applied-ai-018 commited on
Commit
281b140
·
verified ·
1 Parent(s): 5bec591

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/conftest.cpython-310.pyc +0 -0
  2. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/test_comparison.cpython-310.pyc +0 -0
  3. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/__init__.py +0 -0
  4. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/__init__.cpython-310.pyc +0 -0
  5. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_formats.cpython-310.pyc +0 -0
  6. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_interval.cpython-310.pyc +0 -0
  7. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/test_astype.py +28 -0
  8. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/test_formats.py +13 -0
  9. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/test_interval.py +231 -0
  10. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/test_interval_pyarrow.py +160 -0
  11. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/test_overlaps.py +93 -0
  12. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/masked/__init__.py +0 -0
  13. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/__init__.cpython-310.pyc +0 -0
  14. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_arithmetic.cpython-310.pyc +0 -0
  15. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_arrow_compat.cpython-310.pyc +0 -0
  16. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_function.cpython-310.pyc +0 -0
  17. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_indexing.cpython-310.pyc +0 -0
  18. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_arithmetic.py +248 -0
  19. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_arrow_compat.py +209 -0
  20. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_indexing.py +60 -0
  21. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/numpy_/__init__.py +0 -0
  22. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/numpy_/__pycache__/__init__.cpython-310.pyc +0 -0
  23. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/numpy_/__pycache__/test_indexing.cpython-310.pyc +0 -0
  24. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/numpy_/__pycache__/test_numpy.cpython-310.pyc +0 -0
  25. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/numpy_/test_indexing.py +41 -0
  26. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/numpy_/test_numpy.py +324 -0
  27. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/period/__init__.py +0 -0
  28. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/period/__pycache__/__init__.cpython-310.pyc +0 -0
  29. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/period/__pycache__/test_arrow_compat.cpython-310.pyc +0 -0
  30. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/period/__pycache__/test_astype.cpython-310.pyc +0 -0
  31. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/period/__pycache__/test_constructors.cpython-310.pyc +0 -0
  32. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/period/__pycache__/test_reductions.cpython-310.pyc +0 -0
  33. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/period/test_arrow_compat.py +130 -0
  34. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/period/test_astype.py +67 -0
  35. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/period/test_constructors.py +156 -0
  36. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/period/test_reductions.py +42 -0
  37. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/string_/__init__.py +0 -0
  38. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/string_/__pycache__/__init__.cpython-310.pyc +0 -0
  39. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/string_/__pycache__/test_string.cpython-310.pyc +0 -0
  40. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/string_/__pycache__/test_string_arrow.cpython-310.pyc +0 -0
  41. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/string_/test_string.py +703 -0
  42. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/string_/test_string_arrow.py +265 -0
  43. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/timedeltas/__init__.py +0 -0
  44. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/timedeltas/__pycache__/__init__.cpython-310.pyc +0 -0
  45. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/timedeltas/__pycache__/test_constructors.cpython-310.pyc +0 -0
  46. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/timedeltas/__pycache__/test_cumulative.cpython-310.pyc +0 -0
  47. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/timedeltas/__pycache__/test_reductions.cpython-310.pyc +0 -0
  48. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/timedeltas/test_constructors.py +103 -0
  49. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/timedeltas/test_cumulative.py +20 -0
  50. llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/timedeltas/test_reductions.py +218 -0
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/conftest.cpython-310.pyc ADDED
Binary file (1.48 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/floating/__pycache__/test_comparison.cpython-310.pyc ADDED
Binary file (2.13 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (201 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_formats.cpython-310.pyc ADDED
Binary file (551 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/__pycache__/test_interval.cpython-310.pyc ADDED
Binary file (7.53 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/test_astype.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from pandas import (
4
+ Categorical,
5
+ CategoricalDtype,
6
+ Index,
7
+ IntervalIndex,
8
+ )
9
+ import pandas._testing as tm
10
+
11
+
12
+ class TestAstype:
13
+ @pytest.mark.parametrize("ordered", [True, False])
14
+ def test_astype_categorical_retains_ordered(self, ordered):
15
+ index = IntervalIndex.from_breaks(range(5))
16
+ arr = index._data
17
+
18
+ dtype = CategoricalDtype(None, ordered=ordered)
19
+
20
+ expected = Categorical(list(arr), ordered=ordered)
21
+ result = arr.astype(dtype)
22
+ assert result.ordered is ordered
23
+ tm.assert_categorical_equal(result, expected)
24
+
25
+ # test IntervalIndex.astype while we're at it.
26
+ result = index.astype(dtype)
27
+ expected = Index(expected)
28
+ tm.assert_index_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/test_formats.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pandas.core.arrays import IntervalArray
2
+
3
+
4
+ def test_repr():
5
+ # GH#25022
6
+ arr = IntervalArray.from_tuples([(0, 1), (1, 2)])
7
+ result = repr(arr)
8
+ expected = (
9
+ "<IntervalArray>\n"
10
+ "[(0, 1], (1, 2]]\n"
11
+ "Length: 2, dtype: interval[int64, right]"
12
+ )
13
+ assert result == expected
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/test_interval.py ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas import (
6
+ Index,
7
+ Interval,
8
+ IntervalIndex,
9
+ Timedelta,
10
+ Timestamp,
11
+ date_range,
12
+ timedelta_range,
13
+ )
14
+ import pandas._testing as tm
15
+ from pandas.core.arrays import IntervalArray
16
+
17
+
18
+ @pytest.fixture(
19
+ params=[
20
+ (Index([0, 2, 4]), Index([1, 3, 5])),
21
+ (Index([0.0, 1.0, 2.0]), Index([1.0, 2.0, 3.0])),
22
+ (timedelta_range("0 days", periods=3), timedelta_range("1 day", periods=3)),
23
+ (date_range("20170101", periods=3), date_range("20170102", periods=3)),
24
+ (
25
+ date_range("20170101", periods=3, tz="US/Eastern"),
26
+ date_range("20170102", periods=3, tz="US/Eastern"),
27
+ ),
28
+ ],
29
+ ids=lambda x: str(x[0].dtype),
30
+ )
31
+ def left_right_dtypes(request):
32
+ """
33
+ Fixture for building an IntervalArray from various dtypes
34
+ """
35
+ return request.param
36
+
37
+
38
+ class TestAttributes:
39
+ @pytest.mark.parametrize(
40
+ "left, right",
41
+ [
42
+ (0, 1),
43
+ (Timedelta("0 days"), Timedelta("1 day")),
44
+ (Timestamp("2018-01-01"), Timestamp("2018-01-02")),
45
+ (
46
+ Timestamp("2018-01-01", tz="US/Eastern"),
47
+ Timestamp("2018-01-02", tz="US/Eastern"),
48
+ ),
49
+ ],
50
+ )
51
+ @pytest.mark.parametrize("constructor", [IntervalArray, IntervalIndex])
52
+ def test_is_empty(self, constructor, left, right, closed):
53
+ # GH27219
54
+ tuples = [(left, left), (left, right), np.nan]
55
+ expected = np.array([closed != "both", False, False])
56
+ result = constructor.from_tuples(tuples, closed=closed).is_empty
57
+ tm.assert_numpy_array_equal(result, expected)
58
+
59
+
60
+ class TestMethods:
61
+ @pytest.mark.parametrize("new_closed", ["left", "right", "both", "neither"])
62
+ def test_set_closed(self, closed, new_closed):
63
+ # GH 21670
64
+ array = IntervalArray.from_breaks(range(10), closed=closed)
65
+ result = array.set_closed(new_closed)
66
+ expected = IntervalArray.from_breaks(range(10), closed=new_closed)
67
+ tm.assert_extension_array_equal(result, expected)
68
+
69
+ @pytest.mark.parametrize(
70
+ "other",
71
+ [
72
+ Interval(0, 1, closed="right"),
73
+ IntervalArray.from_breaks([1, 2, 3, 4], closed="right"),
74
+ ],
75
+ )
76
+ def test_where_raises(self, other):
77
+ # GH#45768 The IntervalArray methods raises; the Series method coerces
78
+ ser = pd.Series(IntervalArray.from_breaks([1, 2, 3, 4], closed="left"))
79
+ mask = np.array([True, False, True])
80
+ match = "'value.closed' is 'right', expected 'left'."
81
+ with pytest.raises(ValueError, match=match):
82
+ ser.array._where(mask, other)
83
+
84
+ res = ser.where(mask, other=other)
85
+ expected = ser.astype(object).where(mask, other)
86
+ tm.assert_series_equal(res, expected)
87
+
88
+ def test_shift(self):
89
+ # https://github.com/pandas-dev/pandas/issues/31495, GH#22428, GH#31502
90
+ a = IntervalArray.from_breaks([1, 2, 3])
91
+ result = a.shift()
92
+ # int -> float
93
+ expected = IntervalArray.from_tuples([(np.nan, np.nan), (1.0, 2.0)])
94
+ tm.assert_interval_array_equal(result, expected)
95
+
96
+ msg = "can only insert Interval objects and NA into an IntervalArray"
97
+ with pytest.raises(TypeError, match=msg):
98
+ a.shift(1, fill_value=pd.NaT)
99
+
100
+ def test_shift_datetime(self):
101
+ # GH#31502, GH#31504
102
+ a = IntervalArray.from_breaks(date_range("2000", periods=4))
103
+ result = a.shift(2)
104
+ expected = a.take([-1, -1, 0], allow_fill=True)
105
+ tm.assert_interval_array_equal(result, expected)
106
+
107
+ result = a.shift(-1)
108
+ expected = a.take([1, 2, -1], allow_fill=True)
109
+ tm.assert_interval_array_equal(result, expected)
110
+
111
+ msg = "can only insert Interval objects and NA into an IntervalArray"
112
+ with pytest.raises(TypeError, match=msg):
113
+ a.shift(1, fill_value=np.timedelta64("NaT", "ns"))
114
+
115
+
116
+ class TestSetitem:
117
+ def test_set_na(self, left_right_dtypes):
118
+ left, right = left_right_dtypes
119
+ left = left.copy(deep=True)
120
+ right = right.copy(deep=True)
121
+ result = IntervalArray.from_arrays(left, right)
122
+
123
+ if result.dtype.subtype.kind not in ["m", "M"]:
124
+ msg = "'value' should be an interval type, got <.*NaTType'> instead."
125
+ with pytest.raises(TypeError, match=msg):
126
+ result[0] = pd.NaT
127
+ if result.dtype.subtype.kind in ["i", "u"]:
128
+ msg = "Cannot set float NaN to integer-backed IntervalArray"
129
+ # GH#45484 TypeError, not ValueError, matches what we get with
130
+ # non-NA un-holdable value.
131
+ with pytest.raises(TypeError, match=msg):
132
+ result[0] = np.nan
133
+ return
134
+
135
+ result[0] = np.nan
136
+
137
+ expected_left = Index([left._na_value] + list(left[1:]))
138
+ expected_right = Index([right._na_value] + list(right[1:]))
139
+ expected = IntervalArray.from_arrays(expected_left, expected_right)
140
+
141
+ tm.assert_extension_array_equal(result, expected)
142
+
143
+ def test_setitem_mismatched_closed(self):
144
+ arr = IntervalArray.from_breaks(range(4))
145
+ orig = arr.copy()
146
+ other = arr.set_closed("both")
147
+
148
+ msg = "'value.closed' is 'both', expected 'right'"
149
+ with pytest.raises(ValueError, match=msg):
150
+ arr[0] = other[0]
151
+ with pytest.raises(ValueError, match=msg):
152
+ arr[:1] = other[:1]
153
+ with pytest.raises(ValueError, match=msg):
154
+ arr[:0] = other[:0]
155
+ with pytest.raises(ValueError, match=msg):
156
+ arr[:] = other[::-1]
157
+ with pytest.raises(ValueError, match=msg):
158
+ arr[:] = list(other[::-1])
159
+ with pytest.raises(ValueError, match=msg):
160
+ arr[:] = other[::-1].astype(object)
161
+ with pytest.raises(ValueError, match=msg):
162
+ arr[:] = other[::-1].astype("category")
163
+
164
+ # empty list should be no-op
165
+ arr[:0] = []
166
+ tm.assert_interval_array_equal(arr, orig)
167
+
168
+
169
+ class TestReductions:
170
+ def test_min_max_invalid_axis(self, left_right_dtypes):
171
+ left, right = left_right_dtypes
172
+ left = left.copy(deep=True)
173
+ right = right.copy(deep=True)
174
+ arr = IntervalArray.from_arrays(left, right)
175
+
176
+ msg = "`axis` must be fewer than the number of dimensions"
177
+ for axis in [-2, 1]:
178
+ with pytest.raises(ValueError, match=msg):
179
+ arr.min(axis=axis)
180
+ with pytest.raises(ValueError, match=msg):
181
+ arr.max(axis=axis)
182
+
183
+ msg = "'>=' not supported between"
184
+ with pytest.raises(TypeError, match=msg):
185
+ arr.min(axis="foo")
186
+ with pytest.raises(TypeError, match=msg):
187
+ arr.max(axis="foo")
188
+
189
+ def test_min_max(self, left_right_dtypes, index_or_series_or_array):
190
+ # GH#44746
191
+ left, right = left_right_dtypes
192
+ left = left.copy(deep=True)
193
+ right = right.copy(deep=True)
194
+ arr = IntervalArray.from_arrays(left, right)
195
+
196
+ # The expected results below are only valid if monotonic
197
+ assert left.is_monotonic_increasing
198
+ assert Index(arr).is_monotonic_increasing
199
+
200
+ MIN = arr[0]
201
+ MAX = arr[-1]
202
+
203
+ indexer = np.arange(len(arr))
204
+ np.random.default_rng(2).shuffle(indexer)
205
+ arr = arr.take(indexer)
206
+
207
+ arr_na = arr.insert(2, np.nan)
208
+
209
+ arr = index_or_series_or_array(arr)
210
+ arr_na = index_or_series_or_array(arr_na)
211
+
212
+ for skipna in [True, False]:
213
+ res = arr.min(skipna=skipna)
214
+ assert res == MIN
215
+ assert type(res) == type(MIN)
216
+
217
+ res = arr.max(skipna=skipna)
218
+ assert res == MAX
219
+ assert type(res) == type(MAX)
220
+
221
+ res = arr_na.min(skipna=False)
222
+ assert np.isnan(res)
223
+ res = arr_na.max(skipna=False)
224
+ assert np.isnan(res)
225
+
226
+ res = arr_na.min(skipna=True)
227
+ assert res == MIN
228
+ assert type(res) == type(MIN)
229
+ res = arr_na.max(skipna=True)
230
+ assert res == MAX
231
+ assert type(res) == type(MAX)
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/test_interval_pyarrow.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+ from pandas.core.arrays import IntervalArray
7
+
8
+
9
+ def test_arrow_extension_type():
10
+ pa = pytest.importorskip("pyarrow")
11
+
12
+ from pandas.core.arrays.arrow.extension_types import ArrowIntervalType
13
+
14
+ p1 = ArrowIntervalType(pa.int64(), "left")
15
+ p2 = ArrowIntervalType(pa.int64(), "left")
16
+ p3 = ArrowIntervalType(pa.int64(), "right")
17
+
18
+ assert p1.closed == "left"
19
+ assert p1 == p2
20
+ assert p1 != p3
21
+ assert hash(p1) == hash(p2)
22
+ assert hash(p1) != hash(p3)
23
+
24
+
25
+ def test_arrow_array():
26
+ pa = pytest.importorskip("pyarrow")
27
+
28
+ from pandas.core.arrays.arrow.extension_types import ArrowIntervalType
29
+
30
+ intervals = pd.interval_range(1, 5, freq=1).array
31
+
32
+ result = pa.array(intervals)
33
+ assert isinstance(result.type, ArrowIntervalType)
34
+ assert result.type.closed == intervals.closed
35
+ assert result.type.subtype == pa.int64()
36
+ assert result.storage.field("left").equals(pa.array([1, 2, 3, 4], type="int64"))
37
+ assert result.storage.field("right").equals(pa.array([2, 3, 4, 5], type="int64"))
38
+
39
+ expected = pa.array([{"left": i, "right": i + 1} for i in range(1, 5)])
40
+ assert result.storage.equals(expected)
41
+
42
+ # convert to its storage type
43
+ result = pa.array(intervals, type=expected.type)
44
+ assert result.equals(expected)
45
+
46
+ # unsupported conversions
47
+ with pytest.raises(TypeError, match="Not supported to convert IntervalArray"):
48
+ pa.array(intervals, type="float64")
49
+
50
+ with pytest.raises(TypeError, match="Not supported to convert IntervalArray"):
51
+ pa.array(intervals, type=ArrowIntervalType(pa.float64(), "left"))
52
+
53
+
54
+ def test_arrow_array_missing():
55
+ pa = pytest.importorskip("pyarrow")
56
+
57
+ from pandas.core.arrays.arrow.extension_types import ArrowIntervalType
58
+
59
+ arr = IntervalArray.from_breaks([0.0, 1.0, 2.0, 3.0])
60
+ arr[1] = None
61
+
62
+ result = pa.array(arr)
63
+ assert isinstance(result.type, ArrowIntervalType)
64
+ assert result.type.closed == arr.closed
65
+ assert result.type.subtype == pa.float64()
66
+
67
+ # fields have missing values (not NaN)
68
+ left = pa.array([0.0, None, 2.0], type="float64")
69
+ right = pa.array([1.0, None, 3.0], type="float64")
70
+ assert result.storage.field("left").equals(left)
71
+ assert result.storage.field("right").equals(right)
72
+
73
+ # structarray itself also has missing values on the array level
74
+ vals = [
75
+ {"left": 0.0, "right": 1.0},
76
+ {"left": None, "right": None},
77
+ {"left": 2.0, "right": 3.0},
78
+ ]
79
+ expected = pa.StructArray.from_pandas(vals, mask=np.array([False, True, False]))
80
+ assert result.storage.equals(expected)
81
+
82
+
83
+ @pytest.mark.filterwarnings(
84
+ "ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
85
+ )
86
+ @pytest.mark.parametrize(
87
+ "breaks",
88
+ [[0.0, 1.0, 2.0, 3.0], pd.date_range("2017", periods=4, freq="D")],
89
+ ids=["float", "datetime64[ns]"],
90
+ )
91
+ def test_arrow_table_roundtrip(breaks):
92
+ pa = pytest.importorskip("pyarrow")
93
+
94
+ from pandas.core.arrays.arrow.extension_types import ArrowIntervalType
95
+
96
+ arr = IntervalArray.from_breaks(breaks)
97
+ arr[1] = None
98
+ df = pd.DataFrame({"a": arr})
99
+
100
+ table = pa.table(df)
101
+ assert isinstance(table.field("a").type, ArrowIntervalType)
102
+ result = table.to_pandas()
103
+ assert isinstance(result["a"].dtype, pd.IntervalDtype)
104
+ tm.assert_frame_equal(result, df)
105
+
106
+ table2 = pa.concat_tables([table, table])
107
+ result = table2.to_pandas()
108
+ expected = pd.concat([df, df], ignore_index=True)
109
+ tm.assert_frame_equal(result, expected)
110
+
111
+ # GH#41040
112
+ table = pa.table(
113
+ [pa.chunked_array([], type=table.column(0).type)], schema=table.schema
114
+ )
115
+ result = table.to_pandas()
116
+ tm.assert_frame_equal(result, expected[0:0])
117
+
118
+
119
+ @pytest.mark.filterwarnings(
120
+ "ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
121
+ )
122
+ @pytest.mark.parametrize(
123
+ "breaks",
124
+ [[0.0, 1.0, 2.0, 3.0], pd.date_range("2017", periods=4, freq="D")],
125
+ ids=["float", "datetime64[ns]"],
126
+ )
127
+ def test_arrow_table_roundtrip_without_metadata(breaks):
128
+ pa = pytest.importorskip("pyarrow")
129
+
130
+ arr = IntervalArray.from_breaks(breaks)
131
+ arr[1] = None
132
+ df = pd.DataFrame({"a": arr})
133
+
134
+ table = pa.table(df)
135
+ # remove the metadata
136
+ table = table.replace_schema_metadata()
137
+ assert table.schema.metadata is None
138
+
139
+ result = table.to_pandas()
140
+ assert isinstance(result["a"].dtype, pd.IntervalDtype)
141
+ tm.assert_frame_equal(result, df)
142
+
143
+
144
+ def test_from_arrow_from_raw_struct_array():
145
+ # in case pyarrow lost the Interval extension type (eg on parquet roundtrip
146
+ # with datetime64[ns] subtype, see GH-45881), still allow conversion
147
+ # from arrow to IntervalArray
148
+ pa = pytest.importorskip("pyarrow")
149
+
150
+ arr = pa.array([{"left": 0, "right": 1}, {"left": 1, "right": 2}])
151
+ dtype = pd.IntervalDtype(np.dtype("int64"), closed="neither")
152
+
153
+ result = dtype.__from_arrow__(arr)
154
+ expected = IntervalArray.from_breaks(
155
+ np.array([0, 1, 2], dtype="int64"), closed="neither"
156
+ )
157
+ tm.assert_extension_array_equal(result, expected)
158
+
159
+ result = dtype.__from_arrow__(pa.chunked_array([arr]))
160
+ tm.assert_extension_array_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/interval/test_overlaps.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Tests for Interval-Interval operations, such as overlaps, contains, etc."""
