Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/joblib/__init__.py +148 -0
- llmeval-env/lib/python3.10/site-packages/joblib/_dask.py +379 -0
- llmeval-env/lib/python3.10/site-packages/joblib/_store_backends.py +474 -0
- llmeval-env/lib/python3.10/site-packages/joblib/compressor.py +570 -0
- llmeval-env/lib/python3.10/site-packages/joblib/disk.py +136 -0
- llmeval-env/lib/python3.10/site-packages/joblib/executor.py +117 -0
- llmeval-env/lib/python3.10/site-packages/joblib/hashing.py +265 -0
- llmeval-env/lib/python3.10/site-packages/joblib/numpy_pickle_compat.py +244 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_cloudpickle_wrapper.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_config.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_func_inspect.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_func_inspect_special_encoding.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_hashing.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_logger.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_memmapping.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_memory_async.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_missing_multiprocessing.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_numpy_pickle.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_numpy_pickle_compat.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_numpy_pickle_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_store_backends.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_testing.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_utils.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/data/create_numpy_pickle.py +95 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/data/joblib_0.10.0_pickle_py27_np17.pkl.gzip +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/data/joblib_0.10.0_pickle_py27_np17.pkl.lzma +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/data/joblib_0.10.0_pickle_py33_np18.pkl.gzip +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/data/joblib_0.10.0_pickle_py33_np18.pkl.lzma +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/data/joblib_0.10.0_pickle_py34_np19.pkl.gzip +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/data/joblib_0.10.0_pickle_py34_np19.pkl.lzma +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/data/joblib_0.11.0_pickle_py36_np111.pkl.lzma +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/data/joblib_0.9.4.dev0_compressed_cache_size_pickle_py35_np19.gz_01.npy.z +0 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/test_backports.py +35 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/test_cloudpickle_wrapper.py +27 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/test_config.py +151 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/test_dask.py +499 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/test_disk.py +71 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/test_func_inspect.py +310 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/test_hashing.py +495 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/test_logger.py +31 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/test_memmapping.py +1191 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/test_memory_async.py +170 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/test_missing_multiprocessing.py +32 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/test_module.py +53 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/test_numpy_pickle_utils.py +9 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/test_parallel.py +2056 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/test_store_backends.py +94 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/test_testing.py +75 -0
- llmeval-env/lib/python3.10/site-packages/joblib/test/test_utils.py +27 -0
llmeval-env/lib/python3.10/site-packages/joblib/__init__.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Joblib is a set of tools to provide **lightweight pipelining in
|
2 |
+
Python**. In particular:
|
3 |
+
|
4 |
+
1. transparent disk-caching of functions and lazy re-evaluation
|
5 |
+
(memoize pattern)
|
6 |
+
|
7 |
+
2. easy simple parallel computing
|
8 |
+
|
9 |
+
Joblib is optimized to be **fast** and **robust** on large
|
10 |
+
data in particular and has specific optimizations for `numpy` arrays. It is
|
11 |
+
**BSD-licensed**.
|
12 |
+
|
13 |
+
|
14 |
+
==================== ===============================================
|
15 |
+
**Documentation:** https://joblib.readthedocs.io
|
16 |
+
|
17 |
+
**Download:** https://pypi.python.org/pypi/joblib#downloads
|
18 |
+
|
19 |
+
**Source code:** https://github.com/joblib/joblib
|
20 |
+
|
21 |
+
**Report issues:** https://github.com/joblib/joblib/issues
|
22 |
+
==================== ===============================================
|
23 |
+
|
24 |
+
|
25 |
+
Vision
|
26 |
+
--------
|
27 |
+
|
28 |
+
The vision is to provide tools to easily achieve better performance and
|
29 |
+
reproducibility when working with long running jobs.
|
30 |
+
|
31 |
+
* **Avoid computing the same thing twice**: code is often rerun again and
|
32 |
+
again, for instance when prototyping computational-heavy jobs (as in
|
33 |
+
scientific development), but hand-crafted solutions to alleviate this
|
34 |
+
issue are error-prone and often lead to unreproducible results.
|
35 |
+
|
36 |
+
* **Persist to disk transparently**: efficiently persisting
|
37 |
+
arbitrary objects containing large data is hard. Using
|
38 |
+
joblib's caching mechanism avoids hand-written persistence and
|
39 |
+
implicitly links the file on disk to the execution context of
|
40 |
+
the original Python object. As a result, joblib's persistence is
|
41 |
+
good for resuming an application status or computational job, eg
|
42 |
+
after a crash.
|
43 |
+
|
44 |
+
Joblib addresses these problems while **leaving your code and your flow
|
45 |
+
control as unmodified as possible** (no framework, no new paradigms).
|
46 |
+
|
47 |
+
Main features
|
48 |
+
------------------
|
49 |
+
|
50 |
+
1) **Transparent and fast disk-caching of output value:** a memoize or
|
51 |
+
make-like functionality for Python functions that works well for
|
52 |
+
arbitrary Python objects, including very large numpy arrays. Separate
|
53 |
+
persistence and flow-execution logic from domain logic or algorithmic
|
54 |
+
code by writing the operations as a set of steps with well-defined
|
55 |
+
inputs and outputs: Python functions. Joblib can save their
|
56 |
+
computation to disk and rerun it only if necessary::
|
57 |
+
|
58 |
+
>>> from joblib import Memory
|
59 |
+
>>> cachedir = 'your_cache_dir_goes_here'
|
60 |
+
>>> mem = Memory(cachedir)
|
61 |
+
>>> import numpy as np
|
62 |
+
>>> a = np.vander(np.arange(3)).astype(float)
|
63 |
+
>>> square = mem.cache(np.square)
|
64 |
+
>>> b = square(a) # doctest: +ELLIPSIS
|
65 |
+
______________________________________________________________________...
|
66 |
+
[Memory] Calling square...
|
67 |
+
square(array([[0., 0., 1.],
|
68 |
+
[1., 1., 1.],
|
69 |
+
[4., 2., 1.]]))
|
70 |
+
_________________________________________________...square - ...s, 0.0min
|
71 |
+
|
72 |
+
>>> c = square(a)
|
73 |
+
>>> # The above call did not trigger an evaluation
|
74 |
+
|
75 |
+
2) **Embarrassingly parallel helper:** to make it easy to write readable
|
76 |
+
parallel code and debug it quickly::
|
77 |
+
|
78 |
+
>>> from joblib import Parallel, delayed
|
79 |
+
>>> from math import sqrt
|
80 |
+
>>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10))
|
81 |
+
[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
|
82 |
+
|
83 |
+
|
84 |
+
3) **Fast compressed Persistence**: a replacement for pickle to work
|
85 |
+
efficiently on Python objects containing large data (
|
86 |
+
*joblib.dump* & *joblib.load* ).
|
87 |
+
|
88 |
+
..
|
89 |
+
>>> import shutil ; shutil.rmtree(cachedir)
|
90 |
+
|
91 |
+
"""
|
92 |
+
|
93 |
+
# PEP0440 compatible formatted version, see:
|
94 |
+
# https://www.python.org/dev/peps/pep-0440/
|
95 |
+
#
|
96 |
+
# Generic release markers:
|
97 |
+
# X.Y
|
98 |
+
# X.Y.Z # For bugfix releases
|
99 |
+
#
|
100 |
+
# Admissible pre-release markers:
|
101 |
+
# X.YaN # Alpha release
|
102 |
+
# X.YbN # Beta release
|
103 |
+
# X.YrcN # Release Candidate
|
104 |
+
# X.Y # Final release
|
105 |
+
#
|
106 |
+
# Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer.
|
107 |
+
# 'X.Y.dev0' is the canonical version of 'X.Y.dev'
|
108 |
+
#
|
109 |
+
__version__ = '1.4.2'
|
110 |
+
|
111 |
+
|
112 |
+
import os
|
113 |
+
|
114 |
+
from .memory import Memory
|
115 |
+
from .memory import MemorizedResult
|
116 |
+
from .memory import register_store_backend
|
117 |
+
from .memory import expires_after
|
118 |
+
|
119 |
+
from .logger import PrintTime
|
120 |
+
from .logger import Logger
|
121 |
+
|
122 |
+
from .hashing import hash
|
123 |
+
|
124 |
+
from .numpy_pickle import dump
|
125 |
+
from .numpy_pickle import load
|
126 |
+
|
127 |
+
from .compressor import register_compressor
|
128 |
+
|
129 |
+
from .parallel import Parallel
|
130 |
+
from .parallel import delayed
|
131 |
+
from .parallel import cpu_count
|
132 |
+
from .parallel import register_parallel_backend
|
133 |
+
from .parallel import parallel_backend
|
134 |
+
from .parallel import parallel_config
|
135 |
+
from .parallel import effective_n_jobs
|
136 |
+
from ._cloudpickle_wrapper import wrap_non_picklable_objects
|
137 |
+
|
138 |
+
|
139 |
+
__all__ = ['Memory', 'MemorizedResult', 'PrintTime', 'Logger', 'hash', 'dump',
|
140 |
+
'load', 'Parallel', 'delayed', 'cpu_count', 'effective_n_jobs',
|
141 |
+
'register_parallel_backend', 'parallel_backend', 'expires_after',
|
142 |
+
'register_store_backend', 'register_compressor',
|
143 |
+
'wrap_non_picklable_objects', 'parallel_config']
|
144 |
+
|
145 |
+
|
146 |
+
# Workaround issue discovered in intel-openmp 2019.5:
|
147 |
+
# https://github.com/ContinuumIO/anaconda-issues/issues/11294
|
148 |
+
os.environ.setdefault("KMP_INIT_AT_FORK", "FALSE")
|
llmeval-env/lib/python3.10/site-packages/joblib/_dask.py
ADDED
@@ -0,0 +1,379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import print_function, division, absolute_import
|
2 |
+
|
3 |
+
import asyncio
|
4 |
+
import concurrent.futures
|
5 |
+
import contextlib
|
6 |
+
|
7 |
+
import time
|
8 |
+
from uuid import uuid4
|
9 |
+
import weakref
|
10 |
+
|
11 |
+
from .parallel import parallel_config
|
12 |
+
from .parallel import AutoBatchingMixin, ParallelBackendBase
|
13 |
+
|
14 |
+
from ._utils import (
|
15 |
+
_TracebackCapturingWrapper,
|
16 |
+
_retrieve_traceback_capturing_wrapped_call
|
17 |
+
)
|
18 |
+
|
19 |
+
try:
|
20 |
+
import dask
|
21 |
+
import distributed
|
22 |
+
except ImportError:
|
23 |
+
dask = None
|
24 |
+
distributed = None
|
25 |
+
|
26 |
+
if dask is not None and distributed is not None:
|
27 |
+
from dask.utils import funcname
|
28 |
+
from dask.sizeof import sizeof
|
29 |
+
from dask.distributed import (
|
30 |
+
Client,
|
31 |
+
as_completed,
|
32 |
+
get_client,
|
33 |
+
secede,
|
34 |
+
rejoin,
|
35 |
+
)
|
36 |
+
from distributed.utils import thread_state
|
37 |
+
|
38 |
+
try:
|
39 |
+
# asyncio.TimeoutError, Python3-only error thrown by recent versions of
|
40 |
+
# distributed
|
41 |
+
from distributed.utils import TimeoutError as _TimeoutError
|
42 |
+
except ImportError:
|
43 |
+
from tornado.gen import TimeoutError as _TimeoutError
|
44 |
+
|
45 |
+
|
46 |
+
def is_weakrefable(obj):
|
47 |
+
try:
|
48 |
+
weakref.ref(obj)
|
49 |
+
return True
|
50 |
+
except TypeError:
|
51 |
+
return False
|
52 |
+
|
53 |
+
|
54 |
+
class _WeakKeyDictionary:
|
55 |
+
"""A variant of weakref.WeakKeyDictionary for unhashable objects.
|
56 |
+
|
57 |
+
This datastructure is used to store futures for broadcasted data objects
|
58 |
+
such as large numpy arrays or pandas dataframes that are not hashable and
|
59 |
+
therefore cannot be used as keys of traditional python dicts.
|
60 |
+
|
61 |
+
Furthermore using a dict with id(array) as key is not safe because the
|
62 |
+
Python is likely to reuse id of recently collected arrays.
|
63 |
+
"""
|
64 |
+
|
65 |
+
def __init__(self):
|
66 |
+
self._data = {}
|
67 |
+
|
68 |
+
def __getitem__(self, obj):
|
69 |
+
ref, val = self._data[id(obj)]
|
70 |
+
if ref() is not obj:
|
71 |
+
# In case of a race condition with on_destroy.
|
72 |
+
raise KeyError(obj)
|
73 |
+
return val
|
74 |
+
|
75 |
+
def __setitem__(self, obj, value):
|
76 |
+
key = id(obj)
|
77 |
+
try:
|
78 |
+
ref, _ = self._data[key]
|
79 |
+
if ref() is not obj:
|
80 |
+
# In case of race condition with on_destroy.
|
81 |
+
raise KeyError(obj)
|
82 |
+
except KeyError:
|
83 |
+
# Insert the new entry in the mapping along with a weakref
|
84 |
+
# callback to automatically delete the entry from the mapping
|
85 |
+
# as soon as the object used as key is garbage collected.
|
86 |
+
def on_destroy(_):
|
87 |
+
del self._data[key]
|
88 |
+
ref = weakref.ref(obj, on_destroy)
|
89 |
+
self._data[key] = ref, value
|
90 |
+
|
91 |
+
def __len__(self):
|
92 |
+
return len(self._data)
|
93 |
+
|
94 |
+
def clear(self):
|
95 |
+
self._data.clear()
|
96 |
+
|
97 |
+
|
98 |
+
def _funcname(x):
|
99 |
+
try:
|
100 |
+
if isinstance(x, list):
|
101 |
+
x = x[0][0]
|
102 |
+
except Exception:
|
103 |
+
pass
|
104 |
+
return funcname(x)
|
105 |
+
|
106 |
+
|
107 |
+
def _make_tasks_summary(tasks):
|
108 |
+
"""Summarize of list of (func, args, kwargs) function calls"""
|
109 |
+
unique_funcs = {func for func, args, kwargs in tasks}
|
110 |
+
|
111 |
+
if len(unique_funcs) == 1:
|
112 |
+
mixed = False
|
113 |
+
else:
|
114 |
+
mixed = True
|
115 |
+
return len(tasks), mixed, _funcname(tasks)
|
116 |
+
|
117 |
+
|
118 |
+
class Batch:
|
119 |
+
"""dask-compatible wrapper that executes a batch of tasks"""
|
120 |
+
def __init__(self, tasks):
|
121 |
+
# collect some metadata from the tasks to ease Batch calls
|
122 |
+
# introspection when debugging
|
123 |
+
self._num_tasks, self._mixed, self._funcname = _make_tasks_summary(
|
124 |
+
tasks
|
125 |
+
)
|
126 |
+
|
127 |
+
def __call__(self, tasks=None):
|
128 |
+
results = []
|
129 |
+
with parallel_config(backend='dask'):
|
130 |
+
for func, args, kwargs in tasks:
|
131 |
+
results.append(func(*args, **kwargs))
|
132 |
+
return results
|
133 |
+
|
134 |
+
def __repr__(self):
|
135 |
+
descr = f"batch_of_{self._funcname}_{self._num_tasks}_calls"
|
136 |
+
if self._mixed:
|
137 |
+
descr = "mixed_" + descr
|
138 |
+
return descr
|
139 |
+
|
140 |
+
|
141 |
+
def _joblib_probe_task():
|
142 |
+
# Noop used by the joblib connector to probe when workers are ready.
|
143 |
+
pass
|
144 |
+
|
145 |
+
|
146 |
+
class DaskDistributedBackend(AutoBatchingMixin, ParallelBackendBase):
|
147 |
+
MIN_IDEAL_BATCH_DURATION = 0.2
|
148 |
+
MAX_IDEAL_BATCH_DURATION = 1.0
|
149 |
+
supports_retrieve_callback = True
|
150 |
+
default_n_jobs = -1
|
151 |
+
|
152 |
+
def __init__(self, scheduler_host=None, scatter=None,
|
153 |
+
client=None, loop=None, wait_for_workers_timeout=10,
|
154 |
+
**submit_kwargs):
|
155 |
+
super().__init__()
|
156 |
+
|
157 |
+
if distributed is None:
|
158 |
+
msg = ("You are trying to use 'dask' as a joblib parallel backend "
|
159 |
+
"but dask is not installed. Please install dask "
|
160 |
+
"to fix this error.")
|
161 |
+
raise ValueError(msg)
|
162 |
+
|
163 |
+
if client is None:
|
164 |
+
if scheduler_host:
|
165 |
+
client = Client(scheduler_host, loop=loop,
|
166 |
+
set_as_default=False)
|
167 |
+
else:
|
168 |
+
try:
|
169 |
+
client = get_client()
|
170 |
+
except ValueError as e:
|
171 |
+
msg = ("To use Joblib with Dask first create a Dask Client"
|
172 |
+
"\n\n"
|
173 |
+
" from dask.distributed import Client\n"
|
174 |
+
" client = Client()\n"
|
175 |
+
"or\n"
|
176 |
+
" client = Client('scheduler-address:8786')")
|
177 |
+
raise ValueError(msg) from e
|
178 |
+
|
179 |
+
self.client = client
|
180 |
+
|
181 |
+
if scatter is not None and not isinstance(scatter, (list, tuple)):
|
182 |
+
raise TypeError("scatter must be a list/tuple, got "
|
183 |
+
"`%s`" % type(scatter).__name__)
|
184 |
+
|
185 |
+
if scatter is not None and len(scatter) > 0:
|
186 |
+
# Keep a reference to the scattered data to keep the ids the same
|
187 |
+
self._scatter = list(scatter)
|
188 |
+
scattered = self.client.scatter(scatter, broadcast=True)
|
189 |
+
self.data_futures = {id(x): f for x, f in zip(scatter, scattered)}
|
190 |
+
else:
|
191 |
+
self._scatter = []
|
192 |
+
self.data_futures = {}
|
193 |
+
self.wait_for_workers_timeout = wait_for_workers_timeout
|
194 |
+
self.submit_kwargs = submit_kwargs
|
195 |
+
self.waiting_futures = as_completed(
|
196 |
+
[],
|
197 |
+
loop=client.loop,
|
198 |
+
with_results=True,
|
199 |
+
raise_errors=False
|
200 |
+
)
|
201 |
+
self._results = {}
|
202 |
+
self._callbacks = {}
|
203 |
+
|
204 |
+
async def _collect(self):
|
205 |
+
while self._continue:
|
206 |
+
async for future, result in self.waiting_futures:
|
207 |
+
cf_future = self._results.pop(future)
|
208 |
+
callback = self._callbacks.pop(future)
|
209 |
+
if future.status == "error":
|
210 |
+
typ, exc, tb = result
|
211 |
+
cf_future.set_exception(exc)
|
212 |
+
else:
|
213 |
+
cf_future.set_result(result)
|
214 |
+
callback(result)
|
215 |
+
await asyncio.sleep(0.01)
|
216 |
+
|
217 |
+
def __reduce__(self):
|
218 |
+
return (DaskDistributedBackend, ())
|
219 |
+
|
220 |
+
def get_nested_backend(self):
|
221 |
+
return DaskDistributedBackend(client=self.client), -1
|
222 |
+
|
223 |
+
def configure(self, n_jobs=1, parallel=None, **backend_args):
|
224 |
+
self.parallel = parallel
|
225 |
+
return self.effective_n_jobs(n_jobs)
|
226 |
+
|
227 |
+
def start_call(self):
|
228 |
+
self._continue = True
|
229 |
+
self.client.loop.add_callback(self._collect)
|
230 |
+
self.call_data_futures = _WeakKeyDictionary()
|
231 |
+
|
232 |
+
def stop_call(self):
|
233 |
+
# The explicit call to clear is required to break a cycling reference
|
234 |
+
# to the futures.
|
235 |
+
self._continue = False
|
236 |
+
# wait for the future collection routine (self._backend._collect) to
|
237 |
+
# finish in order to limit asyncio warnings due to aborting _collect
|
238 |
+
# during a following backend termination call
|
239 |
+
time.sleep(0.01)
|
240 |
+
self.call_data_futures.clear()
|
241 |
+
|
242 |
+
def effective_n_jobs(self, n_jobs):
|
243 |
+
effective_n_jobs = sum(self.client.ncores().values())
|
244 |
+
if effective_n_jobs != 0 or not self.wait_for_workers_timeout:
|
245 |
+
return effective_n_jobs
|
246 |
+
|
247 |
+
# If there is no worker, schedule a probe task to wait for the workers
|
248 |
+
# to come up and be available. If the dask cluster is in adaptive mode
|
249 |
+
# task might cause the cluster to provision some workers.
|
250 |
+
try:
|
251 |
+
self.client.submit(_joblib_probe_task).result(
|
252 |
+
timeout=self.wait_for_workers_timeout
|
253 |
+
)
|
254 |
+
except _TimeoutError as e:
|
255 |
+
error_msg = (
|
256 |
+
"DaskDistributedBackend has no worker after {} seconds. "
|
257 |
+
"Make sure that workers are started and can properly connect "
|
258 |
+
"to the scheduler and increase the joblib/dask connection "
|
259 |
+
"timeout with:\n\n"
|
260 |
+
"parallel_config(backend='dask', wait_for_workers_timeout={})"
|
261 |
+
).format(self.wait_for_workers_timeout,
|
262 |
+
max(10, 2 * self.wait_for_workers_timeout))
|
263 |
+
raise TimeoutError(error_msg) from e
|
264 |
+
return sum(self.client.ncores().values())
|
265 |
+
|
266 |
+
async def _to_func_args(self, func):
|
267 |
+
itemgetters = dict()
|
268 |
+
|
269 |
+
# Futures that are dynamically generated during a single call to
|
270 |
+
# Parallel.__call__.
|
271 |
+
call_data_futures = getattr(self, 'call_data_futures', None)
|
272 |
+
|
273 |
+
async def maybe_to_futures(args):
|
274 |
+
out = []
|
275 |
+
for arg in args:
|
276 |
+
arg_id = id(arg)
|
277 |
+
if arg_id in itemgetters:
|
278 |
+
out.append(itemgetters[arg_id])
|
279 |
+
continue
|
280 |
+
|
281 |
+
f = self.data_futures.get(arg_id, None)
|
282 |
+
if f is None and call_data_futures is not None:
|
283 |
+
try:
|
284 |
+
f = await call_data_futures[arg]
|
285 |
+
except KeyError:
|
286 |
+
pass
|
287 |
+
if f is None:
|
288 |
+
if is_weakrefable(arg) and sizeof(arg) > 1e3:
|
289 |
+
# Automatically scatter large objects to some of
|
290 |
+
# the workers to avoid duplicated data transfers.
|
291 |
+
# Rely on automated inter-worker data stealing if
|
292 |
+
# more workers need to reuse this data
|
293 |
+
# concurrently.
|
294 |
+
# set hash=False - nested scatter calls (i.e
|
295 |
+
# calling client.scatter inside a dask worker)
|
296 |
+
# using hash=True often raise CancelledError,
|
297 |
+
# see dask/distributed#3703
|
298 |
+
_coro = self.client.scatter(
|
299 |
+
arg,
|
300 |
+
asynchronous=True,
|
301 |
+
hash=False
|
302 |
+
)
|
303 |
+
# Centralize the scattering of identical arguments
|
304 |
+
# between concurrent apply_async callbacks by
|
305 |
+
# exposing the running coroutine in
|
306 |
+
# call_data_futures before it completes.
|
307 |
+
t = asyncio.Task(_coro)
|
308 |
+
call_data_futures[arg] = t
|
309 |
+
|
310 |
+
f = await t
|
311 |
+
|
312 |
+
if f is not None:
|
313 |
+
out.append(f)
|
314 |
+
else:
|
315 |
+
out.append(arg)
|
316 |
+
return out
|
317 |
+
|
318 |
+
tasks = []
|
319 |
+
for f, args, kwargs in func.items:
|
320 |
+
args = list(await maybe_to_futures(args))
|
321 |
+
kwargs = dict(zip(kwargs.keys(),
|
322 |
+
await maybe_to_futures(kwargs.values())))
|
323 |
+
tasks.append((f, args, kwargs))
|
324 |
+
|
325 |
+
return (Batch(tasks), tasks)
|
326 |
+
|
327 |
+
def apply_async(self, func, callback=None):
|
328 |
+
|
329 |
+
cf_future = concurrent.futures.Future()
|
330 |
+
cf_future.get = cf_future.result # achieve AsyncResult API
|
331 |
+
|
332 |
+
async def f(func, callback):
|
333 |
+
batch, tasks = await self._to_func_args(func)
|
334 |
+
key = f'{repr(batch)}-{uuid4().hex}'
|
335 |
+
|
336 |
+
dask_future = self.client.submit(
|
337 |
+
_TracebackCapturingWrapper(batch),
|
338 |
+
tasks=tasks,
|
339 |
+
key=key,
|
340 |
+
**self.submit_kwargs
|
341 |
+
)
|
342 |
+
self.waiting_futures.add(dask_future)
|
343 |
+
self._callbacks[dask_future] = callback
|
344 |
+
self._results[dask_future] = cf_future
|
345 |
+
|
346 |
+
self.client.loop.add_callback(f, func, callback)
|
347 |
+
|
348 |
+
return cf_future
|
349 |
+
|
350 |
+
def retrieve_result_callback(self, out):
|
351 |
+
return _retrieve_traceback_capturing_wrapped_call(out)
|
352 |
+
|
353 |
+
def abort_everything(self, ensure_ready=True):
|
354 |
+
""" Tell the client to cancel any task submitted via this instance
|
355 |
+
|
356 |
+
joblib.Parallel will never access those results
|
357 |
+
"""
|
358 |
+
with self.waiting_futures.lock:
|
359 |
+
self.waiting_futures.futures.clear()
|
360 |
+
while not self.waiting_futures.queue.empty():
|
361 |
+
self.waiting_futures.queue.get()
|
362 |
+
|
363 |
+
@contextlib.contextmanager
|
364 |
+
def retrieval_context(self):
|
365 |
+
"""Override ParallelBackendBase.retrieval_context to avoid deadlocks.
|
366 |
+
|
367 |
+
This removes thread from the worker's thread pool (using 'secede').
|
368 |
+
Seceding avoids deadlock in nested parallelism settings.
|
369 |
+
"""
|
370 |
+
# See 'joblib.Parallel.__call__' and 'joblib.Parallel.retrieve' for how
|
371 |
+
# this is used.
|
372 |
+
if hasattr(thread_state, 'execution_state'):
|
373 |
+
# we are in a worker. Secede to avoid deadlock.
|
374 |
+
secede()
|
375 |
+
|
376 |
+
yield
|
377 |
+
|
378 |
+
if hasattr(thread_state, 'execution_state'):
|
379 |
+
rejoin()
|
llmeval-env/lib/python3.10/site-packages/joblib/_store_backends.py
ADDED
@@ -0,0 +1,474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Storage providers backends for Memory caching."""
|
2 |
+
|
3 |
+
from pickle import PicklingError
|
4 |
+
import re
|
5 |
+
import os
|
6 |
+
import os.path
|
7 |
+
import datetime
|
8 |
+
import json
|
9 |
+
import shutil
|
10 |
+
import time
|
11 |
+
import warnings
|
12 |
+
import collections
|
13 |
+
import operator
|
14 |
+
import threading
|
15 |
+
from abc import ABCMeta, abstractmethod
|
16 |
+
|
17 |
+
from .backports import concurrency_safe_rename
|
18 |
+
from .disk import mkdirp, memstr_to_bytes, rm_subdirs
|
19 |
+
from .logger import format_time
|
20 |
+
from . import numpy_pickle
|
21 |
+
|
22 |
+
CacheItemInfo = collections.namedtuple('CacheItemInfo',
|
23 |
+
'path size last_access')
|
24 |
+
|
25 |
+
|
26 |
+
class CacheWarning(Warning):
|
27 |
+
"""Warning to capture dump failures except for PicklingError."""
|
28 |
+
pass
|
29 |
+
|
30 |
+
|
31 |
+
def concurrency_safe_write(object_to_write, filename, write_func):
|
32 |
+
"""Writes an object into a unique file in a concurrency-safe way."""
|
33 |
+
thread_id = id(threading.current_thread())
|
34 |
+
temporary_filename = '{}.thread-{}-pid-{}'.format(
|
35 |
+
filename, thread_id, os.getpid())
|
36 |
+
write_func(object_to_write, temporary_filename)
|
37 |
+
|
38 |
+
return temporary_filename
|
39 |
+
|
40 |
+
|
41 |
+
class StoreBackendBase(metaclass=ABCMeta):
|
42 |
+
"""Helper Abstract Base Class which defines all methods that
|
43 |
+
a StorageBackend must implement."""
|
44 |
+
|
45 |
+
location = None
|
46 |
+
|
47 |
+
@abstractmethod
|
48 |
+
def _open_item(self, f, mode):
|
49 |
+
"""Opens an item on the store and return a file-like object.
|
50 |
+
|
51 |
+
This method is private and only used by the StoreBackendMixin object.
|
52 |
+
|
53 |
+
Parameters
|
54 |
+
----------
|
55 |
+
f: a file-like object
|
56 |
+
The file-like object where an item is stored and retrieved
|
57 |
+
mode: string, optional
|
58 |
+
the mode in which the file-like object is opened allowed valued are
|
59 |
+
'rb', 'wb'
|
60 |
+
|
61 |
+
Returns
|
62 |
+
-------
|
63 |
+
a file-like object
|
64 |
+
"""
|
65 |
+
|
66 |
+
@abstractmethod
|
67 |
+
def _item_exists(self, location):
|
68 |
+
"""Checks if an item location exists in the store.
|
69 |
+
|
70 |
+
This method is private and only used by the StoreBackendMixin object.
|
71 |
+
|
72 |
+
Parameters
|
73 |
+
----------
|
74 |
+
location: string
|
75 |
+
The location of an item. On a filesystem, this corresponds to the
|
76 |
+
absolute path, including the filename, of a file.
|
77 |
+
|
78 |
+
Returns
|
79 |
+
-------
|
80 |
+
True if the item exists, False otherwise
|
81 |
+
"""
|
82 |
+
|
83 |
+
@abstractmethod
|
84 |
+
def _move_item(self, src, dst):
|
85 |
+
"""Moves an item from src to dst in the store.
|
86 |
+
|
87 |
+
This method is private and only used by the StoreBackendMixin object.
|
88 |
+
|
89 |
+
Parameters
|
90 |
+
----------
|
91 |
+
src: string
|
92 |
+
The source location of an item
|
93 |
+
dst: string
|
94 |
+
The destination location of an item
|
95 |
+
"""
|
96 |
+
|
97 |
+
@abstractmethod
|
98 |
+
def create_location(self, location):
|
99 |
+
"""Creates a location on the store.
|
100 |
+
|
101 |
+
Parameters
|
102 |
+
----------
|
103 |
+
location: string
|
104 |
+
The location in the store. On a filesystem, this corresponds to a
|
105 |
+
directory.
|
106 |
+
"""
|
107 |
+
|
108 |
+
@abstractmethod
|
109 |
+
def clear_location(self, location):
|
110 |
+
"""Clears a location on the store.
|
111 |
+
|
112 |
+
Parameters
|
113 |
+
----------
|
114 |
+
location: string
|
115 |
+
The location in the store. On a filesystem, this corresponds to a
|
116 |
+
directory or a filename absolute path
|
117 |
+
"""
|
118 |
+
|
119 |
+
@abstractmethod
|
120 |
+
def get_items(self):
|
121 |
+
"""Returns the whole list of items available in the store.
|
122 |
+
|
123 |
+
Returns
|
124 |
+
-------
|
125 |
+
The list of items identified by their ids (e.g filename in a
|
126 |
+
filesystem).
|
127 |
+
"""
|
128 |
+
|
129 |
+
@abstractmethod
|
130 |
+
def configure(self, location, verbose=0, backend_options=dict()):
|
131 |
+
"""Configures the store.
|
132 |
+
|
133 |
+
Parameters
|
134 |
+
----------
|
135 |
+
location: string
|
136 |
+
The base location used by the store. On a filesystem, this
|
137 |
+
corresponds to a directory.
|
138 |
+
verbose: int
|
139 |
+
The level of verbosity of the store
|
140 |
+
backend_options: dict
|
141 |
+
Contains a dictionary of named parameters used to configure the
|
142 |
+
store backend.
|
143 |
+
"""
|
144 |
+
|
145 |
+
|
146 |
+
class StoreBackendMixin(object):
|
147 |
+
"""Class providing all logic for managing the store in a generic way.
|
148 |
+
|
149 |
+
The StoreBackend subclass has to implement 3 methods: create_location,
|
150 |
+
clear_location and configure. The StoreBackend also has to provide
|
151 |
+
a private _open_item, _item_exists and _move_item methods. The _open_item
|
152 |
+
method has to have the same signature as the builtin open and return a
|
153 |
+
file-like object.
|
154 |
+
"""
|
155 |
+
|
156 |
+
def load_item(self, call_id, verbose=1, timestamp=None, metadata=None):
|
157 |
+
"""Load an item from the store given its id as a list of str."""
|
158 |
+
full_path = os.path.join(self.location, *call_id)
|
159 |
+
|
160 |
+
if verbose > 1:
|
161 |
+
ts_string = ('{: <16}'.format(format_time(time.time() - timestamp))
|
162 |
+
if timestamp is not None else '')
|
163 |
+
signature = os.path.basename(call_id[0])
|
164 |
+
if metadata is not None and 'input_args' in metadata:
|
165 |
+
kwargs = ', '.join('{}={}'.format(*item)
|
166 |
+
for item in metadata['input_args'].items())
|
167 |
+
signature += '({})'.format(kwargs)
|
168 |
+
msg = '[Memory]{}: Loading {}'.format(ts_string, signature)
|
169 |
+
if verbose < 10:
|
170 |
+
print('{0}...'.format(msg))
|
171 |
+
else:
|
172 |
+
print('{0} from {1}'.format(msg, full_path))
|
173 |
+
|
174 |
+
mmap_mode = (None if not hasattr(self, 'mmap_mode')
|
175 |
+
else self.mmap_mode)
|
176 |
+
|
177 |
+
filename = os.path.join(full_path, 'output.pkl')
|
178 |
+
if not self._item_exists(filename):
|
179 |
+
raise KeyError("Non-existing item (may have been "
|
180 |
+
"cleared).\nFile %s does not exist" % filename)
|
181 |
+
|
182 |
+
# file-like object cannot be used when mmap_mode is set
|
183 |
+
if mmap_mode is None:
|
184 |
+
with self._open_item(filename, "rb") as f:
|
185 |
+
item = numpy_pickle.load(f)
|
186 |
+
else:
|
187 |
+
item = numpy_pickle.load(filename, mmap_mode=mmap_mode)
|
188 |
+
return item
|
189 |
+
|
190 |
+
def dump_item(self, call_id, item, verbose=1):
|
191 |
+
"""Dump an item in the store at the id given as a list of str."""
|
192 |
+
try:
|
193 |
+
item_path = os.path.join(self.location, *call_id)
|
194 |
+
if not self._item_exists(item_path):
|
195 |
+
self.create_location(item_path)
|
196 |
+
filename = os.path.join(item_path, 'output.pkl')
|
197 |
+
if verbose > 10:
|
198 |
+
print('Persisting in %s' % item_path)
|
199 |
+
|
200 |
+
def write_func(to_write, dest_filename):
|
201 |
+
with self._open_item(dest_filename, "wb") as f:
|
202 |
+
try:
|
203 |
+
numpy_pickle.dump(to_write, f, compress=self.compress)
|
204 |
+
except PicklingError as e:
|
205 |
+
# TODO(1.5) turn into error
|
206 |
+
warnings.warn(
|
207 |
+
"Unable to cache to disk: failed to pickle "
|
208 |
+
"output. In version 1.5 this will raise an "
|
209 |
+
f"exception. Exception: {e}.",
|
210 |
+
FutureWarning
|
211 |
+
)
|
212 |
+
|
213 |
+
self._concurrency_safe_write(item, filename, write_func)
|
214 |
+
except Exception as e: # noqa: E722
|
215 |
+
warnings.warn(
|
216 |
+
"Unable to cache to disk. Possibly a race condition in the "
|
217 |
+
f"creation of the directory. Exception: {e}.",
|
218 |
+
CacheWarning
|
219 |
+
)
|
220 |
+
|
221 |
+
def clear_item(self, call_id):
|
222 |
+
"""Clear the item at the id, given as a list of str."""
|
223 |
+
item_path = os.path.join(self.location, *call_id)
|
224 |
+
if self._item_exists(item_path):
|
225 |
+
self.clear_location(item_path)
|
226 |
+
|
227 |
+
def contains_item(self, call_id):
|
228 |
+
"""Check if there is an item at the id, given as a list of str."""
|
229 |
+
item_path = os.path.join(self.location, *call_id)
|
230 |
+
filename = os.path.join(item_path, 'output.pkl')
|
231 |
+
|
232 |
+
return self._item_exists(filename)
|
233 |
+
|
234 |
+
def get_item_info(self, call_id):
|
235 |
+
"""Return information about item."""
|
236 |
+
return {'location': os.path.join(self.location, *call_id)}
|
237 |
+
|
238 |
+
def get_metadata(self, call_id):
|
239 |
+
"""Return actual metadata of an item."""
|
240 |
+
try:
|
241 |
+
item_path = os.path.join(self.location, *call_id)
|
242 |
+
filename = os.path.join(item_path, 'metadata.json')
|
243 |
+
with self._open_item(filename, 'rb') as f:
|
244 |
+
return json.loads(f.read().decode('utf-8'))
|
245 |
+
except: # noqa: E722
|
246 |
+
return {}
|
247 |
+
|
248 |
+
def store_metadata(self, call_id, metadata):
|
249 |
+
"""Store metadata of a computation."""
|
250 |
+
try:
|
251 |
+
item_path = os.path.join(self.location, *call_id)
|
252 |
+
self.create_location(item_path)
|
253 |
+
filename = os.path.join(item_path, 'metadata.json')
|
254 |
+
|
255 |
+
def write_func(to_write, dest_filename):
|
256 |
+
with self._open_item(dest_filename, "wb") as f:
|
257 |
+
f.write(json.dumps(to_write).encode('utf-8'))
|
258 |
+
|
259 |
+
self._concurrency_safe_write(metadata, filename, write_func)
|
260 |
+
except: # noqa: E722
|
261 |
+
pass
|
262 |
+
|
263 |
+
def contains_path(self, call_id):
|
264 |
+
"""Check cached function is available in store."""
|
265 |
+
func_path = os.path.join(self.location, *call_id)
|
266 |
+
return self.object_exists(func_path)
|
267 |
+
|
268 |
+
def clear_path(self, call_id):
|
269 |
+
"""Clear all items with a common path in the store."""
|
270 |
+
func_path = os.path.join(self.location, *call_id)
|
271 |
+
if self._item_exists(func_path):
|
272 |
+
self.clear_location(func_path)
|
273 |
+
|
274 |
+
def store_cached_func_code(self, call_id, func_code=None):
|
275 |
+
"""Store the code of the cached function."""
|
276 |
+
func_path = os.path.join(self.location, *call_id)
|
277 |
+
if not self._item_exists(func_path):
|
278 |
+
self.create_location(func_path)
|
279 |
+
|
280 |
+
if func_code is not None:
|
281 |
+
filename = os.path.join(func_path, "func_code.py")
|
282 |
+
with self._open_item(filename, 'wb') as f:
|
283 |
+
f.write(func_code.encode('utf-8'))
|
284 |
+
|
285 |
+
def get_cached_func_code(self, call_id):
|
286 |
+
"""Store the code of the cached function."""
|
287 |
+
filename = os.path.join(self.location, *call_id, 'func_code.py')
|
288 |
+
try:
|
289 |
+
with self._open_item(filename, 'rb') as f:
|
290 |
+
return f.read().decode('utf-8')
|
291 |
+
except: # noqa: E722
|
292 |
+
raise
|
293 |
+
|
294 |
+
def get_cached_func_info(self, call_id):
|
295 |
+
"""Return information related to the cached function if it exists."""
|
296 |
+
return {'location': os.path.join(self.location, *call_id)}
|
297 |
+
|
298 |
+
def clear(self):
|
299 |
+
"""Clear the whole store content."""
|
300 |
+
self.clear_location(self.location)
|
301 |
+
|
302 |
+
def enforce_store_limits(
|
303 |
+
self, bytes_limit, items_limit=None, age_limit=None
|
304 |
+
):
|
305 |
+
"""
|
306 |
+
Remove the store's oldest files to enforce item, byte, and age limits.
|
307 |
+
"""
|
308 |
+
items_to_delete = self._get_items_to_delete(
|
309 |
+
bytes_limit, items_limit, age_limit
|
310 |
+
)
|
311 |
+
|
312 |
+
for item in items_to_delete:
|
313 |
+
if self.verbose > 10:
|
314 |
+
print('Deleting item {0}'.format(item))
|
315 |
+
try:
|
316 |
+
self.clear_location(item.path)
|
317 |
+
except OSError:
|
318 |
+
# Even with ignore_errors=True shutil.rmtree can raise OSError
|
319 |
+
# with:
|
320 |
+
# [Errno 116] Stale file handle if another process has deleted
|
321 |
+
# the folder already.
|
322 |
+
pass
|
323 |
+
|
324 |
+
def _get_items_to_delete(
|
325 |
+
self, bytes_limit, items_limit=None, age_limit=None
|
326 |
+
):
|
327 |
+
"""
|
328 |
+
Get items to delete to keep the store under size, file, & age limits.
|
329 |
+
"""
|
330 |
+
if isinstance(bytes_limit, str):
|
331 |
+
bytes_limit = memstr_to_bytes(bytes_limit)
|
332 |
+
|
333 |
+
items = self.get_items()
|
334 |
+
if not items:
|
335 |
+
return []
|
336 |
+
|
337 |
+
size = sum(item.size for item in items)
|
338 |
+
|
339 |
+
if bytes_limit is not None:
|
340 |
+
to_delete_size = size - bytes_limit
|
341 |
+
else:
|
342 |
+
to_delete_size = 0
|
343 |
+
|
344 |
+
if items_limit is not None:
|
345 |
+
to_delete_items = len(items) - items_limit
|
346 |
+
else:
|
347 |
+
to_delete_items = 0
|
348 |
+
|
349 |
+
if age_limit is not None:
|
350 |
+
older_item = min(item.last_access for item in items)
|
351 |
+
deadline = datetime.datetime.now() - age_limit
|
352 |
+
else:
|
353 |
+
deadline = None
|
354 |
+
|
355 |
+
if (
|
356 |
+
to_delete_size <= 0 and to_delete_items <= 0
|
357 |
+
and (deadline is None or older_item > deadline)
|
358 |
+
):
|
359 |
+
return []
|
360 |
+
|
361 |
+
# We want to delete first the cache items that were accessed a
|
362 |
+
# long time ago
|
363 |
+
items.sort(key=operator.attrgetter('last_access'))
|
364 |
+
|
365 |
+
items_to_delete = []
|
366 |
+
size_so_far = 0
|
367 |
+
items_so_far = 0
|
368 |
+
|
369 |
+
for item in items:
|
370 |
+
if (
|
371 |
+
(size_so_far >= to_delete_size)
|
372 |
+
and items_so_far >= to_delete_items
|
373 |
+
and (deadline is None or deadline < item.last_access)
|
374 |
+
):
|
375 |
+
break
|
376 |
+
|
377 |
+
items_to_delete.append(item)
|
378 |
+
size_so_far += item.size
|
379 |
+
items_so_far += 1
|
380 |
+
|
381 |
+
return items_to_delete
|
382 |
+
|
383 |
+
def _concurrency_safe_write(self, to_write, filename, write_func):
|
384 |
+
"""Writes an object into a file in a concurrency-safe way."""
|
385 |
+
temporary_filename = concurrency_safe_write(to_write,
|
386 |
+
filename, write_func)
|
387 |
+
self._move_item(temporary_filename, filename)
|
388 |
+
|
389 |
+
def __repr__(self):
|
390 |
+
"""Printable representation of the store location."""
|
391 |
+
return '{class_name}(location="{location}")'.format(
|
392 |
+
class_name=self.__class__.__name__, location=self.location)
|
393 |
+
|
394 |
+
|
395 |
+
class FileSystemStoreBackend(StoreBackendBase, StoreBackendMixin):
|
396 |
+
"""A StoreBackend used with local or network file systems."""
|
397 |
+
|
398 |
+
_open_item = staticmethod(open)
|
399 |
+
_item_exists = staticmethod(os.path.exists)
|
400 |
+
_move_item = staticmethod(concurrency_safe_rename)
|
401 |
+
|
402 |
+
def clear_location(self, location):
|
403 |
+
"""Delete location on store."""
|
404 |
+
if (location == self.location):
|
405 |
+
rm_subdirs(location)
|
406 |
+
else:
|
407 |
+
shutil.rmtree(location, ignore_errors=True)
|
408 |
+
|
409 |
+
def create_location(self, location):
|
410 |
+
"""Create object location on store"""
|
411 |
+
mkdirp(location)
|
412 |
+
|
413 |
+
def get_items(self):
|
414 |
+
"""Returns the whole list of items available in the store."""
|
415 |
+
items = []
|
416 |
+
|
417 |
+
for dirpath, _, filenames in os.walk(self.location):
|
418 |
+
is_cache_hash_dir = re.match('[a-f0-9]{32}',
|
419 |
+
os.path.basename(dirpath))
|
420 |
+
|
421 |
+
if is_cache_hash_dir:
|
422 |
+
output_filename = os.path.join(dirpath, 'output.pkl')
|
423 |
+
try:
|
424 |
+
last_access = os.path.getatime(output_filename)
|
425 |
+
except OSError:
|
426 |
+
try:
|
427 |
+
last_access = os.path.getatime(dirpath)
|
428 |
+
except OSError:
|
429 |
+
# The directory has already been deleted
|
430 |
+
continue
|
431 |
+
|
432 |
+
last_access = datetime.datetime.fromtimestamp(last_access)
|
433 |
+
try:
|
434 |
+
full_filenames = [os.path.join(dirpath, fn)
|
435 |
+
for fn in filenames]
|
436 |
+
dirsize = sum(os.path.getsize(fn)
|
437 |
+
for fn in full_filenames)
|
438 |
+
except OSError:
|
439 |
+
# Either output_filename or one of the files in
|
440 |
+
# dirpath does not exist any more. We assume this
|
441 |
+
# directory is being cleaned by another process already
|
442 |
+
continue
|
443 |
+
|
444 |
+
items.append(CacheItemInfo(dirpath, dirsize,
|
445 |
+
last_access))
|
446 |
+
|
447 |
+
return items
|
448 |
+
|
449 |
+
def configure(self, location, verbose=1, backend_options=None):
|
450 |
+
"""Configure the store backend.
|
451 |
+
|
452 |
+
For this backend, valid store options are 'compress' and 'mmap_mode'
|
453 |
+
"""
|
454 |
+
if backend_options is None:
|
455 |
+
backend_options = {}
|
456 |
+
|
457 |
+
# setup location directory
|
458 |
+
self.location = location
|
459 |
+
if not os.path.exists(self.location):
|
460 |
+
mkdirp(self.location)
|
461 |
+
|
462 |
+
# item can be stored compressed for faster I/O
|
463 |
+
self.compress = backend_options.get('compress', False)
|
464 |
+
|
465 |
+
# FileSystemStoreBackend can be used with mmap_mode options under
|
466 |
+
# certain conditions.
|
467 |
+
mmap_mode = backend_options.get('mmap_mode')
|
468 |
+
if self.compress and mmap_mode is not None:
|
469 |
+
warnings.warn('Compressed items cannot be memmapped in a '
|
470 |
+
'filesystem store. Option will be ignored.',
|
471 |
+
stacklevel=2)
|
472 |
+
|
473 |
+
self.mmap_mode = mmap_mode
|
474 |
+
self.verbose = verbose
|
llmeval-env/lib/python3.10/site-packages/joblib/compressor.py
ADDED
@@ -0,0 +1,570 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Classes and functions for managing compressors."""
|
2 |
+
|
3 |
+
import io
|
4 |
+
import zlib
|
5 |
+
from joblib.backports import LooseVersion
|
6 |
+
|
7 |
+
try:
|
8 |
+
from threading import RLock
|
9 |
+
except ImportError:
|
10 |
+
from dummy_threading import RLock
|
11 |
+
|
12 |
+
try:
|
13 |
+
import bz2
|
14 |
+
except ImportError:
|
15 |
+
bz2 = None
|
16 |
+
|
17 |
+
try:
|
18 |
+
import lz4
|
19 |
+
from lz4.frame import LZ4FrameFile
|
20 |
+
except ImportError:
|
21 |
+
lz4 = None
|
22 |
+
|
23 |
+
try:
|
24 |
+
import lzma
|
25 |
+
except ImportError:
|
26 |
+
lzma = None
|
27 |
+
|
28 |
+
|
29 |
+
LZ4_NOT_INSTALLED_ERROR = ('LZ4 is not installed. Install it with pip: '
|
30 |
+
'https://python-lz4.readthedocs.io/')
|
31 |
+
|
32 |
+
# Registered compressors
|
33 |
+
_COMPRESSORS = {}
|
34 |
+
|
35 |
+
# Magic numbers of supported compression file formats.
|
36 |
+
_ZFILE_PREFIX = b'ZF' # used with pickle files created before 0.9.3.
