applied-ai-018 commited on
Commit
18481c2
·
verified ·
1 Parent(s): ceb378e

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. env-llmeval/lib/python3.10/site-packages/sympy/algebras/__init__.py +3 -0
  2. env-llmeval/lib/python3.10/site-packages/sympy/algebras/__pycache__/__init__.cpython-310.pyc +0 -0
  3. env-llmeval/lib/python3.10/site-packages/sympy/algebras/__pycache__/quaternion.cpython-310.pyc +0 -0
  4. env-llmeval/lib/python3.10/site-packages/sympy/algebras/quaternion.py +1673 -0
  5. env-llmeval/lib/python3.10/site-packages/sympy/algebras/tests/__init__.py +0 -0
  6. env-llmeval/lib/python3.10/site-packages/sympy/algebras/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  7. env-llmeval/lib/python3.10/site-packages/sympy/algebras/tests/__pycache__/test_quaternion.cpython-310.pyc +0 -0
  8. env-llmeval/lib/python3.10/site-packages/sympy/algebras/tests/test_quaternion.py +409 -0
  9. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__init__.py +57 -0
  10. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/__init__.cpython-310.pyc +0 -0
  11. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/algebraicfield.cpython-310.pyc +0 -0
  12. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/compositedomain.cpython-310.pyc +0 -0
  13. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/domain.cpython-310.pyc +0 -0
  14. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/expressiondomain.cpython-310.pyc +0 -0
  15. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/field.cpython-310.pyc +0 -0
  16. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/finitefield.cpython-310.pyc +0 -0
  17. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/gaussiandomains.cpython-310.pyc +0 -0
  18. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/groundtypes.cpython-310.pyc +0 -0
  19. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/integerring.cpython-310.pyc +0 -0
  20. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/modularinteger.cpython-310.pyc +0 -0
  21. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/old_fractionfield.cpython-310.pyc +0 -0
  22. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/old_polynomialring.cpython-310.pyc +0 -0
  23. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/pythonfinitefield.cpython-310.pyc +0 -0
  24. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/pythonrationalfield.cpython-310.pyc +0 -0
  25. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/quotientring.cpython-310.pyc +0 -0
  26. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/rationalfield.cpython-310.pyc +0 -0
  27. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/ring.cpython-310.pyc +0 -0
  28. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/field.py +104 -0
  29. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/groundtypes.py +73 -0
  30. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/pythonfinitefield.py +16 -0
  31. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/pythonrational.py +22 -0
  32. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/rationalfield.py +163 -0
  33. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/simpledomain.py +15 -0
  34. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/tests/test_domains.py +1270 -0
  35. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/tests/test_polynomialring.py +102 -0
  36. env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/tests/test_quotientring.py +52 -0
  37. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__init__.py +27 -0
  38. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/__init__.cpython-310.pyc +0 -0
  39. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/basis.cpython-310.pyc +0 -0
  40. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/exceptions.cpython-310.pyc +0 -0
  41. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/galois_resolvents.cpython-310.pyc +0 -0
  42. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/galoisgroups.cpython-310.pyc +0 -0
  43. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/minpoly.cpython-310.pyc +0 -0
  44. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/modules.cpython-310.pyc +0 -0
  45. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/primes.cpython-310.pyc +0 -0
  46. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/resolvent_lookup.cpython-310.pyc +0 -0
  47. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/subfield.cpython-310.pyc +0 -0
  48. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/utilities.cpython-310.pyc +0 -0
  49. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/basis.py +246 -0
  50. env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/exceptions.py +53 -0
env-llmeval/lib/python3.10/site-packages/sympy/algebras/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from .quaternion import Quaternion
2
+
3
+ __all__ = ["Quaternion",]
env-llmeval/lib/python3.10/site-packages/sympy/algebras/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (246 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/algebras/__pycache__/quaternion.cpython-310.pyc ADDED
Binary file (47.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/algebras/quaternion.py ADDED
@@ -0,0 +1,1673 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.numbers import Rational
2
+ from sympy.core.singleton import S
3
+ from sympy.core.relational import is_eq
4
+ from sympy.functions.elementary.complexes import (conjugate, im, re, sign)
5
+ from sympy.functions.elementary.exponential import (exp, log as ln)
6
+ from sympy.functions.elementary.miscellaneous import sqrt
7
+ from sympy.functions.elementary.trigonometric import (acos, asin, atan2)
8
+ from sympy.functions.elementary.trigonometric import (cos, sin)
9
+ from sympy.simplify.trigsimp import trigsimp
10
+ from sympy.integrals.integrals import integrate
11
+ from sympy.matrices.dense import MutableDenseMatrix as Matrix
12
+ from sympy.core.sympify import sympify, _sympify
13
+ from sympy.core.expr import Expr
14
+ from sympy.core.logic import fuzzy_not, fuzzy_or
15
+
16
+ from mpmath.libmp.libmpf import prec_to_dps
17
+
18
+
19
+ def _check_norm(elements, norm):
20
+ """validate if input norm is consistent"""
21
+ if norm is not None and norm.is_number:
22
+ if norm.is_positive is False:
23
+ raise ValueError("Input norm must be positive.")
24
+
25
+ numerical = all(i.is_number and i.is_real is True for i in elements)
26
+ if numerical and is_eq(norm**2, sum(i**2 for i in elements)) is False:
27
+ raise ValueError("Incompatible value for norm.")
28
+
29
+
30
+ def _is_extrinsic(seq):
31
+ """validate seq and return True if seq is lowercase and False if uppercase"""
32
+ if type(seq) != str:
33
+ raise ValueError('Expected seq to be a string.')
34
+ if len(seq) != 3:
35
+ raise ValueError("Expected 3 axes, got `{}`.".format(seq))
36
+
37
+ intrinsic = seq.isupper()
38
+ extrinsic = seq.islower()
39
+ if not (intrinsic or extrinsic):
40
+ raise ValueError("seq must either be fully uppercase (for extrinsic "
41
+ "rotations), or fully lowercase, for intrinsic "
42
+ "rotations).")
43
+
44
+ i, j, k = seq.lower()
45
+ if (i == j) or (j == k):
46
+ raise ValueError("Consecutive axes must be different")
47
+
48
+ bad = set(seq) - set('xyzXYZ')
49
+ if bad:
50
+ raise ValueError("Expected axes from `seq` to be from "
51
+ "['x', 'y', 'z'] or ['X', 'Y', 'Z'], "
52
+ "got {}".format(''.join(bad)))
53
+
54
+ return extrinsic
55
+
56
+
57
+ class Quaternion(Expr):
58
+ """Provides basic quaternion operations.
59
+ Quaternion objects can be instantiated as Quaternion(a, b, c, d)
60
+ as in (a + b*i + c*j + d*k).
61
+
62
+ Parameters
63
+ ==========
64
+
65
+ norm : None or number
66
+ Pre-defined quaternion norm. If a value is given, Quaternion.norm
67
+ returns this pre-defined value instead of calculating the norm
68
+
69
+ Examples
70
+ ========
71
+
72
+ >>> from sympy import Quaternion
73
+ >>> q = Quaternion(1, 2, 3, 4)
74
+ >>> q
75
+ 1 + 2*i + 3*j + 4*k
76
+
77
+ Quaternions over complex fields can be defined as :
78
+
79
+ >>> from sympy import Quaternion
80
+ >>> from sympy import symbols, I
81
+ >>> x = symbols('x')
82
+ >>> q1 = Quaternion(x, x**3, x, x**2, real_field = False)
83
+ >>> q2 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
84
+ >>> q1
85
+ x + x**3*i + x*j + x**2*k
86
+ >>> q2
87
+ (3 + 4*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k
88
+
89
+ Defining symbolic unit quaternions:
90
+ >>> from sympy import Quaternion
91
+ >>> from sympy.abc import w, x, y, z
92
+ >>> q = Quaternion(w, x, y, z, norm=1)
93
+ >>> q
94
+ w + x*i + y*j + z*k
95
+ >>> q.norm()
96
+ 1
97
+
98
+ References
99
+ ==========
100
+
101
+ .. [1] https://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/
102
+ .. [2] https://en.wikipedia.org/wiki/Quaternion
103
+
104
+ """
105
+ _op_priority = 11.0
106
+
107
+ is_commutative = False
108
+
109
+ def __new__(cls, a=0, b=0, c=0, d=0, real_field=True, norm=None):
110
+ a, b, c, d = map(sympify, (a, b, c, d))
111
+
112
+ if any(i.is_commutative is False for i in [a, b, c, d]):
113
+ raise ValueError("arguments have to be commutative")
114
+ else:
115
+ obj = Expr.__new__(cls, a, b, c, d)
116
+ obj._a = a
117
+ obj._b = b
118
+ obj._c = c
119
+ obj._d = d
120
+ obj._real_field = real_field
121
+ obj.set_norm(norm)
122
+ return obj
123
+
124
+ def set_norm(self, norm):
125
+ """Sets norm of an already instantiated quaternion.
126
+
127
+ Parameters
128
+ ==========
129
+
130
+ norm : None or number
131
+ Pre-defined quaternion norm. If a value is given, Quaternion.norm
132
+ returns this pre-defined value instead of calculating the norm
133
+
134
+ Examples
135
+ ========
136
+
137
+ >>> from sympy import Quaternion
138
+ >>> from sympy.abc import a, b, c, d
139
+ >>> q = Quaternion(a, b, c, d)
140
+ >>> q.norm()
141
+ sqrt(a**2 + b**2 + c**2 + d**2)
142
+
143
+ Setting the norm:
144
+
145
+ >>> q.set_norm(1)
146
+ >>> q.norm()
147
+ 1
148
+
149
+ Removing set norm:
150
+
151
+ >>> q.set_norm(None)
152
+ >>> q.norm()
153
+ sqrt(a**2 + b**2 + c**2 + d**2)
154
+
155
+ """
156
+ norm = sympify(norm)
157
+ _check_norm(self.args, norm)
158
+ self._norm = norm
159
+
160
+ @property
161
+ def a(self):
162
+ return self._a
163
+
164
+ @property
165
+ def b(self):
166
+ return self._b
167
+
168
+ @property
169
+ def c(self):
170
+ return self._c
171
+
172
+ @property
173
+ def d(self):
174
+ return self._d
175
+
176
+ @property
177
+ def real_field(self):
178
+ return self._real_field
179
+
180
+ @property
181
+ def product_matrix_left(self):
182
+ r"""Returns 4 x 4 Matrix equivalent to a Hamilton product from the
183
+ left. This can be useful when treating quaternion elements as column
184
+ vectors. Given a quaternion $q = a + bi + cj + dk$ where a, b, c and d
185
+ are real numbers, the product matrix from the left is:
186
+
187
+ .. math::
188
+
189
+ M = \begin{bmatrix} a &-b &-c &-d \\
190
+ b & a &-d & c \\
191
+ c & d & a &-b \\
192
+ d &-c & b & a \end{bmatrix}
193
+
194
+ Examples
195
+ ========
196
+
197
+ >>> from sympy import Quaternion
198
+ >>> from sympy.abc import a, b, c, d
199
+ >>> q1 = Quaternion(1, 0, 0, 1)
200
+ >>> q2 = Quaternion(a, b, c, d)
201
+ >>> q1.product_matrix_left
202
+ Matrix([
203
+ [1, 0, 0, -1],
204
+ [0, 1, -1, 0],
205
+ [0, 1, 1, 0],
206
+ [1, 0, 0, 1]])
207
+
208
+ >>> q1.product_matrix_left * q2.to_Matrix()
209
+ Matrix([
210
+ [a - d],
211
+ [b - c],
212
+ [b + c],
213
+ [a + d]])
214
+
215
+ This is equivalent to:
216
+
217
+ >>> (q1 * q2).to_Matrix()
218
+ Matrix([
219
+ [a - d],
220
+ [b - c],
221
+ [b + c],
222
+ [a + d]])
223
+ """
224
+ return Matrix([
225
+ [self.a, -self.b, -self.c, -self.d],
226
+ [self.b, self.a, -self.d, self.c],
227
+ [self.c, self.d, self.a, -self.b],
228
+ [self.d, -self.c, self.b, self.a]])
229
+
230
+ @property
231
+ def product_matrix_right(self):
232
+ r"""Returns 4 x 4 Matrix equivalent to a Hamilton product from the
233
+ right. This can be useful when treating quaternion elements as column
234
+ vectors. Given a quaternion $q = a + bi + cj + dk$ where a, b, c and d
235
+ are real numbers, the product matrix from the left is:
236
+
237
+ .. math::
238
+
239
+ M = \begin{bmatrix} a &-b &-c &-d \\
240
+ b & a & d &-c \\
241
+ c &-d & a & b \\
242
+ d & c &-b & a \end{bmatrix}
243
+
244
+
245
+ Examples
246
+ ========
247
+
248
+ >>> from sympy import Quaternion
249
+ >>> from sympy.abc import a, b, c, d
250
+ >>> q1 = Quaternion(a, b, c, d)
251
+ >>> q2 = Quaternion(1, 0, 0, 1)
252
+ >>> q2.product_matrix_right
253
+ Matrix([
254
+ [1, 0, 0, -1],
255
+ [0, 1, 1, 0],
256
+ [0, -1, 1, 0],
257
+ [1, 0, 0, 1]])
258
+
259
+ Note the switched arguments: the matrix represents the quaternion on
260
+ the right, but is still considered as a matrix multiplication from the
261
+ left.
262
+
263
+ >>> q2.product_matrix_right * q1.to_Matrix()
264
+ Matrix([
265
+ [ a - d],
266
+ [ b + c],
267
+ [-b + c],
268
+ [ a + d]])
269
+
270
+ This is equivalent to:
271
+
272
+ >>> (q1 * q2).to_Matrix()
273
+ Matrix([
274
+ [ a - d],
275
+ [ b + c],
276
+ [-b + c],
277
+ [ a + d]])
278
+ """
279
+ return Matrix([
280
+ [self.a, -self.b, -self.c, -self.d],
281
+ [self.b, self.a, self.d, -self.c],
282
+ [self.c, -self.d, self.a, self.b],
283
+ [self.d, self.c, -self.b, self.a]])
284
+
285
+ def to_Matrix(self, vector_only=False):
286
+ """Returns elements of quaternion as a column vector.
287
+ By default, a Matrix of length 4 is returned, with the real part as the
288
+ first element.
289
+ If vector_only is True, returns only imaginary part as a Matrix of
290
+ length 3.
291
+
292
+ Parameters
293
+ ==========
294
+
295
+ vector_only : bool
296
+ If True, only imaginary part is returned.
297
+ Default value: False
298
+
299
+ Returns
300
+ =======
301
+
302
+ Matrix
303
+ A column vector constructed by the elements of the quaternion.
304
+
305
+ Examples
306
+ ========
307
+
308
+ >>> from sympy import Quaternion
309
+ >>> from sympy.abc import a, b, c, d
310
+ >>> q = Quaternion(a, b, c, d)
311
+ >>> q
312
+ a + b*i + c*j + d*k
313
+
314
+ >>> q.to_Matrix()
315
+ Matrix([
316
+ [a],
317
+ [b],
318
+ [c],
319
+ [d]])
320
+
321
+
322
+ >>> q.to_Matrix(vector_only=True)
323
+ Matrix([
324
+ [b],
325
+ [c],
326
+ [d]])
327
+
328
+ """
329
+ if vector_only:
330
+ return Matrix(self.args[1:])
331
+ else:
332
+ return Matrix(self.args)
333
+
334
+ @classmethod
335
+ def from_Matrix(cls, elements):
336
+ """Returns quaternion from elements of a column vector`.
337
+ If vector_only is True, returns only imaginary part as a Matrix of
338
+ length 3.
339
+
340
+ Parameters
341
+ ==========
342
+
343
+ elements : Matrix, list or tuple of length 3 or 4. If length is 3,
344
+ assume real part is zero.
345
+ Default value: False
346
+
347
+ Returns
348
+ =======
349
+
350
+ Quaternion
351
+ A quaternion created from the input elements.
352
+
353
+ Examples
354
+ ========
355
+
356
+ >>> from sympy import Quaternion
357
+ >>> from sympy.abc import a, b, c, d
358
+ >>> q = Quaternion.from_Matrix([a, b, c, d])
359
+ >>> q
360
+ a + b*i + c*j + d*k
361
+
362
+ >>> q = Quaternion.from_Matrix([b, c, d])
363
+ >>> q
364
+ 0 + b*i + c*j + d*k
365
+
366
+ """
367
+ length = len(elements)
368
+ if length != 3 and length != 4:
369
+ raise ValueError("Input elements must have length 3 or 4, got {} "
370
+ "elements".format(length))
371
+
372
+ if length == 3:
373
+ return Quaternion(0, *elements)
374
+ else:
375
+ return Quaternion(*elements)
376
+
377
+ @classmethod
378
+ def from_euler(cls, angles, seq):
379
+ """Returns quaternion equivalent to rotation represented by the Euler
380
+ angles, in the sequence defined by ``seq``.
381
+
382
+ Parameters
383
+ ==========
384
+
385
+ angles : list, tuple or Matrix of 3 numbers
386
+ The Euler angles (in radians).
387
+ seq : string of length 3
388
+ Represents the sequence of rotations.
389
+ For intrinsic rotations, seq must be all lowercase and its elements
390
+ must be from the set ``{'x', 'y', 'z'}``
391
+ For extrinsic rotations, seq must be all uppercase and its elements
392
+ must be from the set ``{'X', 'Y', 'Z'}``
393
+
394
+ Returns
395
+ =======
396
+
397
+ Quaternion
398
+ The normalized rotation quaternion calculated from the Euler angles
399
+ in the given sequence.
400
+
401
+ Examples
402
+ ========
403
+
404
+ >>> from sympy import Quaternion
405
+ >>> from sympy import pi
406
+ >>> q = Quaternion.from_euler([pi/2, 0, 0], 'xyz')
407
+ >>> q
408
+ sqrt(2)/2 + sqrt(2)/2*i + 0*j + 0*k
409
+
410
+ >>> q = Quaternion.from_euler([0, pi/2, pi] , 'zyz')
411
+ >>> q
412
+ 0 + (-sqrt(2)/2)*i + 0*j + sqrt(2)/2*k
413
+
414
+ >>> q = Quaternion.from_euler([0, pi/2, pi] , 'ZYZ')
415
+ >>> q
416
+ 0 + sqrt(2)/2*i + 0*j + sqrt(2)/2*k
417
+
418
+ """
419
+
420
+ if len(angles) != 3:
421
+ raise ValueError("3 angles must be given.")
422
+
423
+ extrinsic = _is_extrinsic(seq)
424
+ i, j, k = seq.lower()
425
+
426
+ # get elementary basis vectors
427
+ ei = [1 if n == i else 0 for n in 'xyz']
428
+ ej = [1 if n == j else 0 for n in 'xyz']
429
+ ek = [1 if n == k else 0 for n in 'xyz']
430
+
431
+ # calculate distinct quaternions
432
+ qi = cls.from_axis_angle(ei, angles[0])
433
+ qj = cls.from_axis_angle(ej, angles[1])
434
+ qk = cls.from_axis_angle(ek, angles[2])
435
+
436
+ if extrinsic:
437
+ return trigsimp(qk * qj * qi)
438
+ else:
439
+ return trigsimp(qi * qj * qk)
440
+
441
+ def to_euler(self, seq, angle_addition=True, avoid_square_root=False):
442
+ r"""Returns Euler angles representing same rotation as the quaternion,
443
+ in the sequence given by ``seq``. This implements the method described
444
+ in [1]_.
445
+
446
+ For degenerate cases (gymbal lock cases), the third angle is
447
+ set to zero.
448
+
449
+ Parameters
450
+ ==========
451
+
452
+ seq : string of length 3
453
+ Represents the sequence of rotations.
454
+ For intrinsic rotations, seq must be all lowercase and its elements
455
+ must be from the set ``{'x', 'y', 'z'}``
456
+ For extrinsic rotations, seq must be all uppercase and its elements
457
+ must be from the set ``{'X', 'Y', 'Z'}``
458
+
459
+ angle_addition : bool
460
+ When True, first and third angles are given as an addition and
461
+ subtraction of two simpler ``atan2`` expressions. When False, the
462
+ first and third angles are each given by a single more complicated
463
+ ``atan2`` expression. This equivalent expression is given by:
464
+
465
+ .. math::
466
+
467
+ \operatorname{atan_2} (b,a) \pm \operatorname{atan_2} (d,c) =
468
+ \operatorname{atan_2} (bc\pm ad, ac\mp bd)
469
+
470
+ Default value: True
471
+
472
+ avoid_square_root : bool
473
+ When True, the second angle is calculated with an expression based
474
+ on ``acos``, which is slightly more complicated but avoids a square
475
+ root. When False, second angle is calculated with ``atan2``, which
476
+ is simpler and can be better for numerical reasons (some
477
+ numerical implementations of ``acos`` have problems near zero).
478
+ Default value: False
479
+
480
+
481
+ Returns
482
+ =======
483
+
484
+ Tuple
485
+ The Euler angles calculated from the quaternion
486
+
487
+ Examples
488
+ ========
489
+
490
+ >>> from sympy import Quaternion
491
+ >>> from sympy.abc import a, b, c, d
492
+ >>> euler = Quaternion(a, b, c, d).to_euler('zyz')
493
+ >>> euler
494
+ (-atan2(-b, c) + atan2(d, a),
495
+ 2*atan2(sqrt(b**2 + c**2), sqrt(a**2 + d**2)),
496
+ atan2(-b, c) + atan2(d, a))
497
+
498
+
499
+ References
500
+ ==========
501
+
502
+ .. [1] https://doi.org/10.1371/journal.pone.0276302
503
+
504
+ """
505
+ if self.is_zero_quaternion():
506
+ raise ValueError('Cannot convert a quaternion with norm 0.')
507
+
508
+ angles = [0, 0, 0]
509
+
510
+ extrinsic = _is_extrinsic(seq)
511
+ i, j, k = seq.lower()
512
+
513
+ # get index corresponding to elementary basis vectors
514
+ i = 'xyz'.index(i) + 1
515
+ j = 'xyz'.index(j) + 1
516
+ k = 'xyz'.index(k) + 1
517
+
518
+ if not extrinsic:
519
+ i, k = k, i
520
+
521
+ # check if sequence is symmetric
522
+ symmetric = i == k
523
+ if symmetric:
524
+ k = 6 - i - j
525
+
526
+ # parity of the permutation
527
+ sign = (i - j) * (j - k) * (k - i) // 2
528
+
529
+ # permutate elements
530
+ elements = [self.a, self.b, self.c, self.d]
531
+ a = elements[0]
532
+ b = elements[i]
533
+ c = elements[j]
534
+ d = elements[k] * sign
535
+
536
+ if not symmetric:
537
+ a, b, c, d = a - c, b + d, c + a, d - b
538
+
539
+ if avoid_square_root:
540
+ if symmetric:
541
+ n2 = self.norm()**2
542
+ angles[1] = acos((a * a + b * b - c * c - d * d) / n2)
543
+ else:
544
+ n2 = 2 * self.norm()**2
545
+ angles[1] = asin((c * c + d * d - a * a - b * b) / n2)
546
+ else:
547
+ angles[1] = 2 * atan2(sqrt(c * c + d * d), sqrt(a * a + b * b))
548
+ if not symmetric:
549
+ angles[1] -= S.Pi / 2
550
+
551
+ # Check for singularities in numerical cases
552
+ case = 0
553
+ if is_eq(c, S.Zero) and is_eq(d, S.Zero):
554
+ case = 1
555
+ if is_eq(a, S.Zero) and is_eq(b, S.Zero):
556
+ case = 2
557
+
558
+ if case == 0:
559
+ if angle_addition:
560
+ angles[0] = atan2(b, a) + atan2(d, c)
561
+ angles[2] = atan2(b, a) - atan2(d, c)
562
+ else:
563
+ angles[0] = atan2(b*c + a*d, a*c - b*d)
564
+ angles[2] = atan2(b*c - a*d, a*c + b*d)
565
+
566
+ else: # any degenerate case
567
+ angles[2 * (not extrinsic)] = S.Zero
568
+ if case == 1:
569
+ angles[2 * extrinsic] = 2 * atan2(b, a)
570
+ else:
571
+ angles[2 * extrinsic] = 2 * atan2(d, c)
572
+ angles[2 * extrinsic] *= (-1 if extrinsic else 1)
573
+
574
+ # for Tait-Bryan angles
575
+ if not symmetric:
576
+ angles[0] *= sign
577
+
578
+ if extrinsic:
579
+ return tuple(angles[::-1])
580
+ else:
581
+ return tuple(angles)
582
+
583
+ @classmethod
584
+ def from_axis_angle(cls, vector, angle):
585
+ """Returns a rotation quaternion given the axis and the angle of rotation.
