4.2270142e-01 1.1005460e+00 3.0026460e-01 9.1422402e-01 4.0004442e-01 8.0004602e-01 3.2225450e+00 3.0091788e+00 3.4142737e+00 2.5659206e+00 3.1121190e+00 3.0065741e+00 3.2080663e+00 1.9795481e+00 3.1095927e+00 2.4291135e+00 2.3151880e+00 2.7129011e+00 2.5826416e+00 3.2051685e+00 2.1273517e+00 2.9165009e+00 3.0077149e+00 2.6132476e+00 3.0422268e+00 2.4403272e+00 3.3124044e+00 2.5166989e+00 3.4115621e+00 3.2044340e+00 2.8105357e+00 2.9137358e+00 3.3135329e+00 3.5115123e+00 3.0089448e+00 2.0634477e+00 2.3669955e+00 2.2798676e+00 2.4222743e+00 3.6065353e+00 3.0077107e+00 3.0095641e+00 3.2119165e+00 2.9352117e+00 2.6080595e+00 2.5371436e+00 2.9126008e+00 3.1051604e+00 2.5254396e+00 2.0316239e+00 2.7143597e+00 2.7050980e+00 2.7084026e+00 2.8082597e+00 1.7626307e+00 2.6129786e+00 4.5202811e+00 3.6136284e+00 4.4137920e+00 4.1051791e+00 4.3125133e+00 5.1149745e+00 3.0264326e+00 4.8090821e+00 4.3074243e+00 4.6242424e+00 3.6169385e+00 3.8113313e+00 4.0160029e+00 3.5235168e+00 3.6464145e+00 3.8279938e+00 4.0062032e+00 5.2173409e+00 5.4162239e+00 3.5202520e+00 4.2206877e+00 3.4219359e+00 5.2156030e+00 3.4146242e+00 4.2116109e+00 4.5097900e+00 3.3150972e+00 3.4115327e+00 4.1123767e+00 4.3106068e+00 4.6148396e+00 4.9296764e+00 4.1159139e+00 3.6049049e+00 4.1030781e+00 4.6336876e+00 4.1247374e+00 4.0056652e+00 3.3131419e+00 3.9194404e+00 4.1265834e+00 3.6428011e+00 3.6136284e+00 4.4157045e+00 4.2295866e+00 3.7344540e+00 3.5196603e+00 3.7152542e+00 3.9242137e+00 3.6086340e+00 1.1055707e+00 1.0030868e+00 7.0000151e-01 1.1055707e+00 1.3018102e+00 8.0245824e-01 7.1621884e-01 1.9078389e+00 1.1896594e+00 7.2044167e-01 5.3943256e-01 1.2089192e+00 4.5147187e-01 1.0776188e+00 5.0043084e-01 9.0506254e-01 3.3079985e+00 3.1046072e+00 3.5056118e+00 2.6709345e+00 3.2081329e+00 3.1065948e+00 3.3043807e+00 2.0901204e+00 3.2052035e+00 2.5276373e+00 2.4267777e+00 2.8091158e+00 2.6904888e+00 3.3041886e+00 2.2241050e+00 3.0065909e+00 3.1056084e+00 2.7155799e+00 3.1440950e+00 2.5451785e+00 3.4078458e+00 2.6152930e+00 3.5111169e+00 3.3045112e+00 2.9070941e+00 3.0065909e+00 3.4069929e+00 3.6059670e+00 3.1068940e+00 2.1702441e+00 2.4737523e+00 2.3880607e+00 2.5238437e+00 3.7056514e+00 3.1056084e+00 3.1055129e+00 3.3051256e+00 3.0372254e+00 2.7067267e+00 2.6397031e+00 3.0142197e+00 3.2037566e+00 2.6278605e+00 2.1424915e+00 2.8148768e+00 2.8047553e+00 2.8077256e+00 2.9066659e+00 1.8682644e+00 2.7127202e+00 4.6142218e+00 3.7103348e+00 4.5074842e+00 4.2035307e+00 4.4083412e+00 5.2074280e+00 3.1239158e+00 4.9041928e+00 4.4055872e+00 4.7149533e+00 3.7103439e+00 3.9081758e+00 4.1095835e+00 3.6188977e+00 3.7328455e+00 3.9187196e+00 4.1037709e+00 5.3087451e+00 5.5089283e+00 3.6218973e+00 4.3127798e+00 3.5155554e+00 5.3076917e+00 3.5109043e+00 4.3070065e+00 4.6043043e+00 3.4107931e+00 3.5076367e+00 4.2085644e+00 4.4044360e+00 4.7071579e+00 5.0144130e+00 4.2110565e+00 3.7038321e+00 4.2031939e+00 4.7176313e+00 4.2169539e+00 4.1034568e+00 3.4087523e+00 4.0110693e+00 4.2176552e+00 3.7262659e+00 3.7103348e+00 4.5099841e+00 4.3199893e+00 3.8223318e+00 3.6159248e+00 3.8096375e+00 4.0163546e+00 3.7058422e+00 3.0026460e-01 6.0964891e-01 0.0000000e+00 5.0043842e-01 3.0482299e-01 4.0246123e-01 8.0254500e-01 5.0043842e-01 5.2133802e-01 7.0556260e-01 2.0181667e-01 7.0008735e-01 3.0026460e-01 6.0948506e-01 2.0181667e-01 3.2490712e+00 3.0153168e+00 3.4297841e+00 2.5067523e+00 3.1166337e+00 3.0027816e+00 3.2112793e+00 1.8068048e+00 3.1183051e+00 2.4116924e+00 2.0138832e+00 2.7116615e+00 2.5059537e+00 3.2048192e+00 2.1144760e+00 2.9351753e+00 3.0063019e+00 2.6019122e+00 3.0106587e+00 2.4030297e+00 3.3125861e+00 2.5120719e+00 3.4068163e+00 3.2029877e+00 2.8162444e+00 2.9267417e+00 3.3252407e+00 3.5189464e+00 3.0077107e+00 2.0051350e+00 2.3037132e+00 2.2028146e+00 2.4058620e+00 3.6044981e+00 3.0062070e+00 3.0107283e+00 3.2237456e+00 2.9105093e+00 2.6052541e+00 2.5062865e+00 2.9018772e+00 3.1056084e+00 2.5048522e+00 1.8082911e+00 2.7043948e+00 2.7029415e+00 2.7046027e+00 2.8091099e+00 1.5248852e+00 2.6055127e+00 4.5209020e+00 3.6112573e+00 4.4212031e+00 4.1056541e+00 4.3138986e+00 5.1255338e+00 3.0133997e+00 4.8167235e+00 4.3081273e+00 4.6319211e+00 3.6205854e+00 3.8114965e+00 4.0212972e+00 3.5173798e+00 3.6449970e+00 3.8299342e+00 4.0081754e+00 5.2290121e+00 5.4254411e+00 3.5039202e+00 4.2264145e+00 3.4198378e+00 5.2270034e+00 3.4138008e+00 4.2149806e+00 4.5183778e+00 3.3145502e+00 3.4118179e+00 4.1129687e+00 4.3210760e+00 4.6261633e+00 4.9512603e+00 4.1165035e+00 3.6051692e+00 4.1014742e+00 4.6540056e+00 4.1257291e+00 4.0071257e+00 3.3129914e+00 3.9274863e+00 4.1301604e+00 3.6542046e+00 3.6112573e+00 4.4192311e+00 4.2328883e+00 3.7399948e+00 3.5155767e+00 3.7180846e+00 3.9250546e+00 3.6083191e+00 5.0436965e-01 3.0026460e-01 6.0017982e-01 3.0482299e-01 3.0017653e-01 9.0506343e-01 6.0000317e-01 4.5783248e-01 7.4269314e-01 2.4195741e-01 6.0948506e-01 4.0122873e-01 5.0855077e-01 2.0061436e-01 3.5243030e+00 3.3064692e+00 3.7147036e+00 2.8028227e+00 3.4072759e+00 3.3010449e+00 3.5048841e+00 2.1026764e+00 3.4081977e+00 2.7042302e+00 2.3098753e+00 3.0045117e+00 2.8027924e+00 3.5019450e+00 2.4045982e+00 3.2157547e+00 3.3025861e+00 2.9005886e+00 3.3047156e+00 2.7010554e+00 3.6058037e+00 2.8042692e+00 3.7029937e+00 3.5011559e+00 3.1065954e+00 3.2116669e+00 3.6121048e+00 3.8091015e+00 3.3031148e+00 2.3014285e+00 2.6014645e+00 2.5011992e+00 2.7018905e+00 3.9020189e+00 3.3025600e+00 3.3044825e+00 3.5110031e+00 3.2044340e+00 2.9018587e+00 2.8023124e+00 3.2006932e+00 3.4022345e+00 2.8016296e+00 2.1039819e+00 3.0015958e+00 3.0009948e+00 3.0016466e+00 3.1034780e+00 1.8068049e+00 2.9019412e+00 4.8119571e+00 3.9055005e+00 4.7117433e+00 4.4027872e+00 4.6074923e+00 5.4154953e+00 3.3059205e+00 5.1096877e+00 4.6042055e+00 4.9184662e+00 3.9101579e+00 4.1056576e+00 4.3111747e+00 3.8086187e+00 3.9240074e+00 4.1158326e+00 4.3040379e+00 5.5178488e+00 5.7157885e+00 3.8018678e+00 4.5144444e+00 3.7097243e+00 5.5166376e+00 3.7063915e+00 4.5079295e+00 4.8103281e+00 3.6066590e+00 3.7054748e+00 4.4067833e+00 4.6117275e+00 4.9151622e+00 5.2317566e+00 4.4087821e+00 3.9022961e+00 4.4006562e+00 4.9323259e+00 4.4141504e+00 4.3034963e+00 3.6059708e+00 4.2144276e+00 4.4165186e+00 3.9284285e+00 3.9055005e+00 4.7106152e+00 4.5183778e+00 4.0209837e+00 3.8074712e+00 4.0090032e+00 4.2134002e+00 3.9039579e+00 6.0964891e-01 1.1019501e+00 4.0125062e-01 5.0000761e-01 1.2632947e+00 1.1001012e+00 5.2491131e-01 6.1135434e-01 7.1621884e-01 4.2268438e-01 9.0026543e-01 2.4170870e-01 5.0043084e-01 3.4064574e+00 3.2033141e+00 3.6042703e+00 2.7067267e+00 3.3031847e+00 3.2012079e+00 3.4035361e+00 2.0125822e+00 3.3019706e+00 2.6055127e+00 2.2404570e+00 2.9047685e+00 2.7070958e+00 3.4014441e+00 2.3056303e+00 3.1043374e+00 3.2029748e+00 2.8006755e+00 3.2059945e+00 2.6027034e+00 3.5064150e+00 2.7028014e+00 3.6021536e+00 3.4005708e+00 3.0020583e+00 3.1034908e+00 3.5031921e+00 3.7043162e+00 3.2030081e+00 2.2031888e+00 2.5048145e+00 2.4051640e+00 2.6022353e+00 3.8020808e+00 3.2029748e+00 3.2045605e+00 3.4036086e+00 3.1036832e+00 2.8021575e+00 2.7039988e+00 3.1011640e+00 3.3016475e+00 2.7022579e+00 2.0191796e+00 2.9020892e+00 2.9010579e+00 2.9018587e+00 3.0016913e+00 1.7203066e+00 2.8022905e+00 4.7127831e+00 3.8062227e+00 4.6064153e+00 4.3024456e+00 4.5071341e+00 5.3066177e+00 3.2074507e+00 5.0034627e+00 4.5024143e+00 4.8135231e+00 3.8088290e+00 4.0049892e+00 4.2080447e+00 3.7100251e+00 3.8270894e+00 4.0163858e+00 4.2028588e+00 5.4079977e+00 5.6075453e+00 3.7029588e+00 4.4113160e+00 3.6111044e+00 5.4066727e+00 3.6058057e+00 4.4062018e+00 4.7037812e+00 3.5065182e+00 3.6056307e+00 4.3065776e+00 4.5036239e+00 4.8058364e+00 5.1131156e+00 4.3088094e+00 3.8014142e+00 4.3005452e+00 4.8156922e+00 4.3151195e+00 4.2027764e+00 3.5064276e+00 4.1095026e+00 4.3155223e+00 3.8226872e+00 3.8062227e+00 4.6088777e+00 4.4178507e+00 3.9190516e+00 3.7073875e+00 3.9078043e+00 4.1144923e+00 3.8043348e+00 5.0043842e-01 3.0482299e-01 4.0246123e-01 8.0254500e-01 5.0043842e-01 5.2133802e-01 7.0556260e-01 2.0181667e-01 7.0008735e-01 3.0026460e-01 6.0948506e-01 2.0181667e-01 3.2490712e+00 3.0153168e+00 3.4297841e+00 2.5067523e+00 3.1166337e+00 3.0027816e+00 3.2112793e+00 1.8068048e+00 3.1183051e+00 2.4116924e+00 2.0138832e+00 2.7116615e+00 2.5059537e+00 3.2048192e+00 2.1144760e+00 2.9351753e+00 3.0063019e+00 2.6019122e+00 3.0106587e+00 2.4030297e+00 3.3125861e+00 2.5120719e+00 3.4068163e+00 3.2029877e+00 2.8162444e+00 2.9267417e+00 3.3252407e+00 3.5189464e+00 3.0077107e+00 2.0051350e+00 2.3037132e+00 2.2028146e+00 2.4058620e+00 3.6044981e+00 3.0062070e+00 3.0107283e+00 3.2237456e+00 2.9105093e+00 2.6052541e+00 2.5062865e+00 2.9018772e+00 3.1056084e+00 2.5048522e+00 1.8082911e+00 2.7043948e+00 2.7029415e+00 2.7046027e+00 2.8091099e+00 1.5248852e+00 2.6055127e+00 4.5209020e+00 3.6112573e+00 4.4212031e+00 4.1056541e+00 4.3138986e+00 5.1255338e+00 3.0133997e+00 4.8167235e+00 4.3081273e+00 4.6319211e+00 3.6205854e+00 3.8114965e+00 4.0212972e+00 3.5173798e+00 3.6449970e+00 3.8299342e+00 4.0081754e+00 5.2290121e+00 5.4254411e+00 3.5039202e+00 4.2264145e+00 3.4198378e+00 5.2270034e+00 3.4138008e+00 4.2149806e+00 4.5183778e+00 3.3145502e+00 3.4118179e+00 4.1129687e+00 4.3210760e+00 4.6261633e+00 4.9512603e+00 4.1165035e+00 3.6051692e+00 4.1014742e+00 4.6540056e+00 4.1257291e+00 4.0071257e+00 3.3129914e+00 3.9274863e+00 4.1301604e+00 3.6542046e+00 3.6112573e+00 4.4192311e+00 4.2328883e+00 3.7399948e+00 3.5155767e+00 3.7180846e+00 3.9250546e+00 3.6083191e+00 7.0470720e-01 6.3164977e-01 7.0000303e-01 2.0000000e-01 6.4049114e-01 8.7212232e-01 4.0004442e-01 8.5437440e-01 2.2573593e-01 9.3308853e-01 6.0184622e-01 3.5152865e+00 3.2379971e+00 3.6729302e+00 2.7052554e+00 3.3425813e+00 3.2040843e+00 3.4230889e+00 2.0021220e+00 3.3530528e+00 2.6055127e+00 2.2051638e+00 2.9154879e+00 2.7227228e+00 3.4118179e+00 2.3143923e+00 3.1902650e+00 3.2048191e+00 2.8089346e+00 3.2223766e+00 2.6060092e+00 3.5107904e+00 2.7333577e+00 3.6167495e+00 3.4109217e+00 3.0488339e+00 3.1712556e+00 3.5658221e+00 3.7426726e+00 3.2127498e+00 2.2186491e+00 2.5049231e+00 2.4052960e+00 2.6139440e+00 3.8063158e+00 3.2036084e+00 3.2143157e+00 3.4603347e+00 3.1318587e+00 2.8056557e+00 2.7050980e+00 3.1020681e+00 3.3136174e+00 2.7116685e+00 2.0027889e+00 2.9047842e+00 2.9057760e+00 2.9065359e+00 3.0276459e+00 1.7091578e+00 2.8077256e+00 4.7169309e+00 3.8081280e+00 4.6399369e+00 4.3088507e+00 4.5162248e+00 5.3501952e+00 3.2067991e+00 5.0370912e+00 4.5175831e+00 4.8468186e+00 3.8290678e+00 4.0170262e+00 4.2347722e+00 3.7111714e+00 3.8289857e+00 4.0283196e+00 4.2155430e+00 5.4550926e+00 5.6472422e+00 3.7064735e+00 4.4381718e+00 3.6121030e+00 5.4538016e+00 3.6205857e+00 4.4231445e+00 4.7408825e+00 3.5189464e+00 3.6135011e+00 4.3151164e+00 4.5490925e+00 4.8546830e+00 5.1966534e+00 4.3173271e+00 3.8129545e+00 4.3038527e+00 4.8962803e+00 4.3214438e+00 4.2123903e+00 3.5127693e+00 4.1469662e+00 4.3342207e+00 3.8751227e+00 3.8081280e+00 4.6262568e+00 4.4345825e+00 3.9485180e+00 3.7201181e+00 3.9257254e+00 4.1203162e+00 3.8072915e+00 2.0181667e-01 1.1055799e+00 7.0016860e-01 4.0006662e-01 4.5147187e-01 4.1212852e-01 4.0002221e-01 5.0043084e-01 3.0474106e-01 1.2085435e-01 3.2280983e+00 3.0080445e+00 3.4166801e+00 2.5073304e+00 3.1087541e+00 3.0016255e+00 3.2064005e+00 1.8128544e+00 3.1091921e+00 2.4076934e+00 2.0429861e+00 2.7070770e+00 2.5077793e+00 3.2025221e+00 2.1086021e+00 2.9185909e+00 3.0040552e+00 2.6009247e+00 3.0080768e+00 2.4028385e+00 3.3086417e+00 2.5058827e+00 3.4038679e+00 3.2013290e+00 2.8077473e+00 2.9137660e+00 3.3136458e+00 3.5107924e+00 3.0045274e+00 2.0036964e+00 2.3048725e+00 2.2049827e+00 2.4032211e+00 3.6028345e+00 3.0040403e+00 3.0066661e+00 3.2127504e+00 2.9065741e+00 2.6030847e+00 2.5048249e+00 2.9013288e+00 3.1029264e+00 2.5029614e+00 1.8201043e+00 2.7027522e+00 2.7015465e+00 2.7026433e+00 2.8042851e+00 1.5256523e+00 2.6032253e+00 4.5160443e+00 3.6080467e+00 4.4135519e+00 4.1035779e+00 4.3098000e+00 5.1168009e+00 3.0096881e+00 4.8103297e+00 4.3048676e+00 4.6223708e+00 3.6136097e+00 3.8074712e+00 4.0139003e+00 3.5128896e+00 3.6349183e+00 3.8220063e+00 4.0049433e+00 5.2194303e+00 5.4171979e+00 3.5033669e+00 4.2181241e+00 3.4145410e+00 5.2178541e+00 3.4088042e+00 4.2099019e+00 4.5111938e+00 3.3094784e+00 3.4078458e+00 4.1090316e+00 4.3126257e+00 4.6165627e+00 4.9348334e+00 4.1118265e+00 3.6027619e+00 4.1008192e+00 4.6366757e+00 4.1194553e+00 4.0043991e+00 3.3087928e+00 3.9177721e+00 4.1218428e+00 3.6374332e+00 3.6080467e+00 4.4133507e+00 4.2243717e+00 3.7282925e+00 3.5105217e+00 3.7119499e+00 3.9187675e+00 3.6057072e+00 1.2012865e+00 6.0184622e-01 3.3808272e-01 6.0184934e-01 5.0043084e-01 3.3818226e-01 4.1212852e-01 3.0922892e-01 2.0121983e-01 3.4273160e+00 3.2064011e+00 3.6161317e+00 2.7056828e+00 3.3075153e+00 3.2008118e+00 3.4044261e+00 2.0113827e+00 3.3090710e+00 2.6035236e+00 2.2398619e+00 2.9035670e+00 2.7083020e+00 3.4017079e+00 2.3034787e+00 3.1174706e+00 3.2019092e+00 2.8008297e+00 3.2066700e+00 2.6023240e+00 3.5046442e+00 2.7041827e+00 3.6031099e+00 3.4011658e+00 3.0071110e+00 3.1127326e+00 3.5134157e+00 3.7092355e+00 3.2025439e+00 2.2031052e+00 2.5042875e+00 2.4048325e+00 2.6019131e+00 3.8016620e+00 3.2018790e+00 3.2036084e+00 3.4118203e+00 3.1063566e+00 2.8013151e+00 2.7029498e+00 3.1008327e+00 3.3019518e+00 2.7019892e+00 2.0181988e+00 2.9013773e+00 2.9007142e+00 2.9012240e+00 3.0034647e+00 1.7168003e+00 2.8015399e+00 4.7103355e+00 3.8044833e+00 4.6117631e+00 4.3023732e+00 4.5065283e+00 5.3163061e+00 3.2051927e+00 5.0102923e+00 4.5041827e+00 4.8177760e+00 3.8091017e+00 4.0050028e+00 4.2105704e+00 3.7073402e+00 3.8208501e+00 4.0138272e+00 4.2036880e+00 5.4187310e+00 5.6164039e+00 3.7027275e+00 4.4135513e+00 3.6080195e+00 5.4177192e+00 3.6056365e+00 4.4072751e+00 4.7109359e+00 3.5056751e+00 3.6045028e+00 4.3058539e+00 4.5127175e+00 4.8161488e+00 5.1342237e+00 4.3075896e+00 3.8021528e+00 4.3006308e+00 4.8339900e+00 4.3122441e+00 4.2030792e+00 3.5048429e+00 4.1140184e+00 4.3148937e+00 3.8271256e+00 3.8044833e+00 4.6097143e+00 4.4165186e+00 3.9191998e+00 3.7067060e+00 3.9080455e+00 4.1114854e+00 3.8031381e+00 9.0000091e-01 1.2014191e+00 1.5025345e+00 7.0088477e-01 1.5012926e+00 9.0000136e-01 1.4092540e+00 1.0030724e+00 3.4932678e+00 3.2284356e+00 3.6579694e+00 2.7029237e+00 3.3320310e+00 3.2025221e+00 3.4171529e+00 2.0008116e+00 3.3407229e+00 2.6032740e+00 2.2005685e+00 2.9103582e+00 2.7153679e+00 3.4082220e+00 2.3087475e+00 3.1706684e+00 3.2030687e+00 2.8057704e+00 3.2157547e+00 2.6035236e+00 3.5075879e+00 2.7233837e+00 3.6121030e+00 3.4076329e+00 3.0364247e+00 3.1548602e+00 3.5517240e+00 3.7328844e+00 3.2086545e+00 2.2116271e+00 2.5026949e+00 2.4028972e+00 2.6089340e+00 3.8042764e+00 3.2022967e+00 3.2108192e+00 3.4468872e+00 3.1231713e+00 2.8035152e+00 2.7029238e+00 3.1011647e+00 3.3095196e+00 2.7074599e+00 2.0008921e+00 2.9028462e+00 2.9036791e+00 2.9040745e+00 3.0197997e+00 1.7043730e+00 2.8047771e+00 4.7130344e+00 3.8056232e+00 4.6318991e+00 4.3063824e+00 4.5121922e+00 5.3416858e+00 3.2045522e+00 5.0302179e+00 4.5134527e+00 4.8380714e+00 3.8218532e+00 4.0124930e+00 4.2269486e+00 3.7079008e+00 3.8220112e+00 4.0214147e+00 4.2115853e+00 5.4465234e+00 5.6393868e+00 3.7043105e+00 4.4299700e+00 3.6085945e+00 5.4449998e+00 3.6148636e+00 4.4178341e+00 4.7331065e+00 3.5134671e+00 3.6094821e+00 4.3111775e+00 4.5398308e+00 4.8449119e+00 5.1826640e+00 4.3129030e+00 3.8093617e+00 4.3026669e+00 4.8806417e+00 4.3164776e+00 4.2091204e+00 3.5088587e+00 4.1368711e+00 4.3264627e+00 3.8592376e+00 3.8056232e+00 4.6204067e+00 4.4269727e+00 3.9374314e+00 3.7145622e+00 3.9192263e+00 4.1154804e+00 3.8050056e+00 6.1288055e-01 7.7603846e-01 4.0127250e-01 7.4329414e-01 2.0061436e-01 9.0508712e-01 6.0000635e-01 3.5152864e+00 3.2379970e+00 3.6729302e+00 2.7058598e+00 3.3425838e+00 3.2040874e+00 3.4230885e+00 2.0034894e+00 3.3530533e+00 2.6055423e+00 2.2123846e+00 2.9154880e+00 2.7237438e+00 3.4118184e+00 2.3143951e+00 3.1902650e+00 3.2048192e+00 2.8089552e+00 3.2228316e+00 2.6061975e+00 3.5107904e+00 2.7333644e+00 3.6167885e+00 3.4109240e+00 3.0488346e+00 3.1712557e+00 3.5658240e+00 3.7426726e+00 3.2127504e+00 2.2188249e+00 2.5053901e+00 2.4058634e+00 2.6139732e+00 3.8063206e+00 3.2036085e+00 3.2143126e+00 3.4603347e+00 3.1321581e+00 2.8056558e+00 2.7052554e+00 3.1021033e+00 3.3136175e+00 2.7117356e+00 2.0053411e+00 2.9048017e+00 2.9057761e+00 2.9065368e+00 3.0276467e+00 1.7105814e+00 2.8077315e+00 4.7169308e+00 3.8081328e+00 4.6399369e+00 4.3088509e+00 4.5162248e+00 5.3501952e+00 3.2068686e+00 5.0370912e+00 4.5175965e+00 4.8468145e+00 3.8290678e+00 4.0170299e+00 4.2347722e+00 3.7112059e+00 3.8289870e+00 4.0283196e+00 4.2155430e+00 5.4550814e+00 5.6472442e+00 3.7067060e+00 4.4381718e+00 3.6121048e+00 5.4538018e+00 3.6205918e+00 4.4231444e+00 4.7408825e+00 3.5189484e+00 3.6135011e+00 4.3151171e+00 4.5490925e+00 4.8546834e+00 5.1966394e+00 4.3173279e+00 3.8129558e+00 4.3038600e+00 4.8962803e+00 4.3214431e+00 4.2123903e+00 3.5127694e+00 4.1469662e+00 4.3342207e+00 3.8751227e+00 3.8081328e+00 4.6262568e+00 4.4345823e+00 3.9485180e+00 3.7201522e+00 3.9257254e+00 4.1203153e+00 3.8072915e+00 3.4085233e-01 5.0517282e-01 4.1210927e-01 4.5847767e-01 4.1317535e-01 4.0243965e-01 3.1409605e+00 2.9078360e+00 3.3230621e+00 2.4077390e+00 3.0097979e+00 2.9003941e+00 3.1042002e+00 1.7227897e+00 3.0135090e+00 2.3017319e+00 1.9755996e+00 2.6019350e+00 2.4142039e+00 3.1015567e+00 2.0014192e+00 2.8264551e+00 2.9006366e+00 2.5011717e+00 2.9082658e+00 2.3033727e+00 3.2022157e+00 2.4051094e+00 3.3034165e+00 3.1014454e+00 2.7104802e+00 2.8188502e+00 3.2195779e+00 3.4112824e+00 2.9016560e+00 1.9053006e+00 2.2068965e+00 2.1085395e+00 2.3018945e+00 3.5009585e+00 2.9005880e+00 2.9020766e+00 3.1165913e+00 2.8092629e+00 2.5004154e+00 2.4029432e+00 2.8007533e+00 3.0017918e+00 2.4022355e+00 1.7369589e+00 2.6007937e+00 2.6003442e+00 2.6005344e+00 2.7044628e+00 1.4329832e+00 2.5008032e+00 4.4064393e+00 3.5021596e+00 4.3131639e+00 4.0016670e+00 4.2045223e+00 5.0200323e+00 2.9028411e+00 4.7130517e+00 4.2044861e+00 4.5172866e+00 3.5073617e+00 3.7038321e+00 3.9101623e+00 3.4039470e+00 3.5128093e+00 3.7092301e+00 3.9033549e+00 5.1227972e+00 5.3193887e+00 3.4029615e+00 4.1123595e+00 3.3040255e+00 5.1222477e+00 3.3043123e+00 4.1063328e+00 4.4139149e+00 3.2038047e+00 3.3025879e+00 4.0039164e+00 4.2170349e+00 4.5206139e+00 4.8441812e+00 4.0049702e+00 3.5022104e+00 4.0005674e+00 4.5418878e+00 4.0077003e+00 3.9024858e+00 3.2025221e+00 3.8146102e+00 4.0114630e+00 3.5261349e+00 3.5021596e+00 4.3081194e+00 4.1123594e+00 3.6158324e+00 3.4049076e+00 3.6064417e+00 3.8069566e+00 3.5014492e+00 8.0923926e-01 3.0474106e-01 6.5724028e-01 4.0246123e-01 5.6371422e-01 2.8500310e+00 2.6110761e+00 3.0277528e+00 2.1510447e+00 2.7141512e+00 2.6027937e+00 2.8070667e+00 1.5787180e+00 2.7167342e+00 2.0166118e+00 1.9318287e+00 2.3071806e+00 2.1715812e+00 2.8031215e+00 1.7145956e+00 2.5336675e+00 2.6035547e+00 2.2074446e+00 2.6319765e+00 2.0282636e+00 2.9076123e+00 2.1122780e+00 3.0080768e+00 2.8027924e+00 2.4144060e+00 2.5243969e+00 2.9241685e+00 3.1150226e+00 2.6049377e+00 1.6499744e+00 1.9530826e+00 1.8666228e+00 2.0130304e+00 3.2033374e+00 2.6035250e+00 2.6059866e+00 2.8207213e+00 2.5287261e+00 2.2032583e+00 2.1244184e+00 2.5066544e+00 2.7033232e+00 2.1157724e+00 1.6395342e+00 2.3072196e+00 2.3018945e+00 2.3035850e+00 2.4072314e+00 1.3788456e+00 2.2062031e+00 4.1150297e+00 3.2079717e+00 4.0170857e+00 3.7033716e+00 3.9093672e+00 4.7228082e+00 2.6158579e+00 4.4145659e+00 3.9067187e+00 4.2256164e+00 3.2143454e+00 3.4081069e+00 3.6159248e+00 3.1148584e+00 3.2358776e+00 3.4219579e+00 3.6052692e+00 4.8260874e+00 5.0225486e+00 3.1131211e+00 3.8201108e+00 3.0142352e+00 4.8248264e+00 3.0102191e+00 3.8104451e+00 4.1158426e+00 2.9100849e+00 3.0073054e+00 3.7087638e+00 3.9191144e+00 4.2237272e+00 4.5500784e+00 3.7114840e+00 3.2036323e+00 3.7015743e+00 4.2506870e+00 3.7186993e+00 3.6043148e+00 2.9081165e+00 3.5216379e+00 3.7226348e+00 3.2449757e+00 3.2079717e+00 4.0139105e+00 3.8249612e+00 3.3311289e+00 3.1134242e+00 3.3125194e+00 3.5179632e+00 3.2049019e+00 8.0051115e-01 2.2573593e-01 7.1621884e-01 3.0482299e-01 3.3530529e+00 3.1135637e+00 3.5317001e+00 2.6021962e+00 3.2157548e+00 3.1011640e+00 3.3083865e+00 1.9014069e+00 3.2199554e+00 2.5036852e+00 2.1054816e+00 2.8056557e+00 2.6057308e+00 3.3035252e+00 2.2049636e+00 3.0369970e+00 3.1023768e+00 2.7016498e+00 3.1076516e+00 2.5011992e+00 3.4059088e+00 2.6097152e+00 3.5056297e+00 3.3028597e+00 2.9166917e+00 3.0276459e+00 3.4273156e+00 3.6176286e+00 3.1043337e+00 2.1032882e+00 2.4011650e+00 2.3009622e+00 2.5032633e+00 3.7024058e+00 3.1022094e+00 3.1056121e+00 3.3243222e+00 3.0101957e+00 2.7018643e+00 2.6020065e+00 3.0005955e+00 3.2040843e+00 2.6027120e+00 1.9019962e+00 2.8015673e+00 2.8013346e+00 2.8018959e+00 2.9083044e+00 1.6052507e+00 2.7022567e+00 4.6121162e+00 3.7052383e+00 4.5194334e+00 4.2036849e+00 4.4088275e+00 5.2263180e+00 3.1053076e+00 4.9177739e+00 4.4072684e+00 4.7260117e+00 3.7138970e+00 3.9076272e+00 4.1167962e+00 3.6081590e+00 3.7238338e+00 3.9176170e+00 4.1063328e+00 5.3296625e+00 5.5255577e+00 3.6022190e+00 4.3201293e+00 3.5092121e+00 5.3285444e+00 3.5088064e+00 4.3111749e+00 4.6192198e+00 3.4084525e+00 3.5063337e+00 4.2079639e+00 4.4229098e+00 4.7273231e+00 5.0541259e+00 4.2099019e+00 3.7043105e+00 4.2011108e+00 4.7534769e+00 4.2147199e+00 4.1050714e+00 3.4064570e+00 4.0228303e+00 4.2200398e+00 3.7407842e+00 3.7052383e+00 4.5139612e+00 4.3214432e+00 3.8271242e+00 3.6094426e+00 3.8122429e+00 4.0138280e+00 3.7039439e+00 6.3178534e-01 2.0121983e-01 5.0043084e-01 3.1326249e+00 2.9095058e+00 3.3192760e+00 2.4306373e+00 3.0110559e+00 2.9028946e+00 3.1074604e+00 1.7872757e+00 3.0111989e+00 2.3143923e+00 2.0898615e+00 2.6089349e+00 2.4398792e+00 3.1033306e+00 2.0139907e+00 2.8220753e+00 2.9050462e+00 2.5045154e+00 2.9220490e+00 2.3159976e+00 3.2100379e+00 2.4095513e+00 3.3067017e+00 3.1022615e+00 2.7099669e+00 2.8165723e+00 3.2163877e+00 3.4125151e+00 2.9058641e+00 1.9245956e+00 2.2287984e+00 2.1344529e+00 2.3089795e+00 3.5039202e+00 2.9050287e+00 2.9078401e+00 3.1149135e+00 2.8183214e+00 2.5042875e+00 2.4160514e+00 2.8047612e+00 3.0036601e+00 2.4102273e+00 1.8223604e+00 2.6061038e+00 2.6023240e+00 2.6040822e+00 2.7058598e+00 1.5384093e+00 2.5058827e+00 4.4178532e+00 3.5098740e+00 4.3151587e+00 4.0041429e+00 4.2110099e+00 5.0184788e+00 2.9154880e+00 4.7114737e+00 4.2061525e+00 4.5248210e+00 3.5155767e+00 3.7089995e+00 3.9157422e+00 3.4167041e+00 3.5401921e+00 3.7249704e+00 3.9056466e+00 5.1213055e+00 5.3189433e+00 3.4098171e+00 4.1203252e+00 3.3172667e+00 5.1196436e+00 3.3110366e+00 4.1111102e+00 4.4124656e+00 3.2115770e+00 3.3091938e+00 4.0103680e+00 4.2141675e+00 4.5185015e+00 4.8383751e+00 4.0135080e+00 3.5035589e+00 4.0015001e+00 4.5406852e+00 4.0218666e+00 3.9049967e+00 3.2103515e+00 3.8201314e+00 4.0245707e+00 3.5427188e+00 3.5098740e+00 4.3149009e+00 4.1273075e+00 3.6322643e+00 3.4139979e+00 3.6137088e+00 3.8212216e+00 3.5066417e+00 7.1621748e-01 4.0002221e-01 3.3858048e+00 3.1257747e+00 3.5528332e+00 2.6049377e+00 3.2291581e+00 3.1026235e+00 3.3158954e+00 1.9043238e+00 3.2362541e+00 2.5062158e+00 2.1151984e+00 2.8111676e+00 2.6144115e+00 3.3074459e+00 2.2106051e+00 3.0644792e+00 3.1042002e+00 2.7046286e+00 3.1155579e+00 2.5035275e+00 3.4095576e+00 2.6210983e+00 3.5110555e+00 3.3064076e+00 2.9323802e+00 3.0497665e+00 3.4467650e+00 3.6304824e+00 3.1087162e+00 2.1099919e+00 2.4034951e+00 2.3034398e+00 2.5081992e+00 3.7045399e+00 3.1036554e+00 3.1105454e+00 3.3425812e+00 3.0208515e+00 2.7039990e+00 2.6042124e+00 3.0014077e+00 3.2086215e+00 2.6068616e+00 1.9064532e+00 2.8033825e+00 2.8033607e+00 2.8042643e+00 2.9174390e+00 1.6121856e+00 2.7050791e+00 4.6165570e+00 3.7079065e+00 4.5303834e+00 4.2064764e+00 4.4135512e+00 5.2388103e+00 3.1079784e+00 4.9275471e+00 4.4124760e+00 4.7382279e+00 3.7227931e+00 3.9129335e+00 4.1268500e+00 3.6117351e+00 3.7315577e+00 3.9257254e+00 4.1111068e+00 5.3430927e+00 5.5370582e+00 3.6046347e+00 4.3307527e+00 3.5130597e+00 5.3416790e+00 3.5154388e+00 4.3179254e+00 4.6302391e+00 3.4146546e+00 3.5107904e+00 4.2125004e+00 4.4361489e+00 4.7415152e+00 5.0768435e+00 4.2149814e+00 3.7084460e+00 4.2023583e+00 4.7769945e+00 4.2205945e+00 4.1089343e+00 3.4107328e+00 4.0362383e+00 4.2295174e+00 3.7618281e+00 3.7079065e+00 4.5213131e+00 4.3307527e+00 3.8409517e+00 3.6158715e+00 3.8200965e+00 4.0195882e+00 3.7063858e+00 4.1210927e-01 3.2157661e+00 3.0055754e+00 3.4095823e+00 2.5182899e+00 3.1060146e+00 3.0020171e+00 3.2051958e+00 1.8468437e+00 3.1049591e+00 2.4099079e+00 2.1180305e+00 2.7069308e+00 2.5226256e+00 3.2022186e+00 2.1097489e+00 2.9102819e+00 3.0041469e+00 2.6022650e+00 3.0136614e+00 2.4087525e+00 3.3085287e+00 2.5053901e+00 3.4040883e+00 3.2011770e+00 2.8045980e+00 2.9078384e+00 3.3077457e+00 3.5074140e+00 3.0043867e+00 2.0123013e+00 2.3159429e+00 2.2186309e+00 2.4051787e+00 3.6030023e+00 3.0041461e+00 3.0063027e+00 3.2075252e+00 2.9100849e+00 2.6032671e+00 2.5097006e+00 2.9028412e+00 3.1024718e+00 2.5058120e+00 1.8685011e+00 2.7040002e+00 2.7016556e+00 2.7029487e+00 2.8031364e+00 1.5747356e+00 2.6040007e+00 4.5158117e+00 3.6083256e+00 4.4100325e+00 4.1032589e+00 4.3091726e+00 5.1114855e+00 3.0117223e+00 4.8065772e+00 4.3039464e+00 4.6187506e+00 3.6121095e+00 3.8069169e+00 4.0114753e+00 3.5138377e+00 3.6350529e+00 3.8212252e+00 4.0040508e+00 5.2135438e+00 5.4123528e+00 3.5063866e+00 4.2155461e+00 3.4147661e+00 5.2119900e+00 3.4083227e+00 4.2084707e+00 4.5071259e+00 3.3090897e+00 3.4075560e+00 4.1085724e+00 4.3075896e+00 4.6108642e+00 4.9236635e+00 4.1113689e+00 3.6022523e+00 4.1009647e+00 4.6262707e+00 4.1190929e+00 4.0037820e+00 3.3086298e+00 3.9141023e+00 4.1202674e+00 3.6321858e+00 3.6083256e+00 4.4117993e+00 4.2229640e+00 3.7257625e+00 3.5107118e+00 3.7106642e+00 3.9184747e+00 3.6056703e+00 3.3320214e+00 3.1087156e+00 3.5191298e+00 2.6048201e+00 3.2097208e+00 3.1014199e+00 3.3064692e+00 1.9064149e+00 3.2109426e+00 2.5061784e+00 2.1231492e+00 2.8062729e+00 2.6052659e+00 3.3025806e+00 2.2069764e+00 3.0213628e+00 3.1034889e+00 2.7008785e+00 3.1069083e+00 2.5018386e+00 3.4076243e+00 2.6061038e+00 3.5039680e+00 3.3015400e+00 2.9090661e+00 3.0158419e+00 3.4158824e+00 3.6117739e+00 3.1042038e+00 2.1025721e+00 2.4028385e+00 2.3026344e+00 2.5028039e+00 3.7026090e+00 3.1034538e+00 3.1060427e+00 3.3145497e+00 3.0064351e+00 2.7026184e+00 2.6035547e+00 3.0010106e+00 3.2029877e+00 2.6024546e+00 1.9099608e+00 2.8022622e+00 2.8013859e+00 2.8022964e+00 2.9047883e+00 1.6144390e+00 2.7027522e+00 4.6146429e+00 3.7070840e+00 4.5144445e+00 4.2034836e+00 4.4092638e+00 5.2185417e+00 3.1080879e+00 4.9117250e+00 4.4052231e+00 4.7224998e+00 3.7130492e+00 3.9071930e+00 4.1140176e+00 3.6112039e+00 3.7307535e+00 3.9200662e+00 4.1050716e+00 5.3212806e+00 5.5187164e+00 3.6026912e+00 4.3179254e+00 3.5126721e+00 5.3198415e+00 3.5083463e+00 4.3098506e+00 4.6126508e+00 3.4087523e+00 3.5071392e+00 4.2084730e+00 4.4144909e+00 4.7184838e+00 5.0381916e+00 4.2109654e+00 3.7029588e+00 4.2008334e+00 4.7393168e+00 4.2176488e+00 4.1043916e+00 3.4078439e+00 4.0181863e+00 4.2205945e+00 3.7363783e+00 3.7070840e+00 4.5130589e+00 4.3227927e+00 3.8267268e+00 3.6097220e+00 3.8114954e+00 4.0168944e+00 3.7050916e+00 6.0017982e-01 2.0181667e-01 1.5160570e+00 5.2133802e-01 1.3002451e+00 7.0008584e-01 2.1344529e+00 4.1212852e-01 1.8029854e+00 2.0342311e+00 1.1019599e+00 1.1393620e+00 9.0026497e-01 1.4543172e+00 3.3813251e-01 1.4000061e+00 1.2053003e+00 1.0426638e+00 1.4134492e+00 1.1005364e+00 9.3424697e-01 7.8890806e-01 9.0142636e-01 6.1119558e-01 4.1315633e-01 4.0125062e-01 3.6452132e-01 1.0001753e+00 1.4158897e+00 1.5195166e+00 1.5300146e+00 1.2201636e+00 1.0039209e+00 1.6000032e+00 1.0000457e+00 3.0017653e-01 9.3329055e-01 1.4017696e+00 1.5061610e+00 1.5012947e+00 9.0002570e-01 1.2124837e+00 2.0445123e+00 1.4012283e+00 1.3008855e+00 1.3009222e+00 8.0291749e-01 2.0440118e+00 1.3027556e+00 1.3788457e+00 1.2029161e+00 1.2089253e+00 9.3446811e-01 1.1298636e+00 1.9014076e+00 2.1006232e+00 1.6001224e+00 1.1139906e+00 1.4544336e+00 6.3912709e-01 7.1183012e-01 8.5409862e-01 1.3086191e+00 1.2638465e+00 9.2745734e-01 8.1117067e-01 2.0027889e+00 2.2028146e+00 1.1270327e+00 1.0776190e+00 1.4019372e+00 2.0011307e+00 7.2044167e-01 1.0208709e+00 1.3002450e+00 8.0488008e-01 9.0145141e-01 9.4622126e-01 1.1000289e+00 1.4009513e+00 1.7086186e+00 9.7694377e-01 7.0911112e-01 1.0224133e+00 1.4220925e+00 1.0923537e+00 8.2631334e-01 1.0008620e+00 7.8886139e-01 1.0777307e+00 9.0140221e-01 1.2029161e+00 1.2362755e+00 1.1897289e+00 9.0534502e-01 7.9871893e-01 6.5724028e-01 9.8998705e-01 1.1010807e+00 5.2133179e-01 1.0171340e+00 4.0004442e-01 7.0470720e-01 2.0181667e-01 1.5698091e+00 3.0922892e-01 1.2049541e+00 1.5104875e+00 5.0476836e-01 1.0069214e+00 3.4085233e-01 9.6593231e-01 3.0026460e-01 8.0004443e-01 6.6334810e-01 1.0000152e+00 8.7372177e-01 5.0855077e-01 5.2524663e-01 7.0462697e-01 4.2362917e-01 3.0915245e-01 2.2608083e-01 4.5784410e-01 5.0517282e-01 4.1209001e-01 1.0313359e+00 9.9085945e-01 1.0179856e+00 6.9600743e-01 6.3912943e-01 1.0000152e+00 4.0125062e-01 3.0482299e-01 9.0002615e-01 8.0254500e-01 9.3735629e-01 9.1446938e-01 3.0490481e-01 6.9600743e-01 1.4994060e+00 8.0928056e-01 7.0184453e-01 7.0184453e-01 3.1328089e-01 1.5989637e+00 7.0918894e-01 1.5237054e+00 6.9987517e-01 1.4060443e+00 1.1002025e+00 1.3061181e+00 2.1141220e+00 1.5030978e+00 1.8055480e+00 1.3062025e+00 1.6223413e+00 6.3164977e-01 8.1112909e-01 1.0095513e+00 8.0713433e-01 9.2867113e-01 9.0155393e-01 1.0001753e+00 2.2182690e+00 2.4124980e+00 1.0039060e+00 1.2201577e+00 8.1343016e-01 2.2176846e+00 5.2491734e-01 1.2037520e+00 1.5066999e+00 4.2362917e-01 4.2362917e-01 1.1060937e+00 1.3130978e+00 1.6177611e+00 1.9760242e+00 1.1138953e+00 6.0948506e-01 1.1056693e+00 1.6779798e+00 1.1527746e+00 1.0001601e+00 4.2362917e-01 9.1892454e-01 1.1528477e+00 8.3183672e-01 6.9987517e-01 1.4094144e+00 1.2633467e+00 8.5440680e-01 7.2036951e-01 7.1629303e-01 9.6576136e-01 6.3322667e-01 1.4267554e+00 4.2268438e-01 1.2004262e+00 6.0035621e-01 2.0860325e+00 3.4342562e-01 1.7133162e+00 1.9641993e+00 1.0207260e+00 1.0897469e+00 8.0008964e-01 1.4650300e+00 5.0043084e-01 1.3002407e+00 1.1303267e+00 9.3424659e-01 1.3473688e+00 1.0001604e+00 9.6593231e-01 6.7616545e-01 8.0097499e-01 6.3192325e-01 5.0437695e-01 3.0026460e-01 2.2608083e-01 9.0142636e-01 1.4861824e+00 1.4580174e+00 1.4889602e+00 1.1900969e+00 9.0142681e-01 1.5001212e+00 9.0166476e-01 2.2538848e-01 8.3187290e-01 1.3130978e+00 1.4197078e+00 1.4012600e+00 8.0046764e-01 1.1544060e+00 2.0075255e+00 1.3063533e+00 1.2089835e+00 1.2089313e+00 7.4275547e-01 2.0887699e+00 1.2190319e+00 1.1935069e+00 1.1010807e+00 1.0087396e+00 7.4335736e-01 9.3424697e-01 1.7023957e+00 2.0003507e+00 1.4002035e+00 9.1449234e-01 1.2643523e+00 5.2167829e-01 5.5450500e-01 6.7616902e-01 1.2049541e+00 1.1528553e+00 8.1112984e-01 6.1119558e-01 1.8053679e+00 2.0034894e+00 1.0142484e+00 9.0155438e-01 1.3009222e+00 1.8029948e+00 6.1119267e-01 8.2425704e-01 1.1002025e+00 7.0176271e-01 8.0046685e-01 7.5564478e-01 9.0026588e-01 1.2017042e+00 1.5269837e+00 7.9871893e-01 6.0201716e-01 8.6051471e-01 1.2366099e+00 9.4532171e-01 6.3309012e-01 9.0026588e-01 6.3164729e-01 9.3308853e-01 8.0004443e-01 1.1010807e+00 1.0426516e+00 1.0426760e+00 8.0051115e-01 6.8161057e-01 5.2491734e-01 8.6084272e-01 1.0001753e+00 1.0116865e+00 5.6370994e-01 1.0599087e+00 7.4329527e-01 1.1110092e+00 4.1212852e-01 5.6838732e-01 7.0478886e-01 5.0436965e-01 7.7598796e-01 6.0948506e-01 1.2192920e+00 7.1629303e-01 4.2270142e-01 7.1629303e-01 2.2608083e-01 9.7033357e-01 6.3164729e-01 9.6576136e-01 7.5503094e-01 9.1446896e-01 1.1138955e+00 1.3139296e+00 1.2705641e+00 6.5724028e-01 5.0894102e-01 2.2573593e-01 3.3813251e-01 4.1212852e-01 1.1025819e+00 7.1629303e-01 1.1039833e+00 1.2272550e+00 8.0245746e-01 7.0000303e-01 2.0000000e-01 4.1210927e-01 7.7598796e-01 3.3813251e-01 7.1700774e-01 4.0125062e-01 7.0017011e-01 6.0035305e-01 7.4329414e-01 1.0008768e+00 5.0043084e-01 2.0249458e+00 1.1061923e+00 2.0081838e+00 1.6061519e+00 1.8167511e+00 2.7171724e+00 6.3925756e-01 2.3875202e+00 1.8286180e+00 2.2239101e+00 1.2353587e+00 1.3278587e+00 1.6038059e+00 1.0207533e+00 1.2407946e+00 1.3868868e+00 1.5269837e+00 2.8396169e+00 2.9941208e+00 1.0030871e+00 1.8005082e+00 9.3733589e-01 2.8269381e+00 9.7033357e-01 1.7520952e+00 2.1193712e+00 8.6676847e-01 9.4912864e-01 1.6147493e+00 1.9768316e+00 2.2674825e+00 2.7199050e+00 1.6193612e+00 1.1298636e+00 1.6009488e+00 2.4288142e+00 1.6617386e+00 1.5199103e+00 8.6676847e-01 1.5881447e+00 1.6785116e+00 1.4886759e+00 1.1061923e+00 1.9457481e+00 1.7813291e+00 1.3946348e+00 1.0498347e+00 1.2771155e+00 1.4848797e+00 1.1157320e+00 8.0004523e-01 5.0043842e-01 1.6743483e+00 2.0121983e-01 1.3061139e+00 1.5464046e+00 6.0964597e-01 7.1183012e-01 4.0006662e-01 1.0776296e+00 3.0922892e-01 9.0002570e-01 7.3084171e-01 6.0184622e-01 9.3446811e-01 6.1135434e-01 6.0964597e-01 3.4080442e-01 4.1210927e-01 3.0490481e-01 2.2608083e-01 3.0482299e-01 4.0363334e-01 5.0001522e-01 1.1298636e+00 1.0440350e+00 1.0803561e+00 7.8935898e-01 5.6347978e-01 1.1000098e+00 6.3165225e-01 3.0482299e-01 5.0126466e-01 9.0511169e-01 1.0088926e+00 1.0001903e+00 4.0125062e-01 7.4335736e-01 1.5972311e+00 9.0142681e-01 8.0296037e-01 8.0250202e-01 3.4085233e-01 1.7081446e+00 8.0883841e-01 1.4329858e+00 7.2036951e-01 1.3050153e+00 1.0001753e+00 1.2089252e+00 2.0109333e+00 1.6000184e+00 1.7036944e+00 1.2001396e+00 1.5327217e+00 5.7608844e-01 7.0462844e-01 9.1449234e-01 8.1156529e-01 9.3733552e-01 8.5583415e-01 9.0029018e-01 2.1191883e+00 2.3098756e+00 6.3912709e-01 1.1290757e+00 9.0532049e-01 2.1139617e+00 3.4085233e-01 1.1074834e+00 1.4044980e+00 3.4080442e-01 4.2362917e-01 1.0087250e+00 1.2089253e+00 1.5132032e+00 1.8748226e+00 1.0207260e+00 5.0042326e-01 1.0008620e+00 1.5694554e+00 1.0837679e+00 9.0053003e-01 5.0517282e-01 8.2671175e-01 1.0777411e+00 8.1156529e-01 7.2036951e-01 1.3133662e+00 1.1910068e+00 8.2425704e-01 4.5847767e-01 6.3178534e-01 9.1590889e-01 6.3322667e-01 6.3322667e-01 1.2193537e+00 9.0000091e-01 6.3165225e-01 1.0599087e+00 3.1328089e-01 6.3451734e-01 4.0127250e-01 9.0000091e-01 1.0001604e+00 2.2573593e-01 4.1212852e-01 6.3178534e-01 6.0202028e-01 5.2524663e-01 5.2132556e-01 6.1135434e-01 4.0125062e-01 7.0008584e-01 9.0002615e-01 1.1001014e+00 1.0039209e+00 3.0482299e-01 1.0001751e+00 7.0478886e-01 8.0296037e-01 6.0000952e-01 6.0366256e-01 3.0915245e-01 6.0365948e-01 1.0001903e+00 6.3164977e-01 4.0125062e-01 5.0476836e-01 2.2608083e-01 4.0127250e-01 5.0043842e-01 1.2102248e+00 3.0017653e-01 3.0482299e-01 3.0008832e-01 5.0043084e-01 1.5012947e+00 4.0000000e-01 1.5653766e+00 6.7616902e-01 1.5829749e+00 1.1074742e+00 1.3373141e+00 2.2681751e+00 8.0291671e-01 1.9315820e+00 1.3458100e+00 1.7862938e+00 8.7372177e-01 8.7209348e-01 1.2093969e+00 7.1700774e-01 1.1055705e+00 1.0604287e+00 1.0451812e+00 2.3834499e+00 2.5286011e+00 6.3322667e-01 1.3903623e+00 7.0462697e-01 2.3796582e+00 6.3912943e-01 1.2792049e+00 1.6907308e+00 5.6595488e-01 5.3943256e-01 1.1400339e+00 1.5965952e+00 1.8639835e+00 2.3424496e+00 1.1635325e+00 6.7626502e-01 1.1005460e+00 2.0903382e+00 1.2459141e+00 1.0236548e+00 5.0894102e-01 1.2528590e+00 1.2949162e+00 1.2662318e+00 6.7616902e-01 1.4817248e+00 1.3908238e+00 1.1389163e+00 6.9600743e-01 8.9540816e-01 1.0858512e+00 6.3192325e-01 1.5890088e+00 4.2270142e-01 1.1330776e+00 1.5368468e+00 5.2491734e-01 1.1187430e+00 4.0243965e-01 1.1139906e+00 4.1420960e-01 7.0096858e-01 7.3895268e-01 1.1000100e+00 9.3861512e-01 4.0127250e-01 7.1708289e-01 8.0004523e-01 5.2167208e-01 4.5784410e-01 3.6452132e-01 5.6371422e-01 4.2270142e-01 4.1317535e-01 1.2159868e+00 1.0567817e+00 1.1138092e+00 8.3387677e-01 6.1119267e-01 9.0029064e-01 3.0482299e-01 4.0125062e-01 1.0003196e+00 7.4395693e-01 9.3459651e-01 8.5617086e-01 3.0922892e-01 8.0073117e-01 1.5493206e+00 7.5564478e-01 6.4049114e-01 6.4049114e-01 4.5784410e-01 1.7404389e+00 6.9600743e-01 1.3253457e+00 6.4049114e-01 1.2202193e+00 9.0142636e-01 1.1056785e+00 1.9348400e+00 1.4092540e+00 1.6176783e+00 1.1286101e+00 1.4350761e+00 4.5148429e-01 6.7720957e-01 8.1757693e-01 8.2671175e-01 8.1937731e-01 7.4263078e-01 8.0055465e-01 2.0418418e+00 2.2277117e+00 1.1002025e+00 1.0286508e+00 7.2044167e-01 2.0415798e+00 6.0035305e-01 1.0039060e+00 1.3253497e+00 5.0043842e-01 3.1328089e-01 9.0999313e-01 1.1528476e+00 1.4548293e+00 1.8637334e+00 9.1892454e-01 5.2133179e-01 9.3310976e-01 1.5801693e+00 9.6572569e-01 8.0008964e-01 3.4085233e-01 7.5508853e-01 9.6674360e-01 7.4618926e-01 6.4049114e-01 1.2101609e+00 1.0782105e+00 7.2113820e-01 8.0093081e-01 5.2524663e-01 7.8886139e-01 4.5847767e-01 1.7572657e+00 6.1288055e-01 4.0125062e-01 1.0858512e+00 1.1133984e+00 1.4858469e+00 7.1779518e-01 1.8187119e+00 1.2137020e+00 9.6591433e-01 1.4146346e+00 7.4263078e-01 1.5359852e+00 1.2093243e+00 1.7083042e+00 1.4853863e+00 1.5241361e+00 1.7234436e+00 1.9756319e+00 1.9771636e+00 1.3035495e+00 8.0008884e-01 6.3164977e-01 6.0948212e-01 9.1449234e-01 1.8179429e+00 1.2062153e+00 1.3486924e+00 1.8673780e+00 1.4543172e+00 8.7240114e-01 7.4329527e-01 1.1055892e+00 1.4158897e+00 9.3310976e-01 1.1269424e-01 9.3351278e-01 9.7600992e-01 9.6953662e-01 1.3458100e+00 3.0490481e-01 9.0320459e-01 2.7259033e+00 1.8109877e+00 2.7506971e+00 2.3226569e+00 2.5372438e+00 3.4590995e+00 1.2089192e+00 3.1281646e+00 2.5610212e+00 2.9500632e+00 1.9406671e+00 2.0633570e+00 2.3443688e+00 1.7168003e+00 1.8708330e+00 2.0857354e+00 2.2573821e+00 3.5725062e+00 3.7336869e+00 1.7229558e+00 2.5362836e+00 1.6198349e+00 3.5690915e+00 1.7116793e+00 2.4776152e+00 2.8599555e+00 1.6016303e+00 1.6534235e+00 2.3372717e+00 2.7159844e+00 3.0094888e+00 3.4430661e+00 2.3406025e+00 1.8663319e+00 2.3090404e+00 3.1586433e+00 2.3454995e+00 2.2408459e+00 1.5471213e+00 2.3192230e+00 2.4059451e+00 2.1751377e+00 1.8109877e+00 2.6757243e+00 2.4966678e+00 2.1111734e+00 1.7901165e+00 2.0121175e+00 2.1471399e+00 1.8133657e+00 1.4043036e+00 1.6388784e+00 7.0470867e-01 7.7652636e-01 5.0001522e-01 1.1269424e+00 2.2608083e-01 1.0000158e+00 8.0928056e-01 7.0470867e-01 1.0215068e+00 7.1708289e-01 6.3164977e-01 4.2362917e-01 5.0002283e-01 3.0474106e-01 2.0121983e-01 2.2608083e-01 4.5080200e-01 6.0017982e-01 1.1529284e+00 1.1298636e+00 1.1544060e+00 8.5406674e-01 6.3322667e-01 1.2000066e+00 6.3309258e-01 2.2608083e-01 6.0201716e-01 1.0030721e+00 1.1060937e+00 1.1001110e+00 5.0001522e-01 8.2458478e-01 1.6747799e+00 1.0008617e+00 9.0140221e-01 9.0140131e-01 4.1209001e-01 1.7511598e+00 9.0506299e-01 1.4854079e+00 8.3187290e-01 1.3139296e+00 1.0032293e+00 1.2362702e+00 2.0078120e+00 1.7001329e+00 1.7019430e+00 1.2016381e+00 1.5675442e+00 7.1700909e-01 7.4275547e-01 9.6574369e-01 9.3541878e-01 1.1298552e+00 1.0208844e+00 9.0506343e-01 2.1136134e+00 2.3085898e+00 7.4618926e-01 1.1897982e+00 1.0208709e+00 2.1090362e+00 5.0894102e-01 1.1286018e+00 1.4024091e+00 5.2167829e-01 5.6595908e-01 1.0426638e+00 1.2037520e+00 1.5079206e+00 1.8503663e+00 1.0776296e+00 5.0477564e-01 1.0032296e+00 1.5611241e+00 1.1910693e+00 9.0511169e-01 6.3178782e-01 9.0184172e-01 1.1896660e+00 1.0032443e+00 8.3187290e-01 1.3450688e+00 1.3020492e+00 1.0087252e+00 6.1990228e-01 7.4263078e-01 1.0458540e+00 7.3084171e-01 7.0918894e-01 7.0176271e-01 8.1112984e-01 9.6574336e-01 4.1317535e-01 1.5005626e+00 6.1119558e-01 6.0964597e-01 1.0116724e+00 4.1315633e-01 9.3848935e-01 9.0000136e-01 1.1896660e+00 9.6574369e-01 1.2003597e+00 1.4006465e+00 1.6096629e+00 1.5401713e+00 8.2421923e-01 5.3914287e-01 3.6259865e-01 4.2362917e-01 6.0017665e-01 1.2189701e+00 6.0202028e-01 8.7212232e-01 1.5067961e+00 1.1024820e+00 4.1317535e-01 3.0490481e-01 5.0477564e-01 9.3329017e-01 6.0018299e-01 6.1845783e-01 4.1210927e-01 5.0894102e-01 5.0477564e-01 1.0008620e+00 9.0029064e-01 5.0043842e-01 2.1169442e+00 1.2049539e+00 2.2014913e+00 1.7227908e+00 1.9366943e+00 2.8973091e+00 6.0383105e-01 2.5621105e+00 1.9756002e+00 2.3854144e+00 1.4163126e+00 1.4857201e+00 1.8044011e+00 1.1074834e+00 1.2661803e+00 1.4994060e+00 1.6741010e+00 3.0107625e+00 3.1586112e+00 1.1298552e+00 1.9796588e+00 1.0095370e+00 3.0090568e+00 1.1900276e+00 1.8963668e+00 2.3135911e+00 1.0782107e+00 1.0783219e+00 1.7384347e+00 2.2009981e+00 2.4793129e+00 2.9421182e+00 1.7402224e+00 1.3018103e+00 1.7072540e+00 2.6745468e+00 1.7367211e+00 1.6485141e+00 9.6691372e-01 1.8209763e+00 1.8293641e+00 1.7435092e+00 1.2049539e+00 2.0881329e+00 1.9090398e+00 1.6063540e+00 1.2407432e+00 1.4664722e+00 1.5386307e+00 1.2093243e+00 1.0943600e+00 1.0030868e+00 1.3272142e+00 9.1446938e-01 1.7295996e+00 1.1336109e+00 8.7209296e-01 1.2643054e+00 6.3912943e-01 1.4396100e+00 1.1299441e+00 1.5271597e+00 1.3148232e+00 1.4267817e+00 1.6268514e+00 1.8468437e+00 1.8305154e+00 1.1759988e+00 7.4262850e-01 5.2491734e-01 5.2167208e-01 8.5586571e-01 1.6206300e+00 1.1291536e+00 1.4631182e+00 1.7576822e+00 1.3254284e+00 1.0172489e+00 6.0605366e-01 9.1894698e-01 1.2951152e+00 8.3187290e-01 3.0474106e-01 8.1500329e-01 1.0396215e+00 9.6150595e-01 1.2528590e+00 5.6347978e-01 8.7240114e-01 2.5401214e+00 1.6166178e+00 2.5672376e+00 2.1256636e+00 2.3434890e+00 3.2706021e+00 1.0235120e+00 2.9379053e+00 2.3650373e+00 2.7819820e+00 1.7939428e+00 1.8718670e+00 2.1669217e+00 1.5269837e+00 1.7152309e+00 1.9257519e+00 2.0672316e+00 3.3962101e+00 3.5413320e+00 1.5241169e+00 2.3604685e+00 1.4422764e+00 3.3805191e+00 1.5352907e+00 2.2985560e+00 2.6785349e+00 1.4314424e+00 1.4886759e+00 2.1422340e+00 2.5406863e+00 2.8290490e+00 3.2861997e+00 2.1472832e+00 1.6782365e+00 2.1087015e+00 2.9939447e+00 2.1830772e+00 2.0525906e+00 1.3935744e+00 2.1564350e+00 2.2287876e+00 2.0426476e+00 1.6166178e+00 2.4889554e+00 2.3256006e+00 1.9561612e+00 1.6066555e+00 1.8386981e+00 2.0009986e+00 1.6313110e+00 8.0883916e-01 5.0043842e-01 6.0202028e-01 8.0004602e-01 3.3808272e-01 5.0437695e-01 8.0093081e-01 5.2838320e-01 6.0201716e-01 2.5399984e-01 7.2036819e-01 5.0517282e-01 5.0043842e-01 7.0008584e-01 9.1424701e-01 9.0157896e-01 3.0017653e-01 7.2044167e-01 6.2656178e-01 6.6334810e-01 3.6259865e-01 9.0026588e-01 5.0436235e-01 4.1212852e-01 8.0879701e-01 7.0478886e-01 3.0482299e-01 5.2201750e-01 4.5847767e-01 4.0125062e-01 4.1317535e-01 1.0363096e+00 3.4080442e-01 3.0474106e-01 2.2573593e-01 3.0490481e-01 1.2204839e+00 2.4195741e-01 1.8101835e+00 9.0166476e-01 1.7375279e+00 1.4002005e+00 1.6032003e+00 2.4532171e+00 1.0032443e+00 2.1331916e+00 1.6052507e+00 1.9422649e+00 9.1894698e-01 1.1025819e+00 1.3276411e+00 8.1719606e-01 1.0142626e+00 1.1298636e+00 1.3025621e+00 2.5612597e+00 2.7430487e+00 9.0155438e-01 1.5299064e+00 7.1708289e-01 2.5605373e+00 7.0633229e-01 1.5079428e+00 1.8443132e+00 6.0383105e-01 7.0096708e-01 1.4023806e+00 1.6740160e+00 1.9756002e+00 2.3801033e+00 1.4049093e+00 9.0142636e-01 1.4001717e+00 2.0898615e+00 1.4183606e+00 1.3009222e+00 6.0184622e-01 1.2661803e+00 1.4267527e+00 1.1084368e+00 9.0166476e-01 1.7108631e+00 1.5299252e+00 1.0782751e+00 8.1343016e-01 1.0116721e+00 1.2193537e+00 9.0026497e-01 7.9148746e-01 7.0993998e-01 9.3541878e-01 8.1937731e-01 5.0043084e-01 5.6370994e-01 4.1212852e-01 1.0782753e+00 6.0184622e-01 9.0557807e-01 7.4269314e-01 7.0633229e-01 8.2841920e-01 9.1695534e-01 1.0756891e+00 7.3084048e-01 5.2491131e-01 5.0085236e-01 5.0476836e-01 5.0085236e-01 1.1074740e+00 8.3916809e-01 1.2049539e+00 9.6501813e-01 4.2270142e-01 8.0291749e-01 5.0855077e-01 5.3943256e-01 8.2631334e-01 4.0243965e-01 1.0207260e+00 5.2524663e-01 8.0055465e-01 7.0184453e-01 7.0184453e-01 1.0777307e+00 6.0366256e-01 2.0696799e+00 1.1543334e+00 1.9286352e+00 1.6071727e+00 1.8312163e+00 2.6295459e+00 1.1153247e+00 2.3155068e+00 1.8040969e+00 2.1901871e+00 1.2562955e+00 1.3263639e+00 1.5518083e+00 1.1271226e+00 1.4557657e+00 1.4915559e+00 1.5136393e+00 2.7555974e+00 2.9267466e+00 1.0030718e+00 1.7744103e+00 1.0843333e+00 2.7324083e+00 9.6953662e-01 1.7456060e+00 2.0249458e+00 9.1568820e-01 1.0151258e+00 1.6309461e+00 1.8315348e+00 2.1358791e+00 2.5304748e+00 1.6492450e+00 1.1075720e+00 1.6001777e+00 2.2141198e+00 1.7441970e+00 1.5196090e+00 9.6683480e-01 1.4838225e+00 1.7167914e+00 1.4122282e+00 1.1543334e+00 1.9438463e+00 1.8374400e+00 1.4268530e+00 1.0778421e+00 1.2792049e+00 1.5857302e+00 1.1532421e+00 1.1019503e+00 6.0201716e-01 5.0043842e-01 6.1135434e-01 7.0008735e-01 8.1156529e-01 4.1317535e-01 7.0000303e-01 4.0246123e-01 2.0061436e-01 4.1210927e-01 5.0436965e-01 7.0000303e-01 6.0366256e-01 2.0121983e-01 1.2007726e+00 9.1916394e-01 1.0124729e+00 8.0055465e-01 4.0246123e-01 7.0008735e-01 5.0085236e-01 6.0017982e-01 6.0202028e-01 6.3165225e-01 7.4612830e-01 6.0383105e-01 1.1269424e-01 7.0184453e-01 1.4559030e+00 5.6371422e-01 5.2167829e-01 5.2133179e-01 4.0004442e-01 1.7133283e+00 6.0948800e-01 1.3743342e+00 5.2524663e-01 1.2702954e+00 9.0142636e-01 1.1286018e+00 1.9763960e+00 1.2004262e+00 1.6484371e+00 1.1066159e+00 1.5033966e+00 6.1990228e-01 6.3322667e-01 8.9538275e-01 6.1990228e-01 1.0010060e+00 9.1471442e-01 8.0488008e-01 2.0894199e+00 2.2581358e+00 7.0088627e-01 1.1085342e+00 6.3178782e-01 2.0855639e+00 4.0363334e-01 1.0293900e+00 1.3743657e+00 4.0006662e-01 4.0125062e-01 9.3329055e-01 1.2396422e+00 1.5267540e+00 1.9798779e+00 9.6591465e-01 4.0127250e-01 9.0026497e-01 1.7151603e+00 1.0797805e+00 8.0296037e-01 4.0006662e-01 8.9540816e-01 1.0837679e+00 9.6674360e-01 5.2524663e-01 1.2440789e+00 1.1938630e+00 9.1892454e-01 5.2524663e-01 6.3912943e-01 9.3733589e-01 4.5148429e-01 1.1281352e+00 9.0002570e-01 5.0517282e-01 9.4513210e-01 4.1315633e-01 1.2014191e+00 5.2133179e-01 1.3063533e+00 1.1019505e+00 8.5403370e-01 1.0426516e+00 1.3523310e+00 1.4544312e+00 9.0142636e-01 3.3818226e-01 5.0085236e-01 5.0437695e-01 3.0922892e-01 1.5001461e+00 9.0005094e-01 9.0668287e-01 1.2396475e+00 8.7209296e-01 5.0000761e-01 4.5078948e-01 8.0046764e-01 1.0030724e+00 4.1317535e-01 6.7824250e-01 6.0017665e-01 6.0000952e-01 6.0000317e-01 7.4262850e-01 6.3925756e-01 5.0001522e-01 2.4077059e+00 1.5012741e+00 2.3329496e+00 2.0008921e+00 2.2042323e+00 3.0476353e+00 9.3541878e-01 2.7309758e+00 2.2068463e+00 2.5373913e+00 1.5160787e+00 1.7043730e+00 1.9242109e+00 1.4044668e+00 1.5401330e+00 1.7168122e+00 1.9044144e+00 3.1543192e+00 3.3406961e+00 1.4044697e+00 2.1265131e+00 1.3061138e+00 3.1536525e+00 1.3069754e+00 2.1097680e+00 2.4379736e+00 1.2049541e+00 1.3017511e+00 2.0033792e+00 2.2562563e+00 2.5606009e+00 2.9377608e+00 2.0050253e+00 1.5030978e+00 2.0001168e+00 2.6390071e+00 2.0114908e+00 1.9023062e+00 1.2016381e+00 1.8467998e+00 2.0209800e+00 1.6143467e+00 1.5012741e+00 2.3121231e+00 2.1220697e+00 1.6461460e+00 1.4062065e+00 1.6118728e+00 1.8108200e+00 1.5004645e+00 1.1000005e+00 9.0305330e-01 9.0506343e-01 1.1075720e+00 8.0488008e-01 6.1119558e-01 6.3912943e-01 6.0383105e-01 3.0490481e-01 1.1269424e-01 4.1210927e-01 6.0184622e-01 7.0008735e-01 1.0803561e+00 1.2125410e+00 1.2178626e+00 9.0645118e-01 7.9153339e-01 1.3000002e+00 7.0096858e-01 3.0008832e-01 8.0245824e-01 1.1001015e+00 1.2040344e+00 1.2012928e+00 6.0017982e-01 9.0645118e-01 1.7262450e+00 1.1005460e+00 1.0000307e+00 1.0000307e+00 5.0043842e-01 1.7087610e+00 1.0003198e+00 1.6300950e+00 9.3848935e-01 1.5032156e+00 1.2007124e+00 1.4092540e+00 2.2026134e+00 1.8005395e+00 1.9004485e+00 1.4019342e+00 1.7231818e+00 7.4269314e-01 9.0668287e-01 1.1133897e+00 1.0251597e+00 1.0924484e+00 1.0143978e+00 1.1005460e+00 2.3044111e+00 2.5032992e+00 9.4511250e-01 1.3253497e+00 1.1075720e+00 2.3033192e+00 5.5450500e-01 1.3061180e+00 1.6004128e+00 5.4219811e-01 6.3912943e-01 1.2090477e+00 1.4006179e+00 1.7019555e+00 2.0185049e+00 1.2190878e+00 7.0548283e-01 1.2049539e+00 1.7202439e+00 1.2636227e+00 1.1006371e+00 7.0911112e-01 1.0207396e+00 1.2632946e+00 9.3308853e-01 9.3848935e-01 1.5130871e+00 1.3741498e+00 9.6572569e-01 6.9987517e-01 8.2421923e-01 1.0798806e+00 8.5583415e-01 5.2524663e-01 8.2418002e-01 6.3912709e-01 3.6452132e-01 5.6394820e-01 7.2036819e-01 5.0517282e-01 8.0008964e-01 1.0000005e+00 1.2000731e+00 1.1019597e+00 4.0002221e-01 1.0039063e+00 7.4612830e-01 8.3183672e-01 6.0383105e-01 6.1119558e-01 2.0000000e-01 4.5078948e-01 1.1000098e+00 7.8890806e-01 4.0122873e-01 5.6371422e-01 4.1212852e-01 5.0001522e-01 5.2524663e-01 1.2137020e+00 3.4080442e-01 3.3813251e-01 3.0490481e-01 6.0035621e-01 1.5010034e+00 4.0246123e-01 1.5265987e+00 6.1135434e-01 1.6395342e+00 1.1134850e+00 1.3309249e+00 2.3136797e+00 7.1629168e-01 1.9760038e+00 1.3748534e+00 1.8136626e+00 9.1894698e-01 9.0320459e-01 1.2661802e+00 6.0427481e-01 9.1427000e-01 9.6685270e-01 1.0777305e+00 2.4270428e+00 2.5626268e+00 8.1112909e-01 1.4228744e+00 5.2167208e-01 2.4261071e+00 7.0633229e-01 1.3043552e+00 1.7511131e+00 6.0383105e-01 5.2491131e-01 1.1330776e+00 1.6740160e+00 1.9314874e+00 2.4166999e+00 1.1400420e+00 7.4269200e-01 1.1024820e+00 2.1702438e+00 1.1639421e+00 1.0427822e+00 4.2268438e-01 1.3276412e+00 1.2710363e+00 1.3154933e+00 6.1135434e-01 1.4922566e+00 1.3466030e+00 1.1400339e+00 7.3461436e-01 9.3733552e-01 9.7694377e-01 6.0365948e-01 5.8750389e-01 2.4195741e-01 8.6051471e-01 3.3818226e-01 8.1719606e-01 6.0202028e-01 6.0219099e-01 8.0337471e-01 1.0214933e+00 1.0338224e+00 5.2201750e-01 6.0000635e-01 3.6259865e-01 4.2268438e-01 2.2538848e-01 1.0087393e+00 5.4219811e-01 7.4618926e-01 9.2019277e-01 5.2838320e-01 3.4080442e-01 3.4085233e-01 3.4085233e-01 5.2838320e-01 2.0121983e-01 9.0294373e-01 3.0482299e-01 3.0490481e-01 3.0490481e-01 4.1420960e-01 1.1133986e+00 3.0017653e-01 1.9760242e+00 1.0776188e+00 1.8598666e+00 1.5071120e+00 1.7384459e+00 2.5637810e+00 9.3426769e-01 2.2403929e+00 1.7108631e+00 2.0993246e+00 1.1405598e+00 1.2394690e+00 1.4816205e+00 1.0776296e+00 1.4324323e+00 1.4163126e+00 1.4134492e+00 2.6753615e+00 2.8540068e+00 9.1001664e-01 1.6986597e+00 1.0426638e+00 2.6697938e+00 9.0657539e-01 1.6396943e+00 1.9541963e+00 8.5583415e-01 9.0207914e-01 1.5412500e+00 1.7849153e+00 2.0880425e+00 2.4973149e+00 1.5650163e+00 1.0060994e+00 1.5001440e+00 2.2185588e+00 1.6410190e+00 1.4111252e+00 8.5440680e-01 1.4330979e+00 1.6474117e+00 1.4095656e+00 1.0776188e+00 1.8534896e+00 1.7579984e+00 1.3938438e+00 1.0171340e+00 1.1990152e+00 1.4686236e+00 1.0427822e+00 6.8261201e-01 1.0004792e+00 6.3178782e-01 4.1210927e-01 6.0202028e-01 7.0025283e-01 8.0245903e-01 6.7720957e-01 8.1719606e-01 7.0008432e-01 1.0069214e+00 7.9153339e-01 8.6054545e-01 6.4049114e-01 6.3178782e-01 9.0155393e-01 1.2000065e+00 9.0508712e-01 2.0181667e-01 8.2635069e-01 7.1708289e-01 7.0548283e-01 8.0000239e-01 5.4219811e-01 1.3530568e+00 6.3322667e-01 8.0967961e-01 7.1708289e-01 7.0016860e-01 1.5402579e+00 6.3925756e-01 1.5611241e+00 6.4620889e-01 1.4283663e+00 1.1134850e+00 1.3189663e+00 2.1346646e+00 1.3000497e+00 1.8186729e+00 1.3009674e+00 1.7335369e+00 1.0118233e+00 8.1117067e-01 1.0567664e+00 6.0605366e-01 9.2867113e-01 1.0782857e+00 1.0429127e+00 2.2917679e+00 2.4270713e+00 5.0042326e-01 1.2848760e+00 6.9987517e-01 2.2396581e+00 5.2491734e-01 1.3051737e+00 1.5457820e+00 6.0365948e-01 8.0291749e-01 1.1110184e+00 1.3561934e+00 1.6492450e+00 2.1212048e+00 1.1186586e+00 6.7616723e-01 1.1005365e+00 1.7574668e+00 1.3269962e+00 1.0777411e+00 8.0097499e-01 1.0411548e+00 1.1972915e+00 9.9911696e-01 6.4620889e-01 1.4422764e+00 1.3473056e+00 9.3861512e-01 5.2491734e-01 8.6084272e-01 1.2528048e+00 8.2498722e-01 9.6150595e-01 5.0477564e-01 1.0214931e+00 8.0923926e-01 8.0492246e-01 1.0062544e+00 1.2363856e+00 1.2438823e+00 6.2656178e-01 4.0006662e-01 1.2085435e-01 2.0181667e-01 2.2573593e-01 1.2016443e+00 6.3925756e-01 9.2019277e-01 1.1335345e+00 7.1636719e-01 5.0084481e-01 2.0121983e-01 5.0002283e-01 7.3155911e-01 2.0181667e-01 6.7626681e-01 3.0915245e-01 5.0437695e-01 4.1317535e-01 6.1845783e-01 9.0506254e-01 3.0922892e-01 2.1350025e+00 1.2189760e+00 2.0658767e+00 1.7034615e+00 1.9177947e+00 2.7775988e+00 7.7598704e-01 2.4534018e+00 1.9144928e+00 2.2857680e+00 1.2749306e+00 1.4182222e+00 1.6639408e+00 1.1527669e+00 1.4140789e+00 1.4954274e+00 1.6121856e+00 2.8913337e+00 3.0644792e+00 1.1011719e+00 1.8708183e+00 1.0777305e+00 2.8852099e+00 1.0396215e+00 1.8297117e+00 2.1701542e+00 9.4532171e-01 1.0262619e+00 1.7168122e+00 2.0059655e+00 2.3063931e+00 2.7230908e+00 1.7261949e+00 1.2093243e+00 1.7002548e+00 2.4331092e+00 1.7646791e+00 1.6080687e+00 9.3848935e-01 1.6152383e+00 1.7771159e+00 1.4971922e+00 1.2189760e+00 2.0349233e+00 1.8831259e+00 1.4665397e+00 1.1400339e+00 1.3492939e+00 1.5757399e+00 1.2102248e+00 8.1117067e-01 7.0548283e-01 6.0964891e-01 6.0605366e-01 7.0918894e-01 9.0279223e-01 8.0008964e-01 3.6259865e-01 1.3154973e+00 1.0604287e+00 1.1536694e+00 9.1892454e-01 5.0477564e-01 5.0894102e-01 3.0922892e-01 8.0046764e-01 9.0778124e-01 7.1708289e-01 8.6225026e-01 6.8685125e-01 4.0363334e-01 8.4536936e-01 1.5318139e+00 6.5832080e-01 6.7636452e-01 6.3322667e-01 5.6838732e-01 1.8053679e+00 7.2044167e-01 1.2092602e+00 5.0437695e-01 1.3018595e+00 8.0291671e-01 1.0095513e+00 1.9760044e+00 1.0208709e+00 1.6387179e+00 1.0597877e+00 1.4686236e+00 6.0201716e-01 6.0427481e-01 9.3331138e-01 7.0025283e-01 6.1119558e-01 6.0427175e-01 7.4269200e-01 2.0887699e+00 2.2281421e+00 1.0001753e+00 1.0797700e+00 4.1317535e-01 2.0885107e+00 5.2133179e-01 9.6591465e-01 1.4140457e+00 4.1209001e-01 2.2573593e-01 8.1156529e-01 1.3450340e+00 1.5966664e+00 2.0855643e+00 8.1343016e-01 4.6440171e-01 8.2635069e-01 1.8444686e+00 8.2635069e-01 7.1621748e-01 2.0061436e-01 1.0088783e+00 9.1566538e-01 1.0032296e+00 5.0437695e-01 1.1543257e+00 9.8997136e-01 8.1117067e-01 7.0470867e-01 6.0980961e-01 6.3322667e-01 3.0474106e-01 9.0031539e-01 7.0000151e-01 3.3813251e-01 5.2167829e-01 8.5403428e-01 1.0095513e+00 5.0043842e-01 5.2524663e-01 6.0980961e-01 6.1288055e-01 3.0026460e-01 1.1001015e+00 7.1636719e-01 6.3309258e-01 7.4335736e-01 5.2167208e-01 5.0043084e-01 6.0184309e-01 6.0964891e-01 6.0017982e-01 3.0482299e-01 1.1153247e+00 5.0043084e-01 4.0246123e-01 4.0125062e-01 3.0017653e-01 1.1270411e+00 4.0002221e-01 2.0175565e+00 1.1056693e+00 1.9099615e+00 1.6003257e+00 1.8055799e+00 2.6186105e+00 1.2017042e+00 2.3090806e+00 1.8007233e+00 2.1233216e+00 1.1144002e+00 1.3025622e+00 1.5097103e+00 1.0216374e+00 1.2396937e+00 1.3452695e+00 1.5005647e+00 2.7241212e+00 2.9166918e+00 1.0087396e+00 1.7168636e+00 9.3733552e-01 2.7221286e+00 9.0508756e-01 1.7046111e+00 2.0107590e+00 8.0879701e-01 9.0508712e-01 1.6049314e+00 1.8174378e+00 2.1221146e+00 2.4750525e+00 1.6096791e+00 1.1000193e+00 1.6000016e+00 2.1732693e+00 1.6308665e+00 1.5004872e+00 8.0883916e-01 1.4182493e+00 1.6308803e+00 1.2094550e+00 1.1056693e+00 1.9088565e+00 1.7377460e+00 1.2661852e+00 1.0088926e+00 1.2092662e+00 1.4340155e+00 1.1019692e+00 3.4342562e-01 6.0964891e-01 5.6595908e-01 5.0437695e-01 5.2167829e-01 4.5783248e-01 1.4023777e+00 1.1286018e+00 1.2201578e+00 1.0032443e+00 3.0922892e-01 9.0642679e-01 9.0166476e-01 6.0964597e-01 5.0084481e-01 8.6054545e-01 9.6574336e-01 8.0923926e-01 5.0477564e-01 9.0532093e-01 1.6742781e+00 7.8895472e-01 7.5564478e-01 7.4618926e-01 6.0964891e-01 1.9222003e+00 8.2462252e-01 1.2093908e+00 5.2201750e-01 1.0522594e+00 7.0548138e-01 9.3735629e-01 1.7578497e+00 1.4001717e+00 1.4326118e+00 9.0166431e-01 1.3681502e+00 7.1636719e-01 4.5148429e-01 7.1183012e-01 6.3164977e-01 9.0534502e-01 8.5583415e-01 6.3322667e-01 1.9047821e+00 2.0429861e+00 3.3813251e-01 9.4634218e-01 7.1700774e-01 1.8662975e+00 3.0474106e-01 9.1695534e-01 1.1636098e+00 3.3818226e-01 5.0476836e-01 7.4329527e-01 1.0171202e+00 1.3020942e+00 1.8013674e+00 7.8935898e-01 3.0474106e-01 7.0008735e-01 1.4927071e+00 1.0336860e+00 6.7720957e-01 5.0855778e-01 7.3895268e-01 9.4622126e-01 8.4540285e-01 5.2201750e-01 1.0621172e+00 1.0788651e+00 8.1156529e-01 4.0002221e-01 5.6618864e-01 9.6935134e-01 5.2524663e-01 4.1212852e-01 5.0517282e-01 7.0008584e-01 6.3322667e-01 3.0490481e-01 1.2003660e+00 9.1552373e-01 1.0095513e+00 8.0046685e-01 4.5080200e-01 7.0105084e-01 6.0964891e-01 6.0365948e-01 5.0477564e-01 6.3178782e-01 7.4329527e-01 6.0201716e-01 2.2573593e-01 7.0096708e-01 1.4548054e+00 5.6347978e-01 5.2167208e-01 5.2133802e-01 4.0006662e-01 1.7132643e+00 6.0948506e-01 1.4655221e+00 7.0548283e-01 1.2921474e+00 9.1424701e-01 1.1900342e+00 1.9791159e+00 1.2013591e+00 1.6491682e+00 1.1111057e+00 1.5689626e+00 8.0726668e-01 7.4329527e-01 9.8998705e-01 8.0337471e-01 1.2004198e+00 1.1061923e+00 8.2635069e-01 2.0953157e+00 2.2622460e+00 6.0366256e-01 1.2097311e+00 8.0883841e-01 2.0866883e+00 6.0035621e-01 1.0858512e+00 1.3762609e+00 6.0000635e-01 6.0035305e-01 1.0143975e+00 1.2399444e+00 1.5291965e+00 1.9842703e+00 1.0777305e+00 4.1315633e-01 9.0005048e-01 1.7303039e+00 1.2394744e+00 8.2498722e-01 6.0018299e-01 9.9013884e-01 1.2395260e+00 1.1286911e+00 7.0548283e-01 1.3081175e+00 1.3479052e+00 1.1074834e+00 7.0184453e-01 8.1117067e-01 1.1186499e+00 6.0980961e-01 2.0181667e-01 5.2133802e-01 7.0548283e-01 4.0243965e-01 8.5471446e-01 9.1001664e-01 9.1916394e-01 6.0964891e-01 8.0296037e-01 1.0000307e+00 5.2524663e-01 4.1420960e-01 6.0000635e-01 8.0004523e-01 9.0166431e-01 9.0026588e-01 