diff --git a/.gitattributes b/.gitattributes index 624fc84287de42234cd7ac4ac3b23fc7e9d7c066..7097f473cce5b0d635d6af7a27757da9ed62d65e 100644 --- a/.gitattributes +++ b/.gitattributes @@ -62,3 +62,5 @@ llmeval-env/bin/python3 filter=lfs diff=lfs merge=lfs -text llmeval-env/bin/python filter=lfs diff=lfs merge=lfs -text llmeval-env/lib/python3.10/site-packages/scipy/optimize/_highs/_highs_wrapper.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text llmeval-env/lib/python3.10/site-packages/scipy/sparse/_sparsetools.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text +llmeval-env/lib/python3.10/site-packages/scipy/spatial/_ckdtree.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text +llmeval-env/lib/python3.10/site-packages/scipy/spatial/_qhull.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/arrow_dataset.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/arrow_dataset.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d310d943ec03fcc346837af336faf10ce4a14cac Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/arrow_dataset.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/arrow_writer.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/arrow_writer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..37d33e656ff1d09845123af6c9b9dafc99740549 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/arrow_writer.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/builder.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/builder.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9579baeb2c8de6e685ddeeec8a4d7a649ad1d120 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/builder.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/config.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/config.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dfc3149f8dae5e38acafba49d07d4a8d688753ef Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/config.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/distributed.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/distributed.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..99f03a8110182797cac8f05e2fd149bf70f9e930 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/distributed.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/fingerprint.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/fingerprint.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a5b028cbaf05ba49021b2417a6b47ece166b73f7 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/fingerprint.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/inspect.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/inspect.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f1b2aaa503c811d31e890e9e926df74d9d7bf86c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/inspect.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/keyhash.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/keyhash.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fd50e080306048ebecb361039a3e2731dd815b40 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/keyhash.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/load.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/load.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..108358e3e6e89686abd555b43869e6d25b56d2bb Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/load.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/search.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/search.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e071ec7a2bcd0068cbafd21467171134e97c442e Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/search.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/streaming.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/streaming.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9bc4bcd2315d96f1de843877af797d6cd57a75bb Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/streaming.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/table.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/table.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5026555ea001c4049b724ad5fef0ac83ea17589d Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/__pycache__/table.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/features/__init__.py b/llmeval-env/lib/python3.10/site-packages/datasets/features/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..65ae879a2bb7ffbd7f142c97e4558c8f25a51b6a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/features/__init__.py @@ -0,0 +1,20 @@ +# ruff: noqa + +__all__ = [ + "Audio", + "Array2D", + "Array3D", + "Array4D", + "Array5D", + "ClassLabel", + "Features", + "Sequence", + "Value", + "Image", + "Translation", + "TranslationVariableLanguages", +] +from .audio import Audio +from .features import Array2D, Array3D, Array4D, Array5D, ClassLabel, Features, Sequence, Value +from .image import Image +from .translation import Translation, TranslationVariableLanguages diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/features/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/features/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..34069c8f0973b865d7ea0b7487a8d085d5932280 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/features/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/features/__pycache__/audio.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/features/__pycache__/audio.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..645e427d40bb63bb3f818683c2f450fcc5ed8150 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/features/__pycache__/audio.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/features/__pycache__/features.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/features/__pycache__/features.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..18f0a6163116d64d217f2ea56493331028afcc0d Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/features/__pycache__/features.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/features/__pycache__/image.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/features/__pycache__/image.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..104cb6cb5ee42f6c280e8f7db883de909931e99b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/features/__pycache__/image.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/features/__pycache__/translation.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/features/__pycache__/translation.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2343202939252da6d9dec9000f647606c0615c69 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/features/__pycache__/translation.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/features/audio.py b/llmeval-env/lib/python3.10/site-packages/datasets/features/audio.py new file mode 100644 index 0000000000000000000000000000000000000000..f7df47b7a061801196db39eca222c9e4d6f9e599 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/features/audio.py @@ -0,0 +1,277 @@ +import os +from dataclasses import dataclass, field +from io import BytesIO +from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union + +import numpy as np +import pyarrow as pa + +from .. import config +from ..download.download_config import DownloadConfig +from ..table import array_cast +from ..utils.file_utils import xopen, xsplitext +from ..utils.py_utils import no_op_if_value_is_null, string_to_dict + + +if TYPE_CHECKING: + from .features import FeatureType + + +@dataclass +class Audio: + """Audio [`Feature`] to extract audio data from an audio file. + + Input: The Audio feature accepts as input: + - A `str`: Absolute path to the audio file (i.e. random access is allowed). + - A `dict` with the keys: + + - `path`: String with relative path of the audio file to the archive file. + - `bytes`: Bytes content of the audio file. + + This is useful for archived files with sequential access. + + - A `dict` with the keys: + + - `path`: String with relative path of the audio file to the archive file. + - `array`: Array containing the audio sample + - `sampling_rate`: Integer corresponding to the sampling rate of the audio sample. + + This is useful for archived files with sequential access. + + Args: + sampling_rate (`int`, *optional*): + Target sampling rate. If `None`, the native sampling rate is used. + mono (`bool`, defaults to `True`): + Whether to convert the audio signal to mono by averaging samples across + channels. + decode (`bool`, defaults to `True`): + Whether to decode the audio data. If `False`, + returns the underlying dictionary in the format `{"path": audio_path, "bytes": audio_bytes}`. + + Example: + + ```py + >>> from datasets import load_dataset, Audio + >>> ds = load_dataset("PolyAI/minds14", name="en-US", split="train") + >>> ds = ds.cast_column("audio", Audio(sampling_rate=16000)) + >>> ds[0]["audio"] + {'array': array([ 2.3443763e-05, 2.1729663e-04, 2.2145823e-04, ..., + 3.8356509e-05, -7.3497440e-06, -2.1754686e-05], dtype=float32), + 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav', + 'sampling_rate': 16000} + ``` + """ + + sampling_rate: Optional[int] = None + mono: bool = True + decode: bool = True + id: Optional[str] = None + # Automatically constructed + dtype: ClassVar[str] = "dict" + pa_type: ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()}) + _type: str = field(default="Audio", init=False, repr=False) + + def __call__(self): + return self.pa_type + + def encode_example(self, value: Union[str, bytes, dict]) -> dict: + """Encode example into a format for Arrow. + + Args: + value (`str` or `dict`): + Data passed as input to Audio feature. + + Returns: + `dict` + """ + try: + import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. + except ImportError as err: + raise ImportError("To support encoding audio data, please install 'soundfile'.") from err + if isinstance(value, str): + return {"bytes": None, "path": value} + elif isinstance(value, bytes): + return {"bytes": value, "path": None} + elif "array" in value: + # convert the audio array to wav bytes + buffer = BytesIO() + sf.write(buffer, value["array"], value["sampling_rate"], format="wav") + return {"bytes": buffer.getvalue(), "path": None} + elif value.get("path") is not None and os.path.isfile(value["path"]): + # we set "bytes": None to not duplicate the data if they're already available locally + if value["path"].endswith("pcm"): + # "PCM" only has raw audio bytes + if value.get("sampling_rate") is None: + # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate + raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object") + if value.get("bytes"): + # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) + bytes_value = np.frombuffer(value["bytes"], dtype=np.int16).astype(np.float32) / 32767 + else: + bytes_value = np.memmap(value["path"], dtype="h", mode="r").astype(np.float32) / 32767 + + buffer = BytesIO(bytes()) + sf.write(buffer, bytes_value, value["sampling_rate"], format="wav") + return {"bytes": buffer.getvalue(), "path": None} + else: + return {"bytes": None, "path": value.get("path")} + elif value.get("bytes") is not None or value.get("path") is not None: + # store the audio bytes, and path is used to infer the audio format using the file extension + return {"bytes": value.get("bytes"), "path": value.get("path")} + else: + raise ValueError( + f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}." + ) + + def decode_example( + self, value: dict, token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None + ) -> dict: + """Decode example audio file into audio data. + + Args: + value (`dict`): + A dictionary with keys: + + - `path`: String with relative audio file path. + - `bytes`: Bytes of the audio file. + token_per_repo_id (`dict`, *optional*): + To access and decode + audio files from private repositories on the Hub, you can pass + a dictionary repo_id (`str`) -> token (`bool` or `str`) + + Returns: + `dict` + """ + if not self.decode: + raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead.") + + path, file = (value["path"], BytesIO(value["bytes"])) if value["bytes"] is not None else (value["path"], None) + if path is None and file is None: + raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}.") + + try: + import librosa + import soundfile as sf + except ImportError as err: + raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'.") from err + + audio_format = xsplitext(path)[1][1:].lower() if path is not None else None + if not config.IS_OPUS_SUPPORTED and audio_format == "opus": + raise RuntimeError( + "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " + 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' + ) + elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": + raise RuntimeError( + "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " + 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' + ) + + if file is None: + token_per_repo_id = token_per_repo_id or {} + source_url = path.split("::")[-1] + pattern = ( + config.HUB_DATASETS_URL if source_url.startswith(config.HF_ENDPOINT) else config.HUB_DATASETS_HFFS_URL + ) + try: + repo_id = string_to_dict(source_url, pattern)["repo_id"] + token = token_per_repo_id[repo_id] + except (ValueError, KeyError): + token = None + + download_config = DownloadConfig(token=token) + with xopen(path, "rb", download_config=download_config) as f: + array, sampling_rate = sf.read(f) + + else: + array, sampling_rate = sf.read(file) + + array = array.T + if self.mono: + array = librosa.to_mono(array) + if self.sampling_rate and self.sampling_rate != sampling_rate: + array = librosa.resample(array, orig_sr=sampling_rate, target_sr=self.sampling_rate) + sampling_rate = self.sampling_rate + + return {"path": path, "array": array, "sampling_rate": sampling_rate} + + def flatten(self) -> Union["FeatureType", Dict[str, "FeatureType"]]: + """If in the decodable state, raise an error, otherwise flatten the feature into a dictionary.""" + from .features import Value + + if self.decode: + raise ValueError("Cannot flatten a decoded Audio feature.") + return { + "bytes": Value("binary"), + "path": Value("string"), + } + + def cast_storage(self, storage: Union[pa.StringArray, pa.StructArray]) -> pa.StructArray: + """Cast an Arrow array to the Audio arrow storage type. + The Arrow types that can be converted to the Audio pyarrow storage type are: + + - `pa.string()` - it must contain the "path" data + - `pa.binary()` - it must contain the audio bytes + - `pa.struct({"bytes": pa.binary()})` + - `pa.struct({"path": pa.string()})` + - `pa.struct({"bytes": pa.binary(), "path": pa.string()})` - order doesn't matter + + Args: + storage (`Union[pa.StringArray, pa.StructArray]`): + PyArrow array to cast. + + Returns: + `pa.StructArray`: Array in the Audio arrow storage type, that is + `pa.struct({"bytes": pa.binary(), "path": pa.string()})` + """ + if pa.types.is_string(storage.type): + bytes_array = pa.array([None] * len(storage), type=pa.binary()) + storage = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null()) + elif pa.types.is_binary(storage.type): + path_array = pa.array([None] * len(storage), type=pa.string()) + storage = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null()) + elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices("array"): + storage = pa.array([Audio().encode_example(x) if x is not None else None for x in storage.to_pylist()]) + elif pa.types.is_struct(storage.type): + if storage.type.get_field_index("bytes") >= 0: + bytes_array = storage.field("bytes") + else: + bytes_array = pa.array([None] * len(storage), type=pa.binary()) + if storage.type.get_field_index("path") >= 0: + path_array = storage.field("path") + else: + path_array = pa.array([None] * len(storage), type=pa.string()) + storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null()) + return array_cast(storage, self.pa_type) + + def embed_storage(self, storage: pa.StructArray) -> pa.StructArray: + """Embed audio files into the Arrow array. + + Args: + storage (`pa.StructArray`): + PyArrow array to embed. + + Returns: + `pa.StructArray`: Array in the Audio arrow storage type, that is + `pa.struct({"bytes": pa.binary(), "path": pa.string()})`. + """ + + @no_op_if_value_is_null + def path_to_bytes(path): + with xopen(path, "rb") as f: + bytes_ = f.read() + return bytes_ + + bytes_array = pa.array( + [ + (path_to_bytes(x["path"]) if x["bytes"] is None else x["bytes"]) if x is not None else None + for x in storage.to_pylist() + ], + type=pa.binary(), + ) + path_array = pa.array( + [os.path.basename(path) if path is not None else None for path in storage.field("path").to_pylist()], + type=pa.string(), + ) + storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null()) + return array_cast(storage, self.pa_type) diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/features/features.py b/llmeval-env/lib/python3.10/site-packages/datasets/features/features.py new file mode 100644 index 0000000000000000000000000000000000000000..893c9f9a1b0b0722471345dc2f3c68f537dfb554 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/features/features.py @@ -0,0 +1,2202 @@ +# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Lint as: python3 +"""This class handle features definition in datasets and some utilities to display table type.""" + +import copy +import json +import re +import sys +from collections.abc import Iterable, Mapping +from collections.abc import Sequence as SequenceABC +from dataclasses import InitVar, dataclass, field, fields +from functools import reduce, wraps +from operator import mul +from typing import Any, Callable, ClassVar, Dict, List, Optional, Tuple, Union +from typing import Sequence as Sequence_ + +import numpy as np +import pandas as pd +import pyarrow as pa +import pyarrow.compute as pc +import pyarrow.types +import pyarrow_hotfix # noqa: F401 # to fix vulnerability on pyarrow<14.0.1 +from pandas.api.extensions import ExtensionArray as PandasExtensionArray +from pandas.api.extensions import ExtensionDtype as PandasExtensionDtype + +from .. import config +from ..naming import camelcase_to_snakecase, snakecase_to_camelcase +from ..table import array_cast +from ..utils import experimental, logging +from ..utils.py_utils import asdict, first_non_null_value, zip_dict +from .audio import Audio +from .image import Image, encode_pil_image +from .translation import Translation, TranslationVariableLanguages + + +logger = logging.get_logger(__name__) + + +def _arrow_to_datasets_dtype(arrow_type: pa.DataType) -> str: + """ + _arrow_to_datasets_dtype takes a pyarrow.DataType and converts it to a datasets string dtype. + In effect, `dt == string_to_arrow(_arrow_to_datasets_dtype(dt))` + """ + if pyarrow.types.is_null(arrow_type): + return "null" + elif pyarrow.types.is_boolean(arrow_type): + return "bool" + elif pyarrow.types.is_int8(arrow_type): + return "int8" + elif pyarrow.types.is_int16(arrow_type): + return "int16" + elif pyarrow.types.is_int32(arrow_type): + return "int32" + elif pyarrow.types.is_int64(arrow_type): + return "int64" + elif pyarrow.types.is_uint8(arrow_type): + return "uint8" + elif pyarrow.types.is_uint16(arrow_type): + return "uint16" + elif pyarrow.types.is_uint32(arrow_type): + return "uint32" + elif pyarrow.types.is_uint64(arrow_type): + return "uint64" + elif pyarrow.types.is_float16(arrow_type): + return "float16" # pyarrow dtype is "halffloat" + elif pyarrow.types.is_float32(arrow_type): + return "float32" # pyarrow dtype is "float" + elif pyarrow.types.is_float64(arrow_type): + return "float64" # pyarrow dtype is "double" + elif pyarrow.types.is_time32(arrow_type): + return f"time32[{pa.type_for_alias(str(arrow_type)).unit}]" + elif pyarrow.types.is_time64(arrow_type): + return f"time64[{pa.type_for_alias(str(arrow_type)).unit}]" + elif pyarrow.types.is_timestamp(arrow_type): + if arrow_type.tz is None: + return f"timestamp[{arrow_type.unit}]" + elif arrow_type.tz: + return f"timestamp[{arrow_type.unit}, tz={arrow_type.tz}]" + else: + raise ValueError(f"Unexpected timestamp object {arrow_type}.") + elif pyarrow.types.is_date32(arrow_type): + return "date32" # pyarrow dtype is "date32[day]" + elif pyarrow.types.is_date64(arrow_type): + return "date64" # pyarrow dtype is "date64[ms]" + elif pyarrow.types.is_duration(arrow_type): + return f"duration[{arrow_type.unit}]" + elif pyarrow.types.is_decimal128(arrow_type): + return f"decimal128({arrow_type.precision}, {arrow_type.scale})" + elif pyarrow.types.is_decimal256(arrow_type): + return f"decimal256({arrow_type.precision}, {arrow_type.scale})" + elif pyarrow.types.is_binary(arrow_type): + return "binary" + elif pyarrow.types.is_large_binary(arrow_type): + return "large_binary" + elif pyarrow.types.is_string(arrow_type): + return "string" + elif pyarrow.types.is_large_string(arrow_type): + return "large_string" + else: + raise ValueError(f"Arrow type {arrow_type} does not have a datasets dtype equivalent.") + + +def string_to_arrow(datasets_dtype: str) -> pa.DataType: + """ + string_to_arrow takes a datasets string dtype and converts it to a pyarrow.DataType. + + In effect, `dt == string_to_arrow(_arrow_to_datasets_dtype(dt))` + + This is necessary because the datasets.Value() primitive type is constructed using a string dtype + + Value(dtype=str) + + But Features.type (via `get_nested_type()` expects to resolve Features into a pyarrow Schema, + which means that each Value() must be able to resolve into a corresponding pyarrow.DataType, which is the + purpose of this function. + """ + + def _dtype_error_msg(dtype, pa_dtype, examples=None, urls=None): + msg = f"{dtype} is not a validly formatted string representation of the pyarrow {pa_dtype} type." + if examples: + examples = ", ".join(examples[:-1]) + " or " + examples[-1] if len(examples) > 1 else examples[0] + msg += f"\nValid examples include: {examples}." + if urls: + urls = ", ".join(urls[:-1]) + " and " + urls[-1] if len(urls) > 1 else urls[0] + msg += f"\nFor more insformation, see: {urls}." + return msg + + if datasets_dtype in pa.__dict__: + return pa.__dict__[datasets_dtype]() + + if (datasets_dtype + "_") in pa.__dict__: + return pa.__dict__[datasets_dtype + "_"]() + + timestamp_matches = re.search(r"^timestamp\[(.*)\]$", datasets_dtype) + if timestamp_matches: + timestamp_internals = timestamp_matches.group(1) + internals_matches = re.search(r"^(s|ms|us|ns),\s*tz=([a-zA-Z0-9/_+\-:]*)$", timestamp_internals) + if timestamp_internals in ["s", "ms", "us", "ns"]: + return pa.timestamp(timestamp_internals) + elif internals_matches: + return pa.timestamp(internals_matches.group(1), internals_matches.group(2)) + else: + raise ValueError( + _dtype_error_msg( + datasets_dtype, + "timestamp", + examples=["timestamp[us]", "timestamp[us, tz=America/New_York"], + urls=["https://arrow.apache.org/docs/python/generated/pyarrow.timestamp.html"], + ) + ) + + duration_matches = re.search(r"^duration\[(.*)\]$", datasets_dtype) + if duration_matches: + duration_internals = duration_matches.group(1) + if duration_internals in ["s", "ms", "us", "ns"]: + return pa.duration(duration_internals) + else: + raise ValueError( + _dtype_error_msg( + datasets_dtype, + "duration", + examples=["duration[s]", "duration[us]"], + urls=["https://arrow.apache.org/docs/python/generated/pyarrow.duration.html"], + ) + ) + + time_matches = re.search(r"^time(.*)\[(.*)\]$", datasets_dtype) + if time_matches: + time_internals_bits = time_matches.group(1) + if time_internals_bits == "32": + time_internals_unit = time_matches.group(2) + if time_internals_unit in ["s", "ms"]: + return pa.time32(time_internals_unit) + else: + raise ValueError( + f"{time_internals_unit} is not a valid unit for the pyarrow time32 type. Supported units: s (second) and ms (millisecond)." + ) + elif time_internals_bits == "64": + time_internals_unit = time_matches.group(2) + if time_internals_unit in ["us", "ns"]: + return pa.time64(time_internals_unit) + else: + raise ValueError( + f"{time_internals_unit} is not a valid unit for the pyarrow time64 type. Supported units: us (microsecond) and ns (nanosecond)." + ) + else: + raise ValueError( + _dtype_error_msg( + datasets_dtype, + "time", + examples=["time32[s]", "time64[us]"], + urls=[ + "https://arrow.apache.org/docs/python/generated/pyarrow.time32.html", + "https://arrow.apache.org/docs/python/generated/pyarrow.time64.html", + ], + ) + ) + + decimal_matches = re.search(r"^decimal(.*)\((.*)\)$", datasets_dtype) + if decimal_matches: + decimal_internals_bits = decimal_matches.group(1) + if decimal_internals_bits == "128": + decimal_internals_precision_and_scale = re.search(r"^(\d+),\s*(-?\d+)$", decimal_matches.group(2)) + if decimal_internals_precision_and_scale: + precision = decimal_internals_precision_and_scale.group(1) + scale = decimal_internals_precision_and_scale.group(2) + return pa.decimal128(int(precision), int(scale)) + else: + raise ValueError( + _dtype_error_msg( + datasets_dtype, + "decimal128", + examples=["decimal128(10, 2)", "decimal128(4, -2)"], + urls=["https://arrow.apache.org/docs/python/generated/pyarrow.decimal128.html"], + ) + ) + elif decimal_internals_bits == "256": + decimal_internals_precision_and_scale = re.search(r"^(\d+),\s*(-?\d+)$", decimal_matches.group(2)) + if decimal_internals_precision_and_scale: + precision = decimal_internals_precision_and_scale.group(1) + scale = decimal_internals_precision_and_scale.group(2) + return pa.decimal256(int(precision), int(scale)) + else: + raise ValueError( + _dtype_error_msg( + datasets_dtype, + "decimal256", + examples=["decimal256(30, 2)", "decimal256(38, -4)"], + urls=["https://arrow.apache.org/docs/python/generated/pyarrow.decimal256.html"], + ) + ) + else: + raise ValueError( + _dtype_error_msg( + datasets_dtype, + "decimal", + examples=["decimal128(12, 3)", "decimal256(40, 6)"], + urls=[ + "https://arrow.apache.org/docs/python/generated/pyarrow.decimal128.html", + "https://arrow.apache.org/docs/python/generated/pyarrow.decimal256.html", + ], + ) + ) + + raise ValueError( + f"Neither {datasets_dtype} nor {datasets_dtype + '_'} seems to be a pyarrow data type. " + f"Please make sure to use a correct data type, see: " + f"https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions" + ) + + +def _cast_to_python_objects(obj: Any, only_1d_for_numpy: bool, optimize_list_casting: bool) -> Tuple[Any, bool]: + """ + Cast pytorch/tensorflow/pandas objects to python numpy array/lists. + It works recursively. + + If `optimize_list_casting` is True, to avoid iterating over possibly long lists, it first checks (recursively) if the first element that is not None or empty (if it is a sequence) has to be casted. + If the first element needs to be casted, then all the elements of the list will be casted, otherwise they'll stay the same. + This trick allows to cast objects that contain tokenizers outputs without iterating over every single token for example. + + Args: + obj: the object (nested struct) to cast. + only_1d_for_numpy (bool): whether to keep the full multi-dim tensors as multi-dim numpy arrays, or convert them to + nested lists of 1-dimensional numpy arrays. This can be useful to keep only 1-d arrays to instantiate Arrow arrays. + Indeed Arrow only support converting 1-dimensional array values. + optimize_list_casting (bool): whether to optimize list casting by checking the first non-null element to see if it needs to be casted + and if it doesn't, not checking the rest of the list elements. + + Returns: + casted_obj: the casted object + has_changed (bool): True if the object has been changed, False if it is identical + """ + + if config.TF_AVAILABLE and "tensorflow" in sys.modules: + import tensorflow as tf + + if config.TORCH_AVAILABLE and "torch" in sys.modules: + import torch + + if config.JAX_AVAILABLE and "jax" in sys.modules: + import jax.numpy as jnp + + if config.PIL_AVAILABLE and "PIL" in sys.modules: + import PIL.Image + + if isinstance(obj, np.ndarray): + if obj.ndim == 0: + return obj[()], True + elif not only_1d_for_numpy or obj.ndim == 1: + return obj, False + else: + return ( + [ + _cast_to_python_objects( + x, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting + )[0] + for x in obj + ], + True, + ) + elif config.TORCH_AVAILABLE and "torch" in sys.modules and isinstance(obj, torch.Tensor): + if obj.ndim == 0: + return obj.detach().cpu().numpy()[()], True + elif not only_1d_for_numpy or obj.ndim == 1: + return obj.detach().cpu().numpy(), True + else: + return ( + [ + _cast_to_python_objects( + x, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting + )[0] + for x in obj.detach().cpu().numpy() + ], + True, + ) + elif config.TF_AVAILABLE and "tensorflow" in sys.modules and isinstance(obj, tf.Tensor): + if obj.ndim == 0: + return obj.numpy()[()], True + elif not only_1d_for_numpy or obj.ndim == 1: + return obj.numpy(), True + else: + return ( + [ + _cast_to_python_objects( + x, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting + )[0] + for x in obj.numpy() + ], + True, + ) + elif config.JAX_AVAILABLE and "jax" in sys.modules and isinstance(obj, jnp.ndarray): + if obj.ndim == 0: + return np.asarray(obj)[()], True + elif not only_1d_for_numpy or obj.ndim == 1: + return np.asarray(obj), True + else: + return ( + [ + _cast_to_python_objects( + x, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting + )[0] + for x in np.asarray(obj) + ], + True, + ) + elif config.PIL_AVAILABLE and "PIL" in sys.modules and isinstance(obj, PIL.Image.Image): + return encode_pil_image(obj), True + elif isinstance(obj, pd.Series): + return ( + _cast_to_python_objects( + obj.tolist(), only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting + )[0], + True, + ) + elif isinstance(obj, pd.DataFrame): + return ( + { + key: _cast_to_python_objects( + value, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting + )[0] + for key, value in obj.to_dict("series").items() + }, + True, + ) + elif isinstance(obj, pd.Timestamp): + return obj.to_pydatetime(), True + elif isinstance(obj, pd.Timedelta): + return obj.to_pytimedelta(), True + elif isinstance(obj, Mapping): + has_changed = not isinstance(obj, dict) + output = {} + for k, v in obj.items(): + casted_v, has_changed_v = _cast_to_python_objects( + v, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting + ) + has_changed |= has_changed_v + output[k] = casted_v + return output if has_changed else obj, has_changed + elif hasattr(obj, "__array__"): + return ( + _cast_to_python_objects( + obj.__array__(), only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting + )[0], + True, + ) + elif isinstance(obj, (list, tuple)): + if len(obj) > 0: + for first_elmt in obj: + if _check_non_null_non_empty_recursive(first_elmt): + break + casted_first_elmt, has_changed_first_elmt = _cast_to_python_objects( + first_elmt, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting + ) + if has_changed_first_elmt or not optimize_list_casting: + return ( + [ + _cast_to_python_objects( + elmt, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting + )[0] + for elmt in obj + ], + True, + ) + else: + if isinstance(obj, (list, tuple)): + return obj, False + else: + return list(obj), True + else: + return obj, False + else: + return obj, False + + +def cast_to_python_objects(obj: Any, only_1d_for_numpy=False, optimize_list_casting=True) -> Any: + """ + Cast numpy/pytorch/tensorflow/pandas objects to python lists. + It works recursively. + + If `optimize_list_casting` is True, To avoid iterating over possibly long lists, it first checks (recursively) if the first element that is not None or empty (if it is a sequence) has to be casted. + If the first element needs to be casted, then all the elements of the list will be casted, otherwise they'll stay the same. + This trick allows to cast objects that contain tokenizers outputs without iterating over every single token for example. + + Args: + obj: the object (nested struct) to cast + only_1d_for_numpy (bool, default ``False``): whether to keep the full multi-dim tensors as multi-dim numpy arrays, or convert them to + nested lists of 1-dimensional numpy arrays. This can be useful to keep only 1-d arrays to instantiate Arrow arrays. + Indeed Arrow only support converting 1-dimensional array values. + optimize_list_casting (bool, default ``True``): whether to optimize list casting by checking the first non-null element to see if it needs to be casted + and if it doesn't, not checking the rest of the list elements. + + Returns: + casted_obj: the casted object + """ + return _cast_to_python_objects( + obj, only_1d_for_numpy=only_1d_for_numpy, optimize_list_casting=optimize_list_casting + )[0] + + +@dataclass +class Value: + """ + The `Value` dtypes are as follows: + + - `null` + - `bool` + - `int8` + - `int16` + - `int32` + - `int64` + - `uint8` + - `uint16` + - `uint32` + - `uint64` + - `float16` + - `float32` (alias float) + - `float64` (alias double) + - `time32[(s|ms)]` + - `time64[(us|ns)]` + - `timestamp[(s|ms|us|ns)]` + - `timestamp[(s|ms|us|ns), tz=(tzstring)]` + - `date32` + - `date64` + - `duration[(s|ms|us|ns)]` + - `decimal128(precision, scale)` + - `decimal256(precision, scale)` + - `binary` + - `large_binary` + - `string` + - `large_string` + + Example: + + ```py + >>> from datasets import Features + >>> features = Features({'stars': Value(dtype='int32')}) + >>> features + {'stars': Value(dtype='int32', id=None)} + ``` + """ + + dtype: str + id: Optional[str] = None + # Automatically constructed + pa_type: ClassVar[Any] = None + _type: str = field(default="Value", init=False, repr=False) + + def __post_init__(self): + if self.dtype == "double": # fix inferred type + self.dtype = "float64" + if self.dtype == "float": # fix inferred type + self.dtype = "float32" + self.pa_type = string_to_arrow(self.dtype) + + def __call__(self): + return self.pa_type + + def encode_example(self, value): + if pa.types.is_boolean(self.pa_type): + return bool(value) + elif pa.types.is_integer(self.pa_type): + return int(value) + elif pa.types.is_floating(self.pa_type): + return float(value) + elif pa.types.is_string(self.pa_type): + return str(value) + else: + return value + + +class _ArrayXD: + def __post_init__(self): + self.shape = tuple(self.shape) + + def __call__(self): + pa_type = globals()[self.__class__.__name__ + "ExtensionType"](self.shape, self.dtype) + return pa_type + + def encode_example(self, value): + return value + + +@dataclass +class Array2D(_ArrayXD): + """Create a two-dimensional array. + + Args: + shape (`tuple`): + The size of each dimension. + dtype (`str`): + The value of the data type. + + Example: + + ```py + >>> from datasets import Features + >>> features = Features({'x': Array2D(shape=(1, 3), dtype='int32')}) + ``` + """ + + shape: tuple + dtype: str + id: Optional[str] = None + # Automatically constructed + _type: str = field(default="Array2D", init=False, repr=False) + + +@dataclass +class Array3D(_ArrayXD): + """Create a three-dimensional array. + + Args: + shape (`tuple`): + The size of each dimension. + dtype (`str`): + The value of the data type. + + Example: + + ```py + >>> from datasets import Features + >>> features = Features({'x': Array3D(shape=(1, 2, 3), dtype='int32')}) + ``` + """ + + shape: tuple + dtype: str + id: Optional[str] = None + # Automatically constructed + _type: str = field(default="Array3D", init=False, repr=False) + + +@dataclass +class Array4D(_ArrayXD): + """Create a four-dimensional array. + + Args: + shape (`tuple`): + The size of each dimension. + dtype (`str`): + The value of the data type. + + Example: + + ```py + >>> from datasets import Features + >>> features = Features({'x': Array4D(shape=(1, 2, 2, 3), dtype='int32')}) + ``` + """ + + shape: tuple + dtype: str + id: Optional[str] = None + # Automatically constructed + _type: str = field(default="Array4D", init=False, repr=False) + + +@dataclass +class Array5D(_ArrayXD): + """Create a five-dimensional array. + + Args: + shape (`tuple`): + The size of each dimension. + dtype (`str`): + The value of the data type. + + Example: + + ```py + >>> from datasets import Features + >>> features = Features({'x': Array5D(shape=(1, 2, 2, 3, 3), dtype='int32')}) + ``` + """ + + shape: tuple + dtype: str + id: Optional[str] = None + # Automatically constructed + _type: str = field(default="Array5D", init=False, repr=False) + + +class _ArrayXDExtensionType(pa.ExtensionType): + ndims: Optional[int] = None + + def __init__(self, shape: tuple, dtype: str): + if self.ndims is None or self.ndims <= 1: + raise ValueError("You must instantiate an array type with a value for dim that is > 1") + if len(shape) != self.ndims: + raise ValueError(f"shape={shape} and ndims={self.ndims} don't match") + for dim in range(1, self.ndims): + if shape[dim] is None: + raise ValueError(f"Support only dynamic size on first dimension. Got: {shape}") + self.shape = tuple(shape) + self.value_type = dtype + self.storage_dtype = self._generate_dtype(self.value_type) + pa.ExtensionType.__init__(self, self.storage_dtype, f"{self.__class__.__module__}.{self.__class__.__name__}") + + def __arrow_ext_serialize__(self): + return json.dumps((self.shape, self.value_type)).encode() + + @classmethod + def __arrow_ext_deserialize__(cls, storage_type, serialized): + args = json.loads(serialized) + return cls(*args) + + # This was added to pa.ExtensionType in pyarrow >= 13.0.0 + def __reduce__(self): + return self.__arrow_ext_deserialize__, (self.storage_type, self.__arrow_ext_serialize__()) + + def __hash__(self): + return hash((self.