586
+
587
+ Parameters
588
+ ==========
589
+
590
+ vector : tuple of three numbers
591
+ The vector representation of the given axis.
592
+ angle : number
593
+ The angle by which axis is rotated (in radians).
594
+
595
+ Returns
596
+ =======
597
+
598
+ Quaternion
599
+ The normalized rotation quaternion calculated from the given axis and the angle of rotation.
600
+
601
+ Examples
602
+ ========
603
+
604
+ >>> from sympy import Quaternion
605
+ >>> from sympy import pi, sqrt
606
+ >>> q = Quaternion.from_axis_angle((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3), 2*pi/3)
607
+ >>> q
608
+ 1/2 + 1/2*i + 1/2*j + 1/2*k
609
+
610
+ """
611
+ (x, y, z) = vector
612
+ norm = sqrt(x**2 + y**2 + z**2)
613
+ (x, y, z) = (x / norm, y / norm, z / norm)
614
+ s = sin(angle * S.Half)
615
+ a = cos(angle * S.Half)
616
+ b = x * s
617
+ c = y * s
618
+ d = z * s
619
+
620
+ # note that this quaternion is already normalized by construction:
621
+ # c^2 + (s*x)^2 + (s*y)^2 + (s*z)^2 = c^2 + s^2*(x^2 + y^2 + z^2) = c^2 + s^2 * 1 = c^2 + s^2 = 1
622
+ # so, what we return is a normalized quaternion
623
+
624
+ return cls(a, b, c, d)
625
+
626
+ @classmethod
627
+ def from_rotation_matrix(cls, M):
628
+ """Returns the equivalent quaternion of a matrix. The quaternion will be normalized
629
+ only if the matrix is special orthogonal (orthogonal and det(M) = 1).
630
+
631
+ Parameters
632
+ ==========
633
+
634
+ M : Matrix
635
+ Input matrix to be converted to equivalent quaternion. M must be special
636
+ orthogonal (orthogonal and det(M) = 1) for the quaternion to be normalized.
637
+
638
+ Returns
639
+ =======
640
+
641
+ Quaternion
642
+ The quaternion equivalent to given matrix.
643
+
644
+ Examples
645
+ ========
646
+
647
+ >>> from sympy import Quaternion
648
+ >>> from sympy import Matrix, symbols, cos, sin, trigsimp
649
+ >>> x = symbols('x')
650
+ >>> M = Matrix([[cos(x), -sin(x), 0], [sin(x), cos(x), 0], [0, 0, 1]])
651
+ >>> q = trigsimp(Quaternion.from_rotation_matrix(M))
652
+ >>> q
653
+ sqrt(2)*sqrt(cos(x) + 1)/2 + 0*i + 0*j + sqrt(2 - 2*cos(x))*sign(sin(x))/2*k
654
+
655
+ """
656
+
657
+ absQ = M.det()**Rational(1, 3)
658
+
659
+ a = sqrt(absQ + M[0, 0] + M[1, 1] + M[2, 2]) / 2
660
+ b = sqrt(absQ + M[0, 0] - M[1, 1] - M[2, 2]) / 2
661
+ c = sqrt(absQ - M[0, 0] + M[1, 1] - M[2, 2]) / 2
662
+ d = sqrt(absQ - M[0, 0] - M[1, 1] + M[2, 2]) / 2
663
+
664
+ b = b * sign(M[2, 1] - M[1, 2])
665
+ c = c * sign(M[0, 2] - M[2, 0])
666
+ d = d * sign(M[1, 0] - M[0, 1])
667
+
668
+ return Quaternion(a, b, c, d)
669
+
670
+ def __add__(self, other):
671
+ return self.add(other)
672
+
673
+ def __radd__(self, other):
674
+ return self.add(other)
675
+
676
+ def __sub__(self, other):
677
+ return self.add(other*-1)
678
+
679
+ def __mul__(self, other):
680
+ return self._generic_mul(self, _sympify(other))
681
+
682
+ def __rmul__(self, other):
683
+ return self._generic_mul(_sympify(other), self)
684
+
685
+ def __pow__(self, p):
686
+ return self.pow(p)
687
+
688
+ def __neg__(self):
689
+ return Quaternion(-self._a, -self._b, -self._c, -self.d)
690
+
691
+ def __truediv__(self, other):
692
+ return self * sympify(other)**-1
693
+
694
+ def __rtruediv__(self, other):
695
+ return sympify(other) * self**-1
696
+
697
+ def _eval_Integral(self, *args):
698
+ return self.integrate(*args)
699
+
700
+ def diff(self, *symbols, **kwargs):
701
+ kwargs.setdefault('evaluate', True)
702
+ return self.func(*[a.diff(*symbols, **kwargs) for a in self.args])
703
+
704
+ def add(self, other):
705
+ """Adds quaternions.
706
+
707
+ Parameters
708
+ ==========
709
+
710
+ other : Quaternion
711
+ The quaternion to add to current (self) quaternion.
712
+
713
+ Returns
714
+ =======
715
+
716
+ Quaternion
717
+ The resultant quaternion after adding self to other
718
+
719
+ Examples
720
+ ========
721
+
722
+ >>> from sympy import Quaternion
723
+ >>> from sympy import symbols
724
+ >>> q1 = Quaternion(1, 2, 3, 4)
725
+ >>> q2 = Quaternion(5, 6, 7, 8)
726
+ >>> q1.add(q2)
727
+ 6 + 8*i + 10*j + 12*k
728
+ >>> q1 + 5
729
+ 6 + 2*i + 3*j + 4*k
730
+ >>> x = symbols('x', real = True)
731
+ >>> q1.add(x)
732
+ (x + 1) + 2*i + 3*j + 4*k
733
+
734
+ Quaternions over complex fields :
735
+
736
+ >>> from sympy import Quaternion
737
+ >>> from sympy import I
738
+ >>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
739
+ >>> q3.add(2 + 3*I)
740
+ (5 + 7*I) + (2 + 5*I)*i + 0*j + (7 + 8*I)*k
741
+
742
+ """
743
+ q1 = self
744
+ q2 = sympify(other)
745
+
746
+ # If q2 is a number or a SymPy expression instead of a quaternion
747
+ if not isinstance(q2, Quaternion):
748
+ if q1.real_field and q2.is_complex:
749
+ return Quaternion(re(q2) + q1.a, im(q2) + q1.b, q1.c, q1.d)
750
+ elif q2.is_commutative:
751
+ return Quaternion(q1.a + q2, q1.b, q1.c, q1.d)
752
+ else:
753
+ raise ValueError("Only commutative expressions can be added with a Quaternion.")
754
+
755
+ return Quaternion(q1.a + q2.a, q1.b + q2.b, q1.c + q2.c, q1.d
756
+ + q2.d)
757
+
758
+ def mul(self, other):
759
+ """Multiplies quaternions.
760
+
761
+ Parameters
762
+ ==========
763
+
764
+ other : Quaternion or symbol
765
+ The quaternion to multiply to current (self) quaternion.
766
+
767
+ Returns
768
+ =======
769
+
770
+ Quaternion
771
+ The resultant quaternion after multiplying self with other
772
+
773
+ Examples
774
+ ========
775
+
776
+ >>> from sympy import Quaternion
777
+ >>> from sympy import symbols
778
+ >>> q1 = Quaternion(1, 2, 3, 4)
779
+ >>> q2 = Quaternion(5, 6, 7, 8)
780
+ >>> q1.mul(q2)
781
+ (-60) + 12*i + 30*j + 24*k
782
+ >>> q1.mul(2)
783
+ 2 + 4*i + 6*j + 8*k
784
+ >>> x = symbols('x', real = True)
785
+ >>> q1.mul(x)
786
+ x + 2*x*i + 3*x*j + 4*x*k
787
+
788
+ Quaternions over complex fields :
789
+
790
+ >>> from sympy import Quaternion
791
+ >>> from sympy import I
792
+ >>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
793
+ >>> q3.mul(2 + 3*I)
794
+ (2 + 3*I)*(3 + 4*I) + (2 + 3*I)*(2 + 5*I)*i + 0*j + (2 + 3*I)*(7 + 8*I)*k
795
+
796
+ """
797
+ return self._generic_mul(self, _sympify(other))
798
+
799
+ @staticmethod
800
+ def _generic_mul(q1, q2):
801
+ """Generic multiplication.
802
+
803
+ Parameters
804
+ ==========
805
+
806
+ q1 : Quaternion or symbol
807
+ q2 : Quaternion or symbol
808
+
809
+ It is important to note that if neither q1 nor q2 is a Quaternion,
810
+ this function simply returns q1 * q2.
811
+
812
+ Returns
813
+ =======
814
+
815
+ Quaternion
816
+ The resultant quaternion after multiplying q1 and q2
817
+
818
+ Examples
819
+ ========
820
+
821
+ >>> from sympy import Quaternion
822
+ >>> from sympy import Symbol, S
823
+ >>> q1 = Quaternion(1, 2, 3, 4)
824
+ >>> q2 = Quaternion(5, 6, 7, 8)
825
+ >>> Quaternion._generic_mul(q1, q2)
826
+ (-60) + 12*i + 30*j + 24*k
827
+ >>> Quaternion._generic_mul(q1, S(2))
828
+ 2 + 4*i + 6*j + 8*k
829
+ >>> x = Symbol('x', real = True)
830
+ >>> Quaternion._generic_mul(q1, x)
831
+ x + 2*x*i + 3*x*j + 4*x*k
832
+
833
+ Quaternions over complex fields :
834
+
835
+ >>> from sympy import I
836
+ >>> q3 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
837
+ >>> Quaternion._generic_mul(q3, 2 + 3*I)
838
+ (2 + 3*I)*(3 + 4*I) + (2 + 3*I)*(2 + 5*I)*i + 0*j + (2 + 3*I)*(7 + 8*I)*k
839
+
840
+ """
841
+ # None is a Quaternion:
842
+ if not isinstance(q1, Quaternion) and not isinstance(q2, Quaternion):
843
+ return q1 * q2
844
+
845
+ # If q1 is a number or a SymPy expression instead of a quaternion
846
+ if not isinstance(q1, Quaternion):
847
+ if q2.real_field and q1.is_complex:
848
+ return Quaternion(re(q1), im(q1), 0, 0) * q2
849
+ elif q1.is_commutative:
850
+ return Quaternion(q1 * q2.a, q1 * q2.b, q1 * q2.c, q1 * q2.d)
851
+ else:
852
+ raise ValueError("Only commutative expressions can be multiplied with a Quaternion.")
853
+
854
+ # If q2 is a number or a SymPy expression instead of a quaternion
855
+ if not isinstance(q2, Quaternion):
856
+ if q1.real_field and q2.is_complex:
857
+ return q1 * Quaternion(re(q2), im(q2), 0, 0)
858
+ elif q2.is_commutative:
859
+ return Quaternion(q2 * q1.a, q2 * q1.b, q2 * q1.c, q2 * q1.d)
860
+ else:
861
+ raise ValueError("Only commutative expressions can be multiplied with a Quaternion.")
862
+
863
+ # If any of the quaternions has a fixed norm, pre-compute norm
864
+ if q1._norm is None and q2._norm is None:
865
+ norm = None
866
+ else:
867
+ norm = q1.norm() * q2.norm()
868
+
869
+ return Quaternion(-q1.b*q2.b - q1.c*q2.c - q1.d*q2.d + q1.a*q2.a,
870
+ q1.b*q2.a + q1.c*q2.d - q1.d*q2.c + q1.a*q2.b,
871
+ -q1.b*q2.d + q1.c*q2.a + q1.d*q2.b + q1.a*q2.c,
872
+ q1.b*q2.c - q1.c*q2.b + q1.d*q2.a + q1.a * q2.d,
873
+ norm=norm)
874
+
875
+ def _eval_conjugate(self):
876
+ """Returns the conjugate of the quaternion."""
877
+ q = self
878
+ return Quaternion(q.a, -q.b, -q.c, -q.d, norm=q._norm)
879
+
880
+ def norm(self):
881
+ """Returns the norm of the quaternion."""
882
+ if self._norm is None: # check if norm is pre-defined
883
+ q = self
884
+ # trigsimp is used to simplify sin(x)^2 + cos(x)^2 (these terms
885
+ # arise when from_axis_angle is used).
886
+ self._norm = sqrt(trigsimp(q.a**2 + q.b**2 + q.c**2 + q.d**2))
887
+
888
+ return self._norm
889
+
890
+ def normalize(self):
891
+ """Returns the normalized form of the quaternion."""
892
+ q = self
893
+ return q * (1/q.norm())
894
+
895
+ def inverse(self):
896
+ """Returns the inverse of the quaternion."""
897
+ q = self
898
+ if not q.norm():
899
+ raise ValueError("Cannot compute inverse for a quaternion with zero norm")
900
+ return conjugate(q) * (1/q.norm()**2)
901
+
902
+ def pow(self, p):
903
+ """Finds the pth power of the quaternion.
904
+
905
+ Parameters
906
+ ==========
907
+
908
+ p : int
909
+ Power to be applied on quaternion.
910
+
911
+ Returns
912
+ =======
913
+
914
+ Quaternion
915
+ Returns the p-th power of the current quaternion.
916
+ Returns the inverse if p = -1.
917
+
918
+ Examples
919
+ ========
920
+
921
+ >>> from sympy import Quaternion
922
+ >>> q = Quaternion(1, 2, 3, 4)
923
+ >>> q.pow(4)
924
+ 668 + (-224)*i + (-336)*j + (-448)*k
925
+
926
+ """
927
+ p = sympify(p)
928
+ q = self
929
+ if p == -1:
930
+ return q.inverse()
931
+ res = 1
932
+
933
+ if not p.is_Integer:
934
+ return NotImplemented
935
+
936
+ if p < 0:
937
+ q, p = q.inverse(), -p
938
+
939
+ while p > 0:
940
+ if p % 2 == 1:
941
+ res = q * res
942
+
943
+ p = p//2
944
+ q = q * q
945
+
946
+ return res
947
+
948
+ def exp(self):
949
+ """Returns the exponential of q (e^q).
950
+
951
+ Returns
952
+ =======
953
+
954
+ Quaternion
955
+ Exponential of q (e^q).
956
+
957
+ Examples
958
+ ========
959
+
960
+ >>> from sympy import Quaternion
961
+ >>> q = Quaternion(1, 2, 3, 4)
962
+ >>> q.exp()
963
+ E*cos(sqrt(29))
964
+ + 2*sqrt(29)*E*sin(sqrt(29))/29*i
965
+ + 3*sqrt(29)*E*sin(sqrt(29))/29*j
966
+ + 4*sqrt(29)*E*sin(sqrt(29))/29*k
967
+
968
+ """
969
+ # exp(q) = e^a(cos||v|| + v/||v||*sin||v||)
970
+ q = self
971
+ vector_norm = sqrt(q.b**2 + q.c**2 + q.d**2)
972
+ a = exp(q.a) * cos(vector_norm)
973
+ b = exp(q.a) * sin(vector_norm) * q.b / vector_norm
974
+ c = exp(q.a) * sin(vector_norm) * q.c / vector_norm
975
+ d = exp(q.a) * sin(vector_norm) * q.d / vector_norm
976
+
977
+ return Quaternion(a, b, c, d)
978
+
979
+ def _ln(self):
980
+ """Returns the natural logarithm of the quaternion (_ln(q)).
981
+
982
+ Examples
983
+ ========
984
+
985
+ >>> from sympy import Quaternion
986
+ >>> q = Quaternion(1, 2, 3, 4)
987
+ >>> q._ln()
988
+ log(sqrt(30))
989
+ + 2*sqrt(29)*acos(sqrt(30)/30)/29*i
990
+ + 3*sqrt(29)*acos(sqrt(30)/30)/29*j
991
+ + 4*sqrt(29)*acos(sqrt(30)/30)/29*k
992
+
993
+ """
994
+ # _ln(q) = _ln||q|| + v/||v||*arccos(a/||q||)
995
+ q = self
996
+ vector_norm = sqrt(q.b**2 + q.c**2 + q.d**2)
997
+ q_norm = q.norm()
998
+ a = ln(q_norm)
999
+ b = q.b * acos(q.a / q_norm) / vector_norm
1000
+ c = q.c * acos(q.a / q_norm) / vector_norm
1001
+ d = q.d * acos(q.a / q_norm) / vector_norm
1002
+
1003
+ return Quaternion(a, b, c, d)
1004
+
1005
+ def _eval_subs(self, *args):
1006
+ elements = [i.subs(*args) for i in self.args]
1007
+ norm = self._norm
1008
+ try:
1009
+ norm = norm.subs(*args)
1010
+ except AttributeError:
1011
+ pass
1012
+ _check_norm(elements, norm)
1013
+ return Quaternion(*elements, norm=norm)
1014
+
1015
+ def _eval_evalf(self, prec):
1016
+ """Returns the floating point approximations (decimal numbers) of the quaternion.
1017
+
1018
+ Returns
1019
+ =======
1020
+
1021
+ Quaternion
1022
+ Floating point approximations of quaternion(self)
1023
+
1024
+ Examples
1025
+ ========
1026
+
1027
+ >>> from sympy import Quaternion
1028
+ >>> from sympy import sqrt
1029
+ >>> q = Quaternion(1/sqrt(1), 1/sqrt(2), 1/sqrt(3), 1/sqrt(4))
1030
+ >>> q.evalf()
1031
+ 1.00000000000000
1032
+ + 0.707106781186547*i
1033
+ + 0.577350269189626*j
1034
+ + 0.500000000000000*k
1035
+
1036
+ """
1037
+ nprec = prec_to_dps(prec)
1038
+ return Quaternion(*[arg.evalf(n=nprec) for arg in self.args])
1039
+
1040
+ def pow_cos_sin(self, p):
1041
+ """Computes the pth power in the cos-sin form.
1042
+
1043
+ Parameters
1044
+ ==========
1045
+
1046
+ p : int
1047
+ Power to be applied on quaternion.
1048
+
1049
+ Returns
1050
+ =======
1051
+
1052
+ Quaternion
1053
+ The p-th power in the cos-sin form.
1054
+
1055
+ Examples
1056
+ ========
1057
+
1058
+ >>> from sympy import Quaternion
1059
+ >>> q = Quaternion(1, 2, 3, 4)
1060
+ >>> q.pow_cos_sin(4)
1061
+ 900*cos(4*acos(sqrt(30)/30))
1062
+ + 1800*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*i
1063
+ + 2700*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*j
1064
+ + 3600*sqrt(29)*sin(4*acos(sqrt(30)/30))/29*k
1065
+
1066
+ """
1067
+ # q = ||q||*(cos(a) + u*sin(a))
1068
+ # q^p = ||q||^p * (cos(p*a) + u*sin(p*a))
1069
+
1070
+ q = self
1071
+ (v, angle) = q.to_axis_angle()
1072
+ q2 = Quaternion.from_axis_angle(v, p * angle)
1073
+ return q2 * (q.norm()**p)
1074
+
1075
+ def integrate(self, *args):
1076
+ """Computes integration of quaternion.
1077
+
1078
+ Returns
1079
+ =======
1080
+
1081
+ Quaternion
1082
+ Integration of the quaternion(self) with the given variable.
1083
+
1084
+ Examples
1085
+ ========
1086
+
1087
+ Indefinite Integral of quaternion :
1088
+
1089
+ >>> from sympy import Quaternion
1090
+ >>> from sympy.abc import x
1091
+ >>> q = Quaternion(1, 2, 3, 4)
1092
+ >>> q.integrate(x)
1093
+ x + 2*x*i + 3*x*j + 4*x*k
1094
+
1095
+ Definite integral of quaternion :
1096
+
1097
+ >>> from sympy import Quaternion
1098
+ >>> from sympy.abc import x
1099
+ >>> q = Quaternion(1, 2, 3, 4)
1100
+ >>> q.integrate((x, 1, 5))
1101
+ 4 + 8*i + 12*j + 16*k
1102
+
1103
+ """
1104
+ # TODO: is this expression correct?
1105
+ return Quaternion(integrate(self.a, *args), integrate(self.b, *args),
1106
+ integrate(self.c, *args), integrate(self.d, *args))
1107
+
1108
+ @staticmethod
1109
+ def rotate_point(pin, r):
1110
+ """Returns the coordinates of the point pin(a 3 tuple) after rotation.
1111
+
1112
+ Parameters
1113
+ ==========
1114
+
1115
+ pin : tuple
1116
+ A 3-element tuple of coordinates of a point which needs to be
1117
+ rotated.
1118
+ r : Quaternion or tuple
1119
+ Axis and angle of rotation.
1120
+
1121
+ It's important to note that when r is a tuple, it must be of the form
1122
+ (axis, angle)
1123
+
1124
+ Returns
1125
+ =======
1126
+
1127
+ tuple
1128
+ The coordinates of the point after rotation.
1129
+
1130
+ Examples
1131
+ ========
1132
+
1133
+ >>> from sympy import Quaternion
1134
+ >>> from sympy import symbols, trigsimp, cos, sin
1135
+ >>> x = symbols('x')
1136
+ >>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
1137
+ >>> trigsimp(Quaternion.rotate_point((1, 1, 1), q))
1138
+ (sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1)
1139
+ >>> (axis, angle) = q.to_axis_angle()
1140
+ >>> trigsimp(Quaternion.rotate_point((1, 1, 1), (axis, angle)))
1141
+ (sqrt(2)*cos(x + pi/4), sqrt(2)*sin(x + pi/4), 1)
1142
+
1143
+ """
1144
+ if isinstance(r, tuple):
1145
+ # if r is of the form (vector, angle)
1146
+ q = Quaternion.from_axis_angle(r[0], r[1])
1147
+ else:
1148
+ # if r is a quaternion
1149
+ q = r.normalize()
1150
+ pout = q * Quaternion(0, pin[0], pin[1], pin[2]) * conjugate(q)
1151
+ return (pout.b, pout.c, pout.d)
1152
+
1153
+ def to_axis_angle(self):
1154
+ """Returns the axis and angle of rotation of a quaternion.
1155
+
1156
+ Returns
1157
+ =======
1158
+
1159
+ tuple
1160
+ Tuple of (axis, angle)
1161
+
1162
+ Examples
1163
+ ========
1164
+
1165
+ >>> from sympy import Quaternion
1166
+ >>> q = Quaternion(1, 1, 1, 1)
1167
+ >>> (axis, angle) = q.to_axis_angle()
1168
+ >>> axis
1169
+ (sqrt(3)/3, sqrt(3)/3, sqrt(3)/3)
1170
+ >>> angle
1171
+ 2*pi/3
1172
+
1173
+ """
1174
+ q = self
1175
+ if q.a.is_negative:
1176
+ q = q * -1
1177
+
1178
+ q = q.normalize()
1179
+ angle = trigsimp(2 * acos(q.a))
1180
+
1181
+ # Since quaternion is normalised, q.a is less than 1.
1182
+ s = sqrt(1 - q.a*q.a)
1183
+
1184
+ x = trigsimp(q.b / s)
1185
+ y = trigsimp(q.c / s)
1186
+ z = trigsimp(q.d / s)
1187
+
1188
+ v = (x, y, z)
1189
+ t = (v, angle)
1190
+
1191
+ return t
1192
+
1193
+ def to_rotation_matrix(self, v=None, homogeneous=True):
1194
+ """Returns the equivalent rotation transformation matrix of the quaternion
1195
+ which represents rotation about the origin if v is not passed.
1196
+
1197
+ Parameters
1198
+ ==========
1199
+
1200
+ v : tuple or None
1201
+ Default value: None
1202
+ homogeneous : bool
1203
+ When True, gives an expression that may be more efficient for
1204
+ symbolic calculations but less so for direct evaluation. Both
1205
+ formulas are mathematically equivalent.
1206
+ Default value: True
1207
+
1208
+ Returns
1209
+ =======
1210
+
1211
+ tuple
1212
+ Returns the equivalent rotation transformation matrix of the quaternion
1213
+ which represents rotation about the origin if v is not passed.