2
+ import numpy as np
3
+ import pytest
4
+
5
+ from pandas import (
6
+ Interval,
7
+ IntervalIndex,
8
+ Timedelta,
9
+ Timestamp,
10
+ )
11
+ import pandas._testing as tm
12
+ from pandas.core.arrays import IntervalArray
13
+
14
+
15
+ @pytest.fixture(params=[IntervalArray, IntervalIndex])
16
+ def constructor(request):
17
+ """
18
+ Fixture for testing both interval container classes.
19
+ """
20
+ return request.param
21
+
22
+
23
+ @pytest.fixture(
24
+ params=[
25
+ (Timedelta("0 days"), Timedelta("1 day")),
26
+ (Timestamp("2018-01-01"), Timedelta("1 day")),
27
+ (0, 1),
28
+ ],
29
+ ids=lambda x: type(x[0]).__name__,
30
+ )
31
+ def start_shift(request):
32
+ """
33
+ Fixture for generating intervals of different types from a start value
34
+ and a shift value that can be added to start to generate an endpoint.
35
+ """
36
+ return request.param
37
+
38
+
39
+ class TestOverlaps:
40
+ def test_overlaps_interval(self, constructor, start_shift, closed, other_closed):
41
+ start, shift = start_shift
42
+ interval = Interval(start, start + 3 * shift, other_closed)
43
+
44
+ # intervals: identical, nested, spanning, partial, adjacent, disjoint
45
+ tuples = [
46
+ (start, start + 3 * shift),
47
+ (start + shift, start + 2 * shift),
48
+ (start - shift, start + 4 * shift),
49
+ (start + 2 * shift, start + 4 * shift),
50
+ (start + 3 * shift, start + 4 * shift),
51
+ (start + 4 * shift, start + 5 * shift),
52
+ ]
53
+ interval_container = constructor.from_tuples(tuples, closed)
54
+
55
+ adjacent = interval.closed_right and interval_container.closed_left
56
+ expected = np.array([True, True, True, True, adjacent, False])
57
+ result = interval_container.overlaps(interval)
58
+ tm.assert_numpy_array_equal(result, expected)
59
+
60
+ @pytest.mark.parametrize("other_constructor", [IntervalArray, IntervalIndex])
61
+ def test_overlaps_interval_container(self, constructor, other_constructor):
62
+ # TODO: modify this test when implemented
63
+ interval_container = constructor.from_breaks(range(5))
64
+ other_container = other_constructor.from_breaks(range(5))
65
+ with pytest.raises(NotImplementedError, match="^$"):
66
+ interval_container.overlaps(other_container)
67
+
68
+ def test_overlaps_na(self, constructor, start_shift):
69
+ """NA values are marked as False"""
70
+ start, shift = start_shift
71
+ interval = Interval(start, start + shift)
72
+
73
+ tuples = [
74
+ (start, start + shift),
75
+ np.nan,
76
+ (start + 2 * shift, start + 3 * shift),
77
+ ]
78
+ interval_container = constructor.from_tuples(tuples)
79
+
80
+ expected = np.array([True, False, False])
81
+ result = interval_container.overlaps(interval)
82
+ tm.assert_numpy_array_equal(result, expected)
83
+
84
+ @pytest.mark.parametrize(
85
+ "other",
86
+ [10, True, "foo", Timedelta("1 day"), Timestamp("2018-01-01")],
87
+ ids=lambda x: type(x).__name__,
88
+ )
89
+ def test_overlaps_invalid_type(self, constructor, other):
90
+ interval_container = constructor.from_breaks(range(5))
91
+ msg = f"`other` must be Interval-like, got {type(other).__name__}"
92
+ with pytest.raises(TypeError, match=msg):
93
+ interval_container.overlaps(other)
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/masked/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (199 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_arithmetic.cpython-310.pyc ADDED
Binary file (6.49 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_arrow_compat.cpython-310.pyc ADDED
Binary file (6.36 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_function.cpython-310.pyc ADDED
Binary file (2.54 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/masked/__pycache__/test_indexing.cpython-310.pyc ADDED
Binary file (2.07 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_arithmetic.py ADDED
@@ -0,0 +1,248 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from typing import Any
4
+
5
+ import numpy as np
6
+ import pytest
7
+
8
+ import pandas as pd
9
+ import pandas._testing as tm
10
+
11
+ # integer dtypes
12
+ arrays = [pd.array([1, 2, 3, None], dtype=dtype) for dtype in tm.ALL_INT_EA_DTYPES]
13
+ scalars: list[Any] = [2] * len(arrays)
14
+ # floating dtypes
15
+ arrays += [pd.array([0.1, 0.2, 0.3, None], dtype=dtype) for dtype in tm.FLOAT_EA_DTYPES]
16
+ scalars += [0.2, 0.2]
17
+ # boolean
18
+ arrays += [pd.array([True, False, True, None], dtype="boolean")]
19
+ scalars += [False]
20
+
21
+
22
+ @pytest.fixture(params=zip(arrays, scalars), ids=[a.dtype.name for a in arrays])
23
+ def data(request):
24
+ """Fixture returning parametrized (array, scalar) tuple.
25
+
26
+ Used to test equivalence of scalars, numpy arrays with array ops, and the
27
+ equivalence of DataFrame and Series ops.
28
+ """
29
+ return request.param
30
+
31
+
32
+ def check_skip(data, op_name):
33
+ if isinstance(data.dtype, pd.BooleanDtype) and "sub" in op_name:
34
+ pytest.skip("subtract not implemented for boolean")
35
+
36
+
37
+ def is_bool_not_implemented(data, op_name):
38
+ # match non-masked behavior
39
+ return data.dtype.kind == "b" and op_name.strip("_").lstrip("r") in [
40
+ "pow",
41
+ "truediv",
42
+ "floordiv",
43
+ ]
44
+
45
+
46
+ # Test equivalence of scalars, numpy arrays with array ops
47
+ # -----------------------------------------------------------------------------
48
+
49
+
50
+ def test_array_scalar_like_equivalence(data, all_arithmetic_operators):
51
+ data, scalar = data
52
+ op = tm.get_op_from_name(all_arithmetic_operators)
53
+ check_skip(data, all_arithmetic_operators)
54
+
55
+ scalar_array = pd.array([scalar] * len(data), dtype=data.dtype)
56
+
57
+ # TODO also add len-1 array (np.array([scalar], dtype=data.dtype.numpy_dtype))
58
+ for scalar in [scalar, data.dtype.type(scalar)]:
59
+ if is_bool_not_implemented(data, all_arithmetic_operators):
60
+ msg = "operator '.*' not implemented for bool dtypes"
61
+ with pytest.raises(NotImplementedError, match=msg):
62
+ op(data, scalar)
63
+ with pytest.raises(NotImplementedError, match=msg):
64
+ op(data, scalar_array)
65
+ else:
66
+ result = op(data, scalar)
67
+ expected = op(data, scalar_array)
68
+ tm.assert_extension_array_equal(result, expected)
69
+
70
+
71
+ def test_array_NA(data, all_arithmetic_operators):
72
+ data, _ = data
73
+ op = tm.get_op_from_name(all_arithmetic_operators)
74
+ check_skip(data, all_arithmetic_operators)
75
+
76
+ scalar = pd.NA
77
+ scalar_array = pd.array([pd.NA] * len(data), dtype=data.dtype)
78
+
79
+ mask = data._mask.copy()
80
+
81
+ if is_bool_not_implemented(data, all_arithmetic_operators):
82
+ msg = "operator '.*' not implemented for bool dtypes"
83
+ with pytest.raises(NotImplementedError, match=msg):
84
+ op(data, scalar)
85
+ # GH#45421 check op doesn't alter data._mask inplace
86
+ tm.assert_numpy_array_equal(mask, data._mask)
87
+ return
88
+
89
+ result = op(data, scalar)
90
+ # GH#45421 check op doesn't alter data._mask inplace
91
+ tm.assert_numpy_array_equal(mask, data._mask)
92
+
93
+ expected = op(data, scalar_array)
94
+ tm.assert_numpy_array_equal(mask, data._mask)
95
+
96
+ tm.assert_extension_array_equal(result, expected)
97
+
98
+
99
+ def test_numpy_array_equivalence(data, all_arithmetic_operators):
100
+ data, scalar = data
101
+ op = tm.get_op_from_name(all_arithmetic_operators)
102
+ check_skip(data, all_arithmetic_operators)
103
+
104
+ numpy_array = np.array([scalar] * len(data), dtype=data.dtype.numpy_dtype)
105
+ pd_array = pd.array(numpy_array, dtype=data.dtype)
106
+
107
+ if is_bool_not_implemented(data, all_arithmetic_operators):
108
+ msg = "operator '.*' not implemented for bool dtypes"
109
+ with pytest.raises(NotImplementedError, match=msg):
110
+ op(data, numpy_array)
111
+ with pytest.raises(NotImplementedError, match=msg):
112
+ op(data, pd_array)
113
+ return
114
+
115
+ result = op(data, numpy_array)
116
+ expected = op(data, pd_array)
117
+ tm.assert_extension_array_equal(result, expected)
118
+
119
+
120
+ # Test equivalence with Series and DataFrame ops
121
+ # -----------------------------------------------------------------------------
122
+
123
+
124
+ def test_frame(data, all_arithmetic_operators):
125
+ data, scalar = data
126
+ op = tm.get_op_from_name(all_arithmetic_operators)
127
+ check_skip(data, all_arithmetic_operators)
128
+
129
+ # DataFrame with scalar
130
+ df = pd.DataFrame({"A": data})
131
+
132
+ if is_bool_not_implemented(data, all_arithmetic_operators):
133
+ msg = "operator '.*' not implemented for bool dtypes"
134
+ with pytest.raises(NotImplementedError, match=msg):
135
+ op(df, scalar)
136
+ with pytest.raises(NotImplementedError, match=msg):
137
+ op(data, scalar)
138
+ return
139
+
140
+ result = op(df, scalar)
141
+ expected = pd.DataFrame({"A": op(data, scalar)})
142
+ tm.assert_frame_equal(result, expected)
143
+
144
+
145
+ def test_series(data, all_arithmetic_operators):
146
+ data, scalar = data
147
+ op = tm.get_op_from_name(all_arithmetic_operators)
148
+ check_skip(data, all_arithmetic_operators)
149
+
150
+ ser = pd.Series(data)
151
+
152
+ others = [
153
+ scalar,
154
+ np.array([scalar] * len(data), dtype=data.dtype.numpy_dtype),
155
+ pd.array([scalar] * len(data), dtype=data.dtype),
156
+ pd.Series([scalar] * len(data), dtype=data.dtype),
157
+ ]
158
+
159
+ for other in others:
160
+ if is_bool_not_implemented(data, all_arithmetic_operators):
161
+ msg = "operator '.*' not implemented for bool dtypes"
162
+ with pytest.raises(NotImplementedError, match=msg):
163
+ op(ser, other)
164
+
165
+ else:
166
+ result = op(ser, other)
167
+ expected = pd.Series(op(data, other))
168
+ tm.assert_series_equal(result, expected)
169
+
170
+
171
+ # Test generic characteristics / errors
172
+ # -----------------------------------------------------------------------------
173
+
174
+
175
+ def test_error_invalid_object(data, all_arithmetic_operators):
176
+ data, _ = data
177
+
178
+ op = all_arithmetic_operators
179
+ opa = getattr(data, op)
180
+
181
+ # 2d -> return NotImplemented
182
+ result = opa(pd.DataFrame({"A": data}))
183
+ assert result is NotImplemented
184
+
185
+ msg = r"can only perform ops with 1-d structures"
186
+ with pytest.raises(NotImplementedError, match=msg):
187
+ opa(np.arange(len(data)).reshape(-1, len(data)))
188
+
189
+
190
+ def test_error_len_mismatch(data, all_arithmetic_operators):
191
+ # operating with a list-like with non-matching length raises
192
+ data, scalar = data
193
+ op = tm.get_op_from_name(all_arithmetic_operators)
194
+
195
+ other = [scalar] * (len(data) - 1)
196
+
197
+ err = ValueError
198
+ msg = "|".join(
199
+ [
200
+ r"operands could not be broadcast together with shapes \(3,\) \(4,\)",
201
+ r"operands could not be broadcast together with shapes \(4,\) \(3,\)",
202
+ ]
203
+ )
204
+ if data.dtype.kind == "b" and all_arithmetic_operators.strip("_") in [
205
+ "sub",
206
+ "rsub",
207
+ ]:
208
+ err = TypeError
209
+ msg = (
210
+ r"numpy boolean subtract, the `\-` operator, is not supported, use "
211
+ r"the bitwise_xor, the `\^` operator, or the logical_xor function instead"
212
+ )
213
+ elif is_bool_not_implemented(data, all_arithmetic_operators):
214
+ msg = "operator '.*' not implemented for bool dtypes"
215
+ err = NotImplementedError
216
+
217
+ for other in [other, np.array(other)]:
218
+ with pytest.raises(err, match=msg):
219
+ op(data, other)
220
+
221
+ s = pd.Series(data)
222
+ with pytest.raises(err, match=msg):
223
+ op(s, other)
224
+
225
+
226
+ @pytest.mark.parametrize("op", ["__neg__", "__abs__", "__invert__"])
227
+ def test_unary_op_does_not_propagate_mask(data, op):
228
+ # https://github.com/pandas-dev/pandas/issues/39943
229
+ data, _ = data
230
+ ser = pd.Series(data)
231
+
232
+ if op == "__invert__" and data.dtype.kind == "f":
233
+ # we follow numpy in raising
234
+ msg = "ufunc 'invert' not supported for the input types"
235
+ with pytest.raises(TypeError, match=msg):
236
+ getattr(ser, op)()
237
+ with pytest.raises(TypeError, match=msg):
238
+ getattr(data, op)()
239
+ with pytest.raises(TypeError, match=msg):
240
+ # Check that this is still the numpy behavior
241
+ getattr(data._data, op)()
242
+
243
+ return
244
+
245
+ result = getattr(ser, op)()
246
+ expected = result.copy(deep=True)
247
+ ser[0] = None
248
+ tm.assert_series_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_arrow_compat.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ import pandas._testing as tm