|
37 |
+
_ZLIB_PREFIX = b'\x78'
|
38 |
+
_GZIP_PREFIX = b'\x1f\x8b'
|
39 |
+
_BZ2_PREFIX = b'BZ'
|
40 |
+
_XZ_PREFIX = b'\xfd\x37\x7a\x58\x5a'
|
41 |
+
_LZMA_PREFIX = b'\x5d\x00'
|
42 |
+
_LZ4_PREFIX = b'\x04\x22\x4D\x18'
|
43 |
+
|
44 |
+
|
45 |
+
def register_compressor(compressor_name, compressor,
|
46 |
+
force=False):
|
47 |
+
"""Register a new compressor.
|
48 |
+
|
49 |
+
Parameters
|
50 |
+
----------
|
51 |
+
compressor_name: str.
|
52 |
+
The name of the compressor.
|
53 |
+
compressor: CompressorWrapper
|
54 |
+
An instance of a 'CompressorWrapper'.
|
55 |
+
"""
|
56 |
+
global _COMPRESSORS
|
57 |
+
if not isinstance(compressor_name, str):
|
58 |
+
raise ValueError("Compressor name should be a string, "
|
59 |
+
"'{}' given.".format(compressor_name))
|
60 |
+
|
61 |
+
if not isinstance(compressor, CompressorWrapper):
|
62 |
+
raise ValueError("Compressor should implement the CompressorWrapper "
|
63 |
+
"interface, '{}' given.".format(compressor))
|
64 |
+
|
65 |
+
if (compressor.fileobj_factory is not None and
|
66 |
+
(not hasattr(compressor.fileobj_factory, 'read') or
|
67 |
+
not hasattr(compressor.fileobj_factory, 'write') or
|
68 |
+
not hasattr(compressor.fileobj_factory, 'seek') or
|
69 |
+
not hasattr(compressor.fileobj_factory, 'tell'))):
|
70 |
+
raise ValueError("Compressor 'fileobj_factory' attribute should "
|
71 |
+
"implement the file object interface, '{}' given."
|
72 |
+
.format(compressor.fileobj_factory))
|
73 |
+
|
74 |
+
if compressor_name in _COMPRESSORS and not force:
|
75 |
+
raise ValueError("Compressor '{}' already registered."
|
76 |
+
.format(compressor_name))
|
77 |
+
|
78 |
+
_COMPRESSORS[compressor_name] = compressor
|
79 |
+
|
80 |
+
|
81 |
+
class CompressorWrapper():
|
82 |
+
"""A wrapper around a compressor file object.
|
83 |
+
|
84 |
+
Attributes
|
85 |
+
----------
|
86 |
+
obj: a file-like object
|
87 |
+
The object must implement the buffer interface and will be used
|
88 |
+
internally to compress/decompress the data.
|
89 |
+
prefix: bytestring
|
90 |
+
A bytestring corresponding to the magic number that identifies the
|
91 |
+
file format associated to the compressor.
|
92 |
+
extension: str
|
93 |
+
The file extension used to automatically select this compressor during
|
94 |
+
a dump to a file.
|
95 |
+
"""
|
96 |
+
|
97 |
+
def __init__(self, obj, prefix=b'', extension=''):
|
98 |
+
self.fileobj_factory = obj
|
99 |
+
self.prefix = prefix
|
100 |
+
self.extension = extension
|
101 |
+
|
102 |
+
def compressor_file(self, fileobj, compresslevel=None):
|
103 |
+
"""Returns an instance of a compressor file object."""
|
104 |
+
if compresslevel is None:
|
105 |
+
return self.fileobj_factory(fileobj, 'wb')
|
106 |
+
else:
|
107 |
+
return self.fileobj_factory(fileobj, 'wb',
|
108 |
+
compresslevel=compresslevel)
|
109 |
+
|
110 |
+
def decompressor_file(self, fileobj):
|
111 |
+
"""Returns an instance of a decompressor file object."""
|
112 |
+
return self.fileobj_factory(fileobj, 'rb')
|
113 |
+
|
114 |
+
|
115 |
+
class BZ2CompressorWrapper(CompressorWrapper):
|
116 |
+
|
117 |
+
prefix = _BZ2_PREFIX
|
118 |
+
extension = '.bz2'
|
119 |
+
|
120 |
+
def __init__(self):
|
121 |
+
if bz2 is not None:
|
122 |
+
self.fileobj_factory = bz2.BZ2File
|
123 |
+
else:
|
124 |
+
self.fileobj_factory = None
|
125 |
+
|
126 |
+
def _check_versions(self):
|
127 |
+
if bz2 is None:
|
128 |
+
raise ValueError('bz2 module is not compiled on your python '
|
129 |
+
'standard library.')
|
130 |
+
|
131 |
+
def compressor_file(self, fileobj, compresslevel=None):
|
132 |
+
"""Returns an instance of a compressor file object."""
|
133 |
+
self._check_versions()
|
134 |
+
if compresslevel is None:
|
135 |
+
return self.fileobj_factory(fileobj, 'wb')
|
136 |
+
else:
|
137 |
+
return self.fileobj_factory(fileobj, 'wb',
|
138 |
+
compresslevel=compresslevel)
|
139 |
+
|
140 |
+
def decompressor_file(self, fileobj):
|
141 |
+
"""Returns an instance of a decompressor file object."""
|
142 |
+
self._check_versions()
|
143 |
+
fileobj = self.fileobj_factory(fileobj, 'rb')
|
144 |
+
return fileobj
|
145 |
+
|
146 |
+
|
147 |
+
class LZMACompressorWrapper(CompressorWrapper):
|
148 |
+
|
149 |
+
prefix = _LZMA_PREFIX
|
150 |
+
extension = '.lzma'
|
151 |
+
_lzma_format_name = 'FORMAT_ALONE'
|
152 |
+
|
153 |
+
def __init__(self):
|
154 |
+
if lzma is not None:
|
155 |
+
self.fileobj_factory = lzma.LZMAFile
|
156 |
+
self._lzma_format = getattr(lzma, self._lzma_format_name)
|
157 |
+
else:
|
158 |
+
self.fileobj_factory = None
|
159 |
+
|
160 |
+
def _check_versions(self):
|
161 |
+
if lzma is None:
|
162 |
+
raise ValueError('lzma module is not compiled on your python '
|
163 |
+
'standard library.')
|
164 |
+
|
165 |
+
def compressor_file(self, fileobj, compresslevel=None):
|
166 |
+
"""Returns an instance of a compressor file object."""
|
167 |
+
if compresslevel is None:
|
168 |
+
return self.fileobj_factory(fileobj, 'wb',
|
169 |
+
format=self._lzma_format)
|
170 |
+
else:
|
171 |
+
return self.fileobj_factory(fileobj, 'wb',
|
172 |
+
format=self._lzma_format,
|
173 |
+
preset=compresslevel)
|
174 |
+
|
175 |
+
def decompressor_file(self, fileobj):
|
176 |
+
"""Returns an instance of a decompressor file object."""
|
177 |
+
return lzma.LZMAFile(fileobj, 'rb')
|
178 |
+
|
179 |
+
|
180 |
+
class XZCompressorWrapper(LZMACompressorWrapper):
|
181 |
+
|
182 |
+
prefix = _XZ_PREFIX
|
183 |
+
extension = '.xz'
|
184 |
+
_lzma_format_name = 'FORMAT_XZ'
|
185 |
+
|
186 |
+
|
187 |
+
class LZ4CompressorWrapper(CompressorWrapper):
|
188 |
+
|
189 |
+
prefix = _LZ4_PREFIX
|
190 |
+
extension = '.lz4'
|
191 |
+
|
192 |
+
def __init__(self):
|
193 |
+
if lz4 is not None:
|
194 |
+
self.fileobj_factory = LZ4FrameFile
|
195 |
+
else:
|
196 |
+
self.fileobj_factory = None
|
197 |
+
|
198 |
+
def _check_versions(self):
|
199 |
+
if lz4 is None:
|
200 |
+
raise ValueError(LZ4_NOT_INSTALLED_ERROR)
|
201 |
+
lz4_version = lz4.__version__
|
202 |
+
if lz4_version.startswith("v"):
|
203 |
+
lz4_version = lz4_version[1:]
|
204 |
+
if LooseVersion(lz4_version) < LooseVersion('0.19'):
|
205 |
+
raise ValueError(LZ4_NOT_INSTALLED_ERROR)
|
206 |
+
|
207 |
+
def compressor_file(self, fileobj, compresslevel=None):
|
208 |
+
"""Returns an instance of a compressor file object."""
|
209 |
+
self._check_versions()
|
210 |
+
if compresslevel is None:
|
211 |
+
return self.fileobj_factory(fileobj, 'wb')
|
212 |
+
else:
|
213 |
+
return self.fileobj_factory(fileobj, 'wb',
|
214 |
+
compression_level=compresslevel)
|
215 |
+
|
216 |
+
def decompressor_file(self, fileobj):
|
217 |
+
"""Returns an instance of a decompressor file object."""
|
218 |
+
self._check_versions()
|
219 |
+
return self.fileobj_factory(fileobj, 'rb')
|
220 |
+
|
221 |
+
|
222 |
+
###############################################################################
|
223 |
+
# base file compression/decompression object definition
|
224 |
+
_MODE_CLOSED = 0
|
225 |
+
_MODE_READ = 1
|
226 |
+
_MODE_READ_EOF = 2
|
227 |
+
_MODE_WRITE = 3
|
228 |
+
_BUFFER_SIZE = 8192
|
229 |
+
|
230 |
+
|
231 |
+
class BinaryZlibFile(io.BufferedIOBase):
|
232 |
+
"""A file object providing transparent zlib (de)compression.
|
233 |
+
|
234 |
+
TODO python2_drop: is it still needed since we dropped Python 2 support A
|
235 |
+
BinaryZlibFile can act as a wrapper for an existing file object, or refer
|
236 |
+
directly to a named file on disk.
|
237 |
+
|
238 |
+
Note that BinaryZlibFile provides only a *binary* file interface: data read
|
239 |
+
is returned as bytes, and data to be written should be given as bytes.
|
240 |
+
|
241 |
+
This object is an adaptation of the BZ2File object and is compatible with
|
242 |
+
versions of python >= 2.7.
|
243 |
+
|
244 |
+
If filename is a str or bytes object, it gives the name
|
245 |
+
of the file to be opened. Otherwise, it should be a file object,
|
246 |
+
which will be used to read or write the compressed data.
|
247 |
+
|
248 |
+
mode can be 'rb' for reading (default) or 'wb' for (over)writing
|
249 |
+
|
250 |
+
If mode is 'wb', compresslevel can be a number between 1
|
251 |
+
and 9 specifying the level of compression: 1 produces the least
|
252 |
+
compression, and 9 produces the most compression. 3 is the default.
|
253 |
+
"""
|
254 |
+
|
255 |
+
wbits = zlib.MAX_WBITS
|
256 |
+
|
257 |
+
def __init__(self, filename, mode="rb", compresslevel=3):
|
258 |
+
# This lock must be recursive, so that BufferedIOBase's
|
259 |
+
# readline(), readlines() and writelines() don't deadlock.
|
260 |
+
self._lock = RLock()
|
261 |
+
self._fp = None
|
262 |
+
self._closefp = False
|
263 |
+
self._mode = _MODE_CLOSED
|
264 |
+
self._pos = 0
|
265 |
+
self._size = -1
|
266 |
+
self.compresslevel = compresslevel
|
267 |
+
|
268 |
+
if not isinstance(compresslevel, int) or not (1 <= compresslevel <= 9):
|
269 |
+
raise ValueError("'compresslevel' must be an integer "
|
270 |
+
"between 1 and 9. You provided 'compresslevel={}'"
|
271 |
+
.format(compresslevel))
|
272 |
+
|
273 |
+
if mode == "rb":
|
274 |
+
self._mode = _MODE_READ
|
275 |
+
self._decompressor = zlib.decompressobj(self.wbits)
|
276 |
+
self._buffer = b""
|
277 |
+
self._buffer_offset = 0
|
278 |
+
elif mode == "wb":
|
279 |
+
self._mode = _MODE_WRITE
|
280 |
+
self._compressor = zlib.compressobj(self.compresslevel,
|
281 |
+
zlib.DEFLATED, self.wbits,
|
282 |
+
zlib.DEF_MEM_LEVEL, 0)
|
283 |
+
else:
|
284 |
+
raise ValueError("Invalid mode: %r" % (mode,))
|
285 |
+
|
286 |
+
if isinstance(filename, str):
|
287 |
+
self._fp = io.open(filename, mode)
|
288 |
+
self._closefp = True
|
289 |
+
elif hasattr(filename, "read") or hasattr(filename, "write"):
|
290 |
+
self._fp = filename
|
291 |
+
else:
|
292 |
+
raise TypeError("filename must be a str or bytes object, "
|
293 |
+
"or a file")
|
294 |
+
|
295 |
+
def close(self):
|
296 |
+
"""Flush and close the file.
|
297 |
+
|
298 |
+
May be called more than once without error. Once the file is
|
299 |
+
closed, any other operation on it will raise a ValueError.
|
300 |
+
"""
|
301 |
+
with self._lock:
|
302 |
+
if self._mode == _MODE_CLOSED:
|
303 |
+
return
|
304 |
+
try:
|
305 |
+
if self._mode in (_MODE_READ, _MODE_READ_EOF):
|
306 |
+
self._decompressor = None
|
307 |
+
elif self._mode == _MODE_WRITE:
|
308 |
+
self._fp.write(self._compressor.flush())
|
309 |
+
self._compressor = None
|
310 |
+
finally:
|
311 |
+
try:
|
312 |
+
if self._closefp:
|
313 |
+
self._fp.close()
|
314 |
+
finally:
|
315 |
+
self._fp = None
|
316 |
+
self._closefp = False
|
317 |
+
self._mode = _MODE_CLOSED
|
318 |
+
self._buffer = b""
|
319 |
+
self._buffer_offset = 0
|
320 |
+
|
321 |
+
@property
|
322 |
+
def closed(self):
|
323 |
+
"""True if this file is closed."""
|
324 |
+
return self._mode == _MODE_CLOSED
|
325 |
+
|
326 |
+
def fileno(self):
|
327 |
+
"""Return the file descriptor for the underlying file."""
|
328 |
+
self._check_not_closed()
|
329 |
+
return self._fp.fileno()
|
330 |
+
|
331 |
+
def seekable(self):
|
332 |
+
"""Return whether the file supports seeking."""
|
333 |
+
return self.readable() and self._fp.seekable()
|
334 |
+
|
335 |
+
def readable(self):
|
336 |
+
"""Return whether the file was opened for reading."""
|
337 |
+
self._check_not_closed()
|
338 |
+
return self._mode in (_MODE_READ, _MODE_READ_EOF)
|
339 |
+
|
340 |
+
def writable(self):
|
341 |
+
"""Return whether the file was opened for writing."""
|
342 |
+
self._check_not_closed()
|
343 |
+
return self._mode == _MODE_WRITE
|
344 |
+
|
345 |
+
# Mode-checking helper functions.
|
346 |
+
|
347 |
+
def _check_not_closed(self):
|
348 |
+
if self.closed:
|
349 |
+
fname = getattr(self._fp, 'name', None)
|
350 |
+
msg = "I/O operation on closed file"
|
351 |
+
if fname is not None:
|
352 |
+
msg += " {}".format(fname)
|
353 |
+
msg += "."
|
354 |
+
raise ValueError(msg)
|
355 |
+
|
356 |
+
def _check_can_read(self):
|
357 |
+
if self._mode not in (_MODE_READ, _MODE_READ_EOF):
|
358 |
+
self._check_not_closed()
|
359 |
+
raise io.UnsupportedOperation("File not open for reading")
|
360 |
+
|
361 |
+
def _check_can_write(self):
|
362 |
+
if self._mode != _MODE_WRITE:
|
363 |
+
self._check_not_closed()
|
364 |
+
raise io.UnsupportedOperation("File not open for writing")
|
365 |
+
|
366 |
+
def _check_can_seek(self):
|
367 |
+
if self._mode not in (_MODE_READ, _MODE_READ_EOF):
|
368 |
+
self._check_not_closed()
|
369 |
+
raise io.UnsupportedOperation("Seeking is only supported "
|
370 |
+
"on files open for reading")
|
371 |
+
if not self._fp.seekable():
|
372 |
+
raise io.UnsupportedOperation("The underlying file object "
|
373 |
+
"does not support seeking")
|
374 |
+
|
375 |
+
# Fill the readahead buffer if it is empty. Returns False on EOF.
|
376 |
+
def _fill_buffer(self):
|
377 |
+
if self._mode == _MODE_READ_EOF:
|
378 |
+
return False
|
379 |
+
# Depending on the input data, our call to the decompressor may not
|
380 |
+
# return any data. In this case, try again after reading another block.
|
381 |
+
while self._buffer_offset == len(self._buffer):
|
382 |
+
try:
|
383 |
+
rawblock = (self._decompressor.unused_data or
|
384 |
+
self._fp.read(_BUFFER_SIZE))
|
385 |
+
if not rawblock:
|
386 |
+
raise EOFError
|
387 |
+
except EOFError:
|
388 |
+
# End-of-stream marker and end of file. We're good.
|
389 |
+
self._mode = _MODE_READ_EOF
|
390 |
+
self._size = self._pos
|
391 |
+
return False
|
392 |
+
else:
|
393 |
+
self._buffer = self._decompressor.decompress(rawblock)
|
394 |
+
self._buffer_offset = 0
|
395 |
+
return True
|
396 |
+
|
397 |
+
# Read data until EOF.
|
398 |
+
# If return_data is false, consume the data without returning it.
|
399 |
+
def _read_all(self, return_data=True):
|
400 |
+
# The loop assumes that _buffer_offset is 0. Ensure that this is true.
|
401 |
+
self._buffer = self._buffer[self._buffer_offset:]
|
402 |
+
self._buffer_offset = 0
|
403 |
+
|
404 |
+
blocks = []
|
405 |
+
while self._fill_buffer():
|
406 |
+
if return_data:
|
407 |
+
blocks.append(self._buffer)
|
408 |
+
self._pos += len(self._buffer)
|
409 |
+
self._buffer = b""
|
410 |
+
if return_data:
|
411 |
+
return b"".join(blocks)
|
412 |
+
|
413 |
+
# Read a block of up to n bytes.
|
414 |
+
# If return_data is false, consume the data without returning it.
|
415 |
+
def _read_block(self, n_bytes, return_data=True):
|
416 |
+
# If we have enough data buffered, return immediately.
|
417 |
+
end = self._buffer_offset + n_bytes
|
418 |
+
if end <= len(self._buffer):
|
419 |
+
data = self._buffer[self._buffer_offset: end]
|
420 |
+
self._buffer_offset = end
|
421 |
+
self._pos += len(data)
|
422 |
+
return data if return_data else None
|
423 |
+
|
424 |
+
# The loop assumes that _buffer_offset is 0. Ensure that this is true.
|
425 |
+
self._buffer = self._buffer[self._buffer_offset:]
|
426 |
+
self._buffer_offset = 0
|
427 |
+
|
428 |
+
blocks = []
|
429 |
+
while n_bytes > 0 and self._fill_buffer():
|
430 |
+
if n_bytes < len(self._buffer):
|
431 |
+
data = self._buffer[:n_bytes]
|
432 |
+
self._buffer_offset = n_bytes
|
433 |
+
else:
|
434 |
+
data = self._buffer
|
435 |
+
self._buffer = b""
|
436 |
+
if return_data:
|
437 |
+
blocks.append(data)
|
438 |
+
self._pos += len(data)
|
439 |
+
n_bytes -= len(data)
|
440 |
+
if return_data:
|
441 |
+
return b"".join(blocks)
|
442 |
+
|
443 |
+
def read(self, size=-1):
|
444 |
+
"""Read up to size uncompressed bytes from the file.
|
445 |
+
|
446 |
+
If size is negative or omitted, read until EOF is reached.
|
447 |
+
Returns b'' if the file is already at EOF.
|
448 |
+
"""
|
449 |
+
with self._lock:
|
450 |
+
self._check_can_read()
|
451 |
+
if size == 0:
|
452 |
+
return b""
|
453 |
+
elif size < 0:
|
454 |
+
return self._read_all()
|
455 |
+
else:
|
456 |
+
return self._read_block(size)
|
457 |
+
|
458 |
+
def readinto(self, b):
|
459 |
+
"""Read up to len(b) bytes into b.
|
460 |
+
|
461 |
+
Returns the number of bytes read (0 for EOF).
|
462 |
+
"""
|
463 |
+
with self._lock:
|
464 |
+
return io.BufferedIOBase.readinto(self, b)
|
465 |
+
|
466 |
+
def write(self, data):
|
467 |
+
"""Write a byte string to the file.
|
468 |
+
|
469 |
+
Returns the number of uncompressed bytes written, which is
|
470 |
+
always len(data). Note that due to buffering, the file on disk
|
471 |
+
may not reflect the data written until close() is called.
|
472 |
+
"""
|
473 |
+
with self._lock:
|
474 |
+
self._check_can_write()
|
475 |
+
# Convert data type if called by io.BufferedWriter.
|
476 |
+
if isinstance(data, memoryview):
|
477 |
+
data = data.tobytes()
|
478 |
+
|
479 |
+
compressed = self._compressor.compress(data)
|
480 |
+
self._fp.write(compressed)
|
481 |
+
self._pos += len(data)
|
482 |
+
return len(data)
|
483 |
+
|
484 |
+
# Rewind the file to the beginning of the data stream.
|
485 |
+
def _rewind(self):
|
486 |
+
self._fp.seek(0, 0)
|
487 |
+
self._mode = _MODE_READ
|
488 |
+
self._pos = 0
|
489 |
+
self._decompressor = zlib.decompressobj(self.wbits)
|
490 |
+
self._buffer = b""
|
491 |
+
self._buffer_offset = 0
|
492 |
+
|
493 |
+
def seek(self, offset, whence=0):
|
494 |
+
"""Change the file position.
|
495 |
+
|
496 |
+
The new position is specified by offset, relative to the
|
497 |
+
position indicated by whence. Values for whence are:
|
498 |
+
|
499 |
+
0: start of stream (default); offset must not be negative
|
500 |
+
1: current stream position
|
501 |
+
2: end of stream; offset must not be positive
|
502 |
+
|
503 |
+
Returns the new file position.
|
504 |
+
|
505 |
+
Note that seeking is emulated, so depending on the parameters,
|
506 |
+
this operation may be extremely slow.
|
507 |
+
"""
|
508 |
+
with self._lock:
|
509 |
+
self._check_can_seek()
|
510 |
+
|
511 |
+
# Recalculate offset as an absolute file position.
|
512 |
+
if whence == 0:
|
513 |
+
pass
|
514 |
+
elif whence == 1:
|
515 |
+
offset = self._pos + offset
|
516 |
+
elif whence == 2:
|
517 |
+
# Seeking relative to EOF - we need to know the file's size.
|
518 |
+
if self._size < 0:
|
519 |
+
self._read_all(return_data=False)
|
520 |
+
offset = self._size + offset
|
521 |
+
else:
|
522 |
+
raise ValueError("Invalid value for whence: %s" % (whence,))
|
523 |
+
|
524 |
+
# Make it so that offset is the number of bytes to skip forward.
|
525 |
+
if offset < self._pos:
|
526 |
+
self._rewind()
|
527 |
+
else:
|
528 |
+
offset -= self._pos
|
529 |
+
|
530 |
+
# Read and discard data until we reach the desired position.
|
531 |
+
self._read_block(offset, return_data=False)
|
532 |
+
|
533 |
+
return self._pos
|
534 |
+
|
535 |
+
def tell(self):
|
536 |
+
"""Return the current file position."""
|
537 |
+
with self._lock:
|
538 |
+
self._check_not_closed()
|
539 |
+
return self._pos
|
540 |
+
|
541 |
+
|
542 |
+
class ZlibCompressorWrapper(CompressorWrapper):
|
543 |
+
|
544 |
+
def __init__(self):
|
545 |
+
CompressorWrapper.__init__(self, obj=BinaryZlibFile,
|
546 |
+
prefix=_ZLIB_PREFIX, extension='.z')
|
547 |
+
|
548 |
+
|
549 |
+
class BinaryGzipFile(BinaryZlibFile):
|
550 |
+
"""A file object providing transparent gzip (de)compression.
|
551 |
+
|
552 |
+
If filename is a str or bytes object, it gives the name
|
553 |
+
of the file to be opened. Otherwise, it should be a file object,
|
554 |
+
which will be used to read or write the compressed data.
|
555 |
+
|
556 |
+
mode can be 'rb' for reading (default) or 'wb' for (over)writing
|
557 |
+
|
558 |
+
If mode is 'wb', compresslevel can be a number between 1
|
559 |
+
and 9 specifying the level of compression: 1 produces the least
|
560 |
+
compression, and 9 produces the most compression. 3 is the default.
|
561 |
+
"""
|
562 |
+
|
563 |
+
wbits = 31 # zlib compressor/decompressor wbits value for gzip format.
|
564 |
+
|
565 |
+
|
566 |
+
class GzipCompressorWrapper(CompressorWrapper):
|
567 |
+
|
568 |
+
def __init__(self):
|
569 |
+
CompressorWrapper.__init__(self, obj=BinaryGzipFile,
|
570 |
+
prefix=_GZIP_PREFIX, extension='.gz')
|
llmeval-env/lib/python3.10/site-packages/joblib/disk.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Disk management utilities.
|
3 |
+
"""
|
4 |
+
|
5 |
+
# Authors: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
|
6 |
+
# Lars Buitinck
|
7 |
+
# Copyright (c) 2010 Gael Varoquaux
|
8 |
+
# License: BSD Style, 3 clauses.
|
9 |
+
|
10 |
+
|
11 |
+
import os
|
12 |
+
import sys
|
13 |
+
import time
|
14 |
+
import errno
|
15 |
+
import shutil
|
16 |
+
|
17 |
+
from multiprocessing import util
|
18 |
+
|
19 |
+
|
20 |
+
try:
|
21 |
+
WindowsError
|
22 |
+
except NameError:
|
23 |
+
WindowsError = OSError
|
24 |
+
|
25 |
+
|
26 |
+
def disk_used(path):
|
27 |
+
""" Return the disk usage in a directory."""
|
28 |
+
size = 0
|
29 |
+
for file in os.listdir(path) + ['.']:
|
30 |
+
stat = os.stat(os.path.join(path, file))
|
31 |
+
if hasattr(stat, 'st_blocks'):
|
32 |
+
size += stat.st_blocks * 512
|
33 |
+
else:
|
34 |
+
# on some platform st_blocks is not available (e.g., Windows)
|
35 |
+
# approximate by rounding to next multiple of 512
|
36 |
+
size += (stat.st_size // 512 + 1) * 512
|
37 |
+
# We need to convert to int to avoid having longs on some systems (we
|
38 |
+
# don't want longs to avoid problems we SQLite)
|
39 |
+
return int(size / 1024.)
|
40 |
+
|
41 |
+
|
42 |
+
def memstr_to_bytes(text):
|
43 |
+
""" Convert a memory text to its value in bytes.
|
44 |
+
"""
|
45 |
+
kilo = 1024
|
46 |
+
units = dict(K=kilo, M=kilo ** 2, G=kilo ** 3)
|
47 |
+
try:
|
48 |
+
size = int(units[text[-1]] * float(text[:-1]))
|
49 |
+
except (KeyError, ValueError) as e:
|
50 |
+
raise ValueError(
|
51 |
+
"Invalid literal for size give: %s (type %s) should be "
|
52 |
+
"alike '10G', '500M', '50K'." % (text, type(text))) from e
|
53 |
+
return size
|
54 |
+
|
55 |
+
|
56 |
+
def mkdirp(d):
|
57 |
+
"""Ensure directory d exists (like mkdir -p on Unix)
|
58 |
+
No guarantee that the directory is writable.
|
59 |
+
"""
|
60 |
+
try:
|
61 |
+
os.makedirs(d)
|
62 |
+
except OSError as e:
|
63 |
+
if e.errno != errno.EEXIST:
|
64 |
+
raise
|
65 |
+
|
66 |
+
|
67 |
+
# if a rmtree operation fails in rm_subdirs, wait for this much time (in secs),
|
68 |
+
# then retry up to RM_SUBDIRS_N_RETRY times. If it still fails, raise the
|
69 |
+
# exception. this mechanism ensures that the sub-process gc have the time to
|
70 |
+
# collect and close the memmaps before we fail.
|
71 |
+
RM_SUBDIRS_RETRY_TIME = 0.1
|
72 |
+
RM_SUBDIRS_N_RETRY = 10
|
73 |
+
|
74 |
+
|
75 |
+
def rm_subdirs(path, onerror=None):
|
76 |
+
"""Remove all subdirectories in this path.
|
77 |
+
|
78 |
+
The directory indicated by `path` is left in place, and its subdirectories
|
79 |
+
are erased.
|
80 |
+
|
81 |
+
If onerror is set, it is called to handle the error with arguments (func,
|
82 |
+
path, exc_info) where func is os.listdir, os.remove, or os.rmdir;
|
83 |
+
path is the argument to that function that caused it to fail; and
|
84 |
+
exc_info is a tuple returned by sys.exc_info(). If onerror is None,
|
85 |
+
an exception is raised.
|
86 |
+
"""
|
87 |
+
|
88 |
+
# NOTE this code is adapted from the one in shutil.rmtree, and is
|
89 |
+
# just as fast
|
90 |
+
|
91 |
+
names = []
|
92 |
+
try:
|
93 |
+
names = os.listdir(path)
|
94 |
+
except os.error:
|
95 |
+
if onerror is not None:
|
96 |
+
onerror(os.listdir, path, sys.exc_info())
|
97 |
+
else:
|
98 |
+
raise
|
99 |
+
|
100 |
+
for name in names:
|
101 |
+
fullname = os.path.join(path, name)
|
102 |
+
delete_folder(fullname, onerror=onerror)
|
103 |
+
|
104 |
+
|
105 |
+
def delete_folder(folder_path, onerror=None, allow_non_empty=True):
|
106 |
+
"""Utility function to cleanup a temporary folder if it still exists."""
|
107 |
+
if os.path.isdir(folder_path):
|
108 |
+
if onerror is not None:
|
109 |
+
shutil.rmtree(folder_path, False, onerror)
|
110 |
+
else:
|
111 |
+
# allow the rmtree to fail once, wait and re-try.
|
112 |
+
# if the error is raised again, fail
|
113 |
+
err_count = 0
|
114 |
+
while True:
|
115 |
+
files = os.listdir(folder_path)
|
116 |
+
try:
|
117 |
+
if len(files) == 0 or allow_non_empty:
|
118 |
+
shutil.rmtree(
|
119 |
+
folder_path, ignore_errors=False, onerror=None
|
120 |
+
)
|
121 |
+
util.debug(
|
122 |
+
"Successfully deleted {}".format(folder_path))
|
123 |
+
break
|
124 |
+
else:
|
125 |
+
raise OSError(
|
126 |
+
"Expected empty folder {} but got {} "
|
127 |
+
"files.".format(folder_path, len(files))
|
128 |
+
)
|
129 |
+
except (OSError, WindowsError):
|
130 |
+
err_count += 1
|
131 |
+
if err_count > RM_SUBDIRS_N_RETRY:
|
132 |
+
# the folder cannot be deleted right now. It maybe
|
133 |
+
# because some temporary files have not been deleted
|
134 |
+
# yet.
|
135 |
+
raise
|
136 |
+
time.sleep(RM_SUBDIRS_RETRY_TIME)
|
llmeval-env/lib/python3.10/site-packages/joblib/executor.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utility function to construct a loky.ReusableExecutor with custom pickler.
|
2 |
+
|
3 |
+
This module provides efficient ways of working with data stored in
|
4 |
+
shared memory with numpy.memmap arrays without inducing any memory
|
5 |
+
copy between the parent and child processes.
|
6 |
+
"""
|
7 |
+
# Author: Thomas Moreau <[email protected]>
|
8 |
+
# Copyright: 2017, Thomas Moreau
|
9 |
+
# License: BSD 3 clause
|
10 |
+
|
11 |
+
from ._memmapping_reducer import get_memmapping_reducers
|
12 |
+
from ._memmapping_reducer import TemporaryResourcesManager
|
13 |
+
from .externals.loky.reusable_executor import _ReusablePoolExecutor
|
14 |
+
|
15 |
+
|
16 |
+
_executor_args = None
|
17 |
+
|
18 |
+
|
19 |
+
def get_memmapping_executor(n_jobs, **kwargs):
|
20 |
+
return MemmappingExecutor.get_memmapping_executor(n_jobs, **kwargs)
|
21 |
+
|
22 |
+
|
23 |
+
class MemmappingExecutor(_ReusablePoolExecutor):
|
24 |
+
|
25 |
+
@classmethod
|
26 |
+
def get_memmapping_executor(cls, n_jobs, timeout=300, initializer=None,
|
27 |
+
initargs=(), env=None, temp_folder=None,
|
28 |
+
context_id=None, **backend_args):
|
29 |
+
"""Factory for ReusableExecutor with automatic memmapping for large
|
30 |
+
numpy arrays.
|
31 |
+
"""
|
32 |
+
global _executor_args
|
33 |
+
# Check if we can reuse the executor here instead of deferring the test
|
34 |
+
# to loky as the reducers are objects that changes at each call.
|
35 |
+
executor_args = backend_args.copy()
|
36 |
+
executor_args.update(env if env else {})
|
37 |
+
executor_args.update(dict(
|
38 |
+
timeout=timeout, initializer=initializer, initargs=initargs))
|
39 |
+
reuse = _executor_args is None or _executor_args == executor_args
|
40 |
+
_executor_args = executor_args
|
41 |
+
|
42 |
+
manager = TemporaryResourcesManager(temp_folder)
|
43 |
+
|
44 |
+
# reducers access the temporary folder in which to store temporary
|
45 |
+
# pickles through a call to manager.resolve_temp_folder_name. resolving
|
46 |
+
# the folder name dynamically is useful to use different folders across
|
47 |
+
# calls of a same reusable executor
|
48 |
+
job_reducers, result_reducers = get_memmapping_reducers(
|
49 |
+
unlink_on_gc_collect=True,
|
50 |
+
temp_folder_resolver=manager.resolve_temp_folder_name,
|
51 |
+
**backend_args)
|
52 |
+
_executor, executor_is_reused = super().get_reusable_executor(
|
53 |
+
n_jobs, job_reducers=job_reducers, result_reducers=result_reducers,
|
54 |
+
reuse=reuse, timeout=timeout, initializer=initializer,
|
55 |
+
initargs=initargs, env=env
|
56 |
+
)
|
57 |
+
|
58 |
+
if not executor_is_reused:
|
59 |
+
# Only set a _temp_folder_manager for new executors. Reused
|
60 |
+
# executors already have a _temporary_folder_manager that must not
|
61 |
+
# be re-assigned like that because it is referenced in various
|
62 |
+
# places in the reducing machinery of the executor.
|
63 |
+
_executor._temp_folder_manager = manager
|
64 |
+
|
65 |
+
if context_id is not None:
|
66 |
+
# Only register the specified context once we know which manager
|
67 |
+
# the current executor is using, in order to not register an atexit
|
68 |
+
# finalizer twice for the same folder.
|
69 |
+
_executor._temp_folder_manager.register_new_context(context_id)
|
70 |
+
|
71 |
+
return _executor
|
72 |
+
|
73 |
+
def terminate(self, kill_workers=False):
|
74 |
+
|
75 |
+
self.shutdown(kill_workers=kill_workers)
|
76 |
+
|
77 |
+
# When workers are killed in a brutal manner, they cannot execute the
|
78 |
+
# finalizer of their shared memmaps. The refcount of those memmaps may
|
79 |
+
# be off by an unknown number, so instead of decref'ing them, we force
|
80 |
+
# delete the whole temporary folder, and unregister them. There is no
|
81 |
+
# risk of PermissionError at folder deletion because at this
|
82 |
+
# point, all child processes are dead, so all references to temporary
|
83 |
+
# memmaps are closed. Otherwise, just try to delete as much as possible
|
84 |
+
# with allow_non_empty=True but if we can't, it will be clean up later
|
85 |
+
# on by the resource_tracker.
|
86 |
+
with self._submit_resize_lock:
|
87 |
+
self._temp_folder_manager._clean_temporary_resources(
|
88 |
+
force=kill_workers, allow_non_empty=True
|
89 |
+
)
|
90 |
+
|
91 |
+
@property
|
92 |
+
def _temp_folder(self):
|
93 |
+
# Legacy property in tests. could be removed if we refactored the
|
94 |
+
# memmapping tests. SHOULD ONLY BE USED IN TESTS!
|
95 |
+
# We cache this property because it is called late in the tests - at
|
96 |
+
# this point, all context have been unregistered, and
|
97 |
+
# resolve_temp_folder_name raises an error.
|
98 |
+
if getattr(self, '_cached_temp_folder', None) is not None:
|
99 |
+
return self._cached_temp_folder
|
100 |
+
else:
|
101 |
+
self._cached_temp_folder = self._temp_folder_manager.resolve_temp_folder_name() # noqa
|
102 |
+
return self._cached_temp_folder
|
103 |
+
|
104 |
+
|
105 |
+
class _TestingMemmappingExecutor(MemmappingExecutor):
|
106 |
+
"""Wrapper around ReusableExecutor to ease memmapping testing with Pool
|
107 |
+
and Executor. This is only for testing purposes.
|
108 |
+
|
109 |
+
"""
|
110 |
+
def apply_async(self, func, args):
|
111 |
+
"""Schedule a func to be run"""
|
112 |
+
future = self.submit(func, *args)
|
113 |
+
future.get = future.result
|
114 |
+
return future
|
115 |
+
|
116 |
+
def map(self, f, *args):
|
117 |
+
return list(super().map(f, *args))
|
llmeval-env/lib/python3.10/site-packages/joblib/hashing.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Fast cryptographic hash of Python objects, with a special case for fast
|
3 |
+
hashing of numpy arrays.
|
4 |
+
"""
|
5 |
+
|
6 |
+
# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
|
7 |
+
# Copyright (c) 2009 Gael Varoquaux
|
8 |
+
# License: BSD Style, 3 clauses.
|
9 |
+
|
10 |
+
import pickle
|
11 |
+
import hashlib
|
12 |
+
import sys
|
13 |
+
import types
|
14 |
+
import struct
|
15 |
+
import io
|
16 |
+
import decimal
|
17 |
+
|
18 |
+
|
19 |
+
Pickler = pickle._Pickler
|
20 |
+
|
21 |
+
|
22 |
+
class _ConsistentSet(object):
|
23 |
+
""" Class used to ensure the hash of Sets is preserved
|
24 |
+
whatever the order of its items.
|
25 |
+
"""
|
26 |
+
def __init__(self, set_sequence):
|
27 |
+
# Forces order of elements in set to ensure consistent hash.
|
28 |
+
try:
|
29 |
+
# Trying first to order the set assuming the type of elements is
|
30 |
+
# consistent and orderable.
|
31 |
+
# This fails on python 3 when elements are unorderable
|
32 |
+
# but we keep it in a try as it's faster.
|
33 |
+
self._sequence = sorted(set_sequence)
|
34 |
+
except (TypeError, decimal.InvalidOperation):
|
35 |
+
# If elements are unorderable, sorting them using their hash.
|
36 |
+
# This is slower but works in any case.
|
37 |
+
self._sequence = sorted((hash(e) for e in set_sequence))
|
38 |
+
|
39 |
+
|
40 |
+
class _MyHash(object):
|
41 |
+
""" Class used to hash objects that won't normally pickle """
|
42 |
+
|
43 |
+
def __init__(self, *args):
|
44 |
+
self.args = args
|
45 |
+
|
46 |
+
|
47 |
+
class Hasher(Pickler):
|
48 |
+
""" A subclass of pickler, to do cryptographic hashing, rather than
|
49 |
+
pickling.
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(self, hash_name='md5'):
|
53 |
+
self.stream = io.BytesIO()
|
54 |
+
# By default we want a pickle protocol that only changes with
|
55 |
+
# the major python version and not the minor one
|
56 |
+
protocol = 3
|
57 |
+
Pickler.__init__(self, self.stream, protocol=protocol)
|
58 |
+
# Initialise the hash obj
|
59 |
+
self._hash = hashlib.new(hash_name)
|
60 |
+
|
61 |
+
def hash(self, obj, return_digest=True):
|
62 |
+
try:
|
63 |
+
self.dump(obj)
|
64 |
+
except pickle.PicklingError as e:
|
65 |
+
e.args += ('PicklingError while hashing %r: %r' % (obj, e),)
|
66 |
+
raise
|
67 |
+
dumps = self.stream.getvalue()
|
68 |
+
self._hash.update(dumps)
|
69 |
+
if return_digest:
|
70 |
+
return self._hash.hexdigest()
|
71 |
+
|
72 |
+
def save(self, obj):
|
73 |
+
if isinstance(obj, (types.MethodType, type({}.pop))):
|
74 |
+
# the Pickler cannot pickle instance methods; here we decompose
|
75 |
+
# them into components that make them uniquely identifiable
|
76 |
+
if hasattr(obj, '__func__'):
|
77 |
+
func_name = obj.__func__.__name__
|
78 |
+
else:
|
79 |
+
func_name = obj.__name__
|
80 |
+
inst = obj.__self__
|
81 |
+
if type(inst) is type(pickle):
|
82 |
+
obj = _MyHash(func_name, inst.__name__)
|
83 |
+
elif inst is None:
|
84 |
+
# type(None) or type(module) do not pickle
|
85 |
+
obj = _MyHash(func_name, inst)
|
86 |
+
else:
|
87 |
+
cls = obj.__self__.__class__
|
88 |
+
obj = _MyHash(func_name, inst, cls)
|
89 |
+
Pickler.save(self, obj)
|
90 |
+
|
91 |
+
def memoize(self, obj):
|
92 |
+
# We want hashing to be sensitive to value instead of reference.
|
93 |
+
# For example we want ['aa', 'aa'] and ['aa', 'aaZ'[:2]]
|
94 |
+
# to hash to the same value and that's why we disable memoization
|
95 |
+
# for strings
|
96 |
+
if isinstance(obj, (bytes, str)):
|
97 |
+
return
|
98 |
+
Pickler.memoize(self, obj)
|
99 |
+
|
100 |
+
# The dispatch table of the pickler is not accessible in Python
|
101 |
+
# 3, as these lines are only bugware for IPython, we skip them.
|
102 |
+
def save_global(self, obj, name=None, pack=struct.pack):
|
103 |
+
# We have to override this method in order to deal with objects
|
104 |
+
# defined interactively in IPython that are not injected in
|
105 |
+
# __main__
|
106 |
+
kwargs = dict(name=name, pack=pack)
|
107 |
+
del kwargs['pack']
|
108 |
+
try:
|
109 |
+
Pickler.save_global(self, obj, **kwargs)
|
110 |
+
except pickle.PicklingError:
|
111 |
+
Pickler.save_global(self, obj, **kwargs)
|
112 |
+
module = getattr(obj, "__module__", None)
|
113 |
+
if module == '__main__':
|
114 |
+
my_name = name
|
115 |
+
if my_name is None:
|
116 |
+
my_name = obj.__name__
|
117 |
+
mod = sys.modules[module]
|
118 |
+
if not hasattr(mod, my_name):
|
119 |
+
# IPython doesn't inject the variables define
|
120 |
+
# interactively in __main__
|
121 |
+
setattr(mod, my_name, obj)
|
122 |
+
|
123 |
+
dispatch = Pickler.dispatch.copy()
|
124 |
+
# builtin
|
125 |
+
dispatch[type(len)] = save_global
|
126 |
+
# type
|
127 |
+
dispatch[type(object)] = save_global
|
128 |
+
# classobj
|
129 |
+
dispatch[type(Pickler)] = save_global
|
130 |
+
# function
|
131 |
+
dispatch[type(pickle.dump)] = save_global
|
132 |
+
|
133 |
+
def _batch_setitems(self, items):
|
134 |
+
# forces order of keys in dict to ensure consistent hash.
|
135 |
+
try:
|
136 |
+
# Trying first to compare dict assuming the type of keys is
|
137 |
+
# consistent and orderable.
|
138 |
+
# This fails on python 3 when keys are unorderable
|
139 |
+
# but we keep it in a try as it's faster.
|
140 |
+
Pickler._batch_setitems(self, iter(sorted(items)))
|
141 |
+
except TypeError:
|
142 |
+
# If keys are unorderable, sorting them using their hash. This is
|
143 |
+
# slower but works in any case.
|
144 |
+
Pickler._batch_setitems(self, iter(sorted((hash(k), v)
|
145 |
+
for k, v in items)))
|
146 |
+
|
147 |
+
def save_set(self, set_items):
|
148 |
+
# forces order of items in Set to ensure consistent hash
|
149 |
+
Pickler.save(self, _ConsistentSet(set_items))
|
150 |
+
|
151 |
+
dispatch[type(set())] = save_set
|
152 |
+
|
153 |
+
|
154 |
+
class NumpyHasher(Hasher):
|
155 |
+
""" Special case the hasher for when numpy is loaded.
|
156 |
+
"""
|
157 |
+
|
158 |
+
def __init__(self, hash_name='md5', coerce_mmap=False):
|
159 |
+
"""
|
160 |
+
Parameters
|
161 |
+
----------
|
162 |
+
hash_name: string
|
163 |
+
The hash algorithm to be used
|
164 |
+
coerce_mmap: boolean
|
165 |
+
Make no difference between np.memmap and np.ndarray
|
166 |
+
objects.
|
167 |
+
"""
|
168 |
+
self.coerce_mmap = coerce_mmap
|
169 |
+
Hasher.__init__(self, hash_name=hash_name)
|
170 |
+
# delayed import of numpy, to avoid tight coupling
|
171 |
+
import numpy as np
|
172 |
+
self.np = np
|
173 |
+
if hasattr(np, 'getbuffer'):
|
174 |
+
self._getbuffer = np.getbuffer
|
175 |
+
else:
|
176 |
+
self._getbuffer = memoryview
|
177 |
+
|
178 |
+
def save(self, obj):
|
179 |
+
""" Subclass the save method, to hash ndarray subclass, rather
|
180 |
+
than pickling them. Off course, this is a total abuse of
|
181 |
+
the Pickler class.
|
182 |
+
"""
|
183 |
+
if isinstance(obj, self.np.ndarray) and not obj.dtype.hasobject:
|
184 |
+
# Compute a hash of the object
|
185 |
+
# The update function of the hash requires a c_contiguous buffer.
|
186 |
+
if obj.shape == ():
|
187 |
+
# 0d arrays need to be flattened because viewing them as bytes
|
188 |
+
# raises a ValueError exception.
|
189 |
+
obj_c_contiguous = obj.flatten()
|
190 |
+
elif obj.flags.c_contiguous:
|
191 |
+
obj_c_contiguous = obj
|
192 |
+
elif obj.flags.f_contiguous:
|
193 |
+
obj_c_contiguous = obj.T
|
194 |
+
else:
|
195 |
+
# Cater for non-single-segment arrays: this creates a
|
196 |
+
# copy, and thus alleviates this issue.
|
197 |
+
# XXX: There might be a more efficient way of doing this
|
198 |
+
obj_c_contiguous = obj.flatten()
|
199 |
+
|
200 |
+
# memoryview is not supported for some dtypes, e.g. datetime64, see
|
201 |
+
# https://github.com/numpy/numpy/issues/4983. The
|
202 |
+
# workaround is to view the array as bytes before
|
203 |
+
# taking the memoryview.
|
204 |
+
self._hash.update(
|
205 |
+
self._getbuffer(obj_c_contiguous.view(self.np.uint8)))
|
206 |
+
|
207 |
+
# We store the class, to be able to distinguish between
|
208 |
+
# Objects with the same binary content, but different
|
209 |
+
# classes.
|
210 |
+
if self.coerce_mmap and isinstance(obj, self.np.memmap):
|
211 |
+
# We don't make the difference between memmap and
|
212 |
+
# normal ndarrays, to be able to reload previously
|
213 |
+
# computed results with memmap.
|
214 |
+
klass = self.np.ndarray
|
215 |
+
else:
|
216 |
+
klass = obj.__class__
|
217 |
+
# We also return the dtype and the shape, to distinguish
|
218 |
+
# different views on the same data with different dtypes.
|
219 |
+
|
220 |
+
# The object will be pickled by the pickler hashed at the end.
|
221 |
+
obj = (klass, ('HASHED', obj.dtype, obj.shape, obj.strides))
|
222 |
+
elif isinstance(obj, self.np.dtype):
|
223 |
+
# numpy.dtype consistent hashing is tricky to get right. This comes
|
224 |
+
# from the fact that atomic np.dtype objects are interned:
|
225 |
+
# ``np.dtype('f4') is np.dtype('f4')``. The situation is
|
226 |
+
# complicated by the fact that this interning does not resist a
|
227 |
+
# simple pickle.load/dump roundtrip:
|
228 |
+
# ``pickle.loads(pickle.dumps(np.dtype('f4'))) is not
|
229 |
+
# np.dtype('f4') Because pickle relies on memoization during
|
230 |
+
# pickling, it is easy to
|
231 |
+
# produce different hashes for seemingly identical objects, such as
|
232 |
+
# ``[np.dtype('f4'), np.dtype('f4')]``
|
233 |
+
# and ``[np.dtype('f4'), pickle.loads(pickle.dumps('f4'))]``.
|
234 |
+
# To prevent memoization from interfering with hashing, we isolate
|
235 |
+
# the serialization (and thus the pickle memoization) of each dtype
|
236 |
+
# using each time a different ``pickle.dumps`` call unrelated to
|
237 |
+
# the current Hasher instance.
|
238 |
+
self._hash.update("_HASHED_DTYPE".encode('utf-8'))
|
239 |
+
self._hash.update(pickle.dumps(obj))
|
240 |
+
return
|
241 |
+
Hasher.save(self, obj)
|
242 |
+
|
243 |
+
|
244 |
+
def hash(obj, hash_name='md5', coerce_mmap=False):
|
245 |
+
""" Quick calculation of a hash to identify uniquely Python objects
|
246 |
+
containing numpy arrays.
