applied-ai-018 commited on
Commit
1fad656
·
verified ·
1 Parent(s): 6528e3e

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/torch/_export/db/__pycache__/__init__.cpython-310.pyc +0 -0
  2. llmeval-env/lib/python3.10/site-packages/torch/_export/db/__pycache__/case.cpython-310.pyc +0 -0
  3. llmeval-env/lib/python3.10/site-packages/torch/_export/db/__pycache__/gen_example.cpython-310.pyc +0 -0
  4. llmeval-env/lib/python3.10/site-packages/torch/_export/db/__pycache__/logging.cpython-310.pyc +0 -0
  5. llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/__init__.py +52 -0
  6. llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/__pycache__/autograd_function.cpython-310.pyc +0 -0
  7. llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/__pycache__/cond_branch_nonlocal_variables.cpython-310.pyc +0 -0
  8. llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/__pycache__/constrain_as_value_example.cpython-310.pyc +0 -0
  9. llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/__pycache__/list_contains.cpython-310.pyc +0 -0
  10. llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/__pycache__/model_attr_mutation.cpython-310.pyc +0 -0
  11. llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/__pycache__/optional_input.cpython-310.pyc +0 -0
  12. llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/__pycache__/scalar_output.cpython-310.pyc +0 -0
  13. llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/__pycache__/torch_sym_min.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/assume_constant_result.py +24 -0
  15. llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/cond_branch_class_method.py +46 -0
  16. llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/constrain_as_value_example.py +30 -0
  17. llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/dynamic_shape_constructor.py +19 -0
  18. llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/dynamic_shape_slicing.py +20 -0
  19. llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/dynamic_shape_view.py +22 -0
  20. llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/fn_with_kwargs.py +32 -0
  21. llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/list_contains.py +21 -0
  22. llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/model_attr_mutation.py +25 -0
  23. llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/specialized_attribute.py +29 -0
  24. llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/static_for_loop.py +22 -0
  25. llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/torch_sym_min.py +17 -0
  26. llmeval-env/lib/python3.10/site-packages/torch/_export/pass_infra/__init__.py +0 -0
  27. llmeval-env/lib/python3.10/site-packages/torch/_export/pass_infra/__pycache__/__init__.cpython-310.pyc +0 -0
  28. llmeval-env/lib/python3.10/site-packages/torch/_export/pass_infra/__pycache__/node_metadata.cpython-310.pyc +0 -0
  29. llmeval-env/lib/python3.10/site-packages/torch/_export/pass_infra/__pycache__/proxy_value.cpython-310.pyc +0 -0
  30. llmeval-env/lib/python3.10/site-packages/torch/_export/pass_infra/node_metadata.py +32 -0
  31. llmeval-env/lib/python3.10/site-packages/torch/_export/pass_infra/proxy_value.py +41 -0
  32. llmeval-env/lib/python3.10/site-packages/torch/_export/passes/__init__.py +1 -0
  33. llmeval-env/lib/python3.10/site-packages/torch/_export/passes/__pycache__/__init__.cpython-310.pyc +0 -0
  34. llmeval-env/lib/python3.10/site-packages/torch/_export/passes/__pycache__/add_runtime_assertions_for_constraints_pass.cpython-310.pyc +0 -0
  35. llmeval-env/lib/python3.10/site-packages/torch/_export/passes/__pycache__/collect_tracepoints_pass.cpython-310.pyc +0 -0
  36. llmeval-env/lib/python3.10/site-packages/torch/_export/passes/__pycache__/functionalize_side_effectful_ops_pass.cpython-310.pyc +0 -0
  37. llmeval-env/lib/python3.10/site-packages/torch/_export/passes/__pycache__/lift_constants_pass.cpython-310.pyc +0 -0
  38. llmeval-env/lib/python3.10/site-packages/torch/_export/passes/__pycache__/remove_runtime_assertions.cpython-310.pyc +0 -0
  39. llmeval-env/lib/python3.10/site-packages/torch/_export/passes/__pycache__/replace_set_grad_with_hop_pass.cpython-310.pyc +0 -0
  40. llmeval-env/lib/python3.10/site-packages/torch/_export/passes/__pycache__/replace_sym_size_ops_pass.cpython-310.pyc +0 -0
  41. llmeval-env/lib/python3.10/site-packages/torch/_export/passes/__pycache__/replace_view_ops_with_view_copy_ops_pass.cpython-310.pyc +0 -0
  42. llmeval-env/lib/python3.10/site-packages/torch/_export/passes/add_runtime_assertions_for_constraints_pass.py +231 -0
  43. llmeval-env/lib/python3.10/site-packages/torch/_export/passes/collect_tracepoints_pass.py +66 -0
  44. llmeval-env/lib/python3.10/site-packages/torch/_export/passes/functionalize_side_effectful_ops_pass.py +94 -0
  45. llmeval-env/lib/python3.10/site-packages/torch/_export/passes/lift_constants_pass.py +248 -0
  46. llmeval-env/lib/python3.10/site-packages/torch/_export/passes/remove_runtime_assertions.py +26 -0
  47. llmeval-env/lib/python3.10/site-packages/torch/_export/passes/replace_set_grad_with_hop_pass.py +141 -0
  48. llmeval-env/lib/python3.10/site-packages/torch/_export/passes/replace_sym_size_ops_pass.py +18 -0
  49. llmeval-env/lib/python3.10/site-packages/torch/_export/passes/replace_view_ops_with_view_copy_ops_pass.py +71 -0
  50. llmeval-env/lib/python3.10/site-packages/torch/_functorch/__init__.py +5 -0
llmeval-env/lib/python3.10/site-packages/torch/_export/db/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (189 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/db/__pycache__/case.cpython-310.pyc ADDED
Binary file (5.46 kB). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/db/__pycache__/gen_example.cpython-310.pyc ADDED
Binary file (838 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/db/__pycache__/logging.cpython-310.pyc ADDED
Binary file (326 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/__init__.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import importlib
3
+ from os.path import basename, dirname, isfile, join
4
+
5
+ import torch
6
+ from torch._export.db.case import (
7
+ _EXAMPLE_CASES,
8
+ _EXAMPLE_CONFLICT_CASES,
9
+ _EXAMPLE_REWRITE_CASES,
10
+ SupportLevel,
11
+ )
12
+
13
+
14
+ modules = glob.glob(join(dirname(__file__), "*.py"))
15
+ __all__ = [
16
+ basename(f)[:-3] for f in modules if isfile(f) and not f.endswith("__init__.py")
17
+ ]
18
+
19
+ # Import all module in the current directory.
20
+ from . import * # noqa: F403
21
+
22
+
23
+ def all_examples():
24
+ return _EXAMPLE_CASES
25
+
26
+
27
+ if len(_EXAMPLE_CONFLICT_CASES) > 0:
28
+
29
+ def get_name(case):
30
+ model = case.model
31
+ if isinstance(model, torch.nn.Module):
32
+ model = type(model)
33
+ return model.__name__
34
+
35
+ msg = "Error on conflict export case name.\n"
36
+ for case_name, cases in _EXAMPLE_CONFLICT_CASES.items():
37
+ msg += f"Case name {case_name} is associated with multiple cases:\n "
38
+ msg += f"[{','.join(map(get_name, cases))}]\n"
39
+
40
+ raise RuntimeError(msg)
41
+
42
+
43
+ def filter_examples_by_support_level(support_level: SupportLevel):
44
+ return {
45
+ key: val
46
+ for key, val in all_examples().items()
47
+ if val.support_level == support_level
48
+ }
49
+
50
+
51
+ def get_rewrite_cases(case):
52
+ return _EXAMPLE_REWRITE_CASES.get(case.name, [])
llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/__pycache__/autograd_function.cpython-310.pyc ADDED
Binary file (1.31 kB). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/__pycache__/cond_branch_nonlocal_variables.cpython-310.pyc ADDED
Binary file (2.64 kB). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/__pycache__/constrain_as_value_example.cpython-310.pyc ADDED
Binary file (1.34 kB). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/__pycache__/list_contains.cpython-310.pyc ADDED
Binary file (1.11 kB). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/__pycache__/model_attr_mutation.cpython-310.pyc ADDED
Binary file (1.26 kB). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/__pycache__/optional_input.cpython-310.pyc ADDED
Binary file (873 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/__pycache__/scalar_output.cpython-310.pyc ADDED
Binary file (1.14 kB). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/__pycache__/torch_sym_min.cpython-310.pyc ADDED
Binary file (859 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/assume_constant_result.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch._dynamo as torchdynamo
3
+
4
+ from torch._export.db.case import export_case
5
+
6
+
7
+ @export_case(
8
+ example_inputs=(torch.ones(3, 2), torch.tensor(4)),
9
+ tags={"torch.escape-hatch"},
10
+ )
11
+ class AssumeConstantResult(torch.nn.Module):
12
+ """
13
+ Applying `assume_constant_result` decorator to burn make non-tracable code as constant.