6
+
7
+ pytestmark = pytest.mark.filterwarnings(
8
+ "ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
9
+ )
10
+
11
+ pa = pytest.importorskip("pyarrow")
12
+
13
+ from pandas.core.arrays.arrow._arrow_utils import pyarrow_array_to_numpy_and_mask
14
+
15
+ arrays = [pd.array([1, 2, 3, None], dtype=dtype) for dtype in tm.ALL_INT_EA_DTYPES]
16
+ arrays += [pd.array([0.1, 0.2, 0.3, None], dtype=dtype) for dtype in tm.FLOAT_EA_DTYPES]
17
+ arrays += [pd.array([True, False, True, None], dtype="boolean")]
18
+
19
+
20
+ @pytest.fixture(params=arrays, ids=[a.dtype.name for a in arrays])
21
+ def data(request):
22
+ """
23
+ Fixture returning parametrized array from given dtype, including integer,
24
+ float and boolean
25
+ """
26
+ return request.param
27
+
28
+
29
+ def test_arrow_array(data):
30
+ arr = pa.array(data)
31
+ expected = pa.array(
32
+ data.to_numpy(object, na_value=None),
33
+ type=pa.from_numpy_dtype(data.dtype.numpy_dtype),
34
+ )
35
+ assert arr.equals(expected)
36
+
37
+
38
+ def test_arrow_roundtrip(data):
39
+ df = pd.DataFrame({"a": data})
40
+ table = pa.table(df)
41
+ assert table.field("a").type == str(data.dtype.numpy_dtype)
42
+
43
+ result = table.to_pandas()
44
+ assert result["a"].dtype == data.dtype
45
+ tm.assert_frame_equal(result, df)
46
+
47
+
48
+ def test_dataframe_from_arrow_types_mapper():
49
+ def types_mapper(arrow_type):
50
+ if pa.types.is_boolean(arrow_type):
51
+ return pd.BooleanDtype()
52
+ elif pa.types.is_integer(arrow_type):
53
+ return pd.Int64Dtype()
54
+
55
+ bools_array = pa.array([True, None, False], type=pa.bool_())
56
+ ints_array = pa.array([1, None, 2], type=pa.int64())
57
+ small_ints_array = pa.array([-1, 0, 7], type=pa.int8())
58
+ record_batch = pa.RecordBatch.from_arrays(
59
+ [bools_array, ints_array, small_ints_array], ["bools", "ints", "small_ints"]
60
+ )
61
+ result = record_batch.to_pandas(types_mapper=types_mapper)
62
+ bools = pd.Series([True, None, False], dtype="boolean")
63
+ ints = pd.Series([1, None, 2], dtype="Int64")
64
+ small_ints = pd.Series([-1, 0, 7], dtype="Int64")
65
+ expected = pd.DataFrame({"bools": bools, "ints": ints, "small_ints": small_ints})
66
+ tm.assert_frame_equal(result, expected)
67
+
68
+
69
+ def test_arrow_load_from_zero_chunks(data):
70
+ # GH-41040
71
+
72
+ df = pd.DataFrame({"a": data[0:0]})
73
+ table = pa.table(df)
74
+ assert table.field("a").type == str(data.dtype.numpy_dtype)
75
+ table = pa.table(
76
+ [pa.chunked_array([], type=table.field("a").type)], schema=table.schema
77
+ )
78
+ result = table.to_pandas()
79
+ assert result["a"].dtype == data.dtype
80
+ tm.assert_frame_equal(result, df)
81
+
82
+
83
+ def test_arrow_from_arrow_uint():
84
+ # https://github.com/pandas-dev/pandas/issues/31896
85
+ # possible mismatch in types
86
+
87
+ dtype = pd.UInt32Dtype()
88
+ result = dtype.__from_arrow__(pa.array([1, 2, 3, 4, None], type="int64"))
89
+ expected = pd.array([1, 2, 3, 4, None], dtype="UInt32")
90
+
91
+ tm.assert_extension_array_equal(result, expected)
92
+
93
+
94
+ def test_arrow_sliced(data):
95
+ # https://github.com/pandas-dev/pandas/issues/38525
96
+
97
+ df = pd.DataFrame({"a": data})
98
+ table = pa.table(df)
99
+ result = table.slice(2, None).to_pandas()
100
+ expected = df.iloc[2:].reset_index(drop=True)
101
+ tm.assert_frame_equal(result, expected)
102
+
103
+ # no missing values
104
+ df2 = df.fillna(data[0])
105
+ table = pa.table(df2)
106
+ result = table.slice(2, None).to_pandas()
107
+ expected = df2.iloc[2:].reset_index(drop=True)
108
+ tm.assert_frame_equal(result, expected)
109
+
110
+
111
+ @pytest.fixture
112
+ def np_dtype_to_arrays(any_real_numpy_dtype):
113
+ """
114
+ Fixture returning actual and expected dtype, pandas and numpy arrays and
115
+ mask from a given numpy dtype
116
+ """
117
+ np_dtype = np.dtype(any_real_numpy_dtype)
118
+ pa_type = pa.from_numpy_dtype(np_dtype)
119
+
120
+ # None ensures the creation of a bitmask buffer.
121
+ pa_array = pa.array([0, 1, 2, None], type=pa_type)
122
+ # Since masked Arrow buffer slots are not required to contain a specific
123
+ # value, assert only the first three values of the created np.array
124
+ np_expected = np.array([0, 1, 2], dtype=np_dtype)
125
+ mask_expected = np.array([True, True, True, False])
126
+ return np_dtype, pa_array, np_expected, mask_expected
127
+
128
+
129
+ def test_pyarrow_array_to_numpy_and_mask(np_dtype_to_arrays):
130
+ """
131
+ Test conversion from pyarrow array to numpy array.
132
+
133
+ Modifies the pyarrow buffer to contain padding and offset, which are
134
+ considered valid buffers by pyarrow.
135
+
136
+ Also tests empty pyarrow arrays with non empty buffers.
137
+ See https://github.com/pandas-dev/pandas/issues/40896
138
+ """
139
+ np_dtype, pa_array, np_expected, mask_expected = np_dtype_to_arrays
140
+ data, mask = pyarrow_array_to_numpy_and_mask(pa_array, np_dtype)
141
+ tm.assert_numpy_array_equal(data[:3], np_expected)
142
+ tm.assert_numpy_array_equal(mask, mask_expected)
143
+
144
+ mask_buffer = pa_array.buffers()[0]
145
+ data_buffer = pa_array.buffers()[1]
146
+ data_buffer_bytes = pa_array.buffers()[1].to_pybytes()
147
+
148
+ # Add trailing padding to the buffer.
149
+ data_buffer_trail = pa.py_buffer(data_buffer_bytes + b"\x00")
150
+ pa_array_trail = pa.Array.from_buffers(
151
+ type=pa_array.type,
152
+ length=len(pa_array),
153
+ buffers=[mask_buffer, data_buffer_trail],
154
+ offset=pa_array.offset,
155
+ )
156
+ pa_array_trail.validate()
157
+ data, mask = pyarrow_array_to_numpy_and_mask(pa_array_trail, np_dtype)
158
+ tm.assert_numpy_array_equal(data[:3], np_expected)
159
+ tm.assert_numpy_array_equal(mask, mask_expected)
160
+
161
+ # Add offset to the buffer.
162
+ offset = b"\x00" * (pa_array.type.bit_width // 8)
163
+ data_buffer_offset = pa.py_buffer(offset + data_buffer_bytes)
164
+ mask_buffer_offset = pa.py_buffer(b"\x0E")
165
+ pa_array_offset = pa.Array.from_buffers(
166
+ type=pa_array.type,
167
+ length=len(pa_array),
168
+ buffers=[mask_buffer_offset, data_buffer_offset],
169
+ offset=pa_array.offset + 1,
170
+ )
171
+ pa_array_offset.validate()
172
+ data, mask = pyarrow_array_to_numpy_and_mask(pa_array_offset, np_dtype)
173
+ tm.assert_numpy_array_equal(data[:3], np_expected)
174
+ tm.assert_numpy_array_equal(mask, mask_expected)
175
+
176
+ # Empty array
177
+ np_expected_empty = np.array([], dtype=np_dtype)
178
+ mask_expected_empty = np.array([], dtype=np.bool_)
179
+
180
+ pa_array_offset = pa.Array.from_buffers(
181
+ type=pa_array.type,
182
+ length=0,
183
+ buffers=[mask_buffer, data_buffer],
184
+ offset=pa_array.offset,
185
+ )
186
+ pa_array_offset.validate()
187
+ data, mask = pyarrow_array_to_numpy_and_mask(pa_array_offset, np_dtype)
188
+ tm.assert_numpy_array_equal(data[:3], np_expected_empty)
189
+ tm.assert_numpy_array_equal(mask, mask_expected_empty)
190
+
191
+
192
+ @pytest.mark.parametrize(
193
+ "arr", [pa.nulls(10), pa.chunked_array([pa.nulls(4), pa.nulls(6)])]
194
+ )
195
+ def test_from_arrow_null(data, arr):
196
+ res = data.dtype.__from_arrow__(arr)
197
+ assert res.isna().all()
198
+ assert len(res) == 10
199
+
200
+
201
+ def test_from_arrow_type_error(data):
202
+ # ensure that __from_arrow__ returns a TypeError when getting a wrong
203
+ # array type
204
+
205
+ arr = pa.array(data).cast("string")
206
+ with pytest.raises(TypeError, match=None):
207
+ # we don't test the exact error message, only the fact that it raises
208
+ # a TypeError is relevant
209
+ data.dtype.__from_arrow__(arr)
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/masked/test_indexing.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ import pandas as pd
7
+
8
+
9
+ class TestSetitemValidation:
10
+ def _check_setitem_invalid(self, arr, invalid):
11
+ msg = f"Invalid value '{str(invalid)}' for dtype {arr.dtype}"
12
+ msg = re.escape(msg)
13
+ with pytest.raises(TypeError, match=msg):
14
+ arr[0] = invalid
15
+
16
+ with pytest.raises(TypeError, match=msg):
17
+ arr[:] = invalid
18
+
19
+ with pytest.raises(TypeError, match=msg):
20
+ arr[[0]] = invalid
21
+
22
+ # FIXME: don't leave commented-out
23
+ # with pytest.raises(TypeError):
24
+ # arr[[0]] = [invalid]
25
+
26
+ # with pytest.raises(TypeError):
27
+ # arr[[0]] = np.array([invalid], dtype=object)
28
+
29
+ # Series non-coercion, behavior subject to change
30
+ ser = pd.Series(arr)
31
+ with pytest.raises(TypeError, match=msg):
32
+ ser[0] = invalid
33
+ # TODO: so, so many other variants of this...
34
+
35
+ _invalid_scalars = [
36
+ 1 + 2j,
37
+ "True",
38
+ "1",
39
+ "1.0",
40
+ pd.NaT,
41
+ np.datetime64("NaT"),
42
+ np.timedelta64("NaT"),
43
+ ]
44
+
45
+ @pytest.mark.parametrize(
46
+ "invalid", _invalid_scalars + [1, 1.0, np.int64(1), np.float64(1)]
47
+ )
48
+ def test_setitem_validation_scalar_bool(self, invalid):
49
+ arr = pd.array([True, False, None], dtype="boolean")
50
+ self._check_setitem_invalid(arr, invalid)
51
+
52
+ @pytest.mark.parametrize("invalid", _invalid_scalars + [True, 1.5, np.float64(1.5)])
53
+ def test_setitem_validation_scalar_int(self, invalid, any_int_ea_dtype):
54
+ arr = pd.array([1, 2, None], dtype=any_int_ea_dtype)
55
+ self._check_setitem_invalid(arr, invalid)
56
+
57
+ @pytest.mark.parametrize("invalid", _invalid_scalars + [True])
58
+ def test_setitem_validation_scalar_float(self, invalid, float_ea_dtype):
59
+ arr = pd.array([1, 2, None], dtype=float_ea_dtype)
60
+ self._check_setitem_invalid(arr, invalid)
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/numpy_/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/numpy_/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (199 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/numpy_/__pycache__/test_indexing.cpython-310.pyc ADDED
Binary file (1.96 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/numpy_/__pycache__/test_numpy.cpython-310.pyc ADDED
Binary file (8.24 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/numpy_/test_indexing.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from pandas.core.dtypes.common import is_scalar
4
+
5
+ import pandas as pd
6
+ import pandas._testing as tm
7
+
8
+
9
+ class TestSearchsorted:
10
+ def test_searchsorted_string(self, string_dtype):
11
+ arr = pd.array(["a", "b", "c"], dtype=string_dtype)
12
+
13
+ result = arr.searchsorted("a", side="left")
14
+ assert is_scalar(result)
15
+ assert result == 0
16
+
17
+ result = arr.searchsorted("a", side="right")
18
+ assert is_scalar(result)
19
+ assert result == 1
20
+
21
+ def test_searchsorted_numeric_dtypes_scalar(self, any_real_numpy_dtype):
22
+ arr = pd.array([1, 3, 90], dtype=any_real_numpy_dtype)
23
+ result = arr.searchsorted(30)
24
+ assert is_scalar(result)
25
+ assert result == 2
26
+
27
+ result = arr.searchsorted([30])
28
+ expected = np.array([2], dtype=np.intp)
29
+ tm.assert_numpy_array_equal(result, expected)
30
+
31
+ def test_searchsorted_numeric_dtypes_vector(self, any_real_numpy_dtype):
32
+ arr = pd.array([1, 3, 90], dtype=any_real_numpy_dtype)
33
+ result = arr.searchsorted([2, 30])
34
+ expected = np.array([1, 2], dtype=np.intp)
35
+ tm.assert_numpy_array_equal(result, expected)
36
+
37
+ def test_searchsorted_sorter(self, any_real_numpy_dtype):
38
+ arr = pd.array([3, 1, 2], dtype=any_real_numpy_dtype)
39
+ result = arr.searchsorted([0, 3], sorter=np.argsort(arr))
40
+ expected = np.array([0, 2], dtype=np.intp)
41
+ tm.assert_numpy_array_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/numpy_/test_numpy.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Additional tests for NumpyExtensionArray that aren't covered by
3
+ the interface tests.
4
+ """
5
+ import numpy as np
6
+ import pytest
7
+
8
+ from pandas.core.dtypes.dtypes import NumpyEADtype
9
+
10
+ import pandas as pd
11
+ import pandas._testing as tm
12
+ from pandas.arrays import NumpyExtensionArray
13
+
14
+
15
+ @pytest.fixture(
16
+ params=[
17
+ np.array(["a", "b"], dtype=object),
18
+ np.array([0, 1], dtype=float),
19
+ np.array([0, 1], dtype=int),
20
+ np.array([0, 1 + 2j], dtype=complex),
21
+ np.array([True, False], dtype=bool),
22
+ np.array([0, 1], dtype="datetime64[ns]"),
23
+ np.array([0, 1], dtype="timedelta64[ns]"),
24
+ ]
25
+ )
26
+ def any_numpy_array(request):
27
+ """
28
+ Parametrized fixture for NumPy arrays with different dtypes.
29
+
30
+ This excludes string and bytes.