|
247 |
+
|
248 |
+
Parameters
|
249 |
+
----------
|
250 |
+
hash_name: 'md5' or 'sha1'
|
251 |
+
Hashing algorithm used. sha1 is supposedly safer, but md5 is
|
252 |
+
faster.
|
253 |
+
coerce_mmap: boolean
|
254 |
+
Make no difference between np.memmap and np.ndarray
|
255 |
+
"""
|
256 |
+
valid_hash_names = ('md5', 'sha1')
|
257 |
+
if hash_name not in valid_hash_names:
|
258 |
+
raise ValueError("Valid options for 'hash_name' are {}. "
|
259 |
+
"Got hash_name={!r} instead."
|
260 |
+
.format(valid_hash_names, hash_name))
|
261 |
+
if 'numpy' in sys.modules:
|
262 |
+
hasher = NumpyHasher(hash_name=hash_name, coerce_mmap=coerce_mmap)
|
263 |
+
else:
|
264 |
+
hasher = Hasher(hash_name=hash_name)
|
265 |
+
return hasher.hash(obj)
|
llmeval-env/lib/python3.10/site-packages/joblib/numpy_pickle_compat.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Numpy pickle compatibility functions."""
|
2 |
+
|
3 |
+
import pickle
|
4 |
+
import os
|
5 |
+
import zlib
|
6 |
+
import inspect
|
7 |
+
|
8 |
+
from io import BytesIO
|
9 |
+
|
10 |
+
from .numpy_pickle_utils import _ZFILE_PREFIX
|
11 |
+
from .numpy_pickle_utils import Unpickler
|
12 |
+
from .numpy_pickle_utils import _ensure_native_byte_order
|
13 |
+
|
14 |
+
|
15 |
+
def hex_str(an_int):
|
16 |
+
"""Convert an int to an hexadecimal string."""
|
17 |
+
return '{:#x}'.format(an_int)
|
18 |
+
|
19 |
+
|
20 |
+
def asbytes(s):
|
21 |
+
if isinstance(s, bytes):
|
22 |
+
return s
|
23 |
+
return s.encode('latin1')
|
24 |
+
|
25 |
+
|
26 |
+
_MAX_LEN = len(hex_str(2 ** 64))
|
27 |
+
_CHUNK_SIZE = 64 * 1024
|
28 |
+
|
29 |
+
|
30 |
+
def read_zfile(file_handle):
|
31 |
+
"""Read the z-file and return the content as a string.
|
32 |
+
|
33 |
+
Z-files are raw data compressed with zlib used internally by joblib
|
34 |
+
for persistence. Backward compatibility is not guaranteed. Do not
|
35 |
+
use for external purposes.
|
36 |
+
"""
|
37 |
+
file_handle.seek(0)
|
38 |
+
header_length = len(_ZFILE_PREFIX) + _MAX_LEN
|
39 |
+
length = file_handle.read(header_length)
|
40 |
+
length = length[len(_ZFILE_PREFIX):]
|
41 |
+
length = int(length, 16)
|
42 |
+
|
43 |
+
# With python2 and joblib version <= 0.8.4 compressed pickle header is one
|
44 |
+
# character wider so we need to ignore an additional space if present.
|
45 |
+
# Note: the first byte of the zlib data is guaranteed not to be a
|
46 |
+
# space according to
|
47 |
+
# https://tools.ietf.org/html/rfc6713#section-2.1
|
48 |
+
next_byte = file_handle.read(1)
|
49 |
+
if next_byte != b' ':
|
50 |
+
# The zlib compressed data has started and we need to go back
|
51 |
+
# one byte
|
52 |
+
file_handle.seek(header_length)
|
53 |
+
|
54 |
+
# We use the known length of the data to tell Zlib the size of the
|
55 |
+
# buffer to allocate.
|
56 |
+
data = zlib.decompress(file_handle.read(), 15, length)
|
57 |
+
assert len(data) == length, (
|
58 |
+
"Incorrect data length while decompressing %s."
|
59 |
+
"The file could be corrupted." % file_handle)
|
60 |
+
return data
|
61 |
+
|
62 |
+
|
63 |
+
def write_zfile(file_handle, data, compress=1):
|
64 |
+
"""Write the data in the given file as a Z-file.
|
65 |
+
|
66 |
+
Z-files are raw data compressed with zlib used internally by joblib
|
67 |
+
for persistence. Backward compatibility is not guaranteed. Do not
|
68 |
+
use for external purposes.
|
69 |
+
"""
|
70 |
+
file_handle.write(_ZFILE_PREFIX)
|
71 |
+
length = hex_str(len(data))
|
72 |
+
# Store the length of the data
|
73 |
+
file_handle.write(asbytes(length.ljust(_MAX_LEN)))
|
74 |
+
file_handle.write(zlib.compress(asbytes(data), compress))
|
75 |
+
|
76 |
+
###############################################################################
|
77 |
+
# Utility objects for persistence.
|
78 |
+
|
79 |
+
|
80 |
+
class NDArrayWrapper(object):
|
81 |
+
"""An object to be persisted instead of numpy arrays.
|
82 |
+
|
83 |
+
The only thing this object does, is to carry the filename in which
|
84 |
+
the array has been persisted, and the array subclass.
|
85 |
+
"""
|
86 |
+
|
87 |
+
def __init__(self, filename, subclass, allow_mmap=True):
|
88 |
+
"""Constructor. Store the useful information for later."""
|
89 |
+
self.filename = filename
|
90 |
+
self.subclass = subclass
|
91 |
+
self.allow_mmap = allow_mmap
|
92 |
+
|
93 |
+
def read(self, unpickler):
|
94 |
+
"""Reconstruct the array."""
|
95 |
+
filename = os.path.join(unpickler._dirname, self.filename)
|
96 |
+
# Load the array from the disk
|
97 |
+
# use getattr instead of self.allow_mmap to ensure backward compat
|
98 |
+
# with NDArrayWrapper instances pickled with joblib < 0.9.0
|
99 |
+
allow_mmap = getattr(self, 'allow_mmap', True)
|
100 |
+
kwargs = {}
|
101 |
+
if allow_mmap:
|
102 |
+
kwargs['mmap_mode'] = unpickler.mmap_mode
|
103 |
+
if "allow_pickle" in inspect.signature(unpickler.np.load).parameters:
|
104 |
+
# Required in numpy 1.16.3 and later to aknowledge the security
|
105 |
+
# risk.
|
106 |
+
kwargs["allow_pickle"] = True
|
107 |
+
array = unpickler.np.load(filename, **kwargs)
|
108 |
+
|
109 |
+
# Detect byte order mismatch and swap as needed.
|
110 |
+
array = _ensure_native_byte_order(array)
|
111 |
+
|
112 |
+
# Reconstruct subclasses. This does not work with old
|
113 |
+
# versions of numpy
|
114 |
+
if (hasattr(array, '__array_prepare__') and
|
115 |
+
self.subclass not in (unpickler.np.ndarray,
|
116 |
+
unpickler.np.memmap)):
|
117 |
+
# We need to reconstruct another subclass
|
118 |
+
new_array = unpickler.np.core.multiarray._reconstruct(
|
119 |
+
self.subclass, (0,), 'b')
|
120 |
+
return new_array.__array_prepare__(array)
|
121 |
+
else:
|
122 |
+
return array
|
123 |
+
|
124 |
+
|
125 |
+
class ZNDArrayWrapper(NDArrayWrapper):
|
126 |
+
"""An object to be persisted instead of numpy arrays.
|
127 |
+
|
128 |
+
This object store the Zfile filename in which
|
129 |
+
the data array has been persisted, and the meta information to
|
130 |
+
retrieve it.
|
131 |
+
The reason that we store the raw buffer data of the array and
|
132 |
+
the meta information, rather than array representation routine
|
133 |
+
(tobytes) is that it enables us to use completely the strided
|
134 |
+
model to avoid memory copies (a and a.T store as fast). In
|
135 |
+
addition saving the heavy information separately can avoid
|
136 |
+
creating large temporary buffers when unpickling data with
|
137 |
+
large arrays.
|
138 |
+
"""
|
139 |
+
|
140 |
+
def __init__(self, filename, init_args, state):
|
141 |
+
"""Constructor. Store the useful information for later."""
|
142 |
+
self.filename = filename
|
143 |
+
self.state = state
|
144 |
+
self.init_args = init_args
|
145 |
+
|
146 |
+
def read(self, unpickler):
|
147 |
+
"""Reconstruct the array from the meta-information and the z-file."""
|
148 |
+
# Here we a simply reproducing the unpickling mechanism for numpy
|
149 |
+
# arrays
|
150 |
+
filename = os.path.join(unpickler._dirname, self.filename)
|
151 |
+
array = unpickler.np.core.multiarray._reconstruct(*self.init_args)
|
152 |
+
with open(filename, 'rb') as f:
|
153 |
+
data = read_zfile(f)
|
154 |
+
state = self.state + (data,)
|
155 |
+
array.__setstate__(state)
|
156 |
+
return array
|
157 |
+
|
158 |
+
|
159 |
+
class ZipNumpyUnpickler(Unpickler):
|
160 |
+
"""A subclass of the Unpickler to unpickle our numpy pickles."""
|
161 |
+
|
162 |
+
dispatch = Unpickler.dispatch.copy()
|
163 |
+
|
164 |
+
def __init__(self, filename, file_handle, mmap_mode=None):
|
165 |
+
"""Constructor."""
|
166 |
+
self._filename = os.path.basename(filename)
|
167 |
+
self._dirname = os.path.dirname(filename)
|
168 |
+
self.mmap_mode = mmap_mode
|
169 |
+
self.file_handle = self._open_pickle(file_handle)
|
170 |
+
Unpickler.__init__(self, self.file_handle)
|
171 |
+
try:
|
172 |
+
import numpy as np
|
173 |
+
except ImportError:
|
174 |
+
np = None
|
175 |
+
self.np = np
|
176 |
+
|
177 |
+
def _open_pickle(self, file_handle):
|
178 |
+
return BytesIO(read_zfile(file_handle))
|
179 |
+
|
180 |
+
def load_build(self):
|
181 |
+
"""Set the state of a newly created object.
|
182 |
+
|
183 |
+
We capture it to replace our place-holder objects,
|
184 |
+
NDArrayWrapper, by the array we are interested in. We
|
185 |
+
replace them directly in the stack of pickler.
|
186 |
+
"""
|
187 |
+
Unpickler.load_build(self)
|
188 |
+
if isinstance(self.stack[-1], NDArrayWrapper):
|
189 |
+
if self.np is None:
|
190 |
+
raise ImportError("Trying to unpickle an ndarray, "
|
191 |
+
"but numpy didn't import correctly")
|
192 |
+
nd_array_wrapper = self.stack.pop()
|
193 |
+
array = nd_array_wrapper.read(self)
|
194 |
+
self.stack.append(array)
|
195 |
+
|
196 |
+
dispatch[pickle.BUILD[0]] = load_build
|
197 |
+
|
198 |
+
|
199 |
+
def load_compatibility(filename):
|
200 |
+
"""Reconstruct a Python object from a file persisted with joblib.dump.
|
201 |
+
|
202 |
+
This function ensures the compatibility with joblib old persistence format
|
203 |
+
(<= 0.9.3).
|
204 |
+
|
205 |
+
Parameters
|
206 |
+
----------
|
207 |
+
filename: string
|
208 |
+
The name of the file from which to load the object
|
209 |
+
|
210 |
+
Returns
|
211 |
+
-------
|
212 |
+
result: any Python object
|
213 |
+
The object stored in the file.
|
214 |
+
|
215 |
+
See Also
|
216 |
+
--------
|
217 |
+
joblib.dump : function to save an object
|
218 |
+
|
219 |
+
Notes
|
220 |
+
-----
|
221 |
+
|
222 |
+
This function can load numpy array files saved separately during the
|
223 |
+
dump.
|
224 |
+
"""
|
225 |
+
with open(filename, 'rb') as file_handle:
|
226 |
+
# We are careful to open the file handle early and keep it open to
|
227 |
+
# avoid race-conditions on renames. That said, if data is stored in
|
228 |
+
# companion files, moving the directory will create a race when
|
229 |
+
# joblib tries to access the companion files.
|
230 |
+
unpickler = ZipNumpyUnpickler(filename, file_handle=file_handle)
|
231 |
+
try:
|
232 |
+
obj = unpickler.load()
|
233 |
+
except UnicodeDecodeError as exc:
|
234 |
+
# More user-friendly error message
|
235 |
+
new_exc = ValueError(
|
236 |
+
'You may be trying to read with '
|
237 |
+
'python 3 a joblib pickle generated with python 2. '
|
238 |
+
'This feature is not supported by joblib.')
|
239 |
+
new_exc.__cause__ = exc
|
240 |
+
raise new_exc
|
241 |
+
finally:
|
242 |
+
if hasattr(unpickler, 'file_handle'):
|
243 |
+
unpickler.file_handle.close()
|
244 |
+
return obj
|
llmeval-env/lib/python3.10/site-packages/joblib/test/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_cloudpickle_wrapper.cpython-310.pyc
ADDED
Binary file (1.07 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_config.cpython-310.pyc
ADDED
Binary file (5.48 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_func_inspect.cpython-310.pyc
ADDED
Binary file (10.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_func_inspect_special_encoding.cpython-310.pyc
ADDED
Binary file (341 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_hashing.cpython-310.pyc
ADDED
Binary file (13.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_logger.cpython-310.pyc
ADDED
Binary file (774 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_memmapping.cpython-310.pyc
ADDED
Binary file (30.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_memory_async.cpython-310.pyc
ADDED
Binary file (4.55 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_missing_multiprocessing.cpython-310.pyc
ADDED
Binary file (1.28 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_numpy_pickle.cpython-310.pyc
ADDED
Binary file (31.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_numpy_pickle_compat.cpython-310.pyc
ADDED
Binary file (716 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_numpy_pickle_utils.cpython-310.pyc
ADDED
Binary file (609 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_store_backends.cpython-310.pyc
ADDED
Binary file (3.68 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_testing.cpython-310.pyc
ADDED
Binary file (2.38 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/__pycache__/test_utils.cpython-310.pyc
ADDED
Binary file (890 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/data/create_numpy_pickle.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This script is used to generate test data for joblib/test/test_numpy_pickle.py
|
3 |
+
"""
|
4 |
+
|
5 |
+
import sys
|
6 |
+
import re
|
7 |
+
|
8 |
+
# pytest needs to be able to import this module even when numpy is
|
9 |
+
# not installed
|
10 |
+
try:
|
11 |
+
import numpy as np
|
12 |
+
except ImportError:
|
13 |
+
np = None
|
14 |
+
|
15 |
+
import joblib
|
16 |
+
|
17 |
+
|
18 |
+
def get_joblib_version(joblib_version=joblib.__version__):
|
19 |
+
"""Normalize joblib version by removing suffix.
|
20 |
+
|
21 |
+
>>> get_joblib_version('0.8.4')
|
22 |
+
'0.8.4'
|
23 |
+
>>> get_joblib_version('0.8.4b1')
|
24 |
+
'0.8.4'
|
25 |
+
>>> get_joblib_version('0.9.dev0')
|
26 |
+
'0.9'
|
27 |
+
"""
|
28 |
+
matches = [re.match(r'(\d+).*', each)
|
29 |
+
for each in joblib_version.split('.')]
|
30 |
+
return '.'.join([m.group(1) for m in matches if m is not None])
|
31 |
+
|
32 |
+
|
33 |
+
def write_test_pickle(to_pickle, args):
|
34 |
+
kwargs = {}
|
35 |
+
compress = args.compress
|
36 |
+
method = args.method
|
37 |
+
joblib_version = get_joblib_version()
|
38 |
+
py_version = '{0[0]}{0[1]}'.format(sys.version_info)
|
39 |
+
numpy_version = ''.join(np.__version__.split('.')[:2])
|
40 |
+
|
41 |
+
# The game here is to generate the right filename according to the options.
|
42 |
+
body = '_compressed' if (compress and method == 'zlib') else ''
|
43 |
+
if compress:
|
44 |
+
if method == 'zlib':
|
45 |
+
kwargs['compress'] = True
|
46 |
+
extension = '.gz'
|
47 |
+
else:
|
48 |
+
kwargs['compress'] = (method, 3)
|
49 |
+
extension = '.pkl.{}'.format(method)
|
50 |
+
if args.cache_size:
|
51 |
+
kwargs['cache_size'] = 0
|
52 |
+
body += '_cache_size'
|
53 |
+
else:
|
54 |
+
extension = '.pkl'
|
55 |
+
|
56 |
+
pickle_filename = 'joblib_{}{}_pickle_py{}_np{}{}'.format(
|
57 |
+
joblib_version, body, py_version, numpy_version, extension)
|
58 |
+
|
59 |
+
try:
|
60 |
+
joblib.dump(to_pickle, pickle_filename, **kwargs)
|
61 |
+
except Exception as e:
|
62 |
+
# With old python version (=< 3.3.), we can arrive there when
|
63 |
+
# dumping compressed pickle with LzmaFile.
|
64 |
+
print("Error: cannot generate file '{}' with arguments '{}'. "
|
65 |
+
"Error was: {}".format(pickle_filename, kwargs, e))
|
66 |
+
else:
|
67 |
+
print("File '{}' generated successfully.".format(pickle_filename))
|
68 |
+
|
69 |
+
|
70 |
+
if __name__ == '__main__':
|
71 |
+
import argparse
|
72 |
+
parser = argparse.ArgumentParser(description="Joblib pickle data "
|
73 |
+
"generator.")
|
74 |
+
parser.add_argument('--cache_size', action="store_true",
|
75 |
+
help="Force creation of companion numpy "
|
76 |
+
"files for pickled arrays.")
|
77 |
+
parser.add_argument('--compress', action="store_true",
|
78 |
+
help="Generate compress pickles.")
|
79 |
+
parser.add_argument('--method', type=str, default='zlib',
|
80 |
+
choices=['zlib', 'gzip', 'bz2', 'xz', 'lzma', 'lz4'],
|
81 |
+
help="Set compression method.")
|
82 |
+
# We need to be specific about dtypes in particular endianness
|
83 |
+
# because the pickles can be generated on one architecture and
|
84 |
+
# the tests run on another one. See
|
85 |
+
# https://github.com/joblib/joblib/issues/279.
|
86 |
+
to_pickle = [np.arange(5, dtype=np.dtype('<i8')),
|
87 |
+
np.arange(5, dtype=np.dtype('<f8')),
|
88 |
+
np.array([1, 'abc', {'a': 1, 'b': 2}], dtype='O'),
|
89 |
+
# all possible bytes as a byte string
|
90 |
+
np.arange(256, dtype=np.uint8).tobytes(),
|
91 |
+
np.matrix([0, 1, 2], dtype=np.dtype('<i8')),
|
92 |
+
# unicode string with non-ascii chars
|
93 |
+
u"C'est l'\xe9t\xe9 !"]
|
94 |
+
|
95 |
+
write_test_pickle(to_pickle, parser.parse_args())
|
llmeval-env/lib/python3.10/site-packages/joblib/test/data/joblib_0.10.0_pickle_py27_np17.pkl.gzip
ADDED
Binary file (798 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/data/joblib_0.10.0_pickle_py27_np17.pkl.lzma
ADDED
Binary file (660 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/data/joblib_0.10.0_pickle_py33_np18.pkl.gzip
ADDED
Binary file (831 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/data/joblib_0.10.0_pickle_py33_np18.pkl.lzma
ADDED
Binary file (694 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/data/joblib_0.10.0_pickle_py34_np19.pkl.gzip
ADDED
Binary file (831 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/data/joblib_0.10.0_pickle_py34_np19.pkl.lzma
ADDED
Binary file (697 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/data/joblib_0.11.0_pickle_py36_np111.pkl.lzma
ADDED
Binary file (715 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/data/joblib_0.9.4.dev0_compressed_cache_size_pickle_py35_np19.gz_01.npy.z
ADDED
Binary file (43 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/joblib/test/test_backports.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import mmap
|
2 |
+
|
3 |
+
from joblib.backports import make_memmap, concurrency_safe_rename
|
4 |
+
from joblib.test.common import with_numpy
|
5 |
+
from joblib.testing import parametrize
|
6 |
+
from joblib import Parallel, delayed
|
7 |
+
|
8 |
+
|
9 |
+
@with_numpy
|
10 |
+
def test_memmap(tmpdir):
|
11 |
+
fname = tmpdir.join('test.mmap').strpath
|
12 |
+
size = 5 * mmap.ALLOCATIONGRANULARITY
|
13 |
+
offset = mmap.ALLOCATIONGRANULARITY + 1
|
14 |
+
memmap_obj = make_memmap(fname, shape=size, mode='w+', offset=offset)
|
15 |
+
assert memmap_obj.offset == offset
|
16 |
+
|
17 |
+
|
18 |
+
@parametrize('dst_content', [None, 'dst content'])
|
19 |
+
@parametrize('backend', [None, 'threading'])
|
20 |
+
def test_concurrency_safe_rename(tmpdir, dst_content, backend):
|
21 |
+
src_paths = [tmpdir.join('src_%d' % i) for i in range(4)]
|
22 |
+
for src_path in src_paths:
|
23 |
+
src_path.write('src content')
|
24 |
+
dst_path = tmpdir.join('dst')
|
25 |
+
if dst_content is not None:
|
26 |
+
dst_path.write(dst_content)
|
27 |
+
|
28 |
+
Parallel(n_jobs=4, backend=backend)(
|
29 |
+
delayed(concurrency_safe_rename)(src_path.strpath, dst_path.strpath)
|
30 |
+
for src_path in src_paths
|
31 |
+
)
|
32 |
+
assert dst_path.exists()
|
33 |
+
assert dst_path.read() == 'src content'
|
34 |
+
for src_path in src_paths:
|
35 |
+
assert not src_path.exists()
|
llmeval-env/lib/python3.10/site-packages/joblib/test/test_cloudpickle_wrapper.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Test that our implementation of wrap_non_picklable_objects mimics
|
3 |
+
properly the loky implementation.
|
4 |
+
"""
|
5 |
+
|
6 |
+
from .._cloudpickle_wrapper import wrap_non_picklable_objects
|
7 |
+
from .._cloudpickle_wrapper import _my_wrap_non_picklable_objects
|
8 |
+
|
9 |
+
|
10 |
+
def a_function(x):
|
11 |
+
return x
|
12 |
+
|
13 |
+
|
14 |
+
class AClass(object):
|
15 |
+
|
16 |
+
def __call__(self, x):
|
17 |
+
return x
|
18 |
+
|
19 |
+
|
20 |
+
def test_wrap_non_picklable_objects():
|
21 |
+
# Mostly a smoke test: test that we can use callable in the same way
|
22 |
+
# with both our implementation of wrap_non_picklable_objects and the
|
23 |
+
# upstream one
|
24 |
+
for obj in (a_function, AClass()):
|
25 |
+
wrapped_obj = wrap_non_picklable_objects(obj)
|
26 |
+
my_wrapped_obj = _my_wrap_non_picklable_objects(obj)
|
27 |
+
assert wrapped_obj(1) == my_wrapped_obj(1)
|
llmeval-env/lib/python3.10/site-packages/joblib/test/test_config.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from joblib.parallel import parallel_config
|
4 |
+
from joblib.parallel import parallel_backend
|
5 |
+
from joblib.parallel import Parallel, delayed
|
6 |
+
|
7 |
+
from joblib.parallel import BACKENDS
|
8 |
+
from joblib.parallel import DEFAULT_BACKEND
|
9 |
+
from joblib.parallel import EXTERNAL_BACKENDS
|
10 |
+
|
11 |
+
from joblib._parallel_backends import LokyBackend
|
12 |
+
from joblib._parallel_backends import ThreadingBackend
|
13 |
+
from joblib._parallel_backends import MultiprocessingBackend
|
14 |
+
|
15 |
+
from joblib.testing import parametrize, raises
|
16 |
+
from joblib.test.common import np, with_numpy
|
17 |
+
from joblib.test.common import with_multiprocessing
|
18 |
+
from joblib.test.test_parallel import check_memmap
|
19 |
+
|
20 |
+
|
21 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
22 |
+
def test_global_parallel_backend(context):
|
23 |
+
default = Parallel()._backend
|
24 |
+
|
25 |
+
pb = context('threading')
|
26 |
+
try:
|
27 |
+
assert isinstance(Parallel()._backend, ThreadingBackend)
|
28 |
+
finally:
|
29 |
+
pb.unregister()
|
30 |
+
assert type(Parallel()._backend) is type(default)
|
31 |
+
|
32 |
+
|
33 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
34 |
+
def test_external_backends(context):
|
35 |
+
def register_foo():
|
36 |
+
BACKENDS['foo'] = ThreadingBackend
|
37 |
+
|
38 |
+
EXTERNAL_BACKENDS['foo'] = register_foo
|
39 |
+
try:
|
40 |
+
with context('foo'):
|
41 |
+
assert isinstance(Parallel()._backend, ThreadingBackend)
|
42 |
+
finally:
|
43 |
+
del EXTERNAL_BACKENDS['foo']
|
44 |
+
|
45 |
+
|
46 |
+
@with_numpy
|
47 |
+
@with_multiprocessing
|
48 |
+
def test_parallel_config_no_backend(tmpdir):
|
49 |
+
# Check that parallel_config allows to change the config
|
50 |
+
# even if no backend is set.
|
51 |
+
with parallel_config(n_jobs=2, max_nbytes=1, temp_folder=tmpdir):
|
52 |
+
with Parallel(prefer="processes") as p:
|
53 |
+
assert isinstance(p._backend, LokyBackend)
|
54 |
+
assert p.n_jobs == 2
|
55 |
+
|
56 |
+
# Checks that memmapping is enabled
|
57 |
+
p(delayed(check_memmap)(a) for a in [np.random.random(10)] * 2)
|
58 |
+
assert len(os.listdir(tmpdir)) > 0
|
59 |
+
|
60 |
+
|
61 |
+
@with_numpy
|
62 |
+
@with_multiprocessing
|
63 |
+
def test_parallel_config_params_explicit_set(tmpdir):
|
64 |
+
with parallel_config(n_jobs=3, max_nbytes=1, temp_folder=tmpdir):
|
65 |
+
with Parallel(n_jobs=2, prefer="processes", max_nbytes='1M') as p:
|
66 |
+
assert isinstance(p._backend, LokyBackend)
|
67 |
+
assert p.n_jobs == 2
|
68 |
+
|
69 |
+
# Checks that memmapping is disabled
|
70 |
+
with raises(TypeError, match="Expected np.memmap instance"):
|
71 |
+
p(delayed(check_memmap)(a) for a in [np.random.random(10)] * 2)
|
72 |
+
|
73 |
+
|
74 |
+
@parametrize("param", ["prefer", "require"])
|
75 |
+
def test_parallel_config_bad_params(param):
|
76 |
+
# Check that an error is raised when setting a wrong backend
|
77 |
+
# hint or constraint
|
78 |
+
with raises(ValueError, match=f"{param}=wrong is not a valid"):
|
79 |
+
with parallel_config(**{param: "wrong"}):
|
80 |
+
Parallel()
|
81 |
+
|
82 |
+
|
83 |
+
def test_parallel_config_constructor_params():
|
84 |
+
# Check that an error is raised when backend is None
|
85 |
+
# but backend constructor params are given
|
86 |
+
with raises(ValueError, match="only supported when backend is not None"):
|
87 |
+
with parallel_config(inner_max_num_threads=1):
|
88 |
+
pass
|
89 |
+
|
90 |
+
with raises(ValueError, match="only supported when backend is not None"):
|
91 |
+
with parallel_config(backend_param=1):
|
92 |
+
pass
|
93 |
+
|
94 |
+
|
95 |
+
def test_parallel_config_nested():
|
96 |
+
# Check that nested configuration retrieves the info from the
|
97 |
+
# parent config and do not reset them.
|
98 |
+
|
99 |
+
with parallel_config(n_jobs=2):
|
100 |
+
p = Parallel()
|
101 |
+
assert isinstance(p._backend, BACKENDS[DEFAULT_BACKEND])
|
102 |
+
assert p.n_jobs == 2
|
103 |
+
|
104 |
+
with parallel_config(backend='threading'):
|
105 |
+
with parallel_config(n_jobs=2):
|
106 |
+
p = Parallel()
|
107 |
+
assert isinstance(p._backend, ThreadingBackend)
|
108 |
+
assert p.n_jobs == 2
|
109 |
+
|
110 |
+
with parallel_config(verbose=100):
|
111 |
+
with parallel_config(n_jobs=2):
|
112 |
+
p = Parallel()
|
113 |
+
assert p.verbose == 100
|
114 |
+
assert p.n_jobs == 2
|
115 |
+
|
116 |
+
|
117 |
+
@with_numpy
|
118 |
+
@with_multiprocessing
|
119 |
+
@parametrize('backend', ['multiprocessing', 'threading',
|
120 |
+
MultiprocessingBackend(), ThreadingBackend()])
|
121 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
122 |
+
def test_threadpool_limitation_in_child_context_error(context, backend):
|
123 |
+
|
124 |
+
with raises(AssertionError, match=r"does not acc.*inner_max_num_threads"):
|
125 |
+
context(backend, inner_max_num_threads=1)
|
126 |
+
|
127 |
+
|
128 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
129 |
+
def test_parallel_n_jobs_none(context):
|
130 |
+
# Check that n_jobs=None is interpreted as "unset" in Parallel
|
131 |
+
# non regression test for #1473
|
132 |
+
with context(backend="threading", n_jobs=2):
|
133 |
+
with Parallel(n_jobs=None) as p:
|
134 |
+
assert p.n_jobs == 2
|
135 |
+
|
136 |
+
with context(backend="threading"):
|
137 |
+
default_n_jobs = Parallel().n_jobs
|
138 |
+
with Parallel(n_jobs=None) as p:
|
139 |
+
assert p.n_jobs == default_n_jobs
|
140 |
+
|
141 |
+
|
142 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
143 |
+
def test_parallel_config_n_jobs_none(context):
|
144 |
+
# Check that n_jobs=None is interpreted as "explicitly set" in
|
145 |
+
# parallel_(config/backend)
|
146 |
+
# non regression test for #1473
|
147 |
+
with context(backend="threading", n_jobs=2):
|
148 |
+
with context(backend="threading", n_jobs=None):
|
149 |
+
# n_jobs=None resets n_jobs to backend's default
|
150 |
+
with Parallel() as p:
|
151 |
+
assert p.n_jobs == 1
|
llmeval-env/lib/python3.10/site-packages/joblib/test/test_dask.py
ADDED
@@ -0,0 +1,499 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import print_function, division, absolute_import
|
2 |
+
import os
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
import pytest
|
6 |
+
from random import random
|
7 |
+
from uuid import uuid4
|
8 |
+
from time import sleep
|
9 |
+
|
10 |
+
from .. import Parallel, delayed, parallel_config
|
11 |
+
from ..parallel import ThreadingBackend, AutoBatchingMixin
|
12 |
+
from .._dask import DaskDistributedBackend
|
13 |
+
|
14 |
+
distributed = pytest.importorskip('distributed')
|
15 |
+
dask = pytest.importorskip('dask')
|
16 |
+
|
17 |
+
# These imports need to be after the pytest.importorskip hence the noqa: E402
|
18 |
+
from distributed import Client, LocalCluster, get_client # noqa: E402
|
19 |
+
from distributed.metrics import time # noqa: E402
|
20 |
+
# Note: pytest requires to manually import all fixtures used in the test
|
21 |
+
# and their dependencies.
|
22 |
+
from distributed.utils_test import cluster, inc, cleanup # noqa: E402, F401
|
23 |
+
|
24 |
+
|
25 |
+
def noop(*args, **kwargs):
|
26 |
+
pass
|
27 |
+
|
28 |
+
|
29 |
+
def slow_raise_value_error(condition, duration=0.05):
|
30 |
+
sleep(duration)
|
31 |
+
if condition:
|
32 |
+
raise ValueError("condition evaluated to True")
|
33 |
+
|
34 |
+
|
35 |
+
def count_events(event_name, client):
|
36 |
+
worker_events = client.run(lambda dask_worker: dask_worker.log)
|
37 |
+
event_counts = {}
|
38 |
+
for w, events in worker_events.items():
|
39 |
+
event_counts[w] = len([event for event in list(events)
|
40 |
+
if event[1] == event_name])
|
41 |
+
return event_counts
|
42 |
+
|
43 |
+
|
44 |
+
def test_simple(loop):
|
45 |
+
with cluster() as (s, [a, b]):
|
46 |
+
with Client(s['address'], loop=loop) as client: # noqa: F841
|
47 |
+
with parallel_config(backend='dask'):
|
48 |
+
seq = Parallel()(delayed(inc)(i) for i in range(10))
|
49 |
+
assert seq == [inc(i) for i in range(10)]
|
50 |
+
|
51 |
+
with pytest.raises(ValueError):
|
52 |
+
Parallel()(delayed(slow_raise_value_error)(i == 3)
|
53 |
+
for i in range(10))
|
54 |
+
|
55 |
+
seq = Parallel()(delayed(inc)(i) for i in range(10))
|
56 |
+
assert seq == [inc(i) for i in range(10)]
|
57 |
+
|
58 |
+
|
59 |
+
def test_dask_backend_uses_autobatching(loop):
|
60 |
+
assert (DaskDistributedBackend.compute_batch_size
|
61 |
+
is AutoBatchingMixin.compute_batch_size)
|
62 |
+
|
63 |
+
with cluster() as (s, [a, b]):
|
64 |
+
with Client(s['address'], loop=loop) as client: # noqa: F841
|
65 |
+
with parallel_config(backend='dask'):
|
66 |
+
with Parallel() as parallel:
|
67 |
+
# The backend should be initialized with a default
|
68 |
+
# batch size of 1:
|
69 |
+
backend = parallel._backend
|
70 |
+
assert isinstance(backend, DaskDistributedBackend)
|
71 |
+
assert backend.parallel is parallel
|
72 |
+
assert backend._effective_batch_size == 1
|
73 |
+
|
74 |
+
# Launch many short tasks that should trigger
|
75 |
+
# auto-batching:
|
76 |
+
parallel(
|
77 |
+
delayed(lambda: None)()
|
78 |
+
for _ in range(int(1e4))
|
79 |
+
)
|
80 |
+
assert backend._effective_batch_size > 10
|
81 |
+
|
82 |
+
|
83 |
+
def random2():
|
84 |
+
return random()
|
85 |
+
|
86 |
+
|
87 |
+
def test_dont_assume_function_purity(loop):
|
88 |
+
with cluster() as (s, [a, b]):
|
89 |
+
with Client(s['address'], loop=loop) as client: # noqa: F841
|
90 |
+
with parallel_config(backend='dask'):
|
91 |
+
x, y = Parallel()(delayed(random2)() for i in range(2))
|
92 |
+
assert x != y
|
93 |
+
|
94 |
+
|
95 |
+
@pytest.mark.parametrize("mixed", [True, False])
|
96 |
+
def test_dask_funcname(loop, mixed):
|
97 |
+
from joblib._dask import Batch
|
98 |
+
if not mixed:
|
99 |
+
tasks = [delayed(inc)(i) for i in range(4)]
|
100 |
+
batch_repr = 'batch_of_inc_4_calls'
|
101 |
+
else:
|
102 |
+
tasks = [
|
103 |
+
delayed(abs)(i) if i % 2 else delayed(inc)(i) for i in range(4)
|
104 |
+
]
|
105 |
+
batch_repr = 'mixed_batch_of_inc_4_calls'
|
106 |
+
|
107 |
+
assert repr(Batch(tasks)) == batch_repr
|
108 |
+
|
109 |
+
with cluster() as (s, [a, b]):
|
110 |
+
with Client(s['address'], loop=loop) as client:
|
111 |
+
with parallel_config(backend='dask'):
|
112 |
+
_ = Parallel(batch_size=2, pre_dispatch='all')(tasks)
|
113 |
+
|
114 |
+
def f(dask_scheduler):
|
115 |
+
return list(dask_scheduler.transition_log)
|
116 |
+
batch_repr = batch_repr.replace('4', '2')
|
117 |
+
log = client.run_on_scheduler(f)
|
118 |
+
assert all('batch_of_inc' in tup[0] for tup in log)
|
119 |
+
|
120 |
+
|
121 |
+
def test_no_undesired_distributed_cache_hit():
|
122 |
+
# Dask has a pickle cache for callables that are called many times. Because
|
123 |
+
# the dask backends used to wrap both the functions and the arguments
|
124 |
+
# under instances of the Batch callable class this caching mechanism could
|
125 |
+
# lead to bugs as described in: https://github.com/joblib/joblib/pull/1055
|
126 |
+
# The joblib-dask backend has been refactored to avoid bundling the
|
127 |
+
# arguments as an attribute of the Batch instance to avoid this problem.
|
128 |
+
# This test serves as non-regression problem.
|
129 |
+
|
130 |
+
# Use a large number of input arguments to give the AutoBatchingMixin
|
131 |
+
# enough tasks to kick-in.
|
132 |
+
lists = [[] for _ in range(100)]
|
133 |
+
np = pytest.importorskip('numpy')
|
134 |
+
X = np.arange(int(1e6))
|
135 |
+
|
136 |
+
def isolated_operation(list_, data=None):
|
137 |
+
if data is not None:
|
138 |
+
np.testing.assert_array_equal(data, X)
|
139 |
+
list_.append(uuid4().hex)
|
140 |
+
return list_
|
141 |
+
|
142 |
+
cluster = LocalCluster(n_workers=1, threads_per_worker=2)
|
143 |
+
client = Client(cluster)
|
144 |
+
try:
|
145 |
+
with parallel_config(backend='dask'):
|
146 |
+
# dispatches joblib.parallel.BatchedCalls
|
147 |
+
res = Parallel()(
|
148 |
+
delayed(isolated_operation)(list_) for list_ in lists
|
149 |
+
)
|
150 |
+
|
151 |
+
# The original arguments should not have been mutated as the mutation
|
152 |
+
# happens in the dask worker process.
|
153 |
+
assert lists == [[] for _ in range(100)]
|
154 |
+
|
155 |
+
# Here we did not pass any large numpy array as argument to
|
156 |
+
# isolated_operation so no scattering event should happen under the
|
157 |
+
# hood.
|
158 |
+
counts = count_events('receive-from-scatter', client)
|
159 |
+
assert sum(counts.values()) == 0
|
160 |
+
assert all([len(r) == 1 for r in res])
|
161 |
+
|
162 |
+
with parallel_config(backend='dask'):
|
163 |
+
# Append a large array which will be scattered by dask, and
|
164 |
+
# dispatch joblib._dask.Batch
|
165 |
+
res = Parallel()(
|
166 |
+
delayed(isolated_operation)(list_, data=X) for list_ in lists
|
167 |
+
)
|
168 |
+
|
169 |
+
# This time, auto-scattering should have kicked it.
|
170 |
+
counts = count_events('receive-from-scatter', client)
|
171 |
+
assert sum(counts.values()) > 0
|
172 |
+
assert all([len(r) == 1 for r in res])
|
173 |
+
finally:
|
174 |
+
client.close(timeout=30)
|
175 |
+
cluster.close(timeout=30)
|
176 |
+
|
177 |
+
|
178 |
+
class CountSerialized(object):
|
179 |
+
def __init__(self, x):
|
180 |
+
self.x = x
|
181 |
+
self.count = 0
|
182 |
+
|
183 |
+
def __add__(self, other):
|
184 |
+
return self.x + getattr(other, 'x', other)
|
185 |
+
|
186 |
+
__radd__ = __add__
|
187 |
+
|
188 |
+
def __reduce__(self):
|
189 |
+
self.count += 1
|
190 |
+
return (CountSerialized, (self.x,))
|
191 |
+
|
192 |
+
|
193 |
+
def add5(a, b, c, d=0, e=0):
|
194 |
+
return a + b + c + d + e
|
195 |
+
|
196 |
+
|
197 |
+
def test_manual_scatter(loop):
|
198 |
+
x = CountSerialized(1)
|
199 |
+
y = CountSerialized(2)
|
200 |
+
z = CountSerialized(3)
|
201 |
+
|
202 |
+
with cluster() as (s, [a, b]):
|
203 |
+
with Client(s['address'], loop=loop) as client: # noqa: F841
|
204 |
+
with parallel_config(backend='dask', scatter=[x, y]):
|
205 |
+
f = delayed(add5)
|
206 |
+
tasks = [f(x, y, z, d=4, e=5),
|
207 |
+
f(x, z, y, d=5, e=4),
|
208 |
+
f(y, x, z, d=x, e=5),
|
209 |
+
f(z, z, x, d=z, e=y)]
|
210 |
+
expected = [func(*args, **kwargs)
|
211 |
+
for func, args, kwargs in tasks]
|
212 |
+
results = Parallel()(tasks)
|
213 |
+
|
214 |
+
# Scatter must take a list/tuple
|
215 |
+
with pytest.raises(TypeError):
|
216 |
+
with parallel_config(backend='dask', loop=loop, scatter=1):
|
217 |
+
pass
|
218 |
+
|
219 |
+
assert results == expected
|
220 |
+
|
221 |
+
# Scattered variables only serialized once
|
222 |
+
assert x.count == 1
|
223 |
+
assert y.count == 1
|
224 |
+
# Depending on the version of distributed, the unscattered z variable
|
225 |
+
# is either pickled 4 or 6 times, possibly because of the memoization
|
226 |
+
# of objects that appear several times in the arguments of a delayed
|
227 |
+
# task.
|
228 |
+
assert z.count in (4, 6)
|
229 |
+
|
230 |
+
|
231 |
+
# When the same IOLoop is used for multiple clients in a row, use
|
232 |
+
# loop_in_thread instead of loop to prevent the Client from closing it. See
|
233 |
+
# dask/distributed #4112
|
234 |
+
def test_auto_scatter(loop_in_thread):
|
235 |
+
np = pytest.importorskip('numpy')
|
236 |
+
data1 = np.ones(int(1e4), dtype=np.uint8)
|
237 |
+
data2 = np.ones(int(1e4), dtype=np.uint8)
|
238 |
+
data_to_process = ([data1] * 3) + ([data2] * 3)
|
239 |
+
|
240 |
+
with cluster() as (s, [a, b]):
|
241 |
+
with Client(s['address'], loop=loop_in_thread) as client:
|
242 |
+
with parallel_config(backend='dask'):
|
243 |
+
# Passing the same data as arg and kwarg triggers a single
|
244 |
+
# scatter operation whose result is reused.
|
245 |
+
Parallel()(delayed(noop)(data, data, i, opt=data)
|
246 |
+
for i, data in enumerate(data_to_process))
|
247 |
+
# By default large array are automatically scattered with
|
248 |
+
# broadcast=1 which means that one worker must directly receive
|
249 |
+
# the data from the scatter operation once.
|
250 |
+
counts = count_events('receive-from-scatter', client)
|
251 |
+
assert counts[a['address']] + counts[b['address']] == 2
|
252 |
+
|
253 |
+
with cluster() as (s, [a, b]):
|
254 |
+
with Client(s['address'], loop=loop_in_thread) as client:
|
255 |
+
with parallel_config(backend='dask'):
|
256 |
+
Parallel()(delayed(noop)(data1[:3], i) for i in range(5))
|
257 |
+
# Small arrays are passed within the task definition without going
|
258 |
+
# through a scatter operation.
|
259 |
+
counts = count_events('receive-from-scatter', client)
|
260 |
+
assert counts[a['address']] == 0
|
261 |
+
assert counts[b['address']] == 0
|
262 |
+
|
263 |
+
|
264 |
+
@pytest.mark.parametrize("retry_no", list(range(2)))
|
265 |
+
def test_nested_scatter(loop, retry_no):
|
266 |
+
|
267 |
+
np = pytest.importorskip('numpy')
|
268 |
+
|
269 |
+
NUM_INNER_TASKS = 10
|
270 |
+
NUM_OUTER_TASKS = 10
|
271 |
+
|
272 |
+
def my_sum(x, i, j):
|
273 |
+
return np.sum(x)
|
274 |
+
|
275 |
+
def outer_function_joblib(array, i):
|
276 |
+
client = get_client() # noqa
|
277 |
+
with parallel_config(backend="dask"):
|
278 |
+
results = Parallel()(
|
279 |
+
delayed(my_sum)(array[j:], i, j) for j in range(
|
280 |
+
NUM_INNER_TASKS)
|
281 |
+
)
|
282 |
+
return sum(results)
|
283 |
+
|
284 |
+
with cluster() as (s, [a, b]):
|
285 |
+
with Client(s['address'], loop=loop) as _:
|
286 |
+
with parallel_config(backend="dask"):
|
287 |
+
my_array = np.ones(10000)
|
288 |
+
_ = Parallel()(
|
289 |
+
delayed(outer_function_joblib)(
|
290 |
+
my_array[i:], i) for i in range(NUM_OUTER_TASKS)
|
291 |
+
)
|
292 |
+
|
293 |
+
|
294 |
+
def test_nested_backend_context_manager(loop_in_thread):
|
295 |
+
def get_nested_pids():
|
296 |
+
pids = set(Parallel(n_jobs=2)(delayed(os.getpid)() for _ in range(2)))
|
297 |
+
pids |= set(Parallel(n_jobs=2)(delayed(os.getpid)() for _ in range(2)))
|
298 |
+
return pids
|
299 |
+
|
300 |
+
with cluster() as (s, [a, b]):
|
301 |
+
with Client(s['address'], loop=loop_in_thread) as client:
|
302 |
+
with parallel_config(backend='dask'):
|
303 |
+
pid_groups = Parallel(n_jobs=2)(
|
304 |
+
delayed(get_nested_pids)()
|
305 |
+
for _ in range(10)
|
306 |
+
)
|
307 |
+
for pid_group in pid_groups:
|
308 |
+
assert len(set(pid_group)) <= 2
|
309 |
+
|
310 |
+
# No deadlocks
|
311 |
+
with Client(s['address'], loop=loop_in_thread) as client: # noqa: F841
|
312 |
+
with parallel_config(backend='dask'):
|
313 |
+
pid_groups = Parallel(n_jobs=2)(
|
314 |
+
delayed(get_nested_pids)()
|
315 |
+
for _ in range(10)
|
316 |
+
)
|
317 |
+
for pid_group in pid_groups:
|
318 |
+
assert len(set(pid_group)) <= 2
|
319 |
+
|
320 |
+
|
321 |
+
def test_nested_backend_context_manager_implicit_n_jobs(loop):
|
322 |
+
# Check that Parallel with no explicit n_jobs value automatically selects
|
323 |
+
# all the dask workers, including in nested calls.
|
324 |
+
|
325 |
+
def _backend_type(p):
|
326 |
+
return p._backend.__class__.__name__
|
327 |
+
|
328 |
+
def get_nested_implicit_n_jobs():
|
329 |
+
with Parallel() as p:
|
330 |
+
return _backend_type(p), p.n_jobs
|
331 |
+
|
332 |
+
with cluster() as (s, [a, b]):
|
333 |
+
with Client(s['address'], loop=loop) as client: # noqa: F841
|
334 |
+
with parallel_config(backend='dask'):
|
335 |
+
with Parallel() as p:
|
336 |
+
assert _backend_type(p) == "DaskDistributedBackend"
|
337 |
+
assert p.n_jobs == -1
|
338 |
+
all_nested_n_jobs = p(
|
339 |
+
delayed(get_nested_implicit_n_jobs)()
|
340 |
+
for _ in range(2)
|
341 |
+
)
|
342 |
+
for backend_type, nested_n_jobs in all_nested_n_jobs:
|
343 |
+
assert backend_type == "DaskDistributedBackend"
|
344 |
+
assert nested_n_jobs == -1
|
345 |
+
|
346 |
+
|
347 |
+
def test_errors(loop):
|
348 |
+
with pytest.raises(ValueError) as info:
|
349 |
+
with parallel_config(backend='dask'):
|
350 |
+
pass
|
351 |
+
|
352 |
+
assert "create a dask client" in str(info.value).lower()
|
353 |
+
|
354 |
+
|
355 |
+
def test_correct_nested_backend(loop):
|
356 |
+
with cluster() as (s, [a, b]):
|
357 |
+
with Client(s['address'], loop=loop) as client: # noqa: F841
|
358 |
+
# No requirement, should be us
|
359 |
+
with parallel_config(backend='dask'):
|
360 |
+
result = Parallel(n_jobs=2)(
|
361 |
+
delayed(outer)(nested_require=None) for _ in range(1))
|
362 |
+
assert isinstance(result[0][0][0], DaskDistributedBackend)
|
363 |
+
|
364 |
+
# Require threads, should be threading
|
365 |
+
with parallel_config(backend='dask'):
|
366 |
+
result = Parallel(n_jobs=2)(
|
367 |
+
delayed(outer)(nested_require='sharedmem')
|
368 |
+
for _ in range(1))
|
369 |
+
assert isinstance(result[0][0][0], ThreadingBackend)
|
370 |
+
|
371 |
+
|
372 |
+
def outer(nested_require):
|
373 |
+
return Parallel(n_jobs=2, prefer='threads')(
|
374 |
+
delayed(middle)(nested_require) for _ in range(1)
|
375 |
+
)
|
376 |
+
|
377 |
+
|
378 |
+
def middle(require):
|
379 |
+
return Parallel(n_jobs=2, require=require)(
|
380 |
+
delayed(inner)() for _ in range(1)
|
381 |
+
)
|
382 |
+
|
383 |
+
|
384 |
+
def inner():
|
385 |
+
return Parallel()._backend
|
386 |
+
|
387 |
+
|
388 |
+
def test_secede_with_no_processes(loop):
|
389 |
+
# https://github.com/dask/distributed/issues/1775
|
390 |
+
with Client(loop=loop, processes=False, set_as_default=True):
|
391 |
+
with parallel_config(backend='dask'):
|
392 |
+
Parallel(n_jobs=4)(delayed(id)(i) for i in range(2))
|
393 |
+
|
394 |
+
|
395 |
+
def _worker_address(_):
|
396 |
+
from distributed import get_worker
|
397 |
+
return get_worker().address
|
398 |
+
|
399 |
+
|
400 |
+
def test_dask_backend_keywords(loop):
|
401 |
+
with cluster() as (s, [a, b]):
|
402 |
+
with Client(s['address'], loop=loop) as client: # noqa: F841
|
403 |
+
with parallel_config(backend='dask', workers=a['address']):
|
404 |
+
seq = Parallel()(
|
405 |
+
delayed(_worker_address)(i) for i in range(10))
|
406 |
+
assert seq == [a['address']] * 10
|
407 |
+
|
408 |
+
with parallel_config(backend='dask', workers=b['address']):
|
409 |
+
seq = Parallel()(
|
410 |
+
delayed(_worker_address)(i) for i in range(10))
|
411 |
+
assert seq == [b['address']] * 10
|
412 |
+
|
413 |
+
|
414 |
+
def test_scheduler_tasks_cleanup(loop):
|
415 |
+
with Client(processes=False, loop=loop) as client:
|
416 |
+
with parallel_config(backend='dask'):
|
417 |
+
Parallel()(delayed(inc)(i) for i in range(10))
|
418 |
+
|
419 |
+
start = time()
|
420 |
+
while client.cluster.scheduler.tasks:
|
421 |
+
sleep(0.01)
|
422 |
+
assert time() < start + 5
|
423 |
+
|
424 |
+
assert not client.futures
|
425 |
+
|
426 |
+
|
427 |
+
@pytest.mark.parametrize("cluster_strategy", ["adaptive", "late_scaling"])
|
428 |
+
@pytest.mark.skipif(
|
429 |
+
distributed.__version__ <= '2.1.1' and distributed.__version__ >= '1.28.0',
|
430 |
+
reason="distributed bug - https://github.com/dask/distributed/pull/2841")
|
431 |
+
def test_wait_for_workers(cluster_strategy):
|
432 |
+
cluster = LocalCluster(n_workers=0, processes=False, threads_per_worker=2)
|
433 |
+
client = Client(cluster)
|
434 |
+
if cluster_strategy == "adaptive":
|
435 |
+
cluster.adapt(minimum=0, maximum=2)
|
436 |
+
elif cluster_strategy == "late_scaling":
|
437 |
+
# Tell the cluster to start workers but this is a non-blocking call
|
438 |
+
# and new workers might take time to connect. In this case the Parallel
|
439 |
+
# call should wait for at least one worker to come up before starting
|
440 |
+
# to schedule work.
|
441 |
+
cluster.scale(2)
|
442 |
+
try:
|
443 |
+
with parallel_config(backend='dask'):
|
444 |
+
# The following should wait a bit for at least one worker to
|
445 |
+
# become available.
|
446 |
+
Parallel()(delayed(inc)(i) for i in range(10))
|
447 |
+
finally:
|
448 |
+
client.close()
|
449 |
+
cluster.close()
|
450 |
+
|
451 |
+
|
452 |
+
def test_wait_for_workers_timeout():
|
453 |
+
# Start a cluster with 0 worker:
|
454 |
+
cluster = LocalCluster(n_workers=0, processes=False, threads_per_worker=2)
|
455 |
+
client = Client(cluster)
|
456 |
+
try:
|
457 |
+
with parallel_config(backend='dask', wait_for_workers_timeout=0.1):
|
458 |
+
# Short timeout: DaskDistributedBackend
|
459 |
+
msg = "DaskDistributedBackend has no worker after 0.1 seconds."