14
+ """
15
+
16
+ def __init__(self):
17
+ super().__init__()
18
+
19
+ @torchdynamo.assume_constant_result
20
+ def get_item(self, y):
21
+ return y.int().item()
22
+
23
+ def forward(self, x, y):
24
+ return x[: self.get_item(y)]
llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/cond_branch_class_method.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from torch._export.db.case import export_case
4
+ from functorch.experimental.control_flow import cond
5
+
6
+
7
+ class MySubModule(torch.nn.Module):
8
+ def foo(self, x):
9
+ return x.cos()
10
+
11
+ def forward(self, x):
12
+ return self.foo(x)
13
+
14
+
15
+ @export_case(
16
+ example_inputs=(torch.ones(3),),
17
+ tags={
18
+ "torch.cond",
19
+ "torch.dynamic-shape",
20
+ },
21
+ )
22
+ class CondBranchClassMethod(torch.nn.Module):
23
+ """
24
+ The branch functions (`true_fn` and `false_fn`) passed to cond() must follow these rules:
25
+ - both branches must take the same args, which must also match the branch args passed to cond.
26
+ - both branches must return a single tensor
27
+ - returned tensor must have the same tensor metadata, e.g. shape and dtype
28
+ - branch function can be free function, nested function, lambda, class methods
29
+ - branch function can not have closure variables
30
+ - no inplace mutations on inputs or global variables
31
+
32
+
33
+ This example demonstrates using class method in cond().
34
+
35
+ NOTE: If the `pred` is test on a dim with batch size < 2, it will be specialized.
36
+ """
37
+
38
+ def __init__(self):
39
+ super().__init__()
40
+ self.subm = MySubModule()
41
+
42
+ def bar(self, x):
43
+ return x.sin()
44
+
45
+ def forward(self, x):
46
+ return cond(x.shape[0] <= 2, self.subm.forward, self.bar, [x])
llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/constrain_as_value_example.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from torch._export.db.case import export_case
4
+
5
+
6
+ @export_case(
7
+ example_inputs=(torch.tensor(4), torch.randn(5, 5)),
8
+ tags={
9
+ "torch.dynamic-value",
10
+ "torch.escape-hatch",
11
+ },
12
+ )
13
+ class ConstrainAsValueExample(torch.nn.Module):
14
+ """
15
+ If the value is not known at tracing time, you can provide hint so that we
16
+ can trace further. Please look at constrain_as_value and constrain_as_size APIs.
17
+ constrain_as_value is used for values that don't need to be used for constructing
18
+ tensor.
19
+ """
20
+
21
+ def __init__(self):
22
+ super().__init__()
23
+
24
+ def forward(self, x, y):
25
+ a = x.item()
26
+ torch._constrain_as_value(a, min=0, max=5)
27
+
28
+ if a < 6:
29
+ return y.sin()
30
+ return y.cos()
llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/dynamic_shape_constructor.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from torch._export.db.case import export_case
4
+
5
+
6
+ @export_case(
7
+ example_inputs=(torch.ones(3, 2),),
8
+ tags={"torch.dynamic-shape"},
9
+ )
10
+ class DynamicShapeConstructor(torch.nn.Module):
11
+ """
12
+ Tensor constructors should be captured with dynamic shape inputs rather
13
+ than being baked in with static shape.
14
+ """
15
+ def __init__(self):
16
+ super().__init__()
17
+
18
+ def forward(self, x):
19
+ return torch.ones(x.shape[0] * 2)
llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/dynamic_shape_slicing.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from torch._export.db.case import export_case
4
+
5
+
6
+ @export_case(
7
+ example_inputs=(torch.ones(3, 2),),
8
+ tags={"torch.dynamic-shape"},
9
+ )
10
+ class DynamicShapeSlicing(torch.nn.Module):
11
+ """
12
+ Slices with dynamic shape arguments should be captured into the graph
13
+ rather than being baked in.
14
+ """
15
+
16
+ def __init__(self):
17
+ super().__init__()
18
+
19
+ def forward(self, x):
20
+ return x[: x.shape[0] - 2, x.shape[1] - 1 :: 2]
llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/dynamic_shape_view.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from torch._export.db.case import export_case
4
+
5
+
6
+ @export_case(
7
+ example_inputs=(torch.ones(10, 10),),
8
+ tags={"torch.dynamic-shape"},
9
+ )
10
+ class DynamicShapeView(torch.nn.Module):
11
+ """
12
+ Dynamic shapes should be propagated to view arguments instead of being
13
+ baked into the exported graph.
14
+ """
15
+
16
+ def __init__(self):
17
+ super().__init__()
18
+
19
+ def forward(self, x):
20
+ new_x_shape = x.size()[:-1] + (2, 5)
21
+ x = x.view(*new_x_shape)
22
+ return x.permute(0, 2, 1)
llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/fn_with_kwargs.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from torch._export.db.case import export_case, ExportArgs, SupportLevel
4
+
5
+
6
+ @export_case(
7
+ example_inputs=ExportArgs(
8
+ torch.randn(4),
9
+ (torch.randn(4), torch.randn(4)),
10
+ *[torch.randn(4), torch.randn(4)],
11
+ mykw0=torch.randn(4),
12
+ input0=torch.randn(4), input1=torch.randn(4)
13
+ ),
14
+ tags={"python.data-structure"},
15
+ support_level=SupportLevel.SUPPORTED,
16
+ )
17
+ class FnWithKwargs(torch.nn.Module):
18
+ """
19
+ Keyword arguments are not supported at the moment.
20
+ """
21
+ def __init__(self):
22
+ super().__init__()
23
+
24
+ def forward(self, pos0, tuple0, *myargs, mykw0, **mykwargs):
25
+ out = pos0
26
+ for arg in tuple0:
27
+ out = out * arg
28
+ for arg in myargs:
29
+ out = out * arg
30
+ out = out * mykw0
31
+ out = out * mykwargs["input0"] * mykwargs["input1"]
32
+ return out
llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/list_contains.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from torch._export.db.case import export_case
4
+
5
+
6
+ @export_case(
7
+ example_inputs=(torch.ones(3, 2),),
8
+ tags={"torch.dynamic-shape", "python.data-structure", "python.assert"},
9
+ )
10
+ class ListContains(torch.nn.Module):
11
+ """
12
+ List containment relation can be checked on a dynamic shape or constants.
13
+ """
14
+ def __init__(self):
15
+ super().__init__()
16
+
17
+ def forward(self, x):
18
+ assert x.size(-1) in [6, 2]
19
+ assert x.size(0) not in [4, 5, 6]
20
+ assert "monkey" not in ["cow", "pig"]
21
+ return x + x
llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/model_attr_mutation.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from torch._export.db.case import export_case, SupportLevel
4
+
5
+
6
+ @export_case(
7
+ example_inputs=(torch.ones(3, 2),),
8
+ tags={"python.object-model"},
9
+ support_level=SupportLevel.NOT_SUPPORTED_YET,
10
+ )
11
+ class ModelAttrMutation(torch.nn.Module):
12
+ """
13
+ Attribute mutation is not supported.