1214
+
1215
+ Examples
1216
+ ========
1217
+
1218
+ >>> from sympy import Quaternion
1219
+ >>> from sympy import symbols, trigsimp, cos, sin
1220
+ >>> x = symbols('x')
1221
+ >>> q = Quaternion(cos(x/2), 0, 0, sin(x/2))
1222
+ >>> trigsimp(q.to_rotation_matrix())
1223
+ Matrix([
1224
+ [cos(x), -sin(x), 0],
1225
+ [sin(x), cos(x), 0],
1226
+ [ 0, 0, 1]])
1227
+
1228
+ Generates a 4x4 transformation matrix (used for rotation about a point
1229
+ other than the origin) if the point(v) is passed as an argument.
1230
+ """
1231
+
1232
+ q = self
1233
+ s = q.norm()**-2
1234
+
1235
+ # diagonal elements are different according to parameter normal
1236
+ if homogeneous:
1237
+ m00 = s*(q.a**2 + q.b**2 - q.c**2 - q.d**2)
1238
+ m11 = s*(q.a**2 - q.b**2 + q.c**2 - q.d**2)
1239
+ m22 = s*(q.a**2 - q.b**2 - q.c**2 + q.d**2)
1240
+ else:
1241
+ m00 = 1 - 2*s*(q.c**2 + q.d**2)
1242
+ m11 = 1 - 2*s*(q.b**2 + q.d**2)
1243
+ m22 = 1 - 2*s*(q.b**2 + q.c**2)
1244
+
1245
+ m01 = 2*s*(q.b*q.c - q.d*q.a)
1246
+ m02 = 2*s*(q.b*q.d + q.c*q.a)
1247
+
1248
+ m10 = 2*s*(q.b*q.c + q.d*q.a)
1249
+ m12 = 2*s*(q.c*q.d - q.b*q.a)
1250
+
1251
+ m20 = 2*s*(q.b*q.d - q.c*q.a)
1252
+ m21 = 2*s*(q.c*q.d + q.b*q.a)
1253
+
1254
+ if not v:
1255
+ return Matrix([[m00, m01, m02], [m10, m11, m12], [m20, m21, m22]])
1256
+
1257
+ else:
1258
+ (x, y, z) = v
1259
+
1260
+ m03 = x - x*m00 - y*m01 - z*m02
1261
+ m13 = y - x*m10 - y*m11 - z*m12
1262
+ m23 = z - x*m20 - y*m21 - z*m22
1263
+ m30 = m31 = m32 = 0
1264
+ m33 = 1
1265
+
1266
+ return Matrix([[m00, m01, m02, m03], [m10, m11, m12, m13],
1267
+ [m20, m21, m22, m23], [m30, m31, m32, m33]])
1268
+
1269
+ def scalar_part(self):
1270
+ r"""Returns scalar part($\mathbf{S}(q)$) of the quaternion q.
1271
+
1272
+ Explanation
1273
+ ===========
1274
+
1275
+ Given a quaternion $q = a + bi + cj + dk$, returns $\mathbf{S}(q) = a$.
1276
+
1277
+ Examples
1278
+ ========
1279
+
1280
+ >>> from sympy.algebras.quaternion import Quaternion
1281
+ >>> q = Quaternion(4, 8, 13, 12)
1282
+ >>> q.scalar_part()
1283
+ 4
1284
+
1285
+ """
1286
+
1287
+ return self.a
1288
+
1289
+ def vector_part(self):
1290
+ r"""
1291
+ Returns vector part($\mathbf{V}(q)$) of the quaternion q.
1292
+
1293
+ Explanation
1294
+ ===========
1295
+
1296
+ Given a quaternion $q = a + bi + cj + dk$, returns $\mathbf{V}(q) = bi + cj + dk$.
1297
+
1298
+ Examples
1299
+ ========
1300
+
1301
+ >>> from sympy.algebras.quaternion import Quaternion
1302
+ >>> q = Quaternion(1, 1, 1, 1)
1303
+ >>> q.vector_part()
1304
+ 0 + 1*i + 1*j + 1*k
1305
+
1306
+ >>> q = Quaternion(4, 8, 13, 12)
1307
+ >>> q.vector_part()
1308
+ 0 + 8*i + 13*j + 12*k
1309
+
1310
+ """
1311
+
1312
+ return Quaternion(0, self.b, self.c, self.d)
1313
+
1314
+ def axis(self):
1315
+ r"""
1316
+ Returns the axis($\mathbf{Ax}(q)$) of the quaternion.
1317
+
1318
+ Explanation
1319
+ ===========
1320
+
1321
+ Given a quaternion $q = a + bi + cj + dk$, returns $\mathbf{Ax}(q)$ i.e., the versor of the vector part of that quaternion
1322
+ equal to $\mathbf{U}[\mathbf{V}(q)]$.
1323
+ The axis is always an imaginary unit with square equal to $-1 + 0i + 0j + 0k$.
1324
+
1325
+ Examples
1326
+ ========
1327
+
1328
+ >>> from sympy.algebras.quaternion import Quaternion
1329
+ >>> q = Quaternion(1, 1, 1, 1)
1330
+ >>> q.axis()
1331
+ 0 + sqrt(3)/3*i + sqrt(3)/3*j + sqrt(3)/3*k
1332
+
1333
+ See Also
1334
+ ========
1335
+
1336
+ vector_part
1337
+
1338
+ """
1339
+ axis = self.vector_part().normalize()
1340
+
1341
+ return Quaternion(0, axis.b, axis.c, axis.d)
1342
+
1343
+ def is_pure(self):
1344
+ """
1345
+ Returns true if the quaternion is pure, false if the quaternion is not pure
1346
+ or returns none if it is unknown.
1347
+
1348
+ Explanation
1349
+ ===========
1350
+
1351
+ A pure quaternion (also a vector quaternion) is a quaternion with scalar
1352
+ part equal to 0.
1353
+
1354
+ Examples
1355
+ ========
1356
+
1357
+ >>> from sympy.algebras.quaternion import Quaternion
1358
+ >>> q = Quaternion(0, 8, 13, 12)
1359
+ >>> q.is_pure()
1360
+ True
1361
+
1362
+ See Also
1363
+ ========
1364
+ scalar_part
1365
+
1366
+ """
1367
+
1368
+ return self.a.is_zero
1369
+
1370
+ def is_zero_quaternion(self):
1371
+ """
1372
+ Returns true if the quaternion is a zero quaternion or false if it is not a zero quaternion
1373
+ and None if the value is unknown.
1374
+
1375
+ Explanation
1376
+ ===========
1377
+
1378
+ A zero quaternion is a quaternion with both scalar part and
1379
+ vector part equal to 0.
1380
+
1381
+ Examples
1382
+ ========
1383
+
1384
+ >>> from sympy.algebras.quaternion import Quaternion
1385
+ >>> q = Quaternion(1, 0, 0, 0)
1386
+ >>> q.is_zero_quaternion()
1387
+ False
1388
+
1389
+ >>> q = Quaternion(0, 0, 0, 0)
1390
+ >>> q.is_zero_quaternion()
1391
+ True
1392
+
1393
+ See Also
1394
+ ========
1395
+ scalar_part
1396
+ vector_part
1397
+
1398
+ """
1399
+
1400
+ return self.norm().is_zero
1401
+
1402
+ def angle(self):
1403
+ r"""
1404
+ Returns the angle of the quaternion measured in the real-axis plane.
1405
+
1406
+ Explanation
1407
+ ===========
1408
+
1409
+ Given a quaternion $q = a + bi + cj + dk$ where a, b, c and d
1410
+ are real numbers, returns the angle of the quaternion given by
1411
+
1412
+ .. math::
1413
+ angle := atan2(\sqrt{b^2 + c^2 + d^2}, {a})
1414
+
1415
+ Examples
1416
+ ========
1417
+
1418
+ >>> from sympy.algebras.quaternion import Quaternion
1419
+ >>> q = Quaternion(1, 4, 4, 4)
1420
+ >>> q.angle()
1421
+ atan(4*sqrt(3))
1422
+
1423
+ """
1424
+
1425
+ return atan2(self.vector_part().norm(), self.scalar_part())
1426
+
1427
+
1428
+ def arc_coplanar(self, other):
1429
+ """
1430
+ Returns True if the transformation arcs represented by the input quaternions happen in the same plane.
1431
+
1432
+ Explanation
1433
+ ===========
1434
+
1435
+ Two quaternions are said to be coplanar (in this arc sense) when their axes are parallel.
1436
+ The plane of a quaternion is the one normal to its axis.
1437
+
1438
+ Parameters
1439
+ ==========
1440
+
1441
+ other : a Quaternion
1442
+
1443
+ Returns
1444
+ =======
1445
+
1446
+ True : if the planes of the two quaternions are the same, apart from its orientation/sign.
1447
+ False : if the planes of the two quaternions are not the same, apart from its orientation/sign.
1448
+ None : if plane of either of the quaternion is unknown.
1449
+
1450
+ Examples
1451
+ ========
1452
+
1453
+ >>> from sympy.algebras.quaternion import Quaternion
1454
+ >>> q1 = Quaternion(1, 4, 4, 4)
1455
+ >>> q2 = Quaternion(3, 8, 8, 8)
1456
+ >>> Quaternion.arc_coplanar(q1, q2)
1457
+ True
1458
+
1459
+ >>> q1 = Quaternion(2, 8, 13, 12)
1460
+ >>> Quaternion.arc_coplanar(q1, q2)
1461
+ False
1462
+
1463
+ See Also
1464
+ ========
1465
+
1466
+ vector_coplanar
1467
+ is_pure
1468
+
1469
+ """
1470
+ if (self.is_zero_quaternion()) or (other.is_zero_quaternion()):
1471
+ raise ValueError('Neither of the given quaternions can be 0')
1472
+
1473
+ return fuzzy_or([(self.axis() - other.axis()).is_zero_quaternion(), (self.axis() + other.axis()).is_zero_quaternion()])
1474
+
1475
+ @classmethod
1476
+ def vector_coplanar(cls, q1, q2, q3):
1477
+ r"""
1478
+ Returns True if the axis of the pure quaternions seen as 3D vectors
1479
+ q1, q2, and q3 are coplanar.
1480
+
1481
+ Explanation
1482
+ ===========
1483
+
1484
+ Three pure quaternions are vector coplanar if the quaternions seen as 3D vectors are coplanar.
1485
+
1486
+ Parameters
1487
+ ==========
1488
+
1489
+ q1
1490
+ A pure Quaternion.
1491
+ q2
1492
+ A pure Quaternion.
1493
+ q3
1494
+ A pure Quaternion.
1495
+
1496
+ Returns
1497
+ =======
1498
+
1499
+ True : if the axis of the pure quaternions seen as 3D vectors
1500
+ q1, q2, and q3 are coplanar.
1501
+ False : if the axis of the pure quaternions seen as 3D vectors
1502
+ q1, q2, and q3 are not coplanar.
1503
+ None : if the axis of the pure quaternions seen as 3D vectors
1504
+ q1, q2, and q3 are coplanar is unknown.
1505
+
1506
+ Examples
1507
+ ========
1508
+
1509
+ >>> from sympy.algebras.quaternion import Quaternion
1510
+ >>> q1 = Quaternion(0, 4, 4, 4)
1511
+ >>> q2 = Quaternion(0, 8, 8, 8)
1512
+ >>> q3 = Quaternion(0, 24, 24, 24)
1513
+ >>> Quaternion.vector_coplanar(q1, q2, q3)
1514
+ True
1515
+
1516
+ >>> q1 = Quaternion(0, 8, 16, 8)
1517
+ >>> q2 = Quaternion(0, 8, 3, 12)
1518
+ >>> Quaternion.vector_coplanar(q1, q2, q3)
1519
+ False
1520
+
1521
+ See Also
1522
+ ========
1523
+
1524
+ axis
1525
+ is_pure
1526
+
1527
+ """
1528
+
1529
+ if fuzzy_not(q1.is_pure()) or fuzzy_not(q2.is_pure()) or fuzzy_not(q3.is_pure()):
1530
+ raise ValueError('The given quaternions must be pure')
1531
+
1532
+ M = Matrix([[q1.b, q1.c, q1.d], [q2.b, q2.c, q2.d], [q3.b, q3.c, q3.d]]).det()
1533
+ return M.is_zero
1534
+
1535
+ def parallel(self, other):
1536
+ """
1537
+ Returns True if the two pure quaternions seen as 3D vectors are parallel.
1538
+
1539
+ Explanation
1540
+ ===========
1541
+
1542
+ Two pure quaternions are called parallel when their vector product is commutative which
1543
+ implies that the quaternions seen as 3D vectors have same direction.
1544
+
1545
+ Parameters
1546
+ ==========
1547
+
1548
+ other : a Quaternion
1549
+
1550
+ Returns
1551
+ =======
1552
+
1553
+ True : if the two pure quaternions seen as 3D vectors are parallel.
1554
+ False : if the two pure quaternions seen as 3D vectors are not parallel.
1555
+ None : if the two pure quaternions seen as 3D vectors are parallel is unknown.
1556
+
1557
+ Examples
1558
+ ========
1559
+
1560
+ >>> from sympy.algebras.quaternion import Quaternion
1561
+ >>> q = Quaternion(0, 4, 4, 4)
1562
+ >>> q1 = Quaternion(0, 8, 8, 8)
1563
+ >>> q.parallel(q1)
1564
+ True
1565
+
1566
+ >>> q1 = Quaternion(0, 8, 13, 12)
1567
+ >>> q.parallel(q1)
1568
+ False
1569
+
1570
+ """
1571
+
1572
+ if fuzzy_not(self.is_pure()) or fuzzy_not(other.is_pure()):
1573
+ raise ValueError('The provided quaternions must be pure')
1574
+
1575
+ return (self*other - other*self).is_zero_quaternion()
1576
+
1577
+ def orthogonal(self, other):
1578
+ """
1579
+ Returns the orthogonality of two quaternions.
1580
+
1581
+ Explanation
1582
+ ===========
1583
+
1584
+ Two pure quaternions are called orthogonal when their product is anti-commutative.
1585
+
1586
+ Parameters
1587
+ ==========
1588
+
1589
+ other : a Quaternion
1590
+
1591
+ Returns
1592
+ =======
1593
+
1594
+ True : if the two pure quaternions seen as 3D vectors are orthogonal.
1595
+ False : if the two pure quaternions seen as 3D vectors are not orthogonal.
1596
+ None : if the two pure quaternions seen as 3D vectors are orthogonal is unknown.
1597
+
1598
+ Examples
1599
+ ========
1600
+
1601
+ >>> from sympy.algebras.quaternion import Quaternion
1602
+ >>> q = Quaternion(0, 4, 4, 4)
1603
+ >>> q1 = Quaternion(0, 8, 8, 8)
1604
+ >>> q.orthogonal(q1)
1605
+ False
1606
+
1607
+ >>> q1 = Quaternion(0, 2, 2, 0)
1608
+ >>> q = Quaternion(0, 2, -2, 0)
1609
+ >>> q.orthogonal(q1)
1610
+ True
1611
+
1612
+ """
1613
+
1614
+ if fuzzy_not(self.is_pure()) or fuzzy_not(other.is_pure()):
1615
+ raise ValueError('The given quaternions must be pure')
1616
+
1617
+ return (self*other + other*self).is_zero_quaternion()
1618
+
1619
+ def index_vector(self):
1620
+ r"""
1621
+ Returns the index vector of the quaternion.
1622
+
1623
+ Explanation
1624
+ ===========
1625
+
1626
+ Index vector is given by $\mathbf{T}(q)$ multiplied by $\mathbf{Ax}(q)$ where $\mathbf{Ax}(q)$ is the axis of the quaternion q,
1627
+ and mod(q) is the $\mathbf{T}(q)$ (magnitude) of the quaternion.
1628
+
1629
+ Returns
1630
+ =======
1631
+
1632
+ Quaternion: representing index vector of the provided quaternion.
1633
+
1634
+ Examples
1635
+ ========
1636
+
1637
+ >>> from sympy.algebras.quaternion import Quaternion
1638
+ >>> q = Quaternion(2, 4, 2, 4)
1639
+ >>> q.index_vector()
1640
+ 0 + 4*sqrt(10)/3*i + 2*sqrt(10)/3*j + 4*sqrt(10)/3*k
1641
+
1642
+ See Also
1643
+ ========
1644
+
1645
+ axis
1646
+ norm
1647
+
1648
+ """
1649
+
1650
+ return self.norm() * self.axis()
1651
+
1652
+ def mensor(self):
1653
+ """
1654
+ Returns the natural logarithm of the norm(magnitude) of the quaternion.
1655
+
1656
+ Examples
1657
+ ========
1658
+
1659
+ >>> from sympy.algebras.quaternion import Quaternion
1660
+ >>> q = Quaternion(2, 4, 2, 4)
1661
+ >>> q.mensor()
1662
+ log(2*sqrt(10))
1663
+ >>> q.norm()
1664
+ 2*sqrt(10)
1665
+
1666
+ See Also
1667
+ ========
1668
+
1669
+ norm
1670
+
1671
+ """
1672
+
1673
+ return ln(self.norm())
env-llmeval/lib/python3.10/site-packages/sympy/algebras/tests/__init__.py ADDED
File without changes
env-llmeval/lib/python3.10/site-packages/sympy/algebras/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (185 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/algebras/tests/__pycache__/test_quaternion.cpython-310.pyc ADDED
Binary file (15.5 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/algebras/tests/test_quaternion.py ADDED
@@ -0,0 +1,409 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sympy.core.function import diff
2
+ from sympy.core.function import expand
3
+ from sympy.core.numbers import (E, I, Rational, pi)
4
+ from sympy.core.singleton import S
5
+ from sympy.core.symbol import (Symbol, symbols)
6
+ from sympy.functions.elementary.complexes import (Abs, conjugate, im, re, sign)
7
+ from sympy.functions.elementary.exponential import log
8
+ from sympy.functions.elementary.miscellaneous import sqrt
9
+ from sympy.functions.elementary.trigonometric import (acos, asin, cos, sin, atan2, atan)
10
+ from sympy.integrals.integrals import integrate
11
+ from sympy.matrices.dense import Matrix
12
+ from sympy.simplify import simplify
13
+ from sympy.simplify.trigsimp import trigsimp
14
+ from sympy.algebras.quaternion import Quaternion
15
+ from sympy.testing.pytest import raises
16
+ from itertools import permutations, product
17
+
18
+ w, x, y, z = symbols('w:z')
19
+ phi = symbols('phi')
20
+
21
+ def test_quaternion_construction():
22
+ q = Quaternion(w, x, y, z)
23
+ assert q + q == Quaternion(2*w, 2*x, 2*y, 2*z)
24
+
25
+ q2 = Quaternion.from_axis_angle((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3),
26
+ pi*Rational(2, 3))
27
+ assert q2 == Quaternion(S.Half, S.Half,
28
+ S.Half, S.Half)
29
+
30
+ M = Matrix([[cos(phi), -sin(phi), 0], [sin(phi), cos(phi), 0], [0, 0, 1]])
31
+ q3 = trigsimp(Quaternion.from_rotation_matrix(M))
32
+ assert q3 == Quaternion(
33
+ sqrt(2)*sqrt(cos(phi) + 1)/2, 0, 0, sqrt(2 - 2*cos(phi))*sign(sin(phi))/2)
34
+
35
+ nc = Symbol('nc', commutative=False)
36
+ raises(ValueError, lambda: Quaternion(w, x, nc, z))
37
+
38
+
39
+ def test_quaternion_construction_norm():
40
+ q1 = Quaternion(*symbols('a:d'))
41
+
42
+ q2 = Quaternion(w, x, y, z)
43
+ assert expand((q1*q2).norm()**2 - (q1.norm()**2 * q2.norm()**2)) == 0
44
+
45
+ q3 = Quaternion(w, x, y, z, norm=1)
46
+ assert (q1 * q3).norm() == q1.norm()
47
+
48
+
49
+ def test_to_and_from_Matrix():
50
+ q = Quaternion(w, x, y, z)
51
+ q_full = Quaternion.from_Matrix(q.to_Matrix())
52
+ q_vect = Quaternion.from_Matrix(q.to_Matrix(True))
53
+ assert (q - q_full).is_zero_quaternion()
54
+ assert (q.vector_part() - q_vect).is_zero_quaternion()
55
+
56
+
57
+ def test_product_matrices():
58
+ q1 = Quaternion(w, x, y, z)
59
+ q2 = Quaternion(*(symbols("a:d")))
60
+ assert (q1 * q2).to_Matrix() == q1.product_matrix_left * q2.to_Matrix()
61
+ assert (q1 * q2).to_Matrix() == q2.product_matrix_right * q1.to_Matrix()
62
+
63
+ R1 = (q1.product_matrix_left * q1.product_matrix_right.T)[1:, 1:]
64
+ R2 = simplify(q1.to_rotation_matrix()*q1.norm()**2)
65
+ assert R1 == R2
66
+
67
+
68
+ def test_quaternion_axis_angle():
69
+
70
+ test_data = [ # axis, angle, expected_quaternion
71
+ ((1, 0, 0), 0, (1, 0, 0, 0)),
72
+ ((1, 0, 0), pi/2, (sqrt(2)/2, sqrt(2)/2, 0, 0)),
73
+ ((0, 1, 0), pi/2, (sqrt(2)/2, 0, sqrt(2)/2, 0)),
74
+ ((0, 0, 1), pi/2, (sqrt(2)/2, 0, 0, sqrt(2)/2)),
75
+ ((1, 0, 0), pi, (0, 1, 0, 0)),
76
+ ((0, 1, 0), pi, (0, 0, 1, 0)),
77
+ ((0, 0, 1), pi, (0, 0, 0, 1)),
78
+ ((1, 1, 1), pi, (0, 1/sqrt(3),1/sqrt(3),1/sqrt(3))),
79
+ ((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3), pi*2/3, (S.Half, S.Half, S.Half, S.Half))
80
+ ]
81
+
82
+ for axis, angle, expected in test_data:
83
+ assert Quaternion.from_axis_angle(axis, angle) == Quaternion(*expected)
84
+
85
+
86
+ def test_quaternion_axis_angle_simplification():
87
+ result = Quaternion.from_axis_angle((1, 2, 3), asin(4))
88
+ assert result.a == cos(asin(4)/2)
89
+ assert result.b == sqrt(14)*sin(asin(4)/2)/14
90
+ assert result.c == sqrt(14)*sin(asin(4)/2)/7
91
+ assert result.d == 3*sqrt(14)*sin(asin(4)/2)/14
92
+
93
+ def test_quaternion_complex_real_addition():
94
+ a = symbols("a", complex=True)
95
+ b = symbols("b", real=True)
96
+ # This symbol is not complex:
97
+ c = symbols("c", commutative=False)
98
+
99
+ q = Quaternion(w, x, y, z)
100
+ assert a + q == Quaternion(w + re(a), x + im(a), y, z)
101
+ assert 1 + q == Quaternion(1 + w, x, y, z)
102
+ assert I + q == Quaternion(w, 1 + x, y, z)
103
+ assert b + q == Quaternion(w + b, x, y, z)
104
+ raises(ValueError, lambda: c + q)
105
+ raises(ValueError, lambda: q * c)
106
+ raises(ValueError, lambda: c * q)
107
+
108
+ assert -q == Quaternion(-w, -x, -y, -z)
109
+
110
+ q1 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
111
+ q2 = Quaternion(1, 4, 7, 8)
112
+
113
+ assert q1 + (2 + 3*I) == Quaternion(5 + 7*I, 2 + 5*I, 0, 7 + 8*I)
114
+ assert q2 + (2 + 3*I) == Quaternion(3, 7, 7, 8)
115
+ assert q1 * (2 + 3*I) == \
116
+ Quaternion((2 + 3*I)*(3 + 4*I), (2 + 3*I)*(2 + 5*I), 0, (2 + 3*I)*(7 + 8*I))
117
+ assert q2 * (2 + 3*I) == Quaternion(-10, 11, 38, -5)
118
+
119
+ q1 = Quaternion(1, 2, 3, 4)
120
+ q0 = Quaternion(0, 0, 0, 0)
121
+ assert q1 + q0 == q1
122
+ assert q1 - q0 == q1
123
+ assert q1 - q1 == q0
124
+
125
+
126
+ def test_quaternion_evalf():
127
+ assert (Quaternion(sqrt(2), 0, 0, sqrt(3)).evalf() ==
128
+ Quaternion(sqrt(2).evalf(), 0, 0, sqrt(3).evalf()))
129
+ assert (Quaternion(1/sqrt(2), 0, 0, 1/sqrt(2)).evalf() ==
130
+ Quaternion((1/sqrt(2)).evalf(), 0, 0, (1/sqrt(2)).evalf()))
131
+
132
+
133
+ def test_quaternion_functions():
134
+ q = Quaternion(w, x, y, z)
135
+ q1 = Quaternion(1, 2, 3, 4)
136
+ q0 = Quaternion(0, 0, 0, 0)
137
+
138
+ assert conjugate(q) == Quaternion(w, -x, -y, -z)
139
+ assert q.norm() == sqrt(w**2 + x**2 + y**2 + z**2)
140
+ assert q.normalize() == Quaternion(w, x, y, z) / sqrt(w**2 + x**2 + y**2 + z**2)
141
+ assert q.inverse() == Quaternion(w, -x, -y, -z) / (w**2 + x**2 + y**2 + z**2)
142
+ assert q.inverse() == q.pow(-1)
143
+ raises(ValueError, lambda: q0.inverse())
144
+ assert q.pow(2) == Quaternion(w**2 - x**2 - y**2 - z**2, 2*w*x, 2*w*y, 2*w*z)
145
+ assert q**(2) == Quaternion(w**2 - x**2 - y**2 - z**2, 2*w*x, 2*w*y, 2*w*z)
146
+ assert q1.pow(-2) == Quaternion(
147
+ Rational(-7, 225), Rational(-1, 225), Rational(-1, 150), Rational(-2, 225))
148
+ assert q1**(-2) == Quaternion(
149
+ Rational(-7, 225), Rational(-1, 225), Rational(-1, 150), Rational(-2, 225))
150
+ assert q1.pow(-0.5) == NotImplemented
151
+ raises(TypeError, lambda: q1**(-0.5))
152
+
153
