Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/_trace_wrapped_higher_order_op.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/allowed_functions.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/bytecode_analysis.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/cache_size.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/compiled_autograd.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/config.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/current_scope_id.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/device_interface.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/eval_frame.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/funcname_cache.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/guards.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/hooks.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/output_graph.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/polyfill.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/resume_execution.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/skipfiles.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/types.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/allowed_functions.py +553 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/common.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/cudagraphs.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/debugging.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/distributed.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/inductor.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/onnxrt.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/registry.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/tensorrt.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/torchxla.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/tvm.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/common.py +109 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/cudagraphs.py +184 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/debugging.py +287 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/distributed.py +465 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/inductor.py +16 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/onnxrt.py +35 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/registry.py +113 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/tensorrt.py +12 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/torchxla.py +73 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/tvm.py +170 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/decorators.py +284 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/external_utils.py +29 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/profiler.py +155 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/replay_record.py +119 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/repro/__init__.py +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/repro/__pycache__/__init__.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/repro/__pycache__/after_aot.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/repro/__pycache__/after_dynamo.cpython-310.pyc +0 -0
- env-llmeval/lib/python3.10/site-packages/torch/_dynamo/repro/after_aot.py +931 -0
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.99 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/_trace_wrapped_higher_order_op.cpython-310.pyc
ADDED
Binary file (2.59 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/allowed_functions.cpython-310.pyc
ADDED
Binary file (15 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/bytecode_analysis.cpython-310.pyc
ADDED
Binary file (7.18 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/cache_size.cpython-310.pyc
ADDED
Binary file (3.34 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/compiled_autograd.cpython-310.pyc
ADDED
Binary file (7.86 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/config.cpython-310.pyc
ADDED
Binary file (3.58 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/current_scope_id.cpython-310.pyc
ADDED
Binary file (635 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/device_interface.cpython-310.pyc
ADDED
Binary file (7.37 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/eval_frame.cpython-310.pyc
ADDED
Binary file (43.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/funcname_cache.cpython-310.pyc
ADDED
Binary file (1.44 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/guards.cpython-310.pyc
ADDED
Binary file (35.6 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/hooks.cpython-310.pyc
ADDED
Binary file (655 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/output_graph.cpython-310.pyc
ADDED
Binary file (43.7 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/polyfill.cpython-310.pyc
ADDED
Binary file (1.05 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/resume_execution.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/skipfiles.cpython-310.pyc
ADDED
Binary file (8 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/__pycache__/types.cpython-310.pyc
ADDED
Binary file (3.49 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/allowed_functions.py
ADDED
@@ -0,0 +1,553 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import builtins
|
2 |
+
import collections
|
3 |
+
import copy
|
4 |
+
import dataclasses
|
5 |
+
import functools
|
6 |
+
import inspect
|
7 |
+
import itertools
|
8 |
+
import math
|
9 |
+
import operator
|
10 |
+
import sys
|
11 |
+
import types
|
12 |
+
import warnings
|
13 |
+
|
14 |
+
from collections import defaultdict
|
15 |
+
from typing import Any, Callable, cast, Dict, List, Optional, Set, Union
|
16 |
+
|
17 |
+
np: Optional[types.ModuleType] = None
|
18 |
+
try:
|
19 |
+
import numpy as np
|
20 |
+
except ModuleNotFoundError:
|
21 |
+
pass
|
22 |
+
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch._functorch.deprecated as deprecated_func
|
26 |
+
from torch.fx._symbolic_trace import is_fx_tracing
|
27 |
+
|
28 |
+
from . import config
|
29 |
+
from .external_utils import is_compiling
|
30 |
+
from .utils import hashable, is_safe_constant, NP_SUPPORTED_MODULES
|
31 |
+
|
32 |
+
"""
|
33 |
+
A note on allowed functions:
|
34 |
+
|
35 |
+
Dynamo consults this file to determine if a particular function/module
|
36 |
+
is allowed to appear as a node in its fx output.
|
37 |
+
|
38 |
+
If a function is disallowed, it may either be traced-through, or skipped.
|
39 |
+
|
40 |
+
Trace-through means dynamo will continue to trace the interior code for
|
41 |
+
the function/module rather than stopping at its boundary and recording it
|
42 |
+
as a node in the fx graph. Whether tracing through or allowing, the functionality
|
43 |
+
of the function/module is part of the dynamo graph. Caveat: if tracing through,
|
44 |
+
any interior operation could trigger its own graph-break.
|
45 |
+
|
46 |
+
Skips are determined by (torch/_dynamo/skipfiles.py) - see "a note on
|
47 |
+
skipfiles" there.
|
48 |
+
"""
|
49 |
+
|
50 |
+
|
51 |
+
class FunctionIdSet:
|
52 |
+
"""
|
53 |
+
Track a set of `id()`s of objects which are either allowed or not
|
54 |
+
allowed to go into the generated FX graph. Use to test for torch.*,
|
55 |
+
numpy.*, builtins.*, etc.
|
56 |
+
|
57 |
+
Support user modification to permit customization of what can be
|
58 |
+
added to the graph and what will cause a graph break.
|
59 |
+
"""
|
60 |
+
|
61 |
+
function_ids: Optional[Set[int]] = None
|
62 |
+
function_names: Optional[Dict[int, str]] = None
|
63 |
+
|
64 |
+
def __init__(self, lazy_initializer: Callable[[], Union[Dict[int, str], Set[int]]]):
|
65 |
+
self.lazy_initializer = lazy_initializer
|
66 |
+
|
67 |
+
def __call__(self):
|
68 |
+
if self.function_ids is None:
|
69 |
+
value = self.lazy_initializer()
|
70 |
+
if isinstance(value, dict):
|
71 |
+
self.function_ids = set(value.keys())
|
72 |
+
self.function_names = value
|
73 |
+
else:
|
74 |
+
assert isinstance(value, set)
|
75 |
+
self.function_ids = value
|
76 |
+
return self.function_ids
|
77 |
+
|
78 |
+
def get_name(self, idx: int, default: str):
|
79 |
+
self() # lazy init
|
80 |
+
assert self.function_names is not None
|
81 |
+
return self.function_names.get(idx, default)
|
82 |
+
|
83 |
+
def add(self, idx: int):
|
84 |
+
function_ids = self() # lazy init
|
85 |
+
function_ids.add(idx)
|
86 |
+
|
87 |
+
def remove(self, idx: int):
|
88 |
+
function_ids = self()
|
89 |
+
if idx in function_ids:
|
90 |
+
function_ids.remove(idx)
|
91 |
+
|
92 |
+
def __contains__(self, idx: int):
|
93 |
+
return idx in self()
|
94 |
+
|
95 |
+
|
96 |
+
@FunctionIdSet
|
97 |
+
def _disallowed_function_ids() -> Set[int]:
|
98 |
+
remove: List[Any] = [
|
99 |
+
True,
|
100 |
+
False,
|
101 |
+
None,
|
102 |
+
collections.OrderedDict,
|
103 |
+
copy.copy,
|
104 |
+
copy.deepcopy,
|
105 |
+
inspect.signature,
|
106 |
+
math.__package__,
|
107 |
+
torch.__builtins__,
|
108 |
+
torch.autocast_decrement_nesting,
|
109 |
+
torch.autocast_increment_nesting,
|
110 |
+
torch.autograd.grad,
|
111 |
+
torch.clear_autocast_cache,
|
112 |
+
torch.cuda.current_device,
|
113 |
+
torch.cuda.set_device,
|
114 |
+
torch.distributions.constraints.is_dependent,
|
115 |
+
torch.distributions.normal.Normal,
|
116 |
+
torch.inference_mode,
|
117 |
+
torch.jit.isinstance,
|
118 |
+
torch.set_anomaly_enabled,
|
119 |
+
torch.set_autocast_cache_enabled,
|
120 |
+
torch.set_autocast_cpu_dtype,
|
121 |
+
torch.set_autocast_cpu_enabled,
|
122 |
+
torch.set_autocast_enabled,
|
123 |
+
torch.set_autocast_gpu_dtype,
|
124 |
+
warnings.warn,
|
125 |
+
torch._C._dynamo.eval_frame.unsupported,
|
126 |
+
torch.Tensor.__init__,
|
127 |
+
torch.resize_as_,
|
128 |
+
torch._tensor._convert,
|
129 |
+
]
|
130 |
+
|
131 |
+
# extract all dtypes from torch
|
132 |
+
dtypes = [
|
133 |
+
obj for obj in torch.__dict__.values() if isinstance(obj, type(torch.float32))
|
134 |
+
]
|
135 |
+
remove += dtypes
|
136 |
+
storage = [
|
137 |
+
obj
|
138 |
+
for obj in torch.__dict__.values()
|
139 |
+
if isinstance(obj, type(torch.FloatStorage))
|
140 |
+
]
|
141 |
+
remove += storage
|
142 |
+
|
143 |
+
# Distributed APIs don't work well with torch.compile.
|
144 |
+
if torch.distributed.is_available():
|
145 |
+
remove.extend(
|
146 |
+
torch.distributed.distributed_c10d.dynamo_unsupported_distributed_c10d_ops
|
147 |
+
)
|
148 |
+
|
149 |
+
return {id(x) for x in remove}
|
150 |
+
|
151 |
+
|
152 |
+
# Helper function to dump the torch name rule map generated based on
|
153 |
+
# the heuristic defined in gen_allowed_objs_and_ids.
|
154 |
+
def dump_allowed_torch_name_rule_map() -> None:
|
155 |
+
m = gen_allowed_objs_and_ids(record=True, c_binding_only=False).name_rule_map
|
156 |
+
for k, v in m.items():
|
157 |
+
print(f'"{k}": {v.__name__},')
|
158 |
+
|
159 |
+
|
160 |
+
@dataclasses.dataclass
|
161 |
+
class AllowedObjects:
|
162 |
+
"""
|
163 |
+
Track the objects, object id - name pairs, and name - dynamo wrapping rule pairs
|
164 |
+
from the heuristic defined in `gen_allowed_objs_and_ids`.
|
165 |
+
TODO: Remove the overalp/duplication between these fields
|
166 |
+
after allowed_functions refactor is done.
|
167 |
+
"""
|
168 |
+
|
169 |
+
object_ids: Dict[int, str]
|
170 |
+
ctx_mamager_classes: Set[Any]
|
171 |
+
c_binding_in_graph_functions: Set[Any]
|
172 |
+
non_c_binding_in_graph_functions: Set[Any]
|
173 |
+
name_rule_map: Dict[str, Any]
|
174 |
+
|
175 |
+
|
176 |
+
def gen_allowed_objs_and_ids(record=False, c_binding_only=True) -> AllowedObjects:
|
177 |
+
"""
|
178 |
+
Walk torch.* and get the ids of all the stuff in it
|
179 |
+
"""
|
180 |
+
from .variables import TorchCtxManagerClassVariable, TorchInGraphFunctionVariable
|
181 |
+
|
182 |
+
warnings.filterwarnings("ignore", category=UserWarning, module="torch.distributed")
|
183 |
+
torch_object_ids = dict()
|
184 |
+
ctx_mamager_classes = set()
|
185 |
+
c_binding_in_graph_functions = set()
|
186 |
+
non_c_binding_in_graph_functions = set()
|
187 |
+
torch_name_rule_map = dict()
|
188 |
+
|
189 |
+
# Add obj to ctx_mamager_classes set if it's a torch context manager class.
|
190 |
+
# This is used to generate the ctx manager class list based on heuristic.
|
191 |
+
def heuristic_record_if_ctx_manager(obj, module, name):
|
192 |
+
if (
|
193 |
+
issubclass(type(obj), type)
|
194 |
+
and hasattr(obj, "__enter__")
|
195 |
+
and hasattr(obj, "__exit__")
|
196 |
+
):
|
197 |
+
torch_name_rule_map[
|
198 |
+
f"{module.__name__}.{name}"
|
199 |
+
] = TorchCtxManagerClassVariable
|
200 |
+
ctx_mamager_classes.add(obj)
|
201 |
+
|
202 |
+
# In some platforms, these functions were loaded as classes instead of functions.
|
203 |
+
# To mitigate these weired cases, we need this special check.
|
204 |
+
def is_special_functions(obj):
|
205 |
+
return hashable(obj) and obj in {
|
206 |
+
torch._C._cuda_isCurrentStreamCapturing,
|
207 |
+
torch._C._graph_pool_handle,
|
208 |
+
}
|
209 |
+
|
210 |
+
# Add obj to c_binding_in_graph_functions set or non_c_binding_in_graph_functions set
|
211 |
+
# if it's a torch function or method.
|
212 |
+
# This is used to generate the in graph function list based on heuristic.
|
213 |
+
def heuristic_record_if_in_graph_function(obj, module, name):
|
214 |
+
try:
|
215 |
+
if hasattr(obj, "__wrapped__"):
|
216 |
+
obj = obj.__wrapped__
|
217 |
+
except Exception:
|
218 |
+
pass
|
219 |
+
if isinstance(
|
220 |
+
obj,
|
221 |
+
(
|
222 |
+
types.FunctionType,
|
223 |
+
types.MethodType,
|
224 |
+
types.BuiltinFunctionType,
|
225 |
+
types.MethodDescriptorType,
|
226 |
+
types.WrapperDescriptorType,
|
227 |
+
),
|
228 |
+
) or is_special_functions(obj):
|
229 |
+
torch_name_rule_map[
|
230 |
+
f"{module.__name__}.{name}"
|
231 |
+
] = TorchInGraphFunctionVariable
|
232 |
+
if c_binding_only:
|
233 |
+
if not hasattr(obj, "__code__"):
|
234 |
+
c_binding_in_graph_functions.add(obj)
|
235 |
+
else:
|
236 |
+
if hasattr(obj, "__code__"):
|
237 |
+
non_c_binding_in_graph_functions.add(obj)
|
238 |
+
else:
|
239 |
+
c_binding_in_graph_functions.add(obj)
|
240 |
+
|
241 |
+
def _is_allowed_module_prefix(obj):
|
242 |
+
allowed_modules = ("torch", "math")
|
243 |
+
# torch.nn.modules.rnn is disallowed because these modules internally
|
244 |
+
# flatten their parameters. This flattening process will call
|
245 |
+
# Tensor.set_ with a Storage, and Storages cannot be traced with
|
246 |
+
# AOTAutograd; so we need to graph-break. To ensure this, we inline
|
247 |
+
# these functions, rather than keep them opaque-ly in the graph.
|
248 |
+
disallowed_modules = [
|
249 |
+
"torch.optim",
|
250 |
+
"torch.nn.modules.rnn",
|
251 |
+
"torch._dynamo",
|
252 |
+
"torch._C._dynamo",
|
253 |
+
"torch._inductor",
|
254 |
+
"torch._C.inductor",
|
255 |
+
"torch.fx",
|
256 |
+
"torch._C._autograd",
|
257 |
+
"torch._C._cudart",
|
258 |
+
"torch._C._distributed_autograd",
|
259 |
+
"torch._C._distributed_c10d",
|
260 |
+
"torch._C._distributed_rpc",
|
261 |
+
"torch._C._functorch",
|
262 |
+
"torch._C._monitor",
|
263 |
+
"torch._C._nvtx",
|
264 |
+
"torch._C._lazy",
|
265 |
+
"torch._C._profiler",
|
266 |
+
"torch.__config__",
|
267 |
+
"torch._custom_op",
|
268 |
+
"torch._dispatch",
|
269 |
+
"torch._export",
|
270 |
+
"torch._functorch.make_functional",
|
271 |
+
"torch._functorch.compile_utils",
|
272 |
+
"torch._functorch.partitioners",
|
273 |
+
"torch._functorch.aot_autograd",
|
274 |
+
"torch._functorch.compilers",
|
275 |
+
"torch._functorch.fx_minifier",
|
276 |
+
"torch.autograd.profiler_util",
|
277 |
+
"torch.autograd.profiler",
|
278 |
+
"torch._jit_internal",
|
279 |
+
"torch._library",
|
280 |
+
"torch._lobpcg",
|
281 |
+
"torch._logging",
|
282 |
+
"torch._meta_registrations",
|
283 |
+
"torch._namedtensor_internals",
|
284 |
+
"torch._numpy",
|
285 |
+
"torch._sources",
|
286 |
+
"torch._subclasses",
|
287 |
+
"torch._tensor",
|
288 |
+
"torch._tensor_str",
|
289 |
+
"torch._utils",
|
290 |
+
"torch._utils_internal",
|
291 |
+
"torch._vmap_internals",
|
292 |
+
"torch.compiler",
|
293 |
+
"torch.distributed",
|
294 |
+
"torch.export",
|
295 |
+
"torch.hub",
|
296 |
+
"torch.jit",
|
297 |
+
"torch.library",
|
298 |
+
"torch.masked.maskedtensor",
|
299 |
+
"torch.nn.init",
|
300 |
+
"torch.nn.modules.module",
|
301 |
+
"torch.nn.parallel",
|
302 |
+
"torch.nn.utils",
|
303 |
+
"torch.multiprocessing",
|
304 |
+
"torch.onnx",
|
305 |
+
"torch.overrides",
|
306 |
+
"torch.package",
|
307 |
+
"torch.profiler",
|
308 |
+
"torch.serialization",
|
309 |
+
"torch.storage",
|
310 |
+
"torch.utils",
|
311 |
+
]
|
312 |
+
if config.trace_distributed:
|
313 |
+
disallowed_modules.append("torch.distributed.")
|
314 |
+
|
315 |
+
allowed_modules_dot = tuple([x + "." for x in allowed_modules])
|
316 |
+
module = inspect.getmodule(obj)
|
317 |
+
if module is None:
|
318 |
+
return False
|
319 |
+
|
320 |
+
mod_name = module.__name__
|
321 |
+
|
322 |
+
if any(mod_name.startswith(m) for m in disallowed_modules):
|
323 |
+
return False
|
324 |
+
|
325 |
+
return mod_name in allowed_modules or mod_name.startswith(allowed_modules_dot)
|
326 |
+
|
327 |
+
def _find_torch_objects(module):
|
328 |
+
if any(
|
329 |
+
module.__name__.startswith(mod_name)
|
330 |
+
for mod_name in config.allowed_functions_module_string_ignorelist
|
331 |
+
):
|
332 |
+
return
|
333 |
+
torch_object_ids[id(module)] = module.__name__
|
334 |
+
for name, obj in list(module.__dict__.items()):
|
335 |
+
if id(obj) not in torch_object_ids:
|
336 |
+
# Dynamo allows all builtins into the graph and does not attempt
|
337 |
+
# to introspect into them. We don't want to allow instances of
|
338 |
+
# HigherOrderOperator into the graph all the time (Dynamo needs
|
339 |
+
# to introspect the body functions of these HigherOrderOperator
|
340 |
+
# first, decide they are safe, and then allow them into the graph).
|
341 |
+
# So we exclude HigherOrderOperator from being a builtin.
|
342 |
+
import torch._ops
|
343 |
+
|
344 |
+
if isinstance(obj, torch._ops.HigherOrderOperator):
|
345 |
+
continue
|
346 |
+
|
347 |
+
# We want to trace through `grad` and `vmap`
|
348 |
+
if obj in (
|
349 |
+
torch.func.grad,
|
350 |
+
deprecated_func.grad,
|
351 |
+
torch.func.vmap,
|
352 |
+
deprecated_func.vmap,
|
353 |
+
torch.nn.functional.triplet_margin_with_distance_loss,
|
354 |
+
torch.cond,
|
355 |
+
):
|
356 |
+
continue
|
357 |
+
|
358 |
+
if isinstance(obj, types.ModuleType):
|
359 |
+
if obj.__name__.startswith("torch.") and _is_allowed_module_prefix(
|
360 |
+
obj
|
361 |
+
):
|
362 |
+
torch_object_ids[id(obj)] = f"{module.__name__}.{name}"
|
363 |
+
_find_torch_objects(obj)
|
364 |
+
elif _is_allowed_module_prefix(obj):
|
365 |
+
if record:
|
366 |
+
heuristic_record_if_ctx_manager(obj, module, name)
|
367 |
+
heuristic_record_if_in_graph_function(obj, module, name)
|
368 |
+
torch_object_ids[id(obj)] = f"{module.__name__}.{name}"
|
369 |
+
elif inspect.getmodule(obj) is None and not is_safe_constant(obj):
|
370 |
+
if record:
|
371 |
+
heuristic_record_if_ctx_manager(obj, module, name)
|
372 |
+
heuristic_record_if_in_graph_function(obj, module, name)
|
373 |
+
torch_object_ids[id(obj)] = f"{module.__name__}.{name}"
|
374 |
+
|
375 |
+
_find_torch_objects(torch)
|
376 |
+
_find_torch_objects(math)
|
377 |
+
|
378 |
+
if config.trace_distributed:
|
379 |
+
from torch.distributed import _functional_collectives_impl as fci
|
380 |
+
|
381 |
+
for f in [
|
382 |
+
fci._all_gather_into_tensor,
|
383 |
+
fci._all_reduce,
|
384 |
+
fci._reduce_scatter_tensor,
|
385 |
+
fci._all_reduce_coalesced,
|
386 |
+
fci._all_gather_into_tensor_coalesced,
|
387 |
+
fci._reduce_scatter_tensor_coalesced,
|
388 |
+
]:
|
389 |
+
torch_object_ids[id(f)] = repr(f)
|
390 |
+
|
391 |
+
# torch.Tensor.{fn}
|
392 |
+
for name in dir(torch.Tensor):
|
393 |
+
method = getattr(torch.Tensor, name)
|
394 |
+
if isinstance(
|
395 |
+
method, (types.MethodDescriptorType, types.WrapperDescriptorType)
|
396 |
+
):
|
397 |
+
torch_object_ids[id(method)] = f"torch.Tensor.{name}"
|
398 |
+
|
399 |
+
for idx in _disallowed_function_ids():
|
400 |
+
if idx in torch_object_ids:
|
401 |
+
del torch_object_ids[idx]
|
402 |
+
|
403 |
+
for extra in (is_fx_tracing, is_compiling):
|
404 |
+
torch_object_ids[id(extra)] = f"{extra.__module__}.{extra.__name__}"
|
405 |
+
|
406 |
+
return AllowedObjects(
|
407 |
+
torch_object_ids,
|
408 |
+
ctx_mamager_classes,
|
409 |
+
c_binding_in_graph_functions,
|
410 |
+
non_c_binding_in_graph_functions,
|
411 |
+
torch_name_rule_map,
|
412 |
+
)
|
413 |
+
|
414 |
+
|
415 |
+
@FunctionIdSet
|
416 |
+
def _allowed_function_ids() -> Dict[int, str]:
|
417 |
+
return gen_allowed_objs_and_ids().object_ids
|
418 |
+
|
419 |
+
|
420 |
+
@FunctionIdSet
|
421 |
+
def _allowed_user_defined_function_ids() -> Dict[int, str]:
|
422 |
+
rv: Dict[int, str] = {}
|
423 |
+
return rv
|
424 |
+
|
425 |
+
|
426 |
+
@FunctionIdSet
|
427 |
+
def _builtin_function_ids() -> Dict[int, str]:
|
428 |
+
rv = {
|
429 |
+
id(v): f"builtins.{k}"
|
430 |
+
for k, v in builtins.__dict__.items()
|
431 |
+
if not k.startswith("_") and callable(v)
|
432 |
+
}
|
433 |
+
rv.update(
|
434 |
+
{
|
435 |
+
id(v): f"operator.{k}"
|
436 |
+
for k, v in operator.__dict__.items()
|
437 |
+
if not k.startswith("_") and callable(v)
|
438 |
+
}
|
439 |
+
)
|
440 |
+
rv.update(
|
441 |
+
{id(v): f"functools.{v.__name__}" for v in (itertools.chain, itertools.islice)}
|
442 |
+
)
|
443 |
+
rv.update(
|
444 |
+
{
|
445 |
+
id(cast): "typing.cast",
|
446 |
+
id(functools.reduce): "functools.reduce",
|
447 |
+
id(copy.deepcopy): "copy.deepcopy",
|
448 |
+
}
|
449 |
+
)
|
450 |
+
return rv
|
451 |
+
|
452 |
+
|
453 |
+
@FunctionIdSet
|
454 |
+
def _numpy_function_ids() -> Dict[int, str]:
|
455 |
+
rv = dict()
|
456 |
+
for mod in NP_SUPPORTED_MODULES:
|
457 |
+
rv.update(
|
458 |
+
{
|
459 |
+
id(v): f"{mod.__name__}.{k}"
|
460 |
+
for k, v in mod.__dict__.items()
|
461 |
+
if callable(v)
|
462 |
+
and (getattr(v, "__module__", None) or mod.__name__) == mod.__name__
|
463 |
+
}
|
464 |
+
)
|
465 |
+
return rv
|
466 |
+
|
467 |
+
|
468 |
+
@FunctionIdSet
|
469 |
+
def _builtin_constant_ids() -> Dict[int, str]:
|
470 |
+
"""
|
471 |
+
Collects constant builtins by eliminating callable items.