14
+ """
15
+
16
+ def __init__(self):
17
+ super().__init__()
18
+ self.attr_list = [torch.ones(3, 2), torch.ones(3, 2)]
19
+
20
+ def recreate_list(self):
21
+ return [torch.zeros(3, 2), torch.zeros(3, 2)]
22
+
23
+ def forward(self, x):
24
+ self.attr_list = self.recreate_list()
25
+ return x.sum() + self.attr_list[0].sum()
llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/specialized_attribute.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from enum import Enum
2
+
3
+ import torch
4
+
5
+ from torch._export.db.case import export_case
6
+
7
+
8
+ class Animal(Enum):
9
+ COW = "moo"
10
+
11
+
12
+ @export_case(
13
+ example_inputs=(torch.ones(3, 2),),
14
+ )
15
+ class SpecializedAttribute(torch.nn.Module):
16
+ """
17
+ Model attributes are specialized.
18
+ """
19
+
20
+ def __init__(self):
21
+ super().__init__()
22
+ self.a = "moo"
23
+ self.b = 4
24
+
25
+ def forward(self, x):
26
+ if self.a == Animal.COW.value:
27
+ return x * x + self.b
28
+ else:
29
+ raise ValueError("bad")
llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/static_for_loop.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from torch._export.db.case import export_case
4
+
5
+
6
+ @export_case(
7
+ example_inputs=(torch.ones(3, 2),),
8
+ tags={"python.control-flow"},
9
+ )
10
+ class StaticForLoop(torch.nn.Module):
11
+ """
12
+ A for loop with constant number of iterations should be unrolled in the exported graph.
13
+ """
14
+
15
+ def __init__(self):
16
+ super().__init__()
17
+
18
+ def forward(self, x):
19
+ ret = []
20
+ for i in range(10): # constant
21
+ ret.append(i + x)
22
+ return ret
llmeval-env/lib/python3.10/site-packages/torch/_export/db/examples/torch_sym_min.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from torch._export.db.case import export_case, SupportLevel
4
+
5
+
6
+ @export_case(
7
+ example_inputs=(torch.ones(3, 2),),
8
+ tags={"torch.operator"},
9
+ support_level=SupportLevel.NOT_SUPPORTED_YET,
10
+ )
11
+ class TorchSymMin(torch.nn.Module):
12
+ """
13
+ torch.sym_min operator is not supported in export.
14
+ """
15
+
16
+ def forward(self, x):
17
+ return x.sum() + torch.sym_min(x.size(0), 100)
llmeval-env/lib/python3.10/site-packages/torch/_export/pass_infra/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/torch/_export/pass_infra/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (197 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/pass_infra/__pycache__/node_metadata.cpython-310.pyc ADDED
Binary file (1.49 kB). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/pass_infra/__pycache__/proxy_value.cpython-310.pyc ADDED
Binary file (1.75 kB). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/pass_infra/node_metadata.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Dict, Set
2
+
3
+
4
+ NodeMetadataValue = Any
5
+
6
+
7
+ PROTECTED_KEYS: Set[str] = {
8
+ "val",
9
+ "stack_trace",
10
+ "nn_module_stack",
11
+ "debug_handle",
12
+ "tensor_meta",
13
+ }
14
+
15
+
16
+ class NodeMetadata:
17
+ def __init__(self, data: Dict[str, Any]) -> None:
18
+ self.data: Dict[str, Any] = data.copy()
19
+
20
+ def __getitem__(self, key: str) -> NodeMetadataValue:
21
+ return self.data[key]
22
+
23
+ def __setitem__(self, key: str, value: NodeMetadataValue) -> NodeMetadataValue:
24
+ if key in PROTECTED_KEYS:
25
+ raise RuntimeError(f"Could not override node key: {key}")
26
+ self.data[key] = value
27
+
28
+ def __contains__(self, key: str) -> bool:
29
+ return key in self.data
30
+
31
+ def copy(self) -> "NodeMetadata":
32
+ return NodeMetadata(self.data.copy())
llmeval-env/lib/python3.10/site-packages/torch/_export/pass_infra/proxy_value.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pyre-strict
2
+ from typing import Union
3
+
4
+ import torch
5
+
6
+
7
+ class ProxyValue:
8
+ # pyre-ignore
9
+ def __init__(self, data, proxy: Union[torch.fx.Proxy, torch.fx.Node]):
10
+ # pyre-ignore
11
+ self.data = data
12
+ self.proxy_or_node = proxy
13
+
14
+ @property
15
+ def node(self) -> torch.fx.Node:
16
+ if isinstance(self.proxy_or_node, torch.fx.Node):
17
+ return self.proxy_or_node
18
+ assert isinstance(self.proxy_or_node, torch.fx.Proxy)
19
+ return self.proxy_or_node.node
20
+
21
+ @property
22
+ def proxy(self) -> torch.fx.Proxy:
23
+ if not isinstance(self.proxy_or_node, torch.fx.Proxy):
24
+ raise RuntimeError(
25
+ f"ProxyValue doesn't have attached Proxy object. Node: {self.proxy_or_node.format_node()}"
26
+ )
27
+ return self.proxy_or_node
28
+
29
+ def to_tensor(self) -> torch.Tensor:
30
+ assert isinstance(self.data, torch.Tensor)
31
+ return self.data
32
+
33
+ def is_tensor(self) -> bool:
34
+ return isinstance(self.data, torch.Tensor)
35
+
36
+ # pyre-ignore
37
+ def __iter__(self):
38
+ yield from self.data
39
+
40
+ def __bool__(self) -> bool:
41
+ return bool(self.data)
llmeval-env/lib/python3.10/site-packages/torch/_export/passes/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .replace_view_ops_with_view_copy_ops_pass import ReplaceViewOpsWithViewCopyOpsPass
llmeval-env/lib/python3.10/site-packages/torch/_export/passes/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (291 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/passes/__pycache__/add_runtime_assertions_for_constraints_pass.cpython-310.pyc ADDED
Binary file (6.13 kB). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/passes/__pycache__/collect_tracepoints_pass.cpython-310.pyc ADDED
Binary file (2.32 kB). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/passes/__pycache__/functionalize_side_effectful_ops_pass.cpython-310.pyc ADDED
Binary file (3.42 kB). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/passes/__pycache__/lift_constants_pass.cpython-310.pyc ADDED
Binary file (6.94 kB). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/passes/__pycache__/remove_runtime_assertions.cpython-310.pyc ADDED
Binary file (1.08 kB). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/passes/__pycache__/replace_set_grad_with_hop_pass.cpython-310.pyc ADDED
Binary file (4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/passes/__pycache__/replace_sym_size_ops_pass.cpython-310.pyc ADDED
Binary file (794 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/passes/__pycache__/replace_view_ops_with_view_copy_ops_pass.cpython-310.pyc ADDED
Binary file (2.47 kB). View file
 
llmeval-env/lib/python3.10/site-packages/torch/_export/passes/add_runtime_assertions_for_constraints_pass.py ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import operator
3
+ import traceback
4
+ from functools import partial
5
+ from typing import Callable, Dict, List, NamedTuple, Set
6
+
7
+ import sympy
8
+
9
+ import torch
10
+ import torch.fx
11
+ from torch._export.pass_base import _ExportPassBaseDeprecatedDoNotUse, ProxyValue, PassResult
12
+ from torch.utils._sympy.value_ranges import ValueRanges
13
+ from torch.fx.experimental.symbolic_shapes import free_unbacked_symbols
14
+
15
+
16
+ __all__ = ["InputDim"]
17
+
18
+
19
+ class InputDim(NamedTuple):
20
+ input_name: str
21
+ dim: int
22
+
23
+
24
+ def _convert_to_int(val):
25
+ # Convert simple sympy Integers into concrete int
26
+ if val == sympy.oo:
27
+ return math.inf
28
+ if val == -sympy.oo:
29
+ return -math.inf
30
+ if isinstance(val, sympy.Integer):
31
+ return int(val)
32
+ raise RuntimeError(
33
+ "Export constraints cannot be non-integer expressions"
34
+ )
35
+
36
+
37
+ def _convert_range_to_int(range: ValueRanges):
38
+ assert isinstance(range, ValueRanges)
39
+ min_val = _convert_to_int(range.lower)
40
+ max_val = _convert_to_int(range.upper)
41
+ return min_val, max_val
42
+
43
+
44
+ class _AddRuntimeAssertionsForInlineConstraintsPass(_ExportPassBaseDeprecatedDoNotUse):
45
+ def __init__(
46
+ self,
47
+ range_constraints: Dict[sympy.Symbol, ValueRanges],
48
+ ):
49
+ super().__init__()
50
+ self.range_constraints: Dict[sympy.Symbol, ValueRanges] = range_constraints
51
+ self._asserts_generated_unbacked_symbols: Set[sympy.Symbol] = set()
52
+ self.counter = 0
53
+
54
+ def _assert_range_constraint(self, proxy, lower, upper, assert_msg):
55
+ if lower > -math.inf:
56
+ self._insert_assert_async(operator.ge, proxy, lower, assert_msg)
57
+
58
+ if upper < math.inf:
59
+ self._insert_assert_async(operator.le, proxy, upper, assert_msg)
60
+
61
+ def _insert_assert_async(self, operator, lower, upper, assert_msg):
62
+ """
63
+ Inserts assert_async call_function nodes in the graph. This function is
64
+ called **during** the interpreter-based pass.
