applied-ai-018 commited on
Commit
228296b
·
verified ·
1 Parent(s): b5e9e5f

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/pandas/tests/api/__pycache__/__init__.cpython-310.pyc +0 -0
  2. llmeval-env/lib/python3.10/site-packages/pandas/tests/api/__pycache__/test_api.cpython-310.pyc +0 -0
  3. llmeval-env/lib/python3.10/site-packages/pandas/tests/api/__pycache__/test_types.cpython-310.pyc +0 -0
  4. llmeval-env/lib/python3.10/site-packages/pandas/tests/generic/test_duplicate_labels.py +413 -0
  5. llmeval-env/lib/python3.10/site-packages/pandas/tests/generic/test_finalize.py +767 -0
  6. llmeval-env/lib/python3.10/site-packages/pandas/tests/generic/test_series.py +159 -0
  7. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__init__.py +0 -0
  8. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__pycache__/__init__.cpython-310.pyc +0 -0
  9. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__pycache__/test_drop_duplicates.cpython-310.pyc +0 -0
  10. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__pycache__/test_nat.cpython-310.pyc +0 -0
  11. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_drop_duplicates.py +89 -0
  12. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_equals.py +181 -0
  13. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_indexing.py +45 -0
  14. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_is_monotonic.py +46 -0
  15. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_nat.py +53 -0
  16. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_sort_values.py +315 -0
  17. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_value_counts.py +103 -0
  18. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/__init__.cpython-310.pyc +0 -0
  19. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_arithmetic.cpython-310.pyc +0 -0
  20. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_constructors.cpython-310.pyc +0 -0
  21. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_date_range.cpython-310.pyc +0 -0
  22. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_datetime.cpython-310.pyc +0 -0
  23. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_freq_attr.cpython-310.pyc +0 -0
  24. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_iter.cpython-310.pyc +0 -0
  25. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_join.cpython-310.pyc +0 -0
  26. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_npfuncs.cpython-310.pyc +0 -0
  27. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_ops.cpython-310.pyc +0 -0
  28. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_partial_slicing.cpython-310.pyc +0 -0
  29. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_pickle.cpython-310.pyc +0 -0
  30. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_reindex.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_scalar_compat.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__init__.py +0 -0
  33. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/__init__.cpython-310.pyc +0 -0
  34. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_arithmetic.cpython-310.pyc +0 -0
  35. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_constructors.cpython-310.pyc +0 -0
  36. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_delete.cpython-310.pyc +0 -0
  37. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_formats.cpython-310.pyc +0 -0
  38. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_freq_attr.cpython-310.pyc +0 -0
  39. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_indexing.cpython-310.pyc +0 -0
  40. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_join.cpython-310.pyc +0 -0
  41. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_ops.cpython-310.pyc +0 -0
  42. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_pickle.cpython-310.pyc +0 -0
  43. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_scalar_compat.cpython-310.pyc +0 -0
  44. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_searchsorted.cpython-310.pyc +0 -0
  45. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_setops.cpython-310.pyc +0 -0
  46. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_timedelta.cpython-310.pyc +0 -0
  47. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_timedelta_range.cpython-310.pyc +0 -0
  48. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__init__.py +0 -0
  49. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/__init__.cpython-310.pyc +0 -0
  50. llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_astype.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/pandas/tests/api/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (189 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/api/__pycache__/test_api.cpython-310.pyc ADDED
Binary file (7.85 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/api/__pycache__/test_types.cpython-310.pyc ADDED
Binary file (1.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/generic/test_duplicate_labels.py ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tests dealing with the NDFrame.allows_duplicates."""
2
+ import operator
3
+
4
+ import numpy as np
5
+ import pytest
6
+
7
+ import pandas as pd
8
+ import pandas._testing as tm
9
+
10
+ not_implemented = pytest.mark.xfail(reason="Not implemented.")
11
+
12
+ # ----------------------------------------------------------------------------
13
+ # Preservation
14
+
15
+
16
+ class TestPreserves:
17
+ @pytest.mark.parametrize(
18
+ "cls, data",
19
+ [
20
+ (pd.Series, np.array([])),
21
+ (pd.Series, [1, 2]),
22
+ (pd.DataFrame, {}),
23
+ (pd.DataFrame, {"A": [1, 2]}),
24
+ ],
25
+ )
26
+ def test_construction_ok(self, cls, data):
27
+ result = cls(data)
28
+ assert result.flags.allows_duplicate_labels is True
29
+
30
+ result = cls(data).set_flags(allows_duplicate_labels=False)
31
+ assert result.flags.allows_duplicate_labels is False
32
+
33
+ @pytest.mark.parametrize(
34
+ "func",
35
+ [
36
+ operator.itemgetter(["a"]),
37
+ operator.methodcaller("add", 1),
38
+ operator.methodcaller("rename", str.upper),
39
+ operator.methodcaller("rename", "name"),
40
+ operator.methodcaller("abs"),
41
+ np.abs,
42
+ ],
43
+ )
44
+ def test_preserved_series(self, func):
45
+ s = pd.Series([0, 1], index=["a", "b"]).set_flags(allows_duplicate_labels=False)
46
+ assert func(s).flags.allows_duplicate_labels is False
47
+
48
+ @pytest.mark.parametrize(
49
+ "other", [pd.Series(0, index=["a", "b", "c"]), pd.Series(0, index=["a", "b"])]
50
+ )
51
+ # TODO: frame
52
+ @not_implemented
53
+ def test_align(self, other):
54
+ s = pd.Series([0, 1], index=["a", "b"]).set_flags(allows_duplicate_labels=False)
55
+ a, b = s.align(other)
56
+ assert a.flags.allows_duplicate_labels is False
57
+ assert b.flags.allows_duplicate_labels is False
58
+
59
+ def test_preserved_frame(self):
60
+ df = pd.DataFrame({"A": [1, 2], "B": [3, 4]}, index=["a", "b"]).set_flags(
61
+ allows_duplicate_labels=False
62
+ )
63
+ assert df.loc[["a"]].flags.allows_duplicate_labels is False
64
+ assert df.loc[:, ["A", "B"]].flags.allows_duplicate_labels is False
65
+
66
+ def test_to_frame(self):
67
+ ser = pd.Series(dtype=float).set_flags(allows_duplicate_labels=False)
68
+ assert ser.to_frame().flags.allows_duplicate_labels is False
69
+
70
+ @pytest.mark.parametrize("func", ["add", "sub"])
71
+ @pytest.mark.parametrize("frame", [False, True])
72
+ @pytest.mark.parametrize("other", [1, pd.Series([1, 2], name="A")])
73
+ def test_binops(self, func, other, frame):
74
+ df = pd.Series([1, 2], name="A", index=["a", "b"]).set_flags(
75
+ allows_duplicate_labels=False
76
+ )
77
+ if frame:
78
+ df = df.to_frame()
79
+ if isinstance(other, pd.Series) and frame:
80
+ other = other.to_frame()
81
+ func = operator.methodcaller(func, other)
82
+ assert df.flags.allows_duplicate_labels is False
83
+ assert func(df).flags.allows_duplicate_labels is False
84
+
85
+ def test_preserve_getitem(self):
86
+ df = pd.DataFrame({"A": [1, 2]}).set_flags(allows_duplicate_labels=False)
87
+ assert df[["A"]].flags.allows_duplicate_labels is False
88
+ assert df["A"].flags.allows_duplicate_labels is False
89
+ assert df.loc[0].flags.allows_duplicate_labels is False
90
+ assert df.loc[[0]].flags.allows_duplicate_labels is False
91
+ assert df.loc[0, ["A"]].flags.allows_duplicate_labels is False
92
+
93
+ def test_ndframe_getitem_caching_issue(
94
+ self, request, using_copy_on_write, warn_copy_on_write
95
+ ):
96
+ if not (using_copy_on_write or warn_copy_on_write):
97
+ request.applymarker(pytest.mark.xfail(reason="Unclear behavior."))
98
+ # NDFrame.__getitem__ will cache the first df['A']. May need to
99
+ # invalidate that cache? Update the cached entries?
100
+ df = pd.DataFrame({"A": [0]}).set_flags(allows_duplicate_labels=False)
101
+ assert df["A"].flags.allows_duplicate_labels is False
102
+ df.flags.allows_duplicate_labels = True
103
+ assert df["A"].flags.allows_duplicate_labels is True
104
+
105
+ @pytest.mark.parametrize(
106
+ "objs, kwargs",
107
+ [
108
+ # Series
109
+ (
110
+ [
111
+ pd.Series(1, index=["a", "b"]),
112
+ pd.Series(2, index=["c", "d"]),
113
+ ],
114
+ {},
115
+ ),
116
+ (
117
+ [
118
+ pd.Series(1, index=["a", "b"]),
119
+ pd.Series(2, index=["a", "b"]),
120
+ ],
121
+ {"ignore_index": True},
122
+ ),
123
+ (
124
+ [
125
+ pd.Series(1, index=["a", "b"]),
126
+ pd.Series(2, index=["a", "b"]),
127
+ ],
128
+ {"axis": 1},
129
+ ),
130
+ # Frame
131
+ (
132
+ [
133
+ pd.DataFrame({"A": [1, 2]}, index=["a", "b"]),
134
+ pd.DataFrame({"A": [1, 2]}, index=["c", "d"]),
135
+ ],
136
+ {},
137
+ ),
138
+ (
139
+ [
140
+ pd.DataFrame({"A": [1, 2]}, index=["a", "b"]),
141
+ pd.DataFrame({"A": [1, 2]}, index=["a", "b"]),
142
+ ],
143
+ {"ignore_index": True},
144
+ ),
145
+ (
146
+ [
147
+ pd.DataFrame({"A": [1, 2]}, index=["a", "b"]),
148
+ pd.DataFrame({"B": [1, 2]}, index=["a", "b"]),
149
+ ],
150
+ {"axis": 1},
151
+ ),
152
+ # Series / Frame
153
+ (
154
+ [
155
+ pd.DataFrame({"A": [1, 2]}, index=["a", "b"]),
156
+ pd.Series([1, 2], index=["a", "b"], name="B"),
157
+ ],
158
+ {"axis": 1},
159
+ ),
160
+ ],
161
+ )
162
+ def test_concat(self, objs, kwargs):
163
+ objs = [x.set_flags(allows_duplicate_labels=False) for x in objs]
164
+ result = pd.concat(objs, **kwargs)
165
+ assert result.flags.allows_duplicate_labels is False
166
+
167
+ @pytest.mark.parametrize(
168
+ "left, right, expected",
169
+ [
170
+ # false false false
171
+ pytest.param(
172
+ pd.DataFrame({"A": [0, 1]}, index=["a", "b"]).set_flags(
173
+ allows_duplicate_labels=False
174
+ ),
175
+ pd.DataFrame({"B": [0, 1]}, index=["a", "d"]).set_flags(
176
+ allows_duplicate_labels=False
177
+ ),
178
+ False,
179
+ marks=not_implemented,
180
+ ),
181
+ # false true false
182
+ pytest.param(
183
+ pd.DataFrame({"A": [0, 1]}, index=["a", "b"]).set_flags(
184
+ allows_duplicate_labels=False
185
+ ),
186
+ pd.DataFrame({"B": [0, 1]}, index=["a", "d"]),
187
+ False,
188
+ marks=not_implemented,
189
+ ),
190
+ # true true true
191
+ (
192
+ pd.DataFrame({"A": [0, 1]}, index=["a", "b"]),
193
+ pd.DataFrame({"B": [0, 1]}, index=["a", "d"]),
194
+ True,
195
+ ),
196
+ ],
197
+ )
198
+ def test_merge(self, left, right, expected):
199
+ result = pd.merge(left, right, left_index=True, right_index=True)
200
+ assert result.flags.allows_duplicate_labels is expected
201
+
202
+ @not_implemented
203
+ def test_groupby(self):
204
+ # XXX: This is under tested
205
+ # TODO:
206
+ # - apply
207
+ # - transform
208
+ # - Should passing a grouper that disallows duplicates propagate?