|
472 |
+
"""
|
473 |
+
rv = {
|
474 |
+
id(v): f"builtins.{k}"
|
475 |
+
for k, v in builtins.__dict__.items()
|
476 |
+
if not k.startswith("_") and not callable(v)
|
477 |
+
}
|
478 |
+
return rv
|
479 |
+
|
480 |
+
|
481 |
+
_lazy_module_init: Dict[str, List[Callable[[], None]]] = defaultdict(list)
|
482 |
+
|
483 |
+
|
484 |
+
def add_module_init_func(name: str, init_func: Callable[[], None]) -> None:
|
485 |
+
"""Register a module without eagerly importing it"""
|
486 |
+
# If the module is already imported, eagerly run init
|
487 |
+
assert "." not in name, f"Expected a root module name, but got {name}"
|
488 |
+
if name in sys.modules:
|
489 |
+
init_func()
|
490 |
+
|
491 |
+
# Module is not yet imported, delay processing until needed
|
492 |
+
assert name not in _lazy_module_init
|
493 |
+
_lazy_module_init[name].append(init_func)
|
494 |
+
|
495 |
+
|
496 |
+
def _maybe_init_lazy_module(obj: object) -> None:
|
497 |
+
module = getattr(obj, "__module__", None)
|
498 |
+
if module is None:
|
499 |
+
return
|
500 |
+
|
501 |
+
base_module = module.split(".")[0]
|
502 |
+
init_funcs = _lazy_module_init.pop(base_module, None)
|
503 |
+
if init_funcs is not None:
|
504 |
+
for fn in init_funcs:
|
505 |
+
fn()
|
506 |
+
|
507 |
+
|
508 |
+
def is_allowed(obj) -> bool:
|
509 |
+
"""Is this safe to trace like torch.add ?"""
|
510 |
+
_maybe_init_lazy_module(obj)
|
511 |
+
|
512 |
+
if id(obj) in _disallowed_function_ids:
|
513 |
+
return False
|
514 |
+
|
515 |
+
if id(obj) in _allowed_function_ids:
|
516 |
+
return True
|
517 |
+
|
518 |
+
# torch.ops is populated lazily so we don't necessarily have them in
|
519 |
+
# _allowed_function_ids. Figure it out by testing the type instead
|
520 |
+
# in those cases
|
521 |
+
return isinstance(
|
522 |
+
obj,
|
523 |
+
(torch._ops.OpOverloadPacket, torch._ops.OpOverload, torch._ops._OpNamespace),
|
524 |
+
)
|
525 |
+
|
526 |
+
|
527 |
+
def is_user_defined_allowed(obj) -> bool:
|
528 |
+
_maybe_init_lazy_module(obj)
|
529 |
+
return id(obj) in _allowed_user_defined_function_ids
|
530 |
+
|
531 |
+
|
532 |
+
def is_forbidden(obj) -> bool:
|
533 |
+
_maybe_init_lazy_module(obj)
|
534 |
+
return getattr(obj, "_dynamo_forbidden", False)
|
535 |
+
|
536 |
+
|
537 |
+
def torch_get_name(obj, default) -> str:
|
538 |
+
"""Convert a torch.* function to a string"""
|
539 |
+
return _allowed_function_ids.get_name(id(obj), default)
|
540 |
+
|
541 |
+
|
542 |
+
def is_builtin_callable(obj) -> bool:
|
543 |
+
return id(obj) in _builtin_function_ids
|
544 |
+
|
545 |
+
|
546 |
+
def is_builtin_constant(obj) -> bool:
|
547 |
+
return id(obj) in _builtin_constant_ids
|
548 |
+
|
549 |
+
|
550 |
+
def is_numpy(obj) -> bool:
|
551 |
+
if np is None:
|
552 |
+
return False
|
553 |
+
return isinstance(obj, (np.ndarray, np.generic)) or id(obj) in _numpy_function_ids
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (187 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/common.cpython-310.pyc
ADDED
Binary file (3.11 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/cudagraphs.cpython-310.pyc
ADDED
Binary file (4.83 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/debugging.cpython-310.pyc
ADDED
Binary file (8.66 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/distributed.cpython-310.pyc
ADDED
Binary file (15 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/inductor.cpython-310.pyc
ADDED
Binary file (552 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/onnxrt.cpython-310.pyc
ADDED
Binary file (1.29 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/registry.cpython-310.pyc
ADDED
Binary file (3.73 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/tensorrt.cpython-310.pyc
ADDED
Binary file (263 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/torchxla.cpython-310.pyc
ADDED
Binary file (1.92 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/__pycache__/tvm.cpython-310.pyc
ADDED
Binary file (5.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/common.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
import functools
|
3 |
+
import logging
|
4 |
+
from unittest.mock import patch
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch._dynamo import disable
|
8 |
+
from torch._dynamo.utils import counters, defake
|
9 |
+
from torch._functorch.aot_autograd import aot_module_simplified
|
10 |
+
from torch.utils._python_dispatch import _disable_current_modes
|
11 |
+
|
12 |
+
log = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
|
15 |
+
def aot_autograd(**kwargs):
|
16 |
+
def compiler_fn(gm: torch.fx.GraphModule, example_inputs):
|
17 |
+
# Hack to get around circular import problems with aot_eager_decomp_partition
|
18 |
+
if callable(kwargs.get("decompositions")):
|
19 |
+
kwargs["decompositions"] = kwargs["decompositions"]()
|
20 |
+
|
21 |
+
counters["aot_autograd"]["total"] += 1
|
22 |
+
use_fallback = False
|
23 |
+
|
24 |
+
if use_fallback:
|
25 |
+
log.debug("Unable to use AOT Autograd because graph has mutation")
|
26 |
+
counters["aot_autograd"]["not_ok"] += 1
|
27 |
+
return gm
|
28 |
+
|
29 |
+
# OK attempt to compile
|
30 |
+
|
31 |
+
def _wrapped_bw_compiler(*args, **kwargs):
|
32 |
+
# stop TorchDynamo from trying to compile our generated backwards pass
|
33 |
+
return disable(disable(bw_compiler)(*args, **kwargs))
|
34 |
+
|
35 |
+
bw_compiler = kwargs.get("bw_compiler") or kwargs["fw_compiler"]
|
36 |
+
kwargs["bw_compiler"] = _wrapped_bw_compiler
|
37 |
+
kwargs["inference_compiler"] = (
|
38 |
+
kwargs.get("inference_compiler") or kwargs["fw_compiler"]
|
39 |
+
)
|
40 |
+
|
41 |
+
from functorch.compile import nop
|
42 |
+
|
43 |
+
from torch._inductor.debug import enable_aot_logging
|
44 |
+
|
45 |
+
# debug asserts slow down compile time noticeably,
|
46 |
+
# So only default them on when the aot_eager backend is used.
|
47 |
+
if kwargs.get("fw_compiler", None) == nop:
|
48 |
+
patch_config = patch("functorch.compile.config.debug_assert", True)
|
49 |
+
else:
|
50 |
+
patch_config = contextlib.nullcontext()
|
51 |
+
|
52 |
+
try:
|
53 |
+
# NB: NOT cloned!
|
54 |
+
with enable_aot_logging(), patch_config:
|
55 |
+
cg = aot_module_simplified(gm, example_inputs, **kwargs)
|
56 |
+
counters["aot_autograd"]["ok"] += 1
|
57 |
+
return disable(cg)
|
58 |
+
except Exception:
|
59 |
+
counters["aot_autograd"]["not_ok"] += 1
|
60 |
+
raise
|
61 |
+
|
62 |
+
return compiler_fn
|
63 |
+
|
64 |
+
|
65 |
+
def mem_efficient_fusion_kwargs(use_decomps):
|
66 |
+
from functorch.compile import (
|
67 |
+
default_decompositions,
|
68 |
+
min_cut_rematerialization_partition,
|
69 |
+
ts_compile,
|
70 |
+
)
|
71 |
+
|
72 |
+
kwargs = {
|
73 |
+
# these are taken from memory_efficient_fusion()
|
74 |
+
"fw_compiler": ts_compile,
|
75 |
+
"bw_compiler": ts_compile,
|
76 |
+
"partition_fn": min_cut_rematerialization_partition,
|
77 |
+
}
|
78 |
+
|
79 |
+
if use_decomps:
|
80 |
+
kwargs["decompositions"] = default_decompositions
|
81 |
+
|
82 |
+
return kwargs
|
83 |
+
|
84 |
+
|
85 |
+
def fake_tensor_unsupported(fn):
|
86 |
+
"""
|
87 |
+
Decorator for backends that need real inputs. We swap out fake
|
88 |
+
tensors for zero tensors.
|
89 |
+
"""
|
90 |
+
|
91 |
+
@functools.wraps(fn)
|
92 |
+
def wrapper(model, inputs, **kwargs):
|
93 |
+
with _disable_current_modes():
|
94 |
+
inputs = list(map(defake, inputs))
|
95 |
+
return fn(model, inputs, **kwargs)
|
96 |
+
|
97 |
+
return wrapper
|
98 |
+
|
99 |
+
|
100 |
+
def device_from_inputs(example_inputs) -> torch.device:
|
101 |
+
for x in example_inputs:
|
102 |
+
if hasattr(x, "device"):
|
103 |
+
return x.device
|
104 |
+
|
105 |
+
|
106 |
+
def dtype_from_inputs(example_inputs) -> torch.dtype:
|
107 |
+
for x in example_inputs:
|
108 |
+
if hasattr(x, "dtype"):
|
109 |
+
return x.dtype
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/cudagraphs.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import operator
|
3 |
+
from collections import defaultdict
|
4 |
+
from typing import Set
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from torch.fx import GraphModule
|
9 |
+
from torch.fx.passes.backends.cudagraphs import partition_cudagraphs
|
10 |
+
from torch.multiprocessing.reductions import StorageWeakRef
|
11 |
+
from torch.nn import Module
|
12 |
+
from torch.utils._pytree import tree_map
|
13 |
+
from .common import aot_autograd
|
14 |
+
from .registry import register_backend
|
15 |
+
|
16 |
+
log = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
def cloner(t):
|
20 |
+
if isinstance(t, torch.Tensor):
|
21 |
+
return t.clone()
|
22 |
+
else:
|
23 |
+
return t
|
24 |
+
|
25 |
+
|
26 |
+
class CudaGraphModule(Module):
|
27 |
+
gm: GraphModule
|
28 |
+
mutated_inputs: Set[int]
|
29 |
+
|
30 |
+
def __init__(self, gm, mutated_inputs):
|
31 |
+
super().__init__()
|
32 |
+
self.gm = gm
|
33 |
+
self.mutated_inputs = mutated_inputs
|
34 |
+
|
35 |
+
warmed_up = False
|
36 |
+
|
37 |
+
# these are all None or all filled
|
38 |
+
graph = None
|
39 |
+
static_inputs = None
|
40 |
+
static_outputs = None
|
41 |
+
|
42 |
+
# NB: we override __call__ as we don't need any nn.Module machinery
|
43 |
+
# and to reduce overhead
|
44 |
+
def __call__(self, *args):
|
45 |
+
# TODO: once we've recorded here, we'd like to replace the __call__
|
46 |
+
# implementation with compiled bytecode that copies into static, replays
|
47 |
+
# the cuda graph, then copies out. First condition is the hotpath,
|
48 |
+
# needs optimizing
|
49 |
+
if self.graph is not None:
|
50 |
+
assert len(args) == len(self.static_inputs)
|
51 |
+
for dst, src in zip(self.static_inputs, args):
|
52 |
+
dst.copy_(src)
|
53 |
+
self.graph.replay()
|
54 |
+
for i in self.mutated_inputs:
|
55 |
+
args[i].copy_(self.static_inputs[i])
|
56 |
+
return tree_map(cloner, self.static_outputs)
|
57 |
+
|
58 |
+
elif self.warmed_up:
|
59 |
+
# record
|
60 |
+
self.static_inputs = [x.clone() for x in args]
|
61 |
+
self.graph = torch.cuda.CUDAGraph()
|
62 |
+
with torch.cuda.graph(self.graph):
|
63 |
+
self.static_outputs = self.gm(*self.static_inputs)
|
64 |
+
# NB: recording doesn't actually run the operations, so
|
65 |
+
# now we immediately replay the graph to serve up the result
|
66 |
+
self.graph.replay()
|
67 |
+
for i in self.mutated_inputs:
|
68 |
+
args[i].copy_(self.static_inputs[i])
|
69 |
+
return tree_map(cloner, self.static_outputs)
|
70 |
+
|
71 |
+
else:
|
72 |
+
# warmup
|
73 |
+
stream = torch.cuda.Stream()
|
74 |
+
stream.wait_stream(torch.cuda.current_stream())
|
75 |
+
with torch.cuda.stream(stream):
|
76 |
+
r = self.gm(*args)
|
77 |
+
torch.cuda.current_stream().wait_stream(stream)
|
78 |
+
self.warmed_up = True
|
79 |
+
return r
|
80 |
+
|
81 |
+
|
82 |
+
# Interpreter versions of these passes can be found at
|
83 |
+
# https://gist.github.com/ezyang/df2d746cac3b2c7d55c181e37c57ef23
|
84 |
+
|
85 |
+
|
86 |
+
def find_input_mutations(g):
|
87 |
+
def meta_fk(meta):
|
88 |
+
return meta["val"] if "val" in meta else meta["fake_result"]
|
89 |
+
|
90 |
+
inputs = defaultdict(set)
|
91 |
+
input_idx = 0
|
92 |
+
mutated_inputs = set()
|
93 |
+
for n in g.nodes:
|
94 |
+
if n.op == "placeholder":
|
95 |
+
inputs[StorageWeakRef(meta_fk(n.meta)._typed_storage())].add(input_idx)
|
96 |
+
input_idx += 1
|
97 |
+
elif n.op == "call_function":
|
98 |
+
if n.target is operator.getitem:
|
99 |
+
continue
|
100 |
+
schema = n.target._schema
|
101 |
+
for i, arg in enumerate(schema.arguments):
|
102 |
+
if i < len(n.args):
|
103 |
+
argument = n.args[i]
|
104 |
+
else:
|
105 |
+
if arg.name not in n.kwargs:
|
106 |
+
continue
|
107 |
+
argument = n.kwargs[arg.name]
|
108 |
+
mut_arg = False
|
109 |
+
if arg.alias_info:
|
110 |
+
if arg.alias_info.is_write:
|
111 |
+
mut_arg = True
|
112 |
+
if mut_arg:
|
113 |
+
# TODO: not correct for args that contain tensors in a struct
|
114 |
+
# like list
|
115 |
+
mutated_inputs |= inputs[
|
116 |
+
StorageWeakRef(meta_fk(argument.meta)._typed_storage())
|
117 |
+
]
|
118 |
+
# TODO: error on unrecognized nodes
|
119 |
+
return mutated_inputs
|
120 |
+
|
121 |
+
|
122 |
+
# Mutates input graph
|
123 |
+
def apply_cuda_graphs(gm):
|
124 |
+
for n in gm.graph.nodes:
|
125 |
+
if n.op == "call_module":
|
126 |
+
assert not n.kwargs
|
127 |
+
submod = gm.get_submodule(n.target)
|
128 |
+
gm.delete_submodule(n.target)
|
129 |
+
mutated_inputs = find_input_mutations(submod.graph)
|
130 |
+
gm.add_submodule(n.target, CudaGraphModule(submod, mutated_inputs))
|
131 |
+
# NB: we didn't actually change the graph, no need for recompile
|
132 |
+
|
133 |
+
|
134 |
+
def cudagraphs(model, inputs):
|
135 |
+
model = partition_cudagraphs(model, inputs)
|
136 |
+
apply_cuda_graphs(model)
|
137 |
+
return model
|
138 |
+
|
139 |
+
|
140 |
+
aot_cudagraphs = aot_autograd(fw_compiler=cudagraphs, bw_compiler=cudagraphs)
|
141 |
+
|
142 |
+
# aot_cudagraphs only applies CUDA graphs to the graph. It is also helpful
|
143 |
+
# for debugging and can serve as a perf baseline.
|
144 |
+
# TODO(jansel): rename to just "cudagraphs"?
|
145 |
+
register_backend(name="cudagraphs", compiler_fn=aot_cudagraphs)
|
146 |
+
|
147 |
+
|
148 |
+
def cudagraphs_inner(model, inputs, copy_outputs=True, copy_inputs=True):
|
149 |
+
"""This isn't registered as a backend, but is used in some benchmarks"""
|
150 |
+
assert isinstance(inputs, (list, tuple))
|
151 |
+
if copy_inputs:
|
152 |
+
static_inputs = [torch.zeros_like(x) for x in inputs]
|
153 |
+
else:
|
154 |
+
static_inputs = list(inputs)
|
155 |
+
|
156 |
+
# warmup
|
157 |
+
torch.cuda.synchronize()
|
158 |
+
stream = torch.cuda.Stream()
|
159 |
+
stream.wait_stream(torch.cuda.current_stream())
|
160 |
+
with torch.cuda.stream(stream):
|
161 |
+
model(*inputs)
|
162 |
+
stream.synchronize()
|
163 |
+
torch.cuda.current_stream().wait_stream(stream)
|
164 |
+
torch.cuda.synchronize()
|
165 |
+
|
166 |
+
# record
|
167 |
+
graph = torch.cuda.CUDAGraph()
|
168 |
+
with torch.cuda.graph(graph, stream=stream):
|
169 |
+
static_outputs = model(*static_inputs)
|
170 |
+
if not isinstance(static_outputs, (list, tuple)):
|
171 |
+
static_outputs = (static_outputs,)
|
172 |
+
|
173 |
+
def run(*new_inputs):
|
174 |
+
assert len(static_inputs) == len(new_inputs)
|
175 |
+
if copy_inputs:
|
176 |
+
for dst, src in zip(static_inputs, new_inputs):
|
177 |
+
dst.copy_(src)
|
178 |
+
graph.replay()
|
179 |
+
if copy_outputs:
|
180 |
+
return [x.clone() for x in static_outputs]
|
181 |
+
else:
|
182 |
+
return static_outputs
|
183 |
+
|
184 |
+
return run
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/debugging.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
import functools
|
3 |
+
from importlib import import_module
|
4 |
+
from typing import Any, List, Optional
|
5 |
+
|
6 |
+
from functorch.compile import min_cut_rematerialization_partition
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torch import _guards
|
10 |
+
from torch._functorch.compilers import ts_compile
|
11 |
+
from .common import aot_autograd
|
12 |
+
from .registry import register_debug_backend as register_backend
|
13 |
+
|
14 |
+
"""
|
15 |
+
This file contains TorchDynamo backends intended for debugging uses.