__class__, self.shape, self.value_type)) + + def __arrow_ext_class__(self): + return ArrayExtensionArray + + def _generate_dtype(self, dtype): + dtype = string_to_arrow(dtype) + for d in reversed(self.shape): + dtype = pa.list_(dtype) + # Don't specify the size of the list, since fixed length list arrays have issues + # being validated after slicing in pyarrow 0.17.1 + return dtype + + def to_pandas_dtype(self): + return PandasArrayExtensionDtype(self.value_type) + + +class Array2DExtensionType(_ArrayXDExtensionType): + ndims = 2 + + +class Array3DExtensionType(_ArrayXDExtensionType): + ndims = 3 + + +class Array4DExtensionType(_ArrayXDExtensionType): + ndims = 4 + + +class Array5DExtensionType(_ArrayXDExtensionType): + ndims = 5 + + +# Register the extension types for deserialization +pa.register_extension_type(Array2DExtensionType((1, 2), "int64")) +pa.register_extension_type(Array3DExtensionType((1, 2, 3), "int64")) +pa.register_extension_type(Array4DExtensionType((1, 2, 3, 4), "int64")) +pa.register_extension_type(Array5DExtensionType((1, 2, 3, 4, 5), "int64")) + + +def _is_zero_copy_only(pa_type: pa.DataType, unnest: bool = False) -> bool: + """ + When converting a pyarrow array to a numpy array, we must know whether this could be done in zero-copy or not. + This function returns the value of the ``zero_copy_only`` parameter to pass to ``.to_numpy()``, given the type of the pyarrow array. + + # zero copy is available for all primitive types except booleans and temporal types (date, time, timestamp or duration) + # primitive types are types for which the physical representation in arrow and in numpy + # https://github.com/wesm/arrow/blob/c07b9b48cf3e0bbbab493992a492ae47e5b04cad/python/pyarrow/types.pxi#L821 + # see https://arrow.apache.org/docs/python/generated/pyarrow.Array.html#pyarrow.Array.to_numpy + # and https://issues.apache.org/jira/browse/ARROW-2871?jql=text%20~%20%22boolean%20to_numpy%22 + """ + + def _unnest_pa_type(pa_type: pa.DataType) -> pa.DataType: + if pa.types.is_list(pa_type): + return _unnest_pa_type(pa_type.value_type) + return pa_type + + if unnest: + pa_type = _unnest_pa_type(pa_type) + return pa.types.is_primitive(pa_type) and not (pa.types.is_boolean(pa_type) or pa.types.is_temporal(pa_type)) + + +class ArrayExtensionArray(pa.ExtensionArray): + def __array__(self): + zero_copy_only = _is_zero_copy_only(self.storage.type, unnest=True) + return self.to_numpy(zero_copy_only=zero_copy_only) + + def __getitem__(self, i): + return self.storage[i] + + def to_numpy(self, zero_copy_only=True): + storage: pa.ListArray = self.storage + null_mask = storage.is_null().to_numpy(zero_copy_only=False) + + if self.type.shape[0] is not None: + size = 1 + null_indices = np.arange(len(storage))[null_mask] - np.arange(np.sum(null_mask)) + + for i in range(self.type.ndims): + size *= self.type.shape[i] + storage = storage.flatten() + numpy_arr = storage.to_numpy(zero_copy_only=zero_copy_only) + numpy_arr = numpy_arr.reshape(len(self) - len(null_indices), *self.type.shape) + + if len(null_indices): + numpy_arr = np.insert(numpy_arr.astype(np.float64), null_indices, np.nan, axis=0) + + else: + shape = self.type.shape + ndims = self.type.ndims + arrays = [] + first_dim_offsets = np.array([off.as_py() for off in storage.offsets]) + for i, is_null in enumerate(null_mask): + if is_null: + arrays.append(np.nan) + else: + storage_el = storage[i : i + 1] + first_dim = first_dim_offsets[i + 1] - first_dim_offsets[i] + # flatten storage + for _ in range(ndims): + storage_el = storage_el.flatten() + + numpy_arr = storage_el.to_numpy(zero_copy_only=zero_copy_only) + arrays.append(numpy_arr.reshape(first_dim, *shape[1:])) + + if len(np.unique(np.diff(first_dim_offsets))) > 1: + # ragged + numpy_arr = np.empty(len(arrays), dtype=object) + numpy_arr[:] = arrays + else: + numpy_arr = np.array(arrays) + + return numpy_arr + + def to_pylist(self): + zero_copy_only = _is_zero_copy_only(self.storage.type, unnest=True) + numpy_arr = self.to_numpy(zero_copy_only=zero_copy_only) + if self.type.shape[0] is None and numpy_arr.dtype == object: + return [arr.tolist() for arr in numpy_arr.tolist()] + else: + return numpy_arr.tolist() + + +class PandasArrayExtensionDtype(PandasExtensionDtype): + _metadata = "value_type" + + def __init__(self, value_type: Union["PandasArrayExtensionDtype", np.dtype]): + self._value_type = value_type + + def __from_arrow__(self, array: Union[pa.Array, pa.ChunkedArray]): + if isinstance(array, pa.ChunkedArray): + array = array.type.wrap_array(pa.concat_arrays([chunk.storage for chunk in array.chunks])) + zero_copy_only = _is_zero_copy_only(array.storage.type, unnest=True) + numpy_arr = array.to_numpy(zero_copy_only=zero_copy_only) + return PandasArrayExtensionArray(numpy_arr) + + @classmethod + def construct_array_type(cls): + return PandasArrayExtensionArray + + @property + def type(self) -> type: + return np.ndarray + + @property + def kind(self) -> str: + return "O" + + @property + def name(self) -> str: + return f"array[{self.value_type}]" + + @property + def value_type(self) -> np.dtype: + return self._value_type + + +class PandasArrayExtensionArray(PandasExtensionArray): + def __init__(self, data: np.ndarray, copy: bool = False): + self._data = data if not copy else np.array(data) + self._dtype = PandasArrayExtensionDtype(data.dtype) + + def __array__(self, dtype=None): + """ + Convert to NumPy Array. + Note that Pandas expects a 1D array when dtype is set to object. + But for other dtypes, the returned shape is the same as the one of ``data``. + + More info about pandas 1D requirement for PandasExtensionArray here: + https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.extensions.ExtensionArray.html#pandas.api.extensions.ExtensionArray + + """ + if dtype == object: + out = np.empty(len(self._data), dtype=object) + for i in range(len(self._data)): + out[i] = self._data[i] + return out + if dtype is None: + return self._data + else: + return self._data.astype(dtype) + + def copy(self, deep: bool = False) -> "PandasArrayExtensionArray": + return PandasArrayExtensionArray(self._data, copy=True) + + @classmethod + def _from_sequence( + cls, scalars, dtype: Optional[PandasArrayExtensionDtype] = None, copy: bool = False + ) -> "PandasArrayExtensionArray": + if len(scalars) > 1 and all( + isinstance(x, np.ndarray) and x.shape == scalars[0].shape and x.dtype == scalars[0].dtype for x in scalars + ): + data = np.array(scalars, dtype=dtype if dtype is None else dtype.value_type, copy=copy) + else: + data = np.empty(len(scalars), dtype=object) + data[:] = scalars + return cls(data, copy=copy) + + @classmethod + def _concat_same_type(cls, to_concat: Sequence_["PandasArrayExtensionArray"]) -> "PandasArrayExtensionArray": + if len(to_concat) > 1 and all( + va._data.shape == to_concat[0]._data.shape and va._data.dtype == to_concat[0]._data.dtype + for va in to_concat + ): + data = np.vstack([va._data for va in to_concat]) + else: + data = np.empty(len(to_concat), dtype=object) + data[:] = [va._data for va in to_concat] + return cls(data, copy=False) + + @property + def dtype(self) -> PandasArrayExtensionDtype: + return self._dtype + + @property + def nbytes(self) -> int: + return self._data.nbytes + + def isna(self) -> np.ndarray: + return np.array([pd.isna(arr).any() for arr in self._data]) + + def __setitem__(self, key: Union[int, slice, np.ndarray], value: Any) -> None: + raise NotImplementedError() + + def __getitem__(self, item: Union[int, slice, np.ndarray]) -> Union[np.ndarray, "PandasArrayExtensionArray"]: + if isinstance(item, int): + return self._data[item] + return PandasArrayExtensionArray(self._data[item], copy=False) + + def take( + self, indices: Sequence_[int], allow_fill: bool = False, fill_value: bool = None + ) -> "PandasArrayExtensionArray": + indices: np.ndarray = np.asarray(indices, dtype=int) + if allow_fill: + fill_value = ( + self.dtype.na_value if fill_value is None else np.asarray(fill_value, dtype=self.dtype.value_type) + ) + mask = indices == -1 + if (indices < -1).any(): + raise ValueError("Invalid value in `indices`, must be all >= -1 for `allow_fill` is True") + elif len(self) > 0: + pass + elif not np.all(mask): + raise IndexError("Invalid take for empty PandasArrayExtensionArray, must be all -1.") + else: + data = np.array([fill_value] * len(indices), dtype=self.dtype.value_type) + return PandasArrayExtensionArray(data, copy=False) + took = self._data.take(indices, axis=0) + if allow_fill and mask.any(): + took[mask] = [fill_value] * np.sum(mask) + return PandasArrayExtensionArray(took, copy=False) + + def __len__(self) -> int: + return len(self._data) + + def __eq__(self, other) -> np.ndarray: + if not isinstance(other, PandasArrayExtensionArray): + raise NotImplementedError(f"Invalid type to compare to: {type(other)}") + return (self._data == other._data).all() + + +def pandas_types_mapper(dtype): + if isinstance(dtype, _ArrayXDExtensionType): + return PandasArrayExtensionDtype(dtype.value_type) + + +@dataclass +class ClassLabel: + """Feature type for integer class labels. + + There are 3 ways to define a `ClassLabel`, which correspond to the 3 arguments: + + * `num_classes`: Create 0 to (num_classes-1) labels. + * `names`: List of label strings. + * `names_file`: File containing the list of labels. + + Under the hood the labels are stored as integers. + You can use negative integers to represent unknown/missing labels. + + Args: + num_classes (`int`, *optional*): + Number of classes. All labels must be < `num_classes`. + names (`list` of `str`, *optional*): + String names for the integer classes. + The order in which the names are provided is kept. + names_file (`str`, *optional*): + Path to a file with names for the integer classes, one per line. + + Example: + + ```py + >>> from datasets import Features + >>> features = Features({'label': ClassLabel(num_classes=3, names=['bad', 'ok', 'good'])}) + >>> features + {'label': ClassLabel(num_classes=3, names=['bad', 'ok', 'good'], id=None)} + ``` + """ + + num_classes: InitVar[Optional[int]] = None # Pseudo-field: ignored by asdict/fields when converting to/from dict + names: List[str] = None + names_file: InitVar[Optional[str]] = None # Pseudo-field: ignored by asdict/fields when converting to/from dict + id: Optional[str] = None + # Automatically constructed + dtype: ClassVar[str] = "int64" + pa_type: ClassVar[Any] = pa.int64() + _str2int: ClassVar[Dict[str, int]] = None + _int2str: ClassVar[Dict[int, int]] = None + _type: str = field(default="ClassLabel", init=False, repr=False) + + def __post_init__(self, num_classes, names_file): + self.num_classes = num_classes + self.names_file = names_file + if self.names_file is not None and self.names is not None: + raise ValueError("Please provide either names or names_file but not both.") + # Set self.names + if self.names is None: + if self.names_file is not None: + self.names = self._load_names_from_file(self.names_file) + elif self.num_classes is not None: + self.names = [str(i) for i in range(self.num_classes)] + else: + raise ValueError("Please provide either num_classes, names or names_file.") + elif not isinstance(self.names, SequenceABC): + raise TypeError(f"Please provide names as a list, is {type(self.names)}") + # Set self.num_classes + if self.num_classes is None: + self.num_classes = len(self.names) + elif self.num_classes != len(self.names): + raise ValueError( + "ClassLabel number of names do not match the defined num_classes. " + f"Got {len(self.names)} names VS {self.num_classes} num_classes" + ) + # Prepare mappings + self._int2str = [str(name) for name in self.names] + self._str2int = {name: i for i, name in enumerate(self._int2str)} + if len(self._int2str) != len(self._str2int): + raise ValueError("Some label names are duplicated. Each label name should be unique.") + + def __call__(self): + return self.pa_type + + def str2int(self, values: Union[str, Iterable]) -> Union[int, Iterable]: + """Conversion class name `string` => `integer`. + + Example: + + ```py + >>> from datasets import load_dataset + >>> ds = load_dataset("rotten_tomatoes", split="train") + >>> ds.features["label"].str2int('neg') + 0 + ``` + """ + if not isinstance(values, str) and not isinstance(values, Iterable): + raise ValueError( + f"Values {values} should be a string or an Iterable (list, numpy array, pytorch, tensorflow tensors)" + ) + return_list = True + if isinstance(values, str): + values = [values] + return_list = False + + output = [self._strval2int(value) for value in values] + return output if return_list else output[0] + + def _strval2int(self, value: str) -> int: + failed_parse = False + value = str(value) + # first attempt - raw string value + int_value = self._str2int.get(value) + if int_value is None: + # second attempt - strip whitespace + int_value = self._str2int.get(value.strip()) + if int_value is None: + # third attempt - convert str to int + try: + int_value = int(value) + except ValueError: + failed_parse = True + else: + if int_value < -1 or int_value >= self.num_classes: + failed_parse = True + if failed_parse: + raise ValueError(f"Invalid string class label {value}") + return int_value + + def int2str(self, values: Union[int, Iterable]) -> Union[str, Iterable]: + """Conversion `integer` => class name `string`. + + Regarding unknown/missing labels: passing negative integers raises `ValueError`. + + Example: + + ```py + >>> from datasets import load_dataset + >>> ds = load_dataset("rotten_tomatoes", split="train") + >>> ds.features["label"].int2str(0) + 'neg' + ``` + """ + if not isinstance(values, int) and not isinstance(values, Iterable): + raise ValueError( + f"Values {values} should be an integer or an Iterable (list, numpy array, pytorch, tensorflow tensors)" + ) + return_list = True + if isinstance(values, int): + values = [values] + return_list = False + + for v in values: + if not 0 <= v < self.num_classes: + raise ValueError(f"Invalid integer class label {v:d}") + + output = [self._int2str[int(v)] for v in values] + return output if return_list else output[0] + + def encode_example(self, example_data): + if self.num_classes is None: + raise ValueError( + "Trying to use ClassLabel feature with undefined number of class. " + "Please set ClassLabel.names or num_classes." + ) + + # If a string is given, convert to associated integer + if isinstance(example_data, str): + example_data = self.str2int(example_data) + + # Allowing -1 to mean no label. + if not -1 <= example_data < self.num_classes: + raise ValueError(f"Class label {example_data:d} greater than configured num_classes {self.num_classes}") + return example_data + + def cast_storage(self, storage: Union[pa.StringArray, pa.IntegerArray]) -> pa.Int64Array: + """Cast an Arrow array to the `ClassLabel` arrow storage type. + The Arrow types that can be converted to the `ClassLabel` pyarrow storage type are: + + - `pa.string()` + - `pa.int()` + + Args: + storage (`Union[pa.StringArray, pa.IntegerArray]`): + PyArrow array to cast. + + Returns: + `pa.Int64Array`: Array in the `ClassLabel` arrow storage type. + """ + if isinstance(storage, pa.IntegerArray) and len(storage) > 0: + min_max = pc.min_max(storage).as_py() + if min_max["max"] is not None and min_max["max"] >= self.num_classes: + raise ValueError( + f"Class label {min_max['max']} greater than configured num_classes {self.num_classes}" + ) + elif isinstance(storage, pa.StringArray): + storage = pa.array( + [self._strval2int(label) if label is not None else None for label in storage.to_pylist()] + ) + return array_cast(storage, self.pa_type) + + @staticmethod + def _load_names_from_file(names_filepath): + with open(names_filepath, encoding="utf-8") as f: + return [name.strip() for name in f.read().split("\n") if name.strip()] # Filter empty names + + +@dataclass +class Sequence: + """Construct a list of feature from a single type or a dict of types. + Mostly here for compatiblity with tfds. + + Args: + feature: + A list of features of a single type or a dictionary of types. + length (`int`): + Length of the sequence. + + Example: + + ```py + >>> from datasets import Features, Sequence, Value, ClassLabel + >>> features = Features({'post': Sequence(feature={'text': Value(dtype='string'), 'upvotes': Value(dtype='int32'), 'label': ClassLabel(num_classes=2, names=['hot', 'cold'])})}) + >>> features + {'post': Sequence(feature={'text': Value(dtype='string', id=None), 'upvotes': Value(dtype='int32', id=None), 'label': ClassLabel(num_classes=2, names=['hot', 'cold'], id=None)}, length=-1, id=None)} + ``` + """ + + feature: Any + length: int = -1 + id: Optional[str] = None + # Automatically constructed + dtype: ClassVar[str] = "list" + pa_type: ClassVar[Any] = None + _type: str = field(default="Sequence", init=False, repr=False) + + +FeatureType = Union[ + dict, + list, + tuple, + Value, + ClassLabel, + Translation, + TranslationVariableLanguages, + Sequence, + Array2D, + Array3D, + Array4D, + Array5D, + Audio, + Image, +] + + +def _check_non_null_non_empty_recursive(obj, schema: Optional[FeatureType] = None) -> bool: + """ + Check if the object is not None. + If the object is a list or a tuple, recursively check the first element of the sequence and stop if at any point the first element is not a sequence or is an empty sequence. + """ + if obj is None: + return False + elif isinstance(obj, (list, tuple)) and (schema is None or isinstance(schema, (list, tuple, Sequence))): + if len(obj) > 0: + if schema is None: + pass + elif isinstance(schema, (list, tuple)): + schema = schema[0] + else: + schema = schema.feature + return _check_non_null_non_empty_recursive(obj[0], schema) + else: + return False + else: + return True + + +def get_nested_type(schema: FeatureType) -> pa.DataType: + """ + get_nested_type() converts a datasets.FeatureType into a pyarrow.DataType, and acts as the inverse of + generate_from_arrow_type(). + + It performs double-duty as the implementation of Features.type and handles the conversion of + datasets.Feature->pa.struct + """ + # Nested structures: we allow dict, list/tuples, sequences + if isinstance(schema, Features): + return pa.struct( + {key: get_nested_type(schema[key]) for key in schema} + ) # Features is subclass of dict, and dict order is deterministic since Python 3.6 + elif isinstance(schema, dict): + return pa.struct( + {key: get_nested_type(schema[key]) for key in schema} + ) # however don't sort on struct types since the order matters + elif isinstance(schema, (list, tuple)): + if len(schema) != 1: + raise ValueError("When defining list feature, you should just provide one example of the inner type") + value_type = get_nested_type(schema[0]) + return pa.list_(value_type) + elif isinstance(schema, Sequence): + value_type = get_nested_type(schema.feature) + # We allow to reverse list of dict => dict of list for compatibility with tfds + if isinstance(schema.feature, dict): + return pa.struct({f.name: pa.list_(f.type, schema.length) for f in value_type}) + return pa.list_(value_type, schema.length) + + # Other objects are callable which returns their data type (ClassLabel, Array2D, Translation, Arrow datatype creation methods) + return schema() + + +def encode_nested_example(schema, obj, level=0): + """Encode a nested example. + This is used since some features (in particular ClassLabel) have some logic during encoding. + + To avoid iterating over possibly long lists, it first checks (recursively) if the first element that is not None or empty (if it is a sequence) has to be encoded. + If the first element needs to be encoded, then all the elements of the list will be encoded, otherwise they'll stay the same. + """ + # Nested structures: we allow dict, list/tuples, sequences + if isinstance(schema, dict): + if level == 0 and obj is None: + raise ValueError("Got None but expected a dictionary instead") + return ( + {k: encode_nested_example(schema[k], obj.get(k), level=level + 1) for k in schema} + if obj is not None + else None + ) + + elif isinstance(schema, (list, tuple)): + sub_schema = schema[0] + if obj is None: + return None + else: + if len(obj) > 0: + for first_elmt in obj: + if _check_non_null_non_empty_recursive(first_elmt, sub_schema): + break + if encode_nested_example(sub_schema, first_elmt, level=level + 1) != first_elmt: + return [encode_nested_example(sub_schema, o, level=level + 1) for o in obj] + return list(obj) + elif isinstance(schema, Sequence): + if obj is None: + return None + # We allow to reverse list of dict => dict of list for compatiblity with tfds + if isinstance(schema.feature, dict): + # dict of list to fill + list_dict = {} + if isinstance(obj, (list, tuple)): + # obj is a list of dict + for k in schema.feature: + list_dict[k] = [encode_nested_example(schema.feature[k], o.get(k), level=level + 1) for o in obj] + return list_dict + else: + # obj is a single dict + for k in schema.feature: + list_dict[k] = ( + [encode_nested_example(schema.feature[k], o, level=level + 1) for o in obj[k]] + if k in obj + else None + ) + return list_dict + # schema.feature is not a dict + if isinstance(obj, str): # don't interpret a string as a list + raise ValueError(f"Got a string but expected a list instead: '{obj}'") + else: + if len(obj) > 0: + for first_elmt in obj: + if _check_non_null_non_empty_recursive(first_elmt, schema.feature): + break + # be careful when comparing tensors here + if ( + not isinstance(first_elmt, list) + or encode_nested_example(schema.feature, first_elmt, level=level + 1) != first_elmt + ): + return [encode_nested_example(schema.feature, o, level=level + 1) for o in obj] + return list(obj) + # Object with special encoding: + # ClassLabel will convert from string to int, TranslationVariableLanguages does some checks + elif isinstance(schema, (Audio, Image, ClassLabel, TranslationVariableLanguages, Value, _ArrayXD)): + return schema.encode_example(obj) if obj is not None else None + # Other object should be directly convertible to a native Arrow type (like Translation and Translation) + return obj + + +def decode_nested_example(schema, obj, token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None): + """Decode a nested example. + This is used since some features (in particular Audio and Image) have some logic during decoding. + + To avoid iterating over possibly long lists, it first checks (recursively) if the first element that is not None or empty (if it is a sequence) has to be decoded. + If the first element needs to be decoded, then all the elements of the list will be decoded, otherwise they'll stay the same. + """ + # Nested structures: we allow dict, list/tuples, sequences + if isinstance(schema, dict): + return ( + {k: decode_nested_example(sub_schema, sub_obj) for k, (sub_schema, sub_obj) in zip_dict(schema, obj)} + if obj is not None + else None + ) + elif isinstance(schema, (list, tuple)): + sub_schema = schema[0] + if obj is None: + return None + else: + if len(obj) > 0: + for first_elmt in obj: + if _check_non_null_non_empty_recursive(first_elmt, sub_schema): + break + if decode_nested_example(sub_schema, first_elmt) != first_elmt: + return [decode_nested_example(sub_schema, o) for o in obj] + return list(obj) + elif isinstance(schema, Sequence): + # We allow to reverse list of dict => dict of list for compatiblity with tfds + if isinstance(schema.feature, dict): + return {k: decode_nested_example([schema.feature[k]], obj[k]) for k in schema.feature} + else: + return decode_nested_example([schema.feature], obj) + # Object with special decoding: + elif isinstance(schema, (Audio, Image)): + # we pass the token to read and decode files from private repositories in streaming mode + if obj is not None and schema.decode: + return schema.decode_example(obj, token_per_repo_id=token_per_repo_id) + return obj + + +_FEATURE_TYPES: Dict[str, FeatureType] = { + Value.__name__: Value, + ClassLabel.__name__: ClassLabel, + Translation.__name__: Translation, + TranslationVariableLanguages.__name__: TranslationVariableLanguages, + Sequence.__name__: Sequence, + Array2D.__name__: Array2D, + Array3D.__name__: Array3D, + Array4D.__name__: Array4D, + Array5D.__name__: Array5D, + Audio.__name__: Audio, + Image.__name__: Image, +} + + +@experimental +def register_feature( + feature_cls: type, + feature_type: str, +): + """ + Register a Feature object using a name and class. + This function must be used on a Feature class. + """ + if feature_type in _FEATURE_TYPES: + logger.warning( + f"Overwriting feature type '{feature_type}' ({_FEATURE_TYPES[feature_type].__name__} -> {feature_cls.__name__})" + ) + _FEATURE_TYPES[feature_type] = feature_cls + + +def generate_from_dict(obj: Any): + """Regenerate the nested feature object from a deserialized dict. + We use the '_type' fields to get the dataclass name to load. + + generate_from_dict is the recursive helper for Features.from_dict, and allows for a convenient constructor syntax + to define features from deserialized JSON dictionaries. This function is used in particular when deserializing + a :class:`DatasetInfo` that was dumped to a JSON object. This acts as an analogue to + :meth:`Features.from_arrow_schema` and handles the recursive field-by-field instantiation, but doesn't require any + mapping to/from pyarrow, except for the fact that it takes advantage of the mapping of pyarrow primitive dtypes + that :class:`Value` automatically performs. + """ + # Nested structures: we allow dict, list/tuples, sequences + if isinstance(obj, list): + return [generate_from_dict(value) for value in obj] + # Otherwise we have a dict or a dataclass + if "_type" not in obj or isinstance(obj["_type"], dict): + return {key: generate_from_dict(value) for key, value in obj.items()} + obj = dict(obj) + _type = obj.pop("_type") + class_type = _FEATURE_TYPES.get(_type, None) or globals().get(_type, None) + + if class_type is None: + raise ValueError(f"Feature type '{_type}' not found. Available feature types: {list(_FEATURE_TYPES.keys())}") + + if class_type == Sequence: + return Sequence(feature=generate_from_dict(obj["feature"]), length=obj.get("length", -1)) + + field_names = {f.name for f in fields(class_type)} + return class_type(**{k: v for k, v in obj.items() if k in field_names}) + + +def generate_from_arrow_type(pa_type: pa.DataType) -> FeatureType: + """ + generate_from_arrow_type accepts an arrow DataType and returns a datasets FeatureType to be used as the type for + a single field. + + This is the high-level arrow->datasets type conversion and is inverted by get_nested_type(). + + This operates at the individual *field* level, whereas Features.from_arrow_schema() operates at the + full schema level and holds the methods that represent the bijection from Features<->pyarrow.Schema + """ + if isinstance(pa_type, pa.StructType): + return {field.name: generate_from_arrow_type(field.type) for field in pa_type} + elif isinstance(pa_type, pa.FixedSizeListType): + return Sequence(feature=generate_from_arrow_type(pa_type.value_type), length=pa_type.list_size) + elif isinstance(pa_type, pa.ListType): + feature = generate_from_arrow_type(pa_type.value_type) + if isinstance(feature, (dict, tuple, list)): + return [feature] + return Sequence(feature=feature) + elif isinstance(pa_type, _ArrayXDExtensionType): + array_feature = [None, None, Array2D, Array3D, Array4D, Array5D][pa_type.ndims] + return array_feature(shape=pa_type.shape, dtype=pa_type.value_type) + elif isinstance(pa_type, pa.DictionaryType): + raise NotImplementedError # TODO(thom) this will need access to the dictionary as well (for labels). I.e. to the py_table + elif isinstance(pa_type, pa.DataType): + return Value(dtype=_arrow_to_datasets_dtype(pa_type)) + else: + raise ValueError(f"Cannot convert {pa_type} to a Feature type.") + + +def numpy_to_pyarrow_listarray(arr: np.ndarray, type: pa.DataType = None) -> pa.ListArray: + """Build a PyArrow ListArray from a multidimensional NumPy array""" + arr = np.array(arr) + values = pa.array(arr.flatten(), type=type) + for i in range(arr.ndim - 1): + n_offsets = reduce(mul, arr.shape[: arr.ndim - i - 1], 1) + step_offsets = arr.shape[arr.ndim - i - 1] + offsets = pa.array(np.arange(n_offsets + 1) * step_offsets, type=pa.int32()) + values = pa.ListArray.from_arrays(offsets, values) + return values + + +def list_of_pa_arrays_to_pyarrow_listarray(l_arr: List[Optional[pa.Array]]) -> pa.ListArray: + null_mask = np.array([arr is None for arr in l_arr]) + null_indices = np.arange(len(null_mask))[null_mask] - np.arange(np.sum(null_mask)) + l_arr = [arr for arr in l_arr if arr is not None] + offsets = np.cumsum( + [0] + [len(arr) for arr in l_arr], dtype=object + ) # convert to dtype object to allow None insertion + offsets = np.insert(offsets, null_indices, None) + offsets = pa.array(offsets, type=pa.int32()) + values = pa.concat_arrays(l_arr) + return pa.ListArray.from_arrays(offsets, values) + + +def list_of_np_array_to_pyarrow_listarray(l_arr: List[np.ndarray], type: pa.DataType = None) -> pa.ListArray: + """Build a PyArrow ListArray from a possibly nested list of NumPy arrays""" + if len(l_arr) > 0: + return list_of_pa_arrays_to_pyarrow_listarray( + [numpy_to_pyarrow_listarray(arr, type=type) if arr is not None else None for arr in l_arr] + ) + else: + return pa.array([], type=type) + + +def contains_any_np_array(data: Any): + """Return `True` if data is a NumPy ndarray or (recursively) if first non-null value in list is a NumPy ndarray. + + Args: + data (Any): Data. + + Returns: + bool + """ + if isinstance(data, np.ndarray): + return True + elif isinstance(data, list): + return contains_any_np_array(first_non_null_value(data)[1]) + else: + return False + + +def any_np_array_to_pyarrow_listarray(data: Union[np.ndarray, List], type: pa.DataType = None) -> pa.ListArray: + """Convert to PyArrow ListArray either a NumPy ndarray or (recursively) a list that may contain any NumPy ndarray. + + Args: + data (Union[np.ndarray, List]): Data. + type (pa.DataType): Explicit PyArrow DataType passed to coerce the ListArray data type. + + Returns: + pa.ListArray + """ + if isinstance(data, np.ndarray): + return numpy_to_pyarrow_listarray(data, type=type) + elif isinstance(data, list): + return list_of_pa_arrays_to_pyarrow_listarray([any_np_array_to_pyarrow_listarray(i, type=type) for i in data]) + + +def to_pyarrow_listarray(data: Any, pa_type: _ArrayXDExtensionType) -> pa.Array: + """Convert to PyArrow ListArray. + + Args: + data (Any): Sequence, iterable, np.ndarray or pd.Series. + pa_type (_ArrayXDExtensionType): Any of the ArrayNDExtensionType. + + Returns: + pyarrow.Array + """ + if contains_any_np_array(data): + return any_np_array_to_pyarrow_listarray(data, type=pa_type.value_type) + else: + return pa.array(data, pa_type.storage_dtype) + + +def _visit(feature: FeatureType, func: Callable[[FeatureType], Optional[FeatureType]]) -> FeatureType: + """Visit a (possibly nested) feature. + + Args: + feature (FeatureType): the feature type to be checked + Returns: + visited feature (FeatureType) + """ + if isinstance(feature, dict): + out = func({k: _visit(f, func) for k, f in feature.items()}) + elif isinstance(feature, (list, tuple)): + out = func([_visit(feature[0], func)]) + elif isinstance(feature, Sequence): + out = func(Sequence(_visit(feature.feature, func), length=feature.length)) + else: + out = func(feature) + return feature if out is None else out + + +def require_decoding(feature: FeatureType, ignore_decode_attribute: bool = False) -> bool: + """Check if a (possibly nested) feature requires decoding. + + Args: + feature (FeatureType): the feature type to be checked + ignore_decode_attribute (:obj:`bool`, default ``False``): Whether to ignore the current value + of the `decode` attribute of the decodable feature types. + Returns: + :obj:`bool` + """ + if isinstance(feature, dict): + return any(require_decoding(f) for f in feature.values()) + elif isinstance(feature, (list, tuple)): + return require_decoding(feature[0]) + elif isinstance(feature, Sequence): + return require_decoding(feature.feature) + else: + return hasattr(feature, "decode_example") and (feature.decode if not ignore_decode_attribute else True) + + +def require_storage_cast(feature: FeatureType) -> bool: + """Check if a (possibly nested) feature requires storage casting. + + Args: + feature (FeatureType): the feature type to be checked + Returns: + :obj:`bool` + """ + if isinstance(feature, dict): + return any(require_storage_cast(f) for f in feature.values()) + elif isinstance(feature, (list, tuple)): + return require_storage_cast(feature[0]) + elif isinstance(feature, Sequence): + return require_storage_cast(feature.feature) + else: + return hasattr(feature, "cast_storage") + + +def require_storage_embed(feature: FeatureType) -> bool: + """Check if a (possibly nested) feature requires embedding data into storage. + + Args: + feature (FeatureType): the feature type to be checked + Returns: + :obj:`bool` + """ + if isinstance(feature, dict): + return any(require_storage_cast(f) for f in feature.values()) + elif isinstance(feature, (list, tuple)): + return require_storage_cast(feature[0]) + elif isinstance(feature, Sequence): + return require_storage_cast(feature.feature) + else: + return hasattr(feature, "embed_storage") + + +def keep_features_dicts_synced(func): + """ + Wrapper to keep the secondary dictionary, which tracks whether keys are decodable, of the :class:`datasets.Features` object + in sync with the main dictionary. + """ + + @wraps(func) + def wrapper(*args, **kwargs): + if args: + self: "Features" = args[0] + args = args[1:] + else: + self: "Features" = kwargs.pop("self") + out = func(self, *args, **kwargs) + assert hasattr(self, "_column_requires_decoding") + self._column_requires_decoding = {col: require_decoding(feature) for col, feature in self.items()} + return out + + wrapper._decorator_name_ = "_keep_dicts_synced" + return wrapper + + +class Features(dict): + """A special dictionary that defines the internal structure of a dataset. + + Instantiated with a dictionary of type `dict[str, FieldType]`, where keys are the desired column names, + and values are the type of that column. + + `FieldType` can be one of the following: + - a [`~datasets.Value`] feature specifies a single typed value, e.g. `int64` or `string`. + - a [`~datasets.ClassLabel`] feature specifies a field with a predefined set of classes which can have labels + associated to them and will be stored as integers in the dataset. + - a python `dict` which specifies that the field is a nested field containing a mapping of sub-fields to sub-fields + features. It's possible to have nested fields of nested fields in an arbitrary manner. + - a python `list` or a [`~datasets.Sequence`] specifies that the field contains a list of objects. The python + `list` or [`~datasets.Sequence`] should be provided with a single sub-feature as an example of the feature + type hosted in this list. + + + + A [`~datasets.Sequence`] with a internal dictionary feature will be automatically converted into a dictionary of + lists. This behavior is implemented to have a compatilbity layer with the TensorFlow Datasets library but may be + un-wanted in some cases. If you don't want this behavior, you can use a python `list` instead of the + [`~datasets.Sequence`]. + + + + - a [`Array2D`], [`Array3D`], [`Array4D`] or [`Array5D`] feature for multidimensional arrays. + - an [`Audio`] feature to store the absolute path to an audio file or a dictionary with the relative path + to an audio file ("path" key) and its bytes content ("bytes" key). This feature extracts the audio data. + - an [`Image`] feature to store the absolute path to an image file, an `np.ndarray` object, a `PIL.Image.Image` object + or a dictionary with the relative path to an image file ("path" key) and its bytes content ("bytes" key). This feature extracts the image data. + - [`~datasets.Translation`] and [`~datasets.TranslationVariableLanguages`], the two features specific to Machine Translation. + """ + + def __init__(*args, **kwargs): + # self not in the signature to allow passing self as a kwarg + if not args: + raise TypeError("descriptor '__init__' of 'Features' object needs an argument") + self, *args = args + super(Features, self).__init__(*args, **kwargs) + self._column_requires_decoding: Dict[str, bool] = { + col: require_decoding(feature) for col, feature in self.items() + } + + __setitem__ = keep_features_dicts_synced(dict.__setitem__) + __delitem__ = keep_features_dicts_synced(dict.__delitem__) + update = keep_features_dicts_synced(dict.update) + setdefault = keep_features_dicts_synced(dict.setdefault) + pop = keep_features_dicts_synced(dict.pop) + popitem = keep_features_dicts_synced(dict.popitem) + clear = keep_features_dicts_synced(dict.clear) + + def __reduce__(self): + return Features, (dict(self),) + + @property + def type(self): + """ + Features field types. + + Returns: + :obj:`pyarrow.DataType` + """ + return get_nested_type(self) + + @property + def arrow_schema(self): + """ + Features schema. + + Returns: + :obj:`pyarrow.Schema` + """ + hf_metadata = {"info": {"features": self.to_dict()}} + return pa.schema(self.type).with_metadata({"huggingface": json.dumps(hf_metadata)}) + + @classmethod + def from_arrow_schema(cls, pa_schema: pa.Schema) -> "Features": + """ + Construct [`Features`] from Arrow Schema. + It also checks the schema metadata for Hugging Face Datasets features. + Non-nullable fields are not supported and set to nullable. + + Args: + pa_schema (`pyarrow.Schema`): + Arrow Schema. + + Returns: + [`Features`] + """ + # try to load features from the arrow schema metadata + metadata_features = Features() + if pa_schema.metadata is not None and "huggingface".encode("utf-8") in pa_schema.metadata: + metadata = json.loads(pa_schema.metadata["huggingface".encode("utf-8")].decode()) + if "info" in metadata and "features" in metadata["info"] and metadata["info"]["features"] is not None: + metadata_features = Features.from_dict(metadata["info"]["features"]) + metadata_features_schema = metadata_features.arrow_schema + obj = { + field.name: ( + metadata_features[field.name] + if field.name in metadata_features and metadata_features_schema.field(field.name) == field + else generate_from_arrow_type(field.type) + ) + for field in pa_schema + } + return cls(**obj) + + @classmethod + def from_dict(cls, dic) -> "Features": + """ + Construct [`Features`] from dict. + + Regenerate the nested feature object from a deserialized dict. + We use the `_type` key to infer the dataclass name of the feature `FieldType`. + + It allows for a convenient constructor syntax + to define features from deserialized JSON dictionaries. This function is used in particular when deserializing + a [`DatasetInfo`] that was dumped to a JSON object. This acts as an analogue to + [`Features.from_arrow_schema`] and handles the recursive field-by-field instantiation, but doesn't require + any mapping to/from pyarrow, except for the fact that it takes advantage of the mapping of pyarrow primitive + dtypes that [`Value`] automatically performs. + + Args: + dic (`dict[str, Any]`): + Python dictionary. + + Returns: + `Features` + + Example:: + >>> Features.from_dict({'_type': {'dtype': 'string', 'id': None, '_type': 'Value'}}) + {'_type': Value(dtype='string', id=None)} + """ + obj = generate_from_dict(dic) + return cls(**obj) + + def to_dict(self): + return asdict(self) + + def _to_yaml_list(self) -> list: + # we compute the YAML list from the dict representation that is used for JSON dump + yaml_data = self.to_dict() + + def simplify(feature: dict) -> dict: + if not isinstance(feature, dict): + raise TypeError(f"Expected a dict but got a {type(feature)}: {feature}") + + # + # sequence: -> sequence: int32 + # dtype: int32 -> + # + if isinstance(feature.get("sequence"), dict) and list(feature["sequence"]) == ["dtype"]: + feature["sequence"] = feature["sequence"]["dtype"] + + # + # sequence: -> sequence: + # struct: -> - name: foo + # - name: foo -> dtype: int32 + # dtype: int32 -> + # + if isinstance(feature.get("sequence"), dict) and list(feature["sequence"]) == ["struct"]: + feature["sequence"] = feature["sequence"]["struct"] + + # + # list: -> list: int32 + # dtype: int32 -> + # + if isinstance(feature.get("list"), dict) and list(feature["list"]) == ["dtype"]: + feature["list"] = feature["list"]["dtype"] + + # + # list: -> list: + # struct: -> - name: foo + # - name: foo -> dtype: int32 + # dtype: int32 -> + # + if isinstance(feature.get("list"), dict) and list(feature["list"]) == ["struct"]: + feature["list"] = feature["list"]["struct"] + + # + # class_label: -> class_label: + # names: -> names: + # - negative -> '0': negative + # - positive -> '1': positive + # + if isinstance(feature.get("class_label"), dict) and isinstance(feature["class_label"].get("names"), list): + # server-side requirement: keys must be strings + feature["class_label"]["names"] = { + str(label_id): label_name for label_id, label_name in enumerate(feature["class_label"]["names"]) + } + return feature + + def to_yaml_inner(obj: Union[dict, list]) -> dict: + if isinstance(obj, dict): + _type = obj.pop("_type", None) + if _type == "Sequence": + _feature = obj.pop("feature") + return simplify({"sequence": to_yaml_inner(_feature), **obj}) + elif _type == "Value": + return obj + elif _type and not obj: + return {"dtype": camelcase_to_snakecase(_type)} + elif _type: + return {"dtype": simplify({camelcase_to_snakecase(_type): obj})} + else: + return {"struct": [{"name": name, **to_yaml_inner(_feature)} for name, _feature in obj.items()]} + elif isinstance(obj, list): + return simplify({"list": simplify(to_yaml_inner(obj[0]))}) + elif isinstance(obj, tuple): + return to_yaml_inner(list(obj)) + else: + raise TypeError(f"Expected a dict or a list but got {type(obj)}: {obj}") + + def to_yaml_types(obj: dict) -> dict: + if isinstance(obj, dict): + return {k: to_yaml_types(v) for k, v in obj.items()} + elif isinstance(obj, list): + return [to_yaml_types(v) for v in obj] + elif isinstance(obj, tuple): + return to_yaml_types(list(obj)) + else: + return obj + + return to_yaml_types(to_yaml_inner(yaml_data)["struct"]) + + @classmethod + def _from_yaml_list(cls, yaml_data: list) -> "Features": + yaml_data = copy.deepcopy(yaml_data) + + # we convert the list obtained from YAML data into the dict representation that is used for JSON dump + + def unsimplify(feature: dict) -> dict: + if not isinstance(feature, dict): + raise TypeError(f"Expected a dict but got a {type(feature)}: {feature}") + # + # sequence: int32 -> sequence: + # -> dtype: int32 + # + if isinstance(feature.get("sequence"), str): + feature["sequence"] = {"dtype": feature["sequence"]} + # + # list: int32 -> list: + # -> dtype: int32 + # + if isinstance(feature.get("list"), str): + feature["list"] = {"dtype": feature["list"]} + + # + # class_label: -> class_label: + # names: -> names: + # '0': negative -> - negative + # '1': positive -> - positive + # + if isinstance(feature.get("class_label"), dict) and isinstance(feature["class_label"].get("names"), dict): + label_ids = sorted(feature["class_label"]["names"], key=int) + if label_ids and [int(label_id) for label_id in label_ids] != list(range(int(label_ids[-1]) + 1)): + raise ValueError( + f"ClassLabel expected a value for all label ids [0:{int(label_ids[-1]) + 1}] but some ids are missing." + ) + feature["class_label"]["names"] = [feature["class_label"]["names"][label_id] for label_id in label_ids] + return feature + + def from_yaml_inner(obj: Union[dict, list]) -> Union[dict, list]: + if isinstance(obj, dict): + if not obj: + return {} + _type = next(iter(obj)) + if _type == "sequence": + _feature = unsimplify(obj).pop(_type) + return {"feature": from_yaml_inner(_feature), **obj, "_type": "Sequence"} + if _type == "list": + return [from_yaml_inner(unsimplify(obj)[_type])] + if _type == "struct": + return from_yaml_inner(obj["struct"]) + elif _type == "dtype": + if isinstance(obj["dtype"], str): + # e.g. int32, float64, string, audio, image + try: + Value(obj["dtype"]) + return {**obj, "_type": "Value"} + except ValueError: + # e.g. Audio, Image, ArrayXD + return {"_type": snakecase_to_camelcase(obj["dtype"])} + else: + return from_yaml_inner(obj["dtype"]) + else: + return {"_type": snakecase_to_camelcase(_type), **unsimplify(obj)[_type]} + elif isinstance(obj, list): + names = [_feature.pop("name") for _feature in obj] + return {name: from_yaml_inner(_feature) for name, _feature in zip(names, obj)} + else: + raise TypeError(f"Expected a dict or a list but got {type(obj)}: {obj}") + + return cls.from_dict(from_yaml_inner(yaml_data)) + + def encode_example(self, example): + """ + Encode example into a format for Arrow. + + Args: + example (`dict[str, Any]`): + Data in a Dataset row. + + Returns: + `dict[str, Any]` + """ + example = cast_to_python_objects(example) + return encode_nested_example(self, example) + + def encode_column(self, column, column_name: str): + """ + Encode column into a format for Arrow. + + Args: + column (`list[Any]`): + Data in a Dataset column. + column_name (`str`): + Dataset column name. + + Returns: + `list[Any]` + """ + column = cast_to_python_objects(column) + return [encode_nested_example(self[column_name], obj, level=1) for obj in column] + + def encode_batch(self, batch): + """ + Encode batch into a format for Arrow. + + Args: + batch (`dict[str, list[Any]]`): + Data in a Dataset batch. + + Returns: + `dict[str, list[Any]]` + """ + encoded_batch = {} + if set(batch) != set(self): + raise ValueError(f"Column mismatch between batch {set(batch)} and features {set(self)}") + for key, column in batch.items(): + column = cast_to_python_objects(column) + encoded_batch[key] = [encode_nested_example(self[key], obj, level=1) for obj in column] + return encoded_batch + + def decode_example(self, example: dict, token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None): + """Decode example with custom feature decoding. + + Args: + example (`dict[str, Any]`): + Dataset row data. + token_per_repo_id (`dict`, *optional*): + To access and decode audio or image files from private repositories on the Hub, you can pass + a dictionary `repo_id (str) -> token (bool or str)`. + + Returns: + `dict[str, Any]` + """ + + return { + column_name: decode_nested_example(feature, value, token_per_repo_id=token_per_repo_id) + if self._column_requires_decoding[column_name] + else value + for column_name, (feature, value) in zip_dict( + {key: value for key, value in self.items() if key in example}, example + ) + } + + def decode_column(self, column: list, column_name: str): + """Decode column with custom feature decoding. + + Args: + column (`list[Any]`): + Dataset column data. + column_name (`str`): + Dataset column name. + + Returns: + `list[Any]` + """ + return ( + [decode_nested_example(self[column_name], value) if value is not None else None for value in column] + if self._column_requires_decoding[column_name] + else column + ) + + def decode_batch(self, batch: dict, token_per_repo_id: Optional[Dict[str, Union[str, bool, None]]] = None): + """Decode batch with custom feature decoding. + + Args: + batch (`dict[str, list[Any]]`): + Dataset batch data. + token_per_repo_id (`dict`, *optional*): + To access and decode audio or image files from private repositories on the Hub, you can pass + a dictionary repo_id (str) -> token (bool or str) + + Returns: + `dict[str, list[Any]]` + """ + decoded_batch = {} + for column_name, column in batch.items(): + decoded_batch[column_name] = ( + [ + decode_nested_example(self[column_name], value, token_per_repo_id=token_per_repo_id) + if value is not None + else None + for value in column + ] + if self._column_requires_decoding[column_name] + else column + ) + return decoded_batch + + def copy(self) -> "Features": + """ + Make a deep copy of [`Features`]. + + Returns: + [`Features`] + + Example: + + ```py + >>> from datasets import load_dataset + >>> ds = load_dataset("rotten_tomatoes", split="train") + >>> copy_of_features = ds.features.copy() + >>> copy_of_features + {'label': ClassLabel(num_classes=2, names=['neg', 'pos'], id=None), + 'text': Value(dtype='string', id=None)} + ``` + """ + return copy.deepcopy(self) + + def reorder_fields_as(self, other: "Features") -> "Features": + """ + Reorder Features fields to match the field order of other [`Features`]. + + The order of the fields is important since it matters for the underlying arrow data. + Re-ordering the fields allows to make the underlying arrow data type match. + + Args: + other ([`Features`]): + The other [`Features`] to align with. + + Returns: + [`Features`] + + Example:: + + >>> from datasets import Features, Sequence, Value + >>> # let's say we have to features with a different order of nested fields (for a and b for example) + >>> f1 = Features({"root": Sequence({"a": Value("string"), "b": Value("string")})}) + >>> f2 = Features({"root": {"b": Sequence(Value("string")), "a": Sequence(Value("string"))}}) + >>> assert f1.type != f2.type + >>> # re-ordering keeps the base structure (here Sequence is defined at the root level), but make the fields order match + >>> f1.reorder_fields_as(f2) + {'root': Sequence(feature={'b': Value(dtype='string', id=None), 'a': Value(dtype='string', id=None)}, length=-1, id=None)} + >>> assert f1.reorder_fields_as(f2).type == f2.type + """ + + def recursive_reorder(source, target, stack=""): + stack_position = " at " + stack[1:] if stack else "" + if isinstance(target, Sequence): + target = target.feature + if isinstance(target, dict): + target = {k: [v] for k, v in target.items()} + else: + target = [target] + if isinstance(source, Sequence): + source, id_, length = source.feature, source.id, source.length + if isinstance(source, dict): + source = {k: [v] for k, v in source.items()} + reordered = recursive_reorder(source, target, stack) + return Sequence({k: v[0] for k, v in reordered.items()}, id=id_, length=length) + else: + source = [source] + reordered = recursive_reorder(source, target, stack) + return Sequence(reordered[0], id=id_, length=length) + elif isinstance(source, dict): + if not isinstance(target, dict): + raise ValueError(f"Type mismatch: between {source} and {target}" + stack_position) + if sorted(source) != sorted(target): + message = ( + f"Keys mismatch: between {source} (source) and {target} (target).