209
+ df = pd.DataFrame({"A": [1, 2, 3]}).set_flags(allows_duplicate_labels=False)
210
+ result = df.groupby([0, 0, 1]).agg("count")
211
+ assert result.flags.allows_duplicate_labels is False
212
+
213
+ @pytest.mark.parametrize("frame", [True, False])
214
+ @not_implemented
215
+ def test_window(self, frame):
216
+ df = pd.Series(
217
+ 1,
218
+ index=pd.date_range("2000", periods=12),
219
+ name="A",
220
+ allows_duplicate_labels=False,
221
+ )
222
+ if frame:
223
+ df = df.to_frame()
224
+ assert df.rolling(3).mean().flags.allows_duplicate_labels is False
225
+ assert df.ewm(3).mean().flags.allows_duplicate_labels is False
226
+ assert df.expanding(3).mean().flags.allows_duplicate_labels is False
227
+
228
+
229
+ # ----------------------------------------------------------------------------
230
+ # Raises
231
+
232
+
233
+ class TestRaises:
234
+ @pytest.mark.parametrize(
235
+ "cls, axes",
236
+ [
237
+ (pd.Series, {"index": ["a", "a"], "dtype": float}),
238
+ (pd.DataFrame, {"index": ["a", "a"]}),
239
+ (pd.DataFrame, {"index": ["a", "a"], "columns": ["b", "b"]}),
240
+ (pd.DataFrame, {"columns": ["b", "b"]}),
241
+ ],
242
+ )
243
+ def test_set_flags_with_duplicates(self, cls, axes):
244
+ result = cls(**axes)
245
+ assert result.flags.allows_duplicate_labels is True
246
+
247
+ msg = "Index has duplicates."
248
+ with pytest.raises(pd.errors.DuplicateLabelError, match=msg):
249
+ cls(**axes).set_flags(allows_duplicate_labels=False)
250
+
251
+ @pytest.mark.parametrize(
252
+ "data",
253
+ [
254
+ pd.Series(index=[0, 0], dtype=float),
255
+ pd.DataFrame(index=[0, 0]),
256
+ pd.DataFrame(columns=[0, 0]),
257
+ ],
258
+ )
259
+ def test_setting_allows_duplicate_labels_raises(self, data):
260
+ msg = "Index has duplicates."
261
+ with pytest.raises(pd.errors.DuplicateLabelError, match=msg):
262
+ data.flags.allows_duplicate_labels = False
263
+
264
+ assert data.flags.allows_duplicate_labels is True
265
+
266
+ def test_series_raises(self):
267
+ a = pd.Series(0, index=["a", "b"])
268
+ b = pd.Series([0, 1], index=["a", "b"]).set_flags(allows_duplicate_labels=False)
269
+ msg = "Index has duplicates."
270
+ with pytest.raises(pd.errors.DuplicateLabelError, match=msg):
271
+ pd.concat([a, b])
272
+
273
+ @pytest.mark.parametrize(
274
+ "getter, target",
275
+ [
276
+ (operator.itemgetter(["A", "A"]), None),
277
+ # loc
278
+ (operator.itemgetter(["a", "a"]), "loc"),
279
+ pytest.param(operator.itemgetter(("a", ["A", "A"])), "loc"),
280
+ (operator.itemgetter((["a", "a"], "A")), "loc"),
281
+ # iloc
282
+ (operator.itemgetter([0, 0]), "iloc"),
283
+ pytest.param(operator.itemgetter((0, [0, 0])), "iloc"),
284
+ pytest.param(operator.itemgetter(([0, 0], 0)), "iloc"),
285
+ ],
286
+ )
287
+ def test_getitem_raises(self, getter, target):
288
+ df = pd.DataFrame({"A": [1, 2], "B": [3, 4]}, index=["a", "b"]).set_flags(
289
+ allows_duplicate_labels=False
290
+ )
291
+ if target:
292
+ # df, df.loc, or df.iloc
293
+ target = getattr(df, target)
294
+ else:
295
+ target = df
296
+
297
+ msg = "Index has duplicates."
298
+ with pytest.raises(pd.errors.DuplicateLabelError, match=msg):
299
+ getter(target)
300
+
301
+ @pytest.mark.parametrize(
302
+ "objs, kwargs",
303
+ [
304
+ (
305
+ [
306
+ pd.Series(1, index=[0, 1], name="a"),
307
+ pd.Series(2, index=[0, 1], name="a"),
308
+ ],
309
+ {"axis": 1},
310
+ )
311
+ ],
312
+ )
313
+ def test_concat_raises(self, objs, kwargs):
314
+ objs = [x.set_flags(allows_duplicate_labels=False) for x in objs]
315
+ msg = "Index has duplicates."
316
+ with pytest.raises(pd.errors.DuplicateLabelError, match=msg):
317
+ pd.concat(objs, **kwargs)
318
+
319
+ @not_implemented
320
+ def test_merge_raises(self):
321
+ a = pd.DataFrame({"A": [0, 1, 2]}, index=["a", "b", "c"]).set_flags(
322
+ allows_duplicate_labels=False
323
+ )
324
+ b = pd.DataFrame({"B": [0, 1, 2]}, index=["a", "b", "b"])
325
+ msg = "Index has duplicates."
326
+ with pytest.raises(pd.errors.DuplicateLabelError, match=msg):
327
+ pd.merge(a, b, left_index=True, right_index=True)
328
+
329
+
330
+ @pytest.mark.parametrize(
331
+ "idx",
332
+ [
333
+ pd.Index([1, 1]),
334
+ pd.Index(["a", "a"]),
335
+ pd.Index([1.1, 1.1]),
336
+ pd.PeriodIndex([pd.Period("2000", "D")] * 2),
337
+ pd.DatetimeIndex([pd.Timestamp("2000")] * 2),
338
+ pd.TimedeltaIndex([pd.Timedelta("1D")] * 2),
339
+ pd.CategoricalIndex(["a", "a"]),
340
+ pd.IntervalIndex([pd.Interval(0, 1)] * 2),
341
+ pd.MultiIndex.from_tuples([("a", 1), ("a", 1)]),
342
+ ],
343
+ ids=lambda x: type(x).__name__,
344
+ )
345
+ def test_raises_basic(idx):
346
+ msg = "Index has duplicates."
347
+ with pytest.raises(pd.errors.DuplicateLabelError, match=msg):
348
+ pd.Series(1, index=idx).set_flags(allows_duplicate_labels=False)
349
+
350
+ with pytest.raises(pd.errors.DuplicateLabelError, match=msg):
351
+ pd.DataFrame({"A": [1, 1]}, index=idx).set_flags(allows_duplicate_labels=False)
352
+
353
+ with pytest.raises(pd.errors.DuplicateLabelError, match=msg):
354
+ pd.DataFrame([[1, 2]], columns=idx).set_flags(allows_duplicate_labels=False)
355
+
356
+
357
+ def test_format_duplicate_labels_message():
358
+ idx = pd.Index(["a", "b", "a", "b", "c"])
359
+ result = idx._format_duplicate_message()
360
+ expected = pd.DataFrame(
361
+ {"positions": [[0, 2], [1, 3]]}, index=pd.Index(["a", "b"], name="label")
362
+ )
363
+ tm.assert_frame_equal(result, expected)
364
+
365
+
366
+ def test_format_duplicate_labels_message_multi():
367
+ idx = pd.MultiIndex.from_product([["A"], ["a", "b", "a", "b", "c"]])
368
+ result = idx._format_duplicate_message()
369
+ expected = pd.DataFrame(
370
+ {"positions": [[0, 2], [1, 3]]},
371
+ index=pd.MultiIndex.from_product([["A"], ["a", "b"]]),
372
+ )
373
+ tm.assert_frame_equal(result, expected)
374
+
375
+
376
+ def test_dataframe_insert_raises():
377
+ df = pd.DataFrame({"A": [1, 2]}).set_flags(allows_duplicate_labels=False)
378
+ msg = "Cannot specify"
379
+ with pytest.raises(ValueError, match=msg):
380
+ df.insert(0, "A", [3, 4], allow_duplicates=True)
381
+
382
+
383
+ @pytest.mark.parametrize(
384
+ "method, frame_only",
385
+ [
386
+ (operator.methodcaller("set_index", "A", inplace=True), True),
387
+ (operator.methodcaller("reset_index", inplace=True), True),
388
+ (operator.methodcaller("rename", lambda x: x, inplace=True), False),
389
+ ],
390
+ )
391
+ def test_inplace_raises(method, frame_only):
392
+ df = pd.DataFrame({"A": [0, 0], "B": [1, 2]}).set_flags(
393
+ allows_duplicate_labels=False
394
+ )
395
+ s = df["A"]
396
+ s.flags.allows_duplicate_labels = False
397
+ msg = "Cannot specify"
398
+
399
+ with pytest.raises(ValueError, match=msg):
400
+ method(df)
401
+ if not frame_only:
402
+ with pytest.raises(ValueError, match=msg):
403
+ method(s)
404
+
405
+
406
+ def test_pickle():
407
+ a = pd.Series([1, 2]).set_flags(allows_duplicate_labels=False)
408
+ b = tm.round_trip_pickle(a)
409
+ tm.assert_series_equal(a, b)
410
+
411
+ a = pd.DataFrame({"A": []}).set_flags(allows_duplicate_labels=False)
412
+ b = tm.round_trip_pickle(a)
413
+ tm.assert_frame_equal(a, b)
llmeval-env/lib/python3.10/site-packages/pandas/tests/generic/test_finalize.py ADDED
@@ -0,0 +1,767 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ An exhaustive list of pandas methods exercising NDFrame.__finalize__.
3
+ """
4
+ import operator
5
+ import re
6
+
7
+ import numpy as np
8
+ import pytest
9
+
10
+ import pandas as pd
11
+ import pandas._testing as tm
12
+
13
+ # TODO:
14
+ # * Binary methods (mul, div, etc.)
15
+ # * Binary outputs (align, etc.)
16
+ # * top-level methods (concat, merge, get_dummies, etc.)
17
+ # * window
18
+ # * cumulative reductions
19
+
20
+ not_implemented_mark = pytest.mark.xfail(reason="not implemented")
21
+
22
+ mi = pd.MultiIndex.from_product([["a", "b"], [0, 1]], names=["A", "B"])
23
+
24
+ frame_data = ({"A": [1]},)
25
+ frame_mi_data = ({"A": [1, 2, 3, 4]}, mi)
26
+
27
+
28
+ # Tuple of
29
+ # - Callable: Constructor (Series, DataFrame)
30
+ # - Tuple: Constructor args
31
+ # - Callable: pass the constructed value with attrs set to this.
32
+
33
+ _all_methods = [
34
+ (pd.Series, ([0],), operator.methodcaller("take", [])),
35
+ (pd.Series, ([0],), operator.methodcaller("__getitem__", [True])),
36
+ (pd.Series, ([0],), operator.methodcaller("repeat", 2)),
37
+ (pd.Series, ([0],), operator.methodcaller("reset_index")),
38
+ (pd.Series, ([0],), operator.methodcaller("reset_index", drop=True)),
39
+ (pd.Series, ([0],), operator.methodcaller("to_frame")),
40
+ (pd.Series, ([0, 0],), operator.methodcaller("drop_duplicates")),
41
+ (pd.Series, ([0, 0],), operator.methodcaller("duplicated")),
42
+ (pd.Series, ([0, 0],), operator.methodcaller("round")),
43
+ (pd.Series, ([0, 0],), operator.methodcaller("rename", lambda x: x + 1)),
44
+ (pd.Series, ([0, 0],), operator.methodcaller("rename", "name")),
45
+ (pd.Series, ([0, 0],), operator.methodcaller("set_axis", ["a", "b"])),
46
+ (pd.Series, ([0, 0],), operator.methodcaller("reindex", [1, 0])),
47
+ (pd.Series, ([0, 0],), operator.methodcaller("drop", [0])),
48
+ (pd.Series, (pd.array([0, pd.NA]),), operator.methodcaller("fillna", 0)),
49
+ (pd.Series, ([0, 0],), operator.methodcaller("replace", {0: 1})),
50
+ (pd.Series, ([0, 0],), operator.methodcaller("shift")),
51
+ (pd.Series, ([0, 0],), operator.methodcaller("isin", [0, 1])),
52
+ (pd.Series, ([0, 0],), operator.methodcaller("between", 0, 2)),
53
+ (pd.Series, ([0, 0],), operator.methodcaller("isna")),
54
+ (pd.Series, ([0, 0],), operator.methodcaller("isnull")),
55
+ (pd.Series, ([0, 0],), operator.methodcaller("notna")),
56
+ (pd.Series, ([0, 0],), operator.methodcaller("notnull")),
57
+ (pd.Series, ([1],), operator.methodcaller("add", pd.Series([1]))),
58
+ # TODO: mul, div, etc.