|
16 |
+
"""
|
17 |
+
|
18 |
+
|
19 |
+
@register_backend
|
20 |
+
def eager(gm, fake_tensor_inputs):
|
21 |
+
return gm
|
22 |
+
|
23 |
+
|
24 |
+
@register_backend
|
25 |
+
def pre_dispatch_eager(gm, fake_tensor_inputs):
|
26 |
+
from torch.fx.experimental.proxy_tensor import make_fx
|
27 |
+
|
28 |
+
def runnable_gm(*args):
|
29 |
+
return torch.fx.Interpreter(gm).run(*args)
|
30 |
+
|
31 |
+
pre_dispatch_gm = make_fx(runnable_gm, pre_dispatch=True)(*fake_tensor_inputs)
|
32 |
+
pre_dispatch_gm.print_readable()
|
33 |
+
|
34 |
+
return pre_dispatch_gm
|
35 |
+
|
36 |
+
|
37 |
+
@register_backend
|
38 |
+
def eager_debug(gm, fake_tensor_inputs):
|
39 |
+
from torch._subclasses.schema_check_mode import SchemaCheckMode
|
40 |
+
|
41 |
+
# We could add more debugging bits here.
|
42 |
+
# Right now, this backend can be used to check for and error on
|
43 |
+
# custom dispatcher ops that have incorrect schemas.
|
44 |
+
def inner(*args):
|
45 |
+
with SchemaCheckMode():
|
46 |
+
return torch.fx.Interpreter(gm).run(*args)
|
47 |
+
|
48 |
+
return inner
|
49 |
+
|
50 |
+
|
51 |
+
@register_backend(name="ts")
|
52 |
+
def torchscript(gm, fake_tensor_inputs):
|
53 |
+
return torch.jit.script(gm)
|
54 |
+
|
55 |
+
|
56 |
+
# used boxed call to discard inputs when they are no longer needed
|
57 |
+
def boxed_nop(fx_g, example_inputs):
|
58 |
+
def run(args):
|
59 |
+
return torch.fx.Interpreter(fx_g).boxed_run(args)
|
60 |
+
|
61 |
+
run._boxed_call = True
|
62 |
+
return run
|
63 |
+
|
64 |
+
|
65 |
+
# Useful for debugging purpose
|
66 |
+
# aot_eager uses AOT Autograd backend with nop compiler. It is helpful in debugging.
|
67 |
+
aot_eager = aot_autograd(
|
68 |
+
fw_compiler=boxed_nop, partition_fn=min_cut_rematerialization_partition
|
69 |
+
)
|
70 |
+
register_backend(name="aot_eager", compiler_fn=aot_eager)
|
71 |
+
|
72 |
+
aot_eager_default_partitioner = aot_autograd(fw_compiler=boxed_nop)
|
73 |
+
register_backend(
|
74 |
+
name="aot_eager_default_partitioner", compiler_fn=aot_eager_default_partitioner
|
75 |
+
)
|
76 |
+
|
77 |
+
# Uses TorchInductor AOT Autograd decomps and partitioner to isolate aot vs
|
78 |
+
# inductor problems.
|
79 |
+
# aot_eager_decomp_partition just replaces the inductor compiler with nop to help
|
80 |
+
# isolate inductor vs aot_eager errors
|
81 |
+
aot_eager_decomp_partition = aot_autograd(
|
82 |
+
# these are taken from memory_efficient_fusion()
|
83 |
+
fw_compiler=boxed_nop,
|
84 |
+
bw_compiler=boxed_nop,
|
85 |
+
# NB: lambda here is to delay import of inductor
|
86 |
+
decompositions=lambda: import_module(
|
87 |
+
"torch._inductor.compile_fx"
|
88 |
+
).select_decomp_table(),
|
89 |
+
partition_fn=functools.partial(
|
90 |
+
min_cut_rematerialization_partition, compiler="inductor"
|
91 |
+
),
|
92 |
+
)
|
93 |
+
register_backend(
|
94 |
+
name="aot_eager_decomp_partition", compiler_fn=aot_eager_decomp_partition
|
95 |
+
)
|
96 |
+
|
97 |
+
# AOT Autograd with torchscript backend. Default partitioner.
|
98 |
+
# aot_ts uses torchscript backend. We can use this with both nnc and nvfuser
|
99 |
+
# by using the relevant fuser with torch.jit.fuser(...)
|
100 |
+
aot_ts = aot_autograd(fw_compiler=ts_compile)
|
101 |
+
register_backend(name="aot_ts", compiler_fn=aot_ts)
|
102 |
+
|
103 |
+
# These buggy backends are used for inducing bugs so that we can test
|
104 |
+
# our repro extraction / minifier scripts
|
105 |
+
|
106 |
+
|
107 |
+
class ReluCompileError(Exception):
|
108 |
+
pass
|
109 |
+
|
110 |
+
|
111 |
+
class TestingOnlyCompileError(Exception):
|
112 |
+
pass
|
113 |
+
|
114 |
+
|
115 |
+
@register_backend
|
116 |
+
def relu_compile_error_TESTING_ONLY(gm: torch.fx.GraphModule, example_inputs):
|
117 |
+
for node in gm.graph.nodes:
|
118 |
+
if node.target == torch.relu:
|
119 |
+
raise ReluCompileError()
|
120 |
+
return gm
|
121 |
+
|
122 |
+
|
123 |
+
@register_backend
|
124 |
+
def relu_runtime_error_TESTING_ONLY(gm: torch.fx.GraphModule, example_inputs):
|
125 |
+
for node in gm.graph.nodes:
|
126 |
+
if node.target == torch.relu:
|
127 |
+
node.target = torch._assert
|
128 |
+
node.args = (False, "ReluRuntimeError")
|
129 |
+
gm.recompile()
|
130 |
+
return gm
|
131 |
+
|
132 |
+
|
133 |
+
@register_backend
|
134 |
+
def relu_accuracy_error_TESTING_ONLY(gm: torch.fx.GraphModule, example_inputs):
|
135 |
+
for node in gm.graph.nodes:
|
136 |
+
if node.target == torch.relu:
|
137 |
+
node.target = torch.add
|
138 |
+
node.args = (node.args[0], 1)
|
139 |
+
gm.recompile()
|
140 |
+
|
141 |
+
return gm
|
142 |
+
|
143 |
+
|
144 |
+
@register_backend
|
145 |
+
def non_leaf_compile_error_TESTING_ONLY(gm: torch.fx.GraphModule, example_inputs):
|
146 |
+
# Require at least one non-trivial thing in the graph,
|
147 |
+
# see https://github.com/pytorch/pytorch/issues/102898
|
148 |
+
for node in gm.graph.nodes:
|
149 |
+
if node.op == "call_function":
|
150 |
+
break
|
151 |
+
else:
|
152 |
+
return gm
|
153 |
+
for t in example_inputs:
|
154 |
+
if not t.is_leaf:
|
155 |
+
raise TestingOnlyCompileError()
|
156 |
+
return gm
|
157 |
+
|
158 |
+
|
159 |
+
@dataclasses.dataclass
|
160 |
+
class ExplainOutput:
|
161 |
+
"""
|
162 |
+
This is the output of :func:`torch._dynamo.explain()`
|
163 |
+
There is no reason to create this class directly.
|
164 |
+
"""
|
165 |
+
|
166 |
+
graphs: List[torch.fx.GraphModule]
|
167 |
+
graph_count: int
|
168 |
+
graph_break_count: int
|
169 |
+
break_reasons: List[
|
170 |
+
Any
|
171 |
+
] # Type is GraphCompileReason but doesn't matter for this purpose
|
172 |
+
op_count: int
|
173 |
+
ops_per_graph: Optional[List[torch.fx.Node]] = None
|
174 |
+
out_guards: Optional[List[_guards.Guard]] = None
|
175 |
+
compile_times: Optional[str] = None
|
176 |
+
|
177 |
+
def __str__(self):
|
178 |
+
output = f"Graph Count: {self.graph_count}\n"
|
179 |
+
output += f"Graph Break Count: {self.graph_break_count}\n"
|
180 |
+
output += f"Op Count: {self.op_count}\n"
|
181 |
+
|
182 |
+
output += "Break Reasons:\n"
|
183 |
+
for idx, break_reason in enumerate(self.break_reasons):
|
184 |
+
output += f" Break Reason {idx+1}:\n"
|
185 |
+
output += f" Reason: {break_reason.reason}\n"
|
186 |
+
output += " User Stack:\n"
|
187 |
+
for frame_summary in break_reason.user_stack:
|
188 |
+
output += f" {frame_summary}\n"
|
189 |
+
|
190 |
+
if self.ops_per_graph is not None:
|
191 |
+
output += "Ops per Graph:\n"
|
192 |
+
for idx, ops in enumerate(self.ops_per_graph):
|
193 |
+
output += f" Ops {idx+1}:\n"
|
194 |
+
for op in ops:
|
195 |
+
output += f" {op}\n"
|
196 |
+
|
197 |
+
if self.out_guards is not None:
|
198 |
+
output += "Out Guards:\n"
|
199 |
+
for i, guard in enumerate(self.out_guards):
|
200 |
+
output += f" Guard {i+1}:\n"
|
201 |
+
output += f" {str(guard)}"
|
202 |
+
|
203 |
+
if self.compile_times is not None:
|
204 |
+
output += f"Compile Times: {self.compile_times}\n"
|
205 |
+
return output
|
206 |
+
|
207 |
+
|
208 |
+
def _explain_graph_detail(
|
209 |
+
gm: torch.fx.GraphModule, graphs, op_count, ops_per_graph, break_reasons
|
210 |
+
):
|
211 |
+
"""
|
212 |
+
This function is a utility which processes a torch.fx.GraphModule and
|
213 |
+
accumulates information about its ops, graph breaks, and other details. It
|
214 |
+
is intended to be used by the ExplainWithBackend class and
|
215 |
+
`torch._dynamo.explain()` to provide details from Dynamo's graph capture.
|
216 |
+
|
217 |
+
Parameters:
|
218 |
+
gm (torch.fx.GraphModule): The GraphModule to be processed.
|
219 |
+
graphs (list): A list that accumulates all the GraphModules processed.
|
220 |
+
op_count (int): The total count of operations in all GraphModules processed so far.
|
221 |
+
ops_per_graph (list): A list that accumulates the operations of each GraphModule.
|
222 |
+
break_reasons (list): A list that accumulates the reasons for breaks in each GraphModule.
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
tuple: A tuple containing the processed GraphModule, the updated lists of graphs,
|
226 |
+
operations per graph, and break reasons, and the updated operation count.
|
227 |
+
"""
|
228 |
+
graphs.append(gm)
|
229 |
+
ops = [node.target for node in gm.graph.nodes if node.op == "call_function"]
|
230 |
+
op_count += len(ops)
|
231 |
+
ops_per_graph.append(ops)
|
232 |
+
if gm.compile_subgraph_reason.graph_break:
|
233 |
+
break_reasons.append(gm.compile_subgraph_reason)
|
234 |
+
|
235 |
+
return gm, graphs, op_count, ops_per_graph, break_reasons
|
236 |
+
|
237 |
+
|
238 |
+
class ExplainWithBackend:
|
239 |
+
"""
|
240 |
+
This class is intended to be used as a backend for `torch.compile`. It is
|
241 |
+
composable with other backends. When used in this way, it accumulates
|
242 |
+
information about graph breaks, ops, and other info and provides a string
|
243 |
+
representation summarizing this information.
|
244 |
+
|
245 |
+
Attributes:
|
246 |
+
backend (str): The name of the backend to use for optimization.
|
247 |
+
graphs (list): A list of the graphs captured by TorchDynamo.
|
248 |
+
op_count (int): The total number of operations in all optimized graphs.
|
249 |
+
break_reasons (list): A list of graph break reasons with stack traces.
|
250 |
+
|
251 |
+
Example Usage:
|
252 |
+
def fn(x):
|
253 |
+
x = torch.sigmoid(x)
|
254 |
+
return x
|
255 |
+
|
256 |
+
torch._dynamo.reset()
|
257 |
+
eb = ExplainWithBackend("inductor")
|
258 |
+
optimized_fn = torch.compile(fn, backend=eb)
|
259 |
+
result = optimized_fn(torch.randn(5))
|
260 |
+
print(eb.output())
|
261 |
+
"""
|
262 |
+
|
263 |
+
def __init__(self, backend):
|
264 |
+
from .registry import lookup_backend
|
265 |
+
|
266 |
+
self.backend = lookup_backend(backend)
|
267 |
+
self.graphs = []
|
268 |
+
self.op_count = 0
|
269 |
+
self.break_reasons = []
|
270 |
+
|
271 |
+
def __call__(self, gm: torch.fx.GraphModule, example_inputs):
|
272 |
+
gm, self.graphs, self.op_count, _, self.break_reasons = _explain_graph_detail(
|
273 |
+
gm, self.graphs, self.op_count, [], self.break_reasons
|
274 |
+
)
|
275 |
+
return self.backend(gm, example_inputs)
|
276 |
+
|
277 |
+
def output(self) -> ExplainOutput:
|
278 |
+
graph_count = len(self.graphs)
|
279 |
+
output = ExplainOutput(
|
280 |
+
self.graphs,
|
281 |
+
graph_count,
|
282 |
+
graph_count - 1,
|
283 |
+
self.break_reasons,
|
284 |
+
self.op_count,
|
285 |
+
)
|
286 |
+
|
287 |
+
return output
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/distributed.py
ADDED
@@ -0,0 +1,465 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import traceback
|
3 |
+
from dataclasses import dataclass, field
|
4 |
+
from typing import Any, List, Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch import fx
|
8 |
+
from torch._dynamo.output_graph import GraphCompileReason
|
9 |
+
from torch._dynamo.utils import deepcopy_to_fake_tensor, detect_fake_mode
|
10 |
+
from torch.fx.node import Node
|
11 |
+
|
12 |
+
# Regular log messages should go through 'log'.
|
13 |
+
# ddp_graph_log is a separate artifact logger reserved for dumping graphs.
|
14 |
+
# See docs/source/logging.rst for more info.
|
15 |
+
log = logging.getLogger(__name__)
|
16 |
+
ddp_graph_log = torch._logging.getArtifactLogger(__name__, "ddp_graphs")
|
17 |
+
|
18 |
+
|
19 |
+
def args_str(args):
|
20 |
+
# a debug helper
|
21 |
+
if torch.is_tensor(args):
|
22 |
+
return f"T[{args.shape}]"
|
23 |
+
elif isinstance(args, tuple):
|
24 |
+
return f"tuple({', '.join([args_str(x) for x in args])})"
|
25 |
+
elif isinstance(args, list):
|
26 |
+
return f"list({', '.join([args_str(x) for x in args])})"
|
27 |
+
else:
|
28 |
+
return str(args)
|
29 |
+
|
30 |
+
|
31 |
+
@dataclass
|
32 |
+
class Bucket:
|
33 |
+
size: int = 0
|
34 |
+
params: List[str] = field(default_factory=list)
|
35 |
+
nodes: List[fx.Node] = field(default_factory=list)
|
36 |
+
|
37 |
+
# param_ids is just used for unit testing
|
38 |
+
param_ids: List = field(default_factory=list)
|
39 |
+
|
40 |
+
# keep track of any buckets that were extended for logging purposes
|
41 |
+
opcount_increased_to_capture_external_output: int = 0
|
42 |
+
paramsize_before_opcount_increase: int = 0
|
43 |
+
|
44 |
+
|
45 |
+
def bucket_has_external_output(bucket: Bucket) -> bool:
|
46 |
+
nodes_in_bucket = set()
|
47 |
+
# we want to iterate in reverse order, but clumsi-luckily the bucket.nodes list was already created backwards
|
48 |
+
# so we don't reverse it here
|
49 |
+
for node in bucket.nodes:
|
50 |
+
# assume node.op != output, since those are filtered in the original iteration
|
51 |
+
nodes_in_bucket.add(node)
|
52 |
+
for user in node.users:
|
53 |
+
if user not in nodes_in_bucket:
|
54 |
+
return True
|
55 |
+
return False
|
56 |
+
|
57 |
+
|
58 |
+
def pretty_print_buckets(buckets: List[Bucket], bucket_bytes_cap: int):
|
59 |
+
headers = ("Index", "Size (b)", "Param Names")
|
60 |
+
rows = []
|
61 |
+
extended_buckets = []
|
62 |
+
for idx, bucket in enumerate(reversed(buckets)):
|
63 |
+
if len(bucket.params) > 0:
|
64 |
+
rows.append((idx, bucket.size, bucket.params[0]))
|
65 |
+
for param in bucket.params[1:]:
|
66 |
+
rows.append((None, None, param))
|
67 |
+
if bucket.opcount_increased_to_capture_external_output > 0:
|
68 |
+
extended_buckets.append(
|
69 |
+
(
|
70 |
+
idx,
|
71 |
+
bucket.opcount_increased_to_capture_external_output,
|
72 |
+
bucket.size - bucket.paramsize_before_opcount_increase,
|
73 |
+
)
|
74 |
+
)
|
75 |
+
|
76 |
+
if len(rows):
|
77 |
+
log.info(
|
78 |
+
"\nDDPOptimizer used bucket cap %s and created %d buckets. Enable debug logs for detailed bucket info.",
|
79 |
+
bucket_bytes_cap,
|
80 |
+
len(buckets),
|
81 |
+
)
|
82 |
+
|
83 |
+
if len(extended_buckets):
|
84 |
+
log.warning(
|
85 |
+
"Some buckets were extended beyond their requested parameter capacities"
|
86 |
+
" in order to ensure each subgraph has an output node, required for fx graph partitioning."
|
87 |
+
" This can be the case when a subgraph would have only contained nodes performing inplace mutation,"
|
88 |
+
" and returning no logical outputs. This should not be a problem, unless it results in too few graph"
|
89 |
+
" partitions for optimal DDP performance."
|
90 |
+
)
|
91 |
+
|
92 |
+
try:
|
93 |
+
from tabulate import tabulate
|
94 |
+
|
95 |
+
log.debug(
|
96 |
+
"\nDDPOptimizer produced the following bucket assignments:\n%s",
|
97 |
+
tabulate(rows, headers=headers, tablefmt="simple_grid"),
|
98 |
+
)
|
99 |
+
|
100 |
+
if len(extended_buckets):
|
101 |
+
log.warning(
|
102 |
+
"DDPOptimizer extended these buckets to ensure per-subgraph output nodes:\n%s",
|
103 |
+
tabulate(
|
104 |
+
extended_buckets,
|
105 |
+
headers=("Index", "Extra Ops", "Extra Param Size (b)"),
|
106 |
+
tablefmt="simple_grid",
|
107 |
+
),
|
108 |
+
)
|
109 |
+
except ImportError:
|
110 |
+
log.debug(
|
111 |
+
"Please `pip install tabulate` in order to display ddp bucket sizes and diagnostic information."
|
112 |
+
)
|
113 |
+
else:
|
114 |
+
log.debug("DDPOptimizer captured no parameters and did not split this graph.")
|
115 |
+
|
116 |
+
|
117 |
+
def has_higher_order_op(gm):
|
118 |
+
# Check if there is a higher order op in the graph
|
119 |
+
for node in gm.graph.nodes:
|
120 |
+
if node.op == "get_attr":
|
121 |
+
maybe_param = getattr(gm, node.target)
|
122 |
+
if isinstance(maybe_param, torch.fx.GraphModule):
|
123 |
+
return True
|
124 |
+
return False
|
125 |
+
|
126 |
+
|
127 |
+
class DDPOptimizer:
|
128 |
+
"""Note [DDPOptimizer]
|
129 |
+
DDPOptimizer applies when dynamo compiles models wrapped in DistributedDataParallel (DDP),
|
130 |
+
breaking the dynamo graph into chunks to compile separately, with the breaks aligning to
|
131 |
+
the boundaries of gradient-allreduce buckets chosen by DDP.
|
132 |
+
|
133 |
+
Background/Motivation
|
134 |
+
- DDP uses allreduce collectives to synchronize partial gradients computed on different workers
|
135 |
+
- DDP groups gradient allreduces into 'buckets' to optimize communication efficiency of all-reduce
|
136 |
+
- Parameters grouped into buckets are assumed to be adjacent in time, so they become ready
|
137 |
+
at around the same time during backward and thus can share the same allreduce efficiently
|
138 |
+
- Allreduces must overlap with backward compute for optimal training performance
|
139 |
+
- DDP schedules allreduces using 'hooks' fired from the c++ autograd engine in pytorch, which
|
140 |
+
operates when individual grads become 'ready'
|
141 |
+
- Dynamo+AOTAutograd produces a single fused graph that runs 'atomically' from the perspective of the
|
142 |
+
autograd engine, such that all gradients become 'ready' at the same time. Hooks fire after the whole
|
143 |
+
fused backward function executes, preventing any overlap of compute and communication
|
144 |
+
|
145 |
+
Algorithm
|
146 |
+
- DDPOptimizer starts off with an FX graph traced by dynamo which represents forward. It can traverse
|
147 |
+
this graph in reverse order to determine the true order that gradients will become ready during backward.
|
148 |
+
- Parameter sizes are counted in reverse order, up to a bucket size limit, at which point a new bucket is started
|
149 |
+
and a graph break introduced
|
150 |
+
- Each of the subgraphs is compiled by the compiler provided to dynamo by the user, and then fused back together
|
151 |
+
into an outer module that is returned to the user
|
152 |
+
|
153 |
+
Notes
|
154 |
+
- It would be better to enforce (by adding an API to DDP) that the bucket splits chosen here are used by DDP,
|
155 |
+
and that DDP does not need to detect or optimize bucket order by observing execution at runtime, as it does
|
156 |
+
in eager.
|
157 |
+
- If Dynamo can't capture a whole graph for the portion of the model wrapped by DDP, this algorithm will currently
|
158 |
+
produce splits that do not necessarily align with the buckets used by DDP. This should result in performance
|
159 |
+
degradation approaching the baseline case where graph-splits are not used, but not worse.