\n" + f"{source.keys()-target.keys()} are missing from target " + f"and {target.keys()-source.keys()} are missing from source" + stack_position + ) + raise ValueError(message) + return {key: recursive_reorder(source[key], target[key], stack + f".{key}") for key in target} + elif isinstance(source, list): + if not isinstance(target, list): + raise ValueError(f"Type mismatch: between {source} and {target}" + stack_position) + if len(source) != len(target): + raise ValueError(f"Length mismatch: between {source} and {target}" + stack_position) + return [recursive_reorder(source[i], target[i], stack + ".") for i in range(len(target))] + else: + return source + + return Features(recursive_reorder(self, other)) + + def flatten(self, max_depth=16) -> "Features": + """Flatten the features. Every dictionary column is removed and is replaced by + all the subfields it contains. The new fields are named by concatenating the + name of the original column and the subfield name like this: `.`. + + If a column contains nested dictionaries, then all the lower-level subfields names are + also concatenated to form new columns: `..`, etc. + + Returns: + [`Features`]: + The flattened features. + + Example: + + ```py + >>> from datasets import load_dataset + >>> ds = load_dataset("squad", split="train") + >>> ds.features.flatten() + {'answers.answer_start': Sequence(feature=Value(dtype='int32', id=None), length=-1, id=None), + 'answers.text': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), + 'context': Value(dtype='string', id=None), + 'id': Value(dtype='string', id=None), + 'question': Value(dtype='string', id=None), + 'title': Value(dtype='string', id=None)} + ``` + """ + for depth in range(1, max_depth): + no_change = True + flattened = self.copy() + for column_name, subfeature in self.items(): + if isinstance(subfeature, dict): + no_change = False + flattened.update({f"{column_name}.{k}": v for k, v in subfeature.items()}) + del flattened[column_name] + elif isinstance(subfeature, Sequence) and isinstance(subfeature.feature, dict): + no_change = False + flattened.update( + { + f"{column_name}.{k}": Sequence(v) if not isinstance(v, dict) else [v] + for k, v in subfeature.feature.items() + } + ) + del flattened[column_name] + elif hasattr(subfeature, "flatten") and subfeature.flatten() != subfeature: + no_change = False + flattened.update({f"{column_name}.{k}": v for k, v in subfeature.flatten().items()}) + del flattened[column_name] + self = flattened + if no_change: + break + return self + + +def _align_features(features_list: List[Features]) -> List[Features]: + """Align dictionaries of features so that the keys that are found in multiple dictionaries share the same feature.""" + name2feature = {} + for features in features_list: + for k, v in features.items(): + if k in name2feature and isinstance(v, dict): + # Recursively align features. + name2feature[k] = _align_features([name2feature[k], v])[0] + elif k not in name2feature or (isinstance(name2feature[k], Value) and name2feature[k].dtype == "null"): + name2feature[k] = v + + return [Features({k: name2feature[k] for k in features.keys()}) for features in features_list] + + +def _check_if_features_can_be_aligned(features_list: List[Features]): + """Check if the dictionaries of features can be aligned. + + Two dictonaries of features can be aligned if the keys they share have the same type or some of them is of type `Value("null")`. + """ + name2feature = {} + for features in features_list: + for k, v in features.items(): + if k not in name2feature or (isinstance(name2feature[k], Value) and name2feature[k].dtype == "null"): + name2feature[k] = v + + for features in features_list: + for k, v in features.items(): + if isinstance(v, dict) and isinstance(name2feature[k], dict): + # Deep checks for structure. + _check_if_features_can_be_aligned([name2feature[k], v]) + elif not (isinstance(v, Value) and v.dtype == "null") and name2feature[k] != v: + raise ValueError( + f'The features can\'t be aligned because the key {k} of features {features} has unexpected type - {v} (expected either {name2feature[k]} or Value("null").' + ) diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/features/image.py b/llmeval-env/lib/python3.10/site-packages/datasets/features/image.py new file mode 100644 index 0000000000000000000000000000000000000000..c63d4d439641a41d592c38a79343195e2beb591e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/features/image.py @@ -0,0 +1,383 @@ +import os +import sys +import warnings +from dataclasses import dataclass, field +from io import BytesIO +from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union + +import numpy as np +import pyarrow as pa + +from .. import config +from ..download.download_config import DownloadConfig +from ..table import array_cast +from ..utils.file_utils import is_local_path, xopen +from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict + + +if TYPE_CHECKING: + import PIL.Image + + from .features import FeatureType + + +_IMAGE_COMPRESSION_FORMATS: Optional[List[str]] = None +_NATIVE_BYTEORDER = "<" if sys.byteorder == "little" else ">" +# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image +_VALID_IMAGE_ARRAY_DTPYES = [ + np.dtype("|b1"), + np.dtype("|u1"), + np.dtype("u2"), + np.dtype("i2"), + np.dtype("u4"), + np.dtype("i4"), + np.dtype("f4"), + np.dtype("f8"), +] + + +@dataclass +class Image: + """Image [`Feature`] to read image data from an image file. + + Input: The Image feature accepts as input: + - A `str`: Absolute path to the image file (i.e. random access is allowed). + - A `dict` with the keys: + + - `path`: String with relative path of the image file to the archive file. + - `bytes`: Bytes of the image file. + + This is useful for archived files with sequential access. + + - An `np.ndarray`: NumPy array representing an image. + - A `PIL.Image.Image`: PIL image object. + + Args: + mode (`str`, *optional*): + The mode to convert the image to. If `None`, the native mode of the image is used. + decode (`bool`, defaults to `True`): + Whether to decode the image data. If `False`, + returns the underlying dictionary in the format `{"path": image_path, "bytes": image_bytes}`. + + Examples: + + ```py + >>> from datasets import load_dataset, Image + >>> ds = load_dataset("beans", split="train") + >>> ds.features["image"] + Image(decode=True, id=None) + >>> ds[0]["image"] + + >>> ds = ds.cast_column('image', Image(decode=False)) + {'bytes': None, + 'path': '/root/.cache/huggingface/datasets/downloads/extracted/b0a21163f78769a2cf11f58dfc767fb458fc7cea5c05dccc0144a2c0f0bc1292/train/healthy/healthy_train.85.jpg'} + ``` + """ + + mode: Optional[str] = None + decode: bool = True + id: Optional[str] = None + # Automatically constructed + dtype: ClassVar[str] = "PIL.Image.Image" + pa_type: ClassVar[Any] = pa.struct({"bytes": pa.binary(), "path": pa.string()}) + _type: str = field(default="Image", init=False, repr=False) + + def __call__(self): + return self.pa_type + + def encode_example(self, value: Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"]) -> dict: + """Encode example into a format for Arrow. + + Args: + value (`str`, `np.ndarray`, `PIL.Image.Image` or `dict`): + Data passed as input to Image feature. + + Returns: + `dict` with "path" and "bytes" fields + """ + if config.PIL_AVAILABLE: + import PIL.Image + else: + raise ImportError("To support encoding images, please install 'Pillow'.") + + if isinstance(value, list): + value = np.array(value) + + if isinstance(value, str): + return {"path": value, "bytes": None} + elif isinstance(value, bytes): + return {"path": None, "bytes": value} + elif isinstance(value, np.ndarray): + # convert the image array to PNG/TIFF bytes + return encode_np_array(value) + elif isinstance(value, PIL.Image.Image): + # convert the PIL image to bytes (default format is PNG/TIFF) + return encode_pil_image(value) + elif value.get("path") is not None and os.path.isfile(value["path"]): + # we set "bytes": None to not duplicate the data if they're already available locally + return {"bytes": None, "path": value.get("path")} + elif value.get("bytes") is not None or value.get("path") is not None: + # store the image bytes, and path is used to infer the image format using the file extension + return {"bytes": value.get("bytes"), "path": value.get("path")} + else: + raise ValueError( + f"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}." + ) + + def decode_example(self, value: dict, token_per_repo_id=None) -> "PIL.Image.Image": + """Decode example image file into image data. + + Args: + value (`str` or `dict`): + A string with the absolute image file path, a dictionary with + keys: + + - `path`: String with absolute or relative image file path. + - `bytes`: The bytes of the image file. + token_per_repo_id (`dict`, *optional*): + To access and decode + image files from private repositories on the Hub, you can pass + a dictionary repo_id (`str`) -> token (`bool` or `str`). + + Returns: + `PIL.Image.Image` + """ + if not self.decode: + raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead.") + + if config.PIL_AVAILABLE: + import PIL.Image + import PIL.ImageOps + else: + raise ImportError("To support decoding images, please install 'Pillow'.") + + if token_per_repo_id is None: + token_per_repo_id = {} + + path, bytes_ = value["path"], value["bytes"] + if bytes_ is None: + if path is None: + raise ValueError(f"An image should have one of 'path' or 'bytes' but both are None in {value}.") + else: + if is_local_path(path): + image = PIL.Image.open(path) + else: + source_url = path.split("::")[-1] + pattern = ( + config.HUB_DATASETS_URL + if source_url.startswith(config.HF_ENDPOINT) + else config.HUB_DATASETS_HFFS_URL + ) + try: + repo_id = string_to_dict(source_url, pattern)["repo_id"] + token = token_per_repo_id.get(repo_id) + except ValueError: + token = None + download_config = DownloadConfig(token=token) + with xopen(path, "rb", download_config=download_config) as f: + bytes_ = BytesIO(f.read()) + image = PIL.Image.open(bytes_) + else: + image = PIL.Image.open(BytesIO(bytes_)) + image.load() # to avoid "Too many open files" errors + if image.getexif().get(PIL.Image.ExifTags.Base.Orientation) is not None: + image = PIL.ImageOps.exif_transpose(image) + if self.mode and self.mode != image.mode: + image = image.convert(self.mode) + return image + + def flatten(self) -> Union["FeatureType", Dict[str, "FeatureType"]]: + """If in the decodable state, return the feature itself, otherwise flatten the feature into a dictionary.""" + from .features import Value + + return ( + self + if self.decode + else { + "bytes": Value("binary"), + "path": Value("string"), + } + ) + + def cast_storage(self, storage: Union[pa.StringArray, pa.StructArray, pa.ListArray]) -> pa.StructArray: + """Cast an Arrow array to the Image arrow storage type. + The Arrow types that can be converted to the Image pyarrow storage type are: + + - `pa.string()` - it must contain the "path" data + - `pa.binary()` - it must contain the image bytes + - `pa.struct({"bytes": pa.binary()})` + - `pa.struct({"path": pa.string()})` + - `pa.struct({"bytes": pa.binary(), "path": pa.string()})` - order doesn't matter + - `pa.list(*)` - it must contain the image array data + + Args: + storage (`Union[pa.StringArray, pa.StructArray, pa.ListArray]`): + PyArrow array to cast. + + Returns: + `pa.StructArray`: Array in the Image arrow storage type, that is + `pa.struct({"bytes": pa.binary(), "path": pa.string()})`. + """ + if pa.types.is_string(storage.type): + bytes_array = pa.array([None] * len(storage), type=pa.binary()) + storage = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null()) + elif pa.types.is_binary(storage.type): + path_array = pa.array([None] * len(storage), type=pa.string()) + storage = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null()) + elif pa.types.is_struct(storage.type): + if storage.type.get_field_index("bytes") >= 0: + bytes_array = storage.field("bytes") + else: + bytes_array = pa.array([None] * len(storage), type=pa.binary()) + if storage.type.get_field_index("path") >= 0: + path_array = storage.field("path") + else: + path_array = pa.array([None] * len(storage), type=pa.string()) + storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null()) + elif pa.types.is_list(storage.type): + bytes_array = pa.array( + [encode_np_array(np.array(arr))["bytes"] if arr is not None else None for arr in storage.to_pylist()], + type=pa.binary(), + ) + path_array = pa.array([None] * len(storage), type=pa.string()) + storage = pa.StructArray.from_arrays( + [bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() + ) + return array_cast(storage, self.pa_type) + + def embed_storage(self, storage: pa.StructArray) -> pa.StructArray: + """Embed image files into the Arrow array. + + Args: + storage (`pa.StructArray`): + PyArrow array to embed. + + Returns: + `pa.StructArray`: Array in the Image arrow storage type, that is + `pa.struct({"bytes": pa.binary(), "path": pa.string()})`. + """ + + @no_op_if_value_is_null + def path_to_bytes(path): + with xopen(path, "rb") as f: + bytes_ = f.read() + return bytes_ + + bytes_array = pa.array( + [ + (path_to_bytes(x["path"]) if x["bytes"] is None else x["bytes"]) if x is not None else None + for x in storage.to_pylist() + ], + type=pa.binary(), + ) + path_array = pa.array( + [os.path.basename(path) if path is not None else None for path in storage.field("path").to_pylist()], + type=pa.string(), + ) + storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null()) + return array_cast(storage, self.pa_type) + + +def list_image_compression_formats() -> List[str]: + if config.PIL_AVAILABLE: + import PIL.Image + else: + raise ImportError("To support encoding images, please install 'Pillow'.") + + global _IMAGE_COMPRESSION_FORMATS + if _IMAGE_COMPRESSION_FORMATS is None: + PIL.Image.init() + _IMAGE_COMPRESSION_FORMATS = list(set(PIL.Image.OPEN.keys()) & set(PIL.Image.SAVE.keys())) + return _IMAGE_COMPRESSION_FORMATS + + +def image_to_bytes(image: "PIL.Image.Image") -> bytes: + """Convert a PIL Image object to bytes using native compression if possible, otherwise use PNG/TIFF compression.""" + buffer = BytesIO() + if image.format in list_image_compression_formats(): + format = image.format + else: + format = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" + image.save(buffer, format=format) + return buffer.getvalue() + + +def encode_pil_image(image: "PIL.Image.Image") -> dict: + if hasattr(image, "filename") and image.filename != "": + return {"path": image.filename, "bytes": None} + else: + return {"path": None, "bytes": image_to_bytes(image)} + + +def encode_np_array(array: np.ndarray) -> dict: + if config.PIL_AVAILABLE: + import PIL.Image + else: + raise ImportError("To support encoding images, please install 'Pillow'.") + + dtype = array.dtype + dtype_byteorder = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER + dtype_kind = dtype.kind + dtype_itemsize = dtype.itemsize + + dest_dtype = None + + # Multi-channel array case (only np.dtype("|u1") is allowed) + if array.shape[2:]: + if dtype_kind not in ["u", "i"]: + raise TypeError( + f"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." + ) + dest_dtype = np.dtype("|u1") + if dtype != dest_dtype: + warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'") + # Exact match + elif dtype in _VALID_IMAGE_ARRAY_DTPYES: + dest_dtype = dtype + else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) + while dtype_itemsize >= 1: + dtype_str = dtype_byteorder + dtype_kind + str(dtype_itemsize) + if np.dtype(dtype_str) in _VALID_IMAGE_ARRAY_DTPYES: + dest_dtype = np.dtype(dtype_str) + warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'") + break + else: + dtype_itemsize //= 2 + if dest_dtype is None: + raise TypeError( + f"Cannot downcast dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" + ) + + image = PIL.Image.fromarray(array.astype(dest_dtype)) + return {"path": None, "bytes": image_to_bytes(image)} + + +def objects_to_list_of_image_dicts( + objs: Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]], +) -> List[dict]: + """Encode a list of objects into a format suitable for creating an extension array of type `ImageExtensionType`.""" + if config.PIL_AVAILABLE: + import PIL.Image + else: + raise ImportError("To support encoding images, please install 'Pillow'.") + + if objs: + _, obj = first_non_null_value(objs) + if isinstance(obj, str): + return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] + if isinstance(obj, np.ndarray): + obj_to_image_dict_func = no_op_if_value_is_null(encode_np_array) + return [obj_to_image_dict_func(obj) for obj in objs] + elif isinstance(obj, PIL.Image.Image): + obj_to_image_dict_func = no_op_if_value_is_null(encode_pil_image) + return [obj_to_image_dict_func(obj) for obj in objs] + else: + return objs + else: + return objs diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/features/translation.py b/llmeval-env/lib/python3.10/site-packages/datasets/features/translation.py new file mode 100644 index 0000000000000000000000000000000000000000..1d3eb1af4bbb15397afe4f1e0a5afd54060fcda3 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/features/translation.py @@ -0,0 +1,129 @@ +from dataclasses import dataclass, field +from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union + +import pyarrow as pa + + +if TYPE_CHECKING: + from .features import FeatureType + + +@dataclass +class Translation: + """`FeatureConnector` for translations with fixed languages per example. + Here for compatiblity with tfds. + + Args: + languages (`dict`): + A dictionary for each example mapping string language codes to string translations. + + Example: + + ```python + >>> # At construction time: + >>> datasets.features.Translation(languages=['en', 'fr', 'de']) + >>> # During data generation: + >>> yield { + ... 'en': 'the cat', + ... 'fr': 'le chat', + ... 'de': 'die katze' + ... } + ``` + """ + + languages: List[str] + id: Optional[str] = None + # Automatically constructed + dtype: ClassVar[str] = "dict" + pa_type: ClassVar[Any] = None + _type: str = field(default="Translation", init=False, repr=False) + + def __call__(self): + return pa.struct({lang: pa.string() for lang in sorted(self.languages)}) + + def flatten(self) -> Union["FeatureType", Dict[str, "FeatureType"]]: + """Flatten the Translation feature into a dictionary.""" + from .features import Value + + return {k: Value("string") for k in sorted(self.languages)} + + +@dataclass +class TranslationVariableLanguages: + """`FeatureConnector` for translations with variable languages per example. + Here for compatiblity with tfds. + + Args: + languages (`dict`): + A dictionary for each example mapping string language codes to one or more string translations. + The languages present may vary from example to example. + + Returns: + - `language` or `translation` (variable-length 1D `tf.Tensor` of `tf.string`): + Language codes sorted in ascending order or plain text translations, sorted to align with language codes. + + Example: + + ```python + >>> # At construction time: + >>> datasets.features.TranslationVariableLanguages(languages=['en', 'fr', 'de']) + >>> # During data generation: + >>> yield { + ... 'en': 'the cat', + ... 'fr': ['le chat', 'la chatte,'] + ... 'de': 'die katze' + ... } + >>> # Tensor returned : + >>> { + ... 'language': ['en', 'de', 'fr', 'fr'], + ... 'translation': ['the cat', 'die katze', 'la chatte', 'le chat'], + ... } + ``` + """ + + languages: Optional[List] = None + num_languages: Optional[int] = None + id: Optional[str] = None + # Automatically constructed + dtype: ClassVar[str] = "dict" + pa_type: ClassVar[Any] = None + _type: str = field(default="TranslationVariableLanguages", init=False, repr=False) + + def __post_init__(self): + self.languages = sorted(set(self.languages)) if self.languages else None + self.num_languages = len(self.languages) if self.languages else None + + def __call__(self): + return pa.struct({"language": pa.list_(pa.string()), "translation": pa.list_(pa.string())}) + + def encode_example(self, translation_dict): + lang_set = set(self.languages) + if set(translation_dict) == {"language", "translation"}: + return translation_dict + elif self.languages and set(translation_dict) - lang_set: + raise ValueError( + f'Some languages in example ({", ".join(sorted(set(translation_dict) - lang_set))}) are not in valid set ({", ".join(lang_set)}).' + ) + + # Convert dictionary into tuples, splitting out cases where there are + # multiple translations for a single language. + translation_tuples = [] + for lang, text in translation_dict.items(): + if isinstance(text, str): + translation_tuples.append((lang, text)) + else: + translation_tuples.extend([(lang, el) for el in text]) + + # Ensure translations are in ascending order by language code. + languages, translations = zip(*sorted(translation_tuples)) + + return {"language": languages, "translation": translations} + + def flatten(self) -> Union["FeatureType", Dict[str, "FeatureType"]]: + """Flatten the TranslationVariableLanguages feature into a dictionary.""" + from .features import Sequence, Value + + return { + "language": Sequence(Value("string")), + "translation": Sequence(Value("string")), + } diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5db2346160944090b7c01ef79f300d00275af9fc Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/arrow/__init__.py b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/arrow/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/arrow/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/arrow/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..81025394358fecfd6768254f8dd6aeb0923bf352 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/arrow/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/arrow/__pycache__/arrow.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/arrow/__pycache__/arrow.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..73aef16d772ea3cd62f5c41e9cb89914110eb475 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/arrow/__pycache__/arrow.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/arrow/arrow.py b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/arrow/arrow.py new file mode 100644 index 0000000000000000000000000000000000000000..cd1ecbf12da4a1541115500d38d311346fc161d5 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/arrow/arrow.py @@ -0,0 +1,74 @@ +import itertools +from dataclasses import dataclass +from typing import Optional + +import pyarrow as pa + +import datasets +from datasets.table import table_cast + + +logger = datasets.utils.logging.get_logger(__name__) + + +@dataclass +class ArrowConfig(datasets.BuilderConfig): + """BuilderConfig for Arrow.""" + + features: Optional[datasets.Features] = None + + +class Arrow(datasets.ArrowBasedBuilder): + BUILDER_CONFIG_CLASS = ArrowConfig + + def _info(self): + return datasets.DatasetInfo(features=self.config.features) + + def _split_generators(self, dl_manager): + """We handle string, list and dicts in datafiles""" + if not self.config.data_files: + raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") + dl_manager.download_config.extract_on_the_fly = True + data_files = dl_manager.download_and_extract(self.config.data_files) + if isinstance(data_files, (str, list, tuple)): + files = data_files + if isinstance(files, str): + files = [files] + # Use `dl_manager.iter_files` to skip hidden files in an extracted archive + files = [dl_manager.iter_files(file) for file in files] + return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})] + splits = [] + for split_name, files in data_files.items(): + if isinstance(files, str): + files = [files] + # Use `dl_manager.iter_files` to skip hidden files in an extracted archive + files = [dl_manager.iter_files(file) for file in files] + # Infer features is they are stoed in the arrow schema + if self.info.features is None: + for file in itertools.chain.from_iterable(files): + with open(file, "rb") as f: + self.info.features = datasets.Features.from_arrow_schema(pa.ipc.open_stream(f).schema) + break + splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files})) + return splits + + def _cast_table(self, pa_table: pa.Table) -> pa.Table: + if self.info.features is not None: + # more expensive cast to support nested features with keys in a different order + # allows str <-> int/float or str to Audio for example + pa_table = table_cast(pa_table, self.info.features.arrow_schema) + return pa_table + + def _generate_tables(self, files): + for file_idx, file in enumerate(itertools.chain.from_iterable(files)): + with open(file, "rb") as f: + try: + for batch_idx, record_batch in enumerate(pa.ipc.open_stream(f)): + pa_table = pa.Table.from_batches([record_batch]) + # Uncomment for debugging (will print the Arrow table size and elements) + # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") + # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) + yield f"{file_idx}_{batch_idx}", self._cast_table(pa_table) + except ValueError as e: + logger.error(f"Failed to read file '{file}' with error {type(e)}: {e}") + raise diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/audiofolder/__init__.py b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/audiofolder/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/audiofolder/audiofolder.py b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/audiofolder/audiofolder.py new file mode 100644 index 0000000000000000000000000000000000000000..51044143039e98af0f9fd7d1ecdf1cab229e58a1 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/audiofolder/audiofolder.py @@ -0,0 +1,68 @@ +from typing import List + +import datasets +from datasets.tasks import AudioClassification + +from ..folder_based_builder import folder_based_builder + + +logger = datasets.utils.logging.get_logger(__name__) + + +class AudioFolderConfig(folder_based_builder.FolderBasedBuilderConfig): + """Builder Config for AudioFolder.""" + + drop_labels: bool = None + drop_metadata: bool = None + + +class AudioFolder(folder_based_builder.FolderBasedBuilder): + BASE_FEATURE = datasets.Audio + BASE_COLUMN_NAME = "audio" + BUILDER_CONFIG_CLASS = AudioFolderConfig + EXTENSIONS: List[str] # definition at the bottom of the script + CLASSIFICATION_TASK = AudioClassification(audio_column="audio", label_column="label") + + +# Obtained with: +# ``` +# import soundfile as sf +# +# AUDIO_EXTENSIONS = [f".{format.lower()}" for format in sf.available_formats().keys()] +# +# # .mp3 is currently decoded via `torchaudio`, .opus decoding is supported if version of `libsndfile` >= 1.0.30: +# AUDIO_EXTENSIONS.extend([".mp3", ".opus"]) +# ``` +# We intentionally do not run this code on launch because: +# (1) Soundfile is an optional dependency, so importing it in global namespace is not allowed +# (2) To ensure the list of supported extensions is deterministic +AUDIO_EXTENSIONS = [ + ".aiff", + ".au", + ".avr", + ".caf", + ".flac", + ".htk", + ".svx", + ".mat4", + ".mat5", + ".mpc2k", + ".ogg", + ".paf", + ".pvf", + ".raw", + ".rf64", + ".sd2", + ".sds", + ".ircam", + ".voc", + ".w64", + ".wav", + ".nist", + ".wavex", + ".wve", + ".xi", + ".mp3", + ".opus", +] +AudioFolder.EXTENSIONS = AUDIO_EXTENSIONS diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/generator/__pycache__/generator.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/generator/__pycache__/generator.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..face7aa2ff49d0dd546c3180ae30dac9cf69dd5b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/generator/__pycache__/generator.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/__init__.py b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..06411478bd0fe34d3c3fe51f02651b1a17ad307d Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/__pycache__/_tenbin.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/__pycache__/_tenbin.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..458cee224c49b74df157d020e6141f510df885de Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/__pycache__/_tenbin.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/_tenbin.py b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/_tenbin.py new file mode 100644 index 0000000000000000000000000000000000000000..cd8c054842e090dc09bdf3d2fee59241a1a928c5 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/_tenbin.py @@ -0,0 +1,285 @@ +# +# Copyright (c) 2017-2021 NVIDIA CORPORATION. All rights reserved. +# This file coems from the WebDataset library. +# See the LICENSE file for licensing terms (BSD-style). +# + +""" +Binary tensor encodings for PyTorch and NumPy. + +This defines efficient binary encodings for tensors. The format is 8 byte +aligned and can be used directly for computations when transmitted, say, +via RDMA. The format is supported by WebDataset with the `.ten` filename +extension. It is also used by Tensorcom, Tensorcom RDMA, and can be used +for fast tensor storage with LMDB and in disk files (which can be memory +mapped) + +Data is encoded as a series of chunks: + +- magic number (int64) +- length in bytes (int64) +- bytes (multiple of 64 bytes long) + +Arrays are a header chunk followed by a data chunk. +Header chunks have the following structure: + +- dtype (int64) +- 8 byte array name +- ndim (int64) +- dim[0] +- dim[1] +- ... +""" + +import struct +import sys + +import numpy as np + + +def bytelen(a): + """Determine the length of a in bytes.""" + if hasattr(a, "nbytes"): + return a.nbytes + elif isinstance(a, (bytearray, bytes)): + return len(a) + else: + raise ValueError(a, "cannot determine nbytes") + + +def bytedata(a): + """Return a the raw data corresponding to a.""" + if isinstance(a, (bytearray, bytes, memoryview)): + return a + elif hasattr(a, "data"): + return a.data + else: + raise ValueError(a, "cannot return bytedata") + + +# tables for converting between long/short NumPy dtypes + +long_to_short = """ +float16 f2 +float32 f4 +float64 f8 +int8 i1 +int16 i2 +int32 i4 +int64 i8 +uint8 u1 +uint16 u2 +unit32 u4 +uint64 u8 +""".strip() +long_to_short = [x.split() for x in long_to_short.split("\n")] +long_to_short = {x[0]: x[1] for x in long_to_short} +short_to_long = {v: k for k, v in long_to_short.items()} + + +def check_acceptable_input_type(data, allow64): + """Check that the data has an acceptable type for tensor encoding. + + :param data: array + :param allow64: allow 64 bit types + """ + for a in data: + if a.dtype.name not in long_to_short: + raise ValueError("unsupported dataypte") + if not allow64 and a.dtype.name not in ["float64", "int64", "uint64"]: + raise ValueError("64 bit datatypes not allowed unless explicitly enabled") + + +def str64(s): + """Convert a string to an int64.""" + s = s + "\0" * (8 - len(s)) + s = s.encode("ascii") + return struct.unpack("@q", s)[0] + + +def unstr64(i): + """Convert an int64 to a string.""" + b = struct.pack("@q", i) + return b.decode("ascii").strip("\0") + + +def check_infos(data, infos, required_infos=None): + """Verify the info strings.""" + if required_infos is False or required_infos is None: + return data + if required_infos is True: + return data, infos + if not isinstance(required_infos, (tuple, list)): + raise ValueError("required_infos must be tuple or list") + for required, actual in zip(required_infos, infos): + raise ValueError(f"actual info {actual} doesn't match required info {required}") + return data + + +def encode_header(a, info=""): + """Encode an array header as a byte array.""" + if a.ndim >= 10: + raise ValueError("too many dimensions") + if a.nbytes != np.prod(a.shape) * a.itemsize: + raise ValueError("mismatch between size and shape") + if a.dtype.name not in long_to_short: + raise ValueError("unsupported array type") + header = [str64(long_to_short[a.dtype.name]), str64(info), len(a.shape)] + list(a.shape) + return bytedata(np.array(header, dtype="i8")) + + +def decode_header(h): + """Decode a byte array into an array header.""" + h = np.frombuffer(h, dtype="i8") + if unstr64(h[0]) not in short_to_long: + raise ValueError("unsupported array type") + dtype = np.dtype(short_to_long[unstr64(h[0])]) + info = unstr64(h[1]) + rank = int(h[2]) + shape = tuple(h[3 : 3 + rank]) + return shape, dtype, info + + +def encode_list(l, infos=None): # noqa: E741 + """Given a list of arrays, encode them into a list of byte arrays.""" + if infos is None: + infos = [""] + else: + if len(l) != len(infos): + raise ValueError(f"length of list {l} must muatch length of infos {infos}") + result = [] + for i, a in enumerate(l): + header = encode_header(a, infos[i % len(infos)]) + result += [header, bytedata(a)] + return result + + +def decode_list(l, infos=False): # noqa: E741 + """Given a list of byte arrays, decode them into arrays.""" + result = [] + infos0 = [] + for header, data in zip(l[::2], l[1::2]): + shape, dtype, info = decode_header(header) + a = np.frombuffer(data, dtype=dtype, count=np.prod(shape)).reshape(*shape) + result += [a] + infos0 += [info] + return check_infos(result, infos0, infos) + + +magic_str = "~TenBin~" +magic = str64(magic_str) +magic_bytes = unstr64(magic).encode("ascii") + + +def roundup(n, k=64): + """Round up to the next multiple of 64.""" + return k * ((n + k - 1) // k) + + +def encode_chunks(l): # noqa: E741 + """Encode a list of chunks into a single byte array, with lengths and magics..""" + size = sum(16 + roundup(b.nbytes) for b in l) + result = bytearray(size) + offset = 0 + for b in l: + result[offset : offset + 8] = magic_bytes + offset += 8 + result[offset : offset + 8] = struct.pack("@q", b.nbytes) + offset += 8 + result[offset : offset + bytelen(b)] = b + offset += roundup(bytelen(b)) + return result + + +def decode_chunks(buf): + """Decode a byte array into a list of chunks.""" + result = [] + offset = 0 + total = bytelen(buf) + while offset < total: + if magic_bytes != buf[offset : offset + 8]: + raise ValueError("magic bytes mismatch") + offset += 8 + nbytes = struct.unpack("@q", buf[offset : offset + 8])[0] + offset += 8 + b = buf[offset : offset + nbytes] + offset += roundup(nbytes) + result.append(b) + return result + + +def encode_buffer(l, infos=None): # noqa: E741 + """Encode a list of arrays into a single byte array.""" + if not isinstance(l, list): + raise ValueError("requires list") + return encode_chunks(encode_list(l, infos=infos)) + + +def decode_buffer(buf, infos=False): + """Decode a byte array into a list of arrays.""" + return decode_list(decode_chunks(buf), infos=infos) + + +def write_chunk(stream, buf): + """Write a byte chunk to the stream with magics, length, and padding.""" + nbytes = bytelen(buf) + stream.write(magic_bytes) + stream.write(struct.pack("@q", nbytes)) + stream.write(bytedata(buf)) + padding = roundup(nbytes) - nbytes + if padding > 0: + stream.write(b"\0" * padding) + + +def read_chunk(stream): + """Read a byte chunk from a stream with magics, length, and padding.""" + magic = stream.read(8) + if magic == b"": + return None + if magic != magic_bytes: + raise ValueError("magic number does not match") + nbytes = stream.read(8) + nbytes = struct.unpack("@q", nbytes)[0] + if nbytes < 0: + raise ValueError("negative nbytes") + data = stream.read(nbytes) + padding = roundup(nbytes) - nbytes + if padding > 0: + stream.read(padding) + return data + + +def write(stream, l, infos=None): # noqa: E741 + """Write a list of arrays to a stream, with magics, length, and padding.""" + for chunk in encode_list(l, infos=infos): + write_chunk(stream, chunk) + + +def read(stream, n=sys.maxsize, infos=False): + """Read a list of arrays from a stream, with magics, length, and padding.""" + chunks = [] + for _ in range(n): + header = read_chunk(stream) + if header is None: + break + data = read_chunk(stream) + if data is None: + raise ValueError("premature EOF") + chunks += [header, data] + return decode_list(chunks, infos=infos) + + +def save(fname, *args, infos=None, nocheck=False): + """Save a list of arrays to a file, with magics, length, and padding.""" + if not nocheck and not fname.endswith(".ten"): + raise ValueError("file name should end in .ten") + with open(fname, "wb") as stream: + write(stream, args, infos=infos) + + +def load(fname, infos=False, nocheck=False): + """Read a list of arrays from a file, with magics, length, and padding.""" + if not nocheck and not fname.endswith(".ten"): + raise ValueError("file name should end in .ten") + with open(fname, "rb") as stream: + return read(stream, infos=infos) diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/webdataset.py b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/webdataset.py new file mode 100644 index 0000000000000000000000000000000000000000..3ac1e86fc417863ba9b5fd8fca97581c63d48768 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/webdataset.py @@ -0,0 +1,299 @@ +import io +import json +from itertools import islice +from typing import Any, Callable, Dict, List + +import numpy as np +import pyarrow as pa + +import datasets + + +logger = datasets.utils.logging.get_logger(__name__) + + +class WebDataset(datasets.GeneratorBasedBuilder): + DEFAULT_WRITER_BATCH_SIZE = 100 + IMAGE_EXTENSIONS: List[str] # definition at the bottom of the script + AUDIO_EXTENSIONS: List[str] # definition at the bottom of the script + DECODERS: Dict[str, Callable[[Any], Any]] # definition at the bottom of the script + NUM_EXAMPLES_FOR_FEATURES_INFERENCE = 5 + + @classmethod + def _get_pipeline_from_tar(cls, tar_path, tar_iterator): + current_example = {} + for filename, f in tar_iterator: + if "." in filename: + example_key, field_name = filename.split(".", 1) + if current_example and current_example["__key__"] != example_key: + yield current_example + current_example = {} + current_example["__key__"] = example_key + current_example["__url__"] = tar_path + current_example[field_name.lower()] = f.read() + if field_name in cls.DECODERS: + current_example[field_name] = cls.DECODERS[field_name](current_example[field_name]) + if current_example: + yield current_example + + def _info(self) -> datasets.DatasetInfo: + return datasets.DatasetInfo() + + def _split_generators(self, dl_manager): + """We handle string, list and dicts in datafiles""" + # Download the data files + if not self.config.data_files: + raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") + data_files = dl_manager.download(self.config.data_files) + if isinstance(data_files, (str, list, tuple)): + tar_paths = data_files + if isinstance(tar_paths, str): + tar_paths = [tar_paths] + tar_iterators = [dl_manager.iter_archive(tar_path) for tar_path in tar_paths] + splits = [ + datasets.SplitGenerator( + name=datasets.Split.TRAIN, gen_kwargs={"tar_paths": tar_paths, "tar_iterators": tar_iterators} + ) + ] + else: + splits = [] + for split_name, tar_paths in data_files.items(): + if isinstance(tar_paths, str): + tar_paths = [tar_paths] + tar_iterators = [dl_manager.iter_archive(tar_path) for tar_path in tar_paths] + splits.append( + datasets.SplitGenerator( + name=split_name, gen_kwargs={"tar_paths": tar_paths, "tar_iterators": tar_iterators} + ) + ) + if not self.info.features: + # Get one example to get the feature types + pipeline = self._get_pipeline_from_tar(tar_paths[0], tar_iterators[0]) + first_examples = list(islice(pipeline, self.NUM_EXAMPLES_FOR_FEATURES_INFERENCE)) + if any(example.keys() != first_examples[0].keys() for example in first_examples): + raise ValueError( + "The TAR archives of the dataset should be in WebDataset format, " + "but the files in the archive don't share the same prefix or the same types." + ) + pa_tables = [pa.Table.from_pylist([example]) for example in first_examples] + if datasets.config.PYARROW_VERSION.major < 14: + inferred_arrow_schema = pa.concat_tables(pa_tables, promote=True).schema + else: + inferred_arrow_schema = pa.concat_tables(pa_tables, promote_options="default").schema + features = datasets.Features.from_arrow_schema(inferred_arrow_schema) + + # Set Image types + for field_name in first_examples[0]: + extension = field_name.rsplit(".", 1)[-1] + if extension in self.IMAGE_EXTENSIONS: + features[field_name] = datasets.Image() + # Set Audio types + for field_name in first_examples[0]: + extension = field_name.rsplit(".", 1)[-1] + if extension in self.AUDIO_EXTENSIONS: + features[field_name] = datasets.Audio() + self.info.features = features + + return splits + + def _generate_examples(self, tar_paths, tar_iterators): + image_field_names = [ + field_name for field_name, feature in self.info.features.items() if isinstance(feature, datasets.Image) + ] + audio_field_names = [ + field_name for field_name, feature in self.info.features.items() if isinstance(feature, datasets.Audio) + ] + for tar_idx, (tar_path, tar_iterator) in enumerate(zip(tar_paths, tar_iterators)): + for example_idx, example in enumerate(self._get_pipeline_from_tar(tar_path, tar_iterator)): + for field_name in image_field_names + audio_field_names: + example[field_name] = {"path": example["__key__"] + "." + field_name, "bytes": example[field_name]} + yield f"{tar_idx}_{example_idx}", example + + +# Obtained with: +# ``` +# import PIL.Image +# IMAGE_EXTENSIONS = [] +# PIL.Image.init() +# for ext, format in PIL.Image.EXTENSION.items(): +# if format in PIL.Image.OPEN: +# IMAGE_EXTENSIONS.append(ext[1:]) +# ``` +# We intentionally do not run this code on launch because: +# (1) Pillow is an optional dependency, so importing Pillow in global namespace is not allowed +# (2) To ensure the list of supported extensions is deterministic +IMAGE_EXTENSIONS = [ + "blp", + "bmp", + "dib", + "bufr", + "cur", + "pcx", + "dcx", + "dds", + "ps", + "eps", + "fit", + "fits", + "fli", + "flc", + "ftc", + "ftu", + "gbr", + "gif", + "grib", + "h5", + "hdf", + "png", + "apng", + "jp2", + "j2k", + "jpc", + "jpf", + "jpx", + "j2c", + "icns", + "ico", + "im", + "iim", + "tif", + "tiff", + "jfif", + "jpe", + "jpg", + "jpeg", + "mpg", + "mpeg", + "msp", + "pcd", + "pxr", + "pbm", + "pgm", + "ppm", + "pnm", + "psd", + "bw", + "rgb", + "rgba", + "sgi", + "ras", + "tga", + "icb", + "vda", + "vst", + "webp", + "wmf", + "emf", + "xbm", + "xpm", +] +WebDataset.IMAGE_EXTENSIONS = IMAGE_EXTENSIONS + + +# Obtained with: +# ``` +# import soundfile as sf +# +# AUDIO_EXTENSIONS = [f".