`."
+ ) from e
+ except RepositoryNotFoundError as e:
+ logger.error(e)
+ raise EnvironmentError(f"{path_or_repo} is not a local folder or a valid repository name on 'https://hf.co'.")
+ except RevisionNotFoundError as e:
+ logger.error(e)
+ raise EnvironmentError(
+ f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for this "
+ f"model name. Check the model page at 'https://huggingface.co/{path_or_repo}' for available revisions."
+ )
+ except requests.HTTPError:
+ # We return false for EntryNotFoundError (logical) as well as any connection error.
+ return False
+
+
+class PushToHubMixin:
+ """
+ A Mixin containing the functionality to push a model or tokenizer to the hub.
+ """
+
+ def _create_repo(
+ self,
+ repo_id: str,
+ private: Optional[bool] = None,
+ token: Optional[Union[bool, str]] = None,
+ repo_url: Optional[str] = None,
+ organization: Optional[str] = None,
+ ) -> str:
+ """
+ Create the repo if needed, cleans up repo_id with deprecated kwargs `repo_url` and `organization`, retrieves
+ the token.
+ """
+ if repo_url is not None:
+ warnings.warn(
+ "The `repo_url` argument is deprecated and will be removed in v5 of Transformers. Use `repo_id` "
+ "instead."
+ )
+ if repo_id is not None:
+ raise ValueError(
+ "`repo_id` and `repo_url` are both specified. Please set only the argument `repo_id`."
+ )
+ repo_id = repo_url.replace(f"{HUGGINGFACE_CO_RESOLVE_ENDPOINT}/", "")
+ if organization is not None:
+ warnings.warn(
+ "The `organization` argument is deprecated and will be removed in v5 of Transformers. Set your "
+ "organization directly in the `repo_id` passed instead (`repo_id={organization}/{model_id}`)."
+ )
+ if not repo_id.startswith(organization):
+ if "/" in repo_id:
+ repo_id = repo_id.split("/")[-1]
+ repo_id = f"{organization}/{repo_id}"
+
+ url = create_repo(repo_id=repo_id, token=token, private=private, exist_ok=True)
+ return url.repo_id
+
+ def _get_files_timestamps(self, working_dir: Union[str, os.PathLike]):
+ """
+ Returns the list of files with their last modification timestamp.
+ """
+ return {f: os.path.getmtime(os.path.join(working_dir, f)) for f in os.listdir(working_dir)}
+
+ def _upload_modified_files(
+ self,
+ working_dir: Union[str, os.PathLike],
+ repo_id: str,
+ files_timestamps: Dict[str, float],
+ commit_message: Optional[str] = None,
+ token: Optional[Union[bool, str]] = None,
+ create_pr: bool = False,
+ revision: str = None,
+ commit_description: str = None,
+ ):
+ """
+ Uploads all modified files in `working_dir` to `repo_id`, based on `files_timestamps`.
+ """
+ if commit_message is None:
+ if "Model" in self.__class__.__name__:
+ commit_message = "Upload model"
+ elif "Config" in self.__class__.__name__:
+ commit_message = "Upload config"
+ elif "Tokenizer" in self.__class__.__name__:
+ commit_message = "Upload tokenizer"
+ elif "FeatureExtractor" in self.__class__.__name__:
+ commit_message = "Upload feature extractor"
+ elif "Processor" in self.__class__.__name__:
+ commit_message = "Upload processor"
+ else:
+ commit_message = f"Upload {self.__class__.__name__}"
+ modified_files = [
+ f
+ for f in os.listdir(working_dir)
+ if f not in files_timestamps or os.path.getmtime(os.path.join(working_dir, f)) > files_timestamps[f]
+ ]
+
+ # filter for actual files + folders at the root level
+ modified_files = [
+ f
+ for f in modified_files
+ if os.path.isfile(os.path.join(working_dir, f)) or os.path.isdir(os.path.join(working_dir, f))
+ ]
+
+ operations = []
+ # upload standalone files
+ for file in modified_files:
+ if os.path.isdir(os.path.join(working_dir, file)):
+ # go over individual files of folder
+ for f in os.listdir(os.path.join(working_dir, file)):
+ operations.append(
+ CommitOperationAdd(
+ path_or_fileobj=os.path.join(working_dir, file, f), path_in_repo=os.path.join(file, f)
+ )
+ )
+ else:
+ operations.append(
+ CommitOperationAdd(path_or_fileobj=os.path.join(working_dir, file), path_in_repo=file)
+ )
+
+ if revision is not None:
+ create_branch(repo_id=repo_id, branch=revision, token=token, exist_ok=True)
+
+ logger.info(f"Uploading the following files to {repo_id}: {','.join(modified_files)}")
+ return create_commit(
+ repo_id=repo_id,
+ operations=operations,
+ commit_message=commit_message,
+ commit_description=commit_description,
+ token=token,
+ create_pr=create_pr,
+ revision=revision,
+ )
+
+ def push_to_hub(
+ self,
+ repo_id: str,
+ use_temp_dir: Optional[bool] = None,
+ commit_message: Optional[str] = None,
+ private: Optional[bool] = None,
+ token: Optional[Union[bool, str]] = None,
+ max_shard_size: Optional[Union[int, str]] = "5GB",
+ create_pr: bool = False,
+ safe_serialization: bool = True,
+ revision: str = None,
+ commit_description: str = None,
+ tags: Optional[List[str]] = None,
+ **deprecated_kwargs,
+ ) -> str:
+ """
+ Upload the {object_files} to the 🤗 Model Hub.
+
+ Parameters:
+ repo_id (`str`):
+ The name of the repository you want to push your {object} to. It should contain your organization name
+ when pushing to a given organization.
+ use_temp_dir (`bool`, *optional*):
+ Whether or not to use a temporary directory to store the files saved before they are pushed to the Hub.
+ Will default to `True` if there is no directory named like `repo_id`, `False` otherwise.
+ commit_message (`str`, *optional*):
+ Message to commit while pushing. Will default to `"Upload {object}"`.
+ private (`bool`, *optional*):
+ Whether or not the repository created should be private.
+ token (`bool` or `str`, *optional*):
+ The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
+ when running `huggingface-cli login` (stored in `~/.huggingface`). Will default to `True` if `repo_url`
+ is not specified.
+ max_shard_size (`int` or `str`, *optional*, defaults to `"5GB"`):
+ Only applicable for models. The maximum size for a checkpoint before being sharded. Checkpoints shard
+ will then be each of size lower than this size. If expressed as a string, needs to be digits followed
+ by a unit (like `"5MB"`). We default it to `"5GB"` so that users can easily load models on free-tier
+ Google Colab instances without any CPU OOM issues.
+ create_pr (`bool`, *optional*, defaults to `False`):
+ Whether or not to create a PR with the uploaded files or directly commit.
+ safe_serialization (`bool`, *optional*, defaults to `True`):
+ Whether or not to convert the model weights in safetensors format for safer serialization.
+ revision (`str`, *optional*):
+ Branch to push the uploaded files to.
+ commit_description (`str`, *optional*):
+ The description of the commit that will be created
+ tags (`List[str]`, *optional*):
+ List of tags to push on the Hub.
+
+ Examples:
+
+ ```python
+ from transformers import {object_class}
+
+ {object} = {object_class}.from_pretrained("google-bert/bert-base-cased")
+
+ # Push the {object} to your namespace with the name "my-finetuned-bert".
+ {object}.push_to_hub("my-finetuned-bert")
+
+ # Push the {object} to an organization with the name "my-finetuned-bert".
+ {object}.push_to_hub("huggingface/my-finetuned-bert")
+ ```
+ """
+ use_auth_token = deprecated_kwargs.pop("use_auth_token", None)
+ ignore_metadata_errors = deprecated_kwargs.pop("ignore_metadata_errors", False)
+ if use_auth_token is not None:
+ warnings.warn(
+ "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
+ FutureWarning,
+ )
+ if token is not None:
+ raise ValueError(
+ "`token` and `use_auth_token` are both specified. Please set only the argument `token`."
+ )
+ token = use_auth_token
+
+ repo_path_or_name = deprecated_kwargs.pop("repo_path_or_name", None)
+ if repo_path_or_name is not None:
+ # Should use `repo_id` instead of `repo_path_or_name`. When using `repo_path_or_name`, we try to infer
+ # repo_id from the folder path, if it exists.
+ warnings.warn(
+ "The `repo_path_or_name` argument is deprecated and will be removed in v5 of Transformers. Use "
+ "`repo_id` instead.",
+ FutureWarning,
+ )
+ if repo_id is not None:
+ raise ValueError(
+ "`repo_id` and `repo_path_or_name` are both specified. Please set only the argument `repo_id`."
+ )
+ if os.path.isdir(repo_path_or_name):
+ # repo_path: infer repo_id from the path
+ repo_id = repo_id.split(os.path.sep)[-1]
+ working_dir = repo_id
+ else:
+ # repo_name: use it as repo_id
+ repo_id = repo_path_or_name
+ working_dir = repo_id.split("/")[-1]
+ else:
+ # Repo_id is passed correctly: infer working_dir from it
+ working_dir = repo_id.split("/")[-1]
+
+ # Deprecation warning will be sent after for repo_url and organization
+ repo_url = deprecated_kwargs.pop("repo_url", None)
+ organization = deprecated_kwargs.pop("organization", None)
+
+ repo_id = self._create_repo(
+ repo_id, private=private, token=token, repo_url=repo_url, organization=organization
+ )
+
+ # Create a new empty model card and eventually tag it
+ model_card = create_and_tag_model_card(
+ repo_id, tags, token=token, ignore_metadata_errors=ignore_metadata_errors
+ )
+
+ if use_temp_dir is None:
+ use_temp_dir = not os.path.isdir(working_dir)
+
+ with working_or_temp_dir(working_dir=working_dir, use_temp_dir=use_temp_dir) as work_dir:
+ files_timestamps = self._get_files_timestamps(work_dir)
+
+ # Save all files.
+ self.save_pretrained(work_dir, max_shard_size=max_shard_size, safe_serialization=safe_serialization)
+
+ # Update model card if needed:
+ model_card.save(os.path.join(work_dir, "README.md"))
+
+ return self._upload_modified_files(
+ work_dir,
+ repo_id,
+ files_timestamps,
+ commit_message=commit_message,
+ token=token,
+ create_pr=create_pr,
+ revision=revision,
+ commit_description=commit_description,
+ )
+
+
+def send_example_telemetry(example_name, *example_args, framework="pytorch"):
+ """
+ Sends telemetry that helps tracking the examples use.
+
+ Args:
+ example_name (`str`): The name of the example.
+ *example_args (dataclasses or `argparse.ArgumentParser`): The arguments to the script. This function will only
+ try to extract the model and dataset name from those. Nothing else is tracked.
+ framework (`str`, *optional*, defaults to `"pytorch"`): The framework for the example.
+ """
+ if is_offline_mode():
+ return
+
+ data = {"example": example_name, "framework": framework}
+ for args in example_args:
+ args_as_dict = {k: v for k, v in args.__dict__.items() if not k.startswith("_") and v is not None}
+ if "model_name_or_path" in args_as_dict:
+ model_name = args_as_dict["model_name_or_path"]
+ # Filter out local paths
+ if not os.path.isdir(model_name):
+ data["model_name"] = args_as_dict["model_name_or_path"]
+ if "dataset_name" in args_as_dict:
+ data["dataset_name"] = args_as_dict["dataset_name"]
+ elif "task_name" in args_as_dict:
+ # Extract script name from the example_name
+ script_name = example_name.replace("tf_", "").replace("flax_", "").replace("run_", "")
+ script_name = script_name.replace("_no_trainer", "")
+ data["dataset_name"] = f"{script_name}-{args_as_dict['task_name']}"
+
+ # Send telemetry in the background
+ send_telemetry(
+ topic="examples", library_name="transformers", library_version=__version__, user_agent=http_user_agent(data)
+ )
+
+
+def convert_file_size_to_int(size: Union[int, str]):
+ """
+ Converts a size expressed as a string with digits an unit (like `"5MB"`) to an integer (in bytes).
+
+ Args:
+ size (`int` or `str`): The size to convert. Will be directly returned if an `int`.
+
+ Example:
+ ```py
+ >>> convert_file_size_to_int("1MiB")
+ 1048576
+ ```
+ """
+ if isinstance(size, int):
+ return size
+ if size.upper().endswith("GIB"):
+ return int(size[:-3]) * (2**30)
+ if size.upper().endswith("MIB"):
+ return int(size[:-3]) * (2**20)
+ if size.upper().endswith("KIB"):
+ return int(size[:-3]) * (2**10)
+ if size.upper().endswith("GB"):
+ int_size = int(size[:-2]) * (10**9)
+ return int_size // 8 if size.endswith("b") else int_size
+ if size.upper().endswith("MB"):
+ int_size = int(size[:-2]) * (10**6)
+ return int_size // 8 if size.endswith("b") else int_size
+ if size.upper().endswith("KB"):
+ int_size = int(size[:-2]) * (10**3)
+ return int_size // 8 if size.endswith("b") else int_size
+ raise ValueError("`size` is not in a valid format. Use an integer followed by the unit, e.g., '5GB'.")
+
+
+def get_checkpoint_shard_files(
+ pretrained_model_name_or_path,
+ index_filename,
+ cache_dir=None,
+ force_download=False,
+ proxies=None,
+ resume_download=False,
+ local_files_only=False,
+ token=None,
+ user_agent=None,
+ revision=None,
+ subfolder="",
+ _commit_hash=None,
+ **deprecated_kwargs,
+):
+ """
+ For a given model:
+
+ - download and cache all the shards of a sharded checkpoint if `pretrained_model_name_or_path` is a model ID on the
+ Hub
+ - returns the list of paths to all the shards, as well as some metadata.
+
+ For the description of each arg, see [`PreTrainedModel.from_pretrained`]. `index_filename` is the full path to the
+ index (downloaded and cached if `pretrained_model_name_or_path` is a model ID on the Hub).
+ """
+ import json
+
+ use_auth_token = deprecated_kwargs.pop("use_auth_token", None)
+ if use_auth_token is not None:
+ warnings.warn(
+ "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
+ FutureWarning,
+ )
+ if token is not None:
+ raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
+ token = use_auth_token
+
+ if not os.path.isfile(index_filename):
+ raise ValueError(f"Can't find a checkpoint index ({index_filename}) in {pretrained_model_name_or_path}.")
+
+ with open(index_filename, "r") as f:
+ index = json.loads(f.read())
+
+ shard_filenames = sorted(set(index["weight_map"].values()))
+ sharded_metadata = index["metadata"]
+ sharded_metadata["all_checkpoint_keys"] = list(index["weight_map"].keys())
+ sharded_metadata["weight_map"] = index["weight_map"].copy()
+
+ # First, let's deal with local folder.
+ if os.path.isdir(pretrained_model_name_or_path):
+ shard_filenames = [os.path.join(pretrained_model_name_or_path, subfolder, f) for f in shard_filenames]
+ return shard_filenames, sharded_metadata
+
+ # At this stage pretrained_model_name_or_path is a model identifier on the Hub
+ cached_filenames = []
+ # Check if the model is already cached or not. We only try the last checkpoint, this should cover most cases of
+ # downloaded (if interrupted).
+ last_shard = try_to_load_from_cache(
+ pretrained_model_name_or_path, shard_filenames[-1], cache_dir=cache_dir, revision=_commit_hash
+ )
+ show_progress_bar = last_shard is None or force_download
+ for shard_filename in tqdm(shard_filenames, desc="Downloading shards", disable=not show_progress_bar):
+ try:
+ # Load from URL
+ cached_filename = cached_file(
+ pretrained_model_name_or_path,
+ shard_filename,
+ cache_dir=cache_dir,
+ force_download=force_download,
+ proxies=proxies,
+ resume_download=resume_download,
+ local_files_only=local_files_only,
+ token=token,
+ user_agent=user_agent,
+ revision=revision,
+ subfolder=subfolder,
+ _commit_hash=_commit_hash,
+ )
+ # We have already dealt with RepositoryNotFoundError and RevisionNotFoundError when getting the index, so
+ # we don't have to catch them here.
+ except EntryNotFoundError:
+ raise EnvironmentError(
+ f"{pretrained_model_name_or_path} does not appear to have a file named {shard_filename} which is "
+ "required according to the checkpoint index."
+ )
+ except HTTPError:
+ raise EnvironmentError(
+ f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load {shard_filename}. You should try"
+ " again after checking your internet connection."
+ )
+
+ cached_filenames.append(cached_filename)
+
+ return cached_filenames, sharded_metadata
+
+
+# All what is below is for conversion between old cache format and new cache format.
+
+
+def get_all_cached_files(cache_dir=None):
+ """
+ Returns a list for all files cached with appropriate metadata.
+ """
+ if cache_dir is None:
+ cache_dir = TRANSFORMERS_CACHE
+ else:
+ cache_dir = str(cache_dir)
+ if not os.path.isdir(cache_dir):
+ return []
+
+ cached_files = []
+ for file in os.listdir(cache_dir):
+ meta_path = os.path.join(cache_dir, f"{file}.json")
+ if not os.path.isfile(meta_path):
+ continue
+
+ with open(meta_path, encoding="utf-8") as meta_file:
+ metadata = json.load(meta_file)
+ url = metadata["url"]
+ etag = metadata["etag"].replace('"', "")
+ cached_files.append({"file": file, "url": url, "etag": etag})
+
+ return cached_files
+
+
+def extract_info_from_url(url):
+ """
+ Extract repo_name, revision and filename from an url.
+ """
+ search = re.search(r"^https://huggingface\.co/(.*)/resolve/([^/]*)/(.*)$", url)
+ if search is None:
+ return None
+ repo, revision, filename = search.groups()
+ cache_repo = "--".join(["models"] + repo.split("/"))
+ return {"repo": cache_repo, "revision": revision, "filename": filename}
+
+
+def create_and_tag_model_card(
+ repo_id: str,
+ tags: Optional[List[str]] = None,
+ token: Optional[str] = None,
+ ignore_metadata_errors: bool = False,
+):
+ """
+ Creates or loads an existing model card and tags it.
+
+ Args:
+ repo_id (`str`):
+ The repo_id where to look for the model card.
+ tags (`List[str]`, *optional*):
+ The list of tags to add in the model card
+ token (`str`, *optional*):
+ Authentication token, obtained with `huggingface_hub.HfApi.login` method. Will default to the stored token.
+ ignore_metadata_errors (`str`):
+ If True, errors while parsing the metadata section will be ignored. Some information might be lost during
+ the process. Use it at your own risk.
+ """
+ try:
+ # Check if the model card is present on the remote repo
+ model_card = ModelCard.load(repo_id, token=token, ignore_metadata_errors=ignore_metadata_errors)
+ except EntryNotFoundError:
+ # Otherwise create a simple model card from template
+ model_description = "This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated."
+ card_data = ModelCardData(tags=[] if tags is None else tags, library_name="transformers")
+ model_card = ModelCard.from_template(card_data, model_description=model_description)
+
+ if tags is not None:
+ for model_tag in tags:
+ if model_tag not in model_card.data.tags:
+ model_card.data.tags.append(model_tag)
+
+ return model_card
+
+
+def clean_files_for(file):
+ """
+ Remove, if they exist, file, file.json and file.lock
+ """
+ for f in [file, f"{file}.json", f"{file}.lock"]:
+ if os.path.isfile(f):
+ os.remove(f)
+
+
+def move_to_new_cache(file, repo, filename, revision, etag, commit_hash):
+ """
+ Move file to repo following the new huggingface hub cache organization.
+ """
+ os.makedirs(repo, exist_ok=True)
+
+ # refs
+ os.makedirs(os.path.join(repo, "refs"), exist_ok=True)
+ if revision != commit_hash:
+ ref_path = os.path.join(repo, "refs", revision)
+ with open(ref_path, "w") as f:
+ f.write(commit_hash)
+
+ # blobs
+ os.makedirs(os.path.join(repo, "blobs"), exist_ok=True)
+ blob_path = os.path.join(repo, "blobs", etag)
+ shutil.move(file, blob_path)
+
+ # snapshots
+ os.makedirs(os.path.join(repo, "snapshots"), exist_ok=True)
+ os.makedirs(os.path.join(repo, "snapshots", commit_hash), exist_ok=True)
+ pointer_path = os.path.join(repo, "snapshots", commit_hash, filename)
+ huggingface_hub.file_download._create_relative_symlink(blob_path, pointer_path)
+ clean_files_for(file)
+
+
+def move_cache(cache_dir=None, new_cache_dir=None, token=None):
+ if new_cache_dir is None:
+ new_cache_dir = TRANSFORMERS_CACHE
+ if cache_dir is None:
+ # Migrate from old cache in .cache/huggingface/transformers
+ old_cache = Path(TRANSFORMERS_CACHE).parent / "transformers"
+ if os.path.isdir(str(old_cache)):
+ cache_dir = str(old_cache)
+ else:
+ cache_dir = new_cache_dir
+ cached_files = get_all_cached_files(cache_dir=cache_dir)
+ logger.info(f"Moving {len(cached_files)} files to the new cache system")
+
+ hub_metadata = {}
+ for file_info in tqdm(cached_files):
+ url = file_info.pop("url")
+ if url not in hub_metadata:
+ try:
+ hub_metadata[url] = get_hf_file_metadata(url, token=token)
+ except requests.HTTPError:
+ continue
+
+ etag, commit_hash = hub_metadata[url].etag, hub_metadata[url].commit_hash
+ if etag is None or commit_hash is None:
+ continue
+
+ if file_info["etag"] != etag:
+ # Cached file is not up to date, we just throw it as a new version will be downloaded anyway.
+ clean_files_for(os.path.join(cache_dir, file_info["file"]))
+ continue
+
+ url_info = extract_info_from_url(url)
+ if url_info is None:
+ # Not a file from huggingface.co
+ continue
+
+ repo = os.path.join(new_cache_dir, url_info["repo"])
+ move_to_new_cache(
+ file=os.path.join(cache_dir, file_info["file"]),
+ repo=repo,
+ filename=url_info["filename"],
+ revision=url_info["revision"],
+ etag=etag,
+ commit_hash=commit_hash,
+ )
+
+
+class PushInProgress:
+ """
+ Internal class to keep track of a push in progress (which might contain multiple `Future` jobs).