65
+ """
66
+ self.counter += 1
67
+ cmp = super().call_operator(operator, (lower, upper), {}, self._create_dummy_node_metadata())
68
+ cmp_tensor = super().call_operator(torch.ops.aten.scalar_tensor.default, (cmp,), {}, self._create_dummy_node_metadata())
69
+ super().call_operator(
70
+ torch.ops.aten._assert_async.msg,
71
+ (cmp_tensor, assert_msg),
72
+ {},
73
+ self._create_dummy_node_metadata(),
74
+ )
75
+
76
+ def call_operator(self, op, args, kwargs, meta) -> ProxyValue:
77
+ ret = super().call_operator(op, args, kwargs, meta)
78
+ if "val" not in meta:
79
+ return ret
80
+
81
+ val = meta["val"]
82
+
83
+ # In general, we may have to deal the case such as: ret[1].shape[0].
84
+ # We need first find out what symbols require assertion, then we need to follow the path
85
+ # from ret to the symbol, construct the proxies along the way and construct the messages
86
+ # piece-wise at the same time.
87
+ #
88
+ # We use post-order traversal to collect all the proxies callbacks needed, construct
89
+ # the error message callbacks, and at the top-level traversal tree we execute all the callbacks.
90
+ # We need the callbacks because, in order to call the function to create a proxy for shape[0], we
91
+ # need the proxy for shape, which further requires the proxy for ret[1], etc.
92
+ def add_assertions(val):
93
+ call_backs: List[Callable] = []
94
+ messages: List[str] = []
95
+ if isinstance(val, (torch.SymInt, torch.SymFloat, torch.SymBool)):
96
+ symbol = val.node.expr
97
+ if symbol in self.existing_inline_assertions:
98
+ return call_backs, messages
99
+ if isinstance(symbol, sympy.Symbol) and free_unbacked_symbols(symbol):
100
+ if symbol in self._asserts_generated_unbacked_symbols:
101
+ return call_backs, messages
102
+ # We only care about unbacked symints for these inline
103
+ # constraints, which are prefixed with 'u'
104
+ constraint = self.range_constraints[symbol]
105
+ min_val, max_val = _convert_range_to_int(constraint)
106
+ assert_msg = f" is outside of inline constraint [{min_val}, {max_val}]."
107
+ call_backs.append(
108
+ partial(self._assert_range_constraint, lower=min_val, upper=max_val)
109
+ )
110
+ messages.append(assert_msg)
111
+ self._asserts_generated_unbacked_symbols.add(symbol)
112
+
113
+ elif isinstance(val, torch.Tensor):
114
+ for i, sym in enumerate(val.shape):
115
+ cbs, msgs = add_assertions(sym)
116
+ for cb, msg in zip(cbs, msgs):
117
+ def sym_size_cb(proxy, assert_msg, dim):
118
+ dim_proxy = super(
119
+ _AddRuntimeAssertionsForInlineConstraintsPass,
120
+ self
121
+ ).call_operator(
122
+ torch.ops.aten.sym_size.int,
123
+ (proxy, dim),
124
+ {},
125
+ self._create_dummy_node_metadata(),
126
+ )
127
+ cb(proxy=dim_proxy, assert_msg=assert_msg)
128
+ call_backs.append(partial(sym_size_cb, dim=i))
129
+ messages.append(f".shape[{i}]" + msg)
130
+ return call_backs, messages
131
+
132
+ callbacks, messages = add_assertions(val)
133
+ for cb, msg in zip(callbacks, messages):
134
+ cb(proxy=ret, assert_msg=f"{ret.node}" + msg)
135
+ return ret
136
+
137
+ def call(self, graph_module):
138
+ self.existing_inline_assertions = _get_existing_inline_assertions(
139
+ graph_module, self.range_constraints
140
+ )
141
+
142
+ # Add runtime asserts for inline constraints
143
+ val = super().call(graph_module)
144
+
145
+ # Sometimes this pass would return a wrong graph where we have mismatched
146
+ # node names in signature. Before we fix it, let's just skip it.