59
+ (
60
+ pd.Series,
61
+ ([0], pd.period_range("2000", periods=1)),
62
+ operator.methodcaller("to_timestamp"),
63
+ ),
64
+ (
65
+ pd.Series,
66
+ ([0], pd.date_range("2000", periods=1)),
67
+ operator.methodcaller("to_period"),
68
+ ),
69
+ pytest.param(
70
+ (
71
+ pd.DataFrame,
72
+ frame_data,
73
+ operator.methodcaller("dot", pd.DataFrame(index=["A"])),
74
+ ),
75
+ marks=pytest.mark.xfail(reason="Implement binary finalize"),
76
+ ),
77
+ (pd.DataFrame, frame_data, operator.methodcaller("transpose")),
78
+ (pd.DataFrame, frame_data, operator.methodcaller("__getitem__", "A")),
79
+ (pd.DataFrame, frame_data, operator.methodcaller("__getitem__", ["A"])),
80
+ (pd.DataFrame, frame_data, operator.methodcaller("__getitem__", np.array([True]))),
81
+ (pd.DataFrame, ({("A", "a"): [1]},), operator.methodcaller("__getitem__", ["A"])),
82
+ (pd.DataFrame, frame_data, operator.methodcaller("query", "A == 1")),
83
+ (pd.DataFrame, frame_data, operator.methodcaller("eval", "A + 1", engine="python")),
84
+ (pd.DataFrame, frame_data, operator.methodcaller("select_dtypes", include="int")),
85
+ (pd.DataFrame, frame_data, operator.methodcaller("assign", b=1)),
86
+ (pd.DataFrame, frame_data, operator.methodcaller("set_axis", ["A"])),
87
+ (pd.DataFrame, frame_data, operator.methodcaller("reindex", [0, 1])),
88
+ (pd.DataFrame, frame_data, operator.methodcaller("drop", columns=["A"])),
89
+ (pd.DataFrame, frame_data, operator.methodcaller("drop", index=[0])),
90
+ (pd.DataFrame, frame_data, operator.methodcaller("rename", columns={"A": "a"})),
91
+ (pd.DataFrame, frame_data, operator.methodcaller("rename", index=lambda x: x)),
92
+ (pd.DataFrame, frame_data, operator.methodcaller("fillna", "A")),
93
+ (pd.DataFrame, frame_data, operator.methodcaller("fillna", method="ffill")),
94
+ (pd.DataFrame, frame_data, operator.methodcaller("set_index", "A")),
95
+ (pd.DataFrame, frame_data, operator.methodcaller("reset_index")),
96
+ (pd.DataFrame, frame_data, operator.methodcaller("isna")),
97
+ (pd.DataFrame, frame_data, operator.methodcaller("isnull")),
98
+ (pd.DataFrame, frame_data, operator.methodcaller("notna")),
99
+ (pd.DataFrame, frame_data, operator.methodcaller("notnull")),
100
+ (pd.DataFrame, frame_data, operator.methodcaller("dropna")),
101
+ (pd.DataFrame, frame_data, operator.methodcaller("drop_duplicates")),
102
+ (pd.DataFrame, frame_data, operator.methodcaller("duplicated")),
103
+ (pd.DataFrame, frame_data, operator.methodcaller("sort_values", by="A")),
104
+ (pd.DataFrame, frame_data, operator.methodcaller("sort_index")),
105
+ (pd.DataFrame, frame_data, operator.methodcaller("nlargest", 1, "A")),
106
+ (pd.DataFrame, frame_data, operator.methodcaller("nsmallest", 1, "A")),
107
+ (pd.DataFrame, frame_mi_data, operator.methodcaller("swaplevel")),
108
+ (
109
+ pd.DataFrame,
110
+ frame_data,
111
+ operator.methodcaller("add", pd.DataFrame(*frame_data)),
112
+ ),
113
+ # TODO: div, mul, etc.
114
+ (
115
+ pd.DataFrame,
116
+ frame_data,
117
+ operator.methodcaller("combine", pd.DataFrame(*frame_data), operator.add),
118
+ ),
119
+ (
120
+ pd.DataFrame,
121
+ frame_data,
122
+ operator.methodcaller("combine_first", pd.DataFrame(*frame_data)),
123
+ ),
124
+ pytest.param(
125
+ (
126
+ pd.DataFrame,
127
+ frame_data,
128
+ operator.methodcaller("update", pd.DataFrame(*frame_data)),
129
+ ),
130
+ marks=not_implemented_mark,
131
+ ),
132
+ (pd.DataFrame, frame_data, operator.methodcaller("pivot", columns="A")),
133
+ (
134
+ pd.DataFrame,
135
+ ({"A": [1], "B": [1]},),
136
+ operator.methodcaller("pivot_table", columns="A"),
137
+ ),
138
+ (
139
+ pd.DataFrame,
140
+ ({"A": [1], "B": [1]},),
141
+ operator.methodcaller("pivot_table", columns="A", aggfunc=["mean", "sum"]),
142
+ ),
143
+ (pd.DataFrame, frame_data, operator.methodcaller("stack")),
144
+ (pd.DataFrame, frame_data, operator.methodcaller("explode", "A")),
145
+ (pd.DataFrame, frame_mi_data, operator.methodcaller("unstack")),
146
+ (
147
+ pd.DataFrame,
148
+ ({"A": ["a", "b", "c"], "B": [1, 3, 5], "C": [2, 4, 6]},),
149
+ operator.methodcaller("melt", id_vars=["A"], value_vars=["B"]),
150
+ ),
151
+ (pd.DataFrame, frame_data, operator.methodcaller("map", lambda x: x)),
152
+ pytest.param(
153
+ (
154
+ pd.DataFrame,
155
+ frame_data,
156
+ operator.methodcaller("merge", pd.DataFrame({"A": [1]})),
157
+ ),
158
+ marks=not_implemented_mark,
159
+ ),
160
+ (pd.DataFrame, frame_data, operator.methodcaller("round", 2)),
161
+ (pd.DataFrame, frame_data, operator.methodcaller("corr")),
162
+ pytest.param(
163
+ (pd.DataFrame, frame_data, operator.methodcaller("cov")),
164
+ marks=[
165
+ pytest.mark.filterwarnings("ignore::RuntimeWarning"),
166
+ ],
167
+ ),
168
+ (
169
+ pd.DataFrame,
170
+ frame_data,
171
+ operator.methodcaller("corrwith", pd.DataFrame(*frame_data)),
172
+ ),
173
+ (pd.DataFrame, frame_data, operator.methodcaller("count")),
174
+ (pd.DataFrame, frame_data, operator.methodcaller("nunique")),
175
+ (pd.DataFrame, frame_data, operator.methodcaller("idxmin")),
176
+ (pd.DataFrame, frame_data, operator.methodcaller("idxmax")),
177
+ (pd.DataFrame, frame_data, operator.methodcaller("mode")),
178
+ (pd.Series, [0], operator.methodcaller("mode")),
179
+ (pd.DataFrame, frame_data, operator.methodcaller("median")),
180
+ (
181
+ pd.DataFrame,
182
+ frame_data,
183
+ operator.methodcaller("quantile", numeric_only=True),
184
+ ),
185
+ (
186
+ pd.DataFrame,
187
+ frame_data,
188
+ operator.methodcaller("quantile", q=[0.25, 0.75], numeric_only=True),
189
+ ),
190
+ (
191
+ pd.DataFrame,
192
+ ({"A": [pd.Timedelta(days=1), pd.Timedelta(days=2)]},),
193
+ operator.methodcaller("quantile", numeric_only=False),
194
+ ),
195
+ (
196
+ pd.DataFrame,
197
+ ({"A": [np.datetime64("2022-01-01"), np.datetime64("2022-01-02")]},),
198
+ operator.methodcaller("quantile", numeric_only=True),
199
+ ),
200
+ (
201
+ pd.DataFrame,
202
+ ({"A": [1]}, [pd.Period("2000", "D")]),
203
+ operator.methodcaller("to_timestamp"),
204
+ ),
205
+ (
206
+ pd.DataFrame,
207
+ ({"A": [1]}, [pd.Timestamp("2000")]),
208
+ operator.methodcaller("to_period", freq="D"),
209
+ ),
210
+ (pd.DataFrame, frame_mi_data, operator.methodcaller("isin", [1])),
211
+ (pd.DataFrame, frame_mi_data, operator.methodcaller("isin", pd.Series([1]))),
212
+ (
213
+ pd.DataFrame,
214
+ frame_mi_data,
215
+ operator.methodcaller("isin", pd.DataFrame({"A": [1]})),
216
+ ),
217
+ (pd.DataFrame, frame_mi_data, operator.methodcaller("droplevel", "A")),
218
+ (pd.DataFrame, frame_data, operator.methodcaller("pop", "A")),
219
+ # Squeeze on columns, otherwise we'll end up with a scalar
220
+ (pd.DataFrame, frame_data, operator.methodcaller("squeeze", axis="columns")),
221
+ (pd.Series, ([1, 2],), operator.methodcaller("squeeze")),
222
+ (pd.Series, ([1, 2],), operator.methodcaller("rename_axis", index="a")),
223
+ (pd.DataFrame, frame_data, operator.methodcaller("rename_axis", columns="a")),
224
+ # Unary ops
225
+ (pd.DataFrame, frame_data, operator.neg),
226
+ (pd.Series, [1], operator.neg),
227
+ (pd.DataFrame, frame_data, operator.pos),
228
+ (pd.Series, [1], operator.pos),
229
+ (pd.DataFrame, frame_data, operator.inv),
230
+ (pd.Series, [1], operator.inv),
231
+ (pd.DataFrame, frame_data, abs),
232
+ (pd.Series, [1], abs),
233
+ (pd.DataFrame, frame_data, round),
234
+ (pd.Series, [1], round),
235
+ (pd.DataFrame, frame_data, operator.methodcaller("take", [0, 0])),
236
+ (pd.DataFrame, frame_mi_data, operator.methodcaller("xs", "a")),
237
+ (pd.Series, (1, mi), operator.methodcaller("xs", "a")),
238
+ (pd.DataFrame, frame_data, operator.methodcaller("get", "A")),
239
+ (
240
+ pd.DataFrame,
241
+ frame_data,
242
+ operator.methodcaller("reindex_like", pd.DataFrame({"A": [1, 2, 3]})),
243
+ ),
244
+ (
245
+ pd.Series,
246
+ frame_data,
247
+ operator.methodcaller("reindex_like", pd.Series([0, 1, 2])),
248
+ ),
249
+ (pd.DataFrame, frame_data, operator.methodcaller("add_prefix", "_")),
250
+ (pd.DataFrame, frame_data, operator.methodcaller("add_suffix", "_")),
251
+ (pd.Series, (1, ["a", "b"]), operator.methodcaller("add_prefix", "_")),
252
+ (pd.Series, (1, ["a", "b"]), operator.methodcaller("add_suffix", "_")),
253
+ (pd.Series, ([3, 2],), operator.methodcaller("sort_values")),
254
+ (pd.Series, ([1] * 10,), operator.methodcaller("head")),
255
+ (pd.DataFrame, ({"A": [1] * 10},), operator.methodcaller("head")),
256
+ (pd.Series, ([1] * 10,), operator.methodcaller("tail")),
257
+ (pd.DataFrame, ({"A": [1] * 10},), operator.methodcaller("tail")),
258
+ (pd.Series, ([1, 2],), operator.methodcaller("sample", n=2, replace=True)),
259
+ (pd.DataFrame, (frame_data,), operator.methodcaller("sample", n=2, replace=True)),
260
+ (pd.Series, ([1, 2],), operator.methodcaller("astype", float)),
261
+ (pd.DataFrame, frame_data, operator.methodcaller("astype", float)),
262
+ (pd.Series, ([1, 2],), operator.methodcaller("copy")),
263
+ (pd.DataFrame, frame_data, operator.methodcaller("copy")),
264
+ (pd.Series, ([1, 2], None, object), operator.methodcaller("infer_objects")),
265
+ (
266
+ pd.DataFrame,
267
+ ({"A": np.array([1, 2], dtype=object)},),
268
+ operator.methodcaller("infer_objects"),
269
+ ),
270
+ (pd.Series, ([1, 2],), operator.methodcaller("convert_dtypes")),
271
+ (pd.DataFrame, frame_data, operator.methodcaller("convert_dtypes")),
272
+ (pd.Series, ([1, None, 3],), operator.methodcaller("interpolate")),
273
+ (pd.DataFrame, ({"A": [1, None, 3]},), operator.methodcaller("interpolate")),
274
+ (pd.Series, ([1, 2],), operator.methodcaller("clip", lower=1)),
275
+ (pd.DataFrame, frame_data, operator.methodcaller("clip", lower=1)),
276
+ (
277
+ pd.Series,
278
+ (1, pd.date_range("2000", periods=4)),
279
+ operator.methodcaller("asfreq", "h"),
280
+ ),
281
+ (
282
+ pd.DataFrame,
283
+ ({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)),
284
+ operator.methodcaller("asfreq", "h"),
285
+ ),
286
+ (
287
+ pd.Series,
288
+ (1, pd.date_range("2000", periods=4)),
289
+ operator.methodcaller("at_time", "12:00"),
290
+ ),
291
+ (
292
+ pd.DataFrame,
293
+ ({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)),
294
+ operator.methodcaller("at_time", "12:00"),
295
+ ),
296
+ (
297
+ pd.Series,
298
+ (1, pd.date_range("2000", periods=4)),
299
+ operator.methodcaller("between_time", "12:00", "13:00"),
300
+ ),
301
+ (
302