{format.lower()}" for format in sf.available_formats().keys()] +# +# # .mp3 is currently decoded via `torchaudio`, .opus decoding is supported if version of `libsndfile` >= 1.0.30: +# AUDIO_EXTENSIONS.extend([".mp3", ".opus"]) +# ``` +# We intentionally do not run this code on launch because: +# (1) Soundfile is an optional dependency, so importing it in global namespace is not allowed +# (2) To ensure the list of supported extensions is deterministic +AUDIO_EXTENSIONS = [ + "aiff", + "au", + "avr", + "caf", + "flac", + "htk", + "svx", + "mat4", + "mat5", + "mpc2k", + "ogg", + "paf", + "pvf", + "raw", + "rf64", + "sd2", + "sds", + "ircam", + "voc", + "w64", + "wav", + "nist", + "wavex", + "wve", + "xi", + "mp3", + "opus", +] +WebDataset.AUDIO_EXTENSIONS = AUDIO_EXTENSIONS + + +def text_loads(data: bytes): + return data.decode("utf-8") + + +def tenbin_loads(data: bytes): + from . import _tenbin + + return _tenbin.decode_buffer(data) + + +def msgpack_loads(data: bytes): + import msgpack + + return msgpack.unpackb(data) + + +def npy_loads(data: bytes): + import numpy.lib.format + + stream = io.BytesIO(data) + return numpy.lib.format.read_array(stream, allow_pickle=False) + + +def npz_loads(data: bytes): + return np.load(io.BytesIO(data), allow_pickle=False) + + +def cbor_loads(data: bytes): + import cbor + + return cbor.loads(data) + + +# Obtained by checking `decoders` in `webdataset.autodecode` +# and removing unsafe extension decoders. +# Removed Pickle decoders: +# - "pyd": lambda data: pickle.loads(data) +# - "pickle": lambda data: pickle.loads(data) +# Removed Torch decoders: +# - "pth": lambda data: torch_loads(data) +# Modified NumPy decoders to fix CVE-2019-6446 (add allow_pickle=False): +# - "npy": npy_loads, +# - "npz": lambda data: np.load(io.BytesIO(data)), +DECODERS = { + "txt": text_loads, + "text": text_loads, + "transcript": text_loads, + "cls": int, + "cls2": int, + "index": int, + "inx": int, + "id": int, + "json": json.loads, + "jsn": json.loads, + "ten": tenbin_loads, + "tb": tenbin_loads, + "mp": msgpack_loads, + "msg": msgpack_loads, + "npy": npy_loads, + "npz": npz_loads, + "cbor": cbor_loads, +} +WebDataset.DECODERS = DECODERS diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/__init__.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5df74ff8cac8f1fd30a5dd786c9cd5c89d2880af --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/__init__.py @@ -0,0 +1,27 @@ +# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# ruff: noqa + +from . import tqdm as _tqdm # _tqdm is the module +from .info_utils import VerificationMode +from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled +from .version import Version +from .experimental import experimental +from .tqdm import ( + disable_progress_bars, + enable_progress_bars, + are_progress_bars_disabled, + tqdm, +) diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/_dill.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/_dill.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..45efc655ebc79ef896baddae79d77272ecf61d08 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/_dill.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/experimental.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/experimental.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1a64b83b32c81cc327c13277490e31a7e48e0b4a Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/experimental.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/file_utils.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/file_utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fd718279f57304a85a928a468afb26f899781401 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/file_utils.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/filelock.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/filelock.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..749cad066a0aabc231cb8e40938bc004fefd7617 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/filelock.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/metadata.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/metadata.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..79c9be4bb320563e5829fab6b6012590085c1ebd Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/metadata.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/patching.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/patching.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c0823e511b3afaaf12def6ced8760de6b471cd1b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/patching.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/py_utils.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/py_utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b082c6d3508d5bc7c9b8b0b41bafd676d769dfdf Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/py_utils.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/stratify.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/stratify.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a459658fba4e1f70b1f18fc0f4dbe0cf152c778f Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/stratify.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/tf_utils.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/tf_utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..48098c10d2cfd29b5d2710cd9203fcdc30a7f1bc Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/tf_utils.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/track.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/track.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8ebd6218dd500b18ffa2b9d4634459125d70400f Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/datasets/utils/__pycache__/track.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/_dataset_viewer.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/_dataset_viewer.py new file mode 100644 index 0000000000000000000000000000000000000000..58edecb1cc14cec752afc34c1551c49c7490ca4c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/_dataset_viewer.py @@ -0,0 +1,96 @@ +from typing import Any, Dict, List, Optional, Union + +from .. import config +from ..exceptions import DatasetsError +from .file_utils import ( + get_authentication_headers_for_url, + http_get, +) +from .logging import get_logger + + +logger = get_logger(__name__) + + +class DatasetViewerError(DatasetsError): + """Dataset viewer error. + + Raised when trying to use the dataset viewer HTTP API and when trying to access: + - a missing dataset, or + - a private/gated dataset and the user is not authenticated. + - unavailable /parquet or /info responses + """ + + +def get_exported_parquet_files(dataset: str, revision: str, token: Optional[Union[str, bool]]) -> List[Dict[str, Any]]: + """ + Get the dataset exported parquet files + Docs: https://huggingface.co/docs/datasets-server/parquet + """ + dataset_viewer_parquet_url = config.HF_ENDPOINT.replace("://", "://datasets-server.") + "/parquet?dataset=" + try: + parquet_data_files_response = http_get( + url=dataset_viewer_parquet_url + dataset, + temp_file=None, + headers=get_authentication_headers_for_url(config.HF_ENDPOINT + f"datasets/{dataset}", token=token), + timeout=100.0, + max_retries=3, + ) + parquet_data_files_response.raise_for_status() + if "X-Revision" in parquet_data_files_response.headers: + if parquet_data_files_response.headers["X-Revision"] == revision or revision is None: + parquet_data_files_response_json = parquet_data_files_response.json() + if ( + parquet_data_files_response_json.get("partial") is False + and not parquet_data_files_response_json.get("pending", True) + and not parquet_data_files_response_json.get("failed", True) + and "parquet_files" in parquet_data_files_response_json + ): + return parquet_data_files_response_json["parquet_files"] + else: + logger.debug(f"Parquet export for {dataset} is not completely ready yet.") + else: + logger.debug( + f"Parquet export for {dataset} is available but outdated (revision='{parquet_data_files_response.headers['X-Revision']}')" + ) + except Exception as e: # noqa catch any exception of the dataset viewer API and consider the parquet export doesn't exist + logger.debug(f"No parquet export for {dataset} available ({type(e).__name__}: {e})") + raise DatasetViewerError("No exported Parquet files available.") + + +def get_exported_dataset_infos( + dataset: str, revision: str, token: Optional[Union[str, bool]] +) -> Dict[str, Dict[str, Any]]: + """ + Get the dataset information, can be useful to get e.g. the dataset features. + Docs: https://huggingface.co/docs/datasets-server/info + """ + dataset_viewer_info_url = config.HF_ENDPOINT.replace("://", "://datasets-server.") + "/info?dataset=" + try: + info_response = http_get( + url=dataset_viewer_info_url + dataset, + temp_file=None, + headers=get_authentication_headers_for_url(config.HF_ENDPOINT + f"datasets/{dataset}", token=token), + timeout=100.0, + max_retries=3, + ) + info_response.raise_for_status() + if "X-Revision" in info_response.headers: + if info_response.headers["X-Revision"] == revision or revision is None: + info_response = info_response.json() + if ( + info_response.get("partial") is False + and not info_response.get("pending", True) + and not info_response.get("failed", True) + and "dataset_info" in info_response + ): + return info_response["dataset_info"] + else: + logger.debug(f"Dataset info for {dataset} is not completely ready yet.") + else: + logger.debug( + f"Dataset info for {dataset} is available but outdated (revision='{info_response.headers['X-Revision']}')" + ) + except Exception as e: # noqa catch any exception of the dataset viewer API and consider the dataset info doesn't exist + logger.debug(f"No dataset info for {dataset} available ({type(e).__name__}: {e})") + raise DatasetViewerError("No exported dataset infos available.") diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/_dill.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/_dill.py new file mode 100644 index 0000000000000000000000000000000000000000..15578198a39622340f937a3dfdd9091af26d5453 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/_dill.py @@ -0,0 +1,459 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Extends `dill` to support pickling more types and produce more consistent dumps.""" + +import os +import sys +from io import BytesIO +from types import CodeType, FunctionType + +import dill +from packaging import version + +from .. import config + + +class Pickler(dill.Pickler): + dispatch = dill._dill.MetaCatchingDict(dill.Pickler.dispatch.copy()) + _legacy_no_dict_keys_sorting = False + + def save(self, obj, save_persistent_id=True): + obj_type = type(obj) + if obj_type not in self.dispatch: + if "regex" in sys.modules: + import regex # type: ignore + + if obj_type is regex.Pattern: + pklregister(obj_type)(_save_regexPattern) + if "spacy" in sys.modules: + import spacy # type: ignore + + if issubclass(obj_type, spacy.Language): + pklregister(obj_type)(_save_spacyLanguage) + if "tiktoken" in sys.modules: + import tiktoken # type: ignore + + if obj_type is tiktoken.Encoding: + pklregister(obj_type)(_save_tiktokenEncoding) + if "torch" in sys.modules: + import torch # type: ignore + + if issubclass(obj_type, torch.Tensor): + pklregister(obj_type)(_save_torchTensor) + + if obj_type is torch.Generator: + pklregister(obj_type)(_save_torchGenerator) + + # Unwrap `torch.compile`-ed modules + if issubclass(obj_type, torch.nn.Module): + obj = getattr(obj, "_orig_mod", obj) + if "transformers" in sys.modules: + import transformers # type: ignore + + if issubclass(obj_type, transformers.PreTrainedTokenizerBase): + pklregister(obj_type)(_save_transformersPreTrainedTokenizerBase) + + # Unwrap `torch.compile`-ed functions + if obj_type is FunctionType: + obj = getattr(obj, "_torchdynamo_orig_callable", obj) + dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id) + + def _batch_setitems(self, items): + if self._legacy_no_dict_keys_sorting: + return super()._batch_setitems(items) + # Ignore the order of keys in a dict + try: + # Faster, but fails for unorderable elements + items = sorted(items) + except Exception: # TypeError, decimal.InvalidOperation, etc. + from datasets.fingerprint import Hasher + + items = sorted(items, key=lambda x: Hasher.hash(x[0])) + dill.Pickler._batch_setitems(self, items) + + def memoize(self, obj): + # Don't memoize strings since two identical strings can have different Python ids + if type(obj) is not str: # noqa: E721 + dill.Pickler.memoize(self, obj) + + +def pklregister(t): + """Register a custom reducer for the type.""" + + def proxy(func): + Pickler.dispatch[t] = func + return func + + return proxy + + +def dump(obj, file): + """Pickle an object to a file.""" + Pickler(file, recurse=True).dump(obj) + + +def dumps(obj): + """Pickle an object to a string.""" + file = BytesIO() + dump(obj, file) + return file.getvalue() + + +if config.DILL_VERSION < version.parse("0.3.6"): + + def log(pickler, msg): + dill._dill.log.info(msg) + +elif config.DILL_VERSION.release[:3] in [ + version.parse("0.3.6").release, + version.parse("0.3.7").release, + version.parse("0.3.8").release, +]: + + def log(pickler, msg): + dill._dill.logger.trace(pickler, msg) + + +@pklregister(set) +def _save_set(pickler, obj): + log(pickler, f"Se: {obj}") + try: + # Faster, but fails for unorderable elements + args = (sorted(obj),) + except Exception: # TypeError, decimal.InvalidOperation, etc. + from datasets.fingerprint import Hasher + + args = (sorted(obj, key=Hasher.hash),) + + pickler.save_reduce(set, args, obj=obj) + log(pickler, "# Se") + + +def _save_regexPattern(pickler, obj): + import regex # type: ignore + + log(pickler, f"Re: {obj}") + args = (obj.pattern, obj.flags) + pickler.save_reduce(regex.compile, args, obj=obj) + log(pickler, "# Re") + + +def _save_tiktokenEncoding(pickler, obj): + import tiktoken # type: ignore + + log(pickler, f"Enc: {obj}") + args = (obj.name, obj._pat_str, obj._mergeable_ranks, obj._special_tokens) + pickler.save_reduce(tiktoken.Encoding, args, obj=obj) + log(pickler, "# Enc") + + +def _save_torchTensor(pickler, obj): + import torch # type: ignore + + # `torch.from_numpy` is not picklable in `torch>=1.11.0` + def create_torchTensor(np_array): + return torch.from_numpy(np_array) + + log(pickler, f"To: {obj}") + args = (obj.detach().cpu().numpy(),) + pickler.save_reduce(create_torchTensor, args, obj=obj) + log(pickler, "# To") + + +def _save_torchGenerator(pickler, obj): + import torch # type: ignore + + def create_torchGenerator(state): + generator = torch.Generator() + generator.set_state(state) + return generator + + log(pickler, f"Ge: {obj}") + args = (obj.get_state(),) + pickler.save_reduce(create_torchGenerator, args, obj=obj) + log(pickler, "# Ge") + + +def _save_spacyLanguage(pickler, obj): + import spacy # type: ignore + + def create_spacyLanguage(config, bytes): + lang_cls = spacy.util.get_lang_class(config["nlp"]["lang"]) + lang_inst = lang_cls.from_config(config) + return lang_inst.from_bytes(bytes) + + log(pickler, f"Sp: {obj}") + args = (obj.config, obj.to_bytes()) + pickler.save_reduce(create_spacyLanguage, args, obj=obj) + log(pickler, "# Sp") + + +def _save_transformersPreTrainedTokenizerBase(pickler, obj): + log(pickler, f"Tok: {obj}") + # Ignore the `cache` attribute + state = obj.__dict__ + if "cache" in state and isinstance(state["cache"], dict): + state["cache"] = {} + pickler.save_reduce(type(obj), (), state=state, obj=obj) + log(pickler, "# Tok") + + +if config.DILL_VERSION < version.parse("0.3.6"): + + @pklregister(CodeType) + def _save_code(pickler, obj): + """ + From dill._dill.save_code + This is a modified version that removes the origin (filename + line no.) + of functions created in notebooks or shells for example. + """ + dill._dill.log.info(f"Co: {obj}") + # The filename of a function is the .py file where it is defined. + # Filenames of functions created in notebooks or shells start with '<' + # ex: for ipython, and for shell + # Filenames of functions created in ipykernel the filename + # look like f"{tempdir}/ipykernel_{id1}/{id2}.py" + # Moreover lambda functions have a special name: '' + # ex: (lambda x: x).__code__.co_name == "" # True + # + # For the hashing mechanism we ignore where the function has been defined + # More specifically: + # - we ignore the filename of special functions (filename starts with '<') + # - we always ignore the line number + # - we only use the base name of the file instead of the whole path, + # to be robust in case a script is moved for example. + # + # Only those two lines are different from the original implementation: + co_filename = ( + "" + if obj.co_filename.startswith("<") + or ( + len(obj.co_filename.split(os.path.sep)) > 1 + and obj.co_filename.split(os.path.sep)[-2].startswith("ipykernel_") + ) + or obj.co_name == "" + else os.path.basename(obj.co_filename) + ) + co_firstlineno = 1 + # The rest is the same as in the original dill implementation + if dill._dill.PY3: + if hasattr(obj, "co_posonlyargcount"): + args = ( + obj.co_argcount, + obj.co_posonlyargcount, + obj.co_kwonlyargcount, + obj.co_nlocals, + obj.co_stacksize, + obj.co_flags, + obj.co_code, + obj.co_consts, + obj.co_names, + obj.co_varnames, + co_filename, + obj.co_name, + co_firstlineno, + obj.co_lnotab, + obj.co_freevars, + obj.co_cellvars, + ) + else: + args = ( + obj.co_argcount, + obj.co_kwonlyargcount, + obj.co_nlocals, + obj.co_stacksize, + obj.co_flags, + obj.co_code, + obj.co_consts, + obj.co_names, + obj.co_varnames, + co_filename, + obj.co_name, + co_firstlineno, + obj.co_lnotab, + obj.co_freevars, + obj.co_cellvars, + ) + else: + args = ( + obj.co_argcount, + obj.co_nlocals, + obj.co_stacksize, + obj.co_flags, + obj.co_code, + obj.co_consts, + obj.co_names, + obj.co_varnames, + co_filename, + obj.co_name, + co_firstlineno, + obj.co_lnotab, + obj.co_freevars, + obj.co_cellvars, + ) + pickler.save_reduce(CodeType, args, obj=obj) + dill._dill.log.info("# Co") + return + +elif config.DILL_VERSION.release[:3] in [ + version.parse("0.3.6").release, + version.parse("0.3.7").release, + version.parse("0.3.8").release, +]: + # From: https://github.com/uqfoundation/dill/blob/dill-0.3.6/dill/_dill.py#L1104 + @pklregister(CodeType) + def save_code(pickler, obj): + dill._dill.logger.trace(pickler, "Co: %s", obj) + + ############################################################################################################ + # Modification here for huggingface/datasets + # The filename of a function is the .py file where it is defined. + # Filenames of functions created in notebooks or shells start with '<' + # ex: for ipython, and for shell + # Filenames of functions created in ipykernel the filename + # look like f"{tempdir}/ipykernel_{id1}/{id2}.py" + # Moreover lambda functions have a special name: '' + # ex: (lambda x: x).__code__.co_name == "" # True + # + # For the hashing mechanism we ignore where the function has been defined + # More specifically: + # - we ignore the filename of special functions (filename starts with '<') + # - we always ignore the line number + # - we only use the base name of the file instead of the whole path, + # to be robust in case a script is moved for example. + # + # Only those two lines are different from the original implementation: + co_filename = ( + "" + if obj.co_filename.startswith("<") + or ( + len(obj.co_filename.split(os.path.sep)) > 1 + and obj.co_filename.split(os.path.sep)[-2].startswith("ipykernel_") + ) + or obj.co_name == "" + else os.path.basename(obj.co_filename) + ) + co_firstlineno = 1 + # The rest is the same as in the original dill implementation, except for the replacements: + # - obj.co_filename => co_filename + # - obj.co_firstlineno => co_firstlineno + ############################################################################################################ + + if hasattr(obj, "co_endlinetable"): # python 3.11a (20 args) + args = ( + obj.co_lnotab, # for < python 3.10 [not counted in args] + obj.co_argcount, + obj.co_posonlyargcount, + obj.co_kwonlyargcount, + obj.co_nlocals, + obj.co_stacksize, + obj.co_flags, + obj.co_code, + obj.co_consts, + obj.co_names, + obj.co_varnames, + co_filename, # Modification for huggingface/datasets ############################################ + obj.co_name, + obj.co_qualname, + co_firstlineno, # Modification for huggingface/datasets ######################################### + obj.co_linetable, + obj.co_endlinetable, + obj.co_columntable, + obj.co_exceptiontable, + obj.co_freevars, + obj.co_cellvars, + ) + elif hasattr(obj, "co_exceptiontable"): # python 3.11 (18 args) + args = ( + obj.co_lnotab, # for < python 3.10 [not counted in args] + obj.co_argcount, + obj.co_posonlyargcount, + obj.co_kwonlyargcount, + obj.co_nlocals, + obj.co_stacksize, + obj.co_flags, + obj.co_code, + obj.co_consts, + obj.co_names, + obj.co_varnames, + co_filename, # Modification for huggingface/datasets ############################################ + obj.co_name, + obj.co_qualname, + co_firstlineno, # Modification for huggingface/datasets ######################################### + obj.co_linetable, + obj.co_exceptiontable, + obj.co_freevars, + obj.co_cellvars, + ) + elif hasattr(obj, "co_linetable"): # python 3.10 (16 args) + args = ( + obj.co_lnotab, # for < python 3.10 [not counted in args] + obj.co_argcount, + obj.co_posonlyargcount, + obj.co_kwonlyargcount, + obj.co_nlocals, + obj.co_stacksize, + obj.co_flags, + obj.co_code, + obj.co_consts, + obj.co_names, + obj.co_varnames, + co_filename, # Modification for huggingface/datasets ############################################ + obj.co_name, + co_firstlineno, # Modification for huggingface/datasets ######################################### + obj.co_linetable, + obj.co_freevars, + obj.co_cellvars, + ) + elif hasattr(obj, "co_posonlyargcount"): # python 3.8 (16 args) + args = ( + obj.co_argcount, + obj.co_posonlyargcount, + obj.co_kwonlyargcount, + obj.co_nlocals, + obj.co_stacksize, + obj.co_flags, + obj.co_code, + obj.co_consts, + obj.co_names, + obj.co_varnames, + co_filename, # Modification for huggingface/datasets ############################################ + obj.co_name, + co_firstlineno, # Modification for huggingface/datasets ######################################### + obj.co_lnotab, + obj.co_freevars, + obj.co_cellvars, + ) + else: # python 3.7 (15 args) + args = ( + obj.co_argcount, + obj.co_kwonlyargcount, + obj.co_nlocals, + obj.co_stacksize, + obj.co_flags, + obj.co_code, + obj.co_consts, + obj.co_names, + obj.co_varnames, + co_filename, # Modification for huggingface/datasets ############################################ + obj.co_name, + co_firstlineno, # Modification for huggingface/datasets ######################################### + obj.co_lnotab, + obj.co_freevars, + obj.co_cellvars, + ) + + pickler.save_reduce(dill._dill._create_code, args, obj=obj) + dill._dill.logger.trace(pickler, "# Co") + return diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/_filelock.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/_filelock.py new file mode 100644 index 0000000000000000000000000000000000000000..19620e6e777505eaf314366f7f3c657fafc515e0 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/_filelock.py @@ -0,0 +1,59 @@ +#!/usr/bin/env python +# coding=utf-8 +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License +"""Utilities to handle file locking in `datasets`.""" + +import os + +from filelock import FileLock as FileLock_ +from filelock import UnixFileLock +from filelock import __version__ as _filelock_version +from packaging import version + + +class FileLock(FileLock_): + """ + A `filelock.FileLock` initializer that handles long paths. + It also uses the current umask for lock files. + """ + + MAX_FILENAME_LENGTH = 255 + + def __init__(self, lock_file, *args, **kwargs): + # The "mode" argument is required if we want to use the current umask in filelock >= 3.10 + # In previous previous it was already using the current umask. + if "mode" not in kwargs and version.parse(_filelock_version) >= version.parse("3.10.0"): + umask = os.umask(0o666) + os.umask(umask) + kwargs["mode"] = 0o666 & ~umask + lock_file = self.hash_filename_if_too_long(lock_file) + super().__init__(lock_file, *args, **kwargs) + + @classmethod + def hash_filename_if_too_long(cls, path: str) -> str: + path = os.path.abspath(os.path.expanduser(path)) + filename = os.path.basename(path) + max_filename_length = cls.MAX_FILENAME_LENGTH + if issubclass(cls, UnixFileLock): + max_filename_length = min(max_filename_length, os.statvfs(os.path.dirname(path)).f_namemax) + if len(filename) > max_filename_length: + dirname = os.path.dirname(path) + hashed_filename = str(hash(filename)) + new_filename = ( + filename[: max_filename_length - len(hashed_filename) - 8] + "..." + hashed_filename + ".lock" + ) + return os.path.join(dirname, new_filename) + else: + return path diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/beam_utils.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/beam_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..831354397cf2bb1c0ee464093484d53c037aa95c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/beam_utils.py @@ -0,0 +1,52 @@ +import os + +from apache_beam.io.filesystems import FileSystems +from apache_beam.pipeline import Pipeline + +from .logging import get_logger + + +CHUNK_SIZE = 2 << 20 # 2mb +logger = get_logger(__name__) + + +class BeamPipeline(Pipeline): + """Wrapper over `apache_beam.pipeline.Pipeline` for convenience""" + + def is_local(self): + runner = self._options.get_all_options().get("runner") + return runner in [None, "DirectRunner", "PortableRunner"] + + +def upload_local_to_remote(local_file_path, remote_file_path, force_upload=False): + """Use the Beam Filesystems to upload to a remote directory on gcs/s3/hdfs...""" + fs = FileSystems + if fs.exists(remote_file_path): + if force_upload: + logger.info(f"Remote path already exist: {remote_file_path}. Overwriting it as force_upload=True.") + else: + logger.info(f"Remote path already exist: {remote_file_path}. Skipping it as force_upload=False.") + return + with fs.create(remote_file_path) as remote_file: + with open(local_file_path, "rb") as local_file: + chunk = local_file.read(CHUNK_SIZE) + while chunk: + remote_file.write(chunk) + chunk = local_file.read(CHUNK_SIZE) + + +def download_remote_to_local(remote_file_path, local_file_path, force_download=False): + """Use the Beam Filesystems to download from a remote directory on gcs/s3/hdfs...""" + fs = FileSystems + if os.path.exists(local_file_path): + if force_download: + logger.info(f"Local path already exist: {remote_file_path}. Overwriting it as force_upload=True.") + else: + logger.info(f"Local path already exist: {remote_file_path}. Skipping it as force_upload=False.") + return + with fs.open(remote_file_path) as remote_file: + with open(local_file_path, "wb") as local_file: + chunk = remote_file.read(CHUNK_SIZE) + while chunk: + local_file.write(chunk) + chunk = remote_file.read(CHUNK_SIZE) diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/cache.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/cache.py new file mode 100644 index 0000000000000000000000000000000000000000..5485441439d17051eb9a59bc7bc4155321923958 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/cache.py @@ -0,0 +1,283 @@ +import json +import os +import re +import shutil +import tempfile +from contextlib import contextmanager +from functools import partial +from pathlib import Path +from urllib.parse import urljoin, urlparse + +import requests + +from datasets import DownloadConfig, config +from datasets.utils.extract import ExtractManager +from datasets.utils.file_utils import ( + _raise_if_offline_mode_is_enabled, + ftp_get, + ftp_head, + get_authentication_headers_for_url, + hash_url_to_filename, + http_get, + http_head, + is_local_path, + is_remote_url, + logger, +) +from datasets.utils.filelock import FileLock + + +def cached_path( + url_or_filename, + download_config=None, + **download_kwargs, +) -> str: + """ + Given something that might be a URL (or might be a local path), + determine which. If it's a URL, download the file and cache it, and + return the path to the cached file. If it's already a local path, + make sure the file exists and then return the path. + + Return: + Local path (string) + + Raises: + FileNotFoundError: in case of non-recoverable file + (non-existent or no cache on disk) + ConnectionError: in case of unreachable url + and no cache on disk + ValueError: if it couldn't parse the url or filename correctly + requests.exceptions.ConnectionError: in case of internet connection issue + """ + if download_config is None: + download_config = DownloadConfig(**download_kwargs) + + cache_dir = download_config.cache_dir or config.DOWNLOADED_DATASETS_PATH + if isinstance(cache_dir, Path): + cache_dir = str(cache_dir) + if isinstance(url_or_filename, Path): + url_or_filename = str(url_or_filename) + + if is_remote_url(url_or_filename): + # URL, so get it from the cache (downloading if necessary) + output_path = get_from_cache( + url_or_filename, + cache_dir=cache_dir, + force_download=download_config.force_download, + proxies=download_config.proxies, + resume_download=download_config.resume_download, + user_agent=download_config.user_agent, + local_files_only=download_config.local_files_only, + use_etag=download_config.use_etag, + max_retries=download_config.max_retries, + use_auth_token=download_config.use_auth_token, + ignore_url_params=download_config.ignore_url_params, + download_desc=download_config.download_desc, + ) + elif os.path.exists(url_or_filename): + # File, and it exists. + output_path = url_or_filename + elif is_local_path(url_or_filename): + # File, but it doesn't exist. + raise FileNotFoundError(f"Local file {url_or_filename} doesn't exist") + else: + # Something unknown + raise ValueError(f"unable to parse {url_or_filename} as a URL or as a local path") + + if output_path is None: + return output_path + + if download_config.extract_compressed_file: + output_path = ExtractManager(cache_dir=download_config.cache_dir).extract( + output_path, force_extract=download_config.force_extract + ) + + return output_path + + +def get_from_cache( + url, + cache_dir=None, + force_download=False, + proxies=None, + etag_timeout=100, + resume_download=False, + user_agent=None, + local_files_only=False, + use_etag=True, + max_retries=0, + use_auth_token=None, + ignore_url_params=False, + download_desc=None, +) -> str: + """ + Given a URL, look for the corresponding file in the local cache. + If it's not there, download it. Then return the path to the cached file. + + Return: + Local path (string) + + Raises: + FileNotFoundError: in case of non-recoverable file + (non-existent or no cache on disk) + ConnectionError: in case of unreachable url + and no cache on disk + """ + if cache_dir is None: + cache_dir = config.HF_DATASETS_CACHE + if isinstance(cache_dir, Path): + cache_dir = str(cache_dir) + + os.makedirs(cache_dir, exist_ok=True) + + if ignore_url_params: + # strip all query parameters and #fragments from the URL + cached_url = urljoin(url, urlparse(url).path) + else: + cached_url = url # additional parameters may be added to the given URL + + connected = False + response = None + cookies = None + etag = None + head_error = None + + # Try a first time to file the file on the local file system without eTag (None) + # if we don't ask for 'force_download' then we spare a request + filename = hash_url_to_filename(cached_url, etag=None) + cache_path = os.path.join(cache_dir, filename) + + if os.path.exists(cache_path) and not force_download and not use_etag: + return cache_path + + # Prepare headers for authentication + headers = get_authentication_headers_for_url(url, use_auth_token=use_auth_token) + if user_agent is not None: + headers["user-agent"] = user_agent + + # We don't have the file locally or we need an eTag + if not local_files_only: + if url.startswith("ftp://"): + connected = ftp_head(url) + try: + response = http_head( + url, + allow_redirects=True, + proxies=proxies, + timeout=etag_timeout, + max_retries=max_retries, + headers=headers, + ) + if response.status_code == 200: # ok + etag = response.headers.get("ETag") if use_etag else None + for k, v in response.cookies.items(): + # In some edge cases, we need to get a confirmation token + if k.startswith("download_warning") and "drive.google.com" in url: + url += "&confirm=" + v + cookies = response.cookies + connected = True + # Fix Google Drive URL to avoid Virus scan warning + if "drive.google.com" in url and "confirm=" not in url: + url += "&confirm=t" + # In some edge cases, head request returns 400 but the connection is actually ok + elif ( + (response.status_code == 400 and "firebasestorage.googleapis.com" in url) + or (response.status_code == 405 and "drive.google.com" in url) + or ( + response.status_code == 403 + and ( + re.match(r"^https?://github.com/.*?/.*?/releases/download/.*?/.*?$", url) + or re.match(r"^https://.*?s3.*?amazonaws.com/.*?$", response.url) + ) + ) + or (response.status_code == 403 and "ndownloader.figstatic.com" in url) + ): + connected = True + logger.info(f"Couldn't get ETag version for url {url}") + elif response.status_code == 401 and config.HF_ENDPOINT in url and use_auth_token is None: + raise ConnectionError( + f"Unauthorized for URL {url}. Please use the parameter `use_auth_token=True` after logging in with `huggingface-cli login`" + ) + except (OSError, requests.exceptions.Timeout) as e: + # not connected + head_error = e + pass + + # connected == False = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. + # try to get the last downloaded one + if not connected: + if os.path.exists(cache_path) and not force_download: + return cache_path + if local_files_only: + raise FileNotFoundError( + f"Cannot find the requested files in the cached path at {cache_path} and outgoing traffic has been" + " disabled. To enable file online look-ups, set 'local_files_only' to False." + ) + elif response is not None and response.status_code == 404: + raise FileNotFoundError(f"Couldn't find file at {url}") + _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") + if head_error is not None: + raise ConnectionError(f"Couldn't reach {url} ({repr(head_error)})") + elif response is not None: + raise ConnectionError(f"Couldn't reach {url} (error {response.status_code})") + else: + raise ConnectionError(f"Couldn't reach {url}") + + # Try a second time + filename = hash_url_to_filename(cached_url, etag) + cache_path = os.path.join(cache_dir, filename) + + if os.path.exists(cache_path) and not force_download: + return cache_path + + # From now on, connected is True. + # Prevent parallel downloads of the same file with a lock. + lock_path = cache_path + ".lock" + with FileLock(lock_path): + if resume_download: + incomplete_path = cache_path + ".incomplete" + + @contextmanager + def _resumable_file_manager(): + with open(incomplete_path, "a+b") as f: + yield f + + temp_file_manager = _resumable_file_manager + if os.path.exists(incomplete_path): + resume_size = os.stat(incomplete_path).st_size + else: + resume_size = 0 + else: + temp_file_manager = partial(tempfile.NamedTemporaryFile, dir=cache_dir, delete=False) + resume_size = 0 + + # Download to temporary file, then copy to cache dir once finished. + # Otherwise you get corrupt cache entries if the download gets interrupted. + with temp_file_manager() as temp_file: + logger.info(f"{url} not found in cache or force_download set to True, downloading to {temp_file.name}") + + # GET file object + if url.startswith("ftp://"): + ftp_get(url, temp_file) + else: + http_get( + url, + temp_file, + proxies=proxies, + resume_size=resume_size, + headers=headers, + cookies=cookies, + max_retries=max_retries, + desc=download_desc, + ) + + logger.info(f"storing {url} in cache at {cache_path}") + shutil.move(temp_file.name, cache_path) + + logger.info(f"creating metadata file for {cache_path}") + meta = {"url": url, "etag": etag} + meta_path = cache_path + ".json" + with open(meta_path, "w", encoding="utf-8") as meta_file: + json.dump(meta, meta_file) + + return cache_path diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/deprecation_utils.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/deprecation_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..f05ecbeaa3eae5476e99c461dbede9ebfa111eb0 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/deprecation_utils.py @@ -0,0 +1,105 @@ +import enum +import inspect +import warnings +from functools import wraps +from typing import Callable, Optional + +from .logging import get_logger + + +_emitted_deprecation_warnings = set() +logger = get_logger(__name__) + + +def deprecated(help_message: Optional[str] = None): + """Decorator to mark a class or a function as deprecated. + + Args: + help_message (:obj:`str`, optional): An optional message to guide the user on how to + switch to non-deprecated usage of the library. + """ + + def decorator(deprecated_class_or_function: Callable): + global _emitted_deprecation_warnings + + if inspect.isclass(deprecated_class_or_function): + deprecated_function = deprecated_class_or_function.