3.3818226e-01 6.0366256e-01 1.4340438e+00 8.0004523e-01 7.0000454e-01 7.0000151e-01 2.0000000e-01 1.4651632e+00 7.0008584e-01 1.7369589e+00 8.4540285e-01 1.6071563e+00 1.3008770e+00 1.5130871e+00 2.3098753e+00 1.5002444e+00 2.0034559e+00 1.5005854e+00 1.8322392e+00 8.5437498e-01 1.0087393e+00 1.2192920e+00 8.4786353e-01 1.1330694e+00 1.1270325e+00 1.2012867e+00 2.4144060e+00 2.6097166e+00 7.9153339e-01 1.4330116e+00 8.7209348e-01 2.4119960e+00 6.3178782e-01 1.4094452e+00 1.7039341e+00 5.6371422e-01 6.3309258e-01 1.3130937e+00 1.5066999e+00 1.8106410e+00 2.1515742e+00 1.3253458e+00 8.0004602e-01 1.3000908e+00 1.8533295e+00 1.3748188e+00 1.2012928e+00 5.7609230e-01 1.1298636e+00 1.3741846e+00 1.0451812e+00 8.4540285e-01 1.6176927e+00 1.4854079e+00 1.0777307e+00 7.4612830e-01 9.3306807e-01 1.1910068e+00 8.1715665e-01 4.0243965e-01 6.0184622e-01 6.0000952e-01 1.0158274e+00 1.1111057e+00 1.1191444e+00 8.0928056e-01 7.4335736e-01 1.2000002e+00 6.0964891e-01 3.0026460e-01 7.0088477e-01 1.0001601e+00 1.1024820e+00 1.1005458e+00 5.0042326e-01 8.0492246e-01 1.6321742e+00 1.0001753e+00 9.0005048e-01 9.0002615e-01 4.0006662e-01 1.6390068e+00 9.0029064e-01 1.6300430e+00 8.6084272e-01 1.5035329e+00 1.2004200e+00 1.4092511e+00 2.2043907e+00 1.7002548e+00 1.9010379e+00 1.4007831e+00 1.7240342e+00 7.4269314e-01 9.0534502e-01 1.1133984e+00 9.3184922e-01 1.0597992e+00 1.0142766e+00 1.1005364e+00 2.3071806e+00 2.5048249e+00 8.4536936e-01 1.3253910e+00 1.0116865e+00 2.3056305e+00 5.2838320e-01 1.3061582e+00 1.6010223e+00 4.8391482e-01 5.7608844e-01 1.2089313e+00 1.4017695e+00 1.7039229e+00 2.0293124e+00 1.2189760e+00 7.0096858e-01 1.2016380e+00 1.7295384e+00 1.2636227e+00 1.1005460e+00 6.1830489e-01 1.0208709e+00 1.2632948e+00 9.3329055e-01 8.6084272e-01 1.5130912e+00 1.3741813e+00 9.6572569e-01 6.5832080e-01 8.2418071e-01 1.0788007e+00 7.9148662e-01 3.0922892e-01 8.0046764e-01 1.3743342e+00 1.3452695e+00 1.3745152e+00 1.0776296e+00 8.0051115e-01 1.4000349e+00 8.2462252e-01 3.0026460e-01 5.7609230e-01 1.2089253e+00 1.3131370e+00 1.3002493e+00 7.0016860e-01 1.0426760e+00 1.8951252e+00 1.2036864e+00 1.1055892e+00 1.1055707e+00 6.3165225e-01 1.9760099e+00 1.1133895e+00 1.3035495e+00 1.0032296e+00 1.1134939e+00 8.1112984e-01 1.0427944e+00 1.8040883e+00 1.9000220e+00 1.5005626e+00 1.0010060e+00 1.3844234e+00 6.1288055e-01 5.7609230e-01 7.8890721e-01 1.1056785e+00 1.1270325e+00 9.0778124e-01 7.0556260e-01 1.9141294e+00 2.1052841e+00 8.2421923e-01 1.0150395e+00 1.2036863e+00 1.9046783e+00 5.2133802e-01 9.3733589e-01 1.2010584e+00 6.0948212e-01 7.0470867e-01 8.5583357e-01 1.0008768e+00 1.3033860e+00 1.6469593e+00 9.0294373e-01 5.0436965e-01 8.5406616e-01 1.3485619e+00 1.0522594e+00 7.0993998e-01 8.0250123e-01 7.4329527e-01 1.0427822e+00 9.0053003e-01 1.0032296e+00 1.1531951e+00 1.1543259e+00 9.0142681e-01 5.6618864e-01 6.1135434e-01 9.3984267e-01 9.0168933e-01 7.1629303e-01 1.5266891e+00 1.3564850e+00 1.4198077e+00 1.1544060e+00 7.0088627e-01 1.3008812e+00 7.2036951e-01 3.0482299e-01 7.4954884e-01 1.1531951e+00 1.2645755e+00 1.2053003e+00 6.1119267e-01 1.0803561e+00 1.9177201e+00 1.1286911e+00 1.0451689e+00 1.0433444e+00 7.2036951e-01 2.0856547e+00 1.0782211e+00 1.0434746e+00 9.0029064e-01 9.0279223e-01 6.0948800e-01 8.0883841e-01 1.6097492e+00 1.8003682e+00 1.3025173e+00 8.0879701e-01 1.1347620e+00 3.0922892e-01 3.6452132e-01 5.2133179e-01 1.0032293e+00 9.3308891e-01 6.0383105e-01 5.0043084e-01 1.7170314e+00 1.9082779e+00 8.5406616e-01 7.4275547e-01 1.1001110e+00 1.7132654e+00 4.1212852e-01 7.0548138e-01 1.0030871e+00 5.0085236e-01 6.0000635e-01 6.1135434e-01 8.0879701e-01 1.1134075e+00 1.4922778e+00 6.3322667e-01 4.0246123e-01 6.8261201e-01 1.1935004e+00 7.4954884e-01 5.0437695e-01 7.0008584e-01 4.5148429e-01 7.4262964e-01 6.0018299e-01 9.0029064e-01 9.1424701e-01 8.5437440e-01 6.0017665e-01 5.2167208e-01 3.0915245e-01 6.4620889e-01 8.0000160e-01 1.0033867e+00 7.3461436e-01 8.2512420e-01 6.0219099e-01 6.0017982e-01 6.0000317e-01 5.0000761e-01 7.0016860e-01 6.0202028e-01 4.5148429e-01 5.7630313e-01 5.0855778e-01 1.2699992e-01 5.0894102e-01 1.2671752e+00 4.1420960e-01 3.6259865e-01 3.4080442e-01 2.4170870e-01 1.5133193e+00 4.1317535e-01 1.5238388e+00 6.0980961e-01 1.4557632e+00 1.1002023e+00 1.3069713e+00 2.1693127e+00 1.1005458e+00 1.8443124e+00 1.3063934e+00 1.6655594e+00 6.5832080e-01 8.0492246e-01 1.0498228e+00 5.7832449e-01 9.1424701e-01 9.0320459e-01 1.0032296e+00 2.2802814e+00 2.4537354e+00 7.1621613e-01 1.2528590e+00 5.3914287e-01 2.2781292e+00 4.2362917e-01 1.2128138e+00 1.5640141e+00 3.4085233e-01 4.1212852e-01 1.1060939e+00 1.4140458e+00 1.7081323e+00 2.1436849e+00 1.1138955e+00 6.0184622e-01 1.1001015e+00 1.8659091e+00 1.1544060e+00 1.0010209e+00 3.3813251e-01 1.0224270e+00 1.1635398e+00 9.7600992e-01 6.0980961e-01 1.4182493e+00 1.2705641e+00 8.9538275e-01 5.4219811e-01 7.3084171e-01 9.6936870e-01 6.0184934e-01 3.0922892e-01 2.4170870e-01 4.0127250e-01 1.6009488e+00 1.0040629e+00 1.0499492e+00 1.2653025e+00 9.1471442e-01 6.1119558e-01 5.0477564e-01 9.0005048e-01 1.1016049e+00 5.0043084e-01 7.0096708e-01 7.0088627e-01 7.0470720e-01 7.0176121e-01 8.0967961e-01 6.3165225e-01 6.0201716e-01 2.5221737e+00 1.6096629e+00 2.4221589e+00 2.1015969e+00 2.3098905e+00 3.1317714e+00 1.0597879e+00 2.8188299e+00 2.3040148e+00 2.6373482e+00 1.6231306e+00 1.8068049e+00 2.0210084e+00 1.5237053e+00 1.7080686e+00 1.8459262e+00 2.0034094e+00 3.2387184e+00 3.4286399e+00 1.5005854e+00 2.2285172e+00 1.4324350e+00 3.2358000e+00 1.4109628e+00 2.2110849e+00 2.5224740e+00 1.3139336e+00 1.4095777e+00 2.1090366e+00 2.3323064e+00 2.6377472e+00 2.9966835e+00 2.1144760e+00 1.6012568e+00 2.1000482e+00 2.6968519e+00 2.1346646e+00 2.0025815e+00 1.3133662e+00 1.9351024e+00 2.1377869e+00 1.7137965e+00 1.6096629e+00 2.4161682e+00 2.2434416e+00 1.7684500e+00 1.5143051e+00 1.7168636e+00 1.9368172e+00 1.6050040e+00 1.1269424e-01 3.3818226e-01 1.3017961e+00 7.4612830e-01 1.0262619e+00 1.2443200e+00 8.2421923e-01 6.0202028e-01 2.2573593e-01 6.0017982e-01 8.4572653e-01 3.0922892e-01 5.6347978e-01 4.1317535e-01 6.0964891e-01 5.2201750e-01 7.3090905e-01 8.0245824e-01 4.1420960e-01 2.2297880e+00 1.3131802e+00 2.1734835e+00 1.8042696e+00 2.0169191e+00 2.8857511e+00 7.7598796e-01 2.5607759e+00 2.0181988e+00 2.3909895e+00 1.3770846e+00 1.5195166e+00 1.7689720e+00 1.2362756e+00 1.4651863e+00 1.5800353e+00 1.7155605e+00 3.0010211e+00 3.1712557e+00 1.2016443e+00 1.9735224e+00 1.1531953e+00 2.9937162e+00 1.1401191e+00 1.9335528e+00 2.2793947e+00 1.0403116e+00 1.1237940e+00 1.8155572e+00 2.1170640e+00 2.4166673e+00 2.8369211e+00 1.8227568e+00 1.3135522e+00 1.8005404e+00 2.5443612e+00 1.8557670e+00 1.7105814e+00 1.0313359e+00 1.7226330e+00 1.8708183e+00 1.5881025e+00 1.3131802e+00 2.1363271e+00 1.9752912e+00 1.5530527e+00 1.2366099e+00 1.4501583e+00 1.6655594e+00 1.3088083e+00 3.4342562e-01 1.4024091e+00 8.3183672e-01 1.0522594e+00 1.2712749e+00 8.5437498e-01 6.1119558e-01 3.3813251e-01 7.0016860e-01 9.2867113e-01 3.4342562e-01 5.2133179e-01 5.0855778e-01 6.3192325e-01 5.6618864e-01 7.5564478e-01 7.0462844e-01 4.5847767e-01 2.3345511e+00 1.4181033e+00 2.2624227e+00 1.9044571e+00 2.1188381e+00 2.9740725e+00 8.7209348e-01 2.6511588e+00 2.1151751e+00 2.4832720e+00 1.4692287e+00 1.6190709e+00 1.8603115e+00 1.3450304e+00 1.5778323e+00 1.6856949e+00 1.8133657e+00 3.0879393e+00 3.2627356e+00 1.3017553e+00 2.0678448e+00 1.2635708e+00 3.0810441e+00 1.2366675e+00 2.0307764e+00 2.3657459e+00 1.1404856e+00 1.2257611e+00 1.9176961e+00 2.1957105e+00 2.4980314e+00 2.9055191e+00 1.9262438e+00 1.4100098e+00 1.9004485e+00 2.6116431e+00 1.9609333e+00 1.8095574e+00 1.1347620e+00 1.8037909e+00 1.9725464e+00 1.6581521e+00 1.4181033e+00 2.2355461e+00 2.0784269e+00 1.6462102e+00 1.3373104e+00 1.5468618e+00 1.7698041e+00 1.4111252e+00 1.2003596e+00 6.1288055e-01 7.4618926e-01 9.6691372e-01 5.7609230e-01 3.0922892e-01 3.0490481e-01 5.0436965e-01 7.0184453e-01 1.1269424e-01 8.2635069e-01 3.0482299e-01 3.3813251e-01 3.0490481e-01 4.5148429e-01 9.3308891e-01 2.0181667e-01 2.1221982e+00 1.2089191e+00 2.0305682e+00 1.7009400e+00 1.9088256e+00 2.7434081e+00 9.1894698e-01 2.4265154e+00 1.9046790e+00 2.2453370e+00 1.2284047e+00 1.4060413e+00 1.6267848e+00 1.1281352e+00 1.3523310e+00 1.4562730e+00 1.6032169e+00 2.8519346e+00 3.0369970e+00 1.1020600e+00 1.8342569e+00 1.0426638e+00 2.8491513e+00 1.0116721e+00 1.8114932e+00 2.1335035e+00 9.1552373e-01 1.0090312e+00 1.7079369e+00 1.9522117e+00 2.2566913e+00 2.6406601e+00 1.7139238e+00 1.2013529e+00 1.7000137e+00 2.3442222e+00 1.7386523e+00 1.6019500e+00 9.1449234e-01 1.5517970e+00 1.7435092e+00 1.3757183e+00 1.2089191e+00 2.0167186e+00 1.8496945e+00 1.3938438e+00 1.1152390e+00 1.3189663e+00 1.5429659e+00 1.2037520e+00 6.7720957e-01 7.4262850e-01 7.0911112e-01 7.0633229e-01 1.0011648e+00 1.1020600e+00 7.2036951e-01 5.0477564e-01 1.1005460e+00 1.8106900e+00 9.0166431e-01 9.0192695e-01 9.0055475e-01 8.0055465e-01 2.1027376e+00 1.0003198e+00 1.0225570e+00 3.0474106e-01 1.1299441e+00 5.0517282e-01 7.5564478e-01 1.7513222e+00 1.1055799e+00 1.4140515e+00 7.8895472e-01 1.3181953e+00 5.7608844e-01 4.1315633e-01 8.1156529e-01 4.1317535e-01 8.0004523e-01 7.2044167e-01 5.2524663e-01 1.8787830e+00 1.9768256e+00 5.0001522e-01 9.4912864e-01 4.5148429e-01 1.8635775e+00 3.0915245e-01 7.8611860e-01 1.2373911e+00 3.0922892e-01 3.0922892e-01 5.7609230e-01 1.2089834e+00 1.4324608e+00 1.9471600e+00 6.3912943e-01 3.0017653e-01 5.0043842e-01 1.7149040e+00 8.6084272e-01 4.8391482e-01 3.4080442e-01 9.0668287e-01 8.6225026e-01 9.3424659e-01 3.0474106e-01 9.3861512e-01 9.5646231e-01 7.8935898e-01 3.4085233e-01 5.2491734e-01 7.8940551e-01 3.0482299e-01 6.0948506e-01 1.3000044e+00 9.3308891e-01 4.0243965e-01 5.6371422e-01 4.1212852e-01 7.0000303e-01 5.4219811e-01 1.2105001e+00 3.4342562e-01 3.6256305e-01 3.4085233e-01 8.0008964e-01 1.5005854e+00 4.1420960e-01 1.5358856e+00 6.1990228e-01 1.7849054e+00 1.1528477e+00 1.3788456e+00 2.4261894e+00 5.6370994e-01 2.0884901e+00 1.4655452e+00 1.9390732e+00 1.1074834e+00 1.0434746e+00 1.4340155e+00 6.0605366e-01 9.1554656e-01 1.0782857e+00 1.1897288e+00 2.5394068e+00 2.6516318e+00 8.3183606e-01 1.5694554e+00 5.2201750e-01 2.5386539e+00 9.0192695e-01 1.4157600e+00 1.8949500e+00 8.0097499e-01 7.0548138e-01 1.1935069e+00 1.8443040e+00 2.0853276e+00 2.5816887e+00 1.1989547e+00 9.1424659e-01 1.1138955e+00 2.3468430e+00 1.1963432e+00 1.1270327e+00 6.0365948e-01 1.5143051e+00 1.3938114e+00 1.5079206e+00 6.1990228e-01 1.5829749e+00 1.4450801e+00 1.3189240e+00 9.1132198e-01 1.1152300e+00 1.0159134e+00 6.3309012e-01 7.0096858e-01 1.1002025e+00 4.8852375e-01 9.1024401e-01 8.1112984e-01 4.0127250e-01 8.1117067e-01 1.3486924e+00 7.0633229e-01 4.6440171e-01 5.1257987e-01 5.0517282e-01 1.5260594e+00 6.1288055e-01 1.5131090e+00 7.4335736e-01 1.4549432e+00 1.1020600e+00 1.3036236e+00 2.1691920e+00 1.1527669e+00 1.8444686e+00 1.3309288e+00 1.6567564e+00 6.3925756e-01 8.5617086e-01 1.0458540e+00 9.0668287e-01 8.4540285e-01 8.5586571e-01 1.0039209e+00 2.2782572e+00 2.4540263e+00 1.2012866e+00 1.2440282e+00 6.2656178e-01 2.2782572e+00 7.0556260e-01 1.2101609e+00 1.5639802e+00 6.0219099e-01 4.5148429e-01 1.1079931e+00 1.4142064e+00 1.7087610e+00 2.1412345e+00 1.1115204e+00 6.7720957e-01 1.1281352e+00 1.8646736e+00 1.1282162e+00 1.0010209e+00 4.1315633e-01 1.0172673e+00 1.1401191e+00 9.4532171e-01 7.4335736e-01 1.4134218e+00 1.2440229e+00 8.4786353e-01 9.0557807e-01 7.2440846e-01 9.3308853e-01 6.0964891e-01 8.0296037e-01 1.1055799e+00 1.2124837e+00 1.2014191e+00 6.0000952e-01 9.3755356e-01 1.7874653e+00 1.1024913e+00 1.0032296e+00 1.0031018e+00 5.2201750e-01 1.8640262e+00 1.0088926e+00 1.3452347e+00 9.0417295e-01 1.2040344e+00 9.0168933e-01 1.1133986e+00 1.9046783e+00 1.8005318e+00 1.6009504e+00 1.1056691e+00 1.4335330e+00 5.2167829e-01 6.1990228e-01 8.2418141e-01 1.0118233e+00 1.0151880e+00 8.2458478e-01 8.0051115e-01 2.0076819e+00 2.2050331e+00 9.3329017e-01 1.0426638e+00 1.1020600e+00 2.0062587e+00 4.5847767e-01 1.0087393e+00 1.3009222e+00 5.0855778e-01 6.0202028e-01 9.1471442e-01 1.1019505e+00 1.4044980e+00 1.7386523e+00 9.3351278e-01 4.5783248e-01 9.1892454e-01 1.4407364e+00 1.0151880e+00 8.0093081e-01 7.0088627e-01 7.4269200e-01 1.0142482e+00 8.0250123e-01 9.0417295e-01 1.2189645e+00 1.1269510e+00 8.0879701e-01 6.1990228e-01 5.6371422e-01 8.6084272e-01 8.0291749e-01 7.8935813e-01 8.0250123e-01 8.0046685e-01 7.0017011e-01 5.2491734e-01 1.3741813e+00 7.0470720e-01 7.4269314e-01 6.7626502e-01 6.0000635e-01 1.4852616e+00 6.3309012e-01 1.6636721e+00 7.5826453e-01 1.5161847e+00 1.2049539e+00 1.4220925e+00 2.2191056e+00 1.4001717e+00 1.9083789e+00 1.4007861e+00 1.7945122e+00 9.6133119e-01 9.1552373e-01 1.1416778e+00 7.7603846e-01 1.1170561e+00 1.1351073e+00 1.1152390e+00 2.3540839e+00 2.5167781e+00 6.0202028e-01 1.3687074e+00 8.0713433e-01 2.3222107e+00 5.7608844e-01 1.3563898e+00 1.6193612e+00 5.7609230e-01 7.3090905e-01 1.2201578e+00 1.4221192e+00 1.7236083e+00 2.1360791e+00 1.2373857e+00 7.1629168e-01 1.2000731e+00 1.7962160e+00 1.3755348e+00 1.1298552e+00 7.2113820e-01 1.0843962e+00 1.3150470e+00 1.0664292e+00 7.5826453e-01 1.5362595e+00 1.4451976e+00 1.0604287e+00 6.7626502e-01 8.9540816e-01 1.2552585e+00 8.0073117e-01 5.0001522e-01 4.1212852e-01 5.6347549e-01 4.0127250e-01 8.7240114e-01 3.0008832e-01 1.2085435e-01 1.2085435e-01 6.0017982e-01 1.1038933e+00 2.0061436e-01 1.9231154e+00 1.0088926e+00 1.8971338e+00 1.5035330e+00 1.7143629e+00 2.6071033e+00 7.2440846e-01 2.2781292e+00 1.7231818e+00 2.0998984e+00 1.0923537e+00 1.2224463e+00 1.4922544e+00 9.3733589e-01 1.1896725e+00 1.2782589e+00 1.4186216e+00 2.7177641e+00 2.8857013e+00 9.6674360e-01 1.6882618e+00 8.5406616e-01 2.7167827e+00 8.6084272e-01 1.6345263e+00 2.0058565e+00 7.5508853e-01 8.1715593e-01 1.5132180e+00 1.8635428e+00 2.1554613e+00 2.5926811e+00 1.5194972e+00 1.0207533e+00 1.5005626e+00 2.3165875e+00 1.5429659e+00 1.4098467e+00 7.2036819e-01 1.4724918e+00 1.5757929e+00 1.3838027e+00 1.0088926e+00 1.8378491e+00 1.6745686e+00 1.2948699e+00 9.4912864e-01 1.1635325e+00 1.3473688e+00 1.0032293e+00 4.0004442e-01 6.9509552e-01 3.0017653e-01 7.1708289e-01 2.2573593e-01 5.0085236e-01 4.0243965e-01 7.0548138e-01 1.0008617e+00 3.0482299e-01 2.0206913e+00 1.1056785e+00 2.0075255e+00 1.6053217e+00 1.8156855e+00 2.7170183e+00 6.3912709e-01 2.3873965e+00 1.8286172e+00 2.2132187e+00 1.2079042e+00 1.3276450e+00 1.6018644e+00 1.0207396e+00 1.2397507e+00 1.3715471e+00 1.5245240e+00 2.8327619e+00 2.9941199e+00 1.0032443e+00 1.7962160e+00 9.3329055e-01 2.8269181e+00 9.6936870e-01 1.7435156e+00 2.1174156e+00 8.6084272e-01 9.2351241e-01 1.6144550e+00 1.9761215e+00 2.2674248e+00 2.7114616e+00 1.6190709e+00 1.1282247e+00 1.6009322e+00 2.4285500e+00 1.6432478e+00 1.5147271e+00 8.2512420e-01 1.5839544e+00 1.6753044e+00 1.4829434e+00 1.1056785e+00 1.9427965e+00 1.7734131e+00 1.3908238e+00 1.0498226e+00 1.2712749e+00 1.4523130e+00 1.1044111e+00 6.0980961e-01 4.1209001e-01 1.1020600e+00 2.0181667e-01 4.0243965e-01 3.0922892e-01 7.0088627e-01 1.4001688e+00 3.0922892e-01 1.6797901e+00 7.8935898e-01 1.7574606e+00 1.2224463e+00 1.4618181e+00 2.4274025e+00 6.3165225e-01 2.0887499e+00 1.4865883e+00 1.9561612e+00 1.0664292e+00 1.0336863e+00 1.3939836e+00 8.2421923e-01 1.2089895e+00 1.1997296e+00 1.1938630e+00 2.5462062e+00 2.6763758e+00 6.4049114e-01 1.5645185e+00 8.0883916e-01 2.5391583e+00 8.3183672e-01 1.4351453e+00 1.8644317e+00 7.4618926e-01 6.9987517e-01 1.2680580e+00 1.7844580e+00 2.0440071e+00 2.5329067e+00 1.2921474e+00 8.5440680e-01 1.2036924e+00 2.2838099e+00 1.3737025e+00 1.1587585e+00 6.4620889e-01 1.4491800e+00 1.4507713e+00 1.4583848e+00 7.8935898e-01 1.6277433e+00 1.5384791e+00 1.3150470e+00 8.7209348e-01 1.0788651e+00 1.2179890e+00 7.4954884e-01 6.1135434e-01 1.3790270e+00 5.2491734e-01 4.5147187e-01 4.5080200e-01 3.0026460e-01 1.6179159e+00 5.2167829e-01 1.4543196e+00 5.6838732e-01 1.3502290e+00 1.0008620e+00 1.2192919e+00 2.0611274e+00 1.2013529e+00 1.7369589e+00 1.2053003e+00 1.5767956e+00 6.3925756e-01 7.1779518e-01 9.6131279e-01 6.4620889e-01 1.0032443e+00 9.3331138e-01 9.0279223e-01 2.1713885e+00 2.3476282e+00 8.0245903e-01 1.1755517e+00 6.3322667e-01 2.1693131e+00 4.2362917e-01 1.1187430e+00 1.4544336e+00 4.0246123e-01 4.1209001e-01 1.0208844e+00 1.3018144e+00 1.5969056e+00 2.0303761e+00 1.0427944e+00 5.0085236e-01 1.0008465e+00 1.7574039e+00 1.1274284e+00 9.0166476e-01 4.0125062e-01 9.3437551e-01 1.1319099e+00 9.6935134e-01 5.6838732e-01 1.3309288e+00 1.2428507e+00 9.2745734e-01 5.7630313e-01 6.8160885e-01 9.6672602e-01 5.2167208e-01 8.5440680e-01 2.2608083e-01 4.0125062e-01 3.0490481e-01 4.2270142e-01 1.0207262e+00 2.0181667e-01 2.0282636e+00 1.1133895e+00 1.9386586e+00 1.6012719e+00 1.8114342e+00 2.6515677e+00 9.0999313e-01 2.3322945e+00 1.8060515e+00 2.1578375e+00 1.1447365e+00 1.3085752e+00 1.5359734e+00 1.0426516e+00 1.3018144e+00 1.3779960e+00 1.5044724e+00 2.7627283e+00 2.9432651e+00 1.0010209e+00 1.7447170e+00 9.6576136e-01 2.7579768e+00 9.1892454e-01 1.7159977e+00 2.0420308e+00 8.2635069e-01 9.1576742e-01 1.6105700e+00 1.8662195e+00 2.1696258e+00 2.5680120e+00 1.6184785e+00 1.1020600e+00 1.6000183e+00 2.2731185e+00 1.6529028e+00 1.5029725e+00 8.2635069e-01 1.4699000e+00 1.6570292e+00 1.3301857e+00 1.1133895e+00 1.9214944e+00 1.7646791e+00 1.3272142e+00 1.0235120e+00 1.2275665e+00 1.4621584e+00 1.1060939e+00 9.1576742e-01 9.6133119e-01 9.4532171e-01 1.2662318e+00 3.0490481e-01 8.6084272e-01 2.7230933e+00 1.8083405e+00 2.7192500e+00 2.3152780e+00 2.5278895e+00 3.4307167e+00 1.2089253e+00 3.1023107e+00 2.5446557e+00 2.9238544e+00 1.9071235e+00 2.0445123e+00 2.3113306e+00 1.7148932e+00 1.8686471e+00 2.0692591e+00 2.2408459e+00 3.5448121e+00 3.7102716e+00 1.7134856e+00 2.5076804e+00 1.6187837e+00 3.5398901e+00 1.6780493e+00 2.4594169e+00 2.8277283e+00 1.5698091e+00 1.6365650e+00 2.3270565e+00 2.6739856e+00 2.9710335e+00 3.3954286e+00 2.3304578e+00 1.8446316e+00 2.3054869e+00 3.1050823e+00 2.3405162e+00 2.2288004e+00 1.5327217e+00 2.2740189e+00 2.3840998e+00 2.1122339e+00 1.8083405e+00 2.6588338e+00 2.4791402e+00 2.0688078e+00 1.7632513e+00 1.9828965e+00 2.1428811e+00 1.8095574e+00 3.0017653e-01 2.0061436e-01 6.0017982e-01 1.2012991e+00 1.2085435e-01 1.8301371e+00 9.1424659e-01 1.8223693e+00 1.4049093e+00 1.6190709e+00 2.5271432e+00 7.0556260e-01 2.1953731e+00 1.6303102e+00 2.0261311e+00 1.0363096e+00 1.1330692e+00 1.4229011e+00 8.5406674e-01 1.1527746e+00 1.2106302e+00 1.3261864e+00 2.6410980e+00 2.8004332e+00 8.1117067e-01 1.6146557e+00 7.8886054e-01 2.6375763e+00 7.9824795e-01 1.5471213e+00 1.9317133e+00 6.9509552e-01 7.3155911e-01 1.4182194e+00 1.8031267e+00 2.0887452e+00 2.5422790e+00 1.4267527e+00 9.3308891e-01 1.4006149e+00 2.2706274e+00 1.4614246e+00 1.3141581e+00 6.4049114e-01 1.4230277e+00 1.5004249e+00 1.3669148e+00 9.1424659e-01 1.7490906e+00 1.5981930e+00 1.2553121e+00 8.7212232e-01 1.0924484e+00 1.2731059e+00 9.0557807e-01 1.1269424e-01 5.0002283e-01 1.2049541e+00 2.0121983e-01 1.8447840e+00 9.3329055e-01 1.7901165e+00 1.4035225e+00 1.6222582e+00 2.4980210e+00 8.1757693e-01 2.1693127e+00 1.6187837e+00 2.0049100e+00 1.0151397e+00 1.1261381e+00 1.3938113e+00 9.0657539e-01 1.2362756e+00 1.2472959e+00 1.3154932e+00 2.6088344e+00 2.7785257e+00 9.0207914e-01 1.5972548e+00 8.5406674e-01 2.6071034e+00 7.7652636e-01 1.5358856e+00 1.8953567e+00 6.9518117e-01 7.4612718e-01 1.4220925e+00 1.7511588e+00 2.0440071e+00 2.4804818e+00 1.4362913e+00 9.1449234e-01 1.4003402e+00 2.2077377e+00 1.4867147e+00 1.3085752e+00 6.7720780e-01 1.3734975e+00 1.5100598e+00 1.3269962e+00 9.3329055e-01 1.7441015e+00 1.6143613e+00 1.2552584e+00 8.7796615e-01 1.0782751e+00 1.3029195e+00 9.1424659e-01 5.0000761e-01 1.2040406e+00 1.1269424e-01 1.8289847e+00 9.1424701e-01 1.7872748e+00 1.4023776e+00 1.6144390e+00 2.4974488e+00 8.0533198e-01 2.1691714e+00 1.6179842e+00 1.9948417e+00 9.9013884e-01 1.1186586e+00 1.3842454e+00 8.5583357e-01 1.1527671e+00 1.1990152e+00 1.3139296e+00 2.6085083e+00 2.7775771e+00 8.5440680e-01 1.5835478e+00 7.8886139e-01 2.6068470e+00 7.5508853e-01 1.5300146e+00 1.8950932e+00 6.5712813e-01 7.2036951e-01 1.4134189e+00 1.7511120e+00 2.0435901e+00 2.4807480e+00 1.4220898e+00 9.1424701e-01 1.4002005e+00 2.2048860e+00 1.4562730e+00 1.3069754e+00 6.3309258e-01 1.3632211e+00 1.4815986e+00 1.2921474e+00 9.1424701e-01 1.7351894e+00 1.5836236e+00 1.2085436e+00 8.4725834e-01 1.0597879e+00 1.2653025e+00 9.0508756e-01 1.3743342e+00 5.0043084e-01 1.7369589e+00 8.2635069e-01 1.6144390e+00 1.3008770e+00 1.5131090e+00 2.3226028e+00 1.3004854e+00 2.0107294e+00 1.5010034e+00 1.8390199e+00 8.5471446e-01 1.0087539e+00 1.2223855e+00 8.0073117e-01 1.1286018e+00 1.1270411e+00 1.2013529e+00 2.4290388e+00 2.6198428e+00 7.8895472e-01 1.4363167e+00 7.7598796e-01 2.4266979e+00 6.3178782e-01 1.4100098e+00 1.7134977e+00 5.6347549e-01 6.3165225e-01 1.3130978e+00 1.5237265e+00 1.8289379e+00 2.1979419e+00 1.3253497e+00 8.0004602e-01 1.3000455e+00 1.9028805e+00 1.3748188e+00 1.2012991e+00 5.6371422e-01 1.1400420e+00 1.3748220e+00 1.0597992e+00 8.2635069e-01 1.6184929e+00 1.4858469e+00 1.0797702e+00 7.4612830e-01 9.3329055e-01 1.1910002e+00 8.0923926e-01 1.1056785e+00 3.0089448e+00 2.1019570e+00 2.9563162e+00 2.6052626e+00 2.8107271e+00 3.6717374e+00 1.5012719e+00 3.3522198e+00 2.8186527e+00 3.1596417e+00 2.1362161e+00 2.3151198e+00 2.5461024e+00 2.0036629e+00 2.1224665e+00 2.3234228e+00 2.5150159e+00 3.7801779e+00 3.9623034e+00 2.0033816e+00 2.7467405e+00 1.9044216e+00 3.7784933e+00 1.9231092e+00 2.7237438e+00 3.0623796e+00 1.8186729e+00 1.9089573e+00 2.6097166e+00 2.8846684e+00 3.1885494e+00 3.5706709e+00 2.6109888e+00 2.1139043e+00 2.6017555e+00 3.2706949e+00 2.6138780e+00 2.5099937e+00 1.8069857e+00 2.4748863e+00 2.6338874e+00 2.2385678e+00 2.1019570e+00 2.9251726e+00 2.7321685e+00 2.2661994e+00 2.0190735e+00 2.2288464e+00 2.4131370e+00 2.1020441e+00 1.9226845e+00 1.0087252e+00 1.8684939e+00 1.5017097e+00 1.7108631e+00 2.5816562e+00 8.0533198e-01 2.2563154e+00 1.7134977e+00 2.0770423e+00 1.0604287e+00 1.2124777e+00 1.4620239e+00 9.3329017e-01 1.1896594e+00 1.2705641e+00 1.4098496e+00 2.6923501e+00 2.8659663e+00 9.1449234e-01 1.6637458e+00 8.5403428e-01 2.6902417e+00 8.3183672e-01 1.6225614e+00 1.9757175e+00 7.3084048e-01 8.1117067e-01 1.5097082e+00 1.8197097e+00 2.1169795e+00 2.5408329e+00 1.5160570e+00 1.0087393e+00 1.5001233e+00 2.2573596e+00 1.5423651e+00 1.4049376e+00 7.1708289e-01 1.4229011e+00 1.5611429e+00 1.3142952e+00 1.0087252e+00 1.8271493e+00 1.6639408e+00 1.2552635e+00 9.2768675e-01 1.1400420e+00 1.3479052e+00 1.0031018e+00 9.3184922e-01 8.0291749e-01 7.0910969e-01 3.4342562e-01 1.3028005e+00 1.6474201e+00 1.0216374e+00 8.5586571e-01 9.0026543e-01 9.0508756e-01 7.7598796e-01 5.7832449e-01 1.0522594e+00 9.0999313e-01 7.0008735e-01 7.1708289e-01 1.4049376e+00 1.4220925e+00 1.2553121e+00 6.0202028e-01 1.1170561e+00 1.4055109e+00 1.1186497e+00 4.5783248e-01 9.3306769e-01 1.2101609e+00 1.1134939e+00 5.3914287e-01 1.0144117e+00 1.1074742e+00 1.6007365e+00 5.2491734e-01 1.0797700e+00 1.1139044e+00 1.4000349e+00 4.0004442e-01 7.1629303e-01 1.2090477e+00 6.8170466e-01 4.5148429e-01 9.1427000e-01 9.3184922e-01 5.0043842e-01 4.1209001e-01 8.0296037e-01 1.0498226e+00 8.0928056e-01 6.0018299e-01 9.3446811e-01 1.3131410e+00 5.6371422e-01 7.8985507e-01 1.8949500e+00 9.1427000e-01 1.5639785e+00 9.3308891e-01 1.4501583e+00 7.1621748e-01 6.0017665e-01 1.0010209e+00 2.0181667e-01 5.0000761e-01 6.3925756e-01 7.0548283e-01 2.0162299e+00 2.0885102e+00 5.2167829e-01 1.1079931e+00 2.2608083e-01 2.0057464e+00 5.0043084e-01 9.2747919e-01 1.4186217e+00 4.1212852e-01 3.4085233e-01 6.3178782e-01 1.4043632e+00 1.6175925e+00 2.1298991e+00 6.3309258e-01 5.2133179e-01 5.6595908e-01 1.9078843e+00 7.4418186e-01 6.1830764e-01 3.4085233e-01 1.1006468e+00 9.1132198e-01 1.1010711e+00 0.0000000e+00 1.0458540e+00 9.3984267e-01 9.0166476e-01 5.0043084e-01 7.0088627e-01 7.0993998e-01 3.0017653e-01 8.0093160e-01 6.0000635e-01 7.1621613e-01 2.2268632e+00 4.1317535e-01 5.2491734e-01 6.0964891e-01 8.2421923e-01 7.4335736e-01 4.1209001e-01 1.4186217e+00 1.3131410e+00 7.4275547e-01 6.1119267e-01 9.1566538e-01 1.0095513e+00 1.1796101e+00 2.5399984e-01 1.5237074e+00 8.2421923e-01 1.0429127e+00 4.1315633e-01 3.0490481e-01 1.1528553e+00 1.1270325e+00 7.0096708e-01 5.0001522e-01 3.1328089e-01 9.0657583e-01 7.0096858e-01 9.1568820e-01 1.0216374e+00 6.0035305e-01 8.0337471e-01 7.0548283e-01 1.2396937e+00 5.0043084e-01 4.2270142e-01 8.0008964e-01 1.3131410e+00 3.0915245e-01 4.5847767e-01 7.0470720e-01 9.6936870e-01 7.4262964e-01 9.0645118e-01 1.2190260e+00 4.0246123e-01 1.3450652e+00 1.4544312e+00 1.0207258e+00 4.5147187e-01 9.6501813e-01 5.0517282e-01 3.0490481e-01 5.0437695e-01 6.8170466e-01 6.5712813e-01 5.0855778e-01 2.0121983e-01 1.4695463e+00 1.5267750e+00 7.4395693e-01 6.3309258e-01 7.8890806e-01 1.4542932e+00 7.0008432e-01 4.5784410e-01 9.0166431e-01 8.0000160e-01 7.0008584e-01 3.0017653e-01 9.0005094e-01 1.1019505e+00 1.6144405e+00 4.0004442e-01 5.0436965e-01 4.1315633e-01 1.4012283e+00 6.3164729e-01 2.0121983e-01 8.0046685e-01 6.0219099e-01 6.0964597e-01 6.5724028e-01 5.6371422e-01 5.6838732e-01 7.0911112e-01 5.3914287e-01 6.0948506e-01 4.0246123e-01 5.6371422e-01 5.2133179e-01 1.1281267e+00 1.6745375e+00 8.1112984e-01 5.2167208e-01 7.4395693e-01 7.0016860e-01 5.0855778e-01 3.3813251e-01 9.0659977e-01 7.8895472e-01 5.0043842e-01 4.1209001e-01 1.2528048e+00 1.3020492e+00 9.3861512e-01 4.0127250e-01 1.0142766e+00 1.2362810e+00 9.0168933e-01 3.0490481e-01 7.0478886e-01 1.0010209e+00 9.0279223e-01 2.2608083e-01 7.4262850e-01 9.0055475e-01 1.4109657e+00 2.2573593e-01 7.8895472e-01 8.0492246e-01 1.2000668e+00 4.0363334e-01 4.1212852e-01 1.0039060e+00 4.5080200e-01 2.4195741e-01 7.0462844e-01 7.8985507e-01 3.0490481e-01 3.4085233e-01 6.0017982e-01 8.0928056e-01 6.0017665e-01 4.5784410e-01 7.4612718e-01 2.7992301e+00 3.6259865e-01 9.6953662e-01 6.4620889e-01 1.5401330e+00 1.4140789e+00 1.1281265e+00 2.0058560e+00 1.8949500e+00 1.4140515e+00 1.2396937e+00 8.0000239e-01 4.1317535e-01 1.8064092e+00 9.3310976e-01 2.1167364e+00 2.0181667e-01 1.7570696e+00 1.0143975e+00 6.1135434e-01 1.8661434e+00 1.8197089e+00 1.2632995e+00 8.1112909e-01 5.0126466e-01 8.0051115e-01 1.2632996e+00 1.5975200e+00 1.5266891e+00 5.0043084e-01 1.3452695e+00 1.3018553e+00 1.9314575e+00 1.2089192e+00 1.0777307e+00 1.5030978e+00 1.8949500e+00 8.5409862e-01 1.0151880e+00 1.4180463e+00 1.6742781e+00 1.4542907e+00 1.4853863e+00 1.8197089e+00 2.4725511e+00 1.8443040e+00 2.3518103e+00 1.6032169e+00 1.5066818e+00 1.9080163e+00 8.0923851e-01 9.4532171e-01 1.5109394e+00 1.6179000e+00 2.9132779e+00 2.9705619e+00 1.1020600e+00 2.0185049e+00 7.0633229e-01 2.9085831e+00 1.4001717e+00 1.8310931e+00 2.3325127e+00 1.3000908e+00 1.2016381e+00 1.5402579e+00 2.3143334e+00 2.5314248e+00 3.0393618e+00 1.5405402e+00 1.4018011e+00 1.3018553e+00 2.8185850e+00 1.4728279e+00 1.5248833e+00 1.1020506e+00 2.0036931e+00 1.8191683e+00 2.0009584e+00 9.1427000e-01 1.9534067e+00 1.8336293e+00 1.8020058e+00 1.4006178e+00 1.6026130e+00 1.3506710e+00 1.0116724e+00 6.3912709e-01 7.8890806e-01 1.2190319e+00 1.0776296e+00 8.0923926e-01 1.6740888e+00 1.5650163e+00 1.0798806e+00 9.0155438e-01 9.0417295e-01 6.4049114e-01 1.4685147e+00 6.4049114e-01 1.7843537e+00 4.5148429e-01 1.4324350e+00 6.8261201e-01 3.3813251e-01 1.5401311e+00 1.4852570e+00 9.3329055e-01 5.0043842e-01 2.0181667e-01 9.1424701e-01 9.3424697e-01 1.2633467e+00 1.2093243e+00 5.2167829e-01 1.0313359e+00 9.6574336e-01 1.5965767e+00 9.0168933e-01 7.7603846e-01 1.2016443e+00 1.5639785e+00 5.7832449e-01 7.7882758e-01 1.1074742e+00 1.3452311e+00 1.1281352e+00 1.1558746e+00 1.4852570e+00 1.1153247e+00 7.8895472e-01 5.0477564e-01 5.0855778e-01 1.0426636e+00 9.4532171e-01 7.3155911e-01 5.0476836e-01 1.3669148e+00 1.1910003e+00 8.5471446e-01 7.1629303e-01 1.1528553e+00 1.0777411e+00 9.0142636e-01 8.0046685e-01 7.1629168e-01 1.0032293e+00 9.1892413e-01 3.6452132e-01 5.6370994e-01 7.0176271e-01 1.4157327e+00 4.2362917e-01 7.0633229e-01 6.0964891e-01 1.0062544e+00 9.1554656e-01 6.0365948e-01 1.0235118e+00 6.1135434e-01 6.7626502e-01 7.5508853e-01 9.3308891e-01 7.1621884e-01 8.5403428e-01 6.5712608e-01 8.0245824e-01 6.3192325e-01 9.1132198e-01 8.6051414e-01 1.0242692e+00 1.0232576e+00 6.8685125e-01 1.5761415e+00 1.4407364e+00 9.0296858e-01 8.3689956e-01 6.3322667e-01 1.0451812e+00 1.5490134e+00 4.5847767e-01 1.6529028e+00 8.3916809e-01 1.2749306e+00 5.4219811e-01 7.0462697e-01 1.3611955e+00 1.3103292e+00 9.0792879e-01 9.1446896e-01 8.2421853e-01 7.1708289e-01 9.0683128e-01 1.1954899e+00 1.2957636e+00 6.3178534e-01 9.0508756e-01 8.7796615e-01 1.4198077e+00 7.2113820e-01 6.0427481e-01 1.0032443e+00 1.4501583e+00 4.5216167e-01 5.2491131e-01 9.1894698e-01 1.2738390e+00 9.4912864e-01 1.0207533e+00 1.3523292e+00 5.0043842e-01 4.1317535e-01 8.5403428e-01 7.0910969e-01 3.0482299e-01 4.0243965e-01 1.6491696e+00 1.8289467e+00 1.0060994e+00 6.1119267e-01 9.0142636e-01 1.6484371e+00 5.0126466e-01 6.0018299e-01 9.3308853e-01 4.2362917e-01 4.0363334e-01 5.2133802e-01 7.9153339e-01 1.0782107e+00 1.5275160e+00 5.2167829e-01 5.2167208e-01 6.9987517e-01 1.2633516e+00 5.2201750e-01 4.0127250e-01 5.0517282e-01 4.1212852e-01 5.2167829e-01 4.1210927e-01 7.1621748e-01 8.0093081e-01 6.3178782e-01 3.0922892e-01 7.0008735e-01 2.0061436e-01 3.6452132e-01 6.0035305e-01 4.1420960e-01 7.0096858e-01 6.3178782e-01 5.2132556e-01 3.0490481e-01 1.5634961e+00 1.6740875e+00 5.4219811e-01 5.8750389e-01 8.0245903e-01 1.5263478e+00 4.0004442e-01 6.1135434e-01 8.6051471e-01 5.0043842e-01 4.2270142e-01 3.0482299e-01 8.0967961e-01 1.0426513e+00 1.5757929e+00 3.3813251e-01 4.0127250e-01 5.0855778e-01 1.3133662e+00 7.1700909e-01 4.0125062e-01 5.2491734e-01 5.2167829e-01 5.2838320e-01 5.3943256e-01 6.0017665e-01 6.4620889e-01 6.8261201e-01 4.2270142e-01 3.0482299e-01 3.0026460e-01 7.0470867e-01 5.0477564e-01 1.1038840e+00 1.0010209e+00 4.0363334e-01 3.3808272e-01 1.2528049e+00 1.4182049e+00 9.2033101e-01 2.4195741e-01 1.2036925e+00 1.2362756e+00 6.3451734e-01 3.0482299e-01 5.2524663e-01 7.4335736e-01 7.4329414e-01 4.0125062e-01 5.2491131e-01 6.7636452e-01 1.1755449e+00 4.0127250e-01 6.3925756e-01 7.9148746e-01 9.1424659e-01 5.2491734e-01 4.1210927e-01 8.5437440e-01 1.2085435e-01 3.0026460e-01 4.0127250e-01 1.0010209e+00 4.0243965e-01 4.1317535e-01 3.0482299e-01 6.0444249e-01 3.3813251e-01 6.0964891e-01 9.0166431e-01 4.1212852e-01 7.8985507e-01 8.1719606e-01 2.1378157e+00 2.2009978e+00 5.0855077e-01 1.2175952e+00 3.0017653e-01 2.1167404e+00 6.0035621e-01 1.0597879e+00 1.5265797e+00 5.0517282e-01 5.2167829e-01 7.4329527e-01 1.5072282e+00 1.7227391e+00 2.2434054e+00 7.4335736e-01 6.3309258e-01 6.8161057e-01 2.0107350e+00 9.2867113e-01 7.5508853e-01 5.0517282e-01 1.2040344e+00 1.0178820e+00 1.2037520e+00 2.0181667e-01 1.1636098e+00 1.0621172e+00 1.0032443e+00 6.0000317e-01 8.0883841e-01 9.0668287e-01 5.0085236e-01 6.0964891e-01 7.4618926e-01 2.0118073e+00 2.0884859e+00 9.1424701e-01 1.1060939e+00 4.0243965e-01 2.0057764e+00 6.3178782e-01 9.1916394e-01 1.4198627e+00 6.1119267e-01 6.0219099e-01 6.3309012e-01 1.4134218e+00 1.6179000e+00 2.1265315e+00 6.3178534e-01 9.0506254e-01 1.0032443e+00 1.9078396e+00 6.5712608e-01 6.8261201e-01 6.0219099e-01 1.1003034e+00 9.0532049e-01 1.1001014e+00 5.0000761e-01 1.0433444e+00 9.1892454e-01 9.0002615e-01 5.6595908e-01 7.0470867e-01 6.1119558e-01 6.0017982e-01 5.0085236e-01 1.5275160e+00 1.6747664e+00 1.0434746e+00 5.2132556e-01 8.0533198e-01 1.5264802e+00 5.7609230e-01 4.1317535e-01 8.6051414e-01 5.7630313e-01 5.2524663e-01 4.1315633e-01 8.6054545e-01 1.0440350e+00 1.5412701e+00 4.1210927e-01 8.0250202e-01 9.1471442e-01 1.3130978e+00 3.0490481e-01 5.0043084e-01 5.7630313e-01 5.0043842e-01 3.3818226e-01 5.0043084e-01 6.3925756e-01 6.0948212e-01 4.1317535e-01 3.0482299e-01 7.0548283e-01 3.0490481e-01 2.2573593e-01 5.6394820e-01 1.3634093e+00 1.4858469e+00 8.1757693e-01 5.2201750e-01 9.1427000e-01 1.3523380e+00 6.0201716e-01 3.4342562e-01 7.1629168e-01 7.0096708e-01 6.0948212e-01 3.0490481e-01 7.0096708e-01 9.1424701e-01 1.4267554e+00 4.0127250e-01 4.1420960e-01 4.8342635e-01 1.2049539e+00 6.0964891e-01 1.1269424e-01 7.1621613e-01 4.1212852e-01 6.0018299e-01 5.3914287e-01 7.0548283e-01 5.2524663e-01 7.0105084e-01 5.0476836e-01 5.6371422e-01 3.0474106e-01 5.2491734e-01 6.0948212e-01 1.2000065e+00 2.0187441e+00 1.0498228e+00 2.2315584e+00 1.0000152e+00 1.8808952e+00 1.1286798e+00 7.5826453e-01 1.9821126e+00 1.9334872e+00 1.4094023e+00 9.7944085e-01 1.0090312e+00 3.0915245e-01 1.4094022e+00 1.7226330e+00 1.6785116e+00 8.2418071e-01 1.4544336e+00 1.4183053e+00 2.0448570e+00 1.3189240e+00 1.1989547e+00 1.6071563e+00 2.0162299e+00 9.7599312e-01 1.1287691e+00 1.5299044e+00 1.8304280e+00 1.5694554e+00 1.5966664e+00 1.9334872e+00 2.0448570e+00 1.2223853e+00 2.3135239e+00 3.0915245e-01 2.0415522e+00 1.2703001e+00 9.2351241e-01 2.1487275e+00 2.0854181e+00 1.4650300e+00 1.1157320e+00 8.0296037e-01 1.2013591e+00 1.4650276e+00 1.8684939e+00 1.6818191e+00 8.0245746e-01 1.5324961e+00 1.5271597e+00 2.1953922e+00 1.5071120e+00 1.3457716e+00 1.8029854e+00 2.0885102e+00 1.0837575e+00 1.2703001e+00 1.7133162e+00 1.9522053e+00 1.7369702e+00 1.6941963e+00 2.0286286e+00 1.1213597e+00 6.3912943e-01 1.9163315e+00 5.0855778e-01 1.1310337e+00 1.3142952e+00 6.0219099e-01 8.0046764e-01 7.2904264e-01 1.2366099e+00 1.4559030e+00 2.0467625e+00 7.7882758e-01 6.0184622e-01 6.0948800e-01 1.7296063e+00 1.2395260e+00 9.0668287e-01 8.0051036e-01 1.0231745e+00 1.0411548e+00 1.0543951e+00 5.2167829e-01 1.1356187e+00 1.2079042e+00 9.3439622e-01 4.2268438e-01 8.1719606e-01 1.2192978e+00 8.0046764e-01 1.3133662e+00 1.0434746e+00 8.3916809e-01 2.2573593e-01 5.0855077e-01 9.3848935e-01 9.0659977e-01 5.2167829e-01 7.0096858e-01 5.5450500e-01 1.0287902e+00 5.2133802e-01 8.4725834e-01 9.7599312e-01 8.0250123e-01 6.0018299e-01 5.6371422e-01 1.0171340e+00 3.0482299e-01 2.0181667e-01 6.0000317e-01 1.1079931e+00 2.0061436e-01 2.2573593e-01 5.0084481e-01 8.1683095e-01 5.2524663e-01 7.0096708e-01 1.0116865e+00 2.2278855e+00 7.0008584e-01 1.1298552e+00 1.6300950e+00 6.0017982e-01 5.0084481e-01 8.5403428e-01 1.6097507e+00 1.8284464e+00 2.3350903e+00 8.5406616e-01 7.1629168e-01 7.5508853e-01 2.1138813e+00 8.1683095e-01 8.2462252e-01 4.0246123e-01 1.3009222e+00 1.1139906e+00 1.3000951e+00 2.2608083e-01 1.2636227e+00 1.1315710e+00 1.1002119e+00 7.0088627e-01 9.0029018e-01 6.9600743e-01 3.1328089e-01 1.8661354e+00 1.1286798e+00 7.2044167e-01 1.9755679e+00 1.9314520e+00 1.3741466e+00 9.0645118e-01 6.0184622e-01 1.0001751e+00 1.3741498e+00 1.7083042e+00 1.6308665e+00 6.0201716e-01 1.4559030e+00 1.4140789e+00 2.0433026e+00 1.3131370e+00 1.1900969e+00 1.6049479e+00 2.0057464e+00 9.6691372e-01 1.1304042e+00 1.5237285e+00 1.7843627e+00 1.5639785e+00 1.5975352e+00 1.9314520e+00 8.2671175e-01 1.1543257e+00 1.2085435e-01 3.0474106e-01 7.0088627e-01 1.0144117e+00 1.3018103e+00 1.7709153e+00 7.0462844e-01 3.0482299e-01 7.0470867e-01 1.4857440e+00 8.1457587e-01 6.0948506e-01 3.3813251e-01 6.4049114e-01 7.4954884e-01 6.3925756e-01 5.0043084e-01 1.0090834e+00 8.7372177e-01 5.2838320e-01 2.0121983e-01 3.4342562e-01 7.3084171e-01 4.1315633e-01 5.0855778e-01 9.1024401e-01 8.2498722e-01 5.0436965e-01 5.6595908e-01 7.2044167e-01 1.2101609e+00 5.0437695e-01 6.9987517e-01 8.1457660e-01 1.0010209e+00 4.1212852e-01 3.4342562e-01 9.3351278e-01 3.0915245e-01 3.0482299e-01 6.0052920e-01 9.2747919e-01 2.2608083e-01 4.0000000e-01 5.0476836e-01 8.5586571e-01 5.0477564e-01 5.0477564e-01 8.2498722e-01 1.2635707e+00 1.2396421e+00 8.0533198e-01 2.4170870e-01 4.0127250e-01 7.4618926e-01 8.0726668e-01 1.0151880e+00 1.1066159e+00 5.6371422e-01 9.1554656e-01 8.0879701e-01 1.3523345e+00 6.0366256e-01 6.3912943e-01 9.0532093e-01 1.4186217e+00 5.2133179e-01 7.1700909e-01 8.1719606e-01 1.0923439e+00 8.5409862e-01 1.0116865e+00 1.3253496e+00 2.0121983e-01 8.0051036e-01 1.1269596e+00 1.4140457e+00 1.8721285e+00 8.0250123e-01 3.3813251e-01 8.0250202e-01 1.5969056e+00 8.4536936e-01 7.0096708e-01 2.2538848e-01 7.4395693e-01 8.3222261e-01 7.1779518e-01 4.1212852e-01 1.1079931e+00 9.4151244e-01 5.7630313e-01 3.0490481e-01 4.1420960e-01 6.9509395e-01 3.4080442e-01 7.0184453e-01 1.1527745e+00 1.4140486e+00 1.8971345e+00 7.0556260e-01 3.1328089e-01 7.0910969e-01 1.6486410e+00 7.4618926e-01 6.0184622e-01 1.1269424e-01 8.0923926e-01 7.7598796e-01 8.0883916e-01 3.4085233e-01 1.0235254e+00 8.7240114e-01 6.3309012e-01 5.0043842e-01 4.1315633e-01 5.7609230e-01 2.2538848e-01 8.0888055e-01 1.0030868e+00 1.5299044e+00 1.0000000e-01 6.3164977e-01 7.0096708e-01 1.3008855e+00 6.0184622e-01 3.3813251e-01 8.0296037e-01 5.0476836e-01 3.6256305e-01 5.6618864e-01 6.3178782e-01 4.5847767e-01 5.2491734e-01 4.1420960e-01 6.0202028e-01 4.0127250e-01 6.0052920e-01 5.6618864e-01 3.4342562e-01 8.7372177e-01 8.2425704e-01 9.3308891e-01 1.1005554e+00 7.1700774e-01 9.6674360e-01 8.0051115e-01 1.2632995e+00 5.2491734e-01 8.0883916e-01 7.8935898e-01 1.4043632e+00 7.0470867e-01 9.0532093e-01 7.5502989e-01 9.6953662e-01 7.4612718e-01 1.0222576e+00 1.3061180e+00 1.0032296e+00 1.0032293e+00 1.1900276e+00 1.3017553e+00 4.1315633e-01 1.1093621e+00 1.0088783e+00 1.5263498e+00 7.1708289e-01 7.3155911e-01 1.0040629e+00 1.6175925e+00 6.1845783e-01 7.5826453e-01 9.3426769e-01 1.2396937e+00 1.0142626e+00 1.2128138e+00 1.5237074e+00 1.5299064e+00 1.6885111e+00 1.8315348e+00 8.0097499e-01 1.6050900e+00 1.5160591e+00 2.0074169e+00 1.1389082e+00 1.2275665e+00 1.3502668e+00 2.1298991e+00 1.1075720e+00 1.2113964e+00 1.3632538e+00 1.7639471e+00 1.4922544e+00 1.7133283e+00 2.0290146e+00 7.1621748e-01 8.0051036e-01 1.3008813e+00 6.0017982e-01 4.1210927e-01 8.0492246e-01 5.0477564e-01 3.4080442e-01 5.6595908e-01 6.3309258e-01 4.5784410e-01 5.0855778e-01 4.1317535e-01 6.0366256e-01 4.0246123e-01 6.0035621e-01 5.7630313e-01 5.0085236e-01 1.4407390e+00 9.1892413e-01 4.2270142e-01 3.6452132e-01 6.7824250e-01 9.0668287e-01 8.2458409e-01 5.2133179e-01 9.0792879e-01 1.0124729e+00 8.0250202e-01 4.1210927e-01 5.0085236e-01 8.2458478e-01 4.1315633e-01 1.6100639e+00 1.0426636e+00 5.2491734e-01 8.0488008e-01 8.6054545e-01 1.0116721e+00 9.7291273e-01 5.6595908e-01 9.4532171e-01 1.1186499e+00 9.1681464e-01 6.3178782e-01 6.2656178e-01 9.6574369e-01 5.3943256e-01 1.4007831e+00 1.3033860e+00 1.7572550e+00 8.5406674e-01 1.0030724e+00 1.0426513e+00 1.9078843e+00 9.0005048e-01 1.0010209e+00 1.0776188e+00 1.4549432e+00 1.2363278e+00 1.5032156e+00 1.8103044e+00 6.0184934e-01 8.2671175e-01 6.0383105e-01 4.1209001e-01 6.3309258e-01 7.4418186e-01 5.0477564e-01 4.0006662e-01 4.8342635e-01 9.1892413e-01 4.8391482e-01 2.0121983e-01 6.4620889e-01 7.0462697e-01 5.0436965e-01 6.0184622e-01 5.7608844e-01 6.1830764e-01 5.3914287e-01 7.0105084e-01 5.0855778e-01 6.3165225e-01 3.0490481e-01 5.0477564e-01 5.2133179e-01 9.1446938e-01 8.7209348e-01 9.0532093e-01 3.4085233e-01 1.1298636e+00 9.6150595e-01 7.2036819e-01 5.0477564e-01 5.2167208e-01 6.3925756e-01 3.0008832e-01 3.0915245e-01 3.0474106e-01 1.1006468e+00 5.0043842e-01 4.1420960e-01 2.4195741e-01 6.8170466e-01 4.0127250e-01 7.0096708e-01 1.0003198e+00 5.0043084e-01 9.1132198e-01 3.0026460e-01 2.0121983e-01 4.0004442e-01 6.9987517e-01 4.5148429e-01 5.0477564e-01 8.3183672e-01 1.1010711e+00 8.0000160e-01 6.0052920e-01 2.0121983e-01 6.8161057e-01 4.1212852e-01 7.0176121e-01 1.0030721e+00 1.0458540e+00 9.3984267e-01 9.0166476e-01 5.0043084e-01 7.0088627e-01 7.0993998e-01 3.0017653e-01 2.2608083e-01 7.0008584e-01 9.3848935e-01 7.0184453e-01 6.3178534e-01 9.6936870e-01 5.0476836e-01 8.7372177e-01 5.6618864e-01 5.0477564e-01 8.7240114e-01 5.3943256e-01 3.0474106e-01 5.2167208e-01 8.0879701e-01 5.0085236e-01 9.0279268e-01 5.2133802e-01 4.2362917e-01 6.0017982e-01 5.2838320e-01 diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-seuclidean-ml-iris.txt b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-seuclidean-ml-iris.txt new file mode 100644 index 0000000000000000000000000000000000000000..3e2759df30c14c1503818cc6a400a370e8fd8e89 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-seuclidean-ml-iris.txt @@ -0,0 +1 @@ + 1.1781739e+00 8.4573383e-01 1.1040164e+00 2.6033464e-01 1.0391769e+00 6.5951091e-01 2.6643250e-01 1.6215602e+00 9.6424206e-01 5.8926015e-01 4.4417668e-01 1.2158053e+00 1.5196051e+00 1.4342986e+00 2.2147971e+00 1.0267382e+00 1.3103399e-01 1.0246015e+00 7.0646671e-01 4.6190224e-01 5.3352899e-01 6.8496652e-01 6.2944414e-01 5.1453676e-01 1.1649855e+00 3.8639663e-01 1.3340137e-01 2.6033464e-01 8.5141186e-01 9.9757114e-01 5.0629646e-01 1.3963590e+00 1.6851313e+00 9.6424206e-01 7.1143905e-01 4.8636669e-01 9.6424206e-01 1.4309353e+00 2.3749211e-01 1.8699153e-01 2.8644037e+00 1.0938603e+00 5.4968254e-01 7.9227302e-01 1.2158053e+00 7.0111465e-01 9.1831777e-01 5.2374483e-01 4.7680727e-01 3.4225655e+00 2.9886388e+00 3.5231786e+00 3.4844976e+00 3.4140450e+00 2.8802393e+00 3.0292175e+00 2.9585178e+00 3.2500773e+00 2.8104851e+00 3.8076036e+00 2.7718515e+00 3.6661618e+00 3.0567513e+00 2.4313960e+00 3.1540282e+00 2.7718124e+00 2.7494216e+00 4.0917474e+00 3.0136333e+00 3.0855821e+00 2.8833448e+00 3.7756717e+00 3.0462644e+00 3.0262994e+00 3.1582448e+00 3.6064873e+00 3.6179250e+00 3.0140884e+00 2.7108793e+00 3.1480683e+00 3.0769261e+00 2.8006021e+00 3.5140011e+00 2.7293962e+00 2.7724816e+00 3.3142477e+00 3.8377035e+00 2.4725633e+00 3.1307104e+00 3.0248446e+00 2.9240118e+00 2.9852014e+00 3.1515797e+00 2.8921724e+00 2.4678110e+00 2.6524994e+00 2.9083443e+00 2.7444686e+00 2.7478281e+00 4.2652803e+00 3.6712837e+00 4.4571526e+00 3.7518856e+00 4.1563042e+00 5.0327536e+00 3.5110505e+00 4.5914343e+00 4.4347154e+00 4.7605836e+00 3.6465897e+00 3.9644198e+00 4.1403419e+00 3.9458900e+00 4.0035735e+00 3.9244083e+00 3.7394250e+00 5.1213512e+00 5.6085412e+00 4.1515197e+00 4.3260896e+00 3.5311267e+00 5.2010517e+00 3.7194928e+00 4.0104626e+00 4.2547108e+00 3.5326627e+00 3.3344440e+00 4.1152831e+00 4.1647603e+00 4.7306329e+00 5.0503286e+00 4.1958529e+00 3.4649010e+00 3.7290073e+00 5.0848756e+00 4.0161825e+00 3.6208873e+00 3.2588014e+00 4.1126592e+00 4.3082433e+00 4.1887411e+00 3.6712837e+00 4.3324309e+00 4.3552675e+00 4.1561376e+00 4.0674499e+00 3.7933592e+00 3.8117183e+00 3.3250640e+00 5.2374483e-01 4.3319335e-01 1.3890415e+00 2.1841707e+00 9.9973471e-01 9.3211669e-01 6.4636269e-01 2.7124234e-01 1.7245677e+00 9.3727156e-01 1.7819563e-01 7.5570839e-01 2.5520912e+00 3.3809114e+00 2.1782802e+00 1.1854382e+00 2.0937104e+00 1.8662528e+00 1.1155937e+00 1.6542533e+00 1.4482752e+00 8.4881492e-01 9.7259094e-01 1.6562722e-01 9.7322023e-01 1.2100516e+00 9.9111027e-01 5.3286499e-01 2.8394141e-01 1.1346946e+00 2.5666454e+00 2.8608436e+00 2.7124234e-01 4.9009568e-01 1.3630799e+00 2.7124234e-01 6.0647055e-01 9.5529726e-01 1.1682143e+00 1.6911681e+00 7.6195008e-01 1.2774622e+00 1.9003949e+00 1.7819563e-01 1.8642334e+00 5.8652824e-01 1.6860841e+00 7.0235100e-01 3.5517185e+00 3.0793995e+00 3.5669733e+00 2.7166736e+00 3.1838913e+00 2.5120824e+00 3.1938169e+00 2.0428688e+00 3.1039816e+00 2.2561090e+00 2.8016158e+00 2.6226738e+00 2.9050141e+00 2.8502197e+00 2.0976260e+00 3.1846091e+00 2.5890531e+00 2.2584354e+00 3.4434621e+00 2.3329638e+00 3.1272801e+00 2.5616006e+00 3.3203580e+00 2.7436923e+00 2.8484236e+00 3.0948526e+00 3.4151452e+00 3.5708989e+00 2.7939968e+00 2.0736054e+00 2.3834491e+00 2.2886612e+00 2.3204706e+00 3.1632397e+00 2.5205525e+00 3.0112889e+00 3.3433635e+00 3.2300528e+00 2.2657938e+00 2.4705763e+00 2.4462190e+00 2.8038852e+00 2.4332562e+00 2.2089299e+00 2.4060762e+00 2.2734727e+00 2.3627180e+00 2.7012637e+00 1.8976741e+00 2.3590971e+00 4.3837112e+00 3.3195686e+00 4.4453895e+00 3.6018522e+00 4.1012355e+00 5.0512932e+00 2.8774753e+00 4.5344585e+00 4.0827835e+00 5.0801762e+00 3.7291677e+00 3.6888814e+00 4.1064223e+00 3.4625304e+00 3.7552252e+00 3.9939605e+00 3.6781201e+00 5.5433523e+00 5.4381439e+00 3.4976392e+00 4.4223824e+00 3.2288234e+00 5.1217596e+00 3.4157742e+00 4.1643077e+00 4.3726405e+00 3.2842292e+00 3.2296198e+00 3.9190152e+00 4.1591876e+00 4.6244312e+00 5.4884429e+00 4.0035368e+00 3.2202996e+00 3.3301365e+00 5.1089381e+00 4.2054648e+00 3.6234874e+00 3.1421933e+00 4.1502382e+00 4.3306814e+00 4.2256435e+00 3.3195686e+00 4.4219948e+00 4.4973329e+00 4.1152664e+00 3.6487297e+00 3.7329401e+00 4.0033827e+00 3.2017663e+00 2.8394141e-01 9.9272943e-01 1.8549949e+00 4.9772204e-01 5.9738093e-01 7.8305765e-01 3.7622328e-01 1.4342986e+00 5.0621589e-01 4.9772204e-01 6.9001472e-01 2.2742100e+00 3.0330374e+00 1.8410898e+00 8.5582452e-01 1.8552074e+00 1.4758765e+00 9.8932340e-01 1.2824303e+00 9.4580058e-01 7.0175090e-01 5.8564715e-01 6.1067563e-01 6.6453319e-01 9.2528705e-01 7.6195008e-01 1.7002750e-01 3.1093967e-01 1.0044375e+00 2.1686473e+00 2.5011215e+00 3.7622328e-01 3.6669623e-01 1.1883075e+00 3.7622328e-01 5.8652824e-01 6.7745878e-01 7.9191984e-01 2.0937821e+00 3.6228991e-01 9.5582164e-01 1.5272557e+00 4.9772204e-01 1.4755007e+00 1.3340137e-01 1.3666101e+00 4.3319335e-01 3.7283414e+00 3.2257816e+00 3.7651559e+00 3.1082143e+00 3.4606263e+00 2.7705999e+00 3.2962379e+00 2.4179023e+00 3.3643791e+00 2.5175848e+00 3.2317517e+00 2.8135312e+00 3.3502574e+00 3.0859108e+00 2.3316915e+00 3.3832002e+00 2.7540885e+00 2.5906747e+00 3.8459512e+00 2.7110494e+00 3.2296198e+00 2.8510843e+00 3.6612067e+00 3.0231940e+00 3.1083626e+00 3.3221751e+00 3.6999785e+00 3.7824508e+00 3.0223050e+00 2.4549511e+00 2.7813487e+00 2.6993734e+00 2.6424988e+00 3.4348309e+00 2.6680185e+00 3.0548262e+00 3.5357687e+00 3.6340473e+00 2.4474337e+00 2.8211532e+00 2.7662396e+00 3.0069386e+00 2.7817508e+00 2.6121651e+00 2.7000040e+00 2.4677010e+00 2.5915377e+00 2.9544131e+00 2.2712863e+00 2.6277952e+00 4.4682388e+00 3.5629824e+00 4.6484688e+00 3.8140427e+00 4.2790737e+00 5.2629823e+00 3.1332305e+00 4.7710813e+00 4.3977196e+00 5.1429155e+00 3.8634878e+00 3.9555042e+00 4.3021827e+00 3.7450218e+00 3.9451569e+00 4.1141318e+00 3.8729361e+00 5.5923916e+00 5.7171219e+00 3.8836634e+00 4.5660923e+00 3.4290419e+00 5.3764415e+00 3.6907517e+00 4.2782894e+00 4.5393827e+00 3.5302656e+00 3.4102235e+00 4.1476932e+00 4.3814983e+00 4.8831870e+00 5.5467550e+00 4.2276454e+00 3.4820326e+00 3.6311162e+00 5.3207972e+00 4.2656428e+00 3.7854499e+00 3.3178004e+00 4.3254709e+00 4.4873379e+00 4.3956810e+00 3.5629824e+00 4.5607328e+00 4.6030755e+00 4.3016138e+00 3.9622355e+00 3.9225802e+00 4.0577906e+00 3.3684813e+00 1.2515236e+00 2.1021589e+00 7.0646671e-01 8.4383266e-01 5.2374483e-01 3.8525820e-01 1.6876653e+00 7.3502408e-01 3.6319073e-01 5.0299964e-01 2.5372015e+00 3.2897546e+00 2.1021589e+00 1.1117653e+00 2.0978519e+00 1.7286097e+00 1.1937015e+00 1.5323598e+00 1.1874605e+00 8.6297946e-01 7.6710016e-01 5.3827772e-01 8.8540687e-01 1.1730565e+00 1.0034646e+00 2.6643250e-01 2.4808718e-01 1.2168625e+00 2.4209958e+00 2.7605308e+00 3.8525820e-01 5.6164055e-01 1.4300979e+00 3.8525820e-01 3.5266705e-01 9.1831777e-01 1.0556536e+00 1.8570904e+00 3.5266705e-01 1.1671832e+00 1.7581227e+00 3.6319073e-01 1.7245677e+00 2.3749211e-01 1.6215602e+00 6.7030885e-01 3.7702988e+00 3.2513048e+00 3.7854692e+00 2.9445918e+00 3.4252075e+00 2.6854877e+00 3.3289662e+00 2.2084365e+00 3.3482393e+00 2.3872006e+00 3.0088381e+00 2.7858967e+00 3.2051999e+00 3.0423378e+00 2.2727200e+00 3.4066596e+00 2.7026316e+00 2.4942728e+00 3.7194777e+00 2.5718070e+00 3.2266664e+00 2.8009311e+00 3.5699473e+00 2.9607930e+00 3.0876835e+00 3.3257458e+00 3.6752903e+00 3.7792524e+00 2.9772187e+00 2.3405405e+00 2.6225184e+00 2.5379456e+00 2.5530959e+00 3.3522700e+00 2.6036900e+00 3.0973166e+00 3.5528019e+00 3.5210610e+00 2.4001125e+00 2.6797931e+00 2.6323855e+00 2.9822614e+00 2.6747723e+00 2.4035668e+00 2.5939621e+00 2.4241443e+00 2.5291529e+00 2.9226858e+00 2.0959349e+00 2.5480036e+00 4.4738080e+00 3.4750769e+00 4.6459778e+00 3.7712854e+00 4.2573656e+00 5.2660922e+00 2.9665251e+00 4.7582165e+00 4.3221591e+00 5.2027091e+00 3.8786505e+00 3.8957203e+00 4.2952898e+00 3.6300721e+00 3.8796854e+00 4.1217239e+00 3.8539421e+00 5.6722969e+00 5.6818418e+00 3.7421166e+00 4.5832488e+00 3.3486395e+00 5.3611963e+00 3.6296692e+00 4.3021827e+00 4.5620086e+00 3.4793229e+00 3.3827920e+00 4.0990020e+00 4.3836503e+00 4.8653269e+00 5.6359100e+00 4.1798856e+00 3.4290065e+00 3.5331571e+00 5.3326389e+00 4.2899049e+00 3.7762521e+00 3.2871170e+00 4.3357622e+00 4.4879065e+00 4.4101806e+00 3.4750769e+00 4.5719131e+00 4.6252914e+00 4.2958117e+00 3.8764095e+00 3.9087616e+00 4.0828629e+00 3.3281063e+00 8.9980139e-01 6.8064066e-01 4.6472955e-01 1.7695601e+00 1.1682143e+00 5.3827772e-01 5.3286499e-01 1.4108003e+00 1.6357068e+00 1.3406177e+00 2.0471148e+00 8.8540687e-01 2.9145160e-01 9.8663349e-01 4.9772204e-01 6.8921053e-01 3.7371902e-01 5.3360548e-01 8.2263932e-01 5.9279023e-01 1.3884168e+00 5.4248468e-01 3.3872939e-01 5.2066928e-01 9.9757114e-01 1.1836141e+00 7.1971771e-01 1.1867923e+00 1.5097838e+00 1.1682143e+00 9.2945909e-01 6.4884272e-01 1.1682143e+00 1.5630357e+00 4.8016385e-01 2.7124234e-01 3.0617227e+00 1.1744248e+00 5.8374436e-01 6.1345624e-01 1.4108003e+00 4.9009568e-01 1.0413386e+00 4.3319335e-01 6.9189100e-01 3.5573943e+00 3.1141702e+00 3.6648465e+00 3.6881887e+00 3.5883824e+00 3.0468381e+00 3.1315658e+00 3.1515797e+00 3.4214871e+00 2.9743594e+00 4.0164863e+00 2.9182492e+00 3.8928105e+00 3.2158144e+00 2.6006889e+00 3.3027067e+00 2.9031809e+00 2.9465762e+00 4.3027855e+00 3.2186029e+00 3.1845052e+00 3.0688421e+00 3.9670252e+00 3.2223969e+00 3.2005819e+00 3.3183883e+00 3.7835219e+00 3.7624114e+00 3.1706932e+00 2.9238797e+00 3.3563322e+00 3.2896970e+00 2.9943889e+00 3.6782511e+00 2.8525048e+00 2.8501434e+00 3.4560405e+00 4.0524463e+00 2.6189855e+00 3.3240937e+00 3.2080454e+00 3.0726532e+00 3.1844624e+00 3.3537486e+00 3.0707196e+00 2.6200714e+00 2.8136838e+00 3.0798325e+00 2.9434145e+00 2.9219863e+00 4.3385668e+00 3.8211670e+00 4.5879449e+00 3.8900790e+00 4.2758494e+00 5.1630878e+00 3.6606996e+00 4.7359279e+00 4.6113949e+00 4.8204842e+00 3.7540483e+00 4.1248784e+00 4.2705921e+00 4.1081181e+00 4.1285849e+00 4.0208302e+00 3.8718630e+00 5.1706118e+00 5.7653526e+00 4.3529699e+00 4.4302351e+00 3.6643052e+00 5.3499285e+00 3.8863166e+00 4.1025634e+00 4.3705834e+00 3.6895783e+00 3.4655259e+00 4.2576017e+00 4.3078329e+00 4.8848930e+00 5.1059908e+00 4.3355275e+00 3.6287723e+00 3.9015858e+00 5.2167033e+00 4.0809175e+00 3.7394250e+00 3.3885059e+00 4.2346521e+00 4.4182506e+00 4.3085803e+00 3.8211670e+00 4.4331391e+00 4.4402220e+00 4.2825037e+00 4.2456731e+00 3.9239772e+00 3.8761056e+00 3.4480528e+00 1.5196051e+00 1.2824303e+00 2.6220224e+00 1.9839744e+00 5.4248468e-01 1.3880441e+00 2.2398377e+00 2.5185753e+00 6.5993495e-01 1.2140269e+00 2.2670334e-01 1.0140902e+00 4.4901474e-01 4.6310132e-01 1.1825559e+00 5.9738093e-01 1.2799022e+00 1.4364110e+00 1.3915110e+00 2.1479410e+00 1.2515236e+00 9.9544409e-01 1.2188859e+00 1.8419620e+00 2.0002725e+00 1.1587093e+00 6.6217390e-01 7.6869104e-01 1.9839744e+00 1.7287715e+00 9.9282597e-01 1.9839744e+00 2.4262873e+00 1.2419907e+00 1.0737552e+00 3.8557204e+00 2.0456732e+00 1.0753036e+00 4.4417668e-01 2.2089621e+00 5.0629646e-01 1.9071648e+00 5.5576380e-01 1.4985933e+00 3.3087308e+00 2.9428879e+00 3.4716469e+00 4.0891690e+00 3.6027276e+00 3.2367228e+00 2.9085289e+00 3.7111791e+00 3.3928277e+00 3.3150290e+00 4.5928107e+00 2.9594198e+00 4.2678298e+00 3.2621413e+00 2.8156205e+00 3.1507918e+00 2.9937665e+00 3.2188610e+00 4.5717893e+00 3.5888229e+00 3.0697068e+00 3.2000980e+00 4.1198780e+00 3.3377308e+00 3.2155231e+00 3.2352945e+00 3.7547729e+00 3.6294383e+00 3.2310889e+00 3.2831808e+00 3.7736317e+00 3.7263104e+00 3.2475076e+00 3.7907966e+00 2.9840079e+00 2.6164035e+00 3.2920107e+00 4.3046992e+00 2.7582086e+00 3.6782988e+00 3.5276458e+00 3.0726914e+00 3.4670753e+00 3.9103065e+00 3.3340819e+00 2.7470239e+00 2.9746673e+00 3.1328218e+00 3.4555378e+00 3.1318122e+00 4.0752096e+00 3.9330937e+00 4.3762388e+00 3.8407425e+00 4.1274362e+00 4.9032073e+00 4.0261574e+00 4.5547766e+00 4.6534818e+00 4.3582690e+00 3.5326627e+00 4.1405270e+00 4.0947877e+00 4.2953569e+00 4.1533819e+00 3.7981559e+00 3.7518931e+00 4.6218430e+00 5.6203182e+00 4.6338556e+00 4.1503558e+00 3.7655153e+00 5.1552615e+00 3.9363994e+00 3.8053980e+00 4.0787299e+00 3.7177375e+00 3.4172455e+00 4.2121483e+00 4.1116484e+00 4.7277367e+00 4.5452377e+00 4.2828893e+00 3.6617103e+00 4.0381240e+00 4.9437127e+00 3.7768622e+00 3.5869495e+00 3.3594066e+00 4.0056296e+00 4.1979142e+00 4.0739556e+00 3.9330937e+00 4.1628496e+00 4.1341118e+00 4.1117268e+00 4.3552101e+00 3.7951858e+00 3.5859295e+00 3.4280549e+00 5.0370871e-01 1.1854382e+00 8.2574748e-01 1.1968529e+00 2.9724335e-01 9.8896933e-01 1.0391769e+00 2.0112023e+00 2.6653431e+00 1.5111262e+00 6.4636269e-01 1.6262201e+00 1.1040164e+00 9.8966705e-01 9.2934901e-01 5.3040146e-01 7.1789533e-01 3.9472619e-01 1.0556536e+00 5.1318506e-01 7.7368489e-01 7.3633268e-01 5.0731024e-01 7.5303835e-01 9.7659801e-01 1.7897583e+00 2.1453760e+00 8.2574748e-01 6.9001472e-01 1.1202045e+00 8.2574748e-01 9.6424206e-01 6.2046469e-01 5.3827772e-01 2.5404386e+00 5.3988754e-01 6.7372733e-01 1.1459117e+00 9.5361455e-01 1.1160907e+00 4.7951153e-01 1.1016806e+00 5.5109043e-01 3.7667766e+00 3.2399456e+00 3.8211099e+00 3.3920086e+00 3.5974024e+00 2.9126202e+00 3.2661365e+00 2.7296888e+00 3.4884812e+00 2.6863536e+00 3.5939578e+00 2.8820992e+00 3.6783922e+00 3.1916608e+00 2.4616677e+00 3.4465420e+00 2.8051321e+00 2.8088029e+00 4.1173049e+00 2.9788024e+00 3.2021702e+00 3.0140681e+00 3.8639979e+00 3.1756883e+00 3.2362495e+00 3.4136564e+00 3.8424217e+00 3.8484723e+00 3.1221021e+00 2.7251978e+00 3.0739866e+00 3.0068046e+00 2.8468838e+00 3.5726594e+00 2.7099355e+00 2.9743925e+00 3.5889631e+00 3.9062347e+00 2.5235038e+00 3.0623697e+00 2.9777787e+00 3.0820765e+00 3.0110500e+00 2.9445347e+00 2.8809757e+00 2.5543631e+00 2.7073441e+00 3.0792230e+00 2.5679169e+00 2.7817508e+00 4.4017095e+00 3.6741422e+00 4.6939918e+00 3.8825162e+00 4.3049794e+00 5.3127345e+00 3.3002804e+00 4.8514877e+00 4.5630927e+00 5.0475012e+00 3.8518880e+00 4.0758615e+00 4.3442223e+00 3.8984747e+00 3.9980344e+00 4.0855291e+00 3.9215612e+00 5.4851910e+00 5.8312870e+00 4.1416475e+00 4.5535489e+00 3.5028870e+00 5.4694510e+00 3.8234999e+00 4.2411026e+00 4.5531893e+00 3.6365882e+00 3.4540568e+00 4.2272070e+00 4.4531017e+00 4.9839411e+00 5.4520873e+00 4.3016933e+00 3.6054769e+00 3.7985950e+00 5.3693255e+00 4.1776636e+00 3.8035129e+00 3.3594554e+00 4.3469553e+00 4.4886880e+00 4.4112274e+00 3.6741422e+00 4.5435532e+00 4.5534752e+00 4.3346048e+00 4.1329859e+00 3.9643709e+00 3.9674740e+00 3.4024060e+00 1.3630799e+00 7.1446962e-01 8.4383266e-01 2.4808718e-01 9.6424206e-01 1.2783641e+00 1.6962086e+00 2.4702874e+00 1.2824303e+00 2.9691107e-01 1.2631980e+00 9.3957399e-01 4.9617437e-01 7.4965096e-01 7.2553812e-01 4.8492463e-01 3.3125444e-01 9.2426065e-01 2.6812643e-01 3.3395426e-01 2.4808718e-01 5.8926015e-01 7.3502408e-01 5.4956349e-01 1.6376300e+00 1.9421609e+00 7.1446962e-01 4.9160020e-01 6.5622658e-01 7.1446962e-01 1.1785203e+00 1.2076330e-01 2.8845946e-01 2.6135503e+00 8.6638670e-01 5.7543116e-01 9.9282597e-01 9.6424206e-01 9.3211669e-01 6.7030885e-01 7.8100392e-01 2.3749211e-01 3.4362741e+00 2.9772187e+00 3.5154539e+00 3.2993605e+00 3.3443673e+00 2.7564382e+00 3.0285957e+00 2.7337208e+00 3.1980682e+00 2.6433553e+00 3.5789723e+00 2.6973512e+00 3.4963203e+00 2.9759207e+00 2.3127671e+00 3.1412273e+00 2.6774449e+00 2.6095931e+00 3.9436181e+00 2.8415480e+00 3.0475523e+00 2.7865107e+00 3.6589666e+00 2.9471549e+00 2.9637920e+00 3.1238401e+00 3.5511257e+00 3.5866237e+00 2.9292978e+00 2.5500042e+00 2.9620296e+00 2.8874183e+00 2.6658729e+00 3.4048426e+00 2.6224103e+00 2.7775195e+00 3.2991484e+00 3.6986035e+00 2.3717154e+00 2.9594198e+00 2.8613259e+00 2.8592001e+00 2.8393888e+00 2.9284199e+00 2.7478281e+00 2.3715604e+00 2.5423572e+00 2.8329679e+00 2.5370255e+00 2.6226761e+00 4.2550363e+00 3.5587552e+00 4.4384175e+00 3.6863990e+00 4.1157774e+00 5.0262130e+00 3.3282378e+00 4.5651798e+00 4.3425674e+00 4.8115590e+00 3.6359466e+00 3.8813909e+00 4.1126592e+00 3.8106374e+00 3.9142555e+00 3.9091502e+00 3.6969354e+00 5.1996380e+00 5.5654572e+00 3.9942942e+00 4.3261607e+00 3.4228883e+00 5.1764012e+00 3.6303894e+00 4.0165247e+00 4.2627936e+00 3.4508614e+00 3.2748167e+00 4.0461381e+00 4.1489951e+00 4.6983104e+00 5.1372583e+00 4.1280577e+00 3.3829235e+00 3.6112201e+00 5.0844328e+00 4.0217556e+00 3.5877667e+00 3.1942059e+00 4.1021303e+00 4.2899049e+00 4.1807095e+00 3.5587552e+00 4.3276502e+00 4.3608503e+00 4.1273623e+00 3.9585431e+00 3.7540483e+00 3.8154519e+00 3.2543470e+00 7.7313507e-01 2.2058495e+00 1.2553676e+00 5.5109043e-01 3.3742167e-01 3.0507869e+00 3.8084614e+00 2.6171176e+00 1.6268459e+00 2.6113513e+00 2.2457527e+00 1.6784057e+00 2.0471148e+00 1.6480463e+00 1.3225313e+00 1.2819528e+00 7.6880092e-01 1.3915110e+00 1.6886167e+00 1.5043671e+00 7.8918675e-01 6.7745878e-01 1.6911617e+00 2.9348176e+00 3.2792996e+00 7.7313507e-01 1.0082548e+00 1.9190366e+00 7.7313507e-01 2.3749211e-01 1.4309353e+00 1.5685186e+00 1.3963590e+00 6.9420840e-01 