+ pd.DataFrame,
303
+ ({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)),
304
+ operator.methodcaller("between_time", "12:00", "13:00"),
305
+ ),
306
+ (
307
+ pd.Series,
308
+ (1, pd.date_range("2000", periods=4)),
309
+ operator.methodcaller("last", "3D"),
310
+ ),
311
+ (
312
+ pd.DataFrame,
313
+ ({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)),
314
+ operator.methodcaller("last", "3D"),
315
+ ),
316
+ (pd.Series, ([1, 2],), operator.methodcaller("rank")),
317
+ (pd.DataFrame, frame_data, operator.methodcaller("rank")),
318
+ (pd.Series, ([1, 2],), operator.methodcaller("where", np.array([True, False]))),
319
+ (pd.DataFrame, frame_data, operator.methodcaller("where", np.array([[True]]))),
320
+ (pd.Series, ([1, 2],), operator.methodcaller("mask", np.array([True, False]))),
321
+ (pd.DataFrame, frame_data, operator.methodcaller("mask", np.array([[True]]))),
322
+ (pd.Series, ([1, 2],), operator.methodcaller("truncate", before=0)),
323
+ (pd.DataFrame, frame_data, operator.methodcaller("truncate", before=0)),
324
+ (
325
+ pd.Series,
326
+ (1, pd.date_range("2000", periods=4, tz="UTC")),
327
+ operator.methodcaller("tz_convert", "CET"),
328
+ ),
329
+ (
330
+ pd.DataFrame,
331
+ ({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4, tz="UTC")),
332
+ operator.methodcaller("tz_convert", "CET"),
333
+ ),
334
+ (
335
+ pd.Series,
336
+ (1, pd.date_range("2000", periods=4)),
337
+ operator.methodcaller("tz_localize", "CET"),
338
+ ),
339
+ (
340
+ pd.DataFrame,
341
+ ({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)),
342
+ operator.methodcaller("tz_localize", "CET"),
343
+ ),
344
+ (pd.Series, ([1, 2],), operator.methodcaller("describe")),
345
+ (pd.DataFrame, frame_data, operator.methodcaller("describe")),
346
+ (pd.Series, ([1, 2],), operator.methodcaller("pct_change")),
347
+ (pd.DataFrame, frame_data, operator.methodcaller("pct_change")),
348
+ (pd.Series, ([1],), operator.methodcaller("transform", lambda x: x - x.min())),
349
+ (
350
+ pd.DataFrame,
351
+ frame_mi_data,
352
+ operator.methodcaller("transform", lambda x: x - x.min()),
353
+ ),
354
+ (pd.Series, ([1],), operator.methodcaller("apply", lambda x: x)),
355
+ (pd.DataFrame, frame_mi_data, operator.methodcaller("apply", lambda x: x)),
356
+ # Cumulative reductions
357
+ (pd.Series, ([1],), operator.methodcaller("cumsum")),
358
+ (pd.DataFrame, frame_data, operator.methodcaller("cumsum")),
359
+ (pd.Series, ([1],), operator.methodcaller("cummin")),
360
+ (pd.DataFrame, frame_data, operator.methodcaller("cummin")),
361
+ (pd.Series, ([1],), operator.methodcaller("cummax")),
362
+ (pd.DataFrame, frame_data, operator.methodcaller("cummax")),
363
+ (pd.Series, ([1],), operator.methodcaller("cumprod")),
364
+ (pd.DataFrame, frame_data, operator.methodcaller("cumprod")),
365
+ # Reductions
366
+ (pd.DataFrame, frame_data, operator.methodcaller("any")),
367
+ (pd.DataFrame, frame_data, operator.methodcaller("all")),
368
+ (pd.DataFrame, frame_data, operator.methodcaller("min")),
369
+ (pd.DataFrame, frame_data, operator.methodcaller("max")),
370
+ (pd.DataFrame, frame_data, operator.methodcaller("sum")),
371
+ (pd.DataFrame, frame_data, operator.methodcaller("std")),
372
+ (pd.DataFrame, frame_data, operator.methodcaller("mean")),
373
+ (pd.DataFrame, frame_data, operator.methodcaller("prod")),
374
+ (pd.DataFrame, frame_data, operator.methodcaller("sem")),
375
+ (pd.DataFrame, frame_data, operator.methodcaller("skew")),
376
+ (pd.DataFrame, frame_data, operator.methodcaller("kurt")),
377
+ ]
378
+
379
+
380
+ def idfn(x):
381
+ xpr = re.compile(r"'(.*)?'")
382
+ m = xpr.search(str(x))
383
+ if m:
384
+ return m.group(1)
385
+ else:
386
+ return str(x)
387
+
388
+
389
+ @pytest.fixture(params=_all_methods, ids=lambda x: idfn(x[-1]))
390
+ def ndframe_method(request):
391
+ """
392
+ An NDFrame method returning an NDFrame.
393
+ """
394
+ return request.param
395
+
396
+
397
+ @pytest.mark.filterwarnings(
398
+ "ignore:DataFrame.fillna with 'method' is deprecated:FutureWarning",
399
+ "ignore:last is deprecated:FutureWarning",
400
+ )
401
+ def test_finalize_called(ndframe_method):
402
+ cls, init_args, method = ndframe_method
403
+ ndframe = cls(*init_args)
404
+
405
+ ndframe.attrs = {"a": 1}
406
+ result = method(ndframe)
407
+
408
+ assert result.attrs == {"a": 1}
409
+
410
+
411
+ @pytest.mark.parametrize(
412
+ "data",
413
+ [
414
+ pd.Series(1, pd.date_range("2000", periods=4)),
415
+ pd.DataFrame({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)),
416
+ ],
417
+ )
418
+ def test_finalize_first(data):
419
+ deprecated_msg = "first is deprecated"
420
+
421
+ data.attrs = {"a": 1}
422
+ with tm.assert_produces_warning(FutureWarning, match=deprecated_msg):
423
+ result = data.first("3D")
424
+ assert result.attrs == {"a": 1}
425
+
426
+
427
+ @pytest.mark.parametrize(
428
+ "data",
429
+ [
430
+ pd.Series(1, pd.date_range("2000", periods=4)),
431
+ pd.DataFrame({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)),
432
+ ],
433
+ )
434
+ def test_finalize_last(data):
435
+ # GH 53710
436
+ deprecated_msg = "last is deprecated"
437
+
438
+ data.attrs = {"a": 1}
439
+ with tm.assert_produces_warning(FutureWarning, match=deprecated_msg):
440
+ result = data.last("3D")
441
+ assert result.attrs == {"a": 1}
442
+
443
+
444
+ @not_implemented_mark
445
+ def test_finalize_called_eval_numexpr():
446
+ pytest.importorskip("numexpr")
447
+ df = pd.DataFrame({"A": [1, 2]})
448
+ df.attrs["A"] = 1
449
+ result = df.eval("A + 1", engine="numexpr")
450
+ assert result.attrs == {"A": 1}
451
+
452
+
453
+ # ----------------------------------------------------------------------------
454
+ # Binary operations
455
+
456
+
457
+ @pytest.mark.parametrize("annotate", ["left", "right", "both"])
458
+ @pytest.mark.parametrize(
459
+ "args",
460
+ [
461
+ (1, pd.Series([1])),
462
+ (1, pd.DataFrame({"A": [1]})),
463
+ (pd.Series([1]), 1),
464
+ (pd.DataFrame({"A": [1]}), 1),
465
+ (pd.Series([1]), pd.Series([1])),
466
+ (pd.DataFrame({"A": [1]}), pd.DataFrame({"A": [1]})),
467
+ (pd.Series([1]), pd.DataFrame({"A": [1]})),
468
+ (pd.DataFrame({"A": [1]}), pd.Series([1])),
469
+ ],
470
+ ids=lambda x: f"({type(x[0]).__name__},{type(x[1]).__name__})",
471
+ )
472
+ def test_binops(request, args, annotate, all_binary_operators):
473
+ # This generates 624 tests... Is that needed?
474
+ left, right = args
475
+ if isinstance(left, (pd.DataFrame, pd.Series)):
476
+ left.attrs = {}
477
+ if isinstance(right, (pd.DataFrame, pd.Series)):
478
+ right.attrs = {}
479
+
480
+ if annotate == "left" and isinstance(left, int):
481
+ pytest.skip("left is an int and doesn't support .attrs")
482
+ if annotate == "right" and isinstance(right, int):
483
+ pytest.skip("right is an int and doesn't support .attrs")
484
+
485
+ if not (isinstance(left, int) or isinstance(right, int)) and annotate != "both":
486
+ if not all_binary_operators.__name__.startswith("r"):
487
+ if annotate == "right" and isinstance(left, type(right)):
488
+ request.applymarker(
489
+ pytest.mark.xfail(
490
+ reason=f"{all_binary_operators} doesn't work when right has "
491
+ f"attrs and both are {type(left)}"
492
+ )
493
+ )
494
+ if not isinstance(left, type(right)):
495
+ if annotate == "left" and isinstance(left, pd.Series):
496
+ request.applymarker(
497
+ pytest.mark.xfail(
498
+ reason=f"{all_binary_operators} doesn't work when the "
499
+ "objects are different Series has attrs"
500
+ )
501
+ )
502
+ elif annotate == "right" and isinstance(right, pd.Series):
503
+ request.applymarker(
504
+ pytest.mark.xfail(
505
+ reason=f"{all_binary_operators} doesn't work when the "
506
+ "objects are different Series has attrs"
507
+ )
508
+ )
509
+ else:
510
+ if annotate == "left" and isinstance(left, type(right)):
511
+ request.applymarker(
512
+ pytest.mark.xfail(
513
+ reason=f"{all_binary_operators} doesn't work when left has "
514
+ f"attrs and both are {type(left)}"
515
+ )
516
+ )
517
+ if not isinstance(left, type(right)):
518
+ if annotate == "right" and isinstance(right, pd.Series):
519
+ request.applymarker(
520
+ pytest.mark.xfail(
521
+ reason=f"{all_binary_operators} doesn't work when the "
522
+ "objects are different Series has attrs"
523
+ )
524
+ )
525
+ elif annotate == "left" and isinstance(left, pd.Series):
526
+ request.applymarker(
527
+ pytest.mark.xfail(
528
+ reason=f"{all_binary_operators} doesn't work when the "
529
+ "objects are different Series has attrs"
530
+ )
531
+ )
532
+ if annotate in {"left", "both"} and not isinstance(left, int):
533
+ left.attrs = {"a": 1}
534
+ if annotate in {"right", "both"} and not isinstance(right, int):
535
+ right.attrs = {"a": 1}
536
+
537
+ is_cmp = all_binary_operators in [
538
+ operator.eq,
539
+ operator.ne,
540
+ operator.gt,
541
+ operator.ge,
542
+ operator.lt,
543
+ operator.le,
544
+ ]
545
+ if is_cmp and isinstance(left, pd.DataFrame) and isinstance(right, pd.Series):
546
+ # in 2.0 silent alignment on comparisons was removed xref GH#28759
547
+ left, right = left.align(right, axis=1, copy=False)
548
+ elif is_cmp and isinstance(left, pd.Series) and isinstance(right, pd.DataFrame):
549
+ right, left = right.align(left, axis=1, copy=False)
550
+
551
+ result = all_binary_operators(left, right)
552
+ assert result.attrs == {"a": 1}
553
+
554
+
555
+ # ----------------------------------------------------------------------------
556
+ # Accessors
557
+
558
+
559
+ @pytest.mark.parametrize(
560
+ "method",
561
+ [
562
+ operator.methodcaller("capitalize"),
563
+ operator.methodcaller("casefold"),
564
+ operator.methodcaller("cat", ["a"]),
565
+ operator.methodcaller("contains", "a"),
566
+ operator.methodcaller("count", "a"),
567
+ operator.methodcaller("encode", "utf-8"),
568
+ operator.methodcaller("endswith", "a"),
569
+ operator.methodcaller("extract", r"(\w)(\d)"),
570
+ operator.methodcaller("extract", r"(\w)(\d)", expand=False),
571
+ operator.methodcaller("find", "a"),
572
+ operator.methodcaller("findall", "a"),
573
+ operator.methodcaller("get", 0),
574
+ operator.methodcaller("index", "a"),
575
+ operator.methodcaller("len"),
576
+ operator.methodcaller("ljust", 4),
577
+ operator.methodcaller("lower"),
578
+ operator.methodcaller("lstrip"),
579
+ operator.methodcaller("match", r"\w"),
580
+ operator.methodcaller("normalize", "NFC"),