|
160 |
+
- If the backend compiler fails to compile a single subgraph, it will execute eagerly despite the rest of the
|
161 |
+
subgraphs being compiled
|
162 |
+
- DDP has a 'parameters_and_buffers_to_ignore' field, which DDPOptimizer attempts to honor by reading markers
|
163 |
+
left by DDP on individual parameters. In cases where other transformations, such as reparameterization, are
|
164 |
+
also used, the ignore markers could be lost. If DDPOptimizer fails to ignore a parameter ignored by DDP,
|
165 |
+
it is not catastrophic but could impact performance by choosing sub-optimal bucket splits.
|
166 |
+
- DDPOptimizer always ignores all buffers, regardless of their ignore flag, since buffers do not require gradients,
|
167 |
+
and therefore aren't allreduced by DDP. (They are broadcast during forward, but this is not covered by
|
168 |
+
DDPOptimizer)
|
169 |
+
|
170 |
+
Debugging
|
171 |
+
- Generally, it is easiest to debug DDPOptimizer in a single process program, using pdb.
|
172 |
+
- In many cases, the log messages are helpful (they show bucket size assignments)-
|
173 |
+
just configure torch._dynamo.config.log_level to info or debug.
|
174 |
+
- See `benchmarks/dynamo/distributed.py` for a simple harness that will run a toy model or a torchbench model
|
175 |
+
in a single process (or with torchrun, in multiple processes)
|
176 |
+
|
177 |
+
Args:
|
178 |
+
bucket_bytes_cap (int): Controls the size of buckets, in bytes, used to determine graphbreaks. Should be
|
179 |
+
set to match the equivalent parameter on the original DDP module.
|
180 |
+
|
181 |
+
backend_compile_fn (callable): A dynamo compiler function, to be invoked to compile each subgraph.
|
182 |
+
|
183 |
+
first_bucket_cap (int): Controls the size of the first bucket. Should match DDP's first bucket cap. DDP
|
184 |
+
special-cases the first bucket size since it is sometimes optimal to start a small allreduce early.
|
185 |
+
|
186 |
+
"""
|
187 |
+
|
188 |
+
def __init__(
|
189 |
+
self,
|
190 |
+
bucket_bytes_cap: int,
|
191 |
+
backend_compile_fn,
|
192 |
+
first_bucket_cap: Optional[int] = None,
|
193 |
+
):
|
194 |
+
if first_bucket_cap is not None:
|
195 |
+
self.first_bucket_cap = first_bucket_cap
|
196 |
+
elif torch.distributed.is_available():
|
197 |
+
# this constant comes from C10D lib which is not always built
|
198 |
+
self.first_bucket_cap = torch.distributed._DEFAULT_FIRST_BUCKET_BYTES
|
199 |
+
else:
|
200 |
+
self.first_bucket_cap = bucket_bytes_cap
|
201 |
+
|
202 |
+
self.bucket_bytes_cap = bucket_bytes_cap
|
203 |
+
assert (
|
204 |
+
self.first_bucket_cap <= self.bucket_bytes_cap
|
205 |
+
), "First bucket should be smaller/equal to other buckets to get comms warmed up ASAP"
|
206 |
+
|
207 |
+
self.backend_compile_fn = backend_compile_fn
|
208 |
+
|
209 |
+
def _ignore_parameter(self, parameter):
|
210 |
+
return hasattr(parameter, "_ddp_ignored") and parameter._ddp_ignored
|
211 |
+
|
212 |
+
def compile_fn(self, gm: fx.GraphModule, example_inputs: List[torch.Tensor]):
|
213 |
+
"""
|
214 |
+
Implements graph splitting, first determining a set of of buckets by counting
|
215 |
+
parameter sizes in reverse graph order, then invoking the user/backend compiler
|
216 |
+
to compile each subgraph. Finally, stiches compiled graphs into one graphmodule
|
217 |
+
and returns its callable.
|
218 |
+
"""
|
219 |
+
|
220 |
+
# Today, optimize_ddp=True and keep_output_stride=False can lead to silent
|
221 |
+
# correctness issues. The problem is that ddp_optimizer works by partitioning
|
222 |
+
# the dynamo graph, sending each subgraph through aot autograd to inductor,
|
223 |
+
# and creates example inputs by eagerly interpreting each subgraph to get
|
224 |
+
# an output that with the same metadata that we'd get from eager mode.
|
225 |
+
# This is a problem though, for torch._inductor.config.keep_output_stride.
|
226 |
+
# The above config can cause the outputs of the first graph to have
|
227 |
+
# **different** strides from eager, causing the inputs that we pass
|
228 |
+
# to the second graph to be wrong.
|
229 |
+
# To really fix this, we would need to faithfully ask inductor
|
230 |
+
# what the outputs to each graph it expects are.
|
231 |
+
assert torch._inductor.config.keep_output_stride, """\
|
232 |
+
Detected that you are running DDP with torch.compile, along with these two flags:
|
233 |
+
- torch._dynamo.config.optimize_ddp = True
|
234 |
+
- torch._inductor.config.keep_output_stride = False
|
235 |
+
This combination of flags is incompatible. Please set keep_output_stride to False,
|
236 |
+
or file a github issue."""
|
237 |
+
fake_mode = detect_fake_mode(example_inputs)
|
238 |
+
if fake_mode is None:
|
239 |
+
fake_mode = torch._subclasses.fake_tensor.FakeTensorMode()
|
240 |
+
|
241 |
+
if has_higher_order_op(gm):
|
242 |
+
# This indicates presence of a higher order op. For now, we
|
243 |
+
# have no way to break the higher order op into two buckets.
|
244 |
+
# Allowing higher order ops in the graph also requires
|
245 |
+
# changes in the split_module, becuase graph splitter
|
246 |
+
# currently assumes that all the args of all ops are
|
247 |
+
# tensors, but in the case of higher order ops, it could be
|
248 |
+
# a graph module. As a workaround, we are shortcircuiting
|
249 |
+
raise NotImplementedError(
|
250 |
+
"DDPOptimizer backend: Found a higher order op in the graph. "
|
251 |
+
"This is not supported. Please turn off DDP optimizer using "
|
252 |
+
"torch._dynamo.config.optimize_ddp=False. Note that this can "
|
253 |
+
"cause performance degradation because there will be one bucket "
|
254 |
+
"for the entire Dynamo graph. Please refer to this issue - "
|
255 |
+
"https://github.com/pytorch/pytorch/issues/104674."
|
256 |
+
)
|
257 |
+
|
258 |
+
# 1: compute the partition map according to DDP bucket logic
|
259 |
+
buckets = [Bucket()] # (size, param_names)
|
260 |
+
for node in reversed(gm.graph.nodes):
|
261 |
+
if node.op in ("output", "placeholder"):
|
262 |
+
continue
|
263 |
+
|
264 |
+
if (
|
265 |
+
buckets[0].size >= self.bucket_bytes_cap
|
266 |
+
or len(buckets) == 1
|
267 |
+
and buckets[0].size >= self.first_bucket_cap
|
268 |
+
):
|
269 |
+
if bucket_has_external_output(buckets[0]):
|
270 |
+
buckets.insert(0, Bucket())
|
271 |
+
else:
|
272 |
+
# continue building this bucket past the point of filling its parameter capacity,
|
273 |
+
# to increase chances it contains at least one node that is either a global output or
|
274 |
+
# passed as input to a subsequent graph
|
275 |
+
|
276 |
+
if buckets[0].opcount_increased_to_capture_external_output == 0:
|
277 |
+
buckets[0].paramsize_before_opcount_increase = buckets[0].size
|
278 |
+
buckets[0].opcount_increased_to_capture_external_output += 1
|
279 |
+
|
280 |
+
if node.op == "call_module":
|
281 |
+
target = gm.get_submodule(node.target)
|
282 |
+
for name, param in target.named_parameters():
|
283 |
+
if param.requires_grad and not self._ignore_parameter(param):
|
284 |
+
buckets[0].size += param.untyped_storage().nbytes()
|
285 |
+
buckets[0].params.append(f"{node.target}_{name}")
|
286 |
+
buckets[0].param_ids.append(id(param))
|
287 |
+
elif node.op == "get_attr":
|
288 |
+
maybe_param = getattr(gm, node.target)
|
289 |
+
if maybe_param.requires_grad and not self._ignore_parameter(
|
290 |
+
maybe_param
|
291 |
+
):
|
292 |
+
buckets[0].size += maybe_param.untyped_storage().nbytes()
|
293 |
+
buckets[0].params.append(node.target)
|
294 |
+
buckets[0].param_ids.append(id(maybe_param))
|
295 |
+
|
296 |
+
# All nodes have to be mapped to a bucket, even if they don't have their own params
|
297 |
+
# Ignored params still end up in buckets, we just don't count them towards the capacity
|
298 |
+
buckets[0].nodes.append(node)
|
299 |
+
|
300 |
+
if len(buckets) > 1 and buckets[0].size == 0:
|
301 |
+
# we collected a small preamble graph with ops that don't include parameters, fuse it back
|
302 |
+
buckets[1].nodes.extend(buckets[0].nodes)
|
303 |
+
assert len(buckets[0].params) == 0, "Params should be empty if size is 0"
|
304 |
+
del buckets[0]
|
305 |
+
|
306 |
+
# stash buckets for testing/debugging purposes
|
307 |
+
self.buckets = buckets
|
308 |
+
pretty_print_buckets(buckets, self.bucket_bytes_cap)
|
309 |
+
|
310 |
+
if len(buckets) == 1:
|
311 |
+
# bypass split/fuse logic if there is only one bucket
|
312 |
+
return self.backend_compile_fn(gm, example_inputs)
|
313 |
+
|
314 |
+
# 2: partition the graphmodule according to bucket capacity
|
315 |
+
partition_map = {}
|
316 |
+
for idx, b in enumerate(buckets):
|
317 |
+
for node in b.nodes:
|
318 |
+
partition_map[node] = idx
|
319 |
+
|
320 |
+
split_gm = fx.passes.split_module.split_module(
|
321 |
+
gm, None, lambda node: partition_map[node]
|
322 |
+
)
|
323 |
+
|
324 |
+
debug_str = (
|
325 |
+
f"\n---orig graph---\n{gm.graph}\n"
|
326 |
+
+ f"\n---split graph---\n{split_gm.graph}\n"
|
327 |
+
)
|
328 |
+
for name, module in split_gm.named_modules():
|
329 |
+
if "." not in name and len(name):
|
330 |
+
# only print the submod graphs, not their children
|
331 |
+
debug_str += f"\n---{name} graph---\n{module.graph}\n"
|
332 |
+
debug_str += "\n---------------\n"
|
333 |
+
ddp_graph_log.debug(debug_str)
|
334 |
+
|
335 |
+
# 3: compile each of the partitioned submodules using the user-provided compiler
|
336 |
+
class SubmodCompiler(torch.fx.interpreter.Interpreter):
|
337 |
+
def __init__(self, module, compiler):
|
338 |
+
super().__init__(module)
|
339 |
+
self.compiler = compiler
|
340 |
+
|
341 |
+
def compile_submod(self, input_mod, args, kwargs):
|
342 |
+
"""
|
343 |
+
Compile the submodule,
|
344 |
+
using a wrapper to make sure its output is always a tuple,
|
345 |
+
which is required by AotAutograd based compilers
|
346 |
+
"""
|
347 |
+
assert len(kwargs) == 0, "We assume only args for these modules"
|
348 |
+
|
349 |
+
class WrapperModule(torch.nn.Module):
|
350 |
+
def __init__(self, submod, unwrap_singleton_tuple):
|
351 |
+
super().__init__()
|
352 |
+
self.submod = submod
|
353 |
+
self.unwrap_singleton_tuple = unwrap_singleton_tuple
|
354 |
+
|
355 |
+
def forward(self, *args):
|
356 |
+
x = self.submod(*args)
|
357 |
+
# TODO(whc)
|
358 |
+
# for some reason the isinstance check is necessary if I split one node per submod
|
359 |
+
# - even though I supposedly wrapped the output in a tuple in those cases, the real
|
360 |
+
# compiled module was still returning a tensor
|
361 |
+
if self.unwrap_singleton_tuple and isinstance(x, (tuple, list)):
|
362 |
+
return x[0]
|
363 |
+
return x
|
364 |
+
|
365 |
+
unwrap_singleton_tuple = False
|
366 |
+
for sn in input_mod.graph.nodes:
|
367 |
+
if sn.op == "output":
|
368 |
+
if not isinstance(sn.args[0], tuple):
|
369 |
+
unwrap_singleton_tuple = True
|
370 |
+
sn.args = (sn.args,)
|
371 |
+
|
372 |
+
input_mod.recompile()
|
373 |
+
input_mod.compile_subgraph_reason = GraphCompileReason(
|
374 |
+
"DDPOptimizer intentional graph-break (See Note [DDPOptimizer])."
|
375 |
+
" Set `torch._dynamo.config.optimize_ddp = False` to disable.",
|
376 |
+
[
|
377 |
+
# it's close to useless to get a real stacktrace here, and quite verbose.
|
378 |
+
traceback.FrameSummary(__file__, 0, DDPOptimizer),
|
379 |
+
],
|
380 |
+
)
|
381 |
+
wrapper = WrapperModule(
|
382 |
+
self.compiler(input_mod, args),
|
383 |
+
unwrap_singleton_tuple,
|
384 |
+
)
|
385 |
+
return wrapper
|
386 |
+
|
387 |
+
# Note:
|
388 |
+
#
|
389 |
+
# The way distributed works today around fake tensors can be somewhat confusing.
|
390 |
+
# Some of these codepaths are shared in both runtime, and compile time. The presence
|
391 |
+
# of a fake_mode, read off of fake tensor inputs, dictates how we will operate.
|
392 |
+
#
|
393 |
+
# A few things to keep in mind:
|
394 |
+
#
|
395 |
+
# 1) We invoke `compile_submod` with a real module. The output of that gets stored
|
396 |
+
# on the graph via `self.module.add_submodule(n.target, compiled_submod_real)`.
|
397 |
+
#
|
398 |
+
# 2) When running a call_module targeted node, if we have a fake_mode, we fakify the
|
399 |
+
# module we got from self.fetch_attr(n.target). Regardless of fake_mode, we then execute it.
|
400 |
+
#
|
401 |
+
# 3) Fake tensors should always be around during compile time.
|
402 |
+
#
|
403 |
+
# 4) Fake tensors should never be around at runtime.
|
404 |
+
#
|
405 |
+
# 5) We end up with a compilation mode that takes a real submodule and fake tensors,
|
406 |
+
# to match what aot_autograd expects. See Note: [Fake Modules and AOTAutograd]
|
407 |
+
def run_node(self, n: Node) -> Any:
|
408 |
+
args, kwargs = self.fetch_args_kwargs_from_env(n)
|
409 |
+
new_args = []
|
410 |
+
assert fake_mode
|
411 |
+
for arg in args:
|
412 |
+
if isinstance(arg, torch.Tensor) and not isinstance(
|
413 |
+
arg, torch._subclasses.FakeTensor
|
414 |
+
):
|
415 |
+
new_args.append(
|
416 |
+
torch._dynamo.utils.to_fake_tensor(arg, fake_mode)
|
417 |
+
)
|
418 |
+
else:
|
419 |
+
new_args.append(arg)
|
420 |
+
|
421 |
+
log.debug("run_node %s, %s got args %s", n.op, n.target, args_str(args))
|
422 |
+
assert isinstance(args, tuple)
|
423 |
+
assert isinstance(kwargs, dict)
|
424 |
+
|
425 |
+
if n.op == "call_module":
|
426 |
+
real_mod = self.fetch_attr(n.target)
|
427 |
+
if fake_mode:
|
428 |
+
curr_submod = deepcopy_to_fake_tensor(real_mod, fake_mode)
|
429 |
+
else:
|
430 |
+
curr_submod = real_mod
|
431 |
+
|
432 |
+
ddp_graph_log.debug(
|
433 |
+
"\n---%s graph---\n%s", n.target, curr_submod.graph
|
434 |
+
)
|
435 |
+
|
436 |
+
# When calling the compiler on the submod, inputs (new_args) are expected to
|
437 |
+
# be FakeTensors already since Dynamo would have made them FakeTensors in the
|
438 |
+
# non-DDP flow. However, the parameters are _not_ expected to be FakeTensors,
|
439 |
+
# since this wrapping happens during compilation
|
440 |
+
compiled_submod_real = self.compile_submod(
|
441 |
+
real_mod, new_args, kwargs
|
442 |
+
)
|
443 |
+
|
444 |
+
# We update the original (outer) graph with a call into the compiled module
|
445 |
+
# instead of the uncompiled one.
|
446 |
+
self.module.delete_submodule(n.target)
|
447 |
+
n.target = "compiled_" + n.target
|
448 |
+
self.module.add_submodule(n.target, compiled_submod_real)
|
449 |
+
|
450 |
+
# Finally, we have to produce inputs for use compiling the next submodule,
|
451 |
+
# and these need to be FakeTensors, so we execute the module under fake_mode
|
452 |
+
with fake_mode:
|
453 |
+
return curr_submod(*new_args, **kwargs)
|
454 |
+
else:
|
455 |
+
# placeholder or output nodes don't need to get compiled, just executed
|
456 |
+
return getattr(self, n.op)(n.target, new_args, kwargs)
|
457 |
+
|
458 |
+
submod_compiler = SubmodCompiler(split_gm, self.backend_compile_fn)
|
459 |
+
submod_compiler.run(*example_inputs)
|
460 |
+
split_gm.recompile()
|
461 |
+
|
462 |
+
ddp_graph_log.debug(
|
463 |
+
"\n---final graph---\n%s\n---------------\n", split_gm.graph
|
464 |
+
)
|
465 |
+
return split_gm
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/inductor.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
import sys
|
4 |
+
|
5 |
+
from torch._dynamo import register_backend
|
6 |
+
|
7 |
+
|
8 |
+
@register_backend
|
9 |
+
def inductor(*args, **kwargs):
|
10 |
+
if sys.platform == "win32":
|
11 |
+
raise RuntimeError("Windows not yet supported for inductor")
|
12 |
+
|
13 |
+
# do import here to avoid loading inductor into memory when it is not used
|
14 |
+
from torch._inductor.compile_fx import compile_fx
|
15 |
+
|
16 |
+
return compile_fx(*args, **kwargs)
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/onnxrt.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This backend is maintained by ONNX team. To direct issues
|
2 |
+
# to the right people, please tag related GitHub issues with `module: onnx`.
|
3 |
+
#
|
4 |
+
# Maintainers' Github IDs: wschin, thiagocrepaldi, BowenBao, abock
|
5 |
+
from torch.onnx._internal.onnxruntime import (
|
6 |
+
is_onnxrt_backend_supported,
|
7 |
+
torch_compile_backend,
|
8 |
+
)
|
9 |
+
from .registry import register_backend
|
10 |
+
|
11 |
+
|
12 |
+
def has_onnxruntime():
|
13 |
+
# FIXME(abock): update test/dynamo/test_backends.py to call is_onnxrt_backend_supported()
|
14 |
+
return is_onnxrt_backend_supported()
|
15 |
+
|
16 |
+
|
17 |
+
if is_onnxrt_backend_supported():
|
18 |
+
register_backend(name="onnxrt", compiler_fn=torch_compile_backend)
|
19 |
+
else:
|
20 |
+
|
21 |
+
def information_displaying_backend(*args, **kwargs):
|
22 |
+
raise ImportError(
|
23 |
+
"onnxrt is not registered as a backend. "
|
24 |
+
"Please make sure all dependencies such as "
|
25 |
+
"numpy, onnx, onnxscript, and onnxruntime-training are installed. "
|
26 |
+
"Suggested procedure to fix dependency problem:\n"
|
27 |
+
" (1) pip or conda install numpy onnx onnxscript onnxruntime-training.\n"
|
28 |
+
" (2) Open a new python terminal.\n"
|
29 |
+
" (3) Call the API `torch.onnx.is_onnxrt_backend_supported()`:\n"
|
30 |
+
" (4) If it returns `True`, then you can use `onnxrt` backend.\n"
|
31 |
+
" (5) If it returns `False`, please execute the package importing section in "
|
32 |
+
"torch/onnx/_internal/onnxruntime.py under pdb line-by-line to see which import fails."
|
33 |
+
)
|
34 |
+
|
35 |
+
register_backend(name="onnxrt", compiler_fn=information_displaying_backend)
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/registry.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import sys
|
3 |
+
from typing import Callable, Dict, List, Optional, Protocol, Sequence, Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch import fx
|
7 |
+
|
8 |
+
|
9 |
+
class CompiledFn(Protocol):
|
10 |
+
def __call__(self, *args: torch.Tensor) -> Tuple[torch.Tensor, ...]:
|
11 |
+
...