+ assert q1.exp() == \
154
+ Quaternion(E * cos(sqrt(29)),
155
+ 2 * sqrt(29) * E * sin(sqrt(29)) / 29,
156
+ 3 * sqrt(29) * E * sin(sqrt(29)) / 29,
157
+ 4 * sqrt(29) * E * sin(sqrt(29)) / 29)
158
+ assert q1._ln() == \
159
+ Quaternion(log(sqrt(30)),
160
+ 2 * sqrt(29) * acos(sqrt(30)/30) / 29,
161
+ 3 * sqrt(29) * acos(sqrt(30)/30) / 29,
162
+ 4 * sqrt(29) * acos(sqrt(30)/30) / 29)
163
+
164
+ assert q1.pow_cos_sin(2) == \
165
+ Quaternion(30 * cos(2 * acos(sqrt(30)/30)),
166
+ 60 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29,
167
+ 90 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29,
168
+ 120 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29)
169
+
170
+ assert diff(Quaternion(x, x, x, x), x) == Quaternion(1, 1, 1, 1)
171
+
172
+ assert integrate(Quaternion(x, x, x, x), x) == \
173
+ Quaternion(x**2 / 2, x**2 / 2, x**2 / 2, x**2 / 2)
174
+
175
+ assert Quaternion.rotate_point((1, 1, 1), q1) == (S.One / 5, 1, S(7) / 5)
176
+ n = Symbol('n')
177
+ raises(TypeError, lambda: q1**n)
178
+ n = Symbol('n', integer=True)
179
+ raises(TypeError, lambda: q1**n)
180
+
181
+ assert Quaternion(22, 23, 55, 8).scalar_part() == 22
182
+ assert Quaternion(w, x, y, z).scalar_part() == w
183
+
184
+ assert Quaternion(22, 23, 55, 8).vector_part() == Quaternion(0, 23, 55, 8)
185
+ assert Quaternion(w, x, y, z).vector_part() == Quaternion(0, x, y, z)
186
+
187
+ assert q1.axis() == Quaternion(0, 2*sqrt(29)/29, 3*sqrt(29)/29, 4*sqrt(29)/29)
188
+ assert q1.axis().pow(2) == Quaternion(-1, 0, 0, 0)
189
+ assert q0.axis().scalar_part() == 0
190
+ assert (q.axis() == Quaternion(0,
191
+ x/sqrt(x**2 + y**2 + z**2),
192
+ y/sqrt(x**2 + y**2 + z**2),
193
+ z/sqrt(x**2 + y**2 + z**2)))
194
+
195
+ assert q0.is_pure() is True
196
+ assert q1.is_pure() is False
197
+ assert Quaternion(0, 0, 0, 3).is_pure() is True
198
+ assert Quaternion(0, 2, 10, 3).is_pure() is True
199
+ assert Quaternion(w, 2, 10, 3).is_pure() is None
200
+
201
+ assert q1.angle() == atan(sqrt(29))
202
+ assert q.angle() == atan2(sqrt(x**2 + y**2 + z**2), w)
203
+
204
+ assert Quaternion.arc_coplanar(q1, Quaternion(2, 4, 6, 8)) is True
205
+ assert Quaternion.arc_coplanar(q1, Quaternion(1, -2, -3, -4)) is True
206
+ assert Quaternion.arc_coplanar(q1, Quaternion(1, 8, 12, 16)) is True
207
+ assert Quaternion.arc_coplanar(q1, Quaternion(1, 2, 3, 4)) is True
208
+ assert Quaternion.arc_coplanar(q1, Quaternion(w, 4, 6, 8)) is True
209
+ assert Quaternion.arc_coplanar(q1, Quaternion(2, 7, 4, 1)) is False
210
+ assert Quaternion.arc_coplanar(q1, Quaternion(w, x, y, z)) is None
211
+ raises(ValueError, lambda: Quaternion.arc_coplanar(q1, q0))
212
+
213
+ assert Quaternion.vector_coplanar(
214
+ Quaternion(0, 8, 12, 16),
215
+ Quaternion(0, 4, 6, 8),
216
+ Quaternion(0, 2, 3, 4)) is True
217
+ assert Quaternion.vector_coplanar(
218
+ Quaternion(0, 0, 0, 0), Quaternion(0, 4, 6, 8), Quaternion(0, 2, 3, 4)) is True
219
+ assert Quaternion.vector_coplanar(
220
+ Quaternion(0, 8, 2, 6), Quaternion(0, 1, 6, 6), Quaternion(0, 0, 3, 4)) is False
221
+ assert Quaternion.vector_coplanar(
222
+ Quaternion(0, 1, 3, 4),
223
+ Quaternion(0, 4, w, 6),
224
+ Quaternion(0, 6, 8, 1)) is None
225
+ raises(ValueError, lambda:
226
+ Quaternion.vector_coplanar(q0, Quaternion(0, 4, 6, 8), q1))
227
+
228
+ assert Quaternion(0, 1, 2, 3).parallel(Quaternion(0, 2, 4, 6)) is True
229
+ assert Quaternion(0, 1, 2, 3).parallel(Quaternion(0, 2, 2, 6)) is False
230
+ assert Quaternion(0, 1, 2, 3).parallel(Quaternion(w, x, y, 6)) is None
231
+ raises(ValueError, lambda: q0.parallel(q1))
232
+
233
+ assert Quaternion(0, 1, 2, 3).orthogonal(Quaternion(0, -2, 1, 0)) is True
234
+ assert Quaternion(0, 2, 4, 7).orthogonal(Quaternion(0, 2, 2, 6)) is False
235
+ assert Quaternion(0, 2, 4, 7).orthogonal(Quaternion(w, x, y, 6)) is None
236
+ raises(ValueError, lambda: q0.orthogonal(q1))
237
+
238
+ assert q1.index_vector() == Quaternion(
239
+ 0, 2*sqrt(870)/29,
240
+ 3*sqrt(870)/29,
241
+ 4*sqrt(870)/29)
242
+ assert Quaternion(0, 3, 9, 4).index_vector() == Quaternion(0, 3, 9, 4)
243
+
244
+ assert Quaternion(4, 3, 9, 4).mensor() == log(sqrt(122))
245
+ assert Quaternion(3, 3, 0, 2).mensor() == log(sqrt(22))
246
+
247
+ assert q0.is_zero_quaternion() is True
248
+ assert q1.is_zero_quaternion() is False
249
+ assert Quaternion(w, 0, 0, 0).is_zero_quaternion() is None
250
+
251
+ def test_quaternion_conversions():
252
+ q1 = Quaternion(1, 2, 3, 4)
253
+
254
+ assert q1.to_axis_angle() == ((2 * sqrt(29)/29,
255
+ 3 * sqrt(29)/29,
256
+ 4 * sqrt(29)/29),
257
+ 2 * acos(sqrt(30)/30))
258
+
259
+ assert (q1.to_rotation_matrix() ==
260
+ Matrix([[Rational(-2, 3), Rational(2, 15), Rational(11, 15)],
261
+ [Rational(2, 3), Rational(-1, 3), Rational(2, 3)],
262
+ [Rational(1, 3), Rational(14, 15), Rational(2, 15)]]))
263
+
264
+ assert (q1.to_rotation_matrix((1, 1, 1)) ==
265
+ Matrix([
266
+ [Rational(-2, 3), Rational(2, 15), Rational(11, 15), Rational(4, 5)],
267
+ [Rational(2, 3), Rational(-1, 3), Rational(2, 3), S.Zero],
268
+ [Rational(1, 3), Rational(14, 15), Rational(2, 15), Rational(-2, 5)],
269
+ [S.Zero, S.Zero, S.Zero, S.One]]))
270
+
271
+ theta = symbols("theta", real=True)
272
+ q2 = Quaternion(cos(theta/2), 0, 0, sin(theta/2))
273
+
274
+ assert trigsimp(q2.to_rotation_matrix()) == Matrix([
275
+ [cos(theta), -sin(theta), 0],
276
+ [sin(theta), cos(theta), 0],
277
+ [0, 0, 1]])
278
+
279
+ assert q2.to_axis_angle() == ((0, 0, sin(theta/2)/Abs(sin(theta/2))),
280
+ 2*acos(cos(theta/2)))
281
+
282
+ assert trigsimp(q2.to_rotation_matrix((1, 1, 1))) == Matrix([
283
+ [cos(theta), -sin(theta), 0, sin(theta) - cos(theta) + 1],
284
+ [sin(theta), cos(theta), 0, -sin(theta) - cos(theta) + 1],
285
+ [0, 0, 1, 0],
286
+ [0, 0, 0, 1]])
287
+
288
+
289
+ def test_rotation_matrix_homogeneous():
290
+ q = Quaternion(w, x, y, z)
291
+ R1 = q.to_rotation_matrix(homogeneous=True) * q.norm()**2
292
+ R2 = simplify(q.to_rotation_matrix(homogeneous=False) * q.norm()**2)
293
+ assert R1 == R2
294
+
295
+
296
+ def test_quaternion_rotation_iss1593():
297
+ """
298
+ There was a sign mistake in the definition,
299
+ of the rotation matrix. This tests that particular sign mistake.
300
+ See issue 1593 for reference.
301
+ See wikipedia
302
+ https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Quaternion-derived_rotation_matrix
303
+ for the correct definition
304
+ """
305
+ q = Quaternion(cos(phi/2), sin(phi/2), 0, 0)
306
+ assert(trigsimp(q.to_rotation_matrix()) == Matrix([
307
+ [1, 0, 0],
308
+ [0, cos(phi), -sin(phi)],
309
+ [0, sin(phi), cos(phi)]]))
310
+
311
+
312
+ def test_quaternion_multiplication():
313
+ q1 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
314
+ q2 = Quaternion(1, 2, 3, 5)
315
+ q3 = Quaternion(1, 1, 1, y)
316
+
317
+ assert Quaternion._generic_mul(S(4), S.One) == 4
318
+ assert (Quaternion._generic_mul(S(4), q1) ==
319
+ Quaternion(12 + 16*I, 8 + 20*I, 0, 28 + 32*I))
320
+ assert q2.mul(2) == Quaternion(2, 4, 6, 10)
321
+ assert q2.mul(q3) == Quaternion(-5*y - 4, 3*y - 2, 9 - 2*y, y + 4)
322
+ assert q2.mul(q3) == q2*q3
323
+
324
+ z = symbols('z', complex=True)
325
+ z_quat = Quaternion(re(z), im(z), 0, 0)
326
+ q = Quaternion(*symbols('q:4', real=True))
327
+
328
+ assert z * q == z_quat * q
329
+ assert q * z == q * z_quat
330
+
331
+
332
+ def test_issue_16318():
333
+ #for rtruediv
334
+ q0 = Quaternion(0, 0, 0, 0)
335
+ raises(ValueError, lambda: 1/q0)
336
+ #for rotate_point
337
+ q = Quaternion(1, 2, 3, 4)
338
+ (axis, angle) = q.to_axis_angle()
339
+ assert Quaternion.rotate_point((1, 1, 1), (axis, angle)) == (S.One / 5, 1, S(7) / 5)
340
+ #test for to_axis_angle
341
+ q = Quaternion(-1, 1, 1, 1)
342
+ axis = (-sqrt(3)/3, -sqrt(3)/3, -sqrt(3)/3)
343
+ angle = 2*pi/3
344
+ assert (axis, angle) == q.to_axis_angle()
345
+
346
+
347
+ def test_to_euler():
348
+ q = Quaternion(w, x, y, z)
349
+ q_normalized = q.normalize()
350
+
351
+ seqs = ['zxy', 'zyx', 'zyz', 'zxz']
352
+ seqs += [seq.upper() for seq in seqs]
353
+
354
+ for seq in seqs:
355
+ euler_from_q = q.to_euler(seq)
356
+ q_back = simplify(Quaternion.from_euler(euler_from_q, seq))
357
+ assert q_back == q_normalized
358
+
359
+
360
+ def test_to_euler_iss24504():
361
+ """
362
+ There was a mistake in the degenerate case testing
363
+ See issue 24504 for reference.
364
+ """
365
+ q = Quaternion.from_euler((phi, 0, 0), 'zyz')
366
+ assert trigsimp(q.to_euler('zyz'), inverse=True) == (phi, 0, 0)
367
+
368
+
369
+ def test_to_euler_numerical_singilarities():
370
+
371
+ def test_one_case(angles, seq):
372
+ q = Quaternion.from_euler(angles, seq)
373
+ assert q.to_euler(seq) == angles
374
+
375
+ # symmetric
376
+ test_one_case((pi/2, 0, 0), 'zyz')
377
+ test_one_case((pi/2, 0, 0), 'ZYZ')
378
+ test_one_case((pi/2, pi, 0), 'zyz')
379
+ test_one_case((pi/2, pi, 0), 'ZYZ')
380
+
381
+ # asymmetric
382
+ test_one_case((pi/2, pi/2, 0), 'zyx')
383
+ test_one_case((pi/2, -pi/2, 0), 'zyx')
384
+ test_one_case((pi/2, pi/2, 0), 'ZYX')
385
+ test_one_case((pi/2, -pi/2, 0), 'ZYX')
386
+
387
+
388
+ def test_to_euler_options():
389
+ def test_one_case(q):
390
+ angles1 = Matrix(q.to_euler(seq, True, True))
391
+ angles2 = Matrix(q.to_euler(seq, False, False))
392
+ angle_errors = simplify(angles1-angles2).evalf()
393
+ for angle_error in angle_errors:
394
+ # forcing angles to set {-pi, pi}
395
+ angle_error = (angle_error + pi) % (2 * pi) - pi
396
+ assert angle_error < 10e-7
397
+
398
+ for xyz in ('xyz', 'XYZ'):
399
+ for seq_tuple in permutations(xyz):
400
+ for symmetric in (True, False):
401
+ if symmetric:
402
+ seq = ''.join([seq_tuple[0], seq_tuple[1], seq_tuple[0]])
403
+ else:
404
+ seq = ''.join(seq_tuple)
405
+
406
+ for elements in product([-1, 0, 1], repeat=4):
407
+ q = Quaternion(*elements)
408
+ if not q.is_zero_quaternion():
409
+ test_one_case(q)
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__init__.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of mathematical domains. """
2
+
3
+ __all__ = [
4
+ 'Domain', 'FiniteField', 'IntegerRing', 'RationalField', 'RealField',
5
+ 'ComplexField', 'AlgebraicField', 'PolynomialRing', 'FractionField',
6
+ 'ExpressionDomain', 'PythonRational',
7
+
8
+ 'GF', 'FF', 'ZZ', 'QQ', 'ZZ_I', 'QQ_I', 'RR', 'CC', 'EX', 'EXRAW',
9
+ ]
10
+
11
+ from .domain import Domain
12
+ from .finitefield import FiniteField, FF, GF
13
+ from .integerring import IntegerRing, ZZ
14
+ from .rationalfield import RationalField, QQ
15
+ from .algebraicfield import AlgebraicField
16
+ from .gaussiandomains import ZZ_I, QQ_I
17
+ from .realfield import RealField, RR
18
+ from .complexfield import ComplexField, CC
19
+ from .polynomialring import PolynomialRing
20
+ from .fractionfield import FractionField
21
+ from .expressiondomain import ExpressionDomain, EX
22
+ from .expressionrawdomain import EXRAW
23
+ from .pythonrational import PythonRational
24
+
25
+
26
+ # This is imported purely for backwards compatibility because some parts of
27
+ # the codebase used to import this from here and it's possible that downstream
28
+ # does as well:
29
+ from sympy.external.gmpy import GROUND_TYPES # noqa: F401
30
+
31
+ #
32
+ # The rest of these are obsolete and provided only for backwards
33
+ # compatibility:
34
+ #
35
+
36
+ from .pythonfinitefield import PythonFiniteField
37
+ from .gmpyfinitefield import GMPYFiniteField
38
+ from .pythonintegerring import PythonIntegerRing
39
+ from .gmpyintegerring import GMPYIntegerRing
40
+ from .pythonrationalfield import PythonRationalField
41
+ from .gmpyrationalfield import GMPYRationalField
42
+
43
+ FF_python = PythonFiniteField
44
+ FF_gmpy = GMPYFiniteField
45
+
46
+ ZZ_python = PythonIntegerRing
47
+ ZZ_gmpy = GMPYIntegerRing
48
+
49
+ QQ_python = PythonRationalField
50
+ QQ_gmpy = GMPYRationalField
51
+
52
+ __all__.extend((
53
+ 'PythonFiniteField', 'GMPYFiniteField', 'PythonIntegerRing',
54
+ 'GMPYIntegerRing', 'PythonRational', 'GMPYRationalField',
55
+
56
+ 'FF_python', 'FF_gmpy', 'ZZ_python', 'ZZ_gmpy', 'QQ_python', 'QQ_gmpy',
57
+ ))
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.7 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/algebraicfield.cpython-310.pyc ADDED
Binary file (23 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/compositedomain.cpython-310.pyc ADDED
Binary file (1.47 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/domain.cpython-310.pyc ADDED
Binary file (35.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/expressiondomain.cpython-310.pyc ADDED
Binary file (9.94 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/field.cpython-310.pyc ADDED
Binary file (3.28 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/finitefield.cpython-310.pyc ADDED
Binary file (6.94 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/gaussiandomains.cpython-310.pyc ADDED
Binary file (20.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/groundtypes.cpython-310.pyc ADDED
Binary file (1.71 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/integerring.cpython-310.pyc ADDED
Binary file (7.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/modularinteger.cpython-310.pyc ADDED
Binary file (6.63 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/old_fractionfield.cpython-310.pyc ADDED
Binary file (7.51 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/old_polynomialring.cpython-310.pyc ADDED
Binary file (17.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/pythonfinitefield.cpython-310.pyc ADDED
Binary file (913 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/pythonrationalfield.cpython-310.pyc ADDED
Binary file (3.31 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/quotientring.cpython-310.pyc ADDED
Binary file (7.28 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/rationalfield.cpython-310.pyc ADDED
Binary file (6.28 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/__pycache__/ring.cpython-310.pyc ADDED
Binary file (4.24 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/field.py ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of :class:`Field` class. """
2
+
3
+
4
+ from sympy.polys.domains.ring import Ring
5
+ from sympy.polys.polyerrors import NotReversible, DomainError
6
+ from sympy.utilities import public
7
+
8
+ @public
9
+ class Field(Ring):
10
+ """Represents a field domain. """
11
+
12
+ is_Field = True
13
+ is_PID = True
14
+
15
+ def get_ring(self):
16
+ """Returns a ring associated with ``self``. """
17
+ raise DomainError('there is no ring associated with %s' % self)
18
+
19
+ def get_field(self):
20
+ """Returns a field associated with ``self``. """
21
+ return self
22
+
23
+ def exquo(self, a, b):
24
+ """Exact quotient of ``a`` and ``b``, implies ``__truediv__``. """
25
+ return a / b
26
+
27
+ def quo(self, a, b):
28
+ """Quotient of ``a`` and ``b``, implies ``__truediv__``. """
29
+ return a / b
30
+
31
+ def rem(self, a, b):
32
+ """Remainder of ``a`` and ``b``, implies nothing. """
33
+ return self.zero
34
+
35
+ def div(self, a, b):
36
+ """Division of ``a`` and ``b``, implies ``__truediv__``. """
37
+ return a / b, self.zero
38
+
39
+ def gcd(self, a, b):
40
+ """
41
+ Returns GCD of ``a`` and ``b``.
42
+
43
+ This definition of GCD over fields allows to clear denominators
44
+ in `primitive()`.
45
+
46
+ Examples
47
+ ========
48
+
49
+ >>> from sympy.polys.domains import QQ
50
+ >>> from sympy import S, gcd, primitive
51
+ >>> from sympy.abc import x
52
+
53
+ >>> QQ.gcd(QQ(2, 3), QQ(4, 9))
54
+ 2/9
55
+ >>> gcd(S(2)/3, S(4)/9)
56
+ 2/9
57
+ >>> primitive(2*x/3 + S(4)/9)
58
+ (2/9, 3*x + 2)
59
+
60
+ """
61
+ try:
62
+ ring = self.get_ring()
63
+ except DomainError:
64
+ return self.one
65
+
66
+ p = ring.gcd(self.numer(a), self.numer(b))
67
+ q = ring.lcm(self.denom(a), self.denom(b))
68
+
69
+ return self.convert(p, ring)/q
70
+
71
+ def lcm(self, a, b):
72
+ """
73
+ Returns LCM of ``a`` and ``b``.
74
+
75
+ >>> from sympy.polys.domains import QQ
76
+ >>> from sympy import S, lcm
77
+
78
+ >>> QQ.lcm(QQ(2, 3), QQ(4, 9))
79
+ 4/3
80
+ >>> lcm(S(2)/3, S(4)/9)
81
+ 4/3
82
+
83
+ """
84
+
85
+ try:
86
+ ring = self.get_ring()
87
+ except DomainError:
88
+ return a*b
89
+
90
+ p = ring.lcm(self.numer(a), self.numer(b))
91
+ q = ring.gcd(self.denom(a), self.denom(b))
92
+
93
+ return self.convert(p, ring)/q
94
+
95
+ def revert(self, a):
96
+ """Returns ``a**(-1)`` if possible. """
97
+ if a:
98
+ return 1/a
99
+ else:
100
+ raise NotReversible('zero is not reversible')
101
+
102
+ def is_unit(self, a):
103
+ """Return true if ``a`` is a invertible"""
104
+ return bool(a)
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/groundtypes.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Ground types for various mathematical domains in SymPy. """
2
+
3
+ import builtins
4
+ from sympy.external.gmpy import HAS_GMPY, factorial, sqrt
5
+
6
+ PythonInteger = builtins.int
7
+ PythonReal = builtins.float
8
+ PythonComplex = builtins.complex
9
+
10
+ from .pythonrational import PythonRational
11
+
12
+ from sympy.core.numbers import (
13
+ igcdex as python_gcdex,
14
+ igcd2 as python_gcd,
15
+ ilcm as python_lcm,
16
+ )
17
+
18
+ from sympy.core.numbers import (Float as SymPyReal, Integer as SymPyInteger, Rational as SymPyRational)
19
+
20
+
21
+ if HAS_GMPY == 2:
22
+ from gmpy2 import (
23
+ mpz as GMPYInteger,
24
+ mpq as GMPYRational,
25
+ numer as gmpy_numer,
26
+ denom as gmpy_denom,
27
+ gcdext as gmpy_gcdex,
28
+ gcd as gmpy_gcd,
29
+ lcm as gmpy_lcm,
30
+ qdiv as gmpy_qdiv,
31
+ )
32
+ gcdex = gmpy_gcdex
33
+ gcd = gmpy_gcd
34
+ lcm = gmpy_lcm
35
+ else:
36
+ class _GMPYInteger:
37
+ def __init__(self, obj):
38
+ pass
39
+
40
+ class _GMPYRational:
41
+ def __init__(self, obj):
42
+ pass
43
+
44
+ GMPYInteger = _GMPYInteger
45
+ GMPYRational = _GMPYRational
46
+ gmpy_numer = None
47
+ gmpy_denom = None
48
+ gmpy_gcdex = None
49
+ gmpy_gcd = None
50
+ gmpy_lcm = None
51
+ gmpy_qdiv = None
52
+ gcdex = python_gcdex
53
+ gcd = python_gcd
54
+ lcm = python_lcm
55
+
56
+
57
+ __all__ = [
58
+ 'PythonInteger', 'PythonReal', 'PythonComplex',
59
+
60
+ 'PythonRational',
61
+
62
+ 'python_gcdex', 'python_gcd', 'python_lcm',
63
+
64
+ 'SymPyReal', 'SymPyInteger', 'SymPyRational',
65
+
66
+ 'GMPYInteger', 'GMPYRational', 'gmpy_numer',
67
+ 'gmpy_denom', 'gmpy_gcdex', 'gmpy_gcd', 'gmpy_lcm',
68
+ 'gmpy_qdiv',
69
+
70
+ 'factorial', 'sqrt',
71
+
72
+ 'GMPYInteger', 'GMPYRational',
73
+ ]
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/pythonfinitefield.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of :class:`PythonFiniteField` class. """
2
+
3
+
4
+ from sympy.polys.domains.finitefield import FiniteField
5
+ from sympy.polys.domains.pythonintegerring import PythonIntegerRing
6
+
7
+ from sympy.utilities import public
8
+
9
+ @public
10
+ class PythonFiniteField(FiniteField):
11
+ """Finite field based on Python's integers. """
12
+
13
+ alias = 'FF_python'
14
+
15
+ def __init__(self, mod, symmetric=True):
16
+ return super().__init__(mod, PythonIntegerRing(), symmetric)
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/pythonrational.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Rational number type based on Python integers.