|
460 |
+
with pytest.raises(TimeoutError, match=msg):
|
461 |
+
Parallel()(delayed(inc)(i) for i in range(10))
|
462 |
+
|
463 |
+
with parallel_config(backend='dask', wait_for_workers_timeout=0):
|
464 |
+
# No timeout: fallback to generic joblib failure:
|
465 |
+
msg = "DaskDistributedBackend has no active worker"
|
466 |
+
with pytest.raises(RuntimeError, match=msg):
|
467 |
+
Parallel()(delayed(inc)(i) for i in range(10))
|
468 |
+
finally:
|
469 |
+
client.close()
|
470 |
+
cluster.close()
|
471 |
+
|
472 |
+
|
473 |
+
@pytest.mark.parametrize("backend", ["loky", "multiprocessing"])
|
474 |
+
def test_joblib_warning_inside_dask_daemonic_worker(backend):
|
475 |
+
cluster = LocalCluster(n_workers=2)
|
476 |
+
client = Client(cluster)
|
477 |
+
try:
|
478 |
+
|
479 |
+
def func_using_joblib_parallel():
|
480 |
+
# Somehow trying to check the warning type here (e.g. with
|
481 |
+
# pytest.warns(UserWarning)) make the test hang. Work-around:
|
482 |
+
# return the warning record to the client and the warning check is
|
483 |
+
# done client-side.
|
484 |
+
with warnings.catch_warnings(record=True) as record:
|
485 |
+
Parallel(n_jobs=2, backend=backend)(
|
486 |
+
delayed(inc)(i) for i in range(10))
|
487 |
+
|
488 |
+
return record
|
489 |
+
|
490 |
+
fut = client.submit(func_using_joblib_parallel)
|
491 |
+
record = fut.result()
|
492 |
+
|
493 |
+
assert len(record) == 1
|
494 |
+
warning = record[0].message
|
495 |
+
assert isinstance(warning, UserWarning)
|
496 |
+
assert "distributed.worker.daemon" in str(warning)
|
497 |
+
finally:
|
498 |
+
client.close(timeout=30)
|
499 |
+
cluster.close(timeout=30)
|
llmeval-env/lib/python3.10/site-packages/joblib/test/test_disk.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Unit tests for the disk utilities.
|
3 |
+
"""
|
4 |
+
|
5 |
+
# Authors: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
|
6 |
+
# Lars Buitinck
|
7 |
+
# Copyright (c) 2010 Gael Varoquaux
|
8 |
+
# License: BSD Style, 3 clauses.
|
9 |
+
|
10 |
+
from __future__ import with_statement
|
11 |
+
import array
|
12 |
+
import os
|
13 |
+
|
14 |
+
from joblib.disk import disk_used, memstr_to_bytes, mkdirp, rm_subdirs
|
15 |
+
from joblib.testing import parametrize, raises
|
16 |
+
|
17 |
+
###############################################################################
|
18 |
+
|
19 |
+
|
20 |
+
def test_disk_used(tmpdir):
|
21 |
+
cachedir = tmpdir.strpath
|
22 |
+
# Not write a file that is 1M big in this directory, and check the
|
23 |
+
# size. The reason we use such a big file is that it makes us robust
|
24 |
+
# to errors due to block allocation.
|
25 |
+
a = array.array('i')
|
26 |
+
sizeof_i = a.itemsize
|
27 |
+
target_size = 1024
|
28 |
+
n = int(target_size * 1024 / sizeof_i)
|
29 |
+
a = array.array('i', n * (1,))
|
30 |
+
with open(os.path.join(cachedir, 'test'), 'wb') as output:
|
31 |
+
a.tofile(output)
|
32 |
+
assert disk_used(cachedir) >= target_size
|
33 |
+
assert disk_used(cachedir) < target_size + 12
|
34 |
+
|
35 |
+
|
36 |
+
@parametrize('text,value',
|
37 |
+
[('80G', 80 * 1024 ** 3),
|
38 |
+
('1.4M', int(1.4 * 1024 ** 2)),
|
39 |
+
('120M', 120 * 1024 ** 2),
|
40 |
+
('53K', 53 * 1024)])
|
41 |
+
def test_memstr_to_bytes(text, value):
|
42 |
+
assert memstr_to_bytes(text) == value
|
43 |
+
|
44 |
+
|
45 |
+
@parametrize('text,exception,regex',
|
46 |
+
[('fooG', ValueError, r'Invalid literal for size.*fooG.*'),
|
47 |
+
('1.4N', ValueError, r'Invalid literal for size.*1.4N.*')])
|
48 |
+
def test_memstr_to_bytes_exception(text, exception, regex):
|
49 |
+
with raises(exception) as excinfo:
|
50 |
+
memstr_to_bytes(text)
|
51 |
+
assert excinfo.match(regex)
|
52 |
+
|
53 |
+
|
54 |
+
def test_mkdirp(tmpdir):
|
55 |
+
mkdirp(os.path.join(tmpdir.strpath, 'ham'))
|
56 |
+
mkdirp(os.path.join(tmpdir.strpath, 'ham'))
|
57 |
+
mkdirp(os.path.join(tmpdir.strpath, 'spam', 'spam'))
|
58 |
+
|
59 |
+
# Not all OSErrors are ignored
|
60 |
+
with raises(OSError):
|
61 |
+
mkdirp('')
|
62 |
+
|
63 |
+
|
64 |
+
def test_rm_subdirs(tmpdir):
|
65 |
+
sub_path = os.path.join(tmpdir.strpath, "am", "stram")
|
66 |
+
full_path = os.path.join(sub_path, "gram")
|
67 |
+
mkdirp(os.path.join(full_path))
|
68 |
+
|
69 |
+
rm_subdirs(sub_path)
|
70 |
+
assert os.path.exists(sub_path)
|
71 |
+
assert not os.path.exists(full_path)
|
llmeval-env/lib/python3.10/site-packages/joblib/test/test_func_inspect.py
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Test the func_inspect module.
|
3 |
+
"""
|
4 |
+
|
5 |
+
# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
|
6 |
+
# Copyright (c) 2009 Gael Varoquaux
|
7 |
+
# License: BSD Style, 3 clauses.
|
8 |
+
|
9 |
+
import functools
|
10 |
+
|
11 |
+
from joblib.func_inspect import filter_args, get_func_name, get_func_code
|
12 |
+
from joblib.func_inspect import _clean_win_chars, format_signature
|
13 |
+
from joblib.memory import Memory
|
14 |
+
from joblib.test.common import with_numpy
|
15 |
+
from joblib.testing import fixture, parametrize, raises
|
16 |
+
|
17 |
+
|
18 |
+
###############################################################################
|
19 |
+
# Module-level functions and fixture, for tests
|
20 |
+
def f(x, y=0):
|
21 |
+
pass
|
22 |
+
|
23 |
+
|
24 |
+
def g(x):
|
25 |
+
pass
|
26 |
+
|
27 |
+
|
28 |
+
def h(x, y=0, *args, **kwargs):
|
29 |
+
pass
|
30 |
+
|
31 |
+
|
32 |
+
def i(x=1):
|
33 |
+
pass
|
34 |
+
|
35 |
+
|
36 |
+
def j(x, y, **kwargs):
|
37 |
+
pass
|
38 |
+
|
39 |
+
|
40 |
+
def k(*args, **kwargs):
|
41 |
+
pass
|
42 |
+
|
43 |
+
|
44 |
+
def m1(x, *, y):
|
45 |
+
pass
|
46 |
+
|
47 |
+
|
48 |
+
def m2(x, *, y, z=3):
|
49 |
+
pass
|
50 |
+
|
51 |
+
|
52 |
+
@fixture(scope='module')
|
53 |
+
def cached_func(tmpdir_factory):
|
54 |
+
# Create a Memory object to test decorated functions.
|
55 |
+
# We should be careful not to call the decorated functions, so that
|
56 |
+
# cache directories are not created in the temp dir.
|
57 |
+
cachedir = tmpdir_factory.mktemp("joblib_test_func_inspect")
|
58 |
+
mem = Memory(cachedir.strpath)
|
59 |
+
|
60 |
+
@mem.cache
|
61 |
+
def cached_func_inner(x):
|
62 |
+
return x
|
63 |
+
|
64 |
+
return cached_func_inner
|
65 |
+
|
66 |
+
|
67 |
+
class Klass(object):
|
68 |
+
|
69 |
+
def f(self, x):
|
70 |
+
return x
|
71 |
+
|
72 |
+
|
73 |
+
###############################################################################
|
74 |
+
# Tests
|
75 |
+
|
76 |
+
@parametrize('func,args,filtered_args',
|
77 |
+
[(f, [[], (1, )], {'x': 1, 'y': 0}),
|
78 |
+
(f, [['x'], (1, )], {'y': 0}),
|
79 |
+
(f, [['y'], (0, )], {'x': 0}),
|
80 |
+
(f, [['y'], (0, ), {'y': 1}], {'x': 0}),
|
81 |
+
(f, [['x', 'y'], (0, )], {}),
|
82 |
+
(f, [[], (0,), {'y': 1}], {'x': 0, 'y': 1}),
|
83 |
+
(f, [['y'], (), {'x': 2, 'y': 1}], {'x': 2}),
|
84 |
+
(g, [[], (), {'x': 1}], {'x': 1}),
|
85 |
+
(i, [[], (2, )], {'x': 2})])
|
86 |
+
def test_filter_args(func, args, filtered_args):
|
87 |
+
assert filter_args(func, *args) == filtered_args
|
88 |
+
|
89 |
+
|
90 |
+
def test_filter_args_method():
|
91 |
+
obj = Klass()
|
92 |
+
assert filter_args(obj.f, [], (1, )) == {'x': 1, 'self': obj}
|
93 |
+
|
94 |
+
|
95 |
+
@parametrize('func,args,filtered_args',
|
96 |
+
[(h, [[], (1, )],
|
97 |
+
{'x': 1, 'y': 0, '*': [], '**': {}}),
|
98 |
+
(h, [[], (1, 2, 3, 4)],
|
99 |
+
{'x': 1, 'y': 2, '*': [3, 4], '**': {}}),
|
100 |
+
(h, [[], (1, 25), {'ee': 2}],
|
101 |
+
{'x': 1, 'y': 25, '*': [], '**': {'ee': 2}}),
|
102 |
+
(h, [['*'], (1, 2, 25), {'ee': 2}],
|
103 |
+
{'x': 1, 'y': 2, '**': {'ee': 2}})])
|
104 |
+
def test_filter_varargs(func, args, filtered_args):
|
105 |
+
assert filter_args(func, *args) == filtered_args
|
106 |
+
|
107 |
+
|
108 |
+
test_filter_kwargs_extra_params = [
|
109 |
+
(m1, [[], (1,), {'y': 2}], {'x': 1, 'y': 2}),
|
110 |
+
(m2, [[], (1,), {'y': 2}], {'x': 1, 'y': 2, 'z': 3})
|
111 |
+
]
|
112 |
+
|
113 |
+
|
114 |
+
@parametrize('func,args,filtered_args',
|
115 |
+
[(k, [[], (1, 2), {'ee': 2}],
|
116 |
+
{'*': [1, 2], '**': {'ee': 2}}),
|
117 |
+
(k, [[], (3, 4)],
|
118 |
+
{'*': [3, 4], '**': {}})] +
|
119 |
+
test_filter_kwargs_extra_params)
|
120 |
+
def test_filter_kwargs(func, args, filtered_args):
|
121 |
+
assert filter_args(func, *args) == filtered_args
|
122 |
+
|
123 |
+
|
124 |
+
def test_filter_args_2():
|
125 |
+
assert (filter_args(j, [], (1, 2), {'ee': 2}) ==
|
126 |
+
{'x': 1, 'y': 2, '**': {'ee': 2}})
|
127 |
+
|
128 |
+
ff = functools.partial(f, 1)
|
129 |
+
# filter_args has to special-case partial
|
130 |
+
assert filter_args(ff, [], (1, )) == {'*': [1], '**': {}}
|
131 |
+
assert filter_args(ff, ['y'], (1, )) == {'*': [1], '**': {}}
|
132 |
+
|
133 |
+
|
134 |
+
@parametrize('func,funcname', [(f, 'f'), (g, 'g'),
|
135 |
+
(cached_func, 'cached_func')])
|
136 |
+
def test_func_name(func, funcname):
|
137 |
+
# Check that we are not confused by decoration
|
138 |
+
# here testcase 'cached_func' is the function itself
|
139 |
+
assert get_func_name(func)[1] == funcname
|
140 |
+
|
141 |
+
|
142 |
+
def test_func_name_on_inner_func(cached_func):
|
143 |
+
# Check that we are not confused by decoration
|
144 |
+
# here testcase 'cached_func' is the 'cached_func_inner' function
|
145 |
+
# returned by 'cached_func' fixture
|
146 |
+
assert get_func_name(cached_func)[1] == 'cached_func_inner'
|
147 |
+
|
148 |
+
|
149 |
+
def test_func_name_collision_on_inner_func():
|
150 |
+
# Check that two functions defining and caching an inner function
|
151 |
+
# with the same do not cause (module, name) collision
|
152 |
+
def f():
|
153 |
+
def inner_func():
|
154 |
+
return # pragma: no cover
|
155 |
+
return get_func_name(inner_func)
|
156 |
+
|
157 |
+
def g():
|
158 |
+
def inner_func():
|
159 |
+
return # pragma: no cover
|
160 |
+
return get_func_name(inner_func)
|
161 |
+
|
162 |
+
module, name = f()
|
163 |
+
other_module, other_name = g()
|
164 |
+
|
165 |
+
assert name == other_name
|
166 |
+
assert module != other_module
|
167 |
+
|
168 |
+
|
169 |
+
def test_func_inspect_errors():
|
170 |
+
# Check that func_inspect is robust and will work on weird objects
|
171 |
+
assert get_func_name('a'.lower)[-1] == 'lower'
|
172 |
+
assert get_func_code('a'.lower)[1:] == (None, -1)
|
173 |
+
ff = lambda x: x # noqa: E731
|
174 |
+
assert get_func_name(ff, win_characters=False)[-1] == '<lambda>'
|
175 |
+
assert get_func_code(ff)[1] == __file__.replace('.pyc', '.py')
|
176 |
+
# Simulate a function defined in __main__
|
177 |
+
ff.__module__ = '__main__'
|
178 |
+
assert get_func_name(ff, win_characters=False)[-1] == '<lambda>'
|
179 |
+
assert get_func_code(ff)[1] == __file__.replace('.pyc', '.py')
|
180 |
+
|
181 |
+
|
182 |
+
def func_with_kwonly_args(a, b, *, kw1='kw1', kw2='kw2'):
|
183 |
+
pass
|
184 |
+
|
185 |
+
|
186 |
+
def func_with_signature(a: int, b: int) -> None:
|
187 |
+
pass
|
188 |
+
|
189 |
+
|
190 |
+
def test_filter_args_edge_cases():
|
191 |
+
assert (
|
192 |
+
filter_args(func_with_kwonly_args, [], (1, 2),
|
193 |
+
{'kw1': 3, 'kw2': 4}) ==
|
194 |
+
{'a': 1, 'b': 2, 'kw1': 3, 'kw2': 4})
|
195 |
+
|
196 |
+
# filter_args doesn't care about keyword-only arguments so you
|
197 |
+
# can pass 'kw1' into *args without any problem
|
198 |
+
with raises(ValueError) as excinfo:
|
199 |
+
filter_args(func_with_kwonly_args, [], (1, 2, 3), {'kw2': 2})
|
200 |
+
excinfo.match("Keyword-only parameter 'kw1' was passed as positional "
|
201 |
+
"parameter")
|
202 |
+
|
203 |
+
assert (
|
204 |
+
filter_args(func_with_kwonly_args, ['b', 'kw2'], (1, 2),
|
205 |
+
{'kw1': 3, 'kw2': 4}) ==
|
206 |
+
{'a': 1, 'kw1': 3})
|
207 |
+
|
208 |
+
assert (filter_args(func_with_signature, ['b'], (1, 2)) == {'a': 1})
|
209 |
+
|
210 |
+
|
211 |
+
def test_bound_methods():
|
212 |
+
""" Make sure that calling the same method on two different instances
|
213 |
+
of the same class does resolv to different signatures.
|
214 |
+
"""
|
215 |
+
a = Klass()
|
216 |
+
b = Klass()
|
217 |
+
assert filter_args(a.f, [], (1, )) != filter_args(b.f, [], (1, ))
|
218 |
+
|
219 |
+
|
220 |
+
@parametrize('exception,regex,func,args',
|
221 |
+
[(ValueError, 'ignore_lst must be a list of parameters to ignore',
|
222 |
+
f, ['bar', (None, )]),
|
223 |
+
(ValueError, r'Ignore list: argument \'(.*)\' is not defined',
|
224 |
+
g, [['bar'], (None, )]),
|
225 |
+
(ValueError, 'Wrong number of arguments',
|
226 |
+
h, [[]])])
|
227 |
+
def test_filter_args_error_msg(exception, regex, func, args):
|
228 |
+
""" Make sure that filter_args returns decent error messages, for the
|
229 |
+
sake of the user.
|
230 |
+
"""
|
231 |
+
with raises(exception) as excinfo:
|
232 |
+
filter_args(func, *args)
|
233 |
+
excinfo.match(regex)
|
234 |
+
|
235 |
+
|
236 |
+
def test_filter_args_no_kwargs_mutation():
|
237 |
+
"""None-regression test against 0.12.0 changes.
|
238 |
+
|
239 |
+
https://github.com/joblib/joblib/pull/75
|
240 |
+
|
241 |
+
Make sure filter args doesn't mutate the kwargs dict that gets passed in.
|
242 |
+
"""
|
243 |
+
kwargs = {'x': 0}
|
244 |
+
filter_args(g, [], [], kwargs)
|
245 |
+
assert kwargs == {'x': 0}
|
246 |
+
|
247 |
+
|
248 |
+
def test_clean_win_chars():
|
249 |
+
string = r'C:\foo\bar\main.py'
|
250 |
+
mangled_string = _clean_win_chars(string)
|
251 |
+
for char in ('\\', ':', '<', '>', '!'):
|
252 |
+
assert char not in mangled_string
|
253 |
+
|
254 |
+
|
255 |
+
@parametrize('func,args,kwargs,sgn_expected',
|
256 |
+
[(g, [list(range(5))], {}, 'g([0, 1, 2, 3, 4])'),
|
257 |
+
(k, [1, 2, (3, 4)], {'y': True}, 'k(1, 2, (3, 4), y=True)')])
|
258 |
+
def test_format_signature(func, args, kwargs, sgn_expected):
|
259 |
+
# Test signature formatting.
|
260 |
+
path, sgn_result = format_signature(func, *args, **kwargs)
|
261 |
+
assert sgn_result == sgn_expected
|
262 |
+
|
263 |
+
|
264 |
+
def test_format_signature_long_arguments():
|
265 |
+
shortening_threshold = 1500
|
266 |
+
# shortening gets it down to 700 characters but there is the name
|
267 |
+
# of the function in the signature and a few additional things
|
268 |
+
# like dots for the ellipsis
|
269 |
+
shortening_target = 700 + 10
|
270 |
+
|
271 |
+
arg = 'a' * shortening_threshold
|
272 |
+
_, signature = format_signature(h, arg)
|
273 |
+
assert len(signature) < shortening_target
|
274 |
+
|
275 |
+
nb_args = 5
|
276 |
+
args = [arg for _ in range(nb_args)]
|
277 |
+
_, signature = format_signature(h, *args)
|
278 |
+
assert len(signature) < shortening_target * nb_args
|
279 |
+
|
280 |
+
kwargs = {str(i): arg for i, arg in enumerate(args)}
|
281 |
+
_, signature = format_signature(h, **kwargs)
|
282 |
+
assert len(signature) < shortening_target * nb_args
|
283 |
+
|
284 |
+
_, signature = format_signature(h, *args, **kwargs)
|
285 |
+
assert len(signature) < shortening_target * 2 * nb_args
|
286 |
+
|
287 |
+
|
288 |
+
@with_numpy
|
289 |
+
def test_format_signature_numpy():
|
290 |
+
""" Test the format signature formatting with numpy.
|
291 |
+
"""
|
292 |
+
|
293 |
+
|
294 |
+
def test_special_source_encoding():
|
295 |
+
from joblib.test.test_func_inspect_special_encoding import big5_f
|
296 |
+
func_code, source_file, first_line = get_func_code(big5_f)
|
297 |
+
assert first_line == 5
|
298 |
+
assert "def big5_f():" in func_code
|
299 |
+
assert "test_func_inspect_special_encoding" in source_file
|
300 |
+
|
301 |
+
|
302 |
+
def _get_code():
|
303 |
+
from joblib.test.test_func_inspect_special_encoding import big5_f
|
304 |
+
return get_func_code(big5_f)[0]
|
305 |
+
|
306 |
+
|
307 |
+
def test_func_code_consistency():
|
308 |
+
from joblib.parallel import Parallel, delayed
|
309 |
+
codes = Parallel(n_jobs=2)(delayed(_get_code)() for _ in range(5))
|
310 |
+
assert len(set(codes)) == 1
|
llmeval-env/lib/python3.10/site-packages/joblib/test/test_hashing.py
ADDED
@@ -0,0 +1,495 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Test the hashing module.
|
3 |
+
"""
|
4 |
+
|
5 |
+
# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
|
6 |
+
# Copyright (c) 2009 Gael Varoquaux
|
7 |
+
# License: BSD Style, 3 clauses.
|
8 |
+
|
9 |
+
import time
|
10 |
+
import hashlib
|
11 |
+
import sys
|
12 |
+
import gc
|
13 |
+
import io
|
14 |
+
import collections
|
15 |
+
import itertools
|
16 |
+
import pickle
|
17 |
+
import random
|
18 |
+
from concurrent.futures import ProcessPoolExecutor
|
19 |
+
from decimal import Decimal
|
20 |
+
|
21 |
+
from joblib.hashing import hash
|
22 |
+
from joblib.func_inspect import filter_args
|
23 |
+
from joblib.memory import Memory
|
24 |
+
from joblib.testing import raises, skipif, fixture, parametrize
|
25 |
+
from joblib.test.common import np, with_numpy
|
26 |
+
|
27 |
+
|
28 |
+
def unicode(s):
|
29 |
+
return s
|
30 |
+
|
31 |
+
|
32 |
+
###############################################################################
|
33 |
+
# Helper functions for the tests
|
34 |
+
def time_func(func, *args):
|
35 |
+
""" Time function func on *args.
|
36 |
+
"""
|
37 |
+
times = list()
|
38 |
+
for _ in range(3):
|
39 |
+
t1 = time.time()
|
40 |
+
func(*args)
|
41 |
+
times.append(time.time() - t1)
|
42 |
+
return min(times)
|
43 |
+
|
44 |
+
|
45 |
+
def relative_time(func1, func2, *args):
|
46 |
+
""" Return the relative time between func1 and func2 applied on
|
47 |
+
*args.
|
48 |
+
"""
|
49 |
+
time_func1 = time_func(func1, *args)
|
50 |
+
time_func2 = time_func(func2, *args)
|
51 |
+
relative_diff = 0.5 * (abs(time_func1 - time_func2)
|
52 |
+
/ (time_func1 + time_func2))
|
53 |
+
return relative_diff
|
54 |
+
|
55 |
+
|
56 |
+
class Klass(object):
|
57 |
+
|
58 |
+
def f(self, x):
|
59 |
+
return x
|
60 |
+
|
61 |
+
|
62 |
+
class KlassWithCachedMethod(object):
|
63 |
+
|
64 |
+
def __init__(self, cachedir):
|
65 |
+
mem = Memory(location=cachedir)
|
66 |
+
self.f = mem.cache(self.f)
|
67 |
+
|
68 |
+
def f(self, x):
|
69 |
+
return x
|
70 |
+
|
71 |
+
|
72 |
+
###############################################################################
|
73 |
+
# Tests
|
74 |
+
|
75 |
+
input_list = [1, 2, 1., 2., 1 + 1j, 2. + 1j,
|
76 |
+
'a', 'b',
|
77 |
+
(1,), (1, 1,), [1, ], [1, 1, ],
|
78 |
+
{1: 1}, {1: 2}, {2: 1},
|
79 |
+
None,
|
80 |
+
gc.collect,
|
81 |
+
[1, ].append,
|
82 |
+
# Next 2 sets have unorderable elements in python 3.
|
83 |
+
set(('a', 1)),
|
84 |
+
set(('a', 1, ('a', 1))),
|
85 |
+
# Next 2 dicts have unorderable type of keys in python 3.
|
86 |
+
{'a': 1, 1: 2},
|
87 |
+
{'a': 1, 1: 2, 'd': {'a': 1}}]
|
88 |
+
|
89 |
+
|
90 |
+
@parametrize('obj1', input_list)
|
91 |
+
@parametrize('obj2', input_list)
|
92 |
+
def test_trivial_hash(obj1, obj2):
|
93 |
+
"""Smoke test hash on various types."""
|
94 |
+
# Check that 2 objects have the same hash only if they are the same.
|
95 |
+
are_hashes_equal = hash(obj1) == hash(obj2)
|
96 |
+
are_objs_identical = obj1 is obj2
|
97 |
+
assert are_hashes_equal == are_objs_identical
|
98 |
+
|
99 |
+
|
100 |
+
def test_hash_methods():
|
101 |
+
# Check that hashing instance methods works
|
102 |
+
a = io.StringIO(unicode('a'))
|
103 |
+
assert hash(a.flush) == hash(a.flush)
|
104 |
+
a1 = collections.deque(range(10))
|
105 |
+
a2 = collections.deque(range(9))
|
106 |
+
assert hash(a1.extend) != hash(a2.extend)
|
107 |
+
|
108 |
+
|
109 |
+
@fixture(scope='function')
|
110 |
+
@with_numpy
|
111 |
+
def three_np_arrays():
|
112 |
+
rnd = np.random.RandomState(0)
|
113 |
+
arr1 = rnd.random_sample((10, 10))
|
114 |
+
arr2 = arr1.copy()
|
115 |
+
arr3 = arr2.copy()
|
116 |
+
arr3[0] += 1
|
117 |
+
return arr1, arr2, arr3
|
118 |
+
|
119 |
+
|
120 |
+
def test_hash_numpy_arrays(three_np_arrays):
|
121 |
+
arr1, arr2, arr3 = three_np_arrays
|
122 |
+
|
123 |
+
for obj1, obj2 in itertools.product(three_np_arrays, repeat=2):
|
124 |
+
are_hashes_equal = hash(obj1) == hash(obj2)
|
125 |
+
are_arrays_equal = np.all(obj1 == obj2)
|
126 |
+
assert are_hashes_equal == are_arrays_equal
|
127 |
+
|
128 |
+
assert hash(arr1) != hash(arr1.T)
|
129 |
+
|
130 |
+
|
131 |
+
def test_hash_numpy_dict_of_arrays(three_np_arrays):
|
132 |
+
arr1, arr2, arr3 = three_np_arrays
|
133 |
+
|
134 |
+
d1 = {1: arr1, 2: arr2}
|
135 |
+
d2 = {1: arr2, 2: arr1}
|
136 |
+
d3 = {1: arr2, 2: arr3}
|
137 |
+
|
138 |
+
assert hash(d1) == hash(d2)
|
139 |
+
assert hash(d1) != hash(d3)
|
140 |
+
|
141 |
+
|
142 |
+
@with_numpy
|
143 |
+
@parametrize('dtype', ['datetime64[s]', 'timedelta64[D]'])
|
144 |
+
def test_numpy_datetime_array(dtype):
|
145 |
+
# memoryview is not supported for some dtypes e.g. datetime64
|
146 |
+
# see https://github.com/joblib/joblib/issues/188 for more details
|
147 |
+
a_hash = hash(np.arange(10))
|
148 |
+
array = np.arange(0, 10, dtype=dtype)
|
149 |
+
assert hash(array) != a_hash
|
150 |
+
|
151 |
+
|
152 |
+
@with_numpy
|
153 |
+
def test_hash_numpy_noncontiguous():
|
154 |
+
a = np.asarray(np.arange(6000).reshape((1000, 2, 3)),
|
155 |
+
order='F')[:, :1, :]
|
156 |
+
b = np.ascontiguousarray(a)
|
157 |
+
assert hash(a) != hash(b)
|
158 |
+
|
159 |
+
c = np.asfortranarray(a)
|
160 |
+
assert hash(a) != hash(c)
|
161 |
+
|
162 |
+
|
163 |
+
@with_numpy
|
164 |
+
@parametrize('coerce_mmap', [True, False])
|
165 |
+
def test_hash_memmap(tmpdir, coerce_mmap):
|
166 |
+
"""Check that memmap and arrays hash identically if coerce_mmap is True."""
|
167 |
+
filename = tmpdir.join('memmap_temp').strpath
|
168 |
+
try:
|
169 |
+
m = np.memmap(filename, shape=(10, 10), mode='w+')
|
170 |
+
a = np.asarray(m)
|
171 |
+
are_hashes_equal = (hash(a, coerce_mmap=coerce_mmap) ==
|
172 |
+
hash(m, coerce_mmap=coerce_mmap))
|
173 |
+
assert are_hashes_equal == coerce_mmap
|
174 |
+
finally:
|
175 |
+
if 'm' in locals():
|
176 |
+
del m
|
177 |
+
# Force a garbage-collection cycle, to be certain that the
|
178 |
+
# object is delete, and we don't run in a problem under
|
179 |
+
# Windows with a file handle still open.
|
180 |
+
gc.collect()
|
181 |
+
|
182 |
+
|
183 |
+
@with_numpy
|
184 |
+
@skipif(sys.platform == 'win32', reason='This test is not stable under windows'
|
185 |
+
' for some reason')
|
186 |
+
def test_hash_numpy_performance():
|
187 |
+
""" Check the performance of hashing numpy arrays:
|
188 |
+
|
189 |
+
In [22]: a = np.random.random(1000000)
|
190 |
+
|
191 |
+
In [23]: %timeit hashlib.md5(a).hexdigest()
|
192 |
+
100 loops, best of 3: 20.7 ms per loop
|
193 |
+
|
194 |
+
In [24]: %timeit hashlib.md5(pickle.dumps(a, protocol=2)).hexdigest()
|
195 |
+
1 loops, best of 3: 73.1 ms per loop
|
196 |
+
|
197 |
+
In [25]: %timeit hashlib.md5(cPickle.dumps(a, protocol=2)).hexdigest()
|
198 |
+
10 loops, best of 3: 53.9 ms per loop
|
199 |
+
|
200 |
+
In [26]: %timeit hash(a)
|
201 |
+
100 loops, best of 3: 20.8 ms per loop
|
202 |
+
"""
|
203 |
+
rnd = np.random.RandomState(0)
|
204 |
+
a = rnd.random_sample(1000000)
|
205 |
+
|
206 |
+
def md5_hash(x):
|
207 |
+
return hashlib.md5(memoryview(x)).hexdigest()
|
208 |
+
|
209 |
+
relative_diff = relative_time(md5_hash, hash, a)
|
210 |
+
assert relative_diff < 0.3
|
211 |
+
|
212 |
+
# Check that hashing an tuple of 3 arrays takes approximately
|
213 |
+
# 3 times as much as hashing one array
|
214 |
+
time_hashlib = 3 * time_func(md5_hash, a)
|
215 |
+
time_hash = time_func(hash, (a, a, a))
|
216 |
+
relative_diff = 0.5 * (abs(time_hash - time_hashlib)
|
217 |
+
/ (time_hash + time_hashlib))
|
218 |
+
assert relative_diff < 0.3
|
219 |
+
|
220 |
+
|
221 |
+
def test_bound_methods_hash():
|
222 |
+
""" Make sure that calling the same method on two different instances
|
223 |
+
of the same class does resolve to the same hashes.
|
224 |
+
"""
|
225 |
+
a = Klass()
|
226 |
+
b = Klass()
|
227 |
+
assert (hash(filter_args(a.f, [], (1, ))) ==
|
228 |
+
hash(filter_args(b.f, [], (1, ))))
|
229 |
+
|
230 |
+
|
231 |
+
def test_bound_cached_methods_hash(tmpdir):
|
232 |
+
""" Make sure that calling the same _cached_ method on two different
|
233 |
+
instances of the same class does resolve to the same hashes.
|
234 |
+
"""
|
235 |
+
a = KlassWithCachedMethod(tmpdir.strpath)
|
236 |
+
b = KlassWithCachedMethod(tmpdir.strpath)
|
237 |
+
assert (hash(filter_args(a.f.func, [], (1, ))) ==
|
238 |
+
hash(filter_args(b.f.func, [], (1, ))))
|
239 |
+
|
240 |
+
|
241 |
+
@with_numpy
|
242 |
+
def test_hash_object_dtype():
|
243 |
+
""" Make sure that ndarrays with dtype `object' hash correctly."""
|
244 |
+
|
245 |
+
a = np.array([np.arange(i) for i in range(6)], dtype=object)
|
246 |
+
b = np.array([np.arange(i) for i in range(6)], dtype=object)
|
247 |
+
|
248 |
+
assert hash(a) == hash(b)
|
249 |
+
|
250 |
+
|
251 |
+
@with_numpy
|
252 |
+
def test_numpy_scalar():
|
253 |
+
# Numpy scalars are built from compiled functions, and lead to
|
254 |
+
# strange pickling paths explored, that can give hash collisions
|
255 |
+
a = np.float64(2.0)
|
256 |
+
b = np.float64(3.0)
|
257 |
+
assert hash(a) != hash(b)
|
258 |
+
|
259 |
+
|
260 |
+
def test_dict_hash(tmpdir):
|
261 |
+
# Check that dictionaries hash consistently, even though the ordering
|
262 |
+
# of the keys is not guaranteed
|
263 |
+
k = KlassWithCachedMethod(tmpdir.strpath)
|
264 |
+
|
265 |
+
d = {'#s12069__c_maps.nii.gz': [33],
|
266 |
+
'#s12158__c_maps.nii.gz': [33],
|
267 |
+
'#s12258__c_maps.nii.gz': [33],
|
268 |
+
'#s12277__c_maps.nii.gz': [33],
|
269 |
+
'#s12300__c_maps.nii.gz': [33],
|
270 |
+
'#s12401__c_maps.nii.gz': [33],
|
271 |
+
'#s12430__c_maps.nii.gz': [33],
|
272 |
+
'#s13817__c_maps.nii.gz': [33],
|
273 |
+
'#s13903__c_maps.nii.gz': [33],
|
274 |
+
'#s13916__c_maps.nii.gz': [33],
|
275 |
+
'#s13981__c_maps.nii.gz': [33],
|
276 |
+
'#s13982__c_maps.nii.gz': [33],
|
277 |
+
'#s13983__c_maps.nii.gz': [33]}
|
278 |
+
|
279 |
+
a = k.f(d)
|
280 |
+
b = k.f(a)
|
281 |
+
|
282 |
+
assert hash(a) == hash(b)
|
283 |
+
|
284 |
+
|
285 |
+
def test_set_hash(tmpdir):
|
286 |
+
# Check that sets hash consistently, even though their ordering
|
287 |
+
# is not guaranteed
|
288 |
+
k = KlassWithCachedMethod(tmpdir.strpath)
|
289 |
+
|
290 |
+
s = set(['#s12069__c_maps.nii.gz',
|
291 |
+
'#s12158__c_maps.nii.gz',
|
292 |
+
'#s12258__c_maps.nii.gz',
|
293 |
+
'#s12277__c_maps.nii.gz',
|
294 |
+
'#s12300__c_maps.nii.gz',
|
295 |
+
'#s12401__c_maps.nii.gz',
|
296 |
+
'#s12430__c_maps.nii.gz',
|
297 |
+
'#s13817__c_maps.nii.gz',
|
298 |
+
'#s13903__c_maps.nii.gz',
|
299 |
+
'#s13916__c_maps.nii.gz',
|
300 |
+
'#s13981__c_maps.nii.gz',
|
301 |
+
'#s13982__c_maps.nii.gz',
|
302 |
+
'#s13983__c_maps.nii.gz'])
|
303 |
+
|
304 |
+
a = k.f(s)
|
305 |
+
b = k.f(a)
|
306 |
+
|
307 |
+
assert hash(a) == hash(b)
|
308 |
+
|
309 |
+
|
310 |
+
def test_set_decimal_hash():
|
311 |
+
# Check that sets containing decimals hash consistently, even though
|
312 |
+
# ordering is not guaranteed
|
313 |
+
assert (hash(set([Decimal(0), Decimal('NaN')])) ==
|
314 |
+
hash(set([Decimal('NaN'), Decimal(0)])))
|
315 |
+
|
316 |
+
|
317 |
+
def test_string():
|
318 |
+
# Test that we obtain the same hash for object owning several strings,
|
319 |
+
# whatever the past of these strings (which are immutable in Python)
|
320 |
+
string = 'foo'
|
321 |
+
a = {string: 'bar'}
|
322 |
+
b = {string: 'bar'}
|
323 |
+
c = pickle.loads(pickle.dumps(b))
|
324 |
+
assert hash([a, b]) == hash([a, c])
|
325 |
+
|
326 |
+
|
327 |
+
@with_numpy
|
328 |
+
def test_numpy_dtype_pickling():
|
329 |
+
# numpy dtype hashing is tricky to get right: see #231, #239, #251 #1080,
|
330 |
+
# #1082, and explanatory comments inside
|
331 |
+
# ``joblib.hashing.NumpyHasher.save``.
|
332 |
+
|
333 |
+
# In this test, we make sure that the pickling of numpy dtypes is robust to
|
334 |
+
# object identity and object copy.
|
335 |
+
|
336 |
+
dt1 = np.dtype('f4')
|
337 |
+
dt2 = np.dtype('f4')
|
338 |
+
|
339 |
+
# simple dtypes objects are interned
|
340 |
+
assert dt1 is dt2
|
341 |
+
assert hash(dt1) == hash(dt2)
|
342 |
+
|
343 |
+
dt1_roundtripped = pickle.loads(pickle.dumps(dt1))
|
344 |
+
assert dt1 is not dt1_roundtripped
|
345 |
+
assert hash(dt1) == hash(dt1_roundtripped)
|
346 |
+
|
347 |
+
assert hash([dt1, dt1]) == hash([dt1_roundtripped, dt1_roundtripped])
|
348 |
+
assert hash([dt1, dt1]) == hash([dt1, dt1_roundtripped])
|
349 |
+
|
350 |
+
complex_dt1 = np.dtype(
|
351 |
+
[('name', np.str_, 16), ('grades', np.float64, (2,))]
|
352 |
+
)
|
353 |
+
complex_dt2 = np.dtype(
|
354 |
+
[('name', np.str_, 16), ('grades', np.float64, (2,))]
|
355 |
+
)
|
356 |
+
|
357 |
+
# complex dtypes objects are not interned
|
358 |
+
assert hash(complex_dt1) == hash(complex_dt2)
|
359 |
+
|
360 |
+
complex_dt1_roundtripped = pickle.loads(pickle.dumps(complex_dt1))
|
361 |
+
assert complex_dt1_roundtripped is not complex_dt1
|
362 |
+
assert hash(complex_dt1) == hash(complex_dt1_roundtripped)
|
363 |
+
|
364 |
+
assert hash([complex_dt1, complex_dt1]) == hash(
|
365 |
+
[complex_dt1_roundtripped, complex_dt1_roundtripped]
|
366 |
+
)
|
367 |
+
assert hash([complex_dt1, complex_dt1]) == hash(
|
368 |
+
[complex_dt1_roundtripped, complex_dt1]
|
369 |
+
)
|
370 |
+
|
371 |
+
|
372 |
+
@parametrize('to_hash,expected',
|
373 |
+
[('This is a string to hash',
|
374 |
+
'71b3f47df22cb19431d85d92d0b230b2'),
|
375 |
+
(u"C'est l\xe9t\xe9",
|
376 |
+
'2d8d189e9b2b0b2e384d93c868c0e576'),
|
377 |
+
((123456, 54321, -98765),
|
378 |
+
'e205227dd82250871fa25aa0ec690aa3'),
|
379 |
+
([random.Random(42).random() for _ in range(5)],
|
380 |
+
'a11ffad81f9682a7d901e6edc3d16c84'),
|
381 |
+
({'abcde': 123, 'sadfas': [-9999, 2, 3]},
|
382 |
+
'aeda150553d4bb5c69f0e69d51b0e2ef')])
|
383 |
+
def test_hashes_stay_the_same(to_hash, expected):
|
384 |
+
# We want to make sure that hashes don't change with joblib
|
385 |
+
# version. For end users, that would mean that they have to
|
386 |
+
# regenerate their cache from scratch, which potentially means
|
387 |
+
# lengthy recomputations.
|
388 |
+
# Expected results have been generated with joblib 0.9.2
|
389 |
+
assert hash(to_hash) == expected
|
390 |
+
|
391 |
+
|
392 |
+
@with_numpy
|
393 |
+
def test_hashes_are_different_between_c_and_fortran_contiguous_arrays():
|
394 |
+
# We want to be sure that the c-contiguous and f-contiguous versions of the
|
395 |
+
# same array produce 2 different hashes.
|
396 |
+
rng = np.random.RandomState(0)
|
397 |
+
arr_c = rng.random_sample((10, 10))
|
398 |
+
arr_f = np.asfortranarray(arr_c)
|
399 |
+
assert hash(arr_c) != hash(arr_f)
|
400 |
+
|
401 |
+
|
402 |
+
@with_numpy
|
403 |
+
def test_0d_array():
|
404 |
+
hash(np.array(0))
|
405 |
+
|
406 |
+
|
407 |
+
@with_numpy
|
408 |
+
def test_0d_and_1d_array_hashing_is_different():
|
409 |
+
assert hash(np.array(0)) != hash(np.array([0]))
|
410 |
+
|
411 |
+
|
412 |
+
@with_numpy
|
413 |
+
def test_hashes_stay_the_same_with_numpy_objects():
|
414 |
+
# Note: joblib used to test numpy objects hashing by comparing the produced
|
415 |
+
# hash of an object with some hard-coded target value to guarantee that
|
416 |
+
# hashing remains the same across joblib versions. However, since numpy
|
417 |
+
# 1.20 and joblib 1.0, joblib relies on potentially unstable implementation
|
418 |
+
# details of numpy to hash np.dtype objects, which makes the stability of
|
419 |
+
# hash values across different environments hard to guarantee and to test.
|
420 |
+
# As a result, hashing stability across joblib versions becomes best-effort
|
421 |
+
# only, and we only test the consistency within a single environment by
|
422 |
+
# making sure:
|
423 |
+
# - the hash of two copies of the same objects is the same
|
424 |
+
# - hashing some object in two different python processes produces the same
|
425 |
+
# value. This should be viewed as a proxy for testing hash consistency
|
426 |
+
# through time between Python sessions (provided no change in the
|
427 |
+
# environment was done between sessions).
|
428 |
+
|
429 |
+
def create_objects_to_hash():
|
430 |
+
rng = np.random.RandomState(42)
|
431 |
+
# Being explicit about dtypes in order to avoid
|
432 |
+
# architecture-related differences. Also using 'f4' rather than
|
433 |
+
# 'f8' for float arrays because 'f8' arrays generated by
|
434 |
+
# rng.random.randn don't seem to be bit-identical on 32bit and
|
435 |
+
# 64bit machines.
|
436 |
+
to_hash_list = [
|
437 |
+
rng.randint(-1000, high=1000, size=50).astype('<i8'),
|
438 |
+
tuple(rng.randn(3).astype('<f4') for _ in range(5)),
|
439 |
+
[rng.randn(3).astype('<f4') for _ in range(5)],
|
440 |
+
{
|
441 |
+
-3333: rng.randn(3, 5).astype('<f4'),
|
442 |
+
0: [
|
443 |
+
rng.randint(10, size=20).astype('<i8'),
|
444 |
+
rng.randn(10).astype('<f4')
|
445 |
+
]
|
446 |
+
},
|
447 |
+
# Non regression cases for
|
448 |
+
# https://github.com/joblib/joblib/issues/308
|
449 |
+
np.arange(100, dtype='<i8').reshape((10, 10)),
|
450 |
+
# Fortran contiguous array
|
451 |
+
np.asfortranarray(np.arange(100, dtype='<i8').reshape((10, 10))),
|
452 |
+
# Non contiguous array
|
453 |
+
np.arange(100, dtype='<i8').reshape((10, 10))[:, :2],
|
454 |
+
]
|
455 |
+
return to_hash_list
|
456 |
+
|
457 |
+
# Create two lists containing copies of the same objects. joblib.hash
|
458 |
+
# should return the same hash for to_hash_list_one[i] and
|
459 |
+
# to_hash_list_two[i]
|
460 |
+
to_hash_list_one = create_objects_to_hash()
|
461 |
+
to_hash_list_two = create_objects_to_hash()
|
462 |
+
|
463 |
+
e1 = ProcessPoolExecutor(max_workers=1)
|
464 |
+
e2 = ProcessPoolExecutor(max_workers=1)
|
465 |
+
|
466 |
+
try:
|
467 |
+
for obj_1, obj_2 in zip(to_hash_list_one, to_hash_list_two):
|
468 |
+
# testing consistency of hashes across python processes
|
469 |
+
hash_1 = e1.submit(hash, obj_1).result()
|
470 |
+
hash_2 = e2.submit(hash, obj_1).result()
|
471 |
+
assert hash_1 == hash_2
|
472 |
+
|
473 |
+
# testing consistency when hashing two copies of the same objects.
|
474 |
+
hash_3 = e1.submit(hash, obj_2).result()
|
475 |
+
assert hash_1 == hash_3
|
476 |
+
|
477 |
+
finally:
|
478 |
+
e1.shutdown()
|
479 |
+
e2.shutdown()
|
480 |
+
|
481 |
+
|
482 |
+
def test_hashing_pickling_error():
|
483 |
+
def non_picklable():
|
484 |
+
return 42
|
485 |
+
|
486 |
+
with raises(pickle.PicklingError) as excinfo:
|
487 |
+
hash(non_picklable)
|
488 |
+
excinfo.match('PicklingError while hashing')
|
489 |
+
|
490 |
+
|
491 |
+
def test_wrong_hash_name():
|
492 |
+
msg = "Valid options for 'hash_name' are"
|
493 |
+
with raises(ValueError, match=msg):
|
494 |
+
data = {'foo': 'bar'}
|
495 |
+
hash(data, hash_name='invalid')
|
llmeval-env/lib/python3.10/site-packages/joblib/test/test_logger.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Test the logger module.
