diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/_config/__init__.py b/llmeval-env/lib/python3.10/site-packages/pandas/_config/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..97784c924dab46af4f40c291ef293b07b2997684 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/_config/__init__.py @@ -0,0 +1,57 @@ +""" +pandas._config is considered explicitly upstream of everything else in pandas, +should have no intra-pandas dependencies. + +importing `dates` and `display` ensures that keys needed by _libs +are initialized. +""" +__all__ = [ + "config", + "detect_console_encoding", + "get_option", + "set_option", + "reset_option", + "describe_option", + "option_context", + "options", + "using_copy_on_write", + "warn_copy_on_write", +] +from pandas._config import config +from pandas._config import dates # pyright: ignore[reportUnusedImport] # noqa: F401 +from pandas._config.config import ( + _global_config, + describe_option, + get_option, + option_context, + options, + reset_option, + set_option, +) +from pandas._config.display import detect_console_encoding + + +def using_copy_on_write() -> bool: + _mode_options = _global_config["mode"] + return ( + _mode_options["copy_on_write"] is True + and _mode_options["data_manager"] == "block" + ) + + +def warn_copy_on_write() -> bool: + _mode_options = _global_config["mode"] + return ( + _mode_options["copy_on_write"] == "warn" + and _mode_options["data_manager"] == "block" + ) + + +def using_nullable_dtypes() -> bool: + _mode_options = _global_config["mode"] + return _mode_options["nullable_dtypes"] + + +def using_pyarrow_string_dtype() -> bool: + _mode_options = _global_config["future"] + return _mode_options["infer_string"] diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/_config/__pycache__/localization.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/_config/__pycache__/localization.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1b2b39e967427095e73aaf7bd8fb76c826fb8c93 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/_config/__pycache__/localization.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/_config/config.py b/llmeval-env/lib/python3.10/site-packages/pandas/_config/config.py new file mode 100644 index 0000000000000000000000000000000000000000..c391939d22491099652e13ad81e83b201f140b60 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/_config/config.py @@ -0,0 +1,948 @@ +""" +The config module holds package-wide configurables and provides +a uniform API for working with them. + +Overview +======== + +This module supports the following requirements: +- options are referenced using keys in dot.notation, e.g. "x.y.option - z". +- keys are case-insensitive. +- functions should accept partial/regex keys, when unambiguous. +- options can be registered by modules at import time. +- options can be registered at init-time (via core.config_init) +- options have a default value, and (optionally) a description and + validation function associated with them. +- options can be deprecated, in which case referencing them + should produce a warning. +- deprecated options can optionally be rerouted to a replacement + so that accessing a deprecated option reroutes to a differently + named option. +- options can be reset to their default value. +- all option can be reset to their default value at once. +- all options in a certain sub - namespace can be reset at once. +- the user can set / get / reset or ask for the description of an option. +- a developer can register and mark an option as deprecated. +- you can register a callback to be invoked when the option value + is set or reset. Changing the stored value is considered misuse, but + is not verboten. + +Implementation +============== + +- Data is stored using nested dictionaries, and should be accessed + through the provided API. + +- "Registered options" and "Deprecated options" have metadata associated + with them, which are stored in auxiliary dictionaries keyed on the + fully-qualified key, e.g. "x.y.z.option". + +- the config_init module is imported by the package's __init__.py file. + placing any register_option() calls there will ensure those options + are available as soon as pandas is loaded. If you use register_option + in a module, it will only be available after that module is imported, + which you should be aware of. + +- `config_prefix` is a context_manager (for use with the `with` keyword) + which can save developers some typing, see the docstring. + +""" + +from __future__ import annotations + +from contextlib import ( + ContextDecorator, + contextmanager, +) +import re +from typing import ( + TYPE_CHECKING, + Any, + Callable, + Generic, + NamedTuple, + cast, +) +import warnings + +from pandas._typing import ( + F, + T, +) +from pandas.util._exceptions import find_stack_level + +if TYPE_CHECKING: + from collections.abc import ( + Generator, + Iterable, + ) + + +class DeprecatedOption(NamedTuple): + key: str + msg: str | None + rkey: str | None + removal_ver: str | None + + +class RegisteredOption(NamedTuple): + key: str + defval: object + doc: str + validator: Callable[[object], Any] | None + cb: Callable[[str], Any] | None + + +# holds deprecated option metadata +_deprecated_options: dict[str, DeprecatedOption] = {} + +# holds registered option metadata +_registered_options: dict[str, RegisteredOption] = {} + +# holds the current values for registered options +_global_config: dict[str, Any] = {} + +# keys which have a special meaning +_reserved_keys: list[str] = ["all"] + + +class OptionError(AttributeError, KeyError): + """ + Exception raised for pandas.options. + + Backwards compatible with KeyError checks. + + Examples + -------- + >>> pd.options.context + Traceback (most recent call last): + OptionError: No such option + """ + + +# +# User API + + +def _get_single_key(pat: str, silent: bool) -> str: + keys = _select_options(pat) + if len(keys) == 0: + if not silent: + _warn_if_deprecated(pat) + raise OptionError(f"No such keys(s): {repr(pat)}") + if len(keys) > 1: + raise OptionError("Pattern matched multiple keys") + key = keys[0] + + if not silent: + _warn_if_deprecated(key) + + key = _translate_key(key) + + return key + + +def _get_option(pat: str, silent: bool = False) -> Any: + key = _get_single_key(pat, silent) + + # walk the nested dict + root, k = _get_root(key) + return root[k] + + +def _set_option(*args, **kwargs) -> None: + # must at least 1 arg deal with constraints later + nargs = len(args) + if not nargs or nargs % 2 != 0: + raise ValueError("Must provide an even number of non-keyword arguments") + + # default to false + silent = kwargs.pop("silent", False) + + if kwargs: + kwarg = next(iter(kwargs.keys())) + raise TypeError(f'_set_option() got an unexpected keyword argument "{kwarg}"') + + for k, v in zip(args[::2], args[1::2]): + key = _get_single_key(k, silent) + + o = _get_registered_option(key) + if o and o.validator: + o.validator(v) + + # walk the nested dict + root, k_root = _get_root(key) + root[k_root] = v + + if o.cb: + if silent: + with warnings.catch_warnings(record=True): + o.cb(key) + else: + o.cb(key) + + +def _describe_option(pat: str = "", _print_desc: bool = True) -> str | None: + keys = _select_options(pat) + if len(keys) == 0: + raise OptionError("No such keys(s)") + + s = "\n".join([_build_option_description(k) for k in keys]) + + if _print_desc: + print(s) + return None + return s + + +def _reset_option(pat: str, silent: bool = False) -> None: + keys = _select_options(pat) + + if len(keys) == 0: + raise OptionError("No such keys(s)") + + if len(keys) > 1 and len(pat) < 4 and pat != "all": + raise ValueError( + "You must specify at least 4 characters when " + "resetting multiple keys, use the special keyword " + '"all" to reset all the options to their default value' + ) + + for k in keys: + _set_option(k, _registered_options[k].defval, silent=silent) + + +def get_default_val(pat: str): + key = _get_single_key(pat, silent=True) + return _get_registered_option(key).defval + + +class DictWrapper: + """provide attribute-style access to a nested dict""" + + d: dict[str, Any] + + def __init__(self, d: dict[str, Any], prefix: str = "") -> None: + object.__setattr__(self, "d", d) + object.__setattr__(self, "prefix", prefix) + + def __setattr__(self, key: str, val: Any) -> None: + prefix = object.__getattribute__(self, "prefix") + if prefix: + prefix += "." + prefix += key + # you can't set new keys + # can you can't overwrite subtrees + if key in self.d and not isinstance(self.d[key], dict): + _set_option(prefix, val) + else: + raise OptionError("You can only set the value of existing options") + + def __getattr__(self, key: str): + prefix = object.__getattribute__(self, "prefix") + if prefix: + prefix += "." + prefix += key + try: + v = object.__getattribute__(self, "d")[key] + except KeyError as err: + raise OptionError("No such option") from err + if isinstance(v, dict): + return DictWrapper(v, prefix) + else: + return _get_option(prefix) + + def __dir__(self) -> list[str]: + return list(self.d.keys()) + + +# For user convenience, we'd like to have the available options described +# in the docstring. For dev convenience we'd like to generate the docstrings +# dynamically instead of maintaining them by hand. To this, we use the +# class below which wraps functions inside a callable, and converts +# __doc__ into a property function. The doctsrings below are templates +# using the py2.6+ advanced formatting syntax to plug in a concise list +# of options, and option descriptions. + + +class CallableDynamicDoc(Generic[T]): + def __init__(self, func: Callable[..., T], doc_tmpl: str) -> None: + self.__doc_tmpl__ = doc_tmpl + self.__func__ = func + + def __call__(self, *args, **kwds) -> T: + return self.__func__(*args, **kwds) + + # error: Signature of "__doc__" incompatible with supertype "object" + @property + def __doc__(self) -> str: # type: ignore[override] + opts_desc = _describe_option("all", _print_desc=False) + opts_list = pp_options_list(list(_registered_options.keys())) + return self.__doc_tmpl__.format(opts_desc=opts_desc, opts_list=opts_list) + + +_get_option_tmpl = """ +get_option(pat) + +Retrieves the value of the specified option. + +Available options: + +{opts_list} + +Parameters +---------- +pat : str + Regexp which should match a single option. + Note: partial matches are supported for convenience, but unless you use the + full option name (e.g. x.y.z.option_name), your code may break in future + versions if new options with similar names are introduced. + +Returns +------- +result : the value of the option + +Raises +------ +OptionError : if no such option exists + +Notes +----- +Please reference the :ref:`User Guide ` for more information. + +The available options with its descriptions: + +{opts_desc} + +Examples +-------- +>>> pd.get_option('display.max_columns') # doctest: +SKIP +4 +""" + +_set_option_tmpl = """ +set_option(pat, value) + +Sets the value of the specified option. + +Available options: + +{opts_list} + +Parameters +---------- +pat : str + Regexp which should match a single option. + Note: partial matches are supported for convenience, but unless you use the + full option name (e.g. x.y.z.option_name), your code may break in future + versions if new options with similar names are introduced. +value : object + New value of option. + +Returns +------- +None + +Raises +------ +OptionError if no such option exists + +Notes +----- +Please reference the :ref:`User Guide ` for more information. + +The available options with its descriptions: + +{opts_desc} + +Examples +-------- +>>> pd.set_option('display.max_columns', 4) +>>> df = pd.DataFrame([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]) +>>> df + 0 1 ... 3 4 +0 1 2 ... 4 5 +1 6 7 ... 9 10 +[2 rows x 5 columns] +>>> pd.reset_option('display.max_columns') +""" + +_describe_option_tmpl = """ +describe_option(pat, _print_desc=False) + +Prints the description for one or more registered options. + +Call with no arguments to get a listing for all registered options. + +Available options: + +{opts_list} + +Parameters +---------- +pat : str + Regexp pattern. All matching keys will have their description displayed. +_print_desc : bool, default True + If True (default) the description(s) will be printed to stdout. + Otherwise, the description(s) will be returned as a unicode string + (for testing). + +Returns +------- +None by default, the description(s) as a unicode string if _print_desc +is False + +Notes +----- +Please reference the :ref:`User Guide ` for more information. + +The available options with its descriptions: + +{opts_desc} + +Examples +-------- +>>> pd.describe_option('display.max_columns') # doctest: +SKIP +display.max_columns : int + If max_cols is exceeded, switch to truncate view... +""" + +_reset_option_tmpl = """ +reset_option(pat) + +Reset one or more options to their default value. + +Pass "all" as argument to reset all options. + +Available options: + +{opts_list} + +Parameters +---------- +pat : str/regex + If specified only options matching `prefix*` will be reset. + Note: partial matches are supported for convenience, but unless you + use the full option name (e.g. x.y.z.option_name), your code may break + in future versions if new options with similar names are introduced. + +Returns +------- +None + +Notes +----- +Please reference the :ref:`User Guide ` for more information. + +The available options with its descriptions: + +{opts_desc} + +Examples +-------- +>>> pd.reset_option('display.max_columns') # doctest: +SKIP +""" + +# bind the functions with their docstrings into a Callable +# and use that as the functions exposed in pd.api +get_option = CallableDynamicDoc(_get_option, _get_option_tmpl) +set_option = CallableDynamicDoc(_set_option, _set_option_tmpl) +reset_option = CallableDynamicDoc(_reset_option, _reset_option_tmpl) +describe_option = CallableDynamicDoc(_describe_option, _describe_option_tmpl) +options = DictWrapper(_global_config) + +# +# Functions for use by pandas developers, in addition to User - api + + +class option_context(ContextDecorator): + """ + Context manager to temporarily set options in the `with` statement context. + + You need to invoke as ``option_context(pat, val, [(pat, val), ...])``. + + Examples + -------- + >>> from pandas import option_context + >>> with option_context('display.max_rows', 10, 'display.max_columns', 5): + ... pass + """ + + def __init__(self, *args) -> None: + if len(args) % 2 != 0 or len(args) < 2: + raise ValueError( + "Need to invoke as option_context(pat, val, [(pat, val), ...])." + ) + + self.ops = list(zip(args[::2], args[1::2])) + + def __enter__(self) -> None: + self.undo = [(pat, _get_option(pat)) for pat, val in self.ops] + + for pat, val in self.ops: + _set_option(pat, val, silent=True) + + def __exit__(self, *args) -> None: + if self.undo: + for pat, val in self.undo: + _set_option(pat, val, silent=True) + + +def register_option( + key: str, + defval: object, + doc: str = "", + validator: Callable[[object], Any] | None = None, + cb: Callable[[str], Any] | None = None, +) -> None: + """ + Register an option in the package-wide pandas config object + + Parameters + ---------- + key : str + Fully-qualified key, e.g. "x.y.option - z". + defval : object + Default value of the option. + doc : str + Description of the option. + validator : Callable, optional + Function of a single argument, should raise `ValueError` if + called with a value which is not a legal value for the option. + cb + a function of a single argument "key", which is called + immediately after an option value is set/reset. key is + the full name of the option. + + Raises + ------ + ValueError if `validator` is specified and `defval` is not a valid value. + + """ + import keyword + import tokenize + + key = key.lower() + + if key in _registered_options: + raise OptionError(f"Option '{key}' has already been registered") + if key in _reserved_keys: + raise OptionError(f"Option '{key}' is a reserved key") + + # the default value should be legal + if validator: + validator(defval) + + # walk the nested dict, creating dicts as needed along the path + path = key.split(".") + + for k in path: + if not re.match("^" + tokenize.Name + "$", k): + raise ValueError(f"{k} is not a valid identifier") + if keyword.iskeyword(k): + raise ValueError(f"{k} is a python keyword") + + cursor = _global_config + msg = "Path prefix to option '{option}' is already an option" + + for i, p in enumerate(path[:-1]): + if not isinstance(cursor, dict): + raise OptionError(msg.format(option=".".join(path[:i]))) + if p not in cursor: + cursor[p] = {} + cursor = cursor[p] + + if not isinstance(cursor, dict): + raise OptionError(msg.format(option=".".join(path[:-1]))) + + cursor[path[-1]] = defval # initialize + + # save the option metadata + _registered_options[key] = RegisteredOption( + key=key, defval=defval, doc=doc, validator=validator, cb=cb + ) + + +def deprecate_option( + key: str, + msg: str | None = None, + rkey: str | None = None, + removal_ver: str | None = None, +) -> None: + """ + Mark option `key` as deprecated, if code attempts to access this option, + a warning will be produced, using `msg` if given, or a default message + if not. + if `rkey` is given, any access to the key will be re-routed to `rkey`. + + Neither the existence of `key` nor that if `rkey` is checked. If they + do not exist, any subsequence access will fail as usual, after the + deprecation warning is given. + + Parameters + ---------- + key : str + Name of the option to be deprecated. + must be a fully-qualified option name (e.g "x.y.z.rkey"). + msg : str, optional + Warning message to output when the key is referenced. + if no message is given a default message will be emitted. + rkey : str, optional + Name of an option to reroute access to. + If specified, any referenced `key` will be + re-routed to `rkey` including set/get/reset. + rkey must be a fully-qualified option name (e.g "x.y.z.rkey"). + used by the default message if no `msg` is specified. + removal_ver : str, optional + Specifies the version in which this option will + be removed. used by the default message if no `msg` is specified. + + Raises + ------ + OptionError + If the specified key has already been deprecated. + """ + key = key.lower() + + if key in _deprecated_options: + raise OptionError(f"Option '{key}' has already been defined as deprecated.") + + _deprecated_options[key] = DeprecatedOption(key, msg, rkey, removal_ver) + + +# +# functions internal to the module + + +def _select_options(pat: str) -> list[str]: + """ + returns a list of keys matching `pat` + + if pat=="all", returns all registered options + """ + # short-circuit for exact key + if pat in _registered_options: + return [pat] + + # else look through all of them + keys = sorted(_registered_options.keys()) + if pat == "all": # reserved key + return keys + + return [k for k in keys if re.search(pat, k, re.I)] + + +def _get_root(key: str) -> tuple[dict[str, Any], str]: + path = key.split(".") + cursor = _global_config + for p in path[:-1]: + cursor = cursor[p] + return cursor, path[-1] + + +def _is_deprecated(key: str) -> bool: + """Returns True if the given option has been deprecated""" + key = key.lower() + return key in _deprecated_options + + +def _get_deprecated_option(key: str): + """ + Retrieves the metadata for a deprecated option, if `key` is deprecated. + + Returns + ------- + DeprecatedOption (namedtuple) if key is deprecated, None otherwise + """ + try: + d = _deprecated_options[key] + except KeyError: + return None + else: + return d + + +def _get_registered_option(key: str): + """ + Retrieves the option metadata if `key` is a registered option. + + Returns + ------- + RegisteredOption (namedtuple) if key is deprecated, None otherwise + """ + return _registered_options.get(key) + + +def _translate_key(key: str) -> str: + """ + if key id deprecated and a replacement key defined, will return the + replacement key, otherwise returns `key` as - is + """ + d = _get_deprecated_option(key) + if d: + return d.rkey or key + else: + return key + + +def _warn_if_deprecated(key: str) -> bool: + """ + Checks if `key` is a deprecated option and if so, prints a warning. + + Returns + ------- + bool - True if `key` is deprecated, False otherwise. + """ + d = _get_deprecated_option(key) + if d: + if d.msg: + warnings.warn( + d.msg, + FutureWarning, + stacklevel=find_stack_level(), + ) + else: + msg = f"'{key}' is deprecated" + if d.removal_ver: + msg += f" and will be removed in {d.removal_ver}" + if d.rkey: + msg += f", please use '{d.rkey}' instead." + else: + msg += ", please refrain from using it." + + warnings.warn(msg, FutureWarning, stacklevel=find_stack_level()) + return True + return False + + +def _build_option_description(k: str) -> str: + """Builds a formatted description of a registered option and prints it""" + o = _get_registered_option(k) + d = _get_deprecated_option(k) + + s = f"{k} " + + if o.doc: + s += "\n".join(o.doc.strip().split("\n")) + else: + s += "No description available." + + if o: + s += f"\n [default: {o.defval}] [currently: {_get_option(k, True)}]" + + if d: + rkey = d.rkey or "" + s += "\n (Deprecated" + s += f", use `{rkey}` instead." + s += ")" + + return s + + +def pp_options_list(keys: Iterable[str], width: int = 80, _print: bool = False): + """Builds a concise listing of available options, grouped by prefix""" + from itertools import groupby + from textwrap import wrap + + def pp(name: str, ks: Iterable[str]) -> list[str]: + pfx = "- " + name + ".[" if name else "" + ls = wrap( + ", ".join(ks), + width, + initial_indent=pfx, + subsequent_indent=" ", + break_long_words=False, + ) + if ls and ls[-1] and name: + ls[-1] = ls[-1] + "]" + return ls + + ls: list[str] = [] + singles = [x for x in sorted(keys) if x.find(".") < 0] + if singles: + ls += pp("", singles) + keys = [x for x in keys if x.find(".") >= 0] + + for k, g in groupby(sorted(keys), lambda x: x[: x.rfind(".")]): + ks = [x[len(k) + 1 :] for x in list(g)] + ls += pp(k, ks) + s = "\n".join(ls) + if _print: + print(s) + else: + return s + + +# +# helpers + + +@contextmanager +def config_prefix(prefix: str) -> Generator[None, None, None]: + """ + contextmanager for multiple invocations of API with a common prefix + + supported API functions: (register / get / set )__option + + Warning: This is not thread - safe, and won't work properly if you import + the API functions into your module using the "from x import y" construct. + + Example + ------- + import pandas._config.config as cf + with cf.config_prefix("display.font"): + cf.register_option("color", "red") + cf.register_option("size", " 5 pt") + cf.set_option(size, " 6 pt") + cf.get_option(size) + ... + + etc' + + will register options "display.font.color", "display.font.size", set the + value of "display.font.size"... and so on. + """ + # Note: reset_option relies on set_option, and on key directly + # it does not fit in to this monkey-patching scheme + + global register_option, get_option, set_option + + def wrap(func: F) -> F: + def inner(key: str, *args, **kwds): + pkey = f"{prefix}.{key}" + return func(pkey, *args, **kwds) + + return cast(F, inner) + + _register_option = register_option + _get_option = get_option + _set_option = set_option + set_option = wrap(set_option) + get_option = wrap(get_option) + register_option = wrap(register_option) + try: + yield + finally: + set_option = _set_option + get_option = _get_option + register_option = _register_option + + +# These factories and methods are handy for use as the validator +# arg in register_option + + +def is_type_factory(_type: type[Any]) -> Callable[[Any], None]: + """ + + Parameters + ---------- + `_type` - a type to be compared against (e.g. type(x) == `_type`) + + Returns + ------- + validator - a function of a single argument x , which raises + ValueError if type(x) is not equal to `_type` + + """ + + def inner(x) -> None: + if type(x) != _type: + raise ValueError(f"Value must have type '{_type}'") + + return inner + + +def is_instance_factory(_type) -> Callable[[Any], None]: + """ + + Parameters + ---------- + `_type` - the type to be checked against + + Returns + ------- + validator - a function of a single argument x , which raises + ValueError if x is not an instance of `_type` + + """ + if isinstance(_type, (tuple, list)): + _type = tuple(_type) + type_repr = "|".join(map(str, _type)) + else: + type_repr = f"'{_type}'" + + def inner(x) -> None: + if not isinstance(x, _type): + raise ValueError(f"Value must be an instance of {type_repr}") + + return inner + + +def is_one_of_factory(legal_values) -> Callable[[Any], None]: + callables = [c for c in legal_values if callable(c)] + legal_values = [c for c in legal_values if not callable(c)] + + def inner(x) -> None: + if x not in legal_values: + if not any(c(x) for c in callables): + uvals = [str(lval) for lval in legal_values] + pp_values = "|".join(uvals) + msg = f"Value must be one of {pp_values}" + if len(callables): + msg += " or a callable" + raise ValueError(msg) + + return inner + + +def is_nonnegative_int(value: object) -> None: + """ + Verify that value is None or a positive int. + + Parameters + ---------- + value : None or int + The `value` to be checked. + + Raises + ------ + ValueError + When the value is not None or is a negative integer + """ + if value is None: + return + + elif isinstance(value, int): + if value >= 0: + return + + msg = "Value must be a nonnegative integer or None" + raise ValueError(msg) + + +# common type validators, for convenience +# usage: register_option(... , validator = is_int) +is_int = is_type_factory(int) +is_bool = is_type_factory(bool) +is_float = is_type_factory(float) +is_str = is_type_factory(str) +is_text = is_instance_factory((str, bytes)) + + +def is_callable(obj) -> bool: + """ + + Parameters + ---------- + `obj` - the object to be checked + + Returns + ------- + validator - returns True if object is callable + raises ValueError otherwise. + + """ + if not callable(obj): + raise ValueError("Value must be a callable") + return True diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/_config/dates.py b/llmeval-env/lib/python3.10/site-packages/pandas/_config/dates.py new file mode 100644 index 0000000000000000000000000000000000000000..b37831f96eb73bf2f128929a1769db6c141eebad --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/_config/dates.py @@ -0,0 +1,25 @@ +""" +config for datetime formatting +""" +from __future__ import annotations + +from pandas._config import config as cf + +pc_date_dayfirst_doc = """ +: boolean + When True, prints and parses dates with the day first, eg 20/01/2005 +""" + +pc_date_yearfirst_doc = """ +: boolean + When True, prints and parses dates with the year first, eg 2005/01/20 +""" + +with cf.config_prefix("display"): + # Needed upstream of `_libs` because these are used in tslibs.parsing + cf.register_option( + "date_dayfirst", False, pc_date_dayfirst_doc, validator=cf.is_bool + ) + cf.register_option( + "date_yearfirst", False, pc_date_yearfirst_doc, validator=cf.is_bool + ) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/_config/display.py b/llmeval-env/lib/python3.10/site-packages/pandas/_config/display.py new file mode 100644 index 0000000000000000000000000000000000000000..df2c3ad36c855d77c33d80c78c3d83ab3c09d5f9 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/_config/display.py @@ -0,0 +1,62 @@ +""" +Unopinionated display configuration. +""" + +from __future__ import annotations + +import locale +import sys + +from pandas._config import config as cf + +# ----------------------------------------------------------------------------- +# Global formatting options +_initial_defencoding: str | None = None + + +def detect_console_encoding() -> str: + """ + Try to find the most capable encoding supported by the console. + slightly modified from the way IPython handles the same issue. + """ + global _initial_defencoding + + encoding = None + try: + encoding = sys.stdout.encoding or sys.stdin.encoding + except (AttributeError, OSError): + pass + + # try again for something better + if not encoding or "ascii" in encoding.lower(): + try: + encoding = locale.getpreferredencoding() + except locale.Error: + # can be raised by locale.setlocale(), which is + # called by getpreferredencoding + # (on some systems, see stdlib locale docs) + pass + + # when all else fails. this will usually be "ascii" + if not encoding or "ascii" in encoding.lower(): + encoding = sys.getdefaultencoding() + + # GH#3360, save the reported defencoding at import time + # MPL backends may change it. Make available for debugging. + if not _initial_defencoding: + _initial_defencoding = sys.getdefaultencoding() + + return encoding + + +pc_encoding_doc = """ +: str/unicode + Defaults to the detected encoding of the console. + Specifies the encoding to be used for strings returned by to_string, + these are generally strings meant to be displayed on the console. +""" + +with cf.config_prefix("display"): + cf.register_option( + "encoding", detect_console_encoding(), pc_encoding_doc, validator=cf.is_text + ) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/_config/localization.py b/llmeval-env/lib/python3.10/site-packages/pandas/_config/localization.py new file mode 100644 index 0000000000000000000000000000000000000000..5c1a0ff1395334a55baa6c5d77a71635872fe824 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/_config/localization.py @@ -0,0 +1,172 @@ +""" +Helpers for configuring locale settings. + +Name `localization` is chosen to avoid overlap with builtin `locale` module. +""" +from __future__ import annotations + +from contextlib import contextmanager +import locale +import platform +import re +import subprocess +from typing import TYPE_CHECKING + +from pandas._config.config import options + +if TYPE_CHECKING: + from collections.abc import Generator + + +@contextmanager +def set_locale( + new_locale: str | tuple[str, str], lc_var: int = locale.LC_ALL +) -> Generator[str | tuple[str, str], None, None]: + """ + Context manager for temporarily setting a locale. + + Parameters + ---------- + new_locale : str or tuple + A string of the form .. For example to set + the current locale to US English with a UTF8 encoding, you would pass + "en_US.UTF-8". + lc_var : int, default `locale.LC_ALL` + The category of the locale being set. + + Notes + ----- + This is useful when you want to run a particular block of code under a + particular locale, without globally setting the locale. This probably isn't + thread-safe. + """ + # getlocale is not always compliant with setlocale, use setlocale. GH#46595 + current_locale = locale.setlocale(lc_var) + + try: + locale.setlocale(lc_var, new_locale) + normalized_code, normalized_encoding = locale.getlocale() + if normalized_code is not None and normalized_encoding is not None: + yield f"{normalized_code}.{normalized_encoding}" + else: + yield new_locale + finally: + locale.setlocale(lc_var, current_locale) + + +def can_set_locale(lc: str, lc_var: int = locale.LC_ALL) -> bool: + """ + Check to see if we can set a locale, and subsequently get the locale, + without raising an Exception. + + Parameters + ---------- + lc : str + The locale to attempt to set. + lc_var : int, default `locale.LC_ALL` + The category of the locale being set. + + Returns + ------- + bool + Whether the passed locale can be set + """ + try: + with set_locale(lc, lc_var=lc_var): + pass + except (ValueError, locale.Error): + # horrible name for a Exception subclass + return False + else: + return True + + +def _valid_locales(locales: list[str] | str, normalize: bool) -> list[str]: + """ + Return a list of normalized locales that do not throw an ``Exception`` + when set. + + Parameters + ---------- + locales : str + A string where each locale is separated by a newline. + normalize : bool + Whether to call ``locale.normalize`` on each locale. + + Returns + ------- + valid_locales : list + A list of valid locales. + """ + return [ + loc + for loc in ( + locale.normalize(loc.strip()) if normalize else loc.strip() + for loc in locales + ) + if can_set_locale(loc) + ] + + +def get_locales( + prefix: str | None = None, + normalize: bool = True, +) -> list[str]: + """ + Get all the locales that are available on the system. + + Parameters + ---------- + prefix : str + If not ``None`` then return only those locales with the prefix + provided. For example to get all English language locales (those that + start with ``"en"``), pass ``prefix="en"``. + normalize : bool + Call ``locale.normalize`` on the resulting list of available locales. + If ``True``, only locales that can be set without throwing an + ``Exception`` are returned. + + Returns + ------- + locales : list of strings + A list of locale strings that can be set with ``locale.setlocale()``. + For example:: + + locale.setlocale(locale.LC_ALL, locale_string) + + On error will return an empty list (no locale available, e.g. Windows) + + """ + if platform.system() in ("Linux", "Darwin"): + raw_locales = subprocess.check_output(["locale", "-a"]) + else: + # Other platforms e.g. windows platforms don't define "locale -a" + # Note: is_platform_windows causes circular import here + return [] + + try: + # raw_locales is "\n" separated list of locales + # it may contain non-decodable parts, so split + # extract what we can and then rejoin. + split_raw_locales = raw_locales.split(b"\n") + out_locales = [] + for x in split_raw_locales: + try: + out_locales.append(str(x, encoding=options.display.encoding)) + except UnicodeError: + # 'locale -a' is used to populated 'raw_locales' and on + # Redhat 7 Linux (and maybe others) prints locale names + # using windows-1252 encoding. Bug only triggered by + # a few special characters and when there is an + # extensive list of installed locales. + out_locales.append(str(x, encoding="windows-1252")) + + except TypeError: + pass + + if prefix is None: + return _valid_locales(out_locales, normalize) + + pattern = re.compile(f"{prefix}.*") + found = pattern.findall("\n".join(out_locales)) + return _valid_locales(found, normalize) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/api/__init__.py b/llmeval-env/lib/python3.10/site-packages/pandas/api/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..a0d42b6541fdf8817b996ef9804db8a87a2bcd2c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/api/__init__.py @@ -0,0 +1,16 @@ +""" public toolkit API """ +from pandas.api import ( + extensions, + indexers, + interchange, + types, + typing, +) + +__all__ = [ + "interchange", + "extensions", + "indexers", + "types", + "typing", +] diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/api/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/api/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c1b7c82ade86b8210d28941dd911703409fe1e16 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/api/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/api/extensions/__init__.py b/llmeval-env/lib/python3.10/site-packages/pandas/api/extensions/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..ea5f1ba926899f9d11e34e70181ed77cae7ead1d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/api/extensions/__init__.py @@ -0,0 +1,33 @@ +""" +Public API for extending pandas objects. +""" + +from pandas._libs.lib import no_default + +from pandas.core.dtypes.base import ( + ExtensionDtype, + register_extension_dtype, +) + +from pandas.core.accessor import ( + register_dataframe_accessor, + register_index_accessor, + register_series_accessor, +) +from pandas.core.algorithms import take +from pandas.core.arrays import ( + ExtensionArray, + ExtensionScalarOpsMixin, +) + +__all__ = [ + "no_default", + "ExtensionDtype", + "register_extension_dtype", + "register_dataframe_accessor", + "register_index_accessor", + "register_series_accessor", + "take", + "ExtensionArray", + "ExtensionScalarOpsMixin", +] diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/api/extensions/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/api/extensions/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..998c8930695bacb736f592f7aebe56eef876196b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/api/extensions/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/api/indexers/__init__.py b/llmeval-env/lib/python3.10/site-packages/pandas/api/indexers/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..78357f11dc3b79f13490b91c69ef5457fbfa9768 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/api/indexers/__init__.py @@ -0,0 +1,17 @@ +""" +Public API for Rolling Window Indexers. +""" + +from pandas.core.indexers import check_array_indexer +from pandas.core.indexers.objects import ( + BaseIndexer, + FixedForwardWindowIndexer, + VariableOffsetWindowIndexer, +) + +__all__ = [ + "check_array_indexer", + "BaseIndexer", + "FixedForwardWindowIndexer", + "VariableOffsetWindowIndexer", +] diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/api/indexers/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/api/indexers/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..76af729ff3452670ce83cd0df5c3b3c47775ff02 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/api/indexers/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/api/interchange/__init__.py b/llmeval-env/lib/python3.10/site-packages/pandas/api/interchange/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..2f3a73bc46b3109c3c13e1a3468a69aed2ffb2e8 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/api/interchange/__init__.py @@ -0,0 +1,8 @@ +""" +Public API for DataFrame interchange protocol. +""" + +from pandas.core.interchange.dataframe_protocol import DataFrame +from pandas.core.interchange.from_dataframe import from_dataframe + +__all__ = ["from_dataframe", "DataFrame"] diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/api/interchange/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/api/interchange/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c3bddadf79f44e465a53af9ea6bdaf5bc36818fe Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/api/interchange/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/api/types/__init__.py b/llmeval-env/lib/python3.10/site-packages/pandas/api/types/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..c601086bb9f86a633d6a3f2245779fea9428bf95 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/api/types/__init__.py @@ -0,0 +1,23 @@ +""" +Public toolkit API. +""" + +from pandas._libs.lib import infer_dtype + +from pandas.core.dtypes.api import * # noqa: F403 +from pandas.core.dtypes.concat import union_categoricals +from pandas.core.dtypes.dtypes import ( + CategoricalDtype, + DatetimeTZDtype, + IntervalDtype, + PeriodDtype, +) + +__all__ = [ + "infer_dtype", + "union_categoricals", + "CategoricalDtype", + "DatetimeTZDtype", + "IntervalDtype", + "PeriodDtype", +] diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/api/types/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/api/types/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6985947772baa6a51b113a884583efca9f64b633 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/api/types/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/api/typing/__init__.py b/llmeval-env/lib/python3.10/site-packages/pandas/api/typing/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..9b5d2cb06b523508b15025be804a66daaaaf7a45 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/api/typing/__init__.py @@ -0,0 +1,55 @@ +""" +Public API classes that store intermediate results useful for type-hinting. +""" + +from pandas._libs import NaTType +from pandas._libs.missing import NAType + +from pandas.core.groupby import ( + DataFrameGroupBy, + SeriesGroupBy, +) +from pandas.core.resample import ( + DatetimeIndexResamplerGroupby, + PeriodIndexResamplerGroupby, + Resampler, + TimedeltaIndexResamplerGroupby, + TimeGrouper, +) +from pandas.core.window import ( + Expanding, + ExpandingGroupby, + ExponentialMovingWindow, + ExponentialMovingWindowGroupby, + Rolling, + RollingGroupby, + Window, +) + +# TODO: Can't import Styler without importing jinja2 +# from pandas.io.formats.style import Styler +from pandas.io.json._json import JsonReader +from pandas.io.stata import StataReader + +__all__ = [ + "DataFrameGroupBy", + "DatetimeIndexResamplerGroupby", + "Expanding", + "ExpandingGroupby", + "ExponentialMovingWindow", + "ExponentialMovingWindowGroupby", + "JsonReader", + "NaTType", + "NAType", + "PeriodIndexResamplerGroupby", + "Resampler", + "Rolling", + "RollingGroupby", + "SeriesGroupBy", + "StataReader", + # See TODO above + # "Styler", + "TimedeltaIndexResamplerGroupby", + "TimeGrouper", + "Window", +] diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/api/typing/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/api/typing/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a5a11eee442c47287a32c8468eb36e71b50bfdfd Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/api/typing/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/clipboard/__init__.py b/llmeval-env/lib/python3.10/site-packages/pandas/io/clipboard/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..6491849925e863c35a98390a31729cb13e28ca19 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/clipboard/__init__.py @@ -0,0 +1,747 @@ +""" +Pyperclip + +A cross-platform clipboard module for Python, +with copy & paste functions for plain text. +By Al Sweigart al@inventwithpython.com +Licence at LICENSES/PYPERCLIP_LICENSE + +Usage: + import pyperclip + pyperclip.copy('The text to be copied to the clipboard.') + spam = pyperclip.paste() + + if not pyperclip.is_available(): + print("Copy functionality unavailable!") + +On Windows, no additional modules are needed. +On Mac, the pyobjc module is used, falling back to the pbcopy and pbpaste cli + commands. (These commands should come with OS X.). +On Linux, install xclip, xsel, or wl-clipboard (for "wayland" sessions) via +package manager. +For example, in Debian: + sudo apt-get install xclip + sudo apt-get install xsel + sudo apt-get install wl-clipboard + +Otherwise on Linux, you will need the PyQt5 modules installed. + +This module does not work with PyGObject yet. + +Cygwin is currently not supported. + +Security Note: This module runs programs with these names: + - pbcopy + - pbpaste + - xclip + - xsel + - wl-copy/wl-paste + - klipper + - qdbus +A malicious user could rename or add programs with these names, tricking +Pyperclip into running them with whatever permissions the Python process has. + +""" + +__version__ = "1.8.2" + + +import contextlib +import ctypes +from ctypes import ( + c_size_t, + c_wchar, + c_wchar_p, + get_errno, + sizeof, +) +import os +import platform +from shutil import which as _executable_exists +import subprocess +import time +import warnings + +from pandas.errors import ( + PyperclipException, + PyperclipWindowsException, +) +from pandas.util._exceptions import find_stack_level + +# `import PyQt4` sys.exit()s if DISPLAY is not in the environment. +# Thus, we need to detect the presence of $DISPLAY manually +# and not load PyQt4 if it is absent. +HAS_DISPLAY = os.getenv("DISPLAY") + +EXCEPT_MSG = """ + Pyperclip could not find a copy/paste mechanism for your system. + For more information, please visit + https://pyperclip.readthedocs.io/en/latest/index.html#not-implemented-error + """ + +ENCODING = "utf-8" + + +class PyperclipTimeoutException(PyperclipException): + pass + + +def _stringifyText(text) -> str: + acceptedTypes = (str, int, float, bool) + if not isinstance(text, acceptedTypes): + raise PyperclipException( + f"only str, int, float, and bool values " + f"can be copied to the clipboard, not {type(text).__name__}" + ) + return str(text) + + +def init_osx_pbcopy_clipboard(): + def copy_osx_pbcopy(text): + text = _stringifyText(text) # Converts non-str values to str. + with subprocess.Popen( + ["pbcopy", "w"], stdin=subprocess.PIPE, close_fds=True + ) as p: + p.communicate(input=text.encode(ENCODING)) + + def paste_osx_pbcopy(): + with subprocess.Popen( + ["pbpaste", "r"], stdout=subprocess.PIPE, close_fds=True + ) as p: + stdout = p.communicate()[0] + return stdout.decode(ENCODING) + + return copy_osx_pbcopy, paste_osx_pbcopy + + +def init_osx_pyobjc_clipboard(): + def copy_osx_pyobjc(text): + """Copy string argument to clipboard""" + text = _stringifyText(text) # Converts non-str values to str. + newStr = Foundation.NSString.stringWithString_(text).nsstring() + newData = newStr.dataUsingEncoding_(Foundation.NSUTF8StringEncoding) + board = AppKit.NSPasteboard.generalPasteboard() + board.declareTypes_owner_([AppKit.NSStringPboardType], None) + board.setData_forType_(newData, AppKit.NSStringPboardType) + + def paste_osx_pyobjc(): + """Returns contents of clipboard""" + board = AppKit.NSPasteboard.generalPasteboard() + content = board.stringForType_(AppKit.NSStringPboardType) + return content + + return copy_osx_pyobjc, paste_osx_pyobjc + + +def init_qt_clipboard(): + global QApplication + # $DISPLAY should exist + + # Try to import from qtpy, but if that fails try PyQt5 then PyQt4 + try: + from qtpy.QtWidgets import QApplication + except ImportError: + try: + from PyQt5.QtWidgets import QApplication + except ImportError: + from PyQt4.QtGui import QApplication + + app = QApplication.instance() + if app is None: + app = QApplication([]) + + def copy_qt(text): + text = _stringifyText(text) # Converts non-str values to str. + cb = app.clipboard() + cb.setText(text) + + def paste_qt() -> str: + cb = app.clipboard() + return str(cb.text()) + + return copy_qt, paste_qt + + +def init_xclip_clipboard(): + DEFAULT_SELECTION = "c" + PRIMARY_SELECTION = "p" + + def copy_xclip(text, primary=False): + text = _stringifyText(text) # Converts non-str values to str. + selection = DEFAULT_SELECTION + if primary: + selection = PRIMARY_SELECTION + with subprocess.Popen( + ["xclip", "-selection", selection], stdin=subprocess.PIPE, close_fds=True + ) as p: + p.communicate(input=text.encode(ENCODING)) + + def paste_xclip(primary=False): + selection = DEFAULT_SELECTION + if primary: + selection = PRIMARY_SELECTION + with subprocess.Popen( + ["xclip", "-selection", selection, "-o"], + stdout=subprocess.PIPE, + stderr=subprocess.PIPE, + close_fds=True, + ) as p: + stdout = p.communicate()[0] + # Intentionally ignore extraneous output on stderr when clipboard is empty + return stdout.decode(ENCODING) + + return copy_xclip, paste_xclip + + +def init_xsel_clipboard(): + DEFAULT_SELECTION = "-b" + PRIMARY_SELECTION = "-p" + + def copy_xsel(text, primary=False): + text = _stringifyText(text) # Converts non-str values to str. + selection_flag = DEFAULT_SELECTION + if primary: + selection_flag = PRIMARY_SELECTION + with subprocess.Popen( + ["xsel", selection_flag, "-i"], stdin=subprocess.PIPE, close_fds=True + ) as p: + p.communicate(input=text.encode(ENCODING)) + + def paste_xsel(primary=False): + selection_flag = DEFAULT_SELECTION + if primary: + selection_flag = PRIMARY_SELECTION + with subprocess.Popen( + ["xsel", selection_flag, "-o"], stdout=subprocess.PIPE, close_fds=True + ) as p: + stdout = p.communicate()[0] + return stdout.decode(ENCODING) + + return copy_xsel, paste_xsel + + +def init_wl_clipboard(): + PRIMARY_SELECTION = "-p" + + def copy_wl(text, primary=False): + text = _stringifyText(text) # Converts non-str values to str. + args = ["wl-copy"] + if primary: + args.append(PRIMARY_SELECTION) + if not text: + args.append("--clear") + subprocess.check_call(args, close_fds=True) + else: + p = subprocess.Popen(args, stdin=subprocess.PIPE, close_fds=True) + p.communicate(input=text.encode(ENCODING)) + + def paste_wl(primary=False): + args = ["wl-paste", "-n"] + if primary: + args.append(PRIMARY_SELECTION) + p = subprocess.Popen(args, stdout=subprocess.PIPE, close_fds=True) + stdout, _stderr = p.communicate() + return stdout.decode(ENCODING) + + return copy_wl, paste_wl + + +def init_klipper_clipboard(): + def copy_klipper(text): + text = _stringifyText(text) # Converts non-str values to str. + with subprocess.Popen( + [ + "qdbus", + "org.kde.klipper", + "/klipper", + "setClipboardContents", + text.encode(ENCODING), + ], + stdin=subprocess.PIPE, + close_fds=True, + ) as p: + p.communicate(input=None) + + def paste_klipper(): + with subprocess.Popen( + ["qdbus", "org.kde.klipper", "/klipper", "getClipboardContents"], + stdout=subprocess.PIPE, + close_fds=True, + ) as p: + stdout = p.communicate()[0] + + # Workaround for https://bugs.kde.org/show_bug.cgi?id=342874 + # TODO: https://github.com/asweigart/pyperclip/issues/43 + clipboardContents = stdout.decode(ENCODING) + # even if blank, Klipper will append a newline at the end + assert len(clipboardContents) > 0 + # make sure that newline is there + assert clipboardContents.endswith("\n") + if clipboardContents.endswith("\n"): + clipboardContents = clipboardContents[:-1] + return clipboardContents + + return copy_klipper, paste_klipper + + +def init_dev_clipboard_clipboard(): + def copy_dev_clipboard(text): + text = _stringifyText(text) # Converts non-str values to str. + if text == "": + warnings.warn( + "Pyperclip cannot copy a blank string to the clipboard on Cygwin. " + "This is effectively a no-op.", + stacklevel=find_stack_level(), + ) + if "\r" in text: + warnings.warn( + "Pyperclip cannot handle \\r characters on Cygwin.", + stacklevel=find_stack_level(), + ) + + with open("/dev/clipboard", "w", encoding="utf-8") as fd: + fd.write(text) + + def paste_dev_clipboard() -> str: + with open("/dev/clipboard", encoding="utf-8") as fd: + content = fd.read() + return content + + return copy_dev_clipboard, paste_dev_clipboard + + +def init_no_clipboard(): + class ClipboardUnavailable: + def __call__(self, *args, **kwargs): + raise PyperclipException(EXCEPT_MSG) + + def __bool__(self) -> bool: + return False + + return ClipboardUnavailable(), ClipboardUnavailable() + + +# Windows-related clipboard functions: +class CheckedCall: + def __init__(self, f) -> None: + super().__setattr__("f", f) + + def __call__(self, *args): + ret = self.f(*args) + if not ret and get_errno(): + raise PyperclipWindowsException("Error calling " + self.f.