3
+
4
+ The PythonRational class from here has been moved to
5
+ sympy.external.pythonmpq
6
+
7
+ This module is just left here for backwards compatibility.
8
+ """
9
+
10
+
11
+ from sympy.core.numbers import Rational
12
+ from sympy.core.sympify import _sympy_converter
13
+ from sympy.utilities import public
14
+ from sympy.external.pythonmpq import PythonMPQ
15
+
16
+
17
+ PythonRational = public(PythonMPQ)
18
+
19
+
20
+ def sympify_pythonrational(arg):
21
+ return Rational(arg.numerator, arg.denominator)
22
+ _sympy_converter[PythonRational] = sympify_pythonrational
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/rationalfield.py ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of :class:`RationalField` class. """
2
+
3
+
4
+ from sympy.external.gmpy import MPQ
5
+
6
+ from sympy.polys.domains.groundtypes import SymPyRational
7
+
8
+ from sympy.polys.domains.characteristiczero import CharacteristicZero
9
+ from sympy.polys.domains.field import Field
10
+ from sympy.polys.domains.simpledomain import SimpleDomain
11
+ from sympy.polys.polyerrors import CoercionFailed
12
+ from sympy.utilities import public
13
+
14
+ @public
15
+ class RationalField(Field, CharacteristicZero, SimpleDomain):
16
+ r"""Abstract base class for the domain :ref:`QQ`.
17
+
18
+ The :py:class:`RationalField` class represents the field of rational
19
+ numbers $\mathbb{Q}$ as a :py:class:`~.Domain` in the domain system.
20
+ :py:class:`RationalField` is a superclass of
21
+ :py:class:`PythonRationalField` and :py:class:`GMPYRationalField` one of
22
+ which will be the implementation for :ref:`QQ` depending on whether either
23
+ of ``gmpy`` or ``gmpy2`` is installed or not.
24
+
25
+ See also
26
+ ========
27
+
28
+ Domain
29
+ """
30
+
31
+ rep = 'QQ'
32
+ alias = 'QQ'
33
+
34
+ is_RationalField = is_QQ = True
35
+ is_Numerical = True
36
+
37
+ has_assoc_Ring = True
38
+ has_assoc_Field = True
39
+
40
+ dtype = MPQ
41
+ zero = dtype(0)
42
+ one = dtype(1)
43
+ tp = type(one)
44
+
45
+ def __init__(self):
46
+ pass
47
+
48
+ def get_ring(self):
49
+ """Returns ring associated with ``self``. """
50
+ from sympy.polys.domains import ZZ
51
+ return ZZ
52
+
53
+ def to_sympy(self, a):
54
+ """Convert ``a`` to a SymPy object. """
55
+ return SymPyRational(int(a.numerator), int(a.denominator))
56
+
57
+ def from_sympy(self, a):
58
+ """Convert SymPy's Integer to ``dtype``. """
59
+ if a.is_Rational:
60
+ return MPQ(a.p, a.q)
61
+ elif a.is_Float:
62
+ from sympy.polys.domains import RR
63
+ return MPQ(*map(int, RR.to_rational(a)))
64
+ else:
65
+ raise CoercionFailed("expected `Rational` object, got %s" % a)
66
+
67
+ def algebraic_field(self, *extension, alias=None):
68
+ r"""Returns an algebraic field, i.e. `\mathbb{Q}(\alpha, \ldots)`.
69
+
70
+ Parameters
71
+ ==========
72
+
73
+ *extension : One or more :py:class:`~.Expr`
74
+ Generators of the extension. These should be expressions that are
75
+ algebraic over `\mathbb{Q}`.
76
+
77
+ alias : str, :py:class:`~.Symbol`, None, optional (default=None)
78
+ If provided, this will be used as the alias symbol for the
79
+ primitive element of the returned :py:class:`~.AlgebraicField`.
80
+
81
+ Returns
82
+ =======
83
+
84
+ :py:class:`~.AlgebraicField`
85
+ A :py:class:`~.Domain` representing the algebraic field extension.
86
+
87
+ Examples
88
+ ========
89
+
90
+ >>> from sympy import QQ, sqrt
91
+ >>> QQ.algebraic_field(sqrt(2))
92
+ QQ<sqrt(2)>
93
+ """
94
+ from sympy.polys.domains import AlgebraicField
95
+ return AlgebraicField(self, *extension, alias=alias)
96
+
97
+ def from_AlgebraicField(K1, a, K0):
98
+ """Convert a :py:class:`~.ANP` object to :ref:`QQ`.
99
+
100
+ See :py:meth:`~.Domain.convert`
101
+ """
102
+ if a.is_ground:
103
+ return K1.convert(a.LC(), K0.dom)
104
+
105
+ def from_ZZ(K1, a, K0):
106
+ """Convert a Python ``int`` object to ``dtype``. """
107
+ return MPQ(a)
108
+
109
+ def from_ZZ_python(K1, a, K0):
110
+ """Convert a Python ``int`` object to ``dtype``. """
111
+ return MPQ(a)
112
+
113
+ def from_QQ(K1, a, K0):
114
+ """Convert a Python ``Fraction`` object to ``dtype``. """
115
+ return MPQ(a.numerator, a.denominator)
116
+
117
+ def from_QQ_python(K1, a, K0):
118
+ """Convert a Python ``Fraction`` object to ``dtype``. """
119
+ return MPQ(a.numerator, a.denominator)
120
+
121
+ def from_ZZ_gmpy(K1, a, K0):
122
+ """Convert a GMPY ``mpz`` object to ``dtype``. """
123
+ return MPQ(a)
124
+
125
+ def from_QQ_gmpy(K1, a, K0):
126
+ """Convert a GMPY ``mpq`` object to ``dtype``. """
127
+ return a
128
+
129
+ def from_GaussianRationalField(K1, a, K0):
130
+ """Convert a ``GaussianElement`` object to ``dtype``. """
131
+ if a.y == 0:
132
+ return MPQ(a.x)
133
+
134
+ def from_RealField(K1, a, K0):
135
+ """Convert a mpmath ``mpf`` object to ``dtype``. """
136
+ return MPQ(*map(int, K0.to_rational(a)))
137
+
138
+ def exquo(self, a, b):
139
+ """Exact quotient of ``a`` and ``b``, implies ``__truediv__``. """
140
+ return MPQ(a) / MPQ(b)
141
+
142
+ def quo(self, a, b):
143
+ """Quotient of ``a`` and ``b``, implies ``__truediv__``. """
144
+ return MPQ(a) / MPQ(b)
145
+
146
+ def rem(self, a, b):
147
+ """Remainder of ``a`` and ``b``, implies nothing. """
148
+ return self.zero
149
+
150
+ def div(self, a, b):
151
+ """Division of ``a`` and ``b``, implies ``__truediv__``. """
152
+ return MPQ(a) / MPQ(b), self.zero
153
+
154
+ def numer(self, a):
155
+ """Returns numerator of ``a``. """
156
+ return a.numerator
157
+
158
+ def denom(self, a):
159
+ """Returns denominator of ``a``. """
160
+ return a.denominator
161
+
162
+
163
+ QQ = RationalField()
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/simpledomain.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Implementation of :class:`SimpleDomain` class. """
2
+
3
+
4
+ from sympy.polys.domains.domain import Domain
5
+ from sympy.utilities import public
6
+
7
+ @public
8
+ class SimpleDomain(Domain):
9
+ """Base class for simple domains, e.g. ZZ, QQ. """
10
+
11
+ is_Simple = True
12
+
13
+ def inject(self, *gens):
14
+ """Inject generators into this domain. """
15
+ return self.poly_ring(*gens)
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/tests/test_domains.py ADDED
@@ -0,0 +1,1270 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tests for classes defining properties of ground domains, e.g. ZZ, QQ, ZZ[x] ... """
2
+
3
+ from sympy.core.numbers import (AlgebraicNumber, E, Float, I, Integer,
4
+ Rational, oo, pi, _illegal)
5
+ from sympy.core.singleton import S
6
+ from sympy.functions.elementary.exponential import exp
7
+ from sympy.functions.elementary.miscellaneous import sqrt
8
+ from sympy.functions.elementary.trigonometric import sin
9
+ from sympy.polys.polytools import Poly
10
+ from sympy.abc import x, y, z
11
+
12
+ from sympy.external.gmpy import HAS_GMPY
13
+
14
+ from sympy.polys.domains import (ZZ, QQ, RR, CC, FF, GF, EX, EXRAW, ZZ_gmpy,
15
+ ZZ_python, QQ_gmpy, QQ_python)
16
+ from sympy.polys.domains.algebraicfield import AlgebraicField
17
+ from sympy.polys.domains.gaussiandomains import ZZ_I, QQ_I
18
+ from sympy.polys.domains.polynomialring import PolynomialRing
19
+ from sympy.polys.domains.realfield import RealField
20
+
21
+ from sympy.polys.numberfields.subfield import field_isomorphism
22
+ from sympy.polys.rings import ring
23
+ from sympy.polys.specialpolys import cyclotomic_poly
24
+ from sympy.polys.fields import field
25
+
26
+ from sympy.polys.agca.extensions import FiniteExtension
27
+
28
+ from sympy.polys.polyerrors import (
29
+ UnificationFailed,
30
+ GeneratorsError,
31
+ CoercionFailed,
32
+ NotInvertible,
33
+ DomainError)
34
+
35
+ from sympy.testing.pytest import raises
36
+
37
+ from itertools import product
38
+
39
+ ALG = QQ.algebraic_field(sqrt(2), sqrt(3))
40
+
41
+ def unify(K0, K1):
42
+ return K0.unify(K1)
43
+
44
+ def test_Domain_unify():
45
+ F3 = GF(3)
46
+
47
+ assert unify(F3, F3) == F3
48
+ assert unify(F3, ZZ) == ZZ
49
+ assert unify(F3, QQ) == QQ
50
+ assert unify(F3, ALG) == ALG
51
+ assert unify(F3, RR) == RR
52
+ assert unify(F3, CC) == CC
53
+ assert unify(F3, ZZ[x]) == ZZ[x]
54
+ assert unify(F3, ZZ.frac_field(x)) == ZZ.frac_field(x)
55
+ assert unify(F3, EX) == EX
56
+
57
+ assert unify(ZZ, F3) == ZZ
58
+ assert unify(ZZ, ZZ) == ZZ
59
+ assert unify(ZZ, QQ) == QQ
60
+ assert unify(ZZ, ALG) == ALG
61
+ assert unify(ZZ, RR) == RR
62
+ assert unify(ZZ, CC) == CC
63
+ assert unify(ZZ, ZZ[x]) == ZZ[x]
64
+ assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x)
65
+ assert unify(ZZ, EX) == EX
66
+
67
+ assert unify(QQ, F3) == QQ
68
+ assert unify(QQ, ZZ) == QQ
69
+ assert unify(QQ, QQ) == QQ
70
+ assert unify(QQ, ALG) == ALG
71
+ assert unify(QQ, RR) == RR
72
+ assert unify(QQ, CC) == CC
73
+ assert unify(QQ, ZZ[x]) == QQ[x]
74
+ assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x)
75
+ assert unify(QQ, EX) == EX
76
+
77
+ assert unify(ZZ_I, F3) == ZZ_I
78
+ assert unify(ZZ_I, ZZ) == ZZ_I
79
+ assert unify(ZZ_I, ZZ_I) == ZZ_I
80
+ assert unify(ZZ_I, QQ) == QQ_I
81
+ assert unify(ZZ_I, ALG) == QQ.algebraic_field(I, sqrt(2), sqrt(3))
82
+ assert unify(ZZ_I, RR) == CC
83
+ assert unify(ZZ_I, CC) == CC
84
+ assert unify(ZZ_I, ZZ[x]) == ZZ_I[x]
85
+ assert unify(ZZ_I, ZZ_I[x]) == ZZ_I[x]
86
+ assert unify(ZZ_I, ZZ.frac_field(x)) == ZZ_I.frac_field(x)
87
+ assert unify(ZZ_I, ZZ_I.frac_field(x)) == ZZ_I.frac_field(x)
88
+ assert unify(ZZ_I, EX) == EX
89
+
90
+ assert unify(QQ_I, F3) == QQ_I
91
+ assert unify(QQ_I, ZZ) == QQ_I
92
+ assert unify(QQ_I, ZZ_I) == QQ_I
93
+ assert unify(QQ_I, QQ) == QQ_I
94
+ assert unify(QQ_I, ALG) == QQ.algebraic_field(I, sqrt(2), sqrt(3))
95
+ assert unify(QQ_I, RR) == CC
96
+ assert unify(QQ_I, CC) == CC
97
+ assert unify(QQ_I, ZZ[x]) == QQ_I[x]
98
+ assert unify(QQ_I, ZZ_I[x]) == QQ_I[x]
99
+ assert unify(QQ_I, QQ[x]) == QQ_I[x]
100
+ assert unify(QQ_I, QQ_I[x]) == QQ_I[x]
101
+ assert unify(QQ_I, ZZ.frac_field(x)) == QQ_I.frac_field(x)
102
+ assert unify(QQ_I, ZZ_I.frac_field(x)) == QQ_I.frac_field(x)
103
+ assert unify(QQ_I, QQ.frac_field(x)) == QQ_I.frac_field(x)
104
+ assert unify(QQ_I, QQ_I.frac_field(x)) == QQ_I.frac_field(x)
105
+ assert unify(QQ_I, EX) == EX
106
+
107
+ assert unify(RR, F3) == RR
108
+ assert unify(RR, ZZ) == RR
109
+ assert unify(RR, QQ) == RR
110
+ assert unify(RR, ALG) == RR
111
+ assert unify(RR, RR) == RR
112
+ assert unify(RR, CC) == CC
113
+ assert unify(RR, ZZ[x]) == RR[x]
114
+ assert unify(RR, ZZ.frac_field(x)) == RR.frac_field(x)
115
+ assert unify(RR, EX) == EX
116
+ assert RR[x].unify(ZZ.frac_field(y)) == RR.frac_field(x, y)
117
+
118
+ assert unify(CC, F3) == CC
119
+ assert unify(CC, ZZ) == CC
120
+ assert unify(CC, QQ) == CC
121
+ assert unify(CC, ALG) == CC
122
+ assert unify(CC, RR) == CC
123
+ assert unify(CC, CC) == CC
124
+ assert unify(CC, ZZ[x]) == CC[x]
125
+ assert unify(CC, ZZ.frac_field(x)) == CC.frac_field(x)
126
+ assert unify(CC, EX) == EX
127
+
128
+ assert unify(ZZ[x], F3) == ZZ[x]
129
+ assert unify(ZZ[x], ZZ) == ZZ[x]
130
+ assert unify(ZZ[x], QQ) == QQ[x]
131
+ assert unify(ZZ[x], ALG) == ALG[x]
132
+ assert unify(ZZ[x], RR) == RR[x]
133
+ assert unify(ZZ[x], CC) == CC[x]
134
+ assert unify(ZZ[x], ZZ[x]) == ZZ[x]
135
+ assert unify(ZZ[x], ZZ.frac_field(x)) == ZZ.frac_field(x)
136
+ assert unify(ZZ[x], EX) == EX
137
+
138
+ assert unify(ZZ.frac_field(x), F3) == ZZ.frac_field(x)
139
+ assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x)
140
+ assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x)
141
+ assert unify(ZZ.frac_field(x), ALG) == ALG.frac_field(x)
142
+ assert unify(ZZ.frac_field(x), RR) == RR.frac_field(x)
143
+ assert unify(ZZ.frac_field(x), CC) == CC.frac_field(x)
144
+ assert unify(ZZ.frac_field(x), ZZ[x]) == ZZ.frac_field(x)
145
+ assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
146
+ assert unify(ZZ.frac_field(x), EX) == EX
147
+
148
+ assert unify(EX, F3) == EX
149
+ assert unify(EX, ZZ) == EX
150
+ assert unify(EX, QQ) == EX
151
+ assert unify(EX, ALG) == EX
152
+ assert unify(EX, RR) == EX
153
+ assert unify(EX, CC) == EX
154
+ assert unify(EX, ZZ[x]) == EX
155
+ assert unify(EX, ZZ.frac_field(x)) == EX
156
+ assert unify(EX, EX) == EX
157
+
158
+ def test_Domain_unify_composite():
159
+ assert unify(ZZ.poly_ring(x), ZZ) == ZZ.poly_ring(x)
160
+ assert unify(ZZ.poly_ring(x), QQ) == QQ.poly_ring(x)
161
+ assert unify(QQ.poly_ring(x), ZZ) == QQ.poly_ring(x)
162
+ assert unify(QQ.poly_ring(x), QQ) == QQ.poly_ring(x)
163
+
164
+ assert unify(ZZ, ZZ.poly_ring(x)) == ZZ.poly_ring(x)
165
+ assert unify(QQ, ZZ.poly_ring(x)) == QQ.poly_ring(x)
166
+ assert unify(ZZ, QQ.poly_ring(x)) == QQ.poly_ring(x)
167
+ assert unify(QQ, QQ.poly_ring(x)) == QQ.poly_ring(x)
168
+
169
+ assert unify(ZZ.poly_ring(x, y), ZZ) == ZZ.poly_ring(x, y)
170
+ assert unify(ZZ.poly_ring(x, y), QQ) == QQ.poly_ring(x, y)
171
+ assert unify(QQ.poly_ring(x, y), ZZ) == QQ.poly_ring(x, y)
172
+ assert unify(QQ.poly_ring(x, y), QQ) == QQ.poly_ring(x, y)
173
+
174
+ assert unify(ZZ, ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y)
175
+ assert unify(QQ, ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y)
176
+ assert unify(ZZ, QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)
177
+ assert unify(QQ, QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)
178
+
179
+ assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x)
180
+ assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x)
181
+ assert unify(QQ.frac_field(x), ZZ) == QQ.frac_field(x)
182
+ assert unify(QQ.frac_field(x), QQ) == QQ.frac_field(x)
183
+
184
+ assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x)
185
+ assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x)
186
+ assert unify(ZZ, QQ.frac_field(x)) == QQ.frac_field(x)
187
+ assert unify(QQ, QQ.frac_field(x)) == QQ.frac_field(x)
188
+
189
+ assert unify(ZZ.frac_field(x, y), ZZ) == ZZ.frac_field(x, y)
190
+ assert unify(ZZ.frac_field(x, y), QQ) == QQ.frac_field(x, y)
191
+ assert unify(QQ.frac_field(x, y), ZZ) == QQ.frac_field(x, y)
192
+ assert unify(QQ.frac_field(x, y), QQ) == QQ.frac_field(x, y)
193
+
194
+ assert unify(ZZ, ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
195
+ assert unify(QQ, ZZ.frac_field(x, y)) == QQ.frac_field(x, y)
196
+ assert unify(ZZ, QQ.frac_field(x, y)) == QQ.frac_field(x, y)
197
+ assert unify(QQ, QQ.frac_field(x, y)) == QQ.frac_field(x, y)
198
+
199
+ assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x)) == ZZ.poly_ring(x)
200
+ assert unify(ZZ.poly_ring(x), QQ.poly_ring(x)) == QQ.poly_ring(x)
201
+ assert unify(QQ.poly_ring(x), ZZ.poly_ring(x)) == QQ.poly_ring(x)
202
+ assert unify(QQ.poly_ring(x), QQ.poly_ring(x)) == QQ.poly_ring(x)
203
+
204
+ assert unify(ZZ.poly_ring(x, y), ZZ.poly_ring(x)) == ZZ.poly_ring(x, y)
205
+ assert unify(ZZ.poly_ring(x, y), QQ.poly_ring(x)) == QQ.poly_ring(x, y)
206
+ assert unify(QQ.poly_ring(x, y), ZZ.poly_ring(x)) == QQ.poly_ring(x, y)
207
+ assert unify(QQ.poly_ring(x, y), QQ.poly_ring(x)) == QQ.poly_ring(x, y)
208
+
209
+ assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y)
210
+ assert unify(ZZ.poly_ring(x), QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)
211
+ assert unify(QQ.poly_ring(x), ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y)
212
+ assert unify(QQ.poly_ring(x), QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)
213
+
214
+ assert unify(ZZ.poly_ring(x, y), ZZ.poly_ring(x, z)) == ZZ.poly_ring(x, y, z)
215
+ assert unify(ZZ.poly_ring(x, y), QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z)
216
+ assert unify(QQ.poly_ring(x, y), ZZ.poly_ring(x, z)) == QQ.poly_ring(x, y, z)
217
+ assert unify(QQ.poly_ring(x, y), QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z)
218
+
219
+ assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
220
+ assert unify(ZZ.frac_field(x), QQ.frac_field(x)) == QQ.frac_field(x)
221
+ assert unify(QQ.frac_field(x), ZZ.frac_field(x)) == QQ.frac_field(x)
222
+ assert unify(QQ.frac_field(x), QQ.frac_field(x)) == QQ.frac_field(x)
223
+
224
+ assert unify(ZZ.frac_field(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y)