|
3 |
+
"""
|
4 |
+
|
5 |
+
# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
|
6 |
+
# Copyright (c) 2009 Gael Varoquaux
|
7 |
+
# License: BSD Style, 3 clauses.
|
8 |
+
import re
|
9 |
+
|
10 |
+
from joblib.logger import PrintTime
|
11 |
+
|
12 |
+
|
13 |
+
def test_print_time(tmpdir, capsys):
|
14 |
+
# A simple smoke test for PrintTime.
|
15 |
+
logfile = tmpdir.join('test.log').strpath
|
16 |
+
print_time = PrintTime(logfile=logfile)
|
17 |
+
print_time('Foo')
|
18 |
+
# Create a second time, to smoke test log rotation.
|
19 |
+
print_time = PrintTime(logfile=logfile)
|
20 |
+
print_time('Foo')
|
21 |
+
# And a third time
|
22 |
+
print_time = PrintTime(logfile=logfile)
|
23 |
+
print_time('Foo')
|
24 |
+
|
25 |
+
out_printed_text, err_printed_text = capsys.readouterr()
|
26 |
+
# Use regexps to be robust to time variations
|
27 |
+
match = r"Foo: 0\..s, 0\..min\nFoo: 0\..s, 0..min\nFoo: " + \
|
28 |
+
r".\..s, 0..min\n"
|
29 |
+
if not re.match(match, err_printed_text):
|
30 |
+
raise AssertionError('Excepted %s, got %s' %
|
31 |
+
(match, err_printed_text))
|
llmeval-env/lib/python3.10/site-packages/joblib/test/test_memmapping.py
ADDED
@@ -0,0 +1,1191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import mmap
|
3 |
+
import sys
|
4 |
+
import platform
|
5 |
+
import gc
|
6 |
+
import pickle
|
7 |
+
import itertools
|
8 |
+
from time import sleep
|
9 |
+
import subprocess
|
10 |
+
import threading
|
11 |
+
import faulthandler
|
12 |
+
|
13 |
+
import pytest
|
14 |
+
|
15 |
+
from joblib.test.common import with_numpy, np
|
16 |
+
from joblib.test.common import with_multiprocessing
|
17 |
+
from joblib.test.common import with_dev_shm
|
18 |
+
from joblib.testing import raises, parametrize, skipif
|
19 |
+
from joblib.backports import make_memmap
|
20 |
+
from joblib.parallel import Parallel, delayed
|
21 |
+
|
22 |
+
from joblib.pool import MemmappingPool
|
23 |
+
from joblib.executor import _TestingMemmappingExecutor as TestExecutor
|
24 |
+
from joblib._memmapping_reducer import has_shareable_memory
|
25 |
+
from joblib._memmapping_reducer import ArrayMemmapForwardReducer
|
26 |
+
from joblib._memmapping_reducer import _strided_from_memmap
|
27 |
+
from joblib._memmapping_reducer import _get_temp_dir
|
28 |
+
from joblib._memmapping_reducer import _WeakArrayKeyMap
|
29 |
+
from joblib._memmapping_reducer import _get_backing_memmap
|
30 |
+
import joblib._memmapping_reducer as jmr
|
31 |
+
|
32 |
+
|
33 |
+
def setup_module():
|
34 |
+
faulthandler.dump_traceback_later(timeout=300, exit=True)
|
35 |
+
|
36 |
+
|
37 |
+
def teardown_module():
|
38 |
+
faulthandler.cancel_dump_traceback_later()
|
39 |
+
|
40 |
+
|
41 |
+
def check_memmap_and_send_back(array):
|
42 |
+
assert _get_backing_memmap(array) is not None
|
43 |
+
return array
|
44 |
+
|
45 |
+
|
46 |
+
def check_array(args):
|
47 |
+
"""Dummy helper function to be executed in subprocesses
|
48 |
+
|
49 |
+
Check that the provided array has the expected values in the provided
|
50 |
+
range.
|
51 |
+
|
52 |
+
"""
|
53 |
+
data, position, expected = args
|
54 |
+
np.testing.assert_array_equal(data[position], expected)
|
55 |
+
|
56 |
+
|
57 |
+
def inplace_double(args):
|
58 |
+
"""Dummy helper function to be executed in subprocesses
|
59 |
+
|
60 |
+
|
61 |
+
Check that the input array has the right values in the provided range
|
62 |
+
and perform an inplace modification to double the values in the range by
|
63 |
+
two.
|
64 |
+
|
65 |
+
"""
|
66 |
+
data, position, expected = args
|
67 |
+
assert data[position] == expected
|
68 |
+
data[position] *= 2
|
69 |
+
np.testing.assert_array_equal(data[position], 2 * expected)
|
70 |
+
|
71 |
+
|
72 |
+
@with_numpy
|
73 |
+
@with_multiprocessing
|
74 |
+
def test_memmap_based_array_reducing(tmpdir):
|
75 |
+
"""Check that it is possible to reduce a memmap backed array"""
|
76 |
+
assert_array_equal = np.testing.assert_array_equal
|
77 |
+
filename = tmpdir.join('test.mmap').strpath
|
78 |
+
|
79 |
+
# Create a file larger than what will be used by a
|
80 |
+
buffer = np.memmap(filename, dtype=np.float64, shape=500, mode='w+')
|
81 |
+
|
82 |
+
# Fill the original buffer with negative markers to detect over of
|
83 |
+
# underflow in case of test failures
|
84 |
+
buffer[:] = - 1.0 * np.arange(buffer.shape[0], dtype=buffer.dtype)
|
85 |
+
buffer.flush()
|
86 |
+
|
87 |
+
# Memmap a 2D fortran array on a offsetted subsection of the previous
|
88 |
+
# buffer
|
89 |
+
a = np.memmap(filename, dtype=np.float64, shape=(3, 5, 4),
|
90 |
+
mode='r+', order='F', offset=4)
|
91 |
+
a[:] = np.arange(60).reshape(a.shape)
|
92 |
+
|
93 |
+
# Build various views that share the buffer with the original memmap
|
94 |
+
|
95 |
+
# b is an memmap sliced view on an memmap instance
|
96 |
+
b = a[1:-1, 2:-1, 2:4]
|
97 |
+
|
98 |
+
# c and d are array views
|
99 |
+
c = np.asarray(b)
|
100 |
+
d = c.T
|
101 |
+
|
102 |
+
# Array reducer with auto dumping disabled
|
103 |
+
reducer = ArrayMemmapForwardReducer(None, tmpdir.strpath, 'c', True)
|
104 |
+
|
105 |
+
def reconstruct_array_or_memmap(x):
|
106 |
+
cons, args = reducer(x)
|
107 |
+
return cons(*args)
|
108 |
+
|
109 |
+
# Reconstruct original memmap
|
110 |
+
a_reconstructed = reconstruct_array_or_memmap(a)
|
111 |
+
assert has_shareable_memory(a_reconstructed)
|
112 |
+
assert isinstance(a_reconstructed, np.memmap)
|
113 |
+
assert_array_equal(a_reconstructed, a)
|
114 |
+
|
115 |
+
# Reconstruct strided memmap view
|
116 |
+
b_reconstructed = reconstruct_array_or_memmap(b)
|
117 |
+
assert has_shareable_memory(b_reconstructed)
|
118 |
+
assert_array_equal(b_reconstructed, b)
|
119 |
+
|
120 |
+
# Reconstruct arrays views on memmap base
|
121 |
+
c_reconstructed = reconstruct_array_or_memmap(c)
|
122 |
+
assert not isinstance(c_reconstructed, np.memmap)
|
123 |
+
assert has_shareable_memory(c_reconstructed)
|
124 |
+
assert_array_equal(c_reconstructed, c)
|
125 |
+
|
126 |
+
d_reconstructed = reconstruct_array_or_memmap(d)
|
127 |
+
assert not isinstance(d_reconstructed, np.memmap)
|
128 |
+
assert has_shareable_memory(d_reconstructed)
|
129 |
+
assert_array_equal(d_reconstructed, d)
|
130 |
+
|
131 |
+
# Test graceful degradation on fake memmap instances with in-memory
|
132 |
+
# buffers
|
133 |
+
a3 = a * 3
|
134 |
+
assert not has_shareable_memory(a3)
|
135 |
+
a3_reconstructed = reconstruct_array_or_memmap(a3)
|
136 |
+
assert not has_shareable_memory(a3_reconstructed)
|
137 |
+
assert not isinstance(a3_reconstructed, np.memmap)
|
138 |
+
assert_array_equal(a3_reconstructed, a * 3)
|
139 |
+
|
140 |
+
# Test graceful degradation on arrays derived from fake memmap instances
|
141 |
+
b3 = np.asarray(a3)
|
142 |
+
assert not has_shareable_memory(b3)
|
143 |
+
|
144 |
+
b3_reconstructed = reconstruct_array_or_memmap(b3)
|
145 |
+
assert isinstance(b3_reconstructed, np.ndarray)
|
146 |
+
assert not has_shareable_memory(b3_reconstructed)
|
147 |
+
assert_array_equal(b3_reconstructed, b3)
|
148 |
+
|
149 |
+
|
150 |
+
@with_multiprocessing
|
151 |
+
@skipif((sys.platform != "win32") or (),
|
152 |
+
reason="PermissionError only easily triggerable on Windows")
|
153 |
+
def test_resource_tracker_retries_when_permissionerror(tmpdir):
|
154 |
+
# Test resource_tracker retry mechanism when unlinking memmaps. See more
|
155 |
+
# thorough information in the ``unlink_file`` documentation of joblib.
|
156 |
+
filename = tmpdir.join('test.mmap').strpath
|
157 |
+
cmd = """if 1:
|
158 |
+
import os
|
159 |
+
import numpy as np
|
160 |
+
import time
|
161 |
+
from joblib.externals.loky.backend import resource_tracker
|
162 |
+
resource_tracker.VERBOSE = 1
|
163 |
+
|
164 |
+
# Start the resource tracker
|
165 |
+
resource_tracker.ensure_running()
|
166 |
+
time.sleep(1)
|
167 |
+
|
168 |
+
# Create a file containing numpy data
|
169 |
+
memmap = np.memmap(r"{filename}", dtype=np.float64, shape=10, mode='w+')
|
170 |
+
memmap[:] = np.arange(10).astype(np.int8).data
|
171 |
+
memmap.flush()
|
172 |
+
assert os.path.exists(r"{filename}")
|
173 |
+
del memmap
|
174 |
+
|
175 |
+
# Create a np.memmap backed by this file
|
176 |
+
memmap = np.memmap(r"{filename}", dtype=np.float64, shape=10, mode='w+')
|
177 |
+
resource_tracker.register(r"{filename}", "file")
|
178 |
+
|
179 |
+
# Ask the resource_tracker to delete the file backing the np.memmap , this
|
180 |
+
# should raise PermissionError that the resource_tracker will log.
|
181 |
+
resource_tracker.maybe_unlink(r"{filename}", "file")
|
182 |
+
|
183 |
+
# Wait for the resource_tracker to process the maybe_unlink before cleaning
|
184 |
+
# up the memmap
|
185 |
+
time.sleep(2)
|
186 |
+
""".format(filename=filename)
|
187 |
+
p = subprocess.Popen([sys.executable, '-c', cmd], stderr=subprocess.PIPE,
|
188 |
+
stdout=subprocess.PIPE)
|
189 |
+
p.wait()
|
190 |
+
out, err = p.communicate()
|
191 |
+
assert p.returncode == 0
|
192 |
+
assert out == b''
|
193 |
+
msg = 'tried to unlink {}, got PermissionError'.format(filename)
|
194 |
+
assert msg in err.decode()
|
195 |
+
|
196 |
+
|
197 |
+
@with_numpy
|
198 |
+
@with_multiprocessing
|
199 |
+
def test_high_dimension_memmap_array_reducing(tmpdir):
|
200 |
+
assert_array_equal = np.testing.assert_array_equal
|
201 |
+
|
202 |
+
filename = tmpdir.join('test.mmap').strpath
|
203 |
+
|
204 |
+
# Create a high dimensional memmap
|
205 |
+
a = np.memmap(filename, dtype=np.float64, shape=(100, 15, 15, 3),
|
206 |
+
mode='w+')
|
207 |
+
a[:] = np.arange(100 * 15 * 15 * 3).reshape(a.shape)
|
208 |
+
|
209 |
+
# Create some slices/indices at various dimensions
|
210 |
+
b = a[0:10]
|
211 |
+
c = a[:, 5:10]
|
212 |
+
d = a[:, :, :, 0]
|
213 |
+
e = a[1:3:4]
|
214 |
+
|
215 |
+
# Array reducer with auto dumping disabled
|
216 |
+
reducer = ArrayMemmapForwardReducer(None, tmpdir.strpath, 'c', True)
|
217 |
+
|
218 |
+
def reconstruct_array_or_memmap(x):
|
219 |
+
cons, args = reducer(x)
|
220 |
+
return cons(*args)
|
221 |
+
|
222 |
+
a_reconstructed = reconstruct_array_or_memmap(a)
|
223 |
+
assert has_shareable_memory(a_reconstructed)
|
224 |
+
assert isinstance(a_reconstructed, np.memmap)
|
225 |
+
assert_array_equal(a_reconstructed, a)
|
226 |
+
|
227 |
+
b_reconstructed = reconstruct_array_or_memmap(b)
|
228 |
+
assert has_shareable_memory(b_reconstructed)
|
229 |
+
assert_array_equal(b_reconstructed, b)
|
230 |
+
|
231 |
+
c_reconstructed = reconstruct_array_or_memmap(c)
|
232 |
+
assert has_shareable_memory(c_reconstructed)
|
233 |
+
assert_array_equal(c_reconstructed, c)
|
234 |
+
|
235 |
+
d_reconstructed = reconstruct_array_or_memmap(d)
|
236 |
+
assert has_shareable_memory(d_reconstructed)
|
237 |
+
assert_array_equal(d_reconstructed, d)
|
238 |
+
|
239 |
+
e_reconstructed = reconstruct_array_or_memmap(e)
|
240 |
+
assert has_shareable_memory(e_reconstructed)
|
241 |
+
assert_array_equal(e_reconstructed, e)
|
242 |
+
|
243 |
+
|
244 |
+
@with_numpy
|
245 |
+
def test__strided_from_memmap(tmpdir):
|
246 |
+
fname = tmpdir.join('test.mmap').strpath
|
247 |
+
size = 5 * mmap.ALLOCATIONGRANULARITY
|
248 |
+
offset = mmap.ALLOCATIONGRANULARITY + 1
|
249 |
+
# This line creates the mmap file that is reused later
|
250 |
+
memmap_obj = np.memmap(fname, mode='w+', shape=size + offset)
|
251 |
+
# filename, dtype, mode, offset, order, shape, strides, total_buffer_len
|
252 |
+
memmap_obj = _strided_from_memmap(fname, dtype='uint8', mode='r',
|
253 |
+
offset=offset, order='C', shape=size,
|
254 |
+
strides=None, total_buffer_len=None,
|
255 |
+
unlink_on_gc_collect=False)
|
256 |
+
assert isinstance(memmap_obj, np.memmap)
|
257 |
+
assert memmap_obj.offset == offset
|
258 |
+
memmap_backed_obj = _strided_from_memmap(
|
259 |
+
fname, dtype='uint8', mode='r', offset=offset, order='C',
|
260 |
+
shape=(size // 2,), strides=(2,), total_buffer_len=size,
|
261 |
+
unlink_on_gc_collect=False
|
262 |
+
)
|
263 |
+
assert _get_backing_memmap(memmap_backed_obj).offset == offset
|
264 |
+
|
265 |
+
|
266 |
+
@with_numpy
|
267 |
+
@with_multiprocessing
|
268 |
+
@parametrize("factory", [MemmappingPool, TestExecutor.get_memmapping_executor],
|
269 |
+
ids=["multiprocessing", "loky"])
|
270 |
+
def test_pool_with_memmap(factory, tmpdir):
|
271 |
+
"""Check that subprocess can access and update shared memory memmap"""
|
272 |
+
assert_array_equal = np.testing.assert_array_equal
|
273 |
+
|
274 |
+
# Fork the subprocess before allocating the objects to be passed
|
275 |
+
pool_temp_folder = tmpdir.mkdir('pool').strpath
|
276 |
+
p = factory(10, max_nbytes=2, temp_folder=pool_temp_folder)
|
277 |
+
try:
|
278 |
+
filename = tmpdir.join('test.mmap').strpath
|
279 |
+
a = np.memmap(filename, dtype=np.float32, shape=(3, 5), mode='w+')
|
280 |
+
a.fill(1.0)
|
281 |
+
|
282 |
+
p.map(inplace_double, [(a, (i, j), 1.0)
|
283 |
+
for i in range(a.shape[0])
|
284 |
+
for j in range(a.shape[1])])
|
285 |
+
|
286 |
+
assert_array_equal(a, 2 * np.ones(a.shape))
|
287 |
+
|
288 |
+
# Open a copy-on-write view on the previous data
|
289 |
+
b = np.memmap(filename, dtype=np.float32, shape=(5, 3), mode='c')
|
290 |
+
|
291 |
+
p.map(inplace_double, [(b, (i, j), 2.0)
|
292 |
+
for i in range(b.shape[0])
|
293 |
+
for j in range(b.shape[1])])
|
294 |
+
|
295 |
+
# Passing memmap instances to the pool should not trigger the creation
|
296 |
+
# of new files on the FS
|
297 |
+
assert os.listdir(pool_temp_folder) == []
|
298 |
+
|
299 |
+
# the original data is untouched
|
300 |
+
assert_array_equal(a, 2 * np.ones(a.shape))
|
301 |
+
assert_array_equal(b, 2 * np.ones(b.shape))
|
302 |
+
|
303 |
+
# readonly maps can be read but not updated
|
304 |
+
c = np.memmap(filename, dtype=np.float32, shape=(10,), mode='r',
|
305 |
+
offset=5 * 4)
|
306 |
+
|
307 |
+
with raises(AssertionError):
|
308 |
+
p.map(check_array, [(c, i, 3.0) for i in range(c.shape[0])])
|
309 |
+
|
310 |
+
# depending on the version of numpy one can either get a RuntimeError
|
311 |
+
# or a ValueError
|
312 |
+
with raises((RuntimeError, ValueError)):
|
313 |
+
p.map(inplace_double, [(c, i, 2.0) for i in range(c.shape[0])])
|
314 |
+
finally:
|
315 |
+
# Clean all filehandlers held by the pool
|
316 |
+
p.terminate()
|
317 |
+
del p
|
318 |
+
|
319 |
+
|
320 |
+
@with_numpy
|
321 |
+
@with_multiprocessing
|
322 |
+
@parametrize("factory", [MemmappingPool, TestExecutor.get_memmapping_executor],
|
323 |
+
ids=["multiprocessing", "loky"])
|
324 |
+
def test_pool_with_memmap_array_view(factory, tmpdir):
|
325 |
+
"""Check that subprocess can access and update shared memory array"""
|
326 |
+
assert_array_equal = np.testing.assert_array_equal
|
327 |
+
|
328 |
+
# Fork the subprocess before allocating the objects to be passed
|
329 |
+
pool_temp_folder = tmpdir.mkdir('pool').strpath
|
330 |
+
p = factory(10, max_nbytes=2, temp_folder=pool_temp_folder)
|
331 |
+
try:
|
332 |
+
|
333 |
+
filename = tmpdir.join('test.mmap').strpath
|
334 |
+
a = np.memmap(filename, dtype=np.float32, shape=(3, 5), mode='w+')
|
335 |
+
a.fill(1.0)
|
336 |
+
|
337 |
+
# Create an ndarray view on the memmap instance
|
338 |
+
a_view = np.asarray(a)
|
339 |
+
assert not isinstance(a_view, np.memmap)
|
340 |
+
assert has_shareable_memory(a_view)
|
341 |
+
|
342 |
+
p.map(inplace_double, [(a_view, (i, j), 1.0)
|
343 |
+
for i in range(a.shape[0])
|
344 |
+
for j in range(a.shape[1])])
|
345 |
+
|
346 |
+
# Both a and the a_view have been updated
|
347 |
+
assert_array_equal(a, 2 * np.ones(a.shape))
|
348 |
+
assert_array_equal(a_view, 2 * np.ones(a.shape))
|
349 |
+
|
350 |
+
# Passing memmap array view to the pool should not trigger the
|
351 |
+
# creation of new files on the FS
|
352 |
+
assert os.listdir(pool_temp_folder) == []
|
353 |
+
|
354 |
+
finally:
|
355 |
+
p.terminate()
|
356 |
+
del p
|
357 |
+
|
358 |
+
|
359 |
+
@with_numpy
|
360 |
+
@with_multiprocessing
|
361 |
+
@parametrize("backend", ["multiprocessing", "loky"])
|
362 |
+
def test_permission_error_windows_reference_cycle(backend):
|
363 |
+
# Non regression test for:
|
364 |
+
# https://github.com/joblib/joblib/issues/806
|
365 |
+
#
|
366 |
+
# The issue happens when trying to delete a memory mapped file that has
|
367 |
+
# not yet been closed by one of the worker processes.
|
368 |
+
cmd = """if 1:
|
369 |
+
import numpy as np
|
370 |
+
from joblib import Parallel, delayed
|
371 |
+
|
372 |
+
|
373 |
+
data = np.random.rand(int(2e6)).reshape((int(1e6), 2))
|
374 |
+
|
375 |
+
# Build a complex cyclic reference that is likely to delay garbage
|
376 |
+
# collection of the memmapped array in the worker processes.
|
377 |
+
first_list = current_list = [data]
|
378 |
+
for i in range(10):
|
379 |
+
current_list = [current_list]
|
380 |
+
first_list.append(current_list)
|
381 |
+
|
382 |
+
if __name__ == "__main__":
|
383 |
+
results = Parallel(n_jobs=2, backend="{b}")(
|
384 |
+
delayed(len)(current_list) for i in range(10))
|
385 |
+
assert results == [1] * 10
|
386 |
+
""".format(b=backend)
|
387 |
+
p = subprocess.Popen([sys.executable, '-c', cmd], stderr=subprocess.PIPE,
|
388 |
+
stdout=subprocess.PIPE)
|
389 |
+
p.wait()
|
390 |
+
out, err = p.communicate()
|
391 |
+
assert p.returncode == 0, out.decode() + "\n\n" + err.decode()
|
392 |
+
|
393 |
+
|
394 |
+
@with_numpy
|
395 |
+
@with_multiprocessing
|
396 |
+
@parametrize("backend", ["multiprocessing", "loky"])
|
397 |
+
def test_permission_error_windows_memmap_sent_to_parent(backend):
|
398 |
+
# Second non-regression test for:
|
399 |
+
# https://github.com/joblib/joblib/issues/806
|
400 |
+
# previously, child process would not convert temporary memmaps to numpy
|
401 |
+
# arrays when sending the data back to the parent process. This would lead
|
402 |
+
# to permission errors on windows when deleting joblib's temporary folder,
|
403 |
+
# as the memmaped files handles would still opened in the parent process.
|
404 |
+
cmd = '''if 1:
|
405 |
+
import os
|
406 |
+
import time
|
407 |
+
|
408 |
+
import numpy as np
|
409 |
+
|
410 |
+
from joblib import Parallel, delayed
|
411 |
+
from testutils import return_slice_of_data
|
412 |
+
|
413 |
+
data = np.ones(int(2e6))
|
414 |
+
|
415 |
+
if __name__ == '__main__':
|
416 |
+
# warm-up call to launch the workers and start the resource_tracker
|
417 |
+
_ = Parallel(n_jobs=2, verbose=5, backend='{b}')(
|
418 |
+
delayed(id)(i) for i in range(20))
|
419 |
+
|
420 |
+
time.sleep(0.5)
|
421 |
+
|
422 |
+
slice_of_data = Parallel(n_jobs=2, verbose=5, backend='{b}')(
|
423 |
+
delayed(return_slice_of_data)(data, 0, 20) for _ in range(10))
|
424 |
+
'''.format(b=backend)
|
425 |
+
|
426 |
+
for _ in range(3):
|
427 |
+
env = os.environ.copy()
|
428 |
+
env['PYTHONPATH'] = os.path.dirname(__file__)
|
429 |
+
p = subprocess.Popen([sys.executable, '-c', cmd],
|
430 |
+
stderr=subprocess.PIPE,
|
431 |
+
stdout=subprocess.PIPE, env=env)
|
432 |
+
p.wait()
|
433 |
+
out, err = p.communicate()
|
434 |
+
assert p.returncode == 0, err
|
435 |
+
assert out == b''
|
436 |
+
if sys.version_info[:3] not in [(3, 8, 0), (3, 8, 1)]:
|
437 |
+
# In early versions of Python 3.8, a reference leak
|
438 |
+
# https://github.com/cloudpipe/cloudpickle/issues/327, holds
|
439 |
+
# references to pickled objects, generating race condition during
|
440 |
+
# cleanup finalizers of joblib and noisy resource_tracker outputs.
|
441 |
+
assert b'resource_tracker' not in err
|
442 |
+
|
443 |
+
|
444 |
+
@with_numpy
|
445 |
+
@with_multiprocessing
|
446 |
+
@parametrize("backend", ["multiprocessing", "loky"])
|
447 |
+
def test_parallel_isolated_temp_folders(backend):
|
448 |
+
# Test that consecutive Parallel call use isolated subfolders, even
|
449 |
+
# for the loky backend that reuses its executor instance across calls.
|
450 |
+
array = np.arange(int(1e2))
|
451 |
+
[filename_1] = Parallel(n_jobs=2, backend=backend, max_nbytes=10)(
|
452 |
+
delayed(getattr)(array, 'filename') for _ in range(1)
|
453 |
+
)
|
454 |
+
[filename_2] = Parallel(n_jobs=2, backend=backend, max_nbytes=10)(
|
455 |
+
delayed(getattr)(array, 'filename') for _ in range(1)
|
456 |
+
)
|
457 |
+
assert os.path.dirname(filename_2) != os.path.dirname(filename_1)
|
458 |
+
|
459 |
+
|
460 |
+
@with_numpy
|
461 |
+
@with_multiprocessing
|
462 |
+
@parametrize("backend", ["multiprocessing", "loky"])
|
463 |
+
def test_managed_backend_reuse_temp_folder(backend):
|
464 |
+
# Test that calls to a managed parallel object reuse the same memmaps.
|
465 |
+
array = np.arange(int(1e2))
|
466 |
+
with Parallel(n_jobs=2, backend=backend, max_nbytes=10) as p:
|
467 |
+
[filename_1] = p(
|
468 |
+
delayed(getattr)(array, 'filename') for _ in range(1)
|
469 |
+
)
|
470 |
+
[filename_2] = p(
|
471 |
+
delayed(getattr)(array, 'filename') for _ in range(1)
|
472 |
+
)
|
473 |
+
assert os.path.dirname(filename_2) == os.path.dirname(filename_1)
|
474 |
+
|
475 |
+
|
476 |
+
@with_numpy
|
477 |
+
@with_multiprocessing
|
478 |
+
def test_memmapping_temp_folder_thread_safety():
|
479 |
+
# Concurrent calls to Parallel with the loky backend will use the same
|
480 |
+
# executor, and thus the same reducers. Make sure that those reducers use
|
481 |
+
# different temporary folders depending on which Parallel objects called
|
482 |
+
# them, which is necessary to limit potential race conditions during the
|
483 |
+
# garbage collection of temporary memmaps.
|
484 |
+
array = np.arange(int(1e2))
|
485 |
+
|
486 |
+
temp_dirs_thread_1 = set()
|
487 |
+
temp_dirs_thread_2 = set()
|
488 |
+
|
489 |
+
def concurrent_get_filename(array, temp_dirs):
|
490 |
+
with Parallel(backend='loky', n_jobs=2, max_nbytes=10) as p:
|
491 |
+
for i in range(10):
|
492 |
+
[filename] = p(
|
493 |
+
delayed(getattr)(array, 'filename') for _ in range(1)
|
494 |
+
)
|
495 |
+
temp_dirs.add(os.path.dirname(filename))
|
496 |
+
|
497 |
+
t1 = threading.Thread(
|
498 |
+
target=concurrent_get_filename, args=(array, temp_dirs_thread_1)
|
499 |
+
)
|
500 |
+
t2 = threading.Thread(
|
501 |
+
target=concurrent_get_filename, args=(array, temp_dirs_thread_2)
|
502 |
+
)
|
503 |
+
|
504 |
+
t1.start()
|
505 |
+
t2.start()
|
506 |
+
|
507 |
+
t1.join()
|
508 |
+
t2.join()
|
509 |
+
|
510 |
+
assert len(temp_dirs_thread_1) == 1
|
511 |
+
assert len(temp_dirs_thread_2) == 1
|
512 |
+
|
513 |
+
assert temp_dirs_thread_1 != temp_dirs_thread_2
|
514 |
+
|
515 |
+
|
516 |
+
@with_numpy
|
517 |
+
@with_multiprocessing
|
518 |
+
def test_multithreaded_parallel_termination_resource_tracker_silent():
|
519 |
+
# test that concurrent termination attempts of a same executor does not
|
520 |
+
# emit any spurious error from the resource_tracker. We test various
|
521 |
+
# situations making 0, 1 or both parallel call sending a task that will
|
522 |
+
# make the worker (and thus the whole Parallel call) error out.
|
523 |
+
cmd = '''if 1:
|
524 |
+
import os
|
525 |
+
import numpy as np
|
526 |
+
from joblib import Parallel, delayed
|
527 |
+
from joblib.externals.loky.backend import resource_tracker
|
528 |
+
from concurrent.futures import ThreadPoolExecutor, wait
|
529 |
+
|
530 |
+
resource_tracker.VERBOSE = 0
|
531 |
+
|
532 |
+
array = np.arange(int(1e2))
|
533 |
+
|
534 |
+
temp_dirs_thread_1 = set()
|
535 |
+
temp_dirs_thread_2 = set()
|
536 |
+
|
537 |
+
|
538 |
+
def raise_error(array):
|
539 |
+
raise ValueError
|
540 |
+
|
541 |
+
|
542 |
+
def parallel_get_filename(array, temp_dirs):
|
543 |
+
with Parallel(backend="loky", n_jobs=2, max_nbytes=10) as p:
|
544 |
+
for i in range(10):
|
545 |
+
[filename] = p(
|
546 |
+
delayed(getattr)(array, "filename") for _ in range(1)
|
547 |
+
)
|
548 |
+
temp_dirs.add(os.path.dirname(filename))
|
549 |
+
|
550 |
+
|
551 |
+
def parallel_raise(array, temp_dirs):
|
552 |
+
with Parallel(backend="loky", n_jobs=2, max_nbytes=10) as p:
|
553 |
+
for i in range(10):
|
554 |
+
[filename] = p(
|
555 |
+
delayed(raise_error)(array) for _ in range(1)
|
556 |
+
)
|
557 |
+
temp_dirs.add(os.path.dirname(filename))
|
558 |
+
|
559 |
+
|
560 |
+
executor = ThreadPoolExecutor(max_workers=2)
|
561 |
+
|
562 |
+
# both function calls will use the same loky executor, but with a
|
563 |
+
# different Parallel object.
|
564 |
+
future_1 = executor.submit({f1}, array, temp_dirs_thread_1)
|
565 |
+
future_2 = executor.submit({f2}, array, temp_dirs_thread_2)
|
566 |
+
|
567 |
+
# Wait for both threads to terminate their backend
|
568 |
+
wait([future_1, future_2])
|
569 |
+
|
570 |
+
future_1.result()
|
571 |
+
future_2.result()
|
572 |
+
'''
|
573 |
+
functions_and_returncodes = [
|
574 |
+
("parallel_get_filename", "parallel_get_filename", 0),
|
575 |
+
("parallel_get_filename", "parallel_raise", 1),
|
576 |
+
("parallel_raise", "parallel_raise", 1)
|
577 |
+
]
|
578 |
+
|
579 |
+
for f1, f2, returncode in functions_and_returncodes:
|
580 |
+
p = subprocess.Popen([sys.executable, '-c', cmd.format(f1=f1, f2=f2)],
|
581 |
+
stderr=subprocess.PIPE, stdout=subprocess.PIPE)
|
582 |
+
p.wait()
|
583 |
+
out, err = p.communicate()
|
584 |
+
assert p.returncode == returncode, out.decode()
|
585 |
+
assert b"resource_tracker" not in err, err.decode()
|
586 |
+
|
587 |
+
|
588 |
+
@with_numpy
|
589 |
+
@with_multiprocessing
|
590 |
+
@parametrize("backend", ["multiprocessing", "loky"])
|
591 |
+
def test_many_parallel_calls_on_same_object(backend):
|
592 |
+
# After #966 got merged, consecutive Parallel objects were sharing temp
|
593 |
+
# folder, which would lead to race conditions happening during the
|
594 |
+
# temporary resources management with the resource_tracker. This is a
|
595 |
+
# non-regression test that makes sure that consecutive Parallel operations
|
596 |
+
# on the same object do not error out.
|
597 |
+
cmd = '''if 1:
|
598 |
+
import os
|
599 |
+
import time
|
600 |
+
|
601 |
+
import numpy as np
|
602 |
+
|
603 |
+
from joblib import Parallel, delayed
|
604 |
+
from testutils import return_slice_of_data
|
605 |
+
|
606 |
+
data = np.ones(100)
|
607 |
+
|
608 |
+
if __name__ == '__main__':
|
609 |
+
for i in range(5):
|
610 |
+
slice_of_data = Parallel(
|
611 |
+
n_jobs=2, max_nbytes=1, backend='{b}')(
|
612 |
+
delayed(return_slice_of_data)(data, 0, 20)
|
613 |
+
for _ in range(10)
|
614 |
+
)
|
615 |
+
'''.format(b=backend)
|
616 |
+
env = os.environ.copy()
|
617 |
+
env['PYTHONPATH'] = os.path.dirname(__file__)
|
618 |
+
p = subprocess.Popen(
|
619 |
+
[sys.executable, '-c', cmd],
|
620 |
+
stderr=subprocess.PIPE,
|
621 |
+
stdout=subprocess.PIPE,
|
622 |
+
env=env,
|
623 |
+
)
|
624 |
+
p.wait()
|
625 |
+
out, err = p.communicate()
|
626 |
+
assert p.returncode == 0, err
|
627 |
+
assert out == b''
|
628 |
+
if sys.version_info[:3] not in [(3, 8, 0), (3, 8, 1)]:
|
629 |
+
# In early versions of Python 3.8, a reference leak
|
630 |
+
# https://github.com/cloudpipe/cloudpickle/issues/327, holds
|
631 |
+
# references to pickled objects, generating race condition during
|
632 |
+
# cleanup finalizers of joblib and noisy resource_tracker outputs.
|
633 |
+
assert b'resource_tracker' not in err
|
634 |
+
|
635 |
+
|
636 |
+
@with_numpy
|
637 |
+
@with_multiprocessing
|
638 |
+
@parametrize("backend", ["multiprocessing", "loky"])
|
639 |
+
def test_memmap_returned_as_regular_array(backend):
|
640 |
+
data = np.ones(int(1e3))
|
641 |
+
# Check that child processes send temporary memmaps back as numpy arrays.
|
642 |
+
[result] = Parallel(n_jobs=2, backend=backend, max_nbytes=100)(
|
643 |
+
delayed(check_memmap_and_send_back)(data) for _ in range(1))
|
644 |
+
assert _get_backing_memmap(result) is None
|
645 |
+
|
646 |
+
|
647 |
+
@with_numpy
|
648 |
+
@with_multiprocessing
|
649 |
+
@parametrize("backend", ["multiprocessing", "loky"])
|
650 |
+
def test_resource_tracker_silent_when_reference_cycles(backend):
|
651 |
+
# There is a variety of reasons that can make joblib with loky backend
|
652 |
+
# output noisy warnings when a reference cycle is preventing a memmap from
|
653 |
+
# being garbage collected. Especially, joblib's main process finalizer
|
654 |
+
# deletes the temporary folder if it was not done before, which can
|
655 |
+
# interact badly with the resource_tracker. We don't risk leaking any
|
656 |
+
# resources, but this will likely make joblib output a lot of low-level
|
657 |
+
# confusing messages.
|
658 |
+
#
|
659 |
+
# This test makes sure that the resource_tracker is silent when a reference
|
660 |
+
# has been collected concurrently on non-Windows platforms.
|
661 |
+
#
|
662 |
+
# Note that the script in ``cmd`` is the exact same script as in
|
663 |
+
# test_permission_error_windows_reference_cycle.
|
664 |
+
if backend == "loky" and sys.platform.startswith('win'):
|
665 |
+
# XXX: on Windows, reference cycles can delay timely garbage collection
|
666 |
+
# and make it impossible to properly delete the temporary folder in the
|
667 |
+
# main process because of permission errors.
|
668 |
+
pytest.xfail(
|
669 |
+
"The temporary folder cannot be deleted on Windows in the "
|
670 |
+
"presence of a reference cycle"
|
671 |
+
)
|
672 |
+
|
673 |
+
cmd = """if 1:
|
674 |
+
import numpy as np
|
675 |
+
from joblib import Parallel, delayed
|
676 |
+
|
677 |
+
|
678 |
+
data = np.random.rand(int(2e6)).reshape((int(1e6), 2))
|
679 |
+
|
680 |
+
# Build a complex cyclic reference that is likely to delay garbage
|
681 |
+
# collection of the memmapped array in the worker processes.
|
682 |
+
first_list = current_list = [data]
|
683 |
+
for i in range(10):
|
684 |
+
current_list = [current_list]
|
685 |
+
first_list.append(current_list)
|
686 |
+
|
687 |
+
if __name__ == "__main__":
|
688 |
+
results = Parallel(n_jobs=2, backend="{b}")(
|
689 |
+
delayed(len)(current_list) for i in range(10))
|
690 |
+
assert results == [1] * 10
|
691 |
+
""".format(b=backend)
|
692 |
+
p = subprocess.Popen([sys.executable, '-c', cmd], stderr=subprocess.PIPE,
|
693 |
+
stdout=subprocess.PIPE)
|
694 |
+
p.wait()
|
695 |
+
out, err = p.communicate()
|
696 |
+
out = out.decode()
|
697 |
+
err = err.decode()
|
698 |
+
assert p.returncode == 0, out + "\n\n" + err
|
699 |
+
assert "resource_tracker" not in err, err
|
700 |
+
|
701 |
+
|
702 |
+
@with_numpy
|
703 |
+
@with_multiprocessing
|
704 |
+
@parametrize("factory", [MemmappingPool, TestExecutor.get_memmapping_executor],
|
705 |
+
ids=["multiprocessing", "loky"])
|
706 |
+
def test_memmapping_pool_for_large_arrays(factory, tmpdir):
|
707 |
+
"""Check that large arrays are not copied in memory"""
|
708 |
+
|
709 |
+
# Check that the tempfolder is empty
|
710 |
+
assert os.listdir(tmpdir.strpath) == []
|
711 |
+
|
712 |
+
# Build an array reducers that automatically dump large array content
|
713 |
+
# to filesystem backed memmap instances to avoid memory explosion
|
714 |
+
p = factory(3, max_nbytes=40, temp_folder=tmpdir.strpath, verbose=2)
|
715 |
+
try:
|
716 |
+
# The temporary folder for the pool is not provisioned in advance
|
717 |
+
assert os.listdir(tmpdir.strpath) == []
|
718 |
+
assert not os.path.exists(p._temp_folder)
|
719 |
+
|
720 |
+
small = np.ones(5, dtype=np.float32)
|
721 |
+
assert small.nbytes == 20
|
722 |
+
p.map(check_array, [(small, i, 1.0) for i in range(small.shape[0])])
|
723 |
+
|
724 |
+
# Memory has been copied, the pool filesystem folder is unused
|
725 |
+
assert os.listdir(tmpdir.strpath) == []
|
726 |
+
|
727 |
+
# Try with a file larger than the memmap threshold of 40 bytes
|
728 |
+
large = np.ones(100, dtype=np.float64)
|
729 |
+
assert large.nbytes == 800
|
730 |
+
p.map(check_array, [(large, i, 1.0) for i in range(large.shape[0])])
|
731 |
+
|
732 |
+
# The data has been dumped in a temp folder for subprocess to share it
|
733 |
+
# without per-child memory copies
|
734 |
+
assert os.path.isdir(p._temp_folder)
|
735 |
+
dumped_filenames = os.listdir(p._temp_folder)
|
736 |
+
assert len(dumped_filenames) == 1
|
737 |
+
|
738 |
+
# Check that memory mapping is not triggered for arrays with
|
739 |
+
# dtype='object'
|
740 |
+
objects = np.array(['abc'] * 100, dtype='object')
|
741 |
+
results = p.map(has_shareable_memory, [objects])
|
742 |
+
assert not results[0]
|
743 |
+
|
744 |
+
finally:
|
745 |
+
# check FS garbage upon pool termination
|
746 |
+
p.terminate()
|
747 |
+
for i in range(10):
|
748 |
+
sleep(.1)
|
749 |
+
if not os.path.exists(p._temp_folder):
|
750 |
+
break
|
751 |
+
else: # pragma: no cover
|
752 |
+
raise AssertionError(
|
753 |
+
'temporary folder {} was not deleted'.format(p._temp_folder)
|
754 |
+
)
|
755 |
+
del p
|
756 |
+
|
757 |
+
|
758 |
+
@with_numpy
|
759 |
+
@with_multiprocessing
|
760 |
+
@parametrize(
|
761 |
+
"backend",
|
762 |
+
[
|
763 |
+
pytest.param(
|
764 |
+
"multiprocessing",
|
765 |
+
marks=pytest.mark.xfail(
|
766 |
+
reason='https://github.com/joblib/joblib/issues/1086'
|
767 |
+
),
|
768 |
+
),
|
769 |
+
"loky",
|
770 |
+
]
|
771 |
+
)
|
772 |
+
def test_child_raises_parent_exits_cleanly(backend):
|
773 |
+
# When a task executed by a child process raises an error, the parent
|
774 |
+
# process's backend is notified, and calls abort_everything.
|
775 |
+
# In loky, abort_everything itself calls shutdown(kill_workers=True) which
|
776 |
+
# sends SIGKILL to the worker, preventing it from running the finalizers
|
777 |
+
# supposed to signal the resource_tracker when the worker is done using
|
778 |
+
# objects relying on a shared resource (e.g np.memmaps). Because this
|
779 |
+
# behavior is prone to :
|
780 |
+
# - cause a resource leak
|
781 |
+
# - make the resource tracker emit noisy resource warnings
|
782 |
+
# we explicitly test that, when the said situation occurs:
|
783 |
+
# - no resources are actually leaked
|
784 |
+
# - the temporary resources are deleted as soon as possible (typically, at
|
785 |
+
# the end of the failing Parallel call)
|
786 |
+
# - the resource_tracker does not emit any warnings.
|
787 |
+
cmd = """if 1:
|
788 |
+
import os
|
789 |
+
from pathlib import Path
|
790 |
+
from time import sleep
|
791 |
+
|
792 |
+
import numpy as np
|
793 |
+
from joblib import Parallel, delayed
|
794 |
+
from testutils import print_filename_and_raise
|
795 |
+
|
796 |
+
data = np.random.rand(1000)
|
797 |
+
|
798 |
+
def get_temp_folder(parallel_obj, backend):
|
799 |
+
if "{b}" == "loky":
|
800 |
+
return Path(parallel_obj._backend._workers._temp_folder)
|
801 |
+
else:
|
802 |
+
return Path(parallel_obj._backend._pool._temp_folder)
|
803 |
+
|
804 |
+
|
805 |
+
if __name__ == "__main__":
|
806 |
+
try:
|
807 |
+
with Parallel(n_jobs=2, backend="{b}", max_nbytes=100) as p:
|
808 |
+
temp_folder = get_temp_folder(p, "{b}")
|
809 |
+
p(delayed(print_filename_and_raise)(data)
|
810 |
+
for i in range(1))
|
811 |
+
except ValueError as e:
|
812 |
+
# the temporary folder should be deleted by the end of this
|
813 |
+
# call but apparently on some file systems, this takes
|
814 |
+
# some time to be visible.
|
815 |
+
#
|
816 |
+
# We attempt to write into the temporary folder to test for
|
817 |
+
# its existence and we wait for a maximum of 10 seconds.
|
818 |
+
for i in range(100):
|
819 |
+
try:
|
820 |
+
with open(temp_folder / "some_file.txt", "w") as f:
|
821 |
+
f.write("some content")
|
822 |
+
except FileNotFoundError:
|
823 |
+
# temp_folder has been deleted, all is fine
|
824 |
+
break
|
825 |
+
|
826 |
+
# ... else, wait a bit and try again
|
827 |
+
sleep(.1)
|
828 |
+
else:
|
829 |
+
raise AssertionError(
|
830 |
+
str(temp_folder) + " was not deleted"
|
831 |
+
) from e
|
832 |
+
""".format(b=backend)
|
833 |
+
env = os.environ.copy()
|
834 |
+
env['PYTHONPATH'] = os.path.dirname(__file__)
|
835 |
+
p = subprocess.Popen([sys.executable, '-c', cmd], stderr=subprocess.PIPE,
|
836 |
+
stdout=subprocess.PIPE, env=env)
|
837 |
+
p.wait()
|
838 |
+
out, err = p.communicate()
|
839 |
+
out, err = out.decode(), err.decode()
|
840 |
+
filename = out.split('\n')[0]
|
841 |
+
assert p.returncode == 0, err or out
|
842 |
+
assert err == '' # no resource_tracker warnings.
