Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/peft/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/__pycache__/auto.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/__pycache__/config.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/__pycache__/helpers.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/__pycache__/import_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/__pycache__/mapping.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/__pycache__/mixed_model.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/__pycache__/peft_model.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/__init__.py +32 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/__pycache__/lycoris_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/__pycache__/tuners_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/adalora/__init__.py +37 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/adalora/bnb.py +145 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/adalora/config.py +52 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/adalora/layer.py +347 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/adalora/model.py +346 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/ia3/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/ia3/__pycache__/bnb.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/ia3/__pycache__/config.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/ia3/__pycache__/layer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/ia3/__pycache__/model.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/ia3/model.py +394 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/loha/__init__.py +20 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/loha/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/loha/__pycache__/config.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/loha/__pycache__/layer.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/loha/__pycache__/model.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/loha/config.py +121 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/loha/layer.py +375 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/loha/model.py +114 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/__pycache__/config.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/aqlm.py +100 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/awq.py +108 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/bnb.py +508 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/config.py +299 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/layer.py +1066 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/model.py +793 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/tp_layer.py +230 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/lycoris_utils.py +428 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/mixed/__init__.py +18 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/mixed/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/mixed/__pycache__/model.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/mixed/model.py +339 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/multitask_prompt_tuning/__init__.py +19 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/multitask_prompt_tuning/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/multitask_prompt_tuning/__pycache__/config.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/multitask_prompt_tuning/__pycache__/model.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/multitask_prompt_tuning/config.py +61 -0
- llmeval-env/lib/python3.10/site-packages/peft/tuners/multitask_prompt_tuning/model.py +115 -0
llmeval-env/lib/python3.10/site-packages/peft/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/__pycache__/auto.cpython-310.pyc
ADDED
Binary file (4.86 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/__pycache__/config.cpython-310.pyc
ADDED
Binary file (8.79 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/__pycache__/helpers.cpython-310.pyc
ADDED
Binary file (4.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/__pycache__/import_utils.cpython-310.pyc
ADDED
Binary file (1.93 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/__pycache__/mapping.cpython-310.pyc
ADDED
Binary file (4.69 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/__pycache__/mixed_model.cpython-310.pyc
ADDED
Binary file (14.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/__pycache__/peft_model.cpython-310.pyc
ADDED
Binary file (53.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/__init__.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa
|
2 |
+
# There's no way to ignore "F401 '...' imported but unused" warnings in this
|
3 |
+
# module, but to preserve other warnings. So, don't check this module at all
|
4 |
+
|
5 |
+
# coding=utf-8
|
6 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
7 |
+
#
|
8 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
9 |
+
# you may not use this file except in compliance with the License.
|
10 |
+
# You may obtain a copy of the License at
|
11 |
+
#
|
12 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
13 |
+
#
|
14 |
+
# Unless required by applicable law or agreed to in writing, software
|
15 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
16 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
17 |
+
# See the License for the specific language governing permissions and
|
18 |
+
# limitations under the License.
|
19 |
+
|
20 |
+
from .adaption_prompt import AdaptionPromptConfig, AdaptionPromptModel
|
21 |
+
from .lora import LoraConfig, LoraModel, LoftQConfig
|
22 |
+
from .loha import LoHaConfig, LoHaModel
|
23 |
+
from .lokr import LoKrConfig, LoKrModel
|
24 |
+
from .ia3 import IA3Config, IA3Model
|
25 |
+
from .adalora import AdaLoraConfig, AdaLoraModel
|
26 |
+
from .p_tuning import PromptEncoder, PromptEncoderConfig, PromptEncoderReparameterizationType
|
27 |
+
from .prefix_tuning import PrefixEncoder, PrefixTuningConfig
|
28 |
+
from .prompt_tuning import PromptEmbedding, PromptTuningConfig, PromptTuningInit
|
29 |
+
from .multitask_prompt_tuning import MultitaskPromptEmbedding, MultitaskPromptTuningConfig, MultitaskPromptTuningInit
|
30 |
+
from .oft import OFTConfig, OFTModel
|
31 |
+
from .mixed import MixedModel
|
32 |
+
from .poly import PolyConfig, PolyModel
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.21 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/__pycache__/lycoris_utils.cpython-310.pyc
ADDED
Binary file (14.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/__pycache__/tuners_utils.cpython-310.pyc
ADDED
Binary file (25.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/adalora/__init__.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from peft.import_utils import is_bnb_4bit_available, is_bnb_available
|
16 |
+
|
17 |
+
from .config import AdaLoraConfig
|
18 |
+
from .gptq import SVDQuantLinear
|
19 |
+
from .layer import AdaLoraLayer, RankAllocator, SVDLinear
|
20 |
+
from .model import AdaLoraModel
|
21 |
+
|
22 |
+
|
23 |
+
__all__ = ["AdaLoraConfig", "AdaLoraLayer", "AdaLoraModel", "SVDLinear", "RankAllocator", "SVDQuantLinear"]
|
24 |
+
|
25 |
+
|
26 |
+
def __getattr__(name):
|
27 |
+
if (name == "SVDLinear8bitLt") and is_bnb_available():
|
28 |
+
from .bnb import SVDLinear8bitLt
|
29 |
+
|
30 |
+
return SVDLinear8bitLt
|
31 |
+
|
32 |
+
if (name == "SVDLinear4bit") and is_bnb_4bit_available():
|
33 |
+
from .bnb import SVDLinear4bit
|
34 |
+
|
35 |
+
return SVDLinear4bit
|
36 |
+
|
37 |
+
raise AttributeError(f"module {__name__} has no attribute {name}")
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/adalora/bnb.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import Any
|
16 |
+
|
17 |
+
import torch
|
18 |
+
|
19 |
+
from peft.import_utils import is_bnb_4bit_available, is_bnb_available
|
20 |
+
|
21 |
+
from .layer import AdaLoraLayer
|
22 |
+
|
23 |
+
|
24 |
+
if is_bnb_available():
|
25 |
+
|
26 |
+
class SVDLinear8bitLt(torch.nn.Module, AdaLoraLayer):
|
27 |
+
# Low-rank matrix for SVD-based adaptation
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
base_layer: torch.nn.Module,
|
31 |
+
adapter_name: str,
|
32 |
+
r: int = 0,
|
33 |
+
lora_alpha: int = 1,
|
34 |
+
lora_dropout: float = 0.0,
|
35 |
+
init_lora_weights: bool = True,
|
36 |
+
**kwargs,
|
37 |
+
) -> None:
|
38 |
+
super().__init__()
|
39 |
+
AdaLoraLayer.__init__(self, base_layer)
|
40 |
+
# Freezing the pre-trained weight matrix
|
41 |
+
self.get_base_layer().weight.requires_grad = False
|
42 |
+
|
43 |
+
self._active_adapter = adapter_name
|
44 |
+
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights)
|
45 |
+
|
46 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
47 |
+
# note: no check for self.merged because merging is not supported (yet)
|
48 |
+
result = self.base_layer(x)
|
49 |
+
|
50 |
+
if self.disable_adapters:
|
51 |
+
return result
|
52 |
+
|
53 |
+
for active_adapter in self.active_adapters:
|
54 |
+
if active_adapter not in self.lora_A.keys():
|
55 |
+
continue
|
56 |
+
requires_conversion = not torch.is_autocast_enabled()
|
57 |
+
if requires_conversion:
|
58 |
+
expected_dtype = result.dtype
|
59 |
+
if x.dtype != torch.float32:
|
60 |
+
x = x.float()
|
61 |
+
|
62 |
+
lora_A = self.lora_A[active_adapter]
|
63 |
+
lora_B = self.lora_B[active_adapter]
|
64 |
+
lora_E = self.lora_E[active_adapter]
|
65 |
+
dropout = self.lora_dropout[active_adapter]
|
66 |
+
scaling = self.scaling[active_adapter]
|
67 |
+
ranknum = self.ranknum[active_adapter] + 1e-5
|
68 |
+
|
69 |
+
output = dropout(x) @ (lora_A * lora_E).T @ lora_B.T
|
70 |
+
if requires_conversion:
|
71 |
+
output = output.to(expected_dtype)
|
72 |
+
output = output * scaling / ranknum
|
73 |
+
# inplace operation on view is forbidden for MatMul8bitLtBackward, so avoid it
|
74 |
+
result = result + output
|
75 |
+
return result
|
76 |
+
|
77 |
+
def __repr__(self) -> str:
|
78 |
+
rep = super().__repr__()
|
79 |
+
return "adalora." + rep
|
80 |
+
|
81 |
+
|
82 |
+
if is_bnb_4bit_available():
|
83 |
+
|
84 |
+
class SVDLinear4bit(torch.nn.Module, AdaLoraLayer):
|
85 |
+
# Low-rank matrix for SVD-based adaptation
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
base_layer: torch.nn.Module,
|
89 |
+
adapter_name: str,
|
90 |
+
r: int = 0,
|
91 |
+
lora_alpha: int = 1,
|
92 |
+
lora_dropout: float = 0.0,
|
93 |
+
init_lora_weights: bool = True,
|
94 |
+
**kwargs,
|
95 |
+
) -> None:
|
96 |
+
super().__init__()
|
97 |
+
AdaLoraLayer.__init__(self, base_layer)
|
98 |
+
# Freezing the pre-trained weight matrix
|
99 |
+
self.get_base_layer().weight.requires_grad = False
|
100 |
+
|
101 |
+
self._active_adapter = adapter_name
|
102 |
+
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights)
|
103 |
+
|
104 |
+
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
|
105 |
+
# note: no check for self.merged because merging is not supported (yet)
|
106 |
+
result = self.base_layer(x, *args, **kwargs)
|
107 |
+
|
108 |
+
if self.disable_adapters:
|
109 |
+
return result
|
110 |
+
|
111 |
+
# As per Tim Dettmers, for 4bit, we need to defensively clone here.
|
112 |
+
# The reason is that in some cases, an error can occur that backprop
|
113 |
+
# does not work on a manipulated view. This issue may be solved with
|
114 |
+
# newer PyTorch versions but this would need extensive testing to be
|
115 |
+
# sure.
|
116 |
+
result = result.clone()
|
117 |
+
|
118 |
+
for active_adapter in self.active_adapters:
|
119 |
+
if active_adapter not in self.lora_A.keys():
|
120 |
+
continue
|
121 |
+
|
122 |
+
lora_A = self.lora_A[active_adapter]
|
123 |
+
lora_B = self.lora_B[active_adapter]
|
124 |
+
lora_E = self.lora_E[active_adapter]
|
125 |
+
dropout = self.lora_dropout[active_adapter]
|
126 |
+
scaling = self.scaling[active_adapter]
|
127 |
+
ranknum = self.ranknum[active_adapter] + 1e-5
|
128 |
+
|
129 |
+
requires_conversion = not torch.is_autocast_enabled()
|
130 |
+
if requires_conversion:
|
131 |
+
expected_dtype = result.dtype
|
132 |
+
compute_dtype = lora_A.dtype
|
133 |
+
if x.dtype != compute_dtype:
|
134 |
+
x = x.to(compute_dtype)
|
135 |
+
|
136 |
+
output = dropout(x) @ (lora_A * lora_E).T @ lora_B.T
|
137 |
+
if requires_conversion:
|
138 |
+
output = output.to(expected_dtype)
|
139 |
+
output = output * scaling / ranknum
|
140 |
+
result += output
|
141 |
+
return result
|
142 |
+
|
143 |
+
def __repr__(self) -> str:
|
144 |
+
rep = super().__repr__()
|
145 |
+
return "adalora." + rep
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/adalora/config.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from dataclasses import dataclass, field
|
16 |
+
from typing import Optional
|
17 |
+
|
18 |
+
from peft.tuners.lora import LoraConfig
|
19 |
+
from peft.utils import PeftType
|
20 |
+
|
21 |
+
|
22 |
+
@dataclass
|
23 |
+
class AdaLoraConfig(LoraConfig):
|
24 |
+
"""
|
25 |
+
This is the configuration class to store the configuration of a [`~peft.AdaLora`].
|
26 |
+
|
27 |
+
Args:
|
28 |
+
target_r (`int`): The target average rank of incremental matrix.
|
29 |
+
init_r (`int`): The initial rank for each incremental matrix.
|
30 |
+
tinit (`int`): The steps of initial fine-tuning warmup.
|
31 |
+
tfinal (`int`): The step of final fine-tuning.
|
32 |
+
deltaT (`int`): The time internval between two budget allocations.
|
33 |
+
beta1 (`float`): The hyperparameter of EMA for sensitivity smoothing.
|
34 |
+
beta2 (`float`): The hyperparameter of EMA for undertainty quantification.
|
35 |
+
orth_reg_weight (`float`): The coefficient of orthogonal regularization.
|
36 |
+
total_step (`int`): The total training steps that should be specified before training.
|
37 |
+
rank_pattern (`list`): The allocated rank for each weight matrix by RankAllocator.
|
38 |
+
"""
|
39 |
+
|
40 |
+
target_r: int = field(default=8, metadata={"help": "Target Lora matrix dimension."})
|
41 |
+
init_r: int = field(default=12, metadata={"help": "Initial Lora matrix dimension."})
|
42 |
+
tinit: int = field(default=0, metadata={"help": "The steps of initial warmup."})
|
43 |
+
tfinal: int = field(default=0, metadata={"help": "The steps of final warmup."})
|
44 |
+
deltaT: int = field(default=1, metadata={"help": "Step interval of rank allocation."})
|
45 |
+
beta1: float = field(default=0.85, metadata={"help": "Hyperparameter of EMA."})
|
46 |
+
beta2: float = field(default=0.85, metadata={"help": "Hyperparameter of EMA."})
|
47 |
+
orth_reg_weight: float = field(default=0.5, metadata={"help": "The orthogonal regularization coefficient."})
|
48 |
+
total_step: Optional[int] = field(default=None, metadata={"help": "The total training steps."})
|
49 |
+
rank_pattern: Optional[dict] = field(default=None, metadata={"help": "The saved rank pattern."})
|
50 |
+
|
51 |
+
def __post_init__(self):
|
52 |
+
self.peft_type = PeftType.ADALORA
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/adalora/layer.py
ADDED
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import warnings
|
16 |
+
from typing import Any, List, Optional
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from peft.tuners.lora import LoraLayer
|
22 |
+
from peft.tuners.tuners_utils import check_adapters_to_merge
|
23 |
+
from peft.utils import transpose
|
24 |
+
|
25 |
+
|
26 |
+
class AdaLoraLayer(LoraLayer):
|
27 |
+
# List all names of layers that may contain adapter weights
|
28 |
+
# Note: ranknum doesn't need to be included as it is not an nn.Module
|
29 |
+
adapter_layer_names = ("lora_A", "lora_B", "lora_E", "lora_embedding_A", "lora_embedding_B")
|
30 |
+
# other_param_names is defined in LoraLayer
|
31 |
+
|
32 |
+
def __init__(self, base_layer: nn.Module) -> None:
|
33 |
+
super().__init__(base_layer)
|
34 |
+
self.lora_E = nn.ParameterDict({})
|
35 |
+
self.lora_A = nn.ParameterDict({})
|
36 |
+
self.lora_B = nn.ParameterDict({})
|
37 |
+
self.ranknum = nn.ParameterDict({})
|
38 |
+
|
39 |
+
def update_layer(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights):
|
40 |
+
if r < 0:
|
41 |
+
# note: r == 0 is allowed for AdaLora, see #1539
|
42 |
+
raise ValueError(f"`r` should be a positive integer or 0, but the value passed is {r}")
|
43 |
+
|
44 |
+
self.r[adapter_name] = r
|
45 |
+
self.lora_alpha[adapter_name] = lora_alpha
|
46 |
+
if lora_dropout > 0.0:
|
47 |
+
lora_dropout_layer = nn.Dropout(p=lora_dropout)
|
48 |
+
else:
|
49 |
+
lora_dropout_layer = nn.Identity()
|
50 |
+
|
51 |
+
self.lora_dropout[adapter_name] = lora_dropout_layer
|
52 |
+
# Actual trainable parameters
|
53 |
+
# Right singular vectors
|
54 |
+
self.lora_A[adapter_name] = nn.Parameter(torch.randn(r, self.in_features))
|
55 |
+
# Singular values
|
56 |
+
self.lora_E[adapter_name] = nn.Parameter(torch.randn(r, 1))
|
57 |
+
# Left singular vectors
|
58 |
+
self.lora_B[adapter_name] = nn.Parameter(torch.randn(self.out_features, r))
|
59 |
+
# The current rank
|
60 |
+
self.ranknum[adapter_name] = nn.Parameter(torch.randn(1), requires_grad=False)
|
61 |
+
self.ranknum[adapter_name].data.fill_(float(r))
|
62 |
+
self.ranknum[adapter_name].requires_grad = False
|
63 |
+
self.scaling[adapter_name] = lora_alpha if lora_alpha > 0 else float(r)
|
64 |
+
if init_lora_weights:
|
65 |
+
self.reset_lora_parameters(adapter_name)
|
66 |
+
|
67 |
+
if hasattr(self.get_base_layer(), "qweight"):
|
68 |
+
# QuantLinear
|
69 |
+
self.to(self.get_base_layer().qweight.device)
|
70 |
+
else:
|
71 |
+
self.to(self.get_base_layer().weight.device)
|
72 |
+
self.set_adapter(self.active_adapters)
|
73 |
+
|
74 |
+
def reset_lora_parameters(self, adapter_name):
|
75 |
+
if adapter_name in self.lora_A.keys():
|
76 |
+
nn.init.normal_(self.lora_E[adapter_name], mean=0.0, std=0.02)
|
77 |
+
nn.init.normal_(self.lora_A[adapter_name], mean=0.0, std=0.02)
|
78 |
+
nn.init.normal_(self.lora_B[adapter_name], mean=0.0, std=0.02)
|
79 |
+
|
80 |
+
|
81 |
+
class SVDLinear(nn.Module, AdaLoraLayer):
|
82 |
+
# SVD-based adaptation by a dense layer
|
83 |
+
def __init__(
|
84 |
+
self,
|
85 |
+
base_layer: nn.Module,
|
86 |
+
adapter_name: str,
|
87 |
+
r: int = 0,
|
88 |
+
lora_alpha: int = 1,
|
89 |
+
lora_dropout: float = 0.0,
|
90 |
+
fan_in_fan_out: bool = False,
|
91 |
+
init_lora_weights: bool = True,
|
92 |
+
**kwargs,
|
93 |
+
) -> None:
|
94 |
+
super().__init__()
|
95 |
+
AdaLoraLayer.__init__(self, base_layer)
|
96 |
+
# Freezing the pre-trained weight matrix
|
97 |
+
self.get_base_layer().weight.requires_grad = False
|
98 |
+
|
99 |
+
self.fan_in_fan_out = fan_in_fan_out
|
100 |
+
self._active_adapter = adapter_name
|
101 |
+
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights)
|
102 |
+
|
103 |
+
def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None:
|
104 |
+
"""
|
105 |
+
Merge the active adapter weights into the base weights
|
106 |
+
|
107 |
+
Args:
|
108 |
+
safe_merge (`bool`, *optional*):
|
109 |
+
If True, the merge operation will be performed in a copy of the original weights and check for NaNs
|
110 |
+
before merging the weights. This is useful if you want to check if the merge operation will produce
|
111 |
+
NaNs. Defaults to `False`.
|
112 |
+
adapter_names (`List[str]`, *optional*):
|
113 |
+
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
|
114 |
+
to `None`.
|
115 |
+
"""
|
116 |
+
adapter_names = check_adapters_to_merge(self, adapter_names)
|
117 |
+
if not adapter_names:
|
118 |
+
# no adapter to merge
|
119 |
+
return
|
120 |
+
|
121 |
+
for active_adapter in adapter_names:
|
122 |
+
base_layer = self.get_base_layer()
|
123 |
+
if active_adapter in self.lora_A.keys():
|
124 |
+
if safe_merge:
|
125 |
+
# Note that safe_merge will be slower than the normal merge
|
126 |
+
# because of the copy operation.
|
127 |
+
orig_weights = base_layer.weight.data.clone()
|
128 |
+
orig_weights += self.get_delta_weight(active_adapter)
|
129 |
+
|
130 |
+
if not torch.isfinite(orig_weights).all():
|
131 |
+
raise ValueError(
|
132 |
+
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
|
133 |
+
)
|
134 |
+
|
135 |
+
base_layer.weight.data = orig_weights
|
136 |
+
else:
|
137 |
+
base_layer.weight.data += self.get_delta_weight(active_adapter)
|
138 |
+
self.merged_adapters.append(active_adapter)
|
139 |
+
|
140 |
+
def unmerge(self) -> None:
|
141 |
+
"""
|
142 |
+
This method unmerges all merged adapter layers from the base weights.
|
143 |
+
"""
|
144 |
+
if not self.merged:
|
145 |
+
warnings.warn("Already unmerged. Nothing to do.")
|
146 |
+
return
|
147 |
+
while len(self.merged_adapters) > 0:
|
148 |
+
active_adapter = self.merged_adapters.pop()
|
149 |
+
if active_adapter in self.lora_A.keys():
|
150 |
+
self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter)
|
151 |
+
|
152 |
+
def get_delta_weight(self, adapter) -> torch.Tensor:
|
153 |
+
return (
|
154 |
+
transpose(self.lora_B[adapter] @ (self.lora_A[adapter] * self.lora_E[adapter]), self.fan_in_fan_out)
|
155 |
+
* self.scaling[adapter]
|
156 |
+
/ (self.ranknum[adapter] + 1e-5)
|
157 |
+
)
|
158 |
+
|
159 |
+
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
|
160 |
+
if self.disable_adapters:
|
161 |
+
if self.merged:
|
162 |
+
self.unmerge()
|
163 |
+
result = self.base_layer(x, *args, **kwargs)
|
164 |
+
elif self.merged:
|
165 |
+
result = self.base_layer(x, *args, **kwargs)
|
166 |
+
else:
|
167 |
+
result = self.base_layer(x, *args, **kwargs)
|
168 |
+
for active_adapter in self.active_adapters:
|
169 |
+
if active_adapter not in self.lora_A.keys():
|
170 |
+
continue
|
171 |
+
lora_A = self.lora_A[active_adapter]
|
172 |
+
lora_B = self.lora_B[active_adapter]
|
173 |
+
lora_E = self.lora_E[active_adapter]
|
174 |
+
dropout = self.lora_dropout[active_adapter]
|
175 |
+
scaling = self.scaling[active_adapter]
|
176 |
+
ranknum = self.ranknum[active_adapter] + 1e-5
|
177 |
+
|
178 |
+
x = x.to(lora_A.dtype)
|
179 |
+
result += (dropout(x) @ (lora_A * lora_E).T @ lora_B.T) * scaling / ranknum
|
180 |
+
|
181 |
+
return result
|
182 |
+
|
183 |
+
def __repr__(self) -> str:
|
184 |
+
rep = super().__repr__()
|
185 |
+
return "adalora." + rep
|
186 |
+
|
187 |
+
|
188 |
+
class RankAllocator:
|
189 |
+
"""
|
190 |
+
The RankAllocator for AdaLoraModel. Paper: https://openreview.net/pdf?id=lq62uWRJjiY
|
191 |
+
|
192 |
+
Args:
|
193 |
+
config ([`AdaLoraConfig`]): The configuration of the AdaLora model.
|
194 |
+
model: the model that we apply AdaLoRA to.
|
195 |
+
|
196 |
+
"""
|
197 |
+
|
198 |
+
def __init__(self, model, peft_config, adapter_name):
|
199 |
+
self.peft_config = peft_config
|
200 |
+
self.adapter_name = adapter_name
|
201 |
+
self.beta1 = peft_config.beta1
|
202 |
+
self.beta2 = peft_config.beta2
|
203 |
+
assert self.beta1 > 0 and self.beta1 < 1
|
204 |
+
assert self.beta2 > 0 and self.beta2 < 1
|
205 |
+
|
206 |
+
self.reset_ipt()
|
207 |
+
self._set_budget_scheduler(model)
|
208 |
+
|
209 |
+
def set_total_step(self, total_step):
|
210 |
+
self.peft_config.total_step = total_step
|
211 |
+
|
212 |
+
def reset_ipt(self):
|
213 |
+
self.ipt = {}
|
214 |
+
self.exp_avg_ipt = {}
|
215 |
+
self.exp_avg_unc = {}
|
216 |
+
|
217 |
+
def _set_budget_scheduler(self, model):
|
218 |
+
self.init_bgt = 0
|
219 |
+
self.name_set = set()
|
220 |
+
for n, p in model.named_parameters():
|
221 |
+
if f"lora_A.{self.adapter_name}" in n:
|
222 |
+
self.init_bgt += p.size(0)
|
223 |
+
self.name_set.add(n.replace("lora_A", "%s"))
|
224 |
+
self.name_set = sorted(self.name_set)
|
225 |
+
# The total final rank budget
|
226 |
+
self.target_bgt = self.peft_config.target_r * len(self.name_set)
|
227 |
+
|
228 |
+
def budget_schedule(self, step: int):
|
229 |
+
tinit = self.peft_config.tinit
|
230 |
+
tfinal = self.peft_config.tfinal
|
231 |
+
total_step = self.peft_config.total_step
|
232 |
+
# Initial warmup
|
233 |
+
if step <= tinit:
|
234 |
+
budget = self.init_bgt
|
235 |
+
mask_ind = False
|
236 |
+
# Final fine-tuning
|
237 |
+
elif step > total_step - tfinal:
|
238 |
+
budget = self.target_bgt
|
239 |
+
mask_ind = True
|
240 |
+
else:
|
241 |
+
# Budget decreasing with a cubic scheduler
|
242 |
+
mul_coeff = 1 - (step - tinit) / (total_step - tfinal - tinit)
|
243 |
+
budget = int((self.init_bgt - self.target_bgt) * (mul_coeff**3) + self.target_bgt)
|
244 |
+
mask_ind = True if step % self.peft_config.deltaT == 0 else False
|
245 |
+
return budget, mask_ind
|
246 |
+
|
247 |
+
def update_ipt(self, model):
|
248 |
+
# Update the sensitivity and uncertainty for every weight
|
249 |
+
for n, p in model.named_parameters():
|
250 |
+
if "lora_" in n and self.adapter_name in n:
|
251 |
+
if n not in self.ipt:
|
252 |
+
self.ipt[n] = torch.zeros_like(p)
|
253 |
+
self.exp_avg_ipt[n] = torch.zeros_like(p)
|
254 |
+
self.exp_avg_unc[n] = torch.zeros_like(p)
|
255 |
+
with torch.no_grad():
|
256 |
+
self.ipt[n] = (p * p.grad).abs().detach()
|
257 |
+
# Sensitivity smoothing
|
258 |
+
self.exp_avg_ipt[n] = self.beta1 * self.exp_avg_ipt[n] + (1 - self.beta1) * self.ipt[n]
|
259 |
+
# Uncertainty quantification
|
260 |
+
self.exp_avg_unc[n] = (
|
261 |
+
self.beta2 * self.exp_avg_unc[n] + (1 - self.beta2) * (self.ipt[n] - self.exp_avg_ipt[n]).abs()
|
262 |
+
)
|
263 |
+
|
264 |
+
def _element_score(self, n):
|
265 |
+
return self.exp_avg_ipt[n] * self.exp_avg_unc[n]
|
266 |
+
|
267 |
+
def _combine_ipt(self, ipt_E, ipt_AB):
|
268 |
+
ipt_AB = ipt_AB.sum(dim=1, keepdim=False)
|
269 |
+
sum_ipt = ipt_E.view(-1) + ipt_AB.view(-1)
|
270 |
+
return sum_ipt
|
271 |
+
|
272 |
+
def mask_to_budget(self, model, budget):
|
273 |
+
value_ipt = {}
|
274 |
+
vector_ipt = {}
|
275 |
+
triplet_ipt = {}
|
276 |
+
# Get the importance score for A, E, B
|
277 |
+
for n, p in model.named_parameters():
|
278 |
+
if f"lora_A.{self.adapter_name}" in n:
|
279 |
+
entry_ipt = self._element_score(n)
|
280 |
+
comb_ipt = torch.mean(entry_ipt, dim=1, keepdim=True)
|
281 |
+
name_m = n.replace("lora_A", "%s")
|
282 |
+
if name_m not in vector_ipt:
|
283 |
+
vector_ipt[name_m] = [comb_ipt]
|
284 |
+
else:
|
285 |
+
vector_ipt[name_m].append(comb_ipt)
|
286 |
+
if f"lora_B.{self.adapter_name}" in n:
|
287 |
+
entry_ipt = self._element_score(n)
|
288 |
+
comb_ipt = torch.mean(entry_ipt, dim=0, keepdim=False).view(-1, 1)
|
289 |
+
name_m = n.replace("lora_B", "%s")
|
290 |
+
if name_m not in vector_ipt:
|
291 |
+
vector_ipt[name_m] = [comb_ipt]
|
292 |
+
else:
|
293 |
+
vector_ipt[name_m].append(comb_ipt)
|
294 |
+
if f"lora_E.{self.adapter_name}" in n:
|
295 |
+
entry_ipt = self._element_score(n)
|
296 |
+
name_m = n.replace("lora_E", "%s")
|
297 |
+
value_ipt[name_m] = entry_ipt
|
298 |
+
|
299 |
+
all_score = []
|
300 |
+
# Calculate the score for each triplet
|
301 |
+
for name_m in vector_ipt:
|
302 |
+
ipt_E = value_ipt[name_m]
|
303 |
+
ipt_AB = torch.cat(vector_ipt[name_m], dim=1)
|
304 |
+
sum_ipt = self._combine_ipt(ipt_E, ipt_AB)
|
305 |
+
name_E = name_m % "lora_E"
|
306 |
+
triplet_ipt[name_E] = sum_ipt.view(-1, 1)
|
307 |
+
all_score.append(sum_ipt.view(-1))
|
308 |
+
|
309 |
+
# Get the threshold by ranking ipt
|
310 |
+
mask_threshold = torch.kthvalue(
|
311 |
+
torch.cat(all_score),
|
312 |
+
k=self.init_bgt - budget,
|
313 |
+
)[0].item()
|
314 |
+
|
315 |
+
rank_pattern = {}
|
316 |
+
# Mask the unimportant triplets
|
317 |
+
with torch.no_grad():
|
318 |
+
for n, p in model.named_parameters():
|
319 |
+
if f"lora_E.{self.adapter_name}" in n:
|
320 |
+
p.masked_fill_(triplet_ipt[n] <= mask_threshold, 0.0)
|
321 |
+
rank_pattern[n] = (~(triplet_ipt[n] <= mask_threshold)).view(-1).tolist()
|
322 |
+
return rank_pattern
|
323 |
+
|
324 |
+
def update_and_allocate(self, model, global_step, force_mask=False):
|
325 |
+
# # Update the importance score and allocate the budget
|
326 |
+
if global_step < self.peft_config.total_step - self.peft_config.tfinal:
|
327 |
+
self.update_ipt(model)
|
328 |
+
budget, mask_ind = self.budget_schedule(global_step)
|
329 |
+
# Allocate the budget according to importance scores
|
330 |
+
if mask_ind or force_mask:
|
331 |
+
rank_pattern = self.mask_to_budget(model, budget)
|
332 |
+
else:
|
333 |
+
rank_pattern = None
|
334 |
+
return budget, rank_pattern
|
335 |
+
|
336 |
+
def mask_using_rank_pattern(self, model, rank_pattern):
|
337 |
+
# Mask the unimportant triplets
|
338 |
+
is_adapter_name_truncated = False
|
339 |
+
if self.adapter_name not in next(iter(rank_pattern.keys())):
|
340 |
+
is_adapter_name_truncated = True
|
341 |
+
|
342 |
+
with torch.no_grad():
|
343 |
+
for n, p in model.named_parameters():
|
344 |
+
if f"lora_E.{self.adapter_name}" in n:
|
345 |
+
key = n if not is_adapter_name_truncated else n.replace(f".{self.adapter_name}", "")
|
346 |
+
mask = torch.Tensor(rank_pattern[key]).unsqueeze(-1).to(p.device)
|
347 |
+
p.masked_fill_(~mask.bool(), 0.0)
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/adalora/model.py
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import warnings
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from transformers.pytorch_utils import Conv1D
|
19 |
+
|
20 |
+
from peft.import_utils import is_bnb_4bit_available, is_bnb_available
|
21 |
+
from peft.tuners.lora import LoraConfig, LoraModel
|
22 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
23 |
+
from peft.utils import (
|
24 |
+
TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING,
|
25 |
+
_freeze_adapter,
|
26 |
+
_get_submodules,
|
27 |
+
get_auto_gptq_quant_linear,
|
28 |
+
get_quantization_config,
|
29 |
+
)
|
30 |
+
|
31 |
+
from .gptq import SVDQuantLinear
|
32 |
+
from .layer import AdaLoraLayer, RankAllocator, SVDLinear
|
33 |
+
|
34 |
+
|
35 |
+
class AdaLoraModel(LoraModel):
|
36 |
+
"""
|
37 |
+
Creates AdaLoRA (Adaptive LoRA) model from a pretrained transformers model. Paper:
|
38 |
+
https://openreview.net/forum?id=lq62uWRJjiY
|
39 |
+
|
40 |
+
Args:
|
41 |
+
model ([`transformers.PreTrainedModel`]): The model to be adapted.
|
42 |
+
config ([`AdaLoraConfig`]): The configuration of the AdaLora model.
|
43 |
+
adapter_name (`str`): The name of the adapter, defaults to `"default"`.