225
+ assert unify(ZZ.frac_field(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y)
226
+ assert unify(QQ.frac_field(x, y), ZZ.frac_field(x)) == QQ.frac_field(x, y)
227
+ assert unify(QQ.frac_field(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y)
228
+
229
+ assert unify(ZZ.frac_field(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
230
+ assert unify(ZZ.frac_field(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y)
231
+ assert unify(QQ.frac_field(x), ZZ.frac_field(x, y)) == QQ.frac_field(x, y)
232
+ assert unify(QQ.frac_field(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y)
233
+
234
+ assert unify(ZZ.frac_field(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
235
+ assert unify(ZZ.frac_field(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z)
236
+ assert unify(QQ.frac_field(x, y), ZZ.frac_field(x, z)) == QQ.frac_field(x, y, z)
237
+ assert unify(QQ.frac_field(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z)
238
+
239
+ assert unify(ZZ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
240
+ assert unify(ZZ.poly_ring(x), QQ.frac_field(x)) == ZZ.frac_field(x)
241
+ assert unify(QQ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
242
+ assert unify(QQ.poly_ring(x), QQ.frac_field(x)) == QQ.frac_field(x)
243
+
244
+ assert unify(ZZ.poly_ring(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y)
245
+ assert unify(ZZ.poly_ring(x, y), QQ.frac_field(x)) == ZZ.frac_field(x, y)
246
+ assert unify(QQ.poly_ring(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y)
247
+ assert unify(QQ.poly_ring(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y)
248
+
249
+ assert unify(ZZ.poly_ring(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
250
+ assert unify(ZZ.poly_ring(x), QQ.frac_field(x, y)) == ZZ.frac_field(x, y)
251
+ assert unify(QQ.poly_ring(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
252
+ assert unify(QQ.poly_ring(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y)
253
+
254
+ assert unify(ZZ.poly_ring(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
255
+ assert unify(ZZ.poly_ring(x, y), QQ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
256
+ assert unify(QQ.poly_ring(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
257
+ assert unify(QQ.poly_ring(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z)
258
+
259
+ assert unify(ZZ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x)
260
+ assert unify(ZZ.frac_field(x), QQ.poly_ring(x)) == ZZ.frac_field(x)
261
+ assert unify(QQ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x)
262
+ assert unify(QQ.frac_field(x), QQ.poly_ring(x)) == QQ.frac_field(x)
263
+
264
+ assert unify(ZZ.frac_field(x, y), ZZ.poly_ring(x)) == ZZ.frac_field(x, y)
265
+ assert unify(ZZ.frac_field(x, y), QQ.poly_ring(x)) == ZZ.frac_field(x, y)
266
+ assert unify(QQ.frac_field(x, y), ZZ.poly_ring(x)) == ZZ.frac_field(x, y)
267
+ assert unify(QQ.frac_field(x, y), QQ.poly_ring(x)) == QQ.frac_field(x, y)
268
+
269
+ assert unify(ZZ.frac_field(x), ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y)
270
+ assert unify(ZZ.frac_field(x), QQ.poly_ring(x, y)) == ZZ.frac_field(x, y)
271
+ assert unify(QQ.frac_field(x), ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y)
272
+ assert unify(QQ.frac_field(x), QQ.poly_ring(x, y)) == QQ.frac_field(x, y)
273
+
274
+ assert unify(ZZ.frac_field(x, y), ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z)
275
+ assert unify(ZZ.frac_field(x, y), QQ.poly_ring(x, z)) == ZZ.frac_field(x, y, z)
276
+ assert unify(QQ.frac_field(x, y), ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z)
277
+ assert unify(QQ.frac_field(x, y), QQ.poly_ring(x, z)) == QQ.frac_field(x, y, z)
278
+
279
+ def test_Domain_unify_algebraic():
280
+ sqrt5 = QQ.algebraic_field(sqrt(5))
281
+ sqrt7 = QQ.algebraic_field(sqrt(7))
282
+ sqrt57 = QQ.algebraic_field(sqrt(5), sqrt(7))
283
+
284
+ assert sqrt5.unify(sqrt7) == sqrt57
285
+
286
+ assert sqrt5.unify(sqrt5[x, y]) == sqrt5[x, y]
287
+ assert sqrt5[x, y].unify(sqrt5) == sqrt5[x, y]
288
+
289
+ assert sqrt5.unify(sqrt5.frac_field(x, y)) == sqrt5.frac_field(x, y)
290
+ assert sqrt5.frac_field(x, y).unify(sqrt5) == sqrt5.frac_field(x, y)
291
+
292
+ assert sqrt5.unify(sqrt7[x, y]) == sqrt57[x, y]
293
+ assert sqrt5[x, y].unify(sqrt7) == sqrt57[x, y]
294
+
295
+ assert sqrt5.unify(sqrt7.frac_field(x, y)) == sqrt57.frac_field(x, y)
296
+ assert sqrt5.frac_field(x, y).unify(sqrt7) == sqrt57.frac_field(x, y)
297
+
298
+ def test_Domain_unify_FiniteExtension():
299
+ KxZZ = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ))
300
+ KxQQ = FiniteExtension(Poly(x**2 - 2, x, domain=QQ))
301
+ KxZZy = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ[y]))
302
+ KxQQy = FiniteExtension(Poly(x**2 - 2, x, domain=QQ[y]))
303
+
304
+ assert KxZZ.unify(KxZZ) == KxZZ
305
+ assert KxQQ.unify(KxQQ) == KxQQ
306
+ assert KxZZy.unify(KxZZy) == KxZZy
307
+ assert KxQQy.unify(KxQQy) == KxQQy
308
+
309
+ assert KxZZ.unify(ZZ) == KxZZ
310
+ assert KxZZ.unify(QQ) == KxQQ
311
+ assert KxQQ.unify(ZZ) == KxQQ
312
+ assert KxQQ.unify(QQ) == KxQQ
313
+
314
+ assert KxZZ.unify(ZZ[y]) == KxZZy
315
+ assert KxZZ.unify(QQ[y]) == KxQQy
316
+ assert KxQQ.unify(ZZ[y]) == KxQQy
317
+ assert KxQQ.unify(QQ[y]) == KxQQy
318
+
319
+ assert KxZZy.unify(ZZ) == KxZZy
320
+ assert KxZZy.unify(QQ) == KxQQy
321
+ assert KxQQy.unify(ZZ) == KxQQy
322
+ assert KxQQy.unify(QQ) == KxQQy
323
+
324
+ assert KxZZy.unify(ZZ[y]) == KxZZy
325
+ assert KxZZy.unify(QQ[y]) == KxQQy
326
+ assert KxQQy.unify(ZZ[y]) == KxQQy
327
+ assert KxQQy.unify(QQ[y]) == KxQQy
328
+
329
+ K = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ[y]))
330
+ assert K.unify(ZZ) == K
331
+ assert K.unify(ZZ[x]) == K
332
+ assert K.unify(ZZ[y]) == K
333
+ assert K.unify(ZZ[x, y]) == K
334
+
335
+ Kz = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ[y, z]))
336
+ assert K.unify(ZZ[z]) == Kz
337
+ assert K.unify(ZZ[x, z]) == Kz
338
+ assert K.unify(ZZ[y, z]) == Kz
339
+ assert K.unify(ZZ[x, y, z]) == Kz
340
+
341
+ Kx = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ))
342
+ Ky = FiniteExtension(Poly(y**2 - 2, y, domain=ZZ))
343
+ Kxy = FiniteExtension(Poly(y**2 - 2, y, domain=Kx))
344
+ assert Kx.unify(Kx) == Kx
345
+ assert Ky.unify(Ky) == Ky
346
+ assert Kx.unify(Ky) == Kxy
347
+ assert Ky.unify(Kx) == Kxy
348
+
349
+ def test_Domain_unify_with_symbols():
350
+ raises(UnificationFailed, lambda: ZZ[x, y].unify_with_symbols(ZZ, (y, z)))
351
+ raises(UnificationFailed, lambda: ZZ.unify_with_symbols(ZZ[x, y], (y, z)))
352
+
353
+ def test_Domain__contains__():
354
+ assert (0 in EX) is True
355
+ assert (0 in ZZ) is True
356
+ assert (0 in QQ) is True
357
+ assert (0 in RR) is True
358
+ assert (0 in CC) is True
359
+ assert (0 in ALG) is True
360
+ assert (0 in ZZ[x, y]) is True
361
+ assert (0 in QQ[x, y]) is True
362
+ assert (0 in RR[x, y]) is True
363
+
364
+ assert (-7 in EX) is True
365
+ assert (-7 in ZZ) is True
366
+ assert (-7 in QQ) is True
367
+ assert (-7 in RR) is True
368
+ assert (-7 in CC) is True
369
+ assert (-7 in ALG) is True
370
+ assert (-7 in ZZ[x, y]) is True
371
+ assert (-7 in QQ[x, y]) is True
372
+ assert (-7 in RR[x, y]) is True
373
+
374
+ assert (17 in EX) is True
375
+ assert (17 in ZZ) is True
376
+ assert (17 in QQ) is True
377
+ assert (17 in RR) is True
378
+ assert (17 in CC) is True
379
+ assert (17 in ALG) is True
380
+ assert (17 in ZZ[x, y]) is True
381
+ assert (17 in QQ[x, y]) is True
382
+ assert (17 in RR[x, y]) is True
383
+
384
+ assert (Rational(-1, 7) in EX) is True
385
+ assert (Rational(-1, 7) in ZZ) is False
386
+ assert (Rational(-1, 7) in QQ) is True
387
+ assert (Rational(-1, 7) in RR) is True
388
+ assert (Rational(-1, 7) in CC) is True
389
+ assert (Rational(-1, 7) in ALG) is True
390
+ assert (Rational(-1, 7) in ZZ[x, y]) is False
391
+ assert (Rational(-1, 7) in QQ[x, y]) is True
392
+ assert (Rational(-1, 7) in RR[x, y]) is True
393
+
394
+ assert (Rational(3, 5) in EX) is True
395
+ assert (Rational(3, 5) in ZZ) is False
396
+ assert (Rational(3, 5) in QQ) is True
397
+ assert (Rational(3, 5) in RR) is True
398
+ assert (Rational(3, 5) in CC) is True
399
+ assert (Rational(3, 5) in ALG) is True
400
+ assert (Rational(3, 5) in ZZ[x, y]) is False
401
+ assert (Rational(3, 5) in QQ[x, y]) is True
402
+ assert (Rational(3, 5) in RR[x, y]) is True
403
+
404
+ assert (3.0 in EX) is True
405
+ assert (3.0 in ZZ) is True
406
+ assert (3.0 in QQ) is True
407
+ assert (3.0 in RR) is True
408
+ assert (3.0 in CC) is True
409
+ assert (3.0 in ALG) is True
410
+ assert (3.0 in ZZ[x, y]) is True
411
+ assert (3.0 in QQ[x, y]) is True
412
+ assert (3.0 in RR[x, y]) is True
413
+
414
+ assert (3.14 in EX) is True
415
+ assert (3.14 in ZZ) is False
416
+ assert (3.14 in QQ) is True
417
+ assert (3.14 in RR) is True
418
+ assert (3.14 in CC) is True
419
+ assert (3.14 in ALG) is True
420
+ assert (3.14 in ZZ[x, y]) is False
421
+ assert (3.14 in QQ[x, y]) is True
422
+ assert (3.14 in RR[x, y]) is True
423
+
424
+ assert (oo in ALG) is False
425
+ assert (oo in ZZ[x, y]) is False
426
+ assert (oo in QQ[x, y]) is False
427
+
428
+ assert (-oo in ZZ) is False
429
+ assert (-oo in QQ) is False
430
+ assert (-oo in ALG) is False
431
+ assert (-oo in ZZ[x, y]) is False
432
+ assert (-oo in QQ[x, y]) is False
433
+
434
+ assert (sqrt(7) in EX) is True
435
+ assert (sqrt(7) in ZZ) is False
436
+ assert (sqrt(7) in QQ) is False
437
+ assert (sqrt(7) in RR) is True
438
+ assert (sqrt(7) in CC) is True
439
+ assert (sqrt(7) in ALG) is False
440
+ assert (sqrt(7) in ZZ[x, y]) is False
441
+ assert (sqrt(7) in QQ[x, y]) is False
442
+ assert (sqrt(7) in RR[x, y]) is True
443
+
444
+ assert (2*sqrt(3) + 1 in EX) is True
445
+ assert (2*sqrt(3) + 1 in ZZ) is False
446
+ assert (2*sqrt(3) + 1 in QQ) is False
447
+ assert (2*sqrt(3) + 1 in RR) is True
448
+ assert (2*sqrt(3) + 1 in CC) is True
449
+ assert (2*sqrt(3) + 1 in ALG) is True
450
+ assert (2*sqrt(3) + 1 in ZZ[x, y]) is False
451
+ assert (2*sqrt(3) + 1 in QQ[x, y]) is False
452
+ assert (2*sqrt(3) + 1 in RR[x, y]) is True
453
+
454
+ assert (sin(1) in EX) is True
455
+ assert (sin(1) in ZZ) is False
456
+ assert (sin(1) in QQ) is False
457
+ assert (sin(1) in RR) is True
458
+ assert (sin(1) in CC) is True
459
+ assert (sin(1) in ALG) is False
460
+ assert (sin(1) in ZZ[x, y]) is False
461
+ assert (sin(1) in QQ[x, y]) is False
462
+ assert (sin(1) in RR[x, y]) is True
463
+
464
+ assert (x**2 + 1 in EX) is True
465
+ assert (x**2 + 1 in ZZ) is False
466
+ assert (x**2 + 1 in QQ) is False
467
+ assert (x**2 + 1 in RR) is False
468
+ assert (x**2 + 1 in CC) is False
469
+ assert (x**2 + 1 in ALG) is False
470
+ assert (x**2 + 1 in ZZ[x]) is True
471
+ assert (x**2 + 1 in QQ[x]) is True
472
+ assert (x**2 + 1 in RR[x]) is True
473
+ assert (x**2 + 1 in ZZ[x, y]) is True
474
+ assert (x**2 + 1 in QQ[x, y]) is True
475
+ assert (x**2 + 1 in RR[x, y]) is True
476
+
477
+ assert (x**2 + y**2 in EX) is True
478
+ assert (x**2 + y**2 in ZZ) is False
479
+ assert (x**2 + y**2 in QQ) is False
480
+ assert (x**2 + y**2 in RR) is False
481
+ assert (x**2 + y**2 in CC) is False
482
+ assert (x**2 + y**2 in ALG) is False
483
+ assert (x**2 + y**2 in ZZ[x]) is False
484
+ assert (x**2 + y**2 in QQ[x]) is False
485
+ assert (x**2 + y**2 in RR[x]) is False
486
+ assert (x**2 + y**2 in ZZ[x, y]) is True
487
+ assert (x**2 + y**2 in QQ[x, y]) is True
488
+ assert (x**2 + y**2 in RR[x, y]) is True
489
+
490
+ assert (Rational(3, 2)*x/(y + 1) - z in QQ[x, y, z]) is False
491
+
492
+
493
+ def test_issue_14433():
494
+ assert (Rational(2, 3)*x in QQ.frac_field(1/x)) is True
495
+ assert (1/x in QQ.frac_field(x)) is True
496
+ assert ((x**2 + y**2) in QQ.frac_field(1/x, 1/y)) is True
497
+ assert ((x + y) in QQ.frac_field(1/x, y)) is True
498
+ assert ((x - y) in QQ.frac_field(x, 1/y)) is True
499
+
500
+
501
+ def test_Domain_get_ring():
502
+ assert ZZ.has_assoc_Ring is True
503
+ assert QQ.has_assoc_Ring is True
504
+ assert ZZ[x].has_assoc_Ring is True
505
+ assert QQ[x].has_assoc_Ring is True
506
+ assert ZZ[x, y].has_assoc_Ring is True
507
+ assert QQ[x, y].has_assoc_Ring is True
508
+ assert ZZ.frac_field(x).has_assoc_Ring is True
509
+ assert QQ.frac_field(x).has_assoc_Ring is True
510
+ assert ZZ.frac_field(x, y).has_assoc_Ring is True
511
+ assert QQ.frac_field(x, y).has_assoc_Ring is True
512
+
513
+ assert EX.has_assoc_Ring is False
514
+ assert RR.has_assoc_Ring is False
515
+ assert ALG.has_assoc_Ring is False
516
+
517
+ assert ZZ.get_ring() == ZZ
518
+ assert QQ.get_ring() == ZZ
519
+ assert ZZ[x].get_ring() == ZZ[x]
520
+ assert QQ[x].get_ring() == QQ[x]
521
+ assert ZZ[x, y].get_ring() == ZZ[x, y]
522
+ assert QQ[x, y].get_ring() == QQ[x, y]
523
+ assert ZZ.frac_field(x).get_ring() == ZZ[x]
524
+ assert QQ.frac_field(x).get_ring() == QQ[x]
525
+ assert ZZ.frac_field(x, y).get_ring() == ZZ[x, y]
526
+ assert QQ.frac_field(x, y).get_ring() == QQ[x, y]
527
+
528
+ assert EX.get_ring() == EX
529
+
530
+ assert RR.get_ring() == RR
531
+ # XXX: This should also be like RR
532
+ raises(DomainError, lambda: ALG.get_ring())
533
+
534
+
535
+ def test_Domain_get_field():
536
+ assert EX.has_assoc_Field is True
537
+ assert ZZ.has_assoc_Field is True
538
+ assert QQ.has_assoc_Field is True
539
+ assert RR.has_assoc_Field is True
540
+ assert ALG.has_assoc_Field is True
541
+ assert ZZ[x].has_assoc_Field is True
542
+ assert QQ[x].has_assoc_Field is True
543
+ assert ZZ[x, y].has_assoc_Field is True
544
+ assert QQ[x, y].has_assoc_Field is True
545
+
546
+ assert EX.get_field() == EX
547
+ assert ZZ.get_field() == QQ
548
+ assert QQ.get_field() == QQ
549
+ assert RR.get_field() == RR
550
+ assert ALG.get_field() == ALG
551
+ assert ZZ[x].get_field() == ZZ.frac_field(x)
552
+ assert QQ[x].get_field() == QQ.frac_field(x)
553
+ assert ZZ[x, y].get_field() == ZZ.frac_field(x, y)
554
+ assert QQ[x, y].get_field() == QQ.frac_field(x, y)
555
+
556
+
557
+ def test_Domain_get_exact():
558
+ assert EX.get_exact() == EX
559
+ assert ZZ.get_exact() == ZZ
560
+ assert QQ.get_exact() == QQ
561
+ assert RR.get_exact() == QQ
562
+ assert ALG.get_exact() == ALG
563
+ assert ZZ[x].get_exact() == ZZ[x]
564
+ assert QQ[x].get_exact() == QQ[x]
565
+ assert ZZ[x, y].get_exact() == ZZ[x, y]
566
+ assert QQ[x, y].get_exact() == QQ[x, y]
567
+ assert ZZ.frac_field(x).get_exact() == ZZ.frac_field(x)
568
+ assert QQ.frac_field(x).get_exact() == QQ.frac_field(x)
569
+ assert ZZ.frac_field(x, y).get_exact() == ZZ.frac_field(x, y)
570
+ assert QQ.frac_field(x, y).get_exact() == QQ.frac_field(x, y)
571
+
572
+
573
+ def test_Domain_is_unit():
574
+ nums = [-2, -1, 0, 1, 2]
575
+ invring = [False, True, False, True, False]
576
+ invfield = [True, True, False, True, True]
577
+ ZZx, QQx, QQxf = ZZ[x], QQ[x], QQ.frac_field(x)
578
+ assert [ZZ.is_unit(ZZ(n)) for n in nums] == invring
579
+ assert [QQ.is_unit(QQ(n)) for n in nums] == invfield
580
+ assert [ZZx.is_unit(ZZx(n)) for n in nums] == invring
581
+ assert [QQx.is_unit(QQx(n)) for n in nums] == invfield
582
+ assert [QQxf.is_unit(QQxf(n)) for n in nums] == invfield
583
+ assert ZZx.is_unit(ZZx(x)) is False
584
+ assert QQx.is_unit(QQx(x)) is False
585
+ assert QQxf.is_unit(QQxf(x)) is True
586
+
587
+
588
+ def test_Domain_convert():
589
+
590
+ def check_element(e1, e2, K1, K2, K3):
591
+ assert type(e1) is type(e2), '%s, %s: %s %s -> %s' % (e1, e2, K1, K2, K3)
592
+ assert e1 == e2, '%s, %s: %s %s -> %s' % (e1, e2, K1, K2, K3)
593
+
594
+ def check_domains(K1, K2):
595
+ K3 = K1.unify(K2)
596
+ check_element(K3.convert_from( K1.one, K1), K3.one, K1, K2, K3)
597
+ check_element(K3.convert_from( K2.one, K2), K3.one, K1, K2, K3)
598
+ check_element(K3.convert_from(K1.zero, K1), K3.zero, K1, K2, K3)
599
+ check_element(K3.convert_from(K2.zero, K2), K3.zero, K1, K2, K3)
600
+
601
+ def composite_domains(K):
602
+ domains = [
603
+ K,
604
+ K[y], K[z], K[y, z],
605
+ K.frac_field(y), K.frac_field(z), K.frac_field(y, z),
606
+ # XXX: These should be tested and made to work...
