Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- llmeval-env/lib/python3.10/site-packages/sympy/calculus/tests/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/test_accumulationbounds.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/test_euler.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/test_finite_diff.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/test_singularities.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/test_util.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/calculus/tests/test_finite_diff.py +168 -0
- llmeval-env/lib/python3.10/site-packages/sympy/calculus/tests/test_util.py +331 -0
- llmeval-env/lib/python3.10/site-packages/sympy/interactive/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/interactive/tests/__pycache__/test_interactive.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/interactive/tests/__pycache__/test_ipython.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/interactive/tests/test_interactive.py +10 -0
- llmeval-env/lib/python3.10/site-packages/sympy/interactive/tests/test_ipython.py +278 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/__init__.py +60 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/combsimp.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/cse_main.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/cse_opts.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/epathtools.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/fu.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/gammasimp.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/hyperexpand.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/hyperexpand_doc.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/powsimp.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/radsimp.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/ratsimp.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/simplify.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/sqrtdenest.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/traversaltools.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/trigsimp.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/combsimp.py +114 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/cse_opts.py +52 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/fu.py +2099 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/gammasimp.py +497 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/hyperexpand.py +2494 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/ratsimp.py +222 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__init__.py +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_cse.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_epathtools.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_fu.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_function.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_gammasimp.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_hyperexpand.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_powsimp.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_radsimp.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_ratsimp.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_rewrite.cpython-310.pyc +0 -0
- llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_simplify.cpython-310.pyc +0 -0
llmeval-env/lib/python3.10/site-packages/sympy/calculus/tests/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (193 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/test_accumulationbounds.cpython-310.pyc
ADDED
Binary file (12.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/test_euler.cpython-310.pyc
ADDED
Binary file (3.84 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/test_finite_diff.cpython-310.pyc
ADDED
Binary file (7.48 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/test_singularities.cpython-310.pyc
ADDED
Binary file (4.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/calculus/tests/__pycache__/test_util.cpython-310.pyc
ADDED
Binary file (15.2 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/calculus/tests/test_finite_diff.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import product
|
2 |
+
|
3 |
+
from sympy.core.function import (Function, diff)
|
4 |
+
from sympy.core.numbers import Rational
|
5 |
+
from sympy.core.singleton import S
|
6 |
+
from sympy.core.symbol import symbols
|
7 |
+
from sympy.functions.elementary.exponential import exp
|
8 |
+
from sympy.calculus.finite_diff import (
|
9 |
+
apply_finite_diff, differentiate_finite, finite_diff_weights,
|
10 |
+
_as_finite_diff
|
11 |
+
)
|
12 |
+
from sympy.testing.pytest import raises, warns_deprecated_sympy
|
13 |
+
|
14 |
+
|
15 |
+
def test_apply_finite_diff():
|
16 |
+
x, h = symbols('x h')
|
17 |
+
f = Function('f')
|
18 |
+
assert (apply_finite_diff(1, [x-h, x+h], [f(x-h), f(x+h)], x) -
|
19 |
+
(f(x+h)-f(x-h))/(2*h)).simplify() == 0
|
20 |
+
|
21 |
+
assert (apply_finite_diff(1, [5, 6, 7], [f(5), f(6), f(7)], 5) -
|
22 |
+
(Rational(-3, 2)*f(5) + 2*f(6) - S.Half*f(7))).simplify() == 0
|
23 |
+
raises(ValueError, lambda: apply_finite_diff(1, [x, h], [f(x)]))
|
24 |
+
|
25 |
+
|
26 |
+
def test_finite_diff_weights():
|
27 |
+
|
28 |
+
d = finite_diff_weights(1, [5, 6, 7], 5)
|
29 |
+
assert d[1][2] == [Rational(-3, 2), 2, Rational(-1, 2)]
|
30 |
+
|
31 |
+
# Table 1, p. 702 in doi:10.1090/S0025-5718-1988-0935077-0
|
32 |
+
# --------------------------------------------------------
|
33 |
+
xl = [0, 1, -1, 2, -2, 3, -3, 4, -4]
|
34 |
+
|
35 |
+
# d holds all coefficients
|
36 |
+
d = finite_diff_weights(4, xl, S.Zero)
|
37 |
+
|
38 |
+
# Zeroeth derivative
|
39 |
+
for i in range(5):
|
40 |
+
assert d[0][i] == [S.One] + [S.Zero]*8
|
41 |
+
|
42 |
+
# First derivative
|
43 |
+
assert d[1][0] == [S.Zero]*9
|
44 |
+
assert d[1][2] == [S.Zero, S.Half, Rational(-1, 2)] + [S.Zero]*6
|
45 |
+
assert d[1][4] == [S.Zero, Rational(2, 3), Rational(-2, 3), Rational(-1, 12), Rational(1, 12)] + [S.Zero]*4
|
46 |
+
assert d[1][6] == [S.Zero, Rational(3, 4), Rational(-3, 4), Rational(-3, 20), Rational(3, 20),
|
47 |
+
Rational(1, 60), Rational(-1, 60)] + [S.Zero]*2
|
48 |
+
assert d[1][8] == [S.Zero, Rational(4, 5), Rational(-4, 5), Rational(-1, 5), Rational(1, 5),
|
49 |
+
Rational(4, 105), Rational(-4, 105), Rational(-1, 280), Rational(1, 280)]
|
50 |
+
|
51 |
+
# Second derivative
|
52 |
+
for i in range(2):
|
53 |
+
assert d[2][i] == [S.Zero]*9
|
54 |
+
assert d[2][2] == [-S(2), S.One, S.One] + [S.Zero]*6
|
55 |
+
assert d[2][4] == [Rational(-5, 2), Rational(4, 3), Rational(4, 3), Rational(-1, 12), Rational(-1, 12)] + [S.Zero]*4
|
56 |
+
assert d[2][6] == [Rational(-49, 18), Rational(3, 2), Rational(3, 2), Rational(-3, 20), Rational(-3, 20),
|
57 |
+
Rational(1, 90), Rational(1, 90)] + [S.Zero]*2
|
58 |
+
assert d[2][8] == [Rational(-205, 72), Rational(8, 5), Rational(8, 5), Rational(-1, 5), Rational(-1, 5),
|
59 |
+
Rational(8, 315), Rational(8, 315), Rational(-1, 560), Rational(-1, 560)]
|
60 |
+
|
61 |
+
# Third derivative
|
62 |
+
for i in range(3):
|
63 |
+
assert d[3][i] == [S.Zero]*9
|
64 |
+
assert d[3][4] == [S.Zero, -S.One, S.One, S.Half, Rational(-1, 2)] + [S.Zero]*4
|
65 |
+
assert d[3][6] == [S.Zero, Rational(-13, 8), Rational(13, 8), S.One, -S.One,
|
66 |
+
Rational(-1, 8), Rational(1, 8)] + [S.Zero]*2
|
67 |
+
assert d[3][8] == [S.Zero, Rational(-61, 30), Rational(61, 30), Rational(169, 120), Rational(-169, 120),
|
68 |
+
Rational(-3, 10), Rational(3, 10), Rational(7, 240), Rational(-7, 240)]
|
69 |
+
|
70 |
+
# Fourth derivative
|
71 |
+
for i in range(4):
|
72 |
+
assert d[4][i] == [S.Zero]*9
|
73 |
+
assert d[4][4] == [S(6), -S(4), -S(4), S.One, S.One] + [S.Zero]*4
|
74 |
+
assert d[4][6] == [Rational(28, 3), Rational(-13, 2), Rational(-13, 2), S(2), S(2),
|
75 |
+
Rational(-1, 6), Rational(-1, 6)] + [S.Zero]*2
|
76 |
+
assert d[4][8] == [Rational(91, 8), Rational(-122, 15), Rational(-122, 15), Rational(169, 60), Rational(169, 60),
|
77 |
+
Rational(-2, 5), Rational(-2, 5), Rational(7, 240), Rational(7, 240)]
|
78 |
+
|
79 |
+
# Table 2, p. 703 in doi:10.1090/S0025-5718-1988-0935077-0
|
80 |
+
# --------------------------------------------------------
|
81 |
+
xl = [[j/S(2) for j in list(range(-i*2+1, 0, 2))+list(range(1, i*2+1, 2))]
|
82 |
+
for i in range(1, 5)]
|
83 |
+
|
84 |
+
# d holds all coefficients
|
85 |
+
d = [finite_diff_weights({0: 1, 1: 2, 2: 4, 3: 4}[i], xl[i], 0) for
|
86 |
+
i in range(4)]
|
87 |
+
|
88 |
+
# Zeroth derivative
|
89 |
+
assert d[0][0][1] == [S.Half, S.Half]
|
90 |
+
assert d[1][0][3] == [Rational(-1, 16), Rational(9, 16), Rational(9, 16), Rational(-1, 16)]
|
91 |
+
assert d[2][0][5] == [Rational(3, 256), Rational(-25, 256), Rational(75, 128), Rational(75, 128),
|
92 |
+
Rational(-25, 256), Rational(3, 256)]
|
93 |
+
assert d[3][0][7] == [Rational(-5, 2048), Rational(49, 2048), Rational(-245, 2048), Rational(1225, 2048),
|
94 |
+
Rational(1225, 2048), Rational(-245, 2048), Rational(49, 2048), Rational(-5, 2048)]
|
95 |
+
|
96 |
+
# First derivative
|
97 |
+
assert d[0][1][1] == [-S.One, S.One]
|
98 |
+
assert d[1][1][3] == [Rational(1, 24), Rational(-9, 8), Rational(9, 8), Rational(-1, 24)]
|
99 |
+
assert d[2][1][5] == [Rational(-3, 640), Rational(25, 384), Rational(-75, 64),
|
100 |
+
Rational(75, 64), Rational(-25, 384), Rational(3, 640)]
|
101 |
+
assert d[3][1][7] == [Rational(5, 7168), Rational(-49, 5120),
|
102 |
+
Rational(245, 3072), Rational(-1225, 1024),
|
103 |
+
Rational(1225, 1024), Rational(-245, 3072),
|
104 |
+
Rational(49, 5120), Rational(-5, 7168)]
|
105 |
+
|
106 |
+
# Reasonably the rest of the table is also correct... (testing of that
|
107 |
+
# deemed excessive at the moment)
|
108 |
+
raises(ValueError, lambda: finite_diff_weights(-1, [1, 2]))
|
109 |
+
raises(ValueError, lambda: finite_diff_weights(1.2, [1, 2]))
|
110 |
+
x = symbols('x')
|
111 |
+
raises(ValueError, lambda: finite_diff_weights(x, [1, 2]))
|
112 |
+
|
113 |
+
|
114 |
+
def test_as_finite_diff():
|
115 |
+
x = symbols('x')
|
116 |
+
f = Function('f')
|
117 |
+
dx = Function('dx')
|
118 |
+
|
119 |
+
_as_finite_diff(f(x).diff(x), [x-2, x-1, x, x+1, x+2])
|
120 |
+
|
121 |
+
# Use of undefined functions in ``points``
|
122 |
+
df_true = -f(x+dx(x)/2-dx(x+dx(x)/2)/2) / dx(x+dx(x)/2) \
|
123 |
+
+ f(x+dx(x)/2+dx(x+dx(x)/2)/2) / dx(x+dx(x)/2)
|
124 |
+
df_test = diff(f(x), x).as_finite_difference(points=dx(x), x0=x+dx(x)/2)
|
125 |
+
assert (df_test - df_true).simplify() == 0
|
126 |
+
|
127 |
+
|
128 |
+
def test_differentiate_finite():
|
129 |
+
x, y, h = symbols('x y h')
|
130 |
+
f = Function('f')
|
131 |
+
with warns_deprecated_sympy():
|
132 |
+
res0 = differentiate_finite(f(x, y) + exp(42), x, y, evaluate=True)
|
133 |
+
xm, xp, ym, yp = [v + sign*S.Half for v, sign in product([x, y], [-1, 1])]
|
134 |
+
ref0 = f(xm, ym) + f(xp, yp) - f(xm, yp) - f(xp, ym)
|
135 |
+
assert (res0 - ref0).simplify() == 0
|
136 |
+
|
137 |
+
g = Function('g')
|
138 |
+
with warns_deprecated_sympy():
|
139 |
+
res1 = differentiate_finite(f(x)*g(x) + 42, x, evaluate=True)
|
140 |
+
ref1 = (-f(x - S.Half) + f(x + S.Half))*g(x) + \
|
141 |
+
(-g(x - S.Half) + g(x + S.Half))*f(x)
|
142 |
+
assert (res1 - ref1).simplify() == 0
|
143 |
+
|
144 |
+
res2 = differentiate_finite(f(x) + x**3 + 42, x, points=[x-1, x+1])
|
145 |
+
ref2 = (f(x + 1) + (x + 1)**3 - f(x - 1) - (x - 1)**3)/2
|
146 |
+
assert (res2 - ref2).simplify() == 0
|
147 |
+
raises(TypeError, lambda: differentiate_finite(f(x)*g(x), x,
|
148 |
+
pints=[x-1, x+1]))
|
149 |
+
|
150 |
+
res3 = differentiate_finite(f(x)*g(x).diff(x), x)
|
151 |
+
ref3 = (-g(x) + g(x + 1))*f(x + S.Half) - (g(x) - g(x - 1))*f(x - S.Half)
|
152 |
+
assert res3 == ref3
|
153 |
+
|
154 |
+
res4 = differentiate_finite(f(x)*g(x).diff(x).diff(x), x)
|
155 |
+
ref4 = -((g(x - Rational(3, 2)) - 2*g(x - S.Half) + g(x + S.Half))*f(x - S.Half)) \
|
156 |
+
+ (g(x - S.Half) - 2*g(x + S.Half) + g(x + Rational(3, 2)))*f(x + S.Half)
|
157 |
+
assert res4 == ref4
|
158 |
+
|
159 |
+
res5_expr = f(x).diff(x)*g(x).diff(x)
|
160 |
+
res5 = differentiate_finite(res5_expr, points=[x-h, x, x+h])
|
161 |
+
ref5 = (-2*f(x)/h + f(-h + x)/(2*h) + 3*f(h + x)/(2*h))*(-2*g(x)/h + g(-h + x)/(2*h) \
|
162 |
+
+ 3*g(h + x)/(2*h))/(2*h) - (2*f(x)/h - 3*f(-h + x)/(2*h) - \
|
163 |
+
f(h + x)/(2*h))*(2*g(x)/h - 3*g(-h + x)/(2*h) - g(h + x)/(2*h))/(2*h)
|
164 |
+
assert res5 == ref5
|
165 |
+
|
166 |
+
res6 = res5.limit(h, 0).doit()
|
167 |
+
ref6 = diff(res5_expr, x)
|
168 |
+
assert res6 == ref6
|
llmeval-env/lib/python3.10/site-packages/sympy/calculus/tests/test_util.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core.numbers import (E, I, Rational, oo, pi)
|
2 |
+
from sympy.core.singleton import S
|
3 |
+
from sympy.core.symbol import (Symbol, symbols)
|
4 |
+
from sympy.functions.elementary.complexes import (Abs, re)
|
5 |
+
from sympy.functions.elementary.exponential import (exp, log)
|
6 |
+
from sympy.functions.elementary.miscellaneous import sqrt
|
7 |
+
from sympy.functions.elementary.piecewise import Piecewise
|
8 |
+
from sympy.functions.elementary.trigonometric import (cos, cot, csc, sec, sin, tan)
|
9 |
+
from sympy.functions.special.error_functions import expint
|
10 |
+
from sympy.matrices.expressions.matexpr import MatrixSymbol
|
11 |
+
from sympy.simplify.simplify import simplify
|
12 |
+
from sympy.calculus.util import (function_range, continuous_domain, not_empty_in,
|
13 |
+
periodicity, lcim, is_convex,
|
14 |
+
stationary_points, minimum, maximum)
|
15 |
+
from sympy.sets.sets import (Interval, FiniteSet, Complement, Union)
|
16 |
+
from sympy.testing.pytest import raises, _both_exp_pow
|
17 |
+
from sympy.abc import x
|
18 |
+
|
19 |
+
a = Symbol('a', real=True)
|
20 |
+
|
21 |
+
def test_function_range():
|
22 |
+
x, y, a, b = symbols('x y a b')
|
23 |
+
assert function_range(sin(x), x, Interval(-pi/2, pi/2)
|
24 |
+
) == Interval(-1, 1)
|
25 |
+
assert function_range(sin(x), x, Interval(0, pi)
|
26 |
+
) == Interval(0, 1)
|
27 |
+
assert function_range(tan(x), x, Interval(0, pi)
|
28 |
+
) == Interval(-oo, oo)
|
29 |
+
assert function_range(tan(x), x, Interval(pi/2, pi)
|
30 |
+
) == Interval(-oo, 0)
|
31 |
+
assert function_range((x + 3)/(x - 2), x, Interval(-5, 5)
|
32 |
+
) == Union(Interval(-oo, Rational(2, 7)), Interval(Rational(8, 3), oo))
|
33 |
+
assert function_range(1/(x**2), x, Interval(-1, 1)
|
34 |
+
) == Interval(1, oo)
|
35 |
+
assert function_range(exp(x), x, Interval(-1, 1)
|
36 |
+
) == Interval(exp(-1), exp(1))
|
37 |
+
assert function_range(log(x) - x, x, S.Reals
|
38 |
+
) == Interval(-oo, -1)
|
39 |
+
assert function_range(sqrt(3*x - 1), x, Interval(0, 2)
|
40 |
+
) == Interval(0, sqrt(5))
|
41 |
+
assert function_range(x*(x - 1) - (x**2 - x), x, S.Reals
|
42 |
+
) == FiniteSet(0)
|
43 |
+
assert function_range(x*(x - 1) - (x**2 - x) + y, x, S.Reals
|
44 |
+
) == FiniteSet(y)
|
45 |
+
assert function_range(sin(x), x, Union(Interval(-5, -3), FiniteSet(4))
|
46 |
+
) == Union(Interval(-sin(3), 1), FiniteSet(sin(4)))
|
47 |
+
assert function_range(cos(x), x, Interval(-oo, -4)
|
48 |
+
) == Interval(-1, 1)
|
49 |
+
assert function_range(cos(x), x, S.EmptySet) == S.EmptySet
|
50 |
+
assert function_range(x/sqrt(x**2+1), x, S.Reals) == Interval.open(-1,1)
|
51 |
+
raises(NotImplementedError, lambda : function_range(
|
52 |
+
exp(x)*(sin(x) - cos(x))/2 - x, x, S.Reals))
|
53 |
+
raises(NotImplementedError, lambda : function_range(
|
54 |
+
sin(x) + x, x, S.Reals)) # issue 13273
|
55 |
+
raises(NotImplementedError, lambda : function_range(
|
56 |
+
log(x), x, S.Integers))
|
57 |
+
raises(NotImplementedError, lambda : function_range(
|
58 |
+
sin(x)/2, x, S.Naturals))
|
59 |
+
|
60 |
+
|
61 |
+
def test_continuous_domain():
|
62 |
+
x = Symbol('x')
|
63 |
+
assert continuous_domain(sin(x), x, Interval(0, 2*pi)) == Interval(0, 2*pi)
|
64 |
+
assert continuous_domain(tan(x), x, Interval(0, 2*pi)) == \
|
65 |
+
Union(Interval(0, pi/2, False, True), Interval(pi/2, pi*Rational(3, 2), True, True),
|
66 |
+
Interval(pi*Rational(3, 2), 2*pi, True, False))
|
67 |
+
assert continuous_domain((x - 1)/((x - 1)**2), x, S.Reals) == \
|
68 |
+
Union(Interval(-oo, 1, True, True), Interval(1, oo, True, True))
|
69 |
+
assert continuous_domain(log(x) + log(4*x - 1), x, S.Reals) == \
|
70 |
+
Interval(Rational(1, 4), oo, True, True)
|
71 |
+
assert continuous_domain(1/sqrt(x - 3), x, S.Reals) == Interval(3, oo, True, True)
|
72 |
+
assert continuous_domain(1/x - 2, x, S.Reals) == \
|
73 |
+
Union(Interval.open(-oo, 0), Interval.open(0, oo))
|
74 |
+
assert continuous_domain(1/(x**2 - 4) + 2, x, S.Reals) == \
|
75 |
+
Union(Interval.open(-oo, -2), Interval.open(-2, 2), Interval.open(2, oo))
|
76 |
+
domain = continuous_domain(log(tan(x)**2 + 1), x, S.Reals)
|
77 |
+
assert not domain.contains(3*pi/2)
|
78 |
+
assert domain.contains(5)
|
79 |
+
d = Symbol('d', even=True, zero=False)
|
80 |
+
assert continuous_domain(x**(1/d), x, S.Reals) == Interval(0, oo)
|
81 |
+
|
82 |
+
|
83 |
+
def test_not_empty_in():
|
84 |
+
assert not_empty_in(FiniteSet(x, 2*x).intersect(Interval(1, 2, True, False)), x) == \
|
85 |
+
Interval(S.Half, 2, True, False)
|
86 |
+
assert not_empty_in(FiniteSet(x, x**2).intersect(Interval(1, 2)), x) == \
|
87 |
+
Union(Interval(-sqrt(2), -1), Interval(1, 2))
|
88 |
+
assert not_empty_in(FiniteSet(x**2 + x, x).intersect(Interval(2, 4)), x) == \
|
89 |
+
Union(Interval(-sqrt(17)/2 - S.Half, -2),
|
90 |
+
Interval(1, Rational(-1, 2) + sqrt(17)/2), Interval(2, 4))
|
91 |
+
assert not_empty_in(FiniteSet(x/(x - 1)).intersect(S.Reals), x) == \
|
92 |
+
Complement(S.Reals, FiniteSet(1))
|
93 |
+
assert not_empty_in(FiniteSet(a/(a - 1)).intersect(S.Reals), a) == \
|
94 |
+
Complement(S.Reals, FiniteSet(1))
|
95 |
+
assert not_empty_in(FiniteSet((x**2 - 3*x + 2)/(x - 1)).intersect(S.Reals), x) == \
|
96 |
+
Complement(S.Reals, FiniteSet(1))
|
97 |
+
assert not_empty_in(FiniteSet(3, 4, x/(x - 1)).intersect(Interval(2, 3)), x) == \
|
98 |
+
Interval(-oo, oo)
|
99 |
+
assert not_empty_in(FiniteSet(4, x/(x - 1)).intersect(Interval(2, 3)), x) == \
|
100 |
+
Interval(S(3)/2, 2)
|
101 |
+
assert not_empty_in(FiniteSet(x/(x**2 - 1)).intersect(S.Reals), x) == \
|
102 |
+
Complement(S.Reals, FiniteSet(-1, 1))
|
103 |
+
assert not_empty_in(FiniteSet(x, x**2).intersect(Union(Interval(1, 3, True, True),
|
104 |
+
Interval(4, 5))), x) == \
|
105 |
+
Union(Interval(-sqrt(5), -2), Interval(-sqrt(3), -1, True, True),
|
106 |
+
Interval(1, 3, True, True), Interval(4, 5))
|
107 |
+
assert not_empty_in(FiniteSet(1).intersect(Interval(3, 4)), x) == S.EmptySet
|
108 |
+
assert not_empty_in(FiniteSet(x**2/(x + 2)).intersect(Interval(1, oo)), x) == \
|
109 |
+
Union(Interval(-2, -1, True, False), Interval(2, oo))
|
110 |
+
raises(ValueError, lambda: not_empty_in(x))
|
111 |
+
raises(ValueError, lambda: not_empty_in(Interval(0, 1), x))
|
112 |
+
raises(NotImplementedError,
|
113 |
+
lambda: not_empty_in(FiniteSet(x).intersect(S.Reals), x, a))
|
114 |
+
|
115 |
+
|
116 |
+
@_both_exp_pow
|
117 |
+
def test_periodicity():
|
118 |
+
x = Symbol('x')
|
119 |
+
y = Symbol('y')
|
120 |
+
z = Symbol('z', real=True)
|
121 |
+
|
122 |
+
assert periodicity(sin(2*x), x) == pi
|
123 |
+
assert periodicity((-2)*tan(4*x), x) == pi/4
|
124 |
+
assert periodicity(sin(x)**2, x) == 2*pi
|
125 |
+
assert periodicity(3**tan(3*x), x) == pi/3
|
126 |
+
assert periodicity(tan(x)*cos(x), x) == 2*pi
|
127 |
+
assert periodicity(sin(x)**(tan(x)), x) == 2*pi
|
128 |
+
assert periodicity(tan(x)*sec(x), x) == 2*pi
|
129 |
+
assert periodicity(sin(2*x)*cos(2*x) - y, x) == pi/2
|
130 |
+
assert periodicity(tan(x) + cot(x), x) == pi
|
131 |
+
assert periodicity(sin(x) - cos(2*x), x) == 2*pi
|
132 |
+
assert periodicity(sin(x) - 1, x) == 2*pi
|
133 |
+
assert periodicity(sin(4*x) + sin(x)*cos(x), x) == pi
|
134 |
+
assert periodicity(exp(sin(x)), x) == 2*pi
|
135 |
+
assert periodicity(log(cot(2*x)) - sin(cos(2*x)), x) == pi
|
136 |
+
assert periodicity(sin(2*x)*exp(tan(x) - csc(2*x)), x) == pi
|
137 |
+
assert periodicity(cos(sec(x) - csc(2*x)), x) == 2*pi
|
138 |
+
assert periodicity(tan(sin(2*x)), x) == pi
|
139 |
+
assert periodicity(2*tan(x)**2, x) == pi
|
140 |
+
assert periodicity(sin(x%4), x) == 4
|
141 |
+
assert periodicity(sin(x)%4, x) == 2*pi
|
142 |
+
assert periodicity(tan((3*x-2)%4), x) == Rational(4, 3)
|
143 |
+
assert periodicity((sqrt(2)*(x+1)+x) % 3, x) == 3 / (sqrt(2)+1)
|
144 |
+
assert periodicity((x**2+1) % x, x) is None
|
145 |
+
assert periodicity(sin(re(x)), x) == 2*pi
|
146 |
+
assert periodicity(sin(x)**2 + cos(x)**2, x) is S.Zero
|
147 |
+
assert periodicity(tan(x), y) is S.Zero
|
148 |
+
assert periodicity(sin(x) + I*cos(x), x) == 2*pi
|
149 |
+
assert periodicity(x - sin(2*y), y) == pi
|
150 |
+
|
151 |
+
assert periodicity(exp(x), x) is None
|
152 |
+
assert periodicity(exp(I*x), x) == 2*pi
|
153 |
+
assert periodicity(exp(I*z), z) == 2*pi
|
154 |
+
assert periodicity(exp(z), z) is None
|
155 |
+
assert periodicity(exp(log(sin(z) + I*cos(2*z)), evaluate=False), z) == 2*pi
|
156 |
+
assert periodicity(exp(log(sin(2*z) + I*cos(z)), evaluate=False), z) == 2*pi
|
157 |
+
assert periodicity(exp(sin(z)), z) == 2*pi
|
158 |
+
assert periodicity(exp(2*I*z), z) == pi
|
159 |
+
assert periodicity(exp(z + I*sin(z)), z) is None
|
160 |
+
assert periodicity(exp(cos(z/2) + sin(z)), z) == 4*pi
|
161 |
+
assert periodicity(log(x), x) is None
|
162 |
+
assert periodicity(exp(x)**sin(x), x) is None
|
163 |
+
assert periodicity(sin(x)**y, y) is None
|
164 |
+
|
165 |
+
assert periodicity(Abs(sin(Abs(sin(x)))), x) == pi
|
166 |
+
assert all(periodicity(Abs(f(x)), x) == pi for f in (
|
167 |
+
cos, sin, sec, csc, tan, cot))
|
168 |
+
assert periodicity(Abs(sin(tan(x))), x) == pi
|
169 |
+
assert periodicity(Abs(sin(sin(x) + tan(x))), x) == 2*pi
|
170 |
+
assert periodicity(sin(x) > S.Half, x) == 2*pi
|
171 |
+
|
172 |
+
assert periodicity(x > 2, x) is None
|
173 |
+
assert periodicity(x**3 - x**2 + 1, x) is None
|
174 |
+
assert periodicity(Abs(x), x) is None
|
175 |
+
assert periodicity(Abs(x**2 - 1), x) is None
|
176 |
+
|
177 |
+
assert periodicity((x**2 + 4)%2, x) is None
|
178 |
+
assert periodicity((E**x)%3, x) is None
|
179 |
+
|
180 |
+
assert periodicity(sin(expint(1, x))/expint(1, x), x) is None
|
181 |
+
# returning `None` for any Piecewise
|
182 |
+
p = Piecewise((0, x < -1), (x**2, x <= 1), (log(x), True))
|
183 |
+
assert periodicity(p, x) is None
|
184 |
+
|
185 |
+
m = MatrixSymbol('m', 3, 3)
|
186 |
+
raises(NotImplementedError, lambda: periodicity(sin(m), m))
|
187 |
+
raises(NotImplementedError, lambda: periodicity(sin(m[0, 0]), m))
|
188 |
+
raises(NotImplementedError, lambda: periodicity(sin(m), m[0, 0]))
|
189 |
+
raises(NotImplementedError, lambda: periodicity(sin(m[0, 0]), m[0, 0]))
|
190 |
+
|
191 |
+
|
192 |
+
def test_periodicity_check():
|
193 |
+
x = Symbol('x')
|
194 |
+
y = Symbol('y')
|
195 |
+
|
196 |
+
assert periodicity(tan(x), x, check=True) == pi
|
197 |
+
assert periodicity(sin(x) + cos(x), x, check=True) == 2*pi
|
198 |
+
assert periodicity(sec(x), x) == 2*pi
|
199 |
+
assert periodicity(sin(x*y), x) == 2*pi/abs(y)
|
200 |
+
assert periodicity(Abs(sec(sec(x))), x) == pi
|
201 |
+
|
202 |
+
|
203 |
+
def test_lcim():
|
204 |
+
assert lcim([S.Half, S(2), S(3)]) == 6
|
205 |
+
assert lcim([pi/2, pi/4, pi]) == pi
|
206 |
+
assert lcim([2*pi, pi/2]) == 2*pi
|
207 |
+
assert lcim([S.One, 2*pi]) is None
|
208 |
+
assert lcim([S(2) + 2*E, E/3 + Rational(1, 3), S.One + E]) == S(2) + 2*E
|
209 |
+
|
210 |
+
|
211 |
+
def test_is_convex():
|
212 |
+
assert is_convex(1/x, x, domain=Interval.open(0, oo)) == True
|
213 |
+
assert is_convex(1/x, x, domain=Interval(-oo, 0)) == False
|
214 |
+
assert is_convex(x**2, x, domain=Interval(0, oo)) == True
|
215 |
+
assert is_convex(1/x**3, x, domain=Interval.Lopen(0, oo)) == True
|
216 |
+
assert is_convex(-1/x**3, x, domain=Interval.Ropen(-oo, 0)) == True
|
217 |
+
assert is_convex(log(x), x) == False
|
218 |
+
raises(NotImplementedError, lambda: is_convex(log(x), x, a))
|
219 |
+
|
220 |
+
|
221 |
+
def test_stationary_points():
|
222 |
+
x, y = symbols('x y')
|
223 |
+
|
224 |
+
assert stationary_points(sin(x), x, Interval(-pi/2, pi/2)
|
225 |
+
) == {-pi/2, pi/2}
|
226 |
+
assert stationary_points(sin(x), x, Interval.Ropen(0, pi/4)
|
227 |
+
) is S.EmptySet
|
228 |
+
assert stationary_points(tan(x), x,
|
229 |
+
) is S.EmptySet
|
230 |
+
assert stationary_points(sin(x)*cos(x), x, Interval(0, pi)
|
231 |
+
) == {pi/4, pi*Rational(3, 4)}
|
232 |
+
assert stationary_points(sec(x), x, Interval(0, pi)
|
233 |
+
) == {0, pi}
|
234 |
+
assert stationary_points((x+3)*(x-2), x
|
235 |
+
) == FiniteSet(Rational(-1, 2))
|
236 |
+
assert stationary_points((x + 3)/(x - 2), x, Interval(-5, 5)
|
237 |
+
) is S.EmptySet
|
238 |
+
assert stationary_points((x**2+3)/(x-2), x
|
239 |
+
) == {2 - sqrt(7), 2 + sqrt(7)}
|
240 |
+
assert stationary_points((x**2+3)/(x-2), x, Interval(0, 5)
|
241 |
+
) == {2 + sqrt(7)}
|
242 |
+
assert stationary_points(x**4 + x**3 - 5*x**2, x, S.Reals
|
243 |
+
) == FiniteSet(-2, 0, Rational(5, 4))
|
244 |
+
assert stationary_points(exp(x), x
|
245 |
+
) is S.EmptySet
|
246 |
+
assert stationary_points(log(x) - x, x, S.Reals
|
247 |
+
) == {1}
|
248 |
+
assert stationary_points(cos(x), x, Union(Interval(0, 5), Interval(-6, -3))
|
249 |
+
) == {0, -pi, pi}
|
250 |
+
assert stationary_points(y, x, S.Reals
|
251 |
+
) == S.Reals
|
252 |
+
assert stationary_points(y, x, S.EmptySet) == S.EmptySet
|
253 |
+
|
254 |
+
|
255 |
+
def test_maximum():
|
256 |
+
x, y = symbols('x y')
|
257 |
+
assert maximum(sin(x), x) is S.One
|
258 |
+
assert maximum(sin(x), x, Interval(0, 1)) == sin(1)
|
259 |
+
assert maximum(tan(x), x) is oo
|
260 |
+
assert maximum(tan(x), x, Interval(-pi/4, pi/4)) is S.One
|
261 |
+
assert maximum(sin(x)*cos(x), x, S.Reals) == S.Half
|
262 |
+
assert simplify(maximum(sin(x)*cos(x), x, Interval(pi*Rational(3, 8), pi*Rational(5, 8)))
|
263 |
+
) == sqrt(2)/4
|
264 |
+
assert maximum((x+3)*(x-2), x) is oo
|
265 |
+
assert maximum((x+3)*(x-2), x, Interval(-5, 0)) == S(14)
|
266 |
+
assert maximum((x+3)/(x-2), x, Interval(-5, 0)) == Rational(2, 7)
|
267 |
+
assert simplify(maximum(-x**4-x**3+x**2+10, x)
|
268 |
+
) == 41*sqrt(41)/512 + Rational(5419, 512)
|
269 |
+
assert maximum(exp(x), x, Interval(-oo, 2)) == exp(2)
|
270 |
+
assert maximum(log(x) - x, x, S.Reals) is S.NegativeOne
|
271 |
+
assert maximum(cos(x), x, Union(Interval(0, 5), Interval(-6, -3))
|
272 |
+
) is S.One
|
273 |
+
assert maximum(cos(x)-sin(x), x, S.Reals) == sqrt(2)
|
274 |
+
assert maximum(y, x, S.Reals) == y
|
275 |
+
assert maximum(abs(a**3 + a), a, Interval(0, 2)) == 10
|
276 |
+
assert maximum(abs(60*a**3 + 24*a), a, Interval(0, 2)) == 528
|
277 |
+
assert maximum(abs(12*a*(5*a**2 + 2)), a, Interval(0, 2)) == 528
|
278 |
+
assert maximum(x/sqrt(x**2+1), x, S.Reals) == 1
|
279 |
+
|
280 |
+
raises(ValueError, lambda : maximum(sin(x), x, S.EmptySet))
|
281 |
+
raises(ValueError, lambda : maximum(log(cos(x)), x, S.EmptySet))
|
282 |
+
raises(ValueError, lambda : maximum(1/(x**2 + y**2 + 1), x, S.EmptySet))
|
283 |
+
raises(ValueError, lambda : maximum(sin(x), sin(x)))
|
284 |
+
raises(ValueError, lambda : maximum(sin(x), x*y, S.EmptySet))
|
285 |
+
raises(ValueError, lambda : maximum(sin(x), S.One))
|
286 |
+
|
287 |
+
|
288 |
+
def test_minimum():
|
289 |
+
x, y = symbols('x y')
|
290 |
+
|
291 |
+
assert minimum(sin(x), x) is S.NegativeOne
|
292 |
+
assert minimum(sin(x), x, Interval(1, 4)) == sin(4)
|
293 |
+
assert minimum(tan(x), x) is -oo
|
294 |
+
assert minimum(tan(x), x, Interval(-pi/4, pi/4)) is S.NegativeOne
|
295 |
+
assert minimum(sin(x)*cos(x), x, S.Reals) == Rational(-1, 2)
|
296 |
+
assert simplify(minimum(sin(x)*cos(x), x, Interval(pi*Rational(3, 8), pi*Rational(5, 8)))
|
297 |
+
) == -sqrt(2)/4
|
298 |
+
assert minimum((x+3)*(x-2), x) == Rational(-25, 4)
|
299 |
+
assert minimum((x+3)/(x-2), x, Interval(-5, 0)) == Rational(-3, 2)
|
300 |
+
assert minimum(x**4-x**3+x**2+10, x) == S(10)
|
301 |
+
assert minimum(exp(x), x, Interval(-2, oo)) == exp(-2)
|
302 |
+
assert minimum(log(x) - x, x, S.Reals) is -oo
|
303 |
+
assert minimum(cos(x), x, Union(Interval(0, 5), Interval(-6, -3))
|
304 |
+
) is S.NegativeOne
|
305 |
+
assert minimum(cos(x)-sin(x), x, S.Reals) == -sqrt(2)
|
306 |
+
assert minimum(y, x, S.Reals) == y
|
307 |
+
assert minimum(x/sqrt(x**2+1), x, S.Reals) == -1
|
308 |
+
|
309 |
+
raises(ValueError, lambda : minimum(sin(x), x, S.EmptySet))
|
310 |
+
raises(ValueError, lambda : minimum(log(cos(x)), x, S.EmptySet))
|
311 |
+
raises(ValueError, lambda : minimum(1/(x**2 + y**2 + 1), x, S.EmptySet))
|
312 |
+
raises(ValueError, lambda : minimum(sin(x), sin(x)))
|
313 |
+
raises(ValueError, lambda : minimum(sin(x), x*y, S.EmptySet))
|
314 |
+
raises(ValueError, lambda : minimum(sin(x), S.One))
|
315 |
+
|
316 |
+
|
317 |
+
def test_issue_19869():
|
318 |
+
t = symbols('t')
|
319 |
+
assert (maximum(sqrt(3)*(t - 1)/(3*sqrt(t**2 + 1)), t)
|
320 |
+
) == sqrt(3)/3
|
321 |
+
|
322 |
+
|
323 |
+
def test_issue_16469():
|
324 |
+
x = Symbol("x", real=True)
|
325 |
+
f = abs(x)
|
326 |
+
assert function_range(f, x, S.Reals) == Interval(0, oo, False, True)
|
327 |
+
|
328 |
+
|
329 |
+
@_both_exp_pow
|
330 |
+
def test_issue_18747():
|
331 |
+
assert periodicity(exp(pi*I*(x/4+S.Half/2)), x) == 8
|
llmeval-env/lib/python3.10/site-packages/sympy/interactive/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (196 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/interactive/tests/__pycache__/test_interactive.cpython-310.pyc
ADDED
Binary file (705 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/interactive/tests/__pycache__/test_ipython.cpython-310.pyc
ADDED
Binary file (6.67 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/interactive/tests/test_interactive.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.interactive.session import int_to_Integer
|
2 |
+
|
3 |
+
|
4 |
+
def test_int_to_Integer():
|
5 |
+
assert int_to_Integer("1 + 2.2 + 0x3 + 40") == \
|
6 |
+
'Integer (1 )+2.2 +Integer (0x3 )+Integer (40 )'
|
7 |
+
assert int_to_Integer("0b101") == 'Integer (0b101 )'
|
8 |
+
assert int_to_Integer("ab1 + 1 + '1 + 2'") == "ab1 +Integer (1 )+'1 + 2'"
|
9 |
+
assert int_to_Integer("(2 + \n3)") == '(Integer (2 )+\nInteger (3 ))'
|
10 |
+
assert int_to_Integer("2 + 2.0 + 2j + 2e-10") == 'Integer (2 )+2.0 +2j +2e-10 '
|
llmeval-env/lib/python3.10/site-packages/sympy/interactive/tests/test_ipython.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tests of tools for setting up interactive IPython sessions. """
|
2 |
+
|
3 |
+
from sympy.interactive.session import (init_ipython_session,
|
4 |
+
enable_automatic_symbols, enable_automatic_int_sympification)
|
5 |
+
|
6 |
+
from sympy.core import Symbol, Rational, Integer
|
7 |
+
from sympy.external import import_module
|
8 |
+
from sympy.testing.pytest import raises
|
9 |
+
|
10 |
+
# TODO: The code below could be made more granular with something like:
|
11 |
+
#
|
12 |
+
# @requires('IPython', version=">=0.11")
|
13 |
+
# def test_automatic_symbols(ipython):
|
14 |
+
|
15 |
+
ipython = import_module("IPython", min_module_version="0.11")
|
16 |
+
|
17 |
+
if not ipython:
|
18 |
+
#bin/test will not execute any tests now
|
19 |
+
disabled = True
|
20 |
+
|
21 |
+
# WARNING: These tests will modify the existing IPython environment. IPython
|
22 |
+
# uses a single instance for its interpreter, so there is no way to isolate
|
23 |
+
# the test from another IPython session. It also means that if this test is
|
24 |
+
# run twice in the same Python session it will fail. This isn't usually a
|
25 |
+
# problem because the test suite is run in a subprocess by default, but if the
|
26 |
+
# tests are run with subprocess=False it can pollute the current IPython
|
27 |
+
# session. See the discussion in issue #15149.
|
28 |
+
|
29 |
+
def test_automatic_symbols():
|
30 |
+
# NOTE: Because of the way the hook works, you have to use run_cell(code,
|
31 |
+
# True). This means that the code must have no Out, or it will be printed
|
32 |
+
# during the tests.
|
33 |
+
app = init_ipython_session()
|
34 |
+
app.run_cell("from sympy import *")
|
35 |
+
|
36 |
+
enable_automatic_symbols(app)
|
37 |
+
|
38 |
+
symbol = "verylongsymbolname"
|
39 |
+
assert symbol not in app.user_ns
|
40 |
+
app.run_cell("a = %s" % symbol, True)
|
41 |
+
assert symbol not in app.user_ns
|
42 |
+
app.run_cell("a = type(%s)" % symbol, True)
|
43 |
+
assert app.user_ns['a'] == Symbol
|
44 |
+
app.run_cell("%s = Symbol('%s')" % (symbol, symbol), True)
|
45 |
+
assert symbol in app.user_ns
|
46 |
+
|
47 |
+
# Check that built-in names aren't overridden
|
48 |
+
app.run_cell("a = all == __builtin__.all", True)
|
49 |
+
assert "all" not in app.user_ns
|
50 |
+
assert app.user_ns['a'] is True
|
51 |
+
|
52 |
+
# Check that SymPy names aren't overridden
|
53 |
+
app.run_cell("import sympy")
|
54 |
+
app.run_cell("a = factorial == sympy.factorial", True)
|
55 |
+
assert app.user_ns['a'] is True
|
56 |
+
|
57 |
+
|
58 |
+
def test_int_to_Integer():