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
`torch.nn.Module`: The AdaLora model.
|
47 |
+
|
48 |
+
Example::
|
49 |
+
|
50 |
+
>>> from transformers import AutoModelForSeq2SeqLM, LoraConfig >>> from peft import AdaLoraModel, AdaLoraConfig
|
51 |
+
>>> config = AdaLoraConfig(
|
52 |
+
peft_type="ADALORA", task_type="SEQ_2_SEQ_LM", r=8, lora_alpha=32, target_modules=["q", "v"],
|
53 |
+
lora_dropout=0.01,
|
54 |
+
)
|
55 |
+
>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") >>> model = AdaLoraModel(model, config, "default")
|
56 |
+
|
57 |
+
**Attributes**:
|
58 |
+
- **model** ([`transformers.PreTrainedModel`]) -- The model to be adapted.
|
59 |
+
- **peft_config** ([`AdaLoraConfig`]): The configuration of the AdaLora model.
|
60 |
+
"""
|
61 |
+
|
62 |
+
# Note: don't redefine prefix here, it should be inherited from LoraModel
|
63 |
+
|
64 |
+
def __init__(self, model, config, adapter_name):
|
65 |
+
super().__init__(model, config, adapter_name)
|
66 |
+
|
67 |
+
traininable_mode_counter = 0
|
68 |
+
for config in self.peft_config.values():
|
69 |
+
if not config.inference_mode:
|
70 |
+
traininable_mode_counter += 1
|
71 |
+
|
72 |
+
if traininable_mode_counter > 1:
|
73 |
+
raise ValueError(
|
74 |
+
"AdaLoraModel supports only 1 trainable adapter. "
|
75 |
+
"When using multiple adapters, set inference_mode to True for all adapters except the one you want to train."
|
76 |
+
)
|
77 |
+
|
78 |
+
if self.peft_config[adapter_name].inference_mode:
|
79 |
+
_freeze_adapter(self.model, adapter_name)
|
80 |
+
else:
|
81 |
+
self.trainable_adapter_name = adapter_name
|
82 |
+
self.rankallocator = RankAllocator(self.model, self.peft_config[adapter_name], self.trainable_adapter_name)
|
83 |
+
|
84 |
+
def _check_new_adapter_config(self, config: LoraConfig) -> None:
|
85 |
+
"""
|
86 |
+
A helper method to check the config when a new adapter is being added.
|
87 |
+
|
88 |
+
Raise a ValueError if there is something wrong with the config or if it conflicts with existing adapters.
|
89 |
+
|
90 |
+
"""
|
91 |
+
super()._check_new_adapter_config(config)
|
92 |
+
|
93 |
+
traininable_mode_counter = 0
|
94 |
+
for config_ in self.peft_config.values():
|
95 |
+
if not config_.inference_mode:
|
96 |
+
traininable_mode_counter += 1
|
97 |
+
|
98 |
+
if traininable_mode_counter > 1:
|
99 |
+
raise ValueError(
|
100 |
+
f"{self.__class__.__name__} supports only 1 trainable adapter. "
|
101 |
+
"When using multiple adapters, set inference_mode to True for all adapters except the one "
|
102 |
+
"you want to train."
|
103 |
+
)
|
104 |
+
|
105 |
+
def _create_and_replace(
|
106 |
+
self,
|
107 |
+
lora_config,
|
108 |
+
adapter_name,
|
109 |
+
target,
|
110 |
+
target_name,
|
111 |
+
parent,
|
112 |
+
current_key,
|
113 |
+
):
|
114 |
+
kwargs = {
|
115 |
+
"r": lora_config.init_r,
|
116 |
+
"lora_alpha": lora_config.lora_alpha,
|
117 |
+
"lora_dropout": lora_config.lora_dropout,
|
118 |
+
"fan_in_fan_out": lora_config.fan_in_fan_out,
|
119 |
+
"init_lora_weights": lora_config.init_lora_weights,
|
120 |
+
"loaded_in_8bit": getattr(self.model, "is_loaded_in_8bit", False),
|
121 |
+
"loaded_in_4bit": getattr(self.model, "is_loaded_in_4bit", False),
|
122 |
+
}
|
123 |
+
if (kwargs["loaded_in_8bit"] or kwargs["loaded_in_4bit"]) and not is_bnb_available():
|
124 |
+
raise ImportError(
|
125 |
+
"To use AdaLora with 8-bit quantization, please install the `bitsandbytes` package. "
|
126 |
+
"You can install it with `pip install bitsandbytes`."
|
127 |
+
)
|
128 |
+
|
129 |
+
quantization_config = get_quantization_config(self.model, method="gptq")
|
130 |
+
if quantization_config is not None:
|
131 |
+
kwargs["gptq_quantization_config"] = quantization_config
|
132 |
+
|
133 |
+
# If it is not an AdaLoraLayer, create a new module, else update it with new adapters
|
134 |
+
if not isinstance(target, AdaLoraLayer):
|
135 |
+
new_module = self._create_new_module(lora_config, adapter_name, target, **kwargs)
|
136 |
+
if adapter_name != self.active_adapter:
|
137 |
+
# adding an additional adapter: it is not automatically trainable
|
138 |
+
new_module.requires_grad_(False)
|
139 |
+
self._replace_module(parent, target_name, new_module, target)
|
140 |
+
else:
|
141 |
+
target.update_layer(
|
142 |
+
adapter_name,
|
143 |
+
lora_config.init_r,
|
144 |
+
lora_config.lora_alpha,
|
145 |
+
lora_config.lora_dropout,
|
146 |
+
lora_config.init_lora_weights,
|
147 |
+
)
|
148 |
+
|
149 |
+
@staticmethod
|
150 |
+
def _create_new_module(lora_config, adapter_name, target, **kwargs):
|
151 |
+
# avoid eager bnb import
|
152 |
+
if is_bnb_available():
|
153 |
+
import bitsandbytes as bnb
|
154 |
+
|
155 |
+
from .bnb import SVDLinear8bitLt
|
156 |
+
if is_bnb_4bit_available():
|
157 |
+
from .bnb import SVDLinear4bit
|
158 |
+
|
159 |
+
gptq_quantization_config = kwargs.get("gptq_quantization_config", None)
|
160 |
+
AutoGPTQQuantLinear = get_auto_gptq_quant_linear(gptq_quantization_config)
|
161 |
+
|
162 |
+
loaded_in_8bit = kwargs.pop("loaded_in_8bit", False)
|
163 |
+
loaded_in_4bit = kwargs.pop("loaded_in_4bit", False)
|
164 |
+
|
165 |
+
if isinstance(target, BaseTunerLayer):
|
166 |
+
target_base_layer = target.get_base_layer()
|
167 |
+
else:
|
168 |
+
target_base_layer = target
|
169 |
+
|
170 |
+
if loaded_in_8bit and isinstance(target_base_layer, bnb.nn.Linear8bitLt):
|
171 |
+
kwargs.update(
|
172 |
+
{
|
173 |
+
"has_fp16_weights": target_base_layer.state.has_fp16_weights,
|
174 |
+
"memory_efficient_backward": target_base_layer.state.memory_efficient_backward,
|
175 |
+
"threshold": target_base_layer.state.threshold,
|
176 |
+
"index": target_base_layer.index,
|
177 |
+
}
|
178 |
+
)
|
179 |
+
new_module = SVDLinear8bitLt(target, adapter_name, **kwargs)
|
180 |
+
elif loaded_in_4bit and is_bnb_4bit_available() and isinstance(target_base_layer, bnb.nn.Linear4bit):
|
181 |
+
fourbit_kwargs = kwargs.copy()
|
182 |
+
fourbit_kwargs.update(
|
183 |
+
{
|
184 |
+
"compute_dtype": target_base_layer.compute_dtype,
|
185 |
+
"compress_statistics": target_base_layer.weight.compress_statistics,
|
186 |
+
"quant_type": target_base_layer.weight.quant_type,
|
187 |
+
}
|
188 |
+
)
|
189 |
+
new_module = SVDLinear4bit(target, adapter_name, **fourbit_kwargs)
|
190 |
+
elif AutoGPTQQuantLinear is not None and isinstance(target, AutoGPTQQuantLinear):
|
191 |
+
new_module = SVDQuantLinear(target, adapter_name, **kwargs)
|
192 |
+
else:
|
193 |
+
if isinstance(target_base_layer, torch.nn.Linear):
|
194 |
+
if kwargs["fan_in_fan_out"]:
|
195 |
+
warnings.warn(
|
196 |
+
"fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. "
|
197 |
+
"Setting fan_in_fan_out to False."
|
198 |
+
)
|
199 |
+
kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = False
|
200 |
+
elif isinstance(target_base_layer, Conv1D):
|
201 |
+
if not kwargs["fan_in_fan_out"]:
|
202 |
+
warnings.warn(
|
203 |
+
"fan_in_fan_out is set to False but the target module is `Conv1D`. "
|
204 |
+
"Setting fan_in_fan_out to True."
|
205 |
+
)
|
206 |
+
kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = True
|
207 |
+
else:
|
208 |
+
raise ValueError(
|
209 |
+
f"Target module {target} is not supported. "
|
210 |
+
f"Currently, only `torch.nn.Linear` and `Conv1D` are supported."
|
211 |
+
)
|
212 |
+
new_module = SVDLinear(target, adapter_name, **kwargs)
|
213 |
+
|
214 |
+
return new_module
|
215 |
+
|
216 |
+
@staticmethod
|
217 |
+
def _prepare_adapter_config(peft_config, model_config):
|
218 |
+
if peft_config.target_modules is None:
|
219 |
+
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING:
|
220 |
+
raise ValueError("Please specify `target_modules` in `peft_config`")
|
221 |
+
peft_config.target_modules = TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING[
|
222 |
+
model_config["model_type"]
|
223 |
+
]
|
224 |
+
return peft_config
|
225 |
+
|
226 |
+
def __getattr__(self, name: str):
|
227 |
+
"""Forward missing attributes to the wrapped module."""
|
228 |
+
try:
|
229 |
+
return super().__getattr__(name) # defer to nn.Module's logic
|
230 |
+
except AttributeError:
|
231 |
+
return getattr(self.model, name)
|
232 |
+
|
233 |
+
def forward(self, *args, **kwargs):
|
234 |
+
outputs = self.model.forward(*args, **kwargs)
|
235 |
+
|
236 |
+
if (getattr(outputs, "loss", None) is not None) and isinstance(outputs.loss, torch.Tensor):
|
237 |
+
# Calculate the orthogonal regularization
|
238 |
+
orth_reg_weight = self.peft_config[self.trainable_adapter_name].orth_reg_weight
|
239 |
+
|
240 |
+
if orth_reg_weight <= 0:
|
241 |
+
raise ValueError("orth_reg_weight should be greater than 0. ")
|
242 |
+
|
243 |
+
regu_loss = 0
|
244 |
+
num_param = 0
|
245 |
+
for n, p in self.model.named_parameters():
|
246 |
+
if ("lora_A" in n or "lora_B" in n) and self.trainable_adapter_name in n:
|
247 |
+
para_cov = p @ p.T if "lora_A" in n else p.T @ p
|
248 |
+
I = torch.eye(*para_cov.size(), out=torch.empty_like(para_cov)) # noqa: E741
|
249 |
+
I.requires_grad = False
|
250 |
+
num_param += 1
|
251 |
+
regu_loss += torch.norm(para_cov - I, p="fro")
|
252 |
+
if num_param > 0:
|
253 |
+
regu_loss = regu_loss / num_param
|
254 |
+
else:
|
255 |
+
regu_loss = 0
|
256 |
+
outputs.loss += orth_reg_weight * regu_loss
|
257 |
+
return outputs
|
258 |
+
|
259 |
+
def resize_modules_by_rank_pattern(self, rank_pattern, adapter_name):
|
260 |
+
lora_config = self.peft_config[adapter_name]
|
261 |
+
for name, rank_idx in rank_pattern.items():
|
262 |
+
if isinstance(rank_idx, list):
|
263 |
+
rank = sum(rank_idx)
|
264 |
+
elif isinstance(rank_idx, torch.Tensor):
|
265 |
+
rank_idx = rank_idx.view(-1)
|
266 |
+
rank = rank_idx.sum().item()
|
267 |
+
else:
|
268 |
+
raise ValueError("Unexpected type of rank_idx")
|
269 |
+
key = ".".join(name.split(".")[0:-2]) if adapter_name in name else ".".join(name.split(".")[0:-1])
|
270 |
+
_, target, _ = _get_submodules(self.model, key)
|
271 |
+
lora_E_weights = target.lora_E[adapter_name][rank_idx]
|
272 |
+
lora_A_weights = target.lora_A[adapter_name][rank_idx]
|
273 |
+
lora_B_weights = target.lora_B[adapter_name][:, rank_idx]
|
274 |
+
ranknum = target.ranknum[adapter_name]
|
275 |
+
target.update_layer(
|
276 |
+
adapter_name,
|
277 |
+
rank,
|
278 |
+
lora_config.lora_alpha,
|
279 |
+
lora_config.lora_dropout,
|
280 |
+
lora_config.init_lora_weights,
|
281 |
+
)
|
282 |
+
with torch.no_grad():
|
283 |
+
if rank > 0:
|
284 |
+
target.lora_E[adapter_name].copy_(lora_E_weights)
|
285 |
+
target.lora_A[adapter_name].copy_(lora_A_weights)
|
286 |
+
target.lora_B[adapter_name].copy_(lora_B_weights)
|
287 |
+
# The scaling is exactly as the previous
|
288 |
+
target.ranknum[adapter_name].copy_(ranknum)
|
289 |
+
|
290 |
+
def resize_state_dict_by_rank_pattern(self, rank_pattern, state_dict, adapter_name):
|
291 |
+
for name, rank_idx in rank_pattern.items():
|
292 |
+
rank = sum(rank_idx)
|
293 |
+
prefix = ".".join(name.split(".")[0:-2]) if adapter_name in name else ".".join(name.split(".")[0:-1])
|
294 |
+
for layer in ["lora_E", "lora_A", "lora_B"]:
|
295 |
+
key = f"base_model.model.{prefix}.{layer}.{adapter_name}"
|
296 |
+
if layer != "lora_B":
|
297 |
+
state_dict[key] = (
|
298 |
+
state_dict[key][rank_idx] if rank != state_dict[key].shape[0] else state_dict[key]
|
299 |
+
)
|
300 |
+
else:
|
301 |
+
state_dict[key] = (
|
302 |
+
state_dict[key][:, rank_idx] if rank != state_dict[key].shape[1] else state_dict[key]
|
303 |
+
)
|
304 |
+
return state_dict
|
305 |
+
|
306 |
+
def update_and_allocate(self, global_step):
|
307 |
+
"""
|
308 |
+
This method updates Adalora budget and mask.
|
309 |
+
|
310 |
+
This should be called in every training step after `loss.backward()` and before `zero_grad()`.
|
311 |
+
|
312 |
+
`tinit`, `tfinal` and `deltaT` are handled with in the method.
|
313 |
+
|
314 |
+
Args:
|
315 |
+
global_step (`int`): The current training step, it is used to calculate adalora budget.
|
316 |
+
|
317 |
+
Example:
|
318 |
+
|
319 |
+
```python
|
320 |
+
>>> loss = model(**input).loss
|
321 |
+
>>> loss.backward()
|
322 |
+
>>> optimizer.step()
|
323 |
+
>>> model.base_model.update_and_allocate(i_step)
|
324 |
+
>>> optimizer.zero_grad()
|
325 |
+
```
|
326 |
+
"""
|
327 |
+
lora_config = self.peft_config[self.trainable_adapter_name]
|
328 |
+
# Update the importance score and allocate the budget
|
329 |
+
if global_step < lora_config.total_step - lora_config.tfinal:
|
330 |
+
_, rank_pattern = self.rankallocator.update_and_allocate(self.model, global_step)
|
331 |
+
if rank_pattern:
|
332 |
+
lora_config.rank_pattern = rank_pattern
|
333 |
+
# Finalize the budget allocation
|
334 |
+
elif global_step == lora_config.total_step - lora_config.tfinal:
|
335 |
+
_, rank_pattern = self.rankallocator.update_and_allocate(self.model, global_step, force_mask=True)
|
336 |
+
# for some reason, this freezes the trainable parameters and nothing gets updates
|
337 |
+
# self.resize_modules_by_rank_pattern(rank_pattern, self.trainable_adapter_name)
|
338 |
+
lora_config.rank_pattern = rank_pattern
|
339 |
+
self.rankallocator.reset_ipt()
|
340 |
+
# Currently using inefficient way to mask the unimportant weights using the rank pattern
|
341 |
+
# due to problem mentioned above
|
342 |
+
elif global_step > lora_config.total_step - lora_config.tfinal:
|
343 |
+
self.rankallocator.mask_using_rank_pattern(self.model, lora_config.rank_pattern)
|
344 |
+
# Pass the function and do forward propagation
|
345 |
+
else:
|
346 |
+
return None
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/ia3/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (808 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/ia3/__pycache__/bnb.cpython-310.pyc
ADDED
Binary file (2.57 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/ia3/__pycache__/config.cpython-310.pyc
ADDED
Binary file (4.25 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/ia3/__pycache__/layer.cpython-310.pyc
ADDED
Binary file (7.63 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/ia3/__pycache__/model.cpython-310.pyc
ADDED
Binary file (13.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/ia3/model.py
ADDED
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from __future__ import annotations
|
15 |
+
|
16 |
+
import re
|
17 |
+
import warnings
|
18 |
+
from dataclasses import asdict
|
19 |
+
from enum import Enum
|
20 |
+
from typing import Optional
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from torch import nn
|
24 |
+
from transformers.pytorch_utils import Conv1D
|
25 |
+
|
26 |
+
from peft.import_utils import is_bnb_4bit_available, is_bnb_available
|
27 |
+
from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists
|
28 |
+
from peft.utils import (
|
29 |
+
TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING,
|
30 |
+
TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING,
|
31 |
+
ModulesToSaveWrapper,
|
32 |
+
_get_submodules,
|
33 |
+
)
|
34 |
+
|
35 |
+
from .layer import Conv2d, IA3Layer, Linear
|
36 |
+
|
37 |
+
|
38 |
+
class IA3Model(BaseTuner):
|
39 |
+
"""
|
40 |
+
Creates a Infused Adapter by Inhibiting and Amplifying Inner Activations ((IA)^3) model from a pretrained
|
41 |
+
transformers model. The method is described in detail in https://arxiv.org/abs/2205.05638
|
42 |
+
|
43 |
+
Args:
|
44 |
+
model ([`~transformers.PreTrainedModel`]): The model to be adapted.
|
45 |
+
config ([`IA3Config`]): The configuration of the (IA)^3 model.
|
46 |
+
adapter_name (`str`): The name of the adapter, defaults to `"default"`.
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
`torch.nn.Module`: The (IA)^3 model.
|
50 |
+
|
51 |
+
Example:
|
52 |
+
|
53 |
+
```py
|
54 |
+
>>> from transformers import AutoModelForSeq2SeqLM, ia3Config
|
55 |
+
>>> from peft import IA3Model, IA3Config
|
56 |
+
|
57 |
+
>>> config = IA3Config(
|
58 |
+
... peft_type="IA3",
|
59 |
+
... task_type="SEQ_2_SEQ_LM",
|
60 |
+
... target_modules=["k", "v", "w0"],
|
61 |
+
... feedforward_modules=["w0"],
|
62 |
+
... )
|
63 |
+
|
64 |
+
>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
|
65 |
+
>>> ia3_model = IA3Model(config, model)
|
66 |
+
```
|
67 |
+
|
68 |
+
**Attributes**:
|
69 |
+
- **model** ([`~transformers.PreTrainedModel`]) -- The model to be adapted.
|
70 |
+
- **peft_config** ([`ia3Config`]): The configuration of the (IA)^3 model.
|
71 |
+
"""
|
72 |
+
|
73 |
+
prefix: str = "ia3_"
|
74 |
+
|
75 |
+
def __init__(self, model, config, adapter_name):
|
76 |
+
super().__init__(model, config, adapter_name)
|
77 |
+
|
78 |
+
@staticmethod
|
79 |
+
def _create_new_module(ia3_config, adapter_name, target, **kwargs):
|
80 |
+
# avoid eager bnb import
|
81 |
+
if is_bnb_available():
|
82 |
+
import bitsandbytes as bnb
|
83 |
+
|
84 |
+
from .bnb import Linear8bitLt
|
85 |
+
|
86 |
+
if is_bnb_4bit_available():
|
87 |
+
from .bnb import Linear4bit
|
88 |
+
|
89 |
+
loaded_in_8bit = kwargs.pop("loaded_in_8bit", False)
|
90 |
+
loaded_in_4bit = kwargs.pop("loaded_in_4bit", False)
|
91 |
+
is_feedforward = kwargs.pop("is_feedforward", False)
|
92 |
+
|
93 |
+
if isinstance(target, BaseTunerLayer):
|
94 |
+
target_base_layer = target.get_base_layer()
|
95 |
+
else:
|
96 |
+
target_base_layer = target
|
97 |
+
|
98 |
+
if loaded_in_8bit and isinstance(target_base_layer, bnb.nn.Linear8bitLt):
|
99 |
+
eightbit_kwargs = kwargs.copy()
|
100 |
+
eightbit_kwargs.update(
|
101 |
+
{
|
102 |
+
"has_fp16_weights": target_base_layer.state.has_fp16_weights,
|
103 |
+
"memory_efficient_backward": target_base_layer.state.memory_efficient_backward,
|
104 |
+
"threshold": target_base_layer.state.threshold,
|
105 |
+
"index": target_base_layer.index,
|
106 |
+
}
|
107 |
+
)
|
108 |
+
new_module = Linear8bitLt(target, adapter_name, is_feedforward=is_feedforward, **eightbit_kwargs)
|
109 |
+
elif loaded_in_4bit and isinstance(target_base_layer, bnb.nn.Linear4bit):
|
110 |
+
fourbit_kwargs = kwargs.copy()
|
111 |
+
fourbit_kwargs.update(
|
112 |
+
{
|
113 |
+
"compute_dtype": target_base_layer.compute_dtype,
|
114 |
+
"compress_statistics": target_base_layer.weight.compress_statistics,
|
115 |
+
"quant_type": target_base_layer.weight.quant_type,
|
116 |
+
}
|
117 |
+
)
|
118 |
+
new_module = Linear4bit(target, adapter_name, is_feedforward=is_feedforward, **fourbit_kwargs)
|
119 |
+
elif isinstance(target, torch.nn.Conv2d):
|
120 |
+
new_module = Conv2d(target, adapter_name, is_feedforward=is_feedforward, **kwargs)
|
121 |
+
elif isinstance(target_base_layer, torch.nn.Linear):
|
122 |
+
if kwargs["fan_in_fan_out"]:
|
123 |
+
warnings.warn(
|
124 |
+
"fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. "
|
125 |
+
"Setting fan_in_fan_out to False."
|
126 |
+
)
|
127 |
+
kwargs["fan_in_fan_out"] = ia3_config.fan_in_fan_out = False
|
128 |
+
new_module = Linear(target, adapter_name, is_feedforward=is_feedforward, **kwargs)
|
129 |
+
elif isinstance(target_base_layer, Conv1D):
|
130 |
+
if not kwargs["fan_in_fan_out"]:
|
131 |
+
warnings.warn(
|
132 |
+
"fan_in_fan_out is set to False but the target module is `Conv1D`. "
|
133 |
+
"Setting fan_in_fan_out to True."
|
134 |
+
)
|
135 |
+
kwargs["fan_in_fan_out"] = ia3_config.fan_in_fan_out = True
|
136 |
+
new_module = Linear(
|
137 |
+
target, adapter_name, is_feedforward=is_feedforward, is_target_conv_1d_layer=True, **kwargs
|
138 |
+
)
|
139 |
+
else:
|
140 |
+
raise ValueError(
|
141 |
+
f"Target module {target} is not supported. "
|
142 |
+
f"Currently, only `torch.nn.Linear`, `torch.nn.Conv2d`, and `Conv1D` are supported."
|
143 |
+
)
|
144 |
+
return new_module
|
145 |
+
|
146 |
+
@staticmethod
|
147 |
+
def _check_target_module_exists(ia3_config, key):
|
148 |
+
return check_target_module_exists(ia3_config, key)
|
149 |
+
|
150 |
+
def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None:
|
151 |
+
for n, p in model.named_parameters():
|
152 |
+
if self.prefix not in n:
|
153 |
+
p.requires_grad = False
|
154 |
+
|
155 |
+
def _create_and_replace(
|
156 |
+
self,
|
157 |
+
ia3_config,
|
158 |
+
adapter_name,
|
159 |
+
target,
|
160 |
+
target_name,
|
161 |
+
parent,
|
162 |
+
current_key,
|
163 |
+
):
|
164 |
+
# check if target module is in feedforward_modules
|
165 |
+
is_feedforward = self._check_target_module_feedforward(ia3_config, current_key)
|
166 |
+
|
167 |
+
kwargs = {
|
168 |
+
"fan_in_fan_out": ia3_config.fan_in_fan_out,
|
169 |
+
"init_ia3_weights": ia3_config.init_ia3_weights,
|
170 |
+
"is_feedforward": is_feedforward,
|
171 |
+
"loaded_in_8bit": getattr(self.model, "is_loaded_in_8bit", False),
|
172 |
+
"loaded_in_4bit": getattr(self.model, "is_loaded_in_4bit", False),
|
173 |
+
}
|
174 |
+
|
175 |
+
if isinstance(target, IA3Layer):
|
176 |
+
target.update_layer(
|
177 |
+
adapter_name,
|
178 |
+
ia3_config.init_ia3_weights,
|
179 |
+
)
|
180 |
+
else:
|
181 |
+
new_module = self._create_new_module(ia3_config, adapter_name, target, **kwargs)
|
182 |
+
if adapter_name != self.active_adapter:
|
183 |
+
# adding an additional adapter: it is not automatically trainable
|
184 |
+
new_module.requires_grad_(False)
|
185 |
+
self._replace_module(parent, target_name, new_module, target)
|
186 |
+
|
187 |
+
@staticmethod
|
188 |
+
def _check_target_module_feedforward(ia3_config, key) -> bool:
|
189 |
+
"""
|
190 |
+
A helper private method that checks if the target module `key` matches with a feedforward module specified in
|
191 |
+
`ia3_config`
|
192 |
+
"""
|
193 |
+
if isinstance(ia3_config.feedforward_modules, str):
|
194 |
+
is_feedforward = bool(re.fullmatch(ia3_config.feedforward_modules, key))
|
195 |
+
else:
|
196 |
+
is_feedforward = any(key.endswith(target_key) for target_key in ia3_config.feedforward_modules)
|
197 |
+
return is_feedforward
|
198 |
+
|
199 |
+
def _replace_module(self, parent, child_name, new_module, child):
|
200 |
+
setattr(parent, child_name, new_module)
|
201 |
+
|
202 |
+
# child layer wraps the original module, unpack it
|
203 |
+
if hasattr(child, "base_layer"):
|
204 |
+
child = child.base_layer
|
205 |
+
|
206 |
+
# layers with base_layer don't need the weight to be copied, as they have a reference already
|
207 |
+
if not hasattr(new_module, "base_layer"):
|
208 |
+
new_module.weight = child.weight
|
209 |
+
if hasattr(child, "bias"):
|
210 |
+
new_module.bias = child.bias
|
211 |
+
|
212 |
+
if getattr(child, "state", None) is not None:
|
213 |
+
if hasattr(new_module, "base_layer"):
|
214 |
+
new_module.base_layer.state = child.state
|
215 |
+
else:
|
216 |
+
new_module.state = child.state
|
217 |
+
new_module.to(child.weight.device)
|
218 |
+
|
219 |
+
# dispatch to correct device
|
220 |
+
for name, module in new_module.named_modules():
|
221 |
+
if self.prefix in name:
|
222 |
+
module.to(child.weight.device)
|
223 |
+
|
224 |
+
def __getattr__(self, name: str):
|
225 |
+
"""Forward missing attributes to the wrapped module."""
|
226 |
+
try:
|
227 |
+
return super().__getattr__(name) # defer to nn.Module's logic
|
228 |
+
except AttributeError:
|
229 |
+
return getattr(self.model, name)
|
230 |
+
|
231 |
+
def get_peft_config_as_dict(self, inference: bool = False):
|
232 |
+
config_dict = {}
|
233 |
+
for key, value in self.peft_config.items():
|
234 |
+
config = {k: v.value if isinstance(v, Enum) else v for k, v in asdict(value).items()}
|
235 |
+
if inference:
|
236 |
+
config["inference_mode"] = True
|
237 |
+
config_dict[key] = config
|
238 |
+
return config
|
239 |
+
|
240 |
+
def _set_adapter_layers(self, enabled=True):
|
241 |
+
for module in self.model.modules():
|
242 |
+
if isinstance(module, (IA3Layer, ModulesToSaveWrapper)):
|
243 |
+
module.enable_adapters(enabled)
|
244 |
+
|
245 |
+
def enable_adapter_layers(self) -> None:
|
246 |
+
"""Enable all adapters.
|
247 |
+
|
248 |
+
Call this if you have previously disabled all adapters and want to re-enable them.
|
249 |
+
"""
|
250 |
+
self._set_adapter_layers(enabled=True)
|
251 |
+
|
252 |
+
def disable_adapter_layers(self) -> None:
|
253 |
+
"""Disable all adapters.
|
254 |
+
|
255 |
+
When disabling all adapters, the model output corresponds to the output of the base model.
|
256 |
+
"""
|
257 |
+
self._set_adapter_layers(enabled=False)
|
258 |
+
|
259 |
+
def set_adapter(self, adapter_name: str | list[str]) -> None:
|
260 |
+
"""Set the active adapter(s).
|
261 |
+
|
262 |
+
Additionally, this function will set the specified adapters to trainable (i.e., requires_grad=True). If this is
|
263 |
+
not desired, use the following code.
|
264 |
+
|
265 |
+
```py
|
266 |
+
>>> for name, param in model_peft.named_parameters():
|
267 |
+
... if ...: # some check on name (ex. if 'lora' in name)
|
268 |
+
... param.requires_grad = False
|
269 |
+
```
|
270 |
+
|
271 |
+
Args:
|
272 |
+
adapter_name (`str` or `list[str]`): Name of the adapter(s) to be activated.
|
273 |
+
"""
|
274 |
+
for module in self.model.modules():
|
275 |
+
if isinstance(module, IA3Layer):
|
276 |
+
if module.merged:
|
277 |
+
warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.")
|
278 |
+
module.unmerge()
|
279 |
+
module.set_adapter(adapter_name)
|
280 |
+
|
281 |
+
def _prepare_adapter_config(self, peft_config, model_config):
|
282 |
+
if peft_config.target_modules is None:
|
283 |
+
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING:
|
284 |
+
raise ValueError("Please specify `target_modules` in `peft_config`")
|
285 |
+
peft_config.target_modules = TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING[model_config["model_type"]]
|
286 |
+
if peft_config.feedforward_modules is None:
|
287 |
+
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING:
|
288 |
+
raise ValueError("Please specify `feedforward_modules` in `peft_config`")
|
289 |
+
peft_config.feedforward_modules = TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING[
|
290 |
+
model_config["model_type"]
|
291 |
+
]
|
292 |
+
return peft_config
|
293 |
+
|
294 |
+
def _unload_and_optionally_merge(
|
295 |
+
self, merge: bool = True, safe_merge: bool = False, adapter_names: Optional[list[str]] = None
|
296 |
+
):
|
297 |
+
r"""
|
298 |
+
This method merges the (IA)^3 layers into the base model. This is needed if someone wants to use the base model
|
299 |
+
as a standalone model.
|
300 |
+
|
301 |
+
Args:
|
302 |
+
safe_merge (`bool`, `optional`, defaults to `False`):
|
303 |
+
If True, the merge operation will be performed in a copy of the original weights and check for NaNs
|
304 |
+
before merging the weights. This is useful if you want to check if the merge operation will produce
|
305 |
+
NaNs. Defaults to `False`.
|
306 |
+
adapter_names (`List[str]`, *optional*):
|
307 |
+
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
|
308 |
+
to `None`.
|
309 |
+
"""
|
310 |
+
if getattr(self.model, "is_loaded_in_8bit", False):
|
311 |
+
raise ValueError("Cannot merge ia3 layers when the model is loaded in 8-bit mode")
|
312 |
+
|
313 |
+
if getattr(self.model, "is_loaded_in_4bit", False):
|
314 |
+
raise ValueError("Cannot merge ia3 layers when the model is loaded in 4-bit mode")
|
315 |
+
|
316 |
+
self._unloading_checks(adapter_names)
|
317 |
+
key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key]
|
318 |
+
for key in key_list:
|
319 |
+
try:
|
320 |
+
parent, target, target_name = _get_submodules(self.model, key)
|
321 |
+
except AttributeError:
|
322 |
+
continue
|
323 |
+
|
324 |
+
if hasattr(target, "base_layer"):
|
325 |
+
if merge:
|
326 |
+
target.merge(safe_merge=safe_merge, adapter_names=adapter_names)
|
327 |
+
self._replace_module(parent, target_name, target.get_base_layer(), target)
|
328 |
+
elif isinstance(target, ModulesToSaveWrapper):
|
329 |
+
# save any additional trainable modules part of `modules_to_save`
|
330 |
+
new_module = target.modules_to_save[target.active_adapter]
|
331 |
+
if hasattr(new_module, "base_layer"):
|
332 |
+
# check if the module is itself a tuner layer
|
333 |
+
if merge:
|
334 |
+
new_module.merge(safe_merge=safe_merge, adapter_names=adapter_names)
|
335 |
+
new_module = new_module.get_base_layer()
|
336 |
+
setattr(parent, target_name, new_module)
|
337 |
+
|
338 |
+
return self.model
|
339 |
+
|
340 |
+
def merge_and_unload(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> torch.nn.Module:
|
341 |
+
r"""
|
342 |
+
This method merges the IA³ layers into the base model. This is needed if someone wants to use the base model as
|
343 |
+
a standalone model.
|
344 |
+
|
345 |
+
Args:
|
346 |
+
safe_merge (`bool`):
|
347 |
+
whether to activate the safe merging check to check if there is any potential Nan in the adapter
|
348 |
+
weights
|
349 |
+
adapter_names (`List[str]`, *optional*):
|
350 |
+
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
|
351 |
+
to `None`.
|
352 |
+
|
353 |
+
Example:
|
354 |
+
|
355 |
+
```py
|
356 |
+
>>> from transformers import AutoModelForCausalLM
|
357 |
+
>>> from peft import PeftModel
|
358 |
+
|
359 |
+
>>> base_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-40b")
|
360 |
+
>>> peft_model_id = "smangrul/falcon-40B-int4-peft-lora-sfttrainer-sample"
|
361 |
+
>>> model = PeftModel.from_pretrained(base_model, peft_model_id)
|
362 |
+
>>> merged_model = model.merge_and_unload()
|
363 |
+
```
|
364 |
+
"""
|
365 |
+
return self._unload_and_optionally_merge(safe_merge=safe_merge, adapter_names=adapter_names)
|
366 |
+
|
367 |
+
def unload(self) -> torch.nn.Module:
|
368 |
+
"""
|
369 |
+
Gets back the base model by removing all the IA³ modules without merging. This gives back the original base
|
370 |
+
model.
|
371 |
+
"""
|
372 |
+
return self._unload_and_optionally_merge(merge=False)
|
373 |
+
|
374 |
+
def delete_adapter(self, adapter_name: str) -> None:
|
375 |
+
"""
|
376 |
+
Deletes an existing adapter.
|
377 |
+
|
378 |
+
Args:
|
379 |
+
adapter_name (str): Name of the adapter to be deleted.
|
380 |
+
"""
|
381 |
+
if adapter_name not in self.peft_config:
|
382 |
+
raise ValueError(f"Adapter {adapter_name} does not exist")
|
383 |
+
del self.peft_config[adapter_name]
|
384 |
+
|
385 |
+
key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key]
|
386 |
+
new_adapter = None
|
387 |
+
for key in key_list:
|
388 |
+
_, target, _ = _get_submodules(self.model, key)
|
389 |
+
if isinstance(target, IA3Layer):
|
390 |
+
target.delete_adapter(adapter_name)
|
391 |
+
if new_adapter is None:
|
392 |
+
new_adapter = target.active_adapters[:]
|
393 |
+
|
394 |
+
self.active_adapter = new_adapter or []
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/loha/__init__.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from .config import LoHaConfig
|
16 |
+
from .layer import Conv2d, Linear, LoHaLayer
|
17 |
+
from .model import LoHaModel
|
18 |
+
|
19 |
+
|
20 |
+
__all__ = ["LoHaConfig", "LoHaModel", "Conv2d", "Linear", "LoHaLayer"]
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/loha/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (388 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/loha/__pycache__/config.cpython-310.pyc
ADDED
Binary file (5.36 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/loha/__pycache__/layer.cpython-310.pyc
ADDED
Binary file (10.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/loha/__pycache__/model.cpython-310.pyc
ADDED
Binary file (3.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/loha/config.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from dataclasses import dataclass, field
|
16 |
+
from typing import List, Optional, Union
|
17 |
+
|
18 |
+
from peft.tuners.lycoris_utils import LycorisConfig
|
19 |
+
from peft.utils import PeftType
|
20 |
+
|
21 |
+
|
22 |
+
@dataclass
|
23 |
+
class LoHaConfig(LycorisConfig):
|
24 |
+
"""
|
25 |
+
This is the configuration class to store the configuration of a [`LoHaModel`].
|
26 |
+
|
27 |
+
Args:
|
28 |
+
r (`int`):
|
29 |
+
LoHa rank.
|
30 |
+
alpha (`int`):
|
31 |
+
The alpha parameter for LoHa scaling.
|
32 |
+
rank_dropout (`float`):
|
33 |
+
The dropout probability for rank dimension during training.
|
34 |
+
module_dropout (`float`):
|
35 |
+
The dropout probability for disabling LoHa modules during training.
|
36 |
+
use_effective_conv2d (`bool`):
|
37 |
+
Use parameter effective decomposition for Conv2d with ksize > 1 ("Proposition 3" from FedPara paper).
|
38 |
+
target_modules (`Optional[Union[List[str], str]]`):
|
39 |
+
The names of the modules to apply the adapter to. If this is specified, only the modules with the specified
|
40 |
+
names will be replaced. When passing a string, a regex match will be performed. When passing a list of
|
41 |
+
strings, either an exact match will be performed or it is checked if the name of the module ends with any
|
42 |
+
of the passed strings. If this is specified as 'all-linear', then all linear/Conv1D modules are chosen,
|
43 |
+
excluding the output layer. If this is not specified, modules will be chosen according to the model
|
44 |
+
architecture. If the architecture is not known, an error will be raised -- in this case, you should specify
|
45 |
+
the target modules manually.
|
46 |
+
init_weights (`bool`):
|
47 |
+
Whether to perform initialization of adapter weights. This defaults to `True`, passing `False` is
|
48 |
+
discouraged.
|
49 |
+
layers_to_transform (`Union[List[int], int]`):
|
50 |
+
The layer indices to transform. If a list of ints is passed, it will apply the adapter to the layer indices
|
51 |
+
that are specified in this list. If a single integer is passed, it will apply the transformations on the
|
52 |
+
layer at this index.
|
53 |
+
layers_pattern (`str`):
|
54 |
+
The layer pattern name, used only if `layers_to_transform` is different from `None`.
|
55 |
+
rank_pattern (`dict`):
|
56 |
+
The mapping from layer names or regexp expression to ranks which are different from the default rank
|
57 |
+
specified by `r`.
|
58 |
+
alpha_pattern (`dict`):
|
59 |
+
The mapping from layer names or regexp expression to alphas which are different from the default alpha
|
60 |
+
specified by `alpha`.
|
61 |
+
modules_to_save (`Optional[List[str]]`):
|
62 |
+
List of modules apart from adapter layers to be set as trainable and saved in the final checkpoint.
|
63 |
+
"""
|
64 |
+
|
65 |
+
r: int = field(default=8, metadata={"help": "LoHa rank"})
|
66 |
+
alpha: int = field(default=8, metadata={"help": "LoHa alpha"})
|
67 |
+
rank_dropout: float = field(
|
68 |
+
default=0.0, metadata={"help": "The dropout probability for rank dimension during training"}
|
69 |
+
)
|
70 |
+
module_dropout: float = field(
|
71 |
+
default=0.0, metadata={"help": "The dropout probability for disabling LoHa modules during training"}
|
72 |
+
)
|
73 |
+
use_effective_conv2d: bool = field(
|
74 |
+
default=False,
|
75 |
+
metadata={
|
76 |
+
"help": 'Use parameter effective decomposition for Conv2d 3x3 with ksize > 1 ("Proposition 3" from FedPara paper)'
|
77 |
+
},
|
78 |
+
)
|
79 |
+
target_modules: Optional[Union[List[str], str]] = field(
|
80 |
+
default=None,
|
81 |
+
metadata={
|
82 |
+
"help": "List of module names or regex expression of the module names to replace with LoHa."
|
83 |
+
"For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$' "
|
84 |
+
"This can also be a wildcard 'all-linear' which matches all linear/Conv1D layers except the output layer."
|
85 |
+
},
|
86 |
+
)
|
87 |
+
init_weights: bool = field(
|
88 |
+
default=True,
|
89 |
+
metadata={
|
90 |
+
"help": (
|
91 |
+
"Whether to initialize the weights of the LoHa layers with their default initialization. Don't change "
|
92 |
+
"this setting, except if you know exactly what you're doing."
|
93 |
+
),
|
94 |
+
},
|
95 |
+
)
|
96 |
+
layers_to_transform: Optional[Union[List[int], int]] = field(
|
97 |
+
default=None,
|
98 |
+
metadata={
|
99 |
+
"help": "The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at this index."
|
100 |
+
},
|
101 |
+
)
|
102 |
+
layers_pattern: Optional[str] = field(
|
103 |
+
default=None,
|
104 |
+
metadata={
|
105 |
+
"help": "The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is not in the common layers pattern."
|
106 |
+
},
|
107 |
+
)
|
108 |
+
modules_to_save: Optional[List[str]] = field(
|
109 |
+
default=None,
|
110 |
+
metadata={
|
111 |
+
"help": "List of modules apart from LoHA layers to be set as trainable and saved in the final checkpoint. "
|
112 |
+
"For example, in Sequence Classification or Token Classification tasks, "
|
113 |
+
"the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved."