607
+ # K.old_poly_ring(y), K.old_frac_field(y),
608
+ ]
609
+ return domains
610
+
611
+ QQ2 = QQ.algebraic_field(sqrt(2))
612
+ QQ3 = QQ.algebraic_field(sqrt(3))
613
+ doms = [ZZ, QQ, QQ2, QQ3, QQ_I, ZZ_I, RR, CC]
614
+
615
+ for i, K1 in enumerate(doms):
616
+ for K2 in doms[i:]:
617
+ for K3 in composite_domains(K1):
618
+ for K4 in composite_domains(K2):
619
+ check_domains(K3, K4)
620
+
621
+ assert QQ.convert(10e-52) == QQ(1684996666696915, 1684996666696914987166688442938726917102321526408785780068975640576)
622
+
623
+ R, xr = ring("x", ZZ)
624
+ assert ZZ.convert(xr - xr) == 0
625
+ assert ZZ.convert(xr - xr, R.to_domain()) == 0
626
+
627
+ assert CC.convert(ZZ_I(1, 2)) == CC(1, 2)
628
+ assert CC.convert(QQ_I(1, 2)) == CC(1, 2)
629
+
630
+ K1 = QQ.frac_field(x)
631
+ K2 = ZZ.frac_field(x)
632
+ K3 = QQ[x]
633
+ K4 = ZZ[x]
634
+ Ks = [K1, K2, K3, K4]
635
+ for Ka, Kb in product(Ks, Ks):
636
+ assert Ka.convert_from(Kb.from_sympy(x), Kb) == Ka.from_sympy(x)
637
+
638
+ assert K2.convert_from(QQ(1, 2), QQ) == K2(QQ(1, 2))
639
+
640
+
641
+ def test_GlobalPolynomialRing_convert():
642
+ K1 = QQ.old_poly_ring(x)
643
+ K2 = QQ[x]
644
+ assert K1.convert(x) == K1.convert(K2.convert(x), K2)
645
+ assert K2.convert(x) == K2.convert(K1.convert(x), K1)
646
+
647
+ K1 = QQ.old_poly_ring(x, y)
648
+ K2 = QQ[x]
649
+ assert K1.convert(x) == K1.convert(K2.convert(x), K2)
650
+ #assert K2.convert(x) == K2.convert(K1.convert(x), K1)
651
+
652
+ K1 = ZZ.old_poly_ring(x, y)
653
+ K2 = QQ[x]
654
+ assert K1.convert(x) == K1.convert(K2.convert(x), K2)
655
+ #assert K2.convert(x) == K2.convert(K1.convert(x), K1)
656
+
657
+
658
+ def test_PolynomialRing__init():
659
+ R, = ring("", ZZ)
660
+ assert ZZ.poly_ring() == R.to_domain()
661
+
662
+
663
+ def test_FractionField__init():
664
+ F, = field("", ZZ)
665
+ assert ZZ.frac_field() == F.to_domain()
666
+
667
+
668
+ def test_FractionField_convert():
669
+ K = QQ.frac_field(x)
670
+ assert K.convert(QQ(2, 3), QQ) == K.from_sympy(Rational(2, 3))
671
+ K = QQ.frac_field(x)
672
+ assert K.convert(ZZ(2), ZZ) == K.from_sympy(Integer(2))
673
+
674
+
675
+ def test_inject():
676
+ assert ZZ.inject(x, y, z) == ZZ[x, y, z]
677
+ assert ZZ[x].inject(y, z) == ZZ[x, y, z]
678
+ assert ZZ.frac_field(x).inject(y, z) == ZZ.frac_field(x, y, z)
679
+ raises(GeneratorsError, lambda: ZZ[x].inject(x))
680
+
681
+
682
+ def test_drop():
683
+ assert ZZ.drop(x) == ZZ
684
+ assert ZZ[x].drop(x) == ZZ
685
+ assert ZZ[x, y].drop(x) == ZZ[y]
686
+ assert ZZ.frac_field(x).drop(x) == ZZ
687
+ assert ZZ.frac_field(x, y).drop(x) == ZZ.frac_field(y)
688
+ assert ZZ[x][y].drop(y) == ZZ[x]
689
+ assert ZZ[x][y].drop(x) == ZZ[y]
690
+ assert ZZ.frac_field(x)[y].drop(x) == ZZ[y]
691
+ assert ZZ.frac_field(x)[y].drop(y) == ZZ.frac_field(x)
692
+ Ky = FiniteExtension(Poly(x**2-1, x, domain=ZZ[y]))
693
+ K = FiniteExtension(Poly(x**2-1, x, domain=ZZ))
694
+ assert Ky.drop(y) == K
695
+ raises(GeneratorsError, lambda: Ky.drop(x))
696
+
697
+
698
+ def test_Domain_map():
699
+ seq = ZZ.map([1, 2, 3, 4])
700
+
701
+ assert all(ZZ.of_type(elt) for elt in seq)
702
+
703
+ seq = ZZ.map([[1, 2, 3, 4]])
704
+
705
+ assert all(ZZ.of_type(elt) for elt in seq[0]) and len(seq) == 1
706
+
707
+
708
+ def test_Domain___eq__():
709
+ assert (ZZ[x, y] == ZZ[x, y]) is True
710
+ assert (QQ[x, y] == QQ[x, y]) is True
711
+
712
+ assert (ZZ[x, y] == QQ[x, y]) is False
713
+ assert (QQ[x, y] == ZZ[x, y]) is False
714
+
715
+ assert (ZZ.frac_field(x, y) == ZZ.frac_field(x, y)) is True
716
+ assert (QQ.frac_field(x, y) == QQ.frac_field(x, y)) is True
717
+
718
+ assert (ZZ.frac_field(x, y) == QQ.frac_field(x, y)) is False
719
+ assert (QQ.frac_field(x, y) == ZZ.frac_field(x, y)) is False
720
+
721
+ assert RealField()[x] == RR[x]
722
+
723
+
724
+ def test_Domain__algebraic_field():
725
+ alg = ZZ.algebraic_field(sqrt(2))
726
+ assert alg.ext.minpoly == Poly(x**2 - 2)
727
+ assert alg.dom == QQ
728
+
729
+ alg = QQ.algebraic_field(sqrt(2))
730
+ assert alg.ext.minpoly == Poly(x**2 - 2)
731
+ assert alg.dom == QQ
732
+
733
+ alg = alg.algebraic_field(sqrt(3))
734
+ assert alg.ext.minpoly == Poly(x**4 - 10*x**2 + 1)
735
+ assert alg.dom == QQ
736
+
737
+
738
+ def test_Domain_alg_field_from_poly():
739
+ f = Poly(x**2 - 2)
740
+ g = Poly(x**2 - 3)
741
+ h = Poly(x**4 - 10*x**2 + 1)
742
+
743
+ alg = ZZ.alg_field_from_poly(f)
744
+ assert alg.ext.minpoly == f
745
+ assert alg.dom == QQ
746
+
747
+ alg = QQ.alg_field_from_poly(f)
748
+ assert alg.ext.minpoly == f
749
+ assert alg.dom == QQ
750
+
751
+ alg = alg.alg_field_from_poly(g)
752
+ assert alg.ext.minpoly == h
753
+ assert alg.dom == QQ
754
+
755
+
756
+ def test_Domain_cyclotomic_field():
757
+ K = ZZ.cyclotomic_field(12)
758
+ assert K.ext.minpoly == Poly(cyclotomic_poly(12))
759
+ assert K.dom == QQ
760
+
761
+ F = QQ.cyclotomic_field(3)
762
+ assert F.ext.minpoly == Poly(cyclotomic_poly(3))
763
+ assert F.dom == QQ
764
+
765
+ E = F.cyclotomic_field(4)
766
+ assert field_isomorphism(E.ext, K.ext) is not None
767
+ assert E.dom == QQ
768
+
769
+
770
+ def test_PolynomialRing_from_FractionField():
771
+ F, x,y = field("x,y", ZZ)
772
+ R, X,Y = ring("x,y", ZZ)
773
+
774
+ f = (x**2 + y**2)/(x + 1)
775
+ g = (x**2 + y**2)/4
776
+ h = x**2 + y**2
777
+
778
+ assert R.to_domain().from_FractionField(f, F.to_domain()) is None
779
+ assert R.to_domain().from_FractionField(g, F.to_domain()) == X**2/4 + Y**2/4
780
+ assert R.to_domain().from_FractionField(h, F.to_domain()) == X**2 + Y**2
781
+
782
+ F, x,y = field("x,y", QQ)
783
+ R, X,Y = ring("x,y", QQ)
784
+
785
+ f = (x**2 + y**2)/(x + 1)
786
+ g = (x**2 + y**2)/4
787
+ h = x**2 + y**2
788
+
789
+ assert R.to_domain().from_FractionField(f, F.to_domain()) is None
790
+ assert R.to_domain().from_FractionField(g, F.to_domain()) == X**2/4 + Y**2/4
791
+ assert R.to_domain().from_FractionField(h, F.to_domain()) == X**2 + Y**2
792
+
793
+ def test_FractionField_from_PolynomialRing():
794
+ R, x,y = ring("x,y", QQ)
795
+ F, X,Y = field("x,y", ZZ)
796
+
797
+ f = 3*x**2 + 5*y**2
798
+ g = x**2/3 + y**2/5
799
+
800
+ assert F.to_domain().from_PolynomialRing(f, R.to_domain()) == 3*X**2 + 5*Y**2
801
+ assert F.to_domain().from_PolynomialRing(g, R.to_domain()) == (5*X**2 + 3*Y**2)/15
802
+
803
+ def test_FF_of_type():
804
+ assert FF(3).of_type(FF(3)(1)) is True
805
+ assert FF(5).of_type(FF(5)(3)) is True
806
+ assert FF(5).of_type(FF(7)(3)) is False
807
+
808
+
809
+ def test___eq__():
810
+ assert not QQ[x] == ZZ[x]
811
+ assert not QQ.frac_field(x) == ZZ.frac_field(x)
812
+
813
+
814
+ def test_RealField_from_sympy():
815
+ assert RR.convert(S.Zero) == RR.dtype(0)
816
+ assert RR.convert(S(0.0)) == RR.dtype(0.0)
817
+ assert RR.convert(S.One) == RR.dtype(1)
818
+ assert RR.convert(S(1.0)) == RR.dtype(1.0)
819
+ assert RR.convert(sin(1)) == RR.dtype(sin(1).evalf())
820
+
821
+
822
+ def test_not_in_any_domain():
823
+ check = list(_illegal) + [x] + [
824
+ float(i) for i in _illegal[:3]]
825
+ for dom in (ZZ, QQ, RR, CC, EX):
826
+ for i in check:
827
+ if i == x and dom == EX:
828
+ continue
829
+ assert i not in dom, (i, dom)
830
+ raises(CoercionFailed, lambda: dom.convert(i))
831
+
832
+
833
+ def test_ModularInteger():
834
+ F3 = FF(3)
835
+
836
+ a = F3(0)
837
+ assert isinstance(a, F3.dtype) and a == 0
838
+ a = F3(1)
839
+ assert isinstance(a, F3.dtype) and a == 1
840
+ a = F3(2)
841
+ assert isinstance(a, F3.dtype) and a == 2
842
+ a = F3(3)
843
+ assert isinstance(a, F3.dtype) and a == 0
844
+ a = F3(4)
845
+ assert isinstance(a, F3.dtype) and a == 1
846
+
847
+ a = F3(F3(0))
848
+ assert isinstance(a, F3.dtype) and a == 0
849
+ a = F3(F3(1))
850
+ assert isinstance(a, F3.dtype) and a == 1
851
+ a = F3(F3(2))
852
+ assert isinstance(a, F3.dtype) and a == 2
853
+ a = F3(F3(3))
854
+ assert isinstance(a, F3.dtype) and a == 0
855
+ a = F3(F3(4))
856
+ assert isinstance(a, F3.dtype) and a == 1
857
+
858
+ a = -F3(1)
859
+ assert isinstance(a, F3.dtype) and a == 2
860
+ a = -F3(2)
861
+ assert isinstance(a, F3.dtype) and a == 1
862
+
863
+ a = 2 + F3(2)
864
+ assert isinstance(a, F3.dtype) and a == 1
865
+ a = F3(2) + 2
866
+ assert isinstance(a, F3.dtype) and a == 1
867
+ a = F3(2) + F3(2)
868
+ assert isinstance(a, F3.dtype) and a == 1
869
+ a = F3(2) + F3(2)
870
+ assert isinstance(a, F3.dtype) and a == 1
871
+
872
+ a = 3 - F3(2)
873
+ assert isinstance(a, F3.dtype) and a == 1
874
+ a = F3(3) - 2
875
+ assert isinstance(a, F3.dtype) and a == 1
876
+ a = F3(3) - F3(2)
877
+ assert isinstance(a, F3.dtype) and a == 1
878
+ a = F3(3) - F3(2)
879
+ assert isinstance(a, F3.dtype) and a == 1
880
+
881
+ a = 2*F3(2)
882
+ assert isinstance(a, F3.dtype) and a == 1
883
+ a = F3(2)*2
884
+ assert isinstance(a, F3.dtype) and a == 1
885
+ a = F3(2)*F3(2)
886
+ assert isinstance(a, F3.dtype) and a == 1
887
+ a = F3(2)*F3(2)
888
+ assert isinstance(a, F3.dtype) and a == 1
889
+
890
+ a = 2/F3(2)
891
+ assert isinstance(a, F3.dtype) and a == 1
892
+ a = F3(2)/2
893
+ assert isinstance(a, F3.dtype) and a == 1
894
+ a = F3(2)/F3(2)
895
+ assert isinstance(a, F3.dtype) and a == 1
896
+ a = F3(2)/F3(2)
897
+ assert isinstance(a, F3.dtype) and a == 1
898
+
899
+ a = 1 % F3(2)
900
+ assert isinstance(a, F3.dtype) and a == 1
901
+ a = F3(1) % 2
902
+ assert isinstance(a, F3.dtype) and a == 1
903
+ a = F3(1) % F3(2)
904
+ assert isinstance(a, F3.dtype) and a == 1
905
+ a = F3(1) % F3(2)
906
+ assert isinstance(a, F3.dtype) and a == 1
907
+
908
+ a = F3(2)**0
909
+ assert isinstance(a, F3.dtype) and a == 1
910
+ a = F3(2)**1
911
+ assert isinstance(a, F3.dtype) and a == 2
912
+ a = F3(2)**2
913
+ assert isinstance(a, F3.dtype) and a == 1
914
+
915
+ F7 = FF(7)
916
+
917
+ a = F7(3)**100000000000
918
+ assert isinstance(a, F7.dtype) and a == 4
919
+ a = F7(3)**-100000000000
920
+ assert isinstance(a, F7.dtype) and a == 2
921
+ a = F7(3)**S(2)
922
+ assert isinstance(a, F7.dtype) and a == 2
923
+
924
+ assert bool(F3(3)) is False
925
+ assert bool(F3(4)) is True
926
+
927
+ F5 = FF(5)
928
+
929
+ a = F5(1)**(-1)
930
+ assert isinstance(a, F5.dtype) and a == 1
931
+ a = F5(2)**(-1)
932
+ assert isinstance(a, F5.dtype) and a == 3
933
+ a = F5(3)**(-1)
934
+ assert isinstance(a, F5.dtype) and a == 2
935
+ a = F5(4)**(-1)
936
+ assert isinstance(a, F5.dtype) and a == 4
937
+
938
+ assert (F5(1) < F5(2)) is True
939
+ assert (F5(1) <= F5(2)) is True
940
+ assert (F5(1) > F5(2)) is False
941
+ assert (F5(1) >= F5(2)) is False
942
+
943
+ assert (F5(3) < F5(2)) is False
944
+ assert (F5(3) <= F5(2)) is False
945
+ assert (F5(3) > F5(2)) is True
946
+ assert (F5(3) >= F5(2)) is True
947
+
948
+ assert (F5(1) < F5(7)) is True
949
+ assert (F5(1) <= F5(7)) is True
950
+ assert (F5(1) > F5(7)) is False
951
+ assert (F5(1) >= F5(7)) is False
952
+
953
+ assert (F5(3) < F5(7)) is False
954
+ assert (F5(3) <= F5(7)) is False
955
+ assert (F5(3) > F5(7)) is True
956
+ assert (F5(3) >= F5(7)) is True
957
+
958
+ assert (F5(1) < 2) is True
959
+ assert (F5(1) <= 2) is True
960
+ assert (F5(1) > 2) is False
961
+ assert (F5(1) >= 2) is False
962
+
963
+ assert (F5(3) < 2) is False
964
+ assert (F5(3) <= 2) is False
965
+ assert (F5(3) > 2) is True
966
+ assert (F5(3) >= 2) is True
967
+
968
+ assert (F5(1) < 7) is True
969
+ assert (F5(1) <= 7) is True
970
+ assert (F5(1) > 7) is False
971
+ assert (F5(1) >= 7) is False
972
+
973
+ assert (F5(3) < 7) is False
974
+ assert (F5(3) <= 7) is False
975
+ assert (F5(3) > 7) is True
976
+ assert (F5(3) >= 7) is True
977
+
978
+ raises(NotInvertible, lambda: F5(0)**(-1))
979
+ raises(NotInvertible, lambda: F5(5)**(-1))
980
+
981
+ raises(ValueError, lambda: FF(0))
982
+ raises(ValueError, lambda: FF(2.1))
983
+
984
+ def test_QQ_int():
985
+ assert int(QQ(2**2000, 3**1250)) == 455431
986
+ assert int(QQ(2**100, 3)) == 422550200076076467165567735125
987
+
988
+ def test_RR_double():
989
+ assert RR(3.14) > 1e-50
990
+ assert RR(1e-13) > 1e-50
991
+ assert RR(1e-14) > 1e-50
992
+ assert RR(1e-15) > 1e-50
993
+ assert RR(1e-20) > 1e-50
994
+ assert RR(1e-40) > 1e-50
995
+
996
+ def test_RR_Float():
997
+ f1 = Float("1.01")
998
+ f2 = Float("1.0000000000000000000001")
999
+ assert f1._prec == 53
1000
+ assert f2._prec == 80
1001
+ assert RR(f1)-1 > 1e-50
1002
+ assert RR(f2)-1 < 1e-50 # RR's precision is lower than f2's
1003
+
1004
+ RR2 = RealField(prec=f2._prec)
1005
+ assert RR2(f1)-1 > 1e-50
1006
+ assert RR2(f2)-1 > 1e-50 # RR's precision is equal to f2's
1007
+
1008
+
1009
+ def test_CC_double():
1010
+ assert CC(3.14).real > 1e-50
1011
+ assert CC(1e-13).real > 1e-50
1012
+ assert CC(1e-14).real > 1e-50
1013
+ assert CC(1e-15).real > 1e-50
1014
+ assert CC(1e-20).real > 1e-50
1015
+ assert CC(1e-40).real > 1e-50
1016
+
1017
+ assert CC(3.14j).imag > 1e-50
1018
+ assert CC(1e-13j).imag > 1e-50
1019
+ assert CC(1e-14j).imag > 1e-50
1020
+ assert CC(1e-15j).imag > 1e-50
1021
+ assert CC(1e-20j).imag > 1e-50
1022
+ assert CC(1e-40j).imag > 1e-50
1023
+
1024
+
1025
+ def test_gaussian_domains():
1026
+ I = S.ImaginaryUnit
1027
+ a, b, c, d = [ZZ_I.convert(x) for x in (5, 2 + I, 3 - I, 5 - 5*I)]
1028
+ assert ZZ_I.gcd(a, b) == b
1029
+ assert ZZ_I.gcd(a, c) == b
1030
+ assert ZZ_I.lcm(a, b) == a
1031
+ assert ZZ_I.lcm(a, c) == d
1032
+ assert ZZ_I(3, 4) != QQ_I(3, 4) # XXX is this right or should QQ->ZZ if possible?
1033
+ assert ZZ_I(3, 0) != 3 # and should this go to Integer?
1034
+ assert QQ_I(S(3)/4, 0) != S(3)/4 # and this to Rational?
1035
+ assert ZZ_I(0, 0).quadrant() == 0
1036
+ assert ZZ_I(-1, 0).quadrant() == 2
1037
+
1038
+ assert QQ_I.convert(QQ(3, 2)) == QQ_I(QQ(3, 2), QQ(0))
1039
+ assert QQ_I.convert(QQ(3, 2), QQ) == QQ_I(QQ(3, 2), QQ(0))
1040
+
1041
+ for G in (QQ_I, ZZ_I):
1042
+
1043
+ q = G(3, 4)
1044
+ assert str(q) == '3 + 4*I'
1045
+ assert q.parent() == G
1046
+ assert q._get_xy(pi) == (None, None)
1047
+ assert q._get_xy(2) == (2, 0)
1048
+ assert q._get_xy(2*I) == (0, 2)
1049
+
1050
+ assert hash(q) == hash((3, 4))
1051
+ assert G(1, 2) == G(1, 2)
1052
+ assert G(1, 2) != G(1, 3)
1053
+ assert G(3, 0) == G(3)
1054
+
1055
+ assert q + q == G(6, 8)
1056
+ assert q - q == G(0, 0)
1057
+ assert 3 - q == -q + 3 == G(0, -4)
1058
+ assert 3 + q == q + 3 == G(6, 4)
1059
+ assert q * q == G(-7, 24)
1060
+ assert 3 * q == q * 3 == G(9, 12)
1061
+ assert q ** 0 == G(1, 0)
1062
+ assert q ** 1 == q
1063
+ assert q ** 2 == q * q == G(-7, 24)
1064
+ assert q ** 3 == q * q * q == G(-117, 44)
1065
+ assert 1 / q == q ** -1 == QQ_I(S(3)/25, - S(4)/25)
1066
+ assert q / 1 == QQ_I(3, 4)
1067
+ assert q / 2 == QQ_I(S(3)/2, 2)
1068
+ assert q/3 == QQ_I(1, S(4)/3)
1069
+ assert 3/q == QQ_I(S(9)/25, -S(12)/25)
1070
+ i, r = divmod(q, 2)
1071
+ assert 2*i + r == q
1072
+ i, r = divmod(2, q)
1073
+ assert q*i + r == G(2, 0)
1074
+
1075
+ raises(ZeroDivisionError, lambda: q % 0)
1076
+ raises(ZeroDivisionError, lambda: q / 0)
1077
+ raises(ZeroDivisionError, lambda: q // 0)
1078
+ raises(ZeroDivisionError, lambda: divmod(q, 0))
1079
+ raises(ZeroDivisionError, lambda: divmod(q, 0))
1080
+ raises(TypeError, lambda: q + x)
1081
+ raises(TypeError, lambda: q - x)
1082
+ raises(TypeError, lambda: x + q)
1083
+ raises(TypeError, lambda: x - q)
1084
+ raises(TypeError, lambda: q * x)
1085
+ raises(TypeError, lambda: x * q)
1086
+ raises(TypeError, lambda: q / x)
1087
+ raises(TypeError, lambda: x / q)
1088
+ raises(TypeError, lambda: q // x)
1089
+ raises(TypeError, lambda: x // q)
1090
+
1091
+ assert G.from_sympy(S(2)) == G(2, 0)
1092
+ assert G.to_sympy(G(2, 0)) == S(2)
1093
+ raises(CoercionFailed, lambda: G.from_sympy(pi))
1094
+
1095
+ PR = G.inject(x)
1096
+ assert isinstance(PR, PolynomialRing)
1097
+ assert PR.domain == G
1098
+ assert len(PR.gens) == 1 and PR.gens[0].as_expr() == x
1099
+
1100
+ if G is QQ_I:
1101
+ AF = G.as_AlgebraicField()
1102
+ assert isinstance(AF, AlgebraicField)
1103
+ assert AF.domain == QQ
1104
+ assert AF.ext.args[0] == I
1105
+
1106
+ for qi in [G(-1, 0), G(1, 0), G(0, -1), G(0, 1)]:
1107
+ assert G.is_negative(qi) is False
1108
+ assert G.is_positive(qi) is False
1109
+ assert G.is_nonnegative(qi) is False
1110
+ assert G.is_nonpositive(qi) is False
1111
+
1112
+ domains = [ZZ_python(), QQ_python(), AlgebraicField(QQ, I)]
1113
+ if HAS_GMPY:
1114
+ domains += [ZZ_gmpy(), QQ_gmpy()]
1115
+
1116
+ for K in domains:
1117
+ assert G.convert(K(2)) == G(2, 0)
1118
+ assert G.convert(K(2), K) == G(2, 0)
1119
+
1120
+ for K in ZZ_I, QQ_I:
1121
+ assert G.convert(K(1, 1)) == G(1, 1)
1122
+ assert G.convert(K(1, 1), K) == G(1, 1)
1123
+
1124
+ if G == ZZ_I:
1125
+ assert repr(q) == 'ZZ_I(3, 4)'
1126
+ assert q//3 == G(1, 1)
1127
+ assert 12//q == G(1, -2)
1128
+ assert 12 % q == G(1, 2)
1129
+ assert q % 2 == G(-1, 0)
1130
+ assert i == G(0, 0)
1131
+ assert r == G(2, 0)
1132
+ assert G.get_ring() == G
1133
+ assert G.get_field() == QQ_I
1134
+ else:
1135
+ assert repr(q) == 'QQ_I(3, 4)'
1136
+ assert G.get_ring() == ZZ_I
1137
+ assert G.get_field() == G
1138
+ assert q//3 == G(1, S(4)/3)
1139
+ assert 12//q == G(S(36)/25, -S(48)/25)
1140
+ assert 12 % q == G(0, 0)
1141
+ assert q % 2 == G(0, 0)
1142
+ assert i == G(S(6)/25, -S(8)/25), (G,i)
1143
+ assert r == G(0, 0)
1144
+ q2 = G(S(3)/2, S(5)/3)
1145
+ assert G.numer(q2) == ZZ_I(9, 10)
1146
+ assert G.denom(q2) == ZZ_I(6)
1147
+
1148
+
1149
+ def test_EX_EXRAW():
1150
+ assert EXRAW.zero is S.Zero
1151
+ assert EXRAW.one is S.One
1152
+
1153
+ assert EX(1) == EX.Expression(1)
1154
+ assert EX(1).ex is S.One
1155
+ assert EXRAW(1) is S.One
1156
+
1157
+ # EX has cancelling but EXRAW does not
1158
+ assert 2*EX((x + y*x)/x) == EX(2 + 2*y) != 2*((x + y*x)/x)
1159
+ assert 2*EXRAW((x + y*x)/x) == 2*((x + y*x)/x) != (1 + y)
1160
+
1161
+ assert EXRAW.convert_from(EX(1), EX) is EXRAW.one
1162
+ assert EX.convert_from(EXRAW(1), EXRAW) == EX.one
1163
+
1164
+ assert EXRAW.from_sympy(S.One) is S.One
1165
+ assert EXRAW.to_sympy(EXRAW.one) is S.One
1166
+ raises(CoercionFailed, lambda: EXRAW.from_sympy([]))
1167
+
1168
+ assert EXRAW.get_field() == EXRAW
1169
+
1170
+ assert EXRAW.unify(EX) == EXRAW
1171
+ assert EX.unify(EXRAW) == EXRAW
1172
+
1173
+
1174
+ def test_canonical_unit():
1175
+
1176
+ for K in [ZZ, QQ, RR]: # CC?