__name__) + return ret + + def __setattr__(self, key, value): + setattr(self.f, key, value) + + +def init_windows_clipboard(): + global HGLOBAL, LPVOID, DWORD, LPCSTR, INT + global HWND, HINSTANCE, HMENU, BOOL, UINT, HANDLE + from ctypes.wintypes import ( + BOOL, + DWORD, + HANDLE, + HGLOBAL, + HINSTANCE, + HMENU, + HWND, + INT, + LPCSTR, + LPVOID, + UINT, + ) + + windll = ctypes.windll + msvcrt = ctypes.CDLL("msvcrt") + + safeCreateWindowExA = CheckedCall(windll.user32.CreateWindowExA) + safeCreateWindowExA.argtypes = [ + DWORD, + LPCSTR, + LPCSTR, + DWORD, + INT, + INT, + INT, + INT, + HWND, + HMENU, + HINSTANCE, + LPVOID, + ] + safeCreateWindowExA.restype = HWND + + safeDestroyWindow = CheckedCall(windll.user32.DestroyWindow) + safeDestroyWindow.argtypes = [HWND] + safeDestroyWindow.restype = BOOL + + OpenClipboard = windll.user32.OpenClipboard + OpenClipboard.argtypes = [HWND] + OpenClipboard.restype = BOOL + + safeCloseClipboard = CheckedCall(windll.user32.CloseClipboard) + safeCloseClipboard.argtypes = [] + safeCloseClipboard.restype = BOOL + + safeEmptyClipboard = CheckedCall(windll.user32.EmptyClipboard) + safeEmptyClipboard.argtypes = [] + safeEmptyClipboard.restype = BOOL + + safeGetClipboardData = CheckedCall(windll.user32.GetClipboardData) + safeGetClipboardData.argtypes = [UINT] + safeGetClipboardData.restype = HANDLE + + safeSetClipboardData = CheckedCall(windll.user32.SetClipboardData) + safeSetClipboardData.argtypes = [UINT, HANDLE] + safeSetClipboardData.restype = HANDLE + + safeGlobalAlloc = CheckedCall(windll.kernel32.GlobalAlloc) + safeGlobalAlloc.argtypes = [UINT, c_size_t] + safeGlobalAlloc.restype = HGLOBAL + + safeGlobalLock = CheckedCall(windll.kernel32.GlobalLock) + safeGlobalLock.argtypes = [HGLOBAL] + safeGlobalLock.restype = LPVOID + + safeGlobalUnlock = CheckedCall(windll.kernel32.GlobalUnlock) + safeGlobalUnlock.argtypes = [HGLOBAL] + safeGlobalUnlock.restype = BOOL + + wcslen = CheckedCall(msvcrt.wcslen) + wcslen.argtypes = [c_wchar_p] + wcslen.restype = UINT + + GMEM_MOVEABLE = 0x0002 + CF_UNICODETEXT = 13 + + @contextlib.contextmanager + def window(): + """ + Context that provides a valid Windows hwnd. + """ + # we really just need the hwnd, so setting "STATIC" + # as predefined lpClass is just fine. + hwnd = safeCreateWindowExA( + 0, b"STATIC", None, 0, 0, 0, 0, 0, None, None, None, None + ) + try: + yield hwnd + finally: + safeDestroyWindow(hwnd) + + @contextlib.contextmanager + def clipboard(hwnd): + """ + Context manager that opens the clipboard and prevents + other applications from modifying the clipboard content. + """ + # We may not get the clipboard handle immediately because + # some other application is accessing it (?) + # We try for at least 500ms to get the clipboard. + t = time.time() + 0.5 + success = False + while time.time() < t: + success = OpenClipboard(hwnd) + if success: + break + time.sleep(0.01) + if not success: + raise PyperclipWindowsException("Error calling OpenClipboard") + + try: + yield + finally: + safeCloseClipboard() + + def copy_windows(text): + # This function is heavily based on + # http://msdn.com/ms649016#_win32_Copying_Information_to_the_Clipboard + + text = _stringifyText(text) # Converts non-str values to str. + + with window() as hwnd: + # http://msdn.com/ms649048 + # If an application calls OpenClipboard with hwnd set to NULL, + # EmptyClipboard sets the clipboard owner to NULL; + # this causes SetClipboardData to fail. + # => We need a valid hwnd to copy something. + with clipboard(hwnd): + safeEmptyClipboard() + + if text: + # http://msdn.com/ms649051 + # If the hMem parameter identifies a memory object, + # the object must have been allocated using the + # function with the GMEM_MOVEABLE flag. + count = wcslen(text) + 1 + handle = safeGlobalAlloc(GMEM_MOVEABLE, count * sizeof(c_wchar)) + locked_handle = safeGlobalLock(handle) + + ctypes.memmove( + c_wchar_p(locked_handle), + c_wchar_p(text), + count * sizeof(c_wchar), + ) + + safeGlobalUnlock(handle) + safeSetClipboardData(CF_UNICODETEXT, handle) + + def paste_windows(): + with clipboard(None): + handle = safeGetClipboardData(CF_UNICODETEXT) + if not handle: + # GetClipboardData may return NULL with errno == NO_ERROR + # if the clipboard is empty. + # (Also, it may return a handle to an empty buffer, + # but technically that's not empty) + return "" + return c_wchar_p(handle).value + + return copy_windows, paste_windows + + +def init_wsl_clipboard(): + def copy_wsl(text): + text = _stringifyText(text) # Converts non-str values to str. + with subprocess.Popen(["clip.exe"], stdin=subprocess.PIPE, close_fds=True) as p: + p.communicate(input=text.encode(ENCODING)) + + def paste_wsl(): + with subprocess.Popen( + ["powershell.exe", "-command", "Get-Clipboard"], + stdout=subprocess.PIPE, + stderr=subprocess.PIPE, + close_fds=True, + ) as p: + stdout = p.communicate()[0] + # WSL appends "\r\n" to the contents. + return stdout[:-2].decode(ENCODING) + + return copy_wsl, paste_wsl + + +# Automatic detection of clipboard mechanisms +# and importing is done in determine_clipboard(): +def determine_clipboard(): + """ + Determine the OS/platform and set the copy() and paste() functions + accordingly. + """ + global Foundation, AppKit, qtpy, PyQt4, PyQt5 + + # Setup for the CYGWIN platform: + if ( + "cygwin" in platform.system().lower() + ): # Cygwin has a variety of values returned by platform.system(), + # such as 'CYGWIN_NT-6.1' + # FIXME(pyperclip#55): pyperclip currently does not support Cygwin, + # see https://github.com/asweigart/pyperclip/issues/55 + if os.path.exists("/dev/clipboard"): + warnings.warn( + "Pyperclip's support for Cygwin is not perfect, " + "see https://github.com/asweigart/pyperclip/issues/55", + stacklevel=find_stack_level(), + ) + return init_dev_clipboard_clipboard() + + # Setup for the WINDOWS platform: + elif os.name == "nt" or platform.system() == "Windows": + return init_windows_clipboard() + + if platform.system() == "Linux": + if _executable_exists("wslconfig.exe"): + return init_wsl_clipboard() + + # Setup for the macOS platform: + if os.name == "mac" or platform.system() == "Darwin": + try: + import AppKit + import Foundation # check if pyobjc is installed + except ImportError: + return init_osx_pbcopy_clipboard() + else: + return init_osx_pyobjc_clipboard() + + # Setup for the LINUX platform: + if HAS_DISPLAY: + if os.environ.get("WAYLAND_DISPLAY") and _executable_exists("wl-copy"): + return init_wl_clipboard() + if _executable_exists("xsel"): + return init_xsel_clipboard() + if _executable_exists("xclip"): + return init_xclip_clipboard() + if _executable_exists("klipper") and _executable_exists("qdbus"): + return init_klipper_clipboard() + + try: + # qtpy is a small abstraction layer that lets you write applications + # using a single api call to either PyQt or PySide. + # https://pypi.python.org/project/QtPy + import qtpy # check if qtpy is installed + except ImportError: + # If qtpy isn't installed, fall back on importing PyQt4. + try: + import PyQt5 # check if PyQt5 is installed + except ImportError: + try: + import PyQt4 # check if PyQt4 is installed + except ImportError: + pass # We want to fail fast for all non-ImportError exceptions. + else: + return init_qt_clipboard() + else: + return init_qt_clipboard() + else: + return init_qt_clipboard() + + return init_no_clipboard() + + +def set_clipboard(clipboard): + """ + Explicitly sets the clipboard mechanism. The "clipboard mechanism" is how + the copy() and paste() functions interact with the operating system to + implement the copy/paste feature. The clipboard parameter must be one of: + - pbcopy + - pyobjc (default on macOS) + - qt + - xclip + - xsel + - klipper + - windows (default on Windows) + - no (this is what is set when no clipboard mechanism can be found) + """ + global copy, paste + + clipboard_types = { + "pbcopy": init_osx_pbcopy_clipboard, + "pyobjc": init_osx_pyobjc_clipboard, + "qt": init_qt_clipboard, # TODO - split this into 'qtpy', 'pyqt4', and 'pyqt5' + "xclip": init_xclip_clipboard, + "xsel": init_xsel_clipboard, + "wl-clipboard": init_wl_clipboard, + "klipper": init_klipper_clipboard, + "windows": init_windows_clipboard, + "no": init_no_clipboard, + } + + if clipboard not in clipboard_types: + allowed_clipboard_types = [repr(_) for _ in clipboard_types] + raise ValueError( + f"Argument must be one of {', '.join(allowed_clipboard_types)}" + ) + + # Sets pyperclip's copy() and paste() functions: + copy, paste = clipboard_types[clipboard]() + + +def lazy_load_stub_copy(text): + """ + A stub function for copy(), which will load the real copy() function when + called so that the real copy() function is used for later calls. + + This allows users to import pyperclip without having determine_clipboard() + automatically run, which will automatically select a clipboard mechanism. + This could be a problem if it selects, say, the memory-heavy PyQt4 module + but the user was just going to immediately call set_clipboard() to use a + different clipboard mechanism. + + The lazy loading this stub function implements gives the user a chance to + call set_clipboard() to pick another clipboard mechanism. Or, if the user + simply calls copy() or paste() without calling set_clipboard() first, + will fall back on whatever clipboard mechanism that determine_clipboard() + automatically chooses. + """ + global copy, paste + copy, paste = determine_clipboard() + return copy(text) + + +def lazy_load_stub_paste(): + """ + A stub function for paste(), which will load the real paste() function when + called so that the real paste() function is used for later calls. + + This allows users to import pyperclip without having determine_clipboard() + automatically run, which will automatically select a clipboard mechanism. + This could be a problem if it selects, say, the memory-heavy PyQt4 module + but the user was just going to immediately call set_clipboard() to use a + different clipboard mechanism. + + The lazy loading this stub function implements gives the user a chance to + call set_clipboard() to pick another clipboard mechanism. Or, if the user + simply calls copy() or paste() without calling set_clipboard() first, + will fall back on whatever clipboard mechanism that determine_clipboard() + automatically chooses. + """ + global copy, paste + copy, paste = determine_clipboard() + return paste() + + +def is_available() -> bool: + return copy != lazy_load_stub_copy and paste != lazy_load_stub_paste + + +# Initially, copy() and paste() are set to lazy loading wrappers which will +# set `copy` and `paste` to real functions the first time they're used, unless +# set_clipboard() or determine_clipboard() is called first. +copy, paste = lazy_load_stub_copy, lazy_load_stub_paste + + +def waitForPaste(timeout=None): + """This function call blocks until a non-empty text string exists on the + clipboard. It returns this text. + + This function raises PyperclipTimeoutException if timeout was set to + a number of seconds that has elapsed without non-empty text being put on + the clipboard.""" + startTime = time.time() + while True: + clipboardText = paste() + if clipboardText != "": + return clipboardText + time.sleep(0.01) + + if timeout is not None and time.time() > startTime + timeout: + raise PyperclipTimeoutException( + "waitForPaste() timed out after " + str(timeout) + " seconds." + ) + + +def waitForNewPaste(timeout=None): + """This function call blocks until a new text string exists on the + clipboard that is different from the text that was there when the function + was first called. It returns this text. + + This function raises PyperclipTimeoutException if timeout was set to + a number of seconds that has elapsed without non-empty text being put on + the clipboard.""" + startTime = time.time() + originalText = paste() + while True: + currentText = paste() + if currentText != originalText: + return currentText + time.sleep(0.01) + + if timeout is not None and time.time() > startTime + timeout: + raise PyperclipTimeoutException( + "waitForNewPaste() timed out after " + str(timeout) + " seconds." + ) + + +__all__ = [ + "copy", + "paste", + "waitForPaste", + "waitForNewPaste", + "set_clipboard", + "determine_clipboard", +] + +# pandas aliases +clipboard_get = paste +clipboard_set = copy diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/clipboard/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/io/clipboard/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8d35235cb106ba0afceb3200e6d529593af1b1f8 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/io/clipboard/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__init__.py b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5e56b1bc7ba4377cc5de9d68a1424524aef21cb5 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__init__.py @@ -0,0 +1,9 @@ +# ruff: noqa: TCH004 +from typing import TYPE_CHECKING + +if TYPE_CHECKING: + # import modules that have public classes/functions + from pandas.io.formats import style + + # and mark only those modules as public + __all__ = ["style"] diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a14cdf076e86c1acf495a3c8951afe33128bed09 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/_color_data.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/_color_data.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..51b43bf83431bfdf8dd6efef06b41a940af55472 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/_color_data.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/console.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/console.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fa3d93d5111cd9076a20aa3dce329b4633be339e Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/console.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/css.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/css.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ccd42ef79002e1c5810cf3b3b168a6492db43331 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/css.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/csvs.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/csvs.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b0f0ec9af782cb5d7282c851b745f544ceefaf27 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/csvs.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/excel.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/excel.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c909ba500ce2ffcf7fa0fb01fff77eeb00cad11a Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/excel.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/format.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/format.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c6e63ee4a2f6779c72e9269b8f329123a7707c96 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/format.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/html.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/html.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b64ecbccc1cbbfc707b8afe440e819491061adbd Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/html.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/info.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/info.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ce9da60ebaf5667d5d58a0cebbf63206f032f1a6 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/info.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/printing.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/printing.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..754a538e89b4268921e4859ad0b2a726a645f6be Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/printing.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/string.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/string.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..37fc4303e2c31b7bb96e7baa188139d04e8057b2 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/string.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/style.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/style.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..98f72eab62219bfe0891dbb43443b93489faada5 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/style.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/style_render.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/style_render.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..93df0aed1328272a74900de1bc5204985dfef9c0 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/style_render.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/xml.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/xml.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8048d121f63c168b13b3d82976babc44d5e914f1 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/__pycache__/xml.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/_color_data.py b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/_color_data.py new file mode 100644 index 0000000000000000000000000000000000000000..2e7cb7f29646eb11c0ec83d8a909a8cfd7953182 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/_color_data.py @@ -0,0 +1,157 @@ +# GH37967: Enable the use of CSS named colors, as defined in +# matplotlib.colors.CSS4_COLORS, when exporting to Excel. +# This data has been copied here, instead of being imported from matplotlib, +# not to have ``to_excel`` methods require matplotlib. +# source: matplotlib._color_data (3.3.3) +from __future__ import annotations + +CSS4_COLORS = { + "aliceblue": "F0F8FF", + "antiquewhite": "FAEBD7", + "aqua": "00FFFF", + "aquamarine": "7FFFD4", + "azure": "F0FFFF", + "beige": "F5F5DC", + "bisque": "FFE4C4", + "black": "000000", + "blanchedalmond": "FFEBCD", + "blue": "0000FF", + "blueviolet": "8A2BE2", + "brown": "A52A2A", + "burlywood": "DEB887", + "cadetblue": "5F9EA0", + "chartreuse": "7FFF00", + "chocolate": "D2691E", + "coral": "FF7F50", + "cornflowerblue": "6495ED", + "cornsilk": "FFF8DC", + "crimson": "DC143C", + "cyan": "00FFFF", + "darkblue": "00008B", + "darkcyan": "008B8B", + "darkgoldenrod": "B8860B", + "darkgray": "A9A9A9", + "darkgreen": "006400", + "darkgrey": "A9A9A9", + "darkkhaki": "BDB76B", + "darkmagenta": "8B008B", + "darkolivegreen": "556B2F", + "darkorange": "FF8C00", + "darkorchid": "9932CC", + "darkred": "8B0000", + "darksalmon": "E9967A", + "darkseagreen": "8FBC8F", + "darkslateblue": "483D8B", + "darkslategray": "2F4F4F", + "darkslategrey": "2F4F4F", + "darkturquoise": "00CED1", + "darkviolet": "9400D3", + "deeppink": "FF1493", + "deepskyblue": "00BFFF", + "dimgray": "696969", + "dimgrey": "696969", + "dodgerblue": "1E90FF", + "firebrick": "B22222", + "floralwhite": "FFFAF0", + "forestgreen": "228B22", + "fuchsia": "FF00FF", + "gainsboro": "DCDCDC", + "ghostwhite": "F8F8FF", + "gold": "FFD700", + "goldenrod": "DAA520", + "gray": "808080", + "green": "008000", + "greenyellow": "ADFF2F", + "grey": "808080", + "honeydew": "F0FFF0", + "hotpink": "FF69B4", + "indianred": "CD5C5C", + "indigo": "4B0082", + "ivory": "FFFFF0", + "khaki": "F0E68C", + "lavender": "E6E6FA", + "lavenderblush": "FFF0F5", + "lawngreen": "7CFC00", + "lemonchiffon": "FFFACD", + "lightblue": "ADD8E6", + "lightcoral": "F08080", + "lightcyan": "E0FFFF", + "lightgoldenrodyellow": "FAFAD2", + "lightgray": "D3D3D3", + "lightgreen": "90EE90", + "lightgrey": "D3D3D3", + "lightpink": "FFB6C1", + "lightsalmon": "FFA07A", + "lightseagreen": "20B2AA", + "lightskyblue": "87CEFA", + "lightslategray": "778899", + "lightslategrey": "778899", + "lightsteelblue": "B0C4DE", + "lightyellow": "FFFFE0", + "lime": "00FF00", + "limegreen": "32CD32", + "linen": "FAF0E6", + "magenta": "FF00FF", + "maroon": "800000", + "mediumaquamarine": "66CDAA", + "mediumblue": "0000CD", + "mediumorchid": "BA55D3", + "mediumpurple": "9370DB", + "mediumseagreen": "3CB371", + "mediumslateblue": "7B68EE", + "mediumspringgreen": "00FA9A", + "mediumturquoise": "48D1CC", + "mediumvioletred": "C71585", + "midnightblue": "191970", + "mintcream": "F5FFFA", + "mistyrose": "FFE4E1", + "moccasin": "FFE4B5", + "navajowhite": "FFDEAD", + "navy": "000080", + "oldlace": "FDF5E6", + "olive": "808000", + "olivedrab": "6B8E23", + "orange": "FFA500", + "orangered": "FF4500", + "orchid": "DA70D6", + "palegoldenrod": "EEE8AA", + "palegreen": "98FB98", + "paleturquoise": "AFEEEE", + "palevioletred": "DB7093", + "papayawhip": "FFEFD5", + "peachpuff": "FFDAB9", + "peru": "CD853F", + "pink": "FFC0CB", + "plum": "DDA0DD", + "powderblue": "B0E0E6", + "purple": "800080", + "rebeccapurple": "663399", + "red": "FF0000", + "rosybrown": "BC8F8F", + "royalblue": "4169E1", + "saddlebrown": "8B4513", + "salmon": "FA8072", + "sandybrown": "F4A460", + "seagreen": "2E8B57", + "seashell": "FFF5EE", + "sienna": "A0522D", + "silver": "C0C0C0", + "skyblue": "87CEEB", + "slateblue": "6A5ACD", + "slategray": "708090", + "slategrey": "708090", + "snow": "FFFAFA", + "springgreen": "00FF7F", + "steelblue": "4682B4", + "tan": "D2B48C", + "teal": "008080", + "thistle": "D8BFD8", + "tomato": "FF6347", + "turquoise": "40E0D0", + "violet": "EE82EE", + "wheat": "F5DEB3", + "white": "FFFFFF", + "whitesmoke": "F5F5F5", + "yellow": "FFFF00", + "yellowgreen": "9ACD32", +} diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/console.py b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/console.py new file mode 100644 index 0000000000000000000000000000000000000000..2a6cbe07629031687c249f70b51bdfbe2dd84041 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/console.py @@ -0,0 +1,94 @@ +""" +Internal module for console introspection +""" +from __future__ import annotations + +from shutil import get_terminal_size + + +def get_console_size() -> tuple[int | None, int | None]: + """ + Return console size as tuple = (width, height). + + Returns (None,None) in non-interactive session. + """ + from pandas import get_option + + display_width = get_option("display.width") + display_height = get_option("display.max_rows") + + # Consider + # interactive shell terminal, can detect term size + # interactive non-shell terminal (ipnb/ipqtconsole), cannot detect term + # size non-interactive script, should disregard term size + + # in addition + # width,height have default values, but setting to 'None' signals + # should use Auto-Detection, But only in interactive shell-terminal. + # Simple. yeah. + + if in_interactive_session(): + if in_ipython_frontend(): + # sane defaults for interactive non-shell terminal + # match default for width,height in config_init + from pandas._config.config import get_default_val + + terminal_width = get_default_val("display.width") + terminal_height = get_default_val("display.max_rows") + else: + # pure terminal + terminal_width, terminal_height = get_terminal_size() + else: + terminal_width, terminal_height = None, None + + # Note if the User sets width/Height to None (auto-detection) + # and we're in a script (non-inter), this will return (None,None) + # caller needs to deal. + return display_width or terminal_width, display_height or terminal_height + + +# ---------------------------------------------------------------------- +# Detect our environment + + +def in_interactive_session() -> bool: + """ + Check if we're running in an interactive shell. + + Returns + ------- + bool + True if running under python/ipython interactive shell. + """ + from pandas import get_option + + def check_main(): + try: + import __main__ as main + except ModuleNotFoundError: + return get_option("mode.sim_interactive") + return not hasattr(main, "__file__") or get_option("mode.sim_interactive") + + try: + # error: Name '__IPYTHON__' is not defined + return __IPYTHON__ or check_main() # type: ignore[name-defined] + except NameError: + return check_main() + + +def in_ipython_frontend() -> bool: + """ + Check if we're inside an IPython zmq frontend. + + Returns + ------- + bool + """ + try: + # error: Name 'get_ipython' is not defined + ip = get_ipython() # type: ignore[name-defined] + return "zmq" in str(type(ip)).lower() + except NameError: + pass + + return False diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/css.py b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/css.py new file mode 100644 index 0000000000000000000000000000000000000000..ccce60c00a9e02bf3bb7f21c5ec799b7123e8eed --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/css.py @@ -0,0 +1,421 @@ +""" +Utilities for interpreting CSS from Stylers for formatting non-HTML outputs. +""" +from __future__ import annotations + +import re +from typing import ( + TYPE_CHECKING, + Callable, +) +import warnings + +from pandas.errors import CSSWarning +from pandas.util._exceptions import find_stack_level + +if TYPE_CHECKING: + from collections.abc import ( + Generator, + Iterable, + Iterator, + ) + + +def _side_expander(prop_fmt: str) -> Callable: + """ + Wrapper to expand shorthand property into top, right, bottom, left properties + + Parameters + ---------- + side : str + The border side to expand into properties + + Returns + ------- + function: Return to call when a 'border(-{side}): {value}' string is encountered + """ + + def expand(self, prop, value: str) -> Generator[tuple[str, str], None, None]: + """ + Expand shorthand property into side-specific property (top, right, bottom, left) + + Parameters + ---------- + prop (str): CSS property name + value (str): String token for property + + Yields + ------ + Tuple (str, str): Expanded property, value + """ + tokens = value.split() + try: + mapping = self.SIDE_SHORTHANDS[len(tokens)] + except KeyError: + warnings.warn( + f'Could not expand "{prop}: {value}"', + CSSWarning, + stacklevel=find_stack_level(), + ) + return + for key, idx in zip(self.SIDES, mapping): + yield prop_fmt.format(key), tokens[idx] + + return expand + + +def _border_expander(side: str = "") -> Callable: + """ + Wrapper to expand 'border' property into border color, style, and width properties + + Parameters + ---------- + side : str + The border side to expand into properties + + Returns + ------- + function: Return to call when a 'border(-{side}): {value}' string is encountered + """ + if side != "": + side = f"-{side}" + + def expand(self, prop, value: str) -> Generator[tuple[str, str], None, None]: + """ + Expand border into color, style, and width tuples + + Parameters + ---------- + prop : str + CSS property name passed to styler + value : str + Value passed to styler for property + + Yields + ------ + Tuple (str, str): Expanded property, value + """ + tokens = value.split() + if len(tokens) == 0 or len(tokens) > 3: + warnings.warn( + f'Too many tokens provided to "{prop}" (expected 1-3)', + CSSWarning, + stacklevel=find_stack_level(), + ) + + # TODO: Can we use current color as initial value to comply with CSS standards? + border_declarations = { + f"border{side}-color": "black", + f"border{side}-style": "none", + f"border{side}-width": "medium", + } + for token in tokens: + if token.lower() in self.BORDER_STYLES: + border_declarations[f"border{side}-style"] = token + elif any(ratio in token.lower() for ratio in self.BORDER_WIDTH_RATIOS): + border_declarations[f"border{side}-width"] = token + else: + border_declarations[f"border{side}-color"] = token + # TODO: Warn user if item entered more than once (e.g. "border: red green") + + # Per CSS, "border" will reset previous "border-*" definitions + yield from self.atomize(border_declarations.items()) + + return expand + + +class CSSResolver: + """ + A callable for parsing and resolving CSS to atomic properties. + """ + + UNIT_RATIOS = { + "pt": ("pt", 1), + "em": ("em", 1), + "rem": ("pt", 12), + "ex": ("em", 0.5), + # 'ch': + "px": ("pt", 0.75), + "pc": ("pt", 12), + "in": ("pt", 72), + "cm": ("in", 1 / 2.54), + "mm": ("in", 1 / 25.4), + "q": ("mm", 0.25), + "!!default": ("em", 0), + } + + FONT_SIZE_RATIOS = UNIT_RATIOS.copy() + FONT_SIZE_RATIOS.update( + { + "%": ("em", 0.01), + "xx-small": ("rem", 0.5), + "x-small": ("rem", 0.625), + "small": ("rem", 0.8), + "medium": ("rem", 1), + "large": ("rem", 1.125), + "x-large": ("rem", 1.5), + "xx-large": ("rem", 2), + "smaller": ("em", 1 / 1.2), + "larger": ("em", 1.2), + "!!default": ("em", 1), + } + ) + + MARGIN_RATIOS = UNIT_RATIOS.copy() + MARGIN_RATIOS.update({"none": ("pt", 0)}) + + BORDER_WIDTH_RATIOS = UNIT_RATIOS.copy() + BORDER_WIDTH_RATIOS.update( + { + "none": ("pt", 0), + "thick": ("px", 4), + "medium": ("px", 2), + "thin": ("px", 1), + # Default: medium only if solid + } + ) + + BORDER_STYLES = [ + "none", + "hidden", + "dotted", + "dashed", + "solid", + "double", + "groove", + "ridge", + "inset", + "outset", + "mediumdashdot", + "dashdotdot", + "hair", + "mediumdashdotdot", + "dashdot", + "slantdashdot", + "mediumdashed", + ] + + SIDE_SHORTHANDS = { + 1: [0, 0, 0, 0], + 2: [0, 1, 0, 1], + 3: [0, 1, 2, 1], + 4: [0, 1, 2, 3], + } + + SIDES = ("top", "right", "bottom", "left") + + CSS_EXPANSIONS = { + **{ + (f"border-{prop}" if prop else "border"): _border_expander(prop) + for prop in ["", "top", "right", "bottom", "left"] + }, + **{ + f"border-{prop}": _side_expander(f"border-{{:s}}-{prop}") + for prop in ["color", "style", "width"] + }, + "margin": _side_expander("margin-{:s}"), + "padding": _side_expander("padding-{:s}"), + } + + def __call__( + self, + declarations: str | Iterable[tuple[str, str]], + inherited: dict[str, str] | None = None, + ) -> dict[str, str]: + """ + The given declarations to atomic properties. + + Parameters + ---------- + declarations_str : str | Iterable[tuple[str, str]] + A CSS string or set of CSS declaration tuples + e.g. "font-weight: bold; background: blue" or + {("font-weight", "bold"), ("background", "blue")} + inherited : dict, optional + Atomic properties indicating the inherited style context in which + declarations_str is to be resolved. ``inherited`` should already + be resolved, i.e. valid output of this method. + + Returns + ------- + dict + Atomic CSS 2.2 properties. + + Examples + -------- + >>> resolve = CSSResolver() + >>> inherited = {'font-family': 'serif', 'font-weight': 'bold'} + >>> out = resolve(''' + ... border-color: BLUE RED; + ... font-size: 1em; + ... font-size: 2em; + ... font-weight: normal; + ... font-weight: inherit; + ... ''', inherited) + >>> sorted(out.items()) # doctest: +NORMALIZE_WHITESPACE + [('border-bottom-color', 'blue'), + ('border-left-color', 'red'), + ('border-right-color', 'red'), + ('border-top-color', 'blue'), + ('font-family', 'serif'), + ('font-size', '24pt'), + ('font-weight', 'bold')] + """ + if isinstance(declarations, str): + declarations = self.parse(declarations) + props = dict(self.atomize(declarations)) + if inherited is None: + inherited = {} + + props = self._update_initial(props, inherited) + props = self._update_font_size(props, inherited) + return self._update_other_units(props) + + def _update_initial( + self, + props: dict[str, str], + inherited: dict[str, str], + ) -> dict[str, str]: + # 1. resolve inherited, initial + for prop, val in inherited.items(): + if prop not in props: + props[prop] = val + + new_props = props.copy() + for prop, val in props.items(): + if val == "inherit": + val = inherited.get(prop, "initial") + + if val in ("initial", None): + # we do not define a complete initial stylesheet + del new_props[prop] + else: + new_props[prop] = val + return new_props + + def _update_font_size( + self, + props: dict[str, str], + inherited: dict[str, str], + ) -> dict[str, str]: + # 2. resolve relative font size + if props.get("font-size"): + props["font-size"] = self.size_to_pt( + props["font-size"], + self._get_font_size(inherited), + conversions=self.FONT_SIZE_RATIOS, + ) + return props + + def _get_font_size(self, props: dict[str, str]) -> float | None: + if props.get("font-size"): + font_size_string = props["font-size"] + return self._get_float_font_size_from_pt(font_size_string) + return None + + def _get_float_font_size_from_pt(self, font_size_string: str) -> float: + assert font_size_string.endswith("pt") + return float(font_size_string.rstrip("pt")) + + def _update_other_units(self, props: dict[str, str]) -> dict[str, str]: + font_size = self._get_font_size(props) + # 3. TODO: resolve other font-relative units + for side in self.SIDES: + prop = f"border-{side}-width" + if prop in props: + props[prop] = self.size_to_pt( + props[prop], + em_pt=font_size, + conversions=self.BORDER_WIDTH_RATIOS, + ) + + for prop in [f"margin-{side}", f"padding-{side}"]: + if prop in props: + # TODO: support % + props[prop] = self.size_to_pt( + props[prop], + em_pt=font_size, + conversions=self.MARGIN_RATIOS, + ) + return props + + def size_to_pt(self, in_val, em_pt=None, conversions=UNIT_RATIOS) -> str: + def _error(): + warnings.warn( + f"Unhandled size: {repr(in_val)}", + CSSWarning, + stacklevel=find_stack_level(), + ) + return self.size_to_pt("1!!default", conversions=conversions) + + match = re.match(r"^(\S*?)([a-zA-Z%!].*)", in_val) + if match is None: + return _error() + + val, unit = match.groups() + if val == "": + # hack for 'large' etc. + val = 1 + else: + try: + val = float(val) + except ValueError: + return _error() + + while unit != "pt": + if unit == "em": + if em_pt is None: + unit = "rem" + else: + val *= em_pt + unit = "pt" + continue + + try: + unit, mul = conversions[unit] + except KeyError: + return _error() + val *= mul + + val = round(val, 5) + if int(val) == val: + size_fmt = f"{int(val):d}pt" + else: + size_fmt = f"{val:f}pt" + return size_fmt + + def atomize(self, declarations: Iterable) -> Generator[tuple[str, str], None, None]: + for prop, value in declarations: + prop = prop.lower() + value = value.lower() + if prop in self.CSS_EXPANSIONS: + expand = self.CSS_EXPANSIONS[prop] + yield from expand(self, prop, value) + else: + yield prop, value + + def parse(self, declarations_str: str) -> Iterator[tuple[str, str]]: + """ + Generates (prop, value) pairs from declarations. + + In a future version may generate parsed tokens from tinycss/tinycss2 + + Parameters + ---------- + declarations_str : str + """ + for decl in declarations_str.split(";"): + if not decl.strip(): + continue + prop, sep, val = decl.partition(":") + prop = prop.strip().lower() + # TODO: don't lowercase case sensitive parts of values (strings) + val = val.strip().lower() + if sep: + yield prop, val + else: + warnings.warn( + f"Ill-formatted attribute: expected a colon in {repr(decl)}", + CSSWarning, + stacklevel=find_stack_level(), + ) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/csvs.py b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/csvs.py new file mode 100644 index 0000000000000000000000000000000000000000..50503e862ef433901f40715987c2105f6f16263a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/csvs.py @@ -0,0 +1,330 @@ +""" +Module for formatting output data into CSV files. +""" + +from __future__ import annotations + +from collections.abc import ( + Hashable, + Iterable, + Iterator, + Sequence, +) +import csv as csvlib +import os +from typing import ( + TYPE_CHECKING, + Any, + cast, +) + +import numpy as np + +from pandas._libs import writers as libwriters +from pandas._typing import SequenceNotStr +from pandas.util._decorators import cache_readonly + +from pandas.core.dtypes.generic import ( + ABCDatetimeIndex, + ABCIndex, + ABCMultiIndex, + ABCPeriodIndex, +) +from pandas.core.dtypes.missing import notna + +from pandas.core.indexes.api import Index + +from pandas.io.common import get_handle + +if TYPE_CHECKING: + from pandas._typing import ( + CompressionOptions, + FilePath, + FloatFormatType, + IndexLabel, + StorageOptions, + WriteBuffer, + npt, + ) + + from pandas.io.formats.format import DataFrameFormatter + + +_DEFAULT_CHUNKSIZE_CELLS = 100_000 + + +class CSVFormatter: + cols: npt.NDArray[np.object_] + + def __init__( + self, + formatter: DataFrameFormatter, + path_or_buf: FilePath | WriteBuffer[str] | WriteBuffer[bytes] = "", + sep: str = ",", + cols: Sequence[Hashable] | None = None, + index_label: IndexLabel | None = None, + mode: str = "w", + encoding: str | None = None, + errors: str = "strict", + compression: CompressionOptions = "infer", + quoting: int | None = None, + lineterminator: str | None = "\n", + chunksize: int | None = None, + quotechar: str | None = '"', + date_format: str | None = None, + doublequote: bool = True, + escapechar: str | None = None, + storage_options: StorageOptions | None = None, + ) -> None: + self.fmt = formatter + + self.obj = self.fmt.frame + + self.filepath_or_buffer = path_or_buf + self.encoding = encoding + self.compression: CompressionOptions = compression + self.mode = mode + self.storage_options = storage_options + + self.sep = sep + self.index_label = self._initialize_index_label(index_label) + self.errors = errors + self.quoting = quoting or csvlib.QUOTE_MINIMAL + self.quotechar = self._initialize_quotechar(quotechar) + self.doublequote = doublequote + self.escapechar = escapechar + self.lineterminator = lineterminator or os.linesep + self.date_format = date_format + self.cols = self._initialize_columns(cols) + self.chunksize = self._initialize_chunksize(chunksize) + + @property + def na_rep(self) -> str: + return self.fmt.na_rep + + @property + def float_format(self) -> FloatFormatType | None: + return self.fmt.float_format + + @property + def decimal(self) -> str: + return self.fmt.decimal + + @property + def header(self) -> bool | SequenceNotStr[str]: + return self.fmt.header + + @property + def index(self) -> bool: + return self.fmt.index + + def _initialize_index_label(self, index_label: IndexLabel | None) -> IndexLabel: + if index_label is not False: + if index_label is None: + return self._get_index_label_from_obj() + elif not isinstance(index_label, (list, tuple, np.ndarray, ABCIndex)): + # given a string for a DF with Index + return [index_label] + return index_label + + def _get_index_label_from_obj(self) -> Sequence[Hashable]: + if isinstance(self.obj.index, ABCMultiIndex): + return self._get_index_label_multiindex() + else: + return self._get_index_label_flat() + + def _get_index_label_multiindex(self) -> Sequence[Hashable]: + return [name or "" for name in self.obj.index.names] + + def _get_index_label_flat(self) -> Sequence[Hashable]: + index_label = self.obj.index.name + return [""] if index_label is None else [index_label] + + def _initialize_quotechar(self, quotechar: str | None) -> str | None: + if self.quoting != csvlib.QUOTE_NONE: + # prevents crash in _csv + return quotechar + return None + + @property + def has_mi_columns(self) -> bool: + return bool(isinstance(self.obj.columns, ABCMultiIndex)) + + def _initialize_columns( + self, cols: Iterable[Hashable] | None + ) -> npt.NDArray[np.object_]: + # validate mi options + if self.has_mi_columns: + if cols is not None: + msg = "cannot specify cols with a MultiIndex on the columns" + raise TypeError(msg) + + if cols is not None: + if isinstance(cols, ABCIndex): + cols = cols._get_values_for_csv(**self._number_format) + else: + cols = list(cols) + self.obj = self.obj.loc[:, cols] + + # update columns to include possible multiplicity of dupes + # and make sure cols is just a list of labels + new_cols = self.obj.columns + return new_cols._get_values_for_csv(**self._number_format) + + def _initialize_chunksize(self, chunksize: int | None) -> int: + if chunksize is None: + return (_DEFAULT_CHUNKSIZE_CELLS // (len(self.cols) or 1)) or 1 + return int(chunksize) + + @property + def _number_format(self) -> dict[str, Any]: + """Dictionary used for storing number formatting settings.""" + return { + "na_rep": self.na_rep, + "float_format": self.float_format, + "date_format": self.date_format, + "quoting": self.quoting, + "decimal": self.decimal, + } + + @cache_readonly + def data_index(self) -> Index: + data_index = self.obj.index + if ( + isinstance(data_index, (ABCDatetimeIndex, ABCPeriodIndex)) + and self.date_format is not None + ): + data_index = Index( + [x.strftime(self.date_format) if notna(x) else "" for x in data_index] + ) + elif isinstance(data_index, ABCMultiIndex): + data_index = data_index.remove_unused_levels() + return data_index + + @property + def nlevels(self) -> int: + if self.index: + return getattr(self.data_index, "nlevels", 1) + else: + return 0 + + @property + def _has_aliases(self) -> bool: + return isinstance(self.header, (tuple, list, np.ndarray, ABCIndex)) + + @property + def _need_to_save_header(self) -> bool: + return bool(self._has_aliases or self.header) + + @property + def write_cols(self) -> SequenceNotStr[Hashable]: + if self._has_aliases: + assert not isinstance(self.header, bool) + if len(self.header) != len(self.cols): + raise ValueError( + f"Writing {len(self.cols)} cols but got {len(self.header)} aliases" + ) + return self.header + else: + # self.cols is an ndarray derived from Index._get_values_for_csv, + # so its entries are strings, i.e. hashable + return cast(SequenceNotStr[Hashable], self.cols) + + @property + def encoded_labels(self) -> list[Hashable]: + encoded_labels: list[Hashable] = [] + + if self.index and self.index_label: + assert isinstance(self.index_label, Sequence) + encoded_labels = list(self.index_label) + + if not self.has_mi_columns or self._has_aliases: + encoded_labels += list(self.write_cols) + + return encoded_labels + + def save(self) -> None: + """ + Create the writer & save. + """ + # apply compression and byte/text conversion + with get_handle( + self.filepath_or_buffer, + self.mode, + encoding=self.encoding, + errors=self.errors, + compression=self.compression, + storage_options=self.storage_options, + ) as handles: + # Note: self.encoding is irrelevant here + self.writer = csvlib.writer( + handles.handle, + lineterminator=self.lineterminator, + delimiter=self.sep, + quoting=self.quoting, + doublequote=self.doublequote, + escapechar=self.escapechar, + quotechar=self.quotechar, + ) + + self._save() + + def _save(self) -> None: + if self._need_to_save_header: + self._save_header() + self._save_body() + + def _save_header(self) -> None: + if not self.has_mi_columns or self._has_aliases: + self.writer.writerow(self.encoded_labels) + else: + for row in self._generate_multiindex_header_rows(): + self.writer.writerow(row) + + def _generate_multiindex_header_rows(self) -> Iterator[list[Hashable]]: + columns = self.obj.columns + for i in range(columns.nlevels): + # we need at least 1 index column to write our col names + col_line = [] + if self.index: + # name is the first column + col_line.append(columns.names[i]) + + if isinstance(self.index_label, list) and len(self.index_label) > 1: + col_line.extend([""] * (len(self.index_label) - 1)) + + col_line.extend(columns._get_level_values(i)) + yield col_line + + # Write out the index line if it's not empty. + # Otherwise, we will print out an extraneous + # blank line between the mi and the data rows. + if self.encoded_labels and set(self.encoded_labels) != {""}: + yield self.encoded_labels + [""] * len(columns) + + def _save_body(self) -> None: + nrows = len(self.data_index) + chunks = (nrows // self.chunksize) + 1 + for i in range(chunks): + start_i = i * self.chunksize + end_i = min(start_i + self.chunksize, nrows) + if start_i >= end_i: + break + self._save_chunk(start_i, end_i) + + def _save_chunk(self, start_i: int, end_i: int) -> None: + # create the data for a chunk + slicer = slice(start_i, end_i) + df = self.obj.iloc[slicer] + + res = df._get_values_for_csv(**self._number_format) + data = list(res._iter_column_arrays()) + + ix = self.data_index[slicer]._get_values_for_csv(**self._number_format) + libwriters.write_csv_rows( + data, + ix, + self.nlevels, + self.cols, + self.writer, + ) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/excel.py b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/excel.py new file mode 100644 index 0000000000000000000000000000000000000000..5fd23cd7d918ad0efddb1088d79fd78f6079cca7 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/excel.py @@ -0,0 +1,962 @@ +""" +Utilities for conversion to writer-agnostic Excel representation. +""" +from __future__ import annotations + +from collections.abc import ( + Hashable, + Iterable, + Mapping, + Sequence, +) +import functools +import itertools +import re +from typing import ( + TYPE_CHECKING, + Any, + Callable, + cast, +) +import warnings + +import numpy as np + +from pandas._libs.lib import is_list_like +from pandas.util._decorators import doc +from pandas.util._exceptions import find_stack_level + +from pandas.core.dtypes import missing +from pandas.core.dtypes.common import ( + is_float, + is_scalar, +) + +from pandas import ( + DataFrame, + Index, + MultiIndex, + PeriodIndex, +) +import pandas.core.common as com +from pandas.core.shared_docs import _shared_docs + +from pandas.io.formats._color_data import CSS4_COLORS +from pandas.io.formats.css import ( + CSSResolver, + CSSWarning, +) +from pandas.io.formats.format import get_level_lengths +from pandas.io.formats.printing import pprint_thing + +if TYPE_CHECKING: + from pandas._typing import ( + FilePath, + IndexLabel, + StorageOptions, + WriteExcelBuffer, + ) + + from pandas import ExcelWriter + + +class ExcelCell: + __fields__ = ("row", "col", "val", "style", "mergestart", "mergeend") + __slots__ = __fields__ + + def __init__( + self, + row: int, + col: int, + val, + style=None, + mergestart: int | None = None, + mergeend: int | None = None, + ) -> None: + self.row = row + self.col = col + self.val = val + self.style = style + self.mergestart = mergestart + self.mergeend = mergeend + + +class CssExcelCell(ExcelCell): + def __init__( + self, + row: int, + col: int, + val, + style: dict | None, + css_styles: dict[tuple[int, int], list[tuple[str, Any]]] | None, + css_row: int, + css_col: int, + css_converter: Callable | None, + **kwargs, + ) -> None: + if css_styles and css_converter: + # Use dict to get only one (case-insensitive) declaration per property + declaration_dict = { + prop.lower(): val for prop, val in css_styles[css_row, css_col] + } + # Convert to frozenset for order-invariant caching + unique_declarations = frozenset(declaration_dict.items()) + style = css_converter(unique_declarations) + + super().__init__(row=row, col=col, val=val, style=style, **kwargs) + + +class CSSToExcelConverter: + """ + A callable for converting CSS declarations to ExcelWriter styles + + Supports parts of CSS 2.2, with minimal CSS 3.0 support (e.g. text-shadow), + focusing on font styling, backgrounds, borders and alignment. + + Operates by first computing CSS styles in a fairly generic + way (see :meth:`compute_css`) then determining Excel style + properties from CSS properties (see :meth:`build_xlstyle`). + + Parameters + ---------- + inherited : str, optional + CSS declarations understood to be the containing scope for the + CSS processed by :meth:`__call__`. + """ + + NAMED_COLORS = CSS4_COLORS + + VERTICAL_MAP = { + "top": "top", + "text-top": "top", + "middle": "center", + "baseline": "bottom", + "bottom": "bottom", + "text-bottom": "bottom", + # OpenXML also has 'justify', 'distributed' + } + + BOLD_MAP = { + "bold": True, + "bolder": True, + "600": True, + "700": True, + "800": True, + "900": True, + "normal": False, + "lighter": False, + "100": False, + "200": False, + "300": False, + "400": False, + "500": False, + } + + ITALIC_MAP = { + "normal": False, + "italic": True, + "oblique": True, + } + + FAMILY_MAP = { + "serif": 1, # roman + "sans-serif": 2, # swiss + "cursive": 4, # script + "fantasy": 5, # decorative + } + + BORDER_STYLE_MAP = { + style.lower(): style + for style in [ + "dashed", + "mediumDashDot", + "dashDotDot", + "hair", + "dotted", + "mediumDashDotDot", + "double", + "dashDot", + "slantDashDot", + "mediumDashed", + ] + } + + # NB: Most of the methods here could be classmethods, as only __init__ + # and __call__ make use of instance attributes. We leave them as + # instancemethods so that users can easily experiment with extensions + # without monkey-patching. + inherited: dict[str, str] | None + + def __init__(self, inherited: str | None = None) -> None: + if inherited is not None: + self.inherited = self.compute_css(inherited) + else: + self.inherited = None + # We should avoid cache on the __call__ method. + # Otherwise once the method __call__ has been called + # garbage collection no longer deletes the instance. + self._call_cached = functools.cache(self._call_uncached) + + compute_css = CSSResolver() + + def __call__( + self, declarations: str | frozenset[tuple[str, str]] + ) -> dict[str, dict[str, str]]: + """ + Convert CSS declarations to ExcelWriter style. + + Parameters + ---------- + declarations : str | frozenset[tuple[str, str]] + CSS string or set of CSS declaration tuples. + e.g. "font-weight: bold; background: blue" or + {("font-weight", "bold"), ("background", "blue")} + + Returns + ------- + xlstyle : dict + A style as interpreted by ExcelWriter when found in + ExcelCell.style. + """ + return self._call_cached(declarations) + + def _call_uncached( + self, declarations: str | frozenset[tuple[str, str]] + ) -> dict[str, dict[str, str]]: + properties = self.compute_css(declarations, self.inherited) + return self.build_xlstyle(properties) + + def build_xlstyle(self, props: Mapping[str, str]) -> dict[str, dict[str, str]]: + out = { + "alignment": self.build_alignment(props), + "border": self.build_border(props), + "fill": self.build_fill(props), + "font": self.build_font(props), + "number_format": self.build_number_format(props), + } + + # TODO: handle cell width and height: needs support in pandas.io.excel + + def remove_none(d: dict[str, str | None]) -> None: + """Remove key where value is None, through nested dicts""" + for k, v in list(d.items()): + if v is None: + del d[k] + elif isinstance(v, dict): + remove_none(v) + if not v: + del d[k] + + remove_none(out) + return out + + def build_alignment(self, props: Mapping[str, str]) -> dict[str, bool | str | None]: + # TODO: text-indent, padding-left -> alignment.indent + return { + "horizontal": props.get("text-align"), + "vertical": self._get_vertical_alignment(props), + "wrap_text": self._get_is_wrap_text(props), + } + + def _get_vertical_alignment(self, props: Mapping[str, str]) -> str | None: + vertical_align = props.get("vertical-align") + if vertical_align: + return self.VERTICAL_MAP.get(vertical_align) + return None + + def _get_is_wrap_text(self, props: Mapping[str, str]) -> bool | None: + if props.get("white-space") is None: + return None + return bool(props["white-space"] not in ("nowrap", "pre", "pre-line")) + + def build_border( + self, props: Mapping[str, str] + ) -> dict[str, dict[str, str | None]]: + return { + side: { + "style": self._border_style( + props.get(f"border-{side}-style"), + props.get(f"border-{side}-width"), + self.color_to_excel(props.get(f"border-{side}-color")), + ), + "color": self.color_to_excel(props.get(f"border-{side}-color")), + } + for side in ["top", "right", "bottom", "left"] + } + + def _border_style(self, style: str | None, width: str | None, color: str | None): + # convert styles and widths to openxml, one of: + # 'dashDot' + # 'dashDotDot' + # 'dashed' + # 'dotted' + # 'double' + # 'hair' + # 'medium' + # 'mediumDashDot' + # 'mediumDashDotDot' + # 'mediumDashed' + # 'slantDashDot' + # 'thick' + # 'thin' + if width is None and style is None and color is None: + # Return None will remove "border" from style dictionary + return None + + if width is None and style is None: + # Return "none" will keep "border" in style dictionary + return "none" + + if style in ("none", "hidden"): + return "none" + + width_name = self._get_width_name(width) + if width_name is None: + return "none" + + if style in (None, "groove", "ridge", "inset", "outset", "solid"): + # not handled + return width_name + + if style == "double": + return "double" + if style == "dotted": + if width_name in ("hair", "thin"): + return "dotted" + return "mediumDashDotDot" + if style == "dashed": + if width_name in ("hair", "thin"): + return "dashed" + return "mediumDashed" + elif style in self.BORDER_STYLE_MAP: + # Excel-specific styles + return self.BORDER_STYLE_MAP[style] + else: + warnings.warn( + f"Unhandled border style format: {repr(style)}", + CSSWarning, + stacklevel=find_stack_level(), + ) + return "none" + + def _get_width_name(self, width_input: str | None) -> str | None: + width = self._width_to_float(width_input) + if width < 1e-5: + return None + elif width < 1.3: + return "thin" + elif width < 2.8: + return "medium" + return "thick" + + def _width_to_float(self, width: str | None) -> float: + if width is None: + width = "2pt" + return self._pt_to_float(width) + + def _pt_to_float(self, pt_string: str) -> float: + assert pt_string.endswith("pt") + return float(pt_string.rstrip("pt")) + + def build_fill(self, props: Mapping[str, str]): + # TODO: perhaps allow for special properties + # -excel-pattern-bgcolor and -excel-pattern-type + fill_color = props.get("background-color") + if fill_color not in (None, "transparent", "none"): + return {"fgColor": self.color_to_excel(fill_color), "patternType": "solid"} + + def build_number_format(self, props: Mapping[str, str]) -> dict[str, str | None]: + fc = props.get("number-format") + fc = fc.replace("§", ";") if isinstance(fc, str) else fc + return {"format_code": fc} + + def build_font( + self, props: Mapping[str, str] + ) -> dict[str, bool | float | str | None]: + font_names = self._get_font_names(props) + decoration = self._get_decoration(props) + return { + "name": font_names[0] if font_names else None, + "family": self._select_font_family(font_names), + "size": self._get_font_size(props), + "bold": self._get_is_bold(props), + "italic": self._get_is_italic(props), + "underline": ("single" if "underline" in decoration else None), + "strike": ("line-through" in decoration) or None, + "color": self.color_to_excel(props.get("color")), + # shadow if nonzero digit before shadow color + "shadow": self._get_shadow(props), + } + + def _get_is_bold(self, props: Mapping[str, str]) -> bool | None: + weight = props.get("font-weight") + if weight: + return self.BOLD_MAP.get(weight) + return None + + def _get_is_italic(self, props: Mapping[str, str]) -> bool | None: + font_style = props.get("font-style") + if font_style: + return self.ITALIC_MAP.get(font_style) + return None + + def _get_decoration(self, props: Mapping[str, str]) -> Sequence[str]: + decoration = props.get("text-decoration") + if decoration is not None: + return decoration.split() + else: + return () + + def _get_underline(self, decoration: Sequence[str]) -> str | None: + if "underline" in decoration: + return "single" + return None + + def _get_shadow(self, props: Mapping[str, str]) -> bool | None: + if "text-shadow" in props: + return bool(re.search("^[^#(]*[1-9]", props["text-shadow"])) + return None + + def _get_font_names(self, props: Mapping[str, str]) -> Sequence[str]: + font_names_tmp = re.findall( + r"""(?x) + ( + "(?:[^"]|\\")+" + | + '(?:[^']|\\')+' + | + [^'",]+ + )(?