1.6514950e+00 2.2742046e+00 5.5109043e-01 2.2440749e+00 7.3283576e-01 2.1421205e+00 1.1730565e+00 4.0382971e+00 3.5072516e+00 4.0204750e+00 2.8157524e+00 3.5602797e+00 2.7716933e+00 3.6026548e+00 1.9881684e+00 3.5249607e+00 2.3719578e+00 2.7108793e+00 2.9588139e+00 3.1000099e+00 3.1914275e+00 2.3942229e+00 3.6456797e+00 2.8533918e+00 2.5518058e+00 3.6496659e+00 2.5198146e+00 3.4451131e+00 2.9183683e+00 3.5989425e+00 3.0794356e+00 3.2576813e+00 3.5320163e+00 3.8261152e+00 3.9741896e+00 3.1180182e+00 2.3364082e+00 2.5170134e+00 2.4274466e+00 2.6068690e+00 3.4218333e+00 2.7386417e+00 3.3934324e+00 3.7851452e+00 3.4854109e+00 2.5636830e+00 2.6200486e+00 2.6174942e+00 3.1669559e+00 2.6880360e+00 2.1675629e+00 2.6284424e+00 2.5986852e+00 2.6571682e+00 3.0828753e+00 1.9438939e+00 2.6338308e+00 4.6899445e+00 3.5257224e+00 4.8360835e+00 3.9149039e+00 4.4239486e+00 5.4654338e+00 2.8575769e+00 4.9368840e+00 4.3795070e+00 5.4971381e+00 4.1073887e+00 3.9867349e+00 4.4778796e+00 3.6113294e+00 3.9521234e+00 4.3324165e+00 4.0348180e+00 6.0067497e+00 5.8007868e+00 3.6612067e+00 4.8067419e+00 3.4133837e+00 5.5245725e+00 3.7158962e+00 4.5501061e+00 4.8067452e+00 3.5898573e+00 3.5494058e+00 4.2132256e+00 4.5903044e+00 5.0235775e+00 5.9805492e+00 4.2919572e+00 3.5520531e+00 3.5821954e+00 5.5319518e+00 4.5355231e+00 3.9801247e+00 3.4489678e+00 4.5459210e+00 4.6801759e+00 4.6148655e+00 3.5257224e+00 4.7911899e+00 4.8567489e+00 4.4697071e+00 3.9039516e+00 4.0848538e+00 4.3320055e+00 3.4824517e+00 1.5154593e+00 7.1671402e-01 2.6643250e-01 7.9347379e-01 2.3528246e+00 3.1744385e+00 1.9839744e+00 9.9059199e-01 1.9029496e+00 1.6532822e+00 9.3451915e-01 1.4586696e+00 1.2483935e+00 7.4743804e-01 7.4957404e-01 2.9691107e-01 8.0686941e-01 9.9973471e-01 7.9394533e-01 3.6319073e-01 1.8699153e-01 9.9891776e-01 2.3345854e+00 2.6422396e+00 0.0000000e+00 3.3742167e-01 1.1857824e+00 0.0000000e+00 6.6918102e-01 7.4445830e-01 9.7322023e-01 1.9284841e+00 6.6918102e-01 1.1393372e+00 1.6942803e+00 3.7371902e-01 1.6386105e+00 4.5257749e-01 1.4715172e+00 4.9772204e-01 3.5602797e+00 3.0968979e+00 3.5933352e+00 2.8998722e+00 3.2656298e+00 2.6029746e+00 3.1974447e+00 2.2445103e+00 3.1601923e+00 2.3946216e+00 3.0209665e+00 2.6867317e+00 3.0775658e+00 2.9161244e+00 2.1946278e+00 3.2137635e+00 2.6502891e+00 2.3652711e+00 3.6096140e+00 2.4893065e+00 3.1578003e+00 2.6568473e+00 3.4426472e+00 2.8187901e+00 2.9128857e+00 3.1418202e+00 3.4847097e+00 3.6205958e+00 2.8694312e+00 2.2223283e+00 2.5588203e+00 2.4651138e+00 2.4413293e+00 3.2621861e+00 2.5834128e+00 2.9995857e+00 3.3733791e+00 3.3817876e+00 2.3263008e+00 2.6305758e+00 2.5756071e+00 2.8533918e+00 2.5683063e+00 2.4187322e+00 2.5258216e+00 2.3250308e+00 2.4413618e+00 2.7691536e+00 2.1006933e+00 2.4608850e+00 4.4119896e+00 3.4290419e+00 4.4942656e+00 3.6650933e+00 4.1590662e+00 5.0899438e+00 3.0333619e+00 4.5799469e+00 4.1882413e+00 5.0726081e+00 3.7613721e+00 3.7859992e+00 4.1623715e+00 3.6029758e+00 3.8608065e+00 4.0352348e+00 3.7266849e+00 5.5043247e+00 5.5172732e+00 3.6569442e+00 4.4568115e+00 3.3324016e+00 5.1765224e+00 3.5192065e+00 4.1799642e+00 4.3857400e+00 3.3769078e+00 3.2906843e+00 4.0034548e+00 4.1917183e+00 4.6854597e+00 5.4444866e+00 4.0904298e+00 3.2962678e+00 3.4250783e+00 5.1569386e+00 4.2213314e+00 3.6582637e+00 3.2059261e+00 4.1937040e+00 4.3826532e+00 4.2786320e+00 3.4290419e+00 4.4549850e+00 4.5270304e+00 4.1816268e+00 3.7777251e+00 3.7924144e+00 4.0173731e+00 3.2613828e+00 1.0034646e+00 1.7753099e+00 2.1070188e+00 8.6079202e-01 1.6751898e+00 5.4248468e-01 6.0365341e-01 4.6310132e-01 4.4901474e-01 7.0111465e-01 4.4713936e-01 1.0328871e+00 1.0722301e+00 1.0271920e+00 1.6860841e+00 8.8540687e-01 5.2066928e-01 7.3502408e-01 1.4309353e+00 1.5630357e+00 7.3985997e-01 9.6257499e-01 1.1608422e+00 1.5154593e+00 1.2617482e+00 4.9009568e-01 1.5154593e+00 2.0192952e+00 7.8100392e-01 6.9001472e-01 3.4112480e+00 1.6736143e+00 8.5090098e-01 5.5183182e-01 1.7753099e+00 4.3319335e-01 1.5054343e+00 1.2076330e-01 1.0428797e+00 3.2901237e+00 2.9292978e+00 3.4367371e+00 3.8111737e+00 3.4729880e+00 3.0672734e+00 2.9473505e+00 3.3901879e+00 3.2662947e+00 3.1144880e+00 4.2413542e+00 2.8660589e+00 3.9495965e+00 3.1433256e+00 2.6375433e+00 3.0908568e+00 2.9081458e+00 2.9702968e+00 4.3236374e+00 3.3103937e+00 3.0964304e+00 3.0179755e+00 3.9313682e+00 3.1669001e+00 3.0754584e+00 3.1432906e+00 3.6245464e+00 3.5873526e+00 3.1179878e+00 2.9918256e+00 3.4776059e+00 3.4142800e+00 3.0198617e+00 3.6568155e+00 2.8980988e+00 2.6944324e+00 3.2512254e+00 4.0479095e+00 2.6293791e+00 3.4291613e+00 3.2968205e+00 2.9799791e+00 3.2239661e+00 3.5774656e+00 3.1299499e+00 2.6069579e+00 2.8203994e+00 2.9888842e+00 3.1470877e+00 2.9476507e+00 4.1975965e+00 3.8311128e+00 4.3861256e+00 3.7921747e+00 4.1446583e+00 4.9211801e+00 3.8442384e+00 4.5238497e+00 4.5231439e+00 4.5451210e+00 3.5805575e+00 4.0469570e+00 4.0990882e+00 4.1579560e+00 4.1249171e+00 3.8727781e+00 3.7290616e+00 4.8292468e+00 5.5757877e+00 4.3965263e+00 4.2248397e+00 3.6936498e+00 5.1256160e+00 3.8221804e+00 3.8961870e+00 4.1176453e+00 3.6242665e+00 3.3807801e+00 4.1671042e+00 4.0787299e+00 4.6798442e+00 4.7374542e+00 4.2466909e+00 3.5432140e+00 3.8759165e+00 4.9689016e+00 3.9204411e+00 3.5927937e+00 3.3203721e+00 4.0348754e+00 4.2531600e+00 4.1147391e+00 3.8311128e+00 4.2401451e+00 4.2502727e+00 4.1279956e+00 4.2116129e+00 3.7856899e+00 3.7242025e+00 3.3954918e+00 9.3865015e-01 1.1459117e+00 1.8505741e+00 2.5636327e+00 1.3972701e+00 4.6310132e-01 1.4327294e+00 1.0013399e+00 7.2679299e-01 8.2574748e-01 6.2187934e-01 5.8496636e-01 1.7002750e-01 9.5361455e-01 3.5639126e-01 5.3827772e-01 4.9617437e-01 4.7680727e-01 6.9189100e-01 7.7259801e-01 1.6911681e+00 2.0326426e+00 7.1671402e-01 5.6788283e-01 8.9258315e-01 7.1671402e-01 1.0551281e+00 3.6669623e-01 3.9699460e-01 2.5716465e+00 6.8921053e-01 6.2148529e-01 1.0391769e+00 9.3865015e-01 9.9111027e-01 5.3286499e-01 9.2006504e-01 3.5266705e-01 3.5819899e+00 3.0902007e+00 3.6482741e+00 3.3284223e+00 3.4528558e+00 2.8062636e+00 3.1283731e+00 2.7130802e+00 3.3201500e+00 2.6478976e+00 3.5696084e+00 2.7728704e+00 3.5649049e+00 3.0583917e+00 2.3718219e+00 3.2763163e+00 2.7180029e+00 2.6779045e+00 4.0150919e+00 2.8864805e+00 3.1083977e+00 2.8822332e+00 3.7402558e+00 3.0304088e+00 3.0793541e+00 3.2506893e+00 3.6756049e+00 3.7003058e+00 3.0054875e+00 2.6160903e+00 2.9965118e+00 2.9238797e+00 2.7351276e+00 3.4650507e+00 2.6418165e+00 2.8577585e+00 3.4252075e+00 3.7832878e+00 2.4227175e+00 2.9917855e+00 2.8903467e+00 2.9460322e+00 2.9034030e+00 2.9191699e+00 2.7908173e+00 2.4332562e+00 2.6000033e+00 2.9338362e+00 2.5416562e+00 2.6797931e+00 4.3169600e+00 3.6002350e+00 4.5501061e+00 3.7611228e+00 4.1952298e+00 5.1491201e+00 3.2996439e+00 4.6835622e+00 4.4311275e+00 4.9194005e+00 3.7316761e+00 3.9622355e+00 4.2152785e+00 3.8426553e+00 3.9520057e+00 3.9894324e+00 3.7877346e+00 5.3234168e+00 5.6801405e+00 4.0465336e+00 4.4289683e+00 3.4509848e+00 5.3007226e+00 3.7123045e+00 4.1128937e+00 4.3848871e+00 3.5295907e+00 3.3480190e+00 4.1214168e+00 4.2758432e+00 4.8208082e+00 5.2754050e+00 4.2018689e+00 3.4688327e+00 3.6716137e+00 5.2146461e+00 4.0903576e+00 3.6733277e+00 3.2612647e+00 4.2126998e+00 4.3809966e+00 4.2914999e+00 3.6002350e+00 4.4223824e+00 4.4497684e+00 4.2250047e+00 4.0330034e+00 3.8460049e+00 3.8818416e+00 3.3084835e+00 6.2729876e-01 2.6091054e+00 3.4299177e+00 2.2340939e+00 1.2368073e+00 2.1640372e+00 1.8992968e+00 1.1925354e+00 1.7015647e+00 1.4288989e+00 9.5582164e-01 9.7391954e-01 2.9724335e-01 1.0376697e+00 1.2583645e+00 1.0495503e+00 5.0731024e-01 2.8845946e-01 1.2384679e+00 2.5831347e+00 2.8967543e+00 2.6643250e-01 5.4873947e-01 1.4369223e+00 2.6643250e-01 5.0370871e-01 1.0013399e+00 1.2082987e+00 1.6761482e+00 6.8299624e-01 1.3528452e+00 1.9417181e+00 2.6206799e-01 1.8882412e+00 5.3690447e-01 1.7295385e+00 7.4445830e-01 3.6974389e+00 3.2246529e+00 3.7127916e+00 2.8221999e+00 3.3289662e+00 2.6369282e+00 3.3348648e+00 2.1165503e+00 3.2465431e+00 2.3709411e+00 2.8608899e+00 2.7655496e+00 3.0110500e+00 2.9862341e+00 2.2391292e+00 3.3332541e+00 2.7176350e+00 2.3810734e+00 3.5657791e+00 2.4469788e+00 3.2638546e+00 2.7057900e+00 3.4512743e+00 2.8728052e+00 2.9934131e+00 3.2431147e+00 3.5582624e+00 3.7179545e+00 2.9335017e+00 2.1999209e+00 2.4893065e+00 2.3915367e+00 2.4540260e+00 3.2923304e+00 2.6414379e+00 3.1466196e+00 3.4901671e+00 3.3542627e+00 2.3973915e+00 2.5861640e+00 2.5561973e+00 2.9420425e+00 2.5609364e+00 2.2836399e+00 2.5303888e+00 2.4035745e+00 2.4950488e+00 2.8435005e+00 2.0000785e+00 2.4916202e+00 4.5218181e+00 3.4492861e+00 4.5921002e+00 3.7366932e+00 4.2432727e+00 5.1949299e+00 2.9709788e+00 4.6735988e+00 4.2160797e+00 5.2249989e+00 3.8759828e+00 3.8289542e+00 4.2545385e+00 3.5878027e+00 3.8924868e+00 4.1403048e+00 3.8179103e+00 5.6801405e+00 5.5805905e+00 3.6100547e+00 4.5709635e+00 3.3584734e+00 5.2629823e+00 3.5576748e+00 4.3070506e+00 4.5135384e+00 3.4273212e+00 3.3707040e+00 4.0596064e+00 4.2990937e+00 4.7676077e+00 5.6256469e+00 4.1454035e+00 3.3551224e+00 3.4472672e+00 5.2603070e+00 4.3452859e+00 3.7614312e+00 3.2825924e+00 4.3002370e+00 4.4796258e+00 4.3809022e+00 3.4492861e+00 4.5673965e+00 4.6446301e+00 4.2677070e+00 3.7864370e+00 3.8796124e+00 4.1423594e+00 3.3352922e+00 2.9361142e+00 3.6728262e+00 2.4980859e+00 1.5364600e+00 2.5390784e+00 2.1113072e+00 1.6578570e+00 1.9353585e+00 1.4375287e+00 1.3425463e+00 1.1993279e+00 9.0115406e-01 1.3418210e+00 1.6061161e+00 1.4416694e+00 7.3727571e-01 7.1781501e-01 1.6797637e+00 2.7692440e+00 3.1313820e+00 7.9347379e-01 9.7352372e-01 1.8600648e+00 7.9347379e-01 2.1119253e-01 1.3612390e+00 1.4580439e+00 1.6571634e+00 5.0731024e-01 1.5980974e+00 2.1674065e+00 6.7984069e-01 2.1059482e+00 6.2457556e-01 2.0330443e+00 1.1132823e+00 4.2319020e+00 3.7044235e+00 4.2326669e+00 3.1432906e+00 3.8172627e+00 3.0425144e+00 3.7866079e+00 2.3206274e+00 3.7650177e+00 2.6608343e+00 3.0454230e+00 3.1914925e+00 3.4221447e+00 3.4413652e+00 2.6453561e+00 3.8539838e+00 3.0892079e+00 2.8357998e+00 3.9683086e+00 2.8336784e+00 3.6477040e+00 3.1799040e+00 3.8944724e+00 3.3434129e+00 3.4994776e+00 3.7569353e+00 4.0775935e+00 4.2049294e+00 3.3684490e+00 2.6363662e+00 2.8414019e+00 2.7526519e+00 2.8906655e+00 3.7008234e+00 2.9737492e+00 3.5555916e+00 3.9977110e+00 3.7960948e+00 2.7978670e+00 2.9332077e+00 2.9200513e+00 3.4002561e+00 2.9851921e+00 2.5032729e+00 2.9159414e+00 2.8324645e+00 2.9104902e+00 3.3286096e+00 2.2670901e+00 2.9042354e+00 4.8902416e+00 3.8029663e+00 5.0697571e+00 4.1657422e+00 4.6611282e+00 5.6979337e+00 3.1565039e+00 5.1794156e+00 4.6677357e+00 5.6656906e+00 4.3138249e+00 4.2590423e+00 4.7118516e+00 3.9079657e+00 4.2090892e+00 4.5409993e+00 4.2707579e+00 6.1569683e+00 6.0684263e+00 3.9837013e+00 5.0178221e+00 3.6761530e+00 5.7743610e+00 3.9890690e+00 4.7480354e+00 5.0151961e+00 3.8518880e+00 3.7849163e+00 4.4740109e+00 4.8191103e+00 5.2745801e+00 6.1258486e+00 4.5520039e+00 3.8145791e+00 3.8707244e+00 5.7618968e+00 4.7193263e+00 4.2030300e+00 3.6843246e+00 4.7664506e+00 4.9031551e+00 4.8333734e+00 3.8029663e+00 5.0038635e+00 5.0562579e+00 4.7021393e+00 4.1966653e+00 4.3193180e+00 4.5127918e+00 3.7195417e+00 9.8143688e-01 5.9868400e-01 1.4402716e+00 5.6992880e-01 9.8663349e-01 1.4928150e+00 1.1361809e+00 1.7216149e+00 1.8856736e+00 1.8789959e+00 2.5107352e+00 1.7228721e+00 1.3724737e+00 1.5661153e+00 2.2847787e+00 2.4120925e+00 1.4985933e+00 7.9011741e-01 5.9738093e-01 2.3528246e+00 2.0826771e+00 1.2100516e+00 2.3528246e+00 2.8601865e+00 1.6304499e+00 1.5111262e+00 4.2257604e+00 2.5031609e+00 1.6091095e+00 1.0739839e+00 2.6091054e+00 9.8932340e-01 2.3488496e+00 9.3392552e-01 1.8848176e+00 3.4513181e+00 3.2138675e+00 3.6568023e+00 4.4832075e+00 3.8715598e+00 3.6399979e+00 3.2048569e+00 4.1609431e+00 3.6276988e+00 3.7852753e+00 5.0007603e+00 3.3356061e+00 4.5726588e+00 3.6020324e+00 3.2283316e+00 3.3543125e+00 3.4317803e+00 3.5762357e+00 4.8853618e+00 3.9697083e+00 3.4608105e+00 3.5194529e+00 4.4307529e+00 3.6664068e+00 3.4821665e+00 3.4661369e+00 3.9690303e+00 3.8732280e+00 3.5908374e+00 3.6384054e+00 4.1605480e+00 4.1054173e+00 3.6121763e+00 4.1591449e+00 3.4571840e+00 2.9726287e+00 3.5108834e+00 4.5938444e+00 3.1869025e+00 4.0859475e+00 3.9449709e+00 3.4111584e+00 3.8289196e+00 4.3382952e+00 3.7437946e+00 3.1530215e+00 3.3792174e+00 3.4400302e+00 3.8876642e+00 3.5288768e+00 4.4107365e+00 4.3401559e+00 4.5910423e+00 4.1731099e+00 4.4383007e+00 5.0605479e+00 4.5288382e+00 4.7400085e+00 4.9337127e+00 4.5282137e+00 3.8167418e+00 4.4582410e+00 4.3491396e+00 4.7099690e+00 4.5667632e+00 4.1110524e+00 4.0457882e+00 4.6970439e+00 5.8050200e+00 4.9831785e+00 4.3869525e+00 4.2045486e+00 5.3107398e+00 4.2598936e+00 4.0608563e+00 4.2495756e+00 4.0560071e+00 3.7740189e+00 4.5388860e+00 4.2824837e+00 4.9058468e+00 4.5708763e+00 4.6120616e+00 3.9763551e+00 4.3872260e+00 5.0860672e+00 4.0998055e+00 3.8946369e+00 3.7330702e+00 4.2352833e+00 4.4742220e+00 4.3047259e+00 4.3401559e+00 4.4192906e+00 4.4017154e+00 4.3831142e+00 4.6832544e+00 4.0909816e+00 3.9225445e+00 3.8229302e+00 1.2140269e+00 2.2031378e+00 1.3945864e+00 1.5674943e+00 2.3519816e+00 1.7695601e+00 2.3060361e+00 2.6440626e+00 2.5730128e+00 3.3484034e+00 2.4570006e+00 2.1775427e+00 2.3990667e+00 3.0314484e+00 3.2003667e+00 2.3345854e+00 9.9891776e-01 5.8565201e-01 3.1744385e+00 2.9106021e+00 2.1090950e+00 3.1744385e+00 3.6015962e+00 2.4316107e+00 2.2478972e+00 5.0583620e+00 3.1946200e+00 2.2571919e+00 1.5783735e+00 3.4098353e+00 1.5848534e+00 3.0815481e+00 1.7053877e+00 2.6874763e+00 3.8897688e+00 3.6527400e+00 4.1085323e+00 5.1878354e+00 4.4401043e+00 4.2306533e+00 3.5668974e+00 4.8855250e+00 4.1984227e+00 4.3936084e+00 5.7667342e+00 3.8604223e+00 5.3386416e+00 4.1481805e+00 3.8457422e+00 3.8556395e+00 3.9253518e+00 4.2633467e+00 5.5746944e+00 4.6805795e+00 3.8185179e+00 4.1531225e+00 5.0514886e+00 4.2706189e+00 4.0732692e+00 4.0031242e+00 4.5383244e+00 4.3266944e+00 4.1312924e+00 4.3745457e+00 4.8862079e+00 4.8484299e+00 4.2820168e+00 4.7051757e+00 3.9401848e+00 3.2884177e+00 3.9767257e+00 5.2985037e+00 3.7419338e+00 4.7600849e+00 4.5926355e+00 3.9322406e+00 4.5116211e+00 5.0823619e+00 4.3725296e+00 3.7236864e+00 3.9623539e+00 4.0300759e+00 4.6141946e+00 4.1447443e+00 4.5866744e+00 4.8386745e+00 4.9461657e+00 4.6106150e+00 4.7813164e+00 5.3858108e+00 5.0919277e+00 5.1446449e+00 5.4739987e+00 4.5885042e+00 4.1414025e+00 4.9586480e+00 4.7213864e+00 5.2471037e+00 4.9661074e+00 4.3830009e+00 4.4568388e+00 4.6901031e+00 6.2154767e+00 5.6469307e+00 4.6501660e+00 4.6626232e+00 5.7036296e+00 4.7932843e+00 4.3038060e+00 4.5618709e+00 4.5655950e+00 4.2115551e+00 4.9692114e+00 4.7030193e+00 5.3377504e+00 4.5914343e+00 5.0293150e+00 4.5146706e+00 4.9581881e+00 5.4087027e+00 4.2557771e+00 4.2671438e+00 4.1737149e+00 4.5756985e+00 4.7660397e+00 4.6314702e+00 4.8386745e+00 4.6734470e+00 4.5970177e+00 4.7412505e+00 5.2464126e+00 4.4890534e+00 4.0948317e+00 4.2440420e+00 1.0013399e+00 5.0299964e-01 4.6310132e-01 1.2040900e+00 5.9738093e-01 1.2286837e+00 1.4541908e+00 1.4279677e+00 2.1539145e+00 1.2617482e+00 9.9544409e-01 1.2082987e+00 1.8489243e+00 2.0066856e+00 1.1587093e+00 6.6217390e-01 7.5179033e-01 1.9839744e+00 1.7063292e+00 9.6659661e-01 1.9839744e+00 2.4156729e+00 1.2419907e+00 1.0495503e+00 3.8490499e+00 2.0330726e+00 1.0871867e+00 5.4779717e-01 2.2031378e+00 5.3106808e-01 1.9004159e+00 5.5576380e-01 1.4899949e+00 3.4307448e+00 3.0710756e+00 3.5952799e+00 4.1669813e+00 3.7116384e+00 3.3536981e+00 3.0466130e+00 3.7729829e+00 3.5082606e+00 3.4067800e+00 4.6484249e+00 3.0744089e+00 4.3424419e+00 3.3858347e+00 2.9098729e+00 3.2669110e+00 3.1198644e+00 3.3210229e+00 4.6553382e+00 3.6737423e+00 3.2048569e+00 3.2989479e+00 4.2245828e+00 3.4587219e+00 3.3255241e+00 3.3484846e+00 3.8660480e+00 3.7512964e+00 3.3482610e+00 3.3605387e+00 3.8511468e+00 3.8014113e+00 3.3411134e+00 3.9109127e+00 3.1105014e+00 2.7597977e+00 3.4146222e+00 4.3904048e+00 2.8767763e+00 3.7646132e+00 3.6317356e+00 3.1996946e+00 3.5585167e+00 3.9690108e+00 3.4365573e+00 2.8705339e+00 3.0890888e+00 3.2456270e+00 3.5108688e+00 3.2367228e+00 4.2147014e+00 4.0489906e+00 4.5035700e+00 3.9755362e+00 4.2591912e+00 5.0350768e+00 4.1207838e+00 4.6882252e+00 4.7707308e+00 4.4918348e+00 3.6612573e+00 4.2568131e+00 4.2184327e+00 4.3988058e+00 4.2632946e+00 3.9245996e+00 3.8864624e+00 4.7642090e+00 5.7424408e+00 4.7299069e+00 4.2784034e+00 3.8797952e+00 5.2832732e+00 4.0458553e+00 3.9446593e+00 4.2181053e+00 3.8300888e+00 3.5427774e+00 4.3354099e+00 4.2438935e+00 4.8511407e+00 4.6817036e+00 4.4041714e+00 3.7859242e+00 4.1665370e+00 5.0618540e+00 3.9138566e+00 3.7274783e+00 3.4833346e+00 4.1288327e+00 4.3215818e+00 4.1859543e+00 4.0489906e+00 4.2965095e+00 4.2626474e+00 4.2257654e+00 4.4572702e+00 3.9184477e+00 3.7230473e+00 3.5604297e+00 1.0161882e+00 6.9420840e-01 4.8012872e-01 4.8284931e-01 6.9738730e-01 5.5709100e-01 5.3095950e-01 1.1723315e+00 3.1271814e-01 1.8699153e-01 2.9145160e-01 8.6143605e-01 1.0061402e+00 4.5257749e-01 1.4146831e+00 1.6902182e+00 9.9059199e-01 7.2340544e-01 5.0370871e-01 9.9059199e-01 1.4369223e+00 2.7124234e-01 1.3340137e-01 2.8614050e+00 1.1016806e+00 4.2656951e-01 7.5906970e-01 1.2087236e+00 7.1325427e-01 9.2761923e-01 5.3988754e-01 4.9448466e-01 3.3643791e+00 2.9159414e+00 3.4617249e+00 3.4323687e+00 3.3505903e+00 2.8169505e+00 2.9517065e+00 2.9146662e+00 3.1941250e+00 2.7393282e+00 3.7736317e+00 2.6933089e+00 3.6308668e+00 2.9914579e+00 2.3560812e+00 3.0907905e+00 2.6932687e+00 2.7021788e+00 4.0389540e+00 2.9648098e+00 2.9980910e+00 2.8201257e+00 3.7183934e+00 2.9922398e+00 2.9661287e+00 3.0950932e+00 3.5513156e+00 3.5484439e+00 2.9420200e+00 2.6629529e+00 3.1013619e+00 3.0347859e+00 2.7417410e+00 3.4474072e+00 2.6495954e+00 2.6875764e+00 3.2488445e+00 3.7904353e+00 2.3985415e+00 3.0725852e+00 2.9704304e+00 2.8556850e+00 2.9300511e+00 3.1104511e+00 2.8291506e+00 2.4008046e+00 2.5836379e+00 2.8456807e+00 2.6907656e+00 2.6814159e+00 4.1737238e+00 3.5932878e+00 4.3853076e+00 3.6802688e+00 4.0749525e+00 4.9692376e+00 3.4394110e+00 4.5331007e+00 4.3742923e+00 4.6787296e+00 3.5632387e+00 3.8923023e+00 4.0628985e+00 3.8689922e+00 3.9102807e+00 3.8336686e+00 3.6675649e+00 5.0555526e+00 5.5454277e+00 4.0994961e+00 4.2439469e+00 3.4449831e+00 5.1429556e+00 3.6472400e+00 3.9304610e+00 4.1916938e+00 3.4565067e+00 3.2536517e+00 4.0373591e+00 4.1087274e+00 4.6703619e+00 4.9904781e+00 4.1152831e+00 3.4023949e+00 3.6756751e+00 5.0151763e+00 3.9231895e+00 3.5466262e+00 3.1760855e+00 4.0346845e+00 4.2216886e+00 4.1038501e+00 3.5932878e+00 4.2504107e+00 4.2656428e+00 4.0705667e+00 3.9971917e+00 3.7133040e+00 3.7182295e+00 3.2440381e+00 7.3339246e-01 9.9973471e-01 7.7988766e-01 1.4669572e+00 1.3868865e+00 1.4360884e+00 2.0344949e+00 1.2593779e+00 9.3451915e-01 1.1232628e+00 1.8421759e+00 1.9514085e+00 1.0061402e+00 9.6168382e-01 9.7747632e-01 1.9029496e+00 1.6513423e+00 7.7821113e-01 1.9029496e+00 2.4366790e+00 1.1857824e+00 1.1156669e+00 3.7575639e+00 2.1090460e+00 1.1623508e+00 7.4500632e-01 2.1481102e+00 7.3851064e-01 1.9301732e+00 5.6262711e-01 1.4458364e+00 3.0574507e+00 2.7604800e+00 3.2354442e+00 3.9296796e+00 3.3802783e+00 3.0910114e+00 2.7653977e+00 3.6086433e+00 3.1477156e+00 3.2299948e+00 4.4531271e+00 2.8182580e+00 4.0359059e+00 3.0838698e+00 2.6832031e+00 2.9127171e+00 2.8999239e+00 3.0235972e+00 4.3556993e+00 3.4142800e+00 2.9871882e+00 2.9947610e+00 3.9084388e+00 3.1359326e+00 2.9852014e+00 3.0007807e+00 3.4997296e+00 3.4243092e+00 3.0709062e+00 3.0889274e+00 3.6054231e+00 3.5510321e+00 3.0652992e+00 3.6307363e+00 2.9199707e+00 2.5302845e+00 3.0705222e+00 4.0683526e+00 2.6430958e+00 3.5303998e+00 3.3838093e+00 2.9011205e+00 3.2808511e+00 3.7876206e+00 3.1898591e+00 2.6081677e+00 2.8342553e+00 2.9259899e+00 3.3400468e+00 2.9809771e+00 4.0130133e+00 3.8156727e+00 4.1823301e+00 3.6854232e+00 3.9919300e+00 4.6844795e+00 3.9756960e+00 4.3245814e+00 4.4396397e+00 4.2453585e+00 3.3946374e+00 3.9634682e+00 3.9204865e+00 4.1772364e+00 4.0766155e+00 3.6959934e+00 3.5831715e+00 4.4790872e+00 5.3894840e+00 4.4405497e+00 4.0027890e+00 3.6857786e+00 4.9137586e+00 3.7567964e+00 3.6729588e+00 3.8728151e+00 3.5543966e+00 3.2848126e+00 4.0598486e+00 3.8712880e+00 4.4886485e+00 4.3722180e+00 4.1373490e+00 3.4683949e+00 3.8543469e+00 4.7248681e+00 3.7193644e+00 3.4383872e+00 3.2381387e+00 3.8297356e+00 4.0647650e+00 3.9099360e+00 3.8156727e+00 4.0266221e+00 4.0296168e+00 3.9579549e+00 4.1722551e+00 3.6379295e+00 3.5328511e+00 3.3224979e+00 1.0061402e+00 2.6525508e-01 8.2148003e-01 1.1879760e+00 1.0251165e+00 1.8544941e+00 9.4128180e-01 7.1446962e-01 9.4128180e-01 1.4726083e+00 1.6607117e+00 9.9973471e-01 7.4965096e-01 1.0510795e+00 1.6532822e+00 1.4055304e+00 8.6143605e-01 1.6532822e+00 2.0368618e+00 9.3178083e-01 7.1143905e-01 3.5363390e+00 1.6307900e+00 8.0686941e-01 2.6184788e-01 1.8811296e+00 1.4276574e-01 1.5165187e+00 3.5874135e-01 1.1682143e+00 3.5420892e+00 3.1213639e+00 3.6765721e+00 3.9907084e+00 3.7063187e+00 3.2329517e+00 3.1017380e+00 3.5164906e+00 3.5204595e+00 3.2215483e+00 4.4016409e+00 3.0251724e+00 4.2008255e+00 3.3367044e+00 2.7940225e+00 3.3344791e+00 3.0219495e+00 3.1880051e+00 4.5546425e+00 3.5075399e+00 3.1952269e+00 3.2406785e+00 4.1563139e+00 3.3848806e+00 3.3178898e+00 3.3859281e+00 3.8870730e+00 3.7997125e+00 3.2944053e+00 3.2110142e+00 3.6683444e+00 3.6131226e+00 3.2236002e+00 3.8317071e+00 2.9830921e+00 2.7973167e+00 3.4787185e+00 4.2995699e+00 2.7671612e+00 3.5982071e+00 3.4619260e+00 3.1665431e+00 3.4310890e+00 3.7235030e+00 3.2953414e+00 2.7679629e+00 2.9819595e+00 3.2106653e+00 3.2879746e+00 3.1196883e+00 4.2713770e+00 3.9634682e+00 4.5846990e+00 3.9587038e+00 4.2895460e+00 5.1416821e+00 3.9119997e+00 4.7572039e+00 4.7460626e+00 4.6638344e+00 3.7280454e+00 4.2349181e+00 4.2803486e+00 4.2908242e+00 4.2152718e+00 3.9857018e+00 3.9070797e+00 4.9741957e+00 5.8097018e+00 4.6049285e+00 4.3788345e+00 3.7893243e+00 5.3689314e+00 4.0140467e+00 4.0363955e+00 4.3259832e+00 3.8006490e+00 3.5269016e+00 4.3297076e+00 4.3216441e+00 4.9220177e+00 4.9100057e+00 4.4024600e+00 3.7489348e+00 4.0736926e+00 5.1891895e+00 3.9903212e+00 3.7514870e+00 3.4564041e+00 4.2166575e+00 4.3944655e+00 4.2851348e+00 3.9634682e+00 4.3836343e+00 4.3634474e+00 4.2898748e+00 4.4067690e+00 3.9524852e+00 3.7906894e+00 3.5162082e+00 8.3156200e-01 1.1417173e+00 5.8221430e-01 7.3339246e-01 1.0428797e+00 5.5247822e-01 3.5266705e-01 2.9537172e-01 9.6466498e-01 1.0034646e+00 2.8553149e-01 1.6415483e+00 1.8567917e+00 9.3451915e-01 7.2553812e-01 3.4520795e-01 9.3451915e-01 1.5364952e+00 3.7960845e-01 5.9589853e-01 2.7723424e+00 1.3124532e+00 7.5130648e-01 1.0314203e+00 1.1925354e+00 9.9272943e-01 1.0839891e+00 7.1143905e-01 5.6164055e-01 3.0511653e+00 2.6629268e+00 3.1545235e+00 3.1980310e+00 3.0467396e+00 2.5772061e+00 2.7369167e+00 2.7576827e+00 2.8651003e+00 2.5868532e+00 3.5774656e+00 2.4748633e+00 3.3139897e+00 2.7217211e+00 2.1506369e+00 2.7852281e+00 2.5158340e+00 2.4059801e+00 3.7433691e+00 2.7041074e+00 2.8389661e+00 2.5310559e+00 3.4176981e+00 2.6902386e+00 2.6527549e+00 2.7866168e+00 3.2144386e+00 3.2675625e+00 2.6971865e+00 2.3822357e+00 2.8532332e+00 2.7780124e+00 2.4721123e+00 3.1952919e+00 2.5042136e+00 2.5315299e+00 2.9556760e+00 3.4693709e+00 2.1993495e+00 2.8460127e+00 2.7344861e+00 2.5960616e+00 2.6558880e+00 2.9309653e+00 2.5980406e+00 2.1695355e+00 2.3550298e+00 2.5518802e+00 2.5245372e+00 2.4441489e+00 4.0319503e+00 3.3933783e+00 4.1146478e+00 3.4339804e+00 3.8578841e+00 4.6712206e+00 3.3248410e+00 4.2174528e+00 4.0704050e+00 4.4988341e+00 3.3546526e+00 3.6317702e+00 3.8139412e+00 3.6743372e+00 3.7645284e+00 3.6614225e+00 3.4131399e+00 4.8439861e+00 5.2322637e+00 3.8189229e+00 4.0256031e+00 3.2902097e+00 4.8190347e+00 3.3870859e+00 3.7223145e+00 3.9080259e+00 3.2141230e+00 3.0414452e+00 3.8022687e+00 3.7869665e+00 4.3507688e+00 4.7565318e+00 3.8893282e+00 3.1162635e+00 3.3877625e+00 4.7282676e+00 3.7917280e+00 3.3122397e+00 2.9763122e+00 3.7889092e+00 4.0173731e+00 3.8788191e+00 3.3933783e+00 4.0384828e+00 4.0914753e+00 3.8500022e+00 3.7349483e+00 3.4804621e+00 3.5920363e+00 3.0535851e+00 7.5284003e-01 9.3865015e-01 8.5442446e-01 1.6409761e+00 7.0463400e-01 5.4408162e-01 7.5179033e-01 1.2786676e+00 1.4553344e+00 7.8100392e-01 1.0100290e+00 1.2786676e+00 1.4586696e+00 1.2008045e+00 7.2638147e-01 1.4586696e+00 1.8445759e+00 7.3985997e-01 5.0731024e-01 3.3136601e+00 1.4580439e+00 5.4702555e-01 3.2339566e-01 1.6607117e+00 3.5366952e-01 1.3290015e+00 3.5639126e-01 9.6825676e-01 3.4059851e+00 2.9602214e+00 3.5257340e+00 3.7492673e+00 3.5115913e+00 3.0191277e+00 2.9517483e+00 3.2720571e+00 3.3411331e+00 2.9834222e+00 4.1580731e+00 2.8211532e+00 3.9717534e+00 3.1414634e+00 2.5643903e+00 3.1728076e+00 2.8176969e+00 2.9703822e+00 4.3244606e+00 3.2734582e+00 3.0210021e+00 3.0274003e+00 3.9433841e+00 3.1866772e+00 3.1269680e+00 3.2103093e+00 3.7065013e+00 3.6299273e+00 3.0909484e+00 2.9772513e+00 3.4297321e+00 3.3756936e+00 2.9971174e+00 3.6243253e+00 2.7759818e+00 2.6501700e+00 3.3189004e+00 4.0764633e+00 2.5559925e+00 3.3602243e+00 3.2356862e+00 2.9780147e+00 3.2026716e+00 3.4783251e+00 3.0685582e+00 2.5635668e+00 2.7679629e+00 3.0129566e+00 3.0370166e+00 2.8975180e+00 4.1264564e+00 3.7496421e+00 4.4295218e+00 3.7774558e+00 4.1191095e+00 5.0038078e+00 3.6756489e+00 4.6074750e+00 4.5494422e+00 4.5665604e+00 3.5702411e+00 4.0355009e+00 4.1137066e+00 4.0638414e+00 4.0067360e+00 3.8250619e+00 3.7375780e+00 4.9153359e+00 5.6444336e+00 4.3773916e+00 4.2331397e+00 3.5751580e+00 5.2199809e+00 3.8075775e+00 3.9003626e+00 4.1989415e+00 3.5967191e+00 3.3381510e+00 4.1394208e+00 4.1772604e+00 4.7627066e+00 4.8574416e+00 4.2113835e+00 3.5565415e+00 3.8744064e+00 5.0458107e+00 3.8530980e+00 3.5894641e+00 3.2635788e+00 4.0605147e+00 4.2327162e+00 4.1232607e+00 3.7496421e+00 4.2381044e+00 4.2216886e+00 4.1152818e+00 4.1901775e+00 3.7759339e+00 3.6506667e+00 3.3268510e+00 1.0748172e+00 7.2889003e-01 1.5046031e+00 7.9398919e-01 8.1148630e-01 8.8835337e-01 9.9058911e-01 1.2262672e+00 1.1380274e+00 1.3972288e+00 1.7741287e+00 1.2483935e+00 1.0474897e+00 1.1240042e+00 1.2483935e+00 1.4149548e+00 8.1096210e-01 5.7672351e-01 3.0082939e+00 9.6865373e-01 8.2273123e-01 9.5195566e-01 1.4288989e+00 8.3246212e-01 9.4996842e-01 9.2092295e-01 8.7375509e-01 4.0151215e+00 3.5231786e+00 4.1026785e+00 3.8908802e+00 3.9665585e+00 3.3438394e+00 3.5293285e+00 3.2540384e+00 3.8314935e+00 3.1634347e+00 4.1178317e+00 3.2512254e+00 4.1561446e+00 3.5717750e+00 2.8833448e+00 3.7345570e+00 3.1952822e+00 3.2548783e+00 4.5820687e+00 3.4621656e+00 3.5141919e+00 3.4137993e+00 4.2939653e+00 3.5777026e+00 3.5926398e+00 3.7328374e+00 4.1920808e+00 4.1652091e+00 3.5073274e+00 3.1921998e+00 3.5706840e+00 3.5044583e+00 3.2904241e+00 3.9914615e+00 3.1120432e+00 3.2204607e+00 3.8807669e+00 4.3582892e+00 2.9219284e+00 3.5476488e+00 3.4540639e+00 3.4397115e+00 3.4680001e+00 3.4670753e+00 3.3367044e+00 2.9471549e+00 3.1205392e+00 3.4518638e+00 3.0783517e+00 3.2145380e+00 4.6697624e+00 4.0951447e+00 4.9940386e+00 4.2442248e+00 4.6312366e+00 5.5957028e+00 3.7901714e+00 5.1629764e+00 4.9662629e+00 5.2245876e+00 4.1326097e+00 4.4648550e+00 4.6557857e+00 4.3477764e+00 4.3833898e+00 4.3689111e+00 4.2520226e+00 5.6153369e+00 6.1715044e+00 4.6178873e+00 4.8201070e+00 3.9129644e+00 5.7808751e+00 4.2195149e+00 4.4949009e+00 4.8099428e+00 4.0213766e+00 3.8049151e+00 4.5961475e+00 4.7475868e+00 5.3061067e+00 5.5699347e+00 4.6684257e+00 3.9900166e+00 4.2272640e+00 5.6441645e+00 4.4197984e+00 4.1176453e+00 3.7157925e+00 4.6326704e+00 4.7820862e+00 4.6921349e+00 4.0951447e+00 4.8160040e+00 4.8050680e+00 4.6459078e+00 4.5554678e+00 4.2905569e+00 4.2115152e+00 3.7649212e+00 5.9314593e-01 8.0686941e-01 2.9691107e-01 6.2826980e-01 5.0121118e-01 6.6653737e-01 7.0834786e-01 4.6310132e-01 1.9251840e+00 2.1737519e+00 7.4743804e-01 5.5009731e-01 8.0748088e-01 7.4743804e-01 1.1828955e+00 4.6964680e-01 5.8942278e-01 2.4421558e+00 9.8677196e-01 4.9772204e-01 1.1660949e+00 8.4116354e-01 1.2196311e+00 7.7538587e-01 1.0376697e+00 4.4499696e-01 3.0983271e+00 2.5986852e+00 3.1534326e+00 2.8897192e+00 2.9336987e+00 2.3392252e+00 2.6586759e+00 2.3702978e+00 2.8165027e+00 2.2079130e+00 3.2363154e+00 2.2664200e+00 3.1218253e+00 2.5673178e+00 1.8638939e+00 2.7710337e+00 2.2535803e+00 2.2156046e+00 3.5264693e+00 2.4375344e+00 2.6410495e+00 2.3635223e+00 3.2419868e+00 2.5535068e+00 2.5663186e+00 2.7372400e+00 3.1657714e+00 3.1910277e+00 2.5035271e+00 2.1450705e+00 2.5644558e+00 2.5011730e+00 2.2417546e+00 2.9810976e+00 2.2012005e+00 2.4146140e+00 2.9247451e+00 3.2953953e+00 1.9474034e+00 2.5368532e+00 2.4541089e+00 2.4554575e+00 2.4210504e+00 2.5661600e+00 2.3207574e+00 1.9628165e+00 2.1171985e+00 2.4261018e+00 2.1366217e+00 2.1917681e+00 3.8609963e+00 3.1157672e+00 4.0464741e+00 3.2769657e+00 3.7011972e+00 4.6584806e+00 2.9074576e+00 4.1962146e+00 3.9292452e+00 4.4717831e+00 3.2385313e+00 3.4507621e+00 3.7050324e+00 3.3601278e+00 3.4577371e+00 3.4991206e+00 3.2980589e+00 4.9174048e+00 5.1685262e+00 3.5822256e+00 3.9345678e+00 2.9743611e+00 4.8043725e+00 3.1946631e+00 3.6425792e+00 3.9147944e+00 3.0137993e+00 2.8509730e+00 3.6160190e+00 3.7930649e+00 4.3160863e+00 4.8705552e+00 3.6935350e+00 2.9765851e+00 3.2157655e+00 4.7030966e+00 3.6383061e+00 3.1964791e+00 2.7656084e+00 3.7055141e+00 3.8768834e+00 3.7701724e+00 3.1157672e+00 3.9366463e+00 3.9674740e+00 3.7027144e+00 3.5167570e+00 3.3369517e+00 3.4319544e+00 2.8332022e+00 9.6865373e-01 3.9487224e-01 5.8131330e-01 5.6003943e-01 5.0621589e-01 7.1247632e-01 8.0317491e-01 1.7053539e+00 2.0491684e+00 7.4957404e-01 6.5459290e-01 9.3991103e-01 7.4957404e-01 1.0954558e+00 4.2737382e-01 4.9430028e-01 2.5884539e+00 7.4949264e-01 6.4432393e-01 1.0251728e+00 9.7391954e-01 1.0055888e+00 5.9279023e-01 9.4588685e-01 4.3798311e-01 3.5017283e+00 3.0032209e+00 3.5640998e+00 3.2626300e+00 3.3723783e+00 2.7101865e+00 3.0361435e+00 2.6574564e+00 3.2363742e+00 2.5684615e+00 3.5220489e+00 2.6863775e+00 3.5035562e+00 2.9639854e+00 2.2954282e+00 3.1974234e+00 2.6186896e+00 2.5919605e+00 3.9485388e+00 2.8137879e+00 3.0123600e+00 2.8059985e+00 3.6581986e+00 2.9351026e+00 2.9984934e+00 3.1711590e+00 3.5947528e+00 3.6146776e+00 2.9159819e+00 2.5508141e+00 2.9298445e+00 2.8588898e+00 2.6582994e+00 3.3705985e+00 2.5395254e+00 2.7634723e+00 3.3411818e+00 3.7151762e+00 2.3273691e+00 2.9184140e+00 2.8006021e+00 2.8512853e+00 2.8277392e+00 2.8675465e+00 2.7048983e+00 2.3342128e+00 2.5075548e+00 2.8488482e+00 2.4938133e+00 2.5939117e+00 4.2210242e+00 3.5094230e+00 4.4613495e+00 3.6611526e+00 4.1011462e+00 5.0575391e+00 3.2183295e+00 4.5889909e+00 4.3421582e+00 4.8334387e+00 3.6441411e+00 3.8749352e+00 4.1286607e+00 3.7602700e+00 3.8694583e+00 3.9027404e+00 3.6910974e+00 5.2330448e+00 5.5920875e+00 3.9683831e+00 4.3421746e+00 3.3618744e+00 5.2099570e+00 3.6296154e+00 4.0192804e+00 4.2904705e+00 3.4453138e+00 3.2560920e+00 4.0303932e+00 4.1835729e+00 4.7330562e+00 5.1897695e+00 4.1126264e+00 3.3744864e+00 3.5691373e+00 5.1336306e+00 3.9986271e+00 3.5735980e+00 3.1698618e+00 4.1283627e+00 4.2954773e+00 4.2156054e+00 3.5094230e+00 4.3310092e+00 4.3633885e+00 4.1455698e+00 3.9545856e+00 3.7585686e+00 3.7901495e+00 3.2094268e+00 9.5902306e-01 1.1795364e+00 9.6032771e-01 5.8652824e-01 3.3395426e-01 1.0753036e+00 2.5524007e+00 2.8349345e+00 2.9691107e-01 5.1396090e-01 1.3127309e+00 2.9691107e-01 7.4426155e-01 9.3211669e-01 1.1729612e+00 1.7369516e+00 8.7560645e-01 1.2666796e+00 1.8751947e+00 2.9724335e-01 1.8489906e+00 6.7745878e-01 1.6555341e+00 7.0111465e-01 3.4067014e+00 2.9452188e+00 3.4231096e+00 2.6265336e+00 3.0474186e+00 2.3887954e+00 3.0652160e+00 1.9891259e+00 2.9589070e+00 2.1699637e+00 2.7527251e+00 2.5008826e+00 2.7949298e+00 2.7160947e+00 1.9851008e+00 3.0428102e+00 2.4755098e+00 2.1256864e+00 3.3327734e+00 2.2236827e+00 3.0131023e+00 2.4300526e+00 3.1928299e+00 2.6040863e+00 2.7075499e+00 2.9536823e+00 3.2710263e+00 3.4338296e+00 2.6673396e+00 1.9555334e+00 2.2858019e+00 2.1897213e+00 2.1973377e+00 3.0392888e+00 2.4158794e+00 2.8941568e+00 3.2025759e+00 3.1091590e+00 2.1471303e+00 2.3710990e+00 2.3347284e+00 2.6698387e+00 2.3133518e+00 2.1525596e+00 2.2918773e+00 2.1454625e+00 2.2398142e+00 2.5636830e+00 1.8343082e+00 2.2388656e+00 4.2714137e+00 3.2107728e+00 4.3091817e+00 3.4717121e+00 3.9768763e+00 4.9078859e+00 2.8122927e+00 4.3885241e+00 3.9504682e+00 4.9558940e+00 3.6044479e+00 3.5632387e+00 3.9760735e+00 3.3646188e+00 3.6594046e+00 3.8782141e+00 3.5443654e+00 5.4091146e+00 5.2988184e+00 3.3878489e+00 4.2952367e+00 3.1303129e+00 4.9761618e+00 3.2919446e+00 4.0362588e+00 4.2291285e+00 3.1618923e+00 3.1077588e+00 3.7959134e+00 4.0112445e+00 4.4810404e+00 5.3509795e+00 3.8831153e+00 3.0844802e+00 3.1980603e+00 4.9707249e+00 4.0945548e+00 3.4918172e+00 3.0237585e+00 4.0192804e+00 4.2092252e+00 4.1017980e+00 3.2107728e+00 4.2952415e+00 4.3790330e+00 3.9936934e+00 3.5312555e+00 3.6065699e+00 3.8937621e+00 3.0840989e+00 4.2827238e-01 3.7398306e-01 6.4241342e-01 7.7828522e-01 4.8636669e-01 1.6800011e+00 1.9622194e+00 8.0686941e-01 5.7691891e-01 7.1789533e-01 8.0686941e-01 1.2139401e+00 2.9406726e-01 3.1507080e-01 2.6166211e+00 9.1398375e-01 3.4909881e-01 9.4580058e-01 9.6922609e-01 9.6659661e-01 7.2638147e-01 8.2574748e-01 3.6704030e-01 3.2939549e+00 2.8018134e+00 3.3643791e+00 3.1688464e+00 3.1882120e+00 2.5926123e+00 2.8420400e+00 2.6229843e+00 3.0569434e+00 2.4659441e+00 3.4932809e+00 2.5062529e+00 3.4038365e+00 2.8103848e+00 2.1284730e+00 2.9880998e+00 2.4809350e+00 2.4830222e+00 3.8129321e+00 2.7155086e+00 2.8370039e+00 2.6306749e+00 3.5140670e+00 2.8045035e+00 2.8143558e+00 2.9698163e+00 3.4126571e+00 3.4177063e+00 2.7508387e+00 2.4282690e+00 2.8424700e+00 2.7781836e+00 2.5174968e+00 3.2360555e+00 2.4214382e+00 2.5753180e+00 3.1397228e+00 3.5790751e+00 2.1850441e+00 2.8131786e+00 2.7177153e+00 2.6876771e+00 2.6993734e+00 2.8253248e+00 2.5871836e+00 2.1990767e+00 2.3678133e+00 2.6762366e+00 2.4070540e+00 2.4551607e+00 4.0383784e+00 3.3671653e+00 4.2642537e+00 3.5070157e+00 3.9193977e+00 4.8684861e+00 3.1505769e+00 4.4165051e+00 4.1898287e+00 4.6203725e+00 3.4386758e+00 3.7047820e+00 3.9273366e+00 3.6237778e+00 3.6947343e+00 3.6968840e+00 3.5190023e+00 5.0398879e+00 5.4089760e+00 3.8611646e+00 4.1322470e+00 3.2145601e+00 5.0295849e+00 3.4546083e+00 3.8248698e+00 4.1055247e+00 3.2664139e+00 3.0788010e+00 3.8567883e+00 4.0060320e+00 4.5478501e+00 4.9912214e+00 3.9339246e+00 3.2236553e+00 3.4677443e+00 4.9178815e+00 3.8042163e+00 3.4041321e+00 2.9939885e+00 3.9171296e+00 4.0866646e+00 3.9845548e+00 3.3671653e+00 4.1322520e+00 4.1520423e+00 3.9277271e+00 3.7880802e+00 3.5624203e+00 3.5967687e+00 3.0549169e+00 2.3749211e-01 9.2006504e-01 1.0428797e+00 4.2450569e-01 1.3899721e+00 1.6555341e+00 9.9973471e-01 7.5230154e-01 3.7960845e-01 9.9973471e-01 1.5086315e+00 2.6033464e-01 2.9724335e-01 2.8989712e+00 1.1937015e+00 5.7988427e-01 7.8318003e-01 1.2583645e+00 7.0463400e-01 1.0034646e+00 4.7680727e-01 5.2374483e-01 3.3114294e+00 2.8933417e+00 3.4177063e+00 3.4461307e+00 3.3255941e+00 2.8176969e+00 2.9380167e+00 2.9507452e+00 3.1524130e+00 2.7797208e+00 3.7960371e+00 2.6995806e+00 3.6095704e+00 2.9762135e+00 2.3753547e+00 3.0506196e+00 2.7121484e+00 2.6831858e+00 4.0299127e+00 2.9653560e+00 3.0144396e+00 2.8058449e+00 3.7011663e+00 2.9654419e+00 2.9344166e+00 3.0597490e+00 3.5085997e+00 3.5226725e+00 2.9395346e+00 2.6564538e+00 3.1076159e+00 3.0365838e+00 2.7379532e+00 3.4446760e+00 2.6796909e+00 2.6912430e+00 3.2129972e+00 3.7686900e+00 2.4108238e+00 3.0879511e+00 2.9762529e+00 2.8408428e+00 2.9254092e+00 3.1396427e+00 2.8384396e+00 2.3985415e+00 2.5881776e+00 2.8229620e+00 2.7289403e+00 2.6869860e+00 4.1910480e+00 3.6130663e+00 4.3602249e+00 3.6707779e+00 4.0745117e+00 4.9277939e+00 3.4934873e+00 4.4880495e+00 4.3514534e+00 4.6654573e+00 3.5594056e+00 3.8864758e+00 4.0498126e+00 3.8963526e+00 3.9502563e+00 3.8456535e+00 3.6509387e+00 5.0146974e+00 5.5101576e+00 4.0937915e+00 4.2345704e+00 3.4807992e+00 5.0960662e+00 3.6438388e+00 3.9190152e+00 4.1487738e+00 3.4580678e+00 3.2588014e+00 4.0378648e+00 4.0580582e+00 4.6285945e+00 4.9381887e+00 4.1199488e+00 3.3816601e+00 3.6553790e+00 4.9813108e+00 3.9405186e+00 3.5335600e+00 3.1869497e+00 4.0186781e+00 4.2240093e+00 4.0988575e+00 3.6130663e+00 4.2429720e+00 4.2712088e+00 4.0719125e+00 3.9975817e+00 3.7087600e+00 3.7375363e+00 3.2561951e+00 7.6824760e-01 8.5141186e-01 3.6086962e-01 1.6207126e+00 1.8802756e+00 7.9394533e-01 5.3286499e-01 4.3319335e-01 7.9394533e-01 1.3370188e+00 1.3340137e-01 3.6319073e-01 2.6778759e+00 1.0720705e+00 6.3173774e-01 1.0072799e+00 1.0495503e+00 9.3727156e-01 8.5893964e-01 7.0463400e-01 3.3395426e-01 3.3027871e+00 2.8812178e+00 3.3955887e+00 3.2888081e+00 3.2512254e+00 2.7283479e+00 2.9463809e+00 2.7764635e+00 3.0911130e+00 2.6620270e+00 3.6054231e+00 2.6430457e+00 3.4442793e+00 2.9123088e+00 2.2793286e+00 3.0205073e+00 2.6595069e+00 2.5635668e+00 3.8866925e+00 2.8178210e+00 3.0060120e+00 2.7101865e+00 3.5930006e+00 2.8829084e+00 2.8651003e+00 3.0121201e+00 3.4400598e+00 3.4869142e+00 2.8725792e+00 2.5068325e+00 2.9480926e+00 2.8720011e+00 2.6183827e+00 3.3619078e+00 2.6263990e+00 2.7176350e+00 3.1874455e+00 3.6289342e+00 2.3459758e+00 2.9476507e+00 2.8536577e+00 2.7917808e+00 2.7959976e+00 2.9585178e+00 2.7268209e+00 2.3347284e+00 2.5080346e+00 2.7508387e+00 2.5565749e+00 2.5881776e+00 4.2068537e+00 3.5342439e+00 4.3380559e+00 3.6271373e+00 4.0499864e+00 4.9127682e+00 3.3748745e+00 4.4574738e+00 4.2666131e+00 4.7143178e+00 3.5549829e+00 3.8149934e+00 4.0227420e+00 3.7946027e+00 3.8919837e+00 3.8432323e+00 3.6208873e+00 5.0849580e+00 5.4596452e+00 3.9569474e+00 4.2354064e+00 3.4126422e+00 5.0611947e+00 3.5638945e+00 3.9334644e+00 4.1519487e+00 3.3885059e+00 3.2191166e+00 3.9849073e+00 4.0334328e+00 4.5859724e+00 5.0075986e+00 4.0680600e+00 3.3134027e+00 3.5670952e+00 4.9632121e+00 3.9675062e+00 3.5176551e+00 3.1453377e+00 4.0038982e+00 4.2114761e+00 4.0820077e+00 3.5342439e+00 4.2453199e+00 4.2844704e+00 4.0426067e+00 3.8984747e+00 3.6765607e+00 3.7642725e+00 3.2184749e+00 2.6033464e-01 9.9962901e-01 2.1664244e+00 2.5030472e+00 3.6319073e-01 4.2737382e-01 1.2004100e+00 3.6319073e-01 6.1067563e-01 6.7030885e-01 8.0996690e-01 2.1006743e+00 4.0020411e-01 9.4057729e-01 1.4985933e+00 5.0731024e-01 1.4656715e+00 1.6562722e-01 1.3630799e+00 4.4417668e-01 3.6433721e+00 3.1333439e+00 3.6757970e+00 3.0281244e+00 3.3717708e+00 2.6624050e+00 3.1998148e+00 2.3430115e+00 3.2729115e+00 2.4219924e+00 3.1700354e+00 2.7177110e+00 3.2760900e+00 2.9826961e+00 2.2410752e+00 3.2981044e+00 2.6452183e+00 2.4901533e+00 3.7687554e+00 2.6225184e+00 3.1280668e+00 2.7635526e+00 3.5692464e+00 2.9177616e+00 3.0187150e+00 3.2354747e+00 3.6116754e+00 3.6909005e+00 2.9234404e+00 2.3731183e+00 2.6987010e+00 2.6178190e+00 2.5515904e+00 3.3308561e+00 2.5554841e+00 2.9570491e+00 3.4460544e+00 3.5549612e+00 2.3407691e+00 2.7326628e+00 2.6614903e+00 2.9042354e+00 2.6919656e+00 2.5430017e+00 2.6000033e+00 2.3578684e+00 2.4871797e+00 2.8599439e+00 2.2045434e+00 2.5287499e+00 4.3690091e+00 3.4628576e+00 4.5552847e+00 3.7077077e+00 4.1799642e+00 5.1678263e+00 3.0379779e+00 4.6720960e+00 4.3013447e+00 5.0550361e+00 3.7713495e+00 3.8605708e+00 4.2104897e+00 3.6525334e+00 3.8549710e+00 4.0229434e+00 3.7708197e+00 5.5011831e+00 5.6245097e+00 3.7945557e+00 4.4755001e+00 3.3306776e+00 5.2815051e+00 3.5995462e+00 4.1814664e+00 4.4417427e+00 3.4376057e+00 3.3113002e+00 4.0501276e+00 4.2847585e+00 4.7905454e+00 5.4600808e+00 4.1319681e+00 3.3795104e+00 3.5192584e+00 5.2359042e+00 4.1708373e+00 3.6809073e+00 3.2190305e+00 4.2365575e+00 4.3973146e+00 4.3149219e+00 3.4628576e+00 4.4657183e+00 4.5132257e+00 4.2167698e+00 3.8749352e+00 3.8293474e+00 3.9628758e+00 3.2623926e+00 1.0371214e+00 2.3606689e+00 2.6764689e+00 1.8699153e-01 4.0363332e-01 1.2627589e+00 1.8699153e-01 5.6164055e-01 7.8305765e-01 9.7747632e-01 1.8924893e+00 5.6164055e-01 1.0881632e+00 1.6837963e+00 2.8845946e-01 1.6545637e+00 3.5266705e-01 1.5108472e+00 5.3286499e-01 3.5596461e+00 3.0642731e+00 3.5820652e+00 2.8366432e+00 3.2382208e+00 2.5375138e+00 3.1537738e+00 2.1559444e+00 3.1474432e+00 2.2926143e+00 2.9585178e+00 2.6250629e+00 3.0590120e+00 2.8699760e+00 2.1233327e+00 3.2024265e+00 2.5670381e+00 2.3272067e+00 3.5735096e+00 2.4368431e+00 3.0826231e+00 2.6212838e+00 3.4052824e+00 2.7833861e+00 2.8923043e+00 3.1255601e+00 3.4747564e+00 3.5908785e+00 2.8135312e+00 2.1839196e+00 2.5032729e+00 2.4158569e+00 2.3928312e+00 3.2017644e+00 2.4862299e+00 2.9403226e+00 3.3545989e+00 3.3587820e+00 2.2520446e+00 2.5607059e+00 2.5059290e+00 2.8073565e+00 2.5209771e+00 2.3430115e+00 2.4562939e+00 2.2633781e+00 2.3755041e+00 2.7368591e+00 2.0165442e+00 2.3969046e+00 4.3354025e+00 3.3475977e+00 4.4615703e+00 3.6095772e+00 4.0990362e+00 5.0710534e+00 2.9144612e+00 4.5627576e+00 4.1522674e+00 5.0316497e+00 3.7102339e+00 3.7341705e+00 4.1195531e+00 3.5174471e+00 3.7659275e+00 3.9693828e+00 3.6809073e+00 5.4858042e+00 5.4945039e+00 3.6088006e+00 4.4109170e+00 3.2362256e+00 5.1634795e+00 3.4678413e+00 4.1322470e+00 4.3666536e+00 3.3199204e+00 3.2266664e+00 3.9433408e+00 4.1815045e+00 4.6694810e+00 5.4392260e+00 4.0273519e+00 3.2552513e+00 3.3773249e+00 5.1375752e+00 4.1484621e+00 3.6075786e+00 3.1365574e+00 4.1554935e+00 4.3260165e+00 4.2353581e+00 3.3475977e+00 4.4043042e+00 4.4676627e+00 4.1295047e+00 3.7244531e+00 3.7408419e+00 3.9430201e+00 3.1856251e+00 1.6790448e+00 1.8683303e+00 9.9891776e-01 7.3735391e-01 3.8639663e-01 9.9891776e-01 1.5462701e+00 4.4713936e-01 5.6262711e-01 2.7653818e+00 1.3238834e+00 5.9868400e-01 1.0167074e+00 1.1817121e+00 1.0267382e+00 1.1036371e+00 7.4965096e-01 5.9868400e-01 2.9920629e+00 2.5767485e+00 3.0904477e+00 3.1383073e+00 2.9738737e+00 2.5155127e+00 2.6450302e+00 2.7097016e+00 2.8120208e+00 2.4963677e+00 3.5442384e+00 2.3737852e+00 3.2878773e+00 2.6552959e+00 2.0482711e+00 2.7132601e+00 2.4244329e+00 2.3725931e+00 3.6825624e+00 2.6567419e+00 2.7277627e+00 2.4551607e+00 3.3586468e+00 2.6490703e+00 2.5878996e+00 2.7146857e+00 3.1604264e+00 3.1862677e+00 2.6121387e+00 2.3320406e+00 2.8060955e+00 2.7397840e+00 2.4059801e+00 3.1251810e+00 2.4123722e+00 2.4266062e+00 2.8827369e+00 3.4219145e+00 2.1146056e+00 2.7787333e+00 2.6868306e+00 2.5237903e+00 2.5969195e+00 2.8858666e+00 2.5292454e+00 2.1030528e+00 2.2789104e+00 2.4843930e+00 2.4502513e+00 2.3681813e+00 3.9129285e+00 3.2963379e+00 4.0307050e+00 3.3579713e+00 3.7573925e+00 4.6072225e+00 3.2350676e+00 4.1666050e+00 4.0096938e+00 4.3939440e+00 3.2458961e+00 3.5448948e+00 3.7163166e+00 3.5735211e+00 3.6303034e+00 3.5366397e+00 3.3347301e+00 4.7764597e+00 5.1656525e+00 3.7678733e+00 3.9190152e+00 3.1752055e+00 4.7655871e+00 3.2963860e+00 3.6257668e+00 3.8480918e+00 3.1163356e+00 2.9401017e+00 3.7060704e+00 3.7400429e+00 4.2905130e+00 4.6982735e+00 3.7862785e+00 3.0555922e+00 3.3519252e+00 4.6433941e+00 3.6672706e+00 3.2313825e+00 2.8704346e+00 3.6888814e+00 3.9001229e+00 3.7578379e+00 3.2963379e+00 3.9355102e+00 3.9693842e+00 3.7298088e+00 3.6452459e+00 3.3776637e+00 3.4666091e+00 2.9570067e+00 4.5257749e-01 2.3345854e+00 2.1006743e+00 1.4408765e+00 2.3345854e+00 2.7201861e+00 1.6242170e+00 1.4334280e+00 4.2461520e+00 2.2960397e+00 1.5510150e+00 8.3619405e-01 2.5963945e+00 7.1671402e-01 2.2031378e+00 9.3957399e-01 1.8662528e+00 3.9018608e+00 3.5587525e+00 4.0758181e+00 4.6738622e+00 4.2315488e+00 3.8362958e+00 3.5101695e+00 4.2349456e+00 4.0096351e+00 3.8957954e+00 5.1177048e+00 3.5857491e+00 4.8511271e+00 3.8770675e+00 3.4324591e+00 3.7687554e+00 3.5952204e+00 3.8095276e+00 5.1880951e+00 4.1733990e+00 3.6719420e+00 3.8275992e+00 4.7391892e+00 3.9417326e+00 3.8406076e+00 3.8597390e+00 4.3729123e+00 4.2482658e+00 3.8534412e+00 3.8740219e+00 4.3496532e+00 4.2951960e+00 3.8572117e+00 4.4028225e+00 3.5707989e+00 3.2084035e+00 3.9057558e+00 4.9165227e+00 3.3635180e+00 4.2694314e+00 4.1082916e+00 3.6886188e+00 4.0716087e+00 4.4411156e+00 3.9335446e+00 3.3496034e+00 3.5830335e+00 3.7561390e+00 4.0088699e+00 3.7413425e+00 4.6436290e+00 4.5471223e+00 4.9787007e+00 4.4481204e+00 4.7341193e+00 5.4826137e+00 4.5863292e+00 5.1433212e+00 5.2725182e+00 4.8836508e+00 4.1393671e+00 4.7672599e+00 4.7092337e+00 4.9106562e+00 4.7707455e+00 4.3996661e+00 4.3591552e+00 5.0844032e+00 6.2257171e+00 5.2378683e+00 4.7433741e+00 4.3742533e+00 5.7435198e+00 4.5678545e+00 4.3840310e+00 4.6485090e+00 4.3482964e+00 4.0364176e+00 4.8328894e+00 4.6980887e+00 5.3298852e+00 5.0020990e+00 4.9051796e+00 4.2757519e+00 4.6314634e+00 5.5369700e+00 4.3420582e+00 4.1857666e+00 3.9786340e+00 4.6138259e+00 4.8044656e+00 4.6911542e+00 4.5471223e+00 4.7508760e+00 4.7161034e+00 4.7355095e+00 4.9879154e+00 4.4154797e+00 4.1545903e+00 4.0343137e+00 2.6422396e+00 2.3867296e+00 1.6154069e+00 2.6422396e+00 3.0703842e+00 1.9080710e+00 1.7295385e+00 4.5475791e+00 2.6621202e+00 1.8051284e+00 1.1105716e+00 2.8967543e+00 1.0474897e+00 2.5495727e+00 1.1795364e+00 2.1617152e+00 3.8171826e+00 3.5339654e+00 4.0163479e+00 4.8425911e+00 4.2514283e+00 3.9557653e+00 3.4792404e+00 4.4740529e+00 4.0150475e+00 4.0717494e+00 5.3501548e+00 3.6486698e+00 4.9910943e+00 3.9350582e+00 3.5547141e+00 3.7282030e+00 3.6962934e+00 3.9420318e+00 5.2895497e+00 4.3341610e+00 3.6960949e+00 3.8986276e+00 4.8106103e+00 4.0206152e+00 3.8664495e+00 3.8454452e+00 4.3675713e+00 4.2173036e+00 3.9169317e+00 4.0237417e+00 4.5248905e+00 4.4756871e+00 3.9778974e+00 4.4827624e+00 3.6962934e+00 3.1970228e+00 3.8646917e+00 5.0103465e+00 3.4775294e+00 4.4295579e+00 4.2690345e+00 3.7344524e+00 4.1995700e+00 4.6716989e+00 4.0716455e+00 3.4573201e+00 3.6936958e+00 3.8056210e+00 4.2211876e+00 3.8604223e+00 4.5958210e+00 4.6323449e+00 4.9087471e+00 4.4703758e+00 4.7121623e+00 5.3828288e+00 4.7798674e+00 5.0815530e+00 5.2996504e+00 4.7231435e+00 4.0911974e+00 4.7955081e+00 4.6606898e+00 5.0156099e+00 4.8233009e+00 4.3540706e+00 4.3488974e+00 4.8785742e+00 6.1614901e+00 5.3577416e+00 4.6571075e+00 4.4651793e+00 5.6630236e+00 4.6077729e+00 4.3065165e+00 4.5525984e+00 4.3873290e+00 4.0638414e+00 4.8447047e+00 4.6322938e+00 5.2676175e+00 4.7796156e+00 4.9133278e+00 4.3194697e+00 4.7202167e+00 5.4208419e+00 4.2794874e+00 4.1728215e+00 4.0165591e+00 4.5422714e+00 4.7447407e+00 4.6112705e+00 4.6323449e+00 4.6754921e+00 4.6293227e+00 4.6871898e+00 5.0428586e+00 4.3953592e+00 4.1024574e+00 4.0848110e+00 3.3742167e-01 1.1857824e+00 0.0000000e+00 6.6918102e-01 7.4445830e-01 9.7322023e-01 1.9284841e+00 6.6918102e-01 1.1393372e+00 1.6942803e+00 3.7371902e-01 1.6386105e+00 4.5257749e-01 1.4715172e+00 4.9772204e-01 3.5602797e+00 3.0968979e+00 3.5933352e+00 2.8998722e+00 3.2656298e+00 2.6029746e+00 3.1974447e+00 2.2445103e+00 3.1601923e+00 2.3946216e+00 3.0209665e+00 2.6867317e+00 3.0775658e+00 2.9161244e+00 2.1946278e+00 3.2137635e+00 2.6502891e+00 2.3652711e+00 3.6096140e+00 2.4893065e+00 3.1578003e+00 2.6568473e+00 3.4426472e+00 2.8187901e+00 2.9128857e+00 3.1418202e+00 3.4847097e+00 3.6205958e+00 2.8694312e+00 2.2223283e+00 2.5588203e+00 2.4651138e+00 2.4413293e+00 3.2621861e+00 2.5834128e+00 2.9995857e+00 3.3733791e+00 3.3817876e+00 2.3263008e+00 2.6305758e+00 2.5756071e+00 2.8533918e+00 2.5683063e+00 2.4187322e+00 2.5258216e+00 2.3250308e+00 2.4413618e+00 2.7691536e+00 2.1006933e+00 2.4608850e+00 4.4119896e+00 3.4290419e+00 4.4942656e+00 3.6650933e+00 4.1590662e+00 5.0899438e+00 3.0333619e+00 4.5799469e+00 4.1882413e+00 5.0726081e+00 3.7613721e+00 3.7859992e+00 4.1623715e+00 3.6029758e+00 3.8608065e+00 4.0352348e+00 3.7266849e+00 5.5043247e+00 5.5172732e+00 3.6569442e+00 4.4568115e+00 3.3324016e+00 5.1765224e+00 3.5192065e+00 4.1799642e+00 4.3857400e+00 3.3769078e+00 3.2906843e+00 4.0034548e+00 4.1917183e+00 4.6854597e+00 5.4444866e+00 4.0904298e+00 3.2962678e+00 3.4250783e+00 5.1569386e+00 4.2213314e+00 3.6582637e+00 3.2059261e+00 4.1937040e+00 4.3826532e+00 4.2786320e+00 3.4290419e+00 4.4549850e+00 4.5270304e+00 4.1816268e+00 3.7777251e+00 3.7924144e+00 4.0173731e+00 3.2613828e+00 9.2006504e-01 3.3742167e-01 8.6080744e-01 5.0621589e-01 7.0646671e-01 2.1664244e+00 7.2679299e-01 8.9712099e-01 1.4681660e+00 5.4873947e-01 1.4074199e+00 4.9617437e-01 1.2206236e+00 2.5698045e-01 3.4986942e+00 3.0427234e+00 3.5520531e+00 3.0444864e+00 3.2783159e+00 2.6723101e+00 3.1333743e+00 2.4360210e+00 3.1627463e+00 2.4904253e+00 3.2338077e+00 2.6808015e+00 3.2240677e+00 2.9412073e+00 2.2206950e+00 3.1669559e+00 2.6716144e+00 2.4623998e+00 3.7173707e+00 2.6198784e+00 3.1208539e+00 2.6854361e+00 3.5171200e+00 2.8753360e+00 2.9157449e+00 3.1157529e+00 3.4945103e+00 3.5956983e+00 2.8873581e+00 2.3297122e+00 2.7075732e+00 2.6220688e+00 2.5143128e+00 3.3225169e+00 2.6164571e+00 2.9213819e+00 3.3323415e+00 3.4842326e+00 2.3487772e+00 2.7507828e+00 2.6991998e+00 2.8571158e+00 2.6614903e+00 2.6122501e+00 2.6121387e+00 2.3527202e+00 2.4822998e+00 2.7826627e+00 2.2477567e+00 2.5188545e+00 4.3590737e+00 3.4800724e+00 4.4652192e+00 3.6820633e+00 4.1423404e+00 5.0632361e+00 3.1594575e+00 4.5764429e+00 4.2442248e+00 4.9703970e+00 3.7054123e+00 3.8144340e+00 4.1322520e+00 3.6772717e+00 3.8704422e+00 3.9786899e+00 3.7187193e+00 5.3973273e+00 5.5276243e+00 3.7838435e+00 4.3978718e+00 3.3669786e+00 5.1732410e+00 3.5478651e+00 4.1195682e+00 4.3422158e+00 3.3925731e+00 3.2818178e+00 4.0157845e+00 4.1753467e+00 4.6824968e+00 5.3318394e+00 4.0983108e+00 3.3321312e+00 3.5171976e+00 5.1116177e+00 4.1480571e+00 3.6395566e+00 3.1983718e+00 4.1451783e+00 4.3355345e+00 4.2161052e+00 3.4800724e+00 4.4037157e+00 4.4559384e+00 4.1399085e+00 3.8303307e+00 3.7678377e+00 3.9434740e+00 3.2672961e+00 1.1857824e+00 1.7590894e+00 5.4715569e-01 6.1787077e-01 3.0224093e+00 1.4977817e+00 8.1744862e-01 9.4676850e-01 1.4369223e+00 8.6079202e-01 1.2896554e+00 5.3286499e-01 7.6195008e-01 3.1536923e+00 2.8019556e+00 3.2823965e+00 3.4754319e+00 3.2348803e+00 2.8339836e+00 2.8678686e+00 3.0569237e+00 3.0422163e+00 2.8599505e+00 3.8711727e+00 2.6769819e+00 3.5769114e+00 2.9369339e+00 2.3887701e+00 2.9172679e+00 2.7450499e+00 2.6744413e+00 3.9868196e+00 2.9825819e+00 3.0070640e+00 2.7478281e+00 3.6492544e+00 2.9260177e+00 2.8398296e+00 2.9417237e+00 3.3879693e+00 3.4191352e+00 2.9103957e+00 2.6495864e+00 3.1359829e+00 3.0635119e+00 2.7246726e+00 3.4310966e+00 2.7450499e+00 2.6593850e+00 3.0929063e+00 3.7090709e+00 2.4372581e+00 3.1206171e+00 3.0186562e+00 2.7973689e+00 2.9151879e+00 3.2261028e+00 2.8631702e+00 2.4096686e+00 2.5984928e+00 2.7564382e+00 2.8056103e+00 2.6945402e+00 4.1622883e+00 3.6243461e+00 4.2495237e+00 3.6308369e+00 4.0200378e+00 4.7940036e+00 3.6050689e+00 4.3664479e+00 4.2800934e+00 4.5553898e+00 3.4840330e+00 3.8323637e+00 3.9571437e+00 3.9163572e+00 3.9605759e+00 3.7909588e+00 3.5846709e+00 4.8756388e+00 5.3862972e+00 4.0807979e+00 4.1385728e+00 3.5138167e+00 4.9592897e+00 3.5910983e+00 3.8379532e+00 4.0230039e+00 3.4134019e+00 3.2269518e+00 3.9906410e+00 3.9261146e+00 4.4982182e+00 4.7746016e+00 4.0736767e+00 3.3286256e+00 3.6393910e+00 4.8333249e+00 3.9033387e+00 3.4776516e+00 3.1661860e+00 3.9124707e+00 4.1473618e+00 3.9899548e+00 3.6243461e+00 4.1607944e+00 4.1969547e+00 3.9859042e+00 3.9511939e+00 3.6382505e+00 3.7066628e+00 3.2552942e+00 6.6918102e-01 7.4445830e-01 9.7322023e-01 1.9284841e+00 6.6918102e-01 1.1393372e+00 1.6942803e+00 3.7371902e-01 1.6386105e+00 4.5257749e-01 1.4715172e+00 4.9772204e-01 3.5602797e+00 3.0968979e+00 3.5933352e+00 2.8998722e+00 3.2656298e+00 2.6029746e+00 3.1974447e+00 2.2445103e+00 3.1601923e+00 2.3946216e+00 3.0209665e+00 2.6867317e+00 3.0775658e+00 2.9161244e+00 2.1946278e+00 3.2137635e+00 2.6502891e+00 2.3652711e+00 3.6096140e+00 2.4893065e+00 3.1578003e+00 2.6568473e+00 3.4426472e+00 2.8187901e+00 2.9128857e+00 3.1418202e+00 3.4847097e+00 3.6205958e+00 2.8694312e+00 2.2223283e+00 2.5588203e+00 2.4651138e+00 2.4413293e+00 3.2621861e+00 2.5834128e+00 2.9995857e+00 3.3733791e+00 3.3817876e+00 2.3263008e+00 2.6305758e+00 2.5756071e+00 2.8533918e+00 2.5683063e+00 2.4187322e+00 2.5258216e+00 2.3250308e+00 2.4413618e+00 2.7691536e+00 2.1006933e+00 2.4608850e+00 4.4119896e+00 3.4290419e+00 4.4942656e+00 3.6650933e+00 4.1590662e+00 5.0899438e+00 3.0333619e+00 4.5799469e+00 4.1882413e+00 5.0726081e+00 3.7613721e+00 3.7859992e+00 4.1623715e+00 3.6029758e+00 3.8608065e+00 4.0352348e+00 3.7266849e+00 5.5043247e+00 5.5172732e+00 3.6569442e+00 4.4568115e+00 3.3324016e+00 5.1765224e+00 3.5192065e+00 4.1799642e+00 4.3857400e+00 3.3769078e+00 3.2906843e+00 4.0034548e+00 4.1917183e+00 4.6854597e+00 5.4444866e+00 4.0904298e+00 3.2962678e+00 3.4250783e+00 5.1569386e+00 4.2213314e+00 3.6582637e+00 3.2059261e+00 4.1937040e+00 4.3826532e+00 4.2786320e+00 3.4290419e+00 4.4549850e+00 4.5270304e+00 4.1816268e+00 3.7777251e+00 3.7924144e+00 4.0173731e+00 3.2613828e+00 1.2563834e+00 1.3681903e+00 1.6242170e+00 4.6126066e-01 1.4691503e+00 2.0743925e+00 5.0370871e-01 2.0365895e+00 5.2374483e-01 1.9494772e+00 1.0034646e+00 4.0320101e+00 3.4981749e+00 4.0289839e+00 2.9648238e+00 3.6116412e+00 2.8362334e+00 3.5807825e+00 2.1594400e+00 3.5619276e+00 2.4608850e+00 2.9150653e+00 2.9806848e+00 3.2524084e+00 3.2332049e+00 2.4351674e+00 3.6506644e+00 2.8794131e+00 2.6371069e+00 3.7842148e+00 2.6442387e+00 3.4386758e+00 2.9743384e+00 3.6958304e+00 3.1396988e+00 3.2947222e+00 3.5521670e+00 3.8756118e+00 3.9969338e+00 3.1587328e+00 2.4432066e+00 2.6604221e+00 2.5745994e+00 2.6880360e+00 3.4951118e+00 2.7657429e+00 3.3524671e+00 3.7924883e+00 3.6104716e+00 2.5876530e+00 2.7410968e+00 2.7238850e+00 3.1914275e+00 2.7871336e+00 2.3484202e+00 2.7125180e+00 2.6235600e+00 2.7012637e+00 3.1219910e+00 2.0888843e+00 2.6969064e+00 4.6820911e+00 3.5968849e+00 4.8607426e+00 3.9563487e+00 4.4501699e+00 5.4913616e+00 2.9743611e+00 4.9743359e+00 4.4659463e+00 5.4618868e+00 4.1043393e+00 4.0513907e+00 4.5016468e+00 3.7087600e+00 4.0024694e+00 4.3310092e+00 4.0611789e+00 5.9599083e+00 5.8632763e+00 3.7995759e+00 4.8081465e+00 3.4697005e+00 5.5699347e+00 3.7817852e+00 4.5398887e+00 4.8101536e+00 3.6425657e+00 3.5739550e+00 4.2642554e+00 4.6155808e+00 5.0696209e+00 5.9318766e+00 4.3420618e+00 3.6079861e+00 3.6711700e+00 5.5546786e+00 4.5127918e+00 3.9935485e+00 3.4733020e+00 4.5569739e+00 4.6922818e+00 4.6236700e+00 3.5968849e+00 4.7939394e+00 4.8471780e+00 4.4913725e+00 3.9942507e+00 4.1085491e+00 4.3067090e+00 3.5093006e+00 3.1271814e-01 2.6440626e+00 9.6964683e-01 5.8796666e-01 9.8545402e-01 1.0013399e+00 9.2426065e-01 7.6195008e-01 7.3283576e-01 2.6643250e-01 3.3524935e+00 2.9103383e+00 3.4378505e+00 3.2794093e+00 3.2805279e+00 2.7218307e+00 2.9677934e+00 2.7417113e+00 3.1265865e+00 2.6350666e+00 3.5810092e+00 2.6509959e+00 3.4564670e+00 2.9240118e+00 2.2778214e+00 3.0636652e+00 2.6473174e+00 2.5673371e+00 3.9008585e+00 2.8131786e+00 3.0066012e+00 2.7310040e+00 3.6088006e+00 2.8947302e+00 2.8966017e+00 3.0506196e+00 3.4785143e+00 3.5188926e+00 2.8816131e+00 2.5125550e+00 2.9397900e+00 2.8645995e+00 2.6245231e+00 3.3639057e+00 2.6028733e+00 2.7271822e+00 3.2253861e+00 3.6489825e+00 2.3376510e+00 2.9371604e+00 2.8382974e+00 2.8051321e+00 2.8006021e+00 2.9309089e+00 2.7184808e+00 2.3312464e+00 2.5047936e+00 2.7731354e+00 2.5341497e+00 2.5862794e+00 4.2119757e+00 3.5278864e+00 4.3705395e+00 3.6366115e+00 4.0640736e+00 4.9516709e+00 3.3348040e+00 4.4927271e+00 4.2867968e+00 4.7459453e+00 3.5773144e+00 3.8303307e+00 4.0501276e+00 3.7856794e+00 3.8862115e+00 3.8584574e+00 3.6392860e+00 5.1247727e+00 5.4955777e+00 3.9594564e+00 4.2633399e+00 3.3993739e+00 5.1011948e+00 3.5798230e+00 3.9561606e+00 4.1885925e+00 3.4019138e+00 3.2277183e+00 3.9971830e+00 4.0727212e+00 4.6247900e+00 5.0557045e+00 4.0800856e+00 3.3285999e+00 3.5685643e+00 5.0078455e+00 3.9761694e+00 3.5324648e+00 3.1505332e+00 4.0358238e+00 4.2334406e+00 4.1156691e+00 3.5278864e+00 4.2682695e+00 4.3053166e+00 4.0686429e+00 3.9122205e+00 3.6972894e+00 3.7712394e+00 3.2160302e+00 2.8326674e+00 1.0103954e+00 4.2829723e-01 7.9126749e-01 1.1795364e+00 7.3442235e-01 8.5582452e-01 6.1158310e-01 4.8284931e-01 3.4789406e+00 3.0164286e+00 3.5708825e+00 3.4760111e+00 3.4435701e+00 2.8856827e+00 3.0483404e+00 2.9286177e+00 3.2959553e+00 2.7769569e+00 3.7899650e+00 2.7721706e+00 3.6919547e+00 3.0773843e+00 2.4199353e+00 3.1984671e+00 2.7597977e+00 2.7743820e+00 4.1049898e+00 3.0189963e+00 3.0754044e+00 2.9033794e+00 3.7972498e+00 3.0781443e+00 3.0628742e+00 3.1980682e+00 3.6529321e+00 3.6479042e+00 3.0224061e+00 2.7237896e+00 3.1475538e+00 3.0809334e+00 2.8106441e+00 3.5217353e+00 2.7064382e+00 2.7753422e+00 3.3543209e+00 3.8636687e+00 2.4678110e+00 3.1212622e+00 3.0250044e+00 2.9444840e+00 2.9956969e+00 3.1281937e+00 2.8892226e+00 2.4772050e+00 2.6547819e+00 2.9364676e+00 2.7130802e+00 2.7488632e+00 4.2524457e+00 3.6566905e+00 4.4856620e+00 3.7659004e+00 4.1610154e+00 5.0768465e+00 3.4623926e+00 4.6393183e+00 4.4611186e+00 4.7773180e+00 3.6552032e+00 3.9746118e+00 4.1574253e+00 3.9234139e+00 3.9686223e+00 3.9172103e+00 3.7603950e+00 