147
+ if self.counter == 0 and type(self) is _AddRuntimeAssertionsForInlineConstraintsPass:
148
+ return PassResult(graph_module, False)
149
+
150
+ # Populate the stack trace with dummy vals to respect IR
151
+ for node in val.graph_module.graph.nodes:
152
+ if not node.meta.get("stack_trace", None):
153
+ node.meta["stack_trace"] = "".join(traceback.format_stack(limit=1))
154
+
155
+ return PassResult(val.graph_module, val.modified)
156
+
157
+
158
+ def _get_existing_inline_assertions(
159
+ graph_module: torch.fx.GraphModule,
160
+ range_constraints: Dict[sympy.Symbol, ValueRanges],
161
+ ) -> Dict[sympy.Symbol, ValueRanges]:
162
+ existing_inline_assertions: Dict[sympy.Symbol, ValueRanges] = {}
163
+
164
+ for module in graph_module.modules():
165
+ if not isinstance(module, torch.fx.GraphModule):
166
+ continue
167
+
168
+ # Find all the existing inline assertions. They will look something like:
169
+ # %_local_scalar_dense = call_function[target=torch.ops.aten._local_scalar_dense.default](args = (%arg1_1,), kwargs = {})
170
+ # %ge = call_function[target=operator.ge](args = (%_local_scalar_dense, 0), kwargs = {})
171
+ # %scalar_tensor = call_function[target=torch.ops.aten.scalar_tensor.default](args = (%ge,), kwargs = {})
172
+ # %_assert_async = call_function[target=torch.ops.aten._assert_async.msg](args = (%scalar_tensor, "..."), kwargs = {})
173
+ for node in module.graph.nodes:
174
+ if node.target != torch.ops.aten._assert_async.msg:
175
+ continue
176
+
177
+ scalar_tensor_arg = node.args[0]
178
+ if not (
179
+ scalar_tensor_arg.op == "call_function" and
180
+ scalar_tensor_arg.target == torch.ops.aten.scalar_tensor.default
181
+ ):
182
+ continue
183
+
184
+ compare_arg = scalar_tensor_arg.args[0]
185
+ if not (
186
+ compare_arg.op == "call_function" and
187
+ compare_arg.target in (operator.le, operator.ge) and
188
+ len(compare_arg.args) == 2
189
+ ):
190
+ continue
191
+
192
+ compare_op = compare_arg.target
193
+ maybe_symint_arg, compare_int = compare_arg.args
194
+
195
+ # x >= 0 will sometimes be canonicalized to -x <= 0, so in some
196
+ # cases the operation before the comparison is to multiply by -1. We
197
+ # can undo the canonicalization here
198
+ if (
199
+ maybe_symint_arg.op == "call_function" and
200
+ maybe_symint_arg.target == operator.mul and
201
+ maybe_symint_arg.args[0] == -1
202
+ ):
203
+ maybe_symint_arg = maybe_symint_arg.args[1]
204
+ compare_op = operator.ge
205
+ compare_int = -1 * compare_int
206
+
207
+ if not (
208
+ "val" in maybe_symint_arg.meta and
209
+ isinstance(maybe_symint_arg.meta["val"], torch.SymInt)
210
+ ):
211
+ continue
212
+
213
+ symint = maybe_symint_arg.meta["val"].node.expr
214
+ if not isinstance(symint, sympy.Symbol):
215
+ continue
216
+
217
+ if symint not in range_constraints:
218
+ raise RuntimeError(f"Unable to find symint {symint} in {range_constraints}")
219
+
220
+ found_range = existing_inline_assertions.get(symint, ValueRanges(-math.inf, math.inf))
221
+
222
+ if compare_arg.target == operator.le:
223
+ existing_inline_assertions[symint] = ValueRanges(
224
+ lower=found_range.lower, upper=compare_int
225
+ )
226
+ elif compare_arg.target == operator.ge:
227
+ existing_inline_assertions[symint] = ValueRanges(
228
+ lower=compare_int, upper=found_range.upper
229
+ )
230
+
231
+ return existing_inline_assertions
llmeval-env/lib/python3.10/site-packages/torch/_export/passes/collect_tracepoints_pass.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import operator
2
+
3
+ import torch
4
+
5
+ from torch.export.exported_program import ConstantArgument, TensorArgument
6
+ from torch.fx.passes.infra.pass_base import PassBase, PassResult
7
+
8
+ __all__ = ["CollectTracepointsPass"]
9
+
10
+
11
+ class CollectTracepointsPass(PassBase):
12
+ """
13
+ Performs constant folding and constant propagation.
14
+ """
15
+
16
+ def __init__(self, specs, sig) -> None:
17
+ super().__init__()
18
+ self.specs = specs
19
+ self.sig = sig
20
+
21
+ def call(self, gm):
22
+ def get_arg_spec(arg):
23
+ if isinstance(arg, torch.fx.Node):
24
+ if isinstance(arg.meta.get("val"), torch.Tensor):
25
+ return TensorArgument(name=arg.name)
26
+ else:
27
+ raise AssertionError(
28
+ "Symint input is not implemented yet for submodule call signature."
29
+ )
30
+ else:
31
+ return ConstantArgument(value=arg)
32
+
33
+ for module in gm.modules():
34
+ if not isinstance(module, torch.fx.GraphModule):
35
+ continue
36
+ for node in module.graph.nodes:
37
+ if node.op != "call_function":
38
+ continue
39
+ if node.target == torch.ops.higher_order._export_tracepoint:
40
+ for i, arg in enumerate(node.args):
41
+ kind = node.kwargs["kind"]
42
+ if kind == "module_call_inputs":
43
+ self.specs[node.kwargs["path"]].inputs.append(
44
+ get_arg_spec(arg)
45
+ )
46
+ elif kind == "module_call_outputs":
47
+ self.specs[node.kwargs["path"]].outputs.append(
48
+ get_arg_spec(arg)
49
+ )
50
+ else:
51
+ raise AssertionError(f"Unknown tracepoint kind: {kind}")
52
+ if isinstance(arg, torch.fx.Node):
53
+ for user in node.users:
54
+ assert user.op == "call_function"
55
+ assert user.target == operator.getitem
56
+ assert isinstance(user.args[1], int)
57
+ if user.args[1] == i:
58
+ user.replace_all_uses_with(arg)
59
+ self.sig.replace_all_uses(user.name, arg.name)
60
+ break
61
+ users = list(node.users)
62
+ for user in users:
63
+ assert len(user.users) == 0
64
+ gm.graph.erase_node(user)
65
+ gm.graph.erase_node(node)
66
+ return PassResult(gm, True)
llmeval-env/lib/python3.10/site-packages/torch/_export/passes/functionalize_side_effectful_ops_pass.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ from typing import Dict, Optional, Tuple, List
3
+
4
+ import torch
5
+ from torch._export.pass_base import _ExportPassBaseDeprecatedDoNotUse, PassResult, Argument
6
+ from torch._export.pass_infra.node_metadata import NodeMetadata
7
+ from torch._export.pass_infra.proxy_value import ProxyValue
8
+ from torch._ops import OpOverload
9
+
10
+ aten = torch.ops.aten
11
+
12
+ _NON_FUNCTIONAL_TO_FUNCTIONAL_SIDE_EFFECTFUL_FUNCS: Dict[OpOverload, OpOverload] = {
13
+ aten.sym_constrain_range.default: aten._functional_sym_constrain_range,
14
+ aten._assert_async.msg: aten._functional_assert_async.msg,
15
+ }
16
+
17
+
18
+ class _FunctionalizeSideEffectfulOpsPass(_ExportPassBaseDeprecatedDoNotUse):
19
+ """
20
+ Functionalize ops with side effect in graph module by replacing the op with
21
+ functional version of it. A new dependency token (`dep_token`) will be
22
+ created and propagated through functional ops to output.
23
+ For example:
24
+ ```
25
+ def f(x):
26
+ sym_constrain_range(x.shape[0], min=1, max=3)
27
+ return x.add(3)
28
+ ```
29
+ Will be transformed to:
30
+ ```
31
+ def f(x):
32
+ dep_token0 = _make_dep_token()
33
+ dep_token1 = _functional_sym_constrain_range(
34
+ x.shape[0], min=1, max=3, dep_token=dep_token0
35
+ )
36
+
37
+ return x.add(3), dep_token1
38
+ ```
39
+ """
40
+
41
+ def __init__(self) -> None:
42
+ super().__init__()
43
+ self._dep_token: Optional[ProxyValue] = None
44
+ self._next_dep_token_index: Optional[int] = None
45
+
46
+ def call(self, graph_module: torch.fx.GraphModule) -> PassResult:
47
+ # Early return if no non-functional assertions.