|
114 |
+
},
|
115 |
+
)
|
116 |
+
|
117 |
+
def __post_init__(self):
|
118 |
+
self.peft_type = PeftType.LOHA
|
119 |
+
self.target_modules = (
|
120 |
+
set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules
|
121 |
+
)
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/loha/layer.py
ADDED
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
from typing import Any, Set, Tuple
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
|
22 |
+
from peft.tuners.lycoris_utils import LycorisLayer
|
23 |
+
|
24 |
+
|
25 |
+
class LoHaLayer(nn.Module, LycorisLayer):
|
26 |
+
# All names of layers that may contain adapter weights
|
27 |
+
adapter_layer_names = ("hada_w1_a", "hada_w1_b", "hada_w2_a", "hada_w2_b", "hada_t1", "hada_t2")
|
28 |
+
# other_param_names is defined on parent class
|
29 |
+
|
30 |
+
def __init__(self, base_layer: nn.Module):
|
31 |
+
super().__init__()
|
32 |
+
LycorisLayer.__init__(self, base_layer)
|
33 |
+
|
34 |
+
# LoHa info
|
35 |
+
self.hada_w1_a = nn.ParameterDict({})
|
36 |
+
self.hada_w1_b = nn.ParameterDict({})
|
37 |
+
self.hada_w2_a = nn.ParameterDict({})
|
38 |
+
self.hada_w2_b = nn.ParameterDict({})
|
39 |
+
self.hada_t1 = nn.ParameterDict({})
|
40 |
+
self.hada_t2 = nn.ParameterDict({})
|
41 |
+
|
42 |
+
@property
|
43 |
+
def _available_adapters(self) -> Set[str]:
|
44 |
+
return {*self.hada_w1_a, *self.hada_w1_b, *self.hada_w2_a, *self.hada_w2_b, *self.hada_t1, *self.hada_t2}
|
45 |
+
|
46 |
+
def create_adapter_parameters(self, adapter_name: str, r: int, shape: Tuple[int, ...]):
|
47 |
+
# https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/loha.py#L130C9-L143C75
|
48 |
+
if len(shape) == 4:
|
49 |
+
self.hada_t1[adapter_name] = nn.Parameter(torch.empty(r, r, shape[2], shape[3]))
|
50 |
+
self.hada_w1_a[adapter_name] = nn.Parameter(torch.empty(r, shape[0])) # out_dim, 1-mode
|
51 |
+
self.hada_w1_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1])) # in_dim , 2-mode
|
52 |
+
|
53 |
+
self.hada_t2[adapter_name] = nn.Parameter(torch.empty(r, r, shape[2], shape[3]))
|
54 |
+
self.hada_w2_a[adapter_name] = nn.Parameter(torch.empty(r, shape[0])) # out_dim, 1-mode
|
55 |
+
self.hada_w2_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1])) # in_dim , 2-mode
|
56 |
+
else:
|
57 |
+
self.hada_w1_a[adapter_name] = nn.Parameter(torch.empty(shape[0], r))
|
58 |
+
self.hada_w1_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1]))
|
59 |
+
|
60 |
+
self.hada_w2_a[adapter_name] = nn.Parameter(torch.empty(shape[0], r))
|
61 |
+
self.hada_w2_b[adapter_name] = nn.Parameter(torch.empty(r, shape[1]))
|
62 |
+
|
63 |
+
def reset_adapter_parameters(self, adapter_name: str):
|
64 |
+
# Original implementation performs initialization with normal distribution
|
65 |
+
# https://github.com/KohakuBlueleaf/LyCORIS/blob/3549fdef8f564761d68b695a08ef88b1122fdedc/lycoris/modules/loha.py#L158
|
66 |
+
|
67 |
+
# FedPara paper proposes to perform He initialization, let's stick with it
|
68 |
+
# It is enough to initialize only single matrix with zeros to make adapter do nothing after initialization
|
69 |
+
if adapter_name in self.hada_w1_a.keys():
|
70 |
+
nn.init.kaiming_uniform_(self.hada_w1_a[adapter_name], a=math.sqrt(5))
|
71 |
+
nn.init.kaiming_uniform_(self.hada_w1_b[adapter_name], a=math.sqrt(5))
|
72 |
+
nn.init.kaiming_uniform_(self.hada_w2_a[adapter_name], a=math.sqrt(5))
|
73 |
+
nn.init.zeros_(self.hada_w2_b[adapter_name])
|
74 |
+
if adapter_name in self.hada_t1.keys():
|
75 |
+
nn.init.kaiming_uniform_(self.hada_t1[adapter_name], a=math.sqrt(5))
|
76 |
+
nn.init.kaiming_uniform_(self.hada_t2[adapter_name], a=math.sqrt(5))
|
77 |
+
|
78 |
+
def reset_adapter_parameters_random(self, adapter_name: str):
|
79 |
+
# Original implementation performs initialization with normal distribution
|
80 |
+
# https://github.com/KohakuBlueleaf/LyCORIS/blob/3549fdef8f564761d68b695a08ef88b1122fdedc/lycoris/modules/loha.py#L158
|
81 |
+
|
82 |
+
# FedPara paper proposes to perform He initialization, let's stick with it
|
83 |
+
# It is enough to initialize only single matrix with zeros to make adapter do nothing after initialization
|
84 |
+
if adapter_name in self.hada_w1_a.keys():
|
85 |
+
nn.init.kaiming_uniform_(self.hada_w1_a[adapter_name], a=math.sqrt(5))
|
86 |
+
nn.init.kaiming_uniform_(self.hada_w1_b[adapter_name], a=math.sqrt(5))
|
87 |
+
nn.init.kaiming_uniform_(self.hada_w2_a[adapter_name], a=math.sqrt(5))
|
88 |
+
nn.init.kaiming_uniform_(self.hada_w2_b[adapter_name], a=math.sqrt(5))
|
89 |
+
if adapter_name in self.hada_t1.keys():
|
90 |
+
nn.init.kaiming_uniform_(self.hada_t1[adapter_name], a=math.sqrt(5))
|
91 |
+
nn.init.kaiming_uniform_(self.hada_t2[adapter_name], a=math.sqrt(5))
|
92 |
+
|
93 |
+
def update_layer(
|
94 |
+
self,
|
95 |
+
adapter_name: str,
|
96 |
+
r: int,
|
97 |
+
alpha: float,
|
98 |
+
rank_dropout: float,
|
99 |
+
module_dropout: float,
|
100 |
+
init_weights: bool,
|
101 |
+
use_effective_conv2d: bool = False,
|
102 |
+
**kwargs,
|
103 |
+
) -> None:
|
104 |
+
"""Internal function to create loha adapter
|
105 |
+
|
106 |
+
Args:
|
107 |
+
adapter_name (`str`): Name for the adapter to add.
|
108 |
+
r (`int`): Rank for the added adapter.
|
109 |
+
alpha (`float`): Alpha for the added adapter.
|
110 |
+
rank_dropout (`float`): The dropout probability for rank dimension during training.
|
111 |
+
module_dropout (`float`): The dropout probability for disabling adapter during training.
|
112 |
+
init_weights (`bool`): Whether to initialize weights.
|
113 |
+
use_effective_conv2d (`bool`, *optional*, defaults to `False`):
|
114 |
+
Use parameter effective decomposition for Conv2d with ksize > 1.
|
115 |
+
"""
|
116 |
+
if r <= 0:
|
117 |
+
raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")
|
118 |
+
|
119 |
+
self.r[adapter_name] = r
|
120 |
+
self.alpha[adapter_name] = alpha
|
121 |
+
self.scaling[adapter_name] = alpha / r
|
122 |
+
self.rank_dropout[adapter_name] = rank_dropout
|
123 |
+
self.module_dropout[adapter_name] = module_dropout
|
124 |
+
|
125 |
+
# Determine shape of LoHa weights
|
126 |
+
base_layer = self.get_base_layer()
|
127 |
+
if isinstance(base_layer, nn.Linear):
|
128 |
+
shape = tuple(base_layer.weight.shape)
|
129 |
+
elif isinstance(base_layer, nn.Conv2d):
|
130 |
+
use_effective_conv2d = use_effective_conv2d and base_layer.kernel_size != (1, 1)
|
131 |
+
if use_effective_conv2d:
|
132 |
+
shape = (base_layer.out_channels, base_layer.in_channels, *base_layer.kernel_size)
|
133 |
+
else:
|
134 |
+
shape = (
|
135 |
+
base_layer.out_channels,
|
136 |
+
base_layer.in_channels * base_layer.kernel_size[0] * base_layer.kernel_size[1],
|
137 |
+
)
|
138 |
+
else:
|
139 |
+
raise TypeError(f"LoHa is not implemented for base layers of type {type(base_layer).__name__}")
|
140 |
+
|
141 |
+
# Create weights with provided shape
|
142 |
+
self.create_adapter_parameters(adapter_name, r, shape)
|
143 |
+
|
144 |
+
# Initialize weights
|
145 |
+
if init_weights:
|
146 |
+
self.reset_adapter_parameters(adapter_name)
|
147 |
+
else:
|
148 |
+
self.reset_adapter_parameters_random(adapter_name)
|
149 |
+
|
150 |
+
# Move new weights to device
|
151 |
+
weight = getattr(self.get_base_layer(), "weight", None)
|
152 |
+
if weight is not None:
|
153 |
+
# the layer is already completely initialized, this is an update
|
154 |
+
if weight.dtype.is_floating_point or weight.dtype.is_complex:
|
155 |
+
self.to(weight.device, dtype=weight.dtype)
|
156 |
+
else:
|
157 |
+
self.to(weight.device)
|
158 |
+
self.set_adapter(self.active_adapters)
|
159 |
+
|
160 |
+
def get_delta_weight(self, adapter_name: str) -> torch.Tensor:
|
161 |
+
# https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/loha.py#L178
|
162 |
+
if adapter_name in self.hada_t1.keys():
|
163 |
+
weight = make_weight_cp(
|
164 |
+
self.hada_t1[adapter_name],
|
165 |
+
self.hada_w1_a[adapter_name],
|
166 |
+
self.hada_w1_b[adapter_name],
|
167 |
+
self.hada_t2[adapter_name],
|
168 |
+
self.hada_w2_a[adapter_name],
|
169 |
+
self.hada_w2_b[adapter_name],
|
170 |
+
scale=torch.tensor(self.scaling[adapter_name]),
|
171 |
+
)
|
172 |
+
else:
|
173 |
+
weight = make_weight(
|
174 |
+
self.hada_w1_a[adapter_name],
|
175 |
+
self.hada_w1_b[adapter_name],
|
176 |
+
self.hada_w2_a[adapter_name],
|
177 |
+
self.hada_w2_b[adapter_name],
|
178 |
+
scale=torch.tensor(self.scaling[adapter_name]),
|
179 |
+
)
|
180 |
+
|
181 |
+
base_layer = self.get_base_layer()
|
182 |
+
weight = weight.reshape(base_layer.weight.shape)
|
183 |
+
|
184 |
+
# Perform rank dropout during training - drop rows of addition weights
|
185 |
+
rank_dropout = self.rank_dropout[adapter_name]
|
186 |
+
if self.training and rank_dropout:
|
187 |
+
drop = (torch.rand(weight.size(0)) > rank_dropout).to(weight.dtype)
|
188 |
+
drop = drop.view(-1, *[1] * len(weight.shape[1:])).to(weight.device)
|
189 |
+
# TODO: Investigate if there should be a scaler like in normal dropout during training
|
190 |
+
# Original implementation doesn't have it
|
191 |
+
# https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/loha.py#L193
|
192 |
+
drop /= drop.mean()
|
193 |
+
weight *= drop
|
194 |
+
|
195 |
+
return weight
|
196 |
+
|
197 |
+
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
198 |
+
previous_dtype = x.dtype
|
199 |
+
|
200 |
+
if self.disable_adapters:
|
201 |
+
if self.merged:
|
202 |
+
self.unmerge()
|
203 |
+
result = self.base_layer(x, *args, **kwargs)
|
204 |
+
elif self.merged:
|
205 |
+
result = self.base_layer(x, *args, **kwargs)
|
206 |
+
else:
|
207 |
+
result = self.base_layer(x, *args, **kwargs)
|
208 |
+
|
209 |
+
# Execute all the adapters
|
210 |
+
for active_adapter in self.active_adapters:
|
211 |
+
if active_adapter not in self._available_adapters:
|
212 |
+
continue
|
213 |
+
|
214 |
+
module_dropout = self.module_dropout[active_adapter]
|
215 |
+
|
216 |
+
# Modify current execution weights
|
217 |
+
if (not self.training) or (self.training and torch.rand(1) > module_dropout):
|
218 |
+
result = result + self._get_delta_activations(active_adapter, x, *args, **kwargs)
|
219 |
+
|
220 |
+
result = result.to(previous_dtype)
|
221 |
+
return result
|
222 |
+
|
223 |
+
|
224 |
+
class Linear(LoHaLayer):
|
225 |
+
"""LoHa implemented in Linear layer"""
|
226 |
+
|
227 |
+
def __init__(
|
228 |
+
self,
|
229 |
+
base_layer: nn.Module,
|
230 |
+
adapter_name: str = "default",
|
231 |
+
r: int = 0,
|
232 |
+
alpha: float = 0.0,
|
233 |
+
rank_dropout: float = 0.0,
|
234 |
+
module_dropout: float = 0.0,
|
235 |
+
init_weights: bool = True,
|
236 |
+
**kwargs,
|
237 |
+
):
|
238 |
+
super().__init__(base_layer)
|
239 |
+
|
240 |
+
# Create adapter and set it active
|
241 |
+
self._active_adapter = adapter_name
|
242 |
+
self.update_layer(adapter_name, r, alpha, rank_dropout, module_dropout, init_weights, **kwargs)
|
243 |
+
|
244 |
+
def _get_delta_activations(
|
245 |
+
self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any
|
246 |
+
) -> torch.Tensor:
|
247 |
+
delta_weight = self.get_delta_weight(adapter_name)
|
248 |
+
# don't add bias here, because the bias is already included in the output of the base_layer
|
249 |
+
return F.linear(input, delta_weight)
|
250 |
+
|
251 |
+
def __repr__(self) -> str:
|
252 |
+
rep = super().__repr__()
|
253 |
+
return "loha." + rep
|
254 |
+
|
255 |
+
|
256 |
+
class Conv2d(LoHaLayer):
|
257 |
+
"""LoHa implemented in Conv2d layer"""
|
258 |
+
|
259 |
+
def __init__(
|
260 |
+
self,
|
261 |
+
base_layer: nn.Module,
|
262 |
+
adapter_name: str = "default",
|
263 |
+
r: int = 0,
|
264 |
+
alpha: float = 0.0,
|
265 |
+
rank_dropout: float = 0.0,
|
266 |
+
module_dropout: float = 0.0,
|
267 |
+
use_effective_conv2d: bool = False,
|
268 |
+
init_weights: bool = True,
|
269 |
+
**kwargs,
|
270 |
+
):
|
271 |
+
super().__init__(base_layer)
|
272 |
+
|
273 |
+
# Create adapter and set it active
|
274 |
+
self._active_adapter = adapter_name
|
275 |
+
self.update_layer(
|
276 |
+
adapter_name, r, alpha, rank_dropout, module_dropout, init_weights, use_effective_conv2d, **kwargs
|
277 |
+
)
|
278 |
+
|
279 |
+
def _get_delta_activations(
|
280 |
+
self, adapter_name: str, input: torch.Tensor, *args: Any, **kwargs: Any
|
281 |
+
) -> torch.Tensor:
|
282 |
+
delta_weight = self.get_delta_weight(adapter_name)
|
283 |
+
# don't add bias here, because the bias is already included in the output of the base_layer
|
284 |
+
base_layer = self.get_base_layer()
|
285 |
+
return F.conv2d(
|
286 |
+
input,
|
287 |
+
delta_weight,
|
288 |
+
stride=base_layer.stride,
|
289 |
+
padding=base_layer.padding,
|
290 |
+
dilation=base_layer.dilation,
|
291 |
+
groups=base_layer.groups,
|
292 |
+
)
|
293 |
+
|
294 |
+
def __repr__(self) -> str:
|
295 |
+
rep = super().__repr__()
|
296 |
+
return "loha." + rep
|
297 |
+
|
298 |
+
|
299 |
+
# Below code is a direct copy from https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/loha.py#L9
|
300 |
+
|
301 |
+
|
302 |
+
class HadaWeight(torch.autograd.Function):
|
303 |
+
@staticmethod
|
304 |
+
def forward(ctx, w1a, w1b, w2a, w2b, scale=torch.tensor(1)):
|
305 |
+
ctx.save_for_backward(w1a, w1b, w2a, w2b, scale)
|
306 |
+
diff_weight = ((w1a @ w1b) * (w2a @ w2b)) * scale
|
307 |
+
return diff_weight
|
308 |
+
|
309 |
+
@staticmethod
|
310 |
+
def backward(ctx, grad_out):
|
311 |
+
(w1a, w1b, w2a, w2b, scale) = ctx.saved_tensors
|
312 |
+
grad_out = grad_out * scale
|
313 |
+
temp = grad_out * (w2a @ w2b)
|
314 |
+
grad_w1a = temp @ w1b.T
|
315 |
+
grad_w1b = w1a.T @ temp
|
316 |
+
|
317 |
+
temp = grad_out * (w1a @ w1b)
|
318 |
+
grad_w2a = temp @ w2b.T
|
319 |
+
grad_w2b = w2a.T @ temp
|
320 |
+
|
321 |
+
del temp
|
322 |
+
return grad_w1a, grad_w1b, grad_w2a, grad_w2b, None
|
323 |
+
|
324 |
+
|
325 |
+
class HadaWeightCP(torch.autograd.Function):
|
326 |
+
@staticmethod
|
327 |
+
def forward(ctx, t1, w1a, w1b, t2, w2a, w2b, scale=torch.tensor(1)):
|
328 |
+
ctx.save_for_backward(t1, w1a, w1b, t2, w2a, w2b, scale)
|
329 |
+
|
330 |
+
rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", t1, w1b, w1a)
|
331 |
+
rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", t2, w2b, w2a)
|
332 |
+
|
333 |
+
return rebuild1 * rebuild2 * scale
|
334 |
+
|
335 |
+
@staticmethod
|
336 |
+
def backward(ctx, grad_out):
|
337 |
+
(t1, w1a, w1b, t2, w2a, w2b, scale) = ctx.saved_tensors
|
338 |
+
grad_out = grad_out * scale
|
339 |
+
|
340 |
+
temp = torch.einsum("i j k l, j r -> i r k l", t2, w2b)
|
341 |
+
rebuild = torch.einsum("i j k l, i r -> r j k l", temp, w2a)
|
342 |
+
|
343 |
+
grad_w = rebuild * grad_out
|
344 |
+
del rebuild
|
345 |
+
|
346 |
+
grad_w1a = torch.einsum("r j k l, i j k l -> r i", temp, grad_w)
|
347 |
+
grad_temp = torch.einsum("i j k l, i r -> r j k l", grad_w, w1a.T)
|
348 |
+
del grad_w, temp
|
349 |
+
|
350 |
+
grad_w1b = torch.einsum("i r k l, i j k l -> r j", t1, grad_temp)
|
351 |
+
grad_t1 = torch.einsum("i j k l, j r -> i r k l", grad_temp, w1b.T)
|
352 |
+
del grad_temp
|
353 |
+
|
354 |
+
temp = torch.einsum("i j k l, j r -> i r k l", t1, w1b)
|
355 |
+
rebuild = torch.einsum("i j k l, i r -> r j k l", temp, w1a)
|
356 |
+
|
357 |
+
grad_w = rebuild * grad_out
|
358 |
+
del rebuild
|
359 |
+
|
360 |
+
grad_w2a = torch.einsum("r j k l, i j k l -> r i", temp, grad_w)
|
361 |
+
grad_temp = torch.einsum("i j k l, i r -> r j k l", grad_w, w2a.T)
|
362 |
+
del grad_w, temp
|
363 |
+
|
364 |
+
grad_w2b = torch.einsum("i r k l, i j k l -> r j", t2, grad_temp)
|
365 |
+
grad_t2 = torch.einsum("i j k l, j r -> i r k l", grad_temp, w2b.T)
|
366 |
+
del grad_temp
|
367 |
+
return grad_t1, grad_w1a, grad_w1b, grad_t2, grad_w2a, grad_w2b, None
|
368 |
+
|
369 |
+
|
370 |
+
def make_weight(w1a, w1b, w2a, w2b, scale):
|
371 |
+
return HadaWeight.apply(w1a, w1b, w2a, w2b, scale)
|
372 |
+
|
373 |
+
|
374 |
+
def make_weight_cp(t1, w1a, w1b, t2, w2a, w2b, scale):
|
375 |
+
return HadaWeightCP.apply(t1, w1a, w1b, t2, w2a, w2b, scale)
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/loha/model.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import re
|
16 |
+
from itertools import chain
|
17 |
+
from typing import Dict, Type, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from torch import nn
|
21 |
+
|
22 |
+
from peft.tuners.lycoris_utils import LycorisConfig, LycorisTuner
|
23 |
+
|
24 |
+
from .layer import Conv2d, Linear, LoHaLayer
|
25 |
+
|
26 |
+
|
27 |
+
class LoHaModel(LycorisTuner):
|
28 |
+
"""
|
29 |
+
Creates Low-Rank Hadamard Product model from a pretrained model. The method is partially described in
|
30 |
+
https://arxiv.org/abs/2108.06098 Current implementation heavily borrows from
|
31 |
+
https://github.com/KohakuBlueleaf/LyCORIS/blob/eb460098187f752a5d66406d3affade6f0a07ece/lycoris/modules/loha.py
|
32 |
+
|
33 |
+
Args:
|
34 |
+
model (`torch.nn.Module`): The model to which the adapter tuner layers will be attached.
|
35 |
+
config ([`LoHaConfig`]): The configuration of the LoHa model.
|
36 |
+
adapter_name (`str`): The name of the adapter, defaults to `"default"`.
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
`torch.nn.Module`: The LoHa model.
|
40 |
+
|
41 |
+
Example:
|
42 |
+
```py
|
43 |
+
>>> from diffusers import StableDiffusionPipeline
|
44 |
+
>>> from peft import LoHaModel, LoHaConfig
|
45 |
+
|
46 |
+
>>> config_te = LoHaConfig(
|
47 |
+
... r=8,
|
48 |
+
... lora_alpha=32,
|
49 |
+
... target_modules=["k_proj", "q_proj", "v_proj", "out_proj", "fc1", "fc2"],
|
50 |
+
... rank_dropout=0.0,
|
51 |
+
... module_dropout=0.0,
|
52 |
+
... init_weights=True,
|
53 |
+
... )
|
54 |
+
>>> config_unet = LoHaConfig(
|
55 |
+
... r=8,
|
56 |
+
... lora_alpha=32,
|
57 |
+
... target_modules=[
|
58 |
+
... "proj_in",
|
59 |
+
... "proj_out",
|
60 |
+
... "to_k",
|
61 |
+
... "to_q",
|
62 |
+
... "to_v",
|
63 |
+
... "to_out.0",
|
64 |
+
... "ff.net.0.proj",
|
65 |
+
... "ff.net.2",
|
66 |
+
... ],
|
67 |
+
... rank_dropout=0.0,
|
68 |
+
... module_dropout=0.0,
|
69 |
+
... init_weights=True,
|
70 |
+
... use_effective_conv2d=True,
|
71 |
+
... )
|
72 |
+
|
73 |
+
>>> model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
74 |
+
>>> model.text_encoder = LoHaModel(model.text_encoder, config_te, "default")
|
75 |
+
>>> model.unet = LoHaModel(model.unet, config_unet, "default")
|
76 |
+
```
|
77 |
+
|
78 |
+
**Attributes**:
|
79 |
+
- **model** ([`~torch.nn.Module`]) -- The model to be adapted.
|
80 |
+
- **peft_config** ([`LoHaConfig`]): The configuration of the LoHa model.
|
81 |
+
"""
|
82 |
+
|
83 |
+
prefix: str = "hada_"
|
84 |
+
layers_mapping: Dict[Type[torch.nn.Module], Type[LoHaLayer]] = {
|
85 |
+
torch.nn.Conv2d: Conv2d,
|
86 |
+
torch.nn.Linear: Linear,
|
87 |
+
}
|
88 |
+
|
89 |
+
def _create_and_replace(
|
90 |
+
self,
|
91 |
+
config: LycorisConfig,
|
92 |
+
adapter_name: str,
|
93 |
+
target: Union[LoHaLayer, nn.Module],
|
94 |
+
target_name: str,
|
95 |
+
parent: nn.Module,
|
96 |
+
current_key: str,
|
97 |
+
) -> None:
|
98 |
+
"""
|
99 |
+
A private method to create and replace the target module with the adapter module.
|
100 |
+
"""
|
101 |
+
|
102 |
+
# Regexp matching - Find key which matches current target_name in patterns provided
|
103 |
+
pattern_keys = list(chain(config.rank_pattern.keys(), config.alpha_pattern.keys()))
|
104 |
+
target_name_key = next(filter(lambda key: re.match(rf"(.*\.)?{key}$", current_key), pattern_keys), target_name)
|
105 |
+
|
106 |
+
kwargs = config.to_dict()
|
107 |
+
kwargs["r"] = config.rank_pattern.get(target_name_key, config.r)
|
108 |
+
kwargs["alpha"] = config.alpha_pattern.get(target_name_key, config.alpha)
|
109 |
+
|
110 |
+
if isinstance(target, LoHaLayer):
|
111 |
+
target.update_layer(adapter_name, **kwargs)
|
112 |
+
else:
|
113 |
+
new_module = self._create_new_module(config, adapter_name, target, **kwargs)
|
114 |
+
self._replace_module(parent, target_name, new_module, target)
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/__pycache__/config.cpython-310.pyc
ADDED
Binary file (14.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/aqlm.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import Any, Optional
|
16 |
+
|
17 |
+
import torch
|
18 |
+
|
19 |
+
from peft.import_utils import is_aqlm_available
|
20 |
+
from peft.tuners.lora.layer import LoraLayer
|
21 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
22 |
+
|
23 |
+
|
24 |
+
if is_aqlm_available():
|
25 |
+
from aqlm import QuantizedLinear
|
26 |
+
|
27 |
+
|
28 |
+
class AqlmLoraLinear(torch.nn.Module, LoraLayer):
|
29 |
+
def __init__(
|
30 |
+
self,
|
31 |
+
base_layer,
|
32 |
+
adapter_name: str,
|
33 |
+
r: int = 0,
|
34 |
+
lora_alpha: int = 1,
|
35 |
+
lora_dropout: float = 0.0,
|
36 |
+
init_lora_weights: bool = True,
|
37 |
+
use_rslora: bool = False,
|
38 |
+
**kwargs,
|
39 |
+
):
|
40 |
+
super().__init__()
|
41 |
+
LoraLayer.__init__(self, base_layer)
|
42 |
+
|
43 |
+
self._active_adapter = adapter_name
|
44 |
+
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora)
|
45 |
+
|
46 |
+
def forward(self, x: torch.Tensor):
|
47 |
+
# note: logic differs from default Linear because merging is not supported
|
48 |
+
result = self.base_layer(x)
|
49 |
+
|
50 |
+
if self.disable_adapters:
|
51 |
+
return result
|
52 |
+
|
53 |
+
for active_adapter in self.active_adapters:
|
54 |
+
if active_adapter not in self.lora_A.keys():
|
55 |
+
continue
|
56 |
+
lora_A = self.lora_A[active_adapter]
|
57 |
+
lora_B = self.lora_B[active_adapter]
|
58 |
+
dropout = self.lora_dropout[active_adapter]
|
59 |
+
scaling = self.scaling[active_adapter]
|
60 |
+
|
61 |
+
requires_conversion = not torch.is_autocast_enabled()
|
62 |
+
if requires_conversion:
|
63 |
+
expected_dtype = result.dtype
|
64 |
+
x = x.to(lora_A.weight.dtype)
|
65 |
+
|
66 |
+
output = lora_B(lora_A(dropout(x)))
|
67 |
+
if requires_conversion:
|
68 |
+
output = output.to(expected_dtype)
|
69 |
+
output = output * scaling
|
70 |
+
result += output
|
71 |
+
return result
|
72 |
+
|
73 |
+
def __repr__(self) -> str:
|
74 |
+
rep = super().__repr__()
|
75 |
+
return "lora." + rep
|
76 |
+
|
77 |
+
# TODO: Check if it is better as suggested by users https://github.com/PanQiWei/AutoGPTQ/pull/102
|
78 |
+
# def reset_lora_parameters(self, adapter_name):
|
79 |
+
# if adapter_name in self.lora_A.keys():
|
80 |
+
# torch.nn.init.xavier_uniform_(self.lora_A[adapter_name].weight)
|
81 |
+
# torch.nn.init.zeros_(self.lora_B[adapter_name].weight)
|
82 |
+
|
83 |
+
|
84 |
+
def dispatch_aqlm(
|
85 |
+
target: torch.nn.Module,
|
86 |
+
adapter_name: str,
|
87 |
+
**kwargs: Any,
|
88 |
+
) -> Optional[torch.nn.Module]:
|
89 |
+
new_module = None
|
90 |
+
|
91 |
+
if isinstance(target, BaseTunerLayer):
|
92 |
+
target_base_layer = target.get_base_layer()
|
93 |
+
else:
|
94 |
+
target_base_layer = target
|
95 |
+
|
96 |
+
if is_aqlm_available() and isinstance(target_base_layer, QuantizedLinear):
|
97 |
+
new_module = AqlmLoraLinear(target, adapter_name, **kwargs)
|
98 |
+
target.qweight = target_base_layer.codes
|
99 |
+
|
100 |
+
return new_module
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/awq.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import importlib.metadata as importlib_metadata
|
15 |
+
from typing import Any, Optional
|
16 |
+
|
17 |
+
import packaging.version
|
18 |
+
import torch
|
19 |
+
|
20 |
+
from peft.import_utils import is_auto_awq_available
|
21 |
+
from peft.tuners.lora.layer import LoraLayer
|
22 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
23 |
+
|
24 |
+
|
25 |
+
if is_auto_awq_available():
|
26 |
+
from awq.modules.linear import WQLinear_GEMM
|
27 |
+
|
28 |
+
|
29 |
+
class AwqLoraLinear(torch.nn.Module, LoraLayer):
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
base_layer,
|
33 |
+
adapter_name,
|
34 |
+
r: int = 0,
|
35 |
+
lora_alpha: int = 1,
|
36 |
+
lora_dropout: float = 0.0,
|
37 |
+
init_lora_weights: bool = True,
|
38 |
+
use_rslora: bool = False,
|
39 |
+
**kwargs,
|
40 |
+
):
|
41 |
+
super().__init__()
|
42 |
+
LoraLayer.__init__(self, base_layer)
|
43 |
+
|
44 |
+
# self.base_layer and self.quant_linear_module are the same; we need the former for consistency and the latter
|
45 |
+
# for backwards compatibility
|
46 |
+
self.quant_linear_module = base_layer
|
47 |
+
|
48 |
+
self._active_adapter = adapter_name
|
49 |
+
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora)
|
50 |
+
|
51 |
+
def forward(self, x: torch.Tensor):
|
52 |
+
result = self.quant_linear_module(x)
|
53 |
+
|
54 |
+
if self.disable_adapters:
|
55 |
+
return result
|
56 |
+
|
57 |
+
for active_adapter in self.active_adapters:
|
58 |
+
if active_adapter not in self.lora_A.keys():
|
59 |
+
continue
|
60 |
+
lora_A = self.lora_A[active_adapter]
|
61 |
+
lora_B = self.lora_B[active_adapter]
|
62 |
+
dropout = self.lora_dropout[active_adapter]
|
63 |
+
scaling = self.scaling[active_adapter]
|
64 |
+
|
65 |
+
requires_conversion = not torch.is_autocast_enabled()
|
66 |
+
if requires_conversion:
|
67 |
+
expected_dtype = result.dtype
|
68 |
+
x = x.to(lora_A.weight.dtype)
|
69 |
+
|
70 |
+
output = lora_B(lora_A(dropout(x)))
|
71 |
+
if requires_conversion:
|
72 |
+
output = output.to(expected_dtype)
|
73 |
+
output = output * scaling
|
74 |
+
result = result + output
|
75 |
+
return result
|
76 |
+
|
77 |
+
def __repr__(self) -> str:
|
78 |
+
rep = super().__repr__()
|
79 |
+
return "lora." + rep
|
80 |
+
|
81 |
+
|
82 |
+
def dispatch_awq(
|
83 |
+
target: torch.nn.Module,
|
84 |
+
adapter_name: str,
|
85 |
+
**kwargs: Any,
|
86 |
+
) -> Optional[torch.nn.Module]:
|
87 |
+
new_module = None
|
88 |
+
|
89 |
+
if isinstance(target, BaseTunerLayer):
|
90 |
+
target_base_layer = target.get_base_layer()
|
91 |
+
else:
|
92 |
+
target_base_layer = target
|
93 |
+
|
94 |
+
if is_auto_awq_available() and isinstance(target_base_layer, WQLinear_GEMM):
|
95 |
+
# Raise the error only at the dispatch level
|
96 |
+
AUTOAWQ_MINIMUM_VERSION = packaging.version.parse("0.2.0")
|
97 |
+
version_autoawq = packaging.version.parse(importlib_metadata.version("autoawq"))
|
98 |
+
|
99 |
+
if AUTOAWQ_MINIMUM_VERSION > version_autoawq:
|
100 |
+
raise ImportError(
|
101 |
+
f"Found an incompatible version of auto-awq. Found version {version_autoawq}, "
|
102 |
+
f"but only versions above {AUTOAWQ_MINIMUM_VERSION} are supported for PEFT."
|
103 |
+
)
|
104 |
+
|
105 |
+
new_module = AwqLoraLinear(target, adapter_name, **kwargs)
|
106 |
+
target.qweight = target_base_layer.qweight
|
107 |
+
|
108 |
+
return new_module
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/bnb.py
ADDED
@@ -0,0 +1,508 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from __future__ import annotations
|
15 |
+
|
16 |
+
import warnings
|
17 |
+
from typing import Any, Optional
|
18 |
+
|
19 |
+
import bitsandbytes as bnb
|
20 |
+
import torch
|
21 |
+
|
22 |
+
from peft.import_utils import is_bnb_4bit_available, is_bnb_available
|
23 |
+
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge
|
24 |
+
from peft.utils.integrations import dequantize_bnb_weight
|
25 |
+
from peft.utils.other import transpose
|
26 |
+
|
27 |
+
from .layer import LoraLayer
|
28 |
+
|
29 |
+
|
30 |
+
if is_bnb_available():
|
31 |
+
|
32 |
+
class Linear8bitLt(torch.nn.Module, LoraLayer):
|
33 |
+
# Lora implemented in a dense layer
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
base_layer: torch.nn.Module,
|
37 |
+
adapter_name: str,
|
38 |
+
r: int = 0,
|
39 |
+
lora_alpha: int = 1,
|
40 |
+
lora_dropout: float = 0.0,
|
41 |
+
init_lora_weights: bool = True,
|
42 |
+
use_rslora: bool = False,
|
43 |
+
use_dora: bool = False,
|
44 |
+
**kwargs,
|
45 |
+
) -> None:
|
46 |
+
super().__init__()
|
47 |
+
LoraLayer.__init__(self, base_layer)
|
48 |
+
self.fan_in_fan_out = False
|
49 |
+
|
50 |
+
self._active_adapter = adapter_name
|
51 |
+
self.update_layer(
|
52 |
+
adapter_name,
|
53 |
+
r,
|
54 |
+
lora_alpha=lora_alpha,
|
55 |
+
lora_dropout=lora_dropout,
|
56 |
+
init_lora_weights=init_lora_weights,
|
57 |
+
use_rslora=use_rslora,
|
58 |
+
use_dora=use_dora,
|
59 |
+
)
|
60 |
+
|
61 |
+
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
|
62 |
+
"""
|
63 |
+
Merge the active adapter weights into the base weights
|
64 |
+
|
65 |
+
Args:
|
66 |
+
safe_merge (`bool`, *optional*):
|
67 |
+
If True, the merge operation will be performed in a copy of the original weights and check for NaNs
|
68 |
+
before merging the weights. This is useful if you want to check if the merge operation will produce
|
69 |
+
NaNs. Defaults to `False`.
|
70 |
+
adapter_names (`list[str]`, *optional*):
|
71 |
+
The list of adapter names that should be merged. If None, all active adapters will be merged.
|
72 |
+
Defaults to `None`.
|
73 |
+
"""
|
74 |
+
adapter_names = check_adapters_to_merge(self, adapter_names)
|
75 |
+
if not adapter_names:
|
76 |
+
# no adapter to merge
|
77 |
+
return
|
78 |
+
|
79 |
+
for active_adapter in adapter_names:
|
80 |
+
if active_adapter not in self.lora_A.keys():
|
81 |
+
continue
|
82 |
+
|
83 |
+
warnings.warn(
|
84 |
+
"Merge lora module to 8-bit linear may get different generations due to rounding errors."
|
85 |
+
)
|
86 |
+
lora_data = self.get_delta_weight(active_adapter)
|
87 |
+
|
88 |
+
weight = self.get_base_layer().weight
|
89 |
+
state = self.get_base_layer().state
|
90 |
+
if state.SCB is None:
|
91 |
+
state.SCB = weight.SCB
|
92 |
+
|
93 |
+
# Dequantize the result of identity matrix and int8 weight because bitsandbytes does not support int8
|
94 |
+
# dequantization directly
|
95 |
+
output = dequantize_bnb_weight(weight, state=state)
|
96 |
+
if not self.use_dora[active_adapter]:
|
97 |
+
w_data = output.to(lora_data.dtype).to(lora_data.device) + lora_data
|
98 |
+
else:
|
99 |
+
# handle dora
|
100 |
+
# since output already includes scaling, set it to 1 here
|
101 |
+
weight_norm = self._get_weight_norm(output, lora_data, scaling=1).detach()
|
102 |
+
# We need to cache weight_norm because it has to be based on the original weights. We
|
103 |
+
# cannot calculate it on the fly based on the merged weights when unmerging because its a
|
104 |
+
# different value
|
105 |
+
self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
|
106 |
+
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
|
107 |
+
w_data = dora_factor.view(-1, 1) * (output + lora_data)
|
108 |
+
|
109 |
+
if safe_merge and not torch.isfinite(w_data).all():
|
110 |
+
raise ValueError(
|
111 |
+
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
|
112 |
+
)
|
113 |
+
|
114 |
+
self.get_base_layer().weight = bnb.nn.Int8Params(
|
115 |
+
w_data.to("cpu"), requires_grad=False, has_fp16_weights=weight.has_fp16_weights
|
116 |
+
).to(weight.device)
|
117 |
+
state.reset_grads()
|
118 |
+
self.merged_adapters.append(active_adapter)
|
119 |
+
|
120 |
+
def unmerge(self) -> None:
|
121 |
+
"""
|
122 |
+
This method unmerges all merged adapter layers from the base weights.
|
123 |
+
"""
|
124 |
+
if not self.merged:
|
125 |
+
warnings.warn("Already unmerged. Nothing to do.")
|
126 |
+
return
|
127 |
+
|
128 |
+
while len(self.merged_adapters) > 0:
|
129 |
+
active_adapter = self.merged_adapters.pop()
|
130 |
+
if active_adapter not in self.lora_A.keys():
|
131 |
+
continue
|
132 |
+
warnings.warn(
|
133 |
+
"Unmerge lora module to 8-bit linear may get different generations due to rounding errors."