+ """
+
+ def __init__(self, jobs: Optional[futures.Future] = None) -> None:
+ self.jobs = [] if jobs is None else jobs
+
+ def is_done(self):
+ return all(job.done() for job in self.jobs)
+
+ def wait_until_done(self):
+ futures.wait(self.jobs)
+
+ def cancel(self) -> None:
+ self.jobs = [
+ job
+ for job in self.jobs
+ # Cancel the job if it wasn't started yet and remove cancelled/done jobs from the list
+ if not (job.cancel() or job.done())
+ ]
+
+
+cache_version_file = os.path.join(TRANSFORMERS_CACHE, "version.txt")
+if not os.path.isfile(cache_version_file):
+ cache_version = 0
+else:
+ with open(cache_version_file) as f:
+ try:
+ cache_version = int(f.read())
+ except ValueError:
+ cache_version = 0
+
+cache_is_not_empty = os.path.isdir(TRANSFORMERS_CACHE) and len(os.listdir(TRANSFORMERS_CACHE)) > 0
+
+if cache_version < 1 and cache_is_not_empty:
+ if is_offline_mode():
+ logger.warning(
+ "You are offline and the cache for model files in Transformers v4.22.0 has been updated while your local "
+ "cache seems to be the one of a previous version. It is very likely that all your calls to any "
+ "`from_pretrained()` method will fail. Remove the offline mode and enable internet connection to have "
+ "your cache be updated automatically, then you can go back to offline mode."
+ )
+ else:
+ logger.warning(
+ "The cache for model files in Transformers v4.22.0 has been updated. Migrating your old cache. This is a "
+ "one-time only operation. You can interrupt this and resume the migration later on by calling "
+ "`transformers.utils.move_cache()`."
+ )
+ try:
+ if TRANSFORMERS_CACHE != constants.HF_HUB_CACHE:
+ # Users set some env variable to customize cache storage
+ move_cache(TRANSFORMERS_CACHE, TRANSFORMERS_CACHE)
+ else:
+ move_cache()
+ except Exception as e:
+ trace = "\n".join(traceback.format_tb(e.__traceback__))
+ logger.error(
+ f"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease "
+ "file an issue at https://github.com/huggingface/transformers/issues/new/choose and copy paste this whole "
+ "message and we will do our best to help."
+ )
+
+if cache_version < 1:
+ try:
+ os.makedirs(TRANSFORMERS_CACHE, exist_ok=True)
+ with open(cache_version_file, "w") as f:
+ f.write("1")
+ except Exception:
+ logger.warning(
+ f"There was a problem when trying to write in your cache folder ({TRANSFORMERS_CACHE}). You should set "
+ "the environment variable TRANSFORMERS_CACHE to a writable directory."
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/utils/import_utils.py b/llmeval-env/lib/python3.10/site-packages/transformers/utils/import_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..a8c45aeac33f16b4ae7622e696f0284de9bb8abd
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/utils/import_utils.py
@@ -0,0 +1,1541 @@
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Import utilities: Utilities related to imports and our lazy inits.
+"""
+
+import importlib.metadata
+import importlib.util
+import json
+import os
+import shutil
+import subprocess
+import sys
+import warnings
+from collections import OrderedDict
+from functools import lru_cache
+from itertools import chain
+from types import ModuleType
+from typing import Any, Tuple, Union
+
+from packaging import version
+
+from . import logging
+
+
+logger = logging.get_logger(__name__) # pylint: disable=invalid-name
+
+
+# TODO: This doesn't work for all packages (`bs4`, `faiss`, etc.) Talk to Sylvain to see how to do with it better.
+def _is_package_available(pkg_name: str, return_version: bool = False) -> Union[Tuple[bool, str], bool]:
+ # Check if the package spec exists and grab its version to avoid importing a local directory
+ package_exists = importlib.util.find_spec(pkg_name) is not None
+ package_version = "N/A"
+ if package_exists:
+ try:
+ # Primary method to get the package version
+ package_version = importlib.metadata.version(pkg_name)
+ except importlib.metadata.PackageNotFoundError:
+ # Fallback method: Only for "torch" and versions containing "dev"
+ if pkg_name == "torch":
+ try:
+ package = importlib.import_module(pkg_name)
+ temp_version = getattr(package, "__version__", "N/A")
+ # Check if the version contains "dev"
+ if "dev" in temp_version:
+ package_version = temp_version
+ package_exists = True
+ else:
+ package_exists = False
+ except ImportError:
+ # If the package can't be imported, it's not available
+ package_exists = False
+ else:
+ # For packages other than "torch", don't attempt the fallback and set as not available
+ package_exists = False
+ logger.debug(f"Detected {pkg_name} version: {package_version}")
+ if return_version:
+ return package_exists, package_version
+ else:
+ return package_exists
+
+
+ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
+ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})
+
+USE_TF = os.environ.get("USE_TF", "AUTO").upper()
+USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
+USE_JAX = os.environ.get("USE_FLAX", "AUTO").upper()
+
+# Try to run a native pytorch job in an environment with TorchXLA installed by setting this value to 0.
+USE_TORCH_XLA = os.environ.get("USE_TORCH_XLA", "1").upper()
+
+FORCE_TF_AVAILABLE = os.environ.get("FORCE_TF_AVAILABLE", "AUTO").upper()
+
+# `transformers` requires `torch>=1.11` but this variable is exposed publicly, and we can't simply remove it.
+# This is the version of torch required to run torch.fx features and torch.onnx with dictionary inputs.
+TORCH_FX_REQUIRED_VERSION = version.parse("1.10")
+
+ACCELERATE_MIN_VERSION = "0.21.0"
+FSDP_MIN_VERSION = "1.12.0"
+XLA_FSDPV2_MIN_VERSION = "2.2.0"
+
+
+_accelerate_available, _accelerate_version = _is_package_available("accelerate", return_version=True)
+_apex_available = _is_package_available("apex")
+_aqlm_available = _is_package_available("aqlm")
+_av_available = importlib.util.find_spec("av") is not None
+_bitsandbytes_available = _is_package_available("bitsandbytes")
+_galore_torch_available = _is_package_available("galore_torch")
+# `importlib.metadata.version` doesn't work with `bs4` but `beautifulsoup4`. For `importlib.util.find_spec`, reversed.
+_bs4_available = importlib.util.find_spec("bs4") is not None
+_coloredlogs_available = _is_package_available("coloredlogs")
+# `importlib.metadata.util` doesn't work with `opencv-python-headless`.
+_cv2_available = importlib.util.find_spec("cv2") is not None
+_datasets_available = _is_package_available("datasets")
+_decord_available = importlib.util.find_spec("decord") is not None
+_detectron2_available = _is_package_available("detectron2")
+# We need to check both `faiss` and `faiss-cpu`.
+_faiss_available = importlib.util.find_spec("faiss") is not None
+try:
+ _faiss_version = importlib.metadata.version("faiss")
+ logger.debug(f"Successfully imported faiss version {_faiss_version}")
+except importlib.metadata.PackageNotFoundError:
+ try:
+ _faiss_version = importlib.metadata.version("faiss-cpu")
+ logger.debug(f"Successfully imported faiss version {_faiss_version}")
+ except importlib.metadata.PackageNotFoundError:
+ _faiss_available = False
+_ftfy_available = _is_package_available("ftfy")
+_g2p_en_available = _is_package_available("g2p_en")
+_ipex_available, _ipex_version = _is_package_available("intel_extension_for_pytorch", return_version=True)
+_jieba_available = _is_package_available("jieba")
+_jinja_available = _is_package_available("jinja2")
+_kenlm_available = _is_package_available("kenlm")
+_keras_nlp_available = _is_package_available("keras_nlp")
+_levenshtein_available = _is_package_available("Levenshtein")
+_librosa_available = _is_package_available("librosa")
+_natten_available = _is_package_available("natten")
+_nltk_available = _is_package_available("nltk")
+_onnx_available = _is_package_available("onnx")
+_openai_available = _is_package_available("openai")
+_optimum_available = _is_package_available("optimum")
+_auto_gptq_available = _is_package_available("auto_gptq")
+# `importlib.metadata.version` doesn't work with `awq`
+_auto_awq_available = importlib.util.find_spec("awq") is not None
+_quanto_available = _is_package_available("quanto")
+_pandas_available = _is_package_available("pandas")
+_peft_available = _is_package_available("peft")
+_phonemizer_available = _is_package_available("phonemizer")
+_psutil_available = _is_package_available("psutil")
+_py3nvml_available = _is_package_available("py3nvml")
+_pyctcdecode_available = _is_package_available("pyctcdecode")
+_pytesseract_available = _is_package_available("pytesseract")
+_pytest_available = _is_package_available("pytest")
+_pytorch_quantization_available = _is_package_available("pytorch_quantization")
+_rjieba_available = _is_package_available("rjieba")
+_sacremoses_available = _is_package_available("sacremoses")
+_safetensors_available = _is_package_available("safetensors")
+_scipy_available = _is_package_available("scipy")
+_sentencepiece_available = _is_package_available("sentencepiece")
+_is_seqio_available = _is_package_available("seqio")
+_sklearn_available = importlib.util.find_spec("sklearn") is not None
+if _sklearn_available:
+ try:
+ importlib.metadata.version("scikit-learn")
+ except importlib.metadata.PackageNotFoundError:
+ _sklearn_available = False
+_smdistributed_available = importlib.util.find_spec("smdistributed") is not None
+_soundfile_available = _is_package_available("soundfile")
+_spacy_available = _is_package_available("spacy")
+_sudachipy_available, _sudachipy_version = _is_package_available("sudachipy", return_version=True)
+_tensorflow_probability_available = _is_package_available("tensorflow_probability")
+_tensorflow_text_available = _is_package_available("tensorflow_text")
+_tf2onnx_available = _is_package_available("tf2onnx")
+_timm_available = _is_package_available("timm")
+_tokenizers_available = _is_package_available("tokenizers")
+_torchaudio_available = _is_package_available("torchaudio")
+_torchdistx_available = _is_package_available("torchdistx")
+_torchvision_available = _is_package_available("torchvision")
+_mlx_available = _is_package_available("mlx")
+
+
+_torch_version = "N/A"
+_torch_available = False
+if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES:
+ _torch_available, _torch_version = _is_package_available("torch", return_version=True)
+else:
+ logger.info("Disabling PyTorch because USE_TF is set")
+ _torch_available = False
+
+
+_tf_version = "N/A"
+_tf_available = False
+if FORCE_TF_AVAILABLE in ENV_VARS_TRUE_VALUES:
+ _tf_available = True
+else:
+ if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES:
+ # Note: _is_package_available("tensorflow") fails for tensorflow-cpu. Please test any changes to the line below
+ # with tensorflow-cpu to make sure it still works!
+ _tf_available = importlib.util.find_spec("tensorflow") is not None
+ if _tf_available:
+ candidates = (
+ "tensorflow",
+ "tensorflow-cpu",
+ "tensorflow-gpu",
+ "tf-nightly",
+ "tf-nightly-cpu",
+ "tf-nightly-gpu",
+ "tf-nightly-rocm",
+ "intel-tensorflow",
+ "intel-tensorflow-avx512",
+ "tensorflow-rocm",
+ "tensorflow-macos",
+ "tensorflow-aarch64",
+ )
+ _tf_version = None
+ # For the metadata, we have to look for both tensorflow and tensorflow-cpu
+ for pkg in candidates:
+ try:
+ _tf_version = importlib.metadata.version(pkg)
+ break
+ except importlib.metadata.PackageNotFoundError:
+ pass
+ _tf_available = _tf_version is not None
+ if _tf_available:
+ if version.parse(_tf_version) < version.parse("2"):
+ logger.info(
+ f"TensorFlow found but with version {_tf_version}. Transformers requires version 2 minimum."
+ )
+ _tf_available = False
+ else:
+ logger.info("Disabling Tensorflow because USE_TORCH is set")
+
+
+_essentia_available = importlib.util.find_spec("essentia") is not None
+try:
+ _essentia_version = importlib.metadata.version("essentia")
+ logger.debug(f"Successfully imported essentia version {_essentia_version}")
+except importlib.metadata.PackageNotFoundError:
+ _essentia_version = False
+
+
+_pretty_midi_available = importlib.util.find_spec("pretty_midi") is not None
+try:
+ _pretty_midi_version = importlib.metadata.version("pretty_midi")
+ logger.debug(f"Successfully imported pretty_midi version {_pretty_midi_version}")
+except importlib.metadata.PackageNotFoundError:
+ _pretty_midi_available = False
+
+
+ccl_version = "N/A"
+_is_ccl_available = (
+ importlib.util.find_spec("torch_ccl") is not None
+ or importlib.util.find_spec("oneccl_bindings_for_pytorch") is not None
+)
+try:
+ ccl_version = importlib.metadata.version("oneccl_bind_pt")
+ logger.debug(f"Detected oneccl_bind_pt version {ccl_version}")
+except importlib.metadata.PackageNotFoundError:
+ _is_ccl_available = False
+
+
+_flax_available = False
+if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES:
+ _flax_available, _flax_version = _is_package_available("flax", return_version=True)
+ if _flax_available:
+ _jax_available, _jax_version = _is_package_available("jax", return_version=True)
+ if _jax_available:
+ logger.info(f"JAX version {_jax_version}, Flax version {_flax_version} available.")
+ else:
+ _flax_available = _jax_available = False
+ _jax_version = _flax_version = "N/A"
+
+
+_torch_fx_available = False
+if _torch_available:
+ torch_version = version.parse(_torch_version)
+ _torch_fx_available = (torch_version.major, torch_version.minor) >= (
+ TORCH_FX_REQUIRED_VERSION.major,
+ TORCH_FX_REQUIRED_VERSION.minor,
+ )
+
+
+_torch_xla_available = False
+if USE_TORCH_XLA in ENV_VARS_TRUE_VALUES:
+ _torch_xla_available, _torch_xla_version = _is_package_available("torch_xla", return_version=True)
+ if _torch_xla_available:
+ logger.info(f"Torch XLA version {_torch_xla_version} available.")
+
+
+def is_kenlm_available():
+ return _kenlm_available
+
+
+def is_cv2_available():
+ return _cv2_available
+
+
+def is_torch_available():
+ return _torch_available
+
+
+def get_torch_version():
+ return _torch_version
+
+
+def is_torch_sdpa_available():
+ if not is_torch_available():
+ return False
+ elif _torch_version == "N/A":
+ return False
+
+ # NOTE: We require torch>=2.1 (and not torch>=2.0) to use SDPA in Transformers for two reasons:
+ # - Allow the global use of the `scale` argument introduced in https://github.com/pytorch/pytorch/pull/95259
+ # - Memory-efficient attention supports arbitrary attention_mask: https://github.com/pytorch/pytorch/pull/104310
+ # NOTE: We require torch>=2.1.1 to avoid a numerical issue in SDPA with non-contiguous inputs: https://github.com/pytorch/pytorch/issues/112577
+ return version.parse(_torch_version) >= version.parse("2.1.1")
+
+
+def is_torchvision_available():
+ return _torchvision_available
+
+
+def is_galore_torch_available():
+ return _galore_torch_available
+
+
+def is_pyctcdecode_available():
+ return _pyctcdecode_available
+
+
+def is_librosa_available():
+ return _librosa_available
+
+
+def is_essentia_available():
+ return _essentia_available
+
+
+def is_pretty_midi_available():
+ return _pretty_midi_available
+
+
+def is_torch_cuda_available():
+ if is_torch_available():
+ import torch
+
+ return torch.cuda.is_available()
+ else:
+ return False
+
+
+def is_mamba_ssm_available():
+ if is_torch_available():
+ import torch
+
+ if not torch.cuda.is_available():
+ return False
+ else:
+ return _is_package_available("mamba_ssm")
+ return False
+
+
+def is_causal_conv1d_available():
+ if is_torch_available():
+ import torch
+
+ if not torch.cuda.is_available():
+ return False
+ return _is_package_available("causal_conv1d")
+ return False
+
+
+def is_torch_mps_available():
+ if is_torch_available():
+ import torch
+
+ if hasattr(torch.backends, "mps"):
+ return torch.backends.mps.is_available()
+ return False
+
+
+def is_torch_bf16_gpu_available():
+ if not is_torch_available():
+ return False
+
+ import torch
+
+ return torch.cuda.is_available() and torch.cuda.is_bf16_supported()
+
+
+def is_torch_bf16_cpu_available():
+ if not is_torch_available():
+ return False
+
+ import torch
+
+ try:
+ # multiple levels of AttributeError depending on the pytorch version so do them all in one check
+ _ = torch.cpu.amp.autocast
+ except AttributeError:
+ return False
+
+ return True
+
+
+def is_torch_bf16_available():
+ # the original bf16 check was for gpu only, but later a cpu/bf16 combo has emerged so this util
+ # has become ambiguous and therefore deprecated
+ warnings.warn(
+ "The util is_torch_bf16_available is deprecated, please use is_torch_bf16_gpu_available "
+ "or is_torch_bf16_cpu_available instead according to whether it's used with cpu or gpu",
+ FutureWarning,
+ )
+ return is_torch_bf16_gpu_available()
+
+
+@lru_cache()
+def is_torch_fp16_available_on_device(device):
+ if not is_torch_available():
+ return False
+
+ import torch
+
+ try:
+ x = torch.zeros(2, 2, dtype=torch.float16).to(device)
+ _ = x @ x
+
+ # At this moment, let's be strict of the check: check if `LayerNorm` is also supported on device, because many
+ # models use this layer.
+ batch, sentence_length, embedding_dim = 3, 4, 5
+ embedding = torch.randn(batch, sentence_length, embedding_dim, dtype=torch.float16, device=device)
+ layer_norm = torch.nn.LayerNorm(embedding_dim, dtype=torch.float16, device=device)
+ _ = layer_norm(embedding)
+
+ except: # noqa: E722
+ # TODO: more precise exception matching, if possible.
+ # most backends should return `RuntimeError` however this is not guaranteed.
+ return False
+
+ return True
+
+
+@lru_cache()
+def is_torch_bf16_available_on_device(device):
+ if not is_torch_available():
+ return False
+
+ import torch
+
+ if device == "cuda":
+ return is_torch_bf16_gpu_available()
+
+ try:
+ x = torch.zeros(2, 2, dtype=torch.bfloat16).to(device)
+ _ = x @ x
+ except: # noqa: E722
+ # TODO: more precise exception matching, if possible.
+ # most backends should return `RuntimeError` however this is not guaranteed.
+ return False
+
+ return True
+
+
+def is_torch_tf32_available():
+ if not is_torch_available():
+ return False
+
+ import torch
+
+ if not torch.cuda.is_available() or torch.version.cuda is None:
+ return False
+ if torch.cuda.get_device_properties(torch.cuda.current_device()).major < 8:
+ return False
+ if int(torch.version.cuda.split(".")[0]) < 11:
+ return False
+ if version.parse(version.parse(torch.__version__).base_version) < version.parse("1.7"):
+ return False
+
+ return True
+
+
+def is_torch_fx_available():
+ return _torch_fx_available
+
+
+def is_peft_available():
+ return _peft_available
+
+
+def is_bs4_available():
+ return _bs4_available
+
+
+def is_tf_available():
+ return _tf_available
+
+
+def is_coloredlogs_available():
+ return _coloredlogs_available
+
+
+def is_tf2onnx_available():
+ return _tf2onnx_available
+
+
+def is_onnx_available():
+ return _onnx_available
+
+
+def is_openai_available():
+ return _openai_available
+
+
+def is_flax_available():
+ return _flax_available
+
+
+def is_ftfy_available():
+ return _ftfy_available
+
+
+def is_g2p_en_available():
+ return _g2p_en_available
+
+
+@lru_cache()
+def is_torch_tpu_available(check_device=True):
+ "Checks if `torch_xla` is installed and potentially if a TPU is in the environment"
+ warnings.warn(
+ "`is_torch_tpu_available` is deprecated and will be removed in 4.41.0. "
+ "Please use the `is_torch_xla_available` instead.",
+ FutureWarning,
+ )
+
+ if not _torch_available:
+ return False
+ if importlib.util.find_spec("torch_xla") is not None:
+ if check_device:
+ # We need to check if `xla_device` can be found, will raise a RuntimeError if not
+ try:
+ import torch_xla.core.xla_model as xm
+
+ _ = xm.xla_device()
+ return True
+ except RuntimeError:
+ return False
+ return True
+ return False
+
+
+@lru_cache
+def is_torch_xla_available(check_is_tpu=False, check_is_gpu=False):
+ """
+ Check if `torch_xla` is available. To train a native pytorch job in an environment with torch xla installed, set
+ the USE_TORCH_XLA to false.
+ """
+ assert not (check_is_tpu and check_is_gpu), "The check_is_tpu and check_is_gpu cannot both be true."
+
+ if not _torch_xla_available:
+ return False
+
+ import torch_xla
+
+ if check_is_gpu:
+ return torch_xla.runtime.device_type() in ["GPU", "CUDA"]
+ elif check_is_tpu:
+ return torch_xla.runtime.device_type() == "TPU"
+
+ return True
+
+
+@lru_cache()
+def is_torch_neuroncore_available(check_device=True):
+ if importlib.util.find_spec("torch_neuronx") is not None:
+ return is_torch_xla_available()
+ return False
+
+
+@lru_cache()
+def is_torch_npu_available(check_device=False):
+ "Checks if `torch_npu` is installed and potentially if a NPU is in the environment"
+ if not _torch_available or importlib.util.find_spec("torch_npu") is None:
+ return False
+
+ import torch
+ import torch_npu # noqa: F401
+
+ if check_device:
+ try:
+ # Will raise a RuntimeError if no NPU is found
+ _ = torch.npu.device_count()
+ return torch.npu.is_available()
+ except RuntimeError:
+ return False
+ return hasattr(torch, "npu") and torch.npu.is_available()
+
+
+@lru_cache()
+def is_torch_mlu_available(check_device=False):
+ "Checks if `torch_mlu` is installed and potentially if a MLU is in the environment"
+ if not _torch_available or importlib.util.find_spec("torch_mlu") is None:
+ return False
+
+ import torch
+ import torch_mlu # noqa: F401
+
+ from ..dependency_versions_table import deps
+
+ deps["deepspeed"] = "deepspeed-mlu>=0.10.1"
+
+ if check_device:
+ try:
+ # Will raise a RuntimeError if no MLU is found
+ _ = torch.mlu.device_count()
+ return torch.mlu.is_available()
+ except RuntimeError:
+ return False
+ return hasattr(torch, "mlu") and torch.mlu.is_available()
+
+
+def is_torchdynamo_available():
+ if not is_torch_available():
+ return False
+ try:
+ import torch._dynamo as dynamo # noqa: F401
+
+ return True
+ except Exception:
+ return False
+
+
+def is_torch_compile_available():
+ if not is_torch_available():
+ return False
+
+ import torch
+
+ # We don't do any version check here to support nighlies marked as 1.14. Ultimately needs to check version against
+ # 2.0 but let's do it later.