581
+ operator.methodcaller("pad", 4),
582
+ operator.methodcaller("partition", "a"),
583
+ operator.methodcaller("repeat", 2),
584
+ operator.methodcaller("replace", "a", "b"),
585
+ operator.methodcaller("rfind", "a"),
586
+ operator.methodcaller("rindex", "a"),
587
+ operator.methodcaller("rjust", 4),
588
+ operator.methodcaller("rpartition", "a"),
589
+ operator.methodcaller("rstrip"),
590
+ operator.methodcaller("slice", 4),
591
+ operator.methodcaller("slice_replace", 1, repl="a"),
592
+ operator.methodcaller("startswith", "a"),
593
+ operator.methodcaller("strip"),
594
+ operator.methodcaller("swapcase"),
595
+ operator.methodcaller("translate", {"a": "b"}),
596
+ operator.methodcaller("upper"),
597
+ operator.methodcaller("wrap", 4),
598
+ operator.methodcaller("zfill", 4),
599
+ operator.methodcaller("isalnum"),
600
+ operator.methodcaller("isalpha"),
601
+ operator.methodcaller("isdigit"),
602
+ operator.methodcaller("isspace"),
603
+ operator.methodcaller("islower"),
604
+ operator.methodcaller("isupper"),
605
+ operator.methodcaller("istitle"),
606
+ operator.methodcaller("isnumeric"),
607
+ operator.methodcaller("isdecimal"),
608
+ operator.methodcaller("get_dummies"),
609
+ ],
610
+ ids=idfn,
611
+ )
612
+ def test_string_method(method):
613
+ s = pd.Series(["a1"])
614
+ s.attrs = {"a": 1}
615
+ result = method(s.str)
616
+ assert result.attrs == {"a": 1}
617
+
618
+
619
+ @pytest.mark.parametrize(
620
+ "method",
621
+ [
622
+ operator.methodcaller("to_period"),
623
+ operator.methodcaller("tz_localize", "CET"),
624
+ operator.methodcaller("normalize"),
625
+ operator.methodcaller("strftime", "%Y"),
626
+ operator.methodcaller("round", "h"),
627
+ operator.methodcaller("floor", "h"),
628
+ operator.methodcaller("ceil", "h"),
629
+ operator.methodcaller("month_name"),
630
+ operator.methodcaller("day_name"),
631
+ ],
632
+ ids=idfn,
633
+ )
634
+ def test_datetime_method(method):
635
+ s = pd.Series(pd.date_range("2000", periods=4))
636
+ s.attrs = {"a": 1}
637
+ result = method(s.dt)
638
+ assert result.attrs == {"a": 1}
639
+
640
+
641
+ @pytest.mark.parametrize(
642
+ "attr",
643
+ [
644
+ "date",
645
+ "time",
646
+ "timetz",
647
+ "year",
648
+ "month",
649
+ "day",
650
+ "hour",
651
+ "minute",
652
+ "second",
653
+ "microsecond",
654
+ "nanosecond",
655
+ "dayofweek",
656
+ "day_of_week",
657
+ "dayofyear",
658
+ "day_of_year",
659
+ "quarter",
660
+ "is_month_start",
661
+ "is_month_end",
662
+ "is_quarter_start",
663
+ "is_quarter_end",
664
+ "is_year_start",
665
+ "is_year_end",
666
+ "is_leap_year",
667
+ "daysinmonth",
668
+ "days_in_month",
669
+ ],
670
+ )
671
+ def test_datetime_property(attr):
672
+ s = pd.Series(pd.date_range("2000", periods=4))
673
+ s.attrs = {"a": 1}
674
+ result = getattr(s.dt, attr)
675
+ assert result.attrs == {"a": 1}
676
+
677
+
678
+ @pytest.mark.parametrize(
679
+ "attr", ["days", "seconds", "microseconds", "nanoseconds", "components"]
680
+ )
681
+ def test_timedelta_property(attr):
682
+ s = pd.Series(pd.timedelta_range("2000", periods=4))
683
+ s.attrs = {"a": 1}
684
+ result = getattr(s.dt, attr)
685
+ assert result.attrs == {"a": 1}
686
+
687
+
688
+ @pytest.mark.parametrize("method", [operator.methodcaller("total_seconds")])
689
+ def test_timedelta_methods(method):
690
+ s = pd.Series(pd.timedelta_range("2000", periods=4))
691
+ s.attrs = {"a": 1}
692
+ result = method(s.dt)
693
+ assert result.attrs == {"a": 1}
694
+
695
+
696
+ @pytest.mark.parametrize(
697
+ "method",
698
+ [
699
+ operator.methodcaller("add_categories", ["c"]),
700
+ operator.methodcaller("as_ordered"),
701
+ operator.methodcaller("as_unordered"),
702
+ lambda x: getattr(x, "codes"),
703
+ operator.methodcaller("remove_categories", "a"),
704
+ operator.methodcaller("remove_unused_categories"),
705
+ operator.methodcaller("rename_categories", {"a": "A", "b": "B"}),
706
+ operator.methodcaller("reorder_categories", ["b", "a"]),
707
+ operator.methodcaller("set_categories", ["A", "B"]),
708
+ ],
709
+ )
710
+ @not_implemented_mark
711
+ def test_categorical_accessor(method):
712
+ s = pd.Series(["a", "b"], dtype="category")
713
+ s.attrs = {"a": 1}
714
+ result = method(s.cat)
715
+ assert result.attrs == {"a": 1}
716
+
717
+
718
+ # ----------------------------------------------------------------------------
719
+ # Groupby
720
+
721
+
722
+ @pytest.mark.parametrize(
723
+ "obj", [pd.Series([0, 0]), pd.DataFrame({"A": [0, 1], "B": [1, 2]})]
724
+ )
725
+ @pytest.mark.parametrize(
726
+ "method",
727
+ [
728
+ operator.methodcaller("sum"),
729
+ lambda x: x.apply(lambda y: y),
730
+ lambda x: x.agg("sum"),
731
+ lambda x: x.agg("mean"),
732
+ lambda x: x.agg("median"),
733
+ ],
734
+ )
735
+ def test_groupby_finalize(obj, method):
736
+ obj.attrs = {"a": 1}
737
+ result = method(obj.groupby([0, 0], group_keys=False))
738
+ assert result.attrs == {"a": 1}
739
+
740
+
741
+ @pytest.mark.parametrize(
742
+ "obj", [pd.Series([0, 0]), pd.DataFrame({"A": [0, 1], "B": [1, 2]})]
743
+ )
744
+ @pytest.mark.parametrize(
745
+ "method",
746
+ [
747
+ lambda x: x.agg(["sum", "count"]),
748
+ lambda x: x.agg("std"),
749
+ lambda x: x.agg("var"),
750
+ lambda x: x.agg("sem"),
751
+ lambda x: x.agg("size"),
752
+ lambda x: x.agg("ohlc"),
753
+ ],
754
+ )
755
+ @not_implemented_mark
756
+ def test_groupby_finalize_not_implemented(obj, method):
757
+ obj.attrs = {"a": 1}
758
+ result = method(obj.groupby([0, 0]))
759
+ assert result.attrs == {"a": 1}
760
+
761
+
762
+ def test_finalize_frame_series_name():
763
+ # https://github.com/pandas-dev/pandas/pull/37186/files#r506978889
764
+ # ensure we don't copy the column `name` to the Series.
765
+ df = pd.DataFrame({"name": [1, 2]})
766
+ result = pd.Series([1, 2]).__finalize__(df)
767
+ assert result.name is None
llmeval-env/lib/python3.10/site-packages/pandas/tests/generic/test_series.py ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from operator import methodcaller
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ import pandas as pd
7
+ from pandas import (
8
+ MultiIndex,
9
+ Series,
10
+ date_range,
11
+ )
12
+ import pandas._testing as tm
13
+
14
+
15
+ class TestSeries:
16
+ @pytest.mark.parametrize("func", ["rename_axis", "_set_axis_name"])
17
+ def test_set_axis_name_mi(self, func):
18
+ ser = Series(
19
+ [11, 21, 31],
20
+ index=MultiIndex.from_tuples(
21
+ [("A", x) for x in ["a", "B", "c"]], names=["l1", "l2"]
22
+ ),
23
+ )
24
+
25
+ result = methodcaller(func, ["L1", "L2"])(ser)
26
+ assert ser.index.name is None
27
+ assert ser.index.names == ["l1", "l2"]
28
+ assert result.index.name is None
29
+ assert result.index.names, ["L1", "L2"]
30
+
31
+ def test_set_axis_name_raises(self):
32
+ ser = Series([1])
33
+ msg = "No axis named 1 for object type Series"
34
+ with pytest.raises(ValueError, match=msg):
35
+ ser._set_axis_name(name="a", axis=1)
36
+
37
+ def test_get_bool_data_preserve_dtype(self):
38
+ ser = Series([True, False, True])
39
+ result = ser._get_bool_data()
40
+ tm.assert_series_equal(result, ser)
41
+
42
+ def test_nonzero_single_element(self):
43
+ # allow single item via bool method
44
+ msg_warn = (
45
+ "Series.bool is now deprecated and will be removed "
46
+ "in future version of pandas"
47
+ )
48
+ ser = Series([True])
49
+ ser1 = Series([False])
50
+ with tm.assert_produces_warning(FutureWarning, match=msg_warn):
51
+ assert ser.bool()
52
+ with tm.assert_produces_warning(FutureWarning, match=msg_warn):
53
+ assert not ser1.bool()
54
+
55
+ @pytest.mark.parametrize("data", [np.nan, pd.NaT, True, False])
56
+ def test_nonzero_single_element_raise_1(self, data):
57
+ # single item nan to raise
58
+ series = Series([data])
59
+
60
+ msg = "The truth value of a Series is ambiguous"
61
+ with pytest.raises(ValueError, match=msg):
62
+ bool(series)
63
+
64
+ @pytest.mark.parametrize("data", [np.nan, pd.NaT])
65
+ def test_nonzero_single_element_raise_2(self, data):
66
+ msg_warn = (
67
+ "Series.bool is now deprecated and will be removed "
68
+ "in future version of pandas"
69
+ )
70
+ msg_err = "bool cannot act on a non-boolean single element Series"
71
+ series = Series([data])
72
+ with tm.assert_produces_warning(FutureWarning, match=msg_warn):
73
+ with pytest.raises(ValueError, match=msg_err):
74
+ series.bool()
75
+
76
+ @pytest.mark.parametrize("data", [(True, True), (False, False)])
77
+ def test_nonzero_multiple_element_raise(self, data):
78
+ # multiple bool are still an error
79
+ msg_warn = (
80
+ "Series.bool is now deprecated and will be removed "
81
+ "in future version of pandas"
82
+ )
83
+ msg_err = "The truth value of a Series is ambiguous"
84
+ series = Series([data])
85
+ with pytest.raises(ValueError, match=msg_err):
86
+ bool(series)
87
+ with tm.assert_produces_warning(FutureWarning, match=msg_warn):
88
+ with pytest.raises(ValueError, match=msg_err):
89
+ series.bool()
90
+
91
+ @pytest.mark.parametrize("data", [1, 0, "a", 0.0])
92
+ def test_nonbool_single_element_raise(self, data):
93
+ # single non-bool are an error
94
+ msg_warn = (
95
+ "Series.bool is now deprecated and will be removed "
96
+ "in future version of pandas"
97
+ )
98
+ msg_err1 = "The truth value of a Series is ambiguous"
99
+ msg_err2 = "bool cannot act on a non-boolean single element Series"
100
+ series = Series([data])
101
+ with pytest.raises(ValueError, match=msg_err1):
102
+ bool(series)
103
+ with tm.assert_produces_warning(FutureWarning, match=msg_warn):
104
+ with pytest.raises(ValueError, match=msg_err2):
105
+ series.bool()
106
+
107
+ def test_metadata_propagation_indiv_resample(self):
108
+ # resample
109
+ ts = Series(
110
+ np.random.default_rng(2).random(1000),
111
+ index=date_range("20130101", periods=1000, freq="s"),
112
+ name="foo",
113
+ )
114
+ result = ts.resample("1min").mean()
115
+ tm.assert_metadata_equivalent(ts, result)
116
+
117
+ result = ts.resample("1min").min()
118
+ tm.assert_metadata_equivalent(ts, result)
119
+
120
+ result = ts.resample("1min").apply(lambda x: x.sum())
121
+ tm.assert_metadata_equivalent(ts, result)
122
+
123
+ def test_metadata_propagation_indiv(self, monkeypatch):
124
+ # check that the metadata matches up on the resulting ops
125
+
126
+ ser = Series(range(3), range(3))
127
+ ser.name = "foo"
128
+ ser2 = Series(range(3), range(3))
129