|
12 |
+
|
13 |
+
|
14 |
+
CompilerFn = Callable[[fx.GraphModule, List[torch.Tensor]], CompiledFn]
|
15 |
+
|
16 |
+
_BACKENDS: Dict[str, CompilerFn] = dict()
|
17 |
+
|
18 |
+
|
19 |
+
def register_backend(
|
20 |
+
compiler_fn: Optional[CompilerFn] = None,
|
21 |
+
name: Optional[str] = None,
|
22 |
+
tags: Sequence[str] = (),
|
23 |
+
):
|
24 |
+
"""
|
25 |
+
Decorator to add a given compiler to the registry to allow calling
|
26 |
+
`torch.compile` with string shorthand. Note: for projects not
|
27 |
+
imported by default, it might be easier to pass a function directly
|
28 |
+
as a backend and not use a string.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
compiler_fn: Callable taking a FX graph and fake tensor inputs
|
32 |
+
name: Optional name, defaults to `compiler_fn.__name__`
|
33 |
+
tags: Optional set of string tags to categorize backend with
|
34 |
+
"""
|
35 |
+
if compiler_fn is None:
|
36 |
+
# @register_backend(name="") syntax
|
37 |
+
return functools.partial(register_backend, name=name, tags=tags)
|
38 |
+
assert callable(compiler_fn)
|
39 |
+
name = name or compiler_fn.__name__
|
40 |
+
assert name not in _BACKENDS, f"duplicate name: {name}"
|
41 |
+
_BACKENDS[name] = compiler_fn
|
42 |
+
compiler_fn._tags = tuple(tags)
|
43 |
+
return compiler_fn
|
44 |
+
|
45 |
+
|
46 |
+
register_debug_backend = functools.partial(register_backend, tags=("debug",))
|
47 |
+
register_experimental_backend = functools.partial(
|
48 |
+
register_backend, tags=("experimental",)
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
def lookup_backend(compiler_fn):
|
53 |
+
"""Expand backend strings to functions"""
|
54 |
+
if isinstance(compiler_fn, str):
|
55 |
+
if compiler_fn not in _BACKENDS:
|
56 |
+
_lazy_import()
|
57 |
+
if compiler_fn not in _BACKENDS:
|
58 |
+
_lazy_import_entry_point(compiler_fn)
|
59 |
+
if compiler_fn not in _BACKENDS:
|
60 |
+
from ..exc import InvalidBackend
|
61 |
+
|
62 |
+
raise InvalidBackend(name=compiler_fn)
|
63 |
+
compiler_fn = _BACKENDS[compiler_fn]
|
64 |
+
return compiler_fn
|
65 |
+
|
66 |
+
|
67 |
+
def list_backends(exclude_tags=("debug", "experimental")) -> List[str]:
|
68 |
+
"""
|
69 |
+
Return valid strings that can be passed to:
|
70 |
+
|
71 |
+
torch.compile(..., backend="name")
|
72 |
+
"""
|
73 |
+
_lazy_import()
|
74 |
+
exclude_tags = set(exclude_tags or ())
|
75 |
+
return sorted(
|
76 |
+
[
|
77 |
+
name
|
78 |
+
for name, backend in _BACKENDS.items()
|
79 |
+
if not exclude_tags.intersection(backend._tags)
|
80 |
+
]
|
81 |
+
)
|
82 |
+
|
83 |
+
|
84 |
+
@functools.lru_cache(None)
|
85 |
+
def _lazy_import():
|
86 |
+
from .. import backends
|
87 |
+
from ..utils import import_submodule
|
88 |
+
|
89 |
+
import_submodule(backends)
|
90 |
+
|
91 |
+
from ..repro.after_dynamo import dynamo_minifier_backend
|
92 |
+
|
93 |
+
assert dynamo_minifier_backend is not None
|
94 |
+
|
95 |
+
|
96 |
+
@functools.lru_cache(None)
|
97 |
+
def _lazy_import_entry_point(backend_name: str):
|
98 |
+
from importlib.metadata import entry_points
|
99 |
+
|
100 |
+
compiler_fn = None
|
101 |
+
group_name = "torch_dynamo_backends"
|
102 |
+
if sys.version_info < (3, 10):
|
103 |
+
backend_eps = entry_points()
|
104 |
+
eps = [ep for ep in backend_eps.get(group_name, ()) if ep.name == backend_name]
|
105 |
+
if len(eps) > 0:
|
106 |
+
compiler_fn = eps[0].load()
|
107 |
+
else:
|
108 |
+
backend_eps = entry_points(group=group_name)
|
109 |
+
if backend_name in backend_eps.names:
|
110 |
+
compiler_fn = backend_eps[backend_name].load()
|
111 |
+
|
112 |
+
if compiler_fn is not None and backend_name not in list_backends(tuple()):
|
113 |
+
register_backend(compiler_fn=compiler_fn, name=backend_name)
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/tensorrt.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import torch # type: ignore[import]
|
2 |
+
# from .common import device_from_inputs, fake_tensor_unsupported # type: ignore[import]
|
3 |
+
# from .registry import register_backend # type: ignore[import]
|
4 |
+
|
5 |
+
"""
|
6 |
+
Placeholder for TensorRT backend for dynamo via torch-tensorrt
|
7 |
+
"""
|
8 |
+
|
9 |
+
# @register_backend
|
10 |
+
# def tensorrt(gm, example_inputs):
|
11 |
+
# import torch_tensorrt # type: ignore[import]
|
12 |
+
# pass
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/torchxla.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
from functorch.compile import make_boxed_func
|
5 |
+
|
6 |
+
from ..backends.common import aot_autograd
|
7 |
+
from .registry import register_backend, register_experimental_backend
|
8 |
+
|
9 |
+
log = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
|
12 |
+
@register_experimental_backend
|
13 |
+
def torchxla_trivial(gm, fake_tensor_inputs):
|
14 |
+
return gm
|
15 |
+
|
16 |
+
|
17 |
+
@register_experimental_backend
|
18 |
+
def torchxla_trace_once(model, fake_tensor_inputs):
|
19 |
+
warnings.warn(
|
20 |
+
"This backend will be deprecated in 2.2, please use `openxla` backend instead"
|
21 |
+
)
|
22 |
+
|
23 |
+
return xla_backend_helper(model, fake_tensor_inputs)
|
24 |
+
|
25 |
+
|
26 |
+
@register_backend
|
27 |
+
def openxla_eval(model, fake_tensor_inputs):
|
28 |
+
return xla_backend_helper(model, fake_tensor_inputs, boxed=False)
|
29 |
+
|
30 |
+
|
31 |
+
def openxla_eval_boxed(model, fake_tensor_inputs):
|
32 |
+
return xla_backend_helper(model, fake_tensor_inputs, boxed=True)
|
33 |
+
|
34 |
+
|
35 |
+
def xla_backend_helper(model, fake_tensor_inputs, boxed=False):
|
36 |
+
try:
|
37 |
+
import torch_xla.core.dynamo_bridge as bridge
|
38 |
+
except ImportError as e:
|
39 |
+
raise ImportError(
|
40 |
+
"Please follow the instruction in https://github.com/pytorch/xla#pytorchxla to install torch_xla"
|
41 |
+
) from e
|
42 |
+
|
43 |
+
compiled_graph = None
|
44 |
+
|
45 |
+
def fwd(*args):
|
46 |
+
nonlocal model
|
47 |
+
nonlocal compiled_graph
|
48 |
+
if compiled_graph is None:
|
49 |
+
compiled_graph = bridge.extract_compiled_graph(model, args)
|
50 |
+
del model
|
51 |
+
return compiled_graph(*args)
|
52 |
+
|
53 |
+
return make_boxed_func(fwd) if boxed else fwd
|
54 |
+
|
55 |
+
|
56 |
+
aot_torchxla_trivial = aot_autograd(
|
57 |
+
fw_compiler=torchxla_trivial,
|
58 |
+
)
|
59 |
+
register_experimental_backend(
|
60 |
+
name="aot_torchxla_trivial", compiler_fn=aot_torchxla_trivial
|
61 |
+
)
|
62 |
+
|
63 |
+
aot_torchxla_trace_once = aot_autograd(
|
64 |
+
fw_compiler=torchxla_trace_once,
|
65 |
+
)
|
66 |
+
register_experimental_backend(
|
67 |
+
name="aot_torchxla_trace_once", compiler_fn=aot_torchxla_trace_once
|
68 |
+
)
|
69 |
+
|
70 |
+
openxla = aot_autograd(
|
71 |
+
fw_compiler=openxla_eval_boxed,
|
72 |
+
)
|
73 |
+
register_backend(name="openxla", compiler_fn=openxla)
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/backends/tvm.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import importlib
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import tempfile
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from .common import device_from_inputs, fake_tensor_unsupported
|
9 |
+
|
10 |
+
from .registry import register_backend
|
11 |
+
|
12 |
+
log = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
|
15 |
+
@register_backend
|
16 |
+
@fake_tensor_unsupported
|
17 |
+
def tvm(gm, example_inputs, *, scheduler=None, trials=20000):
|
18 |
+
import tvm # type: ignore[import]
|
19 |
+
from tvm import relay # type: ignore[import]
|
20 |
+
from tvm.contrib import graph_executor # type: ignore[import]
|
21 |
+
|
22 |
+
jit_mod = torch.jit.trace(gm, example_inputs)
|
23 |
+
device = device_from_inputs(example_inputs)
|
24 |
+
shape_list = [(f"inp_{idx}", i.shape) for idx, i in enumerate(example_inputs)]
|
25 |
+
example_outputs = gm(*example_inputs)
|
26 |
+
if len(example_outputs) == 0:
|
27 |
+
log.warning("Explicitly fall back to eager due to zero output")
|
28 |
+
return gm.forward
|
29 |
+
mod, params = relay.frontend.from_pytorch(jit_mod, shape_list)
|
30 |
+
if device.type == "cuda":
|
31 |
+
dev = tvm.cuda(device.index)
|
32 |
+
target = tvm.target.cuda()
|
33 |
+
else:
|
34 |
+
dev = tvm.cpu(0)
|
35 |
+
target = tvm.target.Target(llvm_target())
|
36 |
+
|
37 |
+
if scheduler is None:
|
38 |
+
scheduler = os.environ.get("TVM_SCHEDULER", None)
|
39 |
+
|
40 |
+
if scheduler == "auto_scheduler":
|
41 |
+
from tvm import auto_scheduler
|
42 |
+
|
43 |
+
log_file = tempfile.NamedTemporaryFile()
|
44 |
+
|
45 |
+
if not os.path.exists(log_file):
|
46 |
+
tasks, task_weights = auto_scheduler.extract_tasks(
|
47 |
+
mod["main"], params, target
|
48 |
+
)
|
49 |
+
for task in tasks:
|
50 |
+
print(task.compute_dag)
|
51 |
+
else:
|
52 |
+
print("No tasks")
|
53 |
+
if len(tasks) != 0:
|
54 |
+
tuner = auto_scheduler.TaskScheduler(tasks, task_weights)
|
55 |
+
if not os.path.exists(log_file):
|
56 |
+
assert trials > 0
|
57 |
+
tune_option = auto_scheduler.TuningOptions(
|
58 |
+
num_measure_trials=trials,
|
59 |
+
measure_callbacks=[auto_scheduler.RecordToFile(log_file)],
|
60 |
+
early_stopping=2000,
|
61 |
+
)
|
62 |
+
try:
|
63 |
+
tuner.tune(tune_option)
|
64 |
+
except Exception:
|
65 |
+
if os.path.exists(log_file):
|
66 |
+
os.unlink(log_file)
|
67 |
+
raise
|
68 |
+
|
69 |
+
with auto_scheduler.ApplyHistoryBest(log_file):
|
70 |
+
with tvm.transform.PassContext(
|
71 |
+
opt_level=3, config={"relay.backend.use_auto_scheduler": True}
|
72 |
+
):
|
73 |
+
lib = relay.build(mod, target=target, params=params)
|
74 |
+
elif scheduler == "meta_schedule":
|
75 |
+
from tvm import meta_schedule as ms
|
76 |
+
|
77 |
+
with tempfile.TemporaryDirectory() as work_dir:
|
78 |
+
if device.type != "cuda":
|
79 |
+
# meta_schedule needs num-cores to be specified
|
80 |
+
# here we use the maximum core count
|
81 |
+
target = tvm.target.Target(
|
82 |
+
f"{llvm_target()} --num-cores {ms.utils.cpu_count(logical=False)}"
|
83 |
+
)
|
84 |
+
# TODO(shingjan): This could be replaced by tvm.contrib.torch.optimize_torch
|
85 |
+
# once USE_PT_TVMDSOOP is updated and turned on by default in TVM.
|
86 |
+
database = ms.relay_integration.tune_relay(
|
87 |
+
mod=mod,
|
88 |
+
target=target,
|
89 |
+
work_dir=work_dir,
|
90 |
+
max_trials_global=20000,
|
91 |
+
num_trials_per_iter=64,
|
92 |
+
params=params,
|
93 |
+
strategy="evolutionary",
|
94 |
+
)
|
95 |
+
lib = ms.relay_integration.compile_relay(
|
96 |
+
database=database,
|
97 |
+
mod=mod,
|
98 |
+
target=target,
|
99 |
+
params=params,
|
100 |
+
)
|
101 |
+
elif scheduler == "default" or not scheduler:
|
102 |
+
# no autotuning
|
103 |
+
with tvm.transform.PassContext(opt_level=10):
|
104 |
+
lib = relay.build(mod, target=target, params=params)
|
105 |
+
else:
|
106 |
+
raise NotImplementedError(
|
107 |
+
"This tuning option is invalid/not implemented for torchdynamo's TVM-related backend. "
|
108 |
+
"There are three available options: default, auto_scheduler and meta_schedule."
|
109 |
+
)
|
110 |
+
m = graph_executor.GraphModule(lib["default"](dev))
|
111 |
+
|
112 |
+
def to_torch_tensor(nd_tensor):
|
113 |
+
"""A helper function to transfer a NDArray to torch.tensor."""
|
114 |
+
if nd_tensor.dtype == "bool":
|
115 |
+
# DLPack does not support boolean so it can't be handled by
|
116 |
+
# torch.utils.dlpack.from_pack. Workaround by going through
|
117 |
+
# numpy, although this brings additional data copy overhead.
|
118 |
+
return torch.from_numpy(nd_tensor.numpy())
|
119 |
+
return torch.utils.dlpack.from_dlpack(nd_tensor.to_dlpack())
|
120 |
+
|
121 |
+
def to_tvm_tensor(torch_tensor):
|
122 |
+
"""A helper function to transfer a torch.tensor to NDArray."""
|
123 |
+
if torch_tensor.dtype == torch.bool:
|
124 |
+
# same reason as above, fallback to numpy conversion which
|
125 |
+
# could introduce data copy overhead
|
126 |
+
return tvm.nd.array(torch_tensor.cpu().numpy())
|
127 |
+
return tvm.nd.from_dlpack(torch_tensor)
|
128 |
+
|
129 |
+
def exec_tvm(*i_args):
|
130 |
+
args = [a.contiguous() for a in i_args]
|
131 |
+
shape_info, _ = m.get_input_info()
|
132 |
+
active_inputs = {name for name, _ in shape_info.items()}
|
133 |
+
for idx, arg in enumerate(args, 0):
|
134 |
+
if arg.dim() != 0:
|
135 |
+
if arg.requires_grad:
|
136 |
+
arg = arg.detach()
|
137 |
+
inp_name = f"inp_{idx}"
|
138 |
+
if inp_name not in active_inputs:
|
139 |
+
log.warning(
|
140 |
+
"input %s skipped as not found in tvm's runtime library",
|
141 |
+
inp_name,
|
142 |
+
)
|
143 |
+
continue
|
144 |
+
m.set_input(
|
145 |
+
inp_name,
|
146 |
+
to_tvm_tensor(arg),
|
147 |
+
)
|
148 |
+
m.run()
|
149 |
+
return [to_torch_tensor(m.get_output(i)) for i in range(m.get_num_outputs())]
|
150 |
+
|
151 |
+
return exec_tvm
|
152 |
+
|
153 |
+
|
154 |
+
tvm_meta_schedule = functools.partial(tvm, scheduler="meta_schedule")
|
155 |
+
tvm_auto_scheduler = functools.partial(tvm, scheduler="auto_scheduler")
|
156 |
+
|
157 |
+
|
158 |
+
def has_tvm():
|
159 |
+
try:
|
160 |
+
importlib.import_module("tvm")
|
161 |
+
return True
|
162 |
+
except ImportError:
|
163 |
+
return False
|
164 |
+
|
165 |
+
|
166 |
+
@functools.lru_cache(None)
|
167 |
+
def llvm_target():
|
168 |
+
if "avx512" in open("/proc/cpuinfo").read():
|
169 |
+
return "llvm -mcpu=skylake-avx512"
|
170 |
+
return "llvm -mcpu=core-avx2"
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/decorators.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import TYPE_CHECKING
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from . import allowed_functions
|
5 |
+
from .eval_frame import DisableContext, innermost_fn, RunOnlyContext
|
6 |
+
from .exc import IncorrectUsage
|
7 |
+
|
8 |
+
if TYPE_CHECKING:
|
9 |
+
from torch._C._dynamo.eval_frame import ( # noqa: F401
|
10 |
+
reset_code,
|
11 |
+
set_eval_frame,
|
12 |
+
set_guard_error_hook,
|
13 |
+
skip_code,
|
14 |
+
unsupported,
|
15 |
+
)
|
16 |
+
else:
|
17 |
+
for name in dir(torch._C._dynamo.eval_frame):
|
18 |
+
if name.startswith("__"):
|
19 |
+
continue
|
20 |
+
globals()[name] = getattr(torch._C._dynamo.eval_frame, name)
|
21 |
+
|
22 |
+
|
23 |
+
def run(fn=None):
|
24 |
+
"""Don't do any dynamic compiles, just use prior optimizations"""
|
25 |
+
if fn is not None:
|
26 |
+
fn = innermost_fn(fn)
|
27 |
+
assert callable(fn)
|
28 |
+
return RunOnlyContext()(fn)
|
29 |
+
return RunOnlyContext()
|
30 |
+
|
31 |
+
|
32 |
+
def disable(fn=None, recursive=True):
|
33 |
+
"""
|
34 |
+
Decorator and context manager to disable TorchDynamo
|
35 |
+
|
36 |
+
If recursive=True, Dynamo is completely skipped on the decorated function
|
37 |
+
frame as well as the recursively invoked functions.
|
38 |
+
|
39 |
+
If recursive=False, Dynamo skips frames associated with the function code,
|
40 |
+
but still process recursively invoked frames.
|
41 |
+
"""
|
42 |
+
if recursive:
|
43 |
+
if fn is not None:
|
44 |
+
fn = innermost_fn(fn)
|
45 |
+
assert callable(fn)
|
46 |
+
return DisableContext()(fn)
|
47 |
+
return DisableContext()
|
48 |
+
else:
|
49 |
+
return skip(fn)
|
50 |
+
|
51 |
+
|
52 |
+
def skip(fn=None):
|
53 |
+
"""
|
54 |
+
Skip frames associated with the function code, but still process recursively
|
55 |
+
invoked frames
|
56 |
+
"""
|
57 |
+
if fn is None:
|
58 |
+
return skip
|
59 |
+
fn = innermost_fn(fn)
|
60 |
+
assert callable(fn)
|
61 |
+
skip_code(fn.__code__)
|
62 |
+
fn._torchdynamo_disable = True
|
63 |
+
return fn
|
64 |
+
|
65 |
+
|
66 |
+
def assume_constant_result(fn):
|
67 |
+
fn._dynamo_marked_constant = True
|
68 |
+
return fn
|
69 |
+
|
70 |
+
|
71 |
+
def allow_in_graph(fn):
|
72 |
+
"""
|
73 |
+
Customize which functions TorchDynamo will include in the generated
|
74 |
+
graph. Similar to `torch.fx.wrap()`.
|
75 |
+
::
|
76 |
+
|
77 |
+
torch._dynamo.allow_in_graph(my_custom_function)
|
78 |
+
|
79 |
+
@torch._dynamo.optimize(...)
|
80 |
+
def fn(a):
|
81 |
+
x = torch.add(x, 1)
|
82 |
+
x = my_custom_function(x)
|
83 |
+
x = torch.add(x, 1)
|
84 |
+
return x
|
85 |
+
|
86 |
+
fn(...)
|
87 |
+
|
88 |
+
Will capture a single graph containing `my_custom_function()`.
|
89 |
+
"""
|
90 |
+
if isinstance(fn, (list, tuple)):
|
91 |
+
return [allow_in_graph(x) for x in fn]
|
92 |
+
assert callable(fn), "allow_in_graph expects a callable"
|
93 |
+
allowed_functions._allowed_function_ids.add(id(fn))
|
94 |
+
allowed_functions._disallowed_function_ids.remove(id(fn))
|
95 |
+
allowed_functions._allowed_user_defined_function_ids.add(id(fn))
|
96 |
+
return fn
|
97 |
+
|
98 |
+
|
99 |
+
def _disallow_in_graph_helper(throw_if_not_allowed):
|
100 |
+
def inner(fn):
|
101 |
+
if isinstance(fn, (list, tuple)):
|
102 |
+
return [disallow_in_graph(x) for x in fn]
|
103 |
+
assert callable(fn), "disallow_in_graph expects a callable"
|
104 |
+
if throw_if_not_allowed and not allowed_functions.is_allowed(fn):
|
105 |
+
raise IncorrectUsage(
|
106 |
+
"disallow_in_graph is expected to be used on an already allowed callable (like torch.* ops). "
|
107 |
+
"Allowed callables means callables that TorchDynamo puts as-is in the extracted graph."
|
108 |
+
)
|
109 |
+
allowed_functions._allowed_function_ids.remove(id(fn))
|
110 |
+
allowed_functions._disallowed_function_ids.add(id(fn))
|
111 |
+
allowed_functions._allowed_user_defined_function_ids.remove(id(fn))
|
112 |
+
return fn
|
113 |
+
|
114 |
+
return inner
|
115 |
+
|
116 |
+
|
117 |
+
def disallow_in_graph(fn):
|
118 |
+
"""
|
119 |
+
Customize which functions TorchDynamo will exclude in the generated
|
120 |
+
graph and force a graph break on.
|
121 |
+
::
|
122 |
+
|
123 |
+
torch._dynamo.disallow_in_graph(torch.sub)
|
124 |
+
|
125 |
+
@torch._dynamo.optimize(...)
|
126 |
+
def fn(a):
|
127 |
+
x = torch.add(x, 1)
|
128 |
+
x = torch.sub(x, 1)
|
129 |
+
x = torch.add(x, 1)
|
130 |
+
return x
|
131 |
+
|
132 |
+
fn(...)