31
+ """
32
+ return request.param
33
+
34
+
35
+ # ----------------------------------------------------------------------------
36
+ # NumpyEADtype
37
+
38
+
39
+ @pytest.mark.parametrize(
40
+ "dtype, expected",
41
+ [
42
+ ("bool", True),
43
+ ("int", True),
44
+ ("uint", True),
45
+ ("float", True),
46
+ ("complex", True),
47
+ ("str", False),
48
+ ("bytes", False),
49
+ ("datetime64[ns]", False),
50
+ ("object", False),
51
+ ("void", False),
52
+ ],
53
+ )
54
+ def test_is_numeric(dtype, expected):
55
+ dtype = NumpyEADtype(dtype)
56
+ assert dtype._is_numeric is expected
57
+
58
+
59
+ @pytest.mark.parametrize(
60
+ "dtype, expected",
61
+ [
62
+ ("bool", True),
63
+ ("int", False),
64
+ ("uint", False),
65
+ ("float", False),
66
+ ("complex", False),
67
+ ("str", False),
68
+ ("bytes", False),
69
+ ("datetime64[ns]", False),
70
+ ("object", False),
71
+ ("void", False),
72
+ ],
73
+ )
74
+ def test_is_boolean(dtype, expected):
75
+ dtype = NumpyEADtype(dtype)
76
+ assert dtype._is_boolean is expected
77
+
78
+
79
+ def test_repr():
80
+ dtype = NumpyEADtype(np.dtype("int64"))
81
+ assert repr(dtype) == "NumpyEADtype('int64')"
82
+
83
+
84
+ def test_constructor_from_string():
85
+ result = NumpyEADtype.construct_from_string("int64")
86
+ expected = NumpyEADtype(np.dtype("int64"))
87
+ assert result == expected
88
+
89
+
90
+ def test_dtype_idempotent(any_numpy_dtype):
91
+ dtype = NumpyEADtype(any_numpy_dtype)
92
+
93
+ result = NumpyEADtype(dtype)
94
+ assert result == dtype
95
+
96
+
97
+ # ----------------------------------------------------------------------------
98
+ # Construction
99
+
100
+
101
+ def test_constructor_no_coercion():
102
+ with pytest.raises(ValueError, match="NumPy array"):
103
+ NumpyExtensionArray([1, 2, 3])
104
+
105
+
106
+ def test_series_constructor_with_copy():
107
+ ndarray = np.array([1, 2, 3])
108
+ ser = pd.Series(NumpyExtensionArray(ndarray), copy=True)
109
+
110
+ assert ser.values is not ndarray
111
+
112
+
113
+ def test_series_constructor_with_astype():
114
+ ndarray = np.array([1, 2, 3])
115
+ result = pd.Series(NumpyExtensionArray(ndarray), dtype="float64")
116
+ expected = pd.Series([1.0, 2.0, 3.0], dtype="float64")
117
+ tm.assert_series_equal(result, expected)
118
+
119
+
120
+ def test_from_sequence_dtype():
121
+ arr = np.array([1, 2, 3], dtype="int64")
122
+ result = NumpyExtensionArray._from_sequence(arr, dtype="uint64")
123
+ expected = NumpyExtensionArray(np.array([1, 2, 3], dtype="uint64"))
124
+ tm.assert_extension_array_equal(result, expected)
125
+
126
+
127
+ def test_constructor_copy():
128
+ arr = np.array([0, 1])
129
+ result = NumpyExtensionArray(arr, copy=True)
130
+
131
+ assert not tm.shares_memory(result, arr)
132
+
133
+
134
+ def test_constructor_with_data(any_numpy_array):
135
+ nparr = any_numpy_array
136
+ arr = NumpyExtensionArray(nparr)
137
+ assert arr.dtype.numpy_dtype == nparr.dtype
138
+
139
+
140
+ # ----------------------------------------------------------------------------
141
+ # Conversion
142
+
143
+
144
+ def test_to_numpy():
145
+ arr = NumpyExtensionArray(np.array([1, 2, 3]))
146
+ result = arr.to_numpy()
147
+ assert result is arr._ndarray
148
+
149
+ result = arr.to_numpy(copy=True)
150
+ assert result is not arr._ndarray
151
+
152
+ result = arr.to_numpy(dtype="f8")
153
+ expected = np.array([1, 2, 3], dtype="f8")
154
+ tm.assert_numpy_array_equal(result, expected)
155
+
156
+
157
+ # ----------------------------------------------------------------------------
158
+ # Setitem
159
+
160
+
161
+ def test_setitem_series():
162
+ ser = pd.Series([1, 2, 3])
163
+ ser.array[0] = 10
164
+ expected = pd.Series([10, 2, 3])
165
+ tm.assert_series_equal(ser, expected)
166
+
167
+
168
+ def test_setitem(any_numpy_array):
169
+ nparr = any_numpy_array
170
+ arr = NumpyExtensionArray(nparr, copy=True)
171
+
172
+ arr[0] = arr[1]
173
+ nparr[0] = nparr[1]
174
+
175
+ tm.assert_numpy_array_equal(arr.to_numpy(), nparr)
176
+
177
+
178
+ # ----------------------------------------------------------------------------
179
+ # Reductions
180
+
181
+
182
+ def test_bad_reduce_raises():
183
+ arr = np.array([1, 2, 3], dtype="int64")
184
+ arr = NumpyExtensionArray(arr)
185
+ msg = "cannot perform not_a_method with type int"
186
+ with pytest.raises(TypeError, match=msg):
187
+ arr._reduce(msg)
188
+
189
+
190
+ def test_validate_reduction_keyword_args():
191
+ arr = NumpyExtensionArray(np.array([1, 2, 3]))
192
+ msg = "the 'keepdims' parameter is not supported .*all"
193
+ with pytest.raises(ValueError, match=msg):
194
+ arr.all(keepdims=True)
195
+
196
+
197
+ def test_np_max_nested_tuples():
198
+ # case where checking in ufunc.nout works while checking for tuples
199
+ # does not
200
+ vals = [
201
+ (("j", "k"), ("l", "m")),
202
+ (("l", "m"), ("o", "p")),
203
+ (("o", "p"), ("j", "k")),
204
+ ]
205
+ ser = pd.Series(vals)
206
+ arr = ser.array
207
+
208
+ assert arr.max() is arr[2]
209
+ assert ser.max() is arr[2]
210
+
211
+ result = np.maximum.reduce(arr)
212
+ assert result == arr[2]
213
+
214
+ result = np.maximum.reduce(ser)
215
+ assert result == arr[2]
216
+
217
+
218
+ def test_np_reduce_2d():
219
+ raw = np.arange(12).reshape(4, 3)
220
+ arr = NumpyExtensionArray(raw)
221
+
222
+ res = np.maximum.reduce(arr, axis=0)
223
+ tm.assert_extension_array_equal(res, arr[-1])
224
+
225
+ alt = arr.max(axis=0)
226
+ tm.assert_extension_array_equal(alt, arr[-1])
227
+
228
+
229
+ # ----------------------------------------------------------------------------
230
+ # Ops
231
+
232
+
233
+ @pytest.mark.parametrize("ufunc", [np.abs, np.negative, np.positive])
234
+ def test_ufunc_unary(ufunc):
235
+ arr = NumpyExtensionArray(np.array([-1.0, 0.0, 1.0]))
236
+ result = ufunc(arr)
237
+ expected = NumpyExtensionArray(ufunc(arr._ndarray))
238
+ tm.assert_extension_array_equal(result, expected)
239
+
240
+ # same thing but with the 'out' keyword
241
+ out = NumpyExtensionArray(np.array([-9.0, -9.0, -9.0]))
242
+ ufunc(arr, out=out)
243
+ tm.assert_extension_array_equal(out, expected)
244
+
245
+
246
+ def test_ufunc():
247
+ arr = NumpyExtensionArray(np.array([-1.0, 0.0, 1.0]))
248
+
249
+ r1, r2 = np.divmod(arr, np.add(arr, 2))
250
+ e1, e2 = np.divmod(arr._ndarray, np.add(arr._ndarray, 2))
251
+ e1 = NumpyExtensionArray(e1)
252
+ e2 = NumpyExtensionArray(e2)
253
+ tm.assert_extension_array_equal(r1, e1)
254
+ tm.assert_extension_array_equal(r2, e2)
255
+
256
+
257
+ def test_basic_binop():
258
+ # Just a basic smoke test. The EA interface tests exercise this
259
+ # more thoroughly.
260
+ x = NumpyExtensionArray(np.array([1, 2, 3]))
261
+ result = x + x
262
+ expected = NumpyExtensionArray(np.array([2, 4, 6]))
263
+ tm.assert_extension_array_equal(result, expected)
264
+
265
+
266
+ @pytest.mark.parametrize("dtype", [None, object])
267
+ def test_setitem_object_typecode(dtype):
268
+ arr = NumpyExtensionArray(np.array(["a", "b", "c"], dtype=dtype))
269
+ arr[0] = "t"
270
+ expected = NumpyExtensionArray(np.array(["t", "b", "c"], dtype=dtype))
271
+ tm.assert_extension_array_equal(arr, expected)
272
+
273
+
274
+ def test_setitem_no_coercion():
275
+ # https://github.com/pandas-dev/pandas/issues/28150
276
+ arr = NumpyExtensionArray(np.array([1, 2, 3]))
277
+ with pytest.raises(ValueError, match="int"):
278
+ arr[0] = "a"
279
+
280
+ # With a value that we do coerce, check that we coerce the value
281
+ # and not the underlying array.
282
+ arr[0] = 2.5
283
+ assert isinstance(arr[0], (int, np.integer)), type(arr[0])
284
+
285
+
286
+ def test_setitem_preserves_views():
287
+ # GH#28150, see also extension test of the same name
288
+ arr = NumpyExtensionArray(np.array([1, 2, 3]))
289
+ view1 = arr.view()
290
+ view2 = arr[:]
291
+ view3 = np.asarray(arr)
292
+
293
+ arr[0] = 9
294
+ assert view1[0] == 9
295
+ assert view2[0] == 9
296
+ assert view3[0] == 9
297
+
298
+ arr[-1] = 2.5
299
+ view1[-1] = 5
300
+ assert arr[-1] == 5
301
+
302
+
303
+ @pytest.mark.parametrize("dtype", [np.int64, np.uint64])
304
+ def test_quantile_empty(dtype):
305
+ # we should get back np.nans, not -1s
306
+ arr = NumpyExtensionArray(np.array([], dtype=dtype))
307
+ idx = pd.Index([0.0, 0.5])
308
+
309
+ result = arr._quantile(idx, interpolation="linear")
310
+ expected = NumpyExtensionArray(np.array([np.nan, np.nan]))
311
+ tm.assert_extension_array_equal(result, expected)
312
+
313
+
314
+ def test_factorize_unsigned():
315
+ # don't raise when calling factorize on unsigned int NumpyExtensionArray
316
+ arr = np.array([1, 2, 3], dtype=np.uint64)
317
+ obj = NumpyExtensionArray(arr)
318
+
319
+ res_codes, res_unique = obj.factorize()
320
+ exp_codes, exp_unique = pd.factorize(arr)
321
+
322
+ tm.assert_numpy_array_equal(res_codes, exp_codes)
323
+
324
+ tm.assert_extension_array_equal(res_unique, NumpyExtensionArray(exp_unique))
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/period/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/period/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (199 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/period/__pycache__/test_arrow_compat.cpython-310.pyc ADDED
Binary file (3.69 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/period/__pycache__/test_astype.cpython-310.pyc ADDED
Binary file (2.35 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/period/__pycache__/test_constructors.cpython-310.pyc ADDED
Binary file (5.38 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/period/__pycache__/test_reductions.cpython-310.pyc ADDED
Binary file (1.22 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/period/test_arrow_compat.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from pandas.compat.pyarrow import pa_version_under10p1
4
+
5
+ from pandas.core.dtypes.dtypes import PeriodDtype
6
+
7
+ import pandas as pd
8
+ import pandas._testing as tm
9
+ from pandas.core.arrays import (
10
+ PeriodArray,
11
+ period_array,
12
+ )
13
+
14
+ pytestmark = pytest.mark.filterwarnings(
15
+ "ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
16
+ )
17
+
18
+
19
+ pa = pytest.importorskip("pyarrow")
20
+
21
+
22
+ def test_arrow_extension_type():
23
+ from pandas.core.arrays.arrow.extension_types import ArrowPeriodType
24
+
25
+ p1 = ArrowPeriodType("D")
26
+ p2 = ArrowPeriodType("D")
27
+ p3 = ArrowPeriodType("M")
28
+
29
+ assert p1.freq == "D"
30
+ assert p1 == p2
31
+ assert p1 != p3
32
+ assert hash(p1) == hash(p2)
33
+ assert hash(p1) != hash(p3)
34
+
35
+
36
+ @pytest.mark.xfail(not pa_version_under10p1, reason="Wrong behavior with pyarrow 10")
37
+ @pytest.mark.parametrize(
38
+ "data, freq",
39
+ [
40
+ (pd.date_range("2017", periods=3), "D"),
41
+ (pd.date_range("2017", periods=3, freq="YE"), "Y-DEC"),
42
+ ],
43
+ )
44
+ def test_arrow_array(data, freq):
45
+ from pandas.core.arrays.arrow.extension_types import ArrowPeriodType
46
+
47
+ periods = period_array(data, freq=freq)
48
+ result = pa.array(periods)
49
+ assert isinstance(result.type, ArrowPeriodType)
50
+ assert result.type.freq == freq
51
+ expected = pa.array(periods.asi8, type="int64")
52
+ assert result.storage.equals(expected)
53
+
54
+ # convert to its storage type
55
+ result = pa.array(periods, type=pa.int64())
56
+ assert result.equals(expected)
57
+
58
+ # unsupported conversions
59
+ msg = "Not supported to convert PeriodArray to 'double' type"
60
+ with pytest.raises(TypeError, match=msg):
61
+ pa.array(periods, type="float64")
62
+
63
+ with pytest.raises(TypeError, match="different 'freq'"):
64
+ pa.array(periods, type=ArrowPeriodType("T"))
65
+
66
+
67
+ def test_arrow_array_missing():
68
+ from pandas.core.arrays.arrow.extension_types import ArrowPeriodType
69
+
70
+ arr = PeriodArray([1, 2, 3], dtype="period[D]")
71
+ arr[1] = pd.NaT
72
+
73
+ result = pa.array(arr)
74
+ assert isinstance(result.type, ArrowPeriodType)
75
+ assert result.type.freq == "D"
76
+ expected = pa.array([1, None, 3], type="int64")
77
+ assert result.storage.equals(expected)
78
+
79
+
80
+ def test_arrow_table_roundtrip():
81
+ from pandas.core.arrays.arrow.extension_types import ArrowPeriodType
82
+
83
+ arr = PeriodArray([1, 2, 3], dtype="period[D]")
84
+ arr[1] = pd.NaT
85
+ df = pd.DataFrame({"a": arr})
86
+
87
+ table = pa.table(df)
88
+ assert isinstance(table.field("a").type, ArrowPeriodType)
89
+ result = table.to_pandas()
90
+ assert isinstance(result["a"].dtype, PeriodDtype)
91
+ tm.assert_frame_equal(result, df)
92
+
93
+ table2 = pa.concat_tables([table, table])
94
+ result = table2.to_pandas()
95
+ expected = pd.concat([df, df], ignore_index=True)
96
+ tm.assert_frame_equal(result, expected)
97
+
98
+
99
+ def test_arrow_load_from_zero_chunks():
100
+ # GH-41040
101
+
102
+ from pandas.core.arrays.arrow.extension_types import ArrowPeriodType
103
+
104
+ arr = PeriodArray([], dtype="period[D]")
105
+ df = pd.DataFrame({"a": arr})
106
+
107
+ table = pa.table(df)
108
+ assert isinstance(table.field("a").type, ArrowPeriodType)
109
+ table = pa.table(
110
+ [pa.chunked_array([], type=table.column(0).type)], schema=table.schema
111
+ )
112
+
113
+ result = table.to_pandas()
114
+ assert isinstance(result["a"].dtype, PeriodDtype)
115
+ tm.assert_frame_equal(result, df)
116
+
117
+
118
+ def test_arrow_table_roundtrip_without_metadata():
119
+ arr = PeriodArray([1, 2, 3], dtype="period[h]")
120
+ arr[1] = pd.NaT
121
+ df = pd.DataFrame({"a": arr})
122
+
123
+ table = pa.table(df)
124
+ # remove the metadata
125
+ table = table.replace_schema_metadata()
126
+ assert table.schema.metadata is None
127
+
128
+ result = table.to_pandas()
129
+ assert isinstance(result["a"].dtype, PeriodDtype)
130
+ tm.assert_frame_equal(result, df)
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/period/test_astype.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas.core.dtypes.dtypes import PeriodDtype
5
+
6
+ import pandas as pd
7
+ import pandas._testing as tm
8
+ from pandas.core.arrays import period_array
9
+
10
+
11
+ @pytest.mark.parametrize("dtype", [int, np.int32, np.int64, "uint32", "uint64"])
12
+ def test_astype_int(dtype):
13
+ # We choose to ignore the sign and size of integers for
14
+ # Period/Datetime/Timedelta astype
15
+ arr = period_array(["2000", "2001", None], freq="D")
16
+
17
+ if np.dtype(dtype) != np.int64:
18
+ with pytest.raises(TypeError, match=r"Do obj.astype\('int64'\)"):
19
+ arr.astype(dtype)
20
+ return
21
+
22
+ result = arr.astype(dtype)
23
+ expected = arr._ndarray.view("i8")
24
+ tm.assert_numpy_array_equal(result, expected)
25
+
26
+
27
+ def test_astype_copies():
28
+ arr = period_array(["2000", "2001", None], freq="D")
29
+ result = arr.astype(np.int64, copy=False)
30
+
31
+ # Add the `.base`, since we now use `.asi8` which returns a view.