+ ser2.name = "bar"
130
+
131
+ result = ser.T
132
+ tm.assert_metadata_equivalent(ser, result)
133
+
134
+ def finalize(self, other, method=None, **kwargs):
135
+ for name in self._metadata:
136
+ if method == "concat" and name == "filename":
137
+ value = "+".join(
138
+ [
139
+ getattr(obj, name)
140
+ for obj in other.objs
141
+ if getattr(obj, name, None)
142
+ ]
143
+ )
144
+ object.__setattr__(self, name, value)
145
+ else:
146
+ object.__setattr__(self, name, getattr(other, name, None))
147
+
148
+ return self
149
+
150
+ with monkeypatch.context() as m:
151
+ m.setattr(Series, "_metadata", ["name", "filename"])
152
+ m.setattr(Series, "__finalize__", finalize)
153
+
154
+ ser.filename = "foo"
155
+ ser2.filename = "bar"
156
+
157
+ result = pd.concat([ser, ser2])
158
+ assert result.filename == "foo+bar"
159
+ assert result.name is None
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (207 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__pycache__/test_drop_duplicates.cpython-310.pyc ADDED
Binary file (2.96 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/__pycache__/test_nat.cpython-310.pyc ADDED
Binary file (1.96 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_drop_duplicates.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ PeriodIndex,
6
+ Series,
7
+ date_range,
8
+ period_range,
9
+ timedelta_range,
10
+ )
11
+ import pandas._testing as tm
12
+
13
+
14
+ class DropDuplicates:
15
+ def test_drop_duplicates_metadata(self, idx):
16
+ # GH#10115
17
+ result = idx.drop_duplicates()
18
+ tm.assert_index_equal(idx, result)
19
+ assert idx.freq == result.freq
20
+
21
+ idx_dup = idx.append(idx)
22
+ result = idx_dup.drop_duplicates()
23
+
24
+ expected = idx
25
+ if not isinstance(idx, PeriodIndex):
26
+ # freq is reset except for PeriodIndex
27
+ assert idx_dup.freq is None
28
+ assert result.freq is None
29
+ expected = idx._with_freq(None)
30
+ else:
31
+ assert result.freq == expected.freq
32
+
33
+ tm.assert_index_equal(result, expected)
34
+
35
+ @pytest.mark.parametrize(
36
+ "keep, expected, index",
37
+ [
38
+ (
39
+ "first",
40
+ np.concatenate(([False] * 10, [True] * 5)),
41
+ np.arange(0, 10, dtype=np.int64),
42
+ ),
43
+ (
44
+ "last",
45
+ np.concatenate(([True] * 5, [False] * 10)),
46
+ np.arange(5, 15, dtype=np.int64),
47
+ ),
48
+ (
49
+ False,
50
+ np.concatenate(([True] * 5, [False] * 5, [True] * 5)),
51
+ np.arange(5, 10, dtype=np.int64),
52
+ ),
53
+ ],
54
+ )
55
+ def test_drop_duplicates(self, keep, expected, index, idx):
56
+ # to check Index/Series compat
57
+ idx = idx.append(idx[:5])
58
+
59
+ tm.assert_numpy_array_equal(idx.duplicated(keep=keep), expected)
60
+ expected = idx[~expected]
61
+
62
+ result = idx.drop_duplicates(keep=keep)
63
+ tm.assert_index_equal(result, expected)
64
+
65
+ result = Series(idx).drop_duplicates(keep=keep)
66
+ expected = Series(expected, index=index)
67
+ tm.assert_series_equal(result, expected)
68
+
69
+
70
+ class TestDropDuplicatesPeriodIndex(DropDuplicates):
71
+ @pytest.fixture(params=["D", "3D", "h", "2h", "min", "2min", "s", "3s"])
72
+ def freq(self, request):
73
+ return request.param
74
+
75
+ @pytest.fixture
76
+ def idx(self, freq):
77
+ return period_range("2011-01-01", periods=10, freq=freq, name="idx")
78
+
79
+
80
+ class TestDropDuplicatesDatetimeIndex(DropDuplicates):
81
+ @pytest.fixture
82
+ def idx(self, freq_sample):
83
+ return date_range("2011-01-01", freq=freq_sample, periods=10, name="idx")
84
+
85
+
86
+ class TestDropDuplicatesTimedeltaIndex(DropDuplicates):
87
+ @pytest.fixture
88
+ def idx(self, freq_sample):
89
+ return timedelta_range("1 day", periods=10, freq=freq_sample, name="idx")
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_equals.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Tests shared for DatetimeIndex/TimedeltaIndex/PeriodIndex
3
+ """
4
+ from datetime import (
5
+ datetime,
6
+ timedelta,
7
+ )
8
+
9
+ import numpy as np
10
+ import pytest
11
+
12
+ import pandas as pd
13
+ from pandas import (
14
+ CategoricalIndex,
15
+ DatetimeIndex,
16
+ Index,
17
+ PeriodIndex,
18
+ TimedeltaIndex,
19
+ date_range,
20
+ period_range,
21
+ timedelta_range,
22
+ )
23
+ import pandas._testing as tm
24
+
25
+
26
+ class EqualsTests:
27
+ def test_not_equals_numeric(self, index):
28
+ assert not index.equals(Index(index.asi8))
29
+ assert not index.equals(Index(index.asi8.astype("u8")))
30
+ assert not index.equals(Index(index.asi8).astype("f8"))
31
+
32
+ def test_equals(self, index):
33
+ assert index.equals(index)
34
+ assert index.equals(index.astype(object))
35
+ assert index.equals(CategoricalIndex(index))
36
+ assert index.equals(CategoricalIndex(index.astype(object)))
37
+
38
+ def test_not_equals_non_arraylike(self, index):
39
+ assert not index.equals(list(index))
40
+
41
+ def test_not_equals_strings(self, index):
42
+ other = Index([str(x) for x in index], dtype=object)
43
+ assert not index.equals(other)
44
+ assert not index.equals(CategoricalIndex(other))
45
+
46
+ def test_not_equals_misc_strs(self, index):
47
+ other = Index(list("abc"))
48
+ assert not index.equals(other)
49
+
50
+
51
+ class TestPeriodIndexEquals(EqualsTests):
52
+ @pytest.fixture
53
+ def index(self):
54
+ return period_range("2013-01-01", periods=5, freq="D")
55
+
56
+ # TODO: de-duplicate with other test_equals2 methods
57
+ @pytest.mark.parametrize("freq", ["D", "M"])
58
+ def test_equals2(self, freq):
59
+ # GH#13107
60
+ idx = PeriodIndex(["2011-01-01", "2011-01-02", "NaT"], freq=freq)
61
+ assert idx.equals(idx)
62
+ assert idx.equals(idx.copy())
63
+ assert idx.equals(idx.astype(object))
64
+ assert idx.astype(object).equals(idx)
65
+ assert idx.astype(object).equals(idx.astype(object))
66
+ assert not idx.equals(list(idx))
67
+ assert not idx.equals(pd.Series(idx))
68
+
69
+ idx2 = PeriodIndex(["2011-01-01", "2011-01-02", "NaT"], freq="h")
70
+ assert not idx.equals(idx2)
71
+ assert not idx.equals(idx2.copy())
72
+ assert not idx.equals(idx2.astype(object))
73
+ assert not idx.astype(object).equals(idx2)
74
+ assert not idx.equals(list(idx2))
75
+ assert not idx.equals(pd.Series(idx2))
76
+
77
+ # same internal, different tz
78
+ idx3 = PeriodIndex._simple_new(
79
+ idx._values._simple_new(idx._values.asi8, dtype=pd.PeriodDtype("h"))
80
+ )
81
+ tm.assert_numpy_array_equal(idx.asi8, idx3.asi8)
82
+ assert not idx.equals(idx3)
83
+ assert not idx.equals(idx3.copy())
84
+ assert not idx.equals(idx3.astype(object))
85
+ assert not idx.astype(object).equals(idx3)
86
+ assert not idx.equals(list(idx3))
87
+ assert not idx.equals(pd.Series(idx3))
88
+
89
+
90
+ class TestDatetimeIndexEquals(EqualsTests):
91
+ @pytest.fixture
92
+ def index(self):
93
+ return date_range("2013-01-01", periods=5)
94
+
95
+ def test_equals2(self):
96
+ # GH#13107
97
+ idx = DatetimeIndex(["2011-01-01", "2011-01-02", "NaT"])
98
+ assert idx.equals(idx)
99
+ assert idx.equals(idx.copy())
100
+ assert idx.equals(idx.astype(object))
101
+ assert idx.astype(object).equals(idx)
102
+ assert idx.astype(object).equals(idx.astype(object))
103
+ assert not idx.equals(list(idx))
104
+ assert not idx.equals(pd.Series(idx))
105
+
106
+ idx2 = DatetimeIndex(["2011-01-01", "2011-01-02", "NaT"], tz="US/Pacific")
107
+ assert not idx.equals(idx2)
108
+ assert not idx.equals(idx2.copy())
109
+ assert not idx.equals(idx2.astype(object))
110
+ assert not idx.astype(object).equals(idx2)
111
+ assert not idx.equals(list(idx2))
112
+ assert not idx.equals(pd.Series(idx2))
113
+
114
+ # same internal, different tz
115
+ idx3 = DatetimeIndex(idx.asi8, tz="US/Pacific")
116
+ tm.assert_numpy_array_equal(idx.asi8, idx3.asi8)
117
+ assert not idx.equals(idx3)
118
+ assert not idx.equals(idx3.copy())
119
+ assert not idx.equals(idx3.astype(object))
120
+ assert not idx.astype(object).equals(idx3)
121
+ assert not idx.equals(list(idx3))
122
+ assert not idx.equals(pd.Series(idx3))
123
+
124
+ # check that we do not raise when comparing with OutOfBounds objects
125
+ oob = Index([datetime(2500, 1, 1)] * 3, dtype=object)
126
+ assert not idx.equals(oob)
127
+ assert not idx2.equals(oob)
128
+ assert not idx3.equals(oob)
129
+
130
+ # check that we do not raise when comparing with OutOfBounds dt64
131
+ oob2 = oob.map(np.datetime64)
132
+ assert not idx.equals(oob2)
133
+ assert not idx2.equals(oob2)
134
+ assert not idx3.equals(oob2)
135
+
136
+ @pytest.mark.parametrize("freq", ["B", "C"])
137
+ def test_not_equals_bday(self, freq):
138
+ rng = date_range("2009-01-01", "2010-01-01", freq=freq)
139
+ assert not rng.equals(list(rng))
140
+
141
+
142
+ class TestTimedeltaIndexEquals(EqualsTests):
143
+ @pytest.fixture
144
+ def index(self):
145
+ return timedelta_range("1 day", periods=10)
146
+
147
+ def test_equals2(self):
148
+ # GH#13107
149
+ idx = TimedeltaIndex(["1 days", "2 days", "NaT"])
150
+ assert idx.equals(idx)
151
+ assert idx.equals(idx.copy())
152
+ assert idx.equals(idx.astype(object))
153
+ assert idx.astype(object).equals(idx)
154
+ assert idx.astype(object).equals(idx.astype(object))
155
+ assert not idx.equals(list(idx))
156
+ assert not idx.equals(pd.Series(idx))
157
+
158
+ idx2 = TimedeltaIndex(["2 days", "1 days", "NaT"])
159
+ assert not idx.equals(idx2)
160
+ assert not idx.equals(idx2.copy())
161
+ assert not idx.equals(idx2.astype(object))
162
+ assert not idx.astype(object).equals(idx2)
163
+ assert not idx.astype(object).equals(idx2.astype(object))
164
+ assert not idx.equals(list(idx2))
165
+ assert not idx.equals(pd.Series(idx2))
166
+
167
+ # Check that we dont raise OverflowError on comparisons outside the
168
+ # implementation range GH#28532
169
+ oob = Index([timedelta(days=10**6)] * 3, dtype=object)
170
+ assert not idx.equals(oob)
171
+ assert not idx2.equals(oob)
172
+
173
+ oob2 = Index([np.timedelta64(x) for x in oob], dtype=object)
174
+ assert (oob == oob2).all()
175
+ assert not idx.equals(oob2)
176
+ assert not idx2.equals(oob2)
177
+
178
+ oob3 = oob.map(np.timedelta64)
179
+ assert (oob3 == oob).all()
180
+ assert not idx.equals(oob3)
181
+ assert not idx2.equals(oob3)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_indexing.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas import (
6
+ DatetimeIndex,
7
+ Index,
8
+ )
9
+ import pandas._testing as tm
10
+
11
+ dtlike_dtypes = [
12