5.1648090e+00 5.6463490e+00 4.1614237e+00 4.3393711e+00 3.5009132e+00 5.2503936e+00 3.7276020e+00 4.0260707e+00 4.3007127e+00 3.5361708e+00 3.3347521e+00 4.1191095e+00 4.2183675e+00 4.7752353e+00 5.1049558e+00 4.1955154e+00 3.4902431e+00 3.7536489e+00 5.1215318e+00 4.0036288e+00 3.6385337e+00 3.2536517e+00 4.1326097e+00 4.3100988e+00 4.1978681e+00 3.6566905e+00 4.3438151e+00 4.3538983e+00 4.1591001e+00 4.0714399e+00 3.8024850e+00 3.7974783e+00 3.3185266e+00 2.0833080e+00 2.8648636e+00 3.5532593e+00 1.6555341e+00 3.5410343e+00 2.0840787e+00 3.3747131e+00 2.3883072e+00 4.3833871e+00 3.9159762e+00 4.2941647e+00 2.3488350e+00 3.6240540e+00 2.9044888e+00 4.0815608e+00 1.5532921e+00 3.6825697e+00 2.4113529e+00 1.7998094e+00 3.2616916e+00 2.5529439e+00 3.3821744e+00 2.6637769e+00 3.9531209e+00 3.1831859e+00 2.5836708e+00 3.1669559e+00 2.2907828e+00 3.8684560e+00 3.0202406e+00 3.4019580e+00 3.1886068e+00 3.4332960e+00 3.7685816e+00 3.8803374e+00 4.1746389e+00 3.3102735e+00 2.2304221e+00 2.1489616e+00 2.0501444e+00 2.6225712e+00 3.4164974e+00 3.0901976e+00 3.9885258e+00 4.0802502e+00 3.0869095e+00 2.9336463e+00 2.3936974e+00 2.5327316e+00 3.4518638e+00 2.5837552e+00 1.5782205e+00 2.6521862e+00 2.9662386e+00 2.9040188e+00 3.2768109e+00 1.6628177e+00 2.7685987e+00 5.0448046e+00 3.5141919e+00 4.9824611e+00 4.0549341e+00 4.5981277e+00 5.5863508e+00 2.6647036e+00 5.0241554e+00 4.1998979e+00 5.9440534e+00 4.4432394e+00 3.9560997e+00 4.6422438e+00 3.4164839e+00 4.0005863e+00 4.6454886e+00 4.2390210e+00 6.5166388e+00 5.6880370e+00 3.1944389e+00 5.0789131e+00 3.4956324e+00 5.5310286e+00 3.6881384e+00 4.9152167e+00 5.0890922e+00 3.6527501e+00 3.7902440e+00 4.2540354e+00 4.7585941e+00 5.0389487e+00 6.4918086e+00 4.3280601e+00 3.6284588e+00 3.4969965e+00 5.6399353e+00 4.9671290e+00 4.2659568e+00 3.6994310e+00 4.7714894e+00 4.8963175e+00 4.8281202e+00 3.5141919e+00 5.0683437e+00 5.1871515e+00 4.6280145e+00 3.7055141e+00 4.2764028e+00 4.7873094e+00 3.7371542e+00 1.1433971e+00 1.6774310e+00 6.8299624e-01 1.6304499e+00 2.4808718e-01 1.5886765e+00 7.6250797e-01 4.0055392e+00 3.4676312e+00 4.0289839e+00 3.2391776e+00 3.6989507e+00 2.9466089e+00 3.5208636e+00 2.4804256e+00 3.6211670e+00 2.6281173e+00 3.2921089e+00 3.0161637e+00 3.5345457e+00 3.2983536e+00 2.5210242e+00 3.6506644e+00 2.9161244e+00 2.7938108e+00 4.0292846e+00 2.8755116e+00 3.4075988e+00 3.0797683e+00 3.8646774e+00 3.2397520e+00 3.3586779e+00 3.5819899e+00 3.9571013e+00 4.0234614e+00 3.2253861e+00 2.6519927e+00 2.9269738e+00 2.8491914e+00 2.8419330e+00 3.6148101e+00 2.8039428e+00 3.2558795e+00 3.7924883e+00 3.8389577e+00 2.6284424e+00 2.9648238e+00 2.9126202e+00 3.2245885e+00 2.9718548e+00 2.6864788e+00 2.8651003e+00 2.6637996e+00 2.7789114e+00 3.1894122e+00 2.3748697e+00 2.8127546e+00 4.6364269e+00 3.7133040e+00 4.8825792e+00 4.0097653e+00 4.4740109e+00 5.5106999e+00 3.1817279e+00 5.0169254e+00 4.6066522e+00 5.3636182e+00 4.0783379e+00 4.1550948e+00 4.5252166e+00 3.8770438e+00 4.0814269e+00 4.3063766e+00 4.0872895e+00 5.8336247e+00 5.9533030e+00 4.0437148e+00 4.7859703e+00 3.5604924e+00 5.6269403e+00 3.8926783e+00 4.4927794e+00 4.7879866e+00 3.7291513e+00 3.6035976e+00 4.3384511e+00 4.6385717e+00 5.1321867e+00 5.8049832e+00 4.4149501e+00 3.6953819e+00 3.8133051e+00 5.5737973e+00 4.4415093e+00 3.9935485e+00 3.5037963e+00 4.5569739e+00 4.6922818e+00 4.6236700e+00 3.7133040e+00 4.7716971e+00 4.8030835e+00 4.5149959e+00 4.1509766e+00 4.1343605e+00 4.2319568e+00 3.5394847e+00 7.6869104e-01 1.2471855e+00 8.7636491e-01 9.9981032e-01 7.8863556e-01 7.0733904e-01 3.2400577e+00 2.7256768e+00 3.3173156e+00 3.2734582e+00 3.1889456e+00 2.6198618e+00 2.7351941e+00 2.7665224e+00 3.0627699e+00 2.5021229e+00 3.6608924e+00 2.4643905e+00 3.5457670e+00 2.8045035e+00 2.1368327e+00 2.9466857e+00 2.4386380e+00 2.5729082e+00 3.8963334e+00 2.8235662e+00 2.7242811e+00 2.6575342e+00 3.5598437e+00 2.8418228e+00 2.8206835e+00 2.9462527e+00 3.4233881e+00 3.3667899e+00 2.7322904e+00 2.5411273e+00 2.9638750e+00 2.9140871e+00 2.5797070e+00 3.2425969e+00 2.3780833e+00 2.4351544e+00 3.0892387e+00 3.6720185e+00 2.1688001e+00 2.8939857e+00 2.7945402e+00 2.6616170e+00 2.7767058e+00 2.9769851e+00 2.6347557e+00 2.1986118e+00 2.3753308e+00 2.6828901e+00 2.5283291e+00 2.4839186e+00 3.8851614e+00 3.3427747e+00 4.1909067e+00 3.4628626e+00 3.8305140e+00 4.8043725e+00 3.1800308e+00 4.3815267e+00 4.2038608e+00 4.4513681e+00 3.3256952e+00 3.6826282e+00 3.8475722e+00 3.6210755e+00 3.6107649e+00 3.5632387e+00 3.4596612e+00 4.8847297e+00 5.3781989e+00 3.9435460e+00 4.0131264e+00 3.1614358e+00 4.9957986e+00 3.4408340e+00 3.7000441e+00 4.0284550e+00 3.2354442e+00 3.0107962e+00 3.8036057e+00 3.9713385e+00 4.5180638e+00 4.8486868e+00 3.8729425e+00 3.2243808e+00 3.5087561e+00 4.8402519e+00 3.6359784e+00 3.3268022e+00 2.9240118e+00 3.8232660e+00 3.9709252e+00 3.8746323e+00 3.3427747e+00 4.0131316e+00 4.0031779e+00 3.8300809e+00 3.7945557e+00 3.4841580e+00 3.4283673e+00 2.9863682e+00 1.9060194e+00 3.1239235e-01 1.5583422e+00 4.8124784e-01 1.2220171e+00 3.3785962e+00 2.9374280e+00 3.5071305e+00 3.8740792e+00 3.5491790e+00 3.0669573e+00 2.9018296e+00 3.4251046e+00 3.3648459e+00 3.0744865e+00 4.3230411e+00 2.8485664e+00 4.1027662e+00 3.1626116e+00 2.6442554e+00 3.1724373e+00 2.8315630e+00 3.0534300e+00 4.4306138e+00 3.3882074e+00 2.9857887e+00 3.0959220e+00 4.0072094e+00 3.2240677e+00 3.1644964e+00 3.2264712e+00 3.7352584e+00 3.6230125e+00 3.1206853e+00 3.1023948e+00 3.5580276e+00 3.5096299e+00 3.0877778e+00 3.6577352e+00 2.7900553e+00 2.5838366e+00 3.3069107e+00 4.1792641e+00 2.5911812e+00 3.4684046e+00 3.3165070e+00 2.9868392e+00 3.2999163e+00 3.6373219e+00 3.1449351e+00 2.5937039e+00 2.8148578e+00 3.0518873e+00 3.1967428e+00 2.9647081e+00 4.0498613e+00 3.7819451e+00 4.3976398e+00 3.7644678e+00 4.0879497e+00 4.9574979e+00 3.7577430e+00 4.5772252e+00 4.5796941e+00 4.4589650e+00 3.5295907e+00 4.0592075e+00 4.0919364e+00 4.1226882e+00 4.0237849e+00 3.7803562e+00 3.7136035e+00 4.7772875e+00 5.6344258e+00 4.4679358e+00 4.1805116e+00 3.6013971e+00 5.1936459e+00 3.8460802e+00 3.8293150e+00 4.1365715e+00 3.6263469e+00 3.3344860e+00 4.1404384e+00 4.1465376e+00 4.7500857e+00 4.7258629e+00 4.2123837e+00 3.5757376e+00 3.9028467e+00 5.0127222e+00 3.7704782e+00 3.5495399e+00 3.2637691e+00 4.0284560e+00 4.1958516e+00 4.1011034e+00 3.7819451e+00 4.1793948e+00 4.1561376e+00 4.1029254e+00 4.2472742e+00 3.7624633e+00 3.5705606e+00 3.3154318e+00 1.8882412e+00 5.3690447e-01 1.7295385e+00 7.4445830e-01 3.5842571e+00 3.0831073e+00 3.5905412e+00 2.6850208e+00 3.1920496e+00 2.4895611e+00 3.1874455e+00 1.9825106e+00 3.1280291e+00 2.1902526e+00 2.7631963e+00 2.5991209e+00 2.9183874e+00 2.8448970e+00 2.0635463e+00 3.2072460e+00 2.5480786e+00 2.2627580e+00 3.4383056e+00 2.3172372e+00 3.0909340e+00 2.5623863e+00 3.3194064e+00 2.7506751e+00 2.8644451e+00 3.1134606e+00 3.4405052e+00 3.5767292e+00 2.7771563e+00 2.0712834e+00 2.3618912e+00 2.2737657e+00 2.3098587e+00 3.1429166e+00 2.4666493e+00 2.9899331e+00 3.3598261e+00 3.2396917e+00 2.2342806e+00 2.4357274e+00 2.4181291e+00 2.7984743e+00 2.4231383e+00 2.1599940e+00 2.3764241e+00 2.2561857e+00 2.3387588e+00 2.7074009e+00 1.8390751e+00 2.3351007e+00 4.3436399e+00 3.2756710e+00 4.4477490e+00 3.5866422e+00 4.0782068e+00 5.0677790e+00 2.7922251e+00 4.5545199e+00 4.0836814e+00 5.0715858e+00 3.7130862e+00 3.6733277e+00 4.0983149e+00 3.4111720e+00 3.6933050e+00 3.9623038e+00 3.6711803e+00 5.5579136e+00 5.4498365e+00 3.4842014e+00 4.4103781e+00 3.1690867e+00 5.1441957e+00 3.3997317e+00 4.1528029e+00 4.3901202e+00 3.2630747e+00 3.2035560e+00 3.8955732e+00 4.1857725e+00 4.6435471e+00 5.5146776e+00 3.9762768e+00 3.2193184e+00 3.3255820e+00 5.1213824e+00 4.1678001e+00 3.6124079e+00 3.1107135e+00 4.1457358e+00 4.3076787e+00 4.2130787e+00 3.2756710e+00 4.4066811e+00 4.4713485e+00 4.0952473e+00 3.6289876e+00 3.7168749e+00 3.9644506e+00 3.1662754e+00 1.5140329e+00 3.3872939e-01 1.1649855e+00 3.5691650e+00 3.1595321e+00 3.7055656e+00 4.0160835e+00 3.7376603e+00 3.2592987e+00 3.1435650e+00 3.5370651e+00 3.5437638e+00 3.2591886e+00 4.4166410e+00 3.0676819e+00 4.2127293e+00 3.3654329e+00 2.8346837e+00 3.3660906e+00 3.0613575e+00 3.2026716e+00 4.5808841e+00 3.5275705e+00 3.2454510e+00 3.2718756e+00 4.1819826e+00 3.4031279e+00 3.3454884e+00 3.4170637e+00 3.9109404e+00 3.8358967e+00 3.3305911e+00 3.2315455e+00 3.6883726e+00 3.6296117e+00 3.2506700e+00 3.8623185e+00 3.0230066e+00 2.8458833e+00 3.5111771e+00 4.3201594e+00 2.8024863e+00 3.6263297e+00 3.4825375e+00 3.1978058e+00 3.4556048e+00 3.7429398e+00 3.3240937e+00 2.7959976e+00 3.0137031e+00 3.2391776e+00 3.3180586e+00 3.1510639e+00 4.3279818e+00 4.0059487e+00 4.6233424e+00 3.9929211e+00 4.3355275e+00 5.1718231e+00 3.9512216e+00 4.7810147e+00 4.7732950e+00 4.7150495e+00 3.7777251e+00 4.2731987e+00 4.3246862e+00 4.3347988e+00 4.2753666e+00 4.0433740e+00 3.9425600e+00 5.0081332e+00 5.8406251e+00 4.6274156e+00 4.4284929e+00 3.8398842e+00 5.3940263e+00 4.0533472e+00 4.0818092e+00 4.3543675e+00 3.8429689e+00 3.5715666e+00 4.3728103e+00 4.3436347e+00 4.9498040e+00 4.9393850e+00 4.4487185e+00 3.7756717e+00 4.0901950e+00 5.2287042e+00 4.0497882e+00 3.7884247e+00 3.5028854e+00 4.2624115e+00 4.4485334e+00 4.3403092e+00 4.0059487e+00 4.4317896e+00 4.4210531e+00 4.3442496e+00 4.4457375e+00 3.9985746e+00 3.8504489e+00 3.5592028e+00 1.4309353e+00 5.3528567e-01 3.7908776e+00 3.2731841e+00 3.8215973e+00 3.1206853e+00 3.5080970e+00 2.7892862e+00 3.3363505e+00 2.4070515e+00 3.4174587e+00 2.5169099e+00 3.2261716e+00 2.8456035e+00 3.3834513e+00 3.1193847e+00 2.3599428e+00 3.4420978e+00 2.7676217e+00 2.6211360e+00 3.8782821e+00 2.7318604e+00 3.2516765e+00 2.8950591e+00 3.6956240e+00 3.0573546e+00 3.1595622e+00 3.3778208e+00 3.7543715e+00 3.8301935e+00 3.0538048e+00 2.4889600e+00 2.7975756e+00 2.7172725e+00 2.6747723e+00 3.4570094e+00 2.6710885e+00 3.0859941e+00 3.5894820e+00 3.6730945e+00 2.4678645e+00 2.8348872e+00 2.7756196e+00 3.0423378e+00 2.8112845e+00 2.6077230e+00 2.7173555e+00 2.4925318e+00 2.6151930e+00 2.9985224e+00 2.2768387e+00 2.6523384e+00 4.4886181e+00 3.5762214e+00 4.6936725e+00 3.8412437e+00 4.3086181e+00 5.3124523e+00 3.1125049e+00 4.8185220e+00 4.4330566e+00 5.1853832e+00 3.9019516e+00 3.9878172e+00 4.3438773e+00 3.7545919e+00 3.9571174e+00 4.1452084e+00 3.9080206e+00 5.6409887e+00 5.7635531e+00 3.9041153e+00 4.6071696e+00 3.4361835e+00 5.4269728e+00 3.7248960e+00 4.3153491e+00 4.5881410e+00 3.5627565e+00 3.4386758e+00 4.1762134e+00 4.4334431e+00 4.9338087e+00 5.6026788e+00 4.2556298e+00 3.5163766e+00 3.6516985e+00 5.3754384e+00 4.2899814e+00 3.8175194e+00 3.3436392e+00 4.3710164e+00 4.5233951e+00 4.4426760e+00 3.5762214e+00 4.5972906e+00 4.6375405e+00 4.3421746e+00 3.9932553e+00 3.9596590e+00 4.0813696e+00 3.3867904e+00 9.9272943e-01 3.3624661e+00 2.9811147e+00 3.5018936e+00 3.8169093e+00 3.5209477e+00 3.0838698e+00 2.9939885e+00 3.3707744e+00 3.3216375e+00 3.1074562e+00 4.2293025e+00 2.8939100e+00 3.9735251e+00 3.1779321e+00 2.6513305e+00 3.1539115e+00 2.9206559e+00 2.9923096e+00 4.3522137e+00 3.3213891e+00 3.1222272e+00 3.0540027e+00 3.9664528e+00 3.2012517e+00 3.1248526e+00 3.2007609e+00 3.6824267e+00 3.6418210e+00 3.1482435e+00 3.0088381e+00 3.4838907e+00 3.4206811e+00 3.0415159e+00 3.6826470e+00 2.9006138e+00 2.7293873e+00 3.3112277e+00 4.0819926e+00 2.6432089e+00 3.4355346e+00 3.3034492e+00 3.0164601e+00 3.2442582e+00 3.5631690e+00 3.1415769e+00 2.6264645e+00 2.8384396e+00 3.0300747e+00 3.1354811e+00 2.9649167e+00 4.2304738e+00 3.8482047e+00 4.4439318e+00 3.8285351e+00 4.1849277e+00 4.9874125e+00 3.8271288e+00 4.5862820e+00 4.5664639e+00 4.6040986e+00 3.6270951e+00 4.0846199e+00 4.1503558e+00 4.1702140e+00 4.1407964e+00 3.9121183e+00 3.7737683e+00 4.8997002e+00 5.6369181e+00 4.4180349e+00 4.2780098e+00 3.7035075e+00 5.1920494e+00 3.8582580e+00 3.9463952e+00 4.1826549e+00 3.6583100e+00 3.4129797e+00 4.2036908e+00 4.1443501e+00 4.7432980e+00 4.8153136e+00 4.2825977e+00 3.5821023e+00 3.9040345e+00 5.0374022e+00 3.9556226e+00 3.6351652e+00 3.3487998e+00 4.0905154e+00 4.2992014e+00 4.1693135e+00 3.8482047e+00 4.2897273e+00 4.2963449e+00 4.1754173e+00 4.2443816e+00 3.8297356e+00 3.7573406e+00 3.4190329e+00 3.4434283e+00 2.9833205e+00 3.5091456e+00 3.1516030e+00 3.2866494e+00 2.6849207e+00 3.0541761e+00 2.5654361e+00 3.1545670e+00 2.5403244e+00 3.3918434e+00 2.6608343e+00 3.3413616e+00 2.9302185e+00 2.2379234e+00 3.1290373e+00 2.6442995e+00 2.5077372e+00 3.8111267e+00 2.7069456e+00 3.0566678e+00 2.7098649e+00 3.5644689e+00 2.8826061e+00 2.9134932e+00 3.0944404e+00 3.4986589e+00 3.5664548e+00 2.8806273e+00 2.4158569e+00 2.8131786e+00 2.7333339e+00 2.5637470e+00 3.3370594e+00 2.5885603e+00 2.8220110e+00 3.2904739e+00 3.5710204e+00 2.3287218e+00 2.8315630e+00 2.7529707e+00 2.8293212e+00 2.7254528e+00 2.7527251e+00 2.6524994e+00 2.3299431e+00 2.4822440e+00 2.7803033e+00 2.3731496e+00 2.5423572e+00 4.2830420e+00 3.4939592e+00 4.4286678e+00 3.6575173e+00 4.1044791e+00 5.0220848e+00 3.2200733e+00 4.5468375e+00 4.2700249e+00 4.8698851e+00 3.6462342e+00 3.8237490e+00 4.0990020e+00 3.7208580e+00 3.8692104e+00 3.9203597e+00 3.6817365e+00 5.2775206e+00 5.5250867e+00 3.8676958e+00 4.3392543e+00 3.3693781e+00 5.1524083e+00 3.5650934e+00 4.0437994e+00 4.2783342e+00 3.3968462e+00 3.2517273e+00 4.0065881e+00 4.1377875e+00 4.6677357e+00 5.2142247e+00 4.0893000e+00 3.3307003e+00 3.5369003e+00 5.0771896e+00 4.0613196e+00 3.5869628e+00 3.1695162e+00 4.1006440e+00 4.2899814e+00 4.1769447e+00 3.4939592e+00 4.3422191e+00 4.3859843e+00 4.1114107e+00 3.8721945e+00 3.7365034e+00 3.8554667e+00 3.2330990e+00 7.4500632e-01 3.1271814e-01 2.7864553e+00 1.1117653e+00 1.8291315e+00 9.1459005e-01 3.2771828e+00 8.5582452e-01 2.5020950e+00 3.7722922e+00 1.4404415e+00 2.6850561e+00 1.2884095e+00 1.9346765e+00 4.6190224e-01 1.7610224e+00 1.9545276e+00 2.5064746e+00 2.4134734e+00 1.4291842e+00 1.4855627e+00 1.8305602e+00 1.4494865e+00 1.0355160e+00 6.8921053e-01 9.5529726e-01 7.2626021e-01 1.4025367e+00 2.2620298e+00 2.6646285e+00 2.6984190e+00 1.9245986e+00 1.7053476e+00 1.9940477e+00 1.3238834e+00 4.4901474e-01 2.2514668e+00 1.7899689e+00 2.4621620e+00 2.3008240e+00 1.1820572e+00 2.0593667e+00 3.3235867e+00 2.0701817e+00 1.6811909e+00 1.7438018e+00 1.2168151e+00 2.9923086e+00 1.8570167e+00 1.8407084e+00 1.9774894e+00 1.2374249e+00 1.3146181e+00 1.4369760e+00 1.6548985e+00 3.0339990e+00 1.3065206e+00 1.8441719e+00 1.9017153e+00 1.0169098e+00 1.5490835e+00 1.1480416e+00 2.3912363e+00 2.1724397e+00 1.4252775e+00 1.0284221e+00 2.2390158e+00 2.3611228e+00 2.6121814e+00 1.3139868e+00 2.0833701e+00 1.8624251e+00 1.5270661e+00 1.1605968e+00 9.3589904e-01 1.4360842e+00 1.2967707e+00 1.5740302e+00 8.5349066e-01 1.4639724e+00 2.1546616e+00 1.6538197e+00 1.2783641e+00 1.8320269e+00 1.7168897e+00 1.7042715e+00 1.0288355e+00 1.3960908e+00 1.0327124e+00 1.4702446e+00 1.2287925e+00 1.9774894e+00 1.3826233e+00 1.6072393e+00 1.3472497e+00 1.9439880e+00 1.1295026e+00 1.6414265e+00 1.5177322e+00 6.8496652e-01 2.3745921e+00 9.3211669e-01 1.2784093e+00 3.1271814e-01 2.7526949e+00 7.8034610e-01 1.8874930e+00 3.3568278e+00 7.7863029e-01 2.4620981e+00 7.9999102e-01 1.3194463e+00 4.5257749e-01 1.0705713e+00 1.5282070e+00 2.3189157e+00 1.9824340e+00 7.4029244e-01 1.0636179e+00 1.6347187e+00 1.0722301e+00 7.4849274e-01 5.3988754e-01 1.0632334e+00 7.0213871e-01 8.4383266e-01 1.8384560e+00 2.2399960e+00 2.2847962e+00 1.4577178e+00 1.3022697e+00 1.2927254e+00 6.8064066e-01 4.4417668e-01 2.0964002e+00 1.1252542e+00 1.9840858e+00 1.8038514e+00 6.0365341e-01 1.6354514e+00 2.8387736e+00 1.5364600e+00 1.0539473e+00 1.1361809e+00 7.8649633e-01 2.4634199e+00 1.2983546e+00 1.5835083e+00 1.4983760e+00 1.4748100e+00 1.0180846e+00 1.2694582e+00 2.0850659e+00 2.4405647e+00 1.6897529e+00 1.8533655e+00 2.0793529e+00 7.4797652e-01 1.3453828e+00 1.1770444e+00 1.9571621e+00 1.6977813e+00 1.1421260e+00 8.3850424e-01 2.6029823e+00 2.7071356e+00 2.3733266e+00 1.3878105e+00 1.5050081e+00 2.3020930e+00 1.2450968e+00 1.1247714e+00 1.3455945e+00 1.0453799e+00 7.4157869e-01 1.3630233e+00 1.3061954e+00 1.8456576e+00 2.6048102e+00 1.4425815e+00 9.9058911e-01 1.5658693e+00 2.1444356e+00 1.4166079e+00 7.2727886e-01 7.9343577e-01 1.1384575e+00 1.4013840e+00 1.2776135e+00 1.4983760e+00 1.4006413e+00 1.5375255e+00 1.2650236e+00 1.7250893e+00 9.0221296e-01 1.2767751e+00 9.2060977e-01 2.5673851e+00 8.6079202e-01 1.6428179e+00 8.7623959e-01 3.1131006e+00 6.6453319e-01 2.3246810e+00 3.5720588e+00 1.2918836e+00 2.4857868e+00 1.0845006e+00 1.8135469e+00 3.9472619e-01 1.6028858e+00 1.8029164e+00 2.2526468e+00 2.2305704e+00 1.2920175e+00 1.3194463e+00 1.5620078e+00 1.2567627e+00 8.7273869e-01 5.3095950e-01 7.1671402e-01 4.2827238e-01 1.2022652e+00 2.1186438e+00 2.4755072e+00 2.5212188e+00 1.7582453e+00 1.4360884e+00 1.8400908e+00 1.3147484e+00 2.6680274e-01 2.0194508e+00 1.6709595e+00 2.2587909e+00 2.1030957e+00 1.0161846e+00 1.8732616e+00 3.1496799e+00 1.8819614e+00 1.5700887e+00 1.5933926e+00 1.0543640e+00 2.8415314e+00 1.6890927e+00 1.6862498e+00 1.7038925e+00 1.0251132e+00 1.0245496e+00 1.1781513e+00 1.5212572e+00 2.8050734e+00 1.1091494e+00 1.5452835e+00 1.9080234e+00 8.5359653e-01 1.2416734e+00 8.9528108e-01 2.1088803e+00 1.9097018e+00 1.2522193e+00 7.4612152e-01 2.3284654e+00 2.1556564e+00 2.3436971e+00 1.1651790e+00 1.8364691e+00 1.6976628e+00 1.2371704e+00 1.0463225e+00 8.5302032e-01 1.1623508e+00 1.0682140e+00 1.2723284e+00 6.7955751e-01 1.2572095e+00 2.2840066e+00 1.3572135e+00 1.0082548e+00 1.5613089e+00 1.5962380e+00 1.5974627e+00 7.9671887e-01 1.1799226e+00 8.3571552e-01 1.2674750e+00 1.0543826e+00 1.7038925e+00 1.2197800e+00 1.4811026e+00 1.1132425e+00 1.6485749e+00 8.6295295e-01 1.5402909e+00 1.2957413e+00 1.7240804e+00 1.2117746e+00 2.5620931e+00 9.4346743e-01 1.9481085e+00 1.0013399e+00 1.0383354e+00 1.7091506e+00 7.5651431e-01 1.6169211e+00 1.4074199e+00 2.3606801e+00 1.6642999e+00 1.0677270e+00 9.5748562e-01 5.4702555e-01 2.2752108e+00 1.3619011e+00 1.2144903e+00 1.4245490e+00 1.7677805e+00 2.1070188e+00 2.0042865e+00 2.3026776e+00 1.5583422e+00 8.7856768e-01 3.6704030e-01 4.8644514e-01 1.0013399e+00 1.3262124e+00 1.6642999e+00 2.6524441e+00 2.3938089e+00 9.9234874e-01 1.6199145e+00 4.6126066e-01 7.3978204e-01 1.8066960e+00 7.9191984e-01 8.2250769e-01 9.3727156e-01 1.6415483e+00 1.4092680e+00 1.6304499e+00 9.1432842e-01 1.1795364e+00 3.1638147e+00 1.4103498e+00 2.9322745e+00 2.0247895e+00 2.5487652e+00 3.5082844e+00 1.0453705e+00 2.9611604e+00 1.9449446e+00 4.1343567e+00 2.6451449e+00 1.7869811e+00 2.6253748e+00 1.1973458e+00 1.9817270e+00 2.7838011e+00 2.2840066e+00 4.7706180e+00 3.4576971e+00 8.9870984e-01 3.1324336e+00 1.5639220e+00 3.4016597e+00 1.5728443e+00 3.0734808e+00 3.1995683e+00 1.6368228e+00 1.9546803e+00 2.1052860e+00 2.8313078e+00 2.9375460e+00 4.8020420e+00 2.1735035e+00 1.6493848e+00 1.3576485e+00 3.5774884e+00 3.2045691e+00 2.3952974e+00 1.8988804e+00 2.8268459e+00 2.8989852e+00 2.8927951e+00 1.4103498e+00 3.1063891e+00 3.2893581e+00 2.6241058e+00 1.4441104e+00 2.3170196e+00 3.0817543e+00 1.9124815e+00 1.0026233e+00 1.1867923e+00 2.3572427e+00 3.6939647e-01 1.6408576e+00 2.7392425e+00 8.8835337e-01 1.6805749e+00 5.5399712e-01 1.2745081e+00 7.5303835e-01 1.1820572e+00 1.1301977e+00 1.4315442e+00 1.4464138e+00 1.2423523e+00 6.4626422e-01 7.5230154e-01 6.2536527e-01 4.0664863e-01 5.0731024e-01 4.0158746e-01 6.2543628e-01 6.4884272e-01 1.4014424e+00 1.6702453e+00 1.7317202e+00 1.0390957e+00 7.1781501e-01 1.4073416e+00 1.5165187e+00 7.3502408e-01 1.2122797e+00 1.2421878e+00 1.4565053e+00 1.3559191e+00 6.8064066e-01 1.0943185e+00 2.3628816e+00 1.1638514e+00 1.1627754e+00 1.0519629e+00 5.3106808e-01 2.1057450e+00 1.0403581e+00 1.9325284e+00 1.0596309e+00 1.3779504e+00 7.6633520e-01 1.2315180e+00 1.9698667e+00 2.0697950e+00 1.4385383e+00 1.0743031e+00 2.5609592e+00 1.1664463e+00 7.0702759e-01 1.1055841e+00 1.3757605e+00 1.4784016e+00 1.4566739e+00 7.9213303e-01 3.1107848e+00 2.2607358e+00 1.5267093e+00 1.6037239e+00 1.2804073e+00 1.9864213e+00 5.4310586e-01 1.5475402e+00 1.5328931e+00 5.4647209e-01 7.9343577e-01 9.7668596e-01 1.1862065e+00 1.4760549e+00 3.1060327e+00 1.0849536e+00 3.7234239e-01 8.8571256e-01 2.0333305e+00 1.9196784e+00 9.5289573e-01 8.6297946e-01 1.2392529e+00 1.4996752e+00 1.3752205e+00 1.0596309e+00 1.6198849e+00 1.8691588e+00 1.2188552e+00 9.2906468e-01 8.7042892e-01 1.8304530e+00 9.8621003e-01 1.4220241e+00 1.5496729e+00 1.1125144e+00 7.4201890e-01 2.1434858e+00 6.0719477e-01 1.5102780e+00 5.6262711e-01 5.7267643e-01 1.3990971e+00 5.4408162e-01 5.2316125e-01 1.5323598e+00 8.2317311e-01 1.1694177e+00 5.6003943e-01 1.0600958e+00 5.1318506e-01 8.8354057e-01 1.1892978e+00 1.3456285e+00 1.4234329e+00 5.0311426e-01 8.2976237e-01 1.0655776e+00 1.1267154e+00 4.4786319e-01 6.7424840e-01 6.4241342e-01 1.4834540e+00 1.4207811e+00 1.3630799e+00 5.2795793e-01 7.8571751e-01 5.3988754e-01 6.8299624e-01 5.6992880e-01 1.6313928e+00 3.1093967e-01 5.0876385e-01 2.8653046e-01 6.5622658e-01 1.3398293e+00 2.2670334e-01 2.2472150e+00 8.9528108e-01 2.1908074e+00 1.1815770e+00 1.7549185e+00 2.8271782e+00 1.2987661e+00 2.2927322e+00 1.7056353e+00 3.1591627e+00 1.6557083e+00 1.2615426e+00 1.8432274e+00 1.1833606e+00 1.4858600e+00 1.8676774e+00 1.3771658e+00 3.7547288e+00 3.1005581e+00 1.4815836e+00 2.2650937e+00 9.5252488e-01 2.8687133e+00 1.0290036e+00 2.0855599e+00 2.2987772e+00 9.0705646e-01 9.6267538e-01 1.4839640e+00 2.0473137e+00 2.3780534e+00 3.7918985e+00 1.5792523e+00 8.4221906e-01 9.2300698e-01 2.9301148e+00 2.2149712e+00 1.3941954e+00 8.9564079e-01 1.9843979e+00 2.0984088e+00 2.1003345e+00 8.9528108e-01 2.2276119e+00 2.3923111e+00 1.8829565e+00 1.3046645e+00 1.4645285e+00 2.0631582e+00 9.0331700e-01 2.9007820e+00 1.0677270e+00 1.9884030e+00 3.5404087e+00 8.9973730e-01 2.7097598e+00 9.8896933e-01 1.4521880e+00 7.3735391e-01 1.1060455e+00 1.7358574e+00 2.5457091e+00 2.1802781e+00 5.9868400e-01 1.3038475e+00 1.8531597e+00 1.2895008e+00 1.0351584e+00 8.4116354e-01 1.3290015e+00 8.7070822e-01 1.0061402e+00 2.0523180e+00 2.4354079e+00 2.4861842e+00 1.6612475e+00 1.4482752e+00 1.3000067e+00 4.4417668e-01 6.8064066e-01 2.3457352e+00 1.2097457e+00 2.1562626e+00 1.9604379e+00 7.8034610e-01 1.8447318e+00 3.0052273e+00 1.6924215e+00 1.1656549e+00 1.2692102e+00 1.0351584e+00 2.6195047e+00 1.4577178e+00 1.3905452e+00 1.5765058e+00 1.5178511e+00 1.0862363e+00 1.2425116e+00 2.1288976e+00 2.5085097e+00 1.7889699e+00 2.0235792e+00 1.9184220e+00 6.6154242e-01 1.4831058e+00 1.2157849e+00 2.0573833e+00 1.6866006e+00 1.0122929e+00 9.0072498e-01 2.4680266e+00 2.8037035e+00 2.5716465e+00 1.3193736e+00 1.5270661e+00 2.3974481e+00 1.4129334e+00 9.9186850e-01 1.3586792e+00 1.1900564e+00 7.8649633e-01 1.4261046e+00 1.4313173e+00 1.9693923e+00 2.5032449e+00 1.4908532e+00 1.1825071e+00 1.7301809e+00 2.1927243e+00 1.1883807e+00 7.0823896e-01 8.2574748e-01 1.1508346e+00 1.3435624e+00 1.2769092e+00 1.5765058e+00 1.3121204e+00 1.3947465e+00 1.2781560e+00 1.8941016e+00 9.4449485e-01 1.0327124e+00 9.1221028e-01 2.4983699e+00 1.0001615e+00 9.3727156e-01 2.0156046e+00 1.4610933e+00 2.0818555e+00 1.4925824e+00 2.8275182e+00 1.8765007e+00 1.3658611e+00 1.8892371e+00 9.4900087e-01 2.5853758e+00 1.8063869e+00 2.0403844e+00 1.9103325e+00 2.2554051e+00 2.6063293e+00 2.6670659e+00 2.8999367e+00 1.9965452e+00 1.0765554e+00 7.8898008e-01 7.5921691e-01 1.3580560e+00 1.9753995e+00 1.7807988e+00 2.8573306e+00 2.8966014e+00 1.8587118e+00 1.7290357e+00 9.4346743e-01 1.0932187e+00 2.1982921e+00 1.2728402e+00 2.6033464e-01 1.2680818e+00 1.7824360e+00 1.6364088e+00 2.0664368e+00 3.9699460e-01 1.4644159e+00 3.6567369e+00 2.0227452e+00 3.6362580e+00 2.6431572e+00 3.1825084e+00 4.2569960e+00 1.1649315e+00 3.7040279e+00 2.8079889e+00 4.6643094e+00 3.1456885e+00 2.5368652e+00 3.2881355e+00 1.9057424e+00 2.5373943e+00 3.2972877e+00 2.8812938e+00 5.2957248e+00 4.3256332e+00 1.8261865e+00 3.7402681e+00 2.0260681e+00 4.2089146e+00 2.2931022e+00 3.6001832e+00 3.8156954e+00 2.2665638e+00 2.4364115e+00 2.8123267e+00 3.5007685e+00 3.7249152e+00 5.3249013e+00 2.8816817e+00 2.2758405e+00 2.0704519e+00 4.3322711e+00 3.6389537e+00 2.9225385e+00 2.3454418e+00 3.4545556e+00 3.5207953e+00 3.5188476e+00 2.0227452e+00 3.7070275e+00 3.8401809e+00 3.2712836e+00 2.2870689e+00 2.9197390e+00 3.4787880e+00 2.3479440e+00 1.8015956e+00 2.9300280e+00 9.4226820e-01 1.8443182e+00 6.2046469e-01 1.3340137e+00 5.0731024e-01 1.2583559e+00 1.1751408e+00 1.7063292e+00 1.5923247e+00 1.2788332e+00 7.3035754e-01 1.0391769e+00 6.6194168e-01 2.9537172e-01 2.8845946e-01 3.7622328e-01 6.2760421e-01 7.7259801e-01 1.4843174e+00 1.8353890e+00 1.8732616e+00 1.1492120e+00 9.8621003e-01 1.4916922e+00 1.4186317e+00 5.4702555e-01 1.4349060e+00 1.2616939e+00 1.6526705e+00 1.5077694e+00 6.5951091e-01 1.2429329e+00 2.5190636e+00 1.3124532e+00 1.1415080e+00 1.1102613e+00 5.1210327e-01 2.2412909e+00 1.1466385e+00 2.0209769e+00 1.3581397e+00 1.4351001e+00 9.3899770e-01 1.3860326e+00 1.9736520e+00 2.3116417e+00 1.4395013e+00 1.3256797e+00 2.5152621e+00 1.1895067e+00 1.0230389e+00 1.2126763e+00 1.7102781e+00 1.7732497e+00 1.5528794e+00 8.7017583e-01 2.9799960e+00 2.3789847e+00 1.8031686e+00 1.6479163e+00 1.5433090e+00 2.0188390e+00 8.9564079e-01 1.5340057e+00 1.4361609e+00 8.5359653e-01 9.3591761e-01 1.2375842e+00 1.0932909e+00 1.5255827e+00 2.9419617e+00 1.3503714e+00 5.7743200e-01 1.0870568e+00 2.0633836e+00 1.9646340e+00 9.8006549e-01 1.0101003e+00 1.2839264e+00 1.6205305e+00 1.4633215e+00 1.3581397e+00 1.6723912e+00 1.9304834e+00 1.3785508e+00 1.2852279e+00 1.0122929e+00 1.8669942e+00 1.1301977e+00 1.7293858e+00 1.1132823e+00 1.5940674e+00 1.2647627e+00 7.0155617e-01 2.0524860e+00 9.1916314e-01 9.0143387e-01 1.7090768e+00 7.7500385e-01 1.6060095e+00 1.1202045e+00 1.5217697e+00 1.2283051e+00 1.5431751e+00 1.8486311e+00 2.0116712e+00 2.0744305e+00 1.1308980e+00 8.6249502e-01 8.7618973e-01 9.4738284e-01 7.7051641e-01 1.2102028e+00 8.1844705e-01 1.9297683e+00 2.0868978e+00 1.6471661e+00 8.6143605e-01 6.0365341e-01 5.7743200e-01 1.3481077e+00 8.0628657e-01 1.1400599e+00 5.2860161e-01 9.6999820e-01 7.8957903e-01 1.3189781e+00 8.0128554e-01 6.6918102e-01 2.6783589e+00 1.1902996e+00 2.8052881e+00 1.7833755e+00 2.2807524e+00 3.4730319e+00 7.8369762e-01 2.9612706e+00 2.2200035e+00 3.7113566e+00 2.2079590e+00 1.7773274e+00 2.4240040e+00 1.2586273e+00 1.6606465e+00 2.3345591e+00 2.0100747e+00 4.3781379e+00 3.6673897e+00 1.6336953e+00 2.8241758e+00 1.1071867e+00 3.5077760e+00 1.5364148e+00 2.6605007e+00 2.9756588e+00 1.4305490e+00 1.5019762e+00 1.9806289e+00 2.7459951e+00 3.0159022e+00 4.4377151e+00 2.0446123e+00 1.5157660e+00 1.4706419e+00 3.5410473e+00 2.6488235e+00 2.0119986e+00 1.3953413e+00 2.5748429e+00 2.6034011e+00 2.6304123e+00 1.1902996e+00 2.7818749e+00 2.8834870e+00 2.3861430e+00 1.6719199e+00 2.0259174e+00 2.4855987e+00 1.3894554e+00 2.6621352e+00 1.3234208e+00 2.6096596e+00 2.2340939e+00 3.3444949e+00 2.5679785e+00 1.9118907e+00 1.7502251e+00 1.3868450e+00 3.2376571e+00 2.3245757e+00 2.2030084e+00 2.3874774e+00 2.7435279e+00 3.0963501e+00 2.9911365e+00 3.3313369e+00 2.5528922e+00 1.6215602e+00 1.1232628e+00 1.1083720e+00 1.9130507e+00 2.3463017e+00 2.5105454e+00 3.5809242e+00 3.3974315e+00 1.8325077e+00 2.4726944e+00 1.3889514e+00 1.6150266e+00 2.7833542e+00 1.7312416e+00 7.0111465e-01 1.8556044e+00 2.5019422e+00 2.3097506e+00 2.6016512e+00 1.2007565e+00 2.0949830e+00 4.1622891e+00 2.3984916e+00 3.9595754e+00 3.0477055e+00 3.5738045e+00 4.5102220e+00 1.5833139e+00 3.9547990e+00 2.8883510e+00 5.1681640e+00 3.6715203e+00 2.8100260e+00 3.6615020e+00 2.1175666e+00 2.9197870e+00 3.8026677e+00 3.3142297e+00 5.7988752e+00 4.3773719e+00 1.6802144e+00 4.1689985e+00 2.5051488e+00 4.3637125e+00 2.6075737e+00 4.1031841e+00 4.2218983e+00 2.6731954e+00 2.9685228e+00 3.1235748e+00 3.8333962e+00 3.9200272e+00 5.8238336e+00 3.1861618e+00 2.6684075e+00 2.3174914e+00 4.5851647e+00 4.2037872e+00 3.4173362e+00 2.9015754e+00 3.8649606e+00 3.9284352e+00 3.9274419e+00 2.3984916e+00 4.1396215e+00 4.3152972e+00 3.6556493e+00 2.4306199e+00 3.3534589e+00 4.0726739e+00 2.9019830e+00 1.9649078e+00 4.5716421e-01 6.0725725e-01 1.0082512e+00 4.0020411e-01 9.6216255e-01 1.8879475e+00 1.3283978e+00 6.9493020e-01 5.9382214e-01 1.3116762e+00 7.1128716e-01 6.9976890e-01 8.6291569e-01 1.2356595e+00 1.0989171e+00 3.1093967e-01 1.2231205e+00 1.5729927e+00 1.6302590e+00 8.2263932e-01 8.7786730e-01 6.2729876e-01 9.5483435e-01 1.0328871e+00 1.7091506e+00 4.5071694e-01 1.2824303e+00 1.1188225e+00 3.5622944e-01 1.0163696e+00 2.1159028e+00 8.2380019e-01 4.6137216e-01 4.2450569e-01 5.0629646e-01 1.7321630e+00 5.8565201e-01 1.8627348e+00 1.0140018e+00 1.9095789e+00 1.0347180e+00 1.4794093e+00 2.5851550e+00 1.6987423e+00 2.1172382e+00 1.7999889e+00 2.6937126e+00 1.1946586e+00 1.2274756e+00 1.5304430e+00 1.4222936e+00 1.3705079e+00 1.4369760e+00 1.1056213e+00 3.3133435e+00 3.0027854e+00 1.9037709e+00 1.8688892e+00 9.6470639e-01 2.7156484e+00 1.0119180e+00 1.6591942e+00 1.9679139e+00 7.8369762e-01 6.0848963e-01 1.3509456e+00 1.8177289e+00 2.2200035e+00 3.3498688e+00 1.4311753e+00 8.4040822e-01 1.2474502e+00 2.6426508e+00 1.7620244e+00 1.0560148e+00 5.3362004e-01 1.6100417e+00 1.7340403e+00 1.6942922e+00 1.0140018e+00 1.8496575e+00 1.9626001e+00 1.5340961e+00 1.4294738e+00 1.1293709e+00 1.5949054e+00 6.4398240e-01 1.7472907e+00 1.7451622e+00 2.3128200e+00 2.0364367e+00 1.1795364e+00 7.5358247e-01 8.5582452e-01 2.5764453e+00 1.4435947e+00 1.1399118e+00 1.4681660e+00 1.7387082e+00 2.0628406e+00 1.8244206e+00 2.2981140e+00 1.7651851e+00 1.0308265e+00 7.7934221e-01 7.7863029e-01 1.2082987e+00 1.5285763e+00 2.1068341e+00 2.8909913e+00 2.3684734e+00 6.2479428e-01 1.9481438e+00 9.9891776e-01 1.1557309e+00 1.9516972e+00 9.8896933e-01 1.2918836e+00 1.3154759e+00 1.9018319e+00 1.7043940e+00 1.6876317e+00 1.4136421e+00 1.4845363e+00 3.4227731e+00 1.7797546e+00 2.8993041e+00 2.1584174e+00 2.6985144e+00 3.3744038e+00 1.7790388e+00 2.8051892e+00 1.8256311e+00 4.2196161e+00 2.7909300e+00 1.8699505e+00 2.6716730e+00 1.6273208e+00 2.3931485e+00 2.9994905e+00 2.3643994e+00 4.7587356e+00 3.2663266e+00 8.6629251e-01 3.2140857e+00 2.0311002e+00 3.1918979e+00 1.6793067e+00 3.1869276e+00 3.1309476e+00 1.8104252e+00 2.1858235e+00 2.2467893e+00 2.6763967e+00 2.7532877e+00 4.7380019e+00 2.3330174e+00 1.6923429e+00 1.4009491e+00 3.4550204e+00 3.4609647e+00 2.5225714e+00 2.1699387e+00 2.8630132e+00 3.0349029e+00 2.9631214e+00 1.7797546e+00 3.2114945e+00 3.4557456e+00 2.7355167e+00 1.5237929e+00 2.4389172e+00 3.3539591e+00 2.2150193e+00 8.7774396e-01 8.7560645e-01 6.6918102e-01 8.5695467e-01 1.6281675e+00 1.2552875e+00 9.0276183e-01 4.7723749e-01 9.6922609e-01 3.4909881e-01 4.4701039e-01 6.6835176e-01 8.7807032e-01 8.7272262e-01 2.1119253e-01 1.2038778e+00 1.5064820e+00 1.5654738e+00 7.8630314e-01 5.8942278e-01 8.9320425e-01 1.1940983e+00 8.6887698e-01 1.4210091e+00 7.4201890e-01 1.2452417e+00 1.0494370e+00 2.3749211e-01 9.1435339e-01 2.1409786e+00 8.2148003e-01 6.5993495e-01 5.7516438e-01 2.8835410e-01 1.8418099e+00 6.4756318e-01 1.8787743e+00 9.0810653e-01 1.6779282e+00 7.7021931e-01 1.3319441e+00 2.3098596e+00 1.7659238e+00 1.7880416e+00 1.4280932e+00 2.6604707e+00 1.1753998e+00 9.4281519e-01 1.3471074e+00 1.3158313e+00 1.3974368e+00 1.4547739e+00 8.7568652e-01 3.2288696e+00 2.6753697e+00 1.6330922e+00 1.7674989e+00 1.0240850e+00 2.3852911e+00 7.4743804e-01 1.5932991e+00 1.7495490e+00 5.8796666e-01 5.8374436e-01 1.1339991e+00 1.5083690e+00 1.8912106e+00 3.2526896e+00 1.2423778e+00 4.2436984e-01 8.5959137e-01 2.4097678e+00 1.8344669e+00 9.0791603e-01 5.8796666e-01 1.4645285e+00 1.6477112e+00 1.6088132e+00 9.0810653e-01 1.7454599e+00 1.9428935e+00 1.4315280e+00 1.1694177e+00 9.9244707e-01 1.7007353e+00 6.6154242e-01 1.4832888e+00 6.1810529e-01 7.1128716e-01 1.8601631e+00 9.7397874e-01 1.2254650e+00 6.8496652e-01 1.4755282e+00 9.0753778e-01 1.0443931e+00 1.3169341e+00 1.6226440e+00 1.6498870e+00 7.4980278e-01 8.0686941e-01 1.1940983e+00 1.2255953e+00 5.6318359e-01 1.1503759e+00 6.6361830e-01 1.4063472e+00 1.5603679e+00 1.6837563e+00 3.6536845e-01 9.5761359e-01 8.4619410e-01 8.6958016e-01 7.7821113e-01 1.6196626e+00 5.7306091e-01 4.4786319e-01 3.6086172e-01 8.2608188e-01 1.1831978e+00 3.8480889e-01 2.4265852e+00 1.2696247e+00 2.4764170e+00 1.5584328e+00 2.0444851e+00 3.1426915e+00 1.4493286e+00 2.6430316e+00 2.1446703e+00 3.2893516e+00 1.7955663e+00 1.6408995e+00 2.1004081e+00 1.5285733e+00 1.7064050e+00 2.0142932e+00 1.6802708e+00 3.9009617e+00 3.4821230e+00 1.8809382e+00 2.4651410e+00 1.1989033e+00 3.2268928e+00 1.3782117e+00 2.2651964e+00 2.5478630e+00 1.2124370e+00 1.1789342e+00 1.8358339e+00 2.3443222e+00 2.7210373e+00 3.9221023e+00 1.9136809e+00 1.2486828e+00 1.4646971e+00 3.1951870e+00 2.3252489e+00 1.6537705e+00 1.0855082e+00 2.1947734e+00 2.3108044e+00 2.2621105e+00 1.2696247e+00 2.4484679e+00 2.5504328e+00 2.0873736e+00 1.6773040e+00 1.7023842e+00 2.1476736e+00 1.1560388e+00 1.3558057e+00 1.5283845e+00 2.1664244e+00 1.9784646e+00 1.1457159e+00 1.0355160e+00 1.4985549e+00 1.0494370e+00 6.0365341e-01 2.6033464e-01 7.3803207e-01 5.6864482e-01 9.7352372e-01 1.8229204e+00 2.2308199e+00 2.2668270e+00 1.4769275e+00 1.3385535e+00 1.5931825e+00 1.1248155e+00 2.1466080e-01 1.9117251e+00 1.3652496e+00 2.0207624e+00 1.8704283e+00 7.6880092e-01 1.6220723e+00 2.8778954e+00 1.6265611e+00 1.2621791e+00 1.3042843e+00 7.7313507e-01 2.5362196e+00 1.4082507e+00 1.8291996e+00 1.6183246e+00 1.3603639e+00 1.0878281e+00 1.3564590e+00 1.9053825e+00 2.6072470e+00 1.4737985e+00 1.6790332e+00 2.1679999e+00 9.4182667e-01 1.2929545e+00 1.1391970e+00 2.0265696e+00 1.8799960e+00 1.3547660e+00 8.8029208e-01 2.6196958e+00 2.4872661e+00 2.2706454e+00 1.4300844e+00 1.7151590e+00 2.0626281e+00 1.1997534e+00 1.2637010e+00 1.2307777e+00 1.0813975e+00 9.6603754e-01 1.3834169e+00 1.0564307e+00 1.5971466e+00 2.5708690e+00 1.4735640e+00 9.4160439e-01 1.5222760e+00 1.9572025e+00 1.7004687e+00 8.9142733e-01 1.0459007e+00 1.1049324e+00 1.4763267e+00 1.2674750e+00 1.6183246e+00 1.4769125e+00 1.6832034e+00 1.2843405e+00 1.6410601e+00 9.6706760e-01 1.5985259e+00 1.1910776e+00 1.0088064e+00 1.9822205e+00 1.3115314e+00 7.2626021e-01 8.5225534e-01 1.4476734e+00 8.6297946e-01 1.0334797e+00 1.2160426e+00 1.5358725e+00 1.3833366e+00 5.3528567e-01 1.2712561e+00 1.5367336e+00 1.6013312e+00 8.9845135e-01 9.1916314e-01 2.4152660e-01 1.0495503e+00 1.3530247e+00 1.8419620e+00 3.4651700e-01 1.2220171e+00 1.0116179e+00 6.2046469e-01 1.0696792e+00 2.0057768e+00 7.5914566e-01 4.4499696e-01 4.0664863e-01 8.1224041e-01 1.6406723e+00 5.8942278e-01 1.9060542e+00 9.6301827e-01 2.1281559e+00 1.1449868e+00 1.6017068e+00 2.8050285e+00 1.4536311e+00 2.3373419e+00 1.9472489e+00 2.8613983e+00 1.3924555e+00 1.3756347e+00 1.7433862e+00 1.3615778e+00 1.3332278e+00 1.5654312e+00 1.2872568e+00 3.4973752e+00 3.1986815e+00 1.9281666e+00 2.0588451e+00 8.3270853e-01 2.9373687e+00 1.1828955e+00 1.8231885e+00 2.1962402e+00 9.5979989e-01 7.5532639e-01 1.4672797e+00 2.0720690e+00 2.4566102e+00 3.5648048e+00 1.5414664e+00 1.0212756e+00 1.2733735e+00 2.8900916e+00 1.8289569e+00 1.2092544e+00 6.4558417e-01 1.8428644e+00 1.8966444e+00 1.9319316e+00 9.6301827e-01 2.0102936e+00 2.1030669e+00 1.7380754e+00 1.5489952e+00 1.3296349e+00 1.6538197e+00 6.3357758e-01 1.4295948e+00 5.4873947e-01 1.6126413e+00 5.8496636e-01 1.1009910e+00 6.0725725e-01 9.5139638e-01 1.3098483e+00 1.3941599e+00 1.6617787e+00 8.6702860e-01 4.2826573e-01 8.0996690e-01 8.1324137e-01 2.8553149e-01 9.9883272e-01 1.0921061e+00 1.8259719e+00 1.6053711e+00 1.1828265e+00 8.3161134e-01 7.0834786e-01 5.3106808e-01 9.8233874e-01 3.5366952e-01 1.4106682e+00 4.6484021e-01 7.5179033e-01 6.2055338e-01 7.8324937e-01 1.1546456e+00 4.7149050e-01 2.7022699e+00 1.3084256e+00 2.4620452e+00 1.5488588e+00 2.1433843e+00 3.0477876e+00 1.5122060e+00 2.4794486e+00 1.8496575e+00 3.5092631e+00 2.0205369e+00 1.5421829e+00 2.1550478e+00 1.4847626e+00 1.9338323e+00 2.2845215e+00 1.7093196e+00 4.0428524e+00 3.2768847e+00 1.4413624e+00 2.6112105e+00 1.4262166e+00 3.0341947e+00 1.2919157e+00 2.4486747e+00 2.5390232e+00 1.2420951e+00 1.3836252e+00 1.8380693e+00 2.2098781e+00 2.5420974e+00 4.0353061e+00 1.9425259e+00 1.0808550e+00 1.0871507e+00 3.1511951e+00 2.6568698e+00 1.7619640e+00 1.3391481e+00 2.2882514e+00 2.4739376e+00 2.4163220e+00 1.3084256e+00 2.5943375e+00 2.7895659e+00 2.2249457e+00 1.4927500e+00 1.8163092e+00 2.5068377e+00 1.3832520e+00 1.1807138e+00 2.3735475e+00 1.4416726e+00 7.3803207e-01 1.4480380e+00 1.6571634e+00 1.9125650e+00 1.5766889e+00 1.9793333e+00 1.6323793e+00 1.4021778e+00 1.1659675e+00 1.2498767e+00 1.3539814e+00 1.2332482e+00 2.0826771e+00 2.7811716e+00 2.1646850e+00 3.7371902e-01 2.0122804e+00 1.1585774e+00 1.3127802e+00 1.8544941e+00 1.1485726e+00 1.7450075e+00 1.3972701e+00 1.9880179e+00 1.7517164e+00 1.6394680e+00 1.8002228e+00 1.5490387e+00 2.9816674e+00 1.3976606e+00 2.4151949e+00 1.7787946e+00 2.2180206e+00 2.8804995e+00 1.7355261e+00 2.3592859e+00 1.2412454e+00 3.7977608e+00 2.4485045e+00 1.3668906e+00 2.2064746e+00 1.1631247e+00 1.9116990e+00 2.5849220e+00 2.0027932e+00 4.3925033e+00 2.6611027e+00 3.7234239e-01 2.7559143e+00 1.7089501e+00 2.6795765e+00 1.2450968e+00 2.8073641e+00 2.7667084e+00 1.4485479e+00 1.9038618e+00 1.7262603e+00 2.3286441e+00 2.2609611e+00 4.4068441e+00 1.7897439e+00 1.4300608e+00 1.1275945e+00 2.9337206e+00 3.0746426e+00 2.2005676e+00 1.9094387e+00 2.4292641e+00 2.5401664e+00 2.4975057e+00 1.3976606e+00 2.7518188e+00 2.9966927e+00 2.2416615e+00 9.2104245e-01 2.0302905e+00 3.0030765e+00 1.9507955e+00 1.9593598e+00 9.5666050e-01 1.1447875e+00 1.0324994e+00 1.3800294e+00 1.7386688e+00 1.7301705e+00 2.0251376e+00 1.2143895e+00 3.6924035e-01 2.6643250e-01 3.1271814e-01 5.3690447e-01 1.1566759e+00 1.3335853e+00 2.2553589e+00 2.0395552e+00 1.0374728e+00 1.1879760e+00 2.9406726e-01 4.0650681e-01 1.4164313e+00 3.6319073e-01 9.3305124e-01 5.5709100e-01 1.1791615e+00 9.8143688e-01 1.2231662e+00 7.9042934e-01 7.5817225e-01 2.9833953e+00 1.3537061e+00 2.7591591e+00 1.8262769e+00 2.3975382e+00 3.3499130e+00 1.2034779e+00 2.7851895e+00 1.9405021e+00 3.8845156e+00 2.3750632e+00 1.6954582e+00 2.4431790e+00 1.3394090e+00 1.9751740e+00 2.5771567e+00 2.0432035e+00 4.4739802e+00 3.4420978e+00 1.1727925e+00 2.9298786e+00 1.4800982e+00 3.2892623e+00 1.4456510e+00 2.8154123e+00 2.9321762e+00 1.4509441e+00 1.6902348e+00 2.0142932e+00 2.5791547e+00 2.8031074e+00 4.4835636e+00 2.1018908e+00 1.3894554e+00 1.2250001e+00 3.4334168e+00 2.9754074e+00 2.1241116e+00 1.6323629e+00 2.6113665e+00 2.7403495e+00 2.7045382e+00 1.3537061e+00 2.9092469e+00 3.0943267e+00 2.4717839e+00 1.4839640e+00 2.1082363e+00 2.8334846e+00 1.6627952e+00 1.2426609e+00 1.7313027e+00 1.2372185e+00 1.1631247e+00 1.1195889e+00 1.5188976e+00 1.0845006e+00 8.2263932e-01 1.9012930e+00 2.1909047e+00 2.2638611e+00 1.4908532e+00 1.2008045e+00 8.7223523e-01 5.7002996e-01 1.0697164e+00 2.2410714e+00 9.6470639e-01 1.8639992e+00 1.6786018e+00 7.4743804e-01 1.6592561e+00 2.7039438e+00 1.4162972e+00 1.0024224e+00 1.0401603e+00 1.0580730e+00 2.3284654e+00 1.2231205e+00 1.2611129e+00 1.1791615e+00 1.6899776e+00 9.5793067e-01 1.1548640e+00 2.3712314e+00 2.0275068e+00 2.0149111e+00 1.9649183e+00 2.1679212e+00 7.8905316e-01 1.3385913e+00 1.3061285e+00 1.6571634e+00 1.2299006e+00 9.3495766e-01 9.4613565e-01 2.8415314e+00 2.9130399e+00 2.3454203e+00 1.4655406e+00 1.0267382e+00 2.6085350e+00 1.2515236e+00 1.1837505e+00 1.7109084e+00 9.9111027e-01 5.2374483e-01 1.2552875e+00 1.7513749e+00 2.1661990e+00 2.9392776e+00 1.3022811e+00 1.1259771e+00 1.5663601e+00 2.4310503e+00 1.1268523e+00 7.5840628e-01 4.7680727e-01 1.3348163e+00 1.3454539e+00 1.4034689e+00 1.1791615e+00 1.4139320e+00 1.4450127e+00 1.2754470e+00 1.6940148e+00 9.2620264e-01 9.4281519e-01 4.9160020e-01 9.3054395e-01 4.1781009e-01 4.6190224e-01 8.0369154e-01 9.6816967e-01 1.1548640e+00 4.6557224e-01 8.2518769e-01 1.2073068e+00 1.2487994e+00 4.5257749e-01 7.8164792e-01 1.0374728e+00 1.4711456e+00 1.1089653e+00 1.1997868e+00 7.6195008e-01 1.0018628e+00 8.9796526e-01 5.8785093e-01 6.0098693e-01 1.8456219e+00 6.5622658e-01 6.9001472e-01 5.4715569e-01 3.1093967e-01 1.5254459e+00 4.8636669e-01 2.2683520e+00 1.0914354e+00 1.9823217e+00 1.1675117e+00 1.6963493e+00 2.6008457e+00 1.7128336e+00 2.0692339e+00 1.5728043e+00 3.0096252e+00 1.5213092e+00 1.1599200e+00 1.6580031e+00 1.3691582e+00 1.6116709e+00 1.8005954e+00 1.2641532e+00 3.5755981e+00 2.8921647e+00 1.5229350e+00 2.1046875e+00 1.2108278e+00 2.6299105e+00 8.9496218e-01 1.9702691e+00 2.0808148e+00 8.0585922e-01 9.4983854e-01 1.4326334e+00 1.7811974e+00 2.1211631e+00 3.5687116e+00 1.5311195e+00 7.1811205e-01 1.0257884e+00 2.6607812e+00 2.2075002e+00 1.3273841e+00 9.2853136e-01 1.7721541e+00 1.9757526e+00 1.8755628e+00 1.0914354e+00 2.1076593e+00 2.2924992e+00 1.7080157e+00 1.2150638e+00 1.3228669e+00 2.0678512e+00 1.0435585e+00 8.3930091e-01 1.0246689e+00 1.2483935e+00 9.2934901e-01 1.2786676e+00 1.0167074e+00 1.2794668e+00 1.2845002e+00 1.3705288e+00 1.0262066e+00 6.1158310e-01 1.6007620e+00 2.1232609e+00 1.4700482e+00 6.0145223e-01 1.5227019e+00 1.1234881e+00 1.1051628e+00 1.1975697e+00 9.1241332e-01 1.9821649e+00 1.0739839e+00 1.4719712e+00 1.2657553e+00 1.0246689e+00 1.8799916e+00 1.1304806e+00 2.3473055e+00 9.3001231e-01 1.7895396e+00 1.0784109e+00 1.5778477e+00 2.3110268e+00 1.7258314e+00 1.7588444e+00 8.0501785e-01 3.1299934e+00 1.7625999e+00 7.4394765e-01 1.5582385e+00 9.7850690e-01 1.4989725e+00 1.9419525e+00 1.2877346e+00 3.7053544e+00 2.3011615e+00 7.8305765e-01 2.1061327e+00 1.2737998e+00 2.1925140e+00 6.0604502e-01 2.1121593e+00 2.0810604e+00 8.0686941e-01 1.2420238e+00 1.1264142e+00 1.6698499e+00 1.7264467e+00 3.7248620e+00 1.2214818e+00 7.0111465e-01 5.3487449e-01 2.3978329e+00 2.4200364e+00 1.4831058e+00 1.2723027e+00 1.7715216e+00 1.9225896e+00 1.8845666e+00 9.3001231e-01 2.0954738e+00 2.3579846e+00 1.6403910e+00 5.2719130e-01 1.3587682e+00 2.3456726e+00 1.3154759e+00 5.0299964e-01 8.2155022e-01 8.8684653e-01 1.0935878e+00 4.8492463e-01 9.8860056e-01 1.2858521e+00 1.3288928e+00 6.2451737e-01 6.2760421e-01 1.0463002e+00 1.4889605e+00 1.0762241e+00 1.1975697e+00 8.4271175e-01 1.0854927e+00 8.7560645e-01 5.3352899e-01 7.0810362e-01 1.9474744e+00 7.1781501e-01 7.2553812e-01 6.1968090e-01 3.6924035e-01 1.6978139e+00 6.0510141e-01 2.1983316e+00 1.0378652e+00 1.8773521e+00 9.9490014e-01 1.5974238e+00 2.4585483e+00 1.7380659e+00 1.8957007e+00 1.4179266e+00 2.9495957e+00 1.4948761e+00 1.0683666e+00 1.5886178e+00 1.3564059e+00 1.6294524e+00 1.7819921e+00 1.1268523e+00 3.4719349e+00 2.7528980e+00 1.4535731e+00 2.0452826e+00 1.2150379e+00 2.4732935e+00 8.6167901e-01 1.8885847e+00 1.9433611e+00 7.9744128e-01 9.1854596e-01 1.3349909e+00 1.6250498e+00 1.9838258e+00 3.4743868e+00 1.4520430e+00 5.1406096e-01 7.3595190e-01 2.5794085e+00 2.1692945e+00 1.1973560e+00 9.2123504e-01 1.7205327e+00 1.9329718e+00 1.8817619e+00 1.0378652e+00 2.0262673e+00 2.2533761e+00 1.7016580e+00 1.1862896e+00 1.2748646e+00 2.0406838e+00 9.6984925e-01 3.6319073e-01 6.1968090e-01 7.8521221e-01 5.6113157e-01 1.2463647e+00 1.6309592e+00 1.6676963e+00 8.9796526e-01 8.9789119e-01 1.2621791e+00 1.3154759e+00 6.8124108e-01 1.3901973e+00 9.9970024e-01 1.4357022e+00 1.2962951e+00 4.8012872e-01 1.0246015e+00 2.2910733e+00 1.0720705e+00 8.8779355e-01 8.4724089e-01 2.4152660e-01 1.9817257e+00 8.8354057e-01 2.0655284e+00 1.2495886e+00 1.6398109e+00 9.9332012e-01 1.4769125e+00 2.2251642e+00 2.1023706e+00 1.7015856e+00 1.4609179e+00 2.6557282e+00 1.2410479e+00 1.0733560e+00 1.3593949e+00 1.6013655e+00 1.6915504e+00 1.5864800e+00 9.7957718e-01 3.1644964e+00 2.6137665e+00 1.7509262e+00 1.7860234e+00 1.3941000e+00 2.2824049e+00 8.7876634e-01 1.6464371e+00 1.6642217e+00 7.8808432e-01 8.5400786e-01 1.3018901e+00 1.3652161e+00 1.7805677e+00 3.1380968e+00 1.4095411e+00 5.8483448e-01 1.0816610e+00 2.2968622e+00 1.9911692e+00 1.0509799e+00 8.9223438e-01 1.4369760e+00 1.7217513e+00 1.5811148e+00 1.2495886e+00 1.8031513e+00 2.0209769e+00 1.4702446e+00 1.2810704e+00 1.0813343e+00 1.8691588e+00 1.0259679e+00 5.6788283e-01 5.3362004e-01 7.7368489e-01 1.6022591e+00 1.9873741e+00 2.0277089e+00 1.2494231e+00 1.1089653e+00 1.4561750e+00 1.2033093e+00 3.3742167e-01 1.6597443e+00 1.2265630e+00 1.7784712e+00 1.6384023e+00 6.1436388e-01 1.3800294e+00 2.6463489e+00 1.4025367e+00 1.1237500e+00 1.1244975e+00 5.5399712e-01 2.3227610e+00 1.2000527e+00 1.8734557e+00 1.4137602e+00 1.3887598e+00 9.6005858e-01 1.3202421e+00 1.9632584e+00 2.3879303e+00 1.4839475e+00 1.4995474e+00 2.3336107e+00 1.0014276e+00 1.1074656e+00 1.1350466e+00 1.8013325e+00 1.7379612e+00 1.3863777e+00 8.2339084e-01 2.8225734e+00 2.4523537e+00 2.0154418e+00 1.5091823e+00 1.5393373e+00 2.0723760e+00 9.8233874e-01 1.3702101e+00 1.3545502e+00 8.7875749e-01 8.4830222e-01 1.2549787e+00 1.1060185e+00 1.5823028e+00 2.7877979e+00 1.3537061e+00 7.2012544e-01 1.2954496e+00 2.0208193e+00 1.7781563e+00 8.8029208e-01 9.2256644e-01 1.1605968e+00 1.4991046e+00 1.3162835e+00 1.4137602e+00 1.5442127e+00 1.7645705e+00 1.2692218e+00 1.4162972e+00 9.1557526e-01 1.6722331e+00 1.0708496e+00 6.2826980e-01 1.0161846e+00 1.6718164e+00 1.9471640e+00 1.9947662e+00 1.3566251e+00 1.0412209e+00 1.7655766e+00 1.7163342e+00 7.1671402e-01 1.3277490e+00 1.5771462e+00 1.7793591e+00 1.6725709e+00 9.6964683e-01 1.3947746e+00 2.6556269e+00 1.5119726e+00 1.4702773e+00 1.3966512e+00 8.2199752e-01 2.4266623e+00 1.3925524e+00 2.0577807e+00 1.4034689e+00 1.2545960e+00 9.4767129e-01 1.3281960e+00 1.7401681e+00 2.4345214e+00 1.1896374e+00 1.0436620e+00 2.5015865e+00 1.2764504e+00 8.9223438e-01 1.1006735e+00 1.6953806e+00 1.7900496e+00 1.5985782e+00 8.8098199e-01 2.9595238e+00 2.0497239e+00 1.6965355e+00 1.5863720e+00 1.6496643e+00 1.7201711e+00 8.3409556e-01 1.5639220e+00 1.3496867e+00 8.9427872e-01 1.0978602e+00 1.1314785e+00 9.1432842e-01 1.2235673e+00 2.9196060e+00 1.2400775e+00 6.4083823e-01 1.0643984e+00 1.8241883e+00 2.0498818e+00 1.0696576e+00 1.1919906e+00 1.2042673e+00 1.5543054e+00 1.3831011e+00 1.4034689e+00 1.6218749e+00 1.9188761e+00 1.2920921e+00 1.1337565e+00 1.0067405e+00 1.9865217e+00 1.3029486e+00 9.5748562e-01 1.9681165e+00 2.2573397e+00 2.3235953e+00 1.5741400e+00 1.1016806e+00 1.6166760e+00 1.2896217e+00 3.8830315e-01 1.7972266e+00 1.5164233e+00 2.0064286e+00 1.8697578e+00 8.5494999e-01 1.6681709e+00 2.9309853e+00 1.6503473e+00 1.4467905e+00 1.4113341e+00 9.2189946e-01 2.6393526e+00 1.4852749e+00 1.4601858e+00 1.3160132e+00 8.7649478e-01 6.4756318e-01 8.3256255e-01 1.5094087e+00 2.4769347e+00 1.0668784e+00 1.2459961e+00 1.9408738e+00 6.5485710e-01 8.4116354e-01 6.0795234e-01 1.7154199e+00 1.4961901e+00 9.9551062e-01 3.9472619e-01 2.4940166e+00 2.0216642e+00 2.0463301e+00 1.0230389e+00 1.4612117e+00 1.6595118e+00 8.5582452e-01 9.5437259e-01 9.5694342e-01 7.7934221e-01 7.3851064e-01 8.5695467e-01 7.6638235e-01 1.1767396e+00 2.5076596e+00 9.4281519e-01 7.1971771e-01 1.2830542e+00 1.5700842e+00 1.4287578e+00 5.3095950e-01 8.6291569e-01 6.6154242e-01 1.0050638e+00 8.5606908e-01 1.3160132e+00 1.0514970e+00 1.3171874e+00 7.9433323e-01 1.2774110e+00 4.7509249e-01 1.3730080e+00 9.7659801e-01 1.1663747e+00 1.4582411e+00 1.5261646e+00 7.3570584e-01 5.8785093e-01 7.6039875e-01 1.1605726e+00 9.6964683e-01 1.4553344e+00 6.3765570e-01 1.1681709e+00 1.0005243e+00 2.9691107e-01 8.7856768e-01 2.0651943e+00 7.3735391e-01 6.0653347e-01 4.7837533e-01 3.7398306e-01 1.7406274e+00 5.5183182e-01 1.8498714e+00 8.1329726e-01 1.7508641e+00 8.2125107e-01 1.3423724e+00 2.4127395e+00 1.6384023e+00 1.9130927e+00 1.5043381e+00 2.6917823e+00 1.1782159e+00 9.6249568e-01 1.3877621e+00 1.2214135e+00 1.2719770e+00 1.4200371e+00 9.4526659e-01 3.3044115e+00 2.7645066e+00 1.6390945e+00 1.7948322e+00 8.7588404e-01 2.5003659e+00 7.4157869e-01 1.6267504e+00 1.8590427e+00 5.4310586e-01 5.2316125e-01 1.1372412e+00 1.6472029e+00 2.0021586e+00 3.3409572e+00 1.2314733e+00 5.4779717e-01 9.4822835e-01 2.4877874e+00 1.8001237e+00 9.6012811e-01 4.8644514e-01 1.5074309e+00 1.6452353e+00 1.6151033e+00 8.1329726e-01 1.7721541e+00 1.9352496e+00 1.4226963e+00 1.1564263e+00 1.0022114e+00 1.6574535e+00 5.8132667e-01 5.6318359e-01 5.3286499e-01 4.3341454e-01 1.2747045e+00 1.3163443e+00 2.1153648e+00 1.9183153e+00 1.1909838e+00 1.0657373e+00 5.8852220e-01 6.2225308e-01 1.3220343e+00 4.0443437e-01 1.0982562e+00 6.1619693e-01 1.0378442e+00 8.8917809e-01 1.0970024e+00 8.2199752e-01 6.9493020e-01 3.0003610e+00 1.5102474e+00 2.7635526e+00 1.8759428e+00 2.4405125e+00 3.3586044e+00 1.4659783e+00 2.7980993e+00 2.0759743e+00 3.8255754e+00 2.3211022e+00 1.7886572e+00 2.4450156e+00 1.5788967e+00 2.1011800e+00 2.5635734e+00 2.0416027e+00 4.3880097e+00 3.5282390e+00 1.4609179e+00 2.9105517e+00 1.6043433e+00 3.3245307e+00 1.5187698e+00 2.7743367e+00 2.8814354e+00 1.4896588e+00 1.6771528e+00 2.1027324e+00 2.5396337e+00 2.8265966e+00 4.3745133e+00 2.1946278e+00 1.4104380e+00 1.3873057e+00 3.4289479e+00 2.9514502e+00 2.1043046e+00 1.6198849e+00 2.5820471e+00 2.7513626e+00 2.6746677e+00 1.5102474e+00 2.9036877e+00 3.0793854e+00 2.4777911e+00 1.6406409e+00 2.1046875e+00 2.7982275e+00 1.6824284e+00 1.4276574e-01 7.9394533e-01 1.3473710e+00 1.5367336e+00 2.5040512e+00 2.2893871e+00 1.0820670e+00 1.4237364e+00 3.6704030e-01 5.8785093e-01 1.6733127e+00 6.1158310e-01 7.1781501e-01 7.8318003e-01 1.4288989e+00 1.2280749e+00 1.4809953e+00 7.0150436e-01 1.0034788e+00 3.1877520e+00 1.5005648e+00 2.9634183e+00 2.0359721e+00 2.5953129e+00 3.5470571e+00 1.1634940e+00 2.9839272e+00 2.0686806e+00 4.1156592e+00 2.6069476e+00 1.8659064e+00 2.6504363e+00 1.4017266e+00 2.1040122e+00 2.7893850e+00 2.2677890e+00 4.7183507e+00 3.5819899e+00 1.1465705e+00 3.1455771e+00 1.6263647e+00 3.4643576e+00 1.6254447e+00 3.0471395e+00 3.1646326e+00 1.6517237e+00 1.9156890e+00 2.1886203e+00 2.8006555e+00 2.9856138e+00 4.7315684e+00 2.2694993e+00 1.6130651e+00 1.3903392e+00 3.6256164e+00 3.1929372e+00 2.3573820e+00 1.8552594e+00 2.8291427e+00 2.9408913e+00 2.9120555e+00 1.5005648e+00 3.1237582e+00 3.3065647e+00 2.6677639e+00 1.5962380e+00 2.3224070e+00 3.0542458e+00 1.8794605e+00 8.3156200e-01 1.4460310e+00 1.6013312e+00 2.5509456e+00 2.3359909e+00 1.1395071e+00 1.4612871e+00 4.8644514e-01 6.6244727e-01 1.7247525e+00 6.6453319e-01 6.8496652e-01 8.5330525e-01 1.4567673e+00 1.2739414e+00 1.5213580e+00 6.7904052e-01 1.0560797e+00 3.2869799e+00 1.6218234e+00 3.0463976e+00 2.1264009e+00 2.6948572e+00 3.6228821e+00 1.2747978e+00 3.0537173e+00 2.1607143e+00 4.1937512e+00 2.6849827e+00 1.9680122e+00 2.7382122e+00 1.5399252e+00 2.2309601e+00 2.8826191e+00 2.3479440e+00 4.7798805e+00 3.6690959e+00 1.2447718e+00 3.2325186e+00 1.7450415e+00 3.5380106e+00 1.7243835e+00 3.1258440e+00 3.2275370e+00 1.7473394e+00 2.0003230e+00 2.2955340e+00 2.8573132e+00 3.0588804e+00 4.7837445e+00 2.3799967e+00 1.6861899e+00 1.4737985e+00 3.7047689e+00 3.2828775e+00 2.4345890e+00 1.9408738e+00 2.9104325e+00 3.0383020e+00 2.9993404e+00 1.6218234e+00 3.2132904e+00 3.3994957e+00 2.7639400e+00 1.7088499e+00 2.4110070e+00 3.1406474e+00 1.9689207e+00 8.9196595e-01 9.9107019e-01 1.7478610e+00 1.5467508e+00 1.1459117e+00 7.5303835e-01 6.0365341e-01 5.1453676e-01 9.1435339e-01 2.3749211e-01 1.4031123e+00 3.2313211e-01 7.2263841e-01 5.2290002e-01 7.1740234e-01 1.0975976e+00 3.1271814e-01 2.5686027e+00 1.1418735e+00 2.3704417e+00 1.4573208e+00 2.0173981e+00 2.9893605e+00 1.3924555e+00 2.4418079e+00 1.7809408e+00 3.4092863e+00 1.8988911e+00 1.4127713e+00 2.0371950e+00 1.3095379e+00 1.7286430e+00 2.1358640e+00 1.6228818e+00 3.9920035e+00 3.2072460e+00 1.3897098e+00 2.4925270e+00 1.2375842e+00 2.9891693e+00 1.1418958e+00 2.3510928e+00 2.4945648e+00 1.0792736e+00 1.2447083e+00 1.7021399e+00 2.1843621e+00 2.4864921e+00 3.9967418e+00 1.7954132e+00 1.0172824e+00 1.0869385e+00 3.0619758e+00 2.5242226e+00 1.6782397e+00 1.1896845e+00 2.1746675e+00 2.3309032e+00 2.2706367e+00 1.1418735e+00 2.4800313e+00 2.6530340e+00 2.0689155e+00 1.3443777e+00 1.6837594e+00 2.3748600e+00 1.2545769e+00 1.0660846e+00 1.6498377e+00 1.2783641e+00 1.1376397e+00 1.0898613e+00 1.0585628e+00 9.2189946e-01 8.0142393e-01 8.8029208e-01 1.9920533e+00 8.0501785e-01 1.0699859e+00 8.7105035e-01 7.9448303e-01 1.7999592e+00 8.1251986e-01 1.9227723e+00 4.6137216e-01 1.6965186e+00 7.0213871e-01 1.2723284e+00 2.3160615e+00 1.4526546e+00 1.7912701e+00 1.0739839e+00 2.8496420e+00 1.4032361e+00 6.3302304e-01 1.3757605e+00 7.8863556e-01 1.1001816e+00 1.5547583e+00 9.8152003e-01 3.4772360e+00 2.4799120e+00 1.1619556e+00 1.8622587e+00 7.5769247e-01 2.3162319e+00 4.6128322e-01 1.7816685e+00 1.9387331e+00 4.5729032e-01 7.5817225e-01 8.9223438e-01 1.6541379e+00 1.8404767e+00 3.5381276e+00 9.9244707e-01 4.4901474e-01 4.6557224e-01 2.4199101e+00 1.9790803e+00 1.0974789e+00 7.5914566e-01 1.5781281e+00 1.6567524e+00 1.6951864e+00 4.6137216e-01 1.8193470e+00 2.0336808e+00 1.4275349e+00 7.0834786e-01 1.0588854e+00 1.8801322e+00 7.4965096e-01 1.1803522e+00 1.5908164e+00 1.9645622e+00 4.2238505e-01 1.2220171e+00 1.0116179e+00 8.5731385e-01 1.1485726e+00 1.9317000e+00 7.9664122e-01 5.6097460e-01 5.3106808e-01 1.0334797e+00 1.5679493e+00 6.8124108e-01 2.0247774e+00 1.0499569e+00 2.3371797e+00 1.3332950e+00 1.7744903e+00 3.0154970e+00 1.3277924e+00 2.5520970e+00 2.1193865e+00 3.0297355e+00 1.5881698e+00 1.5547948e+00 1.9487821e+00 1.4037678e+00 1.3973195e+00 1.7249900e+00 1.4967902e+00 3.6762761e+00 3.3933664e+00 2.0023741e+00 2.2484516e+00 8.6702860e-01 3.1482546e+00 1.3659877e+00 2.0060004e+00 2.4114658e+00 1.1530661e+00 9.5944179e-01 1.6364369e+00 2.2989490e+00 2.6726954e+00 3.7560452e+00 1.7032717e+00 1.2286922e+00 1.4040978e+00 3.1041910e+00 1.9523740e+00 1.4097206e+00 8.4169735e-01 2.0525205e+00 2.0729884e+00 2.1328505e+00 1.0499569e+00 2.1908074e+00 2.2633850e+00 1.9289706e+00 1.6929462e+00 1.5333884e+00 1.7729821e+00 7.9671887e-01 1.1060455e+00 2.5932658e+00 1.1359179e+00 2.2153658e+00 2.0116430e+00 9.6825676e-01 1.9538525e+00 2.9958431e+00 1.7387082e+00 1.1339874e+00 1.2823616e+00 1.2471855e+00 2.5771468e+00 1.5006766e+00 1.5158960e+00 1.7131342e+00 1.9169015e+00 1.3850497e+00 1.5416258e+00 2.5358032e+00 2.4678381e+00 2.2144600e+00 2.3737220e+00 2.1274158e+00 9.8372339e-01 1.7887913e+00 1.5921275e+00 2.1896791e+00 1.7854129e+00 1.2218858e+00 1.2670969e+00 2.6904561e+00 3.2109839e+00 2.7851183e+00 1.6425353e+00 1.5729927e+00 2.8211634e+00 1.6904600e+00 1.2882518e+00 1.7618849e+00 1.4390193e+00 9.9282597e-01 1.7222401e+00 1.8692144e+00 2.3979391e+00 2.7477433e+00 1.7762263e+00 1.4761145e+00 1.9687854e+00 2.5941073e+00 1.2723200e+00 1.0497372e+00 9.7397874e-01 1.5327853e+00 1.6373339e+00 1.6177026e+00 1.7131342e+00 1.6177237e+00 1.6189835e+00 1.6013655e+00 2.1620604e+00 1.2836487e+00 1.0769609e+00 1.0246689e+00 1.9326437e+00 1.4149714e+00 2.0593667e+00 1.9008579e+00 7.7368489e-01 1.6801694e+00 2.9457974e+00 1.6627284e+00 1.3215146e+00 1.3491191e+00 8.3512263e-01 2.6175043e+00 1.4565053e+00 1.6449760e+00 1.5357227e+00 1.1692720e+00 9.2780124e-01 1.1582405e+00 1.7355630e+00 2.5925902e+00 1.3094338e+00 1.5678176e+00 2.0102053e+00 7.6952423e-01 1.1716038e+00 9.4417605e-01 1.9573929e+00 1.7612938e+00 1.1827746e+00 6.8675486e-01 2.4881500e+00 2.3327432e+00 2.2476505e+00 1.2375842e+00 1.6387331e+00 1.9108109e+00 1.1188225e+00 1.0733560e+00 1.0560148e+00 1.0005243e+00 8.6347207e-01 1.2199459e+00 9.0753778e-01 1.4483156e+00 2.4625089e+00 1.3082342e+00 8.7375509e-01 1.4601811e+00 1.8000065e+00 1.5372053e+00 7.0097130e-01 9.6204815e-01 9.1315231e-01 1.2848917e+00 1.0993651e+00 1.5357227e+00 1.2764003e+00 1.5003224e+00 1.1101208e+00 1.5658291e+00 7.8808432e-01 1.4489917e+00 1.0920053e+00 1.8302572e+00 1.0943114e+00 1.1955102e+00 1.6415483e+00 9.5491981e-01 1.7343175e+00 1.2563834e+00 1.7780218e+00 1.5661153e+00 1.3901973e+00 1.7352481e+00 1.3724737e+00 2.9349297e+00 1.4110819e+00 2.3154474e+00 1.6753059e+00 2.1644875e+00 2.7793057e+00 1.8300579e+00 2.2275691e+00 1.2267563e+00 3.6839155e+00 2.3163493e+00 1.3205795e+00 2.1115079e+00 1.3018219e+00 1.9822480e+00 2.5100153e+00 1.8661672e+00 4.2327578e+00 2.6573893e+00 6.0725725e-01 2.6633209e+00 1.7222058e+00 2.5939799e+00 1.1664463e+00 2.6821825e+00 2.5963941e+00 1.3509199e+00 1.7816323e+00 1.7046308e+00 2.1381589e+00 2.1542571e+00 4.2222578e+00 1.7881987e+00 1.2473306e+00 1.0083490e+00 2.8478148e+00 2.9960208e+00 2.0583207e+00 1.7939407e+00 2.3128527e+00 2.4854841e+00 2.4090630e+00 1.4110819e+00 2.6669716e+00 2.9270626e+00 2.1822548e+00 9.7289027e-01 1.9265423e+00 2.9135583e+00 1.8510296e+00 1.1608422e+00 9.5483435e-01 6.7975587e-01 9.6424206e-01 1.8685422e+00 6.9420840e-01 1.8699153e-01 2.6643250e-01 7.6880092e-01 1.4668684e+00 4.7680727e-01 2.1966727e+00 1.2150638e+00 2.3282955e+00 1.3855601e+00 1.8709248e+00 2.9899796e+00 1.5396352e+00 2.5003659e+00 2.1099656e+00 3.0668593e+00 1.5989333e+00 1.5788417e+00 1.9566602e+00 1.5639220e+00 1.6339738e+00 1.8236402e+00 1.4967013e+00 3.6603010e+00 3.3937895e+00 