+ return hasattr(torch, "compile")
+
+
+def is_torchdynamo_compiling():
+ if not is_torch_available():
+ return False
+ try:
+ import torch._dynamo as dynamo # noqa: F401
+
+ return dynamo.is_compiling()
+ except Exception:
+ return False
+
+
+def is_torch_tensorrt_fx_available():
+ if importlib.util.find_spec("torch_tensorrt") is None:
+ return False
+ return importlib.util.find_spec("torch_tensorrt.fx") is not None
+
+
+def is_datasets_available():
+ return _datasets_available
+
+
+def is_detectron2_available():
+ return _detectron2_available
+
+
+def is_rjieba_available():
+ return _rjieba_available
+
+
+def is_psutil_available():
+ return _psutil_available
+
+
+def is_py3nvml_available():
+ return _py3nvml_available
+
+
+def is_sacremoses_available():
+ return _sacremoses_available
+
+
+def is_apex_available():
+ return _apex_available
+
+
+def is_aqlm_available():
+ return _aqlm_available
+
+
+def is_av_available():
+ return _av_available
+
+
+def is_ninja_available():
+ r"""
+ Code comes from *torch.utils.cpp_extension.is_ninja_available()*. Returns `True` if the
+ [ninja](https://ninja-build.org/) build system is available on the system, `False` otherwise.
+ """
+ try:
+ subprocess.check_output("ninja --version".split())
+ except Exception:
+ return False
+ else:
+ return True
+
+
+def is_ipex_available():
+ def get_major_and_minor_from_version(full_version):
+ return str(version.parse(full_version).major) + "." + str(version.parse(full_version).minor)
+
+ if not is_torch_available() or not _ipex_available:
+ return False
+
+ torch_major_and_minor = get_major_and_minor_from_version(_torch_version)
+ ipex_major_and_minor = get_major_and_minor_from_version(_ipex_version)
+ if torch_major_and_minor != ipex_major_and_minor:
+ logger.warning(
+ f"Intel Extension for PyTorch {ipex_major_and_minor} needs to work with PyTorch {ipex_major_and_minor}.*,"
+ f" but PyTorch {_torch_version} is found. Please switch to the matching version and run again."
+ )
+ return False
+ return True
+
+
+@lru_cache
+def is_torch_xpu_available(check_device=False):
+ "Checks if `intel_extension_for_pytorch` is installed and potentially if a XPU is in the environment"
+ if not is_ipex_available():
+ return False
+
+ import intel_extension_for_pytorch # noqa: F401
+ import torch
+
+ if check_device:
+ try:
+ # Will raise a RuntimeError if no XPU is found
+ _ = torch.xpu.device_count()
+ return torch.xpu.is_available()
+ except RuntimeError:
+ return False
+ return hasattr(torch, "xpu") and torch.xpu.is_available()
+
+
+def is_bitsandbytes_available():
+ if not is_torch_available():
+ return False
+
+ # bitsandbytes throws an error if cuda is not available
+ # let's avoid that by adding a simple check
+ import torch
+
+ return _bitsandbytes_available and torch.cuda.is_available()
+
+
+def is_flash_attn_2_available():
+ if not is_torch_available():
+ return False
+
+ if not _is_package_available("flash_attn"):
+ return False
+
+ # Let's add an extra check to see if cuda is available
+ import torch
+
+ if not torch.cuda.is_available():
+ return False
+
+ if torch.version.cuda:
+ return version.parse(importlib.metadata.version("flash_attn")) >= version.parse("2.1.0")
+ elif torch.version.hip:
+ # TODO: Bump the requirement to 2.1.0 once released in https://github.com/ROCmSoftwarePlatform/flash-attention
+ return version.parse(importlib.metadata.version("flash_attn")) >= version.parse("2.0.4")
+ else:
+ return False
+
+
+def is_flash_attn_greater_or_equal_2_10():
+ if not _is_package_available("flash_attn"):
+ return False
+
+ return version.parse(importlib.metadata.version("flash_attn")) >= version.parse("2.1.0")
+
+
+def is_torchdistx_available():
+ return _torchdistx_available
+
+
+def is_faiss_available():
+ return _faiss_available
+
+
+def is_scipy_available():
+ return _scipy_available
+
+
+def is_sklearn_available():
+ return _sklearn_available
+
+
+def is_sentencepiece_available():
+ return _sentencepiece_available
+
+
+def is_seqio_available():
+ return _is_seqio_available
+
+
+def is_protobuf_available():
+ if importlib.util.find_spec("google") is None:
+ return False
+ return importlib.util.find_spec("google.protobuf") is not None
+
+
+def is_accelerate_available(min_version: str = ACCELERATE_MIN_VERSION):
+ return _accelerate_available and version.parse(_accelerate_version) >= version.parse(min_version)
+
+
+def is_fsdp_available(min_version: str = FSDP_MIN_VERSION):
+ return is_torch_available() and version.parse(_torch_version) >= version.parse(min_version)
+
+
+def is_optimum_available():
+ return _optimum_available
+
+
+def is_auto_awq_available():
+ return _auto_awq_available
+
+
+def is_quanto_available():
+ return _quanto_available
+
+
+def is_auto_gptq_available():
+ return _auto_gptq_available
+
+
+def is_levenshtein_available():
+ return _levenshtein_available
+
+
+def is_optimum_neuron_available():
+ return _optimum_available and _is_package_available("optimum.neuron")
+
+
+def is_safetensors_available():
+ return _safetensors_available
+
+
+def is_tokenizers_available():
+ return _tokenizers_available
+
+
+@lru_cache
+def is_vision_available():
+ _pil_available = importlib.util.find_spec("PIL") is not None
+ if _pil_available:
+ try:
+ package_version = importlib.metadata.version("Pillow")
+ except importlib.metadata.PackageNotFoundError:
+ try:
+ package_version = importlib.metadata.version("Pillow-SIMD")
+ except importlib.metadata.PackageNotFoundError:
+ return False
+ logger.debug(f"Detected PIL version {package_version}")
+ return _pil_available
+
+
+def is_pytesseract_available():
+ return _pytesseract_available
+
+
+def is_pytest_available():
+ return _pytest_available
+
+
+def is_spacy_available():
+ return _spacy_available
+
+
+def is_tensorflow_text_available():
+ return is_tf_available() and _tensorflow_text_available
+
+
+def is_keras_nlp_available():
+ return is_tensorflow_text_available() and _keras_nlp_available
+
+
+def is_in_notebook():
+ try:
+ # Test adapted from tqdm.autonotebook: https://github.com/tqdm/tqdm/blob/master/tqdm/autonotebook.py
+ get_ipython = sys.modules["IPython"].get_ipython
+ if "IPKernelApp" not in get_ipython().config:
+ raise ImportError("console")
+ if "VSCODE_PID" in os.environ:
+ raise ImportError("vscode")
+ if "DATABRICKS_RUNTIME_VERSION" in os.environ and os.environ["DATABRICKS_RUNTIME_VERSION"] < "11.0":
+ # Databricks Runtime 11.0 and above uses IPython kernel by default so it should be compatible with Jupyter notebook
+ # https://docs.microsoft.com/en-us/azure/databricks/notebooks/ipython-kernel
+ raise ImportError("databricks")
+
+ return importlib.util.find_spec("IPython") is not None
+ except (AttributeError, ImportError, KeyError):
+ return False
+
+
+def is_pytorch_quantization_available():
+ return _pytorch_quantization_available
+
+
+def is_tensorflow_probability_available():
+ return _tensorflow_probability_available
+
+
+def is_pandas_available():
+ return _pandas_available
+
+
+def is_sagemaker_dp_enabled():
+ # Get the sagemaker specific env variable.
+ sagemaker_params = os.getenv("SM_FRAMEWORK_PARAMS", "{}")
+ try:
+ # Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
+ sagemaker_params = json.loads(sagemaker_params)
+ if not sagemaker_params.get("sagemaker_distributed_dataparallel_enabled", False):
+ return False
+ except json.JSONDecodeError:
+ return False
+ # Lastly, check if the `smdistributed` module is present.
+ return _smdistributed_available
+
+
+def is_sagemaker_mp_enabled():
+ # Get the sagemaker specific mp parameters from smp_options variable.
+ smp_options = os.getenv("SM_HP_MP_PARAMETERS", "{}")
+ try:
+ # Parse it and check the field "partitions" is included, it is required for model parallel.
+ smp_options = json.loads(smp_options)
+ if "partitions" not in smp_options:
+ return False
+ except json.JSONDecodeError:
+ return False
+
+ # Get the sagemaker specific framework parameters from mpi_options variable.
+ mpi_options = os.getenv("SM_FRAMEWORK_PARAMS", "{}")
+ try:
+ # Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
+ mpi_options = json.loads(mpi_options)
+ if not mpi_options.get("sagemaker_mpi_enabled", False):
+ return False
+ except json.JSONDecodeError:
+ return False
+ # Lastly, check if the `smdistributed` module is present.
+ return _smdistributed_available
+
+
+def is_training_run_on_sagemaker():
+ return "SAGEMAKER_JOB_NAME" in os.environ
+
+
+def is_soundfile_availble():
+ return _soundfile_available
+
+
+def is_timm_available():
+ return _timm_available
+
+
+def is_natten_available():
+ return _natten_available
+
+
+def is_nltk_available():
+ return _nltk_available
+
+
+def is_torchaudio_available():
+ return _torchaudio_available
+
+
+def is_speech_available():
+ # For now this depends on torchaudio but the exact dependency might evolve in the future.
+ return _torchaudio_available
+
+
+def is_phonemizer_available():
+ return _phonemizer_available
+
+
+def torch_only_method(fn):
+ def wrapper(*args, **kwargs):
+ if not _torch_available:
+ raise ImportError(
+ "You need to install pytorch to use this method or class, "
+ "or activate it with environment variables USE_TORCH=1 and USE_TF=0."
+ )
+ else:
+ return fn(*args, **kwargs)
+
+ return wrapper
+
+
+def is_ccl_available():
+ return _is_ccl_available
+
+
+def is_decord_available():
+ return _decord_available
+
+
+def is_sudachi_available():
+ return _sudachipy_available
+
+
+def get_sudachi_version():
+ return _sudachipy_version
+
+
+def is_sudachi_projection_available():
+ if not is_sudachi_available():
+ return False
+
+ # NOTE: We require sudachipy>=0.6.8 to use projection option in sudachi_kwargs for the constructor of BertJapaneseTokenizer.
+ # - `projection` option is not supported in sudachipy<0.6.8, see https://github.com/WorksApplications/sudachi.rs/issues/230
+ return version.parse(_sudachipy_version) >= version.parse("0.6.8")
+
+
+def is_jumanpp_available():
+ return (importlib.util.find_spec("rhoknp") is not None) and (shutil.which("jumanpp") is not None)
+
+
+def is_cython_available():
+ return importlib.util.find_spec("pyximport") is not None
+
+
+def is_jieba_available():
+ return _jieba_available
+
+
+def is_jinja_available():
+ return _jinja_available
+
+
+def is_mlx_available():
+ return _mlx_available
+
+
+# docstyle-ignore
+AV_IMPORT_ERROR = """
+{0} requires the PyAv library but it was not found in your environment. You can install it with:
+```
+pip install av
+```
+Please note that you may need to restart your runtime after installation.
+"""
+
+
+# docstyle-ignore
+CV2_IMPORT_ERROR = """
+{0} requires the OpenCV library but it was not found in your environment. You can install it with:
+```
+pip install opencv-python
+```
+Please note that you may need to restart your runtime after installation.
+"""
+
+
+# docstyle-ignore
+DATASETS_IMPORT_ERROR = """
+{0} requires the 🤗 Datasets library but it was not found in your environment. You can install it with:
+```
+pip install datasets
+```
+In a notebook or a colab, you can install it by executing a cell with
+```
+!pip install datasets
+```
+then restarting your kernel.
+
+Note that if you have a local folder named `datasets` or a local python file named `datasets.py` in your current
+working directory, python may try to import this instead of the 🤗 Datasets library. You should rename this folder or
+that python file if that's the case. Please note that you may need to restart your runtime after installation.
+"""
+
+
+# docstyle-ignore
+TOKENIZERS_IMPORT_ERROR = """
+{0} requires the 🤗 Tokenizers library but it was not found in your environment. You can install it with:
+```
+pip install tokenizers
+```
+In a notebook or a colab, you can install it by executing a cell with
+```
+!pip install tokenizers
+```
+Please note that you may need to restart your runtime after installation.
+"""
+
+
+# docstyle-ignore
+SENTENCEPIECE_IMPORT_ERROR = """
+{0} requires the SentencePiece library but it was not found in your environment. Checkout the instructions on the
+installation page of its repo: https://github.com/google/sentencepiece#installation and follow the ones
+that match your environment. Please note that you may need to restart your runtime after installation.
+"""
+
+
+# docstyle-ignore
+PROTOBUF_IMPORT_ERROR = """
+{0} requires the protobuf library but it was not found in your environment. Checkout the instructions on the
+installation page of its repo: https://github.com/protocolbuffers/protobuf/tree/master/python#installation and follow the ones
+that match your environment. Please note that you may need to restart your runtime after installation.
+"""
+
+
+# docstyle-ignore
+FAISS_IMPORT_ERROR = """
+{0} requires the faiss library but it was not found in your environment. Checkout the instructions on the
+installation page of its repo: https://github.com/facebookresearch/faiss/blob/master/INSTALL.md and follow the ones
+that match your environment. Please note that you may need to restart your runtime after installation.
+"""
+
+
+# docstyle-ignore
+PYTORCH_IMPORT_ERROR = """
+{0} requires the PyTorch library but it was not found in your environment. Checkout the instructions on the
+installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
+Please note that you may need to restart your runtime after installation.
+"""
+
+
+# docstyle-ignore
+TORCHVISION_IMPORT_ERROR = """
+{0} requires the Torchvision library but it was not found in your environment. Checkout the instructions on the
+installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
+Please note that you may need to restart your runtime after installation.
+"""
+
+# docstyle-ignore
+PYTORCH_IMPORT_ERROR_WITH_TF = """
+{0} requires the PyTorch library but it was not found in your environment.
+However, we were able to find a TensorFlow installation. TensorFlow classes begin
+with "TF", but are otherwise identically named to our PyTorch classes. This
+means that the TF equivalent of the class you tried to import would be "TF{0}".
+If you want to use TensorFlow, please use TF classes instead!
+
+If you really do want to use PyTorch please go to
+https://pytorch.org/get-started/locally/ and follow the instructions that
+match your environment.
+"""
+
+# docstyle-ignore
+TF_IMPORT_ERROR_WITH_PYTORCH = """
+{0} requires the TensorFlow library but it was not found in your environment.
+However, we were able to find a PyTorch installation. PyTorch classes do not begin
+with "TF", but are otherwise identically named to our TF classes.
+If you want to use PyTorch, please use those classes instead!
+
+If you really do want to use TensorFlow, please follow the instructions on the
+installation page https://www.tensorflow.org/install that match your environment.
+"""
+
+# docstyle-ignore
+BS4_IMPORT_ERROR = """
+{0} requires the Beautiful Soup library but it was not found in your environment. You can install it with pip:
+`pip install beautifulsoup4`. Please note that you may need to restart your runtime after installation.
+"""
+
+
+# docstyle-ignore
+SKLEARN_IMPORT_ERROR = """
+{0} requires the scikit-learn library but it was not found in your environment. You can install it with:
+```
+pip install -U scikit-learn
+```
+In a notebook or a colab, you can install it by executing a cell with
+```
+!pip install -U scikit-learn
+```
+Please note that you may need to restart your runtime after installation.
+"""
+
+
+# docstyle-ignore
+TENSORFLOW_IMPORT_ERROR = """
+{0} requires the TensorFlow library but it was not found in your environment. Checkout the instructions on the
+installation page: https://www.tensorflow.org/install and follow the ones that match your environment.
+Please note that you may need to restart your runtime after installation.
+"""
+
+
+# docstyle-ignore
+DETECTRON2_IMPORT_ERROR = """
+{0} requires the detectron2 library but it was not found in your environment. Checkout the instructions on the
+installation page: https://github.com/facebookresearch/detectron2/blob/master/INSTALL.md and follow the ones
+that match your environment. Please note that you may need to restart your runtime after installation.
+"""
+
+
+# docstyle-ignore
+FLAX_IMPORT_ERROR = """
+{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the
+installation page: https://github.com/google/flax and follow the ones that match your environment.
+Please note that you may need to restart your runtime after installation.
+"""
+
+# docstyle-ignore
+FTFY_IMPORT_ERROR = """
+{0} requires the ftfy library but it was not found in your environment. Checkout the instructions on the
+installation section: https://github.com/rspeer/python-ftfy/tree/master#installing and follow the ones
+that match your environment. Please note that you may need to restart your runtime after installation.
+"""
+
+LEVENSHTEIN_IMPORT_ERROR = """
+{0} requires the python-Levenshtein library but it was not found in your environment. You can install it with pip: `pip
+install python-Levenshtein`. Please note that you may need to restart your runtime after installation.
+"""
+
+# docstyle-ignore
+G2P_EN_IMPORT_ERROR = """
+{0} requires the g2p-en library but it was not found in your environment. You can install it with pip:
+`pip install g2p-en`. Please note that you may need to restart your runtime after installation.
+"""
+
+# docstyle-ignore
+PYTORCH_QUANTIZATION_IMPORT_ERROR = """
+{0} requires the pytorch-quantization library but it was not found in your environment. You can install it with pip:
+`pip install pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com`
+Please note that you may need to restart your runtime after installation.
+"""
+
+# docstyle-ignore
+TENSORFLOW_PROBABILITY_IMPORT_ERROR = """
+{0} requires the tensorflow_probability library but it was not found in your environment. You can install it with pip as
+explained here: https://github.com/tensorflow/probability. Please note that you may need to restart your runtime after installation.
+"""
+
+# docstyle-ignore
+TENSORFLOW_TEXT_IMPORT_ERROR = """
+{0} requires the tensorflow_text library but it was not found in your environment. You can install it with pip as
+explained here: https://www.tensorflow.org/text/guide/tf_text_intro.
+Please note that you may need to restart your runtime after installation.
+"""
+
+
+# docstyle-ignore
+PANDAS_IMPORT_ERROR = """
+{0} requires the pandas library but it was not found in your environment. You can install it with pip as
+explained here: https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html.
+Please note that you may need to restart your runtime after installation.
+"""
+
+
+# docstyle-ignore
+PHONEMIZER_IMPORT_ERROR = """
+{0} requires the phonemizer library but it was not found in your environment. You can install it with pip:
+`pip install phonemizer`. Please note that you may need to restart your runtime after installation.
+"""
+
+
+# docstyle-ignore
+SACREMOSES_IMPORT_ERROR = """
+{0} requires the sacremoses library but it was not found in your environment. You can install it with pip:
+`pip install sacremoses`. Please note that you may need to restart your runtime after installation.
+"""
+
+# docstyle-ignore
+SCIPY_IMPORT_ERROR = """
+{0} requires the scipy library but it was not found in your environment. You can install it with pip:
+`pip install scipy`. Please note that you may need to restart your runtime after installation.
+"""
+
+
+# docstyle-ignore
+SPEECH_IMPORT_ERROR = """
+{0} requires the torchaudio library but it was not found in your environment. You can install it with pip:
+`pip install torchaudio`. Please note that you may need to restart your runtime after installation.
+"""
+
+# docstyle-ignore
+TIMM_IMPORT_ERROR = """
+{0} requires the timm library but it was not found in your environment. You can install it with pip:
+`pip install timm`. Please note that you may need to restart your runtime after installation.
+"""
+
+# docstyle-ignore
+NATTEN_IMPORT_ERROR = """
+{0} requires the natten library but it was not found in your environment. You can install it by referring to:
+shi-labs.com/natten . You can also install it with pip (may take longer to build):
+`pip install natten`. Please note that you may need to restart your runtime after installation.
+"""
+
+
+# docstyle-ignore
+NLTK_IMPORT_ERROR = """
+{0} requires the NLTK library but it was not found in your environment. You can install it by referring to:
+https://www.nltk.org/install.html. Please note that you may need to restart your runtime after installation.
+"""
+
+
+# docstyle-ignore
+VISION_IMPORT_ERROR = """
+{0} requires the PIL library but it was not found in your environment. You can install it with pip:
+`pip install pillow`. Please note that you may need to restart your runtime after installation.
+"""
+
+
+# docstyle-ignore
+PYTESSERACT_IMPORT_ERROR = """
+{0} requires the PyTesseract library but it was not found in your environment. You can install it with pip:
+`pip install pytesseract`. Please note that you may need to restart your runtime after installation.
+"""
+
+# docstyle-ignore
+PYCTCDECODE_IMPORT_ERROR = """
+{0} requires the pyctcdecode library but it was not found in your environment. You can install it with pip:
+`pip install pyctcdecode`. Please note that you may need to restart your runtime after installation.
+"""
+
+# docstyle-ignore
+ACCELERATE_IMPORT_ERROR = """
+{0} requires the accelerate library >= {ACCELERATE_MIN_VERSION} it was not found in your environment.
+You can install or update it with pip: `pip install --upgrade accelerate`. Please note that you may need to restart your
+runtime after installation.
+"""
+
+# docstyle-ignore
+CCL_IMPORT_ERROR = """
+{0} requires the torch ccl library but it was not found in your environment. You can install it with pip:
+`pip install oneccl_bind_pt -f https://developer.intel.com/ipex-whl-stable`
+Please note that you may need to restart your runtime after installation.
+"""
+
+# docstyle-ignore
+ESSENTIA_IMPORT_ERROR = """
+{0} requires essentia library. But that was not found in your environment. You can install them with pip:
+`pip install essentia==2.1b6.dev1034`
+Please note that you may need to restart your runtime after installation.
+"""
+
+# docstyle-ignore
+LIBROSA_IMPORT_ERROR = """
+{0} requires thes librosa library. But that was not found in your environment. You can install them with pip:
+`pip install librosa`
+Please note that you may need to restart your runtime after installation.