|
843 |
+
assert not os.path.exists(filename)
|
844 |
+
|
845 |
+
|
846 |
+
@with_numpy
|
847 |
+
@with_multiprocessing
|
848 |
+
@parametrize("factory", [MemmappingPool, TestExecutor.get_memmapping_executor],
|
849 |
+
ids=["multiprocessing", "loky"])
|
850 |
+
def test_memmapping_pool_for_large_arrays_disabled(factory, tmpdir):
|
851 |
+
"""Check that large arrays memmapping can be disabled"""
|
852 |
+
# Set max_nbytes to None to disable the auto memmapping feature
|
853 |
+
p = factory(3, max_nbytes=None, temp_folder=tmpdir.strpath)
|
854 |
+
try:
|
855 |
+
|
856 |
+
# Check that the tempfolder is empty
|
857 |
+
assert os.listdir(tmpdir.strpath) == []
|
858 |
+
|
859 |
+
# Try with a file largish than the memmap threshold of 40 bytes
|
860 |
+
large = np.ones(100, dtype=np.float64)
|
861 |
+
assert large.nbytes == 800
|
862 |
+
p.map(check_array, [(large, i, 1.0) for i in range(large.shape[0])])
|
863 |
+
|
864 |
+
# Check that the tempfolder is still empty
|
865 |
+
assert os.listdir(tmpdir.strpath) == []
|
866 |
+
|
867 |
+
finally:
|
868 |
+
# Cleanup open file descriptors
|
869 |
+
p.terminate()
|
870 |
+
del p
|
871 |
+
|
872 |
+
|
873 |
+
@with_numpy
|
874 |
+
@with_multiprocessing
|
875 |
+
@with_dev_shm
|
876 |
+
@parametrize("factory", [MemmappingPool, TestExecutor.get_memmapping_executor],
|
877 |
+
ids=["multiprocessing", "loky"])
|
878 |
+
def test_memmapping_on_large_enough_dev_shm(factory):
|
879 |
+
"""Check that memmapping uses /dev/shm when possible"""
|
880 |
+
orig_size = jmr.SYSTEM_SHARED_MEM_FS_MIN_SIZE
|
881 |
+
try:
|
882 |
+
# Make joblib believe that it can use /dev/shm even when running on a
|
883 |
+
# CI container where the size of the /dev/shm is not very large (that
|
884 |
+
# is at least 32 MB instead of 2 GB by default).
|
885 |
+
jmr.SYSTEM_SHARED_MEM_FS_MIN_SIZE = int(32e6)
|
886 |
+
p = factory(3, max_nbytes=10)
|
887 |
+
try:
|
888 |
+
# Check that the pool has correctly detected the presence of the
|
889 |
+
# shared memory filesystem.
|
890 |
+
pool_temp_folder = p._temp_folder
|
891 |
+
folder_prefix = '/dev/shm/joblib_memmapping_folder_'
|
892 |
+
assert pool_temp_folder.startswith(folder_prefix)
|
893 |
+
assert os.path.exists(pool_temp_folder)
|
894 |
+
|
895 |
+
# Try with a file larger than the memmap threshold of 10 bytes
|
896 |
+
a = np.ones(100, dtype=np.float64)
|
897 |
+
assert a.nbytes == 800
|
898 |
+
p.map(id, [a] * 10)
|
899 |
+
# a should have been memmapped to the pool temp folder: the joblib
|
900 |
+
# pickling procedure generate one .pkl file:
|
901 |
+
assert len(os.listdir(pool_temp_folder)) == 1
|
902 |
+
|
903 |
+
# create a new array with content that is different from 'a' so
|
904 |
+
# that it is mapped to a different file in the temporary folder of
|
905 |
+
# the pool.
|
906 |
+
b = np.ones(100, dtype=np.float64) * 2
|
907 |
+
assert b.nbytes == 800
|
908 |
+
p.map(id, [b] * 10)
|
909 |
+
# A copy of both a and b are now stored in the shared memory folder
|
910 |
+
assert len(os.listdir(pool_temp_folder)) == 2
|
911 |
+
finally:
|
912 |
+
# Cleanup open file descriptors
|
913 |
+
p.terminate()
|
914 |
+
del p
|
915 |
+
|
916 |
+
for i in range(100):
|
917 |
+
# The temp folder is cleaned up upon pool termination
|
918 |
+
if not os.path.exists(pool_temp_folder):
|
919 |
+
break
|
920 |
+
sleep(.1)
|
921 |
+
else: # pragma: no cover
|
922 |
+
raise AssertionError('temporary folder of pool was not deleted')
|
923 |
+
finally:
|
924 |
+
jmr.SYSTEM_SHARED_MEM_FS_MIN_SIZE = orig_size
|
925 |
+
|
926 |
+
|
927 |
+
@with_numpy
|
928 |
+
@with_multiprocessing
|
929 |
+
@with_dev_shm
|
930 |
+
@parametrize("factory", [MemmappingPool, TestExecutor.get_memmapping_executor],
|
931 |
+
ids=["multiprocessing", "loky"])
|
932 |
+
def test_memmapping_on_too_small_dev_shm(factory):
|
933 |
+
orig_size = jmr.SYSTEM_SHARED_MEM_FS_MIN_SIZE
|
934 |
+
try:
|
935 |
+
# Make joblib believe that it cannot use /dev/shm unless there is
|
936 |
+
# 42 exabytes of available shared memory in /dev/shm
|
937 |
+
jmr.SYSTEM_SHARED_MEM_FS_MIN_SIZE = int(42e18)
|
938 |
+
|
939 |
+
p = factory(3, max_nbytes=10)
|
940 |
+
try:
|
941 |
+
# Check that the pool has correctly detected the presence of the
|
942 |
+
# shared memory filesystem.
|
943 |
+
pool_temp_folder = p._temp_folder
|
944 |
+
assert not pool_temp_folder.startswith('/dev/shm')
|
945 |
+
finally:
|
946 |
+
# Cleanup open file descriptors
|
947 |
+
p.terminate()
|
948 |
+
del p
|
949 |
+
|
950 |
+
# The temp folder is cleaned up upon pool termination
|
951 |
+
assert not os.path.exists(pool_temp_folder)
|
952 |
+
finally:
|
953 |
+
jmr.SYSTEM_SHARED_MEM_FS_MIN_SIZE = orig_size
|
954 |
+
|
955 |
+
|
956 |
+
@with_numpy
|
957 |
+
@with_multiprocessing
|
958 |
+
@parametrize("factory", [MemmappingPool, TestExecutor.get_memmapping_executor],
|
959 |
+
ids=["multiprocessing", "loky"])
|
960 |
+
def test_memmapping_pool_for_large_arrays_in_return(factory, tmpdir):
|
961 |
+
"""Check that large arrays are not copied in memory in return"""
|
962 |
+
assert_array_equal = np.testing.assert_array_equal
|
963 |
+
|
964 |
+
# Build an array reducers that automatically dump large array content
|
965 |
+
# but check that the returned datastructure are regular arrays to avoid
|
966 |
+
# passing a memmap array pointing to a pool controlled temp folder that
|
967 |
+
# might be confusing to the user
|
968 |
+
|
969 |
+
# The MemmappingPool user can always return numpy.memmap object explicitly
|
970 |
+
# to avoid memory copy
|
971 |
+
p = factory(3, max_nbytes=10, temp_folder=tmpdir.strpath)
|
972 |
+
try:
|
973 |
+
res = p.apply_async(np.ones, args=(1000,))
|
974 |
+
large = res.get()
|
975 |
+
assert not has_shareable_memory(large)
|
976 |
+
assert_array_equal(large, np.ones(1000))
|
977 |
+
finally:
|
978 |
+
p.terminate()
|
979 |
+
del p
|
980 |
+
|
981 |
+
|
982 |
+
def _worker_multiply(a, n_times):
|
983 |
+
"""Multiplication function to be executed by subprocess"""
|
984 |
+
assert has_shareable_memory(a)
|
985 |
+
return a * n_times
|
986 |
+
|
987 |
+
|
988 |
+
@with_numpy
|
989 |
+
@with_multiprocessing
|
990 |
+
@parametrize("factory", [MemmappingPool, TestExecutor.get_memmapping_executor],
|
991 |
+
ids=["multiprocessing", "loky"])
|
992 |
+
def test_workaround_against_bad_memmap_with_copied_buffers(factory, tmpdir):
|
993 |
+
"""Check that memmaps with a bad buffer are returned as regular arrays
|
994 |
+
|
995 |
+
Unary operations and ufuncs on memmap instances return a new memmap
|
996 |
+
instance with an in-memory buffer (probably a numpy bug).
|
997 |
+
"""
|
998 |
+
assert_array_equal = np.testing.assert_array_equal
|
999 |
+
|
1000 |
+
p = factory(3, max_nbytes=10, temp_folder=tmpdir.strpath)
|
1001 |
+
try:
|
1002 |
+
# Send a complex, large-ish view on a array that will be converted to
|
1003 |
+
# a memmap in the worker process
|
1004 |
+
a = np.asarray(np.arange(6000).reshape((1000, 2, 3)),
|
1005 |
+
order='F')[:, :1, :]
|
1006 |
+
|
1007 |
+
# Call a non-inplace multiply operation on the worker and memmap and
|
1008 |
+
# send it back to the parent.
|
1009 |
+
b = p.apply_async(_worker_multiply, args=(a, 3)).get()
|
1010 |
+
assert not has_shareable_memory(b)
|
1011 |
+
assert_array_equal(b, 3 * a)
|
1012 |
+
finally:
|
1013 |
+
p.terminate()
|
1014 |
+
del p
|
1015 |
+
|
1016 |
+
|
1017 |
+
def identity(arg):
|
1018 |
+
return arg
|
1019 |
+
|
1020 |
+
|
1021 |
+
@with_numpy
|
1022 |
+
@with_multiprocessing
|
1023 |
+
@parametrize(
|
1024 |
+
"factory,retry_no",
|
1025 |
+
list(itertools.product(
|
1026 |
+
[MemmappingPool, TestExecutor.get_memmapping_executor], range(3))),
|
1027 |
+
ids=['{}, {}'.format(x, y) for x, y in itertools.product(
|
1028 |
+
["multiprocessing", "loky"], map(str, range(3)))])
|
1029 |
+
def test_pool_memmap_with_big_offset(factory, retry_no, tmpdir):
|
1030 |
+
# Test that numpy memmap offset is set correctly if greater than
|
1031 |
+
# mmap.ALLOCATIONGRANULARITY, see
|
1032 |
+
# https://github.com/joblib/joblib/issues/451 and
|
1033 |
+
# https://github.com/numpy/numpy/pull/8443 for more details.
|
1034 |
+
fname = tmpdir.join('test.mmap').strpath
|
1035 |
+
size = 5 * mmap.ALLOCATIONGRANULARITY
|
1036 |
+
offset = mmap.ALLOCATIONGRANULARITY + 1
|
1037 |
+
obj = make_memmap(fname, mode='w+', shape=size, dtype='uint8',
|
1038 |
+
offset=offset)
|
1039 |
+
|
1040 |
+
p = factory(2, temp_folder=tmpdir.strpath)
|
1041 |
+
result = p.apply_async(identity, args=(obj,)).get()
|
1042 |
+
assert isinstance(result, np.memmap)
|
1043 |
+
assert result.offset == offset
|
1044 |
+
np.testing.assert_array_equal(obj, result)
|
1045 |
+
p.terminate()
|
1046 |
+
|
1047 |
+
|
1048 |
+
def test_pool_get_temp_dir(tmpdir):
|
1049 |
+
pool_folder_name = 'test.tmpdir'
|
1050 |
+
pool_folder, shared_mem = _get_temp_dir(pool_folder_name, tmpdir.strpath)
|
1051 |
+
assert shared_mem is False
|
1052 |
+
assert pool_folder == tmpdir.join('test.tmpdir').strpath
|
1053 |
+
|
1054 |
+
pool_folder, shared_mem = _get_temp_dir(pool_folder_name, temp_folder=None)
|
1055 |
+
if sys.platform.startswith('win'):
|
1056 |
+
assert shared_mem is False
|
1057 |
+
assert pool_folder.endswith(pool_folder_name)
|
1058 |
+
|
1059 |
+
|
1060 |
+
def test_pool_get_temp_dir_no_statvfs(tmpdir, monkeypatch):
|
1061 |
+
"""Check that _get_temp_dir works when os.statvfs is not defined
|
1062 |
+
|
1063 |
+
Regression test for #902
|
1064 |
+
"""
|
1065 |
+
pool_folder_name = 'test.tmpdir'
|
1066 |
+
import joblib._memmapping_reducer
|
1067 |
+
if hasattr(joblib._memmapping_reducer.os, 'statvfs'):
|
1068 |
+
# We are on Unix, since Windows doesn't have this function
|
1069 |
+
monkeypatch.delattr(joblib._memmapping_reducer.os, 'statvfs')
|
1070 |
+
|
1071 |
+
pool_folder, shared_mem = _get_temp_dir(pool_folder_name, temp_folder=None)
|
1072 |
+
if sys.platform.startswith('win'):
|
1073 |
+
assert shared_mem is False
|
1074 |
+
assert pool_folder.endswith(pool_folder_name)
|
1075 |
+
|
1076 |
+
|
1077 |
+
@with_numpy
|
1078 |
+
@skipif(sys.platform == 'win32', reason='This test fails with a '
|
1079 |
+
'PermissionError on Windows')
|
1080 |
+
@parametrize("mmap_mode", ["r+", "w+"])
|
1081 |
+
def test_numpy_arrays_use_different_memory(mmap_mode):
|
1082 |
+
def func(arr, value):
|
1083 |
+
arr[:] = value
|
1084 |
+
return arr
|
1085 |
+
|
1086 |
+
arrays = [np.zeros((10, 10), dtype='float64') for i in range(10)]
|
1087 |
+
|
1088 |
+
results = Parallel(mmap_mode=mmap_mode, max_nbytes=0, n_jobs=2)(
|
1089 |
+
delayed(func)(arr, i) for i, arr in enumerate(arrays))
|
1090 |
+
|
1091 |
+
for i, arr in enumerate(results):
|
1092 |
+
np.testing.assert_array_equal(arr, i)
|
1093 |
+
|
1094 |
+
|
1095 |
+
@with_numpy
|
1096 |
+
def test_weak_array_key_map():
|
1097 |
+
|
1098 |
+
def assert_empty_after_gc_collect(container, retries=100):
|
1099 |
+
for i in range(retries):
|
1100 |
+
if len(container) == 0:
|
1101 |
+
return
|
1102 |
+
gc.collect()
|
1103 |
+
sleep(.1)
|
1104 |
+
assert len(container) == 0
|
1105 |
+
|
1106 |
+
a = np.ones(42)
|
1107 |
+
m = _WeakArrayKeyMap()
|
1108 |
+
m.set(a, 'a')
|
1109 |
+
assert m.get(a) == 'a'
|
1110 |
+
|
1111 |
+
b = a
|
1112 |
+
assert m.get(b) == 'a'
|
1113 |
+
m.set(b, 'b')
|
1114 |
+
assert m.get(a) == 'b'
|
1115 |
+
|
1116 |
+
del a
|
1117 |
+
gc.collect()
|
1118 |
+
assert len(m._data) == 1
|
1119 |
+
assert m.get(b) == 'b'
|
1120 |
+
|
1121 |
+
del b
|
1122 |
+
assert_empty_after_gc_collect(m._data)
|
1123 |
+
|
1124 |
+
c = np.ones(42)
|
1125 |
+
m.set(c, 'c')
|
1126 |
+
assert len(m._data) == 1
|
1127 |
+
assert m.get(c) == 'c'
|
1128 |
+
|
1129 |
+
with raises(KeyError):
|
1130 |
+
m.get(np.ones(42))
|
1131 |
+
|
1132 |
+
del c
|
1133 |
+
assert_empty_after_gc_collect(m._data)
|
1134 |
+
|
1135 |
+
# Check that creating and dropping numpy arrays with potentially the same
|
1136 |
+
# object id will not cause the map to get confused.
|
1137 |
+
def get_set_get_collect(m, i):
|
1138 |
+
a = np.ones(42)
|
1139 |
+
with raises(KeyError):
|
1140 |
+
m.get(a)
|
1141 |
+
m.set(a, i)
|
1142 |
+
assert m.get(a) == i
|
1143 |
+
return id(a)
|
1144 |
+
|
1145 |
+
unique_ids = set([get_set_get_collect(m, i) for i in range(1000)])
|
1146 |
+
if platform.python_implementation() == 'CPython':
|
1147 |
+
# On CPython (at least) the same id is often reused many times for the
|
1148 |
+
# temporary arrays created under the local scope of the
|
1149 |
+
# get_set_get_collect function without causing any spurious lookups /
|
1150 |
+
# insertions in the map. Apparently on Python nogil, the id is not
|
1151 |
+
# reused as often.
|
1152 |
+
max_len_unique_ids = 400 if getattr(sys.flags, 'nogil', False) else 100
|
1153 |
+
assert len(unique_ids) < max_len_unique_ids
|
1154 |
+
|
1155 |
+
|
1156 |
+
def test_weak_array_key_map_no_pickling():
|
1157 |
+
m = _WeakArrayKeyMap()
|
1158 |
+
with raises(pickle.PicklingError):
|
1159 |
+
pickle.dumps(m)
|
1160 |
+
|
1161 |
+
|
1162 |
+
@with_numpy
|
1163 |
+
@with_multiprocessing
|
1164 |
+
def test_direct_mmap(tmpdir):
|
1165 |
+
testfile = str(tmpdir.join('arr.dat'))
|
1166 |
+
a = np.arange(10, dtype='uint8')
|
1167 |
+
a.tofile(testfile)
|
1168 |
+
|
1169 |
+
def _read_array():
|
1170 |
+
with open(testfile) as fd:
|
1171 |
+
mm = mmap.mmap(fd.fileno(), 0, access=mmap.ACCESS_READ, offset=0)
|
1172 |
+
return np.ndarray((10,), dtype=np.uint8, buffer=mm, offset=0)
|
1173 |
+
|
1174 |
+
def func(x):
|
1175 |
+
return x**2
|
1176 |
+
|
1177 |
+
arr = _read_array()
|
1178 |
+
|
1179 |
+
# this is expected to work and gives the reference
|
1180 |
+
ref = Parallel(n_jobs=2)(delayed(func)(x) for x in [a])
|
1181 |
+
|
1182 |
+
# now test that it work with the mmap array
|
1183 |
+
results = Parallel(n_jobs=2)(delayed(func)(x) for x in [arr])
|
1184 |
+
np.testing.assert_array_equal(results, ref)
|
1185 |
+
|
1186 |
+
# also test with a mmap array read in the subprocess
|
1187 |
+
def worker():
|
1188 |
+
return _read_array()
|
1189 |
+
|
1190 |
+
results = Parallel(n_jobs=2)(delayed(worker)() for _ in range(1))
|
1191 |
+
np.testing.assert_array_equal(results[0], arr)
|
llmeval-env/lib/python3.10/site-packages/joblib/test/test_memory_async.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import gc
|
3 |
+
import shutil
|
4 |
+
|
5 |
+
import pytest
|
6 |
+
|
7 |
+
from joblib.memory import (AsyncMemorizedFunc, AsyncNotMemorizedFunc,
|
8 |
+
MemorizedResult, Memory, NotMemorizedResult)
|
9 |
+
from joblib.test.common import np, with_numpy
|
10 |
+
from joblib.testing import raises
|
11 |
+
|
12 |
+
from .test_memory import (corrupt_single_cache_item,
|
13 |
+
monkeypatch_cached_func_warn)
|
14 |
+
|
15 |
+
|
16 |
+
async def check_identity_lazy_async(func, accumulator, location):
|
17 |
+
""" Similar to check_identity_lazy_async for coroutine functions"""
|
18 |
+
memory = Memory(location=location, verbose=0)
|
19 |
+
func = memory.cache(func)
|
20 |
+
for i in range(3):
|
21 |
+
for _ in range(2):
|
22 |
+
value = await func(i)
|
23 |
+
assert value == i
|
24 |
+
assert len(accumulator) == i + 1
|
25 |
+
|
26 |
+
|
27 |
+
@pytest.mark.asyncio
|
28 |
+
async def test_memory_integration_async(tmpdir):
|
29 |
+
accumulator = list()
|
30 |
+
|
31 |
+
async def f(n):
|
32 |
+
await asyncio.sleep(0.1)
|
33 |
+
accumulator.append(1)
|
34 |
+
return n
|
35 |
+
|
36 |
+
await check_identity_lazy_async(f, accumulator, tmpdir.strpath)
|
37 |
+
|
38 |
+
# Now test clearing
|
39 |
+
for compress in (False, True):
|
40 |
+
for mmap_mode in ('r', None):
|
41 |
+
memory = Memory(location=tmpdir.strpath, verbose=10,
|
42 |
+
mmap_mode=mmap_mode, compress=compress)
|
43 |
+
# First clear the cache directory, to check that our code can
|
44 |
+
# handle that
|
45 |
+
# NOTE: this line would raise an exception, as the database
|
46 |
+
# file is still open; we ignore the error since we want to
|
47 |
+
# test what happens if the directory disappears
|
48 |
+
shutil.rmtree(tmpdir.strpath, ignore_errors=True)
|
49 |
+
g = memory.cache(f)
|
50 |
+
await g(1)
|
51 |
+
g.clear(warn=False)
|
52 |
+
current_accumulator = len(accumulator)
|
53 |
+
out = await g(1)
|
54 |
+
|
55 |
+
assert len(accumulator) == current_accumulator + 1
|
56 |
+
# Also, check that Memory.eval works similarly
|
57 |
+
evaled = await memory.eval(f, 1)
|
58 |
+
assert evaled == out
|
59 |
+
assert len(accumulator) == current_accumulator + 1
|
60 |
+
|
61 |
+
# Now do a smoke test with a function defined in __main__, as the name
|
62 |
+
# mangling rules are more complex
|
63 |
+
f.__module__ = '__main__'
|
64 |
+
memory = Memory(location=tmpdir.strpath, verbose=0)
|
65 |
+
await memory.cache(f)(1)
|
66 |
+
|
67 |
+
|
68 |
+
@pytest.mark.asyncio
|
69 |
+
async def test_no_memory_async():
|
70 |
+
accumulator = list()
|
71 |
+
|
72 |
+
async def ff(x):
|
73 |
+
await asyncio.sleep(0.1)
|
74 |
+
accumulator.append(1)
|
75 |
+
return x
|
76 |
+
|
77 |
+
memory = Memory(location=None, verbose=0)
|
78 |
+
gg = memory.cache(ff)
|
79 |
+
for _ in range(4):
|
80 |
+
current_accumulator = len(accumulator)
|
81 |
+
await gg(1)
|
82 |
+
assert len(accumulator) == current_accumulator + 1
|
83 |
+
|
84 |
+
|
85 |
+
@with_numpy
|
86 |
+
@pytest.mark.asyncio
|
87 |
+
async def test_memory_numpy_check_mmap_mode_async(tmpdir, monkeypatch):
|
88 |
+
"""Check that mmap_mode is respected even at the first call"""
|
89 |
+
|
90 |
+
memory = Memory(location=tmpdir.strpath, mmap_mode='r', verbose=0)
|
91 |
+
|
92 |
+
@memory.cache()
|
93 |
+
async def twice(a):
|
94 |
+
return a * 2
|
95 |
+
|
96 |
+
a = np.ones(3)
|
97 |
+
b = await twice(a)
|
98 |
+
c = await twice(a)
|
99 |
+
|
100 |
+
assert isinstance(c, np.memmap)
|
101 |
+
assert c.mode == 'r'
|
102 |
+
|
103 |
+
assert isinstance(b, np.memmap)
|
104 |
+
assert b.mode == 'r'
|
105 |
+
|
106 |
+
# Corrupts the file, Deleting b and c mmaps
|
107 |
+
# is necessary to be able edit the file
|
108 |
+
del b
|
109 |
+
del c
|
110 |
+
gc.collect()
|
111 |
+
corrupt_single_cache_item(memory)
|
112 |
+
|
113 |
+
# Make sure that corrupting the file causes recomputation and that
|
114 |
+
# a warning is issued.
|
115 |
+
recorded_warnings = monkeypatch_cached_func_warn(twice, monkeypatch)
|
116 |
+
d = await twice(a)
|
117 |
+
assert len(recorded_warnings) == 1
|
118 |
+
exception_msg = 'Exception while loading results'
|
119 |
+
assert exception_msg in recorded_warnings[0]
|
120 |
+
# Asserts that the recomputation returns a mmap
|
121 |
+
assert isinstance(d, np.memmap)
|
122 |
+
assert d.mode == 'r'
|
123 |
+
|
124 |
+
|
125 |
+
@pytest.mark.asyncio
|
126 |
+
async def test_call_and_shelve_async(tmpdir):
|
127 |
+
async def f(x, y=1):
|
128 |
+
await asyncio.sleep(0.1)
|
129 |
+
return x ** 2 + y
|
130 |
+
|
131 |
+
# Test MemorizedFunc outputting a reference to cache.
|
132 |
+
for func, Result in zip((AsyncMemorizedFunc(f, tmpdir.strpath),
|
133 |
+
AsyncNotMemorizedFunc(f),
|
134 |
+
Memory(location=tmpdir.strpath,
|
135 |
+
verbose=0).cache(f),
|
136 |
+
Memory(location=None).cache(f),
|
137 |
+
),
|
138 |
+
(MemorizedResult, NotMemorizedResult,
|
139 |
+
MemorizedResult, NotMemorizedResult,
|
140 |
+
)):
|
141 |
+
for _ in range(2):
|
142 |
+
result = await func.call_and_shelve(2)
|
143 |
+
assert isinstance(result, Result)
|
144 |
+
assert result.get() == 5
|
145 |
+
|
146 |
+
result.clear()
|
147 |
+
with raises(KeyError):
|
148 |
+
result.get()
|
149 |
+
result.clear() # Do nothing if there is no cache.
|
150 |
+
|
151 |
+
|
152 |
+
@pytest.mark.asyncio
|
153 |
+
async def test_memorized_func_call_async(memory):
|
154 |
+
|
155 |
+
async def ff(x, counter):
|
156 |
+
await asyncio.sleep(0.1)
|
157 |
+
counter[x] = counter.get(x, 0) + 1
|
158 |
+
return counter[x]
|
159 |
+
|
160 |
+
gg = memory.cache(ff, ignore=['counter'])
|
161 |
+
|
162 |
+
counter = {}
|
163 |
+
assert await gg(2, counter) == 1
|
164 |
+
assert await gg(2, counter) == 1
|
165 |
+
|
166 |
+
x, meta = await gg.call(2, counter)
|
167 |
+
assert x == 2, "f has not been called properly"
|
168 |
+
assert isinstance(meta, dict), (
|
169 |
+
"Metadata are not returned by MemorizedFunc.call."
|
170 |
+
)
|
llmeval-env/lib/python3.10/site-packages/joblib/test/test_missing_multiprocessing.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Pyodide and other single-threaded Python builds will be missing the
|
3 |
+
_multiprocessing module. Test that joblib still works in this environment.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import os
|
7 |
+
import subprocess
|
8 |
+
import sys
|
9 |
+
|
10 |
+
|
11 |
+
def test_missing_multiprocessing(tmp_path):
|
12 |
+
"""
|
13 |
+
Test that import joblib works even if _multiprocessing is missing.
|
14 |
+
|
15 |
+
pytest has already imported everything from joblib. The most reasonable way
|
16 |
+
to test importing joblib with modified environment is to invoke a separate
|
17 |
+
Python process. This also ensures that we don't break other tests by
|
18 |
+
importing a bad `_multiprocessing` module.
|
19 |
+
"""
|
20 |
+
(tmp_path / "_multiprocessing.py").write_text(
|
21 |
+
'raise ImportError("No _multiprocessing module!")'
|
22 |
+
)
|
23 |
+
env = dict(os.environ)
|
24 |
+
# For subprocess, use current sys.path with our custom version of
|
25 |
+
# multiprocessing inserted.
|
26 |
+
env["PYTHONPATH"] = ":".join([str(tmp_path)] + sys.path)
|
27 |
+
subprocess.check_call(
|
28 |
+
[sys.executable, "-c",
|
29 |
+
"import joblib, math; "
|
30 |
+
"joblib.Parallel(n_jobs=1)("
|
31 |
+
"joblib.delayed(math.sqrt)(i**2) for i in range(10))"
|
32 |
+
], env=env)
|
llmeval-env/lib/python3.10/site-packages/joblib/test/test_module.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import joblib
|
3 |
+
from joblib.testing import check_subprocess_call
|
4 |
+
from joblib.test.common import with_multiprocessing
|
5 |
+
|
6 |
+
|
7 |
+
def test_version():
|
8 |
+
assert hasattr(joblib, '__version__'), (
|
9 |
+
"There are no __version__ argument on the joblib module")
|
10 |
+
|
11 |
+
|
12 |
+
@with_multiprocessing
|
13 |
+
def test_no_start_method_side_effect_on_import():
|
14 |
+
# check that importing joblib does not implicitly set the global
|
15 |
+
# start_method for multiprocessing.
|
16 |
+
code = """if True:
|
17 |
+
import joblib
|
18 |
+
import multiprocessing as mp
|
19 |
+
# The following line would raise RuntimeError if the
|
20 |
+
# start_method is already set.
|
21 |
+
mp.set_start_method("loky")
|
22 |
+
"""
|
23 |
+
check_subprocess_call([sys.executable, '-c', code])
|
24 |
+
|
25 |
+
|
26 |
+
@with_multiprocessing
|
27 |
+
def test_no_semaphore_tracker_on_import():
|
28 |
+
# check that importing joblib does not implicitly spawn a resource tracker
|
29 |
+
# or a semaphore tracker
|
30 |
+
code = """if True:
|
31 |
+
import joblib
|
32 |
+
from multiprocessing import semaphore_tracker
|
33 |
+
# The following line would raise RuntimeError if the
|
34 |
+
# start_method is already set.
|
35 |
+
msg = "multiprocessing.semaphore_tracker has been spawned on import"
|
36 |
+
assert semaphore_tracker._semaphore_tracker._fd is None, msg"""
|
37 |
+
if sys.version_info >= (3, 8):
|
38 |
+
# semaphore_tracker was renamed in Python 3.8:
|
39 |
+
code = code.replace("semaphore_tracker", "resource_tracker")
|
40 |
+
check_subprocess_call([sys.executable, '-c', code])
|
41 |
+
|
42 |
+
|
43 |
+
@with_multiprocessing
|
44 |
+
def test_no_resource_tracker_on_import():
|
45 |
+
code = """if True:
|
46 |
+
import joblib
|
47 |
+
from joblib.externals.loky.backend import resource_tracker
|
48 |
+
# The following line would raise RuntimeError if the
|
49 |
+
# start_method is already set.
|
50 |
+
msg = "loky.resource_tracker has been spawned on import"
|
51 |
+
assert resource_tracker._resource_tracker._fd is None, msg
|
52 |
+
"""
|
53 |
+
check_subprocess_call([sys.executable, '-c', code])
|
llmeval-env/lib/python3.10/site-packages/joblib/test/test_numpy_pickle_utils.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from joblib.compressor import BinaryZlibFile
|
2 |
+
from joblib.testing import parametrize
|
3 |
+
|
4 |
+
|
5 |
+
@parametrize('filename', ['test', u'test']) # testing str and unicode names
|
6 |
+
def test_binary_zlib_file(tmpdir, filename):
|
7 |
+
"""Testing creation of files depending on the type of the filenames."""
|
8 |
+
binary_file = BinaryZlibFile(tmpdir.join(filename).strpath, mode='wb')
|
9 |
+
binary_file.close()
|
llmeval-env/lib/python3.10/site-packages/joblib/test/test_parallel.py
ADDED
@@ -0,0 +1,2056 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Test the parallel module.
|
3 |
+
"""
|
4 |
+
|
5 |
+
# Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org>
|
6 |
+
# Copyright (c) 2010-2011 Gael Varoquaux
|
7 |
+
# License: BSD Style, 3 clauses.
|
8 |
+
|
9 |
+
import os
|
10 |
+
import sys
|
11 |
+
import time
|
12 |
+
import mmap
|
13 |
+
import weakref
|
14 |
+
import warnings
|
15 |
+
import threading
|
16 |
+
from traceback import format_exception
|
17 |
+
from math import sqrt
|
18 |
+
from time import sleep
|
19 |
+
from pickle import PicklingError
|
20 |
+
from contextlib import nullcontext
|
21 |
+
from multiprocessing import TimeoutError
|
22 |
+
import pytest
|
23 |
+
|
24 |
+
import joblib
|
25 |
+
from joblib import parallel
|
26 |
+
from joblib import dump, load
|
27 |
+
|
28 |
+
from joblib._multiprocessing_helpers import mp
|
29 |
+
|
30 |
+
from joblib.test.common import np, with_numpy
|
31 |
+
from joblib.test.common import with_multiprocessing
|
32 |
+
from joblib.test.common import IS_PYPY, force_gc_pypy
|
33 |
+
from joblib.testing import (parametrize, raises, check_subprocess_call,
|
34 |
+
skipif, warns)
|
35 |
+
|
36 |
+
if mp is not None:
|
37 |
+
# Loky is not available if multiprocessing is not
|
38 |
+
from joblib.externals.loky import get_reusable_executor
|
39 |
+
|
40 |
+
from queue import Queue
|
41 |
+
|
42 |
+
try:
|
43 |
+
import posix
|
44 |
+
except ImportError:
|
45 |
+
posix = None
|
46 |
+
|
47 |
+
try:
|
48 |
+
from ._openmp_test_helper.parallel_sum import parallel_sum
|
49 |
+
except ImportError:
|
50 |
+
parallel_sum = None
|
51 |
+
|
52 |
+
try:
|
53 |
+
import distributed
|
54 |
+
except ImportError:
|
55 |
+
distributed = None
|
56 |
+
|
57 |
+
from joblib._parallel_backends import SequentialBackend
|
58 |
+
from joblib._parallel_backends import ThreadingBackend
|
59 |
+
from joblib._parallel_backends import MultiprocessingBackend
|
60 |
+
from joblib._parallel_backends import ParallelBackendBase
|
61 |
+
from joblib._parallel_backends import LokyBackend
|
62 |
+
|
63 |
+
from joblib.parallel import Parallel, delayed
|
64 |
+
from joblib.parallel import parallel_config
|
65 |
+
from joblib.parallel import parallel_backend
|
66 |
+
from joblib.parallel import register_parallel_backend
|
67 |
+
from joblib.parallel import effective_n_jobs, cpu_count
|
68 |
+
|
69 |
+
from joblib.parallel import mp, BACKENDS, DEFAULT_BACKEND
|
70 |
+
|
71 |
+
|
72 |
+
RETURN_GENERATOR_BACKENDS = BACKENDS.copy()
|
73 |
+
RETURN_GENERATOR_BACKENDS.pop("multiprocessing", None)
|
74 |
+
|
75 |
+
ALL_VALID_BACKENDS = [None] + sorted(BACKENDS.keys())
|
76 |
+
# Add instances of backend classes deriving from ParallelBackendBase
|
77 |
+
ALL_VALID_BACKENDS += [BACKENDS[backend_str]() for backend_str in BACKENDS]
|
78 |
+
if mp is None:
|
79 |
+
PROCESS_BACKENDS = []
|
80 |
+
else:
|
81 |
+
PROCESS_BACKENDS = ['multiprocessing', 'loky']
|
82 |
+
PARALLEL_BACKENDS = PROCESS_BACKENDS + ['threading']
|
83 |
+
|
84 |
+
if hasattr(mp, 'get_context'):
|
85 |
+
# Custom multiprocessing context in Python 3.4+
|
86 |
+
ALL_VALID_BACKENDS.append(mp.get_context('spawn'))
|
87 |
+
|
88 |
+
DefaultBackend = BACKENDS[DEFAULT_BACKEND]
|
89 |
+
|
90 |
+
|
91 |
+
def get_workers(backend):
|
92 |
+
return getattr(backend, '_pool', getattr(backend, '_workers', None))
|
93 |
+
|
94 |
+
|
95 |
+
def division(x, y):
|
96 |
+
return x / y
|
97 |
+
|
98 |
+
|
99 |
+
def square(x):
|
100 |
+
return x ** 2
|
101 |
+
|
102 |
+
|
103 |
+
class MyExceptionWithFinickyInit(Exception):
|
104 |
+
"""An exception class with non trivial __init__
|
105 |
+
"""
|
106 |
+
def __init__(self, a, b, c, d):
|
107 |
+
pass
|
108 |
+
|
109 |
+
|
110 |
+
def exception_raiser(x, custom_exception=False):
|
111 |
+
if x == 7:
|
112 |
+
raise (MyExceptionWithFinickyInit('a', 'b', 'c', 'd')
|
113 |
+
if custom_exception else ValueError)
|
114 |
+
return x
|
115 |
+
|
116 |
+
|
117 |
+
def interrupt_raiser(x):
|
118 |
+
time.sleep(.05)
|
119 |
+
raise KeyboardInterrupt
|
120 |
+
|
121 |
+
|
122 |
+
def f(x, y=0, z=0):
|
123 |
+
""" A module-level function so that it can be spawn with
|
124 |
+
multiprocessing.
|
125 |
+
"""
|
126 |
+
return x ** 2 + y + z
|
127 |
+
|
128 |
+
|
129 |
+
def _active_backend_type():
|
130 |
+
return type(parallel.get_active_backend()[0])
|
131 |
+
|
132 |
+
|
133 |
+
def parallel_func(inner_n_jobs, backend):
|
134 |
+
return Parallel(n_jobs=inner_n_jobs, backend=backend)(
|
135 |
+
delayed(square)(i) for i in range(3))
|
136 |
+
|
137 |
+
|
138 |
+
###############################################################################
|
139 |
+
def test_cpu_count():
|
140 |
+
assert cpu_count() > 0
|
141 |
+
|
142 |
+
|
143 |
+
def test_effective_n_jobs():
|
144 |
+
assert effective_n_jobs() > 0
|
145 |
+
|
146 |
+
|
147 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
148 |
+
@pytest.mark.parametrize(
|
149 |
+
"backend_n_jobs, expected_n_jobs",
|
150 |
+
[(3, 3), (-1, effective_n_jobs(n_jobs=-1)), (None, 1)],
|
151 |
+
ids=["positive-int", "negative-int", "None"]
|
152 |
+
)
|
153 |
+
@with_multiprocessing
|
154 |
+
def test_effective_n_jobs_None(context, backend_n_jobs, expected_n_jobs):
|
155 |
+
# check the number of effective jobs when `n_jobs=None`
|
156 |
+
# non-regression test for https://github.com/joblib/joblib/issues/984
|
157 |
+
with context("threading", n_jobs=backend_n_jobs):
|
158 |
+
# when using a backend, the default of number jobs will be the one set
|
159 |
+
# in the backend
|
160 |
+
assert effective_n_jobs(n_jobs=None) == expected_n_jobs
|
161 |
+
# without any backend, None will default to a single job
|
162 |
+
assert effective_n_jobs(n_jobs=None) == 1
|
163 |
+
|
164 |
+
|
165 |
+
###############################################################################
|
166 |
+
# Test parallel
|
167 |
+
|
168 |
+
@parametrize('backend', ALL_VALID_BACKENDS)
|
169 |
+
@parametrize('n_jobs', [1, 2, -1, -2])
|
170 |
+
@parametrize('verbose', [2, 11, 100])
|
171 |
+
def test_simple_parallel(backend, n_jobs, verbose):
|
172 |
+
assert ([square(x) for x in range(5)] ==
|
173 |
+
Parallel(n_jobs=n_jobs, backend=backend,
|
174 |
+
verbose=verbose)(
|
175 |
+
delayed(square)(x) for x in range(5)))
|
176 |
+
|
177 |
+
|
178 |
+
@parametrize('backend', ALL_VALID_BACKENDS)
|
179 |
+
def test_main_thread_renamed_no_warning(backend, monkeypatch):
|
180 |
+
# Check that no default backend relies on the name of the main thread:
|
181 |
+
# https://github.com/joblib/joblib/issues/180#issuecomment-253266247
|
182 |
+
# Some programs use a different name for the main thread. This is the case
|
183 |
+
# for uWSGI apps for instance.
|
184 |
+
monkeypatch.setattr(target=threading.current_thread(), name='name',
|
185 |
+
value='some_new_name_for_the_main_thread')
|
186 |
+
|
187 |
+
with warnings.catch_warnings(record=True) as warninfo:
|
188 |
+
results = Parallel(n_jobs=2, backend=backend)(
|
189 |
+
delayed(square)(x) for x in range(3))
|
190 |
+
assert results == [0, 1, 4]
|
191 |
+
|
192 |
+
# Due to the default parameters of LokyBackend, there is a chance that
|
193 |
+
# warninfo catches Warnings from worker timeouts. We remove it if it exists
|
194 |
+
warninfo = [w for w in warninfo if "worker timeout" not in str(w.message)]
|
195 |
+
|
196 |
+
# The multiprocessing backend will raise a warning when detecting that is
|
197 |
+
# started from the non-main thread. Let's check that there is no false
|
198 |
+
# positive because of the name change.
|
199 |
+
assert len(warninfo) == 0
|
200 |
+
|
201 |
+
|
202 |
+
def _assert_warning_nested(backend, inner_n_jobs, expected):
|
203 |
+
with warnings.catch_warnings(record=True) as warninfo:
|
204 |
+
warnings.simplefilter("always")
|
205 |
+
parallel_func(backend=backend, inner_n_jobs=inner_n_jobs)
|
206 |
+
|
207 |
+
warninfo = [w.message for w in warninfo]
|
208 |
+
if expected:
|
209 |
+
if warninfo:
|
210 |
+
warnings_are_correct = all(
|
211 |
+
'backed parallel loops cannot' in each.args[0]
|
212 |
+
for each in warninfo
|
213 |
+
)
|
214 |
+
# With Python nogil, when the outer backend is threading, we might
|
215 |
+
# see more that one warning
|
216 |
+
warnings_have_the_right_length = (
|
217 |
+
len(warninfo) >= 1 if getattr(sys.flags, 'nogil', False)
|
218 |
+
else len(warninfo) == 1)
|
219 |
+
return warnings_are_correct and warnings_have_the_right_length
|
220 |
+
|
221 |
+
return False
|
222 |
+
else:
|
223 |
+
assert not warninfo
|
224 |
+
return True
|
225 |
+
|
226 |
+
|
227 |
+
@with_multiprocessing
|
228 |
+
@parametrize('parent_backend,child_backend,expected', [
|
229 |
+
('loky', 'multiprocessing', True),
|
230 |
+
('loky', 'loky', False),
|
231 |
+
('multiprocessing', 'multiprocessing', True),
|
232 |
+
('multiprocessing', 'loky', True),
|
233 |
+
('threading', 'multiprocessing', True),
|
234 |
+
('threading', 'loky', True),
|
235 |
+
])
|
236 |
+
def test_nested_parallel_warnings(parent_backend, child_backend, expected):
|
237 |
+
|
238 |
+
# no warnings if inner_n_jobs=1
|
239 |
+
Parallel(n_jobs=2, backend=parent_backend)(
|
240 |
+
delayed(_assert_warning_nested)(
|
241 |
+
backend=child_backend, inner_n_jobs=1,
|
242 |
+
expected=False)
|
243 |
+
for _ in range(5))
|
244 |
+
|
245 |
+
# warnings if inner_n_jobs != 1 and expected
|
246 |
+
res = Parallel(n_jobs=2, backend=parent_backend)(
|
247 |
+
delayed(_assert_warning_nested)(
|
248 |
+
backend=child_backend, inner_n_jobs=2,
|
249 |
+
expected=expected)
|
250 |
+
for _ in range(5))
|
251 |
+
|
252 |
+
# warning handling is not thread safe. One thread might see multiple
|
253 |
+
# warning or no warning at all.
|
254 |
+
if parent_backend == "threading":
|
255 |
+
if IS_PYPY and not any(res):
|
256 |
+
# Related to joblib#1426, should be removed once it is solved.
|
257 |
+
pytest.xfail(reason="This test often fails in PyPy.")
|
258 |
+
assert any(res)
|
259 |
+
else:
|
260 |
+
assert all(res)
|
261 |
+
|
262 |
+
|
263 |
+
@with_multiprocessing
|
264 |
+
@parametrize('backend', ['loky', 'multiprocessing', 'threading'])
|
265 |
+
def test_background_thread_parallelism(backend):
|
266 |
+
is_run_parallel = [False]
|
267 |
+
|
268 |
+
def background_thread(is_run_parallel):
|
269 |
+
with warnings.catch_warnings(record=True) as warninfo:
|
270 |
+
Parallel(n_jobs=2)(
|
271 |
+
delayed(sleep)(.1) for _ in range(4))
|
272 |
+
print(len(warninfo))
|
273 |
+
is_run_parallel[0] = len(warninfo) == 0
|
274 |
+
|
275 |
+
t = threading.Thread(target=background_thread, args=(is_run_parallel,))
|
276 |
+
t.start()
|
277 |
+
t.join()
|
278 |
+
assert is_run_parallel[0]
|
279 |
+
|
280 |
+
|
281 |
+
def nested_loop(backend):
|
282 |
+
Parallel(n_jobs=2, backend=backend)(
|
283 |
+
delayed(square)(.01) for _ in range(2))
|
284 |
+
|
285 |
+
|
286 |
+
@parametrize('child_backend', BACKENDS)
|
287 |
+
@parametrize('parent_backend', BACKENDS)
|
288 |
+
def test_nested_loop(parent_backend, child_backend):
|
289 |
+
Parallel(n_jobs=2, backend=parent_backend)(
|
290 |
+
delayed(nested_loop)(child_backend) for _ in range(2))
|
291 |
+
|
292 |
+
|
293 |
+
def raise_exception(backend):
|
294 |
+
raise ValueError
|
295 |
+
|
296 |
+
|
297 |
+
@with_multiprocessing
|
298 |
+
def test_nested_loop_with_exception_with_loky():
|
299 |
+
with raises(ValueError):
|
300 |
+
with Parallel(n_jobs=2, backend="loky") as parallel:
|
301 |
+
parallel([delayed(nested_loop)("loky"),
|
302 |
+
delayed(raise_exception)("loky")])
|
303 |
+
|
304 |
+
|
305 |
+
def test_mutate_input_with_threads():
|
306 |
+
"""Input is mutable when using the threading backend"""
|
307 |
+
q = Queue(maxsize=5)
|
308 |
+
Parallel(n_jobs=2, backend="threading")(
|
309 |
+
delayed(q.put)(1) for _ in range(5))
|
310 |
+
assert q.full()
|
311 |
+
|
312 |
+
|
313 |
+
@parametrize('n_jobs', [1, 2, 3])
|
314 |
+
def test_parallel_kwargs(n_jobs):
|
315 |
+
"""Check the keyword argument processing of pmap."""
|
316 |
+
lst = range(10)
|
317 |
+
assert ([f(x, y=1) for x in lst] ==
|
318 |
+
Parallel(n_jobs=n_jobs)(delayed(f)(x, y=1) for x in lst))
|
319 |
+
|
320 |
+
|
321 |
+
@parametrize('backend', PARALLEL_BACKENDS)
|
322 |
+
def test_parallel_as_context_manager(backend):
|
323 |
+
lst = range(10)
|
324 |
+
expected = [f(x, y=1) for x in lst]
|
325 |
+
|
326 |
+
with Parallel(n_jobs=4, backend=backend) as p:
|
327 |
+
# Internally a pool instance has been eagerly created and is managed
|
328 |
+
# via the context manager protocol
|
329 |
+
managed_backend = p._backend
|
330 |
+
|
331 |
+
# We make call with the managed parallel object several times inside
|
332 |
+
# the managed block:
|
333 |
+
assert expected == p(delayed(f)(x, y=1) for x in lst)
|
334 |
+
assert expected == p(delayed(f)(x, y=1) for x in lst)
|
335 |
+
|
336 |
+
# Those calls have all used the same pool instance:
|
337 |
+
if mp is not None:
|
338 |
+
assert get_workers(managed_backend) is get_workers(p._backend)
|
339 |
+
|
340 |
+
# As soon as we exit the context manager block, the pool is terminated and
|
341 |
+
# no longer referenced from the parallel object:
|
342 |
+
if mp is not None:
|
343 |
+
assert get_workers(p._backend) is None
|
344 |
+
|
345 |
+
# It's still possible to use the parallel instance in non-managed mode:
|
346 |
+
assert expected == p(delayed(f)(x, y=1) for x in lst)
|
347 |
+
if mp is not None:
|
348 |
+
assert get_workers(p._backend) is None
|
349 |
+
|
350 |
+
|
351 |
+
@with_multiprocessing
|
352 |
+
def test_parallel_pickling():
|
353 |
+
""" Check that pmap captures the errors when it is passed an object
|
354 |
+
that cannot be pickled.