1.9915789e+00 2.2840141e+00 1.1223478e+00 3.1075626e+00 1.3520885e+00 2.0407191e+00 2.3526669e+00 1.1508346e+00 9.9970980e-01 1.7227103e+00 2.1946041e+00 2.6155078e+00 3.6958832e+00 1.8054416e+00 1.1477199e+00 1.3984076e+00 3.0713671e+00 2.0894840e+00 1.4301682e+00 9.0552938e-01 2.0395038e+00 2.1489811e+00 2.1344915e+00 1.2150638e+00 2.2517887e+00 2.3533226e+00 1.9673072e+00 1.7095802e+00 1.5528301e+00 1.9068051e+00 9.3899770e-01 3.4893361e-01 1.4098163e+00 4.4901474e-01 9.4301660e-01 4.9009568e-01 1.1908452e+00 9.6032771e-01 1.2627589e+00 7.8945238e-01 7.3502408e-01 2.8451486e+00 1.1622402e+00 2.7058576e+00 1.7424022e+00 2.2846522e+00 3.3213689e+00 9.3810350e-01 2.7757276e+00 1.8894571e+00 3.8131048e+00 2.3010216e+00 1.5984421e+00 2.3698153e+00 1.1049324e+00 1.7539088e+00 2.4591578e+00 1.9849730e+00 4.4474865e+00 3.3956070e+00 1.1104964e+00 2.8478148e+00 1.2628565e+00 3.2741783e+00 1.3548265e+00 2.7443454e+00 2.9214972e+00 1.3520885e+00 1.5950569e+00 1.8924015e+00 2.5961001e+00 2.7889301e+00 4.4811770e+00 1.9680122e+00 1.3672690e+00 1.1906665e+00 3.3943858e+00 2.8533575e+00 2.0610968e+00 1.5261646e+00 2.5498486e+00 2.6295980e+00 2.6227721e+00 1.1622402e+00 2.8191421e+00 2.9841287e+00 2.3684093e+00 1.3684638e+00 2.0228721e+00 2.7146999e+00 1.5430544e+00 1.2073068e+00 4.2737382e-01 1.1404637e+00 3.1271814e-01 9.6032771e-01 7.5303835e-01 1.1016806e+00 9.6606527e-01 5.6318359e-01 2.6951278e+00 1.0877340e+00 2.5880472e+00 1.5788417e+00 2.1577755e+00 3.1981141e+00 1.0053189e+00 2.6422640e+00 1.8441670e+00 3.6556493e+00 2.1516272e+00 1.5283932e+00 2.2572409e+00 1.1515368e+00 1.7244934e+00 2.3310687e+00 1.8210464e+00 4.2584241e+00 3.3382181e+00 1.2189366e+00 2.7191331e+00 1.1859692e+00 3.1732334e+00 1.2980649e+00 2.5768210e+00 2.7513616e+00 1.2636762e+00 1.4403062e+00 1.8020431e+00 2.4433699e+00 2.6920515e+00 4.2945779e+00 1.8903935e+00 1.2074964e+00 1.0277379e+00 3.3038558e+00 2.6967685e+00 1.8755883e+00 1.3730080e+00 2.4290237e+00 2.5228632e+00 2.5343900e+00 1.0877340e+00 2.6795155e+00 2.8549884e+00 2.2878474e+00 1.3941000e+00 1.9010194e+00 2.5529515e+00 1.3637808e+00 1.0801003e+00 2.2778358e+00 9.5491981e-01 5.9448670e-01 5.9589853e-01 3.3742167e-01 1.9403546e+00 7.3727571e-01 1.8011631e+00 1.0580730e+00 1.6859882e+00 8.4110582e-01 1.3396881e+00 2.3254107e+00 1.8940865e+00 1.8320164e+00 1.6099822e+00 2.5455416e+00 1.0698235e+00 1.0938968e+00 1.3476330e+00 1.4941922e+00 1.4633215e+00 1.3755629e+00 8.7649478e-01 3.1069376e+00 2.7702855e+00 1.8674396e+00 1.7104256e+00 1.1065179e+00 2.4455843e+00 9.1688392e-01 1.4945651e+00 1.6975565e+00 7.1757390e-01 5.5102439e-01 1.2274184e+00 1.5152116e+00 1.9568855e+00 3.1286065e+00 1.3281960e+00 6.0709980e-01 1.0827099e+00 2.4180452e+00 1.7168537e+00 8.4814328e-01 5.4968254e-01 1.4259927e+00 1.6175327e+00 1.5676792e+00 1.0580730e+00 1.6914438e+00 1.8627823e+00 1.4252775e+00 1.3670172e+00 9.8340962e-01 1.5690664e+00 6.4292875e-01 1.2799022e+00 3.7622328e-01 9.3727156e-01 7.2340544e-01 8.7070822e-01 1.0517510e+00 4.9772204e-01 2.6753497e+00 1.1327780e+00 2.4219935e+00 1.5112031e+00 2.0792734e+00 3.0229728e+00 1.3206164e+00 2.4652397e+00 1.7009790e+00 3.5349296e+00 2.0290396e+00 1.4008516e+00 2.1030738e+00 1.2197800e+00 1.7532536e+00 2.2495068e+00 1.7048463e+00 4.1210195e+00 3.1691829e+00 1.1769133e+00 2.5856062e+00 1.2767751e+00 2.9863081e+00 1.1384575e+00 2.4711712e+00 2.5838439e+00 1.1268523e+00 1.3640383e+00 1.7178039e+00 2.2416335e+00 2.4908014e+00 4.1279448e+00 1.8102703e+00 1.0585628e+00 1.0110609e+00 3.0999848e+00 2.6577347e+00 1.7876312e+00 1.3164631e+00 2.2615790e+00 2.4095273e+00 2.3580977e+00 1.1327780e+00 2.5710650e+00 2.7600070e+00 2.1383264e+00 1.2571099e+00 1.7683536e+00 2.5188615e+00 1.3683626e+00 1.3381984e+00 1.9104439e+00 1.7447553e+00 2.1191178e+00 5.2290002e-01 1.5506355e+00 3.7401310e+00 2.0532672e+00 3.6450987e+00 2.6791066e+00 3.2198971e+00 4.2474168e+00 1.2374249e+00 3.6904578e+00 2.7448024e+00 4.7359552e+00 3.2167523e+00 2.5268732e+00 3.3111493e+00 1.8901504e+00 2.5824715e+00 3.3694826e+00 2.9225385e+00 5.3651760e+00 4.2632085e+00 1.6938497e+00 3.7848480e+00 2.0962051e+00 4.1703198e+00 2.2884248e+00 3.6689921e+00 3.8480511e+00 2.2915999e+00 2.5084155e+00 2.8222270e+00 3.5057930e+00 3.6931154e+00 5.3885667e+00 2.8913445e+00 2.2944283e+00 2.0536056e+00 4.3194837e+00 3.7370068e+00 2.9859935e+00 2.4261724e+00 3.4875553e+00 3.5613793e+00 3.5512500e+00 2.0532672e+00 3.7558873e+00 3.9047630e+00 3.2988390e+00 2.2352837e+00 2.9604482e+00 3.5852990e+00 2.4345890e+00 7.1446962e-01 4.7680727e-01 8.6080744e-01 1.0528937e+00 2.6643250e-01 2.4784392e+00 9.6779954e-01 2.4056700e+00 1.4093245e+00 1.9680122e+00 3.0432377e+00 1.1095018e+00 2.5046513e+00 1.7969297e+00 3.4167115e+00 1.9006720e+00 1.3928921e+00 2.0543866e+00 1.1288261e+00 1.5650139e+00 2.0901630e+00 1.6223748e+00 4.0330923e+00 3.2470423e+00 1.3554912e+00 2.4968262e+00 1.0256272e+00 3.0550867e+00 1.1407226e+00 2.3454418e+00 2.5560105e+00 1.0597600e+00 1.1958054e+00 1.6477280e+00 2.2779375e+00 2.5604758e+00 4.0677826e+00 1.7340403e+00 1.0472149e+00 1.0317636e+00 3.1283758e+00 2.4552133e+00 1.6602736e+00 1.1211328e+00 2.2084219e+00 2.3071243e+00 2.3006257e+00 9.6779954e-01 2.4647768e+00 2.6219630e+00 2.0691920e+00 1.3232765e+00 1.6800415e+00 2.3045354e+00 1.1399118e+00 2.6525508e-01 6.6194168e-01 1.5279052e+00 4.8284931e-01 2.2240009e+00 1.2628565e+00 2.2754107e+00 1.3512603e+00 1.8635082e+00 2.9164540e+00 1.6496295e+00 2.4127395e+00 2.0563471e+00 3.0426144e+00 1.5827764e+00 1.5566996e+00 1.9230842e+00 1.6230251e+00 1.7204639e+00 1.8421714e+00 1.4471806e+00 3.6003163e+00 3.3322323e+00 1.9737130e+00 2.2612204e+00 1.2180372e+00 3.0253495e+00 1.3338820e+00 2.0126070e+00 2.2700141e+00 1.1450371e+00 1.0044165e+00 1.7168897e+00 2.0924575e+00 2.5354258e+00 3.6216411e+00 1.8094028e+00 1.0735412e+00 1.3351581e+00 3.0117528e+00 2.1161544e+00 1.3888000e+00 9.3005809e-01 2.0016409e+00 2.1479330e+00 2.1191972e+00 1.2628565e+00 2.2323235e+00 2.3582915e+00 1.9639632e+00 1.7034312e+00 1.5340961e+00 1.9379753e+00 9.6779954e-01 6.0647055e-01 1.3810470e+00 2.3749211e-01 2.2111682e+00 1.0514970e+00 2.2223402e+00 1.2585091e+00 1.7887495e+00 2.8752401e+00 1.4450035e+00 2.3620441e+00 1.8870562e+00 3.0854059e+00 1.5854288e+00 1.3907384e+00 1.8599878e+00 1.3776606e+00 1.5509730e+00 1.8163092e+00 1.3995189e+00 3.6797126e+00 3.2203837e+00 1.7354649e+00 2.2402012e+00 1.0327124e+00 2.9556082e+00 1.1508346e+00 2.0324938e+00 2.2869296e+00 9.8115739e-01 9.3443769e-01 1.5799528e+00 2.0763861e+00 2.4587811e+00 3.7098479e+00 1.6697722e+00 9.5240225e-01 1.1656779e+00 2.9602833e+00 2.1358640e+00 1.3782117e+00 8.5400786e-01 1.9683111e+00 2.0924338e+00 2.0712315e+00 1.0514970e+00 2.2110297e+00 2.3461934e+00 1.8840843e+00 1.4831574e+00 1.4659783e+00 1.9682209e+00 8.9496218e-01 1.7964452e+00 6.5622658e-01 2.0655284e+00 1.1268523e+00 1.7764179e+00 9.9332012e-01 1.5158960e+00 2.3895003e+00 1.8982283e+00 1.8651393e+00 1.5387077e+00 2.7528000e+00 1.2871947e+00 1.1001946e+00 1.4627474e+00 1.4880729e+00 1.6030181e+00 1.6047598e+00 1.0374207e+00 3.2910073e+00 2.7655862e+00 1.7002168e+00 1.8814596e+00 1.2390194e+00 2.4548042e+00 8.7876634e-01 1.7158367e+00 1.8151170e+00 7.5016118e-01 7.8272551e-01 1.3241046e+00 1.5455843e+00 1.9524619e+00 3.2834453e+00 1.4300844e+00 5.8483448e-01 1.0263139e+00 2.4682518e+00 1.9911692e+00 1.0783755e+00 7.8808432e-01 1.5539983e+00 1.7882304e+00 1.6881750e+00 1.1268523e+00 1.8822939e+00 2.0779047e+00 1.5475657e+00 1.2810704e+00 1.1339991e+00 1.8534885e+00 9.0513514e-01 1.2087510e+00 3.4293561e+00 1.8554780e+00 3.4031864e+00 2.4420991e+00 2.9637920e+00 4.0403658e+00 1.1828717e+00 3.4998500e+00 2.6632870e+00 4.3954130e+00 2.8761203e+00 2.3399831e+00 3.0445122e+00 1.7890328e+00 2.3476777e+00 3.0401775e+00 2.6527529e+00 5.0321758e+00 4.1557153e+00 1.7943181e+00 3.4850530e+00 1.8421879e+00 4.0156620e+00 2.0769537e+00 3.3460838e+00 3.5735182e+00 2.0311110e+00 2.1883894e+00 2.6137665e+00 3.2724268e+00 3.5184202e+00 5.0524110e+00 2.6818545e+00 2.0664108e+00 1.9589565e+00 4.0923995e+00 3.3884524e+00 2.6885740e+00 2.0959739e+00 3.1948685e+00 3.2743590e+00 3.2448452e+00 1.8554780e+00 3.4633688e+00 3.5839347e+00 3.0150212e+00 2.1174980e+00 2.6708841e+00 3.2242395e+00 2.1262653e+00 2.3423978e+00 1.0035466e+00 2.2827159e+00 1.3153660e+00 1.8615039e+00 2.9298417e+00 1.3184035e+00 2.4022001e+00 1.8151170e+00 3.2315412e+00 1.7166676e+00 1.3595814e+00 1.9250594e+00 1.2570691e+00 1.5534985e+00 1.9352496e+00 1.4849081e+00 3.8359772e+00 3.2064915e+00 1.5410939e+00 2.3431625e+00 1.0302848e+00 2.9742645e+00 1.1013771e+00 2.1700970e+00 2.3919091e+00 9.7531402e-01 1.0396764e+00 1.5925492e+00 2.1393811e+00 2.4733960e+00 3.8624002e+00 1.6816960e+00 9.5650957e-01 1.0890388e+00 3.0080097e+00 2.2891398e+00 1.5007156e+00 9.6470639e-01 2.0543866e+00 2.1765531e+00 2.1487165e+00 1.0035466e+00 2.3180617e+00 2.4663563e+00 1.9433990e+00 1.3718709e+00 1.5414664e+00 2.1305612e+00 1.0107221e+00 1.7770053e+00 1.3000021e+00 1.3205171e+00 8.3930091e-01 1.8258497e+00 2.8432746e+00 1.7831595e+00 2.1193624e+00 1.2896554e+00 8.9496218e-01 1.6446727e+00 1.0946825e+00 2.1632524e+00 1.4041749e+00 5.4207852e-01 1.2077572e+00 2.1213447e+00 2.4069921e+00 2.9335119e+00 8.2206766e-01 1.6918279e+00 2.1851365e+00 1.7733720e+00 7.3278119e-01 1.4407642e+00 1.6273345e+00 1.3293020e+00 1.2924610e+00 1.7503171e+00 1.9276214e+00 2.3545376e+00 1.2450968e+00 1.8184976e+00 2.1894327e+00 1.8463545e+00 3.4893361e-01 1.0719022e+00 1.3834169e+00 1.0621362e+00 7.1740234e-01 1.0327832e+00 1.7770053e+00 6.9976890e-01 5.1210327e-01 9.9313181e-01 2.0841099e+00 1.0825311e+00 5.0208681e-01 1.3466860e+00 1.7937749e+00 8.2148003e-01 1.2268833e+00 2.4485240e+00 1.2563297e+00 1.9934469e+00 1.2524426e+00 2.8471336e+00 1.4358042e+00 7.3339246e-01 1.4342819e+00 4.9772204e-01 6.9457760e-01 1.4636741e+00 1.1233354e+00 3.5605638e+00 2.5755365e+00 1.2907457e+00 1.8667489e+00 3.7622328e-01 2.4814136e+00 6.2818221e-01 1.8112028e+00 2.1131807e+00 5.7672351e-01 7.9999102e-01 8.5275415e-01 1.9102507e+00 2.0267836e+00 3.6643554e+00 9.0168685e-01 8.3216780e-01 8.3306409e-01 2.5178144e+00 1.8656026e+00 1.2019259e+00 7.6362786e-01 1.6472011e+00 1.5943283e+00 1.7001179e+00 0.0000000e+00 1.8078806e+00 1.9570111e+00 1.3920954e+00 7.6195008e-01 1.1016806e+00 1.7729341e+00 7.1446962e-01 1.0816610e+00 7.3851064e-01 7.2248857e-01 3.0483776e+00 5.6342615e-01 1.3118081e+00 1.4889605e+00 9.8006369e-01 1.1737270e+00 4.2737382e-01 2.1131807e+00 1.7428500e+00 1.0543640e+00 8.5494999e-01 2.0376324e+00 1.3288928e+00 2.4590893e+00 5.9382214e-01 1.9576761e+00 9.8006369e-01 1.3739792e+00 8.5141186e-01 6.2055338e-01 1.3918500e+00 1.3907270e+00 9.7789352e-01 6.6861320e-01 6.5233704e-01 2.1059482e+00 9.8663349e-01 1.4035018e+00 1.7831595e+00 7.7880944e-01 1.4027992e+00 9.8677196e-01 1.5191564e+00 4.3798311e-01 6.8554305e-01 6.2111408e-01 1.7937749e+00 6.4241342e-01 9.9981032e-01 6.7780188e-01 1.6099640e+00 8.3640969e-01 1.4769275e+00 1.5684930e+00 6.3173774e-01 1.7302001e+00 2.0286216e+00 1.2711306e+00 1.0474897e+00 2.1700788e+00 8.2827027e-01 5.2290002e-01 7.5863433e-01 1.2491511e+00 1.0565061e+00 9.7542502e-01 3.3872939e-01 2.7982543e+00 2.0758695e+00 1.7342859e+00 1.1984110e+00 9.9693045e-01 1.8354727e+00 6.0840510e-01 1.1145077e+00 1.3082023e+00 5.2283051e-01 5.1857575e-01 4.7149050e-01 1.1471723e+00 1.3839439e+00 2.8837687e+00 5.8522871e-01 5.3667800e-01 9.0098101e-01 1.8496383e+00 1.3956631e+00 4.8016385e-01 6.2451737e-01 9.5139638e-01 1.0316097e+00 1.1168387e+00 8.2148003e-01 1.1408175e+00 1.3888569e+00 8.7588404e-01 9.9189360e-01 4.8124784e-01 1.3365773e+00 6.0566865e-01 1.4097462e+00 2.4566860e+00 1.1582635e+00 1.2895008e+00 1.6771691e+00 6.6244727e-01 8.5330525e-01 4.2110953e-01 1.5929148e+00 1.0739839e+00 5.6992880e-01 5.5102439e-01 2.4009228e+00 1.8321979e+00 2.1944657e+00 6.8299624e-01 1.3125970e+00 1.6253273e+00 1.0353506e+00 7.4661256e-01 1.1022402e+00 9.6950963e-01 8.7649478e-01 5.0731024e-01 1.1544356e+00 1.2559800e+00 2.5390784e+00 4.9009568e-01 1.1268617e+00 1.4819274e+00 1.4649720e+00 9.9544409e-01 6.0942760e-01 9.8006526e-01 5.9589853e-01 4.3937875e-01 6.7904052e-01 1.2268833e+00 6.0365341e-01 8.3354038e-01 4.3719837e-01 1.3221954e+00 4.2932160e-01 1.0251165e+00 9.7833010e-01 3.6949435e+00 6.0653347e-01 1.6944472e+00 1.5821553e+00 1.6484241e+00 1.7861438e+00 1.1497964e+00 2.7265330e+00 2.4114658e+00 1.7100754e+00 1.5191564e+00 1.8544941e+00 9.8143688e-01 2.9288318e+00 1.1208167e+00 2.6441923e+00 4.9772204e-01 2.0065422e+00 1.3857067e+00 8.4632640e-01 2.0655380e+00 2.0890644e+00 1.6229726e+00 9.3175410e-01 6.4813570e-01 1.8882412e+00 1.6282537e+00 2.0045623e+00 2.3010727e+00 4.0443437e-01 1.9471640e+00 1.6420881e+00 2.2200703e+00 1.1092092e+00 1.3077539e+00 1.2486828e+00 2.4485240e+00 1.1714086e+00 1.4815200e+00 1.3709657e+00 2.1645801e+00 1.5528645e+00 2.0592947e+00 2.2565403e+00 3.2107953e+00 2.2989490e+00 4.0089941e+00 2.5709804e+00 1.9412285e+00 2.6814987e+00 1.0808305e+00 1.6177026e+00 2.5906314e+00 2.3241321e+00 4.7335798e+00 3.7356640e+00 1.5467170e+00 3.0855313e+00 1.1828955e+00 3.6907456e+00 1.7719327e+00 2.9776826e+00 3.3258154e+00 1.7290027e+00 1.8703975e+00 2.1032002e+00 3.0991288e+00 3.2379874e+00 4.8403184e+00 2.1396216e+00 1.8765527e+00 1.6420881e+00 3.7688016e+00 2.8977291e+00 2.3525703e+00 1.7721385e+00 2.8780663e+00 2.8053505e+00 2.9124074e+00 1.2563297e+00 3.0197298e+00 3.1129968e+00 2.6135061e+00 1.7341866e+00 2.3184326e+00 2.7661123e+00 1.7090768e+00 1.2067996e+00 1.8641580e+00 1.3940244e+00 1.3162189e+00 8.8198158e-01 2.2794791e+00 2.1012392e+00 1.5525661e+00 1.0918469e+00 2.2063254e+00 1.1211328e+00 2.4017426e+00 1.1211328e+00 2.2284888e+00 6.3765570e-01 1.5168126e+00 1.2830542e+00 7.2263841e-01 1.5939137e+00 1.6681833e+00 1.2435436e+00 4.6557224e-01 3.1271814e-01 2.2147971e+00 1.2909648e+00 1.4589882e+00 1.7351918e+00 8.5359653e-01 1.8877628e+00 1.2647627e+00 1.8001617e+00 9.2780124e-01 1.2301583e+00 1.1566759e+00 1.9934469e+00 1.1506301e+00 1.5274241e+00 1.1815770e+00 1.6939440e+00 1.2016246e+00 1.9452063e+00 1.8368886e+00 2.7696320e+00 1.7002168e+00 6.6444642e-01 1.2360344e+00 1.3162958e+00 1.5606124e+00 1.8019802e+00 1.1903794e+00 3.3139779e+00 1.5262653e+00 1.2463647e+00 1.7598642e+00 1.6038123e+00 1.5053088e+00 8.4040822e-01 1.8873059e+00 1.7273593e+00 1.0791305e+00 1.4542898e+00 8.8167165e-01 1.3277924e+00 1.1132823e+00 3.3576107e+00 9.4738284e-01 1.0119180e+00 9.3046944e-01 1.8017473e+00 2.2743623e+00 1.4404916e+00 1.5380438e+00 1.4761813e+00 1.5955619e+00 1.5999471e+00 1.2524426e+00 1.7473897e+00 2.0612423e+00 1.3691763e+00 6.7534282e-01 1.2539581e+00 2.2701663e+00 1.5558007e+00 1.5218782e+00 2.4628184e+00 1.5932824e+00 3.2458126e+00 2.5692387e+00 1.4348047e+00 1.8937847e+00 9.2060977e-01 2.4408782e+00 3.8250534e+00 1.0499398e+00 2.8336242e+00 2.0769357e+00 2.6064495e+00 1.0813975e+00 1.3021456e+00 2.4993477e+00 2.2323451e+00 2.1662332e+00 1.8260680e+00 2.0200580e+00 1.1770826e+00 2.1383117e+00 2.5736499e+00 3.0399892e+00 1.5323598e+00 1.2212784e+00 1.7944590e+00 2.3235953e+00 1.3759094e+00 1.3385913e+00 1.3604806e+00 2.8471336e+00 1.0797751e+00 9.4588685e-01 1.6150266e+00 2.9366827e+00 1.8217819e+00 1.3773939e+00 2.3541561e+00 1.1723315e+00 6.4232366e-01 1.8822595e+00 1.3566020e+00 4.2656951e-01 5.7691891e-01 2.2149281e+00 2.2825823e+00 2.4730728e+00 7.0958226e-01 1.4300979e+00 1.9425292e+00 1.2122797e+00 4.9430028e-01 1.0215032e+00 1.0391769e+00 7.2638147e-01 9.8137813e-01 1.1659675e+00 1.5397131e+00 2.3056726e+00 1.0072799e+00 1.1569911e+00 1.6871910e+00 1.6699010e+00 7.9127668e-01 4.3341454e-01 8.2155022e-01 5.7672351e-01 6.8304299e-01 6.6412342e-01 1.4358042e+00 7.0097130e-01 8.1019167e-01 6.5485710e-01 1.6386105e+00 4.6472955e-01 7.2626021e-01 8.9802947e-01 8.9083207e-01 9.8663349e-01 1.0101003e+00 1.2666796e+00 7.2340544e-01 3.1120413e+00 1.9012831e+00 1.3662822e+00 1.4214310e+00 1.0271885e+00 1.7789322e+00 2.8835410e-01 1.4717950e+00 1.5613089e+00 4.5716421e-01 8.2373020e-01 3.8830315e-01 1.2833190e+00 1.3103990e+00 3.1817011e+00 4.8644514e-01 5.9610506e-01 8.0162421e-01 1.8503155e+00 1.7547273e+00 9.3865015e-01 8.9973730e-01 1.1346946e+00 1.2001902e+00 1.2260535e+00 7.3339246e-01 1.3976606e+00 1.6479131e+00 9.4228329e-01 5.0621589e-01 7.1671402e-01 1.7153988e+00 9.3451915e-01 1.7865803e+00 1.3700593e+00 7.2638147e-01 5.3458689e-01 2.2505972e+00 1.6524504e+00 2.2440955e+00 5.5576380e-01 1.5638518e+00 1.3688560e+00 1.0552128e+00 7.1143905e-01 8.2518769e-01 1.0245496e+00 9.9235657e-01 6.7030885e-01 8.3156325e-01 9.6025744e-01 2.3337038e+00 6.8299624e-01 1.1166319e+00 1.5524781e+00 1.1685901e+00 1.1719135e+00 6.6412342e-01 1.1159239e+00 2.6643250e-01 4.7488466e-01 4.3341454e-01 1.4342819e+00 5.7691891e-01 8.8366512e-01 3.3492202e-01 1.3576953e+00 4.2110953e-01 1.2033093e+00 1.1777985e+00 8.7819565e-01 1.8719964e+00 1.5530949e+00 3.9773949e+00 2.6834336e+00 1.0194189e+00 2.2401597e+00 7.0463400e-01 2.6908242e+00 8.9981614e-01 2.2443541e+00 2.5055082e+00 9.6168382e-01 1.2786676e+00 1.1515752e+00 2.2564140e+00 2.2581551e+00 4.0837847e+00 1.1737270e+00 1.1984110e+00 1.0100915e+00 2.7760526e+00 2.2855612e+00 1.6668656e+00 1.2419907e+00 2.0207624e+00 1.9399964e+00 2.0427084e+00 4.9772204e-01 2.1876191e+00 2.3343528e+00 1.7191609e+00 7.3633268e-01 1.5086315e+00 2.2088314e+00 1.2082987e+00 1.1857824e+00 1.2636762e+00 3.3874427e+00 2.5564450e+00 1.8349829e+00 1.6578570e+00 5.8813453e-01 2.5222553e+00 1.0240850e+00 1.6676963e+00 2.1419072e+00 9.3827844e-01 9.8741108e-01 8.7169308e-01 2.0802526e+00 2.1175243e+00 3.5451448e+00 8.2097460e-01 1.3248988e+00 1.4633215e+00 2.4116155e+00 1.5361480e+00 1.2935378e+00 9.5818710e-01 1.5578153e+00 1.3192053e+00 1.5035025e+00 6.9457760e-01 1.5912796e+00 1.6259926e+00 1.1892978e+00 1.1294987e+00 1.0978602e+00 1.4813076e+00 9.1948999e-01 8.1819403e-01 2.2419326e+00 2.2807501e+00 2.5846003e+00 6.4497192e-01 1.4107908e+00 2.0247998e+00 1.3509199e+00 5.5183182e-01 1.2328847e+00 1.1911894e+00 9.0810653e-01 9.7397874e-01 1.4379681e+00 1.6702453e+00 2.3957048e+00 9.4716675e-01 1.4061835e+00 1.8616601e+00 1.6979390e+00 5.2290002e-01 7.0376604e-01 9.7757519e-01 6.9976890e-01 4.8012872e-01 6.5622658e-01 1.4636741e+00 5.9074344e-01 5.5183182e-01 5.8926015e-01 1.7101283e+00 6.2055338e-01 5.2374483e-01 1.0096792e+00 2.4983023e+00 2.0024830e+00 2.0009022e+00 9.4244262e-01 1.2563297e+00 1.6864324e+00 8.0788963e-01 8.3930091e-01 1.0038277e+00 7.0810362e-01 5.9074344e-01 6.2055338e-01 9.0121804e-01 1.2356595e+00 2.5673851e+00 7.1082758e-01 6.9066640e-01 1.1671832e+00 1.6263298e+00 1.2372185e+00 2.6033464e-01 7.2248857e-01 6.6653737e-01 8.5606908e-01 8.7588404e-01 1.1233354e+00 9.0810653e-01 1.1795009e+00 7.1867388e-01 1.2188386e+00 3.1239235e-01 1.1894366e+00 7.5921691e-01 2.7729820e+00 4.4273104e+00 1.7851048e+00 3.5860697e+00 2.3211451e+00 3.2572853e+00 1.7681972e+00 1.6466818e+00 3.1677578e+00 2.9074188e+00 2.8617360e+00 2.1557081e+00 2.3917474e+00 3.9487224e-01 2.8587345e+00 3.1370513e+00 3.5889276e+00 1.8806886e+00 2.0412779e+00 2.4100318e+00 3.0088533e+00 2.0247746e+00 2.1265123e+00 2.0926464e+00 3.5605638e+00 1.8217810e+00 1.8066213e+00 2.3669524e+00 3.5958907e+00 2.5091153e+00 2.1661990e+00 3.0374915e+00 2.7063291e+00 1.8195505e+00 2.8431665e+00 6.1655427e-01 2.1507483e+00 2.1438129e+00 1.7230435e+00 2.3108260e+00 2.5097011e+00 1.8135469e+00 1.5638528e+00 9.0791603e-01 2.8200316e+00 1.7992895e+00 2.2827159e+00 2.3805592e+00 1.0279218e+00 2.6120156e+00 2.2030084e+00 2.6289851e+00 1.7477225e+00 1.8297977e+00 1.8176515e+00 2.5755365e+00 1.8486085e+00 2.1438129e+00 1.7993706e+00 2.0846858e+00 2.0084695e+00 2.7218129e+00 2.6544629e+00 2.7850656e+00 1.6064410e+00 2.7362607e+00 1.2723027e+00 2.8153418e+00 2.8097763e+00 1.4630671e+00 1.8911656e+00 1.6976298e+00 2.3931138e+00 2.3316649e+00 4.4654565e+00 1.7621453e+00 1.4315442e+00 9.9921804e-01 3.0176875e+00 3.0491088e+00 2.1855415e+00 1.8898572e+00 2.4817766e+00 2.5552736e+00 2.5674482e+00 1.2907457e+00 2.7588865e+00 3.0041677e+00 2.2870308e+00 9.4057729e-01 2.0520412e+00 2.9779211e+00 1.8911656e+00 1.9172403e+00 1.5033800e+00 1.5778466e+00 4.2450569e-01 7.6773108e-01 1.5016932e+00 1.3345218e+00 1.1346946e+00 1.0902078e+00 1.2416734e+00 1.9196757e+00 1.1117653e+00 1.6095257e+00 2.0596575e+00 1.0943114e+00 8.7072347e-01 9.2729770e-01 1.4434261e+00 3.8830315e-01 3.6319073e-01 4.1088655e-01 1.8667489e+00 1.6562722e-01 4.2450569e-01 5.9279023e-01 1.8877121e+00 8.2518769e-01 9.7789352e-01 1.4886316e+00 2.7335291e+00 9.1459005e-01 1.8213026e+00 2.2454046e+00 7.7259801e-01 8.0376328e-01 1.0525811e+00 2.1168634e+00 2.2814168e+00 3.7089872e+00 1.0767714e+00 1.0755005e+00 1.1631285e+00 2.6946772e+00 1.7497347e+00 1.2634840e+00 7.1971771e-01 1.7438018e+00 1.6356845e+00 1.7637315e+00 3.7622328e-01 1.8511762e+00 1.9311191e+00 1.4699785e+00 1.1016806e+00 1.1928774e+00 1.6354514e+00 6.5233704e-01 2.0052498e+00 1.7681972e+00 1.2007144e+00 2.1235855e+00 2.2484715e+00 1.6942544e+00 1.0546367e+00 5.1386894e-01 2.3251407e+00 1.7093881e+00 2.0273081e+00 2.2255325e+00 6.9493020e-01 2.3316649e+00 1.8640280e+00 2.3781796e+00 1.4043141e+00 1.6126002e+00 1.5456113e+00 2.4814136e+00 1.5467508e+00 1.8811164e+00 1.5963715e+00 2.0694478e+00 1.7422855e+00 2.4276706e+00 2.4143104e+00 1.5837613e+00 1.7028549e+00 2.6643250e-01 7.3283576e-01 6.1619693e-01 1.4102704e+00 1.5157660e+00 3.3107238e+00 7.0702759e-01 4.6964680e-01 7.3731902e-01 2.0564363e+00 1.8389778e+00 9.9058911e-01 7.8305765e-01 1.2692102e+00 1.3637808e+00 1.3483908e+00 6.2818221e-01 1.5635907e+00 1.7874832e+00 1.0817627e+00 4.8284931e-01 7.9664122e-01 1.7693113e+00 8.5141186e-01 7.7538587e-01 1.4522625e+00 1.1678338e+00 1.2100516e+00 1.1294987e+00 1.4712028e+00 1.8985225e+00 1.2171256e+00 1.5155373e+00 1.9939611e+00 1.4342819e+00 6.6653737e-01 7.1511757e-01 1.2680818e+00 5.4772790e-01 6.0868934e-01 6.7484334e-01 1.8112028e+00 3.8639663e-01 5.2413598e-01 7.9227302e-01 1.9656037e+00 7.9656884e-01 7.1789533e-01 1.2970125e+00 1.6649242e+00 1.5382030e+00 1.4107908e+00 5.4248468e-01 9.6424206e-01 1.6581712e+00 1.4527629e+00 1.5643033e+00 2.0014001e+00 1.0048958e+00 1.4365091e+00 1.0328871e+00 1.6659456e+00 6.7424840e-01 1.0427348e+00 9.3481345e-01 2.1131807e+00 8.1596583e-01 1.1349095e+00 1.1009910e+00 2.0312552e+00 1.0961859e+00 1.4886316e+00 1.7139439e+00 4.8016385e-01 6.4687084e-01 1.4356300e+00 1.6309773e+00 3.2287360e+00 7.3391501e-01 4.4499696e-01 8.4121419e-01 2.1133414e+00 1.6592561e+00 8.3333283e-01 5.2066928e-01 1.2097457e+00 1.2911242e+00 1.2850973e+00 5.7672351e-01 1.4812088e+00 1.6720834e+00 1.0285902e+00 7.2340544e-01 6.8124108e-01 1.5683551e+00 6.1067563e-01 8.0990117e-01 1.4468934e+00 1.7768340e+00 2.9867606e+00 8.8098199e-01 6.6217390e-01 1.1327663e+00 2.1506380e+00 1.2980342e+00 5.4779717e-01 1.3340137e-01 1.1051628e+00 1.1634940e+00 1.1952607e+00 7.9999102e-01 1.2953104e+00 1.4320028e+00 9.9155078e-01 1.1867923e+00 5.7526462e-01 1.1726810e+00 2.6680274e-01 1.2602457e+00 1.2678174e+00 2.9703757e+00 1.3103399e-01 8.4439576e-01 1.0887336e+00 1.6811909e+00 1.4435947e+00 7.9778097e-01 8.9789119e-01 9.2528705e-01 8.7435479e-01 9.9613800e-01 8.5275415e-01 1.0871867e+00 1.3186900e+00 6.8124108e-01 8.2317311e-01 5.4397563e-01 1.4334280e+00 9.0121513e-01 6.7419212e-01 2.1234744e+00 1.3330747e+00 1.2524426e+00 1.6423187e+00 1.1112287e+00 1.7731481e+00 1.0412209e+00 1.5779602e+00 8.1552831e-01 1.2367326e+00 1.0877340e+00 1.9102507e+00 1.1360631e+00 1.4957547e+00 1.1495900e+00 1.6944472e+00 1.0511712e+00 1.7894533e+00 1.6403454e+00 2.3936810e+00 1.3012342e+00 1.5364148e+00 1.7852089e+00 7.8659640e-01 2.0467146e+00 1.4387140e+00 1.9055720e+00 1.0341095e+00 1.3049404e+00 1.1996837e+00 2.0267836e+00 1.2898173e+00 1.6473842e+00 1.2092432e+00 1.6223502e+00 1.2928268e+00 2.1087983e+00 1.9576761e+00 2.9790337e+00 3.1661621e+00 3.6343153e+00 1.9094387e+00 2.2505084e+00 2.4932991e+00 3.0919113e+00 2.0983540e+00 2.2774299e+00 2.1822207e+00 3.6643554e+00 1.9784646e+00 2.0041121e+00 2.4741311e+00 3.6564145e+00 2.5932898e+00 2.3540393e+00 3.1383476e+00 9.6758101e-01 1.2012033e+00 1.6658010e+00 1.4135473e+00 8.6985276e-01 9.6249568e-01 9.3451915e-01 8.2380019e-01 9.6993876e-01 9.0168685e-01 1.0632334e+00 1.2723027e+00 6.4232366e-01 8.7376399e-01 5.8942278e-01 1.4153467e+00 9.6559725e-01 6.0709980e-01 2.1192618e+00 1.8400866e+00 8.3619405e-01 7.2626021e-01 1.2848171e+00 1.4775384e+00 1.4500356e+00 8.3216780e-01 1.5874797e+00 1.8427499e+00 1.2442620e+00 8.6985276e-01 8.3878265e-01 1.7484907e+00 7.7500385e-01 2.4608044e+00 2.2758533e+00 1.3186900e+00 1.1601403e+00 1.7655861e+00 1.8899115e+00 1.9324044e+00 8.3306409e-01 2.0122449e+00 2.2830055e+00 1.6787550e+00 8.1019167e-01 1.3243478e+00 2.1959912e+00 1.1244567e+00 1.9511379e+00 1.7500667e+00 2.2774574e+00 1.1011934e+00 1.2684800e+00 1.1435764e+00 2.5178144e+00 1.1861264e+00 1.4342819e+00 1.3109392e+00 2.2026274e+00 1.5858048e+00 2.0711809e+00 2.3400013e+00 1.0557584e+00 1.3438727e+00 1.0821769e+00 8.4383266e-01 1.0493821e+00 1.8656026e+00 7.8957903e-01 5.5399712e-01 1.0737552e+00 2.2030214e+00 1.1115276e+00 2.1119253e-01 1.3352177e+00 6.6627781e-01 7.2272795e-01 8.6751530e-01 9.1936743e-01 1.2019259e+00 8.7588404e-01 1.0946184e+00 8.0162421e-01 1.4236959e+00 4.0664863e-01 9.8463602e-01 6.8496652e-01 1.2266388e+00 1.2615426e+00 1.3010124e+00 7.6362786e-01 1.4014424e+00 1.5148689e+00 1.0932736e+00 1.2210779e+00 6.9618131e-01 1.2059294e+00 2.0855006e-01 4.7509249e-01 3.1239235e-01 1.6472011e+00 4.6557224e-01 7.5810578e-01 4.3937875e-01 1.5999820e+00 5.6262711e-01 1.1233867e+00 1.3019241e+00 3.9472619e-01 1.5943283e+00 3.3742167e-01 4.8284931e-01 3.4893361e-01 1.6410601e+00 6.6154242e-01 9.3451915e-01 1.2980649e+00 1.7001179e+00 5.2283051e-01 6.7484334e-01 3.3872939e-01 1.6485749e+00 6.6653737e-01 1.1055440e+00 1.3931316e+00 1.8078806e+00 1.9570111e+00 1.3920954e+00 7.6195008e-01 1.1016806e+00 1.7729341e+00 7.1446962e-01 3.8639663e-01 6.2027457e-01 1.8723846e+00 8.0990117e-01 9.0447834e-01 1.4243850e+00 7.9227302e-01 2.1007225e+00 1.0230346e+00 7.1789533e-01 1.5391678e+00 1.3603920e+00 4.6137216e-01 1.1083720e+00 1.1686836e+00 1.1908452e+00 2.1561807e+00 1.2583645e+00 1.0722301e+00 7.7259801e-01 1.2001902e+00 diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-spearman-ml.txt b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-spearman-ml.txt new file mode 100644 index 0000000000000000000000000000000000000000..b50fe3af1912d20aaa737eedc1b6e096a7005876 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/pdist-spearman-ml.txt @@ -0,0 +1 @@ + 9.3540954e-01 9.7904590e-01 8.6703870e-01 1.1569997e+00 8.7174317e-01 1.0627183e+00 9.1272727e-01 1.1593999e+00 9.7573357e-01 1.0072127e+00 1.0536814e+00 9.6276028e-01 9.7700570e-01 1.1513951e+00 1.0719592e+00 9.2178818e-01 1.0004680e+00 9.3689769e-01 9.8205821e-01 1.0332673e+00 9.4517852e-01 8.9437744e-01 9.7556556e-01 9.0460246e-01 9.7210921e-01 9.2230423e-01 9.9605161e-01 9.6852085e-01 8.4162016e-01 9.6667267e-01 9.7759376e-01 9.9757576e-01 7.6992499e-01 1.0151695e+00 9.8691869e-01 9.0325833e-01 8.6665467e-01 8.8844884e-01 8.4553255e-01 9.7700570e-01 9.5159916e-01 9.8906691e-01 1.0551935e+00 9.1973597e-01 1.3266247e+00 1.0982778e+00 8.4531653e-01 1.0887369e+00 1.0984938e+00 9.9851185e-01 9.0701470e-01 1.0639304e+00 1.2392919e+00 1.1422502e+00 8.1725773e-01 1.1844944e+00 7.8219022e-01 1.0817162e+00 1.2196100e+00 1.0003120e+00 1.0164536e+00 7.0724272e-01 9.7981398e-01 1.1134953e+00 1.0671107e+00 9.3600960e-01 9.9984398e-01 1.0356916e+00 1.1248005e+00 1.0696310e+00 1.0634263e+00 9.6472847e-01 9.9365137e-01 8.5724572e-01 1.1257846e+00 8.9930993e-01 9.4903090e-01 9.0667867e-01 9.1231923e-01 1.0573777e+00 9.0105011e-01 9.5255926e-01 1.0177978e+00 1.0606901e+00 1.1966997e+00 1.0891929e+00 1.0085089e+00 1.2640264e+00 9.3246925e-01 1.0198020e+00 1.2055806e+00 1.1237924e+00 1.1060666e+00 1.0517252e+00 1.0684668e+00 7.6844884e-01 1.0572697e+00 8.7373537e-01 9.6283228e-01 9.9350735e-01 1.2412601e+00 7.6322832e-01 1.0298950e+00 8.6148215e-01 1.0042724e+00 9.7012901e-01 9.3712571e-01 8.5845785e-01 8.5862586e-01 1.0336634e+00 1.0955536e+00 9.5302730e-01 9.8696670e-01 1.0633063e+00 1.0026643e+00 9.6380438e-01 1.1711251e+00 9.9273927e-01 1.0260906e+00 1.0863966e+00 1.0482808e+00 9.0361836e-01 9.2358836e-01 8.7794779e-01 1.2461206e+00 9.2985299e-01 1.0418962e+00 9.4660666e-01 9.5636364e-01 9.0646265e-01 9.9113111e-01 8.3027903e-01 9.3341734e-01 1.1378938e+00 1.0548215e+00 1.0086889e+00 1.1998920e+00 8.6063006e-01 1.0255506e+00 8.4786079e-01 1.0090729e+00 9.2542454e-01 9.5176718e-01 9.3477348e-01 9.0091809e-01 9.6404440e-01 1.1158716e+00 9.9614761e-01 7.7682568e-01 1.0605461e+00 1.0895650e+00 9.0065407e-01 8.7173117e-01 9.9821182e-01 1.2165617e+00 8.6127813e-01 1.1111071e+00 7.9015902e-01 1.0433843e+00 8.6510651e-01 1.0019202e+00 1.0154815e+00 9.4381038e-01 9.8646265e-01 1.0062526e+00 9.7426943e-01 9.8191419e-01 1.3038944e+00 8.6277828e-01 1.0830243e+00 8.6851485e-01 1.1192559e+00 9.9120312e-01 9.6540054e-01 9.1072307e-01 1.1775698e+00 1.1139154e+00 1.1083468e+00 9.9593159e-01 1.0825923e+00 1.1115032e+00 9.7430543e-01 9.5605161e-01 9.2800480e-01 9.4369037e-01 1.1136034e+00 1.1382898e+00 9.5937594e-01 9.8843084e-01 7.4563456e-01 diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/random-bool-data.txt b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/random-bool-data.txt new file mode 100644 index 0000000000000000000000000000000000000000..df0d838f517f6c0afd8954ad87bc83886e0e3de4 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/random-bool-data.txt @@ -0,0 +1,100 @@ +0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 +1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 1 1 1 +0 1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 +1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 1 0 0 +1 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 1 1 0 0 +1 0 1 1 0 0 0 1 1 1 1 1 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 +0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 1 0 1 1 1 1 0 1 0 +1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0 +1 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 +1 1 0 1 0 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 +1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 +1 1 1 1 0 1 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 +1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0 1 +0 1 1 0 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 1 1 +1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 1 0 1 1 +1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 0 +1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 1 0 0 0 1 1 1 1 1 +0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 0 1 0 0 0 +1 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 1 0 1 1 0 1 1 +0 0 0 0 1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 +0 1 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 +1 0 1 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 1 1 +0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 +0 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 0 1 1 1 0 0 1 1 0 0 1 +0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 1 0 1 1 0 0 +1 0 0 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 0 0 0 1 1 1 0 +1 0 0 0 1 1 1 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 1 +0 1 0 0 0 1 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 0 1 0 1 1 0 1 1 +0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1 +0 0 1 0 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 0 1 0 1 0 +1 1 0 1 1 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 +0 1 0 0 0 1 0 1 1 0 0 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 +1 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 +1 1 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 1 +0 1 0 0 1 1 0 0 1 1 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 0 +1 1 1 1 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 +0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0 +0 1 1 1 0 0 0 1 1 1 0 1 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 1 +0 1 0 0 1 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 0 1 1 0 0 0 0 1 0 0 +1 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 1 +0 1 1 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 +0 0 1 1 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 +1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 +1 0 1 1 1 0 1 1 1 1 0 0 1 0 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 +1 0 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 1 0 0 0 1 +1 0 1 0 1 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 0 1 1 0 1 0 0 1 0 0 +0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 +0 1 0 1 1 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 1 0 0 1 0 1 +1 0 1 1 1 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 +1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 0 1 1 0 0 1 1 1 1 0 1 0 1 +1 1 1 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 0 1 0 0 +1 0 1 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 +0 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 0 1 0 +0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 +1 1 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 +1 0 1 1 1 0 1 0 1 0 0 1 1 1 1 1 0 0 1 1 0 1 1 1 1 0 0 0 0 1 +0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 0 1 0 0 +0 0 1 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1 1 1 0 0 +0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 0 +1 0 0 1 0 1 1 1 0 1 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0 0 1 1 1 1 +0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 +1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 +0 1 0 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0 1 +1 0 1 1 1 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 1 1 1 1 0 0 0 1 +0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 +0 0 1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 +0 1 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 1 +1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 0 0 +1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 +0 0 0 0 1 1 1 0 1 0 0 1 1 0 0 1 1 1 1 0 0 1 0 1 0 0 0 1 0 0 +1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 1 0 +1 0 1 1 0 1 0 1 0 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 +1 1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 +0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 1 1 +1 1 1 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 +1 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 +1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1 1 0 +1 1 1 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 +1 0 1 1 0 0 1 1 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 0 0 1 0 +0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 1 0 0 +1 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 0 1 0 +1 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 0 1 0 1 0 1 +1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 1 0 1 +0 1 0 0 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 1 1 1 +0 1 0 0 1 0 1 1 0 0 0 0 1 1 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0 0 +0 1 0 1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 +0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 +1 0 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 +1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 1 1 1 0 +0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 +1 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 0 +0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 1 1 0 1 +0 0 0 1 1 0 1 0 1 0 1 0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 0 1 0 1 +1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 +0 1 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 0 +1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 0 1 +0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1 0 1 0 0 0 1 1 0 +1 1 1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0 0 1 1 1 1 0 1 1 0 1 1 +0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 +0 0 0 1 0 0 1 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 0 diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test__plotutils.py b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test__plotutils.py new file mode 100644 index 0000000000000000000000000000000000000000..0e2553bf7ad56e97b567e5b334ccf17921f7f7f3 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test__plotutils.py @@ -0,0 +1,91 @@ +import pytest +import numpy as np +from numpy.testing import assert_, assert_array_equal, assert_allclose + +try: + import matplotlib + matplotlib.rcParams['backend'] = 'Agg' + import matplotlib.pyplot as plt + has_matplotlib = True +except Exception: + has_matplotlib = False + +from scipy.spatial import \ + delaunay_plot_2d, voronoi_plot_2d, convex_hull_plot_2d, \ + Delaunay, Voronoi, ConvexHull + + +@pytest.mark.skipif(not has_matplotlib, reason="Matplotlib not available") +class TestPlotting: + points = [(0,0), (0,1), (1,0), (1,1)] + + def test_delaunay(self): + # Smoke test + fig = plt.figure() + obj = Delaunay(self.points) + s_before = obj.simplices.copy() + r = delaunay_plot_2d(obj, ax=fig.gca()) + assert_array_equal(obj.simplices, s_before) # shouldn't modify + assert_(r is fig) + delaunay_plot_2d(obj, ax=fig.gca()) + + def test_voronoi(self): + # Smoke test + fig = plt.figure() + obj = Voronoi(self.points) + r = voronoi_plot_2d(obj, ax=fig.gca()) + assert_(r is fig) + voronoi_plot_2d(obj) + voronoi_plot_2d(obj, show_vertices=False) + + def test_convex_hull(self): + # Smoke test + fig = plt.figure() + tri = ConvexHull(self.points) + r = convex_hull_plot_2d(tri, ax=fig.gca()) + assert_(r is fig) + convex_hull_plot_2d(tri) + + def test_gh_19653(self): + # aspect ratio sensitivity of voronoi_plot_2d + # infinite Voronoi edges + points = np.array([[245.059986986012, 10.971011721360075], + [320.49044143557785, 10.970258360366753], + [239.79023081978914, 13.108487516946218], + [263.38325791238833, 12.93241352743668], + [219.53334398353175, 13.346107628161008]]) + vor = Voronoi(points) + fig = voronoi_plot_2d(vor) + ax = fig.gca() + infinite_segments = ax.collections[1].get_segments() + expected_segments = np.array([[[282.77256, -254.76904], + [282.729714, -4544.744698]], + [[282.77256014, -254.76904029], + [430.08561382, 4032.67658742]], + [[229.26733285, -20.39957514], + [-168.17167404, -4291.92545966]], + [[289.93433364, 5151.40412217], + [330.40553385, 9441.18887532]]]) + assert_allclose(infinite_segments, expected_segments) + + def test_gh_19653_smaller_aspect(self): + # reasonable behavior for less extreme aspect + # ratio + points = np.array([[24.059986986012, 10.971011721360075], + [32.49044143557785, 10.970258360366753], + [23.79023081978914, 13.108487516946218], + [26.38325791238833, 12.93241352743668], + [21.53334398353175, 13.346107628161008]]) + vor = Voronoi(points) + fig = voronoi_plot_2d(vor) + ax = fig.gca() + infinite_segments = ax.collections[1].get_segments() + expected_segments = np.array([[[28.274979, 8.335027], + [28.270463, -42.19763338]], + [[28.27497869, 8.33502697], + [43.73223829, 56.44555501]], + [[22.51805823, 11.8621754], + [-12.09266506, -24.95694485]], + [[29.53092448, 78.46952378], + [33.82572726, 128.81934455]]]) + assert_allclose(infinite_segments, expected_segments) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test__procrustes.py b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test__procrustes.py new file mode 100644 index 0000000000000000000000000000000000000000..42a3c4d35bd55e2ffecefb691c805f517c56d6ca --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test__procrustes.py @@ -0,0 +1,116 @@ +import numpy as np +from numpy.testing import assert_allclose, assert_equal, assert_almost_equal +from pytest import raises as assert_raises + +from scipy.spatial import procrustes + + +class TestProcrustes: + def setup_method(self): + """creates inputs""" + # an L + self.data1 = np.array([[1, 3], [1, 2], [1, 1], [2, 1]], 'd') + + # a larger, shifted, mirrored L + self.data2 = np.array([[4, -2], [4, -4], [4, -6], [2, -6]], 'd') + + # an L shifted up 1, right 1, and with point 4 shifted an extra .5 + # to the right + # pointwise distance disparity with data1: 3*(2) + (1 + 1.5^2) + self.data3 = np.array([[2, 4], [2, 3], [2, 2], [3, 2.5]], 'd') + + # data4, data5 are standardized (trace(A*A') = 1). + # procrustes should return an identical copy if they are used + # as the first matrix argument. + shiftangle = np.pi / 8 + self.data4 = np.array([[1, 0], [0, 1], [-1, 0], + [0, -1]], 'd') / np.sqrt(4) + self.data5 = np.array([[np.cos(shiftangle), np.sin(shiftangle)], + [np.cos(np.pi / 2 - shiftangle), + np.sin(np.pi / 2 - shiftangle)], + [-np.cos(shiftangle), + -np.sin(shiftangle)], + [-np.cos(np.pi / 2 - shiftangle), + -np.sin(np.pi / 2 - shiftangle)]], + 'd') / np.sqrt(4) + + def test_procrustes(self): + # tests procrustes' ability to match two matrices. + # + # the second matrix is a rotated, shifted, scaled, and mirrored version + # of the first, in two dimensions only + # + # can shift, mirror, and scale an 'L'? + a, b, disparity = procrustes(self.data1, self.data2) + assert_allclose(b, a) + assert_almost_equal(disparity, 0.) + + # if first mtx is standardized, leaves first mtx unchanged? + m4, m5, disp45 = procrustes(self.data4, self.data5) + assert_equal(m4, self.data4) + + # at worst, data3 is an 'L' with one point off by .5 + m1, m3, disp13 = procrustes(self.data1, self.data3) + #assert_(disp13 < 0.5 ** 2) + + def test_procrustes2(self): + # procrustes disparity should not depend on order of matrices + m1, m3, disp13 = procrustes(self.data1, self.data3) + m3_2, m1_2, disp31 = procrustes(self.data3, self.data1) + assert_almost_equal(disp13, disp31) + + # try with 3d, 8 pts per + rand1 = np.array([[2.61955202, 0.30522265, 0.55515826], + [0.41124708, -0.03966978, -0.31854548], + [0.91910318, 1.39451809, -0.15295084], + [2.00452023, 0.50150048, 0.29485268], + [0.09453595, 0.67528885, 0.03283872], + [0.07015232, 2.18892599, -1.67266852], + [0.65029688, 1.60551637, 0.80013549], + [-0.6607528, 0.53644208, 0.17033891]]) + + rand3 = np.array([[0.0809969, 0.09731461, -0.173442], + [-1.84888465, -0.92589646, -1.29335743], + [0.67031855, -1.35957463, 0.41938621], + [0.73967209, -0.20230757, 0.52418027], + [0.17752796, 0.09065607, 0.29827466], + [0.47999368, -0.88455717, -0.57547934], + [-0.11486344, -0.12608506, -0.3395779], + [-0.86106154, -0.28687488, 0.9644429]]) + res1, res3, disp13 = procrustes(rand1, rand3) + res3_2, res1_2, disp31 = procrustes(rand3, rand1) + assert_almost_equal(disp13, disp31) + + def test_procrustes_shape_mismatch(self): + assert_raises(ValueError, procrustes, + np.array([[1, 2], [3, 4]]), + np.array([[5, 6, 7], [8, 9, 10]])) + + def test_procrustes_empty_rows_or_cols(self): + empty = np.array([[]]) + assert_raises(ValueError, procrustes, empty, empty) + + def test_procrustes_no_variation(self): + assert_raises(ValueError, procrustes, + np.array([[42, 42], [42, 42]]), + np.array([[45, 45], [45, 45]])) + + def test_procrustes_bad_number_of_dimensions(self): + # fewer dimensions in one dataset + assert_raises(ValueError, procrustes, + np.array([1, 1, 2, 3, 5, 8]), + np.array([[1, 2], [3, 4]])) + + # fewer dimensions in both datasets + assert_raises(ValueError, procrustes, + np.array([1, 1, 2, 3, 5, 8]), + np.array([1, 1, 2, 3, 5, 8])) + + # zero dimensions + assert_raises(ValueError, procrustes, np.array(7), np.array(11)) + + # extra dimensions + assert_raises(ValueError, procrustes, + np.array([[[11], [7]]]), + np.array([[[5, 13]]])) + diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test_distance.py b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test_distance.py new file mode 100644 index 0000000000000000000000000000000000000000..14989b9a2bc674af468f7d241278b02b75b10a8c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test_distance.py @@ -0,0 +1,2267 @@ +# +# Author: Damian Eads +# Date: April 17, 2008 +# +# Copyright (C) 2008 Damian Eads +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions +# are met: +# +# 1. Redistributions of source code must retain the above copyright +# notice, this list of conditions and the following disclaimer. +# +# 2. Redistributions in binary form must reproduce the above +# copyright notice, this list of conditions and the following +# disclaimer in the documentation and/or other materials provided +# with the distribution. +# +# 3. The name of the author may not be used to endorse or promote +# products derived from this software without specific prior +# written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS +# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE +# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY +# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE +# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS +# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, +# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import sys +import os.path + +from functools import wraps, partial +import weakref + +import numpy as np +import warnings +from numpy.linalg import norm +from numpy.testing import (verbose, assert_, + assert_array_equal, assert_equal, + assert_almost_equal, assert_allclose, + break_cycles, IS_PYPY) +import pytest + +import scipy.spatial.distance + +from scipy.spatial.distance import ( + squareform, pdist, cdist, num_obs_y, num_obs_dm, is_valid_dm, is_valid_y, + _validate_vector, _METRICS_NAMES) + +# these were missing: chebyshev cityblock +# jensenshannon and seuclidean are referenced by string name. +from scipy.spatial.distance import (braycurtis, canberra, chebyshev, cityblock, + correlation, cosine, dice, euclidean, + hamming, jaccard, jensenshannon, + kulczynski1, mahalanobis, + minkowski, rogerstanimoto, + russellrao, seuclidean, sokalmichener, # noqa: F401 + sokalsneath, sqeuclidean, yule) +from scipy._lib._util import np_long, np_ulong + + +@pytest.fixture(params=_METRICS_NAMES, scope="session") +def metric(request): + """ + Fixture for all metrics in scipy.spatial.distance + """ + return request.param + + +_filenames = [ + "cdist-X1.txt", + "cdist-X2.txt", + "iris.txt", + "pdist-boolean-inp.txt", + "pdist-chebyshev-ml-iris.txt", + "pdist-chebyshev-ml.txt", + "pdist-cityblock-ml-iris.txt", + "pdist-cityblock-ml.txt", + "pdist-correlation-ml-iris.txt", + "pdist-correlation-ml.txt", + "pdist-cosine-ml-iris.txt", + "pdist-cosine-ml.txt", + "pdist-double-inp.txt", + "pdist-euclidean-ml-iris.txt", + "pdist-euclidean-ml.txt", + "pdist-hamming-ml.txt", + "pdist-jaccard-ml.txt", + "pdist-jensenshannon-ml-iris.txt", + "pdist-jensenshannon-ml.txt", + "pdist-minkowski-3.2-ml-iris.txt", + "pdist-minkowski-3.2-ml.txt", + "pdist-minkowski-5.8-ml-iris.txt", + "pdist-seuclidean-ml-iris.txt", + "pdist-seuclidean-ml.txt", + "pdist-spearman-ml.txt", + "random-bool-data.txt", + "random-double-data.txt", + "random-int-data.txt", + "random-uint-data.txt", + ] + +_tdist = np.array([[0, 662, 877, 255, 412, 996], + [662, 0, 295, 468, 268, 400], + [877, 295, 0, 754, 564, 138], + [255, 468, 754, 0, 219, 869], + [412, 268, 564, 219, 0, 669], + [996, 400, 138, 869, 669, 0]], dtype='double') + +_ytdist = squareform(_tdist) + +# A hashmap of expected output arrays for the tests. These arrays +# come from a list of text files, which are read prior to testing. +# Each test loads inputs and outputs from this dictionary. +eo = {} + + +def load_testing_files(): + for fn in _filenames: + name = fn.replace(".txt", "").replace("-ml", "") + fqfn = os.path.join(os.path.dirname(__file__), 'data', fn) + fp = open(fqfn) + eo[name] = np.loadtxt(fp) + fp.close() + eo['pdist-boolean-inp'] = np.bool_(eo['pdist-boolean-inp']) + eo['random-bool-data'] = np.bool_(eo['random-bool-data']) + eo['random-float32-data'] = np.float32(eo['random-double-data']) + eo['random-int-data'] = np_long(eo['random-int-data']) + eo['random-uint-data'] = np_ulong(eo['random-uint-data']) + + +load_testing_files() + + +def _is_32bit(): + return np.intp(0).itemsize < 8 + + +def _chk_asarrays(arrays, axis=None): + arrays = [np.asanyarray(a) for a in arrays] + if axis is None: + # np < 1.10 ravel removes subclass from arrays + arrays = [np.ravel(a) if a.ndim != 1 else a + for a in arrays] + axis = 0 + arrays = tuple(np.atleast_1d(a) for a in arrays) + if axis < 0: + if not all(a.ndim == arrays[0].ndim for a in arrays): + raise ValueError("array ndim must be the same for neg axis") + axis = range(arrays[0].ndim)[axis] + return arrays + (axis,) + + +def _chk_weights(arrays, weights=None, axis=None, + force_weights=False, simplify_weights=True, + pos_only=False, neg_check=False, + nan_screen=False, mask_screen=False, + ddof=None): + chked = _chk_asarrays(arrays, axis=axis) + arrays, axis = chked[:-1], chked[-1] + + simplify_weights = simplify_weights and not force_weights + if not force_weights and mask_screen: + force_weights = any(np.ma.getmask(a) is not np.ma.nomask for a in arrays) + + if nan_screen: + has_nans = [np.isnan(np.sum(a)) for a in arrays] + if any(has_nans): + mask_screen = True + force_weights = True + arrays = tuple(np.ma.masked_invalid(a) if has_nan else a + for a, has_nan in zip(arrays, has_nans)) + + if weights is not None: + weights = np.asanyarray(weights) + elif force_weights: + weights = np.ones(arrays[0].shape[axis]) + else: + return arrays + (weights, axis) + + if ddof: + weights = _freq_weights(weights) + + if mask_screen: + weights = _weight_masked(arrays, weights, axis) + + if not all(weights.shape == (a.shape[axis],) for a in arrays): + raise ValueError("weights shape must match arrays along axis") + if neg_check and (weights < 0).any(): + raise ValueError("weights cannot be negative") + + if pos_only: + pos_weights = np.nonzero(weights > 0)[0] + if pos_weights.size < weights.size: + arrays = tuple(np.take(a, pos_weights, axis=axis) for a in arrays) + weights = weights[pos_weights] + if simplify_weights and (weights == 1).all(): + weights = None + return arrays + (weights, axis) + + +def _freq_weights(weights): + if weights is None: + return weights + int_weights = weights.astype(int) + if (weights != int_weights).any(): + raise ValueError("frequency (integer count-type) weights required %s" % weights) + return int_weights + + +def _weight_masked(arrays, weights, axis): + if axis is None: + axis = 0 + weights = np.asanyarray(weights) + for a in arrays: + axis_mask = np.ma.getmask(a) + if axis_mask is np.ma.nomask: + continue + if a.ndim > 1: + not_axes = tuple(i for i in range(a.ndim) if i != axis) + axis_mask = axis_mask.any(axis=not_axes) + weights *= 1 - axis_mask.astype(int) + return weights + + +def _rand_split(arrays, weights, axis, split_per, seed=None): + # Coerce `arrays` to float64 if integer, to avoid nan-to-integer issues + arrays = [arr.astype(np.float64) if np.issubdtype(arr.dtype, np.integer) + else arr for arr in arrays] + + # inverse operation for stats.collapse_weights + weights = np.array(weights, dtype=np.float64) # modified inplace; need a copy + seeded_rand = np.random.RandomState(seed) + + def mytake(a, ix, axis): + record = np.asanyarray(np.take(a, ix, axis=axis)) + return record.reshape([a.shape[i] if i != axis else 1 + for i in range(a.ndim)]) + + n_obs = arrays[0].shape[axis] + assert all(a.shape[axis] == n_obs for a in arrays), \ + "data must be aligned on sample axis" + for i in range(int(split_per) * n_obs): + split_ix = seeded_rand.randint(n_obs + i) + prev_w = weights[split_ix] + q = seeded_rand.rand() + weights[split_ix] = q * prev_w + weights = np.append(weights, (1. - q) * prev_w) + arrays = [np.append(a, mytake(a, split_ix, axis=axis), + axis=axis) for a in arrays] + return arrays, weights + + +def _rough_check(a, b, compare_assert=partial(assert_allclose, atol=1e-5), + key=lambda x: x, w=None): + check_a = key(a) + check_b = key(b) + try: + if np.array(check_a != check_b).any(): # try strict equality for string types + compare_assert(check_a, check_b) + except AttributeError: # masked array + compare_assert(check_a, check_b) + except (TypeError, ValueError): # nested data structure + for a_i, b_i in zip(check_a, check_b): + _rough_check(a_i, b_i, compare_assert=compare_assert) + +# diff from test_stats: +# n_args=2, weight_arg='w', default_axis=None +# ma_safe = False, nan_safe = False +def _weight_checked(fn, n_args=2, default_axis=None, key=lambda x: x, weight_arg='w', + squeeze=True, silent=False, + ones_test=True, const_test=True, dup_test=True, + split_test=True, dud_test=True, ma_safe=False, ma_very_safe=False, + nan_safe=False, split_per=1.0, seed=0, + compare_assert=partial(assert_allclose, atol=1e-5)): + """runs fn on its arguments 2 or 3 ways, checks that the results are the same, + then returns the same thing it would have returned before""" + @wraps(fn) + def wrapped(*args, **kwargs): + result = fn(*args, **kwargs) + + arrays = args[:n_args] + rest = args[n_args:] + weights = kwargs.get(weight_arg, None) + axis = kwargs.get('axis', default_axis) + + chked = _chk_weights(arrays, weights=weights, axis=axis, + force_weights=True, mask_screen=True) + arrays, weights, axis = chked[:-2], chked[-2], chked[-1] + if squeeze: + arrays = [np.atleast_1d(a.squeeze()) for a in arrays] + + try: + # WEIGHTS CHECK 1: EQUAL WEIGHTED OBSERVATIONS + args = tuple(arrays) + rest + if ones_test: + kwargs[weight_arg] = weights + _rough_check(result, fn(*args, **kwargs), key=key) + if const_test: + kwargs[weight_arg] = weights * 101.0 + _rough_check(result, fn(*args, **kwargs), key=key) + kwargs[weight_arg] = weights * 0.101 + try: + _rough_check(result, fn(*args, **kwargs), key=key) + except Exception as e: + raise type(e)((e, arrays, weights)) from e + + # WEIGHTS CHECK 2: ADDL 0-WEIGHTED OBS + if dud_test: + # add randomly resampled rows, weighted at 0 + dud_arrays, dud_weights = _rand_split(arrays, weights, axis, + split_per=split_per, seed=seed) + dud_weights[:weights.size] = weights # not exactly 1 because of masked arrays # noqa: E501 + dud_weights[weights.size:] = 0 + dud_args = tuple(dud_arrays) + rest + kwargs[weight_arg] = dud_weights + _rough_check(result, fn(*dud_args, **kwargs), key=key) + # increase the value of those 0-weighted rows + for a in dud_arrays: + indexer = [slice(None)] * a.ndim + indexer[axis] = slice(weights.size, None) + indexer = tuple(indexer) + a[indexer] = a[indexer] * 101 + dud_args = tuple(dud_arrays) + rest + _rough_check(result, fn(*dud_args, **kwargs), key=key) + # set those 0-weighted rows to NaNs + for a in dud_arrays: + indexer = [slice(None)] * a.ndim + indexer[axis] = slice(weights.size, None) + indexer = tuple(indexer) + a[indexer] = a[indexer] * np.nan + if kwargs.get("nan_policy", None) == "omit" and nan_safe: + dud_args = tuple(dud_arrays) + rest + _rough_check(result, fn(*dud_args, **kwargs), key=key) + # mask out those nan values + if ma_safe: + dud_arrays = [np.ma.masked_invalid(a) for a in dud_arrays] + dud_args = tuple(dud_arrays) + rest + _rough_check(result, fn(*dud_args, **kwargs), key=key) + if ma_very_safe: + kwargs[weight_arg] = None + _rough_check(result, fn(*dud_args, **kwargs), key=key) + del dud_arrays, dud_args, dud_weights + + # WEIGHTS CHECK 3: DUPLICATE DATA (DUMB SPLITTING) + if dup_test: + dup_arrays = [np.append(a, a, axis=axis) for a in arrays] + dup_weights = np.append(weights, weights) / 2.0 + dup_args = tuple(dup_arrays) + rest + kwargs[weight_arg] = dup_weights + _rough_check(result, fn(*dup_args, **kwargs), key=key) + del dup_args, dup_arrays, dup_weights + + # WEIGHT CHECK 3: RANDOM SPLITTING + if split_test and split_per > 0: + split = _rand_split(arrays, weights, axis, + split_per=split_per, seed=seed) + split_arrays, split_weights = split + split_args = tuple(split_arrays) + rest + kwargs[weight_arg] = split_weights + _rough_check(result, fn(*split_args, **kwargs), key=key) + except NotImplementedError as e: + # when some combination of arguments makes weighting impossible, + # this is the desired response + if not silent: + warnings.warn(f"{fn.