=,|\s*$) + """, + props.get("font-family", ""), + ) + + font_names = [] + for name in font_names_tmp: + if name[:1] == '"': + name = name[1:-1].replace('\\"', '"') + elif name[:1] == "'": + name = name[1:-1].replace("\\'", "'") + else: + name = name.strip() + if name: + font_names.append(name) + return font_names + + def _get_font_size(self, props: Mapping[str, str]) -> float | None: + size = props.get("font-size") + if size is None: + return size + return self._pt_to_float(size) + + def _select_font_family(self, font_names: Sequence[str]) -> int | None: + family = None + for name in font_names: + family = self.FAMILY_MAP.get(name) + if family: + break + + return family + + def color_to_excel(self, val: str | None) -> str | None: + if val is None: + return None + + if self._is_hex_color(val): + return self._convert_hex_to_excel(val) + + try: + return self.NAMED_COLORS[val] + except KeyError: + warnings.warn( + f"Unhandled color format: {repr(val)}", + CSSWarning, + stacklevel=find_stack_level(), + ) + return None + + def _is_hex_color(self, color_string: str) -> bool: + return bool(color_string.startswith("#")) + + def _convert_hex_to_excel(self, color_string: str) -> str: + code = color_string.lstrip("#") + if self._is_shorthand_color(color_string): + return (code[0] * 2 + code[1] * 2 + code[2] * 2).upper() + else: + return code.upper() + + def _is_shorthand_color(self, color_string: str) -> bool: + """Check if color code is shorthand. + + #FFF is a shorthand as opposed to full #FFFFFF. + """ + code = color_string.lstrip("#") + if len(code) == 3: + return True + elif len(code) == 6: + return False + else: + raise ValueError(f"Unexpected color {color_string}") + + +class ExcelFormatter: + """ + Class for formatting a DataFrame to a list of ExcelCells, + + Parameters + ---------- + df : DataFrame or Styler + na_rep: na representation + float_format : str, default None + Format string for floating point numbers + cols : sequence, optional + Columns to write + header : bool or sequence of str, default True + Write out column names. If a list of string is given it is + assumed to be aliases for the column names + index : bool, default True + output row names (index) + index_label : str or sequence, default None + Column label for index column(s) if desired. If None is given, and + `header` and `index` are True, then the index names are used. A + sequence should be given if the DataFrame uses MultiIndex. + merge_cells : bool, default False + Format MultiIndex and Hierarchical Rows as merged cells. + inf_rep : str, default `'inf'` + representation for np.inf values (which aren't representable in Excel) + A `'-'` sign will be added in front of -inf. + style_converter : callable, optional + This translates Styler styles (CSS) into ExcelWriter styles. + Defaults to ``CSSToExcelConverter()``. + It should have signature css_declarations string -> excel style. + This is only called for body cells. + """ + + max_rows = 2**20 + max_cols = 2**14 + + def __init__( + self, + df, + na_rep: str = "", + float_format: str | None = None, + cols: Sequence[Hashable] | None = None, + header: Sequence[Hashable] | bool = True, + index: bool = True, + index_label: IndexLabel | None = None, + merge_cells: bool = False, + inf_rep: str = "inf", + style_converter: Callable | None = None, + ) -> None: + self.rowcounter = 0 + self.na_rep = na_rep + if not isinstance(df, DataFrame): + self.styler = df + self.styler._compute() # calculate applied styles + df = df.data + if style_converter is None: + style_converter = CSSToExcelConverter() + self.style_converter: Callable | None = style_converter + else: + self.styler = None + self.style_converter = None + self.df = df + if cols is not None: + # all missing, raise + if not len(Index(cols).intersection(df.columns)): + raise KeyError("passes columns are not ALL present dataframe") + + if len(Index(cols).intersection(df.columns)) != len(set(cols)): + # Deprecated in GH#17295, enforced in 1.0.0 + raise KeyError("Not all names specified in 'columns' are found") + + self.df = df.reindex(columns=cols) + + self.columns = self.df.columns + self.float_format = float_format + self.index = index + self.index_label = index_label + self.header = header + self.merge_cells = merge_cells + self.inf_rep = inf_rep + + @property + def header_style(self) -> dict[str, dict[str, str | bool]]: + return { + "font": {"bold": True}, + "borders": { + "top": "thin", + "right": "thin", + "bottom": "thin", + "left": "thin", + }, + "alignment": {"horizontal": "center", "vertical": "top"}, + } + + def _format_value(self, val): + if is_scalar(val) and missing.isna(val): + val = self.na_rep + elif is_float(val): + if missing.isposinf_scalar(val): + val = self.inf_rep + elif missing.isneginf_scalar(val): + val = f"-{self.inf_rep}" + elif self.float_format is not None: + val = float(self.float_format % val) + if getattr(val, "tzinfo", None) is not None: + raise ValueError( + "Excel does not support datetimes with " + "timezones. Please ensure that datetimes " + "are timezone unaware before writing to Excel." + ) + return val + + def _format_header_mi(self) -> Iterable[ExcelCell]: + if self.columns.nlevels > 1: + if not self.index: + raise NotImplementedError( + "Writing to Excel with MultiIndex columns and no " + "index ('index'=False) is not yet implemented." + ) + + if not (self._has_aliases or self.header): + return + + columns = self.columns + level_strs = columns._format_multi( + sparsify=self.merge_cells, include_names=False + ) + level_lengths = get_level_lengths(level_strs) + coloffset = 0 + lnum = 0 + + if self.index and isinstance(self.df.index, MultiIndex): + coloffset = len(self.df.index[0]) - 1 + + if self.merge_cells: + # Format multi-index as a merged cells. + for lnum, name in enumerate(columns.names): + yield ExcelCell( + row=lnum, + col=coloffset, + val=name, + style=self.header_style, + ) + + for lnum, (spans, levels, level_codes) in enumerate( + zip(level_lengths, columns.levels, columns.codes) + ): + values = levels.take(level_codes) + for i, span_val in spans.items(): + mergestart, mergeend = None, None + if span_val > 1: + mergestart, mergeend = lnum, coloffset + i + span_val + yield CssExcelCell( + row=lnum, + col=coloffset + i + 1, + val=values[i], + style=self.header_style, + css_styles=getattr(self.styler, "ctx_columns", None), + css_row=lnum, + css_col=i, + css_converter=self.style_converter, + mergestart=mergestart, + mergeend=mergeend, + ) + else: + # Format in legacy format with dots to indicate levels. + for i, values in enumerate(zip(*level_strs)): + v = ".".join(map(pprint_thing, values)) + yield CssExcelCell( + row=lnum, + col=coloffset + i + 1, + val=v, + style=self.header_style, + css_styles=getattr(self.styler, "ctx_columns", None), + css_row=lnum, + css_col=i, + css_converter=self.style_converter, + ) + + self.rowcounter = lnum + + def _format_header_regular(self) -> Iterable[ExcelCell]: + if self._has_aliases or self.header: + coloffset = 0 + + if self.index: + coloffset = 1 + if isinstance(self.df.index, MultiIndex): + coloffset = len(self.df.index.names) + + colnames = self.columns + if self._has_aliases: + self.header = cast(Sequence, self.header) + if len(self.header) != len(self.columns): + raise ValueError( + f"Writing {len(self.columns)} cols " + f"but got {len(self.header)} aliases" + ) + colnames = self.header + + for colindex, colname in enumerate(colnames): + yield CssExcelCell( + row=self.rowcounter, + col=colindex + coloffset, + val=colname, + style=self.header_style, + css_styles=getattr(self.styler, "ctx_columns", None), + css_row=0, + css_col=colindex, + css_converter=self.style_converter, + ) + + def _format_header(self) -> Iterable[ExcelCell]: + gen: Iterable[ExcelCell] + + if isinstance(self.columns, MultiIndex): + gen = self._format_header_mi() + else: + gen = self._format_header_regular() + + gen2: Iterable[ExcelCell] = () + + if self.df.index.names: + row = [x if x is not None else "" for x in self.df.index.names] + [ + "" + ] * len(self.columns) + if functools.reduce(lambda x, y: x and y, (x != "" for x in row)): + gen2 = ( + ExcelCell(self.rowcounter, colindex, val, self.header_style) + for colindex, val in enumerate(row) + ) + self.rowcounter += 1 + return itertools.chain(gen, gen2) + + def _format_body(self) -> Iterable[ExcelCell]: + if isinstance(self.df.index, MultiIndex): + return self._format_hierarchical_rows() + else: + return self._format_regular_rows() + + def _format_regular_rows(self) -> Iterable[ExcelCell]: + if self._has_aliases or self.header: + self.rowcounter += 1 + + # output index and index_label? + if self.index: + # check aliases + # if list only take first as this is not a MultiIndex + if self.index_label and isinstance( + self.index_label, (list, tuple, np.ndarray, Index) + ): + index_label = self.index_label[0] + # if string good to go + elif self.index_label and isinstance(self.index_label, str): + index_label = self.index_label + else: + index_label = self.df.index.names[0] + + if isinstance(self.columns, MultiIndex): + self.rowcounter += 1 + + if index_label and self.header is not False: + yield ExcelCell(self.rowcounter - 1, 0, index_label, self.header_style) + + # write index_values + index_values = self.df.index + if isinstance(self.df.index, PeriodIndex): + index_values = self.df.index.to_timestamp() + + for idx, idxval in enumerate(index_values): + yield CssExcelCell( + row=self.rowcounter + idx, + col=0, + val=idxval, + style=self.header_style, + css_styles=getattr(self.styler, "ctx_index", None), + css_row=idx, + css_col=0, + css_converter=self.style_converter, + ) + coloffset = 1 + else: + coloffset = 0 + + yield from self._generate_body(coloffset) + + def _format_hierarchical_rows(self) -> Iterable[ExcelCell]: + if self._has_aliases or self.header: + self.rowcounter += 1 + + gcolidx = 0 + + if self.index: + index_labels = self.df.index.names + # check for aliases + if self.index_label and isinstance( + self.index_label, (list, tuple, np.ndarray, Index) + ): + index_labels = self.index_label + + # MultiIndex columns require an extra row + # with index names (blank if None) for + # unambiguous round-trip, unless not merging, + # in which case the names all go on one row Issue #11328 + if isinstance(self.columns, MultiIndex) and self.merge_cells: + self.rowcounter += 1 + + # if index labels are not empty go ahead and dump + if com.any_not_none(*index_labels) and self.header is not False: + for cidx, name in enumerate(index_labels): + yield ExcelCell(self.rowcounter - 1, cidx, name, self.header_style) + + if self.merge_cells: + # Format hierarchical rows as merged cells. + level_strs = self.df.index._format_multi( + sparsify=True, include_names=False + ) + level_lengths = get_level_lengths(level_strs) + + for spans, levels, level_codes in zip( + level_lengths, self.df.index.levels, self.df.index.codes + ): + values = levels.take( + level_codes, + allow_fill=levels._can_hold_na, + fill_value=levels._na_value, + ) + + for i, span_val in spans.items(): + mergestart, mergeend = None, None + if span_val > 1: + mergestart = self.rowcounter + i + span_val - 1 + mergeend = gcolidx + yield CssExcelCell( + row=self.rowcounter + i, + col=gcolidx, + val=values[i], + style=self.header_style, + css_styles=getattr(self.styler, "ctx_index", None), + css_row=i, + css_col=gcolidx, + css_converter=self.style_converter, + mergestart=mergestart, + mergeend=mergeend, + ) + gcolidx += 1 + + else: + # Format hierarchical rows with non-merged values. + for indexcolvals in zip(*self.df.index): + for idx, indexcolval in enumerate(indexcolvals): + yield CssExcelCell( + row=self.rowcounter + idx, + col=gcolidx, + val=indexcolval, + style=self.header_style, + css_styles=getattr(self.styler, "ctx_index", None), + css_row=idx, + css_col=gcolidx, + css_converter=self.style_converter, + ) + gcolidx += 1 + + yield from self._generate_body(gcolidx) + + @property + def _has_aliases(self) -> bool: + """Whether the aliases for column names are present.""" + return is_list_like(self.header) + + def _generate_body(self, coloffset: int) -> Iterable[ExcelCell]: + # Write the body of the frame data series by series. + for colidx in range(len(self.columns)): + series = self.df.iloc[:, colidx] + for i, val in enumerate(series): + yield CssExcelCell( + row=self.rowcounter + i, + col=colidx + coloffset, + val=val, + style=None, + css_styles=getattr(self.styler, "ctx", None), + css_row=i, + css_col=colidx, + css_converter=self.style_converter, + ) + + def get_formatted_cells(self) -> Iterable[ExcelCell]: + for cell in itertools.chain(self._format_header(), self._format_body()): + cell.val = self._format_value(cell.val) + yield cell + + @doc(storage_options=_shared_docs["storage_options"]) + def write( + self, + writer: FilePath | WriteExcelBuffer | ExcelWriter, + sheet_name: str = "Sheet1", + startrow: int = 0, + startcol: int = 0, + freeze_panes: tuple[int, int] | None = None, + engine: str | None = None, + storage_options: StorageOptions | None = None, + engine_kwargs: dict | None = None, + ) -> None: + """ + writer : path-like, file-like, or ExcelWriter object + File path or existing ExcelWriter + sheet_name : str, default 'Sheet1' + Name of sheet which will contain DataFrame + startrow : + upper left cell row to dump data frame + startcol : + upper left cell column to dump data frame + freeze_panes : tuple of integer (length 2), default None + Specifies the one-based bottommost row and rightmost column that + is to be frozen + engine : string, default None + write engine to use if writer is a path - you can also set this + via the options ``io.excel.xlsx.writer``, + or ``io.excel.xlsm.writer``. + + {storage_options} + + engine_kwargs: dict, optional + Arbitrary keyword arguments passed to excel engine. + """ + from pandas.io.excel import ExcelWriter + + num_rows, num_cols = self.df.shape + if num_rows > self.max_rows or num_cols > self.max_cols: + raise ValueError( + f"This sheet is too large! Your sheet size is: {num_rows}, {num_cols} " + f"Max sheet size is: {self.max_rows}, {self.max_cols}" + ) + + if engine_kwargs is None: + engine_kwargs = {} + + formatted_cells = self.get_formatted_cells() + if isinstance(writer, ExcelWriter): + need_save = False + else: + writer = ExcelWriter( + writer, + engine=engine, + storage_options=storage_options, + engine_kwargs=engine_kwargs, + ) + need_save = True + + try: + writer._write_cells( + formatted_cells, + sheet_name, + startrow=startrow, + startcol=startcol, + freeze_panes=freeze_panes, + ) + finally: + # make sure to close opened file handles + if need_save: + writer.close() diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/format.py b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/format.py new file mode 100644 index 0000000000000000000000000000000000000000..00c7526edfa4894fab655cb5bbfdf2aa93c4e96d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/format.py @@ -0,0 +1,2058 @@ +""" +Internal module for formatting output data in csv, html, xml, +and latex files. This module also applies to display formatting. +""" +from __future__ import annotations + +from collections.abc import ( + Generator, + Hashable, + Mapping, + Sequence, +) +from contextlib import contextmanager +from csv import QUOTE_NONE +from decimal import Decimal +from functools import partial +from io import StringIO +import math +import re +from shutil import get_terminal_size +from typing import ( + TYPE_CHECKING, + Any, + Callable, + Final, + cast, +) + +import numpy as np + +from pandas._config.config import ( + get_option, + set_option, +) + +from pandas._libs import lib +from pandas._libs.missing import NA +from pandas._libs.tslibs import ( + NaT, + Timedelta, + Timestamp, +) +from pandas._libs.tslibs.nattype import NaTType + +from pandas.core.dtypes.common import ( + is_complex_dtype, + is_float, + is_integer, + is_list_like, + is_numeric_dtype, + is_scalar, +) +from pandas.core.dtypes.dtypes import ( + CategoricalDtype, + DatetimeTZDtype, + ExtensionDtype, +) +from pandas.core.dtypes.missing import ( + isna, + notna, +) + +from pandas.core.arrays import ( + Categorical, + DatetimeArray, + ExtensionArray, + TimedeltaArray, +) +from pandas.core.arrays.string_ import StringDtype +from pandas.core.base import PandasObject +import pandas.core.common as com +from pandas.core.indexes.api import ( + Index, + MultiIndex, + PeriodIndex, + ensure_index, +) +from pandas.core.indexes.datetimes import DatetimeIndex +from pandas.core.indexes.timedeltas import TimedeltaIndex +from pandas.core.reshape.concat import concat + +from pandas.io.common import ( + check_parent_directory, + stringify_path, +) +from pandas.io.formats import printing + +if TYPE_CHECKING: + from pandas._typing import ( + ArrayLike, + Axes, + ColspaceArgType, + ColspaceType, + CompressionOptions, + FilePath, + FloatFormatType, + FormattersType, + IndexLabel, + SequenceNotStr, + StorageOptions, + WriteBuffer, + ) + + from pandas import ( + DataFrame, + Series, + ) + + +common_docstring: Final = """ + Parameters + ---------- + buf : str, Path or StringIO-like, optional, default None + Buffer to write to. If None, the output is returned as a string. + columns : array-like, optional, default None + The subset of columns to write. Writes all columns by default. + col_space : %(col_space_type)s, optional + %(col_space)s. + header : %(header_type)s, optional + %(header)s. + index : bool, optional, default True + Whether to print index (row) labels. + na_rep : str, optional, default 'NaN' + String representation of ``NaN`` to use. + formatters : list, tuple or dict of one-param. functions, optional + Formatter functions to apply to columns' elements by position or + name. + The result of each function must be a unicode string. + List/tuple must be of length equal to the number of columns. + float_format : one-parameter function, optional, default None + Formatter function to apply to columns' elements if they are + floats. This function must return a unicode string and will be + applied only to the non-``NaN`` elements, with ``NaN`` being + handled by ``na_rep``. + sparsify : bool, optional, default True + Set to False for a DataFrame with a hierarchical index to print + every multiindex key at each row. + index_names : bool, optional, default True + Prints the names of the indexes. + justify : str, default None + How to justify the column labels. If None uses the option from + the print configuration (controlled by set_option), 'right' out + of the box. Valid values are + + * left + * right + * center + * justify + * justify-all + * start + * end + * inherit + * match-parent + * initial + * unset. + max_rows : int, optional + Maximum number of rows to display in the console. + max_cols : int, optional + Maximum number of columns to display in the console. + show_dimensions : bool, default False + Display DataFrame dimensions (number of rows by number of columns). + decimal : str, default '.' + Character recognized as decimal separator, e.g. ',' in Europe. + """ + +VALID_JUSTIFY_PARAMETERS = ( + "left", + "right", + "center", + "justify", + "justify-all", + "start", + "end", + "inherit", + "match-parent", + "initial", + "unset", +) + +return_docstring: Final = """ + Returns + ------- + str or None + If buf is None, returns the result as a string. Otherwise returns + None. + """ + + +class SeriesFormatter: + """ + Implement the main logic of Series.to_string, which underlies + Series.__repr__. + """ + + def __init__( + self, + series: Series, + *, + length: bool | str = True, + header: bool = True, + index: bool = True, + na_rep: str = "NaN", + name: bool = False, + float_format: str | None = None, + dtype: bool = True, + max_rows: int | None = None, + min_rows: int | None = None, + ) -> None: + self.series = series + self.buf = StringIO() + self.name = name + self.na_rep = na_rep + self.header = header + self.length = length + self.index = index + self.max_rows = max_rows + self.min_rows = min_rows + + if float_format is None: + float_format = get_option("display.float_format") + self.float_format = float_format + self.dtype = dtype + self.adj = printing.get_adjustment() + + self._chk_truncate() + + def _chk_truncate(self) -> None: + self.tr_row_num: int | None + + min_rows = self.min_rows + max_rows = self.max_rows + # truncation determined by max_rows, actual truncated number of rows + # used below by min_rows + is_truncated_vertically = max_rows and (len(self.series) > max_rows) + series = self.series + if is_truncated_vertically: + max_rows = cast(int, max_rows) + if min_rows: + # if min_rows is set (not None or 0), set max_rows to minimum + # of both + max_rows = min(min_rows, max_rows) + if max_rows == 1: + row_num = max_rows + series = series.iloc[:max_rows] + else: + row_num = max_rows // 2 + series = concat((series.iloc[:row_num], series.iloc[-row_num:])) + self.tr_row_num = row_num + else: + self.tr_row_num = None + self.tr_series = series + self.is_truncated_vertically = is_truncated_vertically + + def _get_footer(self) -> str: + name = self.series.name + footer = "" + + index = self.series.index + if ( + isinstance(index, (DatetimeIndex, PeriodIndex, TimedeltaIndex)) + and index.freq is not None + ): + footer += f"Freq: {index.freqstr}" + + if self.name is not False and name is not None: + if footer: + footer += ", " + + series_name = printing.pprint_thing(name, escape_chars=("\t", "\r", "\n")) + footer += f"Name: {series_name}" + + if self.length is True or ( + self.length == "truncate" and self.is_truncated_vertically + ): + if footer: + footer += ", " + footer += f"Length: {len(self.series)}" + + if self.dtype is not False and self.dtype is not None: + dtype_name = getattr(self.tr_series.dtype, "name", None) + if dtype_name: + if footer: + footer += ", " + footer += f"dtype: {printing.pprint_thing(dtype_name)}" + + # level infos are added to the end and in a new line, like it is done + # for Categoricals + if isinstance(self.tr_series.dtype, CategoricalDtype): + level_info = self.tr_series._values._get_repr_footer() + if footer: + footer += "\n" + footer += level_info + + return str(footer) + + def _get_formatted_values(self) -> list[str]: + return format_array( + self.tr_series._values, + None, + float_format=self.float_format, + na_rep=self.na_rep, + leading_space=self.index, + ) + + def to_string(self) -> str: + series = self.tr_series + footer = self._get_footer() + + if len(series) == 0: + return f"{type(self.series).__name__}([], {footer})" + + index = series.index + have_header = _has_names(index) + if isinstance(index, MultiIndex): + fmt_index = index._format_multi(include_names=True, sparsify=None) + adj = printing.get_adjustment() + fmt_index = adj.adjoin(2, *fmt_index).split("\n") + else: + fmt_index = index._format_flat(include_name=True) + fmt_values = self._get_formatted_values() + + if self.is_truncated_vertically: + n_header_rows = 0 + row_num = self.tr_row_num + row_num = cast(int, row_num) + width = self.adj.len(fmt_values[row_num - 1]) + if width > 3: + dot_str = "..." + else: + dot_str = ".." + # Series uses mode=center because it has single value columns + # DataFrame uses mode=left + dot_str = self.adj.justify([dot_str], width, mode="center")[0] + fmt_values.insert(row_num + n_header_rows, dot_str) + fmt_index.insert(row_num + 1, "") + + if self.index: + result = self.adj.adjoin(3, *[fmt_index[1:], fmt_values]) + else: + result = self.adj.adjoin(3, fmt_values) + + if self.header and have_header: + result = fmt_index[0] + "\n" + result + + if footer: + result += "\n" + footer + + return str("".join(result)) + + +def get_dataframe_repr_params() -> dict[str, Any]: + """Get the parameters used to repr(dataFrame) calls using DataFrame.to_string. + + Supplying these parameters to DataFrame.to_string is equivalent to calling + ``repr(DataFrame)``. This is useful if you want to adjust the repr output. + + .. versionadded:: 1.4.0 + + Example + ------- + >>> import pandas as pd + >>> + >>> df = pd.DataFrame([[1, 2], [3, 4]]) + >>> repr_params = pd.io.formats.format.get_dataframe_repr_params() + >>> repr(df) == df.to_string(**repr_params) + True + """ + from pandas.io.formats import console + + if get_option("display.expand_frame_repr"): + line_width, _ = console.get_console_size() + else: + line_width = None + return { + "max_rows": get_option("display.max_rows"), + "min_rows": get_option("display.min_rows"), + "max_cols": get_option("display.max_columns"), + "max_colwidth": get_option("display.max_colwidth"), + "show_dimensions": get_option("display.show_dimensions"), + "line_width": line_width, + } + + +def get_series_repr_params() -> dict[str, Any]: + """Get the parameters used to repr(Series) calls using Series.to_string. + + Supplying these parameters to Series.to_string is equivalent to calling + ``repr(series)``. This is useful if you want to adjust the series repr output. + + .. versionadded:: 1.4.0 + + Example + ------- + >>> import pandas as pd + >>> + >>> ser = pd.Series([1, 2, 3, 4]) + >>> repr_params = pd.io.formats.format.get_series_repr_params() + >>> repr(ser) == ser.to_string(**repr_params) + True + """ + width, height = get_terminal_size() + max_rows_opt = get_option("display.max_rows") + max_rows = height if max_rows_opt == 0 else max_rows_opt + min_rows = height if max_rows_opt == 0 else get_option("display.min_rows") + + return { + "name": True, + "dtype": True, + "min_rows": min_rows, + "max_rows": max_rows, + "length": get_option("display.show_dimensions"), + } + + +class DataFrameFormatter: + """ + Class for processing dataframe formatting options and data. + + Used by DataFrame.to_string, which backs DataFrame.__repr__. + """ + + __doc__ = __doc__ if __doc__ else "" + __doc__ += common_docstring + return_docstring + + def __init__( + self, + frame: DataFrame, + columns: Axes | None = None, + col_space: ColspaceArgType | None = None, + header: bool | SequenceNotStr[str] = True, + index: bool = True, + na_rep: str = "NaN", + formatters: FormattersType | None = None, + justify: str | None = None, + float_format: FloatFormatType | None = None, + sparsify: bool | None = None, + index_names: bool = True, + max_rows: int | None = None, + min_rows: int | None = None, + max_cols: int | None = None, + show_dimensions: bool | str = False, + decimal: str = ".", + bold_rows: bool = False, + escape: bool = True, + ) -> None: + self.frame = frame + self.columns = self._initialize_columns(columns) + self.col_space = self._initialize_colspace(col_space) + self.header = header + self.index = index + self.na_rep = na_rep + self.formatters = self._initialize_formatters(formatters) + self.justify = self._initialize_justify(justify) + self.float_format = float_format + self.sparsify = self._initialize_sparsify(sparsify) + self.show_index_names = index_names + self.decimal = decimal + self.bold_rows = bold_rows + self.escape = escape + self.max_rows = max_rows + self.min_rows = min_rows + self.max_cols = max_cols + self.show_dimensions = show_dimensions + + self.max_cols_fitted = self._calc_max_cols_fitted() + self.max_rows_fitted = self._calc_max_rows_fitted() + + self.tr_frame = self.frame + self.truncate() + self.adj = printing.get_adjustment() + + def get_strcols(self) -> list[list[str]]: + """ + Render a DataFrame to a list of columns (as lists of strings). + """ + strcols = self._get_strcols_without_index() + + if self.index: + str_index = self._get_formatted_index(self.tr_frame) + strcols.insert(0, str_index) + + return strcols + + @property + def should_show_dimensions(self) -> bool: + return self.show_dimensions is True or ( + self.show_dimensions == "truncate" and self.is_truncated + ) + + @property + def is_truncated(self) -> bool: + return bool(self.is_truncated_horizontally or self.is_truncated_vertically) + + @property + def is_truncated_horizontally(self) -> bool: + return bool(self.max_cols_fitted and (len(self.columns) > self.max_cols_fitted)) + + @property + def is_truncated_vertically(self) -> bool: + return bool(self.max_rows_fitted and (len(self.frame) > self.max_rows_fitted)) + + @property + def dimensions_info(self) -> str: + return f"\n\n[{len(self.frame)} rows x {len(self.frame.columns)} columns]" + + @property + def has_index_names(self) -> bool: + return _has_names(self.frame.index) + + @property + def has_column_names(self) -> bool: + return _has_names(self.frame.columns) + + @property + def show_row_idx_names(self) -> bool: + return all((self.has_index_names, self.index, self.show_index_names)) + + @property + def show_col_idx_names(self) -> bool: + return all((self.has_column_names, self.show_index_names, self.header)) + + @property + def max_rows_displayed(self) -> int: + return min(self.max_rows or len(self.frame), len(self.frame)) + + def _initialize_sparsify(self, sparsify: bool | None) -> bool: + if sparsify is None: + return get_option("display.multi_sparse") + return sparsify + + def _initialize_formatters( + self, formatters: FormattersType | None + ) -> FormattersType: + if formatters is None: + return {} + elif len(self.frame.columns) == len(formatters) or isinstance(formatters, dict): + return formatters + else: + raise ValueError( + f"Formatters length({len(formatters)}) should match " + f"DataFrame number of columns({len(self.frame.columns)})" + ) + + def _initialize_justify(self, justify: str | None) -> str: + if justify is None: + return get_option("display.colheader_justify") + else: + return justify + + def _initialize_columns(self, columns: Axes | None) -> Index: + if columns is not None: + cols = ensure_index(columns) + self.frame = self.frame[cols] + return cols + else: + return self.frame.columns + + def _initialize_colspace(self, col_space: ColspaceArgType | None) -> ColspaceType: + result: ColspaceType + + if col_space is None: + result = {} + elif isinstance(col_space, (int, str)): + result = {"": col_space} + result.update({column: col_space for column in self.frame.columns}) + elif isinstance(col_space, Mapping): + for column in col_space.keys(): + if column not in self.frame.columns and column != "": + raise ValueError( + f"Col_space is defined for an unknown column: {column}" + ) + result = col_space + else: + if len(self.frame.columns) != len(col_space): + raise ValueError( + f"Col_space length({len(col_space)}) should match " + f"DataFrame number of columns({len(self.frame.columns)})" + ) + result = dict(zip(self.frame.columns, col_space)) + return result + + def _calc_max_cols_fitted(self) -> int | None: + """Number of columns fitting the screen.""" + if not self._is_in_terminal(): + return self.max_cols + + width, _ = get_terminal_size() + if self._is_screen_narrow(width): + return width + else: + return self.max_cols + + def _calc_max_rows_fitted(self) -> int | None: + """Number of rows with data fitting the screen.""" + max_rows: int | None + + if self._is_in_terminal(): + _, height = get_terminal_size() + if self.max_rows == 0: + # rows available to fill with actual data + return height - self._get_number_of_auxiliary_rows() + + if self._is_screen_short(height): + max_rows = height + else: + max_rows = self.max_rows + else: + max_rows = self.max_rows + + return self._adjust_max_rows(max_rows) + + def _adjust_max_rows(self, max_rows: int | None) -> int | None: + """Adjust max_rows using display logic. + + See description here: + https://pandas.pydata.org/docs/dev/user_guide/options.html#frequently-used-options + + GH #37359 + """ + if max_rows: + if (len(self.frame) > max_rows) and self.min_rows: + # if truncated, set max_rows showed to min_rows + max_rows = min(self.min_rows, max_rows) + return max_rows + + def _is_in_terminal(self) -> bool: + """Check if the output is to be shown in terminal.""" + return bool(self.max_cols == 0 or self.max_rows == 0) + + def _is_screen_narrow(self, max_width) -> bool: + return bool(self.max_cols == 0 and len(self.frame.columns) > max_width) + + def _is_screen_short(self, max_height) -> bool: + return bool(self.max_rows == 0 and len(self.frame) > max_height) + + def _get_number_of_auxiliary_rows(self) -> int: + """Get number of rows occupied by prompt, dots and dimension info.""" + dot_row = 1 + prompt_row = 1 + num_rows = dot_row + prompt_row + + if self.show_dimensions: + num_rows += len(self.dimensions_info.splitlines()) + + if self.header: + num_rows += 1 + + return num_rows + + def truncate(self) -> None: + """ + Check whether the frame should be truncated. If so, slice the frame up. + """ + if self.is_truncated_horizontally: + self._truncate_horizontally() + + if self.is_truncated_vertically: + self._truncate_vertically() + + def _truncate_horizontally(self) -> None: + """Remove columns, which are not to be displayed and adjust formatters. + + Attributes affected: + - tr_frame + - formatters + - tr_col_num + """ + assert self.max_cols_fitted is not None + col_num = self.max_cols_fitted // 2 + if col_num >= 1: + left = self.tr_frame.iloc[:, :col_num] + right = self.tr_frame.iloc[:, -col_num:] + self.tr_frame = concat((left, right), axis=1) + + # truncate formatter + if isinstance(self.formatters, (list, tuple)): + self.formatters = [ + *self.formatters[:col_num], + *self.formatters[-col_num:], + ] + else: + col_num = cast(int, self.max_cols) + self.tr_frame = self.tr_frame.iloc[:, :col_num] + self.tr_col_num = col_num + + def _truncate_vertically(self) -> None: + """Remove rows, which are not to be displayed. + + Attributes affected: + - tr_frame + - tr_row_num + """ + assert self.max_rows_fitted is not None + row_num = self.max_rows_fitted // 2 + if row_num >= 1: + _len = len(self.tr_frame) + _slice = np.hstack([np.arange(row_num), np.arange(_len - row_num, _len)]) + self.tr_frame = self.tr_frame.iloc[_slice] + else: + row_num = cast(int, self.max_rows) + self.tr_frame = self.tr_frame.iloc[:row_num, :] + self.tr_row_num = row_num + + def _get_strcols_without_index(self) -> list[list[str]]: + strcols: list[list[str]] = [] + + if not is_list_like(self.header) and not self.header: + for i, c in enumerate(self.tr_frame): + fmt_values = self.format_col(i) + fmt_values = _make_fixed_width( + strings=fmt_values, + justify=self.justify, + minimum=int(self.col_space.get(c, 0)), + adj=self.adj, + ) + strcols.append(fmt_values) + return strcols + + if is_list_like(self.header): + # cast here since can't be bool if is_list_like + self.header = cast(list[str], self.header) + if len(self.header) != len(self.columns): + raise ValueError( + f"Writing {len(self.columns)} cols " + f"but got {len(self.header)} aliases" + ) + str_columns = [[label] for label in self.header] + else: + str_columns = self._get_formatted_column_labels(self.tr_frame) + + if self.show_row_idx_names: + for x in str_columns: + x.append("") + + for i, c in enumerate(self.tr_frame): + cheader = str_columns[i] + header_colwidth = max( + int(self.col_space.get(c, 0)), *(self.adj.len(x) for x in cheader) + ) + fmt_values = self.format_col(i) + fmt_values = _make_fixed_width( + fmt_values, self.justify, minimum=header_colwidth, adj=self.adj + ) + + max_len = max(*(self.adj.len(x) for x in fmt_values), header_colwidth) + cheader = self.adj.justify(cheader, max_len, mode=self.justify) + strcols.append(cheader + fmt_values) + + return strcols + + def format_col(self, i: int) -> list[str]: + frame = self.tr_frame + formatter = self._get_formatter(i) + return format_array( + frame.iloc[:, i]._values, + formatter, + float_format=self.float_format, + na_rep=self.na_rep, + space=self.col_space.get(frame.columns[i]), + decimal=self.decimal, + leading_space=self.index, + ) + + def _get_formatter(self, i: str | int) -> Callable | None: + if isinstance(self.formatters, (list, tuple)): + if is_integer(i): + i = cast(int, i) + return self.formatters[i] + else: + return None + else: + if is_integer(i) and i not in self.columns: + i = self.columns[i] + return self.formatters.get(i, None) + + def _get_formatted_column_labels(self, frame: DataFrame) -> list[list[str]]: + from pandas.core.indexes.multi import sparsify_labels + + columns = frame.columns + + if isinstance(columns, MultiIndex): + fmt_columns = columns._format_multi(sparsify=False, include_names=False) + fmt_columns = list(zip(*fmt_columns)) + dtypes = self.frame.dtypes._values + + # if we have a Float level, they don't use leading space at all + restrict_formatting = any(level.is_floating for level in columns.levels) + need_leadsp = dict(zip(fmt_columns, map(is_numeric_dtype, dtypes))) + + def space_format(x, y): + if ( + y not in self.formatters + and need_leadsp[x] + and not restrict_formatting + ): + return " " + y + return y + + str_columns_tuple = list( + zip(*([space_format(x, y) for y in x] for x in fmt_columns)) + ) + if self.sparsify and len(str_columns_tuple): + str_columns_tuple = sparsify_labels(str_columns_tuple) + + str_columns = [list(x) for x in zip(*str_columns_tuple)] + else: + fmt_columns = columns._format_flat(include_name=False) + dtypes = self.frame.dtypes + need_leadsp = dict(zip(fmt_columns, map(is_numeric_dtype, dtypes))) + str_columns = [ + [" " + x if not self._get_formatter(i) and need_leadsp[x] else x] + for i, x in enumerate(fmt_columns) + ] + # self.str_columns = str_columns + return str_columns + + def _get_formatted_index(self, frame: DataFrame) -> list[str]: + # Note: this is only used by to_string() and to_latex(), not by + # to_html(). so safe to cast col_space here. + col_space = {k: cast(int, v) for k, v in self.col_space.items()} + index = frame.index + columns = frame.columns + fmt = self._get_formatter("__index__") + + if isinstance(index, MultiIndex): + fmt_index = index._format_multi( + sparsify=self.sparsify, + include_names=self.show_row_idx_names, + formatter=fmt, + ) + else: + fmt_index = [ + index._format_flat(include_name=self.show_row_idx_names, formatter=fmt) + ] + + fmt_index = [ + tuple( + _make_fixed_width( + list(x), justify="left", minimum=col_space.get("", 0), adj=self.adj + ) + ) + for x in fmt_index + ] + + adjoined = self.adj.adjoin(1, *fmt_index).split("\n") + + # empty space for columns + if self.show_col_idx_names: + col_header = [str(x) for x in self._get_column_name_list()] + else: + col_header = [""] * columns.nlevels + + if self.header: + return col_header + adjoined + else: + return adjoined + + def _get_column_name_list(self) -> list[Hashable]: + names: list[Hashable] = [] + columns = self.frame.columns + if isinstance(columns, MultiIndex): + names.extend("" if name is None else name for name in columns.names) + else: + names.append("" if columns.name is None else columns.name) + return names + + +class DataFrameRenderer: + """Class for creating dataframe output in multiple formats. + + Called in pandas.core.generic.NDFrame: + - to_csv + - to_latex + + Called in pandas.core.frame.DataFrame: + - to_html + - to_string + + Parameters + ---------- + fmt : DataFrameFormatter + Formatter with the formatting options. + """ + + def __init__(self, fmt: DataFrameFormatter) -> None: + self.fmt = fmt + + def to_html( + self, + buf: FilePath | WriteBuffer[str] | None = None, + encoding: str | None = None, + classes: str | list | tuple | None = None, + notebook: bool = False, + border: int | bool | None = None, + table_id: str | None = None, + render_links: bool = False, + ) -> str | None: + """ + Render a DataFrame to a html table. + + Parameters + ---------- + buf : str, path object, file-like object, or None, default None + String, path object (implementing ``os.PathLike[str]``), or file-like + object implementing a string ``write()`` function. If None, the result is + returned as a string. + encoding : str, default “utf-8” + Set character encoding. + classes : str or list-like + classes to include in the `class` attribute of the opening + ```` tag, in addition to the default "dataframe". + notebook : {True, False}, optional, default False + Whether the generated HTML is for IPython Notebook. + border : int + A ``border=border`` attribute is included in the opening + ``
`` tag. Default ``pd.options.display.html.border``. + table_id : str, optional + A css id is included in the opening `
` tag if specified. + render_links : bool, default False + Convert URLs to HTML links. + """ + from pandas.io.formats.html import ( + HTMLFormatter, + NotebookFormatter, + ) + + Klass = NotebookFormatter if notebook else HTMLFormatter + + html_formatter = Klass( + self.fmt, + classes=classes, + border=border, + table_id=table_id, + render_links=render_links, + ) + string = html_formatter.to_string() + return save_to_buffer(string, buf=buf, encoding=encoding) + + def to_string( + self, + buf: FilePath | WriteBuffer[str] | None = None, + encoding: str | None = None, + line_width: int | None = None, + ) -> str | None: + """ + Render a DataFrame to a console-friendly tabular output. + + Parameters + ---------- + buf : str, path object, file-like object, or None, default None + String, path object (implementing ``os.PathLike[str]``), or file-like + object implementing a string ``write()`` function. If None, the result is + returned as a string. + encoding: str, default “utf-8” + Set character encoding. + line_width : int, optional + Width to wrap a line in characters. + """ + from pandas.io.formats.string import StringFormatter + + string_formatter = StringFormatter(self.fmt, line_width=line_width) + string = string_formatter.to_string() + return save_to_buffer(string, buf=buf, encoding=encoding) + + def to_csv( + self, + path_or_buf: FilePath | WriteBuffer[bytes] | WriteBuffer[str] | None = None, + encoding: str | None = None, + sep: str = ",", + columns: Sequence[Hashable] | None = None, + index_label: IndexLabel | None = None, + mode: str = "w", + compression: CompressionOptions = "infer", + quoting: int | None = None, + quotechar: str = '"', + lineterminator: str | None = None, + chunksize: int | None = None, + date_format: str | None = None, + doublequote: bool = True, + escapechar: str | None = None, + errors: str = "strict", + storage_options: StorageOptions | None = None, + ) -> str | None: + """ + Render dataframe as comma-separated file. + """ + from pandas.io.formats.csvs import CSVFormatter + + if path_or_buf is None: + created_buffer = True + path_or_buf = StringIO() + else: + created_buffer = False + + csv_formatter = CSVFormatter( + path_or_buf=path_or_buf, + lineterminator=lineterminator, + sep=sep, + encoding=encoding, + errors=errors, + compression=compression, + quoting=quoting, + cols=columns, + index_label=index_label, + mode=mode, + chunksize=chunksize, + quotechar=quotechar, + date_format=date_format, + doublequote=doublequote, + escapechar=escapechar, + storage_options=storage_options, + formatter=self.fmt, + ) + csv_formatter.save() + + if created_buffer: + assert isinstance(path_or_buf, StringIO) + content = path_or_buf.getvalue() + path_or_buf.close() + return content + + return None + + +def save_to_buffer( + string: str, + buf: FilePath | WriteBuffer[str] | None = None, + encoding: str | None = None, +) -> str | None: + """ + Perform serialization. Write to buf or return as string if buf is None. + """ + with _get_buffer(buf, encoding=encoding) as fd: + fd.write(string) + if buf is None: + # error: "WriteBuffer[str]" has no attribute "getvalue" + return fd.getvalue() # type: ignore[attr-defined] + return None + + +@contextmanager +def _get_buffer( + buf: FilePath | WriteBuffer[str] | None, encoding: str | None = None +) -> Generator[WriteBuffer[str], None, None] | Generator[StringIO, None, None]: + """ + Context manager to open, yield and close buffer for filenames or Path-like + objects, otherwise yield buf unchanged. + """ + if buf is not None: + buf = stringify_path(buf) + else: + buf = StringIO() + + if encoding is None: + encoding = "utf-8" + elif not isinstance(buf, str): + raise ValueError("buf is not a file name and encoding is specified.") + + if hasattr(buf, "write"): + # Incompatible types in "yield" (actual type "Union[str, WriteBuffer[str], + # StringIO]", expected type "Union[WriteBuffer[str], StringIO]") + yield buf # type: ignore[misc] + elif isinstance(buf, str): + check_parent_directory(str(buf)) + with open(buf, "w", encoding=encoding, newline="") as f: + # GH#30034 open instead of codecs.open prevents a file leak + # if we have an invalid encoding argument. + # newline="" is needed to roundtrip correctly on + # windows test_to_latex_filename + yield f + else: + raise TypeError("buf is not a file name and it has no write method") + + +# ---------------------------------------------------------------------- +# Array formatters + + +def format_array( + values: ArrayLike, + formatter: Callable | None, + float_format: FloatFormatType | None = None, + na_rep: str = "NaN", + digits: int | None = None, + space: str | int | None = None, + justify: str = "right", + decimal: str = ".", + leading_space: bool | None = True, + quoting: int | None = None, + fallback_formatter: Callable | None = None, +) -> list[str]: + """ + Format an array for printing. + + Parameters + ---------- + values : np.ndarray or ExtensionArray + formatter + float_format + na_rep + digits + space + justify + decimal + leading_space : bool, optional, default True + Whether the array should be formatted with a leading space. + When an array as a column of a Series or DataFrame, we do want + the leading space to pad between columns. + + When formatting an Index subclass + (e.g. IntervalIndex._get_values_for_csv), we don't want the + leading space since it should be left-aligned. + fallback_formatter + + Returns + ------- + List[str] + """ + fmt_klass: type[_GenericArrayFormatter] + if lib.is_np_dtype(values.dtype, "M"): + fmt_klass = _Datetime64Formatter + values = cast(DatetimeArray, values) + elif isinstance(values.dtype, DatetimeTZDtype): + fmt_klass = _Datetime64TZFormatter + values = cast(DatetimeArray, values) + elif lib.is_np_dtype(values.dtype, "m"): + fmt_klass = _Timedelta64Formatter + values = cast(TimedeltaArray, values) + elif isinstance(values.dtype, ExtensionDtype): + fmt_klass = _ExtensionArrayFormatter + elif lib.is_np_dtype(values.dtype, "fc"): + fmt_klass = FloatArrayFormatter + elif lib.is_np_dtype(values.dtype, "iu"): + fmt_klass = _IntArrayFormatter + else: + fmt_klass = _GenericArrayFormatter + + if space is None: + space = 12 + + if float_format is None: + float_format = get_option("display.float_format") + + if digits is None: + digits = get_option("display.precision") + + fmt_obj = fmt_klass( + values, + digits=digits, + na_rep=na_rep, + float_format=float_format, + formatter=formatter, + space=space, + justify=justify, + decimal=decimal, + leading_space=leading_space, + quoting=quoting, + fallback_formatter=fallback_formatter, + ) + + return fmt_obj.get_result() + + +class _GenericArrayFormatter: + def __init__( + self, + values: ArrayLike, + digits: int = 7, + formatter: Callable | None = None, + na_rep: str = "NaN", + space: str | int = 12, + float_format: FloatFormatType | None = None, + justify: str = "right", + decimal: str = ".", + quoting: int | None = None, + fixed_width: bool = True, + leading_space: bool | None = True, + fallback_formatter: Callable | None = None, + ) -> None: + self.values = values + self.digits = digits + self.na_rep = na_rep + self.space = space + self.formatter = formatter + self.float_format = float_format + self.justify = justify + self.decimal = decimal + self.quoting = quoting + self.fixed_width = fixed_width + self.leading_space = leading_space + self.fallback_formatter = fallback_formatter + + def get_result(self) -> list[str]: + fmt_values = self._format_strings() + return _make_fixed_width(fmt_values, self.justify) + + def _format_strings(self) -> list[str]: + if self.float_format is None: + float_format = get_option("display.float_format") + if float_format is None: + precision = get_option("display.precision") + float_format = lambda x: _trim_zeros_single_float( + f"{x: .{precision:d}f}" + ) + else: + float_format = self.float_format + + if self.formatter is not None: + formatter = self.formatter + elif self.fallback_formatter is not None: + formatter = self.fallback_formatter + else: + quote_strings = self.quoting is not None and self.quoting != QUOTE_NONE + formatter = partial( + printing.pprint_thing, + escape_chars=("\t", "\r", "\n"), + quote_strings=quote_strings, + ) + + def _format(x): + if self.na_rep is not None and is_scalar(x) and isna(x): + if x is None: + return "None" + elif x is NA: + return str(NA) + elif lib.is_float(x) and np.isinf(x): + # TODO(3.0): this will be unreachable when use_inf_as_na + # deprecation is enforced + return str(x) + elif x is NaT or isinstance(x, (np.datetime64, np.timedelta64)): + return "NaT" + return self.na_rep + elif isinstance(x, PandasObject): + return str(x) + elif isinstance(x, StringDtype): + return repr(x) + else: + # object dtype + return str(formatter(x)) + + vals = self.values + if not isinstance(vals, np.ndarray): + raise TypeError( + "ExtensionArray formatting should use _ExtensionArrayFormatter" + ) + inferred = lib.map_infer(vals, is_float) + is_float_type = ( + inferred + # vals may have 2 or more dimensions + & np.all(notna(vals), axis=tuple(range(1, len(vals.shape)))) + ) + leading_space = self.leading_space + if leading_space is None: + leading_space = is_float_type.any() + + fmt_values = [] + for i, v in enumerate(vals): + if (not is_float_type[i] or self.formatter is not None) and leading_space: + fmt_values.append(f" {_format(v)}") + elif is_float_type[i]: + fmt_values.append(float_format(v)) + else: + if leading_space is False: + # False specifically, so that the default is + # to include a space if we get here. + tpl = "{v}" + else: + tpl = " {v}" + fmt_values.append(tpl.format(v=_format(v))) + + return fmt_values + + +class FloatArrayFormatter(_GenericArrayFormatter): + def __init__(self, *args, **kwargs) -> None: + super().__init__(*args, **kwargs) + + # float_format is expected to be a string + # formatter should be used to pass a function + if self.float_format is not None and self.formatter is None: + # GH21625, GH22270 + self.fixed_width = False + if callable(self.float_format): + self.formatter = self.float_format + self.float_format = None + + def _value_formatter( + self, + float_format: FloatFormatType | None = None, + threshold: float | None = None, + ) -> Callable: + """Returns a function to be applied on each value to format it""" + # the float_format parameter supersedes self.float_format + if float_format is None: + float_format = self.float_format + + # we are going to compose different functions, to first convert to + # a string, then replace the decimal symbol, and finally chop according + # to the threshold + + # when there is no float_format, we use str instead of '%g' + # because str(0.0) = '0.0' while '%g' % 0.0 = '0' + if float_format: + + def base_formatter(v): + assert float_format is not None # for mypy + # error: "str" not callable + # error: Unexpected keyword argument "value" for "__call__" of + # "EngFormatter" + return ( + float_format(value=v) # type: ignore[operator,call-arg] + if notna(v) + else self.na_rep + ) + + else: + + def base_formatter(v): + return str(v) if notna(v) else self.na_rep + + if self.decimal != ".": + + def decimal_formatter(v): + return base_formatter(v).replace(".", self.decimal, 1) + + else: + decimal_formatter = base_formatter + + if threshold is None: + return decimal_formatter + + def formatter(value): + if notna(value): + if abs(value) > threshold: + return decimal_formatter(value) + else: + return decimal_formatter(0.0) + else: + return self.na_rep + + return formatter + + def get_result_as_array(self) -> np.ndarray: + """ + Returns the float values converted into strings using + the parameters given at initialisation, as a numpy array + """ + + def format_with_na_rep(values: ArrayLike, formatter: Callable, na_rep: str): + mask = isna(values) + formatted = np.array( + [ + formatter(val) if not m else na_rep + for val, m in zip(values.ravel(), mask.ravel()) + ] + ).reshape(values.shape) + return formatted + + def format_complex_with_na_rep( + values: ArrayLike, formatter: Callable, na_rep: str + ): + real_values = np.real(values).ravel() # type: ignore[arg-type] + imag_values = np.imag(values).ravel() # type: ignore[arg-type] + real_mask, imag_mask = isna(real_values), isna(imag_values) + formatted_lst = [] + for val, real_val, imag_val, re_isna, im_isna in zip( + values.ravel(), + real_values, + imag_values, + real_mask, + imag_mask, + ): + if not re_isna and not im_isna: + formatted_lst.append(formatter(val)) + elif not re_isna: # xxx+nanj + formatted_lst.append(f"{formatter(real_val)}+{na_rep}j") + elif not im_isna: # nan[+/-]xxxj + # The imaginary part may either start with a "-" or a space + imag_formatted = formatter(imag_val).strip() + if imag_formatted.startswith("-"): + formatted_lst.append(f"{na_rep}{imag_formatted}j") + else: + formatted_lst.append(f"{na_rep}+{imag_formatted}j") + else: # nan+nanj + formatted_lst.append(f"{na_rep}+{na_rep}j") + return np.array(formatted_lst).reshape(values.shape) + + if self.formatter is not None: + return format_with_na_rep(self.values, self.formatter, self.na_rep) + + if self.fixed_width: + threshold = get_option("display.chop_threshold") + else: + threshold = None + + # if we have a fixed_width, we'll need to try different float_format + def format_values_with(float_format): + formatter = self._value_formatter(float_format, threshold) + + # default formatter leaves a space to the left when formatting + # floats, must be consistent for left-justifying NaNs (GH #25061) + na_rep = " " + self.na_rep if self.justify == "left" else self.na_rep + + # different formatting strategies for complex and non-complex data + # need to distinguish complex and float NaNs (GH #53762) + values = self.values + is_complex = is_complex_dtype(values) + + # separate the wheat from the chaff + if is_complex: + values = format_complex_with_na_rep(values, formatter, na_rep) + else: + values = format_with_na_rep(values, formatter, na_rep) + + if self.fixed_width: + if is_complex: + result = _trim_zeros_complex(values, self.decimal) + else: + result = _trim_zeros_float(values, self.decimal) + return np.asarray(result, dtype="object") + + return values + + # There is a special default string when we are fixed-width + # The default is otherwise to use str instead of a formatting string + float_format: FloatFormatType | None + if self.float_format is None: + if self.fixed_width: + if self.leading_space is True: + fmt_str = "{value: .{digits:d}f}" + else: + fmt_str = "{value:.{digits:d}f}" + float_format = partial(fmt_str.format, digits=self.digits) + else: + float_format = self.float_format + else: + float_format = lambda value: self.float_format % value + + formatted_values = format_values_with(float_format) + + if not self.fixed_width: + return formatted_values + + # we need do convert to engineering format if some values are too small + # and would appear as 0, or if some values are too big and take too + # much space + + if len(formatted_values) > 0: + maxlen = max(len(x) for x in formatted_values) + too_long = maxlen > self.digits + 6 + else: + too_long = False + + abs_vals = np.abs(self.values) + # this is pretty arbitrary for now + # large values: more that 8 characters including decimal symbol + # and first digit, hence > 1e6 + has_large_values = (abs_vals > 1e6).any() + has_small_values = ((abs_vals < 10 ** (-self.digits)) & (abs_vals > 0)).any() + + if has_small_values or (too_long and has_large_values): + if self.leading_space is True: + fmt_str = "{value: .{digits:d}e}" + else: + fmt_str = "{value:.{digits:d}e}" + float_format = partial(fmt_str.format, digits=self.digits) + formatted_values = format_values_with(float_format) + + return formatted_values + + def _format_strings(self) -> list[str]: + return list(self.get_result_as_array()) + + +class _IntArrayFormatter(_GenericArrayFormatter): + def _format_strings(self) -> list[str]: + if self.leading_space is False: + formatter_str = lambda x: f"{x:d}".format(x=x) + else: + formatter_str = lambda x: f"{x: d}".format(x=x) + formatter = self.formatter or formatter_str + fmt_values = [formatter(x) for x in self.values] + return fmt_values + + +class _Datetime64Formatter(_GenericArrayFormatter): + values: DatetimeArray + + def __init__( + self, + values: DatetimeArray, + nat_rep: str = "NaT", + date_format: None = None, + **kwargs, + ) -> None: + super().__init__(values, **kwargs) + self.nat_rep = nat_rep + self.date_format = date_format + + def _format_strings(self) -> list[str]: + """we by definition have DO NOT have a TZ""" + values = self.values + + if self.formatter is not None: + return [self.formatter(x) for x in values] + + fmt_values = values._format_native_types( + na_rep=self.nat_rep, date_format=self.date_format + ) + return fmt_values.tolist() + + +class _ExtensionArrayFormatter(_GenericArrayFormatter): + values: ExtensionArray + + def _format_strings(self) -> list[str]: + values = self.values + + formatter = self.formatter + fallback_formatter = None + if formatter is None: + fallback_formatter = values._formatter(boxed=True) + + if isinstance(values, Categorical): + # Categorical is special for now, so that we can preserve tzinfo + array = values._internal_get_values() + else: + array = np.asarray(values, dtype=object) + + fmt_values = format_array( + array, + formatter, + float_format=self.float_format, + na_rep=self.na_rep, + digits=self.digits, + space=self.space, + justify=self.justify, + decimal=self.decimal, + leading_space=self.leading_space, + quoting=self.quoting, + fallback_formatter=fallback_formatter, + ) + return fmt_values + + +def format_percentiles( + percentiles: (np.ndarray | Sequence[float]), +) -> list[str]: + """ + Outputs rounded and formatted percentiles. + + Parameters + ---------- + percentiles : list-like, containing floats from interval [0,1] + + Returns + ------- + formatted : list of strings + + Notes + ----- + Rounding precision is chosen so that: (1) if any two elements of + ``percentiles`` differ, they remain different after rounding + (2) no entry is *rounded* to 0% or 100%. + Any non-integer is always rounded to at least 1 decimal place. + + Examples + -------- + Keeps all entries different after rounding: + + >>> format_percentiles([0.01999, 0.02001, 0.5, 0.666666, 0.9999]) + ['1.999%', '2.001%', '50%', '66.667%', '99.99%'] + + No element is rounded to 0% or 100% (unless already equal to it). + Duplicates are allowed: + + >>> format_percentiles([0, 0.5, 0.02001, 0.5, 0.666666, 0.9999]) + ['0%', '50%', '2.0%', '50%', '66.67%', '99.99%'] + """ + percentiles = np.asarray(percentiles) + + # It checks for np.nan as well + if ( + not is_numeric_dtype(percentiles) + or not np.all(percentiles >= 0) + or not np.all(percentiles <= 1) + ): + raise ValueError("percentiles should all be in the interval [0,1]") + + percentiles = 100 * percentiles + prec = get_precision(percentiles) + percentiles_round_type = percentiles.round(prec).astype(int) + + int_idx = np.isclose(percentiles_round_type, percentiles) + + if np.all(int_idx): + out = percentiles_round_type.astype(str) + return [i + "%" for i in out] + + unique_pcts = np.unique(percentiles) + prec = get_precision(unique_pcts) + out = np.empty_like(percentiles, dtype=object) + out[int_idx] = percentiles[int_idx].round().astype(int).astype(str) + + out[~int_idx] = percentiles[~int_idx].round(prec).astype(str) + return [i + "%" for i in out] + + +def get_precision(array: np.ndarray | Sequence[float]) -> int: + to_begin = array[0] if array[0] > 0 else None + to_end = 100 - array[-1] if array[-1] < 100 else None + diff = np.ediff1d(array, to_begin=to_begin, to_end=to_end) + diff = abs(diff) + prec = -np.floor(np.log10(np.min(diff))).astype(int) + prec = max(1, prec) + return prec + + +def _format_datetime64(x: NaTType | Timestamp, nat_rep: str = "NaT") -> str: + if x is NaT: + return nat_rep + + # Timestamp.