__init__ + name = deprecated_class_or_function.__name__ + else: + deprecated_function = deprecated_class_or_function + name = deprecated_function.__name__ + # Support deprecating __init__ class method: class name instead + name = name if name != "__init__" else deprecated_function.__qualname__.split(".")[-2] + + warning_msg = ( + f"{name} is deprecated and will be removed in the next major version of datasets." + f" {help_message}" + if help_message + else "" + ) + + @wraps(deprecated_function) + def wrapper(*args, **kwargs): + func_hash = hash(deprecated_function) + if func_hash not in _emitted_deprecation_warnings: + warnings.warn(warning_msg, category=FutureWarning, stacklevel=2) + _emitted_deprecation_warnings.add(func_hash) + return deprecated_function(*args, **kwargs) + + wrapper._decorator_name_ = "deprecated" + + if inspect.isclass(deprecated_class_or_function): + deprecated_class_or_function.__init__ = wrapper + return deprecated_class_or_function + else: + return wrapper + + return decorator + + +class OnAccess(enum.EnumMeta): + """ + Enum metaclass that calls a user-specified function whenever a member is accessed. + """ + + def __getattribute__(cls, name): + obj = super().__getattribute__(name) + if isinstance(obj, enum.Enum) and obj._on_access: + obj._on_access() + return obj + + def __getitem__(cls, name): + member = super().__getitem__(name) + if member._on_access: + member._on_access() + return member + + def __call__(cls, value, names=None, *, module=None, qualname=None, type=None, start=1): + obj = super().__call__(value, names, module=module, qualname=qualname, type=type, start=start) + if isinstance(obj, enum.Enum) and obj._on_access: + obj._on_access() + return obj + + +class DeprecatedEnum(enum.Enum, metaclass=OnAccess): + """ + Enum class that calls `deprecate` method whenever a member is accessed. + """ + + def __new__(cls, value): + member = object.__new__(cls) + member._value_ = value + member._on_access = member.deprecate + return member + + @property + def help_message(self): + return "" + + def deprecate(self): + help_message = f" {self.help_message}" if self.help_message else "" + warnings.warn( + f"'{self.__objclass__.__name__}' is deprecated and will be removed in the next major version of datasets." + + help_message, + FutureWarning, + stacklevel=3, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/doc_utils.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/doc_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..6ef8bcb4e70725ad086cb817e0ec4551d1c0966e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/doc_utils.py @@ -0,0 +1,15 @@ +from typing import Callable + + +def is_documented_by(function_with_docstring: Callable): + """Decorator to share docstrings across common functions. + + Args: + function_with_docstring (`Callable`): Name of the function with the docstring. + """ + + def wrapper(target_function): + target_function.__doc__ = function_with_docstring.__doc__ + return target_function + + return wrapper diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/download_manager.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/download_manager.py new file mode 100644 index 0000000000000000000000000000000000000000..b524c2f9686f65d083c424a4e17d001395b743b6 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/download_manager.py @@ -0,0 +1 @@ +# deprecated, please use datasets.download.download_manager diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/experimental.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/experimental.py new file mode 100644 index 0000000000000000000000000000000000000000..cc406154e9347f4df83b1f7b08c32a961d469f6a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/experimental.py @@ -0,0 +1,43 @@ +"""Contains utilities to flag a feature as "experimental" in datasets.""" + +import warnings +from functools import wraps +from typing import Callable + + +def experimental(fn: Callable) -> Callable: + """Decorator to flag a feature as experimental. + + An experimental feature trigger a warning when used as it might be subject to breaking changes in the future. + + Args: + fn (`Callable`): + The function to flag as experimental. + + Returns: + `Callable`: The decorated function. + + Example: + + ```python + >>> from datasets.utils import experimental + + >>> @experimental + ... def my_function(): + ... print("Hello world!") + + >>> my_function() + UserWarning: 'my_function' is experimental and might be subject to breaking changes in the future. + Hello world! + ``` + """ + + @wraps(fn) + def _inner_fn(*args, **kwargs): + warnings.warn( + (f"'{fn.__name__}' is experimental and might be subject to breaking changes in the future."), + UserWarning, + ) + return fn(*args, **kwargs) + + return _inner_fn diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/file_utils.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/file_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..acf0cda547db410c0e91a951760133a210753eb2 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/file_utils.py @@ -0,0 +1,1674 @@ +""" +Utilities for working with the local dataset cache. +This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp +Copyright by the AllenNLP authors. +""" + +import copy +import glob +import io +import json +import multiprocessing +import os +import posixpath +import re +import shutil +import sys +import tarfile +import time +import urllib +import warnings +import xml.dom.minidom +import zipfile +from asyncio import TimeoutError +from contextlib import closing, contextmanager +from functools import partial +from io import BytesIO +from itertools import chain +from pathlib import Path, PurePosixPath +from typing import Any, Callable, Dict, Generator, List, Optional, Tuple, TypeVar, Union +from unittest.mock import patch +from urllib.parse import urljoin, urlparse +from xml.etree import ElementTree as ET + +import fsspec +import huggingface_hub +import requests +from aiohttp.client_exceptions import ClientError +from fsspec.core import strip_protocol, url_to_fs +from fsspec.utils import can_be_local +from huggingface_hub.utils import EntryNotFoundError, insecure_hashlib +from packaging import version + +from .. import __version__, config +from ..download.download_config import DownloadConfig +from ..filesystems import COMPRESSION_FILESYSTEMS +from . import _tqdm, logging +from . import tqdm as hf_tqdm +from ._filelock import FileLock +from .extract import ExtractManager +from .track import TrackedIterable + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +INCOMPLETE_SUFFIX = ".incomplete" + +T = TypeVar("T", str, Path) + + +def init_hf_modules(hf_modules_cache: Optional[Union[Path, str]] = None) -> str: + """ + Add hf_modules_cache to the python path. + By default hf_modules_cache='~/.cache/huggingface/modules'. + It can also be set with the environment variable HF_MODULES_CACHE. + This is used to add modules such as `datasets_modules` + """ + hf_modules_cache = hf_modules_cache if hf_modules_cache is not None else config.HF_MODULES_CACHE + hf_modules_cache = str(hf_modules_cache) + if hf_modules_cache not in sys.path: + sys.path.append(hf_modules_cache) + + os.makedirs(hf_modules_cache, exist_ok=True) + if not os.path.exists(os.path.join(hf_modules_cache, "__init__.py")): + with open(os.path.join(hf_modules_cache, "__init__.py"), "w"): + pass + return hf_modules_cache + + +def is_remote_url(url_or_filename: str) -> bool: + return urlparse(url_or_filename).scheme != "" and not os.path.ismount(urlparse(url_or_filename).scheme + ":/") + + +def is_local_path(url_or_filename: str) -> bool: + # On unix the scheme of a local path is empty (for both absolute and relative), + # while on windows the scheme is the drive name (ex: "c") for absolute paths. + # for details on the windows behavior, see https://bugs.python.org/issue42215 + return urlparse(url_or_filename).scheme == "" or os.path.ismount(urlparse(url_or_filename).scheme + ":/") + + +def is_relative_path(url_or_filename: str) -> bool: + return urlparse(url_or_filename).scheme == "" and not os.path.isabs(url_or_filename) + + +def relative_to_absolute_path(path: T) -> T: + """Convert relative path to absolute path.""" + abs_path_str = os.path.abspath(os.path.expanduser(os.path.expandvars(str(path)))) + return Path(abs_path_str) if isinstance(path, Path) else abs_path_str + + +def hf_bucket_url(identifier: str, filename: str, use_cdn=False, dataset=True) -> str: + if dataset: + endpoint = config.CLOUDFRONT_DATASETS_DISTRIB_PREFIX if use_cdn else config.S3_DATASETS_BUCKET_PREFIX + else: + endpoint = config.CLOUDFRONT_METRICS_DISTRIB_PREFIX if use_cdn else config.S3_METRICS_BUCKET_PREFIX + return "/".join((endpoint, identifier, filename)) + + +def head_hf_s3( + identifier: str, filename: str, use_cdn=False, dataset=True, max_retries=0 +) -> Union[requests.Response, Exception]: + return http_head( + hf_bucket_url(identifier=identifier, filename=filename, use_cdn=use_cdn, dataset=dataset), + max_retries=max_retries, + ) + + +def hf_github_url(path: str, name: str, dataset=True, revision: Optional[str] = None) -> str: + default_revision = "main" if version.parse(__version__).is_devrelease else __version__ + revision = revision or default_revision + if dataset: + return config.REPO_DATASETS_URL.format(revision=revision, path=path, name=name) + else: + return config.REPO_METRICS_URL.format(revision=revision, path=path, name=name) + + +def url_or_path_join(base_name: str, *pathnames: str) -> str: + if is_remote_url(base_name): + return posixpath.join(base_name, *(str(pathname).replace(os.sep, "/").lstrip("/") for pathname in pathnames)) + else: + return Path(base_name, *pathnames).as_posix() + + +def url_or_path_parent(url_or_path: str) -> str: + if is_remote_url(url_or_path): + return url_or_path[: url_or_path.rindex("/")] + else: + return os.path.dirname(url_or_path) + + +def hash_url_to_filename(url, etag=None): + """ + Convert `url` into a hashed filename in a repeatable way. + If `etag` is specified, append its hash to the url's, delimited + by a period. + If the url ends with .h5 (Keras HDF5 weights) adds '.h5' to the name + so that TF 2.0 can identify it as a HDF5 file + (see https://github.com/tensorflow/tensorflow/blob/00fad90125b18b80fe054de1055770cfb8fe4ba3/tensorflow/python/keras/engine/network.py#L1380) + """ + url_bytes = url.encode("utf-8") + url_hash = insecure_hashlib.sha256(url_bytes) + filename = url_hash.hexdigest() + + if etag: + etag_bytes = etag.encode("utf-8") + etag_hash = insecure_hashlib.sha256(etag_bytes) + filename += "." + etag_hash.hexdigest() + + if url.endswith(".py"): + filename += ".py" + + return filename + + +def cached_path( + url_or_filename, + download_config=None, + **download_kwargs, +) -> str: + """ + Given something that might be a URL (or might be a local path), + determine which. If it's a URL, download the file and cache it, and + return the path to the cached file. If it's already a local path, + make sure the file exists and then return the path. + + Return: + Local path (string) + + Raises: + FileNotFoundError: in case of non-recoverable file + (non-existent or no cache on disk) + ConnectionError: in case of unreachable url + and no cache on disk + ValueError: if it couldn't parse the url or filename correctly + requests.exceptions.ConnectionError: in case of internet connection issue + """ + if download_config is None: + download_config = DownloadConfig(**download_kwargs) + + cache_dir = download_config.cache_dir or config.DOWNLOADED_DATASETS_PATH + if isinstance(cache_dir, Path): + cache_dir = str(cache_dir) + if isinstance(url_or_filename, Path): + url_or_filename = str(url_or_filename) + + # Convert fsspec URL in the format "file://local/path" to "local/path" + if can_be_local(url_or_filename): + url_or_filename = strip_protocol(url_or_filename) + + if is_remote_url(url_or_filename): + # URL, so get it from the cache (downloading if necessary) + output_path = get_from_cache( + url_or_filename, + cache_dir=cache_dir, + force_download=download_config.force_download, + proxies=download_config.proxies, + resume_download=download_config.resume_download, + user_agent=download_config.user_agent, + local_files_only=download_config.local_files_only, + use_etag=download_config.use_etag, + max_retries=download_config.max_retries, + token=download_config.token, + ignore_url_params=download_config.ignore_url_params, + storage_options=download_config.storage_options, + download_desc=download_config.download_desc, + disable_tqdm=download_config.disable_tqdm, + ) + elif os.path.exists(url_or_filename): + # File, and it exists. + output_path = url_or_filename + elif is_local_path(url_or_filename): + # File, but it doesn't exist. + raise FileNotFoundError(f"Local file {url_or_filename} doesn't exist") + else: + # Something unknown + raise ValueError(f"unable to parse {url_or_filename} as a URL or as a local path") + + if output_path is None: + return output_path + + if download_config.extract_compressed_file: + if download_config.extract_on_the_fly: + # Add a compression prefix to the compressed file so that it can be extracted + # as it's being read using xopen. + protocol = _get_extraction_protocol(output_path, download_config=download_config) + extension = _get_path_extension(url_or_filename.split("::")[0]) + if ( + protocol + and extension not in ["tgz", "tar"] + and not url_or_filename.split("::")[0].endswith((".tar.gz", ".tar.bz2", ".tar.xz")) + ): + output_path = relative_to_absolute_path(output_path) + if protocol in SINGLE_FILE_COMPRESSION_PROTOCOLS: + # there is one single file which is the uncompressed file + inner_file = os.path.basename(output_path) + inner_file = inner_file[: inner_file.rindex(".")] if "." in inner_file else inner_file + output_path = f"{protocol}://{inner_file}::{output_path}" + else: + output_path = f"{protocol}://::{output_path}" + return output_path + + # Eager extraction + output_path = ExtractManager(cache_dir=download_config.cache_dir).extract( + output_path, force_extract=download_config.force_extract + ) + return relative_to_absolute_path(output_path) + + +def get_datasets_user_agent(user_agent: Optional[Union[str, dict]] = None) -> str: + ua = f"datasets/{__version__}" + ua += f"; python/{config.PY_VERSION}" + ua += f"; huggingface_hub/{huggingface_hub.__version__}" + ua += f"; pyarrow/{config.PYARROW_VERSION}" + if config.TORCH_AVAILABLE: + ua += f"; torch/{config.TORCH_VERSION}" + if config.TF_AVAILABLE: + ua += f"; tensorflow/{config.TF_VERSION}" + if config.JAX_AVAILABLE: + ua += f"; jax/{config.JAX_VERSION}" + if config.BEAM_AVAILABLE: + ua += f"; apache_beam/{config.BEAM_VERSION}" + if isinstance(user_agent, dict): + ua += f"; {'; '.join(f'{k}/{v}' for k, v in user_agent.items())}" + elif isinstance(user_agent, str): + ua += "; " + user_agent + return ua + + +def get_authentication_headers_for_url( + url: str, token: Optional[Union[str, bool]] = None, use_auth_token: Optional[Union[str, bool]] = "deprecated" +) -> dict: + """Handle the HF authentication""" + if use_auth_token != "deprecated": + warnings.warn( + "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" + f"You can remove this warning by passing 'token={use_auth_token}' instead.", + FutureWarning, + ) + token = use_auth_token + if url.startswith(config.HF_ENDPOINT): + return huggingface_hub.utils.build_hf_headers( + token=token, library_name="datasets", library_version=__version__ + ) + else: + return {} + + +class OfflineModeIsEnabled(ConnectionError): + pass + + +def _raise_if_offline_mode_is_enabled(msg: Optional[str] = None): + """Raise an OfflineModeIsEnabled error (subclass of ConnectionError) if HF_DATASETS_OFFLINE is True.""" + if config.HF_DATASETS_OFFLINE: + raise OfflineModeIsEnabled( + "Offline mode is enabled." if msg is None else "Offline mode is enabled. " + str(msg) + ) + + +def _request_with_retry( + method: str, + url: str, + max_retries: int = 0, + base_wait_time: float = 0.5, + max_wait_time: float = 2, + timeout: float = 10.0, + **params, +) -> requests.Response: + """Wrapper around requests to retry in case it fails with a ConnectTimeout, with exponential backoff. + + Note that if the environment variable HF_DATASETS_OFFLINE is set to 1, then a OfflineModeIsEnabled error is raised. + + Args: + method (str): HTTP method, such as 'GET' or 'HEAD'. + url (str): The URL of the resource to fetch. + max_retries (int): Maximum number of retries, defaults to 0 (no retries). + base_wait_time (float): Duration (in seconds) to wait before retrying the first time. Wait time between + retries then grows exponentially, capped by max_wait_time. + max_wait_time (float): Maximum amount of time between two retries, in seconds. + **params (additional keyword arguments): Params to pass to :obj:`requests.request`. + """ + _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") + tries, success = 0, False + while not success: + tries += 1 + try: + response = requests.request(method=method.upper(), url=url, timeout=timeout, **params) + success = True + except (requests.exceptions.ConnectTimeout, requests.exceptions.ConnectionError) as err: + if tries > max_retries: + raise err + else: + logger.info(f"{method} request to {url} timed out, retrying... [{tries/max_retries}]") + sleep_time = min(max_wait_time, base_wait_time * 2 ** (tries - 1)) # Exponential backoff + time.sleep(sleep_time) + return response + + +def fsspec_head(url, storage_options=None): + _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") + fs, path = url_to_fs(url, **(storage_options or {})) + return fs.info(path) + + +def stack_multiprocessing_download_progress_bars(): + # Stack downloads progress bars automatically using HF_DATASETS_STACK_MULTIPROCESSING_DOWNLOAD_PROGRESS_BARS=1 + # We use environment variables since the download may happen in a subprocess + return patch.dict(os.environ, {"HF_DATASETS_STACK_MULTIPROCESSING_DOWNLOAD_PROGRESS_BARS": "1"}) + + +class TqdmCallback(fsspec.callbacks.TqdmCallback): + def __init__(self, tqdm_kwargs=None, *args, **kwargs): + if config.FSSPEC_VERSION < version.parse("2024.2.0"): + super().__init__(tqdm_kwargs, *args, **kwargs) + self._tqdm = _tqdm # replace tqdm module by datasets.utils.tqdm module + else: + kwargs["tqdm_cls"] = _tqdm.tqdm + super().__init__(tqdm_kwargs, *args, **kwargs) + + +def fsspec_get(url, temp_file, storage_options=None, desc=None, disable_tqdm=False): + _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") + fs, path = url_to_fs(url, **(storage_options or {})) + callback = TqdmCallback( + tqdm_kwargs={ + "desc": desc or "Downloading", + "unit": "B", + "unit_scale": True, + "position": multiprocessing.current_process()._identity[-1] # contains the ranks of subprocesses + if os.environ.get("HF_DATASETS_STACK_MULTIPROCESSING_DOWNLOAD_PROGRESS_BARS") == "1" + and multiprocessing.current_process()._identity + else None, + "disable": disable_tqdm, + } + ) + fs.get_file(path, temp_file.name, callback=callback) + + +def ftp_head(url, timeout=10.0): + _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") + try: + with closing(urllib.request.urlopen(url, timeout=timeout)) as r: + r.read(1) + except Exception: + return False + return True + + +def ftp_get(url, temp_file, timeout=10.0): + _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") + try: + logger.info(f"Getting through FTP {url} into {temp_file.name}") + with closing(urllib.request.urlopen(url, timeout=timeout)) as r: + shutil.copyfileobj(r, temp_file) + except urllib.error.URLError as e: + raise ConnectionError(e) from None + + +def http_get( + url, + temp_file, + proxies=None, + resume_size=0, + headers=None, + cookies=None, + timeout=100.0, + max_retries=0, + desc=None, + disable_tqdm=False, +) -> Optional[requests.Response]: + headers = dict(headers) if headers is not None else {} + headers["user-agent"] = get_datasets_user_agent(user_agent=headers.get("user-agent")) + if resume_size > 0: + headers["Range"] = f"bytes={resume_size:d}-" + response = _request_with_retry( + method="GET", + url=url, + stream=True, + proxies=proxies, + headers=headers, + cookies=cookies, + max_retries=max_retries, + timeout=timeout, + ) + if temp_file is None: + return response + if response.status_code == 416: # Range not satisfiable + return + content_length = response.headers.get("Content-Length") + total = resume_size + int(content_length) if content_length is not None else None + with hf_tqdm( + unit="B", + unit_scale=True, + total=total, + initial=resume_size, + desc=desc or "Downloading", + position=multiprocessing.current_process()._identity[-1] # contains the ranks of subprocesses + if os.environ.get("HF_DATASETS_STACK_MULTIPROCESSING_DOWNLOAD_PROGRESS_BARS") == "1" + and multiprocessing.current_process()._identity + else None, + disable=disable_tqdm, + ) as progress: + for chunk in response.iter_content(chunk_size=1024): + progress.update(len(chunk)) + temp_file.write(chunk) + + +def http_head( + url, proxies=None, headers=None, cookies=None, allow_redirects=True, timeout=10.0, max_retries=0 +) -> requests.Response: + headers = copy.deepcopy(headers) or {} + headers["user-agent"] = get_datasets_user_agent(user_agent=headers.get("user-agent")) + response = _request_with_retry( + method="HEAD", + url=url, + proxies=proxies, + headers=headers, + cookies=cookies, + allow_redirects=allow_redirects, + timeout=timeout, + max_retries=max_retries, + ) + return response + + +def request_etag( + url: str, token: Optional[Union[str, bool]] = None, use_auth_token: Optional[Union[str, bool]] = "deprecated" +) -> Optional[str]: + if use_auth_token != "deprecated": + warnings.warn( + "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" + f"You can remove this warning by passing 'token={use_auth_token}' instead.", + FutureWarning, + ) + token = use_auth_token + if urlparse(url).scheme not in ("http", "https"): + return None + headers = get_authentication_headers_for_url(url, token=token) + response = http_head(url, headers=headers, max_retries=3) + response.raise_for_status() + etag = response.headers.get("ETag") if response.ok else None + return etag + + +def get_from_cache( + url, + cache_dir=None, + force_download=False, + proxies=None, + etag_timeout=100, + resume_download=False, + user_agent=None, + local_files_only=False, + use_etag=True, + max_retries=0, + token=None, + use_auth_token="deprecated", + ignore_url_params=False, + storage_options=None, + download_desc=None, + disable_tqdm=False, +) -> str: + """ + Given a URL, look for the corresponding file in the local cache. + If it's not there, download it. Then return the path to the cached file. + + Return: + Local path (string) + + Raises: + FileNotFoundError: in case of non-recoverable file + (non-existent or no cache on disk) + ConnectionError: in case of unreachable url + and no cache on disk + """ + if use_auth_token != "deprecated": + warnings.warn( + "'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n" + f"You can remove this warning by passing 'token={use_auth_token}' instead.", + FutureWarning, + ) + token = use_auth_token + if cache_dir is None: + cache_dir = config.HF_DATASETS_CACHE + if isinstance(cache_dir, Path): + cache_dir = str(cache_dir) + + os.makedirs(cache_dir, exist_ok=True) + + if ignore_url_params: + # strip all query parameters and #fragments from the URL + cached_url = urljoin(url, urlparse(url).path) + else: + cached_url = url # additional parameters may be added to the given URL + + connected = False + response = None + cookies = None + etag = None + head_error = None + scheme = None + + # Try a first time to file the file on the local file system without eTag (None) + # if we don't ask for 'force_download' then we spare a request + filename = hash_url_to_filename(cached_url, etag=None) + cache_path = os.path.join(cache_dir, filename) + + if os.path.exists(cache_path) and not force_download and not use_etag: + return cache_path + + # Prepare headers for authentication + headers = get_authentication_headers_for_url(url, token=token) + if user_agent is not None: + headers["user-agent"] = user_agent + + # We don't have the file locally or we need an eTag + if not local_files_only: + scheme = urlparse(url).scheme + if scheme == "ftp": + connected = ftp_head(url) + elif scheme not in ("http", "https"): + response = fsspec_head(url, storage_options=storage_options) + # s3fs uses "ETag", gcsfs uses "etag" + etag = (response.get("ETag", None) or response.get("etag", None)) if use_etag else None + connected = True + try: + response = http_head( + url, + allow_redirects=True, + proxies=proxies, + timeout=etag_timeout, + max_retries=max_retries, + headers=headers, + ) + if response.status_code == 200: # ok + etag = response.headers.get("ETag") if use_etag else None + for k, v in response.cookies.items(): + # In some edge cases, we need to get a confirmation token + if k.startswith("download_warning") and "drive.google.com" in url: + url += "&confirm=" + v + cookies = response.cookies + connected = True + # Fix Google Drive URL to avoid Virus scan warning + if "drive.google.com" in url and "confirm=" not in url: + url += "&confirm=t" + # In some edge cases, head request returns 400 but the connection is actually ok + elif ( + (response.status_code == 400 and "firebasestorage.googleapis.com" in url) + or (response.status_code == 405 and "drive.google.com" in url) + or ( + response.status_code == 403 + and ( + re.match(r"^https?://github.com/.*?/.*?/releases/download/.*?/.*?$", url) + or re.match(r"^https://.*?s3.*?amazonaws.com/.*?$", response.url) + ) + ) + or (response.status_code == 403 and "ndownloader.figstatic.com" in url) + ): + connected = True + logger.info(f"Couldn't get ETag version for url {url}") + elif response.status_code == 401 and config.HF_ENDPOINT in url and token is None: + raise ConnectionError( + f"Unauthorized for URL {url}. Please use the parameter `token=True` after logging in with `huggingface-cli login`" + ) + except (OSError, requests.exceptions.Timeout) as e: + # not connected + head_error = e + pass + + # connected == False = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. + # try to get the last downloaded one + if not connected: + if os.path.exists(cache_path) and not force_download: + return cache_path + if local_files_only: + raise FileNotFoundError( + f"Cannot find the requested files in the cached path at {cache_path} and outgoing traffic has been" + " disabled. To enable file online look-ups, set 'local_files_only' to False." + ) + elif response is not None and response.status_code == 404: + raise FileNotFoundError(f"Couldn't find file at {url}") + _raise_if_offline_mode_is_enabled(f"Tried to reach {url}") + if head_error is not None: + raise ConnectionError(f"Couldn't reach {url} ({repr(head_error)})") + elif response is not None: + raise ConnectionError(f"Couldn't reach {url} (error {response.status_code})") + else: + raise ConnectionError(f"Couldn't reach {url}") + + # Try a second time + filename = hash_url_to_filename(cached_url, etag) + cache_path = os.path.join(cache_dir, filename) + + if os.path.exists(cache_path) and not force_download: + return cache_path + + # From now on, connected is True. + # Prevent parallel downloads of the same file with a lock. + lock_path = cache_path + ".lock" + with FileLock(lock_path): + # Retry in case previously locked processes just enter after the precedent process releases the lock + if os.path.exists(cache_path) and not force_download: + return cache_path + + incomplete_path = cache_path + ".incomplete" + + @contextmanager + def temp_file_manager(mode="w+b"): + with open(incomplete_path, mode) as f: + yield f + + resume_size = 0 + if resume_download: + temp_file_manager = partial(temp_file_manager, mode="a+b") + if os.path.exists(incomplete_path): + resume_size = os.stat(incomplete_path).st_size + + # Download to temporary file, then copy to cache path once finished. + # Otherwise, you get corrupt cache entries if the download gets interrupted. + with temp_file_manager() as temp_file: + logger.info(f"{url} not found in cache or force_download set to True, downloading to {temp_file.name}") + + # GET file object + if scheme == "ftp": + ftp_get(url, temp_file) + elif scheme not in ("http", "https"): + fsspec_get( + url, temp_file, storage_options=storage_options, desc=download_desc, disable_tqdm=disable_tqdm + ) + else: + http_get( + url, + temp_file=temp_file, + proxies=proxies, + resume_size=resume_size, + headers=headers, + cookies=cookies, + max_retries=max_retries, + desc=download_desc, + disable_tqdm=disable_tqdm, + ) + + logger.info(f"storing {url} in cache at {cache_path}") + shutil.move(temp_file.name, cache_path) + umask = os.umask(0o666) + os.umask(umask) + os.chmod(cache_path, 0o666 & ~umask) + + logger.info(f"creating metadata file for {cache_path}") + meta = {"url": url, "etag": etag} + meta_path = cache_path + ".json" + with open(meta_path, "w", encoding="utf-8") as meta_file: + json.dump(meta, meta_file) + + return cache_path + + +def add_start_docstrings(*docstr): + def docstring_decorator(fn): + fn.__doc__ = "".join(docstr) + "\n\n" + (fn.__doc__ if fn.__doc__ is not None else "") + return fn + + return docstring_decorator + + +def add_end_docstrings(*docstr): + def docstring_decorator(fn): + fn.__doc__ = (fn.__doc__ if fn.__doc__ is not None else "") + "\n\n" + "".join(docstr) + return fn + + return docstring_decorator + + +def estimate_dataset_size(paths): + return sum(path.stat().st_size for path in paths) + + +def readline(f: io.RawIOBase): + # From: https://github.com/python/cpython/blob/d27e2f4d118e7a9909b6a3e5da06c5ff95806a85/Lib/_pyio.py#L525 + res = bytearray() + while True: + b = f.read(1) + if not b: + break + res += b + if res.endswith(b"\n"): + break + return bytes(res) + + +####################### +# Streaming utilities # +####################### + +BASE_KNOWN_EXTENSIONS = [ + "txt", + "csv", + "json", + "jsonl", + "tsv", + "conll", + "conllu", + "orig", + "parquet", + "pkl", + "pickle", + "rel", + "xml", +] +COMPRESSION_EXTENSION_TO_PROTOCOL = { + # single file compression + **{fs_class.extension.lstrip("."): fs_class.protocol for fs_class in COMPRESSION_FILESYSTEMS}, + # archive compression + "zip": "zip", +} +SINGLE_FILE_COMPRESSION_PROTOCOLS = {fs_class.protocol for fs_class in COMPRESSION_FILESYSTEMS} +SINGLE_SLASH_AFTER_PROTOCOL_PATTERN = re.compile(r"(? str: + # Get extension: https://foo.bar/train.json.gz -> gz + extension = path.split(".")[-1] + # Remove query params ("dl=1", "raw=true"): gz?dl=1 -> gz + # Remove shards infos (".txt_1", ".txt-00000-of-00100"): txt_1 -> txt + for symb in "?-_": + extension = extension.split(symb)[0] + return extension + + +def _get_extraction_protocol_with_magic_number(f) -> Optional[str]: + """read the magic number from a file-like object and return the compression protocol""" + # Check if the file object is seekable even before reading the magic number (to avoid https://bugs.python.org/issue26440) + try: + f.seek(0) + except (AttributeError, io.UnsupportedOperation): + return None + magic_number = f.read(MAGIC_NUMBER_MAX_LENGTH) + f.seek(0) + for i in range(MAGIC_NUMBER_MAX_LENGTH): + compression = MAGIC_NUMBER_TO_COMPRESSION_PROTOCOL.get(magic_number[: MAGIC_NUMBER_MAX_LENGTH - i]) + if compression is not None: + return compression + compression = MAGIC_NUMBER_TO_UNSUPPORTED_COMPRESSION_PROTOCOL.get(magic_number[: MAGIC_NUMBER_MAX_LENGTH - i]) + if compression is not None: + raise NotImplementedError(f"Compression protocol '{compression}' not implemented.") + + +def _get_extraction_protocol(urlpath: str, download_config: Optional[DownloadConfig] = None) -> Optional[str]: + # get inner file: zip://train-00000.json.gz::https://foo.bar/data.zip -> zip://train-00000.json.gz + urlpath = str(urlpath) + path = urlpath.split("::")[0] + extension = _get_path_extension(path) + if ( + extension in BASE_KNOWN_EXTENSIONS + or extension in ["tgz", "tar"] + or path.endswith((".tar.gz", ".tar.bz2", ".tar.xz")) + ): + return None + elif extension in COMPRESSION_EXTENSION_TO_PROTOCOL: + return COMPRESSION_EXTENSION_TO_PROTOCOL[extension] + urlpath, storage_options = _prepare_path_and_storage_options(urlpath, download_config=download_config) + try: + with fsspec.open(urlpath, **(storage_options or {})) as f: + return _get_extraction_protocol_with_magic_number(f) + except FileNotFoundError: + if urlpath.startswith(config.HF_ENDPOINT): + raise FileNotFoundError( + urlpath + "\nIf the repo is private or gated, make sure to log in with `huggingface-cli login`." + ) from None + else: + raise + + +def xjoin(a, *p): + """ + This function extends os.path.join to support the "::" hop separator. It supports both paths and urls. + + A shorthand, particularly useful where you have multiple hops, is to “chain” the URLs with the special separator "::". + This is used to access files inside a zip file over http for example. + + Let's say you have a zip file at https://host.com/archive.zip, and you want to access the file inside the zip file at /folder1/file.txt. + Then you can just chain the url this way: + + zip://folder1/file.txt::https://host.com/archive.zip + + The xjoin function allows you to apply the join on the first path of the chain. + + Example:: + + >>> xjoin("zip://folder1::https://host.com/archive.zip", "file.txt") + zip://folder1/file.txt::https://host.com/archive.zip + """ + a, *b = str(a).split("::") + if is_local_path(a): + return os.path.join(a, *p) + else: + a = posixpath.join(a, *p) + return "::".join([a] + b) + + +def xdirname(a): + """ + This function extends os.path.dirname to support the "::" hop separator. It supports both paths and urls. + + A shorthand, particularly useful where you have multiple hops, is to “chain” the URLs with the special separator "::". + This is used to access files inside a zip file over http for example. + + Let's say you have a zip file at https://host.com/archive.zip, and you want to access the file inside the zip file at /folder1/file.txt. + Then you can just chain the url this way: + + zip://folder1/file.txt::https://host.com/archive.zip + + The xdirname function allows you to apply the dirname on the first path of the chain. + + Example:: + + >>> xdirname("zip://folder1/file.txt::https://host.com/archive.zip") + zip://folder1::https://host.com/archive.zip + """ + a, *b = str(a).split("::") + if is_local_path(a): + a = os.path.dirname(Path(a).as_posix()) + else: + a = posixpath.dirname(a) + # if we end up at the root of the protocol, we get for example a = 'http:' + # so we have to fix it by adding the '//' that was removed: + if a.endswith(":"): + a += "//" + return "::".join([a] + b) + + +def xexists(urlpath: str, download_config: Optional[DownloadConfig] = None): + """Extend `os.path.exists` function to support both local and remote files. + + Args: + urlpath (`str`): URL path. + download_config : mainly use token or storage_options to support different platforms and auth types. + + Returns: + `bool` + """ + + main_hop, *rest_hops = _as_str(urlpath).split("::") + if is_local_path(main_hop): + return os.path.exists(main_hop) + else: + urlpath, storage_options = _prepare_path_and_storage_options(urlpath, download_config=download_config) + main_hop, *rest_hops = urlpath.split("::") + fs, *_ = url_to_fs(urlpath, **storage_options) + return fs.exists(main_hop) + + +def xbasename(a): + """ + This function extends os.path.basename to support the "::" hop separator. It supports both paths and urls. + + A shorthand, particularly useful where you have multiple hops, is to “chain” the URLs with the special separator "::". + This is used to access files inside a zip file over http for example. + + Let's say you have a zip file at https://host.com/archive.zip, and you want to access the file inside the zip file at /folder1/file.txt. + Then you can just chain the url this way: + + zip://folder1/file.txt::https://host.com/archive.zip + + The xbasename function allows you to apply the basename on the first path of the chain. + + Example:: + + >>> xbasename("zip://folder1/file.txt::https://host.com/archive.zip") + file.txt + """ + a, *b = str(a).split("::") + if is_local_path(a): + return os.path.basename(Path(a).as_posix()) + else: + return posixpath.basename(a) + + +def xsplit(a): + """ + This function extends os.path.split to support the "::" hop separator. It supports both paths and urls. + + A shorthand, particularly useful where you have multiple hops, is to “chain” the URLs with the special separator "::". + This is used to access files inside a zip file over http for example. + + Let's say you have a zip file at https://host.com/archive.zip, and you want to access the file inside the zip file at /folder1/file.txt. + Then you can just chain the url this way: + + zip://folder1/file.txt::https://host.com/archive.zip + + The xsplit function allows you to apply the xsplit on the first path of the chain. + + Example:: + + >>> xsplit("zip://folder1/file.txt::https://host.com/archive.zip") + ('zip://folder1::https://host.com/archive.zip', 'file.txt') + """ + a, *b = str(a).split("::") + if is_local_path(a): + return os.path.split(Path(a).as_posix()) + else: + a, tail = posixpath.split(a) + return "::".join([a + "//" if a.endswith(":") else a] + b), tail + + +def xsplitext(a): + """ + This function extends os.path.splitext to support the "::" hop separator. It supports both paths and urls. + + A shorthand, particularly useful where you have multiple hops, is to “chain” the URLs with the special separator "::". + This is used to access files inside a zip file over http for example. + + Let's say you have a zip file at https://host.com/archive.zip, and you want to access the file inside the zip file at /folder1/file.txt. + Then you can just chain the url this way: + + zip://folder1/file.txt::https://host.com/archive.zip + + The xsplitext function allows you to apply the splitext on the first path of the chain. + + Example:: + + >>> xsplitext("zip://folder1/file.txt::https://host.com/archive.zip") + ('zip://folder1/file::https://host.com/archive.zip', '.txt') + """ + a, *b = str(a).split("::") + if is_local_path(a): + return os.path.splitext(Path(a).as_posix()) + else: + a, ext = posixpath.splitext(a) + return "::".join([a] + b), ext + + +def xisfile(path, download_config: Optional[DownloadConfig] = None) -> bool: + """Extend `os.path.isfile` function to support remote files. + + Args: + path (`str`): URL path. + download_config : mainly use token or storage_options to support different platforms and auth types. + + Returns: + `bool` + """ + main_hop, *rest_hops = str(path).split("::") + if is_local_path(main_hop): + return os.path.isfile(path) + else: + path, storage_options = _prepare_path_and_storage_options(path, download_config=download_config) + main_hop, *rest_hops = path.split("::") + fs, *_ = url_to_fs(path, **storage_options) + return fs.isfile(main_hop) + + +def xgetsize(path, download_config: Optional[DownloadConfig] = None) -> int: + """Extend `os.path.getsize` function to support remote files. + + Args: + path (`str`): URL path. + download_config : mainly use token or storage_options to support different platforms and auth types. + + Returns: + `int`: optional + """ + main_hop, *rest_hops = str(path).split("::") + if is_local_path(main_hop): + return os.path.getsize(path) + else: + path, storage_options = _prepare_path_and_storage_options(path, download_config=download_config) + main_hop, *rest_hops = path.split("::") + fs, *_ = fs, *_ = url_to_fs(path, **storage_options) + try: + size = fs.size(main_hop) + except EntryNotFoundError: + raise FileNotFoundError(f"No such file: {path}") + if size is None: + # use xopen instead of fs.open to make data fetching more robust + with xopen(path, download_config=download_config) as f: + size = len(f.read()) + return size + + +def xisdir(path, download_config: Optional[DownloadConfig] = None) -> bool: + """Extend `os.path.isdir` function to support remote files. + + Args: + path (`str`): URL path. + download_config : mainly use token or storage_options to support different platforms and auth types. + + Returns: + `bool` + """ + main_hop, *rest_hops = str(path).split("::") + if is_local_path(main_hop): + return os.path.isdir(path) + else: + path, storage_options = _prepare_path_and_storage_options(path, download_config=download_config) + main_hop, *rest_hops = path.split("::") + fs, *_ = fs, *_ = url_to_fs(path, **storage_options) + inner_path = main_hop.split("://")[-1] + if not inner_path.strip("/"): + return True + return fs.isdir(inner_path) + + +def xrelpath(path, start=None): + """Extend `os.path.relpath` function to support remote files. + + Args: + path (`str`): URL path. + start (`str`): Start URL directory path. + + Returns: + `str` + """ + main_hop, *rest_hops = str(path).split("::") + if is_local_path(main_hop): + return os.path.relpath(main_hop, start=start) if start else os.path.relpath(main_hop) + else: + return posixpath.relpath(main_hop, start=str(start).split("::")[0]) if start else os.path.relpath(main_hop) + + +def _add_retries_to_file_obj_read_method(file_obj): + read = file_obj.read + max_retries = config.STREAMING_READ_MAX_RETRIES + + def read_with_retries(*args, **kwargs): + disconnect_err = None + for retry in range(1, max_retries + 1): + try: + out = read(*args, **kwargs) + break + except (ClientError, TimeoutError) as err: + disconnect_err = err + logger.warning( + f"Got disconnected from remote data host. Retrying in {config.STREAMING_READ_RETRY_INTERVAL}sec [{retry}/{max_retries}]" + ) + time.sleep(config.STREAMING_READ_RETRY_INTERVAL) + else: + raise ConnectionError("Server Disconnected") from disconnect_err + return out + + try: + file_obj.read = read_with_retries + except AttributeError: # read-only attribute + orig_file_obj = file_obj + file_obj = io.RawIOBase() + file_obj.read = read_with_retries + file_obj.