+"""
+
+# docstyle-ignore
+PRETTY_MIDI_IMPORT_ERROR = """
+{0} requires thes pretty_midi library. But that was not found in your environment. You can install them with pip:
+`pip install pretty_midi`
+Please note that you may need to restart your runtime after installation.
+"""
+
+DECORD_IMPORT_ERROR = """
+{0} requires the decord library but it was not found in your environment. You can install it with pip: `pip install
+decord`. Please note that you may need to restart your runtime after installation.
+"""
+
+CYTHON_IMPORT_ERROR = """
+{0} requires the Cython library but it was not found in your environment. You can install it with pip: `pip install
+Cython`. Please note that you may need to restart your runtime after installation.
+"""
+
+JIEBA_IMPORT_ERROR = """
+{0} requires the jieba library but it was not found in your environment. You can install it with pip: `pip install
+jieba`. Please note that you may need to restart your runtime after installation.
+"""
+
+PEFT_IMPORT_ERROR = """
+{0} requires the peft library but it was not found in your environment. You can install it with pip: `pip install
+peft`. Please note that you may need to restart your runtime after installation.
+"""
+
+JINJA_IMPORT_ERROR = """
+{0} requires the jinja library but it was not found in your environment. You can install it with pip: `pip install
+jinja2`. Please note that you may need to restart your runtime after installation.
+"""
+
+BACKENDS_MAPPING = OrderedDict(
+ [
+ ("av", (is_av_available, AV_IMPORT_ERROR)),
+ ("bs4", (is_bs4_available, BS4_IMPORT_ERROR)),
+ ("cv2", (is_cv2_available, CV2_IMPORT_ERROR)),
+ ("datasets", (is_datasets_available, DATASETS_IMPORT_ERROR)),
+ ("detectron2", (is_detectron2_available, DETECTRON2_IMPORT_ERROR)),
+ ("essentia", (is_essentia_available, ESSENTIA_IMPORT_ERROR)),
+ ("faiss", (is_faiss_available, FAISS_IMPORT_ERROR)),
+ ("flax", (is_flax_available, FLAX_IMPORT_ERROR)),
+ ("ftfy", (is_ftfy_available, FTFY_IMPORT_ERROR)),
+ ("g2p_en", (is_g2p_en_available, G2P_EN_IMPORT_ERROR)),
+ ("pandas", (is_pandas_available, PANDAS_IMPORT_ERROR)),
+ ("phonemizer", (is_phonemizer_available, PHONEMIZER_IMPORT_ERROR)),
+ ("pretty_midi", (is_pretty_midi_available, PRETTY_MIDI_IMPORT_ERROR)),
+ ("levenshtein", (is_levenshtein_available, LEVENSHTEIN_IMPORT_ERROR)),
+ ("librosa", (is_librosa_available, LIBROSA_IMPORT_ERROR)),
+ ("protobuf", (is_protobuf_available, PROTOBUF_IMPORT_ERROR)),
+ ("pyctcdecode", (is_pyctcdecode_available, PYCTCDECODE_IMPORT_ERROR)),
+ ("pytesseract", (is_pytesseract_available, PYTESSERACT_IMPORT_ERROR)),
+ ("sacremoses", (is_sacremoses_available, SACREMOSES_IMPORT_ERROR)),
+ ("pytorch_quantization", (is_pytorch_quantization_available, PYTORCH_QUANTIZATION_IMPORT_ERROR)),
+ ("sentencepiece", (is_sentencepiece_available, SENTENCEPIECE_IMPORT_ERROR)),
+ ("sklearn", (is_sklearn_available, SKLEARN_IMPORT_ERROR)),
+ ("speech", (is_speech_available, SPEECH_IMPORT_ERROR)),
+ ("tensorflow_probability", (is_tensorflow_probability_available, TENSORFLOW_PROBABILITY_IMPORT_ERROR)),
+ ("tf", (is_tf_available, TENSORFLOW_IMPORT_ERROR)),
+ ("tensorflow_text", (is_tensorflow_text_available, TENSORFLOW_TEXT_IMPORT_ERROR)),
+ ("timm", (is_timm_available, TIMM_IMPORT_ERROR)),
+ ("natten", (is_natten_available, NATTEN_IMPORT_ERROR)),
+ ("nltk", (is_nltk_available, NLTK_IMPORT_ERROR)),
+ ("tokenizers", (is_tokenizers_available, TOKENIZERS_IMPORT_ERROR)),
+ ("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)),
+ ("torchvision", (is_torchvision_available, TORCHVISION_IMPORT_ERROR)),
+ ("vision", (is_vision_available, VISION_IMPORT_ERROR)),
+ ("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)),
+ ("accelerate", (is_accelerate_available, ACCELERATE_IMPORT_ERROR)),
+ ("oneccl_bind_pt", (is_ccl_available, CCL_IMPORT_ERROR)),
+ ("decord", (is_decord_available, DECORD_IMPORT_ERROR)),
+ ("cython", (is_cython_available, CYTHON_IMPORT_ERROR)),
+ ("jieba", (is_jieba_available, JIEBA_IMPORT_ERROR)),
+ ("peft", (is_peft_available, PEFT_IMPORT_ERROR)),
+ ("jinja", (is_jinja_available, JINJA_IMPORT_ERROR)),
+ ]
+)
+
+
+def requires_backends(obj, backends):
+ if not isinstance(backends, (list, tuple)):
+ backends = [backends]
+
+ name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
+
+ # Raise an error for users who might not realize that classes without "TF" are torch-only
+ if "torch" in backends and "tf" not in backends and not is_torch_available() and is_tf_available():
+ raise ImportError(PYTORCH_IMPORT_ERROR_WITH_TF.format(name))
+
+ # Raise the inverse error for PyTorch users trying to load TF classes
+ if "tf" in backends and "torch" not in backends and is_torch_available() and not is_tf_available():
+ raise ImportError(TF_IMPORT_ERROR_WITH_PYTORCH.format(name))
+
+ checks = (BACKENDS_MAPPING[backend] for backend in backends)
+ failed = [msg.format(name) for available, msg in checks if not available()]
+ if failed:
+ raise ImportError("".join(failed))
+
+
+class DummyObject(type):
+ """
+ Metaclass for the dummy objects. Any class inheriting from it will return the ImportError generated by
+ `requires_backend` each time a user tries to access any method of that class.
+ """
+
+ def __getattribute__(cls, key):
+ if key.startswith("_") and key != "_from_config":
+ return super().__getattribute__(key)
+ requires_backends(cls, cls._backends)
+
+
+def is_torch_fx_proxy(x):
+ if is_torch_fx_available():
+ import torch.fx
+
+ return isinstance(x, torch.fx.Proxy)
+ return False
+
+
+class _LazyModule(ModuleType):
+ """
+ Module class that surfaces all objects but only performs associated imports when the objects are requested.
+ """
+
+ # Very heavily inspired by optuna.integration._IntegrationModule
+ # https://github.com/optuna/optuna/blob/master/optuna/integration/__init__.py
+ def __init__(self, name, module_file, import_structure, module_spec=None, extra_objects=None):
+ super().__init__(name)
+ self._modules = set(import_structure.keys())
+ self._class_to_module = {}
+ for key, values in import_structure.items():
+ for value in values:
+ self._class_to_module[value] = key
+ # Needed for autocompletion in an IDE
+ self.__all__ = list(import_structure.keys()) + list(chain(*import_structure.values()))
+ self.__file__ = module_file
+ self.__spec__ = module_spec
+ self.__path__ = [os.path.dirname(module_file)]
+ self._objects = {} if extra_objects is None else extra_objects
+ self._name = name
+ self._import_structure = import_structure
+
+ # Needed for autocompletion in an IDE
+ def __dir__(self):
+ result = super().__dir__()
+ # The elements of self.__all__ that are submodules may or may not be in the dir already, depending on whether
+ # they have been accessed or not. So we only add the elements of self.__all__ that are not already in the dir.
+ for attr in self.__all__:
+ if attr not in result:
+ result.append(attr)
+ return result
+
+ def __getattr__(self, name: str) -> Any:
+ if name in self._objects:
+ return self._objects[name]
+ if name in self._modules:
+ value = self._get_module(name)
+ elif name in self._class_to_module.keys():
+ module = self._get_module(self._class_to_module[name])
+ value = getattr(module, name)
+ else:
+ raise AttributeError(f"module {self.__name__} has no attribute {name}")
+
+ setattr(self, name, value)
+ return value
+
+ def _get_module(self, module_name: str):
+ try:
+ return importlib.import_module("." + module_name, self.__name__)
+ except Exception as e:
+ raise RuntimeError(
+ f"Failed to import {self.__name__}.{module_name} because of the following error (look up to see its"
+ f" traceback):\n{e}"
+ ) from e
+
+ def __reduce__(self):
+ return (self.__class__, (self._name, self.__file__, self._import_structure))
+
+
+class OptionalDependencyNotAvailable(BaseException):
+ """Internally used error class for signalling an optional dependency was not found."""
+
+
+def direct_transformers_import(path: str, file="__init__.py") -> ModuleType:
+ """Imports transformers directly
+
+ Args:
+ path (`str`): The path to the source file
+ file (`str`, optional): The file to join with the path. Defaults to "__init__.py".
+
+ Returns:
+ `ModuleType`: The resulting imported module
+ """
+ name = "transformers"
+ location = os.path.join(path, file)
+ spec = importlib.util.spec_from_file_location(name, location, submodule_search_locations=[path])
+ module = importlib.util.module_from_spec(spec)
+ spec.loader.exec_module(module)
+ module = sys.modules[name]
+ return module
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/utils/logging.py b/llmeval-env/lib/python3.10/site-packages/transformers/utils/logging.py
new file mode 100644
index 0000000000000000000000000000000000000000..3471e5ab66c62d0763472824cc19ec582639b00d
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/utils/logging.py
@@ -0,0 +1,396 @@
+# coding=utf-8
+# Copyright 2020 Optuna, Hugging Face
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+""" Logging utilities."""
+
+
+import functools
+import logging
+import os
+import sys
+import threading
+from logging import (
+ CRITICAL, # NOQA
+ DEBUG, # NOQA
+ ERROR, # NOQA
+ FATAL, # NOQA
+ INFO, # NOQA
+ NOTSET, # NOQA
+ WARN, # NOQA
+ WARNING, # NOQA
+)
+from logging import captureWarnings as _captureWarnings
+from typing import Optional
+
+import huggingface_hub.utils as hf_hub_utils
+from tqdm import auto as tqdm_lib
+
+
+_lock = threading.Lock()
+_default_handler: Optional[logging.Handler] = None
+
+log_levels = {
+ "detail": logging.DEBUG, # will also print filename and line number
+ "debug": logging.DEBUG,
+ "info": logging.INFO,
+ "warning": logging.WARNING,
+ "error": logging.ERROR,
+ "critical": logging.CRITICAL,
+}
+
+_default_log_level = logging.WARNING
+
+_tqdm_active = not hf_hub_utils.are_progress_bars_disabled()
+
+
+def _get_default_logging_level():
+ """
+ If TRANSFORMERS_VERBOSITY env var is set to one of the valid choices return that as the new default level. If it is
+ not - fall back to `_default_log_level`
+ """
+ env_level_str = os.getenv("TRANSFORMERS_VERBOSITY", None)
+ if env_level_str:
+ if env_level_str in log_levels:
+ return log_levels[env_level_str]
+ else:
+ logging.getLogger().warning(
+ f"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, "
+ f"has to be one of: { ', '.join(log_levels.keys()) }"
+ )
+ return _default_log_level
+
+
+def _get_library_name() -> str:
+ return __name__.split(".")[0]
+
+
+def _get_library_root_logger() -> logging.Logger:
+ return logging.getLogger(_get_library_name())
+
+
+def _configure_library_root_logger() -> None:
+ global _default_handler
+
+ with _lock:
+ if _default_handler:
+ # This library has already configured the library root logger.
+ return
+ _default_handler = logging.StreamHandler() # Set sys.stderr as stream.
+ # set defaults based on https://github.com/pyinstaller/pyinstaller/issues/7334#issuecomment-1357447176
+ if sys.stderr is None:
+ sys.stderr = open(os.devnull, "w")
+
+ _default_handler.flush = sys.stderr.flush
+
+ # Apply our default configuration to the library root logger.
+ library_root_logger = _get_library_root_logger()
+ library_root_logger.addHandler(_default_handler)
+ library_root_logger.setLevel(_get_default_logging_level())
+ # if logging level is debug, we add pathname and lineno to formatter for easy debugging
+ if os.getenv("TRANSFORMERS_VERBOSITY", None) == "detail":
+ formatter = logging.Formatter("[%(levelname)s|%(pathname)s:%(lineno)s] %(asctime)s >> %(message)s")
+ _default_handler.setFormatter(formatter)
+
+ library_root_logger.propagate = False
+
+
+def _reset_library_root_logger() -> None:
+ global _default_handler
+
+ with _lock:
+ if not _default_handler:
+ return
+
+ library_root_logger = _get_library_root_logger()
+ library_root_logger.removeHandler(_default_handler)
+ library_root_logger.setLevel(logging.NOTSET)
+ _default_handler = None
+
+
+def get_log_levels_dict():
+ return log_levels
+
+
+def captureWarnings(capture):
+ """
+ Calls the `captureWarnings` method from the logging library to enable management of the warnings emitted by the
+ `warnings` library.
+
+ Read more about this method here:
+ https://docs.python.org/3/library/logging.html#integration-with-the-warnings-module
+
+ All warnings will be logged through the `py.warnings` logger.
+
+ Careful: this method also adds a handler to this logger if it does not already have one, and updates the logging
+ level of that logger to the library's root logger.
+ """
+ logger = get_logger("py.warnings")
+
+ if not logger.handlers:
+ logger.addHandler(_default_handler)
+
+ logger.setLevel(_get_library_root_logger().level)
+
+ _captureWarnings(capture)
+
+
+def get_logger(name: Optional[str] = None) -> logging.Logger:
+ """
+ Return a logger with the specified name.
+
+ This function is not supposed to be directly accessed unless you are writing a custom transformers module.
+ """
+
+ if name is None:
+ name = _get_library_name()
+
+ _configure_library_root_logger()
+ return logging.getLogger(name)
+
+
+def get_verbosity() -> int:
+ """
+ Return the current level for the 🤗 Transformers's root logger as an int.
+
+ Returns:
+ `int`: The logging level.
+
+
+
+ 🤗 Transformers has following logging levels:
+
+ - 50: `transformers.logging.CRITICAL` or `transformers.logging.FATAL`
+ - 40: `transformers.logging.ERROR`
+ - 30: `transformers.logging.WARNING` or `transformers.logging.WARN`
+ - 20: `transformers.logging.INFO`
+ - 10: `transformers.logging.DEBUG`
+
+ """
+
+ _configure_library_root_logger()
+ return _get_library_root_logger().getEffectiveLevel()
+
+
+def set_verbosity(verbosity: int) -> None:
+ """
+ Set the verbosity level for the 🤗 Transformers's root logger.
+
+ Args:
+ verbosity (`int`):
+ Logging level, e.g., one of:
+
+ - `transformers.logging.CRITICAL` or `transformers.logging.FATAL`
+ - `transformers.logging.ERROR`
+ - `transformers.logging.WARNING` or `transformers.logging.WARN`
+ - `transformers.logging.INFO`
+ - `transformers.logging.DEBUG`
+ """
+
+ _configure_library_root_logger()
+ _get_library_root_logger().setLevel(verbosity)
+
+
+def set_verbosity_info():
+ """Set the verbosity to the `INFO` level."""
+ return set_verbosity(INFO)
+
+
+def set_verbosity_warning():
+ """Set the verbosity to the `WARNING` level."""
+ return set_verbosity(WARNING)
+
+
+def set_verbosity_debug():
+ """Set the verbosity to the `DEBUG` level."""
+ return set_verbosity(DEBUG)
+
+
+def set_verbosity_error():
+ """Set the verbosity to the `ERROR` level."""
+ return set_verbosity(ERROR)
+
+
+def disable_default_handler() -> None:
+ """Disable the default handler of the HuggingFace Transformers's root logger."""
+
+ _configure_library_root_logger()
+
+ assert _default_handler is not None
+ _get_library_root_logger().removeHandler(_default_handler)
+
+
+def enable_default_handler() -> None:
+ """Enable the default handler of the HuggingFace Transformers's root logger."""
+
+ _configure_library_root_logger()
+
+ assert _default_handler is not None
+ _get_library_root_logger().addHandler(_default_handler)
+
+
+def add_handler(handler: logging.Handler) -> None:
+ """adds a handler to the HuggingFace Transformers's root logger."""
+
+ _configure_library_root_logger()
+
+ assert handler is not None
+ _get_library_root_logger().addHandler(handler)
+
+
+def remove_handler(handler: logging.Handler) -> None:
+ """removes given handler from the HuggingFace Transformers's root logger."""
+
+ _configure_library_root_logger()
+
+ assert handler is not None and handler not in _get_library_root_logger().handlers
+ _get_library_root_logger().removeHandler(handler)
+
+
+def disable_propagation() -> None:
+ """
+ Disable propagation of the library log outputs. Note that log propagation is disabled by default.
+ """
+
+ _configure_library_root_logger()
+ _get_library_root_logger().propagate = False
+
+
+def enable_propagation() -> None:
+ """
+ Enable propagation of the library log outputs. Please disable the HuggingFace Transformers's default handler to
+ prevent double logging if the root logger has been configured.
+ """
+
+ _configure_library_root_logger()
+ _get_library_root_logger().propagate = True
+
+
+def enable_explicit_format() -> None:
+ """
+ Enable explicit formatting for every HuggingFace Transformers's logger. The explicit formatter is as follows:
+ ```
+ [LEVELNAME|FILENAME|LINE NUMBER] TIME >> MESSAGE
+ ```
+ All handlers currently bound to the root logger are affected by this method.
+ """
+ handlers = _get_library_root_logger().handlers
+
+ for handler in handlers:
+ formatter = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s")
+ handler.setFormatter(formatter)
+
+
+def reset_format() -> None:
+ """
+ Resets the formatting for HuggingFace Transformers's loggers.
+
+ All handlers currently bound to the root logger are affected by this method.
+ """
+ handlers = _get_library_root_logger().handlers
+
+ for handler in handlers:
+ handler.setFormatter(None)
+
+
+def warning_advice(self, *args, **kwargs):
+ """
+ This method is identical to `logger.warning()`, but if env var TRANSFORMERS_NO_ADVISORY_WARNINGS=1 is set, this
+ warning will not be printed
+ """
+ no_advisory_warnings = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS", False)
+ if no_advisory_warnings:
+ return
+ self.warning(*args, **kwargs)
+
+
+logging.Logger.warning_advice = warning_advice
+
+
+@functools.lru_cache(None)
+def warning_once(self, *args, **kwargs):
+ """
+ This method is identical to `logger.warning()`, but will emit the warning with the same message only once
+
+ Note: The cache is for the function arguments, so 2 different callers using the same arguments will hit the cache.
+ The assumption here is that all warning messages are unique across the code. If they aren't then need to switch to
+ another type of cache that includes the caller frame information in the hashing function.
+ """
+ self.warning(*args, **kwargs)
+
+
+logging.Logger.warning_once = warning_once
+
+
+class EmptyTqdm:
+ """Dummy tqdm which doesn't do anything."""
+
+ def __init__(self, *args, **kwargs): # pylint: disable=unused-argument
+ self._iterator = args[0] if args else None
+
+ def __iter__(self):
+ return iter(self._iterator)
+
+ def __getattr__(self, _):
+ """Return empty function."""
+
+ def empty_fn(*args, **kwargs): # pylint: disable=unused-argument
+ return
+
+ return empty_fn
+
+ def __enter__(self):
+ return self
+
+ def __exit__(self, type_, value, traceback):
+ return
+
+
+class _tqdm_cls:
+ def __call__(self, *args, **kwargs):
+ if _tqdm_active:
+ return tqdm_lib.tqdm(*args, **kwargs)
+ else:
+ return EmptyTqdm(*args, **kwargs)
+
+ def set_lock(self, *args, **kwargs):
+ self._lock = None
+ if _tqdm_active:
+ return tqdm_lib.tqdm.set_lock(*args, **kwargs)
+
+ def get_lock(self):
+ if _tqdm_active:
+ return tqdm_lib.tqdm.get_lock()
+
+
+tqdm = _tqdm_cls()
+
+
+def is_progress_bar_enabled() -> bool:
+ """Return a boolean indicating whether tqdm progress bars are enabled."""
+ global _tqdm_active
+ return bool(_tqdm_active)
+
+
+def enable_progress_bar():
+ """Enable tqdm progress bar."""
+ global _tqdm_active
+ _tqdm_active = True
+ hf_hub_utils.enable_progress_bars()
+
+
+def disable_progress_bar():
+ """Disable tqdm progress bar."""
+ global _tqdm_active
+ _tqdm_active = False
+ hf_hub_utils.disable_progress_bars()
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/utils/model_parallel_utils.py b/llmeval-env/lib/python3.10/site-packages/transformers/utils/model_parallel_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..7ec79a5e23cbc976e2cb26934abe94e7bbe890d7
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/utils/model_parallel_utils.py
@@ -0,0 +1,56 @@
+# coding=utf-8
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from math import ceil
+
+
+def assert_device_map(device_map, num_blocks):
+ blocks = list(range(0, num_blocks))
+
+ device_map_blocks = [item for sublist in list(device_map.values()) for item in sublist]
+
+ # Duplicate check
+ duplicate_blocks = []
+ for i in device_map_blocks:
+ if device_map_blocks.count(i) > 1 and i not in duplicate_blocks:
+ duplicate_blocks.append(i)
+ # Missing blocks
+ missing_blocks = [i for i in blocks if i not in device_map_blocks]
+ extra_blocks = [i for i in device_map_blocks if i not in blocks]
+
+ if len(duplicate_blocks) != 0:
+ raise ValueError(
+ "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device."
+ " These attention blocks were specified more than once: " + str(duplicate_blocks)
+ )
+ if len(missing_blocks) != 0:
+ raise ValueError(
+ "There are attention blocks for this model that are not specified in the device_map. Add these attention "
+ "blocks to a device on the device_map: " + str(missing_blocks)
+ )
+ if len(extra_blocks) != 0:
+ raise ValueError(
+ "The device_map contains more attention blocks than this model has. Remove these from the device_map:"
+ + str(extra_blocks)
+ )
+
+
+def get_device_map(n_layers, devices):
+ """Returns a dictionary of layers distributed evenly across all devices."""