|
59 |
+
# XXX: Warning, don't test with == here. 0.5 == Rational(1, 2) is True!
|
60 |
+
app = init_ipython_session()
|
61 |
+
app.run_cell("from sympy import Integer")
|
62 |
+
app.run_cell("a = 1")
|
63 |
+
assert isinstance(app.user_ns['a'], int)
|
64 |
+
|
65 |
+
enable_automatic_int_sympification(app)
|
66 |
+
app.run_cell("a = 1/2")
|
67 |
+
assert isinstance(app.user_ns['a'], Rational)
|
68 |
+
app.run_cell("a = 1")
|
69 |
+
assert isinstance(app.user_ns['a'], Integer)
|
70 |
+
app.run_cell("a = int(1)")
|
71 |
+
assert isinstance(app.user_ns['a'], int)
|
72 |
+
app.run_cell("a = (1/\n2)")
|
73 |
+
assert app.user_ns['a'] == Rational(1, 2)
|
74 |
+
# TODO: How can we test that the output of a SyntaxError is the original
|
75 |
+
# input, not the transformed input?
|
76 |
+
|
77 |
+
|
78 |
+
def test_ipythonprinting():
|
79 |
+
# Initialize and setup IPython session
|
80 |
+
app = init_ipython_session()
|
81 |
+
app.run_cell("ip = get_ipython()")
|
82 |
+
app.run_cell("inst = ip.instance()")
|
83 |
+
app.run_cell("format = inst.display_formatter.format")
|
84 |
+
app.run_cell("from sympy import Symbol")
|
85 |
+
|
86 |
+
# Printing without printing extension
|
87 |
+
app.run_cell("a = format(Symbol('pi'))")
|
88 |
+
app.run_cell("a2 = format(Symbol('pi')**2)")
|
89 |
+
# Deal with API change starting at IPython 1.0
|
90 |
+
if int(ipython.__version__.split(".")[0]) < 1:
|
91 |
+
assert app.user_ns['a']['text/plain'] == "pi"
|
92 |
+
assert app.user_ns['a2']['text/plain'] == "pi**2"
|
93 |
+
else:
|
94 |
+
assert app.user_ns['a'][0]['text/plain'] == "pi"
|
95 |
+
assert app.user_ns['a2'][0]['text/plain'] == "pi**2"
|
96 |
+
|
97 |
+
# Load printing extension
|
98 |
+
app.run_cell("from sympy import init_printing")
|
99 |
+
app.run_cell("init_printing()")
|
100 |
+
# Printing with printing extension
|
101 |
+
app.run_cell("a = format(Symbol('pi'))")
|
102 |
+
app.run_cell("a2 = format(Symbol('pi')**2)")
|
103 |
+
# Deal with API change starting at IPython 1.0
|
104 |
+
if int(ipython.__version__.split(".")[0]) < 1:
|
105 |
+
assert app.user_ns['a']['text/plain'] in ('\N{GREEK SMALL LETTER PI}', 'pi')
|
106 |
+
assert app.user_ns['a2']['text/plain'] in (' 2\n\N{GREEK SMALL LETTER PI} ', ' 2\npi ')
|
107 |
+
else:
|
108 |
+
assert app.user_ns['a'][0]['text/plain'] in ('\N{GREEK SMALL LETTER PI}', 'pi')
|
109 |
+
assert app.user_ns['a2'][0]['text/plain'] in (' 2\n\N{GREEK SMALL LETTER PI} ', ' 2\npi ')
|
110 |
+
|
111 |
+
|
112 |
+
def test_print_builtin_option():
|
113 |
+
# Initialize and setup IPython session
|
114 |
+
app = init_ipython_session()
|
115 |
+
app.run_cell("ip = get_ipython()")
|
116 |
+
app.run_cell("inst = ip.instance()")
|
117 |
+
app.run_cell("format = inst.display_formatter.format")
|
118 |
+
app.run_cell("from sympy import Symbol")
|
119 |
+
app.run_cell("from sympy import init_printing")
|
120 |
+
|
121 |
+
app.run_cell("a = format({Symbol('pi'): 3.14, Symbol('n_i'): 3})")
|
122 |
+
# Deal with API change starting at IPython 1.0
|
123 |
+
if int(ipython.__version__.split(".")[0]) < 1:
|
124 |
+
text = app.user_ns['a']['text/plain']
|
125 |
+
raises(KeyError, lambda: app.user_ns['a']['text/latex'])
|
126 |
+
else:
|
127 |
+
text = app.user_ns['a'][0]['text/plain']
|
128 |
+
raises(KeyError, lambda: app.user_ns['a'][0]['text/latex'])
|
129 |
+
# XXX: How can we make this ignore the terminal width? This test fails if
|
130 |
+
# the terminal is too narrow.
|
131 |
+
assert text in ("{pi: 3.14, n_i: 3}",
|
132 |
+
'{n\N{LATIN SUBSCRIPT SMALL LETTER I}: 3, \N{GREEK SMALL LETTER PI}: 3.14}',
|
133 |
+
"{n_i: 3, pi: 3.14}",
|
134 |
+
'{\N{GREEK SMALL LETTER PI}: 3.14, n\N{LATIN SUBSCRIPT SMALL LETTER I}: 3}')
|
135 |
+
|
136 |
+
# If we enable the default printing, then the dictionary's should render
|
137 |
+
# as a LaTeX version of the whole dict: ${\pi: 3.14, n_i: 3}$
|
138 |
+
app.run_cell("inst.display_formatter.formatters['text/latex'].enabled = True")
|
139 |
+
app.run_cell("init_printing(use_latex=True)")
|
140 |
+
app.run_cell("a = format({Symbol('pi'): 3.14, Symbol('n_i'): 3})")
|
141 |
+
# Deal with API change starting at IPython 1.0
|
142 |
+
if int(ipython.__version__.split(".")[0]) < 1:
|
143 |
+
text = app.user_ns['a']['text/plain']
|
144 |
+
latex = app.user_ns['a']['text/latex']
|
145 |
+
else:
|
146 |
+
text = app.user_ns['a'][0]['text/plain']
|
147 |
+
latex = app.user_ns['a'][0]['text/latex']
|
148 |
+
assert text in ("{pi: 3.14, n_i: 3}",
|
149 |
+
'{n\N{LATIN SUBSCRIPT SMALL LETTER I}: 3, \N{GREEK SMALL LETTER PI}: 3.14}',
|
150 |
+
"{n_i: 3, pi: 3.14}",
|
151 |
+
'{\N{GREEK SMALL LETTER PI}: 3.14, n\N{LATIN SUBSCRIPT SMALL LETTER I}: 3}')
|
152 |
+
assert latex == r'$\displaystyle \left\{ n_{i} : 3, \ \pi : 3.14\right\}$'
|
153 |
+
|
154 |
+
# Objects with an _latex overload should also be handled by our tuple
|
155 |
+
# printer.
|
156 |
+
app.run_cell("""\
|
157 |
+
class WithOverload:
|
158 |
+
def _latex(self, printer):
|
159 |
+
return r"\\LaTeX"
|
160 |
+
""")
|
161 |
+
app.run_cell("a = format((WithOverload(),))")
|
162 |
+
# Deal with API change starting at IPython 1.0
|
163 |
+
if int(ipython.__version__.split(".")[0]) < 1:
|
164 |
+
latex = app.user_ns['a']['text/latex']
|
165 |
+
else:
|
166 |
+
latex = app.user_ns['a'][0]['text/latex']
|
167 |
+
assert latex == r'$\displaystyle \left( \LaTeX,\right)$'
|
168 |
+
|
169 |
+
app.run_cell("inst.display_formatter.formatters['text/latex'].enabled = True")
|
170 |
+
app.run_cell("init_printing(use_latex=True, print_builtin=False)")
|
171 |
+
app.run_cell("a = format({Symbol('pi'): 3.14, Symbol('n_i'): 3})")
|
172 |
+
# Deal with API change starting at IPython 1.0
|
173 |
+
if int(ipython.__version__.split(".")[0]) < 1:
|
174 |
+
text = app.user_ns['a']['text/plain']
|
175 |
+
raises(KeyError, lambda: app.user_ns['a']['text/latex'])
|
176 |
+
else:
|
177 |
+
text = app.user_ns['a'][0]['text/plain']
|
178 |
+
raises(KeyError, lambda: app.user_ns['a'][0]['text/latex'])
|
179 |
+
# Note : In Python 3 we have one text type: str which holds Unicode data
|
180 |
+
# and two byte types bytes and bytearray.
|
181 |
+
# Python 3.3.3 + IPython 0.13.2 gives: '{n_i: 3, pi: 3.14}'
|
182 |
+
# Python 3.3.3 + IPython 1.1.0 gives: '{n_i: 3, pi: 3.14}'
|
183 |
+
assert text in ("{pi: 3.14, n_i: 3}", "{n_i: 3, pi: 3.14}")
|
184 |
+
|
185 |
+
|
186 |
+
def test_builtin_containers():
|
187 |
+
# Initialize and setup IPython session
|
188 |
+
app = init_ipython_session()
|
189 |
+
app.run_cell("ip = get_ipython()")
|
190 |
+
app.run_cell("inst = ip.instance()")
|
191 |
+
app.run_cell("format = inst.display_formatter.format")
|
192 |
+
app.run_cell("inst.display_formatter.formatters['text/latex'].enabled = True")
|
193 |
+
app.run_cell("from sympy import init_printing, Matrix")
|
194 |
+
app.run_cell('init_printing(use_latex=True, use_unicode=False)')
|
195 |
+
|
196 |
+
# Make sure containers that shouldn't pretty print don't.
|
197 |
+
app.run_cell('a = format((True, False))')
|
198 |
+
app.run_cell('import sys')
|
199 |
+
app.run_cell('b = format(sys.flags)')
|
200 |
+
app.run_cell('c = format((Matrix([1, 2]),))')
|
201 |
+
# Deal with API change starting at IPython 1.0
|
202 |
+
if int(ipython.__version__.split(".")[0]) < 1:
|
203 |
+
assert app.user_ns['a']['text/plain'] == '(True, False)'
|
204 |
+
assert 'text/latex' not in app.user_ns['a']
|
205 |
+
assert app.user_ns['b']['text/plain'][:10] == 'sys.flags('
|
206 |
+
assert 'text/latex' not in app.user_ns['b']
|
207 |
+
assert app.user_ns['c']['text/plain'] == \
|
208 |
+
"""\
|
209 |
+
[1] \n\
|
210 |
+
([ ],)
|
211 |
+
[2] \
|
212 |
+
"""
|
213 |
+
assert app.user_ns['c']['text/latex'] == '$\\displaystyle \\left( \\left[\\begin{matrix}1\\\\2\\end{matrix}\\right],\\right)$'
|
214 |
+
else:
|
215 |
+
assert app.user_ns['a'][0]['text/plain'] == '(True, False)'
|
216 |
+
assert 'text/latex' not in app.user_ns['a'][0]
|
217 |
+
assert app.user_ns['b'][0]['text/plain'][:10] == 'sys.flags('
|
218 |
+
assert 'text/latex' not in app.user_ns['b'][0]
|
219 |
+
assert app.user_ns['c'][0]['text/plain'] == \
|
220 |
+
"""\
|
221 |
+
[1] \n\
|
222 |
+
([ ],)
|
223 |
+
[2] \
|
224 |
+
"""
|
225 |
+
assert app.user_ns['c'][0]['text/latex'] == '$\\displaystyle \\left( \\left[\\begin{matrix}1\\\\2\\end{matrix}\\right],\\right)$'
|
226 |
+
|
227 |
+
def test_matplotlib_bad_latex():
|
228 |
+
# Initialize and setup IPython session
|
229 |
+
app = init_ipython_session()
|
230 |
+
app.run_cell("import IPython")
|
231 |
+
app.run_cell("ip = get_ipython()")
|
232 |
+
app.run_cell("inst = ip.instance()")
|
233 |
+
app.run_cell("format = inst.display_formatter.format")
|
234 |
+
app.run_cell("from sympy import init_printing, Matrix")
|
235 |
+
app.run_cell("init_printing(use_latex='matplotlib')")
|
236 |
+
|
237 |
+
# The png formatter is not enabled by default in this context
|
238 |
+
app.run_cell("inst.display_formatter.formatters['image/png'].enabled = True")
|
239 |
+
|
240 |
+
# Make sure no warnings are raised by IPython
|
241 |
+
app.run_cell("import warnings")
|
242 |
+
# IPython.core.formatters.FormatterWarning was introduced in IPython 2.0
|
243 |
+
if int(ipython.__version__.split(".")[0]) < 2:
|
244 |
+
app.run_cell("warnings.simplefilter('error')")
|
245 |
+
else:
|
246 |
+
app.run_cell("warnings.simplefilter('error', IPython.core.formatters.FormatterWarning)")
|
247 |
+
|
248 |
+
# This should not raise an exception
|
249 |
+
app.run_cell("a = format(Matrix([1, 2, 3]))")
|
250 |
+
|
251 |
+
# issue 9799
|
252 |
+
app.run_cell("from sympy import Piecewise, Symbol, Eq")
|
253 |
+
app.run_cell("x = Symbol('x'); pw = format(Piecewise((1, Eq(x, 0)), (0, True)))")
|
254 |
+
|
255 |
+
|
256 |
+
def test_override_repr_latex():
|
257 |
+
# Initialize and setup IPython session
|
258 |
+
app = init_ipython_session()
|
259 |
+
app.run_cell("import IPython")
|
260 |
+
app.run_cell("ip = get_ipython()")
|
261 |
+
app.run_cell("inst = ip.instance()")
|
262 |
+
app.run_cell("format = inst.display_formatter.format")
|
263 |
+
app.run_cell("inst.display_formatter.formatters['text/latex'].enabled = True")
|
264 |
+
app.run_cell("from sympy import init_printing")
|
265 |
+
app.run_cell("from sympy import Symbol")
|
266 |
+
app.run_cell("init_printing(use_latex=True)")
|
267 |
+
app.run_cell("""\
|
268 |
+
class SymbolWithOverload(Symbol):
|
269 |
+
def _repr_latex_(self):
|
270 |
+
return r"Hello " + super()._repr_latex_() + " world"
|
271 |
+
""")
|
272 |
+
app.run_cell("a = format(SymbolWithOverload('s'))")
|
273 |
+
|
274 |
+
if int(ipython.__version__.split(".")[0]) < 1:
|
275 |
+
latex = app.user_ns['a']['text/latex']
|
276 |
+
else:
|
277 |
+
latex = app.user_ns['a'][0]['text/latex']
|
278 |
+
assert latex == r'Hello $\displaystyle s$ world'
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/__init__.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""The module helps converting SymPy expressions into shorter forms of them.
|
2 |
+
|
3 |
+
for example:
|
4 |
+
the expression E**(pi*I) will be converted into -1
|
5 |
+
the expression (x+x)**2 will be converted into 4*x**2
|
6 |
+
"""
|
7 |
+
from .simplify import (simplify, hypersimp, hypersimilar,
|
8 |
+
logcombine, separatevars, posify, besselsimp, kroneckersimp,
|
9 |
+
signsimp, nsimplify)
|
10 |
+
|
11 |
+
from .fu import FU, fu
|
12 |
+
|
13 |
+
from .sqrtdenest import sqrtdenest
|
14 |
+
|
15 |
+
from .cse_main import cse
|
16 |
+
|
17 |
+
from .epathtools import epath, EPath
|
18 |
+
|
19 |
+
from .hyperexpand import hyperexpand
|
20 |
+
|
21 |
+
from .radsimp import collect, rcollect, radsimp, collect_const, fraction, numer, denom
|
22 |
+
|
23 |
+
from .trigsimp import trigsimp, exptrigsimp
|
24 |
+
|
25 |
+
from .powsimp import powsimp, powdenest
|
26 |
+
|
27 |
+
from .combsimp import combsimp
|
28 |
+
|
29 |
+
from .gammasimp import gammasimp
|
30 |
+
|
31 |
+
from .ratsimp import ratsimp, ratsimpmodprime
|
32 |
+
|
33 |
+
__all__ = [
|
34 |
+
'simplify', 'hypersimp', 'hypersimilar', 'logcombine', 'separatevars',
|
35 |
+
'posify', 'besselsimp', 'kroneckersimp', 'signsimp',
|
36 |
+
'nsimplify',
|
37 |
+
|
38 |
+
'FU', 'fu',
|
39 |
+
|
40 |
+
'sqrtdenest',
|
41 |
+
|
42 |
+
'cse',
|
43 |
+
|
44 |
+
'epath', 'EPath',
|
45 |
+
|
46 |
+
'hyperexpand',
|
47 |
+
|
48 |
+
'collect', 'rcollect', 'radsimp', 'collect_const', 'fraction', 'numer',
|
49 |
+
'denom',
|
50 |
+
|
51 |
+
'trigsimp', 'exptrigsimp',
|
52 |
+
|
53 |
+
'powsimp', 'powdenest',
|
54 |
+
|
55 |
+
'combsimp',
|
56 |
+
|
57 |
+
'gammasimp',
|
58 |
+
|
59 |
+
'ratsimp', 'ratsimpmodprime',
|
60 |
+
]
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.36 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/combsimp.cpython-310.pyc
ADDED
Binary file (3.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/cse_main.cpython-310.pyc
ADDED
Binary file (26 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/cse_opts.cpython-310.pyc
ADDED
Binary file (1.63 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/epathtools.cpython-310.pyc
ADDED
Binary file (8.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/fu.cpython-310.pyc
ADDED
Binary file (51.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/gammasimp.cpython-310.pyc
ADDED
Binary file (12.4 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/hyperexpand.cpython-310.pyc
ADDED
Binary file (73.5 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/hyperexpand_doc.cpython-310.pyc
ADDED
Binary file (745 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/powsimp.cpython-310.pyc
ADDED
Binary file (17.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/radsimp.cpython-310.pyc
ADDED
Binary file (34.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/ratsimp.cpython-310.pyc
ADDED
Binary file (7.7 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/simplify.cpython-310.pyc
ADDED
Binary file (57.3 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/sqrtdenest.cpython-310.pyc
ADDED
Binary file (19.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/traversaltools.cpython-310.pyc
ADDED
Binary file (610 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/__pycache__/trigsimp.cpython-310.pyc
ADDED
Binary file (33.9 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/combsimp.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import Mul
|
2 |
+
from sympy.core.function import count_ops
|
3 |
+
from sympy.core.traversal import preorder_traversal, bottom_up
|
4 |
+
from sympy.functions.combinatorial.factorials import binomial, factorial
|
5 |
+
from sympy.functions import gamma
|
6 |
+
from sympy.simplify.gammasimp import gammasimp, _gammasimp
|
7 |
+
|
8 |
+
from sympy.utilities.timeutils import timethis
|
9 |
+
|
10 |
+
|
11 |
+
@timethis('combsimp')
|
12 |
+
def combsimp(expr):
|
13 |
+
r"""
|
14 |
+
Simplify combinatorial expressions.
|
15 |
+
|
16 |
+
Explanation
|
17 |
+
===========
|
18 |
+
|
19 |
+
This function takes as input an expression containing factorials,
|
20 |
+
binomials, Pochhammer symbol and other "combinatorial" functions,
|
21 |
+
and tries to minimize the number of those functions and reduce
|
22 |
+
the size of their arguments.
|
23 |
+
|
24 |
+
The algorithm works by rewriting all combinatorial functions as
|
25 |
+
gamma functions and applying gammasimp() except simplification
|
26 |
+
steps that may make an integer argument non-integer. See docstring
|
27 |
+
of gammasimp for more information.
|
28 |
+
|
29 |
+
Then it rewrites expression in terms of factorials and binomials by
|
30 |
+
rewriting gammas as factorials and converting (a+b)!/a!b! into
|
31 |
+
binomials.
|
32 |
+
|
33 |
+
If expression has gamma functions or combinatorial functions
|
34 |
+
with non-integer argument, it is automatically passed to gammasimp.
|
35 |
+
|
36 |
+
Examples
|
37 |
+
========
|
38 |
+
|
39 |
+
>>> from sympy.simplify import combsimp
|
40 |
+
>>> from sympy import factorial, binomial, symbols
|
41 |
+
>>> n, k = symbols('n k', integer = True)
|
42 |
+
|
43 |
+
>>> combsimp(factorial(n)/factorial(n - 3))
|
44 |
+
n*(n - 2)*(n - 1)
|
45 |
+
>>> combsimp(binomial(n+1, k+1)/binomial(n, k))
|
46 |
+
(n + 1)/(k + 1)
|
47 |
+
|
48 |
+
"""
|
49 |
+
|
50 |
+
expr = expr.rewrite(gamma, piecewise=False)
|
51 |
+
if any(isinstance(node, gamma) and not node.args[0].is_integer
|
52 |
+
for node in preorder_traversal(expr)):
|
53 |
+
return gammasimp(expr);
|
54 |
+
|
55 |
+
expr = _gammasimp(expr, as_comb = True)
|
56 |
+
expr = _gamma_as_comb(expr)
|
57 |
+
return expr
|
58 |
+
|
59 |
+
|
60 |
+
def _gamma_as_comb(expr):
|
61 |
+
"""
|
62 |
+
Helper function for combsimp.
|
63 |
+
|
64 |
+
Rewrites expression in terms of factorials and binomials
|
65 |
+
"""
|
66 |
+
|
67 |
+
expr = expr.rewrite(factorial)
|
68 |
+
|
69 |
+
def f(rv):
|
70 |
+
if not rv.is_Mul:
|
71 |
+
return rv
|
72 |
+
rvd = rv.as_powers_dict()
|
73 |
+
nd_fact_args = [[], []] # numerator, denominator
|
74 |
+
|
75 |
+
for k in rvd:
|
76 |
+
if isinstance(k, factorial) and rvd[k].is_Integer:
|
77 |
+
if rvd[k].is_positive:
|
78 |
+
nd_fact_args[0].extend([k.args[0]]*rvd[k])
|
79 |
+
else:
|
80 |
+
nd_fact_args[1].extend([k.args[0]]*-rvd[k])
|
81 |
+
rvd[k] = 0
|
82 |
+
if not nd_fact_args[0] or not nd_fact_args[1]:
|
83 |
+
return rv
|
84 |
+
|
85 |
+
hit = False
|
86 |
+
for m in range(2):
|
87 |
+
i = 0
|
88 |
+
while i < len(nd_fact_args[m]):
|
89 |
+
ai = nd_fact_args[m][i]
|
90 |
+
for j in range(i + 1, len(nd_fact_args[m])):
|
91 |
+
aj = nd_fact_args[m][j]
|
92 |
+
|
93 |
+
sum = ai + aj
|
94 |
+
if sum in nd_fact_args[1 - m]:
|
95 |
+
hit = True
|
96 |
+
|
97 |
+
nd_fact_args[1 - m].remove(sum)
|
98 |
+
del nd_fact_args[m][j]
|
99 |
+
del nd_fact_args[m][i]
|
100 |
+
|
101 |
+
rvd[binomial(sum, ai if count_ops(ai) <
|
102 |
+
count_ops(aj) else aj)] += (
|
103 |
+
-1 if m == 0 else 1)
|
104 |
+
break
|
105 |
+
else:
|
106 |
+
i += 1
|
107 |
+
|
108 |
+
if hit:
|
109 |
+
return Mul(*([k**rvd[k] for k in rvd] + [factorial(k)
|
110 |
+
for k in nd_fact_args[0]]))/Mul(*[factorial(k)
|
111 |
+
for k in nd_fact_args[1]])
|
112 |
+
return rv
|
113 |
+
|
114 |
+
return bottom_up(expr, f)
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/cse_opts.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Optimizations of the expression tree representation for better CSE
|
2 |
+
opportunities.
|
3 |
+
"""
|
4 |
+
from sympy.core import Add, Basic, Mul
|
5 |
+
from sympy.core.singleton import S
|
6 |
+
from sympy.core.sorting import default_sort_key
|
7 |
+
from sympy.core.traversal import preorder_traversal
|
8 |
+
|
9 |
+
|
10 |
+
def sub_pre(e):
|
11 |
+
""" Replace y - x with -(x - y) if -1 can be extracted from y - x.
|
12 |
+
"""
|
13 |
+
# replacing Add, A, from which -1 can be extracted with -1*-A
|
14 |
+
adds = [a for a in e.atoms(Add) if a.could_extract_minus_sign()]
|
15 |
+
reps = {}
|
16 |
+
ignore = set()
|
17 |
+
for a in adds:
|
18 |
+
na = -a
|
19 |
+
if na.is_Mul: # e.g. MatExpr
|
20 |
+
ignore.add(a)
|
21 |
+
continue
|
22 |
+
reps[a] = Mul._from_args([S.NegativeOne, na])
|
23 |
+
|
24 |
+
e = e.xreplace(reps)
|
25 |
+
|
26 |
+
# repeat again for persisting Adds but mark these with a leading 1, -1
|
27 |
+
# e.g. y - x -> 1*-1*(x - y)
|
28 |
+
if isinstance(e, Basic):
|
29 |
+
negs = {}
|
30 |
+
for a in sorted(e.atoms(Add), key=default_sort_key):
|
31 |
+
if a in ignore:
|
32 |
+
continue
|
33 |
+
if a in reps:
|
34 |
+
negs[a] = reps[a]
|
35 |
+
elif a.could_extract_minus_sign():
|
36 |
+
negs[a] = Mul._from_args([S.One, S.NegativeOne, -a])
|
37 |
+
e = e.xreplace(negs)
|
38 |
+
return e
|
39 |
+
|
40 |
+
|
41 |
+
def sub_post(e):
|
42 |
+
""" Replace 1*-1*x with -x.
|
43 |
+
"""
|
44 |
+
replacements = []
|
45 |
+
for node in preorder_traversal(e):
|
46 |
+
if isinstance(node, Mul) and \
|
47 |
+
node.args[0] is S.One and node.args[1] is S.NegativeOne:
|
48 |
+
replacements.append((node, -Mul._from_args(node.args[2:])))
|
49 |
+
for node, replacement in replacements:
|
50 |
+
e = e.xreplace({node: replacement})
|
51 |
+
|
52 |
+
return e
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/fu.py
ADDED
@@ -0,0 +1,2099 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
|
3 |
+
from sympy.core.add import Add
|
4 |
+
from sympy.core.expr import Expr
|
5 |
+
from sympy.core.exprtools import Factors, gcd_terms, factor_terms
|
6 |
+
from sympy.core.function import expand_mul
|
7 |
+
from sympy.core.mul import Mul
|
8 |
+
from sympy.core.numbers import pi, I
|
9 |
+
from sympy.core.power import Pow
|
10 |
+
from sympy.core.singleton import S
|
11 |
+
from sympy.core.sorting import ordered
|
12 |
+
from sympy.core.symbol import Dummy
|
13 |
+
from sympy.core.sympify import sympify
|
14 |
+
from sympy.core.traversal import bottom_up
|
15 |
+
from sympy.functions.combinatorial.factorials import binomial
|
16 |
+
from sympy.functions.elementary.hyperbolic import (
|
17 |
+
cosh, sinh, tanh, coth, sech, csch, HyperbolicFunction)
|
18 |
+
from sympy.functions.elementary.trigonometric import (
|
19 |
+
cos, sin, tan, cot, sec, csc, sqrt, TrigonometricFunction)
|
20 |
+
from sympy.ntheory.factor_ import perfect_power
|
21 |
+
from sympy.polys.polytools import factor
|
22 |
+
from sympy.strategies.tree import greedy
|
23 |
+
from sympy.strategies.core import identity, debug
|
24 |
+
|
25 |
+
from sympy import SYMPY_DEBUG
|
26 |
+
|
27 |
+
|
28 |
+
# ================== Fu-like tools ===========================
|
29 |
+
|
30 |
+
|
31 |
+
def TR0(rv):
|
32 |
+
"""Simplification of rational polynomials, trying to simplify
|
33 |
+
the expression, e.g. combine things like 3*x + 2*x, etc....
|
34 |
+
"""
|
35 |
+
# although it would be nice to use cancel, it doesn't work
|
36 |
+
# with noncommutatives
|
37 |
+
return rv.normal().factor().expand()
|
38 |
+
|
39 |
+
|
40 |
+
def TR1(rv):
|
41 |
+
"""Replace sec, csc with 1/cos, 1/sin
|
42 |
+
|
43 |
+
Examples
|
44 |
+
========
|
45 |
+
|
46 |
+
>>> from sympy.simplify.fu import TR1, sec, csc
|
47 |
+
>>> from sympy.abc import x
|
48 |
+
>>> TR1(2*csc(x) + sec(x))
|
49 |
+
1/cos(x) + 2/sin(x)
|
50 |
+
"""
|
51 |
+
|
52 |
+
def f(rv):
|
53 |
+
if isinstance(rv, sec):
|
54 |
+
a = rv.args[0]
|
55 |
+
return S.One/cos(a)
|
56 |
+
elif isinstance(rv, csc):
|
57 |
+
a = rv.args[0]
|
58 |
+
return S.One/sin(a)
|
59 |
+
return rv
|
60 |
+
|
61 |
+
return bottom_up(rv, f)
|
62 |
+
|
63 |
+
|
64 |
+
def TR2(rv):
|
65 |
+
"""Replace tan and cot with sin/cos and cos/sin
|
66 |
+
|
67 |
+
Examples
|
68 |
+
========
|
69 |
+
|
70 |
+
>>> from sympy.simplify.fu import TR2
|
71 |
+
>>> from sympy.abc import x
|
72 |
+
>>> from sympy import tan, cot, sin, cos
|
73 |
+
>>> TR2(tan(x))
|
74 |
+
sin(x)/cos(x)
|
75 |
+
>>> TR2(cot(x))
|
76 |
+
cos(x)/sin(x)
|
77 |
+
>>> TR2(tan(tan(x) - sin(x)/cos(x)))
|
78 |
+
0
|
79 |
+
|
80 |
+
"""
|
81 |
+
|
82 |
+
def f(rv):
|
83 |
+
if isinstance(rv, tan):
|
84 |
+
a = rv.args[0]
|
85 |
+
return sin(a)/cos(a)
|
86 |
+
elif isinstance(rv, cot):
|
87 |
+
a = rv.args[0]
|
88 |
+
return cos(a)/sin(a)
|
89 |
+
return rv
|
90 |
+
|
91 |
+
return bottom_up(rv, f)
|
92 |
+
|
93 |
+
|
94 |
+
def TR2i(rv, half=False):
|
95 |
+
"""Converts ratios involving sin and cos as follows::
|
96 |
+
sin(x)/cos(x) -> tan(x)
|
97 |
+
sin(x)/(cos(x) + 1) -> tan(x/2) if half=True
|
98 |
+
|
99 |
+
Examples
|
100 |
+
========
|
101 |
+
|
102 |
+
>>> from sympy.simplify.fu import TR2i
|
103 |
+
>>> from sympy.abc import x, a
|
104 |
+
>>> from sympy import sin, cos
|
105 |
+
>>> TR2i(sin(x)/cos(x))
|
106 |
+
tan(x)
|
107 |
+
|
108 |
+
Powers of the numerator and denominator are also recognized
|
109 |
+
|
110 |
+
>>> TR2i(sin(x)**2/(cos(x) + 1)**2, half=True)
|
111 |
+
tan(x/2)**2
|
112 |
+
|
113 |
+
The transformation does not take place unless assumptions allow
|
114 |
+
(i.e. the base must be positive or the exponent must be an integer
|
115 |
+
for both numerator and denominator)
|
116 |
+
|
117 |
+
>>> TR2i(sin(x)**a/(cos(x) + 1)**a)
|
118 |
+
sin(x)**a/(cos(x) + 1)**a
|
119 |
+
|
120 |
+
"""
|
121 |
+
|
122 |
+
def f(rv):
|
123 |
+
if not rv.is_Mul:
|
124 |
+
return rv
|
125 |
+
|
126 |
+
n, d = rv.as_numer_denom()
|
127 |
+
if n.is_Atom or d.is_Atom:
|
128 |
+
return rv
|
129 |
+
|
130 |
+
def ok(k, e):
|
131 |
+
# initial filtering of factors
|
132 |
+
return (
|
133 |
+
(e.is_integer or k.is_positive) and (
|
134 |
+
k.func in (sin, cos) or (half and
|
135 |
+
k.is_Add and
|
136 |
+
len(k.args) >= 2 and
|
137 |
+
any(any(isinstance(ai, cos) or ai.is_Pow and ai.base is cos
|
138 |
+
for ai in Mul.make_args(a)) for a in k.args))))
|
139 |
+
|
140 |
+
n = n.as_powers_dict()
|
141 |
+
ndone = [(k, n.pop(k)) for k in list(n.keys()) if not ok(k, n[k])]
|
142 |
+
if not n:
|
143 |
+
return rv
|
144 |
+
|
145 |
+
d = d.as_powers_dict()
|
146 |
+
ddone = [(k, d.pop(k)) for k in list(d.keys()) if not ok(k, d[k])]
|
147 |
+
if not d:
|
148 |
+
return rv
|
149 |
+
|
150 |
+
# factoring if necessary
|
151 |
+
|
152 |
+
def factorize(d, ddone):
|
153 |
+
newk = []
|
154 |
+
for k in d:
|
155 |
+
if k.is_Add and len(k.args) > 1:
|
156 |
+
knew = factor(k) if half else factor_terms(k)
|
157 |
+
if knew != k:
|
158 |
+
newk.append((k, knew))
|
159 |
+
if newk:
|
160 |
+
for i, (k, knew) in enumerate(newk):
|
161 |
+
del d[k]
|
162 |
+
newk[i] = knew
|
163 |
+
newk = Mul(*newk).as_powers_dict()
|
164 |
+
for k in newk:
|
165 |
+
v = d[k] + newk[k]
|
166 |
+
if ok(k, v):
|
167 |
+
d[k] = v
|
168 |
+
else:
|
169 |
+
ddone.append((k, v))
|
170 |
+
del newk
|
171 |
+
factorize(n, ndone)
|
172 |
+
factorize(d, ddone)
|
173 |
+
|
174 |
+
# joining
|
175 |
+
t = []
|
176 |
+
for k in n:
|
177 |
+
if isinstance(k, sin):
|
178 |
+
a = cos(k.args[0], evaluate=False)
|
179 |
+
if a in d and d[a] == n[k]:
|
180 |
+
t.append(tan(k.args[0])**n[k])
|
181 |
+
n[k] = d[a] = None
|
182 |
+
elif half:
|
183 |
+
a1 = 1 + a
|
184 |
+
if a1 in d and d[a1] == n[k]:
|
185 |
+
t.append((tan(k.args[0]/2))**n[k])
|
186 |
+
n[k] = d[a1] = None
|
187 |
+
elif isinstance(k, cos):
|
188 |
+
a = sin(k.args[0], evaluate=False)
|
189 |
+
if a in d and d[a] == n[k]:
|
190 |
+
t.append(tan(k.args[0])**-n[k])
|
191 |
+
n[k] = d[a] = None
|
192 |
+
elif half and k.is_Add and k.args[0] is S.One and \
|
193 |
+
isinstance(k.args[1], cos):
|
194 |
+
a = sin(k.args[1].args[0], evaluate=False)
|
195 |
+
if a in d and d[a] == n[k] and (d[a].is_integer or \
|
196 |
+
a.is_positive):
|
197 |
+
t.append(tan(a.args[0]/2)**-n[k])
|
198 |
+
n[k] = d[a] = None
|
199 |
+
|
200 |
+
if t:
|
201 |
+
rv = Mul(*(t + [b**e for b, e in n.items() if e]))/\
|
202 |
+
Mul(*[b**e for b, e in d.items() if e])
|
203 |
+
rv *= Mul(*[b**e for b, e in ndone])/Mul(*[b**e for b, e in ddone])
|
204 |
+
|
205 |
+
return rv
|
206 |
+
|
207 |
+
return bottom_up(rv, f)
|
208 |
+
|
209 |
+
|
210 |
+
def TR3(rv):
|
211 |
+
"""Induced formula: example sin(-a) = -sin(a)
|
212 |
+
|
213 |
+
Examples
|
214 |
+
========
|
215 |
+
|
216 |
+
>>> from sympy.simplify.fu import TR3
|
217 |
+
>>> from sympy.abc import x, y
|
218 |
+
>>> from sympy import pi
|
219 |
+
>>> from sympy import cos
|
220 |
+
>>> TR3(cos(y - x*(y - x)))
|
221 |
+
cos(x*(x - y) + y)
|
222 |
+
>>> cos(pi/2 + x)
|
223 |
+
-sin(x)
|
224 |
+
>>> cos(30*pi/2 + x)
|
225 |
+
-cos(x)
|
226 |
+
|
227 |
+
"""
|
228 |
+
from sympy.simplify.simplify import signsimp
|
229 |
+
|
230 |
+
# Negative argument (already automatic for funcs like sin(-x) -> -sin(x)
|
231 |
+
# but more complicated expressions can use it, too). Also, trig angles
|
232 |
+
# between pi/4 and pi/2 are not reduced to an angle between 0 and pi/4.
|
233 |
+
# The following are automatically handled:
|
234 |
+
# Argument of type: pi/2 +/- angle
|
235 |
+
# Argument of type: pi +/- angle
|
236 |
+
# Argument of type : 2k*pi +/- angle
|
237 |
+
|
238 |
+
def f(rv):
|
239 |
+
if not isinstance(rv, TrigonometricFunction):
|
240 |
+
return rv
|
241 |
+
rv = rv.func(signsimp(rv.args[0]))
|
242 |
+
if not isinstance(rv, TrigonometricFunction):
|
243 |
+
return rv
|
244 |
+
if (rv.args[0] - S.Pi/4).is_positive is (S.Pi/2 - rv.args[0]).is_positive is True:
|
245 |
+
fmap = {cos: sin, sin: cos, tan: cot, cot: tan, sec: csc, csc: sec}
|
246 |
+
rv = fmap[type(rv)](S.Pi/2 - rv.args[0])
|
247 |
+
return rv
|
248 |
+
|
249 |
+
return bottom_up(rv, f)
|
250 |
+
|
251 |
+
|
252 |
+
def TR4(rv):
|
253 |
+
"""Identify values of special angles.
|
254 |
+
|
255 |
+
a= 0 pi/6 pi/4 pi/3 pi/2
|
256 |
+
----------------------------------------------------
|
257 |
+
sin(a) 0 1/2 sqrt(2)/2 sqrt(3)/2 1
|
258 |
+
cos(a) 1 sqrt(3)/2 sqrt(2)/2 1/2 0
|
259 |
+
tan(a) 0 sqt(3)/3 1 sqrt(3) --
|
260 |
+
|
261 |
+
Examples
|
262 |
+
========
|
263 |
+
|
264 |
+
>>> from sympy import pi
|
265 |
+
>>> from sympy import cos, sin, tan, cot
|
266 |
+
>>> for s in (0, pi/6, pi/4, pi/3, pi/2):
|
267 |
+
... print('%s %s %s %s' % (cos(s), sin(s), tan(s), cot(s)))
|
268 |
+
...
|
269 |
+
1 0 0 zoo
|
270 |
+
sqrt(3)/2 1/2 sqrt(3)/3 sqrt(3)
|
271 |
+
sqrt(2)/2 sqrt(2)/2 1 1
|
272 |
+
1/2 sqrt(3)/2 sqrt(3) sqrt(3)/3
|
273 |
+
0 1 zoo 0
|
274 |
+
"""
|
275 |
+
# special values at 0, pi/6, pi/4, pi/3, pi/2 already handled
|
276 |
+
return rv
|
277 |
+
|
278 |
+
|
279 |
+
def _TR56(rv, f, g, h, max, pow):
|
280 |
+
"""Helper for TR5 and TR6 to replace f**2 with h(g**2)
|
281 |
+
|
282 |
+
Options
|
283 |
+
=======
|
284 |
+
|
285 |
+
max : controls size of exponent that can appear on f
|
286 |
+
e.g. if max=4 then f**4 will be changed to h(g**2)**2.
|
287 |
+
pow : controls whether the exponent must be a perfect power of 2
|
288 |
+
e.g. if pow=True (and max >= 6) then f**6 will not be changed
|
289 |
+
but f**8 will be changed to h(g**2)**4
|
290 |
+
|
291 |
+
>>> from sympy.simplify.fu import _TR56 as T
|
292 |
+
>>> from sympy.abc import x
|
293 |
+
>>> from sympy import sin, cos
|
294 |
+
>>> h = lambda x: 1 - x
|
295 |
+
>>> T(sin(x)**3, sin, cos, h, 4, False)
|
296 |
+
(1 - cos(x)**2)*sin(x)
|
297 |
+
>>> T(sin(x)**6, sin, cos, h, 6, False)
|
298 |
+
(1 - cos(x)**2)**3
|
299 |
+
>>> T(sin(x)**6, sin, cos, h, 6, True)
|
300 |
+
sin(x)**6
|
301 |
+
>>> T(sin(x)**8, sin, cos, h, 10, True)
|
302 |
+
(1 - cos(x)**2)**4
|
303 |
+
"""
|
304 |
+
|
305 |
+
def _f(rv):
|
306 |
+
# I'm not sure if this transformation should target all even powers
|
307 |
+
# or only those expressible as powers of 2. Also, should it only
|
308 |
+
# make the changes in powers that appear in sums -- making an isolated
|
309 |
+
# change is not going to allow a simplification as far as I can tell.
|
310 |
+
if not (rv.is_Pow and rv.base.func == f):
|
311 |
+
return rv
|
312 |
+
if not rv.exp.is_real:
|
313 |
+
return rv
|
314 |
+
|
315 |
+
if (rv.exp < 0) == True:
|
316 |
+
return rv
|
317 |
+
if (rv.exp > max) == True:
|
318 |
+
return rv
|
319 |
+
if rv.exp == 1:
|
320 |
+
return rv
|
321 |
+
if rv.exp == 2:
|
322 |
+
return h(g(rv.base.args[0])**2)
|
323 |
+
else:
|
324 |
+
if rv.exp % 2 == 1:
|
325 |
+
e = rv.exp//2
|
326 |
+
return f(rv.base.args[0])*h(g(rv.base.args[0])**2)**e
|
327 |
+
elif rv.exp == 4:
|
328 |
+
e = 2
|
329 |
+
elif not pow:
|
330 |
+
if rv.exp % 2:
|
331 |
+
return rv
|
332 |
+
e = rv.exp//2
|
333 |
+
else:
|
334 |
+
p = perfect_power(rv.exp)
|
335 |
+
if not p:
|
336 |
+
return rv
|
337 |
+
e = rv.exp//2
|
338 |
+
return h(g(rv.base.args[0])**2)**e
|
339 |
+
|
340 |
+
return bottom_up(rv, _f)
|
341 |
+
|
342 |
+
|
343 |
+
def TR5(rv, max=4, pow=False):
|
344 |
+
"""Replacement of sin**2 with 1 - cos(x)**2.