__getattr__ = lambda _, attr: getattr(orig_file_obj, attr) + return file_obj + + +def _prepare_path_and_storage_options( + urlpath: str, download_config: Optional[DownloadConfig] = None +) -> Tuple[str, Dict[str, Dict[str, Any]]]: + prepared_urlpath = [] + prepared_storage_options = {} + for hop in urlpath.split("::"): + hop, storage_options = _prepare_single_hop_path_and_storage_options(hop, download_config=download_config) + prepared_urlpath.append(hop) + prepared_storage_options.update(storage_options) + return "::".join(prepared_urlpath), storage_options + + +def _prepare_single_hop_path_and_storage_options( + urlpath: str, download_config: Optional[DownloadConfig] = None +) -> Tuple[str, Dict[str, Dict[str, Any]]]: + """ + Prepare the URL and the kwargs that must be passed to the HttpFileSystem or to requests.get/head + + In particular it resolves google drive URLs + It also adds the authentication headers for the Hugging Face Hub, for both https:// and hf:// paths. + + Storage options are formatted in the form {protocol: storage_options_for_protocol} + """ + token = None if download_config is None else download_config.token + if urlpath.startswith(config.HF_ENDPOINT) and "/resolve/" in urlpath: + urlpath = "hf://" + urlpath[len(config.HF_ENDPOINT) + 1 :].replace("/resolve/", "@", 1) + protocol = urlpath.split("://")[0] if "://" in urlpath else "file" + if download_config is not None and protocol in download_config.storage_options: + storage_options = download_config.storage_options[protocol] + elif download_config is not None and protocol not in download_config.storage_options: + storage_options = { + option_name: option_value + for option_name, option_value in download_config.storage_options.items() + if option_name not in fsspec.available_protocols() + } + else: + storage_options = {} + if storage_options: + storage_options = {protocol: storage_options} + if protocol in ["http", "https"]: + storage_options[protocol] = { + "headers": { + **get_authentication_headers_for_url(urlpath, token=token), + "user-agent": get_datasets_user_agent(), + }, + "client_kwargs": {"trust_env": True}, # Enable reading proxy env variables. + **(storage_options.get(protocol, {})), + } + if "drive.google.com" in urlpath: + response = http_head(urlpath) + cookies = None + for k, v in response.cookies.items(): + if k.startswith("download_warning"): + urlpath += "&confirm=" + v + cookies = response.cookies + storage_options[protocol] = {"cookies": cookies, **storage_options.get(protocol, {})} + # Fix Google Drive URL to avoid Virus scan warning + if "drive.google.com" in urlpath and "confirm=" not in urlpath: + urlpath += "&confirm=t" + if urlpath.startswith("https://raw.githubusercontent.com/"): + # Workaround for served data with gzip content-encoding: https://github.com/fsspec/filesystem_spec/issues/389 + storage_options[protocol]["headers"]["Accept-Encoding"] = "identity" + elif protocol == "hf": + storage_options[protocol] = { + "token": token, + "endpoint": config.HF_ENDPOINT, + **storage_options.get(protocol, {}), + } + # streaming with block_size=0 is only implemented in 0.21 (see https://github.com/huggingface/huggingface_hub/pull/1967) + if config.HF_HUB_VERSION < version.parse("0.21.0"): + storage_options[protocol]["block_size"] = "default" + return urlpath, storage_options + + +def xopen(file: str, mode="r", *args, download_config: Optional[DownloadConfig] = None, **kwargs): + """Extend `open` function to support remote files using `fsspec`. + + It also has a retry mechanism in case connection fails. + The `args` and `kwargs` are passed to `fsspec.open`, except `token` which is used for queries to private repos on huggingface.co + + Args: + file (`str`): Path name of the file to be opened. + mode (`str`, *optional*, default "r"): Mode in which the file is opened. + *args: Arguments to be passed to `fsspec.open`. + download_config : mainly use token or storage_options to support different platforms and auth types. + **kwargs: Keyword arguments to be passed to `fsspec.open`. + + Returns: + file object + """ + # This works as well for `xopen(str(Path(...)))` + file_str = _as_str(file) + main_hop, *rest_hops = file_str.split("::") + if is_local_path(main_hop): + # ignore fsspec-specific kwargs + kwargs.pop("block_size", None) + return open(main_hop, mode, *args, **kwargs) + # add headers and cookies for authentication on the HF Hub and for Google Drive + file, storage_options = _prepare_path_and_storage_options(file_str, download_config=download_config) + kwargs = {**kwargs, **(storage_options or {})} + try: + file_obj = fsspec.open(file, mode=mode, *args, **kwargs).open() + except ValueError as e: + if str(e) == "Cannot seek streaming HTTP file": + raise NonStreamableDatasetError( + "Streaming is not possible for this dataset because data host server doesn't support HTTP range " + "requests. You can still load this dataset in non-streaming mode by passing `streaming=False` (default)" + ) from e + else: + raise + except FileNotFoundError: + if file.startswith(config.HF_ENDPOINT): + raise FileNotFoundError( + file + "\nIf the repo is private or gated, make sure to log in with `huggingface-cli login`." + ) from None + else: + raise + file_obj = _add_retries_to_file_obj_read_method(file_obj) + return file_obj + + +def xlistdir(path: str, download_config: Optional[DownloadConfig] = None) -> List[str]: + """Extend `os.listdir` function to support remote files. + + Args: + path (`str`): URL path. + download_config : mainly use token or storage_options to support different platforms and auth types. + + Returns: + `list` of `str` + """ + main_hop, *rest_hops = _as_str(path).split("::") + if is_local_path(main_hop): + return os.listdir(path) + else: + # globbing inside a zip in a private repo requires authentication + path, storage_options = _prepare_path_and_storage_options(path, download_config=download_config) + main_hop, *rest_hops = path.split("::") + fs, *_ = url_to_fs(path, **storage_options) + inner_path = main_hop.split("://")[-1] + if inner_path.strip("/") and not fs.isdir(inner_path): + raise FileNotFoundError(f"Directory doesn't exist: {path}") + paths = fs.listdir(inner_path, detail=False) + return [os.path.basename(path.rstrip("/")) for path in paths] + + +def xglob(urlpath, *, recursive=False, download_config: Optional[DownloadConfig] = None): + """Extend `glob.glob` function to support remote files. + + Args: + urlpath (`str`): URL path with shell-style wildcard patterns. + recursive (`bool`, default `False`): Whether to match the "**" pattern recursively to zero or more + directories or subdirectories. + download_config : mainly use token or storage_options to support different platforms and auth types. + + Returns: + `list` of `str` + """ + main_hop, *rest_hops = _as_str(urlpath).split("::") + if is_local_path(main_hop): + return glob.glob(main_hop, recursive=recursive) + else: + # globbing inside a zip in a private repo requires authentication + urlpath, storage_options = _prepare_path_and_storage_options(urlpath, download_config=download_config) + main_hop, *rest_hops = urlpath.split("::") + fs, *_ = url_to_fs(urlpath, **storage_options) + inner_path = main_hop.split("://")[1] + globbed_paths = fs.glob(inner_path) + protocol = fs.protocol if isinstance(fs.protocol, str) else fs.protocol[-1] + return ["::".join([f"{protocol}://{globbed_path}"] + rest_hops) for globbed_path in globbed_paths] + + +def xwalk(urlpath, download_config: Optional[DownloadConfig] = None, **kwargs): + """Extend `os.walk` function to support remote files. + + Args: + urlpath (`str`): URL root path. + download_config : mainly use token or storage_options to support different platforms and auth types. + **kwargs: Additional keyword arguments forwarded to the underlying filesystem. + + + Yields: + `tuple`: 3-tuple (dirpath, dirnames, filenames). + """ + main_hop, *rest_hops = _as_str(urlpath).split("::") + if is_local_path(main_hop): + yield from os.walk(main_hop, **kwargs) + else: + # walking inside a zip in a private repo requires authentication + urlpath, storage_options = _prepare_path_and_storage_options(urlpath, download_config=download_config) + main_hop, *rest_hops = urlpath.split("::") + fs, *_ = url_to_fs(urlpath, **storage_options) + inner_path = main_hop.split("://")[-1] + if inner_path.strip("/") and not fs.isdir(inner_path): + return [] + protocol = fs.protocol if isinstance(fs.protocol, str) else fs.protocol[-1] + for dirpath, dirnames, filenames in fs.walk(inner_path, **kwargs): + yield "::".join([f"{protocol}://{dirpath}"] + rest_hops), dirnames, filenames + + +class xPath(type(Path())): + """Extension of `pathlib.Path` to support both local paths and remote URLs.""" + + def __str__(self): + path_str = super().__str__() + main_hop, *rest_hops = path_str.split("::") + if is_local_path(main_hop): + return main_hop + path_as_posix = path_str.replace("\\", "/") + path_as_posix = SINGLE_SLASH_AFTER_PROTOCOL_PATTERN.sub("://", path_as_posix) + path_as_posix += "//" if path_as_posix.endswith(":") else "" # Add slashes to root of the protocol + return path_as_posix + + def exists(self, download_config: Optional[DownloadConfig] = None): + """Extend `pathlib.Path.exists` method to support both local and remote files. + + Args: + download_config : mainly use token or storage_options to support different platforms and auth types. + + Returns: + `bool` + """ + return xexists(str(self), download_config=download_config) + + def glob(self, pattern, download_config: Optional[DownloadConfig] = None): + """Glob function for argument of type :obj:`~pathlib.Path` that supports both local paths end remote URLs. + + Args: + pattern (`str`): Pattern that resulting paths must match. + download_config : mainly use token or storage_options to support different platforms and auth types. + + Yields: + [`xPath`] + """ + posix_path = self.as_posix() + main_hop, *rest_hops = posix_path.split("::") + if is_local_path(main_hop): + yield from Path(main_hop).glob(pattern) + else: + # globbing inside a zip in a private repo requires authentication + if rest_hops: + urlpath = rest_hops[0] + urlpath, storage_options = _prepare_path_and_storage_options(urlpath, download_config=download_config) + storage_options = {urlpath.split("://")[0]: storage_options} + posix_path = "::".join([main_hop, urlpath, *rest_hops[1:]]) + else: + storage_options = None + fs, *_ = url_to_fs(xjoin(posix_path, pattern), **(storage_options or {})) + globbed_paths = fs.glob(xjoin(main_hop, pattern)) + for globbed_path in globbed_paths: + yield type(self)("::".join([f"{fs.protocol}://{globbed_path}"] + rest_hops)) + + def rglob(self, pattern, **kwargs): + """Rglob function for argument of type :obj:`~pathlib.Path` that supports both local paths end remote URLs. + + Args: + pattern (`str`): Pattern that resulting paths must match. + + Yields: + [`xPath`] + """ + return self.glob("**/" + pattern, **kwargs) + + @property + def parent(self) -> "xPath": + """Name function for argument of type :obj:`~pathlib.Path` that supports both local paths end remote URLs. + + Returns: + [`xPath`] + """ + return type(self)(xdirname(self.as_posix())) + + @property + def name(self) -> str: + """Name function for argument of type :obj:`~pathlib.Path` that supports both local paths end remote URLs. + + Returns: + `str` + """ + return PurePosixPath(self.as_posix().split("::")[0]).name + + @property + def stem(self) -> str: + """Stem function for argument of type :obj:`~pathlib.Path` that supports both local paths end remote URLs. + + Returns: + `str` + """ + return PurePosixPath(self.as_posix().split("::")[0]).stem + + @property + def suffix(self) -> str: + """Suffix function for argument of type :obj:`~pathlib.Path` that supports both local paths end remote URLs. + + Returns: + `str` + """ + return PurePosixPath(self.as_posix().split("::")[0]).suffix + + def open(self, *args, **kwargs): + """Extend :func:`xopen` to support argument of type :obj:`~pathlib.Path`. + + Args: + **args: Arguments passed to :func:`fsspec.open`. + **kwargs: Keyword arguments passed to :func:`fsspec.open`. + + Returns: + `io.FileIO`: File-like object. + """ + return xopen(str(self), *args, **kwargs) + + def joinpath(self, *p: Tuple[str, ...]) -> "xPath": + """Extend :func:`xjoin` to support argument of type :obj:`~pathlib.Path`. + + Args: + *p (`tuple` of `str`): Other path components. + + Returns: + [`xPath`] + """ + return type(self)(xjoin(self.as_posix(), *p)) + + def __truediv__(self, p: str) -> "xPath": + return self.joinpath(p) + + def with_suffix(self, suffix): + main_hop, *rest_hops = str(self).split("::") + if is_local_path(main_hop): + return type(self)(str(super().with_suffix(suffix))) + return type(self)("::".join([type(self)(PurePosixPath(main_hop).with_suffix(suffix)).as_posix()] + rest_hops)) + + +def _as_str(path: Union[str, Path, xPath]): + return str(path) if isinstance(path, xPath) else str(xPath(str(path))) + + +def xgzip_open(filepath_or_buffer, *args, download_config: Optional[DownloadConfig] = None, **kwargs): + import gzip + + if hasattr(filepath_or_buffer, "read"): + return gzip.open(filepath_or_buffer, *args, **kwargs) + else: + filepath_or_buffer = str(filepath_or_buffer) + return gzip.open(xopen(filepath_or_buffer, "rb", download_config=download_config), *args, **kwargs) + + +def xnumpy_load(filepath_or_buffer, *args, download_config: Optional[DownloadConfig] = None, **kwargs): + import numpy as np + + if hasattr(filepath_or_buffer, "read"): + return np.load(filepath_or_buffer, *args, **kwargs) + else: + filepath_or_buffer = str(filepath_or_buffer) + return np.load(xopen(filepath_or_buffer, "rb", download_config=download_config), *args, **kwargs) + + +def xpandas_read_csv(filepath_or_buffer, download_config: Optional[DownloadConfig] = None, **kwargs): + import pandas as pd + + if hasattr(filepath_or_buffer, "read"): + return pd.read_csv(filepath_or_buffer, **kwargs) + else: + filepath_or_buffer = str(filepath_or_buffer) + if kwargs.get("compression", "infer") == "infer": + kwargs["compression"] = _get_extraction_protocol(filepath_or_buffer, download_config=download_config) + return pd.read_csv(xopen(filepath_or_buffer, "rb", download_config=download_config), **kwargs) + + +def xpandas_read_excel(filepath_or_buffer, download_config: Optional[DownloadConfig] = None, **kwargs): + import pandas as pd + + if hasattr(filepath_or_buffer, "read"): + try: + return pd.read_excel(filepath_or_buffer, **kwargs) + except ValueError: # Cannot seek streaming HTTP file + return pd.read_excel(BytesIO(filepath_or_buffer.read()), **kwargs) + else: + filepath_or_buffer = str(filepath_or_buffer) + try: + return pd.read_excel(xopen(filepath_or_buffer, "rb", download_config=download_config), **kwargs) + except ValueError: # Cannot seek streaming HTTP file + return pd.read_excel( + BytesIO(xopen(filepath_or_buffer, "rb", download_config=download_config).read()), **kwargs + ) + + +def xpyarrow_parquet_read_table(filepath_or_buffer, download_config: Optional[DownloadConfig] = None, **kwargs): + import pyarrow.parquet as pq + + if hasattr(filepath_or_buffer, "read"): + return pq.read_table(filepath_or_buffer, **kwargs) + else: + filepath_or_buffer = str(filepath_or_buffer) + return pq.read_table(xopen(filepath_or_buffer, mode="rb", download_config=download_config), **kwargs) + + +def xsio_loadmat(filepath_or_buffer, download_config: Optional[DownloadConfig] = None, **kwargs): + import scipy.io as sio + + if hasattr(filepath_or_buffer, "read"): + return sio.loadmat(filepath_or_buffer, **kwargs) + else: + return sio.loadmat(xopen(filepath_or_buffer, "rb", download_config=download_config), **kwargs) + + +def xet_parse(source, parser=None, download_config: Optional[DownloadConfig] = None): + """Extend `xml.etree.ElementTree.parse` function to support remote files. + + Args: + source: File path or file object. + parser (`XMLParser`, *optional*, default `XMLParser`): Parser instance. + download_config : mainly use token or storage_options to support different platforms and auth types. + + Returns: + `xml.etree.ElementTree.Element`: Root element of the given source document. + """ + if hasattr(source, "read"): + return ET.parse(source, parser=parser) + else: + with xopen(source, "rb", download_config=download_config) as f: + return ET.parse(f, parser=parser) + + +def xxml_dom_minidom_parse(filename_or_file, download_config: Optional[DownloadConfig] = None, **kwargs): + """Extend `xml.dom.minidom.parse` function to support remote files. + + Args: + filename_or_file (`str` or file): File path or file object. + download_config : mainly use token or storage_options to support different platforms and auth types. + **kwargs (optional): Additional keyword arguments passed to `xml.dom.minidom.parse`. + + Returns: + :obj:`xml.dom.minidom.Document`: Parsed document. + """ + if hasattr(filename_or_file, "read"): + return xml.dom.minidom.parse(filename_or_file, **kwargs) + else: + with xopen(filename_or_file, "rb", download_config=download_config) as f: + return xml.dom.minidom.parse(f, **kwargs) + + +class _IterableFromGenerator(TrackedIterable): + """Utility class to create an iterable from a generator function, in order to reset the generator when needed.""" + + def __init__(self, generator: Callable, *args, **kwargs): + super().__init__() + self.generator = generator + self.args = args + self.kwargs = kwargs + + def __iter__(self): + for x in self.generator(*self.args, **self.kwargs): + self.last_item = x + yield x + self.last_item = None + + +class ArchiveIterable(_IterableFromGenerator): + """An iterable of (path, fileobj) from a TAR archive, used by `iter_archive`""" + + @staticmethod + def _iter_tar(f): + stream = tarfile.open(fileobj=f, mode="r|*") + for tarinfo in stream: + file_path = tarinfo.name + if not tarinfo.isreg(): + continue + if file_path is None: + continue + if os.path.basename(file_path).startswith((".", "__")): + # skipping hidden files + continue + file_obj = stream.extractfile(tarinfo) + yield file_path, file_obj + stream.members = [] + del stream + + @staticmethod + def _iter_zip(f): + zipf = zipfile.ZipFile(f) + for member in zipf.infolist(): + file_path = member.filename + if member.is_dir(): + continue + if file_path is None: + continue + if os.path.basename(file_path).startswith((".", "__")): + # skipping hidden files + continue + file_obj = zipf.open(member) + yield file_path, file_obj + + @classmethod + def _iter_from_fileobj(cls, f) -> Generator[Tuple, None, None]: + compression = _get_extraction_protocol_with_magic_number(f) + if compression == "zip": + yield from cls._iter_zip(f) + else: + yield from cls._iter_tar(f) + + @classmethod + def _iter_from_urlpath( + cls, urlpath: str, download_config: Optional[DownloadConfig] = None + ) -> Generator[Tuple, None, None]: + compression = _get_extraction_protocol(urlpath, download_config=download_config) + # Set block_size=0 to get faster streaming + # (e.g. for hf:// and https:// it uses streaming Requests file-like instances) + with xopen(urlpath, "rb", download_config=download_config, block_size=0) as f: + if compression == "zip": + yield from cls._iter_zip(f) + else: + yield from cls._iter_tar(f) + + @classmethod + def from_buf(cls, fileobj) -> "ArchiveIterable": + return cls(cls._iter_from_fileobj, fileobj) + + @classmethod + def from_urlpath(cls, urlpath_or_buf, download_config: Optional[DownloadConfig] = None) -> "ArchiveIterable": + return cls(cls._iter_from_urlpath, urlpath_or_buf, download_config) + + +class FilesIterable(_IterableFromGenerator): + """An iterable of paths from a list of directories or files""" + + @classmethod + def _iter_from_urlpaths( + cls, urlpaths: Union[str, List[str]], download_config: Optional[DownloadConfig] = None + ) -> Generator[str, None, None]: + if not isinstance(urlpaths, list): + urlpaths = [urlpaths] + for urlpath in urlpaths: + if xisfile(urlpath, download_config=download_config): + yield urlpath + elif xisdir(urlpath, download_config=download_config): + for dirpath, dirnames, filenames in xwalk(urlpath, download_config=download_config): + # in-place modification to prune the search + dirnames[:] = sorted([dirname for dirname in dirnames if not dirname.startswith((".", "__"))]) + if xbasename(dirpath).startswith((".", "__")): + # skipping hidden directories + continue + for filename in sorted(filenames): + if filename.startswith((".", "__")): + # skipping hidden files + continue + yield xjoin(dirpath, filename) + else: + raise FileNotFoundError(urlpath) + + @classmethod + def from_urlpaths(cls, urlpaths, download_config: Optional[DownloadConfig] = None) -> "FilesIterable": + return cls(cls._iter_from_urlpaths, urlpaths, download_config) diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/filelock.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/filelock.py new file mode 100644 index 0000000000000000000000000000000000000000..df0728efe644d8eb32f0e578a85e39ba366e9743 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/filelock.py @@ -0,0 +1,11 @@ +# deprecated, please use the `filelock` package instead + +from filelock import ( # noqa: F401 # imported for backward compatibility TODO: remove in 3.0.0 + BaseFileLock, + SoftFileLock, + Timeout, + UnixFileLock, + WindowsFileLock, +) + +from ._filelock import FileLock # noqa: F401 # imported for backward compatibility. TODO: remove in 3.0.0 diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/hub.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/hub.py new file mode 100644 index 0000000000000000000000000000000000000000..6d784333b23328c113ec7be444d0a77410f1b857 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/hub.py @@ -0,0 +1,6 @@ +from functools import partial + +from huggingface_hub import hf_hub_url + + +hf_dataset_url = partial(hf_hub_url, repo_type="dataset") diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/info_utils.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/info_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..4eaa2f0418b2200b9e6714e6697ee68efe753107 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/info_utils.py @@ -0,0 +1,130 @@ +import enum +import os +from typing import Optional + +from huggingface_hub.utils import insecure_hashlib + +from .. import config +from .logging import get_logger + + +logger = get_logger(__name__) + + +class VerificationMode(enum.Enum): + """`Enum` that specifies which verification checks to run. + + The default mode is `BASIC_CHECKS`, which will perform only rudimentary checks to avoid slowdowns + when generating/downloading a dataset for the first time. + + The verification modes: + + | | Verification checks | + |---------------------------|------------------------------------------------------------------------------ | + | `ALL_CHECKS` | Split checks, uniqueness of the keys yielded in case of the GeneratorBuilder | + | | and the validity (number of files, checksums, etc.) of downloaded files | + | `BASIC_CHECKS` (default) | Same as `ALL_CHECKS` but without checking downloaded files | + | `NO_CHECKS` | None | + + """ + + ALL_CHECKS = "all_checks" + BASIC_CHECKS = "basic_checks" + NO_CHECKS = "no_checks" + + +class ChecksumVerificationException(Exception): + """Exceptions during checksums verifications of downloaded files.""" + + +class UnexpectedDownloadedFile(ChecksumVerificationException): + """Some downloaded files were not expected.""" + + +class ExpectedMoreDownloadedFiles(ChecksumVerificationException): + """Some files were supposed to be downloaded but were not.""" + + +class NonMatchingChecksumError(ChecksumVerificationException): + """The downloaded file checksum don't match the expected checksum.""" + + +def verify_checksums(expected_checksums: Optional[dict], recorded_checksums: dict, verification_name=None): + if expected_checksums is None: + logger.info("Unable to verify checksums.") + return + if len(set(expected_checksums) - set(recorded_checksums)) > 0: + raise ExpectedMoreDownloadedFiles(str(set(expected_checksums) - set(recorded_checksums))) + if len(set(recorded_checksums) - set(expected_checksums)) > 0: + raise UnexpectedDownloadedFile(str(set(recorded_checksums) - set(expected_checksums))) + bad_urls = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] + for_verification_name = " for " + verification_name if verification_name is not None else "" + if len(bad_urls) > 0: + raise NonMatchingChecksumError( + f"Checksums didn't match{for_verification_name}:\n" + f"{bad_urls}\n" + "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" + ) + logger.info("All the checksums matched successfully" + for_verification_name) + + +class SplitsVerificationException(Exception): + """Exceptions during splis verifications""" + + +class UnexpectedSplits(SplitsVerificationException): + """The expected splits of the downloaded file is missing.""" + + +class ExpectedMoreSplits(SplitsVerificationException): + """Some recorded splits are missing.""" + + +class NonMatchingSplitsSizesError(SplitsVerificationException): + """The splits sizes don't match the expected splits sizes.""" + + +def verify_splits(expected_splits: Optional[dict], recorded_splits: dict): + if expected_splits is None: + logger.info("Unable to verify splits sizes.") + return + if len(set(expected_splits) - set(recorded_splits)) > 0: + raise ExpectedMoreSplits(str(set(expected_splits) - set(recorded_splits))) + if len(set(recorded_splits) - set(expected_splits)) > 0: + raise UnexpectedSplits(str(set(recorded_splits) - set(expected_splits))) + bad_splits = [ + {"expected": expected_splits[name], "recorded": recorded_splits[name]} + for name in expected_splits + if expected_splits[name].num_examples != recorded_splits[name].num_examples + ] + if len(bad_splits) > 0: + raise NonMatchingSplitsSizesError(str(bad_splits)) + logger.info("All the splits matched successfully.") + + +def get_size_checksum_dict(path: str, record_checksum: bool = True) -> dict: + """Compute the file size and the sha256 checksum of a file""" + if record_checksum: + m = insecure_hashlib.sha256() + with open(path, "rb") as f: + for chunk in iter(lambda: f.read(1 << 20), b""): + m.update(chunk) + checksum = m.hexdigest() + else: + checksum = None + return {"num_bytes": os.path.getsize(path), "checksum": checksum} + + +def is_small_dataset(dataset_size): + """Check if `dataset_size` is smaller than `config.IN_MEMORY_MAX_SIZE`. + + Args: + dataset_size (int): Dataset size in bytes. + + Returns: + bool: Whether `dataset_size` is smaller than `config.IN_MEMORY_MAX_SIZE`. + """ + if dataset_size and config.IN_MEMORY_MAX_SIZE: + return dataset_size < config.IN_MEMORY_MAX_SIZE + else: + return False diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/logging.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/logging.py new file mode 100644 index 0000000000000000000000000000000000000000..dffd5ce46e0d2da5cbbfb023003c3f4caae86093 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/logging.py @@ -0,0 +1,179 @@ +# Copyright 2020 Optuna, Hugging Face +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Logging utilities.""" + +import logging +import os +from logging import ( + CRITICAL, # NOQA + DEBUG, # NOQA + ERROR, # NOQA + FATAL, # NOQA + INFO, # NOQA + NOTSET, # NOQA + WARN, # NOQA + WARNING, # NOQA +) +from typing import Optional + +from .tqdm import ( # noqa: F401 # imported for backward compatibility + disable_progress_bar, + enable_progress_bar, + is_progress_bar_enabled, + tqdm, +) + + +log_levels = { + "debug": logging.DEBUG, + "info": logging.INFO, + "warning": logging.WARNING, + "error": logging.ERROR, + "critical": logging.CRITICAL, +} + +_default_log_level = logging.WARNING + + +def _get_default_logging_level(): + """ + If DATASETS_VERBOSITY env var is set to one of the valid choices return that as the new default level. + If it is not - fall back to ``_default_log_level`` + """ + env_level_str = os.getenv("DATASETS_VERBOSITY", None) + if env_level_str: + if env_level_str in log_levels: + return log_levels[env_level_str] + else: + logging.getLogger().warning( + f"Unknown option DATASETS_VERBOSITY={env_level_str}, " + f"has to be one of: { ', '.join(log_levels.keys()) }" + ) + return _default_log_level + + +def _get_library_name() -> str: + return __name__.split(".")[0] + + +def _get_library_root_logger() -> logging.Logger: + return logging.getLogger(_get_library_name()) + + +def _configure_library_root_logger() -> None: + # Apply our default configuration to the library root logger. + library_root_logger = _get_library_root_logger() + library_root_logger.addHandler(logging.StreamHandler()) + library_root_logger.setLevel(_get_default_logging_level()) + + +def _reset_library_root_logger() -> None: + library_root_logger = _get_library_root_logger() + library_root_logger.setLevel(logging.NOTSET) + + +def get_logger(name: Optional[str] = None) -> logging.Logger: + """Return a logger with the specified name. + This function can be used in dataset scripts. + """ + if name is None: + name = _get_library_name() + return logging.getLogger(name) + + +def get_verbosity() -> int: + """Return the current level for the HuggingFace datasets library's root logger. + Returns: + Logging level, e.g., `datasets.logging.DEBUG` and `datasets.logging.INFO`. + + + + HuggingFace datasets library has following logging levels: + - `datasets.logging.CRITICAL`, `datasets.logging.FATAL` + - `datasets.logging.ERROR` + - `datasets.logging.WARNING`, `datasets.logging.WARN` + - `datasets.logging.INFO` + - `datasets.logging.DEBUG` + + + """ + return _get_library_root_logger().getEffectiveLevel() + + +def set_verbosity(verbosity: int) -> None: + """Set the level for the Hugging Face Datasets library's root logger. + Args: + verbosity: + Logging level, e.g., `datasets.logging.DEBUG` and `datasets.logging.INFO`. + """ + _get_library_root_logger().setLevel(verbosity) + + +def set_verbosity_info(): + """Set the level for the Hugging Face datasets library's root logger to `INFO`. + + This will display most of the logging information and tqdm bars. + + Shortcut to `datasets.logging.set_verbosity(datasets.logging.INFO)`. + """ + return set_verbosity(INFO) + + +def set_verbosity_warning(): + """Set the level for the Hugging Face datasets library's root logger to `WARNING`. + + This will display only the warning and errors logging information and tqdm bars. + + Shortcut to `datasets.logging.set_verbosity(datasets.logging.WARNING)`. + """ + return set_verbosity(WARNING) + + +def set_verbosity_debug(): + """Set the level for the Hugging Face datasets library's root logger to `DEBUG`. + + This will display all the logging information and tqdm bars. + + Shortcut to `datasets.logging.set_verbosity(datasets.logging.DEBUG)`. + """ + return set_verbosity(DEBUG) + + +def set_verbosity_error(): + """Set the level for the Hugging Face datasets library's root logger to `ERROR`. + + This will display only the errors logging information and tqdm bars. + + Shortcut to `datasets.logging.set_verbosity(datasets.logging.ERROR)`. + """ + return set_verbosity(ERROR) + + +def disable_propagation() -> None: + """Disable propagation of the library log outputs. + Note that log propagation is disabled by default. + """ + _get_library_root_logger().propagate = False + + +def enable_propagation() -> None: + """Enable propagation of the library log outputs. + Please disable the Hugging Face datasets library's default handler to prevent double logging if the root logger has + been configured. + """ + _get_library_root_logger().propagate = True + + +# Configure the library root logger at the module level (singleton-like) +_configure_library_root_logger() diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/metadata.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/metadata.py new file mode 100644 index 0000000000000000000000000000000000000000..d2e763e9cb6a150db3c7a6a46b0f60bd7f799b1e --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/metadata.py @@ -0,0 +1,320 @@ +import re +import textwrap +from collections import Counter +from itertools import groupby +from operator import itemgetter +from pathlib import Path +from typing import Any, ClassVar, Dict, List, Optional, Tuple, Union + +import yaml +from huggingface_hub import DatasetCardData + +from ..config import METADATA_CONFIGS_FIELD +from ..info import DatasetInfo, DatasetInfosDict +from ..naming import _split_re +from ..utils.logging import get_logger +from .deprecation_utils import deprecated + + +logger = get_logger(__name__) + + +class _NoDuplicateSafeLoader(yaml.SafeLoader): + def _check_no_duplicates_on_constructed_node(self, node): + keys = [self.constructed_objects[key_node] for key_node, _ in node.value] + keys = [tuple(key) if isinstance(key, list) else key for key in keys] + counter = Counter(keys) + duplicate_keys = [key for key in counter if counter[key] > 1] + if duplicate_keys: + raise TypeError(f"Got duplicate yaml keys: {duplicate_keys}") + + def construct_mapping(self, node, deep=False): + mapping = super().construct_mapping(node, deep=deep) + self._check_no_duplicates_on_constructed_node(node) + return mapping + + +def _split_yaml_from_readme(readme_content: str) -> Tuple[Optional[str], str]: + full_content = list(readme_content.splitlines()) + if full_content and full_content[0] == "---" and "---" in full_content[1:]: + sep_idx = full_content[1:].index("---") + 1 + yamlblock = "\n".join(full_content[1:sep_idx]) + return yamlblock, "\n".join(full_content[sep_idx + 1 :]) + + return None, "\n".join(full_content) + + +@deprecated("Use `huggingface_hub.DatasetCardData` instead.") +class DatasetMetadata(dict): + # class attributes + _FIELDS_WITH_DASHES = {"train_eval_index"} # train-eval-index in the YAML metadata + + @classmethod + def from_readme(cls, path: Union[Path, str]) -> "DatasetMetadata": + """Loads and validates the dataset metadata from its dataset card (README.md) + + Args: + path (:obj:`Path`): Path to the dataset card (its README.md file) + + Returns: + :class:`DatasetMetadata`: The dataset's metadata + + Raises: + :obj:`TypeError`: If the dataset's metadata is invalid + """ + with open(path, encoding="utf-8") as readme_file: + yaml_string, _ = _split_yaml_from_readme(readme_file.read()) + if yaml_string is not None: + return cls.from_yaml_string(yaml_string) + else: + return cls() + + def to_readme(self, path: Path): + if path.exists(): + with open(path, encoding="utf-8") as readme_file: + readme_content = readme_file.read() + else: + readme_content = None + updated_readme_content = self._to_readme(readme_content) + with open(path, "w", encoding="utf-8") as readme_file: + readme_file.write(updated_readme_content) + + def _to_readme(self, readme_content: Optional[str] = None) -> str: + if readme_content is not None: + _, content = _split_yaml_from_readme(readme_content) + full_content = "---\n" + self.to_yaml_string() + "---\n" + content + else: + full_content = "---\n" + self.to_yaml_string() + "---\n" + return full_content + + @classmethod + def from_yaml_string(cls, string: str) -> "DatasetMetadata": + """Loads and validates the dataset metadata from a YAML string + + Args: + string (:obj:`str`): The YAML string + + Returns: + :class:`DatasetMetadata`: The dataset's metadata + + Raises: + :obj:`TypeError`: If the dataset's metadata is invalid + """ + metadata_dict = yaml.load(string, Loader=_NoDuplicateSafeLoader) or {} + + # Convert the YAML keys to DatasetMetadata fields + metadata_dict = { + (key.replace("-", "_") if key.replace("-", "_") in cls._FIELDS_WITH_DASHES else key): value + for key, value in metadata_dict.items() + } + return cls(**metadata_dict) + + def to_yaml_string(self) -> str: + return yaml.safe_dump( + { + (key.replace("_", "-") if key in self._FIELDS_WITH_DASHES else key): value + for key, value in self.items() + }, + sort_keys=False, + allow_unicode=True, + encoding="utf-8", + ).decode("utf-8") + + +class MetadataConfigs(Dict[str, Dict[str, Any]]): + """Should be in format {config_name: {**config_params}}.""" + + FIELD_NAME: ClassVar[str] = METADATA_CONFIGS_FIELD + + @staticmethod + def _raise_if_data_files_field_not_valid(metadata_config: dict): + yaml_data_files = metadata_config.get("data_files") + if yaml_data_files is not None: + yaml_error_message = textwrap.dedent( + f""" + Expected data_files in YAML to be either a string or a list of strings + or a list of dicts with two keys: 'split' and 'path', but got {yaml_data_files} + Examples of data_files in YAML: + + data_files: data.csv + + data_files: data/*.png + + data_files: + - part0/* + - part1/* + + data_files: + - split: train + path: train/* + - split: test + path: test/* + + data_files: + - split: train + path: + - train/part1/* + - train/part2/* + - split: test + path: test/* + + PS: some symbols like dashes '-' are not allowed in split names + """ + ) + if not isinstance(yaml_data_files, (list, str)): + raise ValueError(yaml_error_message) + if isinstance(yaml_data_files, list): + for yaml_data_files_item in yaml_data_files: + if ( + not isinstance(yaml_data_files_item, (str, dict)) + or isinstance(yaml_data_files_item, dict) + and not ( + len(yaml_data_files_item) == 2 + and "split" in yaml_data_files_item + and re.match(_split_re, yaml_data_files_item["split"]) + and isinstance(yaml_data_files_item.get("path"), (str, list)) + ) + ): + raise ValueError(yaml_error_message) + + @classmethod + def _from_exported_parquet_files_and_dataset_infos( + cls, + revision: str, + exported_parquet_files: List[Dict[str, Any]], + dataset_infos: DatasetInfosDict, + ) -> "MetadataConfigs": + metadata_configs = { + config_name: { + "data_files": [ + { + "split": split_name, + "path": [ + parquet_file["url"].replace("refs%2Fconvert%2Fparquet", revision) + for parquet_file in parquet_files_for_split + ], + } + for split_name, parquet_files_for_split in groupby(parquet_files_for_config, itemgetter("split")) + ], + "version": str(dataset_infos.get(config_name, DatasetInfo()).version or "0.0.0"), + } + for config_name, parquet_files_for_config in groupby(exported_parquet_files, itemgetter("config")) + } + if dataset_infos: + # Preserve order of configs and splits + metadata_configs = { + config_name: { + "data_files": [ + data_file + for split_name in dataset_info.splits + for data_file in metadata_configs[config_name]["data_files"] + if data_file["split"] == split_name + ], + "version": metadata_configs[config_name]["version"], + } + for config_name, dataset_info in dataset_infos.items() + } + return cls(metadata_configs) + + @classmethod + def from_dataset_card_data(cls, dataset_card_data: DatasetCardData) -> "MetadataConfigs": + if dataset_card_data.get(cls.FIELD_NAME): + metadata_configs = dataset_card_data[cls.FIELD_NAME] + if not isinstance(metadata_configs, list): + raise ValueError(f"Expected {cls.FIELD_NAME} to be a list, but got '{metadata_configs}'") + for metadata_config in metadata_configs: + if "config_name" not in metadata_config: + raise ValueError( + f"Each config must include `config_name` field with a string name of a config, " + f"but got {metadata_config}. " + ) + cls._raise_if_data_files_field_not_valid(metadata_config) + return cls( + { + config["config_name"]: {param: value for param, value in config.items() if param != "config_name"} + for config in metadata_configs + } + ) + return cls() + + def to_dataset_card_data(self, dataset_card_data: DatasetCardData) -> None: + if self: + for metadata_config in self.values(): + self._raise_if_data_files_field_not_valid(metadata_config) + current_metadata_configs = self.from_dataset_card_data(dataset_card_data) + total_metadata_configs = dict(sorted({**current_metadata_configs, **self}.items())) + for config_name, config_metadata in total_metadata_configs.items(): + config_metadata.pop("config_name", None) + dataset_card_data[self.FIELD_NAME] = [ + {"config_name": config_name, **config_metadata} + for config_name, config_metadata in total_metadata_configs.items() + ] + + def get_default_config_name(self) -> Optional[str]: + default_config_name = None + for config_name, metadata_config in self.items(): + if len(self) == 1 or config_name == "default" or metadata_config.get("default"): + if default_config_name is None: + default_config_name = config_name + else: + raise ValueError( + f"Dataset has several default configs: '{default_config_name}' and '{config_name}'." + ) + return default_config_name + + +# DEPRECATED - just here to support old versions of evaluate like 0.2.2 +# To support new tasks on the Hugging Face Hub, please open a PR for this file: +# https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/src/pipelines.ts +known_task_ids = { + "image-classification": [], + "translation": [], + "image-segmentation": [], + "fill-mask": [], + "automatic-speech-recognition": [], + "token-classification": [], + "sentence-similarity": [], + "audio-classification": [], + "question-answering": [], + "summarization": [], + "zero-shot-classification": [], + "table-to-text": [], + "feature-extraction": [], + "other": [], + "multiple-choice": [], + "text-classification": [], + "text-to-image": [], + "text2text-generation": [], + "zero-shot-image-classification": [], + "tabular-classification": [], + "tabular-regression": [], + "image-to-image": [], + "tabular-to-text": [], + "unconditional-image-generation": [], + "text-retrieval": [], + "text-to-speech": [], + "object-detection": [], + "audio-to-audio": [], + "text-generation": [], + "conversational": [], + "table-question-answering": [], + "visual-question-answering": [], + "image-to-text": [], + "reinforcement-learning": [], + "voice-activity-detection": [], + "time-series-forecasting": [], + "document-question-answering": [], +} + + +if __name__ == "__main__": + from argparse import ArgumentParser + + ap = ArgumentParser(usage="Validate the yaml metadata block of a README.md file.") + ap.add_argument("readme_filepath") + args = ap.parse_args() + + readme_filepath = Path(args.readme_filepath) + dataset_metadata = DatasetMetadata.from_readme(readme_filepath) + print(dataset_metadata) + dataset_metadata.to_readme(readme_filepath) diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/patching.