48
+ if not any(
49
+ n.target in _NON_FUNCTIONAL_TO_FUNCTIONAL_SIDE_EFFECTFUL_FUNCS
50
+ for n in graph_module.graph.nodes
51
+ ):
52
+ return PassResult(graph_module=graph_module, modified=False)
53
+
54
+ gm = copy.deepcopy(graph_module)
55
+ self._dep_token = None
56
+ self._next_dep_token_index = None
57
+ return super().call(gm)
58
+
59
+ def call_operator(
60
+ self,
61
+ op: OpOverload,
62
+ args: Tuple[Argument, ...],
63
+ kwargs: Dict[str, Argument],
64
+ meta: NodeMetadata,
65
+ ) -> ProxyValue:
66
+ if op not in _NON_FUNCTIONAL_TO_FUNCTIONAL_SIDE_EFFECTFUL_FUNCS:
67
+ return super().call_operator(op, args, kwargs, meta)
68
+
69
+ if self._dep_token is None:
70
+ self._dep_token = super().call_operator(
71
+ aten._make_dep_token,
72
+ args=(),
73
+ kwargs={},
74
+ meta=self._create_dummy_node_metadata(),
75
+ )
76
+ self._dep_token.node.name = "dep_token0"
77
+ self._next_dep_token_index = 1
78
+
79
+ self._dep_token = super().call_operator(
80
+ _NON_FUNCTIONAL_TO_FUNCTIONAL_SIDE_EFFECTFUL_FUNCS[op],
81
+ args=args,
82
+ kwargs={**kwargs, "dep_token": self._dep_token},
83
+ meta=meta,
84
+ )
85
+ assert self._next_dep_token_index is not None
86
+ self._dep_token.node.name = f"dep_token{self._next_dep_token_index}"
87
+ self._next_dep_token_index += 1
88
+
89
+ return self._dep_token
90
+
91
+ def output(self, results: List[Argument], meta: NodeMetadata) -> ProxyValue:
92
+ assert self._dep_token is not None
93
+
94
+ return super().output(results=(*results, self._dep_token), meta=meta) # type: ignore[arg-type]
llmeval-env/lib/python3.10/site-packages/torch/_export/passes/lift_constants_pass.py ADDED
@@ -0,0 +1,248 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import collections
2
+ from typing import Any, Dict, Union
3
+
4
+ import torch
5
+ from torch._export.verifier import SpecViolationError
6
+ from torch._guards import detect_fake_mode
7
+ from torch.export.exported_program import (
8
+ ArgumentSpec,
9
+ CustomObjArgument,
10
+ ExportGraphSignature,
11
+ InputKind,
12
+ InputSpec,
13
+ TensorArgument,
14
+ )
15
+
16
+
17
+ class ConstantAttrMap(collections.abc.MutableMapping):
18
+ """A mapping class that understands how to use module constants (tensors and
19
+ ScriptObjects) as keys. We store tensors normally, but ScriptObjects are
20
+ stored by hash, because different torch.ScriptObjects can point to the same
21
+ underlying value (but we guarantee that they will `hash()` to the same value
22
+ if that's the case).
23
+ """
24
+
25
+ def __init__(self):
26
+ # Underlying dict that we use to implement this mapping.
27
+ self._constant_attrs: Dict[Union[int, torch.Tensor], Any] = {}
28
+ # Map from the hash(ScriptObject) to the ScriptObject itself. Used for
29
+ # APIs like `__iter__` that should look like they're returning the
30
+ # original ScriptObjects.
31
+ self._script_object_map: Dict[int, torch.ScriptObject] = {}
32
+
33
+ def __getitem__(self, key: Union[torch.Tensor, torch.ScriptObject]) -> Any:
34
+ real_key = hash(key) if isinstance(key, torch.ScriptObject) else key
35
+ assert isinstance(real_key, (int, torch.Tensor))
36
+ return self._constant_attrs[real_key]
37
+
38
+ def __setitem__(
39
+ self, key: Union[torch.Tensor, torch.ScriptObject], value: Any
40
+ ) -> None:
41
+ if isinstance(key, torch.ScriptObject):
42
+ self._constant_attrs[hash(key)] = value
43
+ self._script_object_map[hash(key)] = key
44
+ elif isinstance(key, torch.Tensor):
45
+ self._constant_attrs[key] = value
46
+ else:
47
+ raise TypeError(
48
+ f"Expected key to be a tensor or ScriptObject, got {type(key)}"
49
+ )
50
+
51
+ def __delitem__(self, key):
52
+ real_key = hash(key) if isinstance(key, torch.ScriptObject) else key
53
+
54
+ del self._constant_attrs[real_key]
55
+
56
+ def __iter__(self):
57
+ for key in self._constant_attrs:
58
+ if isinstance(key, int):
59
+ yield self._script_object_map[key]
60
+ else:
61
+ yield key
62
+
63
+ def __len__(self):
64
+ return len(self._constant_attrs)
65
+
66
+ def __contains__(self, key: object) -> bool:
67
+ real_key = hash(key) if isinstance(key, torch.ScriptObject) else key
68
+ return real_key in self._constant_attrs
69
+
70
+
71
+ def get_constant_fqn(node: torch.fx.Node, constant_name: str) -> str:
72
+ # The FQN of the constant tensor in the state dict should
73
+ # correspond to the module where the constant tensor was
74
+ # originally used.
75
+ parent_fqn = list(node.meta["nn_module_stack"].values())[-1][0]
76
+ if len(parent_fqn) > 0:
77
+ return f"{parent_fqn}.{constant_name}"
78
+ else:
79
+ return constant_name
80
+
81
+
82
+ def lift_constants_pass(
83
+ gm: torch.fx.GraphModule,
84
+ graph_signature: ExportGraphSignature,
85
+ constant_attrs: ConstantAttrMap,
86
+ ) -> Dict[str, Union[torch.Tensor, torch._C.ScriptObject]]:
87
+ """
88
+ Takes a graph module, graph signature, and modifies them implace to lift any
89
+ constants (tensors or custom classes) as inputs to the graph. Returns a
90
+ dictionary of names to constants.
91
+
92
+ Arguments:
93
+ gm (torch.fx.GraphModule): The graph module containing the graph and constants to lift.
94
+ graph_signature (ExportGraphSignature): This graph signature will be
95
+ mutated to add additional CONSTANT_TENSOR and CUSTOM_OBJ inputs.
96
+ constant_attrs (ConstantAttr): A mapping from a constant value to its
97
+ fully-qualified path in `gm`. This is used to maintain consistent
98
+ location of constants between the original module and the exported
99
+ version.
100
+
101
+ Returns:
102
+ A dictionary of fqn => constant value.
103
+ """
104
+ all_constants: Dict[str, Union[torch.Tensor, torch._C.ScriptObject]] = {}
105
+
106
+ inputs = graph_signature.input_specs
107
+ num_custom_obj = sum(
108
+ input_specs.kind == InputKind.CUSTOM_OBJ for input_specs in inputs
109
+ )
110
+ num_tensor_constants = sum(
111
+ input_specs.kind == InputKind.CONSTANT_TENSOR for input_specs in inputs
112
+ )
113
+
114
+ fake_mode = detect_fake_mode(
115
+ tuple(node.meta["val"] for node in gm.graph.nodes if node.op == "placeholder")
116
+ )
117
+
118
+ first_user_input_loc, first_user_input = 0, None
119
+ for node in gm.graph.nodes:
120
+ if node.op == "placeholder" and node.name in graph_signature.user_inputs:
121
+ first_user_input = node
122
+ break
123
+ first_user_input_loc += 1
124
+
125
+ lifted_objs = ConstantAttrMap()
126
+ for node in gm.graph.nodes:
127
+ if node.op == "get_attr":
128
+ constant_val = getattr(gm, node.target)
129
+ if constant_val in lifted_objs:
130
+ # We already lifted this constant elsewhere. Just rewrite uses
131
+ # of this get_attr to point to the already-existing placeholder
132
+ # node.
133
+ const_placeholder_node = lifted_objs[constant_val]
134
+ node.replace_all_uses_with(const_placeholder_node)
135
+ gm.graph.erase_node(node)
136
+ continue
137
+
138
+ # For ScriptObject and Tensor constants:
139
+ # First check if the constant was an attribute on some module by
140
+ # consulting `constant_attrs` map. If it is, use the fqn that keeps
141
+ # its location consistent with the eager module.
142
+ #
143
+ # If it's not in the `constant_attrs` map, that means it's an inline
144
+ # constant (e.g. x + torch.tensor(0)), and thus did not have a
145
+ # specific location in the eager module. In that case, just generate
146
+ # some name and attach it to the module in which it was used.
147
+ if isinstance(constant_val, torch.ScriptObject):
148
+ constant_kind = InputKind.CUSTOM_OBJ
149
+ constant_fqn = constant_attrs.get(constant_val)
150
+ if constant_fqn is not None:
151
+ _, _, constant_name = constant_fqn.rpartition(".")
152
+ else:
153
+ constant_name = f"_lifted_custom_obj{num_custom_obj}"
154
+ constant_fqn = get_constant_fqn(node, constant_name)
155
+ num_custom_obj += 1
156
+ elif isinstance(constant_val, torch.Tensor):
157
+ constant_kind = InputKind.CONSTANT_TENSOR
158
+ constant_fqn = constant_attrs.get(constant_val)
159
+ if constant_fqn is not None:
160
+ _, _, constant_name = constant_fqn.rpartition(".")