|
134 |
+
)
|
135 |
+
lora_data = self.get_delta_weight(active_adapter)
|
136 |
+
|
137 |
+
weight = self.get_base_layer().weight
|
138 |
+
state = self.get_base_layer().state
|
139 |
+
if state.SCB is None:
|
140 |
+
state.SCB = weight.SCB
|
141 |
+
output = dequantize_bnb_weight(weight, state=state)
|
142 |
+
|
143 |
+
if not self.use_dora[active_adapter]:
|
144 |
+
w_data = output.to(lora_data.dtype).to(lora_data.device) - lora_data
|
145 |
+
else:
|
146 |
+
weight_norm = self._cache_pop(f"{active_adapter}-weight_norm")
|
147 |
+
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
|
148 |
+
w_data = output.data / dora_factor.view(-1, 1) - lora_data
|
149 |
+
|
150 |
+
self.get_base_layer().weight = bnb.nn.Int8Params(
|
151 |
+
w_data.to("cpu"), requires_grad=False, has_fp16_weights=weight.has_fp16_weights
|
152 |
+
).to(weight.device)
|
153 |
+
state.reset_grads()
|
154 |
+
|
155 |
+
def get_delta_weight(self, adapter):
|
156 |
+
return (
|
157 |
+
transpose(
|
158 |
+
self.lora_B[adapter].weight @ self.lora_A[adapter].weight,
|
159 |
+
False,
|
160 |
+
)
|
161 |
+
* self.scaling[adapter]
|
162 |
+
)
|
163 |
+
|
164 |
+
def _mixed_batch_forward(
|
165 |
+
self, x: torch.Tensor, *args: Any, adapter_names: list[str], **kwargs: Any
|
166 |
+
) -> torch.Tensor:
|
167 |
+
# This is a special method that handles the case when users pass the argument `adapter_names`. This is an
|
168 |
+
# extra argument that allows mixing different adapters in the same batch at inference time.
|
169 |
+
result = self.base_layer(x, *args, **kwargs)
|
170 |
+
|
171 |
+
unique_adapters = set(adapter_names)
|
172 |
+
sub_batch_indices_list = []
|
173 |
+
for adapter in unique_adapters:
|
174 |
+
sub_batch_indices_list.append([index for index, item in enumerate(adapter_names) if item == adapter])
|
175 |
+
|
176 |
+
for i, active_adapter in enumerate(unique_adapters):
|
177 |
+
if active_adapter == "__base__":
|
178 |
+
continue
|
179 |
+
if active_adapter not in self.lora_A.keys():
|
180 |
+
continue
|
181 |
+
|
182 |
+
lora_A = self.lora_A[active_adapter]
|
183 |
+
lora_B = self.lora_B[active_adapter]
|
184 |
+
dropout = self.lora_dropout[active_adapter]
|
185 |
+
scaling = self.scaling[active_adapter]
|
186 |
+
|
187 |
+
requires_conversion = not torch.is_autocast_enabled()
|
188 |
+
if requires_conversion:
|
189 |
+
expected_dtype = result.dtype
|
190 |
+
compute_dtype = lora_A.weight.dtype
|
191 |
+
if x.dtype != compute_dtype:
|
192 |
+
x = x.to(compute_dtype)
|
193 |
+
|
194 |
+
# getting the sub-batch, passing it to LoRA layers and updating the corresponding indices of the linear
|
195 |
+
# layer output
|
196 |
+
sub_batch = x[sub_batch_indices_list[i]]
|
197 |
+
output = lora_B(lora_A(dropout(sub_batch))) * scaling
|
198 |
+
if requires_conversion:
|
199 |
+
output = output.to(expected_dtype)
|
200 |
+
result[sub_batch_indices_list[i]] += output
|
201 |
+
|
202 |
+
return result
|
203 |
+
|
204 |
+
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
205 |
+
self._check_forward_args(x, *args, **kwargs)
|
206 |
+
adapter_names = kwargs.pop("adapter_names", None)
|
207 |
+
|
208 |
+
if self.disable_adapters:
|
209 |
+
if self.merged:
|
210 |
+
self.unmerge()
|
211 |
+
result = self.base_layer(x, *args, **kwargs)
|
212 |
+
elif adapter_names is not None:
|
213 |
+
result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs)
|
214 |
+
elif self.merged:
|
215 |
+
result = self.base_layer(x, *args, **kwargs)
|
216 |
+
else:
|
217 |
+
result = self.base_layer(x, *args, **kwargs)
|
218 |
+
for active_adapter in self.active_adapters:
|
219 |
+
if active_adapter not in self.lora_A.keys():
|
220 |
+
continue
|
221 |
+
lora_A = self.lora_A[active_adapter]
|
222 |
+
lora_B = self.lora_B[active_adapter]
|
223 |
+
dropout = self.lora_dropout[active_adapter]
|
224 |
+
scaling = self.scaling[active_adapter]
|
225 |
+
|
226 |
+
requires_conversion = not torch.is_autocast_enabled()
|
227 |
+
if requires_conversion:
|
228 |
+
expected_dtype = result.dtype
|
229 |
+
compute_dtype = lora_A.weight.dtype
|
230 |
+
if x.dtype != compute_dtype:
|
231 |
+
x = x.to(compute_dtype)
|
232 |
+
|
233 |
+
if not self.use_dora[active_adapter]:
|
234 |
+
output = lora_B(lora_A(dropout(x))) * scaling
|
235 |
+
else:
|
236 |
+
output = self._apply_dora(x, lora_A, lora_B, scaling, active_adapter)
|
237 |
+
if requires_conversion:
|
238 |
+
output = output.to(expected_dtype)
|
239 |
+
|
240 |
+
result = result + output
|
241 |
+
|
242 |
+
return result
|
243 |
+
|
244 |
+
def __repr__(self) -> str:
|
245 |
+
rep = super().__repr__()
|
246 |
+
return "lora." + rep
|
247 |
+
|
248 |
+
def dispatch_bnb_8bit(target: torch.nn.Module, adapter_name: str, **kwargs):
|
249 |
+
new_module = None
|
250 |
+
|
251 |
+
if isinstance(target, BaseTunerLayer):
|
252 |
+
target_base_layer = target.get_base_layer()
|
253 |
+
else:
|
254 |
+
target_base_layer = target
|
255 |
+
|
256 |
+
loaded_in_8bit = kwargs.get("loaded_in_8bit", False)
|
257 |
+
if loaded_in_8bit and isinstance(target_base_layer, bnb.nn.Linear8bitLt):
|
258 |
+
eightbit_kwargs = kwargs.copy()
|
259 |
+
eightbit_kwargs.update(
|
260 |
+
{
|
261 |
+
"has_fp16_weights": target.state.has_fp16_weights,
|
262 |
+
"memory_efficient_backward": target.state.memory_efficient_backward,
|
263 |
+
"threshold": target.state.threshold,
|
264 |
+
"index": target.index,
|
265 |
+
}
|
266 |
+
)
|
267 |
+
new_module = Linear8bitLt(target, adapter_name, **eightbit_kwargs)
|
268 |
+
|
269 |
+
return new_module
|
270 |
+
|
271 |
+
|
272 |
+
if is_bnb_4bit_available():
|
273 |
+
|
274 |
+
class Linear4bit(torch.nn.Module, LoraLayer):
|
275 |
+
# Lora implemented in a dense layer
|
276 |
+
def __init__(
|
277 |
+
self,
|
278 |
+
base_layer: torch.nn.Module,
|
279 |
+
adapter_name: str,
|
280 |
+
r: int = 0,
|
281 |
+
lora_alpha: int = 1,
|
282 |
+
lora_dropout: float = 0.0,
|
283 |
+
init_lora_weights: bool = True,
|
284 |
+
use_rslora: bool = False,
|
285 |
+
use_dora: bool = False,
|
286 |
+
**kwargs,
|
287 |
+
) -> None:
|
288 |
+
super().__init__()
|
289 |
+
LoraLayer.__init__(self, base_layer)
|
290 |
+
self.fan_in_fan_out = False
|
291 |
+
|
292 |
+
self._active_adapter = adapter_name
|
293 |
+
self.update_layer(
|
294 |
+
adapter_name,
|
295 |
+
r,
|
296 |
+
lora_alpha=lora_alpha,
|
297 |
+
lora_dropout=lora_dropout,
|
298 |
+
init_lora_weights=init_lora_weights,
|
299 |
+
use_rslora=use_rslora,
|
300 |
+
use_dora=use_dora,
|
301 |
+
)
|
302 |
+
|
303 |
+
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
|
304 |
+
"""
|
305 |
+
Merge the active adapter weights into the base weights
|
306 |
+
|
307 |
+
Args:
|
308 |
+
safe_merge (`bool`, *optional*):
|
309 |
+
If True, the merge operation will be performed in a copy of the original weights and check for NaNs
|
310 |
+
before merging the weights. This is useful if you want to check if the merge operation will produce
|
311 |
+
NaNs. Defaults to `False`.
|
312 |
+
adapter_names (`list[str]`, *optional*):
|
313 |
+
The list of adapter names that should be merged. If None, all active adapters will be merged.
|
314 |
+
Defaults to `None`.
|
315 |
+
"""
|
316 |
+
adapter_names = check_adapters_to_merge(self, adapter_names)
|
317 |
+
if not adapter_names:
|
318 |
+
# no adapter to merge
|
319 |
+
return
|
320 |
+
|
321 |
+
for active_adapter in adapter_names:
|
322 |
+
if active_adapter not in self.lora_A.keys():
|
323 |
+
continue
|
324 |
+
|
325 |
+
warnings.warn(
|
326 |
+
"Merge lora module to 4-bit linear may get different generations due to rounding errors."
|
327 |
+
)
|
328 |
+
# Refer to https://gist.github.com/ChrisHayduk/1a53463331f52dca205e55982baf9930
|
329 |
+
weight = self.get_base_layer().weight
|
330 |
+
kwargs = weight.__dict__
|
331 |
+
lora_data = self.get_delta_weight(active_adapter)
|
332 |
+
|
333 |
+
output = dequantize_bnb_weight(weight, state=weight.quant_state)
|
334 |
+
if not self.use_dora[active_adapter]:
|
335 |
+
w_data = output + lora_data
|
336 |
+
else:
|
337 |
+
# handle dora
|
338 |
+
# since output already includes scaling, set it to 1 here
|
339 |
+
weight_norm = self._get_weight_norm(output, lora_data, scaling=1).detach()
|
340 |
+
# We need to cache weight_norm because it has to be based on the original weights. We
|
341 |
+
# cannot calculate it on the fly based on the merged weights when unmerging because its a
|
342 |
+
# different value
|
343 |
+
self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
|
344 |
+
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
|
345 |
+
w_data = dora_factor.view(-1, 1) * (output + lora_data)
|
346 |
+
|
347 |
+
if safe_merge and not torch.isfinite(w_data).all():
|
348 |
+
raise ValueError(
|
349 |
+
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
|
350 |
+
)
|
351 |
+
if "bnb_quantized" in kwargs:
|
352 |
+
kwargs["bnb_quantized"] = False
|
353 |
+
self.get_base_layer().weight = bnb.nn.Params4bit(w_data.to("cpu"), requires_grad=False, **kwargs).to(
|
354 |
+
weight.device
|
355 |
+
)
|
356 |
+
self.merged_adapters.append(active_adapter)
|
357 |
+
|
358 |
+
def unmerge(self) -> None:
|
359 |
+
"""
|
360 |
+
This method unmerges all merged adapter layers from the base weights.
|
361 |
+
"""
|
362 |
+
if not self.merged:
|
363 |
+
warnings.warn("Already unmerged. Nothing to do.")
|
364 |
+
return
|
365 |
+
|
366 |
+
while len(self.merged_adapters) > 0:
|
367 |
+
active_adapter = self.merged_adapters.pop()
|
368 |
+
if active_adapter not in self.lora_A.keys():
|
369 |
+
continue
|
370 |
+
warnings.warn(
|
371 |
+
"Unmerge lora module to 4-bit linear may get different generations due to rounding errors."
|
372 |
+
)
|
373 |
+
|
374 |
+
lora_data = self.get_delta_weight(active_adapter)
|
375 |
+
weight = self.get_base_layer().weight
|
376 |
+
kwargs = weight.__dict__
|
377 |
+
output = dequantize_bnb_weight(weight, state=weight.quant_state)
|
378 |
+
|
379 |
+
if not self.use_dora[active_adapter]:
|
380 |
+
w_data = output - lora_data
|
381 |
+
else:
|
382 |
+
weight_norm = self._cache_pop(f"{active_adapter}-weight_norm")
|
383 |
+
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
|
384 |
+
w_data = output.data / dora_factor.view(-1, 1) - lora_data
|
385 |
+
|
386 |
+
if "bnb_quantized" in kwargs:
|
387 |
+
kwargs["bnb_quantized"] = False
|
388 |
+
self.get_base_layer().weight = bnb.nn.Params4bit(w_data.to("cpu"), requires_grad=False, **kwargs).to(
|
389 |
+
weight.device
|
390 |
+
)
|
391 |
+
|
392 |
+
def get_delta_weight(self, adapter):
|
393 |
+
return (
|
394 |
+
transpose(
|
395 |
+
self.lora_B[adapter].weight @ self.lora_A[adapter].weight,
|
396 |
+
False,
|
397 |
+
)
|
398 |
+
* self.scaling[adapter]
|
399 |
+
)
|
400 |
+
|
401 |
+
def _mixed_batch_forward(
|
402 |
+
self, x: torch.Tensor, *args: Any, adapter_names: list[str], **kwargs: Any
|
403 |
+
) -> torch.Tensor:
|
404 |
+
# This is a special method that handles the case when users pass the argument `adapter_names`. This is an
|
405 |
+
# extra argument that allows mixing different adapters in the same batch at inference time.
|
406 |
+
result = self.base_layer(x, *args, **kwargs)
|
407 |
+
|
408 |
+
unique_adapters = set(adapter_names)
|
409 |
+
sub_batch_indices_list = []
|
410 |
+
for adapter in unique_adapters:
|
411 |
+
sub_batch_indices_list.append([index for index, item in enumerate(adapter_names) if item == adapter])
|
412 |
+
|
413 |
+
for i, active_adapter in enumerate(unique_adapters):
|
414 |
+
if active_adapter == "__base__":
|
415 |
+
continue
|
416 |
+
if active_adapter not in self.lora_A.keys():
|
417 |
+
continue
|
418 |
+
|
419 |
+
lora_A = self.lora_A[active_adapter]
|
420 |
+
lora_B = self.lora_B[active_adapter]
|
421 |
+
dropout = self.lora_dropout[active_adapter]
|
422 |
+
scaling = self.scaling[active_adapter]
|
423 |
+
|
424 |
+
requires_conversion = not torch.is_autocast_enabled()
|
425 |
+
if requires_conversion:
|
426 |
+
expected_dtype = result.dtype
|
427 |
+
x = x.to(lora_A.weight.dtype)
|
428 |
+
|
429 |
+
# getting the sub-batch, passing it to LoRA layers and updating the corresponding indices of the linear
|
430 |
+
# layer output
|
431 |
+
sub_batch = x[sub_batch_indices_list[i]]
|
432 |
+
output = lora_B(lora_A(dropout(sub_batch))) * scaling
|
433 |
+
if requires_conversion:
|
434 |
+
output = output.to(expected_dtype)
|
435 |
+
result[sub_batch_indices_list[i]] += output
|
436 |
+
|
437 |
+
return result
|
438 |
+
|
439 |
+
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
440 |
+
self._check_forward_args(x, *args, **kwargs)
|
441 |
+
adapter_names = kwargs.pop("adapter_names", None)
|
442 |
+
|
443 |
+
if self.disable_adapters:
|
444 |
+
if self.merged:
|
445 |
+
self.unmerge()
|
446 |
+
result = self.base_layer(x, *args, **kwargs)
|
447 |
+
elif adapter_names is not None:
|
448 |
+
result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs)
|
449 |
+
elif self.merged:
|
450 |
+
result = self.base_layer(x, *args, **kwargs)
|
451 |
+
else:
|
452 |
+
result = self.base_layer(x, *args, **kwargs)
|
453 |
+
# As per Tim Dettmers, for 4bit, we need to defensively clone here.
|
454 |
+
# The reason is that in some cases, an error can occur that backprop
|
455 |
+
# does not work on a manipulated view. This issue may be solved with
|
456 |
+
# newer PyTorch versions but this would need extensive testing to be
|
457 |
+
# sure.
|
458 |
+
result = result.clone()
|
459 |
+
|
460 |
+
for active_adapter in self.active_adapters:
|
461 |
+
if active_adapter not in self.lora_A.keys():
|
462 |
+
continue
|
463 |
+
lora_A = self.lora_A[active_adapter]
|
464 |
+
lora_B = self.lora_B[active_adapter]
|
465 |
+
dropout = self.lora_dropout[active_adapter]
|
466 |
+
scaling = self.scaling[active_adapter]
|
467 |
+
|
468 |
+
requires_conversion = not torch.is_autocast_enabled()
|
469 |
+
if requires_conversion:
|
470 |
+
expected_dtype = result.dtype
|
471 |
+
x = x.to(lora_A.weight.dtype)
|
472 |
+
|
473 |
+
if not self.use_dora[active_adapter]:
|
474 |
+
output = lora_B(lora_A(dropout(x))) * scaling
|
475 |
+
else:
|
476 |
+
output = self._apply_dora(x, lora_A, lora_B, scaling, active_adapter)
|
477 |
+
if requires_conversion:
|
478 |
+
output = output.to(expected_dtype)
|
479 |
+
|
480 |
+
result = result + output
|
481 |
+
|
482 |
+
return result
|
483 |
+
|
484 |
+
def __repr__(self) -> str:
|
485 |
+
rep = super().__repr__()
|
486 |
+
return "lora." + rep
|
487 |
+
|
488 |
+
def dispatch_bnb_4bit(target: torch.nn.Module, adapter_name: str, **kwargs):
|
489 |
+
new_module = None
|
490 |
+
|
491 |
+
if isinstance(target, BaseTunerLayer):
|
492 |
+
target_base_layer = target.get_base_layer()
|
493 |
+
else:
|
494 |
+
target_base_layer = target
|
495 |
+
|
496 |
+
loaded_in_4bit = kwargs.get("loaded_in_4bit", False)
|
497 |
+
if loaded_in_4bit and is_bnb_4bit_available() and isinstance(target_base_layer, bnb.nn.Linear4bit):
|
498 |
+
fourbit_kwargs = kwargs.copy()
|
499 |
+
fourbit_kwargs.update(
|
500 |
+
{
|
501 |
+
"compute_dtype": target_base_layer.compute_dtype,
|
502 |
+
"compress_statistics": target_base_layer.weight.compress_statistics,
|
503 |
+
"quant_type": target_base_layer.weight.quant_type,
|
504 |
+
}
|
505 |
+
)
|
506 |
+
new_module = Linear4bit(target, adapter_name, **fourbit_kwargs)
|
507 |
+
|
508 |
+
return new_module
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/config.py
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from __future__ import annotations
|
16 |
+
|
17 |
+
from dataclasses import dataclass, field
|
18 |
+
from typing import Literal, Optional, Union
|
19 |
+
|
20 |
+
from peft.config import PeftConfig
|
21 |
+
from peft.utils import PeftType
|
22 |
+
|
23 |
+
|
24 |
+
@dataclass
|
25 |
+
class LoftQConfig:
|
26 |
+
"""
|
27 |
+
This is the sub-configuration class to store the configuration of a [`LoraModel`].
|
28 |
+
|
29 |
+
Args:
|
30 |
+
bits_pattern (`dict`): The mapping from layer names or regexp expression to bits which are different from the
|
31 |
+
default bits specified by `bits`. For example, `{model.decoder.layers.0.encoder_attn.k_proj: 2`}.
|
32 |
+
bits (`int`): Quantization bits for LoftQ.
|
33 |
+
iter (`int`): Alternating iterations for LoftQ.
|
34 |
+
fake (`bool`): True: use fp16/fp32; used for first time to save weights. False: use bitsandbytes 4bit linear
|
35 |
+
models. weights can't be saved. Recommend to set to True, save the weights and load the saved weights in 4
|
36 |
+
bits.
|
37 |
+
"""
|
38 |
+
|
39 |
+
loftq_bits: int = field(default=4, metadata={"help": "Quantization bits for LoftQ"})
|
40 |
+
loftq_iter: int = field(default=1, metadata={"help": "Alternating iterations for LoftQ"})
|
41 |
+
|
42 |
+
|
43 |
+
@dataclass
|
44 |
+
class LoraConfig(PeftConfig):
|
45 |
+
"""
|
46 |
+
This is the configuration class to store the configuration of a [`LoraModel`].
|
47 |
+
|
48 |
+
Args:
|
49 |
+
r (`int`):
|
50 |
+
Lora attention dimension (the "rank").
|
51 |
+
target_modules (`Optional[Union[List[str], str]]`):
|
52 |
+
The names of the modules to apply the adapter to. If this is specified, only the modules with the specified
|
53 |
+
names will be replaced. When passing a string, a regex match will be performed. When passing a list of
|
54 |
+
strings, either an exact match will be performed or it is checked if the name of the module ends with any
|
55 |
+
of the passed strings. If this is specified as 'all-linear', then all linear/Conv1D modules are chosen,
|
56 |
+
excluding the output layer. If this is not specified, modules will be chosen according to the model
|
57 |
+
architecture. If the architecture is not known, an error will be raised -- in this case, you should specify
|
58 |
+
the target modules manually.
|
59 |
+
lora_alpha (`int`):
|
60 |
+
The alpha parameter for Lora scaling.
|
61 |
+
lora_dropout (`float`):
|
62 |
+
The dropout probability for Lora layers.
|
63 |
+
fan_in_fan_out (`bool`):
|
64 |
+
Set this to True if the layer to replace stores weight like (fan_in, fan_out). For example, gpt-2 uses
|
65 |
+
`Conv1D` which stores weights like (fan_in, fan_out) and hence this should be set to `True`.
|
66 |
+
bias (`str`):
|
67 |
+
Bias type for LoRA. Can be 'none', 'all' or 'lora_only'. If 'all' or 'lora_only', the corresponding biases
|
68 |
+
will be updated during training. Be aware that this means that, even when disabling the adapters, the model
|
69 |
+
will not produce the same output as the base model would have without adaptation.
|
70 |
+
use_rslora (`bool`):
|
71 |
+
When set to True, uses <a href='https://doi.org/10.48550/arXiv.2312.03732'>Rank-Stabilized LoRA</a> which
|
72 |
+
sets the adapter scaling factor to `lora_alpha/math.sqrt(r)`, since it was proven to work better.
|
73 |
+
Otherwise, it will use the original default value of `lora_alpha/r`.
|
74 |
+
modules_to_save (`List[str]`):
|
75 |
+
List of modules apart from adapter layers to be set as trainable and saved in the final checkpoint.
|
76 |
+
init_lora_weights (`bool` | `Literal["gaussian", "loftq"]`):
|
77 |
+
How to initialize the weights of the adapter layers. Passing True (default) results in the default
|
78 |
+
initialization from the reference implementation from Microsoft. Passing 'gaussian' results in Gaussian
|
79 |
+
initialization scaled by the LoRA rank for linear and layers. Setting the initialization to False leads to
|
80 |
+
completely random initialization and is discouraged. Pass `'loftq'` to use LoftQ initialization.
|
81 |
+
layers_to_transform (`Union[List[int], int]`):
|
82 |
+
The layer indices to transform. If a list of ints is passed, it will apply the adapter to the layer indices
|
83 |
+
that are specified in this list. If a single integer is passed, it will apply the transformations on the
|
84 |
+
layer at this index.
|
85 |
+
layers_pattern (`str`):
|
86 |
+
The layer pattern name, used only if `layers_to_transform` is different from `None`.
|
87 |
+
rank_pattern (`dict`):
|
88 |
+
The mapping from layer names or regexp expression to ranks which are different from the default rank
|
89 |
+
specified by `r`.
|
90 |
+
alpha_pattern (`dict`):
|
91 |
+
The mapping from layer names or regexp expression to alphas which are different from the default alpha
|
92 |
+
specified by `lora_alpha`.
|
93 |
+
megatron_config (`Optional[dict]`):
|
94 |
+
The TransformerConfig arguments for Megatron. It is used to create LoRA's parallel linear layer. You can
|
95 |
+
get it like this, `core_transformer_config_from_args(get_args())`, these two functions being from Megatron.
|
96 |
+
The arguments will be used to initialize the TransformerConfig of Megatron. You need to specify this
|
97 |
+
parameter when you want to apply LoRA to the ColumnParallelLinear and RowParallelLinear layers of megatron.
|
98 |
+
megatron_core (`Optional[str]`):
|
99 |
+
The core module from Megatron to use, defaults to `"megatron.core"`.
|
100 |
+
loftq_config (`Optional[LoftQConfig]`):
|
101 |
+
The configuration of LoftQ. If this is not None, then LoftQ will be used to quantize the backbone weights
|
102 |
+
and initialize Lora layers. Also pass `init_lora_weights='loftq'`. Note that you should not pass a
|
103 |
+
quantized model in this case, as LoftQ will quantize the model itself.
|
104 |
+
use_dora (`bool`):
|
105 |
+
Enable 'Weight-Decomposed Low-Rank Adaptation' (DoRA). This technique decomposes the updates of the weights
|
106 |
+
into two parts, magnitude and direction. Direction is handled by normal LoRA, whereas the magnitude is
|
107 |
+
handled by a separate learnable parameter. This can improve the performance of LoRA especially at low
|
108 |
+
ranks. Right now, DoRA only supports linear and Conv2D layers. DoRA introduces a bigger overhead than pure
|
109 |
+
LoRA, so it is recommended to merge weights for inference. For more information, see
|
110 |
+
https://arxiv.org/abs/2402.09353.
|
111 |
+
layer_replication(`List[Tuple[int, int]]`):
|
112 |
+
Build a new stack of layers by stacking the original model layers according to the ranges specified. This
|
113 |
+
allows expanding (or shrinking) the model without duplicating the base model weights. The new layers will
|
114 |
+
all have separate LoRA adapters attached to them.
|
115 |
+
"""
|
116 |
+
|
117 |
+
r: int = field(default=8, metadata={"help": "Lora attention dimension"})
|
118 |
+
target_modules: Optional[Union[list[str], str]] = field(
|
119 |
+
default=None,
|
120 |
+
metadata={
|
121 |
+
"help": (
|
122 |
+
"List of module names or regex expression of the module names to replace with LoRA."
|
123 |
+
"For example, ['q', 'v'] or '.*decoder.*(SelfAttention|EncDecAttention).*(q|v)$'."
|
124 |
+
"This can also be a wildcard 'all-linear' which matches all linear/Conv1D layers except the output layer."
|
125 |
+
"If not specified, modules will be chosen according to the model architecture, If the architecture is "
|
126 |
+
"not known, an error will be raised -- in this case, you should specify the target modules manually."
|
127 |
+
),
|
128 |
+
},
|
129 |
+
)
|
130 |
+
lora_alpha: int = field(default=8, metadata={"help": "Lora alpha"})
|
131 |
+
lora_dropout: float = field(default=0.0, metadata={"help": "Lora dropout"})
|
132 |
+
fan_in_fan_out: bool = field(
|
133 |
+
default=False,
|
134 |
+
metadata={"help": "Set this to True if the layer to replace stores weight like (fan_in, fan_out)"},
|
135 |
+
)
|
136 |
+
bias: Literal["none", "all", "lora_only"] = field(
|
137 |
+
default="none", metadata={"help": "Bias type for Lora. Can be 'none', 'all' or 'lora_only'"}
|
138 |
+
)
|
139 |
+
use_rslora: bool = field(
|
140 |
+
default=False,
|
141 |
+
metadata={
|
142 |
+
"help": (
|
143 |
+
"When set to True, uses Rank-Stabilized LoRA doi.org/10.48550/arXiv.2312.03732"
|
144 |
+
" which sets the adapter scaling factor to `lora_alpha/math.sqrt(r)`, since it"
|
145 |
+
" was proven to work better. Otherwise, it will use the original default"
|
146 |
+
" value of `lora_alpha/r`."
|
147 |
+
)
|
148 |
+
},
|
149 |
+
)
|
150 |
+
modules_to_save: Optional[list[str]] = field(
|
151 |
+
default=None,
|
152 |
+
metadata={
|
153 |
+
"help": "List of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint. "
|
154 |
+
"For example, in Sequence Classification or Token Classification tasks, "
|
155 |
+
"the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved."
|
156 |
+
},
|
157 |
+
)
|
158 |
+
init_lora_weights: bool | Literal["gaussian", "loftq"] = field(
|
159 |
+
default=True,
|
160 |
+
metadata={
|
161 |
+
"help": (
|
162 |
+
"How to initialize the weights of the LoRA layers. Passing True (default) results in the default "
|
163 |
+
"initialization from the reference implementation from Microsoft. Passing 'gaussian' results "
|
164 |
+
"in Gaussian initialization scaled by the LoRA rank for linear and layers. Setting the initialization "
|
165 |
+
"to False leads to completely random initialization and is discouraged."
|
166 |
+
"Pass `'loftq'` to use LoftQ initialization"
|
167 |
+
),
|
168 |
+
},
|
169 |
+
)
|
170 |
+
layers_to_transform: Optional[Union[list[int], int]] = field(
|
171 |
+
default=None,
|
172 |
+
metadata={
|
173 |
+
"help": "The layer indexes to transform, is this argument is specified, PEFT will transform only the layers indexes that are specified inside this list. If a single integer is passed, PEFT will transform only the layer at this index. "
|
174 |
+
"This only works when target_modules is a list of str."
|
175 |
+
},
|
176 |
+
)
|
177 |
+
layers_pattern: Optional[Union[list[str], str]] = field(
|
178 |
+
default=None,
|
179 |
+
metadata={
|
180 |
+
"help": "The layer pattern name, used only if `layers_to_transform` is different to None and if the layer pattern is not in the common layers pattern."
|
181 |
+
"This only works when target_modules is a list of str."
|
182 |
+
},
|
183 |
+
)
|
184 |
+
rank_pattern: Optional[dict] = field(
|
185 |
+
default_factory=dict,
|
186 |
+
metadata={
|
187 |
+
"help": (
|
188 |
+
"The mapping from layer names or regexp expression to ranks which are different from the default rank specified by `r`. "
|
189 |
+
"For example, `{model.decoder.layers.0.encoder_attn.k_proj: 8`}"
|
190 |
+
)
|
191 |
+
},
|
192 |
+
)
|
193 |
+
alpha_pattern: Optional[dict] = field(
|
194 |
+
default_factory=dict,
|
195 |
+
metadata={
|
196 |
+
"help": (
|
197 |
+
"The mapping from layer names or regexp expression to alphas which are different from the default alpha specified by `lora_alpha`. "
|
198 |
+
"For example, `{model.decoder.layers.0.encoder_attn.k_proj: 32`}"
|
199 |
+
)
|
200 |
+
},
|
201 |
+
)
|
202 |
+
megatron_config: Optional[dict] = field(
|
203 |
+
default=None,
|
204 |
+
metadata={
|
205 |
+
"help": (
|
206 |
+
"The TransformerConfig from Megatron. It is used to create LoRA's parallel linear layer."
|
207 |
+
"You can get it like this, `core_transformer_config_from_args(get_args())`, "
|
208 |
+
"these two functions being from Megatron."
|
209 |
+
"You need to specify this parameter when you want to apply LoRA to the ColumnParallelLinear and "
|
210 |
+
"RowParallelLinear layers of megatron."
|
211 |
+
"It should be noted that we may not be able to use the `save_pretrained` and `from_pretrained` "
|
212 |
+
"functions, because TransformerConfig may not necessarily be serialized."
|
213 |
+
"But when using megatron, we can use `get_peft_model_state_dict` function and "
|
214 |
+
"megatron's framework, they can also save and load models and configurations."
|
215 |
+
)
|
216 |
+
},
|
217 |
+
)
|
218 |
+
megatron_core: Optional[str] = field(
|
219 |
+
default="megatron.core",
|
220 |
+
metadata={
|
221 |
+
"help": (
|
222 |
+
"The core module from Megatron, it is used to create LoRA's parallel linear layer. "
|
223 |
+
"It only needs to be passed in when you need to use your own modified megatron core module. "
|
224 |
+
"Otherwise, it will use the default value `megatron.core`. "
|
225 |
+
)
|
226 |
+
},
|
227 |
+
)
|
228 |
+
# dict type is used when loading config.json
|
229 |
+
loftq_config: Union[LoftQConfig, dict] = field(
|
230 |
+
default_factory=dict,
|
231 |
+
metadata={
|
232 |
+
"help": (
|
233 |
+
"The configuration of LoftQ. If this is passed, then LoftQ will be used to quantize the backbone "
|
234 |
+
"weights and initialize Lora layers. Also set `init_lora_weights='loftq'` in this case."
|
235 |
+
)
|
236 |
+
},
|
237 |
+
)
|
238 |
+
use_dora: bool = field(
|
239 |
+
default=False,
|
240 |
+
metadata={
|
241 |
+
"help": (
|
242 |
+
"Enable 'Weight-Decomposed Low-Rank Adaptation' (DoRA). This technique decomposes the updates of the "
|
243 |
+
"weights into two parts, magnitude and direction. Direction is handled by normal LoRA, whereas the "
|
244 |
+
"magnitude is handled by a separate learnable parameter. This can improve the performance of LoRA, "
|
245 |
+
"especially at low ranks. Right now, DoRA only supports linear and Conv2D layers. DoRA introduces a bigger"
|
246 |
+
"overhead than pure LoRA, so it is recommended to merge weights for inference. For more information, "
|
247 |
+
"see https://arxiv.org/abs/2402.09353."
|
248 |
+
)
|
249 |
+
},
|
250 |
+
)
|
251 |
+
# Enables replicating layers in a model to expand it to a larger model.
|
252 |
+
layer_replication: Optional[list[tuple[int, int]]] = field(
|
253 |
+
default=None,
|
254 |
+
metadata={
|
255 |
+
"help": (
|
256 |
+
"This enables using LoRA to effectively expand a transformer model to a larger size by repeating some layers. "
|
257 |
+
"The transformation handles models (currently Llama, Bert or Falcon compatible architectures) with "
|
258 |
+
"a module list in the model which it modifies to expand the number of modules. "
|
259 |
+
"Base weights are shared so the memory usage is close to the original model. The intended use is these base weights "
|
260 |
+
"remain fixed during finetuning but each layer has a separate LoRA adapter so the layers can be specialed via "
|
261 |
+
"the adapter layers fit during fine tuning."
|
262 |
+
"The format is a list of [start, end) pairs which specify the layer ranges to stack. For example:\n"
|
263 |
+
" Original model has 5 layers labelled by their position in the model: `[0, 1, 2, 3, 4]`\n"
|
264 |
+
" layer_replication: `[[0, 4], [2, 5]]`\n"
|
265 |
+
" Final model will have this arrangement of original layers: `[0, 1, 2, 3, 2, 3, 4]`\n"
|
266 |
+
"This format is based on what is used for pass-through merges in mergekit. It makes it simple to select sequential "
|
267 |
+
"ranges of a model and stack them while reusing layers at either end of each sequence."
|
268 |
+
)
|
269 |
+
},
|
270 |
+
)
|
271 |
+
|
272 |
+
def __post_init__(self):
|
273 |
+
self.peft_type = PeftType.LORA
|
274 |
+
self.target_modules = (
|
275 |
+
set(self.target_modules) if isinstance(self.target_modules, list) else self.target_modules
|
276 |
+
)
|
277 |
+
# if target_modules is a regex expression, then layers_to_transform should be None
|
278 |
+
if isinstance(self.target_modules, str) and self.layers_to_transform is not None:
|
279 |
+
raise ValueError("`layers_to_transform` cannot be used when `target_modules` is a str.")
|
280 |
+
|
281 |
+
# if target_modules is a regex expression, then layers_pattern should be None
|
282 |
+
if isinstance(self.target_modules, str) and self.layers_pattern is not None:
|
283 |
+
raise ValueError("`layers_pattern` cannot be used when `target_modules` is a str.")
|
284 |
+
|
285 |
+
if self.use_dora and self.megatron_config:
|
286 |
+
raise ValueError("DoRA does not support megatron_core, please set `use_dora=False`.")
|
287 |
+
|
288 |
+
# handle init_lora_weights and loftq_config
|
289 |
+
if self.init_lora_weights == "loftq":
|
290 |
+
import importlib
|
291 |
+
|
292 |
+
if not importlib.util.find_spec("scipy"):
|
293 |
+
raise ImportError("The required package 'scipy' is not installed. Please install it to continue.")
|
294 |
+
if self.loftq_config is None:
|
295 |
+
raise ValueError("`loftq_config` must be specified when `init_lora_weights` is 'loftq'.")