__str__ falls back to datetime.datetime.__str__ = isoformat(sep=' ') + # so it already uses string formatting rather than strftime (faster). + return str(x) + + +def _format_datetime64_dateonly( + x: NaTType | Timestamp, + nat_rep: str = "NaT", + date_format: str | None = None, +) -> str: + if isinstance(x, NaTType): + return nat_rep + + if date_format: + return x.strftime(date_format) + else: + # Timestamp._date_repr relies on string formatting (faster than strftime) + return x._date_repr + + +def get_format_datetime64( + is_dates_only: bool, nat_rep: str = "NaT", date_format: str | None = None +) -> Callable: + """Return a formatter callable taking a datetime64 as input and providing + a string as output""" + + if is_dates_only: + return lambda x: _format_datetime64_dateonly( + x, nat_rep=nat_rep, date_format=date_format + ) + else: + return lambda x: _format_datetime64(x, nat_rep=nat_rep) + + +class _Datetime64TZFormatter(_Datetime64Formatter): + values: DatetimeArray + + def _format_strings(self) -> list[str]: + """we by definition have a TZ""" + ido = self.values._is_dates_only + values = self.values.astype(object) + formatter = self.formatter or get_format_datetime64( + ido, date_format=self.date_format + ) + fmt_values = [formatter(x) for x in values] + + return fmt_values + + +class _Timedelta64Formatter(_GenericArrayFormatter): + values: TimedeltaArray + + def __init__( + self, + values: TimedeltaArray, + nat_rep: str = "NaT", + **kwargs, + ) -> None: + # TODO: nat_rep is never passed, na_rep is. + super().__init__(values, **kwargs) + self.nat_rep = nat_rep + + def _format_strings(self) -> list[str]: + formatter = self.formatter or get_format_timedelta64( + self.values, nat_rep=self.nat_rep, box=False + ) + return [formatter(x) for x in self.values] + + +def get_format_timedelta64( + values: TimedeltaArray, + nat_rep: str | float = "NaT", + box: bool = False, +) -> Callable: + """ + Return a formatter function for a range of timedeltas. + These will all have the same format argument + + If box, then show the return in quotes + """ + even_days = values._is_dates_only + + if even_days: + format = None + else: + format = "long" + + def _formatter(x): + if x is None or (is_scalar(x) and isna(x)): + return nat_rep + + if not isinstance(x, Timedelta): + x = Timedelta(x) + + # Timedelta._repr_base uses string formatting (faster than strftime) + result = x._repr_base(format=format) + if box: + result = f"'{result}'" + return result + + return _formatter + + +def _make_fixed_width( + strings: list[str], + justify: str = "right", + minimum: int | None = None, + adj: printing._TextAdjustment | None = None, +) -> list[str]: + if len(strings) == 0 or justify == "all": + return strings + + if adj is None: + adjustment = printing.get_adjustment() + else: + adjustment = adj + + max_len = max(adjustment.len(x) for x in strings) + + if minimum is not None: + max_len = max(minimum, max_len) + + conf_max = get_option("display.max_colwidth") + if conf_max is not None and max_len > conf_max: + max_len = conf_max + + def just(x: str) -> str: + if conf_max is not None: + if (conf_max > 3) & (adjustment.len(x) > max_len): + x = x[: max_len - 3] + "..." + return x + + strings = [just(x) for x in strings] + result = adjustment.justify(strings, max_len, mode=justify) + return result + + +def _trim_zeros_complex(str_complexes: ArrayLike, decimal: str = ".") -> list[str]: + """ + Separates the real and imaginary parts from the complex number, and + executes the _trim_zeros_float method on each of those. + """ + real_part, imag_part = [], [] + for x in str_complexes: + # Complex numbers are represented as "(-)xxx(+/-)xxxj" + # The split will give [{"", "-"}, "xxx", "+/-", "xxx", "j", ""] + # Therefore, the imaginary part is the 4th and 3rd last elements, + # and the real part is everything before the imaginary part + trimmed = re.split(r"([j+-])", x) + real_part.append("".join(trimmed[:-4])) + imag_part.append("".join(trimmed[-4:-2])) + + # We want to align the lengths of the real and imaginary parts of each complex + # number, as well as the lengths the real (resp. complex) parts of all numbers + # in the array + n = len(str_complexes) + padded_parts = _trim_zeros_float(real_part + imag_part, decimal) + if len(padded_parts) == 0: + return [] + padded_length = max(len(part) for part in padded_parts) - 1 + padded = [ + real_pt # real part, possibly NaN + + imag_pt[0] # +/- + + f"{imag_pt[1:]:>{padded_length}}" # complex part (no sign), possibly nan + + "j" + for real_pt, imag_pt in zip(padded_parts[:n], padded_parts[n:]) + ] + return padded + + +def _trim_zeros_single_float(str_float: str) -> str: + """ + Trims trailing zeros after a decimal point, + leaving just one if necessary. + """ + str_float = str_float.rstrip("0") + if str_float.endswith("."): + str_float += "0" + + return str_float + + +def _trim_zeros_float( + str_floats: ArrayLike | list[str], decimal: str = "." +) -> list[str]: + """ + Trims the maximum number of trailing zeros equally from + all numbers containing decimals, leaving just one if + necessary. + """ + trimmed = str_floats + number_regex = re.compile(rf"^\s*[\+-]?[0-9]+\{decimal}[0-9]*$") + + def is_number_with_decimal(x) -> bool: + return re.match(number_regex, x) is not None + + def should_trim(values: ArrayLike | list[str]) -> bool: + """ + Determine if an array of strings should be trimmed. + + Returns True if all numbers containing decimals (defined by the + above regular expression) within the array end in a zero, otherwise + returns False. + """ + numbers = [x for x in values if is_number_with_decimal(x)] + return len(numbers) > 0 and all(x.endswith("0") for x in numbers) + + while should_trim(trimmed): + trimmed = [x[:-1] if is_number_with_decimal(x) else x for x in trimmed] + + # leave one 0 after the decimal points if need be. + result = [ + x + "0" if is_number_with_decimal(x) and x.endswith(decimal) else x + for x in trimmed + ] + return result + + +def _has_names(index: Index) -> bool: + if isinstance(index, MultiIndex): + return com.any_not_none(*index.names) + else: + return index.name is not None + + +class EngFormatter: + """ + Formats float values according to engineering format. + + Based on matplotlib.ticker.EngFormatter + """ + + # The SI engineering prefixes + ENG_PREFIXES = { + -24: "y", + -21: "z", + -18: "a", + -15: "f", + -12: "p", + -9: "n", + -6: "u", + -3: "m", + 0: "", + 3: "k", + 6: "M", + 9: "G", + 12: "T", + 15: "P", + 18: "E", + 21: "Z", + 24: "Y", + } + + def __init__( + self, accuracy: int | None = None, use_eng_prefix: bool = False + ) -> None: + self.accuracy = accuracy + self.use_eng_prefix = use_eng_prefix + + def __call__(self, num: float) -> str: + """ + Formats a number in engineering notation, appending a letter + representing the power of 1000 of the original number. Some examples: + >>> format_eng = EngFormatter(accuracy=0, use_eng_prefix=True) + >>> format_eng(0) + ' 0' + >>> format_eng = EngFormatter(accuracy=1, use_eng_prefix=True) + >>> format_eng(1_000_000) + ' 1.0M' + >>> format_eng = EngFormatter(accuracy=2, use_eng_prefix=False) + >>> format_eng("-1e-6") + '-1.00E-06' + + @param num: the value to represent + @type num: either a numeric value or a string that can be converted to + a numeric value (as per decimal.Decimal constructor) + + @return: engineering formatted string + """ + dnum = Decimal(str(num)) + + if Decimal.is_nan(dnum): + return "NaN" + + if Decimal.is_infinite(dnum): + return "inf" + + sign = 1 + + if dnum < 0: # pragma: no cover + sign = -1 + dnum = -dnum + + if dnum != 0: + pow10 = Decimal(int(math.floor(dnum.log10() / 3) * 3)) + else: + pow10 = Decimal(0) + + pow10 = pow10.min(max(self.ENG_PREFIXES.keys())) + pow10 = pow10.max(min(self.ENG_PREFIXES.keys())) + int_pow10 = int(pow10) + + if self.use_eng_prefix: + prefix = self.ENG_PREFIXES[int_pow10] + elif int_pow10 < 0: + prefix = f"E-{-int_pow10:02d}" + else: + prefix = f"E+{int_pow10:02d}" + + mant = sign * dnum / (10**pow10) + + if self.accuracy is None: # pragma: no cover + format_str = "{mant: g}{prefix}" + else: + format_str = f"{{mant: .{self.accuracy:d}f}}{{prefix}}" + + formatted = format_str.format(mant=mant, prefix=prefix) + + return formatted + + +def set_eng_float_format(accuracy: int = 3, use_eng_prefix: bool = False) -> None: + """ + Format float representation in DataFrame with SI notation. + + Parameters + ---------- + accuracy : int, default 3 + Number of decimal digits after the floating point. + use_eng_prefix : bool, default False + Whether to represent a value with SI prefixes. + + Returns + ------- + None + + Examples + -------- + >>> df = pd.DataFrame([1e-9, 1e-3, 1, 1e3, 1e6]) + >>> df + 0 + 0 1.000000e-09 + 1 1.000000e-03 + 2 1.000000e+00 + 3 1.000000e+03 + 4 1.000000e+06 + + >>> pd.set_eng_float_format(accuracy=1) + >>> df + 0 + 0 1.0E-09 + 1 1.0E-03 + 2 1.0E+00 + 3 1.0E+03 + 4 1.0E+06 + + >>> pd.set_eng_float_format(use_eng_prefix=True) + >>> df + 0 + 0 1.000n + 1 1.000m + 2 1.000 + 3 1.000k + 4 1.000M + + >>> pd.set_eng_float_format(accuracy=1, use_eng_prefix=True) + >>> df + 0 + 0 1.0n + 1 1.0m + 2 1.0 + 3 1.0k + 4 1.0M + + >>> pd.set_option("display.float_format", None) # unset option + """ + set_option("display.float_format", EngFormatter(accuracy, use_eng_prefix)) + + +def get_level_lengths( + levels: Any, sentinel: bool | object | str = "" +) -> list[dict[int, int]]: + """ + For each index in each level the function returns lengths of indexes. + + Parameters + ---------- + levels : list of lists + List of values on for level. + sentinel : string, optional + Value which states that no new index starts on there. + + Returns + ------- + Returns list of maps. For each level returns map of indexes (key is index + in row and value is length of index). + """ + if len(levels) == 0: + return [] + + control = [True] * len(levels[0]) + + result = [] + for level in levels: + last_index = 0 + + lengths = {} + for i, key in enumerate(level): + if control[i] and key == sentinel: + pass + else: + control[i] = False + lengths[last_index] = i - last_index + last_index = i + + lengths[last_index] = len(level) - last_index + + result.append(lengths) + + return result + + +def buffer_put_lines(buf: WriteBuffer[str], lines: list[str]) -> None: + """ + Appends lines to a buffer. + + Parameters + ---------- + buf + The buffer to write to + lines + The lines to append. + """ + if any(isinstance(x, str) for x in lines): + lines = [str(x) for x in lines] + buf.write("\n".join(lines)) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/html.py b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/html.py new file mode 100644 index 0000000000000000000000000000000000000000..794ce77b3b45ec38d9fa58a708939e53bb8ae629 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/html.py @@ -0,0 +1,646 @@ +""" +Module for formatting output data in HTML. +""" +from __future__ import annotations + +from textwrap import dedent +from typing import ( + TYPE_CHECKING, + Any, + Final, + cast, +) + +from pandas._config import get_option + +from pandas._libs import lib + +from pandas import ( + MultiIndex, + option_context, +) + +from pandas.io.common import is_url +from pandas.io.formats.format import ( + DataFrameFormatter, + get_level_lengths, +) +from pandas.io.formats.printing import pprint_thing + +if TYPE_CHECKING: + from collections.abc import ( + Hashable, + Iterable, + Mapping, + ) + + +class HTMLFormatter: + """ + Internal class for formatting output data in html. + This class is intended for shared functionality between + DataFrame.to_html() and DataFrame._repr_html_(). + Any logic in common with other output formatting methods + should ideally be inherited from classes in format.py + and this class responsible for only producing html markup. + """ + + indent_delta: Final = 2 + + def __init__( + self, + formatter: DataFrameFormatter, + classes: str | list[str] | tuple[str, ...] | None = None, + border: int | bool | None = None, + table_id: str | None = None, + render_links: bool = False, + ) -> None: + self.fmt = formatter + self.classes = classes + + self.frame = self.fmt.frame + self.columns = self.fmt.tr_frame.columns + self.elements: list[str] = [] + self.bold_rows = self.fmt.bold_rows + self.escape = self.fmt.escape + self.show_dimensions = self.fmt.show_dimensions + if border is None or border is True: + border = cast(int, get_option("display.html.border")) + elif not border: + border = None + + self.border = border + self.table_id = table_id + self.render_links = render_links + + self.col_space = {} + is_multi_index = isinstance(self.columns, MultiIndex) + for column, value in self.fmt.col_space.items(): + col_space_value = f"{value}px" if isinstance(value, int) else value + self.col_space[column] = col_space_value + # GH 53885: Handling case where column is index + # Flatten the data in the multi index and add in the map + if is_multi_index and isinstance(column, tuple): + for column_index in column: + self.col_space[str(column_index)] = col_space_value + + def to_string(self) -> str: + lines = self.render() + if any(isinstance(x, str) for x in lines): + lines = [str(x) for x in lines] + return "\n".join(lines) + + def render(self) -> list[str]: + self._write_table() + + if self.should_show_dimensions: + by = chr(215) # × # noqa: RUF003 + self.write( + f"

{len(self.frame)} rows {by} {len(self.frame.columns)} columns

" + ) + + return self.elements + + @property + def should_show_dimensions(self) -> bool: + return self.fmt.should_show_dimensions + + @property + def show_row_idx_names(self) -> bool: + return self.fmt.show_row_idx_names + + @property + def show_col_idx_names(self) -> bool: + return self.fmt.show_col_idx_names + + @property + def row_levels(self) -> int: + if self.fmt.index: + # showing (row) index + return self.frame.index.nlevels + elif self.show_col_idx_names: + # see gh-22579 + # Column misalignment also occurs for + # a standard index when the columns index is named. + # If the row index is not displayed a column of + # blank cells need to be included before the DataFrame values. + return 1 + # not showing (row) index + return 0 + + def _get_columns_formatted_values(self) -> Iterable: + return self.columns + + @property + def is_truncated(self) -> bool: + return self.fmt.is_truncated + + @property + def ncols(self) -> int: + return len(self.fmt.tr_frame.columns) + + def write(self, s: Any, indent: int = 0) -> None: + rs = pprint_thing(s) + self.elements.append(" " * indent + rs) + + def write_th( + self, s: Any, header: bool = False, indent: int = 0, tags: str | None = None + ) -> None: + """ + Method for writing a formatted . This will + cause min-width to be set if there is one. + indent : int, default 0 + The indentation level of the cell. + tags : str, default None + Tags to include in the cell. + + Returns + ------- + A written ", indent) + else: + self.write(f'', indent) + indent += indent_delta + + for i, s in enumerate(line): + val_tag = tags.get(i, None) + if header or (self.bold_rows and i < nindex_levels): + self.write_th(s, indent=indent, header=header, tags=val_tag) + else: + self.write_td(s, indent, tags=val_tag) + + indent -= indent_delta + self.write("", indent) + + def _write_table(self, indent: int = 0) -> None: + _classes = ["dataframe"] # Default class. + use_mathjax = get_option("display.html.use_mathjax") + if not use_mathjax: + _classes.append("tex2jax_ignore") + if self.classes is not None: + if isinstance(self.classes, str): + self.classes = self.classes.split() + if not isinstance(self.classes, (list, tuple)): + raise TypeError( + "classes must be a string, list, " + f"or tuple, not {type(self.classes)}" + ) + _classes.extend(self.classes) + + if self.table_id is None: + id_section = "" + else: + id_section = f' id="{self.table_id}"' + + if self.border is None: + border_attr = "" + else: + border_attr = f' border="{self.border}"' + + self.write( + f'', + indent, + ) + + if self.fmt.header or self.show_row_idx_names: + self._write_header(indent + self.indent_delta) + + self._write_body(indent + self.indent_delta) + + self.write("
cell. + + If col_space is set on the formatter then that is used for + the value of min-width. + + Parameters + ---------- + s : object + The data to be written inside the cell. + header : bool, default False + Set to True if the is for use inside
cell. + """ + col_space = self.col_space.get(s, None) + + if header and col_space is not None: + tags = tags or "" + tags += f'style="min-width: {col_space};"' + + self._write_cell(s, kind="th", indent=indent, tags=tags) + + def write_td(self, s: Any, indent: int = 0, tags: str | None = None) -> None: + self._write_cell(s, kind="td", indent=indent, tags=tags) + + def _write_cell( + self, s: Any, kind: str = "td", indent: int = 0, tags: str | None = None + ) -> None: + if tags is not None: + start_tag = f"<{kind} {tags}>" + else: + start_tag = f"<{kind}>" + + if self.escape: + # escape & first to prevent double escaping of & + esc = {"&": r"&", "<": r"<", ">": r">"} + else: + esc = {} + + rs = pprint_thing(s, escape_chars=esc).strip() + + if self.render_links and is_url(rs): + rs_unescaped = pprint_thing(s, escape_chars={}).strip() + start_tag += f'' + end_a = "" + else: + end_a = "" + + self.write(f"{start_tag}{rs}{end_a}", indent) + + def write_tr( + self, + line: Iterable, + indent: int = 0, + indent_delta: int = 0, + header: bool = False, + align: str | None = None, + tags: dict[int, str] | None = None, + nindex_levels: int = 0, + ) -> None: + if tags is None: + tags = {} + + if align is None: + self.write("
", indent) + + def _write_col_header(self, indent: int) -> None: + row: list[Hashable] + is_truncated_horizontally = self.fmt.is_truncated_horizontally + if isinstance(self.columns, MultiIndex): + template = 'colspan="{span:d}" halign="left"' + + sentinel: lib.NoDefault | bool + if self.fmt.sparsify: + # GH3547 + sentinel = lib.no_default + else: + sentinel = False + levels = self.columns._format_multi(sparsify=sentinel, include_names=False) + level_lengths = get_level_lengths(levels, sentinel) + inner_lvl = len(level_lengths) - 1 + for lnum, (records, values) in enumerate(zip(level_lengths, levels)): + if is_truncated_horizontally: + # modify the header lines + ins_col = self.fmt.tr_col_num + if self.fmt.sparsify: + recs_new = {} + # Increment tags after ... col. + for tag, span in list(records.items()): + if tag >= ins_col: + recs_new[tag + 1] = span + elif tag + span > ins_col: + recs_new[tag] = span + 1 + if lnum == inner_lvl: + values = ( + values[:ins_col] + ("...",) + values[ins_col:] + ) + else: + # sparse col headers do not receive a ... + values = ( + values[:ins_col] + + (values[ins_col - 1],) + + values[ins_col:] + ) + else: + recs_new[tag] = span + # if ins_col lies between tags, all col headers + # get ... + if tag + span == ins_col: + recs_new[ins_col] = 1 + values = values[:ins_col] + ("...",) + values[ins_col:] + records = recs_new + inner_lvl = len(level_lengths) - 1 + if lnum == inner_lvl: + records[ins_col] = 1 + else: + recs_new = {} + for tag, span in list(records.items()): + if tag >= ins_col: + recs_new[tag + 1] = span + else: + recs_new[tag] = span + recs_new[ins_col] = 1 + records = recs_new + values = values[:ins_col] + ["..."] + values[ins_col:] + + # see gh-22579 + # Column Offset Bug with to_html(index=False) with + # MultiIndex Columns and Index. + # Initially fill row with blank cells before column names. + # TODO: Refactor to remove code duplication with code + # block below for standard columns index. + row = [""] * (self.row_levels - 1) + if self.fmt.index or self.show_col_idx_names: + # see gh-22747 + # If to_html(index_names=False) do not show columns + # index names. + # TODO: Refactor to use _get_column_name_list from + # DataFrameFormatter class and create a + # _get_formatted_column_labels function for code + # parity with DataFrameFormatter class. + if self.fmt.show_index_names: + name = self.columns.names[lnum] + row.append(pprint_thing(name or "")) + else: + row.append("") + + tags = {} + j = len(row) + for i, v in enumerate(values): + if i in records: + if records[i] > 1: + tags[j] = template.format(span=records[i]) + else: + continue + j += 1 + row.append(v) + self.write_tr(row, indent, self.indent_delta, tags=tags, header=True) + else: + # see gh-22579 + # Column misalignment also occurs for + # a standard index when the columns index is named. + # Initially fill row with blank cells before column names. + # TODO: Refactor to remove code duplication with code block + # above for columns MultiIndex. + row = [""] * (self.row_levels - 1) + if self.fmt.index or self.show_col_idx_names: + # see gh-22747 + # If to_html(index_names=False) do not show columns + # index names. + # TODO: Refactor to use _get_column_name_list from + # DataFrameFormatter class. + if self.fmt.show_index_names: + row.append(self.columns.name or "") + else: + row.append("") + row.extend(self._get_columns_formatted_values()) + align = self.fmt.justify + + if is_truncated_horizontally: + ins_col = self.row_levels + self.fmt.tr_col_num + row.insert(ins_col, "...") + + self.write_tr(row, indent, self.indent_delta, header=True, align=align) + + def _write_row_header(self, indent: int) -> None: + is_truncated_horizontally = self.fmt.is_truncated_horizontally + row = [x if x is not None else "" for x in self.frame.index.names] + [""] * ( + self.ncols + (1 if is_truncated_horizontally else 0) + ) + self.write_tr(row, indent, self.indent_delta, header=True) + + def _write_header(self, indent: int) -> None: + self.write("", indent) + + if self.fmt.header: + self._write_col_header(indent + self.indent_delta) + + if self.show_row_idx_names: + self._write_row_header(indent + self.indent_delta) + + self.write("", indent) + + def _get_formatted_values(self) -> dict[int, list[str]]: + with option_context("display.max_colwidth", None): + fmt_values = {i: self.fmt.format_col(i) for i in range(self.ncols)} + return fmt_values + + def _write_body(self, indent: int) -> None: + self.write("", indent) + fmt_values = self._get_formatted_values() + + # write values + if self.fmt.index and isinstance(self.frame.index, MultiIndex): + self._write_hierarchical_rows(fmt_values, indent + self.indent_delta) + else: + self._write_regular_rows(fmt_values, indent + self.indent_delta) + + self.write("", indent) + + def _write_regular_rows( + self, fmt_values: Mapping[int, list[str]], indent: int + ) -> None: + is_truncated_horizontally = self.fmt.is_truncated_horizontally + is_truncated_vertically = self.fmt.is_truncated_vertically + + nrows = len(self.fmt.tr_frame) + + if self.fmt.index: + fmt = self.fmt._get_formatter("__index__") + if fmt is not None: + index_values = self.fmt.tr_frame.index.map(fmt) + else: + # only reached with non-Multi index + index_values = self.fmt.tr_frame.index._format_flat(include_name=False) + + row: list[str] = [] + for i in range(nrows): + if is_truncated_vertically and i == (self.fmt.tr_row_num): + str_sep_row = ["..."] * len(row) + self.write_tr( + str_sep_row, + indent, + self.indent_delta, + tags=None, + nindex_levels=self.row_levels, + ) + + row = [] + if self.fmt.index: + row.append(index_values[i]) + # see gh-22579 + # Column misalignment also occurs for + # a standard index when the columns index is named. + # Add blank cell before data cells. + elif self.show_col_idx_names: + row.append("") + row.extend(fmt_values[j][i] for j in range(self.ncols)) + + if is_truncated_horizontally: + dot_col_ix = self.fmt.tr_col_num + self.row_levels + row.insert(dot_col_ix, "...") + self.write_tr( + row, indent, self.indent_delta, tags=None, nindex_levels=self.row_levels + ) + + def _write_hierarchical_rows( + self, fmt_values: Mapping[int, list[str]], indent: int + ) -> None: + template = 'rowspan="{span}" valign="top"' + + is_truncated_horizontally = self.fmt.is_truncated_horizontally + is_truncated_vertically = self.fmt.is_truncated_vertically + frame = self.fmt.tr_frame + nrows = len(frame) + + assert isinstance(frame.index, MultiIndex) + idx_values = frame.index._format_multi(sparsify=False, include_names=False) + idx_values = list(zip(*idx_values)) + + if self.fmt.sparsify: + # GH3547 + sentinel = lib.no_default + levels = frame.index._format_multi(sparsify=sentinel, include_names=False) + + level_lengths = get_level_lengths(levels, sentinel) + inner_lvl = len(level_lengths) - 1 + if is_truncated_vertically: + # Insert ... row and adjust idx_values and + # level_lengths to take this into account. + ins_row = self.fmt.tr_row_num + inserted = False + for lnum, records in enumerate(level_lengths): + rec_new = {} + for tag, span in list(records.items()): + if tag >= ins_row: + rec_new[tag + 1] = span + elif tag + span > ins_row: + rec_new[tag] = span + 1 + + # GH 14882 - Make sure insertion done once + if not inserted: + dot_row = list(idx_values[ins_row - 1]) + dot_row[-1] = "..." + idx_values.insert(ins_row, tuple(dot_row)) + inserted = True + else: + dot_row = list(idx_values[ins_row]) + dot_row[inner_lvl - lnum] = "..." + idx_values[ins_row] = tuple(dot_row) + else: + rec_new[tag] = span + # If ins_row lies between tags, all cols idx cols + # receive ... + if tag + span == ins_row: + rec_new[ins_row] = 1 + if lnum == 0: + idx_values.insert( + ins_row, tuple(["..."] * len(level_lengths)) + ) + + # GH 14882 - Place ... in correct level + elif inserted: + dot_row = list(idx_values[ins_row]) + dot_row[inner_lvl - lnum] = "..." + idx_values[ins_row] = tuple(dot_row) + level_lengths[lnum] = rec_new + + level_lengths[inner_lvl][ins_row] = 1 + for ix_col in fmt_values: + fmt_values[ix_col].insert(ins_row, "...") + nrows += 1 + + for i in range(nrows): + row = [] + tags = {} + + sparse_offset = 0 + j = 0 + for records, v in zip(level_lengths, idx_values[i]): + if i in records: + if records[i] > 1: + tags[j] = template.format(span=records[i]) + else: + sparse_offset += 1 + continue + + j += 1 + row.append(v) + + row.extend(fmt_values[j][i] for j in range(self.ncols)) + if is_truncated_horizontally: + row.insert( + self.row_levels - sparse_offset + self.fmt.tr_col_num, "..." + ) + self.write_tr( + row, + indent, + self.indent_delta, + tags=tags, + nindex_levels=len(levels) - sparse_offset, + ) + else: + row = [] + for i in range(len(frame)): + if is_truncated_vertically and i == (self.fmt.tr_row_num): + str_sep_row = ["..."] * len(row) + self.write_tr( + str_sep_row, + indent, + self.indent_delta, + tags=None, + nindex_levels=self.row_levels, + ) + + idx_values = list( + zip(*frame.index._format_multi(sparsify=False, include_names=False)) + ) + row = [] + row.extend(idx_values[i]) + row.extend(fmt_values[j][i] for j in range(self.ncols)) + if is_truncated_horizontally: + row.insert(self.row_levels + self.fmt.tr_col_num, "...") + self.write_tr( + row, + indent, + self.indent_delta, + tags=None, + nindex_levels=frame.index.nlevels, + ) + + +class NotebookFormatter(HTMLFormatter): + """ + Internal class for formatting output data in html for display in Jupyter + Notebooks. This class is intended for functionality specific to + DataFrame._repr_html_() and DataFrame.to_html(notebook=True) + """ + + def _get_formatted_values(self) -> dict[int, list[str]]: + return {i: self.fmt.format_col(i) for i in range(self.ncols)} + + def _get_columns_formatted_values(self) -> list[str]: + # only reached with non-Multi Index + return self.columns._format_flat(include_name=False) + + def write_style(self) -> None: + # We use the "scoped" attribute here so that the desired + # style properties for the data frame are not then applied + # throughout the entire notebook. + template_first = """\ + """ + template_select = """\ + .dataframe %s { + %s: %s; + }""" + element_props = [ + ("tbody tr th:only-of-type", "vertical-align", "middle"), + ("tbody tr th", "vertical-align", "top"), + ] + if isinstance(self.columns, MultiIndex): + element_props.append(("thead tr th", "text-align", "left")) + if self.show_row_idx_names: + element_props.append( + ("thead tr:last-of-type th", "text-align", "right") + ) + else: + element_props.append(("thead th", "text-align", "right")) + template_mid = "\n\n".join(template_select % t for t in element_props) + template = dedent(f"{template_first}\n{template_mid}\n{template_last}") + self.write(template) + + def render(self) -> list[str]: + self.write("
") + self.write_style() + super().render() + self.write("
") + return self.elements diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/info.py b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/info.py new file mode 100644 index 0000000000000000000000000000000000000000..552affbd053f2bed3f4d5f678ddf8eb293f65b01 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/info.py @@ -0,0 +1,1101 @@ +from __future__ import annotations + +from abc import ( + ABC, + abstractmethod, +) +import sys +from textwrap import dedent +from typing import TYPE_CHECKING + +from pandas._config import get_option + +from pandas.io.formats import format as fmt +from pandas.io.formats.printing import pprint_thing + +if TYPE_CHECKING: + from collections.abc import ( + Iterable, + Iterator, + Mapping, + Sequence, + ) + + from pandas._typing import ( + Dtype, + WriteBuffer, + ) + + from pandas import ( + DataFrame, + Index, + Series, + ) + + +frame_max_cols_sub = dedent( + """\ + max_cols : int, optional + When to switch from the verbose to the truncated output. If the + DataFrame has more than `max_cols` columns, the truncated output + is used. By default, the setting in + ``pandas.options.display.max_info_columns`` is used.""" +) + + +show_counts_sub = dedent( + """\ + show_counts : bool, optional + Whether to show the non-null counts. By default, this is shown + only if the DataFrame is smaller than + ``pandas.options.display.max_info_rows`` and + ``pandas.options.display.max_info_columns``. A value of True always + shows the counts, and False never shows the counts.""" +) + + +frame_examples_sub = dedent( + """\ + >>> int_values = [1, 2, 3, 4, 5] + >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon'] + >>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0] + >>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values, + ... "float_col": float_values}) + >>> df + int_col text_col float_col + 0 1 alpha 0.00 + 1 2 beta 0.25 + 2 3 gamma 0.50 + 3 4 delta 0.75 + 4 5 epsilon 1.00 + + Prints information of all columns: + + >>> df.info(verbose=True) + + RangeIndex: 5 entries, 0 to 4 + Data columns (total 3 columns): + # Column Non-Null Count Dtype + --- ------ -------------- ----- + 0 int_col 5 non-null int64 + 1 text_col 5 non-null object + 2 float_col 5 non-null float64 + dtypes: float64(1), int64(1), object(1) + memory usage: 248.0+ bytes + + Prints a summary of columns count and its dtypes but not per column + information: + + >>> df.info(verbose=False) + + RangeIndex: 5 entries, 0 to 4 + Columns: 3 entries, int_col to float_col + dtypes: float64(1), int64(1), object(1) + memory usage: 248.0+ bytes + + Pipe output of DataFrame.info to buffer instead of sys.stdout, get + buffer content and writes to a text file: + + >>> import io + >>> buffer = io.StringIO() + >>> df.info(buf=buffer) + >>> s = buffer.getvalue() + >>> with open("df_info.txt", "w", + ... encoding="utf-8") as f: # doctest: +SKIP + ... f.write(s) + 260 + + The `memory_usage` parameter allows deep introspection mode, specially + useful for big DataFrames and fine-tune memory optimization: + + >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6) + >>> df = pd.DataFrame({ + ... 'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6), + ... 'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6), + ... 'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6) + ... }) + >>> df.info() + + RangeIndex: 1000000 entries, 0 to 999999 + Data columns (total 3 columns): + # Column Non-Null Count Dtype + --- ------ -------------- ----- + 0 column_1 1000000 non-null object + 1 column_2 1000000 non-null object + 2 column_3 1000000 non-null object + dtypes: object(3) + memory usage: 22.9+ MB + + >>> df.info(memory_usage='deep') + + RangeIndex: 1000000 entries, 0 to 999999 + Data columns (total 3 columns): + # Column Non-Null Count Dtype + --- ------ -------------- ----- + 0 column_1 1000000 non-null object + 1 column_2 1000000 non-null object + 2 column_3 1000000 non-null object + dtypes: object(3) + memory usage: 165.9 MB""" +) + + +frame_see_also_sub = dedent( + """\ + DataFrame.describe: Generate descriptive statistics of DataFrame + columns. + DataFrame.memory_usage: Memory usage of DataFrame columns.""" +) + + +frame_sub_kwargs = { + "klass": "DataFrame", + "type_sub": " and columns", + "max_cols_sub": frame_max_cols_sub, + "show_counts_sub": show_counts_sub, + "examples_sub": frame_examples_sub, + "see_also_sub": frame_see_also_sub, + "version_added_sub": "", +} + + +series_examples_sub = dedent( + """\ + >>> int_values = [1, 2, 3, 4, 5] + >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon'] + >>> s = pd.Series(text_values, index=int_values) + >>> s.info() + + Index: 5 entries, 1 to 5 + Series name: None + Non-Null Count Dtype + -------------- ----- + 5 non-null object + dtypes: object(1) + memory usage: 80.0+ bytes + + Prints a summary excluding information about its values: + + >>> s.info(verbose=False) + + Index: 5 entries, 1 to 5 + dtypes: object(1) + memory usage: 80.0+ bytes + + Pipe output of Series.info to buffer instead of sys.stdout, get + buffer content and writes to a text file: + + >>> import io + >>> buffer = io.StringIO() + >>> s.info(buf=buffer) + >>> s = buffer.getvalue() + >>> with open("df_info.txt", "w", + ... encoding="utf-8") as f: # doctest: +SKIP + ... f.write(s) + 260 + + The `memory_usage` parameter allows deep introspection mode, specially + useful for big Series and fine-tune memory optimization: + + >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6) + >>> s = pd.Series(np.random.choice(['a', 'b', 'c'], 10 ** 6)) + >>> s.info() + + RangeIndex: 1000000 entries, 0 to 999999 + Series name: None + Non-Null Count Dtype + -------------- ----- + 1000000 non-null object + dtypes: object(1) + memory usage: 7.6+ MB + + >>> s.info(memory_usage='deep') + + RangeIndex: 1000000 entries, 0 to 999999 + Series name: None + Non-Null Count Dtype + -------------- ----- + 1000000 non-null object + dtypes: object(1) + memory usage: 55.3 MB""" +) + + +series_see_also_sub = dedent( + """\ + Series.describe: Generate descriptive statistics of Series. + Series.memory_usage: Memory usage of Series.""" +) + + +series_sub_kwargs = { + "klass": "Series", + "type_sub": "", + "max_cols_sub": "", + "show_counts_sub": show_counts_sub, + "examples_sub": series_examples_sub, + "see_also_sub": series_see_also_sub, + "version_added_sub": "\n.. versionadded:: 1.4.0\n", +} + + +INFO_DOCSTRING = dedent( + """ + Print a concise summary of a {klass}. + + This method prints information about a {klass} including + the index dtype{type_sub}, non-null values and memory usage. + {version_added_sub}\ + + Parameters + ---------- + verbose : bool, optional + Whether to print the full summary. By default, the setting in + ``pandas.options.display.max_info_columns`` is followed. + buf : writable buffer, defaults to sys.stdout + Where to send the output. By default, the output is printed to + sys.stdout. Pass a writable buffer if you need to further process + the output. + {max_cols_sub} + memory_usage : bool, str, optional + Specifies whether total memory usage of the {klass} + elements (including the index) should be displayed. By default, + this follows the ``pandas.options.display.memory_usage`` setting. + + True always show memory usage. False never shows memory usage. + A value of 'deep' is equivalent to "True with deep introspection". + Memory usage is shown in human-readable units (base-2 + representation). Without deep introspection a memory estimation is + made based in column dtype and number of rows assuming values + consume the same memory amount for corresponding dtypes. With deep + memory introspection, a real memory usage calculation is performed + at the cost of computational resources. See the + :ref:`Frequently Asked Questions ` for more + details. + {show_counts_sub} + + Returns + ------- + None + This method prints a summary of a {klass} and returns None. + + See Also + -------- + {see_also_sub} + + Examples + -------- + {examples_sub} + """ +) + + +def _put_str(s: str | Dtype, space: int) -> str: + """ + Make string of specified length, padding to the right if necessary. + + Parameters + ---------- + s : Union[str, Dtype] + String to be formatted. + space : int + Length to force string to be of. + + Returns + ------- + str + String coerced to given length. + + Examples + -------- + >>> pd.io.formats.info._put_str("panda", 6) + 'panda ' + >>> pd.io.formats.info._put_str("panda", 4) + 'pand' + """ + return str(s)[:space].ljust(space) + + +def _sizeof_fmt(num: float, size_qualifier: str) -> str: + """ + Return size in human readable format. + + Parameters + ---------- + num : int + Size in bytes. + size_qualifier : str + Either empty, or '+' (if lower bound). + + Returns + ------- + str + Size in human readable format. + + Examples + -------- + >>> _sizeof_fmt(23028, '') + '22.5 KB' + + >>> _sizeof_fmt(23028, '+') + '22.5+ KB' + """ + for x in ["bytes", "KB", "MB", "GB", "TB"]: + if num < 1024.0: + return f"{num:3.1f}{size_qualifier} {x}" + num /= 1024.0 + return f"{num:3.1f}{size_qualifier} PB" + + +def _initialize_memory_usage( + memory_usage: bool | str | None = None, +) -> bool | str: + """Get memory usage based on inputs and display options.""" + if memory_usage is None: + memory_usage = get_option("display.memory_usage") + return memory_usage + + +class _BaseInfo(ABC): + """ + Base class for DataFrameInfo and SeriesInfo. + + Parameters + ---------- + data : DataFrame or Series + Either dataframe or series. + memory_usage : bool or str, optional + If "deep", introspect the data deeply by interrogating object dtypes + for system-level memory consumption, and include it in the returned + values. + """ + + data: DataFrame | Series + memory_usage: bool | str + + @property + @abstractmethod + def dtypes(self) -> Iterable[Dtype]: + """ + Dtypes. + + Returns + ------- + dtypes : sequence + Dtype of each of the DataFrame's columns (or one series column). + """ + + @property + @abstractmethod + def dtype_counts(self) -> Mapping[str, int]: + """Mapping dtype - number of counts.""" + + @property + @abstractmethod + def non_null_counts(self) -> Sequence[int]: + """Sequence of non-null counts for all columns or column (if series).""" + + @property + @abstractmethod + def memory_usage_bytes(self) -> int: + """ + Memory usage in bytes. + + Returns + ------- + memory_usage_bytes : int + Object's total memory usage in bytes. + """ + + @property + def memory_usage_string(self) -> str: + """Memory usage in a form of human readable string.""" + return f"{_sizeof_fmt(self.memory_usage_bytes, self.size_qualifier)}\n" + + @property + def size_qualifier(self) -> str: + size_qualifier = "" + if self.memory_usage: + if self.memory_usage != "deep": + # size_qualifier is just a best effort; not guaranteed to catch + # all cases (e.g., it misses categorical data even with object + # categories) + if ( + "object" in self.dtype_counts + or self.data.index._is_memory_usage_qualified() + ): + size_qualifier = "+" + return size_qualifier + + @abstractmethod + def render( + self, + *, + buf: WriteBuffer[str] | None, + max_cols: int | None, + verbose: bool | None, + show_counts: bool | None, + ) -> None: + pass + + +class DataFrameInfo(_BaseInfo): + """ + Class storing dataframe-specific info. + """ + + def __init__( + self, + data: DataFrame, + memory_usage: bool | str | None = None, + ) -> None: + self.data: DataFrame = data + self.memory_usage = _initialize_memory_usage(memory_usage) + + @property + def dtype_counts(self) -> Mapping[str, int]: + return _get_dataframe_dtype_counts(self.data) + + @property + def dtypes(self) -> Iterable[Dtype]: + """ + Dtypes. + + Returns + ------- + dtypes + Dtype of each of the DataFrame's columns. + """ + return self.data.dtypes + + @property + def ids(self) -> Index: + """ + Column names. + + Returns + ------- + ids : Index + DataFrame's column names. + """ + return self.data.columns + + @property + def col_count(self) -> int: + """Number of columns to be summarized.""" + return len(self.ids) + + @property + def non_null_counts(self) -> Sequence[int]: + """Sequence of non-null counts for all columns or column (if series).""" + return self.data.count() + + @property + def memory_usage_bytes(self) -> int: + deep = self.memory_usage == "deep" + return self.data.memory_usage(index=True, deep=deep).sum() + + def render( + self, + *, + buf: WriteBuffer[str] | None, + max_cols: int | None, + verbose: bool | None, + show_counts: bool | None, + ) -> None: + printer = _DataFrameInfoPrinter( + info=self, + max_cols=max_cols, + verbose=verbose, + show_counts=show_counts, + ) + printer.to_buffer(buf) + + +class SeriesInfo(_BaseInfo): + """ + Class storing series-specific info. + """ + + def __init__( + self, + data: Series, + memory_usage: bool | str | None = None, + ) -> None: + self.data: Series = data + self.memory_usage = _initialize_memory_usage(memory_usage) + + def render( + self, + *, + buf: WriteBuffer[str] | None = None, + max_cols: int | None = None, + verbose: bool | None = None, + show_counts: bool | None = None, + ) -> None: + if max_cols is not None: + raise ValueError( + "Argument `max_cols` can only be passed " + "in DataFrame.info, not Series.info" + ) + printer = _SeriesInfoPrinter( + info=self, + verbose=verbose, + show_counts=show_counts, + ) + printer.to_buffer(buf) + + @property + def non_null_counts(self) -> Sequence[int]: + return [self.data.count()] + + @property + def dtypes(self) -> Iterable[Dtype]: + return [self.data.dtypes] + + @property + def dtype_counts(self) -> Mapping[str, int]: + from pandas.core.frame import DataFrame + + return _get_dataframe_dtype_counts(DataFrame(self.data)) + + @property + def memory_usage_bytes(self) -> int: + """Memory usage in bytes. + + Returns + ------- + memory_usage_bytes : int + Object's total memory usage in bytes. + """ + deep = self.memory_usage == "deep" + return self.data.memory_usage(index=True, deep=deep) + + +class _InfoPrinterAbstract: + """ + Class for printing dataframe or series info. + """ + + def to_buffer(self, buf: WriteBuffer[str] | None = None) -> None: + """Save dataframe info into buffer.""" + table_builder = self._create_table_builder() + lines = table_builder.get_lines() + if buf is None: # pragma: no cover + buf = sys.stdout + fmt.buffer_put_lines(buf, lines) + + @abstractmethod + def _create_table_builder(self) -> _TableBuilderAbstract: + """Create instance of table builder.""" + + +class _DataFrameInfoPrinter(_InfoPrinterAbstract): + """ + Class for printing dataframe info. + + Parameters + ---------- + info : DataFrameInfo + Instance of DataFrameInfo. + max_cols : int, optional + When to switch from the verbose to the truncated output. + verbose : bool, optional + Whether to print the full summary. + show_counts : bool, optional + Whether to show the non-null counts. + """ + + def __init__( + self, + info: DataFrameInfo, + max_cols: int | None = None, + verbose: bool | None = None, + show_counts: bool | None = None, + ) -> None: + self.info = info + self.data = info.data + self.verbose = verbose + self.max_cols = self._initialize_max_cols(max_cols) + self.show_counts = self._initialize_show_counts(show_counts) + + @property + def max_rows(self) -> int: + """Maximum info rows to be displayed.""" + return get_option("display.max_info_rows", len(self.data) + 1) + + @property + def exceeds_info_cols(self) -> bool: + """Check if number of columns to be summarized does not exceed maximum.""" + return bool(self.col_count > self.max_cols) + + @property + def exceeds_info_rows(self) -> bool: + """Check if number of rows to be summarized does not exceed maximum.""" + return bool(len(self.data) > self.max_rows) + + @property + def col_count(self) -> int: + """Number of columns to be summarized.""" + return self.info.col_count + + def _initialize_max_cols(self, max_cols: int | None) -> int: + if max_cols is None: + return get_option("display.max_info_columns", self.col_count + 1) + return max_cols + + def _initialize_show_counts(self, show_counts: bool | None) -> bool: + if show_counts is None: + return bool(not self.exceeds_info_cols and not self.exceeds_info_rows) + else: + return show_counts + + def _create_table_builder(self) -> _DataFrameTableBuilder: + """ + Create instance of table builder based on verbosity and display settings. + """ + if self.verbose: + return _DataFrameTableBuilderVerbose( + info=self.info, + with_counts=self.show_counts, + ) + elif self.verbose is False: # specifically set to False, not necessarily None + return _DataFrameTableBuilderNonVerbose(info=self.info) + elif self.exceeds_info_cols: + return _DataFrameTableBuilderNonVerbose(info=self.info) + else: + return _DataFrameTableBuilderVerbose( + info=self.info, + with_counts=self.show_counts, + ) + + +class _SeriesInfoPrinter(_InfoPrinterAbstract): + """Class for printing series info. + + Parameters + ---------- + info : SeriesInfo + Instance of SeriesInfo. + verbose : bool, optional + Whether to print the full summary. + show_counts : bool, optional + Whether to show the non-null counts. + """ + + def __init__( + self, + info: SeriesInfo, + verbose: bool | None = None, + show_counts: bool | None = None, + ) -> None: + self.info = info + self.data = info.data + self.verbose = verbose + self.show_counts = self._initialize_show_counts(show_counts) + + def _create_table_builder(self) -> _SeriesTableBuilder: + """ + Create instance of table builder based on verbosity. + """ + if self.verbose or self.verbose is None: + return _SeriesTableBuilderVerbose( + info=self.info, + with_counts=self.show_counts, + ) + else: + return _SeriesTableBuilderNonVerbose(info=self.info) + + def _initialize_show_counts(self, show_counts: bool | None) -> bool: + if show_counts is None: + return True + else: + return show_counts + + +class _TableBuilderAbstract(ABC): + """ + Abstract builder for info table. + """ + + _lines: list[str] + info: _BaseInfo + + @abstractmethod + def get_lines(self) -> list[str]: + """Product in a form of list of lines (strings).""" + + @property + def data(self) -> DataFrame | Series: + return self.info.data + + @property + def dtypes(self) -> Iterable[Dtype]: + """Dtypes of each of the DataFrame's columns.""" + return self.info.dtypes + + @property + def dtype_counts(self) -> Mapping[str, int]: + """Mapping dtype - number of counts.""" + return self.info.dtype_counts + + @property + def display_memory_usage(self) -> bool: + """Whether to display memory usage.""" + return bool(self.info.memory_usage) + + @property + def memory_usage_string(self) -> str: + """Memory usage string with proper size qualifier.""" + return self.info.memory_usage_string + + @property + def non_null_counts(self) -> Sequence[int]: + return self.info.non_null_counts + + def add_object_type_line(self) -> None: + """Add line with string representation of dataframe to the table.""" + self._lines.append(str(type(self.data))) + + def add_index_range_line(self) -> None: + """Add line with range of indices to the table.""" + self._lines.append(self.data.index._summary()) + + def add_dtypes_line(self) -> None: + """Add summary line with dtypes present in dataframe.""" + collected_dtypes = [ + f"{key}({val:d})" for key, val in sorted(self.dtype_counts.items()) + ] + self._lines.append(f"dtypes: {', '.join(collected_dtypes)}") + + +class _DataFrameTableBuilder(_TableBuilderAbstract): + """ + Abstract builder for dataframe info table. + + Parameters + ---------- + info : DataFrameInfo. + Instance of DataFrameInfo. + """ + + def __init__(self, *, info: DataFrameInfo) -> None: + self.info: DataFrameInfo = info + + def get_lines(self) -> list[str]: + self._lines = [] + if self.col_count == 0: + self._fill_empty_info() + else: + self._fill_non_empty_info() + return self._lines + + def _fill_empty_info(self) -> None: + """Add lines to the info table, pertaining to empty dataframe.""" + self.add_object_type_line() + self.add_index_range_line() + self._lines.append(f"Empty {type(self.data).