|
133 |
+
|
134 |
+
Will break the graph on `torch.sub`, and give two graphs each with a
|
135 |
+
single `torch.add()` op.
|
136 |
+
"""
|
137 |
+
return _disallow_in_graph_helper(throw_if_not_allowed=True)(fn)
|
138 |
+
|
139 |
+
|
140 |
+
@_disallow_in_graph_helper(throw_if_not_allowed=False)
|
141 |
+
def graph_break():
|
142 |
+
"""Force a graph break"""
|
143 |
+
pass
|
144 |
+
|
145 |
+
|
146 |
+
def forbid_in_graph(fn):
|
147 |
+
"""
|
148 |
+
Customize which functions TorchDynamo will assert are not present while tracing.
|
149 |
+
|
150 |
+
If you want a graph break on this function instead, use disallow_in_graph.
|
151 |
+
TODO(voz): We now have allow_in_graph, disallow_in_graph, forbid_in_graph - some more robust
|
152 |
+
documentation would not be amiss.
|
153 |
+
"""
|
154 |
+
if isinstance(fn, (list, tuple)):
|
155 |
+
return [forbid_in_graph(x) for x in fn]
|
156 |
+
assert callable(fn), "forbid_in_graph applies only to callables"
|
157 |
+
fn._dynamo_forbidden = True
|
158 |
+
return fn
|
159 |
+
|
160 |
+
|
161 |
+
@forbid_in_graph
|
162 |
+
def mark_dynamic(t, index):
|
163 |
+
"""
|
164 |
+
Mark a tensor as having a dynamic dim.
|
165 |
+
|
166 |
+
[Note - on the state of mark_dynamic]
|
167 |
+
|
168 |
+
The behavior of having a dynamic dimension on a tensor is governed by a few factors:
|
169 |
+
|
170 |
+
1) torch._dynamo.config dynamic_shapes True or False.
|
171 |
+
a) dynamic_shapes=True - dynamic_shapes must be True for mark_dynamic to work.
|
172 |
+
a) dynamic_shapes=False - This config will raise an exception when used in conjunction with
|
173 |
+
mark_dynamic. We will eventually support this.
|
174 |
+
|
175 |
+
2) If the dimension is fully constrained - as in, it does not allow more than a single value
|
176 |
+
in both eager (torch.compile, torch._dynamo.optimize) mode and export mode (torch._dynamo.export),
|
177 |
+
we will raise an error
|
178 |
+
|
179 |
+
3) If the dimension is partially constrained - allowing at least 2 values but not the full unbounded
|
180 |
+
range of shapes, in eager we will pass it through, but export will raise an error.
|
181 |
+
|
182 |
+
4) Attempts to trace this function will explicitly raise. As such, all calls to mark_dynamic must be made
|
183 |
+
before torch.compile.
|
184 |
+
|
185 |
+
"""
|
186 |
+
if isinstance(index, int):
|
187 |
+
if not hasattr(t, "_dynamo_dynamic_indices"):
|
188 |
+
t._dynamo_dynamic_indices = set()
|
189 |
+
# TODO(voz): Should we bounds check?
|
190 |
+
t._dynamo_dynamic_indices.add(index)
|
191 |
+
return
|
192 |
+
|
193 |
+
assert isinstance(index, (list, tuple))
|
194 |
+
for i in index:
|
195 |
+
mark_dynamic(t, i)
|
196 |
+
|
197 |
+
|
198 |
+
@forbid_in_graph
|
199 |
+
def maybe_mark_dynamic(t, index):
|
200 |
+
"""
|
201 |
+
Mark a tensor as having a dynamic dim, but don't enforce it (i.e., if this
|
202 |
+
dimension ends up getting specialized, don't error).
|
203 |
+
"""
|
204 |
+
if isinstance(index, int):
|
205 |
+
if not hasattr(t, "_dynamo_weak_dynamic_indices"):
|
206 |
+
t._dynamo_weak_dynamic_indices = set()
|
207 |
+
# TODO(voz): Should we bounds check?
|
208 |
+
t._dynamo_weak_dynamic_indices.add(index)
|
209 |
+
return
|
210 |
+
|
211 |
+
assert isinstance(index, (list, tuple))
|
212 |
+
for i in index:
|
213 |
+
maybe_mark_dynamic(t, i)
|
214 |
+
|
215 |
+
|
216 |
+
@forbid_in_graph
|
217 |
+
def mark_static(t, index=None):
|
218 |
+
"""
|
219 |
+
Mark a tensor as having a static dim.
|
220 |
+
|
221 |
+
This will prevent us from attempting to compile it dynamically
|
222 |
+
when dynamic=True; this can improve trace-time performance.
|
223 |
+
|
224 |
+
This has lower precedence than mark_dynamic.
|
225 |
+
"""
|
226 |
+
if isinstance(index, int):
|
227 |
+
if not hasattr(t, "_dynamo_static_indices"):
|
228 |
+
t._dynamo_static_indices = set()
|
229 |
+
# TODO(voz): Should we bounds check?
|
230 |
+
t._dynamo_static_indices.add(index)
|
231 |
+
elif index is None:
|
232 |
+
for i in range(t.dim()):
|
233 |
+
mark_static(t, i)
|
234 |
+
else:
|
235 |
+
assert isinstance(index, (list, tuple))
|
236 |
+
for i in index:
|
237 |
+
mark_static(t, i)
|
238 |
+
|
239 |
+
|
240 |
+
@forbid_in_graph
|
241 |
+
def mark_static_address(t, guard=True):
|
242 |
+
"""
|
243 |
+
Marks an input tensor whose data_ptr will not change across multiple calls
|
244 |
+
to a dynamo-compiled function. This indicates to cudagraphs that an extra allocation
|
245 |
+
is not needed for this input. The data_ptr will be guarded if guard=True. Note:
|
246 |
+
Tensors marked in this way will be kept alive until `torch._dynamo.reset()` is called.
|
247 |
+
"""
|
248 |
+
if not isinstance(t, torch.Tensor):
|
249 |
+
raise TypeError(f"mark_static_address expects a tensor but recieved {type(t)}")
|
250 |
+
|
251 |
+
if guard:
|
252 |
+
t._dynamo_static_input_type = "guarded" # type: ignore[attr-defined]
|
253 |
+
else:
|
254 |
+
t._dynamo_static_input_type = "unguarded" # type: ignore[attr-defined]
|
255 |
+
|
256 |
+
|
257 |
+
# Note: this carefully avoids eagerly import einops.
|
258 |
+
# TODO: we should delete this whole _allow_in_graph_einops logic by approximately 2024 Q2
|
259 |
+
def _allow_in_graph_einops():
|
260 |
+
import einops
|
261 |
+
|
262 |
+
try:
|
263 |
+
# requires einops > 0.6.1, torch >= 2.0
|
264 |
+
from einops._torch_specific import ( # noqa: F401
|
265 |
+
_ops_were_registered_in_torchdynamo,
|
266 |
+
)
|
267 |
+
|
268 |
+
# einops > 0.6.1 will call the op registration logic as it is imported.
|
269 |
+
pass
|
270 |
+
except ImportError:
|
271 |
+
# einops <= 0.6.1
|
272 |
+
allow_in_graph(einops.rearrange)
|
273 |
+
allow_in_graph(einops.reduce)
|
274 |
+
if hasattr(einops, "repeat"):
|
275 |
+
allow_in_graph(einops.repeat) # available since einops 0.2.0
|
276 |
+
if hasattr(einops, "einsum"):
|
277 |
+
allow_in_graph(einops.einsum) # available since einops 0.5.0
|
278 |
+
if hasattr(einops, "pack"):
|
279 |
+
allow_in_graph(einops.pack) # available since einops 0.6.0
|
280 |
+
if hasattr(einops, "unpack"):
|
281 |
+
allow_in_graph(einops.unpack) # available since einops 0.6.0
|
282 |
+
|
283 |
+
|
284 |
+
allowed_functions.add_module_init_func("einops", _allow_in_graph_einops)
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/external_utils.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This module contains functions that *will be allowed* by dynamo
|
2 |
+
|
3 |
+
import functools
|
4 |
+
|
5 |
+
|
6 |
+
def is_compiling() -> bool:
|
7 |
+
return False
|
8 |
+
|
9 |
+
|
10 |
+
def wrap_inline(fn):
|
11 |
+
"""
|
12 |
+
Create an extra frame around fn that is not in skipfiles
|
13 |
+
"""
|
14 |
+
|
15 |
+
@functools.wraps(fn)
|
16 |
+
def inner(*args, **kwargs):
|
17 |
+
return fn(*args, **kwargs)
|
18 |
+
|
19 |
+
return inner
|
20 |
+
|
21 |
+
|
22 |
+
def call_hook(hook, *args):
|
23 |
+
"""
|
24 |
+
Used by compiled autograd to handle hook returning None
|
25 |
+
"""
|
26 |
+
result = hook(*args)
|
27 |
+
if result is None:
|
28 |
+
return args[0]
|
29 |
+
return result
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/profiler.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
import os
|
3 |
+
from typing import Any, List
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from .utils import print_once
|
8 |
+
|
9 |
+
|
10 |
+
@dataclasses.dataclass
|
11 |
+
class ProfileMetrics:
|
12 |
+
microseconds: float = 0.0
|
13 |
+
operators: int = 0
|
14 |
+
fusions: int = 0
|
15 |
+
graphs: int = 0
|
16 |
+
|
17 |
+
def __iadd__(self, other: "ProfileMetrics"):
|
18 |
+
self.microseconds += other.microseconds
|
19 |
+
self.operators += other.operators
|
20 |
+
self.fusions += other.fusions
|
21 |
+
return self
|
22 |
+
|
23 |
+
def __add__(self, other: "ProfileMetrics"):
|
24 |
+
assert isinstance(other, ProfileMetrics)
|
25 |
+
return ProfileMetrics(
|
26 |
+
self.microseconds + other.microseconds,
|
27 |
+
self.operators + other.operators,
|
28 |
+
self.fusions + other.fusions,
|
29 |
+
)
|
30 |
+
|
31 |
+
def __truediv__(self, other):
|
32 |
+
if isinstance(other, int):
|
33 |
+
other = ProfileMetrics(other, other, other)
|
34 |
+
return ProfileMetrics(
|
35 |
+
self.microseconds / max(1, other.microseconds),
|
36 |
+
self.operators / max(1, other.operators),
|
37 |
+
self.fusions / max(1, other.fusions),
|
38 |
+
)
|
39 |
+
|
40 |
+
def __str__(self):
|
41 |
+
return f"{self.operators:4.0%} ops {self.microseconds:4.0%} time"
|
42 |
+
|
43 |
+
def tocsv(self):
|
44 |
+
return [self.operators, self.microseconds]
|
45 |
+
|
46 |
+
|
47 |
+
class ProfileResult:
|
48 |
+
def __init__(self, captured, total, unique_graphs):
|
49 |
+
self.captured: ProfileMetrics = captured or ProfileMetrics()
|
50 |
+
self.total: ProfileMetrics = total or ProfileMetrics()
|
51 |
+
self.unique_graphs: int = unique_graphs
|
52 |
+
|
53 |
+
def __iadd__(self, other: "ProfileResult"):
|
54 |
+
self.captured += other.captured
|
55 |
+
self.total += other.total
|
56 |
+
self.unique_graphs += other.unique_graphs
|
57 |
+
return self
|
58 |
+
|
59 |
+
def percent(self):
|
60 |
+
return self.captured / self.total
|
61 |
+
|
62 |
+
def __str__(self):
|
63 |
+
return (
|
64 |
+
f"{self.unique_graphs:2} graphs {self.captured.graphs:2} graph calls "
|
65 |
+
f"{self.captured.operators:4}/{self.total.operators:4} = "
|
66 |
+
+ str(self.percent())
|
67 |
+
)
|
68 |
+
|
69 |
+
def tocsv(self):
|
70 |
+
return [
|
71 |
+
self.unique_graphs,
|
72 |
+
self.captured.graphs,
|
73 |
+
self.captured.operators,
|
74 |
+
self.total.operators,
|
75 |
+
] + self.percent().tocsv()
|
76 |
+
|
77 |
+
|
78 |
+
def should_print_missing():
|
79 |
+
return os.environ.get("TORCHDYNAMO_PRINT_MISSING") == "1"
|
80 |
+
|
81 |
+
|
82 |
+
def print_missing(stack):
|
83 |
+
if any("/torch/autograd/profiler.py" in x for x in stack):
|
84 |
+
return
|
85 |
+
stack = [
|
86 |
+
x for x in stack if ("<built-in" not in x and "site-packages/torch/" not in x)
|
87 |
+
]
|
88 |
+
print_once("MISSING", " >> ".join(stack[-3:]))
|
89 |
+
|
90 |
+
|
91 |
+
class Profiler:
|
92 |
+
unique_graphs = 0
|
93 |
+
|
94 |
+
def __init__(self):
|
95 |
+
self.prof = torch.profiler.profile(
|
96 |
+
activities=[torch.profiler.ProfilerActivity.CPU],
|
97 |
+
with_stack=should_print_missing(),
|
98 |
+
)
|
99 |
+
|
100 |
+
def results(self):
|
101 |
+
captured_regions = 0
|
102 |
+
captured_ops = 0
|
103 |
+
captured_microseconds = 0
|
104 |
+
total_ops = 0
|
105 |
+
total_microseconds = 0
|
106 |
+
|
107 |
+
last_op_end_time = -1
|
108 |
+
captured_region_end_time = -1
|
109 |
+
events = sorted(self.prof.events(), key=lambda x: x.time_range.start)
|
110 |
+
for e in events:
|
111 |
+
if e.name == "TORCHDYNAMO":
|
112 |
+
captured_region_end_time = e.time_range.end
|
113 |
+
captured_regions += 1
|
114 |
+
# ignore `handle = torch.zeros(1)` in record_function.__init__()
|
115 |
+
total_ops -= 1
|
116 |
+
elif e.time_range.start >= last_op_end_time:
|
117 |
+
last_op_end_time = e.time_range.end
|
118 |
+
if e.time_range.end <= captured_region_end_time:
|
119 |
+
captured_ops += 1
|
120 |
+
captured_microseconds += e.time_range.elapsed_us()
|
121 |
+
elif should_print_missing():
|
122 |
+
print_missing(e.stack)
|
123 |
+
total_ops += 1
|
124 |
+
total_microseconds += e.time_range.elapsed_us()
|
125 |
+
else:
|
126 |
+
pass # ops recursively called from other ops (ignored)
|
127 |
+
|
128 |
+
unique_graphs = Profiler.unique_graphs
|
129 |
+
Profiler.unique_graphs = 0
|
130 |
+
# we counted one extra op that is part of the profiler setup code
|
131 |
+
total_ops -= 1
|
132 |
+
|
133 |
+
return ProfileResult(
|
134 |
+
captured=ProfileMetrics(
|
135 |
+
microseconds=captured_microseconds,
|
136 |
+
operators=captured_ops,
|
137 |
+
fusions=captured_ops - captured_regions,
|
138 |
+
graphs=captured_regions,
|
139 |
+
),
|
140 |
+
total=ProfileMetrics(
|
141 |
+
microseconds=total_microseconds,
|
142 |
+
operators=total_ops,
|
143 |
+
fusions=total_ops - 1,
|
144 |
+
),
|
145 |
+
unique_graphs=unique_graphs,
|
146 |
+
)
|
147 |
+
|
148 |
+
|
149 |
+
def fx_insert_profiling(gm: torch.fx.GraphModule, example_inputs: List[Any]):
|
150 |
+
def _wrapped(*args):
|
151 |
+
with torch.profiler.record_function("TORCHDYNAMO"):
|
152 |
+
return gm.forward(*args)
|
153 |
+
|
154 |
+
Profiler.unique_graphs += 1
|
155 |
+
return _wrapped
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/replay_record.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
from dataclasses import field
|
3 |
+
from types import CodeType, ModuleType
|
4 |
+
from typing import Any, Dict
|
5 |
+
|
6 |
+
try:
|
7 |
+
import dill
|
8 |
+
except ImportError:
|
9 |
+
dill = None
|
10 |
+
|
11 |
+
|
12 |
+
@dataclasses.dataclass
|
13 |
+
class ModuleRecord:
|
14 |
+
module: ModuleType
|
15 |
+
accessed_attrs: Dict[str, Any] = field(default_factory=dict)
|
16 |
+
|
17 |
+
|
18 |
+
@dataclasses.dataclass
|
19 |
+
class DummyModule:
|
20 |
+
name: str
|
21 |
+
|
22 |
+
|
23 |
+
@dataclasses.dataclass
|
24 |
+
class ExecutionRecord:
|
25 |
+
code: CodeType
|
26 |
+
globals: Dict[str, Any] = field(default_factory=dict)
|
27 |
+
locals: Dict[str, Any] = field(default_factory=dict)
|
28 |
+
builtins: Dict[str, Any] = field(default_factory=dict)
|
29 |
+
code_options: Dict[str, Any] = field(default_factory=dict)
|
30 |
+
|
31 |
+
def dump(self, f):
|
32 |
+
assert dill is not None, "replay_record requires `pip install dill`"
|
33 |
+
dill.dump(self, f)
|
34 |
+
|
35 |
+
@classmethod
|
36 |
+
def load(cls, f):
|
37 |
+
assert dill is not None, "replay_record requires `pip install dill`"
|
38 |
+
return dill.load(f)
|
39 |
+
|
40 |
+
|
41 |
+
@dataclasses.dataclass
|
42 |
+
class ExecutionRecorder:
|
43 |
+
MOD_EXCLUDES = ["torch", "torch.fx", "torch.fx.passes"]
|
44 |
+
LOCAL_MOD_PREFIX = "___local_mod_"
|
45 |
+
|
46 |
+
code: CodeType
|
47 |
+
globals: Dict[str, Any] = field(default_factory=dict)
|
48 |
+
locals: Dict[str, Any] = field(default_factory=dict)
|
49 |
+
builtins: Dict[str, Any] = field(default_factory=dict)
|
50 |
+
code_options: Dict[str, Any] = field(default_factory=dict)
|
51 |
+
name_to_modrec: Dict[str, Any] = field(default_factory=dict)
|
52 |
+
|
53 |
+
def add_local_var(self, name, var):
|
54 |
+
if isinstance(var, ModuleType):
|
55 |
+
if self._is_excl(var):
|
56 |
+
return
|
57 |
+
self.locals[name] = self._add_mod(var)
|
58 |
+
else:
|
59 |
+
self.locals[name] = var
|
60 |
+
|
61 |
+
def add_global_var(self, name, var):
|
62 |
+
if isinstance(var, ModuleType):
|
63 |
+
if self._is_excl(var):
|
64 |
+
return
|
65 |
+
self.globals[name] = self._add_mod(var)
|
66 |
+
else:
|
67 |
+
self.globals[name] = var
|
68 |
+
|
69 |
+
def add_local_mod(self, name, mod):
|
70 |
+
assert isinstance(mod, ModuleType)
|
71 |
+
if self._is_excl(mod):
|
72 |
+
return
|
73 |
+
|
74 |
+
self.add_global_var(name, mod)
|
75 |
+
|
76 |
+
def record_module_access(self, mod, name, val):
|
77 |
+
if self._is_excl(mod):
|
78 |
+
return
|
79 |
+
if isinstance(val, ModuleType):
|
80 |
+
self.name_to_modrec[mod.__name__].accessed_attrs[name] = self._add_mod(val)
|
81 |
+
return
|
82 |
+
|
83 |
+
if mod.__name__ in self.name_to_modrec:
|
84 |
+
self.name_to_modrec[mod.__name__].accessed_attrs[name] = val
|
85 |
+
|
86 |
+
def get_record(self):
|
87 |
+
return ExecutionRecord(
|
88 |
+
self.code,
|
89 |
+
ExecutionRecorder._resolve_modules(self.globals),
|
90 |
+
ExecutionRecorder._resolve_modules(self.locals),
|
91 |
+
self.builtins.copy(),
|
92 |
+
self.code_options.copy(),
|
93 |
+
)
|
94 |
+
|
95 |
+
def _add_mod(self, mod):
|
96 |
+
if mod.__name__ not in self.name_to_modrec:
|
97 |
+
self.name_to_modrec[mod.__name__] = ModuleRecord(mod)
|
98 |
+
|
99 |
+
return self.name_to_modrec[mod.__name__]
|
100 |
+
|
101 |
+
@classmethod
|
102 |
+
def _is_excl(cls, mod):
|
103 |
+
return any(mod.__name__ == excl for excl in cls.MOD_EXCLUDES)
|
104 |
+
|
105 |
+
# Convert ModuleRecords -> DummyModule tree
|
106 |
+
@classmethod
|
107 |
+
def _resolve_modules(cls, vars):
|
108 |
+
def resolve_module(var):
|
109 |
+
if not isinstance(var, ModuleRecord):
|
110 |
+
return var
|
111 |
+
|
112 |
+
dummy_mod = DummyModule(var.module.__name__)
|
113 |
+
for attr_name, attr_value in var.accessed_attrs.items():
|
114 |
+
attr_value = resolve_module(attr_value)
|
115 |
+
dummy_mod.__setattr__(attr_name, attr_value)
|
116 |
+
|
117 |
+
return dummy_mod
|
118 |
+
|
119 |
+
return {k: resolve_module(v) for k, v in vars.items()}
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/repro/__init__.py
ADDED
File without changes
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/repro/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (184 Bytes). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/repro/__pycache__/after_aot.cpython-310.pyc
ADDED
Binary file (24.1 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/repro/__pycache__/after_dynamo.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
env-llmeval/lib/python3.10/site-packages/torch/_dynamo/repro/after_aot.py
ADDED
@@ -0,0 +1,931 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import copy
|
3 |
+
import functools
|
4 |
+
import io
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import shutil
|
8 |
+
import subprocess
|
9 |
+
import sys
|
10 |
+
import textwrap
|
11 |
+
import uuid
|
12 |
+
from importlib import import_module
|
13 |
+
from tempfile import TemporaryFile
|
14 |
+
from typing import Any, Callable, Dict, Union
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.fx as fx
|
18 |
+
import torch.nn as nn
|
19 |
+
from torch._dynamo.debug_utils import (
|
20 |
+
_cuda_system_info_comment,
|
21 |
+
AccuracyError,
|
22 |
+
backend_accuracy_fails,
|
23 |
+
BuckTargetWriter,
|
24 |
+
cast_to_fp64,
|
25 |
+
extra_imports,
|
26 |
+
generate_config_string,
|
27 |
+
helper_for_dump_minify,
|
28 |
+
InputReader,
|
29 |
+
InputWriter,
|
30 |
+
MAX_CONSTANT_NUMEL_INLINE,
|
31 |
+
minifier_dir,
|
32 |
+
NNModuleToString,
|
33 |
+
NopInputReader,
|
34 |
+
same_two_models,
|
35 |
+
)
|
36 |
+
from torch._dynamo.utils import clone_inputs, counters, same
|
37 |
+
from torch.fx.experimental.proxy_tensor import make_fx
|
38 |
+
from torch.fx.experimental.symbolic_shapes import (
|
39 |
+
fx_placeholder_targets,
|
40 |
+
has_free_symbols,
|
41 |
+
)
|
42 |
+
from torch.hub import tqdm
|
43 |
+
|
44 |
+
from .. import config
|
45 |
+
|
46 |
+
log = logging.getLogger(__name__)
|
47 |
+
|
48 |
+
|
49 |
+
inductor_config = import_module("torch._inductor.config")
|
50 |
+
use_buck = inductor_config.is_fbcode()
|
51 |
+
|
52 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
53 |
+
# MAIN ENTRY POINT
|
54 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
55 |
+
|
56 |
+
|
57 |
+
def wrap_compiler_debug(unconfigured_compiler_fn, compiler_name: str):
|
58 |
+
"""
|
59 |
+
Minifier for Fx Graph modules after Aot Autograd has finished. We wrap both
|
60 |
+
forward and backward call separately with the backend compiler_fn - like
|
61 |
+
inductor or nvfuser. Intercepting after Aot Autograd presents neat
|
62 |
+
abstraction, where all the params are lifted as graph inputs, making it easy
|
63 |
+
to save the graph as a string.