__name__} NotImplemented weights: {e}", + stacklevel=3) + return result + return wrapped + + +wcdist = _weight_checked(cdist, default_axis=1, squeeze=False) +wcdist_no_const = _weight_checked(cdist, default_axis=1, + squeeze=False, const_test=False) +wpdist = _weight_checked(pdist, default_axis=1, squeeze=False, n_args=1) +wpdist_no_const = _weight_checked(pdist, default_axis=1, squeeze=False, + const_test=False, n_args=1) +wrogerstanimoto = _weight_checked(rogerstanimoto) +wmatching = whamming = _weight_checked(hamming, dud_test=False) +wyule = _weight_checked(yule) +wdice = _weight_checked(dice) +wcityblock = _weight_checked(cityblock) +wchebyshev = _weight_checked(chebyshev) +wcosine = _weight_checked(cosine) +wcorrelation = _weight_checked(correlation) +wkulczynski1 = _weight_checked(kulczynski1) +wjaccard = _weight_checked(jaccard) +weuclidean = _weight_checked(euclidean, const_test=False) +wsqeuclidean = _weight_checked(sqeuclidean, const_test=False) +wbraycurtis = _weight_checked(braycurtis) +wcanberra = _weight_checked(canberra, const_test=False) +wsokalsneath = _weight_checked(sokalsneath) +wsokalmichener = _weight_checked(sokalmichener) +wrussellrao = _weight_checked(russellrao) + + +class TestCdist: + + def setup_method(self): + self.rnd_eo_names = ['random-float32-data', 'random-int-data', + 'random-uint-data', 'random-double-data', + 'random-bool-data'] + self.valid_upcasts = {'bool': [np_ulong, np_long, np.float32, np.float64], + 'uint': [np_long, np.float32, np.float64], + 'int': [np.float32, np.float64], + 'float32': [np.float64]} + + def test_cdist_extra_args(self, metric): + # Tests that args and kwargs are correctly handled + + X1 = [[1., 2., 3.], [1.2, 2.3, 3.4], [2.2, 2.3, 4.4]] + X2 = [[7., 5., 8.], [7.5, 5.8, 8.4], [5.5, 5.8, 4.4]] + kwargs = {"N0tV4l1D_p4raM": 3.14, "w": np.arange(3)} + args = [3.14] * 200 + + with pytest.raises(TypeError): + cdist(X1, X2, metric=metric, **kwargs) + with pytest.raises(TypeError): + cdist(X1, X2, metric=eval(metric), **kwargs) + with pytest.raises(TypeError): + cdist(X1, X2, metric="test_" + metric, **kwargs) + with pytest.raises(TypeError): + cdist(X1, X2, metric=metric, *args) + with pytest.raises(TypeError): + cdist(X1, X2, metric=eval(metric), *args) + with pytest.raises(TypeError): + cdist(X1, X2, metric="test_" + metric, *args) + + def test_cdist_extra_args_custom(self): + # Tests that args and kwargs are correctly handled + # also for custom metric + def _my_metric(x, y, arg, kwarg=1, kwarg2=2): + return arg + kwarg + kwarg2 + + X1 = [[1., 2., 3.], [1.2, 2.3, 3.4], [2.2, 2.3, 4.4]] + X2 = [[7., 5., 8.], [7.5, 5.8, 8.4], [5.5, 5.8, 4.4]] + kwargs = {"N0tV4l1D_p4raM": 3.14, "w": np.arange(3)} + args = [3.14] * 200 + + with pytest.raises(TypeError): + cdist(X1, X2, _my_metric) + with pytest.raises(TypeError): + cdist(X1, X2, _my_metric, *args) + with pytest.raises(TypeError): + cdist(X1, X2, _my_metric, **kwargs) + with pytest.raises(TypeError): + cdist(X1, X2, _my_metric, kwarg=2.2, kwarg2=3.3) + with pytest.raises(TypeError): + cdist(X1, X2, _my_metric, 1, 2, kwarg=2.2) + with pytest.raises(TypeError): + cdist(X1, X2, _my_metric, 1, 2, kwarg=2.2) + with pytest.raises(TypeError): + cdist(X1, X2, _my_metric, 1.1, 2.2, 3.3) + with pytest.raises(TypeError): + cdist(X1, X2, _my_metric, 1.1, 2.2) + with pytest.raises(TypeError): + cdist(X1, X2, _my_metric, 1.1) + with pytest.raises(TypeError): + cdist(X1, X2, _my_metric, 1.1, kwarg=2.2, kwarg2=3.3) + + # this should work + assert_allclose(cdist(X1, X2, metric=_my_metric, + arg=1.1, kwarg2=3.3), 5.4) + + def test_cdist_euclidean_random_unicode(self): + eps = 1e-15 + X1 = eo['cdist-X1'] + X2 = eo['cdist-X2'] + Y1 = wcdist_no_const(X1, X2, 'euclidean') + Y2 = wcdist_no_const(X1, X2, 'test_euclidean') + assert_allclose(Y1, Y2, rtol=eps, verbose=verbose > 2) + + @pytest.mark.parametrize("p", [0.1, 0.25, 1.0, 1.23, + 2.0, 3.8, 4.6, np.inf]) + def test_cdist_minkowski_random(self, p): + eps = 1e-13 + X1 = eo['cdist-X1'] + X2 = eo['cdist-X2'] + Y1 = wcdist_no_const(X1, X2, 'minkowski', p=p) + Y2 = wcdist_no_const(X1, X2, 'test_minkowski', p=p) + assert_allclose(Y1, Y2, atol=0, rtol=eps, verbose=verbose > 2) + + def test_cdist_cosine_random(self): + eps = 1e-14 + X1 = eo['cdist-X1'] + X2 = eo['cdist-X2'] + Y1 = wcdist(X1, X2, 'cosine') + + # Naive implementation + def norms(X): + return np.linalg.norm(X, axis=1).reshape(-1, 1) + + Y2 = 1 - np.dot((X1 / norms(X1)), (X2 / norms(X2)).T) + + assert_allclose(Y1, Y2, rtol=eps, verbose=verbose > 2) + + def test_cdist_mahalanobis(self): + # 1-dimensional observations + x1 = np.array([[2], [3]]) + x2 = np.array([[2], [5]]) + dist = cdist(x1, x2, metric='mahalanobis') + assert_allclose(dist, [[0.0, np.sqrt(4.5)], [np.sqrt(0.5), np.sqrt(2)]]) + + # 2-dimensional observations + x1 = np.array([[0, 0], [-1, 0]]) + x2 = np.array([[0, 2], [1, 0], [0, -2]]) + dist = cdist(x1, x2, metric='mahalanobis') + rt2 = np.sqrt(2) + assert_allclose(dist, [[rt2, rt2, rt2], [2, 2 * rt2, 2]]) + + # Too few observations + with pytest.raises(ValueError): + cdist([[0, 1]], [[2, 3]], metric='mahalanobis') + + def test_cdist_custom_notdouble(self): + class myclass: + pass + + def _my_metric(x, y): + if not isinstance(x[0], myclass) or not isinstance(y[0], myclass): + raise ValueError("Type has been changed") + return 1.123 + data = np.array([[myclass()]], dtype=object) + cdist_y = cdist(data, data, metric=_my_metric) + right_y = 1.123 + assert_equal(cdist_y, right_y, verbose=verbose > 2) + + def _check_calling_conventions(self, X1, X2, metric, eps=1e-07, **kwargs): + # helper function for test_cdist_calling_conventions + try: + y1 = cdist(X1, X2, metric=metric, **kwargs) + y2 = cdist(X1, X2, metric=eval(metric), **kwargs) + y3 = cdist(X1, X2, metric="test_" + metric, **kwargs) + except Exception as e: + e_cls = e.__class__ + if verbose > 2: + print(e_cls.__name__) + print(e) + with pytest.raises(e_cls): + cdist(X1, X2, metric=metric, **kwargs) + with pytest.raises(e_cls): + cdist(X1, X2, metric=eval(metric), **kwargs) + with pytest.raises(e_cls): + cdist(X1, X2, metric="test_" + metric, **kwargs) + else: + assert_allclose(y1, y2, rtol=eps, verbose=verbose > 2) + assert_allclose(y1, y3, rtol=eps, verbose=verbose > 2) + + def test_cdist_calling_conventions(self, metric): + # Ensures that specifying the metric with a str or scipy function + # gives the same behaviour (i.e. same result or same exception). + # NOTE: The correctness should be checked within each metric tests. + for eo_name in self.rnd_eo_names: + # subsampling input data to speed-up tests + # NOTE: num samples needs to be > than dimensions for mahalanobis + X1 = eo[eo_name][::5, ::-2] + X2 = eo[eo_name][1::5, ::2] + if verbose > 2: + print("testing: ", metric, " with: ", eo_name) + if metric in {'dice', 'yule', + 'rogerstanimoto', + 'russellrao', 'sokalmichener', + 'sokalsneath', + 'kulczynski1'} and 'bool' not in eo_name: + # python version permits non-bools e.g. for fuzzy logic + continue + self._check_calling_conventions(X1, X2, metric) + + # Testing built-in metrics with extra args + if metric == "seuclidean": + X12 = np.vstack([X1, X2]).astype(np.float64) + V = np.var(X12, axis=0, ddof=1) + self._check_calling_conventions(X1, X2, metric, V=V) + elif metric == "mahalanobis": + X12 = np.vstack([X1, X2]).astype(np.float64) + V = np.atleast_2d(np.cov(X12.T)) + VI = np.array(np.linalg.inv(V).T) + self._check_calling_conventions(X1, X2, metric, VI=VI) + + def test_cdist_dtype_equivalence(self, metric): + # Tests that the result is not affected by type up-casting + eps = 1e-07 + tests = [(eo['random-bool-data'], self.valid_upcasts['bool']), + (eo['random-uint-data'], self.valid_upcasts['uint']), + (eo['random-int-data'], self.valid_upcasts['int']), + (eo['random-float32-data'], self.valid_upcasts['float32'])] + for test in tests: + X1 = test[0][::5, ::-2] + X2 = test[0][1::5, ::2] + try: + y1 = cdist(X1, X2, metric=metric) + except Exception as e: + e_cls = e.__class__ + if verbose > 2: + print(e_cls.__name__) + print(e) + for new_type in test[1]: + X1new = new_type(X1) + X2new = new_type(X2) + with pytest.raises(e_cls): + cdist(X1new, X2new, metric=metric) + else: + for new_type in test[1]: + y2 = cdist(new_type(X1), new_type(X2), metric=metric) + assert_allclose(y1, y2, rtol=eps, verbose=verbose > 2) + + def test_cdist_out(self, metric): + # Test that out parameter works properly + eps = 1e-15 + X1 = eo['cdist-X1'] + X2 = eo['cdist-X2'] + out_r, out_c = X1.shape[0], X2.shape[0] + + kwargs = dict() + if metric == 'minkowski': + kwargs['p'] = 1.23 + out1 = np.empty((out_r, out_c), dtype=np.float64) + Y1 = cdist(X1, X2, metric, **kwargs) + Y2 = cdist(X1, X2, metric, out=out1, **kwargs) + + # test that output is numerically equivalent + assert_allclose(Y1, Y2, rtol=eps, verbose=verbose > 2) + + # test that Y_test1 and out1 are the same object + assert_(Y2 is out1) + + # test for incorrect shape + out2 = np.empty((out_r-1, out_c+1), dtype=np.float64) + with pytest.raises(ValueError): + cdist(X1, X2, metric, out=out2, **kwargs) + + # test for C-contiguous order + out3 = np.empty( + (2 * out_r, 2 * out_c), dtype=np.float64)[::2, ::2] + out4 = np.empty((out_r, out_c), dtype=np.float64, order='F') + with pytest.raises(ValueError): + cdist(X1, X2, metric, out=out3, **kwargs) + with pytest.raises(ValueError): + cdist(X1, X2, metric, out=out4, **kwargs) + + # test for incorrect dtype + out5 = np.empty((out_r, out_c), dtype=np.int64) + with pytest.raises(ValueError): + cdist(X1, X2, metric, out=out5, **kwargs) + + def test_striding(self, metric): + # test that striding is handled correct with calls to + # _copy_array_if_base_present + eps = 1e-15 + X1 = eo['cdist-X1'][::2, ::2] + X2 = eo['cdist-X2'][::2, ::2] + X1_copy = X1.copy() + X2_copy = X2.copy() + + # confirm equivalence + assert_equal(X1, X1_copy) + assert_equal(X2, X2_copy) + # confirm contiguity + assert_(not X1.flags.c_contiguous) + assert_(not X2.flags.c_contiguous) + assert_(X1_copy.flags.c_contiguous) + assert_(X2_copy.flags.c_contiguous) + + kwargs = dict() + if metric == 'minkowski': + kwargs['p'] = 1.23 + Y1 = cdist(X1, X2, metric, **kwargs) + Y2 = cdist(X1_copy, X2_copy, metric, **kwargs) + # test that output is numerically equivalent + assert_allclose(Y1, Y2, rtol=eps, verbose=verbose > 2) + + def test_cdist_refcount(self, metric): + x1 = np.random.rand(10, 10) + x2 = np.random.rand(10, 10) + + kwargs = dict() + if metric == 'minkowski': + kwargs['p'] = 1.23 + + out = cdist(x1, x2, metric=metric, **kwargs) + + # Check reference counts aren't messed up. If we only hold weak + # references, the arrays should be deallocated. + weak_refs = [weakref.ref(v) for v in (x1, x2, out)] + del x1, x2, out + + if IS_PYPY: + break_cycles() + assert all(weak_ref() is None for weak_ref in weak_refs) + + +class TestPdist: + + def setup_method(self): + self.rnd_eo_names = ['random-float32-data', 'random-int-data', + 'random-uint-data', 'random-double-data', + 'random-bool-data'] + self.valid_upcasts = {'bool': [np_ulong, np_long, np.float32, np.float64], + 'uint': [np_long, np.float32, np.float64], + 'int': [np.float32, np.float64], + 'float32': [np.float64]} + + def test_pdist_extra_args(self, metric): + # Tests that args and kwargs are correctly handled + X1 = [[1., 2.], [1.2, 2.3], [2.2, 2.3]] + kwargs = {"N0tV4l1D_p4raM": 3.14, "w": np.arange(2)} + args = [3.14] * 200 + + with pytest.raises(TypeError): + pdist(X1, metric=metric, **kwargs) + with pytest.raises(TypeError): + pdist(X1, metric=eval(metric), **kwargs) + with pytest.raises(TypeError): + pdist(X1, metric="test_" + metric, **kwargs) + with pytest.raises(TypeError): + pdist(X1, metric=metric, *args) + with pytest.raises(TypeError): + pdist(X1, metric=eval(metric), *args) + with pytest.raises(TypeError): + pdist(X1, metric="test_" + metric, *args) + + def test_pdist_extra_args_custom(self): + # Tests that args and kwargs are correctly handled + # also for custom metric + def _my_metric(x, y, arg, kwarg=1, kwarg2=2): + return arg + kwarg + kwarg2 + + X1 = [[1., 2.], [1.2, 2.3], [2.2, 2.3]] + kwargs = {"N0tV4l1D_p4raM": 3.14, "w": np.arange(2)} + args = [3.14] * 200 + + with pytest.raises(TypeError): + pdist(X1, _my_metric) + with pytest.raises(TypeError): + pdist(X1, _my_metric, *args) + with pytest.raises(TypeError): + pdist(X1, _my_metric, **kwargs) + with pytest.raises(TypeError): + pdist(X1, _my_metric, kwarg=2.2, kwarg2=3.3) + with pytest.raises(TypeError): + pdist(X1, _my_metric, 1, 2, kwarg=2.2) + with pytest.raises(TypeError): + pdist(X1, _my_metric, 1, 2, kwarg=2.2) + with pytest.raises(TypeError): + pdist(X1, _my_metric, 1.1, 2.2, 3.3) + with pytest.raises(TypeError): + pdist(X1, _my_metric, 1.1, 2.2) + with pytest.raises(TypeError): + pdist(X1, _my_metric, 1.1) + with pytest.raises(TypeError): + pdist(X1, _my_metric, 1.1, kwarg=2.2, kwarg2=3.3) + + # these should work + assert_allclose(pdist(X1, metric=_my_metric, + arg=1.1, kwarg2=3.3), 5.4) + + def test_pdist_euclidean_random(self): + eps = 1e-07 + X = eo['pdist-double-inp'] + Y_right = eo['pdist-euclidean'] + Y_test1 = wpdist_no_const(X, 'euclidean') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_euclidean_random_u(self): + eps = 1e-07 + X = eo['pdist-double-inp'] + Y_right = eo['pdist-euclidean'] + Y_test1 = wpdist_no_const(X, 'euclidean') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_euclidean_random_float32(self): + eps = 1e-07 + X = np.float32(eo['pdist-double-inp']) + Y_right = eo['pdist-euclidean'] + Y_test1 = wpdist_no_const(X, 'euclidean') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_euclidean_random_nonC(self): + eps = 1e-07 + X = eo['pdist-double-inp'] + Y_right = eo['pdist-euclidean'] + Y_test2 = wpdist_no_const(X, 'test_euclidean') + assert_allclose(Y_test2, Y_right, rtol=eps) + + @pytest.mark.slow + def test_pdist_euclidean_iris_double(self): + eps = 1e-7 + X = eo['iris'] + Y_right = eo['pdist-euclidean-iris'] + Y_test1 = wpdist_no_const(X, 'euclidean') + assert_allclose(Y_test1, Y_right, rtol=eps) + + @pytest.mark.slow + def test_pdist_euclidean_iris_float32(self): + eps = 1e-5 + X = np.float32(eo['iris']) + Y_right = eo['pdist-euclidean-iris'] + Y_test1 = wpdist_no_const(X, 'euclidean') + assert_allclose(Y_test1, Y_right, rtol=eps, verbose=verbose > 2) + + @pytest.mark.slow + def test_pdist_euclidean_iris_nonC(self): + # Test pdist(X, 'test_euclidean') [the non-C implementation] on the + # Iris data set. + eps = 1e-7 + X = eo['iris'] + Y_right = eo['pdist-euclidean-iris'] + Y_test2 = wpdist_no_const(X, 'test_euclidean') + assert_allclose(Y_test2, Y_right, rtol=eps) + + def test_pdist_seuclidean_random(self): + eps = 1e-7 + X = eo['pdist-double-inp'] + Y_right = eo['pdist-seuclidean'] + Y_test1 = pdist(X, 'seuclidean') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_seuclidean_random_float32(self): + eps = 1e-7 + X = np.float32(eo['pdist-double-inp']) + Y_right = eo['pdist-seuclidean'] + Y_test1 = pdist(X, 'seuclidean') + assert_allclose(Y_test1, Y_right, rtol=eps) + + # Check no error is raise when V has float32 dtype (#11171). + V = np.var(X, axis=0, ddof=1) + Y_test2 = pdist(X, 'seuclidean', V=V) + assert_allclose(Y_test2, Y_right, rtol=eps) + + def test_pdist_seuclidean_random_nonC(self): + # Test pdist(X, 'test_sqeuclidean') [the non-C implementation] + eps = 1e-07 + X = eo['pdist-double-inp'] + Y_right = eo['pdist-seuclidean'] + Y_test2 = pdist(X, 'test_seuclidean') + assert_allclose(Y_test2, Y_right, rtol=eps) + + def test_pdist_seuclidean_iris(self): + eps = 1e-7 + X = eo['iris'] + Y_right = eo['pdist-seuclidean-iris'] + Y_test1 = pdist(X, 'seuclidean') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_seuclidean_iris_float32(self): + # Tests pdist(X, 'seuclidean') on the Iris data set (float32). + eps = 1e-5 + X = np.float32(eo['iris']) + Y_right = eo['pdist-seuclidean-iris'] + Y_test1 = pdist(X, 'seuclidean') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_seuclidean_iris_nonC(self): + # Test pdist(X, 'test_seuclidean') [the non-C implementation] on the + # Iris data set. + eps = 1e-7 + X = eo['iris'] + Y_right = eo['pdist-seuclidean-iris'] + Y_test2 = pdist(X, 'test_seuclidean') + assert_allclose(Y_test2, Y_right, rtol=eps) + + def test_pdist_cosine_random(self): + eps = 1e-7 + X = eo['pdist-double-inp'] + Y_right = eo['pdist-cosine'] + Y_test1 = wpdist(X, 'cosine') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_cosine_random_float32(self): + eps = 1e-7 + X = np.float32(eo['pdist-double-inp']) + Y_right = eo['pdist-cosine'] + Y_test1 = wpdist(X, 'cosine') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_cosine_random_nonC(self): + # Test pdist(X, 'test_cosine') [the non-C implementation] + eps = 1e-7 + X = eo['pdist-double-inp'] + Y_right = eo['pdist-cosine'] + Y_test2 = wpdist(X, 'test_cosine') + assert_allclose(Y_test2, Y_right, rtol=eps) + + @pytest.mark.slow + def test_pdist_cosine_iris(self): + eps = 1e-05 + X = eo['iris'] + Y_right = eo['pdist-cosine-iris'] + Y_test1 = wpdist(X, 'cosine') + assert_allclose(Y_test1, Y_right, atol=eps) + + @pytest.mark.slow + def test_pdist_cosine_iris_float32(self): + eps = 1e-05 + X = np.float32(eo['iris']) + Y_right = eo['pdist-cosine-iris'] + Y_test1 = wpdist(X, 'cosine') + assert_allclose(Y_test1, Y_right, atol=eps, verbose=verbose > 2) + + @pytest.mark.slow + def test_pdist_cosine_iris_nonC(self): + eps = 1e-05 + X = eo['iris'] + Y_right = eo['pdist-cosine-iris'] + Y_test2 = wpdist(X, 'test_cosine') + assert_allclose(Y_test2, Y_right, atol=eps) + + def test_pdist_cosine_bounds(self): + # Test adapted from @joernhees's example at gh-5208: case where + # cosine distance used to be negative. XXX: very sensitive to the + # specific norm computation. + x = np.abs(np.random.RandomState(1337).rand(91)) + X = np.vstack([x, x]) + assert_(wpdist(X, 'cosine')[0] >= 0, + msg='cosine distance should be non-negative') + + def test_pdist_cityblock_random(self): + eps = 1e-7 + X = eo['pdist-double-inp'] + Y_right = eo['pdist-cityblock'] + Y_test1 = wpdist_no_const(X, 'cityblock') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_cityblock_random_float32(self): + eps = 1e-7 + X = np.float32(eo['pdist-double-inp']) + Y_right = eo['pdist-cityblock'] + Y_test1 = wpdist_no_const(X, 'cityblock') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_cityblock_random_nonC(self): + eps = 1e-7 + X = eo['pdist-double-inp'] + Y_right = eo['pdist-cityblock'] + Y_test2 = wpdist_no_const(X, 'test_cityblock') + assert_allclose(Y_test2, Y_right, rtol=eps) + + @pytest.mark.slow + def test_pdist_cityblock_iris(self): + eps = 1e-14 + X = eo['iris'] + Y_right = eo['pdist-cityblock-iris'] + Y_test1 = wpdist_no_const(X, 'cityblock') + assert_allclose(Y_test1, Y_right, rtol=eps) + + @pytest.mark.slow + def test_pdist_cityblock_iris_float32(self): + eps = 1e-5 + X = np.float32(eo['iris']) + Y_right = eo['pdist-cityblock-iris'] + Y_test1 = wpdist_no_const(X, 'cityblock') + assert_allclose(Y_test1, Y_right, rtol=eps, verbose=verbose > 2) + + @pytest.mark.slow + def test_pdist_cityblock_iris_nonC(self): + # Test pdist(X, 'test_cityblock') [the non-C implementation] on the + # Iris data set. + eps = 1e-14 + X = eo['iris'] + Y_right = eo['pdist-cityblock-iris'] + Y_test2 = wpdist_no_const(X, 'test_cityblock') + assert_allclose(Y_test2, Y_right, rtol=eps) + + def test_pdist_correlation_random(self): + eps = 1e-7 + X = eo['pdist-double-inp'] + Y_right = eo['pdist-correlation'] + Y_test1 = wpdist(X, 'correlation') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_correlation_random_float32(self): + eps = 1e-7 + X = np.float32(eo['pdist-double-inp']) + Y_right = eo['pdist-correlation'] + Y_test1 = wpdist(X, 'correlation') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_correlation_random_nonC(self): + eps = 1e-7 + X = eo['pdist-double-inp'] + Y_right = eo['pdist-correlation'] + Y_test2 = wpdist(X, 'test_correlation') + assert_allclose(Y_test2, Y_right, rtol=eps) + + @pytest.mark.slow + def test_pdist_correlation_iris(self): + eps = 1e-7 + X = eo['iris'] + Y_right = eo['pdist-correlation-iris'] + Y_test1 = wpdist(X, 'correlation') + assert_allclose(Y_test1, Y_right, rtol=eps) + + @pytest.mark.slow + def test_pdist_correlation_iris_float32(self): + eps = 1e-7 + X = eo['iris'] + Y_right = np.float32(eo['pdist-correlation-iris']) + Y_test1 = wpdist(X, 'correlation') + assert_allclose(Y_test1, Y_right, rtol=eps, verbose=verbose > 2) + + @pytest.mark.slow + def test_pdist_correlation_iris_nonC(self): + if sys.maxsize > 2**32: + eps = 1e-7 + else: + pytest.skip("see gh-16456") + X = eo['iris'] + Y_right = eo['pdist-correlation-iris'] + Y_test2 = wpdist(X, 'test_correlation') + assert_allclose(Y_test2, Y_right, rtol=eps) + + @pytest.mark.parametrize("p", [0.1, 0.25, 1.0, 2.0, 3.2, np.inf]) + def test_pdist_minkowski_random_p(self, p): + eps = 1e-13 + X = eo['pdist-double-inp'] + Y1 = wpdist_no_const(X, 'minkowski', p=p) + Y2 = wpdist_no_const(X, 'test_minkowski', p=p) + assert_allclose(Y1, Y2, atol=0, rtol=eps) + + def test_pdist_minkowski_random(self): + eps = 1e-7 + X = eo['pdist-double-inp'] + Y_right = eo['pdist-minkowski-3.2'] + Y_test1 = wpdist_no_const(X, 'minkowski', p=3.2) + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_minkowski_random_float32(self): + eps = 1e-7 + X = np.float32(eo['pdist-double-inp']) + Y_right = eo['pdist-minkowski-3.2'] + Y_test1 = wpdist_no_const(X, 'minkowski', p=3.2) + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_minkowski_random_nonC(self): + eps = 1e-7 + X = eo['pdist-double-inp'] + Y_right = eo['pdist-minkowski-3.2'] + Y_test2 = wpdist_no_const(X, 'test_minkowski', p=3.2) + assert_allclose(Y_test2, Y_right, rtol=eps) + + @pytest.mark.slow + def test_pdist_minkowski_3_2_iris(self): + eps = 1e-7 + X = eo['iris'] + Y_right = eo['pdist-minkowski-3.2-iris'] + Y_test1 = wpdist_no_const(X, 'minkowski', p=3.2) + assert_allclose(Y_test1, Y_right, rtol=eps) + + @pytest.mark.slow + def test_pdist_minkowski_3_2_iris_float32(self): + eps = 1e-5 + X = np.float32(eo['iris']) + Y_right = eo['pdist-minkowski-3.2-iris'] + Y_test1 = wpdist_no_const(X, 'minkowski', p=3.2) + assert_allclose(Y_test1, Y_right, rtol=eps) + + @pytest.mark.slow + def test_pdist_minkowski_3_2_iris_nonC(self): + eps = 1e-7 + X = eo['iris'] + Y_right = eo['pdist-minkowski-3.2-iris'] + Y_test2 = wpdist_no_const(X, 'test_minkowski', p=3.2) + assert_allclose(Y_test2, Y_right, rtol=eps) + + @pytest.mark.slow + def test_pdist_minkowski_5_8_iris(self): + eps = 1e-7 + X = eo['iris'] + Y_right = eo['pdist-minkowski-5.8-iris'] + Y_test1 = wpdist_no_const(X, 'minkowski', p=5.8) + assert_allclose(Y_test1, Y_right, rtol=eps) + + @pytest.mark.slow + def test_pdist_minkowski_5_8_iris_float32(self): + eps = 1e-5 + X = np.float32(eo['iris']) + Y_right = eo['pdist-minkowski-5.8-iris'] + Y_test1 = wpdist_no_const(X, 'minkowski', p=5.8) + assert_allclose(Y_test1, Y_right, rtol=eps, verbose=verbose > 2) + + @pytest.mark.slow + def test_pdist_minkowski_5_8_iris_nonC(self): + eps = 1e-7 + X = eo['iris'] + Y_right = eo['pdist-minkowski-5.8-iris'] + Y_test2 = wpdist_no_const(X, 'test_minkowski', p=5.8) + assert_allclose(Y_test2, Y_right, rtol=eps) + + def test_pdist_mahalanobis(self): + # 1-dimensional observations + x = np.array([2.0, 2.0, 3.0, 5.0]).reshape(-1, 1) + dist = pdist(x, metric='mahalanobis') + assert_allclose(dist, [0.0, np.sqrt(0.5), np.sqrt(4.5), + np.sqrt(0.5), np.sqrt(4.5), np.sqrt(2.0)]) + + # 2-dimensional observations + x = np.array([[0, 0], [-1, 0], [0, 2], [1, 0], [0, -2]]) + dist = pdist(x, metric='mahalanobis') + rt2 = np.sqrt(2) + assert_allclose(dist, [rt2, rt2, rt2, rt2, 2, 2 * rt2, 2, 2, 2 * rt2, 2]) + + # Too few observations + with pytest.raises(ValueError): + wpdist([[0, 1], [2, 3]], metric='mahalanobis') + + def test_pdist_hamming_random(self): + eps = 1e-15 + X = eo['pdist-boolean-inp'] + Y_right = eo['pdist-hamming'] + Y_test1 = wpdist(X, 'hamming') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_hamming_random_float32(self): + eps = 1e-15 + X = np.float32(eo['pdist-boolean-inp']) + Y_right = eo['pdist-hamming'] + Y_test1 = wpdist(X, 'hamming') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_hamming_random_nonC(self): + eps = 1e-15 + X = eo['pdist-boolean-inp'] + Y_right = eo['pdist-hamming'] + Y_test2 = wpdist(X, 'test_hamming') + assert_allclose(Y_test2, Y_right, rtol=eps) + + def test_pdist_dhamming_random(self): + eps = 1e-15 + X = np.float64(eo['pdist-boolean-inp']) + Y_right = eo['pdist-hamming'] + Y_test1 = wpdist(X, 'hamming') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_dhamming_random_float32(self): + eps = 1e-15 + X = np.float32(eo['pdist-boolean-inp']) + Y_right = eo['pdist-hamming'] + Y_test1 = wpdist(X, 'hamming') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_dhamming_random_nonC(self): + eps = 1e-15 + X = np.float64(eo['pdist-boolean-inp']) + Y_right = eo['pdist-hamming'] + Y_test2 = wpdist(X, 'test_hamming') + assert_allclose(Y_test2, Y_right, rtol=eps) + + def test_pdist_jaccard_random(self): + eps = 1e-8 + X = eo['pdist-boolean-inp'] + Y_right = eo['pdist-jaccard'] + Y_test1 = wpdist(X, 'jaccard') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_jaccard_random_float32(self): + eps = 1e-8 + X = np.float32(eo['pdist-boolean-inp']) + Y_right = eo['pdist-jaccard'] + Y_test1 = wpdist(X, 'jaccard') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_jaccard_random_nonC(self): + eps = 1e-8 + X = eo['pdist-boolean-inp'] + Y_right = eo['pdist-jaccard'] + Y_test2 = wpdist(X, 'test_jaccard') + assert_allclose(Y_test2, Y_right, rtol=eps) + + def test_pdist_djaccard_random(self): + eps = 1e-8 + X = np.float64(eo['pdist-boolean-inp']) + Y_right = eo['pdist-jaccard'] + Y_test1 = wpdist(X, 'jaccard') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_djaccard_random_float32(self): + eps = 1e-8 + X = np.float32(eo['pdist-boolean-inp']) + Y_right = eo['pdist-jaccard'] + Y_test1 = wpdist(X, 'jaccard') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_djaccard_allzeros(self): + eps = 1e-15 + Y = pdist(np.zeros((5, 3)), 'jaccard') + assert_allclose(np.zeros(10), Y, rtol=eps) + + def test_pdist_djaccard_random_nonC(self): + eps = 1e-8 + X = np.float64(eo['pdist-boolean-inp']) + Y_right = eo['pdist-jaccard'] + Y_test2 = wpdist(X, 'test_jaccard') + assert_allclose(Y_test2, Y_right, rtol=eps) + + def test_pdist_jensenshannon_random(self): + eps = 1e-11 + X = eo['pdist-double-inp'] + Y_right = eo['pdist-jensenshannon'] + Y_test1 = pdist(X, 'jensenshannon') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_jensenshannon_random_float32(self): + eps = 1e-8 + X = np.float32(eo['pdist-double-inp']) + Y_right = eo['pdist-jensenshannon'] + Y_test1 = pdist(X, 'jensenshannon') + assert_allclose(Y_test1, Y_right, rtol=eps, verbose=verbose > 2) + + def test_pdist_jensenshannon_random_nonC(self): + eps = 1e-11 + X = eo['pdist-double-inp'] + Y_right = eo['pdist-jensenshannon'] + Y_test2 = pdist(X, 'test_jensenshannon') + assert_allclose(Y_test2, Y_right, rtol=eps) + + def test_pdist_jensenshannon_iris(self): + if _is_32bit(): + # Test failing on 32-bit Linux on Azure otherwise, see gh-12810 + eps = 2.5e-10 + else: + eps = 1e-12 + + X = eo['iris'] + Y_right = eo['pdist-jensenshannon-iris'] + Y_test1 = pdist(X, 'jensenshannon') + assert_allclose(Y_test1, Y_right, atol=eps) + + def test_pdist_jensenshannon_iris_float32(self): + eps = 1e-06 + X = np.float32(eo['iris']) + Y_right = eo['pdist-jensenshannon-iris'] + Y_test1 = pdist(X, 'jensenshannon') + assert_allclose(Y_test1, Y_right, atol=eps, verbose=verbose > 2) + + def test_pdist_jensenshannon_iris_nonC(self): + eps = 5e-5 + X = eo['iris'] + Y_right = eo['pdist-jensenshannon-iris'] + Y_test2 = pdist(X, 'test_jensenshannon') + assert_allclose(Y_test2, Y_right, rtol=eps) + + def test_pdist_djaccard_allzeros_nonC(self): + eps = 1e-15 + Y = pdist(np.zeros((5, 3)), 'test_jaccard') + assert_allclose(np.zeros(10), Y, rtol=eps) + + def test_pdist_chebyshev_random(self): + eps = 1e-8 + X = eo['pdist-double-inp'] + Y_right = eo['pdist-chebyshev'] + Y_test1 = pdist(X, 'chebyshev') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_chebyshev_random_float32(self): + eps = 1e-7 + X = np.float32(eo['pdist-double-inp']) + Y_right = eo['pdist-chebyshev'] + Y_test1 = pdist(X, 'chebyshev') + assert_allclose(Y_test1, Y_right, rtol=eps, verbose=verbose > 2) + + def test_pdist_chebyshev_random_nonC(self): + eps = 1e-8 + X = eo['pdist-double-inp'] + Y_right = eo['pdist-chebyshev'] + Y_test2 = pdist(X, 'test_chebyshev') + assert_allclose(Y_test2, Y_right, rtol=eps) + + def test_pdist_chebyshev_iris(self): + eps = 1e-14 + X = eo['iris'] + Y_right = eo['pdist-chebyshev-iris'] + Y_test1 = pdist(X, 'chebyshev') + assert_allclose(Y_test1, Y_right, rtol=eps) + + def test_pdist_chebyshev_iris_float32(self): + eps = 1e-5 + X = np.float32(eo['iris']) + Y_right = eo['pdist-chebyshev-iris'] + Y_test1 = pdist(X, 'chebyshev') + assert_allclose(Y_test1, Y_right, rtol=eps, verbose=verbose > 2) + + def test_pdist_chebyshev_iris_nonC(self): + eps = 1e-14 + X = eo['iris'] + Y_right = eo['pdist-chebyshev-iris'] + Y_test2 = pdist(X, 'test_chebyshev') + assert_allclose(Y_test2, Y_right, rtol=eps) + + def test_pdist_matching_mtica1(self): + # Test matching(*,*) with mtica example #1 (nums). + m = wmatching(np.array([1, 0, 1, 1, 0]), + np.array([1, 1, 0, 1, 1])) + m2 = wmatching(np.array([1, 0, 1, 1, 0], dtype=bool), + np.array([1, 1, 0, 1, 1], dtype=bool)) + assert_allclose(m, 0.6, rtol=0, atol=1e-10) + assert_allclose(m2, 0.6, rtol=0, atol=1e-10) + + def test_pdist_matching_mtica2(self): + # Test matching(*,*) with mtica example #2. + m = wmatching(np.array([1, 0, 1]), + np.array([1, 1, 0])) + m2 = wmatching(np.array([1, 0, 1], dtype=bool), + np.array([1, 1, 0], dtype=bool)) + assert_allclose(m, 2 / 3, rtol=0, atol=1e-10) + assert_allclose(m2, 2 / 3, rtol=0, atol=1e-10) + + def test_pdist_jaccard_mtica1(self): + m = wjaccard(np.array([1, 0, 1, 1, 0]), + np.array([1, 1, 0, 1, 1])) + m2 = wjaccard(np.array([1, 0, 1, 1, 0], dtype=bool), + np.array([1, 1, 0, 1, 1], dtype=bool)) + assert_allclose(m, 0.6, rtol=0, atol=1e-10) + assert_allclose(m2, 0.6, rtol=0, atol=1e-10) + + def test_pdist_jaccard_mtica2(self): + m = wjaccard(np.array([1, 0, 1]), + np.array([1, 1, 0])) + m2 = wjaccard(np.array([1, 0, 1], dtype=bool), + np.array([1, 1, 0], dtype=bool)) + assert_allclose(m, 2 / 3, rtol=0, atol=1e-10) + assert_allclose(m2, 2 / 3, rtol=0, atol=1e-10) + + def test_pdist_yule_mtica1(self): + m = wyule(np.array([1, 0, 1, 1, 0]), + np.array([1, 1, 0, 1, 1])) + m2 = wyule(np.array([1, 0, 1, 1, 0], dtype=bool), + np.array([1, 1, 0, 1, 1], dtype=bool)) + if verbose > 2: + print(m) + assert_allclose(m, 2, rtol=0, atol=1e-10) + assert_allclose(m2, 2, rtol=0, atol=1e-10) + + def test_pdist_yule_mtica2(self): + m = wyule(np.array([1, 0, 1]), + np.array([1, 1, 0])) + m2 = wyule(np.array([1, 0, 1], dtype=bool), + np.array([1, 1, 0], dtype=bool)) + if verbose > 2: + print(m) + assert_allclose(m, 2, rtol=0, atol=1e-10) + assert_allclose(m2, 2, rtol=0, atol=1e-10) + + def test_pdist_dice_mtica1(self): + m = wdice(np.array([1, 0, 1, 1, 0]), + np.array([1, 1, 0, 1, 1])) + m2 = wdice(np.array([1, 0, 1, 1, 0], dtype=bool), + np.array([1, 1, 0, 1, 1], dtype=bool)) + if verbose > 2: + print(m) + assert_allclose(m, 3 / 7, rtol=0, atol=1e-10) + assert_allclose(m2, 3 / 7, rtol=0, atol=1e-10) + + def test_pdist_dice_mtica2(self): + m = wdice(np.array([1, 0, 1]), + np.array([1, 1, 0])) + m2 = wdice(np.array([1, 0, 1], dtype=bool), + np.array([1, 1, 0], dtype=bool)) + if verbose > 2: + print(m) + assert_allclose(m, 0.5, rtol=0, atol=1e-10) + assert_allclose(m2, 0.5, rtol=0, atol=1e-10) + + def test_pdist_sokalsneath_mtica1(self): + m = sokalsneath(np.array([1, 0, 1, 1, 0]), + np.array([1, 1, 0, 1, 1])) + m2 = sokalsneath(np.array([1, 0, 1, 1, 0], dtype=bool), + np.array([1, 1, 0, 1, 1], dtype=bool)) + if verbose > 2: + print(m) + assert_allclose(m, 3 / 4, rtol=0, atol=1e-10) + assert_allclose(m2, 3 / 4, rtol=0, atol=1e-10) + + def test_pdist_sokalsneath_mtica2(self): + m = wsokalsneath(np.array([1, 0, 1]), + np.array([1, 1, 0])) + m2 = wsokalsneath(np.array([1, 0, 1], dtype=bool), + np.array([1, 1, 0], dtype=bool)) + if verbose > 2: + print(m) + assert_allclose(m, 4 / 5, rtol=0, atol=1e-10) + assert_allclose(m2, 4 / 5, rtol=0, atol=1e-10) + + def test_pdist_rogerstanimoto_mtica1(self): + m = wrogerstanimoto(np.array([1, 0, 1, 1, 0]), + np.array([1, 1, 0, 1, 1])) + m2 = wrogerstanimoto(np.array([1, 0, 1, 1, 0], dtype=bool), + np.array([1, 1, 0, 1, 1], dtype=bool)) + if verbose > 2: + print(m) + assert_allclose(m, 3 / 4, rtol=0, atol=1e-10) + assert_allclose(m2, 3 / 4, rtol=0, atol=1e-10) + + def test_pdist_rogerstanimoto_mtica2(self): + m = wrogerstanimoto(np.array([1, 0, 1]), + np.array([1, 1, 0])) + m2 = wrogerstanimoto(np.array([1, 0, 1], dtype=bool), + np.array([1, 1, 0], dtype=bool)) + if verbose > 2: + print(m) + assert_allclose(m, 4 / 5, rtol=0, atol=1e-10) + assert_allclose(m2, 4 / 5, rtol=0, atol=1e-10) + + def test_pdist_russellrao_mtica1(self): + m = wrussellrao(np.array([1, 0, 1, 1, 0]), + np.array([1, 1, 0, 1, 1])) + m2 = wrussellrao(np.array([1, 0, 1, 1, 0], dtype=bool), + np.array([1, 1, 0, 1, 1], dtype=bool)) + if verbose > 2: + print(m) + assert_allclose(m, 3 / 5, rtol=0, atol=1e-10) + assert_allclose(m2, 3 / 5, rtol=0, atol=1e-10) + + def test_pdist_russellrao_mtica2(self): + m = wrussellrao(np.array([1, 0, 1]), + np.array([1, 1, 0])) + m2 = wrussellrao(np.array([1, 0, 1], dtype=bool), + np.array([1, 1, 0], dtype=bool)) + if verbose > 2: + print(m) + assert_allclose(m, 2 / 3, rtol=0, atol=1e-10) + assert_allclose(m2, 2 / 3, rtol=0, atol=1e-10) + + @pytest.mark.slow + def test_pdist_canberra_match(self): + D = eo['iris'] + if verbose > 2: + print(D.shape, D.dtype) + eps = 1e-15 + y1 = wpdist_no_const(D, "canberra") + y2 = wpdist_no_const(D, "test_canberra") + assert_allclose(y1, y2, rtol=eps, verbose=verbose > 2) + + def test_pdist_canberra_ticket_711(self): + # Test pdist(X, 'canberra') to see if Canberra gives the right result + # as reported on gh-1238. + eps = 1e-8 + pdist_y = wpdist_no_const(([3.3], [3.4]), "canberra") + right_y = 0.01492537 + assert_allclose(pdist_y, right_y, atol=eps, verbose=verbose > 2) + + def test_pdist_custom_notdouble(self): + # tests that when using a custom metric the data type is not altered + class myclass: + pass + + def _my_metric(x, y): + if not isinstance(x[0], myclass) or not isinstance(y[0], myclass): + raise ValueError("Type has been changed") + return 1.123 + data = np.array([[myclass()], [myclass()]], dtype=object) + pdist_y = pdist(data, metric=_my_metric) + right_y = 1.123 + assert_equal(pdist_y, right_y, verbose=verbose > 2) + + def _check_calling_conventions(self, X, metric, eps=1e-07, **kwargs): + # helper function for test_pdist_calling_conventions + try: + y1 = pdist(X, metric=metric, **kwargs) + y2 = pdist(X, metric=eval(metric), **kwargs) + y3 = pdist(X, metric="test_" + metric, **kwargs) + except Exception as e: + e_cls = e.__class__ + if verbose > 2: + print(e_cls.__name__) + print(e) + with pytest.raises(e_cls): + pdist(X, metric=metric, **kwargs) + with pytest.raises(e_cls): + pdist(X, metric=eval(metric), **kwargs) + with pytest.raises(e_cls): + pdist(X, metric="test_" + metric, **kwargs) + else: + assert_allclose(y1, y2, rtol=eps, verbose=verbose > 2) + assert_allclose(y1, y3, rtol=eps, verbose=verbose > 2) + + def test_pdist_calling_conventions(self, metric): + # Ensures that specifying the metric with a str or scipy function + # gives the same behaviour (i.e. same result or same exception). + # NOTE: The correctness should be checked within each metric tests. + # NOTE: Extra args should be checked with a dedicated test + for eo_name in self.rnd_eo_names: + # subsampling input data to speed-up tests + # NOTE: num samples needs to be > than dimensions for mahalanobis + X = eo[eo_name][::5, ::2] + if verbose > 2: + print("testing: ", metric, " with: ", eo_name) + if metric in {'dice', 'yule', 'matching', + 'rogerstanimoto', 'russellrao', 'sokalmichener', + 'sokalsneath', + 'kulczynski1'} and 'bool' not in eo_name: + # python version permits non-bools e.g. for fuzzy logic + continue + self._check_calling_conventions(X, metric) + + # Testing built-in metrics with extra args + if metric == "seuclidean": + V = np.var(X.astype(np.float64), axis=0, ddof=1) + self._check_calling_conventions(X, metric, V=V) + elif metric == "mahalanobis": + V = np.atleast_2d(np.cov(X.astype(np.float64).T)) + VI = np.array(np.linalg.inv(V).T) + self._check_calling_conventions(X, metric, VI=VI) + + def test_pdist_dtype_equivalence(self, metric): + # Tests that the result is not affected by type up-casting + eps = 1e-07 + tests = [(eo['random-bool-data'], self.valid_upcasts['bool']), + (eo['random-uint-data'], self.valid_upcasts['uint']), + (eo['random-int-data'], self.valid_upcasts['int']), + (eo['random-float32-data'], self.valid_upcasts['float32'])] + for test in tests: + X1 = test[0][::5, ::2] + try: + y1 = pdist(X1, metric=metric) + except Exception as e: + e_cls = e.__class__ + if verbose > 2: + print(e_cls.__name__) + print(e) + for new_type in test[1]: + X2 = new_type(X1) + with pytest.raises(e_cls): + pdist(X2, metric=metric) + else: + for new_type in test[1]: + y2 = pdist(new_type(X1), metric=metric) + assert_allclose(y1, y2, rtol=eps, verbose=verbose > 2) + + def test_pdist_out(self, metric): + # Test that out parameter works properly + eps = 1e-15 + X = eo['random-float32-data'][::5, ::2] + out_size = int((X.shape[0] * (X.shape[0] - 1)) / 2) + + kwargs = dict() + if metric == 'minkowski': + kwargs['p'] = 1.23 + out1 = np.empty(out_size, dtype=np.float64) + Y_right = pdist(X, metric, **kwargs) + Y_test1 = pdist(X, metric, out=out1, **kwargs) + + # test that output is numerically equivalent + assert_allclose(Y_test1, Y_right, rtol=eps) + + # test that Y_test1 and out1 are the same object + assert_(Y_test1 is out1) + + # test for incorrect shape + out2 = np.empty(out_size + 3, dtype=np.float64) + with pytest.raises(ValueError): + pdist(X, metric, out=out2, **kwargs) + + # test for (C-)contiguous output + out3 = np.empty(2 * out_size, dtype=np.float64)[::2] + with pytest.raises(ValueError): + pdist(X, metric, out=out3, **kwargs) + + # test for incorrect dtype + out5 = np.empty(out_size, dtype=np.int64) + with pytest.raises(ValueError): + pdist(X, metric, out=out5, **kwargs) + + def test_striding(self, metric): + # test that striding is handled correct with calls to + # _copy_array_if_base_present + eps = 1e-15 + X = eo['random-float32-data'][::5, ::2] + X_copy = X.copy() + + # confirm contiguity + assert_(not X.flags.c_contiguous) + assert_(X_copy.flags.c_contiguous) + + kwargs = dict() + if metric == 'minkowski': + kwargs['p'] = 1.23 + Y1 = pdist(X, metric, **kwargs) + Y2 = pdist(X_copy, metric, **kwargs) + # test that output is numerically equivalent + assert_allclose(Y1, Y2, rtol=eps, verbose=verbose > 2) + +class TestSomeDistanceFunctions: + + def setup_method(self): + # 1D arrays + x = np.array([1.0, 2.0, 3.0]) + y = np.array([1.0, 1.0, 5.0]) + + self.cases = [(x, y)] + + def test_minkowski(self): + for x, y in self.cases: + dist1 = minkowski(x, y, p=1) + assert_almost_equal(dist1, 3.0) + dist1p5 = minkowski(x, y, p=1.5) + assert_almost_equal(dist1p5, (1.0 + 2.0**1.5)**(2. / 3)) + dist2 = minkowski(x, y, p=2) + assert_almost_equal(dist2, 5.0 ** 0.5) + dist0p25 = minkowski(x, y, p=0.25) + assert_almost_equal(dist0p25, (1.0 + 2.0 ** 0.25) ** 4) + + # Check that casting input to minimum scalar type doesn't affect result + # (issue #10262). This could be extended to more test inputs with + # np.min_scalar_type(np.max(input_matrix)). + a = np.array([352, 916]) + b = np.array([350, 660]) + assert_equal(minkowski(a, b), + minkowski(a.astype('uint16'), b.astype('uint16'))) + + def test_euclidean(self): + for x, y in self.cases: + dist = weuclidean(x, y) + assert_almost_equal(dist, np.sqrt(5)) + + def test_sqeuclidean(self): + for x, y in self.cases: + dist = wsqeuclidean(x, y) + assert_almost_equal(dist, 5.0) + + def test_cosine(self): + for x, y in self.cases: + dist = wcosine(x, y) + assert_almost_equal(dist, 1.0 - 18.0 / (np.sqrt(14) * np.sqrt(27))) + + def test_cosine_output_dtype(self): + # Regression test for gh-19541 + assert isinstance(wcorrelation([1, 1], [1, 1], centered=False), float) + assert isinstance(wcosine([1, 1], [1, 1]), float) + + def test_correlation(self): + xm = np.array([-1.0, 0, 1.0]) + ym = np.array([-4.0 / 3, -4.0 / 3, 5.0 - 7.0 / 3]) + for x, y in self.cases: + dist = wcorrelation(x, y) + assert_almost_equal(dist, 1.0 - np.dot(xm, ym) / (norm(xm) * norm(ym))) + + def test_correlation_positive(self): + # Regression test for gh-12320 (negative return value due to rounding + x = np.array([0., 0., 0., 0., 0., 0., -2., 0., 0., 0., -2., -2., -2., + 0., -2., 0., -2., 0., 0., -1., -2., 0., 1., 0., 0., -2., + 0., 0., -2., 0., -2., -2., -2., -2., -2., -2., 0.]) + y = np.array([1., 1., 1., 1., 1., 1., -1., 1., 1., 1., -1., -1., -1., + 1., -1., 1., -1., 1., 1., 0., -1., 1., 2., 1., 1., -1., + 1., 1., -1., 1., -1., -1., -1., -1., -1., -1., 1.]) + dist = correlation(x, y) + assert 0 <= dist <= 10 * np.finfo(np.float64).eps + + def test_mahalanobis(self): + x = np.array([1.0, 2.0, 3.0]) + y = np.array([1.0, 1.0, 5.0]) + vi = np.array([[2.0, 1.0, 0.0], [1.0, 2.0, 1.0], [0.0, 1.0, 2.0]]) + for x, y in self.cases: + dist = mahalanobis(x, y, vi) + assert_almost_equal(dist, np.sqrt(6.0)) + + +class TestSquareForm: + checked_dtypes = [np.float64, np.float32, np.int32, np.int8, bool] + + def test_squareform_matrix(self): + for dtype in self.checked_dtypes: + self.check_squareform_matrix(dtype) + + def test_squareform_vector(self): + for dtype in self.checked_dtypes: + self.check_squareform_vector(dtype) + + def check_squareform_matrix(self, dtype): + A = np.zeros((0, 0), dtype=dtype) + rA = squareform(A) + assert_equal(rA.shape, (0,)) + assert_equal(rA.dtype, dtype) + + A = np.zeros((1, 1), dtype=dtype) + rA = squareform(A) + assert_equal(rA.shape, (0,)) + assert_equal(rA.dtype, dtype) + + A = np.array([[0, 4.2], [4.2, 0]], dtype=dtype) + rA = squareform(A) + assert_equal(rA.shape, (1,)) + assert_equal(rA.dtype, dtype) + assert_array_equal(rA, np.array([4.2], dtype=dtype)) + + def check_squareform_vector(self, dtype): + v = np.zeros((0,), dtype=dtype) + rv = squareform(v) + assert_equal(rv.shape, (1, 1)) + assert_equal(rv.dtype, dtype) + assert_array_equal(rv, [[0]]) + + v = np.array([8.3], dtype=dtype) + rv = squareform(v) + assert_equal(rv.shape, (2, 2)) + assert_equal(rv.dtype, dtype) + assert_array_equal(rv, np.array([[0, 8.3], [8.3, 0]], dtype=dtype)) + + def test_squareform_multi_matrix(self): + for n in range(2, 5): + self.check_squareform_multi_matrix(n) + + def check_squareform_multi_matrix(self, n): + X = np.random.rand(n, 4) + Y = wpdist_no_const(X) + assert_equal(len(Y.shape), 1) + A = squareform(Y) + Yr = squareform(A) + s = A.shape + k = 0 + if verbose >= 3: + print(A.shape, Y.shape, Yr.shape) + assert_equal(len(s), 2) + assert_equal(len(Yr.shape), 1) + assert_equal(s[0], s[1]) + for i in range(0, s[0]): + for j in range(i + 1, s[1]): + if i != j: + assert_equal(A[i, j], Y[k]) + k += 1 + else: + assert_equal(A[i, j], 0) + + +class TestNumObsY: + + def test_num_obs_y_multi_matrix(self): + for n in range(2, 10): + X = np.random.rand(n, 4) + Y = wpdist_no_const(X) + assert_equal(num_obs_y(Y), n) + + def test_num_obs_y_1(self): + # Tests num_obs_y(y) on a condensed distance matrix over 1 + # observations. Expecting exception. + with pytest.raises(ValueError): + self.check_y(1) + + def test_num_obs_y_2(self): + # Tests num_obs_y(y) on a condensed distance matrix over 2 + # observations. + assert_(self.check_y(2)) + + def test_num_obs_y_3(self): + assert_(self.check_y(3)) + + def test_num_obs_y_4(self): + assert_(self.check_y(4)) + + def test_num_obs_y_5_10(self): + for i in range(5, 16): + self.minit(i) + + def test_num_obs_y_2_100(self): + # Tests num_obs_y(y) on 100 improper condensed distance matrices. + # Expecting exception. + a = set() + for n in range(2, 16): + a.add(n * (n - 1) / 2) + for i in range(5, 105): + if i not in a: + with pytest.raises(ValueError): + self.bad_y(i) + + def minit(self, n): + assert_(self.check_y(n)) + + def bad_y(self, n): + y = np.random.rand(n) + return num_obs_y(y) + + def check_y(self, n): + return num_obs_y(self.make_y(n)) == n + + def make_y(self, n): + return np.random.rand((n * (n - 1)) // 2) + + +class TestNumObsDM: + + def test_num_obs_dm_multi_matrix(self): + for n in range(1, 10): + X = np.random.rand(n, 4) + Y = wpdist_no_const(X) + A = squareform(Y) + if verbose >= 3: + print(A.shape, Y.shape) + assert_equal(num_obs_dm(A), n) + + def test_num_obs_dm_0(self): + # Tests num_obs_dm(D) on a 0x0 distance matrix. Expecting exception. + assert_(self.check_D(0)) + + def test_num_obs_dm_1(self): + # Tests num_obs_dm(D) on a 1x1 distance matrix. + assert_(self.check_D(1)) + + def test_num_obs_dm_2(self): + assert_(self.check_D(2)) + + def test_num_obs_dm_3(self): + assert_(self.check_D(2)) + + def test_num_obs_dm_4(self): + assert_(self.check_D(4)) + + def check_D(self, n): + return num_obs_dm(self.make_D(n)) == n + + def make_D(self, n): + return np.random.rand(n, n) + + +def is_valid_dm_throw(D): + return is_valid_dm(D, throw=True) + + +class TestIsValidDM: + + def test_is_valid_dm_improper_shape_1D_E(self): + D = np.zeros((5,), dtype=np.float64) + with pytest.raises(ValueError): + is_valid_dm_throw(D) + + def test_is_valid_dm_improper_shape_1D_F(self): + D = np.zeros((5,), dtype=np.float64) + assert_equal(is_valid_dm(D), False) + + def test_is_valid_dm_improper_shape_3D_E(self): + D = np.zeros((3, 3, 3), dtype=np.float64) + with pytest.raises(ValueError): + is_valid_dm_throw(D) + + def test_is_valid_dm_improper_shape_3D_F(self): + D = np.zeros((3, 3, 3), dtype=np.float64) + assert_equal(is_valid_dm(D), False) + + def test_is_valid_dm_nonzero_diagonal_E(self): + y = np.random.rand(10) + D = squareform(y) + for i in range(0, 5): + D[i, i] = 2.0 + with pytest.raises(ValueError): + is_valid_dm_throw(D) + + def test_is_valid_dm_nonzero_diagonal_F(self): + y = np.random.rand(10) + D = squareform(y) + for i in range(0, 5): + D[i, i] = 2.0 + assert_equal(is_valid_dm(D), False) + + def test_is_valid_dm_asymmetric_E(self): + y = np.random.rand(10) + D = squareform(y) + D[1, 3] = D[3, 1] + 1 + with pytest.raises(ValueError): + is_valid_dm_throw(D) + + def test_is_valid_dm_asymmetric_F(self): + y = np.random.rand(10) + D = squareform(y) + D[1, 3] = D[3, 1] + 1 + assert_equal(is_valid_dm(D), False) + + def test_is_valid_dm_correct_1_by_1(self): + D = np.zeros((1, 1), dtype=np.float64) + assert_equal(is_valid_dm(D), True) + + def test_is_valid_dm_correct_2_by_2(self): + y = np.random.rand(1) + D = squareform(y) + assert_equal(is_valid_dm(D), True) + + def test_is_valid_dm_correct_3_by_3(self): + y = np.random.rand(3) + D = squareform(y) + assert_equal(is_valid_dm(D), True) + + def test_is_valid_dm_correct_4_by_4(self): + y = np.random.rand(6) + D = squareform(y) + assert_equal(is_valid_dm(D), True) + + def test_is_valid_dm_correct_5_by_5(self): + y = np.random.rand(10) + D = squareform(y) + assert_equal(is_valid_dm(D), True) + + +def is_valid_y_throw(y): + return is_valid_y(y, throw=True) + + +class TestIsValidY: + # If test case name ends on "_E" then an exception is expected for the + # given input, if it ends in "_F" then False is expected for the is_valid_y + # check. Otherwise the input is expected to be valid. + + def test_is_valid_y_improper_shape_2D_E(self): + y = np.zeros((3, 3,), dtype=np.float64) + with pytest.raises(ValueError): + is_valid_y_throw(y) + + def test_is_valid_y_improper_shape_2D_F(self): + y = np.zeros((3, 3,), dtype=np.float64) + assert_equal(is_valid_y(y), False) + + def test_is_valid_y_improper_shape_3D_E(self): + y = np.zeros((3, 3, 3), dtype=np.float64) + with pytest.raises(ValueError): + is_valid_y_throw(y) + + def test_is_valid_y_improper_shape_3D_F(self): + y = np.zeros((3, 3, 3), dtype=np.float64) + assert_equal(is_valid_y(y), False) + + def test_is_valid_y_correct_2_by_2(self): + y = self.correct_n_by_n(2) + assert_equal(is_valid_y(y), True) + + def test_is_valid_y_correct_3_by_3(self): + y = self.correct_n_by_n(3) + assert_equal(is_valid_y(y), True) + + def test_is_valid_y_correct_4_by_4(self): + y = self.correct_n_by_n(4) + assert_equal(is_valid_y(y), True) + + def test_is_valid_y_correct_5_by_5(self): + y = self.correct_n_by_n(5) + assert_equal(is_valid_y(y), True) + + def test_is_valid_y_2_100(self): + a = set() + for n in range(2, 16): + a.add(n * (n - 1) / 2) + for i in range(5, 105): + if i not in a: + with pytest.raises(ValueError): + self.bad_y(i) + + def bad_y(self, n): + y = np.random.rand(n) + return is_valid_y(y, throw=True) + + def correct_n_by_n(self, n): + y = np.random.rand((n * (n - 1)) // 2) + return y + + +@pytest.mark.parametrize("p", [-10.0, -0.5, 0.0]) +def test_bad_p(p): + # Raise ValueError if p <=0. + with pytest.raises(ValueError): + minkowski([1, 2], [3, 4], p) + with pytest.raises(ValueError): + minkowski([1, 2], [3, 4], p, [1, 1]) + + +def test_sokalsneath_all_false(): + # Regression test for ticket #876 + with pytest.raises(ValueError): + sokalsneath([False, False, False], [False, False, False]) + + +def test_canberra(): + # Regression test for ticket #1430. + assert_equal(wcanberra([1, 2, 3], [2, 4, 6]), 1) + assert_equal(wcanberra([1, 1, 0, 0], [1, 0, 1, 0]), 2) + + +def test_braycurtis(): + # Regression test for ticket #1430. + assert_almost_equal(wbraycurtis([1, 2, 3], [2, 4, 6]), 1. / 3, decimal=15) + assert_almost_equal(wbraycurtis([1, 1, 0, 0], [1, 0, 1, 0]), 0.5, decimal=15) + + +def test_euclideans(): + # Regression test for ticket #1328. + x1 = np.array([1, 1, 1]) + x2 = np.array([0, 0, 0]) + + # Basic test of the calculation. + assert_almost_equal(wsqeuclidean(x1, x2), 3.0, decimal=14) + assert_almost_equal(weuclidean(x1, x2), np.sqrt(3), decimal=14) + + # Check flattening for (1, N) or (N, 1) inputs + with pytest.raises(ValueError, match="Input vector should be 1-D"): + weuclidean(x1[np.newaxis, :], x2[np.newaxis, :]), np.sqrt(3) + with pytest.raises(ValueError, match="Input vector should be 1-D"): + wsqeuclidean(x1[np.newaxis, :], x2[np.newaxis, :]) + with pytest.raises(ValueError, match="Input vector should be 1-D"): + wsqeuclidean(x1[:, np.newaxis], x2[:, np.newaxis]) + + # Distance metrics only defined for vectors (= 1-D) + x = np.arange(4).reshape(2, 2) + with pytest.raises(ValueError): + weuclidean(x, x) + with pytest.raises(ValueError): + wsqeuclidean(x, x) + + # Another check, with random data. + rs = np.random.RandomState(1234567890) + x = rs.rand(10) + y = rs.rand(10) + d1 = weuclidean(x, y) + d2 = wsqeuclidean(x, y) + assert_almost_equal(d1**2, d2, decimal=14) + + +def test_hamming_unequal_length(): + # Regression test for gh-4290. + x = [0, 0, 1] + y = [1, 0, 1, 0] + # Used to give an AttributeError from ndarray.mean called on bool + with pytest.raises(ValueError): + whamming(x, y) + + +def test_hamming_unequal_length_with_w(): + u = [0, 0, 1] + v = [0, 0, 1] + w = [1, 0, 1, 0] + msg = "'w' should have the same length as 'u' and 'v'." + with pytest.raises(ValueError, match=msg): + whamming(u, v, w) + + +def test_hamming_string_array(): + # https://github.com/scikit-learn/scikit-learn/issues/4014 + a = np.array(['eggs', 'spam', 'spam', 'eggs', 'spam', 'spam', 'spam', + 'spam', 'spam', 'spam', 'spam', 'eggs', 'eggs', 'spam', + 'eggs', 'eggs', 'eggs', 'eggs', 'eggs', 'spam'], + dtype='|S4') + b = np.array(['eggs', 'spam', 'spam', 'eggs', 'eggs', 'spam', 'spam', + 'spam', 'spam', 'eggs', 'spam', 'eggs', 'spam', 'eggs', + 'spam', 'spam', 'eggs', 'spam', 'spam', 'eggs'], + dtype='|S4') + desired = 0.45 + assert_allclose(whamming(a, b), desired) + + +def test_minkowski_w(): + # Regression test for gh-8142. + arr_in = np.array([[83.33333333, 100., 83.33333333, 100., 36., + 60., 90., 150., 24., 48.], + [83.33333333, 100., 83.33333333, 100., 36., + 60., 90., 150., 24., 48.]]) + p0 = pdist(arr_in, metric='minkowski', p=1, w=None) + c0 = cdist(arr_in, arr_in, metric='minkowski', p=1, w=None) + p1 = pdist(arr_in, metric='minkowski', p=1) + c1 = cdist(arr_in, arr_in, metric='minkowski', p=1) + + assert_allclose(p0, p1, rtol=1e-15) + assert_allclose(c0, c1, rtol=1e-15) + + +def test_sqeuclidean_dtypes(): + # Assert that sqeuclidean returns the right types of values. + # Integer types should be converted to floating for stability. + # Floating point types should be the same as the input. + x = [1, 2, 3] + y = [4, 5, 6] + + for dtype in [np.int8, np.int16, np.int32, np.int64]: + d = wsqeuclidean(np.asarray(x, dtype=dtype), np.asarray(y, dtype=dtype)) + assert_(np.issubdtype(d.dtype, np.floating)) + + for dtype in [np.uint8, np.uint16, np.uint32, np.uint64]: + umax = np.iinfo(dtype).max + d1 = wsqeuclidean([0], np.asarray([umax], dtype=dtype)) + d2 = wsqeuclidean(np.asarray([umax], dtype=dtype), [0]) + + assert_equal(d1, d2) + assert_equal(d1, np.float64(umax)**2) + + dtypes = [np.float32, np.float64, np.complex64, np.complex128] + for dtype in ['float16', 'float128']: + # These aren't present in older numpy versions; float128 may also not + # be present on all platforms. + if hasattr(np, dtype): + dtypes.append(getattr(np, dtype)) + + for dtype in dtypes: + d = wsqeuclidean(np.asarray(x, dtype=dtype), np.asarray(y, dtype=dtype)) + assert_equal(d.dtype, dtype) + + +def test_sokalmichener(): + # Test that sokalmichener has the same result for bool and int inputs. + p = [True, True, False] + q = [True, False, True] + x = [int(b) for b in p] + y = [int(b) for b in q] + dist1 = sokalmichener(p, q) + dist2 = sokalmichener(x, y) + # These should be exactly the same. + assert_equal(dist1, dist2) + + +def test_sokalmichener_with_weight(): + # from: | 1 | | 0 | + # to: | 1 | | 1 | + # weight| | 1 | | 0.2 + ntf = 0 * 1 + 0 * 0.2 + nft = 0 * 1 + 1 * 0.2 + ntt = 1 * 1 + 0 * 0.2 + nff = 0 * 1 + 0 * 0.2 + expected = 2 * (nft + ntf) / (ntt + nff + 2 * (nft + ntf)) + assert_almost_equal(expected, 0.2857143) + actual = sokalmichener([1, 0], [1, 1], w=[1, 0.2]) + assert_almost_equal(expected, actual) + + a1 = [False, False, True, True, True, False, False, True, True, True, True, + True, True, False, True, False, False, False, True, True] + a2 = [True, True, True, False, False, True, True, True, False, True, + True, True, True, True, False, False, False, True, True, True] + + for w in [0.05, 0.1, 1.0, 20.0]: + assert_almost_equal(sokalmichener(a2, a1, [w]), 0.6666666666666666) + + +def test_modifies_input(metric): + # test whether cdist or pdist modifies input arrays + X1 = np.asarray([[1., 2., 3.], + [1.2, 2.3, 3.4], + [2.2, 2.3, 4.4], + [22.2, 23.3, 44.4]]) + X1_copy = X1.copy() + cdist(X1, X1, metric) + pdist(X1, metric) + assert_array_equal(X1, X1_copy) + + +def test_Xdist_deprecated_args(metric): + # testing both cdist and pdist deprecated warnings + X1 = np.asarray([[1., 2., 3.], + [1.2, 2.3, 3.4], + [2.2, 2.3, 4.4], + [22.2, 23.3, 44.4]]) + + with pytest.raises(TypeError): + cdist(X1, X1, metric, 2.) + + with pytest.raises(TypeError): + pdist(X1, metric, 2.) + + for arg in ["p", "V", "VI"]: + kwargs = {arg: "foo"} + + if ((arg == "V" and metric == "seuclidean") + or (arg == "VI" and metric == "mahalanobis") + or (arg == "p" and metric == "minkowski")): + continue + + with pytest.raises(TypeError): + cdist(X1, X1, metric, **kwargs) + + with pytest.raises(TypeError): + pdist(X1, metric, **kwargs) + + +def test_Xdist_non_negative_weights(metric): + X = eo['random-float32-data'][::5, ::2] + w = np.ones(X.shape[1]) + w[::5] = -w[::5] + + if metric in ['seuclidean', 'mahalanobis', 'jensenshannon']: + pytest.skip("not applicable") + + for m in [metric, eval(metric), "test_" + metric]: + with pytest.raises(ValueError): + pdist(X, m, w=w) + with pytest.raises(ValueError): + cdist(X, X, m, w=w) + + +def test__validate_vector(): + x = [1, 2, 3] + y = _validate_vector(x) + assert_array_equal(y, x) + + y = _validate_vector(x, dtype=np.float64) + assert_array_equal(y, x) + assert_equal(y.dtype, np.float64) + + x = [1] + y = _validate_vector(x) + assert_equal(y.ndim, 1) + assert_equal(y, x) + + x = 1 + with pytest.raises(ValueError, match="Input vector should be 1-D"): + _validate_vector(x) + + x = np.arange(5).reshape(1, -1, 1) + with pytest.raises(ValueError, match="Input vector should be 1-D"): + _validate_vector(x) + + x = [[1, 2], [3, 4]] + with pytest.raises(ValueError, match="Input vector should be 1-D"): + _validate_vector(x) + +def test_yule_all_same(): + # Test yule avoids a divide by zero when exactly equal + x = np.ones((2, 6), dtype=bool) + d = wyule(x[0], x[0]) + assert d == 0.0 + + d = pdist(x, 'yule') + assert_equal(d, [0.0]) + + d = cdist(x[:1], x[:1], 'yule') + assert_equal(d, [[0.0]]) + + +def test_jensenshannon(): + assert_almost_equal(jensenshannon([1.0, 0.0, 0.0], [0.0, 1.0, 0.0], 2.0), + 1.0) + assert_almost_equal(jensenshannon([1.0, 0.0], [0.5, 0.5]), + 0.46450140402245893) + assert_almost_equal(jensenshannon([1.0, 0.0, 0.0], [1.0, 0.0, 0.0]), 0.0) + + assert_almost_equal(jensenshannon([[1.0, 2.0]], [[0.5, 1.5]], axis=0), + [0.0, 0.0]) + assert_almost_equal(jensenshannon([[1.0, 2.0]], [[0.5, 1.5]], axis=1), + [0.0649045]) + assert_almost_equal(jensenshannon([[1.0, 2.0]], [[0.5, 1.5]], axis=0, + keepdims=True), [[0.0, 0.0]]) + assert_almost_equal(jensenshannon([[1.0, 2.0]], [[0.5, 1.5]], axis=1, + keepdims=True), [[0.0649045]]) + + a = np.array([[1, 2, 3, 4], + [5, 6, 7, 8], + [9, 10, 11, 12]]) + b = np.array([[13, 14, 15, 16], + [17, 18, 19, 20], + [21, 22, 23, 24]]) + + assert_almost_equal(jensenshannon(a, b, axis=0), + [0.1954288, 0.1447697, 0.1138377, 0.0927636]) + assert_almost_equal(jensenshannon(a, b, axis=1), + [0.1402339, 0.0399106, 0.0201815]) + + +def test_gh_17703(): + arr_1 = np.array([1, 0, 0]) + arr_2 = np.array([2, 0, 0]) + expected = dice(arr_1, arr_2) + actual = pdist([arr_1, arr_2], metric='dice') + assert_allclose(actual, expected) + actual = cdist(np.atleast_2d(arr_1), + np.atleast_2d(arr_2), metric='dice') + assert_allclose(actual, expected) + + +def test_immutable_input(metric): + if metric in ("jensenshannon", "mahalanobis", "seuclidean"): + pytest.skip("not applicable") + x = np.arange(10, dtype=np.float64) + x.setflags(write=False) + getattr(scipy.spatial.distance, metric)(x, x, w=x) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test_hausdorff.py b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test_hausdorff.py new file mode 100644 index 0000000000000000000000000000000000000000..c5a5255a7c6c1a9c85f4526ec1bcae67f745307b --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test_hausdorff.py @@ -0,0 +1,172 @@ +import numpy as np +from numpy.testing import (assert_allclose, + assert_array_equal, + assert_equal) +import pytest +from scipy.spatial.distance import directed_hausdorff +from scipy.spatial import distance +from scipy._lib._util import check_random_state + + +class TestHausdorff: + # Test various properties of the directed Hausdorff code. + + def setup_method(self): + np.random.seed(1234) + random_angles = np.random.random(100) * np.pi * 2 + random_columns = np.column_stack( + (random_angles, random_angles, np.zeros(100))) + random_columns[..., 0] = np.cos(random_columns[..., 0]) + random_columns[..., 1] = np.sin(random_columns[..., 1]) + random_columns_2 = np.column_stack( + (random_angles, random_angles, np.zeros(100))) + random_columns_2[1:, 0] = np.cos(random_columns_2[1:, 0]) * 2.0 + random_columns_2[1:, 1] = np.sin(random_columns_2[1:, 1]) * 2.0 + # move one point farther out so we don't have two perfect circles + random_columns_2[0, 0] = np.cos(random_columns_2[0, 0]) * 3.3 + random_columns_2[0, 1] = np.sin(random_columns_2[0, 1]) * 3.3 + self.path_1 = random_columns + self.path_2 = random_columns_2 + self.path_1_4d = np.insert(self.path_1, 3, 5, axis=1) + self.path_2_4d = np.insert(self.path_2, 3, 27, axis=1) + + def test_symmetry(self): + # Ensure that the directed (asymmetric) Hausdorff distance is + # actually asymmetric + + forward = directed_hausdorff(self.path_1, self.path_2)[0] + reverse = directed_hausdorff(self.path_2, self.path_1)[0] + assert forward != reverse + + def test_brute_force_comparison_forward(self): + # Ensure that the algorithm for directed_hausdorff gives the + # same result as the simple / brute force approach in the + # forward direction. + actual = directed_hausdorff(self.path_1, self.path_2)[0] + # brute force over rows: + expected = max(np.amin(distance.cdist(self.path_1, self.path_2), + axis=1)) + assert_allclose(actual, expected) + + def test_brute_force_comparison_reverse(self): + # Ensure that the algorithm for directed_hausdorff gives the + # same result as the simple / brute force approach in the + # reverse direction. + actual = directed_hausdorff(self.path_2, self.path_1)[0] + # brute force over columns: + expected = max(np.amin(distance.cdist(self.path_1, self.path_2), + axis=0)) + assert_allclose(actual, expected) + + def test_degenerate_case(self): + # The directed Hausdorff distance must be zero if both input + # data arrays match. + actual = directed_hausdorff(self.path_1, self.path_1)[0] + assert_allclose(actual, 0.0) + + def test_2d_data_forward(self): + # Ensure that 2D data is handled properly for a simple case + # relative to brute force approach. + actual = directed_hausdorff(self.path_1[..., :2], + self.path_2[..., :2])[0] + expected = max(np.amin(distance.cdist(self.path_1[..., :2], + self.path_2[..., :2]), + axis=1)) + assert_allclose(actual, expected) + + def test_4d_data_reverse(self): + # Ensure that 4D data is handled properly for a simple case + # relative to brute force approach. + actual = directed_hausdorff(self.path_2_4d, self.path_1_4d)[0] + # brute force over columns: + expected = max(np.amin(distance.cdist(self.path_1_4d, self.path_2_4d), + axis=0)) + assert_allclose(actual, expected) + + def test_indices(self): + # Ensure that correct point indices are returned -- they should + # correspond to the Hausdorff pair + path_simple_1 = np.array([[-1,-12],[0,0], [1,1], [3,7], [1,2]]) + path_simple_2 = np.array([[0,0], [1,1], [4,100], [10,9]]) + actual = directed_hausdorff(path_simple_2, path_simple_1)[1:] + expected = (2, 3) + assert_array_equal(actual, expected) + + def test_random_state(self): + # ensure that the global random state is not modified because + # the directed Hausdorff algorithm uses randomization + rs = check_random_state(None) + old_global_state = rs.get_state() + directed_hausdorff(self.path_1, self.path_2) + rs2 = check_random_state(None) + new_global_state = rs2.get_state() + assert_equal(new_global_state, old_global_state) + + @pytest.mark.parametrize("seed", [None, 27870671]) + def test_random_state_None_int(self, seed): + # check that seed values of None or int do not alter global + # random state + rs = check_random_state(None) + old_global_state = rs.get_state() + directed_hausdorff(self.path_1, self.path_2, seed) + rs2 = check_random_state(None) + new_global_state = rs2.get_state() + assert_equal(new_global_state, old_global_state) + + def test_invalid_dimensions(self): + # Ensure that a ValueError is raised when the number of columns + # is not the same + rng = np.random.default_rng(189048172503940875434364128139223470523) + A = rng.random((3, 2)) + B = rng.random((3, 5)) + msg = r"need to have the same number of columns" + with pytest.raises(ValueError, match=msg): + directed_hausdorff(A, B) + + @pytest.mark.parametrize("A, B, seed, expected", [ + # the two cases from gh-11332 + ([(0,0)], + [(0,1), (0,0)], + 0, + (0.0, 0, 1)), + ([(0,0)], + [(0,1), (0,0)], + 1, + (0.0, 0, 1)), + # slightly more complex case + ([(-5, 3), (0,0)], + [(0,1), (0,0), (-5, 3)], + 77098, + # the maximum minimum distance will + # be the last one found, but a unique + # solution is not guaranteed more broadly + (0.0, 1, 1)), + ]) + def test_subsets(self, A, B, seed, expected): + # verify fix for gh-11332 + actual = directed_hausdorff(u=A, v=B, seed=seed) + # check distance + assert_allclose(actual[0], expected[0]) + # check indices + assert actual[1:] == expected[1:] + + +@pytest.mark.xslow +def test_massive_arr_overflow(): + # on 64-bit systems we should be able to + # handle arrays that exceed the indexing + # size of a 32-bit signed integer + try: + import psutil + except ModuleNotFoundError: + pytest.skip("psutil required to check available memory") + if psutil.virtual_memory().available < 80*2**30: + # Don't run the test if there is less than 80 gig of RAM available. + pytest.skip('insufficient memory available to run this test') + size = int(3e9) + arr1 = np.zeros(shape=(size, 2)) + arr2 = np.zeros(shape=(3, 2)) + arr1[size - 1] = [5, 5] + actual = directed_hausdorff(u=arr1, v=arr2) + assert_allclose(actual[0], 7.0710678118654755) + assert_allclose(actual[1], size - 1) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test_kdtree.py b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test_kdtree.py new file mode 100644 index 0000000000000000000000000000000000000000..faf87872ea3b69d86d9d2fc90b546e409914ba53 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test_kdtree.py @@ -0,0 +1,1533 @@ +# Copyright Anne M. Archibald 2008 +# Released under the scipy license + +import os +from numpy.testing import (assert_equal, assert_array_equal, assert_, + assert_almost_equal, assert_array_almost_equal, + assert_allclose) +from pytest import raises as assert_raises +import pytest +from platform import python_implementation +import numpy as np +from scipy.spatial import KDTree, Rectangle, distance_matrix, cKDTree +from scipy.spatial._ckdtree import cKDTreeNode +from scipy.spatial import minkowski_distance + +import itertools + +@pytest.fixture(params=[KDTree, cKDTree]) +def kdtree_type(request): + return request.param + + +def KDTreeTest(kls): + """Class decorator to create test cases for KDTree and cKDTree + + Tests use the class variable ``kdtree_type`` as the tree constructor. + """ + if not kls.