|
345 |
+
|
346 |
+
See _TR56 docstring for advanced use of ``max`` and ``pow``.
|
347 |
+
|
348 |
+
Examples
|
349 |
+
========
|
350 |
+
|
351 |
+
>>> from sympy.simplify.fu import TR5
|
352 |
+
>>> from sympy.abc import x
|
353 |
+
>>> from sympy import sin
|
354 |
+
>>> TR5(sin(x)**2)
|
355 |
+
1 - cos(x)**2
|
356 |
+
>>> TR5(sin(x)**-2) # unchanged
|
357 |
+
sin(x)**(-2)
|
358 |
+
>>> TR5(sin(x)**4)
|
359 |
+
(1 - cos(x)**2)**2
|
360 |
+
"""
|
361 |
+
return _TR56(rv, sin, cos, lambda x: 1 - x, max=max, pow=pow)
|
362 |
+
|
363 |
+
|
364 |
+
def TR6(rv, max=4, pow=False):
|
365 |
+
"""Replacement of cos**2 with 1 - sin(x)**2.
|
366 |
+
|
367 |
+
See _TR56 docstring for advanced use of ``max`` and ``pow``.
|
368 |
+
|
369 |
+
Examples
|
370 |
+
========
|
371 |
+
|
372 |
+
>>> from sympy.simplify.fu import TR6
|
373 |
+
>>> from sympy.abc import x
|
374 |
+
>>> from sympy import cos
|
375 |
+
>>> TR6(cos(x)**2)
|
376 |
+
1 - sin(x)**2
|
377 |
+
>>> TR6(cos(x)**-2) #unchanged
|
378 |
+
cos(x)**(-2)
|
379 |
+
>>> TR6(cos(x)**4)
|
380 |
+
(1 - sin(x)**2)**2
|
381 |
+
"""
|
382 |
+
return _TR56(rv, cos, sin, lambda x: 1 - x, max=max, pow=pow)
|
383 |
+
|
384 |
+
|
385 |
+
def TR7(rv):
|
386 |
+
"""Lowering the degree of cos(x)**2.
|
387 |
+
|
388 |
+
Examples
|
389 |
+
========
|
390 |
+
|
391 |
+
>>> from sympy.simplify.fu import TR7
|
392 |
+
>>> from sympy.abc import x
|
393 |
+
>>> from sympy import cos
|
394 |
+
>>> TR7(cos(x)**2)
|
395 |
+
cos(2*x)/2 + 1/2
|
396 |
+
>>> TR7(cos(x)**2 + 1)
|
397 |
+
cos(2*x)/2 + 3/2
|
398 |
+
|
399 |
+
"""
|
400 |
+
|
401 |
+
def f(rv):
|
402 |
+
if not (rv.is_Pow and rv.base.func == cos and rv.exp == 2):
|
403 |
+
return rv
|
404 |
+
return (1 + cos(2*rv.base.args[0]))/2
|
405 |
+
|
406 |
+
return bottom_up(rv, f)
|
407 |
+
|
408 |
+
|
409 |
+
def TR8(rv, first=True):
|
410 |
+
"""Converting products of ``cos`` and/or ``sin`` to a sum or
|
411 |
+
difference of ``cos`` and or ``sin`` terms.
|
412 |
+
|
413 |
+
Examples
|
414 |
+
========
|
415 |
+
|
416 |
+
>>> from sympy.simplify.fu import TR8
|
417 |
+
>>> from sympy import cos, sin
|
418 |
+
>>> TR8(cos(2)*cos(3))
|
419 |
+
cos(5)/2 + cos(1)/2
|
420 |
+
>>> TR8(cos(2)*sin(3))
|
421 |
+
sin(5)/2 + sin(1)/2
|
422 |
+
>>> TR8(sin(2)*sin(3))
|
423 |
+
-cos(5)/2 + cos(1)/2
|
424 |
+
"""
|
425 |
+
|
426 |
+
def f(rv):
|
427 |
+
if not (
|
428 |
+
rv.is_Mul or
|
429 |
+
rv.is_Pow and
|
430 |
+
rv.base.func in (cos, sin) and
|
431 |
+
(rv.exp.is_integer or rv.base.is_positive)):
|
432 |
+
return rv
|
433 |
+
|
434 |
+
if first:
|
435 |
+
n, d = [expand_mul(i) for i in rv.as_numer_denom()]
|
436 |
+
newn = TR8(n, first=False)
|
437 |
+
newd = TR8(d, first=False)
|
438 |
+
if newn != n or newd != d:
|
439 |
+
rv = gcd_terms(newn/newd)
|
440 |
+
if rv.is_Mul and rv.args[0].is_Rational and \
|
441 |
+
len(rv.args) == 2 and rv.args[1].is_Add:
|
442 |
+
rv = Mul(*rv.as_coeff_Mul())
|
443 |
+
return rv
|
444 |
+
|
445 |
+
args = {cos: [], sin: [], None: []}
|
446 |
+
for a in ordered(Mul.make_args(rv)):
|
447 |
+
if a.func in (cos, sin):
|
448 |
+
args[type(a)].append(a.args[0])
|
449 |
+
elif (a.is_Pow and a.exp.is_Integer and a.exp > 0 and \
|
450 |
+
a.base.func in (cos, sin)):
|
451 |
+
# XXX this is ok but pathological expression could be handled
|
452 |
+
# more efficiently as in TRmorrie
|
453 |
+
args[type(a.base)].extend([a.base.args[0]]*a.exp)
|
454 |
+
else:
|
455 |
+
args[None].append(a)
|
456 |
+
c = args[cos]
|
457 |
+
s = args[sin]
|
458 |
+
if not (c and s or len(c) > 1 or len(s) > 1):
|
459 |
+
return rv
|
460 |
+
|
461 |
+
args = args[None]
|
462 |
+
n = min(len(c), len(s))
|
463 |
+
for i in range(n):
|
464 |
+
a1 = s.pop()
|
465 |
+
a2 = c.pop()
|
466 |
+
args.append((sin(a1 + a2) + sin(a1 - a2))/2)
|
467 |
+
while len(c) > 1:
|
468 |
+
a1 = c.pop()
|
469 |
+
a2 = c.pop()
|
470 |
+
args.append((cos(a1 + a2) + cos(a1 - a2))/2)
|
471 |
+
if c:
|
472 |
+
args.append(cos(c.pop()))
|
473 |
+
while len(s) > 1:
|
474 |
+
a1 = s.pop()
|
475 |
+
a2 = s.pop()
|
476 |
+
args.append((-cos(a1 + a2) + cos(a1 - a2))/2)
|
477 |
+
if s:
|
478 |
+
args.append(sin(s.pop()))
|
479 |
+
return TR8(expand_mul(Mul(*args)))
|
480 |
+
|
481 |
+
return bottom_up(rv, f)
|
482 |
+
|
483 |
+
|
484 |
+
def TR9(rv):
|
485 |
+
"""Sum of ``cos`` or ``sin`` terms as a product of ``cos`` or ``sin``.
|
486 |
+
|
487 |
+
Examples
|
488 |
+
========
|
489 |
+
|
490 |
+
>>> from sympy.simplify.fu import TR9
|
491 |
+
>>> from sympy import cos, sin
|
492 |
+
>>> TR9(cos(1) + cos(2))
|
493 |
+
2*cos(1/2)*cos(3/2)
|
494 |
+
>>> TR9(cos(1) + 2*sin(1) + 2*sin(2))
|
495 |
+
cos(1) + 4*sin(3/2)*cos(1/2)
|
496 |
+
|
497 |
+
If no change is made by TR9, no re-arrangement of the
|
498 |
+
expression will be made. For example, though factoring
|
499 |
+
of common term is attempted, if the factored expression
|
500 |
+
was not changed, the original expression will be returned:
|
501 |
+
|
502 |
+
>>> TR9(cos(3) + cos(3)*cos(2))
|
503 |
+
cos(3) + cos(2)*cos(3)
|
504 |
+
|
505 |
+
"""
|
506 |
+
|
507 |
+
def f(rv):
|
508 |
+
if not rv.is_Add:
|
509 |
+
return rv
|
510 |
+
|
511 |
+
def do(rv, first=True):
|
512 |
+
# cos(a)+/-cos(b) can be combined into a product of cosines and
|
513 |
+
# sin(a)+/-sin(b) can be combined into a product of cosine and
|
514 |
+
# sine.
|
515 |
+
#
|
516 |
+
# If there are more than two args, the pairs which "work" will
|
517 |
+
# have a gcd extractable and the remaining two terms will have
|
518 |
+
# the above structure -- all pairs must be checked to find the
|
519 |
+
# ones that work. args that don't have a common set of symbols
|
520 |
+
# are skipped since this doesn't lead to a simpler formula and
|
521 |
+
# also has the arbitrariness of combining, for example, the x
|
522 |
+
# and y term instead of the y and z term in something like
|
523 |
+
# cos(x) + cos(y) + cos(z).
|
524 |
+
|
525 |
+
if not rv.is_Add:
|
526 |
+
return rv
|
527 |
+
|
528 |
+
args = list(ordered(rv.args))
|
529 |
+
if len(args) != 2:
|
530 |
+
hit = False
|
531 |
+
for i in range(len(args)):
|
532 |
+
ai = args[i]
|
533 |
+
if ai is None:
|
534 |
+
continue
|
535 |
+
for j in range(i + 1, len(args)):
|
536 |
+
aj = args[j]
|
537 |
+
if aj is None:
|
538 |
+
continue
|
539 |
+
was = ai + aj
|
540 |
+
new = do(was)
|
541 |
+
if new != was:
|
542 |
+
args[i] = new # update in place
|
543 |
+
args[j] = None
|
544 |
+
hit = True
|
545 |
+
break # go to next i
|
546 |
+
if hit:
|
547 |
+
rv = Add(*[_f for _f in args if _f])
|
548 |
+
if rv.is_Add:
|
549 |
+
rv = do(rv)
|
550 |
+
|
551 |
+
return rv
|
552 |
+
|
553 |
+
# two-arg Add
|
554 |
+
split = trig_split(*args)
|
555 |
+
if not split:
|
556 |
+
return rv
|
557 |
+
gcd, n1, n2, a, b, iscos = split
|
558 |
+
|
559 |
+
# application of rule if possible
|
560 |
+
if iscos:
|
561 |
+
if n1 == n2:
|
562 |
+
return gcd*n1*2*cos((a + b)/2)*cos((a - b)/2)
|
563 |
+
if n1 < 0:
|
564 |
+
a, b = b, a
|
565 |
+
return -2*gcd*sin((a + b)/2)*sin((a - b)/2)
|
566 |
+
else:
|
567 |
+
if n1 == n2:
|
568 |
+
return gcd*n1*2*sin((a + b)/2)*cos((a - b)/2)
|
569 |
+
if n1 < 0:
|
570 |
+
a, b = b, a
|
571 |
+
return 2*gcd*cos((a + b)/2)*sin((a - b)/2)
|
572 |
+
|
573 |
+
return process_common_addends(rv, do) # DON'T sift by free symbols
|
574 |
+
|
575 |
+
return bottom_up(rv, f)
|
576 |
+
|
577 |
+
|
578 |
+
def TR10(rv, first=True):
|
579 |
+
"""Separate sums in ``cos`` and ``sin``.
|
580 |
+
|
581 |
+
Examples
|
582 |
+
========
|
583 |
+
|
584 |
+
>>> from sympy.simplify.fu import TR10
|
585 |
+
>>> from sympy.abc import a, b, c
|
586 |
+
>>> from sympy import cos, sin
|
587 |
+
>>> TR10(cos(a + b))
|
588 |
+
-sin(a)*sin(b) + cos(a)*cos(b)
|
589 |
+
>>> TR10(sin(a + b))
|
590 |
+
sin(a)*cos(b) + sin(b)*cos(a)
|
591 |
+
>>> TR10(sin(a + b + c))
|
592 |
+
(-sin(a)*sin(b) + cos(a)*cos(b))*sin(c) + \
|
593 |
+
(sin(a)*cos(b) + sin(b)*cos(a))*cos(c)
|
594 |
+
"""
|
595 |
+
|
596 |
+
def f(rv):
|
597 |
+
if rv.func not in (cos, sin):
|
598 |
+
return rv
|
599 |
+
|
600 |
+
f = rv.func
|
601 |
+
arg = rv.args[0]
|
602 |
+
if arg.is_Add:
|
603 |
+
if first:
|
604 |
+
args = list(ordered(arg.args))
|
605 |
+
else:
|
606 |
+
args = list(arg.args)
|
607 |
+
a = args.pop()
|
608 |
+
b = Add._from_args(args)
|
609 |
+
if b.is_Add:
|
610 |
+
if f == sin:
|
611 |
+
return sin(a)*TR10(cos(b), first=False) + \
|
612 |
+
cos(a)*TR10(sin(b), first=False)
|
613 |
+
else:
|
614 |
+
return cos(a)*TR10(cos(b), first=False) - \
|
615 |
+
sin(a)*TR10(sin(b), first=False)
|
616 |
+
else:
|
617 |
+
if f == sin:
|
618 |
+
return sin(a)*cos(b) + cos(a)*sin(b)
|
619 |
+
else:
|
620 |
+
return cos(a)*cos(b) - sin(a)*sin(b)
|
621 |
+
return rv
|
622 |
+
|
623 |
+
return bottom_up(rv, f)
|
624 |
+
|
625 |
+
|
626 |
+
def TR10i(rv):
|
627 |
+
"""Sum of products to function of sum.
|
628 |
+
|
629 |
+
Examples
|
630 |
+
========
|
631 |
+
|
632 |
+
>>> from sympy.simplify.fu import TR10i
|
633 |
+
>>> from sympy import cos, sin, sqrt
|
634 |
+
>>> from sympy.abc import x
|
635 |
+
|
636 |
+
>>> TR10i(cos(1)*cos(3) + sin(1)*sin(3))
|
637 |
+
cos(2)
|
638 |
+
>>> TR10i(cos(1)*sin(3) + sin(1)*cos(3) + cos(3))
|
639 |
+
cos(3) + sin(4)
|
640 |
+
>>> TR10i(sqrt(2)*cos(x)*x + sqrt(6)*sin(x)*x)
|
641 |
+
2*sqrt(2)*x*sin(x + pi/6)
|
642 |
+
|
643 |
+
"""
|
644 |
+
global _ROOT2, _ROOT3, _invROOT3
|
645 |
+
if _ROOT2 is None:
|
646 |
+
_roots()
|
647 |
+
|
648 |
+
def f(rv):
|
649 |
+
if not rv.is_Add:
|
650 |
+
return rv
|
651 |
+
|
652 |
+
def do(rv, first=True):
|
653 |
+
# args which can be expressed as A*(cos(a)*cos(b)+/-sin(a)*sin(b))
|
654 |
+
# or B*(cos(a)*sin(b)+/-cos(b)*sin(a)) can be combined into
|
655 |
+
# A*f(a+/-b) where f is either sin or cos.
|
656 |
+
#
|
657 |
+
# If there are more than two args, the pairs which "work" will have
|
658 |
+
# a gcd extractable and the remaining two terms will have the above
|
659 |
+
# structure -- all pairs must be checked to find the ones that
|
660 |
+
# work.
|
661 |
+
|
662 |
+
if not rv.is_Add:
|
663 |
+
return rv
|
664 |
+
|
665 |
+
args = list(ordered(rv.args))
|
666 |
+
if len(args) != 2:
|
667 |
+
hit = False
|
668 |
+
for i in range(len(args)):
|
669 |
+
ai = args[i]
|
670 |
+
if ai is None:
|
671 |
+
continue
|
672 |
+
for j in range(i + 1, len(args)):
|
673 |
+
aj = args[j]
|
674 |
+
if aj is None:
|
675 |
+
continue
|
676 |
+
was = ai + aj
|
677 |
+
new = do(was)
|
678 |
+
if new != was:
|
679 |
+
args[i] = new # update in place
|
680 |
+
args[j] = None
|
681 |
+
hit = True
|
682 |
+
break # go to next i
|
683 |
+
if hit:
|
684 |
+
rv = Add(*[_f for _f in args if _f])
|
685 |
+
if rv.is_Add:
|
686 |
+
rv = do(rv)
|
687 |
+
|
688 |
+
return rv
|
689 |
+
|
690 |
+
# two-arg Add
|
691 |
+
split = trig_split(*args, two=True)
|
692 |
+
if not split:
|
693 |
+
return rv
|
694 |
+
gcd, n1, n2, a, b, same = split
|
695 |
+
|
696 |
+
# identify and get c1 to be cos then apply rule if possible
|
697 |
+
if same: # coscos, sinsin
|
698 |
+
gcd = n1*gcd
|
699 |
+
if n1 == n2:
|
700 |
+
return gcd*cos(a - b)
|
701 |
+
return gcd*cos(a + b)
|
702 |
+
else: #cossin, cossin
|
703 |
+
gcd = n1*gcd
|
704 |
+
if n1 == n2:
|
705 |
+
return gcd*sin(a + b)
|
706 |
+
return gcd*sin(b - a)
|
707 |
+
|
708 |
+
rv = process_common_addends(
|
709 |
+
rv, do, lambda x: tuple(ordered(x.free_symbols)))
|
710 |
+
|
711 |
+
# need to check for inducible pairs in ratio of sqrt(3):1 that
|
712 |
+
# appeared in different lists when sorting by coefficient
|
713 |
+
while rv.is_Add:
|
714 |
+
byrad = defaultdict(list)
|
715 |
+
for a in rv.args:
|
716 |
+
hit = 0
|
717 |
+
if a.is_Mul:
|
718 |
+
for ai in a.args:
|
719 |
+
if ai.is_Pow and ai.exp is S.Half and \
|
720 |
+
ai.base.is_Integer:
|
721 |
+
byrad[ai].append(a)
|
722 |
+
hit = 1
|
723 |
+
break
|
724 |
+
if not hit:
|
725 |
+
byrad[S.One].append(a)
|
726 |
+
|
727 |
+
# no need to check all pairs -- just check for the onees
|
728 |
+
# that have the right ratio
|
729 |
+
args = []
|
730 |
+
for a in byrad:
|
731 |
+
for b in [_ROOT3*a, _invROOT3]:
|
732 |
+
if b in byrad:
|
733 |
+
for i in range(len(byrad[a])):
|
734 |
+
if byrad[a][i] is None:
|
735 |
+
continue
|
736 |
+
for j in range(len(byrad[b])):
|
737 |
+
if byrad[b][j] is None:
|
738 |
+
continue
|
739 |
+
was = Add(byrad[a][i] + byrad[b][j])
|
740 |
+
new = do(was)
|
741 |
+
if new != was:
|
742 |
+
args.append(new)
|
743 |
+
byrad[a][i] = None
|
744 |
+
byrad[b][j] = None
|
745 |
+
break
|
746 |
+
if args:
|
747 |
+
rv = Add(*(args + [Add(*[_f for _f in v if _f])
|
748 |
+
for v in byrad.values()]))
|
749 |
+
else:
|
750 |
+
rv = do(rv) # final pass to resolve any new inducible pairs
|
751 |
+
break
|
752 |
+
|
753 |
+
return rv
|
754 |
+
|
755 |
+
return bottom_up(rv, f)
|
756 |
+
|
757 |
+
|
758 |
+
def TR11(rv, base=None):
|
759 |
+
"""Function of double angle to product. The ``base`` argument can be used
|
760 |
+
to indicate what is the un-doubled argument, e.g. if 3*pi/7 is the base
|
761 |
+
then cosine and sine functions with argument 6*pi/7 will be replaced.
|
762 |
+
|
763 |
+
Examples
|
764 |
+
========
|
765 |
+
|
766 |
+
>>> from sympy.simplify.fu import TR11
|
767 |
+
>>> from sympy import cos, sin, pi
|
768 |
+
>>> from sympy.abc import x
|
769 |
+
>>> TR11(sin(2*x))
|
770 |
+
2*sin(x)*cos(x)
|
771 |
+
>>> TR11(cos(2*x))
|
772 |
+
-sin(x)**2 + cos(x)**2
|
773 |
+
>>> TR11(sin(4*x))
|
774 |
+
4*(-sin(x)**2 + cos(x)**2)*sin(x)*cos(x)
|
775 |
+
>>> TR11(sin(4*x/3))
|
776 |
+
4*(-sin(x/3)**2 + cos(x/3)**2)*sin(x/3)*cos(x/3)
|
777 |
+
|
778 |
+
If the arguments are simply integers, no change is made
|
779 |
+
unless a base is provided:
|
780 |
+
|
781 |
+
>>> TR11(cos(2))
|
782 |
+
cos(2)
|
783 |
+
>>> TR11(cos(4), 2)
|
784 |
+
-sin(2)**2 + cos(2)**2
|
785 |
+
|
786 |
+
There is a subtle issue here in that autosimplification will convert
|
787 |
+
some higher angles to lower angles
|
788 |
+
|
789 |
+
>>> cos(6*pi/7) + cos(3*pi/7)
|
790 |
+
-cos(pi/7) + cos(3*pi/7)
|
791 |
+
|
792 |
+
The 6*pi/7 angle is now pi/7 but can be targeted with TR11 by supplying
|
793 |
+
the 3*pi/7 base:
|
794 |
+
|
795 |
+
>>> TR11(_, 3*pi/7)
|
796 |
+
-sin(3*pi/7)**2 + cos(3*pi/7)**2 + cos(3*pi/7)
|
797 |
+
|
798 |
+
"""
|
799 |
+
|
800 |
+
def f(rv):
|
801 |
+
if rv.func not in (cos, sin):
|
802 |
+
return rv
|
803 |
+
|
804 |
+
if base:
|
805 |
+
f = rv.func
|
806 |
+
t = f(base*2)
|
807 |
+
co = S.One
|
808 |
+
if t.is_Mul:
|
809 |
+
co, t = t.as_coeff_Mul()
|
810 |
+
if t.func not in (cos, sin):
|
811 |
+
return rv
|
812 |
+
if rv.args[0] == t.args[0]:
|
813 |
+
c = cos(base)
|
814 |
+
s = sin(base)
|
815 |
+
if f is cos:
|
816 |
+
return (c**2 - s**2)/co
|
817 |
+
else:
|
818 |
+
return 2*c*s/co
|
819 |
+
return rv
|
820 |
+
|
821 |
+
elif not rv.args[0].is_Number:
|
822 |
+
# make a change if the leading coefficient's numerator is
|
823 |
+
# divisible by 2
|
824 |
+
c, m = rv.args[0].as_coeff_Mul(rational=True)
|
825 |
+
if c.p % 2 == 0:
|
826 |
+
arg = c.p//2*m/c.q
|
827 |
+
c = TR11(cos(arg))
|
828 |
+
s = TR11(sin(arg))
|
829 |
+
if rv.func == sin:
|
830 |
+
rv = 2*s*c
|
831 |
+
else:
|
832 |
+
rv = c**2 - s**2
|
833 |
+
return rv
|
834 |
+
|
835 |
+
return bottom_up(rv, f)
|
836 |
+
|
837 |
+
|
838 |
+
def _TR11(rv):
|
839 |
+
"""
|
840 |
+
Helper for TR11 to find half-arguments for sin in factors of
|
841 |
+
num/den that appear in cos or sin factors in the den/num.
|
842 |
+
|
843 |
+
Examples
|
844 |
+
========
|
845 |
+
|
846 |
+
>>> from sympy.simplify.fu import TR11, _TR11
|
847 |
+
>>> from sympy import cos, sin
|
848 |
+
>>> from sympy.abc import x
|
849 |
+
>>> TR11(sin(x/3)/(cos(x/6)))
|
850 |
+
sin(x/3)/cos(x/6)
|
851 |
+
>>> _TR11(sin(x/3)/(cos(x/6)))
|
852 |
+
2*sin(x/6)
|
853 |
+
>>> TR11(sin(x/6)/(sin(x/3)))
|
854 |
+
sin(x/6)/sin(x/3)
|
855 |
+
>>> _TR11(sin(x/6)/(sin(x/3)))
|
856 |
+
1/(2*cos(x/6))
|
857 |
+
|
858 |
+
"""
|
859 |
+
def f(rv):
|
860 |
+
if not isinstance(rv, Expr):
|
861 |
+
return rv
|
862 |
+
|
863 |
+
def sincos_args(flat):
|
864 |
+
# find arguments of sin and cos that
|
865 |
+
# appears as bases in args of flat
|
866 |
+
# and have Integer exponents
|
867 |
+
args = defaultdict(set)
|
868 |
+
for fi in Mul.make_args(flat):
|
869 |
+
b, e = fi.as_base_exp()
|
870 |
+
if e.is_Integer and e > 0:
|
871 |
+
if b.func in (cos, sin):
|
872 |
+
args[type(b)].add(b.args[0])
|
873 |
+
return args
|
874 |
+
num_args, den_args = map(sincos_args, rv.as_numer_denom())
|
875 |
+
def handle_match(rv, num_args, den_args):
|
876 |
+
# for arg in sin args of num_args, look for arg/2
|
877 |
+
# in den_args and pass this half-angle to TR11
|
878 |
+
# for handling in rv
|
879 |
+
for narg in num_args[sin]:
|
880 |
+
half = narg/2
|
881 |
+
if half in den_args[cos]:
|
882 |
+
func = cos
|
883 |
+
elif half in den_args[sin]:
|
884 |
+
func = sin
|
885 |
+
else:
|
886 |
+
continue
|
887 |
+
rv = TR11(rv, half)
|
888 |
+
den_args[func].remove(half)
|
889 |
+
return rv
|
890 |
+
# sin in num, sin or cos in den
|
891 |
+
rv = handle_match(rv, num_args, den_args)
|
892 |
+
# sin in den, sin or cos in num
|
893 |
+
rv = handle_match(rv, den_args, num_args)
|
894 |
+
return rv
|
895 |
+
|
896 |
+
return bottom_up(rv, f)
|
897 |
+
|
898 |
+
|
899 |
+
def TR12(rv, first=True):
|
900 |
+
"""Separate sums in ``tan``.
|
901 |
+
|
902 |
+
Examples
|
903 |
+
========
|
904 |
+
|
905 |
+
>>> from sympy.abc import x, y
|
906 |
+
>>> from sympy import tan
|
907 |
+
>>> from sympy.simplify.fu import TR12
|
908 |
+
>>> TR12(tan(x + y))
|
909 |
+
(tan(x) + tan(y))/(-tan(x)*tan(y) + 1)
|
910 |
+
"""
|
911 |
+
|
912 |
+
def f(rv):
|
913 |
+
if not rv.func == tan:
|
914 |
+
return rv
|
915 |
+
|
916 |
+
arg = rv.args[0]
|
917 |
+
if arg.is_Add:
|
918 |
+
if first:
|
919 |
+
args = list(ordered(arg.args))
|
920 |
+
else:
|
921 |
+
args = list(arg.args)
|
922 |
+
a = args.pop()
|
923 |
+
b = Add._from_args(args)
|
924 |
+
if b.is_Add:
|
925 |
+
tb = TR12(tan(b), first=False)
|
926 |
+
else:
|
927 |
+
tb = tan(b)
|
928 |
+
return (tan(a) + tb)/(1 - tan(a)*tb)
|
929 |
+
return rv
|
930 |
+
|
931 |
+
return bottom_up(rv, f)
|
932 |
+
|
933 |
+
|
934 |
+
def TR12i(rv):
|
935 |
+
"""Combine tan arguments as
|
936 |
+
(tan(y) + tan(x))/(tan(x)*tan(y) - 1) -> -tan(x + y).
|
937 |
+
|
938 |
+
Examples
|
939 |
+
========
|
940 |
+
|
941 |
+
>>> from sympy.simplify.fu import TR12i
|
942 |
+
>>> from sympy import tan
|
943 |
+
>>> from sympy.abc import a, b, c
|
944 |
+
>>> ta, tb, tc = [tan(i) for i in (a, b, c)]
|
945 |
+
>>> TR12i((ta + tb)/(-ta*tb + 1))
|
946 |
+
tan(a + b)
|
947 |
+
>>> TR12i((ta + tb)/(ta*tb - 1))
|
948 |
+
-tan(a + b)
|
949 |
+
>>> TR12i((-ta - tb)/(ta*tb - 1))
|
950 |
+
tan(a + b)
|
951 |
+
>>> eq = (ta + tb)/(-ta*tb + 1)**2*(-3*ta - 3*tc)/(2*(ta*tc - 1))
|
952 |
+
>>> TR12i(eq.expand())
|
953 |
+
-3*tan(a + b)*tan(a + c)/(2*(tan(a) + tan(b) - 1))
|
954 |
+
"""
|
955 |
+
def f(rv):
|
956 |
+
if not (rv.is_Add or rv.is_Mul or rv.is_Pow):
|
957 |
+
return rv
|
958 |
+
|
959 |
+
n, d = rv.as_numer_denom()
|
960 |
+
if not d.args or not n.args:
|
961 |
+
return rv
|
962 |
+
|
963 |
+
dok = {}
|
964 |
+
|
965 |
+
def ok(di):
|
966 |
+
m = as_f_sign_1(di)
|
967 |
+
if m:
|
968 |
+
g, f, s = m
|
969 |
+
if s is S.NegativeOne and f.is_Mul and len(f.args) == 2 and \
|
970 |
+
all(isinstance(fi, tan) for fi in f.args):
|
971 |
+
return g, f
|
972 |
+
|
973 |
+
d_args = list(Mul.make_args(d))
|
974 |
+
for i, di in enumerate(d_args):
|
975 |
+
m = ok(di)
|
976 |
+
if m:
|
977 |
+
g, t = m
|
978 |
+
s = Add(*[_.args[0] for _ in t.args])
|
979 |
+
dok[s] = S.One
|
980 |
+
d_args[i] = g
|
981 |
+
continue
|
982 |
+
if di.is_Add:
|
983 |
+
di = factor(di)
|
984 |
+
if di.is_Mul:
|
985 |
+
d_args.extend(di.args)
|
986 |
+
d_args[i] = S.One
|
987 |
+
elif di.is_Pow and (di.exp.is_integer or di.base.is_positive):
|
988 |
+
m = ok(di.base)
|
989 |
+
if m:
|
990 |
+
g, t = m
|
991 |
+
s = Add(*[_.args[0] for _ in t.args])
|
992 |
+
dok[s] = di.exp
|
993 |
+
d_args[i] = g**di.exp
|
994 |
+
else:
|
995 |
+
di = factor(di)
|
996 |
+
if di.is_Mul:
|
997 |
+
d_args.extend(di.args)
|
998 |
+
d_args[i] = S.One
|
999 |
+
if not dok:
|
1000 |
+
return rv
|
1001 |
+
|
1002 |
+
def ok(ni):
|
1003 |
+
if ni.is_Add and len(ni.args) == 2:
|
1004 |
+
a, b = ni.args
|
1005 |
+
if isinstance(a, tan) and isinstance(b, tan):
|
1006 |
+
return a, b
|
1007 |
+
n_args = list(Mul.make_args(factor_terms(n)))
|
1008 |
+
hit = False
|
1009 |
+
for i, ni in enumerate(n_args):
|
1010 |
+
m = ok(ni)
|
1011 |
+
if not m:
|
1012 |
+
m = ok(-ni)
|
1013 |
+
if m:
|
1014 |
+
n_args[i] = S.NegativeOne
|
1015 |
+
else:
|
1016 |
+
if ni.is_Add:
|
1017 |
+
ni = factor(ni)
|
1018 |
+
if ni.is_Mul:
|
1019 |
+
n_args.extend(ni.args)
|
1020 |
+
n_args[i] = S.One
|
1021 |
+
continue
|
1022 |
+
elif ni.is_Pow and (
|
1023 |
+
ni.exp.is_integer or ni.base.is_positive):
|
1024 |
+
m = ok(ni.base)
|
1025 |
+
if m:
|
1026 |
+
n_args[i] = S.One
|
1027 |
+
else:
|
1028 |
+
ni = factor(ni)
|
1029 |
+
if ni.is_Mul:
|
1030 |
+
n_args.extend(ni.args)
|
1031 |
+
n_args[i] = S.One
|
1032 |
+
continue
|
1033 |
+
else:
|
1034 |
+
continue
|
1035 |
+
else:
|
1036 |
+
n_args[i] = S.One
|
1037 |
+
hit = True
|
1038 |
+
s = Add(*[_.args[0] for _ in m])
|
1039 |
+
ed = dok[s]
|
1040 |
+
newed = ed.extract_additively(S.One)
|
1041 |
+
if newed is not None:
|
1042 |
+
if newed:
|
1043 |
+
dok[s] = newed
|
1044 |
+
else:
|
1045 |
+
dok.pop(s)
|
1046 |
+
n_args[i] *= -tan(s)
|
1047 |
+
|
1048 |
+
if hit:
|
1049 |
+
rv = Mul(*n_args)/Mul(*d_args)/Mul(*[(Add(*[
|
1050 |
+
tan(a) for a in i.args]) - 1)**e for i, e in dok.items()])
|
1051 |
+
|
1052 |
+
return rv
|
1053 |
+
|
1054 |
+
return bottom_up(rv, f)
|
1055 |
+
|
1056 |
+
|
1057 |
+
def TR13(rv):
|
1058 |
+
"""Change products of ``tan`` or ``cot``.
|
1059 |
+
|
1060 |
+
Examples
|
1061 |
+
========
|
1062 |
+
|
1063 |
+
>>> from sympy.simplify.fu import TR13
|
1064 |
+
>>> from sympy import tan, cot
|
1065 |
+
>>> TR13(tan(3)*tan(2))
|
1066 |
+
-tan(2)/tan(5) - tan(3)/tan(5) + 1
|
1067 |
+
>>> TR13(cot(3)*cot(2))
|
1068 |
+
cot(2)*cot(5) + 1 + cot(3)*cot(5)
|
1069 |
+
"""
|
1070 |
+
|
1071 |
+
def f(rv):
|
1072 |
+
if not rv.is_Mul:
|
1073 |
+
return rv
|
1074 |
+
|
1075 |
+
# XXX handle products of powers? or let power-reducing handle it?
|
1076 |
+
args = {tan: [], cot: [], None: []}
|
1077 |
+
for a in ordered(Mul.make_args(rv)):
|
1078 |
+
if a.func in (tan, cot):
|
1079 |
+
args[type(a)].append(a.args[0])
|
1080 |
+
else:
|
1081 |
+
args[None].append(a)
|
1082 |
+
t = args[tan]
|
1083 |
+
c = args[cot]
|
1084 |
+
if len(t) < 2 and len(c) < 2:
|
1085 |
+
return rv
|
1086 |
+
args = args[None]
|
1087 |
+
while len(t) > 1:
|
1088 |
+
t1 = t.pop()
|
1089 |
+
t2 = t.pop()
|
1090 |
+
args.append(1 - (tan(t1)/tan(t1 + t2) + tan(t2)/tan(t1 + t2)))
|
1091 |
+
if t:
|
1092 |
+
args.append(tan(t.pop()))
|
1093 |
+
while len(c) > 1:
|
1094 |
+
t1 = c.pop()
|
1095 |
+
t2 = c.pop()
|
1096 |
+
args.append(1 + cot(t1)*cot(t1 + t2) + cot(t2)*cot(t1 + t2))
|
1097 |
+
if c:
|
1098 |
+
args.append(cot(c.pop()))
|
1099 |
+
return Mul(*args)
|
1100 |
+
|
1101 |
+
return bottom_up(rv, f)
|
1102 |
+
|
1103 |
+
|
1104 |
+
def TRmorrie(rv):
|
1105 |
+
"""Returns cos(x)*cos(2*x)*...*cos(2**(k-1)*x) -> sin(2**k*x)/(2**k*sin(x))
|
1106 |
+
|
1107 |
+
Examples
|
1108 |
+
========
|
1109 |
+
|
1110 |
+
>>> from sympy.simplify.fu import TRmorrie, TR8, TR3
|
1111 |
+
>>> from sympy.abc import x
|
1112 |
+
>>> from sympy import Mul, cos, pi
|
1113 |
+
>>> TRmorrie(cos(x)*cos(2*x))
|
1114 |
+
sin(4*x)/(4*sin(x))
|
1115 |
+
>>> TRmorrie(7*Mul(*[cos(x) for x in range(10)]))
|
1116 |
+
7*sin(12)*sin(16)*cos(5)*cos(7)*cos(9)/(64*sin(1)*sin(3))
|
1117 |
+
|
1118 |
+
Sometimes autosimplification will cause a power to be
|
1119 |
+
not recognized. e.g. in the following, cos(4*pi/7) automatically
|
1120 |
+
simplifies to -cos(3*pi/7) so only 2 of the 3 terms are
|
1121 |
+
recognized:
|
1122 |
+
|
1123 |
+
>>> TRmorrie(cos(pi/7)*cos(2*pi/7)*cos(4*pi/7))
|
1124 |
+
-sin(3*pi/7)*cos(3*pi/7)/(4*sin(pi/7))
|
1125 |
+
|
1126 |
+
A touch by TR8 resolves the expression to a Rational
|
1127 |
+
|
1128 |
+
>>> TR8(_)
|
1129 |
+
-1/8
|
1130 |
+
|
1131 |
+
In this case, if eq is unsimplified, the answer is obtained
|
1132 |
+
directly:
|
1133 |
+
|
1134 |
+
>>> eq = cos(pi/9)*cos(2*pi/9)*cos(3*pi/9)*cos(4*pi/9)
|
1135 |
+
>>> TRmorrie(eq)
|
1136 |
+
1/16
|
1137 |
+
|
1138 |
+
But if angles are made canonical with TR3 then the answer
|
1139 |
+
is not simplified without further work:
|
1140 |
+
|
1141 |
+
>>> TR3(eq)
|
1142 |
+
sin(pi/18)*cos(pi/9)*cos(2*pi/9)/2
|
1143 |
+
>>> TRmorrie(_)
|
1144 |
+
sin(pi/18)*sin(4*pi/9)/(8*sin(pi/9))
|
1145 |
+
>>> TR8(_)
|
1146 |
+
cos(7*pi/18)/(16*sin(pi/9))
|
1147 |
+
>>> TR3(_)
|
1148 |
+
1/16
|
1149 |
+
|
1150 |
+
The original expression would have resolve to 1/16 directly with TR8,
|
1151 |
+
however:
|
1152 |
+
|
1153 |
+
>>> TR8(eq)
|
1154 |
+
1/16
|
1155 |
+
|
1156 |
+
References
|
1157 |
+
==========
|
1158 |
+
|
1159 |
+
.. [1] https://en.wikipedia.org/wiki/Morrie%27s_law
|
1160 |
+
|
1161 |
+
"""
|
1162 |
+
|
1163 |
+
def f(rv, first=True):
|
1164 |
+
if not rv.is_Mul:
|
1165 |
+
return rv
|
1166 |
+
if first:
|
1167 |
+
n, d = rv.as_numer_denom()
|
1168 |
+
return f(n, 0)/f(d, 0)
|
1169 |
+
|
1170 |
+
args = defaultdict(list)
|
1171 |
+
coss = {}
|
1172 |
+
other = []
|
1173 |
+
for c in rv.args:
|
1174 |
+
b, e = c.as_base_exp()
|
1175 |
+
if e.is_Integer and isinstance(b, cos):
|
1176 |
+
co, a = b.args[0].as_coeff_Mul()
|
1177 |
+
args[a].append(co)
|
1178 |
+
coss[b] = e
|
1179 |
+
else:
|
1180 |
+
other.append(c)
|
1181 |
+
|
1182 |
+
new = []
|
1183 |
+
for a in args:
|
1184 |
+
c = args[a]
|
1185 |
+
c.sort()
|
1186 |
+
while c:
|
1187 |
+
k = 0
|
1188 |
+
cc = ci = c[0]
|
1189 |
+
while cc in c:
|
1190 |
+
k += 1
|
1191 |
+
cc *= 2
|
1192 |
+
if k > 1:
|
1193 |
+
newarg = sin(2**k*ci*a)/2**k/sin(ci*a)
|
1194 |
+
# see how many times this can be taken
|
1195 |
+
take = None
|
1196 |
+
ccs = []
|
1197 |
+
for i in range(k):
|
1198 |
+
cc /= 2
|
1199 |
+
key = cos(a*cc, evaluate=False)
|
1200 |
+
ccs.append(cc)
|
1201 |
+
take = min(coss[key], take or coss[key])
|
1202 |
+
# update exponent counts
|
1203 |
+
for i in range(k):
|
1204 |
+
cc = ccs.pop()
|
1205 |
+
key = cos(a*cc, evaluate=False)
|
1206 |
+
coss[key] -= take
|
1207 |
+
if not coss[key]:
|
1208 |
+
c.remove(cc)
|
1209 |
+
new.append(newarg**take)
|
1210 |
+
else:
|
1211 |
+
b = cos(c.pop(0)*a)
|
1212 |
+
other.append(b**coss[b])
|
1213 |
+
|
1214 |
+
if new:
|
1215 |
+
rv = Mul(*(new + other + [
|
1216 |
+
cos(k*a, evaluate=False) for a in args for k in args[a]]))
|
1217 |
+
|
1218 |
+
return rv
|
1219 |
+
|
1220 |
+
return bottom_up(rv, f)
|
1221 |
+
|
1222 |
+
|
1223 |
+
def TR14(rv, first=True):
|
1224 |
+
"""Convert factored powers of sin and cos identities into simpler
|
1225 |
+
expressions.