161
+ else:
162
+ constant_name = f"_lifted_tensor_constant{num_tensor_constants}"
163
+ constant_fqn = get_constant_fqn(node, constant_name)
164
+ num_tensor_constants += 1
165
+ elif isinstance(constant_val, torch.fx.GraphModule):
166
+ continue
167
+ elif "LoweredBackendModule" in type(constant_val).__name__:
168
+ continue
169
+ else:
170
+ raise SpecViolationError(
171
+ f"getattr node {node} referencing unsupported type {type(constant_val)}"
172
+ )
173
+
174
+ with gm.graph.inserting_before(first_user_input):
175
+ # Insert the constant node before the first user input
176
+ const_placeholder_node = gm.graph.placeholder(constant_name)
177
+ # match target name with its node name in case there is name collision
178
+ # and suffix is added to node name in fx
179
+ const_placeholder_node.target = const_placeholder_node.name
180
+
181
+ for k, v in node.meta.items():
182
+ const_placeholder_node.meta[k] = v
183
+
184
+ input_spec_arg: ArgumentSpec
185
+ if isinstance(constant_val, torch.Tensor):
186
+ if fake_mode is not None:
187
+ const_placeholder_node.meta["val"] = fake_mode.from_tensor(
188
+ constant_val, static_shapes=True
189
+ )
190
+ const_placeholder_node.meta["val"].constant = constant_val
191
+ else:
192
+ const_placeholder_node.meta["val"] = constant_val
193
+ input_spec_arg = TensorArgument(name=const_placeholder_node.name)
194
+ elif isinstance(constant_val, torch._C.ScriptObject):
195
+ class_fqn = constant_val._type().qualified_name() # type: ignore[attr-defined]
196
+ const_placeholder_node.meta["val"] = CustomObjArgument(
197
+ constant_fqn, class_fqn
198
+ )
199
+ input_spec_arg = CustomObjArgument(
200
+ name=const_placeholder_node.name, class_fqn=class_fqn
201
+ )
202
+ else:
203
+ raise SpecViolationError(
204
+ f"tried to lift unsupported type {type(constant_val)} from node {node.format_node()}"
205
+ )
206
+
207
+ lifted_objs[constant_val] = const_placeholder_node
208
+ node.replace_all_uses_with(const_placeholder_node)
209
+ gm.graph.erase_node(node)
210
+
211
+ # Add the constant as a buffer to the graph signature
212
+ graph_signature.input_specs.insert(
213
+ first_user_input_loc,
214
+ InputSpec(
215
+ kind=constant_kind,
216
+ arg=input_spec_arg,
217
+ target=constant_fqn,
218
+ ),
219
+ )
220
+ all_constants[constant_fqn] = constant_val
221
+ first_user_input_loc += 1
222
+
223
+ return all_constants
224
+
225
+
226
+ def rewrite_script_object_meta(
227
+ gm: torch.fx.GraphModule,
228
+ ) -> Dict[str, Union[torch.Tensor, torch.ScriptObject]]:
229
+ """When tracing, we produce a graph with an actual ScriptObject in the
230
+ meta["val"]. Eventually we want to change this behavior, when FakeMode infra
231
+ for ScriptObjects lands.
232
+
233
+ For now, we rewrie meta["val"] to be a placeholder CustomObjArgument
234
+ """
235
+ constants: Dict[str, Union[torch.Tensor, torch._C.ScriptObject]] = {}
236
+ for node in gm.graph.nodes:
237
+ if "val" not in node.meta or not isinstance(
238
+ node.meta["val"], torch.ScriptObject
239
+ ):
240
+ continue
241
+
242
+ old_meta = node.meta["val"]
243
+ class_fqn = old_meta._type().qualified_name() # type: ignore[attr-defined]
244
+ new_meta = CustomObjArgument(node.name, class_fqn)
245
+ constants[node.name] = old_meta
246
+ node.meta["val"] = new_meta
247
+
248
+ return constants
llmeval-env/lib/python3.10/site-packages/torch/_export/passes/remove_runtime_assertions.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.fx.passes.infra.pass_base import PassBase, PassResult
3
+
4
+
5
+ class _RemoveRuntimeAssertionsPass(PassBase):
6
+ """
7
+ Remove runtime assertions inserted by the
8
+ _AddRuntimeAssertionsForInlineConstraintsPass.
9
+ """
10
+
11
+ def call(self, graph_module) -> PassResult:
12
+ modified = False
13
+ for module in graph_module.modules():
14
+ if not isinstance(module, torch.fx.GraphModule):
15
+ continue
16
+ for node in module.graph.nodes:
17
+ if node.target == torch.ops.aten._assert_async.msg:
18
+ assert_async_node = node
19
+ if len(assert_async_node.users) > 0:
20
+ continue
21
+ module.graph.erase_node(assert_async_node)
22
+ # the upstream scalar_tensor <- {le, ge} <- sym_size
23
+ # linear chain of nodes of nodes is removed by the
24
+ # downstream dead code elimination
25
+ modified = True
26
+ return PassResult(graph_module, modified)
llmeval-env/lib/python3.10/site-packages/torch/_export/passes/replace_set_grad_with_hop_pass.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch._higher_order_ops.wrap import wrap_with_set_grad_enabled
3
+
4
+ from ..utils import (
5
+ node_inline_,
6
+ node_replace_,
7
+ nodes_filter,
8
+ nodes_first,
9
+ nodes_map,
10
+ sequential_split,
11
+ )
12
+
13
+
14
+ def _is_set_grad_enabled_node(node: torch.fx.Node):
15
+ return (
16
+ node
17
+ and node.op == "call_function"
18
+ and node.target == torch._C._set_grad_enabled
19
+ )
20
+
21
+
22
+ def _is_set_grad_enabled_sub_mod(node: torch.fx.Node, omit_if_same_with_ambient=False):
23
+ if node.op == "call_module":
24
+ assert isinstance(node.target, str)
25
+ subgm = getattr(node.graph.owning_module, node.target)
26
+ first_non_ph = nodes_first(
27
+ subgm.graph.nodes, lambda node: node.op != "placeholder"
28
+ )
29
+ if (
30
+ first_non_ph
31
+ and first_non_ph.op == "call_function"
32
+ and first_non_ph.target == torch._C._set_grad_enabled
33
+ ):
34
+ return (
35
+ first_non_ph.args[0] != torch.is_grad_enabled()
36
+ if omit_if_same_with_ambient
37
+ else True
38
+ )
39
+ return False
40
+
41
+
42
+ def _replace_with_hop(node: torch.fx.Node):
43
+ assert node.op == "call_module"
44
+ graph: torch.fx.Graph = node.graph
45
+ gm: torch.fx.GraphModule = graph.owning_module
46
+ assert isinstance(node.target, str)
47
+ sub_gm = getattr(gm, node.target)
48
+ sub_graph = sub_gm.graph
49
+ set_grad_nodes = nodes_filter(sub_graph.nodes, _is_set_grad_enabled_node)
50
+ if len(set_grad_nodes) > 0:
51
+ assert len(set_grad_nodes) == 1
52
+ set_grad_node = set_grad_nodes[0]
53
+ enable_grad_val = set_grad_node.args[0]
54
+ with graph.inserting_before(node):
55
+ get_attr_node = graph.get_attr(node.target)
56
+ output_node = next(iter(reversed(sub_gm.graph.nodes)), None)
57
+ if output_node is not None:
58
+ assert len(output_node.args) == 1
59
+ output_args = output_node.args[0]
60
+ if isinstance(output_args, (tuple, list)):
61
+ call_func_node = graph.call_function(
62
+ wrap_with_set_grad_enabled,
63
+ (enable_grad_val, get_attr_node, *node.args),
64
+ {},
65
+ )
66
+ # Create the metadata
67
+ call_func_node.meta["val"] = tuple(
68
+ arg.meta["val"] for arg in output_args
69
+ )
70
+ node_replace_(node, call_func_node, delete_old=True)
71
+
72
+ # Rename the name of getitem nodes to the actual name of its contents
73
+ # for passing verifier and better readability, also propagate metadata
74
+ for get_item_node in call_func_node.users.keys():
75
+ idx: int = get_item_node.args[1]
76
+ output_node = output_args[idx]
77
+ get_item_node._rename(output_node.name)
78
+ get_item_node.meta = output_node.meta
79
+ pass
80
+
81
+ elif isinstance(output_args, torch.fx.Node):
82
+ call_func_node = graph.create_node(
83
+ "call_function",
84
+ wrap_with_set_grad_enabled,
85
+ (enable_grad_val, get_attr_node, *node.args),
86
+ {},
87
+ output_args.name,
88
+ )
89
+ call_func_node.meta = output_args.meta
90
+ node_replace_(node, call_func_node, delete_old=True)
91
+ else:
92
+ raise NotImplementedError(
93
+ f"repalce_set_grad_with_hop_pass doesnt' support output type {type(output_args)}"
94
+ )
95
+ else:
96
+ raise NotImplementedError(
97
+ "Cannot replace a call_module with a hop if it has no output. This module will gets DCEed."