__name__}\n") + + @abstractmethod + def _fill_non_empty_info(self) -> None: + """Add lines to the info table, pertaining to non-empty dataframe.""" + + @property + def data(self) -> DataFrame: + """DataFrame.""" + return self.info.data + + @property + def ids(self) -> Index: + """Dataframe columns.""" + return self.info.ids + + @property + def col_count(self) -> int: + """Number of dataframe columns to be summarized.""" + return self.info.col_count + + def add_memory_usage_line(self) -> None: + """Add line containing memory usage.""" + self._lines.append(f"memory usage: {self.memory_usage_string}") + + +class _DataFrameTableBuilderNonVerbose(_DataFrameTableBuilder): + """ + Dataframe info table builder for non-verbose output. + """ + + def _fill_non_empty_info(self) -> None: + """Add lines to the info table, pertaining to non-empty dataframe.""" + self.add_object_type_line() + self.add_index_range_line() + self.add_columns_summary_line() + self.add_dtypes_line() + if self.display_memory_usage: + self.add_memory_usage_line() + + def add_columns_summary_line(self) -> None: + self._lines.append(self.ids._summary(name="Columns")) + + +class _TableBuilderVerboseMixin(_TableBuilderAbstract): + """ + Mixin for verbose info output. + """ + + SPACING: str = " " * 2 + strrows: Sequence[Sequence[str]] + gross_column_widths: Sequence[int] + with_counts: bool + + @property + @abstractmethod + def headers(self) -> Sequence[str]: + """Headers names of the columns in verbose table.""" + + @property + def header_column_widths(self) -> Sequence[int]: + """Widths of header columns (only titles).""" + return [len(col) for col in self.headers] + + def _get_gross_column_widths(self) -> Sequence[int]: + """Get widths of columns containing both headers and actual content.""" + body_column_widths = self._get_body_column_widths() + return [ + max(*widths) + for widths in zip(self.header_column_widths, body_column_widths) + ] + + def _get_body_column_widths(self) -> Sequence[int]: + """Get widths of table content columns.""" + strcols: Sequence[Sequence[str]] = list(zip(*self.strrows)) + return [max(len(x) for x in col) for col in strcols] + + def _gen_rows(self) -> Iterator[Sequence[str]]: + """ + Generator function yielding rows content. + + Each element represents a row comprising a sequence of strings. + """ + if self.with_counts: + return self._gen_rows_with_counts() + else: + return self._gen_rows_without_counts() + + @abstractmethod + def _gen_rows_with_counts(self) -> Iterator[Sequence[str]]: + """Iterator with string representation of body data with counts.""" + + @abstractmethod + def _gen_rows_without_counts(self) -> Iterator[Sequence[str]]: + """Iterator with string representation of body data without counts.""" + + def add_header_line(self) -> None: + header_line = self.SPACING.join( + [ + _put_str(header, col_width) + for header, col_width in zip(self.headers, self.gross_column_widths) + ] + ) + self._lines.append(header_line) + + def add_separator_line(self) -> None: + separator_line = self.SPACING.join( + [ + _put_str("-" * header_colwidth, gross_colwidth) + for header_colwidth, gross_colwidth in zip( + self.header_column_widths, self.gross_column_widths + ) + ] + ) + self._lines.append(separator_line) + + def add_body_lines(self) -> None: + for row in self.strrows: + body_line = self.SPACING.join( + [ + _put_str(col, gross_colwidth) + for col, gross_colwidth in zip(row, self.gross_column_widths) + ] + ) + self._lines.append(body_line) + + def _gen_non_null_counts(self) -> Iterator[str]: + """Iterator with string representation of non-null counts.""" + for count in self.non_null_counts: + yield f"{count} non-null" + + def _gen_dtypes(self) -> Iterator[str]: + """Iterator with string representation of column dtypes.""" + for dtype in self.dtypes: + yield pprint_thing(dtype) + + +class _DataFrameTableBuilderVerbose(_DataFrameTableBuilder, _TableBuilderVerboseMixin): + """ + Dataframe info table builder for verbose output. + """ + + def __init__( + self, + *, + info: DataFrameInfo, + with_counts: bool, + ) -> None: + self.info = info + self.with_counts = with_counts + self.strrows: Sequence[Sequence[str]] = list(self._gen_rows()) + self.gross_column_widths: Sequence[int] = self._get_gross_column_widths() + + def _fill_non_empty_info(self) -> None: + """Add lines to the info table, pertaining to non-empty dataframe.""" + self.add_object_type_line() + self.add_index_range_line() + self.add_columns_summary_line() + self.add_header_line() + self.add_separator_line() + self.add_body_lines() + self.add_dtypes_line() + if self.display_memory_usage: + self.add_memory_usage_line() + + @property + def headers(self) -> Sequence[str]: + """Headers names of the columns in verbose table.""" + if self.with_counts: + return [" # ", "Column", "Non-Null Count", "Dtype"] + return [" # ", "Column", "Dtype"] + + def add_columns_summary_line(self) -> None: + self._lines.append(f"Data columns (total {self.col_count} columns):") + + def _gen_rows_without_counts(self) -> Iterator[Sequence[str]]: + """Iterator with string representation of body data without counts.""" + yield from zip( + self._gen_line_numbers(), + self._gen_columns(), + self._gen_dtypes(), + ) + + def _gen_rows_with_counts(self) -> Iterator[Sequence[str]]: + """Iterator with string representation of body data with counts.""" + yield from zip( + self._gen_line_numbers(), + self._gen_columns(), + self._gen_non_null_counts(), + self._gen_dtypes(), + ) + + def _gen_line_numbers(self) -> Iterator[str]: + """Iterator with string representation of column numbers.""" + for i, _ in enumerate(self.ids): + yield f" {i}" + + def _gen_columns(self) -> Iterator[str]: + """Iterator with string representation of column names.""" + for col in self.ids: + yield pprint_thing(col) + + +class _SeriesTableBuilder(_TableBuilderAbstract): + """ + Abstract builder for series info table. + + Parameters + ---------- + info : SeriesInfo. + Instance of SeriesInfo. + """ + + def __init__(self, *, info: SeriesInfo) -> None: + self.info: SeriesInfo = info + + def get_lines(self) -> list[str]: + self._lines = [] + self._fill_non_empty_info() + return self._lines + + @property + def data(self) -> Series: + """Series.""" + return self.info.data + + def add_memory_usage_line(self) -> None: + """Add line containing memory usage.""" + self._lines.append(f"memory usage: {self.memory_usage_string}") + + @abstractmethod + def _fill_non_empty_info(self) -> None: + """Add lines to the info table, pertaining to non-empty series.""" + + +class _SeriesTableBuilderNonVerbose(_SeriesTableBuilder): + """ + Series info table builder for non-verbose output. + """ + + def _fill_non_empty_info(self) -> None: + """Add lines to the info table, pertaining to non-empty series.""" + self.add_object_type_line() + self.add_index_range_line() + self.add_dtypes_line() + if self.display_memory_usage: + self.add_memory_usage_line() + + +class _SeriesTableBuilderVerbose(_SeriesTableBuilder, _TableBuilderVerboseMixin): + """ + Series info table builder for verbose output. + """ + + def __init__( + self, + *, + info: SeriesInfo, + with_counts: bool, + ) -> None: + self.info = info + self.with_counts = with_counts + self.strrows: Sequence[Sequence[str]] = list(self._gen_rows()) + self.gross_column_widths: Sequence[int] = self._get_gross_column_widths() + + def _fill_non_empty_info(self) -> None: + """Add lines to the info table, pertaining to non-empty series.""" + self.add_object_type_line() + self.add_index_range_line() + self.add_series_name_line() + self.add_header_line() + self.add_separator_line() + self.add_body_lines() + self.add_dtypes_line() + if self.display_memory_usage: + self.add_memory_usage_line() + + def add_series_name_line(self) -> None: + self._lines.append(f"Series name: {self.data.name}") + + @property + def headers(self) -> Sequence[str]: + """Headers names of the columns in verbose table.""" + if self.with_counts: + return ["Non-Null Count", "Dtype"] + return ["Dtype"] + + def _gen_rows_without_counts(self) -> Iterator[Sequence[str]]: + """Iterator with string representation of body data without counts.""" + yield from self._gen_dtypes() + + def _gen_rows_with_counts(self) -> Iterator[Sequence[str]]: + """Iterator with string representation of body data with counts.""" + yield from zip( + self._gen_non_null_counts(), + self._gen_dtypes(), + ) + + +def _get_dataframe_dtype_counts(df: DataFrame) -> Mapping[str, int]: + """ + Create mapping between datatypes and their number of occurrences. + """ + # groupby dtype.name to collect e.g. Categorical columns + return df.dtypes.value_counts().groupby(lambda x: x.name).sum() diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/printing.py b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/printing.py new file mode 100644 index 0000000000000000000000000000000000000000..2cc9368f8846a6423655040673df283d111efeda --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/printing.py @@ -0,0 +1,572 @@ +""" +Printing tools. +""" +from __future__ import annotations + +from collections.abc import ( + Iterable, + Mapping, + Sequence, +) +import sys +from typing import ( + Any, + Callable, + TypeVar, + Union, +) +from unicodedata import east_asian_width + +from pandas._config import get_option + +from pandas.core.dtypes.inference import is_sequence + +from pandas.io.formats.console import get_console_size + +EscapeChars = Union[Mapping[str, str], Iterable[str]] +_KT = TypeVar("_KT") +_VT = TypeVar("_VT") + + +def adjoin(space: int, *lists: list[str], **kwargs) -> str: + """ + Glues together two sets of strings using the amount of space requested. + The idea is to prettify. + + ---------- + space : int + number of spaces for padding + lists : str + list of str which being joined + strlen : callable + function used to calculate the length of each str. Needed for unicode + handling. + justfunc : callable + function used to justify str. Needed for unicode handling. + """ + strlen = kwargs.pop("strlen", len) + justfunc = kwargs.pop("justfunc", _adj_justify) + + newLists = [] + lengths = [max(map(strlen, x)) + space for x in lists[:-1]] + # not the last one + lengths.append(max(map(len, lists[-1]))) + maxLen = max(map(len, lists)) + for i, lst in enumerate(lists): + nl = justfunc(lst, lengths[i], mode="left") + nl = ([" " * lengths[i]] * (maxLen - len(lst))) + nl + newLists.append(nl) + toJoin = zip(*newLists) + return "\n".join("".join(lines) for lines in toJoin) + + +def _adj_justify(texts: Iterable[str], max_len: int, mode: str = "right") -> list[str]: + """ + Perform ljust, center, rjust against string or list-like + """ + if mode == "left": + return [x.ljust(max_len) for x in texts] + elif mode == "center": + return [x.center(max_len) for x in texts] + else: + return [x.rjust(max_len) for x in texts] + + +# Unicode consolidation +# --------------------- +# +# pprinting utility functions for generating Unicode text or +# bytes(3.x)/str(2.x) representations of objects. +# Try to use these as much as possible rather than rolling your own. +# +# When to use +# ----------- +# +# 1) If you're writing code internal to pandas (no I/O directly involved), +# use pprint_thing(). +# +# It will always return unicode text which can handled by other +# parts of the package without breakage. +# +# 2) if you need to write something out to file, use +# pprint_thing_encoded(encoding). +# +# If no encoding is specified, it defaults to utf-8. Since encoding pure +# ascii with utf-8 is a no-op you can safely use the default utf-8 if you're +# working with straight ascii. + + +def _pprint_seq( + seq: Sequence, _nest_lvl: int = 0, max_seq_items: int | None = None, **kwds +) -> str: + """ + internal. pprinter for iterables. you should probably use pprint_thing() + rather than calling this directly. + + bounds length of printed sequence, depending on options + """ + if isinstance(seq, set): + fmt = "{{{body}}}" + else: + fmt = "[{body}]" if hasattr(seq, "__setitem__") else "({body})" + + if max_seq_items is False: + nitems = len(seq) + else: + nitems = max_seq_items or get_option("max_seq_items") or len(seq) + + s = iter(seq) + # handle sets, no slicing + r = [ + pprint_thing(next(s), _nest_lvl + 1, max_seq_items=max_seq_items, **kwds) + for i in range(min(nitems, len(seq))) + ] + body = ", ".join(r) + + if nitems < len(seq): + body += ", ..." + elif isinstance(seq, tuple) and len(seq) == 1: + body += "," + + return fmt.format(body=body) + + +def _pprint_dict( + seq: Mapping, _nest_lvl: int = 0, max_seq_items: int | None = None, **kwds +) -> str: + """ + internal. pprinter for iterables. you should probably use pprint_thing() + rather than calling this directly. + """ + fmt = "{{{things}}}" + pairs = [] + + pfmt = "{key}: {val}" + + if max_seq_items is False: + nitems = len(seq) + else: + nitems = max_seq_items or get_option("max_seq_items") or len(seq) + + for k, v in list(seq.items())[:nitems]: + pairs.append( + pfmt.format( + key=pprint_thing(k, _nest_lvl + 1, max_seq_items=max_seq_items, **kwds), + val=pprint_thing(v, _nest_lvl + 1, max_seq_items=max_seq_items, **kwds), + ) + ) + + if nitems < len(seq): + return fmt.format(things=", ".join(pairs) + ", ...") + else: + return fmt.format(things=", ".join(pairs)) + + +def pprint_thing( + thing: Any, + _nest_lvl: int = 0, + escape_chars: EscapeChars | None = None, + default_escapes: bool = False, + quote_strings: bool = False, + max_seq_items: int | None = None, +) -> str: + """ + This function is the sanctioned way of converting objects + to a string representation and properly handles nested sequences. + + Parameters + ---------- + thing : anything to be formatted + _nest_lvl : internal use only. pprint_thing() is mutually-recursive + with pprint_sequence, this argument is used to keep track of the + current nesting level, and limit it. + escape_chars : list or dict, optional + Characters to escape. If a dict is passed the values are the + replacements + default_escapes : bool, default False + Whether the input escape characters replaces or adds to the defaults + max_seq_items : int or None, default None + Pass through to other pretty printers to limit sequence printing + + Returns + ------- + str + """ + + def as_escaped_string( + thing: Any, escape_chars: EscapeChars | None = escape_chars + ) -> str: + translate = {"\t": r"\t", "\n": r"\n", "\r": r"\r"} + if isinstance(escape_chars, dict): + if default_escapes: + translate.update(escape_chars) + else: + translate = escape_chars + escape_chars = list(escape_chars.keys()) + else: + escape_chars = escape_chars or () + + result = str(thing) + for c in escape_chars: + result = result.replace(c, translate[c]) + return result + + if hasattr(thing, "__next__"): + return str(thing) + elif isinstance(thing, dict) and _nest_lvl < get_option( + "display.pprint_nest_depth" + ): + result = _pprint_dict( + thing, _nest_lvl, quote_strings=True, max_seq_items=max_seq_items + ) + elif is_sequence(thing) and _nest_lvl < get_option("display.pprint_nest_depth"): + result = _pprint_seq( + thing, + _nest_lvl, + escape_chars=escape_chars, + quote_strings=quote_strings, + max_seq_items=max_seq_items, + ) + elif isinstance(thing, str) and quote_strings: + result = f"'{as_escaped_string(thing)}'" + else: + result = as_escaped_string(thing) + + return result + + +def pprint_thing_encoded( + object, encoding: str = "utf-8", errors: str = "replace" +) -> bytes: + value = pprint_thing(object) # get unicode representation of object + return value.encode(encoding, errors) + + +def enable_data_resource_formatter(enable: bool) -> None: + if "IPython" not in sys.modules: + # definitely not in IPython + return + from IPython import get_ipython + + ip = get_ipython() + if ip is None: + # still not in IPython + return + + formatters = ip.display_formatter.formatters + mimetype = "application/vnd.dataresource+json" + + if enable: + if mimetype not in formatters: + # define tableschema formatter + from IPython.core.formatters import BaseFormatter + from traitlets import ObjectName + + class TableSchemaFormatter(BaseFormatter): + print_method = ObjectName("_repr_data_resource_") + _return_type = (dict,) + + # register it: + formatters[mimetype] = TableSchemaFormatter() + # enable it if it's been disabled: + formatters[mimetype].enabled = True + # unregister tableschema mime-type + elif mimetype in formatters: + formatters[mimetype].enabled = False + + +def default_pprint(thing: Any, max_seq_items: int | None = None) -> str: + return pprint_thing( + thing, + escape_chars=("\t", "\r", "\n"), + quote_strings=True, + max_seq_items=max_seq_items, + ) + + +def format_object_summary( + obj, + formatter: Callable, + is_justify: bool = True, + name: str | None = None, + indent_for_name: bool = True, + line_break_each_value: bool = False, +) -> str: + """ + Return the formatted obj as a unicode string + + Parameters + ---------- + obj : object + must be iterable and support __getitem__ + formatter : callable + string formatter for an element + is_justify : bool + should justify the display + name : name, optional + defaults to the class name of the obj + indent_for_name : bool, default True + Whether subsequent lines should be indented to + align with the name. + line_break_each_value : bool, default False + If True, inserts a line break for each value of ``obj``. + If False, only break lines when the a line of values gets wider + than the display width. + + Returns + ------- + summary string + """ + display_width, _ = get_console_size() + if display_width is None: + display_width = get_option("display.width") or 80 + if name is None: + name = type(obj).__name__ + + if indent_for_name: + name_len = len(name) + space1 = f'\n{(" " * (name_len + 1))}' + space2 = f'\n{(" " * (name_len + 2))}' + else: + space1 = "\n" + space2 = "\n " # space for the opening '[' + + n = len(obj) + if line_break_each_value: + # If we want to vertically align on each value of obj, we need to + # separate values by a line break and indent the values + sep = ",\n " + " " * len(name) + else: + sep = "," + max_seq_items = get_option("display.max_seq_items") or n + + # are we a truncated display + is_truncated = n > max_seq_items + + # adj can optionally handle unicode eastern asian width + adj = get_adjustment() + + def _extend_line( + s: str, line: str, value: str, display_width: int, next_line_prefix: str + ) -> tuple[str, str]: + if adj.len(line.rstrip()) + adj.len(value.rstrip()) >= display_width: + s += line.rstrip() + line = next_line_prefix + line += value + return s, line + + def best_len(values: list[str]) -> int: + if values: + return max(adj.len(x) for x in values) + else: + return 0 + + close = ", " + + if n == 0: + summary = f"[]{close}" + elif n == 1 and not line_break_each_value: + first = formatter(obj[0]) + summary = f"[{first}]{close}" + elif n == 2 and not line_break_each_value: + first = formatter(obj[0]) + last = formatter(obj[-1]) + summary = f"[{first}, {last}]{close}" + else: + if max_seq_items == 1: + # If max_seq_items=1 show only last element + head = [] + tail = [formatter(x) for x in obj[-1:]] + elif n > max_seq_items: + n = min(max_seq_items // 2, 10) + head = [formatter(x) for x in obj[:n]] + tail = [formatter(x) for x in obj[-n:]] + else: + head = [] + tail = [formatter(x) for x in obj] + + # adjust all values to max length if needed + if is_justify: + if line_break_each_value: + # Justify each string in the values of head and tail, so the + # strings will right align when head and tail are stacked + # vertically. + head, tail = _justify(head, tail) + elif is_truncated or not ( + len(", ".join(head)) < display_width + and len(", ".join(tail)) < display_width + ): + # Each string in head and tail should align with each other + max_length = max(best_len(head), best_len(tail)) + head = [x.rjust(max_length) for x in head] + tail = [x.rjust(max_length) for x in tail] + # If we are not truncated and we are only a single + # line, then don't justify + + if line_break_each_value: + # Now head and tail are of type List[Tuple[str]]. Below we + # convert them into List[str], so there will be one string per + # value. Also truncate items horizontally if wider than + # max_space + max_space = display_width - len(space2) + value = tail[0] + max_items = 1 + for num_items in reversed(range(1, len(value) + 1)): + pprinted_seq = _pprint_seq(value, max_seq_items=num_items) + if len(pprinted_seq) < max_space: + max_items = num_items + break + head = [_pprint_seq(x, max_seq_items=max_items) for x in head] + tail = [_pprint_seq(x, max_seq_items=max_items) for x in tail] + + summary = "" + line = space2 + + for head_value in head: + word = head_value + sep + " " + summary, line = _extend_line(summary, line, word, display_width, space2) + + if is_truncated: + # remove trailing space of last line + summary += line.rstrip() + space2 + "..." + line = space2 + + for tail_item in tail[:-1]: + word = tail_item + sep + " " + summary, line = _extend_line(summary, line, word, display_width, space2) + + # last value: no sep added + 1 space of width used for trailing ',' + summary, line = _extend_line(summary, line, tail[-1], display_width - 2, space2) + summary += line + + # right now close is either '' or ', ' + # Now we want to include the ']', but not the maybe space. + close = "]" + close.rstrip(" ") + summary += close + + if len(summary) > (display_width) or line_break_each_value: + summary += space1 + else: # one row + summary += " " + + # remove initial space + summary = "[" + summary[len(space2) :] + + return summary + + +def _justify( + head: list[Sequence[str]], tail: list[Sequence[str]] +) -> tuple[list[tuple[str, ...]], list[tuple[str, ...]]]: + """ + Justify items in head and tail, so they are right-aligned when stacked. + + Parameters + ---------- + head : list-like of list-likes of strings + tail : list-like of list-likes of strings + + Returns + ------- + tuple of list of tuples of strings + Same as head and tail, but items are right aligned when stacked + vertically. + + Examples + -------- + >>> _justify([['a', 'b']], [['abc', 'abcd']]) + ([(' a', ' b')], [('abc', 'abcd')]) + """ + combined = head + tail + + # For each position for the sequences in ``combined``, + # find the length of the largest string. + max_length = [0] * len(combined[0]) + for inner_seq in combined: + length = [len(item) for item in inner_seq] + max_length = [max(x, y) for x, y in zip(max_length, length)] + + # justify each item in each list-like in head and tail using max_length + head_tuples = [ + tuple(x.rjust(max_len) for x, max_len in zip(seq, max_length)) for seq in head + ] + tail_tuples = [ + tuple(x.rjust(max_len) for x, max_len in zip(seq, max_length)) for seq in tail + ] + return head_tuples, tail_tuples + + +class PrettyDict(dict[_KT, _VT]): + """Dict extension to support abbreviated __repr__""" + + def __repr__(self) -> str: + return pprint_thing(self) + + +class _TextAdjustment: + def __init__(self) -> None: + self.encoding = get_option("display.encoding") + + def len(self, text: str) -> int: + return len(text) + + def justify(self, texts: Any, max_len: int, mode: str = "right") -> list[str]: + """ + Perform ljust, center, rjust against string or list-like + """ + if mode == "left": + return [x.ljust(max_len) for x in texts] + elif mode == "center": + return [x.center(max_len) for x in texts] + else: + return [x.rjust(max_len) for x in texts] + + def adjoin(self, space: int, *lists, **kwargs) -> str: + return adjoin(space, *lists, strlen=self.len, justfunc=self.justify, **kwargs) + + +class _EastAsianTextAdjustment(_TextAdjustment): + def __init__(self) -> None: + super().__init__() + if get_option("display.unicode.ambiguous_as_wide"): + self.ambiguous_width = 2 + else: + self.ambiguous_width = 1 + + # Definition of East Asian Width + # https://unicode.org/reports/tr11/ + # Ambiguous width can be changed by option + self._EAW_MAP = {"Na": 1, "N": 1, "W": 2, "F": 2, "H": 1} + + def len(self, text: str) -> int: + """ + Calculate display width considering unicode East Asian Width + """ + if not isinstance(text, str): + return len(text) + + return sum( + self._EAW_MAP.get(east_asian_width(c), self.ambiguous_width) for c in text + ) + + def justify( + self, texts: Iterable[str], max_len: int, mode: str = "right" + ) -> list[str]: + # re-calculate padding space per str considering East Asian Width + def _get_pad(t): + return max_len - self.len(t) + len(t) + + if mode == "left": + return [x.ljust(_get_pad(x)) for x in texts] + elif mode == "center": + return [x.center(_get_pad(x)) for x in texts] + else: + return [x.rjust(_get_pad(x)) for x in texts] + + +def get_adjustment() -> _TextAdjustment: + use_east_asian_width = get_option("display.unicode.east_asian_width") + if use_east_asian_width: + return _EastAsianTextAdjustment() + else: + return _TextAdjustment() diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/string.py b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/string.py new file mode 100644 index 0000000000000000000000000000000000000000..cdad388592717dff79fde61bf35a12c0635034c1 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/string.py @@ -0,0 +1,206 @@ +""" +Module for formatting output data in console (to string). +""" +from __future__ import annotations + +from shutil import get_terminal_size +from typing import TYPE_CHECKING + +import numpy as np + +from pandas.io.formats.printing import pprint_thing + +if TYPE_CHECKING: + from collections.abc import Iterable + + from pandas.io.formats.format import DataFrameFormatter + + +class StringFormatter: + """Formatter for string representation of a dataframe.""" + + def __init__(self, fmt: DataFrameFormatter, line_width: int | None = None) -> None: + self.fmt = fmt + self.adj = fmt.adj + self.frame = fmt.frame + self.line_width = line_width + + def to_string(self) -> str: + text = self._get_string_representation() + if self.fmt.should_show_dimensions: + text = f"{text}{self.fmt.dimensions_info}" + return text + + def _get_strcols(self) -> list[list[str]]: + strcols = self.fmt.get_strcols() + if self.fmt.is_truncated: + strcols = self._insert_dot_separators(strcols) + return strcols + + def _get_string_representation(self) -> str: + if self.fmt.frame.empty: + return self._empty_info_line + + strcols = self._get_strcols() + + if self.line_width is None: + # no need to wrap around just print the whole frame + return self.adj.adjoin(1, *strcols) + + if self._need_to_wrap_around: + return self._join_multiline(strcols) + + return self._fit_strcols_to_terminal_width(strcols) + + @property + def _empty_info_line(self) -> str: + return ( + f"Empty {type(self.frame).__name__}\n" + f"Columns: {pprint_thing(self.frame.columns)}\n" + f"Index: {pprint_thing(self.frame.index)}" + ) + + @property + def _need_to_wrap_around(self) -> bool: + return bool(self.fmt.max_cols is None or self.fmt.max_cols > 0) + + def _insert_dot_separators(self, strcols: list[list[str]]) -> list[list[str]]: + str_index = self.fmt._get_formatted_index(self.fmt.tr_frame) + index_length = len(str_index) + + if self.fmt.is_truncated_horizontally: + strcols = self._insert_dot_separator_horizontal(strcols, index_length) + + if self.fmt.is_truncated_vertically: + strcols = self._insert_dot_separator_vertical(strcols, index_length) + + return strcols + + @property + def _adjusted_tr_col_num(self) -> int: + return self.fmt.tr_col_num + 1 if self.fmt.index else self.fmt.tr_col_num + + def _insert_dot_separator_horizontal( + self, strcols: list[list[str]], index_length: int + ) -> list[list[str]]: + strcols.insert(self._adjusted_tr_col_num, [" ..."] * index_length) + return strcols + + def _insert_dot_separator_vertical( + self, strcols: list[list[str]], index_length: int + ) -> list[list[str]]: + n_header_rows = index_length - len(self.fmt.tr_frame) + row_num = self.fmt.tr_row_num + for ix, col in enumerate(strcols): + cwidth = self.adj.len(col[row_num]) + + if self.fmt.is_truncated_horizontally: + is_dot_col = ix == self._adjusted_tr_col_num + else: + is_dot_col = False + + if cwidth > 3 or is_dot_col: + dots = "..." + else: + dots = ".." + + if ix == 0 and self.fmt.index: + dot_mode = "left" + elif is_dot_col: + cwidth = 4 + dot_mode = "right" + else: + dot_mode = "right" + + dot_str = self.adj.justify([dots], cwidth, mode=dot_mode)[0] + col.insert(row_num + n_header_rows, dot_str) + return strcols + + def _join_multiline(self, strcols_input: Iterable[list[str]]) -> str: + lwidth = self.line_width + adjoin_width = 1 + strcols = list(strcols_input) + + if self.fmt.index: + idx = strcols.pop(0) + lwidth -= np.array([self.adj.len(x) for x in idx]).max() + adjoin_width + + col_widths = [ + np.array([self.adj.len(x) for x in col]).max() if len(col) > 0 else 0 + for col in strcols + ] + + assert lwidth is not None + col_bins = _binify(col_widths, lwidth) + nbins = len(col_bins) + + str_lst = [] + start = 0 + for i, end in enumerate(col_bins): + row = strcols[start:end] + if self.fmt.index: + row.insert(0, idx) + if nbins > 1: + nrows = len(row[-1]) + if end <= len(strcols) and i < nbins - 1: + row.append([" \\"] + [" "] * (nrows - 1)) + else: + row.append([" "] * nrows) + str_lst.append(self.adj.adjoin(adjoin_width, *row)) + start = end + return "\n\n".join(str_lst) + + def _fit_strcols_to_terminal_width(self, strcols: list[list[str]]) -> str: + from pandas import Series + + lines = self.adj.adjoin(1, *strcols).split("\n") + max_len = Series(lines).str.len().max() + # plus truncate dot col + width, _ = get_terminal_size() + dif = max_len - width + # '+ 1' to avoid too wide repr (GH PR #17023) + adj_dif = dif + 1 + col_lens = Series([Series(ele).str.len().max() for ele in strcols]) + n_cols = len(col_lens) + counter = 0 + while adj_dif > 0 and n_cols > 1: + counter += 1 + mid = round(n_cols / 2) + mid_ix = col_lens.index[mid] + col_len = col_lens[mid_ix] + # adjoin adds one + adj_dif -= col_len + 1 + col_lens = col_lens.drop(mid_ix) + n_cols = len(col_lens) + + # subtract index column + max_cols_fitted = n_cols - self.fmt.index + # GH-21180. Ensure that we print at least two. + max_cols_fitted = max(max_cols_fitted, 2) + self.fmt.max_cols_fitted = max_cols_fitted + + # Call again _truncate to cut frame appropriately + # and then generate string representation + self.fmt.truncate() + strcols = self._get_strcols() + return self.adj.adjoin(1, *strcols) + + +def _binify(cols: list[int], line_width: int) -> list[int]: + adjoin_width = 1 + bins = [] + curr_width = 0 + i_last_column = len(cols) - 1 + for i, w in enumerate(cols): + w_adjoined = w + adjoin_width + curr_width += w_adjoined + if i_last_column == i: + wrap = curr_width + 1 > line_width and i > 0 + else: + wrap = curr_width + 2 > line_width and i > 0 + if wrap: + bins.append(i) + curr_width = w_adjoined + + bins.append(len(cols)) + return bins diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/style.py b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/style.py new file mode 100644 index 0000000000000000000000000000000000000000..b62f7581ac2205c8c1821b6030b56f13a77c6379 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/style.py @@ -0,0 +1,4136 @@ +""" +Module for applying conditional formatting to DataFrames and Series. +""" +from __future__ import annotations + +from contextlib import contextmanager +import copy +from functools import partial +import operator +from typing import ( + TYPE_CHECKING, + Any, + Callable, + overload, +) +import warnings + +import numpy as np + +from pandas._config import get_option + +from pandas.compat._optional import import_optional_dependency +from pandas.util._decorators import ( + Substitution, + doc, +) +from pandas.util._exceptions import find_stack_level + +import pandas as pd +from pandas import ( + IndexSlice, + RangeIndex, +) +import pandas.core.common as com +from pandas.core.frame import ( + DataFrame, + Series, +) +from pandas.core.generic import NDFrame +from pandas.core.shared_docs import _shared_docs + +from pandas.io.formats.format import save_to_buffer + +jinja2 = import_optional_dependency("jinja2", extra="DataFrame.style requires jinja2.") + +from pandas.io.formats.style_render import ( + CSSProperties, + CSSStyles, + ExtFormatter, + StylerRenderer, + Subset, + Tooltips, + format_table_styles, + maybe_convert_css_to_tuples, + non_reducing_slice, + refactor_levels, +) + +if TYPE_CHECKING: + from collections.abc import ( + Generator, + Hashable, + Sequence, + ) + + from matplotlib.colors import Colormap + + from pandas._typing import ( + Axis, + AxisInt, + FilePath, + IndexLabel, + IntervalClosedType, + Level, + QuantileInterpolation, + Scalar, + StorageOptions, + WriteBuffer, + WriteExcelBuffer, + ) + + from pandas import ExcelWriter + +try: + import matplotlib as mpl + import matplotlib.pyplot as plt + + has_mpl = True +except ImportError: + has_mpl = False + + +@contextmanager +def _mpl(func: Callable) -> Generator[tuple[Any, Any], None, None]: + if has_mpl: + yield plt, mpl + else: + raise ImportError(f"{func.__name__} requires matplotlib.") + + +#### +# Shared Doc Strings + +subset_args = """subset : label, array-like, IndexSlice, optional + A valid 2d input to `DataFrame.loc[]`, or, in the case of a 1d input + or single key, to `DataFrame.loc[:, ]` where the columns are + prioritised, to limit ``data`` to *before* applying the function.""" + +properties_args = """props : str, default None + CSS properties to use for highlighting. If ``props`` is given, ``color`` + is not used.""" + +coloring_args = """color : str, default '{default}' + Background color to use for highlighting.""" + +buffering_args = """buf : str, path object, file-like object, optional + String, path object (implementing ``os.PathLike[str]``), or file-like + object implementing a string ``write()`` function. If ``None``, the result is + returned as a string.""" + +encoding_args = """encoding : str, optional + Character encoding setting for file output (and meta tags if available). + Defaults to ``pandas.options.styler.render.encoding`` value of "utf-8".""" + +# +### + + +class Styler(StylerRenderer): + r""" + Helps style a DataFrame or Series according to the data with HTML and CSS. + + Parameters + ---------- + data : Series or DataFrame + Data to be styled - either a Series or DataFrame. + precision : int, optional + Precision to round floats to. If not given defaults to + ``pandas.options.styler.format.precision``. + + .. versionchanged:: 1.4.0 + table_styles : list-like, default None + List of {selector: (attr, value)} dicts; see Notes. + uuid : str, default None + A unique identifier to avoid CSS collisions; generated automatically. + caption : str, tuple, default None + String caption to attach to the table. Tuple only used for LaTeX dual captions. + table_attributes : str, default None + Items that show up in the opening ```` tag + in addition to automatic (by default) id. + cell_ids : bool, default True + If True, each cell will have an ``id`` attribute in their HTML tag. + The ``id`` takes the form ``T__row_col`` + where ```` is the unique identifier, ```` is the row + number and ```` is the column number. + na_rep : str, optional + Representation for missing values. + If ``na_rep`` is None, no special formatting is applied, and falls back to + ``pandas.options.styler.format.na_rep``. + + uuid_len : int, default 5 + If ``uuid`` is not specified, the length of the ``uuid`` to randomly generate + expressed in hex characters, in range [0, 32]. + decimal : str, optional + Character used as decimal separator for floats, complex and integers. If not + given uses ``pandas.options.styler.format.decimal``. + + .. versionadded:: 1.3.0 + + thousands : str, optional, default None + Character used as thousands separator for floats, complex and integers. If not + given uses ``pandas.options.styler.format.thousands``. + + .. versionadded:: 1.3.0 + + escape : str, optional + Use 'html' to replace the characters ``&``, ``<``, ``>``, ``'``, and ``"`` + in cell display string with HTML-safe sequences. + Use 'latex' to replace the characters ``&``, ``%``, ``$``, ``#``, ``_``, + ``{``, ``}``, ``~``, ``^``, and ``\`` in the cell display string with + LaTeX-safe sequences. Use 'latex-math' to replace the characters + the same way as in 'latex' mode, except for math substrings, + which either are surrounded by two characters ``$`` or start with + the character ``\(`` and end with ``\)``. + If not given uses ``pandas.options.styler.format.escape``. + + .. versionadded:: 1.3.0 + formatter : str, callable, dict, optional + Object to define how values are displayed. See ``Styler.format``. If not given + uses ``pandas.options.styler.format.formatter``. + + .. versionadded:: 1.4.0 + + Attributes + ---------- + env : Jinja2 jinja2.Environment + template_html : Jinja2 Template + template_html_table : Jinja2 Template + template_html_style : Jinja2 Template + template_latex : Jinja2 Template + loader : Jinja2 Loader + + See Also + -------- + DataFrame.style : Return a Styler object containing methods for building + a styled HTML representation for the DataFrame. + + Notes + ----- + Most styling will be done by passing style functions into + ``Styler.apply`` or ``Styler.map``. Style functions should + return values with strings containing CSS ``'attr: value'`` that will + be applied to the indicated cells. + + If using in the Jupyter notebook, Styler has defined a ``_repr_html_`` + to automatically render itself. Otherwise call Styler.to_html to get + the generated HTML. + + CSS classes are attached to the generated HTML + + * Index and Column names include ``index_name`` and ``level`` + where `k` is its level in a MultiIndex + * Index label cells include + + * ``row_heading`` + * ``row`` where `n` is the numeric position of the row + * ``level`` where `k` is the level in a MultiIndex + + * Column label cells include + * ``col_heading`` + * ``col`` where `n` is the numeric position of the column + * ``level`` where `k` is the level in a MultiIndex + + * Blank cells include ``blank`` + * Data cells include ``data`` + * Trimmed cells include ``col_trim`` or ``row_trim``. + + Any, or all, or these classes can be renamed by using the ``css_class_names`` + argument in ``Styler.set_table_classes``, giving a value such as + *{"row": "MY_ROW_CLASS", "col_trim": "", "row_trim": ""}*. + + Examples + -------- + >>> df = pd.DataFrame([[1.0, 2.0, 3.0], [4, 5, 6]], index=['a', 'b'], + ... columns=['A', 'B', 'C']) + >>> pd.io.formats.style.Styler(df, precision=2, + ... caption="My table") # doctest: +SKIP + + Please see: + `Table Visualization <../../user_guide/style.ipynb>`_ for more examples. + """ + + def __init__( + self, + data: DataFrame | Series, + precision: int | None = None, + table_styles: CSSStyles | None = None, + uuid: str | None = None, + caption: str | tuple | list | None = None, + table_attributes: str | None = None, + cell_ids: bool = True, + na_rep: str | None = None, + uuid_len: int = 5, + decimal: str | None = None, + thousands: str | None = None, + escape: str | None = None, + formatter: ExtFormatter | None = None, + ) -> None: + super().__init__( + data=data, + uuid=uuid, + uuid_len=uuid_len, + table_styles=table_styles, + table_attributes=table_attributes, + caption=caption, + cell_ids=cell_ids, + precision=precision, + ) + + # validate ordered args + thousands = thousands or get_option("styler.format.thousands") + decimal = decimal or get_option("styler.format.decimal") + na_rep = na_rep or get_option("styler.format.na_rep") + escape = escape or get_option("styler.format.escape") + formatter = formatter or get_option("styler.format.formatter") + # precision is handled by superclass as default for performance + + self.format( + formatter=formatter, + precision=precision, + na_rep=na_rep, + escape=escape, + decimal=decimal, + thousands=thousands, + ) + + def concat(self, other: Styler) -> Styler: + """ + Append another Styler to combine the output into a single table. + + .. versionadded:: 1.5.0 + + Parameters + ---------- + other : Styler + The other Styler object which has already been styled and formatted. The + data for this Styler must have the same columns as the original, and the + number of index levels must also be the same to render correctly. + + Returns + ------- + Styler + + Notes + ----- + The purpose of this method is to extend existing styled dataframes with other + metrics that may be useful but may not conform to the original's structure. + For example adding a sub total row, or displaying metrics such as means, + variance or counts. + + Styles that are applied using the ``apply``, ``map``, ``apply_index`` + and ``map_index``, and formatting applied with ``format`` and + ``format_index`` will be preserved. + + .. warning:: + Only the output methods ``to_html``, ``to_string`` and ``to_latex`` + currently work with concatenated Stylers. + + Other output methods, including ``to_excel``, **do not** work with + concatenated Stylers. + + The following should be noted: + + - ``table_styles``, ``table_attributes``, ``caption`` and ``uuid`` are all + inherited from the original Styler and not ``other``. + - hidden columns and hidden index levels will be inherited from the + original Styler + - ``css`` will be inherited from the original Styler, and the value of + keys ``data``, ``row_heading`` and ``row`` will be prepended with + ``foot0_``. If more concats are chained, their styles will be prepended + with ``foot1_``, ''foot_2'', etc., and if a concatenated style have + another concatanated style, the second style will be prepended with + ``foot{parent}_foot{child}_``. + + A common use case is to concatenate user defined functions with + ``DataFrame.agg`` or with described statistics via ``DataFrame.describe``. + See examples. + + Examples + -------- + A common use case is adding totals rows, or otherwise, via methods calculated + in ``DataFrame.agg``. + + >>> df = pd.DataFrame([[4, 6], [1, 9], [3, 4], [5, 5], [9, 6]], + ... columns=["Mike", "Jim"], + ... index=["Mon", "Tue", "Wed", "Thurs", "Fri"]) + >>> styler = df.style.concat(df.agg(["sum"]).style) # doctest: +SKIP + + .. figure:: ../../_static/style/footer_simple.png + + Since the concatenated object is a Styler the existing functionality can be + used to conditionally format it as well as the original. + + >>> descriptors = df.agg(["sum", "mean", lambda s: s.dtype]) + >>> descriptors.index = ["Total", "Average", "dtype"] + >>> other = (descriptors.style + ... .highlight_max(axis=1, subset=(["Total", "Average"], slice(None))) + ... .format(subset=("Average", slice(None)), precision=2, decimal=",") + ... .map(lambda v: "font-weight: bold;")) + >>> styler = (df.style + ... .highlight_max(color="salmon") + ... .set_table_styles([{"selector": ".foot_row0", + ... "props": "border-top: 1px solid black;"}])) + >>> styler.concat(other) # doctest: +SKIP + + .. figure:: ../../_static/style/footer_extended.png + + When ``other`` has fewer index levels than the original Styler it is possible + to extend the index in ``other``, with placeholder levels. + + >>> df = pd.DataFrame([[1], [2]], + ... index=pd.MultiIndex.from_product([[0], [1, 2]])) + >>> descriptors = df.agg(["sum"]) + >>> descriptors.index = pd.MultiIndex.from_product([[""], descriptors.index]) + >>> df.style.concat(descriptors.style) # doctest: +SKIP + """ + if not isinstance(other, Styler): + raise TypeError("`other` must be of type `Styler`") + if not self.data.columns.equals(other.data.columns): + raise ValueError("`other.data` must have same columns as `Styler.data`") + if not self.data.index.nlevels == other.data.index.nlevels: + raise ValueError( + "number of index levels must be same in `other` " + "as in `Styler`. See documentation for suggestions." + ) + self.concatenated.append(other) + return self + + def _repr_html_(self) -> str | None: + """ + Hooks into Jupyter notebook rich display system, which calls _repr_html_ by + default if an object is returned at the end of a cell. + """ + if get_option("styler.render.repr") == "html": + return self.to_html() + return None + + def _repr_latex_(self) -> str | None: + if get_option("styler.render.repr") == "latex": + return self.to_latex() + return None + + def set_tooltips( + self, + ttips: DataFrame, + props: CSSProperties | None = None, + css_class: str | None = None, + ) -> Styler: + """ + Set the DataFrame of strings on ``Styler`` generating ``:hover`` tooltips. + + These string based tooltips are only applicable to ``
`` HTML elements, + and cannot be used for column or index headers. + + .. versionadded:: 1.3.0 + + Parameters + ---------- + ttips : DataFrame + DataFrame containing strings that will be translated to tooltips, mapped + by identical column and index values that must exist on the underlying + Styler data. None, NaN values, and empty strings will be ignored and + not affect the rendered HTML. + props : list-like or str, optional + List of (attr, value) tuples or a valid CSS string. If ``None`` adopts + the internal default values described in notes. + css_class : str, optional + Name of the tooltip class used in CSS, should conform to HTML standards. + Only useful if integrating tooltips with external CSS. If ``None`` uses the + internal default value 'pd-t'. + + Returns + ------- + Styler + + Notes + ----- + Tooltips are created by adding `` to each data cell + and then manipulating the table level CSS to attach pseudo hover and pseudo + after selectors to produce the required the results. + + The default properties for the tooltip CSS class are: + + - visibility: hidden + - position: absolute + - z-index: 1 + - background-color: black + - color: white + - transform: translate(-20px, -20px) + + The property 'visibility: hidden;' is a key prerequisite to the hover + functionality, and should always be included in any manual properties + specification, using the ``props`` argument. + + Tooltips are not designed to be efficient, and can add large amounts of + additional HTML for larger tables, since they also require that ``cell_ids`` + is forced to `True`. + + Examples + -------- + Basic application + + >>> df = pd.DataFrame(data=[[0, 1], [2, 3]]) + >>> ttips = pd.DataFrame( + ... data=[["Min", ""], [np.nan, "Max"]], columns=df.columns, index=df.index + ... ) + >>> s = df.style.set_tooltips(ttips).to_html() + + Optionally controlling the tooltip visual display + + >>> df.style.set_tooltips(ttips, css_class='tt-add', props=[ + ... ('visibility', 'hidden'), + ... ('position', 'absolute'), + ... ('z-index', 1)]) # doctest: +SKIP + >>> df.style.set_tooltips(ttips, css_class='tt-add', + ... props='visibility:hidden; position:absolute; z-index:1;') + ... # doctest: +SKIP + """ + if not self.cell_ids: + # tooltips not optimised for individual cell check. requires reasonable + # redesign and more extensive code for a feature that might be rarely used. + raise NotImplementedError( + "Tooltips can only render with 'cell_ids' is True." + ) + if not ttips.index.is_unique or not ttips.columns.is_unique: + raise KeyError( + "Tooltips render only if `ttips` has unique index and columns." + ) + if self.tooltips is None: # create a default instance if necessary + self.tooltips = Tooltips() + self.tooltips.tt_data = ttips + if props: + self.tooltips.class_properties = props + if css_class: + self.tooltips.class_name = css_class + + return self + + @doc( + NDFrame.to_excel, + klass="Styler", + storage_options=_shared_docs["storage_options"], + storage_options_versionadded="1.5.0", + ) + def to_excel( + self, + excel_writer: FilePath | WriteExcelBuffer | ExcelWriter, + sheet_name: str = "Sheet1", + na_rep: str = "", + float_format: str | None = None, + columns: Sequence[Hashable] | None = None, + header: Sequence[Hashable] | bool = True, + index: bool = True, + index_label: IndexLabel | None = None, + startrow: int = 0, + startcol: int = 0, + engine: str | None = None, + merge_cells: bool = True, + encoding: str | None = None, + inf_rep: str = "inf", + verbose: bool = True, + freeze_panes: tuple[int, int] | None = None, + storage_options: StorageOptions | None = None, + ) -> None: + from pandas.io.formats.excel import ExcelFormatter + + formatter = ExcelFormatter( + self, + na_rep=na_rep, + cols=columns, + header=header, + float_format=float_format, + index=index, + index_label=index_label, + merge_cells=merge_cells, + inf_rep=inf_rep, + ) + formatter.write( + excel_writer, + sheet_name=sheet_name, + startrow=startrow, + startcol=startcol, + freeze_panes=freeze_panes, + engine=engine, + storage_options=storage_options, + ) + + @overload + def to_latex( + self, + buf: FilePath | WriteBuffer[str], + *, + column_format: str | None = ..., + position: str | None = ..., + position_float: str | None = ..., + hrules: bool | None = ..., + clines: str | None = ..., + label: str | None = ..., + caption: str | tuple | None = ..., + sparse_index: bool | None = ..., + sparse_columns: bool | None = ..., + multirow_align: str | None = ..., + multicol_align: str | None = ..., + siunitx: bool = ..., + environment: str | None = ..., + encoding: str | None = ..., + convert_css: bool = ..., + ) -> None: + ... + + @overload + def to_latex( + self, + buf: None = ..., + *, + column_format: str | None = ..., + position: str | None = ..., + position_float: str | None = ..., + hrules: bool | None = ..., + clines: str | None = ..., + label: str | None = ..., + caption: str | tuple | None = ..., + sparse_index: bool | None = ..., + sparse_columns: bool | None = ..., + multirow_align: str | None = ..., + multicol_align: str | None = ..., + siunitx: bool = ..., + environment: str | None = ..., + encoding: str | None = ..., + convert_css: bool = ..., + ) -> str: + ... + + def to_latex( + self, + buf: FilePath | WriteBuffer[str] | None = None, + *, + column_format: str | None = None, + position: str | None = None, + position_float: str | None = None, + hrules: bool | None = None, + clines: str | None = None, + label: str | None = None, + caption: str | tuple | None = None, + sparse_index: bool | None = None, + sparse_columns: bool | None = None, + multirow_align: str | None = None, + multicol_align: str | None = None, + siunitx: bool = False, + environment: str | None = None, + encoding: str | None = None, + convert_css: bool = False, + ) -> str | None: + r""" + Write Styler to a file, buffer or string in LaTeX format. + + .. versionadded:: 1.3.0 + + Parameters + ---------- + buf : str, path object, file-like object, or None, default None + String, path object (implementing ``os.PathLike[str]``), or file-like + object implementing a string ``write()`` function. If None, the result is + returned as a string. + column_format : str, optional + The LaTeX column specification placed in location: + + \\begin{tabular}{} + + Defaults to 'l' for index and + non-numeric data columns, and, for numeric data columns, + to 'r' by default, or 'S' if ``siunitx`` is ``True``. + position : str, optional + The LaTeX positional argument (e.g. 'h!') for tables, placed in location: + + ``\\begin{table}[]``. + position_float : {"centering", "raggedleft", "raggedright"}, optional + The LaTeX float command placed in location: + + \\begin{table}[] + + \\ + + Cannot be used if ``environment`` is "longtable". + hrules : bool + Set to `True` to add \\toprule, \\midrule and \\bottomrule from the + {booktabs} LaTeX package. + Defaults to ``pandas.options.styler.latex.hrules``, which is `False`. + + .. versionchanged:: 1.4.0 + clines : str, optional + Use to control adding \\cline commands for the index labels separation. + Possible values are: + + - `None`: no cline commands are added (default). + - `"all;data"`: a cline is added for every index value extending the + width of the table, including data entries. + - `"all;index"`: as above with lines extending only the width of the + index entries. + - `"skip-last;data"`: a cline is added for each index value except the + last level (which is never sparsified), extending the widtn of the + table. + - `"skip-last;index"`: as above with lines extending only the width of the + index entries. + + .. versionadded:: 1.4.0 + label : str, optional + The LaTeX label included as: \\label{