|
1226 |
+
|
1227 |
+
Examples
|
1228 |
+
========
|
1229 |
+
|
1230 |
+
>>> from sympy.simplify.fu import TR14
|
1231 |
+
>>> from sympy.abc import x, y
|
1232 |
+
>>> from sympy import cos, sin
|
1233 |
+
>>> TR14((cos(x) - 1)*(cos(x) + 1))
|
1234 |
+
-sin(x)**2
|
1235 |
+
>>> TR14((sin(x) - 1)*(sin(x) + 1))
|
1236 |
+
-cos(x)**2
|
1237 |
+
>>> p1 = (cos(x) + 1)*(cos(x) - 1)
|
1238 |
+
>>> p2 = (cos(y) - 1)*2*(cos(y) + 1)
|
1239 |
+
>>> p3 = (3*(cos(y) - 1))*(3*(cos(y) + 1))
|
1240 |
+
>>> TR14(p1*p2*p3*(x - 1))
|
1241 |
+
-18*(x - 1)*sin(x)**2*sin(y)**4
|
1242 |
+
|
1243 |
+
"""
|
1244 |
+
|
1245 |
+
def f(rv):
|
1246 |
+
if not rv.is_Mul:
|
1247 |
+
return rv
|
1248 |
+
|
1249 |
+
if first:
|
1250 |
+
# sort them by location in numerator and denominator
|
1251 |
+
# so the code below can just deal with positive exponents
|
1252 |
+
n, d = rv.as_numer_denom()
|
1253 |
+
if d is not S.One:
|
1254 |
+
newn = TR14(n, first=False)
|
1255 |
+
newd = TR14(d, first=False)
|
1256 |
+
if newn != n or newd != d:
|
1257 |
+
rv = newn/newd
|
1258 |
+
return rv
|
1259 |
+
|
1260 |
+
other = []
|
1261 |
+
process = []
|
1262 |
+
for a in rv.args:
|
1263 |
+
if a.is_Pow:
|
1264 |
+
b, e = a.as_base_exp()
|
1265 |
+
if not (e.is_integer or b.is_positive):
|
1266 |
+
other.append(a)
|
1267 |
+
continue
|
1268 |
+
a = b
|
1269 |
+
else:
|
1270 |
+
e = S.One
|
1271 |
+
m = as_f_sign_1(a)
|
1272 |
+
if not m or m[1].func not in (cos, sin):
|
1273 |
+
if e is S.One:
|
1274 |
+
other.append(a)
|
1275 |
+
else:
|
1276 |
+
other.append(a**e)
|
1277 |
+
continue
|
1278 |
+
g, f, si = m
|
1279 |
+
process.append((g, e.is_Number, e, f, si, a))
|
1280 |
+
|
1281 |
+
# sort them to get like terms next to each other
|
1282 |
+
process = list(ordered(process))
|
1283 |
+
|
1284 |
+
# keep track of whether there was any change
|
1285 |
+
nother = len(other)
|
1286 |
+
|
1287 |
+
# access keys
|
1288 |
+
keys = (g, t, e, f, si, a) = list(range(6))
|
1289 |
+
|
1290 |
+
while process:
|
1291 |
+
A = process.pop(0)
|
1292 |
+
if process:
|
1293 |
+
B = process[0]
|
1294 |
+
|
1295 |
+
if A[e].is_Number and B[e].is_Number:
|
1296 |
+
# both exponents are numbers
|
1297 |
+
if A[f] == B[f]:
|
1298 |
+
if A[si] != B[si]:
|
1299 |
+
B = process.pop(0)
|
1300 |
+
take = min(A[e], B[e])
|
1301 |
+
|
1302 |
+
# reinsert any remainder
|
1303 |
+
# the B will likely sort after A so check it first
|
1304 |
+
if B[e] != take:
|
1305 |
+
rem = [B[i] for i in keys]
|
1306 |
+
rem[e] -= take
|
1307 |
+
process.insert(0, rem)
|
1308 |
+
elif A[e] != take:
|
1309 |
+
rem = [A[i] for i in keys]
|
1310 |
+
rem[e] -= take
|
1311 |
+
process.insert(0, rem)
|
1312 |
+
|
1313 |
+
if isinstance(A[f], cos):
|
1314 |
+
t = sin
|
1315 |
+
else:
|
1316 |
+
t = cos
|
1317 |
+
other.append((-A[g]*B[g]*t(A[f].args[0])**2)**take)
|
1318 |
+
continue
|
1319 |
+
|
1320 |
+
elif A[e] == B[e]:
|
1321 |
+
# both exponents are equal symbols
|
1322 |
+
if A[f] == B[f]:
|
1323 |
+
if A[si] != B[si]:
|
1324 |
+
B = process.pop(0)
|
1325 |
+
take = A[e]
|
1326 |
+
if isinstance(A[f], cos):
|
1327 |
+
t = sin
|
1328 |
+
else:
|
1329 |
+
t = cos
|
1330 |
+
other.append((-A[g]*B[g]*t(A[f].args[0])**2)**take)
|
1331 |
+
continue
|
1332 |
+
|
1333 |
+
# either we are done or neither condition above applied
|
1334 |
+
other.append(A[a]**A[e])
|
1335 |
+
|
1336 |
+
if len(other) != nother:
|
1337 |
+
rv = Mul(*other)
|
1338 |
+
|
1339 |
+
return rv
|
1340 |
+
|
1341 |
+
return bottom_up(rv, f)
|
1342 |
+
|
1343 |
+
|
1344 |
+
def TR15(rv, max=4, pow=False):
|
1345 |
+
"""Convert sin(x)**-2 to 1 + cot(x)**2.
|
1346 |
+
|
1347 |
+
See _TR56 docstring for advanced use of ``max`` and ``pow``.
|
1348 |
+
|
1349 |
+
Examples
|
1350 |
+
========
|
1351 |
+
|
1352 |
+
>>> from sympy.simplify.fu import TR15
|
1353 |
+
>>> from sympy.abc import x
|
1354 |
+
>>> from sympy import sin
|
1355 |
+
>>> TR15(1 - 1/sin(x)**2)
|
1356 |
+
-cot(x)**2
|
1357 |
+
|
1358 |
+
"""
|
1359 |
+
|
1360 |
+
def f(rv):
|
1361 |
+
if not (isinstance(rv, Pow) and isinstance(rv.base, sin)):
|
1362 |
+
return rv
|
1363 |
+
|
1364 |
+
e = rv.exp
|
1365 |
+
if e % 2 == 1:
|
1366 |
+
return TR15(rv.base**(e + 1))/rv.base
|
1367 |
+
|
1368 |
+
ia = 1/rv
|
1369 |
+
a = _TR56(ia, sin, cot, lambda x: 1 + x, max=max, pow=pow)
|
1370 |
+
if a != ia:
|
1371 |
+
rv = a
|
1372 |
+
return rv
|
1373 |
+
|
1374 |
+
return bottom_up(rv, f)
|
1375 |
+
|
1376 |
+
|
1377 |
+
def TR16(rv, max=4, pow=False):
|
1378 |
+
"""Convert cos(x)**-2 to 1 + tan(x)**2.
|
1379 |
+
|
1380 |
+
See _TR56 docstring for advanced use of ``max`` and ``pow``.
|
1381 |
+
|
1382 |
+
Examples
|
1383 |
+
========
|
1384 |
+
|
1385 |
+
>>> from sympy.simplify.fu import TR16
|
1386 |
+
>>> from sympy.abc import x
|
1387 |
+
>>> from sympy import cos
|
1388 |
+
>>> TR16(1 - 1/cos(x)**2)
|
1389 |
+
-tan(x)**2
|
1390 |
+
|
1391 |
+
"""
|
1392 |
+
|
1393 |
+
def f(rv):
|
1394 |
+
if not (isinstance(rv, Pow) and isinstance(rv.base, cos)):
|
1395 |
+
return rv
|
1396 |
+
|
1397 |
+
e = rv.exp
|
1398 |
+
if e % 2 == 1:
|
1399 |
+
return TR15(rv.base**(e + 1))/rv.base
|
1400 |
+
|
1401 |
+
ia = 1/rv
|
1402 |
+
a = _TR56(ia, cos, tan, lambda x: 1 + x, max=max, pow=pow)
|
1403 |
+
if a != ia:
|
1404 |
+
rv = a
|
1405 |
+
return rv
|
1406 |
+
|
1407 |
+
return bottom_up(rv, f)
|
1408 |
+
|
1409 |
+
|
1410 |
+
def TR111(rv):
|
1411 |
+
"""Convert f(x)**-i to g(x)**i where either ``i`` is an integer
|
1412 |
+
or the base is positive and f, g are: tan, cot; sin, csc; or cos, sec.
|
1413 |
+
|
1414 |
+
Examples
|
1415 |
+
========
|
1416 |
+
|
1417 |
+
>>> from sympy.simplify.fu import TR111
|
1418 |
+
>>> from sympy.abc import x
|
1419 |
+
>>> from sympy import tan
|
1420 |
+
>>> TR111(1 - 1/tan(x)**2)
|
1421 |
+
1 - cot(x)**2
|
1422 |
+
|
1423 |
+
"""
|
1424 |
+
|
1425 |
+
def f(rv):
|
1426 |
+
if not (
|
1427 |
+
isinstance(rv, Pow) and
|
1428 |
+
(rv.base.is_positive or rv.exp.is_integer and rv.exp.is_negative)):
|
1429 |
+
return rv
|
1430 |
+
|
1431 |
+
if isinstance(rv.base, tan):
|
1432 |
+
return cot(rv.base.args[0])**-rv.exp
|
1433 |
+
elif isinstance(rv.base, sin):
|
1434 |
+
return csc(rv.base.args[0])**-rv.exp
|
1435 |
+
elif isinstance(rv.base, cos):
|
1436 |
+
return sec(rv.base.args[0])**-rv.exp
|
1437 |
+
return rv
|
1438 |
+
|
1439 |
+
return bottom_up(rv, f)
|
1440 |
+
|
1441 |
+
|
1442 |
+
def TR22(rv, max=4, pow=False):
|
1443 |
+
"""Convert tan(x)**2 to sec(x)**2 - 1 and cot(x)**2 to csc(x)**2 - 1.
|
1444 |
+
|
1445 |
+
See _TR56 docstring for advanced use of ``max`` and ``pow``.
|
1446 |
+
|
1447 |
+
Examples
|
1448 |
+
========
|
1449 |
+
|
1450 |
+
>>> from sympy.simplify.fu import TR22
|
1451 |
+
>>> from sympy.abc import x
|
1452 |
+
>>> from sympy import tan, cot
|
1453 |
+
>>> TR22(1 + tan(x)**2)
|
1454 |
+
sec(x)**2
|
1455 |
+
>>> TR22(1 + cot(x)**2)
|
1456 |
+
csc(x)**2
|
1457 |
+
|
1458 |
+
"""
|
1459 |
+
|
1460 |
+
def f(rv):
|
1461 |
+
if not (isinstance(rv, Pow) and rv.base.func in (cot, tan)):
|
1462 |
+
return rv
|
1463 |
+
|
1464 |
+
rv = _TR56(rv, tan, sec, lambda x: x - 1, max=max, pow=pow)
|
1465 |
+
rv = _TR56(rv, cot, csc, lambda x: x - 1, max=max, pow=pow)
|
1466 |
+
return rv
|
1467 |
+
|
1468 |
+
return bottom_up(rv, f)
|
1469 |
+
|
1470 |
+
|
1471 |
+
def TRpower(rv):
|
1472 |
+
"""Convert sin(x)**n and cos(x)**n with positive n to sums.
|
1473 |
+
|
1474 |
+
Examples
|
1475 |
+
========
|
1476 |
+
|
1477 |
+
>>> from sympy.simplify.fu import TRpower
|
1478 |
+
>>> from sympy.abc import x
|
1479 |
+
>>> from sympy import cos, sin
|
1480 |
+
>>> TRpower(sin(x)**6)
|
1481 |
+
-15*cos(2*x)/32 + 3*cos(4*x)/16 - cos(6*x)/32 + 5/16
|
1482 |
+
>>> TRpower(sin(x)**3*cos(2*x)**4)
|
1483 |
+
(3*sin(x)/4 - sin(3*x)/4)*(cos(4*x)/2 + cos(8*x)/8 + 3/8)
|
1484 |
+
|
1485 |
+
References
|
1486 |
+
==========
|
1487 |
+
|
1488 |
+
.. [1] https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Power-reduction_formulae
|
1489 |
+
|
1490 |
+
"""
|
1491 |
+
|
1492 |
+
def f(rv):
|
1493 |
+
if not (isinstance(rv, Pow) and isinstance(rv.base, (sin, cos))):
|
1494 |
+
return rv
|
1495 |
+
b, n = rv.as_base_exp()
|
1496 |
+
x = b.args[0]
|
1497 |
+
if n.is_Integer and n.is_positive:
|
1498 |
+
if n.is_odd and isinstance(b, cos):
|
1499 |
+
rv = 2**(1-n)*Add(*[binomial(n, k)*cos((n - 2*k)*x)
|
1500 |
+
for k in range((n + 1)/2)])
|
1501 |
+
elif n.is_odd and isinstance(b, sin):
|
1502 |
+
rv = 2**(1-n)*S.NegativeOne**((n-1)/2)*Add(*[binomial(n, k)*
|
1503 |
+
S.NegativeOne**k*sin((n - 2*k)*x) for k in range((n + 1)/2)])
|
1504 |
+
elif n.is_even and isinstance(b, cos):
|
1505 |
+
rv = 2**(1-n)*Add(*[binomial(n, k)*cos((n - 2*k)*x)
|
1506 |
+
for k in range(n/2)])
|
1507 |
+
elif n.is_even and isinstance(b, sin):
|
1508 |
+
rv = 2**(1-n)*S.NegativeOne**(n/2)*Add(*[binomial(n, k)*
|
1509 |
+
S.NegativeOne**k*cos((n - 2*k)*x) for k in range(n/2)])
|
1510 |
+
if n.is_even:
|
1511 |
+
rv += 2**(-n)*binomial(n, n/2)
|
1512 |
+
return rv
|
1513 |
+
|
1514 |
+
return bottom_up(rv, f)
|
1515 |
+
|
1516 |
+
|
1517 |
+
def L(rv):
|
1518 |
+
"""Return count of trigonometric functions in expression.
|
1519 |
+
|
1520 |
+
Examples
|
1521 |
+
========
|
1522 |
+
|
1523 |
+
>>> from sympy.simplify.fu import L
|
1524 |
+
>>> from sympy.abc import x
|
1525 |
+
>>> from sympy import cos, sin
|
1526 |
+
>>> L(cos(x)+sin(x))
|
1527 |
+
2
|
1528 |
+
"""
|
1529 |
+
return S(rv.count(TrigonometricFunction))
|
1530 |
+
|
1531 |
+
|
1532 |
+
# ============== end of basic Fu-like tools =====================
|
1533 |
+
|
1534 |
+
if SYMPY_DEBUG:
|
1535 |
+
(TR0, TR1, TR2, TR3, TR4, TR5, TR6, TR7, TR8, TR9, TR10, TR11, TR12, TR13,
|
1536 |
+
TR2i, TRmorrie, TR14, TR15, TR16, TR12i, TR111, TR22
|
1537 |
+
)= list(map(debug,
|
1538 |
+
(TR0, TR1, TR2, TR3, TR4, TR5, TR6, TR7, TR8, TR9, TR10, TR11, TR12, TR13,
|
1539 |
+
TR2i, TRmorrie, TR14, TR15, TR16, TR12i, TR111, TR22)))
|
1540 |
+
|
1541 |
+
|
1542 |
+
# tuples are chains -- (f, g) -> lambda x: g(f(x))
|
1543 |
+
# lists are choices -- [f, g] -> lambda x: min(f(x), g(x), key=objective)
|
1544 |
+
|
1545 |
+
CTR1 = [(TR5, TR0), (TR6, TR0), identity]
|
1546 |
+
|
1547 |
+
CTR2 = (TR11, [(TR5, TR0), (TR6, TR0), TR0])
|
1548 |
+
|
1549 |
+
CTR3 = [(TRmorrie, TR8, TR0), (TRmorrie, TR8, TR10i, TR0), identity]
|
1550 |
+
|
1551 |
+
CTR4 = [(TR4, TR10i), identity]
|
1552 |
+
|
1553 |
+
RL1 = (TR4, TR3, TR4, TR12, TR4, TR13, TR4, TR0)
|
1554 |
+
|
1555 |
+
|
1556 |
+
# XXX it's a little unclear how this one is to be implemented
|
1557 |
+
# see Fu paper of reference, page 7. What is the Union symbol referring to?
|
1558 |
+
# The diagram shows all these as one chain of transformations, but the
|
1559 |
+
# text refers to them being applied independently. Also, a break
|
1560 |
+
# if L starts to increase has not been implemented.
|
1561 |
+
RL2 = [
|
1562 |
+
(TR4, TR3, TR10, TR4, TR3, TR11),
|
1563 |
+
(TR5, TR7, TR11, TR4),
|
1564 |
+
(CTR3, CTR1, TR9, CTR2, TR4, TR9, TR9, CTR4),
|
1565 |
+
identity,
|
1566 |
+
]
|
1567 |
+
|
1568 |
+
|
1569 |
+
def fu(rv, measure=lambda x: (L(x), x.count_ops())):
|
1570 |
+
"""Attempt to simplify expression by using transformation rules given
|
1571 |
+
in the algorithm by Fu et al.
|
1572 |
+
|
1573 |
+
:func:`fu` will try to minimize the objective function ``measure``.
|
1574 |
+
By default this first minimizes the number of trig terms and then minimizes
|
1575 |
+
the number of total operations.
|
1576 |
+
|
1577 |
+
Examples
|
1578 |
+
========
|
1579 |
+
|
1580 |
+
>>> from sympy.simplify.fu import fu
|
1581 |
+
>>> from sympy import cos, sin, tan, pi, S, sqrt
|
1582 |
+
>>> from sympy.abc import x, y, a, b
|
1583 |
+
|
1584 |
+
>>> fu(sin(50)**2 + cos(50)**2 + sin(pi/6))
|
1585 |
+
3/2
|
1586 |
+
>>> fu(sqrt(6)*cos(x) + sqrt(2)*sin(x))
|
1587 |
+
2*sqrt(2)*sin(x + pi/3)
|
1588 |
+
|
1589 |
+
CTR1 example
|
1590 |
+
|
1591 |
+
>>> eq = sin(x)**4 - cos(y)**2 + sin(y)**2 + 2*cos(x)**2
|
1592 |
+
>>> fu(eq)
|
1593 |
+
cos(x)**4 - 2*cos(y)**2 + 2
|
1594 |
+
|
1595 |
+
CTR2 example
|
1596 |
+
|
1597 |
+
>>> fu(S.Half - cos(2*x)/2)
|
1598 |
+
sin(x)**2
|
1599 |
+
|
1600 |
+
CTR3 example
|
1601 |
+
|
1602 |
+
>>> fu(sin(a)*(cos(b) - sin(b)) + cos(a)*(sin(b) + cos(b)))
|
1603 |
+
sqrt(2)*sin(a + b + pi/4)
|
1604 |
+
|
1605 |
+
CTR4 example
|
1606 |
+
|
1607 |
+
>>> fu(sqrt(3)*cos(x)/2 + sin(x)/2)
|
1608 |
+
sin(x + pi/3)
|
1609 |
+
|
1610 |
+
Example 1
|
1611 |
+
|
1612 |
+
>>> fu(1-sin(2*x)**2/4-sin(y)**2-cos(x)**4)
|
1613 |
+
-cos(x)**2 + cos(y)**2
|
1614 |
+
|
1615 |
+
Example 2
|
1616 |
+
|
1617 |
+
>>> fu(cos(4*pi/9))
|
1618 |
+
sin(pi/18)
|
1619 |
+
>>> fu(cos(pi/9)*cos(2*pi/9)*cos(3*pi/9)*cos(4*pi/9))
|
1620 |
+
1/16
|
1621 |
+
|
1622 |
+
Example 3
|
1623 |
+
|
1624 |
+
>>> fu(tan(7*pi/18)+tan(5*pi/18)-sqrt(3)*tan(5*pi/18)*tan(7*pi/18))
|
1625 |
+
-sqrt(3)
|
1626 |
+
|
1627 |
+
Objective function example
|
1628 |
+
|
1629 |
+
>>> fu(sin(x)/cos(x)) # default objective function
|
1630 |
+
tan(x)
|
1631 |
+
>>> fu(sin(x)/cos(x), measure=lambda x: -x.count_ops()) # maximize op count
|
1632 |
+
sin(x)/cos(x)
|
1633 |
+
|
1634 |
+
References
|
1635 |
+
==========
|
1636 |
+
|
1637 |
+
.. [1] https://www.sciencedirect.com/science/article/pii/S0895717706001609
|
1638 |
+
"""
|
1639 |
+
fRL1 = greedy(RL1, measure)
|
1640 |
+
fRL2 = greedy(RL2, measure)
|
1641 |
+
|
1642 |
+
was = rv
|
1643 |
+
rv = sympify(rv)
|
1644 |
+
if not isinstance(rv, Expr):
|
1645 |
+
return rv.func(*[fu(a, measure=measure) for a in rv.args])
|
1646 |
+
rv = TR1(rv)
|
1647 |
+
if rv.has(tan, cot):
|
1648 |
+
rv1 = fRL1(rv)
|
1649 |
+
if (measure(rv1) < measure(rv)):
|
1650 |
+
rv = rv1
|
1651 |
+
if rv.has(tan, cot):
|
1652 |
+
rv = TR2(rv)
|
1653 |
+
if rv.has(sin, cos):
|
1654 |
+
rv1 = fRL2(rv)
|
1655 |
+
rv2 = TR8(TRmorrie(rv1))
|
1656 |
+
rv = min([was, rv, rv1, rv2], key=measure)
|
1657 |
+
return min(TR2i(rv), rv, key=measure)
|
1658 |
+
|
1659 |
+
|
1660 |
+
def process_common_addends(rv, do, key2=None, key1=True):
|
1661 |
+
"""Apply ``do`` to addends of ``rv`` that (if ``key1=True``) share at least
|
1662 |
+
a common absolute value of their coefficient and the value of ``key2`` when
|
1663 |
+
applied to the argument. If ``key1`` is False ``key2`` must be supplied and
|
1664 |
+
will be the only key applied.
|
1665 |
+
"""
|
1666 |
+
|
1667 |
+
# collect by absolute value of coefficient and key2
|
1668 |
+
absc = defaultdict(list)
|
1669 |
+
if key1:
|
1670 |
+
for a in rv.args:
|
1671 |
+
c, a = a.as_coeff_Mul()
|
1672 |
+
if c < 0:
|
1673 |
+
c = -c
|
1674 |
+
a = -a # put the sign on `a`
|
1675 |
+
absc[(c, key2(a) if key2 else 1)].append(a)
|
1676 |
+
elif key2:
|
1677 |
+
for a in rv.args:
|
1678 |
+
absc[(S.One, key2(a))].append(a)
|
1679 |
+
else:
|
1680 |
+
raise ValueError('must have at least one key')
|
1681 |
+
|
1682 |
+
args = []
|
1683 |
+
hit = False
|
1684 |
+
for k in absc:
|
1685 |
+
v = absc[k]
|
1686 |
+
c, _ = k
|
1687 |
+
if len(v) > 1:
|
1688 |
+
e = Add(*v, evaluate=False)
|
1689 |
+
new = do(e)
|
1690 |
+
if new != e:
|
1691 |
+
e = new
|
1692 |
+
hit = True
|
1693 |
+
args.append(c*e)
|
1694 |
+
else:
|
1695 |
+
args.append(c*v[0])
|
1696 |
+
if hit:
|
1697 |
+
rv = Add(*args)
|
1698 |
+
|
1699 |
+
return rv
|
1700 |
+
|
1701 |
+
|
1702 |
+
fufuncs = '''
|
1703 |
+
TR0 TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9 TR10 TR10i TR11
|
1704 |
+
TR12 TR13 L TR2i TRmorrie TR12i
|
1705 |
+
TR14 TR15 TR16 TR111 TR22'''.split()
|
1706 |
+
FU = dict(list(zip(fufuncs, list(map(locals().get, fufuncs)))))
|
1707 |
+
|
1708 |
+
|
1709 |
+
def _roots():
|
1710 |
+
global _ROOT2, _ROOT3, _invROOT3
|
1711 |
+
_ROOT2, _ROOT3 = sqrt(2), sqrt(3)
|
1712 |
+
_invROOT3 = 1/_ROOT3
|
1713 |
+
_ROOT2 = None
|
1714 |
+
|
1715 |
+
|
1716 |
+
def trig_split(a, b, two=False):
|
1717 |
+
"""Return the gcd, s1, s2, a1, a2, bool where
|
1718 |
+
|
1719 |
+
If two is False (default) then::
|
1720 |
+
a + b = gcd*(s1*f(a1) + s2*f(a2)) where f = cos if bool else sin
|
1721 |
+
else:
|
1722 |
+
if bool, a + b was +/- cos(a1)*cos(a2) +/- sin(a1)*sin(a2) and equals
|
1723 |
+
n1*gcd*cos(a - b) if n1 == n2 else
|
1724 |
+
n1*gcd*cos(a + b)
|
1725 |
+
else a + b was +/- cos(a1)*sin(a2) +/- sin(a1)*cos(a2) and equals
|
1726 |
+
n1*gcd*sin(a + b) if n1 = n2 else
|
1727 |
+
n1*gcd*sin(b - a)
|
1728 |
+
|
1729 |
+
Examples
|
1730 |
+
========
|
1731 |
+
|
1732 |
+
>>> from sympy.simplify.fu import trig_split
|
1733 |
+
>>> from sympy.abc import x, y, z
|
1734 |
+
>>> from sympy import cos, sin, sqrt
|
1735 |
+
|
1736 |
+
>>> trig_split(cos(x), cos(y))
|
1737 |
+
(1, 1, 1, x, y, True)
|
1738 |
+
>>> trig_split(2*cos(x), -2*cos(y))
|
1739 |
+
(2, 1, -1, x, y, True)
|
1740 |
+
>>> trig_split(cos(x)*sin(y), cos(y)*sin(y))
|
1741 |
+
(sin(y), 1, 1, x, y, True)
|
1742 |
+
|
1743 |
+
>>> trig_split(cos(x), -sqrt(3)*sin(x), two=True)
|
1744 |
+
(2, 1, -1, x, pi/6, False)
|
1745 |
+
>>> trig_split(cos(x), sin(x), two=True)
|
1746 |
+
(sqrt(2), 1, 1, x, pi/4, False)
|
1747 |
+
>>> trig_split(cos(x), -sin(x), two=True)
|
1748 |
+
(sqrt(2), 1, -1, x, pi/4, False)
|
1749 |
+
>>> trig_split(sqrt(2)*cos(x), -sqrt(6)*sin(x), two=True)
|
1750 |
+
(2*sqrt(2), 1, -1, x, pi/6, False)
|
1751 |
+
>>> trig_split(-sqrt(6)*cos(x), -sqrt(2)*sin(x), two=True)
|
1752 |
+
(-2*sqrt(2), 1, 1, x, pi/3, False)
|
1753 |
+
>>> trig_split(cos(x)/sqrt(6), sin(x)/sqrt(2), two=True)
|
1754 |
+
(sqrt(6)/3, 1, 1, x, pi/6, False)
|
1755 |
+
>>> trig_split(-sqrt(6)*cos(x)*sin(y), -sqrt(2)*sin(x)*sin(y), two=True)
|
1756 |
+
(-2*sqrt(2)*sin(y), 1, 1, x, pi/3, False)
|
1757 |
+
|
1758 |
+
>>> trig_split(cos(x), sin(x))
|
1759 |
+
>>> trig_split(cos(x), sin(z))
|
1760 |
+
>>> trig_split(2*cos(x), -sin(x))
|
1761 |
+
>>> trig_split(cos(x), -sqrt(3)*sin(x))
|
1762 |
+
>>> trig_split(cos(x)*cos(y), sin(x)*sin(z))
|
1763 |
+
>>> trig_split(cos(x)*cos(y), sin(x)*sin(y))
|
1764 |
+
>>> trig_split(-sqrt(6)*cos(x), sqrt(2)*sin(x)*sin(y), two=True)
|
1765 |
+
"""
|
1766 |
+
global _ROOT2, _ROOT3, _invROOT3
|
1767 |
+
if _ROOT2 is None:
|
1768 |
+
_roots()
|
1769 |
+
|
1770 |
+
a, b = [Factors(i) for i in (a, b)]
|
1771 |
+
ua, ub = a.normal(b)
|
1772 |
+
gcd = a.gcd(b).as_expr()
|
1773 |
+
n1 = n2 = 1
|
1774 |
+
if S.NegativeOne in ua.factors:
|
1775 |
+
ua = ua.quo(S.NegativeOne)
|
1776 |
+
n1 = -n1
|
1777 |
+
elif S.NegativeOne in ub.factors:
|
1778 |
+
ub = ub.quo(S.NegativeOne)
|
1779 |
+
n2 = -n2
|
1780 |
+
a, b = [i.as_expr() for i in (ua, ub)]
|
1781 |
+
|
1782 |
+
def pow_cos_sin(a, two):
|
1783 |
+
"""Return ``a`` as a tuple (r, c, s) such that
|
1784 |
+
``a = (r or 1)*(c or 1)*(s or 1)``.
|
1785 |
+
|
1786 |
+
Three arguments are returned (radical, c-factor, s-factor) as
|
1787 |
+
long as the conditions set by ``two`` are met; otherwise None is
|
1788 |
+
returned. If ``two`` is True there will be one or two non-None
|
1789 |
+
values in the tuple: c and s or c and r or s and r or s or c with c
|
1790 |
+
being a cosine function (if possible) else a sine, and s being a sine
|
1791 |
+
function (if possible) else oosine. If ``two`` is False then there
|
1792 |
+
will only be a c or s term in the tuple.
|
1793 |
+
|
1794 |
+
``two`` also require that either two cos and/or sin be present (with
|
1795 |
+
the condition that if the functions are the same the arguments are
|
1796 |
+
different or vice versa) or that a single cosine or a single sine
|
1797 |
+
be present with an optional radical.
|
1798 |
+
|
1799 |
+
If the above conditions dictated by ``two`` are not met then None
|
1800 |
+
is returned.
|
1801 |
+
"""
|
1802 |
+
c = s = None
|
1803 |
+
co = S.One
|
1804 |
+
if a.is_Mul:
|
1805 |
+
co, a = a.as_coeff_Mul()
|
1806 |
+
if len(a.args) > 2 or not two:
|
1807 |
+
return None
|
1808 |
+
if a.is_Mul:
|
1809 |
+
args = list(a.args)
|
1810 |
+
else:
|
1811 |
+
args = [a]
|
1812 |
+
a = args.pop(0)
|
1813 |
+
if isinstance(a, cos):
|
1814 |
+
c = a
|
1815 |
+
elif isinstance(a, sin):
|
1816 |
+
s = a
|
1817 |
+
elif a.is_Pow and a.exp is S.Half: # autoeval doesn't allow -1/2
|
1818 |
+
co *= a
|
1819 |
+
else:
|
1820 |
+
return None
|
1821 |
+
if args:
|
1822 |
+
b = args[0]
|
1823 |
+
if isinstance(b, cos):
|
1824 |
+
if c:
|
1825 |
+
s = b
|
1826 |
+
else:
|
1827 |
+
c = b
|
1828 |
+
elif isinstance(b, sin):
|
1829 |
+
if s:
|
1830 |
+
c = b
|
1831 |
+
else:
|
1832 |
+
s = b
|
1833 |
+
elif b.is_Pow and b.exp is S.Half:
|
1834 |
+
co *= b
|
1835 |
+
else:
|
1836 |
+
return None
|
1837 |
+
return co if co is not S.One else None, c, s
|
1838 |
+
elif isinstance(a, cos):
|
1839 |
+
c = a
|
1840 |
+
elif isinstance(a, sin):
|
1841 |
+
s = a
|
1842 |
+
if c is None and s is None:
|
1843 |
+
return
|
1844 |
+
co = co if co is not S.One else None
|
1845 |
+
return co, c, s
|
1846 |
+
|
1847 |
+
# get the parts
|
1848 |
+
m = pow_cos_sin(a, two)
|
1849 |
+
if m is None:
|
1850 |
+
return
|
1851 |
+
coa, ca, sa = m
|
1852 |
+
m = pow_cos_sin(b, two)
|
1853 |
+
if m is None:
|
1854 |
+
return
|
1855 |
+
cob, cb, sb = m
|
1856 |
+
|
1857 |
+
# check them
|
1858 |
+
if (not ca) and cb or ca and isinstance(ca, sin):
|
1859 |
+
coa, ca, sa, cob, cb, sb = cob, cb, sb, coa, ca, sa
|
1860 |
+
n1, n2 = n2, n1
|
1861 |
+
if not two: # need cos(x) and cos(y) or sin(x) and sin(y)
|
1862 |
+
c = ca or sa
|
1863 |
+
s = cb or sb
|
1864 |
+
if not isinstance(c, s.func):
|
1865 |
+
return None
|
1866 |
+
return gcd, n1, n2, c.args[0], s.args[0], isinstance(c, cos)
|
1867 |
+
else:
|
1868 |
+
if not coa and not cob:
|
1869 |
+
if (ca and cb and sa and sb):
|
1870 |
+
if isinstance(ca, sa.func) is not isinstance(cb, sb.func):
|
1871 |
+
return
|
1872 |
+
args = {j.args for j in (ca, sa)}
|
1873 |
+
if not all(i.args in args for i in (cb, sb)):
|
1874 |
+
return
|
1875 |
+
return gcd, n1, n2, ca.args[0], sa.args[0], isinstance(ca, sa.func)
|
1876 |
+
if ca and sa or cb and sb or \
|
1877 |
+
two and (ca is None and sa is None or cb is None and sb is None):
|
1878 |
+
return
|
1879 |
+
c = ca or sa
|
1880 |
+
s = cb or sb
|
1881 |
+
if c.args != s.args:
|
1882 |
+
return
|
1883 |
+
if not coa:
|
1884 |
+
coa = S.One
|
1885 |
+
if not cob:
|
1886 |
+
cob = S.One
|
1887 |
+
if coa is cob:
|
1888 |
+
gcd *= _ROOT2
|
1889 |
+
return gcd, n1, n2, c.args[0], pi/4, False
|
1890 |
+
elif coa/cob == _ROOT3:
|
1891 |
+
gcd *= 2*cob
|
1892 |
+
return gcd, n1, n2, c.args[0], pi/3, False
|
1893 |
+
elif coa/cob == _invROOT3:
|
1894 |
+
gcd *= 2*coa
|
1895 |
+
return gcd, n1, n2, c.args[0], pi/6, False
|
1896 |
+
|
1897 |
+
|
1898 |
+
def as_f_sign_1(e):
|
1899 |
+
"""If ``e`` is a sum that can be written as ``g*(a + s)`` where
|
1900 |
+
``s`` is ``+/-1``, return ``g``, ``a``, and ``s`` where ``a`` does
|
1901 |
+
not have a leading negative coefficient.
|
1902 |
+
|
1903 |
+
Examples
|
1904 |
+
========
|
1905 |
+
|
1906 |
+
>>> from sympy.simplify.fu import as_f_sign_1
|
1907 |
+
>>> from sympy.abc import x
|
1908 |
+
>>> as_f_sign_1(x + 1)
|
1909 |
+
(1, x, 1)
|
1910 |
+
>>> as_f_sign_1(x - 1)
|
1911 |
+
(1, x, -1)
|
1912 |
+
>>> as_f_sign_1(-x + 1)
|
1913 |
+
(-1, x, -1)
|
1914 |
+
>>> as_f_sign_1(-x - 1)
|
1915 |
+
(-1, x, 1)
|
1916 |
+
>>> as_f_sign_1(2*x + 2)
|
1917 |
+
(2, x, 1)
|
1918 |
+
"""
|
1919 |
+
if not e.is_Add or len(e.args) != 2:
|
1920 |
+
return
|
1921 |
+
# exact match
|
1922 |
+
a, b = e.args
|
1923 |
+
if a in (S.NegativeOne, S.One):
|
1924 |
+
g = S.One
|
1925 |
+
if b.is_Mul and b.args[0].is_Number and b.args[0] < 0:
|
1926 |
+
a, b = -a, -b
|
1927 |
+
g = -g
|
1928 |
+
return g, b, a
|
1929 |
+
# gcd match
|
1930 |
+
a, b = [Factors(i) for i in e.args]
|
1931 |
+
ua, ub = a.normal(b)
|
1932 |
+
gcd = a.gcd(b).as_expr()
|
1933 |
+
if S.NegativeOne in ua.factors:
|
1934 |
+
ua = ua.quo(S.NegativeOne)
|
1935 |
+
n1 = -1
|
1936 |
+
n2 = 1
|
1937 |
+
elif S.NegativeOne in ub.factors:
|
1938 |
+
ub = ub.quo(S.NegativeOne)
|
1939 |
+
n1 = 1
|
1940 |
+
n2 = -1
|
1941 |
+
else:
|
1942 |
+
n1 = n2 = 1
|
1943 |
+
a, b = [i.as_expr() for i in (ua, ub)]
|
1944 |
+
if a is S.One:
|
1945 |
+
a, b = b, a
|
1946 |
+
n1, n2 = n2, n1
|
1947 |
+
if n1 == -1:
|
1948 |
+
gcd = -gcd
|
1949 |
+
n2 = -n2
|
1950 |
+
|
1951 |
+
if b is S.One:
|
1952 |
+
return gcd, a, n2
|
1953 |
+
|
1954 |
+
|
1955 |
+
def _osborne(e, d):
|
1956 |
+
"""Replace all hyperbolic functions with trig functions using
|
1957 |
+
the Osborne rule.
|
1958 |
+
|
1959 |
+
Notes
|
1960 |
+
=====
|
1961 |
+
|
1962 |
+
``d`` is a dummy variable to prevent automatic evaluation
|
1963 |
+
of trigonometric/hyperbolic functions.
|
1964 |
+
|
1965 |
+
|
1966 |
+
References
|
1967 |
+
==========
|
1968 |
+
|
1969 |
+
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function
|
1970 |
+
"""
|
1971 |
+
|
1972 |
+
def f(rv):
|
1973 |
+
if not isinstance(rv, HyperbolicFunction):
|
1974 |
+
return rv
|
1975 |
+
a = rv.args[0]
|
1976 |
+
a = a*d if not a.is_Add else Add._from_args([i*d for i in a.args])
|
1977 |
+
if isinstance(rv, sinh):
|
1978 |
+
return I*sin(a)
|
1979 |
+
elif isinstance(rv, cosh):
|
1980 |
+
return cos(a)
|
1981 |
+
elif isinstance(rv, tanh):
|
1982 |
+
return I*tan(a)
|
1983 |
+
elif isinstance(rv, coth):
|
1984 |
+
return cot(a)/I
|
1985 |
+
elif isinstance(rv, sech):
|
1986 |
+
return sec(a)
|
1987 |
+
elif isinstance(rv, csch):
|
1988 |
+
return csc(a)/I
|
1989 |
+
else:
|
1990 |
+
raise NotImplementedError('unhandled %s' % rv.func)
|
1991 |
+
|
1992 |
+
return bottom_up(e, f)
|
1993 |
+
|
1994 |
+
|
1995 |
+
def _osbornei(e, d):
|
1996 |
+
"""Replace all trig functions with hyperbolic functions using
|
1997 |
+
the Osborne rule.
|
1998 |
+
|
1999 |
+
Notes
|
2000 |
+
=====
|
2001 |
+
|
2002 |
+
``d`` is a dummy variable to prevent automatic evaluation
|
2003 |
+
of trigonometric/hyperbolic functions.
|
2004 |
+
|
2005 |
+
References
|
2006 |
+
==========
|
2007 |
+
|
2008 |
+
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function
|
2009 |
+
"""
|
2010 |
+
|
2011 |
+
def f(rv):
|
2012 |
+
if not isinstance(rv, TrigonometricFunction):
|
2013 |
+
return rv
|
2014 |
+
const, x = rv.args[0].as_independent(d, as_Add=True)
|
2015 |
+
a = x.xreplace({d: S.One}) + const*I
|
2016 |
+
if isinstance(rv, sin):
|
2017 |
+
return sinh(a)/I
|
2018 |
+
elif isinstance(rv, cos):
|
2019 |
+
return cosh(a)
|
2020 |
+
elif isinstance(rv, tan):
|
2021 |
+
return tanh(a)/I
|
2022 |
+
elif isinstance(rv, cot):
|
2023 |
+
return coth(a)*I
|
2024 |
+
elif isinstance(rv, sec):
|
2025 |
+
return sech(a)
|
2026 |
+
elif isinstance(rv, csc):
|
2027 |
+
return csch(a)*I
|
2028 |
+
else:
|
2029 |
+
raise NotImplementedError('unhandled %s' % rv.func)
|
2030 |
+
|
2031 |
+
return bottom_up(e, f)
|
2032 |
+
|
2033 |
+
|
2034 |
+
def hyper_as_trig(rv):
|
2035 |
+
"""Return an expression containing hyperbolic functions in terms
|
2036 |
+
of trigonometric functions. Any trigonometric functions initially
|
2037 |
+
present are replaced with Dummy symbols and the function to undo
|
2038 |
+
the masking and the conversion back to hyperbolics is also returned. It
|
2039 |
+
should always be true that::
|
2040 |
+
|
2041 |
+
t, f = hyper_as_trig(expr)
|
2042 |
+
expr == f(t)
|
2043 |
+
|
2044 |
+
Examples
|
2045 |
+
========
|
2046 |
+
|
2047 |
+
>>> from sympy.simplify.fu import hyper_as_trig, fu
|
2048 |
+
>>> from sympy.abc import x
|
2049 |
+
>>> from sympy import cosh, sinh
|
2050 |
+
>>> eq = sinh(x)**2 + cosh(x)**2
|
2051 |
+
>>> t, f = hyper_as_trig(eq)
|
2052 |
+
>>> f(fu(t))
|
2053 |
+
cosh(2*x)
|
2054 |
+
|
2055 |
+
References
|
2056 |
+
==========
|
2057 |
+
|
2058 |
+
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function
|
2059 |
+
"""
|
2060 |
+
from sympy.simplify.simplify import signsimp
|
2061 |
+
from sympy.simplify.radsimp import collect
|
2062 |
+
|
2063 |
+
# mask off trig functions
|
2064 |
+
trigs = rv.atoms(TrigonometricFunction)
|
2065 |
+
reps = [(t, Dummy()) for t in trigs]
|
2066 |
+
masked = rv.xreplace(dict(reps))
|
2067 |
+
|
2068 |
+
# get inversion substitutions in place
|
2069 |
+
reps = [(v, k) for k, v in reps]
|
2070 |
+
|
2071 |
+
d = Dummy()
|
2072 |
+
|
2073 |
+
return _osborne(masked, d), lambda x: collect(signsimp(
|
2074 |
+
_osbornei(x, d).xreplace(dict(reps))), S.ImaginaryUnit)
|
2075 |
+
|
2076 |
+
|
2077 |
+
def sincos_to_sum(expr):
|
2078 |
+
"""Convert products and powers of sin and cos to sums.
|
2079 |
+
|
2080 |
+
Explanation
|
2081 |
+
===========
|
2082 |
+
|
2083 |
+
Applied power reduction TRpower first, then expands products, and
|
2084 |
+
converts products to sums with TR8.