|
296 |
+
|
297 |
+
# convert loftq_config to dict
|
298 |
+
if self.loftq_config and not isinstance(self.loftq_config, dict):
|
299 |
+
self.loftq_config = vars(self.loftq_config)
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/layer.py
ADDED
@@ -0,0 +1,1066 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from __future__ import annotations
|
15 |
+
|
16 |
+
import math
|
17 |
+
import warnings
|
18 |
+
from typing import Any, Optional, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
import torch.nn.functional as F
|
23 |
+
from transformers.pytorch_utils import Conv1D
|
24 |
+
|
25 |
+
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge
|
26 |
+
from peft.utils.integrations import dequantize_bnb_weight, gather_params_ctx
|
27 |
+
from peft.utils.other import transpose
|
28 |
+
|
29 |
+
from .config import LoraConfig
|
30 |
+
|
31 |
+
|
32 |
+
class LoraLayer(BaseTunerLayer):
|
33 |
+
# All names of layers that may contain (trainable) adapter weights
|
34 |
+
adapter_layer_names = ("lora_A", "lora_B", "lora_embedding_A", "lora_embedding_B")
|
35 |
+
# All names of other parameters that may contain adapter-related parameters
|
36 |
+
other_param_names = ("r", "lora_alpha", "scaling", "lora_dropout")
|
37 |
+
|
38 |
+
def __init__(self, base_layer: nn.Module, **kwargs) -> None:
|
39 |
+
self.base_layer = base_layer
|
40 |
+
self.r = {}
|
41 |
+
self.lora_alpha = {}
|
42 |
+
self.scaling = {}
|
43 |
+
self.lora_dropout = nn.ModuleDict({})
|
44 |
+
self.lora_A = nn.ModuleDict({})
|
45 |
+
self.lora_B = nn.ModuleDict({})
|
46 |
+
# For Embedding layer
|
47 |
+
self.lora_embedding_A = nn.ParameterDict({})
|
48 |
+
self.lora_embedding_B = nn.ParameterDict({})
|
49 |
+
# Mark the weight as unmerged
|
50 |
+
self._disable_adapters = False
|
51 |
+
self.merged_adapters = []
|
52 |
+
self.use_dora: dict[str, bool] = {}
|
53 |
+
self.lora_magnitude_vector: Optional[torch.nn.ParameterDict] = None # for DoRA
|
54 |
+
self._caches: dict[str, Any] = {}
|
55 |
+
self.kwargs = kwargs
|
56 |
+
|
57 |
+
base_layer = self.get_base_layer()
|
58 |
+
if isinstance(base_layer, nn.Linear):
|
59 |
+
in_features, out_features = base_layer.in_features, base_layer.out_features
|
60 |
+
elif isinstance(base_layer, nn.Conv2d):
|
61 |
+
in_features, out_features = base_layer.in_channels, base_layer.out_channels
|
62 |
+
elif isinstance(base_layer, nn.Embedding):
|
63 |
+
in_features, out_features = base_layer.num_embeddings, base_layer.embedding_dim
|
64 |
+
elif isinstance(base_layer, Conv1D):
|
65 |
+
in_features, out_features = (
|
66 |
+
base_layer.weight.ds_shape if hasattr(base_layer.weight, "ds_shape") else base_layer.weight.shape
|
67 |
+
)
|
68 |
+
elif hasattr(base_layer, "infeatures") and hasattr(base_layer, "outfeatures"):
|
69 |
+
# QuantLinear
|
70 |
+
in_features, out_features = base_layer.infeatures, base_layer.outfeatures
|
71 |
+
elif hasattr(base_layer, "input_size") and hasattr(base_layer, "output_size"):
|
72 |
+
# Megatron ColumnParallelLinear,RowParallelLinear
|
73 |
+
in_features, out_features = base_layer.input_size, base_layer.output_size
|
74 |
+
elif hasattr(base_layer, "codebooks") and base_layer.__class__.__name__ == "QuantizedLinear":
|
75 |
+
# AQLM QuantLinear
|
76 |
+
in_features, out_features = base_layer.in_features, base_layer.out_features
|
77 |
+
elif hasattr(base_layer, "w_bit") and base_layer.__class__.__name__ == "WQLinear_GEMM":
|
78 |
+
# Awq layers
|
79 |
+
in_features, out_features = base_layer.in_features, base_layer.out_features
|
80 |
+
else:
|
81 |
+
raise ValueError(f"Unsupported layer type {type(base_layer)}")
|
82 |
+
|
83 |
+
self.in_features = in_features
|
84 |
+
self.out_features = out_features
|
85 |
+
|
86 |
+
def update_layer(
|
87 |
+
self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora, use_dora: bool = False
|
88 |
+
):
|
89 |
+
# This code works for linear layers, override for other layer types
|
90 |
+
if r <= 0:
|
91 |
+
raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")
|
92 |
+
|
93 |
+
self.r[adapter_name] = r
|
94 |
+
self.lora_alpha[adapter_name] = lora_alpha
|
95 |
+
if lora_dropout > 0.0:
|
96 |
+
lora_dropout_layer = nn.Dropout(p=lora_dropout)
|
97 |
+
else:
|
98 |
+
lora_dropout_layer = nn.Identity()
|
99 |
+
|
100 |
+
self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer}))
|
101 |
+
# Actual trainable parameters
|
102 |
+
self.lora_A[adapter_name] = nn.Linear(self.in_features, r, bias=False)
|
103 |
+
self.lora_B[adapter_name] = nn.Linear(r, self.out_features, bias=False)
|
104 |
+
if use_rslora:
|
105 |
+
self.scaling[adapter_name] = lora_alpha / math.sqrt(r)
|
106 |
+
else:
|
107 |
+
self.scaling[adapter_name] = lora_alpha / r
|
108 |
+
|
109 |
+
if init_lora_weights == "loftq":
|
110 |
+
self.loftq_init(adapter_name)
|
111 |
+
elif init_lora_weights:
|
112 |
+
self.reset_lora_parameters(adapter_name, init_lora_weights)
|
113 |
+
|
114 |
+
# check weight and qweight (for GPTQ)
|
115 |
+
for weight_name in ("weight", "qweight"):
|
116 |
+
weight = getattr(self.get_base_layer(), weight_name, None)
|
117 |
+
if weight is not None:
|
118 |
+
# the layer is already completely initialized, this is an update
|
119 |
+
if weight.dtype.is_floating_point or weight.dtype.is_complex:
|
120 |
+
self.to(weight.device, dtype=weight.dtype)
|
121 |
+
else:
|
122 |
+
self.to(weight.device)
|
123 |
+
break
|
124 |
+
|
125 |
+
if use_dora:
|
126 |
+
self.dora_init(adapter_name)
|
127 |
+
self.use_dora[adapter_name] = True
|
128 |
+
else:
|
129 |
+
self.use_dora[adapter_name] = False
|
130 |
+
|
131 |
+
self.set_adapter(self.active_adapters)
|
132 |
+
|
133 |
+
def reset_lora_parameters(self, adapter_name, init_lora_weights):
|
134 |
+
if init_lora_weights is False:
|
135 |
+
return
|
136 |
+
|
137 |
+
if adapter_name in self.lora_A.keys():
|
138 |
+
if init_lora_weights is True:
|
139 |
+
# initialize A the same way as the default for nn.Linear and B to zero
|
140 |
+
# https://github.com/microsoft/LoRA/blob/a0a92e0f26c067cf94747bdbf1ce73793fa44d19/loralib/layers.py#L124
|
141 |
+
nn.init.kaiming_uniform_(self.lora_A[adapter_name].weight, a=math.sqrt(5))
|
142 |
+
elif init_lora_weights.lower() == "gaussian":
|
143 |
+
nn.init.normal_(self.lora_A[adapter_name].weight, std=1 / self.r[adapter_name])
|
144 |
+
else:
|
145 |
+
raise ValueError(f"Unknown initialization {init_lora_weights=}")
|
146 |
+
nn.init.zeros_(self.lora_B[adapter_name].weight)
|
147 |
+
if adapter_name in self.lora_embedding_A.keys():
|
148 |
+
# initialize a the same way as the default for nn.linear and b to zero
|
149 |
+
nn.init.zeros_(self.lora_embedding_A[adapter_name])
|
150 |
+
nn.init.normal_(self.lora_embedding_B[adapter_name])
|
151 |
+
|
152 |
+
def loftq_init(self, adapter_name):
|
153 |
+
from peft.utils.loftq_utils import loftq_init
|
154 |
+
|
155 |
+
weight = self.get_base_layer().weight
|
156 |
+
kwargs = {
|
157 |
+
"num_bits": self.kwargs.get("loftq_bits", 4),
|
158 |
+
"reduced_rank": self.r[adapter_name],
|
159 |
+
"num_iter": self.kwargs.get("loftq_iter", 1),
|
160 |
+
}
|
161 |
+
|
162 |
+
qweight, lora_A, lora_B = loftq_init(weight, **kwargs)
|
163 |
+
if adapter_name in self.lora_A.keys():
|
164 |
+
# initialize A the same way as the default for nn.Linear and B to zero
|
165 |
+
self.lora_A[adapter_name].weight.data = lora_A
|
166 |
+
self.lora_B[adapter_name].weight.data = lora_B
|
167 |
+
if adapter_name in self.lora_embedding_A.keys():
|
168 |
+
# initialize a the same way as the default for nn.linear and b to zero
|
169 |
+
self.lora_embedding_A[adapter_name].weight.data = lora_A
|
170 |
+
self.lora_embedding_B[adapter_name].weight.data = lora_B
|
171 |
+
self.get_base_layer().weight.data = qweight
|
172 |
+
|
173 |
+
def _get_weight_norm(self, weight, lora_weight, scaling) -> torch.Tensor:
|
174 |
+
# calculate L2 norm of weight matrix, column-wise
|
175 |
+
weight = weight + scaling * lora_weight
|
176 |
+
weight_norm = torch.linalg.norm(weight, dim=1).to(weight.dtype)
|
177 |
+
return weight_norm
|
178 |
+
|
179 |
+
def dora_init(self, adapter_name: str) -> None:
|
180 |
+
lora_A = self.lora_A[adapter_name]
|
181 |
+
lora_B = self.lora_B[adapter_name]
|
182 |
+
scaling = self.scaling[adapter_name]
|
183 |
+
with gather_params_ctx(self.get_base_layer()):
|
184 |
+
weight = self.get_base_layer().weight
|
185 |
+
quant_state = getattr(self.get_base_layer(), "state", None)
|
186 |
+
weight = dequantize_bnb_weight(weight, state=quant_state) # no-op if not bnb
|
187 |
+
if weight.data.ndim == 4: # For handling LoRAs applied to Conv2Ds.
|
188 |
+
lora_weight = torch.mm(lora_B.weight.flatten(start_dim=1), lora_A.weight.flatten(start_dim=1))
|
189 |
+
lora_weight = lora_weight.reshape(weight.shape)
|
190 |
+
else:
|
191 |
+
lora_weight = lora_B.weight @ lora_A.weight
|
192 |
+
weight_norm = self._get_weight_norm(weight, lora_weight, scaling)
|
193 |
+
self.lora_magnitude_vector = nn.ParameterDict()
|
194 |
+
self.lora_magnitude_vector[adapter_name] = nn.Parameter(weight_norm, requires_grad=True)
|
195 |
+
# add lora_magnitude_vector to the list of learnable parameters
|
196 |
+
self.adapter_layer_names = self.adapter_layer_names[:] + ("lora_magnitude_vector",)
|
197 |
+
|
198 |
+
def _cache_store(self, key: str, value: Any) -> None:
|
199 |
+
self._caches[key] = value
|
200 |
+
|
201 |
+
def _cache_pop(self, key: str) -> Any:
|
202 |
+
value = self._caches.pop(key)
|
203 |
+
return value
|
204 |
+
|
205 |
+
def _apply_dora(self, x, lora_A, lora_B, scaling, active_adapter):
|
206 |
+
"""
|
207 |
+
For DoRA, calculate the extra output from LoRA with DoRA applied. This should be added on top of the base layer
|
208 |
+
output.
|
209 |
+
"""
|
210 |
+
lora_weight = lora_B.weight @ lora_A.weight
|
211 |
+
magnitude = self.lora_magnitude_vector[active_adapter]
|
212 |
+
weight = self.get_base_layer().weight
|
213 |
+
quant_state = getattr(self.get_base_layer(), "state", None)
|
214 |
+
weight = dequantize_bnb_weight(weight, state=quant_state) # no-op if not bnb
|
215 |
+
weight = weight.to(x.dtype)
|
216 |
+
weight_norm = self._get_weight_norm(weight, lora_weight, scaling)
|
217 |
+
# see section 4.3 of DoRA (https://arxiv.org/abs/2402.09353)
|
218 |
+
# "[...] we suggest treating ||V +∆V ||_c in
|
219 |
+
# Eq. (5) as a constant, thereby detaching it from the gradient
|
220 |
+
# graph. This means that while ||V + ∆V ||_c dynamically
|
221 |
+
# reflects the updates of ∆V , it won’t receive any gradient
|
222 |
+
# during backpropagation"
|
223 |
+
weight_norm = weight_norm.detach()
|
224 |
+
mag_norm_scale = (magnitude / weight_norm).view(1, -1)
|
225 |
+
result_dora = (mag_norm_scale - 1) * (
|
226 |
+
F.linear(x, transpose(weight, self.fan_in_fan_out))
|
227 |
+
) + mag_norm_scale * lora_B(lora_A(x)) * scaling
|
228 |
+
|
229 |
+
# Note: Computation could potentially be accelerated by using the code below instead of calculating X@W again.
|
230 |
+
# This is only correct if dropout=0, otherwise results will differ:
|
231 |
+
# https://github.com/huggingface/peft/pull/1474#issuecomment-1964682771
|
232 |
+
# bias = self.get_base_layer().bias
|
233 |
+
# if bias is not None:
|
234 |
+
# result = result - bias
|
235 |
+
# result = mag_norm_scale * result + mag_norm_scale * lora_B(lora_A(x)) * scaling
|
236 |
+
# if bias is not None:
|
237 |
+
# result = result + bias
|
238 |
+
|
239 |
+
return result_dora
|
240 |
+
|
241 |
+
def set_scale(self, adapter, scale):
|
242 |
+
if adapter not in self.scaling:
|
243 |
+
# Ignore the case where the adapter is not in the layer
|
244 |
+
return
|
245 |
+
self.scaling[adapter] = scale * self.lora_alpha[adapter] / self.r[adapter]
|
246 |
+
|
247 |
+
def scale_layer(self, scale: float) -> None:
|
248 |
+
if scale == 1:
|
249 |
+
return
|
250 |
+
|
251 |
+
for active_adapter in self.active_adapters:
|
252 |
+
if active_adapter not in self.lora_A.keys():
|
253 |
+
continue
|
254 |
+
|
255 |
+
self.scaling[active_adapter] *= scale
|
256 |
+
|
257 |
+
def unscale_layer(self, scale=None) -> None:
|
258 |
+
for active_adapter in self.active_adapters:
|
259 |
+
if active_adapter not in self.lora_A.keys():
|
260 |
+
continue
|
261 |
+
|
262 |
+
if scale is None:
|
263 |
+
self.scaling[active_adapter] = self.lora_alpha[active_adapter] / self.r[active_adapter]
|
264 |
+
else:
|
265 |
+
self.scaling[active_adapter] /= scale
|
266 |
+
|
267 |
+
def _check_forward_args(self, x, *args, **kwargs):
|
268 |
+
"""Check if the arguments are compatible with the configs and state of the model"""
|
269 |
+
adapter_names = kwargs.get("adapter_names", None)
|
270 |
+
if adapter_names is None:
|
271 |
+
return
|
272 |
+
|
273 |
+
if len(x) != len(adapter_names):
|
274 |
+
msg = (
|
275 |
+
"Length of `adapter_names` should be the same as the number of inputs, but got "
|
276 |
+
f"{len(adapter_names)} and {len(x)} respectively."
|
277 |
+
)
|
278 |
+
raise ValueError(msg)
|
279 |
+
|
280 |
+
if self.merged:
|
281 |
+
# It is unclear what would be the right thing to do if users pass adapter_names and there are merged
|
282 |
+
# adapters. Therefore, it is better to raise an error in this case.
|
283 |
+
msg = "Cannot pass `adapter_names` when there are merged adapters, please call `unmerge_adapter` first."
|
284 |
+
raise ValueError(msg)
|
285 |
+
|
286 |
+
unique_adapters = set(self.active_adapters)
|
287 |
+
for adapter_name in unique_adapters:
|
288 |
+
if self.use_dora.get(adapter_name, False):
|
289 |
+
msg = "Cannot pass `adapter_names` when DoRA is enabled."
|
290 |
+
raise ValueError(msg)
|
291 |
+
|
292 |
+
def _mixed_batch_forward(
|
293 |
+
self, x: torch.Tensor, *args: Any, adapter_names: list[str], **kwargs: Any
|
294 |
+
) -> torch.Tensor:
|
295 |
+
# This is a special method that handles the case when users pass the argument `adapter_names`. This is an
|
296 |
+
# extra argument that allows mixing different adapters in the same batch at inference time.
|
297 |
+
result = self.base_layer(x, *args, **kwargs)
|
298 |
+
torch_result_dtype = result.dtype
|
299 |
+
|
300 |
+
unique_adapters = set(adapter_names)
|
301 |
+
sub_batch_indices_list = []
|
302 |
+
for adapter in unique_adapters:
|
303 |
+
sub_batch_indices_list.append([index for index, item in enumerate(adapter_names) if item == adapter])
|
304 |
+
|
305 |
+
for i, active_adapter in enumerate(unique_adapters):
|
306 |
+
if active_adapter == "__base__":
|
307 |
+
continue
|
308 |
+
if active_adapter not in self.lora_A.keys():
|
309 |
+
continue
|
310 |
+
|
311 |
+
lora_A = self.lora_A[active_adapter]
|
312 |
+
lora_B = self.lora_B[active_adapter]
|
313 |
+
dropout = self.lora_dropout[active_adapter]
|
314 |
+
scaling = self.scaling[active_adapter]
|
315 |
+
|
316 |
+
# getting the sub-batch, passing it to LoRA layers and updating the corresponding indices of the linear
|
317 |
+
# layer output
|
318 |
+
sub_batch = x[sub_batch_indices_list[i]].to(lora_A.weight.dtype)
|
319 |
+
lora_output = lora_B(lora_A(dropout(sub_batch))) * scaling
|
320 |
+
result[sub_batch_indices_list[i]] += lora_output.to(torch_result_dtype)
|
321 |
+
|
322 |
+
return result
|
323 |
+
|
324 |
+
|
325 |
+
# Below code is based on https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
|
326 |
+
# and modified to work with PyTorch FSDP
|
327 |
+
|
328 |
+
|
329 |
+
# ------------------------------------------------------------------------------------------
|
330 |
+
# Copyright (c) Microsoft Corporation. All rights reserved.
|
331 |
+
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
|
332 |
+
# ------------------------------------------------------------------------------------------
|
333 |
+
|
334 |
+
|
335 |
+
class Linear(nn.Module, LoraLayer):
|
336 |
+
# Lora implemented in a dense layer
|
337 |
+
def __init__(
|
338 |
+
self,
|
339 |
+
base_layer,
|
340 |
+
adapter_name: str,
|
341 |
+
r: int = 0,
|
342 |
+
lora_alpha: int = 1,
|
343 |
+
lora_dropout: float = 0.0,
|
344 |
+
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
|
345 |
+
is_target_conv_1d_layer: bool = False,
|
346 |
+
init_lora_weights: Union[bool, str] = True,
|
347 |
+
use_rslora: bool = False,
|
348 |
+
use_dora: bool = False,
|
349 |
+
**kwargs,
|
350 |
+
) -> None:
|
351 |
+
super().__init__()
|
352 |
+
LoraLayer.__init__(self, base_layer, **kwargs)
|
353 |
+
self.fan_in_fan_out = fan_in_fan_out
|
354 |
+
|
355 |
+
self._active_adapter = adapter_name
|
356 |
+
self.update_layer(
|
357 |
+
adapter_name,
|
358 |
+
r,
|
359 |
+
lora_alpha=lora_alpha,
|
360 |
+
lora_dropout=lora_dropout,
|
361 |
+
init_lora_weights=init_lora_weights,
|
362 |
+
use_rslora=use_rslora,
|
363 |
+
use_dora=use_dora,
|
364 |
+
)
|
365 |
+
self.is_target_conv_1d_layer = is_target_conv_1d_layer
|
366 |
+
|
367 |
+
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
|
368 |
+
"""
|
369 |
+
Merge the active adapter weights into the base weights
|
370 |
+
|
371 |
+
Args:
|
372 |
+
safe_merge (`bool`, *optional*):
|
373 |
+
If True, the merge operation will be performed in a copy of the original weights and check for NaNs
|
374 |
+
before merging the weights. This is useful if you want to check if the merge operation will produce
|
375 |
+
NaNs. Defaults to `False`.
|
376 |
+
adapter_names (`list[str]`, *optional*):
|
377 |
+
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
|
378 |
+
to `None`.
|
379 |
+
"""
|
380 |
+
adapter_names = check_adapters_to_merge(self, adapter_names)
|
381 |
+
if not adapter_names:
|
382 |
+
# no adapter to merge
|
383 |
+
return
|
384 |
+
|
385 |
+
for active_adapter in adapter_names:
|
386 |
+
if active_adapter in self.lora_A.keys():
|
387 |
+
base_layer = self.get_base_layer()
|
388 |
+
if safe_merge:
|
389 |
+
# Note that safe_merge will be slower than the normal merge
|
390 |
+
# because of the copy operation.
|
391 |
+
orig_weights = base_layer.weight.data.clone()
|
392 |
+
delta_weight = self.get_delta_weight(active_adapter)
|
393 |
+
if not self.use_dora[active_adapter]:
|
394 |
+
orig_weights = orig_weights + delta_weight
|
395 |
+
else:
|
396 |
+
# handle dora
|
397 |
+
# since delta_weight already includes scaling, set it to 1 here
|
398 |
+
weight_norm = self._get_weight_norm(orig_weights, delta_weight, scaling=1).detach()
|
399 |
+
# We need to cache weight_norm because it has to be based on the original weights. We
|
400 |
+
# cannot calculate it on the fly based on the merged weights when unmerging because its a
|
401 |
+
# different value
|
402 |
+
self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
|
403 |
+
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
|
404 |
+
orig_weights = dora_factor.view(-1, 1) * (orig_weights + delta_weight)
|
405 |
+
|
406 |
+
if not torch.isfinite(orig_weights).all():
|
407 |
+
raise ValueError(
|
408 |
+
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
|
409 |
+
)
|
410 |
+
|
411 |
+
base_layer.weight.data = orig_weights
|
412 |
+
else:
|
413 |
+
delta_weight = self.get_delta_weight(active_adapter)
|
414 |
+
if not self.use_dora[active_adapter]:
|
415 |
+
base_layer.weight.data = base_layer.weight.data + delta_weight
|
416 |
+
else:
|
417 |
+
# handle dora
|
418 |
+
# since delta_weight already includes scaling, set it to 1 here
|
419 |
+
weight_norm = self._get_weight_norm(base_layer.weight, delta_weight, scaling=1).detach()
|
420 |
+
# We need to cache weight_norm because it has to be based on the original weights. We
|
421 |
+
# cannot calculate it on the fly based on the merged weights when unmerging because its a
|
422 |
+
# different value
|
423 |
+
self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
|
424 |
+
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
|
425 |
+
new_weight = dora_factor.view(-1, 1) * (base_layer.weight.data + delta_weight)
|
426 |
+
base_layer.weight.data = new_weight
|
427 |
+
|
428 |
+
self.merged_adapters.append(active_adapter)
|
429 |
+
|
430 |
+
def unmerge(self) -> None:
|
431 |
+
"""
|
432 |
+
This method unmerges all merged adapter layers from the base weights.
|
433 |
+
"""
|
434 |
+
if not self.merged:
|
435 |
+
warnings.warn("Already unmerged. Nothing to do.")
|
436 |
+
return
|
437 |
+
while len(self.merged_adapters) > 0:
|
438 |
+
active_adapter = self.merged_adapters.pop()
|
439 |
+
if active_adapter in self.lora_A.keys():
|
440 |
+
weight = self.get_base_layer().weight
|
441 |
+
delta_weight = self.get_delta_weight(active_adapter)
|
442 |
+
if not self.use_dora[active_adapter]:
|
443 |
+
weight.data -= delta_weight
|
444 |
+
else:
|
445 |
+
weight_norm = self._cache_pop(f"{active_adapter}-weight_norm")
|
446 |
+
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
|
447 |
+
weight_orig = weight.data / dora_factor.view(-1, 1) - delta_weight
|
448 |
+
weight.data = weight_orig
|
449 |
+
|
450 |
+
def get_delta_weight(self, adapter) -> torch.Tensor:
|
451 |
+
"""
|
452 |
+
Compute the delta weight for the given adapter.
|
453 |
+
|
454 |
+
Args:
|
455 |
+
adapter (str):
|
456 |
+
The name of the adapter for which the delta weight should be computed.
|
457 |
+
"""
|
458 |
+
device = self.lora_B[adapter].weight.device
|
459 |
+
dtype = self.lora_B[adapter].weight.dtype
|
460 |
+
|
461 |
+
# In case users wants to merge the adapter weights that are in
|
462 |
+
# float16 while being on CPU, we need to cast the weights to float32, perform the merge and then cast back to
|
463 |
+
# float16 because the `@` and matmul operation in general is not supported in torch + cpu + fp16.
|
464 |
+
cast_to_fp32 = device.type == "cpu" and dtype == torch.float16
|
465 |
+
|
466 |
+
weight_A = self.lora_A[adapter].weight
|
467 |
+
weight_B = self.lora_B[adapter].weight
|
468 |
+
|
469 |
+
if cast_to_fp32:
|
470 |
+
weight_A = weight_A.float()
|
471 |
+
weight_B = weight_B.float()
|
472 |
+
|
473 |
+
output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter]
|
474 |
+
|
475 |
+
if cast_to_fp32:
|
476 |
+
output_tensor = output_tensor.to(dtype=dtype)
|
477 |
+
|
478 |
+
# cast back the weights
|
479 |
+
self.lora_A[adapter].weight.data = weight_A.to(dtype)
|
480 |
+
self.lora_B[adapter].weight.data = weight_B.to(dtype)
|
481 |
+
|
482 |
+
return output_tensor
|
483 |
+
|
484 |
+
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
|
485 |
+
self._check_forward_args(x, *args, **kwargs)
|
486 |
+
adapter_names = kwargs.pop("adapter_names", None)
|
487 |
+
|
488 |
+
if self.disable_adapters:
|
489 |
+
if self.merged:
|
490 |
+
self.unmerge()
|
491 |
+
result = self.base_layer(x, *args, **kwargs)
|
492 |
+
elif adapter_names is not None:
|
493 |
+
result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs)
|
494 |
+
elif self.merged:
|
495 |
+
result = self.base_layer(x, *args, **kwargs)
|
496 |
+
else:
|
497 |
+
result = self.base_layer(x, *args, **kwargs)
|
498 |
+
torch_result_dtype = result.dtype
|
499 |
+
for active_adapter in self.active_adapters:
|
500 |
+
if active_adapter not in self.lora_A.keys():
|
501 |
+
continue
|
502 |
+
lora_A = self.lora_A[active_adapter]
|
503 |
+
lora_B = self.lora_B[active_adapter]
|
504 |
+
dropout = self.lora_dropout[active_adapter]
|
505 |
+
scaling = self.scaling[active_adapter]
|
506 |
+
x = x.to(lora_A.weight.dtype)
|
507 |
+
|
508 |
+
if not self.use_dora[active_adapter]:
|
509 |
+
result = result + lora_B(lora_A(dropout(x))) * scaling
|
510 |
+
else:
|
511 |
+
x = dropout(x)
|
512 |
+
result = result + self._apply_dora(x, lora_A, lora_B, scaling, active_adapter)
|
513 |
+
|
514 |
+
result = result.to(torch_result_dtype)
|
515 |
+
|
516 |
+
return result
|
517 |
+
|
518 |
+
def __repr__(self) -> str:
|
519 |
+
rep = super().__repr__()
|
520 |
+
return "lora." + rep
|
521 |
+
|
522 |
+
|
523 |
+
class Embedding(nn.Module, LoraLayer):
|
524 |
+
# LoRA implemented in a Embedding layer
|
525 |
+
def __init__(
|
526 |
+
self,
|
527 |
+
base_layer: nn.Module,
|
528 |
+
adapter_name: str,
|
529 |
+
r: int = 0,
|
530 |
+
lora_alpha: int = 1,
|
531 |
+
lora_dropout: float = 0.0,
|
532 |
+
init_lora_weights: Union[bool, str] = True,
|
533 |
+
use_rslora: bool = False,
|
534 |
+
use_dora: bool = False,
|
535 |
+
**kwargs,
|
536 |
+
) -> None:
|
537 |
+
super().__init__()
|
538 |
+
LoraLayer.__init__(self, base_layer)
|
539 |
+
|
540 |
+
if use_dora:
|
541 |
+
raise ValueError(f"{self.__class__.__name__} does not support DoRA yet, please set it to False")
|
542 |
+
|
543 |
+
self._active_adapter = adapter_name
|
544 |
+
self.update_layer(
|
545 |
+
adapter_name,
|
546 |
+
r,
|
547 |
+
lora_alpha=lora_alpha,
|
548 |
+
lora_dropout=lora_dropout,
|
549 |
+
init_lora_weights=init_lora_weights,
|
550 |
+
use_rslora=use_rslora,
|
551 |
+
use_dora=use_dora,
|
552 |
+
)
|
553 |
+
|
554 |
+
def update_layer(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora, use_dora):
|
555 |
+
if r <= 0:
|
556 |
+
raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")
|
557 |
+
|
558 |
+
self.r[adapter_name] = r
|
559 |
+
self.lora_alpha[adapter_name] = lora_alpha
|
560 |
+
if lora_dropout > 0.0:
|
561 |
+
lora_dropout_layer = nn.Dropout(p=lora_dropout)
|
562 |
+
else:
|
563 |
+
lora_dropout_layer = nn.Identity()
|
564 |
+
|
565 |
+
self.lora_dropout[adapter_name] = lora_dropout_layer
|
566 |
+
# Actual trainable parameters
|
567 |
+
weight_A = torch.randn((r, self.in_features))
|
568 |
+
weight_B = torch.randn((self.out_features, r))
|
569 |
+
self.lora_embedding_A[adapter_name] = nn.Parameter(weight_A)
|
570 |
+
self.lora_embedding_B[adapter_name] = nn.Parameter(weight_B)
|
571 |
+
if use_rslora:
|
572 |
+
self.scaling[adapter_name] = lora_alpha / math.sqrt(r)
|
573 |
+
else:
|
574 |
+
self.scaling[adapter_name] = lora_alpha / r
|
575 |
+
|
576 |
+
if init_lora_weights == "loftq":
|
577 |
+
self.loftq_init(adapter_name)
|
578 |
+
elif init_lora_weights:
|
579 |
+
self.reset_lora_parameters(adapter_name, init_lora_weights)
|
580 |
+
|
581 |
+
base_layer = self.get_base_layer()
|
582 |
+
weight = getattr(base_layer, "weight", None)
|
583 |
+
if weight is not None:
|
584 |
+
# the layer is already completely initialized, this is an update
|
585 |
+
self.to(base_layer.weight.device, dtype=weight.dtype)
|
586 |
+
|
587 |
+
self.set_adapter(self.active_adapters)
|
588 |
+
|
589 |
+
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
|
590 |
+
"""
|
591 |
+
Merge the active adapter weights into the base weights
|
592 |
+
|
593 |
+
Args:
|
594 |
+
safe_merge (`bool`, *optional*):
|
595 |
+
If True, the merge operation will be performed in a copy of the original weights and check for NaNs
|
596 |
+
before merging the weights. This is useful if you want to check if the merge operation will produce
|
597 |
+
NaNs. Defaults to `False`.
|
598 |
+
adapter_names (`list[str]`, *optional*):
|
599 |
+
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
|
600 |
+
to `None`.
|
601 |
+
"""
|
602 |
+
adapter_names = check_adapters_to_merge(self, adapter_names)
|
603 |
+
if not adapter_names:
|
604 |
+
# no adapter to merge
|
605 |
+
return
|
606 |
+
|
607 |
+
for active_adapter in adapter_names:
|
608 |
+
if active_adapter in self.lora_embedding_A.keys():
|
609 |
+
base_layer = self.get_base_layer()
|
610 |
+
if safe_merge:
|
611 |
+
# Note that safe_merge will be slower than the normal merge
|
612 |
+
# because of the copy operation.
|
613 |
+
orig_weights = base_layer.weight.data.clone()
|
614 |
+
orig_weights = orig_weights + self.get_delta_weight(active_adapter)
|
615 |
+
|
616 |
+
if not torch.isfinite(orig_weights).all():
|
617 |
+
raise ValueError(
|
618 |
+
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
|
619 |
+
)
|
620 |
+
|
621 |
+
base_layer.weight.data = orig_weights
|
622 |
+
else:
|
623 |
+
base_layer.weight.data = base_layer.weight.data + self.get_delta_weight(active_adapter)
|
624 |
+
self.merged_adapters.append(active_adapter)
|
625 |
+
|
626 |
+
def unmerge(self) -> None:
|
627 |
+
"""
|
628 |
+
This method unmerges all merged adapter layers from the base weights.
|
629 |
+
"""
|
630 |
+
if not self.merged:
|
631 |
+
warnings.warn("Already unmerged. Nothing to do.")
|
632 |
+
return
|
633 |
+
while len(self.merged_adapters) > 0:
|
634 |
+
active_adapter = self.merged_adapters.pop()
|
635 |
+
if active_adapter in self.lora_embedding_A.keys():
|
636 |
+
self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter)
|
637 |
+
|
638 |
+
def get_delta_weight(self, adapter) -> torch.Tensor:
|
639 |
+
"""
|
640 |
+
Compute the delta weight for the given adapter.
|
641 |
+
|
642 |
+
Args:
|
643 |
+
adapter (str):
|
644 |
+
The name of the adapter for which the delta weight should be computed.
|
645 |
+
"""
|
646 |
+
device = self.lora_embedding_B[adapter].device
|
647 |
+
dtype = self.lora_embedding_A[adapter].dtype
|
648 |
+
|
649 |
+
# In case users wants to merge the adapter weights that are in
|
650 |
+
# float16 while being on CPU, we need to cast the weights to float32, perform the merge and then cast back to
|
651 |
+
# float16 because the `@` and matmul operation in general is not supported in torch + cpu + fp16.
|
652 |
+
cast_to_fp32 = device.type == "cpu" and dtype == torch.float16
|
653 |
+
|
654 |
+
weight_A = self.lora_embedding_A[adapter]
|
655 |
+
weight_B = self.lora_embedding_B[adapter]
|
656 |
+
|
657 |
+
if cast_to_fp32:
|
658 |
+
weight_A = weight_A.float()
|
659 |
+
weight_B = weight_B.float()
|
660 |
+
|
661 |
+
output_tensor = transpose(weight_B @ weight_A, True) * self.scaling[adapter]
|
662 |
+
|
663 |
+
if cast_to_fp32:
|
664 |
+
output_tensor = output_tensor.to(dtype=dtype)
|
665 |
+
|
666 |
+
# cast back the weights
|
667 |
+
self.lora_embedding_A[adapter] = weight_A.to(dtype)
|
668 |
+
self.lora_embedding_B[adapter] = weight_B.to(dtype)
|
669 |
+
|
670 |
+
return output_tensor
|
671 |
+
|
672 |
+
def _mixed_batch_forward(
|
673 |
+
self, x: torch.Tensor, *args: Any, adapter_names: list[str], **kwargs: Any
|
674 |
+
) -> torch.Tensor:
|
675 |
+
# This is a special method that handles the case when users pass the argument `adapter_names`. This is an
|
676 |
+
# extra argument that allows mixing different adapters in the same batch at inference time.
|
677 |
+
result = self.base_layer(x, *args, **kwargs)
|
678 |
+
|
679 |
+
unique_adapters = set(adapter_names)
|
680 |
+
sub_batch_indices_list = []
|
681 |
+
for adapter in unique_adapters:
|
682 |
+
sub_batch_indices_list.append([index for index, item in enumerate(adapter_names) if item == adapter])
|
683 |
+
|
684 |
+
for i, active_adapter in enumerate(unique_adapters):
|
685 |
+
if active_adapter == "__base__":
|
686 |
+
continue
|
687 |
+
if active_adapter not in self.lora_embedding_A.keys():
|
688 |
+
continue
|
689 |
+
|
690 |
+
embedding_A = self.lora_embedding_A[active_adapter].T
|
691 |
+
embedding_B = self.lora_embedding_B[active_adapter].T
|
692 |
+
scaling = self.scaling[active_adapter]
|
693 |
+
|
694 |
+
# getting the sub-batch, passing it to LoRA layers and updating the corresponding indices of the linear
|
695 |
+
# layer output
|
696 |
+
sub_batch = x[sub_batch_indices_list[i]]
|
697 |
+
after_A = self._embed(sub_batch, embedding_A)
|
698 |
+
result[sub_batch_indices_list[i]] += (after_A @ embedding_B) * scaling
|
699 |
+
|
700 |
+
return result
|
701 |
+
|
702 |
+
def _embed(self, input: torch.Tensor, weight: torch.Tensor) -> torch.Tensor:
|
703 |
+
base_layer = self.get_base_layer()
|
704 |
+
return F.embedding(
|
705 |
+
input,
|
706 |
+
weight,
|
707 |
+
padding_idx=base_layer.padding_idx,
|
708 |
+
max_norm=base_layer.max_norm,
|
709 |
+
norm_type=base_layer.norm_type,
|
710 |
+
scale_grad_by_freq=base_layer.scale_grad_by_freq,
|
711 |
+
sparse=base_layer.sparse,
|
712 |
+
)
|
713 |
+
|
714 |
+
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
|
715 |
+
# TODO: no dtype conversion here, unlike in Linear, is that correct?
|
716 |
+
self._check_forward_args(x, *args, **kwargs)
|
717 |
+
adapter_names = kwargs.pop("adapter_names", None)
|
718 |
+
|
719 |
+
if self.disable_adapters:
|
720 |
+
if self.merged:
|
721 |
+
self.unmerge()
|
722 |
+
result = self.base_layer(x, *args, **kwargs)
|
723 |
+
elif adapter_names is not None:
|
724 |
+
result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs)
|
725 |
+
elif self.merged:
|
726 |
+
result = self.base_layer(x, *args, **kwargs)
|
727 |
+
else:
|
728 |
+
result = self.base_layer(x, *args, **kwargs)
|
729 |
+
torch_result_dtype = result.dtype
|
730 |
+
for active_adapter in self.active_adapters:
|
731 |
+
if active_adapter not in self.lora_embedding_A:
|
732 |
+
continue
|
733 |
+
embedding_A = self.lora_embedding_A[active_adapter].T
|
734 |
+
embedding_B = self.lora_embedding_B[active_adapter].T
|
735 |
+
scaling = self.scaling[active_adapter]
|
736 |
+
after_A = self._embed(x, embedding_A)
|
737 |
+
result = result + (after_A @ embedding_B) * scaling
|
738 |
+
result = result.to(torch_result_dtype)
|
739 |
+
|
740 |
+
return result
|
741 |
+
|
742 |
+
def __repr__(self) -> str:
|
743 |
+
rep = super().__repr__()
|
744 |
+
return "lora." + rep
|
745 |
+
|
746 |
+
|
747 |
+
class Conv2d(nn.Module, LoraLayer):
|
748 |
+
# Lora implemented in a conv2d layer
|
749 |
+
def __init__(
|
750 |
+
self,
|
751 |
+
base_layer: nn.Module,
|
752 |
+
adapter_name: str,
|
753 |
+
r: int = 0,
|
754 |
+
lora_alpha: int = 1,
|
755 |
+
lora_dropout: float = 0.0,
|
756 |
+
init_lora_weights: Union[bool, str] = True,
|
757 |
+
use_rslora: bool = False,
|
758 |
+
use_dora: bool = False,
|
759 |
+
**kwargs,
|
760 |
+
) -> None:
|
761 |
+
super().__init__()
|
762 |
+
LoraLayer.__init__(self, base_layer)
|
763 |
+
|
764 |
+
self._active_adapter = adapter_name
|
765 |
+
self.update_layer(
|
766 |
+
adapter_name,
|
767 |
+
r,
|
768 |
+
lora_alpha=lora_alpha,
|
769 |
+
lora_dropout=lora_dropout,
|
770 |
+
init_lora_weights=init_lora_weights,
|
771 |
+
use_rslora=use_rslora,
|
772 |
+
use_dora=use_dora,
|
773 |
+
)
|
774 |
+
|
775 |
+
def update_layer(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights, use_rslora, use_dora):
|
776 |
+
if r <= 0:
|
777 |
+
raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")
|
778 |
+
|
779 |
+
self.r[adapter_name] = r
|
780 |
+
self.lora_alpha[adapter_name] = lora_alpha
|
781 |
+
if lora_dropout > 0.0:
|
782 |
+
lora_dropout_layer = nn.Dropout(p=lora_dropout)
|
783 |
+
else:
|
784 |
+
lora_dropout_layer = nn.Identity()
|
785 |
+
|
786 |
+
self.lora_dropout[adapter_name] = lora_dropout_layer
|
787 |
+
# Actual trainable parameters
|
788 |
+
base_layer = self.get_base_layer()
|
789 |
+
kernel_size = base_layer.kernel_size
|
790 |
+
stride = base_layer.stride
|
791 |
+
padding = base_layer.padding
|
792 |
+
self.lora_A[adapter_name] = nn.Conv2d(self.in_features, r, kernel_size, stride, padding, bias=False)
|
793 |
+
self.lora_B[adapter_name] = nn.Conv2d(r, self.out_features, (1, 1), (1, 1), bias=False)
|
794 |
+
if use_rslora:
|
795 |
+
self.scaling[adapter_name] = lora_alpha / math.sqrt(r)
|
796 |
+
else:
|
797 |
+
self.scaling[adapter_name] = lora_alpha / r
|
798 |
+
|
799 |
+
if init_lora_weights == "loftq":
|
800 |
+
self.loftq_init(adapter_name)
|
801 |
+
elif init_lora_weights:
|
802 |
+
self.reset_lora_parameters(adapter_name, init_lora_weights)
|
803 |
+
|
804 |
+
weight = getattr(base_layer, "weight", None)
|
805 |
+
if weight is not None:
|
806 |
+
# the layer is already completely initialized, this is an update
|
807 |
+
self.to(base_layer.weight.device, dtype=weight.dtype)
|
808 |
+
|
809 |
+
if use_dora:
|
810 |
+
self.dora_init(adapter_name)
|
811 |
+
self.use_dora[adapter_name] = True
|
812 |
+
else:
|
813 |
+
self.use_dora[adapter_name] = False
|
814 |
+
|
815 |
+
self.set_adapter(self.active_adapters)
|
816 |
+
|
817 |
+
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
|
818 |
+
"""
|
819 |
+
Merge the active adapter weights inside the base weights
|
820 |
+
|
821 |
+
Args:
|
822 |
+
safe_merge (`bool`, *optional*):
|
823 |
+
If True, the merge operation will be performed in a copy of the original weights and check for NaNs
|
824 |
+
before merging the weights. This is useful if you want to check if the merge operation will produce
|
825 |
+
NaNs. Defaults to `False`.