+ layers = list(range(n_layers))
+ n_blocks = int(ceil(n_layers / len(devices)))
+ layers_list = [layers[i : i + n_blocks] for i in range(0, n_layers, n_blocks)]
+
+ return dict(zip(devices, layers_list))
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/utils/notebook.py b/llmeval-env/lib/python3.10/site-packages/transformers/utils/notebook.py
new file mode 100644
index 0000000000000000000000000000000000000000..f7396642732e585e450f5b345e9dcf74eb294b78
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/utils/notebook.py
@@ -0,0 +1,378 @@
+# coding=utf-8
+# Copyright 2020 Hugging Face
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import re
+import time
+from typing import Optional
+
+import IPython.display as disp
+
+from ..trainer_callback import TrainerCallback
+from ..trainer_utils import IntervalStrategy, has_length
+
+
+def format_time(t):
+ "Format `t` (in seconds) to (h):mm:ss"
+ t = int(t)
+ h, m, s = t // 3600, (t // 60) % 60, t % 60
+ return f"{h}:{m:02d}:{s:02d}" if h != 0 else f"{m:02d}:{s:02d}"
+
+
+def html_progress_bar(value, total, prefix, label, width=300):
+ # docstyle-ignore
+ return f"""
+
+ """
+
+
+def text_to_html_table(items):
+ "Put the texts in `items` in an HTML table."
+ html_code = """\n"""
+ html_code += """ \n \n"""
+ for i in items[0]:
+ html_code += f" {i} | \n"
+ html_code += "
\n \n \n"
+ for line in items[1:]:
+ html_code += " \n"
+ for elt in line:
+ elt = f"{elt:.6f}" if isinstance(elt, float) else str(elt)
+ html_code += f" {elt} | \n"
+ html_code += "
\n"
+ html_code += " \n
"
+ return html_code
+
+
+class NotebookProgressBar:
+ """
+ A progress par for display in a notebook.
+
+ Class attributes (overridden by derived classes)
+
+ - **warmup** (`int`) -- The number of iterations to do at the beginning while ignoring `update_every`.
+ - **update_every** (`float`) -- Since calling the time takes some time, we only do it every presumed
+ `update_every` seconds. The progress bar uses the average time passed up until now to guess the next value
+ for which it will call the update.
+
+ Args:
+ total (`int`):
+ The total number of iterations to reach.
+ prefix (`str`, *optional*):
+ A prefix to add before the progress bar.
+ leave (`bool`, *optional*, defaults to `True`):
+ Whether or not to leave the progress bar once it's completed. You can always call the
+ [`~utils.notebook.NotebookProgressBar.close`] method to make the bar disappear.
+ parent ([`~notebook.NotebookTrainingTracker`], *optional*):
+ A parent object (like [`~utils.notebook.NotebookTrainingTracker`]) that spawns progress bars and handle
+ their display. If set, the object passed must have a `display()` method.
+ width (`int`, *optional*, defaults to 300):
+ The width (in pixels) that the bar will take.
+
+ Example:
+
+ ```python
+ import time
+
+ pbar = NotebookProgressBar(100)
+ for val in range(100):
+ pbar.update(val)
+ time.sleep(0.07)
+ pbar.update(100)
+ ```"""
+
+ warmup = 5
+ update_every = 0.2
+
+ def __init__(
+ self,
+ total: int,
+ prefix: Optional[str] = None,
+ leave: bool = True,
+ parent: Optional["NotebookTrainingTracker"] = None,
+ width: int = 300,
+ ):
+ self.total = total
+ self.prefix = "" if prefix is None else prefix
+ self.leave = leave
+ self.parent = parent
+ self.width = width
+ self.last_value = None
+ self.comment = None
+ self.output = None
+
+ def update(self, value: int, force_update: bool = False, comment: str = None):
+ """
+ The main method to update the progress bar to `value`.
+
+ Args:
+ value (`int`):
+ The value to use. Must be between 0 and `total`.
+ force_update (`bool`, *optional*, defaults to `False`):
+ Whether or not to force and update of the internal state and display (by default, the bar will wait for
+ `value` to reach the value it predicted corresponds to a time of more than the `update_every` attribute
+ since the last update to avoid adding boilerplate).
+ comment (`str`, *optional*):
+ A comment to add on the left of the progress bar.
+ """
+ self.value = value
+ if comment is not None:
+ self.comment = comment
+ if self.last_value is None:
+ self.start_time = self.last_time = time.time()
+ self.start_value = self.last_value = value
+ self.elapsed_time = self.predicted_remaining = None
+ self.first_calls = self.warmup
+ self.wait_for = 1
+ self.update_bar(value)
+ elif value <= self.last_value and not force_update:
+ return
+ elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for, self.total):
+ if self.first_calls > 0:
+ self.first_calls -= 1
+ current_time = time.time()
+ self.elapsed_time = current_time - self.start_time
+ # We could have value = self.start_value if the update is called twixe with the same start value.
+ if value > self.start_value:
+ self.average_time_per_item = self.elapsed_time / (value - self.start_value)
+ else:
+ self.average_time_per_item = None
+ if value >= self.total:
+ value = self.total
+ self.predicted_remaining = None
+ if not self.leave:
+ self.close()
+ elif self.average_time_per_item is not None:
+ self.predicted_remaining = self.average_time_per_item * (self.total - value)
+ self.update_bar(value)
+ self.last_value = value
+ self.last_time = current_time
+ if (self.average_time_per_item is None) or (self.average_time_per_item == 0):
+ self.wait_for = 1
+ else:
+ self.wait_for = max(int(self.update_every / self.average_time_per_item), 1)
+
+ def update_bar(self, value, comment=None):
+ spaced_value = " " * (len(str(self.total)) - len(str(value))) + str(value)
+ if self.elapsed_time is None:
+ self.label = f"[{spaced_value}/{self.total} : < :"
+ elif self.predicted_remaining is None:
+ self.label = f"[{spaced_value}/{self.total} {format_time(self.elapsed_time)}"
+ else:
+ self.label = (
+ f"[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <"
+ f" {format_time(self.predicted_remaining)}"
+ )
+ if self.average_time_per_item == 0:
+ self.label += ", +inf it/s"
+ else:
+ self.label += f", {1/self.average_time_per_item:.2f} it/s"
+
+ self.label += "]" if self.comment is None or len(self.comment) == 0 else f", {self.comment}]"
+ self.display()
+
+ def display(self):
+ self.html_code = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width)
+ if self.parent is not None:
+ # If this is a child bar, the parent will take care of the display.
+ self.parent.display()
+ return
+ if self.output is None:
+ self.output = disp.display(disp.HTML(self.html_code), display_id=True)
+ else:
+ self.output.update(disp.HTML(self.html_code))
+
+ def close(self):
+ "Closes the progress bar."
+ if self.parent is None and self.output is not None:
+ self.output.update(disp.HTML(""))
+
+
+class NotebookTrainingTracker(NotebookProgressBar):
+ """
+ An object tracking the updates of an ongoing training with progress bars and a nice table reporting metrics.
+
+ Args:
+ num_steps (`int`): The number of steps during training. column_names (`List[str]`, *optional*):
+ The list of column names for the metrics table (will be inferred from the first call to
+ [`~utils.notebook.NotebookTrainingTracker.write_line`] if not set).
+ """
+
+ def __init__(self, num_steps, column_names=None):
+ super().__init__(num_steps)
+ self.inner_table = None if column_names is None else [column_names]
+ self.child_bar = None
+
+ def display(self):
+ self.html_code = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width)
+ if self.inner_table is not None:
+ self.html_code += text_to_html_table(self.inner_table)
+ if self.child_bar is not None:
+ self.html_code += self.child_bar.html_code
+ if self.output is None:
+ self.output = disp.display(disp.HTML(self.html_code), display_id=True)
+ else:
+ self.output.update(disp.HTML(self.html_code))
+
+ def write_line(self, values):
+ """
+ Write the values in the inner table.
+
+ Args:
+ values (`Dict[str, float]`): The values to display.
+ """
+ if self.inner_table is None:
+ self.inner_table = [list(values.keys()), list(values.values())]
+ else:
+ columns = self.inner_table[0]
+ for key in values.keys():
+ if key not in columns:
+ columns.append(key)
+ self.inner_table[0] = columns
+ if len(self.inner_table) > 1:
+ last_values = self.inner_table[-1]
+ first_column = self.inner_table[0][0]
+ if last_values[0] != values[first_column]:
+ # write new line
+ self.inner_table.append([values[c] if c in values else "No Log" for c in columns])
+ else:
+ # update last line
+ new_values = values
+ for c in columns:
+ if c not in new_values.keys():
+ new_values[c] = last_values[columns.index(c)]
+ self.inner_table[-1] = [new_values[c] for c in columns]
+ else:
+ self.inner_table.append([values[c] for c in columns])
+
+ def add_child(self, total, prefix=None, width=300):
+ """
+ Add a child progress bar displayed under the table of metrics. The child progress bar is returned (so it can be
+ easily updated).
+
+ Args:
+ total (`int`): The number of iterations for the child progress bar.
+ prefix (`str`, *optional*): A prefix to write on the left of the progress bar.
+ width (`int`, *optional*, defaults to 300): The width (in pixels) of the progress bar.
+ """
+ self.child_bar = NotebookProgressBar(total, prefix=prefix, parent=self, width=width)
+ return self.child_bar
+
+ def remove_child(self):
+ """
+ Closes the child progress bar.
+ """
+ self.child_bar = None
+ self.display()
+
+
+class NotebookProgressCallback(TrainerCallback):
+ """
+ A [`TrainerCallback`] that displays the progress of training or evaluation, optimized for Jupyter Notebooks or
+ Google colab.
+ """
+
+ def __init__(self):
+ self.training_tracker = None
+ self.prediction_bar = None
+ self._force_next_update = False
+
+ def on_train_begin(self, args, state, control, **kwargs):
+ self.first_column = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step"
+ self.training_loss = 0
+ self.last_log = 0
+ column_names = [self.first_column] + ["Training Loss"]
+ if args.evaluation_strategy != IntervalStrategy.NO:
+ column_names.append("Validation Loss")
+ self.training_tracker = NotebookTrainingTracker(state.max_steps, column_names)
+
+ def on_step_end(self, args, state, control, **kwargs):
+ epoch = int(state.epoch) if int(state.epoch) == state.epoch else f"{state.epoch:.2f}"
+ self.training_tracker.update(
+ state.global_step + 1,
+ comment=f"Epoch {epoch}/{state.num_train_epochs}",
+ force_update=self._force_next_update,
+ )
+ self._force_next_update = False
+
+ def on_prediction_step(self, args, state, control, eval_dataloader=None, **kwargs):
+ if not has_length(eval_dataloader):
+ return
+ if self.prediction_bar is None:
+ if self.training_tracker is not None:
+ self.prediction_bar = self.training_tracker.add_child(len(eval_dataloader))
+ else:
+ self.prediction_bar = NotebookProgressBar(len(eval_dataloader))
+ self.prediction_bar.update(1)
+ else:
+ self.prediction_bar.update(self.prediction_bar.value + 1)
+
+ def on_predict(self, args, state, control, **kwargs):
+ if self.prediction_bar is not None:
+ self.prediction_bar.close()
+ self.prediction_bar = None
+
+ def on_log(self, args, state, control, logs=None, **kwargs):
+ # Only for when there is no evaluation
+ if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs:
+ values = {"Training Loss": logs["loss"]}
+ # First column is necessarily Step sine we're not in epoch eval strategy
+ values["Step"] = state.global_step
+ self.training_tracker.write_line(values)
+
+ def on_evaluate(self, args, state, control, metrics=None, **kwargs):
+ if self.training_tracker is not None:
+ values = {"Training Loss": "No log", "Validation Loss": "No log"}
+ for log in reversed(state.log_history):
+ if "loss" in log:
+ values["Training Loss"] = log["loss"]
+ break
+
+ if self.first_column == "Epoch":
+ values["Epoch"] = int(state.epoch)
+ else:
+ values["Step"] = state.global_step
+ metric_key_prefix = "eval"
+ for k in metrics:
+ if k.endswith("_loss"):
+ metric_key_prefix = re.sub(r"\_loss$", "", k)
+ _ = metrics.pop("total_flos", None)
+ _ = metrics.pop("epoch", None)
+ _ = metrics.pop(f"{metric_key_prefix}_runtime", None)
+ _ = metrics.pop(f"{metric_key_prefix}_samples_per_second", None)
+ _ = metrics.pop(f"{metric_key_prefix}_steps_per_second", None)
+ _ = metrics.pop(f"{metric_key_prefix}_jit_compilation_time", None)
+ for k, v in metrics.items():
+ splits = k.split("_")
+ name = " ".join([part.capitalize() for part in splits[1:]])
+ if name == "Loss":
+ # Single dataset
+ name = "Validation Loss"
+ values[name] = v
+ self.training_tracker.write_line(values)
+ self.training_tracker.remove_child()
+ self.prediction_bar = None
+ # Evaluation takes a long time so we should force the next update.
+ self._force_next_update = True
+
+ def on_train_end(self, args, state, control, **kwargs):
+ self.training_tracker.update(
+ state.global_step,
+ comment=f"Epoch {int(state.epoch)}/{state.num_train_epochs}",
+ force_update=True,
+ )
+ self.training_tracker = None
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/utils/peft_utils.py b/llmeval-env/lib/python3.10/site-packages/transformers/utils/peft_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..2078f1ae960955b7c615819f25081978fdab2563
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/utils/peft_utils.py
@@ -0,0 +1,124 @@
+# Copyright 2023 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import importlib
+import os
+from typing import Dict, Optional, Union
+
+from packaging import version
+
+from .hub import cached_file
+from .import_utils import is_peft_available
+
+
+ADAPTER_CONFIG_NAME = "adapter_config.json"
+ADAPTER_WEIGHTS_NAME = "adapter_model.bin"
+ADAPTER_SAFE_WEIGHTS_NAME = "adapter_model.safetensors"
+
+
+def find_adapter_config_file(
+ model_id: str,
+ cache_dir: Optional[Union[str, os.PathLike]] = None,
+ force_download: bool = False,
+ resume_download: bool = False,
+ proxies: Optional[Dict[str, str]] = None,
+ token: Optional[Union[bool, str]] = None,
+ revision: Optional[str] = None,
+ local_files_only: bool = False,
+ subfolder: str = "",
+ _commit_hash: Optional[str] = None,
+) -> Optional[str]:
+ r"""
+ Simply checks if the model stored on the Hub or locally is an adapter model or not, return the path of the adapter
+ config file if it is, None otherwise.
+
+ Args:
+ model_id (`str`):
+ The identifier of the model to look for, can be either a local path or an id to the repository on the Hub.
+ cache_dir (`str` or `os.PathLike`, *optional*):
+ Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
+ cache should not be used.
+ force_download (`bool`, *optional*, defaults to `False`):
+ Whether or not to force to (re-)download the configuration files and override the cached versions if they
+ exist.
+ resume_download (`bool`, *optional*, defaults to `False`):
+ Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
+ proxies (`Dict[str, str]`, *optional*):
+ A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
+ 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
+ token (`str` or *bool*, *optional*):
+ The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
+ when running `huggingface-cli login` (stored in `~/.huggingface`).
+ revision (`str`, *optional*, defaults to `"main"`):
+ The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
+ git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
+ identifier allowed by git.
+
+
+
+ To test a pull request you made on the Hub, you can pass `revision="refs/pr/".
+
+
+
+ local_files_only (`bool`, *optional*, defaults to `False`):
+ If `True`, will only try to load the tokenizer configuration from local files.
+ subfolder (`str`, *optional*, defaults to `""`):
+ In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
+ specify the folder name here.
+ """
+ adapter_cached_filename = None
+ if model_id is None:
+ return None
+ elif os.path.isdir(model_id):
+ list_remote_files = os.listdir(model_id)
+ if ADAPTER_CONFIG_NAME in list_remote_files:
+ adapter_cached_filename = os.path.join(model_id, ADAPTER_CONFIG_NAME)
+ else:
+ adapter_cached_filename = cached_file(
+ model_id,
+ ADAPTER_CONFIG_NAME,
+ cache_dir=cache_dir,
+ force_download=force_download,
+ resume_download=resume_download,
+ proxies=proxies,
+ token=token,
+ revision=revision,
+ local_files_only=local_files_only,
+ subfolder=subfolder,
+ _commit_hash=_commit_hash,
+ _raise_exceptions_for_gated_repo=False,
+ _raise_exceptions_for_missing_entries=False,
+ _raise_exceptions_for_connection_errors=False,
+ )
+
+ return adapter_cached_filename
+
+
+def check_peft_version(min_version: str) -> None:
+ r"""
+ Checks if the version of PEFT is compatible.
+
+ Args:
+ version (`str`):
+ The version of PEFT to check against.
+ """
+ if not is_peft_available():
+ raise ValueError("PEFT is not installed. Please install it with `pip install peft`")
+
+ is_peft_version_compatible = version.parse(importlib.metadata.version("peft")) >= version.parse(min_version)
+
+ if not is_peft_version_compatible:
+ raise ValueError(
+ f"The version of PEFT you are using is not compatible, please use a version that is greater"
+ f" than {min_version}"
+ )
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/utils/quantization_config.py b/llmeval-env/lib/python3.10/site-packages/transformers/utils/quantization_config.py
new file mode 100644
index 0000000000000000000000000000000000000000..d91ecef16e37e158c7eb4bbe9072b31d01d691de
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/utils/quantization_config.py
@@ -0,0 +1,895 @@
+#!/usr/bin/env python
+# coding=utf-8
+
+# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+import copy
+import importlib.metadata
+import json
+import os
+from dataclasses import dataclass
+from enum import Enum
+from typing import Any, Dict, List, Optional, Union
+
+from packaging import version
+
+from ..utils import is_auto_awq_available, is_torch_available, logging
+
+
+if is_torch_available():
+ import torch
+
+
+logger = logging.get_logger(__name__)
+
+
+class QuantizationMethod(str, Enum):
+ BITS_AND_BYTES = "bitsandbytes"
+ GPTQ = "gptq"
+ AWQ = "awq"
+ AQLM = "aqlm"
+ QUANTO = "quanto"
+
+
+class AWQLinearVersion(str, Enum):
+ GEMM = "gemm"
+ GEMV = "gemv"
+ EXLLAMA = "exllama"
+
+ @staticmethod
+ def from_str(version: str):
+ version = version.lower()
+ if version == "gemm":
+ return AWQLinearVersion.GEMM
+ elif version == "gemv":
+ return AWQLinearVersion.GEMV
+ elif version == "exllama":
+ return AWQLinearVersion.EXLLAMA
+ else:
+ raise ValueError(f"Unknown AWQLinearVersion {version}")
+
+
+class AwqBackendPackingMethod(str, Enum):
+ AUTOAWQ = "autoawq"
+ LLMAWQ = "llm-awq"
+
+
+@dataclass
+class QuantizationConfigMixin:
+ """
+ Mixin class for quantization config
+ """
+
+ quant_method: QuantizationMethod
+
+ @classmethod
+ def from_dict(cls, config_dict, return_unused_kwargs=False, **kwargs):
+ """
+ Instantiates a [`QuantizationConfigMixin`] from a Python dictionary of parameters.
+
+ Args:
+ config_dict (`Dict[str, Any]`):
+ Dictionary that will be used to instantiate the configuration object.
+ return_unused_kwargs (`bool`,*optional*, defaults to `False`):
+ Whether or not to return a list of unused keyword arguments. Used for `from_pretrained` method in
+ `PreTrainedModel`.
+ kwargs (`Dict[str, Any]`):
+ Additional parameters from which to initialize the configuration object.
+
+ Returns:
+ [`QuantizationConfigMixin`]: The configuration object instantiated from those parameters.
+ """
+
+ config = cls(**config_dict)
+
+ to_remove = []
+ for key, value in kwargs.items():
+ if hasattr(config, key):
+ setattr(config, key, value)
+ to_remove.append(key)
+ for key in to_remove:
+ kwargs.pop(key, None)
+
+ if return_unused_kwargs:
+ return config, kwargs
+ else:
+ return config
+
+ def to_json_file(self, json_file_path: Union[str, os.PathLike]):
+ """
+ Save this instance to a JSON file.
+
+ Args:
+ json_file_path (`str` or `os.PathLike`):
+ Path to the JSON file in which this configuration instance's parameters will be saved.
+ use_diff (`bool`, *optional*, defaults to `True`):
+ If set to `True`, only the difference between the config instance and the default
+ `QuantizationConfig()` is serialized to JSON file.
+ """
+ with open(json_file_path, "w", encoding="utf-8") as writer:
+ config_dict = self.to_dict()
+ json_string = json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
+
+ writer.write(json_string)
+
+ def to_dict(self) -> Dict[str, Any]:
+ """
+ Serializes this instance to a Python dictionary. Returns:
+ `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
+ """
+ return copy.deepcopy(self.__dict__)
+
+ def __iter__(self):
+ """allows `dict(obj)` for situations where obj may be a dict or QuantizationConfigMixin"""
+ for attr, value in copy.deepcopy(self.__dict__).items():
+ yield attr, value
+
+ def __repr__(self):
+ return f"{self.__class__.__name__} {self.to_json_string()}"
+
+ def to_json_string(self, use_diff: bool = True) -> str:
+ """
+ Serializes this instance to a JSON string.
+
+ Args:
+ use_diff (`bool`, *optional*, defaults to `True`):
+ If set to `True`, only the difference between the config instance and the default `PretrainedConfig()`
+ is serialized to JSON string.
+
+ Returns:
+ `str`: String containing all the attributes that make up this configuration instance in JSON format.
+ """
+ if use_diff is True:
+ config_dict = self.to_diff_dict()
+ else:
+ config_dict = self.to_dict()
+ return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
+
+ def update(self, **kwargs):
+ """
+ Updates attributes of this class instance with attributes from `kwargs` if they match existing atributtes,
+ returning all the unused kwargs.
+
+ Args:
+ kwargs (`Dict[str, Any]`):
+ Dictionary of attributes to tentatively update this class.
+
+ Returns:
+ `Dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance.
+ """
+ to_remove = []
+ for key, value in kwargs.items():
+ if hasattr(self, key):
+ setattr(self, key, value)
+ to_remove.append(key)
+
+ # Remove all the attributes that were updated, without modifying the input dict
+ unused_kwargs = {key: value for key, value in kwargs.items() if key not in to_remove}
+ return unused_kwargs
+
+
+@dataclass
+class BitsAndBytesConfig(QuantizationConfigMixin):
+ """
+ This is a wrapper class about all possible attributes and features that you can play with a model that has been
+ loaded using `bitsandbytes`.