|
2085 |
+
|
2086 |
+
Examples
|
2087 |
+
========
|
2088 |
+
|
2089 |
+
>>> from sympy.simplify.fu import sincos_to_sum
|
2090 |
+
>>> from sympy.abc import x
|
2091 |
+
>>> from sympy import cos, sin
|
2092 |
+
>>> sincos_to_sum(16*sin(x)**3*cos(2*x)**2)
|
2093 |
+
7*sin(x) - 5*sin(3*x) + 3*sin(5*x) - sin(7*x)
|
2094 |
+
"""
|
2095 |
+
|
2096 |
+
if not expr.has(cos, sin):
|
2097 |
+
return expr
|
2098 |
+
else:
|
2099 |
+
return TR8(expand_mul(TRpower(expr)))
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/gammasimp.py
ADDED
@@ -0,0 +1,497 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sympy.core import Function, S, Mul, Pow, Add
|
2 |
+
from sympy.core.sorting import ordered, default_sort_key
|
3 |
+
from sympy.core.function import expand_func
|
4 |
+
from sympy.core.symbol import Dummy
|
5 |
+
from sympy.functions import gamma, sqrt, sin
|
6 |
+
from sympy.polys import factor, cancel
|
7 |
+
from sympy.utilities.iterables import sift, uniq
|
8 |
+
|
9 |
+
|
10 |
+
def gammasimp(expr):
|
11 |
+
r"""
|
12 |
+
Simplify expressions with gamma functions.
|
13 |
+
|
14 |
+
Explanation
|
15 |
+
===========
|
16 |
+
|
17 |
+
This function takes as input an expression containing gamma
|
18 |
+
functions or functions that can be rewritten in terms of gamma
|
19 |
+
functions and tries to minimize the number of those functions and
|
20 |
+
reduce the size of their arguments.
|
21 |
+
|
22 |
+
The algorithm works by rewriting all gamma functions as expressions
|
23 |
+
involving rising factorials (Pochhammer symbols) and applies
|
24 |
+
recurrence relations and other transformations applicable to rising
|
25 |
+
factorials, to reduce their arguments, possibly letting the resulting
|
26 |
+
rising factorial to cancel. Rising factorials with the second argument
|
27 |
+
being an integer are expanded into polynomial forms and finally all
|
28 |
+
other rising factorial are rewritten in terms of gamma functions.
|
29 |
+
|
30 |
+
Then the following two steps are performed.
|
31 |
+
|
32 |
+
1. Reduce the number of gammas by applying the reflection theorem
|
33 |
+
gamma(x)*gamma(1-x) == pi/sin(pi*x).
|
34 |
+
2. Reduce the number of gammas by applying the multiplication theorem
|
35 |
+
gamma(x)*gamma(x+1/n)*...*gamma(x+(n-1)/n) == C*gamma(n*x).
|
36 |
+
|
37 |
+
It then reduces the number of prefactors by absorbing them into gammas
|
38 |
+
where possible and expands gammas with rational argument.
|
39 |
+
|
40 |
+
All transformation rules can be found (or were derived from) here:
|
41 |
+
|
42 |
+
.. [1] https://functions.wolfram.com/GammaBetaErf/Pochhammer/17/01/02/
|
43 |
+
.. [2] https://functions.wolfram.com/GammaBetaErf/Pochhammer/27/01/0005/
|
44 |
+
|
45 |
+
Examples
|
46 |
+
========
|
47 |
+
|
48 |
+
>>> from sympy.simplify import gammasimp
|
49 |
+
>>> from sympy import gamma, Symbol
|
50 |
+
>>> from sympy.abc import x
|
51 |
+
>>> n = Symbol('n', integer = True)
|
52 |
+
|
53 |
+
>>> gammasimp(gamma(x)/gamma(x - 3))
|
54 |
+
(x - 3)*(x - 2)*(x - 1)
|
55 |
+
>>> gammasimp(gamma(n + 3))
|
56 |
+
gamma(n + 3)
|
57 |
+
|
58 |
+
"""
|
59 |
+
|
60 |
+
expr = expr.rewrite(gamma)
|
61 |
+
|
62 |
+
# compute_ST will be looking for Functions and we don't want
|
63 |
+
# it looking for non-gamma functions: issue 22606
|
64 |
+
# so we mask free, non-gamma functions
|
65 |
+
f = expr.atoms(Function)
|
66 |
+
# take out gammas
|
67 |
+
gammas = {i for i in f if isinstance(i, gamma)}
|
68 |
+
if not gammas:
|
69 |
+
return expr # avoid side effects like factoring
|
70 |
+
f -= gammas
|
71 |
+
# keep only those without bound symbols
|
72 |
+
f = f & expr.as_dummy().atoms(Function)
|
73 |
+
if f:
|
74 |
+
dum, fun, simp = zip(*[
|
75 |
+
(Dummy(), fi, fi.func(*[
|
76 |
+
_gammasimp(a, as_comb=False) for a in fi.args]))
|
77 |
+
for fi in ordered(f)])
|
78 |
+
d = expr.xreplace(dict(zip(fun, dum)))
|
79 |
+
return _gammasimp(d, as_comb=False).xreplace(dict(zip(dum, simp)))
|
80 |
+
|
81 |
+
return _gammasimp(expr, as_comb=False)
|
82 |
+
|
83 |
+
|
84 |
+
def _gammasimp(expr, as_comb):
|
85 |
+
"""
|
86 |
+
Helper function for gammasimp and combsimp.
|
87 |
+
|
88 |
+
Explanation
|
89 |
+
===========
|
90 |
+
|
91 |
+
Simplifies expressions written in terms of gamma function. If
|
92 |
+
as_comb is True, it tries to preserve integer arguments. See
|
93 |
+
docstring of gammasimp for more information. This was part of
|
94 |
+
combsimp() in combsimp.py.
|
95 |
+
"""
|
96 |
+
expr = expr.replace(gamma,
|
97 |
+
lambda n: _rf(1, (n - 1).expand()))
|
98 |
+
|
99 |
+
if as_comb:
|
100 |
+
expr = expr.replace(_rf,
|
101 |
+
lambda a, b: gamma(b + 1))
|
102 |
+
else:
|
103 |
+
expr = expr.replace(_rf,
|
104 |
+
lambda a, b: gamma(a + b)/gamma(a))
|
105 |
+
|
106 |
+
def rule_gamma(expr, level=0):
|
107 |
+
""" Simplify products of gamma functions further. """
|
108 |
+
|
109 |
+
if expr.is_Atom:
|
110 |
+
return expr
|
111 |
+
|
112 |
+
def gamma_rat(x):
|
113 |
+
# helper to simplify ratios of gammas
|
114 |
+
was = x.count(gamma)
|
115 |
+
xx = x.replace(gamma, lambda n: _rf(1, (n - 1).expand()
|
116 |
+
).replace(_rf, lambda a, b: gamma(a + b)/gamma(a)))
|
117 |
+
if xx.count(gamma) < was:
|
118 |
+
x = xx
|
119 |
+
return x
|
120 |
+
|
121 |
+
def gamma_factor(x):
|
122 |
+
# return True if there is a gamma factor in shallow args
|
123 |
+
if isinstance(x, gamma):
|
124 |
+
return True
|
125 |
+
if x.is_Add or x.is_Mul:
|
126 |
+
return any(gamma_factor(xi) for xi in x.args)
|
127 |
+
if x.is_Pow and (x.exp.is_integer or x.base.is_positive):
|
128 |
+
return gamma_factor(x.base)
|
129 |
+
return False
|
130 |
+
|
131 |
+
# recursion step
|
132 |
+
if level == 0:
|
133 |
+
expr = expr.func(*[rule_gamma(x, level + 1) for x in expr.args])
|
134 |
+
level += 1
|
135 |
+
|
136 |
+
if not expr.is_Mul:
|
137 |
+
return expr
|
138 |
+
|
139 |
+
# non-commutative step
|
140 |
+
if level == 1:
|
141 |
+
args, nc = expr.args_cnc()
|
142 |
+
if not args:
|
143 |
+
return expr
|
144 |
+
if nc:
|
145 |
+
return rule_gamma(Mul._from_args(args), level + 1)*Mul._from_args(nc)
|
146 |
+
level += 1
|
147 |
+
|
148 |
+
# pure gamma handling, not factor absorption
|
149 |
+
if level == 2:
|
150 |
+
T, F = sift(expr.args, gamma_factor, binary=True)
|
151 |
+
gamma_ind = Mul(*F)
|
152 |
+
d = Mul(*T)
|
153 |
+
|
154 |
+
nd, dd = d.as_numer_denom()
|
155 |
+
for ipass in range(2):
|
156 |
+
args = list(ordered(Mul.make_args(nd)))
|
157 |
+
for i, ni in enumerate(args):
|
158 |
+
if ni.is_Add:
|
159 |
+
ni, dd = Add(*[
|
160 |
+
rule_gamma(gamma_rat(a/dd), level + 1) for a in ni.args]
|
161 |
+
).as_numer_denom()
|
162 |
+
args[i] = ni
|
163 |
+
if not dd.has(gamma):
|
164 |
+
break
|
165 |
+
nd = Mul(*args)
|
166 |
+
if ipass == 0 and not gamma_factor(nd):
|
167 |
+
break
|
168 |
+
nd, dd = dd, nd # now process in reversed order
|
169 |
+
expr = gamma_ind*nd/dd
|
170 |
+
if not (expr.is_Mul and (gamma_factor(dd) or gamma_factor(nd))):
|
171 |
+
return expr
|
172 |
+
level += 1
|
173 |
+
|
174 |
+
# iteration until constant
|
175 |
+
if level == 3:
|
176 |
+
while True:
|
177 |
+
was = expr
|
178 |
+
expr = rule_gamma(expr, 4)
|
179 |
+
if expr == was:
|
180 |
+
return expr
|
181 |
+
|
182 |
+
numer_gammas = []
|
183 |
+
denom_gammas = []
|
184 |
+
numer_others = []
|
185 |
+
denom_others = []
|
186 |
+
def explicate(p):
|
187 |
+
if p is S.One:
|
188 |
+
return None, []
|
189 |
+
b, e = p.as_base_exp()
|
190 |
+
if e.is_Integer:
|
191 |
+
if isinstance(b, gamma):
|
192 |
+
return True, [b.args[0]]*e
|
193 |
+
else:
|
194 |
+
return False, [b]*e
|
195 |
+
else:
|
196 |
+
return False, [p]
|
197 |
+
|
198 |
+
newargs = list(ordered(expr.args))
|
199 |
+
while newargs:
|
200 |
+
n, d = newargs.pop().as_numer_denom()
|
201 |
+
isg, l = explicate(n)
|
202 |
+
if isg:
|
203 |
+
numer_gammas.extend(l)
|
204 |
+
elif isg is False:
|
205 |
+
numer_others.extend(l)
|
206 |
+
isg, l = explicate(d)
|
207 |
+
if isg:
|
208 |
+
denom_gammas.extend(l)
|
209 |
+
elif isg is False:
|
210 |
+
denom_others.extend(l)
|
211 |
+
|
212 |
+
# =========== level 2 work: pure gamma manipulation =========
|
213 |
+
|
214 |
+
if not as_comb:
|
215 |
+
# Try to reduce the number of gamma factors by applying the
|
216 |
+
# reflection formula gamma(x)*gamma(1-x) = pi/sin(pi*x)
|
217 |
+
for gammas, numer, denom in [(
|
218 |
+
numer_gammas, numer_others, denom_others),
|
219 |
+
(denom_gammas, denom_others, numer_others)]:
|
220 |
+
new = []
|
221 |
+
while gammas:
|
222 |
+
g1 = gammas.pop()
|
223 |
+
if g1.is_integer:
|
224 |
+
new.append(g1)
|
225 |
+
continue
|
226 |
+
for i, g2 in enumerate(gammas):
|
227 |
+
n = g1 + g2 - 1
|
228 |
+
if not n.is_Integer:
|
229 |
+
continue
|
230 |
+
numer.append(S.Pi)
|
231 |
+
denom.append(sin(S.Pi*g1))
|
232 |
+
gammas.pop(i)
|
233 |
+
if n > 0:
|
234 |
+
for k in range(n):
|
235 |
+
numer.append(1 - g1 + k)
|
236 |
+
elif n < 0:
|
237 |
+
for k in range(-n):
|
238 |
+
denom.append(-g1 - k)
|
239 |
+
break
|
240 |
+
else:
|
241 |
+
new.append(g1)
|
242 |
+
# /!\ updating IN PLACE
|
243 |
+
gammas[:] = new
|
244 |
+
|
245 |
+
# Try to reduce the number of gammas by using the duplication
|
246 |
+
# theorem to cancel an upper and lower: gamma(2*s)/gamma(s) =
|
247 |
+
# 2**(2*s + 1)/(4*sqrt(pi))*gamma(s + 1/2). Although this could
|
248 |
+
# be done with higher argument ratios like gamma(3*x)/gamma(x),
|
249 |
+
# this would not reduce the number of gammas as in this case.
|
250 |
+
for ng, dg, no, do in [(numer_gammas, denom_gammas, numer_others,
|
251 |
+
denom_others),
|
252 |
+
(denom_gammas, numer_gammas, denom_others,
|
253 |
+
numer_others)]:
|
254 |
+
|
255 |
+
while True:
|
256 |
+
for x in ng:
|
257 |
+
for y in dg:
|
258 |
+
n = x - 2*y
|
259 |
+
if n.is_Integer:
|
260 |
+
break
|
261 |
+
else:
|
262 |
+
continue
|
263 |
+
break
|
264 |
+
else:
|
265 |
+
break
|
266 |
+
ng.remove(x)
|
267 |
+
dg.remove(y)
|
268 |
+
if n > 0:
|
269 |
+
for k in range(n):
|
270 |
+
no.append(2*y + k)
|
271 |
+
elif n < 0:
|
272 |
+
for k in range(-n):
|
273 |
+
do.append(2*y - 1 - k)
|
274 |
+
ng.append(y + S.Half)
|
275 |
+
no.append(2**(2*y - 1))
|
276 |
+
do.append(sqrt(S.Pi))
|
277 |
+
|
278 |
+
# Try to reduce the number of gamma factors by applying the
|
279 |
+
# multiplication theorem (used when n gammas with args differing
|
280 |
+
# by 1/n mod 1 are encountered).
|
281 |
+
#
|
282 |
+
# run of 2 with args differing by 1/2
|
283 |
+
#
|
284 |
+
# >>> gammasimp(gamma(x)*gamma(x+S.Half))
|
285 |
+
# 2*sqrt(2)*2**(-2*x - 1/2)*sqrt(pi)*gamma(2*x)
|
286 |
+
#
|
287 |
+
# run of 3 args differing by 1/3 (mod 1)
|
288 |
+
#
|
289 |
+
# >>> gammasimp(gamma(x)*gamma(x+S(1)/3)*gamma(x+S(2)/3))
|
290 |
+
# 6*3**(-3*x - 1/2)*pi*gamma(3*x)
|
291 |
+
# >>> gammasimp(gamma(x)*gamma(x+S(1)/3)*gamma(x+S(5)/3))
|
292 |
+
# 2*3**(-3*x - 1/2)*pi*(3*x + 2)*gamma(3*x)
|
293 |
+
#
|
294 |
+
def _run(coeffs):
|
295 |
+
# find runs in coeffs such that the difference in terms (mod 1)
|
296 |
+
# of t1, t2, ..., tn is 1/n
|
297 |
+
u = list(uniq(coeffs))
|
298 |
+
for i in range(len(u)):
|
299 |
+
dj = ([((u[j] - u[i]) % 1, j) for j in range(i + 1, len(u))])
|
300 |
+
for one, j in dj:
|
301 |
+
if one.p == 1 and one.q != 1:
|
302 |
+
n = one.q
|
303 |
+
got = [i]
|
304 |
+
get = list(range(1, n))
|
305 |
+
for d, j in dj:
|
306 |
+
m = n*d
|
307 |
+
if m.is_Integer and m in get:
|
308 |
+
get.remove(m)
|
309 |
+
got.append(j)
|
310 |
+
if not get:
|
311 |
+
break
|
312 |
+
else:
|
313 |
+
continue
|
314 |
+
for i, j in enumerate(got):
|
315 |
+
c = u[j]
|
316 |
+
coeffs.remove(c)
|
317 |
+
got[i] = c
|
318 |
+
return one.q, got[0], got[1:]
|
319 |
+
|
320 |
+
def _mult_thm(gammas, numer, denom):
|
321 |
+
# pull off and analyze the leading coefficient from each gamma arg
|
322 |
+
# looking for runs in those Rationals
|
323 |
+
|
324 |
+
# expr -> coeff + resid -> rats[resid] = coeff
|
325 |
+
rats = {}
|
326 |
+
for g in gammas:
|
327 |
+
c, resid = g.as_coeff_Add()
|
328 |
+
rats.setdefault(resid, []).append(c)
|
329 |
+
|
330 |
+
# look for runs in Rationals for each resid
|
331 |
+
keys = sorted(rats, key=default_sort_key)
|
332 |
+
for resid in keys:
|
333 |
+
coeffs = sorted(rats[resid])
|
334 |
+
new = []
|
335 |
+
while True:
|
336 |
+
run = _run(coeffs)
|
337 |
+
if run is None:
|
338 |
+
break
|
339 |
+
|
340 |
+
# process the sequence that was found:
|
341 |
+
# 1) convert all the gamma functions to have the right
|
342 |
+
# argument (could be off by an integer)
|
343 |
+
# 2) append the factors corresponding to the theorem
|
344 |
+
# 3) append the new gamma function
|
345 |
+
|
346 |
+
n, ui, other = run
|
347 |
+
|
348 |
+
# (1)
|
349 |
+
for u in other:
|
350 |
+
con = resid + u - 1
|
351 |
+
for k in range(int(u - ui)):
|
352 |
+
numer.append(con - k)
|
353 |
+
|
354 |
+
con = n*(resid + ui) # for (2) and (3)
|
355 |
+
|
356 |
+
# (2)
|
357 |
+
numer.append((2*S.Pi)**(S(n - 1)/2)*
|
358 |
+
n**(S.Half - con))
|
359 |
+
# (3)
|
360 |
+
new.append(con)
|
361 |
+
|
362 |
+
# restore resid to coeffs
|
363 |
+
rats[resid] = [resid + c for c in coeffs] + new
|
364 |
+
|
365 |
+
# rebuild the gamma arguments
|
366 |
+
g = []
|
367 |
+
for resid in keys:
|
368 |
+
g += rats[resid]
|
369 |
+
# /!\ updating IN PLACE
|
370 |
+
gammas[:] = g
|
371 |
+
|
372 |
+
for l, numer, denom in [(numer_gammas, numer_others, denom_others),
|
373 |
+
(denom_gammas, denom_others, numer_others)]:
|
374 |
+
_mult_thm(l, numer, denom)
|
375 |
+
|
376 |
+
# =========== level >= 2 work: factor absorption =========
|
377 |
+
|
378 |
+
if level >= 2:
|
379 |
+
# Try to absorb factors into the gammas: x*gamma(x) -> gamma(x + 1)
|
380 |
+
# and gamma(x)/(x - 1) -> gamma(x - 1)
|
381 |
+
# This code (in particular repeated calls to find_fuzzy) can be very
|
382 |
+
# slow.
|
383 |
+
def find_fuzzy(l, x):
|
384 |
+
if not l:
|
385 |
+
return
|
386 |
+
S1, T1 = compute_ST(x)
|
387 |
+
for y in l:
|
388 |
+
S2, T2 = inv[y]
|
389 |
+
if T1 != T2 or (not S1.intersection(S2) and
|
390 |
+
(S1 != set() or S2 != set())):
|
391 |
+
continue
|
392 |
+
# XXX we want some simplification (e.g. cancel or
|
393 |
+
# simplify) but no matter what it's slow.
|
394 |
+
a = len(cancel(x/y).free_symbols)
|
395 |
+
b = len(x.free_symbols)
|
396 |
+
c = len(y.free_symbols)
|
397 |
+
# TODO is there a better heuristic?
|
398 |
+
if a == 0 and (b > 0 or c > 0):
|
399 |
+
return y
|
400 |
+
|
401 |
+
# We thus try to avoid expensive calls by building the following
|
402 |
+
# "invariants": For every factor or gamma function argument
|
403 |
+
# - the set of free symbols S
|
404 |
+
# - the set of functional components T
|
405 |
+
# We will only try to absorb if T1==T2 and (S1 intersect S2 != emptyset
|
406 |
+
# or S1 == S2 == emptyset)
|
407 |
+
inv = {}
|
408 |
+
|
409 |
+
def compute_ST(expr):
|
410 |
+
if expr in inv:
|
411 |
+
return inv[expr]
|
412 |
+
return (expr.free_symbols, expr.atoms(Function).union(
|
413 |
+
{e.exp for e in expr.atoms(Pow)}))
|
414 |
+
|
415 |
+
def update_ST(expr):
|
416 |
+
inv[expr] = compute_ST(expr)
|
417 |
+
for expr in numer_gammas + denom_gammas + numer_others + denom_others:
|
418 |
+
update_ST(expr)
|
419 |
+
|
420 |
+
for gammas, numer, denom in [(
|
421 |
+
numer_gammas, numer_others, denom_others),
|
422 |
+
(denom_gammas, denom_others, numer_others)]:
|
423 |
+
new = []
|
424 |
+
while gammas:
|
425 |
+
g = gammas.pop()
|
426 |
+
cont = True
|
427 |
+
while cont:
|
428 |
+
cont = False
|
429 |
+
y = find_fuzzy(numer, g)
|
430 |
+
if y is not None:
|
431 |
+
numer.remove(y)
|
432 |
+
if y != g:
|
433 |
+
numer.append(y/g)
|
434 |
+
update_ST(y/g)
|
435 |
+
g += 1
|
436 |
+
cont = True
|
437 |
+
y = find_fuzzy(denom, g - 1)
|
438 |
+
if y is not None:
|
439 |
+
denom.remove(y)
|
440 |
+
if y != g - 1:
|
441 |
+
numer.append((g - 1)/y)
|
442 |
+
update_ST((g - 1)/y)
|
443 |
+
g -= 1
|
444 |
+
cont = True
|
445 |
+
new.append(g)
|
446 |
+
# /!\ updating IN PLACE
|
447 |
+
gammas[:] = new
|
448 |
+
|
449 |
+
# =========== rebuild expr ==================================
|
450 |
+
|
451 |
+
return Mul(*[gamma(g) for g in numer_gammas]) \
|
452 |
+
/ Mul(*[gamma(g) for g in denom_gammas]) \
|
453 |
+
* Mul(*numer_others) / Mul(*denom_others)
|
454 |
+
|
455 |
+
was = factor(expr)
|
456 |
+
# (for some reason we cannot use Basic.replace in this case)
|
457 |
+
expr = rule_gamma(was)
|
458 |
+
if expr != was:
|
459 |
+
expr = factor(expr)
|
460 |
+
|
461 |
+
expr = expr.replace(gamma,
|
462 |
+
lambda n: expand_func(gamma(n)) if n.is_Rational else gamma(n))
|
463 |
+
|
464 |
+
return expr
|
465 |
+
|
466 |
+
|
467 |
+
class _rf(Function):
|
468 |
+
@classmethod
|
469 |
+
def eval(cls, a, b):
|
470 |
+
if b.is_Integer:
|
471 |
+
if not b:
|
472 |
+
return S.One
|
473 |
+
|
474 |
+
n = int(b)
|
475 |
+
|
476 |
+
if n > 0:
|
477 |
+
return Mul(*[a + i for i in range(n)])
|
478 |
+
elif n < 0:
|
479 |
+
return 1/Mul(*[a - i for i in range(1, -n + 1)])
|
480 |
+
else:
|
481 |
+
if b.is_Add:
|
482 |
+
c, _b = b.as_coeff_Add()
|
483 |
+
|
484 |
+
if c.is_Integer:
|
485 |
+
if c > 0:
|
486 |
+
return _rf(a, _b)*_rf(a + _b, c)
|
487 |
+
elif c < 0:
|
488 |
+
return _rf(a, _b)/_rf(a + _b + c, -c)
|
489 |
+
|
490 |
+
if a.is_Add:
|
491 |
+
c, _a = a.as_coeff_Add()
|
492 |
+
|
493 |
+
if c.is_Integer:
|
494 |
+
if c > 0:
|
495 |
+
return _rf(_a, b)*_rf(_a + b, c)/_rf(_a, c)
|
496 |
+
elif c < 0:
|
497 |
+
return _rf(_a, b)*_rf(_a + c, -c)/_rf(_a + b + c, -c)
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/hyperexpand.py
ADDED
@@ -0,0 +1,2494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Expand Hypergeometric (and Meijer G) functions into named
|
3 |
+
special functions.
|
4 |
+
|
5 |
+
The algorithm for doing this uses a collection of lookup tables of
|
6 |
+
hypergeometric functions, and various of their properties, to expand
|
7 |
+
many hypergeometric functions in terms of special functions.
|
8 |
+
|
9 |
+
It is based on the following paper:
|
10 |
+
Kelly B. Roach. Meijer G Function Representations.
|
11 |
+
In: Proceedings of the 1997 International Symposium on Symbolic and
|
12 |
+
Algebraic Computation, pages 205-211, New York, 1997. ACM.
|
13 |
+
|
14 |
+
It is described in great(er) detail in the Sphinx documentation.
|
15 |
+
"""
|
16 |
+
# SUMMARY OF EXTENSIONS FOR MEIJER G FUNCTIONS
|
17 |
+
#
|
18 |
+
# o z**rho G(ap, bq; z) = G(ap + rho, bq + rho; z)
|
19 |
+
#
|
20 |
+
# o denote z*d/dz by D
|
21 |
+
#
|
22 |
+
# o It is helpful to keep in mind that ap and bq play essentially symmetric
|
23 |
+
# roles: G(1/z) has slightly altered parameters, with ap and bq interchanged.
|
24 |
+
#
|
25 |
+
# o There are four shift operators:
|
26 |
+
# A_J = b_J - D, J = 1, ..., n
|
27 |
+
# B_J = 1 - a_j + D, J = 1, ..., m
|
28 |
+
# C_J = -b_J + D, J = m+1, ..., q
|
29 |
+
# D_J = a_J - 1 - D, J = n+1, ..., p
|
30 |
+
#
|
31 |
+
# A_J, C_J increment b_J
|
32 |
+
# B_J, D_J decrement a_J
|
33 |
+
#
|
34 |
+
# o The corresponding four inverse-shift operators are defined if there
|
35 |
+
# is no cancellation. Thus e.g. an index a_J (upper or lower) can be
|
36 |
+
# incremented if a_J != b_i for i = 1, ..., q.
|
37 |
+
#
|
38 |
+
# o Order reduction: if b_j - a_i is a non-negative integer, where
|
39 |
+
# j <= m and i > n, the corresponding quotient of gamma functions reduces
|
40 |
+
# to a polynomial. Hence the G function can be expressed using a G-function
|
41 |
+
# of lower order.
|
42 |
+
# Similarly if j > m and i <= n.
|
43 |
+
#
|
44 |
+
# Secondly, there are paired index theorems [Adamchik, The evaluation of
|
45 |
+
# integrals of Bessel functions via G-function identities]. Suppose there
|
46 |
+
# are three parameters a, b, c, where a is an a_i, i <= n, b is a b_j,
|
47 |
+
# j <= m and c is a denominator parameter (i.e. a_i, i > n or b_j, j > m).
|
48 |
+
# Suppose further all three differ by integers.
|
49 |
+
# Then the order can be reduced.
|
50 |
+
# TODO work this out in detail.
|
51 |
+
#
|
52 |
+
# o An index quadruple is called suitable if its order cannot be reduced.
|
53 |
+
# If there exists a sequence of shift operators transforming one index
|
54 |
+
# quadruple into another, we say one is reachable from the other.
|
55 |
+
#
|
56 |
+
# o Deciding if one index quadruple is reachable from another is tricky. For
|
57 |
+
# this reason, we use hand-built routines to match and instantiate formulas.
|
58 |
+
#
|
59 |
+
from collections import defaultdict
|
60 |
+
from itertools import product
|
61 |
+
from functools import reduce
|
62 |
+
from math import prod
|
63 |
+
|
64 |
+
from sympy import SYMPY_DEBUG
|
65 |
+
from sympy.core import (S, Dummy, symbols, sympify, Tuple, expand, I, pi, Mul,
|
66 |
+
EulerGamma, oo, zoo, expand_func, Add, nan, Expr, Rational)
|
67 |
+
from sympy.core.mod import Mod
|
68 |
+
from sympy.core.sorting import default_sort_key
|
69 |
+
from sympy.functions import (exp, sqrt, root, log, lowergamma, cos,
|
70 |
+
besseli, gamma, uppergamma, expint, erf, sin, besselj, Ei, Ci, Si, Shi,
|
71 |
+
sinh, cosh, Chi, fresnels, fresnelc, polar_lift, exp_polar, floor, ceiling,
|
72 |
+
rf, factorial, lerchphi, Piecewise, re, elliptic_k, elliptic_e)
|
73 |
+
from sympy.functions.elementary.complexes import polarify, unpolarify
|
74 |
+
from sympy.functions.special.hyper import (hyper, HyperRep_atanh,
|
75 |
+
HyperRep_power1, HyperRep_power2, HyperRep_log1, HyperRep_asin1,
|
76 |
+
HyperRep_asin2, HyperRep_sqrts1, HyperRep_sqrts2, HyperRep_log2,
|
77 |
+
HyperRep_cosasin, HyperRep_sinasin, meijerg)
|
78 |
+
from sympy.matrices import Matrix, eye, zeros
|
79 |
+
from sympy.polys import apart, poly, Poly
|
80 |
+
from sympy.series import residue
|
81 |
+
from sympy.simplify.powsimp import powdenest
|
82 |
+
from sympy.utilities.iterables import sift
|
83 |
+
|
84 |
+
# function to define "buckets"
|
85 |
+
def _mod1(x):
|
86 |
+
# TODO see if this can work as Mod(x, 1); this will require
|
87 |
+
# different handling of the "buckets" since these need to
|
88 |
+
# be sorted and that fails when there is a mixture of
|
89 |
+
# integers and expressions with parameters. With the current
|
90 |
+
# Mod behavior, Mod(k, 1) == Mod(1, 1) == 0 if k is an integer.
|
91 |
+
# Although the sorting can be done with Basic.compare, this may
|
92 |
+
# still require different handling of the sorted buckets.
|
93 |
+
if x.is_Number:
|
94 |
+
return Mod(x, 1)
|
95 |
+
c, x = x.as_coeff_Add()
|
96 |
+
return Mod(c, 1) + x
|
97 |
+
|
98 |
+
|
99 |
+
# leave add formulae at the top for easy reference
|
100 |
+
def add_formulae(formulae):
|
101 |
+
""" Create our knowledge base. """
|
102 |
+
a, b, c, z = symbols('a b c, z', cls=Dummy)
|
103 |
+
|
104 |
+
def add(ap, bq, res):
|
105 |
+
func = Hyper_Function(ap, bq)
|
106 |
+
formulae.append(Formula(func, z, res, (a, b, c)))
|
107 |
+
|
108 |
+
def addb(ap, bq, B, C, M):
|
109 |
+
func = Hyper_Function(ap, bq)
|
110 |
+
formulae.append(Formula(func, z, None, (a, b, c), B, C, M))
|
111 |
+
|
112 |
+
# Luke, Y. L. (1969), The Special Functions and Their Approximations,
|
113 |
+
# Volume 1, section 6.2
|
114 |
+
|
115 |
+
# 0F0
|
116 |
+
add((), (), exp(z))
|
117 |
+
|
118 |
+
# 1F0
|
119 |
+
add((a, ), (), HyperRep_power1(-a, z))
|
120 |
+
|
121 |
+
# 2F1
|
122 |
+
addb((a, a - S.Half), (2*a, ),
|
123 |
+
Matrix([HyperRep_power2(a, z),
|
124 |
+
HyperRep_power2(a + S.Half, z)/2]),
|
125 |
+
Matrix([[1, 0]]),
|
126 |
+
Matrix([[(a - S.Half)*z/(1 - z), (S.Half - a)*z/(1 - z)],
|
127 |
+
[a/(1 - z), a*(z - 2)/(1 - z)]]))
|
128 |
+
addb((1, 1), (2, ),
|
129 |
+
Matrix([HyperRep_log1(z), 1]), Matrix([[-1/z, 0]]),
|
130 |
+
Matrix([[0, z/(z - 1)], [0, 0]]))
|
131 |
+
addb((S.Half, 1), (S('3/2'), ),
|
132 |
+
Matrix([HyperRep_atanh(z), 1]),
|
133 |
+
Matrix([[1, 0]]),
|
134 |
+
Matrix([[Rational(-1, 2), 1/(1 - z)/2], [0, 0]]))
|
135 |
+
addb((S.Half, S.Half), (S('3/2'), ),
|
136 |
+
Matrix([HyperRep_asin1(z), HyperRep_power1(Rational(-1, 2), z)]),
|
137 |
+
Matrix([[1, 0]]),
|
138 |
+
Matrix([[Rational(-1, 2), S.Half], [0, z/(1 - z)/2]]))
|
139 |
+
addb((a, S.Half + a), (S.Half, ),
|
140 |
+
Matrix([HyperRep_sqrts1(-a, z), -HyperRep_sqrts2(-a - S.Half, z)]),
|
141 |
+
Matrix([[1, 0]]),
|
142 |
+
Matrix([[0, -a],
|
143 |
+
[z*(-2*a - 1)/2/(1 - z), S.Half - z*(-2*a - 1)/(1 - z)]]))
|
144 |
+
|
145 |
+
# A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev (1990).
|
146 |
+
# Integrals and Series: More Special Functions, Vol. 3,.
|
147 |
+
# Gordon and Breach Science Publisher
|
148 |
+
addb([a, -a], [S.Half],
|
149 |
+
Matrix([HyperRep_cosasin(a, z), HyperRep_sinasin(a, z)]),
|
150 |
+
Matrix([[1, 0]]),
|
151 |
+
Matrix([[0, -a], [a*z/(1 - z), 1/(1 - z)/2]]))
|
152 |
+
addb([1, 1], [3*S.Half],
|
153 |
+
Matrix([HyperRep_asin2(z), 1]), Matrix([[1, 0]]),
|
154 |
+
Matrix([[(z - S.Half)/(1 - z), 1/(1 - z)/2], [0, 0]]))
|
155 |
+
|
156 |
+
# Complete elliptic integrals K(z) and E(z), both a 2F1 function
|
157 |
+
addb([S.Half, S.Half], [S.One],
|
158 |
+
Matrix([elliptic_k(z), elliptic_e(z)]),
|
159 |
+
Matrix([[2/pi, 0]]),
|
160 |
+
Matrix([[Rational(-1, 2), -1/(2*z-2)],
|
161 |
+
[Rational(-1, 2), S.Half]]))
|
162 |
+
addb([Rational(-1, 2), S.Half], [S.One],
|
163 |
+
Matrix([elliptic_k(z), elliptic_e(z)]),
|
164 |
+
Matrix([[0, 2/pi]]),
|
165 |
+
Matrix([[Rational(-1, 2), -1/(2*z-2)],
|
166 |
+
[Rational(-1, 2), S.Half]]))
|
167 |
+
|
168 |
+
# 3F2
|
169 |
+
addb([Rational(-1, 2), 1, 1], [S.Half, 2],
|
170 |
+
Matrix([z*HyperRep_atanh(z), HyperRep_log1(z), 1]),
|
171 |
+
Matrix([[Rational(-2, 3), -S.One/(3*z), Rational(2, 3)]]),
|
172 |
+
Matrix([[S.Half, 0, z/(1 - z)/2],
|
173 |
+
[0, 0, z/(z - 1)],
|
174 |
+
[0, 0, 0]]))
|
175 |
+
# actually the formula for 3/2 is much nicer ...
|
176 |
+
addb([Rational(-1, 2), 1, 1], [2, 2],
|
177 |
+
Matrix([HyperRep_power1(S.Half, z), HyperRep_log2(z), 1]),
|
178 |
+
Matrix([[Rational(4, 9) - 16/(9*z), 4/(3*z), 16/(9*z)]]),
|
179 |
+
Matrix([[z/2/(z - 1), 0, 0], [1/(2*(z - 1)), 0, S.Half], [0, 0, 0]]))
|
180 |
+
|
181 |
+
# 1F1
|
182 |
+
addb([1], [b], Matrix([z**(1 - b) * exp(z) * lowergamma(b - 1, z), 1]),
|
183 |
+
Matrix([[b - 1, 0]]), Matrix([[1 - b + z, 1], [0, 0]]))
|
184 |
+
addb([a], [2*a],
|
185 |
+
Matrix([z**(S.Half - a)*exp(z/2)*besseli(a - S.Half, z/2)
|
186 |
+
* gamma(a + S.Half)/4**(S.Half - a),
|
187 |
+
z**(S.Half - a)*exp(z/2)*besseli(a + S.Half, z/2)
|
188 |
+
* gamma(a + S.Half)/4**(S.Half - a)]),
|
189 |
+
Matrix([[1, 0]]),
|
190 |
+
Matrix([[z/2, z/2], [z/2, (z/2 - 2*a)]]))
|
191 |
+
mz = polar_lift(-1)*z
|
192 |
+
addb([a], [a + 1],
|
193 |
+
Matrix([mz**(-a)*a*lowergamma(a, mz), a*exp(z)]),
|
194 |
+
Matrix([[1, 0]]),
|
195 |
+
Matrix([[-a, 1], [0, z]]))
|
196 |
+
# This one is redundant.
|
197 |
+
add([Rational(-1, 2)], [S.Half], exp(z) - sqrt(pi*z)*(-I)*erf(I*sqrt(z)))
|
198 |
+
|
199 |
+
# Added to get nice results for Laplace transform of Fresnel functions
|
200 |
+
# https://functions.wolfram.com/07.22.03.6437.01
|
201 |
+
# Basic rule
|
202 |
+
#add([1], [Rational(3, 4), Rational(5, 4)],
|
203 |
+
# sqrt(pi) * (cos(2*sqrt(polar_lift(-1)*z))*fresnelc(2*root(polar_lift(-1)*z,4)/sqrt(pi)) +
|
204 |
+
# sin(2*sqrt(polar_lift(-1)*z))*fresnels(2*root(polar_lift(-1)*z,4)/sqrt(pi)))
|
205 |
+
# / (2*root(polar_lift(-1)*z,4)))
|
206 |
+
# Manually tuned rule
|
207 |
+
addb([1], [Rational(3, 4), Rational(5, 4)],
|
208 |
+
Matrix([ sqrt(pi)*(I*sinh(2*sqrt(z))*fresnels(2*root(z, 4)*exp(I*pi/4)/sqrt(pi))
|
209 |
+
+ cosh(2*sqrt(z))*fresnelc(2*root(z, 4)*exp(I*pi/4)/sqrt(pi)))
|
210 |
+
* exp(-I*pi/4)/(2*root(z, 4)),
|
211 |
+
sqrt(pi)*root(z, 4)*(sinh(2*sqrt(z))*fresnelc(2*root(z, 4)*exp(I*pi/4)/sqrt(pi))
|
212 |
+
+ I*cosh(2*sqrt(z))*fresnels(2*root(z, 4)*exp(I*pi/4)/sqrt(pi)))
|
213 |
+
*exp(-I*pi/4)/2,
|
214 |
+
1 ]),
|
215 |
+
Matrix([[1, 0, 0]]),
|
216 |
+
Matrix([[Rational(-1, 4), 1, Rational(1, 4)],
|
217 |
+
[ z, Rational(1, 4), 0],
|
218 |
+
[ 0, 0, 0]]))
|
219 |
+
|
220 |
+
# 2F2
|
221 |
+
addb([S.Half, a], [Rational(3, 2), a + 1],
|
222 |
+
Matrix([a/(2*a - 1)*(-I)*sqrt(pi/z)*erf(I*sqrt(z)),
|
223 |
+
a/(2*a - 1)*(polar_lift(-1)*z)**(-a)*
|
224 |
+
lowergamma(a, polar_lift(-1)*z),
|
225 |
+
a/(2*a - 1)*exp(z)]),
|
226 |
+
Matrix([[1, -1, 0]]),
|
227 |
+
Matrix([[Rational(-1, 2), 0, 1], [0, -a, 1], [0, 0, z]]))