__name__.startswith('_Test'): + raise RuntimeError("Expected a class name starting with _Test") + + for tree in (KDTree, cKDTree): + test_name = kls.__name__[1:] + '_' + tree.__name__ + + if test_name in globals(): + raise RuntimeError("Duplicated test name: " + test_name) + + # Create a new sub-class with kdtree_type defined + test_case = type(test_name, (kls,), {'kdtree_type': tree}) + globals()[test_name] = test_case + return kls + + +def distance_box(a, b, p, boxsize): + diff = a - b + diff[diff > 0.5 * boxsize] -= boxsize + diff[diff < -0.5 * boxsize] += boxsize + d = minkowski_distance(diff, 0, p) + return d + +class ConsistencyTests: + def distance(self, a, b, p): + return minkowski_distance(a, b, p) + + def test_nearest(self): + x = self.x + d, i = self.kdtree.query(x, 1) + assert_almost_equal(d**2, np.sum((x-self.data[i])**2)) + eps = 1e-8 + assert_(np.all(np.sum((self.data-x[np.newaxis, :])**2, axis=1) > d**2-eps)) + + def test_m_nearest(self): + x = self.x + m = self.m + dd, ii = self.kdtree.query(x, m) + d = np.amax(dd) + i = ii[np.argmax(dd)] + assert_almost_equal(d**2, np.sum((x-self.data[i])**2)) + eps = 1e-8 + assert_equal( + np.sum(np.sum((self.data-x[np.newaxis, :])**2, axis=1) < d**2+eps), + m, + ) + + def test_points_near(self): + x = self.x + d = self.d + dd, ii = self.kdtree.query(x, k=self.kdtree.n, distance_upper_bound=d) + eps = 1e-8 + hits = 0 + for near_d, near_i in zip(dd, ii): + if near_d == np.inf: + continue + hits += 1 + assert_almost_equal(near_d**2, np.sum((x-self.data[near_i])**2)) + assert_(near_d < d+eps, f"near_d={near_d:g} should be less than {d:g}") + assert_equal(np.sum(self.distance(self.data, x, 2) < d**2+eps), hits) + + def test_points_near_l1(self): + x = self.x + d = self.d + dd, ii = self.kdtree.query(x, k=self.kdtree.n, p=1, distance_upper_bound=d) + eps = 1e-8 + hits = 0 + for near_d, near_i in zip(dd, ii): + if near_d == np.inf: + continue + hits += 1 + assert_almost_equal(near_d, self.distance(x, self.data[near_i], 1)) + assert_(near_d < d+eps, f"near_d={near_d:g} should be less than {d:g}") + assert_equal(np.sum(self.distance(self.data, x, 1) < d+eps), hits) + + def test_points_near_linf(self): + x = self.x + d = self.d + dd, ii = self.kdtree.query(x, k=self.kdtree.n, p=np.inf, distance_upper_bound=d) + eps = 1e-8 + hits = 0 + for near_d, near_i in zip(dd, ii): + if near_d == np.inf: + continue + hits += 1 + assert_almost_equal(near_d, self.distance(x, self.data[near_i], np.inf)) + assert_(near_d < d+eps, f"near_d={near_d:g} should be less than {d:g}") + assert_equal(np.sum(self.distance(self.data, x, np.inf) < d+eps), hits) + + def test_approx(self): + x = self.x + k = self.k + eps = 0.1 + d_real, i_real = self.kdtree.query(x, k) + d, i = self.kdtree.query(x, k, eps=eps) + assert_(np.all(d <= d_real*(1+eps))) + + +@KDTreeTest +class _Test_random(ConsistencyTests): + def setup_method(self): + self.n = 100 + self.m = 4 + np.random.seed(1234) + self.data = np.random.randn(self.n, self.m) + self.kdtree = self.kdtree_type(self.data, leafsize=2) + self.x = np.random.randn(self.m) + self.d = 0.2 + self.k = 10 + + +@KDTreeTest +class _Test_random_far(_Test_random): + def setup_method(self): + super().setup_method() + self.x = np.random.randn(self.m)+10 + + +@KDTreeTest +class _Test_small(ConsistencyTests): + def setup_method(self): + self.data = np.array([[0, 0, 0], + [0, 0, 1], + [0, 1, 0], + [0, 1, 1], + [1, 0, 0], + [1, 0, 1], + [1, 1, 0], + [1, 1, 1]]) + self.kdtree = self.kdtree_type(self.data) + self.n = self.kdtree.n + self.m = self.kdtree.m + np.random.seed(1234) + self.x = np.random.randn(3) + self.d = 0.5 + self.k = 4 + + def test_nearest(self): + assert_array_equal( + self.kdtree.query((0, 0, 0.1), 1), + (0.1, 0)) + + def test_nearest_two(self): + assert_array_equal( + self.kdtree.query((0, 0, 0.1), 2), + ([0.1, 0.9], [0, 1])) + + +@KDTreeTest +class _Test_small_nonleaf(_Test_small): + def setup_method(self): + super().setup_method() + self.kdtree = self.kdtree_type(self.data, leafsize=1) + + +class Test_vectorization_KDTree: + def setup_method(self): + self.data = np.array([[0, 0, 0], + [0, 0, 1], + [0, 1, 0], + [0, 1, 1], + [1, 0, 0], + [1, 0, 1], + [1, 1, 0], + [1, 1, 1]]) + self.kdtree = KDTree(self.data) + + def test_single_query(self): + d, i = self.kdtree.query(np.array([0, 0, 0])) + assert_(isinstance(d, float)) + assert_(np.issubdtype(i, np.signedinteger)) + + def test_vectorized_query(self): + d, i = self.kdtree.query(np.zeros((2, 4, 3))) + assert_equal(np.shape(d), (2, 4)) + assert_equal(np.shape(i), (2, 4)) + + def test_single_query_multiple_neighbors(self): + s = 23 + kk = self.kdtree.n+s + d, i = self.kdtree.query(np.array([0, 0, 0]), k=kk) + assert_equal(np.shape(d), (kk,)) + assert_equal(np.shape(i), (kk,)) + assert_(np.all(~np.isfinite(d[-s:]))) + assert_(np.all(i[-s:] == self.kdtree.n)) + + def test_vectorized_query_multiple_neighbors(self): + s = 23 + kk = self.kdtree.n+s + d, i = self.kdtree.query(np.zeros((2, 4, 3)), k=kk) + assert_equal(np.shape(d), (2, 4, kk)) + assert_equal(np.shape(i), (2, 4, kk)) + assert_(np.all(~np.isfinite(d[:, :, -s:]))) + assert_(np.all(i[:, :, -s:] == self.kdtree.n)) + + def test_query_raises_for_k_none(self): + x = 1.0 + with pytest.raises(ValueError, match="k must be an integer or*"): + self.kdtree.query(x, k=None) + +class Test_vectorization_cKDTree: + def setup_method(self): + self.data = np.array([[0, 0, 0], + [0, 0, 1], + [0, 1, 0], + [0, 1, 1], + [1, 0, 0], + [1, 0, 1], + [1, 1, 0], + [1, 1, 1]]) + self.kdtree = cKDTree(self.data) + + def test_single_query(self): + d, i = self.kdtree.query([0, 0, 0]) + assert_(isinstance(d, float)) + assert_(isinstance(i, int)) + + def test_vectorized_query(self): + d, i = self.kdtree.query(np.zeros((2, 4, 3))) + assert_equal(np.shape(d), (2, 4)) + assert_equal(np.shape(i), (2, 4)) + + def test_vectorized_query_noncontiguous_values(self): + np.random.seed(1234) + qs = np.random.randn(3, 1000).T + ds, i_s = self.kdtree.query(qs) + for q, d, i in zip(qs, ds, i_s): + assert_equal(self.kdtree.query(q), (d, i)) + + def test_single_query_multiple_neighbors(self): + s = 23 + kk = self.kdtree.n+s + d, i = self.kdtree.query([0, 0, 0], k=kk) + assert_equal(np.shape(d), (kk,)) + assert_equal(np.shape(i), (kk,)) + assert_(np.all(~np.isfinite(d[-s:]))) + assert_(np.all(i[-s:] == self.kdtree.n)) + + def test_vectorized_query_multiple_neighbors(self): + s = 23 + kk = self.kdtree.n+s + d, i = self.kdtree.query(np.zeros((2, 4, 3)), k=kk) + assert_equal(np.shape(d), (2, 4, kk)) + assert_equal(np.shape(i), (2, 4, kk)) + assert_(np.all(~np.isfinite(d[:, :, -s:]))) + assert_(np.all(i[:, :, -s:] == self.kdtree.n)) + +class ball_consistency: + tol = 0.0 + + def distance(self, a, b, p): + return minkowski_distance(a * 1.0, b * 1.0, p) + + def test_in_ball(self): + x = np.atleast_2d(self.x) + d = np.broadcast_to(self.d, x.shape[:-1]) + l = self.T.query_ball_point(x, self.d, p=self.p, eps=self.eps) + for i, ind in enumerate(l): + dist = self.distance(self.data[ind], x[i], self.p) - d[i]*(1.+self.eps) + norm = self.distance(self.data[ind], x[i], self.p) + d[i]*(1.+self.eps) + assert_array_equal(dist < self.tol * norm, True) + + def test_found_all(self): + x = np.atleast_2d(self.x) + d = np.broadcast_to(self.d, x.shape[:-1]) + l = self.T.query_ball_point(x, self.d, p=self.p, eps=self.eps) + for i, ind in enumerate(l): + c = np.ones(self.T.n, dtype=bool) + c[ind] = False + dist = self.distance(self.data[c], x[i], self.p) - d[i]/(1.+self.eps) + norm = self.distance(self.data[c], x[i], self.p) + d[i]/(1.+self.eps) + assert_array_equal(dist > -self.tol * norm, True) + +@KDTreeTest +class _Test_random_ball(ball_consistency): + def setup_method(self): + n = 100 + m = 4 + np.random.seed(1234) + self.data = np.random.randn(n, m) + self.T = self.kdtree_type(self.data, leafsize=2) + self.x = np.random.randn(m) + self.p = 2. + self.eps = 0 + self.d = 0.2 + + +@KDTreeTest +class _Test_random_ball_periodic(ball_consistency): + def distance(self, a, b, p): + return distance_box(a, b, p, 1.0) + + def setup_method(self): + n = 10000 + m = 4 + np.random.seed(1234) + self.data = np.random.uniform(size=(n, m)) + self.T = self.kdtree_type(self.data, leafsize=2, boxsize=1) + self.x = np.full(m, 0.1) + self.p = 2. + self.eps = 0 + self.d = 0.2 + + def test_in_ball_outside(self): + l = self.T.query_ball_point(self.x + 1.0, self.d, p=self.p, eps=self.eps) + for i in l: + assert_(self.distance(self.data[i], self.x, self.p) <= self.d*(1.+self.eps)) + l = self.T.query_ball_point(self.x - 1.0, self.d, p=self.p, eps=self.eps) + for i in l: + assert_(self.distance(self.data[i], self.x, self.p) <= self.d*(1.+self.eps)) + + def test_found_all_outside(self): + c = np.ones(self.T.n, dtype=bool) + l = self.T.query_ball_point(self.x + 1.0, self.d, p=self.p, eps=self.eps) + c[l] = False + assert np.all( + self.distance(self.data[c], self.x, self.p) >= self.d/(1.+self.eps) + ) + + l = self.T.query_ball_point(self.x - 1.0, self.d, p=self.p, eps=self.eps) + c[l] = False + assert np.all( + self.distance(self.data[c], self.x, self.p) >= self.d/(1.+self.eps) + ) + + +@KDTreeTest +class _Test_random_ball_largep_issue9890(ball_consistency): + + # allow some roundoff errors due to numerical issues + tol = 1e-13 + + def setup_method(self): + n = 1000 + m = 2 + np.random.seed(123) + self.data = np.random.randint(100, 1000, size=(n, m)) + self.T = self.kdtree_type(self.data) + self.x = self.data + self.p = 100 + self.eps = 0 + self.d = 10 + + +@KDTreeTest +class _Test_random_ball_approx(_Test_random_ball): + + def setup_method(self): + super().setup_method() + self.eps = 0.1 + + +@KDTreeTest +class _Test_random_ball_approx_periodic(_Test_random_ball): + + def setup_method(self): + super().setup_method() + self.eps = 0.1 + + +@KDTreeTest +class _Test_random_ball_far(_Test_random_ball): + + def setup_method(self): + super().setup_method() + self.d = 2. + +@KDTreeTest +class _Test_random_ball_far_periodic(_Test_random_ball_periodic): + + def setup_method(self): + super().setup_method() + self.d = 2. + + +@KDTreeTest +class _Test_random_ball_l1(_Test_random_ball): + + def setup_method(self): + super().setup_method() + self.p = 1 + + +@KDTreeTest +class _Test_random_ball_linf(_Test_random_ball): + + def setup_method(self): + super().setup_method() + self.p = np.inf + + +def test_random_ball_vectorized(kdtree_type): + n = 20 + m = 5 + np.random.seed(1234) + T = kdtree_type(np.random.randn(n, m)) + + r = T.query_ball_point(np.random.randn(2, 3, m), 1) + assert_equal(r.shape, (2, 3)) + assert_(isinstance(r[0, 0], list)) + + +def test_query_ball_point_multithreading(kdtree_type): + np.random.seed(0) + n = 5000 + k = 2 + points = np.random.randn(n, k) + T = kdtree_type(points) + l1 = T.query_ball_point(points, 0.003, workers=1) + l2 = T.query_ball_point(points, 0.003, workers=64) + l3 = T.query_ball_point(points, 0.003, workers=-1) + + for i in range(n): + if l1[i] or l2[i]: + assert_array_equal(l1[i], l2[i]) + + for i in range(n): + if l1[i] or l3[i]: + assert_array_equal(l1[i], l3[i]) + + +class two_trees_consistency: + + def distance(self, a, b, p): + return minkowski_distance(a, b, p) + + def test_all_in_ball(self): + r = self.T1.query_ball_tree(self.T2, self.d, p=self.p, eps=self.eps) + for i, l in enumerate(r): + for j in l: + assert (self.distance(self.data1[i], self.data2[j], self.p) + <= self.d*(1.+self.eps)) + + def test_found_all(self): + r = self.T1.query_ball_tree(self.T2, self.d, p=self.p, eps=self.eps) + for i, l in enumerate(r): + c = np.ones(self.T2.n, dtype=bool) + c[l] = False + assert np.all(self.distance(self.data2[c], self.data1[i], self.p) + >= self.d/(1.+self.eps)) + + +@KDTreeTest +class _Test_two_random_trees(two_trees_consistency): + + def setup_method(self): + n = 50 + m = 4 + np.random.seed(1234) + self.data1 = np.random.randn(n, m) + self.T1 = self.kdtree_type(self.data1, leafsize=2) + self.data2 = np.random.randn(n, m) + self.T2 = self.kdtree_type(self.data2, leafsize=2) + self.p = 2. + self.eps = 0 + self.d = 0.2 + + +@KDTreeTest +class _Test_two_random_trees_periodic(two_trees_consistency): + def distance(self, a, b, p): + return distance_box(a, b, p, 1.0) + + def setup_method(self): + n = 50 + m = 4 + np.random.seed(1234) + self.data1 = np.random.uniform(size=(n, m)) + self.T1 = self.kdtree_type(self.data1, leafsize=2, boxsize=1.0) + self.data2 = np.random.uniform(size=(n, m)) + self.T2 = self.kdtree_type(self.data2, leafsize=2, boxsize=1.0) + self.p = 2. + self.eps = 0 + self.d = 0.2 + + +@KDTreeTest +class _Test_two_random_trees_far(_Test_two_random_trees): + + def setup_method(self): + super().setup_method() + self.d = 2 + + +@KDTreeTest +class _Test_two_random_trees_far_periodic(_Test_two_random_trees_periodic): + + def setup_method(self): + super().setup_method() + self.d = 2 + + +@KDTreeTest +class _Test_two_random_trees_linf(_Test_two_random_trees): + + def setup_method(self): + super().setup_method() + self.p = np.inf + + +@KDTreeTest +class _Test_two_random_trees_linf_periodic(_Test_two_random_trees_periodic): + + def setup_method(self): + super().setup_method() + self.p = np.inf + + +class Test_rectangle: + + def setup_method(self): + self.rect = Rectangle([0, 0], [1, 1]) + + def test_min_inside(self): + assert_almost_equal(self.rect.min_distance_point([0.5, 0.5]), 0) + + def test_min_one_side(self): + assert_almost_equal(self.rect.min_distance_point([0.5, 1.5]), 0.5) + + def test_min_two_sides(self): + assert_almost_equal(self.rect.min_distance_point([2, 2]), np.sqrt(2)) + + def test_max_inside(self): + assert_almost_equal(self.rect.max_distance_point([0.5, 0.5]), 1/np.sqrt(2)) + + def test_max_one_side(self): + assert_almost_equal(self.rect.max_distance_point([0.5, 1.5]), + np.hypot(0.5, 1.5)) + + def test_max_two_sides(self): + assert_almost_equal(self.rect.max_distance_point([2, 2]), 2*np.sqrt(2)) + + def test_split(self): + less, greater = self.rect.split(0, 0.1) + assert_array_equal(less.maxes, [0.1, 1]) + assert_array_equal(less.mins, [0, 0]) + assert_array_equal(greater.maxes, [1, 1]) + assert_array_equal(greater.mins, [0.1, 0]) + + +def test_distance_l2(): + assert_almost_equal(minkowski_distance([0, 0], [1, 1], 2), np.sqrt(2)) + + +def test_distance_l1(): + assert_almost_equal(minkowski_distance([0, 0], [1, 1], 1), 2) + + +def test_distance_linf(): + assert_almost_equal(minkowski_distance([0, 0], [1, 1], np.inf), 1) + + +def test_distance_vectorization(): + np.random.seed(1234) + x = np.random.randn(10, 1, 3) + y = np.random.randn(1, 7, 3) + assert_equal(minkowski_distance(x, y).shape, (10, 7)) + + +class count_neighbors_consistency: + def test_one_radius(self): + r = 0.2 + assert_equal(self.T1.count_neighbors(self.T2, r), + np.sum([len(l) for l in self.T1.query_ball_tree(self.T2, r)])) + + def test_large_radius(self): + r = 1000 + assert_equal(self.T1.count_neighbors(self.T2, r), + np.sum([len(l) for l in self.T1.query_ball_tree(self.T2, r)])) + + def test_multiple_radius(self): + rs = np.exp(np.linspace(np.log(0.01), np.log(10), 3)) + results = self.T1.count_neighbors(self.T2, rs) + assert_(np.all(np.diff(results) >= 0)) + for r, result in zip(rs, results): + assert_equal(self.T1.count_neighbors(self.T2, r), result) + +@KDTreeTest +class _Test_count_neighbors(count_neighbors_consistency): + def setup_method(self): + n = 50 + m = 2 + np.random.seed(1234) + self.T1 = self.kdtree_type(np.random.randn(n, m), leafsize=2) + self.T2 = self.kdtree_type(np.random.randn(n, m), leafsize=2) + + +class sparse_distance_matrix_consistency: + + def distance(self, a, b, p): + return minkowski_distance(a, b, p) + + def test_consistency_with_neighbors(self): + M = self.T1.sparse_distance_matrix(self.T2, self.r) + r = self.T1.query_ball_tree(self.T2, self.r) + for i, l in enumerate(r): + for j in l: + assert_almost_equal( + M[i, j], + self.distance(self.T1.data[i], self.T2.data[j], self.p), + decimal=14 + ) + for ((i, j), d) in M.items(): + assert_(j in r[i]) + + def test_zero_distance(self): + # raises an exception for bug 870 (FIXME: Does it?) + self.T1.sparse_distance_matrix(self.T1, self.r) + + def test_consistency(self): + # Test consistency with a distance_matrix + M1 = self.T1.sparse_distance_matrix(self.T2, self.r) + expected = distance_matrix(self.T1.data, self.T2.data) + expected[expected > self.r] = 0 + assert_array_almost_equal(M1.toarray(), expected, decimal=14) + + def test_against_logic_error_regression(self): + # regression test for gh-5077 logic error + np.random.seed(0) + too_many = np.array(np.random.randn(18, 2), dtype=int) + tree = self.kdtree_type( + too_many, balanced_tree=False, compact_nodes=False) + d = tree.sparse_distance_matrix(tree, 3).toarray() + assert_array_almost_equal(d, d.T, decimal=14) + + def test_ckdtree_return_types(self): + # brute-force reference + ref = np.zeros((self.n, self.n)) + for i in range(self.n): + for j in range(self.n): + v = self.data1[i, :] - self.data2[j, :] + ref[i, j] = np.dot(v, v) + ref = np.sqrt(ref) + ref[ref > self.r] = 0. + # test return type 'dict' + dist = np.zeros((self.n, self.n)) + r = self.T1.sparse_distance_matrix(self.T2, self.r, output_type='dict') + for i, j in r.keys(): + dist[i, j] = r[(i, j)] + assert_array_almost_equal(ref, dist, decimal=14) + # test return type 'ndarray' + dist = np.zeros((self.n, self.n)) + r = self.T1.sparse_distance_matrix(self.T2, self.r, + output_type='ndarray') + for k in range(r.shape[0]): + i = r['i'][k] + j = r['j'][k] + v = r['v'][k] + dist[i, j] = v + assert_array_almost_equal(ref, dist, decimal=14) + # test return type 'dok_matrix' + r = self.T1.sparse_distance_matrix(self.T2, self.r, + output_type='dok_matrix') + assert_array_almost_equal(ref, r.toarray(), decimal=14) + # test return type 'coo_matrix' + r = self.T1.sparse_distance_matrix(self.T2, self.r, + output_type='coo_matrix') + assert_array_almost_equal(ref, r.toarray(), decimal=14) + + +@KDTreeTest +class _Test_sparse_distance_matrix(sparse_distance_matrix_consistency): + def setup_method(self): + n = 50 + m = 4 + np.random.seed(1234) + data1 = np.random.randn(n, m) + data2 = np.random.randn(n, m) + self.T1 = self.kdtree_type(data1, leafsize=2) + self.T2 = self.kdtree_type(data2, leafsize=2) + self.r = 0.5 + self.p = 2 + self.data1 = data1 + self.data2 = data2 + self.n = n + self.m = m + + +def test_distance_matrix(): + m = 10 + n = 11 + k = 4 + np.random.seed(1234) + xs = np.random.randn(m, k) + ys = np.random.randn(n, k) + ds = distance_matrix(xs, ys) + assert_equal(ds.shape, (m, n)) + for i in range(m): + for j in range(n): + assert_almost_equal(minkowski_distance(xs[i], ys[j]), ds[i, j]) + + +def test_distance_matrix_looping(): + m = 10 + n = 11 + k = 4 + np.random.seed(1234) + xs = np.random.randn(m, k) + ys = np.random.randn(n, k) + ds = distance_matrix(xs, ys) + dsl = distance_matrix(xs, ys, threshold=1) + assert_equal(ds, dsl) + + +def check_onetree_query(T, d): + r = T.query_ball_tree(T, d) + s = set() + for i, l in enumerate(r): + for j in l: + if i < j: + s.add((i, j)) + + assert_(s == T.query_pairs(d)) + +def test_onetree_query(kdtree_type): + np.random.seed(0) + n = 50 + k = 4 + points = np.random.randn(n, k) + T = kdtree_type(points) + check_onetree_query(T, 0.1) + + points = np.random.randn(3*n, k) + points[:n] *= 0.001 + points[n:2*n] += 2 + T = kdtree_type(points) + check_onetree_query(T, 0.1) + check_onetree_query(T, 0.001) + check_onetree_query(T, 0.00001) + check_onetree_query(T, 1e-6) + + +def test_query_pairs_single_node(kdtree_type): + tree = kdtree_type([[0, 1]]) + assert_equal(tree.query_pairs(0.5), set()) + + +def test_kdtree_query_pairs(kdtree_type): + np.random.seed(0) + n = 50 + k = 2 + r = 0.1 + r2 = r**2 + points = np.random.randn(n, k) + T = kdtree_type(points) + # brute force reference + brute = set() + for i in range(n): + for j in range(i+1, n): + v = points[i, :] - points[j, :] + if np.dot(v, v) <= r2: + brute.add((i, j)) + l0 = sorted(brute) + # test default return type + s = T.query_pairs(r) + l1 = sorted(s) + assert_array_equal(l0, l1) + # test return type 'set' + s = T.query_pairs(r, output_type='set') + l1 = sorted(s) + assert_array_equal(l0, l1) + # test return type 'ndarray' + s = set() + arr = T.query_pairs(r, output_type='ndarray') + for i in range(arr.shape[0]): + s.add((int(arr[i, 0]), int(arr[i, 1]))) + l2 = sorted(s) + assert_array_equal(l0, l2) + + +def test_query_pairs_eps(kdtree_type): + spacing = np.sqrt(2) + # irrational spacing to have potential rounding errors + x_range = np.linspace(0, 3 * spacing, 4) + y_range = np.linspace(0, 3 * spacing, 4) + xy_array = [(xi, yi) for xi in x_range for yi in y_range] + tree = kdtree_type(xy_array) + pairs_eps = tree.query_pairs(r=spacing, eps=.1) + # result: 24 with eps, 16 without due to rounding + pairs = tree.query_pairs(r=spacing * 1.01) + # result: 24 + assert_equal(pairs, pairs_eps) + + +def test_ball_point_ints(kdtree_type): + # Regression test for #1373. + x, y = np.mgrid[0:4, 0:4] + points = list(zip(x.ravel(), y.ravel())) + tree = kdtree_type(points) + assert_equal(sorted([4, 8, 9, 12]), + sorted(tree.query_ball_point((2, 0), 1))) + points = np.asarray(points, dtype=float) + tree = kdtree_type(points) + assert_equal(sorted([4, 8, 9, 12]), + sorted(tree.query_ball_point((2, 0), 1))) + + +def test_kdtree_comparisons(): + # Regression test: node comparisons were done wrong in 0.12 w/Py3. + nodes = [KDTree.node() for _ in range(3)] + assert_equal(sorted(nodes), sorted(nodes[::-1])) + + +def test_kdtree_build_modes(kdtree_type): + # check if different build modes for KDTree give similar query results + np.random.seed(0) + n = 5000 + k = 4 + points = np.random.randn(n, k) + T1 = kdtree_type(points).query(points, k=5)[-1] + T2 = kdtree_type(points, compact_nodes=False).query(points, k=5)[-1] + T3 = kdtree_type(points, balanced_tree=False).query(points, k=5)[-1] + T4 = kdtree_type(points, compact_nodes=False, + balanced_tree=False).query(points, k=5)[-1] + assert_array_equal(T1, T2) + assert_array_equal(T1, T3) + assert_array_equal(T1, T4) + +def test_kdtree_pickle(kdtree_type): + # test if it is possible to pickle a KDTree + import pickle + np.random.seed(0) + n = 50 + k = 4 + points = np.random.randn(n, k) + T1 = kdtree_type(points) + tmp = pickle.dumps(T1) + T2 = pickle.loads(tmp) + T1 = T1.query(points, k=5)[-1] + T2 = T2.query(points, k=5)[-1] + assert_array_equal(T1, T2) + +def test_kdtree_pickle_boxsize(kdtree_type): + # test if it is possible to pickle a periodic KDTree + import pickle + np.random.seed(0) + n = 50 + k = 4 + points = np.random.uniform(size=(n, k)) + T1 = kdtree_type(points, boxsize=1.0) + tmp = pickle.dumps(T1) + T2 = pickle.loads(tmp) + T1 = T1.query(points, k=5)[-1] + T2 = T2.query(points, k=5)[-1] + assert_array_equal(T1, T2) + +def test_kdtree_copy_data(kdtree_type): + # check if copy_data=True makes the kd-tree + # impervious to data corruption by modification of + # the data arrray + np.random.seed(0) + n = 5000 + k = 4 + points = np.random.randn(n, k) + T = kdtree_type(points, copy_data=True) + q = points.copy() + T1 = T.query(q, k=5)[-1] + points[...] = np.random.randn(n, k) + T2 = T.query(q, k=5)[-1] + assert_array_equal(T1, T2) + +def test_ckdtree_parallel(kdtree_type, monkeypatch): + # check if parallel=True also generates correct query results + np.random.seed(0) + n = 5000 + k = 4 + points = np.random.randn(n, k) + T = kdtree_type(points) + T1 = T.query(points, k=5, workers=64)[-1] + T2 = T.query(points, k=5, workers=-1)[-1] + T3 = T.query(points, k=5)[-1] + assert_array_equal(T1, T2) + assert_array_equal(T1, T3) + + monkeypatch.setattr(os, 'cpu_count', lambda: None) + with pytest.raises(NotImplementedError, match="Cannot determine the"): + T.query(points, 1, workers=-1) + + +def test_ckdtree_view(): + # Check that the nodes can be correctly viewed from Python. + # This test also sanity checks each node in the cKDTree, and + # thus verifies the internal structure of the kd-tree. + np.random.seed(0) + n = 100 + k = 4 + points = np.random.randn(n, k) + kdtree = cKDTree(points) + + # walk the whole kd-tree and sanity check each node + def recurse_tree(n): + assert_(isinstance(n, cKDTreeNode)) + if n.split_dim == -1: + assert_(n.lesser is None) + assert_(n.greater is None) + assert_(n.indices.shape[0] <= kdtree.leafsize) + else: + recurse_tree(n.lesser) + recurse_tree(n.greater) + x = n.lesser.data_points[:, n.split_dim] + y = n.greater.data_points[:, n.split_dim] + assert_(x.max() < y.min()) + + recurse_tree(kdtree.tree) + # check that indices are correctly retrieved + n = kdtree.tree + assert_array_equal(np.sort(n.indices), range(100)) + # check that data_points are correctly retrieved + assert_array_equal(kdtree.data[n.indices, :], n.data_points) + +# KDTree is specialized to type double points, so no need to make +# a unit test corresponding to test_ball_point_ints() + +def test_kdtree_list_k(kdtree_type): + # check kdtree periodic boundary + n = 200 + m = 2 + klist = [1, 2, 3] + kint = 3 + + np.random.seed(1234) + data = np.random.uniform(size=(n, m)) + kdtree = kdtree_type(data, leafsize=1) + + # check agreement between arange(1, k+1) and k + dd, ii = kdtree.query(data, klist) + dd1, ii1 = kdtree.query(data, kint) + assert_equal(dd, dd1) + assert_equal(ii, ii1) + + # now check skipping one element + klist = np.array([1, 3]) + kint = 3 + dd, ii = kdtree.query(data, kint) + dd1, ii1 = kdtree.query(data, klist) + assert_equal(dd1, dd[..., klist - 1]) + assert_equal(ii1, ii[..., klist - 1]) + + # check k == 1 special case + # and k == [1] non-special case + dd, ii = kdtree.query(data, 1) + dd1, ii1 = kdtree.query(data, [1]) + assert_equal(len(dd.shape), 1) + assert_equal(len(dd1.shape), 2) + assert_equal(dd, np.ravel(dd1)) + assert_equal(ii, np.ravel(ii1)) + +def test_kdtree_box(kdtree_type): + # check ckdtree periodic boundary + n = 2000 + m = 3 + k = 3 + np.random.seed(1234) + data = np.random.uniform(size=(n, m)) + kdtree = kdtree_type(data, leafsize=1, boxsize=1.0) + + # use the standard python KDTree for the simulated periodic box + kdtree2 = kdtree_type(data, leafsize=1) + + for p in [1, 2, 3.0, np.inf]: + dd, ii = kdtree.query(data, k, p=p) + + dd1, ii1 = kdtree.query(data + 1.0, k, p=p) + assert_almost_equal(dd, dd1) + assert_equal(ii, ii1) + + dd1, ii1 = kdtree.query(data - 1.0, k, p=p) + assert_almost_equal(dd, dd1) + assert_equal(ii, ii1) + + dd2, ii2 = simulate_periodic_box(kdtree2, data, k, boxsize=1.0, p=p) + assert_almost_equal(dd, dd2) + assert_equal(ii, ii2) + +def test_kdtree_box_0boxsize(kdtree_type): + # check ckdtree periodic boundary that mimics non-periodic + n = 2000 + m = 2 + k = 3 + np.random.seed(1234) + data = np.random.uniform(size=(n, m)) + kdtree = kdtree_type(data, leafsize=1, boxsize=0.0) + + # use the standard python KDTree for the simulated periodic box + kdtree2 = kdtree_type(data, leafsize=1) + + for p in [1, 2, np.inf]: + dd, ii = kdtree.query(data, k, p=p) + + dd1, ii1 = kdtree2.query(data, k, p=p) + assert_almost_equal(dd, dd1) + assert_equal(ii, ii1) + +def test_kdtree_box_upper_bounds(kdtree_type): + data = np.linspace(0, 2, 10).reshape(-1, 2) + data[:, 1] += 10 + with pytest.raises(ValueError): + kdtree_type(data, leafsize=1, boxsize=1.0) + with pytest.raises(ValueError): + kdtree_type(data, leafsize=1, boxsize=(0.0, 2.0)) + # skip a dimension. + kdtree_type(data, leafsize=1, boxsize=(2.0, 0.0)) + +def test_kdtree_box_lower_bounds(kdtree_type): + data = np.linspace(-1, 1, 10) + assert_raises(ValueError, kdtree_type, data, leafsize=1, boxsize=1.0) + +def simulate_periodic_box(kdtree, data, k, boxsize, p): + dd = [] + ii = [] + x = np.arange(3 ** data.shape[1]) + nn = np.array(np.unravel_index(x, [3] * data.shape[1])).T + nn = nn - 1.0 + for n in nn: + image = data + n * 1.0 * boxsize + dd2, ii2 = kdtree.query(image, k, p=p) + dd2 = dd2.reshape(-1, k) + ii2 = ii2.reshape(-1, k) + dd.append(dd2) + ii.append(ii2) + dd = np.concatenate(dd, axis=-1) + ii = np.concatenate(ii, axis=-1) + + result = np.empty([len(data), len(nn) * k], dtype=[ + ('ii', 'i8'), + ('dd', 'f8')]) + result['ii'][:] = ii + result['dd'][:] = dd + result.sort(order='dd') + return result['dd'][:, :k], result['ii'][:, :k] + + +@pytest.mark.skipif(python_implementation() == 'PyPy', + reason="Fails on PyPy CI runs. See #9507") +def test_ckdtree_memuse(): + # unit test adaptation of gh-5630 + + # NOTE: this will fail when run via valgrind, + # because rss is no longer a reliable memory usage indicator. + + try: + import resource + except ImportError: + # resource is not available on Windows + return + # Make some data + dx, dy = 0.05, 0.05 + y, x = np.mgrid[slice(1, 5 + dy, dy), + slice(1, 5 + dx, dx)] + z = np.sin(x)**10 + np.cos(10 + y*x) * np.cos(x) + z_copy = np.empty_like(z) + z_copy[:] = z + # Place FILLVAL in z_copy at random number of random locations + FILLVAL = 99. + mask = np.random.randint(0, z.size, np.random.randint(50) + 5) + z_copy.flat[mask] = FILLVAL + igood = np.vstack(np.nonzero(x != FILLVAL)).T + ibad = np.vstack(np.nonzero(x == FILLVAL)).T + mem_use = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss + # burn-in + for i in range(10): + tree = cKDTree(igood) + # count memleaks while constructing and querying cKDTree + num_leaks = 0 + for i in range(100): + mem_use = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss + tree = cKDTree(igood) + dist, iquery = tree.query(ibad, k=4, p=2) + new_mem_use = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss + if new_mem_use > mem_use: + num_leaks += 1 + # ideally zero leaks, but errors might accidentally happen + # outside cKDTree + assert_(num_leaks < 10) + +def test_kdtree_weights(kdtree_type): + + data = np.linspace(0, 1, 4).reshape(-1, 1) + tree1 = kdtree_type(data, leafsize=1) + weights = np.ones(len(data), dtype='f4') + + nw = tree1._build_weights(weights) + assert_array_equal(nw, [4, 2, 1, 1, 2, 1, 1]) + + assert_raises(ValueError, tree1._build_weights, weights[:-1]) + + for i in range(10): + # since weights are uniform, these shall agree: + c1 = tree1.count_neighbors(tree1, np.linspace(0, 10, i)) + c2 = tree1.count_neighbors(tree1, np.linspace(0, 10, i), + weights=(weights, weights)) + c3 = tree1.count_neighbors(tree1, np.linspace(0, 10, i), + weights=(weights, None)) + c4 = tree1.count_neighbors(tree1, np.linspace(0, 10, i), + weights=(None, weights)) + tree1.count_neighbors(tree1, np.linspace(0, 10, i), + weights=weights) + + assert_array_equal(c1, c2) + assert_array_equal(c1, c3) + assert_array_equal(c1, c4) + + for i in range(len(data)): + # this tests removal of one data point by setting weight to 0 + w1 = weights.copy() + w1[i] = 0 + data2 = data[w1 != 0] + tree2 = kdtree_type(data2) + + c1 = tree1.count_neighbors(tree1, np.linspace(0, 10, 100), + weights=(w1, w1)) + # "c2 is correct" + c2 = tree2.count_neighbors(tree2, np.linspace(0, 10, 100)) + + assert_array_equal(c1, c2) + + #this asserts for two different trees, singular weights + # crashes + assert_raises(ValueError, tree1.count_neighbors, + tree2, np.linspace(0, 10, 100), weights=w1) + +def test_kdtree_count_neighbous_multiple_r(kdtree_type): + n = 2000 + m = 2 + np.random.seed(1234) + data = np.random.normal(size=(n, m)) + kdtree = kdtree_type(data, leafsize=1) + r0 = [0, 0.01, 0.01, 0.02, 0.05] + i0 = np.arange(len(r0)) + n0 = kdtree.count_neighbors(kdtree, r0) + nnc = kdtree.count_neighbors(kdtree, r0, cumulative=False) + assert_equal(n0, nnc.cumsum()) + + for i, r in zip(itertools.permutations(i0), + itertools.permutations(r0)): + # permute n0 by i and it shall agree + n = kdtree.count_neighbors(kdtree, r) + assert_array_equal(n, n0[list(i)]) + +def test_len0_arrays(kdtree_type): + # make sure len-0 arrays are handled correctly + # in range queries (gh-5639) + np.random.seed(1234) + X = np.random.rand(10, 2) + Y = np.random.rand(10, 2) + tree = kdtree_type(X) + # query_ball_point (single) + d, i = tree.query([.5, .5], k=1) + z = tree.query_ball_point([.5, .5], 0.1*d) + assert_array_equal(z, []) + # query_ball_point (multiple) + d, i = tree.query(Y, k=1) + mind = d.min() + z = tree.query_ball_point(Y, 0.1*mind) + y = np.empty(shape=(10, ), dtype=object) + y.fill([]) + assert_array_equal(y, z) + # query_ball_tree + other = kdtree_type(Y) + y = tree.query_ball_tree(other, 0.1*mind) + assert_array_equal(10*[[]], y) + # count_neighbors + y = tree.count_neighbors(other, 0.1*mind) + assert_(y == 0) + # sparse_distance_matrix + y = tree.sparse_distance_matrix(other, 0.1*mind, output_type='dok_matrix') + assert_array_equal(y == np.zeros((10, 10)), True) + y = tree.sparse_distance_matrix(other, 0.1*mind, output_type='coo_matrix') + assert_array_equal(y == np.zeros((10, 10)), True) + y = tree.sparse_distance_matrix(other, 0.1*mind, output_type='dict') + assert_equal(y, {}) + y = tree.sparse_distance_matrix(other, 0.1*mind, output_type='ndarray') + _dtype = [('i', np.intp), ('j', np.intp), ('v', np.float64)] + res_dtype = np.dtype(_dtype, align=True) + z = np.empty(shape=(0, ), dtype=res_dtype) + assert_array_equal(y, z) + # query_pairs + d, i = tree.query(X, k=2) + mind = d[:, -1].min() + y = tree.query_pairs(0.1*mind, output_type='set') + assert_equal(y, set()) + y = tree.query_pairs(0.1*mind, output_type='ndarray') + z = np.empty(shape=(0, 2), dtype=np.intp) + assert_array_equal(y, z) + +def test_kdtree_duplicated_inputs(kdtree_type): + # check kdtree with duplicated inputs + n = 1024 + for m in range(1, 8): + data = np.ones((n, m)) + data[n//2:] = 2 + + for balanced, compact in itertools.product((False, True), repeat=2): + kdtree = kdtree_type(data, balanced_tree=balanced, + compact_nodes=compact, leafsize=1) + assert kdtree.size == 3 + + tree = (kdtree.tree if kdtree_type is cKDTree else + kdtree.tree._node) + + assert_equal( + np.sort(tree.lesser.indices), + np.arange(0, n // 2)) + assert_equal( + np.sort(tree.greater.indices), + np.arange(n // 2, n)) + + +def test_kdtree_noncumulative_nondecreasing(kdtree_type): + # check kdtree with duplicated inputs + + # it shall not divide more than 3 nodes. + # root left (1), and right (2) + kdtree = kdtree_type([[0]], leafsize=1) + + assert_raises(ValueError, kdtree.count_neighbors, + kdtree, [0.1, 0], cumulative=False) + +def test_short_knn(kdtree_type): + + # The test case is based on github: #6425 by @SteveDoyle2 + + xyz = np.array([ + [0., 0., 0.], + [1.01, 0., 0.], + [0., 1., 0.], + [0., 1.01, 0.], + [1., 0., 0.], + [1., 1., 0.]], + dtype='float64') + + ckdt = kdtree_type(xyz) + + deq, ieq = ckdt.query(xyz, k=4, distance_upper_bound=0.2) + + assert_array_almost_equal(deq, + [[0., np.inf, np.inf, np.inf], + [0., 0.01, np.inf, np.inf], + [0., 0.01, np.inf, np.inf], + [0., 0.01, np.inf, np.inf], + [0., 0.01, np.inf, np.inf], + [0., np.inf, np.inf, np.inf]]) + +def test_query_ball_point_vector_r(kdtree_type): + + np.random.seed(1234) + data = np.random.normal(size=(100, 3)) + query = np.random.normal(size=(100, 3)) + tree = kdtree_type(data) + d = np.random.uniform(0, 0.3, size=len(query)) + + rvector = tree.query_ball_point(query, d) + rscalar = [tree.query_ball_point(qi, di) for qi, di in zip(query, d)] + for a, b in zip(rvector, rscalar): + assert_array_equal(sorted(a), sorted(b)) + +def test_query_ball_point_length(kdtree_type): + + np.random.seed(1234) + data = np.random.normal(size=(100, 3)) + query = np.random.normal(size=(100, 3)) + tree = kdtree_type(data) + d = 0.3 + + length = tree.query_ball_point(query, d, return_length=True) + length2 = [len(ind) for ind in tree.query_ball_point(query, d, return_length=False)] + length3 = [len(tree.query_ball_point(qi, d)) for qi in query] + length4 = [tree.query_ball_point(qi, d, return_length=True) for qi in query] + assert_array_equal(length, length2) + assert_array_equal(length, length3) + assert_array_equal(length, length4) + +def test_discontiguous(kdtree_type): + + np.random.seed(1234) + data = np.random.normal(size=(100, 3)) + d_contiguous = np.arange(100) * 0.04 + d_discontiguous = np.ascontiguousarray( + np.arange(100)[::-1] * 0.04)[::-1] + query_contiguous = np.random.normal(size=(100, 3)) + query_discontiguous = np.ascontiguousarray(query_contiguous.T).T + assert query_discontiguous.strides[-1] != query_contiguous.strides[-1] + assert d_discontiguous.strides[-1] != d_contiguous.strides[-1] + + tree = kdtree_type(data) + + length1 = tree.query_ball_point(query_contiguous, + d_contiguous, return_length=True) + length2 = tree.query_ball_point(query_discontiguous, + d_discontiguous, return_length=True) + + assert_array_equal(length1, length2) + + d1, i1 = tree.query(query_contiguous, 1) + d2, i2 = tree.query(query_discontiguous, 1) + + assert_array_equal(d1, d2) + assert_array_equal(i1, i2) + + +@pytest.mark.parametrize("balanced_tree, compact_nodes", + [(True, False), + (True, True), + (False, False), + (False, True)]) +def test_kdtree_empty_input(kdtree_type, balanced_tree, compact_nodes): + # https://github.com/scipy/scipy/issues/5040 + np.random.seed(1234) + empty_v3 = np.empty(shape=(0, 3)) + query_v3 = np.ones(shape=(1, 3)) + query_v2 = np.ones(shape=(2, 3)) + + tree = kdtree_type(empty_v3, balanced_tree=balanced_tree, + compact_nodes=compact_nodes) + length = tree.query_ball_point(query_v3, 0.3, return_length=True) + assert length == 0 + + dd, ii = tree.query(query_v2, 2) + assert ii.shape == (2, 2) + assert dd.shape == (2, 2) + assert np.isinf(dd).all() + + N = tree.count_neighbors(tree, [0, 1]) + assert_array_equal(N, [0, 0]) + + M = tree.sparse_distance_matrix(tree, 0.3) + assert M.shape == (0, 0) + +@KDTreeTest +class _Test_sorted_query_ball_point: + def setup_method(self): + np.random.seed(1234) + self.x = np.random.randn(100, 1) + self.ckdt = self.kdtree_type(self.x) + + def test_return_sorted_True(self): + idxs_list = self.ckdt.query_ball_point(self.x, 1., return_sorted=True) + for idxs in idxs_list: + assert_array_equal(idxs, sorted(idxs)) + + for xi in self.x: + idxs = self.ckdt.query_ball_point(xi, 1., return_sorted=True) + assert_array_equal(idxs, sorted(idxs)) + + def test_return_sorted_None(self): + """Previous behavior was to sort the returned indices if there were + multiple points per query but not sort them if there was a single point + per query.""" + idxs_list = self.ckdt.query_ball_point(self.x, 1.) + for idxs in idxs_list: + assert_array_equal(idxs, sorted(idxs)) + + idxs_list_single = [self.ckdt.query_ball_point(xi, 1.) for xi in self.x] + idxs_list_False = self.ckdt.query_ball_point(self.x, 1., return_sorted=False) + for idxs0, idxs1 in zip(idxs_list_False, idxs_list_single): + assert_array_equal(idxs0, idxs1) + + +def test_kdtree_complex_data(): + # Test that KDTree rejects complex input points (gh-9108) + points = np.random.rand(10, 2).view(complex) + + with pytest.raises(TypeError, match="complex data"): + t = KDTree(points) + + t = KDTree(points.real) + + with pytest.raises(TypeError, match="complex data"): + t.query(points) + + with pytest.raises(TypeError, match="complex data"): + t.query_ball_point(points, r=1) + + +def test_kdtree_tree_access(): + # Test KDTree.tree can be used to traverse the KDTree + np.random.seed(1234) + points = np.random.rand(100, 4) + t = KDTree(points) + root = t.tree + + assert isinstance(root, KDTree.innernode) + assert root.children == points.shape[0] + + # Visit the tree and assert some basic properties for each node + nodes = [root] + while nodes: + n = nodes.pop(-1) + + if isinstance(n, KDTree.leafnode): + assert isinstance(n.children, int) + assert n.children == len(n.idx) + assert_array_equal(points[n.idx], n._node.data_points) + else: + assert isinstance(n, KDTree.innernode) + assert isinstance(n.split_dim, int) + assert 0 <= n.split_dim < t.m + assert isinstance(n.split, float) + assert isinstance(n.children, int) + assert n.children == n.less.children + n.greater.children + nodes.append(n.greater) + nodes.append(n.less) + + +def test_kdtree_attributes(): + # Test KDTree's attributes are available + np.random.seed(1234) + points = np.random.rand(100, 4) + t = KDTree(points) + + assert isinstance(t.m, int) + assert t.n == points.shape[0] + + assert isinstance(t.n, int) + assert t.m == points.shape[1] + + assert isinstance(t.leafsize, int) + assert t.leafsize == 10 + + assert_array_equal(t.maxes, np.amax(points, axis=0)) + assert_array_equal(t.mins, np.amin(points, axis=0)) + assert t.data is points + + +@pytest.mark.parametrize("kdtree_class", [KDTree, cKDTree]) +def test_kdtree_count_neighbors_weighted(kdtree_class): + np.random.seed(1234) + r = np.arange(0.05, 1, 0.05) + + A = np.random.random(21).reshape((7,3)) + B = np.random.random(45).reshape((15,3)) + + wA = np.random.random(7) + wB = np.random.random(15) + + kdA = kdtree_class(A) + kdB = kdtree_class(B) + + nAB = kdA.count_neighbors(kdB, r, cumulative=False, weights=(wA,wB)) + + # Compare against brute-force + weights = wA[None, :] * wB[:, None] + dist = np.linalg.norm(A[None, :, :] - B[:, None, :], axis=-1) + expect = [np.sum(weights[(prev_radius < dist) & (dist <= radius)]) + for prev_radius, radius in zip(itertools.chain([0], r[:-1]), r)] + assert_allclose(nAB, expect) + + +def test_kdtree_nan(): + vals = [1, 5, -10, 7, -4, -16, -6, 6, 3, -11] + n = len(vals) + data = np.concatenate([vals, np.full(n, np.nan)])[:, None] + with pytest.raises(ValueError, match="must be finite"): + KDTree(data) + + +def test_nonfinite_inputs_gh_18223(): + rng = np.random.default_rng(12345) + coords = rng.uniform(size=(100, 3), low=0.0, high=0.1) + t = KDTree(coords, balanced_tree=False, compact_nodes=False) + bad_coord = [np.nan for _ in range(3)] + + with pytest.raises(ValueError, match="must be finite"): + t.query(bad_coord) + with pytest.raises(ValueError, match="must be finite"): + t.query_ball_point(bad_coord, 1) + + coords[0, :] = np.nan + with pytest.raises(ValueError, match="must be finite"): + KDTree(coords, balanced_tree=True, compact_nodes=False) + with pytest.raises(ValueError, match="must be finite"): + KDTree(coords, balanced_tree=False, compact_nodes=True) + with pytest.raises(ValueError, match="must be finite"): + KDTree(coords, balanced_tree=True, compact_nodes=True) + with pytest.raises(ValueError, match="must be finite"): + KDTree(coords, balanced_tree=False, compact_nodes=False) + + +@pytest.mark.parametrize("incantation", [cKDTree, KDTree]) +def test_gh_18800(incantation): + # our prohibition on non-finite values + # in kd-tree workflows means we need + # coercion to NumPy arrays enforced + + class ArrLike(np.ndarray): + def __new__(cls, input_array): + obj = np.asarray(input_array).view(cls) + # we override all() to mimic the problem + # pandas DataFrames encountered in gh-18800 + obj.all = None + return obj + + def __array_finalize__(self, obj): + if obj is None: + return + self.all = getattr(obj, 'all', None) + + points = [ + [66.22, 32.54], + [22.52, 22.39], + [31.01, 81.21], + ] + arr = np.array(points) + arr_like = ArrLike(arr) + tree = incantation(points, 10) + tree.query(arr_like, 1) + tree.query_ball_point(arr_like, 200) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test_qhull.py b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test_qhull.py new file mode 100644 index 0000000000000000000000000000000000000000..dcf55e8f05b580aa49821600f75d5ab6f7573870 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test_qhull.py @@ -0,0 +1,1178 @@ +import os +import copy + +import numpy as np +from numpy.testing import (assert_equal, assert_almost_equal, + assert_, assert_allclose, assert_array_equal) +import pytest +from pytest import raises as assert_raises + +import scipy.spatial._qhull as qhull +from scipy.spatial import cKDTree as KDTree +from scipy.spatial import Voronoi + +import itertools + +def sorted_tuple(x): + return tuple(sorted(x)) + + +def assert_unordered_tuple_list_equal(a, b, tpl=tuple): + if isinstance(a, np.ndarray): + a = a.tolist() + if isinstance(b, np.ndarray): + b = b.tolist() + a = list(map(tpl, a)) + a.sort() + b = list(map(tpl, b)) + b.sort() + assert_equal(a, b) + + +np.random.seed(1234) + +points = [(0,0), (0,1), (1,0), (1,1), (0.5, 0.5), (0.5, 1.5)] + +pathological_data_1 = np.array([ + [-3.14,-3.14], [-3.14,-2.36], [-3.14,-1.57], [-3.14,-0.79], + [-3.14,0.0], [-3.14,0.79], [-3.14,1.57], [-3.14,2.36], + [-3.14,3.14], [-2.36,-3.14], [-2.36,-2.36], [-2.36,-1.57], + [-2.36,-0.79], [-2.36,0.0], [-2.36,0.79], [-2.36,1.57], + [-2.36,2.36], [-2.36,3.14], [-1.57,-0.79], [-1.57,0.79], + [-1.57,-1.57], [-1.57,0.0], [-1.57,1.57], [-1.57,-3.14], + [-1.57,-2.36], [-1.57,2.36], [-1.57,3.14], [-0.79,-1.57], + [-0.79,1.57], [-0.79,-3.14], [-0.79,-2.36], [-0.79,-0.79], + [-0.79,0.0], [-0.79,0.79], [-0.79,2.36], [-0.79,3.14], + [0.0,-3.14], [0.0,-2.36], [0.0,-1.57], [0.0,-0.79], [0.0,0.0], + [0.0,0.79], [0.0,1.57], [0.0,2.36], [0.0,3.14], [0.79,-3.14], + [0.79,-2.36], [0.79,-0.79], [0.79,0.0], [0.79,0.79], + [0.79,2.36], [0.79,3.14], [0.79,-1.57], [0.79,1.57], + [1.57,-3.14], [1.57,-2.36], [1.57,2.36], [1.57,3.14], + [1.57,-1.57], [1.57,0.0], [1.57,1.57], [1.57,-0.79], + [1.57,0.79], [2.36,-3.14], [2.36,-2.36], [2.36,-1.57], + [2.36,-0.79], [2.36,0.0], [2.36,0.79], [2.36,1.57], + [2.36,2.36], [2.36,3.14], [3.14,-3.14], [3.14,-2.36], + [3.14,-1.57], [3.14,-0.79], [3.14,0.0], [3.14,0.79], + [3.14,1.57], [3.14,2.36], [3.14,3.14], +]) + +pathological_data_2 = np.array([ + [-1, -1], [-1, 0], [-1, 1], + [0, -1], [0, 0], [0, 1], + [1, -1 - np.finfo(np.float64).eps], [1, 0], [1, 1], +]) + +bug_2850_chunks = [np.random.rand(10, 2), + np.array([[0,0], [0,1], [1,0], [1,1]]) # add corners + ] + +# same with some additional chunks +bug_2850_chunks_2 = (bug_2850_chunks + + [np.random.rand(10, 2), + 0.25 + np.array([[0,0], [0,1], [1,0], [1,1]])]) + +DATASETS = { + 'some-points': np.asarray(points), + 'random-2d': np.random.rand(30, 2), + 'random-3d': np.random.rand(30, 3), + 'random-4d': np.random.rand(30, 4), + 'random-5d': np.random.rand(30, 5), + 'random-6d': np.random.rand(10, 6), + 'random-7d': np.random.rand(10, 7), + 'random-8d': np.random.rand(10, 8), + 'pathological-1': pathological_data_1, + 'pathological-2': pathological_data_2 +} + +INCREMENTAL_DATASETS = { + 'bug-2850': (bug_2850_chunks, None), + 'bug-2850-2': (bug_2850_chunks_2, None), +} + + +def _add_inc_data(name, chunksize): + """ + Generate incremental datasets from basic data sets + """ + points = DATASETS[name] + ndim = points.shape[1] + + opts = None + nmin = ndim + 2 + + if name == 'some-points': + # since Qz is not allowed, use QJ + opts = 'QJ Pp' + elif name == 'pathological-1': + # include enough points so that we get different x-coordinates + nmin = 12 + + chunks = [points[:nmin]] + for j in range(nmin, len(points), chunksize): + chunks.append(points[j:j+chunksize]) + + new_name = "%s-chunk-%d" % (name, chunksize) + assert new_name not in INCREMENTAL_DATASETS + INCREMENTAL_DATASETS[new_name] = (chunks, opts) + + +for name in DATASETS: + for chunksize in 1, 4, 16: + _add_inc_data(name, chunksize) + + +class Test_Qhull: + def test_swapping(self): + # Check that Qhull state swapping works + + x = qhull._Qhull(b'v', + np.array([[0,0],[0,1],[1,0],[1,1.],[0.5,0.5]]), + b'Qz') + xd = copy.deepcopy(x.get_voronoi_diagram()) + + y = qhull._Qhull(b'v', + np.array([[0,0],[0,1],[1,0],[1,2.]]), + b'Qz') + yd = copy.deepcopy(y.get_voronoi_diagram()) + + xd2 = copy.deepcopy(x.get_voronoi_diagram()) + x.close() + yd2 = copy.deepcopy(y.get_voronoi_diagram()) + y.close() + + assert_raises(RuntimeError, x.get_voronoi_diagram) + assert_raises(RuntimeError, y.get_voronoi_diagram) + + assert_allclose(xd[0], xd2[0]) + assert_unordered_tuple_list_equal(xd[1], xd2[1], tpl=sorted_tuple) + assert_unordered_tuple_list_equal(xd[2], xd2[2], tpl=sorted_tuple) + assert_unordered_tuple_list_equal(xd[3], xd2[3], tpl=sorted_tuple) + assert_array_equal(xd[4], xd2[4]) + + assert_allclose(yd[0], yd2[0]) + assert_unordered_tuple_list_equal(yd[1], yd2[1], tpl=sorted_tuple) + assert_unordered_tuple_list_equal(yd[2], yd2[2], tpl=sorted_tuple) + assert_unordered_tuple_list_equal(yd[3], yd2[3], tpl=sorted_tuple) + assert_array_equal(yd[4], yd2[4]) + + x.close() + assert_raises(RuntimeError, x.get_voronoi_diagram) + y.close() + assert_raises(RuntimeError, y.get_voronoi_diagram) + + def test_issue_8051(self): + points = np.array( + [[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2],[2, 0], [2, 1], [2, 2]] + ) + Voronoi(points) + + +class TestUtilities: + """ + Check that utility functions work. + + """ + + def test_find_simplex(self): + # Simple check that simplex finding