+ np.dtype("timedelta64[ns]"),
13
+ np.dtype("datetime64[ns]"),
14
+ pd.DatetimeTZDtype("ns", "Asia/Tokyo"),
15
+ pd.PeriodDtype("ns"),
16
+ ]
17
+
18
+
19
+ @pytest.mark.parametrize("ldtype", dtlike_dtypes)
20
+ @pytest.mark.parametrize("rdtype", dtlike_dtypes)
21
+ def test_get_indexer_non_unique_wrong_dtype(ldtype, rdtype):
22
+ vals = np.tile(3600 * 10**9 * np.arange(3), 2)
23
+
24
+ def construct(dtype):
25
+ if dtype is dtlike_dtypes[-1]:
26
+ # PeriodArray will try to cast ints to strings
27
+ return DatetimeIndex(vals).astype(dtype)
28
+ return Index(vals, dtype=dtype)
29
+
30
+ left = construct(ldtype)
31
+ right = construct(rdtype)
32
+
33
+ result = left.get_indexer_non_unique(right)
34
+
35
+ if ldtype is rdtype:
36
+ ex1 = np.array([0, 3, 1, 4, 2, 5] * 2, dtype=np.intp)
37
+ ex2 = np.array([], dtype=np.intp)
38
+ tm.assert_numpy_array_equal(result[0], ex1)
39
+ tm.assert_numpy_array_equal(result[1], ex2)
40
+
41
+ else:
42
+ no_matches = np.array([-1] * 6, dtype=np.intp)
43
+ missing = np.arange(6, dtype=np.intp)
44
+ tm.assert_numpy_array_equal(result[0], no_matches)
45
+ tm.assert_numpy_array_equal(result[1], missing)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_is_monotonic.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pandas import (
2
+ Index,
3
+ NaT,
4
+ date_range,
5
+ )
6
+
7
+
8
+ def test_is_monotonic_with_nat():
9
+ # GH#31437
10
+ # PeriodIndex.is_monotonic_increasing should behave analogously to DatetimeIndex,
11
+ # in particular never be monotonic when we have NaT
12
+ dti = date_range("2016-01-01", periods=3)
13
+ pi = dti.to_period("D")
14
+ tdi = Index(dti.view("timedelta64[ns]"))
15
+
16
+ for obj in [pi, pi._engine, dti, dti._engine, tdi, tdi._engine]:
17
+ if isinstance(obj, Index):
18
+ # i.e. not Engines
19
+ assert obj.is_monotonic_increasing
20
+ assert obj.is_monotonic_increasing
21
+ assert not obj.is_monotonic_decreasing
22
+ assert obj.is_unique
23
+
24
+ dti1 = dti.insert(0, NaT)
25
+ pi1 = dti1.to_period("D")
26
+ tdi1 = Index(dti1.view("timedelta64[ns]"))
27
+
28
+ for obj in [pi1, pi1._engine, dti1, dti1._engine, tdi1, tdi1._engine]:
29
+ if isinstance(obj, Index):
30
+ # i.e. not Engines
31
+ assert not obj.is_monotonic_increasing
32
+ assert not obj.is_monotonic_increasing
33
+ assert not obj.is_monotonic_decreasing
34
+ assert obj.is_unique
35
+
36
+ dti2 = dti.insert(3, NaT)
37
+ pi2 = dti2.to_period("h")
38
+ tdi2 = Index(dti2.view("timedelta64[ns]"))
39
+
40
+ for obj in [pi2, pi2._engine, dti2, dti2._engine, tdi2, tdi2._engine]:
41
+ if isinstance(obj, Index):
42
+ # i.e. not Engines
43
+ assert not obj.is_monotonic_increasing
44
+ assert not obj.is_monotonic_increasing
45
+ assert not obj.is_monotonic_decreasing
46
+ assert obj.is_unique
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_nat.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ DatetimeIndex,
6
+ NaT,
7
+ PeriodIndex,
8
+ TimedeltaIndex,
9
+ )
10
+ import pandas._testing as tm
11
+
12
+
13
+ class NATests:
14
+ def test_nat(self, index_without_na):
15
+ empty_index = index_without_na[:0]
16
+
17
+ index_with_na = index_without_na.copy(deep=True)
18
+ index_with_na._data[1] = NaT
19
+
20
+ assert empty_index._na_value is NaT
21
+ assert index_with_na._na_value is NaT
22
+ assert index_without_na._na_value is NaT
23
+
24
+ idx = index_without_na
25
+ assert idx._can_hold_na
26
+
27
+ tm.assert_numpy_array_equal(idx._isnan, np.array([False, False]))
28
+ assert idx.hasnans is False
29
+
30
+ idx = index_with_na
31
+ assert idx._can_hold_na
32
+
33
+ tm.assert_numpy_array_equal(idx._isnan, np.array([False, True]))
34
+ assert idx.hasnans is True
35
+
36
+
37
+ class TestDatetimeIndexNA(NATests):
38
+ @pytest.fixture
39
+ def index_without_na(self, tz_naive_fixture):
40
+ tz = tz_naive_fixture
41
+ return DatetimeIndex(["2011-01-01", "2011-01-02"], tz=tz)
42
+
43
+
44
+ class TestTimedeltaIndexNA(NATests):
45
+ @pytest.fixture
46
+ def index_without_na(self):
47
+ return TimedeltaIndex(["1 days", "2 days"])
48
+
49
+
50
+ class TestPeriodIndexNA(NATests):
51
+ @pytest.fixture
52
+ def index_without_na(self):
53
+ return PeriodIndex(["2011-01-01", "2011-01-02"], freq="D")
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_sort_values.py ADDED
@@ -0,0 +1,315 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ DatetimeIndex,
6
+ Index,
7
+ NaT,
8
+ PeriodIndex,
9
+ TimedeltaIndex,
10
+ timedelta_range,
11
+ )
12
+ import pandas._testing as tm
13
+
14
+
15
+ def check_freq_ascending(ordered, orig, ascending):
16
+ """
17
+ Check the expected freq on a PeriodIndex/DatetimeIndex/TimedeltaIndex
18
+ when the original index is generated (or generate-able) with
19
+ period_range/date_range/timedelta_range.
20
+ """
21
+ if isinstance(ordered, PeriodIndex):
22
+ assert ordered.freq == orig.freq
23
+ elif isinstance(ordered, (DatetimeIndex, TimedeltaIndex)):
24
+ if ascending:
25
+ assert ordered.freq.n == orig.freq.n
26
+ else:
27
+ assert ordered.freq.n == -1 * orig.freq.n
28
+
29
+
30
+ def check_freq_nonmonotonic(ordered, orig):
31
+ """
32
+ Check the expected freq on a PeriodIndex/DatetimeIndex/TimedeltaIndex
33
+ when the original index is _not_ generated (or generate-able) with
34
+ period_range/date_range//timedelta_range.
35
+ """
36
+ if isinstance(ordered, PeriodIndex):
37
+ assert ordered.freq == orig.freq
38
+ elif isinstance(ordered, (DatetimeIndex, TimedeltaIndex)):
39
+ assert ordered.freq is None
40
+
41
+
42
+ class TestSortValues:
43
+ @pytest.fixture(params=[DatetimeIndex, TimedeltaIndex, PeriodIndex])
44
+ def non_monotonic_idx(self, request):
45
+ if request.param is DatetimeIndex:
46
+ return DatetimeIndex(["2000-01-04", "2000-01-01", "2000-01-02"])
47
+ elif request.param is PeriodIndex:
48
+ dti = DatetimeIndex(["2000-01-04", "2000-01-01", "2000-01-02"])
49
+ return dti.to_period("D")
50
+ else:
51
+ return TimedeltaIndex(
52
+ ["1 day 00:00:05", "1 day 00:00:01", "1 day 00:00:02"]
53
+ )
54
+
55
+ def test_argmin_argmax(self, non_monotonic_idx):
56
+ assert non_monotonic_idx.argmin() == 1
57
+ assert non_monotonic_idx.argmax() == 0
58
+
59
+ def test_sort_values(self, non_monotonic_idx):
60
+ idx = non_monotonic_idx
61
+ ordered = idx.sort_values()
62
+ assert ordered.is_monotonic_increasing
63
+ ordered = idx.sort_values(ascending=False)
64
+ assert ordered[::-1].is_monotonic_increasing
65
+
66
+ ordered, dexer = idx.sort_values(return_indexer=True)
67
+ assert ordered.is_monotonic_increasing
68
+ tm.assert_numpy_array_equal(dexer, np.array([1, 2, 0], dtype=np.intp))
69
+
70
+ ordered, dexer = idx.sort_values(return_indexer=True, ascending=False)
71
+ assert ordered[::-1].is_monotonic_increasing
72
+ tm.assert_numpy_array_equal(dexer, np.array([0, 2, 1], dtype=np.intp))
73
+
74
+ def check_sort_values_with_freq(self, idx):
75
+ ordered = idx.sort_values()
76
+ tm.assert_index_equal(ordered, idx)
77
+ check_freq_ascending(ordered, idx, True)
78
+
79
+ ordered = idx.sort_values(ascending=False)
80
+ expected = idx[::-1]
81
+ tm.assert_index_equal(ordered, expected)
82
+ check_freq_ascending(ordered, idx, False)
83
+
84
+ ordered, indexer = idx.sort_values(return_indexer=True)
85
+ tm.assert_index_equal(ordered, idx)
86
+ tm.assert_numpy_array_equal(indexer, np.array([0, 1, 2], dtype=np.intp))
87
+ check_freq_ascending(ordered, idx, True)
88
+
89
+ ordered, indexer = idx.sort_values(return_indexer=True, ascending=False)
90
+ expected = idx[::-1]
91
+ tm.assert_index_equal(ordered, expected)
92
+ tm.assert_numpy_array_equal(indexer, np.array([2, 1, 0], dtype=np.intp))
93
+ check_freq_ascending(ordered, idx, False)
94
+
95
+ @pytest.mark.parametrize("freq", ["D", "h"])
96
+ def test_sort_values_with_freq_timedeltaindex(self, freq):
97
+ # GH#10295
98
+ idx = timedelta_range(start=f"1{freq}", periods=3, freq=freq).rename("idx")
99
+
100
+ self.check_sort_values_with_freq(idx)
101
+
102
+ @pytest.mark.parametrize(
103
+ "idx",
104
+ [
105
+ DatetimeIndex(
106
+ ["2011-01-01", "2011-01-02", "2011-01-03"], freq="D", name="idx"
107
+ ),
108
+ DatetimeIndex(
109
+ ["2011-01-01 09:00", "2011-01-01 10:00", "2011-01-01 11:00"],
110
+ freq="h",
111
+ name="tzidx",
112
+ tz="Asia/Tokyo",
113
+ ),
114
+ ],
115
+ )
116
+ def test_sort_values_with_freq_datetimeindex(self, idx):
117
+ self.check_sort_values_with_freq(idx)
118
+
119
+ @pytest.mark.parametrize("freq", ["D", "2D", "4D"])
120
+ def test_sort_values_with_freq_periodindex(self, freq):
121
+ # here with_freq refers to being period_range-like
122
+ idx = PeriodIndex(
123
+ ["2011-01-01", "2011-01-02", "2011-01-03"], freq=freq, name="idx"
124
+ )
125
+ self.check_sort_values_with_freq(idx)
126
+
127
+ @pytest.mark.parametrize(
128
+ "idx",
129
+ [
130
+ PeriodIndex(["2011", "2012", "2013"], name="pidx", freq="Y"),
131
+ Index([2011, 2012, 2013], name="idx"), # for compatibility check
132
+ ],
133
+ )
134
+ def test_sort_values_with_freq_periodindex2(self, idx):
135
+ # here with_freq indicates this is period_range-like
136
+ self.check_sort_values_with_freq(idx)
137
+
138
+ def check_sort_values_without_freq(self, idx, expected):
139
+ ordered = idx.sort_values(na_position="first")
140
+ tm.assert_index_equal(ordered, expected)
141
+ check_freq_nonmonotonic(ordered, idx)
142
+
143
+ if not idx.isna().any():
144
+ ordered = idx.sort_values()
145
+ tm.assert_index_equal(ordered, expected)
146
+ check_freq_nonmonotonic(ordered, idx)
147
+
148
+ ordered = idx.sort_values(ascending=False)
149
+ tm.assert_index_equal(ordered, expected[::-1])
150
+ check_freq_nonmonotonic(ordered, idx)
151
+
152
+ ordered, indexer = idx.sort_values(return_indexer=True, na_position="first")
153
+ tm.assert_index_equal(ordered, expected)
154
+
155
+ exp = np.array([0, 4, 3, 1, 2], dtype=np.intp)
156
+ tm.assert_numpy_array_equal(indexer, exp)
157
+ check_freq_nonmonotonic(ordered, idx)
158
+
159
+ if not idx.isna().any():
160
+ ordered, indexer = idx.sort_values(return_indexer=True)
161
+ tm.assert_index_equal(ordered, expected)
162
+
163
+ exp = np.array([0, 4, 3, 1, 2], dtype=np.intp)
164
+ tm.assert_numpy_array_equal(indexer, exp)
165
+ check_freq_nonmonotonic(ordered, idx)
166
+
167
+ ordered, indexer = idx.sort_values(return_indexer=True, ascending=False)
168
+ tm.assert_index_equal(ordered, expected[::-1])
169
+
170
+ exp = np.array([2, 1, 3, 0, 4], dtype=np.intp)