|
355 |
+
"""
|
356 |
+
class UnpicklableObject(object):
|
357 |
+
def __reduce__(self):
|
358 |
+
raise RuntimeError('123')
|
359 |
+
|
360 |
+
with raises(PicklingError, match=r"the task to send"):
|
361 |
+
Parallel(n_jobs=2, backend='loky')(delayed(id)(
|
362 |
+
UnpicklableObject()) for _ in range(10))
|
363 |
+
|
364 |
+
|
365 |
+
@with_numpy
|
366 |
+
@with_multiprocessing
|
367 |
+
@parametrize('byteorder', ['<', '>', '='])
|
368 |
+
def test_parallel_byteorder_corruption(byteorder):
|
369 |
+
|
370 |
+
def inspect_byteorder(x):
|
371 |
+
return x, x.dtype.byteorder
|
372 |
+
|
373 |
+
x = np.arange(6).reshape((2, 3)).view(f'{byteorder}i4')
|
374 |
+
|
375 |
+
initial_np_byteorder = x.dtype.byteorder
|
376 |
+
|
377 |
+
result = Parallel(n_jobs=2, backend='loky')(
|
378 |
+
delayed(inspect_byteorder)(x) for _ in range(3)
|
379 |
+
)
|
380 |
+
|
381 |
+
for x_returned, byteorder_in_worker in result:
|
382 |
+
assert byteorder_in_worker == initial_np_byteorder
|
383 |
+
assert byteorder_in_worker == x_returned.dtype.byteorder
|
384 |
+
np.testing.assert_array_equal(x, x_returned)
|
385 |
+
|
386 |
+
|
387 |
+
@parametrize('backend', PARALLEL_BACKENDS)
|
388 |
+
def test_parallel_timeout_success(backend):
|
389 |
+
# Check that timeout isn't thrown when function is fast enough
|
390 |
+
assert len(Parallel(n_jobs=2, backend=backend, timeout=30)(
|
391 |
+
delayed(sleep)(0.001) for x in range(10))) == 10
|
392 |
+
|
393 |
+
|
394 |
+
@with_multiprocessing
|
395 |
+
@parametrize('backend', PARALLEL_BACKENDS)
|
396 |
+
def test_parallel_timeout_fail(backend):
|
397 |
+
# Check that timeout properly fails when function is too slow
|
398 |
+
with raises(TimeoutError):
|
399 |
+
Parallel(n_jobs=2, backend=backend, timeout=0.01)(
|
400 |
+
delayed(sleep)(10) for x in range(10))
|
401 |
+
|
402 |
+
|
403 |
+
@with_multiprocessing
|
404 |
+
@parametrize('backend', PROCESS_BACKENDS)
|
405 |
+
def test_error_capture(backend):
|
406 |
+
# Check that error are captured, and that correct exceptions
|
407 |
+
# are raised.
|
408 |
+
if mp is not None:
|
409 |
+
with raises(ZeroDivisionError):
|
410 |
+
Parallel(n_jobs=2, backend=backend)(
|
411 |
+
[delayed(division)(x, y)
|
412 |
+
for x, y in zip((0, 1), (1, 0))])
|
413 |
+
|
414 |
+
with raises(KeyboardInterrupt):
|
415 |
+
Parallel(n_jobs=2, backend=backend)(
|
416 |
+
[delayed(interrupt_raiser)(x) for x in (1, 0)])
|
417 |
+
|
418 |
+
# Try again with the context manager API
|
419 |
+
with Parallel(n_jobs=2, backend=backend) as parallel:
|
420 |
+
assert get_workers(parallel._backend) is not None
|
421 |
+
original_workers = get_workers(parallel._backend)
|
422 |
+
|
423 |
+
with raises(ZeroDivisionError):
|
424 |
+
parallel([delayed(division)(x, y)
|
425 |
+
for x, y in zip((0, 1), (1, 0))])
|
426 |
+
|
427 |
+
# The managed pool should still be available and be in a working
|
428 |
+
# state despite the previously raised (and caught) exception
|
429 |
+
assert get_workers(parallel._backend) is not None
|
430 |
+
|
431 |
+
# The pool should have been interrupted and restarted:
|
432 |
+
assert get_workers(parallel._backend) is not original_workers
|
433 |
+
|
434 |
+
assert ([f(x, y=1) for x in range(10)] ==
|
435 |
+
parallel(delayed(f)(x, y=1) for x in range(10)))
|
436 |
+
|
437 |
+
original_workers = get_workers(parallel._backend)
|
438 |
+
with raises(KeyboardInterrupt):
|
439 |
+
parallel([delayed(interrupt_raiser)(x) for x in (1, 0)])
|
440 |
+
|
441 |
+
# The pool should still be available despite the exception
|
442 |
+
assert get_workers(parallel._backend) is not None
|
443 |
+
|
444 |
+
# The pool should have been interrupted and restarted:
|
445 |
+
assert get_workers(parallel._backend) is not original_workers
|
446 |
+
|
447 |
+
assert ([f(x, y=1) for x in range(10)] ==
|
448 |
+
parallel(delayed(f)(x, y=1) for x in range(10))), (
|
449 |
+
parallel._iterating, parallel.n_completed_tasks,
|
450 |
+
parallel.n_dispatched_tasks, parallel._aborting
|
451 |
+
)
|
452 |
+
|
453 |
+
# Check that the inner pool has been terminated when exiting the
|
454 |
+
# context manager
|
455 |
+
assert get_workers(parallel._backend) is None
|
456 |
+
else:
|
457 |
+
with raises(KeyboardInterrupt):
|
458 |
+
Parallel(n_jobs=2)(
|
459 |
+
[delayed(interrupt_raiser)(x) for x in (1, 0)])
|
460 |
+
|
461 |
+
# wrapped exceptions should inherit from the class of the original
|
462 |
+
# exception to make it easy to catch them
|
463 |
+
with raises(ZeroDivisionError):
|
464 |
+
Parallel(n_jobs=2)(
|
465 |
+
[delayed(division)(x, y) for x, y in zip((0, 1), (1, 0))])
|
466 |
+
|
467 |
+
with raises(MyExceptionWithFinickyInit):
|
468 |
+
Parallel(n_jobs=2, verbose=0)(
|
469 |
+
(delayed(exception_raiser)(i, custom_exception=True)
|
470 |
+
for i in range(30)))
|
471 |
+
|
472 |
+
|
473 |
+
@with_multiprocessing
|
474 |
+
@parametrize('backend', BACKENDS)
|
475 |
+
def test_error_in_task_iterator(backend):
|
476 |
+
|
477 |
+
def my_generator(raise_at=0):
|
478 |
+
for i in range(20):
|
479 |
+
if i == raise_at:
|
480 |
+
raise ValueError("Iterator Raising Error")
|
481 |
+
yield i
|
482 |
+
|
483 |
+
with Parallel(n_jobs=2, backend=backend) as p:
|
484 |
+
# The error is raised in the pre-dispatch phase
|
485 |
+
with raises(ValueError, match="Iterator Raising Error"):
|
486 |
+
p(delayed(square)(i) for i in my_generator(raise_at=0))
|
487 |
+
|
488 |
+
# The error is raised when dispatching a new task after the
|
489 |
+
# pre-dispatch (likely to happen in a different thread)
|
490 |
+
with raises(ValueError, match="Iterator Raising Error"):
|
491 |
+
p(delayed(square)(i) for i in my_generator(raise_at=5))
|
492 |
+
|
493 |
+
# Same, but raises long after the pre-dispatch phase
|
494 |
+
with raises(ValueError, match="Iterator Raising Error"):
|
495 |
+
p(delayed(square)(i) for i in my_generator(raise_at=19))
|
496 |
+
|
497 |
+
|
498 |
+
def consumer(queue, item):
|
499 |
+
queue.append('Consumed %s' % item)
|
500 |
+
|
501 |
+
|
502 |
+
@parametrize('backend', BACKENDS)
|
503 |
+
@parametrize('batch_size, expected_queue',
|
504 |
+
[(1, ['Produced 0', 'Consumed 0',
|
505 |
+
'Produced 1', 'Consumed 1',
|
506 |
+
'Produced 2', 'Consumed 2',
|
507 |
+
'Produced 3', 'Consumed 3',
|
508 |
+
'Produced 4', 'Consumed 4',
|
509 |
+
'Produced 5', 'Consumed 5']),
|
510 |
+
(4, [ # First Batch
|
511 |
+
'Produced 0', 'Produced 1', 'Produced 2', 'Produced 3',
|
512 |
+
'Consumed 0', 'Consumed 1', 'Consumed 2', 'Consumed 3',
|
513 |
+
# Second batch
|
514 |
+
'Produced 4', 'Produced 5', 'Consumed 4', 'Consumed 5'])])
|
515 |
+
def test_dispatch_one_job(backend, batch_size, expected_queue):
|
516 |
+
""" Test that with only one job, Parallel does act as a iterator.
|
517 |
+
"""
|
518 |
+
queue = list()
|
519 |
+
|
520 |
+
def producer():
|
521 |
+
for i in range(6):
|
522 |
+
queue.append('Produced %i' % i)
|
523 |
+
yield i
|
524 |
+
|
525 |
+
Parallel(n_jobs=1, batch_size=batch_size, backend=backend)(
|
526 |
+
delayed(consumer)(queue, x) for x in producer())
|
527 |
+
assert queue == expected_queue
|
528 |
+
assert len(queue) == 12
|
529 |
+
|
530 |
+
|
531 |
+
@with_multiprocessing
|
532 |
+
@parametrize('backend', PARALLEL_BACKENDS)
|
533 |
+
def test_dispatch_multiprocessing(backend):
|
534 |
+
""" Check that using pre_dispatch Parallel does indeed dispatch items
|
535 |
+
lazily.
|
536 |
+
"""
|
537 |
+
manager = mp.Manager()
|
538 |
+
queue = manager.list()
|
539 |
+
|
540 |
+
def producer():
|
541 |
+
for i in range(6):
|
542 |
+
queue.append('Produced %i' % i)
|
543 |
+
yield i
|
544 |
+
|
545 |
+
Parallel(n_jobs=2, batch_size=1, pre_dispatch=3, backend=backend)(
|
546 |
+
delayed(consumer)(queue, 'any') for _ in producer())
|
547 |
+
|
548 |
+
queue_contents = list(queue)
|
549 |
+
assert queue_contents[0] == 'Produced 0'
|
550 |
+
|
551 |
+
# Only 3 tasks are pre-dispatched out of 6. The 4th task is dispatched only
|
552 |
+
# after any of the first 3 jobs have completed.
|
553 |
+
first_consumption_index = queue_contents[:4].index('Consumed any')
|
554 |
+
assert first_consumption_index > -1
|
555 |
+
|
556 |
+
produced_3_index = queue_contents.index('Produced 3') # 4th task produced
|
557 |
+
assert produced_3_index > first_consumption_index
|
558 |
+
|
559 |
+
assert len(queue) == 12
|
560 |
+
|
561 |
+
|
562 |
+
def test_batching_auto_threading():
|
563 |
+
# batching='auto' with the threading backend leaves the effective batch
|
564 |
+
# size to 1 (no batching) as it has been found to never be beneficial with
|
565 |
+
# this low-overhead backend.
|
566 |
+
|
567 |
+
with Parallel(n_jobs=2, batch_size='auto', backend='threading') as p:
|
568 |
+
p(delayed(id)(i) for i in range(5000)) # many very fast tasks
|
569 |
+
assert p._backend.compute_batch_size() == 1
|
570 |
+
|
571 |
+
|
572 |
+
@with_multiprocessing
|
573 |
+
@parametrize('backend', PROCESS_BACKENDS)
|
574 |
+
def test_batching_auto_subprocesses(backend):
|
575 |
+
with Parallel(n_jobs=2, batch_size='auto', backend=backend) as p:
|
576 |
+
p(delayed(id)(i) for i in range(5000)) # many very fast tasks
|
577 |
+
|
578 |
+
# It should be strictly larger than 1 but as we don't want heisen
|
579 |
+
# failures on clogged CI worker environment be safe and only check that
|
580 |
+
# it's a strictly positive number.
|
581 |
+
assert p._backend.compute_batch_size() > 0
|
582 |
+
|
583 |
+
|
584 |
+
def test_exception_dispatch():
|
585 |
+
"""Make sure that exception raised during dispatch are indeed captured"""
|
586 |
+
with raises(ValueError):
|
587 |
+
Parallel(n_jobs=2, pre_dispatch=16, verbose=0)(
|
588 |
+
delayed(exception_raiser)(i) for i in range(30))
|
589 |
+
|
590 |
+
|
591 |
+
def nested_function_inner(i):
|
592 |
+
Parallel(n_jobs=2)(
|
593 |
+
delayed(exception_raiser)(j) for j in range(30))
|
594 |
+
|
595 |
+
|
596 |
+
def nested_function_outer(i):
|
597 |
+
Parallel(n_jobs=2)(
|
598 |
+
delayed(nested_function_inner)(j) for j in range(30))
|
599 |
+
|
600 |
+
|
601 |
+
@with_multiprocessing
|
602 |
+
@parametrize('backend', PARALLEL_BACKENDS)
|
603 |
+
@pytest.mark.xfail(reason="https://github.com/joblib/loky/pull/255")
|
604 |
+
def test_nested_exception_dispatch(backend):
|
605 |
+
"""Ensure errors for nested joblib cases gets propagated
|
606 |
+
|
607 |
+
We rely on the Python 3 built-in __cause__ system that already
|
608 |
+
report this kind of information to the user.
|
609 |
+
"""
|
610 |
+
with raises(ValueError) as excinfo:
|
611 |
+
Parallel(n_jobs=2, backend=backend)(
|
612 |
+
delayed(nested_function_outer)(i) for i in range(30))
|
613 |
+
|
614 |
+
# Check that important information such as function names are visible
|
615 |
+
# in the final error message reported to the user
|
616 |
+
report_lines = format_exception(excinfo.type, excinfo.value, excinfo.tb)
|
617 |
+
report = "".join(report_lines)
|
618 |
+
assert 'nested_function_outer' in report
|
619 |
+
assert 'nested_function_inner' in report
|
620 |
+
assert 'exception_raiser' in report
|
621 |
+
|
622 |
+
assert type(excinfo.value) is ValueError
|
623 |
+
|
624 |
+
|
625 |
+
class FakeParallelBackend(SequentialBackend):
|
626 |
+
"""Pretends to run concurrently while running sequentially."""
|
627 |
+
|
628 |
+
def configure(self, n_jobs=1, parallel=None, **backend_args):
|
629 |
+
self.n_jobs = self.effective_n_jobs(n_jobs)
|
630 |
+
self.parallel = parallel
|
631 |
+
return n_jobs
|
632 |
+
|
633 |
+
def effective_n_jobs(self, n_jobs=1):
|
634 |
+
if n_jobs < 0:
|
635 |
+
n_jobs = max(mp.cpu_count() + 1 + n_jobs, 1)
|
636 |
+
return n_jobs
|
637 |
+
|
638 |
+
|
639 |
+
def test_invalid_backend():
|
640 |
+
with raises(ValueError, match="Invalid backend:"):
|
641 |
+
Parallel(backend='unit-testing')
|
642 |
+
|
643 |
+
with raises(ValueError, match="Invalid backend:"):
|
644 |
+
with parallel_config(backend='unit-testing'):
|
645 |
+
pass
|
646 |
+
|
647 |
+
with raises(ValueError, match="Invalid backend:"):
|
648 |
+
with parallel_config(backend='unit-testing'):
|
649 |
+
pass
|
650 |
+
|
651 |
+
|
652 |
+
@parametrize('backend', ALL_VALID_BACKENDS)
|
653 |
+
def test_invalid_njobs(backend):
|
654 |
+
with raises(ValueError) as excinfo:
|
655 |
+
Parallel(n_jobs=0, backend=backend)._initialize_backend()
|
656 |
+
assert "n_jobs == 0 in Parallel has no meaning" in str(excinfo.value)
|
657 |
+
|
658 |
+
with raises(ValueError) as excinfo:
|
659 |
+
Parallel(n_jobs=0.5, backend=backend)._initialize_backend()
|
660 |
+
assert "n_jobs == 0 in Parallel has no meaning" in str(excinfo.value)
|
661 |
+
|
662 |
+
with raises(ValueError) as excinfo:
|
663 |
+
Parallel(n_jobs="2.3", backend=backend)._initialize_backend()
|
664 |
+
assert "n_jobs could not be converted to int" in str(excinfo.value)
|
665 |
+
|
666 |
+
with raises(ValueError) as excinfo:
|
667 |
+
Parallel(n_jobs="invalid_str", backend=backend)._initialize_backend()
|
668 |
+
assert "n_jobs could not be converted to int" in str(excinfo.value)
|
669 |
+
|
670 |
+
|
671 |
+
@with_multiprocessing
|
672 |
+
@parametrize('backend', PARALLEL_BACKENDS)
|
673 |
+
@parametrize('n_jobs', ['2', 2.3, 2])
|
674 |
+
def test_njobs_converted_to_int(backend, n_jobs):
|
675 |
+
p = Parallel(n_jobs=n_jobs, backend=backend)
|
676 |
+
assert p._effective_n_jobs() == 2
|
677 |
+
|
678 |
+
res = p(delayed(square)(i) for i in range(10))
|
679 |
+
assert all(r == square(i) for i, r in enumerate(res))
|
680 |
+
|
681 |
+
|
682 |
+
def test_register_parallel_backend():
|
683 |
+
try:
|
684 |
+
register_parallel_backend("test_backend", FakeParallelBackend)
|
685 |
+
assert "test_backend" in BACKENDS
|
686 |
+
assert BACKENDS["test_backend"] == FakeParallelBackend
|
687 |
+
finally:
|
688 |
+
del BACKENDS["test_backend"]
|
689 |
+
|
690 |
+
|
691 |
+
def test_overwrite_default_backend():
|
692 |
+
assert _active_backend_type() == DefaultBackend
|
693 |
+
try:
|
694 |
+
register_parallel_backend("threading", BACKENDS["threading"],
|
695 |
+
make_default=True)
|
696 |
+
assert _active_backend_type() == ThreadingBackend
|
697 |
+
finally:
|
698 |
+
# Restore the global default manually
|
699 |
+
parallel.DEFAULT_BACKEND = DEFAULT_BACKEND
|
700 |
+
assert _active_backend_type() == DefaultBackend
|
701 |
+
|
702 |
+
|
703 |
+
@skipif(mp is not None, reason="Only without multiprocessing")
|
704 |
+
def test_backend_no_multiprocessing():
|
705 |
+
with warns(UserWarning,
|
706 |
+
match="joblib backend '.*' is not available on.*"):
|
707 |
+
Parallel(backend='loky')(delayed(square)(i) for i in range(3))
|
708 |
+
|
709 |
+
# The below should now work without problems
|
710 |
+
with parallel_config(backend='loky'):
|
711 |
+
Parallel()(delayed(square)(i) for i in range(3))
|
712 |
+
|
713 |
+
|
714 |
+
def check_backend_context_manager(context, backend_name):
|
715 |
+
with context(backend_name, n_jobs=3):
|
716 |
+
active_backend, active_n_jobs = parallel.get_active_backend()
|
717 |
+
assert active_n_jobs == 3
|
718 |
+
assert effective_n_jobs(3) == 3
|
719 |
+
p = Parallel()
|
720 |
+
assert p.n_jobs == 3
|
721 |
+
if backend_name == 'multiprocessing':
|
722 |
+
assert type(active_backend) is MultiprocessingBackend
|
723 |
+
assert type(p._backend) is MultiprocessingBackend
|
724 |
+
elif backend_name == 'loky':
|
725 |
+
assert type(active_backend) is LokyBackend
|
726 |
+
assert type(p._backend) is LokyBackend
|
727 |
+
elif backend_name == 'threading':
|
728 |
+
assert type(active_backend) is ThreadingBackend
|
729 |
+
assert type(p._backend) is ThreadingBackend
|
730 |
+
elif backend_name.startswith('test_'):
|
731 |
+
assert type(active_backend) is FakeParallelBackend
|
732 |
+
assert type(p._backend) is FakeParallelBackend
|
733 |
+
|
734 |
+
|
735 |
+
all_backends_for_context_manager = PARALLEL_BACKENDS[:]
|
736 |
+
all_backends_for_context_manager.extend(
|
737 |
+
['test_backend_%d' % i for i in range(3)]
|
738 |
+
)
|
739 |
+
|
740 |
+
|
741 |
+
@with_multiprocessing
|
742 |
+
@parametrize('backend', all_backends_for_context_manager)
|
743 |
+
@parametrize('context', [parallel_backend, parallel_config])
|
744 |
+
def test_backend_context_manager(monkeypatch, backend, context):
|
745 |
+
if backend not in BACKENDS:
|
746 |
+
monkeypatch.setitem(BACKENDS, backend, FakeParallelBackend)
|
747 |
+
|
748 |
+
assert _active_backend_type() == DefaultBackend
|
749 |
+
# check that this possible to switch parallel backends sequentially
|
750 |
+
check_backend_context_manager(context, backend)
|
751 |
+
|
752 |
+
# The default backend is restored
|
753 |
+
assert _active_backend_type() == DefaultBackend
|
754 |
+
|
755 |
+
# Check that context manager switching is thread safe:
|
756 |
+
Parallel(n_jobs=2, backend='threading')(
|
757 |
+
delayed(check_backend_context_manager)(context, b)
|
758 |
+
for b in all_backends_for_context_manager if not b)
|
759 |
+
|
760 |
+
# The default backend is again restored
|
761 |
+
assert _active_backend_type() == DefaultBackend
|
762 |
+
|
763 |
+
|
764 |
+
class ParameterizedParallelBackend(SequentialBackend):
|
765 |
+
"""Pretends to run conncurrently while running sequentially."""
|
766 |
+
|
767 |
+
def __init__(self, param=None):
|
768 |
+
if param is None:
|
769 |
+
raise ValueError('param should not be None')
|
770 |
+
self.param = param
|
771 |
+
|
772 |
+
|
773 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
774 |
+
def test_parameterized_backend_context_manager(monkeypatch, context):
|
775 |
+
monkeypatch.setitem(BACKENDS, 'param_backend',
|
776 |
+
ParameterizedParallelBackend)
|
777 |
+
assert _active_backend_type() == DefaultBackend
|
778 |
+
|
779 |
+
with context('param_backend', param=42, n_jobs=3):
|
780 |
+
active_backend, active_n_jobs = parallel.get_active_backend()
|
781 |
+
assert type(active_backend) is ParameterizedParallelBackend
|
782 |
+
assert active_backend.param == 42
|
783 |
+
assert active_n_jobs == 3
|
784 |
+
p = Parallel()
|
785 |
+
assert p.n_jobs == 3
|
786 |
+
assert p._backend is active_backend
|
787 |
+
results = p(delayed(sqrt)(i) for i in range(5))
|
788 |
+
assert results == [sqrt(i) for i in range(5)]
|
789 |
+
|
790 |
+
# The default backend is again restored
|
791 |
+
assert _active_backend_type() == DefaultBackend
|
792 |
+
|
793 |
+
|
794 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
795 |
+
def test_directly_parameterized_backend_context_manager(context):
|
796 |
+
assert _active_backend_type() == DefaultBackend
|
797 |
+
|
798 |
+
# Check that it's possible to pass a backend instance directly,
|
799 |
+
# without registration
|
800 |
+
with context(ParameterizedParallelBackend(param=43), n_jobs=5):
|
801 |
+
active_backend, active_n_jobs = parallel.get_active_backend()
|
802 |
+
assert type(active_backend) is ParameterizedParallelBackend
|
803 |
+
assert active_backend.param == 43
|
804 |
+
assert active_n_jobs == 5
|
805 |
+
p = Parallel()
|
806 |
+
assert p.n_jobs == 5
|
807 |
+
assert p._backend is active_backend
|
808 |
+
results = p(delayed(sqrt)(i) for i in range(5))
|
809 |
+
assert results == [sqrt(i) for i in range(5)]
|
810 |
+
|
811 |
+
# The default backend is again restored
|
812 |
+
assert _active_backend_type() == DefaultBackend
|
813 |
+
|
814 |
+
|
815 |
+
def sleep_and_return_pid():
|
816 |
+
sleep(.1)
|
817 |
+
return os.getpid()
|
818 |
+
|
819 |
+
|
820 |
+
def get_nested_pids():
|
821 |
+
assert _active_backend_type() == ThreadingBackend
|
822 |
+
# Assert that the nested backend does not change the default number of
|
823 |
+
# jobs used in Parallel
|
824 |
+
assert Parallel()._effective_n_jobs() == 1
|
825 |
+
|
826 |
+
# Assert that the tasks are running only on one process
|
827 |
+
return Parallel(n_jobs=2)(delayed(sleep_and_return_pid)()
|
828 |
+
for _ in range(2))
|
829 |
+
|
830 |
+
|
831 |
+
class MyBackend(joblib._parallel_backends.LokyBackend):
|
832 |
+
"""Backend to test backward compatibility with older backends"""
|
833 |
+
def get_nested_backend(self, ):
|
834 |
+
# Older backends only return a backend, without n_jobs indications.
|
835 |
+
return super(MyBackend, self).get_nested_backend()[0]
|
836 |
+
|
837 |
+
|
838 |
+
register_parallel_backend('back_compat_backend', MyBackend)
|
839 |
+
|
840 |
+
|
841 |
+
@with_multiprocessing
|
842 |
+
@parametrize('backend', ['threading', 'loky', 'multiprocessing',
|
843 |
+
'back_compat_backend'])
|
844 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
845 |
+
def test_nested_backend_context_manager(context, backend):
|
846 |
+
# Check that by default, nested parallel calls will always use the
|
847 |
+
# ThreadingBackend
|
848 |
+
|
849 |
+
with context(backend):
|
850 |
+
pid_groups = Parallel(n_jobs=2)(
|
851 |
+
delayed(get_nested_pids)()
|
852 |
+
for _ in range(10)
|
853 |
+
)
|
854 |
+
for pid_group in pid_groups:
|
855 |
+
assert len(set(pid_group)) == 1
|
856 |
+
|
857 |
+
|
858 |
+
@with_multiprocessing
|
859 |
+
@parametrize('n_jobs', [2, -1, None])
|
860 |
+
@parametrize('backend', PARALLEL_BACKENDS)
|
861 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
862 |
+
def test_nested_backend_in_sequential(backend, n_jobs, context):
|
863 |
+
# Check that by default, nested parallel calls will always use the
|
864 |
+
# ThreadingBackend
|
865 |
+
|
866 |
+
def check_nested_backend(expected_backend_type, expected_n_job):
|
867 |
+
# Assert that the sequential backend at top level, does not change the
|
868 |
+
# backend for nested calls.
|
869 |
+
assert _active_backend_type() == BACKENDS[expected_backend_type]
|
870 |
+
|
871 |
+
# Assert that the nested backend in SequentialBackend does not change
|
872 |
+
# the default number of jobs used in Parallel
|
873 |
+
expected_n_job = effective_n_jobs(expected_n_job)
|
874 |
+
assert Parallel()._effective_n_jobs() == expected_n_job
|
875 |
+
|
876 |
+
Parallel(n_jobs=1)(
|
877 |
+
delayed(check_nested_backend)(DEFAULT_BACKEND, 1)
|
878 |
+
for _ in range(10)
|
879 |
+
)
|
880 |
+
|
881 |
+
with context(backend, n_jobs=n_jobs):
|
882 |
+
Parallel(n_jobs=1)(
|
883 |
+
delayed(check_nested_backend)(backend, n_jobs)
|
884 |
+
for _ in range(10)
|
885 |
+
)
|
886 |
+
|
887 |
+
|
888 |
+
def check_nesting_level(context, inner_backend, expected_level):
|
889 |
+
with context(inner_backend) as ctx:
|
890 |
+
if context is parallel_config:
|
891 |
+
backend = ctx["backend"]
|
892 |
+
if context is parallel_backend:
|
893 |
+
backend = ctx[0]
|
894 |
+
assert backend.nesting_level == expected_level
|
895 |
+
|
896 |
+
|
897 |
+
@with_multiprocessing
|
898 |
+
@parametrize('outer_backend', PARALLEL_BACKENDS)
|
899 |
+
@parametrize('inner_backend', PARALLEL_BACKENDS)
|
900 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
901 |
+
def test_backend_nesting_level(context, outer_backend, inner_backend):
|
902 |
+
# Check that the nesting level for the backend is correctly set
|
903 |
+
check_nesting_level(context, outer_backend, 0)
|
904 |
+
|
905 |
+
Parallel(n_jobs=2, backend=outer_backend)(
|
906 |
+
delayed(check_nesting_level)(context, inner_backend, 1)
|
907 |
+
for _ in range(10)
|
908 |
+
)
|
909 |
+
|
910 |
+
with context(inner_backend, n_jobs=2):
|
911 |
+
Parallel()(delayed(check_nesting_level)(context, inner_backend, 1)
|
912 |
+
for _ in range(10))
|
913 |
+
|
914 |
+
|
915 |
+
@with_multiprocessing
|
916 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
917 |
+
@parametrize('with_retrieve_callback', [True, False])
|
918 |
+
def test_retrieval_context(context, with_retrieve_callback):
|
919 |
+
import contextlib
|
920 |
+
|
921 |
+
class MyBackend(ThreadingBackend):
|
922 |
+
i = 0
|
923 |
+
supports_retrieve_callback = with_retrieve_callback
|
924 |
+
|
925 |
+
@contextlib.contextmanager
|
926 |
+
def retrieval_context(self):
|
927 |
+
self.i += 1
|
928 |
+
yield
|
929 |
+
|
930 |
+
register_parallel_backend("retrieval", MyBackend)
|
931 |
+
|
932 |
+
def nested_call(n):
|
933 |
+
return Parallel(n_jobs=2)(delayed(id)(i) for i in range(n))
|
934 |
+
|
935 |
+
with context("retrieval") as ctx:
|
936 |
+
Parallel(n_jobs=2)(
|
937 |
+
delayed(nested_call)(i)
|
938 |
+
for i in range(5)
|
939 |
+
)
|
940 |
+
if context is parallel_config:
|
941 |
+
assert ctx["backend"].i == 1
|
942 |
+
if context is parallel_backend:
|
943 |
+
assert ctx[0].i == 1
|
944 |
+
|
945 |
+
|
946 |
+
###############################################################################
|
947 |
+
# Test helpers
|
948 |
+
|
949 |
+
@parametrize('batch_size', [0, -1, 1.42])
|
950 |
+
def test_invalid_batch_size(batch_size):
|
951 |
+
with raises(ValueError):
|
952 |
+
Parallel(batch_size=batch_size)
|
953 |
+
|
954 |
+
|
955 |
+
@parametrize('n_tasks, n_jobs, pre_dispatch, batch_size',
|
956 |
+
[(2, 2, 'all', 'auto'),
|
957 |
+
(2, 2, 'n_jobs', 'auto'),
|
958 |
+
(10, 2, 'n_jobs', 'auto'),
|
959 |
+
(517, 2, 'n_jobs', 'auto'),
|
960 |
+
(10, 2, 'n_jobs', 'auto'),
|
961 |
+
(10, 4, 'n_jobs', 'auto'),
|
962 |
+
(200, 12, 'n_jobs', 'auto'),
|
963 |
+
(25, 12, '2 * n_jobs', 1),
|
964 |
+
(250, 12, 'all', 1),
|
965 |
+
(250, 12, '2 * n_jobs', 7),
|
966 |
+
(200, 12, '2 * n_jobs', 'auto')])
|
967 |
+
def test_dispatch_race_condition(n_tasks, n_jobs, pre_dispatch, batch_size):
|
968 |
+
# Check that using (async-)dispatch does not yield a race condition on the
|
969 |
+
# iterable generator that is not thread-safe natively.
|
970 |
+
# This is a non-regression test for the "Pool seems closed" class of error
|
971 |
+
params = {'n_jobs': n_jobs, 'pre_dispatch': pre_dispatch,
|
972 |
+
'batch_size': batch_size}
|
973 |
+
expected = [square(i) for i in range(n_tasks)]
|
974 |
+
results = Parallel(**params)(delayed(square)(i) for i in range(n_tasks))
|
975 |
+
assert results == expected
|
976 |
+
|
977 |
+
|
978 |
+
@with_multiprocessing
|
979 |
+
def test_default_mp_context():
|
980 |
+
mp_start_method = mp.get_start_method()
|
981 |
+
p = Parallel(n_jobs=2, backend='multiprocessing')
|
982 |
+
context = p._backend_args.get('context')
|
983 |
+
start_method = context.get_start_method()
|
984 |
+
assert start_method == mp_start_method
|
985 |
+
|
986 |
+
|
987 |
+
@with_numpy
|
988 |
+
@with_multiprocessing
|
989 |
+
@parametrize('backend', PROCESS_BACKENDS)
|
990 |
+
def test_no_blas_crash_or_freeze_with_subprocesses(backend):
|
991 |
+
if backend == 'multiprocessing':
|
992 |
+
# Use the spawn backend that is both robust and available on all
|
993 |
+
# platforms
|
994 |
+
backend = mp.get_context('spawn')
|
995 |
+
|
996 |
+
# Check that on recent Python version, the 'spawn' start method can make
|
997 |
+
# it possible to use multiprocessing in conjunction of any BLAS
|
998 |
+
# implementation that happens to be used by numpy with causing a freeze or
|
999 |
+
# a crash
|
1000 |
+
rng = np.random.RandomState(42)
|
1001 |
+
|
1002 |
+
# call BLAS DGEMM to force the initialization of the internal thread-pool
|
1003 |
+
# in the main process
|
1004 |
+
a = rng.randn(1000, 1000)
|
1005 |
+
np.dot(a, a.T)
|
1006 |
+
|
1007 |
+
# check that the internal BLAS thread-pool is not in an inconsistent state
|
1008 |
+
# in the worker processes managed by multiprocessing
|
1009 |
+
Parallel(n_jobs=2, backend=backend)(
|
1010 |
+
delayed(np.dot)(a, a.T) for i in range(2))
|
1011 |
+
|
1012 |
+
|
1013 |
+
UNPICKLABLE_CALLABLE_SCRIPT_TEMPLATE_NO_MAIN = """\
|
1014 |
+
from joblib import Parallel, delayed
|
1015 |
+
|
1016 |
+
def square(x):
|
1017 |
+
return x ** 2
|
1018 |
+
|
1019 |
+
backend = "{}"
|
1020 |
+
if backend == "spawn":
|
1021 |
+
from multiprocessing import get_context
|
1022 |
+
backend = get_context(backend)
|
1023 |
+
|
1024 |
+
print(Parallel(n_jobs=2, backend=backend)(
|
1025 |
+
delayed(square)(i) for i in range(5)))
|
1026 |
+
"""
|
1027 |
+
|
1028 |
+
|
1029 |
+
@with_multiprocessing
|
1030 |
+
@parametrize('backend', PROCESS_BACKENDS)
|
1031 |
+
def test_parallel_with_interactively_defined_functions(backend):
|
1032 |
+
# When using the "-c" flag, interactive functions defined in __main__
|
1033 |
+
# should work with any backend.
|
1034 |
+
if backend == "multiprocessing" and mp.get_start_method() != "fork":
|
1035 |
+
pytest.skip("Require fork start method to use interactively defined "
|
1036 |
+
"functions with multiprocessing.")
|
1037 |
+
code = UNPICKLABLE_CALLABLE_SCRIPT_TEMPLATE_NO_MAIN.format(backend)
|
1038 |
+
check_subprocess_call(
|
1039 |
+
[sys.executable, '-c', code], timeout=10,
|
1040 |
+
stdout_regex=r'\[0, 1, 4, 9, 16\]')
|
1041 |
+
|
1042 |
+
|
1043 |
+
UNPICKLABLE_CALLABLE_SCRIPT_TEMPLATE_MAIN = """\
|
1044 |
+
import sys
|
1045 |
+
# Make sure that joblib is importable in the subprocess launching this
|
1046 |
+
# script. This is needed in case we run the tests from the joblib root
|
1047 |
+
# folder without having installed joblib
|
1048 |
+
sys.path.insert(0, {joblib_root_folder!r})
|
1049 |
+
|
1050 |
+
from joblib import Parallel, delayed
|
1051 |
+
|
1052 |
+
def run(f, x):
|
1053 |
+
return f(x)
|
1054 |
+
|
1055 |
+
{define_func}
|
1056 |
+
|
1057 |
+
if __name__ == "__main__":
|
1058 |
+
backend = "{backend}"
|
1059 |
+
if backend == "spawn":
|
1060 |
+
from multiprocessing import get_context
|
1061 |
+
backend = get_context(backend)
|
1062 |
+
|
1063 |
+
callable_position = "{callable_position}"
|
1064 |
+
if callable_position == "delayed":
|
1065 |
+
print(Parallel(n_jobs=2, backend=backend)(
|
1066 |
+
delayed(square)(i) for i in range(5)))
|
1067 |
+
elif callable_position == "args":
|
1068 |
+
print(Parallel(n_jobs=2, backend=backend)(
|
1069 |
+
delayed(run)(square, i) for i in range(5)))
|
1070 |
+
else:
|
1071 |
+
print(Parallel(n_jobs=2, backend=backend)(
|
1072 |
+
delayed(run)(f=square, x=i) for i in range(5)))
|
1073 |
+
"""
|
1074 |
+
|
1075 |
+
SQUARE_MAIN = """\
|
1076 |
+
def square(x):
|
1077 |
+
return x ** 2
|
1078 |
+
"""
|
1079 |
+
SQUARE_LOCAL = """\
|
1080 |
+
def gen_square():
|
1081 |
+
def square(x):
|
1082 |
+
return x ** 2
|
1083 |
+
return square
|
1084 |
+
square = gen_square()
|
1085 |
+
"""
|
1086 |
+
SQUARE_LAMBDA = """\
|
1087 |
+
square = lambda x: x ** 2
|
1088 |
+
"""
|
1089 |
+
|
1090 |
+
|
1091 |
+
@with_multiprocessing
|
1092 |
+
@parametrize('backend', PROCESS_BACKENDS + ([] if mp is None else ['spawn']))
|
1093 |
+
@parametrize('define_func', [SQUARE_MAIN, SQUARE_LOCAL, SQUARE_LAMBDA])
|
1094 |
+
@parametrize('callable_position', ['delayed', 'args', 'kwargs'])
|
1095 |
+
def test_parallel_with_unpicklable_functions_in_args(
|
1096 |
+
backend, define_func, callable_position, tmpdir):
|
1097 |
+
if backend in ['multiprocessing', 'spawn'] and (
|
1098 |
+
define_func != SQUARE_MAIN or sys.platform == "win32"):
|
1099 |
+
pytest.skip("Not picklable with pickle")
|
1100 |
+
code = UNPICKLABLE_CALLABLE_SCRIPT_TEMPLATE_MAIN.format(
|
1101 |
+
define_func=define_func, backend=backend,
|
1102 |
+
callable_position=callable_position,
|
1103 |
+
joblib_root_folder=os.path.dirname(os.path.dirname(joblib.__file__)))
|
1104 |
+
code_file = tmpdir.join("unpicklable_func_script.py")
|
1105 |
+
code_file.write(code)
|
1106 |
+
check_subprocess_call(
|
1107 |
+
[sys.executable, code_file.strpath], timeout=10,
|
1108 |
+
stdout_regex=r'\[0, 1, 4, 9, 16\]')
|
1109 |
+
|
1110 |
+
|
1111 |
+
INTERACTIVE_DEFINED_FUNCTION_AND_CLASS_SCRIPT_CONTENT = """\
|
1112 |
+
import sys
|
1113 |
+
import faulthandler
|
1114 |
+
# Make sure that joblib is importable in the subprocess launching this
|
1115 |
+
# script. This is needed in case we run the tests from the joblib root
|
1116 |
+
# folder without having installed joblib
|
1117 |
+
sys.path.insert(0, {joblib_root_folder!r})
|
1118 |
+
|
1119 |
+
from joblib import Parallel, delayed
|
1120 |
+
from functools import partial
|
1121 |
+
|
1122 |
+
class MyClass:
|
1123 |
+
'''Class defined in the __main__ namespace'''
|
1124 |
+
def __init__(self, value):
|
1125 |
+
self.value = value
|
1126 |
+
|
1127 |
+
|
1128 |
+
def square(x, ignored=None, ignored2=None):
|
1129 |
+
'''Function defined in the __main__ namespace'''
|
1130 |
+
return x.value ** 2
|
1131 |
+
|
1132 |
+
|
1133 |
+
square2 = partial(square, ignored2='something')
|
1134 |
+
|
1135 |
+
# Here, we do not need the `if __name__ == "__main__":` safeguard when
|
1136 |
+
# using the default `loky` backend (even on Windows).
|
1137 |
+
|
1138 |
+
# To make debugging easier
|
1139 |
+
faulthandler.dump_traceback_later(30, exit=True)
|
1140 |
+
|
1141 |
+
# The following baroque function call is meant to check that joblib
|
1142 |
+
# introspection rightfully uses cloudpickle instead of the (faster) pickle
|
1143 |
+
# module of the standard library when necessary. In particular cloudpickle is
|
1144 |
+
# necessary for functions and instances of classes interactively defined in the
|
1145 |
+
# __main__ module.
|
1146 |
+
|
1147 |
+
print(Parallel(backend="loky", n_jobs=2)(
|
1148 |
+
delayed(square2)(MyClass(i), ignored=[dict(a=MyClass(1))])
|
1149 |
+
for i in range(5)
|
1150 |
+
))
|
1151 |
+
""".format(joblib_root_folder=os.path.dirname(
|
1152 |
+
os.path.dirname(joblib.__file__)))
|
1153 |
+
|
1154 |
+
|
1155 |
+
@with_multiprocessing
|
1156 |
+
def test_parallel_with_interactively_defined_functions_loky(tmpdir):
|
1157 |
+
# loky accepts interactive functions defined in __main__ and does not
|
1158 |
+
# require if __name__ == '__main__' even when the __main__ module is
|
1159 |
+
# defined by the result of the execution of a filesystem script.
|
1160 |
+
script = tmpdir.join('joblib_interactively_defined_function.py')
|
1161 |
+
script.write(INTERACTIVE_DEFINED_FUNCTION_AND_CLASS_SCRIPT_CONTENT)
|
1162 |
+
check_subprocess_call(
|
1163 |
+
[sys.executable, script.strpath],
|
1164 |
+
stdout_regex=r'\[0, 1, 4, 9, 16\]',
|
1165 |
+
timeout=None, # rely on faulthandler to kill the process
|
1166 |
+
)
|
1167 |
+
|
1168 |
+
|
1169 |
+
INTERACTIVELY_DEFINED_SUBCLASS_WITH_METHOD_SCRIPT_CONTENT = """\
|
1170 |
+
import sys
|
1171 |
+
# Make sure that joblib is importable in the subprocess launching this
|
1172 |
+
# script. This is needed in case we run the tests from the joblib root
|
1173 |
+
# folder without having installed joblib
|
1174 |
+
sys.path.insert(0, {joblib_root_folder!r})
|
1175 |
+
|
1176 |
+
from joblib import Parallel, delayed, hash
|
1177 |
+
import multiprocessing as mp
|
1178 |
+
mp.util.log_to_stderr(5)
|
1179 |
+
|
1180 |
+
class MyList(list):
|
1181 |
+
'''MyList is interactively defined by MyList.append is a built-in'''
|
1182 |
+
def __hash__(self):
|
1183 |
+
# XXX: workaround limitation in cloudpickle
|
1184 |
+
return hash(self).__hash__()
|
1185 |
+
|
1186 |
+
l = MyList()
|
1187 |
+
|
1188 |
+
print(Parallel(backend="loky", n_jobs=2)(
|
1189 |
+
delayed(l.append)(i) for i in range(3)
|
1190 |
+
))
|
1191 |
+
""".format(joblib_root_folder=os.path.dirname(
|
1192 |
+
os.path.dirname(joblib.__file__)))
|
1193 |
+
|
1194 |
+
|
1195 |
+
@with_multiprocessing
|
1196 |
+
def test_parallel_with_interactively_defined_bound_method_loky(tmpdir):
|
1197 |
+
script = tmpdir.join('joblib_interactive_bound_method_script.py')
|
1198 |
+
script.write(INTERACTIVELY_DEFINED_SUBCLASS_WITH_METHOD_SCRIPT_CONTENT)
|
1199 |
+
check_subprocess_call([sys.executable, script.strpath],
|
1200 |
+
stdout_regex=r'\[None, None, None\]',
|
1201 |
+
stderr_regex=r'LokyProcess',
|
1202 |
+
timeout=15)
|
1203 |
+
|
1204 |
+
|
1205 |
+
def test_parallel_with_exhausted_iterator():
|
1206 |
+
exhausted_iterator = iter([])
|
1207 |
+
assert Parallel(n_jobs=2)(exhausted_iterator) == []
|
1208 |
+
|
1209 |
+
|
1210 |
+
def _cleanup_worker():
|
1211 |
+
"""Helper function to force gc in each worker."""
|
1212 |
+
force_gc_pypy()
|
1213 |
+
time.sleep(.1)
|
1214 |
+
|
1215 |
+
|
1216 |
+
def check_memmap(a):
|
1217 |
+
if not isinstance(a, np.memmap):
|
1218 |
+
raise TypeError('Expected np.memmap instance, got %r',
|
1219 |
+
type(a))
|
1220 |
+
return a.copy() # return a regular array instead of a memmap
|
1221 |
+
|
1222 |
+
|
1223 |
+
@with_numpy
|
1224 |
+
@with_multiprocessing
|
1225 |
+
@parametrize('backend', PROCESS_BACKENDS)
|
1226 |
+
def test_auto_memmap_on_arrays_from_generator(backend):
|
1227 |
+
# Non-regression test for a problem with a bad interaction between the
|
1228 |
+
# GC collecting arrays recently created during iteration inside the
|
1229 |
+
# parallel dispatch loop and the auto-memmap feature of Parallel.
|
1230 |
+
# See: https://github.com/joblib/joblib/pull/294
|
1231 |
+
def generate_arrays(n):
|
1232 |
+
for i in range(n):
|
1233 |
+
yield np.ones(10, dtype=np.float32) * i
|
1234 |
+
# Use max_nbytes=1 to force the use of memory-mapping even for small
|
1235 |
+
# arrays
|
1236 |
+
results = Parallel(n_jobs=2, max_nbytes=1, backend=backend)(
|
1237 |
+
delayed(check_memmap)(a) for a in generate_arrays(100))
|
1238 |
+
for result, expected in zip(results, generate_arrays(len(results))):
|
1239 |
+
np.testing.assert_array_equal(expected, result)
|
1240 |
+
|
1241 |
+
# Second call to force loky to adapt the executor by growing the number
|
1242 |
+
# of worker processes. This is a non-regression test for:
|
1243 |
+
# https://github.com/joblib/joblib/issues/629.
|
1244 |
+
results = Parallel(n_jobs=4, max_nbytes=1, backend=backend)(
|
1245 |
+
delayed(check_memmap)(a) for a in generate_arrays(100))
|
1246 |
+
for result, expected in zip(results, generate_arrays(len(results))):
|
1247 |
+
np.testing.assert_array_equal(expected, result)
|
1248 |
+
|
1249 |
+
|
1250 |
+
def identity(arg):
|
1251 |
+
return arg
|
1252 |
+
|
1253 |
+
|
1254 |
+
@with_numpy
|
1255 |
+
@with_multiprocessing
|
1256 |
+
def test_memmap_with_big_offset(tmpdir):
|
1257 |
+
fname = tmpdir.join('test.mmap').strpath
|
1258 |
+
size = mmap.ALLOCATIONGRANULARITY
|
1259 |
+
obj = [np.zeros(size, dtype='uint8'), np.ones(size, dtype='uint8')]
|
1260 |
+
dump(obj, fname)
|
1261 |
+
memmap = load(fname, mmap_mode='r')
|
1262 |
+
result, = Parallel(n_jobs=2)(delayed(identity)(memmap) for _ in [0])
|
1263 |
+
assert isinstance(memmap[1], np.memmap)
|
1264 |
+
assert memmap[1].offset > size
|
1265 |
+
np.testing.assert_array_equal(obj, result)
|
1266 |
+
|
1267 |
+
|
1268 |
+
def test_warning_about_timeout_not_supported_by_backend():
|
1269 |
+
with warnings.catch_warnings(record=True) as warninfo:
|
1270 |
+
Parallel(n_jobs=1, timeout=1)(delayed(square)(i) for i in range(50))
|
1271 |
+
assert len(warninfo) == 1
|
1272 |
+
w = warninfo[0]
|
1273 |
+
assert isinstance(w.message, UserWarning)
|
1274 |
+
assert str(w.message) == (
|
1275 |
+
"The backend class 'SequentialBackend' does not support timeout. "
|
1276 |
+
"You have set 'timeout=1' in Parallel but the 'timeout' parameter "
|
1277 |
+
"will not be used.")