}. + If tuple, i.e ("full caption", "short caption"), the caption included + as: \\caption[]{}. + sparse_index : bool, optional + Whether to sparsify the display of a hierarchical index. Setting to False + will display each explicit level element in a hierarchical key for each row. + Defaults to ``pandas.options.styler.sparse.index``, which is `True`. + sparse_columns : bool, optional + Whether to sparsify the display of a hierarchical index. Setting to False + will display each explicit level element in a hierarchical key for each + column. Defaults to ``pandas.options.styler.sparse.columns``, which + is `True`. + multirow_align : {"c", "t", "b", "naive"}, optional + If sparsifying hierarchical MultiIndexes whether to align text centrally, + at the top or bottom using the multirow package. If not given defaults to + ``pandas.options.styler.latex.multirow_align``, which is `"c"`. + If "naive" is given renders without multirow. + + .. versionchanged:: 1.4.0 + multicol_align : {"r", "c", "l", "naive-l", "naive-r"}, optional + If sparsifying hierarchical MultiIndex columns whether to align text at + the left, centrally, or at the right. If not given defaults to + ``pandas.options.styler.latex.multicol_align``, which is "r". + If a naive option is given renders without multicol. + Pipe decorators can also be added to non-naive values to draw vertical + rules, e.g. "\|r" will draw a rule on the left side of right aligned merged + cells. + + .. versionchanged:: 1.4.0 + siunitx : bool, default False + Set to ``True`` to structure LaTeX compatible with the {siunitx} package. + environment : str, optional + If given, the environment that will replace 'table' in ``\\begin{table}``. + If 'longtable' is specified then a more suitable template is + rendered. If not given defaults to + ``pandas.options.styler.latex.environment``, which is `None`. + + .. versionadded:: 1.4.0 + encoding : str, optional + Character encoding setting. Defaults + to ``pandas.options.styler.render.encoding``, which is "utf-8". + convert_css : bool, default False + Convert simple cell-styles from CSS to LaTeX format. Any CSS not found in + conversion table is dropped. A style can be forced by adding option + `--latex`. See notes. + + Returns + ------- + str or None + If `buf` is None, returns the result as a string. Otherwise returns `None`. + + See Also + -------- + Styler.format: Format the text display value of cells. + + Notes + ----- + **Latex Packages** + + For the following features we recommend the following LaTeX inclusions: + + ===================== ========================================================== + Feature Inclusion + ===================== ========================================================== + sparse columns none: included within default {tabular} environment + sparse rows \\usepackage{multirow} + hrules \\usepackage{booktabs} + colors \\usepackage[table]{xcolor} + siunitx \\usepackage{siunitx} + bold (with siunitx) | \\usepackage{etoolbox} + | \\robustify\\bfseries + | \\sisetup{detect-all = true} *(within {document})* + italic (with siunitx) | \\usepackage{etoolbox} + | \\robustify\\itshape + | \\sisetup{detect-all = true} *(within {document})* + environment \\usepackage{longtable} if arg is "longtable" + | or any other relevant environment package + hyperlinks \\usepackage{hyperref} + ===================== ========================================================== + + **Cell Styles** + + LaTeX styling can only be rendered if the accompanying styling functions have + been constructed with appropriate LaTeX commands. All styling + functionality is built around the concept of a CSS ``(, )`` + pair (see `Table Visualization <../../user_guide/style.ipynb>`_), and this + should be replaced by a LaTeX + ``(, )`` approach. Each cell will be styled individually + using nested LaTeX commands with their accompanied options. + + For example the following code will highlight and bold a cell in HTML-CSS: + + >>> df = pd.DataFrame([[1,2], [3,4]]) + >>> s = df.style.highlight_max(axis=None, + ... props='background-color:red; font-weight:bold;') + >>> s.to_html() # doctest: +SKIP + + The equivalent using LaTeX only commands is the following: + + >>> s = df.style.highlight_max(axis=None, + ... props='cellcolor:{red}; bfseries: ;') + >>> s.to_latex() # doctest: +SKIP + + Internally these structured LaTeX ``(, )`` pairs + are translated to the + ``display_value`` with the default structure: + ``\ ``. + Where there are multiple commands the latter is nested recursively, so that + the above example highlighted cell is rendered as + ``\cellcolor{red} \bfseries 4``. + + Occasionally this format does not suit the applied command, or + combination of LaTeX packages that is in use, so additional flags can be + added to the ````, within the tuple, to result in different + positions of required braces (the **default** being the same as ``--nowrap``): + + =================================== ============================================ + Tuple Format Output Structure + =================================== ============================================ + (,) \\ + (, ``--nowrap``) \\ + (, ``--rwrap``) \\{} + (, ``--wrap``) {\\ } + (, ``--lwrap``) {\\} + (, ``--dwrap``) {\\}{} + =================================== ============================================ + + For example the `textbf` command for font-weight + should always be used with `--rwrap` so ``('textbf', '--rwrap')`` will render a + working cell, wrapped with braces, as ``\textbf{}``. + + A more comprehensive example is as follows: + + >>> df = pd.DataFrame([[1, 2.2, "dogs"], [3, 4.4, "cats"], [2, 6.6, "cows"]], + ... index=["ix1", "ix2", "ix3"], + ... columns=["Integers", "Floats", "Strings"]) + >>> s = df.style.highlight_max( + ... props='cellcolor:[HTML]{FFFF00}; color:{red};' + ... 'textit:--rwrap; textbf:--rwrap;' + ... ) + >>> s.to_latex() # doctest: +SKIP + + .. figure:: ../../_static/style/latex_1.png + + **Table Styles** + + Internally Styler uses its ``table_styles`` object to parse the + ``column_format``, ``position``, ``position_float``, and ``label`` + input arguments. These arguments are added to table styles in the format: + + .. code-block:: python + + set_table_styles([ + {"selector": "column_format", "props": f":{column_format};"}, + {"selector": "position", "props": f":{position};"}, + {"selector": "position_float", "props": f":{position_float};"}, + {"selector": "label", "props": f":{{{label.replace(':','§')}}};"} + ], overwrite=False) + + Exception is made for the ``hrules`` argument which, in fact, controls all three + commands: ``toprule``, ``bottomrule`` and ``midrule`` simultaneously. Instead of + setting ``hrules`` to ``True``, it is also possible to set each + individual rule definition, by manually setting the ``table_styles``, + for example below we set a regular ``toprule``, set an ``hline`` for + ``bottomrule`` and exclude the ``midrule``: + + .. code-block:: python + + set_table_styles([ + {'selector': 'toprule', 'props': ':toprule;'}, + {'selector': 'bottomrule', 'props': ':hline;'}, + ], overwrite=False) + + If other ``commands`` are added to table styles they will be detected, and + positioned immediately above the '\\begin{tabular}' command. For example to + add odd and even row coloring, from the {colortbl} package, in format + ``\rowcolors{1}{pink}{red}``, use: + + .. code-block:: python + + set_table_styles([ + {'selector': 'rowcolors', 'props': ':{1}{pink}{red};'} + ], overwrite=False) + + A more comprehensive example using these arguments is as follows: + + >>> df.columns = pd.MultiIndex.from_tuples([ + ... ("Numeric", "Integers"), + ... ("Numeric", "Floats"), + ... ("Non-Numeric", "Strings") + ... ]) + >>> df.index = pd.MultiIndex.from_tuples([ + ... ("L0", "ix1"), ("L0", "ix2"), ("L1", "ix3") + ... ]) + >>> s = df.style.highlight_max( + ... props='cellcolor:[HTML]{FFFF00}; color:{red}; itshape:; bfseries:;' + ... ) + >>> s.to_latex( + ... column_format="rrrrr", position="h", position_float="centering", + ... hrules=True, label="table:5", caption="Styled LaTeX Table", + ... multirow_align="t", multicol_align="r" + ... ) # doctest: +SKIP + + .. figure:: ../../_static/style/latex_2.png + + **Formatting** + + To format values :meth:`Styler.format` should be used prior to calling + `Styler.to_latex`, as well as other methods such as :meth:`Styler.hide` + for example: + + >>> s.clear() + >>> s.table_styles = [] + >>> s.caption = None + >>> s.format({ + ... ("Numeric", "Integers"): '\${}', + ... ("Numeric", "Floats"): '{:.3f}', + ... ("Non-Numeric", "Strings"): str.upper + ... }) # doctest: +SKIP + Numeric Non-Numeric + Integers Floats Strings + L0 ix1 $1 2.200 DOGS + ix2 $3 4.400 CATS + L1 ix3 $2 6.600 COWS + + >>> s.to_latex() # doctest: +SKIP + \begin{tabular}{llrrl} + {} & {} & \multicolumn{2}{r}{Numeric} & {Non-Numeric} \\ + {} & {} & {Integers} & {Floats} & {Strings} \\ + \multirow[c]{2}{*}{L0} & ix1 & \\$1 & 2.200 & DOGS \\ + & ix2 & \$3 & 4.400 & CATS \\ + L1 & ix3 & \$2 & 6.600 & COWS \\ + \end{tabular} + + **CSS Conversion** + + This method can convert a Styler constructured with HTML-CSS to LaTeX using + the following limited conversions. + + ================== ==================== ============= ========================== + CSS Attribute CSS value LaTeX Command LaTeX Options + ================== ==================== ============= ========================== + font-weight | bold | bfseries + | bolder | bfseries + font-style | italic | itshape + | oblique | slshape + background-color | red cellcolor | {red}--lwrap + | #fe01ea | [HTML]{FE01EA}--lwrap + | #f0e | [HTML]{FF00EE}--lwrap + | rgb(128,255,0) | [rgb]{0.5,1,0}--lwrap + | rgba(128,0,0,0.5) | [rgb]{0.5,0,0}--lwrap + | rgb(25%,255,50%) | [rgb]{0.25,1,0.5}--lwrap + color | red color | {red} + | #fe01ea | [HTML]{FE01EA} + | #f0e | [HTML]{FF00EE} + | rgb(128,255,0) | [rgb]{0.5,1,0} + | rgba(128,0,0,0.5) | [rgb]{0.5,0,0} + | rgb(25%,255,50%) | [rgb]{0.25,1,0.5} + ================== ==================== ============= ========================== + + It is also possible to add user-defined LaTeX only styles to a HTML-CSS Styler + using the ``--latex`` flag, and to add LaTeX parsing options that the + converter will detect within a CSS-comment. + + >>> df = pd.DataFrame([[1]]) + >>> df.style.set_properties( + ... **{"font-weight": "bold /* --dwrap */", "Huge": "--latex--rwrap"} + ... ).to_latex(convert_css=True) # doctest: +SKIP + \begin{tabular}{lr} + {} & {0} \\ + 0 & {\bfseries}{\Huge{1}} \\ + \end{tabular} + + Examples + -------- + Below we give a complete step by step example adding some advanced features + and noting some common gotchas. + + First we create the DataFrame and Styler as usual, including MultiIndex rows + and columns, which allow for more advanced formatting options: + + >>> cidx = pd.MultiIndex.from_arrays([ + ... ["Equity", "Equity", "Equity", "Equity", + ... "Stats", "Stats", "Stats", "Stats", "Rating"], + ... ["Energy", "Energy", "Consumer", "Consumer", "", "", "", "", ""], + ... ["BP", "Shell", "H&M", "Unilever", + ... "Std Dev", "Variance", "52w High", "52w Low", ""] + ... ]) + >>> iidx = pd.MultiIndex.from_arrays([ + ... ["Equity", "Equity", "Equity", "Equity"], + ... ["Energy", "Energy", "Consumer", "Consumer"], + ... ["BP", "Shell", "H&M", "Unilever"] + ... ]) + >>> styler = pd.DataFrame([ + ... [1, 0.8, 0.66, 0.72, 32.1678, 32.1678**2, 335.12, 240.89, "Buy"], + ... [0.8, 1.0, 0.69, 0.79, 1.876, 1.876**2, 14.12, 19.78, "Hold"], + ... [0.66, 0.69, 1.0, 0.86, 7, 7**2, 210.9, 140.6, "Buy"], + ... [0.72, 0.79, 0.86, 1.0, 213.76, 213.76**2, 2807, 3678, "Sell"], + ... ], columns=cidx, index=iidx).style + + Second we will format the display and, since our table is quite wide, will + hide the repeated level-0 of the index: + + >>> (styler.format(subset="Equity", precision=2) + ... .format(subset="Stats", precision=1, thousands=",") + ... .format(subset="Rating", formatter=str.upper) + ... .format_index(escape="latex", axis=1) + ... .format_index(escape="latex", axis=0) + ... .hide(level=0, axis=0)) # doctest: +SKIP + + Note that one of the string entries of the index and column headers is "H&M". + Without applying the `escape="latex"` option to the `format_index` method the + resultant LaTeX will fail to render, and the error returned is quite + difficult to debug. Using the appropriate escape the "&" is converted to "\\&". + + Thirdly we will apply some (CSS-HTML) styles to our object. We will use a + builtin method and also define our own method to highlight the stock + recommendation: + + >>> def rating_color(v): + ... if v == "Buy": color = "#33ff85" + ... elif v == "Sell": color = "#ff5933" + ... else: color = "#ffdd33" + ... return f"color: {color}; font-weight: bold;" + >>> (styler.background_gradient(cmap="inferno", subset="Equity", vmin=0, vmax=1) + ... .map(rating_color, subset="Rating")) # doctest: +SKIP + + All the above styles will work with HTML (see below) and LaTeX upon conversion: + + .. figure:: ../../_static/style/latex_stocks_html.png + + However, we finally want to add one LaTeX only style + (from the {graphicx} package), that is not easy to convert from CSS and + pandas does not support it. Notice the `--latex` flag used here, + as well as `--rwrap` to ensure this is formatted correctly and + not ignored upon conversion. + + >>> styler.map_index( + ... lambda v: "rotatebox:{45}--rwrap--latex;", level=2, axis=1 + ... ) # doctest: +SKIP + + Finally we render our LaTeX adding in other options as required: + + >>> styler.to_latex( + ... caption="Selected stock correlation and simple statistics.", + ... clines="skip-last;data", + ... convert_css=True, + ... position_float="centering", + ... multicol_align="|c|", + ... hrules=True, + ... ) # doctest: +SKIP + \begin{table} + \centering + \caption{Selected stock correlation and simple statistics.} + \begin{tabular}{llrrrrrrrrl} + \toprule + & & \multicolumn{4}{|c|}{Equity} & \multicolumn{4}{|c|}{Stats} & Rating \\ + & & \multicolumn{2}{|c|}{Energy} & \multicolumn{2}{|c|}{Consumer} & + \multicolumn{4}{|c|}{} & \\ + & & \rotatebox{45}{BP} & \rotatebox{45}{Shell} & \rotatebox{45}{H\&M} & + \rotatebox{45}{Unilever} & \rotatebox{45}{Std Dev} & \rotatebox{45}{Variance} & + \rotatebox{45}{52w High} & \rotatebox{45}{52w Low} & \rotatebox{45}{} \\ + \midrule + \multirow[c]{2}{*}{Energy} & BP & {\cellcolor[HTML]{FCFFA4}} + \color[HTML]{000000} 1.00 & {\cellcolor[HTML]{FCA50A}} \color[HTML]{000000} + 0.80 & {\cellcolor[HTML]{EB6628}} \color[HTML]{F1F1F1} 0.66 & + {\cellcolor[HTML]{F68013}} \color[HTML]{F1F1F1} 0.72 & 32.2 & 1,034.8 & 335.1 + & 240.9 & \color[HTML]{33FF85} \bfseries BUY \\ + & Shell & {\cellcolor[HTML]{FCA50A}} \color[HTML]{000000} 0.80 & + {\cellcolor[HTML]{FCFFA4}} \color[HTML]{000000} 1.00 & + {\cellcolor[HTML]{F1731D}} \color[HTML]{F1F1F1} 0.69 & + {\cellcolor[HTML]{FCA108}} \color[HTML]{000000} 0.79 & 1.9 & 3.5 & 14.1 & + 19.8 & \color[HTML]{FFDD33} \bfseries HOLD \\ + \cline{1-11} + \multirow[c]{2}{*}{Consumer} & H\&M & {\cellcolor[HTML]{EB6628}} + \color[HTML]{F1F1F1} 0.66 & {\cellcolor[HTML]{F1731D}} \color[HTML]{F1F1F1} + 0.69 & {\cellcolor[HTML]{FCFFA4}} \color[HTML]{000000} 1.00 & + {\cellcolor[HTML]{FAC42A}} \color[HTML]{000000} 0.86 & 7.0 & 49.0 & 210.9 & + 140.6 & \color[HTML]{33FF85} \bfseries BUY \\ + & Unilever & {\cellcolor[HTML]{F68013}} \color[HTML]{F1F1F1} 0.72 & + {\cellcolor[HTML]{FCA108}} \color[HTML]{000000} 0.79 & + {\cellcolor[HTML]{FAC42A}} \color[HTML]{000000} 0.86 & + {\cellcolor[HTML]{FCFFA4}} \color[HTML]{000000} 1.00 & 213.8 & 45,693.3 & + 2,807.0 & 3,678.0 & \color[HTML]{FF5933} \bfseries SELL \\ + \cline{1-11} + \bottomrule + \end{tabular} + \end{table} + + .. figure:: ../../_static/style/latex_stocks.png + """ + obj = self._copy(deepcopy=True) # manipulate table_styles on obj, not self + + table_selectors = ( + [style["selector"] for style in self.table_styles] + if self.table_styles is not None + else [] + ) + + if column_format is not None: + # add more recent setting to table_styles + obj.set_table_styles( + [{"selector": "column_format", "props": f":{column_format}"}], + overwrite=False, + ) + elif "column_format" in table_selectors: + pass # adopt what has been previously set in table_styles + else: + # create a default: set float, complex, int cols to 'r' ('S'), index to 'l' + _original_columns = self.data.columns + self.data.columns = RangeIndex(stop=len(self.data.columns)) + numeric_cols = self.data._get_numeric_data().columns.to_list() + self.data.columns = _original_columns + column_format = "" + for level in range(self.index.nlevels): + column_format += "" if self.hide_index_[level] else "l" + for ci, _ in enumerate(self.data.columns): + if ci not in self.hidden_columns: + column_format += ( + ("r" if not siunitx else "S") if ci in numeric_cols else "l" + ) + obj.set_table_styles( + [{"selector": "column_format", "props": f":{column_format}"}], + overwrite=False, + ) + + if position: + obj.set_table_styles( + [{"selector": "position", "props": f":{position}"}], + overwrite=False, + ) + + if position_float: + if environment == "longtable": + raise ValueError( + "`position_float` cannot be used in 'longtable' `environment`" + ) + if position_float not in ["raggedright", "raggedleft", "centering"]: + raise ValueError( + f"`position_float` should be one of " + f"'raggedright', 'raggedleft', 'centering', " + f"got: '{position_float}'" + ) + obj.set_table_styles( + [{"selector": "position_float", "props": f":{position_float}"}], + overwrite=False, + ) + + hrules = get_option("styler.latex.hrules") if hrules is None else hrules + if hrules: + obj.set_table_styles( + [ + {"selector": "toprule", "props": ":toprule"}, + {"selector": "midrule", "props": ":midrule"}, + {"selector": "bottomrule", "props": ":bottomrule"}, + ], + overwrite=False, + ) + + if label: + obj.set_table_styles( + [{"selector": "label", "props": f":{{{label.replace(':', '§')}}}"}], + overwrite=False, + ) + + if caption: + obj.set_caption(caption) + + if sparse_index is None: + sparse_index = get_option("styler.sparse.index") + if sparse_columns is None: + sparse_columns = get_option("styler.sparse.columns") + environment = environment or get_option("styler.latex.environment") + multicol_align = multicol_align or get_option("styler.latex.multicol_align") + multirow_align = multirow_align or get_option("styler.latex.multirow_align") + latex = obj._render_latex( + sparse_index=sparse_index, + sparse_columns=sparse_columns, + multirow_align=multirow_align, + multicol_align=multicol_align, + environment=environment, + convert_css=convert_css, + siunitx=siunitx, + clines=clines, + ) + + encoding = ( + (encoding or get_option("styler.render.encoding")) + if isinstance(buf, str) # i.e. a filepath + else encoding + ) + return save_to_buffer(latex, buf=buf, encoding=encoding) + + @overload + def to_html( + self, + buf: FilePath | WriteBuffer[str], + *, + table_uuid: str | None = ..., + table_attributes: str | None = ..., + sparse_index: bool | None = ..., + sparse_columns: bool | None = ..., + bold_headers: bool = ..., + caption: str | None = ..., + max_rows: int | None = ..., + max_columns: int | None = ..., + encoding: str | None = ..., + doctype_html: bool = ..., + exclude_styles: bool = ..., + **kwargs, + ) -> None: + ... + + @overload + def to_html( + self, + buf: None = ..., + *, + table_uuid: str | None = ..., + table_attributes: str | None = ..., + sparse_index: bool | None = ..., + sparse_columns: bool | None = ..., + bold_headers: bool = ..., + caption: str | None = ..., + max_rows: int | None = ..., + max_columns: int | None = ..., + encoding: str | None = ..., + doctype_html: bool = ..., + exclude_styles: bool = ..., + **kwargs, + ) -> str: + ... + + @Substitution(buf=buffering_args, encoding=encoding_args) + def to_html( + self, + buf: FilePath | WriteBuffer[str] | None = None, + *, + table_uuid: str | None = None, + table_attributes: str | None = None, + sparse_index: bool | None = None, + sparse_columns: bool | None = None, + bold_headers: bool = False, + caption: str | None = None, + max_rows: int | None = None, + max_columns: int | None = None, + encoding: str | None = None, + doctype_html: bool = False, + exclude_styles: bool = False, + **kwargs, + ) -> str | None: + """ + Write Styler to a file, buffer or string in HTML-CSS format. + + .. versionadded:: 1.3.0 + + Parameters + ---------- + %(buf)s + table_uuid : str, optional + Id attribute assigned to the HTML element in the format: + + ``
`` + + If not given uses Styler's initially assigned value. + table_attributes : str, optional + Attributes to assign within the `
` HTML element in the format: + + ``
>`` + + If not given defaults to Styler's preexisting value. + sparse_index : bool, optional + Whether to sparsify the display of a hierarchical index. Setting to False + will display each explicit level element in a hierarchical key for each row. + Defaults to ``pandas.options.styler.sparse.index`` value. + + .. versionadded:: 1.4.0 + sparse_columns : bool, optional + Whether to sparsify the display of a hierarchical index. Setting to False + will display each explicit level element in a hierarchical key for each + column. Defaults to ``pandas.options.styler.sparse.columns`` value. + + .. versionadded:: 1.4.0 + bold_headers : bool, optional + Adds "font-weight: bold;" as a CSS property to table style header cells. + + .. versionadded:: 1.4.0 + caption : str, optional + Set, or overwrite, the caption on Styler before rendering. + + .. versionadded:: 1.4.0 + max_rows : int, optional + The maximum number of rows that will be rendered. Defaults to + ``pandas.options.styler.render.max_rows/max_columns``. + + .. versionadded:: 1.4.0 + max_columns : int, optional + The maximum number of columns that will be rendered. Defaults to + ``pandas.options.styler.render.max_columns``, which is None. + + Rows and columns may be reduced if the number of total elements is + large. This value is set to ``pandas.options.styler.render.max_elements``, + which is 262144 (18 bit browser rendering). + + .. versionadded:: 1.4.0 + %(encoding)s + doctype_html : bool, default False + Whether to output a fully structured HTML file including all + HTML elements, or just the core `` +
+ + + + + + + ... + """ + obj = self._copy(deepcopy=True) # manipulate table_styles on obj, not self + + if table_uuid: + obj.set_uuid(table_uuid) + + if table_attributes: + obj.set_table_attributes(table_attributes) + + if sparse_index is None: + sparse_index = get_option("styler.sparse.index") + if sparse_columns is None: + sparse_columns = get_option("styler.sparse.columns") + + if bold_headers: + obj.set_table_styles( + [{"selector": "th", "props": "font-weight: bold;"}], overwrite=False + ) + + if caption is not None: + obj.set_caption(caption) + + # Build HTML string.. + html = obj._render_html( + sparse_index=sparse_index, + sparse_columns=sparse_columns, + max_rows=max_rows, + max_cols=max_columns, + exclude_styles=exclude_styles, + encoding=encoding or get_option("styler.render.encoding"), + doctype_html=doctype_html, + **kwargs, + ) + + return save_to_buffer( + html, buf=buf, encoding=(encoding if buf is not None else None) + ) + + @overload + def to_string( + self, + buf: FilePath | WriteBuffer[str], + *, + encoding: str | None = ..., + sparse_index: bool | None = ..., + sparse_columns: bool | None = ..., + max_rows: int | None = ..., + max_columns: int | None = ..., + delimiter: str = ..., + ) -> None: + ... + + @overload + def to_string( + self, + buf: None = ..., + *, + encoding: str | None = ..., + sparse_index: bool | None = ..., + sparse_columns: bool | None = ..., + max_rows: int | None = ..., + max_columns: int | None = ..., + delimiter: str = ..., + ) -> str: + ... + + @Substitution(buf=buffering_args, encoding=encoding_args) + def to_string( + self, + buf: FilePath | WriteBuffer[str] | None = None, + *, + encoding: str | None = None, + sparse_index: bool | None = None, + sparse_columns: bool | None = None, + max_rows: int | None = None, + max_columns: int | None = None, + delimiter: str = " ", + ) -> str | None: + """ + Write Styler to a file, buffer or string in text format. + + .. versionadded:: 1.5.0 + + Parameters + ---------- + %(buf)s + %(encoding)s + sparse_index : bool, optional + Whether to sparsify the display of a hierarchical index. Setting to False + will display each explicit level element in a hierarchical key for each row. + Defaults to ``pandas.options.styler.sparse.index`` value. + sparse_columns : bool, optional + Whether to sparsify the display of a hierarchical index. Setting to False + will display each explicit level element in a hierarchical key for each + column. Defaults to ``pandas.options.styler.sparse.columns`` value. + max_rows : int, optional + The maximum number of rows that will be rendered. Defaults to + ``pandas.options.styler.render.max_rows``, which is None. + max_columns : int, optional + The maximum number of columns that will be rendered. Defaults to + ``pandas.options.styler.render.max_columns``, which is None. + + Rows and columns may be reduced if the number of total elements is + large. This value is set to ``pandas.options.styler.render.max_elements``, + which is 262144 (18 bit browser rendering). + delimiter : str, default single space + The separator between data elements. + + Returns + ------- + str or None + If `buf` is None, returns the result as a string. Otherwise returns `None`. + + Examples + -------- + >>> df = pd.DataFrame({'A': [1, 2], 'B': [3, 4]}) + >>> df.style.to_string() + ' A B\\n0 1 3\\n1 2 4\\n' + """ + obj = self._copy(deepcopy=True) + + if sparse_index is None: + sparse_index = get_option("styler.sparse.index") + if sparse_columns is None: + sparse_columns = get_option("styler.sparse.columns") + + text = obj._render_string( + sparse_columns=sparse_columns, + sparse_index=sparse_index, + max_rows=max_rows, + max_cols=max_columns, + delimiter=delimiter, + ) + return save_to_buffer( + text, buf=buf, encoding=(encoding if buf is not None else None) + ) + + def set_td_classes(self, classes: DataFrame) -> Styler: + """ + Set the ``class`` attribute of ``
 AB
`` HTML elements. + + Parameters + ---------- + classes : DataFrame + DataFrame containing strings that will be translated to CSS classes, + mapped by identical column and index key values that must exist on the + underlying Styler data. None, NaN values, and empty strings will + be ignored and not affect the rendered HTML. + + Returns + ------- + Styler + + See Also + -------- + Styler.set_table_styles: Set the table styles included within the ``' + '' + ' ' + ' ' + ' ' + ' ' + ' ' + ' ' + '
0
1
' + """ + if not classes.index.is_unique or not classes.columns.is_unique: + raise KeyError( + "Classes render only if `classes` has unique index and columns." + ) + classes = classes.reindex_like(self.data) + + for r, row_tup in enumerate(classes.itertuples()): + for c, value in enumerate(row_tup[1:]): + if not (pd.isna(value) or value == ""): + self.cell_context[(r, c)] = str(value) + + return self + + def _update_ctx(self, attrs: DataFrame) -> None: + """ + Update the state of the ``Styler`` for data cells. + + Collects a mapping of {index_label: [('', ''), ..]}. + + Parameters + ---------- + attrs : DataFrame + should contain strings of ': ;: ' + Whitespace shouldn't matter and the final trailing ';' shouldn't + matter. + """ + if not self.index.is_unique or not self.columns.is_unique: + raise KeyError( + "`Styler.apply` and `.map` are not compatible " + "with non-unique index or columns." + ) + + for cn in attrs.columns: + j = self.columns.get_loc(cn) + ser = attrs[cn] + for rn, c in ser.items(): + if not c or pd.isna(c): + continue + css_list = maybe_convert_css_to_tuples(c) + i = self.index.get_loc(rn) + self.ctx[(i, j)].extend(css_list) + + def _update_ctx_header(self, attrs: DataFrame, axis: AxisInt) -> None: + """ + Update the state of the ``Styler`` for header cells. + + Collects a mapping of {index_label: [('', ''), ..]}. + + Parameters + ---------- + attrs : Series + Should contain strings of ': ;: ', and an + integer index. + Whitespace shouldn't matter and the final trailing ';' shouldn't + matter. + axis : int + Identifies whether the ctx object being updated is the index or columns + """ + for j in attrs.columns: + ser = attrs[j] + for i, c in ser.items(): + if not c: + continue + css_list = maybe_convert_css_to_tuples(c) + if axis == 0: + self.ctx_index[(i, j)].extend(css_list) + else: + self.ctx_columns[(j, i)].extend(css_list) + + def _copy(self, deepcopy: bool = False) -> Styler: + """ + Copies a Styler, allowing for deepcopy or shallow copy + + Copying a Styler aims to recreate a new Styler object which contains the same + data and styles as the original. + + Data dependent attributes [copied and NOT exported]: + - formatting (._display_funcs) + - hidden index values or column values (.hidden_rows, .hidden_columns) + - tooltips + - cell_context (cell css classes) + - ctx (cell css styles) + - caption + - concatenated stylers + + Non-data dependent attributes [copied and exported]: + - css + - hidden index state and hidden columns state (.hide_index_, .hide_columns_) + - table_attributes + - table_styles + - applied styles (_todo) + + """ + # GH 40675, 52728 + styler = type(self)( + self.data, # populates attributes 'data', 'columns', 'index' as shallow + ) + shallow = [ # simple string or boolean immutables + "hide_index_", + "hide_columns_", + "hide_column_names", + "hide_index_names", + "table_attributes", + "cell_ids", + "caption", + "uuid", + "uuid_len", + "template_latex", # also copy templates if these have been customised + "template_html_style", + "template_html_table", + "template_html", + ] + deep = [ # nested lists or dicts + "css", + "concatenated", + "_display_funcs", + "_display_funcs_index", + "_display_funcs_columns", + "hidden_rows", + "hidden_columns", + "ctx", + "ctx_index", + "ctx_columns", + "cell_context", + "_todo", + "table_styles", + "tooltips", + ] + + for attr in shallow: + setattr(styler, attr, getattr(self, attr)) + + for attr in deep: + val = getattr(self, attr) + setattr(styler, attr, copy.deepcopy(val) if deepcopy else val) + + return styler + + def __copy__(self) -> Styler: + return self._copy(deepcopy=False) + + def __deepcopy__(self, memo) -> Styler: + return self._copy(deepcopy=True) + + def clear(self) -> None: + """ + Reset the ``Styler``, removing any previously applied styles. + + Returns None. + + Examples + -------- + >>> df = pd.DataFrame({'A': [1, 2], 'B': [3, np.nan]}) + + After any added style: + + >>> df.style.highlight_null(color='yellow') # doctest: +SKIP + + Remove it with: + + >>> df.style.clear() # doctest: +SKIP + + Please see: + `Table Visualization <../../user_guide/style.ipynb>`_ for more examples. + """ + # create default GH 40675 + clean_copy = Styler(self.data, uuid=self.uuid) + clean_attrs = [a for a in clean_copy.__dict__ if not callable(a)] + self_attrs = [a for a in self.__dict__ if not callable(a)] # maybe more attrs + for attr in clean_attrs: + setattr(self, attr, getattr(clean_copy, attr)) + for attr in set(self_attrs).difference(clean_attrs): + delattr(self, attr) + + def _apply( + self, + func: Callable, + axis: Axis | None = 0, + subset: Subset | None = None, + **kwargs, + ) -> Styler: + subset = slice(None) if subset is None else subset + subset = non_reducing_slice(subset) + data = self.data.loc[subset] + if data.empty: + result = DataFrame() + elif axis is None: + result = func(data, **kwargs) + if not isinstance(result, DataFrame): + if not isinstance(result, np.ndarray): + raise TypeError( + f"Function {repr(func)} must return a DataFrame or ndarray " + f"when passed to `Styler.apply` with axis=None" + ) + if data.shape != result.shape: + raise ValueError( + f"Function {repr(func)} returned ndarray with wrong shape.\n" + f"Result has shape: {result.shape}\n" + f"Expected shape: {data.shape}" + ) + result = DataFrame(result, index=data.index, columns=data.columns) + else: + axis = self.data._get_axis_number(axis) + if axis == 0: + result = data.apply(func, axis=0, **kwargs) + else: + result = data.T.apply(func, axis=0, **kwargs).T # see GH 42005 + + if isinstance(result, Series): + raise ValueError( + f"Function {repr(func)} resulted in the apply method collapsing to a " + f"Series.\nUsually, this is the result of the function returning a " + f"single value, instead of list-like." + ) + msg = ( + f"Function {repr(func)} created invalid {{0}} labels.\nUsually, this is " + f"the result of the function returning a " + f"{'Series' if axis is not None else 'DataFrame'} which contains invalid " + f"labels, or returning an incorrectly shaped, list-like object which " + f"cannot be mapped to labels, possibly due to applying the function along " + f"the wrong axis.\n" + f"Result {{0}} has shape: {{1}}\n" + f"Expected {{0}} shape: {{2}}" + ) + if not all(result.index.isin(data.index)): + raise ValueError(msg.format("index", result.index.shape, data.index.shape)) + if not all(result.columns.isin(data.columns)): + raise ValueError( + msg.format("columns", result.columns.shape, data.columns.shape) + ) + self._update_ctx(result) + return self + + @Substitution(subset=subset_args) + def apply( + self, + func: Callable, + axis: Axis | None = 0, + subset: Subset | None = None, + **kwargs, + ) -> Styler: + """ + Apply a CSS-styling function column-wise, row-wise, or table-wise. + + Updates the HTML representation with the result. + + Parameters + ---------- + func : function + ``func`` should take a Series if ``axis`` in [0,1] and return a list-like + object of same length, or a Series, not necessarily of same length, with + valid index labels considering ``subset``. + ``func`` should take a DataFrame if ``axis`` is ``None`` and return either + an ndarray with the same shape or a DataFrame, not necessarily of the same + shape, with valid index and columns labels considering ``subset``. + + .. versionchanged:: 1.3.0 + + .. versionchanged:: 1.4.0 + + axis : {0 or 'index', 1 or 'columns', None}, default 0 + Apply to each column (``axis=0`` or ``'index'``), to each row + (``axis=1`` or ``'columns'``), or to the entire DataFrame at once + with ``axis=None``. + %(subset)s + **kwargs : dict + Pass along to ``func``. + + Returns + ------- + Styler + + See Also + -------- + Styler.map_index: Apply a CSS-styling function to headers elementwise. + Styler.apply_index: Apply a CSS-styling function to headers level-wise. + Styler.map: Apply a CSS-styling function elementwise. + + Notes + ----- + The elements of the output of ``func`` should be CSS styles as strings, in the + format 'attribute: value; attribute2: value2; ...' or, + if nothing is to be applied to that element, an empty string or ``None``. + + This is similar to ``DataFrame.apply``, except that ``axis=None`` + applies the function to the entire DataFrame at once, + rather than column-wise or row-wise. + + Examples + -------- + >>> def highlight_max(x, color): + ... return np.where(x == np.nanmax(x.to_numpy()), f"color: {color};", None) + >>> df = pd.DataFrame(np.random.randn(5, 2), columns=["A", "B"]) + >>> df.style.apply(highlight_max, color='red') # doctest: +SKIP + >>> df.style.apply(highlight_max, color='blue', axis=1) # doctest: +SKIP + >>> df.style.apply(highlight_max, color='green', axis=None) # doctest: +SKIP + + Using ``subset`` to restrict application to a single column or multiple columns + + >>> df.style.apply(highlight_max, color='red', subset="A") + ... # doctest: +SKIP + >>> df.style.apply(highlight_max, color='red', subset=["A", "B"]) + ... # doctest: +SKIP + + Using a 2d input to ``subset`` to select rows in addition to columns + + >>> df.style.apply(highlight_max, color='red', subset=([0, 1, 2], slice(None))) + ... # doctest: +SKIP + >>> df.style.apply(highlight_max, color='red', subset=(slice(0, 5, 2), "A")) + ... # doctest: +SKIP + + Using a function which returns a Series / DataFrame of unequal length but + containing valid index labels + + >>> df = pd.DataFrame([[1, 2], [3, 4], [4, 6]], index=["A1", "A2", "Total"]) + >>> total_style = pd.Series("font-weight: bold;", index=["Total"]) + >>> df.style.apply(lambda s: total_style) # doctest: +SKIP + + See `Table Visualization <../../user_guide/style.ipynb>`_ user guide for + more details. + """ + self._todo.append( + (lambda instance: getattr(instance, "_apply"), (func, axis, subset), kwargs) + ) + return self + + def _apply_index( + self, + func: Callable, + axis: Axis = 0, + level: Level | list[Level] | None = None, + method: str = "apply", + **kwargs, + ) -> Styler: + axis = self.data._get_axis_number(axis) + obj = self.index if axis == 0 else self.columns + + levels_ = refactor_levels(level, obj) + data = DataFrame(obj.to_list()).loc[:, levels_] + + if method == "apply": + result = data.apply(func, axis=0, **kwargs) + elif method == "map": + result = data.map(func, **kwargs) + + self._update_ctx_header(result, axis) + return self + + @doc( + this="apply", + wise="level-wise", + alt="map", + altwise="elementwise", + func="take a Series and return a string array of the same length", + input_note="the index as a Series, if an Index, or a level of a MultiIndex", + output_note="an identically sized array of CSS styles as strings", + var="s", + ret='np.where(s == "B", "background-color: yellow;", "")', + ret2='["background-color: yellow;" if "x" in v else "" for v in s]', + ) + def apply_index( + self, + func: Callable, + axis: AxisInt | str = 0, + level: Level | list[Level] | None = None, + **kwargs, + ) -> Styler: + """ + Apply a CSS-styling function to the index or column headers, {wise}. + + Updates the HTML representation with the result. + + .. versionadded:: 1.4.0 + + .. versionadded:: 2.1.0 + Styler.applymap_index was deprecated and renamed to Styler.map_index. + + Parameters + ---------- + func : function + ``func`` should {func}. + axis : {{0, 1, "index", "columns"}} + The headers over which to apply the function. + level : int, str, list, optional + If index is MultiIndex the level(s) over which to apply the function. + **kwargs : dict + Pass along to ``func``. + + Returns + ------- + Styler + + See Also + -------- + Styler.{alt}_index: Apply a CSS-styling function to headers {altwise}. + Styler.apply: Apply a CSS-styling function column-wise, row-wise, or table-wise. + Styler.map: Apply a CSS-styling function elementwise. + + Notes + ----- + Each input to ``func`` will be {input_note}. The output of ``func`` should be + {output_note}, in the format 'attribute: value; attribute2: value2; ...' + or, if nothing is to be applied to that element, an empty string or ``None``. + + Examples + -------- + Basic usage to conditionally highlight values in the index. + + >>> df = pd.DataFrame([[1,2], [3,4]], index=["A", "B"]) + >>> def color_b(s): + ... return {ret} + >>> df.style.{this}_index(color_b) # doctest: +SKIP + + .. figure:: ../../_static/style/appmaphead1.png + + Selectively applying to specific levels of MultiIndex columns. + + >>> midx = pd.MultiIndex.from_product([['ix', 'jy'], [0, 1], ['x3', 'z4']]) + >>> df = pd.DataFrame([np.arange(8)], columns=midx) + >>> def highlight_x({var}): + ... return {ret2} + >>> df.style.{this}_index(highlight_x, axis="columns", level=[0, 2]) + ... # doctest: +SKIP + + .. figure:: ../../_static/style/appmaphead2.png + """ + self._todo.append( + ( + lambda instance: getattr(instance, "_apply_index"), + (func, axis, level, "apply"), + kwargs, + ) + ) + return self + + @doc( + apply_index, + this="map", + wise="elementwise", + alt="apply", + altwise="level-wise", + func="take a scalar and return a string", + input_note="an index value, if an Index, or a level value of a MultiIndex", + output_note="CSS styles as a string", + var="v", + ret='"background-color: yellow;" if v == "B" else None', + ret2='"background-color: yellow;" if "x" in v else None', + ) + def map_index( + self, + func: Callable, + axis: AxisInt | str = 0, + level: Level | list[Level] | None = None, + **kwargs, + ) -> Styler: + self._todo.append( + ( + lambda instance: getattr(instance, "_apply_index"), + (func, axis, level, "map"), + kwargs, + ) + ) + return self + + def applymap_index( + self, + func: Callable, + axis: AxisInt | str = 0, + level: Level | list[Level] | None = None, + **kwargs, + ) -> Styler: + """ + Apply a CSS-styling function to the index or column headers, elementwise. + + .. deprecated:: 2.1.0 + + Styler.applymap_index has been deprecated. Use Styler.map_index instead. + + Parameters + ---------- + func : function + ``func`` should take a scalar and return a string. + axis : {{0, 1, "index", "columns"}} + The headers over which to apply the function. + level : int, str, list, optional + If index is MultiIndex the level(s) over which to apply the function. + **kwargs : dict + Pass along to ``func``. + + Returns + ------- + Styler + """ + warnings.warn( + "Styler.applymap_index has been deprecated. Use Styler.map_index instead.", + FutureWarning, + stacklevel=find_stack_level(), + ) + return self.map_index(func, axis, level, **kwargs) + + def _map(self, func: Callable, subset: Subset | None = None, **kwargs) -> Styler: + func = partial(func, **kwargs) # map doesn't take kwargs? + if subset is None: + subset = IndexSlice[:] + subset = non_reducing_slice(subset) + result = self.data.loc[subset].map(func) + self._update_ctx(result) + return self + + @Substitution(subset=subset_args) + def map(self, func: Callable, subset: Subset | None = None, **kwargs) -> Styler: + """ + Apply a CSS-styling function elementwise. + + Updates the HTML representation with the result. + + Parameters + ---------- + func : function + ``func`` should take a scalar and return a string. + %(subset)s + **kwargs : dict + Pass along to ``func``. + + Returns + ------- + Styler + + See Also + -------- + Styler.map_index: Apply a CSS-styling function to headers elementwise. + Styler.apply_index: Apply a CSS-styling function to headers level-wise. + Styler.apply: Apply a CSS-styling function column-wise, row-wise, or table-wise. + + Notes + ----- + The elements of the output of ``func`` should be CSS styles as strings, in the + format 'attribute: value; attribute2: value2; ...' or, + if nothing is to be applied to that element, an empty string or ``None``. + + Examples + -------- + >>> def color_negative(v, color): + ... return f"color: {color};" if v < 0 else None + >>> df = pd.DataFrame(np.random.randn(5, 2), columns=["A", "B"]) + >>> df.style.map(color_negative, color='red') # doctest: +SKIP + + Using ``subset`` to restrict application to a single column or multiple columns + + >>> df.style.map(color_negative, color='red', subset="A") + ... # doctest: +SKIP + >>> df.style.map(color_negative, color='red', subset=["A", "B"]) + ... # doctest: +SKIP + + Using a 2d input to ``subset`` to select rows in addition to columns + + >>> df.style.map(color_negative, color='red', + ... subset=([0,1,2], slice(None))) # doctest: +SKIP + >>> df.style.map(color_negative, color='red', subset=(slice(0,5,2), "A")) + ... # doctest: +SKIP + + See `Table Visualization <../../user_guide/style.ipynb>`_ user guide for + more details. + """ + self._todo.append( + (lambda instance: getattr(instance, "_map"), (func, subset), kwargs) + ) + return self + + @Substitution(subset=subset_args) + def applymap( + self, func: Callable, subset: Subset | None = None, **kwargs + ) -> Styler: + """ + Apply a CSS-styling function elementwise. + + .. deprecated:: 2.1.0 + + Styler.applymap has been deprecated. Use Styler.map instead. + + Parameters + ---------- + func : function + ``func`` should take a scalar and return a string. + %(subset)s + **kwargs : dict + Pass along to ``func``. + + Returns + ------- + Styler + """ + warnings.warn( + "Styler.applymap has been deprecated. Use Styler.map instead.", + FutureWarning, + stacklevel=find_stack_level(), + ) + return self.map(func, subset, **kwargs) + + def set_table_attributes(self, attributes: str) -> Styler: + """ + Set the table attributes added to the ```` HTML element. + + These are items in addition to automatic (by default) ``id`` attribute. + + Parameters + ---------- + attributes : str + + Returns + ------- + Styler + + See Also + -------- + Styler.set_table_styles: Set the table styles included within the `` block + + Parameters + ---------- + sparsify_index : bool + Whether index_headers section will add rowspan attributes (>1) to elements. + + Returns + ------- + body : list + The associated HTML elements needed for template rendering. + """ + rlabels = self.data.index.tolist() + if not isinstance(self.data.index, MultiIndex): + rlabels = [[x] for x in rlabels] + + body: list = [] + visible_row_count: int = 0 + for r, row_tup in [ + z for z in enumerate(self.data.itertuples()) if z[0] not in self.hidden_rows + ]: + visible_row_count += 1 + if self._check_trim( + visible_row_count, + max_rows, + body, + "row", + ): + break + + body_row = self._generate_body_row( + (r, row_tup, rlabels), max_cols, idx_lengths + ) + body.append(body_row) + return body + + def _check_trim( + self, + count: int, + max: int, + obj: list, + element: str, + css: str | None = None, + value: str = "...", + ) -> bool: + """ + Indicates whether to break render loops and append a trimming indicator + + Parameters + ---------- + count : int + The loop count of previous visible items. + max : int + The allowable rendered items in the loop. + obj : list + The current render collection of the rendered items. + element : str + The type of element to append in the case a trimming indicator is needed. + css : str, optional + The css to add to the trimming indicator element. + value : str, optional + The value of the elements display if necessary. + + Returns + ------- + result : bool + Whether a trimming element was required and appended. + """ + if count > max: + if element == "row": + obj.append(self._generate_trimmed_row(max)) + else: + obj.append(_element(element, css, value, True, attributes="")) + return True + return False + + def _generate_trimmed_row(self, max_cols: int) -> list: + """ + When a render has too many rows we generate a trimming row containing "..." + + Parameters + ---------- + max_cols : int + Number of permissible columns + + Returns + ------- + list of elements + """ + index_headers = [ + _element( + "th", + ( + f"{self.css['row_heading']} {self.css['level']}{c} " + f"{self.css['row_trim']}" + ), + "...", + not self.hide_index_[c], + attributes="", + ) + for c in range(self.data.index.nlevels) + ] + + data: list = [] + visible_col_count: int = 0 + for c, _ in enumerate(self.columns): + data_element_visible = c not in self.hidden_columns + if data_element_visible: + visible_col_count += 1 + if self._check_trim( + visible_col_count, + max_cols, + data, + "td", + f"{self.css['data']} {self.css['row_trim']} {self.css['col_trim']}", + ): + break + + data.append( + _element( + "td", + f"{self.css['data']} {self.css['col']}{c} {self.css['row_trim']}", + "...", + data_element_visible, + attributes="", + ) + ) + + return index_headers + data + + def _generate_body_row( + self, + iter: tuple, + max_cols: int, + idx_lengths: dict, + ): + """ + Generate a regular row for the body section of appropriate format. + + +--------------------------------------------+---------------------------+ + | index_header_0 ... index_header_n | data_by_column ... | + +--------------------------------------------+---------------------------+ + + Parameters + ---------- + iter : tuple + Iterable from outer scope: row number, row data tuple, row index labels. + max_cols : int + Number of permissible columns. + idx_lengths : dict + A map of the sparsification structure of the index + + Returns + ------- + list of elements + """ + r, row_tup, rlabels = iter + + index_headers = [] + for c, value in enumerate(rlabels[r]): + header_element_visible = ( + _is_visible(r, c, idx_lengths) and not self.hide_index_[c] + ) + header_element = _element( + "th", + ( + f"{self.css['row_heading']} {self.css['level']}{c} " + f"{self.css['row']}{r}" + ), + value, + header_element_visible, + display_value=self._display_funcs_index[(r, c)](value), + attributes=( + f'rowspan="{idx_lengths.get((c, r), 0)}"' + if idx_lengths.get((c, r), 0) > 1 + else "" + ), + ) + + if self.cell_ids: + header_element[ + "id" + ] = f"{self.css['level']}{c}_{self.css['row']}{r}" # id is given + if ( + header_element_visible + and (r, c) in self.ctx_index + and self.ctx_index[r, c] + ): + # always add id if a style is specified + header_element["id"] = f"{self.css['level']}{c}_{self.css['row']}{r}" + self.cellstyle_map_index[tuple(self.ctx_index[r, c])].append( + f"{self.css['level']}{c}_{self.css['row']}{r}" + ) + + index_headers.append(header_element) + + data: list = [] + visible_col_count: int = 0 + for c, value in enumerate(row_tup[1:]): + data_element_visible = ( + c not in self.hidden_columns and r not in self.hidden_rows + ) + if data_element_visible: + visible_col_count += 1 + if self._check_trim( + visible_col_count, + max_cols, + data, + "td", + f"{self.css['data']} {self.css['row']}{r} {self.css['col_trim']}", + ): + break + + # add custom classes from cell context + cls = "" + if (r, c) in self.cell_context: + cls = " " + self.cell_context[r, c] + + data_element = _element( + "td", + ( + f"{self.css['data']} {self.css['row']}{r} " + f"{self.css['col']}{c}{cls}" + ), + value, + data_element_visible, + attributes="", + display_value=self._display_funcs[(r, c)](value), + ) + + if self.cell_ids: + data_element["id"] = f"{self.css['row']}{r}_{self.css['col']}{c}" + if data_element_visible and (r, c) in self.ctx and self.ctx[r, c]: + # always add id if needed due to specified style + data_element["id"] = f"{self.css['row']}{r}_{self.css['col']}{c}" + self.cellstyle_map[tuple(self.ctx[r, c])].append( + f"{self.css['row']}{r}_{self.css['col']}{c}" + ) + + data.append(data_element) + + return index_headers + data + + def _translate_latex(self, d: dict, clines: str | None) -> None: + r""" + Post-process the default render dict for the LaTeX template format. + + Processing items included are: + - Remove hidden columns from the non-headers part of the body. + - Place cellstyles directly in td cells rather than use cellstyle_map. + - Remove hidden indexes or reinsert missing th elements if part of multiindex + or multirow sparsification (so that \multirow and \multicol work correctly). + """ + index_levels = self.index.nlevels + visible_index_level_n = index_levels - sum(self.hide_index_) + d["head"] = [ + [ + {**col, "cellstyle": self.ctx_columns[r, c - visible_index_level_n]} + for c, col in enumerate(row) + if col["is_visible"] + ] + for r, row in enumerate(d["head"]) + ] + + def _concatenated_visible_rows(obj, n, row_indices): + """ + Extract all visible row indices recursively from concatenated stylers. + """ + row_indices.extend( + [r + n for r in range(len(obj.index)) if r not in obj.hidden_rows] + ) + n += len(obj.index) + for concatenated in obj.concatenated: + n = _concatenated_visible_rows(concatenated, n, row_indices) + return n + + def concatenated_visible_rows(obj): + row_indices: list[int] = [] + _concatenated_visible_rows(obj, 0, row_indices) + # TODO try to consolidate the concat visible rows + # methods to a single function / recursion for simplicity + return row_indices + + body = [] + for r, row in zip(concatenated_visible_rows(self), d["body"]): + # note: cannot enumerate d["body"] because rows were dropped if hidden + # during _translate_body so must zip to acquire the true r-index associated + # with the ctx obj which contains the cell styles. + if all(self.hide_index_): + row_body_headers = [] + else: + row_body_headers = [ + { + **col, + "display_value": col["display_value"] + if col["is_visible"] + else "", + "cellstyle": self.ctx_index[r, c], + } + for c, col in enumerate(row[:index_levels]) + if (col["type"] == "th" and not self.hide_index_[c]) + ] + + row_body_cells = [ + {**col, "cellstyle": self.ctx[r, c]} + for c, col in enumerate(row[index_levels:]) + if (col["is_visible"] and col["type"] == "td") + ] + + body.append(row_body_headers + row_body_cells) + d["body"] = body + + # clines are determined from info on index_lengths and hidden_rows and input + # to a dict defining which row clines should be added in the template. + if clines not in [ + None, + "all;data", + "all;index", + "skip-last;data", + "skip-last;index", + ]: + raise ValueError( + f"`clines` value of {clines} is invalid. Should either be None or one " + f"of 'all;data', 'all;index', 'skip-last;data', 'skip-last;index'." + ) + if clines is not None: + data_len = len(row_body_cells) if "data" in clines and d["body"] else 0 + + d["clines"] = defaultdict(list) + visible_row_indexes: list[int] = [ + r for r in range(len(self.data.index)) if r not in self.hidden_rows + ] + visible_index_levels: list[int] = [ + i for i in range(index_levels) if not self.hide_index_[i] + ] + for rn, r in enumerate(visible_row_indexes): + for lvln, lvl in enumerate(visible_index_levels): + if lvl == index_levels - 1 and "skip-last" in clines: + continue + idx_len = d["index_lengths"].get((lvl, r), None) + if idx_len is not None: # i.e. not a sparsified entry + d["clines"][rn + idx_len].append( + f"\\cline{{{lvln+1}-{len(visible_index_levels)+data_len}}}" + ) + + def format( + self, + formatter: ExtFormatter | None = None, + subset: Subset | None = None, + na_rep: str | None = None, + precision: int | None = None, + decimal: str = ".", + thousands: str | None = None, + escape: str | None = None, + hyperlinks: str | None = None, + ) -> StylerRenderer: + r""" + Format the text display value of cells. + + Parameters + ---------- + formatter : str, callable, dict or None + Object to define how values are displayed. See notes. + subset : label, array-like, IndexSlice, optional + A valid 2d input to `DataFrame.loc[]`, or, in the case of a 1d input + or single key, to `DataFrame.loc[:, ]` where the columns are + prioritised, to limit ``data`` to *before* applying the function. + na_rep : str, optional + Representation for missing values. + If ``na_rep`` is None, no special formatting is applied. + precision : int, optional + Floating point precision to use for display purposes, if not determined by + the specified ``formatter``. + + .. versionadded:: 1.3.0 + + decimal : str, default "." + Character used as decimal separator for floats, complex and integers. + + .. versionadded:: 1.3.0 + + thousands : str, optional, default None + Character used as thousands separator for floats, complex and integers. + + .. versionadded:: 1.3.0 + + escape : str, optional + Use 'html' to replace the characters ``&``, ``<``, ``>``, ``'``, and ``"`` + in cell display string with HTML-safe sequences. + Use 'latex' to replace the characters ``&``, ``%``, ``$``, ``#``, ``_``, + ``{``, ``}``, ``~``, ``^``, and ``\`` in the cell display string with + LaTeX-safe sequences. + Use 'latex-math' to replace the characters the same way as in 'latex' mode, + except for math substrings, which either are surrounded + by two characters ``$`` or start with the character ``\(`` and + end with ``\)``. Escaping is done before ``formatter``. + + .. versionadded:: 1.3.0 + + hyperlinks : {"html", "latex"}, optional + Convert string patterns containing https://, http://, ftp:// or www. to + HTML tags as clickable URL hyperlinks if "html", or LaTeX \href + commands if "latex". + + .. versionadded:: 1.4.0 + + Returns + ------- + Styler + + See Also + -------- + Styler.format_index: Format the text display value of index labels. + + Notes + ----- + This method assigns a formatting function, ``formatter``, to each cell in the + DataFrame. If ``formatter`` is ``None``, then the default formatter is used. + If a callable then that function should take a data value as input and return + a displayable representation, such as a string. If ``formatter`` is + given as a string this is assumed to be a valid Python format specification + and is wrapped to a callable as ``string.format(x)``. If a ``dict`` is given, + keys should correspond to column names, and values should be string or + callable, as above. + + The default formatter currently expresses floats and complex numbers with the + pandas display precision unless using the ``precision`` argument here. The + default formatter does not adjust the representation of missing values unless + the ``na_rep`` argument is used. + + The ``subset`` argument defines which region to apply the formatting function + to. If the ``formatter`` argument is given in dict form but does not include + all columns within the subset then these columns will have the default formatter + applied. Any columns in the formatter dict excluded from the subset will + be ignored. + + When using a ``formatter`` string the dtypes must be compatible, otherwise a + `ValueError` will be raised. + + When instantiating a Styler, default formatting can be applied be setting the + ``pandas.options``: + + - ``styler.format.formatter``: default None. + - ``styler.format.na_rep``: default None. + - ``styler.format.precision``: default 6. + - ``styler.format.decimal``: default ".". + - ``styler.format.thousands``: default None. + - ``styler.format.escape``: default None. + + .. warning:: + `Styler.format` is ignored when using the output format `Styler.to_excel`, + since Excel and Python have inherrently different formatting structures. + However, it is possible to use the `number-format` pseudo CSS attribute + to force Excel permissible formatting. See examples. + + Examples + -------- + Using ``na_rep`` and ``precision`` with the default ``formatter`` + + >>> df = pd.DataFrame([[np.nan, 1.0, 'A'], [2.0, np.nan, 3.0]]) + >>> df.style.format(na_rep='MISS', precision=3) # doctest: +SKIP + 0 1 2 + 0 MISS 1.000 A + 1 2.000 MISS 3.000 + + Using a ``formatter`` specification on consistent column dtypes + + >>> df.style.format('{:.2f}', na_rep='MISS', subset=[0,1]) # doctest: +SKIP + 0 1 2 + 0 MISS 1.00 A + 1 2.00 MISS 3.000000 + + Using the default ``formatter`` for unspecified columns + + >>> df.style.format({0: '{:.2f}', 1: '£ {:.1f}'}, na_rep='MISS', precision=1) + ... # doctest: +SKIP + 0 1 2 + 0 MISS £ 1.0 A + 1 2.00 MISS 3.0 + + Multiple ``na_rep`` or ``precision`` specifications under the default + ``formatter``. + + >>> (df.style.format(na_rep='MISS', precision=1, subset=[0]) + ... .format(na_rep='PASS', precision=2, subset=[1, 2])) # doctest: +SKIP + 0 1 2 + 0 MISS 1.00 A + 1 2.0 PASS 3.00 + + Using a callable ``formatter`` function. + + >>> func = lambda s: 'STRING' if isinstance(s, str) else 'FLOAT' + >>> df.style.format({0: '{:.1f}', 2: func}, precision=4, na_rep='MISS') + ... # doctest: +SKIP + 0 1 2 + 0 MISS 1.0000 STRING + 1 2.0 MISS FLOAT + + Using a ``formatter`` with HTML ``escape`` and ``na_rep``. + + >>> df = pd.DataFrame([['
', '"A&B"', None]]) + >>> s = df.style.format( + ... '
{0}', escape="html", na_rep="NA" + ... ) + >>> s.to_html() # doctest: +SKIP + ... +