32
+ # We could maybe override it in PeriodArray to return ._ndarray directly.
33
+ assert result.base is arr._ndarray
34
+
35
+ result = arr.astype(np.int64, copy=True)
36
+ assert result is not arr._ndarray
37
+ tm.assert_numpy_array_equal(result, arr._ndarray.view("i8"))
38
+
39
+
40
+ def test_astype_categorical():
41
+ arr = period_array(["2000", "2001", "2001", None], freq="D")
42
+ result = arr.astype("category")
43
+ categories = pd.PeriodIndex(["2000", "2001"], freq="D")
44
+ expected = pd.Categorical.from_codes([0, 1, 1, -1], categories=categories)
45
+ tm.assert_categorical_equal(result, expected)
46
+
47
+
48
+ def test_astype_period():
49
+ arr = period_array(["2000", "2001", None], freq="D")
50
+ result = arr.astype(PeriodDtype("M"))
51
+ expected = period_array(["2000", "2001", None], freq="M")
52
+ tm.assert_period_array_equal(result, expected)
53
+
54
+
55
+ @pytest.mark.parametrize("dtype", ["datetime64[ns]", "timedelta64[ns]"])
56
+ def test_astype_datetime(dtype):
57
+ arr = period_array(["2000", "2001", None], freq="D")
58
+ # slice off the [ns] so that the regex matches.
59
+ if dtype == "timedelta64[ns]":
60
+ with pytest.raises(TypeError, match=dtype[:-4]):
61
+ arr.astype(dtype)
62
+
63
+ else:
64
+ # GH#45038 allow period->dt64 because we allow dt64->period
65
+ result = arr.astype(dtype)
66
+ expected = pd.DatetimeIndex(["2000", "2001", pd.NaT], dtype=dtype)._data
67
+ tm.assert_datetime_array_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/period/test_constructors.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas._libs.tslibs import iNaT
5
+ from pandas._libs.tslibs.offsets import MonthEnd
6
+ from pandas._libs.tslibs.period import IncompatibleFrequency
7
+
8
+ import pandas as pd
9
+ import pandas._testing as tm
10
+ from pandas.core.arrays import (
11
+ PeriodArray,
12
+ period_array,
13
+ )
14
+
15
+
16
+ @pytest.mark.parametrize(
17
+ "data, freq, expected",
18
+ [
19
+ ([pd.Period("2017", "D")], None, [17167]),
20
+ ([pd.Period("2017", "D")], "D", [17167]),
21
+ ([2017], "D", [17167]),
22
+ (["2017"], "D", [17167]),
23
+ ([pd.Period("2017", "D")], pd.tseries.offsets.Day(), [17167]),
24
+ ([pd.Period("2017", "D"), None], None, [17167, iNaT]),
25
+ (pd.Series(pd.date_range("2017", periods=3)), None, [17167, 17168, 17169]),
26
+ (pd.date_range("2017", periods=3), None, [17167, 17168, 17169]),
27
+ (pd.period_range("2017", periods=4, freq="Q"), None, [188, 189, 190, 191]),
28
+ ],
29
+ )
30
+ def test_period_array_ok(data, freq, expected):
31
+ result = period_array(data, freq=freq).asi8
32
+ expected = np.asarray(expected, dtype=np.int64)
33
+ tm.assert_numpy_array_equal(result, expected)
34
+
35
+
36
+ def test_period_array_readonly_object():
37
+ # https://github.com/pandas-dev/pandas/issues/25403
38
+ pa = period_array([pd.Period("2019-01-01")])
39
+ arr = np.asarray(pa, dtype="object")
40
+ arr.setflags(write=False)
41
+
42
+ result = period_array(arr)
43
+ tm.assert_period_array_equal(result, pa)
44
+
45
+ result = pd.Series(arr)
46
+ tm.assert_series_equal(result, pd.Series(pa))
47
+
48
+ result = pd.DataFrame({"A": arr})
49
+ tm.assert_frame_equal(result, pd.DataFrame({"A": pa}))
50
+
51
+
52
+ def test_from_datetime64_freq_changes():
53
+ # https://github.com/pandas-dev/pandas/issues/23438
54
+ arr = pd.date_range("2017", periods=3, freq="D")
55
+ result = PeriodArray._from_datetime64(arr, freq="M")
56
+ expected = period_array(["2017-01-01", "2017-01-01", "2017-01-01"], freq="M")
57
+ tm.assert_period_array_equal(result, expected)
58
+
59
+
60
+ @pytest.mark.parametrize("freq", ["2M", MonthEnd(2)])
61
+ def test_from_datetime64_freq_2M(freq):
62
+ arr = np.array(
63
+ ["2020-01-01T00:00:00", "2020-01-02T00:00:00"], dtype="datetime64[ns]"
64
+ )
65
+ result = PeriodArray._from_datetime64(arr, freq)
66
+ expected = period_array(["2020-01", "2020-01"], freq=freq)
67
+ tm.assert_period_array_equal(result, expected)
68
+
69
+
70
+ @pytest.mark.parametrize(
71
+ "data, freq, msg",
72
+ [
73
+ (
74
+ [pd.Period("2017", "D"), pd.Period("2017", "Y")],
75
+ None,
76
+ "Input has different freq",
77
+ ),
78
+ ([pd.Period("2017", "D")], "Y", "Input has different freq"),
79
+ ],
80
+ )
81
+ def test_period_array_raises(data, freq, msg):
82
+ with pytest.raises(IncompatibleFrequency, match=msg):
83
+ period_array(data, freq)
84
+
85
+
86
+ def test_period_array_non_period_series_raies():
87
+ ser = pd.Series([1, 2, 3])
88
+ with pytest.raises(TypeError, match="dtype"):
89
+ PeriodArray(ser, dtype="period[D]")
90
+
91
+
92
+ def test_period_array_freq_mismatch():
93
+ arr = period_array(["2000", "2001"], freq="D")
94
+ with pytest.raises(IncompatibleFrequency, match="freq"):
95
+ PeriodArray(arr, dtype="period[M]")
96
+
97
+ dtype = pd.PeriodDtype(pd.tseries.offsets.MonthEnd())
98
+ with pytest.raises(IncompatibleFrequency, match="freq"):
99
+ PeriodArray(arr, dtype=dtype)
100
+
101
+
102
+ def test_from_sequence_disallows_i8():
103
+ arr = period_array(["2000", "2001"], freq="D")
104
+
105
+ msg = str(arr[0].ordinal)
106
+ with pytest.raises(TypeError, match=msg):
107
+ PeriodArray._from_sequence(arr.asi8, dtype=arr.dtype)
108
+
109
+ with pytest.raises(TypeError, match=msg):
110
+ PeriodArray._from_sequence(list(arr.asi8), dtype=arr.dtype)
111
+
112
+
113
+ def test_from_td64nat_sequence_raises():
114
+ # GH#44507
115
+ td = pd.NaT.to_numpy("m8[ns]")
116
+
117
+ dtype = pd.period_range("2005-01-01", periods=3, freq="D").dtype
118
+
119
+ arr = np.array([None], dtype=object)
120
+ arr[0] = td
121
+
122
+ msg = "Value must be Period, string, integer, or datetime"
123
+ with pytest.raises(ValueError, match=msg):
124
+ PeriodArray._from_sequence(arr, dtype=dtype)
125
+
126
+ with pytest.raises(ValueError, match=msg):
127
+ pd.PeriodIndex(arr, dtype=dtype)
128
+ with pytest.raises(ValueError, match=msg):
129
+ pd.Index(arr, dtype=dtype)
130
+ with pytest.raises(ValueError, match=msg):
131
+ pd.array(arr, dtype=dtype)
132
+ with pytest.raises(ValueError, match=msg):
133
+ pd.Series(arr, dtype=dtype)
134
+ with pytest.raises(ValueError, match=msg):
135
+ pd.DataFrame(arr, dtype=dtype)
136
+
137
+
138
+ def test_freq_deprecated():
139
+ # GH#52462
140
+ data = np.arange(5).astype(np.int64)
141
+ msg = "The 'freq' keyword in the PeriodArray constructor is deprecated"
142
+ with tm.assert_produces_warning(FutureWarning, match=msg):
143
+ res = PeriodArray(data, freq="M")
144
+
145
+ expected = PeriodArray(data, dtype="period[M]")
146
+ tm.assert_equal(res, expected)
147
+
148
+
149
+ def test_period_array_from_datetime64():
150
+ arr = np.array(
151
+ ["2020-01-01T00:00:00", "2020-02-02T00:00:00"], dtype="datetime64[ns]"
152
+ )
153
+ result = PeriodArray._from_datetime64(arr, freq=MonthEnd(2))
154
+
155
+ expected = period_array(["2020-01-01", "2020-02-01"], freq=MonthEnd(2))
156
+ tm.assert_period_array_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/period/test_reductions.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import pandas as pd
4
+ from pandas.core.arrays import period_array
5
+
6
+
7
+ class TestReductions:
8
+ def test_min_max(self):
9
+ arr = period_array(
10
+ [
11
+ "2000-01-03",
12
+ "2000-01-03",
13
+ "NaT",
14
+ "2000-01-02",
15
+ "2000-01-05",
16
+ "2000-01-04",
17
+ ],
18
+ freq="D",
19
+ )
20
+
21
+ result = arr.min()
22
+ expected = pd.Period("2000-01-02", freq="D")
23
+ assert result == expected
24
+
25
+ result = arr.max()
26
+ expected = pd.Period("2000-01-05", freq="D")
27
+ assert result == expected
28
+
29
+ result = arr.min(skipna=False)
30
+ assert result is pd.NaT
31
+
32
+ result = arr.max(skipna=False)
33
+ assert result is pd.NaT
34
+
35
+ @pytest.mark.parametrize("skipna", [True, False])
36
+ def test_min_max_empty(self, skipna):
37
+ arr = period_array([], freq="D")
38
+ result = arr.min(skipna=skipna)
39
+ assert result is pd.NaT
40
+
41
+ result = arr.max(skipna=skipna)
42
+ assert result is pd.NaT
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/string_/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/string_/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (200 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/string_/__pycache__/test_string.cpython-310.pyc ADDED
Binary file (19.9 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/string_/__pycache__/test_string_arrow.cpython-310.pyc ADDED
Binary file (8.1 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/string_/test_string.py ADDED
@@ -0,0 +1,703 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This module tests the functionality of StringArray and ArrowStringArray.
3
+ Tests for the str accessors are in pandas/tests/strings/test_string_array.py
4
+ """
5
+ import operator
6
+
7
+ import numpy as np
8
+ import pytest
9
+
10
+ from pandas.compat.pyarrow import pa_version_under12p0
11
+
12
+ from pandas.core.dtypes.common import is_dtype_equal
13
+
14
+ import pandas as pd
15
+ import pandas._testing as tm
16
+ from pandas.core.arrays.string_arrow import (
17
+ ArrowStringArray,
18
+ ArrowStringArrayNumpySemantics,
19
+ )
20
+
21
+
22
+ def na_val(dtype):
23
+ if dtype.storage == "pyarrow_numpy":
24
+ return np.nan
25
+ else:
26
+ return pd.NA
27
+
28
+
29
+ @pytest.fixture
30
+ def dtype(string_storage):
31
+ """Fixture giving StringDtype from parametrized 'string_storage'"""
32
+ return pd.StringDtype(storage=string_storage)
33
+
34
+
35
+ @pytest.fixture
36
+ def cls(dtype):
37
+ """Fixture giving array type from parametrized 'dtype'"""
38
+ return dtype.construct_array_type()
39
+
40
+
41
+ def test_repr(dtype):
42
+ df = pd.DataFrame({"A": pd.array(["a", pd.NA, "b"], dtype=dtype)})
43
+ if dtype.storage == "pyarrow_numpy":
44
+ expected = " A\n0 a\n1 NaN\n2 b"
45
+ else:
46
+ expected = " A\n0 a\n1 <NA>\n2 b"
47
+ assert repr(df) == expected
48
+
49
+ if dtype.storage == "pyarrow_numpy":
50
+ expected = "0 a\n1 NaN\n2 b\nName: A, dtype: string"
51
+ else:
52
+ expected = "0 a\n1 <NA>\n2 b\nName: A, dtype: string"
53
+ assert repr(df.A) == expected
54
+
55
+ if dtype.storage == "pyarrow":
56
+ arr_name = "ArrowStringArray"
57
+ expected = f"<{arr_name}>\n['a', <NA>, 'b']\nLength: 3, dtype: string"
58
+ elif dtype.storage == "pyarrow_numpy":
59
+ arr_name = "ArrowStringArrayNumpySemantics"
60
+ expected = f"<{arr_name}>\n['a', nan, 'b']\nLength: 3, dtype: string"
61
+ else:
62
+ arr_name = "StringArray"
63
+ expected = f"<{arr_name}>\n['a', <NA>, 'b']\nLength: 3, dtype: string"
64
+ assert repr(df.A.array) == expected
65
+
66
+
67
+ def test_none_to_nan(cls, dtype):
68
+ a = cls._from_sequence(["a", None, "b"], dtype=dtype)
69
+ assert a[1] is not None
70
+ assert a[1] is na_val(a.dtype)
71
+
72
+
73
+ def test_setitem_validates(cls, dtype):
74
+ arr = cls._from_sequence(["a", "b"], dtype=dtype)
75
+
76
+ if cls is pd.arrays.StringArray:
77
+ msg = "Cannot set non-string value '10' into a StringArray."
78
+ else:
79
+ msg = "Scalar must be NA or str"
80
+ with pytest.raises(TypeError, match=msg):
81
+ arr[0] = 10
82
+
83
+ if cls is pd.arrays.StringArray:
84
+ msg = "Must provide strings."
85
+ else:
86
+ msg = "Scalar must be NA or str"
87
+ with pytest.raises(TypeError, match=msg):
88
+ arr[:] = np.array([1, 2])
89
+
90
+
91
+ def test_setitem_with_scalar_string(dtype):
92
+ # is_float_dtype considers some strings, like 'd', to be floats
93
+ # which can cause issues.