|
228 |
+
# We make a "basis" of four functions instead of three, and give EulerGamma
|
229 |
+
# an extra slot (it could just be a coefficient to 1). The advantage is
|
230 |
+
# that this way Polys will not see multivariate polynomials (it treats
|
231 |
+
# EulerGamma as an indeterminate), which is *way* faster.
|
232 |
+
addb([1, 1], [2, 2],
|
233 |
+
Matrix([Ei(z) - log(z), exp(z), 1, EulerGamma]),
|
234 |
+
Matrix([[1/z, 0, 0, -1/z]]),
|
235 |
+
Matrix([[0, 1, -1, 0], [0, z, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]))
|
236 |
+
|
237 |
+
# 0F1
|
238 |
+
add((), (S.Half, ), cosh(2*sqrt(z)))
|
239 |
+
addb([], [b],
|
240 |
+
Matrix([gamma(b)*z**((1 - b)/2)*besseli(b - 1, 2*sqrt(z)),
|
241 |
+
gamma(b)*z**(1 - b/2)*besseli(b, 2*sqrt(z))]),
|
242 |
+
Matrix([[1, 0]]), Matrix([[0, 1], [z, (1 - b)]]))
|
243 |
+
|
244 |
+
# 0F3
|
245 |
+
x = 4*z**Rational(1, 4)
|
246 |
+
|
247 |
+
def fp(a, z):
|
248 |
+
return besseli(a, x) + besselj(a, x)
|
249 |
+
|
250 |
+
def fm(a, z):
|
251 |
+
return besseli(a, x) - besselj(a, x)
|
252 |
+
|
253 |
+
# TODO branching
|
254 |
+
addb([], [S.Half, a, a + S.Half],
|
255 |
+
Matrix([fp(2*a - 1, z), fm(2*a, z)*z**Rational(1, 4),
|
256 |
+
fm(2*a - 1, z)*sqrt(z), fp(2*a, z)*z**Rational(3, 4)])
|
257 |
+
* 2**(-2*a)*gamma(2*a)*z**((1 - 2*a)/4),
|
258 |
+
Matrix([[1, 0, 0, 0]]),
|
259 |
+
Matrix([[0, 1, 0, 0],
|
260 |
+
[0, S.Half - a, 1, 0],
|
261 |
+
[0, 0, S.Half, 1],
|
262 |
+
[z, 0, 0, 1 - a]]))
|
263 |
+
x = 2*(4*z)**Rational(1, 4)*exp_polar(I*pi/4)
|
264 |
+
addb([], [a, a + S.Half, 2*a],
|
265 |
+
(2*sqrt(polar_lift(-1)*z))**(1 - 2*a)*gamma(2*a)**2 *
|
266 |
+
Matrix([besselj(2*a - 1, x)*besseli(2*a - 1, x),
|
267 |
+
x*(besseli(2*a, x)*besselj(2*a - 1, x)
|
268 |
+
- besseli(2*a - 1, x)*besselj(2*a, x)),
|
269 |
+
x**2*besseli(2*a, x)*besselj(2*a, x),
|
270 |
+
x**3*(besseli(2*a, x)*besselj(2*a - 1, x)
|
271 |
+
+ besseli(2*a - 1, x)*besselj(2*a, x))]),
|
272 |
+
Matrix([[1, 0, 0, 0]]),
|
273 |
+
Matrix([[0, Rational(1, 4), 0, 0],
|
274 |
+
[0, (1 - 2*a)/2, Rational(-1, 2), 0],
|
275 |
+
[0, 0, 1 - 2*a, Rational(1, 4)],
|
276 |
+
[-32*z, 0, 0, 1 - a]]))
|
277 |
+
|
278 |
+
# 1F2
|
279 |
+
addb([a], [a - S.Half, 2*a],
|
280 |
+
Matrix([z**(S.Half - a)*besseli(a - S.Half, sqrt(z))**2,
|
281 |
+
z**(1 - a)*besseli(a - S.Half, sqrt(z))
|
282 |
+
*besseli(a - Rational(3, 2), sqrt(z)),
|
283 |
+
z**(Rational(3, 2) - a)*besseli(a - Rational(3, 2), sqrt(z))**2]),
|
284 |
+
Matrix([[-gamma(a + S.Half)**2/4**(S.Half - a),
|
285 |
+
2*gamma(a - S.Half)*gamma(a + S.Half)/4**(1 - a),
|
286 |
+
0]]),
|
287 |
+
Matrix([[1 - 2*a, 1, 0], [z/2, S.Half - a, S.Half], [0, z, 0]]))
|
288 |
+
addb([S.Half], [b, 2 - b],
|
289 |
+
pi*(1 - b)/sin(pi*b)*
|
290 |
+
Matrix([besseli(1 - b, sqrt(z))*besseli(b - 1, sqrt(z)),
|
291 |
+
sqrt(z)*(besseli(-b, sqrt(z))*besseli(b - 1, sqrt(z))
|
292 |
+
+ besseli(1 - b, sqrt(z))*besseli(b, sqrt(z))),
|
293 |
+
besseli(-b, sqrt(z))*besseli(b, sqrt(z))]),
|
294 |
+
Matrix([[1, 0, 0]]),
|
295 |
+
Matrix([[b - 1, S.Half, 0],
|
296 |
+
[z, 0, z],
|
297 |
+
[0, S.Half, -b]]))
|
298 |
+
addb([S.Half], [Rational(3, 2), Rational(3, 2)],
|
299 |
+
Matrix([Shi(2*sqrt(z))/2/sqrt(z), sinh(2*sqrt(z))/2/sqrt(z),
|
300 |
+
cosh(2*sqrt(z))]),
|
301 |
+
Matrix([[1, 0, 0]]),
|
302 |
+
Matrix([[Rational(-1, 2), S.Half, 0], [0, Rational(-1, 2), S.Half], [0, 2*z, 0]]))
|
303 |
+
|
304 |
+
# FresnelS
|
305 |
+
# Basic rule
|
306 |
+
#add([Rational(3, 4)], [Rational(3, 2),Rational(7, 4)], 6*fresnels( exp(pi*I/4)*root(z,4)*2/sqrt(pi) ) / ( pi * (exp(pi*I/4)*root(z,4)*2/sqrt(pi))**3 ) )
|
307 |
+
# Manually tuned rule
|
308 |
+
addb([Rational(3, 4)], [Rational(3, 2), Rational(7, 4)],
|
309 |
+
Matrix(
|
310 |
+
[ fresnels(
|
311 |
+
exp(
|
312 |
+
pi*I/4)*root(
|
313 |
+
z, 4)*2/sqrt(
|
314 |
+
pi) ) / (
|
315 |
+
pi * (exp(pi*I/4)*root(z, 4)*2/sqrt(pi))**3 ),
|
316 |
+
sinh(2*sqrt(z))/sqrt(z),
|
317 |
+
cosh(2*sqrt(z)) ]),
|
318 |
+
Matrix([[6, 0, 0]]),
|
319 |
+
Matrix([[Rational(-3, 4), Rational(1, 16), 0],
|
320 |
+
[ 0, Rational(-1, 2), 1],
|
321 |
+
[ 0, z, 0]]))
|
322 |
+
|
323 |
+
# FresnelC
|
324 |
+
# Basic rule
|
325 |
+
#add([Rational(1, 4)], [S.Half,Rational(5, 4)], fresnelc( exp(pi*I/4)*root(z,4)*2/sqrt(pi) ) / ( exp(pi*I/4)*root(z,4)*2/sqrt(pi) ) )
|
326 |
+
# Manually tuned rule
|
327 |
+
addb([Rational(1, 4)], [S.Half, Rational(5, 4)],
|
328 |
+
Matrix(
|
329 |
+
[ sqrt(
|
330 |
+
pi)*exp(
|
331 |
+
-I*pi/4)*fresnelc(
|
332 |
+
2*root(z, 4)*exp(I*pi/4)/sqrt(pi))/(2*root(z, 4)),
|
333 |
+
cosh(2*sqrt(z)),
|
334 |
+
sinh(2*sqrt(z))*sqrt(z) ]),
|
335 |
+
Matrix([[1, 0, 0]]),
|
336 |
+
Matrix([[Rational(-1, 4), Rational(1, 4), 0 ],
|
337 |
+
[ 0, 0, 1 ],
|
338 |
+
[ 0, z, S.Half]]))
|
339 |
+
|
340 |
+
# 2F3
|
341 |
+
# XXX with this five-parameter formula is pretty slow with the current
|
342 |
+
# Formula.find_instantiations (creates 2!*3!*3**(2+3) ~ 3000
|
343 |
+
# instantiations ... But it's not too bad.
|
344 |
+
addb([a, a + S.Half], [2*a, b, 2*a - b + 1],
|
345 |
+
gamma(b)*gamma(2*a - b + 1) * (sqrt(z)/2)**(1 - 2*a) *
|
346 |
+
Matrix([besseli(b - 1, sqrt(z))*besseli(2*a - b, sqrt(z)),
|
347 |
+
sqrt(z)*besseli(b, sqrt(z))*besseli(2*a - b, sqrt(z)),
|
348 |
+
sqrt(z)*besseli(b - 1, sqrt(z))*besseli(2*a - b + 1, sqrt(z)),
|
349 |
+
besseli(b, sqrt(z))*besseli(2*a - b + 1, sqrt(z))]),
|
350 |
+
Matrix([[1, 0, 0, 0]]),
|
351 |
+
Matrix([[0, S.Half, S.Half, 0],
|
352 |
+
[z/2, 1 - b, 0, z/2],
|
353 |
+
[z/2, 0, b - 2*a, z/2],
|
354 |
+
[0, S.Half, S.Half, -2*a]]))
|
355 |
+
# (C/f above comment about eulergamma in the basis).
|
356 |
+
addb([1, 1], [2, 2, Rational(3, 2)],
|
357 |
+
Matrix([Chi(2*sqrt(z)) - log(2*sqrt(z)),
|
358 |
+
cosh(2*sqrt(z)), sqrt(z)*sinh(2*sqrt(z)), 1, EulerGamma]),
|
359 |
+
Matrix([[1/z, 0, 0, 0, -1/z]]),
|
360 |
+
Matrix([[0, S.Half, 0, Rational(-1, 2), 0],
|
361 |
+
[0, 0, 1, 0, 0],
|
362 |
+
[0, z, S.Half, 0, 0],
|
363 |
+
[0, 0, 0, 0, 0],
|
364 |
+
[0, 0, 0, 0, 0]]))
|
365 |
+
|
366 |
+
# 3F3
|
367 |
+
# This is rule: https://functions.wolfram.com/07.31.03.0134.01
|
368 |
+
# Initial reason to add it was a nice solution for
|
369 |
+
# integrate(erf(a*z)/z**2, z) and same for erfc and erfi.
|
370 |
+
# Basic rule
|
371 |
+
# add([1, 1, a], [2, 2, a+1], (a/(z*(a-1)**2)) *
|
372 |
+
# (1 - (-z)**(1-a) * (gamma(a) - uppergamma(a,-z))
|
373 |
+
# - (a-1) * (EulerGamma + uppergamma(0,-z) + log(-z))
|
374 |
+
# - exp(z)))
|
375 |
+
# Manually tuned rule
|
376 |
+
addb([1, 1, a], [2, 2, a+1],
|
377 |
+
Matrix([a*(log(-z) + expint(1, -z) + EulerGamma)/(z*(a**2 - 2*a + 1)),
|
378 |
+
a*(-z)**(-a)*(gamma(a) - uppergamma(a, -z))/(a - 1)**2,
|
379 |
+
a*exp(z)/(a**2 - 2*a + 1),
|
380 |
+
a/(z*(a**2 - 2*a + 1))]),
|
381 |
+
Matrix([[1-a, 1, -1/z, 1]]),
|
382 |
+
Matrix([[-1,0,-1/z,1],
|
383 |
+
[0,-a,1,0],
|
384 |
+
[0,0,z,0],
|
385 |
+
[0,0,0,-1]]))
|
386 |
+
|
387 |
+
|
388 |
+
def add_meijerg_formulae(formulae):
|
389 |
+
a, b, c, z = list(map(Dummy, 'abcz'))
|
390 |
+
rho = Dummy('rho')
|
391 |
+
|
392 |
+
def add(an, ap, bm, bq, B, C, M, matcher):
|
393 |
+
formulae.append(MeijerFormula(an, ap, bm, bq, z, [a, b, c, rho],
|
394 |
+
B, C, M, matcher))
|
395 |
+
|
396 |
+
def detect_uppergamma(func):
|
397 |
+
x = func.an[0]
|
398 |
+
y, z = func.bm
|
399 |
+
swapped = False
|
400 |
+
if not _mod1((x - y).simplify()):
|
401 |
+
swapped = True
|
402 |
+
(y, z) = (z, y)
|
403 |
+
if _mod1((x - z).simplify()) or x - z > 0:
|
404 |
+
return None
|
405 |
+
l = [y, x]
|
406 |
+
if swapped:
|
407 |
+
l = [x, y]
|
408 |
+
return {rho: y, a: x - y}, G_Function([x], [], l, [])
|
409 |
+
|
410 |
+
add([a + rho], [], [rho, a + rho], [],
|
411 |
+
Matrix([gamma(1 - a)*z**rho*exp(z)*uppergamma(a, z),
|
412 |
+
gamma(1 - a)*z**(a + rho)]),
|
413 |
+
Matrix([[1, 0]]),
|
414 |
+
Matrix([[rho + z, -1], [0, a + rho]]),
|
415 |
+
detect_uppergamma)
|
416 |
+
|
417 |
+
def detect_3113(func):
|
418 |
+
"""https://functions.wolfram.com/07.34.03.0984.01"""
|
419 |
+
x = func.an[0]
|
420 |
+
u, v, w = func.bm
|
421 |
+
if _mod1((u - v).simplify()) == 0:
|
422 |
+
if _mod1((v - w).simplify()) == 0:
|
423 |
+
return
|
424 |
+
sig = (S.Half, S.Half, S.Zero)
|
425 |
+
x1, x2, y = u, v, w
|
426 |
+
else:
|
427 |
+
if _mod1((x - u).simplify()) == 0:
|
428 |
+
sig = (S.Half, S.Zero, S.Half)
|
429 |
+
x1, y, x2 = u, v, w
|
430 |
+
else:
|
431 |
+
sig = (S.Zero, S.Half, S.Half)
|
432 |
+
y, x1, x2 = u, v, w
|
433 |
+
|
434 |
+
if (_mod1((x - x1).simplify()) != 0 or
|
435 |
+
_mod1((x - x2).simplify()) != 0 or
|
436 |
+
_mod1((x - y).simplify()) != S.Half or
|
437 |
+
x - x1 > 0 or x - x2 > 0):
|
438 |
+
return
|
439 |
+
|
440 |
+
return {a: x}, G_Function([x], [], [x - S.Half + t for t in sig], [])
|
441 |
+
|
442 |
+
s = sin(2*sqrt(z))
|
443 |
+
c_ = cos(2*sqrt(z))
|
444 |
+
S_ = Si(2*sqrt(z)) - pi/2
|
445 |
+
C = Ci(2*sqrt(z))
|
446 |
+
add([a], [], [a, a, a - S.Half], [],
|
447 |
+
Matrix([sqrt(pi)*z**(a - S.Half)*(c_*S_ - s*C),
|
448 |
+
sqrt(pi)*z**a*(s*S_ + c_*C),
|
449 |
+
sqrt(pi)*z**a]),
|
450 |
+
Matrix([[-2, 0, 0]]),
|
451 |
+
Matrix([[a - S.Half, -1, 0], [z, a, S.Half], [0, 0, a]]),
|
452 |
+
detect_3113)
|
453 |
+
|
454 |
+
|
455 |
+
def make_simp(z):
|
456 |
+
""" Create a function that simplifies rational functions in ``z``. """
|
457 |
+
|
458 |
+
def simp(expr):
|
459 |
+
""" Efficiently simplify the rational function ``expr``. """
|
460 |
+
numer, denom = expr.as_numer_denom()
|
461 |
+
numer = numer.expand()
|
462 |
+
# denom = denom.expand() # is this needed?
|
463 |
+
c, numer, denom = poly(numer, z).cancel(poly(denom, z))
|
464 |
+
return c * numer.as_expr() / denom.as_expr()
|
465 |
+
|
466 |
+
return simp
|
467 |
+
|
468 |
+
|
469 |
+
def debug(*args):
|
470 |
+
if SYMPY_DEBUG:
|
471 |
+
for a in args:
|
472 |
+
print(a, end="")
|
473 |
+
print()
|
474 |
+
|
475 |
+
|
476 |
+
class Hyper_Function(Expr):
|
477 |
+
""" A generalized hypergeometric function. """
|
478 |
+
|
479 |
+
def __new__(cls, ap, bq):
|
480 |
+
obj = super().__new__(cls)
|
481 |
+
obj.ap = Tuple(*list(map(expand, ap)))
|
482 |
+
obj.bq = Tuple(*list(map(expand, bq)))
|
483 |
+
return obj
|
484 |
+
|
485 |
+
@property
|
486 |
+
def args(self):
|
487 |
+
return (self.ap, self.bq)
|
488 |
+
|
489 |
+
@property
|
490 |
+
def sizes(self):
|
491 |
+
return (len(self.ap), len(self.bq))
|
492 |
+
|
493 |
+
@property
|
494 |
+
def gamma(self):
|
495 |
+
"""
|
496 |
+
Number of upper parameters that are negative integers
|
497 |
+
|
498 |
+
This is a transformation invariant.
|
499 |
+
"""
|
500 |
+
return sum(bool(x.is_integer and x.is_negative) for x in self.ap)
|
501 |
+
|
502 |
+
def _hashable_content(self):
|
503 |
+
return super()._hashable_content() + (self.ap,
|
504 |
+
self.bq)
|
505 |
+
|
506 |
+
def __call__(self, arg):
|
507 |
+
return hyper(self.ap, self.bq, arg)
|
508 |
+
|
509 |
+
def build_invariants(self):
|
510 |
+
"""
|
511 |
+
Compute the invariant vector.
|
512 |
+
|
513 |
+
Explanation
|
514 |
+
===========
|
515 |
+
|
516 |
+
The invariant vector is:
|
517 |
+
(gamma, ((s1, n1), ..., (sk, nk)), ((t1, m1), ..., (tr, mr)))
|
518 |
+
where gamma is the number of integer a < 0,
|
519 |
+
s1 < ... < sk
|
520 |
+
nl is the number of parameters a_i congruent to sl mod 1
|
521 |
+
t1 < ... < tr
|
522 |
+
ml is the number of parameters b_i congruent to tl mod 1
|
523 |
+
|
524 |
+
If the index pair contains parameters, then this is not truly an
|
525 |
+
invariant, since the parameters cannot be sorted uniquely mod1.
|
526 |
+
|
527 |
+
Examples
|
528 |
+
========
|
529 |
+
|
530 |
+
>>> from sympy.simplify.hyperexpand import Hyper_Function
|
531 |
+
>>> from sympy import S
|
532 |
+
>>> ap = (S.Half, S.One/3, S(-1)/2, -2)
|
533 |
+
>>> bq = (1, 2)
|
534 |
+
|
535 |
+
Here gamma = 1,
|
536 |
+
k = 3, s1 = 0, s2 = 1/3, s3 = 1/2
|
537 |
+
n1 = 1, n2 = 1, n2 = 2
|
538 |
+
r = 1, t1 = 0
|
539 |
+
m1 = 2:
|
540 |
+
|
541 |
+
>>> Hyper_Function(ap, bq).build_invariants()
|
542 |
+
(1, ((0, 1), (1/3, 1), (1/2, 2)), ((0, 2),))
|
543 |
+
"""
|
544 |
+
abuckets, bbuckets = sift(self.ap, _mod1), sift(self.bq, _mod1)
|
545 |
+
|
546 |
+
def tr(bucket):
|
547 |
+
bucket = list(bucket.items())
|
548 |
+
if not any(isinstance(x[0], Mod) for x in bucket):
|
549 |
+
bucket.sort(key=lambda x: default_sort_key(x[0]))
|
550 |
+
bucket = tuple([(mod, len(values)) for mod, values in bucket if
|
551 |
+
values])
|
552 |
+
return bucket
|
553 |
+
|
554 |
+
return (self.gamma, tr(abuckets), tr(bbuckets))
|
555 |
+
|
556 |
+
def difficulty(self, func):
|
557 |
+
""" Estimate how many steps it takes to reach ``func`` from self.
|
558 |
+
Return -1 if impossible. """
|
559 |
+
if self.gamma != func.gamma:
|
560 |
+
return -1
|
561 |
+
oabuckets, obbuckets, abuckets, bbuckets = [sift(params, _mod1) for
|
562 |
+
params in (self.ap, self.bq, func.ap, func.bq)]
|
563 |
+
|
564 |
+
diff = 0
|
565 |
+
for bucket, obucket in [(abuckets, oabuckets), (bbuckets, obbuckets)]:
|
566 |
+
for mod in set(list(bucket.keys()) + list(obucket.keys())):
|
567 |
+
if (mod not in bucket) or (mod not in obucket) \
|
568 |
+
or len(bucket[mod]) != len(obucket[mod]):
|
569 |
+
return -1
|
570 |
+
l1 = list(bucket[mod])
|
571 |
+
l2 = list(obucket[mod])
|
572 |
+
l1.sort()
|
573 |
+
l2.sort()
|
574 |
+
for i, j in zip(l1, l2):
|
575 |
+
diff += abs(i - j)
|
576 |
+
|
577 |
+
return diff
|
578 |
+
|
579 |
+
def _is_suitable_origin(self):
|
580 |
+
"""
|
581 |
+
Decide if ``self`` is a suitable origin.
|
582 |
+
|
583 |
+
Explanation
|
584 |
+
===========
|
585 |
+
|
586 |
+
A function is a suitable origin iff:
|
587 |
+
* none of the ai equals bj + n, with n a non-negative integer
|
588 |
+
* none of the ai is zero
|
589 |
+
* none of the bj is a non-positive integer
|
590 |
+
|
591 |
+
Note that this gives meaningful results only when none of the indices
|
592 |
+
are symbolic.
|
593 |
+
|
594 |
+
"""
|
595 |
+
for a in self.ap:
|
596 |
+
for b in self.bq:
|
597 |
+
if (a - b).is_integer and (a - b).is_negative is False:
|
598 |
+
return False
|
599 |
+
for a in self.ap:
|
600 |
+
if a == 0:
|
601 |
+
return False
|
602 |
+
for b in self.bq:
|
603 |
+
if b.is_integer and b.is_nonpositive:
|
604 |
+
return False
|
605 |
+
return True
|
606 |
+
|
607 |
+
|
608 |
+
class G_Function(Expr):
|
609 |
+
""" A Meijer G-function. """
|
610 |
+
|
611 |
+
def __new__(cls, an, ap, bm, bq):
|
612 |
+
obj = super().__new__(cls)
|
613 |
+
obj.an = Tuple(*list(map(expand, an)))
|
614 |
+
obj.ap = Tuple(*list(map(expand, ap)))
|
615 |
+
obj.bm = Tuple(*list(map(expand, bm)))
|
616 |
+
obj.bq = Tuple(*list(map(expand, bq)))
|
617 |
+
return obj
|
618 |
+
|
619 |
+
@property
|
620 |
+
def args(self):
|
621 |
+
return (self.an, self.ap, self.bm, self.bq)
|
622 |
+
|
623 |
+
def _hashable_content(self):
|
624 |
+
return super()._hashable_content() + self.args
|
625 |
+
|
626 |
+
def __call__(self, z):
|
627 |
+
return meijerg(self.an, self.ap, self.bm, self.bq, z)
|
628 |
+
|
629 |
+
def compute_buckets(self):
|
630 |
+
"""
|
631 |
+
Compute buckets for the fours sets of parameters.
|
632 |
+
|
633 |
+
Explanation
|
634 |
+
===========
|
635 |
+
|
636 |
+
We guarantee that any two equal Mod objects returned are actually the
|
637 |
+
same, and that the buckets are sorted by real part (an and bq
|
638 |
+
descendending, bm and ap ascending).
|
639 |
+
|
640 |
+
Examples
|
641 |
+
========
|
642 |
+
|
643 |
+
>>> from sympy.simplify.hyperexpand import G_Function
|
644 |
+
>>> from sympy.abc import y
|
645 |
+
>>> from sympy import S
|
646 |
+
|
647 |
+
>>> a, b = [1, 3, 2, S(3)/2], [1 + y, y, 2, y + 3]
|
648 |
+
>>> G_Function(a, b, [2], [y]).compute_buckets()
|
649 |
+
({0: [3, 2, 1], 1/2: [3/2]},
|
650 |
+
{0: [2], y: [y, y + 1, y + 3]}, {0: [2]}, {y: [y]})
|
651 |
+
|
652 |
+
"""
|
653 |
+
dicts = pan, pap, pbm, pbq = [defaultdict(list) for i in range(4)]
|
654 |
+
for dic, lis in zip(dicts, (self.an, self.ap, self.bm, self.bq)):
|
655 |
+
for x in lis:
|
656 |
+
dic[_mod1(x)].append(x)
|
657 |
+
|
658 |
+
for dic, flip in zip(dicts, (True, False, False, True)):
|
659 |
+
for m, items in dic.items():
|
660 |
+
x0 = items[0]
|
661 |
+
items.sort(key=lambda x: x - x0, reverse=flip)
|
662 |
+
dic[m] = items
|
663 |
+
|
664 |
+
return tuple([dict(w) for w in dicts])
|
665 |
+
|
666 |
+
@property
|
667 |
+
def signature(self):
|
668 |
+
return (len(self.an), len(self.ap), len(self.bm), len(self.bq))
|
669 |
+
|
670 |
+
|
671 |
+
# Dummy variable.
|
672 |
+
_x = Dummy('x')
|
673 |
+
|
674 |
+
class Formula:
|
675 |
+
"""
|
676 |
+
This class represents hypergeometric formulae.
|
677 |
+
|
678 |
+
Explanation
|
679 |
+
===========
|
680 |
+
|
681 |
+
Its data members are:
|
682 |
+
- z, the argument
|
683 |
+
- closed_form, the closed form expression
|
684 |
+
- symbols, the free symbols (parameters) in the formula
|
685 |
+
- func, the function
|
686 |
+
- B, C, M (see _compute_basis)
|
687 |
+
|
688 |
+
Examples
|
689 |
+
========
|
690 |
+
|
691 |
+
>>> from sympy.abc import a, b, z
|
692 |
+
>>> from sympy.simplify.hyperexpand import Formula, Hyper_Function
|
693 |
+
>>> func = Hyper_Function((a/2, a/3 + b, (1+a)/2), (a, b, (a+b)/7))
|
694 |
+
>>> f = Formula(func, z, None, [a, b])
|
695 |
+
|
696 |
+
"""
|
697 |
+
|
698 |
+
def _compute_basis(self, closed_form):
|
699 |
+
"""
|
700 |
+
Compute a set of functions B=(f1, ..., fn), a nxn matrix M
|
701 |
+
and a 1xn matrix C such that:
|
702 |
+
closed_form = C B
|
703 |
+
z d/dz B = M B.
|
704 |
+
"""
|
705 |
+
afactors = [_x + a for a in self.func.ap]
|
706 |
+
bfactors = [_x + b - 1 for b in self.func.bq]
|
707 |
+
expr = _x*Mul(*bfactors) - self.z*Mul(*afactors)
|
708 |
+
poly = Poly(expr, _x)
|
709 |
+
|
710 |
+
n = poly.degree() - 1
|
711 |
+
b = [closed_form]
|
712 |
+
for _ in range(n):
|
713 |
+
b.append(self.z*b[-1].diff(self.z))
|
714 |
+
|
715 |
+
self.B = Matrix(b)
|
716 |
+
self.C = Matrix([[1] + [0]*n])
|
717 |
+
|
718 |
+
m = eye(n)
|
719 |
+
m = m.col_insert(0, zeros(n, 1))
|
720 |
+
l = poly.all_coeffs()[1:]
|
721 |
+
l.reverse()
|
722 |
+
self.M = m.row_insert(n, -Matrix([l])/poly.all_coeffs()[0])
|
723 |
+
|
724 |
+
def __init__(self, func, z, res, symbols, B=None, C=None, M=None):
|
725 |
+
z = sympify(z)
|
726 |
+
res = sympify(res)
|
727 |
+
symbols = [x for x in sympify(symbols) if func.has(x)]
|
728 |
+
|
729 |
+
self.z = z
|
730 |
+
self.symbols = symbols
|
731 |
+
self.B = B
|
732 |
+
self.C = C
|
733 |
+
self.M = M
|
734 |
+
self.func = func
|
735 |
+
|
736 |
+
# TODO with symbolic parameters, it could be advantageous
|
737 |
+
# (for prettier answers) to compute a basis only *after*
|
738 |
+
# instantiation
|
739 |
+
if res is not None:
|
740 |
+
self._compute_basis(res)
|
741 |
+
|
742 |
+
@property
|
743 |
+
def closed_form(self):
|
744 |
+
return reduce(lambda s,m: s+m[0]*m[1], zip(self.C, self.B), S.Zero)
|
745 |
+
|
746 |
+
def find_instantiations(self, func):
|
747 |
+
"""
|
748 |
+
Find substitutions of the free symbols that match ``func``.
|
749 |
+
|
750 |
+
Return the substitution dictionaries as a list. Note that the returned
|
751 |
+
instantiations need not actually match, or be valid!
|
752 |
+
|
753 |
+
"""
|
754 |
+
from sympy.solvers import solve
|
755 |
+
ap = func.ap
|
756 |
+
bq = func.bq
|
757 |
+
if len(ap) != len(self.func.ap) or len(bq) != len(self.func.bq):
|
758 |
+
raise TypeError('Cannot instantiate other number of parameters')
|
759 |
+
symbol_values = []
|
760 |
+
for a in self.symbols:
|
761 |
+
if a in self.func.ap.args:
|
762 |
+
symbol_values.append(ap)
|
763 |
+
elif a in self.func.bq.args:
|
764 |
+
symbol_values.append(bq)
|
765 |
+
else:
|
766 |
+
raise ValueError("At least one of the parameters of the "
|
767 |
+
"formula must be equal to %s" % (a,))
|
768 |
+
base_repl = [dict(list(zip(self.symbols, values)))
|
769 |
+
for values in product(*symbol_values)]
|
770 |
+
abuckets, bbuckets = [sift(params, _mod1) for params in [ap, bq]]
|
771 |
+
a_inv, b_inv = [{a: len(vals) for a, vals in bucket.items()}
|
772 |
+
for bucket in [abuckets, bbuckets]]
|
773 |
+
critical_values = [[0] for _ in self.symbols]
|
774 |
+
result = []
|
775 |
+
_n = Dummy()
|
776 |
+
for repl in base_repl:
|
777 |
+
symb_a, symb_b = [sift(params, lambda x: _mod1(x.xreplace(repl)))
|
778 |
+
for params in [self.func.ap, self.func.bq]]
|
779 |
+
for bucket, obucket in [(abuckets, symb_a), (bbuckets, symb_b)]:
|
780 |
+
for mod in set(list(bucket.keys()) + list(obucket.keys())):
|
781 |
+
if (mod not in bucket) or (mod not in obucket) \
|
782 |
+
or len(bucket[mod]) != len(obucket[mod]):
|
783 |
+
break
|
784 |
+
for a, vals in zip(self.symbols, critical_values):
|
785 |
+
if repl[a].free_symbols:
|
786 |
+
continue
|
787 |
+
exprs = [expr for expr in obucket[mod] if expr.has(a)]
|
788 |
+
repl0 = repl.copy()
|
789 |
+
repl0[a] += _n
|
790 |
+
for expr in exprs:
|
791 |
+
for target in bucket[mod]:
|
792 |
+
n0, = solve(expr.xreplace(repl0) - target, _n)
|
793 |
+
if n0.free_symbols:
|
794 |
+
raise ValueError("Value should not be true")
|
795 |
+
vals.append(n0)
|
796 |
+
else:
|
797 |
+
values = []
|
798 |
+
for a, vals in zip(self.symbols, critical_values):
|
799 |
+
a0 = repl[a]
|
800 |
+
min_ = floor(min(vals))
|
801 |
+
max_ = ceiling(max(vals))
|
802 |
+
values.append([a0 + n for n in range(min_, max_ + 1)])
|
803 |
+
result.extend(dict(list(zip(self.symbols, l))) for l in product(*values))
|
804 |
+
return result
|
805 |
+
|
806 |
+
|
807 |
+
|
808 |
+
|
809 |
+
class FormulaCollection:
|
810 |
+
""" A collection of formulae to use as origins. """
|
811 |
+
|
812 |
+
def __init__(self):
|
813 |
+
""" Doing this globally at module init time is a pain ... """
|
814 |
+
self.symbolic_formulae = {}
|
815 |
+
self.concrete_formulae = {}
|
816 |
+
self.formulae = []
|
817 |
+
|
818 |
+
add_formulae(self.formulae)
|
819 |
+
|
820 |
+
# Now process the formulae into a helpful form.
|
821 |
+
# These dicts are indexed by (p, q).
|
822 |
+
|
823 |
+
for f in self.formulae:
|
824 |
+
sizes = f.func.sizes
|
825 |
+
if len(f.symbols) > 0:
|
826 |
+
self.symbolic_formulae.setdefault(sizes, []).append(f)
|
827 |
+
else:
|
828 |
+
inv = f.func.build_invariants()
|
829 |
+
self.concrete_formulae.setdefault(sizes, {})[inv] = f
|
830 |
+
|
831 |
+
def lookup_origin(self, func):
|
832 |
+
"""
|
833 |
+
Given the suitable target ``func``, try to find an origin in our
|
834 |
+
knowledge base.
|
835 |
+
|
836 |
+
Examples
|
837 |
+
========
|
838 |
+
|
839 |
+
>>> from sympy.simplify.hyperexpand import (FormulaCollection,
|
840 |
+
... Hyper_Function)
|
841 |
+
>>> f = FormulaCollection()
|
842 |
+
>>> f.lookup_origin(Hyper_Function((), ())).closed_form
|
843 |
+
exp(_z)
|
844 |
+
>>> f.lookup_origin(Hyper_Function([1], ())).closed_form
|
845 |
+
HyperRep_power1(-1, _z)
|
846 |
+
|
847 |
+
>>> from sympy import S
|
848 |
+
>>> i = Hyper_Function([S('1/4'), S('3/4 + 4')], [S.Half])
|
849 |
+
>>> f.lookup_origin(i).closed_form
|
850 |
+
HyperRep_sqrts1(-1/4, _z)
|
851 |
+
"""
|
852 |
+
inv = func.build_invariants()
|
853 |
+
sizes = func.sizes
|
854 |
+
if sizes in self.concrete_formulae and \
|
855 |
+
inv in self.concrete_formulae[sizes]:
|
856 |
+
return self.concrete_formulae[sizes][inv]
|
857 |
+
|
858 |
+
# We don't have a concrete formula. Try to instantiate.
|
859 |
+
if sizes not in self.symbolic_formulae:
|
860 |
+
return None # Too bad...
|
861 |
+
|
862 |
+
possible = []
|
863 |
+
for f in self.symbolic_formulae[sizes]:
|
864 |
+
repls = f.find_instantiations(func)
|
865 |
+
for repl in repls:
|
866 |
+
func2 = f.func.xreplace(repl)
|
867 |
+
if not func2._is_suitable_origin():
|
868 |
+
continue
|
869 |
+
diff = func2.difficulty(func)
|
870 |
+
if diff == -1:
|
871 |
+
continue
|
872 |
+
possible.append((diff, repl, f, func2))
|
873 |
+
|
874 |
+
# find the nearest origin
|
875 |
+
possible.sort(key=lambda x: x[0])
|
876 |
+
for _, repl, f, func2 in possible:
|
877 |
+
f2 = Formula(func2, f.z, None, [], f.B.subs(repl),
|
878 |
+
f.C.subs(repl), f.M.subs(repl))
|
879 |
+
if not any(e.has(S.NaN, oo, -oo, zoo) for e in [f2.B, f2.M, f2.C]):
|
880 |
+
return f2
|
881 |
+
|
882 |
+
return None
|
883 |
+
|
884 |
+
|
885 |
+
class MeijerFormula:
|
886 |
+
"""
|
887 |
+
This class represents a Meijer G-function formula.
|
888 |
+
|
889 |
+
Its data members are:
|
890 |
+
- z, the argument
|
891 |
+
- symbols, the free symbols (parameters) in the formula
|
892 |
+
- func, the function
|
893 |
+
- B, C, M (c/f ordinary Formula)
|
894 |
+
"""
|
895 |
+
|
896 |
+
def __init__(self, an, ap, bm, bq, z, symbols, B, C, M, matcher):
|
897 |
+
an, ap, bm, bq = [Tuple(*list(map(expand, w))) for w in [an, ap, bm, bq]]
|
898 |
+
self.func = G_Function(an, ap, bm, bq)
|
899 |
+
self.z = z
|
900 |
+
self.symbols = symbols
|
901 |
+
self._matcher = matcher
|
902 |
+
self.B = B
|
903 |
+
self.C = C
|
904 |
+
self.M = M
|
905 |
+
|
906 |
+
@property
|
907 |
+
def closed_form(self):
|
908 |
+
return reduce(lambda s,m: s+m[0]*m[1], zip(self.C, self.B), S.Zero)
|
909 |
+
|
910 |
+
def try_instantiate(self, func):
|
911 |
+
"""
|
912 |
+
Try to instantiate the current formula to (almost) match func.
|
913 |
+
This uses the _matcher passed on init.
|
914 |
+
"""
|
915 |
+
if func.signature != self.func.signature:
|
916 |
+
return None
|
917 |
+
res = self._matcher(func)
|
918 |
+
if res is not None:
|
919 |
+
subs, newfunc = res
|
920 |
+
return MeijerFormula(newfunc.an, newfunc.ap, newfunc.bm, newfunc.bq,
|
921 |
+
self.z, [],
|
922 |
+
self.B.subs(subs), self.C.subs(subs),
|
923 |
+
self.M.subs(subs), None)
|
924 |
+
|
925 |
+
|
926 |
+
class MeijerFormulaCollection:
|
927 |
+
"""
|
928 |
+
This class holds a collection of meijer g formulae.
|
929 |
+
"""
|
930 |
+
|
931 |
+
def __init__(self):
|
932 |
+
formulae = []
|
933 |
+
add_meijerg_formulae(formulae)
|
934 |
+
self.formulae = defaultdict(list)
|
935 |
+
for formula in formulae:
|
936 |
+
self.formulae[formula.func.signature].append(formula)
|
937 |
+
self.formulae = dict(self.formulae)
|
938 |
+
|
939 |
+
def lookup_origin(self, func):
|
940 |
+
""" Try to find a formula that matches func. """
|
941 |
+
if func.signature not in self.formulae:
|
942 |
+
return None
|
943 |
+
for formula in self.formulae[func.signature]:
|
944 |
+
res = formula.try_instantiate(func)
|
945 |
+
if res is not None:
|
946 |
+
return res
|
947 |
+
|
948 |
+
|
949 |
+
class Operator:
|
950 |
+
"""
|
951 |
+
Base class for operators to be applied to our functions.
|
952 |
+
|
953 |
+
Explanation
|
954 |
+
===========
|
955 |
+
|
956 |
+
These operators are differential operators. They are by convention
|
957 |
+
expressed in the variable D = z*d/dz (although this base class does
|
958 |
+
not actually care).
|
959 |
+
Note that when the operator is applied to an object, we typically do
|
960 |
+
*not* blindly differentiate but instead use a different representation
|
961 |
+
of the z*d/dz operator (see make_derivative_operator).
|
962 |
+
|
963 |
+
To subclass from this, define a __init__ method that initializes a
|
964 |
+
self._poly variable. This variable stores a polynomial. By convention
|
965 |
+
the generator is z*d/dz, and acts to the right of all coefficients.
|
966 |
+
|
967 |
+
Thus this poly
|
968 |
+
x**2 + 2*z*x + 1
|
969 |
+
represents the differential operator
|
970 |
+
(z*d/dz)**2 + 2*z**2*d/dz.
|
971 |
+
|
972 |
+
This class is used only in the implementation of the hypergeometric
|
973 |
+
function expansion algorithm.
|
974 |
+
"""
|
975 |
+
|
976 |
+
def apply(self, obj, op):
|
977 |
+
"""
|
978 |
+
Apply ``self`` to the object ``obj``, where the generator is ``op``.
|
979 |
+
|
980 |
+
Examples
|
981 |
+
========
|
982 |
+
|
983 |
+
>>> from sympy.simplify.hyperexpand import Operator
|
984 |
+
>>> from sympy.polys.polytools import Poly
|
985 |
+
>>> from sympy.abc import x, y, z
|
986 |
+
>>> op = Operator()
|
987 |
+
>>> op._poly = Poly(x**2 + z*x + y, x)
|
988 |
+
>>> op.apply(z**7, lambda f: f.diff(z))
|
989 |
+
y*z**7 + 7*z**7 + 42*z**5
|
990 |
+
"""
|
991 |
+
coeffs = self._poly.all_coeffs()
|
992 |
+
coeffs.reverse()
|
993 |
+
diffs = [obj]
|
994 |
+
for c in coeffs[1:]:
|
995 |
+
diffs.append(op(diffs[-1]))
|
996 |
+
r = coeffs[0]*diffs[0]
|
997 |
+
for c, d in zip(coeffs[1:], diffs[1:]):
|
998 |
+
r += c*d
|
999 |
+
return r
|
1000 |
+
|
1001 |
+
|
1002 |
+
class MultOperator(Operator):
|
1003 |
+
""" Simply multiply by a "constant" """
|
1004 |
+
|
1005 |
+
def __init__(self, p):
|
1006 |
+
self._poly = Poly(p, _x)
|
1007 |
+
|
1008 |
+
|
1009 |
+
class ShiftA(Operator):
|
1010 |
+
""" Increment an upper index. """
|
1011 |
+
|
1012 |
+
def __init__(self, ai):
|
1013 |
+
ai = sympify(ai)
|
1014 |
+
if ai == 0:
|
1015 |
+
raise ValueError('Cannot increment zero upper index.')
|
1016 |
+
self._poly = Poly(_x/ai + 1, _x)
|
1017 |
+
|
1018 |
+
def __str__(self):
|
1019 |
+
return '<Increment upper %s.>' % (1/self._poly.all_coeffs()[0])
|
1020 |
+
|
1021 |
+
|
1022 |
+
class ShiftB(Operator):
|
1023 |
+
""" Decrement a lower index. """
|
1024 |
+
|
1025 |
+
def __init__(self, bi):
|
1026 |
+
bi = sympify(bi)
|
1027 |
+
if bi == 1:
|
1028 |
+
raise ValueError('Cannot decrement unit lower index.')
|
1029 |
+
self._poly = Poly(_x/(bi - 1) + 1, _x)
|
1030 |
+
|
1031 |
+
def __str__(self):
|
1032 |
+
return '<Decrement lower %s.>' % (1/self._poly.all_coeffs()[0] + 1)
|
1033 |
+
|
1034 |
+
|
1035 |
+
class UnShiftA(Operator):
|
1036 |
+
""" Decrement an upper index. """
|
1037 |
+
|
1038 |
+
def __init__(self, ap, bq, i, z):
|
1039 |
+
""" Note: i counts from zero! """
|
1040 |
+
ap, bq, i = list(map(sympify, [ap, bq, i]))
|
1041 |
+
|
1042 |
+
self._ap = ap
|
1043 |
+
self._bq = bq
|
1044 |
+
self._i = i
|
1045 |
+
|
1046 |
+
ap = list(ap)
|
1047 |
+
bq = list(bq)
|
1048 |
+
ai = ap.pop(i) - 1
|
1049 |
+
|
1050 |
+
if ai == 0:
|
1051 |
+
raise ValueError('Cannot decrement unit upper index.')
|
1052 |
+
|
1053 |
+
m = Poly(z*ai, _x)
|
1054 |
+
for a in ap:
|
1055 |
+
m *= Poly(_x + a, _x)
|
1056 |
+
|
1057 |
+
A = Dummy('A')
|
1058 |
+
n = D = Poly(ai*A - ai, A)
|
1059 |
+
for b in bq:
|
1060 |
+
n *= D + (b - 1).as_poly(A)
|
1061 |
+
|
1062 |
+
b0 = -n.nth(0)
|
1063 |
+
if b0 == 0:
|
1064 |
+
raise ValueError('Cannot decrement upper index: '
|
1065 |
+
'cancels with lower')
|
1066 |
+
|
1067 |
+
n = Poly(Poly(n.all_coeffs()[:-1], A).as_expr().subs(A, _x/ai + 1), _x)
|
1068 |
+
|
1069 |
+
self._poly = Poly((n - m)/b0, _x)
|
1070 |
+
|
1071 |
+
def __str__(self):
|
1072 |
+
return '<Decrement upper index #%s of %s, %s.>' % (self._i,
|
1073 |
+
self._ap, self._bq)
|
1074 |
+
|
1075 |
+
|
1076 |
+
class UnShiftB(Operator):
|
1077 |
+
""" Increment a lower index. """
|
1078 |
+
|
1079 |
+
def __init__(self, ap, bq, i, z):
|
1080 |
+
""" Note: i counts from zero! """
|
1081 |
+
ap, bq, i = list(map(sympify, [ap, bq, i]))
|
1082 |
+
|
1083 |
+
self._ap = ap
|
1084 |
+
self._bq = bq
|
1085 |
+
self._i = i
|
1086 |
+
|
1087 |
+
ap = list(ap)
|
1088 |
+
bq = list(bq)
|
1089 |
+
bi = bq.pop(i) + 1
|
1090 |
+
|
1091 |
+
if bi == 0:
|
1092 |
+
raise ValueError('Cannot increment -1 lower index.')