+
+ This replaces `load_in_8bit` or `load_in_4bit`therefore both options are mutually exclusive.
+
+ Currently only supports `LLM.int8()`, `FP4`, and `NF4` quantization. If more methods are added to `bitsandbytes`,
+ then more arguments will be added to this class.
+
+ Args:
+ load_in_8bit (`bool`, *optional*, defaults to `False`):
+ This flag is used to enable 8-bit quantization with LLM.int8().
+ load_in_4bit (`bool`, *optional*, defaults to `False`):
+ This flag is used to enable 4-bit quantization by replacing the Linear layers with FP4/NF4 layers from
+ `bitsandbytes`.
+ llm_int8_threshold (`float`, *optional*, defaults to 6.0):
+ This corresponds to the outlier threshold for outlier detection as described in `LLM.int8() : 8-bit Matrix
+ Multiplication for Transformers at Scale` paper: https://arxiv.org/abs/2208.07339 Any hidden states value
+ that is above this threshold will be considered an outlier and the operation on those values will be done
+ in fp16. Values are usually normally distributed, that is, most values are in the range [-3.5, 3.5], but
+ there are some exceptional systematic outliers that are very differently distributed for large models.
+ These outliers are often in the interval [-60, -6] or [6, 60]. Int8 quantization works well for values of
+ magnitude ~5, but beyond that, there is a significant performance penalty. A good default threshold is 6,
+ but a lower threshold might be needed for more unstable models (small models, fine-tuning).
+ llm_int8_skip_modules (`List[str]`, *optional*):
+ An explicit list of the modules that we do not want to convert in 8-bit. This is useful for models such as
+ Jukebox that has several heads in different places and not necessarily at the last position. For example
+ for `CausalLM` models, the last `lm_head` is kept in its original `dtype`.
+ llm_int8_enable_fp32_cpu_offload (`bool`, *optional*, defaults to `False`):
+ This flag is used for advanced use cases and users that are aware of this feature. If you want to split
+ your model in different parts and run some parts in int8 on GPU and some parts in fp32 on CPU, you can use
+ this flag. This is useful for offloading large models such as `google/flan-t5-xxl`. Note that the int8
+ operations will not be run on CPU.
+ llm_int8_has_fp16_weight (`bool`, *optional*, defaults to `False`):
+ This flag runs LLM.int8() with 16-bit main weights. This is useful for fine-tuning as the weights do not
+ have to be converted back and forth for the backward pass.
+ bnb_4bit_compute_dtype (`torch.dtype` or str, *optional*, defaults to `torch.float32`):
+ This sets the computational type which might be different than the input type. For example, inputs might be
+ fp32, but computation can be set to bf16 for speedups.
+ bnb_4bit_quant_type (`str`, *optional*, defaults to `"fp4"`):
+ This sets the quantization data type in the bnb.nn.Linear4Bit layers. Options are FP4 and NF4 data types
+ which are specified by `fp4` or `nf4`.
+ bnb_4bit_use_double_quant (`bool`, *optional*, defaults to `False`):
+ This flag is used for nested quantization where the quantization constants from the first quantization are
+ quantized again.
+ bnb_4bit_quant_storage (`torch.dtype` or str, *optional*, defaults to `torch.uint8`):
+ This sets the storage type to pack the quanitzed 4-bit prarams.
+ kwargs (`Dict[str, Any]`, *optional*):
+ Additional parameters from which to initialize the configuration object.
+ """
+
+ def __init__(
+ self,
+ load_in_8bit=False,
+ load_in_4bit=False,
+ llm_int8_threshold=6.0,
+ llm_int8_skip_modules=None,
+ llm_int8_enable_fp32_cpu_offload=False,
+ llm_int8_has_fp16_weight=False,
+ bnb_4bit_compute_dtype=None,
+ bnb_4bit_quant_type="fp4",
+ bnb_4bit_use_double_quant=False,
+ bnb_4bit_quant_storage=None,
+ **kwargs,
+ ):
+ self.quant_method = QuantizationMethod.BITS_AND_BYTES
+
+ if load_in_4bit and load_in_8bit:
+ raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time")
+
+ self._load_in_8bit = load_in_8bit
+ self._load_in_4bit = load_in_4bit
+ self.llm_int8_threshold = llm_int8_threshold
+ self.llm_int8_skip_modules = llm_int8_skip_modules
+ self.llm_int8_enable_fp32_cpu_offload = llm_int8_enable_fp32_cpu_offload
+ self.llm_int8_has_fp16_weight = llm_int8_has_fp16_weight
+ self.bnb_4bit_quant_type = bnb_4bit_quant_type
+ self.bnb_4bit_use_double_quant = bnb_4bit_use_double_quant
+
+ if bnb_4bit_compute_dtype is None:
+ self.bnb_4bit_compute_dtype = torch.float32
+ elif isinstance(bnb_4bit_compute_dtype, str):
+ self.bnb_4bit_compute_dtype = getattr(torch, bnb_4bit_compute_dtype)
+ elif isinstance(bnb_4bit_compute_dtype, torch.dtype):
+ self.bnb_4bit_compute_dtype = bnb_4bit_compute_dtype
+ else:
+ raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype")
+
+ if bnb_4bit_quant_storage is None:
+ self.bnb_4bit_quant_storage = torch.uint8
+ elif isinstance(bnb_4bit_quant_storage, str):
+ self.bnb_4bit_quant_storage = getattr(torch, bnb_4bit_quant_storage)
+ elif isinstance(bnb_4bit_quant_storage, torch.dtype):
+ self.bnb_4bit_quant_storage = bnb_4bit_quant_storage
+ else:
+ raise ValueError("bnb_4bit_quant_storage must be a string or a torch.dtype")
+
+ if kwargs:
+ logger.warning(f"Unused kwargs: {list(kwargs.keys())}. These kwargs are not used in {self.__class__}.")
+
+ self.post_init()
+
+ @property
+ def load_in_4bit(self):
+ return self._load_in_4bit
+
+ @load_in_4bit.setter
+ def load_in_4bit(self, value: bool):
+ if not isinstance(value, bool):
+ raise ValueError("load_in_4bit must be a boolean")
+
+ if self.load_in_8bit and value:
+ raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time")
+ self._load_in_4bit = value
+
+ @property
+ def load_in_8bit(self):
+ return self._load_in_8bit
+
+ @load_in_8bit.setter
+ def load_in_8bit(self, value: bool):
+ if not isinstance(value, bool):
+ raise ValueError("load_in_8bit must be a boolean")
+
+ if self.load_in_4bit and value:
+ raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time")
+ self._load_in_8bit = value
+
+ def post_init(self):
+ r"""
+ Safety checker that arguments are correct - also replaces some NoneType arguments with their default values.
+ """
+ if not isinstance(self.load_in_4bit, bool):
+ raise ValueError("load_in_4bit must be a boolean")
+
+ if not isinstance(self.load_in_8bit, bool):
+ raise ValueError("load_in_8bit must be a boolean")
+
+ if not isinstance(self.llm_int8_threshold, float):
+ raise ValueError("llm_int8_threshold must be a float")
+
+ if self.llm_int8_skip_modules is not None and not isinstance(self.llm_int8_skip_modules, list):
+ raise ValueError("llm_int8_skip_modules must be a list of strings")
+ if not isinstance(self.llm_int8_enable_fp32_cpu_offload, bool):
+ raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean")
+
+ if not isinstance(self.llm_int8_has_fp16_weight, bool):
+ raise ValueError("llm_int8_has_fp16_weight must be a boolean")
+
+ if self.bnb_4bit_compute_dtype is not None and not isinstance(self.bnb_4bit_compute_dtype, torch.dtype):
+ raise ValueError("bnb_4bit_compute_dtype must be torch.dtype")
+
+ if not isinstance(self.bnb_4bit_quant_type, str):
+ raise ValueError("bnb_4bit_quant_type must be a string")
+
+ if not isinstance(self.bnb_4bit_use_double_quant, bool):
+ raise ValueError("bnb_4bit_use_double_quant must be a boolean")
+
+ if self.load_in_4bit and not version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse(
+ "0.39.0"
+ ):
+ raise ValueError(
+ "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version"
+ )
+
+ def is_quantizable(self):
+ r"""
+ Returns `True` if the model is quantizable, `False` otherwise.
+ """
+ return self.load_in_8bit or self.load_in_4bit
+
+ def quantization_method(self):
+ r"""
+ This method returns the quantization method used for the model. If the model is not quantizable, it returns
+ `None`.
+ """
+ if self.load_in_8bit:
+ return "llm_int8"
+ elif self.load_in_4bit and self.bnb_4bit_quant_type == "fp4":
+ return "fp4"
+ elif self.load_in_4bit and self.bnb_4bit_quant_type == "nf4":
+ return "nf4"
+ else:
+ return None
+
+ def to_dict(self) -> Dict[str, Any]:
+ """
+ Serializes this instance to a Python dictionary. Returns:
+ `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
+ """
+ output = copy.deepcopy(self.__dict__)
+ output["bnb_4bit_compute_dtype"] = str(output["bnb_4bit_compute_dtype"]).split(".")[1]
+ output["bnb_4bit_quant_storage"] = str(output["bnb_4bit_quant_storage"]).split(".")[1]
+ output["load_in_4bit"] = self.load_in_4bit
+ output["load_in_8bit"] = self.load_in_8bit
+
+ return output
+
+ def __repr__(self):
+ config_dict = self.to_dict()
+ return f"{self.__class__.__name__} {json.dumps(config_dict, indent=2, sort_keys=True)}\n"
+
+ def to_diff_dict(self) -> Dict[str, Any]:
+ """
+ Removes all attributes from config which correspond to the default config attributes for better readability and
+ serializes to a Python dictionary.
+
+ Returns:
+ `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
+ """
+ config_dict = self.to_dict()
+
+ # get the default config dict
+ default_config_dict = BitsAndBytesConfig().to_dict()
+
+ serializable_config_dict = {}
+
+ # only serialize values that differ from the default config
+ for key, value in config_dict.items():
+ if value != default_config_dict[key]:
+ serializable_config_dict[key] = value
+
+ return serializable_config_dict
+
+
+class ExllamaVersion(int, Enum):
+ ONE = 1
+ TWO = 2
+
+
+@dataclass
+class GPTQConfig(QuantizationConfigMixin):
+ """
+ This is a wrapper class about all possible attributes and features that you can play with a model that has been
+ loaded using `optimum` api for gptq quantization relying on auto_gptq backend.
+
+ Args:
+ bits (`int`):
+ The number of bits to quantize to, supported numbers are (2, 3, 4, 8).
+ tokenizer (`str` or `PreTrainedTokenizerBase`, *optional*):
+ The tokenizer used to process the dataset. You can pass either:
+ - A custom tokenizer object.
+ - A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co.
+ - A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved
+ using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
+ dataset (`Union[List[str]]`, *optional*):
+ The dataset used for quantization. You can provide your own dataset in a list of string or just use the
+ original datasets used in GPTQ paper ['wikitext2','c4','c4-new','ptb','ptb-new']
+ group_size (`int`, *optional*, defaults to 128):
+ The group size to use for quantization. Recommended value is 128 and -1 uses per-column quantization.
+ damp_percent (`float`, *optional*, defaults to 0.1):
+ The percent of the average Hessian diagonal to use for dampening. Recommended value is 0.1.
+ desc_act (`bool`, *optional*, defaults to `False`):
+ Whether to quantize columns in order of decreasing activation size. Setting it to False can significantly
+ speed up inference but the perplexity may become slightly worse. Also known as act-order.
+ sym (`bool`, *optional*, defaults to `True`):
+ Whether to use symetric quantization.
+ true_sequential (`bool`, *optional*, defaults to `True`):
+ Whether to perform sequential quantization even within a single Transformer block. Instead of quantizing
+ the entire block at once, we perform layer-wise quantization. As a result, each layer undergoes
+ quantization using inputs that have passed through the previously quantized layers.
+ use_cuda_fp16 (`bool`, *optional*, defaults to `False`):
+ Whether or not to use optimized cuda kernel for fp16 model. Need to have model in fp16.
+ model_seqlen (`int`, *optional*):
+ The maximum sequence length that the model can take.
+ block_name_to_quantize (`str`, *optional*):
+ The transformers block name to quantize. If None, we will infer the block name using common patterns (e.g. model.layers)
+ module_name_preceding_first_block (`List[str]`, *optional*):
+ The layers that are preceding the first Transformer block.
+ batch_size (`int`, *optional*, defaults to 1):
+ The batch size used when processing the dataset
+ pad_token_id (`int`, *optional*):
+ The pad token id. Needed to prepare the dataset when `batch_size` > 1.
+ use_exllama (`bool`, *optional*):
+ Whether to use exllama backend. Defaults to `True` if unset. Only works with `bits` = 4.
+ max_input_length (`int`, *optional*):
+ The maximum input length. This is needed to initialize a buffer that depends on the maximum expected input
+ length. It is specific to the exllama backend with act-order.
+ exllama_config (`Dict[str, Any]`, *optional*):
+ The exllama config. You can specify the version of the exllama kernel through the `version` key. Defaults
+ to `{"version": 1}` if unset.
+ cache_block_outputs (`bool`, *optional*, defaults to `True`):
+ Whether to cache block outputs to reuse as inputs for the succeeding block.
+ modules_in_block_to_quantize (`List[List[str]]`, *optional*):
+ List of list of module names to quantize in the specified block. This argument is useful to exclude certain linear modules from being quantized.
+ The block to quantize can be specified by setting `block_name_to_quantize`. We will quantize each list sequentially. If not set, we will quantize all linear layers.
+ Example: `modules_in_block_to_quantize =[["self_attn.k_proj", "self_attn.v_proj", "self_attn.q_proj"], ["self_attn.o_proj"]]`.
+ In this example, we will first quantize the q,k,v layers simultaneously since they are independent.
+ Then, we will quantize `self_attn.o_proj` layer with the q,k,v layers quantized. This way, we will get
+ better results since it reflects the real input `self_attn.o_proj` will get when the model is quantized.
+ """
+
+ def __init__(
+ self,
+ bits: int,
+ tokenizer: Any = None,
+ dataset: Optional[Union[List[str], str]] = None,
+ group_size: int = 128,
+ damp_percent: float = 0.1,
+ desc_act: bool = False,
+ sym: bool = True,
+ true_sequential: bool = True,
+ use_cuda_fp16: bool = False,
+ model_seqlen: Optional[int] = None,
+ block_name_to_quantize: Optional[str] = None,
+ module_name_preceding_first_block: Optional[List[str]] = None,
+ batch_size: int = 1,
+ pad_token_id: Optional[int] = None,
+ use_exllama: Optional[bool] = None,
+ max_input_length: Optional[int] = None,
+ exllama_config: Optional[Dict[str, Any]] = None,
+ cache_block_outputs: bool = True,
+ modules_in_block_to_quantize: Optional[List[List[str]]] = None,
+ **kwargs,
+ ):
+ self.quant_method = QuantizationMethod.GPTQ
+ self.bits = bits
+ self.tokenizer = tokenizer
+ self.dataset = dataset
+ self.group_size = group_size
+ self.damp_percent = damp_percent
+ self.desc_act = desc_act
+ self.sym = sym
+ self.true_sequential = true_sequential
+ self.use_cuda_fp16 = use_cuda_fp16
+ self.model_seqlen = model_seqlen
+ self.block_name_to_quantize = block_name_to_quantize
+ self.module_name_preceding_first_block = module_name_preceding_first_block
+ self.batch_size = batch_size
+ self.pad_token_id = pad_token_id
+ self.use_exllama = use_exllama
+ self.max_input_length = max_input_length
+ self.exllama_config = exllama_config
+ self.disable_exllama = kwargs.pop("disable_exllama", None)
+ self.cache_block_outputs = cache_block_outputs
+ self.modules_in_block_to_quantize = modules_in_block_to_quantize
+ self.post_init()
+
+ def get_loading_attributes(self):
+ attibutes_dict = copy.deepcopy(self.__dict__)
+ loading_attibutes = ["disable_exllama", "use_exllama", "exllama_config", "use_cuda_fp16", "max_input_length"]
+ loading_attibutes_dict = {i: j for i, j in attibutes_dict.items() if i in loading_attibutes}
+ return loading_attibutes_dict
+
+ def post_init(self):
+ r"""
+ Safety checker that arguments are correct
+ """
+ if self.bits not in [2, 3, 4, 8]:
+ raise ValueError(f"Only support quantization to [2,3,4,8] bits but found {self.bits}")
+ if self.group_size != -1 and self.group_size <= 0:
+ raise ValueError("group_size must be greater than 0 or equal to -1")
+ if not (0 < self.damp_percent < 1):
+ raise ValueError("damp_percent must between 0 and 1.")
+ if self.dataset is not None:
+ if isinstance(self.dataset, str):
+ if self.dataset not in ["wikitext2", "c4", "c4-new", "ptb", "ptb-new"]:
+ raise ValueError(
+ f"""You have entered a string value for dataset. You can only choose between
+ ['wikitext2','c4','c4-new','ptb','ptb-new'], but we found {self.dataset}"""
+ )
+ elif not isinstance(self.dataset, list):
+ raise ValueError(
+ f"""dataset needs to be either a list of string or a value in
+ ['wikitext2','c4','c4-new','ptb','ptb-new'], but we found {self.dataset}"""
+ )
+
+ if self.disable_exllama is None and self.use_exllama is None:
+ # New default behaviour
+ self.use_exllama = True
+ elif self.disable_exllama is not None and self.use_exllama is None:
+ # Follow pattern of old config
+ logger.warning(
+ "Using `disable_exllama` is deprecated and will be removed in version 4.37. Use `use_exllama` instead and specify the version with `exllama_config`."
+ "The value of `use_exllama` will be overwritten by `disable_exllama` passed in `GPTQConfig` or stored in your config file."
+ )
+ self.use_exllama = not self.disable_exllama
+ self.disable_exllama = None
+ elif self.disable_exllama is not None and self.use_exllama is not None:
+ # Only happens if user explicitly passes in both arguments
+ raise ValueError("Cannot specify both `disable_exllama` and `use_exllama`. Please use just `use_exllama`")
+
+ if self.exllama_config is None:
+ self.exllama_config = {"version": ExllamaVersion.ONE}
+ else:
+ if "version" not in self.exllama_config:
+ raise ValueError("`exllama_config` needs to have a `version` key.")
+ elif self.exllama_config["version"] not in [ExllamaVersion.ONE, ExllamaVersion.TWO]:
+ exllama_version = self.exllama_config["version"]
+ raise ValueError(
+ f"Only supported versions are in [ExllamaVersion.ONE, ExllamaVersion.TWO] - not recognized version {exllama_version}"
+ )
+
+ if self.bits == 4 and self.use_exllama:
+ if self.exllama_config["version"] == ExllamaVersion.ONE:
+ logger.info(
+ "You have activated exllama backend. Note that you can get better inference "
+ "speed using exllamav2 kernel by setting `exllama_config`."
+ )
+ elif self.exllama_config["version"] == ExllamaVersion.TWO:
+ optimum_version = version.parse(importlib.metadata.version("optimum"))
+ autogptq_version = version.parse(importlib.metadata.version("auto_gptq"))
+ if optimum_version <= version.parse("1.13.2") or autogptq_version <= version.parse("0.4.2"):
+ raise ValueError(
+ f"You need optimum > 1.13.2 and auto-gptq > 0.4.2 . Make sure to have that version installed - detected version : optimum {optimum_version} and autogptq {autogptq_version}"
+ )
+ if self.modules_in_block_to_quantize is not None:
+ optimum_version = version.parse(importlib.metadata.version("optimum"))
+ if optimum_version < version.parse("1.15.0"):
+ raise ValueError(
+ "You current version of `optimum` does not support `modules_in_block_to_quantize` quantization argument, please upgrade `optimum` package to a version superior than 1.15.0 ."
+ )
+
+ def to_dict(self):
+ config_dict = super().to_dict()
+ config_dict.pop("disable_exllama", None)
+ return config_dict
+
+ def to_dict_optimum(self):
+ """
+ Get compatible dict for optimum gptq config
+ """
+ quant_dict = self.to_dict()
+ # make it compatible with optimum config
+ quant_dict["disable_exllama"] = not self.use_exllama
+ return quant_dict
+
+ @classmethod
+ def from_dict_optimum(cls, config_dict):
+ """
+ Get compatible class with optimum gptq config dict
+ """
+
+ if "disable_exllama" in config_dict:
+ config_dict["use_exllama"] = not config_dict["disable_exllama"]
+ # switch to None to not trigger the warning
+ config_dict["disable_exllama"] = None
+
+ config = cls(**config_dict)
+ return config
+
+
+@dataclass
+class AwqConfig(QuantizationConfigMixin):
+ """
+ This is a wrapper class about all possible attributes and features that you can play with a model that has been
+ loaded using `auto-awq` library awq quantization relying on auto_awq backend.
+
+ Args:
+ bits (`int`, *optional*, defaults to 4):
+ The number of bits to quantize to.
+ group_size (`int`, *optional*, defaults to 128):
+ The group size to use for quantization. Recommended value is 128 and -1 uses per-column quantization.
+ zero_point (`bool`, *optional*, defaults to `True`):
+ Whether to use zero point quantization.
+ version (`AWQLinearVersion`, *optional*, defaults to `AWQLinearVersion.GEMM`):
+ The version of the quantization algorithm to use. GEMM is better for big batch_size (e.g. >= 8) otherwise,
+ GEMV is better (e.g. < 8 ). GEMM models are compatible with Exllama kernels.
+ backend (`AwqBackendPackingMethod`, *optional*, defaults to `AwqBackendPackingMethod.AUTOAWQ`):
+ The quantization backend. Some models might be quantized using `llm-awq` backend. This is useful for users
+ that quantize their own models using `llm-awq` library.
+ do_fuse (`bool`, *optional*, defaults to `False`):
+ Whether to fuse attention and mlp layers together for faster inference
+ fuse_max_seq_len (`int`, *optional*):
+ The Maximum sequence length to generate when using fusing.
+ modules_to_fuse (`dict`, *optional*, default to `None`):
+ Overwrite the natively supported fusing scheme with the one specified by the users.