works + points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.float64) + tri = qhull.Delaunay(points) + + # +---+ + # |\ 0| + # | \ | + # |1 \| + # +---+ + + assert_equal(tri.simplices, [[1, 3, 2], [3, 1, 0]]) + + for p in [(0.25, 0.25, 1), + (0.75, 0.75, 0), + (0.3, 0.2, 1)]: + i = tri.find_simplex(p[:2]) + assert_equal(i, p[2], err_msg=f'{p!r}') + j = qhull.tsearch(tri, p[:2]) + assert_equal(i, j) + + def test_plane_distance(self): + # Compare plane distance from hyperplane equations obtained from Qhull + # to manually computed plane equations + x = np.array([(0,0), (1, 1), (1, 0), (0.99189033, 0.37674127), + (0.99440079, 0.45182168)], dtype=np.float64) + p = np.array([0.99966555, 0.15685619], dtype=np.float64) + + tri = qhull.Delaunay(x) + + z = tri.lift_points(x) + pz = tri.lift_points(p) + + dist = tri.plane_distance(p) + + for j, v in enumerate(tri.simplices): + x1 = z[v[0]] + x2 = z[v[1]] + x3 = z[v[2]] + + n = np.cross(x1 - x3, x2 - x3) + n /= np.sqrt(np.dot(n, n)) + n *= -np.sign(n[2]) + + d = np.dot(n, pz - x3) + + assert_almost_equal(dist[j], d) + + def test_convex_hull(self): + # Simple check that the convex hull seems to works + points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.float64) + tri = qhull.Delaunay(points) + + # +---+ + # |\ 0| + # | \ | + # |1 \| + # +---+ + + assert_equal(tri.convex_hull, [[3, 2], [1, 2], [1, 0], [3, 0]]) + + def test_volume_area(self): + #Basic check that we get back the correct volume and area for a cube + points = np.array([(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), + (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)]) + hull = qhull.ConvexHull(points) + + assert_allclose(hull.volume, 1., rtol=1e-14, + err_msg="Volume of cube is incorrect") + assert_allclose(hull.area, 6., rtol=1e-14, + err_msg="Area of cube is incorrect") + + def test_random_volume_area(self): + #Test that the results for a random 10-point convex are + #coherent with the output of qconvex Qt s FA + points = np.array([(0.362568364506, 0.472712355305, 0.347003084477), + (0.733731893414, 0.634480295684, 0.950513180209), + (0.511239955611, 0.876839441267, 0.418047827863), + (0.0765906233393, 0.527373281342, 0.6509863541), + (0.146694972056, 0.596725793348, 0.894860986685), + (0.513808585741, 0.069576205858, 0.530890338876), + (0.512343805118, 0.663537132612, 0.037689295973), + (0.47282965018, 0.462176697655, 0.14061843691), + (0.240584597123, 0.778660020591, 0.722913476339), + (0.951271745935, 0.967000673944, 0.890661319684)]) + + hull = qhull.ConvexHull(points) + assert_allclose(hull.volume, 0.14562013, rtol=1e-07, + err_msg="Volume of random polyhedron is incorrect") + assert_allclose(hull.area, 1.6670425, rtol=1e-07, + err_msg="Area of random polyhedron is incorrect") + + def test_incremental_volume_area_random_input(self): + """Test that incremental mode gives the same volume/area as + non-incremental mode and incremental mode with restart""" + nr_points = 20 + dim = 3 + points = np.random.random((nr_points, dim)) + inc_hull = qhull.ConvexHull(points[:dim+1, :], incremental=True) + inc_restart_hull = qhull.ConvexHull(points[:dim+1, :], incremental=True) + for i in range(dim+1, nr_points): + hull = qhull.ConvexHull(points[:i+1, :]) + inc_hull.add_points(points[i:i+1, :]) + inc_restart_hull.add_points(points[i:i+1, :], restart=True) + assert_allclose(hull.volume, inc_hull.volume, rtol=1e-7) + assert_allclose(hull.volume, inc_restart_hull.volume, rtol=1e-7) + assert_allclose(hull.area, inc_hull.area, rtol=1e-7) + assert_allclose(hull.area, inc_restart_hull.area, rtol=1e-7) + + def _check_barycentric_transforms(self, tri, err_msg="", + unit_cube=False, + unit_cube_tol=0): + """Check that a triangulation has reasonable barycentric transforms""" + vertices = tri.points[tri.simplices] + sc = 1/(tri.ndim + 1.0) + centroids = vertices.sum(axis=1) * sc + + # Either: (i) the simplex has a `nan` barycentric transform, + # or, (ii) the centroid is in the simplex + + def barycentric_transform(tr, x): + r = tr[:,-1,:] + Tinv = tr[:,:-1,:] + return np.einsum('ijk,ik->ij', Tinv, x - r) + + eps = np.finfo(float).eps + + c = barycentric_transform(tri.transform, centroids) + with np.errstate(invalid="ignore"): + ok = np.isnan(c).all(axis=1) | (abs(c - sc)/sc < 0.1).all(axis=1) + + assert_(ok.all(), f"{err_msg} {np.nonzero(~ok)}") + + # Invalid simplices must be (nearly) zero volume + q = vertices[:,:-1,:] - vertices[:,-1,None,:] + volume = np.array([np.linalg.det(q[k,:,:]) + for k in range(tri.nsimplex)]) + ok = np.isfinite(tri.transform[:,0,0]) | (volume < np.sqrt(eps)) + assert_(ok.all(), f"{err_msg} {np.nonzero(~ok)}") + + # Also, find_simplex for the centroid should end up in some + # simplex for the non-degenerate cases + j = tri.find_simplex(centroids) + ok = (j != -1) | np.isnan(tri.transform[:,0,0]) + assert_(ok.all(), f"{err_msg} {np.nonzero(~ok)}") + + if unit_cube: + # If in unit cube, no interior point should be marked out of hull + at_boundary = (centroids <= unit_cube_tol).any(axis=1) + at_boundary |= (centroids >= 1 - unit_cube_tol).any(axis=1) + + ok = (j != -1) | at_boundary + assert_(ok.all(), f"{err_msg} {np.nonzero(~ok)}") + + def test_degenerate_barycentric_transforms(self): + # The triangulation should not produce invalid barycentric + # transforms that stump the simplex finding + data = np.load(os.path.join(os.path.dirname(__file__), 'data', + 'degenerate_pointset.npz')) + points = data['c'] + data.close() + + tri = qhull.Delaunay(points) + + # Check that there are not too many invalid simplices + bad_count = np.isnan(tri.transform[:,0,0]).sum() + assert_(bad_count < 23, bad_count) + + # Check the transforms + self._check_barycentric_transforms(tri) + + @pytest.mark.slow + def test_more_barycentric_transforms(self): + # Triangulate some "nasty" grids + + eps = np.finfo(float).eps + + npoints = {2: 70, 3: 11, 4: 5, 5: 3} + + for ndim in range(2, 6): + # Generate an uniform grid in n-d unit cube + x = np.linspace(0, 1, npoints[ndim]) + grid = np.c_[ + list(map(np.ravel, np.broadcast_arrays(*np.ix_(*([x]*ndim))))) + ].T + + err_msg = "ndim=%d" % ndim + + # Check using regular grid + tri = qhull.Delaunay(grid) + self._check_barycentric_transforms(tri, err_msg=err_msg, + unit_cube=True) + + # Check with eps-perturbations + np.random.seed(1234) + m = (np.random.rand(grid.shape[0]) < 0.2) + grid[m,:] += 2*eps*(np.random.rand(*grid[m,:].shape) - 0.5) + + tri = qhull.Delaunay(grid) + self._check_barycentric_transforms(tri, err_msg=err_msg, + unit_cube=True, + unit_cube_tol=2*eps) + + # Check with duplicated data + tri = qhull.Delaunay(np.r_[grid, grid]) + self._check_barycentric_transforms(tri, err_msg=err_msg, + unit_cube=True, + unit_cube_tol=2*eps) + + +class TestVertexNeighborVertices: + def _check(self, tri): + expected = [set() for j in range(tri.points.shape[0])] + for s in tri.simplices: + for a in s: + for b in s: + if a != b: + expected[a].add(b) + + indptr, indices = tri.vertex_neighbor_vertices + + got = [set(map(int, indices[indptr[j]:indptr[j+1]])) + for j in range(tri.points.shape[0])] + + assert_equal(got, expected, err_msg=f"{got!r} != {expected!r}") + + def test_triangle(self): + points = np.array([(0,0), (0,1), (1,0)], dtype=np.float64) + tri = qhull.Delaunay(points) + self._check(tri) + + def test_rectangle(self): + points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.float64) + tri = qhull.Delaunay(points) + self._check(tri) + + def test_complicated(self): + points = np.array([(0,0), (0,1), (1,1), (1,0), + (0.5, 0.5), (0.9, 0.5)], dtype=np.float64) + tri = qhull.Delaunay(points) + self._check(tri) + + +class TestDelaunay: + """ + Check that triangulation works. + + """ + def test_masked_array_fails(self): + masked_array = np.ma.masked_all(1) + assert_raises(ValueError, qhull.Delaunay, masked_array) + + def test_array_with_nans_fails(self): + points_with_nan = np.array([(0,0), (0,1), (1,1), (1,np.nan)], dtype=np.float64) + assert_raises(ValueError, qhull.Delaunay, points_with_nan) + + def test_nd_simplex(self): + # simple smoke test: triangulate a n-dimensional simplex + for nd in range(2, 8): + points = np.zeros((nd+1, nd)) + for j in range(nd): + points[j,j] = 1.0 + points[-1,:] = 1.0 + + tri = qhull.Delaunay(points) + + tri.simplices.sort() + + assert_equal(tri.simplices, np.arange(nd+1, dtype=int)[None, :]) + assert_equal(tri.neighbors, -1 + np.zeros((nd+1), dtype=int)[None,:]) + + def test_2d_square(self): + # simple smoke test: 2d square + points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.float64) + tri = qhull.Delaunay(points) + + assert_equal(tri.simplices, [[1, 3, 2], [3, 1, 0]]) + assert_equal(tri.neighbors, [[-1, -1, 1], [-1, -1, 0]]) + + def test_duplicate_points(self): + x = np.array([0, 1, 0, 1], dtype=np.float64) + y = np.array([0, 0, 1, 1], dtype=np.float64) + + xp = np.r_[x, x] + yp = np.r_[y, y] + + # shouldn't fail on duplicate points + qhull.Delaunay(np.c_[x, y]) + qhull.Delaunay(np.c_[xp, yp]) + + def test_pathological(self): + # both should succeed + points = DATASETS['pathological-1'] + tri = qhull.Delaunay(points) + assert_equal(tri.points[tri.simplices].max(), points.max()) + assert_equal(tri.points[tri.simplices].min(), points.min()) + + points = DATASETS['pathological-2'] + tri = qhull.Delaunay(points) + assert_equal(tri.points[tri.simplices].max(), points.max()) + assert_equal(tri.points[tri.simplices].min(), points.min()) + + def test_joggle(self): + # Check that the option QJ indeed guarantees that all input points + # occur as vertices of the triangulation + + points = np.random.rand(10, 2) + points = np.r_[points, points] # duplicate input data + + tri = qhull.Delaunay(points, qhull_options="QJ Qbb Pp") + assert_array_equal(np.unique(tri.simplices.ravel()), + np.arange(len(points))) + + def test_coplanar(self): + # Check that the coplanar point output option indeed works + points = np.random.rand(10, 2) + points = np.r_[points, points] # duplicate input data + + tri = qhull.Delaunay(points) + + assert_(len(np.unique(tri.simplices.ravel())) == len(points)//2) + assert_(len(tri.coplanar) == len(points)//2) + + assert_(len(np.unique(tri.coplanar[:,2])) == len(points)//2) + + assert_(np.all(tri.vertex_to_simplex >= 0)) + + def test_furthest_site(self): + points = [(0, 0), (0, 1), (1, 0), (0.5, 0.5), (1.1, 1.1)] + tri = qhull.Delaunay(points, furthest_site=True) + + expected = np.array([(1, 4, 0), (4, 2, 0)]) # from Qhull + assert_array_equal(tri.simplices, expected) + + @pytest.mark.parametrize("name", sorted(INCREMENTAL_DATASETS)) + def test_incremental(self, name): + # Test incremental construction of the triangulation + + chunks, opts = INCREMENTAL_DATASETS[name] + points = np.concatenate(chunks, axis=0) + + obj = qhull.Delaunay(chunks[0], incremental=True, + qhull_options=opts) + for chunk in chunks[1:]: + obj.add_points(chunk) + + obj2 = qhull.Delaunay(points) + + obj3 = qhull.Delaunay(chunks[0], incremental=True, + qhull_options=opts) + if len(chunks) > 1: + obj3.add_points(np.concatenate(chunks[1:], axis=0), + restart=True) + + # Check that the incremental mode agrees with upfront mode + if name.startswith('pathological'): + # XXX: These produce valid but different triangulations. + # They look OK when plotted, but how to check them? + + assert_array_equal(np.unique(obj.simplices.ravel()), + np.arange(points.shape[0])) + assert_array_equal(np.unique(obj2.simplices.ravel()), + np.arange(points.shape[0])) + else: + assert_unordered_tuple_list_equal(obj.simplices, obj2.simplices, + tpl=sorted_tuple) + + assert_unordered_tuple_list_equal(obj2.simplices, obj3.simplices, + tpl=sorted_tuple) + + +def assert_hulls_equal(points, facets_1, facets_2): + # Check that two convex hulls constructed from the same point set + # are equal + + facets_1 = set(map(sorted_tuple, facets_1)) + facets_2 = set(map(sorted_tuple, facets_2)) + + if facets_1 != facets_2 and points.shape[1] == 2: + # The direct check fails for the pathological cases + # --- then the convex hull from Delaunay differs (due + # to rounding error etc.) from the hull computed + # otherwise, by the question whether (tricoplanar) + # points that lie almost exactly on the hull are + # included as vertices of the hull or not. + # + # So we check the result, and accept it if the Delaunay + # hull line segments are a subset of the usual hull. + + eps = 1000 * np.finfo(float).eps + + for a, b in facets_1: + for ap, bp in facets_2: + t = points[bp] - points[ap] + t /= np.linalg.norm(t) # tangent + n = np.array([-t[1], t[0]]) # normal + + # check that the two line segments are parallel + # to the same line + c1 = np.dot(n, points[b] - points[ap]) + c2 = np.dot(n, points[a] - points[ap]) + if not np.allclose(np.dot(c1, n), 0): + continue + if not np.allclose(np.dot(c2, n), 0): + continue + + # Check that the segment (a, b) is contained in (ap, bp) + c1 = np.dot(t, points[a] - points[ap]) + c2 = np.dot(t, points[b] - points[ap]) + c3 = np.dot(t, points[bp] - points[ap]) + if c1 < -eps or c1 > c3 + eps: + continue + if c2 < -eps or c2 > c3 + eps: + continue + + # OK: + break + else: + raise AssertionError("comparison fails") + + # it was OK + return + + assert_equal(facets_1, facets_2) + + +class TestConvexHull: + def test_masked_array_fails(self): + masked_array = np.ma.masked_all(1) + assert_raises(ValueError, qhull.ConvexHull, masked_array) + + def test_array_with_nans_fails(self): + points_with_nan = np.array([(0,0), (1,1), (2,np.nan)], dtype=np.float64) + assert_raises(ValueError, qhull.ConvexHull, points_with_nan) + + @pytest.mark.parametrize("name", sorted(DATASETS)) + def test_hull_consistency_tri(self, name): + # Check that a convex hull returned by qhull in ndim + # and the hull constructed from ndim delaunay agree + points = DATASETS[name] + + tri = qhull.Delaunay(points) + hull = qhull.ConvexHull(points) + + assert_hulls_equal(points, tri.convex_hull, hull.simplices) + + # Check that the hull extremes are as expected + if points.shape[1] == 2: + assert_equal(np.unique(hull.simplices), np.sort(hull.vertices)) + else: + assert_equal(np.unique(hull.simplices), hull.vertices) + + @pytest.mark.parametrize("name", sorted(INCREMENTAL_DATASETS)) + def test_incremental(self, name): + # Test incremental construction of the convex hull + chunks, _ = INCREMENTAL_DATASETS[name] + points = np.concatenate(chunks, axis=0) + + obj = qhull.ConvexHull(chunks[0], incremental=True) + for chunk in chunks[1:]: + obj.add_points(chunk) + + obj2 = qhull.ConvexHull(points) + + obj3 = qhull.ConvexHull(chunks[0], incremental=True) + if len(chunks) > 1: + obj3.add_points(np.concatenate(chunks[1:], axis=0), + restart=True) + + # Check that the incremental mode agrees with upfront mode + assert_hulls_equal(points, obj.simplices, obj2.simplices) + assert_hulls_equal(points, obj.simplices, obj3.simplices) + + def test_vertices_2d(self): + # The vertices should be in counterclockwise order in 2-D + np.random.seed(1234) + points = np.random.rand(30, 2) + + hull = qhull.ConvexHull(points) + assert_equal(np.unique(hull.simplices), np.sort(hull.vertices)) + + # Check counterclockwiseness + x, y = hull.points[hull.vertices].T + angle = np.arctan2(y - y.mean(), x - x.mean()) + assert_(np.all(np.diff(np.unwrap(angle)) > 0)) + + def test_volume_area(self): + # Basic check that we get back the correct volume and area for a cube + points = np.array([(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0), + (0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)]) + tri = qhull.ConvexHull(points) + + assert_allclose(tri.volume, 1., rtol=1e-14) + assert_allclose(tri.area, 6., rtol=1e-14) + + @pytest.mark.parametrize("incremental", [False, True]) + def test_good2d(self, incremental): + # Make sure the QGn option gives the correct value of "good". + points = np.array([[0.2, 0.2], + [0.2, 0.4], + [0.4, 0.4], + [0.4, 0.2], + [0.3, 0.6]]) + hull = qhull.ConvexHull(points=points, + incremental=incremental, + qhull_options='QG4') + expected = np.array([False, True, False, False], dtype=bool) + actual = hull.good + assert_equal(actual, expected) + + @pytest.mark.parametrize("visibility", [ + "QG4", # visible=True + "QG-4", # visible=False + ]) + @pytest.mark.parametrize("new_gen, expected", [ + # add generator that places QG4 inside hull + # so all facets are invisible + (np.array([[0.3, 0.7]]), + np.array([False, False, False, False, False], dtype=bool)), + # adding a generator on the opposite side of the square + # should preserve the single visible facet & add one invisible + # facet + (np.array([[0.3, -0.7]]), + np.array([False, True, False, False, False], dtype=bool)), + # split the visible facet on top of the square into two + # visible facets, with visibility at the end of the array + # because add_points concatenates + (np.array([[0.3, 0.41]]), + np.array([False, False, False, True, True], dtype=bool)), + # with our current Qhull options, coplanarity will not count + # for visibility; this case shifts one visible & one invisible + # facet & adds a coplanar facet + # simplex at index position 2 is the shifted visible facet + # the final simplex is the coplanar facet + (np.array([[0.5, 0.6], [0.6, 0.6]]), + np.array([False, False, True, False, False], dtype=bool)), + # place the new generator such that it envelops the query + # point within the convex hull, but only just barely within + # the double precision limit + # NOTE: testing exact degeneracy is less predictable than this + # scenario, perhaps because of the default Qt option we have + # enabled for Qhull to handle precision matters + (np.array([[0.3, 0.6 + 1e-16]]), + np.array([False, False, False, False, False], dtype=bool)), + ]) + def test_good2d_incremental_changes(self, new_gen, expected, + visibility): + # use the usual square convex hull + # generators from test_good2d + points = np.array([[0.2, 0.2], + [0.2, 0.4], + [0.4, 0.4], + [0.4, 0.2], + [0.3, 0.6]]) + hull = qhull.ConvexHull(points=points, + incremental=True, + qhull_options=visibility) + hull.add_points(new_gen) + actual = hull.good + if '-' in visibility: + expected = np.invert(expected) + assert_equal(actual, expected) + + @pytest.mark.parametrize("incremental", [False, True]) + def test_good2d_no_option(self, incremental): + # handle case where good attribute doesn't exist + # because Qgn or Qg-n wasn't specified + points = np.array([[0.2, 0.2], + [0.2, 0.4], + [0.4, 0.4], + [0.4, 0.2], + [0.3, 0.6]]) + hull = qhull.ConvexHull(points=points, + incremental=incremental) + actual = hull.good + assert actual is None + # preserve None after incremental addition + if incremental: + hull.add_points(np.zeros((1, 2))) + actual = hull.good + assert actual is None + + @pytest.mark.parametrize("incremental", [False, True]) + def test_good2d_inside(self, incremental): + # Make sure the QGn option gives the correct value of "good". + # When point n is inside the convex hull of the rest, good is + # all False. + points = np.array([[0.2, 0.2], + [0.2, 0.4], + [0.4, 0.4], + [0.4, 0.2], + [0.3, 0.3]]) + hull = qhull.ConvexHull(points=points, + incremental=incremental, + qhull_options='QG4') + expected = np.array([False, False, False, False], dtype=bool) + actual = hull.good + assert_equal(actual, expected) + + @pytest.mark.parametrize("incremental", [False, True]) + def test_good3d(self, incremental): + # Make sure the QGn option gives the correct value of "good" + # for a 3d figure + points = np.array([[0.0, 0.0, 0.0], + [0.90029516, -0.39187448, 0.18948093], + [0.48676420, -0.72627633, 0.48536925], + [0.57651530, -0.81179274, -0.09285832], + [0.67846893, -0.71119562, 0.18406710]]) + hull = qhull.ConvexHull(points=points, + incremental=incremental, + qhull_options='QG0') + expected = np.array([True, False, False, False], dtype=bool) + assert_equal(hull.good, expected) + +class TestVoronoi: + + @pytest.mark.parametrize("qhull_opts, extra_pts", [ + # option Qz (default for SciPy) will add + # an extra point at infinity + ("Qbb Qc Qz", 1), + ("Qbb Qc", 0), + ]) + @pytest.mark.parametrize("n_pts", [50, 100]) + @pytest.mark.parametrize("ndim", [2, 3]) + def test_point_region_structure(self, + qhull_opts, + n_pts, + extra_pts, + ndim): + # see gh-16773 + rng = np.random.default_rng(7790) + points = rng.random((n_pts, ndim)) + vor = Voronoi(points, qhull_options=qhull_opts) + pt_region = vor.point_region + assert pt_region.max() == n_pts - 1 + extra_pts + assert pt_region.size == len(vor.regions) - extra_pts + assert len(vor.regions) == n_pts + extra_pts + assert vor.points.shape[0] == n_pts + # if there is an empty sublist in the Voronoi + # regions data structure, it should never be + # indexed because it corresponds to an internally + # added point at infinity and is not a member of the + # generators (input points) + if extra_pts: + sublens = [len(x) for x in vor.regions] + # only one point at infinity (empty region) + # is allowed + assert sublens.count(0) == 1 + assert sublens.index(0) not in pt_region + + def test_masked_array_fails(self): + masked_array = np.ma.masked_all(1) + assert_raises(ValueError, qhull.Voronoi, masked_array) + + def test_simple(self): + # Simple case with known Voronoi diagram + points = [(0, 0), (0, 1), (0, 2), + (1, 0), (1, 1), (1, 2), + (2, 0), (2, 1), (2, 2)] + + # qhull v o Fv Qbb Qc Qz < dat + output = """ + 2 + 5 10 1 + -10.101 -10.101 + 0.5 0.5 + 0.5 1.5 + 1.5 0.5 + 1.5 1.5 + 2 0 1 + 3 2 0 1 + 2 0 2 + 3 3 0 1 + 4 1 2 4 3 + 3 4 0 2 + 2 0 3 + 3 4 0 3 + 2 0 4 + 0 + 12 + 4 0 3 0 1 + 4 0 1 0 1 + 4 1 4 1 2 + 4 1 2 0 2 + 4 2 5 0 2 + 4 3 4 1 3 + 4 3 6 0 3 + 4 4 5 2 4 + 4 4 7 3 4 + 4 5 8 0 4 + 4 6 7 0 3 + 4 7 8 0 4 + """ + self._compare_qvoronoi(points, output) + + def _compare_qvoronoi(self, points, output, **kw): + """Compare to output from 'qvoronoi o Fv < data' to Voronoi()""" + + # Parse output + output = [list(map(float, x.split())) for x in output.strip().splitlines()] + nvertex = int(output[1][0]) + vertices = list(map(tuple, output[3:2+nvertex])) # exclude inf + nregion = int(output[1][1]) + regions = [[int(y)-1 for y in x[1:]] + for x in output[2+nvertex:2+nvertex+nregion]] + ridge_points = [[int(y) for y in x[1:3]] + for x in output[3+nvertex+nregion:]] + ridge_vertices = [[int(y)-1 for y in x[3:]] + for x in output[3+nvertex+nregion:]] + + # Compare results + vor = qhull.Voronoi(points, **kw) + + def sorttuple(x): + return tuple(sorted(x)) + + assert_allclose(vor.vertices, vertices) + assert_equal(set(map(tuple, vor.regions)), + set(map(tuple, regions))) + + p1 = list(zip(list(map(sorttuple, ridge_points)), + list(map(sorttuple, ridge_vertices)))) + p2 = list(zip(list(map(sorttuple, vor.ridge_points.tolist())), + list(map(sorttuple, vor.ridge_vertices)))) + p1.sort() + p2.sort() + + assert_equal(p1, p2) + + @pytest.mark.parametrize("name", sorted(DATASETS)) + def test_ridges(self, name): + # Check that the ridges computed by Voronoi indeed separate + # the regions of nearest neighborhood, by comparing the result + # to KDTree. + + points = DATASETS[name] + + tree = KDTree(points) + vor = qhull.Voronoi(points) + + for p, v in vor.ridge_dict.items(): + # consider only finite ridges + if not np.all(np.asarray(v) >= 0): + continue + + ridge_midpoint = vor.vertices[v].mean(axis=0) + d = 1e-6 * (points[p[0]] - ridge_midpoint) + + dist, k = tree.query(ridge_midpoint + d, k=1) + assert_equal(k, p[0]) + + dist, k = tree.query(ridge_midpoint - d, k=1) + assert_equal(k, p[1]) + + def test_furthest_site(self): + points = [(0, 0), (0, 1), (1, 0), (0.5, 0.5), (1.1, 1.1)] + + # qhull v o Fv Qbb Qc Qu < dat + output = """ + 2 + 3 5 1 + -10.101 -10.101 + 0.6000000000000001 0.5 + 0.5 0.6000000000000001 + 3 0 2 1 + 2 0 1 + 2 0 2 + 0 + 3 0 2 1 + 5 + 4 0 2 0 2 + 4 0 4 1 2 + 4 0 1 0 1 + 4 1 4 0 1 + 4 2 4 0 2 + """ + self._compare_qvoronoi(points, output, furthest_site=True) + + def test_furthest_site_flag(self): + points = [(0, 0), (0, 1), (1, 0), (0.5, 0.5), (1.1, 1.1)] + + vor = Voronoi(points) + assert_equal(vor.furthest_site,False) + vor = Voronoi(points,furthest_site=True) + assert_equal(vor.furthest_site,True) + + @pytest.mark.parametrize("name", sorted(INCREMENTAL_DATASETS)) + def test_incremental(self, name): + # Test incremental construction of the triangulation + + if INCREMENTAL_DATASETS[name][0][0].shape[1] > 3: + # too slow (testing of the result --- qhull is still fast) + return + + chunks, opts = INCREMENTAL_DATASETS[name] + points = np.concatenate(chunks, axis=0) + + obj = qhull.Voronoi(chunks[0], incremental=True, + qhull_options=opts) + for chunk in chunks[1:]: + obj.add_points(chunk) + + obj2 = qhull.Voronoi(points) + + obj3 = qhull.Voronoi(chunks[0], incremental=True, + qhull_options=opts) + if len(chunks) > 1: + obj3.add_points(np.concatenate(chunks[1:], axis=0), + restart=True) + + # -- Check that the incremental mode agrees with upfront mode + assert_equal(len(obj.point_region), len(obj2.point_region)) + assert_equal(len(obj.point_region), len(obj3.point_region)) + + # The vertices may be in different order or duplicated in + # the incremental map + for objx in obj, obj3: + vertex_map = {-1: -1} + for i, v in enumerate(objx.vertices): + for j, v2 in enumerate(obj2.vertices): + if np.allclose(v, v2): + vertex_map[i] = j + + def remap(x): + if hasattr(x, '__len__'): + return tuple({remap(y) for y in x}) + try: + return vertex_map[x] + except KeyError as e: + message = (f"incremental result has spurious vertex " + f"at {objx.vertices[x]!r}") + raise AssertionError(message) from e + + def simplified(x): + items = set(map(sorted_tuple, x)) + if () in items: + items.remove(()) + items = [x for x in items if len(x) > 1] + items.sort() + return items + + assert_equal( + simplified(remap(objx.regions)), + simplified(obj2.regions) + ) + assert_equal( + simplified(remap(objx.ridge_vertices)), + simplified(obj2.ridge_vertices) + ) + + # XXX: compare ridge_points --- not clear exactly how to do this + + +class Test_HalfspaceIntersection: + def assert_unordered_allclose(self, arr1, arr2, rtol=1e-7): + """Check that every line in arr1 is only once in arr2""" + assert_equal(arr1.shape, arr2.shape) + + truths = np.zeros((arr1.shape[0],), dtype=bool) + for l1 in arr1: + indexes = np.nonzero((abs(arr2 - l1) < rtol).all(axis=1))[0] + assert_equal(indexes.shape, (1,)) + truths[indexes[0]] = True + assert_(truths.all()) + + @pytest.mark.parametrize("dt", [np.float64, int]) + def test_cube_halfspace_intersection(self, dt): + halfspaces = np.array([[-1, 0, 0], + [0, -1, 0], + [1, 0, -2], + [0, 1, -2]], dtype=dt) + feasible_point = np.array([1, 1], dtype=dt) + + points = np.array([[0.0, 0.0], [2.0, 0.0], [0.0, 2.0], [2.0, 2.0]]) + + hull = qhull.HalfspaceIntersection(halfspaces, feasible_point) + + assert_allclose(hull.intersections, points) + + def test_self_dual_polytope_intersection(self): + fname = os.path.join(os.path.dirname(__file__), 'data', + 'selfdual-4d-polytope.txt') + ineqs = np.genfromtxt(fname) + halfspaces = -np.hstack((ineqs[:, 1:], ineqs[:, :1])) + + feas_point = np.array([0., 0., 0., 0.]) + hs = qhull.HalfspaceIntersection(halfspaces, feas_point) + + assert_equal(hs.intersections.shape, (24, 4)) + + assert_almost_equal(hs.dual_volume, 32.0) + assert_equal(len(hs.dual_facets), 24) + for facet in hs.dual_facets: + assert_equal(len(facet), 6) + + dists = halfspaces[:, -1] + halfspaces[:, :-1].dot(feas_point) + self.assert_unordered_allclose((halfspaces[:, :-1].T/dists).T, hs.dual_points) + + points = itertools.permutations([0., 0., 0.5, -0.5]) + for point in points: + assert_equal(np.sum((hs.intersections == point).all(axis=1)), 1) + + def test_wrong_feasible_point(self): + halfspaces = np.array([[-1.0, 0.0, 0.0], + [0.0, -1.0, 0.0], + [1.0, 0.0, -1.0], + [0.0, 1.0, -1.0]]) + feasible_point = np.array([0.5, 0.5, 0.5]) + #Feasible point is (ndim,) instead of (ndim-1,) + assert_raises(ValueError, + qhull.HalfspaceIntersection, halfspaces, feasible_point) + feasible_point = np.array([[0.5], [0.5]]) + #Feasible point is (ndim-1, 1) instead of (ndim-1,) + assert_raises(ValueError, + qhull.HalfspaceIntersection, halfspaces, feasible_point) + feasible_point = np.array([[0.5, 0.5]]) + #Feasible point is (1, ndim-1) instead of (ndim-1,) + assert_raises(ValueError, + qhull.HalfspaceIntersection, halfspaces, feasible_point) + + feasible_point = np.array([-0.5, -0.5]) + #Feasible point is outside feasible region + assert_raises(qhull.QhullError, + qhull.HalfspaceIntersection, halfspaces, feasible_point) + + def test_incremental(self): + #Cube + halfspaces = np.array([[0., 0., -1., -0.5], + [0., -1., 0., -0.5], + [-1., 0., 0., -0.5], + [1., 0., 0., -0.5], + [0., 1., 0., -0.5], + [0., 0., 1., -0.5]]) + #Cut each summit + extra_normals = np.array([[1., 1., 1.], + [1., 1., -1.], + [1., -1., 1.], + [1, -1., -1.]]) + offsets = np.array([[-1.]]*8) + extra_halfspaces = np.hstack((np.vstack((extra_normals, -extra_normals)), + offsets)) + + feas_point = np.array([0., 0., 0.]) + + inc_hs = qhull.HalfspaceIntersection(halfspaces, feas_point, incremental=True) + + inc_res_hs = qhull.HalfspaceIntersection(halfspaces, feas_point, + incremental=True) + + for i, ehs in enumerate(extra_halfspaces): + inc_hs.add_halfspaces(ehs[np.newaxis, :]) + + inc_res_hs.add_halfspaces(ehs[np.newaxis, :], restart=True) + + total = np.vstack((halfspaces, extra_halfspaces[:i+1, :])) + + hs = qhull.HalfspaceIntersection(total, feas_point) + + assert_allclose(inc_hs.halfspaces, inc_res_hs.halfspaces) + assert_allclose(inc_hs.halfspaces, hs.halfspaces) + + #Direct computation and restart should have points in same order + assert_allclose(hs.intersections, inc_res_hs.intersections) + #Incremental will have points in different order than direct computation + self.assert_unordered_allclose(inc_hs.intersections, hs.intersections) + + inc_hs.close() + + def test_cube(self): + # Halfspaces of the cube: + halfspaces = np.array([[-1., 0., 0., 0.], # x >= 0 + [1., 0., 0., -1.], # x <= 1 + [0., -1., 0., 0.], # y >= 0 + [0., 1., 0., -1.], # y <= 1 + [0., 0., -1., 0.], # z >= 0 + [0., 0., 1., -1.]]) # z <= 1 + point = np.array([0.5, 0.5, 0.5]) + + hs = qhull.HalfspaceIntersection(halfspaces, point) + + # qhalf H0.5,0.5,0.5 o < input.txt + qhalf_points = np.array([ + [-2, 0, 0], + [2, 0, 0], + [0, -2, 0], + [0, 2, 0], + [0, 0, -2], + [0, 0, 2]]) + qhalf_facets = [ + [2, 4, 0], + [4, 2, 1], + [5, 2, 0], + [2, 5, 1], + [3, 4, 1], + [4, 3, 0], + [5, 3, 1], + [3, 5, 0]] + + assert len(qhalf_facets) == len(hs.dual_facets) + for a, b in zip(qhalf_facets, hs.dual_facets): + assert set(a) == set(b) # facet orientation can differ + + assert_allclose(hs.dual_points, qhalf_points) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test_slerp.py b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test_slerp.py new file mode 100644 index 0000000000000000000000000000000000000000..4754d5254fa6df6de7ce4cc464bba5be150862b2 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test_slerp.py @@ -0,0 +1,416 @@ +import numpy as np +from numpy.testing import assert_allclose + +import pytest +from scipy.spatial import geometric_slerp + + +def _generate_spherical_points(ndim=3, n_pts=2): + # generate uniform points on sphere + # see: https://stackoverflow.com/a/23785326 + # tentatively extended to arbitrary dims + # for 0-sphere it will always produce antipodes + np.random.seed(123) + points = np.random.normal(size=(n_pts, ndim)) + points /= np.linalg.norm(points, axis=1)[:, np.newaxis] + return points[0], points[1] + + +class TestGeometricSlerp: + # Test various properties of the geometric slerp code + + @pytest.mark.parametrize("n_dims", [2, 3, 5, 7, 9]) + @pytest.mark.parametrize("n_pts", [0, 3, 17]) + def test_shape_property(self, n_dims, n_pts): + # geometric_slerp output shape should match + # input dimensionality & requested number + # of interpolation points + start, end = _generate_spherical_points(n_dims, 2) + + actual = geometric_slerp(start=start, + end=end, + t=np.linspace(0, 1, n_pts)) + + assert actual.shape == (n_pts, n_dims) + + @pytest.mark.parametrize("n_dims", [2, 3, 5, 7, 9]) + @pytest.mark.parametrize("n_pts", [3, 17]) + def test_include_ends(self, n_dims, n_pts): + # geometric_slerp should return a data structure + # that includes the start and end coordinates + # when t includes 0 and 1 ends + # this is convenient for plotting surfaces represented + # by interpolations for example + + # the generator doesn't work so well for the unit + # sphere (it always produces antipodes), so use + # custom values there + start, end = _generate_spherical_points(n_dims, 2) + + actual = geometric_slerp(start=start, + end=end, + t=np.linspace(0, 1, n_pts)) + + assert_allclose(actual[0], start) + assert_allclose(actual[-1], end) + + @pytest.mark.parametrize("start, end", [ + # both arrays are not flat + (np.zeros((1, 3)), np.ones((1, 3))), + # only start array is not flat + (np.zeros((1, 3)), np.ones(3)), + # only end array is not flat + (np.zeros(1), np.ones((3, 1))), + ]) + def test_input_shape_flat(self, start, end): + # geometric_slerp should handle input arrays that are + # not flat appropriately + with pytest.raises(ValueError, match='one-dimensional'): + geometric_slerp(start=start, + end=end, + t=np.linspace(0, 1, 10)) + + @pytest.mark.parametrize("start, end", [ + # 7-D and 3-D ends + (np.zeros(7), np.ones(3)), + # 2-D and 1-D ends + (np.zeros(2), np.ones(1)), + # empty, "3D" will also get caught this way + (np.array([]), np.ones(3)), + ]) + def test_input_dim_mismatch(self, start, end): + # geometric_slerp must appropriately handle cases where + # an interpolation is attempted across two different + # dimensionalities + with pytest.raises(ValueError, match='dimensions'): + geometric_slerp(start=start, + end=end, + t=np.linspace(0, 1, 10)) + + @pytest.mark.parametrize("start, end", [ + # both empty + (np.array([]), np.array([])), + ]) + def test_input_at_least1d(self, start, end): + # empty inputs to geometric_slerp must + # be handled appropriately when not detected + # by mismatch + with pytest.raises(ValueError, match='at least two-dim'): + geometric_slerp(start=start, + end=end, + t=np.linspace(0, 1, 10)) + + @pytest.mark.parametrize("start, end, expected", [ + # North and South Poles are definitely antipodes + # but should be handled gracefully now + (np.array([0, 0, 1.0]), np.array([0, 0, -1.0]), "warning"), + # this case will issue a warning & be handled + # gracefully as well; + # North Pole was rotated very slightly + # using r = R.from_euler('x', 0.035, degrees=True) + # to achieve Euclidean distance offset from diameter by + # 9.328908379124812e-08, within the default tol + (np.array([0.00000000e+00, + -6.10865200e-04, + 9.99999813e-01]), np.array([0, 0, -1.0]), "warning"), + # this case should succeed without warning because a + # sufficiently large + # rotation was applied to North Pole point to shift it + # to a Euclidean distance of 2.3036691931821451e-07 + # from South Pole, which is larger than tol + (np.array([0.00000000e+00, + -9.59930941e-04, + 9.99999539e-01]), np.array([0, 0, -1.0]), "success"), + ]) + def test_handle_antipodes(self, start, end, expected): + # antipodal points must be handled appropriately; + # there are an infinite number of possible geodesic + # interpolations between them in higher dims + if expected == "warning": + with pytest.warns(UserWarning, match='antipodes'): + res = geometric_slerp(start=start, + end=end, + t=np.linspace(0, 1, 10)) + else: + res = geometric_slerp(start=start, + end=end, + t=np.linspace(0, 1, 10)) + + # antipodes or near-antipodes should still produce + # slerp paths on the surface of the sphere (but they + # may be ambiguous): + assert_allclose(np.linalg.norm(res, axis=1), 1.0) + + @pytest.mark.parametrize("start, end, expected", [ + # 2-D with n_pts=4 (two new interpolation points) + # this is an actual circle + (np.array([1, 0]), + np.array([0, 1]), + np.array([[1, 0], + [np.sqrt(3) / 2, 0.5], # 30 deg on unit circle + [0.5, np.sqrt(3) / 2], # 60 deg on unit circle + [0, 1]])), + # likewise for 3-D (add z = 0 plane) + # this is an ordinary sphere + (np.array([1, 0, 0]), + np.array([0, 1, 0]), + np.array([[1, 0, 0], + [np.sqrt(3) / 2, 0.5, 0], + [0.5, np.sqrt(3) / 2, 0], + [0, 1, 0]])), + # for 5-D, pad more columns with constants + # zeros are easiest--non-zero values on unit + # circle are more difficult to reason about + # at higher dims + (np.array([1, 0, 0, 0, 0]), + np.array([0, 1, 0, 0, 0]), + np.array([[1, 0, 0, 0, 0], + [np.sqrt(3) / 2, 0.5, 0, 0, 0], + [0.5, np.sqrt(3) / 2, 0, 0, 0], + [0, 1, 0, 0, 0]])), + + ]) + def test_straightforward_examples(self, start, end, expected): + # some straightforward interpolation tests, sufficiently + # simple to use the unit circle to deduce expected values; + # for larger dimensions, pad with constants so that the + # data is N-D but simpler to reason about + actual = geometric_slerp(start=start, + end=end, + t=np.linspace(0, 1, 4)) + assert_allclose(actual, expected, atol=1e-16) + + @pytest.mark.parametrize("t", [ + # both interval ends clearly violate limits + np.linspace(-20, 20, 300), + # only one interval end violating limit slightly + np.linspace(-0.0001, 0.0001, 17), + ]) + def test_t_values_limits(self, t): + # geometric_slerp() should appropriately handle + # interpolation parameters < 0 and > 1 + with pytest.raises(ValueError, match='interpolation parameter'): + _ = geometric_slerp(start=np.array([1, 0]), + end=np.array([0, 1]), + t=t) + + @pytest.mark.parametrize("start, end", [ + (np.array([1]), + np.array([0])), + (np.array([0]), + np.array([1])), + (np.array([-17.7]), + np.array([165.9])), + ]) + def test_0_sphere_handling(self, start, end): + # it does not make sense to interpolate the set of + # two points that is the 0-sphere + with pytest.raises(ValueError, match='at least two-dim'): + _ = geometric_slerp(start=start, + end=end, + t=np.linspace(0, 1, 4)) + + @pytest.mark.parametrize("tol", [ + # an integer currently raises + 5, + # string raises + "7", + # list and arrays also raise + [5, 6, 7], np.array(9.0), + ]) + def test_tol_type(self, tol): + # geometric_slerp() should raise if tol is not + # a suitable float type + with pytest.raises(ValueError, match='must be a float'): + _ = geometric_slerp(start=np.array([1, 0]), + end=np.array([0, 1]), + t=np.linspace(0, 1, 5), + tol=tol) + + @pytest.mark.parametrize("tol", [ + -5e-6, + -7e-10, + ]) + def test_tol_sign(self, tol): + # geometric_slerp() currently handles negative + # tol values, as long as they are floats + _ = geometric_slerp(start=np.array([1, 0]), + end=np.array([0, 1]), + t=np.linspace(0, 1, 5), + tol=tol) + + @pytest.mark.parametrize("start, end", [ + # 1-sphere (circle) with one point at origin + # and the other on the circle + (np.array([1, 0]), np.array([0, 0])), + # 2-sphere (normal sphere) with both points + # just slightly off sphere by the same amount + # in different directions + (np.array([1 + 1e-6, 0, 0]), + np.array([0, 1 - 1e-6, 0])), + # same thing in 4-D + (np.array([1 + 1e-6, 0, 0, 0]), + np.array([0, 1 - 1e-6, 0, 0])), + ]) + def test_unit_sphere_enforcement(self, start, end): + # geometric_slerp() should raise on input that clearly + # cannot be on an n-sphere of radius 1 + with pytest.raises(ValueError, match='unit n-sphere'): + geometric_slerp(start=start, + end=end, + t=np.linspace(0, 1, 5)) + + @pytest.mark.parametrize("start, end", [ + # 1-sphere 45 degree case + (np.array([1, 0]), + np.array([np.sqrt(2) / 2., + np.sqrt(2) / 2.])), + # 2-sphere 135 degree case + (np.array([1, 0]), + np.array([-np.sqrt(2) / 2., + np.sqrt(2) / 2.])), + ]) + @pytest.mark.parametrize("t_func", [ + np.linspace, np.logspace]) + def test_order_handling(self, start, end, t_func): + # geometric_slerp() should handle scenarios with + # ascending and descending t value arrays gracefully; + # results should simply be reversed + + # for scrambled / unsorted parameters, the same values + # should be returned, just in scrambled order + + num_t_vals = 20 + np.random.seed(789) + forward_t_vals = t_func(0, 10, num_t_vals) + # normalize to max of 1 + forward_t_vals /= forward_t_vals.max() + reverse_t_vals = np.flipud(forward_t_vals) + shuffled_indices = np.arange(num_t_vals) + np.random.shuffle(shuffled_indices) + scramble_t_vals = forward_t_vals.copy()[shuffled_indices] + + forward_results = geometric_slerp(start=start, + end=end, + t=forward_t_vals) + reverse_results = geometric_slerp(start=start, + end=end, + t=reverse_t_vals) + scrambled_results = geometric_slerp(start=start, + end=end, + t=scramble_t_vals) + + # check fidelity to input order + assert_allclose(forward_results, np.flipud(reverse_results)) + assert_allclose(forward_results[shuffled_indices], + scrambled_results) + + @pytest.mark.parametrize("t", [ + # string: + "15, 5, 7", + # complex numbers currently produce a warning + # but not sure we need to worry about it too much: + # [3 + 1j, 5 + 2j], + ]) + def test_t_values_conversion(self, t): + with pytest.raises(ValueError): + _ = geometric_slerp(start=np.array([1]), + end=np.array([0]), + t=t) + + def test_accept_arraylike(self): + # array-like support requested by reviewer + # in gh-10380 + actual = geometric_slerp([1, 0], [0, 1], [0, 1/3, 0.5, 2/3, 1]) + + # expected values are based on visual inspection + # of the unit circle for the progressions along + # the circumference provided in t + expected = np.array([[1, 0], + [np.sqrt(3) / 2, 0.5], + [np.sqrt(2) / 2, + np.sqrt(2) / 2], + [0.5, np.sqrt(3) / 2], + [0, 1]], dtype=np.float64) + # Tyler's original Cython implementation of geometric_slerp + # can pass at atol=0 here, but on balance we will accept + # 1e-16 for an implementation that avoids Cython and + # makes up accuracy ground elsewhere + assert_allclose(actual, expected, atol=1e-16) + + def test_scalar_t(self): + # when t is a scalar, return value is a single + # interpolated point of the appropriate dimensionality + # requested by reviewer in gh-10380 + actual = geometric_slerp([1, 0], [0, 1], 0.5) + expected = np.array([np.sqrt(2) / 2, + np.sqrt(2) / 2], dtype=np.float64) + assert actual.shape == (2,) + assert_allclose(actual, expected) + + @pytest.mark.parametrize('start', [ + np.array([1, 0, 0]), + np.array([0, 1]), + ]) + @pytest.mark.parametrize('t', [ + np.array(1), + np.array([1]), + np.array([[1]]), + np.array([[[1]]]), + np.array([]), + np.linspace(0, 1, 5), + ]) + def test_degenerate_input(self, start, t): + if np.asarray(t).ndim > 1: + with pytest.raises(ValueError): + geometric_slerp(start=start, end=start, t=t) + else: + + shape = (t.size,) + start.shape + expected = np.full(shape, start) + + actual = geometric_slerp(start=start, end=start, t=t) + assert_allclose(actual, expected) + + # Check that degenerate and non-degenerate + # inputs yield the same size + non_degenerate = geometric_slerp(start=start, end=start[::-1], t=t) + assert actual.size == non_degenerate.size + + @pytest.mark.parametrize('k', np.logspace(-10, -1, 10)) + def test_numerical_stability_pi(self, k): + # geometric_slerp should have excellent numerical + # stability for angles approaching pi between + # the start and end points + angle = np.pi - k + ts = np.linspace(0, 1, 100) + P = np.array([1, 0, 0, 0]) + Q = np.array([np.cos(angle), np.sin(angle), 0, 0]) + # the test should only be enforced for cases where + # geometric_slerp determines that the input is actually + # on the unit sphere + with np.testing.suppress_warnings() as sup: + sup.filter(UserWarning) + result = geometric_slerp(P, Q, ts, 1e-18) + norms = np.linalg.norm(result, axis=1) + error = np.max(np.abs(norms - 1)) + assert error < 4e-15 + + @pytest.mark.parametrize('t', [ + [[0, 0.5]], + [[[[[[[[[0, 0.5]]]]]]]]], + ]) + def test_interpolation_param_ndim(self, t): + # regression test for gh-14465 + arr1 = np.array([0, 1]) + arr2 = np.array([1, 0]) + + with pytest.raises(ValueError): + geometric_slerp(start=arr1, + end=arr2, + t=t) + + with pytest.raises(ValueError): + geometric_slerp(start=arr1, + end=arr1, + t=t) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test_spherical_voronoi.py b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test_spherical_voronoi.py new file mode 100644 index 0000000000000000000000000000000000000000..621a961ebb6e495701763af4ded10b431a63a992 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/test_spherical_voronoi.py @@ -0,0 +1,358 @@ +import numpy as np +import itertools +from numpy.testing import (assert_equal, + assert_almost_equal, + assert_array_equal, + assert_array_almost_equal) +import pytest +from pytest import raises as assert_raises +from scipy.spatial import SphericalVoronoi, distance +from scipy.optimize import linear_sum_assignment +from scipy.constants import golden as phi +from scipy.special import gamma + + +TOL = 1E-10 + + +def _generate_tetrahedron(): + return np.array([[1, 1, 1], [1, -1, -1], [-1, 1, -1], [-1, -1, 1]]) + + +def _generate_cube(): + return np.array(list(itertools.product([-1, 1.], repeat=3))) + + +def _generate_octahedron(): + return np.array([[-1, 0, 0], [+1, 0, 0], [0, -1, 0], + [0, +1, 0], [0, 0, -1], [0, 0, +1]]) + + +def _generate_dodecahedron(): + + x1 = _generate_cube() + x2 = np.array([[0, -phi, -1 / phi], + [0, -phi, +1 / phi], + [0, +phi, -1 / phi], + [0, +phi, +1 / phi]]) + x3 = np.array([[-1 / phi, 0, -phi], + [+1 / phi, 0, -phi], + [-1 / phi, 0, +phi], + [+1 / phi, 0, +phi]]) + x4 = np.array([[-phi, -1 / phi, 0], + [-phi, +1 / phi, 0], + [+phi, -1 / phi, 0], + [+phi, +1 / phi, 0]]) + return np.concatenate((x1, x2, x3, x4)) + + +def _generate_icosahedron(): + x = np.array([[0, -1, -phi], + [0, -1, +phi], + [0, +1, -phi], + [0, +1, +phi]]) + return np.concatenate([np.roll(x, i, axis=1) for i in range(3)]) + + +def _generate_polytope(name): + polygons = ["triangle", "square", "pentagon", "hexagon", "heptagon", + "octagon", "nonagon", "decagon", "undecagon", "dodecagon"] + polyhedra = ["tetrahedron", "cube", "octahedron", "dodecahedron", + "icosahedron"] + if name not in polygons and name not in polyhedra: + raise ValueError("unrecognized polytope") + + if name in polygons: + n = polygons.index(name) + 3 + thetas = np.linspace(0, 2 * np.pi, n, endpoint=False) + p = np.vstack([np.cos(thetas), np.sin(thetas)]).T + elif name == "tetrahedron": + p = _generate_tetrahedron() + elif name == "cube": + p = _generate_cube() + elif name == "octahedron": + p = _generate_octahedron() + elif name == "dodecahedron": + p = _generate_dodecahedron() + elif name == "icosahedron": + p = _generate_icosahedron() + + return p / np.linalg.norm(p, axis=1, keepdims=True) + + +def _hypersphere_area(dim, radius): + # https://en.wikipedia.org/wiki/N-sphere#Closed_forms + return 2 * np.pi**(dim / 2) / gamma(dim / 2) * radius**(dim - 1) + + +def _sample_sphere(n, dim, seed=None): + # Sample points uniformly at random from the hypersphere + rng = np.random.RandomState(seed=seed) + points = rng.randn(n, dim) + points /= np.linalg.norm(points, axis=1, keepdims=True) + return points + + +class TestSphericalVoronoi: + + def setup_method(self): + self.points = np.array([ + [-0.78928481, -0.16341094, 0.59188373], + [-0.66839141, 0.73309634, 0.12578818], + [0.32535778, -0.92476944, -0.19734181], + [-0.90177102, -0.03785291, -0.43055335], + [0.71781344, 0.68428936, 0.12842096], + [-0.96064876, 0.23492353, -0.14820556], + [0.73181537, -0.22025898, -0.6449281], + [0.79979205, 0.54555747, 0.25039913]] + ) + + def test_constructor(self): + center = np.array([1, 2, 3]) + radius = 2 + s1 = SphericalVoronoi(self.points) + # user input checks in SphericalVoronoi now require + # the radius / center to match the generators so adjust + # accordingly here + s2 = SphericalVoronoi(self.points * radius, radius) + s3 = SphericalVoronoi(self.points + center, center=center) + s4 = SphericalVoronoi(self.points * radius + center, radius, center) + assert_array_equal(s1.center, np.array([0, 0, 0])) + assert_equal(s1.radius, 1) + assert_array_equal(s2.center, np.array([0, 0, 0])) + assert_equal(s2.radius, 2) + assert_array_equal(s3.center, center) + assert_equal(s3.radius, 1) + assert_array_equal(s4.center, center) + assert_equal(s4.radius, radius) + + # Test a non-sequence/-ndarray based array-like + s5 = SphericalVoronoi(memoryview(self.points)) # type: ignore[arg-type] + assert_array_equal(s5.center, np.array([0, 0, 0])) + assert_equal(s5.radius, 1) + + def test_vertices_regions_translation_invariance(self): + sv_origin = SphericalVoronoi(self.points) + center = np.array([1, 1, 1]) + sv_translated = SphericalVoronoi(self.points + center, center=center) + assert_equal(sv_origin.regions, sv_translated.regions) + assert_array_almost_equal(sv_origin.vertices + center, + sv_translated.vertices) + + def test_vertices_regions_scaling_invariance(self): + sv_unit = SphericalVoronoi(self.points) + sv_scaled = SphericalVoronoi(self.points * 2, 2) + assert_equal(sv_unit.regions, sv_scaled.regions) + assert_array_almost_equal(sv_unit.vertices * 2, + sv_scaled.vertices) + + def test_old_radius_api_error(self): + with pytest.raises(ValueError, match='`radius` is `None`. *'): + SphericalVoronoi(self.points, radius=None) + + def test_sort_vertices_of_regions(self): + sv = SphericalVoronoi(self.points) + unsorted_regions = sv.regions + sv.sort_vertices_of_regions() + assert_equal(sorted(sv.regions), sorted(unsorted_regions)) + + def test_sort_vertices_of_regions_flattened(self): + expected = sorted([[0, 6, 5, 2, 3], [2, 3, 10, 11, 8, 7], [0, 6, 4, 1], + [4, 8, 7, 5, 6], [9, 11, 10], [2, 7, 5], + [1, 4, 8, 11, 9], [0, 3, 10, 9, 1]]) + expected = list(itertools.chain(*sorted(expected))) # type: ignore + sv = SphericalVoronoi(self.points) + sv.sort_vertices_of_regions() + actual = list(itertools.chain(*sorted(sv.regions))) + assert_array_equal(actual, expected) + + def test_sort_vertices_of_regions_dimensionality(self): + points = np.array([[1, 0, 0, 0], + [0, 1, 0, 0], + [0, 0, 1, 0], + [0, 0, 0, 1], + [0.5, 0.5, 0.5, 0.5]]) + with pytest.raises(TypeError, match="three-dimensional"): + sv = SphericalVoronoi(points) + sv.sort_vertices_of_regions() + + def test_num_vertices(self): + # for any n >= 3, a spherical Voronoi diagram has 2n - 4 + # vertices; this is a direct consequence of Euler's formula + # as explained by Dinis and Mamede (2010) Proceedings of the + # 2010 International Symposium on Voronoi Diagrams in Science + # and Engineering + sv = SphericalVoronoi(self.points) + expected = self.points.shape[0] * 2 - 4 + actual = sv.vertices.shape[0] + assert_equal(actual, expected) + + def test_voronoi_circles(self): + sv = SphericalVoronoi(self.points) + for vertex in sv.vertices: + distances = distance.cdist(sv.points, np.array([vertex])) + closest = np.array(sorted(distances)[0:3]) + assert_almost_equal(closest[0], closest[1], 7, str(vertex)) + assert_almost_equal(closest[0], closest[2], 7, str(vertex)) + + def test_duplicate_point_handling(self): + # an exception should be raised for degenerate generators + # related to Issue# 7046 + self.degenerate = np.concatenate((self.points, self.points)) + with assert_raises(ValueError): + SphericalVoronoi(self.degenerate) + + def test_incorrect_radius_handling(self): + # an exception should be raised if the radius provided + # cannot possibly match the input generators + with assert_raises(ValueError): + SphericalVoronoi(self.points, radius=0.98) + + def test_incorrect_center_handling(self): + # an exception should be raised if the center provided + # cannot possibly match the input generators + with assert_raises(ValueError): + SphericalVoronoi(self.points, center=[0.1, 0, 0]) + + @pytest.mark.parametrize("dim", range(2, 6)) + @pytest.mark.parametrize("shift", [False, True]) + def test_single_hemisphere_handling(self, dim, shift): + n = 10 + points = _sample_sphere(n, dim, seed=0) + points[:, 0] = np.abs(points[:, 0]) + center = (np.arange(dim) + 1) * shift + sv = SphericalVoronoi(points + center, center=center) + dots = np.einsum('ij,ij->i', sv.vertices - center, + sv.points[sv._simplices[:, 0]] - center) + circumradii = np.arccos(np.clip(dots, -1, 1)) + assert np.max(circumradii) > np.pi / 2 + + @pytest.mark.parametrize("n", [1, 2, 10]) + @pytest.mark.parametrize("dim", range(2, 6)) + @pytest.mark.parametrize("shift", [False, True]) + def test_rank_deficient(self, n, dim, shift): + center = (np.arange(dim) + 1) * shift + points = _sample_sphere(n, dim - 1, seed=0) + points = np.hstack([points, np.zeros((n, 1))]) + with pytest.raises(ValueError, match="Rank of input points"): + SphericalVoronoi(points + center, center=center) + + @pytest.mark.parametrize("dim", range(2, 6)) + def test_higher_dimensions(self, dim): + n = 100 + points = _sample_sphere(n, dim, seed=0) + sv = SphericalVoronoi(points) + assert sv.vertices.shape[1] == dim + assert len(sv.regions) == n + + # verify Euler characteristic + cell_counts = [] + simplices = np.sort(sv._simplices) + for i in range(1, dim + 1): + cells = [] + for indices in itertools.combinations(range(dim), i): + cells.append(simplices[:, list(indices)]) + cells = np.unique(np.concatenate(cells), axis=0) + cell_counts.append(len(cells)) + expected_euler = 1 + (-1)**(dim-1) + actual_euler = sum([(-1)**i * e for i, e in enumerate(cell_counts)]) + assert expected_euler == actual_euler + + @pytest.mark.parametrize("dim", range(2, 6)) + def test_cross_polytope_regions(self, dim): + # The hypercube is the dual of the cross-polytope, so the voronoi + # vertices of the cross-polytope lie on the points of the hypercube. + + # generate points of the cross-polytope + points = np.concatenate((-np.eye(dim), np.eye(dim))) + sv = SphericalVoronoi(points) + assert all([len(e) == 2**(dim - 1) for e in sv.regions]) + + # generate points of the hypercube + expected = np.vstack(list(itertools.product([-1, 1], repeat=dim))) + expected = expected.astype(np.float64) / np.sqrt(dim) + + # test that Voronoi vertices are correctly placed + dist = distance.cdist(sv.vertices, expected) + res = linear_sum_assignment(dist) + assert dist[res].sum() < TOL + + @pytest.mark.parametrize("dim", range(2, 6)) + def test_hypercube_regions(self, dim): + # The cross-polytope is the dual of the hypercube, so the voronoi + # vertices of the hypercube lie on the points of the cross-polytope. + + # generate points of the hypercube + points = np.vstack(list(itertools.product([-1, 1], repeat=dim))) + points = points.astype(np.float64) / np.sqrt(dim) + sv = SphericalVoronoi(points) + + # generate points of the cross-polytope + expected = np.concatenate((-np.eye(dim), np.eye(dim))) + + # test that Voronoi vertices are correctly placed + dist = distance.cdist(sv.vertices, expected) + res = linear_sum_assignment(dist) + assert dist[res].sum() < TOL + + @pytest.mark.parametrize("n", [10, 500]) + @pytest.mark.parametrize("dim", [2, 3]) + @pytest.mark.parametrize("radius", [0.5, 1, 2]) + @pytest.mark.parametrize("shift", [False, True]) + @pytest.mark.parametrize("single_hemisphere", [False, True]) + def test_area_reconstitution(self, n, dim, radius, shift, + single_hemisphere): + points = _sample_sphere(n, dim, seed=0) + + # move all points to one side of the sphere for single-hemisphere test + if single_hemisphere: + points[:, 0] = np.abs(points[:, 0]) + + center = (np.arange(dim) + 1) * shift + points = radius * points + center + + sv = SphericalVoronoi(points, radius=radius, center=center) + areas = sv.calculate_areas() + assert_almost_equal(areas.sum(), _hypersphere_area(dim, radius)) + + @pytest.mark.parametrize("poly", ["triangle", "dodecagon", + "tetrahedron", "cube", "octahedron", + "dodecahedron", "icosahedron"]) + def test_equal_area_reconstitution(self, poly): + points = _generate_polytope(poly) + n, dim = points.shape + sv = SphericalVoronoi(points) + areas = sv.calculate_areas() + assert_almost_equal(areas, _hypersphere_area(dim, 1) / n) + + def test_area_unsupported_dimension(self): + dim = 4 + points = np.concatenate((-np.eye(dim), np.eye(dim))) + sv = SphericalVoronoi(points) + with pytest.raises(TypeError, match="Only supported"): + sv.calculate_areas() + + @pytest.mark.parametrize("radius", [1, 1.]) + @pytest.mark.parametrize("center", [None, (1, 2, 3), (1., 2., 3.)]) + def test_attribute_types(self, radius, center): + points = radius * self.points + if center is not None: + points += center + + sv = SphericalVoronoi(points, radius=radius, center=center) + assert sv.points.dtype is np.dtype(np.float64) + assert sv.center.dtype is np.dtype(np.float64) + assert isinstance(sv.radius, float) + + def test_region_types(self): + # Tests that region integer type does not change + # See Issue #13412 + sv = SphericalVoronoi(self.points) + dtype = type(sv.regions[0][0]) + # also enforce nested list type per gh-19177 + for region in sv.regions: + assert isinstance(region, list) + sv.sort_vertices_of_regions() + assert type(sv.regions[0][0]) == dtype + sv.sort_vertices_of_regions() + assert type(sv.regions[0][0]) == dtype