|
1093 |
+
|
1094 |
+
m = Poly(_x*(bi - 1), _x)
|
1095 |
+
for b in bq:
|
1096 |
+
m *= Poly(_x + b - 1, _x)
|
1097 |
+
|
1098 |
+
B = Dummy('B')
|
1099 |
+
D = Poly((bi - 1)*B - bi + 1, B)
|
1100 |
+
n = Poly(z, B)
|
1101 |
+
for a in ap:
|
1102 |
+
n *= (D + a.as_poly(B))
|
1103 |
+
|
1104 |
+
b0 = n.nth(0)
|
1105 |
+
if b0 == 0:
|
1106 |
+
raise ValueError('Cannot increment index: cancels with upper')
|
1107 |
+
|
1108 |
+
n = Poly(Poly(n.all_coeffs()[:-1], B).as_expr().subs(
|
1109 |
+
B, _x/(bi - 1) + 1), _x)
|
1110 |
+
|
1111 |
+
self._poly = Poly((m - n)/b0, _x)
|
1112 |
+
|
1113 |
+
def __str__(self):
|
1114 |
+
return '<Increment lower index #%s of %s, %s.>' % (self._i,
|
1115 |
+
self._ap, self._bq)
|
1116 |
+
|
1117 |
+
|
1118 |
+
class MeijerShiftA(Operator):
|
1119 |
+
""" Increment an upper b index. """
|
1120 |
+
|
1121 |
+
def __init__(self, bi):
|
1122 |
+
bi = sympify(bi)
|
1123 |
+
self._poly = Poly(bi - _x, _x)
|
1124 |
+
|
1125 |
+
def __str__(self):
|
1126 |
+
return '<Increment upper b=%s.>' % (self._poly.all_coeffs()[1])
|
1127 |
+
|
1128 |
+
|
1129 |
+
class MeijerShiftB(Operator):
|
1130 |
+
""" Decrement an upper a index. """
|
1131 |
+
|
1132 |
+
def __init__(self, bi):
|
1133 |
+
bi = sympify(bi)
|
1134 |
+
self._poly = Poly(1 - bi + _x, _x)
|
1135 |
+
|
1136 |
+
def __str__(self):
|
1137 |
+
return '<Decrement upper a=%s.>' % (1 - self._poly.all_coeffs()[1])
|
1138 |
+
|
1139 |
+
|
1140 |
+
class MeijerShiftC(Operator):
|
1141 |
+
""" Increment a lower b index. """
|
1142 |
+
|
1143 |
+
def __init__(self, bi):
|
1144 |
+
bi = sympify(bi)
|
1145 |
+
self._poly = Poly(-bi + _x, _x)
|
1146 |
+
|
1147 |
+
def __str__(self):
|
1148 |
+
return '<Increment lower b=%s.>' % (-self._poly.all_coeffs()[1])
|
1149 |
+
|
1150 |
+
|
1151 |
+
class MeijerShiftD(Operator):
|
1152 |
+
""" Decrement a lower a index. """
|
1153 |
+
|
1154 |
+
def __init__(self, bi):
|
1155 |
+
bi = sympify(bi)
|
1156 |
+
self._poly = Poly(bi - 1 - _x, _x)
|
1157 |
+
|
1158 |
+
def __str__(self):
|
1159 |
+
return '<Decrement lower a=%s.>' % (self._poly.all_coeffs()[1] + 1)
|
1160 |
+
|
1161 |
+
|
1162 |
+
class MeijerUnShiftA(Operator):
|
1163 |
+
""" Decrement an upper b index. """
|
1164 |
+
|
1165 |
+
def __init__(self, an, ap, bm, bq, i, z):
|
1166 |
+
""" Note: i counts from zero! """
|
1167 |
+
an, ap, bm, bq, i = list(map(sympify, [an, ap, bm, bq, i]))
|
1168 |
+
|
1169 |
+
self._an = an
|
1170 |
+
self._ap = ap
|
1171 |
+
self._bm = bm
|
1172 |
+
self._bq = bq
|
1173 |
+
self._i = i
|
1174 |
+
|
1175 |
+
an = list(an)
|
1176 |
+
ap = list(ap)
|
1177 |
+
bm = list(bm)
|
1178 |
+
bq = list(bq)
|
1179 |
+
bi = bm.pop(i) - 1
|
1180 |
+
|
1181 |
+
m = Poly(1, _x) * prod(Poly(b - _x, _x) for b in bm) * prod(Poly(_x - b, _x) for b in bq)
|
1182 |
+
|
1183 |
+
A = Dummy('A')
|
1184 |
+
D = Poly(bi - A, A)
|
1185 |
+
n = Poly(z, A) * prod((D + 1 - a) for a in an) * prod((-D + a - 1) for a in ap)
|
1186 |
+
|
1187 |
+
b0 = n.nth(0)
|
1188 |
+
if b0 == 0:
|
1189 |
+
raise ValueError('Cannot decrement upper b index (cancels)')
|
1190 |
+
|
1191 |
+
n = Poly(Poly(n.all_coeffs()[:-1], A).as_expr().subs(A, bi - _x), _x)
|
1192 |
+
|
1193 |
+
self._poly = Poly((m - n)/b0, _x)
|
1194 |
+
|
1195 |
+
def __str__(self):
|
1196 |
+
return '<Decrement upper b index #%s of %s, %s, %s, %s.>' % (self._i,
|
1197 |
+
self._an, self._ap, self._bm, self._bq)
|
1198 |
+
|
1199 |
+
|
1200 |
+
class MeijerUnShiftB(Operator):
|
1201 |
+
""" Increment an upper a index. """
|
1202 |
+
|
1203 |
+
def __init__(self, an, ap, bm, bq, i, z):
|
1204 |
+
""" Note: i counts from zero! """
|
1205 |
+
an, ap, bm, bq, i = list(map(sympify, [an, ap, bm, bq, i]))
|
1206 |
+
|
1207 |
+
self._an = an
|
1208 |
+
self._ap = ap
|
1209 |
+
self._bm = bm
|
1210 |
+
self._bq = bq
|
1211 |
+
self._i = i
|
1212 |
+
|
1213 |
+
an = list(an)
|
1214 |
+
ap = list(ap)
|
1215 |
+
bm = list(bm)
|
1216 |
+
bq = list(bq)
|
1217 |
+
ai = an.pop(i) + 1
|
1218 |
+
|
1219 |
+
m = Poly(z, _x)
|
1220 |
+
for a in an:
|
1221 |
+
m *= Poly(1 - a + _x, _x)
|
1222 |
+
for a in ap:
|
1223 |
+
m *= Poly(a - 1 - _x, _x)
|
1224 |
+
|
1225 |
+
B = Dummy('B')
|
1226 |
+
D = Poly(B + ai - 1, B)
|
1227 |
+
n = Poly(1, B)
|
1228 |
+
for b in bm:
|
1229 |
+
n *= (-D + b)
|
1230 |
+
for b in bq:
|
1231 |
+
n *= (D - b)
|
1232 |
+
|
1233 |
+
b0 = n.nth(0)
|
1234 |
+
if b0 == 0:
|
1235 |
+
raise ValueError('Cannot increment upper a index (cancels)')
|
1236 |
+
|
1237 |
+
n = Poly(Poly(n.all_coeffs()[:-1], B).as_expr().subs(
|
1238 |
+
B, 1 - ai + _x), _x)
|
1239 |
+
|
1240 |
+
self._poly = Poly((m - n)/b0, _x)
|
1241 |
+
|
1242 |
+
def __str__(self):
|
1243 |
+
return '<Increment upper a index #%s of %s, %s, %s, %s.>' % (self._i,
|
1244 |
+
self._an, self._ap, self._bm, self._bq)
|
1245 |
+
|
1246 |
+
|
1247 |
+
class MeijerUnShiftC(Operator):
|
1248 |
+
""" Decrement a lower b index. """
|
1249 |
+
# XXX this is "essentially" the same as MeijerUnShiftA. This "essentially"
|
1250 |
+
# can be made rigorous using the functional equation G(1/z) = G'(z),
|
1251 |
+
# where G' denotes a G function of slightly altered parameters.
|
1252 |
+
# However, sorting out the details seems harder than just coding it
|
1253 |
+
# again.
|
1254 |
+
|
1255 |
+
def __init__(self, an, ap, bm, bq, i, z):
|
1256 |
+
""" Note: i counts from zero! """
|
1257 |
+
an, ap, bm, bq, i = list(map(sympify, [an, ap, bm, bq, i]))
|
1258 |
+
|
1259 |
+
self._an = an
|
1260 |
+
self._ap = ap
|
1261 |
+
self._bm = bm
|
1262 |
+
self._bq = bq
|
1263 |
+
self._i = i
|
1264 |
+
|
1265 |
+
an = list(an)
|
1266 |
+
ap = list(ap)
|
1267 |
+
bm = list(bm)
|
1268 |
+
bq = list(bq)
|
1269 |
+
bi = bq.pop(i) - 1
|
1270 |
+
|
1271 |
+
m = Poly(1, _x)
|
1272 |
+
for b in bm:
|
1273 |
+
m *= Poly(b - _x, _x)
|
1274 |
+
for b in bq:
|
1275 |
+
m *= Poly(_x - b, _x)
|
1276 |
+
|
1277 |
+
C = Dummy('C')
|
1278 |
+
D = Poly(bi + C, C)
|
1279 |
+
n = Poly(z, C)
|
1280 |
+
for a in an:
|
1281 |
+
n *= (D + 1 - a)
|
1282 |
+
for a in ap:
|
1283 |
+
n *= (-D + a - 1)
|
1284 |
+
|
1285 |
+
b0 = n.nth(0)
|
1286 |
+
if b0 == 0:
|
1287 |
+
raise ValueError('Cannot decrement lower b index (cancels)')
|
1288 |
+
|
1289 |
+
n = Poly(Poly(n.all_coeffs()[:-1], C).as_expr().subs(C, _x - bi), _x)
|
1290 |
+
|
1291 |
+
self._poly = Poly((m - n)/b0, _x)
|
1292 |
+
|
1293 |
+
def __str__(self):
|
1294 |
+
return '<Decrement lower b index #%s of %s, %s, %s, %s.>' % (self._i,
|
1295 |
+
self._an, self._ap, self._bm, self._bq)
|
1296 |
+
|
1297 |
+
|
1298 |
+
class MeijerUnShiftD(Operator):
|
1299 |
+
""" Increment a lower a index. """
|
1300 |
+
# XXX This is essentially the same as MeijerUnShiftA.
|
1301 |
+
# See comment at MeijerUnShiftC.
|
1302 |
+
|
1303 |
+
def __init__(self, an, ap, bm, bq, i, z):
|
1304 |
+
""" Note: i counts from zero! """
|
1305 |
+
an, ap, bm, bq, i = list(map(sympify, [an, ap, bm, bq, i]))
|
1306 |
+
|
1307 |
+
self._an = an
|
1308 |
+
self._ap = ap
|
1309 |
+
self._bm = bm
|
1310 |
+
self._bq = bq
|
1311 |
+
self._i = i
|
1312 |
+
|
1313 |
+
an = list(an)
|
1314 |
+
ap = list(ap)
|
1315 |
+
bm = list(bm)
|
1316 |
+
bq = list(bq)
|
1317 |
+
ai = ap.pop(i) + 1
|
1318 |
+
|
1319 |
+
m = Poly(z, _x)
|
1320 |
+
for a in an:
|
1321 |
+
m *= Poly(1 - a + _x, _x)
|
1322 |
+
for a in ap:
|
1323 |
+
m *= Poly(a - 1 - _x, _x)
|
1324 |
+
|
1325 |
+
B = Dummy('B') # - this is the shift operator `D_I`
|
1326 |
+
D = Poly(ai - 1 - B, B)
|
1327 |
+
n = Poly(1, B)
|
1328 |
+
for b in bm:
|
1329 |
+
n *= (-D + b)
|
1330 |
+
for b in bq:
|
1331 |
+
n *= (D - b)
|
1332 |
+
|
1333 |
+
b0 = n.nth(0)
|
1334 |
+
if b0 == 0:
|
1335 |
+
raise ValueError('Cannot increment lower a index (cancels)')
|
1336 |
+
|
1337 |
+
n = Poly(Poly(n.all_coeffs()[:-1], B).as_expr().subs(
|
1338 |
+
B, ai - 1 - _x), _x)
|
1339 |
+
|
1340 |
+
self._poly = Poly((m - n)/b0, _x)
|
1341 |
+
|
1342 |
+
def __str__(self):
|
1343 |
+
return '<Increment lower a index #%s of %s, %s, %s, %s.>' % (self._i,
|
1344 |
+
self._an, self._ap, self._bm, self._bq)
|
1345 |
+
|
1346 |
+
|
1347 |
+
class ReduceOrder(Operator):
|
1348 |
+
""" Reduce Order by cancelling an upper and a lower index. """
|
1349 |
+
|
1350 |
+
def __new__(cls, ai, bj):
|
1351 |
+
""" For convenience if reduction is not possible, return None. """
|
1352 |
+
ai = sympify(ai)
|
1353 |
+
bj = sympify(bj)
|
1354 |
+
n = ai - bj
|
1355 |
+
if not n.is_Integer or n < 0:
|
1356 |
+
return None
|
1357 |
+
if bj.is_integer and bj.is_nonpositive:
|
1358 |
+
return None
|
1359 |
+
|
1360 |
+
expr = Operator.__new__(cls)
|
1361 |
+
|
1362 |
+
p = S.One
|
1363 |
+
for k in range(n):
|
1364 |
+
p *= (_x + bj + k)/(bj + k)
|
1365 |
+
|
1366 |
+
expr._poly = Poly(p, _x)
|
1367 |
+
expr._a = ai
|
1368 |
+
expr._b = bj
|
1369 |
+
|
1370 |
+
return expr
|
1371 |
+
|
1372 |
+
@classmethod
|
1373 |
+
def _meijer(cls, b, a, sign):
|
1374 |
+
""" Cancel b + sign*s and a + sign*s
|
1375 |
+
This is for meijer G functions. """
|
1376 |
+
b = sympify(b)
|
1377 |
+
a = sympify(a)
|
1378 |
+
n = b - a
|
1379 |
+
if n.is_negative or not n.is_Integer:
|
1380 |
+
return None
|
1381 |
+
|
1382 |
+
expr = Operator.__new__(cls)
|
1383 |
+
|
1384 |
+
p = S.One
|
1385 |
+
for k in range(n):
|
1386 |
+
p *= (sign*_x + a + k)
|
1387 |
+
|
1388 |
+
expr._poly = Poly(p, _x)
|
1389 |
+
if sign == -1:
|
1390 |
+
expr._a = b
|
1391 |
+
expr._b = a
|
1392 |
+
else:
|
1393 |
+
expr._b = Add(1, a - 1, evaluate=False)
|
1394 |
+
expr._a = Add(1, b - 1, evaluate=False)
|
1395 |
+
|
1396 |
+
return expr
|
1397 |
+
|
1398 |
+
@classmethod
|
1399 |
+
def meijer_minus(cls, b, a):
|
1400 |
+
return cls._meijer(b, a, -1)
|
1401 |
+
|
1402 |
+
@classmethod
|
1403 |
+
def meijer_plus(cls, a, b):
|
1404 |
+
return cls._meijer(1 - a, 1 - b, 1)
|
1405 |
+
|
1406 |
+
def __str__(self):
|
1407 |
+
return '<Reduce order by cancelling upper %s with lower %s.>' % \
|
1408 |
+
(self._a, self._b)
|
1409 |
+
|
1410 |
+
|
1411 |
+
def _reduce_order(ap, bq, gen, key):
|
1412 |
+
""" Order reduction algorithm used in Hypergeometric and Meijer G """
|
1413 |
+
ap = list(ap)
|
1414 |
+
bq = list(bq)
|
1415 |
+
|
1416 |
+
ap.sort(key=key)
|
1417 |
+
bq.sort(key=key)
|
1418 |
+
|
1419 |
+
nap = []
|
1420 |
+
# we will edit bq in place
|
1421 |
+
operators = []
|
1422 |
+
for a in ap:
|
1423 |
+
op = None
|
1424 |
+
for i in range(len(bq)):
|
1425 |
+
op = gen(a, bq[i])
|
1426 |
+
if op is not None:
|
1427 |
+
bq.pop(i)
|
1428 |
+
break
|
1429 |
+
if op is None:
|
1430 |
+
nap.append(a)
|
1431 |
+
else:
|
1432 |
+
operators.append(op)
|
1433 |
+
|
1434 |
+
return nap, bq, operators
|
1435 |
+
|
1436 |
+
|
1437 |
+
def reduce_order(func):
|
1438 |
+
"""
|
1439 |
+
Given the hypergeometric function ``func``, find a sequence of operators to
|
1440 |
+
reduces order as much as possible.
|
1441 |
+
|
1442 |
+
Explanation
|
1443 |
+
===========
|
1444 |
+
|
1445 |
+
Return (newfunc, [operators]), where applying the operators to the
|
1446 |
+
hypergeometric function newfunc yields func.
|
1447 |
+
|
1448 |
+
Examples
|
1449 |
+
========
|
1450 |
+
|
1451 |
+
>>> from sympy.simplify.hyperexpand import reduce_order, Hyper_Function
|
1452 |
+
>>> reduce_order(Hyper_Function((1, 2), (3, 4)))
|
1453 |
+
(Hyper_Function((1, 2), (3, 4)), [])
|
1454 |
+
>>> reduce_order(Hyper_Function((1,), (1,)))
|
1455 |
+
(Hyper_Function((), ()), [<Reduce order by cancelling upper 1 with lower 1.>])
|
1456 |
+
>>> reduce_order(Hyper_Function((2, 4), (3, 3)))
|
1457 |
+
(Hyper_Function((2,), (3,)), [<Reduce order by cancelling
|
1458 |
+
upper 4 with lower 3.>])
|
1459 |
+
"""
|
1460 |
+
nap, nbq, operators = _reduce_order(func.ap, func.bq, ReduceOrder, default_sort_key)
|
1461 |
+
|
1462 |
+
return Hyper_Function(Tuple(*nap), Tuple(*nbq)), operators
|
1463 |
+
|
1464 |
+
|
1465 |
+
def reduce_order_meijer(func):
|
1466 |
+
"""
|
1467 |
+
Given the Meijer G function parameters, ``func``, find a sequence of
|
1468 |
+
operators that reduces order as much as possible.
|
1469 |
+
|
1470 |
+
Return newfunc, [operators].
|
1471 |
+
|
1472 |
+
Examples
|
1473 |
+
========
|
1474 |
+
|
1475 |
+
>>> from sympy.simplify.hyperexpand import (reduce_order_meijer,
|
1476 |
+
... G_Function)
|
1477 |
+
>>> reduce_order_meijer(G_Function([3, 4], [5, 6], [3, 4], [1, 2]))[0]
|
1478 |
+
G_Function((4, 3), (5, 6), (3, 4), (2, 1))
|
1479 |
+
>>> reduce_order_meijer(G_Function([3, 4], [5, 6], [3, 4], [1, 8]))[0]
|
1480 |
+
G_Function((3,), (5, 6), (3, 4), (1,))
|
1481 |
+
>>> reduce_order_meijer(G_Function([3, 4], [5, 6], [7, 5], [1, 5]))[0]
|
1482 |
+
G_Function((3,), (), (), (1,))
|
1483 |
+
>>> reduce_order_meijer(G_Function([3, 4], [5, 6], [7, 5], [5, 3]))[0]
|
1484 |
+
G_Function((), (), (), ())
|
1485 |
+
"""
|
1486 |
+
|
1487 |
+
nan, nbq, ops1 = _reduce_order(func.an, func.bq, ReduceOrder.meijer_plus,
|
1488 |
+
lambda x: default_sort_key(-x))
|
1489 |
+
nbm, nap, ops2 = _reduce_order(func.bm, func.ap, ReduceOrder.meijer_minus,
|
1490 |
+
default_sort_key)
|
1491 |
+
|
1492 |
+
return G_Function(nan, nap, nbm, nbq), ops1 + ops2
|
1493 |
+
|
1494 |
+
|
1495 |
+
def make_derivative_operator(M, z):
|
1496 |
+
""" Create a derivative operator, to be passed to Operator.apply. """
|
1497 |
+
def doit(C):
|
1498 |
+
r = z*C.diff(z) + C*M
|
1499 |
+
r = r.applyfunc(make_simp(z))
|
1500 |
+
return r
|
1501 |
+
return doit
|
1502 |
+
|
1503 |
+
|
1504 |
+
def apply_operators(obj, ops, op):
|
1505 |
+
"""
|
1506 |
+
Apply the list of operators ``ops`` to object ``obj``, substituting
|
1507 |
+
``op`` for the generator.
|
1508 |
+
"""
|
1509 |
+
res = obj
|
1510 |
+
for o in reversed(ops):
|
1511 |
+
res = o.apply(res, op)
|
1512 |
+
return res
|
1513 |
+
|
1514 |
+
|
1515 |
+
def devise_plan(target, origin, z):
|
1516 |
+
"""
|
1517 |
+
Devise a plan (consisting of shift and un-shift operators) to be applied
|
1518 |
+
to the hypergeometric function ``target`` to yield ``origin``.
|
1519 |
+
Returns a list of operators.
|
1520 |
+
|
1521 |
+
Examples
|
1522 |
+
========
|
1523 |
+
|
1524 |
+
>>> from sympy.simplify.hyperexpand import devise_plan, Hyper_Function
|
1525 |
+
>>> from sympy.abc import z
|
1526 |
+
|
1527 |
+
Nothing to do:
|
1528 |
+
|
1529 |
+
>>> devise_plan(Hyper_Function((1, 2), ()), Hyper_Function((1, 2), ()), z)
|
1530 |
+
[]
|
1531 |
+
>>> devise_plan(Hyper_Function((), (1, 2)), Hyper_Function((), (1, 2)), z)
|
1532 |
+
[]
|
1533 |
+
|
1534 |
+
Very simple plans:
|
1535 |
+
|
1536 |
+
>>> devise_plan(Hyper_Function((2,), ()), Hyper_Function((1,), ()), z)
|
1537 |
+
[<Increment upper 1.>]
|
1538 |
+
>>> devise_plan(Hyper_Function((), (2,)), Hyper_Function((), (1,)), z)
|
1539 |
+
[<Increment lower index #0 of [], [1].>]
|
1540 |
+
|
1541 |
+
Several buckets:
|
1542 |
+
|
1543 |
+
>>> from sympy import S
|
1544 |
+
>>> devise_plan(Hyper_Function((1, S.Half), ()),
|
1545 |
+
... Hyper_Function((2, S('3/2')), ()), z) #doctest: +NORMALIZE_WHITESPACE
|
1546 |
+
[<Decrement upper index #0 of [3/2, 1], [].>,
|
1547 |
+
<Decrement upper index #0 of [2, 3/2], [].>]
|
1548 |
+
|
1549 |
+
A slightly more complicated plan:
|
1550 |
+
|
1551 |
+
>>> devise_plan(Hyper_Function((1, 3), ()), Hyper_Function((2, 2), ()), z)
|
1552 |
+
[<Increment upper 2.>, <Decrement upper index #0 of [2, 2], [].>]
|
1553 |
+
|
1554 |
+
Another more complicated plan: (note that the ap have to be shifted first!)
|
1555 |
+
|
1556 |
+
>>> devise_plan(Hyper_Function((1, -1), (2,)), Hyper_Function((3, -2), (4,)), z)
|
1557 |
+
[<Decrement lower 3.>, <Decrement lower 4.>,
|
1558 |
+
<Decrement upper index #1 of [-1, 2], [4].>,
|
1559 |
+
<Decrement upper index #1 of [-1, 3], [4].>, <Increment upper -2.>]
|
1560 |
+
"""
|
1561 |
+
abuckets, bbuckets, nabuckets, nbbuckets = [sift(params, _mod1) for
|
1562 |
+
params in (target.ap, target.bq, origin.ap, origin.bq)]
|
1563 |
+
|
1564 |
+
if len(list(abuckets.keys())) != len(list(nabuckets.keys())) or \
|
1565 |
+
len(list(bbuckets.keys())) != len(list(nbbuckets.keys())):
|
1566 |
+
raise ValueError('%s not reachable from %s' % (target, origin))
|
1567 |
+
|
1568 |
+
ops = []
|
1569 |
+
|
1570 |
+
def do_shifts(fro, to, inc, dec):
|
1571 |
+
ops = []
|
1572 |
+
for i in range(len(fro)):
|
1573 |
+
if to[i] - fro[i] > 0:
|
1574 |
+
sh = inc
|
1575 |
+
ch = 1
|
1576 |
+
else:
|
1577 |
+
sh = dec
|
1578 |
+
ch = -1
|
1579 |
+
|
1580 |
+
while to[i] != fro[i]:
|
1581 |
+
ops += [sh(fro, i)]
|
1582 |
+
fro[i] += ch
|
1583 |
+
|
1584 |
+
return ops
|
1585 |
+
|
1586 |
+
def do_shifts_a(nal, nbk, al, aother, bother):
|
1587 |
+
""" Shift us from (nal, nbk) to (al, nbk). """
|
1588 |
+
return do_shifts(nal, al, lambda p, i: ShiftA(p[i]),
|
1589 |
+
lambda p, i: UnShiftA(p + aother, nbk + bother, i, z))
|
1590 |
+
|
1591 |
+
def do_shifts_b(nal, nbk, bk, aother, bother):
|
1592 |
+
""" Shift us from (nal, nbk) to (nal, bk). """
|
1593 |
+
return do_shifts(nbk, bk,
|
1594 |
+
lambda p, i: UnShiftB(nal + aother, p + bother, i, z),
|
1595 |
+
lambda p, i: ShiftB(p[i]))
|
1596 |
+
|
1597 |
+
for r in sorted(list(abuckets.keys()) + list(bbuckets.keys()), key=default_sort_key):
|
1598 |
+
al = ()
|
1599 |
+
nal = ()
|
1600 |
+
bk = ()
|
1601 |
+
nbk = ()
|
1602 |
+
if r in abuckets:
|
1603 |
+
al = abuckets[r]
|
1604 |
+
nal = nabuckets[r]
|
1605 |
+
if r in bbuckets:
|
1606 |
+
bk = bbuckets[r]
|
1607 |
+
nbk = nbbuckets[r]
|
1608 |
+
if len(al) != len(nal) or len(bk) != len(nbk):
|
1609 |
+
raise ValueError('%s not reachable from %s' % (target, origin))
|
1610 |
+
|
1611 |
+
al, nal, bk, nbk = [sorted(w, key=default_sort_key)
|
1612 |
+
for w in [al, nal, bk, nbk]]
|
1613 |
+
|
1614 |
+
def others(dic, key):
|
1615 |
+
l = []
|
1616 |
+
for k, value in dic.items():
|
1617 |
+
if k != key:
|
1618 |
+
l += list(dic[k])
|
1619 |
+
return l
|
1620 |
+
aother = others(nabuckets, r)
|
1621 |
+
bother = others(nbbuckets, r)
|
1622 |
+
|
1623 |
+
if len(al) == 0:
|
1624 |
+
# there can be no complications, just shift the bs as we please
|
1625 |
+
ops += do_shifts_b([], nbk, bk, aother, bother)
|
1626 |
+
elif len(bk) == 0:
|
1627 |
+
# there can be no complications, just shift the as as we please
|
1628 |
+
ops += do_shifts_a(nal, [], al, aother, bother)
|
1629 |
+
else:
|
1630 |
+
namax = nal[-1]
|
1631 |
+
amax = al[-1]
|
1632 |
+
|
1633 |
+
if nbk[0] - namax <= 0 or bk[0] - amax <= 0:
|
1634 |
+
raise ValueError('Non-suitable parameters.')
|
1635 |
+
|
1636 |
+
if namax - amax > 0:
|
1637 |
+
# we are going to shift down - first do the as, then the bs
|
1638 |
+
ops += do_shifts_a(nal, nbk, al, aother, bother)
|
1639 |
+
ops += do_shifts_b(al, nbk, bk, aother, bother)
|
1640 |
+
else:
|
1641 |
+
# we are going to shift up - first do the bs, then the as
|
1642 |
+
ops += do_shifts_b(nal, nbk, bk, aother, bother)
|
1643 |
+
ops += do_shifts_a(nal, bk, al, aother, bother)
|
1644 |
+
|
1645 |
+
nabuckets[r] = al
|
1646 |
+
nbbuckets[r] = bk
|
1647 |
+
|
1648 |
+
ops.reverse()
|
1649 |
+
return ops
|
1650 |
+
|
1651 |
+
|
1652 |
+
def try_shifted_sum(func, z):
|
1653 |
+
""" Try to recognise a hypergeometric sum that starts from k > 0. """
|
1654 |
+
abuckets, bbuckets = sift(func.ap, _mod1), sift(func.bq, _mod1)
|
1655 |
+
if len(abuckets[S.Zero]) != 1:
|
1656 |
+
return None
|
1657 |
+
r = abuckets[S.Zero][0]
|
1658 |
+
if r <= 0:
|
1659 |
+
return None
|
1660 |
+
if S.Zero not in bbuckets:
|
1661 |
+
return None
|
1662 |
+
l = list(bbuckets[S.Zero])
|
1663 |
+
l.sort()
|
1664 |
+
k = l[0]
|
1665 |
+
if k <= 0:
|
1666 |
+
return None
|
1667 |
+
|
1668 |
+
nap = list(func.ap)
|
1669 |
+
nap.remove(r)
|
1670 |
+
nbq = list(func.bq)
|
1671 |
+
nbq.remove(k)
|
1672 |
+
k -= 1
|
1673 |
+
nap = [x - k for x in nap]
|
1674 |
+
nbq = [x - k for x in nbq]
|
1675 |
+
|
1676 |
+
ops = []
|
1677 |
+
for n in range(r - 1):
|
1678 |
+
ops.append(ShiftA(n + 1))
|
1679 |
+
ops.reverse()
|
1680 |
+
|
1681 |
+
fac = factorial(k)/z**k
|
1682 |
+
fac *= Mul(*[rf(b, k) for b in nbq])
|
1683 |
+
fac /= Mul(*[rf(a, k) for a in nap])
|
1684 |
+
|
1685 |
+
ops += [MultOperator(fac)]
|
1686 |
+
|
1687 |
+
p = 0
|
1688 |
+
for n in range(k):
|
1689 |
+
m = z**n/factorial(n)
|
1690 |
+
m *= Mul(*[rf(a, n) for a in nap])
|
1691 |
+
m /= Mul(*[rf(b, n) for b in nbq])
|
1692 |
+
p += m
|
1693 |
+
|
1694 |
+
return Hyper_Function(nap, nbq), ops, -p
|
1695 |
+
|
1696 |
+
|
1697 |
+
def try_polynomial(func, z):
|
1698 |
+
""" Recognise polynomial cases. Returns None if not such a case.
|
1699 |
+
Requires order to be fully reduced. """
|
1700 |
+
abuckets, bbuckets = sift(func.ap, _mod1), sift(func.bq, _mod1)
|
1701 |
+
a0 = abuckets[S.Zero]
|
1702 |
+
b0 = bbuckets[S.Zero]
|
1703 |
+
a0.sort()
|
1704 |
+
b0.sort()
|
1705 |
+
al0 = [x for x in a0 if x <= 0]
|
1706 |
+
bl0 = [x for x in b0 if x <= 0]
|
1707 |
+
|
1708 |
+
if bl0 and all(a < bl0[-1] for a in al0):
|
1709 |
+
return oo
|
1710 |
+
if not al0:
|
1711 |
+
return None
|
1712 |
+
|
1713 |
+
a = al0[-1]
|
1714 |
+
fac = 1
|
1715 |
+
res = S.One
|
1716 |
+
for n in Tuple(*list(range(-a))):
|
1717 |
+
fac *= z
|
1718 |
+
fac /= n + 1
|
1719 |
+
fac *= Mul(*[a + n for a in func.ap])
|
1720 |
+
fac /= Mul(*[b + n for b in func.bq])
|
1721 |
+
res += fac
|
1722 |
+
return res
|
1723 |
+
|
1724 |
+
|
1725 |
+
def try_lerchphi(func):
|
1726 |
+
"""
|
1727 |
+
Try to find an expression for Hyper_Function ``func`` in terms of Lerch
|
1728 |
+
Transcendents.
|
1729 |
+
|
1730 |
+
Return None if no such expression can be found.
|
1731 |
+
"""
|
1732 |
+
# This is actually quite simple, and is described in Roach's paper,
|
1733 |
+
# section 18.
|
1734 |
+
# We don't need to implement the reduction to polylog here, this
|
1735 |
+
# is handled by expand_func.
|
1736 |
+
|
1737 |
+
# First we need to figure out if the summation coefficient is a rational
|
1738 |
+
# function of the summation index, and construct that rational function.
|
1739 |
+
abuckets, bbuckets = sift(func.ap, _mod1), sift(func.bq, _mod1)
|
1740 |
+
|
1741 |
+
paired = {}
|
1742 |
+
for key, value in abuckets.items():
|
1743 |
+
if key != 0 and key not in bbuckets:
|
1744 |
+
return None
|
1745 |
+
bvalue = bbuckets[key]
|
1746 |
+
paired[key] = (list(value), list(bvalue))
|
1747 |
+
bbuckets.pop(key, None)
|
1748 |
+
if bbuckets != {}:
|
1749 |
+
return None
|
1750 |
+
if S.Zero not in abuckets:
|
1751 |
+
return None
|
1752 |
+
aints, bints = paired[S.Zero]
|
1753 |
+
# Account for the additional n! in denominator
|
1754 |
+
paired[S.Zero] = (aints, bints + [1])
|
1755 |
+
|
1756 |
+
t = Dummy('t')
|
1757 |
+
numer = S.One
|
1758 |
+
denom = S.One
|
1759 |
+
for key, (avalue, bvalue) in paired.items():
|
1760 |
+
if len(avalue) != len(bvalue):
|
1761 |
+
return None
|
1762 |
+
# Note that since order has been reduced fully, all the b are
|
1763 |
+
# bigger than all the a they differ from by an integer. In particular
|
1764 |
+
# if there are any negative b left, this function is not well-defined.
|
1765 |
+
for a, b in zip(avalue, bvalue):
|
1766 |
+
if (a - b).is_positive:
|
1767 |
+
k = a - b
|
1768 |
+
numer *= rf(b + t, k)
|
1769 |
+
denom *= rf(b, k)
|
1770 |
+
else:
|
1771 |
+
k = b - a
|
1772 |
+
numer *= rf(a, k)
|
1773 |
+
denom *= rf(a + t, k)
|
1774 |
+
|
1775 |
+
# Now do a partial fraction decomposition.
|
1776 |
+
# We assemble two structures: a list monomials of pairs (a, b) representing
|
1777 |
+
# a*t**b (b a non-negative integer), and a dict terms, where
|
1778 |
+
# terms[a] = [(b, c)] means that there is a term b/(t-a)**c.
|
1779 |
+
part = apart(numer/denom, t)
|
1780 |
+
args = Add.make_args(part)
|
1781 |
+
monomials = []
|
1782 |
+
terms = {}
|
1783 |
+
for arg in args:
|
1784 |
+
numer, denom = arg.as_numer_denom()
|
1785 |
+
if not denom.has(t):
|
1786 |
+
p = Poly(numer, t)
|
1787 |
+
if not p.is_monomial:
|
1788 |
+
raise TypeError("p should be monomial")
|
1789 |
+
((b, ), a) = p.LT()
|
1790 |
+
monomials += [(a/denom, b)]
|
1791 |
+
continue
|
1792 |
+
if numer.has(t):
|
1793 |
+
raise NotImplementedError('Need partial fraction decomposition'
|
1794 |
+
' with linear denominators')
|
1795 |
+
indep, [dep] = denom.as_coeff_mul(t)
|
1796 |
+
n = 1
|
1797 |
+
if dep.is_Pow:
|
1798 |
+
n = dep.exp
|
1799 |
+
dep = dep.base
|
1800 |
+
if dep == t:
|
1801 |
+
a == 0
|
1802 |
+
elif dep.is_Add:
|
1803 |
+
a, tmp = dep.as_independent(t)
|
1804 |
+
b = 1
|
1805 |
+
if tmp != t:
|
1806 |
+
b, _ = tmp.as_independent(t)
|
1807 |
+
if dep != b*t + a:
|
1808 |
+
raise NotImplementedError('unrecognised form %s' % dep)
|
1809 |
+
a /= b
|
1810 |
+
indep *= b**n
|
1811 |
+
else:
|
1812 |
+
raise NotImplementedError('unrecognised form of partial fraction')
|
1813 |
+
terms.setdefault(a, []).append((numer/indep, n))
|
1814 |
+
|
1815 |
+
# Now that we have this information, assemble our formula. All the
|
1816 |
+
# monomials yield rational functions and go into one basis element.
|
1817 |
+
# The terms[a] are related by differentiation. If the largest exponent is
|
1818 |
+
# n, we need lerchphi(z, k, a) for k = 1, 2, ..., n.
|
1819 |
+
# deriv maps a basis to its derivative, expressed as a C(z)-linear
|
1820 |
+
# combination of other basis elements.
|
1821 |
+
deriv = {}
|
1822 |
+
coeffs = {}
|
1823 |
+
z = Dummy('z')
|
1824 |
+
monomials.sort(key=lambda x: x[1])
|
1825 |
+
mon = {0: 1/(1 - z)}
|
1826 |
+
if monomials:
|
1827 |
+
for k in range(monomials[-1][1]):
|
1828 |
+
mon[k + 1] = z*mon[k].diff(z)
|
1829 |
+
for a, n in monomials:
|
1830 |
+
coeffs.setdefault(S.One, []).append(a*mon[n])
|
1831 |
+
for a, l in terms.items():
|
1832 |
+
for c, k in l:
|
1833 |
+
coeffs.setdefault(lerchphi(z, k, a), []).append(c)
|
1834 |
+
l.sort(key=lambda x: x[1])
|
1835 |
+
for k in range(2, l[-1][1] + 1):
|
1836 |
+
deriv[lerchphi(z, k, a)] = [(-a, lerchphi(z, k, a)),
|
1837 |
+
(1, lerchphi(z, k - 1, a))]
|
1838 |
+
deriv[lerchphi(z, 1, a)] = [(-a, lerchphi(z, 1, a)),
|
1839 |
+
(1/(1 - z), S.One)]
|
1840 |
+
trans = {}
|
1841 |
+
for n, b in enumerate([S.One] + list(deriv.keys())):
|
1842 |
+
trans[b] = n
|
1843 |
+
basis = [expand_func(b) for (b, _) in sorted(trans.items(),
|
1844 |
+
key=lambda x:x[1])]
|
1845 |
+
B = Matrix(basis)
|
1846 |
+
C = Matrix([[0]*len(B)])
|
1847 |
+
for b, c in coeffs.items():
|
1848 |
+
C[trans[b]] = Add(*c)
|
1849 |
+
M = zeros(len(B))
|
1850 |
+
for b, l in deriv.items():
|
1851 |
+
for c, b2 in l:
|
1852 |
+
M[trans[b], trans[b2]] = c
|
1853 |
+
return Formula(func, z, None, [], B, C, M)
|
1854 |
+
|
1855 |
+
|
1856 |
+
def build_hypergeometric_formula(func):
|
1857 |
+
"""
|
1858 |
+
Create a formula object representing the hypergeometric function ``func``.
|
1859 |
+
|
1860 |
+
"""
|
1861 |
+
# We know that no `ap` are negative integers, otherwise "detect poly"
|
1862 |
+
# would have kicked in. However, `ap` could be empty. In this case we can
|
1863 |
+
# use a different basis.
|
1864 |
+
# I'm not aware of a basis that works in all cases.
|
1865 |
+
z = Dummy('z')
|
1866 |
+
if func.ap:
|
1867 |
+
afactors = [_x + a for a in func.ap]
|
1868 |
+
bfactors = [_x + b - 1 for b in func.bq]
|
1869 |
+
expr = _x*Mul(*bfactors) - z*Mul(*afactors)
|
1870 |
+
poly = Poly(expr, _x)
|
1871 |
+
n = poly.degree()
|
1872 |
+
basis = []
|
1873 |
+
M = zeros(n)
|
1874 |
+
for k in range(n):
|
1875 |
+
a = func.ap[0] + k
|
1876 |
+
basis += [hyper([a] + list(func.ap[1:]), func.bq, z)]
|
1877 |
+
if k < n - 1:
|
1878 |
+
M[k, k] = -a
|
1879 |
+
M[k, k + 1] = a
|
1880 |
+
B = Matrix(basis)
|
1881 |
+
C = Matrix([[1] + [0]*(n - 1)])
|
1882 |
+
derivs = [eye(n)]
|
1883 |
+
for k in range(n):
|
1884 |
+
derivs.append(M*derivs[k])
|
1885 |
+
l = poly.all_coeffs()
|
1886 |
+
l.reverse()
|
1887 |
+
res = [0]*n
|
1888 |
+
for k, c in enumerate(l):
|
1889 |
+
for r, d in enumerate(C*derivs[k]):
|
1890 |
+
res[r] += c*d
|
1891 |
+
for k, c in enumerate(res):
|
1892 |
+
M[n - 1, k] = -c/derivs[n - 1][0, n - 1]/poly.all_coeffs()[0]
|
1893 |
+
return Formula(func, z, None, [], B, C, M)
|
1894 |
+
else:
|
1895 |
+
# Since there are no `ap`, none of the `bq` can be non-positive
|
1896 |
+
# integers.
|
1897 |
+
basis = []
|
1898 |
+
bq = list(func.bq[:])
|
1899 |
+
for i in range(len(bq)):
|
1900 |
+
basis += [hyper([], bq, z)]
|
1901 |
+
bq[i] += 1
|
1902 |
+
basis += [hyper([], bq, z)]
|
1903 |
+
B = Matrix(basis)
|
1904 |
+
n = len(B)
|
1905 |
+
C = Matrix([[1] + [0]*(n - 1)])
|
1906 |
+
M = zeros(n)
|
1907 |
+
M[0, n - 1] = z/Mul(*func.bq)
|
1908 |
+
for k in range(1, n):
|
1909 |
+
M[k, k - 1] = func.bq[k - 1]
|
1910 |
+
M[k, k] = -func.bq[k - 1]
|
1911 |
+
return Formula(func, z, None, [], B, C, M)
|
1912 |
+
|
1913 |
+
|
1914 |
+
def hyperexpand_special(ap, bq, z):
|
1915 |
+
"""
|
1916 |
+
Try to find a closed-form expression for hyper(ap, bq, z), where ``z``
|
1917 |
+
is supposed to be a "special" value, e.g. 1.
|
1918 |
+
|
1919 |
+
This function tries various of the classical summation formulae
|
1920 |
+
(Gauss, Saalschuetz, etc).