1177
+ assert K.canonical_unit(K(2)) == K(1)
1178
+ assert K.canonical_unit(K(-2)) == K(-1)
1179
+
1180
+ for K in [ZZ_I, QQ_I]:
1181
+ i = K.from_sympy(I)
1182
+ assert K.canonical_unit(K(2)) == K(1)
1183
+ assert K.canonical_unit(K(2)*i) == -i
1184
+ assert K.canonical_unit(-K(2)) == K(-1)
1185
+ assert K.canonical_unit(-K(2)*i) == i
1186
+
1187
+ K = ZZ[x]
1188
+ assert K.canonical_unit(K(x + 1)) == K(1)
1189
+ assert K.canonical_unit(K(-x + 1)) == K(-1)
1190
+
1191
+ K = ZZ_I[x]
1192
+ assert K.canonical_unit(K.from_sympy(I*x)) == ZZ_I(0, -1)
1193
+
1194
+ K = ZZ_I.frac_field(x, y)
1195
+ i = K.from_sympy(I)
1196
+ assert i / i == K.one
1197
+ assert (K.one + i)/(i - K.one) == -i
1198
+
1199
+
1200
+ def test_issue_18278():
1201
+ assert str(RR(2).parent()) == 'RR'
1202
+ assert str(CC(2).parent()) == 'CC'
1203
+
1204
+
1205
+ def test_Domain_is_negative():
1206
+ I = S.ImaginaryUnit
1207
+ a, b = [CC.convert(x) for x in (2 + I, 5)]
1208
+ assert CC.is_negative(a) == False
1209
+ assert CC.is_negative(b) == False
1210
+
1211
+
1212
+ def test_Domain_is_positive():
1213
+ I = S.ImaginaryUnit
1214
+ a, b = [CC.convert(x) for x in (2 + I, 5)]
1215
+ assert CC.is_positive(a) == False
1216
+ assert CC.is_positive(b) == False
1217
+
1218
+
1219
+ def test_Domain_is_nonnegative():
1220
+ I = S.ImaginaryUnit
1221
+ a, b = [CC.convert(x) for x in (2 + I, 5)]
1222
+ assert CC.is_nonnegative(a) == False
1223
+ assert CC.is_nonnegative(b) == False
1224
+
1225
+
1226
+ def test_Domain_is_nonpositive():
1227
+ I = S.ImaginaryUnit
1228
+ a, b = [CC.convert(x) for x in (2 + I, 5)]
1229
+ assert CC.is_nonpositive(a) == False
1230
+ assert CC.is_nonpositive(b) == False
1231
+
1232
+
1233
+ def test_exponential_domain():
1234
+ K = ZZ[E]
1235
+ eK = K.from_sympy(E)
1236
+ assert K.from_sympy(exp(3)) == eK ** 3
1237
+ assert K.convert(exp(3)) == eK ** 3
1238
+
1239
+
1240
+ def test_AlgebraicField_alias():
1241
+ # No default alias:
1242
+ k = QQ.algebraic_field(sqrt(2))
1243
+ assert k.ext.alias is None
1244
+
1245
+ # For a single extension, its alias is used:
1246
+ alpha = AlgebraicNumber(sqrt(2), alias='alpha')
1247
+ k = QQ.algebraic_field(alpha)
1248
+ assert k.ext.alias.name == 'alpha'
1249
+
1250
+ # Can override the alias of a single extension:
1251
+ k = QQ.algebraic_field(alpha, alias='theta')
1252
+ assert k.ext.alias.name == 'theta'
1253
+
1254
+ # With multiple extensions, no default alias:
1255
+ k = QQ.algebraic_field(sqrt(2), sqrt(3))
1256
+ assert k.ext.alias is None
1257
+
1258
+ # With multiple extensions, no default alias, even if one of
1259
+ # the extensions has one:
1260
+ k = QQ.algebraic_field(alpha, sqrt(3))
1261
+ assert k.ext.alias is None
1262
+
1263
+ # With multiple extensions, may set an alias:
1264
+ k = QQ.algebraic_field(sqrt(2), sqrt(3), alias='theta')
1265
+ assert k.ext.alias.name == 'theta'
1266
+
1267
+ # Alias is passed to constructed field elements:
1268
+ k = QQ.algebraic_field(alpha)
1269
+ beta = k.to_alg_num(k([1, 2, 3]))
1270
+ assert beta.alias is alpha.alias
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/tests/test_polynomialring.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tests for the PolynomialRing classes. """
2
+
3
+ from sympy.polys.domains import QQ, ZZ
4
+ from sympy.polys.polyerrors import ExactQuotientFailed, CoercionFailed, NotReversible
5
+
6
+ from sympy.abc import x, y
7
+
8
+ from sympy.testing.pytest import raises
9
+
10
+
11
+ def test_build_order():
12
+ R = QQ.old_poly_ring(x, y, order=(("lex", x), ("ilex", y)))
13
+ assert R.order((1, 5)) == ((1,), (-5,))
14
+
15
+
16
+ def test_globalring():
17
+ Qxy = QQ.old_frac_field(x, y)
18
+ R = QQ.old_poly_ring(x, y)
19
+ X = R.convert(x)
20
+ Y = R.convert(y)
21
+
22
+ assert x in R
23
+ assert 1/x not in R
24
+ assert 1/(1 + x) not in R
25
+ assert Y in R
26
+ assert X.ring == R
27
+ assert X * (Y**2 + 1) == R.convert(x * (y**2 + 1))
28
+ assert X * y == X * Y == R.convert(x * y) == x * Y
29
+ assert X + y == X + Y == R.convert(x + y) == x + Y
30
+ assert X - y == X - Y == R.convert(x - y) == x - Y
31
+ assert X + 1 == R.convert(x + 1)
32
+ raises(ExactQuotientFailed, lambda: X/Y)
33
+ raises(ExactQuotientFailed, lambda: x/Y)
34
+ raises(ExactQuotientFailed, lambda: X/y)
35
+ assert X**2 / X == X
36
+
37
+ assert R.from_GlobalPolynomialRing(ZZ.old_poly_ring(x, y).convert(x), ZZ.old_poly_ring(x, y)) == X
38
+ assert R.from_FractionField(Qxy.convert(x), Qxy) == X
39
+ assert R.from_FractionField(Qxy.convert(x)/y, Qxy) is None
40
+
41
+ assert R._sdm_to_vector(R._vector_to_sdm([X, Y], R.order), 2) == [X, Y]
42
+
43
+
44
+ def test_localring():
45
+ Qxy = QQ.old_frac_field(x, y)
46
+ R = QQ.old_poly_ring(x, y, order="ilex")
47
+ X = R.convert(x)
48
+ Y = R.convert(y)
49
+
50
+ assert x in R
51
+ assert 1/x not in R
52
+ assert 1/(1 + x) in R
53
+ assert Y in R
54
+ assert X.ring == R
55
+ assert X*(Y**2 + 1)/(1 + X) == R.convert(x*(y**2 + 1)/(1 + x))
56
+ assert X*y == X*Y
57
+ raises(ExactQuotientFailed, lambda: X/Y)
58
+ raises(ExactQuotientFailed, lambda: x/Y)
59
+ raises(ExactQuotientFailed, lambda: X/y)
60
+ assert X + y == X + Y == R.convert(x + y) == x + Y
61
+ assert X - y == X - Y == R.convert(x - y) == x - Y
62
+ assert X + 1 == R.convert(x + 1)
63
+ assert X**2 / X == X
64
+
65
+ assert R.from_GlobalPolynomialRing(ZZ.old_poly_ring(x, y).convert(x), ZZ.old_poly_ring(x, y)) == X
66
+ assert R.from_FractionField(Qxy.convert(x), Qxy) == X
67
+ raises(CoercionFailed, lambda: R.from_FractionField(Qxy.convert(x)/y, Qxy))
68
+ raises(ExactQuotientFailed, lambda: X/Y)
69
+ raises(NotReversible, lambda: X.invert())
70
+
71
+ assert R._sdm_to_vector(
72
+ R._vector_to_sdm([X/(X + 1), Y/(1 + X*Y)], R.order), 2) == \
73
+ [X*(1 + X*Y), Y*(1 + X)]
74
+
75
+
76
+ def test_conversion():
77
+ L = QQ.old_poly_ring(x, y, order="ilex")
78
+ G = QQ.old_poly_ring(x, y)
79
+
80
+ assert L.convert(x) == L.convert(G.convert(x), G)
81
+ assert G.convert(x) == G.convert(L.convert(x), L)
82
+ raises(CoercionFailed, lambda: G.convert(L.convert(1/(1 + x)), L))
83
+
84
+
85
+ def test_units():
86
+ R = QQ.old_poly_ring(x)
87
+ assert R.is_unit(R.convert(1))
88
+ assert R.is_unit(R.convert(2))
89
+ assert not R.is_unit(R.convert(x))
90
+ assert not R.is_unit(R.convert(1 + x))
91
+
92
+ R = QQ.old_poly_ring(x, order='ilex')
93
+ assert R.is_unit(R.convert(1))
94
+ assert R.is_unit(R.convert(2))
95
+ assert not R.is_unit(R.convert(x))
96
+ assert R.is_unit(R.convert(1 + x))
97
+
98
+ R = ZZ.old_poly_ring(x)
99
+ assert R.is_unit(R.convert(1))
100
+ assert not R.is_unit(R.convert(2))
101
+ assert not R.is_unit(R.convert(x))
102
+ assert not R.is_unit(R.convert(1 + x))
env-llmeval/lib/python3.10/site-packages/sympy/polys/domains/tests/test_quotientring.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tests for quotient rings."""
2
+
3
+ from sympy.polys.domains.integerring import ZZ
4
+ from sympy.polys.domains.rationalfield import QQ
5
+ from sympy.abc import x, y
6
+
7
+ from sympy.polys.polyerrors import NotReversible
8
+
9
+ from sympy.testing.pytest import raises
10
+
11
+
12
+ def test_QuotientRingElement():
13
+ R = QQ.old_poly_ring(x)/[x**10]
14
+ X = R.convert(x)
15
+
16
+ assert X*(X + 1) == R.convert(x**2 + x)
17
+ assert X*x == R.convert(x**2)
18
+ assert x*X == R.convert(x**2)
19
+ assert X + x == R.convert(2*x)
20
+ assert x + X == 2*X
21
+ assert X**2 == R.convert(x**2)
22
+ assert 1/(1 - X) == R.convert(sum(x**i for i in range(10)))
23
+ assert X**10 == R.zero
24
+ assert X != x
25
+
26
+ raises(NotReversible, lambda: 1/X)
27
+
28
+
29
+ def test_QuotientRing():
30
+ I = QQ.old_poly_ring(x).ideal(x**2 + 1)
31
+ R = QQ.old_poly_ring(x)/I
32
+
33
+ assert R == QQ.old_poly_ring(x)/[x**2 + 1]
34
+ assert R == QQ.old_poly_ring(x)/QQ.old_poly_ring(x).ideal(x**2 + 1)
35
+ assert R != QQ.old_poly_ring(x)
36
+
37
+ assert R.convert(1)/x == -x + I
38
+ assert -1 + I == x**2 + I
39
+ assert R.convert(ZZ(1), ZZ) == 1 + I
40
+ assert R.convert(R.convert(x), R) == R.convert(x)
41
+
42
+ X = R.convert(x)
43
+ Y = QQ.old_poly_ring(x).convert(x)
44
+ assert -1 + I == X**2 + I
45
+ assert -1 + I == Y**2 + I
46
+ assert R.to_sympy(X) == x
47
+
48
+ raises(ValueError, lambda: QQ.old_poly_ring(x)/QQ.old_poly_ring(x, y).ideal(x))
49
+
50
+ R = QQ.old_poly_ring(x, order="ilex")
51
+ I = R.ideal(x)
52
+ assert R.convert(1) + I == (R/I).convert(1)
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__init__.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Computational algebraic field theory. """
2
+
3
+ __all__ = [
4
+ 'minpoly', 'minimal_polynomial',
5
+
6
+ 'field_isomorphism', 'primitive_element', 'to_number_field',
7
+
8
+ 'isolate',
9
+
10
+ 'round_two',
11
+
12
+ 'prime_decomp', 'prime_valuation',
13
+
14
+ 'galois_group',
15
+ ]
16
+
17
+ from .minpoly import minpoly, minimal_polynomial
18
+
19
+ from .subfield import field_isomorphism, primitive_element, to_number_field
20
+
21
+ from .utilities import isolate
22
+
23
+ from .basis import round_two
24
+
25
+ from .primes import prime_decomp, prime_valuation
26
+
27
+ from .galoisgroups import galois_group
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (676 Bytes). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/basis.cpython-310.pyc ADDED
Binary file (7.26 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/exceptions.cpython-310.pyc ADDED
Binary file (2.09 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/galois_resolvents.cpython-310.pyc ADDED
Binary file (24.2 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/galoisgroups.cpython-310.pyc ADDED
Binary file (14.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/minpoly.cpython-310.pyc ADDED
Binary file (24.4 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/modules.cpython-310.pyc ADDED
Binary file (72 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/primes.cpython-310.pyc ADDED
Binary file (23.1 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/resolvent_lookup.cpython-310.pyc ADDED
Binary file (59.9 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/subfield.cpython-310.pyc ADDED
Binary file (14.6 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/__pycache__/utilities.cpython-310.pyc ADDED
Binary file (12.8 kB). View file
 
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/basis.py ADDED
@@ -0,0 +1,246 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Computing integral bases for number fields. """
2
+
3
+ from sympy.polys.polytools import Poly
4
+ from sympy.polys.domains.algebraicfield import AlgebraicField
5
+ from sympy.polys.domains.integerring import ZZ
6
+ from sympy.polys.domains.rationalfield import QQ
7
+ from sympy.utilities.decorator import public
8
+ from .modules import ModuleEndomorphism, ModuleHomomorphism, PowerBasis
9
+ from .utilities import extract_fundamental_discriminant
10
+
11
+
12
+ def _apply_Dedekind_criterion(T, p):
13
+ r"""
14
+ Apply the "Dedekind criterion" to test whether the order needs to be
15
+ enlarged relative to a given prime *p*.
16
+ """
17
+ x = T.gen
18
+ T_bar = Poly(T, modulus=p)
19
+ lc, fl = T_bar.factor_list()
20
+ assert lc == 1
21
+ g_bar = Poly(1, x, modulus=p)
22
+ for ti_bar, _ in fl:
23
+ g_bar *= ti_bar
24
+ h_bar = T_bar // g_bar
25
+ g = Poly(g_bar, domain=ZZ)
26
+ h = Poly(h_bar, domain=ZZ)
27
+ f = (g * h - T) // p
28
+ f_bar = Poly(f, modulus=p)
29
+ Z_bar = f_bar
30
+ for b in [g_bar, h_bar]:
31
+ Z_bar = Z_bar.gcd(b)
32
+ U_bar = T_bar // Z_bar
33
+ m = Z_bar.degree()
34
+ return U_bar, m
35
+
36
+
37
+ def nilradical_mod_p(H, p, q=None):
38
+ r"""
39
+ Compute the nilradical mod *p* for a given order *H*, and prime *p*.
40
+
41
+ Explanation
42
+ ===========
43
+
44
+ This is the ideal $I$ in $H/pH$ consisting of all elements some positive
45
+ power of which is zero in this quotient ring, i.e. is a multiple of *p*.
46
+
47
+ Parameters
48
+ ==========
49
+
50
+ H : :py:class:`~.Submodule`
51
+ The given order.
52
+ p : int
53
+ The rational prime.
54
+ q : int, optional
55
+ If known, the smallest power of *p* that is $>=$ the dimension of *H*.
56
+ If not provided, we compute it here.
57
+
58
+ Returns
59
+ =======
60
+
61
+ :py:class:`~.Module` representing the nilradical mod *p* in *H*.
62
+
63
+ References
64
+ ==========
65
+
66
+ .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory*.
67
+ (See Lemma 6.1.6.)
68
+
69
+ """
70
+ n = H.n
71
+ if q is None:
72
+ q = p
73
+ while q < n:
74
+ q *= p
75
+ phi = ModuleEndomorphism(H, lambda x: x**q)
76
+ return phi.kernel(modulus=p)
77
+
78
+
79
+ def _second_enlargement(H, p, q):
80
+ r"""
81
+ Perform the second enlargement in the Round Two algorithm.
82
+ """
83
+ Ip = nilradical_mod_p(H, p, q=q)
84
+ B = H.parent.submodule_from_matrix(H.matrix * Ip.matrix, denom=H.denom)
85
+ C = B + p*H
86
+ E = C.endomorphism_ring()
87
+ phi = ModuleHomomorphism(H, E, lambda x: E.inner_endomorphism(x))
88
+ gamma = phi.kernel(modulus=p)
89
+ G = H.parent.submodule_from_matrix(H.matrix * gamma.matrix, denom=H.denom * p)
90
+ H1 = G + H
91
+ return H1, Ip
92
+
93
+
94
+ @public
95
+ def round_two(T, radicals=None):
96
+ r"""
97
+ Zassenhaus's "Round 2" algorithm.
98
+
99
+ Explanation
100
+ ===========
101
+
102
+ Carry out Zassenhaus's "Round 2" algorithm on an irreducible polynomial
103
+ *T* over :ref:`ZZ` or :ref:`QQ`. This computes an integral basis and the
104
+ discriminant for the field $K = \mathbb{Q}[x]/(T(x))$.
105
+
106
+ Alternatively, you may pass an :py:class:`~.AlgebraicField` instance, in
107
+ place of the polynomial *T*, in which case the algorithm is applied to the
108
+ minimal polynomial for the field's primitive element.
109
+
110
+ Ordinarily this function need not be called directly, as one can instead
111
+ access the :py:meth:`~.AlgebraicField.maximal_order`,
112
+ :py:meth:`~.AlgebraicField.integral_basis`, and
113
+ :py:meth:`~.AlgebraicField.discriminant` methods of an
114
+ :py:class:`~.AlgebraicField`.
115
+
116
+ Examples
117
+ ========
118
+
119
+ Working through an AlgebraicField:
120
+
121
+ >>> from sympy import Poly, QQ
122
+ >>> from sympy.abc import x
123
+ >>> T = Poly(x ** 3 + x ** 2 - 2 * x + 8)
124
+ >>> K = QQ.alg_field_from_poly(T, "theta")
125
+ >>> print(K.maximal_order())
126
+ Submodule[[2, 0, 0], [0, 2, 0], [0, 1, 1]]/2
127
+ >>> print(K.discriminant())
128
+ -503
129
+ >>> print(K.integral_basis(fmt='sympy'))
130
+ [1, theta, theta/2 + theta**2/2]
131
+
132
+ Calling directly:
133
+
134
+ >>> from sympy import Poly
135
+ >>> from sympy.abc import x
136
+ >>> from sympy.polys.numberfields.basis import round_two
137
+ >>> T = Poly(x ** 3 + x ** 2 - 2 * x + 8)
138
+ >>> print(round_two(T))
139
+ (Submodule[[2, 0, 0], [0, 2, 0], [0, 1, 1]]/2, -503)
140
+
141
+ The nilradicals mod $p$ that are sometimes computed during the Round Two
142
+ algorithm may be useful in further calculations. Pass a dictionary under
143
+ `radicals` to receive these:
144
+
145
+ >>> T = Poly(x**3 + 3*x**2 + 5)
146
+ >>> rad = {}
147
+ >>> ZK, dK = round_two(T, radicals=rad)
148
+ >>> print(rad)
149
+ {3: Submodule[[-1, 1, 0], [-1, 0, 1]]}
150
+
151
+ Parameters
152
+ ==========
153
+
154
+ T : :py:class:`~.Poly`, :py:class:`~.AlgebraicField`
155
+ Either (1) the irreducible polynomial over :ref:`ZZ` or :ref:`QQ`
156
+ defining the number field, or (2) an :py:class:`~.AlgebraicField`
157
+ representing the number field itself.
158
+
159
+ radicals : dict, optional
160
+ This is a way for any $p$-radicals (if computed) to be returned by
161
+ reference. If desired, pass an empty dictionary. If the algorithm
162
+ reaches the point where it computes the nilradical mod $p$ of the ring
163
+ of integers $Z_K$, then an $\mathbb{F}_p$-basis for this ideal will be
164
+ stored in this dictionary under the key ``p``. This can be useful for
165
+ other algorithms, such as prime decomposition.
166
+
167
+ Returns
168
+ =======
169
+
170
+ Pair ``(ZK, dK)``, where:
171
+
172
+ ``ZK`` is a :py:class:`~sympy.polys.numberfields.modules.Submodule`
173
+ representing the maximal order.
174
+
175
+ ``dK`` is the discriminant of the field $K = \mathbb{Q}[x]/(T(x))$.
176
+
177
+ See Also
178
+ ========
179
+
180
+ .AlgebraicField.maximal_order
181
+ .AlgebraicField.integral_basis
182
+ .AlgebraicField.discriminant
183
+
184
+ References
185
+ ==========
186
+
187
+ .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.*
188
+
189
+ """
190
+ K = None
191
+ if isinstance(T, AlgebraicField):
192
+ K, T = T, T.ext.minpoly_of_element()
193
+ if ( not T.is_univariate
194
+ or not T.is_irreducible
195
+ or T.domain not in [ZZ, QQ]):
196
+ raise ValueError('Round 2 requires an irreducible univariate polynomial over ZZ or QQ.')
197
+ T, _ = T.make_monic_over_integers_by_scaling_roots()
198
+ n = T.degree()
199
+ D = T.discriminant()
200
+ D_modulus = ZZ.from_sympy(abs(D))
201
+ # D must be 0 or 1 mod 4 (see Cohen Sec 4.4), which ensures we can write
202
+ # it in the form D = D_0 * F**2, where D_0 is 1 or a fundamental discriminant.
203
+ _, F = extract_fundamental_discriminant(D)
204
+ Ztheta = PowerBasis(K or T)
205
+ H = Ztheta.whole_submodule()
206
+ nilrad = None
207
+ while F:
208
+ # Next prime:
209
+ p, e = F.popitem()
210
+ U_bar, m = _apply_Dedekind_criterion(T, p)
211
+ if m == 0:
212
+ continue
213
+ # For a given prime p, the first enlargement of the order spanned by
214
+ # the current basis can be done in a simple way:
215
+ U = Ztheta.element_from_poly(Poly(U_bar, domain=ZZ))
216
+ # TODO:
217
+ # Theory says only first m columns of the U//p*H term below are needed.
218
+ # Could be slightly more efficient to use only those. Maybe `Submodule`
219
+ # class should support a slice operator?
220
+ H = H.add(U // p * H, hnf_modulus=D_modulus)
221
+ if e <= m:
222
+ continue
223
+ # A second, and possibly more, enlargements for p will be needed.
224
+ # These enlargements require a more involved procedure.
225
+ q = p
226
+ while q < n:
227
+ q *= p
228
+ H1, nilrad = _second_enlargement(H, p, q)
229
+ while H1 != H:
230
+ H = H1
231
+ H1, nilrad = _second_enlargement(H, p, q)
232
+ # Note: We do not store all nilradicals mod p, only the very last. This is
233
+ # because, unless computed against the entire integral basis, it might not
234
+ # be accurate. (In other words, if H was not already equal to ZK when we
235
+ # passed it to `_second_enlargement`, then we can't trust the nilradical
236
+ # so computed.) Example: if T(x) = x ** 3 + 15 * x ** 2 - 9 * x + 13, then
237
+ # F is divisible by 2, 3, and 7, and the nilradical mod 2 as computed above
238
+ # will not be accurate for the full, maximal order ZK.
239
+ if nilrad is not None and isinstance(radicals, dict):
240
+ radicals[p] = nilrad
241
+ ZK = H
242
+ # Pre-set expensive boolean properties which we already know to be true:
243
+ ZK._starts_with_unity = True
244
+ ZK._is_sq_maxrank_HNF = True
245
+ dK = (D * ZK.matrix.det() ** 2) // ZK.denom ** (2 * n)
246
+ return ZK, dK
env-llmeval/lib/python3.10/site-packages/sympy/polys/numberfields/exceptions.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Special exception classes for numberfields. """
2
+
3
+
4
+ class ClosureFailure(Exception):
5
+ r"""
6
+ Signals that a :py:class:`ModuleElement` which we tried to represent in a
7
+ certain :py:class:`Module` cannot in fact be represented there.
8
+
9
+ Examples
10
+ ========
11
+
12
+ >>> from sympy.polys import Poly, cyclotomic_poly, ZZ
13
+ >>> from sympy.polys.matrices import DomainMatrix
14
+ >>> from sympy.polys.numberfields.modules import PowerBasis, to_col, ClosureFailure
15
+ >>> from sympy.testing.pytest import raises
16
+ >>> T = Poly(cyclotomic_poly(5))
17
+ >>> A = PowerBasis(T)
18
+ >>> B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
19
+
20
+ Because we are in a cyclotomic field, the power basis ``A`` is an integral
21
+ basis, and the submodule ``B`` is just the ideal $(2)$. Therefore ``B`` can
22
+ represent an element having all even coefficients over the power basis:
23
+
24
+ >>> a1 = A(to_col([2, 4, 6, 8]))
25
+ >>> print(B.represent(a1))
26
+ DomainMatrix([[1], [2], [3], [4]], (4, 1), ZZ)
27
+
28
+ but ``B`` cannot represent an element with an odd coefficient:
29
+
30
+ >>> a2 = A(to_col([1, 2, 2, 2]))
31
+ >>> print(raises(ClosureFailure, lambda: B.represent(a2)))
32
+ <ExceptionInfo ClosureFailure('Element in QQ-span but not ZZ-span of this basis.')>
33
+
34
+ """
35
+ pass
36
+
37
+
38
+ class StructureError(Exception):
39
+ r"""
40
+ Represents cases in which an algebraic structure was expected to have a
41
+ certain property, or be of a certain type, but was not.
42
+ """
43
+ pass
44
+
45
+
46
+ class MissingUnityError(StructureError):
47
+ r"""Structure should contain a unity element but does not."""
48
+ pass
49
+
50
+
51
+ __all__ = [
52
+ 'ClosureFailure', 'StructureError', 'MissingUnityError',
53
+ ]