171
+ tm.assert_numpy_array_equal(indexer, exp)
172
+ check_freq_nonmonotonic(ordered, idx)
173
+
174
+ def test_sort_values_without_freq_timedeltaindex(self):
175
+ # GH#10295
176
+
177
+ idx = TimedeltaIndex(
178
+ ["1 hour", "3 hour", "5 hour", "2 hour ", "1 hour"], name="idx1"
179
+ )
180
+ expected = TimedeltaIndex(
181
+ ["1 hour", "1 hour", "2 hour", "3 hour", "5 hour"], name="idx1"
182
+ )
183
+ self.check_sort_values_without_freq(idx, expected)
184
+
185
+ @pytest.mark.parametrize(
186
+ "index_dates,expected_dates",
187
+ [
188
+ (
189
+ ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-02", "2011-01-01"],
190
+ ["2011-01-01", "2011-01-01", "2011-01-02", "2011-01-03", "2011-01-05"],
191
+ ),
192
+ (
193
+ ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-02", "2011-01-01"],
194
+ ["2011-01-01", "2011-01-01", "2011-01-02", "2011-01-03", "2011-01-05"],
195
+ ),
196
+ (
197
+ [NaT, "2011-01-03", "2011-01-05", "2011-01-02", NaT],
198
+ [NaT, NaT, "2011-01-02", "2011-01-03", "2011-01-05"],
199
+ ),
200
+ ],
201
+ )
202
+ def test_sort_values_without_freq_datetimeindex(
203
+ self, index_dates, expected_dates, tz_naive_fixture
204
+ ):
205
+ tz = tz_naive_fixture
206
+
207
+ # without freq
208
+ idx = DatetimeIndex(index_dates, tz=tz, name="idx")
209
+ expected = DatetimeIndex(expected_dates, tz=tz, name="idx")
210
+
211
+ self.check_sort_values_without_freq(idx, expected)
212
+
213
+ @pytest.mark.parametrize(
214
+ "idx,expected",
215
+ [
216
+ (
217
+ PeriodIndex(
218
+ [
219
+ "2011-01-01",
220
+ "2011-01-03",
221
+ "2011-01-05",
222
+ "2011-01-02",
223
+ "2011-01-01",
224
+ ],
225
+ freq="D",
226
+ name="idx1",
227
+ ),
228
+ PeriodIndex(
229
+ [
230
+ "2011-01-01",
231
+ "2011-01-01",
232
+ "2011-01-02",
233
+ "2011-01-03",
234
+ "2011-01-05",
235
+ ],
236
+ freq="D",
237
+ name="idx1",
238
+ ),
239
+ ),
240
+ (
241
+ PeriodIndex(
242
+ [
243
+ "2011-01-01",
244
+ "2011-01-03",
245
+ "2011-01-05",
246
+ "2011-01-02",
247
+ "2011-01-01",
248
+ ],
249
+ freq="D",
250
+ name="idx2",
251
+ ),
252
+ PeriodIndex(
253
+ [
254
+ "2011-01-01",
255
+ "2011-01-01",
256
+ "2011-01-02",
257
+ "2011-01-03",
258
+ "2011-01-05",
259
+ ],
260
+ freq="D",
261
+ name="idx2",
262
+ ),
263
+ ),
264
+ (
265
+ PeriodIndex(
266
+ [NaT, "2011-01-03", "2011-01-05", "2011-01-02", NaT],
267
+ freq="D",
268
+ name="idx3",
269
+ ),
270
+ PeriodIndex(
271
+ [NaT, NaT, "2011-01-02", "2011-01-03", "2011-01-05"],
272
+ freq="D",
273
+ name="idx3",
274
+ ),
275
+ ),
276
+ (
277
+ PeriodIndex(
278
+ ["2011", "2013", "2015", "2012", "2011"], name="pidx", freq="Y"
279
+ ),
280
+ PeriodIndex(
281
+ ["2011", "2011", "2012", "2013", "2015"], name="pidx", freq="Y"
282
+ ),
283
+ ),
284
+ (
285
+ # For compatibility check
286
+ Index([2011, 2013, 2015, 2012, 2011], name="idx"),
287
+ Index([2011, 2011, 2012, 2013, 2015], name="idx"),
288
+ ),
289
+ ],
290
+ )
291
+ def test_sort_values_without_freq_periodindex(self, idx, expected):
292
+ # here without_freq means not generateable by period_range
293
+ self.check_sort_values_without_freq(idx, expected)
294
+
295
+ def test_sort_values_without_freq_periodindex_nat(self):
296
+ # doesn't quite fit into check_sort_values_without_freq
297
+ idx = PeriodIndex(["2011", "2013", "NaT", "2011"], name="pidx", freq="D")
298
+ expected = PeriodIndex(["NaT", "2011", "2011", "2013"], name="pidx", freq="D")
299
+
300
+ ordered = idx.sort_values(na_position="first")
301
+ tm.assert_index_equal(ordered, expected)
302
+ check_freq_nonmonotonic(ordered, idx)
303
+
304
+ ordered = idx.sort_values(ascending=False)
305
+ tm.assert_index_equal(ordered, expected[::-1])
306
+ check_freq_nonmonotonic(ordered, idx)
307
+
308
+
309
+ def test_order_stability_compat():
310
+ # GH#35922. sort_values is stable both for normal and datetime-like Index
311
+ pidx = PeriodIndex(["2011", "2013", "2015", "2012", "2011"], name="pidx", freq="Y")
312
+ iidx = Index([2011, 2013, 2015, 2012, 2011], name="idx")
313
+ ordered1, indexer1 = pidx.sort_values(return_indexer=True, ascending=False)
314
+ ordered2, indexer2 = iidx.sort_values(return_indexer=True, ascending=False)
315
+ tm.assert_numpy_array_equal(indexer1, indexer2)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimelike_/test_value_counts.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from pandas import (
4
+ DatetimeIndex,
5
+ NaT,
6
+ PeriodIndex,
7
+ Series,
8
+ TimedeltaIndex,
9
+ date_range,
10
+ period_range,
11
+ timedelta_range,
12
+ )
13
+ import pandas._testing as tm
14
+
15
+
16
+ class TestValueCounts:
17
+ # GH#7735
18
+
19
+ def test_value_counts_unique_datetimeindex(self, tz_naive_fixture):
20
+ tz = tz_naive_fixture
21
+ orig = date_range("2011-01-01 09:00", freq="h", periods=10, tz=tz)
22
+ self._check_value_counts_with_repeats(orig)
23
+
24
+ def test_value_counts_unique_timedeltaindex(self):
25
+ orig = timedelta_range("1 days 09:00:00", freq="h", periods=10)
26
+ self._check_value_counts_with_repeats(orig)
27
+
28
+ def test_value_counts_unique_periodindex(self):
29
+ orig = period_range("2011-01-01 09:00", freq="h", periods=10)
30
+ self._check_value_counts_with_repeats(orig)
31
+
32
+ def _check_value_counts_with_repeats(self, orig):
33
+ # create repeated values, 'n'th element is repeated by n+1 times
34
+ idx = type(orig)(
35
+ np.repeat(orig._values, range(1, len(orig) + 1)), dtype=orig.dtype
36
+ )
37
+
38
+ exp_idx = orig[::-1]
39
+ if not isinstance(exp_idx, PeriodIndex):
40
+ exp_idx = exp_idx._with_freq(None)
41
+ expected = Series(range(10, 0, -1), index=exp_idx, dtype="int64", name="count")
42
+
43
+ for obj in [idx, Series(idx)]:
44
+ tm.assert_series_equal(obj.value_counts(), expected)
45
+
46
+ tm.assert_index_equal(idx.unique(), orig)
47
+
48
+ def test_value_counts_unique_datetimeindex2(self, tz_naive_fixture):
49
+ tz = tz_naive_fixture
50
+ idx = DatetimeIndex(
51
+ [
52
+ "2013-01-01 09:00",
53
+ "2013-01-01 09:00",
54
+ "2013-01-01 09:00",
55
+ "2013-01-01 08:00",
56
+ "2013-01-01 08:00",
57
+ NaT,
58
+ ],
59
+ tz=tz,
60
+ )
61
+ self._check_value_counts_dropna(idx)
62
+
63
+ def test_value_counts_unique_timedeltaindex2(self):
64
+ idx = TimedeltaIndex(
65
+ [
66
+ "1 days 09:00:00",
67
+ "1 days 09:00:00",
68
+ "1 days 09:00:00",
69
+ "1 days 08:00:00",
70
+ "1 days 08:00:00",
71
+ NaT,
72
+ ]
73
+ )
74
+ self._check_value_counts_dropna(idx)
75
+
76
+ def test_value_counts_unique_periodindex2(self):
77
+ idx = PeriodIndex(
78
+ [
79
+ "2013-01-01 09:00",
80
+ "2013-01-01 09:00",
81
+ "2013-01-01 09:00",
82
+ "2013-01-01 08:00",
83
+ "2013-01-01 08:00",
84
+ NaT,
85
+ ],
86
+ freq="h",
87
+ )
88
+ self._check_value_counts_dropna(idx)
89
+
90
+ def _check_value_counts_dropna(self, idx):
91
+ exp_idx = idx[[2, 3]]
92
+ expected = Series([3, 2], index=exp_idx, name="count")
93
+
94
+ for obj in [idx, Series(idx)]:
95
+ tm.assert_series_equal(obj.value_counts(), expected)
96
+
97
+ exp_idx = idx[[2, 3, -1]]
98
+ expected = Series([3, 2, 1], index=exp_idx, name="count")
99
+
100
+ for obj in [idx, Series(idx)]:
101
+ tm.assert_series_equal(obj.value_counts(dropna=False), expected)
102
+
103
+ tm.assert_index_equal(idx.unique(), exp_idx)
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (203 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_arithmetic.cpython-310.pyc ADDED
Binary file (2.02 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_constructors.cpython-310.pyc ADDED
Binary file (32.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_date_range.cpython-310.pyc ADDED
Binary file (50.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_datetime.cpython-310.pyc ADDED
Binary file (6.93 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_freq_attr.cpython-310.pyc ADDED
Binary file (1.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_iter.cpython-310.pyc ADDED
Binary file (2.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_join.cpython-310.pyc ADDED
Binary file (4.88 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_npfuncs.cpython-310.pyc ADDED
Binary file (828 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_ops.cpython-310.pyc ADDED
Binary file (2.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_partial_slicing.cpython-310.pyc ADDED
Binary file (12.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_pickle.cpython-310.pyc ADDED
Binary file (1.89 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_reindex.cpython-310.pyc ADDED
Binary file (2.3 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/datetimes/__pycache__/test_scalar_compat.cpython-310.pyc ADDED
Binary file (9.39 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (204 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_arithmetic.cpython-310.pyc ADDED
Binary file (1.53 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_constructors.cpython-310.pyc ADDED
Binary file (10.4 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_delete.cpython-310.pyc ADDED
Binary file (2.14 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_formats.cpython-310.pyc ADDED
Binary file (3.42 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_freq_attr.cpython-310.pyc ADDED
Binary file (2.23 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_indexing.cpython-310.pyc ADDED
Binary file (11.7 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_join.cpython-310.pyc ADDED
Binary file (1.93 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_ops.cpython-310.pyc ADDED
Binary file (803 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_pickle.cpython-310.pyc ADDED
Binary file (765 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_scalar_compat.cpython-310.pyc ADDED
Binary file (4.01 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_searchsorted.cpython-310.pyc ADDED
Binary file (1.5 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_setops.cpython-310.pyc ADDED
Binary file (7.11 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_timedelta.cpython-310.pyc ADDED
Binary file (2.42 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/__pycache__/test_timedelta_range.cpython-310.pyc ADDED
Binary file (5.36 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (212 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/indexes/timedeltas/methods/__pycache__/test_astype.cpython-310.pyc ADDED
Binary file (5.94 kB). View file