94
+ arr = pd.array(["a", "c"], dtype=dtype)
95
+ arr[0] = "d"
96
+ expected = pd.array(["d", "c"], dtype=dtype)
97
+ tm.assert_extension_array_equal(arr, expected)
98
+
99
+
100
+ def test_setitem_with_array_with_missing(dtype):
101
+ # ensure that when setting with an array of values, we don't mutate the
102
+ # array `value` in __setitem__(self, key, value)
103
+ arr = pd.array(["a", "b", "c"], dtype=dtype)
104
+ value = np.array(["A", None])
105
+ value_orig = value.copy()
106
+ arr[[0, 1]] = value
107
+
108
+ expected = pd.array(["A", pd.NA, "c"], dtype=dtype)
109
+ tm.assert_extension_array_equal(arr, expected)
110
+ tm.assert_numpy_array_equal(value, value_orig)
111
+
112
+
113
+ def test_astype_roundtrip(dtype):
114
+ ser = pd.Series(pd.date_range("2000", periods=12))
115
+ ser[0] = None
116
+
117
+ casted = ser.astype(dtype)
118
+ assert is_dtype_equal(casted.dtype, dtype)
119
+
120
+ result = casted.astype("datetime64[ns]")
121
+ tm.assert_series_equal(result, ser)
122
+
123
+ # GH#38509 same thing for timedelta64
124
+ ser2 = ser - ser.iloc[-1]
125
+ casted2 = ser2.astype(dtype)
126
+ assert is_dtype_equal(casted2.dtype, dtype)
127
+
128
+ result2 = casted2.astype(ser2.dtype)
129
+ tm.assert_series_equal(result2, ser2)
130
+
131
+
132
+ def test_add(dtype):
133
+ a = pd.Series(["a", "b", "c", None, None], dtype=dtype)
134
+ b = pd.Series(["x", "y", None, "z", None], dtype=dtype)
135
+
136
+ result = a + b
137
+ expected = pd.Series(["ax", "by", None, None, None], dtype=dtype)
138
+ tm.assert_series_equal(result, expected)
139
+
140
+ result = a.add(b)
141
+ tm.assert_series_equal(result, expected)
142
+
143
+ result = a.radd(b)
144
+ expected = pd.Series(["xa", "yb", None, None, None], dtype=dtype)
145
+ tm.assert_series_equal(result, expected)
146
+
147
+ result = a.add(b, fill_value="-")
148
+ expected = pd.Series(["ax", "by", "c-", "-z", None], dtype=dtype)
149
+ tm.assert_series_equal(result, expected)
150
+
151
+
152
+ def test_add_2d(dtype, request, arrow_string_storage):
153
+ if dtype.storage in arrow_string_storage:
154
+ reason = "Failed: DID NOT RAISE <class 'ValueError'>"
155
+ mark = pytest.mark.xfail(raises=None, reason=reason)
156
+ request.applymarker(mark)
157
+
158
+ a = pd.array(["a", "b", "c"], dtype=dtype)
159
+ b = np.array([["a", "b", "c"]], dtype=object)
160
+ with pytest.raises(ValueError, match="3 != 1"):
161
+ a + b
162
+
163
+ s = pd.Series(a)
164
+ with pytest.raises(ValueError, match="3 != 1"):
165
+ s + b
166
+
167
+
168
+ def test_add_sequence(dtype):
169
+ a = pd.array(["a", "b", None, None], dtype=dtype)
170
+ other = ["x", None, "y", None]
171
+
172
+ result = a + other
173
+ expected = pd.array(["ax", None, None, None], dtype=dtype)
174
+ tm.assert_extension_array_equal(result, expected)
175
+
176
+ result = other + a
177
+ expected = pd.array(["xa", None, None, None], dtype=dtype)
178
+ tm.assert_extension_array_equal(result, expected)
179
+
180
+
181
+ def test_mul(dtype):
182
+ a = pd.array(["a", "b", None], dtype=dtype)
183
+ result = a * 2
184
+ expected = pd.array(["aa", "bb", None], dtype=dtype)
185
+ tm.assert_extension_array_equal(result, expected)
186
+
187
+ result = 2 * a
188
+ tm.assert_extension_array_equal(result, expected)
189
+
190
+
191
+ @pytest.mark.xfail(reason="GH-28527")
192
+ def test_add_strings(dtype):
193
+ arr = pd.array(["a", "b", "c", "d"], dtype=dtype)
194
+ df = pd.DataFrame([["t", "y", "v", "w"]], dtype=object)
195
+ assert arr.__add__(df) is NotImplemented
196
+
197
+ result = arr + df
198
+ expected = pd.DataFrame([["at", "by", "cv", "dw"]]).astype(dtype)
199
+ tm.assert_frame_equal(result, expected)
200
+
201
+ result = df + arr
202
+ expected = pd.DataFrame([["ta", "yb", "vc", "wd"]]).astype(dtype)
203
+ tm.assert_frame_equal(result, expected)
204
+
205
+
206
+ @pytest.mark.xfail(reason="GH-28527")
207
+ def test_add_frame(dtype):
208
+ arr = pd.array(["a", "b", np.nan, np.nan], dtype=dtype)
209
+ df = pd.DataFrame([["x", np.nan, "y", np.nan]])
210
+
211
+ assert arr.__add__(df) is NotImplemented
212
+
213
+ result = arr + df
214
+ expected = pd.DataFrame([["ax", np.nan, np.nan, np.nan]]).astype(dtype)
215
+ tm.assert_frame_equal(result, expected)
216
+
217
+ result = df + arr
218
+ expected = pd.DataFrame([["xa", np.nan, np.nan, np.nan]]).astype(dtype)
219
+ tm.assert_frame_equal(result, expected)
220
+
221
+
222
+ def test_comparison_methods_scalar(comparison_op, dtype):
223
+ op_name = f"__{comparison_op.__name__}__"
224
+ a = pd.array(["a", None, "c"], dtype=dtype)
225
+ other = "a"
226
+ result = getattr(a, op_name)(other)
227
+ if dtype.storage == "pyarrow_numpy":
228
+ expected = np.array([getattr(item, op_name)(other) for item in a])
229
+ if comparison_op == operator.ne:
230
+ expected[1] = True
231
+ else:
232
+ expected[1] = False
233
+ tm.assert_numpy_array_equal(result, expected.astype(np.bool_))
234
+ else:
235
+ expected_dtype = "boolean[pyarrow]" if dtype.storage == "pyarrow" else "boolean"
236
+ expected = np.array([getattr(item, op_name)(other) for item in a], dtype=object)
237
+ expected = pd.array(expected, dtype=expected_dtype)
238
+ tm.assert_extension_array_equal(result, expected)
239
+
240
+
241
+ def test_comparison_methods_scalar_pd_na(comparison_op, dtype):
242
+ op_name = f"__{comparison_op.__name__}__"
243
+ a = pd.array(["a", None, "c"], dtype=dtype)
244
+ result = getattr(a, op_name)(pd.NA)
245
+
246
+ if dtype.storage == "pyarrow_numpy":
247
+ if operator.ne == comparison_op:
248
+ expected = np.array([True, True, True])
249
+ else:
250
+ expected = np.array([False, False, False])
251
+ tm.assert_numpy_array_equal(result, expected)
252
+ else:
253
+ expected_dtype = "boolean[pyarrow]" if dtype.storage == "pyarrow" else "boolean"
254
+ expected = pd.array([None, None, None], dtype=expected_dtype)
255
+ tm.assert_extension_array_equal(result, expected)
256
+ tm.assert_extension_array_equal(result, expected)
257
+
258
+
259
+ def test_comparison_methods_scalar_not_string(comparison_op, dtype):
260
+ op_name = f"__{comparison_op.__name__}__"
261
+
262
+ a = pd.array(["a", None, "c"], dtype=dtype)
263
+ other = 42
264
+
265
+ if op_name not in ["__eq__", "__ne__"]:
266
+ with pytest.raises(TypeError, match="Invalid comparison|not supported between"):
267
+ getattr(a, op_name)(other)
268
+
269
+ return
270
+
271
+ result = getattr(a, op_name)(other)
272
+
273
+ if dtype.storage == "pyarrow_numpy":
274
+ expected_data = {
275
+ "__eq__": [False, False, False],
276
+ "__ne__": [True, True, True],
277
+ }[op_name]
278
+ expected = np.array(expected_data)
279
+ tm.assert_numpy_array_equal(result, expected)
280
+ else:
281
+ expected_data = {"__eq__": [False, None, False], "__ne__": [True, None, True]}[
282
+ op_name
283
+ ]
284
+ expected_dtype = "boolean[pyarrow]" if dtype.storage == "pyarrow" else "boolean"
285
+ expected = pd.array(expected_data, dtype=expected_dtype)
286
+ tm.assert_extension_array_equal(result, expected)
287
+
288
+
289
+ def test_comparison_methods_array(comparison_op, dtype):
290
+ op_name = f"__{comparison_op.__name__}__"
291
+
292
+ a = pd.array(["a", None, "c"], dtype=dtype)
293
+ other = [None, None, "c"]
294
+ result = getattr(a, op_name)(other)
295
+ if dtype.storage == "pyarrow_numpy":
296
+ if operator.ne == comparison_op:
297
+ expected = np.array([True, True, False])
298
+ else:
299
+ expected = np.array([False, False, False])
300
+ expected[-1] = getattr(other[-1], op_name)(a[-1])
301
+ tm.assert_numpy_array_equal(result, expected)
302
+
303
+ result = getattr(a, op_name)(pd.NA)
304
+ if operator.ne == comparison_op:
305
+ expected = np.array([True, True, True])
306
+ else:
307
+ expected = np.array([False, False, False])
308
+ tm.assert_numpy_array_equal(result, expected)
309
+
310
+ else:
311
+ expected_dtype = "boolean[pyarrow]" if dtype.storage == "pyarrow" else "boolean"
312
+ expected = np.full(len(a), fill_value=None, dtype="object")
313
+ expected[-1] = getattr(other[-1], op_name)(a[-1])
314
+ expected = pd.array(expected, dtype=expected_dtype)
315
+ tm.assert_extension_array_equal(result, expected)
316
+
317
+ result = getattr(a, op_name)(pd.NA)
318
+ expected = pd.array([None, None, None], dtype=expected_dtype)
319
+ tm.assert_extension_array_equal(result, expected)
320
+
321
+
322
+ def test_constructor_raises(cls):
323
+ if cls is pd.arrays.StringArray:
324
+ msg = "StringArray requires a sequence of strings or pandas.NA"
325
+ else:
326
+ msg = "Unsupported type '<class 'numpy.ndarray'>' for ArrowExtensionArray"
327
+
328
+ with pytest.raises(ValueError, match=msg):
329
+ cls(np.array(["a", "b"], dtype="S1"))
330
+
331
+ with pytest.raises(ValueError, match=msg):
332
+ cls(np.array([]))
333
+
334
+ if cls is pd.arrays.StringArray:
335
+ # GH#45057 np.nan and None do NOT raise, as they are considered valid NAs
336
+ # for string dtype
337
+ cls(np.array(["a", np.nan], dtype=object))
338
+ cls(np.array(["a", None], dtype=object))
339
+ else:
340
+ with pytest.raises(ValueError, match=msg):
341
+ cls(np.array(["a", np.nan], dtype=object))
342
+ with pytest.raises(ValueError, match=msg):
343
+ cls(np.array(["a", None], dtype=object))
344
+
345
+ with pytest.raises(ValueError, match=msg):
346
+ cls(np.array(["a", pd.NaT], dtype=object))
347
+
348
+ with pytest.raises(ValueError, match=msg):
349
+ cls(np.array(["a", np.datetime64("NaT", "ns")], dtype=object))
350
+
351
+ with pytest.raises(ValueError, match=msg):
352
+ cls(np.array(["a", np.timedelta64("NaT", "ns")], dtype=object))
353
+
354
+
355
+ @pytest.mark.parametrize("na", [np.nan, np.float64("nan"), float("nan"), None, pd.NA])
356
+ def test_constructor_nan_like(na):
357
+ expected = pd.arrays.StringArray(np.array(["a", pd.NA]))
358
+ tm.assert_extension_array_equal(
359
+ pd.arrays.StringArray(np.array(["a", na], dtype="object")), expected
360
+ )
361
+
362
+
363
+ @pytest.mark.parametrize("copy", [True, False])
364
+ def test_from_sequence_no_mutate(copy, cls, dtype):
365
+ nan_arr = np.array(["a", np.nan], dtype=object)
366
+ expected_input = nan_arr.copy()
367
+ na_arr = np.array(["a", pd.NA], dtype=object)
368
+
369
+ result = cls._from_sequence(nan_arr, dtype=dtype, copy=copy)
370
+
371
+ if cls in (ArrowStringArray, ArrowStringArrayNumpySemantics):
372
+ import pyarrow as pa
373
+
374
+ expected = cls(pa.array(na_arr, type=pa.string(), from_pandas=True))
375
+ else:
376
+ expected = cls(na_arr)
377
+
378
+ tm.assert_extension_array_equal(result, expected)
379
+ tm.assert_numpy_array_equal(nan_arr, expected_input)
380
+
381
+
382
+ def test_astype_int(dtype):
383
+ arr = pd.array(["1", "2", "3"], dtype=dtype)
384
+ result = arr.astype("int64")
385
+ expected = np.array([1, 2, 3], dtype="int64")
386
+ tm.assert_numpy_array_equal(result, expected)
387
+
388
+ arr = pd.array(["1", pd.NA, "3"], dtype=dtype)
389
+ if dtype.storage == "pyarrow_numpy":
390
+ err = ValueError
391
+ msg = "cannot convert float NaN to integer"
392
+ else:
393
+ err = TypeError
394
+ msg = (
395
+ r"int\(\) argument must be a string, a bytes-like "
396
+ r"object or a( real)? number"
397
+ )
398
+ with pytest.raises(err, match=msg):
399
+ arr.astype("int64")
400
+
401
+
402
+ def test_astype_nullable_int(dtype):
403
+ arr = pd.array(["1", pd.NA, "3"], dtype=dtype)
404
+
405
+ result = arr.astype("Int64")
406
+ expected = pd.array([1, pd.NA, 3], dtype="Int64")
407
+ tm.assert_extension_array_equal(result, expected)
408
+
409
+
410
+ def test_astype_float(dtype, any_float_dtype):
411
+ # Don't compare arrays (37974)
412
+ ser = pd.Series(["1.1", pd.NA, "3.3"], dtype=dtype)
413
+ result = ser.astype(any_float_dtype)
414
+ expected = pd.Series([1.1, np.nan, 3.3], dtype=any_float_dtype)
415
+ tm.assert_series_equal(result, expected)
416
+
417
+
418
+ @pytest.mark.parametrize("skipna", [True, False])
419
+ @pytest.mark.xfail(reason="Not implemented StringArray.sum")
420
+ def test_reduce(skipna, dtype):
421
+ arr = pd.Series(["a", "b", "c"], dtype=dtype)
422
+ result = arr.sum(skipna=skipna)
423
+ assert result == "abc"
424
+
425
+
426
+ @pytest.mark.parametrize("skipna", [True, False])
427
+ @pytest.mark.xfail(reason="Not implemented StringArray.sum")
428
+ def test_reduce_missing(skipna, dtype):
429
+ arr = pd.Series([None, "a", None, "b", "c", None], dtype=dtype)
430
+ result = arr.sum(skipna=skipna)
431
+ if skipna:
432
+ assert result == "abc"
433
+ else:
434
+ assert pd.isna(result)
435
+
436
+
437
+ @pytest.mark.parametrize("method", ["min", "max"])
438
+ @pytest.mark.parametrize("skipna", [True, False])
439
+ def test_min_max(method, skipna, dtype):
440
+ arr = pd.Series(["a", "b", "c", None], dtype=dtype)
441
+ result = getattr(arr, method)(skipna=skipna)
442
+ if skipna:
443
+ expected = "a" if method == "min" else "c"
444
+ assert result == expected
445
+ else:
446
+ assert result is na_val(arr.dtype)
447
+
448
+
449
+ @pytest.mark.parametrize("method", ["min", "max"])
450
+ @pytest.mark.parametrize("box", [pd.Series, pd.array])
451
+ def test_min_max_numpy(method, box, dtype, request, arrow_string_storage):
452
+ if dtype.storage in arrow_string_storage and box is pd.array:
453
+ if box is pd.array:
454
+ reason = "'<=' not supported between instances of 'str' and 'NoneType'"
455
+ else:
456
+ reason = "'ArrowStringArray' object has no attribute 'max'"
457
+ mark = pytest.mark.xfail(raises=TypeError, reason=reason)
458
+ request.applymarker(mark)
459
+
460
+ arr = box(["a", "b", "c", None], dtype=dtype)
461
+ result = getattr(np, method)(arr)
462
+ expected = "a" if method == "min" else "c"
463
+ assert result == expected
464
+
465
+
466
+ def test_fillna_args(dtype, arrow_string_storage):
467
+ # GH 37987
468
+
469
+ arr = pd.array(["a", pd.NA], dtype=dtype)
470
+
471
+ res = arr.fillna(value="b")
472
+ expected = pd.array(["a", "b"], dtype=dtype)
473
+ tm.assert_extension_array_equal(res, expected)
474
+
475
+ res = arr.fillna(value=np.str_("b"))
476
+ expected = pd.array(["a", "b"], dtype=dtype)
477
+ tm.assert_extension_array_equal(res, expected)
478
+
479
+ if dtype.storage in arrow_string_storage:
480
+ msg = "Invalid value '1' for dtype string"
481
+ else:
482
+ msg = "Cannot set non-string value '1' into a StringArray."