+ modules_to_not_convert (`list`, *optional*, default to `None`):
+ The list of modules to not quantize, useful for quantizing models that explicitly require to have
+ some modules left in their original precision (e.g. Whisper encoder, Llava encoder, Mixtral gate layers).
+ Note you cannot quantize directly with transformers, please refer to `AutoAWQ` documentation for quantizing HF models.
+ exllama_config (`Dict[str, Any]`, *optional*):
+ You can specify the version of the exllama kernel through the `version` key, the maximum sequence
+ length through the `max_input_len` key, and the maximum batch size through the `max_batch_size` key.
+ Defaults to `{"version": 2, "max_input_len": 2048, "max_batch_size": 8}` if unset.
+ """
+
+ def __init__(
+ self,
+ bits: int = 4,
+ group_size: int = 128,
+ zero_point: bool = True,
+ version: AWQLinearVersion = AWQLinearVersion.GEMM,
+ backend: AwqBackendPackingMethod = AwqBackendPackingMethod.AUTOAWQ,
+ do_fuse: Optional[bool] = None,
+ fuse_max_seq_len: Optional[int] = None,
+ modules_to_fuse: Optional[dict] = None,
+ modules_to_not_convert: Optional[List] = None,
+ exllama_config: Optional[Dict[str, int]] = None,
+ **kwargs,
+ ):
+ self.quant_method = QuantizationMethod.AWQ
+
+ self.bits = bits
+ self.group_size = group_size
+ self.zero_point = zero_point
+ self.version = version
+ self.backend = backend
+ self.fuse_max_seq_len = fuse_max_seq_len
+ self.modules_to_not_convert = modules_to_not_convert
+ self.exllama_config = exllama_config
+
+ self.modules_to_fuse = modules_to_fuse
+ if do_fuse is None:
+ self.do_fuse = modules_to_fuse is not None and len(modules_to_fuse) > 0
+ else:
+ self.do_fuse = do_fuse
+ self.fuse_max_seq_len = fuse_max_seq_len
+
+ self.post_init()
+
+ def post_init(self):
+ r"""
+ Safety checker that arguments are correct
+ """
+ if not torch.cuda.is_available():
+ raise ValueError("AWQ is only available on GPU")
+
+ if self.backend not in [AwqBackendPackingMethod.AUTOAWQ, AwqBackendPackingMethod.LLMAWQ]:
+ raise ValueError(
+ f"Only supported quantization backends in {AwqBackendPackingMethod.AUTOAWQ} and {AwqBackendPackingMethod.LLMAWQ} - not recognized backend {self.backend}"
+ )
+
+ self.version = AWQLinearVersion.from_str(self.version)
+ if self.version not in [AWQLinearVersion.GEMM, AWQLinearVersion.GEMV, AWQLinearVersion.EXLLAMA]:
+ raise ValueError(
+ f"Only supported versions are in [AWQLinearVersion.GEMM, AWQLinearVersion.GEMV, AWQLinearVersion.EXLLAMA] - not recognized version {self.version}"
+ )
+
+ if self.backend == AwqBackendPackingMethod.LLMAWQ:
+ compute_capability = torch.cuda.get_device_capability()
+ major, minor = compute_capability
+ if major < 8:
+ raise ValueError("LLM-AWQ backend is only supported on GPUs with compute capability >= 8.0")
+
+ if self.do_fuse and self.fuse_max_seq_len is None:
+ raise ValueError(
+ "You cannot enable fused modules without specifying a `fuse_max_seq_len`, make sure to pass a valid `fuse_max_seq_len` for your usecase"
+ )
+
+ if self.do_fuse:
+ awq_version_supports_fusing = False
+ MIN_AWQ_VERSION = "0.1.7"
+ if is_auto_awq_available():
+ awq_version_supports_fusing = version.parse(importlib.metadata.version("autoawq")) >= version.parse(
+ MIN_AWQ_VERSION
+ )
+
+ if not awq_version_supports_fusing:
+ raise ValueError(
+ f"You current version of `autoawq` does not support module fusing, please upgrade `autoawq` package to at least {MIN_AWQ_VERSION}."
+ )
+
+ if self.modules_to_not_convert is not None:
+ awq_version_supports_non_conversion = False
+ MIN_AWQ_VERSION = "0.1.8"
+ if is_auto_awq_available():
+ awq_version_supports_non_conversion = version.parse(
+ importlib.metadata.version("autoawq")
+ ) >= version.parse(MIN_AWQ_VERSION)
+
+ if not awq_version_supports_non_conversion:
+ raise ValueError(
+ f"You current version of `autoawq` does not support module quantization skipping, please upgrade `autoawq` package to at least {MIN_AWQ_VERSION}."
+ )
+
+ if self.do_fuse and self.modules_to_fuse is not None:
+ required_keys = [
+ "hidden_size",
+ "num_attention_heads",
+ "num_key_value_heads",
+ "mlp",
+ "attention",
+ "layernorm",
+ "use_alibi",
+ ]
+ if not all(key in self.modules_to_fuse for key in required_keys):
+ raise ValueError(
+ f"Required fields are missing in the fusing mapping, required fields are {required_keys}"
+ )
+
+ if self.version == AWQLinearVersion.EXLLAMA:
+ awq_version_supports_exllama = False
+ MIN_AWQ_VERSION = "0.2.0"
+ if is_auto_awq_available():
+ awq_version_supports_exllama = version.parse(importlib.metadata.version("autoawq")) >= version.parse(
+ MIN_AWQ_VERSION
+ )
+
+ if not awq_version_supports_exllama:
+ raise ValueError(
+ f"You current version of `autoawq` does not support exllama backend, "
+ f"please upgrade `autoawq` package to at least {MIN_AWQ_VERSION}."
+ )
+
+ if self.exllama_config is None:
+ self.exllama_config = {"version": ExllamaVersion.TWO, "max_input_len": 2048, "max_batch_size": 8}
+ else:
+ if "version" not in self.exllama_config:
+ raise ValueError("`exllama_config` needs to have a `version` key.")
+ elif self.exllama_config["version"] not in [ExllamaVersion.ONE, ExllamaVersion.TWO]:
+ exllama_version = self.exllama_config["version"]
+ raise ValueError(
+ f"Only supported versions are in [ExllamaVersion.ONE, ExllamaVersion.TWO] - not recognized version {exllama_version}"
+ )
+
+ def get_loading_attributes(self):
+ attibutes_dict = copy.deepcopy(self.__dict__)
+ loading_attibutes = ["version", "do_fuse", "modules_to_fuse", "fuse_max_seq_len", "exllama_config"]
+ loading_attibutes_dict = {i: j for i, j in attibutes_dict.items() if i in loading_attibutes}
+ return loading_attibutes_dict
+
+
+@dataclass
+class AqlmConfig(QuantizationConfigMixin):
+ """
+ This is a wrapper class about `aqlm` parameters.
+
+ Args:
+ in_group_size (`int`, *optional*, defaults to 8):
+ The group size along the input dimension.
+ out_group_size (`int`, *optional*, defaults to 1):
+ The group size along the output dimension. It's recommended to always use 1.
+ num_codebooks (`int`, *optional*, defaults to 1):
+ Number of codebooks for the Additive Quantization procedure.
+ nbits_per_codebook (`int`, *optional*, defaults to 16):
+ Number of bits encoding a single codebook vector. Codebooks size is 2**nbits_per_codebook.
+ linear_weights_not_to_quantize (`Optional[List[str]]`, *optional*):
+ List of full paths of `nn.Linear` weight parameters that shall not be quantized.
+ kwargs (`Dict[str, Any]`, *optional*):
+ Additional parameters from which to initialize the configuration object.
+ """
+
+ def __init__(
+ self,
+ in_group_size: int = 8,
+ out_group_size: int = 1,
+ num_codebooks: int = 1,
+ nbits_per_codebook: int = 16,
+ linear_weights_not_to_quantize: Optional[List[str]] = None,
+ **kwargs,
+ ):
+ self.quant_method = QuantizationMethod.AQLM
+ self.in_group_size = in_group_size
+ self.out_group_size = out_group_size
+ self.num_codebooks = num_codebooks
+ self.nbits_per_codebook = nbits_per_codebook
+ self.linear_weights_not_to_quantize = linear_weights_not_to_quantize
+
+ self.post_init()
+
+ def post_init(self):
+ r"""
+ Safety checker that arguments are correct - also replaces some NoneType arguments with their default values.
+ """
+ if not isinstance(self.in_group_size, int):
+ raise ValueError("in_group_size must be a float")
+ if not isinstance(self.out_group_size, int):
+ raise ValueError("out_group_size must be a float")
+ if not isinstance(self.num_codebooks, int):
+ raise ValueError("num_codebooks must be a float")
+ if not isinstance(self.nbits_per_codebook, int):
+ raise ValueError("nbits_per_codebook must be a float")
+
+ if self.linear_weights_not_to_quantize is not None and not isinstance(
+ self.linear_weights_not_to_quantize, list
+ ):
+ raise ValueError("linear_weights_not_to_quantize must be a list of strings")
+
+ if self.linear_weights_not_to_quantize is None:
+ self.linear_weights_not_to_quantize = []
+
+
+@dataclass
+class QuantoConfig(QuantizationConfigMixin):
+ """
+ This is a wrapper class about all possible attributes and features that you can play with a model that has been
+ loaded using `quanto`.
+
+ Args:
+ weights (`str`, *optional*, defaults to `"int8"`):
+ The target dtype for the weights after quantization. Supported values are ("float8","int8","int4","int2")
+ activations (`str`, *optional*):
+ The target dtype for the activations after quantization. Supported values are (None,"int8","float8")
+ modules_to_not_convert (`list`, *optional*, default to `None`):
+ The list of modules to not quantize, useful for quantizing models that explicitly require to have
+ some modules left in their original precision (e.g. Whisper encoder, Llava encoder, Mixtral gate layers).
+ """
+
+ def __init__(
+ self,
+ weights="int8",
+ activations=None,
+ modules_to_not_convert: Optional[List] = None,
+ **kwargs,
+ ):
+ self.quant_method = QuantizationMethod.QUANTO
+ self.weights = weights
+ self.activations = activations
+ self.modules_to_not_convert = modules_to_not_convert
+ self.post_init()
+
+ def post_init(self):
+ r"""
+ Safety checker that arguments are correct
+ """
+ accepted_weights = ["float8", "int8", "int4", "int2"]
+ accepted_activations = [None, "int8", "float8"]
+ if self.weights not in accepted_weights:
+ raise ValueError(f"Only support weights in {accepted_weights} but found {self.weights}")
+ if self.activations not in accepted_activations:
+ raise ValueError(f"Only support weights in {accepted_activations} but found {self.activations}")
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/utils/sentencepiece_model_pb2.py b/llmeval-env/lib/python3.10/site-packages/transformers/utils/sentencepiece_model_pb2.py
new file mode 100644
index 0000000000000000000000000000000000000000..b4b2992a6308c9f98f68486998d57d00bbdc1e34
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/utils/sentencepiece_model_pb2.py
@@ -0,0 +1,1511 @@
+# Generated by the protocol buffer compiler. DO NOT EDIT!
+# source: sentencepiece_model.proto
+
+# Copyright 2022 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+from google.protobuf import descriptor as _descriptor
+from google.protobuf import message as _message
+from google.protobuf import reflection as _reflection
+from google.protobuf import symbol_database as _symbol_database
+
+
+# @@protoc_insertion_point(imports)
+
+_sym_db = _symbol_database.Default()
+
+
+DESCRIPTOR = _descriptor.FileDescriptor(
+ name="sentencepiece_model.proto",
+ package="sentencepiece",
+ syntax="proto2",
+ serialized_options=b"H\003",
+ create_key=_descriptor._internal_create_key,
+ serialized_pb=(
+ b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\xa1\n\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01'
+ b" \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02"
+ b" \x01(\t\x12\x41\n\nmodel_type\x18\x03"
+ b" \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04"
+ b" \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12"
+ b' \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n'
+ b" \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b"
+ b" \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12"
+ b' \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r'
+ b" \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e"
+ b" \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f"
+ b" \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12"
+ b" \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10"
+ b" \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11"
+ b" \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14"
+ b" \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15"
+ b" \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17"
+ b" \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16"
+ b" \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18"
+ b" \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19"
+ b" \x01(\x08:\x05\x66\x61lse\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e"
+ b" \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$"
+ b" \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18"
+ b' \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18"'
+ b" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18)"
+ b" \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+"
+ b" \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05\x12\x16\n\tbos_piece\x18."
+ b" \x01(\t:\x03\x12\x17\n\teos_piece\x18/ \x01(\t:\x04\x12\x18\n\tpad_piece\x18\x30"
+ b" \x01(\t:\x05\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87"
+ b" \x12+\n\x1ctrain_extremely_large_corpus\x18\x31"
+ b' \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01'
+ b" \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03"
+ b" \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12"
+ b" \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06"
+ b' \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01'
+ b' \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01'
+ b" \x01(\t\x12\x10\n\x08\x65xpected\x18\x02"
+ b' \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01'
+ b" \x03(\x0b\x32'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02"
+ b" \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03"
+ b" \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04"
+ b" \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05"
+ b" \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01"
+ b" \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03"
+ b' \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
+ ),
+)
+
+
+_TRAINERSPEC_MODELTYPE = _descriptor.EnumDescriptor(
+ name="ModelType",
+ full_name="sentencepiece.TrainerSpec.ModelType",
+ filename=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ values=[
+ _descriptor.EnumValueDescriptor(
+ name="UNIGRAM",
+ index=0,
+ number=1,
+ serialized_options=None,
+ type=None,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.EnumValueDescriptor(
+ name="BPE",
+ index=1,
+ number=2,
+ serialized_options=None,
+ type=None,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.EnumValueDescriptor(
+ name="WORD",
+ index=2,
+ number=3,
+ serialized_options=None,
+ type=None,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.EnumValueDescriptor(
+ name="CHAR",
+ index=3,
+ number=4,
+ serialized_options=None,
+ type=None,
+ create_key=_descriptor._internal_create_key,
+ ),
+ ],
+ containing_type=None,
+ serialized_options=None,
+ serialized_start=1294,
+ serialized_end=1347,
+)
+_sym_db.RegisterEnumDescriptor(_TRAINERSPEC_MODELTYPE)
+
+_MODELPROTO_SENTENCEPIECE_TYPE = _descriptor.EnumDescriptor(
+ name="Type",
+ full_name="sentencepiece.ModelProto.SentencePiece.Type",
+ filename=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ values=[
+ _descriptor.EnumValueDescriptor(
+ name="NORMAL",
+ index=0,
+ number=1,
+ serialized_options=None,
+ type=None,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.EnumValueDescriptor(
+ name="UNKNOWN",
+ index=1,
+ number=2,
+ serialized_options=None,
+ type=None,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.EnumValueDescriptor(
+ name="CONTROL",
+ index=2,
+ number=3,
+ serialized_options=None,
+ type=None,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.EnumValueDescriptor(
+ name="USER_DEFINED",
+ index=3,
+ number=4,
+ serialized_options=None,
+ type=None,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.EnumValueDescriptor(
+ name="BYTE",
+ index=4,
+ number=6,
+ serialized_options=None,
+ type=None,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.EnumValueDescriptor(
+ name="UNUSED",
+ index=5,
+ number=5,
+ serialized_options=None,
+ type=None,
+ create_key=_descriptor._internal_create_key,
+ ),
+ ],
+ containing_type=None,
+ serialized_options=None,
+ serialized_start=2100,
+ serialized_end=2184,
+)
+_sym_db.RegisterEnumDescriptor(_MODELPROTO_SENTENCEPIECE_TYPE)
+
+
+_TRAINERSPEC = _descriptor.Descriptor(
+ name="TrainerSpec",
+ full_name="sentencepiece.TrainerSpec",
+ filename=None,
+ file=DESCRIPTOR,
+ containing_type=None,
+ create_key=_descriptor._internal_create_key,
+ fields=[
+ _descriptor.FieldDescriptor(
+ name="input",
+ full_name="sentencepiece.TrainerSpec.input",
+ index=0,
+ number=1,
+ type=9,
+ cpp_type=9,
+ label=3,
+ has_default_value=False,
+ default_value=[],
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="input_format",
+ full_name="sentencepiece.TrainerSpec.input_format",
+ index=1,
+ number=7,
+ type=9,
+ cpp_type=9,
+ label=1,
+ has_default_value=False,
+ default_value=b"".decode("utf-8"),
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="model_prefix",
+ full_name="sentencepiece.TrainerSpec.model_prefix",
+ index=2,
+ number=2,
+ type=9,
+ cpp_type=9,
+ label=1,
+ has_default_value=False,
+ default_value=b"".decode("utf-8"),
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="model_type",
+ full_name="sentencepiece.TrainerSpec.model_type",
+ index=3,
+ number=3,
+ type=14,
+ cpp_type=8,
+ label=1,
+ has_default_value=True,
+ default_value=1,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="vocab_size",
+ full_name="sentencepiece.TrainerSpec.vocab_size",
+ index=4,
+ number=4,
+ type=5,
+ cpp_type=1,
+ label=1,
+ has_default_value=True,
+ default_value=8000,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="accept_language",
+ full_name="sentencepiece.TrainerSpec.accept_language",
+ index=5,
+ number=5,
+ type=9,
+ cpp_type=9,
+ label=3,
+ has_default_value=False,
+ default_value=[],
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="self_test_sample_size",
+ full_name="sentencepiece.TrainerSpec.self_test_sample_size",
+ index=6,
+ number=6,
+ type=5,
+ cpp_type=1,
+ label=1,
+ has_default_value=True,
+ default_value=0,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="character_coverage",
+ full_name="sentencepiece.TrainerSpec.character_coverage",
+ index=7,
+ number=10,
+ type=2,
+ cpp_type=6,
+ label=1,
+ has_default_value=True,
+ default_value=float(0.9995),
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="input_sentence_size",
+ full_name="sentencepiece.TrainerSpec.input_sentence_size",
+ index=8,
+ number=11,
+ type=4,
+ cpp_type=4,
+ label=1,
+ has_default_value=True,
+ default_value=0,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="shuffle_input_sentence",
+ full_name="sentencepiece.TrainerSpec.shuffle_input_sentence",
+ index=9,
+ number=19,
+ type=8,
+ cpp_type=7,
+ label=1,
+ has_default_value=True,
+ default_value=True,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="mining_sentence_size",
+ full_name="sentencepiece.TrainerSpec.mining_sentence_size",
+ index=10,
+ number=12,
+ type=5,
+ cpp_type=1,
+ label=1,
+ has_default_value=False,
+ default_value=0,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=b"\030\001",
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="training_sentence_size",
+ full_name="sentencepiece.TrainerSpec.training_sentence_size",
+ index=11,
+ number=13,
+ type=5,
+ cpp_type=1,
+ label=1,
+ has_default_value=False,
+ default_value=0,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=b"\030\001",
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="seed_sentencepiece_size",
+ full_name="sentencepiece.TrainerSpec.seed_sentencepiece_size",
+ index=12,
+ number=14,
+ type=5,
+ cpp_type=1,
+ label=1,
+ has_default_value=True,
+ default_value=1000000,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="shrinking_factor",
+ full_name="sentencepiece.TrainerSpec.shrinking_factor",
+ index=13,
+ number=15,
+ type=2,
+ cpp_type=6,
+ label=1,
+ has_default_value=True,
+ default_value=float(0.75),
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="max_sentence_length",
+ full_name="sentencepiece.TrainerSpec.max_sentence_length",
+ index=14,
+ number=18,
+ type=5,
+ cpp_type=1,
+ label=1,
+ has_default_value=True,
+ default_value=4192,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="num_threads",
+ full_name="sentencepiece.TrainerSpec.num_threads",
+ index=15,
+ number=16,
+ type=5,
+ cpp_type=1,
+ label=1,
+ has_default_value=True,
+ default_value=16,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="num_sub_iterations",
+ full_name="sentencepiece.TrainerSpec.num_sub_iterations",
+ index=16,
+ number=17,
+ type=5,
+ cpp_type=1,
+ label=1,
+ has_default_value=True,
+ default_value=2,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="max_sentencepiece_length",
+ full_name="sentencepiece.TrainerSpec.max_sentencepiece_length",
+ index=17,
+ number=20,
+ type=5,
+ cpp_type=1,
+ label=1,
+ has_default_value=True,
+ default_value=16,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="split_by_unicode_script",
+ full_name="sentencepiece.TrainerSpec.split_by_unicode_script",
+ index=18,
+ number=21,
+ type=8,
+ cpp_type=7,
+ label=1,
+ has_default_value=True,
+ default_value=True,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="split_by_number",
+ full_name="sentencepiece.TrainerSpec.split_by_number",
+ index=19,
+ number=23,
+ type=8,
+ cpp_type=7,
+ label=1,
+ has_default_value=True,
+ default_value=True,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="split_by_whitespace",
+ full_name="sentencepiece.TrainerSpec.split_by_whitespace",
+ index=20,
+ number=22,
+ type=8,
+ cpp_type=7,
+ label=1,