|
826 |
+
adapter_names (`list[str]`, *optional*):
|
827 |
+
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
|
828 |
+
to `None`.
|
829 |
+
"""
|
830 |
+
adapter_names = check_adapters_to_merge(self, adapter_names)
|
831 |
+
if not adapter_names:
|
832 |
+
# no adapter to merge
|
833 |
+
return
|
834 |
+
|
835 |
+
for active_adapter in adapter_names:
|
836 |
+
if active_adapter in self.lora_A.keys():
|
837 |
+
base_layer = self.get_base_layer()
|
838 |
+
if safe_merge:
|
839 |
+
# Note that safe_merge will be slower than the normal merge
|
840 |
+
# because of the copy operation.
|
841 |
+
orig_weights = base_layer.weight.data.clone()
|
842 |
+
delta_weight = self.get_delta_weight(active_adapter)
|
843 |
+
|
844 |
+
if not self.use_dora[active_adapter]:
|
845 |
+
orig_weights = orig_weights + delta_weight
|
846 |
+
else:
|
847 |
+
# handle dora
|
848 |
+
# since delta_weight already includes scaling, set it to 1 here
|
849 |
+
weight_norm = self._get_weight_norm(orig_weights, delta_weight, scaling=1).detach()
|
850 |
+
# We need to cache weight_norm because it has to be based on the original weights. We
|
851 |
+
# cannot calculate it on the fly based on the merged weights when unmerging because its a
|
852 |
+
# different value
|
853 |
+
self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
|
854 |
+
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
|
855 |
+
orig_weights = dora_factor.view(-1, 1, 1, 1) * (orig_weights + delta_weight)
|
856 |
+
|
857 |
+
if not torch.isfinite(orig_weights).all():
|
858 |
+
raise ValueError(
|
859 |
+
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
|
860 |
+
)
|
861 |
+
base_layer.weight.data = orig_weights
|
862 |
+
else:
|
863 |
+
delta_weight = self.get_delta_weight(active_adapter)
|
864 |
+
if not self.use_dora[active_adapter]:
|
865 |
+
base_layer.weight.data = base_layer.weight.data + delta_weight
|
866 |
+
else:
|
867 |
+
# handle dora
|
868 |
+
# since delta_weight already includes scaling, set it to 1 here
|
869 |
+
weight_norm = self._get_weight_norm(base_layer.weight, delta_weight, scaling=1).detach()
|
870 |
+
# We need to cache weight_norm because it has to be based on the original weights. We
|
871 |
+
# cannot calculate it on the fly based on the merged weights when unmerging because its a
|
872 |
+
# different value
|
873 |
+
self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
|
874 |
+
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
|
875 |
+
new_weight = dora_factor.view(-1, 1, 1, 1) * (base_layer.weight.data + delta_weight)
|
876 |
+
base_layer.weight.data = new_weight
|
877 |
+
|
878 |
+
self.merged_adapters.append(active_adapter)
|
879 |
+
|
880 |
+
def unmerge(self) -> None:
|
881 |
+
"""
|
882 |
+
This method unmerges all merged adapter layers from the base weights.
|
883 |
+
"""
|
884 |
+
if not self.merged:
|
885 |
+
warnings.warn("Already unmerged. Nothing to do.")
|
886 |
+
return
|
887 |
+
while len(self.merged_adapters) > 0:
|
888 |
+
active_adapter = self.merged_adapters.pop()
|
889 |
+
if active_adapter in self.lora_A.keys():
|
890 |
+
weight = self.get_base_layer().weight
|
891 |
+
delta_weight = self.get_delta_weight(active_adapter)
|
892 |
+
if not self.use_dora[active_adapter]:
|
893 |
+
weight.data -= delta_weight
|
894 |
+
else:
|
895 |
+
weight_norm = self._cache_pop(f"{active_adapter}-weight_norm")
|
896 |
+
dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
|
897 |
+
weight_orig = weight.data / dora_factor.view(-1, 1, 1, 1) - delta_weight
|
898 |
+
weight.data = weight_orig
|
899 |
+
|
900 |
+
def get_delta_weight(self, adapter) -> torch.Tensor:
|
901 |
+
"""
|
902 |
+
Compute the delta weight for the given adapter.
|
903 |
+
|
904 |
+
Args:
|
905 |
+
adapter (str):
|
906 |
+
The name of the adapter for which the delta weight should be computed.
|
907 |
+
"""
|
908 |
+
device = self.lora_B[adapter].weight.device
|
909 |
+
dtype = self.lora_A[adapter].weight.dtype
|
910 |
+
|
911 |
+
# In case users wants to merge the adapter weights that are in
|
912 |
+
# float16 while being on CPU, we need to cast the weights to float32, perform the merge and then cast back to
|
913 |
+
# float16 because the `@` and matmul operation in general is not supported in torch + cpu + fp16.
|
914 |
+
cast_to_fp32 = device.type == "cpu" and dtype == torch.float16
|
915 |
+
|
916 |
+
weight_A = self.lora_A[adapter].weight
|
917 |
+
weight_B = self.lora_B[adapter].weight
|
918 |
+
|
919 |
+
if cast_to_fp32:
|
920 |
+
weight_A = weight_A.float()
|
921 |
+
weight_B = weight_B.float()
|
922 |
+
|
923 |
+
# https://github.com/bmaltais/kohya_ss/blob/feb6728762a8f463d15ba936d189d4c3abfaa1ab/networks/lora.py#L117
|
924 |
+
if self.get_base_layer().weight.size()[2:4] == (1, 1):
|
925 |
+
# conv2d 1x1
|
926 |
+
output_tensor = (weight_B.squeeze(3).squeeze(2) @ weight_A.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(
|
927 |
+
3
|
928 |
+
) * self.scaling[adapter]
|
929 |
+
else:
|
930 |
+
# conv2d 3x3
|
931 |
+
output_tensor = (
|
932 |
+
F.conv2d(
|
933 |
+
weight_A.permute(1, 0, 2, 3),
|
934 |
+
weight_B,
|
935 |
+
).permute(1, 0, 2, 3)
|
936 |
+
* self.scaling[adapter]
|
937 |
+
)
|
938 |
+
|
939 |
+
if cast_to_fp32:
|
940 |
+
output_tensor = output_tensor.to(dtype=dtype)
|
941 |
+
|
942 |
+
# cast back the weights
|
943 |
+
self.lora_A[adapter].weight.data = weight_A.to(dtype)
|
944 |
+
self.lora_B[adapter].weight.data = weight_B.to(dtype)
|
945 |
+
|
946 |
+
return output_tensor
|
947 |
+
|
948 |
+
def _get_weight_norm(self, weight, lora_weight, scaling) -> torch.Tensor:
|
949 |
+
# calculate L2 norm of weight matrix, channel-wise
|
950 |
+
weight = weight + scaling * lora_weight
|
951 |
+
# the following is needed to have compatibility with the 4D weight tensors of Conv2D
|
952 |
+
weight_norm = weight.norm(p=2, dim=(1, 2, 3), keepdim=True).transpose(1, 0)
|
953 |
+
return weight_norm
|
954 |
+
|
955 |
+
def _apply_dora(self, x, lora_A, lora_B, scaling, active_adapter):
|
956 |
+
"""
|
957 |
+
For DoRA, calculate the extra output from LoRA with DoRA applied. This should be added on top of the base layer
|
958 |
+
output.
|
959 |
+
"""
|
960 |
+
base_layer = self.get_base_layer()
|
961 |
+
weight = base_layer.weight
|
962 |
+
lora_weight = torch.mm(lora_B.weight.flatten(start_dim=1), lora_A.weight.flatten(start_dim=1))
|
963 |
+
lora_weight = lora_weight.reshape(weight.shape)
|
964 |
+
magnitude = self.lora_magnitude_vector[active_adapter]
|
965 |
+
weight_norm = self._get_weight_norm(weight, lora_weight, scaling)
|
966 |
+
# see section 4.3 of DoRA (https://arxiv.org/abs/2402.09353)
|
967 |
+
# "[...] we suggest treating ||V +∆V ||_c in
|
968 |
+
# Eq. (5) as a constant, thereby detaching it from the gradient
|
969 |
+
# graph. This means that while ||V + ∆V ||_c dynamically
|
970 |
+
# reflects the updates of ∆V , it won’t receive any gradient
|
971 |
+
# during backpropagation"
|
972 |
+
weight_norm = weight_norm.detach()
|
973 |
+
mag_norm_scale = magnitude / weight_norm
|
974 |
+
result_dora = (mag_norm_scale - 1) * (
|
975 |
+
F.conv2d(
|
976 |
+
x,
|
977 |
+
weight,
|
978 |
+
bias=None,
|
979 |
+
stride=base_layer.stride,
|
980 |
+
padding=base_layer.padding,
|
981 |
+
dilation=base_layer.dilation,
|
982 |
+
groups=base_layer.groups,
|
983 |
+
)
|
984 |
+
) + mag_norm_scale * lora_B(lora_A(x)) * scaling
|
985 |
+
|
986 |
+
return result_dora
|
987 |
+
|
988 |
+
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
989 |
+
self._check_forward_args(x, *args, **kwargs)
|
990 |
+
adapter_names = kwargs.pop("adapter_names", None)
|
991 |
+
|
992 |
+
if self.disable_adapters:
|
993 |
+
if self.merged:
|
994 |
+
self.unmerge()
|
995 |
+
result = self.base_layer(x, *args, **kwargs)
|
996 |
+
elif adapter_names is not None:
|
997 |
+
result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs)
|
998 |
+
elif self.merged:
|
999 |
+
result = self.base_layer(x, *args, **kwargs)
|
1000 |
+
else:
|
1001 |
+
result = self.base_layer(x, *args, **kwargs)
|
1002 |
+
torch_result_dtype = result.dtype
|
1003 |
+
|
1004 |
+
for active_adapter in self.active_adapters:
|
1005 |
+
if active_adapter not in self.lora_A.keys():
|
1006 |
+
continue
|
1007 |
+
lora_A = self.lora_A[active_adapter]
|
1008 |
+
lora_B = self.lora_B[active_adapter]
|
1009 |
+
dropout = self.lora_dropout[active_adapter]
|
1010 |
+
scaling = self.scaling[active_adapter]
|
1011 |
+
x = x.to(lora_A.weight.dtype)
|
1012 |
+
|
1013 |
+
if not self.use_dora[active_adapter]:
|
1014 |
+
result = result + lora_B(lora_A(dropout(x))) * scaling
|
1015 |
+
else:
|
1016 |
+
x = dropout(x)
|
1017 |
+
result = result + self._apply_dora(x, lora_A, lora_B, scaling, active_adapter)
|
1018 |
+
|
1019 |
+
result = result.to(torch_result_dtype)
|
1020 |
+
return result
|
1021 |
+
|
1022 |
+
def __repr__(self) -> str:
|
1023 |
+
rep = super().__repr__()
|
1024 |
+
return "lora." + rep
|
1025 |
+
|
1026 |
+
|
1027 |
+
def dispatch_default(
|
1028 |
+
target: torch.nn.Module,
|
1029 |
+
adapter_name: str,
|
1030 |
+
lora_config: LoraConfig,
|
1031 |
+
**kwargs,
|
1032 |
+
) -> Optional[torch.nn.Module]:
|
1033 |
+
new_module = None
|
1034 |
+
|
1035 |
+
if isinstance(target, BaseTunerLayer):
|
1036 |
+
target_base_layer = target.get_base_layer()
|
1037 |
+
else:
|
1038 |
+
target_base_layer = target
|
1039 |
+
|
1040 |
+
if isinstance(target_base_layer, torch.nn.Embedding):
|
1041 |
+
embedding_kwargs = kwargs.copy()
|
1042 |
+
embedding_kwargs.pop("fan_in_fan_out", None)
|
1043 |
+
embedding_kwargs.update(lora_config.loftq_config)
|
1044 |
+
new_module = Embedding(target, adapter_name, **embedding_kwargs)
|
1045 |
+
elif isinstance(target_base_layer, torch.nn.Conv2d):
|
1046 |
+
kwargs.update(lora_config.loftq_config)
|
1047 |
+
new_module = Conv2d(target, adapter_name, **kwargs)
|
1048 |
+
elif isinstance(target_base_layer, torch.nn.Linear):
|
1049 |
+
if kwargs["fan_in_fan_out"]:
|
1050 |
+
warnings.warn(
|
1051 |
+
"fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. "
|
1052 |
+
"Setting fan_in_fan_out to False."
|
1053 |
+
)
|
1054 |
+
kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = False
|
1055 |
+
kwargs.update(lora_config.loftq_config)
|
1056 |
+
new_module = Linear(target, adapter_name, **kwargs)
|
1057 |
+
elif isinstance(target_base_layer, Conv1D):
|
1058 |
+
if not kwargs["fan_in_fan_out"]:
|
1059 |
+
warnings.warn(
|
1060 |
+
"fan_in_fan_out is set to False but the target module is `Conv1D`. " "Setting fan_in_fan_out to True."
|
1061 |
+
)
|
1062 |
+
kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = True
|
1063 |
+
kwargs.update(lora_config.loftq_config)
|
1064 |
+
new_module = Linear(target, adapter_name, is_target_conv_1d_layer=True, **kwargs)
|
1065 |
+
|
1066 |
+
return new_module
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/model.py
ADDED
@@ -0,0 +1,793 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from __future__ import annotations
|
15 |
+
|
16 |
+
import math
|
17 |
+
import operator
|
18 |
+
import re
|
19 |
+
import warnings
|
20 |
+
from contextlib import contextmanager
|
21 |
+
from dataclasses import asdict, replace
|
22 |
+
from enum import Enum
|
23 |
+
from functools import partial, reduce
|
24 |
+
from itertools import chain
|
25 |
+
from typing import Literal, Optional
|
26 |
+
|
27 |
+
import torch
|
28 |
+
from torch import nn
|
29 |
+
from tqdm import tqdm
|
30 |
+
|
31 |
+
from peft.import_utils import is_bnb_4bit_available, is_bnb_available
|
32 |
+
from peft.tuners.tuners_utils import (
|
33 |
+
BaseTuner,
|
34 |
+
BaseTunerLayer,
|
35 |
+
check_target_module_exists,
|
36 |
+
onload_layer,
|
37 |
+
replicate_layers,
|
38 |
+
)
|
39 |
+
from peft.utils import (
|
40 |
+
TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING,
|
41 |
+
ModulesToSaveWrapper,
|
42 |
+
_freeze_adapter,
|
43 |
+
_get_submodules,
|
44 |
+
get_quantization_config,
|
45 |
+
)
|
46 |
+
from peft.utils.merge_utils import dare_linear, dare_ties, magnitude_prune, task_arithmetic, ties
|
47 |
+
|
48 |
+
from .aqlm import dispatch_aqlm
|
49 |
+
from .awq import dispatch_awq
|
50 |
+
from .config import LoraConfig
|
51 |
+
from .gptq import dispatch_gptq
|
52 |
+
from .layer import Conv2d, LoraLayer, dispatch_default
|
53 |
+
from .tp_layer import dispatch_megatron
|
54 |
+
|
55 |
+
|
56 |
+
def _adapter_names_pre_forward_hook(target, args, kwargs, adapter_names):
|
57 |
+
# pre-forward hook to inject the adapter_names argument when using mixed adapter batches inference
|
58 |
+
kwargs["adapter_names"] = adapter_names
|
59 |
+
return args, kwargs
|
60 |
+
|
61 |
+
|
62 |
+
class LoraModel(BaseTuner):
|
63 |
+
"""
|
64 |
+
Creates Low Rank Adapter (LoRA) model from a pretrained transformers model.
|
65 |
+
|
66 |
+
The method is described in detail in https://arxiv.org/abs/2106.09685.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
model ([`torch.nn.Module`]): The model to be adapted.
|
70 |
+
config ([`LoraConfig`]): The configuration of the Lora model.
|
71 |
+
adapter_name (`str`): The name of the adapter, defaults to `"default"`.
|
72 |
+
|
73 |
+
Returns:
|
74 |
+
`torch.nn.Module`: The Lora model.
|
75 |
+
|
76 |
+
Example:
|
77 |
+
|
78 |
+
```py
|
79 |
+
>>> from transformers import AutoModelForSeq2SeqLM
|
80 |
+
>>> from peft import LoraModel, LoraConfig
|
81 |
+
|
82 |
+
>>> config = LoraConfig(
|
83 |
+
... task_type="SEQ_2_SEQ_LM",
|
84 |
+
... r=8,
|
85 |
+
... lora_alpha=32,
|
86 |
+
... target_modules=["q", "v"],
|
87 |
+
... lora_dropout=0.01,
|
88 |
+
... )
|
89 |
+
|
90 |
+
>>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
|
91 |
+
>>> lora_model = LoraModel(model, config, "default")
|
92 |
+
```
|
93 |
+
|
94 |
+
```py
|
95 |
+
>>> import torch
|
96 |
+
>>> import transformers
|
97 |
+
>>> from peft import LoraConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training
|
98 |
+
|
99 |
+
>>> rank = ...
|
100 |
+
>>> target_modules = ["q_proj", "k_proj", "v_proj", "out_proj", "fc_in", "fc_out", "wte"]
|
101 |
+
>>> config = LoraConfig(
|
102 |
+
... r=4, lora_alpha=16, target_modules=target_modules, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM"
|
103 |
+
... )
|
104 |
+
>>> quantization_config = transformers.BitsAndBytesConfig(load_in_8bit=True)
|
105 |
+
|
106 |
+
>>> tokenizer = transformers.AutoTokenizer.from_pretrained(
|
107 |
+
... "kakaobrain/kogpt",
|
108 |
+
... revision="KoGPT6B-ryan1.5b-float16", # or float32 version: revision=KoGPT6B-ryan1.5b
|
109 |
+
... bos_token="[BOS]",
|
110 |
+
... eos_token="[EOS]",
|
111 |
+
... unk_token="[UNK]",
|
112 |
+
... pad_token="[PAD]",
|
113 |
+
... mask_token="[MASK]",
|
114 |
+
... )
|
115 |
+
>>> model = transformers.GPTJForCausalLM.from_pretrained(
|
116 |
+
... "kakaobrain/kogpt",
|
117 |
+
... revision="KoGPT6B-ryan1.5b-float16", # or float32 version: revision=KoGPT6B-ryan1.5b
|
118 |
+
... pad_token_id=tokenizer.eos_token_id,
|
119 |
+
... use_cache=False,
|
120 |
+
... device_map={"": rank},
|
121 |
+
... torch_dtype=torch.float16,
|
122 |
+
... quantization_config=quantization_config,
|
123 |
+
... )
|
124 |
+
>>> model = prepare_model_for_kbit_training(model)
|
125 |
+
>>> lora_model = get_peft_model(model, config)
|
126 |
+
```
|
127 |
+
|
128 |
+
**Attributes**:
|
129 |
+
- **model** ([`~transformers.PreTrainedModel`]) -- The model to be adapted.
|
130 |
+
- **peft_config** ([`LoraConfig`]): The configuration of the Lora model.
|
131 |
+
"""
|
132 |
+
|
133 |
+
prefix: str = "lora_"
|
134 |
+
|
135 |
+
def __init__(self, model, config, adapter_name) -> None:
|
136 |
+
super().__init__(model, config, adapter_name)
|
137 |
+
|
138 |
+
def _check_new_adapter_config(self, config: LoraConfig) -> None:
|
139 |
+
"""
|
140 |
+
A helper method to check the config when a new adapter is being added.
|
141 |
+
|
142 |
+
Raise a ValueError if there is something wrong with the config or if it conflicts with existing adapters.
|
143 |
+
|
144 |
+
"""
|
145 |
+
# TODO: there should be a check if any of the existing adapters actually has bias != "none", or else the check
|
146 |
+
# does not fully correspond to the error message.
|
147 |
+
if (len(self.peft_config) > 1) and (config.bias != "none"):
|
148 |
+
raise ValueError(
|
149 |
+
f"{self.__class__.__name__} supports only 1 adapter with bias. When using multiple adapters, "
|
150 |
+
"set bias to 'none' for all adapters."
|
151 |
+
)
|
152 |
+
|
153 |
+
@staticmethod
|
154 |
+
def _check_target_module_exists(lora_config, key):
|
155 |
+
return check_target_module_exists(lora_config, key)
|
156 |
+
|
157 |
+
def _prepare_model(self, peft_config: LoraConfig, model: nn.Module):
|
158 |
+
r"""
|
159 |
+
A private method to modify the model structure before adapter is applied.
|
160 |
+
|
161 |
+
Args:
|
162 |
+
peft_config (`PeftConfig`):
|
163 |
+
The prepared adapter config.
|
164 |
+
model (`nn.Module`):
|
165 |
+
The model that is going to be adapted.
|
166 |
+
"""
|
167 |
+
if peft_config.layer_replication:
|
168 |
+
replicate_layers(model, peft_config.layer_replication)
|
169 |
+
|
170 |
+
def _create_and_replace(
|
171 |
+
self,
|
172 |
+
lora_config,
|
173 |
+
adapter_name,
|
174 |
+
target,
|
175 |
+
target_name,
|
176 |
+
parent,
|
177 |
+
current_key,
|
178 |
+
):
|
179 |
+
if current_key is None:
|
180 |
+
raise ValueError("Current Key shouldn't be `None`")
|
181 |
+
|
182 |
+
# Regexp matching - Find key which matches current target_name in patterns provided
|
183 |
+
pattern_keys = list(chain(lora_config.rank_pattern.keys(), lora_config.alpha_pattern.keys()))
|
184 |
+
target_name_key = next(filter(lambda key: re.match(rf".*\.{key}$", current_key), pattern_keys), current_key)
|
185 |
+
r = lora_config.rank_pattern.get(target_name_key, lora_config.r)
|
186 |
+
alpha = lora_config.alpha_pattern.get(target_name_key, lora_config.lora_alpha)
|
187 |
+
|
188 |
+
kwargs = {
|
189 |
+
"r": r,
|
190 |
+
"lora_alpha": alpha,
|
191 |
+
"lora_dropout": lora_config.lora_dropout,
|
192 |
+
"fan_in_fan_out": lora_config.fan_in_fan_out,
|
193 |
+
"init_lora_weights": lora_config.init_lora_weights,
|
194 |
+
"use_rslora": lora_config.use_rslora,
|
195 |
+
"use_dora": lora_config.use_dora,
|
196 |
+
"loaded_in_8bit": getattr(self.model, "is_loaded_in_8bit", False),
|
197 |
+
"loaded_in_4bit": getattr(self.model, "is_loaded_in_4bit", False),
|
198 |
+
}
|
199 |
+
|
200 |
+
quant_methods = ["gptq", "aqlm", "awq"]
|
201 |
+
for quant_method in quant_methods:
|
202 |
+
quantization_config = get_quantization_config(self.model, method=quant_method)
|
203 |
+
if quantization_config is not None:
|
204 |
+
kwargs[f"{quant_method}_quantization_config"] = quantization_config
|
205 |
+
|
206 |
+
# note: AdaLoraLayer is a subclass of LoraLayer, we need to exclude it
|
207 |
+
from peft.tuners.adalora import AdaLoraLayer
|
208 |
+
|
209 |
+
if isinstance(target, LoraLayer) and not isinstance(target, AdaLoraLayer):
|
210 |
+
target.update_layer(
|
211 |
+
adapter_name,
|
212 |
+
r,
|
213 |
+
lora_alpha=alpha,
|
214 |
+
lora_dropout=lora_config.lora_dropout,
|
215 |
+
init_lora_weights=lora_config.init_lora_weights,
|
216 |
+
use_rslora=lora_config.use_rslora,
|
217 |
+
use_dora=lora_config.use_dora,
|
218 |
+
)
|
219 |
+
else:
|
220 |
+
new_module = self._create_new_module(lora_config, adapter_name, target, **kwargs)
|
221 |
+
if adapter_name != self.active_adapter:
|
222 |
+
# adding an additional adapter: it is not automatically trainable
|
223 |
+
new_module.requires_grad_(False)
|
224 |
+
self._replace_module(parent, target_name, new_module, target)
|
225 |
+
|
226 |
+
def _replace_module(self, parent, child_name, new_module, child):
|
227 |
+
setattr(parent, child_name, new_module)
|
228 |
+
# It's not necessary to set requires_grad here, as that is handled by
|
229 |
+
# _mark_only_adapters_as_trainable
|
230 |
+
|
231 |
+
# child layer wraps the original module, unpack it
|
232 |
+
if hasattr(child, "base_layer"):
|
233 |
+
child = child.base_layer
|
234 |
+
|
235 |
+
if not hasattr(new_module, "base_layer"):
|
236 |
+
new_module.weight = child.weight
|
237 |
+
if hasattr(child, "bias"):
|
238 |
+
new_module.bias = child.bias
|
239 |
+
|
240 |
+
if getattr(child, "state", None) is not None:
|
241 |
+
if hasattr(new_module, "base_layer"):
|
242 |
+
new_module.base_layer.state = child.state
|
243 |
+
else:
|
244 |
+
new_module.state = child.state
|
245 |
+
new_module.to(child.weight.device)
|
246 |
+
|
247 |
+
# dispatch to correct device
|
248 |
+
for name, module in new_module.named_modules():
|
249 |
+
if (self.prefix in name) or ("ranknum" in name):
|
250 |
+
weight = child.qweight if hasattr(child, "qweight") else child.weight
|
251 |
+
module.to(weight.device)
|
252 |
+
|
253 |
+
def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None:
|
254 |
+
for n, p in model.named_parameters():
|
255 |
+
if self.prefix not in n:
|
256 |
+
p.requires_grad = False
|
257 |
+
|
258 |
+
for active_adapter in self.active_adapters:
|
259 |
+
bias = self.peft_config[active_adapter].bias
|
260 |
+
if bias == "none":
|
261 |
+
continue
|
262 |
+
|
263 |
+
if bias == "all":
|
264 |
+
for n, p in model.named_parameters():
|
265 |
+
if "bias" in n:
|
266 |
+
p.requires_grad = True
|
267 |
+
elif bias == "lora_only":
|
268 |
+
for m in model.modules():
|
269 |
+
if isinstance(m, LoraLayer) and hasattr(m, "bias") and m.bias is not None:
|
270 |
+
m.bias.requires_grad = True
|
271 |
+
else:
|
272 |
+
raise NotImplementedError(f"Requested bias: {bias}, is not implemented.")
|
273 |
+
|
274 |
+
@staticmethod
|
275 |
+
def _create_new_module(lora_config, adapter_name, target, **kwargs):
|
276 |
+
# Collect dispatcher functions to decide what backend to use for the replaced LoRA layer. The order matters,
|
277 |
+
# because the first match is always used. Therefore, the default layers should be checked last.
|
278 |
+
dispatchers = []
|
279 |
+
|
280 |
+
# avoid eager bnb import
|
281 |
+
if is_bnb_available():
|
282 |
+
from .bnb import dispatch_bnb_8bit
|
283 |
+
|
284 |
+
dispatchers.append(dispatch_bnb_8bit)
|
285 |
+
|
286 |
+
if is_bnb_4bit_available():
|
287 |
+
from .bnb import dispatch_bnb_4bit
|
288 |
+
|
289 |
+
dispatchers.append(dispatch_bnb_4bit)
|
290 |
+
|
291 |
+
dispatchers.extend([dispatch_aqlm, dispatch_awq, dispatch_gptq, dispatch_megatron, dispatch_default])
|
292 |
+
|
293 |
+
new_module = None
|
294 |
+
for dispatcher in dispatchers:
|
295 |
+
new_module = dispatcher(target, adapter_name, lora_config=lora_config, **kwargs)
|
296 |
+
if new_module is not None: # first match wins
|
297 |
+
break
|
298 |
+
|
299 |
+
if new_module is None:
|
300 |
+
# no module could be matched
|
301 |
+
raise ValueError(
|
302 |
+
f"Target module {target} is not supported. Currently, only the following modules are supported: "
|
303 |
+
"`torch.nn.Linear`, `torch.nn.Embedding`, `torch.nn.Conv2d`, `transformers.pytorch_utils.Conv1D`."
|
304 |
+
)
|
305 |
+
|
306 |
+
return new_module
|
307 |
+
|
308 |
+
def __getattr__(self, name: str):
|
309 |
+
"""Forward missing attributes to the wrapped module."""
|
310 |
+
try:
|
311 |
+
return super().__getattr__(name) # defer to nn.Module's logic
|
312 |
+
except AttributeError:
|
313 |
+
return getattr(self.model, name)
|
314 |
+
|
315 |
+
def get_peft_config_as_dict(self, inference: bool = False):
|
316 |
+
config_dict = {}
|
317 |
+
for key, value in self.peft_config.items():
|
318 |
+
config = {k: v.value if isinstance(v, Enum) else v for k, v in asdict(value).items()}
|
319 |
+
if inference:
|
320 |
+
config["inference_mode"] = True
|
321 |
+
config_dict[key] = config
|
322 |
+
return config
|
323 |
+
|
324 |
+
def _set_adapter_layers(self, enabled: bool = True) -> None:
|
325 |
+
for module in self.model.modules():
|
326 |
+
if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)):
|
327 |
+
module.enable_adapters(enabled)
|
328 |
+
|
329 |
+
def enable_adapter_layers(self) -> None:
|
330 |
+
"""Enable all adapters.
|
331 |
+
|
332 |
+
Call this if you have previously disabled all adapters and want to re-enable them.
|
333 |
+
"""
|
334 |
+
self._set_adapter_layers(enabled=True)
|
335 |
+
|
336 |
+
def disable_adapter_layers(self) -> None:
|
337 |
+
"""Disable all adapters.
|
338 |
+
|
339 |
+
When disabling all adapters, the model output corresponds to the output of the base model.
|
340 |
+
"""
|
341 |
+
for active_adapter in self.active_adapters:
|
342 |
+
val = self.peft_config[active_adapter].bias
|
343 |
+
if val != "none":
|
344 |
+
msg = (
|
345 |
+
f"Careful, disabling adapter layers with bias configured to be '{val}' does not produce the same "
|
346 |
+
"output as the the base model would without adaption."
|
347 |
+
)
|
348 |
+
warnings.warn(msg)
|
349 |
+
self._set_adapter_layers(enabled=False)
|
350 |
+
|
351 |
+
def set_adapter(self, adapter_name: str | list[str]) -> None:
|
352 |
+
"""Set the active adapter(s).
|
353 |
+
|
354 |
+
Additionally, this function will set the specified adapters to trainable (i.e., requires_grad=True). If this is
|
355 |
+
not desired, use the following code.
|
356 |
+
|
357 |
+
```py
|
358 |
+
>>> for name, param in model_peft.named_parameters():
|
359 |
+
... if ...: # some check on name (ex. if 'lora' in name)
|
360 |
+
... param.requires_grad = False
|
361 |
+
```
|
362 |
+
|
363 |
+
Args:
|
364 |
+
adapter_name (`str` or `list[str]`): Name of the adapter(s) to be activated.
|
365 |
+
"""
|
366 |
+
for module in self.model.modules():
|
367 |
+
if isinstance(module, LoraLayer):
|
368 |
+
if module.merged:
|
369 |
+
warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.")
|
370 |
+
module.unmerge()
|
371 |
+
module.set_adapter(adapter_name)
|
372 |
+
self.active_adapter = adapter_name
|
373 |
+
|
374 |
+
@contextmanager
|
375 |
+
def _enable_peft_forward_hooks(self, *args, **kwargs):
|
376 |
+
# If adapter_names is passed as an argument, we inject it into the forward arguments.
|
377 |
+
adapter_names = kwargs.pop("adapter_names", None)
|
378 |
+
if adapter_names is None:
|
379 |
+
# nothing to do
|
380 |
+
yield
|
381 |
+
return
|
382 |
+
|
383 |
+
if self.training:
|
384 |
+
raise ValueError("Cannot pass `adapter_names` when the model is in training mode.")
|
385 |
+
|
386 |
+
hook_handles = []
|
387 |
+
for module in self.modules():
|
388 |
+
if isinstance(module, LoraLayer):
|
389 |
+
pre_forward = partial(_adapter_names_pre_forward_hook, adapter_names=adapter_names)
|
390 |
+
handle = module.register_forward_pre_hook(pre_forward, with_kwargs=True)
|
391 |
+
hook_handles.append(handle)
|
392 |
+
|
393 |
+
yield
|
394 |
+
|
395 |
+
for handle in hook_handles:
|
396 |
+
handle.remove()
|
397 |
+
|
398 |
+
def _check_merge_allowed(self):
|
399 |
+
"""Verify that the configuration supports merging.
|
400 |
+
|
401 |
+
Currently gptq quantization and replicated layers do not support merging.
|
402 |
+
"""
|
403 |
+
if getattr(self.model, "quantization_method", None) == "gptq":
|
404 |
+
raise ValueError("Cannot merge LORA layers when the model is gptq quantized")
|
405 |
+
if self.peft_config.get("layer_replication"):
|
406 |
+
raise ValueError("Cannot merge LORA layers when base model layers are replicated")
|
407 |
+
|
408 |
+
@staticmethod
|
409 |
+
def _prepare_adapter_config(peft_config, model_config):
|
410 |
+
if peft_config.target_modules is None:
|
411 |
+
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING:
|
412 |
+
raise ValueError("Please specify `target_modules` in `peft_config`")
|
413 |
+
peft_config.target_modules = set(
|
414 |
+
TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING[model_config["model_type"]]
|
415 |
+
)
|
416 |
+
return peft_config
|
417 |
+
|
418 |
+
def _unload_and_optionally_merge(
|
419 |
+
self,
|
420 |
+
merge=True,
|
421 |
+
progressbar: bool = False,
|
422 |
+
safe_merge: bool = False,
|
423 |
+
adapter_names: Optional[list[str]] = None,
|
424 |
+
):
|
425 |
+
if merge:
|
426 |
+
self._check_merge_allowed()
|
427 |
+
|
428 |
+
key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key]
|
429 |
+
desc = "Unloading " + ("and merging " if merge else "") + "model"
|
430 |
+
for key in tqdm(key_list, disable=not progressbar, desc=desc):
|
431 |
+
try:
|
432 |
+
parent, target, target_name = _get_submodules(self.model, key)
|
433 |
+
except AttributeError:
|
434 |
+
continue
|
435 |
+
with onload_layer(target):
|
436 |
+
if hasattr(target, "base_layer"):
|
437 |
+
if merge:
|
438 |
+
target.merge(safe_merge=safe_merge, adapter_names=adapter_names)
|
439 |
+
self._replace_module(parent, target_name, target.get_base_layer(), target)
|
440 |
+
elif isinstance(target, ModulesToSaveWrapper):
|
441 |
+
# save any additional trainable modules part of `modules_to_save`
|
442 |
+
new_module = target.modules_to_save[target.active_adapter]
|
443 |
+
if hasattr(new_module, "base_layer"):
|
444 |
+
# check if the module is itself a tuner layer
|
445 |
+
if merge:
|
446 |
+
new_module.merge(safe_merge=safe_merge, adapter_names=adapter_names)
|
447 |
+
new_module = new_module.get_base_layer()
|
448 |
+
setattr(parent, target_name, new_module)
|
449 |
+
|
450 |
+
return self.model
|
451 |
+
|
452 |
+
def add_weighted_adapter(
|
453 |
+
self,
|
454 |
+
adapters,
|
455 |
+
weights,
|
456 |
+
adapter_name,
|
457 |
+
combination_type="svd",
|
458 |
+
svd_rank=None,
|
459 |
+
svd_clamp=None,
|
460 |
+
svd_full_matrices=True,
|
461 |
+
svd_driver=None,
|
462 |
+
density=None,
|
463 |
+
majority_sign_method: Literal["total", "frequency"] = "total",
|
464 |
+
) -> None:
|
465 |
+
"""
|
466 |
+
This method adds a new adapter by merging the given adapters with the given weights.