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/patching.py new file mode 100644 index 0000000000000000000000000000000000000000..f245cabd97065d9e82a1320d02999f9ec03bda36 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/patching.py @@ -0,0 +1,119 @@ +from importlib import import_module + +from .logging import get_logger + + +logger = get_logger(__name__) + + +class _PatchedModuleObj: + """Set all the modules components as attributes of the _PatchedModuleObj object.""" + + def __init__(self, module, attrs=None): + attrs = attrs or [] + if module is not None: + for key in module.__dict__: + if key in attrs or not key.startswith("__"): + setattr(self, key, getattr(module, key)) + self._original_module = module._original_module if isinstance(module, _PatchedModuleObj) else module + + +class patch_submodule: + """ + Patch a submodule attribute of an object, by keeping all other submodules intact at all levels. + + Example:: + + >>> import importlib + >>> from datasets.load import dataset_module_factory + >>> from datasets.streaming import patch_submodule, xjoin + >>> + >>> dataset_module = dataset_module_factory("snli") + >>> snli_module = importlib.import_module(dataset_module.module_path) + >>> patcher = patch_submodule(snli_module, "os.path.join", xjoin) + >>> patcher.start() + >>> assert snli_module.os.path.join is xjoin + """ + + _active_patches = [] + + def __init__(self, obj, target: str, new, attrs=None): + self.obj = obj + self.target = target + self.new = new + self.key = target.split(".")[0] + self.original = {} + self.attrs = attrs or [] + + def __enter__(self): + *submodules, target_attr = self.target.split(".") + + # Patch modules: + # it's used to patch attributes of submodules like "os.path.join"; + # in this case we need to patch "os" and "os.path" + + for i in range(len(submodules)): + try: + submodule = import_module(".".join(submodules[: i + 1])) + except ModuleNotFoundError: + continue + # We iterate over all the globals in self.obj in case we find "os" or "os.path" + for attr in self.obj.__dir__(): + obj_attr = getattr(self.obj, attr) + # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". + # This allows to patch renamed modules like "from os import path as ospath". + if obj_attr is submodule or ( + isinstance(obj_attr, _PatchedModuleObj) and obj_attr._original_module is submodule + ): + self.original[attr] = obj_attr + # patch at top level + setattr(self.obj, attr, _PatchedModuleObj(obj_attr, attrs=self.attrs)) + patched = getattr(self.obj, attr) + # construct lower levels patches + for key in submodules[i + 1 :]: + setattr(patched, key, _PatchedModuleObj(getattr(patched, key, None), attrs=self.attrs)) + patched = getattr(patched, key) + # finally set the target attribute + setattr(patched, target_attr, self.new) + + # Patch attribute itself: + # it's used for builtins like "open", + # and also to patch "os.path.join" we may also need to patch "join" + # itself if it was imported as "from os.path import join". + + if submodules: # if it's an attribute of a submodule like "os.path.join" + try: + attr_value = getattr(import_module(".".join(submodules)), target_attr) + except (AttributeError, ModuleNotFoundError): + return + # We iterate over all the globals in self.obj in case we find "os.path.join" + for attr in self.obj.__dir__(): + # We don't check for the name of the global, but rather if its value *is* "os.path.join". + # This allows to patch renamed attributes like "from os.path import join as pjoin". + if getattr(self.obj, attr) is attr_value: + self.original[attr] = getattr(self.obj, attr) + setattr(self.obj, attr, self.new) + elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" + self.original[target_attr] = globals()["__builtins__"][target_attr] + setattr(self.obj, target_attr, self.new) + else: + raise RuntimeError(f"Tried to patch attribute {target_attr} instead of a submodule.") + + def __exit__(self, *exc_info): + for attr in list(self.original): + setattr(self.obj, attr, self.original.pop(attr)) + + def start(self): + """Activate a patch.""" + self.__enter__() + self._active_patches.append(self) + + def stop(self): + """Stop an active patch.""" + try: + self._active_patches.remove(self) + except ValueError: + # If the patch hasn't been started this will fail + return None + + return self.__exit__() diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/py_utils.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/py_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..97dd6fecf523e96b1ff28b62a7c4316b12502239 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/py_utils.py @@ -0,0 +1,734 @@ +# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Lint as: python3 +"""Some python utils function and classes.""" + +import copy +import functools +import itertools +import multiprocessing.pool +import os +import queue +import re +import types +import warnings +from contextlib import contextmanager +from dataclasses import fields, is_dataclass +from multiprocessing import Manager +from pathlib import Path +from queue import Empty +from shutil import disk_usage +from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, TypeVar, Union +from urllib.parse import urlparse + +import multiprocess +import multiprocess.pool +import numpy as np +from tqdm.auto import tqdm + +from .. import config +from ..parallel import parallel_map +from . import logging +from . import tqdm as hf_tqdm +from ._dill import ( # noqa: F401 # imported for backward compatibility. TODO: remove in 3.0.0 + Pickler, + dump, + dumps, + pklregister, +) +from ._filelock import FileLock + + +try: # pragma: no branch + import typing_extensions as _typing_extensions + from typing_extensions import Final, Literal +except ImportError: + _typing_extensions = Literal = Final = None + + +logger = logging.get_logger(__name__) + + +# NOTE: When used on an instance method, the cache is shared across all +# instances and IS NOT per-instance. +# See +# https://stackoverflow.com/questions/14946264/python-lru-cache-decorator-per-instance +# For @property methods, use @memoized_property below. +memoize = functools.lru_cache + + +def size_str(size_in_bytes): + """Returns a human readable size string. + + If size_in_bytes is None, then returns "Unknown size". + + For example `size_str(1.5 * datasets.units.GiB) == "1.50 GiB"`. + + Args: + size_in_bytes: `int` or `None`, the size, in bytes, that we want to + format as a human-readable size string. + """ + if not size_in_bytes: + return "Unknown size" + + _NAME_LIST = [("PiB", 2**50), ("TiB", 2**40), ("GiB", 2**30), ("MiB", 2**20), ("KiB", 2**10)] + + size_in_bytes = float(size_in_bytes) + for name, size_bytes in _NAME_LIST: + value = size_in_bytes / size_bytes + if value >= 1.0: + return f"{value:.2f} {name}" + return f"{int(size_in_bytes)} bytes" + + +def convert_file_size_to_int(size: Union[int, str]) -> int: + """ + Converts a size expressed as a string with digits an unit (like `"50MB"`) to an integer (in bytes). + + Args: + size (`int` or `str`): The size to convert. Will be directly returned if an `int`. + + Example: + + ```py + >>> convert_file_size_to_int("1MiB") + 1048576 + ``` + """ + if isinstance(size, int): + return size + if size.upper().endswith("PIB"): + return int(size[:-3]) * (2**50) + if size.upper().endswith("TIB"): + return int(size[:-3]) * (2**40) + if size.upper().endswith("GIB"): + return int(size[:-3]) * (2**30) + if size.upper().endswith("MIB"): + return int(size[:-3]) * (2**20) + if size.upper().endswith("KIB"): + return int(size[:-3]) * (2**10) + if size.upper().endswith("PB"): + int_size = int(size[:-2]) * (10**15) + return int_size // 8 if size.endswith("b") else int_size + if size.upper().endswith("TB"): + int_size = int(size[:-2]) * (10**12) + return int_size // 8 if size.endswith("b") else int_size + if size.upper().endswith("GB"): + int_size = int(size[:-2]) * (10**9) + return int_size // 8 if size.endswith("b") else int_size + if size.upper().endswith("MB"): + int_size = int(size[:-2]) * (10**6) + return int_size // 8 if size.endswith("b") else int_size + if size.upper().endswith("KB"): + int_size = int(size[:-2]) * (10**3) + return int_size // 8 if size.endswith("b") else int_size + raise ValueError(f"`size={size}` is not in a valid format. Use an integer followed by the unit, e.g., '5GB'.") + + +def glob_pattern_to_regex(pattern): + # partially taken from fsspec: + # https://github.com/fsspec/filesystem_spec/blob/697d0f8133d8a5fbc3926e4761d7ecd51337ce50/fsspec/asyn.py#L735 + return ( + pattern.replace("\\", r"\\") + .replace(".", r"\.") + .replace("*", ".*") + .replace("+", r"\+") + .replace("//", "/") + .replace("(", r"\(") + .replace(")", r"\)") + .replace("|", r"\|") + .replace("^", r"\^") + .replace("$", r"\$") + .rstrip("/") + .replace("?", ".") + ) + + +def string_to_dict(string: str, pattern: str) -> Dict[str, str]: + """Un-format a string using a python f-string pattern. + From https://stackoverflow.com/a/36838374 + + Example:: + + >>> p = 'hello, my name is {name} and I am a {age} year old {what}' + >>> s = p.format(name='cody', age=18, what='quarterback') + >>> s + 'hello, my name is cody and I am a 18 year old quarterback' + >>> string_to_dict(s, p) + {'age': '18', 'name': 'cody', 'what': 'quarterback'} + + Args: + string (str): input string + pattern (str): pattern formatted like a python f-string + + Returns: + Dict[str, str]: dictionary of variable -> value, retrieved from the input using the pattern + + Raises: + ValueError: if the string doesn't match the pattern + """ + regex = re.sub(r"{(.+?)}", r"(?P<_\1>.+)", pattern) + result = re.search(regex, string) + if result is None: + raise ValueError(f"String {string} doesn't match the pattern {pattern}") + values = list(result.groups()) + keys = re.findall(r"{(.+?)}", pattern) + _dict = dict(zip(keys, values)) + return _dict + + +def asdict(obj): + """Convert an object to its dictionary representation recursively. + + + """ + + # Implementation based on https://docs.python.org/3/library/dataclasses.html#dataclasses.asdict + + def _is_dataclass_instance(obj): + # https://docs.python.org/3/library/dataclasses.html#dataclasses.is_dataclass + return is_dataclass(obj) and not isinstance(obj, type) + + def _asdict_inner(obj): + if _is_dataclass_instance(obj): + result = {} + for f in fields(obj): + value = _asdict_inner(getattr(obj, f.name)) + if not f.init or value != f.default or f.metadata.get("include_in_asdict_even_if_is_default", False): + result[f.name] = value + return result + elif isinstance(obj, tuple) and hasattr(obj, "_fields"): + # obj is a namedtuple + return type(obj)(*[_asdict_inner(v) for v in obj]) + elif isinstance(obj, (list, tuple)): + # Assume we can create an object of this type by passing in a + # generator (which is not true for namedtuples, handled + # above). + return type(obj)(_asdict_inner(v) for v in obj) + elif isinstance(obj, dict): + return {_asdict_inner(k): _asdict_inner(v) for k, v in obj.items()} + else: + return copy.deepcopy(obj) + + if not isinstance(obj, dict) and not _is_dataclass_instance(obj): + raise TypeError(f"{obj} is not a dict or a dataclass") + + return _asdict_inner(obj) + + +@contextmanager +def temporary_assignment(obj, attr, value): + """Temporarily assign obj.attr to value.""" + original = getattr(obj, attr, None) + setattr(obj, attr, value) + try: + yield + finally: + setattr(obj, attr, original) + + +@contextmanager +def temp_seed(seed: int, set_pytorch=False, set_tensorflow=False): + """Temporarily set the random seed. This works for python numpy, pytorch and tensorflow.""" + np_state = np.random.get_state() + np.random.seed(seed) + + if set_pytorch and config.TORCH_AVAILABLE: + import torch + + torch_state = torch.random.get_rng_state() + torch.random.manual_seed(seed) + + if torch.cuda.is_available(): + torch_cuda_states = torch.cuda.get_rng_state_all() + torch.cuda.manual_seed_all(seed) + + if set_tensorflow and config.TF_AVAILABLE: + import tensorflow as tf + from tensorflow.python.eager import context as tfpycontext + + tf_state = tf.random.get_global_generator() + temp_gen = tf.random.Generator.from_seed(seed) + tf.random.set_global_generator(temp_gen) + + if not tf.executing_eagerly(): + raise ValueError("Setting random seed for TensorFlow is only available in eager mode") + + tf_context = tfpycontext.context() # eager mode context + tf_seed = tf_context._seed + tf_rng_initialized = hasattr(tf_context, "_rng") + if tf_rng_initialized: + tf_rng = tf_context._rng + tf_context._set_global_seed(seed) + + try: + yield + finally: + np.random.set_state(np_state) + + if set_pytorch and config.TORCH_AVAILABLE: + torch.random.set_rng_state(torch_state) + if torch.cuda.is_available(): + torch.cuda.set_rng_state_all(torch_cuda_states) + + if set_tensorflow and config.TF_AVAILABLE: + tf.random.set_global_generator(tf_state) + + tf_context._seed = tf_seed + if tf_rng_initialized: + tf_context._rng = tf_rng + else: + delattr(tf_context, "_rng") + + +def unique_values(values): + """Iterate over iterable and return only unique values in order.""" + seen = set() + for value in values: + if value not in seen: + seen.add(value) + yield value + + +def no_op_if_value_is_null(func): + """If the value is None, return None, else call `func`.""" + + def wrapper(value): + return func(value) if value is not None else None + + return wrapper + + +def first_non_null_value(iterable): + """Return the index and the value of the first non-null value in the iterable. If all values are None, return -1 as index.""" + for i, value in enumerate(iterable): + if value is not None: + return i, value + return -1, None + + +def zip_dict(*dicts): + """Iterate over items of dictionaries grouped by their keys.""" + for key in unique_values(itertools.chain(*dicts)): # set merge all keys + # Will raise KeyError if the dict don't have the same keys + yield key, tuple(d[key] for d in dicts) + + +class NonMutableDict(dict): + """Dict where keys can only be added but not modified. + + Will raise an error if the user try to overwrite one key. The error message + can be customized during construction. It will be formatted using {key} for + the overwritten key. + """ + + def __init__(self, *args, **kwargs): + self._error_msg = kwargs.pop( + "error_msg", + "Try to overwrite existing key: {key}", + ) + if kwargs: + raise ValueError("NonMutableDict cannot be initialized with kwargs.") + super().__init__(*args, **kwargs) + + def __setitem__(self, key, value): + if key in self: + raise ValueError(self._error_msg.format(key=key)) + return super().__setitem__(key, value) + + def update(self, other): + if any(k in self for k in other): + raise ValueError(self._error_msg.format(key=set(self) & set(other))) + return super().update(other) + + +class classproperty(property): # pylint: disable=invalid-name + """Descriptor to be used as decorator for @classmethods.""" + + def __get__(self, obj, objtype=None): + return self.fget.__get__(None, objtype)() + + +def _single_map_nested(args): + """Apply a function recursively to each element of a nested data struct.""" + function, data_struct, batched, batch_size, types, rank, disable_tqdm, desc = args + + # Singleton first to spare some computation + if not isinstance(data_struct, dict) and not isinstance(data_struct, types): + if batched: + return function([data_struct])[0] + else: + return function(data_struct) + if ( + batched + and not isinstance(data_struct, dict) + and isinstance(data_struct, types) + and all(not isinstance(v, (dict, types)) for v in data_struct) + ): + return [mapped_item for batch in iter_batched(data_struct, batch_size) for mapped_item in function(batch)] + + # Reduce logging to keep things readable in multiprocessing with tqdm + if rank is not None and logging.get_verbosity() < logging.WARNING: + logging.set_verbosity_warning() + # Print at least one thing to fix tqdm in notebooks in multiprocessing + # see https://github.com/tqdm/tqdm/issues/485#issuecomment-473338308 + if rank is not None and not disable_tqdm and any("notebook" in tqdm_cls.__name__ for tqdm_cls in tqdm.__mro__): + print(" ", end="", flush=True) + + # Loop over single examples or batches and write to buffer/file if examples are to be updated + pbar_iterable = data_struct.items() if isinstance(data_struct, dict) else data_struct + pbar_desc = (desc + " " if desc is not None else "") + "#" + str(rank) if rank is not None else desc + with hf_tqdm(pbar_iterable, disable=disable_tqdm, position=rank, unit="obj", desc=pbar_desc) as pbar: + if isinstance(data_struct, dict): + return { + k: _single_map_nested((function, v, batched, batch_size, types, None, True, None)) for k, v in pbar + } + else: + mapped = [_single_map_nested((function, v, batched, batch_size, types, None, True, None)) for v in pbar] + if isinstance(data_struct, list): + return mapped + elif isinstance(data_struct, tuple): + return tuple(mapped) + else: + return np.array(mapped) + + +def map_nested( + function: Callable[[Any], Any], + data_struct: Any, + dict_only: bool = False, + map_list: bool = True, + map_tuple: bool = False, + map_numpy: bool = False, + num_proc: Optional[int] = None, + parallel_min_length: int = 2, + batched: bool = False, + batch_size: Optional[int] = 1000, + types: Optional[tuple] = None, + disable_tqdm: bool = True, + desc: Optional[str] = None, +) -> Any: + """Apply a function recursively to each element of a nested data struct. + + Use multiprocessing if num_proc > 1 and the length of data_struct is greater than or equal to + `parallel_min_length`. + + + + Before version 2.5.0, multiprocessing was not used if `num_proc` was greater than or equal to ``len(iterable)``. + + Now, if `num_proc` is greater than or equal to ``len(iterable)``, `num_proc` is set to ``len(iterable)`` and + multiprocessing is used. + + + + Args: + function (`Callable`): Function to be applied to `data_struct`. + data_struct (`Any`): Data structure to apply `function` to. + dict_only (`bool`, default `False`): Whether only apply `function` recursively to `dict` values in + `data_struct`. + map_list (`bool`, default `True`): Whether also apply `function` recursively to `list` elements (besides `dict` + values). + map_tuple (`bool`, default `False`): Whether also apply `function` recursively to `tuple` elements (besides + `dict` values). + map_numpy (`bool, default `False`): Whether also apply `function` recursively to `numpy.array` elements (besides + `dict` values). + num_proc (`int`, *optional*): Number of processes. + The level in the data struct used for multiprocessing is the first level that has smaller sub-structs, + starting from the root. + parallel_min_length (`int`, default `2`): Minimum length of `data_struct` required for parallel + processing. + + batched (`bool`, defaults to `False`): + Provide batch of items to `function`. + + batch_size (`int`, *optional*, defaults to `1000`): + Number of items per batch provided to `function` if `batched=True`. + If `batch_size <= 0` or `batch_size == None`, provide the full iterable as a single batch to `function`. + + types (`tuple`, *optional*): Additional types (besides `dict` values) to apply `function` recursively to their + elements. + disable_tqdm (`bool`, default `True`): Whether to disable the tqdm progressbar. + desc (`str`, *optional*): Prefix for the tqdm progressbar. + + Returns: + `Any` + """ + if types is None: + types = [] + if not dict_only: + if map_list: + types.append(list) + if map_tuple: + types.append(tuple) + if map_numpy: + types.append(np.ndarray) + types = tuple(types) + + # Singleton + if not isinstance(data_struct, dict) and not isinstance(data_struct, types): + if batched: + data_struct = [data_struct] + mapped = function(data_struct) + if batched: + mapped = mapped[0] + return mapped + + iterable = list(data_struct.values()) if isinstance(data_struct, dict) else data_struct + + if num_proc is None: + num_proc = 1 + if any(isinstance(v, types) and len(v) > len(iterable) for v in iterable): + mapped = [ + map_nested( + function=function, + data_struct=obj, + num_proc=num_proc, + parallel_min_length=parallel_min_length, + batched=batched, + batch_size=batch_size, + types=types, + ) + for obj in iterable + ] + elif num_proc != -1 and num_proc <= 1 or len(iterable) < parallel_min_length: + if batched: + if batch_size is None or batch_size <= 0: + batch_size = max(len(iterable) // num_proc + int(len(iterable) % num_proc > 0), 1) + iterable = list(iter_batched(iterable, batch_size)) + mapped = [ + _single_map_nested((function, obj, batched, batch_size, types, None, True, None)) + for obj in hf_tqdm(iterable, disable=disable_tqdm, desc=desc) + ] + if batched: + mapped = [mapped_item for mapped_batch in mapped for mapped_item in mapped_batch] + else: + with warnings.catch_warnings(): + warnings.filterwarnings( + "ignore", + message=".* is experimental and might be subject to breaking changes in the future\\.$", + category=UserWarning, + ) + if batched: + if batch_size is None or batch_size <= 0: + batch_size = len(iterable) // num_proc + int(len(iterable) % num_proc > 0) + iterable = list(iter_batched(iterable, batch_size)) + mapped = parallel_map( + function, iterable, num_proc, batched, batch_size, types, disable_tqdm, desc, _single_map_nested + ) + if batched: + mapped = [mapped_item for mapped_batch in mapped for mapped_item in mapped_batch] + + if isinstance(data_struct, dict): + return dict(zip(data_struct.keys(), mapped)) + else: + if isinstance(data_struct, list): + return mapped + elif isinstance(data_struct, tuple): + return tuple(mapped) + else: + return np.array(mapped) + + +class NestedDataStructure: + def __init__(self, data=None): + self.data = data if data is not None else [] + + def flatten(self, data=None): + data = data if data is not None else self.data + if isinstance(data, dict): + return self.flatten(list(data.values())) + elif isinstance(data, (list, tuple)): + return [flattened for item in data for flattened in self.flatten(item)] + else: + return [data] + + +def has_sufficient_disk_space(needed_bytes, directory="."): + try: + free_bytes = disk_usage(os.path.abspath(directory)).free + except OSError: + return True + return needed_bytes < free_bytes + + +def _convert_github_url(url_path: str) -> Tuple[str, Optional[str]]: + """Convert a link to a file on a github repo in a link to the raw github object.""" + parsed = urlparse(url_path) + sub_directory = None + if parsed.scheme in ("http", "https", "s3") and parsed.netloc == "github.com": + if "blob" in url_path: + if not url_path.endswith(".py"): + raise ValueError(f"External import from github at {url_path} should point to a file ending with '.py'") + url_path = url_path.replace("blob", "raw") # Point to the raw file + else: + # Parse github url to point to zip + github_path = parsed.path[1:] + repo_info, branch = github_path.split("/tree/") if "/tree/" in github_path else (github_path, "master") + repo_owner, repo_name = repo_info.split("/") + url_path = f"https://github.com/{repo_owner}/{repo_name}/archive/{branch}.zip" + sub_directory = f"{repo_name}-{branch}" + return url_path, sub_directory + + +def lock_importable_file(importable_local_file: str) -> FileLock: + # Check the directory with a unique name in our dataset folder + # path is: ./datasets/dataset_name/hash_from_code/script.py + # we use a hash as subdirectory_name to be able to have multiple versions of a dataset/metric processing file together + importable_directory_path = str(Path(importable_local_file).resolve().parent.parent) + lock_path = importable_directory_path + ".lock" + return FileLock(lock_path) + + +def get_imports(file_path: str) -> Tuple[str, str, str, str]: + """Find whether we should import or clone additional files for a given processing script. + And list the import. + + We allow: + - library dependencies, + - local dependencies and + - external dependencies whose url is specified with a comment starting from "# From:' followed by the raw url to a file, an archive or a github repository. + external dependencies will be downloaded (and extracted if needed in the dataset folder). + We also add an `__init__.py` to each sub-folder of a downloaded folder so the user can import from them in the script. + + Note that only direct import in the dataset processing script will be handled + We don't recursively explore the additional import to download further files. + + Example:: + + import tensorflow + import .c4_utils + import .clicr.dataset-code.build_json_dataset # From: https://raw.githubusercontent.com/clips/clicr/master/dataset-code/build_json_dataset + """ + lines = [] + with open(file_path, encoding="utf-8") as f: + lines.extend(f.readlines()) + + logger.debug(f"Checking {file_path} for additional imports.") + imports: List[Tuple[str, str, str, Optional[str]]] = [] + is_in_docstring = False + for line in lines: + docstr_start_match = re.findall(r'[\s\S]*?"""[\s\S]*?', line) + + if len(docstr_start_match) == 1: + # flip True <=> False only if doctstring + # starts at line without finishing + is_in_docstring = not is_in_docstring + + if is_in_docstring: + # import statements in doctstrings should + # not be added as required dependencies + continue + + match = re.match(r"^import\s+(\.?)([^\s\.]+)[^#\r\n]*(?:#\s+From:\s+)?([^\r\n]*)", line, flags=re.MULTILINE) + if match is None: + match = re.match( + r"^from\s+(\.?)([^\s\.]+)(?:[^\s]*)\s+import\s+[^#\r\n]*(?:#\s+From:\s+)?([^\r\n]*)", + line, + flags=re.MULTILINE, + ) + if match is None: + continue + if match.group(1): + # The import starts with a '.', we will download the relevant file + if any(imp[1] == match.group(2) for imp in imports): + # We already have this import + continue + if match.group(3): + # The import has a comment with 'From:', we'll retrieve it from the given url + url_path = match.group(3) + url_path, sub_directory = _convert_github_url(url_path) + imports.append(("external", match.group(2), url_path, sub_directory)) + elif match.group(2): + # The import should be at the same place as the file + imports.append(("internal", match.group(2), match.group(2), None)) + else: + if match.group(3): + # The import has a comment with `From: git+https:...`, asks user to pip install from git. + url_path = match.group(3) + imports.append(("library", match.group(2), url_path, None)) + else: + imports.append(("library", match.group(2), match.group(2), None)) + + return imports + + +def copyfunc(func): + result = types.FunctionType(func.__code__, func.__globals__, func.__name__, func.__defaults__, func.__closure__) + result.__kwdefaults__ = func.__kwdefaults__ + return result + + +Y = TypeVar("Y") + + +def _write_generator_to_queue(queue: queue.Queue, func: Callable[..., Iterable[Y]], kwargs: dict) -> int: + for i, result in enumerate(func(**kwargs)): + queue.put(result) + return i + + +def _get_pool_pid(pool: Union[multiprocessing.pool.Pool, multiprocess.pool.Pool]) -> Set[int]: + return {f.pid for f in pool._pool} + + +def iflatmap_unordered( + pool: Union[multiprocessing.pool.Pool, multiprocess.pool.Pool], + func: Callable[..., Iterable[Y]], + *, + kwargs_iterable: Iterable[dict], +) -> Iterable[Y]: + initial_pool_pid = _get_pool_pid(pool) + pool_changed = False + manager_cls = Manager if isinstance(pool, multiprocessing.pool.Pool) else multiprocess.Manager + with manager_cls() as manager: + queue = manager.Queue() + async_results = [ + pool.apply_async(_write_generator_to_queue, (queue, func, kwargs)) for kwargs in kwargs_iterable + ] + try: + while True: + try: + yield queue.get(timeout=0.05) + except Empty: + if all(async_result.ready() for async_result in async_results) and queue.empty(): + break + if _get_pool_pid(pool) != initial_pool_pid: + pool_changed = True + # One of the subprocesses has died. We should not wait forever. + raise RuntimeError( + "One of the subprocesses has abruptly died during map operation." + "To debug the error, disable multiprocessing." + ) + finally: + if not pool_changed: + # we get the result in case there's an error to raise + [async_result.get(timeout=0.05) for async_result in async_results] + + +T = TypeVar("T") + + +def iter_batched(iterable: Iterable[T], n: int) -> Iterable[List[T]]: + if n < 1: + raise ValueError(f"Invalid batch size {n}") + batch = [] + for item in iterable: + batch.append(item) + if len(batch) == n: + yield batch + batch = [] + if batch: + yield batch diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/readme.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/readme.py new file mode 100644 index 0000000000000000000000000000000000000000..66ed087f7d67181c6840179fa634e8b8e4238f85 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/readme.py @@ -0,0 +1,277 @@ +# loading package files: https://stackoverflow.com/a/20885799 +import importlib.resources as pkg_resources +import logging +from pathlib import Path +from typing import Any, List, Tuple + +import yaml + +from . import resources +from .deprecation_utils import deprecated + + +BASE_REF_URL = "https://github.com/huggingface/datasets/tree/main/src/datasets/utils" +this_url = f"{BASE_REF_URL}/{__file__}" +logger = logging.getLogger(__name__) + + +def load_yaml_resource(resource: str) -> Tuple[Any, str]: + content = pkg_resources.read_text(resources, resource) + return yaml.safe_load(content), f"{BASE_REF_URL}/resources/{resource}" + + +readme_structure, known_readme_structure_url = load_yaml_resource("readme_structure.yaml") + +FILLER_TEXT = [ + "[Needs More Information]", + "[More Information Needed]", + "(https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)", +] + +# Dictionary representation of section/readme, error_list, warning_list +ReadmeValidatorOutput = Tuple[dict, List[str], List[str]] + + +class Section: + def __init__(self, name: str, level: str, lines: List[str] = None, suppress_parsing_errors: bool = False): + self.name = name + self.level = level + self.lines = lines + self.text = "" + self.is_empty_text = True + self.content = {} + self.parsing_error_list = [] + self.parsing_warning_list = [] + if self.lines is not None: + self.parse(suppress_parsing_errors=suppress_parsing_errors) + + def parse(self, suppress_parsing_errors: bool = False): + current_sub_level = "" + current_lines = [] + code_start = False + for line in self.lines: + if line.strip(" \n") == "": + continue + elif line.strip(" \n")[:3] == "```": + code_start = not code_start + elif line.split()[0] == self.level + "#" and not code_start: + if current_sub_level != "": + self.content[current_sub_level] = Section(current_sub_level, self.level + "#", current_lines) + current_lines = [] + else: + if current_lines != []: + self.text += "".join(current_lines).strip() + if self.text != "" and self.text not in FILLER_TEXT: + self.is_empty_text = False + current_lines = [] + + current_sub_level = " ".join(line.split()[1:]).strip(" \n") + else: + current_lines.append(line) + else: + if current_sub_level != "": + if current_sub_level in self.content: + self.parsing_error_list.append( + f"Multiple sections with the same heading `{current_sub_level}` have been found. Please keep only one of these sections." + ) + self.content[current_sub_level] = Section(current_sub_level, self.level + "#", current_lines) + else: + if current_lines != []: + self.text += "".join(current_lines).strip() + if self.text != "" and self.text not in FILLER_TEXT: + self.is_empty_text = False + + if self.level == "" and not suppress_parsing_errors: + if self.parsing_error_list != [] or self.parsing_warning_list != []: + errors = errors = "\n".join("-\t" + x for x in self.parsing_error_list + self.parsing_warning_list) + error_string = f"The following issues were found while parsing the README at `{self.name}`:\n" + errors + raise ValueError(error_string) + + def validate(self, structure: dict) -> ReadmeValidatorOutput: + """Validates a Section class object recursively using the structure provided as a dictionary. + + Args: + structute (:obj: `dict`): The dictionary representing expected structure. + + Returns: + :obj: `ReadmeValidatorOutput`: The dictionary representation of the section, and the errors. + """ + # Header text validation + error_list = [] + warning_list = [] + if structure["allow_empty"] is False: + # If content is expected + if self.is_empty_text and self.content == {}: + # If no content is found, mention it in the error_list + error_list.append(f"Expected some content in section `{self.name}` but it is empty.") + + if structure["allow_empty_text"] is False: + # If some text is expected + if self.is_empty_text: + # If no text is found, mention it in the error_list + error_list.append( + f"Expected some text in section `{self.name}` but it is empty (text in subsections are ignored)." + ) + # Subsections Validation + if structure["subsections"] is not None: + # If subsections are expected + if self.content == {}: + # If no subsections are present + values = [subsection["name"] for subsection in structure["subsections"]] + # Mention the expected values in the error_list + error_list.append( + f"Section `{self.name}` expected the following subsections: {', '.join(['`'+x+'`' for x in values])}. Found 'None'." + ) + else: + # If some subsections are present + structure_names = [subsection["name"] for subsection in structure["subsections"]] + has_missing_subsections = False + for idx, name in enumerate(structure_names): + if name not in self.content: + # If the expected subsection is not present + error_list.append(f"Section `{self.name}` is missing subsection: `{name}`.") + has_missing_subsections = True + else: + # If the subsection is present, validate subsection, return the result + # and concat the errors from subsection to section error_list + + # Skip sublevel validation if current level is `###` + if self.level == "###": + continue + else: + _, subsec_error_list, subsec_warning_list = self.content[name].validate( + structure["subsections"][idx] + ) + error_list += subsec_error_list + warning_list += subsec_warning_list + + if has_missing_subsections: # we only allow to have extra subsections if all the other ones are here + for name in self.content: + if name not in structure_names: + # If an extra subsection is present + warning_list.append( + f"`{self.name}` has an extra subsection: `{name}`. Skipping further validation checks for this subsection as expected structure is unknown." + ) + if error_list: + # If there are errors, do not return the dictionary as it is invalid + return {}, error_list, warning_list + else: + return self.to_dict(), error_list, warning_list + + def to_dict(self) -> dict: + """Returns the dictionary representation of a section.""" + return { + "name": self.name, + "text": self.text, + "is_empty_text": self.is_empty_text, + "subsections": [value.to_dict() for value in self.content.values()], + } + + +@deprecated("Use `huggingface_hub.DatasetCard` instead.") +class ReadMe(Section): # Level 0 + def __init__(self, name: str, lines: List[str], structure: dict = None, suppress_parsing_errors: bool = False): + super().__init__(name=name, level="") # Not using lines here as we need to use a child class parse + self.structure = structure + self.yaml_tags_line_count = -2 + self.tag_count = 0 + self.lines = lines + if self.lines is not None: + self.parse(suppress_parsing_errors=suppress_parsing_errors) + + def validate(self): + if self.structure is None: + content, error_list, warning_list = self._validate(readme_structure) + else: + content, error_list, warning_list = self._validate(self.structure) + if error_list != [] or warning_list != []: + errors = "\n".join(["-\t" + x for x in error_list + warning_list]) + error_string = f"The following issues were found for the README at `{self.name}`:\n" + errors + raise ValueError(error_string) + + @classmethod + def from_readme(cls, path: Path, structure: dict = None, suppress_parsing_errors: bool = False): + with open(path, encoding="utf-8") as f: + lines = f.readlines() + return cls(path, lines, structure, suppress_parsing_errors=suppress_parsing_errors) + + @classmethod + def from_string( + cls, string: str, structure: dict = None, root_name: str = "root", suppress_parsing_errors: bool = False + ): + lines = string.split("\n") + return cls(root_name, lines, structure, suppress_parsing_errors=suppress_parsing_errors) + + def parse(self, suppress_parsing_errors: bool = False): + # Skip Tags + line_count = 0 + + for line in self.lines: + self.yaml_tags_line_count += 1 + if line.strip(" \n") == "---": + self.tag_count += 1 + if self.tag_count == 2: + break + line_count += 1 + if self.tag_count == 2: + self.lines = self.lines[line_count + 1 :] # Get the last + 1 th item. + else: + self.lines = self.lines[self.tag_count :] + super().parse(suppress_parsing_errors=suppress_parsing_errors) + + def __str__(self): + """Returns the string of dictionary representation of the ReadMe.""" + return str(self.to_dict()) + + def _validate(self, readme_structure): + error_list = [] + warning_list = [] + if self.yaml_tags_line_count == 0: + warning_list.append("Empty YAML markers are present in the README.") + elif self.tag_count == 0: + warning_list.append("No YAML markers are present in the README.") + elif self.tag_count == 1: + warning_list.append("Only the start of YAML tags present in the README.") + # Check how many first level sections are present. + num_first_level_keys = len(self.content.keys()) + if num_first_level_keys > 1: + # If more than one, add to the error list, continue + error_list.append( + f"The README has several first-level headings: {', '.join(['`'+x+'`' for x in list(self.content.keys())])}. Only one heading is expected. Skipping further validation for this README." + ) + elif num_first_level_keys < 1: + # If less than one, append error. + error_list.append( + "The README has no first-level headings. One heading is expected. Skipping further validation for this README." + ) + + else: + # If one exactly + start_key = list(self.content.keys())[0] # Get the key + if start_key.startswith("Dataset Card for"): # Check correct start + # If the starting is correct, validate all the sections + _, sec_error_list, sec_warning_list = self.content[start_key].validate( + readme_structure["subsections"][0] + ) + error_list += sec_error_list + warning_list += sec_warning_list + else: + # If not found, append error + error_list.append( + "No first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README." + ) + if error_list: + # If there are errors, do not return the dictionary as it is invalid + return {}, error_list, warning_list + else: + return self.to_dict(), error_list, warning_list + + +if __name__ == "__main__": + from argparse import ArgumentParser + + ap = ArgumentParser(usage="Validate the content (excluding YAML tags) of a README.md file.") + ap.add_argument("readme_filepath") + args = ap.parse_args() + readme_filepath = Path(args.readme_filepath) + readme = ReadMe.from_readme(readme_filepath) diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/resources/__init__.