483
+ with pytest.raises(TypeError, match=msg):
484
+ arr.fillna(value=1)
485
+
486
+
487
+ def test_arrow_array(dtype):
488
+ # protocol added in 0.15.0
489
+ pa = pytest.importorskip("pyarrow")
490
+ import pyarrow.compute as pc
491
+
492
+ data = pd.array(["a", "b", "c"], dtype=dtype)
493
+ arr = pa.array(data)
494
+ expected = pa.array(list(data), type=pa.large_string(), from_pandas=True)
495
+ if dtype.storage in ("pyarrow", "pyarrow_numpy") and pa_version_under12p0:
496
+ expected = pa.chunked_array(expected)
497
+ if dtype.storage == "python":
498
+ expected = pc.cast(expected, pa.string())
499
+ assert arr.equals(expected)
500
+
501
+
502
+ @pytest.mark.filterwarnings("ignore:Passing a BlockManager:DeprecationWarning")
503
+ def test_arrow_roundtrip(dtype, string_storage2, request, using_infer_string):
504
+ # roundtrip possible from arrow 1.0.0
505
+ pa = pytest.importorskip("pyarrow")
506
+
507
+ if using_infer_string and string_storage2 != "pyarrow_numpy":
508
+ request.applymarker(
509
+ pytest.mark.xfail(
510
+ reason="infer_string takes precedence over string storage"
511
+ )
512
+ )
513
+
514
+ data = pd.array(["a", "b", None], dtype=dtype)
515
+ df = pd.DataFrame({"a": data})
516
+ table = pa.table(df)
517
+ if dtype.storage == "python":
518
+ assert table.field("a").type == "string"
519
+ else:
520
+ assert table.field("a").type == "large_string"
521
+ with pd.option_context("string_storage", string_storage2):
522
+ result = table.to_pandas()
523
+ assert isinstance(result["a"].dtype, pd.StringDtype)
524
+ expected = df.astype(f"string[{string_storage2}]")
525
+ tm.assert_frame_equal(result, expected)
526
+ # ensure the missing value is represented by NA and not np.nan or None
527
+ assert result.loc[2, "a"] is na_val(result["a"].dtype)
528
+
529
+
530
+ @pytest.mark.filterwarnings("ignore:Passing a BlockManager:DeprecationWarning")
531
+ def test_arrow_load_from_zero_chunks(
532
+ dtype, string_storage2, request, using_infer_string
533
+ ):
534
+ # GH-41040
535
+ pa = pytest.importorskip("pyarrow")
536
+
537
+ if using_infer_string and string_storage2 != "pyarrow_numpy":
538
+ request.applymarker(
539
+ pytest.mark.xfail(
540
+ reason="infer_string takes precedence over string storage"
541
+ )
542
+ )
543
+
544
+ data = pd.array([], dtype=dtype)
545
+ df = pd.DataFrame({"a": data})
546
+ table = pa.table(df)
547
+ if dtype.storage == "python":
548
+ assert table.field("a").type == "string"
549
+ else:
550
+ assert table.field("a").type == "large_string"
551
+ # Instantiate the same table with no chunks at all
552
+ table = pa.table([pa.chunked_array([], type=pa.string())], schema=table.schema)
553
+ with pd.option_context("string_storage", string_storage2):
554
+ result = table.to_pandas()
555
+ assert isinstance(result["a"].dtype, pd.StringDtype)
556
+ expected = df.astype(f"string[{string_storage2}]")
557
+ tm.assert_frame_equal(result, expected)
558
+
559
+
560
+ def test_value_counts_na(dtype):
561
+ if getattr(dtype, "storage", "") == "pyarrow":
562
+ exp_dtype = "int64[pyarrow]"
563
+ elif getattr(dtype, "storage", "") == "pyarrow_numpy":
564
+ exp_dtype = "int64"
565
+ else:
566
+ exp_dtype = "Int64"
567
+ arr = pd.array(["a", "b", "a", pd.NA], dtype=dtype)
568
+ result = arr.value_counts(dropna=False)
569
+ expected = pd.Series([2, 1, 1], index=arr[[0, 1, 3]], dtype=exp_dtype, name="count")
570
+ tm.assert_series_equal(result, expected)
571
+
572
+ result = arr.value_counts(dropna=True)
573
+ expected = pd.Series([2, 1], index=arr[:2], dtype=exp_dtype, name="count")
574
+ tm.assert_series_equal(result, expected)
575
+
576
+
577
+ def test_value_counts_with_normalize(dtype):
578
+ if getattr(dtype, "storage", "") == "pyarrow":
579
+ exp_dtype = "double[pyarrow]"
580
+ elif getattr(dtype, "storage", "") == "pyarrow_numpy":
581
+ exp_dtype = np.float64
582
+ else:
583
+ exp_dtype = "Float64"
584
+ ser = pd.Series(["a", "b", "a", pd.NA], dtype=dtype)
585
+ result = ser.value_counts(normalize=True)
586
+ expected = pd.Series([2, 1], index=ser[:2], dtype=exp_dtype, name="proportion") / 3
587
+ tm.assert_series_equal(result, expected)
588
+
589
+
590
+ @pytest.mark.parametrize(
591
+ "values, expected",
592
+ [
593
+ (["a", "b", "c"], np.array([False, False, False])),
594
+ (["a", "b", None], np.array([False, False, True])),
595
+ ],
596
+ )
597
+ def test_use_inf_as_na(values, expected, dtype):
598
+ # https://github.com/pandas-dev/pandas/issues/33655
599
+ values = pd.array(values, dtype=dtype)
600
+ msg = "use_inf_as_na option is deprecated"
601
+ with tm.assert_produces_warning(FutureWarning, match=msg):
602
+ with pd.option_context("mode.use_inf_as_na", True):
603
+ result = values.isna()
604
+ tm.assert_numpy_array_equal(result, expected)
605
+
606
+ result = pd.Series(values).isna()
607
+ expected = pd.Series(expected)
608
+ tm.assert_series_equal(result, expected)
609
+
610
+ result = pd.DataFrame(values).isna()
611
+ expected = pd.DataFrame(expected)
612
+ tm.assert_frame_equal(result, expected)
613
+
614
+
615
+ def test_memory_usage(dtype, arrow_string_storage):
616
+ # GH 33963
617
+
618
+ if dtype.storage in arrow_string_storage:
619
+ pytest.skip(f"not applicable for {dtype.storage}")
620
+
621
+ series = pd.Series(["a", "b", "c"], dtype=dtype)
622
+
623
+ assert 0 < series.nbytes <= series.memory_usage() < series.memory_usage(deep=True)
624
+
625
+
626
+ @pytest.mark.parametrize("float_dtype", [np.float16, np.float32, np.float64])
627
+ def test_astype_from_float_dtype(float_dtype, dtype):
628
+ # https://github.com/pandas-dev/pandas/issues/36451
629
+ ser = pd.Series([0.1], dtype=float_dtype)
630
+ result = ser.astype(dtype)
631
+ expected = pd.Series(["0.1"], dtype=dtype)
632
+ tm.assert_series_equal(result, expected)
633
+
634
+
635
+ def test_to_numpy_returns_pdna_default(dtype):
636
+ arr = pd.array(["a", pd.NA, "b"], dtype=dtype)
637
+ result = np.array(arr)
638
+ expected = np.array(["a", na_val(dtype), "b"], dtype=object)
639
+ tm.assert_numpy_array_equal(result, expected)
640
+
641
+
642
+ def test_to_numpy_na_value(dtype, nulls_fixture):
643
+ na_value = nulls_fixture
644
+ arr = pd.array(["a", pd.NA, "b"], dtype=dtype)
645
+ result = arr.to_numpy(na_value=na_value)
646
+ expected = np.array(["a", na_value, "b"], dtype=object)
647
+ tm.assert_numpy_array_equal(result, expected)
648
+
649
+
650
+ def test_isin(dtype, fixed_now_ts):
651
+ s = pd.Series(["a", "b", None], dtype=dtype)
652
+
653
+ result = s.isin(["a", "c"])
654
+ expected = pd.Series([True, False, False])
655
+ tm.assert_series_equal(result, expected)
656
+
657
+ result = s.isin(["a", pd.NA])
658
+ expected = pd.Series([True, False, True])
659
+ tm.assert_series_equal(result, expected)
660
+
661
+ result = s.isin([])
662
+ expected = pd.Series([False, False, False])
663
+ tm.assert_series_equal(result, expected)
664
+
665
+ result = s.isin(["a", fixed_now_ts])
666
+ expected = pd.Series([True, False, False])
667
+ tm.assert_series_equal(result, expected)
668
+
669
+
670
+ def test_setitem_scalar_with_mask_validation(dtype):
671
+ # https://github.com/pandas-dev/pandas/issues/47628
672
+ # setting None with a boolean mask (through _putmaks) should still result
673
+ # in pd.NA values in the underlying array
674
+ ser = pd.Series(["a", "b", "c"], dtype=dtype)
675
+ mask = np.array([False, True, False])
676
+
677
+ ser[mask] = None
678
+ assert ser.array[1] is na_val(ser.dtype)
679
+
680
+ # for other non-string we should also raise an error
681
+ ser = pd.Series(["a", "b", "c"], dtype=dtype)
682
+ if type(ser.array) is pd.arrays.StringArray:
683
+ msg = "Cannot set non-string value"
684
+ else:
685
+ msg = "Scalar must be NA or str"
686
+ with pytest.raises(TypeError, match=msg):
687
+ ser[mask] = 1
688
+
689
+
690
+ def test_from_numpy_str(dtype):
691
+ vals = ["a", "b", "c"]
692
+ arr = np.array(vals, dtype=np.str_)
693
+ result = pd.array(arr, dtype=dtype)
694
+ expected = pd.array(vals, dtype=dtype)
695
+ tm.assert_extension_array_equal(result, expected)
696
+
697
+
698
+ def test_tolist(dtype):
699
+ vals = ["a", "b", "c"]
700
+ arr = pd.array(vals, dtype=dtype)
701
+ result = arr.tolist()
702
+ expected = vals
703
+ tm.assert_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/string_/test_string_arrow.py ADDED
@@ -0,0 +1,265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ import re
3
+
4
+ import numpy as np
5
+ import pytest
6
+
7
+ import pandas.util._test_decorators as td
8
+
9
+ import pandas as pd
10
+ import pandas._testing as tm
11
+ from pandas.core.arrays.string_ import (
12
+ StringArray,
13
+ StringDtype,
14
+ )
15
+ from pandas.core.arrays.string_arrow import (
16
+ ArrowStringArray,
17
+ ArrowStringArrayNumpySemantics,
18
+ )
19
+
20
+
21
+ def test_eq_all_na():
22
+ pytest.importorskip("pyarrow")
23
+ a = pd.array([pd.NA, pd.NA], dtype=StringDtype("pyarrow"))
24
+ result = a == a
25
+ expected = pd.array([pd.NA, pd.NA], dtype="boolean[pyarrow]")
26
+ tm.assert_extension_array_equal(result, expected)
27
+
28
+
29
+ def test_config(string_storage, request, using_infer_string):
30
+ if using_infer_string and string_storage != "pyarrow_numpy":
31
+ request.applymarker(pytest.mark.xfail(reason="infer string takes precedence"))
32
+ with pd.option_context("string_storage", string_storage):
33
+ assert StringDtype().storage == string_storage
34
+ result = pd.array(["a", "b"])
35
+ assert result.dtype.storage == string_storage
36
+
37
+ dtype = StringDtype(string_storage)
38
+ expected = dtype.construct_array_type()._from_sequence(["a", "b"], dtype=dtype)
39
+ tm.assert_equal(result, expected)
40
+
41
+
42
+ def test_config_bad_storage_raises():
43
+ msg = re.escape("Value must be one of python|pyarrow")
44
+ with pytest.raises(ValueError, match=msg):
45
+ pd.options.mode.string_storage = "foo"
46
+
47
+
48
+ @pytest.mark.parametrize("chunked", [True, False])
49
+ @pytest.mark.parametrize("array", ["numpy", "pyarrow"])
50
+ def test_constructor_not_string_type_raises(array, chunked, arrow_string_storage):
51
+ pa = pytest.importorskip("pyarrow")
52
+
53
+ array = pa if array in arrow_string_storage else np
54
+
55
+ arr = array.array([1, 2, 3])
56
+ if chunked:
57
+ if array is np:
58
+ pytest.skip("chunked not applicable to numpy array")
59
+ arr = pa.chunked_array(arr)
60
+ if array is np:
61
+ msg = "Unsupported type '<class 'numpy.ndarray'>' for ArrowExtensionArray"
62
+ else:
63
+ msg = re.escape(
64
+ "ArrowStringArray requires a PyArrow (chunked) array of large_string type"
65
+ )
66
+ with pytest.raises(ValueError, match=msg):
67
+ ArrowStringArray(arr)
68
+
69
+
70
+ @pytest.mark.parametrize("chunked", [True, False])
71
+ def test_constructor_not_string_type_value_dictionary_raises(chunked):
72
+ pa = pytest.importorskip("pyarrow")
73
+
74
+ arr = pa.array([1, 2, 3], pa.dictionary(pa.int32(), pa.int32()))
75
+ if chunked:
76
+ arr = pa.chunked_array(arr)
77
+
78
+ msg = re.escape(
79
+ "ArrowStringArray requires a PyArrow (chunked) array of large_string type"
80
+ )
81
+ with pytest.raises(ValueError, match=msg):
82
+ ArrowStringArray(arr)
83
+
84
+
85
+ @pytest.mark.xfail(
86
+ reason="dict conversion does not seem to be implemented for large string in arrow"
87
+ )
88
+ @pytest.mark.parametrize("chunked", [True, False])
89
+ def test_constructor_valid_string_type_value_dictionary(chunked):
90
+ pa = pytest.importorskip("pyarrow")
91
+
92
+ arr = pa.array(["1", "2", "3"], pa.large_string()).dictionary_encode()
93
+ if chunked:
94
+ arr = pa.chunked_array(arr)
95
+
96
+ arr = ArrowStringArray(arr)
97
+ assert pa.types.is_string(arr._pa_array.type.value_type)
98
+
99
+
100
+ def test_constructor_from_list():
101
+ # GH#27673
102
+ pytest.importorskip("pyarrow")
103
+ result = pd.Series(["E"], dtype=StringDtype(storage="pyarrow"))
104
+ assert isinstance(result.dtype, StringDtype)
105
+ assert result.dtype.storage == "pyarrow"
106
+
107
+
108
+ def test_from_sequence_wrong_dtype_raises(using_infer_string):
109
+ pytest.importorskip("pyarrow")
110
+ with pd.option_context("string_storage", "python"):
111
+ ArrowStringArray._from_sequence(["a", None, "c"], dtype="string")
112
+
113
+ with pd.option_context("string_storage", "pyarrow"):
114
+ ArrowStringArray._from_sequence(["a", None, "c"], dtype="string")
115
+
116
+ with pytest.raises(AssertionError, match=None):
117
+ ArrowStringArray._from_sequence(["a", None, "c"], dtype="string[python]")
118
+
119
+ ArrowStringArray._from_sequence(["a", None, "c"], dtype="string[pyarrow]")
120
+
121
+ if not using_infer_string:
122
+ with pytest.raises(AssertionError, match=None):
123
+ with pd.option_context("string_storage", "python"):
124
+ ArrowStringArray._from_sequence(["a", None, "c"], dtype=StringDtype())
125
+
126
+ with pd.option_context("string_storage", "pyarrow"):
127
+ ArrowStringArray._from_sequence(["a", None, "c"], dtype=StringDtype())
128
+
129
+ if not using_infer_string:
130
+ with pytest.raises(AssertionError, match=None):
131
+ ArrowStringArray._from_sequence(
132
+ ["a", None, "c"], dtype=StringDtype("python")
133
+ )
134
+
135
+ ArrowStringArray._from_sequence(["a", None, "c"], dtype=StringDtype("pyarrow"))
136
+
137
+ with pd.option_context("string_storage", "python"):
138
+ StringArray._from_sequence(["a", None, "c"], dtype="string")
139
+
140
+ with pd.option_context("string_storage", "pyarrow"):
141
+ StringArray._from_sequence(["a", None, "c"], dtype="string")
142
+
143
+ StringArray._from_sequence(["a", None, "c"], dtype="string[python]")
144
+
145
+ with pytest.raises(AssertionError, match=None):
146
+ StringArray._from_sequence(["a", None, "c"], dtype="string[pyarrow]")
147
+
148
+ if not using_infer_string:
149
+ with pd.option_context("string_storage", "python"):
150
+ StringArray._from_sequence(["a", None, "c"], dtype=StringDtype())
151
+
152
+ if not using_infer_string:
153
+ with pytest.raises(AssertionError, match=None):
154
+ with pd.option_context("string_storage", "pyarrow"):
155
+ StringArray._from_sequence(["a", None, "c"], dtype=StringDtype())
156
+
157
+ StringArray._from_sequence(["a", None, "c"], dtype=StringDtype("python"))
158
+
159
+ with pytest.raises(AssertionError, match=None):
160
+ StringArray._from_sequence(["a", None, "c"], dtype=StringDtype("pyarrow"))
161
+
162
+
163
+ @td.skip_if_installed("pyarrow")
164
+ def test_pyarrow_not_installed_raises():
165
+ msg = re.escape("pyarrow>=10.0.1 is required for PyArrow backed")
166
+
167
+ with pytest.raises(ImportError, match=msg):
168
+ StringDtype(storage="pyarrow")
169
+
170
+ with pytest.raises(ImportError, match=msg):
171
+ ArrowStringArray([])
172
+
173
+ with pytest.raises(ImportError, match=msg):
174
+ ArrowStringArrayNumpySemantics([])
175
+
176
+ with pytest.raises(ImportError, match=msg):
177
+ ArrowStringArray._from_sequence(["a", None, "b"])
178
+
179
+
180
+ @pytest.mark.parametrize("multiple_chunks", [False, True])
181
+ @pytest.mark.parametrize(
182
+ "key, value, expected",
183
+ [
184
+ (-1, "XX", ["a", "b", "c", "d", "XX"]),
185
+ (1, "XX", ["a", "XX", "c", "d", "e"]),
186
+ (1, None, ["a", None, "c", "d", "e"]),
187
+ (1, pd.NA, ["a", None, "c", "d", "e"]),
188
+ ([1, 3], "XX", ["a", "XX", "c", "XX", "e"]),
189
+ ([1, 3], ["XX", "YY"], ["a", "XX", "c", "YY", "e"]),
190
+ ([1, 3], ["XX", None], ["a", "XX", "c", None, "e"]),
191
+ ([1, 3], ["XX", pd.NA], ["a", "XX", "c", None, "e"]),
192
+ ([0, -1], ["XX", "YY"], ["XX", "b", "c", "d", "YY"]),
193
+ ([-1, 0], ["XX", "YY"], ["YY", "b", "c", "d", "XX"]),
194
+ (slice(3, None), "XX", ["a", "b", "c", "XX", "XX"]),
195
+ (slice(2, 4), ["XX", "YY"], ["a", "b", "XX", "YY", "e"]),
196
+ (slice(3, 1, -1), ["XX", "YY"], ["a", "b", "YY", "XX", "e"]),
197
+ (slice(None), "XX", ["XX", "XX", "XX", "XX", "XX"]),
198
+ ([False, True, False, True, False], ["XX", "YY"], ["a", "XX", "c", "YY", "e"]),
199
+ ],
200
+ )
201
+ def test_setitem(multiple_chunks, key, value, expected):
202
+ pa = pytest.importorskip("pyarrow")
203
+
204
+ result = pa.array(list("abcde"))
205
+ expected = pa.array(expected)
206
+
207
+ if multiple_chunks:
208
+ result = pa.chunked_array([result[:3], result[3:]])
209
+ expected = pa.chunked_array([expected[:3], expected[3:]])
210
+
211
+ result = ArrowStringArray(result)
212
+ expected = ArrowStringArray(expected)
213
+
214
+ result[key] = value
215
+ tm.assert_equal(result, expected)
216
+
217
+
218
+ def test_setitem_invalid_indexer_raises():
219
+ pa = pytest.importorskip("pyarrow")
220
+
221
+ arr = ArrowStringArray(pa.array(list("abcde")))
222
+
223
+ with pytest.raises(IndexError, match=None):
224
+ arr[5] = "foo"
225
+
226
+ with pytest.raises(IndexError, match=None):
227
+ arr[-6] = "foo"
228
+
229
+ with pytest.raises(IndexError, match=None):
230
+ arr[[0, 5]] = "foo"
231
+
232
+ with pytest.raises(IndexError, match=None):
233
+ arr[[0, -6]] = "foo"
234
+
235
+ with pytest.raises(IndexError, match=None):
236
+ arr[[True, True, False]] = "foo"
237
+
238
+ with pytest.raises(ValueError, match=None):
239
+ arr[[0, 1]] = ["foo", "bar", "baz"]
240
+
241
+
242
+ @pytest.mark.parametrize("dtype", ["string[pyarrow]", "string[pyarrow_numpy]"])
243
+ def test_pickle_roundtrip(dtype):
244
+ # GH 42600
245
+ pytest.importorskip("pyarrow")
246
+ expected = pd.Series(range(10), dtype=dtype)
247
+ expected_sliced = expected.head(2)
248
+ full_pickled = pickle.dumps(expected)
249
+ sliced_pickled = pickle.dumps(expected_sliced)
250
+
251
+ assert len(full_pickled) > len(sliced_pickled)
252
+
253
+ result = pickle.loads(full_pickled)
254
+ tm.assert_series_equal(result, expected)
255
+
256
+ result_sliced = pickle.loads(sliced_pickled)
257
+ tm.assert_series_equal(result_sliced, expected_sliced)
258
+
259
+
260
+ def test_string_dtype_error_message():
261
+ # GH#55051
262
+ pytest.importorskip("pyarrow")
263
+ msg = "Storage must be 'python', 'pyarrow' or 'pyarrow_numpy'."