|
467 |
+
|
468 |
+
When using the `cat` combination_type you should be aware that rank of the resulting adapter will be equal to
|
469 |
+
the sum of all adapters ranks. So it's possible that the mixed adapter may become too big and result in OOM
|
470 |
+
errors.
|
471 |
+
|
472 |
+
Args:
|
473 |
+
adapters (`list`):
|
474 |
+
List of adapter names to be merged.
|
475 |
+
weights (`list`):
|
476 |
+
List of weights for each adapter.
|
477 |
+
adapter_name (`str`):
|
478 |
+
Name of the new adapter.
|
479 |
+
combination_type (`str`):
|
480 |
+
The merging type can be one of [`svd`, `linear`, `cat`, `ties`, `ties_svd`, `dare_ties`, `dare_linear`,
|
481 |
+
`dare_ties_svd`, `dare_linear_svd`, `magnitude_prune`, `magnitude_prune_svd`]. When using the `cat`
|
482 |
+
combination_type, the rank of the resulting adapter is equal to the sum of all adapters ranks (the
|
483 |
+
mixed adapter may be too big and result in OOM errors).
|
484 |
+
svd_rank (`int`, *optional*):
|
485 |
+
Rank of output adapter for svd. If None provided, will use max rank of merging adapters.
|
486 |
+
svd_clamp (`float`, *optional*):
|
487 |
+
A quantile threshold for clamping SVD decomposition output. If None is provided, do not perform
|
488 |
+
clamping. Defaults to None.
|
489 |
+
svd_full_matrices (`bool`, *optional*):
|
490 |
+
Controls whether to compute the full or reduced SVD, and consequently, the shape of the returned
|
491 |
+
tensors U and Vh. Defaults to True.
|
492 |
+
svd_driver (`str`, *optional*):
|
493 |
+
Name of the cuSOLVER method to be used. This keyword argument only works when merging on CUDA. Can be
|
494 |
+
one of [None, `gesvd`, `gesvdj`, `gesvda`]. For more info please refer to `torch.linalg.svd`
|
495 |
+
documentation. Defaults to None.
|
496 |
+
density (`float`, *optional*):
|
497 |
+
Value between 0 and 1. 0 means all values are pruned and 1 means no values are pruned. Should be used
|
498 |
+
with [`ties`, `ties_svd`, `dare_ties`, `dare_linear`, `dare_ties_svd`, `dare_linear_svd`,
|
499 |
+
`magnintude_prune`, `magnitude_prune_svd`]
|
500 |
+
majority_sign_method (`str`):
|
501 |
+
The method, should be one of ["total", "frequency"], to use to get the magnitude of the sign values.
|
502 |
+
Should be used with [`ties`, `ties_svd`, `dare_ties`, `dare_ties_svd`]
|
503 |
+
"""
|
504 |
+
|
505 |
+
if adapter_name in list(self.peft_config.keys()):
|
506 |
+
return
|
507 |
+
for adapter in adapters:
|
508 |
+
if adapter not in list(self.peft_config.keys()):
|
509 |
+
raise ValueError(f"Adapter {adapter} does not exist")
|
510 |
+
|
511 |
+
# if there is only one adapter, we can only use linear merging
|
512 |
+
combination_type = "linear" if len(adapters) == 1 else combination_type
|
513 |
+
|
514 |
+
adapters_ranks = [self.peft_config[adapter].r for adapter in adapters]
|
515 |
+
if combination_type in ("linear", "ties", "dare_ties", "dare_linear", "magnitude_prune"):
|
516 |
+
# all adapters ranks should be same, new rank is just this value
|
517 |
+
if len(set(adapters_ranks)) != 1:
|
518 |
+
raise ValueError(
|
519 |
+
"All adapters must have the same r value when using combination_type linear, ties, dare_ties or dare_linear."
|
520 |
+
)
|
521 |
+
new_rank = adapters_ranks[0]
|
522 |
+
elif combination_type == "cat":
|
523 |
+
# adapters ranks may be different, new rank is sum of all ranks
|
524 |
+
# be careful, because output adapter rank may be really big if mixing a lot of adapters
|
525 |
+
new_rank = sum(adapters_ranks)
|
526 |
+
elif combination_type.endswith("svd"):
|
527 |
+
# new rank is the max of all ranks of the adapters if not provided
|
528 |
+
new_rank = svd_rank or max(adapters_ranks)
|
529 |
+
else:
|
530 |
+
raise ValueError(f"Invalid combination_type: {combination_type}")
|
531 |
+
|
532 |
+
target_module_types = [type(self.peft_config[adapter].target_modules) for adapter in adapters]
|
533 |
+
if not target_module_types:
|
534 |
+
raise ValueError(f"Found no adapter matching the names in {adapters}")
|
535 |
+
if len(set(target_module_types)) > 1:
|
536 |
+
raise ValueError(
|
537 |
+
"all adapter configs should follow the same target modules type. "
|
538 |
+
"Combining adapters with `target_modules` type being a mix of list/set and string is not supported."
|
539 |
+
)
|
540 |
+
|
541 |
+
if target_module_types[0] == str:
|
542 |
+
new_target_modules = "|".join(f"({self.peft_config[adapter].target_modules})" for adapter in adapters)
|
543 |
+
elif target_module_types[0] == set:
|
544 |
+
new_target_modules = reduce(
|
545 |
+
operator.or_, (self.peft_config[adapter].target_modules for adapter in adapters)
|
546 |
+
)
|
547 |
+
else:
|
548 |
+
raise TypeError(f"Invalid type {target_module_types[0]} found in target_modules")
|
549 |
+
|
550 |
+
self.peft_config[adapter_name] = replace(
|
551 |
+
self.peft_config[adapters[0]],
|
552 |
+
r=new_rank,
|
553 |
+
lora_alpha=new_rank,
|
554 |
+
target_modules=new_target_modules,
|
555 |
+
)
|
556 |
+
self.inject_adapter(self.model, adapter_name)
|
557 |
+
|
558 |
+
# Do we really need that?
|
559 |
+
_freeze_adapter(self.model, adapter_name)
|
560 |
+
|
561 |
+
key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key]
|
562 |
+
for key in key_list:
|
563 |
+
_, target, _ = _get_submodules(self.model, key)
|
564 |
+
if isinstance(target, LoraLayer):
|
565 |
+
if adapter_name in target.lora_A:
|
566 |
+
target_lora_A = target.lora_A[adapter_name].weight
|
567 |
+
target_lora_B = target.lora_B[adapter_name].weight
|
568 |
+
elif adapter_name in target.lora_embedding_A:
|
569 |
+
target_lora_A = target.lora_embedding_A[adapter_name]
|
570 |
+
target_lora_B = target.lora_embedding_B[adapter_name]
|
571 |
+
else:
|
572 |
+
continue
|
573 |
+
|
574 |
+
target_lora_A.data = target_lora_A.data * 0.0
|
575 |
+
target_lora_B.data = target_lora_B.data * 0.0
|
576 |
+
if combination_type == "cat":
|
577 |
+
loras_A, loras_B = [], []
|
578 |
+
for adapter, weight in zip(adapters, weights):
|
579 |
+
if adapter in target.lora_A:
|
580 |
+
current_adapter_lora_A = target.lora_A[adapter].weight
|
581 |
+
current_adapter_lora_B = target.lora_B[adapter].weight
|
582 |
+
elif adapter in target.lora_embedding_A:
|
583 |
+
current_adapter_lora_A = target.lora_embedding_A[adapter]
|
584 |
+
current_adapter_lora_B = target.lora_embedding_B[adapter]
|
585 |
+
else:
|
586 |
+
continue
|
587 |
+
loras_A.append(current_adapter_lora_A.data * weight * target.scaling[adapter])
|
588 |
+
loras_B.append(current_adapter_lora_B.data)
|
589 |
+
|
590 |
+
if len(loras_A) == 0:
|
591 |
+
raise ValueError("No matching LoRAs found. Please raise an issue on GitHub.")
|
592 |
+
loras_A = torch.cat(loras_A, dim=0)
|
593 |
+
loras_B = torch.cat(loras_B, dim=1)
|
594 |
+
target_lora_A.data[: loras_A.shape[0], :] = loras_A
|
595 |
+
target_lora_B.data[:, : loras_B.shape[1]] = loras_B
|
596 |
+
elif combination_type in [
|
597 |
+
"svd",
|
598 |
+
"ties_svd",
|
599 |
+
"dare_linear_svd",
|
600 |
+
"dare_ties_svd",
|
601 |
+
"magnitude_prune_svd",
|
602 |
+
]:
|
603 |
+
target_lora_A.data, target_lora_B.data = self._svd_generalized_task_arithmetic_weighted_adapter(
|
604 |
+
combination_type,
|
605 |
+
adapters,
|
606 |
+
weights,
|
607 |
+
new_rank,
|
608 |
+
target,
|
609 |
+
target_lora_A,
|
610 |
+
target_lora_B,
|
611 |
+
density,
|
612 |
+
majority_sign_method,
|
613 |
+
svd_clamp,
|
614 |
+
full_matrices=svd_full_matrices,
|
615 |
+
driver=svd_driver,
|
616 |
+
)
|
617 |
+
elif combination_type in ["linear", "ties", "dare_linear", "dare_ties", "magnitude_prune"]:
|
618 |
+
target_lora_A.data, target_lora_B.data = self._generalized_task_arithmetic_weighted_adapter(
|
619 |
+
combination_type, adapters, weights, target, density, majority_sign_method
|
620 |
+
)
|
621 |
+
|
622 |
+
def _svd_generalized_task_arithmetic_weighted_adapter(
|
623 |
+
self,
|
624 |
+
combination_type,
|
625 |
+
adapters,
|
626 |
+
weights,
|
627 |
+
new_rank,
|
628 |
+
target,
|
629 |
+
target_lora_A,
|
630 |
+
target_lora_B,
|
631 |
+
density,
|
632 |
+
majority_sign_method,
|
633 |
+
clamp=None,
|
634 |
+
full_matrices=True,
|
635 |
+
driver=None,
|
636 |
+
):
|
637 |
+
valid_adapters = []
|
638 |
+
valid_weights = []
|
639 |
+
is_embedding = any(adapter in target.lora_embedding_A for adapter in adapters)
|
640 |
+
for adapter, weight in zip(adapters, weights):
|
641 |
+
if adapter in target.lora_A or adapter in target.lora_embedding_A:
|
642 |
+
valid_adapters.append(adapter)
|
643 |
+
valid_weights.append(weight * target.scaling[adapter])
|
644 |
+
|
645 |
+
# if no valid adapter, nothing to do
|
646 |
+
if len(valid_adapters) == 0:
|
647 |
+
raise ValueError("No matching LoRAs found. Please raise an issue on Github.")
|
648 |
+
delta_weight = [target.get_delta_weight(adapter) for adapter in valid_adapters]
|
649 |
+
valid_weights = torch.tensor(valid_weights).to(delta_weight[0].device)
|
650 |
+
if combination_type == "svd":
|
651 |
+
delta_weight = task_arithmetic(delta_weight, valid_weights)
|
652 |
+
elif combination_type == "ties_svd":
|
653 |
+
delta_weight = ties(delta_weight, valid_weights, density, majority_sign_method)
|
654 |
+
elif combination_type == "dare_linear_svd":
|
655 |
+
delta_weight = dare_linear(delta_weight, valid_weights, density)
|
656 |
+
elif combination_type == "dare_ties_svd":
|
657 |
+
delta_weight = dare_ties(delta_weight, valid_weights, density, majority_sign_method)
|
658 |
+
elif combination_type == "magnitude_prune_svd":
|
659 |
+
delta_weight = magnitude_prune(delta_weight, valid_weights, density)
|
660 |
+
else:
|
661 |
+
raise ValueError(f"Invalid value passed to combination type: {combination_type}")
|
662 |
+
|
663 |
+
conv2d = isinstance(target, Conv2d)
|
664 |
+
if conv2d:
|
665 |
+
conv2d_1x1 = target.weight.size()[2:4] == (1, 1)
|
666 |
+
if not conv2d_1x1:
|
667 |
+
delta_weight = delta_weight.flatten(start_dim=1)
|
668 |
+
else:
|
669 |
+
delta_weight = delta_weight.squeeze()
|
670 |
+
if (hasattr(target, "fan_in_fan_out") and target.fan_in_fan_out) or is_embedding:
|
671 |
+
delta_weight = delta_weight.T
|
672 |
+
|
673 |
+
# based on https://github.com/kohya-ss/sd-scripts/blob/main/networks/svd_merge_lora.py#L114-L131
|
674 |
+
U, S, Vh = torch.linalg.svd(delta_weight, full_matrices=full_matrices, driver=driver)
|
675 |
+
U = U[:, :new_rank]
|
676 |
+
S = S[:new_rank]
|
677 |
+
U = U @ torch.diag(S)
|
678 |
+
Vh = Vh[:new_rank, :]
|
679 |
+
if clamp is not None:
|
680 |
+
dist = torch.cat([U.flatten(), Vh.flatten()])
|
681 |
+
hi_val = torch.quantile(dist, clamp)
|
682 |
+
low_val = -hi_val
|
683 |
+
U = U.clamp(low_val, hi_val)
|
684 |
+
Vh = Vh.clamp(low_val, hi_val)
|
685 |
+
if conv2d:
|
686 |
+
U = U.reshape(target_lora_B.data.shape)
|
687 |
+
Vh = Vh.reshape(target_lora_A.data.shape)
|
688 |
+
return Vh, U
|
689 |
+
|
690 |
+
def _generalized_task_arithmetic_weighted_adapter(
|
691 |
+
self,
|
692 |
+
combination_type,
|
693 |
+
adapters,
|
694 |
+
weights,
|
695 |
+
target,
|
696 |
+
density,
|
697 |
+
majority_sign_method,
|
698 |
+
):
|
699 |
+
# account weights for LoRA A and B layers.
|
700 |
+
valid_weights = []
|
701 |
+
lora_A_deltas = []
|
702 |
+
lora_B_deltas = []
|
703 |
+
for adapter, weight in zip(adapters, weights):
|
704 |
+
if adapter in target.lora_A:
|
705 |
+
current_adapter_lora_A = target.lora_A[adapter].weight
|
706 |
+
current_adapter_lora_B = target.lora_B[adapter].weight
|
707 |
+
elif adapter in target.lora_embedding_A:
|
708 |
+
current_adapter_lora_A = target.lora_embedding_A[adapter]
|
709 |
+
current_adapter_lora_B = target.lora_embedding_B[adapter]
|
710 |
+
else:
|
711 |
+
continue
|
712 |
+
valid_weights.append(math.sqrt(weight * target.scaling[adapter]))
|
713 |
+
lora_A_deltas.append(current_adapter_lora_A.data)
|
714 |
+
lora_B_deltas.append(current_adapter_lora_B.data)
|
715 |
+
valid_weights = torch.tensor(valid_weights).to(lora_A_deltas[0].device)
|
716 |
+
lora_deltas = [lora_A_deltas, lora_B_deltas]
|
717 |
+
dtype = lora_A_deltas[0].dtype
|
718 |
+
for i, task_tensors in enumerate(lora_deltas):
|
719 |
+
if combination_type == "linear":
|
720 |
+
lora_deltas[i] = task_arithmetic(task_tensors, valid_weights)
|
721 |
+
elif combination_type == "ties":
|
722 |
+
lora_deltas[i] = ties(task_tensors, valid_weights, density, majority_sign_method)
|
723 |
+
elif combination_type == "dare_linear":
|
724 |
+
lora_deltas[i] = dare_linear(task_tensors, valid_weights, density)
|
725 |
+
elif combination_type == "dare_ties":
|
726 |
+
lora_deltas[i] = dare_ties(task_tensors, valid_weights, density, majority_sign_method)
|
727 |
+
elif combination_type == "magnitude_prune":
|
728 |
+
lora_deltas[i] = magnitude_prune(task_tensors, valid_weights, density)
|
729 |
+
else:
|
730 |
+
raise ValueError("Invalid combination type")
|
731 |
+
lora_deltas = [delta.to(dtype) for delta in lora_deltas]
|
732 |
+
return lora_deltas
|
733 |
+
|
734 |
+
def delete_adapter(self, adapter_name: str) -> None:
|
735 |
+
"""
|
736 |
+
Deletes an existing adapter.
|
737 |
+
|
738 |
+
Args:
|
739 |
+
adapter_name (str): Name of the adapter to be deleted.
|
740 |
+
"""
|
741 |
+
if adapter_name not in list(self.peft_config.keys()):
|
742 |
+
raise ValueError(f"Adapter {adapter_name} does not exist")
|
743 |
+
del self.peft_config[adapter_name]
|
744 |
+
|
745 |
+
key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key]
|
746 |
+
new_adapter = None
|
747 |
+
for key in key_list:
|
748 |
+
_, target, _ = _get_submodules(self.model, key)
|
749 |
+
if isinstance(target, LoraLayer):
|
750 |
+
target.delete_adapter(adapter_name)
|
751 |
+
if new_adapter is None:
|
752 |
+
new_adapter = target.active_adapters[:]
|
753 |
+
|
754 |
+
self.active_adapter = new_adapter or []
|
755 |
+
|
756 |
+
def merge_and_unload(
|
757 |
+
self, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[list[str]] = None
|
758 |
+
) -> torch.nn.Module:
|
759 |
+
r"""
|
760 |
+
This method merges the LoRa layers into the base model. This is needed if someone wants to use the base model
|
761 |
+
as a standalone model.
|
762 |
+
|
763 |
+
Args:
|
764 |
+
progressbar (`bool`):
|
765 |
+
whether to show a progressbar indicating the unload and merge process
|
766 |
+
safe_merge (`bool`):
|
767 |
+
whether to activate the safe merging check to check if there is any potential Nan in the adapter
|
768 |
+
weights
|
769 |
+
adapter_names (`List[str]`, *optional*):
|
770 |
+
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
|
771 |
+
to `None`.
|
772 |
+
Example:
|
773 |
+
|
774 |
+
```py
|
775 |
+
>>> from transformers import AutoModelForCausalLM
|
776 |
+
>>> from peft import PeftModel
|
777 |
+
|
778 |
+
>>> base_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-40b")
|
779 |
+
>>> peft_model_id = "smangrul/falcon-40B-int4-peft-lora-sfttrainer-sample"
|
780 |
+
>>> model = PeftModel.from_pretrained(base_model, peft_model_id)
|
781 |
+
>>> merged_model = model.merge_and_unload()
|
782 |
+
```
|
783 |
+
"""
|
784 |
+
return self._unload_and_optionally_merge(
|
785 |
+
progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names
|
786 |
+
)
|
787 |
+
|
788 |
+
def unload(self) -> torch.nn.Module:
|
789 |
+
"""
|
790 |
+
Gets back the base model by removing all the lora modules without merging. This gives back the original base
|
791 |
+
model.
|
792 |
+
"""
|
793 |
+
return self._unload_and_optionally_merge(merge=False)
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/lora/tp_layer.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import importlib
|
16 |
+
import warnings
|
17 |
+
from typing import Any, Optional
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
import torch.nn.init as init
|
22 |
+
|
23 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
24 |
+
|
25 |
+
from .layer import LoraLayer
|
26 |
+
|
27 |
+
|
28 |
+
class LoraParallelLinear(nn.Module, LoraLayer):
|
29 |
+
"""
|
30 |
+
When the target layer parallel_linear is RowParallelLinear, in order to keep the input and output shapes
|
31 |
+
consistent, we need to split the lora matrix A into rows, and the lora_B at this time should be a complete linear
|
32 |
+
layer; In the same way, when the target layer is ColumnParallelLinear, we perform column segmentation on lora_B,
|
33 |
+
while lora_A is still a complete linear layer.
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
base_layer,
|
39 |
+
adapter_name: str,
|
40 |
+
backend,
|
41 |
+
r: int = 0,
|
42 |
+
lora_alpha: int = 1,
|
43 |
+
lora_dropout: float = 0.0,
|
44 |
+
fan_in_fan_out: bool = False,
|
45 |
+
init_lora_weights: bool = True,
|
46 |
+
use_rslora: bool = False,
|
47 |
+
use_dora: bool = False,
|
48 |
+
**kwargs,
|
49 |
+
):
|
50 |
+
super().__init__()
|
51 |
+
LoraLayer.__init__(self, base_layer=base_layer)
|
52 |
+
|
53 |
+
if use_dora:
|
54 |
+
raise ValueError(f"{self.__class__.__name__} does not support DoRA yet, please set it to False")
|
55 |
+
|
56 |
+
self.backend = backend
|
57 |
+
self.is_parallel_a = isinstance(base_layer, backend.RowParallelLinear)
|
58 |
+
self.fan_in_fan_out = fan_in_fan_out
|
59 |
+
self._active_adapter = adapter_name
|
60 |
+
|
61 |
+
megatron_config = kwargs["megatron_config"]
|
62 |
+
parallel_linear_kwargs = {"megatron_config": megatron_config}
|
63 |
+
init_method = init.xavier_normal_
|
64 |
+
if hasattr(megatron_config, "init_method"):
|
65 |
+
init_method = megatron_config.init_method
|
66 |
+
input_is_parallel = True
|
67 |
+
gather_output = False
|
68 |
+
if isinstance(base_layer, self.backend.RowParallelLinear):
|
69 |
+
input_is_parallel = base_layer.input_is_parallel
|
70 |
+
else:
|
71 |
+
gather_output = base_layer.gather_output
|
72 |
+
self.update_layer(
|
73 |
+
adapter_name,
|
74 |
+
r,
|
75 |
+
lora_alpha=lora_alpha,
|
76 |
+
lora_dropout=lora_dropout,
|
77 |
+
init_lora_weights=init_lora_weights,
|
78 |
+
use_rslora=use_rslora,
|
79 |
+
use_dora=use_dora,
|
80 |
+
init_method=init_method,
|
81 |
+
input_is_parallel=input_is_parallel,
|
82 |
+
gather_output=gather_output,
|
83 |
+
**parallel_linear_kwargs,
|
84 |
+
)
|
85 |
+
|
86 |
+
self.is_target_conv_1d_layer = False
|
87 |
+
|
88 |
+
def update_layer(
|
89 |
+
self,
|
90 |
+
adapter_name,
|
91 |
+
r,
|
92 |
+
lora_alpha,
|
93 |
+
lora_dropout,
|
94 |
+
init_lora_weights,
|
95 |
+
use_rslora,
|
96 |
+
use_dora=False,
|
97 |
+
init_method=init.xavier_normal_,
|
98 |
+
input_is_parallel=True,
|
99 |
+
gather_output=False,
|
100 |
+
**parallel_linear_kwargs,
|
101 |
+
):
|
102 |
+
if r <= 0:
|
103 |
+
raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")
|
104 |
+
self.r[adapter_name] = r
|
105 |
+
self.lora_alpha[adapter_name] = lora_alpha
|
106 |
+
if lora_dropout > 0.0:
|
107 |
+
lora_dropout_layer = nn.Dropout(p=lora_dropout)
|
108 |
+
else:
|
109 |
+
lora_dropout_layer = nn.Identity()
|
110 |
+
|
111 |
+
self.lora_dropout[adapter_name] = lora_dropout_layer
|
112 |
+
|
113 |
+
megatron_config = parallel_linear_kwargs["megatron_config"]
|
114 |
+
# lora needs to be forced to upgrade to 32-bit precision, otherwise it will overflow
|
115 |
+
megatron_config.params_dtype = torch.float32
|
116 |
+
if self.is_parallel_a:
|
117 |
+
lora_a = self.backend.RowParallelLinear(
|
118 |
+
input_size=self.in_features,
|
119 |
+
output_size=r,
|
120 |
+
bias=False,
|
121 |
+
input_is_parallel=input_is_parallel,
|
122 |
+
skip_bias_add=True,
|
123 |
+
init_method=init_method,
|
124 |
+
config=megatron_config,
|
125 |
+
)
|
126 |
+
lora_b = nn.Linear(in_features=r, out_features=self.out_features, bias=False, dtype=torch.float32)
|
127 |
+
else:
|
128 |
+
lora_a = nn.Linear(in_features=self.in_features, out_features=r, bias=False, dtype=torch.float32)
|
129 |
+
lora_b = self.backend.ColumnParallelLinear(
|
130 |
+
input_size=r,
|
131 |
+
output_size=self.out_features,
|
132 |
+
bias=False,
|
133 |
+
gather_output=gather_output,
|
134 |
+
init_method=init_method,
|
135 |
+
config=megatron_config,
|
136 |
+
)
|
137 |
+
self.lora_A[adapter_name] = lora_a
|
138 |
+
self.lora_B[adapter_name] = lora_b
|
139 |
+
if use_rslora:
|
140 |
+
self.scaling[adapter_name] = lora_alpha / (r**0.5)
|
141 |
+
else:
|
142 |
+
self.scaling[adapter_name] = lora_alpha / r
|
143 |
+
if init_lora_weights:
|
144 |
+
self.reset_lora_parameters(adapter_name, init_lora_weights)
|
145 |
+
|
146 |
+
weight = getattr(self.get_base_layer(), "weight", None)
|
147 |
+
if weight is not None:
|
148 |
+
# the layer is already completely initialized, this is an update
|
149 |
+
if weight.dtype.is_floating_point or weight.dtype.is_complex:
|
150 |
+
self.to(weight.device, dtype=weight.dtype)
|
151 |
+
else:
|
152 |
+
self.to(weight.device)
|
153 |
+
self.set_adapter(self.active_adapters)
|
154 |
+
|
155 |
+
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any):
|
156 |
+
previous_dtype = x.dtype
|
157 |
+
# If weight is used for matrix multiplication here, the final aggregation operation of the original
|
158 |
+
# parallel_linear layer will be missing, so we need to directly call its forward function to obtain the
|
159 |
+
# output of the original parallel_linear layer.
|
160 |
+
if self.disable_adapters:
|
161 |
+
if self.merged:
|
162 |
+
self.unmerge()
|
163 |
+
result, bias = self.base_layer(x, *args, **kwargs)
|
164 |
+
elif self.merged:
|
165 |
+
result, bias = self.base_layer(x, *args, **kwargs)
|
166 |
+
else:
|
167 |
+
result, bias = self.base_layer(x, *args, **kwargs)
|
168 |
+
for active_adapter in self.active_adapters:
|
169 |
+
if active_adapter not in self.lora_A.keys():
|
170 |
+
continue
|
171 |
+
lora_A = self.lora_A[active_adapter]
|
172 |
+
lora_B = self.lora_B[active_adapter]
|
173 |
+
dropout = self.lora_dropout[active_adapter]
|
174 |
+
scaling = self.scaling[active_adapter]
|
175 |
+
x = x.to(lora_A.weight.dtype)
|
176 |
+
|
177 |
+
lora_result = lora_A(dropout(x))
|
178 |
+
if isinstance(lora_result, tuple):
|
179 |
+
lora_result = lora_result[0]
|
180 |
+
lora_result = lora_B(lora_result)
|
181 |
+
if isinstance(lora_result, tuple):
|
182 |
+
lora_result = lora_result[0]
|
183 |
+
lora_result = lora_result * scaling
|
184 |
+
|
185 |
+
result = result + lora_result
|
186 |
+
|
187 |
+
result = result.to(previous_dtype)
|
188 |
+
return result, bias
|
189 |
+
|
190 |
+
|
191 |
+
def dispatch_megatron(
|
192 |
+
target: torch.nn.Module,
|
193 |
+
adapter_name: str,
|
194 |
+
lora_config,
|
195 |
+
**kwargs: Any,
|
196 |
+
) -> Optional[torch.nn.Module]:
|
197 |
+
new_module = None
|
198 |
+
|
199 |
+
if isinstance(target, BaseTunerLayer):
|
200 |
+
target_base_layer = target.get_base_layer()
|
201 |
+
else:
|
202 |
+
target_base_layer = target
|
203 |
+
|
204 |
+
if lora_config.megatron_config:
|
205 |
+
megatron_core = importlib.import_module(lora_config.megatron_core)
|
206 |
+
else:
|
207 |
+
megatron_core = None
|
208 |
+
|
209 |
+
if megatron_core and isinstance(
|
210 |
+
target_base_layer,
|
211 |
+
(megatron_core.tensor_parallel.ColumnParallelLinear, megatron_core.tensor_parallel.RowParallelLinear),
|
212 |
+
):
|
213 |
+
megatron_kwargs = kwargs.copy()
|
214 |
+
megatron_config = lora_config.megatron_config
|
215 |
+
if isinstance(megatron_config, dict):
|
216 |
+
transformer_config_class = megatron_core.transformer.transformer_config.TransformerConfig
|
217 |
+
megatron_config = transformer_config_class(**lora_config.megatron_config)
|
218 |
+
megatron_kwargs["megatron_config"] = megatron_config
|
219 |
+
if megatron_kwargs["fan_in_fan_out"]:
|
220 |
+
warnings.warn(
|
221 |
+
"fan_in_fan_out is set to True but the target module is `ColumnParallelLinear` "
|
222 |
+
"or `RowParallelLinear`. "
|
223 |
+
"Setting fan_in_fan_out to False."
|
224 |
+
)
|
225 |
+
megatron_kwargs["fan_in_fan_out"] = lora_config.fan_in_fan_out = False
|
226 |
+
new_module = LoraParallelLinear(
|
227 |
+
base_layer=target, adapter_name=adapter_name, backend=megatron_core.tensor_parallel, **megatron_kwargs
|
228 |
+
)
|
229 |
+
|
230 |
+
return new_module
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/lycoris_utils.py
ADDED
@@ -0,0 +1,428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from __future__ import annotations
|
15 |
+
|
16 |
+
import warnings
|
17 |
+
from abc import abstractmethod
|
18 |
+
from dataclasses import dataclass, field
|
19 |
+
from typing import Any, Optional, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn as nn
|
23 |
+
from tqdm import tqdm
|
24 |
+
|
25 |
+
from peft.config import PeftConfig
|
26 |
+
from peft.utils import (
|
27 |
+
ModulesToSaveWrapper,
|
28 |
+
_get_submodules,
|
29 |
+
)
|
30 |
+
|
31 |
+
from .tuners_utils import BaseTuner, BaseTunerLayer, check_adapters_to_merge, check_target_module_exists
|
32 |
+
|
33 |
+
|
34 |
+
@dataclass
|
35 |
+
class LycorisConfig(PeftConfig):
|
36 |
+
r"""
|
37 |
+
A base config for LyCORIS like adapters
|
38 |
+
"""
|
39 |
+
|
40 |
+
rank_pattern: Optional[dict] = field(
|
41 |
+
default_factory=dict,
|
42 |
+
metadata={
|
43 |
+
"help": (
|
44 |
+
"The mapping from layer names or regexp expression to ranks which are different from the default rank specified by `r`. "
|
45 |
+
"For example, `{model.decoder.layers.0.encoder_attn.k_proj: 8`}"
|
46 |
+
)
|
47 |
+
},
|
48 |
+
)
|
49 |
+
alpha_pattern: Optional[dict] = field(
|
50 |
+
default_factory=dict,
|
51 |
+
metadata={
|
52 |
+
"help": (
|
53 |
+
"The mapping from layer names or regexp expression to alphas which are different from the default alpha specified by `alpha`. "
|
54 |
+
"For example, `{model.decoder.layers.0.encoder_attn.k_proj: 32`}"
|
55 |
+
)
|
56 |
+
},
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
class LycorisLayer(BaseTunerLayer):
|
61 |
+
r"""
|
62 |
+
A base layer for LyCORIS like adapters
|
63 |
+
"""
|
64 |
+
|
65 |
+
# adapter_layer_names needs to be defined on the child class
|
66 |
+
other_param_names = ("r", "alpha", "scaling", "rank_dropout", "module_dropout")
|
67 |
+
|
68 |
+
def __init__(self, base_layer: nn.Module) -> None:
|
69 |
+
self.base_layer = base_layer
|
70 |
+
self.r = {}
|
71 |
+
self.alpha = {}
|
72 |
+
self.scaling = {}
|
73 |
+
self.rank_dropout = {}
|
74 |
+
self.module_dropout = {}
|
75 |
+
|
76 |
+
# Tuner info
|
77 |
+
self._disable_adapters = False
|
78 |
+
self.merged_adapters = []
|
79 |
+
|
80 |
+
@property
|
81 |
+
@abstractmethod
|
82 |
+
def _available_adapters(self) -> set[str]:
|
83 |
+
...
|
84 |
+
|
85 |
+
def _init_empty_weights(self, cls, *args, **kwargs) -> None:
|
86 |
+
# A helper method that allows to initialize the layer of the given class without spending time to initialize the
|
87 |
+
# model weights. The implementation is inspired by
|
88 |
+
# https://pytorch.org/docs/stable/generated/torch.nn.utils.skip_init.html but this function cannot be used
|
89 |
+
# directly.
|
90 |
+
# Instead of this approach, it would be possible to bypass the __init__ of the class but that runs the risk of
|
91 |
+
# omitting important logic inside that __init__.
|
92 |
+
kwargs = kwargs.copy()
|
93 |
+
final_device = kwargs.pop("device", "cpu")
|
94 |
+
cls.__init__(self, *args, device="meta", **kwargs)
|
95 |
+
self.to_empty(device=final_device)
|
96 |
+
|
97 |
+
@abstractmethod
|
98 |
+
def create_adapter_parameters(self, adapter_name: str, r: int, **kwargs):
|
99 |
+
...
|
100 |
+
|
101 |
+
# TODO: refactor LoRA to use the same approach
|
102 |
+
@abstractmethod
|
103 |
+
def _get_delta_activations(self, adapter_name: str, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
|
104 |
+
"""Activations added on top of the base layer output (i.e. after the base layer forward pass)"""
|
105 |
+
|
106 |
+
@abstractmethod
|
107 |
+
def get_delta_weight(self, adapter_name: str) -> torch.Tensor:
|
108 |
+
...
|
109 |
+
|
110 |
+
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
|
111 |
+
"""
|
112 |
+
Merge the active adapter weights into the base weights
|
113 |
+
|
114 |
+
Args:
|
115 |
+
safe_merge (`bool`, *optional*):
|
116 |
+
If `True`, the merge operation will be performed in a copy of the original weights and check for NaNs
|
117 |
+
before merging the weights. This is useful if you want to check if the merge operation will produce
|
118 |
+
NaNs. Defaults to `False`.
|
119 |
+
adapter_names (`List[str]`, *optional*):
|
120 |
+
The list of adapter names that should be merged. If `None`, all active adapters will be merged.
|
121 |
+
Defaults to `None`.
|
122 |
+
"""
|
123 |
+
adapter_names = check_adapters_to_merge(self, adapter_names)
|
124 |
+
if not adapter_names:
|
125 |
+
# no adapter to merge
|
126 |
+
return
|
127 |
+
|
128 |
+
for active_adapter in adapter_names:
|
129 |
+
if active_adapter in self._available_adapters:
|
130 |
+
base_layer = self.get_base_layer()
|
131 |
+
if safe_merge:
|
132 |
+
orig_weights = base_layer.weight.data.clone()
|
133 |
+
orig_weights += self.get_delta_weight(active_adapter)
|
134 |
+
|
135 |
+
if not torch.isfinite(orig_weights).all():
|
136 |
+
raise ValueError(
|
137 |
+
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
|
138 |
+
)
|
139 |
+
|
140 |
+
base_layer.weight.data = orig_weights
|
141 |
+
else:
|
142 |
+
base_layer.weight.data += self.get_delta_weight(active_adapter)
|
143 |
+
self.merged_adapters.append(active_adapter)
|
144 |
+
|
145 |
+
@abstractmethod
|
146 |
+
def reset_adapter_parameters(self, adapter_name: str):
|
147 |
+
...
|
148 |
+
|
149 |
+
def set_scale(self, adapter, scale):
|
150 |
+
if adapter not in self._available_adapters:
|
151 |
+
# Ignore the case where the adapter is not in the layer
|
152 |
+
return
|
153 |
+
self.scaling[adapter] = scale * self.alpha[adapter] / self.r[adapter]
|
154 |
+
|
155 |
+
def scale_layer(self, scale: float) -> None:
|
156 |
+
if scale == 1:
|
157 |
+
return
|
158 |
+
|
159 |
+
for active_adapter in self.active_adapters:
|
160 |
+
if active_adapter not in self._available_adapters:
|
161 |
+
continue
|
162 |
+
|
163 |
+
self.scaling[active_adapter] *= scale
|
164 |
+
|
165 |
+
def unmerge(self) -> None:
|
166 |
+
"""
|
167 |
+
This method unmerges all merged adapter layers from the base weights.
|
168 |
+
"""
|
169 |
+
if not self.merged:
|
170 |
+
warnings.warn("Already unmerged. Nothing to do.")
|
171 |
+
return
|
172 |
+
while len(self.merged_adapters) > 0:
|
173 |
+
active_adapter = self.merged_adapters.pop()
|
174 |
+
if active_adapter in self._available_adapters:
|
175 |
+
self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter)
|
176 |
+
|
177 |
+
def unscale_layer(self, scale=None) -> None:
|
178 |
+
for active_adapter in self.active_adapters:
|
179 |
+
if active_adapter not in self._available_adapters:
|
180 |
+
continue
|
181 |
+
|
182 |
+
if scale is None:
|
183 |
+
self.scaling[active_adapter] = self.alpha[active_adapter] / self.r[active_adapter]
|
184 |
+
else:
|
185 |
+
self.scaling[active_adapter] /= scale
|
186 |
+
|
187 |
+
@abstractmethod
|
188 |
+
def update_layer(self, adapter_name: str, r: int, alpha: float, **kwargs):
|
189 |
+
...