98
+ )
99
+ sub_graph.erase_node(set_grad_node)
100
+
101
+
102
+ def _remove_set_grad_and_inline(node: torch.fx.Node):
103
+ assert node.op == "call_module"
104
+ graph: torch.fx.Graph = node.graph
105
+ gm: torch.fx.GraphModule = graph.owning_module
106
+ assert isinstance(node.target, str)
107
+ sub_gm = getattr(gm, node.target)
108
+ sub_graph = sub_gm.graph
109
+ nodes_map(
110
+ sub_graph.nodes,
111
+ lambda n: sub_graph.erase_node(n) if _is_set_grad_enabled_node(n) else n,
112
+ )
113
+ node_inline_(node)
114
+
115
+
116
+ def replace_set_grad_with_hop_pass(gm: torch.fx.GraphModule):
117
+ # If there is no set_grad_enabled node, return the original graph module
118
+ need_replacing = False
119
+ for node in gm.graph.nodes:
120
+ if _is_set_grad_enabled_node(node):
121
+ need_replacing = True
122
+
123
+ if not need_replacing:
124
+ return gm
125
+
126
+ new_gm = sequential_split(gm, _is_set_grad_enabled_node)
127
+
128
+ def _maybe_inline_or_replace_with_hop(node: torch.fx.Node):
129
+ if _is_set_grad_enabled_sub_mod(node, omit_if_same_with_ambient=True):
130
+ _replace_with_hop(node)
131
+ else:
132
+ _remove_set_grad_and_inline(node)
133
+
134
+ nodes_map(
135
+ list(new_gm.graph.nodes),
136
+ lambda node: _maybe_inline_or_replace_with_hop(node)
137
+ if node.op == "call_module"
138
+ else node,
139
+ )
140
+ new_gm.graph.lint()
141
+ return new_gm
llmeval-env/lib/python3.10/site-packages/torch/_export/passes/replace_sym_size_ops_pass.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict
2
+
3
+ import torch
4
+
5
+ replacements: Dict[torch._ops.OpOverloadPacket, torch._ops.OpOverload] = {
6
+ torch.ops.aten.sym_size: torch.ops.aten.sym_size.int,
7
+ torch.ops.aten.sym_stride: torch.ops.aten.sym_stride.int,
8
+ torch.ops.aten.sym_numel: torch.ops.aten.sym_numel.default,
9
+ }
10
+
11
+
12
+ def _replace_sym_size_ops_pass(gm: torch.fx.GraphModule):
13
+ for module in gm.modules():
14
+ if not isinstance(module, torch.fx.GraphModule):
15
+ continue
16
+ for node in module.graph.nodes:
17
+ if node.target in replacements:
18
+ node.target = replacements[node.target]
llmeval-env/lib/python3.10/site-packages/torch/_export/passes/replace_view_ops_with_view_copy_ops_pass.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, Optional, Set
2
+
3
+ import torch
4
+ from torch._ops import OpOverload, OpOverloadPacket, HigherOrderOperator
5
+ from torch._export.error import InternalError
6
+ from torch._export.pass_base import _ExportPassBaseDeprecatedDoNotUse
7
+
8
+
9
+ __all__ = ["ReplaceViewOpsWithViewCopyOpsPass"]
10
+
11
+
12
+ _NON_FUNCTIONAL_OPS_TO_FUNCTIONAL_OPS: Dict[OpOverload, OpOverload] = {
13
+ torch.ops.aten._unsafe_view.default: torch.ops.aten.view_copy.default,
14
+ }
15
+
16
+ # TODO (tmanlaibaatar) remove this after https://github.com/pytorch/pytorch/pull/100749
17
+ _BLACK_LISTED_OPS: Set[OpOverloadPacket] = {
18
+ torch.ops.aten.sym_size,
19
+ torch.ops.aten.sym_stride,
20
+ torch.ops.aten.sym_numel,
21
+ }
22
+
23
+ def is_view_op(schema: torch._C.FunctionSchema) -> bool:
24
+ if len(schema.arguments) == 0:
25
+ return False
26
+ alias_info = schema.arguments[0].alias_info
27
+ return (alias_info is not None) and (not alias_info.is_write)
28
+
29
+
30
+ def get_view_copy_of_view_op(schema: torch._C.FunctionSchema) -> Optional[OpOverload]:
31
+ if is_view_op(schema) and schema.name.startswith("aten::"):
32
+ view_op_name = schema.name.split("::")[1]
33
+ view_op_overload = (
34
+ schema.overload_name
35
+ if schema.overload_name != ""
36
+ else "default"
37
+ )
38
+ view_copy_op_name = view_op_name + "_copy"
39
+ if not hasattr(torch.ops.aten, view_copy_op_name):
40
+ raise InternalError(f"{schema.name} is missing a view_copy variant")
41
+
42
+ view_copy_op_overload_packet = getattr(torch.ops.aten, view_copy_op_name)
43
+
44
+ if not hasattr(view_copy_op_overload_packet, view_op_overload):
45
+ raise InternalError(f"{schema.name} is missing a view_copy variant")
46
+
47
+ return getattr(view_copy_op_overload_packet, view_op_overload)
48
+
49
+ return None
50
+
51
+
52
+ class ReplaceViewOpsWithViewCopyOpsPass(_ExportPassBaseDeprecatedDoNotUse):
53
+ """
54
+ Our backend expects pure functional operators. For efficiency
55
+ purposes, we keep view ops around while functionalizing the exported
56
+ program. This pass replaces view ops with view copy ops for backends that
57
+ need AOT memory planning.
58
+ """
59
+ def call_operator(self, op, args, kwargs, meta):
60
+ if op in _NON_FUNCTIONAL_OPS_TO_FUNCTIONAL_OPS:
61
+ return super().call_operator(
62
+ (_NON_FUNCTIONAL_OPS_TO_FUNCTIONAL_OPS[op]), args, kwargs, meta
63
+ )
64
+
65
+ if op in _BLACK_LISTED_OPS or isinstance(op, HigherOrderOperator):
66
+ return super().call_operator(op, args, kwargs, meta)
67
+
68
+ if view_copy_op := get_view_copy_of_view_op(op._schema):
69
+ return super().call_operator(view_copy_op, args, kwargs, meta)
70
+
71
+ return super().call_operator(op, args, kwargs, meta)
llmeval-env/lib/python3.10/site-packages/torch/_functorch/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ # All rights reserved.
3
+ #
4
+ # This source code is licensed under the BSD-style license found in the
5
+ # LICENSE file in the root directory of this source tree.