|
1921 |
+
"""
|
1922 |
+
# This code is very ad-hoc. There are many clever algorithms
|
1923 |
+
# (notably Zeilberger's) related to this problem.
|
1924 |
+
# For now we just want a few simple cases to work.
|
1925 |
+
p, q = len(ap), len(bq)
|
1926 |
+
z_ = z
|
1927 |
+
z = unpolarify(z)
|
1928 |
+
if z == 0:
|
1929 |
+
return S.One
|
1930 |
+
from sympy.simplify.simplify import simplify
|
1931 |
+
if p == 2 and q == 1:
|
1932 |
+
# 2F1
|
1933 |
+
a, b, c = ap + bq
|
1934 |
+
if z == 1:
|
1935 |
+
# Gauss
|
1936 |
+
return gamma(c - a - b)*gamma(c)/gamma(c - a)/gamma(c - b)
|
1937 |
+
if z == -1 and simplify(b - a + c) == 1:
|
1938 |
+
b, a = a, b
|
1939 |
+
if z == -1 and simplify(a - b + c) == 1:
|
1940 |
+
# Kummer
|
1941 |
+
if b.is_integer and b.is_negative:
|
1942 |
+
return 2*cos(pi*b/2)*gamma(-b)*gamma(b - a + 1) \
|
1943 |
+
/gamma(-b/2)/gamma(b/2 - a + 1)
|
1944 |
+
else:
|
1945 |
+
return gamma(b/2 + 1)*gamma(b - a + 1) \
|
1946 |
+
/gamma(b + 1)/gamma(b/2 - a + 1)
|
1947 |
+
# TODO tons of more formulae
|
1948 |
+
# investigate what algorithms exist
|
1949 |
+
return hyper(ap, bq, z_)
|
1950 |
+
|
1951 |
+
_collection = None
|
1952 |
+
|
1953 |
+
|
1954 |
+
def _hyperexpand(func, z, ops0=[], z0=Dummy('z0'), premult=1, prem=0,
|
1955 |
+
rewrite='default'):
|
1956 |
+
"""
|
1957 |
+
Try to find an expression for the hypergeometric function ``func``.
|
1958 |
+
|
1959 |
+
Explanation
|
1960 |
+
===========
|
1961 |
+
|
1962 |
+
The result is expressed in terms of a dummy variable ``z0``. Then it
|
1963 |
+
is multiplied by ``premult``. Then ``ops0`` is applied.
|
1964 |
+
``premult`` must be a*z**prem for some a independent of ``z``.
|
1965 |
+
"""
|
1966 |
+
|
1967 |
+
if z.is_zero:
|
1968 |
+
return S.One
|
1969 |
+
|
1970 |
+
from sympy.simplify.simplify import simplify
|
1971 |
+
|
1972 |
+
z = polarify(z, subs=False)
|
1973 |
+
if rewrite == 'default':
|
1974 |
+
rewrite = 'nonrepsmall'
|
1975 |
+
|
1976 |
+
def carryout_plan(f, ops):
|
1977 |
+
C = apply_operators(f.C.subs(f.z, z0), ops,
|
1978 |
+
make_derivative_operator(f.M.subs(f.z, z0), z0))
|
1979 |
+
C = apply_operators(C, ops0,
|
1980 |
+
make_derivative_operator(f.M.subs(f.z, z0)
|
1981 |
+
+ prem*eye(f.M.shape[0]), z0))
|
1982 |
+
|
1983 |
+
if premult == 1:
|
1984 |
+
C = C.applyfunc(make_simp(z0))
|
1985 |
+
r = reduce(lambda s,m: s+m[0]*m[1], zip(C, f.B.subs(f.z, z0)), S.Zero)*premult
|
1986 |
+
res = r.subs(z0, z)
|
1987 |
+
if rewrite:
|
1988 |
+
res = res.rewrite(rewrite)
|
1989 |
+
return res
|
1990 |
+
|
1991 |
+
# TODO
|
1992 |
+
# The following would be possible:
|
1993 |
+
# *) PFD Duplication (see Kelly Roach's paper)
|
1994 |
+
# *) In a similar spirit, try_lerchphi() can be generalised considerably.
|
1995 |
+
|
1996 |
+
global _collection
|
1997 |
+
if _collection is None:
|
1998 |
+
_collection = FormulaCollection()
|
1999 |
+
|
2000 |
+
debug('Trying to expand hypergeometric function ', func)
|
2001 |
+
|
2002 |
+
# First reduce order as much as possible.
|
2003 |
+
func, ops = reduce_order(func)
|
2004 |
+
if ops:
|
2005 |
+
debug(' Reduced order to ', func)
|
2006 |
+
else:
|
2007 |
+
debug(' Could not reduce order.')
|
2008 |
+
|
2009 |
+
# Now try polynomial cases
|
2010 |
+
res = try_polynomial(func, z0)
|
2011 |
+
if res is not None:
|
2012 |
+
debug(' Recognised polynomial.')
|
2013 |
+
p = apply_operators(res, ops, lambda f: z0*f.diff(z0))
|
2014 |
+
p = apply_operators(p*premult, ops0, lambda f: z0*f.diff(z0))
|
2015 |
+
return unpolarify(simplify(p).subs(z0, z))
|
2016 |
+
|
2017 |
+
# Try to recognise a shifted sum.
|
2018 |
+
p = S.Zero
|
2019 |
+
res = try_shifted_sum(func, z0)
|
2020 |
+
if res is not None:
|
2021 |
+
func, nops, p = res
|
2022 |
+
debug(' Recognised shifted sum, reduced order to ', func)
|
2023 |
+
ops += nops
|
2024 |
+
|
2025 |
+
# apply the plan for poly
|
2026 |
+
p = apply_operators(p, ops, lambda f: z0*f.diff(z0))
|
2027 |
+
p = apply_operators(p*premult, ops0, lambda f: z0*f.diff(z0))
|
2028 |
+
p = simplify(p).subs(z0, z)
|
2029 |
+
|
2030 |
+
# Try special expansions early.
|
2031 |
+
if unpolarify(z) in [1, -1] and (len(func.ap), len(func.bq)) == (2, 1):
|
2032 |
+
f = build_hypergeometric_formula(func)
|
2033 |
+
r = carryout_plan(f, ops).replace(hyper, hyperexpand_special)
|
2034 |
+
if not r.has(hyper):
|
2035 |
+
return r + p
|
2036 |
+
|
2037 |
+
# Try to find a formula in our collection
|
2038 |
+
formula = _collection.lookup_origin(func)
|
2039 |
+
|
2040 |
+
# Now try a lerch phi formula
|
2041 |
+
if formula is None:
|
2042 |
+
formula = try_lerchphi(func)
|
2043 |
+
|
2044 |
+
if formula is None:
|
2045 |
+
debug(' Could not find an origin. ',
|
2046 |
+
'Will return answer in terms of '
|
2047 |
+
'simpler hypergeometric functions.')
|
2048 |
+
formula = build_hypergeometric_formula(func)
|
2049 |
+
|
2050 |
+
debug(' Found an origin: ', formula.closed_form, ' ', formula.func)
|
2051 |
+
|
2052 |
+
# We need to find the operators that convert formula into func.
|
2053 |
+
ops += devise_plan(func, formula.func, z0)
|
2054 |
+
|
2055 |
+
# Now carry out the plan.
|
2056 |
+
r = carryout_plan(formula, ops) + p
|
2057 |
+
|
2058 |
+
return powdenest(r, polar=True).replace(hyper, hyperexpand_special)
|
2059 |
+
|
2060 |
+
|
2061 |
+
def devise_plan_meijer(fro, to, z):
|
2062 |
+
"""
|
2063 |
+
Find operators to convert G-function ``fro`` into G-function ``to``.
|
2064 |
+
|
2065 |
+
Explanation
|
2066 |
+
===========
|
2067 |
+
|
2068 |
+
It is assumed that ``fro`` and ``to`` have the same signatures, and that in fact
|
2069 |
+
any corresponding pair of parameters differs by integers, and a direct path
|
2070 |
+
is possible. I.e. if there are parameters a1 b1 c1 and a2 b2 c2 it is
|
2071 |
+
assumed that a1 can be shifted to a2, etc. The only thing this routine
|
2072 |
+
determines is the order of shifts to apply, nothing clever will be tried.
|
2073 |
+
It is also assumed that ``fro`` is suitable.
|
2074 |
+
|
2075 |
+
Examples
|
2076 |
+
========
|
2077 |
+
|
2078 |
+
>>> from sympy.simplify.hyperexpand import (devise_plan_meijer,
|
2079 |
+
... G_Function)
|
2080 |
+
>>> from sympy.abc import z
|
2081 |
+
|
2082 |
+
Empty plan:
|
2083 |
+
|
2084 |
+
>>> devise_plan_meijer(G_Function([1], [2], [3], [4]),
|
2085 |
+
... G_Function([1], [2], [3], [4]), z)
|
2086 |
+
[]
|
2087 |
+
|
2088 |
+
Very simple plans:
|
2089 |
+
|
2090 |
+
>>> devise_plan_meijer(G_Function([0], [], [], []),
|
2091 |
+
... G_Function([1], [], [], []), z)
|
2092 |
+
[<Increment upper a index #0 of [0], [], [], [].>]
|
2093 |
+
>>> devise_plan_meijer(G_Function([0], [], [], []),
|
2094 |
+
... G_Function([-1], [], [], []), z)
|
2095 |
+
[<Decrement upper a=0.>]
|
2096 |
+
>>> devise_plan_meijer(G_Function([], [1], [], []),
|
2097 |
+
... G_Function([], [2], [], []), z)
|
2098 |
+
[<Increment lower a index #0 of [], [1], [], [].>]
|
2099 |
+
|
2100 |
+
Slightly more complicated plans:
|
2101 |
+
|
2102 |
+
>>> devise_plan_meijer(G_Function([0], [], [], []),
|
2103 |
+
... G_Function([2], [], [], []), z)
|
2104 |
+
[<Increment upper a index #0 of [1], [], [], [].>,
|
2105 |
+
<Increment upper a index #0 of [0], [], [], [].>]
|
2106 |
+
>>> devise_plan_meijer(G_Function([0], [], [0], []),
|
2107 |
+
... G_Function([-1], [], [1], []), z)
|
2108 |
+
[<Increment upper b=0.>, <Decrement upper a=0.>]
|
2109 |
+
|
2110 |
+
Order matters:
|
2111 |
+
|
2112 |
+
>>> devise_plan_meijer(G_Function([0], [], [0], []),
|
2113 |
+
... G_Function([1], [], [1], []), z)
|
2114 |
+
[<Increment upper a index #0 of [0], [], [1], [].>, <Increment upper b=0.>]
|
2115 |
+
"""
|
2116 |
+
# TODO for now, we use the following simple heuristic: inverse-shift
|
2117 |
+
# when possible, shift otherwise. Give up if we cannot make progress.
|
2118 |
+
|
2119 |
+
def try_shift(f, t, shifter, diff, counter):
|
2120 |
+
""" Try to apply ``shifter`` in order to bring some element in ``f``
|
2121 |
+
nearer to its counterpart in ``to``. ``diff`` is +/- 1 and
|
2122 |
+
determines the effect of ``shifter``. Counter is a list of elements
|
2123 |
+
blocking the shift.
|
2124 |
+
|
2125 |
+
Return an operator if change was possible, else None.
|
2126 |
+
"""
|
2127 |
+
for idx, (a, b) in enumerate(zip(f, t)):
|
2128 |
+
if (
|
2129 |
+
(a - b).is_integer and (b - a)/diff > 0 and
|
2130 |
+
all(a != x for x in counter)):
|
2131 |
+
sh = shifter(idx)
|
2132 |
+
f[idx] += diff
|
2133 |
+
return sh
|
2134 |
+
fan = list(fro.an)
|
2135 |
+
fap = list(fro.ap)
|
2136 |
+
fbm = list(fro.bm)
|
2137 |
+
fbq = list(fro.bq)
|
2138 |
+
ops = []
|
2139 |
+
change = True
|
2140 |
+
while change:
|
2141 |
+
change = False
|
2142 |
+
op = try_shift(fan, to.an,
|
2143 |
+
lambda i: MeijerUnShiftB(fan, fap, fbm, fbq, i, z),
|
2144 |
+
1, fbm + fbq)
|
2145 |
+
if op is not None:
|
2146 |
+
ops += [op]
|
2147 |
+
change = True
|
2148 |
+
continue
|
2149 |
+
op = try_shift(fap, to.ap,
|
2150 |
+
lambda i: MeijerUnShiftD(fan, fap, fbm, fbq, i, z),
|
2151 |
+
1, fbm + fbq)
|
2152 |
+
if op is not None:
|
2153 |
+
ops += [op]
|
2154 |
+
change = True
|
2155 |
+
continue
|
2156 |
+
op = try_shift(fbm, to.bm,
|
2157 |
+
lambda i: MeijerUnShiftA(fan, fap, fbm, fbq, i, z),
|
2158 |
+
-1, fan + fap)
|
2159 |
+
if op is not None:
|
2160 |
+
ops += [op]
|
2161 |
+
change = True
|
2162 |
+
continue
|
2163 |
+
op = try_shift(fbq, to.bq,
|
2164 |
+
lambda i: MeijerUnShiftC(fan, fap, fbm, fbq, i, z),
|
2165 |
+
-1, fan + fap)
|
2166 |
+
if op is not None:
|
2167 |
+
ops += [op]
|
2168 |
+
change = True
|
2169 |
+
continue
|
2170 |
+
op = try_shift(fan, to.an, lambda i: MeijerShiftB(fan[i]), -1, [])
|
2171 |
+
if op is not None:
|
2172 |
+
ops += [op]
|
2173 |
+
change = True
|
2174 |
+
continue
|
2175 |
+
op = try_shift(fap, to.ap, lambda i: MeijerShiftD(fap[i]), -1, [])
|
2176 |
+
if op is not None:
|
2177 |
+
ops += [op]
|
2178 |
+
change = True
|
2179 |
+
continue
|
2180 |
+
op = try_shift(fbm, to.bm, lambda i: MeijerShiftA(fbm[i]), 1, [])
|
2181 |
+
if op is not None:
|
2182 |
+
ops += [op]
|
2183 |
+
change = True
|
2184 |
+
continue
|
2185 |
+
op = try_shift(fbq, to.bq, lambda i: MeijerShiftC(fbq[i]), 1, [])
|
2186 |
+
if op is not None:
|
2187 |
+
ops += [op]
|
2188 |
+
change = True
|
2189 |
+
continue
|
2190 |
+
if fan != list(to.an) or fap != list(to.ap) or fbm != list(to.bm) or \
|
2191 |
+
fbq != list(to.bq):
|
2192 |
+
raise NotImplementedError('Could not devise plan.')
|
2193 |
+
ops.reverse()
|
2194 |
+
return ops
|
2195 |
+
|
2196 |
+
_meijercollection = None
|
2197 |
+
|
2198 |
+
|
2199 |
+
def _meijergexpand(func, z0, allow_hyper=False, rewrite='default',
|
2200 |
+
place=None):
|
2201 |
+
"""
|
2202 |
+
Try to find an expression for the Meijer G function specified
|
2203 |
+
by the G_Function ``func``. If ``allow_hyper`` is True, then returning
|
2204 |
+
an expression in terms of hypergeometric functions is allowed.
|
2205 |
+
|
2206 |
+
Currently this just does Slater's theorem.
|
2207 |
+
If expansions exist both at zero and at infinity, ``place``
|
2208 |
+
can be set to ``0`` or ``zoo`` for the preferred choice.
|
2209 |
+
"""
|
2210 |
+
global _meijercollection
|
2211 |
+
if _meijercollection is None:
|
2212 |
+
_meijercollection = MeijerFormulaCollection()
|
2213 |
+
if rewrite == 'default':
|
2214 |
+
rewrite = None
|
2215 |
+
|
2216 |
+
func0 = func
|
2217 |
+
debug('Try to expand Meijer G function corresponding to ', func)
|
2218 |
+
|
2219 |
+
# We will play games with analytic continuation - rather use a fresh symbol
|
2220 |
+
z = Dummy('z')
|
2221 |
+
|
2222 |
+
func, ops = reduce_order_meijer(func)
|
2223 |
+
if ops:
|
2224 |
+
debug(' Reduced order to ', func)
|
2225 |
+
else:
|
2226 |
+
debug(' Could not reduce order.')
|
2227 |
+
|
2228 |
+
# Try to find a direct formula
|
2229 |
+
f = _meijercollection.lookup_origin(func)
|
2230 |
+
if f is not None:
|
2231 |
+
debug(' Found a Meijer G formula: ', f.func)
|
2232 |
+
ops += devise_plan_meijer(f.func, func, z)
|
2233 |
+
|
2234 |
+
# Now carry out the plan.
|
2235 |
+
C = apply_operators(f.C.subs(f.z, z), ops,
|
2236 |
+
make_derivative_operator(f.M.subs(f.z, z), z))
|
2237 |
+
|
2238 |
+
C = C.applyfunc(make_simp(z))
|
2239 |
+
r = C*f.B.subs(f.z, z)
|
2240 |
+
r = r[0].subs(z, z0)
|
2241 |
+
return powdenest(r, polar=True)
|
2242 |
+
|
2243 |
+
debug(" Could not find a direct formula. Trying Slater's theorem.")
|
2244 |
+
|
2245 |
+
# TODO the following would be possible:
|
2246 |
+
# *) Paired Index Theorems
|
2247 |
+
# *) PFD Duplication
|
2248 |
+
# (See Kelly Roach's paper for details on either.)
|
2249 |
+
#
|
2250 |
+
# TODO Also, we tend to create combinations of gamma functions that can be
|
2251 |
+
# simplified.
|
2252 |
+
|
2253 |
+
def can_do(pbm, pap):
|
2254 |
+
""" Test if slater applies. """
|
2255 |
+
for i in pbm:
|
2256 |
+
if len(pbm[i]) > 1:
|
2257 |
+
l = 0
|
2258 |
+
if i in pap:
|
2259 |
+
l = len(pap[i])
|
2260 |
+
if l + 1 < len(pbm[i]):
|
2261 |
+
return False
|
2262 |
+
return True
|
2263 |
+
|
2264 |
+
def do_slater(an, bm, ap, bq, z, zfinal):
|
2265 |
+
# zfinal is the value that will eventually be substituted for z.
|
2266 |
+
# We pass it to _hyperexpand to improve performance.
|
2267 |
+
func = G_Function(an, bm, ap, bq)
|
2268 |
+
_, pbm, pap, _ = func.compute_buckets()
|
2269 |
+
if not can_do(pbm, pap):
|
2270 |
+
return S.Zero, False
|
2271 |
+
|
2272 |
+
cond = len(an) + len(ap) < len(bm) + len(bq)
|
2273 |
+
if len(an) + len(ap) == len(bm) + len(bq):
|
2274 |
+
cond = abs(z) < 1
|
2275 |
+
if cond is False:
|
2276 |
+
return S.Zero, False
|
2277 |
+
|
2278 |
+
res = S.Zero
|
2279 |
+
for m in pbm:
|
2280 |
+
if len(pbm[m]) == 1:
|
2281 |
+
bh = pbm[m][0]
|
2282 |
+
fac = 1
|
2283 |
+
bo = list(bm)
|
2284 |
+
bo.remove(bh)
|
2285 |
+
for bj in bo:
|
2286 |
+
fac *= gamma(bj - bh)
|
2287 |
+
for aj in an:
|
2288 |
+
fac *= gamma(1 + bh - aj)
|
2289 |
+
for bj in bq:
|
2290 |
+
fac /= gamma(1 + bh - bj)
|
2291 |
+
for aj in ap:
|
2292 |
+
fac /= gamma(aj - bh)
|
2293 |
+
nap = [1 + bh - a for a in list(an) + list(ap)]
|
2294 |
+
nbq = [1 + bh - b for b in list(bo) + list(bq)]
|
2295 |
+
|
2296 |
+
k = polar_lift(S.NegativeOne**(len(ap) - len(bm)))
|
2297 |
+
harg = k*zfinal
|
2298 |
+
# NOTE even though k "is" +-1, this has to be t/k instead of
|
2299 |
+
# t*k ... we are using polar numbers for consistency!
|
2300 |
+
premult = (t/k)**bh
|
2301 |
+
hyp = _hyperexpand(Hyper_Function(nap, nbq), harg, ops,
|
2302 |
+
t, premult, bh, rewrite=None)
|
2303 |
+
res += fac * hyp
|
2304 |
+
else:
|
2305 |
+
b_ = pbm[m][0]
|
2306 |
+
ki = [bi - b_ for bi in pbm[m][1:]]
|
2307 |
+
u = len(ki)
|
2308 |
+
li = [ai - b_ for ai in pap[m][:u + 1]]
|
2309 |
+
bo = list(bm)
|
2310 |
+
for b in pbm[m]:
|
2311 |
+
bo.remove(b)
|
2312 |
+
ao = list(ap)
|
2313 |
+
for a in pap[m][:u]:
|
2314 |
+
ao.remove(a)
|
2315 |
+
lu = li[-1]
|
2316 |
+
di = [l - k for (l, k) in zip(li, ki)]
|
2317 |
+
|
2318 |
+
# We first work out the integrand:
|
2319 |
+
s = Dummy('s')
|
2320 |
+
integrand = z**s
|
2321 |
+
for b in bm:
|
2322 |
+
if not Mod(b, 1) and b.is_Number:
|
2323 |
+
b = int(round(b))
|
2324 |
+
integrand *= gamma(b - s)
|
2325 |
+
for a in an:
|
2326 |
+
integrand *= gamma(1 - a + s)
|
2327 |
+
for b in bq:
|
2328 |
+
integrand /= gamma(1 - b + s)
|
2329 |
+
for a in ap:
|
2330 |
+
integrand /= gamma(a - s)
|
2331 |
+
|
2332 |
+
# Now sum the finitely many residues:
|
2333 |
+
# XXX This speeds up some cases - is it a good idea?
|
2334 |
+
integrand = expand_func(integrand)
|
2335 |
+
for r in range(int(round(lu))):
|
2336 |
+
resid = residue(integrand, s, b_ + r)
|
2337 |
+
resid = apply_operators(resid, ops, lambda f: z*f.diff(z))
|
2338 |
+
res -= resid
|
2339 |
+
|
2340 |
+
# Now the hypergeometric term.
|
2341 |
+
au = b_ + lu
|
2342 |
+
k = polar_lift(S.NegativeOne**(len(ao) + len(bo) + 1))
|
2343 |
+
harg = k*zfinal
|
2344 |
+
premult = (t/k)**au
|
2345 |
+
nap = [1 + au - a for a in list(an) + list(ap)] + [1]
|
2346 |
+
nbq = [1 + au - b for b in list(bm) + list(bq)]
|
2347 |
+
|
2348 |
+
hyp = _hyperexpand(Hyper_Function(nap, nbq), harg, ops,
|
2349 |
+
t, premult, au, rewrite=None)
|
2350 |
+
|
2351 |
+
C = S.NegativeOne**(lu)/factorial(lu)
|
2352 |
+
for i in range(u):
|
2353 |
+
C *= S.NegativeOne**di[i]/rf(lu - li[i] + 1, di[i])
|
2354 |
+
for a in an:
|
2355 |
+
C *= gamma(1 - a + au)
|
2356 |
+
for b in bo:
|
2357 |
+
C *= gamma(b - au)
|
2358 |
+
for a in ao:
|
2359 |
+
C /= gamma(a - au)
|
2360 |
+
for b in bq:
|
2361 |
+
C /= gamma(1 - b + au)
|
2362 |
+
|
2363 |
+
res += C*hyp
|
2364 |
+
|
2365 |
+
return res, cond
|
2366 |
+
|
2367 |
+
t = Dummy('t')
|
2368 |
+
slater1, cond1 = do_slater(func.an, func.bm, func.ap, func.bq, z, z0)
|
2369 |
+
|
2370 |
+
def tr(l):
|
2371 |
+
return [1 - x for x in l]
|
2372 |
+
|
2373 |
+
for op in ops:
|
2374 |
+
op._poly = Poly(op._poly.subs({z: 1/t, _x: -_x}), _x)
|
2375 |
+
slater2, cond2 = do_slater(tr(func.bm), tr(func.an), tr(func.bq), tr(func.ap),
|
2376 |
+
t, 1/z0)
|
2377 |
+
|
2378 |
+
slater1 = powdenest(slater1.subs(z, z0), polar=True)
|
2379 |
+
slater2 = powdenest(slater2.subs(t, 1/z0), polar=True)
|
2380 |
+
if not isinstance(cond2, bool):
|
2381 |
+
cond2 = cond2.subs(t, 1/z)
|
2382 |
+
|
2383 |
+
m = func(z)
|
2384 |
+
if m.delta > 0 or \
|
2385 |
+
(m.delta == 0 and len(m.ap) == len(m.bq) and
|
2386 |
+
(re(m.nu) < -1) is not False and polar_lift(z0) == polar_lift(1)):
|
2387 |
+
# The condition delta > 0 means that the convergence region is
|
2388 |
+
# connected. Any expression we find can be continued analytically
|
2389 |
+
# to the entire convergence region.
|
2390 |
+
# The conditions delta==0, p==q, re(nu) < -1 imply that G is continuous
|
2391 |
+
# on the positive reals, so the values at z=1 agree.
|
2392 |
+
if cond1 is not False:
|
2393 |
+
cond1 = True
|
2394 |
+
if cond2 is not False:
|
2395 |
+
cond2 = True
|
2396 |
+
|
2397 |
+
if cond1 is True:
|
2398 |
+
slater1 = slater1.rewrite(rewrite or 'nonrep')
|
2399 |
+
else:
|
2400 |
+
slater1 = slater1.rewrite(rewrite or 'nonrepsmall')
|
2401 |
+
if cond2 is True:
|
2402 |
+
slater2 = slater2.rewrite(rewrite or 'nonrep')
|
2403 |
+
else:
|
2404 |
+
slater2 = slater2.rewrite(rewrite or 'nonrepsmall')
|
2405 |
+
|
2406 |
+
if cond1 is not False and cond2 is not False:
|
2407 |
+
# If one condition is False, there is no choice.
|
2408 |
+
if place == 0:
|
2409 |
+
cond2 = False
|
2410 |
+
if place == zoo:
|
2411 |
+
cond1 = False
|
2412 |
+
|
2413 |
+
if not isinstance(cond1, bool):
|
2414 |
+
cond1 = cond1.subs(z, z0)
|
2415 |
+
if not isinstance(cond2, bool):
|
2416 |
+
cond2 = cond2.subs(z, z0)
|
2417 |
+
|
2418 |
+
def weight(expr, cond):
|
2419 |
+
if cond is True:
|
2420 |
+
c0 = 0
|
2421 |
+
elif cond is False:
|
2422 |
+
c0 = 1
|
2423 |
+
else:
|
2424 |
+
c0 = 2
|
2425 |
+
if expr.has(oo, zoo, -oo, nan):
|
2426 |
+
# XXX this actually should not happen, but consider
|
2427 |
+
# S('meijerg(((0, -1/2, 0, -1/2, 1/2), ()), ((0,),
|
2428 |
+
# (-1/2, -1/2, -1/2, -1)), exp_polar(I*pi))/4')
|
2429 |
+
c0 = 3
|
2430 |
+
return (c0, expr.count(hyper), expr.count_ops())
|
2431 |
+
|
2432 |
+
w1 = weight(slater1, cond1)
|
2433 |
+
w2 = weight(slater2, cond2)
|
2434 |
+
if min(w1, w2) <= (0, 1, oo):
|
2435 |
+
if w1 < w2:
|
2436 |
+
return slater1
|
2437 |
+
else:
|
2438 |
+
return slater2
|
2439 |
+
if max(w1[0], w2[0]) <= 1 and max(w1[1], w2[1]) <= 1:
|
2440 |
+
return Piecewise((slater1, cond1), (slater2, cond2), (func0(z0), True))
|
2441 |
+
|
2442 |
+
# We couldn't find an expression without hypergeometric functions.
|
2443 |
+
# TODO it would be helpful to give conditions under which the integral
|
2444 |
+
# is known to diverge.
|
2445 |
+
r = Piecewise((slater1, cond1), (slater2, cond2), (func0(z0), True))
|
2446 |
+
if r.has(hyper) and not allow_hyper:
|
2447 |
+
debug(' Could express using hypergeometric functions, '
|
2448 |
+
'but not allowed.')
|
2449 |
+
if not r.has(hyper) or allow_hyper:
|
2450 |
+
return r
|
2451 |
+
|
2452 |
+
return func0(z0)
|
2453 |
+
|
2454 |
+
|
2455 |
+
def hyperexpand(f, allow_hyper=False, rewrite='default', place=None):
|
2456 |
+
"""
|
2457 |
+
Expand hypergeometric functions. If allow_hyper is True, allow partial
|
2458 |
+
simplification (that is a result different from input,
|
2459 |
+
but still containing hypergeometric functions).
|
2460 |
+
|
2461 |
+
If a G-function has expansions both at zero and at infinity,
|
2462 |
+
``place`` can be set to ``0`` or ``zoo`` to indicate the
|
2463 |
+
preferred choice.
|
2464 |
+
|
2465 |
+
Examples
|
2466 |
+
========
|
2467 |
+
|
2468 |
+
>>> from sympy.simplify.hyperexpand import hyperexpand
|
2469 |
+
>>> from sympy.functions import hyper
|
2470 |
+
>>> from sympy.abc import z
|
2471 |
+
>>> hyperexpand(hyper([], [], z))
|
2472 |
+
exp(z)
|
2473 |
+
|
2474 |
+
Non-hyperegeometric parts of the expression and hypergeometric expressions
|
2475 |
+
that are not recognised are left unchanged:
|
2476 |
+
|
2477 |
+
>>> hyperexpand(1 + hyper([1, 1, 1], [], z))
|
2478 |
+
hyper((1, 1, 1), (), z) + 1
|
2479 |
+
"""
|
2480 |
+
f = sympify(f)
|
2481 |
+
|
2482 |
+
def do_replace(ap, bq, z):
|
2483 |
+
r = _hyperexpand(Hyper_Function(ap, bq), z, rewrite=rewrite)
|
2484 |
+
if r is None:
|
2485 |
+
return hyper(ap, bq, z)
|
2486 |
+
else:
|
2487 |
+
return r
|
2488 |
+
|
2489 |
+
def do_meijer(ap, bq, z):
|
2490 |
+
r = _meijergexpand(G_Function(ap[0], ap[1], bq[0], bq[1]), z,
|
2491 |
+
allow_hyper, rewrite=rewrite, place=place)
|
2492 |
+
if not r.has(nan, zoo, oo, -oo):
|
2493 |
+
return r
|
2494 |
+
return f.replace(hyper, do_replace).replace(meijerg, do_meijer)
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/ratsimp.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import combinations_with_replacement
|
2 |
+
from sympy.core import symbols, Add, Dummy
|
3 |
+
from sympy.core.numbers import Rational
|
4 |
+
from sympy.polys import cancel, ComputationFailed, parallel_poly_from_expr, reduced, Poly
|
5 |
+
from sympy.polys.monomials import Monomial, monomial_div
|
6 |
+
from sympy.polys.polyerrors import DomainError, PolificationFailed
|
7 |
+
from sympy.utilities.misc import debug, debugf
|
8 |
+
|
9 |
+
def ratsimp(expr):
|
10 |
+
"""
|
11 |
+
Put an expression over a common denominator, cancel and reduce.
|
12 |
+
|
13 |
+
Examples
|
14 |
+
========
|
15 |
+
|
16 |
+
>>> from sympy import ratsimp
|
17 |
+
>>> from sympy.abc import x, y
|
18 |
+
>>> ratsimp(1/x + 1/y)
|
19 |
+
(x + y)/(x*y)
|
20 |
+
"""
|
21 |
+
|
22 |
+
f, g = cancel(expr).as_numer_denom()
|
23 |
+
try:
|
24 |
+
Q, r = reduced(f, [g], field=True, expand=False)
|
25 |
+
except ComputationFailed:
|
26 |
+
return f/g
|
27 |
+
|
28 |
+
return Add(*Q) + cancel(r/g)
|
29 |
+
|
30 |
+
|
31 |
+
def ratsimpmodprime(expr, G, *gens, quick=True, polynomial=False, **args):
|
32 |
+
"""
|
33 |
+
Simplifies a rational expression ``expr`` modulo the prime ideal
|
34 |
+
generated by ``G``. ``G`` should be a Groebner basis of the
|
35 |
+
ideal.
|
36 |
+
|
37 |
+
Examples
|
38 |
+
========
|
39 |
+
|
40 |
+
>>> from sympy.simplify.ratsimp import ratsimpmodprime
|
41 |
+
>>> from sympy.abc import x, y
|
42 |
+
>>> eq = (x + y**5 + y)/(x - y)
|
43 |
+
>>> ratsimpmodprime(eq, [x*y**5 - x - y], x, y, order='lex')
|
44 |
+
(-x**2 - x*y - x - y)/(-x**2 + x*y)
|
45 |
+
|
46 |
+
If ``polynomial`` is ``False``, the algorithm computes a rational
|
47 |
+
simplification which minimizes the sum of the total degrees of
|
48 |
+
the numerator and the denominator.
|
49 |
+
|
50 |
+
If ``polynomial`` is ``True``, this function just brings numerator and
|
51 |
+
denominator into a canonical form. This is much faster, but has
|
52 |
+
potentially worse results.
|
53 |
+
|
54 |
+
References
|
55 |
+
==========
|
56 |
+
|
57 |
+
.. [1] M. Monagan, R. Pearce, Rational Simplification Modulo a Polynomial
|
58 |
+
Ideal, https://dl.acm.org/doi/pdf/10.1145/1145768.1145809
|
59 |
+
(specifically, the second algorithm)
|
60 |
+
"""
|
61 |
+
from sympy.solvers.solvers import solve
|
62 |
+
|
63 |
+
debug('ratsimpmodprime', expr)
|
64 |
+
|
65 |
+
# usual preparation of polynomials:
|
66 |
+
|
67 |
+
num, denom = cancel(expr).as_numer_denom()
|
68 |
+
|
69 |
+
try:
|
70 |
+
polys, opt = parallel_poly_from_expr([num, denom] + G, *gens, **args)
|
71 |
+
except PolificationFailed:
|
72 |
+
return expr
|
73 |
+
|
74 |
+
domain = opt.domain
|
75 |
+
|
76 |
+
if domain.has_assoc_Field:
|
77 |
+
opt.domain = domain.get_field()
|
78 |
+
else:
|
79 |
+
raise DomainError(
|
80 |
+
"Cannot compute rational simplification over %s" % domain)
|
81 |
+
|
82 |
+
# compute only once
|
83 |
+
leading_monomials = [g.LM(opt.order) for g in polys[2:]]
|
84 |
+
tested = set()
|
85 |
+
|
86 |
+
def staircase(n):
|
87 |
+
"""
|
88 |
+
Compute all monomials with degree less than ``n`` that are
|
89 |
+
not divisible by any element of ``leading_monomials``.
|
90 |
+
"""
|
91 |
+
if n == 0:
|
92 |
+
return [1]
|
93 |
+
S = []
|
94 |
+
for mi in combinations_with_replacement(range(len(opt.gens)), n):
|
95 |
+
m = [0]*len(opt.gens)
|
96 |
+
for i in mi:
|
97 |
+
m[i] += 1
|
98 |
+
if all(monomial_div(m, lmg) is None for lmg in
|
99 |
+
leading_monomials):
|
100 |
+
S.append(m)
|
101 |
+
|
102 |
+
return [Monomial(s).as_expr(*opt.gens) for s in S] + staircase(n - 1)
|
103 |
+
|
104 |
+
def _ratsimpmodprime(a, b, allsol, N=0, D=0):
|
105 |
+
r"""
|
106 |
+
Computes a rational simplification of ``a/b`` which minimizes
|
107 |
+
the sum of the total degrees of the numerator and the denominator.
|
108 |
+
|
109 |
+
Explanation
|
110 |
+
===========
|
111 |
+
|
112 |
+
The algorithm proceeds by looking at ``a * d - b * c`` modulo
|
113 |
+
the ideal generated by ``G`` for some ``c`` and ``d`` with degree
|
114 |
+
less than ``a`` and ``b`` respectively.
|
115 |
+
The coefficients of ``c`` and ``d`` are indeterminates and thus
|
116 |
+
the coefficients of the normalform of ``a * d - b * c`` are
|
117 |
+
linear polynomials in these indeterminates.
|
118 |
+
If these linear polynomials, considered as system of
|
119 |
+
equations, have a nontrivial solution, then `\frac{a}{b}
|
120 |
+
\equiv \frac{c}{d}` modulo the ideal generated by ``G``. So,
|
121 |
+
by construction, the degree of ``c`` and ``d`` is less than
|
122 |
+
the degree of ``a`` and ``b``, so a simpler representation
|
123 |
+
has been found.
|
124 |
+
After a simpler representation has been found, the algorithm
|
125 |
+
tries to reduce the degree of the numerator and denominator
|
126 |
+
and returns the result afterwards.
|
127 |
+
|
128 |
+
As an extension, if quick=False, we look at all possible degrees such
|
129 |
+
that the total degree is less than *or equal to* the best current
|
130 |
+
solution. We retain a list of all solutions of minimal degree, and try
|
131 |
+
to find the best one at the end.
|
132 |
+
"""
|
133 |
+
c, d = a, b
|
134 |
+
steps = 0
|
135 |
+
|
136 |
+
maxdeg = a.total_degree() + b.total_degree()
|
137 |
+
if quick:
|
138 |
+
bound = maxdeg - 1
|
139 |
+
else:
|
140 |
+
bound = maxdeg
|
141 |
+
while N + D <= bound:
|
142 |
+
if (N, D) in tested:
|
143 |
+
break
|
144 |
+
tested.add((N, D))
|
145 |
+
|
146 |
+
M1 = staircase(N)
|
147 |
+
M2 = staircase(D)
|
148 |
+
debugf('%s / %s: %s, %s', (N, D, M1, M2))
|
149 |
+
|
150 |
+
Cs = symbols("c:%d" % len(M1), cls=Dummy)
|
151 |
+
Ds = symbols("d:%d" % len(M2), cls=Dummy)
|
152 |
+
ng = Cs + Ds
|
153 |
+
|
154 |
+
c_hat = Poly(
|
155 |
+
sum([Cs[i] * M1[i] for i in range(len(M1))]), opt.gens + ng)
|
156 |
+
d_hat = Poly(
|
157 |
+
sum([Ds[i] * M2[i] for i in range(len(M2))]), opt.gens + ng)
|
158 |
+
|
159 |
+
r = reduced(a * d_hat - b * c_hat, G, opt.gens + ng,
|
160 |
+
order=opt.order, polys=True)[1]
|
161 |
+
|
162 |
+
S = Poly(r, gens=opt.gens).coeffs()
|
163 |
+
sol = solve(S, Cs + Ds, particular=True, quick=True)
|
164 |
+
|
165 |
+
if sol and not all(s == 0 for s in sol.values()):
|
166 |
+
c = c_hat.subs(sol)
|
167 |
+
d = d_hat.subs(sol)
|
168 |
+
|
169 |
+
# The "free" variables occurring before as parameters
|
170 |
+
# might still be in the substituted c, d, so set them
|
171 |
+
# to the value chosen before:
|
172 |
+
c = c.subs(dict(list(zip(Cs + Ds, [1] * (len(Cs) + len(Ds))))))
|
173 |
+
d = d.subs(dict(list(zip(Cs + Ds, [1] * (len(Cs) + len(Ds))))))
|
174 |
+
|
175 |
+
c = Poly(c, opt.gens)
|
176 |
+
d = Poly(d, opt.gens)
|
177 |
+
if d == 0:
|
178 |
+
raise ValueError('Ideal not prime?')
|
179 |
+
|
180 |
+
allsol.append((c_hat, d_hat, S, Cs + Ds))
|
181 |
+
if N + D != maxdeg:
|
182 |
+
allsol = [allsol[-1]]
|
183 |
+
|
184 |
+
break
|
185 |
+
|
186 |
+
steps += 1
|
187 |
+
N += 1
|
188 |
+
D += 1
|
189 |
+
|
190 |
+
if steps > 0:
|
191 |
+
c, d, allsol = _ratsimpmodprime(c, d, allsol, N, D - steps)
|
192 |
+
c, d, allsol = _ratsimpmodprime(c, d, allsol, N - steps, D)
|
193 |
+
|
194 |
+
return c, d, allsol
|
195 |
+
|
196 |
+
# preprocessing. this improves performance a bit when deg(num)
|
197 |
+
# and deg(denom) are large:
|
198 |
+
num = reduced(num, G, opt.gens, order=opt.order)[1]
|
199 |
+
denom = reduced(denom, G, opt.gens, order=opt.order)[1]
|
200 |
+
|
201 |
+
if polynomial:
|
202 |
+
return (num/denom).cancel()
|
203 |
+
|
204 |
+
c, d, allsol = _ratsimpmodprime(
|
205 |
+
Poly(num, opt.gens, domain=opt.domain), Poly(denom, opt.gens, domain=opt.domain), [])
|
206 |
+
if not quick and allsol:
|
207 |
+
debugf('Looking for best minimal solution. Got: %s', len(allsol))
|
208 |
+
newsol = []
|
209 |
+
for c_hat, d_hat, S, ng in allsol:
|
210 |
+
sol = solve(S, ng, particular=True, quick=False)
|
211 |
+
# all values of sol should be numbers; if not, solve is broken
|
212 |
+
newsol.append((c_hat.subs(sol), d_hat.subs(sol)))
|
213 |
+
c, d = min(newsol, key=lambda x: len(x[0].terms()) + len(x[1].terms()))
|
214 |
+
|
215 |
+
if not domain.is_Field:
|
216 |
+
cn, c = c.clear_denoms(convert=True)
|
217 |
+
dn, d = d.clear_denoms(convert=True)
|
218 |
+
r = Rational(cn, dn)
|
219 |
+
else:
|
220 |
+
r = Rational(1)
|
221 |
+
|
222 |
+
return (c*r.q)/(d*r.p)
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__init__.py
ADDED
File without changes
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (193 Bytes). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_cse.cpython-310.pyc
ADDED
Binary file (29 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_epathtools.cpython-310.pyc
ADDED
Binary file (3.96 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_fu.cpython-310.pyc
ADDED
Binary file (21.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_function.cpython-310.pyc
ADDED
Binary file (2.39 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_gammasimp.cpython-310.pyc
ADDED
Binary file (4.86 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_hyperexpand.cpython-310.pyc
ADDED
Binary file (36.1 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_powsimp.cpython-310.pyc
ADDED
Binary file (14.6 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_radsimp.cpython-310.pyc
ADDED
Binary file (19.8 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_ratsimp.cpython-310.pyc
ADDED
Binary file (2.68 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_rewrite.cpython-310.pyc
ADDED
Binary file (1.33 kB). View file
|
|
llmeval-env/lib/python3.10/site-packages/sympy/simplify/tests/__pycache__/test_simplify.cpython-310.pyc
ADDED
Binary file (44 kB). View file
|
|