264
+ with pytest.raises(ValueError, match=msg):
265
+ StringDtype("bla")
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/timedeltas/__init__.py ADDED
File without changes
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/timedeltas/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (203 Bytes). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/timedeltas/__pycache__/test_constructors.cpython-310.pyc ADDED
Binary file (4.8 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/timedeltas/__pycache__/test_cumulative.cpython-310.pyc ADDED
Binary file (1.19 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/timedeltas/__pycache__/test_reductions.cpython-310.pyc ADDED
Binary file (5.25 kB). View file
 
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/timedeltas/test_constructors.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas._testing as tm
5
+ from pandas.core.arrays import TimedeltaArray
6
+
7
+
8
+ class TestTimedeltaArrayConstructor:
9
+ def test_only_1dim_accepted(self):
10
+ # GH#25282
11
+ arr = np.array([0, 1, 2, 3], dtype="m8[h]").astype("m8[ns]")
12
+
13
+ depr_msg = "TimedeltaArray.__init__ is deprecated"
14
+ with tm.assert_produces_warning(FutureWarning, match=depr_msg):
15
+ with pytest.raises(ValueError, match="Only 1-dimensional"):
16
+ # 3-dim, we allow 2D to sneak in for ops purposes GH#29853
17
+ TimedeltaArray(arr.reshape(2, 2, 1))
18
+
19
+ with tm.assert_produces_warning(FutureWarning, match=depr_msg):
20
+ with pytest.raises(ValueError, match="Only 1-dimensional"):
21
+ # 0-dim
22
+ TimedeltaArray(arr[[0]].squeeze())
23
+
24
+ def test_freq_validation(self):
25
+ # ensure that the public constructor cannot create an invalid instance
26
+ arr = np.array([0, 0, 1], dtype=np.int64) * 3600 * 10**9
27
+
28
+ msg = (
29
+ "Inferred frequency None from passed values does not "
30
+ "conform to passed frequency D"
31
+ )
32
+ depr_msg = "TimedeltaArray.__init__ is deprecated"
33
+ with tm.assert_produces_warning(FutureWarning, match=depr_msg):
34
+ with pytest.raises(ValueError, match=msg):
35
+ TimedeltaArray(arr.view("timedelta64[ns]"), freq="D")
36
+
37
+ def test_non_array_raises(self):
38
+ depr_msg = "TimedeltaArray.__init__ is deprecated"
39
+ with tm.assert_produces_warning(FutureWarning, match=depr_msg):
40
+ with pytest.raises(ValueError, match="list"):
41
+ TimedeltaArray([1, 2, 3])
42
+
43
+ def test_other_type_raises(self):
44
+ msg = r"dtype bool cannot be converted to timedelta64\[ns\]"
45
+ with pytest.raises(TypeError, match=msg):
46
+ TimedeltaArray._from_sequence(np.array([1, 2, 3], dtype="bool"))
47
+
48
+ def test_incorrect_dtype_raises(self):
49
+ msg = "dtype 'category' is invalid, should be np.timedelta64 dtype"
50
+ with pytest.raises(ValueError, match=msg):
51
+ TimedeltaArray._from_sequence(
52
+ np.array([1, 2, 3], dtype="i8"), dtype="category"
53
+ )
54
+
55
+ msg = "dtype 'int64' is invalid, should be np.timedelta64 dtype"
56
+ with pytest.raises(ValueError, match=msg):
57
+ TimedeltaArray._from_sequence(
58
+ np.array([1, 2, 3], dtype="i8"), dtype=np.dtype("int64")
59
+ )
60
+
61
+ msg = r"dtype 'datetime64\[ns\]' is invalid, should be np.timedelta64 dtype"
62
+ with pytest.raises(ValueError, match=msg):
63
+ TimedeltaArray._from_sequence(
64
+ np.array([1, 2, 3], dtype="i8"), dtype=np.dtype("M8[ns]")
65
+ )
66
+
67
+ msg = (
68
+ r"dtype 'datetime64\[us, UTC\]' is invalid, should be np.timedelta64 dtype"
69
+ )
70
+ with pytest.raises(ValueError, match=msg):
71
+ TimedeltaArray._from_sequence(
72
+ np.array([1, 2, 3], dtype="i8"), dtype="M8[us, UTC]"
73
+ )
74
+
75
+ msg = "Supported timedelta64 resolutions are 's', 'ms', 'us', 'ns'"
76
+ with pytest.raises(ValueError, match=msg):
77
+ TimedeltaArray._from_sequence(
78
+ np.array([1, 2, 3], dtype="i8"), dtype=np.dtype("m8[Y]")
79
+ )
80
+
81
+ def test_mismatched_values_dtype_units(self):
82
+ arr = np.array([1, 2, 3], dtype="m8[s]")
83
+ dtype = np.dtype("m8[ns]")
84
+ msg = r"Values resolution does not match dtype"
85
+ depr_msg = "TimedeltaArray.__init__ is deprecated"
86
+
87
+ with tm.assert_produces_warning(FutureWarning, match=depr_msg):
88
+ with pytest.raises(ValueError, match=msg):
89
+ TimedeltaArray(arr, dtype=dtype)
90
+
91
+ def test_copy(self):
92
+ data = np.array([1, 2, 3], dtype="m8[ns]")
93
+ arr = TimedeltaArray._from_sequence(data, copy=False)
94
+ assert arr._ndarray is data
95
+
96
+ arr = TimedeltaArray._from_sequence(data, copy=True)
97
+ assert arr._ndarray is not data
98
+ assert arr._ndarray.base is not data
99
+
100
+ def test_from_sequence_dtype(self):
101
+ msg = "dtype 'object' is invalid, should be np.timedelta64 dtype"
102
+ with pytest.raises(ValueError, match=msg):
103
+ TimedeltaArray._from_sequence([], dtype=object)
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/timedeltas/test_cumulative.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import pandas._testing as tm
4
+ from pandas.core.arrays import TimedeltaArray
5
+
6
+
7
+ class TestAccumulator:
8
+ def test_accumulators_disallowed(self):
9
+ # GH#50297
10
+ arr = TimedeltaArray._from_sequence(["1D", "2D"], dtype="m8[ns]")
11
+ with pytest.raises(TypeError, match="cumprod not supported"):
12
+ arr._accumulate("cumprod")
13
+
14
+ def test_cumsum(self, unit):
15
+ # GH#50297
16
+ dtype = f"m8[{unit}]"
17
+ arr = TimedeltaArray._from_sequence(["1D", "2D"], dtype=dtype)
18
+ result = arr._accumulate("cumsum")
19
+ expected = TimedeltaArray._from_sequence(["1D", "3D"], dtype=dtype)
20
+ tm.assert_timedelta_array_equal(result, expected)
llmeval-env/lib/python3.10/site-packages/pandas/tests/arrays/timedeltas/test_reductions.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas as pd
5
+ from pandas import Timedelta
6
+ import pandas._testing as tm
7
+ from pandas.core import nanops
8
+ from pandas.core.arrays import TimedeltaArray
9
+
10
+
11
+ class TestReductions:
12
+ @pytest.mark.parametrize("name", ["std", "min", "max", "median", "mean"])
13
+ @pytest.mark.parametrize("skipna", [True, False])
14
+ def test_reductions_empty(self, name, skipna):
15
+ tdi = pd.TimedeltaIndex([])
16
+ arr = tdi.array
17
+
18
+ result = getattr(tdi, name)(skipna=skipna)
19
+ assert result is pd.NaT
20
+
21
+ result = getattr(arr, name)(skipna=skipna)
22
+ assert result is pd.NaT
23
+
24
+ @pytest.mark.parametrize("skipna", [True, False])
25
+ def test_sum_empty(self, skipna):
26
+ tdi = pd.TimedeltaIndex([])
27
+ arr = tdi.array
28
+
29
+ result = tdi.sum(skipna=skipna)
30
+ assert isinstance(result, Timedelta)
31
+ assert result == Timedelta(0)
32
+
33
+ result = arr.sum(skipna=skipna)
34
+ assert isinstance(result, Timedelta)
35
+ assert result == Timedelta(0)
36
+
37
+ def test_min_max(self, unit):
38
+ dtype = f"m8[{unit}]"
39
+ arr = TimedeltaArray._from_sequence(
40
+ ["3h", "3h", "NaT", "2h", "5h", "4h"], dtype=dtype
41
+ )
42
+
43
+ result = arr.min()
44
+ expected = Timedelta("2h")
45
+ assert result == expected
46
+
47
+ result = arr.max()
48
+ expected = Timedelta("5h")
49
+ assert result == expected
50
+
51
+ result = arr.min(skipna=False)
52
+ assert result is pd.NaT
53
+
54
+ result = arr.max(skipna=False)
55
+ assert result is pd.NaT
56
+
57
+ def test_sum(self):
58
+ tdi = pd.TimedeltaIndex(["3h", "3h", "NaT", "2h", "5h", "4h"])
59
+ arr = tdi.array
60
+
61
+ result = arr.sum(skipna=True)
62
+ expected = Timedelta(hours=17)
63
+ assert isinstance(result, Timedelta)
64
+ assert result == expected
65
+
66
+ result = tdi.sum(skipna=True)
67
+ assert isinstance(result, Timedelta)
68
+ assert result == expected
69
+
70
+ result = arr.sum(skipna=False)
71
+ assert result is pd.NaT
72
+
73
+ result = tdi.sum(skipna=False)
74
+ assert result is pd.NaT
75
+
76
+ result = arr.sum(min_count=9)
77
+ assert result is pd.NaT
78
+
79
+ result = tdi.sum(min_count=9)
80
+ assert result is pd.NaT
81
+
82
+ result = arr.sum(min_count=1)
83
+ assert isinstance(result, Timedelta)
84
+ assert result == expected
85
+
86
+ result = tdi.sum(min_count=1)
87
+ assert isinstance(result, Timedelta)
88
+ assert result == expected
89
+
90
+ def test_npsum(self):
91
+ # GH#25282, GH#25335 np.sum should return a Timedelta, not timedelta64
92
+ tdi = pd.TimedeltaIndex(["3h", "3h", "2h", "5h", "4h"])
93
+ arr = tdi.array
94
+
95
+ result = np.sum(tdi)
96
+ expected = Timedelta(hours=17)
97
+ assert isinstance(result, Timedelta)
98
+ assert result == expected
99
+
100
+ result = np.sum(arr)
101
+ assert isinstance(result, Timedelta)
102
+ assert result == expected
103
+
104
+ def test_sum_2d_skipna_false(self):
105
+ arr = np.arange(8).astype(np.int64).view("m8[s]").astype("m8[ns]").reshape(4, 2)
106
+ arr[-1, -1] = "Nat"
107
+
108
+ tda = TimedeltaArray._from_sequence(arr)
109
+
110
+ result = tda.sum(skipna=False)
111
+ assert result is pd.NaT
112
+
113
+ result = tda.sum(axis=0, skipna=False)
114
+ expected = pd.TimedeltaIndex([Timedelta(seconds=12), pd.NaT])._values
115
+ tm.assert_timedelta_array_equal(result, expected)
116
+
117
+ result = tda.sum(axis=1, skipna=False)
118
+ expected = pd.TimedeltaIndex(
119
+ [
120
+ Timedelta(seconds=1),
121
+ Timedelta(seconds=5),
122
+ Timedelta(seconds=9),
123
+ pd.NaT,
124
+ ]
125
+ )._values
126
+ tm.assert_timedelta_array_equal(result, expected)
127
+
128
+ # Adding a Timestamp makes this a test for DatetimeArray.std
129
+ @pytest.mark.parametrize(
130
+ "add",
131
+ [
132
+ Timedelta(0),
133
+ pd.Timestamp("2021-01-01"),
134
+ pd.Timestamp("2021-01-01", tz="UTC"),
135
+ pd.Timestamp("2021-01-01", tz="Asia/Tokyo"),
136
+ ],
137
+ )
138
+ def test_std(self, add):
139
+ tdi = pd.TimedeltaIndex(["0h", "4h", "NaT", "4h", "0h", "2h"]) + add
140
+ arr = tdi.array
141
+
142
+ result = arr.std(skipna=True)
143
+ expected = Timedelta(hours=2)
144
+ assert isinstance(result, Timedelta)
145
+ assert result == expected
146
+
147
+ result = tdi.std(skipna=True)
148
+ assert isinstance(result, Timedelta)
149
+ assert result == expected
150
+
151
+ if getattr(arr, "tz", None) is None:
152
+ result = nanops.nanstd(np.asarray(arr), skipna=True)
153
+ assert isinstance(result, np.timedelta64)
154
+ assert result == expected
155
+
156
+ result = arr.std(skipna=False)
157
+ assert result is pd.NaT
158
+
159
+ result = tdi.std(skipna=False)
160
+ assert result is pd.NaT
161
+
162
+ if getattr(arr, "tz", None) is None:
163
+ result = nanops.nanstd(np.asarray(arr), skipna=False)
164
+ assert isinstance(result, np.timedelta64)
165
+ assert np.isnat(result)
166
+
167
+ def test_median(self):
168
+ tdi = pd.TimedeltaIndex(["0h", "3h", "NaT", "5h06m", "0h", "2h"])
169
+ arr = tdi.array
170
+
171
+ result = arr.median(skipna=True)
172
+ expected = Timedelta(hours=2)
173
+ assert isinstance(result, Timedelta)
174
+ assert result == expected
175
+
176
+ result = tdi.median(skipna=True)
177
+ assert isinstance(result, Timedelta)
178
+ assert result == expected
179
+
180
+ result = arr.median(skipna=False)
181
+ assert result is pd.NaT
182
+
183
+ result = tdi.median(skipna=False)
184
+ assert result is pd.NaT
185
+
186
+ def test_mean(self):
187
+ tdi = pd.TimedeltaIndex(["0h", "3h", "NaT", "5h06m", "0h", "2h"])
188
+ arr = tdi._data
189
+
190
+ # manually verified result
191
+ expected = Timedelta(arr.dropna()._ndarray.mean())
192
+
193
+ result = arr.mean()
194
+ assert result == expected
195
+ result = arr.mean(skipna=False)
196
+ assert result is pd.NaT
197
+
198
+ result = arr.dropna().mean(skipna=False)
199
+ assert result == expected
200
+
201
+ result = arr.mean(axis=0)
202
+ assert result == expected
203
+
204
+ def test_mean_2d(self):
205
+ tdi = pd.timedelta_range("14 days", periods=6)
206
+ tda = tdi._data.reshape(3, 2)
207
+
208
+ result = tda.mean(axis=0)
209
+ expected = tda[1]
210
+ tm.assert_timedelta_array_equal(result, expected)
211
+
212
+ result = tda.mean(axis=1)
213
+ expected = tda[:, 0] + Timedelta(hours=12)
214
+ tm.assert_timedelta_array_equal(result, expected)
215
+
216
+ result = tda.mean(axis=None)
217
+ expected = tdi.mean()
218
+ assert result == expected