+ + + ... + + Using a ``formatter`` with ``escape`` in 'latex' mode. + + >>> df = pd.DataFrame([["123"], ["~ ^"], ["$%#"]]) + >>> df.style.format("\\textbf{{{}}}", escape="latex").to_latex() + ... # doctest: +SKIP + \begin{tabular}{ll} + & 0 \\ + 0 & \textbf{123} \\ + 1 & \textbf{\textasciitilde \space \textasciicircum } \\ + 2 & \textbf{\$\%\#} \\ + \end{tabular} + + Applying ``escape`` in 'latex-math' mode. In the example below + we enter math mode using the character ``$``. + + >>> df = pd.DataFrame([[r"$\sum_{i=1}^{10} a_i$ a~b $\alpha \ + ... = \frac{\beta}{\zeta^2}$"], ["%#^ $ \$x^2 $"]]) + >>> df.style.format(escape="latex-math").to_latex() + ... # doctest: +SKIP + \begin{tabular}{ll} + & 0 \\ + 0 & $\sum_{i=1}^{10} a_i$ a\textasciitilde b $\alpha = \frac{\beta}{\zeta^2}$ \\ + 1 & \%\#\textasciicircum \space $ \$x^2 $ \\ + \end{tabular} + + We can use the character ``\(`` to enter math mode and the character ``\)`` + to close math mode. + + >>> df = pd.DataFrame([[r"\(\sum_{i=1}^{10} a_i\) a~b \(\alpha \ + ... = \frac{\beta}{\zeta^2}\)"], ["%#^ \( \$x^2 \)"]]) + >>> df.style.format(escape="latex-math").to_latex() + ... # doctest: +SKIP + \begin{tabular}{ll} + & 0 \\ + 0 & \(\sum_{i=1}^{10} a_i\) a\textasciitilde b \(\alpha + = \frac{\beta}{\zeta^2}\) \\ + 1 & \%\#\textasciicircum \space \( \$x^2 \) \\ + \end{tabular} + + If we have in one DataFrame cell a combination of both shorthands + for math formulas, the shorthand with the sign ``$`` will be applied. + + >>> df = pd.DataFrame([[r"\( x^2 \) $x^2$"], \ + ... [r"$\frac{\beta}{\zeta}$ \(\frac{\beta}{\zeta}\)"]]) + >>> df.style.format(escape="latex-math").to_latex() + ... # doctest: +SKIP + \begin{tabular}{ll} + & 0 \\ + 0 & \textbackslash ( x\textasciicircum 2 \textbackslash ) $x^2$ \\ + 1 & $\frac{\beta}{\zeta}$ \textbackslash (\textbackslash + frac\{\textbackslash beta\}\{\textbackslash zeta\}\textbackslash ) \\ + \end{tabular} + + Pandas defines a `number-format` pseudo CSS attribute instead of the `.format` + method to create `to_excel` permissible formatting. Note that semi-colons are + CSS protected characters but used as separators in Excel's format string. + Replace semi-colons with the section separator character (ASCII-245) when + defining the formatting here. + + >>> df = pd.DataFrame({"A": [1, 0, -1]}) + >>> pseudo_css = "number-format: 0§[Red](0)§-§@;" + >>> filename = "formatted_file.xlsx" + >>> df.style.map(lambda v: pseudo_css).to_excel(filename) # doctest: +SKIP + + .. figure:: ../../_static/style/format_excel_css.png + """ + if all( + ( + formatter is None, + subset is None, + precision is None, + decimal == ".", + thousands is None, + na_rep is None, + escape is None, + hyperlinks is None, + ) + ): + self._display_funcs.clear() + return self # clear the formatter / revert to default and avoid looping + + subset = slice(None) if subset is None else subset + subset = non_reducing_slice(subset) + data = self.data.loc[subset] + + if not isinstance(formatter, dict): + formatter = {col: formatter for col in data.columns} + + cis = self.columns.get_indexer_for(data.columns) + ris = self.index.get_indexer_for(data.index) + for ci in cis: + format_func = _maybe_wrap_formatter( + formatter.get(self.columns[ci]), + na_rep=na_rep, + precision=precision, + decimal=decimal, + thousands=thousands, + escape=escape, + hyperlinks=hyperlinks, + ) + for ri in ris: + self._display_funcs[(ri, ci)] = format_func + + return self + + def format_index( + self, + formatter: ExtFormatter | None = None, + axis: Axis = 0, + level: Level | list[Level] | None = None, + na_rep: str | None = None, + precision: int | None = None, + decimal: str = ".", + thousands: str | None = None, + escape: str | None = None, + hyperlinks: str | None = None, + ) -> StylerRenderer: + r""" + Format the text display value of index labels or column headers. + + .. versionadded:: 1.4.0 + + Parameters + ---------- + formatter : str, callable, dict or None + Object to define how values are displayed. See notes. + axis : {0, "index", 1, "columns"} + Whether to apply the formatter to the index or column headers. + level : int, str, list + The level(s) over which to apply the generic formatter. + na_rep : str, optional + Representation for missing values. + If ``na_rep`` is None, no special formatting is applied. + precision : int, optional + Floating point precision to use for display purposes, if not determined by + the specified ``formatter``. + decimal : str, default "." + Character used as decimal separator for floats, complex and integers. + thousands : str, optional, default None + Character used as thousands separator for floats, complex and integers. + escape : str, optional + Use 'html' to replace the characters ``&``, ``<``, ``>``, ``'``, and ``"`` + in cell display string with HTML-safe sequences. + Use 'latex' to replace the characters ``&``, ``%``, ``$``, ``#``, ``_``, + ``{``, ``}``, ``~``, ``^``, and ``\`` in the cell display string with + LaTeX-safe sequences. + Escaping is done before ``formatter``. + hyperlinks : {"html", "latex"}, optional + Convert string patterns containing https://, http://, ftp:// or www. to + HTML tags as clickable URL hyperlinks if "html", or LaTeX \href + commands if "latex". + + Returns + ------- + Styler + + See Also + -------- + Styler.format: Format the text display value of data cells. + + Notes + ----- + This method assigns a formatting function, ``formatter``, to each level label + in the DataFrame's index or column headers. If ``formatter`` is ``None``, + then the default formatter is used. + If a callable then that function should take a label value as input and return + a displayable representation, such as a string. If ``formatter`` is + given as a string this is assumed to be a valid Python format specification + and is wrapped to a callable as ``string.format(x)``. If a ``dict`` is given, + keys should correspond to MultiIndex level numbers or names, and values should + be string or callable, as above. + + The default formatter currently expresses floats and complex numbers with the + pandas display precision unless using the ``precision`` argument here. The + default formatter does not adjust the representation of missing values unless + the ``na_rep`` argument is used. + + The ``level`` argument defines which levels of a MultiIndex to apply the + method to. If the ``formatter`` argument is given in dict form but does + not include all levels within the level argument then these unspecified levels + will have the default formatter applied. Any levels in the formatter dict + specifically excluded from the level argument will be ignored. + + When using a ``formatter`` string the dtypes must be compatible, otherwise a + `ValueError` will be raised. + + .. warning:: + `Styler.format_index` is ignored when using the output format + `Styler.to_excel`, since Excel and Python have inherrently different + formatting structures. + However, it is possible to use the `number-format` pseudo CSS attribute + to force Excel permissible formatting. See documentation for `Styler.format`. + + Examples + -------- + Using ``na_rep`` and ``precision`` with the default ``formatter`` + + >>> df = pd.DataFrame([[1, 2, 3]], columns=[2.0, np.nan, 4.0]) + >>> df.style.format_index(axis=1, na_rep='MISS', precision=3) # doctest: +SKIP + 2.000 MISS 4.000 + 0 1 2 3 + + Using a ``formatter`` specification on consistent dtypes in a level + + >>> df.style.format_index('{:.2f}', axis=1, na_rep='MISS') # doctest: +SKIP + 2.00 MISS 4.00 + 0 1 2 3 + + Using the default ``formatter`` for unspecified levels + + >>> df = pd.DataFrame([[1, 2, 3]], + ... columns=pd.MultiIndex.from_arrays([["a", "a", "b"],[2, np.nan, 4]])) + >>> df.style.format_index({0: lambda v: v.upper()}, axis=1, precision=1) + ... # doctest: +SKIP + A B + 2.0 nan 4.0 + 0 1 2 3 + + Using a callable ``formatter`` function. + + >>> func = lambda s: 'STRING' if isinstance(s, str) else 'FLOAT' + >>> df.style.format_index(func, axis=1, na_rep='MISS') + ... # doctest: +SKIP + STRING STRING + FLOAT MISS FLOAT + 0 1 2 3 + + Using a ``formatter`` with HTML ``escape`` and ``na_rep``. + + >>> df = pd.DataFrame([[1, 2, 3]], columns=['"A"', 'A&B', None]) + >>> s = df.style.format_index('$ {0}', axis=1, escape="html", na_rep="NA") + ... # doctest: +SKIP + + + or element. + """ + if "display_value" not in kwargs: + kwargs["display_value"] = value + return { + "type": html_element, + "value": value, + "class": html_class, + "is_visible": is_visible, + **kwargs, + } + + +def _get_trimming_maximums( + rn, + cn, + max_elements, + max_rows=None, + max_cols=None, + scaling_factor: float = 0.8, +) -> tuple[int, int]: + """ + Recursively reduce the number of rows and columns to satisfy max elements. + + Parameters + ---------- + rn, cn : int + The number of input rows / columns + max_elements : int + The number of allowable elements + max_rows, max_cols : int, optional + Directly specify an initial maximum rows or columns before compression. + scaling_factor : float + Factor at which to reduce the number of rows / columns to fit. + + Returns + ------- + rn, cn : tuple + New rn and cn values that satisfy the max_elements constraint + """ + + def scale_down(rn, cn): + if cn >= rn: + return rn, int(cn * scaling_factor) + else: + return int(rn * scaling_factor), cn + + if max_rows: + rn = max_rows if rn > max_rows else rn + if max_cols: + cn = max_cols if cn > max_cols else cn + + while rn * cn > max_elements: + rn, cn = scale_down(rn, cn) + + return rn, cn + + +def _get_level_lengths( + index: Index, + sparsify: bool, + max_index: int, + hidden_elements: Sequence[int] | None = None, +): + """ + Given an index, find the level length for each element. + + Parameters + ---------- + index : Index + Index or columns to determine lengths of each element + sparsify : bool + Whether to hide or show each distinct element in a MultiIndex + max_index : int + The maximum number of elements to analyse along the index due to trimming + hidden_elements : sequence of int + Index positions of elements hidden from display in the index affecting + length + + Returns + ------- + Dict : + Result is a dictionary of (level, initial_position): span + """ + if isinstance(index, MultiIndex): + levels = index._format_multi(sparsify=lib.no_default, include_names=False) + else: + levels = index._format_flat(include_name=False) + + if hidden_elements is None: + hidden_elements = [] + + lengths = {} + if not isinstance(index, MultiIndex): + for i, value in enumerate(levels): + if i not in hidden_elements: + lengths[(0, i)] = 1 + return lengths + + for i, lvl in enumerate(levels): + visible_row_count = 0 # used to break loop due to display trimming + for j, row in enumerate(lvl): + if visible_row_count > max_index: + break + if not sparsify: + # then lengths will always equal 1 since no aggregation. + if j not in hidden_elements: + lengths[(i, j)] = 1 + visible_row_count += 1 + elif (row is not lib.no_default) and (j not in hidden_elements): + # this element has not been sparsified so must be the start of section + last_label = j + lengths[(i, last_label)] = 1 + visible_row_count += 1 + elif row is not lib.no_default: + # even if the above is hidden, keep track of it in case length > 1 and + # later elements are visible + last_label = j + lengths[(i, last_label)] = 0 + elif j not in hidden_elements: + # then element must be part of sparsified section and is visible + visible_row_count += 1 + if visible_row_count > max_index: + break # do not add a length since the render trim limit reached + if lengths[(i, last_label)] == 0: + # if previous iteration was first-of-section but hidden then offset + last_label = j + lengths[(i, last_label)] = 1 + else: + # else add to previous iteration + lengths[(i, last_label)] += 1 + + non_zero_lengths = { + element: length for element, length in lengths.items() if length >= 1 + } + + return non_zero_lengths + + +def _is_visible(idx_row, idx_col, lengths) -> bool: + """ + Index -> {(idx_row, idx_col): bool}). + """ + return (idx_col, idx_row) in lengths + + +def format_table_styles(styles: CSSStyles) -> CSSStyles: + """ + looks for multiple CSS selectors and separates them: + [{'selector': 'td, th', 'props': 'a:v;'}] + ---> [{'selector': 'td', 'props': 'a:v;'}, + {'selector': 'th', 'props': 'a:v;'}] + """ + return [ + {"selector": selector, "props": css_dict["props"]} + for css_dict in styles + for selector in css_dict["selector"].split(",") + ] + + +def _default_formatter(x: Any, precision: int, thousands: bool = False) -> Any: + """ + Format the display of a value + + Parameters + ---------- + x : Any + Input variable to be formatted + precision : Int + Floating point precision used if ``x`` is float or complex. + thousands : bool, default False + Whether to group digits with thousands separated with ",". + + Returns + ------- + value : Any + Matches input type, or string if input is float or complex or int with sep. + """ + if is_float(x) or is_complex(x): + return f"{x:,.{precision}f}" if thousands else f"{x:.{precision}f}" + elif is_integer(x): + return f"{x:,}" if thousands else str(x) + return x + + +def _wrap_decimal_thousands( + formatter: Callable, decimal: str, thousands: str | None +) -> Callable: + """ + Takes a string formatting function and wraps logic to deal with thousands and + decimal parameters, in the case that they are non-standard and that the input + is a (float, complex, int). + """ + + def wrapper(x): + if is_float(x) or is_integer(x) or is_complex(x): + if decimal != "." and thousands is not None and thousands != ",": + return ( + formatter(x) + .replace(",", "§_§-") # rare string to avoid "," <-> "." clash. + .replace(".", decimal) + .replace("§_§-", thousands) + ) + elif decimal != "." and (thousands is None or thousands == ","): + return formatter(x).replace(".", decimal) + elif decimal == "." and thousands is not None and thousands != ",": + return formatter(x).replace(",", thousands) + return formatter(x) + + return wrapper + + +def _str_escape(x, escape): + """if escaping: only use on str, else return input""" + if isinstance(x, str): + if escape == "html": + return escape_html(x) + elif escape == "latex": + return _escape_latex(x) + elif escape == "latex-math": + return _escape_latex_math(x) + else: + raise ValueError( + f"`escape` only permitted in {{'html', 'latex', 'latex-math'}}, \ +got {escape}" + ) + return x + + +def _render_href(x, format): + """uses regex to detect a common URL pattern and converts to href tag in format.""" + if isinstance(x, str): + if format == "html": + href = '{0}' + elif format == "latex": + href = r"\href{{{0}}}{{{0}}}" + else: + raise ValueError("``hyperlinks`` format can only be 'html' or 'latex'") + pat = r"((http|ftp)s?:\/\/|www.)[\w/\-?=%.:@]+\.[\w/\-&?=%.,':;~!@#$*()\[\]]+" + return re.sub(pat, lambda m: href.format(m.group(0)), x) + return x + + +def _maybe_wrap_formatter( + formatter: BaseFormatter | None = None, + na_rep: str | None = None, + precision: int | None = None, + decimal: str = ".", + thousands: str | None = None, + escape: str | None = None, + hyperlinks: str | None = None, +) -> Callable: + """ + Allows formatters to be expressed as str, callable or None, where None returns + a default formatting function. wraps with na_rep, and precision where they are + available. + """ + # Get initial func from input string, input callable, or from default factory + if isinstance(formatter, str): + func_0 = lambda x: formatter.format(x) + elif callable(formatter): + func_0 = formatter + elif formatter is None: + precision = ( + get_option("styler.format.precision") if precision is None else precision + ) + func_0 = partial( + _default_formatter, precision=precision, thousands=(thousands is not None) + ) + else: + raise TypeError(f"'formatter' expected str or callable, got {type(formatter)}") + + # Replace chars if escaping + if escape is not None: + func_1 = lambda x: func_0(_str_escape(x, escape=escape)) + else: + func_1 = func_0 + + # Replace decimals and thousands if non-standard inputs detected + if decimal != "." or (thousands is not None and thousands != ","): + func_2 = _wrap_decimal_thousands(func_1, decimal=decimal, thousands=thousands) + else: + func_2 = func_1 + + # Render links + if hyperlinks is not None: + func_3 = lambda x: func_2(_render_href(x, format=hyperlinks)) + else: + func_3 = func_2 + + # Replace missing values if na_rep + if na_rep is None: + return func_3 + else: + return lambda x: na_rep if (isna(x) is True) else func_3(x) + + +def non_reducing_slice(slice_: Subset): + """ + Ensure that a slice doesn't reduce to a Series or Scalar. + + Any user-passed `subset` should have this called on it + to make sure we're always working with DataFrames. + """ + # default to column slice, like DataFrame + # ['A', 'B'] -> IndexSlices[:, ['A', 'B']] + kinds = (ABCSeries, np.ndarray, Index, list, str) + if isinstance(slice_, kinds): + slice_ = IndexSlice[:, slice_] + + def pred(part) -> bool: + """ + Returns + ------- + bool + True if slice does *not* reduce, + False if `part` is a tuple. + """ + # true when slice does *not* reduce, False when part is a tuple, + # i.e. MultiIndex slice + if isinstance(part, tuple): + # GH#39421 check for sub-slice: + return any((isinstance(s, slice) or is_list_like(s)) for s in part) + else: + return isinstance(part, slice) or is_list_like(part) + + if not is_list_like(slice_): + if not isinstance(slice_, slice): + # a 1-d slice, like df.loc[1] + slice_ = [[slice_]] + else: + # slice(a, b, c) + slice_ = [slice_] # to tuplize later + else: + # error: Item "slice" of "Union[slice, Sequence[Any]]" has no attribute + # "__iter__" (not iterable) -> is specifically list_like in conditional + slice_ = [p if pred(p) else [p] for p in slice_] # type: ignore[union-attr] + return tuple(slice_) + + +def maybe_convert_css_to_tuples(style: CSSProperties) -> CSSList: + """ + Convert css-string to sequence of tuples format if needed. + 'color:red; border:1px solid black;' -> [('color', 'red'), + ('border','1px solid red')] + """ + if isinstance(style, str): + s = style.split(";") + try: + return [ + (x.split(":")[0].strip(), x.split(":")[1].strip()) + for x in s + if x.strip() != "" + ] + except IndexError: + raise ValueError( + "Styles supplied as string must follow CSS rule formats, " + f"for example 'attr: val;'. '{style}' was given." + ) + return style + + +def refactor_levels( + level: Level | list[Level] | None, + obj: Index, +) -> list[int]: + """ + Returns a consistent levels arg for use in ``hide_index`` or ``hide_columns``. + + Parameters + ---------- + level : int, str, list + Original ``level`` arg supplied to above methods. + obj: + Either ``self.index`` or ``self.columns`` + + Returns + ------- + list : refactored arg with a list of levels to hide + """ + if level is None: + levels_: list[int] = list(range(obj.nlevels)) + elif isinstance(level, int): + levels_ = [level] + elif isinstance(level, str): + levels_ = [obj._get_level_number(level)] + elif isinstance(level, list): + levels_ = [ + obj._get_level_number(lev) if not isinstance(lev, int) else lev + for lev in level + ] + else: + raise ValueError("`level` must be of type `int`, `str` or list of such") + return levels_ + + +class Tooltips: + """ + An extension to ``Styler`` that allows for and manipulates tooltips on hover + of ``
<div></div>"A&B"NA$ "A"$ A&BNA + ... + + Using a ``formatter`` with LaTeX ``escape``. + + >>> df = pd.DataFrame([[1, 2, 3]], columns=["123", "~", "$%#"]) + >>> df.style.format_index("\\textbf{{{}}}", escape="latex", axis=1).to_latex() + ... # doctest: +SKIP + \begin{tabular}{lrrr} + {} & {\textbf{123}} & {\textbf{\textasciitilde }} & {\textbf{\$\%\#}} \\ + 0 & 1 & 2 & 3 \\ + \end{tabular} + """ + axis = self.data._get_axis_number(axis) + if axis == 0: + display_funcs_, obj = self._display_funcs_index, self.index + else: + display_funcs_, obj = self._display_funcs_columns, self.columns + levels_ = refactor_levels(level, obj) + + if all( + ( + formatter is None, + level is None, + precision is None, + decimal == ".", + thousands is None, + na_rep is None, + escape is None, + hyperlinks is None, + ) + ): + display_funcs_.clear() + return self # clear the formatter / revert to default and avoid looping + + if not isinstance(formatter, dict): + formatter = {level: formatter for level in levels_} + else: + formatter = { + obj._get_level_number(level): formatter_ + for level, formatter_ in formatter.items() + } + + for lvl in levels_: + format_func = _maybe_wrap_formatter( + formatter.get(lvl), + na_rep=na_rep, + precision=precision, + decimal=decimal, + thousands=thousands, + escape=escape, + hyperlinks=hyperlinks, + ) + + for idx in [(i, lvl) if axis == 0 else (lvl, i) for i in range(len(obj))]: + display_funcs_[idx] = format_func + + return self + + def relabel_index( + self, + labels: Sequence | Index, + axis: Axis = 0, + level: Level | list[Level] | None = None, + ) -> StylerRenderer: + r""" + Relabel the index, or column header, keys to display a set of specified values. + + .. versionadded:: 1.5.0 + + Parameters + ---------- + labels : list-like or Index + New labels to display. Must have same length as the underlying values not + hidden. + axis : {"index", 0, "columns", 1} + Apply to the index or columns. + level : int, str, list, optional + The level(s) over which to apply the new labels. If `None` will apply + to all levels of an Index or MultiIndex which are not hidden. + + Returns + ------- + Styler + + See Also + -------- + Styler.format_index: Format the text display value of index or column headers. + Styler.hide: Hide the index, column headers, or specified data from display. + + Notes + ----- + As part of Styler, this method allows the display of an index to be + completely user-specified without affecting the underlying DataFrame data, + index, or column headers. This means that the flexibility of indexing is + maintained whilst the final display is customisable. + + Since Styler is designed to be progressively constructed with method chaining, + this method is adapted to react to the **currently specified hidden elements**. + This is useful because it means one does not have to specify all the new + labels if the majority of an index, or column headers, have already been hidden. + The following produce equivalent display (note the length of ``labels`` in + each case). + + .. code-block:: python + + # relabel first, then hide + df = pd.DataFrame({"col": ["a", "b", "c"]}) + df.style.relabel_index(["A", "B", "C"]).hide([0,1]) + # hide first, then relabel + df = pd.DataFrame({"col": ["a", "b", "c"]}) + df.style.hide([0,1]).relabel_index(["C"]) + + This method should be used, rather than :meth:`Styler.format_index`, in one of + the following cases (see examples): + + - A specified set of labels are required which are not a function of the + underlying index keys. + - The function of the underlying index keys requires a counter variable, + such as those available upon enumeration. + + Examples + -------- + Basic use + + >>> df = pd.DataFrame({"col": ["a", "b", "c"]}) + >>> df.style.relabel_index(["A", "B", "C"]) # doctest: +SKIP + col + A a + B b + C c + + Chaining with pre-hidden elements + + >>> df.style.hide([0,1]).relabel_index(["C"]) # doctest: +SKIP + col + C c + + Using a MultiIndex + + >>> midx = pd.MultiIndex.from_product([[0, 1], [0, 1], [0, 1]]) + >>> df = pd.DataFrame({"col": list(range(8))}, index=midx) + >>> styler = df.style # doctest: +SKIP + col + 0 0 0 0 + 1 1 + 1 0 2 + 1 3 + 1 0 0 4 + 1 5 + 1 0 6 + 1 7 + >>> styler.hide((midx.get_level_values(0)==0)|(midx.get_level_values(1)==0)) + ... # doctest: +SKIP + >>> styler.hide(level=[0,1]) # doctest: +SKIP + >>> styler.relabel_index(["binary6", "binary7"]) # doctest: +SKIP + col + binary6 6 + binary7 7 + + We can also achieve the above by indexing first and then re-labeling + + >>> styler = df.loc[[(1,1,0), (1,1,1)]].style + >>> styler.hide(level=[0,1]).relabel_index(["binary6", "binary7"]) + ... # doctest: +SKIP + col + binary6 6 + binary7 7 + + Defining a formatting function which uses an enumeration counter. Also note + that the value of the index key is passed in the case of string labels so it + can also be inserted into the label, using curly brackets (or double curly + brackets if the string if pre-formatted), + + >>> df = pd.DataFrame({"samples": np.random.rand(10)}) + >>> styler = df.loc[np.random.randint(0,10,3)].style + >>> styler.relabel_index([f"sample{i+1} ({{}})" for i in range(3)]) + ... # doctest: +SKIP + samples + sample1 (5) 0.315811 + sample2 (0) 0.495941 + sample3 (2) 0.067946 + """ + axis = self.data._get_axis_number(axis) + if axis == 0: + display_funcs_, obj = self._display_funcs_index, self.index + hidden_labels, hidden_lvls = self.hidden_rows, self.hide_index_ + else: + display_funcs_, obj = self._display_funcs_columns, self.columns + hidden_labels, hidden_lvls = self.hidden_columns, self.hide_columns_ + visible_len = len(obj) - len(set(hidden_labels)) + if len(labels) != visible_len: + raise ValueError( + "``labels`` must be of length equal to the number of " + f"visible labels along ``axis`` ({visible_len})." + ) + + if level is None: + level = [i for i in range(obj.nlevels) if not hidden_lvls[i]] + levels_ = refactor_levels(level, obj) + + def alias_(x, value): + if isinstance(value, str): + return value.format(x) + return value + + for ai, i in enumerate([i for i in range(len(obj)) if i not in hidden_labels]): + if len(levels_) == 1: + idx = (i, levels_[0]) if axis == 0 else (levels_[0], i) + display_funcs_[idx] = partial(alias_, value=labels[ai]) + else: + for aj, lvl in enumerate(levels_): + idx = (i, lvl) if axis == 0 else (lvl, i) + display_funcs_[idx] = partial(alias_, value=labels[ai][aj]) + + return self + + +def _element( + html_element: str, + html_class: str | None, + value: Any, + is_visible: bool, + **kwargs, +) -> dict: + """ + Template to return container with information for a `` cells in the HTML result. + + Parameters + ---------- + css_name: str, default "pd-t" + Name of the CSS class that controls visualisation of tooltips. + css_props: list-like, default; see Notes + List of (attr, value) tuples defining properties of the CSS class. + tooltips: DataFrame, default empty + DataFrame of strings aligned with underlying Styler data for tooltip + display. + + Notes + ----- + The default properties for the tooltip CSS class are: + + - visibility: hidden + - position: absolute + - z-index: 1 + - background-color: black + - color: white + - transform: translate(-20px, -20px) + + Hidden visibility is a key prerequisite to the hover functionality, and should + always be included in any manual properties specification. + """ + + def __init__( + self, + css_props: CSSProperties = [ + ("visibility", "hidden"), + ("position", "absolute"), + ("z-index", 1), + ("background-color", "black"), + ("color", "white"), + ("transform", "translate(-20px, -20px)"), + ], + css_name: str = "pd-t", + tooltips: DataFrame = DataFrame(), + ) -> None: + self.class_name = css_name + self.class_properties = css_props + self.tt_data = tooltips + self.table_styles: CSSStyles = [] + + @property + def _class_styles(self): + """ + Combine the ``_Tooltips`` CSS class name and CSS properties to the format + required to extend the underlying ``Styler`` `table_styles` to allow + tooltips to render in HTML. + + Returns + ------- + styles : List + """ + return [ + { + "selector": f".{self.class_name}", + "props": maybe_convert_css_to_tuples(self.class_properties), + } + ] + + def _pseudo_css(self, uuid: str, name: str, row: int, col: int, text: str): + """ + For every table data-cell that has a valid tooltip (not None, NaN or + empty string) must create two pseudo CSS entries for the specific + element id which are added to overall table styles: + an on hover visibility change and a content change + dependent upon the user's chosen display string. + + For example: + [{"selector": "T__row1_col1:hover .pd-t", + "props": [("visibility", "visible")]}, + {"selector": "T__row1_col1 .pd-t::after", + "props": [("content", "Some Valid Text String")]}] + + Parameters + ---------- + uuid: str + The uuid of the Styler instance + name: str + The css-name of the class used for styling tooltips + row : int + The row index of the specified tooltip string data + col : int + The col index of the specified tooltip string data + text : str + The textual content of the tooltip to be displayed in HTML. + + Returns + ------- + pseudo_css : List + """ + selector_id = "#T_" + uuid + "_row" + str(row) + "_col" + str(col) + return [ + { + "selector": selector_id + f":hover .{name}", + "props": [("visibility", "visible")], + }, + { + "selector": selector_id + f" .{name}::after", + "props": [("content", f'"{text}"')], + }, + ] + + def _translate(self, styler: StylerRenderer, d: dict): + """ + Mutate the render dictionary to allow for tooltips: + + - Add ```` HTML element to each data cells ``display_value``. Ignores + headers. + - Add table level CSS styles to control pseudo classes. + + Parameters + ---------- + styler_data : DataFrame + Underlying ``Styler`` DataFrame used for reindexing. + uuid : str + The underlying ``Styler`` uuid for CSS id. + d : dict + The dictionary prior to final render + + Returns + ------- + render_dict : Dict + """ + self.tt_data = self.tt_data.reindex_like(styler.data) + if self.tt_data.empty: + return d + + name = self.class_name + mask = (self.tt_data.isna()) | (self.tt_data.eq("")) # empty string = no ttip + self.table_styles = [ + style + for sublist in [ + self._pseudo_css(styler.uuid, name, i, j, str(self.tt_data.iloc[i, j])) + for i in range(len(self.tt_data.index)) + for j in range(len(self.tt_data.columns)) + if not ( + mask.iloc[i, j] + or i in styler.hidden_rows + or j in styler.hidden_columns + ) + ] + for style in sublist + ] + + if self.table_styles: + # add span class to every cell only if at least 1 non-empty tooltip + for row in d["body"]: + for item in row: + if item["type"] == "td": + item["display_value"] = ( + str(item["display_value"]) + + f'' + ) + d["table_styles"].extend(self._class_styles) + d["table_styles"].extend(self.table_styles) + + return d + + +def _parse_latex_table_wrapping(table_styles: CSSStyles, caption: str | None) -> bool: + """ + Indicate whether LaTeX {tabular} should be wrapped with a {table} environment. + + Parses the `table_styles` and detects any selectors which must be included outside + of {tabular}, i.e. indicating that wrapping must occur, and therefore return True, + or if a caption exists and requires similar. + """ + IGNORED_WRAPPERS = ["toprule", "midrule", "bottomrule", "column_format"] + # ignored selectors are included with {tabular} so do not need wrapping + return ( + table_styles is not None + and any(d["selector"] not in IGNORED_WRAPPERS for d in table_styles) + ) or caption is not None + + +def _parse_latex_table_styles(table_styles: CSSStyles, selector: str) -> str | None: + """ + Return the first 'props' 'value' from ``tables_styles`` identified by ``selector``. + + Examples + -------- + >>> table_styles = [{'selector': 'foo', 'props': [('attr','value')]}, + ... {'selector': 'bar', 'props': [('attr', 'overwritten')]}, + ... {'selector': 'bar', 'props': [('a1', 'baz'), ('a2', 'ignore')]}] + >>> _parse_latex_table_styles(table_styles, selector='bar') + 'baz' + + Notes + ----- + The replacement of "§" with ":" is to avoid the CSS problem where ":" has structural + significance and cannot be used in LaTeX labels, but is often required by them. + """ + for style in table_styles[::-1]: # in reverse for most recently applied style + if style["selector"] == selector: + return str(style["props"][0][1]).replace("§", ":") + return None + + +def _parse_latex_cell_styles( + latex_styles: CSSList, display_value: str, convert_css: bool = False +) -> str: + r""" + Mutate the ``display_value`` string including LaTeX commands from ``latex_styles``. + + This method builds a recursive latex chain of commands based on the + CSSList input, nested around ``display_value``. + + If a CSS style is given as ('', '') this is translated to + '\{display_value}', and this value is treated as the + display value for the next iteration. + + The most recent style forms the inner component, for example for styles: + `[('c1', 'o1'), ('c2', 'o2')]` this returns: `\c1o1{\c2o2{display_value}}` + + Sometimes latex commands have to be wrapped with curly braces in different ways: + We create some parsing flags to identify the different behaviours: + + - `--rwrap` : `\{}` + - `--wrap` : `{\ }` + - `--nowrap` : `\ ` + - `--lwrap` : `{\} ` + - `--dwrap` : `{\}{}` + + For example for styles: + `[('c1', 'o1--wrap'), ('c2', 'o2')]` this returns: `{\c1o1 \c2o2{display_value}} + """ + if convert_css: + latex_styles = _parse_latex_css_conversion(latex_styles) + for command, options in latex_styles[::-1]: # in reverse for most recent style + formatter = { + "--wrap": f"{{\\{command}--to_parse {display_value}}}", + "--nowrap": f"\\{command}--to_parse {display_value}", + "--lwrap": f"{{\\{command}--to_parse}} {display_value}", + "--rwrap": f"\\{command}--to_parse{{{display_value}}}", + "--dwrap": f"{{\\{command}--to_parse}}{{{display_value}}}", + } + display_value = f"\\{command}{options} {display_value}" + for arg in ["--nowrap", "--wrap", "--lwrap", "--rwrap", "--dwrap"]: + if arg in str(options): + display_value = formatter[arg].replace( + "--to_parse", _parse_latex_options_strip(value=options, arg=arg) + ) + break # only ever one purposeful entry + return display_value + + +def _parse_latex_header_span( + cell: dict[str, Any], + multirow_align: str, + multicol_align: str, + wrap: bool = False, + convert_css: bool = False, +) -> str: + r""" + Refactor the cell `display_value` if a 'colspan' or 'rowspan' attribute is present. + + 'rowspan' and 'colspan' do not occur simultaneouly. If they are detected then + the `display_value` is altered to a LaTeX `multirow` or `multicol` command + respectively, with the appropriate cell-span. + + ``wrap`` is used to enclose the `display_value` in braces which is needed for + column headers using an siunitx package. + + Requires the package {multirow}, whereas multicol support is usually built in + to the {tabular} environment. + + Examples + -------- + >>> cell = {'cellstyle': '', 'display_value':'text', 'attributes': 'colspan="3"'} + >>> _parse_latex_header_span(cell, 't', 'c') + '\\multicolumn{3}{c}{text}' + """ + display_val = _parse_latex_cell_styles( + cell["cellstyle"], cell["display_value"], convert_css + ) + if "attributes" in cell: + attrs = cell["attributes"] + if 'colspan="' in attrs: + colspan = attrs[attrs.find('colspan="') + 9 :] # len('colspan="') = 9 + colspan = int(colspan[: colspan.find('"')]) + if "naive-l" == multicol_align: + out = f"{{{display_val}}}" if wrap else f"{display_val}" + blanks = " & {}" if wrap else " &" + return out + blanks * (colspan - 1) + elif "naive-r" == multicol_align: + out = f"{{{display_val}}}" if wrap else f"{display_val}" + blanks = "{} & " if wrap else "& " + return blanks * (colspan - 1) + out + return f"\\multicolumn{{{colspan}}}{{{multicol_align}}}{{{display_val}}}" + elif 'rowspan="' in attrs: + if multirow_align == "naive": + return display_val + rowspan = attrs[attrs.find('rowspan="') + 9 :] + rowspan = int(rowspan[: rowspan.find('"')]) + return f"\\multirow[{multirow_align}]{{{rowspan}}}{{*}}{{{display_val}}}" + if wrap: + return f"{{{display_val}}}" + else: + return display_val + + +def _parse_latex_options_strip(value: str | float, arg: str) -> str: + """ + Strip a css_value which may have latex wrapping arguments, css comment identifiers, + and whitespaces, to a valid string for latex options parsing. + + For example: 'red /* --wrap */ ' --> 'red' + """ + return str(value).replace(arg, "").replace("/*", "").replace("*/", "").strip() + + +def _parse_latex_css_conversion(styles: CSSList) -> CSSList: + """ + Convert CSS (attribute,value) pairs to equivalent LaTeX (command,options) pairs. + + Ignore conversion if tagged with `--latex` option, skipped if no conversion found. + """ + + def font_weight(value, arg): + if value in ("bold", "bolder"): + return "bfseries", f"{arg}" + return None + + def font_style(value, arg): + if value == "italic": + return "itshape", f"{arg}" + if value == "oblique": + return "slshape", f"{arg}" + return None + + def color(value, user_arg, command, comm_arg): + """ + CSS colors have 5 formats to process: + + - 6 digit hex code: "#ff23ee" --> [HTML]{FF23EE} + - 3 digit hex code: "#f0e" --> [HTML]{FF00EE} + - rgba: rgba(128, 255, 0, 0.5) --> [rgb]{0.502, 1.000, 0.000} + - rgb: rgb(128, 255, 0,) --> [rbg]{0.502, 1.000, 0.000} + - string: red --> {red} + + Additionally rgb or rgba can be expressed in % which is also parsed. + """ + arg = user_arg if user_arg != "" else comm_arg + + if value[0] == "#" and len(value) == 7: # color is hex code + return command, f"[HTML]{{{value[1:].upper()}}}{arg}" + if value[0] == "#" and len(value) == 4: # color is short hex code + val = f"{value[1].upper()*2}{value[2].upper()*2}{value[3].upper()*2}" + return command, f"[HTML]{{{val}}}{arg}" + elif value[:3] == "rgb": # color is rgb or rgba + r = re.findall("(?<=\\()[0-9\\s%]+(?=,)", value)[0].strip() + r = float(r[:-1]) / 100 if "%" in r else int(r) / 255 + g = re.findall("(?<=,)[0-9\\s%]+(?=,)", value)[0].strip() + g = float(g[:-1]) / 100 if "%" in g else int(g) / 255 + if value[3] == "a": # color is rgba + b = re.findall("(?<=,)[0-9\\s%]+(?=,)", value)[1].strip() + else: # color is rgb + b = re.findall("(?<=,)[0-9\\s%]+(?=\\))", value)[0].strip() + b = float(b[:-1]) / 100 if "%" in b else int(b) / 255 + return command, f"[rgb]{{{r:.3f}, {g:.3f}, {b:.3f}}}{arg}" + else: + return command, f"{{{value}}}{arg}" # color is likely string-named + + CONVERTED_ATTRIBUTES: dict[str, Callable] = { + "font-weight": font_weight, + "background-color": partial(color, command="cellcolor", comm_arg="--lwrap"), + "color": partial(color, command="color", comm_arg=""), + "font-style": font_style, + } + + latex_styles: CSSList = [] + for attribute, value in styles: + if isinstance(value, str) and "--latex" in value: + # return the style without conversion but drop '--latex' + latex_styles.append((attribute, value.replace("--latex", ""))) + if attribute in CONVERTED_ATTRIBUTES: + arg = "" + for x in ["--wrap", "--nowrap", "--lwrap", "--dwrap", "--rwrap"]: + if x in str(value): + arg, value = x, _parse_latex_options_strip(value, x) + break + latex_style = CONVERTED_ATTRIBUTES[attribute](value, arg) + if latex_style is not None: + latex_styles.extend([latex_style]) + return latex_styles + + +def _escape_latex(s: str) -> str: + r""" + Replace the characters ``&``, ``%``, ``$``, ``#``, ``_``, ``{``, ``}``, + ``~``, ``^``, and ``\`` in the string with LaTeX-safe sequences. + + Use this if you need to display text that might contain such characters in LaTeX. + + Parameters + ---------- + s : str + Input to be escaped + + Return + ------ + str : + Escaped string + """ + return ( + s.replace("\\", "ab2§=§8yz") # rare string for final conversion: avoid \\ clash + .replace("ab2§=§8yz ", "ab2§=§8yz\\space ") # since \backslash gobbles spaces + .replace("&", "\\&") + .replace("%", "\\%") + .replace("$", "\\$") + .replace("#", "\\#") + .replace("_", "\\_") + .replace("{", "\\{") + .replace("}", "\\}") + .replace("~ ", "~\\space ") # since \textasciitilde gobbles spaces + .replace("~", "\\textasciitilde ") + .replace("^ ", "^\\space ") # since \textasciicircum gobbles spaces + .replace("^", "\\textasciicircum ") + .replace("ab2§=§8yz", "\\textbackslash ") + ) + + +def _math_mode_with_dollar(s: str) -> str: + r""" + All characters in LaTeX math mode are preserved. + + The substrings in LaTeX math mode, which start with + the character ``$`` and end with ``$``, are preserved + without escaping. Otherwise regular LaTeX escaping applies. + + Parameters + ---------- + s : str + Input to be escaped + + Return + ------ + str : + Escaped string + """ + s = s.replace(r"\$", r"rt8§=§7wz") + pattern = re.compile(r"\$.*?\$") + pos = 0 + ps = pattern.search(s, pos) + res = [] + while ps: + res.append(_escape_latex(s[pos : ps.span()[0]])) + res.append(ps.group()) + pos = ps.span()[1] + ps = pattern.search(s, pos) + + res.append(_escape_latex(s[pos : len(s)])) + return "".join(res).replace(r"rt8§=§7wz", r"\$") + + +def _math_mode_with_parentheses(s: str) -> str: + r""" + All characters in LaTeX math mode are preserved. + + The substrings in LaTeX math mode, which start with + the character ``\(`` and end with ``\)``, are preserved + without escaping. Otherwise regular LaTeX escaping applies. + + Parameters + ---------- + s : str + Input to be escaped + + Return + ------ + str : + Escaped string + """ + s = s.replace(r"\(", r"LEFT§=§6yzLEFT").replace(r"\)", r"RIGHTab5§=§RIGHT") + res = [] + for item in re.split(r"LEFT§=§6yz|ab5§=§RIGHT", s): + if item.startswith("LEFT") and item.endswith("RIGHT"): + res.append(item.replace("LEFT", r"\(").replace("RIGHT", r"\)")) + elif "LEFT" in item and "RIGHT" in item: + res.append( + _escape_latex(item).replace("LEFT", r"\(").replace("RIGHT", r"\)") + ) + else: + res.append( + _escape_latex(item) + .replace("LEFT", r"\textbackslash (") + .replace("RIGHT", r"\textbackslash )") + ) + return "".join(res) + + +def _escape_latex_math(s: str) -> str: + r""" + All characters in LaTeX math mode are preserved. + + The substrings in LaTeX math mode, which either are surrounded + by two characters ``$`` or start with the character ``\(`` and end with ``\)``, + are preserved without escaping. Otherwise regular LaTeX escaping applies. + + Parameters + ---------- + s : str + Input to be escaped + + Return + ------ + str : + Escaped string + """ + s = s.replace(r"\$", r"rt8§=§7wz") + ps_d = re.compile(r"\$.*?\$").search(s, 0) + ps_p = re.compile(r"\(.*?\)").search(s, 0) + mode = [] + if ps_d: + mode.append(ps_d.span()[0]) + if ps_p: + mode.append(ps_p.span()[0]) + if len(mode) == 0: + return _escape_latex(s.replace(r"rt8§=§7wz", r"\$")) + if s[mode[0]] == r"$": + return _math_mode_with_dollar(s.replace(r"rt8§=§7wz", r"\$")) + if s[mode[0] - 1 : mode[0] + 1] == r"\(": + return _math_mode_with_parentheses(s.replace(r"rt8§=§7wz", r"\$")) + else: + return _escape_latex(s.replace(r"rt8§=§7wz", r"\$")) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/templates/html.tpl b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/templates/html.tpl new file mode 100644 index 0000000000000000000000000000000000000000..8c63be3ad788a8abddf3588b2b9dd6d6126f5df3 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/templates/html.tpl @@ -0,0 +1,16 @@ +{# Update the html_style/table_structure.html documentation too #} +{% if doctype_html %} + + + + +{% if not exclude_styles %}{% include html_style_tpl %}{% endif %} + + +{% include html_table_tpl %} + + +{% elif not doctype_html %} +{% if not exclude_styles %}{% include html_style_tpl %}{% endif %} +{% include html_table_tpl %} +{% endif %} diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/templates/html_style.tpl b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/templates/html_style.tpl new file mode 100644 index 0000000000000000000000000000000000000000..5c3fcd97f51bbec263399922579420dfa9ceef9c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/templates/html_style.tpl @@ -0,0 +1,26 @@ +{%- block before_style -%}{%- endblock before_style -%} +{% block style %} + +{% endblock style %} diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/templates/html_table.tpl b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/templates/html_table.tpl new file mode 100644 index 0000000000000000000000000000000000000000..17118d2bb21ccd185780d44c83a5242b12bd2a0d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/templates/html_table.tpl @@ -0,0 +1,63 @@ +{% block before_table %}{% endblock before_table %} +{% block table %} +{% if exclude_styles %} + +{% else %} +
+{% endif %} +{% block caption %} +{% if caption and caption is string %} + +{% elif caption and caption is sequence %} + +{% endif %} +{% endblock caption %} +{% block thead %} + +{% block before_head_rows %}{% endblock %} +{% for r in head %} +{% block head_tr scoped %} + +{% if exclude_styles %} +{% for c in r %} +{% if c.is_visible != False %} + <{{c.type}} {{c.attributes}}>{{c.display_value}} +{% endif %} +{% endfor %} +{% else %} +{% for c in r %} +{% if c.is_visible != False %} + <{{c.type}} {%- if c.id is defined %} id="T_{{uuid}}_{{c.id}}" {%- endif %} class="{{c.class}}" {{c.attributes}}>{{c.display_value}} +{% endif %} +{% endfor %} +{% endif %} + +{% endblock head_tr %} +{% endfor %} +{% block after_head_rows %}{% endblock %} + +{% endblock thead %} +{% block tbody %} + +{% block before_rows %}{% endblock before_rows %} +{% for r in body %} +{% block tr scoped %} + +{% if exclude_styles %} +{% for c in r %}{% if c.is_visible != False %} + <{{c.type}} {{c.attributes}}>{{c.display_value}} +{% endif %}{% endfor %} +{% else %} +{% for c in r %}{% if c.is_visible != False %} + <{{c.type}} {%- if c.id is defined %} id="T_{{uuid}}_{{c.id}}" {%- endif %} class="{{c.class}}" {{c.attributes}}>{{c.display_value}} +{% endif %}{% endfor %} +{% endif %} + +{% endblock tr %} +{% endfor %} +{% block after_rows %}{% endblock after_rows %} + +{% endblock tbody %} +
{{caption}}{{caption[0]}}
+{% endblock table %} +{% block after_table %}{% endblock after_table %} diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/templates/latex.tpl b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/templates/latex.tpl new file mode 100644 index 0000000000000000000000000000000000000000..ae341bbc29823489d9d15e354fae0ce2e10a046d --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/templates/latex.tpl @@ -0,0 +1,5 @@ +{% if environment == "longtable" %} +{% include "latex_longtable.tpl" %} +{% else %} +{% include "latex_table.tpl" %} +{% endif %} diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/templates/latex_longtable.tpl b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/templates/latex_longtable.tpl new file mode 100644 index 0000000000000000000000000000000000000000..b97843eeb918da1b12f6f2edd585c8e42d6b7bb5 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/templates/latex_longtable.tpl @@ -0,0 +1,82 @@ +\begin{longtable} +{%- set position = parse_table(table_styles, 'position') %} +{%- if position is not none %} +[{{position}}] +{%- endif %} +{%- set column_format = parse_table(table_styles, 'column_format') %} +{% raw %}{{% endraw %}{{column_format}}{% raw %}}{% endraw %} + +{% for style in table_styles %} +{% if style['selector'] not in ['position', 'position_float', 'caption', 'toprule', 'midrule', 'bottomrule', 'column_format', 'label'] %} +\{{style['selector']}}{{parse_table(table_styles, style['selector'])}} +{% endif %} +{% endfor %} +{% if caption and caption is string %} +\caption{% raw %}{{% endraw %}{{caption}}{% raw %}}{% endraw %} +{%- set label = parse_table(table_styles, 'label') %} +{%- if label is not none %} + \label{{label}} +{%- endif %} \\ +{% elif caption and caption is sequence %} +\caption[{{caption[1]}}]{% raw %}{{% endraw %}{{caption[0]}}{% raw %}}{% endraw %} +{%- set label = parse_table(table_styles, 'label') %} +{%- if label is not none %} + \label{{label}} +{%- endif %} \\ +{% else %} +{%- set label = parse_table(table_styles, 'label') %} +{%- if label is not none %} +\label{{label}} \\ +{% endif %} +{% endif %} +{% set toprule = parse_table(table_styles, 'toprule') %} +{% if toprule is not none %} +\{{toprule}} +{% endif %} +{% for row in head %} +{% for c in row %}{%- if not loop.first %} & {% endif %}{{parse_header(c, multirow_align, multicol_align, siunitx)}}{% endfor %} \\ +{% endfor %} +{% set midrule = parse_table(table_styles, 'midrule') %} +{% if midrule is not none %} +\{{midrule}} +{% endif %} +\endfirsthead +{% if caption and caption is string %} +\caption[]{% raw %}{{% endraw %}{{caption}}{% raw %}}{% endraw %} \\ +{% elif caption and caption is sequence %} +\caption[]{% raw %}{{% endraw %}{{caption[0]}}{% raw %}}{% endraw %} \\ +{% endif %} +{% if toprule is not none %} +\{{toprule}} +{% endif %} +{% for row in head %} +{% for c in row %}{%- if not loop.first %} & {% endif %}{{parse_header(c, multirow_align, multicol_align, siunitx)}}{% endfor %} \\ +{% endfor %} +{% if midrule is not none %} +\{{midrule}} +{% endif %} +\endhead +{% if midrule is not none %} +\{{midrule}} +{% endif %} +\multicolumn{% raw %}{{% endraw %}{{body[0]|length}}{% raw %}}{% endraw %}{r}{Continued on next page} \\ +{% if midrule is not none %} +\{{midrule}} +{% endif %} +\endfoot +{% set bottomrule = parse_table(table_styles, 'bottomrule') %} +{% if bottomrule is not none %} +\{{bottomrule}} +{% endif %} +\endlastfoot +{% for row in body %} +{% for c in row %}{% if not loop.first %} & {% endif %} + {%- if c.type == 'th' %}{{parse_header(c, multirow_align, multicol_align)}}{% else %}{{parse_cell(c.cellstyle, c.display_value, convert_css)}}{% endif %} +{%- endfor %} \\ +{% if clines and clines[loop.index] | length > 0 %} + {%- for cline in clines[loop.index] %}{% if not loop.first %} {% endif %}{{ cline }}{% endfor %} + +{% endif %} +{% endfor %} +\end{longtable} +{% raw %}{% endraw %} diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/templates/latex_table.tpl b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/templates/latex_table.tpl new file mode 100644 index 0000000000000000000000000000000000000000..7858cb4c945534a4d21cd4474460fd1abcf01f82 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/templates/latex_table.tpl @@ -0,0 +1,57 @@ +{% if environment or parse_wrap(table_styles, caption) %} +\begin{% raw %}{{% endraw %}{{environment if environment else "table"}}{% raw %}}{% endraw %} +{%- set position = parse_table(table_styles, 'position') %} +{%- if position is not none %} +[{{position}}] +{%- endif %} + +{% set position_float = parse_table(table_styles, 'position_float') %} +{% if position_float is not none%} +\{{position_float}} +{% endif %} +{% if caption and caption is string %} +\caption{% raw %}{{% endraw %}{{caption}}{% raw %}}{% endraw %} + +{% elif caption and caption is sequence %} +\caption[{{caption[1]}}]{% raw %}{{% endraw %}{{caption[0]}}{% raw %}}{% endraw %} + +{% endif %} +{% for style in table_styles %} +{% if style['selector'] not in ['position', 'position_float', 'caption', 'toprule', 'midrule', 'bottomrule', 'column_format'] %} +\{{style['selector']}}{{parse_table(table_styles, style['selector'])}} +{% endif %} +{% endfor %} +{% endif %} +\begin{tabular} +{%- set column_format = parse_table(table_styles, 'column_format') %} +{% raw %}{{% endraw %}{{column_format}}{% raw %}}{% endraw %} + +{% set toprule = parse_table(table_styles, 'toprule') %} +{% if toprule is not none %} +\{{toprule}} +{% endif %} +{% for row in head %} +{% for c in row %}{%- if not loop.first %} & {% endif %}{{parse_header(c, multirow_align, multicol_align, siunitx, convert_css)}}{% endfor %} \\ +{% endfor %} +{% set midrule = parse_table(table_styles, 'midrule') %} +{% if midrule is not none %} +\{{midrule}} +{% endif %} +{% for row in body %} +{% for c in row %}{% if not loop.first %} & {% endif %} + {%- if c.type == 'th' %}{{parse_header(c, multirow_align, multicol_align, False, convert_css)}}{% else %}{{parse_cell(c.cellstyle, c.display_value, convert_css)}}{% endif %} +{%- endfor %} \\ +{% if clines and clines[loop.index] | length > 0 %} + {%- for cline in clines[loop.index] %}{% if not loop.first %} {% endif %}{{ cline }}{% endfor %} + +{% endif %} +{% endfor %} +{% set bottomrule = parse_table(table_styles, 'bottomrule') %} +{% if bottomrule is not none %} +\{{bottomrule}} +{% endif %} +\end{tabular} +{% if environment or parse_wrap(table_styles, caption) %} +\end{% raw %}{{% endraw %}{{environment if environment else "table"}}{% raw %}}{% endraw %} + +{% endif %} diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/templates/string.tpl b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/templates/string.tpl new file mode 100644 index 0000000000000000000000000000000000000000..06aeb2b4e413c61a912b535056c19c794d4b9c85 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/templates/string.tpl @@ -0,0 +1,12 @@ +{% for r in head %} +{% for c in r %}{% if c["is_visible"] %} +{{ c["display_value"] }}{% if not loop.last %}{{ delimiter }}{% endif %} +{% endif %}{% endfor %} + +{% endfor %} +{% for r in body %} +{% for c in r %}{% if c["is_visible"] %} +{{ c["display_value"] }}{% if not loop.last %}{{ delimiter }}{% endif %} +{% endif %}{% endfor %} + +{% endfor %} diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/xml.py b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/xml.py new file mode 100644 index 0000000000000000000000000000000000000000..f56fca8d7ef4446727bfa34166b0c6b5a2856338 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/io/formats/xml.py @@ -0,0 +1,560 @@ +""" +:mod:`pandas.io.formats.xml` is a module for formatting data in XML. +""" +from __future__ import annotations + +import codecs +import io +from typing import ( + TYPE_CHECKING, + Any, + final, +) +import warnings + +from pandas.errors import AbstractMethodError +from pandas.util._decorators import ( + cache_readonly, + doc, +) + +from pandas.core.dtypes.common import is_list_like +from pandas.core.dtypes.missing import isna + +from pandas.core.shared_docs import _shared_docs + +from pandas.io.common import get_handle +from pandas.io.xml import ( + get_data_from_filepath, + preprocess_data, +) + +if TYPE_CHECKING: + from pandas._typing import ( + CompressionOptions, + FilePath, + ReadBuffer, + StorageOptions, + WriteBuffer, + ) + + from pandas import DataFrame + + +@doc( + storage_options=_shared_docs["storage_options"], + compression_options=_shared_docs["compression_options"] % "path_or_buffer", +) +class _BaseXMLFormatter: + """ + Subclass for formatting data in XML. + + Parameters + ---------- + path_or_buffer : str or file-like + This can be either a string of raw XML, a valid URL, + file or file-like object. + + index : bool + Whether to include index in xml document. + + row_name : str + Name for root of xml document. Default is 'data'. + + root_name : str + Name for row elements of xml document. Default is 'row'. + + na_rep : str + Missing data representation. + + attrs_cols : list + List of columns to write as attributes in row element. + + elem_cols : list + List of columns to write as children in row element. + + namespaces : dict + The namespaces to define in XML document as dicts with key + being namespace and value the URI. + + prefix : str + The prefix for each element in XML document including root. + + encoding : str + Encoding of xml object or document. + + xml_declaration : bool + Whether to include xml declaration at top line item in xml. + + pretty_print : bool + Whether to write xml document with line breaks and indentation. + + stylesheet : str or file-like + A URL, file, file-like object, or a raw string containing XSLT. + + {compression_options} + + .. versionchanged:: 1.4.0 Zstandard support. + + {storage_options} + + See also + -------- + pandas.io.formats.xml.EtreeXMLFormatter + pandas.io.formats.xml.LxmlXMLFormatter + + """ + + def __init__( + self, + frame: DataFrame, + path_or_buffer: FilePath | WriteBuffer[bytes] | WriteBuffer[str] | None = None, + index: bool = True, + root_name: str | None = "data", + row_name: str | None = "row", + na_rep: str | None = None, + attr_cols: list[str] | None = None, + elem_cols: list[str] | None = None, + namespaces: dict[str | None, str] | None = None, + prefix: str | None = None, + encoding: str = "utf-8", + xml_declaration: bool | None = True, + pretty_print: bool | None = True, + stylesheet: FilePath | ReadBuffer[str] | ReadBuffer[bytes] | None = None, + compression: CompressionOptions = "infer", + storage_options: StorageOptions | None = None, + ) -> None: + self.frame = frame + self.path_or_buffer = path_or_buffer + self.index = index + self.root_name = root_name + self.row_name = row_name + self.na_rep = na_rep + self.attr_cols = attr_cols + self.elem_cols = elem_cols + self.namespaces = namespaces + self.prefix = prefix + self.encoding = encoding + self.xml_declaration = xml_declaration + self.pretty_print = pretty_print + self.stylesheet = stylesheet + self.compression: CompressionOptions = compression + self.storage_options = storage_options + + self.orig_cols = self.frame.columns.tolist() + self.frame_dicts = self._process_dataframe() + + self._validate_columns() + self._validate_encoding() + self.prefix_uri = self._get_prefix_uri() + self._handle_indexes() + + def _build_tree(self) -> bytes: + """ + Build tree from data. + + This method initializes the root and builds attributes and elements + with optional namespaces. + """ + raise AbstractMethodError(self) + + @final + def _validate_columns(self) -> None: + """ + Validate elems_cols and attrs_cols. + + This method will check if columns is list-like. + + Raises + ------ + ValueError + * If value is not a list and less then length of nodes. + """ + if self.attr_cols and not is_list_like(self.attr_cols): + raise TypeError( + f"{type(self.attr_cols).__name__} is not a valid type for attr_cols" + ) + + if self.elem_cols and not is_list_like(self.elem_cols): + raise TypeError( + f"{type(self.elem_cols).