+ has_default_value=True,
+ default_value=True,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="treat_whitespace_as_suffix",
+ full_name="sentencepiece.TrainerSpec.treat_whitespace_as_suffix",
+ index=21,
+ number=24,
+ type=8,
+ cpp_type=7,
+ label=1,
+ has_default_value=True,
+ default_value=False,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="split_digits",
+ full_name="sentencepiece.TrainerSpec.split_digits",
+ index=22,
+ number=25,
+ type=8,
+ cpp_type=7,
+ label=1,
+ has_default_value=True,
+ default_value=False,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="control_symbols",
+ full_name="sentencepiece.TrainerSpec.control_symbols",
+ index=23,
+ number=30,
+ type=9,
+ cpp_type=9,
+ label=3,
+ has_default_value=False,
+ default_value=[],
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="user_defined_symbols",
+ full_name="sentencepiece.TrainerSpec.user_defined_symbols",
+ index=24,
+ number=31,
+ type=9,
+ cpp_type=9,
+ label=3,
+ has_default_value=False,
+ default_value=[],
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="required_chars",
+ full_name="sentencepiece.TrainerSpec.required_chars",
+ index=25,
+ number=36,
+ type=9,
+ cpp_type=9,
+ label=1,
+ has_default_value=False,
+ default_value=b"".decode("utf-8"),
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="byte_fallback",
+ full_name="sentencepiece.TrainerSpec.byte_fallback",
+ index=26,
+ number=35,
+ type=8,
+ cpp_type=7,
+ label=1,
+ has_default_value=True,
+ default_value=False,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="vocabulary_output_piece_score",
+ full_name="sentencepiece.TrainerSpec.vocabulary_output_piece_score",
+ index=27,
+ number=32,
+ type=8,
+ cpp_type=7,
+ label=1,
+ has_default_value=True,
+ default_value=True,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="hard_vocab_limit",
+ full_name="sentencepiece.TrainerSpec.hard_vocab_limit",
+ index=28,
+ number=33,
+ type=8,
+ cpp_type=7,
+ label=1,
+ has_default_value=True,
+ default_value=True,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="use_all_vocab",
+ full_name="sentencepiece.TrainerSpec.use_all_vocab",
+ index=29,
+ number=34,
+ type=8,
+ cpp_type=7,
+ label=1,
+ has_default_value=True,
+ default_value=False,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="unk_id",
+ full_name="sentencepiece.TrainerSpec.unk_id",
+ index=30,
+ number=40,
+ type=5,
+ cpp_type=1,
+ label=1,
+ has_default_value=True,
+ default_value=0,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="bos_id",
+ full_name="sentencepiece.TrainerSpec.bos_id",
+ index=31,
+ number=41,
+ type=5,
+ cpp_type=1,
+ label=1,
+ has_default_value=True,
+ default_value=1,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="eos_id",
+ full_name="sentencepiece.TrainerSpec.eos_id",
+ index=32,
+ number=42,
+ type=5,
+ cpp_type=1,
+ label=1,
+ has_default_value=True,
+ default_value=2,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="pad_id",
+ full_name="sentencepiece.TrainerSpec.pad_id",
+ index=33,
+ number=43,
+ type=5,
+ cpp_type=1,
+ label=1,
+ has_default_value=True,
+ default_value=-1,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="unk_piece",
+ full_name="sentencepiece.TrainerSpec.unk_piece",
+ index=34,
+ number=45,
+ type=9,
+ cpp_type=9,
+ label=1,
+ has_default_value=True,
+ default_value=b"".decode("utf-8"),
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="bos_piece",
+ full_name="sentencepiece.TrainerSpec.bos_piece",
+ index=35,
+ number=46,
+ type=9,
+ cpp_type=9,
+ label=1,
+ has_default_value=True,
+ default_value=b"".decode("utf-8"),
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="eos_piece",
+ full_name="sentencepiece.TrainerSpec.eos_piece",
+ index=36,
+ number=47,
+ type=9,
+ cpp_type=9,
+ label=1,
+ has_default_value=True,
+ default_value=b"".decode("utf-8"),
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="pad_piece",
+ full_name="sentencepiece.TrainerSpec.pad_piece",
+ index=37,
+ number=48,
+ type=9,
+ cpp_type=9,
+ label=1,
+ has_default_value=True,
+ default_value=b"".decode("utf-8"),
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="unk_surface",
+ full_name="sentencepiece.TrainerSpec.unk_surface",
+ index=38,
+ number=44,
+ type=9,
+ cpp_type=9,
+ label=1,
+ has_default_value=True,
+ default_value=b" \342\201\207 ".decode("utf-8"),
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="train_extremely_large_corpus",
+ full_name="sentencepiece.TrainerSpec.train_extremely_large_corpus",
+ index=39,
+ number=49,
+ type=8,
+ cpp_type=7,
+ label=1,
+ has_default_value=True,
+ default_value=False,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ ],
+ extensions=[],
+ nested_types=[],
+ enum_types=[
+ _TRAINERSPEC_MODELTYPE,
+ ],
+ serialized_options=None,
+ is_extendable=True,
+ syntax="proto2",
+ extension_ranges=[
+ (200, 536870912),
+ ],
+ oneofs=[],
+ serialized_start=45,
+ serialized_end=1358,
+)
+
+
+_NORMALIZERSPEC = _descriptor.Descriptor(
+ name="NormalizerSpec",
+ full_name="sentencepiece.NormalizerSpec",
+ filename=None,
+ file=DESCRIPTOR,
+ containing_type=None,
+ create_key=_descriptor._internal_create_key,
+ fields=[
+ _descriptor.FieldDescriptor(
+ name="name",
+ full_name="sentencepiece.NormalizerSpec.name",
+ index=0,
+ number=1,
+ type=9,
+ cpp_type=9,
+ label=1,
+ has_default_value=False,
+ default_value=b"".decode("utf-8"),
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="precompiled_charsmap",
+ full_name="sentencepiece.NormalizerSpec.precompiled_charsmap",
+ index=1,
+ number=2,
+ type=12,
+ cpp_type=9,
+ label=1,
+ has_default_value=False,
+ default_value=b"",
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="add_dummy_prefix",
+ full_name="sentencepiece.NormalizerSpec.add_dummy_prefix",
+ index=2,
+ number=3,
+ type=8,
+ cpp_type=7,
+ label=1,
+ has_default_value=True,
+ default_value=True,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="remove_extra_whitespaces",
+ full_name="sentencepiece.NormalizerSpec.remove_extra_whitespaces",
+ index=3,
+ number=4,
+ type=8,
+ cpp_type=7,
+ label=1,
+ has_default_value=True,
+ default_value=True,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="escape_whitespaces",
+ full_name="sentencepiece.NormalizerSpec.escape_whitespaces",
+ index=4,
+ number=5,
+ type=8,
+ cpp_type=7,
+ label=1,
+ has_default_value=True,
+ default_value=True,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="normalization_rule_tsv",
+ full_name="sentencepiece.NormalizerSpec.normalization_rule_tsv",
+ index=5,
+ number=6,
+ type=9,
+ cpp_type=9,
+ label=1,
+ has_default_value=False,
+ default_value=b"".decode("utf-8"),
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ ],
+ extensions=[],
+ nested_types=[],
+ enum_types=[],
+ serialized_options=None,
+ is_extendable=True,
+ syntax="proto2",
+ extension_ranges=[
+ (200, 536870912),
+ ],
+ oneofs=[],
+ serialized_start=1361,
+ serialized_end=1570,
+)
+
+
+_SELFTESTDATA_SAMPLE = _descriptor.Descriptor(
+ name="Sample",
+ full_name="sentencepiece.SelfTestData.Sample",
+ filename=None,
+ file=DESCRIPTOR,
+ containing_type=None,
+ create_key=_descriptor._internal_create_key,
+ fields=[
+ _descriptor.FieldDescriptor(
+ name="input",
+ full_name="sentencepiece.SelfTestData.Sample.input",
+ index=0,
+ number=1,
+ type=9,
+ cpp_type=9,
+ label=1,
+ has_default_value=False,
+ default_value=b"".decode("utf-8"),
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="expected",
+ full_name="sentencepiece.SelfTestData.Sample.expected",
+ index=1,
+ number=2,
+ type=9,
+ cpp_type=9,
+ label=1,
+ has_default_value=False,
+ default_value=b"".decode("utf-8"),
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ ],
+ extensions=[],
+ nested_types=[],
+ enum_types=[],
+ serialized_options=None,
+ is_extendable=False,
+ syntax="proto2",
+ extension_ranges=[],
+ oneofs=[],
+ serialized_start=1641,
+ serialized_end=1682,
+)
+
+_SELFTESTDATA = _descriptor.Descriptor(
+ name="SelfTestData",
+ full_name="sentencepiece.SelfTestData",
+ filename=None,
+ file=DESCRIPTOR,
+ containing_type=None,
+ create_key=_descriptor._internal_create_key,
+ fields=[
+ _descriptor.FieldDescriptor(
+ name="samples",
+ full_name="sentencepiece.SelfTestData.samples",
+ index=0,
+ number=1,
+ type=11,
+ cpp_type=10,
+ label=3,
+ has_default_value=False,
+ default_value=[],
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ ],
+ extensions=[],
+ nested_types=[
+ _SELFTESTDATA_SAMPLE,
+ ],
+ enum_types=[],
+ serialized_options=None,
+ is_extendable=True,
+ syntax="proto2",
+ extension_ranges=[
+ (200, 536870912),
+ ],
+ oneofs=[],
+ serialized_start=1572,
+ serialized_end=1693,
+)
+
+
+_MODELPROTO_SENTENCEPIECE = _descriptor.Descriptor(
+ name="SentencePiece",
+ full_name="sentencepiece.ModelProto.SentencePiece",
+ filename=None,
+ file=DESCRIPTOR,
+ containing_type=None,
+ create_key=_descriptor._internal_create_key,
+ fields=[
+ _descriptor.FieldDescriptor(
+ name="piece",
+ full_name="sentencepiece.ModelProto.SentencePiece.piece",
+ index=0,
+ number=1,
+ type=9,
+ cpp_type=9,
+ label=1,
+ has_default_value=False,
+ default_value=b"".decode("utf-8"),
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="score",
+ full_name="sentencepiece.ModelProto.SentencePiece.score",
+ index=1,
+ number=2,
+ type=2,
+ cpp_type=6,
+ label=1,
+ has_default_value=False,
+ default_value=float(0),
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="type",
+ full_name="sentencepiece.ModelProto.SentencePiece.type",
+ index=2,
+ number=3,
+ type=14,
+ cpp_type=8,
+ label=1,
+ has_default_value=True,
+ default_value=1,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ ],
+ extensions=[],
+ nested_types=[],
+ enum_types=[
+ _MODELPROTO_SENTENCEPIECE_TYPE,
+ ],
+ serialized_options=None,
+ is_extendable=True,
+ syntax="proto2",
+ extension_ranges=[
+ (200, 536870912),
+ ],
+ oneofs=[],
+ serialized_start=1985,
+ serialized_end=2195,
+)
+
+_MODELPROTO = _descriptor.Descriptor(
+ name="ModelProto",
+ full_name="sentencepiece.ModelProto",
+ filename=None,
+ file=DESCRIPTOR,
+ containing_type=None,
+ create_key=_descriptor._internal_create_key,
+ fields=[
+ _descriptor.FieldDescriptor(
+ name="pieces",
+ full_name="sentencepiece.ModelProto.pieces",
+ index=0,
+ number=1,
+ type=11,
+ cpp_type=10,
+ label=3,
+ has_default_value=False,
+ default_value=[],
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="trainer_spec",
+ full_name="sentencepiece.ModelProto.trainer_spec",
+ index=1,
+ number=2,
+ type=11,
+ cpp_type=10,
+ label=1,
+ has_default_value=False,
+ default_value=None,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="normalizer_spec",
+ full_name="sentencepiece.ModelProto.normalizer_spec",
+ index=2,
+ number=3,
+ type=11,
+ cpp_type=10,
+ label=1,
+ has_default_value=False,
+ default_value=None,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="self_test_data",
+ full_name="sentencepiece.ModelProto.self_test_data",
+ index=3,
+ number=4,
+ type=11,
+ cpp_type=10,
+ label=1,
+ has_default_value=False,
+ default_value=None,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ _descriptor.FieldDescriptor(
+ name="denormalizer_spec",
+ full_name="sentencepiece.ModelProto.denormalizer_spec",
+ index=4,
+ number=5,
+ type=11,
+ cpp_type=10,
+ label=1,
+ has_default_value=False,
+ default_value=None,
+ message_type=None,
+ enum_type=None,
+ containing_type=None,
+ is_extension=False,
+ extension_scope=None,
+ serialized_options=None,
+ file=DESCRIPTOR,
+ create_key=_descriptor._internal_create_key,
+ ),
+ ],
+ extensions=[],
+ nested_types=[
+ _MODELPROTO_SENTENCEPIECE,
+ ],
+ enum_types=[],
+ serialized_options=None,
+ is_extendable=True,
+ syntax="proto2",
+ extension_ranges=[
+ (200, 536870912),
+ ],
+ oneofs=[],
+ serialized_start=1696,
+ serialized_end=2206,
+)
+
+_TRAINERSPEC.fields_by_name["model_type"].enum_type = _TRAINERSPEC_MODELTYPE
+_TRAINERSPEC_MODELTYPE.containing_type = _TRAINERSPEC
+_SELFTESTDATA_SAMPLE.containing_type = _SELFTESTDATA
+_SELFTESTDATA.fields_by_name["samples"].message_type = _SELFTESTDATA_SAMPLE
+_MODELPROTO_SENTENCEPIECE.fields_by_name["type"].enum_type = _MODELPROTO_SENTENCEPIECE_TYPE
+_MODELPROTO_SENTENCEPIECE.containing_type = _MODELPROTO
+_MODELPROTO_SENTENCEPIECE_TYPE.containing_type = _MODELPROTO_SENTENCEPIECE
+_MODELPROTO.fields_by_name["pieces"].message_type = _MODELPROTO_SENTENCEPIECE
+_MODELPROTO.fields_by_name["trainer_spec"].message_type = _TRAINERSPEC
+_MODELPROTO.fields_by_name["normalizer_spec"].message_type = _NORMALIZERSPEC
+_MODELPROTO.fields_by_name["self_test_data"].message_type = _SELFTESTDATA
+_MODELPROTO.fields_by_name["denormalizer_spec"].message_type = _NORMALIZERSPEC
+DESCRIPTOR.message_types_by_name["TrainerSpec"] = _TRAINERSPEC
+DESCRIPTOR.message_types_by_name["NormalizerSpec"] = _NORMALIZERSPEC
+DESCRIPTOR.message_types_by_name["SelfTestData"] = _SELFTESTDATA
+DESCRIPTOR.message_types_by_name["ModelProto"] = _MODELPROTO
+_sym_db.RegisterFileDescriptor(DESCRIPTOR)
+
+TrainerSpec = _reflection.GeneratedProtocolMessageType(
+ "TrainerSpec",
+ (_message.Message,),
+ {
+ "DESCRIPTOR": _TRAINERSPEC,
+ "__module__": "sentencepiece_model_pb2",
+ # @@protoc_insertion_point(class_scope:sentencepiece.TrainerSpec)
+ },
+)
+_sym_db.RegisterMessage(TrainerSpec)
+
+NormalizerSpec = _reflection.GeneratedProtocolMessageType(
+ "NormalizerSpec",
+ (_message.Message,),
+ {
+ "DESCRIPTOR": _NORMALIZERSPEC,
+ "__module__": "sentencepiece_model_pb2",
+ # @@protoc_insertion_point(class_scope:sentencepiece.NormalizerSpec)
+ },
+)
+_sym_db.RegisterMessage(NormalizerSpec)
+
+SelfTestData = _reflection.GeneratedProtocolMessageType(
+ "SelfTestData",
+ (_message.Message,),
+ {
+ "Sample": _reflection.GeneratedProtocolMessageType(
+ "Sample",
+ (_message.Message,),
+ {
+ "DESCRIPTOR": _SELFTESTDATA_SAMPLE,
+ "__module__": "sentencepiece_model_pb2",
+ # @@protoc_insertion_point(class_scope:sentencepiece.SelfTestData.Sample)
+ },
+ ),
+ "DESCRIPTOR": _SELFTESTDATA,
+ "__module__": "sentencepiece_model_pb2",
+ # @@protoc_insertion_point(class_scope:sentencepiece.SelfTestData)
+ },
+)
+_sym_db.RegisterMessage(SelfTestData)
+_sym_db.RegisterMessage(SelfTestData.Sample)
+
+ModelProto = _reflection.GeneratedProtocolMessageType(
+ "ModelProto",
+ (_message.Message,),
+ {
+ "SentencePiece": _reflection.GeneratedProtocolMessageType(
+ "SentencePiece",
+ (_message.Message,),
+ {
+ "DESCRIPTOR": _MODELPROTO_SENTENCEPIECE,
+ "__module__": "sentencepiece_model_pb2",
+ # @@protoc_insertion_point(class_scope:sentencepiece.ModelProto.SentencePiece)
+ },
+ ),
+ "DESCRIPTOR": _MODELPROTO,
+ "__module__": "sentencepiece_model_pb2",
+ # @@protoc_insertion_point(class_scope:sentencepiece.ModelProto)
+ },
+)
+_sym_db.RegisterMessage(ModelProto)
+_sym_db.RegisterMessage(ModelProto.SentencePiece)
+
+
+DESCRIPTOR._options = None
+_TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
+_TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
+# @@protoc_insertion_point(module_scope)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/utils/sentencepiece_model_pb2_new.py b/llmeval-env/lib/python3.10/site-packages/transformers/utils/sentencepiece_model_pb2_new.py
new file mode 100644
index 0000000000000000000000000000000000000000..4a2e29b1bdc308c4522e7ae283a10bfa1749991e
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/utils/sentencepiece_model_pb2_new.py
@@ -0,0 +1,47 @@
+# -*- coding: utf-8 -*-
+# Generated by the protocol buffer compiler. DO NOT EDIT!
+# source: sentencepiece_model.proto
+"""Generated protocol buffer code."""
+from google.protobuf import descriptor as _descriptor
+from google.protobuf import descriptor_pool as _descriptor_pool
+from google.protobuf import symbol_database as _symbol_database
+from google.protobuf.internal import builder as _builder
+
+
+# @@protoc_insertion_point(imports)
+
+_sym_db = _symbol_database.Default()
+
+
+DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(
+ b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05\x12\x16\n\tbos_piece\x18. \x01(\t:\x03\x12\x17\n\teos_piece\x18/ \x01(\t:\x04\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
+)
+
+_globals = globals()
+_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
+_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals)
+if _descriptor._USE_C_DESCRIPTORS is False:
+ DESCRIPTOR._options = None
+ DESCRIPTOR._serialized_options = b"H\003"
+ # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
+ # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
+ # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
+ # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
+ # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
+ _globals["_TRAINERSPEC"]._serialized_start = 45
+ _globals["_TRAINERSPEC"]._serialized_end = 1581
+ _globals["_TRAINERSPEC_MODELTYPE"]._serialized_start = 1517
+ _globals["_TRAINERSPEC_MODELTYPE"]._serialized_end = 1570
+ _globals["_NORMALIZERSPEC"]._serialized_start = 1584
+ _globals["_NORMALIZERSPEC"]._serialized_end = 1793
+ _globals["_SELFTESTDATA"]._serialized_start = 1795
+ _globals["_SELFTESTDATA"]._serialized_end = 1916
+ _globals["_SELFTESTDATA_SAMPLE"]._serialized_start = 1864
+ _globals["_SELFTESTDATA_SAMPLE"]._serialized_end = 1905
+ _globals["_MODELPROTO"]._serialized_start = 1919
+ _globals["_MODELPROTO"]._serialized_end = 2429
+ _globals["_MODELPROTO_SENTENCEPIECE"]._serialized_start = 2208
+ _globals["_MODELPROTO_SENTENCEPIECE"]._serialized_end = 2418
+ _globals["_MODELPROTO_SENTENCEPIECE_TYPE"]._serialized_start = 2323
+ _globals["_MODELPROTO_SENTENCEPIECE_TYPE"]._serialized_end = 2407
+# @@protoc_insertion_point(module_scope)
diff --git a/llmeval-env/lib/python3.10/site-packages/transformers/utils/versions.py b/llmeval-env/lib/python3.10/site-packages/transformers/utils/versions.py
new file mode 100644
index 0000000000000000000000000000000000000000..85dabec8b659022655ce570b4642febd715b6d52
--- /dev/null
+++ b/llmeval-env/lib/python3.10/site-packages/transformers/utils/versions.py
@@ -0,0 +1,117 @@
+# Copyright 2020 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+"""
+Utilities for working with package versions
+"""
+
+import importlib.metadata
+import operator
+import re
+import sys
+from typing import Optional
+
+from packaging import version
+
+
+ops = {
+ "<": operator.lt,
+ "<=": operator.le,
+ "==": operator.eq,
+ "!=": operator.ne,
+ ">=": operator.ge,
+ ">": operator.gt,
+}
+
+
+def _compare_versions(op, got_ver, want_ver, requirement, pkg, hint):
+ if got_ver is None or want_ver is None:
+ raise ValueError(
+ f"Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider"
+ f" reinstalling {pkg}."
+ )
+ if not ops[op](version.parse(got_ver), version.parse(want_ver)):
+ raise ImportError(
+ f"{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}"
+ )
+
+
+def require_version(requirement: str, hint: Optional[str] = None) -> None:
+ """
+ Perform a runtime check of the dependency versions, using the exact same syntax used by pip.
+
+ The installed module version comes from the *site-packages* dir via *importlib.metadata*.
+
+ Args:
+ requirement (`str`): pip style definition, e.g., "tokenizers==0.9.4", "tqdm>=4.27", "numpy"
+ hint (`str`, *optional*): what suggestion to print in case of requirements not being met
+
+ Example:
+
+ ```python
+ require_version("pandas>1.1.2")
+ require_version("numpy>1.18.5", "this is important to have for whatever reason")
+ ```"""
+
+ hint = f"\n{hint}" if hint is not None else ""
+
+ # non-versioned check
+ if re.match(r"^[\w_\-\d]+$", requirement):
+ pkg, op, want_ver = requirement, None, None
+ else:
+ match = re.findall(r"^([^!=<>\s]+)([\s!=<>]{1,2}.+)", requirement)
+ if not match:
+ raise ValueError(
+ "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but"
+ f" got {requirement}"
+ )
+ pkg, want_full = match[0]
+ want_range = want_full.split(",") # there could be multiple requirements
+ wanted = {}
+ for w in want_range:
+ match = re.findall(r"^([\s!=<>]{1,2})(.+)", w)
+ if not match:
+ raise ValueError(
+ "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,"
+ f" but got {requirement}"
+ )
+ op, want_ver = match[0]
+ wanted[op] = want_ver
+ if op not in ops:
+ raise ValueError(f"{requirement}: need one of {list(ops.keys())}, but got {op}")
+
+ # special case
+ if pkg == "python":
+ got_ver = ".".join([str(x) for x in sys.version_info[:3]])
+ for op, want_ver in wanted.items():
+ _compare_versions(op, got_ver, want_ver, requirement, pkg, hint)
+ return
+
+ # check if any version is installed
+ try:
+ got_ver = importlib.metadata.version(pkg)
+ except importlib.metadata.PackageNotFoundError:
+ raise importlib.metadata.PackageNotFoundError(
+ f"The '{requirement}' distribution was not found and is required by this application. {hint}"
+ )
+
+ # check that the right version is installed if version number or a range was provided
+ if want_ver is not None:
+ for op, want_ver in wanted.items():
+ _compare_versions(op, got_ver, want_ver, requirement, pkg, hint)
+
+
+def require_version_core(requirement):
+ """require_version wrapper which emits a core-specific hint on failure"""
+ hint = "Try: `pip install transformers -U` or `pip install -e '.[dev]'` if you're working with git main"
+ return require_version(requirement, hint)