|
1278 |
+
|
1279 |
+
|
1280 |
+
def set_list_value(input_list, index, value):
|
1281 |
+
input_list[index] = value
|
1282 |
+
return value
|
1283 |
+
|
1284 |
+
|
1285 |
+
@pytest.mark.parametrize('n_jobs', [1, 2, 4])
|
1286 |
+
def test_parallel_return_order_with_return_as_generator_parameter(n_jobs):
|
1287 |
+
# This test inserts values in a list in some expected order
|
1288 |
+
# in sequential computing, and then checks that this order has been
|
1289 |
+
# respected by Parallel output generator.
|
1290 |
+
input_list = [0] * 5
|
1291 |
+
result = Parallel(n_jobs=n_jobs, return_as="generator",
|
1292 |
+
backend='threading')(
|
1293 |
+
delayed(set_list_value)(input_list, i, i) for i in range(5))
|
1294 |
+
|
1295 |
+
# Ensure that all the tasks are completed before checking the result
|
1296 |
+
result = list(result)
|
1297 |
+
|
1298 |
+
assert all(v == r for v, r in zip(input_list, result))
|
1299 |
+
|
1300 |
+
|
1301 |
+
def _sqrt_with_delay(e, delay):
|
1302 |
+
if delay:
|
1303 |
+
sleep(30)
|
1304 |
+
return sqrt(e)
|
1305 |
+
|
1306 |
+
|
1307 |
+
def _test_parallel_unordered_generator_returns_fastest_first(backend, n_jobs):
|
1308 |
+
# This test submits 10 tasks, but the second task is super slow. This test
|
1309 |
+
# checks that the 9 other tasks return before the slow task is done, when
|
1310 |
+
# `return_as` parameter is set to `'generator_unordered'`
|
1311 |
+
result = Parallel(n_jobs=n_jobs, return_as="generator_unordered",
|
1312 |
+
backend=backend)(
|
1313 |
+
delayed(_sqrt_with_delay)(i**2, (i == 1)) for i in range(10))
|
1314 |
+
|
1315 |
+
quickly_returned = sorted(next(result) for _ in range(9))
|
1316 |
+
|
1317 |
+
expected_quickly_returned = [0] + list(range(2, 10))
|
1318 |
+
|
1319 |
+
assert all(
|
1320 |
+
v == r for v, r in zip(expected_quickly_returned, quickly_returned)
|
1321 |
+
)
|
1322 |
+
|
1323 |
+
del result
|
1324 |
+
force_gc_pypy()
|
1325 |
+
|
1326 |
+
|
1327 |
+
@pytest.mark.parametrize('n_jobs', [2, 4])
|
1328 |
+
# NB: for this test to work, the backend must be allowed to process tasks
|
1329 |
+
# concurrently, so at least two jobs with a non-sequential backend are
|
1330 |
+
# mandatory.
|
1331 |
+
@with_multiprocessing
|
1332 |
+
@parametrize('backend', set(RETURN_GENERATOR_BACKENDS) - {"sequential"})
|
1333 |
+
def test_parallel_unordered_generator_returns_fastest_first(backend, n_jobs):
|
1334 |
+
_test_parallel_unordered_generator_returns_fastest_first(backend, n_jobs)
|
1335 |
+
|
1336 |
+
|
1337 |
+
@pytest.mark.parametrize('n_jobs', [2, -1])
|
1338 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
1339 |
+
@skipif(distributed is None, reason='This test requires dask')
|
1340 |
+
def test_parallel_unordered_generator_returns_fastest_first_with_dask(
|
1341 |
+
n_jobs, context
|
1342 |
+
):
|
1343 |
+
with distributed.Client(
|
1344 |
+
n_workers=2, threads_per_worker=2
|
1345 |
+
), context("dask"):
|
1346 |
+
_test_parallel_unordered_generator_returns_fastest_first(None, n_jobs)
|
1347 |
+
|
1348 |
+
|
1349 |
+
@parametrize('backend', ALL_VALID_BACKENDS)
|
1350 |
+
@parametrize('n_jobs', [1, 2, -2, -1])
|
1351 |
+
def test_abort_backend(n_jobs, backend):
|
1352 |
+
delays = ["a"] + [10] * 100
|
1353 |
+
with raises(TypeError):
|
1354 |
+
t_start = time.time()
|
1355 |
+
Parallel(n_jobs=n_jobs, backend=backend)(
|
1356 |
+
delayed(time.sleep)(i) for i in delays)
|
1357 |
+
dt = time.time() - t_start
|
1358 |
+
assert dt < 20
|
1359 |
+
|
1360 |
+
|
1361 |
+
def get_large_object(arg):
|
1362 |
+
result = np.ones(int(5 * 1e5), dtype=bool)
|
1363 |
+
result[0] = False
|
1364 |
+
return result
|
1365 |
+
|
1366 |
+
|
1367 |
+
def _test_deadlock_with_generator(backend, return_as, n_jobs):
|
1368 |
+
# Non-regression test for a race condition in the backends when the pickler
|
1369 |
+
# is delayed by a large object.
|
1370 |
+
with Parallel(n_jobs=n_jobs, backend=backend,
|
1371 |
+
return_as=return_as) as parallel:
|
1372 |
+
result = parallel(delayed(get_large_object)(i) for i in range(10))
|
1373 |
+
next(result)
|
1374 |
+
next(result)
|
1375 |
+
del result
|
1376 |
+
# The gc in pypy can be delayed. Force it to make sure this test does
|
1377 |
+
# not cause timeout on the CI.
|
1378 |
+
force_gc_pypy()
|
1379 |
+
|
1380 |
+
|
1381 |
+
@with_numpy
|
1382 |
+
@parametrize('backend', RETURN_GENERATOR_BACKENDS)
|
1383 |
+
@parametrize('return_as', ["generator", "generator_unordered"])
|
1384 |
+
@parametrize('n_jobs', [1, 2, -2, -1])
|
1385 |
+
def test_deadlock_with_generator(backend, return_as, n_jobs):
|
1386 |
+
_test_deadlock_with_generator(backend, return_as, n_jobs)
|
1387 |
+
|
1388 |
+
|
1389 |
+
@with_numpy
|
1390 |
+
@pytest.mark.parametrize('n_jobs', [2, -1])
|
1391 |
+
@parametrize('return_as', ["generator", "generator_unordered"])
|
1392 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
1393 |
+
@skipif(distributed is None, reason='This test requires dask')
|
1394 |
+
def test_deadlock_with_generator_and_dask(context, return_as, n_jobs):
|
1395 |
+
with distributed.Client(
|
1396 |
+
n_workers=2, threads_per_worker=2
|
1397 |
+
), context("dask"):
|
1398 |
+
_test_deadlock_with_generator(None, return_as, n_jobs)
|
1399 |
+
|
1400 |
+
|
1401 |
+
@parametrize('backend', RETURN_GENERATOR_BACKENDS)
|
1402 |
+
@parametrize('return_as', ["generator", "generator_unordered"])
|
1403 |
+
@parametrize('n_jobs', [1, 2, -2, -1])
|
1404 |
+
def test_multiple_generator_call(backend, return_as, n_jobs):
|
1405 |
+
# Non-regression test that ensures the dispatch of the tasks starts
|
1406 |
+
# immediately when Parallel.__call__ is called. This test relies on the
|
1407 |
+
# assumption that only one generator can be submitted at a time.
|
1408 |
+
with raises(RuntimeError,
|
1409 |
+
match="This Parallel instance is already running"):
|
1410 |
+
parallel = Parallel(n_jobs, backend=backend, return_as=return_as)
|
1411 |
+
g = parallel(delayed(sleep)(1) for _ in range(10)) # noqa: F841
|
1412 |
+
t_start = time.time()
|
1413 |
+
gen2 = parallel(delayed(id)(i) for i in range(100)) # noqa: F841
|
1414 |
+
|
1415 |
+
# Make sure that the error is raised quickly
|
1416 |
+
assert time.time() - t_start < 2, (
|
1417 |
+
"The error should be raised immediatly when submitting a new task "
|
1418 |
+
"but it took more than 2s."
|
1419 |
+
)
|
1420 |
+
|
1421 |
+
del g
|
1422 |
+
# The gc in pypy can be delayed. Force it to make sure this test does not
|
1423 |
+
# cause timeout on the CI.
|
1424 |
+
force_gc_pypy()
|
1425 |
+
|
1426 |
+
|
1427 |
+
@parametrize('backend', RETURN_GENERATOR_BACKENDS)
|
1428 |
+
@parametrize('return_as', ["generator", "generator_unordered"])
|
1429 |
+
@parametrize('n_jobs', [1, 2, -2, -1])
|
1430 |
+
def test_multiple_generator_call_managed(backend, return_as, n_jobs):
|
1431 |
+
# Non-regression test that ensures the dispatch of the tasks starts
|
1432 |
+
# immediately when Parallel.__call__ is called. This test relies on the
|
1433 |
+
# assumption that only one generator can be submitted at a time.
|
1434 |
+
with Parallel(n_jobs, backend=backend,
|
1435 |
+
return_as=return_as) as parallel:
|
1436 |
+
g = parallel(delayed(sleep)(10) for _ in range(10)) # noqa: F841
|
1437 |
+
t_start = time.time()
|
1438 |
+
with raises(RuntimeError,
|
1439 |
+
match="This Parallel instance is already running"):
|
1440 |
+
g2 = parallel(delayed(id)(i) for i in range(100)) # noqa: F841
|
1441 |
+
|
1442 |
+
# Make sure that the error is raised quickly
|
1443 |
+
assert time.time() - t_start < 2, (
|
1444 |
+
"The error should be raised immediatly when submitting a new task "
|
1445 |
+
"but it took more than 2s."
|
1446 |
+
)
|
1447 |
+
|
1448 |
+
# The gc in pypy can be delayed. Force it to make sure this test does not
|
1449 |
+
# cause timeout on the CI.
|
1450 |
+
del g
|
1451 |
+
force_gc_pypy()
|
1452 |
+
|
1453 |
+
|
1454 |
+
@parametrize('backend', RETURN_GENERATOR_BACKENDS)
|
1455 |
+
@parametrize('return_as_1', ["generator", "generator_unordered"])
|
1456 |
+
@parametrize('return_as_2', ["generator", "generator_unordered"])
|
1457 |
+
@parametrize('n_jobs', [1, 2, -2, -1])
|
1458 |
+
def test_multiple_generator_call_separated(
|
1459 |
+
backend, return_as_1, return_as_2, n_jobs
|
1460 |
+
):
|
1461 |
+
# Check that for separated Parallel, both tasks are correctly returned.
|
1462 |
+
g = Parallel(n_jobs, backend=backend, return_as=return_as_1)(
|
1463 |
+
delayed(sqrt)(i ** 2) for i in range(10)
|
1464 |
+
)
|
1465 |
+
g2 = Parallel(n_jobs, backend=backend, return_as=return_as_2)(
|
1466 |
+
delayed(sqrt)(i ** 2) for i in range(10, 20)
|
1467 |
+
)
|
1468 |
+
|
1469 |
+
if return_as_1 == "generator_unordered":
|
1470 |
+
g = sorted(g)
|
1471 |
+
|
1472 |
+
if return_as_2 == "generator_unordered":
|
1473 |
+
g2 = sorted(g2)
|
1474 |
+
|
1475 |
+
assert all(res == i for res, i in zip(g, range(10)))
|
1476 |
+
assert all(res == i for res, i in zip(g2, range(10, 20)))
|
1477 |
+
|
1478 |
+
|
1479 |
+
@parametrize('backend, error', [
|
1480 |
+
('loky', True),
|
1481 |
+
('threading', False),
|
1482 |
+
('sequential', False),
|
1483 |
+
])
|
1484 |
+
@parametrize('return_as_1', ["generator", "generator_unordered"])
|
1485 |
+
@parametrize('return_as_2', ["generator", "generator_unordered"])
|
1486 |
+
def test_multiple_generator_call_separated_gc(
|
1487 |
+
backend, return_as_1, return_as_2, error
|
1488 |
+
):
|
1489 |
+
|
1490 |
+
if (backend == 'loky') and (mp is None):
|
1491 |
+
pytest.skip("Requires multiprocessing")
|
1492 |
+
|
1493 |
+
# Check that in loky, only one call can be run at a time with
|
1494 |
+
# a single executor.
|
1495 |
+
parallel = Parallel(2, backend=backend, return_as=return_as_1)
|
1496 |
+
g = parallel(delayed(sleep)(10) for i in range(10))
|
1497 |
+
g_wr = weakref.finalize(g, lambda: print("Generator collected"))
|
1498 |
+
ctx = (
|
1499 |
+
raises(RuntimeError, match="The executor underlying Parallel")
|
1500 |
+
if error else nullcontext()
|
1501 |
+
)
|
1502 |
+
with ctx:
|
1503 |
+
# For loky, this call will raise an error as the gc of the previous
|
1504 |
+
# generator will shutdown the shared executor.
|
1505 |
+
# For the other backends, as the worker pools are not shared between
|
1506 |
+
# the two calls, this should proceed correctly.
|
1507 |
+
t_start = time.time()
|
1508 |
+
g = Parallel(2, backend=backend, return_as=return_as_2)(
|
1509 |
+
delayed(sqrt)(i ** 2) for i in range(10, 20)
|
1510 |
+
)
|
1511 |
+
|
1512 |
+
# The gc in pypy can be delayed. Force it to test the behavior when it
|
1513 |
+
# will eventually be collected.
|
1514 |
+
force_gc_pypy()
|
1515 |
+
|
1516 |
+
if return_as_2 == "generator_unordered":
|
1517 |
+
g = sorted(g)
|
1518 |
+
|
1519 |
+
assert all(res == i for res, i in zip(g, range(10, 20)))
|
1520 |
+
|
1521 |
+
assert time.time() - t_start < 5
|
1522 |
+
|
1523 |
+
# Make sure that the computation are stopped for the gc'ed generator
|
1524 |
+
retry = 0
|
1525 |
+
while g_wr.alive and retry < 3:
|
1526 |
+
retry += 1
|
1527 |
+
time.sleep(.5)
|
1528 |
+
assert time.time() - t_start < 5
|
1529 |
+
|
1530 |
+
if parallel._effective_n_jobs() != 1:
|
1531 |
+
# check that the first parallel object is aborting (the final _aborted
|
1532 |
+
# state might be delayed).
|
1533 |
+
assert parallel._aborting
|
1534 |
+
|
1535 |
+
|
1536 |
+
@with_numpy
|
1537 |
+
@with_multiprocessing
|
1538 |
+
@parametrize('backend', PROCESS_BACKENDS)
|
1539 |
+
def test_memmapping_leaks(backend, tmpdir):
|
1540 |
+
# Non-regression test for memmapping backends. Ensure that the data
|
1541 |
+
# does not stay too long in memory
|
1542 |
+
tmpdir = tmpdir.strpath
|
1543 |
+
|
1544 |
+
# Use max_nbytes=1 to force the use of memory-mapping even for small
|
1545 |
+
# arrays
|
1546 |
+
with Parallel(n_jobs=2, max_nbytes=1, backend=backend,
|
1547 |
+
temp_folder=tmpdir) as p:
|
1548 |
+
p(delayed(check_memmap)(a) for a in [np.random.random(10)] * 2)
|
1549 |
+
|
1550 |
+
# The memmap folder should not be clean in the context scope
|
1551 |
+
assert len(os.listdir(tmpdir)) > 0
|
1552 |
+
|
1553 |
+
# Cleaning of the memmap folder is triggered by the garbage
|
1554 |
+
# collection. With pypy the garbage collection has been observed to be
|
1555 |
+
# delayed, sometimes up until the shutdown of the interpreter. This
|
1556 |
+
# cleanup job executed in the worker ensures that it's triggered
|
1557 |
+
# immediately.
|
1558 |
+
p(delayed(_cleanup_worker)() for _ in range(2))
|
1559 |
+
|
1560 |
+
# Make sure that the shared memory is cleaned at the end when we exit
|
1561 |
+
# the context
|
1562 |
+
for _ in range(100):
|
1563 |
+
if not os.listdir(tmpdir):
|
1564 |
+
break
|
1565 |
+
sleep(.1)
|
1566 |
+
else:
|
1567 |
+
raise AssertionError('temporary directory of Parallel was not removed')
|
1568 |
+
|
1569 |
+
# Make sure that the shared memory is cleaned at the end of a call
|
1570 |
+
p = Parallel(n_jobs=2, max_nbytes=1, backend=backend)
|
1571 |
+
p(delayed(check_memmap)(a) for a in [np.random.random(10)] * 2)
|
1572 |
+
p(delayed(_cleanup_worker)() for _ in range(2))
|
1573 |
+
|
1574 |
+
for _ in range(100):
|
1575 |
+
if not os.listdir(tmpdir):
|
1576 |
+
break
|
1577 |
+
sleep(.1)
|
1578 |
+
else:
|
1579 |
+
raise AssertionError('temporary directory of Parallel was not removed')
|
1580 |
+
|
1581 |
+
|
1582 |
+
@parametrize('backend',
|
1583 |
+
([None, 'threading'] if mp is None
|
1584 |
+
else [None, 'loky', 'threading'])
|
1585 |
+
)
|
1586 |
+
def test_lambda_expression(backend):
|
1587 |
+
# cloudpickle is used to pickle delayed callables
|
1588 |
+
results = Parallel(n_jobs=2, backend=backend)(
|
1589 |
+
delayed(lambda x: x ** 2)(i) for i in range(10))
|
1590 |
+
assert results == [i ** 2 for i in range(10)]
|
1591 |
+
|
1592 |
+
|
1593 |
+
@with_multiprocessing
|
1594 |
+
@parametrize('backend', PROCESS_BACKENDS)
|
1595 |
+
def test_backend_batch_statistics_reset(backend):
|
1596 |
+
"""Test that a parallel backend correctly resets its batch statistics."""
|
1597 |
+
n_jobs = 2
|
1598 |
+
n_inputs = 500
|
1599 |
+
task_time = 2. / n_inputs
|
1600 |
+
|
1601 |
+
p = Parallel(verbose=10, n_jobs=n_jobs, backend=backend)
|
1602 |
+
p(delayed(time.sleep)(task_time) for i in range(n_inputs))
|
1603 |
+
assert (p._backend._effective_batch_size ==
|
1604 |
+
p._backend._DEFAULT_EFFECTIVE_BATCH_SIZE)
|
1605 |
+
assert (p._backend._smoothed_batch_duration ==
|
1606 |
+
p._backend._DEFAULT_SMOOTHED_BATCH_DURATION)
|
1607 |
+
|
1608 |
+
p(delayed(time.sleep)(task_time) for i in range(n_inputs))
|
1609 |
+
assert (p._backend._effective_batch_size ==
|
1610 |
+
p._backend._DEFAULT_EFFECTIVE_BATCH_SIZE)
|
1611 |
+
assert (p._backend._smoothed_batch_duration ==
|
1612 |
+
p._backend._DEFAULT_SMOOTHED_BATCH_DURATION)
|
1613 |
+
|
1614 |
+
|
1615 |
+
@with_multiprocessing
|
1616 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
1617 |
+
def test_backend_hinting_and_constraints(context):
|
1618 |
+
for n_jobs in [1, 2, -1]:
|
1619 |
+
assert type(Parallel(n_jobs=n_jobs)._backend) == DefaultBackend
|
1620 |
+
|
1621 |
+
p = Parallel(n_jobs=n_jobs, prefer='threads')
|
1622 |
+
assert type(p._backend) is ThreadingBackend
|
1623 |
+
|
1624 |
+
p = Parallel(n_jobs=n_jobs, prefer='processes')
|
1625 |
+
assert type(p._backend) is DefaultBackend
|
1626 |
+
|
1627 |
+
p = Parallel(n_jobs=n_jobs, require='sharedmem')
|
1628 |
+
assert type(p._backend) is ThreadingBackend
|
1629 |
+
|
1630 |
+
# Explicit backend selection can override backend hinting although it
|
1631 |
+
# is useless to pass a hint when selecting a backend.
|
1632 |
+
p = Parallel(n_jobs=2, backend='loky', prefer='threads')
|
1633 |
+
assert type(p._backend) is LokyBackend
|
1634 |
+
|
1635 |
+
with context('loky', n_jobs=2):
|
1636 |
+
# Explicit backend selection by the user with the context manager
|
1637 |
+
# should be respected when combined with backend hints only.
|
1638 |
+
p = Parallel(prefer='threads')
|
1639 |
+
assert type(p._backend) is LokyBackend
|
1640 |
+
assert p.n_jobs == 2
|
1641 |
+
|
1642 |
+
with context('loky', n_jobs=2):
|
1643 |
+
# Locally hard-coded n_jobs value is respected.
|
1644 |
+
p = Parallel(n_jobs=3, prefer='threads')
|
1645 |
+
assert type(p._backend) is LokyBackend
|
1646 |
+
assert p.n_jobs == 3
|
1647 |
+
|
1648 |
+
with context('loky', n_jobs=2):
|
1649 |
+
# Explicit backend selection by the user with the context manager
|
1650 |
+
# should be ignored when the Parallel call has hard constraints.
|
1651 |
+
# In this case, the default backend that supports shared mem is
|
1652 |
+
# used an the default number of processes is used.
|
1653 |
+
p = Parallel(require='sharedmem')
|
1654 |
+
assert type(p._backend) is ThreadingBackend
|
1655 |
+
assert p.n_jobs == 1
|
1656 |
+
|
1657 |
+
with context('loky', n_jobs=2):
|
1658 |
+
p = Parallel(n_jobs=3, require='sharedmem')
|
1659 |
+
assert type(p._backend) is ThreadingBackend
|
1660 |
+
assert p.n_jobs == 3
|
1661 |
+
|
1662 |
+
|
1663 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
1664 |
+
def test_backend_hinting_and_constraints_with_custom_backends(
|
1665 |
+
capsys, context
|
1666 |
+
):
|
1667 |
+
# Custom backends can declare that they use threads and have shared memory
|
1668 |
+
# semantics:
|
1669 |
+
class MyCustomThreadingBackend(ParallelBackendBase):
|
1670 |
+
supports_sharedmem = True
|
1671 |
+
use_threads = True
|
1672 |
+
|
1673 |
+
def apply_async(self):
|
1674 |
+
pass
|
1675 |
+
|
1676 |
+
def effective_n_jobs(self, n_jobs):
|
1677 |
+
return n_jobs
|
1678 |
+
|
1679 |
+
with context(MyCustomThreadingBackend()):
|
1680 |
+
p = Parallel(n_jobs=2, prefer='processes') # ignored
|
1681 |
+
assert type(p._backend) is MyCustomThreadingBackend
|
1682 |
+
|
1683 |
+
p = Parallel(n_jobs=2, require='sharedmem')
|
1684 |
+
assert type(p._backend) is MyCustomThreadingBackend
|
1685 |
+
|
1686 |
+
class MyCustomProcessingBackend(ParallelBackendBase):
|
1687 |
+
supports_sharedmem = False
|
1688 |
+
use_threads = False
|
1689 |
+
|
1690 |
+
def apply_async(self):
|
1691 |
+
pass
|
1692 |
+
|
1693 |
+
def effective_n_jobs(self, n_jobs):
|
1694 |
+
return n_jobs
|
1695 |
+
|
1696 |
+
with context(MyCustomProcessingBackend()):
|
1697 |
+
p = Parallel(n_jobs=2, prefer='processes')
|
1698 |
+
assert type(p._backend) is MyCustomProcessingBackend
|
1699 |
+
|
1700 |
+
out, err = capsys.readouterr()
|
1701 |
+
assert out == ""
|
1702 |
+
assert err == ""
|
1703 |
+
|
1704 |
+
p = Parallel(n_jobs=2, require='sharedmem', verbose=10)
|
1705 |
+
assert type(p._backend) is ThreadingBackend
|
1706 |
+
|
1707 |
+
out, err = capsys.readouterr()
|
1708 |
+
expected = ("Using ThreadingBackend as joblib backend "
|
1709 |
+
"instead of MyCustomProcessingBackend as the latter "
|
1710 |
+
"does not provide shared memory semantics.")
|
1711 |
+
assert out.strip() == expected
|
1712 |
+
assert err == ""
|
1713 |
+
|
1714 |
+
with raises(ValueError):
|
1715 |
+
Parallel(backend=MyCustomProcessingBackend(), require='sharedmem')
|
1716 |
+
|
1717 |
+
|
1718 |
+
def test_invalid_backend_hinting_and_constraints():
|
1719 |
+
with raises(ValueError):
|
1720 |
+
Parallel(prefer='invalid')
|
1721 |
+
|
1722 |
+
with raises(ValueError):
|
1723 |
+
Parallel(require='invalid')
|
1724 |
+
|
1725 |
+
with raises(ValueError):
|
1726 |
+
# It is inconsistent to prefer process-based parallelism while
|
1727 |
+
# requiring shared memory semantics.
|
1728 |
+
Parallel(prefer='processes', require='sharedmem')
|
1729 |
+
|
1730 |
+
if mp is not None:
|
1731 |
+
# It is inconsistent to ask explicitly for a process-based
|
1732 |
+
# parallelism while requiring shared memory semantics.
|
1733 |
+
with raises(ValueError):
|
1734 |
+
Parallel(backend='loky', require='sharedmem')
|
1735 |
+
with raises(ValueError):
|
1736 |
+
Parallel(backend='multiprocessing', require='sharedmem')
|
1737 |
+
|
1738 |
+
|
1739 |
+
def _recursive_backend_info(limit=3, **kwargs):
|
1740 |
+
"""Perform nested parallel calls and introspect the backend on the way"""
|
1741 |
+
|
1742 |
+
with Parallel(n_jobs=2) as p:
|
1743 |
+
this_level = [(type(p._backend).__name__, p._backend.nesting_level)]
|
1744 |
+
if limit == 0:
|
1745 |
+
return this_level
|
1746 |
+
results = p(delayed(_recursive_backend_info)(limit=limit - 1, **kwargs)
|
1747 |
+
for i in range(1))
|
1748 |
+
return this_level + results[0]
|
1749 |
+
|
1750 |
+
|
1751 |
+
@with_multiprocessing
|
1752 |
+
@parametrize('backend', ['loky', 'threading'])
|
1753 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
1754 |
+
def test_nested_parallelism_limit(context, backend):
|
1755 |
+
with context(backend, n_jobs=2):
|
1756 |
+
backend_types_and_levels = _recursive_backend_info()
|
1757 |
+
|
1758 |
+
if cpu_count() == 1:
|
1759 |
+
second_level_backend_type = 'SequentialBackend'
|
1760 |
+
max_level = 1
|
1761 |
+
else:
|
1762 |
+
second_level_backend_type = 'ThreadingBackend'
|
1763 |
+
max_level = 2
|
1764 |
+
|
1765 |
+
top_level_backend_type = backend.title() + 'Backend'
|
1766 |
+
expected_types_and_levels = [
|
1767 |
+
(top_level_backend_type, 0),
|
1768 |
+
(second_level_backend_type, 1),
|
1769 |
+
('SequentialBackend', max_level),
|
1770 |
+
('SequentialBackend', max_level)
|
1771 |
+
]
|
1772 |
+
assert backend_types_and_levels == expected_types_and_levels
|
1773 |
+
|
1774 |
+
|
1775 |
+
@with_numpy
|
1776 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
1777 |
+
@skipif(distributed is None, reason='This test requires dask')
|
1778 |
+
def test_nested_parallelism_with_dask(context):
|
1779 |
+
with distributed.Client(n_workers=2, threads_per_worker=2):
|
1780 |
+
# 10 MB of data as argument to trigger implicit scattering
|
1781 |
+
data = np.ones(int(1e7), dtype=np.uint8)
|
1782 |
+
for i in range(2):
|
1783 |
+
with context('dask'):
|
1784 |
+
backend_types_and_levels = _recursive_backend_info(data=data)
|
1785 |
+
assert len(backend_types_and_levels) == 4
|
1786 |
+
assert all(name == 'DaskDistributedBackend'
|
1787 |
+
for name, _ in backend_types_and_levels)
|
1788 |
+
|
1789 |
+
# No argument
|
1790 |
+
with context('dask'):
|
1791 |
+
backend_types_and_levels = _recursive_backend_info()
|
1792 |
+
assert len(backend_types_and_levels) == 4
|
1793 |
+
assert all(name == 'DaskDistributedBackend'
|
1794 |
+
for name, _ in backend_types_and_levels)
|
1795 |
+
|
1796 |
+
|
1797 |
+
def _recursive_parallel(nesting_limit=None):
|
1798 |
+
"""A horrible function that does recursive parallel calls"""
|
1799 |
+
return Parallel()(delayed(_recursive_parallel)() for i in range(2))
|
1800 |
+
|
1801 |
+
|
1802 |
+
@pytest.mark.no_cover
|
1803 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
1804 |
+
@parametrize(
|
1805 |
+
'backend', (['threading'] if mp is None else ['loky', 'threading'])
|
1806 |
+
)
|
1807 |
+
def test_thread_bomb_mitigation(context, backend):
|
1808 |
+
# Test that recursive parallelism raises a recursion rather than
|
1809 |
+
# saturating the operating system resources by creating a unbounded number
|
1810 |
+
# of threads.
|
1811 |
+
with context(backend, n_jobs=2):
|
1812 |
+
with raises(BaseException) as excinfo:
|
1813 |
+
_recursive_parallel()
|
1814 |
+
exc = excinfo.value
|
1815 |
+
if backend == "loky":
|
1816 |
+
# Local import because loky may not be importable for lack of
|
1817 |
+
# multiprocessing
|
1818 |
+
from joblib.externals.loky.process_executor import TerminatedWorkerError # noqa
|
1819 |
+
if isinstance(exc, (TerminatedWorkerError, PicklingError)):
|
1820 |
+
# The recursion exception can itself cause an error when
|
1821 |
+
# pickling it to be send back to the parent process. In this
|
1822 |
+
# case the worker crashes but the original traceback is still
|
1823 |
+
# printed on stderr. This could be improved but does not seem
|
1824 |
+
# simple to do and this is not critical for users (as long
|
1825 |
+
# as there is no process or thread bomb happening).
|
1826 |
+
pytest.xfail("Loky worker crash when serializing RecursionError")
|
1827 |
+
|
1828 |
+
assert isinstance(exc, RecursionError)
|
1829 |
+
|
1830 |
+
|
1831 |
+
def _run_parallel_sum():
|
1832 |
+
env_vars = {}
|
1833 |
+
for var in ['OMP_NUM_THREADS', 'OPENBLAS_NUM_THREADS', 'MKL_NUM_THREADS',
|
1834 |
+
'VECLIB_MAXIMUM_THREADS', 'NUMEXPR_NUM_THREADS',
|
1835 |
+
'NUMBA_NUM_THREADS', 'ENABLE_IPC']:
|
1836 |
+
env_vars[var] = os.environ.get(var)
|
1837 |
+
return env_vars, parallel_sum(100)
|
1838 |
+
|
1839 |
+
|
1840 |
+
@parametrize("backend", ([None, 'loky'] if mp is not None else [None]))
|
1841 |
+
@skipif(parallel_sum is None, reason="Need OpenMP helper compiled")
|
1842 |
+
def test_parallel_thread_limit(backend):
|
1843 |
+
results = Parallel(n_jobs=2, backend=backend)(
|
1844 |
+
delayed(_run_parallel_sum)() for _ in range(2)
|
1845 |
+
)
|
1846 |
+
expected_num_threads = max(cpu_count() // 2, 1)
|
1847 |
+
for worker_env_vars, omp_num_threads in results:
|
1848 |
+
assert omp_num_threads == expected_num_threads
|
1849 |
+
for name, value in worker_env_vars.items():
|
1850 |
+
if name.endswith("_THREADS"):
|
1851 |
+
assert value == str(expected_num_threads)
|
1852 |
+
else:
|
1853 |
+
assert name == "ENABLE_IPC"
|
1854 |
+
assert value == "1"
|
1855 |
+
|
1856 |
+
|
1857 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
1858 |
+
@skipif(distributed is not None, reason='This test requires dask')
|
1859 |
+
def test_dask_backend_when_dask_not_installed(context):
|
1860 |
+
with raises(ValueError, match='Please install dask'):
|
1861 |
+
context('dask')
|
1862 |
+
|
1863 |
+
|
1864 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
1865 |
+
def test_zero_worker_backend(context):
|
1866 |
+
# joblib.Parallel should reject with an explicit error message parallel
|
1867 |
+
# backends that have no worker.
|
1868 |
+
class ZeroWorkerBackend(ThreadingBackend):
|
1869 |
+
def configure(self, *args, **kwargs):
|
1870 |
+
return 0
|
1871 |
+
|
1872 |
+
def apply_async(self, func, callback=None): # pragma: no cover
|
1873 |
+
raise TimeoutError("No worker available")
|
1874 |
+
|
1875 |
+
def effective_n_jobs(self, n_jobs): # pragma: no cover
|
1876 |
+
return 0
|
1877 |
+
|
1878 |
+
expected_msg = "ZeroWorkerBackend has no active worker"
|
1879 |
+
with context(ZeroWorkerBackend()):
|
1880 |
+
with pytest.raises(RuntimeError, match=expected_msg):
|
1881 |
+
Parallel(n_jobs=2)(delayed(id)(i) for i in range(2))
|
1882 |
+
|
1883 |
+
|
1884 |
+
def test_globals_update_at_each_parallel_call():
|
1885 |
+
# This is a non-regression test related to joblib issues #836 and #833.
|
1886 |
+
# Cloudpickle versions between 0.5.4 and 0.7 introduced a bug where global
|
1887 |
+
# variables changes in a parent process between two calls to
|
1888 |
+
# joblib.Parallel would not be propagated into the workers.
|
1889 |
+
global MY_GLOBAL_VARIABLE
|
1890 |
+
MY_GLOBAL_VARIABLE = "original value"
|
1891 |
+
|
1892 |
+
def check_globals():
|
1893 |
+
global MY_GLOBAL_VARIABLE
|
1894 |
+
return MY_GLOBAL_VARIABLE
|
1895 |
+
|
1896 |
+
assert check_globals() == "original value"
|
1897 |
+
|
1898 |
+
workers_global_variable = Parallel(n_jobs=2)(
|
1899 |
+
delayed(check_globals)() for i in range(2))
|
1900 |
+
assert set(workers_global_variable) == {"original value"}
|
1901 |
+
|
1902 |
+
# Change the value of MY_GLOBAL_VARIABLE, and make sure this change gets
|
1903 |
+
# propagated into the workers environment
|
1904 |
+
MY_GLOBAL_VARIABLE = "changed value"
|
1905 |
+
assert check_globals() == "changed value"
|
1906 |
+
|
1907 |
+
workers_global_variable = Parallel(n_jobs=2)(
|
1908 |
+
delayed(check_globals)() for i in range(2))
|
1909 |
+
assert set(workers_global_variable) == {"changed value"}
|
1910 |
+
|
1911 |
+
|
1912 |
+
##############################################################################
|
1913 |
+
# Test environment variable in child env, in particular for limiting
|
1914 |
+
# the maximal number of threads in C-library threadpools.
|
1915 |
+
#
|
1916 |
+
|
1917 |
+
def _check_numpy_threadpool_limits():
|
1918 |
+
import numpy as np
|
1919 |
+
# Let's call BLAS on a Matrix Matrix multiplication with dimensions large
|
1920 |
+
# enough to ensure that the threadpool managed by the underlying BLAS
|
1921 |
+
# implementation is actually used so as to force its initialization.
|
1922 |
+
a = np.random.randn(100, 100)
|
1923 |
+
np.dot(a, a)
|
1924 |
+
from threadpoolctl import threadpool_info
|
1925 |
+
return threadpool_info()
|
1926 |
+
|
1927 |
+
|
1928 |
+
def _parent_max_num_threads_for(child_module, parent_info):
|
1929 |
+
for parent_module in parent_info:
|
1930 |
+
if parent_module['filepath'] == child_module['filepath']:
|
1931 |
+
return parent_module['num_threads']
|
1932 |
+
raise ValueError("An unexpected module was loaded in child:\n{}"
|
1933 |
+
.format(child_module))
|
1934 |
+
|
1935 |
+
|
1936 |
+
def check_child_num_threads(workers_info, parent_info, num_threads):
|
1937 |
+
# Check that the number of threads reported in workers_info is consistent
|
1938 |
+
# with the expectation. We need to be careful to handle the cases where
|
1939 |
+
# the requested number of threads is below max_num_thread for the library.
|
1940 |
+
for child_threadpool_info in workers_info:
|
1941 |
+
for child_module in child_threadpool_info:
|
1942 |
+
parent_max_num_threads = _parent_max_num_threads_for(
|
1943 |
+
child_module, parent_info)
|
1944 |
+
expected = {min(num_threads, parent_max_num_threads), num_threads}
|
1945 |
+
assert child_module['num_threads'] in expected
|
1946 |
+
|
1947 |
+
|
1948 |
+
@with_numpy
|
1949 |
+
@with_multiprocessing
|
1950 |
+
@parametrize('n_jobs', [2, 4, -2, -1])
|
1951 |
+
def test_threadpool_limitation_in_child_loky(n_jobs):
|
1952 |
+
# Check that the protection against oversubscription in workers is working
|
1953 |
+
# using threadpoolctl functionalities.
|
1954 |
+
|
1955 |
+
# Skip this test if numpy is not linked to a BLAS library
|
1956 |
+
parent_info = _check_numpy_threadpool_limits()
|
1957 |
+
if len(parent_info) == 0:
|
1958 |
+
pytest.skip(reason="Need a version of numpy linked to BLAS")
|
1959 |
+
|
1960 |
+
workers_threadpool_infos = Parallel(backend="loky", n_jobs=n_jobs)(
|
1961 |
+
delayed(_check_numpy_threadpool_limits)() for i in range(2))
|
1962 |
+
|
1963 |
+
n_jobs = effective_n_jobs(n_jobs)
|
1964 |
+
expected_child_num_threads = max(cpu_count() // n_jobs, 1)
|
1965 |
+
|
1966 |
+
check_child_num_threads(workers_threadpool_infos, parent_info,
|
1967 |
+
expected_child_num_threads)
|
1968 |
+
|
1969 |
+
|
1970 |
+
@with_numpy
|
1971 |
+
@with_multiprocessing
|
1972 |
+
@parametrize('inner_max_num_threads', [1, 2, 4, None])
|
1973 |
+
@parametrize('n_jobs', [2, -1])
|
1974 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
1975 |
+
def test_threadpool_limitation_in_child_context(
|
1976 |
+
context, n_jobs, inner_max_num_threads
|
1977 |
+
):
|
1978 |
+
# Check that the protection against oversubscription in workers is working
|
1979 |
+
# using threadpoolctl functionalities.
|
1980 |
+
|
1981 |
+
# Skip this test if numpy is not linked to a BLAS library
|
1982 |
+
parent_info = _check_numpy_threadpool_limits()
|
1983 |
+
if len(parent_info) == 0:
|
1984 |
+
pytest.skip(reason="Need a version of numpy linked to BLAS")
|
1985 |
+
|
1986 |
+
with context('loky', inner_max_num_threads=inner_max_num_threads):
|
1987 |
+
workers_threadpool_infos = Parallel(n_jobs=n_jobs)(
|
1988 |
+
delayed(_check_numpy_threadpool_limits)() for i in range(2))
|
1989 |
+
|
1990 |
+
n_jobs = effective_n_jobs(n_jobs)
|
1991 |
+
if inner_max_num_threads is None:
|
1992 |
+
expected_child_num_threads = max(cpu_count() // n_jobs, 1)
|
1993 |
+
else:
|
1994 |
+
expected_child_num_threads = inner_max_num_threads
|
1995 |
+
|
1996 |
+
check_child_num_threads(workers_threadpool_infos, parent_info,
|
1997 |
+
expected_child_num_threads)
|
1998 |
+
|
1999 |
+
|
2000 |
+
@with_multiprocessing
|
2001 |
+
@parametrize('n_jobs', [2, -1])
|
2002 |
+
@parametrize('var_name', ["OPENBLAS_NUM_THREADS",
|
2003 |
+
"MKL_NUM_THREADS",
|
2004 |
+
"OMP_NUM_THREADS"])
|
2005 |
+
@parametrize("context", [parallel_config, parallel_backend])
|
2006 |
+
def test_threadpool_limitation_in_child_override(context, n_jobs, var_name):
|
2007 |
+
# Check that environment variables set by the user on the main process
|
2008 |
+
# always have the priority.
|
2009 |
+
|
2010 |
+
# Clean up the existing executor because we change the environment of the
|
2011 |
+
# parent at runtime and it is not detected in loky intentionally.
|
2012 |
+
get_reusable_executor(reuse=True).shutdown()
|
2013 |
+
|
2014 |
+
def _get_env(var_name):
|
2015 |
+
return os.environ.get(var_name)
|
2016 |
+
|
2017 |
+
original_var_value = os.environ.get(var_name)
|
2018 |
+
try:
|
2019 |
+
os.environ[var_name] = "4"
|
2020 |
+
# Skip this test if numpy is not linked to a BLAS library
|
2021 |
+
results = Parallel(n_jobs=n_jobs)(
|
2022 |
+
delayed(_get_env)(var_name) for i in range(2))
|
2023 |
+
assert results == ["4", "4"]
|
2024 |
+
|
2025 |
+
with context('loky', inner_max_num_threads=1):
|
2026 |
+
results = Parallel(n_jobs=n_jobs)(
|
2027 |
+
delayed(_get_env)(var_name) for i in range(2))
|
2028 |
+
assert results == ["1", "1"]
|
2029 |
+
|
2030 |
+
finally:
|
2031 |
+
if original_var_value is None:
|
2032 |
+
del os.environ[var_name]
|
2033 |
+
else:
|
2034 |
+
os.environ[var_name] = original_var_value
|
2035 |
+
|
2036 |
+
|
2037 |
+
@with_multiprocessing
|
2038 |
+
@parametrize('n_jobs', [2, 4, -1])
|
2039 |
+
def test_loky_reuse_workers(n_jobs):
|
2040 |
+
# Non-regression test for issue #967 where the workers are not reused when
|
2041 |
+
# calling multiple Parallel loops.
|
2042 |
+
|
2043 |
+
def parallel_call(n_jobs):
|
2044 |
+
x = range(10)
|
2045 |
+
Parallel(n_jobs=n_jobs)(delayed(sum)(x) for i in range(10))
|
2046 |
+
|
2047 |
+
# Run a parallel loop and get the workers used for computations
|
2048 |
+
parallel_call(n_jobs)
|
2049 |
+
first_executor = get_reusable_executor(reuse=True)
|
2050 |
+
|
2051 |
+
# Ensure that the workers are reused for the next calls, as the executor is
|
2052 |
+
# not restarted.
|
2053 |
+
for _ in range(10):
|
2054 |
+
parallel_call(n_jobs)
|
2055 |
+
executor = get_reusable_executor(reuse=True)
|
2056 |
+
assert executor == first_executor
|
llmeval-env/lib/python3.10/site-packages/joblib/test/test_store_backends.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
try:
|
3 |
+
# Python 2.7: use the C pickle to speed up
|
4 |
+
# test_concurrency_safe_write which pickles big python objects
|
5 |
+
import cPickle as cpickle
|
6 |
+
except ImportError:
|
7 |
+
import pickle as cpickle
|
8 |
+
import functools
|
9 |
+
from pickle import PicklingError
|
10 |
+
import time
|
11 |
+
|
12 |
+
import pytest
|
13 |
+
|
14 |
+
from joblib.testing import parametrize, timeout
|
15 |
+
from joblib.test.common import with_multiprocessing
|
16 |
+
from joblib.backports import concurrency_safe_rename
|
17 |
+
from joblib import Parallel, delayed
|
18 |
+
from joblib._store_backends import (
|
19 |
+
concurrency_safe_write,
|
20 |
+
FileSystemStoreBackend,
|
21 |
+
CacheWarning,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def write_func(output, filename):
|
26 |
+
with open(filename, 'wb') as f:
|
27 |
+
cpickle.dump(output, f)
|
28 |
+
|
29 |
+
|
30 |
+
def load_func(expected, filename):
|
31 |
+
for i in range(10):
|
32 |
+
try:
|
33 |
+
with open(filename, 'rb') as f:
|
34 |
+
reloaded = cpickle.load(f)
|
35 |
+
break
|
36 |
+
except (OSError, IOError):
|
37 |
+
# On Windows you can have WindowsError ([Error 5] Access
|
38 |
+
# is denied or [Error 13] Permission denied) when reading the file,
|
39 |
+
# probably because a writer process has a lock on the file
|
40 |
+
time.sleep(0.1)
|
41 |
+
else:
|
42 |
+
raise
|
43 |
+
assert expected == reloaded
|
44 |
+
|
45 |
+
|
46 |
+
def concurrency_safe_write_rename(to_write, filename, write_func):
|
47 |
+
temporary_filename = concurrency_safe_write(to_write,
|
48 |
+
filename, write_func)
|
49 |
+
concurrency_safe_rename(temporary_filename, filename)
|
50 |
+
|
51 |
+
|
52 |
+
@timeout(0) # No timeout as this test can be long
|
53 |
+
@with_multiprocessing
|
54 |
+
@parametrize('backend', ['multiprocessing', 'loky', 'threading'])
|
55 |
+
def test_concurrency_safe_write(tmpdir, backend):
|
56 |
+
# Add one item to cache
|
57 |
+
filename = tmpdir.join('test.pkl').strpath
|
58 |
+
|
59 |
+
obj = {str(i): i for i in range(int(1e5))}
|
60 |
+
funcs = [functools.partial(concurrency_safe_write_rename,
|
61 |
+
write_func=write_func)
|
62 |
+
if i % 3 != 2 else load_func for i in range(12)]
|
63 |
+
Parallel(n_jobs=2, backend=backend)(
|
64 |
+
delayed(func)(obj, filename) for func in funcs)
|
65 |
+
|
66 |
+
|
67 |
+
def test_warning_on_dump_failure(tmpdir):
|
68 |
+
# Check that a warning is raised when the dump fails for any reason but
|
69 |
+
# a PicklingError.
|
70 |
+
class UnpicklableObject(object):
|
71 |
+
def __reduce__(self):
|
72 |
+
raise RuntimeError("some exception")
|
73 |
+
|
74 |
+
backend = FileSystemStoreBackend()
|
75 |
+
backend.location = tmpdir.join('test_warning_on_pickling_error').strpath
|
76 |
+
backend.compress = None
|
77 |
+
|
78 |
+
with pytest.warns(CacheWarning, match="some exception"):
|
79 |
+
backend.dump_item("testpath", UnpicklableObject())
|
80 |
+
|
81 |
+
|
82 |
+
def test_warning_on_pickling_error(tmpdir):
|
83 |
+
# This is separate from test_warning_on_dump_failure because in the
|
84 |
+
# future we will turn this into an exception.
|
85 |
+
class UnpicklableObject(object):
|
86 |
+
def __reduce__(self):
|
87 |
+
raise PicklingError("not picklable")
|
88 |
+
|
89 |
+
backend = FileSystemStoreBackend()
|
90 |
+
backend.location = tmpdir.join('test_warning_on_pickling_error').strpath
|
91 |
+
backend.compress = None
|
92 |
+
|
93 |
+
with pytest.warns(FutureWarning, match="not picklable"):
|
94 |
+
backend.dump_item("testpath", UnpicklableObject())
|
llmeval-env/lib/python3.10/site-packages/joblib/test/test_testing.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import re
|
3 |
+
|
4 |
+
from joblib.testing import raises, check_subprocess_call
|
5 |
+
|
6 |
+
|
7 |
+
def test_check_subprocess_call():
|
8 |
+
code = '\n'.join(['result = 1 + 2 * 3',
|
9 |
+
'print(result)',
|
10 |
+
'my_list = [1, 2, 3]',
|
11 |
+
'print(my_list)'])
|
12 |
+
|
13 |
+
check_subprocess_call([sys.executable, '-c', code])
|
14 |
+
|
15 |
+
# Now checking stdout with a regex
|
16 |
+
check_subprocess_call([sys.executable, '-c', code],
|
17 |
+
# Regex needed for platform-specific line endings
|
18 |
+
stdout_regex=r'7\s{1,2}\[1, 2, 3\]')
|
19 |
+
|
20 |
+
|
21 |
+
def test_check_subprocess_call_non_matching_regex():
|
22 |
+
code = '42'
|
23 |
+
non_matching_pattern = '_no_way_this_matches_anything_'
|
24 |
+
|
25 |
+
with raises(ValueError) as excinfo:
|
26 |
+
check_subprocess_call([sys.executable, '-c', code],
|
27 |
+
stdout_regex=non_matching_pattern)
|
28 |
+
excinfo.match('Unexpected stdout.+{}'.format(non_matching_pattern))
|
29 |
+
|
30 |
+
|
31 |
+
def test_check_subprocess_call_wrong_command():
|
32 |
+
wrong_command = '_a_command_that_does_not_exist_'
|
33 |
+
with raises(OSError):
|
34 |
+
check_subprocess_call([wrong_command])
|
35 |
+
|
36 |
+
|
37 |
+
def test_check_subprocess_call_non_zero_return_code():
|
38 |
+
code_with_non_zero_exit = '\n'.join([
|
39 |
+
'import sys',
|
40 |
+
'print("writing on stdout")',
|
41 |
+
'sys.stderr.write("writing on stderr")',
|
42 |
+
'sys.exit(123)'])
|
43 |
+
|
44 |
+
pattern = re.compile('Non-zero return code: 123.+'
|
45 |
+
'Stdout:\nwriting on stdout.+'
|
46 |
+
'Stderr:\nwriting on stderr', re.DOTALL)
|
47 |
+
|
48 |
+
with raises(ValueError) as excinfo:
|
49 |
+
check_subprocess_call([sys.executable, '-c', code_with_non_zero_exit])
|
50 |
+
excinfo.match(pattern)
|
51 |
+
|
52 |
+
|
53 |
+
def test_check_subprocess_call_timeout():
|
54 |
+
code_timing_out = '\n'.join([
|
55 |
+
'import time',
|
56 |
+
'import sys',
|
57 |
+
'print("before sleep on stdout")',
|
58 |
+
'sys.stdout.flush()',
|
59 |
+
'sys.stderr.write("before sleep on stderr")',
|
60 |
+
'sys.stderr.flush()',
|
61 |
+
# We need to sleep for at least 2 * timeout seconds in case the SIGKILL
|
62 |
+
# is triggered.
|
63 |
+
'time.sleep(10)',
|
64 |
+
'print("process should have be killed before")',
|
65 |
+
'sys.stdout.flush()'])
|
66 |
+
|
67 |
+
pattern = re.compile('Non-zero return code:.+'
|
68 |
+
'Stdout:\nbefore sleep on stdout\\s+'
|
69 |
+
'Stderr:\nbefore sleep on stderr',
|
70 |
+
re.DOTALL)
|
71 |
+
|
72 |
+
with raises(ValueError) as excinfo:
|
73 |
+
check_subprocess_call([sys.executable, '-c', code_timing_out],
|
74 |
+
timeout=1)
|
75 |
+
excinfo.match(pattern)
|
llmeval-env/lib/python3.10/site-packages/joblib/test/test_utils.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
from joblib._utils import eval_expr
|
4 |
+
|
5 |
+
|
6 |
+
@pytest.mark.parametrize(
|
7 |
+
"expr",
|
8 |
+
["exec('import os')", "print(1)", "import os", "1+1; import os", "1^1"],
|
9 |
+
)
|
10 |
+
def test_eval_expr_invalid(expr):
|
11 |
+
with pytest.raises(
|
12 |
+
ValueError, match="is not a valid or supported arithmetic"
|
13 |
+
):
|
14 |
+
eval_expr(expr)
|
15 |
+
|
16 |
+
|
17 |
+
@pytest.mark.parametrize(
|
18 |
+
"expr, result",
|
19 |
+
[
|
20 |
+
("2*6", 12),
|
21 |
+
("2**6", 64),
|
22 |
+
("1 + 2*3**(4) / (6 + -7)", -161.0),
|
23 |
+
("(20 // 3) % 5", 1),
|
24 |
+
],
|
25 |
+
)
|
26 |
+
def test_eval_expr_valid(expr, result):
|
27 |
+
assert eval_expr(expr) == result
|