__name__} is not a valid type for elem_cols" + ) + + @final + def _validate_encoding(self) -> None: + """ + Validate encoding. + + This method will check if encoding is among listed under codecs. + + Raises + ------ + LookupError + * If encoding is not available in codecs. + """ + + codecs.lookup(self.encoding) + + @final + def _process_dataframe(self) -> dict[int | str, dict[str, Any]]: + """ + Adjust Data Frame to fit xml output. + + This method will adjust underlying data frame for xml output, + including optionally replacing missing values and including indexes. + """ + + df = self.frame + + if self.index: + df = df.reset_index() + + if self.na_rep is not None: + with warnings.catch_warnings(): + warnings.filterwarnings( + "ignore", + "Downcasting object dtype arrays", + category=FutureWarning, + ) + df = df.fillna(self.na_rep) + + return df.to_dict(orient="index") + + @final + def _handle_indexes(self) -> None: + """ + Handle indexes. + + This method will add indexes into attr_cols or elem_cols. + """ + + if not self.index: + return + + first_key = next(iter(self.frame_dicts)) + indexes: list[str] = [ + x for x in self.frame_dicts[first_key].keys() if x not in self.orig_cols + ] + + if self.attr_cols: + self.attr_cols = indexes + self.attr_cols + + if self.elem_cols: + self.elem_cols = indexes + self.elem_cols + + def _get_prefix_uri(self) -> str: + """ + Get uri of namespace prefix. + + This method retrieves corresponding URI to prefix in namespaces. + + Raises + ------ + KeyError + *If prefix is not included in namespace dict. + """ + + raise AbstractMethodError(self) + + @final + def _other_namespaces(self) -> dict: + """ + Define other namespaces. + + This method will build dictionary of namespaces attributes + for root element, conditionally with optional namespaces and + prefix. + """ + + nmsp_dict: dict[str, str] = {} + if self.namespaces: + nmsp_dict = { + f"xmlns{p if p=='' else f':{p}'}": n + for p, n in self.namespaces.items() + if n != self.prefix_uri[1:-1] + } + + return nmsp_dict + + @final + def _build_attribs(self, d: dict[str, Any], elem_row: Any) -> Any: + """ + Create attributes of row. + + This method adds attributes using attr_cols to row element and + works with tuples for multindex or hierarchical columns. + """ + + if not self.attr_cols: + return elem_row + + for col in self.attr_cols: + attr_name = self._get_flat_col_name(col) + try: + if not isna(d[col]): + elem_row.attrib[attr_name] = str(d[col]) + except KeyError: + raise KeyError(f"no valid column, {col}") + return elem_row + + @final + def _get_flat_col_name(self, col: str | tuple) -> str: + flat_col = col + if isinstance(col, tuple): + flat_col = ( + "".join([str(c) for c in col]).strip() + if "" in col + else "_".join([str(c) for c in col]).strip() + ) + return f"{self.prefix_uri}{flat_col}" + + @cache_readonly + def _sub_element_cls(self): + raise AbstractMethodError(self) + + @final + def _build_elems(self, d: dict[str, Any], elem_row: Any) -> None: + """ + Create child elements of row. + + This method adds child elements using elem_cols to row element and + works with tuples for multindex or hierarchical columns. + """ + sub_element_cls = self._sub_element_cls + + if not self.elem_cols: + return + + for col in self.elem_cols: + elem_name = self._get_flat_col_name(col) + try: + val = None if isna(d[col]) or d[col] == "" else str(d[col]) + sub_element_cls(elem_row, elem_name).text = val + except KeyError: + raise KeyError(f"no valid column, {col}") + + @final + def write_output(self) -> str | None: + xml_doc = self._build_tree() + + if self.path_or_buffer is not None: + with get_handle( + self.path_or_buffer, + "wb", + compression=self.compression, + storage_options=self.storage_options, + is_text=False, + ) as handles: + handles.handle.write(xml_doc) + return None + + else: + return xml_doc.decode(self.encoding).rstrip() + + +class EtreeXMLFormatter(_BaseXMLFormatter): + """ + Class for formatting data in xml using Python standard library + modules: `xml.etree.ElementTree` and `xml.dom.minidom`. + """ + + def _build_tree(self) -> bytes: + from xml.etree.ElementTree import ( + Element, + SubElement, + tostring, + ) + + self.root = Element( + f"{self.prefix_uri}{self.root_name}", attrib=self._other_namespaces() + ) + + for d in self.frame_dicts.values(): + elem_row = SubElement(self.root, f"{self.prefix_uri}{self.row_name}") + + if not self.attr_cols and not self.elem_cols: + self.elem_cols = list(d.keys()) + self._build_elems(d, elem_row) + + else: + elem_row = self._build_attribs(d, elem_row) + self._build_elems(d, elem_row) + + self.out_xml = tostring( + self.root, + method="xml", + encoding=self.encoding, + xml_declaration=self.xml_declaration, + ) + + if self.pretty_print: + self.out_xml = self._prettify_tree() + + if self.stylesheet is not None: + raise ValueError( + "To use stylesheet, you need lxml installed and selected as parser." + ) + + return self.out_xml + + def _get_prefix_uri(self) -> str: + from xml.etree.ElementTree import register_namespace + + uri = "" + if self.namespaces: + for p, n in self.namespaces.items(): + if isinstance(p, str) and isinstance(n, str): + register_namespace(p, n) + if self.prefix: + try: + uri = f"{{{self.namespaces[self.prefix]}}}" + except KeyError: + raise KeyError(f"{self.prefix} is not included in namespaces") + elif "" in self.namespaces: + uri = f'{{{self.namespaces[""]}}}' + else: + uri = "" + + return uri + + @cache_readonly + def _sub_element_cls(self): + from xml.etree.ElementTree import SubElement + + return SubElement + + def _prettify_tree(self) -> bytes: + """ + Output tree for pretty print format. + + This method will pretty print xml with line breaks and indentation. + """ + + from xml.dom.minidom import parseString + + dom = parseString(self.out_xml) + + return dom.toprettyxml(indent=" ", encoding=self.encoding) + + +class LxmlXMLFormatter(_BaseXMLFormatter): + """ + Class for formatting data in xml using Python standard library + modules: `xml.etree.ElementTree` and `xml.dom.minidom`. + """ + + def __init__(self, *args, **kwargs) -> None: + super().__init__(*args, **kwargs) + + self._convert_empty_str_key() + + def _build_tree(self) -> bytes: + """ + Build tree from data. + + This method initializes the root and builds attributes and elements + with optional namespaces. + """ + from lxml.etree import ( + Element, + SubElement, + tostring, + ) + + self.root = Element(f"{self.prefix_uri}{self.root_name}", nsmap=self.namespaces) + + for d in self.frame_dicts.values(): + elem_row = SubElement(self.root, f"{self.prefix_uri}{self.row_name}") + + if not self.attr_cols and not self.elem_cols: + self.elem_cols = list(d.keys()) + self._build_elems(d, elem_row) + + else: + elem_row = self._build_attribs(d, elem_row) + self._build_elems(d, elem_row) + + self.out_xml = tostring( + self.root, + pretty_print=self.pretty_print, + method="xml", + encoding=self.encoding, + xml_declaration=self.xml_declaration, + ) + + if self.stylesheet is not None: + self.out_xml = self._transform_doc() + + return self.out_xml + + def _convert_empty_str_key(self) -> None: + """ + Replace zero-length string in `namespaces`. + + This method will replace '' with None to align to `lxml` + requirement that empty string prefixes are not allowed. + """ + + if self.namespaces and "" in self.namespaces.keys(): + self.namespaces[None] = self.namespaces.pop("", "default") + + def _get_prefix_uri(self) -> str: + uri = "" + if self.namespaces: + if self.prefix: + try: + uri = f"{{{self.namespaces[self.prefix]}}}" + except KeyError: + raise KeyError(f"{self.prefix} is not included in namespaces") + elif "" in self.namespaces: + uri = f'{{{self.namespaces[""]}}}' + else: + uri = "" + + return uri + + @cache_readonly + def _sub_element_cls(self): + from lxml.etree import SubElement + + return SubElement + + def _transform_doc(self) -> bytes: + """ + Parse stylesheet from file or buffer and run it. + + This method will parse stylesheet object into tree for parsing + conditionally by its specific object type, then transforms + original tree with XSLT script. + """ + from lxml.etree import ( + XSLT, + XMLParser, + fromstring, + parse, + ) + + style_doc = self.stylesheet + assert style_doc is not None # is ensured by caller + + handle_data = get_data_from_filepath( + filepath_or_buffer=style_doc, + encoding=self.encoding, + compression=self.compression, + storage_options=self.storage_options, + ) + + with preprocess_data(handle_data) as xml_data: + curr_parser = XMLParser(encoding=self.encoding) + + if isinstance(xml_data, io.StringIO): + xsl_doc = fromstring( + xml_data.getvalue().encode(self.encoding), parser=curr_parser + ) + else: + xsl_doc = parse(xml_data, parser=curr_parser) + + transformer = XSLT(xsl_doc) + new_doc = transformer(self.root) + + return bytes(new_doc) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/sas/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/io/sas/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..01942a33cf58881ecc6aaa1031fa2a6fd9950df0 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/io/sas/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/sas/__pycache__/sas7bdat.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/io/sas/__pycache__/sas7bdat.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e3116fac40d49f6e394e99d7c90773bb8dc280f9 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/io/sas/__pycache__/sas7bdat.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/sas/__pycache__/sas_constants.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/io/sas/__pycache__/sas_constants.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d5afa7096f5ffddcbc3932de670182a633db73e8 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/io/sas/__pycache__/sas_constants.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/sas/__pycache__/sas_xport.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/io/sas/__pycache__/sas_xport.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..12ae11ab85c7bdd6857477d16d9eca0d5b666eb3 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/io/sas/__pycache__/sas_xport.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/io/sas/__pycache__/sasreader.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/io/sas/__pycache__/sasreader.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9d4bf4328678670989de281e6977f3f2301ac932 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/io/sas/__pycache__/sasreader.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tseries/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tseries/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a764be35f6714fecdc664a0a5a304b81937ce85c Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tseries/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tseries/__pycache__/api.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tseries/__pycache__/api.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c8eb1afdc033aed9d4406311516026a976a93b57 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tseries/__pycache__/api.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tseries/__pycache__/frequencies.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tseries/__pycache__/frequencies.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9fd2a20b9fecca74ace9483505018ab21d8a3f5b Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tseries/__pycache__/frequencies.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tseries/__pycache__/holiday.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/tseries/__pycache__/holiday.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d0edbbbe9f333353600df243b8b1fefd96749517 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/tseries/__pycache__/holiday.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/tseries/holiday.py b/llmeval-env/lib/python3.10/site-packages/pandas/tseries/holiday.py new file mode 100644 index 0000000000000000000000000000000000000000..3c429a960b45181c831055cb3e877dbc4cad3b30 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/tseries/holiday.py @@ -0,0 +1,634 @@ +from __future__ import annotations + +from datetime import ( + datetime, + timedelta, +) +import warnings + +from dateutil.relativedelta import ( + FR, + MO, + SA, + SU, + TH, + TU, + WE, +) +import numpy as np + +from pandas.errors import PerformanceWarning + +from pandas import ( + DateOffset, + DatetimeIndex, + Series, + Timestamp, + concat, + date_range, +) + +from pandas.tseries.offsets import ( + Day, + Easter, +) + + +def next_monday(dt: datetime) -> datetime: + """ + If holiday falls on Saturday, use following Monday instead; + if holiday falls on Sunday, use Monday instead + """ + if dt.weekday() == 5: + return dt + timedelta(2) + elif dt.weekday() == 6: + return dt + timedelta(1) + return dt + + +def next_monday_or_tuesday(dt: datetime) -> datetime: + """ + For second holiday of two adjacent ones! + If holiday falls on Saturday, use following Monday instead; + if holiday falls on Sunday or Monday, use following Tuesday instead + (because Monday is already taken by adjacent holiday on the day before) + """ + dow = dt.weekday() + if dow in (5, 6): + return dt + timedelta(2) + if dow == 0: + return dt + timedelta(1) + return dt + + +def previous_friday(dt: datetime) -> datetime: + """ + If holiday falls on Saturday or Sunday, use previous Friday instead. + """ + if dt.weekday() == 5: + return dt - timedelta(1) + elif dt.weekday() == 6: + return dt - timedelta(2) + return dt + + +def sunday_to_monday(dt: datetime) -> datetime: + """ + If holiday falls on Sunday, use day thereafter (Monday) instead. + """ + if dt.weekday() == 6: + return dt + timedelta(1) + return dt + + +def weekend_to_monday(dt: datetime) -> datetime: + """ + If holiday falls on Sunday or Saturday, + use day thereafter (Monday) instead. + Needed for holidays such as Christmas observation in Europe + """ + if dt.weekday() == 6: + return dt + timedelta(1) + elif dt.weekday() == 5: + return dt + timedelta(2) + return dt + + +def nearest_workday(dt: datetime) -> datetime: + """ + If holiday falls on Saturday, use day before (Friday) instead; + if holiday falls on Sunday, use day thereafter (Monday) instead. + """ + if dt.weekday() == 5: + return dt - timedelta(1) + elif dt.weekday() == 6: + return dt + timedelta(1) + return dt + + +def next_workday(dt: datetime) -> datetime: + """ + returns next weekday used for observances + """ + dt += timedelta(days=1) + while dt.weekday() > 4: + # Mon-Fri are 0-4 + dt += timedelta(days=1) + return dt + + +def previous_workday(dt: datetime) -> datetime: + """ + returns previous weekday used for observances + """ + dt -= timedelta(days=1) + while dt.weekday() > 4: + # Mon-Fri are 0-4 + dt -= timedelta(days=1) + return dt + + +def before_nearest_workday(dt: datetime) -> datetime: + """ + returns previous workday after nearest workday + """ + return previous_workday(nearest_workday(dt)) + + +def after_nearest_workday(dt: datetime) -> datetime: + """ + returns next workday after nearest workday + needed for Boxing day or multiple holidays in a series + """ + return next_workday(nearest_workday(dt)) + + +class Holiday: + """ + Class that defines a holiday with start/end dates and rules + for observance. + """ + + start_date: Timestamp | None + end_date: Timestamp | None + days_of_week: tuple[int, ...] | None + + def __init__( + self, + name: str, + year=None, + month=None, + day=None, + offset=None, + observance=None, + start_date=None, + end_date=None, + days_of_week=None, + ) -> None: + """ + Parameters + ---------- + name : str + Name of the holiday , defaults to class name + offset : array of pandas.tseries.offsets or + class from pandas.tseries.offsets + computes offset from date + observance: function + computes when holiday is given a pandas Timestamp + days_of_week: + provide a tuple of days e.g (0,1,2,3,) for Monday Through Thursday + Monday=0,..,Sunday=6 + + Examples + -------- + >>> from dateutil.relativedelta import MO + + >>> USMemorialDay = pd.tseries.holiday.Holiday( + ... "Memorial Day", month=5, day=31, offset=pd.DateOffset(weekday=MO(-1)) + ... ) + >>> USMemorialDay + Holiday: Memorial Day (month=5, day=31, offset=) + + >>> USLaborDay = pd.tseries.holiday.Holiday( + ... "Labor Day", month=9, day=1, offset=pd.DateOffset(weekday=MO(1)) + ... ) + >>> USLaborDay + Holiday: Labor Day (month=9, day=1, offset=) + + >>> July3rd = pd.tseries.holiday.Holiday("July 3rd", month=7, day=3) + >>> July3rd + Holiday: July 3rd (month=7, day=3, ) + + >>> NewYears = pd.tseries.holiday.Holiday( + ... "New Years Day", month=1, day=1, + ... observance=pd.tseries.holiday.nearest_workday + ... ) + >>> NewYears # doctest: +SKIP + Holiday: New Years Day ( + month=1, day=1, observance= + ) + + >>> July3rd = pd.tseries.holiday.Holiday( + ... "July 3rd", month=7, day=3, + ... days_of_week=(0, 1, 2, 3) + ... ) + >>> July3rd + Holiday: July 3rd (month=7, day=3, ) + """ + if offset is not None and observance is not None: + raise NotImplementedError("Cannot use both offset and observance.") + + self.name = name + self.year = year + self.month = month + self.day = day + self.offset = offset + self.start_date = ( + Timestamp(start_date) if start_date is not None else start_date + ) + self.end_date = Timestamp(end_date) if end_date is not None else end_date + self.observance = observance + assert days_of_week is None or type(days_of_week) == tuple + self.days_of_week = days_of_week + + def __repr__(self) -> str: + info = "" + if self.year is not None: + info += f"year={self.year}, " + info += f"month={self.month}, day={self.day}, " + + if self.offset is not None: + info += f"offset={self.offset}" + + if self.observance is not None: + info += f"observance={self.observance}" + + repr = f"Holiday: {self.name} ({info})" + return repr + + def dates( + self, start_date, end_date, return_name: bool = False + ) -> Series | DatetimeIndex: + """ + Calculate holidays observed between start date and end date + + Parameters + ---------- + start_date : starting date, datetime-like, optional + end_date : ending date, datetime-like, optional + return_name : bool, optional, default=False + If True, return a series that has dates and holiday names. + False will only return dates. + + Returns + ------- + Series or DatetimeIndex + Series if return_name is True + """ + start_date = Timestamp(start_date) + end_date = Timestamp(end_date) + + filter_start_date = start_date + filter_end_date = end_date + + if self.year is not None: + dt = Timestamp(datetime(self.year, self.month, self.day)) + dti = DatetimeIndex([dt]) + if return_name: + return Series(self.name, index=dti) + else: + return dti + + dates = self._reference_dates(start_date, end_date) + holiday_dates = self._apply_rule(dates) + if self.days_of_week is not None: + holiday_dates = holiday_dates[ + np.isin( + # error: "DatetimeIndex" has no attribute "dayofweek" + holiday_dates.dayofweek, # type: ignore[attr-defined] + self.days_of_week, + ).ravel() + ] + + if self.start_date is not None: + filter_start_date = max( + self.start_date.tz_localize(filter_start_date.tz), filter_start_date + ) + if self.end_date is not None: + filter_end_date = min( + self.end_date.tz_localize(filter_end_date.tz), filter_end_date + ) + holiday_dates = holiday_dates[ + (holiday_dates >= filter_start_date) & (holiday_dates <= filter_end_date) + ] + if return_name: + return Series(self.name, index=holiday_dates) + return holiday_dates + + def _reference_dates( + self, start_date: Timestamp, end_date: Timestamp + ) -> DatetimeIndex: + """ + Get reference dates for the holiday. + + Return reference dates for the holiday also returning the year + prior to the start_date and year following the end_date. This ensures + that any offsets to be applied will yield the holidays within + the passed in dates. + """ + if self.start_date is not None: + start_date = self.start_date.tz_localize(start_date.tz) + + if self.end_date is not None: + end_date = self.end_date.tz_localize(start_date.tz) + + year_offset = DateOffset(years=1) + reference_start_date = Timestamp( + datetime(start_date.year - 1, self.month, self.day) + ) + + reference_end_date = Timestamp( + datetime(end_date.year + 1, self.month, self.day) + ) + # Don't process unnecessary holidays + dates = date_range( + start=reference_start_date, + end=reference_end_date, + freq=year_offset, + tz=start_date.tz, + ) + + return dates + + def _apply_rule(self, dates: DatetimeIndex) -> DatetimeIndex: + """ + Apply the given offset/observance to a DatetimeIndex of dates. + + Parameters + ---------- + dates : DatetimeIndex + Dates to apply the given offset/observance rule + + Returns + ------- + Dates with rules applied + """ + if dates.empty: + return dates.copy() + + if self.observance is not None: + return dates.map(lambda d: self.observance(d)) + + if self.offset is not None: + if not isinstance(self.offset, list): + offsets = [self.offset] + else: + offsets = self.offset + for offset in offsets: + # if we are adding a non-vectorized value + # ignore the PerformanceWarnings: + with warnings.catch_warnings(): + warnings.simplefilter("ignore", PerformanceWarning) + dates += offset + return dates + + +holiday_calendars = {} + + +def register(cls) -> None: + try: + name = cls.name + except AttributeError: + name = cls.__name__ + holiday_calendars[name] = cls + + +def get_calendar(name: str): + """ + Return an instance of a calendar based on its name. + + Parameters + ---------- + name : str + Calendar name to return an instance of + """ + return holiday_calendars[name]() + + +class HolidayCalendarMetaClass(type): + def __new__(cls, clsname: str, bases, attrs): + calendar_class = super().__new__(cls, clsname, bases, attrs) + register(calendar_class) + return calendar_class + + +class AbstractHolidayCalendar(metaclass=HolidayCalendarMetaClass): + """ + Abstract interface to create holidays following certain rules. + """ + + rules: list[Holiday] = [] + start_date = Timestamp(datetime(1970, 1, 1)) + end_date = Timestamp(datetime(2200, 12, 31)) + _cache = None + + def __init__(self, name: str = "", rules=None) -> None: + """ + Initializes holiday object with a given set a rules. Normally + classes just have the rules defined within them. + + Parameters + ---------- + name : str + Name of the holiday calendar, defaults to class name + rules : array of Holiday objects + A set of rules used to create the holidays. + """ + super().__init__() + if not name: + name = type(self).__name__ + self.name = name + + if rules is not None: + self.rules = rules + + def rule_from_name(self, name: str): + for rule in self.rules: + if rule.name == name: + return rule + + return None + + def holidays(self, start=None, end=None, return_name: bool = False): + """ + Returns a curve with holidays between start_date and end_date + + Parameters + ---------- + start : starting date, datetime-like, optional + end : ending date, datetime-like, optional + return_name : bool, optional + If True, return a series that has dates and holiday names. + False will only return a DatetimeIndex of dates. + + Returns + ------- + DatetimeIndex of holidays + """ + if self.rules is None: + raise Exception( + f"Holiday Calendar {self.name} does not have any rules specified" + ) + + if start is None: + start = AbstractHolidayCalendar.start_date + + if end is None: + end = AbstractHolidayCalendar.end_date + + start = Timestamp(start) + end = Timestamp(end) + + # If we don't have a cache or the dates are outside the prior cache, we + # get them again + if self._cache is None or start < self._cache[0] or end > self._cache[1]: + pre_holidays = [ + rule.dates(start, end, return_name=True) for rule in self.rules + ] + if pre_holidays: + # error: Argument 1 to "concat" has incompatible type + # "List[Union[Series, DatetimeIndex]]"; expected + # "Union[Iterable[DataFrame], Mapping[, DataFrame]]" + holidays = concat(pre_holidays) # type: ignore[arg-type] + else: + # error: Incompatible types in assignment (expression has type + # "Series", variable has type "DataFrame") + holidays = Series( + index=DatetimeIndex([]), dtype=object + ) # type: ignore[assignment] + + self._cache = (start, end, holidays.sort_index()) + + holidays = self._cache[2] + holidays = holidays[start:end] + + if return_name: + return holidays + else: + return holidays.index + + @staticmethod + def merge_class(base, other): + """ + Merge holiday calendars together. The base calendar + will take precedence to other. The merge will be done + based on each holiday's name. + + Parameters + ---------- + base : AbstractHolidayCalendar + instance/subclass or array of Holiday objects + other : AbstractHolidayCalendar + instance/subclass or array of Holiday objects + """ + try: + other = other.rules + except AttributeError: + pass + + if not isinstance(other, list): + other = [other] + other_holidays = {holiday.name: holiday for holiday in other} + + try: + base = base.rules + except AttributeError: + pass + + if not isinstance(base, list): + base = [base] + base_holidays = {holiday.name: holiday for holiday in base} + + other_holidays.update(base_holidays) + return list(other_holidays.values()) + + def merge(self, other, inplace: bool = False): + """ + Merge holiday calendars together. The caller's class + rules take precedence. The merge will be done + based on each holiday's name. + + Parameters + ---------- + other : holiday calendar + inplace : bool (default=False) + If True set rule_table to holidays, else return array of Holidays + """ + holidays = self.merge_class(self, other) + if inplace: + self.rules = holidays + else: + return holidays + + +USMemorialDay = Holiday( + "Memorial Day", month=5, day=31, offset=DateOffset(weekday=MO(-1)) +) +USLaborDay = Holiday("Labor Day", month=9, day=1, offset=DateOffset(weekday=MO(1))) +USColumbusDay = Holiday( + "Columbus Day", month=10, day=1, offset=DateOffset(weekday=MO(2)) +) +USThanksgivingDay = Holiday( + "Thanksgiving Day", month=11, day=1, offset=DateOffset(weekday=TH(4)) +) +USMartinLutherKingJr = Holiday( + "Birthday of Martin Luther King, Jr.", + start_date=datetime(1986, 1, 1), + month=1, + day=1, + offset=DateOffset(weekday=MO(3)), +) +USPresidentsDay = Holiday( + "Washington's Birthday", month=2, day=1, offset=DateOffset(weekday=MO(3)) +) +GoodFriday = Holiday("Good Friday", month=1, day=1, offset=[Easter(), Day(-2)]) + +EasterMonday = Holiday("Easter Monday", month=1, day=1, offset=[Easter(), Day(1)]) + + +class USFederalHolidayCalendar(AbstractHolidayCalendar): + """ + US Federal Government Holiday Calendar based on rules specified by: + https://www.opm.gov/policy-data-oversight/pay-leave/federal-holidays/ + """ + + rules = [ + Holiday("New Year's Day", month=1, day=1, observance=nearest_workday), + USMartinLutherKingJr, + USPresidentsDay, + USMemorialDay, + Holiday( + "Juneteenth National Independence Day", + month=6, + day=19, + start_date="2021-06-18", + observance=nearest_workday, + ), + Holiday("Independence Day", month=7, day=4, observance=nearest_workday), + USLaborDay, + USColumbusDay, + Holiday("Veterans Day", month=11, day=11, observance=nearest_workday), + USThanksgivingDay, + Holiday("Christmas Day", month=12, day=25, observance=nearest_workday), + ] + + +def HolidayCalendarFactory(name: str, base, other, base_class=AbstractHolidayCalendar): + rules = AbstractHolidayCalendar.merge_class(base, other) + calendar_class = type(name, (base_class,), {"rules": rules, "name": name}) + return calendar_class + + +__all__ = [ + "after_nearest_workday", + "before_nearest_workday", + "FR", + "get_calendar", + "HolidayCalendarFactory", + "MO", + "nearest_workday", + "next_monday", + "next_monday_or_tuesday", + "next_workday", + "previous_friday", + "previous_workday", + "register", + "SA", + "SU", + "sunday_to_monday", + "TH", + "TU", + "WE", + "weekend_to_monday", +] diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/util/__init__.py b/llmeval-env/lib/python3.10/site-packages/pandas/util/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..82b3aa56c653cd1241872c67e9d9016df04a6c5a --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/util/__init__.py @@ -0,0 +1,29 @@ +def __getattr__(key: str): + # These imports need to be lazy to avoid circular import errors + if key == "hash_array": + from pandas.core.util.hashing import hash_array + + return hash_array + if key == "hash_pandas_object": + from pandas.core.util.hashing import hash_pandas_object + + return hash_pandas_object + if key == "Appender": + from pandas.util._decorators import Appender + + return Appender + if key == "Substitution": + from pandas.util._decorators import Substitution + + return Substitution + + if key == "cache_readonly": + from pandas.util._decorators import cache_readonly + + return cache_readonly + + raise AttributeError(f"module 'pandas.util' has no attribute '{key}'") + + +def capitalize_first_letter(s): + return s[:1].upper() + s[1:] diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/util/__pycache__/__init__.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/util/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bd1e10216e0eae964c1bcd092c82a8ef8b4be7cf Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/util/__pycache__/__init__.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/util/__pycache__/_decorators.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/util/__pycache__/_decorators.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1b1acf2fc64683afd081635878c71119145c6933 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/util/__pycache__/_decorators.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/util/__pycache__/_doctools.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/util/__pycache__/_doctools.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f92c066a049615fd23c4d0bd27c88707c9321402 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/util/__pycache__/_doctools.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/util/__pycache__/_exceptions.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/util/__pycache__/_exceptions.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..54c3d72e432450477dc2403eee8c64598a239ae4 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/util/__pycache__/_exceptions.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/util/__pycache__/_print_versions.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/util/__pycache__/_print_versions.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8d2c1953e7a279221745597b19158952762c01e3 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/util/__pycache__/_print_versions.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/util/__pycache__/_tester.cpython-310.pyc b/llmeval-env/lib/python3.10/site-packages/pandas/util/__pycache__/_tester.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4e1ea881bedc89540b1750c2bb3d9a564948ac15 Binary files /dev/null and b/llmeval-env/lib/python3.10/site-packages/pandas/util/__pycache__/_tester.cpython-310.pyc differ diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/util/_doctools.py b/llmeval-env/lib/python3.10/site-packages/pandas/util/_doctools.py new file mode 100644 index 0000000000000000000000000000000000000000..12619abf4baaf336dfd3d5ae78a9bc2133f310c0 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/util/_doctools.py @@ -0,0 +1,202 @@ +from __future__ import annotations + +from typing import TYPE_CHECKING + +import numpy as np + +import pandas as pd + +if TYPE_CHECKING: + from collections.abc import Iterable + + +class TablePlotter: + """ + Layout some DataFrames in vertical/horizontal layout for explanation. + Used in merging.rst + """ + + def __init__( + self, + cell_width: float = 0.37, + cell_height: float = 0.25, + font_size: float = 7.5, + ) -> None: + self.cell_width = cell_width + self.cell_height = cell_height + self.font_size = font_size + + def _shape(self, df: pd.DataFrame) -> tuple[int, int]: + """ + Calculate table shape considering index levels. + """ + row, col = df.shape + return row + df.columns.nlevels, col + df.index.nlevels + + def _get_cells(self, left, right, vertical) -> tuple[int, int]: + """ + Calculate appropriate figure size based on left and right data. + """ + if vertical: + # calculate required number of cells + vcells = max(sum(self._shape(df)[0] for df in left), self._shape(right)[0]) + hcells = max(self._shape(df)[1] for df in left) + self._shape(right)[1] + else: + vcells = max([self._shape(df)[0] for df in left] + [self._shape(right)[0]]) + hcells = sum([self._shape(df)[1] for df in left] + [self._shape(right)[1]]) + return hcells, vcells + + def plot(self, left, right, labels: Iterable[str] = (), vertical: bool = True): + """ + Plot left / right DataFrames in specified layout. + + Parameters + ---------- + left : list of DataFrames before operation is applied + right : DataFrame of operation result + labels : list of str to be drawn as titles of left DataFrames + vertical : bool, default True + If True, use vertical layout. If False, use horizontal layout. + """ + from matplotlib import gridspec + import matplotlib.pyplot as plt + + if not isinstance(left, list): + left = [left] + left = [self._conv(df) for df in left] + right = self._conv(right) + + hcells, vcells = self._get_cells(left, right, vertical) + + if vertical: + figsize = self.cell_width * hcells, self.cell_height * vcells + else: + # include margin for titles + figsize = self.cell_width * hcells, self.cell_height * vcells + fig = plt.figure(figsize=figsize) + + if vertical: + gs = gridspec.GridSpec(len(left), hcells) + # left + max_left_cols = max(self._shape(df)[1] for df in left) + max_left_rows = max(self._shape(df)[0] for df in left) + for i, (_left, _label) in enumerate(zip(left, labels)): + ax = fig.add_subplot(gs[i, 0:max_left_cols]) + self._make_table(ax, _left, title=_label, height=1.0 / max_left_rows) + # right + ax = plt.subplot(gs[:, max_left_cols:]) + self._make_table(ax, right, title="Result", height=1.05 / vcells) + fig.subplots_adjust(top=0.9, bottom=0.05, left=0.05, right=0.95) + else: + max_rows = max(self._shape(df)[0] for df in left + [right]) + height = 1.0 / np.max(max_rows) + gs = gridspec.GridSpec(1, hcells) + # left + i = 0 + for df, _label in zip(left, labels): + sp = self._shape(df) + ax = fig.add_subplot(gs[0, i : i + sp[1]]) + self._make_table(ax, df, title=_label, height=height) + i += sp[1] + # right + ax = plt.subplot(gs[0, i:]) + self._make_table(ax, right, title="Result", height=height) + fig.subplots_adjust(top=0.85, bottom=0.05, left=0.05, right=0.95) + + return fig + + def _conv(self, data): + """ + Convert each input to appropriate for table outplot. + """ + if isinstance(data, pd.Series): + if data.name is None: + data = data.to_frame(name="") + else: + data = data.to_frame() + data = data.fillna("NaN") + return data + + def _insert_index(self, data): + # insert is destructive + data = data.copy() + idx_nlevels = data.index.nlevels + if idx_nlevels == 1: + data.insert(0, "Index", data.index) + else: + for i in range(idx_nlevels): + data.insert(i, f"Index{i}", data.index._get_level_values(i)) + + col_nlevels = data.columns.nlevels + if col_nlevels > 1: + col = data.columns._get_level_values(0) + values = [ + data.columns._get_level_values(i)._values for i in range(1, col_nlevels) + ] + col_df = pd.DataFrame(values) + data.columns = col_df.columns + data = pd.concat([col_df, data]) + data.columns = col + return data + + def _make_table(self, ax, df, title: str, height: float | None = None) -> None: + if df is None: + ax.set_visible(False) + return + + from pandas import plotting + + idx_nlevels = df.index.nlevels + col_nlevels = df.columns.nlevels + # must be convert here to get index levels for colorization + df = self._insert_index(df) + tb = plotting.table(ax, df, loc=9) + tb.set_fontsize(self.font_size) + + if height is None: + height = 1.0 / (len(df) + 1) + + props = tb.properties() + for (r, c), cell in props["celld"].items(): + if c == -1: + cell.set_visible(False) + elif r < col_nlevels and c < idx_nlevels: + cell.set_visible(False) + elif r < col_nlevels or c < idx_nlevels: + cell.set_facecolor("#AAAAAA") + cell.set_height(height) + + ax.set_title(title, size=self.font_size) + ax.axis("off") + + +def main() -> None: + import matplotlib.pyplot as plt + + p = TablePlotter() + + df1 = pd.DataFrame({"A": [10, 11, 12], "B": [20, 21, 22], "C": [30, 31, 32]}) + df2 = pd.DataFrame({"A": [10, 12], "C": [30, 32]}) + + p.plot([df1, df2], pd.concat([df1, df2]), labels=["df1", "df2"], vertical=True) + plt.show() + + df3 = pd.DataFrame({"X": [10, 12], "Z": [30, 32]}) + + p.plot( + [df1, df3], pd.concat([df1, df3], axis=1), labels=["df1", "df2"], vertical=False + ) + plt.show() + + idx = pd.MultiIndex.from_tuples( + [(1, "A"), (1, "B"), (1, "C"), (2, "A"), (2, "B"), (2, "C")] + ) + column = pd.MultiIndex.from_tuples([(1, "A"), (1, "B")]) + df3 = pd.DataFrame({"v1": [1, 2, 3, 4, 5, 6], "v2": [5, 6, 7, 8, 9, 10]}, index=idx) + df3.columns = column + p.plot(df3, df3, labels=["df3"]) + plt.show() + + +if __name__ == "__main__": + main() diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/util/_test_decorators.py b/llmeval-env/lib/python3.10/site-packages/pandas/util/_test_decorators.py new file mode 100644 index 0000000000000000000000000000000000000000..2c1912bce856dd2694447d820ea2c5124be9c1a0 --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/util/_test_decorators.py @@ -0,0 +1,173 @@ +""" +This module provides decorator functions which can be applied to test objects +in order to skip those objects when certain conditions occur. A sample use case +is to detect if the platform is missing ``matplotlib``. If so, any test objects +which require ``matplotlib`` and decorated with ``@td.skip_if_no("matplotlib")`` +will be skipped by ``pytest`` during the execution of the test suite. + +To illustrate, after importing this module: + +import pandas.util._test_decorators as td + +The decorators can be applied to classes: + +@td.skip_if_no("package") +class Foo: + ... + +Or individual functions: + +@td.skip_if_no("package") +def test_foo(): + ... + +For more information, refer to the ``pytest`` documentation on ``skipif``. +""" +from __future__ import annotations + +import locale +from typing import ( + TYPE_CHECKING, + Callable, +) + +import pytest + +from pandas._config import get_option + +if TYPE_CHECKING: + from pandas._typing import F + +from pandas._config.config import _get_option + +from pandas.compat import ( + IS64, + is_platform_windows, +) +from pandas.compat._optional import import_optional_dependency + + +def skip_if_installed(package: str) -> pytest.MarkDecorator: + """ + Skip a test if a package is installed. + + Parameters + ---------- + package : str + The name of the package. + + Returns + ------- + pytest.MarkDecorator + a pytest.mark.skipif to use as either a test decorator or a + parametrization mark. + """ + return pytest.mark.skipif( + bool(import_optional_dependency(package, errors="ignore")), + reason=f"Skipping because {package} is installed.", + ) + + +def skip_if_no(package: str, min_version: str | None = None) -> pytest.MarkDecorator: + """ + Generic function to help skip tests when required packages are not + present on the testing system. + + This function returns a pytest mark with a skip condition that will be + evaluated during test collection. An attempt will be made to import the + specified ``package`` and optionally ensure it meets the ``min_version`` + + The mark can be used as either a decorator for a test class or to be + applied to parameters in pytest.mark.parametrize calls or parametrized + fixtures. Use pytest.importorskip if an imported moduled is later needed + or for test functions. + + If the import and version check are unsuccessful, then the test function + (or test case when used in conjunction with parametrization) will be + skipped. + + Parameters + ---------- + package: str + The name of the required package. + min_version: str or None, default None + Optional minimum version of the package. + + Returns + ------- + pytest.MarkDecorator + a pytest.mark.skipif to use as either a test decorator or a + parametrization mark. + """ + msg = f"Could not import '{package}'" + if min_version: + msg += f" satisfying a min_version of {min_version}" + return pytest.mark.skipif( + not bool( + import_optional_dependency( + package, errors="ignore", min_version=min_version + ) + ), + reason=msg, + ) + + +skip_if_32bit = pytest.mark.skipif(not IS64, reason="skipping for 32 bit") +skip_if_windows = pytest.mark.skipif(is_platform_windows(), reason="Running on Windows") +skip_if_not_us_locale = pytest.mark.skipif( + locale.getlocale()[0] != "en_US", + reason=f"Set local {locale.getlocale()[0]} is not en_US", +) + + +def parametrize_fixture_doc(*args) -> Callable[[F], F]: + """ + Intended for use as a decorator for parametrized fixture, + this function will wrap the decorated function with a pytest + ``parametrize_fixture_doc`` mark. That mark will format + initial fixture docstring by replacing placeholders {0}, {1} etc + with parameters passed as arguments. + + Parameters + ---------- + args: iterable + Positional arguments for docstring. + + Returns + ------- + function + The decorated function wrapped within a pytest + ``parametrize_fixture_doc`` mark + """ + + def documented_fixture(fixture): + fixture.__doc__ = fixture.__doc__.format(*args) + return fixture + + return documented_fixture + + +def mark_array_manager_not_yet_implemented(request) -> None: + mark = pytest.mark.xfail(reason="Not yet implemented for ArrayManager") + request.applymarker(mark) + + +skip_array_manager_not_yet_implemented = pytest.mark.xfail( + _get_option("mode.data_manager", silent=True) == "array", + reason="Not yet implemented for ArrayManager", +) + +skip_array_manager_invalid_test = pytest.mark.skipif( + _get_option("mode.data_manager", silent=True) == "array", + reason="Test that relies on BlockManager internals or specific behaviour", +) + +skip_copy_on_write_not_yet_implemented = pytest.mark.xfail( + get_option("mode.copy_on_write") is True, + reason="Not yet implemented/adapted for Copy-on-Write mode", +) + +skip_copy_on_write_invalid_test = pytest.mark.skipif( + get_option("mode.copy_on_write") is True, + reason="Test not valid for Copy-on-Write mode", +) diff --git a/llmeval-env/lib/python3.10/site-packages/pandas/util/_validators.py b/llmeval-env/lib/python3.10/site-packages/pandas/util/_validators.py new file mode 100644 index 0000000000000000000000000000000000000000..cb0b4d549f49ea972d50c97986c60be64c021c3c --- /dev/null +++ b/llmeval-env/lib/python3.10/site-packages/pandas/util/_validators.py @@ -0,0 +1,456 @@ +""" +Module that contains many useful utilities +for validating data or function arguments +""" +from __future__ import annotations + +from collections.abc import ( + Iterable, + Sequence, +) +from typing import ( + TypeVar, + overload, +) + +import numpy as np + +from pandas._libs import lib + +from pandas.core.dtypes.common import ( + is_bool, + is_integer, +) + +BoolishT = TypeVar("BoolishT", bool, int) +BoolishNoneT = TypeVar("BoolishNoneT", bool, int, None) + + +def _check_arg_length(fname, args, max_fname_arg_count, compat_args) -> None: + """ + Checks whether 'args' has length of at most 'compat_args'. Raises + a TypeError if that is not the case, similar to in Python when a + function is called with too many arguments. + """ + if max_fname_arg_count < 0: + raise ValueError("'max_fname_arg_count' must be non-negative") + + if len(args) > len(compat_args): + max_arg_count = len(compat_args) + max_fname_arg_count + actual_arg_count = len(args) + max_fname_arg_count + argument = "argument" if max_arg_count == 1 else "arguments" + + raise TypeError( + f"{fname}() takes at most {max_arg_count} {argument} " + f"({actual_arg_count} given)" + ) + + +def _check_for_default_values(fname, arg_val_dict, compat_args) -> None: + """ + Check that the keys in `arg_val_dict` are mapped to their + default values as specified in `compat_args`. + + Note that this function is to be called only when it has been + checked that arg_val_dict.keys() is a subset of compat_args + """ + for key in arg_val_dict: + # try checking equality directly with '=' operator, + # as comparison may have been overridden for the left + # hand object + try: + v1 = arg_val_dict[key] + v2 = compat_args[key] + + # check for None-ness otherwise we could end up + # comparing a numpy array vs None + if (v1 is not None and v2 is None) or (v1 is None and v2 is not None): + match = False + else: + match = v1 == v2 + + if not is_bool(match): + raise ValueError("'match' is not a boolean") + + # could not compare them directly, so try comparison + # using the 'is' operator + except ValueError: + match = arg_val_dict[key] is compat_args[key] + + if not match: + raise ValueError( + f"the '{key}' parameter is not supported in " + f"the pandas implementation of {fname}()" + ) + + +def validate_args(fname, args, max_fname_arg_count, compat_args) -> None: + """ + Checks whether the length of the `*args` argument passed into a function + has at most `len(compat_args)` arguments and whether or not all of these + elements in `args` are set to their default values. + + Parameters + ---------- + fname : str + The name of the function being passed the `*args` parameter + args : tuple + The `*args` parameter passed into a function + max_fname_arg_count : int + The maximum number of arguments that the function `fname` + can accept, excluding those in `args`. Used for displaying + appropriate error messages. Must be non-negative. + compat_args : dict + A dictionary of keys and their associated default values. + In order to accommodate buggy behaviour in some versions of `numpy`, + where a signature displayed keyword arguments but then passed those + arguments **positionally** internally when calling downstream + implementations, a dict ensures that the original + order of the keyword arguments is enforced. + + Raises + ------ + TypeError + If `args` contains more values than there are `compat_args` + ValueError + If `args` contains values that do not correspond to those + of the default values specified in `compat_args` + """ + _check_arg_length(fname, args, max_fname_arg_count, compat_args) + + # We do this so that we can provide a more informative + # error message about the parameters that we are not + # supporting in the pandas implementation of 'fname' + kwargs = dict(zip(compat_args, args)) + _check_for_default_values(fname, kwargs, compat_args) + + +def _check_for_invalid_keys(fname, kwargs, compat_args) -> None: + """ + Checks whether 'kwargs' contains any keys that are not + in 'compat_args' and raises a TypeError if there is one. + """ + # set(dict) --> set of the dictionary's keys + diff = set(kwargs) - set(compat_args) + + if diff: + bad_arg = next(iter(diff)) + raise TypeError(f"{fname}() got an unexpected keyword argument '{bad_arg}'") + + +def validate_kwargs(fname, kwargs, compat_args) -> None: + """ + Checks whether parameters passed to the **kwargs argument in a + function `fname` are valid parameters as specified in `*compat_args` + and whether or not they are set to their default values. + + Parameters + ---------- + fname : str + The name of the function being passed the `**kwargs` parameter + kwargs : dict + The `**kwargs` parameter passed into `fname` + compat_args: dict + A dictionary of keys that `kwargs` is allowed to have and their + associated default values + + Raises + ------ + TypeError if `kwargs` contains keys not in `compat_args` + ValueError if `kwargs` contains keys in `compat_args` that do not + map to the default values specified in `compat_args` + """ + kwds = kwargs.copy() + _check_for_invalid_keys(fname, kwargs, compat_args) + _check_for_default_values(fname, kwds, compat_args) + + +def validate_args_and_kwargs( + fname, args, kwargs, max_fname_arg_count, compat_args +) -> None: + """ + Checks whether parameters passed to the *args and **kwargs argument in a + function `fname` are valid parameters as specified in `*compat_args` + and whether or not they are set to their default values. + + Parameters + ---------- + fname: str + The name of the function being passed the `**kwargs` parameter + args: tuple + The `*args` parameter passed into a function + kwargs: dict + The `**kwargs` parameter passed into `fname` + max_fname_arg_count: int + The minimum number of arguments that the function `fname` + requires, excluding those in `args`. Used for displaying + appropriate error messages. Must be non-negative. + compat_args: dict + A dictionary of keys that `kwargs` is allowed to + have and their associated default values. + + Raises + ------ + TypeError if `args` contains more values than there are + `compat_args` OR `kwargs` contains keys not in `compat_args` + ValueError if `args` contains values not at the default value (`None`) + `kwargs` contains keys in `compat_args` that do not map to the default + value as specified in `compat_args` + + See Also + -------- + validate_args : Purely args validation. + validate_kwargs : Purely kwargs validation. + + """ + # Check that the total number of arguments passed in (i.e. + # args and kwargs) does not exceed the length of compat_args + _check_arg_length( + fname, args + tuple(kwargs.values()), max_fname_arg_count, compat_args + ) + + # Check there is no overlap with the positional and keyword + # arguments, similar to what is done in actual Python functions + args_dict = dict(zip(compat_args, args)) + + for key in args_dict: + if key in kwargs: + raise TypeError( + f"{fname}() got multiple values for keyword argument '{key}'" + ) + + kwargs.update(args_dict) + validate_kwargs(fname, kwargs, compat_args) + + +def validate_bool_kwarg( + value: BoolishNoneT, + arg_name: str, + none_allowed: bool = True, + int_allowed: bool = False, +) -> BoolishNoneT: + """ + Ensure that argument passed in arg_name can be interpreted as boolean. + + Parameters + ---------- + value : bool + Value to be validated. + arg_name : str + Name of the argument. To be reflected in the error message. + none_allowed : bool, default True + Whether to consider None to be a valid boolean. + int_allowed : bool, default False + Whether to consider integer value to be a valid boolean. + + Returns + ------- + value + The same value as input. + + Raises + ------ + ValueError + If the value is not a valid boolean. + """ + good_value = is_bool(value) + if none_allowed: + good_value = good_value or (value is None) + + if int_allowed: + good_value = good_value or isinstance(value, int) + + if not good_value: + raise ValueError( + f'For argument "{arg_name}" expected type bool, received ' + f"type {type(value).__name__}." + ) + return value # pyright: ignore[reportGeneralTypeIssues] + + +def validate_fillna_kwargs(value, method, validate_scalar_dict_value: bool = True): + """ + Validate the keyword arguments to 'fillna'. + + This checks that exactly one of 'value' and 'method' is specified. + If 'method' is specified, this validates that it's a valid method. + + Parameters + ---------- + value, method : object + The 'value' and 'method' keyword arguments for 'fillna'. + validate_scalar_dict_value : bool, default True + Whether to validate that 'value' is a scalar or dict. Specifically, + validate that it is not a list or tuple. + + Returns + ------- + value, method : object + """ + from pandas.core.missing import clean_fill_method + + if value is None and method is None: + raise ValueError("Must specify a fill 'value' or 'method'.") + if value is None and method is not None: + method = clean_fill_method(method) + + elif value is not None and method is None: + if validate_scalar_dict_value and isinstance(value, (list, tuple)): + raise TypeError( + '"value" parameter must be a scalar or dict, but ' + f'you passed a "{type(value).__name__}"' + ) + + elif value is not None and method is not None: + raise ValueError("Cannot specify both 'value' and 'method'.") + + return value, method + + +def validate_percentile(q: float | Iterable[float]) -> np.ndarray: + """ + Validate percentiles (used by describe and quantile). + + This function checks if the given float or iterable of floats is a valid percentile + otherwise raises a ValueError. + + Parameters + ---------- + q: float or iterable of floats + A single percentile or an iterable of percentiles. + + Returns + ------- + ndarray + An ndarray of the percentiles if valid. + + Raises + ------ + ValueError if percentiles are not in given interval([0, 1]). + """ + q_arr = np.asarray(q) + # Don't change this to an f-string. The string formatting + # is too expensive for cases where we don't need it. + msg = "percentiles should all be in the interval [0, 1]" + if q_arr.ndim == 0: + if not 0 <= q_arr <= 1: + raise ValueError(msg) + else: + if not all(0 <= qs <= 1 for qs in q_arr): + raise ValueError(msg) + return q_arr + + +@overload +def validate_ascending(ascending: BoolishT) -> BoolishT: + ... + + +@overload +def validate_ascending(ascending: Sequence[BoolishT]) -> list[BoolishT]: + ... + + +def validate_ascending( + ascending: bool | int | Sequence[BoolishT], +) -> bool | int | list[BoolishT]: + """Validate ``ascending`` kwargs for ``sort_index`` method.""" + kwargs = {"none_allowed": False, "int_allowed": True} + if not isinstance(ascending, Sequence): + return validate_bool_kwarg(ascending, "ascending", **kwargs) + + return [validate_bool_kwarg(item, "ascending", **kwargs) for item in ascending] + + +def validate_endpoints(closed: str | None) -> tuple[bool, bool]: + """ + Check that the `closed` argument is among [None, "left", "right"] + + Parameters + ---------- + closed : {None, "left", "right"} + + Returns + ------- + left_closed : bool + right_closed : bool + + Raises + ------ + ValueError : if argument is not among valid values + """ + left_closed = False + right_closed = False + + if closed is None: + left_closed = True + right_closed = True + elif closed == "left": + left_closed = True + elif closed == "right": + right_closed = True + else: + raise ValueError("Closed has to be either 'left', 'right' or None") + + return left_closed, right_closed + + +def validate_inclusive(inclusive: str | None) -> tuple[bool, bool]: + """ + Check that the `inclusive` argument is among {"both", "neither", "left", "right"}. + + Parameters + ---------- + inclusive : {"both", "neither", "left", "right"} + + Returns + ------- + left_right_inclusive : tuple[bool, bool] + + Raises + ------ + ValueError : if argument is not among valid values + """ + left_right_inclusive: tuple[bool, bool] | None = None + + if isinstance(inclusive, str): + left_right_inclusive = { + "both": (True, True), + "left": (True, False), + "right": (False, True), + "neither": (False, False), + }.get(inclusive) + + if left_right_inclusive is None: + raise ValueError( + "Inclusive has to be either 'both', 'neither', 'left' or 'right'" + ) + + return left_right_inclusive + + +def validate_insert_loc(loc: int, length: int) -> int: + """ + Check that we have an integer between -length and length, inclusive. + + Standardize negative loc to within [0, length]. + + The exceptions we raise on failure match np.insert. + """ + if not is_integer(loc): + raise TypeError(f"loc must be an integer between -{length} and {length}") + + if loc < 0: + loc += length + if not 0 <= loc <= length: + raise IndexError(f"loc must be an integer between -{length} and {length}") + return loc # pyright: ignore[reportGeneralTypeIssues] + + +def check_dtype_backend(dtype_backend) -> None: + if dtype_backend is not lib.no_default: + if dtype_backend not in ["numpy_nullable", "pyarrow"]: + raise ValueError( + f"dtype_backend {dtype_backend} is invalid, only 'numpy_nullable' and " + f"'pyarrow' are allowed.", + )