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/resources/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/resources/creators.json b/llmeval-env/lib/python3.10/site-packages/datasets/utils/resources/creators.json new file mode 100644 index 0000000000000000000000000000000000000000..d9e15f0039cc27ed8abd9fdf394423a3fada2c95 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/resources/creators.json @@ -0,0 +1,17 @@ +{ + "language": [ + "found", + "crowdsourced", + "expert-generated", + "machine-generated", + "other" + ], + "annotations": [ + "found", + "crowdsourced", + "expert-generated", + "machine-generated", + "no-annotation", + "other" + ] +} diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/resources/multilingualities.json b/llmeval-env/lib/python3.10/site-packages/datasets/utils/resources/multilingualities.json new file mode 100644 index 0000000000000000000000000000000000000000..a35c79f03dfcf7c8a116b7fc8ee1b383ab5022fa --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/resources/multilingualities.json @@ -0,0 +1,6 @@ +{ + "monolingual": "contains a single language", + "multilingual": "contains multiple languages", + "translation": "contains translated or aligned text", + "other": "other type of language distribution" +} diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/resources/readme_structure.yaml b/llmeval-env/lib/python3.10/site-packages/datasets/utils/resources/readme_structure.yaml new file mode 100644 index 0000000000000000000000000000000000000000..5b781e11e8258a446874ebf96104f642d0c190cf --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/resources/readme_structure.yaml @@ -0,0 +1,116 @@ +name: "" # Filename comes here +allow_empty: false +allow_empty_text: true +subsections: + - name: "Dataset Card for X" # First-level markdown heading + allow_empty: false + allow_empty_text: true + subsections: + - name: "Table of Contents" + allow_empty: false + allow_empty_text: false + subsections: null # meaning it should not be checked. + - name: "Dataset Description" + allow_empty: false + allow_empty_text: false + subsections: + - name: "Dataset Summary" + allow_empty: false + allow_empty_text: false + subsections: null + - name: "Supported Tasks and Leaderboards" + allow_empty: true + allow_empty_text: true + subsections: null + - name: Languages + allow_empty: true + allow_empty_text: true + subsections: null + - name: "Dataset Structure" + allow_empty: false + allow_empty_text: true + subsections: + - name: "Data Instances" + allow_empty: false + allow_empty_text: true + subsections: null + - name: "Data Fields" + allow_empty: false + allow_empty_text: true + subsections: null + - name: "Data Splits" + allow_empty: false + allow_empty_text: true + subsections: null + - name: "Dataset Creation" + allow_empty: false + allow_empty_text: true + subsections: + - name: "Curation Rationale" + allow_empty: true + allow_empty_text: true + subsections: null + - name: "Source Data" + allow_empty: false + allow_empty_text: true + subsections: + - name: "Initial Data Collection and Normalization" + allow_empty: true + allow_empty_text: true + subsections: null + - name: "Who are the source language producers?" + allow_empty: true + allow_empty_text: true + subsections: null + - name: "Annotations" + allow_empty: false + allow_empty_text: true + subsections: + - name: "Annotation process" + allow_empty: true + allow_empty_text: true + subsections: null + - name: "Who are the annotators?" + allow_empty: true + allow_empty_text: true + subsections: null + - name: "Personal and Sensitive Information" + allow_empty: true + allow_empty_text: true + subsections: null + - name: "Considerations for Using the Data" + allow_empty: true + allow_empty_text: true + subsections: + - name: "Social Impact of Dataset" + allow_empty: true + allow_empty_text: true + subsections: null + - name: "Discussion of Biases" + allow_empty: true + allow_empty_text: true + subsections: null + - name: "Other Known Limitations" + allow_empty: true + allow_empty_text: true + subsections: null + - name: "Additional Information" + allow_empty: true + allow_empty_text: true + subsections: + - name: "Dataset Curators" + allow_empty: true + allow_empty_text: true + subsections: null + - name: "Licensing Information" + allow_empty: true + allow_empty_text: true + subsections: null + - name: "Citation Information" + allow_empty: false + allow_empty_text: true + subsections: null + - name: "Contributions" + allow_empty: false + allow_empty_text: false + subsections: null diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/sharding.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/sharding.py new file mode 100644 index 0000000000000000000000000000000000000000..7ee3133b80ea927a076eebc7eedc2e7b25013ffa --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/sharding.py @@ -0,0 +1,96 @@ +from typing import List + +import numpy as np + + +def _number_of_shards_in_gen_kwargs(gen_kwargs: dict) -> int: + """Return the number of possible shards according to the input gen_kwargs""" + # Having lists of different sizes makes sharding ambigious, raise an error in this case + # until we decide how to define sharding without ambiguity for users + lists_lengths = {key: len(value) for key, value in gen_kwargs.items() if isinstance(value, list)} + if len(set(lists_lengths.values())) > 1: + raise RuntimeError( + ( + "Sharding is ambiguous for this dataset: " + + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + + "\n".join(f"\t- key {key} has length {length}" for key, length in lists_lengths.items()) + + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." + ) + ) + max_length = max(lists_lengths.values(), default=0) + return max(1, max_length) + + +def _distribute_shards(num_shards: int, max_num_jobs: int) -> List[range]: + """ + Get the range of shard indices per job. + If num_shards>> _distribute_shards(2, max_num_jobs=4) + [range(0, 1), range(1, 2)] + >>> _distribute_shards(10, max_num_jobs=3) + [range(0, 4), range(4, 7), range(7, 10)] + ``` + """ + shards_indices_per_group = [] + for group_idx in range(max_num_jobs): + num_shards_to_add = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) + if num_shards_to_add == 0: + break + start = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 + shard_indices = range(start, start + num_shards_to_add) + shards_indices_per_group.append(shard_indices) + return shards_indices_per_group + + +def _split_gen_kwargs(gen_kwargs: dict, max_num_jobs: int) -> List[dict]: + """Split the gen_kwargs into `max_num_job` gen_kwargs""" + # Having lists of different sizes makes sharding ambigious, raise an error in this case + num_shards = _number_of_shards_in_gen_kwargs(gen_kwargs) + if num_shards == 1: + return [dict(gen_kwargs)] + else: + shard_indices_per_group = _distribute_shards(num_shards=num_shards, max_num_jobs=max_num_jobs) + return [ + { + key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] + if isinstance(value, list) + else value + for key, value in gen_kwargs.items() + } + for group_idx in range(len(shard_indices_per_group)) + ] + + +def _merge_gen_kwargs(gen_kwargs_list: List[dict]) -> dict: + return { + key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] + if isinstance(gen_kwargs_list[0][key], list) + else gen_kwargs_list[0][key] + for key in gen_kwargs_list[0] + } + + +def _shuffle_gen_kwargs(rng: np.random.Generator, gen_kwargs: dict) -> dict: + """Return a shuffled copy of the input gen_kwargs""" + # We must shuffle all the lists, and lists of the same size must have the same shuffling. + # This way entangled lists of (shard, shard_metadata) are still in the right order. + + # First, let's generate the shuffled indices per list size + list_sizes = {len(value) for value in gen_kwargs.values() if isinstance(value, list)} + indices_per_size = {} + for size in list_sizes: + indices_per_size[size] = list(range(size)) + rng.shuffle(indices_per_size[size]) + # Now let's copy the gen_kwargs and shuffle the lists based on their sizes + shuffled_kwargs = dict(gen_kwargs) + for key, value in shuffled_kwargs.items(): + if isinstance(value, list): + shuffled_kwargs[key] = [value[i] for i in indices_per_size[len(value)]] + return shuffled_kwargs diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/stratify.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/stratify.py new file mode 100644 index 0000000000000000000000000000000000000000..d0967aa1abb790f741af5ff920c67e615d1b01da --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/stratify.py @@ -0,0 +1,107 @@ +import numpy as np + + +def approximate_mode(class_counts, n_draws, rng): + """Computes approximate mode of multivariate hypergeometric. + This is an approximation to the mode of the multivariate + hypergeometric given by class_counts and n_draws. + It shouldn't be off by more than one. + It is the mostly likely outcome of drawing n_draws many + samples from the population given by class_counts. + Args + ---------- + class_counts : ndarray of int + Population per class. + n_draws : int + Number of draws (samples to draw) from the overall population. + rng : random state + Used to break ties. + Returns + ------- + sampled_classes : ndarray of int + Number of samples drawn from each class. + np.sum(sampled_classes) == n_draws + + """ + # this computes a bad approximation to the mode of the + # multivariate hypergeometric given by class_counts and n_draws + continuous = n_draws * class_counts / class_counts.sum() + # floored means we don't overshoot n_samples, but probably undershoot + floored = np.floor(continuous) + # we add samples according to how much "left over" probability + # they had, until we arrive at n_samples + need_to_add = int(n_draws - floored.sum()) + if need_to_add > 0: + remainder = continuous - floored + values = np.sort(np.unique(remainder))[::-1] + # add according to remainder, but break ties + # randomly to avoid biases + for value in values: + (inds,) = np.where(remainder == value) + # if we need_to_add less than what's in inds + # we draw randomly from them. + # if we need to add more, we add them all and + # go to the next value + add_now = min(len(inds), need_to_add) + inds = rng.choice(inds, size=add_now, replace=False) + floored[inds] += 1 + need_to_add -= add_now + if need_to_add == 0: + break + return floored.astype(np.int64) + + +def stratified_shuffle_split_generate_indices(y, n_train, n_test, rng, n_splits=10): + """ + + Provides train/test indices to split data in train/test sets. + It's reference is taken from StratifiedShuffleSplit implementation + of scikit-learn library. + + Args + ---------- + + n_train : int, + represents the absolute number of train samples. + + n_test : int, + represents the absolute number of test samples. + + random_state : int or RandomState instance, default=None + Controls the randomness of the training and testing indices produced. + Pass an int for reproducible output across multiple function calls. + + n_splits : int, default=10 + Number of re-shuffling & splitting iterations. + """ + classes, y_indices = np.unique(y, return_inverse=True) + n_classes = classes.shape[0] + class_counts = np.bincount(y_indices) + if np.min(class_counts) < 2: + raise ValueError("Minimum class count error") + if n_train < n_classes: + raise ValueError( + "The train_size = %d should be greater or " "equal to the number of classes = %d" % (n_train, n_classes) + ) + if n_test < n_classes: + raise ValueError( + "The test_size = %d should be greater or " "equal to the number of classes = %d" % (n_test, n_classes) + ) + class_indices = np.split(np.argsort(y_indices, kind="mergesort"), np.cumsum(class_counts)[:-1]) + for _ in range(n_splits): + n_i = approximate_mode(class_counts, n_train, rng) + class_counts_remaining = class_counts - n_i + t_i = approximate_mode(class_counts_remaining, n_test, rng) + + train = [] + test = [] + + for i in range(n_classes): + permutation = rng.permutation(class_counts[i]) + perm_indices_class_i = class_indices[i].take(permutation, mode="clip") + train.extend(perm_indices_class_i[: n_i[i]]) + test.extend(perm_indices_class_i[n_i[i] : n_i[i] + t_i[i]]) + train = rng.permutation(train) + test = rng.permutation(test) + + yield train, test diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/tf_utils.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/tf_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..b69f5c85b2c38bb47506a4b2fedb5a69e1d37c00 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/tf_utils.py @@ -0,0 +1,582 @@ +# Copyright 2022 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""TF-specific utils import.""" + +import os +import warnings +from functools import partial +from math import ceil +from uuid import uuid4 + +import numpy as np +import pyarrow as pa +from multiprocess import get_context + + +try: + from multiprocess.shared_memory import SharedMemory +except ImportError: + SharedMemory = None # Version checks should prevent this being called on older Python versions + +from .. import config + + +def minimal_tf_collate_fn(features): + if isinstance(features, dict): # case batch_size=None: nothing to collate + return features + elif config.TF_AVAILABLE: + import tensorflow as tf + else: + raise ImportError("Called a Tensorflow-specific function but Tensorflow is not installed.") + + first = features[0] + batch = {} + for k, v in first.items(): + if isinstance(v, np.ndarray): + batch[k] = np.stack([f[k] for f in features]) + elif isinstance(v, tf.Tensor): + batch[k] = tf.stack([f[k] for f in features]) + else: + batch[k] = np.array([f[k] for f in features]) + return batch + + +def minimal_tf_collate_fn_with_renaming(features): + batch = minimal_tf_collate_fn(features) + if "label" in batch: + batch["labels"] = batch["label"] + del batch["label"] + return batch + + +def is_numeric_pa_type(pa_type): + if pa.types.is_list(pa_type): + return is_numeric_pa_type(pa_type.value_type) + return pa.types.is_integer(pa_type) or pa.types.is_floating(pa_type) or pa.types.is_decimal(pa_type) + + +def is_numeric_feature(feature): + from .. import ClassLabel, Sequence, Value + from ..features.features import _ArrayXD + + if isinstance(feature, Sequence): + return is_numeric_feature(feature.feature) + elif isinstance(feature, list): + return is_numeric_feature(feature[0]) + elif isinstance(feature, _ArrayXD): + return is_numeric_pa_type(feature().storage_dtype) + elif isinstance(feature, Value): + return is_numeric_pa_type(feature()) + elif isinstance(feature, ClassLabel): + return True + else: + return False + + +def np_get_batch( + indices, dataset, cols_to_retain, collate_fn, collate_fn_args, columns_to_np_types, return_dict=False +): + if not isinstance(indices, np.ndarray): + indices = indices.numpy() + + is_batched = True + # Optimization - if we're loading a sequential batch, do it with slicing instead of a list of indices + if isinstance(indices, np.integer): + batch = dataset[indices.item()] + is_batched = False + elif np.all(np.diff(indices) == 1): + batch = dataset[indices[0] : indices[-1] + 1] + elif isinstance(indices, np.ndarray): + batch = dataset[indices] + else: + raise RuntimeError("Unexpected type for indices: {}".format(type(indices))) + + if cols_to_retain is not None: + batch = { + key: value + for key, value in batch.items() + if key in cols_to_retain or key in ("label", "label_ids", "labels") + } + + if is_batched: + actual_size = len(list(batch.values())[0]) # Get the length of one of the arrays, assume all same + # Our collators expect a list of dicts, not a dict of lists/arrays, so we invert + batch = [{key: value[i] for key, value in batch.items()} for i in range(actual_size)] + batch = collate_fn(batch, **collate_fn_args) + + if return_dict: + out_batch = {} + for col, cast_dtype in columns_to_np_types.items(): + # In case the collate_fn returns something strange + array = np.array(batch[col]) + array = array.astype(cast_dtype) + out_batch[col] = array + else: + out_batch = [] + for col, cast_dtype in columns_to_np_types.items(): + # In case the collate_fn returns something strange + array = np.array(batch[col]) + array = array.astype(cast_dtype) + out_batch.append(array) + return out_batch + + +def dataset_to_tf( + dataset, + cols_to_retain, + collate_fn, + collate_fn_args, + columns_to_np_types, + output_signature, + shuffle, + batch_size, + drop_remainder, +): + """Create a tf.data.Dataset from the underlying Dataset. This is a single-process method - the multiprocess + equivalent is multiprocess_dataset_to_tf. + + Args: + dataset (`Dataset`): Dataset to wrap with tf.data.Dataset. + cols_to_retain (`List[str]`): Dataset column(s) to load in the + tf.data.Dataset. It is acceptable to include column names that are created by the `collate_fn` and + that do not exist in the original dataset. + collate_fn(`Callable`): A function or callable object (such as a `DataCollator`) that will collate + lists of samples into a batch. + collate_fn_args (`Dict`): A `dict` of keyword arguments to be passed to the + `collate_fn`. Can be empty. + columns_to_np_types (`Dict[str, np.dtype]`): A `dict` mapping column names to numpy dtypes. + output_signature (`Dict[str, tf.TensorSpec]`): A `dict` mapping column names to + `tf.TensorSpec` objects. + shuffle(`bool`): Shuffle the dataset order when loading. Recommended True for training, False for + validation/evaluation. + batch_size (`int`, default `None`): Size of batches to load from the dataset. Defaults to `None`, which implies that + the dataset won't be batched, but the returned dataset can be batched later with `tf_dataset.batch(batch_size)`. + drop_remainder(`bool`, default `None`): Drop the last incomplete batch when loading. If not provided, + defaults to the same setting as shuffle. + + Returns: + `tf.data.Dataset` + """ + if config.TF_AVAILABLE: + import tensorflow as tf + else: + raise ImportError("Called a Tensorflow-specific function but Tensorflow is not installed.") + + # TODO Matt: When our minimum Python version is 3.8 or higher, we can delete all of this and move everything + # to the NumPy multiprocessing path. + if hasattr(tf, "random_index_shuffle"): + random_index_shuffle = tf.random_index_shuffle + elif hasattr(tf.random.experimental, "index_shuffle"): + random_index_shuffle = tf.random.experimental.index_shuffle + else: + if len(dataset) > 10_000_000: + warnings.warn( + "to_tf_dataset() can be memory-inefficient on versions of TensorFlow older than 2.9. " + "If you are iterating over a dataset with a very large number of samples, consider " + "upgrading to TF >= 2.9." + ) + random_index_shuffle = None + + getter_fn = partial( + np_get_batch, + dataset=dataset, + cols_to_retain=cols_to_retain, + collate_fn=collate_fn, + collate_fn_args=collate_fn_args, + columns_to_np_types=columns_to_np_types, + return_dict=False, + ) + + # This works because dictionaries always output in the same order + tout = [tf.dtypes.as_dtype(dtype) for dtype in columns_to_np_types.values()] + + @tf.function(input_signature=[tf.TensorSpec(None, tf.int64)]) + def fetch_function(indices): + output = tf.py_function( + getter_fn, + inp=[indices], + Tout=tout, + ) + return {key: output[i] for i, key in enumerate(columns_to_np_types.keys())} + + tf_dataset = tf.data.Dataset.range(len(dataset)) + + if shuffle and random_index_shuffle is not None: + base_seed = tf.fill((3,), value=tf.cast(-1, dtype=tf.int64)) + + def scan_random_index(state, index): + if tf.reduce_all(state == -1): + # This generates a new random seed once per epoch only, + # to ensure that we iterate over each sample exactly once per epoch + state = tf.random.uniform(shape=(3,), maxval=2**62, dtype=tf.int64) + shuffled_index = random_index_shuffle(index=index, seed=state, max_index=len(dataset) - 1) + return state, shuffled_index + + tf_dataset = tf_dataset.scan(base_seed, scan_random_index) + elif shuffle: + tf_dataset = tf_dataset.shuffle(tf_dataset.cardinality()) + + if batch_size is not None: + tf_dataset = tf_dataset.batch(batch_size, drop_remainder=drop_remainder) + + tf_dataset = tf_dataset.map(fetch_function) + + if batch_size is not None: + + def ensure_shapes(input_dict): + return {key: tf.ensure_shape(val, output_signature[key].shape) for key, val in input_dict.items()} + + else: + # Ensure shape but remove batch dimension of output_signature[key].shape + def ensure_shapes(input_dict): + return {key: tf.ensure_shape(val, output_signature[key].shape[1:]) for key, val in input_dict.items()} + + return tf_dataset.map(ensure_shapes) + + +class SharedMemoryContext: + # This is a context manager for creating shared memory that ensures cleanup happens even if a process is interrupted + # The process that creates shared memory is always the one responsible for unlinking it in the end + def __init__(self): + self.created_shms = [] + self.opened_shms = [] + + def get_shm(self, name, size, create): + shm = SharedMemory(size=int(size), name=name, create=create) + if create: + # We only unlink the ones we created in this context + self.created_shms.append(shm) + else: + # If we didn't create it, we only close it when done, we don't unlink it + self.opened_shms.append(shm) + return shm + + def get_array(self, name, shape, dtype, create): + shm = self.get_shm(name=name, size=np.prod(shape) * np.dtype(dtype).itemsize, create=create) + return np.ndarray(shape, dtype=dtype, buffer=shm.buf) + + def __enter__(self): + return self + + def __exit__(self, exc_type, exc_value, traceback): + for shm in self.created_shms: + shm.close() + shm.unlink() + for shm in self.opened_shms: + shm.close() + + +class NumpyMultiprocessingGenerator: + def __init__( + self, + dataset, + cols_to_retain, + collate_fn, + collate_fn_args, + columns_to_np_types, + output_signature, + shuffle, + batch_size, + drop_remainder, + num_workers, + ): + self.dataset = dataset + self.cols_to_retain = cols_to_retain + self.collate_fn = collate_fn + self.collate_fn_args = collate_fn_args + self.string_columns = [col for col, dtype in columns_to_np_types.items() if dtype in (np.unicode_, np.str_)] + # Strings will be converted to arrays of single unicode chars, so that we can have a constant itemsize + self.columns_to_np_types = { + col: dtype if col not in self.string_columns else np.dtype("U1") + for col, dtype in columns_to_np_types.items() + } + self.output_signature = output_signature + self.shuffle = shuffle + self.batch_size = batch_size + self.drop_remainder = drop_remainder + self.num_workers = num_workers + # Because strings are converted to characters, we need to add one extra dimension to the shape + self.columns_to_ranks = { + col: int(spec.shape.rank) if col not in self.string_columns else int(spec.shape.rank) + 1 + for col, spec in output_signature.items() + } + + def __iter__(self): + # Make sure we only spawn workers if they have work to do + num_workers = min(self.num_workers, int(ceil(len(self.dataset) / self.batch_size))) + # Do the shuffling in iter so that it's done at the start of each epoch + per_worker_batches, final_batch, final_batch_worker = self.distribute_batches( + self.dataset, self.batch_size, self.drop_remainder, num_workers, self.shuffle + ) + ctx = get_context("spawn") + names = [] + shape_arrays = [] + workers = [] + array_ready_events = [ctx.Event() for _ in range(num_workers)] + array_loaded_events = [ctx.Event() for _ in range(num_workers)] + + base_args = { + "dataset": self.dataset, + "cols_to_retain": self.cols_to_retain, + "collate_fn": self.collate_fn, + "collate_fn_args": self.collate_fn_args, + "columns_to_np_types": self.columns_to_np_types, + "columns_to_ranks": self.columns_to_ranks, + "string_columns": self.string_columns, + } + with SharedMemoryContext() as shm_ctx: + for i in range(num_workers): + worker_random_id = str(uuid4()) + worker_name = f"dw_{i}_{worker_random_id}"[:10] + names.append(worker_name) + + worker_shape_arrays = { + col: shm_ctx.get_array(f"{worker_name}_{col}_shape", shape=(rank,), dtype=np.int64, create=True) + for col, rank in self.columns_to_ranks.items() + } + shape_arrays.append(worker_shape_arrays) + + worker_indices = per_worker_batches[i] + if i == final_batch_worker and final_batch is not None: + final_batch_arg = final_batch + else: + final_batch_arg = None + worker_kwargs = { + "worker_name": worker_name, + "indices": worker_indices, + "extra_batch": final_batch_arg, + "array_ready_event": array_ready_events[i], + "array_loaded_event": array_loaded_events[i], + **base_args, + } + worker = ctx.Process(target=self.worker_loop, kwargs=worker_kwargs, daemon=True) + worker.start() + workers.append(worker) + + end_signal_received = False + while not end_signal_received: + for i in range(num_workers): + if not array_ready_events[i].wait(timeout=60): + raise TimeoutError("Data loading worker timed out!") + array_ready_events[i].clear() + array_shapes = shape_arrays[i] + if any(np.any(shape < 0) for shape in array_shapes.values()): + # Child processes send negative array shapes to indicate + # that no more data is going to be sent + end_signal_received = True + break + # Matt: Because array shapes are variable we recreate the shared memory each iteration. + # I suspect repeatedly opening lots of shared memory is the bottleneck for the parent process. + # A future optimization, at the cost of some code complexity, could be to reuse shared memory + # between iterations, but this would require knowing in advance the maximum size, or having + # a system to only create a new memory block when a new maximum size is seen. + # Another potential optimization would be to figure out which memory copies are necessary, + # or whether we can yield objects straight out of shared memory. + with SharedMemoryContext() as batch_shm_ctx: + # This memory context only lasts long enough to copy everything out of the batch + arrays = { + col: batch_shm_ctx.get_array( + f"{names[i]}_{col}", + shape=shape, + dtype=self.columns_to_np_types[col], + create=False, + ) + for col, shape in array_shapes.items() + } + # Copy everything out of shm because the memory + # will be unlinked by the child process at some point + arrays = {col: np.copy(arr) for col, arr in arrays.items()} + # Now we convert any unicode char arrays to strings + for string_col in self.string_columns: + arrays[string_col] = ( + arrays[string_col].view(f"U{arrays[string_col].shape[-1]}").squeeze(-1) + ) + yield arrays + array_loaded_events[i].set() + # Now we just do some cleanup + # Shared memory is cleaned up by the context manager, so we just make sure workers finish + for worker in workers: + worker.join() + + def __call__(self): + return self + + @staticmethod + def worker_loop( + dataset, + cols_to_retain, + collate_fn, + collate_fn_args, + columns_to_np_types, + columns_to_ranks, + string_columns, + indices, + extra_batch, + worker_name, + array_ready_event, + array_loaded_event, + ): + os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" + + if config.TF_AVAILABLE: + import tensorflow as tf + else: + raise ImportError("Called a Tensorflow-specific function but Tensorflow is not installed.") + + tf.config.set_visible_devices([], "GPU") # Make sure workers don't try to allocate GPU memory + + def send_batch_to_parent(indices): + batch = np_get_batch( + indices=indices, + dataset=dataset, + cols_to_retain=cols_to_retain, + collate_fn=collate_fn, + collate_fn_args=collate_fn_args, + columns_to_np_types=columns_to_np_types, + return_dict=True, + ) + + # Now begins the fun part where we start shovelling shared memory at the parent process + out_arrays = {} + with SharedMemoryContext() as batch_shm_ctx: + # The batch shared memory context exists only as long as it takes for the parent process + # to read everything, after which it cleans everything up again + for col, cast_dtype in columns_to_np_types.items(): + # Everything has to be np.array for this to work, even if the collate_fn is giving us tf.Tensor + array = batch[col] + if col in string_columns: + # We can't send unicode arrays over shared memory, so we convert to single chars ("U1") + # which have a fixed width of 4 bytes. The parent process will convert these back to strings. + array = array.view("U1").reshape(array.shape + (-1,)) + shape_arrays[col][:] = array.shape + out_arrays[col] = batch_shm_ctx.get_array( + f"{worker_name}_{col}", shape=array.shape, dtype=cast_dtype, create=True + ) + out_arrays[col][:] = array + + array_ready_event.set() + array_loaded_event.wait() + array_loaded_event.clear() + + with SharedMemoryContext() as shm_ctx: + shape_arrays = { + col: shm_ctx.get_array(f"{worker_name}_{col}_shape", shape=(rank,), dtype=np.int64, create=False) + for col, rank in columns_to_ranks.items() + } + + for batch in indices: + send_batch_to_parent(batch) + if extra_batch is not None: + send_batch_to_parent(extra_batch) + # Now we send a batsignal to the parent process that we're done + for col, array in shape_arrays.items(): + array[:] = -1 + array_ready_event.set() + + @staticmethod + def distribute_batches(dataset, batch_size, drop_remainder, num_workers, shuffle): + indices = np.arange(len(dataset)) + if shuffle: + np.random.shuffle(indices) + num_samples = len(indices) + # We distribute the batches so that reading from the workers in round-robin order yields the exact + # order specified in indices. This is only important when shuffle is False, but we do it regardless. + incomplete_batch_cutoff = num_samples - (num_samples % batch_size) + indices, last_incomplete_batch = np.split(indices, [incomplete_batch_cutoff]) + if drop_remainder or len(last_incomplete_batch) == 0: + last_incomplete_batch = None + + indices = indices.reshape(-1, batch_size) + num_batches = len(indices) + final_batches_cutoff = num_batches - (num_batches % num_workers) + indices, final_batches = np.split(indices, [final_batches_cutoff]) + indices = indices.reshape(-1, num_workers, batch_size) + + per_worker_indices = np.split(indices, indices.shape[1], axis=1) + per_worker_indices = [np.squeeze(worker_indices, 1) for worker_indices in per_worker_indices] + # Distribute the final batches to the first workers + for i in range(len(final_batches)): + # len(final_batches) can be zero, and is always less than num_workers + per_worker_indices[i] = np.concatenate([per_worker_indices[i], final_batches[i].reshape(1, -1)], axis=0) + # Add the last incomplete batch to the next worker, which might be the first worker + if last_incomplete_batch is not None: + incomplete_batch_worker_idx = len(final_batches) + else: + incomplete_batch_worker_idx = None + return per_worker_indices, last_incomplete_batch, incomplete_batch_worker_idx + + +def multiprocess_dataset_to_tf( + dataset, + cols_to_retain, + collate_fn, + collate_fn_args, + columns_to_np_types, + output_signature, + shuffle, + batch_size, + drop_remainder, + num_workers, +): + """Create a tf.data.Dataset from the underlying Dataset. This is a multi-process method - the single-process + equivalent is dataset_to_tf. + + Args: + dataset (`Dataset`): Dataset to wrap with tf.data.Dataset. + cols_to_retain (`List[str]`): Dataset column(s) to load in the + tf.data.Dataset. It is acceptable to include column names that are created by the `collate_fn` and + that do not exist in the original dataset. + collate_fn(`Callable`): A function or callable object (such as a `DataCollator`) that will collate + lists of samples into a batch. + collate_fn_args (`Dict`): A `dict` of keyword arguments to be passed to the + `collate_fn`. Can be empty. + columns_to_np_types (`Dict[str, np.dtype]`): A `dict` mapping column names to numpy dtypes. + output_signature (`Dict[str, tf.TensorSpec]`): A `dict` mapping column names to + `tf.TensorSpec` objects. + shuffle(`bool`): Shuffle the dataset order when loading. Recommended True for training, False for + validation/evaluation. + batch_size (`int`, default `None`): Size of batches to load from the dataset. Defaults to `None`, which implies that + the dataset won't be batched, but the returned dataset can be batched later with `tf_dataset.batch(batch_size)`. + drop_remainder(`bool`, default `None`): Drop the last incomplete batch when loading. If not provided, + defaults to the same setting as shuffle. + num_workers (`int`): Number of workers to use for loading the dataset. Should be >= 1. + + Returns: + `tf.data.Dataset` + """ + if config.TF_AVAILABLE: + import tensorflow as tf + else: + raise ImportError("Called a Tensorflow-specific function but Tensorflow is not installed.") + + data_generator = NumpyMultiprocessingGenerator( + dataset=dataset, + cols_to_retain=cols_to_retain, + collate_fn=collate_fn, + collate_fn_args=collate_fn_args, + columns_to_np_types=columns_to_np_types, + output_signature=output_signature, + shuffle=shuffle, + batch_size=batch_size, + drop_remainder=drop_remainder, + num_workers=num_workers, + ) + + tf_dataset = tf.data.Dataset.from_generator(data_generator, output_signature=output_signature) + if drop_remainder: + dataset_length = int(len(dataset) // batch_size) + else: + dataset_length = int(ceil(len(dataset) / batch_size)) + return tf_dataset.apply(tf.data.experimental.assert_cardinality(dataset_length)) diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/tqdm.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/tqdm.py new file mode 100644 index 0000000000000000000000000000000000000000..e28a8ff7ccfda7d4fd9a6195636d181f285ceb65 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/tqdm.py @@ -0,0 +1,131 @@ +"""Utility helpers to handle progress bars in `datasets`. + +Example: + 1. Use `datasets.utils.tqdm` as you would use `tqdm.tqdm` or `tqdm.auto.tqdm`. + 2. To disable progress bars, either use `disable_progress_bars()` helper or set the + environment variable `HF_DATASETS_DISABLE_PROGRESS_BARS` to 1. + 3. To re-enable progress bars, use `enable_progress_bars()`. + 4. To check whether progress bars are disabled, use `are_progress_bars_disabled()`. + +NOTE: Environment variable `HF_DATASETS_DISABLE_PROGRESS_BARS` has the priority. + +Example: + ```py + from datasets.utils import ( + are_progress_bars_disabled, + disable_progress_bars, + enable_progress_bars, + tqdm, + ) + + # Disable progress bars globally + disable_progress_bars() + + # Use as normal `tqdm` + for _ in tqdm(range(5)): + do_something() + + # Still not showing progress bars, as `disable=False` is overwritten to `True`. + for _ in tqdm(range(5), disable=False): + do_something() + + are_progress_bars_disabled() # True + + # Re-enable progress bars globally + enable_progress_bars() + + # Progress bar will be shown ! + for _ in tqdm(range(5)): + do_something() + ``` +""" + +import warnings + +from tqdm.auto import tqdm as old_tqdm + +from ..config import HF_DATASETS_DISABLE_PROGRESS_BARS + + +# `HF_DATASETS_DISABLE_PROGRESS_BARS` is `Optional[bool]` while `_hf_datasets_progress_bars_disabled` +# is a `bool`. If `HF_DATASETS_DISABLE_PROGRESS_BARS` is set to True or False, it has priority. +# If `HF_DATASETS_DISABLE_PROGRESS_BARS` is None, it means the user have not set the +# environment variable and is free to enable/disable progress bars programmatically. +# TL;DR: env variable has priority over code. +# +# By default, progress bars are enabled. +_hf_datasets_progress_bars_disabled: bool = HF_DATASETS_DISABLE_PROGRESS_BARS or False + + +def disable_progress_bars() -> None: + """ + Disable globally progress bars used in `datasets` except if `HF_DATASETS_DISABLE_PROGRESS_BAR` environment + variable has been set. + + Use [`~utils.enable_progress_bars`] to re-enable them. + """ + if HF_DATASETS_DISABLE_PROGRESS_BARS is False: + warnings.warn( + "Cannot disable progress bars: environment variable `HF_DATASETS_DISABLE_PROGRESS_BAR=0` is set and has" + " priority." + ) + return + global _hf_datasets_progress_bars_disabled + _hf_datasets_progress_bars_disabled = True + + +def enable_progress_bars() -> None: + """ + Enable globally progress bars used in `datasets` except if `HF_DATASETS_DISABLE_PROGRESS_BAR` environment + variable has been set. + + Use [`~utils.disable_progress_bars`] to disable them. + """ + if HF_DATASETS_DISABLE_PROGRESS_BARS is True: + warnings.warn( + "Cannot enable progress bars: environment variable `HF_DATASETS_DISABLE_PROGRESS_BAR=1` is set and has" + " priority." + ) + return + global _hf_datasets_progress_bars_disabled + _hf_datasets_progress_bars_disabled = False + + +def are_progress_bars_disabled() -> bool: + """Return whether progress bars are globally disabled or not. + + Progress bars used in `datasets` can be enable or disabled globally using [`~utils.enable_progress_bars`] + and [`~utils.disable_progress_bars`] or by setting `HF_DATASETS_DISABLE_PROGRESS_BAR` as environment variable. + """ + global _hf_datasets_progress_bars_disabled + return _hf_datasets_progress_bars_disabled + + +class tqdm(old_tqdm): + """ + Class to override `disable` argument in case progress bars are globally disabled. + + Taken from https://github.com/tqdm/tqdm/issues/619#issuecomment-619639324. + """ + + def __init__(self, *args, **kwargs): + if are_progress_bars_disabled(): + kwargs["disable"] = True + super().__init__(*args, **kwargs) + + def __delattr__(self, attr: str) -> None: + """Fix for https://github.com/huggingface/datasets/issues/6066""" + try: + super().__delattr__(attr) + except AttributeError: + if attr != "_lock": + raise + + +# backward compatibility +enable_progress_bar = enable_progress_bars +disable_progress_bar = disable_progress_bars + + +def is_progress_bar_enabled(): + return not are_progress_bars_disabled() diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/track.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/track.py new file mode 100644 index 0000000000000000000000000000000000000000..11a3787c7d8595cc7160994973f28db1f709b3b2 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/track.py @@ -0,0 +1,49 @@ +from collections.abc import Iterator +from typing import Iterable + + +class tracked_str(str): + origins = {} + + def set_origin(self, origin: str): + if super().__repr__() not in self.origins: + self.origins[super().__repr__()] = origin + + def get_origin(self): + return self.origins.get(super().__repr__(), str(self)) + + def __repr__(self) -> str: + if super().__repr__() not in self.origins or self.origins[super().__repr__()] == self: + return super().__repr__() + else: + return f"{str(self)} (origin={self.origins[super().__repr__()]})" + + +class tracked_list(list): + def __init__(self, *args, **kwargs) -> None: + super().__init__(*args, **kwargs) + self.last_item = None + + def __iter__(self) -> Iterator: + for x in super().__iter__(): + self.last_item = x + yield x + self.last_item = None + + def __repr__(self) -> str: + if self.last_item is None: + return super().__repr__() + else: + return f"{self.__class__.__name__}(current={self.last_item})" + + +class TrackedIterable(Iterable): + def __init__(self) -> None: + super().__init__() + self.last_item = None + + def __repr__(self) -> str: + if self.last_item is None: + super().__repr__() + else: + return f"{self.__class__.__name__}(current={self.last_item})" diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/typing.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/typing.py new file mode 100644 index 0000000000000000000000000000000000000000..7ad087fc98d2a6de2d3e493120135fc9ea49e605 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/typing.py @@ -0,0 +1,9 @@ +import os +from typing import Dict, List, Tuple, TypeVar, Union + + +T = TypeVar("T") + +ListLike = Union[List[T], Tuple[T, ...]] +NestedDataStructureLike = Union[T, List[T], Dict[str, T]] +PathLike = Union[str, bytes, os.PathLike] diff --git a/llmeval-env/lib/python3.10/site-packages/datasets/utils/version.py b/llmeval-env/lib/python3.10/site-packages/datasets/utils/version.py new file mode 100644 index 0000000000000000000000000000000000000000..75cf4c39d5f9b916ade8f8d88a0f0ca9e5769217 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/datasets/utils/version.py @@ -0,0 +1,106 @@ +# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# Lint as: python3 +"""Version utils.""" + +import dataclasses +import re +from dataclasses import dataclass +from functools import total_ordering +from typing import Optional, Union + + +_VERSION_REG = re.compile(r"^(?P\d+)" r"\.(?P\d+)" r"\.(?P\d+)$") + + +@total_ordering +@dataclass +class Version: + """Dataset version `MAJOR.MINOR.PATCH`. + + Args: + version_str (`str`): + The dataset version. + description (`str`): + A description of what is new in this version. + major (`str`): + minor (`str`): + patch (`str`): + + Example: + + ```py + >>> VERSION = datasets.Version("1.0.0") + ``` + """ + + version_str: str + description: Optional[str] = None + major: Optional[Union[str, int]] = None + minor: Optional[Union[str, int]] = None + patch: Optional[Union[str, int]] = None + + def __post_init__(self): + self.major, self.minor, self.patch = _str_to_version_tuple(self.version_str) + + def __repr__(self): + return f"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}" + + @property + def tuple(self): + return self.major, self.minor, self.patch + + def _validate_operand(self, other): + if isinstance(other, str): + return Version(other) + elif isinstance(other, Version): + return other + raise TypeError(f"{other} (type {type(other)}) cannot be compared to version.") + + def __eq__(self, other): + try: + other = self._validate_operand(other) + except (TypeError, ValueError): + return False + else: + return self.tuple == other.tuple + + def __lt__(self, other): + other = self._validate_operand(other) + return self.tuple < other.tuple + + def __hash__(self): + return hash(_version_tuple_to_str(self.tuple)) + + @classmethod + def from_dict(cls, dic): + field_names = {f.name for f in dataclasses.fields(cls)} + return cls(**{k: v for k, v in dic.items() if k in field_names}) + + def _to_yaml_string(self) -> str: + return self.version_str + + +def _str_to_version_tuple(version_str): + """Return the tuple (major, minor, patch) version extracted from the str.""" + res = _VERSION_REG.match(version_str) + if not res: + raise ValueError(f"Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.") + return tuple(int(v) for v in [res.group("major"), res.group("minor"), res.group("patch")]) + + +def _version_tuple_to_str(version_tuple): + """Return the str version from the version tuple (major, minor, patch).""" + return ".".join(str(v) for v in version_tuple) diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_ckdtree.cpython-310-x86_64-linux-gnu.so b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_ckdtree.cpython-310-x86_64-linux-gnu.so new file mode 100644 index 0000000000000000000000000000000000000000..9fd53a985e58845db8476af7881c1a4bcf89b2fa --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_ckdtree.cpython-310-x86_64-linux-gnu.so @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1031461363c3772a9a32030693341b112093ff989eab6e3d04213d6873c235d9 +size 1027824 diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_qhull.cpython-310-x86_64-linux-gnu.so b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_qhull.cpython-310-x86_64-linux-gnu.so new file mode 100644 index 0000000000000000000000000000000000000000..8c696f55cf7305aed53fd1d267ea282fc8347cf0 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/_qhull.cpython-310-x86_64-linux-gnu.so @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d2a17bea265bea483aa6953d1bf75f4f283d5ca3c93547efcdc84242cad54baa +size 1163696 diff --git a/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/degenerate_pointset.npz b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/degenerate_pointset.npz new file mode 100644 index 0000000000000000000000000000000000000000..4f22bd3a3c941a683747944a0f12c7914f4b3f07 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/scipy/spatial/tests/data/degenerate_pointset.npz @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:048abc1ddd924bf2d4d1f216015552ed9431f9e99546fbf382768eda58788175 +size 22548