|
64 |
+
"""
|
65 |
+
|
66 |
+
@functools.wraps(unconfigured_compiler_fn)
|
67 |
+
def debug_wrapper(gm, example_inputs, **kwargs):
|
68 |
+
from torch._subclasses import FakeTensorMode
|
69 |
+
|
70 |
+
compiler_fn = functools.partial(unconfigured_compiler_fn, **kwargs)
|
71 |
+
|
72 |
+
from torch._functorch.aot_autograd import get_aot_graph_name
|
73 |
+
|
74 |
+
graph_name = get_aot_graph_name()
|
75 |
+
|
76 |
+
# TODO: why do we need to deepcopy the original graph?
|
77 |
+
orig_graph = copy.deepcopy(gm.graph)
|
78 |
+
assert config.repro_after in ("dynamo", "aot", None)
|
79 |
+
|
80 |
+
try:
|
81 |
+
# Call the compiler_fn - which is either aot_autograd or inductor
|
82 |
+
# with fake inputs
|
83 |
+
inner_compiled_fn = compiler_fn(gm, example_inputs)
|
84 |
+
except Exception as e:
|
85 |
+
# TODO: Failures here are troublesome because no real inputs,
|
86 |
+
# need a different serialization strategy
|
87 |
+
if config.repro_after == "aot":
|
88 |
+
if config.repro_level == 1:
|
89 |
+
dump_compiler_graph_state(
|
90 |
+
fx.GraphModule(gm, orig_graph),
|
91 |
+
example_inputs,
|
92 |
+
compiler_name,
|
93 |
+
)
|
94 |
+
elif config.repro_level == 2:
|
95 |
+
dump_to_minify(
|
96 |
+
fx.GraphModule(gm, orig_graph),
|
97 |
+
example_inputs,
|
98 |
+
compiler_name,
|
99 |
+
)
|
100 |
+
log.error("CompilerError")
|
101 |
+
raise
|
102 |
+
|
103 |
+
# We may run regular PyTorch compute that may trigger Dynamo, do NOT
|
104 |
+
# recursively attempt to accuracy minify in that case!
|
105 |
+
def deferred_for_real_inputs(real_inputs):
|
106 |
+
# This is a bit obscure: if we recursively try to accuracy minify
|
107 |
+
# the SAME function, this would trigger. But most of the time
|
108 |
+
# we should never hit this branch
|
109 |
+
if config.repro_after != "aot":
|
110 |
+
return inner_compiled_fn(real_inputs)
|
111 |
+
with config.patch(repro_after=None):
|
112 |
+
return inner_debug_fn(real_inputs)
|
113 |
+
|
114 |
+
def inner_debug_fn(real_inputs):
|
115 |
+
"""
|
116 |
+
Aot Autograd fw_compiler and bw_compiler can have fake tensors. So,
|
117 |
+
example_inputs can be fake tensors. We can call compiler_fn (which is
|
118 |
+
inductor or nvfuser) with fake tensors but the actually compiled_fn
|
119 |
+
should be called with real tensors. Therefore, the actual invocation
|
120 |
+
is deferred.
|
121 |
+
"""
|
122 |
+
# Copy the tensor attrs like shape, stride etc by converting to Fake Tensor
|
123 |
+
# because inductor clears the tensor list in its codegen. And example_inputs
|
124 |
+
# are available only for the first invocation.
|
125 |
+
fake_mode = FakeTensorMode()
|
126 |
+
copy_tensor_attrs = [
|
127 |
+
fake_mode.from_tensor(x) if isinstance(x, torch.Tensor) else x
|
128 |
+
for x in real_inputs
|
129 |
+
]
|
130 |
+
if config.repro_level == 3:
|
131 |
+
# Always dump the original module in case we have segfaults
|
132 |
+
dump_to_minify(
|
133 |
+
fx.GraphModule(gm, orig_graph), real_inputs, compiler_name
|
134 |
+
)
|
135 |
+
|
136 |
+
if config.repro_level == 4:
|
137 |
+
if compiler_name != "inductor":
|
138 |
+
raise NotImplementedError(
|
139 |
+
"Accuracy minification is supported for inductor only"
|
140 |
+
)
|
141 |
+
if backend_aot_accuracy_fails(gm, real_inputs, compiler_fn):
|
142 |
+
log.warning(
|
143 |
+
"Accuracy failed for the AOT Autograd graph %s", graph_name
|
144 |
+
)
|
145 |
+
dump_compiler_graph_state(
|
146 |
+
fx.GraphModule(gm, orig_graph),
|
147 |
+
real_inputs,
|
148 |
+
f"{compiler_name}_accuracy",
|
149 |
+
)
|
150 |
+
dump_to_minify(
|
151 |
+
fx.GraphModule(gm, orig_graph),
|
152 |
+
real_inputs,
|
153 |
+
f"{compiler_name}_accuracy",
|
154 |
+
)
|
155 |
+
raise AccuracyError("Bad accuracy detected")
|
156 |
+
else:
|
157 |
+
# Call the compiled function with real inputs
|
158 |
+
return inner_compiled_fn(real_inputs)
|
159 |
+
else:
|
160 |
+
try:
|
161 |
+
# Call the compiled function with real inputs
|
162 |
+
out = inner_compiled_fn(real_inputs)
|
163 |
+
# sync cuda kernels to ensure IMA detection
|
164 |
+
for arg in example_inputs:
|
165 |
+
if isinstance(arg, torch.Tensor) and arg.is_cuda:
|
166 |
+
torch.cuda.synchronize()
|
167 |
+
break
|
168 |
+
return out
|
169 |
+
except Exception as e:
|
170 |
+
if config.repro_level == 1:
|
171 |
+
dump_compiler_graph_state(
|
172 |
+
fx.GraphModule(gm, orig_graph),
|
173 |
+
copy_tensor_attrs,
|
174 |
+
compiler_name,
|
175 |
+
)
|
176 |
+
elif config.repro_level == 2:
|
177 |
+
dump_to_minify(
|
178 |
+
fx.GraphModule(gm, orig_graph),
|
179 |
+
copy_tensor_attrs,
|
180 |
+
compiler_name,
|
181 |
+
)
|
182 |
+
raise
|
183 |
+
|
184 |
+
if config.repro_after == "aot":
|
185 |
+
compiled_fn = deferred_for_real_inputs
|
186 |
+
compiled_fn._boxed_call = True # type: ignore[attr-defined]
|
187 |
+
return compiled_fn
|
188 |
+
else:
|
189 |
+
return inner_compiled_fn
|
190 |
+
|
191 |
+
return debug_wrapper
|
192 |
+
|
193 |
+
|
194 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
195 |
+
# DUMP REPROS
|
196 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
197 |
+
|
198 |
+
|
199 |
+
def generate_compiler_repro_string(gm, args, *, stable_output=False, save_dir=None):
|
200 |
+
model_str = textwrap.dedent(
|
201 |
+
f"""
|
202 |
+
import torch
|
203 |
+
from torch import tensor, device
|
204 |
+
import torch.fx as fx
|
205 |
+
from torch._dynamo.testing import rand_strided
|
206 |
+
from math import inf
|
207 |
+
import torch._inductor.inductor_prims
|
208 |
+
|
209 |
+
{generate_config_string(stable_output=stable_output)}
|
210 |
+
|
211 |
+
isolate_fails_code_str = None
|
212 |
+
|
213 |
+
{extra_imports}
|
214 |
+
|
215 |
+
"""
|
216 |
+
)
|
217 |
+
if not stable_output:
|
218 |
+
model_str += f"# torch version: {torch.version.__version__}\n"
|
219 |
+
if hasattr(torch.version, "cuda"):
|
220 |
+
model_str += f"# torch cuda version: {torch.version.cuda}\n"
|
221 |
+
if hasattr(torch.version, "git_version"):
|
222 |
+
model_str += f"# torch git version: {torch.version.git_version}\n\n\n"
|
223 |
+
model_str += _cuda_system_info_comment()
|
224 |
+
|
225 |
+
model_str += NNModuleToString.convert(gm)
|
226 |
+
|
227 |
+
# get hint shape/stride when dynamic shape enabled
|
228 |
+
def hint_if_symint(x):
|
229 |
+
return tuple(i.node.hint if isinstance(i, torch.SymInt) else i for i in x)
|
230 |
+
|
231 |
+
writer = InputWriter(save_dir)
|
232 |
+
for placeholder, arg in zip(fx_placeholder_targets(gm), args):
|
233 |
+
if isinstance(arg, (int, torch.SymInt)):
|
234 |
+
writer.symint(placeholder, arg)
|
235 |
+
elif isinstance(arg, torch.Tensor):
|
236 |
+
# TODO: improve these names with FQN
|
237 |
+
writer.tensor(placeholder, arg)
|
238 |
+
else:
|
239 |
+
raise TypeError(f"arg is neither SymInt/int nor torch.Tensor, {arg}")
|
240 |
+
|
241 |
+
model_str += "\n".join(writer.lines()) + "\n"
|
242 |
+
|
243 |
+
model_str += "mod = Repro()\n"
|
244 |
+
return model_str
|
245 |
+
|
246 |
+
|
247 |
+
def save_graph_repro(
|
248 |
+
fd,
|
249 |
+
gm,
|
250 |
+
args,
|
251 |
+
compiler_name,
|
252 |
+
*,
|
253 |
+
stable_output=False,
|
254 |
+
save_dir=None,
|
255 |
+
command="run",
|
256 |
+
accuracy=None,
|
257 |
+
tracing_mode=None,
|
258 |
+
check_str=None,
|
259 |
+
):
|
260 |
+
fd.write(
|
261 |
+
generate_compiler_repro_string(
|
262 |
+
gm,
|
263 |
+
args,
|
264 |
+
stable_output=stable_output,
|
265 |
+
save_dir=save_dir,
|
266 |
+
)
|
267 |
+
)
|
268 |
+
if accuracy is None:
|
269 |
+
accuracy = "_accuracy" in compiler_name
|
270 |
+
if tracing_mode is None:
|
271 |
+
tracing_mode = "real"
|
272 |
+
if any(has_free_symbols(a) for a in args):
|
273 |
+
tracing_mode = "symbolic"
|
274 |
+
fd.write("if __name__ == '__main__':\n")
|
275 |
+
fd.write(" from torch._dynamo.repro.after_aot import run_repro\n")
|
276 |
+
fd.write(
|
277 |
+
f" with torch.no_grad():"
|
278 |
+
f" run_repro(mod, load_args, accuracy={accuracy!r}, command={command!r}, "
|
279 |
+
f"save_dir={save_dir!r}, tracing_mode={tracing_mode!r}, check_str={check_str!r}"
|
280 |
+
")\n"
|
281 |
+
)
|
282 |
+
|
283 |
+
|
284 |
+
def dump_compiler_graph_state(gm, args, compiler_name, *, accuracy=None):
|
285 |
+
subdir = os.path.join(minifier_dir(), "checkpoints")
|
286 |
+
if not os.path.exists(subdir):
|
287 |
+
os.makedirs(subdir, exist_ok=True)
|
288 |
+
file_name = os.path.join(subdir, f"{len(gm.graph.nodes)}.py")
|
289 |
+
log.warning(
|
290 |
+
"Writing checkpoint with %s nodes to %s", len(gm.graph.nodes), file_name
|
291 |
+
)
|
292 |
+
with open(file_name, "w") as fd:
|
293 |
+
save_graph_repro(
|
294 |
+
fd, gm, args, compiler_name, save_dir=subdir, accuracy=accuracy
|
295 |
+
)
|
296 |
+
curdir = os.getcwd()
|
297 |
+
repro_path = os.path.join(curdir, "repro.py")
|
298 |
+
try:
|
299 |
+
shutil.copyfile(file_name, repro_path)
|
300 |
+
log.warning("Copying repro file for convenience to %s", repro_path)
|
301 |
+
if use_buck:
|
302 |
+
BuckTargetWriter(file_name).write()
|
303 |
+
except OSError:
|
304 |
+
log.warning("No write permissions for %s", repro_path)
|
305 |
+
pass
|
306 |
+
|
307 |
+
|
308 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
309 |
+
# DUMP MINIFIER
|
310 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
311 |
+
|
312 |
+
|
313 |
+
def dump_to_minify(gm, args, compiler_name: str):
|
314 |
+
out = io.StringIO()
|
315 |
+
# TODO: factor this out
|
316 |
+
subdir = os.path.join(minifier_dir(), "checkpoints")
|
317 |
+
if not os.path.exists(subdir):
|
318 |
+
os.makedirs(subdir, exist_ok=True)
|
319 |
+
save_graph_repro(out, gm, args, compiler_name, save_dir=subdir, command="minify")
|
320 |
+
return helper_for_dump_minify(out.getvalue())
|
321 |
+
|
322 |
+
|
323 |
+
def isolate_fails(
|
324 |
+
fx_g,
|
325 |
+
args,
|
326 |
+
compiler_name: str,
|
327 |
+
env=None,
|
328 |
+
save_dir=None,
|
329 |
+
accuracy=None,
|
330 |
+
tracing_mode=None,
|
331 |
+
check_str=None,
|
332 |
+
):
|
333 |
+
if env is None:
|
334 |
+
env = {}
|
335 |
+
subdir = os.path.join(os.getcwd(), "isolate")
|
336 |
+
if not os.path.exists(subdir):
|
337 |
+
os.makedirs(subdir, exist_ok=True)
|
338 |
+
file_name = os.path.join(subdir, f"{str(uuid.uuid4())[:5]}.py")
|
339 |
+
with open(file_name, "w") as fd:
|
340 |
+
save_graph_repro(
|
341 |
+
fd,
|
342 |
+
fx_g,
|
343 |
+
args,
|
344 |
+
compiler_name,
|
345 |
+
save_dir=save_dir,
|
346 |
+
command="minifier-query",
|
347 |
+
accuracy=accuracy,
|
348 |
+
tracing_mode=tracing_mode,
|
349 |
+
check_str=check_str,
|
350 |
+
)
|
351 |
+
# with open(file_name, "r") as fd:
|
352 |
+
# print(fd.read())
|
353 |
+
new_env = os.environ.copy()
|
354 |
+
new_env = {**new_env, **env}
|
355 |
+
stdout, stderr = TemporaryFile(), TemporaryFile()
|
356 |
+
|
357 |
+
if use_buck:
|
358 |
+
cmd = BuckTargetWriter(file_name).write(print_msg=False)
|
359 |
+
else:
|
360 |
+
cmd = ["python", file_name]
|
361 |
+
|
362 |
+
p = subprocess.Popen(
|
363 |
+
cmd,
|
364 |
+
cwd=subdir,
|
365 |
+
stdout=stdout,
|
366 |
+
stderr=stderr,
|
367 |
+
env=new_env,
|
368 |
+
)
|
369 |
+
p.wait()
|
370 |
+
|
371 |
+
stdout.seek(0)
|
372 |
+
stderr.seek(0)
|
373 |
+
print(
|
374 |
+
textwrap.indent(stdout.read().decode("utf-8"), prefix=">> "), file=sys.stdout
|
375 |
+
)
|
376 |
+
print(
|
377 |
+
textwrap.indent(stderr.read().decode("utf-8"), prefix=">> "), file=sys.stderr
|
378 |
+
)
|
379 |
+
# print(f"Isolated test failed - {file_name}")
|
380 |
+
return p.returncode != 0
|
381 |
+
|
382 |
+
|
383 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
384 |
+
# MINIFIER TOOLS
|
385 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
386 |
+
|
387 |
+
|
388 |
+
def inductor_fails(fx_g, args, check_str=None):
|
389 |
+
has_cuda = False
|
390 |
+
for arg in args:
|
391 |
+
if isinstance(arg, torch.Tensor) and arg.is_cuda:
|
392 |
+
has_cuda = True
|
393 |
+
break
|
394 |
+
|
395 |
+
def sync():
|
396 |
+
if has_cuda:
|
397 |
+
# Ensures that segfaults are surfaced
|
398 |
+
torch.cuda.synchronize()
|
399 |
+
|
400 |
+
from torch._inductor.compile_fx import compile_fx_inner
|
401 |
+
|
402 |
+
try:
|
403 |
+
result = fx_g(*args)
|
404 |
+
assert isinstance(result, (tuple, list))
|
405 |
+
assert not any(isinstance(x, (tuple, list)) for x in result)
|
406 |
+
except Exception:
|
407 |
+
return False
|
408 |
+
|
409 |
+
sync()
|
410 |
+
|
411 |
+
try:
|
412 |
+
compile_mod = compile_fx_inner(fx_g, args)
|
413 |
+
compile_mod(args)
|
414 |
+
sync()
|
415 |
+
except Exception as e:
|
416 |
+
if check_str is not None and check_str not in repr(e):
|
417 |
+
return False
|
418 |
+
print(repr(e))
|
419 |
+
return True
|
420 |
+
return False
|
421 |
+
|
422 |
+
|
423 |
+
def inductor_accuracy_fails(
|
424 |
+
fx_g, args, check_str=None, *, require_fp64=False, ignore_non_fp=False
|
425 |
+
):
|
426 |
+
from torch._inductor.compile_fx import compile_fx_inner
|
427 |
+
|
428 |
+
return backend_aot_accuracy_fails(
|
429 |
+
fx_g,
|
430 |
+
args,
|
431 |
+
compile_fx_inner,
|
432 |
+
require_fp64=require_fp64,
|
433 |
+
ignore_non_fp=ignore_non_fp,
|
434 |
+
)
|
435 |
+
|
436 |
+
|
437 |
+
backend_aot_accuracy_fails = functools.partial(backend_accuracy_fails, only_fwd=True)
|
438 |
+
|
439 |
+
|
440 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
441 |
+
# REPRO MAIN
|
442 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
443 |
+
|
444 |
+
|
445 |
+
def repro_common(options, mod, load_args):
|
446 |
+
# Invariant for graphs we generate with the repro script
|
447 |
+
assert not any(mod.named_parameters())
|
448 |
+
for n, b in mod.named_buffers():
|
449 |
+
if b.numel() > MAX_CONSTANT_NUMEL_INLINE:
|
450 |
+
log.warning(
|
451 |
+
"Constant %s was not serialized, generated random data instead. "
|
452 |
+
"If you think this is affecting you, please comment on "
|
453 |
+
"https://github.com/pytorch/pytorch/issues/100468",
|
454 |
+
n,
|
455 |
+
)
|
456 |
+
|
457 |
+
if not hasattr(load_args, "_version"):
|
458 |
+
log.warning(
|
459 |
+
"load_args does not have a _version attribute, please file a bug to PyTorch "
|
460 |
+
"and describe how you generate this repro script"
|
461 |
+
)
|
462 |
+
else:
|
463 |
+
if load_args._version > 0:
|
464 |
+
log.warning(
|
465 |
+
"load_args is version %s, but this version of PyTorch only supports "
|
466 |
+
"version 0. We will try to run it anyway but there may be an incompatibility; "
|
467 |
+
"if so, try upgrading your version of PyTorch.",
|
468 |
+
load_args._version,
|
469 |
+
)
|
470 |
+
|
471 |
+
nop_reader = NopInputReader()
|
472 |
+
load_args(nop_reader)
|
473 |
+
|
474 |
+
with tqdm(desc="Loading inputs", total=nop_reader.total) as pbar:
|
475 |
+
input_reader = InputReader(save_dir=options.save_dir, pbar=pbar)
|
476 |
+
load_args(input_reader)
|
477 |
+
args = input_reader.args
|
478 |
+
|
479 |
+
# Turn mod into a GraphModule the slow way
|
480 |
+
# TODO: speed this up
|
481 |
+
mod = make_fx(mod, tracing_mode=options.tracing_mode)(*args)
|
482 |
+
|
483 |
+
torch._inductor.config.generate_intermediate_hooks = True
|
484 |
+
|
485 |
+
return mod, args
|
486 |
+
|
487 |
+
|
488 |
+
ACCURACY_FAILS: Dict[str, Callable[[nn.Module, Any], bool]] = {
|
489 |
+
"": inductor_fails,
|
490 |
+
# This might look inverted but it's not. strict_accuracy means "we will
|
491 |
+
# minify any time we see anything that diverges", whereas accuracy is more
|
492 |
+
# conservative, and will only minify if there is a meaningful fp64
|
493 |
+
# divergence
|
494 |
+
"accuracy": functools.partial(
|
495 |
+
inductor_accuracy_fails, require_fp64=True, ignore_non_fp=True
|
496 |
+
),
|
497 |
+
"strict_accuracy": inductor_accuracy_fails,
|
498 |
+
}
|
499 |
+
|
500 |
+
|
501 |
+
def repro_minifier_query(options, mod, load_args):
|
502 |
+
mod, args = repro_common(options, mod, load_args)
|
503 |
+
fail_fn = functools.partial(
|
504 |
+
ACCURACY_FAILS[options.accuracy], check_str=options.check_str
|
505 |
+
)
|
506 |
+
if fail_fn(mod, args):
|
507 |
+
sys.exit(1)
|
508 |
+
else:
|
509 |
+
sys.exit(0)
|
510 |
+
|
511 |
+
|
512 |
+
def repro_minify(options, mod, load_args):
|
513 |
+
from functorch.compile import minifier
|
514 |
+
|
515 |
+
mod, args = repro_common(options, mod, load_args)
|
516 |
+
compiler_name = "inductor_accuracy" if options.accuracy != "" else "inductor"
|
517 |
+
|
518 |
+
favored_device = 1 if torch.cuda.device_count() >= 2 else 0
|
519 |
+
env_variables = {"CUDA_VISIBLE_DEVICES": str(favored_device)}
|
520 |
+
|
521 |
+
module_fails: Any
|
522 |
+
if options.isolate:
|
523 |
+
module_fails = functools.partial(
|
524 |
+
isolate_fails,
|
525 |
+
env=env_variables,
|
526 |
+
compiler_name=compiler_name,
|
527 |
+
save_dir=options.save_dir,
|
528 |
+
accuracy=options.accuracy,
|
529 |
+
tracing_mode=options.tracing_mode,
|
530 |
+
)
|
531 |
+
else:
|
532 |
+
module_fails = ACCURACY_FAILS[options.accuracy]
|
533 |
+
|
534 |
+
minifier(
|
535 |
+
mod,
|
536 |
+
args,
|
537 |
+
module_fails=functools.partial(module_fails, check_str=options.check_str),
|
538 |
+
dump_state=functools.partial(
|
539 |
+
dump_compiler_graph_state, compiler_name=compiler_name
|
540 |
+
),
|
541 |
+
save_dir=options.save_dir,
|
542 |
+
offload_to_disk=options.offload_to_disk,
|
543 |
+
skip_offload=options.skip_saving_eager_intermediates,
|
544 |
+
skip_sanity=options.skip_sanity,
|
545 |
+
max_granularity=options.max_granularity,
|
546 |
+
)
|
547 |
+
|
548 |
+
|
549 |
+
def repro_analyze(options, mod, load_args):
|
550 |
+
from torch._inductor.compile_fx import compile_fx_inner
|
551 |
+
from torch._inductor.hooks import intermediate_hook
|
552 |
+
|
553 |
+
mod, args = repro_common(options, mod, load_args)