|
190 |
+
|
191 |
+
|
192 |
+
class LycorisTuner(BaseTuner):
|
193 |
+
r"""
|
194 |
+
A base tuner for LyCORIS like adapters
|
195 |
+
"""
|
196 |
+
|
197 |
+
prefix: str
|
198 |
+
layers_mapping: dict[type[torch.nn.Module], type[LycorisLayer]]
|
199 |
+
|
200 |
+
def __init__(self, model, config, adapter_name):
|
201 |
+
super().__init__(model, config, adapter_name)
|
202 |
+
|
203 |
+
def __getattr__(self, name: str):
|
204 |
+
"""Forward missing attributes to the wrapped module."""
|
205 |
+
try:
|
206 |
+
return super().__getattr__(name) # defer to nn.Module's logic
|
207 |
+
except AttributeError:
|
208 |
+
return getattr(self.model, name)
|
209 |
+
|
210 |
+
@staticmethod
|
211 |
+
def _check_target_module_exists(config, key):
|
212 |
+
return check_target_module_exists(config, key)
|
213 |
+
|
214 |
+
@abstractmethod
|
215 |
+
def _create_and_replace(
|
216 |
+
self,
|
217 |
+
config: LycorisConfig,
|
218 |
+
adapter_name: str,
|
219 |
+
target: Union[LycorisLayer, nn.Module],
|
220 |
+
target_name,
|
221 |
+
parent,
|
222 |
+
current_key,
|
223 |
+
):
|
224 |
+
...
|
225 |
+
|
226 |
+
@classmethod
|
227 |
+
def _create_new_module(cls, config: LycorisConfig, adapter_name: str, target: nn.Module, **kwargs) -> LycorisLayer:
|
228 |
+
# Find corresponding subtype of provided target module
|
229 |
+
new_module_cls = None
|
230 |
+
for subtype, target_cls in cls.layers_mapping.items():
|
231 |
+
if (
|
232 |
+
hasattr(target, "base_layer")
|
233 |
+
and isinstance(target.get_base_layer(), subtype)
|
234 |
+
and isinstance(target, BaseTunerLayer)
|
235 |
+
):
|
236 |
+
# nested tuner layers are allowed
|
237 |
+
new_module_cls = target_cls
|
238 |
+
break
|
239 |
+
elif isinstance(target, subtype):
|
240 |
+
new_module_cls = target_cls
|
241 |
+
break
|
242 |
+
|
243 |
+
# We didn't find corresponding type, so adapter for this layer is not supported
|
244 |
+
if new_module_cls is None:
|
245 |
+
supported_modules = ", ".join(layer.__name__ for layer in cls.layers_mapping.keys())
|
246 |
+
raise ValueError(
|
247 |
+
f"Target module of type {type(target)} not supported, "
|
248 |
+
f"currently only adapters for {supported_modules} are supported"
|
249 |
+
)
|
250 |
+
|
251 |
+
if isinstance(target, BaseTunerLayer):
|
252 |
+
target_base_layer = target.get_base_layer()
|
253 |
+
else:
|
254 |
+
target_base_layer = target
|
255 |
+
|
256 |
+
if isinstance(target_base_layer, torch.nn.Conv2d):
|
257 |
+
new_module = new_module_cls(target, adapter_name=adapter_name, **kwargs)
|
258 |
+
elif isinstance(target_base_layer, torch.nn.Linear):
|
259 |
+
new_module = new_module_cls(target, adapter_name=adapter_name, **kwargs)
|
260 |
+
else:
|
261 |
+
supported_modules = ", ".join(layer.__name__ for layer in cls.layers_mapping.keys())
|
262 |
+
raise ValueError(
|
263 |
+
f"Target module of type {type(target)} not supported, "
|
264 |
+
f"currently only adapters for {supported_modules} are supported"
|
265 |
+
)
|
266 |
+
|
267 |
+
return new_module
|
268 |
+
|
269 |
+
def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None:
|
270 |
+
for n, p in model.named_parameters():
|
271 |
+
if self.prefix not in n:
|
272 |
+
p.requires_grad = False
|
273 |
+
|
274 |
+
@staticmethod
|
275 |
+
def _prepare_adapter_config(peft_config, model_config):
|
276 |
+
if peft_config.target_modules is None:
|
277 |
+
raise ValueError("Please specify `target_modules` in `peft_config`")
|
278 |
+
return peft_config
|
279 |
+
|
280 |
+
def _replace_module(self, parent, child_name, new_module, child):
|
281 |
+
setattr(parent, child_name, new_module)
|
282 |
+
# It's not necessary to set requires_grad here, as that is handled by
|
283 |
+
# _mark_only_adapters_as_trainable
|
284 |
+
|
285 |
+
if not hasattr(new_module, "base_layer"):
|
286 |
+
new_module.weight = child.weight
|
287 |
+
if hasattr(child, "bias"):
|
288 |
+
new_module.bias = child.bias
|
289 |
+
|
290 |
+
if getattr(child, "state", None) is not None:
|
291 |
+
if hasattr(new_module, "base_layer"):
|
292 |
+
new_module.base_layer.state = child.state
|
293 |
+
else:
|
294 |
+
new_module.state = child.state
|
295 |
+
new_module.to(child.weight.device)
|
296 |
+
|
297 |
+
# dispatch to correct device
|
298 |
+
for name, module in new_module.named_modules():
|
299 |
+
if self.prefix in name:
|
300 |
+
module.to(child.weight.device)
|
301 |
+
|
302 |
+
def _set_adapter_layers(self, enabled=True):
|
303 |
+
for module in self.model.modules():
|
304 |
+
if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)):
|
305 |
+
module.enable_adapters(enabled)
|
306 |
+
|
307 |
+
def _unload_and_optionally_merge(
|
308 |
+
self,
|
309 |
+
merge: bool = True,
|
310 |
+
progressbar: bool = False,
|
311 |
+
safe_merge: bool = False,
|
312 |
+
adapter_names: Optional[list[str]] = None,
|
313 |
+
):
|
314 |
+
if merge:
|
315 |
+
if getattr(self.model, "quantization_method", None) == "gptq":
|
316 |
+
raise ValueError("Cannot merge LOHA layers when the model is gptq quantized")
|
317 |
+
|
318 |
+
self._unloading_checks(adapter_names)
|
319 |
+
key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key]
|
320 |
+
desc = "Unloading " + ("and merging " if merge else "") + "model"
|
321 |
+
for key in tqdm(key_list, disable=not progressbar, desc=desc):
|
322 |
+
try:
|
323 |
+
parent, target, target_name = _get_submodules(self.model, key)
|
324 |
+
except AttributeError:
|
325 |
+
continue
|
326 |
+
|
327 |
+
if hasattr(target, "base_layer"):
|
328 |
+
if merge:
|
329 |
+
target.merge(safe_merge=safe_merge, adapter_names=adapter_names)
|
330 |
+
self._replace_module(parent, target_name, target.get_base_layer(), target)
|
331 |
+
elif isinstance(target, ModulesToSaveWrapper):
|
332 |
+
# save any additional trainable modules part of `modules_to_save`
|
333 |
+
new_module = target.modules_to_save[target.active_adapter]
|
334 |
+
if hasattr(new_module, "base_layer"):
|
335 |
+
# check if the module is itself a tuner layer
|
336 |
+
if merge:
|
337 |
+
new_module.merge(safe_merge=safe_merge, adapter_names=adapter_names)
|
338 |
+
new_module = new_module.get_base_layer()
|
339 |
+
setattr(parent, target_name, new_module)
|
340 |
+
|
341 |
+
return self.model
|
342 |
+
|
343 |
+
def enable_adapter_layers(self) -> None:
|
344 |
+
"""Enable all adapters.
|
345 |
+
|
346 |
+
Call this if you have previously disabled all adapters and want to re-enable them.
|
347 |
+
"""
|
348 |
+
self._set_adapter_layers(enabled=True)
|
349 |
+
|
350 |
+
def disable_adapter_layers(self) -> None:
|
351 |
+
"""Disable all adapters.
|
352 |
+
|
353 |
+
When disabling all adapters, the model output corresponds to the output of the base model.
|
354 |
+
"""
|
355 |
+
self._set_adapter_layers(enabled=False)
|
356 |
+
|
357 |
+
def merge_and_unload(
|
358 |
+
self, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[list[str]] = None
|
359 |
+
) -> torch.nn.Module:
|
360 |
+
r"""
|
361 |
+
This method merges the adapter layers into the base model. This is needed if someone wants to use the base
|
362 |
+
model as a standalone model.
|
363 |
+
|
364 |
+
Args:
|
365 |
+
progressbar (`bool`):
|
366 |
+
whether to show a progressbar indicating the unload and merge process
|
367 |
+
safe_merge (`bool`):
|
368 |
+
whether to activate the safe merging check to check if there is any potential Nan in the adapter
|
369 |
+
weights
|
370 |
+
adapter_names (`List[str]`, *optional*):
|
371 |
+
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
|
372 |
+
to `None`.
|
373 |
+
|
374 |
+
"""
|
375 |
+
return self._unload_and_optionally_merge(
|
376 |
+
progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names
|
377 |
+
)
|
378 |
+
|
379 |
+
def unload(self) -> torch.nn.Module:
|
380 |
+
"""
|
381 |
+
Gets back the base model by removing all the lora modules without merging. This gives back the original base
|
382 |
+
model.
|
383 |
+
"""
|
384 |
+
return self._unload_and_optionally_merge(merge=False)
|
385 |
+
|
386 |
+
def set_adapter(self, adapter_name: str | list[str]) -> None:
|
387 |
+
"""Set the active adapter(s).
|
388 |
+
|
389 |
+
Additionally, this function will set the specified adapters to trainable (i.e., requires_grad=True). If this is
|
390 |
+
not desired, use the following code.
|
391 |
+
|
392 |
+
```py
|
393 |
+
>>> for name, param in model_peft.named_parameters():
|
394 |
+
... if ...: # some check on name (ex. if 'lora' in name)
|
395 |
+
... param.requires_grad = False
|
396 |
+
```
|
397 |
+
|
398 |
+
Args:
|
399 |
+
adapter_name (`str` or `list[str]`): Name of the adapter(s) to be activated.
|
400 |
+
"""
|
401 |
+
for module in self.model.modules():
|
402 |
+
if isinstance(module, LycorisLayer):
|
403 |
+
if module.merged:
|
404 |
+
warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.")
|
405 |
+
module.unmerge()
|
406 |
+
module.set_adapter(adapter_name)
|
407 |
+
|
408 |
+
def delete_adapter(self, adapter_name: str) -> None:
|
409 |
+
"""
|
410 |
+
Deletes an existing adapter.
|
411 |
+
|
412 |
+
Args:
|
413 |
+
adapter_name (`str`): Name of the adapter to be deleted.
|
414 |
+
"""
|
415 |
+
if adapter_name not in list(self.peft_config.keys()):
|
416 |
+
raise ValueError(f"Adapter {adapter_name} does not exist")
|
417 |
+
del self.peft_config[adapter_name]
|
418 |
+
|
419 |
+
key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key]
|
420 |
+
new_adapter = None
|
421 |
+
for key in key_list:
|
422 |
+
_, target, _ = _get_submodules(self.model, key)
|
423 |
+
if isinstance(target, LycorisLayer):
|
424 |
+
target.delete_adapter(adapter_name)
|
425 |
+
if new_adapter is None:
|
426 |
+
new_adapter = target.active_adapters[:]
|
427 |
+
|
428 |
+
self.active_adapter = new_adapter or []
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/mixed/__init__.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from .model import COMPATIBLE_TUNER_TYPES, MixedModel
|
16 |
+
|
17 |
+
|
18 |
+
__all__ = ["COMPATIBLE_TUNER_TYPES", "MixedModel"]
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/mixed/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (292 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/mixed/__pycache__/model.cpython-310.pyc
ADDED
Binary file (12.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/mixed/model.py
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from __future__ import annotations
|
15 |
+
|
16 |
+
import warnings
|
17 |
+
from typing import Any, Optional, Union
|
18 |
+
|
19 |
+
from torch import nn
|
20 |
+
from tqdm import tqdm
|
21 |
+
|
22 |
+
from peft.tuners import adalora, loha, lokr, lora, oft
|
23 |
+
from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists
|
24 |
+
from peft.utils import (
|
25 |
+
TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING,
|
26 |
+
ModulesToSaveWrapper,
|
27 |
+
PeftType,
|
28 |
+
_get_submodules,
|
29 |
+
get_auto_gptq_quant_linear,
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
# Collection of constants used for all tuners
|
34 |
+
COMPATIBLE_TUNER_TYPES = (PeftType.LORA, PeftType.LOHA, PeftType.LOKR, PeftType.ADALORA, PeftType.OFT)
|
35 |
+
PREFIXES = [lora.LoraModel.prefix, lokr.LoKrModel.prefix, loha.LoHaModel.prefix, oft.OFTModel.prefix]
|
36 |
+
Configs = Union[lora.LoraConfig, loha.LoHaConfig, lokr.LoKrConfig, adalora.AdaLoraConfig, oft.OFTConfig]
|
37 |
+
Layers = (lora.layer.LoraLayer, loha.layer.LoHaLayer, lokr.layer.LoKrLayer, adalora.layer.AdaLoraLayer, oft.OFTLayer)
|
38 |
+
|
39 |
+
|
40 |
+
class MixedModel(BaseTuner):
|
41 |
+
"""
|
42 |
+
A class that allows to mix different types of adapters in a single model.
|
43 |
+
|
44 |
+
Note: This class should usually not be initialized directly. Instead, use `get_peft_model` with the argument
|
45 |
+
`mixed=True`.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
model (:obj:`nn.Module`):
|
49 |
+
The model to be tuned.
|
50 |
+
config (:obj:`PeftConfig`):
|
51 |
+
The config of the model to be tuned. The adapter type must be compatible.
|
52 |
+
adapter_name (:obj:`str`):
|
53 |
+
The name of the first adapter.
|
54 |
+
"""
|
55 |
+
|
56 |
+
def __init__(self, model: nn.Module, config: Configs, adapter_name: str) -> None:
|
57 |
+
super().__init__(model, config, adapter_name)
|
58 |
+
|
59 |
+
def _check_new_adapter_config(self, config: Configs) -> None:
|
60 |
+
"""
|
61 |
+
A helper method to check the config when a new adapter is being added.
|
62 |
+
|
63 |
+
Raise a ValueError if there is something wrong with the config or if it conflicts with existing adapters.
|
64 |
+
|
65 |
+
"""
|
66 |
+
if not isinstance(config, Configs.__args__):
|
67 |
+
raise ValueError(
|
68 |
+
f"{self.__class__.__name__} only supports {COMPATIBLE_TUNER_TYPES} configs, but got {type(config)}."
|
69 |
+
)
|
70 |
+
|
71 |
+
biases = (getattr(config, "bias", None) for config in self.peft_config)
|
72 |
+
biases = [bias for bias in biases if bias not in (None, "none")]
|
73 |
+
if len(biases) > 1:
|
74 |
+
raise ValueError(
|
75 |
+
f"{self.__class__.__name__} supports only 1 adapter with bias. When using multiple adapters, "
|
76 |
+
"set bias to 'none' for all adapters."
|
77 |
+
)
|
78 |
+
|
79 |
+
@staticmethod
|
80 |
+
def _check_target_module_exists(config: Configs, key: str):
|
81 |
+
return check_target_module_exists(config, key)
|
82 |
+
|
83 |
+
def _create_and_replace(
|
84 |
+
self,
|
85 |
+
config: Configs,
|
86 |
+
*args: Any,
|
87 |
+
**kwargs: Any,
|
88 |
+
) -> None:
|
89 |
+
if isinstance(config, adalora.AdaLoraConfig):
|
90 |
+
adalora.AdaLoraModel._create_and_replace(self, config, *args, **kwargs)
|
91 |
+
elif isinstance(config, lora.LoraConfig):
|
92 |
+
lora.LoraModel._create_and_replace(self, config, *args, **kwargs)
|
93 |
+
elif isinstance(config, loha.LoHaConfig):
|
94 |
+
loha.LoHaModel._create_and_replace(self, config, *args, **kwargs)
|
95 |
+
elif isinstance(config, lokr.LoKrConfig):
|
96 |
+
lokr.LoKrModel._create_and_replace(self, config, *args, **kwargs)
|
97 |
+
elif isinstance(config, oft.OFTConfig):
|
98 |
+
oft.OFTModel._create_and_replace(self, config, *args, **kwargs)
|
99 |
+
else:
|
100 |
+
raise ValueError(f"Unsupported config type {type(config)}, should be one of {COMPATIBLE_TUNER_TYPES}.")
|
101 |
+
|
102 |
+
def _replace_module(self, parent, child_name, new_module, child) -> None:
|
103 |
+
setattr(parent, child_name, new_module)
|
104 |
+
# It's not necessary to set requires_grad here, as that is handled by
|
105 |
+
# _mark_only_adapters_as_trainable
|
106 |
+
|
107 |
+
# child layer wraps the original module, unpack it
|
108 |
+
if hasattr(child, "base_layer"):
|
109 |
+
child = child.get_base_layer()
|
110 |
+
elif hasattr(child, "quant_linear_module"):
|
111 |
+
# TODO maybe not necessary to have special treatment?
|
112 |
+
child = child.quant_linear_module
|
113 |
+
|
114 |
+
if not hasattr(new_module, "base_layer"):
|
115 |
+
new_module.weight = child.weight
|
116 |
+
if hasattr(child, "bias"):
|
117 |
+
new_module.bias = child.bias
|
118 |
+
|
119 |
+
if getattr(child, "state", None) is not None:
|
120 |
+
if hasattr(new_module, "base_layer"):
|
121 |
+
new_module.base_layer.state = child.state
|
122 |
+
else:
|
123 |
+
new_module.state = child.state
|
124 |
+
new_module.to(child.weight.device)
|
125 |
+
|
126 |
+
# dispatch to correct device
|
127 |
+
for name, module in new_module.named_modules():
|
128 |
+
if any(prefix in name for prefix in PREFIXES):
|
129 |
+
module.to(child.weight.device)
|
130 |
+
if "ranknum" in name:
|
131 |
+
module.to(child.weight.device)
|
132 |
+
|
133 |
+
def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None:
|
134 |
+
for n, p in model.named_parameters():
|
135 |
+
if not any(prefix in n for prefix in PREFIXES):
|
136 |
+
p.requires_grad = False
|
137 |
+
|
138 |
+
for active_adapter in self.active_adapters:
|
139 |
+
bias = getattr(self.peft_config[active_adapter], "bias", "none")
|
140 |
+
if bias == "none":
|
141 |
+
continue
|
142 |
+
|
143 |
+
if bias == "all":
|
144 |
+
for n, p in model.named_parameters():
|
145 |
+
if "bias" in n:
|
146 |
+
p.requires_grad = True
|
147 |
+
elif bias == "lora_only":
|
148 |
+
# TODO: check if this is needed for other supported types
|
149 |
+
for m in model.modules():
|
150 |
+
if isinstance(m, Layers) and hasattr(m, "bias") and m.bias is not None:
|
151 |
+
m.bias.requires_grad = True
|
152 |
+
else:
|
153 |
+
raise ValueError(f"Requested bias: {bias}, is not implemented.")
|
154 |
+
|
155 |
+
@staticmethod
|
156 |
+
def _create_new_module(config, adapter_name, target, **kwargs):
|
157 |
+
gptq_quantization_config = kwargs.get("gptq_quantization_config", None)
|
158 |
+
AutoGPTQQuantLinear = get_auto_gptq_quant_linear(gptq_quantization_config)
|
159 |
+
if (gptq_quantization_config is not None) or (AutoGPTQQuantLinear is not None):
|
160 |
+
raise ValueError(f"GPTQ quantization not supported for {config.peft_type.value} (yet).")
|
161 |
+
|
162 |
+
loaded_in_8bit = kwargs.pop("loaded_in_8bit", False)
|
163 |
+
loaded_in_4bit = kwargs.pop("loaded_in_4bit", False)
|
164 |
+
if loaded_in_8bit or loaded_in_4bit:
|
165 |
+
raise ValueError(f"8bit and 4bit quantization not supported for {config.peft_type.value} (yet).")
|
166 |
+
|
167 |
+
if isinstance(config, adalora.AdaLoraConfig):
|
168 |
+
new_module = adalora.AdaLoraModel._create_new_module(config, adapter_name, target, **kwargs)
|
169 |
+
elif isinstance(config, lora.LoraConfig):
|
170 |
+
new_module = lora.LoraModel._create_new_module(config, adapter_name, target, **kwargs)
|
171 |
+
elif isinstance(config, loha.LoHaConfig):
|
172 |
+
new_module = loha.LoHaModel._create_new_module(config, adapter_name, target, **kwargs)
|
173 |
+
elif isinstance(config, lokr.LoKrConfig):
|
174 |
+
new_module = lokr.LoKrModel._create_new_module(config, adapter_name, target, **kwargs)
|
175 |
+
elif isinstance(config, oft.OFTConfig):
|
176 |
+
new_module = oft.OFTModel._create_new_module(config, adapter_name, target, **kwargs)
|
177 |
+
else:
|
178 |
+
raise ValueError(f"Unknown config type {type(config)}, should be one of {COMPATIBLE_TUNER_TYPES}.")
|
179 |
+
return new_module
|
180 |
+
|
181 |
+
def __getattr__(self, name: str):
|
182 |
+
"""Forward missing attributes to the wrapped module."""
|
183 |
+
try:
|
184 |
+
return super().__getattr__(name) # defer to nn.Module's logic
|
185 |
+
except AttributeError:
|
186 |
+
return getattr(self.model, name)
|
187 |
+
|
188 |
+
def _set_adapter_layers(self, enabled=True):
|
189 |
+
for module in self.model.modules():
|
190 |
+
if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)):
|
191 |
+
module.enable_adapters(enabled)
|
192 |
+
|
193 |
+
def enable_adapter_layers(self):
|
194 |
+
self._set_adapter_layers(enabled=True)
|
195 |
+
|
196 |
+
def disable_adapter_layers(self):
|
197 |
+
for active_adapter in self.active_adapters:
|
198 |
+
val = getattr(self.peft_config[active_adapter], "bias", "none")
|
199 |
+
if val != "none":
|
200 |
+
msg = (
|
201 |
+
f"Careful, disabling adapter layers with bias configured to be '{val}' does not produce the same "
|
202 |
+
"output as the the base model would without adaption."
|
203 |
+
)
|
204 |
+
warnings.warn(msg)
|
205 |
+
self._set_adapter_layers(enabled=False)
|
206 |
+
|
207 |
+
def set_adapter(self, adapter_name: Union[str, list[str]]) -> None:
|
208 |
+
for module in self.model.modules():
|
209 |
+
if isinstance(module, Layers):
|
210 |
+
if module.merged:
|
211 |
+
warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.")
|
212 |
+
module.unmerge()
|
213 |
+
module.set_adapter(adapter_name)
|
214 |
+
self.active_adapter = adapter_name
|
215 |
+
|
216 |
+
@staticmethod
|
217 |
+
def _prepare_adapter_config(peft_config, model_config):
|
218 |
+
if peft_config.target_modules is None:
|
219 |
+
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING:
|
220 |
+
raise ValueError("Please specify `target_modules` in `peft_config`")
|
221 |
+
|
222 |
+
peft_config.target_modules = set(
|
223 |
+
TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING[model_config["model_type"]]
|
224 |
+
)
|
225 |
+
return peft_config
|
226 |
+
|
227 |
+
def _unload_and_optionally_merge(
|
228 |
+
self,
|
229 |
+
merge=True,
|
230 |
+
progressbar: bool = False,
|
231 |
+
safe_merge: bool = False,
|
232 |
+
adapter_names: Optional[list[str]] = None,
|
233 |
+
):
|
234 |
+
if merge:
|
235 |
+
if getattr(self.model, "quantization_method", None) == "gptq":
|
236 |
+
raise ValueError("Cannot merge layers when the model is gptq quantized")
|
237 |
+
|
238 |
+
def merge_recursively(module):
|
239 |
+
# helper function to recursively merge the base_layer of the target
|
240 |
+
path = []
|
241 |
+
layer = module
|
242 |
+
while hasattr(layer, "base_layer"):
|
243 |
+
path.append(layer)
|
244 |
+
layer = layer.base_layer
|
245 |
+
for layer_before, layer_after in zip(path[:-1], path[1:]):
|
246 |
+
layer_after.merge(safe_merge=safe_merge, adapter_names=adapter_names)
|
247 |
+
layer_before.base_layer = layer_after.base_layer
|
248 |
+
module.merge(safe_merge=safe_merge, adapter_names=adapter_names)
|
249 |
+
|
250 |
+
key_list = [key for key, _ in self.model.named_modules() if not any(prefix in key for prefix in PREFIXES)]
|
251 |
+
desc = "Unloading " + ("and merging " if merge else "") + "model"
|
252 |
+
|
253 |
+
for key in tqdm(key_list, disable=not progressbar, desc=desc):
|
254 |
+
try:
|
255 |
+
parent, target, target_name = _get_submodules(self.model, key)
|
256 |
+
except AttributeError:
|
257 |
+
continue
|
258 |
+
|
259 |
+
if hasattr(target, "base_layer"):
|
260 |
+
if merge:
|
261 |
+
merge_recursively(target)
|
262 |
+
self._replace_module(parent, target_name, target.get_base_layer(), target)
|
263 |
+
elif isinstance(target, ModulesToSaveWrapper):
|
264 |
+
# save any additional trainable modules part of `modules_to_save`
|
265 |
+
new_module = target.modules_to_save[target.active_adapter]
|
266 |
+
if hasattr(new_module, "base_layer"):
|
267 |
+
# check if the module is itself a tuner layer
|
268 |
+
if merge:
|
269 |
+
new_module.merge(safe_merge=safe_merge, adapter_names=adapter_names)
|
270 |
+
new_module = new_module.get_base_layer()
|
271 |
+
setattr(parent, target_name, new_module)
|
272 |
+
|
273 |
+
return self.model
|
274 |
+
|
275 |
+
def add_weighted_adapter(self, *args: Any, **kwargs: Any) -> None:
|
276 |
+
raise NotImplementedError(f"Weighted adapters are not supported for {self.__class__.__name__} (yet).")
|
277 |
+
|
278 |
+
def delete_adapter(self, adapter_name: Union[str, list[str]]) -> None:
|
279 |
+
"""
|
280 |
+
Deletes an existing adapter.
|
281 |
+
|
282 |
+
Args:
|
283 |
+
adapter_name (Union[str, list[str]]): Name of the adapter(s) to delete.
|
284 |
+
"""
|
285 |
+
if isinstance(adapter_name, str):
|
286 |
+
adapter_names = [adapter_name]
|
287 |
+
else:
|
288 |
+
adapter_names = adapter_name
|
289 |
+
|
290 |
+
mismatched = set(adapter_names) - set(self.peft_config.keys())
|
291 |
+
if mismatched:
|
292 |
+
raise ValueError(
|
293 |
+
f"Adapter(s) {sorted(mismatched)} not found, available adapters: {sorted(self.peft_config.keys())}"
|
294 |
+
)
|
295 |
+
|
296 |
+
for adapter_name in adapter_names:
|
297 |
+
del self.peft_config[adapter_name]
|
298 |
+
|
299 |
+
key_list = [key for key, _ in self.model.named_modules() if not any(prefix in key for prefix in PREFIXES)]
|
300 |
+
new_adapter = None
|
301 |
+
for key in key_list:
|
302 |
+
_, target, _ = _get_submodules(self.model, key)
|
303 |
+
if isinstance(target, BaseTunerLayer):
|
304 |
+
target.delete_adapter(adapter_name)
|
305 |
+
if new_adapter is None:
|
306 |
+
new_adapter = target.active_adapters[:]
|
307 |
+
|
308 |
+
self.active_adapter = new_adapter or []
|
309 |
+
|
310 |
+
def merge_and_unload(
|
311 |
+
self, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[list[str]] = None
|
312 |
+
) -> nn.Module:
|
313 |
+
r"""
|
314 |
+
This method merges the layers into the base model. This is needed if someone wants to use the base model as a
|
315 |
+
standalone model.
|
316 |
+
|
317 |
+
Args:
|
318 |
+
progressbar (`bool`):
|
319 |
+
whether to show a progressbar indicating the unload and merge process
|
320 |
+
safe_merge (`bool`):
|
321 |
+
whether to activate the safe merging check to check if there is any potential Nan in the adapter
|
322 |
+
weights
|
323 |
+
adapter_names (`List[str]`, *optional*):
|
324 |
+
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
|
325 |
+
to `None`.
|
326 |
+
"""
|
327 |
+
return self._unload_and_optionally_merge(
|
328 |
+
progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names
|
329 |
+
)
|
330 |
+
|
331 |
+
def unload(self) -> nn.Module:
|
332 |
+
"""
|
333 |
+
Gets back the base model by removing all the lora modules without merging. This gives back the original base
|
334 |
+
model.
|
335 |
+
"""
|
336 |
+
return self._unload_and_optionally_merge(merge=False)
|
337 |
+
|
338 |
+
def generate(self, *args: Any, **kwargs: Any):
|
339 |
+
return self.model.generate(*args, **kwargs)
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/multitask_prompt_tuning/__init__.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from .config import MultitaskPromptTuningConfig, MultitaskPromptTuningInit
|
16 |
+
from .model import MultitaskPromptEmbedding
|
17 |
+
|
18 |
+
|
19 |
+
__all__ = ["MultitaskPromptTuningConfig", "MultitaskPromptTuningInit", "MultitaskPromptEmbedding"]
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/multitask_prompt_tuning/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (392 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/multitask_prompt_tuning/__pycache__/config.cpython-310.pyc
ADDED
Binary file (1.84 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/multitask_prompt_tuning/__pycache__/model.cpython-310.pyc
ADDED
Binary file (2.43 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/multitask_prompt_tuning/config.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import enum
|
16 |
+
from dataclasses import dataclass, field
|
17 |
+
from typing import Optional, Union
|
18 |
+
|
19 |
+
from peft.tuners.prompt_tuning import PromptTuningConfig
|
20 |
+
from peft.utils import PeftType
|
21 |
+
|
22 |
+
|
23 |
+
class MultitaskPromptTuningInit(str, enum.Enum):
|
24 |
+
# initialize prompt with text
|
25 |
+
TEXT = "TEXT"
|
26 |
+
# initialize prompt with random matrix
|
27 |
+
RANDOM = "RANDOM"
|
28 |
+
# average the prefix and column matrices obtained during source training
|
29 |
+
AVERAGE_SOURCE_TASKS = "AVERAGE_SOURCE_TASKS"
|
30 |
+
# pick prefix and column matrices for a particular task obtained during source training
|
31 |
+
EXACT_SOURCE_TASK = "EXACT_SOURCE_TASK"
|
32 |
+
# only use the prompt embeddings trained during source training
|
33 |
+
ONLY_SOURCE_SHARED = "ONLY_SOURCE_SHARED"
|
34 |
+
|
35 |
+
|
36 |
+
@dataclass
|
37 |
+
class MultitaskPromptTuningConfig(PromptTuningConfig):
|
38 |
+
prompt_tuning_init: Union[MultitaskPromptTuningInit, str] = field(
|
39 |
+
default=MultitaskPromptTuningInit.RANDOM,
|
40 |
+
metadata={
|
41 |
+
"help": (
|
42 |
+
"How to initialize the prompt tuning parameters. Can be one of TEXT, RANDOM, AVERAGE_SOURCE_TASKS, "
|
43 |
+
"EXACT_SOURCE_TASK, ONLY_SOURCE_SHARED."
|
44 |
+
),
|
45 |
+
},
|
46 |
+
)
|
47 |
+
prompt_tuning_init_state_dict_path: Optional[str] = field(
|
48 |
+
default=None,
|
49 |
+
metadata={
|
50 |
+
"help": (
|
51 |
+
"The path of source state dict. This is required when training the downstream target prompt from "
|
52 |
+
"the pretrained source prompt"
|
53 |
+
),
|
54 |
+
},
|
55 |
+
)
|
56 |
+
prompt_tuning_init_task: Optional[int] = field(default=0, metadata={"help": "source task id for initialization"})
|
57 |
+
num_ranks: Optional[int] = field(default=1, metadata={"help": "ranks"})
|
58 |
+
num_tasks: Optional[int] = field(default=1, metadata={"help": "number of tasks"})
|
59 |
+
|
60 |
+
def __post_init__(self):
|
61 |
+
self.peft_type = PeftType.MULTITASK_PROMPT_TUNING
|
llmeval-env/lib/python3.10/site-packages/peft/tuners/multitask_prompt_tuning/model.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023-present the HuggingFace Inc. team.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import torch
|
16 |
+
|
17 |
+
from peft.tuners.prompt_tuning import PromptEmbedding
|
18 |
+
from peft.utils import TaskType
|
19 |
+
|
20 |
+
from .config import MultitaskPromptTuningConfig, MultitaskPromptTuningInit
|
21 |
+
|
22 |
+
|
23 |
+
# This code is adapted for the paper: https://arxiv.org/abs/2303.02861 and
|
24 |
+
# constitutes the work done at MIT-IBM Watson Research Lab.
|
25 |
+
|
26 |
+
|
27 |
+
class MultitaskPromptEmbedding(PromptEmbedding):
|
28 |
+
def __init__(self, config: MultitaskPromptTuningConfig, word_embeddings):
|
29 |
+
super().__init__(config, word_embeddings)
|
30 |
+
|
31 |
+
self.num_tasks = config.num_tasks
|
32 |
+
self.num_ranks = config.num_ranks
|
33 |
+
self.num_virtual_tokens = config.num_virtual_tokens
|
34 |
+
|
35 |
+
self.num_transformer_submodules = config.num_transformer_submodules
|
36 |
+
if self.num_transformer_submodules is None:
|
37 |
+
self.num_transformer_submodules = 2 if config.task_type == TaskType.SEQ_2_SEQ_LM else 1
|
38 |
+
|
39 |
+
self.token_dim = config.token_dim
|
40 |
+
|
41 |
+
total_virtual_tokens = self.num_virtual_tokens * self.num_transformer_submodules
|
42 |
+
|
43 |
+
self.prefix_task_cols = torch.nn.Parameter(
|
44 |
+
torch.normal(
|
45 |
+
mean=0,
|
46 |
+
std=0.02,
|
47 |
+
size=(self.num_tasks, total_virtual_tokens, self.num_ranks),
|
48 |
+
)
|
49 |
+
)
|
50 |
+
self.prefix_task_rows = torch.nn.Parameter(
|
51 |
+
torch.normal(
|
52 |
+
mean=0,
|
53 |
+
std=0.02,
|
54 |
+
size=(self.num_tasks, self.num_ranks, self.token_dim),
|
55 |
+
)
|
56 |
+
)
|
57 |
+
|
58 |
+
if config.prompt_tuning_init in [
|
59 |
+
MultitaskPromptTuningInit.AVERAGE_SOURCE_TASKS,
|
60 |
+
MultitaskPromptTuningInit.EXACT_SOURCE_TASK,
|
61 |
+
MultitaskPromptTuningInit.ONLY_SOURCE_SHARED,
|
62 |
+
]:
|
63 |
+
if config.prompt_tuning_init_state_dict_path is None:
|
64 |
+
raise ValueError(
|
65 |
+
f"prompt_tuning_init_state_dict_path needs to be specified with {config.prompt_tuning_init} "
|
66 |
+
"init method"
|
67 |
+
)
|
68 |
+
|
69 |
+
# TODO: There should be an option for safetensors
|
70 |
+
state_dict: dict = torch.load(
|
71 |
+
config.prompt_tuning_init_state_dict_path,
|
72 |
+
map_location=word_embeddings.weight.device,
|
73 |
+
)
|
74 |
+
|
75 |
+
if config.prompt_tuning_init in [
|
76 |
+
MultitaskPromptTuningInit.AVERAGE_SOURCE_TASKS,
|
77 |
+
MultitaskPromptTuningInit.EXACT_SOURCE_TASK,
|
78 |
+
]:
|
79 |
+
prefix_task_cols_: torch.Tensor = state_dict["prefix_task_cols"]
|
80 |
+
prefix_task_rows_: torch.Tensor = state_dict["prefix_task_rows"]
|
81 |
+
|
82 |
+
if config.prompt_tuning_init == MultitaskPromptTuningInit.AVERAGE_SOURCE_TASKS:
|
83 |
+
prefix_task_cols_ = prefix_task_cols_.mean(0, keepdim=True)
|
84 |
+
prefix_task_rows_ = prefix_task_rows_.mean(0, keepdim=True)
|
85 |
+
elif config.prompt_tuning_init == MultitaskPromptTuningInit.EXACT_SOURCE_TASK:
|
86 |
+
prefix_task_cols_ = prefix_task_cols_[config.prompt_tuning_init_task, ...].unsqueeze(0)
|
87 |
+
prefix_task_rows_ = prefix_task_rows_[config.prompt_tuning_init_task, ...].unsqueeze(0)
|
88 |
+
|
89 |
+
state_dict = {
|
90 |
+
"embedding.weight": state_dict["prompt_embeddings"],
|
91 |
+
"prefix_task_cols": prefix_task_cols_,
|
92 |
+
"prefix_task_rows": prefix_task_rows_,
|
93 |
+
}
|
94 |
+
|
95 |
+
self.load_state_dict(state_dict, strict=True)
|
96 |
+
elif config.prompt_tuning_init == MultitaskPromptTuningInit.ONLY_SOURCE_SHARED:
|
97 |
+
state_dict = {
|
98 |
+
"embedding.weight": state_dict["prompt_embeddings"],
|
99 |
+
}
|
100 |
+
|
101 |
+
self.load_state_dict(state_dict, strict=False)
|
102 |
+
|
103 |
+
def forward(self, indices, task_ids):
|
104 |
+
if task_ids is None:
|
105 |
+
raise ValueError("task_ids cannot be None")
|
106 |
+
|
107 |
+
prompt_embeddings = self.embedding(indices)
|
108 |
+
|
109 |
+
task_cols = torch.index_select(self.prefix_task_cols, 0, task_ids)
|
110 |
+
task_rows = torch.index_select(self.prefix_task_rows, 0, task_ids)
|
111 |
+
task_prompts = torch.matmul(task_cols, task_rows)
|
112 |
+
|
113 |
+
prompt_embeddings *= task_prompts
|
114 |
+
|
115 |
+
return prompt_embeddings
|