|
554 |
+
|
555 |
+
# TODO: The logic for cloning inputs/models here is intentionally
|
556 |
+
# modeled off of run_fwd_maybe_bwd, but arguably it is better not to
|
557 |
+
# clone inputs (as you are doubling your effective GPU memory usage).
|
558 |
+
# It is certainly faster though! It probably makes sense to let the
|
559 |
+
# user specify the offload strategy.
|
560 |
+
|
561 |
+
with tqdm(desc="Compiling"):
|
562 |
+
compiled = compile_fx_inner(mod, args)
|
563 |
+
total = counters["inductor"]["intermediate_hooks"]
|
564 |
+
|
565 |
+
known_names = set()
|
566 |
+
|
567 |
+
def save_hook(name, val):
|
568 |
+
known_names.add(name)
|
569 |
+
if not options.skip_saving_inductor_intermediates:
|
570 |
+
writer.write_tensor(os.path.join("inductor", name), val)
|
571 |
+
pbar.update(1) # type: ignore[has-type]
|
572 |
+
|
573 |
+
writer = torch.utils._content_store.ContentStoreWriter(
|
574 |
+
options.save_dir, stable_hash=options.stable_hash
|
575 |
+
)
|
576 |
+
reader = torch.utils._content_store.ContentStoreReader(options.save_dir)
|
577 |
+
|
578 |
+
new_args = clone_inputs(args)
|
579 |
+
with intermediate_hook(save_hook), tqdm(
|
580 |
+
desc="Saving inductor intermediates", total=total
|
581 |
+
) as pbar:
|
582 |
+
compiled(new_args)
|
583 |
+
assert not new_args
|
584 |
+
|
585 |
+
def compare_tuples(tuple1, tuple2):
|
586 |
+
diff_indices = [i for i in range(len(tuple1)) if tuple1[i] != tuple2[i]]
|
587 |
+
diff_values = [(tuple1[i], tuple2[i]) for i in diff_indices]
|
588 |
+
|
589 |
+
if not diff_values:
|
590 |
+
return None
|
591 |
+
else:
|
592 |
+
return " and ".join(f"{a} != {b}" for a, b in diff_values)
|
593 |
+
|
594 |
+
def check_hook(name, val):
|
595 |
+
meta = writer.compute_tensor_metadata(val)
|
596 |
+
meta2 = reader.read_tensor_metadata(os.path.join("inductor", name))
|
597 |
+
reason = compare_tuples(meta, meta2)
|
598 |
+
if reason is not None:
|
599 |
+
pbar.write(f"NONDETERMINISTIC INDUCTOR at {name} ({reason})")
|
600 |
+
pbar.update(1)
|
601 |
+
|
602 |
+
if not options.skip_check_deterministic:
|
603 |
+
new_args = clone_inputs(args)
|
604 |
+
with intermediate_hook(check_hook), tqdm(
|
605 |
+
desc="Checking inductor determinism", total=total
|
606 |
+
) as pbar:
|
607 |
+
compiled(new_args)
|
608 |
+
assert not new_args
|
609 |
+
|
610 |
+
class WriterInterp(fx.Interpreter):
|
611 |
+
def __init__(self, mod, subdir):
|
612 |
+
super().__init__(mod)
|
613 |
+
self.subdir = subdir
|
614 |
+
|
615 |
+
def run_node(self, n):
|
616 |
+
r = super().run_node(n)
|
617 |
+
name = n.name
|
618 |
+
if name in known_names:
|
619 |
+
pbar.update(1)
|
620 |
+
writer.write_tensor(os.path.join(self.subdir, name), r)
|
621 |
+
return r
|
622 |
+
|
623 |
+
# NB: the module cast doesn't actually do anything, since there are no
|
624 |
+
# parameters/buffers on the module
|
625 |
+
if not options.skip_saving_float64_intermediates:
|
626 |
+
new_mod, new_args = cast_to_fp64(copy.deepcopy(mod), clone_inputs(args))
|
627 |
+
with tqdm(desc="Saving float64 intermediates", total=total) as pbar:
|
628 |
+
WriterInterp(new_mod, "float64").boxed_run(new_args)
|
629 |
+
assert not new_args
|
630 |
+
|
631 |
+
class ExactReaderInterp(fx.Interpreter):
|
632 |
+
def run_node(self, n):
|
633 |
+
r = super().run_node(n)
|
634 |
+
name = n.name
|
635 |
+
if name in known_names:
|
636 |
+
meta = writer.compute_tensor_metadata(r)
|
637 |
+
meta2 = reader.read_tensor_metadata(os.path.join("float64", name))
|
638 |
+
reason = compare_tuples(meta, meta2)
|
639 |
+
if reason is not None:
|
640 |
+
pbar.write(f"NONDETERMINISTIC FLOAT64 at {name} ({reason})")
|
641 |
+
pbar.update(1)
|
642 |
+
return r
|
643 |
+
|
644 |
+
# TODO: check eager determinism
|
645 |
+
|
646 |
+
if not options.skip_check_deterministic:
|
647 |
+
new_mod, new_args = cast_to_fp64(copy.deepcopy(mod), clone_inputs(args))
|
648 |
+
with tqdm(desc="Checking float64 determinism", total=total) as pbar:
|
649 |
+
ExactReaderInterp(new_mod).boxed_run(new_args)
|
650 |
+
assert not new_args
|
651 |
+
|
652 |
+
# Now that we've saved everything, interp through the eager graph
|
653 |
+
# and do comparisons
|
654 |
+
class ReaderInterp(fx.Interpreter):
|
655 |
+
def run_node(self, n):
|
656 |
+
r = super().run_node(n)
|
657 |
+
name = n.name
|
658 |
+
if name in known_names:
|
659 |
+
inductor = reader.read_tensor(os.path.join("inductor", name))
|
660 |
+
float64 = reader.read_tensor(os.path.join("float64", name))
|
661 |
+
logged = False
|
662 |
+
|
663 |
+
def log_error(msg, *args):
|
664 |
+
nonlocal logged
|
665 |
+
logged = True
|
666 |
+
pbar.write(f"DIVERGED at {name}: {msg % args}")
|
667 |
+
|
668 |
+
if not same(
|
669 |
+
r,
|
670 |
+
inductor,
|
671 |
+
float64,
|
672 |
+
tol=torch._dynamo.config.repro_tolerance,
|
673 |
+
equal_nan=True,
|
674 |
+
log_error=log_error,
|
675 |
+
):
|
676 |
+
assert logged
|
677 |
+
pbar.update(1)
|
678 |
+
return r
|
679 |
+
|
680 |
+
with tqdm(desc="Checking divergence", total=total) as pbar:
|
681 |
+
ReaderInterp(mod).boxed_run(args)
|
682 |
+
assert not args
|
683 |
+
|
684 |
+
|
685 |
+
def repro_run(options, mod, load_args):
|
686 |
+
from torch._inductor.compile_fx import compile_fx_inner
|
687 |
+
|
688 |
+
mod, args = repro_common(options, mod, load_args)
|
689 |
+
|
690 |
+
from torch.cuda import synchronize
|
691 |
+
|
692 |
+
compiled = compile_fx_inner(mod, args)
|
693 |
+
|
694 |
+
if options.accuracy != "":
|
695 |
+
# We don't really respect --accuracy vs --strict-accuracy here, it
|
696 |
+
# seems counterintuitive
|
697 |
+
if not same_two_models(mod, compiled, args, only_fwd=True):
|
698 |
+
raise AccuracyError("Bad accuracy detected")
|
699 |
+
else:
|
700 |
+
need_sync = False
|
701 |
+
for arg in args:
|
702 |
+
if isinstance(arg, torch.Tensor) and arg.is_cuda:
|
703 |
+
need_sync = True
|
704 |
+
break
|
705 |
+
ref = compiled(args)
|
706 |
+
if need_sync:
|
707 |
+
synchronize() # ensure segfaults are surfaced
|
708 |
+
|
709 |
+
|
710 |
+
# TODO: lazily load the inputs or something, rather than cloning them
|
711 |
+
def run_repro(
|
712 |
+
mod,
|
713 |
+
load_args,
|
714 |
+
*,
|
715 |
+
command="run",
|
716 |
+
accuracy: Union[bool, str] = "",
|
717 |
+
save_dir=None,
|
718 |
+
tracing_mode=None,
|
719 |
+
patch_code=None,
|
720 |
+
check_str=None,
|
721 |
+
**kwargs,
|
722 |
+
):
|
723 |
+
for k in kwargs:
|
724 |
+
log.warning(
|
725 |
+
"Unrecognized kwarg %s; perhaps this repro was made on a newer version of PyTorch",
|
726 |
+
k,
|
727 |
+
)
|
728 |
+
|
729 |
+
if accuracy is True:
|
730 |
+
accuracy = "accuracy"
|
731 |
+
elif accuracy is False:
|
732 |
+
accuracy = ""
|
733 |
+
|
734 |
+
if patch_code is not None:
|
735 |
+
log.warning(
|
736 |
+
"patch_code no longer works on this version of PyTorch, silently ignoring"
|
737 |
+
)
|
738 |
+
|
739 |
+
parser = argparse.ArgumentParser(
|
740 |
+
description=f"""\
|
741 |
+
An after_aot repro script, typically triggering a bug in PyTorch Inductor.
|
742 |
+
When run with no arguments, this script defaults to running '{command}'.
|
743 |
+
Extra flags may be available; to find out more, try '{command} --help'.
|
744 |
+
There are also alternate subcommands available, see below.
|
745 |
+
|
746 |
+
default settings on this script:
|
747 |
+
{accuracy=}
|
748 |
+
{tracing_mode=}
|
749 |
+
{save_dir=}
|
750 |
+
{check_str=}
|
751 |
+
""",
|
752 |
+
formatter_class=argparse.RawTextHelpFormatter,
|
753 |
+
)
|
754 |
+
|
755 |
+
def common_flags(parser):
|
756 |
+
accuracy_group = parser.add_mutually_exclusive_group()
|
757 |
+
accuracy_group.add_argument(
|
758 |
+
"--no-accuracy",
|
759 |
+
dest="accuracy",
|
760 |
+
action="store_const",
|
761 |
+
const="",
|
762 |
+
default=accuracy,
|
763 |
+
help="do not test accuracy, just run the module and see if it errors",
|
764 |
+
)
|
765 |
+
accuracy_group.add_argument(
|
766 |
+
"--accuracy",
|
767 |
+
action="store_const",
|
768 |
+
const="accuracy",
|
769 |
+
default=accuracy,
|
770 |
+
help="""\
|
771 |
+
test if the RMSE between the compiled module and the fp64 reference is greater
|
772 |
+
than eager and the fp64 reference. This is usually more reliable than the
|
773 |
+
standard allclose test, as we expect numeric differences from compiling, often
|
774 |
+
improving accuracy over eager. RMSE test allows for compiled module to
|
775 |
+
diverge greatly from eager, as long as this divergence moves it closer to the
|
776 |
+
'true' mathematical value of the network. Caveats: (1) double precision can
|
777 |
+
still suffer from rounding error, so it is not a perfect reference (see for
|
778 |
+
example 'Herbie: Automatically Improving Floating Point Accuracy') for
|
779 |
+
approaches that detect the necessary working precision and compute it in
|
780 |
+
arbitrary precision floating point; unfortunately, this is not practical for
|
781 |
+
tensor computation; (2) if there are not enough samples in the output being
|
782 |
+
compared, we may get unlucky and have an unlucky greater RMSE than eager; this
|
783 |
+
could be overcome by applying a more rigorous statistical test at some
|
784 |
+
p-value, which we leave for future work.
|
785 |
+
""",
|
786 |
+
)
|
787 |
+
accuracy_group.add_argument(
|
788 |
+
"--strict-accuracy",
|
789 |
+
dest="accuracy",
|
790 |
+
action="store_const",
|
791 |
+
const="strict_accuracy",
|
792 |
+
default=accuracy,
|
793 |
+
help="""\
|
794 |
+
by default, when doing accuracy minification we will reject reductions which
|
795 |
+
change the divergence from a floating point divergence to a integral/boolean
|
796 |
+
divergence. This is because some operations like ReLU involve temporarily
|
797 |
+
sharp boundaries that smooth out again afterwards; without requiring
|
798 |
+
divergence on floating point, the minifier will often fixate on divergent
|
799 |
+
boolean tensor even though this is not the true source of the divergence.
|
800 |
+
However, rejecting these reductions makes it more difficult for the minifier
|
801 |
+
to make process. Using this option will let the minifier progress for ALL
|
802 |
+
divergences--you just might not end up with a useful repro in the end.""",
|
803 |
+
)
|
804 |
+
|
805 |
+
parser.add_argument(
|
806 |
+
"--save-dir",
|
807 |
+
type=str,
|
808 |
+
default=save_dir,
|
809 |
+
metavar="DIR",
|
810 |
+
help="directory where saved inputs live",
|
811 |
+
)
|
812 |
+
parser.add_argument(
|
813 |
+
"--no-save-dir",
|
814 |
+
dest="save_dir",
|
815 |
+
action="store_const",
|
816 |
+
const=None,
|
817 |
+
help="don't use any directory for saved inputs",
|
818 |
+
)
|
819 |
+
parser.add_argument(
|
820 |
+
"--tracing-mode",
|
821 |
+
type=str,
|
822 |
+
metavar="{real,fake,symbolic}",
|
823 |
+
default=tracing_mode,
|
824 |
+
help="how to trace the repro module into a GraphModule with metadata",
|
825 |
+
)
|
826 |
+
|
827 |
+
subparsers = parser.add_subparsers(
|
828 |
+
dest="command", metavar="{run,minify,analyze}", required=True
|
829 |
+
)
|
830 |
+
|
831 |
+
parser_run = subparsers.add_parser(
|
832 |
+
"run",
|
833 |
+
help="just run the repro",
|
834 |
+
)
|
835 |
+
common_flags(parser_run)
|
836 |
+
|
837 |
+
parser_minify = subparsers.add_parser(
|
838 |
+
"minify", help="run the minifier on the repro"
|
839 |
+
)
|
840 |
+
common_flags(parser_minify)
|
841 |
+
parser_minify_isolate = parser_minify.add_mutually_exclusive_group()
|
842 |
+
parser_minify_isolate.add_argument(
|
843 |
+
"--isolate",
|
844 |
+
action="store_true",
|
845 |
+
default=True,
|
846 |
+
help="run in separate processes to avoid interference (default)",
|
847 |
+
)
|
848 |
+
parser_minify_isolate.add_argument(
|
849 |
+
"--no-isolate",
|
850 |
+
dest="isolate",
|
851 |
+
action="store_false",
|
852 |
+
help="speed up by running all compilation in same process",
|
853 |
+
)
|
854 |
+
parser_minify.add_argument(
|
855 |
+
"--skip-saving-eager-intermediates",
|
856 |
+
action="store_true",
|
857 |
+
help="skip saving eager intermediates on --minify",
|
858 |
+
)
|
859 |
+
# TODO: make this an option for --analyze too
|
860 |
+
parser_minify.add_argument(
|
861 |
+
"--offload-to-disk",
|
862 |
+
action="store_true",
|
863 |
+
help="during minification, offload delta debugging intermediates to disk. Use if you're OOMing",
|
864 |
+
)
|
865 |
+
parser_minify.add_argument(
|
866 |
+
"--skip-sanity",
|
867 |
+
action="store_true",
|
868 |
+
help="skip sanity check at beginning of minification on original graph",
|
869 |
+
)
|
870 |
+
parser_minify.add_argument(
|
871 |
+
"--max-granularity",
|
872 |
+
type=int,
|
873 |
+
default=None,
|
874 |
+
help="start at this granularity and work down; must be power of 2",
|
875 |
+
)
|
876 |
+
parser_minify.add_argument(
|
877 |
+
"--check-str",
|
878 |
+
type=str,
|
879 |
+
default=check_str,
|
880 |
+
help="require minified program to fail with error containing this string",
|
881 |
+
)
|
882 |
+
|
883 |
+
parser_analyze = subparsers.add_parser(
|
884 |
+
"analyze", help="run the accuracy analyzer on the repro"
|
885 |
+
)
|
886 |
+
common_flags(parser_analyze)
|
887 |
+
parser_analyze.add_argument(
|
888 |
+
"--skip-saving-inductor-intermediates",
|
889 |
+
action="store_true",
|
890 |
+
help="skip saving inductor intermediates on --analyze",
|
891 |
+
)
|
892 |
+
parser_analyze.add_argument(
|
893 |
+
"--skip-saving-float64-intermediates",
|
894 |
+
action="store_true",
|
895 |
+
help="skip saving float64 intermediates",
|
896 |
+
)
|
897 |
+
parser_analyze.add_argument(
|
898 |
+
"--skip-check-deterministic",
|
899 |
+
action="store_true",
|
900 |
+
help="skip checking that the network is deterministic",
|
901 |
+
)
|
902 |
+
parser_analyze.add_argument(
|
903 |
+
"--stable-hash",
|
904 |
+
action="store_true",
|
905 |
+
help="use SHA-1 checksum instead of fast (but possibly unsound) hash",
|
906 |
+
)
|
907 |
+
|
908 |
+
# Run the repro in the context of minification, inverting exit code meaning
|
909 |
+
parser_minifier_query = subparsers.add_parser(
|
910 |
+
"minifier-query",
|
911 |
+
)
|
912 |
+
common_flags(parser_minifier_query)
|
913 |
+
parser_minifier_query.add_argument(
|
914 |
+
"--check-str",
|
915 |
+
type=str,
|
916 |
+
default=check_str,
|
917 |
+
help="require minified program to fail with error containing this string",
|
918 |
+
)
|
919 |
+
|
920 |
+
args = None
|
921 |
+
if len(sys.argv) <= 1:
|
922 |
+
args = [command, *sys.argv[1:]]
|
923 |
+
|
924 |
+
options = parser.parse_args(args)
|
925 |
+
COMMAND_FNS = {
|
926 |
+
"minify": repro_minify,
|
927 |
+
"analyze": repro_analyze,
|
928 |
+
"minifier-query": repro_minifier_query,
|
929 |
+
"run": repro_run,
|
930 |
+
}
|
931 |
+
COMMAND_FNS[options.command](options, mod, load_args)
|